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By F. D. WALDHAUER 

(Manuscript received February 11, 1977) 

This paper discloses a technique for the direct analysis of linear' 
active circuits, avoiding the solution of simultaneous equations. This 
is done by representing the circuit in such a way that the signal vari
ables (currents and voltages) are determined sequentially: we only allow 
a signal variable to depend upon previously determined signal vari
ables, not upon signal variables yet to be determined. Such a circuit 
is representable by a cascade signal flow graph, a graph containing no 
feedback loops. Not all circuits can be so represented, of course, but the 
number which can is expanded by the technique to be described to in
clude most feedback amplifier configurations. This simplification in 
linear amplifier analysis allows us to trace a clear path from rough 
design approximations to exact computer analysis. The extension of 
the analysis to include the effect of nonsaturating nonlinearities is 
indicated but not developed here. 

I. INTRODUCTION 

Feedback regulators as human artifacts have been here for a long time. 
An early one (perhaps the first!) was a furnace temperature control in
vented by Cornelius Drebble (1572-1633) who used it in several versions 
including an incubator for chickens. The flyball governor may have 
originated with Huygens2 in the seventeenth century, and was used for 
speed control of windmills by Thomas Mead and steam engines by James 
Watt, both in the early nineteenth century. In the same period, a much 
more diffuse feedback system was promulgated by Adam Smith in his 
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Wealth of Nations, which proposed that economic self-interest of in
dividuals would automatically assure equilibrium of the economic sys
tem, without central control.l 

Mathematical development of governors began with Maxwell,3 who 
determined stability conditions for systems up to the third degree. He 
"hoped that the subject would obtain the attention of mathematicians." 
Routh, Lyapunov, Hurwitz, and others responded, extending the sta
bility analysis to systems of higher degree.4 Still the focus was on sta
bility, that is, preventing the system from being useless. The engineer 
was pretty much on his own to make the system useful. Minorski was 
such an engineer. He developed an analysis for the design of a ship 
rudder servo in the early 1920s.5 

In the same period, Black and Dickieson were working together on 
amplifiers for carrier transmission of telephone signals. Their design 
problem was to reduce nonlinearities in electronic amplifiers so that the 
several voice channels would not interfere with one another by modu
lation. Black's first entry in this area was his invention of feedforward,6 
a technique reinvented by many workers in the 1960s, and inspired, as 
Black relates, by "an approach to another problem, I don't remember 
what it was, in a lecture by Steinmetz." Black worked out the invention 
on the night of the lecture, and he and Dickieson got it working in six 
hours the next day.7 The second invention was that of feedback,8,9 which 
came out of the first invention in the sense that Black understood that 
it would do the same job of reducing nonlinearity. An appreciation of 
stability problems came later. Nyquist, with his paper "Regeneration 
Theory"l0 (unfortunately titled, according to Black), dealt with stability 
analysis or preventing oscillations-making sure that Black's invention 
would work. Dickieson has been quoted as saying about this theory of 
stability, "At last we knew what we were trying to achieve."ll Bode later 
set down the theory of feedback amplifier design, which remains a 
landmark to this day.12 

In the middle decades of this century, feedback amplifiers received 
much attention.13,14 A recent library search turned up some 750 articles 
on the subject, indicating that the theory is hard to understand. By 
making the stability problem the central focus, and in solving it superbly 
well, Nyquist and Bode relegated the design problem to a position of 
lesser importance. What was the design problem? To reduce modulation 
products in frequency-division multiplex systems. What was the solu
tion? To maximize the magnitude of the feedback signal, consistent with 
the stability constraint. 

This paper questions the usefulness of feedback as a conceptual tool 
for design.15 The physical connection of a portion of the output signal 
of an amplifier to the input is agreed to be a beneficial measure for many 
applications. The analysis of such a physical structure can be made 
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without recourse to the concept of feedback by a conceptual leap, one 
which has already been made by many engineers who design circuits. 
That leap is to reverse the direction of time, and think in terms of the 
input signal which is required to produce a given, preassigned output 
signal. The technique is old, having been applied to passive ladder cir
cuits by many workers, although the origin is unclear.16 Penfield refers 
to it as the "Guillemin trick,"17 but many others of the era used it. Its 
application to active circuits has been much more limited, consisting of 
a few papers by the present author,18 Beddoe,19 and in control theory, 
by Rosenbrock.2o 

People working in computer-aided design have already rejected the 
concept of feedback in favor of general circuit analysis programs that 
calculate the performance of quite complex circuits by various matrix 
methods. These programs are most valuable in checking the performance 
of a circuit after it has been designed and before it is committed to pro
duction. They tend to be neutral with respect to circuit concepts, giving 
mostly correct answers as to how circuits, previously given to them by 
design engineers, will work. When a circuit doesn't work, the design 
engineer has difficulty tracing the source of the difficulty from the 
computer results. The CAD expert, on the other hand, complains that 
he is not brought into the design process early enough. The design, ac
<cording to him, has been set in concrete. The problem is sometimes cast 
in terms of interpersonal relations, but I think that it is structural, in that 
there is a poor match between the intuitive thought process of the design 
engineer and the general analysis method of the CAD expert. The design 
method discussed in this paper should help to resolve this question, since 
it is at home as much on the computer as it is in the mind (potentially) 
of the designer. 

The focus of this paper is on the design problem of feedback ampli
fiers. Sections II and III are tutorial, because the material is old, and may 
be unfamiliar to many who might like to understand the rest of the paper. 
Sections IV and V describe the new theory, and Sections VI and VII are 
concerned with applying it to familiar problems. Section VIII considers 
the stability question. While the substance of this paper is theoretical, 
it was derived from practical design experience with several amplifier 
configurations, the most recent of which is an operationa) amplifier with 
I-GHz unity-gain bandwidth and 1 volt per nanosecond slew rate, to be 
reported upon later. The conceptual difficulties were discussed quite 
thoroughly in an in-hours course taught by the author at Bell Labs. 

II. CAUSAL AND ANTICAUSAL ANALYSIS-SINGLE SIGNAL VARIABLES 
REPRESENTING CAUSE AND EFFECT 

Two elementary examples will serve to define what is meant by 
feedback and its relationship to the choice of independent circuit vari-

ANTICAUSAL ANALYSIS 1339 



abIes. In Fig. la, a Thevenin source is connected to a load conductance: 
a first equation is written taking the cause, ee, as the independent 
variable, giving rise to a loop gain or return ratio, -GLRe, and a return 
difference, F = 1 + GLRe, as shown in the signal flow graph.21 A second 
equation is written taking the effect, Vo, as the independent variable, 
and the cause, ee, as the dependent variable, in which case no loop gain 
appears, giving unity return difference. In Fig. lb, the elementary 
feedback amplifier circuit of Black's feedback patent is shown with a 
similar set of causal and anticausal equations, showing again that loop 
gain does not appear under the anticausal formulation. Clearly, then, 
return ratio is a property of the mathematical description of the circuits, 
and not of the circuits themselves. 

Feedback is seen to be associated with the departure from unity of the 
denominator in the circuit equation. Since circuit expressions are easier 
to evaluate (and think about) without denominators, a circuit description 
which avoids them is conceptually easier to deal with. In general circuit 
analysis, denominators (or return difference) cannot always be unity, 
of course, but in many active circuits it will be shown that they can be 
made to approximate it by appropriate choice of independent vari
ables. 

The word feedback is generally employed in a broader sense than 
Bode's strict definition of it as return difference. It connotes coupling 
from output to input of an active circuit, or portion of a circuit, and in 
this sense can exist, as in Figure lb with its anticausal equation, without 
any loop gain. We shall employ the term feedback in this sense even 
though the description may include no return ratio. 

H. Seidel, whose work on feedforward has been of substantial help to 
the author in clarifying amplifier input-output time relationships, has 
pointed out that the title of this paper might be interpreted (incorrectly) 
as describing a physical violation of the principle of causality. No such 
violation should be inferred. Rather, it is the analysis of the causal 
physical system, proceeding from output to input in a direction from 
effect to cause, which gives rise to the title of this paper. 

III. TWO-PORT ANALYSIS USING THE TRANSMISSION MATRIX AND 
TRANSMISSION MATRIX SIGNAL FLOW GRAPHS 

Much useful theory is based on single signal-variable analysis, in
cluding some introductory control theory and circuit analysis. For 
practical circuit work, however, we need to consider at least two signal 
variables in order to given an adequate, simple description of an am
plifier made up' from basic parts, such as transistors and passive devices. 
The simplest of such amplifiers will have an input port and an output 
port, and we are concerned with the current and voltage at each of these 
ports, four variables in total. The most general way to assign indepen-
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Fig. I-Dne-dimensional analysis showing causal and anticausal functional depen
dencies. 

dence and dependence to these four variables, necessary in most cases, 
is to choose two independent variables and two dependent variables. 
There are six possible assignments of port currents and voltages as in
dependent and dependent: one is to choose the port voltages as the set 
of independent variables. The port currents, then, are the dependent 
variables, related to the port voltages by an admittance, or y matrix. The 
choice can profoundly affect the nature of the analysis of the amplifier. 
In what follows, we use five of the six choices as it suits the occasion, but 
the basic analysis is involved with the choice of the output current and 
voltage, the output signal vector, U o = vo,ii, as the setof independent 
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(a) 

T 
uiQ • QUo 

(b) 

T = [: :J 
Fig. 2-Signal flow graph of an amplifier represented by its transmission parameters, 

and the equivalent transmission matrix signal-flow graph (TMSFG). 

variables, and the input signal vector ui = vi,ii, as the set of dependent 
variables. The dependent variables are related to the independent 
variables by the transmission matrix, or ABeD matrix:22,23 

(1) 

or 

These equations are shown in signal flow graph form in Fig. 2. In Fig. 2a, 
eq. (1) is represented by the usual signal flow graph, a graph of directed 
branches. For each branch, the tail originates at the independent circuit 
variable, and the nose points toward the dependent variable. The branch 
value multiplies the value of the independent variable at the tail, and 
adds the result to the dependent variable value at the nose. 

Signal flow graphs are particularly useful in establishing and clarifying 
functional dependencies in circuits. They are not widely used in circuit 
analysis and design, however, because of their complexity, even in circuits 
of quite modest proportions. 

In Fig. 2b, a simpler graph, a transmission matrix signal flow graph 
(TMSFG)* connects the output signal vector, uo , to the input signal 
vector, Ui, through the matrix branch T. The TMSFG is simply a short
hand way of depicting the graph of Fig. 2a. While signal flow graphs 
having matrices for the branches were envisioned by Mason24 and have 
been studied elsewhere,25 the application to transmission matrices is new. 

* A glossary of terms is given at the end of the paper. 
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In the transmission matrix signal flow graph, each graph node represents 
a signal vector consisting of a current and voltage at some point in a 
circuit, and each branch represents a transmission matrix. The corre
spondence between the graph and the circuit is direct, with the graph 
nodes having a direct counterpart in vector nodes of the circuit. A circuit 
vector node is defined as a node of the circuit with only two connections 
to it, allowing us to define uniquely the node voltage (to ground) and the 
node current, which together form the signal vector of the corresponding 
TMSFG node. The definitions of the transmission parameters are implicit 
in eq. (1): 

A = OVi the reciprocal of g21, the open circuit voltage gain 
oVo ' 

B = OVi 
oio ' 

D = Oii 
oio ' 

the negative reciprocal of Y21, the short circuit 
transadmittance 

the reciprocal of z 21, the open circuit 
transimpedance 

the negative reciprocal of h 21, the short circuit 
current gain 

(2) 

Note that the ABeD parameters are all reciprocals or negative* recip
rocals of familiar forward transfer or gain parameters. 

Equation (1) can be written with the transmission matrix taken as a 
Jacobian matrix, making the equation suitable for analysis of an im
portant class of nonlinear problems: 

[::J = [~f: ~i~ [:::] (3) 

The partial derivatives can be expressed as nonlinear functions of the 
instantaneous output current and voltage, allowing us to find the input 
voltage and current as nonlinear functions of a preassigned output 
voltage and current. For a desired sinusoidal output, for example, we can 
find the input pre distortion required to achieve that output. The study 
of transistor nonlinearities expressed in terms of the partials of eq. (3) 
is beyond the scope of this paper, and is mentioned here to indicate the 

* The parameters which involve io are negative reciprocals because of differing sign 
conventions between the ABeD parameters, in which the positive direction of current 
is taken to be outward from the output port, and the h, Z, y, and g parameters, in which 
the reverse is true. 
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Fig. 3-Connection of a two-port amplifier to source and load, with appropriate sig
nal-flow graphs. 

direction of future efforts. For the remainder of this paper, we shall 
confine our attention to the small-signal case, where the partial deriva
tives are constants defined at a dc operating point, and are generally 
functions of frequency. 

The calculation of the circuit properties of an amplifier connected as 
shown in Fig. 3a between a Thevenin source and load conductance is 
particularly simple if we retain the anticausal direction of analysis that 
finds the input for a given output. Thus, defining the loss ratio, L, as 
ec/va, we simply add all of the paths from Va to ec in Fig. 3b, or, alter
natively, perform the matrix multiplication indicated in Fig. 3c. 
Thus, 

(4) 

(5) 

The graphs of Fig. 3 do not include any feedback loops (closed paths). 
Such a graph is termed a cascade graph and has the property that the 
graph gain (in this case representing the loss ratio since the grapb source 
node corresponds to the circuit output) is the sum of all path products 
from the graph source node to the sink node, from Va to ec. With no 
feedback loops, no denominator appears in the expression for the loss 
ratio. 
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Fig. 4-Loss ratio calculation for a voice-frequency operational amplifier connected 
between source and load. 

Two examples serve to illustrate the loss ratio calculation. In Fig. 4, 
a voice-frequency operational amplifier is connected between source and 
load, with the positive input grounded. The transmission matrix of this 
amplifier can be approximated over most of its frequency range by a 
single parameter: A = -200s, where s is the frequency variable in units 
of gigaradians per second. * (The low frequency value of input signal is 
over 100 dB down from the output, and is ignored.) Thus, the loss ratio 
is -200s, as shown in Fig. 4, and is seen not to depend upon the source 
or load immittances within the range of accuracy of the simple model. 

In the signal flow graph of Fig. 4b, the zero value elements in the active 
path (operational amplifier) transmission matrix are represented by 
dotted lines; when these are ignored, only a single path exists between 
the Vo and ec nodes. The TMSFG is shown in Fig. 4c. 

* To save writing powers of 10, we shall adopt the following system of units throughout: 
the volt, milliampere, and nanosecond are taken as our fundamental units, leading to the 
derived units ofkohms, mmhos, microhenries, picofarads, gigaradians per second (Gr/s), 
and GHz. 
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Fig. 5-Loss ratio calculation for a common emitter stage employing a type 87 A tran
sistor. 

The second example, shown in Fig. 5, is a common emitter transistor 
stage using the Western Electric type 87 A transistor. Accurate charac
terization of the transmission parameters of this transistor is under way; 
for purposes of the illustration, we approximate the transmission matrix 
as shown in Fig. 5b, accurate in magnitude to 1 GHz but somewhat de
ficient in phase. The transistor parameters are determined at a collector 
current of 5 rnA, and a collector-to-emitter voltage of 3 volts, and are 

re = emitter resistance 
CCB = collector-to-base capacitance 

() = l/h{e, the reciprocal current gain 
TT = 1/27rfT, the current gain time constant 

Cee = collector-to-emitter capacitance 

0.008 kohm 
0.55 pF 
0.01 
0.025 ns 
0.7pF 
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These parameter values yield the transmission matrix shown in Fig. 5b, 
whose elements are entered on the signal flow graph of Fig. 5c. The 
TMSFG is shown in Fig. 5d. The calculation of loss ratio, shown in Fig. 
5e, can be made by adding all path products of the signal flow graph, or 
by performing the matrix operations indicated in the TMSFG. The loss 
ratio is seen to be a binomial in the frequency variable, with a cutoff 
frequency of 1 Gr/s, or 0.16 GHz. 

This second example points to an advantage of the anticausal ap
proach in determining circuit sensitivities. With feedback loops absent, 
the input signal is simply the sum of all paths from output to input of 
the signal flow graph, so that the sensitivity of the loss ratio to r e, for 
example, is simply the proportion of the input contributed by r e. At low 
frequencies, the r e contribution is 0.08 out of a total input of 0.09, so that 
the sensitivity to re is 0.08/0.09, or 0.89. 

The advantages of the anticausal approach for the simple circuits 
studied so far are implicit in the removal of feedback loops and therefore 
denominators from the transmission expressions. It remains to be shown 
that a method may be developed for retaining these advantages in more 
complicated circuits with more than mere ladder or cascade coupling. 

IV. "FEEDBACI(": THE EFFECT OF SPANNING NETWORI(S 

We define a spanning network as a two-port network which is con
nected between a pair of nonadjacent circuit vector nodes of a cascaded 
network. In the circuit of Fig. 6a, for example, the conductance G will 
be considered to be a spanning network around the transistor, and in Fig. 
6b, the upper transistor will be considered to be a spanning network 
around the lower transistor. The choice at this point is arbitrary as to 
which is the spanning network and which is the cascade network. The 
consideration of active spanning networks is beyond our scope here, but 
in the case of the circuit of Fig. 6a, the reason for the choice will become 
clear. The conductance can be represented by its two-port dependent 
generator equivalent circuit as shown in the figure. Four separate effects 
are introduced by G, corresponding to the four elements of its y-pa
rameter matrix: 

(6) 

Clearly, Yn and Y2210ad the input and output circuits by shunt con
ductances equal to G. The generator Y12Uo = -Guo augments the input 
current by an amount proportional to the output voltage upon which 
it depends. This Y12 augmentation is usually the reason for connecting 
G to the circuit, and the other three effects (of Yn, Y22, and Y21) are side 
effects, usually deleterious. The fourth effect, introduced by the gen-
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Fig. 6-Two types of spanning networks: (a) input signal augmentation, or feedback 
type, and (b) output signal augmentation, or feedforward type. 

erator Y21Vi, is direct feedthrough. Where the transistor has high gain, 
e.g., where Vi « Va, this effect is incidental, and can often be neglect
ed. 

The method of treating a spanning network in anticausal circuit 
analysis is (i) to represent its two-port characteristics by one of the four 
sets of network parameters whose dependent generator equivalent cir
cuits and signal flow graphs are shown in Fig. 7, and (ii) to decompose 
its four network parameters into four separate transmission matrices, 
corresponding to the four effects of input and output circuit loading, 
input augmentation (or "feedback"), and output augmentation (direct 
feedthrough) . 

The four two-port representations of Fig. 7 correspond to the four 
well-known feedback configurations. The h parameters are chosen to 
represent a spanning network which provides series-input/parallel
output feedback, the main effect of which is to augment transmission 
parameter A by h12 of the spanning network. We shall term this A 
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Fig. 7-Signal-flow graphs and equivalent circuits for two-ports corresponding to the 
h, z, y, and g parameter representations. 

feedback. The z parameters augment B by Z12, and are appropriate for 
series-input/series-output, or B feedback. Similarly, Y12 augments C, 
providing C feedback, and g12 augments D, giving D feedback. We shall 
consider all four types of feedback in the following section. In this section, 
we shall consider C feedback (parallel-input/parallel-output feedback) 
in detail. 

A signal-flow graph for the circuit of Fig. 6a is shown in Fig. 8a. The 
four branches labeled A, B, C, and D represent the transmission pa
rameters of the transistor. The other four (nonunity) branches represent 
the effect of the four Y parameters of the spanning network. Three of 
these latter branches, corresponding to Yll and Y22, the input and output 
loading by the spanning network, and Y2b the direct feedthrough to the 
output through the spanning network, are shown as dashed lines to in
dicate their lesser importance. 

In Fig. 8b, a TMSFG for this circuit is shown. The active path trans
mission matrix, Ta, includes the four transistor transmission parameters 
of Fig. 8a. The four branches of Fig. 8a which represent the spanning 
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(a) 

(b) 

Fig. 8-Development of the signal-flow graph and the TMSFG for the circuit of Fig. 6a. 
(a) Signal-flow graph, with direct feedthrough and input and output feedback loading 
branches shown with dashed lines. (b) TMSFG. 

network y parameters yield four separate transmission matrices, {3y, 
Fy, Hy, and Jy, defined as follows: {3y is the input augmentation or 
feedback matrix, given by 

R _ [0 
fJy -

Y12 ~] (7) 

Fy is the direct feedthrough, or feedforward matrix, given by 

Fy = [~21 ~] = [ _~ ~] (8) 

Hy is the input loading matrix, given by 

Hy = [~11 ~] = [~ ~J (9) 

Jy is the output loading matrix, given by 

JY=[~22 ~J=[~ ~J (10) 

In these four equations, the matrices containing G were obtained by 
substituting the Y parameters of eq. (6) into the general expressions. 

The transmission matrix for the C-feedback amplifier of Fig. 6a can 
be obtained by evaluating the graph gain of the TMSFG. As shown in 
Appendix A, this transmission matrix is 
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(11) 

The matrix Fy Ta will be called the return ratio matrix, and (I - Fy Ta )-1 
will be termed the return difference matrix inverse. These two matrices 
arise from the presence of a feedback loop in the signal flow graph and 
in the TMSFG, one which arises from the incidental direct feedthrough, 
or feedforward from input to output through the spanning network. 
Where the Y21 branch can be ignored, F y can be considered a null matrix, 
and the graphs become cascade graphs. The transmission matrix of eq. 
(11) can also be written 

(12) 

since 

This equation states that the transmission matrix of the amplifier is the 
sum of the {3y matrix and the matrix of the active path, which itself is 
the transmission matrix of the transistor, modified by input and output 
loading and direct feedthrough. Our next step is to calculate the effect 
of these modifications of the active path transmission matrix. 

To evaluate the effect of direct feedthrough, we begin by finding the 
return ratio matrix: 

(13) 

whereupon the return difference matrix inverse becomes 

(I - FyTa)-l = 1 [1 -Y21B 01] 
1 - Y21B Y21A 

(14) 

The effect of direct feedthrough is a small modification of the trans
mission parameters of the active path. Thus, 

Ta' = Ta (I - Fy T a)-l = 1 [A DB] (15) 
1 - Y21B C + Y21Llt 

where Ll t = AD - BC is the determinant of the transmission matrix of 
the transistor. Ordinarily, IY21B I « 1 and IY21Llt I « C, so that the active 
path remains essentially unaffected by the direct feedthrough. 

The loss ratio between a Thevenin source and a load conductance is 
found as in eq. 4: 

(16) 

Using eq. (12) for T, and substituting the matrix element values of eqs. 
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(7) to (10), we obtain 

L = ReY12 + [1 Re] [1 
Yn 

= ReY12 + [1 + ReYn 

0] Ta' [1 
1 Y22 ~] [~J (17) 

Re]Ta' [ 1 ] 
GL + Y22 

(18) 

The term 1 + ReYn is a potentiometer term arising from the voltage 
divider action between the source resistance, Re, and the spanning 
network input loading admittance, Yn, and the term GL + Y22 represents 
the total output load admittance, including the spanning network output 
loading. Letting Pc = 1 + ReYn and GL' = GL + Y22, we can write 

1 
L = ReY12 + [PeA + PeBGL' 

1 - Y21B 

+ ReC - ReY21Llt + ReDGL'] (19) 

We can recapitulate the above development by identifying each term 
of this equation with the relevant spanning network effect, comparing 
it with eq. (5) for the loss ratio without the spanning network. The first 
term is the input augmentation, or "feedback," which is of course absent 
from eq. (2-5). This is the reciprocal of the familiar RFIRe gain ap
proximation for this circuit, with RF = I/G. The remaining terms are 
divided by the return difference, 1 - Y21B, which is ordinarily close to 
unity. The first term in the brackets, PeA, is the same as that of eq. (5), 
except that it is magnified by the input loading factor, Pc = 1 + YnRe. 
The second term is magnified by this term as well as by the increased 
output loading provided by Y22. The third term is unchanged from eq 
(5). The fourth term is new: ordinarily very small, it constitutes a rev
erberation of the signal back and forth through the circuit. The fifth term 
in the brackets is the D term of eq. (5) magnified by the increased load 
conductance. 

The main difference between the two equations is the feedback term, 
ReG. The loading has a lesser effect but it is not normally negligible. The 
direct feedthrough effect is normally negligible. 

As examples of the use of the above equations, consider the circuits 
of Figs. 4 and 5 with feedback conductances connected between input 
and output, as shown in Fig. 9. The loss ratio for the operational amplifier 
circuit consists of only two terms of eq. (19), since we have assumed that 
B, C, and D are zero. Hence, Ll t is also zero, and 

L = -ReG + PeA 

Since Pc = 1.1 and A = -2008, we have 

L = -(.1 + 2208) 
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.01+.025 SJ 

10 
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Fig. 9-Examples of loss ratio calculation with spanning network. 

Direct feedthrough and output loading are of no concern by our as
sumption that Band D of the active path are zero. Feedback, or input 
augmentation, gives the low-frequency value of .1, and the value is A 
magnified by the input Pc term. 

A more substantial example is provided in Fig. 9b, in which the com
mon emitter stage of Fig. 5 is modified by connecting a 1 mmho con
ductance from input to output. With Rc = .1 k, we have Pc = 1.1, and 
with GL = 10 mmho, we have GL' = 11 mmho. From eq. (19), the loss 
ratio of the transistor stage is 

1 
L87A = -.1 - [.Olls + .0968 

1 - 0.008 

+ .055s + .00043s + .011 + .0275s] (22) 

in which the terms are in the order given in eq. (19). The value of Ll t is 
taken as .0043s, ignoring the S2 coefficient, since it affects the result only 
at frequencies higher than the range of approximation of the transistor 
model (1 GHz). Thus, 

L87A = -.209 - .0947s (23) 
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When the direct feedthrough is ignored, the denominator in eq. (22) 
becomes unity, and the RGG~t term (.000438) drops out, giving 

L87A ~ -.208 - .09358 (24) 

an approximation of which a circuit designer can be proud. When input 
and output loading are ignored, PG becomes unity and GL ' reverts to 
G L, 10 mmho. This approximation is rougher, but still valuable for circuit 
thinking: 

L87A ~ -.19 - .0908 (25) 

A still rougher approximation is obtained by ignoring certain of the less 
important transistor parameters (for this case), such as 0 and Cee. With 
these assumptions, the transmission matrix of the transistor becomes 

T [
.00448 

87A~ -
.558 

and the loss ratio becomes 

.008 ] 

.0258 

L87A = -(.18 + .0848) 

(26) 

(27) 

which is roughly 10 percent below the true value. A much rougher ap
proximation is obtained by ignoring the contribution of the active path 
entirely, a good strategy where the loss ratio is controlled primarily by 
the feedback. For the case of the 87 A, we would obtain L87A = .1, a poor 
approximation, since r e contributes to the low frequency loss ratio, and 
Ceb and TT provide most of the high-frequency loss. In the case of the 
op amp, this strategy accurately predicts the low-frequency loss ratio, 
but obviously cannot account for the increase in loss ratio at high 
frequencies. The significance of ignoring the active path contribution 
is that it defines the transmission matrix of the active path as the null 
matrix. This provides us with a convenient reference condition for a 
feedback circuit. Where Bode defined a reference condition for a feed
back circuit as the circuit in which the "tube [active path] is dead," we 
stand the definition on its head, and take our reference condition as one 
in which the active path is very much alive-an ideal two-port ampli
fier-to be discussed in the next section. The approximation is widely 
used in operational amplifier applications such as active filter design. 

The analysis of the C -feedback amplifier in this section shows that 
the essential character of the simple anticausal analysis of the circuits 
of Section II is retained when the y-parameter spanning network is 
added to the circuit. The cascade nature of the signal-flow graph is es
sentially retained because the loop gain of the inevitable feedback loops 
is below unity, and for usual feedback circuits, negligible. The sensitiv
ities to circuit elements are easily evaluated. The low-frequency sensi
tivity of loss ratio to rein the 87 A feedback circuit, for example, is seen 
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from eq. (22) to be .0976/.209 = .47, compared with the previously cal
culated value of .89 for the stage without the spanning network. The 
contribution of r e to the input voltage has not been reduced-it actually 
has increased slightly because of the output loading by the spanning 
network and by the input PG term-but the total generator voltage has 
been increased by the input signal augmentation of the spanning net
work, tending to swamp out the effect of reo 

In this approach to active circuit analysis, the functional dependencies 
have been chosen in such a way that the increase in bandwidth and re
duction in sensitivities usually ascribed to feedback are accounted for 
without the presence of denominators associated with feedback. 

v. NOTES ON FEEDBACK THEORY 

Equation (12) for the C-feedback stage neatly separates four essentials 
of a feedback amplifier. The two terms of the equation separate the 
feedback or spanning network and the active paths. The feedback net
work matrix, /3y, contains one nonzero element which augments the 
current at the amplifier input in proportion to the output voltage, as we 
have seen. The active path consists of four matrices, including Ta , the 
transmission matrix of the active path, Hand J, the matrices repre
senting the circuit loading by the spanning network at the amplifier input 
and output respectively, and (I - FyTa)-l, the return difference matrix 
inverse representing direct feedthrough. This equation permits a clear 
definition of the /3-matrix; by setting Ta equal to zero, that is, making 
Ta the null matrix, the second term in the brackets drops out, so that 
the transmission matrix of the amplifier becomes /3yo We shall define 
the reference condition for the amplifier by setting Ta = [0]. Thus, /3y 
is the transmission matrix of a C-feedback amplifier whose active path 
has been set in the reference condition. Later, this definition will be 
extended to A-, B-, and D-feedback amplifiers. 

The concept of an amplifier whose input voltage and current are zero 
for all finite output signal vectors is a serviceable one which is fairly 
widely used in making rough calculations of gain of feedback circuits. 
Calling such an amplifier an ideal two-port amplifier* we can state the 
following. 

Theorem: An ideal two-port amplifier is an amplifier whose trans
mission matrix is the null matrix. 

Proof: From equation (5), we have 

L = A + BGL + RGC + RGDGL = 0 (28) 

since eg/vo = 0 by definition. Since the terminations are arbitrary and 

* To distinguish it from an ideal operational amplifier, which is a three-port. 
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Fig. lO-Dependent generator equivalent circuit for a two-port represented by its 
transmission parameters. 

nonzero, A, B, C, and D must be zero individually. Note that the input 
and output impedances are indeterminate, since 

and 

Z. =A+BGL 

III C+DGL 

Z =B+DRc 
o A + CRc 

(29) 

(30) 

Impedances will be determined solely by externally applied spanning 
networks. An ideal two-port amplifier (I2PA) is a circuit element having 
no parameters to specify it (much like the nullator and norator),26 and 
represents a limiting value for an active two-port. It is often useful in 
drawing equivalent circuits and in modeling; it can, for example, allow 
us to draw a dependent generator equivalent circuit for a two-port de
scribed by the transmission parameters, as shown in Fig. 10. 

We can apply the concept of the 12p A to investigate the properties of 
various feedback configurations. With the active path of a feedback 
amplifier set in the reference condition, the resulting transmission matrix 
is simply the {3 matrix, without the complicating effect of a nonideal 
active path. In Fig. 11, the circuits of four unitary feedback amplifiers 
and their associated transmission matrices are shown. A unitary feed
back amplifier is defined as one whose {3 matrix has but one nonzero 
element. Figures 11a and d employ permutative feedback-feedback 
obtained when the active device leads are permuted.27 When the active 
path consists of a transistor, these are the common collector and common 
base stages, respectively. The transmission matrices shown are obtained 
by inspection, bearing in mind that the input current and voltage of the 
12PA are zero. The circuits of Figures lIb and c are duals, with the 
transmission matrices likewise obtained by inspection. 

We can obtain a good approximation to the actual transmission matrix 
of each of the four circuits of Fig. 11 with a nonideal active path by simply 
adding the transmission matrix of the active path, with due attention 
to the sign change introduced in Fig. 11a and d by the permutation of 
the device leads. This amounts to approximating the transmission matrix 
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T,'O', - ~ :J T, (01 {: J 
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Fig. 11-Transmission matrices of four unitary feedback amplifiers whose active path 
is in the reference condition. (a) Common collector stage (example of A feedback); (b) 
emitter resistor feedback (example of B feedback); (c) collector-to-base feedback (example 
of C feedback); (d) common base stage (example of D feedback). 

by the equation 

(31) 

In the case of the common collector stage, this amounts to approximating 
the transmission matrix as 

[
l-A 

Tee ~ -c -B] 
-D 

(32) 

Since permutative feedback is lossless, there are no input and output 
loading terms, so that the approximation involves ignoring the direct 
feedthrough. The exact transmission matrix for this stage is derived in 
Appendix B, and is 

1 [ () 
Tee = 1- D -c -B] 

-D 
(33) 
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where 0 = 1 - A - D + ~ t, a quantity close to unity which will recur 
below. Where D « 1, that is, well below fT, the approximation of eq. (32) 
is quite close. 

In the case of B-feedback, for which the z-parameter description of 
the spanning network is appropriate, the approximation of eq. (31) 
gives 

Tz~[~ B;R] 
The exact value, derived in Appendix C, is 

T = 1 [A + CR 
z 1 + CR C 

B -RO] 
D+CR 

(34) 

(35) 

In comparing this expression with that of eq. (34) we note that the de
nominator and the multiplication of R by 0 are due to direct feedthrough; 
the CR term added to A comes from input loading by the spanning 
network, and the CR term added to D comes from output loading by the 
spanning network. These modifications are small, but may become im
portant at high frequencies, since C represents the (negative) admittance 
of the collector capacitance, a determining factor in high-frequency 
performance. 

The transmission matrices for the four circuits of Fig. 11 with nonideal 
active paths are given in Table I. These expressions are intended for 
computer implementation, since they are complex, and their complexity 
arises from relatively small corrections on the approximations discussed 
here. The approximations can be used in the design process. 

Table I also includes the transmission matrix of one non unitary 
feedback amplifier, a hybrid feedback amplifier, incorporating both B
and C-feedback. As can be seen from the table, the matrix for the ref
erence condition includes nonzero elements in all four positions of the 
matrix. The matrix was obtained by using the transmission matrix ele
ments of Tz as a set of active path elements for the computation of 
Ty . 

As noted above, a spanning network is represented by one of the four 
parameter sets of Fig. 7. Anyone of these parameter sets contains four 
parameters, each of which generates a transmission matrix; these have 
been termed {3, F, H, and J matrices corresponding to the four effects 
generated by the spanning network; input augmentation, direct 
feedthrough, and input and output loading, respectively. Each of the 
four types of unitary feedback can be represented by the same TMSFG, 
shown at the top of Table II. The rows of Table II define these four 
transmission matrices for each of the spanning network parameter sets 
of Fig. 7. Signs are a problem, since the sign conventions for two-port 
parameters are different for the parameter sets of Fig. 7 and for the 

1358 THE BELL SYSTEM TECHNICAL JOURNAL, OCrOBER 1977 



» z 
-I 
0 » 
c 
CJ) 

» r 
» z » 
r 
-< 
CJ) 

en 
..... 
W 
<11 
(Q 

Table 1-Transmission matrices for useful special cases 

Circuit Transmission matrix 
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-D 

[

A + CR 
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[
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Ty == 1 + lBG C _ Ge 

B-ReJ 

D +CR 

D:BJ 

[

-A -BJ 
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-C e 
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/
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Table 11-Matrix element values for the four types of unitary 
feedback 

ail 

~" 
aF 

TMSFG 
Type of 
feedback a (3 F H J 

A -1 [h
O
" ~J [~ h:J [~ h~J [ 

B -1 [~ Z~2 ] [~ Z~] [~ Z~J [~ 
C 1 l~, ~J l~, ~J l~, ~J [ 
D 1 [~ g] L~l ~J [ ~J [~ 

~J 
Z~2 ] 

~J 
g;J 

transmission parameters. This is accounted for in Table II by introducing 
the parameter a', which is -1 for the hand z parameter sets and + 1 for 
the y and g parameter sets. The signs of the parameter values are all 
consistent with conventional practice. 

The cascode stage of Fig. 12a illustrates a situation in which the 
common-base stage effectively removes or reduces certain active pa
rameters of the common emitter stage. The transmission matrix of the 
cascode stage is 

Tcascode = T al ({3D - T a2 ) 

= T al{3D - TaI T a2 (36) 

= [~ ~:J -TaI T a2 (37) 

The first matrix of eq. (37) is the transmission matrix of the common 
emitter stage with Al and C I removed, the primary effect of which is to 
remove CI , the (negative) susceptance of the Miller capacitance. The 
second term is the negative of the cascaded pair of transistors in the 
common emitter configuration, a matrix whose elements are much 
smaller than those for a single stage up to frequencies at which the 
common emitter gain becomes small. 

The process of sorting out the unique character of amplifier configu
rations is helpful for circuit design. Consider the cascades of unitary 
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Fig. 12-Cascode stage. 

feedback amplifiers of Fig. 13.28 In Fig. 13a, the cascade of a B feedback 
amplifier with a C feedback amplifier has a transmission matrix given 
by Tz Ty of Table I. When both transistors are placed in the reference 
condition, we observe that the elements of the {3 matrix of the combi
nation are all zero except for the factor RG in the A position, so that the 
combination is itself a unitary A-feedback amplifier. Reversing the order 
of the stages, in Fig. 13b, gives aD-feedback amplifier. If we cascade two 
C -feedback stages (or two B-feedback stages) we find that the {3 matrix 
of the combination is null. In Fig. 13c, we note that the C feedback of the 
second stage augments the input current of that stage, but not the 
voltage. Since the {3 network of the first stage senses the input voltage 
of the second stage, which is zero in the reference condition, no overall 
feedback arises. The overall loss ratio increases as a result of the input 
augmentation of the individual stages; the increased input current of 
the second stage increases the contribution of Bl and Dl to the loss ratio, 
and the feedback around the first stage increases the effect of A2 and 
B 2, but the {3 matrix for the combination is null. 

VI. EQUIVALENT LADDER CIRCUITS FOR FEEDBACK AMPLIFIERS 

The circuit of any amplifier whose two-port characteristics are sought 
may be drawn as an equivalent ladder circuit, that is, a cascade of active 
and passive network elements, by the direct expedient of representing 
circuit couplings among nonadjacent nodes of the ladder by one or more 
of the dependent generator equivalent circuits of Fig. 7. This will be il
lustrated by deriving an equivalent ladder circuit for the A-feedback pair 
of Fig. 14, in which the output voltage of the second stage is divided down 
in a resistive divider and applied to the emitter of the first stage, where 
it augments the amplifier input voltage. Since the {3 network augments 
A of the active path transmission matrix, the {3 network is properly 
represented by its h parameters. The relationship of the h parameters 
to circuit elements RE and RF is given in Fig. 14b, which also defines a 
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Fig. l3-Cascades of unitary feedback amplifier. 

more convenient set of feedback parameters, RA, G A, and nA, where RA 
is the parallel combination of RE and RF, GA is the conductance of the 
series combination of RE and RF, and nA is RE/(RE + RF), which can 
be considered the turns ratio of the ideal transformer in the network 
shown. The application of the spanning network is shown in Fig. 14c. The 

1362 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1977 



(a) 

+ + 

+ 

+ 

(c) 

+ 

(d) 

Fig. 14-The A-feedback pair. (a) Circuit; (b) analysis of spanning network; (c) appli
cation of dependent generator equivalent circuit of spanning network; (d) equivalent ladder 
network. 
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final equivalent circuit of Fig. 14d removes the nAVo gererator from the 
emitter circuit of the first stage, replacing it by two generators, one in 
series with the base lead of the first stage, and one in series with the 
collector lead. This completes the transformation to the ladder config
uration, except that we have left RA in the emitter of the first stage. The 
reduction to a ladder of elementary active and passive devices would 
strictly require that the local B feedback of the first stage be represerted 
by a separate z-parameter spanning network. To save work, we shall take 
the single-stage circuits of Table I as elementary building blocks, so that 
the first-stage active path will be represented as Tz . Thus, there is no 
need to reanalyze the single-stage circuits of Table I each time they arise. 
In computer evaluation, the properties of Tz are derived from Ta in a 
subroutine. We note that when the transistors of the circuit of Fig. 14 
are placed in the reference condition, the transmission matrix is 

~A = [~A ~] (38) 

so that the A-feedback pair is a unitary feedback amplifier. 
The ladder equivalent circuit for the D-feedback amplifier of Fig. 15a 

is derived in an exactly analogous manner, and is shown in Fig. 15b. In 
this case, the g parameters of Fig. 7 are the appropriate set, since g12 
relates the input current to the output current. When the transistors are 
placed in the reference condition, the transmission matrix of the circuit 
IS 

PD= [~ -~J (39) 

so that this, too, is a unitary feedback amplifier. 
Simultaneous application of A- and D-feedback is shown in Fig. 15c, 

and the ladder equivalent circuit is shown in d. The circuit is an extension 
of the two unitary feedback circuits from which it is derived. When the 
transistors of this circuit are placed in the reference condition, the ex
pression for the ~ matrix is complicated. It can be simplified by sepa
rating out the effects of G D and G A, which we would normally associate 
with the source and load immittances, respectively. The remaining 
matrix may be written by inspection, and is the middle matrix of: 

PAID = [~D ~] [~A RA~~lRD] [~A~] (40) 

If G Ll is eliminated (by bootstrapping or by use of an active current 
source to provide dc for the first stage), the ~ matrix consists essentially 
of the two ratios, nA to establish the voltage gain and nD to establish the 
current gain. 

This configuration is another instance of a hybrid feedback amplifier 

1364 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1977 



(a) 

(b) 

(c) 

Fig. 1S-Further development of equivalent ladder circuits. (a) A D-feedback amplifier 
and (b) its equivalent ladder circuit. (c) A hybrid AID-feedback amplifier and (d) its 
equivalent circuit. 
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(the first was encountered as the last entry of Table I). Hybrid feedback 
can be used to provide a desired input and/or output impedance without 
incurring the power loss associated with build-out resistance or con
ductance.29 At the amplifier output, such a build-out incurs a loss of 
power output capability, while at the input it increases noise. In the 
present instance, the two generators establish both the input current 
and voltage, and therefore the input impedance, and contribute only an 
incidental amount of noise (associated with the input loading of the 
spanning networks, which could be eliminated by making the spanning 
networks lossless, by use of transformers rather than voltage dividers). 
This leads to the surprising thermodynamic conclusion pointed out by 
Nyquist that such an amplifier cools down the source, since the source 
pumps noise power into this noiseless resistance, and receives no noise 
power in return. 

At the beginning of this section, we stated that any amplifier for which 
the two-port characteristics are sought may be represented by a ladder 
network with (shunt) current generators and (series) voltage generators 
which are dependent upon voltages or currents at nonadjacent circuit 
nodes. Where parallel active paths are involved, a choice must be made 
as to which of the two paths is to be taken as the spanning network 
represented by its h, Z, y, or g parameters. Where an active spanning 
network is involved, such as in feedforward circuits, it is advantageous 
to assign the role of spanning network in such a way that the loop gain 
arising from feedforward or direct feedthrough is minimized, since this 
most closely realizes a cascade graph representation. This procedure is 
beyond the scope of this paper, but will be treated in a subsequent 
publication. 

When active spanning networks are admitted, it is clear that any ac
tive, linear network can be represented as a ladder in the sense defined 
here. It also appears to be true, in looking ahead to the analysis of active 
spanning networks, that the direct, intuitive understanding of active 
circuits which comes from the elimination or gross reduction of return 
ratio can be substantially retained when active spanning networks are 
used. 

VII. WRITING THE TRANSMISSION MATRIX EQUATION FROM THE 
EQUIVALENT LADDER CIRCUIT 

When the feedback amplifier circuit has been redrawn in equivalent 
ladder form with spanning networks represented by dependent gener
ators, a TMSFG can be drawn directly from the circuit by inspection. As 
a mechanical aide, a set of circuit vector nodes are placed on the circuit 
between each element of the ladder. These become the graph nodes of 
the TMSFG. Branches connecting these nodes in sequence from circuit 
output to circuit input (from graph input to graph output) define the 
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Fig. 16-(a) Equivalent ladder circuit, (b) TMSFG, and (c) transmission matrix array 
for a unitary C -feedback amplifier. 

main transmission path. Each dependent generator will create a branch 
which spans one or more of these nodes: either a {j branch in a direction 
from the circuit output toward the circuit input, or a direct feedthrough 
branch (an F branch) in a direction toward the circuit output. An ex
ample already examined in Section III is the C-feedback amplifier whose 
ladder circuit and TMSFG are shown in Fig. 16. The transmission matrix 
equation for the circuit is obtained as the transmission or graph gain of 
theTMSFG. 

7. 1 The transmission matrix array 

Writing the transmission matrix equation of the amplifier is facilitated 
by putting the TMSFG into matrix form. Such a matrix form will be 
termed a transmission matrix array (TMA) which is itself a matrix re
lating the signal vectors at the nodes which receive signals to the signal 
vectors at the nodes which transmit them. The matrix elements are the 
branch values of the branches which connect these nodes in the TMSFG. 
In Fig. 16, for example, Ui, Ub, and U c are nodes which receive signals; 
the signals at these nodes together form the received signal vector. 
Similarly, Ub, uc, and Uo are nodes which transmit signals, which together 
form the transmitted signal vector. The matrix relating these two vectors 
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is the transmission matrix array, having a nonzero entry at any element 
position where a TMSFG branch transmits a signal from a component 
of the transmitted signal vector to a component of the received signal 
vector. Figure 16c shows the transmission matrix array for the circuit. 
It is evident that elements along the principle diagonal are matrices of 
the ladder network of cascaded circuit elements: elements above or to 
the right of the principle diagonal are {3 matrices, and elements below 
or to the left of the principle diagonal are F (direct feedthrough or 
feedforward) matrices. 

Where all elements below the principle diagonal are zero or can be 
ignored, the transmission matrix equation relating Ui to Uo can be written 
by inspection. Thus, ignoring the direct feedthrough element in the TMA 

of Fig. 16, we can write 

(41) 

To obtain the exact expression including direct feedthrough, the set of 
simultaneous equations represented by the TMA must be solved. 
Thus 

Uc = FyUb + Jyuo (42) 

= FyTauc + Jyuo (43) 

so that 

(1 - FyTa)uc = Jyuo (44) 

and 

Uc = (I - FyTa)-lJyuo (45) 

In this equation, J y is premultiplied by the return difference matrix 
inverse, which, for small values of the elements of the return ratio matrix, 
FyTa, is essentially the identity matrix. In any case, substitution of 
(I - FyTa)-lJy for J y in the TMA of Fig. 16c removes the direct feed
through element from the TMA, allowing us to write the transmission 
matrix equation by inspection: 

Ui = [{3y + HyTa(I - FyTa)-lJy]uo (46) 
The TMA can be written directly from the circuit diagram, allowing us 
to dispense with the TMSFG, its graph equivalent. In the more compli
cated feedback amplifiers to be discussed below, the TMA gives a clearer 
picture of signal dependencies than does the TMSFG. 

7.2 Examples: feedback pairs 

Figure 17a gives the equivalent ladder circuit for the A-feedback 
amplifier of Fig. 14. In Fig. 17b, we review the process of drawing the 
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(a) 

-FA 

(b) 

Uj I 0 0 0 ilA Ub1 

Ub1 0 Tz 0 0 0 Uc1 

Uc1 0 0 GLl 0 -ilA Ub2 

Ub2 0 0 0 Ta 0 Uc 2 

uc2 FA -FA 0 0 GA Uo 

(c) 

U j ~ [ il A + Tz (- il A + G L 1 Ta G A ) 1 U 0 

(d) 

Fig. 17-The A -feedback pair. (a) Equivalent ladder circuit from Fig. 14d; (b) TMSFG; 
(c) TMA; (d) transmission matrix equation, ignoring direct feedthrough, written by in
spection. 

TMSFG. The input node, Ui, is identically the UbI node except for the 
voltage-controlled voltage source, nAVo, so that Ui receives signals from 
two branches: the identity matrix branch from UbI and the {3A branch 
from U o . {3A is given by eq. (38). Next, UbI is totally controlled by the 
transmission matrix of the transistor with RA in the "emitter, which we 
represent as Tz of Table I. Next, Uc1 is equal to Ub2 modified by the 
first-stage load conductance, GLI, represented by the matrix 

GLl = [~Ll ~] (47) 

which appears as a TMSFG branch from Ub2 to Uc1. In addition, the 
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voltage-controlled voltage source, -nAVo, adds branch -(3A to Uc1 from 
Uo · Node Ub2 = Ta U c 2. Node U c2 has three inputs, GA from U o and the 
two FA branches from UbI and Uc1 representing direct feedthrough of 
first-stage emitter current to the second collector. This completes the 
TMSFG. 

The TMA can be constructed by exactly the same reasoning, and is 
shown in Fig. 17 c. The columns of the TMA correspond to the trans
mitting nodes, and the rows to the receiving nodes. Where a node of a 
given row receives signal transmitted from a node of a given column, the 
branch transmission matrix is entered at the intersection, as shown. 

The approximate transmission matrix equation, ignoring direct 
feedthrough, is written by inspection of the TMA as shown in Fig. 17d. 
This equation shows the overall input voltage augmentation by the first 
term, (3Auo, and shows that the first stage incorporates local B-feedback, 
implicit in the transmission matrix, Tz . These are well-known charac
teristics of this feedback pair. What is less generally realized is that the 
second stage also incorporates local feedback, in this case local A-feed
back, apparent from the additive - (3 A term in the parentheses, a term 
which is important to the high-frequency behavior of the circuit. (The 
input current from this cause alone is approximately -CInA = nACcbIs.) 
The output loading of the feedback divider network is G A = II (R E + R F). 

If this is reduced by scaling RE and RF upward, the local feedback of the 
first stage is increased, since RA = RERFI(RE + RF) is scaled up by the 
same factor, so that in the design of an A-feedback pair, a balance must 
be sought between these two effects. 

The exact expression including the effect of direct feedthrough is 
useful as a final check, usually performed on the computer. It is obtained, 
as before, by solution of the simultaneous equations. We first reduce the 
TMA by direct substitution of the cascade portion of the TMA, that is, 
the portion containing no entries to the left of the principle diagonal. 
The TMA, thus condensed, is 

(48) 

Next, we remove the direct feedthrough term by removing the self-loop 
at node U c2: 

(49) 

Where M is the return difference matrix inverse, given by 

(50) 

The transmission matrix equation can now be written by inspection: 
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Ui = [(1 - T z ){3A + TzGL1TaM(GA - FAT z{3A)]uo (51) 

which reduces to the equation in Fig. 17d when FA = O. 
The D-feedback pair whose equivalent ladder circuit is given in Fig. 

15b can be analyzed by exactly similar means, with {3n given by eq. (39), 
G D placed in shunt across the input terminals accounting for input cir
cuit loading, and RD in series with the emitter lead of the second tran
sistor accounting for output loading by the spanning network. For this 
spanning network, 

(52) 

Writing the TMA and transmission matrix equation for this circuit is left 
as an exercise for the reader. 

7.3 Hybrid feedback: the AID hybrid feedback pair 

Analysis of the AID hybrid feedback pair demonstrates the utility of 
the transmission matrix array, as compared with the TMSFG. The TMA 

is essentially an incidence matrix of the TMSFG, presenting the same 
information in a better-ordered form. In Fig. 18a, the equivalent ladder 
circuit of Fig. 15d is repeated, and the TMSFG and TMA for this circuit 
are given in Fig. 18b and c. The TMSFG includes eight spanning branches; 
even if the four direct feedthrough branches are ignored, the tangle of 
{3 branches makes the writing of the graph gain (the transmission matrix 
of the circuit) hazardous. In the TMA, the role of each of these spanning 
branches is clarified, at least allowing us to write the approximate 
transmission matrix equation (in which the direct feedthrough branches 
are ignored) by inspection, proceeding row by row. Thus, the transmis
sion matrix of the AID feedback pair is written from the TMA as follows, 
in which the matrices G D and G A are first factored out, and the elements 
are considered row by row, starting from the right-hand end of the first 
row: 

or 

Ui ~ GD[(1 - T z1 ){3A - (3n(1 - T z2) + TzIGLITz2]GAuo (53) 

The first term on the right in the brackets represents the A-feedback, 
the second term the D-feedback, and the third term the transmission 
matrix of the active path itself, modified by the series loading of the two 
spanning networks. 

Equation (53) ignores the effects of the direct feedthrough branches, 
or the TMA entries below the principle diagonal, and is therefore ap
proximate. The effect of the feedthrough branches is often to add excess 
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(a) 

Ui 

-FO 

[nA 
{3A = 0 :J '0 " [: -n:J [0 OJ F = 

A 0 -no 
GO F = 

o 0 :J 
(b) 

Uil Ubl Ucl Ui 2 Ub2 Uc 2 Ua Ua 

Ui Go 0 0 0 0 0 0 0 Uil 

Uil 0 I 0 0 {3o -{3o {3A 0 Ubl 

Ubl 0 0 Tzl 0 0 0 0 0 Ucl 

Ucl 0 0 0 GLl 0 0 -(3A 0 Ui2 

Ui2 Fo 0 0 0 I 0 0 0 Ub2 

Ub2 0 0 0 0 0 Tz2 0 0 Uc2 

Uc 2 -Fo FA -FA 0 0 0 I 0 u a 

u a 0 0 0 0 0 0 0 GA ua 

(C) 

Fig. 18-The equivalent ladder circuit, TMSFG, and TMA for the AID hybrid feedback 
pair. 

phase to the active path, and is therefore of importance in investigating 
stability in the vicinity of the crossover frequency (the frequency at 
which the magnitudes of the contributions to the loss ratio from the (3 
path and the active path are equal). The complete transmission matrix, 
including the effect of direct feedthrough brances, is obtained by direct 
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but tedious algebra from the TMA: 

TA/D = (I - T z1 ){3A - (3DM2(W + 1 - FD{3A) 

+ (Tz1GLl + {3D)[M1FD(I - T zl ){3A + MITz2M2 

(W + 1 - FD{3A)] (54) 

where 

Ml = (I - FDTz1GLl)-1 

M2 = [I + [FA (I - T z1 ) - FDTztlGLIMITz2]-1 

and 

W = [FA (I - T z1 ) + FDTz1][1 - GL1M1FD(I - T z1 )]{3A 

A polynomial matrix manipulation computer program is of significant 
help in carrying out the indicated matrix operations. In such a program, 
currently in process of realization, * the elements of each of the matrices 
are put in a polynomial file, and the matrix operations indicated in eq. 
54, for example, are carried out by simple commands. When the exact 
values of the transmission matrix elements have been found, the loss 
ratio and impedances can be found and automatically plotted. 

While eq. (54) is far more complicated than (53), only two new matrices 
need be entered into file, namely FD and FA. Hence, the additional 
correction for the effects of direct feedthrough can be computed rela
tively easily, since most of the work involved in the computation is in 
entering the polynomial coefficients for the transistors and circuit ele
ments into file. The instruction set for the computation consists essen
tially of the transmission matrix equation itself. 

VIII. STABILITY 

The above methods yield the transmission matrix of a feedback am
plifier from which we derive a scalar measure of amplifier performance, 
such as loss ratio, in which we obtain the combined effect of the four 
matrix elements and the amplifier source and load immittances. For a 
linear, lumped-parameter circuit, the loss ratio will consist of a poly
nomial in the frequency variable, and may include a denominator 
polynomial, although this denominator often approximates unity. The 
condition for stability is that there shall be no roots of the (nu~erator) 
polynomial in the right-half plane of the complex frequency variable, 
since this would imply that, in the time domain, a growing exponential 
at the output could be supported with no input signal. The investigation 
of stability of distributed circuits, those containing transport delays, for 
example, is beyond our scope here, but these can be represented as 

* By A. J. Osofsky 
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lumped systems by use of polynomial approximants for delay, such as 
the Pade approximants.3o Hence, in the transmission matrix approach 
to amplifiers, stability is ascertained by direct investigation of the 
properties of what the conventional approach calls the closed-loop gain, 
or, in the present analysis, its reciprocal. 

There are two aspects to the study of stability: investigation of the 
stability of a given amplifier, and design of an amplifier to be stable. A 
more restrictive form of the latter is to require the amplifier to have a 
prescribed transient response, since an amplifier which is merely stable 
may exhibit such damped oscillatory behavior as to be useless. The ad
justment of the response of an amplifier to attain satisfactory transient 
response is termed frequency compensation, and involves adjustment 
of the coefficients of the loss ratio polynomial. In what follows, we shall 
study the case in which the loss ratio denominator is essentially 
unity. 

Consider the loss ratio polynomial 

n 
L = L aksk 

k=O 
(55) 

We begin by normalizing the polynomial, to make the first and last terms 
unity, first by dividing throughout by ao: 

L = ao (1 + f: ak sk) 
k=l ao 

(56) 

N ext, we change the frequency variable so that the coefficient of the 
highest-order term in the brackets is unity by letting 

or 

(
ao)kln 

sk = an pk (57) 

Thus, 

L = ao (1 + :~: a
nk1n :ko1-kln pk + pn) (58) 

The loss ratio is now in the desired form for investigation of stability and 
transient response. It may be written 

L = ao(1 + b1P + b2p2 + ... + bn_1pn-l + pn) (59) 

All information about the stability and transient response is contained 
in the values of the coefficients b1 to bn - 1• In a cubic polynomial, for 
example, two coefficients, b1 and b2, determine the transient response. 
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Table 111- Pascal-like triangles for normalized coefficients of the 
loss ratio polynomial 

n Multiple pole Butterworth Thomson 

0 1 1 1 
1 1 1 1 1 1 1 
2 1 2 1 1 1.41 1 1 1.73 1 
3 1 3 3 1 1 2 2 1 1 2.47 2.43 1 
4 1 4 6 4 1 1 2.61 3.41 2.61 1 1 3.20 4.39 3.12 1 

For a given set of polynomial coefficients, the roots are investigated to 
see if any lie in the right-half plane, in which case the amplifier is un
stable. (For this determination, the normalization is unnecessary.) This 
is the only stability criterion necessary, since the design focuses on the 
performance of the amplifier, not a feedback loop. In traditional analysis, 
the focus was on the feedback loop and its analysis and design, so that 
an additional step, that of relating the closed-loop performance to the 
loop gain, had to be taken. The Nyquist criterion and its many later 
reinterpretations were worked out to ease this step. In the present 
method, these rather elaborate procedures are unnecessary. The loss 
ratio is found as the sum of the active-path and .B-path contributions, 
and since the active path is usually expressible as a polynomial rather 
than a ratio of polynomials, the addition is simply made by adding the 
polynomial coefficients of the two paths. Denominators do arise. In the 
active path, these come from direct feedthrough and sometimes from 
frequency compensation networks which are used to adjust the poly
nomial coefficients to secure a prescribed transient response. In the .B 
path, denominators arise when this path is used for equalization and 
filter applications. In these cases, we have no choice but to do the nec
essary multiplications to put both path polynomials over a common 
denominator. 

In amplifier design where the denominators are incidental, prescribed 
transient response is obtained by designing the circuit such that the b 
coefficients of eq: (59) satisfy the performance criteria. Conversely, we 
may take the b coefficients as a performance specification for the am
plifier. Examples of such criteria are given in Table III, which lists the 
b-values for an amplifier having either Butterworth or Thomson re
sponse characteristics.31 Circuit methods for the adjustment of the b 
values to agree with a set of values such as those of Table III are beyond 
our scope in this paper, but a few comments are in order. The value of 
ao in eq. (59) is primarily established by the.B path where the benefits 
of feedback (input augmentation) are to be obtained. The original reason 
for this was to reduce distortion introduced by the active devices, since 
the {3 path is linear and the active path is not, so that the {j-path contri
bution was arranged to swamp out the smaller nonlinear contribution 
to the input signal. The second coefficient, aOb1, as well as the remaining 
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frequency-dependent coefficients are ordinarily supplied by the active 
path, although it may be advantageous to have the {J path supply and 
even dominate aOb l . In the case of C-feedback, for example, the aOb l 

term is augmented by connecting a capacitor (a linear capacitor) between 
the output and the input in parallel with the {J-path conductance. The 
aOb2 coefficient is adjusted upward by connecting capacitive feedback 
internal to the active path such that the capacitive current thus gener
ated is multiplied by one of the active device matrix elements which is 
proportional to frequency, thereby augmenting the second-order coef
ficient, and so on through the set of b coefficients. 

IX. DISCUSSION AND CONCLUSIONS 

Viewed from both practical and theoretical standpoints, the process 
of analyzing, designing, and even thinking about active two-port circuits 
is simplified by taking an anticausal approach to the functional depen
dencies in the circuit. It does this because the importance of feedback 
or loop gain is greatly reduced, and with it denominators of the circuit 
expressions, which no longer depart greatly from unity. 

The specific method described here for anticausal analysis of circuits 
is to base their transducer characteristics on the transmission matrix. 
This matrix puts cascades of two-ports into anticausal form directly, 
leaving the problem of how more remote circuit coupling is to be ac
commodated. In the method described here, such coupling is taken to 
be the property of spanning networks, which are described by the ap
propriate set of two-port parameters (h, z, y, or g). Each such spanning 
network parameter set yields four separate transmission matrices, each 
containing one of the four spanning network parameters, and each cor
responding to one of four effects which are to be accounted for when the 
spanning network is applied to modify the amplifier characteristics. The 
11 parameter and its associated transmission matrix corresponds to input 
circuit load~ng by the feedback network; the 12 parameter and its asso
ciated {J matrix represents the input signal augmentation corresponding 
to the feedback signal of conventional analysis; the 21 parameter yields 
a transmission matrix which accounts for direct feedthrough of signals 
from circuit input to output through the spanning network; and the 22 
parameter represents output circuit loading by the spanning network. 

With all circuit element characteristics expressed as transmission 
matrices, it is desirable to be able to describe the whole circuit in these 
terms. The transmission matrix signal-flow graph, with its one-to-one 
correspondence between circuit vector nodes and graph nodes, provides 
a means for writing the transmission matrix equation of the whole circuit 
from the individual transmission matrices and their topological rela
tionships. The transmission matrix array is a clearer way of showing the 
functional dependencies established by the transmission matrix sig-
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nal-flow graph. From either of these two artifices, the transmission 
matrix equation for the whole may be written directly. This transmission 
matrix equation can be used for an initial look at a circuit to establish 
the basic properties of the configuration, by making suitable approxi
mations such as that obtained by placing the transistors in their reference 
condition, through more accurate intermediate levels of approximation, 
by including the more important transistor parameters. Finally, an exact 
transmission matrix for the whole circuit may be derived, within the 
accuracy of the transistor and circuit element characterization available, 
traceable from initial approximation to final result. 

Many problems remain, the most immediate of which is to complete 
the computational tools for linear analysis, and beyond that, the ex
tension to quasilinear analysis and distortion, for which the present 
approach appears to offer substantial benefits. Active device charac
terization should be done in terms of anticausal functional dependencies: 
for linear analysis, we require transmission parameters of the active 
devices, an example of which is shown in Fig. 5. Nonlinear character
ization of the partial derivatives of eq. (3) expressing the input signal 
vector as a function of the output, is needed. The noise of a two-port can 
be expressed as an equivalent input noise network including a series 
voltage generator and a shunt current generator.32 It should be conve
nient to express not only the noise, but the predistortion, the dc input 
offsets, and the variation of the input signal vector due to transistor 
parameter variations, as an "input uncertainty network" consisting of 
a series voltage generator and a shunt current generator which in sum 
include all of these effects. 

Beyond the two-port analysis discussed here, there are many instances 
where multi port analysis is needed. As a simple example, the operational 
amplifier with its positive and negative input leads can be considered 
a three-port (leaving out the power supply leads, which in most appli
cations are at signal ground). The circuit partitioning resulting from the 
separation between the device supplier and user requires a three-port 
characterization, and with it, resolution of the question of functional 
dependencies of the six signal variables involved, comprising the two 
input signal vectors and the output signal vector. 

It may be time to rid ourselves of the notion of feedback as a central 
concept in analysis of electronic amplifiers and other deterministic 
physical systems. As it applies to mercantile or social systems, where the 
reaction to a given event is barely predictable, the idea may still be of 
use, as for example, in the Club of Rome report.33 Even in this area, an
ticausal analysis may supplant it. In project management, the PERT 

system, originally applied to the Polaris submarine, starts with the 
project goal and its projected date of completion, and works back to 
distinct events which must have happened to reach the goal.34 In a sense, 
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the PERT chart is a TMSFG, without feedback loops. In comparison, the 
flow diagram of the world model (Fig. 26 of Ref. 33) is a feedback-Ioop
filled diagram inaccessible to human understanding. Were the projected 
goals introduced in that report used as flow graph inputs, the complex 
interrelationships among the variables might have been more readily 
understood. The mathematical description of feedback came out of the 
development of electronic amplifiers for carrier transmission, and has 
been widely adopted in other areas. The alternative suggested here might 
also find use in other areas. 
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GLOSSARY 

Several terms have been introduced in this paper. For convenience, 
they are gathered here with brief definitions and the section number 
where they first appear. 

Transmission matrix signal flow graph (III). A signal flow graph having 
signal vectors at circuit vector nodes for graph nodes and transmission 
matrices for branches. 

Vector node or circuit vector node (III). A circuit node having only two 
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connections to it, allowing us to define uniquely the node voltage (to 
ground) and the node current, which together form the signal vector 
at the corresponding TMSFG node. 

Loss ratio (III). The ratio of the generator voltage, ee, to the output 
voltage, vo, of a two-port circuit connected between a Thevenin source, 
ee, Re, and a load conductance, GL . 

Cascade graph (III). A signal flow graph or TMSFG having no feedback 
loops. 

Spanning network (IV). A two-port network connected between two 
nonadjacent pairs of circuit vector nodes of a cascaded or ladder 
network.. A spanning network is represented by one of the four sets 
of two-port parameters, h, Z, y, or g: 

Input signal augmentation or feedback (IV). The increase in input signal 
voltage or current (at constant output) due to the action of the span
ning network; in particular, input augmentation is due to the 12 pa
rameter (such as Y12) of the spanning network. 

Direct feedthrough or feedforward (IV). The increase of change in the 
output signal voltage or current due to the action of the spanning 
network; in particular, direct feedthrough is due to the 21 parameter 
(such as Y21) of the spanning network. 

Input circuit loading (IV). Shunt or series loading of a ladder network 
by the 11 parameter (such as Y11 or Z11) of the spanning network. 

Output 'circuit loading (IV). Shunt or series loading of a ladder network 
by the 22 parameter (such as Y22 or Z22) of a spanning network. 

{3 matrix (IV). A transmission matrix containing one nonzero element 
equal to the 12 parameter of a spanning network. Usually carries a 
subscript indicating which parameter set it is associated with, as in 
eq. (7). 

F matrix (IV). A transmission matrix containing one nonzero element 
equal to the 21 element of the spanning network. Also called the direct 
feedthrough matrix. See eq. (8). 

H matrix or input loading matrix (IV). A transmission matrix which 
is the sum of the identity matrix and a matrix having one nonzero el
ement equal to the 11 parameter of the spanning network, as in eq. 
(9). 

J matrix or output loading matrix (IV). A transmission matrix which 
is the sum of the identity matrix and a matrix having one nonzero el
ement equal to the 22 parameter of the spanning network, as in eq. 
(10). 

Return ratio matrix (IV). A transmission matrix equal to the loop gain 
of a feedback loop in a TMSFG. 

Return difference matrix inverse (IV). A transmission matrix which 
postmultiplies the active path transmission matrix to account for the 
effect of a feedback loop. 
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Reference condition for a feedback circuit (V). A feedback circuit in 
which the active element(s) is (are) replaced by ideal two-port am
plifier(s). 

Ideal two-port amplifier (V). An amplifier whose transmission matrix 
is null. 

Unitary feedback amplifier (V). An amplifier whose transmission matrix 
contains but one nonzero element when its active elements are placed 
in the reference condition. 

Hybrid feedback amplifier (V). An amplifier whose transmission matrix 
contains more than one nonzero element when its active elements are 
placed in the reference condition. 

Equivalent ladder circuit (VI). An equivalent circuit, drawn in ladder 
form, with remote couplings expressed by dependent generators. 

Transmission matrix array (VII). An incidence matrix of the TMSFG 
which relates the received signals at a set of nodes to the transmitted 
signals at a set of nodes. 

Received signal vector (VII). The set of signals at all nodes of a TMSFG 

which receive signals. 
Transmitted signal vector (VII). The set of signals at all nodes of a 

TMSFG which transmit signals. 

APPENDIX A 

In what follows, we solve the simultaneous equations for the C-feed
back amplifier of Fig. 6a. The TMSFG of Fig. 8b is repeated in Fig. 19a 
from which we can write (leaving out loading matrices Hy and Jy for the 
moment) 

Ui = {3yUo + Ub 

Ub = Tauc 

Uc = FyUb + Uo 

(60) 

(61) 

(62) 

Substituting (61) in (63), we form a self-loop at node u c , as shown in Fig. 
19b: 

(63) 

in which the matrix FyTa will be called, following Bode's notation, the 
return ratio matrix. Solving for uc, we have 

(64) 

The matrix I - FyTa corresponds to Bode's return difference, so that 
we term (I - FyTa)-l the return difference matrix inverse. Substituting 
(64) in (61), and thence in (60), we obtain 

(65) 
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(a) 

;r--
(b) Fy Ta 

Fig. 19-Alternative TMSFG reductions of the C-feedback amplifier. (a) TMSFG from 
Fig. 8b; (b) creation of a self-loop at node Uc ; (c) creation of a self-loop at node Ub. The 
preferred form is that of (b). 

The transmission matrix for the stage is obtained by premultiplying by 
the input loading matrix, Hy , and postmultiplying by J y : 

Ty = Hy[tJy + Ta(I - FyTa)-l]Jy (66) 
which is eq. (11) of the text. 

Alternatively, we could solve the simultaneous equations by substi
tuting (62) in (61), forming a self-loop at node Ub, as shown in Fig. 
19c: 

(67) 

where TaFy is the new return ratio matrix. Solving for Ub, we also obtain 
a new return difference matrix inverse: 

(68) 

from which we obtain 

Ui = [tJy + (I - TaFy)-lTa]uo (69) 

Clearly, TaFy ~ FyTa, since, as anyone knows who has tried to clean his 
glasses and blow his nose with the same tissue, the order in which the 
operation is carried out is important. It should not disturb the reader 

ANTICAUSAL ANALYSIS 1381 



ic io 

ib 
~ ---. 

i j + ----. ~ 
+ + 

vbe 
Vo 

Vi 

(a) 

u,~u, 
I ub uc-I 

-FA 

(b) 

Fig. 20-Common collector stage. (a) Circuit and (b) TMSFG representing the trans
mission matrix equation derived in the text. 

that the return ratio and return difference are dependent upon the way 
in which we solve the simultaneous equations, since these quantities are 
not invariants of the circuit, but depend entirely upon how we view the 
circuit.15 On the other hand, comparing eqs. (65) and (69), Ta (I -
FyTa)-l = (I - TaFy)-lTa, so that the transmission matrix of the active 
path is invariant. For linear analysis, we are free to use either formula
tion. When we consider the extension to nonlinear analysis, however, 
eq (65) is preferred, since it preserves the actual signal level at u c, the 
output node of the active device. * We therefore adopt a rule of procedure 
for solving simultaneous circuit equations: Always preserve the output 
node. This is done by placing the self loop at the output of a device ex
hibiting direct feedthrough, and allows a straightforward calculation 
of the waveform at the output of a nonlinear device. As a matter of 
practice, the node equation for a node nearer the input should be sub
stituted into the node equation for a node nearer the output. 

APPENDIX B 

Common col/ector stage 

The common collector stage is shown in Figure 20a. The circuit 
equations are written starting at the input: 

(70) 

* The advantage of the formulation of eq. (65) over that of eq. (69) was pointed out to the 
author by C. A. Desoer. 
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or 

where 

Next, 

and 

or 

where 

Substituting (73) into (75), and solving for u c , we have 

U c = ~(I + FATa)-luo 

(71) 

(72) 

(73) 

(74) 

(75) 

(76) 

(77) 

By successive substitution, we obtain the input vector as a function of 
the output: 

(78) 

To evaluate the matrix of the common collector stage, we obtain the 
return ratio matrix: 

(79) 

The return difference matrix inverse is 

(80) 

and the matrix for the stage is 

T = _1_ [l-A -D+ ~t 
cc 1- D -C 

-B] 
-D 

(81) 

as given in eq. (33). From eq. (78), we can draw a TMSFG for the stage as 
shown in Fig. 20b. 
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(d) 
Fig. 21-Emitter resistor feedback analysis. (a) Circuit. (b) Circuit redrawn using de

pendent generator equivalent circuit of Fig. 7. (c) Redrawn circuit, interchanging position 
of series elements. (d) TMSFG with definitions of the matrices. 

APPENDIX C 

Emitter resistor feedback 

A transistor with unitary B feedback is shown in Fig. 21. In (a), the 
circuit is divided into an active path and a resistive spanning network, 
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and in (b), the spanning network is represented by its dependent gen
erator equivalent circuit from Fig. 7b. A common ground does not exist 
between the input and output loops, but the circuit' as drawn 'in (b) is 
nevertheless a two-port, since i1 = -ib, and i2 = io with the current di
rections given in the figure. An equivalent representation is given in (c) 
of the figure, in which elements in series have had their circuit positions 
interchanged. The TMSFG for the circuit of (c) is given in (d), in which 
HB and JB represent the series input and output resistances, -flB rep
resents the generator in series with the input lead, and FB is the direct 
feedthrough supplied by the generator in series with the output lead. 
From the TMSFG, the transmission matrix equation is 

(82) 

With the element values of the matrices given in the figure, the return 
ratio matrix is 

F T = [CR 
B a 0 

and the return difference matrix inverse is 

-DR] 
1 + CR 

from which the active path matrix without loading becomes 

1 [A DB - Rilt] Ta(I + FB Ta)-l = 1 + CR C 

Adding the input augmentation from z 12 = R, we have 

(83) 

(84) 

(85) 

, 1 [A 
-flB + Ta (I + FBTa)-l = 1 + CR C 

-R(l + CR~ + B - Rilt] 

(86) 

Finally, we pre multiply by HB and postmultiply by JB, and obtain 

T = 1 [A + CR 
z 1 + CR C 

as shown in eq. (35). 
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We discuss wave propagation along a crystalline piezoelectric fiber 
composed of lithium niobate or some other material in the trigonal 3m 
crystal class. The crystalline c axis is aligned with the fiber axis. We 
obtain an analytical description of all the vibrational modes. The 
method used is to make perturbation expansions about the modes of 
a hexagonal 6mm piezoelectric fiber, for which exact solutions are 
known. 

I. INTRODUCTION 

A single crystal of lithium niobate, grown in the form of a long fiber, 
has been considered for use as a low-loss acoustic delay line. Lithium 
niobate is of special interest because it is piezoelectric: it becomes elec
trically polarized when strained and, conversely, becomes strained when 
placed in an electric field. This piezoelectricity provides a means for 
electrically generating and detecting acoustic signals. 

In this paper we study mathematically the vibrational properties of 
a LiNb03 crystal fiber, with the crystalline c axis aligned along the fiber 
axis. The problem is by no means simple. We illustrate this by giving a 
brief history of related problems for which exact solutions have been 
obtained. The elastic, or acoustic, wave equations for an infinitely long 
circularly cylindrical isotropic rod were solved exactly by Pochhammerl 
in 1876 and independently by Chree2 in 1889. Even for an isotropic 
medium, exact solutions for a rod of finite length have not been obtained. 
It was not until 1965 that the next full exact solution was found. This 
was done by Mirsky,3,4 who determined the vibrational modes of a cir
cularly cylindrical rod consisting of a nonpiezoelectric medium which 
is transversely isotropic. Such a medium belongs to the hexagonal system 
of crystals; the crystalline c axis was aligned along the rod or fiber. Cer
tain of the modes obtained by Mirsky, i.e., those which are azimuthally 
symmetric about the fiber axis, had also been obtained earlier.5,6 Re
cently, the author and J. A. Morrison were able to solve the coupled 
acoustic and electromagnetic wave equations, in the customary quasi
static approximation, for piezoelectric transversely isotropic crystals 
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belonging to the hexagonal 6mm, 622, and 6 crystal classes.7 Exact so
lutions were obtained for all the vibrational modes. The author is una
ware of any other exact solutions, either for other crystals, or for other 
orientations of transversely isotropic crystals. 

The difficulty lies in the acoustic wave equations which, for a general 
anisotropic medium, consist of three coupled wave equations for the 
three vector components of displacement. If piezoelectricity is added 
via the quasistatic approximation, for which the electric field is repre
sented by the gradient of a potential, there are four coupled equations 
for four unknown functions. The boundary conditions may also involve 
all four functions coupled together. For the general anisotropic case, no 
method has been discovered to decouple the equations. For the specific 
crystals and orientations discussed above, it was possible to express the 
elastic displacements (and electric potential) in terms of three (or four) 
potential functions for which the wave equations decoupled. 

Unfortunately, such a serendipitous situation does not exist for the 
lithium niobate fiber. It belongs to the trigonal 3m crystal class; we 
cannot expect to find an exact description of the vibrational modes. It 
will be possible, though, to find an approximate description by means 
of an infinite series perturbation expansion. We use a technique which 
is an extension of one used by the author to describe waves travelling 
along a sapphire fiber.8 Sapphire is a nonpiezoelectric material belonging 
to the trigonal 3m crystal class. It is characterized by a stiffness matrix 
(used in the stress-strain relations) which has almost the same form as 
that for a transversely isotropic material. There is one additional stiffness 
coefficient. Since it turns out to be small in magnitude compared to the 
other stiffness coefficients, it is possible to describe the vibrational modes 
of a sapphire fiber (with the crystalline c axis aligned with the fiber axis) 
by means of perturbation expansions about the modes of a transversely 
isotropic fiber. 

The situation for LiNb03 is similar, albeit somewhat more compli
cated. We will make an infinite series perturbation expansion about the 
known solutions for a hexagonal 6mm crystal. The same techniques, 
incidentally, can be used to describe vibrations of crystals in the trigonal 
32 classes. We restrict ourselves to a discussion of trigonal 3m crystals 
only to keep the analysis from appearing extraordinarily complicated. 

For the sapphire fiber, numerical results are available for the low
est-order torsional mode of vibration; they are presented in a paper by 
the author and M. A. Gatto.9 A low-frequency asymptotic analysis for 
that mode was also performed by R. N. Thurston and the author .10 Ex
cellent numerical agreement between the results of the two independent 
theories provides a check on the rather complicated analyses involved 
and encourages us to extend the perturbation technique to a study of 
LiNb03• 
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In Section II we write down the basic equations of motion and 
boundary conditions. In Section III we apply the perturbation technique 
and introduce potential functions. In Section IV we solve the differential 
equations, and in Section V we sketch how to apply the boundary con
ditions. 

Although it would be desirable to present numerical results as well, 
we shall not do so. Numerical results are not yet available for the un
perturbed (hexagonal6mm) problem. The computational effort required 
to describe quantitatively the vibrations of a lithium niobate fiber would 
be even greater than the considerable effort expended to present results 
for a sapphire fiber. 

II. FORMULATION 

Consider a single crystal of LiNb03 (or some other member of the 
trigonal 3m crystal class), grown in the form of a fiber of circular cross
section, with the crystallographic c axis along the fiber axis. We shall 
assume that the fiber is infinitely long and has radius R. We adopt a 
cylindrical coordinate system whose z axis coincides with the fiber 
axis. 

In the quasistatic approximation, where the rotational part of the 
electric field is neglected, the basic differential equations arell 

02U 
\7·T=pot2 ' 

\7. D = 0, 

(1) 

(2) 

where T is the stress, D is the electric displacement, u is the elastic dis
placement, and p is the density. The properties of the specific crystal are 
introduced by means of the constitutive relations 

T = -e . E + c:S, (3) 

D = E·E + e:S, (4) 

where 

E = -\7<1>, (5) 

S = \7s u. (6) 

Here E denotes the electric field, S the strain, and <I> the electric poten
tial. The crystal is described by means of the elastic stiffness matrix c, 
the piezoelectric stress matrix E, and the dielectric permittivity at con
stant strain matrix E. For a crystal in the trigonal 3m class, these matrices 
have the following forms in cylindrical coordinates:12 
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cn C12 C13 C14C C14S 0 
C12 Cn C13 -C14C -CI4S 0 
C13 C13 C33 0 0 0 

c= C14C -CI4C 0 C44 0 -CI4S 
C14S -C14S 0 0 C44 C14C 

0 0 0 -CI4S C14C C66 

with 

C66 = 1f2(Cn - CI2), 

C = cos 30, S = sin 30. 

[-eY 2S 
ey2S 0 0 ex 5 -eY 2C] 

e = -ey2C ey2C 0 ex 5 0 ey2S 

ez l ez l ez3 0 0 0 

[<xx 0 
o ] E= 0 f.xx o . 

0 0 f.zz 

(7) 

(8) 

(9) 

(10) 

(11) 

Let n denote a vector normal to the fiber surface, i.e., in the radial 
direction. For the three mechanical boundary conditions,13 we shall 
specify either that the surface tractions vanish: 

T· n = 0 at r = R (free surface), 

or that there is no displacement at the surface: 

u = 0 at r = R (clamped surface). 

(12) 

(13) 

The free surface condition is the natural one to consider for an acoustic 
delay line; it is equally simple to show how to solve the problem for the 
clamped surface condition, so we include it, too. 

For the electrical boundary condition,13 we take either 

<I> = 0 at r = R (short-circuit), (14) 

or 

D • n = 0 at r = R (open-circuit). (15) 

The problem is to solve the four differential equations (1) and (2), in 
conjunction with eqs. (3) to (11), subject to four boundary conditions 
chosen from (12) to (15). Since we are concerned with waves travelling 
down the fiber, we assume the solution has an exp [i(wt - .Bz)] depen
dence, where w is the angular frequency and.B is the propagation con
stant; .B will depend upon w. 
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We begin by writing the differential equations and boundary condi
tions in dimensionless form. Let 

c = max Ic··1 IJ ' 
i,j 

e = max le··1 IJ , 
i,j 

(16) 

Normalize u with respect to R, <P with respct to Rei E, {3 with respect to 
R-1, and w with respectto (clp)1/2IR. To simplify notation, we use the 
same symbols as we used for dimensional quantities, except for the hats 
on Cij, eij, and Eij. Upon substituting eqs. (3) to (11) into (1) and (2), we 
can write the dimensionless differential equations in cylindrical coor
dinates as 

cn (Urr + .! Ur - 12 U) + C66 12 uoo + (w2 - {32C44)U 
r r r 

- 2i{3C14 cos 30; Uo - 2i{3C14 sin 30 (ur - ~ U ) 

+ (C12 + C66) ! VrO - (cn + C66) 12 Vo 
r r 

- 2i{3c14 cos 30 (vr - ~ V ) + 2i{3C14 sin 30 ~ Vo 

- i{3(C13 + C44)Wr + 2C14 cos 30 (~Wro - rI2 wo) 

. ( 1 1 ) + C14 sm 30 Wrr - -;:wr - r2 Woo 

- i{3r(ex 5 + ez 1)<pr - 2Tey2 cos 30 (; <PrO - r\ <Po) 

A • ( 1 1) - Tey2 sm 30 <Prr - -;: <Pr - r2 <Poo = 0, 

(C12 + C66) ! UrO + (Cn + C66) 12 Uo - 2i{3C14 cos 30 (ur - .!. U) 
. r r r 

+ 2i{3c14 sin 30 ! Uo + C66 (Vrr + .! Vr - \ v) + cn \ Voo 
r r r r 

+ (w2 - {32c44)V + 2i{3C14 cos 30; Vo + 2i{3c14 sin 30 (vr - ~ V ) 

- i{3(C13 + C44) ! Wo + C14 cos 30 (Wrr - .! Wr - 12 woo) 
r r r 
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2" 0 3fJ (1 1) 0(3 (" ") 1 " - cI4 SIn - Wro - 2 Wo - l r ex5 + ezi - <1>0 - rey 2 
r r r 

x cos 3fJ ( <l>rr - ~ <l>r - r12 <1>00) + 2rey 2 sin 3fJ (~ <l>ro - r12 <1>0) = 0, 

- i(3(CI3 + C44) (ur + -;: U ) + 2c14 cos 3fJ (~Uro - r22 uo) 

" 0 3fJ ( 1 3 3) + C 14 sm Urr - 2 Uoo - - Ur + 2 U 
r r r 

0(3(" ") 1" ( 1 3 3) - l CI3 + C44 - Uo + C14 cos 3fJ Urr - 2 Uoo - - Ur + 2 U 
r r r r 

2" 0 fJ (1 2)" ( 1 1 ) - C14 sm 3 ~ UrO - r2 Uo + C44 Wrr + -; Wr + r2 Woo 

+ (w2 - (32c33)W + rex5 ( <l>rr + -;: <l>r + r12 <1>00) - r(32ez3<1> = 0, 

- i(3(ex 5 + ezl) (ur + -;: U ) - 2ey2 cos 3fJ (~Uro - r22 uo) 

" 0 3fJ ( 1 3 3) - ey2 SIn Urr - 2 UOO - -Ur + 2U 
r r r 

0(3(" ") 1 A 3fJ ( . 1 3 3) - l ex5 + ezl - Uo - ey2 cos Urr - 2 Uoo - - Ur + 2 U 
r r r r 

+ 2ey2 sin 3fJ (~Uro - r22 uo) + ex5 (Wrr + -;: Wr + r12 woo) 

- (32Ez3w - Exx ( <l>rr + -;: <l>r + r12 <1>00) + (32Ezz <I> = 0, (17) 

where 

e2 
r=-, (18) 

EC 

and u, u, and ware the radial, azimuthal, and longitudinal components 
of the displacement vector Uo 

In dimensionless form, the boundary conditions (12) to (15) are 

Free surface: 

CUUr + C12(U + Uo) - i(3C13W - i(3rez1 <l> + cos 3fJ[c14(-i(3u + Wo) 

- rey2<1>o] + sin 3fJ[c14(-i(3u + wr ) - rey2<1>r] = 0, 

C66(UO + Ur - u) + cos 3fJ[c14(-i(3u + wr ) - rey2<1>r] 

- sin 3fJ[c14( -i(3u· + wo) - rey2<1>o] = 0, 
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C44( -i{3u + wr ) + Tex5<I>r + C14 cos 30(uo + Vr - v) 

+ C14 sin 30(ur - u - vo) = 0 at r = 1. 

Clamped surface: 

u = v = W = 0 at r = 1. 

Short-circuit: 

<I> = 0 at r = 1. 

Open-circuit: 

- Exx <I>r + ex 5( -i{3u + wr ) - ey2 cos 30(uo + Vr - v) 

+ ey2 sin 30(u - U r + vo) = 0 at r = 1. (19) 

III. PERTURBATIONS AND POTENTIALS 

At any given frequency w, we wish to solve the differential equations 
(17) and boundary conditions (19) for the elastic displacement compo
nents u, v, and w, and for the electric potential <1>; these are functions of 
rand O. We also need to determine the propagation constant {3. Unfor
tunately, we have been unable to obtain an exact solution. We shall find 
an approximate solution by combining two techniques which were ap
plied successfully in earlier papers.7,8 First, we observe that eqs. (17) and 
(19) have an exact solution if C14 = ey 2 = 0.7 In this case, the crystal is 
a member of the hexagonal 6mm class. We make an infinite series per
turbation expansion about any modal solution to that problem. This 
results in systems of differential equations and boundary conditions for 
the perturbation contributions to the elastic displacement and electric 
potential. Second, we write these perturbation contributions in terms 
of certain potential functions. The differential equations then decouple. 
With the aid of the boundary conditions, the potential functions can be 
determined; perturbation contributions to the propagation constant can 
also be found. 

The perturbation technique has been used to describe vibrations of 
a sapphire fiber.8 The equations describing that crystal can be obtained 
from eqs. (17) and (19) by setting <I> and the components of the piezo
electric stress matrix e to zero. 

The potential function technique used here is the same as the one used 
in obtaining an exact description of the vibrations of a fiber in the hex
agonal 6mm class.7 

For lithium niobate, we find from the definition (16) and the numerical 
values for the stiffness coefficients12 that C14 ~ 3.6 X 10-2• We will use 
C14 as a perturbation parameter. This is reasonable since it is small 
compared to one. Instead of treating ey 2 as a separate perturbation pa
rameter, we write it as a constant multiple of C14: 
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ey 2 = ~C14' (20) 

For lithium niobate, it turns out that ey 2 ~ 6.8 X 10-1 and ~ ~ 18.12 The 
perturbation scheme would work better if ey 2 were smaller than this. It 
effectively is, in three out of four differential equations and in all but the 
open-circuit boundary condition, for it is then multiplied by the di
mensionless constant T ~ 1.4 X 10-1• In the remaining differential 
equation and boundary condition, however, ey 2 is not multiplied by a 
small constant in this fashion. How rapidly the perturbation series ac
tually converges will have to be determined numerically. 

We first make a perturbation expansion for the propagation con
stant: 

00 

f3 = L (C14)mf3m. (21) 
m=O 

When we make a perturbation expansion for the elastic displacements 
and electric potential, it is convenient also to make a Fourier expansion 
in O. Because of the three-fold symmetry of the crystal about the z axis, 
the Fourier expansion only needs to include multiples of 30, rather than 
O. With Z used to represent u, v, W, or <1>, we assume that 

00 00 

Z(r, 0) = L (C14)m LeiNO e i3nO Zm,n(r). (22) 
m=O n=-oo 

To begin the perturbation scheme, we choose (for m = n = 0) uO,O(r) 
e iNO, ... , <l>0,O(r)e iNO, and f30 to be a modal solution to the unperturbed 
problem, i.e., that for a hexagonal6mm crystal. N can be any integer. 
It determines which type of modal solution is being considered. N = 0 
corresponds to an azimuthally symmetric mode, I N I = 1 to a flexural 
mode, and I N I > 1 to a higher-order flexural mode. For m = 0 and n ~ 
0, set uO,n, ... , <l>0,n to zero. The problem then is to determine um,n(r), 
... , <l>m,n(r), and f3m for m > O. We will see that the displacement and 
electric potential contributions vanish when I n I > m. The functions thus 
need only be determined in the "triangular" region m = 0, 1,2,3, ... and 
Inl :5 m. 

We next write the perturbation contributions to the elastic displace
ments and electric potential in terms of certain potential functions: 
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with 

3 
<pm,n(r) = i L 1J£ 1f;'F,n (r), 

£=1 

s = 3n + N. 

(23) 

(24) 

The JL£ and 1Jb l = 1, 2, 3, are constants (independent of m and n) which 
must be determined. 

Substitute the potential functions defined in (23) into the perturbation 
expansions. Substitute these, in turn, into the differential equations (17). 
After considerable algebra, we find that the terms multiplied by 
(C14)me i (3n+N)O yield the following system of differential equations for 
1f;'r,n,···,1f;T,n. 

d 3 
-d L {c 11 'V;1f;'F,n 

r £=1 

+ [(w2 
- /36C44) + /30JL£(CI3 + C44) + /301J£T(ex5 + ezl)]1f;'t,n} 

S 3 
- " {C 'V2•f,m,n L 11 s't't 
r £=1 

- ~ [C66'V;1f;T,n + (w2 - /36C44)1f;T,n] = F'r,n(r), (25) 
r 

+ [(w 2 - /36C44) + /30JL£(CI3 + C44) + /301J£T(ex 5 + ez l)]1f;'t,n} 

- ~ [c 'V2.f,m,n + (w2 - R2C ).f,m,n] = Fm,n(r) (26) dr 66 s 't' 4 fJO 44 't' 4 2, 

3 
+ L [(w2 - /36C33)JL£ - /35ez3T1J£ ]1f;'t,n = F 3,n(r), (27) 

£=1 

with 

(29) 

The functions Fj,n(r), j = 1, ... ,4 are written in the Appendix. They 
are written in terms of functions which have been determined in earlier 
stages of the iterative procedure. When n = 0, they also involve the 
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constant {3m, which must be found. The functions vanish when m = 0 
or when m > 0 and I n I > m. 

In a similar fashion, the perturbation procedure yields a system of 
boundary conditions. 

Free surface: 

ttl [ C11 :'22 + C12 (:r - S2) + fiOC13ilt + fiOTezlf/t ] "''P,n 

- 2C66S (:r - 1) t/;T,n = K,{"n at r = 1, 

C66 [ t 2s (~ - 1) t/;'t,n - (~- ~ + S2) t/;T,n] = K'2!,n at r = 1, 
£=1 dr dr 2 dr 

t [C44(~£ - (30) + 1J£Tex5] dd t/;'t,n + (30C44St/;T,n = KIr,n at r = 1; 
£=1 r 

Clamped surface: 

Short-circuit: 

Open-circuit: 

3 d 
L - t/;'t,n - st/;T,n = 0 at r = 1, 

£=1 dr 
3 dt/;T,n 

s L t/;'t,n - -- = 0 at r = 1, 
£=1 dr 

3 
L ~£t/;'t,n = 0 at r = l. 

£=1 

3 
L 1J£t/;'t,n = 0 at r = 1, 

£=1 

(30) 

(31) 

(32) 

3 dt/;m,n 
L [-fxx 1J£ + ex5(~£ - (30)] -dl + (3oex5st/;T,n = KT,n at r = 1. 

£=1 r 

(33) 

The constants Kj,n, j = 1, ... , 4 are written in the Appendix. Like the 
Fj,n(r), they vanish when m = 0 and are known when m > 0; when n = 
0, they also involve {3m. 

IV. SOLUTION OF THE DIFFERENTIAL EQUATIONS 

We now show how to decouple the differential equations (25) to (28) 
and solve them. First, let 
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+ (30f..Lf(C13 + C44) + (307U T(ex5 + ezl)]lfP,nl, (34) 

H'r,n(r) = C66V';lfT,n + (w2 - (36c44)lfT,n. (35) 

Then by using (25), (26), and procedures similar to those exhibited in 
Ref. 8, we can show that, except in a certain special case to be discussed 
later, 

H'f,n(r) = %rs for x-s[FT,n(x) + F'r,n(x)] dx 

+ %r-s for x s[F]1l,n(x) - F'r,n(x)] dx, (36) 

H'r,n(r) = %rs for x-s[FT,n(x) + F'r,n(x)] dx 

- %r-s for xS[FT,n(x) - F'r,n(x)] dx, (37) 

Now consider eqs. (27), (28), and (34). They are equivalent to the three 
decoupled equations 

(38) 

provided that 

P~ = [(w2 - (36C44) + (30f..Le(C13 + C44) + {3or/eT(ex5 + ezl)]!cll, (39) 

from (34), 

- P? [f..LeC44 + 7Je Tex5 - (30(C13 + C44)] 

+ [(w2 - {36c33)f..Le - {3fiez3T7Je] = 0, (40) 

from (27), and, from (28), 

- P~ [Exx7Je + (30(ex5 + ezl) - ex5f..Le] + [-{36Ezz 7Je + {3fiez3f..Le] = o. 
(41) 

These imply that the P? satisfy the cubic equation 

(Exxp~ + {3fiEzz)[(CllP~ + {36c44 - w2)(C44P~ + (36c33 - w2) 

- P~{36(C13 + C44)2] + T(ex5P~ + {36ez3)[(cllP~ + (36C44 - w2) 

X (ex5P~ + (36ez3) - 2p;{33(C13 + c44)(ex5 + ezl)] 

+ Tp~{36(ex5 + ezl)2(c44P~ + (36c33 - w2) = 0, (42) 
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and that 

J.te = f30 {(CnPl + f3fiC44 - w2)(ez3€xx - eX 5€zz) 

- Pl(ex5 + ezl)[rex5(ex5 + ezl) + €xx(CI3 + C44)]j 

X {f3fi(CI3 + c44)(ez3€xx - eX 5€zz) - rex5(ex5 + ezl)(ex5Pl + f3fie z3) 
- €xx(ex5 + ezl)(c44Pl + f3fic33 - w2)}-1 (43) 

and 

rle = [cnPl + f36c44 - w2 - J.tef3o(CI3 + C44)]/[f3or(ex5 + ezl)]. (44) 

Furthermore, by eqs. (34), (27), and (28), the f'F,n(r), t = 1,2,3, must 
satisfy 

3 cn L f'F,n = H'r,n, (45) 
e=1 

3 
L [J.teC44 + TJe rex5 - f30(CI3 + C44)]f'F,n = F 3,n, (46) 

e=1 
3 
L [€xxTJe + f30(ex5 + ezl) - ex5J.te ]f'F,n = FT,n. (47) 

e=1 

These equations can be solved for the f'F,n(r). By (35), eq. (38) also holds 
when t = 4, provided that 

p~ = (w2 - f35c44)/C66, 

fT,n = H'J),n /C66. 

(48) 

(49) 

The next step is to solve the uncoupled differential equations (38). 
The functions f'j,n(r), j = 1, ... ,4, are either determined completely (n 
-:;e 0) or else involve f3m in a known way (n = 0). Using the fact that l/;j,n 
is bounded at r = 0 to evaluate an integration constant, we have as a 
solution to (38) 

l/;j,n(r) = [ Aj,n + ~ i 1 
xYs(pjx)fj,n(x) dx ] Js(pjr) 

+ 7!:. rr xJs(pjx)fj,n(x) dx Ys(pjr) if pJ > 0, 
2 Jo 

l/;'j,n(r) = [Aj,n.,.. i 1 
xKs(qjx)fj,n(x) dx ] Is (qjr) 

- for xIs (qjx)fj,n(x) dx Ks(qjr) if pJ == -qJ < o. (50) 

For any values of m and n, there are four constants A j,n, j = 1, ... , 
4, which remain to be evaluated. When n = 0, f3m must also be found. In 
the next section, we will show how to apply the boundary conditions to 
evaluate these constants. 
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It appears from (36), (37), (50), and (61) that a double integration must 
be performed computationally to obtain Hr,n(r) and Hrt,n(r). Use of (38) 
and integration by parts, however, can reduce this to a single integra
tion. 

There is one special case for which the above analysis is not quite 
correct. By using arguments similar to those in Ref. 8, we can show that 
if P~ = ° for some f, then 

H'l,n(r) = Cm,nrs + %rs i r 
x-s[F'l,n(x) + F':I,n(x)] dx 

+ %r-s for xs[Fr,n(x) - F~,n(x)] dx, 

H'2,n(r) = Cm,nrs + '%r s i r 
x-s[F'l,n(x) + Frt,n(x)] dx 

- %r-s for xs[Fr,n(x) - F~,n(x)] dx, (51) 

if n ~ 0. Here C m,n is a constant which remains to be determined. (When 
every P~ is nonzero, Cm,n is arbitrary in the sense that changing it merely 
changes the constant by which the entire solution is multiplied.) Also, 
in this special case we have when n = 0, 

H'f,O(r) = C'l,n - II Fr'O(x) dx, 

Hrt,O(r) = c~,n - II Frt,O(x) dx, (52) 

where C'l,n and c~,n must be determined. Now it can be shown that if 
the fiber is vibrating in the lowest-order torsional mode (with vO,o pro
portional to rand uO,o = wO,o = <1>0,0 = N = 0), then PI = P~ = 0. For this 
case, the solutions of (38) for j = 1 and 4 are 

t/;j,n(r) = [ Aj,n - 2
1
8 II x-s+1fj,n(x) dx ] rS 

_1.- rr xS+1f'!l,n(x) dxr-s if n ~ 0, 
28 Jo J 

(53) 

t/;j,O(r) = II X In xfj'O(x) dx + for xfj'O(x) dx In r if n = 0. (54) 

In eq. (54), an integration constant has been set to zero because it does 
not affect the final solution. It follows from eqs. (23), (43), (44), and (48), 
that when PI = P~ = ° and n ~ 0, the constants A'l,n and AT,n appear 
in the displacements and electric potential only in the combination A r,n 
- AT,n. Thus for n ~ 0, the constants to be evaluated are A'l,n - AT,n, 
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A ~,n, Ar,n, and Cm,n. When n = 0, we must find Ar'o, Ar'o, Cf'o, Cr'o, 
and f3m. In the next section, we show how to use the boundary conditions 
to determine these constants. 

V. EVALUATION OF THE BOUNDARY CONDITIONS 

For any pair (m, n), there are four boundary conditions, three of which 
are either eqs. (30) or (31), and the fourth of which is either (32) or (33); 
there are also four unknown constants to be found. When n = 0, f3m must 
be determined, too. 

When the solutions f3j,n to the differential equations (38) are substi
tuted into the appropriate boundary conditions from eqs. (30) to (33), 
a system of equations results which can be written in matrix form as 

JnAm,n = Vm,n. (55) 

We will not write down here the specific components of these matrices 
and vectors, although it is straightforward to do so. The important things 
to know are the following: The 4 X 4 matrix J n involves Bessel functions. 
It depends upon f3o, but is known once this is determined. The vector 
A m,n consists of the four unknown constants to be determined. The 
vector Vm,n contains kno~n constants: Kj,n, Bessel functions, integrals 
involving f'F,n. When n = 0, it also contains f3m linearly. 

Incidentally, from a computational viewpoint, it is never necessary 
to differentiate the functions t/lj,n numerically, either for substitution 
into the boundary conditions or into the functions listed in the Appendix. 
Equation (38) can be used to eliminate all second derivatives of t/lj,n with 
respect to r. Differentiation with respect to r of the solutions (50) and 
the use of standard relations between Bessel functions and their deriv
atives result in analytical expressions for dt/lj,n /dr. 

The procedure for solving the differential equations and applying the 
boundary conditions is an iterative one. We start with m = 0. We choose 
a modal solution when n = ° and set all t/lJ,n to zero when n ~ 0. The t/lJ'o 
satisfy eq. (38) with fj'o = 0. The boundary conditions for this case 
are 

(56) 

From this we obtain for a nontrivial solution the frequency equation 

det JO = 0, (57) 

which determines f30 as a function of w. This, of course, is the same as the 
dispersion relation for the hexagonal 6mm case about which we are 
perturbing. 

As we iterate on m, we can see from the equations in the Appendix that 
Fj,n = Kj,n = ° whenever I n I > m. It follows that V m,n = ° in this case 

1400 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1977 



and, since det J n ~ 0, that A m,n = o. Thus all tf;j,n = 0 whenever I n I > 
m. 

If 0 < Inl ~ m, Vm,n is in general nonzero. Since det In ~ 0, we can 
immediately obtain A m,n from eq. (55). 

If n = 0, the analysis is slightly more complicated. It was explained 
in detail in Ref. 8, so we merely give the results here. To obtain f3m, re
place any column of JO by V m,n and set the determinant of the resulting 
matrix to zero. The unknown vector A m,O can be written as 

(58) 

where Dm,O has three unknown components and Dj'O = 0 for some j for 
which A y,o ~ O. Then the equation 

(59) 

can be solved for Dm,O. Furthermore, Cm is arbitrary in the sense that 
varying it varies the constant by which the full solution is multiplied. 
We set Cm = O. 

In this manner, the functions tf;j,n can be determined iteratively, 
starting with m = o. For any given value of m, nontrivial results are ob
tained only when I n I ~ m. The perturbation contributions to the elastic 
displacements and electric potential are then found from eq. (23). The 
full solution is given by eqs. (21) and (22). 

APPENDIX 

Let 

S = 3n +N, 

S+ = 3(n + 1) + N, 

S - = 3(n - 1) + N, 

where nand N are integers. Then 

( 
d S) m-l { [3, , ] F'{',n(r) + F'f,n(r) = - - - ,2: 'Ym-jC44 2: tf;'tn + tf;~n 
dr r }=o £=1 

3 . , 
- f3m-j 2: [(CI3 + C44)J.lt + T(ex5 + ezlhlt] Vt't 

£=1 

(60) 

_ [\7;+ - 2(1 - s+) (~+ s+)] {~1 2f3m-j-l [ t tf;fn+l _ tf;~n+l] 
r dr r j=O £=1 

+ t (T~1]£ - J.le)tf;'F-l,n+1} , 
£=1 
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F'r,n(r) - F'i:,n(r) = (!£ +~) ~1 {'Ym-jC 44 [ t t/;~n - t/;~n] 
dr r j=O 1=1 
3 . 

- {3m-j L [(CI3 + C44)f.LI + T(ex5 + ezl)rlf] tf;1e 
1=1 

+ [\7L - 2(1 + S-) (!£ _ S_)] {~i:l 2{3m-j-l [ t t/;~n-l + t/;~n-l] 
r dr r )=0 1=1 

+ t (T~77f - f.LI)t/;r;-l,n-l}, 
1=1 

FJr,n(r) = ~ 1 (:r - Sr-) 'VL - 2(2 ~ s-) 

X [\7;_ - 2(1 + s_) (!£ _ S_)]} [ t t/;r;-l,n-l + t/;;r-l,n-l] 
r dr r 1=1 

where 

3 . ] + 'Ym-j L (ez3f.LI - Ezz 1]1 )VJt 
1=1 

m 

"'1m = L {3j{3m-j. 
j=O 

K'f,n = ! ~i:l {3m-l-j {(!£ - s_) [ t t/;~n-l + t/;~n-l] 
2 )=0 dr 1=1 

- (!£ + s+) [ t t/;~n+1 - t/;{,n+l]} 
dr 1=1 
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m-l 3 
- L {3m-j L (CI3f.l£ + ez l TrJ£ )vJtn at r = 1, 

j=o £=1 

K'i:,n = ! ~i:l {3m-l-j {(!£ - s_) [ t '/;~n-l + ,/;kn- 1] 
2 }=o dr £=1 

+ (!£ + s+) [ t '/;~n+l - ,/;kn+1
]} 

dr £=1 

-! t (f.l£ - T~rJ£) [(!£ - s_) ,/;r;-l,n-l 
2 £=1 dr 

+ (:r + s+ ) ,/;r;-l,n+1] at r = 1, 

K;r,n = C44 ~i:l {3m-j {t [s'/;~n + (!£ - s) '/;~n] - s'/;~n} 
}=O £=1 dr 

+ ~ [ \7L - 2(1 + s-l (:r - s-) ] Lt ,l/r1,n-l + >/;r-1,n-l] 
1 [ d ].[ 3 - 2 \7;+ - 2(1 - s +) (dr + s+ ) £~1 '/;'F-1,n+1 - ,/;T-1,n+1 ] at r = 1, 

KT,n = ex 5 ~i:l {3m-j {t [s'/;~n + (!£ - s) '/;~n] - s'/;~n} 
}=O £=1 dr 

+ I,J,,~ [ \7;- - 2(1 + s-l (:r - S-) ] L~1 >/;'F-1,n-l + >/;r-1,n-l] 

- 1M [ \7;+ - 2(1- s+l (:r + s+) ] Lt >/;'F-1,n+l - >/;r-1,n+1] 

at r = 1. (63) 
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Multihour engineering is a technique for designing trunk networks 
when the hours of peak traffic loads between various pairs of offices 
do not coincide. A new descent-type computational algorithm for the 
multihour engineering problem is derived. This algorithm obtains the 
unique solution to the minimization of the multihour cost function, 
which is strictly convex but only piecewise differentiable. The nonin
teger minimum-cost solution is subsequently rounded to the nearest 
allowable integer solution to give a realizable network. The new algo
rithm is applied to three numerical examples from the California 
network. The results are compared with the nonoptimal, nonunique 
solutions obtained with an earlier algorithm, and with the traditional 
single-hour solutions. 

I. INTRODUCTION 

This paper describes a numerical algorithm which obtains the unique, 
optimal noninteger solution to the multihour traffic network engineering 
problem. This solution is subsequently rounded to the nearest allowable 
integer solution to yield a unique, near-optimal realizable network. 

As described in Ref. 1, multihour engineering is a procedure whereby 
a least-cost traffic network is engineered for more than one set of 
point-to-point loads, subject to the constraint that blocking on any 
last-choice trunk group not exceed a specified value. For networks which 
exhibit noncoincident traffic patterns, t the multihour engineering 
method has been shown to achieve significant capital-cost savings over 
the conventional single-hour engineering procedures.1 

The results reported in Ref. 1 were based on an algorithm which op
timizes the high-usage trunk group sizesi one at a time, in a fixed but 

t Traffic loads between different pairs of offices are said to be noncoincident if their 
highest average values occur in different hours, or at the same hour but in different sea
sons. 

t High -usage groups are direct groups which carry the majority of the load between those 
pairs of offices which have a large enough community of interest to warrant direct trunk
ing. 
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arbitrary sequence, until no further cost reductions can be obtained. This 
algorithm is called a "coordinate-search" algorithm here. Such an al
gorithm has the undesirable property that it does not generally converge 
to a unique solution of the multihour problem. It can converge to any 
one of a family of suboptimal solutions, depending on the initialization 
of the algorithm, and on the specific order in which the calculations are 
performed. 

The practical reasons for obtaining the optimal-and hence (as shown 
in Section III below) unique-solution to the multi hour problem are as 
follows: First, the periodic re-engineering of the network in response to 
new load forecasts is facilitated. (In the Bell System, most networks must 
be re-engineered at least once each year.) A unique solution guarantees 
that changes in trunk-group sizes from one forecast period to the next 
reflect only changes in the loads. In contrast, the coordinate-search al
gorithm can produce changes in trunk-group sizes which are as much 
a function of non uniqueness as they are of actual alterations in the loads. 
It is not possible to distinguish between these two effects, and thus use 
of the coordinate-search algorithm could lead to excessive rearrange
ments. Second, capital-cost savings with respect to the coordinate-search 
solutions can be realized in most cases. 

The essential difficulty of the multihour engineering problem arises 
from the fact that the network cost function is not differentiable ev
erywhere in its domain. The algorithm presented here, however, is as
sured of convergence to the minimum:-cost noninteger solution by the 
convexity of the cost function and by the particular mechanism for ex
ecuting the search process. 

II. MUL TIHOUR ENGINEERING-THE MODEL AND ITS COST FUNCTION 

The model of the network considered in this paper is shown in Fig. 1. 
Traffic which is destined from the single originating office to one of n 
terminating offices is first offered to the appropriate one-way high-usage 
trunk group. If all the trunks in that group are busy, the traffic overflows 
and is offered to a final group which routes this parcel to a tandem switch, 
from where it is sent to its destination via a tandem-completing group. 
The final and tandem-completing groups are sized so that the blocking 
probability on each is 0.01 during its respective busy hour. The object 
of the engineering process is to determine the high-usage trunk group 
sizes which minimize the cost of the network subject to the blocking 
constraints on the alternate routes. 

The cost of the network can be divided into four components, which 
are defined below: 

(i) The direct-route cost: It is assumed that the cost of each high-usage 
trunk group is directly proportional to the number of trunks in the 
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group.t If the cost per trunk of the ith high-usage group is Cdi, and there 
are Xi trunks in this group, then the total cost for high-usage trunks in 
this network is given by 

n 
Cd = L CdiXi· 

i=l 
(1) 

In the theory which follows, as well as in the algorithm based on this 
theory, Xi is treated as a nonnegative real variable. 

(ii) The final-route cost: Let .71 = {I, 2, ... ,HI be the set of hours for 
which the network is to be engineered, and let h E .71. Let aih be the load, 
in erlangs, offered to the ith high-usage group in hour h. Then the ov
erflow from this group in hour h is given by 

(2) 

where B(., aih) is a strictly convex and continuously differentiable 
function of Xi which agrees with the Erlang loss function on the integers. t 
The overflow parcels from all the high-usage groups are combined and 
offered to the final trunk group. It is assumed that, in addition to the 
overflow traffic, the final group also has offered to it a first-routed load 
in hour h, designated by Afh. 

t Such an assumption is necessary, since the eventual realization of the network in terms 
of facilities is not known at the time that the groups are sized. Thus, average costs per trunk 
are used in approximating the eventual cost of each group. 

t "Such an interpolating function can always be constructed since B(n - 1, a) - B(n, a) 
> B(n, a) - B(n + 1, a), n = 1,2, .... 2 
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In sizing high-usage trunk groups, it is customary to approximate the 
number of trunks required in the final group by dividing the total load 
offered to this group by its so-called "marginal capacity." 1,3t If the cost 
per trunk of the final group is cf and its marginal capacity 'Yf, then the 
cost of sizing the final to carry only its hour-h load is approximated 
by 

Cfh = ~ (Afh + f. CXih). 
'Yf i=1 

(3) 

Since the final group must be engineered for its busiest hour, its ap
proximate cost is 

Cf = max Cfh . (4) 
hE Jf 

The actual sizing of the final group (which takes place only after all the 
high-usage groups have been sized) is done more precisely, of course. 

(iii) The switching cost: It is assumed that the cost of switching is 
proportional to the load, with a unit-cost per erlang of cs. Let Ash denote 
the load switched by the tandem in hour h, excluding the overflows from 
the n high-usage groups. (Tl~~ first-!~llted load on the final in hour h, 
Afh, is included in Ash.) Ignoring the blocking on the final group, the cost 
of switching only the hour-h load is 

Csh = Cs (ASh + .f. CXih). 
£=1 

(5) 

The cost of the tandemswitch, when engineered for its busy hour, is 
then 

Cs = max Csh. (6) 
hEJf 

(iv) The tandem-completing costs: The total load offered to the ith 
tandem-completing group in hour h is Aih + CXih, where (Xih is the overflow 
from the ith high-usage group (neglecting the blocking on the final group 
and at the tandem) and Aih is the remaining load destined to the i th 
terminating office via the tandem. As in the case of the final group, the 
size of the tandem-completing group is not computed exactly, but rather 
approximated by dividing its offered load by its marginal capacity. Let 
'Yti be the marginal capacity of the ith tandem-completing group, and 
Cti its cost per trunk. Then the cost of sizing this group to carry only its 
hour-h load is 

t While the marginal-capacity assumption is not appropriate for determining actual 
trunk requirements on the final group, it is sufficiently accurate for the comparative 
purpose to which it is put here. 
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Cti 
Ctih = - (Aih + CXih), (7) 

'Y ti 

and sizing this group for its busy hour results in a cost 

Cti = max Ctih. (8) 
hE J-I 

The cost of providing trunks for all tandem-completing groups is thus 

n 
Ct = L Cti . 

i=l 
(9) 

The total cost of the network is simply the sum of these four compo
nents: 

= f CdiXi +!!.L max (Ath + f CXih ) 
i=l 'YthEJ-I i=l 

+ Cs max (ASh + f CXih) 
hEJ-I i=l 

n Ct" + L _l max (Aih + CXih), (10) 
i=l 'Yti hE J-I 

where x = lXI, ... ,xn } is the n-vector of high-usage group sizes. This 
function is called the "multihour cost function." Note that the final, 
switch, and tandem-completing costs may attain their maxima for dif
ferent values of h, since each of these alternate-route components may 
be busy in a different hour. 

The object of multihour engineering, then, is to minimize the cost 
function defined by eq. (10) with respect to the high-usage trunk group 
sizes, i.e., to determine x = x* such that 

C(x*) = min C(x) 
xEX 

where the set X is defined by 

X = Ix: Xi ~ 0, i = 1, ... ,n}. 

(11) 

(12) 

From the point of view of the (continuous) multi hour cost function, 
any x is "feasible" if x E X. Of course, an actual network is realizable 
only in whole trunks (or, in the presence of modular engineering rules,t 
in terms of whole modules of trunks). Thus, the non integer solution x * 

t The uncertainty in load forecasts and the inherent modularity of some facilities have 
recently led to the engineering and administration of some networks in modules of 
trunks. 
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is subsequently rounded to an integer (or modular) solution, as discussed 
in Section IV. 

III. MINIMIZATION OF THE MULTIHOUR COST FUNCTION 

3. 1 A reformulation 

Equation (10) expresses the cost of the network as the sum of a linear 
term and n + 2 maxima of sets of nonlinear terms. For the analysis which 
follows, it is convenient to rewrite this cost function in terms of a single 
maximization operator. 

Let.Jl1 be a vector-valued index set with elements J.l = (J.ll, J.l2, ••• ,J.ln+2). 
Each component of J.l, in turn, is a member of the set Jf = 11, 2, ... ,H}, 
i.e.,.Jl1 = 1J.l = (J.lb .•. ,J.ln+2): J.li E Ji}. Let IC,Ax): J.l E .Jl1} be a new family 
of cost functions, called "elementary cost functions," which are defined 
by 

n 
CIL(x) ~ Cd(x) + CflLn+l(x) + CSlLn+2(X) + L CtilLi(X). (13) 

i=l 

In this equation, CtilLi (x) is the cost of sizing the i th tandem completing 
group for its hour-J.li load, CflLn+l (x) is the cost of sizing the final for its 
hoUr-J.ln+l load, and CSlLn+2(X) is the cost of sizing the switch for its 
hour-J.ln+2 load, as defined by eqs. (7), (3), and (5), respectively; the 
functional dependence upon the trunk-group-size vector x is explicitly 
indicated. It follows from eq. (10) that the multi hour cost function is 
obtained from eq. (13) by maximizing each term on the right-hand side 
with respect to the appropriate component of J.l: 

C(x) = Cd(x) + max CflLn+l(X) 
ILn+l E 'H 

n 
+ max CSlLn+2(X) + L max CtilLi (x). (14) 

ILn+2 E 'H i=llLi E 'H 

This term-by-term maximization, however, is equivalent to maximizing 
C IL (x) over all possible choices of J.l: 

C(x) = max CIL(x). (15) 
IL E At 

In other words, the multi hour cost function can be viewed as the point
wise maximum of the elementary cost functions defined byeq. (13). The 
multihour engineering problem now has the following form: Determine 
the vector x * E X with the property that 

C(x*) = min max CIL(x). 
xEXILEM 
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Fig. 2-Level curves of the multihour cost function. 

3.2 Some properties of the multihour cost function 

The multihour cost function has two fundamental properties on which 
the algorithm for finding its minimum is based: (i) it is a strictly convex 
function of trunk group sizes; (ii) it is only piecewise differentiable in 
these variables. Each member of the family of functions C J.L (x), J1 E .At, 
is the sum of differentiable, strictly convex functions plus a linear term, 
and is therefore itself strictly convex and differentiable.4 Since the 
multi hour cost function is the pointwise maximum of a family of strictly 
convex functions, it is also strictly convex,4 but not necessarily differ
entiable everywhere. In particular, if two or more elementary cost 
functions are maximal at some point (and hence their graphs intersect), 
the multihour cost function is generally not differentiable at that 
point. 

Figure 2 illustrates the possible nondifferentiability of the multihour 
cost function for an example with two high-usage groups, and in which 
only two distinct elementary cost functions [denoted simply by C I (x) 
and C2(x)] are maximal anywhere. The dashed curve separates the two 
regions in the Xl - X2 plane in which CI(x) > C2(x) and C2(x) > CI(x), 
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respectively. The solid lines are the level curves of C(x), i.e., the loci of 
points for which C (x) = ~, where ~ is a constant. The location of the 
minimum, x*, is indicated by the circled point. Clearly, the multihour 
cost function is not differentiable anywhere along the dashed curve, 
where the graphs of the two elementary cost functions intersect. 

This simple example also illustrates why a coordinate-search algorithm 
may fail to converge to the minimal solution. Figure 3 shows the same 
level curves as Fig. 2, together with three typical paths which a coordi
nate-search algorithm might follow: Path I (O-a-b) and Path II (O-c-d-e) 
start at the same initial point, but their orders of search are reversed. 
Path III (O'-f) starts with a different initial solution. Note that the three 
paths terminate at three different locations (b, e, and f), none of which 
is the minimal solution. In this example, the algorithm stops whenever 
it reaches a point x for which Ct(x) = C2(x) and at which no further 
decrease in the function C (x) can be achieved by changing only one 
coordinate at a time. 

3.3 A feasible search direction 

The principle of the algorithm presented in this paper is to perform 
a sequence of searches through X, in "feasible directions of descent." 
A feasible direction of descent is the direction of any vector y (x) with 
the property that if x E X, there exists some A > 0 such that x + AY E X 
and C(x + AY) < C(x). Whenever such a direction exists, a step size for 
the search is chosen to maximize the decrease of the multihour cost 
function in that direction, while maintaining the feasibility of the solu
tion. 

In order to determine a direction of descent, we use the concept of the 
one-sided directional derivative of C (x) with respect to a vector 
y E Y(x), where Y(x) = {y ERn: for x E X and for some A > 0, x + 
AY E X}. This derivative is denoted by C'(x; y) and is defined as fol
lows: 

C'(x; y) ~ lim C(x + AY) - C(x) . (17) 
A~O A 

C'(x; y) is thus the rate of change of the function C(x) in the direction 
of y, multiplied by Ily II, where 11·11 is the Euclidean norm. If C (x) is con
vex, C' (x; y) exists and is a convex function of y for every x at which C 
is finite. If C (x) is actually differentiable at x, then 

C'(x;y) = (y, V'C(x» (18) 

where V' is the gradient operator and (., .) denotes the scalar (or inner) 
product of two vectors.4 

Substituting eq. (15) into the definition of the directional derivative 
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we have 

PATHm 
O'X--------

PATH I 

,Fig. 3-Typical paths for a coordinate-search algorithm. 

max C,Ax + AY) - C(x) 
C'(x; y) = lim JL E fit (19) 

A~O A 
Let J (x) ~ At be the set of indices of those elementary cost functions 
which are maximal at x: 

J(x) ~ ItL: CJL(x) = C(x)}. (20) 

For each tL E At, CJL(x) is continuous for all x E %. Consequently, for 
each x E % and for each Y E '!lex), there exists a A' > 0 such that for 
all A with 0 < A < A', 

C(x + AY) = max CJL(x + Ay). (21) 
JL E .7(x) 

In words, there exists a neighborhood of x in which no elementary cost 
function can be maximal which is not also maximal at x. Therefore, the 
maximization over Jl E At in eq. (19) can be replaced by a maximization 
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over J.L E :I == :I(x): 

max CJ-L(x + AY) - C(x) 
C'(x;y) = lim....;...J-L-E=--:J-----__ 

x~o A 
Since CJ-L(x) = C(x) for each J.L E :I, 

C'( ) 1· [CJ-L(x + AY) - CJ-L(X)] x;y = 1m max -
x~o J-L E :J A 

1. [CJ-L(x + AY) - CJ-L(x)] = max 1m 
J-L E :J x~o A 

(22) 

= max C~(x; Y), (23) 
J-LEY 

where C~ (x; y) is the directional derivative of C J-L (x) with respect to y. 
(The order of the lim and max operators can be interchanged since :I is 
finite and C J-L is continuous for each J.L E :I.) Since C J-L (x) is differentiable 
for each J.L E .M, t 

C'(x;y) = max (y, \7CJ-L(x). (24) 
J-LE:J 

Thus, the rate of change of C (x) in the direction of y is negative (i.e., the 
direction of y is a feasible direction of descent) if and only if 

or, equivalently, 

max (y, \7CJ-L(x) < 0, y E Y(x) 
J-LE:J 

(25) 

(y, \7CJ-L(x) < 0, for all J.L E :I(x), y E Y(x). (26) 

A point at which no feasible direction of descent for C (x) exists must 
be the location of the minimum of C(x). In fact, a convex function C(x) 
defined over a convex domain attains its global minimum at x = x* if 
and only if C (x) is finite and 

C'(x*; y) ~ ° for all y E Y(x*). (27) 

Furthermore, x* is unique if C(x) is strictly convex.4 Since ° E Y(x), 
eq. (27) is equivalent to 

min C'(x*; y) = 0, 
y E 'Y(x*) 

(28) 

t If x is on the boundary of X, Y'C/L(x) is defined as the limit of all sequences Y'C/L[x(l)], 
Y'C/L[x(2)], ... , such that xli) E X and xU) -- x. 
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or, with eq. (24) substituted, 

min max (y, \7C~(x*» = o. (29) 
y E 'Y(x*) ~ E .J(x*) 

3.4 The descent algorithm 

Inequality (25) gives the condition for y to be in a feasible direction 
of descent for C (x). Such a y is generally not unique, and it is necessary 
to select a particular direction of descent at each iteration of the algo
rithm. A logical choice is the direction of steepest descent for C (x), i.e., 
the vector y * such that 

C'(x; y*) = min C'(x; y) (30) 
yEJ'n'Y 

where 8 is the unit sphere in R n: 

8 = {y: \\y\\ ~ 1}. (31) 

A solution for y* can be obtained in explicit form, as shown in the Ap
. pendix, provided :J(x) contains either one or two elements, and cy (x) = 
Rn (i.e., x is not on the boundary of X). 

While it is possible, at least in principle, to solve for the steepest
descent vector in the general case (see the Appendix), the computation 
is cumbersome for three or more elements in .7(x), or if boundary con
straints are active. In this case it is more practical to choose a feasible 
search direction based on computational simplicity. For example, if 8 
is chosen to be the set 

~ = {y: !Yi! ~ 1, i = 1, ... ,n}, (32) 

the min-max problem expressed by eq. (30) can be converted 'into a linear 
program: 

min (J' 

subject to 

(y, \7C~(x» ~ (J' for all JL E .7(x) 

!Yi! ~ 1, i = 1, ... ,n 

Yi ~ 0 whenever Xi = O. (33) 

This linear-programming problem is solved by standard methods. Al
though the vector Y* which solves that linear program may no longer be 
in the steepest-descent direction, the algorithm can still be shown to 
converge. t 

t It can be shown that the algorithm will converge with y* chosen according to eq. (30) as 
long as g is any convex, compact subset of Rn containing the origin in its interior.5 
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In principle, the descent algorithm consists of alternately computing 
a search direction according to eq. (30) and performing a one-parameter 
search to locate the minimum of C(x) along that direction. (Each such 
combination is called an iteration.) While this procedure results in a 
sequence of feasible solutions with strictly decreasing costs, there is still 
no guarantee that this sequence will converge to the minimal solution. 
It is possible, as the result of a phenomenon known as "jamming" or 
"zig-zagging," for the sequence of solutions to converge to a point which 
does not satisfy eq. (29).6 

The device used here to prevent jamming (and thus assure conver
gence to the minimal solution) is similar to that used by Zoutendijk.6 

This device consists of expanding the set J (x) to include all those ele
mentary cost functions which are "nearly" maximal at x. Let E > 0 and 
define the new index set 

(34) 

The direction-finding subproblem thus takes into account the directional 
derivatives of all those elementary cost functions which are within E of 
being maximal at x. Similarly, the feasibility conditions are modified 
to prevent the algorithm from attempting to reduce any further those 
trunk-group sizes which are already "nearly" equal to zero. To this end, 
let () > 0 and define the set 

<Yo(x) 4: {y E Y(x): Yi ~ 0 whenever Xi:::; oJ. (35) 

For notational consistency, the original sets J(x) and Y'(x) are hence
forth denoted by Jo(x) and Yo(x), respectively. 

The original problem of determining a search direction y* as expressed 
byeq. (30) is now replaced with the problem of finding y =:9 which solves 
the min-max problem 

D(x) 4: min max (y, \7CJL (x). (36) 
YEsn'YoJLE:J. 

In this definition, the new symbol D(x) replaces the symbol C'(x; :9), 
since the quantity which it denotes is no longer a directional derivative 
in the sense of eq. (17). Note, however, that if J~(x) = Jo(x) and Y' o(x) 
= Yo(x), then:9 = y* and D(x) = C'(x; y*). 

Since the inclusion of any additional necessary conditions may overly 
constrain the direction-finding subproblem, the values of E and () are 
reduced adaptively throughout the progress of the algorithm, so that E 

-- 0 and 0 -- o. The use of this procedure also serves a computational 
purpose, in that E and 0 can be viewed as the tolerances within which 
elementary cost functions are deemed maximal and within which 
trunk-group sizes are considered to be zero, respectively. 

1416 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1977 



The descent algorithm is now specified as follows: 

Step 1 Let k be the iteration counter, and set k = 0. 
Select an arbitrary initial solution x (0) E x. 
Select E and o. 

Step 2 Compute C[x(k)]. 
Step 3 Determine the feasible search vector y(k) == :9 and compute 

D[x(k)]. 
Step 4 If D [x (k)] ~ -E, go to Step 6. 

If -E < D[x(k)] < 0, go to Step 5. 
IfD[x(k)] = 0, but.7~[x(k)] ~ .7o[x(k)] orY'o[x(k)] ~ Yo[x(k)], 
go to Step 5. 
IfD[x(k)] = Oand.7~[x(k)] = .70 [x (k)] and Yo[x(k)] = Y'O[x(k)], 
stop. The solution x (k) = x* has been found. 

Step 5 Set E = E/2 and 0 = 0/2; go to Step 3. 
Step 6 Determine a scalar A (k) such that 

C[X(k) + A(k)y(k)] = min C[x(k) + Ay(k)] 
A E A(k) 

where 

A(k) = {A: x(k) + Ay(k) E Xl. 

Set x (k+l) = x (k) + A (k)y(k), set k = k + 1, and go to Step 2. 

The adaptive reduction of E and 0 is contained in Steps 4 and 5. 
Whenever ID[x(k)lI becomes sufficiently small (perhaps even zero), E 

and 0 are divided in half. If this reduction results in a decrease of the 
number of near-maximal elementary cost-functions or near-active 
boundary constraints, the direction-finding subproblem may be less 
constrained, and a new search direction may be found. Jf, on the other 
hand, the sets .7~(x) and Yo(x) remain unaltered after E and 0 are divided 
in half, D[x(k)] remains unchanged as well, and the algorithm proceeds 
directly to Step 4. 

It can be shown that this algorithm generates a sequence of solutions 
{x (k); k = 0, 1, 2, ... 1 which is either finite, with its last term x * satisfy
ing 

C'(x*; y*) = 0, (37) 

or infinite, with any accumulation point x* satisfying eq. (37).5t It was 
shown earlier, however, that eq. (37) is a necessary and sufficient con
dition for x* to be the unique, minimal noninteger solution to the mul
tihour engineering problem. 

t A practical stopping rule is suggested in Section 4.3. 
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IV. NUMERICAL RESUL 1S 

4. 1 The model 

Three offices from the California network (Gardena, Compton, and 
Melrose) were engineered with the descent algorithm developed in 
Section III. For each office, the loads in two distinct hours (a morning 
hour and an evening hour) were considered. For the sake of simplicity, 
the loads Afh, Ash, and Aih, i = 1, ... ,n (hereafter called "fixed loads," 
since they do not depend on the variables Xi) were assumed to be zero 
in both hours. All trunks were assumed to cost $1000, and the switching 
cost was $62/ccs. t The final and tandem-completing groups were as
sumed to have a common incremental capacity of 30 ccs/trunk. There 
were 37 high-usage groups in the Comptop. office, 43 in Gardena, and 35 
in Melrose. 

These three offices, together with the loads and costs, are the same 
as those used by M. Eisenberg;1 they are used here again in order to allow 
direct comparisons with his results. While the simplifying assumptions 
in these cases certainly influence the numerical results, they preserve 
the essential properties of the multihour cost function and thus can be 
expected to demonstrate convergence characteristics similar to those 
which would occur in general. 

4.2 Implementation of the descent algorithm 

The assumption of zero fixed loads on the switch and on the tan
dem-completing groups allows the multi hour cost function to be sim
plified considerably. Under this assumption, the busy hours on the 
tandem-completing groups are known a priori: the busy hour on the ith 
tandem-completing group is the same hour in which the load offered to 
the ith high-usage group is largest. Thus, only the final group and the 
switch have busy hours which may be functions of the high-usage group 
sizes. Furthermore, in the absence of fixed loads, the loads offered to the 
final group and to the switch are identical. Consequently, at most two 
of the elementary cost functions associated with each of these networks 
can ever be maximal. t For the sake of notational simplicity, these two 
functions are denoted by C1(x) and C2(x), respectively. 

The feasible search vector for each iteration was chosen by specifying 
the set r8 to be the unit sphere. For experimental purposes, two distinct 
initial feasible solutions were used for each of the three offices: 

t 1 erlang = 36 ccs (hundred call-seconds per hour). 
t There are Hn+2 elementary cost functions associated with a network with n high-usage 

groups which is engineered for H hours. Recent experience with more extensive data, in
cluding fixed loads, indicates that the busy hours of the tandem switch and of the tan
dem-completing groups are usually not affected by the sizes of the high-usage groups of 
the office which is being engineered.7 Thus, one may need to consider only H elementary 
cost functions in a practical situation. 

1418 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1977 



and 

Xi(O) = max aih, i = 1, ... ,n 
hE Jf 

Xi (0) = 0, i = 1, ... ,no 

(38) 

(39) 

At each iteration, the optimal step size A (k) was determined by a simple 
parameter search: First, the location of the minimum of C (x) along the 
search direction was bracketed between two points whose largest com
ponent-difference was 0.01 trunks. The minimal point was then com
puted more precisely, either by a quadratic approximation or by a linear 
interpolation, depending on whether :Jf(~) contained one or two elements 
at that point. The Erlang-B function for noninteger trunk-group sizes 
was evaluated by an approximation due to Rapp,8 and its partial deriv
atives were approximated by central differences with a step size of 0.01. 
The initial values for E: and [) were set equal to 10-3C[x(0)] and 0.1, re
spectively, and in all cases the algorithm was arbitrarily terminated after 
25 iterations. 

4.3 Convergence of the descent algorithm 

The behavior of the algorithm was similar for all three of the offices 
and for both starting points. For each office, the final solutions obtained 
with each of the two starting points differed by less than 0.003 trunks 
on any high-usage group. Figures 4 to 7 summarize the convergence 
characteristics of the algorithm for the Gardena office, with the starting 
point given by eq. (38). 

The cost of the network at each iteration, C[x (k)] (or simply C(k», as 
a function of the iteration number, k, is shown in Fig. 4. The cost de
creased monotonically with k, and the rate of change became very small 
after the first few iterations (e.g., C(4) = 1.0003 C(25». 

Figure 5 shows the magnitude of D[x(k)] (or simply ID(k)l, and the 
value of E:, as functions of k. As this figure indicates, I D (k) I, E:, and [) all 
approach zero as k - co (recall that E: < ID(k)1 for all k ~ 0, and that [) 
ro.J E:). Thus, it is evident that the algorithm was converging to the minimal 
solution when it was terminated. 

Unlike C(k), ID(k)1 did not decrease monotonically. As the algorithm 
reduced E:, there was an occasional iteration (k = 0, 2, and 6) at which the 
solution point x (k) lay outside the region for which I Cik) - C~k) I ~ E:. As 
a result, :J f [x (k)] contained only one element at these iterations, and y 
was given by -\l{max [Cik) , C~k)]}. (The dotted lines in Fig. 5 show the 
magnitudes of the gradients \lC I and \lC2 as functions of k.) For the 
remaining iterations :Jf[x(k)] contained both indices, so thaty and D(k) 
were computed via eqs. (61) to (63) in the Appendix. Note that since E: 

- 0 as k - 00 and :Jf[x(k)] contained both elements for all k ~ 7, the 
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Fig. 4-Convergence of descent algorithm: network cost. 

solution point x * must be located on the intersection of the graphs of 
the two elementary cost functions. 

The relative change in the solution from one iteration to the next, as 
measured by the Euclidean "distance" Ilx (k-l) - x (k) II, is shown in Fig. 
6. Note that this quantity also tended to zero as k increased, although 
not monotonically. In particular, this plot shows that for each iteration 
(except the first one) at which:J E [x (k)] contained only one element, the 
corresponding step size was small. Thus, the algorithm generated a se
quence of solutions which tended to follow the intersection of the graphs 
of C1(x) and C2(x) toward the minimal solution x*. Whenever the so
lution point moved too far from this intersection, a small step was taken 
to get back into the region defined by I C 1 (x) - C 2(X ) I ::; €, and the search 
along the intersection was resumed. 

Figure 6 also suggests how the norm of the change in trunk-group sizes 
can be used as a measure for a practical stopping rule. Let e be a prese-
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Fig. 5-Convergence of descent algorithm: ID[x(k)] I and f. 

lected threshold. Then the algorithm is deemed to have converged, and 
is terminated, if k ~ 2 and Ilx (k) - x (k-l) II < e for two consecutive iter
ations. The last solution x (k) is then an approximation to the exact so
lution x*. 

Figure 7 shows how the solution point x (k) converged. For this purpose, 
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1 

24 

the Euclidean distance between x(k) and X(25), Ilx(k) - X(25)11, is plotted 
as a function of k. Note that x(k) reached a small neighborhood of X(25) 

in relatively few iterations (e.g., within one trunk after only four itera
tions, and within 0.1 trunks after ten iterations). 

4.4 Further results 

Table I shows the offered loads for the Gardena office (in ccs), and 
the trunk-group sizes (optimal, and rounded to the nearest integer) 
obtained by the descent algorithm. For the purpose of comparison, the 
following other sets of trunk-group sizes are included: 

(i) For each high-usage group, the smallest and the largest number 
of trunks (in integers) selected from a set of solutions generated by the 
coordinate-search algorithm with 20 combinations of starting points and 
trunk-group orderings. 
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9 10 

(ii) The number of trunks in each high-usage group (again in integers) 
as determined by the so-called "cluster-busy-hour" method.1t 

This table illustrates the trunk-group-size variability when a coordi
nate-search algorithm is used, relative to the optimal-and hence 
unique-solution. Note that some groups varied by as many as eight 
trunks, while only six groups showed no variability. In view of the 
practical problems associated with such an uncertainty, as discussed in 
the Introduction, the need for obtaining a unique solution is clear. 

Table II lists the costs! of the optimal solutions for Compton, Gardena, 

t Cluster-busy-hour engineering is a traditional method for sizing traffic networks, in 
which trunk-group sizes are chosen to minimize an elementary cost function whose al
ternate-route costs are all evaluated in a single, time-consistent hour. The hour selected 
is that hour in which the sum of the first-offered loads to all the high-usage groups which 
overflow to a common final group, plus the first-offered load to that final group, is larg
est. 

t All costs are computed via eq. (3), and thus include the marginal-capacity approxi
mation. The costs of comparable networks reported in Ref. 1 reflect the actual required 
sizes of the final groups as determined after the high-usage groups have been sized. 
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and Melrose. For the purpose of comparison, the table also lists the costs 
of the following other networks: 

(i) A network with the optimal trunk-group sizes rounded to the 
nearest integers. 

(ii) The two networks with the lowest and highest 'costs, respectively, 
selected from the set of 20 solutions generated by the coordinate-search 
algorithm. 

(iii) The cluster-busy-hour network. 

These results show that while some combinations of starting points and 
trunk-group orderings for the coordinate-search algorithm yielded so
lutions whose costs were only a fraction of a percent higher than the 
optimum, other combinations led to substantially higher costs (up to 
5.5 percent in the case of Compton). 

Since a network is realizable only in integer trunk-group sizes, the 
optimal (noninteger) solution must be rounded in some way. As indicated 
by the results in Table II, rounding of optimal trunk-group sizes to the 
nearest integers is an attractive alternative: It is simple; it yields an es
sentially unique solution; and, although it generally does not lead to the 
optimal integer solution, it yields networks whose costs are only slightly 
higher (from 0.2 to 0.44 percent in the three cases examined) than those 
of the optimal, noninteger solutions. (Subsequent studies10 have shown 
that, among several practical approaches, rounding the optimal solution 
to the" nearest integers, or to the nearest multiples of the module size, 
is indeed the policy most likely to minimize cost.) 

The cluster-busy-hour networks are included to provide some per
spective. It is evident that while the cost of any solution obtained by the 
coordinate-search algorithm is substantially lower than the cost of the 
cluster-busy-hour solution, additional nonneligibile capital savings may 
be obtained by computing the optimal solution via the descent algo
rithm. 

A comparison of the rounded optimal solution with the cluster
busy-hour solution reveals that these two networks are not very different. 
(The average absolute difference in high-usage group sizes is only 0.8 
trunks, while the average group size for the rounded optimal solution 
is 7.1 trunks.) The cost of the cluster-busy-hour network, however, is 11.7 
percent higher than that of the integerized optimal solution. The sen
sitivity of the cost to relatively small changes in trunk-group sizes is a 
consequence of the "shape" of the multi hour cost function. As Fig. 2 
suggests, the contours of this function are long and narrow, and the slope 
is steep in directions normal to the intersection between the two ele
mentary cost functions. 

In contrast, C(x) is much less sensitive to changes in x along the in
tersection of the graphs of C1(x) and C2(x). It is for this reason that the 
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Table I - High usage trunk group sizes-Gardena 

Number of Trunks 
Coordinate-

Offered loads Descent search 

Trunk (css) algorithm algorithm Cluster-
Group Hour 1 Hour 2 Optimal Rounded Low High busy-hour 

1 60 140 4.42 4 4 6 3 
2 119 9 5.25 5 2 6 6 
3 82 20 3.78 4 2 4 4 
4 305 76 11.97 12 10 12 12 
5 30 0 1.47 1 1 2 2 
6 59 7 2.81 3 1 3 3 
7 102 56 4.64 5 5 5 5 
8 256 161 10.32 10 9 11 11 
9 366 230 14.10 14 12 15 15 

10 469 310 17.57 18 14 18 18 
11 115 115 5.37 5 5 5 5 
12 144 34 6.20 6 3 7 7 
13 206 335 10.81 11 10 13 9 
14 310 650 18.58 19 16 22 13 
15 284 319 12.14 12 12 13 12 
16 93 152 5.43 5 5 6 4 
17 17 24 1.08 1 1 1 1 
18 74 325 8.92 9 6 13 4 
19 102 158 5.74 6 5 7 5 
20 137 322 9.36 9 8 13 6 
21 222 247 9.78 10 10 10 9 
22 252 390 12.58 13 7 15 11 
23 445 194 16.73 17 12 17 17 
24 176 86 7.41 7 6 8 8 
25 83 29 3.83 4 2 4 4 
26 98 21 4.43 4 4 5 5 
27 158 74 6.75 7 6 7 7 
28 124 36 5.44 5 5 6 6 
29 54 25 2.64 3 2 3 3 
30 38 1 1.86 2 1 2 2 
31 31 17 1.60 2 1 2 2 
32 140 46 6.06 6 6 6 6 
33 96 30 4.35 4 3 5 5 
34 122 62 5.40 5 4 6 6 
35 163 57 6.92 7 5 7 7 
36 163 72 6.93 7 5 7 7 
37 296 238 11.84 12 11 12 12 
38 33 28 1.77 2 2 2 2 
39 240 3 9.70 10 6 10 10 
40 136 7 5.90 6 4 6 6 
41 54 4 2.59 3 2 3 3 
42 52 35 2.61 3 2 3 3 
43 206 9 8.48 8 3 9 9 

Table II - Network costs 

Cost ($000) 

Descent algorithm Coordinate-search 

Optimal Integerized 
algorithm Cluster-

Office solution solution Low High busy-hour 

Comleton 402.9 403.7 406.8 425.0 488.6 
Gar ena 385.5 386.6 388.2 397.9 431.9 
Melrose 271.7 272.9 273.7 276.0 305.3 
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largest cost difference between the 20 sample solutions generated by the 
coordinate-search algorithm is only 4.5 percent. ·(As suggested by Fig. 
3, all termination points for the coordinate-search algorithm lie on this 
intersection in this particular example.) 

The high sensitivity of network cost to trunk variations in some di
rections is not, of course, a consequence of engineering a network to a 
multihour (minimum-cost) solution. The cost function C(x) as defined 
byeq. (10). represents the actual cost of the network. The multihour 
method is simply the one which recognizes this actual cost during the 
sizing process. 

The imposition of modular engineering rules tends to diminish the 
capital savings of multi hour engineering over single-hour engineering, 
by blurring some of the fine structure of the networks. A substantial 
portion of the savings can still be realized, however, as long as the module 
size is not large relative to the average group size. For example, in the 
three networks studied here, where the average group size is 7.4, rounding 
the high-usage group sizes to the nearest multiples of six trunks resulted 
in a reduction of the original savings by approximately one-fourth. 

V. SUMMARY 

The cost of a traffic network which gives a minimum specified grade 
of service on the last-choice routes in more than one hour can be ap
proximated by a strictly convex, although possibly nondifferentiable, 
function of the high-usage trunk-group sizes. A descent algorithm, which 
can be shown to converge to the unique, noninteger minimum-cost 
network, has been developed. The non integer solution is subsequently 
rounded to the nearest allowable integer (or modular) solution to yield 
a realizable network. The main advantage of this algorithm relative to 
the coordinate-search method is that the uniqueness of the solution 
prevents unnecessary, expensive rearrangements from being undertaken 
as traffic loads change with time. A secondary advantage is a small 
possible additional saving in network capital cost. 

The results obtained from applying the descent algorithm to three 
numerical examples (and to others not discussed here) demonstrate that. 
even after only a few iterations a sufficiently high degree of precision can 
be achieved to ensure the reproducibility of the results and hence the 
stability which motivated the design of the algorithm. 

VI. ACKNOWLEDGMENTS 

The author wishes to acknowledge helpful discussions with E. J. 
Messerli and R. Saigal. 

1426 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1977 



APPENDIX 

The steepest-descent direction for the multihour cost function 

Consider the problem of finding a vector y* ERn with the property 
that 

C'(X,y*) = min C'(x;y) 
Ilyll :$1 

= min max (y, V'CIl(x) (40) 
Ilyll :$11l E :J(x) 

where C'(·; .), CIl(x) arid .7(x) have all been defined in Section III. 
Without loss of generality, let .7(x) = II, ... ,m} and let Z be the convex 
hull of the set of all the inner products (y, V'Cj(x), j = 1, ... ,m: 

Z = {z: z = .f Aj (y, V'Cj(x), .f Aj = 1, Aj 2: oJ. (41) 
)=1 )=1 

In other words, Z is the shortest closed segment of the real line which 
contains all the inner products (y, V'Cj(x), j = 1, ... ,m. Consequently, 
the maximal inner product is also the maximal element in Z: 

max (y, V'Cj(x) = max z. (42) 
j E :J(x) z E Z 

Since the inner product is a linear operator, the elements z defined by 
eq. (41) can be rewritten as 

z = / y, .f AjV'Cj(x) \, .f Aj = 1, Aj 2: O. (43) 
\ )=1 / )=1 

Now define a new set, g, as the convex hull of the gradients of the ele
mentary cost functions: 

(44) 

The relationship between the sets g and Z is evidently 

Z = Iz: z = (y, g), g E g} (45) 

and thus 

max = max (y, g) (46) 
zEZ gEg 

Combining eqs. (40), (42), and (46) yields 

C'(X; y*) = min max(y, g). (47) 
Ilyll:$l g E g 

DESCENT ALGORITHM 1427 



Since the two constraint sets on the right-hand side of eq. (47) are convex 
and compact, the minimization and maximization operations can be 
interchanged:9 

C'(x; y*) = max min (y, g). 
g E fJ Ilylisl 

For any g E g withg :¢ 0, 

Ifg = 0, then 

min (y, g) = / - "g" , g) 
Ilylisl \ g 

= -lIgll. 

min (y, g) = O. 
IlyllSl 

Equation (48) is then equivalent to 

C'(x;y*) = max (-lIgll) 
gEfJ 

= -min IIgll 
gEfJ 

Let g* be the vector with minimum norm in g, i.e., 

IIg*1I = min IIgll. 
gEfJ 

The desired result is now given by 

C'(x; y*) = -lIg* \I 

y* = g* 
{

o ,g* = 0 

- I\g* \I ,g* :¢ o. 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

(54) 

The set g and its elements g are called the "subdifferential" and the 
"subgradients," respectively, of the convex function C (x). 4 The steep
est-descent vector y* is then in the negative direction of the minimum
normsubgradientofC(x). Note,incidentally, thatC'(x*;y*) = O-the 
necessary and sufficient condition for C(x*) to be the minimum-is 
equivalent to the condition th'at 0 E g at x * . 

Explicit solutions for y* can now be found for the cases m = 1 and Tn 
= 2, as follows: 

(i) m = 1: 
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In this case we simply have 

g = \7C1(x) = \7C(x) = g*. (55) 

(ii) m = 2: 

The sub differential is now given by 

g = {g: g = (3\7C 1(x) + (1 - (3)\7C 2(x), 0::5 {3 ::5 IJ. (56) 

If 0 E g, theny* = g* = O. Suppose now that 0 fE:. g. The unconstrained 
minimum of Ilg II is found by setting its derivative (with respect to (3) 
equal to zero: 

Since 

d -llgll =0. 
d{3 

Ilg 112 = (g, g) , 

(57) 

(58) 

the relationship 

d d 
211g II d{3 Ilg II = d{3 (g, g) (59) 

is obtained. Thus, since Ilg II ~ 0, eq. (57) is equivalent to 

d 
d{3 (g, g) = O. (60) 

Let {3 = ~ satisfy eq. (60). Expanding the inner product, taking the de
rivative, and·solving for ~ yields 

A II\7C211 - (\7C 1, \7C2 ) 

(3 = II \7ctI! 2 + II\7C211 2 - 2(\7C1, \7C2 ) • 
(61) 

However, since {3 is constrained by 0 ::5 {3 ::5 1, the minimum-norm 
subgradient g* is given by 

g* = {3*\7C1 + (1 - {3*)\7C 2 (62) 

where 

{
o ~<O 

{3* = ~: 0::5 ~ ::5 1 

1, ~ > 1 

(63) 
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We study the blocking probabilities of multistage switching networks 
through their linear graphs using Lee's model. We give results which 
allow us to compare the blocking probabilities of various classes of linear 
graphs. In particular, we derive techniques for deciding when the 
blocking probability of one linear graph does not exceed the blocking 
probability of another linear graph under all possible traffic loads. This 
allows us to compare the blocking performances of corresponding 
switching networks containing these linear graphs. Our results apply 
not only to series-parallel linear graphs, but also to the more general 
"spider-web" linear graphs, which have recently attracted substantial 
interest in the theory of switching networks. 

I. INTRODUCTION 

A network N consists of a set of switches, a set of links, and two sets 
of terminals denoted by I and Q, and called, respectively, the set of input 
terminals and output terminals. The union of all paths that can be used 
to connect one call between an input terminal u and an output terminal 
v is called the linear graph determined by u and v, and is denoted by 
G (u,v). (A linear graph is also called a channel graph.l0) Let P* be the 
union of all paths connecting input terminals to output terminals. A state 
of N is a subset S of P* such that no two paths in S have a common link. 
For a given state S, a link is busy if it is on a path in S. Otherwise it is 
idle. 

Many existing switching networks consist of several stages. We say 
that N is an n-stage network if the set of switches of N can be partitioned 
into n sets, called stages, and links exist only between a switch in stage 
i and a switch in stage i + 1, for 1 ::; i ::; n - 1. All input terminals are 
connected to switches in the first stage and all output terminals are 
connected to switches in the last stage. 
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(a) (b) 

Fig. 1-(a) Series combination. (b) Parallel combination. 

In order to simplify the analysis of the switching networks under 
consideration we will employ Lee's model in Ref. 8. We will also use Lee's 
independence assumption, namely, that the probabilities of being busy 
for links in successive stages are independent. Thus, we will assume all 
links between stage i and stage i + 1 have some probability Pi of being 
busy and $ome probability qi = 1 - Pi of being idle, for any i, 1 ~ i ~ k 
- 1. Let P(u,v), u E I, v E Q, denote the probability that there does not 
exist a path connecting u and v which consists of idle links. P(u,v) is 
called the blocking probability for u and v. Note that because of the in
dependence assumption, P(u,v) actually only depends on the linear 
graph G(u,v) between u and v. Furthermore, we will assume all switches 
in the same stage are of the same size (i.e., for any switch in stage i, there 
are ri inlet lines and r~ outlet lines). 

A network is said to he balanced If all the linear graphs G (u,v), U E I, 
v E Q, are isomorphic. 4 It is said to be partially balanced if there are 
only relatively few nonisomorphic linear graphs. We can then compare 
the blocking probabilities of two partially balanced switching networks 
by comparing the blocking probabilities of the corresponding linear 
graphs. 

A linear graph is said to be a series-paraUellinear graph if it is either 
a series combination or a parallel combination of two series-parallel linear 
graphs of smaller sizes (see Fig. la,b). A linear graph is said to be a spi
der-web linear graph if it is not series-parallel. In Fig. 2 we give examples 
of a series-parallel linear graph (Fig. 2a) and a spider-web linear graph 
(Fig. 2b). A linear graph G (u,v) is said to be a multilink linear graph if 
there exist two switches in G (u,v) which are connected by more than one 
link. Any linear graph which is not a multilink graph is said to be a 
simple-link linear graph. 

In this paper, we present several general methods for comparing 
blocking probabilities of various classes of switching networks. These 
methods generalize and improve previous results in this area.2,7 These 
results can be applied not only to series-parallel linear graphs but also 
to more general spider-web linear graphs. We also consider the general 
case in which two switches can be connected by more than one link. 
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(a) (b) 

Fig. 2-(a) A series-parallel linear graph. (b) A spider-web linear graph. 

II. LINEAR GRAPHS IN THREE-STAGE NETWORKS 

We denote an n-stage network by the following: 

(i) The switch set 

n 
U {s(i,j): 1 ~ j ~ til 
i=l 

where the stage i consists of ti switches which are labeled by s(i,j), j = 
1,2, ... , ti; 

(ii) The link set 

n 
U {L(i,j,k): 1 ~ j ~ ti, 1 ~ k ~ ti+l} 
i=l 

where L (i,j,k) denotes the set of links connecting s (i,j) and s (i + 1,k); 
(iii) I and 0, the input and output terminals, respectively. We note 

that for fixed i we have 

ti-l ti-l 
L f(i - 1, k,j) = L f(i - 1, k,j') = ri 

k=l k=l 

ti+l ti+l 
L f(i,j,k) = L f(i,j',k) = r~ 

k=l k=l 

for any j,j', 1 ~ j, j' ~ ti, where f(i,j,k) denotes the cardinality of 
L(i,j,k). 

An n-stage linear graph G(u,v) can then be characterized by the 
following: 

(i) The switch set is 

n 

U s~ 
i=l 

where s~ is a subset of the switch set in stage i and s~ = {u}, s~ = {v}. (We 

BLOCKING PROBABILITIES 1433 



s (2,1) 

s(l,1)=u v = s (3,1) 

Fig. 3-Three-stage linear graphs. 

relabel switches if necessary so thatsj = Is(i,j): 1:::; j :::; md for some mi 
:::; ti, ml = mn = 1); 

(ii) The link set is IL(i,j,k): s(i,j) and sCi + 1,k) are in the switch set 
of G(u,v)l. 

Let G'(u',v') be an n-stage linear graph with the set of switches 

n 

U I '(' '). 1 < . < 'I s l,j. - j _ mi 
i=l 

and the set oflinks IL'(i,j,k)l. We say G(u,v) and G'(u',v') are isomorphic 
if the following conditions are satisfied. 

(i) mi = m~ for 1 :::; i :::; n; 
(ii) The set of switches in each stage can be properly relabeled such 

that the following holds: 

f(i,j,k) = f'(i,j,k). 

Now, we consider a three-stage linear graph as shown in Fig. 3 (where 
switches in middle stages are labeled s(2,1), ... , s(2,m2))' 

Theorem 1: Let G (u,v) be the linear graph with the set of switches 

3 
U Is(i,j): 1 :::; j :::; md 
i=l 

and the set of links IL(i,j,k)l. 
Let G'(u',v') be the linear graph with the set of switches 

3 

I '(' '). I < . < 'I U s l,j. - j - m i 
i=l 

and the set of links IL'(i,j,k)l. Moreover, suppose G(u,v) and G'(u',v') 
satisfy the following conditions (see Fig. 4a,b): 
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u 

s (2,1) 

u 

s (2,2) 

(a) 

Fig. 4-Graphs for Theorem 1. 

(i) m2 = m; = 2 
(ii) £ (1,1,1) = £(1,1,2) = £,(1,1,1) = £'(1,1,2) 
(iii) £ (2,1,1) + £(2,2,1) = £'(2,1,1) + £,(2,2,1) 
(iv) 1£(2,1,1) - £(2,2,1) I ~ 1£'(2,1,1) - £,(2,2,1) I 

s' (2,1) 

s' (2,2) 

(b) 

where £(i,j,k), £'(i,j,k) denote the cardinalities of L(i,j,k), L'(i,j,k), re
spectively. Then we have P(u,v) ~ P(u',v'). 

Proof: Let Pi denote the probability of a link being busy between stage 
i and stage i + 1, i = 1,2. Let 

a = £(1,1,1) = £(1,1,2) = £'(1,1,1) = £,(1,1,2) 

and 

c = £(2,1,1) + £(2,2,1) = £'(2,1,1) + £'(2,2,1). 

We may assume without loss of generality that 

b = £(2,1,1) :::; £(2,2,1), 

b' = £'(2,1,1) :::; £'(2,2,1). 

It is easy to verify that b' :::; b :::; c/2. Define the function f(x) as fol
lows: 

f(x) = [1 - (1 - pV (1 - p~)] [1 - (1 - pV (1 - p~-X)] 

We note that P(u,v) = f(b) and P(u',v') = f(b'). Furthermore, f attains 
its minimum at x = c/2 and f is a convex function. Thus we have 

f(b) :::; f(b') 

and 

P(u,v) :::; P(u',v'). 

We note that the number of paths connecting u and v in G(u,v) is ac, 
which is also equal to the number of paths connecting u' and v' in 
G'(u',v'). 
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u 

s (2,1) 

s (2,2) 

(a) 

s' (2,1) 

U'~---:><:r:=-: :---]>v' 

(b) 

Fig. 5-Graphs for Theorem 2. 

The following theorem can be viewed as a special case of Theorem 1. 
Because it is very useful in comparing linear graphs, we will state it 
here. 

Theorem 2: Let G (u,v) be the linear graph with the set of switches 

3 
U {s(i,j): 1 ~ j ~ mil 
i=l 

and the set of links {L(i,j,k)" and let G'(u',v') be the linear graph with 
the set of switches 

3 

U { '(. '). 1 < . < 't s l,]. -] - mil 
i=l 

and the set of links {L'(i,j,k)}. 
Suppose G(u,v) and G'(u',v') satisfy the following conditions (see Fig. 

5a,b): 

(i) m2 = 2, m; = 1, 
(ii) £ (1,1,1) = £(1,1,2) = £'(1,1,1), 
(iii) £(2,1,1) + £(2,2,1) = £'(2,1,1). 

where £(i,j,k), f'(i,j,k) denote the cardinalities of L(i,j,k), L'(i,j,k), 
respectively. 
Then we have 

P(u,V) ~ P(u',v') 

Theorem 2 can be proved by taking b' = 0 in Theorem 1. 

In the following corollary, we give a short proof for the main theorem 
in Ref. 4, which asserts that a multilink linear graph can always be re
placed by a simple-link linear graph having smaller blocking probability 
whereas the total numbers of paths in the two linear graphs are the 
same. 
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u 

s (2,1) 

s (2,mn) 

(a) 

s' (2,1) 

u'<:--m--:I><:[--n--:J> v' 

(b) 

Fig. 6-(a) A single-link linear graph. (b) A multilink linear graph. 

Corollary: Let G'(u,v) be a three-stage linear graph with the set of 
switches /u,v} u /s(2,i): i = 1, ... , mn} and f(l,l,i) = f(2,i,1) = 1 for 1 
~ i ~ m (see Fig. 6a). Let G (u',v') be a three-stage linear graph with the 
set of switches /u,v,s(2,1)} and satisfying f(l,l,l) = m, f(2,1,1) = n, (see 
Fig. 6b). Then we have 

P(u,v) ~ P(u',v'). 

Proof: We let G" (u",v") have the set of switches /u",v"} u /s" (2,i): 1 ~ 
i ~ m} and satisfying f"(l,l,i) = 1 for 1 ~ i ~ m, f"(2,i,1) = n for 1 ~ 
i ~ m (see Fig. 7). 

By using Theorem 2 (repeatedly), we have 

P(u",v") ~ P(u',v'). 

Similarly, we have 
P(u,v) ~ P(u",v"). 

s" (2,1) 

u 

s" (2,m) 

Fig. 7-An intermediate linear graph. 
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(a) (b) 

Fig. 8-Parallel combinations for n-stage linear graphs. 

Thus, we have 

P(u,U) ~ P(u',u') 

and the corollary is proved. 

III. LINEAR GRAPHS IN MULTISTAGE NETWORKS 

In Section II, we presented several methods to compare blocking 
probabilities of small linear graphs. In fact, large linear graphs can be 
compared in very much the same way. The following two theorems show 
how to extend these methods to multistage linear graphs with a com
paratively large set of switches. 

Theorem 3: Let G1(Ul,Ul), G2(U2,U2), G3(U3,U3) be three n-stage linear 
graphs. We suppose the blocking probability P(Ul,Ul) is smaller than 
or equal to the blocking probability P(U2,U2). Let G (u,u) be an n-stage 
linear graph obtained by a parallel combination of G1(Ul,Ul) and 
G3(U3,U3) (see Fig. 8a). Let G'(u',u') be an n-stage linear graph obtained 
by a parallel combination of G2(U2,U2) and G3(U3,U3) (see Fig. 8b). Then 
we have 

P(U,U) ~ P(u',u'). 

Similarly, if G(u*,u*) is a (2n - 1)-stage linear graph obtained by a 
series combination of G1(Ul,Ul) and G3(U3,U3) and G'(u~,u~) is a (2n -
1)-stage linear graph obtained by a series combination of G2(U2,U2) and 
G3(U3,U3), then we have 

Proof: It is easy to see that 

P(U,U) = P(Ul,Ul)P(U3,U3) 

P(u*,u*) = 1 - [1 - P(Ut,Ul)] [1 - P(U3,U3)], 
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and 

P(u',v') = P(U2,V2)P(U3,V3) 

P(u~,v~) = 1 - [1 - P(U2,V2)] [1 - P(U3,V3)]. 

Thus we have 

P(u,v) ~ P(u',v'), P(u*,v*) ~ P(u~,v~). 

The following theorem is a generalized version of Theorem 2. Theorem 
1 and Corollary 1 can be generalized similarly but will not be stated 
here. 

Theorem 4: Let G(u,v) be an n-stage linear graph with the set of 
switches 

n 
U {s(i,j): 1 ~ j ~ md 
i=l 

and the set of links {L(i,j,k)}. Let G'(u',v') be an n-stage linear graph 
with the set of switches 

n 

U { '(. .). 1 < . < ' } S l,j. - j _ mj 
i=l 

and the set of links {L'(i,j,k)}. 

Suppose G (u,v) and G' (u',v') satisfy the following conditions. 

(i) mi = m~ for any i ~ w, 1 ~ i ~ n (for a fixed w). 
(ii) There exist k 1,k2,k3 such that the linear graph G(u,v) 

{S(W,kl),S(w,k2)} is isomorphic to the linear graph G'(u',v') - Is' 
(W,k3)}. 

(iii) S(W,kl)' S(W,k2) and S'(W,k3) are connected to other switches so 
that the following conditions hold: 

l(w - 1,j,kl) = l(w - 1,j,k2) = l'(w - 1,j,k3) for 1 ~ j ~ mw-l, 

l(w,k1,k) + l(w,k 2,k) = 1'(w,k2,k) for 1 < k < mw+l. 

where l(i,j,k), l'(i,j,k) denote the cardinalities of L(i,j,k), L'(i,j,k), re
spectively. 

Then we have 

P(u,v) ~ P(u',v'). 

We note that (iii) could be replaced by (iii') because of symmetry: 

(iii') l(w - 1,j,kl) + l(w - 1,j,k2) = l'(w - 1,j,k3) for 1 ~ j ~ mw-l, 
l(w,k1,k) = l(w,k2,k) = 1'(w,k3,k) for 1 ~ k ~ mw+l. 
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(a) 

(b) 

<><> 
(c) 

Fig. 9-Examples of linear graphs and corresponding balanced switching networks. 

Proof: We may assume n ~ 4 because of Theorem 2. Thus, we may as
sume without loss of generality that w ~ n - 1. Therefore mi = m; for 
i ~ w, and in particular, mn-l = m~_1. Let A be a subset of fj: I =:; j =:; 
mn-l}. Let GA (U,VA) be an (n - I)-stage linear graph which can be 
viewed as the union of all paths in G which connect u and a switch S (n 
- I,j), where j E A and all switches in A have been identified. (It can 
be viewed that all switches in A are condensed into one switch.) In other 
words, G(U,VA) has the set of switches {VA = SA (n - 1,1)} U {SA (i,j): i ~ 
n - 1 and s(i,j) is on a path which passes through a switch s(n - I,j) 
where j E A}. GA has the set of links {LA (i,j,k)} where 

fA (n - 2,j,l) = L f(n - 2,j,k) 
kEA 

and fA (i,j,k) = f (i,j,k) for i ~ n - 2. Let G~ (u',v~) be the linear graph 
similarly obtained from G' by identifying all switches in A. By the in
duction assumption, we have 
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(d) 

(e) 

(f) 

Fig. 9 (continued) 

Moreover, P(u,v) can be written as follows: 

P(u,V) = L PA~~ (1 - Pn_l)mn-1-IAIP(u,VA) 
A 

where A ranges over all subsets of U: 1 =5 j =5 mn-l}. 
Since P(u',v') has the similar expression 

P(u',v') = L PA~~ (1 - Pn_l)mn-1-IAI P(u',v~), 
A 

then we have 

P(u,v) =5 P(u',v') 

In Ref. 2, the present authors consider a special class of linear graphs 
G(u,v) with mn-i = mi, n odd and mi dividing mi+l for i = 1,2, ... , [n/2]. 
It can be easily seen that the linear graphs in the class can be compared 
by using Theorem 4. 

In Fig. 9a to f, we give several examples of linear graphs together with 
their corresponding balanced switching networks. 
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x 

u 

y 

Fig. lO-A four-stage linear graph. 

Let PCi denote the blocking probability for the balanced network Ni 
with linear graph Gi . It is easy to verify that P CI ~ P C2 by taking w = 
3, kI = 1, k2 = 3,k3 = 2. Similarly, it is easy to see that 

P CI ~ PC2 ~ P C3 ~ P C4 ~ P C6, 

and 

PC3 ~ P C5 ~ PC6' 

We note that the numbers of crosspoints in Ni, i = 1, ... ,6, are the 
same. Thus we know that the switching network N 1 is "better" than the 
switching network N2 and so forth. 

IV. SERIES-PARALLEL LINEAR GRAPHS 

In this section, we consider series-parallel linear graphs. Series-parallel 
linear graphs are sometimes preferred to spider-web linear graphs6 be
cause of the conditions for implementation and control. The following 
two theorems treat the blocking probabilities of series-parallel linear 
graphs. 

Theorem 5: We consider the following four-stage linear graph Gx,y (see 
Fig. 10). 

(i) m2 = m3 = 2 
(ii) £(1,1,1) = £(1,1,2), £(2,1,2) = £(2,2,1) = 0, £(3,1,1) = £(3,2,1), 
(iii) £(2,1,1) = x, £(2,2,2) = y. 
If there are integers a and b with x + y = a + b, x ~ a ~ b ~ y, then 

we have 

PCab ~ PC Xy 

The proof of Theorem 5 is quite similar to the proof of Theorem I-by 
setting f(x) = [1 - (1 - PI) (1 - p~) (1 - P3)] [1 - (1 - PI) (1 - p~-X) (1 
- P3) ]-and is omitted. 

Remark: The above theorem can be extended to multistage linear graphs 
by replacing each link by a linear graph under the condition that all links 
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(a) (b) 

(c) 

(d) (c) 

Fig.ll-Examples. 

between stage i and stage i + 1 are replaced by copies of a linear graph 
or by linear graphs with the same blocking probabilities. 

In Fig. 11, some examples are illustrated. The linear graph in Fig. lIb 
has a smaller blocking probability than the linear graph in Fig. 11a by 
Theorems 3 and 5. The linear graph in Fig. 11c has a smaller blocking 
probability than the linear graph in Fig. lIb by Theorems 3 and 4. 

Theorem 6: We consider the following linear graph G xyzw (see Fig. 
12): 

(i) mi = mj = 2. 
(ii) u ands(i,l) are connected byalineargraphN1. u ands(i,2) are 

connected by a linear graph N 2. N 1 and N 2 have the same number of 
stages and PN1 = PN2• 

(iii) v and s(j, 1) are connected by a linear graph N 3. v and s(j,2) are 
connected by a linear graph N 4. N 3 and N 4 have the same number of 
stages and PN 3 = PN 4· 

(iv) There exist (j - i + I)-stage linear graphs G1,G2 such thats(i,l) 
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u 

Fig. 12-Linear graph for Theorem 6. 

and s(j, 1) are connected by x copies of GI and y copies of G2 and s(i,2) 
and s (j, 2) are connected by z copies of G I and w copies of G 2. 

Suppose x + y = z + w = c and x + z = d for some constants c and d. 
We also suppose x' + y' = Z' + w' = c, x' + z' = d where x' :5 x :5 z :5 Z'. 

Then we have 

PCXYZW :5 PCX'Y'Z'w" 

Proof: Let a = (1 - PNI) (1 - PN3 ). 

Define the following function f(x): 

f(x) = [1 - a(l - Pbl Pb~X)] [1 - a(l - P~~x Pb~d+x)]. 

It is easy to see that PCXYZW = f(x), PCX'y'Z'W' = f(x ' ). Now, 

d
df (x) = a(l - a) (log P CI -log PC2 ) (Pb

l 
Pb~x - P~~x Pb~d+x) 

X ~ 

= a(l - a) (log PCI - log PC2) Pbl Pb~x (1 - p~~2x Pb~-d). 

If Pc I = Pc 2' we have f(x) = f(x ' ). If Pc I -=;z!: Pc 2' f(x) attains its minimum 
at x = d/2. Since f(x) is convex, then 

Thus we have 

d 
f(x) :5 f(x ' ) for x' :5 x :5 -

2 

PCXYZW :5 PCX'Y'Z'w" 

Theorem 5 and Theorem 6 essentially say that the more regular (i.e., 
evenly distributed) the linear graph, the better it is. Of course, all these 
results are based on the Lee model and the related independence as
sumption. In some existing networks, irregular linear graphs might 
sometimes be desirable because of the preference schemes in rout
ing. I 
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(a) (b) 

Fig. l3-Linear graphs for Theorem 7. 

In Fig. 11, the linear graph in lId has a smaller blocking probability 
than the linear graph in 11c by Theorem 6. By Theorem 5, the linear 
graph in lIe has the smallest blocking probability. We note that lIe is 
the most regular linear graph in Fig. II. 

Theorems 5 and 6 can be generalized to a class of spider-web linear 
graphs. We will state the generalized version of Theorem 5. 

Theorem 7: Let Gab and Gxy be two n-stage linear graphs satisfying the 
following properties (see Fig. 13). 

(i) There exists k, 2 ::; k ::; n - 2, such that Gab -/s(k,1),s(k,2),s(k 
+ 1,1)s(k + 2,2)} is isomorphic to GXY -/s'(k,l),s'(k,2),s'(k + 1,1),s'(k 
+ 2,2)}, where /s(i,j)}, /s'(i,j)} are the sets of switches of Gab,Gxy, re
spectively. 

(ii) f(k - 1,i,1) = f(k - 1,i,2) = f'(k - 1,i,1) = f'(k - 1,i,2) for 1 
::; i ::; mk-l, and f(k + 1,lJ) = f(k + 1,2J) = f'(k + 1,lJ) = f'(k + 1,2J) 
for 1 ::; j ::; mk+l, where f(i,j,k) and f'(i,j,k) are the cardinalities oflinks 
of Gab, Gxy, respectively. 

(iii) 

Similarly, 

(iv) 

f (k, 1,j) = {~ 

f(k,2j) = (~ 

ifj = 1 

otherwise 

ifj = 2 

otherwise 

f'(k 1 .) = {X if j = 1 
, ,j 0 otherwise 

f'(k 2 .) = {Y if j = 2 
"j 0 otherwise 

X + Y = a + b, X ::; a ::; b ::; y. 
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Then we have 
Pr. < DGab - .rGxy· 

Proof: The proof is by induction on the number of stages. Suppose n = 
4. Following the notation in Theorem 5, we note that Gxy is the parallel 
combination of Gxy and G. Thus by Theorem 5, we have 

?cab = PGab PG :$ PGXy PG = ?cXy· 

For n > 4, we apply the same reduc;tion scheme which is used in the 
proof of Theorem 4. The theorem is then proved by mathematical in
duction. 

V. CONCLUDING REMARKS 

Lee8 first proposed the concept of a linear graph in connection with 
his study of the blocking probabilities of switching networks. Since then 
his model has been widely used. However, a systematic study of linear 
graphs is still far from complete. There are some results in extending 
Lee's method5,9 or for studying the blocking probabilities for certain 
classes of series-parallel linear graphs2• TakagPO,ll has defined a class 
of spider-web linear graphs and finds the optimal one in that class. Some 
of his results have been obtained earlier by Le Gall3• Van Bosse12,13 ex
tends results in Refs. 3, 10, and 11 in the sense that the occupancy dis
tribution for links can be arbitrary. In this paper, several new methods 
for analyzing blocking probabilities of certain classes of switching net
works are presented. We hope it will lead to more research in this di
rection. 
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Coupled Surface-Acoustic-Wave Resonators 
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Coupled Surface-Acoustic- Wave (SA w) grating resonators are in
vestigated analytically with a transmission-matrix technique, and the 
measured frequency responses at ",145 MHz of devices on YZ-LiNb0 3 

with Ti-diffused gratings are compared with the theoretical results. 
Coupled-mode theory is applied to derive the two-by-two transmission 
matrix relating the acoustic wave amplitudes at the input and output 
of a surface wave grating. Using the transmission matrices, the external 
transmission through a SA W resonator is found by matrix multiplica
tion. Some fundamental aspects of resonator passband synthesis are 
introduced by considering the transmission through several acoustically 
cascaded resonators. Resonator filters where the transducers couple 
directly to the resonant cavities are treated by developing a description 
of the transducer that is compatible with the transmission matrix of 
the grating. The analysis technique is then applied to the familiar 
two-port resonator-filter. Next, coupled resonator-pairs with a 
transducer in each cavity are considered in detail for: (i) collinear 
acoustic coupling, (ii) multistrip coupling, and (iii) transducer cou
pling. Experimental results are presented for each configuration 
considered and good agreement with the analytical description is found 
in each case. 

I. INTRODUCTION 

Surface-acoustic-wave resonators are now well established as one-pole, 
narrowband filters in the frequency range 30 to 1000 MHz.l,2 Recent 
work3- 10 has shown that multipole filters can be formed by coupling 
several resonators. In general, multi pole filter responses can be syn
thesized by using one or more of the three established coupling mecha
nisms: (i) collinear acoustic coupling,3-5 (ii) acoustic directional coupling 
(multistrip coupler),6,7 or (iii) electrical coupling using trans
ducers.8- 10 

Examples of two-pole resonator filters using the three types of cav
ity-coupling mechanisms are presented in Fig. 1. In each configuration, 
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with an external shunt susceptance. 



there are two resonant cavities with a transducer in each cavity for 
coupling to the external circuitry. 

In the collinear cascade structure the central grating, common to both 
cavities, is the coupling element. The strength of the central grating 
determines how much power can "leak" from one cavity to the other. 

When either multi strip or transducer coupling is employed, each cavity 
has a distinct set of gratings, and the resonators are conveniently ar
ranged in parallel with the acoustic power flowing in two separate 
"tracks." Coupling with the multistrip is effected by simply extending 
the electrodes of the coupler into both cavities. The degree of multistrip 
coupling is determined by the length or, equivalently, the number of 
electrodes of the coupler. 

In the transducer-coupling configuration, a second transducer is 
placed in each cavity. The cavities are then coupled by connecting the 
transducers together, either directly or through an external electrical 
network. The external network provides a means for adjusting both the 
strength and phase of the cavity coupling. 

In order to design a filter using coupled grating resonators it is nec
essary to be able to relate the frequency response of the filter to the pa
rameters describing the gratings, transducers, and coupling elements. 
We present here a general technique for obtaining the frequency re
sponse of coupled resonators. In addition, the technique yields closed
form expressions for the insertion loss, out-of-band response and the 
near-in-band shape which aid in filter design. 

The approach taken in this paper is to first develop the transmission 
matrix of a uniform grating and use it to analyze the external trans
mission response of a single resonator. Next, the properties of coupled 
resonators are introduced by studying the external transmission response 
of acoustically cascaded resonators. 

We then present a description of the interdigital transducer which is 
compatible with the transmission matrix description of the gratings. 
With this description one can calculate the transmission response of any 
resonator structure which includes internal transducers. 

The technique is applied to the familiar two-port resonator-filter. 
Then coupled-resonator pairs are treated in detail for each of the three 
cavity-coupling mechanisms. Experimental results at ....... 145 MHz are 
presented for each configuration considered, and the good agreement 
with theory that is found in each case substantiates the analytical 
models. 

II. GRATING TRANSMISSION MATRIX 

In this section, the transmission matrix of a surface-wave grating is 
derived. A transmission matrix relates the forward and backward trav
eling-wave-amplitudes at the left side of an element to those on the right 
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side. It is therefore useful to establish a compact notation by introducing 
the vector 

(1) 

which represents the complex amplitudes of the forward-, wt, and 
backward-, wi, traveling waves at the right-hand reference plane of the 
ith element of a filter structure. The amplitudes have dimensions of 
vPower . Thus, the transmission characteristics of the i th element of 
the structure are described by the matrix equation 

(2) 

where.Mi is the 2X2 transmission matrix of the ith element. 
The transmission matrix of a grating is derived using a plane-wave, 

coupled-mode analysis which was originally applied to thick hologramsll 

and subsequently to distributed feedback lasers12,13 and acoustic grating 
reflectors.3 The grating to be analyzed is taken to have constant period 
A, and to extend from x = -L to x = o. Near the Bragg frequency, only 
the fundamental Fourier component of the grating perturbation provides 
phase-matching between the forward- and backward-traveling waves. 
Thus, in the analysis, a lossless grating is mathematically modeled by 
a sinusoidal velocity perturbation given by 

~V 
v(x) = Vo - - cos (Kx) 

2 
(3) 

where K = 27r/ A. Furthermore, we assume that the surface wave prop
agation can be represented by the scalar wave equation 

d 2 'l1 w 2 

dx 2 + v 2(x) 'l1 = 0 (4) 

where w is the surface-wave radian frequency. The scalar 'l1 represents 
the quasistatic electric potential at the surface of the piezoelectric crystal 
associated with the surface wave. The general solutionll of eq. (4) is 

'l1(x) = w+(x) + w-(x) (5a) 

where 

w+(x) = t/;+(x)e- j {3ox (5b) 

w-(x) = t/;-(x)e+j {3ox (5c) 

are respectively the forward and backward wave amplitudes in the 
grating and f30 = 7r/ A is the propagation constant of the surface wave at 
the Bragg frequency Wo = 7rVo/ A. By appropriately combining eqs. (3) 
through (5) and dropping higher harmonic terms one obtains the coupled 
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wave equations 

(6a) 

(6b) 

where {3 = w/vo, K = ({3/4)·~v/vo is the grating coupling coefficient 
and 

{32 - {35 o = "'---------'---"-
2{3o 

(7) 

is a measure of the frequency deviation from the Bragg frequency. For 
high-Q resonators, we are particularly interested in a limited frequency 
range such that {3/{3o ~ 1 and the coupled wave equations can be sim
plified by setting {3/{3o = 1 and letting 0 = (w - wo)/vo. In the remainder 
of this paper we use this narrowband approximation. The exact forms 
of (6) must be used if responses over large bandwidths are required. 

Solving eqs. (3) through (7) for the wave amplitudes at x = -Lin terms 
of the wave amplitudes at x = 0 yields the following transmission rela
tion 

W(-L) = gW(O) (8a) 

where the transmission matrix g for a grating an integral number of 
periods long is given by 

g = (-l)Ng cosh (aL) 
Vl-~2 

where 

and 

[ VI-~2 + j~ tanh (aL) j tanh (aL) ] (8b) 
X _j tanh (aL) VI-~2 - j~ tanh (aL) 

N g = L/A, 

a = V K2 - 02 = KVI- ~2 

(8c) 

(8d) 

(8e) 

is the normalized frequency deviation. 
The reflection coefficient, r, at the plane x = - L for a wave incident 

from the left is 

r(~)=w-(-L)= -j (9) 
w+(-L) VI - ~2 coth (aL) + j~ 
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and at the Bragg frequency, Ll = 0, 

r(O) = -jp (10) 

where p = tanh (KL). 
The grating transmission matrix and reflection coefficient have been 

derived by postulating a sinusoidal velocity perturbation grating. The 
final expressions are, however, in terms of a coupling coefficient, K, which 
describes the strength of the perturbation that forms the grating. By 
appropriately identifying the coupling coefficient of other grating types 
(such as surface corrugations), the grating transmission matrix (8b) 
describes the behavior of surface-wave gratings formed with any per
turbation mechanism. 

Equations (9) and (10) provide a means for experimentally deter
mining the coupling coefficient for a particular physical grating. It has 
been found14 that K can be obtained by either measuring the reflectivity 
at 0 = 0 and using (10) or by measuring the fractional bandwidth Llw/wo 
between reflection zeros and calculating K from the expression 

K = ~ V (Llw) 2 _ (2A)2 2A Wo L 
(11) 

obtained from (9). The first method is most suitable for weakly reflecting 
gratings while the second -method works best on highly reflective grat
ings. 

For the specific case of shallow-groove gratings, one can use, in addi
tion to the above techniques, the results of Li et al. 15,16 to determine the 
coupling coefficient which gives K = h/3A2 for corrugations of depth h. 
The various second-order effects associated with stored reactive energy 
have been neglected here for simplicity. 

The phase of the reflection coefficient and the off-diagonal terms of 
the transmission coefficient depend on the choice of grating reference 
planes. In Appendix A, the question of specifying reference planes is 
treated in detail, and it is shown that reference planes can be found for 
any grating such that the transmission matrix in (8b) is applicable. 

If the i th element of the structure is a transmission line extending from 
x = -Li to X = 0, it is described by the familiar transmission equa
tion 

(12) 

where 

(13) 

Thus far, the surface-wave gratings have been treated as lossless. 
However, in many circumstances, small grating losses have a significant 
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influence on the grating filter transmission response. In Appendix A, 
the transmission matrix of a lossy grating with a distributed attenuation 
coefficient, lX, is given in eq. (82). This matrix is unnecessarily compli
cated when only frequencies near the Bragg frequency, / Ll/ « 1, are 
considered. An approximate transmission matrix for a lossy grating can 
be considered when lX/K« 1 and Ll« 1 by decomposing the lossy matrix 
(82) at Ll = 0 as follows: 

(14a) 

where 

[

ex
p (~:) 0 ] 

.A = 0 exp (_ ~:) 
(14b) 

( 
Ll2) [1 Ll

2 

+ ·Ll ;; = 1 + 2 cosh (KL) - ~ j p 

-jp 

jp ] (14c) 

I_Ll2 -jLlp 
2 

where, as before p = tanh (KL) and Ll = 0/ K. This decomposition is 
equivalent to placing a lumped, frequency-independent 10SS17 at each 
side of the grating, The matrix ;; is the lossless grating transmission 
matrix (8b) simplified for the condition / Ll/ « 1 and N g even. The de
composition of gin (14) has two advantages. First, other loss mechanisms 
(such as bulk radiation loss) that are localized in nature can be mathe
matically included as a component of lX. And, second, the important 
frequency dependence of g is all contained in ;; so that the simplified 
matrix;; can be used to obtain closed-form expressions for the resonant 
passband shape of a given structure. 

III. TRANSMISSION RESPONSE OF CASCADED GRATING STRUCTURES 

The transmission matrices derived in Section II provide the means 
to calculate the properties of cascaded structures of gratings and 
transmission lines. As an example of the application of the transmission 
matrices, we first consider a grating resonator as illustrated in Fig. 2a. 
The resonator consists of two identical gratings each of length L, which 
are separated by a quarter-wave transmission line. The wave amplitudes 
W 0 and W 3, at the left and right reference planes respectively, are related 
by the matrix equation 

(15) 

where g 1 = g 3 are the transmission matrices of the first and third ele
ments (gratings) and <1>2 is the transmission matrix of the second element 
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Fig. 2-(a) Diagram of a grating resonator in the external transmission configuration. 
(b) The transmission spectrum at "'145.5 MHz for a resonator on YZ-LiNb03 using Ti
diffused gratings with A = 12 J,Lm and L = 6.48 mm. (c) The calculated transmission 
spectrum for the device in (b) using K = 3.74 cm-I and a = 0.036 em-I. 

(in this case a quarter-wave line). The matrix :Ii is the transmission 
matrix of the resonator. 

In the laboratory, the external power transmission, Iwt/wtI 2, through 
the structure of Fig. 2a is the most conveniently measured quantity. A 
typical experimental transmission spectrum for a resonator formed by 
Ti-diffused gratings14 in YZ-LiNb03 is shown in Fig. 2b. Far off reso
nance, where the gratings are transparent, the transmission is near unity. 
Inside the grating stopband, the gratings are highly reflective and there 
is a deep transmission minimum. Near resonance, there is once again 
near-unity transmission. 

The theoretical transmission response can be obtained by applying 
the boundary condition wi" = 0 to eq. (15). The external power trans
mission is then 

I:W = Rl1~l1' (16) 

where Rn is the 11 element of the :Ii matrix of (15). In Fig. 2c, the cal
culated spectrum is given for the structure of Fig. 2b where a and K are 
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Fig. 3-(a) Diagram of a cascade of N identical resonators. (b) The transmission spec
trum at 145.5 MHz of a cascade of three identical resonators with A = 12 j.Lm and L = 3.84 
mm. (c) The calculated transmission spectrum for the device in (b) using K = 3.55 cm- i 

and a = 0.027 cm- i . 

chosen to fit the insertion loss and stopband width. The complete grating 
transmission matrix of eq. (82) in Appendix A is used in the calcula
tion. 

In many cases, only the frequency response near resonance is of in
terest and the external power transmission can be found using the ap
proximate grating transmission matrix (14a). Under the conditions 101, 
a« K and 2 cosh (KL) ~ exp (KL), eq. (16) simplifies to 

I
wtl2 
w6 = a 02 + a 2 

1 + - exp (2KL) + 2 exp (4KL) 
K 4K 

1 
(17) 

From (17), an analytical expression for the unloaded resonator quality 
factor, Qu, can be obtained and is given by 

where 

1 1 1 -=-+
Qu Qr Qg 

(18) 

SURFACE-ACOUSTIC-WA VE RESONATORS 1455 



is the Q associated with radiation loss from the ends of the gratings 
and 

(20) 

is the Q associated with the distributed internal grating loss (material 
losses, surface imperfections, and diffraction). 

The distributed internal grating loss can be determined from the 
resonant transmission loss through the resonator. From eq. (17) the 
resonant transmission is 

I
wtl2 1 

wt = [ 1 a ]2 
1 + 2 ~ exp (2KL) 

(21) 

from which a can be determined. 
The transmission matrix analysis technique is easily extended to more 

complicated structures such as those that are encountered in multipole 
filter-synthesis applications. The simple case of a collinear cascade of 
identical resonators shown in Fig. 3a provides an illustrative example 
since such a cascade has been shown to have a near-resonance trans
mission response described by a Chebyshev polynomina1.3,4,18 The 
transmission matrix of a cascade of N lossless, identical resonators is 
given by C?i) N where :R is the transmission matrix of a single resonator. 
If the lossless grating transmission matrix (8b) is used, the following 
expression for :R is found: 

:R = g<l>g = r
v'12~ fl2 8C - j [ 1 - 2 1 ~2fl2 8 2

] 

_·~82 
J 1 - Ll2 

~ 8~ : ~fl[~ :22 ~2 8 2]] (22) 

1 - Ll2 1 - Ll 

where 8 = sinh (uL) and C = cosh (uL). Equation (22) is applicable over 
the region of validity of the coupled-mode approximation, ILlI « 
7r/KA. 

Using the results of Storch19 to evaluate (:R)N, one can obtain the 
following expression for the transmission response through the cas
cade: 

(23) 
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where 

~ = 2Ll CS 
~ 

and UN is the Chebyshev polynominal of the second kind of Nth order. 
Near the resonant frequency the response is simplified to 

I
wtl2 1 wt ~ 1 + n2UhH2) (24) 

where n = 2Qr(w - wo)/wo and Qr is the radiation Q of a single resonator. 
In Fig. 3b the experimental transmission response of a cascade of three 
coupled resonators is presented, and in Fig. 3c, the theoretical frequency 
response calculated using the lossy grating matrix (82) is given. The 
theoretical description again provides an excellent fit to the data. 

The comparisons made in this section between the experimental and 
theoretical transmission spectra of cascaded grating structures provide 
a quantitative verification of the analytical model and approximations 
presented in Section II. In particular, over the frequency range used in 
the measurements (Ll{3/{3 <: 1 percent), the excellent agreement between 
the calculated and experimental responses justifies both the use of the 
coupled mode equations and the narrow-band ({3/{3o ~ 1) simplification. 
It should also be noted that the loss coefficient required to theoretically 
fit the data is only about twice the surface wave propagation loss of 
LiNb03• Thus, the titanium diffusion process14 produces a low-loss 
surface perturbation that is ideal for high-Q resonators. 

IV. INTRACAVITY TRANSDUCERS AND THE TWO-PORT RESONATOR 

In the preceding sections, coupled-mode theory has been applied to 
derive a transmission matrix description of SAW gratings and resonators. 
The resonators become useful bandpass filters with low out-of-band 
transmission, when the transducers are placed inside the cavity.2o-22 In 
Fig. 4 an interdigital transducer (IDT) is depicted schematically and the 
various physical quantities associated with the IDT are indicated. The 
quantities wf and Wf-l are the local amplitudes of the various acoustic 
waves as previously defined, and ai and bi are the amplitudes of the 
electrical waves incident and emanating from the transducer, respec
tively. 

The terminal amplitudes at the transducer can be related by a di
mensionless matrix 'T, such that 

(25) 
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Fig. 4-Diagram of an interdigital transducer. 

where T is given by 

(26) 

and s is a symmetry parameter expressing whether the transducer has 
an even (s = 1) or odd (s = -1) number of electrodes. 

The transducer description of eq (25) has the useful property that the 
acoustic amplitudes are expressed in transmission matrix form. As a 
result, (25) is conveniently decomposed into two equations: 

(i) The acoustic amplitudes at the transducer reference planes are 
related by 

Wi-l = ti Wi + ai'Ti 

where ti is the transmission matrix 

( 
tn 

t· = 
l -t12 

and 'Ti is the input coupling vector 
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Fig. 5-(a) Diagram of a two-port resonator. (b) The electrical transmission spectrum 
for a two-port resonator on YZ-LiNb03 with gratings 9.6 mm long and 12 ILm period, op
timally placed transducers with Nt = 5, Ze = 50 n, and an acoustic aperture of 50 wave
lengths. (c) The calculated spectrum for the device in (b) using K = 4.5 cm- I , a/K = 0.01, 
Rs = 11 n, EO = 0.04, and <P4 = 9.98 7r on resonance. 

(ii) The electrical signal leaving the transducer is expressed by 

bi = T~. Wi + ai(t33)i 

where T~ is an output coupling vector 

, (t13) Ti = S 
-t23 i 

The symbol- in (30) indicates the scalar (dot) product. 

(30) 

(31) 

As shown in Appendix B, eqs. (27) and (30) allow the analysis of res
onators and coupled-resonators to be reduced to a simple, matrix-mul
tiplication algorithm. 

The elements of the matrix '[ are evaluated by using an appropriate 
transducer model. 23,24 The accuracy of the matrix elements depends on 
the degree of sophistication of the model used. For example, the Mason 
equivalent circuit model first used for interdigital transducers by Smith23 

et al. has proven very useful in practice. The complete matrix '[ based 
on the Smith-Mason model is given in Appendix B. 

In many resonator applications, however, only a first-order analysis 
is required. Thus, by neglecting the static transducer capacitance and 
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the frequency dependence of the propagation phase-shift through the 
transducer, 'T is given by 

[

1 + g + gs 
('Thirst-order ~ S g + gs 

Vii 
where 

SV2g] sV2g 
s 

(32) 

(33) 

(34) 

and Gr, Ze, and Rs are the transducer radiation conductance, load re
sistance, and series electrode resistance, respectively. The first-order 
matrix in eq. (32) is sufficient for calculating the near-resonance prop
erties of many SAW resonators, but the more complete matrix in eq. (84) 
is required for wideband descriptions. 

As a first application of the transducer matrix in (32) and of the ma
trix-multiplication algorithm in Appendix B, consider the two-port 
resonator in Fig. 5a. Ideally, the transducers are optimally-placed25 (¢2 
= ¢6 = 71"/4), and the cavity is resonant at Ll = 0 (¢4 = m7l"). Thus, from 
eq. (32) and eqs. (96)-(103), the electrical power-transmission factor P53 

of the optimal two-port is given by 

P53 = 1~:12 = 2g 1 _ r 2 

2g+ 2gs +-
l+r 

(35) 

where, r = jr, r is the frequency-dependent reflection coefficient of each 
grating (G 1 is assumed to be identical to G7), and g and gs are given in 
eqs. (33) and (34), respectively. 

The total loading on the cavity can be separated into two components: 
(i) the power coupled to external circuit and (ii) the power lost in the 
filter structure. 

Thus, eq. (35) can be written in the more intuitively recognizable 
form 

P53 = 1 
IlC 12 

IlC + ilL 
(36) 

where 

IlC = 8g (37) 
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Fig. 6-Nomogram giving the resonant and out-of-band transmission for two-port, 
surface-acoustic-wave grating resonators and matched grating resonator pairs. The res
onll!1t transmission is determined by the ratio of the transducer cavity loading IlC to the 
cavlt~ loading ilL due to all other mechanisms. The out-of-band transmission is only a 
functIon of IlC- The dashed curves are contours of out-of-band transmission for constant 
cavity loss. The resonant and out-of-band transmission can be found from IlC and ilL or 
vice-versa. The nomogram is directly applicable to single resonators and matched colli
nearly coupled resonator pairs. To use the nomogram with matched multistrip-coupled 
pairs, multiply the ordinate by 4v~1 rl 2 (see Section VII) and for matched transducer
coupled cavities, multiply the ordinate by (vtl4)2 (see Section VIII). 

is the single-transit, fractional power coupling to the external circuit 
and 

JlL = 8gs + 4(1 - r)/(l + r) (38) 

is the single-transit, fractional power loss due to all other mechanisms 
(ohmic loss, bulk scattering, intrinsic propagation losses, and trans
mission through the gratings). Note that in the optimal resonator de
scribed here, the transducers are spaced an integral number of half 
wavelengths apart so that coherent interactions take place that allow 
JlC to be greater than 1 for strong-coupling transducers. 

On resonance (Ll = 0), for highly reflective gratings [exp (2KL) » 1], 
eq. (38) becomes 

JlL ~ 8gs + 2f + 2a/K + 4 exp (-2KL) (39) 

where f is a localized 17 excess loss that accounts for mode-conversion 
losses. By dividing the numerator and denominator in eq. (36) by JlL, the 
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resonant power transmission through a resonator is described by the 
single parameter Ilcl ilL. 

Figure 6 is a nomogram for finding the resonant and out-of -band 
transmission of grating resonators. The solid curve is the resonant in
sertion loss versus Ilcl ilL. Plotted with dashed curves is the out-of-band 
transmission with the cavity loss ilL as a parameter. Using the nomo
gram, the resonant and out-of-band transmission can be found knowing 
IlC and ilL or vice versa. The nomogram is .also applicable to coupled 
resonators as described in the caption to Fig. 6 and in Sections VI, VII, 
and VIII. Coldren and Rosenberg6,17 have used similar diagrams for the 
resonant insertion loss of single and multistrip-coupled resonators as 
a function of coupling and loss parameters. 

Equation (35) can also be used to find the loaded electrical Q, QLel' 

of a single-cavity, two-port resonator. For exp (2KL) » 1, it is found 
that 

7r 1 
QLe =-----

1 KA (IlC + ilL) 
(40) 

where 7rIKA is the single-transit cavity phase-shift. 
The algorithm used to derive eq. (35) provides a flexible tool for in

terpreting experimental device performance, since a large number of 
electrical, mechanical, and geometrical properties are explicitly con
tained in the analysis. For example, consider the transmission response 
in Fig. 5b of a two-port resonator with Ti-diffused gratings on YZ
LiNb03• The resonant insertion loss is 10 dB, and from eq. (36) or Fig. 
6, 

IlC = 0.46 
ilL 

(41) 

Next, the transducers each have five electrodes 50 wavelengths long, and, 
from eqs. (33), (93), and (94), 

IlC = 0.052 

for Ze = 50ft From (41) and (42), it is found that 

ilL = 0.112 

(42) 

(43) 

The transmission minima on each side of the resonance occur near the 
first reflection zeroes of the gratings. Thus, eq. (11) can be used to esti
mate K, with the result 

K ~ 4.3 cm-1 (44) 

The gratings are each 0.96 cm long (800 A), and from eq. (44), 

e- 2KL = 0.00026 (45) 
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From external transmission measurements on resonators (see Sections 
II and II!), the loss a/K associated with diffused gratings is found to be 
""0.01. Thus, from (39)-(45), the remaining loss is probably associated 
with the transducers and is given by 

2a 
8gs + 2E: = J.lL - K - 4e-2KL = 0.092 (46) 

The electrode resistance (Rs = 11 Q) is calculated from the metal 
thickness (2700 A of aluminum), 

gs = 0.0014 

and, finally, from eqs. (46) and (47) 

E: = 0.040 

(47) 

(48) 

The 4 percent excess loss E: is probably due to bulk mode conversion by 
the transducer electrodes. Both loss mechanisms associated with the 
transducers (series resistance and bulk mode conversion) should be less 
significant on low-coupling materials such as ST-quartz due to the in
creased transducer length. 

In order to complete the description of the resonator in Fig. 5a, the 
phase-shifts 4>2, 4>4, and 4>6 must be specified. It is observed in practice 
that the velocity of propagation is very sensitive to surface perturbations 
(piezoelectric-loading, mass-loading, and reactive energy storage). As 
a result, the separation between the gratings must be empirically ad
justed to compensate for the velocity variations in the structure. For the 
device of Fig. 5b, the appropriate empirical values are 4>2 = 4>4 = 7r/4 and 
4>6 = 9.98 7r on resonance. 

The parameters estimated in (41)-(48) have been used with the al
gorithm in Appendix B to calculate the complete transmission spectrum 
shown in Fig. 5c. 

v. COUPLED GRATING-RESONATORS-GENERAL CONSIDERATIONS 

Multipole filters are formed by coupling together two or more cavities. 
The general configuration for a cascade-coupled multi pole resonator
filter is shown in Fig. 7. Acoustic energy is launched by the transducer 
in the input cavity, propagates through the coupling structure C5, and 
is detected by the transducer in the output cavity. The coupling structure 
C5 consists in general of some combination of gratings, phase shifts, 
transducers, and multistrip couplers. The overall filter response is de
termined by the properties of C5 as well as the properties of the input 
and output cavities. 

In order to better understand the various elements that can be used 
in the coupling structure C5, two-pole resonators formed by acoustic 
collinear coupling, multistrip coupling, and transducer coupling are 
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Fig. 7 -Diagram of the configuration for cascade-coupled SAW grating resonators with 
an arbitrary coupling element, Cs. 

discussed individually in the next three sections. It is shown for each 
coupling mechanism that the important, near-resonance properties of 
the coupling structure are expressed by the matrix @ 

@=-
_ 1 [ej20Leff j~ ] 

v -j~ e-j20Leff 
(49) 

where v is a real parameter ~ 1, and Leff is the effective contribution to 
the cavity length by the coupling structure. 

The parameter v is the magnitude of the amplitude transmission 
coefficient through the coupling structure and is a measure of the degree 
of coupling between the cavities. The quantity exp (j2oLeff) is a propa
gation phase factor that accounts for the phase shift through the coupling 
structure. . 

The degree of coupling between the cavities (specified by v) largely 
determines the transmission characteristics of the resonator pair. For 
example, using the method outlined in Appendix B, the resonant 
transmission of a pair of cavities is found to be 

2 

I 
b712 
a3 

0=0 

1 vllC 

4 1+ (IlC: ilL)" _ ~ [ 1- ("C: ilL)"] 
(50) 

where the quantity (IlC + ilL) is the single-transit, fractional power 
loading on the combined resonator pair. Equivalently, (IlC + ilL) can be 
interpreted as the round-trip power loading on each cavity. 

By differentiating eq. (50) with respect to v, it is found that maximum, 
resonant transmission is obtained when the coupling structure 
"matches" 26 the two cavities according to 

1 IlC + ilL 
Vopt = -

21 + (IlC: IlLr 
(51) 
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Fig. 8-Near-resonance transmission spectra for lossless, coupled resonator pairs that 
are: (a) undercoupled, (b) matched, (c) slightly overcoupled, and (d) overcoupled for 
maximum 3-dB bandwidth. 

Qualitatively, the cavities are matched when the loading on each cavity 
due to the coupling structure is equal to the loading due to all other 
mechanisms. 

The importance of matching the individual resonators in a coupled 
structure is illustrated in Fig. S. If the parameter v is too small, the 
cavities are undercoupled and there is a large resonant insertion loss as 
in Fig. Sa. When v = Vopt from eq. (51), the cavities are matched and 
minimum insertion loss is obtained as shown in Fig. Sb. As v is increased 
slightly beyond Vopt, the peak flattens and broadens as in Figure 8c. For 
still larger values of v the cavities become overcoupled and the resonance 
splits into two peaks as in Fig. 8d where the dip between peaks is 3 dB. 
Thus, the degree of cavity-coupling, v, is a central parameter in deter
mining the passband shape and insertion loss. 

The matched condition (51) has a further interesting consequence. 
When the frequency dependence of the transfer function is included in 
(50), it can be shown for matched cavities that 

1 ~: 12 '" Illc ~ I'J [1 H;U!(Q)] (52) 
13=0 

where U 2 = 20 is the second Chebyshev polynomial of the second kind. 
The parameter 0 is a normalized frequency 

Llw 
0= 2-QLe2 (53) 

wo 

where QLe2 is the loaded electrical Q of each cavity in the coupled pair. 

SURFACE-ACOUSTIC-WAVE RESONATORS 1465 



The Chebyshev-polynomial form in eq. (52) is the same as the form ob
tained for a coupled pair of identical resonators in the external trans
mission configuration [see eq. (24)]. Although it is not rigorously proven 
here, eq. (52) indicates that the passband shapes that can be obtained 
in external transmission can also be obtained with intracavity trans
ducers. Thus, the procedure for synthesizing resonant passbands can 
be simplified by first investigating the passband in the external trans
mission configuration, and subsequently including the transducers. 

VI. COLLINEAR ACOUSTICALLY COUPLED RESONATORS 

An acoustically coupled resonator pair is formed by inserting a section 
of grating between the input and output transducers as shown in Fig. 
9a. Comparing Figs. 7 and 9a, the coupling structure in Fig. 9a is simply 
a section of grating. From eq. (14a), the near-resonance coupling matrix 
is given by 

(54) 

The loss matrix.A in eq. (54) has the same form as that given in eq. (14b), 
but any excess loss due to the transducers must be included. 

The near-resonance behavior of a highly reflective grating, described 
by the matrix ':1, is approximately equal to the coupling matrix @ in eq. 
(49) when the identification 

(55) 

is made and Leff is the effective penetration depth into the grating, 1/2K. 
The quantity Vg is the coupling parameter for collinear acoustic coupling 
and L5 is the total length of the coupling grating. 

Including dissipative loss, the matching condition (51) specialized to 
collinear acoustic coupling, is given by 

1 
(e- KL5)opt = 4(J-LC + J-LLg) (56) 

where J-LC = 8g is the transducer loading on the resonator pair, and J-LLg 

is the effective loading on each cavity due to all other mechanisms, 

(57) 

In deriving eq. (57), it is assumed that the outer gratings, G1 and Gg, are 
identical. 

Comparing eqs. (39) and (57), the expr~ssion for J-LLg is similar to that 
for J-LL (for a single cavity) with the exceptions: (i) the grating-loss con
tribution is twice as large (4a/K versus 2a/K) because there are four ef
fective reflection planes instead of two, and (ii) the excess loss f.g is in 
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Fig. 9-(a) Diagram of an acoustically cascaded resonator-filter pair. (b) The electrical 
transmission spectrum in a 50 Q system for an acoustically cascaded resonator-filter pair 
on YZ-LiNb03 with LI = L9 = 9.60 mm, L5 = 7.296 mm, A = 12 J.lm, Nt = 5 and an acoustic 
aperture of 50 wavelengths. (c) The calculated spectrum for the device in (b) using K = 3.3 
cm- I

, a/K = 0.01, Rs = 12 Q, fg = 0.018 and cP2 = cP4 = cP6 = cPs = 0.234 7r on resonance. 

general different from the excess loss E for a single cavity. In fact, the 
origins of the excess loss can be investigated, by comparing measured 
values of Eg and L For example, if the excess loss is predominantly caused 
by the gratings, Eg ~ E. If, however, the excess loss is transducer-asso
ciated, Eg ~ d2 since there is only one transducer in each cavity in an 
acoustically coupled pair. 

As an aid in design and data interpretation, the nomogram in Fig. 6 
is directly applicable to matched acoustically coupled cavities when J.tLg 

is substituted for J.tL. 

The transmission spectrum of an acoustically coupled resonator pair 
is shown in Fig. 9b. The transducers and outer gratings are identical to 
those used in the single-cavity resonator in Fig. 5b. The experimental 
parameters have been estimated as described in the previous section, 
and the calculated response is shown in Fig. 9c. It is interesting to note 
that the value Eg = 0.018 ~ d2 is found, providing further evidence that 
the excess loss is transducer associated on LiNb03. 

VII. MUL TISTRIP-COUPLED RESONATORS 

Grating resonators can also be coupled using a directional (multistrip) 
coupler6,7 as shown in Fig. lOa. A detailed analysis of the multistrip
coupled resonator pair from a scattering-matrix point of view has been 
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Fig. 10-(a) Diagram of a multistrip-coupled resonator-filter pair. (b) The electrical 
transmission spectrum in a 50 12 system for a multistrip (5 SLm strips, L5 = 90 SLm) coupled 
resonator-filter-pair on YZ-LiNb03 with LI = L6 = 9.60 mm, A = 12 SLm, Nt = 5 and an 
acoustic aperture in each track of 50 wavelengths. (c) The calculated transmission spectrum 
of the device in (b) with q = 0.163, K = 4.3 cm- I , a/K = 0.01, Rs = IOn, fm = 0.047, cP2 = 0.25 
7r and cP4 = 9.89 7r on resonance. 

given by Rosenberg and Coldren.6 In this section we derive the coupling 
matrix (@5 in Fig. 7) for multistrip-coupled cavities. 

The overall structure consists of two resonators in parallel connected 
by an ideal, directional coupler27 described by the fourth-order vector 
equation 

(58) 

where 

p = (~ ~) (59) 

(Q = (-jq . 0) 
o }q 

(60) 
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and 

p2 + q2 = 1 (61) 

For simplicity, the frequency dependence of the propagation phase shifts 
through the multistrip coupler is ignored in eqs. (58)-(60). 

Comparing Figs. 7 and lOa, the coupling element is the multistrip 
coupler in combination with the gratings G6. The transmission between 
W 4 in the upper track and V 4 in the lower track can be treated as a 
two-port cascade element. Thus, the 2X2 matrix:JJ satisfying 

+ -

(:~) =:JJ (~t) (62) 

becomes the coupling matrix for multistrip-coupled cavities. 
To solve for:JJ, the appropriate acoustic boundary conditions are 

WB = VB = 0 (63) 

and the resulting matrix is 

. ( 1 ] --
:JJ = - r6 

2pq 
_(p2 _ q2) 

(64) 

where r 6 is the reflection coefficient of the gratings, G6. 

Near resonance (I ~I « 1), r6 can be expanded as in eq. (14), and for 
exp (KL 6 ) » 1, eq. (64) becomes 

1 [ e
jd 

:JJ = - .A r---.,.... 
Vm -jvI - l'~ 

(65) 

where Vm is the coupling parameter for multistrip-coupled cavities 

Vm = 2qV1=(j2 (66) 

and Leff ~ I/2K since the length of the multistrip coupler is neglected. 
The loss matrix.A in eq. (65) has the same form as that given for a single 
grating in (I4b), but any excess loss due to the multistrip coupler must 
now be included. Thus, the matching condition for multistrip-coupled 
cavities becomes 

qopt = vI6 + (f.lC + f.lLm)2 

f.lC + f.lLm (67) 

where f.lLm is the single-transit power loss of the resonator pair (excluding 
transducer coupling): 
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The excess loss fm now includes additional losses suffered due to the 
multistrip coupler. 

As pointed out by Rosenberg,S far away from resonance (I ~I » 1) the 
multistrip-coupled structure has low out-of-band transmission, since 
the path connecting input and output requires a reflection from a grating. 
Quantitatively, from eq. (64). 

1~~12 = 4v~lrs(~)12 (69) 

As indicated by eq. (69), the effective cavity-coupling is directly pro
portional to rs. Thus, the out-of-band transmission of a multistrip
coupled pair is low and can be suppressed to arbitrarily small values by 
using sidelobe-free apodized gratings.28 

The nomogram in Fig. 6 can be used for matched, multi strip-coupled 
cavities when J.lL~ is substituted for J.lL, and the ordinate for out-of-band 
transmission is multiplied by 4v~1 rsl2. 

In Fig. lOb is shown the experimental transmission spectrum of a 
multistrip-coupled device, and in Fig. 10c is shown the spectrum for the 
same device calculated using (64) and the parameters given in the cap
tion. The high resonant insertion loss (15 dB) is due to the large cavity 
perturbations (fm = 0.047) caused both by the transducers and multi strip 
coupler. The distortion in the sidelobe response is due to slight nonun
iformities in the gratings and direct capacitive coupling between the 
input and output transducers (RF feedthrough). 

VIII. TRANSDUCER-COUPLED RESONATORS 

The general scheme for using transducers to electrically couple two 
resonators is depicted in Fig. 11a. The coupling structure is topologically 
similar to the multistrip-coupled case, but with the important advantage 
that an electrical coupling network can be inserted between the reso
nators if desired. In general, both passive and active electrical circuit 
components can be employed so that passband shaping and amplifica.:. 
tion/attenuation can be performed in the coupling network. Thus, the 
electrically coupled configuration offers more design flexibility than 
either the acoustic cascade or directionally coupled configurations. 

To gain an insight into the performance of electrically coupled reso
nators, we examine the important case9,lO where the coupling network 
is simply a shunt susceptance ix. The coupling structure (transducers 
T5 in combination with gratings G7 and shunt susceptance ix) is de
scribed by the electrical coupling matrix {; satisfying 

+ -

(:~) = {; (~t) (70) 
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Using the acoustic boundary conditions (as for the multistrip-coupled 
structure) 

W7 = V7 = 0 (71) 

and assuming the two coupling transducers are identical, with Nt elec
trodes, the matrix {; is found to be 

[

1 . (1 + r) 
{; = -2j(-1)NtQt -} Q;-

(1 + r)2 . (1 - r 2) 
.(1 - r2) 1 r+} --

2Qt (72) 

2 • (r(l + r») -r-} --
2Qt 

-r +} 
Qt 

where r = jr7, r7 is the reflection coefficient of gratings G7, and Qt is the 
effective radiation Q of the cavity-coupling transducers: 

Qt = (wCT + x/2)/Gr (73) 

The quantities CT and Gr are the transducer static capacitance and 
radiation conductance, respectively. For clarity of exposition, in deriving 
eq. (72), the transducer length is assumed small compared to energy 
penetration depth in the gratings ({)t ~ 0) and the series resistance is 
neglected (Rs = 0). In eq. (72), the loss due to series resistance in the 
cavity-coupling transducers T5 can be mathematically included in the 
grating loss coefficient as done for the losses in the multistrip coupler 
in Section VII. 

For the electrical coupling structure, the phase shifts ¢6 = 7r/4 must 
be included between the coupling transducers and the gratings G7 in 
order to obtain optimum coupling of the transducers to the cavity 
standing-wave-pattern. Further, as noted by Matthaei et aZ.,1O the 
coupling transducers introduce a small phase shift due to the finite value 
of Qt. Thus, expanding (72) for I Lli « 1 and exp (KL7) » Qt, the matrix 
(; is given by 

{;=-(-l)N t -.A. . t.A 
1 [ej(~+cPex) j~ ] 
Vt -}"~ e-J(~+cPex) 

(74) 

where the matrices .A account for all dissipative cavity losses due to 
gratings and transducers T5, and the constant excess phase shift ¢ex is 
given by 

¢ex = 7r/2 - 2/Qt (75) 

The quantity Vt is the cavity-coupling parameter for transducer cou
pling, 

2Qt 
Vt = Ql + 1 (76) 
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Fig. ll-(a) Diagram of a transducer-coupled resonator-filter pair. (b) The electrical 
transmission spectrum in a 50 n system of an electrically coupled, resonator-filter pair 
on YZ-LiNb03 with optimally placed transducers with Nt = 5, L1 = L7 = 9.60 mm, A = 
12 pm and an acoustic aperture in each track of 50 wavelengths. (c) The calculated spec
trum of the device in (b) with Qt = 6.69, K = 4.0 cm-I, a/K = 0.01, Rs = 11 n, f t= 0.047,and 
<1>4 = 1011' on resonance. 

Here again, Leff in (49) is given by the penetration depth (1/2K) into the 
grating since the transducer length has been ignored. The matching 
condition for transducer-coupled cavities becomes 

4 
(QdoPt = + 

J.tc J.tLt 
(77) 

where J.tLt is the single-transit power loss of the resonator pair (excluding 
loading by the external circuit), 

(78) 

The excess loss ft accounts for all additional losses due to the cavity
coupling transducers as well as the excess loss from the input-output 
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transducers, and the term 8gs is due to the input-output transducers 
T 3. 

Outside the grating stop-band (I Lli » 1), the power transmission 
1 v 4/W t 12 through the coupling elements tends to the limit 

(79) 

The out-of-band transmission of the transducer-coupled configuration 
is therefore lower than with collinear acoustic coupling but is still higher 
than the out-of-band level for multistrip-coupled resonators [see 
(69)]. 

The resonator nomograph in Fig. 6 can be used for matched, trans
ducer-coupled resonators when IlLt is substituted for ilL, and the ordinate 
for out-of-band transmission is multiplied by (vt/4)2. 

In Fig. lIb, the experimental transmission spectrum of a pair of 
transducer-coupled cavities is shown, and the theoretical response of 
the same device calculated using (72) and the parameters given in the 
caption is shown in Fig. llc. The excess loss Et is about the same as E for 
a single-cavity resonator, as would be expected. As for the multistrip
coupled pair, the distortion in the sidelobe response is caused by grating 
non uniformities and RF feedthrough. 

IX. SUMMARY AND CONCLUSIONS 

The major results derived in this paper are summarized in Table I. 
Gratings and small pieces of transmission line are the fundamental el
ements for SAW resonators. Using coupled-mode theory, gratings and 
transmission lines are described by 2X2 transmission matrices. Reso
nators and combinations of resonators can be analyzed simply by 
multiplying together a sequence of transmission matrices.· A matrix
multiplication algorithm is also presented for analyzing bandpass filters 
with intracavity transducers. 

To form multipole filters, several resonators can be coupled together 
using one or more of the three mechanisms: (i) collinear acoustic cou
pling, (ii) multistrip coupling, or (iii) transducer coupling. Near the 
resonant frequency all three mechanisms are mathematically equivalent 
and can be used interchangeably in passband synthesis applications. Far 
off the resonant frequency, the three mechanisms have quite different 
sidelobe suppression characteristics. 

The essential properties of the three coupling mechanisms are illus
trated in Fig. 12. Th~ calculated transmission spectra for three different 
coupled resonator pairs, are shown. In each case, the cavities are of 
identical length and are coupled to the same degree (same value of v) with 
only the cavity-coupling mechanism being changed from case to case. 
All three spectra have nearly the same passband shape, but the electri-
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Fig. 12-The calculated transmission spectra of three equivalent resonator-filter pairs 
on YZ-LiNb03, each using a different cavity-coupling mechanism. In each case, the devices 
are assumed lossless and the outer gratings are 800 periods long with A = 12 J-Lm and K = 
3.27 cm- I . The transducers have Nt = 5 with an acoustic aperture of 100 wavelengths. The 
degree of cavity coupling is the same in each case with Pg = Pm = Pt = 0.077. 

cally coupled pair resonates at a higher frequency than the others due 
to the phase shift introduced by the cavity-coupling transducers. The 
multistrip and electrically coupled cavities have a slightly greater reso
nant insertion loss than the acoustic cascade because some energy is lost 
through the end gratings G6 in Fig. 10 and G7 in Fig. 11. The sidelobe 
levels are highest for the acoustic cascade and progressively lower for 
transducer and then multistrip coupling. 

For the synthesis of multi pole filters each coupling mechanism has 
unique advantages so that a combination of two or more coupling 
mechanisms will probably be optimal. The acoustic cascade is particu
larly easy to design because coupling between cavities can be accom
plished without disturbing the intrinsic cavity properties. That is, there 
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are no velocity perturbations, ohmic losses, or spurious reflections in
troduced into the cavity by the coupling structure. 

Transducer coupling allows the flexibility of using an external elec
trical network in addition to the additional sidelobe suppression men
tioned above. The external network can be used to contribute to pass
band shaping and as a convenient means for post-fabrication trimming 
of device performance. 

Finally, the multistrip coupler offers the lowest sidelobe levels and 
the technological advantage that no critical alignment of the coupler 
within the cavity is required (as is the case for transducers). 

Beginning with the gross properties of the various coupling mecha
nisms discussed above and emphasized in Fig. 12, the simple matrices 
given in Table I can be used to obtain first-order results for a wide variety 
of filter configurations. More precise results can then be obtained using 
the exact expressions given earlier in the text. Thus, the analytical 
techniques presented in this paper should provide a sound basis for 
developing a synthesis procedure for multi pole SAW resonator filters. 
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APPENDIX A-TRANSMISSION MATRIX FOR LOSSY GRATINGS 

In this appendix a general grating transmission matrix is derived which 
includes a propagation attenuation and allows for an arbitrary choice 
of reference planes. 

As in Section II, the grating extends from x = - L to x = O. The velocity 
perturbation is now generalized to allow an arbitrary phase shift, 0, of 
the grating with respect to the x axis: 

Llv 
v(x) = vo - -cos (Kx + 0) 

2 

The scalar wave equation is modified to 

d2iF (W2 . 2wlY) 
dx 2 + v 2(x) - J v(x) if = 0 

(80) 

(81) 

which includes a propagation attenuation coefficient, lY. The grating 
transmission matrix is found in the manner described in Section II. For 
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Fig. 13-Location of reference planes and phase angles, 8, for YZ-LiNb03 and ST quartz 
surface-deformation gratings: (a) step-down grating with reference plane at the first 
down-step, (b) step-up grating with reference plane at the first up-step, (c) step-down 
grating with symmetrically placed reference planes; (d) step-up grating with symmetrically 
placed reference planes. 

the narrowband approximation, (3/(30 ~ 1, the transmission matrix be
comes 

K 
g = - cosh (oL) 

a 

where 

a = [K2 - (0 - ja)2]I/2 

This matrix reduces to eq. (8b) when a and () are set equal to zero. 
It is shown in Section II that the magnitude of the grating reflection 

coefficient provides a means of determining the coupling coefficient. 
Similarly, the phase of the reflection coefficient specifies the parameter 
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() for a particular choice of reference planes. For a lossless grating an 
integral number of periods long, the reflection coefficient at the Bragg 
frequency is 

r(o) = -je+ jO tanh (KL) (83) 

Thus, when the reference planes of a grating are spaced by an integral 
number of periods, one need only measure the phase of the reflection 
coefficient at the Bragg frequency in order to determine (). For example, 
consider surface corrugation gratings of the step-down and step-up type 
as shown in Fig. 13. The experimentally observed optimum transducer 
placement has shown for both YZ-LiNb03

29,3o and sT-quartzI7,30 that 
the electric potential, 'It, is a maximum at the edge of a step-down grat
ing, and a minimum at the step-up grating edge. Accordingly, for refer
ence planes shown in Fig. 13a, () = +1(/2 for a step-down grating and in 
Fig. 13b, () = -1(/2 for a step-up grating. Similarly, for any type of grating 
and choice of reference plane, () can be determined from knowledge of 
the optimum transducer25 location which gives the position of the po
tential maximum. For the case of step-down gratings, () = 0 corresponds 
to the symmetrical choice of reference planes as shown in Fig. 13c. A 
symmetrical choice of reference planes for a step-up grating is as shown 
in Fig. 13d, which requires () = 7r. In this paper we assume the reference 
planes have been chosen such that () = 0 for mathematical simplicity. 

APPENDIX II-TRANSDUCER TRANSMISSION MATRIX AND 
RESONATOR-ANAL YSIS ALGORITHM 

The transmission matrix T of an IDT can be found by manipulating 
the well-known admittance matrix23,24 based on a Mason equivalent
circuit model. Using the results of Smith et at.,23 and including an ef
fective series electrode resistance, Rs , T is given by 

(84) 

where 

Gr(Rs + Ze) t - ---,---,---,,,------=:...c... 

o - 1 + j()e 
(85) 

v0lJ;Z; °0 /2 
t13 = . eJ t 

1 + J()e 
(86) 

2j()c 
t33 = 1 - . 

1 + J()e 
(87) 

S = (-l)Nt (88) 
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Nt = number of electrodes in the transducer 

Ot = NtAo 
Gr = transducer radiation conductance 

Oe = wCT(Rs + Ze) 

Oe = (wCT + BrHRs + Ze) 

CT = (Nt - 1)Cs/2 

Br = transducer radiation susceptance 

Cs = static capacitance/electrode pair 

For uniform transducers,23,31 

[

sin (Ot)]2 
G, '" 2Go{Nt - 1)2 ~ 2 

Go = k;Cs w/27r 

k; = electromechanical coupling constant 

B rv 4G (N _ 1)2 sin (Ot) - Ot 
r - 0 t 0; 

(89) 

(90) 

(91) 

(92) 

(93) 

(94) 

(95) 

Using the transducer description in eq. (84), we develop an algorithm 
for analyzing coupled resonators with intracavity transducers. Consider 
the general cascaded-resonator structure in Fig. 7. The input signal is 
applied to transducer T3 which is separated by phase shift <1>2 from 
grating G1. The output is taken from transducer T7 which is separated 
by phase-shift <1>8 from grating Gg• The element C5 is a generalized cou
pling element that can be composed of gratings, transducers, phase shifts, 
and multistrip couplers. The coupling element C5 is described by the 2X2 
transmission matrix @5. Specific examples of the matrix @5 are given in 
the main text for: (i) a single-cavity, two-port resonator, (ii) acoustically 
cascaded resonators, (iii) multistrip-coupled resonators, and (iv) elec
trically coupled resonators. 

From eq. (27), the acoustic amplitudes associated with transducer T3 
can be expressed 

(96) 

Vector equation (96) is actually two equations with four unknowns w~, 
wt. Two further equations are obtained from the boundary conditions 
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expressing the fact that there are no acoustic waves externally incident 
on the resonator 

W6 = Wg = 0 (97) 

Next, the boundary conditions can be referred to the reference planes 
of transducer T3: 

Wo = gl<l>2W2 

W3 = @5<1>6t7<1>8g9W 9 

(98) 

(99) 

where it is assumed transducer T7 is connected to a matched load (Le., 
a7 = 0). 

Combining eqs. (96), (98), and (99), the outward propagating acoustic 
waves wt and wi) are specified in terms of the electrical input, a3, 

C.J = .!It (~t) + aag ,<P2Ta (100) 

where Jl1 is the overall acoustic transmission matrix 

Jl1 = gl <l>2t 3<1>4@5<1>6t 7<1>8 g 9 

The vector W 7 is next found from W 9, 

W7 = <l>8g 9W 9 

(101) 

(102) 

Finally, from eq. (30) the electrical output amplitude b7 is given by 

(103) 

The analysis leading up to eq. (103) is essentially a derivation of a 
general algorithm for finding the two-port, electrical-transmission 
characteristics of a grating resonator with an arbitrary coupling element 
C5. The algorithm can therefore be applied to single-cavity resonators 
as well as more complex, multipole structures. 

The analysis can be further simplified by considering transducer T3 
in combination with grating G1 as an "input" coupler described by the 
matrix @IN 

(104) 

Similarly, transducer T7 and grating G9 form an "output" coupler de
scribed by @OUT 

cD = @OUT (!:) (105) 

The overall electrical transfer function is then found from 

(~~) = @
IN

<I>4@5<1>6@OUT (!:) (106) 
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For optimal transducer placement and, for simplicity, neglecting Rs 
and ()t, @IN and @OUT are given by 

and 

where 

@IN = -'---'----(-l)Nt [Cll 

V2g C2l 

@OUT=_l_[Cll 

V2g -C12 

1 + j()e 
Cll =g+-~....:.. 

l+r 
(1 + j()e)r 

C12 = -g + ....:...--=----.:~ 
l+r 

1 - j()e 
C2l = _g+----"-----O... 

l+r 
(1 - j()e)r 

C22 = g + -=---=----:::....:..-

l+r 

g = GrZe 

r=jr 

(107) 

(108) 

(109) 

(110) 

(111) 

(112) 

and r is the reflection coefficient of the appropriate grating (G 1 or 
Gg). 
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We describe a quasioptical feed system for use with a 7-meter Cas
segrain antenna at millimeter wavelengths. This system is designed 
to take full advantage of low noise, broadband mixer receivers and will 
be used for radioastronomical observations at frequencies between 60 
GHz and 140 GHz. Two offset parabolic mirrors couple the radiation 
from the flD = 5.7 antenna into the receiver feedhorn. A Fabry-Perot 
resonator operating at oblique incidence is used to inject the local os
cillator energy into the signal path and to suppress response at the 
image frequency. The loss of the Fabry-Perot diplexer is 0.25 dB for the 
signal, while the coupling loss between the mixer waveguide flange and 
the main lobe of the antenna pattern should be 5:1 dB. 

I. INTRODUCTION 

For optimal use of an antenna for radio astronomy at millimeter 
wavelengths, the feed system should provide a number of functions and 
must satisfy a variety of stringent performance criteria. These in
clude 

(i) Low loss for the signal over an instantaneous bandwidth of ~500 
MHz. 

(ii) A well-controlled antenna illumination pattern which should 
remain unchanged over as large a range of frequencies as possible. 

(iii) A provision for making accurate absolute calibrations of the re
ceiver gain and atmospheric attenuation-both of these require sup
pression of the image frequency response in systems incorporating 
mixers. 

(iv) A facility for antenna beam switching at a rapid rate to minimize 
the sky-noise contribution to receiver noise. 

(v) Since mixers are currently the dominant type of receiver at 
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frequencies between 60 GHz and 300 GHz, it would be advantageous to 
include local oscillator injection as part of the feed system if this can be 
done with low loss. 

The present feed system has been designed to satisfy all of the pre
ceeding requirements. In Section II we describe the feed system optics 
and analyze the measurements of system performance. In Section III 
we discuss various aspects of the Fabry-Perot diplexer including band
width, image rejection, local oscillator noise suppression, and loss for 
the signal and for the local oscillator. In Section IV we discuss the cali
bration system. 

II. FEED SYSTEM OPTICS 

2.1 Antenna 

This feed system is designed to operate with the recently completed 
Bell Laboratories millimeter antenna located at Holmdel, N.J. The 
antenna is an offset Cassegrain with a diameter of 7 meters and a f /D 
ratio of 5.7. The overall surface accuracy is approximately 0.01 cm rms, 
allowing operation with a moderately high beam efficiency at frequencies 
as high as 300 GHz. The main advantage of the offset Cassegrain design 
is that there is zero aperture blockage, and a very low reflection coeffi
cient and low sidelobe levels can be achieved.1 

2.2 Gaussian beam theory 

We shall discuss the feed system optics in terms of the propagation 
of a single gaussian mode. As discussed by Arnaud,2 a gaussian beam 
propagating in free space has a power distribution perpendicular to the 
direction of propagation (taken to be the z axis) of the form 

P(r) = e-[rIHz)]2 (1) 
P(o) 

The beam half-width (radius) ~ depends on z, the distance along the axis 
of propagation, as 

e(z) = ~~ + (_Z_)2 
ko~o 

(2) 

where ~o is the minimum beam half-width (beam waist radius), taken 
to be located at z = 0, and ko = 27r/"A. The asymptotic angle of beam 
half-width growth is seen from eq (2) to be 

()~ = l/ko~o (3) 

Equations (1) to (3) apply to gaussian beams of infinite transverse 
extent. In any practical system the beam will be truncated at some level, 
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of the antenna. (b-next page) Beamwidth (full width at half maximum) for the same 
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which will produce sidelobes. In considering at what level the beam at 
the main reflector should be truncated, we have to balance consideration 
of spillover loss, sidelobe levels, and beam efficiency3 against those of 
beamwidth and on-axis gain. Figure 1a shows the spillover loss and beam 
efficiency while Fig. 1b shows the beamwidth as a function of edge taper 
for an antenna with a gaussian aperture illumination pattern. The edge 
taper is defined as the power density at the center of the antenna divided 
by the power density at the edge. We have chosen an edge taper TM close 
to 14 dB as being a satisfactory compromise. All other optical elements 
in the feed system truncate the beam at a much lower level (at least 23 
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dB below the on-axis power level). We will thus ignore the effects of beam 
truncation within the feed system. 

The edge taper at the main reflector is related to ~A, the antenna il
lumination beam half-width, by the formula 

... / 10 
~A = a 'V TIn 10 (4) 

where a is the main reflector radius (350 cm for this antenna) and Tis 
the edge taper in decibels. We find that ~A = 195 cm for T = 14 dB. Since 
~A is much larger than ~o, eq. (2) reduces to 

~A ~ ZA(}~ = _1_ (5) 
ko~o 

where 1 is the focal length of the antenna (3955 cm). The resulting value 
for ~o at 100 GHz is 0.97 cm. 

2.3 Feed system components 

The large liD ratio and resulting large beam waist size of the antenna 
makes coupling to the antenna beam waist directly with a feedhorn 
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Fig. 2-Feed system optics. Ml and M2 are offset paraboloids. The diplexing action 
of the Fabry-Perot resonator (tilted 8.5 degrees from normal incidence) is shown sche
matically. 

undesirable, especially for cryogenic receivers. Horn-lens arrangements 
were investigated but the losses involved were felt to be a significant 
disadvantage, especially when operation over very large bandwidths is 
required. In view of these facts, and also because of the desirability of 
an even larger beam waist size required for low loss in the Fabry-Perot 
diplexer (Section III), a feed system using metal mirrors is preferable. 
The arrangement of the feed system components is shown in Fig. 2. The 
overall size of the feed system is dictated by the beam waist size and the 
desire to minimize the number of mirrors involved. 

Mirrors Ml and M2 are offset paraboloids; the offset angle for Ml is 
20 degrees and the focal length is 136 cm. For M2 the offset angle is 30 
degrees for the signal beam and the focal length is 44 cm. Offset antennas 
of this type have been shown to have excellent beam patterns.4 The 
mirrors used in this work were cut on a numerically controlled milling 
machine; the peak deviation from the desired surface contour is ap
proximately 0.05 mm. 

The beam from the antenna expands until it reaches Ml; at this point 
the beam half-width, denoted 6, is 6.5 cm and is essentially frequency
independent. The distance from the beamwaist to Ml is equal to the 
focal length of the mirror so that in the geometrical optics limit the re
sulting beam would be collimated. The diffraction effects in the beam 
between Ml and M2 are small; in actuality a second beam waist is created 
in the large beam at a distance equal to the focal length from Ml. Ideally, 
the separation between Ml and M2 would be equal to the sum of their 
focal lengths (180 cm) but a calculation5 of the mismatch due to the 
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distance being only 140 cm indicates that this is an insignificant ef
fect. 

The difficulty in measuring the power distribution in the beam at the 
antenna beam waist can be overcome by utilizing the properties of·a 
gaussian beam focused by lenses or mirrors; the beam half-width in the 
focal plane on one side of a converging lens with focal length f will be 
related to the beam-waist radius on the other side by6 

f 
~fp = ko~o (6) 

In Fig. 3 we show a profile of the beam in the collimated region measured 
with a small-aperture (0.4 cm X 0.6 cm) horn and square-law detector. 
This measurement, which is well-fitted by a guassian with h = 6.5 cm, 
together with eq. (6) confirms that the beam-waist size at 100 GHz is 1.0 
cm, very close to the design value. 

A signal passing through the Fabry-Perot resonator is focused by M2 
into the feed horn attached to the mixer, located at the beam waist of 
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M2. The beam-waist radius at the feed horn is 0.32 cm at 100 GHz. The 
utilization of the Fabry-Perot with a diplexing angle of 8.5 degrees and 
M2 focal length equal to 44 cm requires that the dimension of M2 in the 
plane of the paper in Fig. 2 be approximately twice as large as would be 
required for focusing the signal beam alone. 

The feedhorn for the receiver, which is the same design as that for the 
local oscillator, is a corrugated horn7 with a beamwidth between -17 dB 
power points of 29 degrees. This type of feedhorn allows waveguide
bandwidth (90 to 140 GHz for the initial version) operation with high 
efficiency and very low sidelobes. For system tests performed at 
frequencies near 100 GHz we have, however, used relatively narrowband 
dual-mode horns8,9 constructed in a manner similar to those described 
in Ref. 4. The power patterns are very similar to those of the corrugated 
horns, although with a beamwidth approximately 10 percent larger. All 
feed system characteristics refer to those measured with the dual-mode 
horns, but these should differ only in minor ways from those obtained 
with the corrugated horns. 

2.4 Measurements 01 feed system efficiency 

As discussed in the previous section, measurements of the power 
distribution in the collimated region indicate that the feed system will 
produce the correct taper in the illumination of the main antenna. In 
order to me sure the efficiency of the feed system, a separate collector 
was placed at the beam waist of M1, corresponding to the antenna beam 
waist. This collector, consisting of an ellipsoidal reflector and dual-mode 
feed horn, was independently measured to have a gaussian angular re
sponse pattern corresponding to a beam-waist size of 0.99 cm. A 100-GHz 
klystron with 1"'V50 dB attenuation was used as a signal source. By in
terchanging a square law detector between the signal-source flange and 
the collector output flange (with the signal source connected to the feed 
system mixer flange), we determined the loss of power between the signal 
source and the collector output flange to be 1.1 dB. It should be noted 
that if part of this loss is due to the mode produced by the feed system 
not coupling to that accepted by the collector, this will not necessarily 
lower the efficiency when used with the antenna, but will only result in 
an illumination function slightly different from that anticipated. Thus 
the loss measured in this manner is an upper limit to the loss when used 
with an antenna. While the losses of the individual elements cannot 
easily be measured separately, the symmetry of the system suggests that 
half of the measured loss is due to the collector, and half is in the feed 
system, with a resulting feed system loss of 0.5 dB. 

In Table I we summarize the salient characteristics of the feed sys
tem. 
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Table I - Feed system characteristics at 100 GHz 

Characteristic 

h, collimated beam-waist radius to lie 
power point 

~o, beam-waist radius to lie power point 
at antenna beam waist 

TM, edge taper at main reflector 
OPWHM, full angular beamwidth to half

power points 
First sidelobe level relative to on-axis 

gain 
{P, feed system loss (mixer waveguide 

flange to antenna beam waist) 
Spillover loss 
EM, beam efficiency 

III. QUASIOPTICAL DIPLEXER 

3. 1 Introduction 

Value 

6.5cm 

0.97 cm 

14.1 dB 
1'.8 

-30 dB 

0.5 dB 

0.14 dB 
0.95 

The limited local-oscillator output power available at shorter milli
meter wavelengths and the difficulty of fabricating low-loss waveguide 
diplexerslO are incentives to seek an alternative to injection cavities and 
directional filters made in waveguide that are currently available. The 
use of a Fabry-Perot resonator as a diplexer is not new,11,12 but the re
alization of a very ,low loss device to combine two signals differing in 
frequency by ~5 percent puts stringent restrictions upon the design of 
the resonator. There are a variety of configurations in which a Fabry
Perot resonator be used as a diplexer, e.g., with the signal in transmission 
or in reflection. A desirable characteristic of an ideal diplexer would be 
the ability to transmit power at the frequency of either one or both mixer 
sidebands. Single-sideband operation is important for accurate cali
brations at millimeter wavelengths because the atmospheric attenuation 
in certain regions of the spectrum is a rapidly varying function of fre
quency.13,14,15 Thus, although data analysis procedures have been de
veloped which attempt to circumvent this problem,16 the fact remains 
that an accurate determination of atmospheric extinction for spectral 
line work requires measurement of the attenuation in the sideband in 
which the line of interest is located. Also, the gain of a mixer receiver may 
well be different in the two sidebands, especially with the relatively high 
IF frequencies (4 to 5 GHz) that are now in use. For these reasons, sys
tems have previously been devised which incorporate a Fabry-Perot 
resonator which either can be inserted in the optical path to measure the 
gain and attenuation in the two sidebands individually17 or is perma
nently placed in front of the feed horn and which, at the expense of a 
small loss (~O.4 dB), suppresses the mixer response to the unwanted 
sideband.18 In order to minimize the number of resonant elements and 
consequent adjustments required when changing frequencies, we decided 
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Table II - Characteristics of Fabry-Perot resonator at 100 GHz 

T* 

0.10 
0.15 
0.20 
0.25 
0.30 
0.40 
0.50 

26 
22 
19 
17 
15 
12 
9.5 

Image rejection 
ratio 
(dB) 

* T is the transmission of a single mirror. 

0.5-dB 
bandwidth 

(MHz) 

220 
350 
540 
620 
760 

1090 
1500 

I-dB 
bandwidth 

(MHz) 

320 
500 
800 
890 

1100 
1600 
2200 

to use the Fabry-Perot resonator in transmission for the signal (the local 
oscillator is reflected by the resonator, thus providing the diplexing ac
tion). This design allows us either to operate in a double-sideband mode 
with the two sidebands being transmitted in successive orders (for 
continuum work) or in a single-sideband mode (desirable for spectral 
line observations). Only one adjustment is required to set the diplexer 
for operation at a particular frequency, which proves to be a significant 
advantage in use. 

3.2 Fabry-Perot resonator theory 

The analysis of the propagation in a noninfinite Fabry-Perot resonator 
has been treated by Arnaud et al. ll Since we will be dealing with a 
strongly tapered beam, it is sufficient to use the standard formulas for 
a plane wave in a resonator of infinite transverse dimension to calculate 
the response. Neglecting absorption in the mirrors, we find19 that the 
fraction of the incident power translllitted by the resonator is given 
by 

1 
(7) T = -----------

4(I-T) . 
1 + T2 s1n2 (hod cos (J) 

where d is the distance between the mirrors, (J is the angle from normal 
incidence of the radiation, T is the power transmission of a single mirror, 
and we have set the phase of the reflection coefficient equal to 1(' which 
causes no loss of generality. In this limit we see that the peak transmis
sion (for hod cos (J = n1(', n being the order of operation) is equal to unity. 
The peak-to-valley ratio, or contrast factor, which will in our case be the 
image rejection ratio, and the 0.5-dB and I-dB bandwidths for a reso
nator operating at 100 GHz are given in Table II as a function of T, which 
is assumed to be frequency-independent. It also has been assumed that 
the free spectral range of the resonator is approximately equal to 4 VIF; 

this is not a severe restriction since the transmission is only weakly de
pendent on frequency near the transmission minimum. There is a 

QUASIOPTICAL FEED SYSTEM 1491 



tradeoff between bandwidth and image reflection, as expected for a 
simple resonator. This restriction could be eased by using a multiple
mirror resonator, but only at the expense of easy tunability. Efficient 
utilization of the bandwidth of available IF amplifiers (",600 MHz) in
dicates that T should not be less than 0.2; the resulting image rejection 
ratio of 19 dB is certainly adequate to assure proper calibration accuracy. 
It should be pointed out, however, that this ratio is not so high that the 
leakage of very strong lines from the opposite sideband in a high-sensi
tivity spectrogram can be entirely ruled out. 

The Fabry-Perot diplexer exhibits quite high directivity for local os
cillator injection. Power coming from the local oscillator feed horn that 
directly leaks though the Fabry-Perot resonator does not end up in the 
beam waist area at all, and is caught by a sheet of absorbing material. 
Only local oscillator power which is reflected from the Fabry-Perot, then 
reflected from the mixer feed horn, and which is finally transmitted by 
the resonator, can reach the calibration area; the level of this radiation 
should be at least 17 dB below that of the local oscillator power reaching 
the mixer. 

The loss in a Fabry-Perot resonator operated at oblique incidence is 
primarily due to a walk-off effect in the finite-sized beam.ll In this ref
erence, the peak fractional transmission T through a resonator (assumed 
to be much larger than the beam size) consisting of two mirrors of 
transmission T, spacing d, inclined at an angle () to a gaussian beam of 
beamwaist radius ~o, is given by 

T = 1- G2 

where 

G = 2d sin () 
~oT 

(8) 

For operation with VIF = 5 GHz and VSIGNAL = 100 GHz, obtaining the 
best image rejection ratio requires that the resonator be operated in fifth 
order so that d = 5X/2 = 0.75 cm. The exact spacing will be determined 
by the resonance condition for the signal frequency; the condition 4VIF 
= VSIGNAL/5 will be satisfied only approximately, but d will be close to 
the value given above. For"T = 0.2 we find for small angles T = 1 - (7.5 
()/~o)2. 

A lower limit on () of "'4/ko~o is foundll from the condition that the 
beams be separable at the -17 -dB level when the diffraction of each is 
considered. Thus the maximum transmission is (again for T = 0.2, d = 
0.75 cm) 

( 
30 )2 

TMINO = 1 - ko~o 2 (9) 
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As seen from eq. (8) the insertion loss, defined in decibels as 10 10glO r-1, 

can, in theory, be made as low as desired, at the expense of enlarging the 
beam-waist radius. The beam waist required for low loss even in the 
optimum situation [eq. (9)] is moderately large; at v = 100 GHz and for 
the above conditions, ~o = 2.6 cm is required to achieve an insertion loss 
of 0.2 dB (the beam diameter will be at least 4~o). The most straight
forward geometry (see, for example, Ref. 11) then results in a very large 
distance between the Fabry-Perot and the inputs for the signal and local 
oscillator; on the order of 1 meter for the above conditions. For this 
reason, and due to the simplicity of having the one mirror (M2) serve as 
collector for both the mixer and the local oscillator, the geometry of Fig. 
2 was adopted. With a room temperature mixer, it would not be difficult 
to achieve a diplexing angle close to the theoretical minimum for a given 
loss, since the diameter of a dual-mode or corrugated feed is approxi
mately 5 times the beam-waist diameter of the beam it launches. With 
a cryogenic receiver the minimum diplexing angle is set by the size of the 
dewar containing the mixer; we have used () = 8.5 degree (0.148 radian). 
To obtain an insertion loss of 0.15 dB the required beam-waist radius 
is approximately 6 cm; this number sets the size of the various mirrors 
and the focal length of Ml, as well as the size of the Fabry-Perot reso
nator. The Fabry-Perot is shown in Fig. 4. In principle, one could utilize 
the minimum diplexing angle required for a given loss and collect the 
two spatially separated beams by mirrors which would refocus the beams 
wherever desired (i.e., into a dewar). This approach was not adopted 
because of alignment difficulties associated with the additional mirrors 
involved. 

3.3 Measurements 

3.3. 1 Fabry-Perot mirrors 

Each Fabry-Perot mirror consists of a photo etched copper mesh 
stretched on a metal support ring; the latter is similar to those described 
by Wannier et al.18 The theory of one-dimensional wire grids20 indicates 
that for the wires parallel to the electric field the grid behaves as a shunt 
inductance. We expect that a grid with square apertures will behave as 
a polarization-independent reflector as long as the angle of inclination 
of the incident beam is small. 21 For these grids with period p = 1.07 mm, 
strip widths s = 0.29 mm, and grid thickness t = 0.08 mm, one expects 
the relatively large value of tis to decrease the equivalent inductance 
and thus decrease the transmission, compared to that of an infinitely 
thin grid.20 The measured transmission at an incidence angle of 8.5 de
grees is 0.19 ± 0.02 (at v = 100 GHz) compared to a transmission of 0.13 
predicted theoretically; for an infinitely thin grid with the same aperture 
parameters, the theoretical transmission is 0.30. 
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Fig. 4-The Fabry-Perot resonator. The dial indicator on the right is used to monitor 
the mirror separation. 

3.3.2 Fabry-Perot resonator 

Examples of the frequency response of the Fabry-Perot resonator 
are shown in Fig. 5. These curves were obtained by sweeping a Siemens 
RWO 110B BWO connected to the mixer horn flange and monitoring the 
output from the collector located at the beam waist of Ml. A measure
ment system consisting of a digitizer, log amplifier, and 1024 channel 
memory (Pacific Measurements model 1038) was used to first record the 
output without the Fabry-Perot. We then used this to correct the output 
measured with the Fabry-Perot in place for frequency-dependent 
variations in the oscillator output. The following parameters are obtained 
from these scans: 
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Fig. 5-{a) Transmission of the Fabry-Perot resonator as a function of frequency. The 
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with a precision attenuator. (b) Response near the transmission maximum, for a different 
mirror separation. Each vertical division corresponds to 0.5 dB. The ripple pattern is 
characteristic of the separation between the transmitter and receiver feed horns used in 
making the measurement. 

Image rejection ratio = 19 dB 
0.5-dB bandwidth = 510 MHz 

I-dB bandwidth = 780 MHz 

Minimum insertion loss = 0.25 dB 

(10) 

This last number is obtained by averaging over the ripple pattern in the 
central 250 MHz of the response pattern. The results presented here, 
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when compared to those given in Table II, indicate that the image re
jection ratio measurement is consistent with a mirror transmission of 
0.2, while the bandwidth measurements imply a transmission of about 
0.21. The minimum resonator loss predicted by a mirror transmission 
of 0.2, () = 8.5 degrees, ~o = 6.5 cm, and d = 0.75 cm is 0.13 dB. If we allow 
for a loss of 0.12 dB from ohmic dissipation and/or other losses in the 
resonator, all of these measured characteristics are consistent within the 
errors with the expected resonator performance assuming a mirror 
transmission of 0.2. 

3.3.3 Local oscillator loss 

From the response curve of the Fabry-Perot (Fig. 5a), we see that 
the fraction of the local oscillator power leaking through the resonator 
will be only a few percent. If, for the moment, we consider the local os
cillator injection process in reverse, we see that the mixer feed horn would 
produce essentially a plane wave heading towards M2, after reflection 
from the Fabry-Perot. In this case, the M2-10cal oscillator feedhorn 
combination should be considered as an off-axis offset parabolic antenna. 
The diplexing angle () = 8.5 degrees requires that the local oscillator 
feedhorn be 17 degrees or 24 half-power beamwidths off-axis. For a 
symmetric antenna with the same f /D ratio, the loss in gain would be less 
than 0.4 dB.22 For an offset antenna, the theoretical loss is approximately 
4 dB.23 The measured loss for transmission between the flange of the 
local oscillator feed horn and that of the mixer feed horn is 2.7 dB. This 
is somewhat better than that achieved with a waveguide directional 
filter,24 and far superior to results obtained with waveguide injection 
cavities.25 If the diplexing angle were reduced by only a factor of two, 
the theoretical loss would be less than 1 dB. 

3.3.4 Local-oscillator noise suppression 

The Fabry-Perot diplexer as used here provides only 3 dB suppres
sion of local oscillator noise since noise power at the image frequency is 
coupled into the mixer essentially as efficiently as power at the nominal 
local oscillator frequency. At an IF frequency of 5 GHz, a 3-dB filtering 
of the local-oscillator noise from a 100-GHz reflex klystron is sufficient 
to reduce the local oscillator noise to the equivalent of a 20 K input signal 
as measured with a single-ended mixer.24 This is consistent with our 
measurements, in which we were unable to measure any increase in the 
diode noise temperature26 using the Fabry-Perot diplexer, compared 
to using a high-Q injection cavity, with equal bias voltages and diode 
currents with the local oscillator on. In any case, local oscillator noise 
can easily be further reduced by a simple bandpass filter installed in the 
local oscillator waveguide. 
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3.3.5 Mixer performance 

It is difficult to accurately measure the effect of the quasioptical di
plexer on mixer performance, since most mixers when used with an in
jection cavity or directional filter are sensitive to signals in both side
bands, while with the Fabry-Perot resonator in its usual configuration 
the mixer in the quasi optical diplexer is sensitive to only one sideband. 
If we assume that the mixer is equally sensitive in the two sidebands, a 
comparison can be made. A room-temperature mixer with a transistor 
IF amplifier, when used with the quasioptical diplexer, was found to have 
an SSB noise temperature 0.7 dB better than that implied by a double
sideband measurement using an injection cavity diplexer. This same 
injection cavity was measured to have an insertion loss of 0.74 dB for the 
signal at 100 GHz while the quasioptical diplexer insertion loss is "'0.25 
dB. The difference in noise temperatures is seen to be larger than the 
difference in diplexer losses, a fact which probably reflects the uncer
tainty in the relative response in the mixer sidebands. We do conclude, 
however, that the very low insertion loss for the quasioptical diplexer 
will probably be reflected in lower system noise temperatures. 

3.4 Discussion 

The Fabry-Perot diplexer described here exhibits low loss for the 
signal and for the local oscillator. The metal mesh mirrors actually had 
a lower transmission (0.2) than was expected (0.25) due to the larger 
thickness-to-aperture-size ratio compared to lower-frequency grids. 
Examination of Table II indicates that a mirror transmission of 0.27 
might be optimum; this would lower the theoretical loss by a factor of 
2. A more elaborate optical system would allow a diplexing angle at least 
2 times smaller than that used, which would lower the loss by a factor 
of 4, or else would allow the beam and resonator diameters to be halved 
for the same loss. Thus it is seen that this technique has not been pushed 
to its limit in terms of low loss or compactness. 

The use of the Fabry-Perot as a diplexer is also feasible in the sub
millimeter region. The techniques for making the mirrors are available 
and have been used to make resonators, operating at wavelengths be
tween 80 p, and 600 p,.19,27 If the ratio of the IF frequency to signal fre
quency is held constant, the order of operation of the resonator will re
main fixed and the mirror separation will be proportional to the signal 
wavelength. Then, to obtain a given loss [eq. (8)], the beam size will also 
be proportional to the wavelength. If, on the other hand, a fixed IF fre
quency is used, the beam size required to obtain a given loss will be in
dependent of the wavelength. 

This quasioptical diplexer is also well suited to dual-polarization ap
plications. The properties of the Fabry-Perot resonator are essentially 
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polarization independent. Thus, if the polarization angle of the local 
oscillator feedhorn is rotated 45 degrees to that of the mixer feedhorn, 
equal amounts of local-oscillator power would be detected in the two 
polarizations at the mixer feed horn. Either a dual-polarization feed horn 
or two feed horns with orthogonal polarizations fed by a wire-grid po
larization splitter could be utilized. 

IV. CALIBRATION SYSTEM 

The calibration system shown in Fig. 6 is designed to provide a con
venient method of measuring the receiver gain and atmospheric atten
uation, and to allow various modes of observation. Each of these func
tions will be briefly discussed. 

4. 1 Receiver calibration 

Not shown in Fig. 6 is a load consisting of truncated pyramids of Ec
cosorb* VHP-2 absorber which can be inserted into the beam that has 
passed from M1 through the rotary chopper. This provides a load at near 
ambient temperature. A cold load at liquid nitrogen temperatures has 
been constructed from pyramids of Eccosorb VHP-2 absorber in a dewar 
of liquid nitrogen. The index of refraction of liquid nitrogen is 1.4 at low 
frequencies28 and should not be significantly higher at millimeter 
wavelengths. The resulting power reflection coefficient is 0.03. The power 
reflected by the absorber at the bottom of the dewar filled with nitrogen 
is measured to be approximately 20 dB below that reflected from a metal 
plate at the bottom of an empty dewar. We thus conclude that cold load 
is likely to be a moderately good calibration standard; its stability and 
emissivity have not been measured. By rotating the chopper (with the 
movable mirror out of the beam) a temperature difference of approxi
mately 210 K is produced. It is possible that for very low noise receivers, 
this change in total power produced may exceed the limit allowable for 
good detector linearity. In this event, a calibrated, computer-controlled 
attenuator will be switched in synchronism with the chopper to keep the 
total power more nearly constant. 

4.2 Measurement of atmospheric attenuation 

This function is accomplished by chopping between the sky and either 
the ambient temperature or the cold load. The choice of reference de
pends on the sky temperature; the maximum temperature difference 
of ",,100 K will probably be small enough to ensure good detection lin
earity. The atmospheric attenuation is then computed from an assumed 

* Registered trademark of Emerson Cuming Inc., Canton, Mass. 
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Fig. 6-The calibration system. The cross indicates the location of the antenna beam 
waist, while the lines shown approximate the -17 dB contours of the power distribution. 
The view presented is with the antenna pointing at zenith; at other elevation angles the 
cold load mirror Me pivots about the axis indicated to keep the surface of the liquid nitrogen 
parallel to the horizon and perpendicular to the incident beam. Not shown is an ambi
ent-temperature absorber that can be inserted between the chopper and Mb; its position, 
as. well as that of the rotary chopper and movable mirror, is under computer control. 

physical temperature (or temperature distribution) for the absorbing 
gas. 

4.3 Beam switching 

For observation of moderately small sources this technique is ad
vantageous in that fluctuations in atmospheric emission will cancel if 
the chopping rate is sufficiently high and the scale size of the inhomo
geneities is larger than the beam separation.29 The separation between 
the two beams is 13'. This large value will be useful astronomically, but 
if the separation proves too large for effective noise cancellation, it can 
easily be reduced to about 6'. The uncertainty in the power spectrum 
of atmospheric fluctuations has led us to make the chopper speed vari
able between 2 Hz and 50 Hz. Observational experience will be required 
to determine the optimum chopping speed at different wavelengths 
under different atmospheric conditions. 
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V. SUMMARY 

We have designed and tested a feed system for use with millimeter 
radio-astronomical receivers on a 7-meter Cassegrain antenna. We have 
measured that power incident on the mixer waveguide flange is trans
mitted to the antenna beam waist in the desired mode with a loss less 
than 1.1 dB and probably close to 0.5 dB. The antenna beam efficiency 
should be 0.95. The feed system incorporates a Fabry-Perot diplexer 
which has an insertion loss of 0.25 dB (transmission = 0.94) for a signal 
at 100 GHz and a loss of 2.7 dB for the local oscillator with a frequency 
differing by 5 GHz. A calibration system incorporates an ambient tem
perature load and a liquid nitrogen load, and a rotary chopper to switch 
between the two, between either one and the sky, or between two beams 
separated by 13' on the sky. 

The low loss and versatility of quasioptical techniques at millimeter 
wavelengths are expected to prove advantageous in obtaining well-cal
ibrated high-sensitivity astronomical data. 
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In the exploratory fiber optic cables used in the Atlanta Fiberguide 
System Experiment, 12 optical fiber ribbons each containing 12 fibers 
are stacked one on top of the other to form a rectangular array of 144 
optical fibers. Just prior to sheathing, the array is twisted to a given 
period (lay) in order to improve its bending properties. Moreover, good 
cable bending properties dictate short lay lengths. However, short lay 
lengths result in high longitudinal (axial) stresses and strains in the 
optical fibers. To obtain high fiber yield in cable manufacturing, such 
strains must be well below 0.3 percent for current 35 ksi fibers. A model 
which assumes that each fiber follows a helical space curve is used to 
calculate an upper bound on the axial stress imparted by the twisting 
operation. The intent was to use the results to choose a lay length short 
enough to give acceptable bending properties yet long enough to avoid 
endangering fiber survival in cable manufacture. Model predictions 
based on a cable design similar to the one in the Atlanta Fiberguide 
System Experiment lead to the conclusion that the twist period should 
be not less than 4 inches. 

I. INTRODUCTION 

In the exploratory Fiber Optic (FO) cables used in the Atlanta Fiber
guide System Experiment, 12 optical fiber ribbons each containing 12 
fibers are stacked one on top of the other to form a rectangular array of 
144 optical fibers. 1,2 Figure 1 shows a representative cross section of a 
fiber ribbon and of the 144-fiber optical cable core unit. Just prior to 
sheathing, the unit is twisted to a given period (lay) in order to improve 
its bending properties. Moreover, good cable bending properties dictate 
short lay lengths. However, a short lay length results in high longitudinal 
(axial) stresses and strains on the optical fibers. In order to obtain high 
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Fig. I-Representative cross section of fiber ribbon and optical cable core unit. 

yield in the cable manufacturing, using current fibers, such strains need 
to be well below 0.01 (1 percent). A different strain is experienced by each 
individual fiber when the unit is twisted because the helical paths fol
lowed by the fibers differ in length. The type and amount of strain de
pend on the positions of the fiber within the ribbon and the ribbon within 
the unit. 

Strakhov3 outlined a model by which the strain introduced in a fiber 
due to twisting the stacked ribbons can be predicted. In this paper, his 
model is modified to account for slippage between the ribbons; thus, the 
net predicted strain on the individual fibers is greatly reduced. The 
model predicts upper-bound, twisting-induced, tensile and compressive 
stresses. The intent was to use the numerical results to choose a lay 
length short enough to give acceptable bending properties, yet long 
enough to avoid endangering fiber survival during cable manufacture. 

II. DESCRIPTION OF THE MODEL 

The model is geometric in nature in that the helical space curve length 
of each fiber is directly related to the strain on that fiber. The underlying 
assumptions that accompany this model are as follows: 
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(i) With the cable axis straight, the individual fiber axes coincide with 
helices of appropriate diameter and pitch. 

(ii) All the fibers within a given ribbon are completely coupled to each 
other. 

(iii) Induced stresses are supported entirely by the fibers, i.e., other 
ribbon materials are ignored. 

(iv) The twisted unit maintains a rectangular cross section. 
(v) The fibers are treated as filaments which follow the geometric axes 

of the real fibers. 
(vi) The tensile and compressive moduli of the fibers are equal. 

The rectangular array assumption ignores both geometric distortion of 
the cable cross section due to twisting and also dynamic distortion re
sulting from imparted stresses. We will return to these distortions 
later. 

Polymeric materials of the ribbon can play either an implicit or explicit 
role in the model. Their role is implied in the assumption of complete 
fiber coupling within a given ribbon. Explicit participation occurs when 
the actual stresses-developed in the polymers are considered. In order 
to calculate these stresses, the basic model assumptions can be extended 
from the discrete fiber case to the polymer continuum. However, ques
tions about plastic deformation of the polymers and about dynamic 
distortion of the cross section suggest caution against reading more than 
upper-bound significance into these results. In any event, the presence 
of the polymers tends to decrease the maximum tensile stress on the fi
bers for the ribbons under consideration. That is, ignoring the polymers 
does not disturb the upper-bound nature of the model's results. 

With this in mind, let us refer to Fig. 2 where a ribbon is shown with 
respect to the center of the unit. We will now develop analytic expres
sions for the stresses in a twisted array consisting of N ribbons with M 
fibers per ribbon for a total of M·N fibers. To simplify our expressions 
M and N are considered to be even numbers. Also, if only one quadrant 
is considered (here the upper left-hand quadrant), symmetry arguments 
can be used for the others. From the formula for the distance along a 
helix, the lengths of the individual fibers can be computed: 

m = 1, ... ,M/2 

n = 1, ... ,N/2 
L = Lo[l + w2C2 ]1/2 mn .mn (1) 

where Lmn is the length of the mth fiber in the nth ribbon, along a given 
length of cable Lo, Cmn is the radius of the helical path of the mth fiber 
in the nth ribbon, and w is the twisting rotation rate. That is, 

27r 
W = - (2) 

T 
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where T is the twisting lay length. The strain and stress on each of the 
fibers is given by: 

m == 1, ... , M/2 
n = 1, ... , N/2 

(3) 

(4) 

where ~mn and (Jmn are the strain and stress on the mth fiber of the nth 
ribbon, respectively, Er is Young's modulus for the fiber material, and 
Lon is the paid-out ribbon length. Lon can also be interpreted as the 
unstressed ribbon length in a cable length Lo . 

The N /2 values of Lon are obtained by dynamically balancing the 
forces at each reel at the time of payout. Therefore, the sum of the ten
sions on all the fibers within one-half the nth ribbon must be equal to 
one-half the back tension on the ribbon as it is paid out, that is: 

M/2 

ArEr L ~nm cos{}mn = Tn/2 n = 1, ... , N/2 (5) 
m=l 
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Fig. 3-Geometrical relationships of a cable. 

where At is the area of each fiber and Tn is the back tension at the payout 
for the nth ribbon. The cos ()mn factor takes into account the ()mn pitch 
angle imparted to each fiber by the twisting operation. This factor gives 
the fiber tension component opposing the back tension. The torque 
produced by each twisted ribbon is ignored and it is assumed to be bal
anced by the tape binder and/or sheath. An alternate approach is to 
balance the torques generated by the individual fibers against the applied 
torque while assuming that the axial force is balanced through sheath 
friction. We forego this approach because it is mathematically cum
bersome. With reference to Fig. 3, 

Lo cos () =-
mn Lmn 

m = 1, ... ,M/2 

n = 1, ... ,M/2 
(6) 

We now have all the relations necessary to determine the (J mn as 
functions of cable geometry. Note that all the explicit dynamical con
siderations are contained in eqs. (3), (4), and (5). As stated earlier, the 
fibers in a given ribbon are assumed fully coupled and the ribbons un
coupled. We start our derivation of the twisting stresses (Jmn by substi
tuting eqs. (1) and (3) into (5) and solving for Lon. This yields: 

Lon = Lo [ 1 M/2 ] 
12 (1 + w2C~n)-1/2 + ~ 
m=l 2AtEt 

n = 1, ... ,N/2 (7) 

Next we substitute eqs. (7) and (1) into (3) and (4) to obtain 

Emn = [(1 + w2C~n)1/2 (~2 (1 + w2C;n)-1/2 + Tn ) -1] (8) 
M/2 m=l 2 At Et 

m = 1, ... ,M/2 

n = 1, ... ,N/2 

(J = E [(1 + w 2
C;n)1/2 (~2 (1 + 2C2 )-1/2 + Tn ) - 1] (9) 

mn t M/2 mL:.1 w mn 2 At Et 
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In practice, Tn is developed by braking at the payout reels, and its 
magnitude is in the vicinity of 0.11 pounds. To this, a small but un
measured increment must be added due to friction in the core unit or
ganizer. In practice, the sum of these two components remains negligible, 
then Tn = 0, and eq. (9) reduces to the simpler form: 

(J = JiL (1 + w 2C 2 )1/2 
mn M/2 mn 

M/2 
X L (1 + w2C~n)-1/2 - Ef 

m=l 

m = 1, ... ,M/2 
n = 1, ... ,N/2 

(10) 

In general, w2C~n « 1; therefore, the approximation 

(11) 

can be legitimately used to gain insight into the fiber stresses within a . 
ribbon. Equation (10) can now be rewritten in the form: 

m = 1, ... , M/2 
n = 1, ... , N/2 

(12) 

where 8 n is the same constant for each fiber in the nth ribbon and is 
given by: 

S = JiL ~2 (1 + w2c2 )-1/2 1 N/2 (13a) 
n M/2 ~1 mn n = , ... , 

Or, to the degree of approximation of eq. (11), 

8 = JiL ~2 (1 _ 1I2W2C2 ) 
n M/2 m~l 7~ mn 

n = 1, ... , N/2 (13b) 

From Fig. 2, 

m = 1, ... ,M/2 
n = 1, ... ,N/2 

(14) 

where d and t are the fiber diameter and ribbon thickness, respective
ly. 

When eq. (14) is inserted into eq. (12), 

(Jmn ~ 1/2w 2(m - %)2d 28n 

m = 1, ... , M/2 (15a) 
n = 1, ... ,N/2 

Only the first term varies with m, and it shows a parabolic dependence 
of (Jmn on m. Since Tn = 0, the concave upward orientation of (Jmn indi
cates a longitudinal compression of the inner fibers of a ribbon and a 
tension on the outer fibers. Also, from eq. (13a) we see that 8 1 is the 
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largest Sn. We can conclude, then, that the parabolic dependence shown 
in eq. (15a) is steepest at the center of the core unit; therefore, the stresses 
will be most severe in the center ribbons. 

If we use eq. (13b) to take a closer look at the bracketed term in eq. 
(12), we find that Ef drops out and the only term remaining is propor
tional to w2• After some algebra, we find 

2 M/2 
Umn ~ Ihw 2C!nSn - -; L 1f2w2C~n 

} • .L m=l 
(15b) 

Here we see that longitudinal stresses go up as w2 to lowest order. 
Let us return our attention now to the question of ribbon deformation. 

Without a detailed structural analysis involving fibers and ribbons, 
numerical predictions of this effect are impossible. Such an analysis is 
beyond the scope of this paper. As we shall see, the model still provides 
an upper bound for stranding stresses because the ribbon deformation 
tends to relieve stresses. The argument goes as follows. The helical path 
of each fiber has a curvature,Kmn, given by 

m = 1, ... ,M/2 
n = 1, ... , N/2 

(16) 

This curvature, together with the longitudinal stress, results in a 
transverse force by the fiber on its local environment. This force is given 
by 

m = 1, ... ,M/2 
n = 1, ... ,N/2 

(17) 

where f mn is the transverse force per unit length exerted by the m th fiber 
of the nth ribbon. The sign convention was chosen such that a negative 
force means it is directed toward the center of curvature and a positive 
force is away from the center of curvature. It turns out that for the out
side (tensioned) fibers on a ribbon, the force is directed towards the 
center of the stack while for the inside (compressed) fibers, the force is 
away from the center of the stack. These are the very directions which 
lead to a stress-relieving barrel-shaped distortion. An important caveat 
must be added, however. Sheath forces may play even a larger role in 
transverse stresses. From eqs. (15b), (16), and (17) it can be seen that, 
to the lowest order, these transverse forces are proportional to w4 . The 
component of these forces in the local plane of the ribbon is cumulative 
and tends to deform the ribbon from its planar shape. This component 
can be obtained from eqs. (16) and (17) and Fig. 4. 

w2(m - 1f2)d m = 1, ... ,M/2 
fmnx = Afumn 1 + w2C~n n = 1, ... ,N/2 (18) 

where fmnx is the component of fmn along the plane of the ribbon. The 
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Fig. 4-Forces acting on a fiber in a ribbon. 

sign convention has been chosen so that a force toward the right is pos
itive. Because of the cumulative nature of these forces, their sum acting 
on the individual fiber contact boundaries can be obtained using 

n = 1, ... ,N/2 

m = 1, ... ,M/2 
M/2 

Fnk = L fmnx (19) 
m=k k = 1, ... , M/2 

where F nk is the sum of the x components of the f mn acting on the fiber 
contact boundaries. A pictorial representation is given in Fig. 5. These 
forces induce ribbon deformation which only serves to reduce stress 
levels. 

III. APPLICATION TO A SPECIFIC DESIGN: RESULTS AND 
CONCLUSIONS 

N ow that a general model has been set forth, it can be used to compute 
an upper-bound longitudinal stress and strain of any fiber within any 
optical unit due to its twisting lay, subject to the assumptions and con
straints mentioned before. A computer program was written to perform 
the necessary calculations outlined in Section II: The program employed 
the exact relations rather than the approximate ones used to gain insight 
into the model's predictions. The following inputs are needed by the 
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Fig. 5-Cumulative forces acting on a ribbon. 

program: the twisting lay, the number of ribbons and the number of fi
bers in each ribbon, the thickness of the ribbons, the payout back tension, 
the outside diameter of the fibers, the fiber spacing within each ribbon, 
and the elastic modulus of the glass. 

The original intent in developing this model was to use its numerical 
results to optimize the twisting lay length with respect to cable bending 
properties and fiber survival in cable manufacturing. With this in mind, 
the model was applied to a cable design having a geometry representative 
of the experimental cables later used in the Atlanta Fiberguide System 
Experiment. l The cross section of the design chosen had 12 optical fiber 
ribbons, each one containing 12 fibers for a total of 144 fibers in the op
tical unit. The parameter values were: 

T = 1,2, and 4 inches 
N =M = 12 
t = 0.007 inch 
d = 0.004 inch 
Tn = 0 
Ef = 107 psi 

Because the most severe stresses are experienced by the outside and 
center fibers of the center ribbons, let us confine our discussion to them. 
In Table I, a summary of the stresses experienced by these fibers is given. 
One conclusion that can be drawn from the summary in Table I is that, 
to avoid significant strain in the fibers, the shortest twisting lay that 
should be used in this cable design is 4 inches. Although the model pre-
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Table I - Stress and strain on the end and center fibers of the 
center ribbon due to twisting lays of 1, 2, and 4 inches 

Outside fiber 
Center fiber 

T = 1 inch T = 2 inches T = 4 inches 
(1, psi (1, psi (1, psi 

.00574 57,400 .00144 14,400 .00036 3600 
-.00364 -36,400 -.00092 -9,200 -.00023 -2300 

diets a strain which is above the proof test strain of the current optical 
fibers when a I-inch lay is used, it should be pointed out that under such 
high strains the fibers will start displacing from their original position 
in the ribbon seeking a stress-relieved barrel-shaped cross section. 

In conclusion, from the numerical results obtained in this section, it 
can be concluded that the twisting lay or period should not be less than 
4 inches for the basic cable design used in the Atlanta Fiberguide System 
Experiment. 
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An important practical application of signal processing theory is 
the problem of complex tone detection. Within the telephone plant 
there often arises a need for a simple, yet efficient, method for detecting 
the various tones which are used in telephone communication. Two such 
methods are discussed in this paper. One method uses measurements 
of the short-time signal energy and makes the decision as to whether 
or not there is a particular tone present on the line based on the peri- . 
odicity of the envelope of the signal. This method has application in 
determining if the energy on the line is periodic or aperiodic where 
sample examination time is not limited. The second method uses 
measurements of the short-time zero crossings of the signal. A parallel 
processing scheme is used to determine if a particular tone is present 
based on the detailed statistical properties of each of the tones. This 
method has application in determining if specific frequencies are 
present, especially when the examination time of the sample is limited. 
Using a large number of dialed-up connections, both systems were 
evaluated as to accuracy and speed. Results are presented which show 
the properties of the two tone detection methods. 

I. INTRODUCTION 

The need to reliably detect tones arises in a number of systems which 
are in use within the telephone plant. A wide variety of methods have 
been proposed for solving this problem including digital filtering, spectral 
analysis etc.1- 4 In this paper we discuss a particular problem in tone 
detection and show some characteristics of two simple systems designed 
to solve this problem. 

Figure 1 shows a pictorial description of a simple telephone call in 
which the calling party initiates a call and the call is switched through 
a central office. When the called party picks up the telephone a dc path 
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Fig. I-Pictorial description of a simple telephone call. 

is completed to the central office to indicate that the connection has been 
made, and that billing of the calling party can begin. The indication is 
formally called answer supervision. On a certain percentage of calls, 
anomalies occur such that calls are not completed in the normal manner. 
A recent survey of a total of 3 million unanswered calls indicated that 
90 seconds after the calling party initiated the call, no answer supervision 
had been received on 61,000 (approximately 2 percent) of the calls. There 
are several possibilities which account for these seemingly long unan
swered calls. These include: 

(i) Persistent callers-i.e., the calling party is waiting 90 seconds (15 
ring cycles) for the called party to answer the telephone. Another pos
sibility is that the line is busy, and the calling party remains on the line 
in spite of hearing 90 seconds of busy tone. Yet another possibility is that 
the call was improperly routed and that the calling party is listening to 
a fast busy or reorder signal. 

(ii) Announcement service-e.g., the calling party dialed an inoper
ative number and is listening to an announcement concerning the called 
telephone. Generally such announcements are short and will not last 90 
seconds, but it is not impossible for this to occur. 

(iii) Defective telephone-i.e., the telephone of the called party is 
defective or the circuitry which generates the answer supervision signal 
is not working. 

(iv) Network irregularities-i.e., the equipment making up the 
telephone network interconnecting telephone offices may be defective 
or inoperative and fail to relay the proper answer supervisory signals. 

It is important to be able to isolate cases (iii) and (iv) in order to take 
appropriate action. Since direct methods for determining whether a 
telephone is defective or whether a network irregularity exists are not 
easily implemented, an indirect approach is indicated. The approach 
studied here was one in which the signal on the line was processed to 
determine whether or not tones were on the line [case (i)], and if not, 
whether speech could be detected [cases (ii )-(iv )]. 

Although sophisticated approaches to tone detection are applicable, 
such methods are unnecessarily complex (and expensive) for the problem 
of detecting the three tones described above. Thus two relatively simple, 
and yet very different, methods for detecting tones were studied. The 
first method was developed on the assumption that the frequencies of 
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Fig. 2-Temporal characteristics of the tones. 

the individual tones would vary greatly from one central office to another 
and that gathering adequate statistics on these frequencies was im
practical. Therefore long-term properties of the tones were used in the 
detection algorithm. This first approach, known herein as the energy 
system, was developed by F. T. Boesch and R. E. Thomas4 to comply 
with the above constraint. The second method uses measurements of 
the zero crossing rate of the signal, and used a parallel processing scheme 
to determine if a particular tone is present based on the assumption that 
detailed statistical properties were available for each of the tones. This 
method was developed in the Acoustics Research Department. De
scriptions of each of these two methods are given in Sections III and IV. 
In the next section we discuss the properties of the individual tones for 
which the two systems were designed. Finally, in Section V we give the 
results of simulation experiments with both tone-detection methods. 

II. PROPERTIES OF THE TONES 

The three tones which had to be detected were: (i) audible ring tone, 
(ii) line busy tone, (iii) reorder tone. Figure 2 shows a sketch of the 
nominal temporal pattern of these three tones. The audible ring tone 
is on for 2 seconds and off for 4 seconds. The line busy tone is on for 0.5 
second, and off for 0.5 second. The reorder (fast busy) tone is somewhat 
variable in its temporal pattern. Generally its overall period is 0.5 second, 
with an on period of from 0.2 to 0.3 second, and an off period from 0.3 
to 0.2 second. Nominally the on and off periods are 0.25 second. 

Within one period the spectral properties of these tones can vary a fair 
amount. This is due both to the variability in the mechanical equipment 
which produces the tones (e.g., motor generators), and to the different 
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Fig. 3-Spectral characteristics of audible ring tone. 

(b) 

(c) 

standards in use withIn the telephone plant. However, the dominant 
amount of spectral energy in these tones is concentrated in a region 
around 500 Hz. By way of example, Figs. 3 to 5 show plots of typical 51.2 
msec sections of audible ring (Fig. 3), busy tone (Fig. 4), and reorder tone 
(Fig. 5), along with linear and log magnitude spectra for these tones. A 
Hamming window was used on the data to minimize the effects of the 
endpoints of the signal on the resulting spectrum. It can readily be seen 
from these figures that these tones have a reasonably complex structure 
both in time and in frequency. 

Preliminary analysis also uncovered some prominent temporal 
properties of these tones with which the tone-detection systems would 
have to deal. For the audible ring tone a substantial transient generally 
was found at the beginning and end of each on cycle. Figure 6 shows an 
example of such a transient occurring at the beginning of a cycle. Such 
transients are distinctly audible as clicks. Also for each of the tones a 
substantial amount of variability in the duration of the on-off cycles was 
also observed-even within consecutive cycles of the same tone. Figure 
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Fig. 4-Spectral characteristics of busy tone. 

7 illustrates this effect during 2 cycles of a busy tone. The first on cycle 
lasts about 0.44 second, whereas the second on cycle lasts about 0.47 
second. Such variability was not uncommon for the tones which were 
studied. 

III. ENERGY-BASED SYSTEM FOR TONE DETECTION 

Figure 8 shows a block diagram of the simulation of the energy-based 
syste:m for tone detection. The input signal x(t) is first band-pass filtered 
to the range 300-3200 Hz, and then sampled at a IO-kHz rate. An energy 
contour of x(n) is computed using a 50I-point (50-msec) Hamming 
window to give 

N-I 
E(n) = L [x(n - m)w(m)]2 (1) 

m=O 

where 

N= 501 
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Fig. 5-Spectral characteristics of reorder tone. 

w (n) = 0.54 - 0.46 cos ( 27rn ) 
N-1 
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51.2 msee 

(b) 

(e) 

(2) 

The energy contour is resampled at a rate of 20 times/sec. * A noise 
threshold is computed by finding the minimum energy of the signal, and 
setting the threshold 12 dB above this level. Based on the energy 
threshold, the signal E(n) (at the 20-Hz rate) is infinite-peak-clipped 
to give a binary signal b(n), which is of the form 

b(n) = 1 if E(n) ~ T 

= 0 if E(n) < T (3) 

(To eliminate the effects of spurious transient on the line, a delay of 150 
msec, i.e., 3 samples, is built into the infinite peak clipper for off-on 

* In the implementation E(n) is computed only 20 times/second. 
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Fig. 6-Example showing transient at beginning of audible ring tone. 

transitions to guarantee thatE(n) stays above T for this period. If E(n) 
falls below T during this period, then b (n) stays at O. Similarly a delay 
of 50 msec, i.e., 1 sample, is built into on-off transitions. Thus, E(n) must 
fall below T for 2 consecutive samples for b(n) to be set to 0). 

Following clipping, the signal b(n) is blocked into runs. A run is de
fined as a sequence of l's followed by a sequence of O's. The detection 
system processes x (n) until a total of 5 runs is obtained, or until 40 sec
onds of data are processed, whichever occurs first. The duration of each 
run, r(j), j = 1,2, ... 5, is measured, and the average run length, RL, is 
determined as 

1 5 
RL = - L r(j) 

5 j=l 
(4) 

The signal, b(n), is then comb-filtered using a fixed comb of delay RL 
samples, giving 

c(n) = b(n) - b(n - RL) 

The signal c (n) is of the form 

c(n) = +1 if b(n) = 1, b(n - RL) = 0 

=0 if b(n) = 0, b(n - RL) = 0 

ifb(n) = 1, b(n -RL) = 1 

= -1 if b(n) = 0, b(n - RL) = 1 

(5) 

(6) 

The absolute value of c (n) is then accumulated, and the result is nor
malized by dividing by the number of samples of b(n) which went into 
the computation, giving 

SIMPLE METHODS FOR DETECTING TONES 1519 



BUSY TONE 

"OFF" 
o 0.5 sec 

"ON" 

0.5 ,"pJ \_"Mt'~'.'~'~~'"'~t~~'t,_., .... ____ ~t.''' 1.0 sec 

"OFF" 
1.0 1.0 sec 

"ON" 

1.5 •• 1 t.I.II_1.',..... •• _U.U,.,..,.~,.~~,~~~~~,~, U •• .;'tritl 2.0 sec 

Fig. 7-Example showing variation in on-off cycle of busy tone. 

N-l 
L Ic(n)l 

n=O 
DN=--N-- (7) 

Clearly D N is a normalized measure of the lack of periodicity of the 
signal, since 

(8) 

and D N -- 0 if the signal is perfectly periodic and of period RL. 
The final tone detection is based on the values of RL and D N. If D N 

is sufficiently small (indicating the signal is periodic) then the signal is 
classified as a tone of period RL samples. The tone whose period is closest 
to RL samples is chosen as the correct tone. If DN is sufficiently large 
(indicating a lack of signal periodicity) then the signal is classified as 
speech (or silence). Based on experimentation with the system the 
thresholds chosen for D N and the corresponding decision rules are 

if DN < 0.15 

DN > 0.30 

0.30 > DN > 0.15 

signal is periodic (tone) 
of period RL samples 
signal is aperiodic (speech 
or silence) 
signal is undefined 

The undefined region accounts for tones on a very noisy-line, or speech 
conversations with a fairly periodic rhythm of talking. 

Figure 9 shows some typical energy contours [E(n)] for 15-second 
recordings of an audible ring tone (Fig. 9a), a reorder tone (Fig. 9b), a 
busy tone (Fig. 9c), and a weather announcement (Fig. 9d). It can be seen 
that by appropriate placement of the silence energy threshold, the re
sulting binary signal b(n) will be periodic. However, a variation of over 
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20 dB in the level of E(n) is obtained between the audible ring and the 
reorder signal. Thus careful choice of the silence threshold is extremely 
important to the proper functioning of this system. The transients 
present in the audible ring signal are also clearly seen in Fig. 9a, as noted 
previously. 

IV. ZERO-CROSSING-BASED SYSTEM FOR TONE DETECTION 

Figure 10 shows a block diagram of the zero crossing system which was 
used for tone detection. This system is organized as a parallel processing 
system with an individual detector for each tone. Speech (or silence) is 
indicated by the absence of a detected tone for an 8-second interval. The 
operation of this system is as follows. The input signal, x (n), is sampled 
at a 10-kHz rate and then fed into three parallel tone detectors. The 
output of the tone detector is zero until a tone is detected at which point 
the output becomes one until the detector is reset by the decision logic. 
The decision logic to choose the tone is very simple. The output of each 
tone detector is monitored at a fixed rate until either one of the lines 
indicates a tone, or until 8 seconds have passed. * If one of the tone lines 
indicates a tone the logic decides which tone was detected and resets the 
tone detectors. After 8 seconds without a tone indication, the logic 
classifies the signal as speech (or silence). 

Figure II shows a block diagram of the individual tone detectors. For 
each tone detector there are two parameters which define the range of 
the level crossing parameter for a particular tone. A level crossing for 
the signal x(n) occurs at n = no when 

* The choice of a maximum interval of 8 seconds is explained later. 
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Fig. 9-Typical energy contours of three tones and a weather announcement. 

(9) 
and 

x{n) <-T (10) 
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for some value of n = nl < no where nl is greater than the value at which 
the previous level crossing occurred-i.e., the signal must have been 
below the level (-T) and risen above the level T for a level crossing to 
have occurred. The parameter used for tone detection was the number 
of level crossings of the signal within a specified duration D. Call this 
parameter Lx (T,D). For each D second duration the quantity Lx (T,D) 
is computed and compared to the range parameters RL and RH which 
define an expected range for Lx (T,D) for the jth tone. For the jth tone 
to be detected the parameter Lx (T,D) must satisfy the relation 

(11) 

for three consecutive D second intervals. This sequence is called a triple 

Fig. ll-Block diagram of the individual tone detectors. 
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Table I - Values for three tones 

Signal D T RL RH 

Reorder tone 60 msec 200 34 37 
Busy tone 120 msec 200 67 73 
Audible ring tone 1 480 msec 100 190 245 
Audible ring tone 2 480 msec 100 220 270 

event-an event being whenever eq. (11) is satisfied. The reason a triple 
event sequencer is used is because the major concentration of energy for 
the tones being detected is in the range 200-1000 Hz, and this in the 
region in which the major concentration of speech energy also occurs. 
Thus it is quite possible for eq. (3) to be satisfied by a speech signal, as 
well as by the correct tone. To minimize the possibility of a speech signal 
being detected by the tone logic, the triple event sequencer was used. 

Table I gives the values of T,D, RL and RH for the three tones which 
were used in this investigation. For each tone the quantity D was chosen 
to be approximately % of the on cycle of the tone to guarantee that at 
least 3 complete cycles of D seconds would occur within the on period 
of the tone, independent of the phase of the initial D second region. 
(Recall that the D second intervals are asynchronous with the tone-thus 
an interval may contain a transition from on to off or vice versa.) In ad
dition, for both software and hardware convenience, the values of Dare 
all multiples of 60 msec. 

It is seen in Table 1 that two sets of parameters were used for the au
dible ring tones. This was due to the bimodal distribution of Lx (T,D) 
which was measured when representative tones were recorded in dif
ferent areas. In practice, an additional tone detector is used for such 
cases. 

The reason for the delay in the reorder tone detector of Fig. 10 should 
now be clear. Since the frequency characteristics of the busy tone and 
the reorder tone were almost identical, a busy tone on the line would 
cause the reorder tone detector to detect the tone before the busy tone 
detector. Thus, a delay of 240 msec was used to allow the busy tone de
tector a chance to detect a busy tone prior to classifying the tone as a 
reorder tone. 

The purpose of the reset signal following each signal classification is 
to clear the level crossing count, and to clear the triple event sequencer, 
so that the overall tone detector can be switched to a new line in order 
to classify a new signal. 

Finally the reason for waiting 8 seconds until classifying the signal as 
speech (or silence) is that in the worst case the tone detector might be 
switched into an audible ring tone just past the beginning of an on cycle. 
Thus, the detector would not indicate the audible ring tone during this 
first on cycle, and would have to wait for the second on cycle for detecting 
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Table II - Results of tests on audible ring tone 

(a) Accuracy of detection 
Signal-Audible Ring Tone 

Connection Energy System 
1 100/100 
2 100/100 
3 100/100 
4 100/100 
5 100/100 
6 100/100 

Total 600/600 

Percentage Accuracy 100% 

(b) Speed of detection 
Connection Energy System 

1 33.70 sec 
2 33.83 
3 31.70 
4 33.77 
5 33.22 
6 33.32 

Total 189.54 sec 
R I . T· 189.54 

e atIve lme = 25.518 = 7.43 

Zero Crossing System 
100/100 
100/100 
100/100 
100/100 
100/100 
100 100 
600600 

100% 

Zero Crossing System 
4.574 sec 
4.291 
4.142 
4.569 
3.912 
4.032 

25.518 sec 

the tone. This would require a total of 2 seconds for the first on cycle, 
plus 6 seconds for the second off-on cycle, or a total of 8 seconds before 
audible ring can be eliminated. 

V. EXPERIMENTAL EVALUATIONS 

An extensive experimental evaluation of these two methods for tone 
detection was carried out over standard dialed-up telephone lines. For 
each type of signal (i.e., the three tones, and speech) a number of dif
ferent connections was tested. For each connection a total of 60 seconds 
of the signal was recorded. A total of 100 trials were made on each signal 
with each trial beginning at a randomly selected point in the record
ing. 

Results of these evaluation tests are given in Tables II to V for audible 
ring, busy, reorder, and speech respectively. Each table shows the ac
curacy for each system, as well as the average length of signal required 
to make thedecision. Thus, for the audible ring tone (Table II), six dif
ferent telephone numbers were used giving a total of 600 trials. Both 
systems detected audible ring 100 percent reliably. However, the en
ergy-based system required about 7.4 times the amount of signal required 
by the zero crossing system-i.e., the average time to detect audible ring 
tone was 4.4 seconds for the zero crossing system, and 31.9 seconds for 
the energy system. (It should be kept in mind that the two tone-detection 
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Table III - Results of tests on busy tone 

(a) Accuracy of detection 
Signal-Busy Tone 

Connection 
1 
2 
3 
4 
5 
6 
7 

Total 

Percentage Accuracy 

(b) Speed of detection 

Energy System 
100/100 
100/100 

99/99 
100/100 
100/100 
100/100 
100 100 
699 699 

100% 

Connection Energy System 
1 5.77 sec 
2 5.81 
3 5.78 
4 5.65 
5 5.84 
6 5.74 
7 6.09 

Total 40.48 sec 

R I " 40.48 93 
e atIve time = 4.349 = . 1 

82.4% --+ 100% 

Zero Crossing System 
0.596 sec 
0.592 
0.666 
0.643 
0.560 
0.614 
0.678 
4.349 sec 

systems were designed with different constraints, as discussed pre
viously.} 

For the busy tone (Table III) a total of seven different connections, 
or 700 trials, were used. The energy-based system detected 699 out of 
699 correctly, * whereas the zero crossing system detected only 577 out 
of 700 correctly. Of the 123 errors, all were classified as reorder signal. 
This is in fact no real error since it occurs whenever the signal starting 
point is past the beginning of an on cycle, but before the middle of the 
on cycle-a fairly common occurrence. In such cases the busy tone is 
indistinguishable from a reorder tone. Thus the zero crossing system was 
effectively 100 percent accurate. 

In terms of processing time the zero crossing system took, on average, 
0.62 second to detect busy tone, whereas the energy system took about 
5.8 seconds. Thus the zero crossing system was a factor of 9.3 times faster 
than the energy system. 

Table IV shows the results for the reorder tone tests. A total of five 
connections were tested resulting in 500 individual trials. The energy 
system accurately detected 493 of 500, or 98.6 percent of the trials. The 
7 errors involved classifying the signal as speech. These errors were 

* On one trial the random starting point was too close to the end of the recording so no 
decision was made. 
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Table IV - Results of tests on reorder tone 

(a) Accuracy of detection 
Signal-Reorder Tone 

Connection 
1 
2 
3 
4 
5 

Total 

Percentage Accuracy 

(b) ~peed of. detection 
ConnectIOn 

1 
2 
3 
4 
5 

Total 

Energy System 
100/100 
100/100 
100/100 
93/100 

100/100 
493/500 

98.6% 

Energy System 
2.98 sec 
3.00 
3.18 
3.35 
2.99 

15.40 sec 

Zero Crossing System 
100/100 
100/100 
100/100 
100/100 
87/100 

487/500 

97.4% 

Zero Crossing System 
0.576 sec 
0.572 
0.572 
0.583 
1.526 
3.829 sec 

T · R· 15.4 
Ime abo = 3.829 = 4.02 

eliminated by raising the noise level threshold to a value 18 dB above 
the noise level (instead of 12 dB as was normally the case). For the zero 
crossing system the accuracy was 487 of 500 or 97.45 percent of the trials. 
Of the 13 errors, 2 were classified as audible ring tone, and 11 were 
classified as speech. All these errors were corrected by increasing the 
search duration to include a second cycle of the tone. 

In terms of speed the energy system required, on average, 3.08 seconds 
to detect the reorder tone, whereas the zero crossing system required 
about 0.76 second. Thus, the zero crossing system was a factor of 4 times 
faster than the energy system for this tone. 

For testing the two systems on speech signals, two classes of signals 
were used. One class was of the announcement type-i.e., weather, news 
service, recorded phone messages, etc. The other class was a set of con
versions. Table V shows the results on these two sets of signals. For re
cording and announcements the energy system detected 228 of 272 trials, 
or 83.8 percent of the trials. (In 128 cases the random starting point of 
the message was too close to the end of the message for a decision to have 
been made). All 44 errors were cases when the threshold fell in the un
defined region. For conversational speech the energy system detected 
398 of 398 trials, for 100 percent accuracy. 

For the zero crossing system on recorded speech an accuracy of 364 
of 400 trials, or 96 percent was obtained, and for conversations an ac
curacy of 390 of 400 trials or 97.5 percent was obtained. For recorded 
announcements 15 of the 16 errors were audible ring tone, and in one case 
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Table V - Results of tests on speech 

(a) Accuracy of detection 
Signal-Speech Recordings and Conversation 
1. Recordings 

Connection 
I-Chicago Weather 
2-NYC Weather 
3-Viking News 
4-Recorded Phone Trouble 

Total 
Percentage Accuracy 

2. Conversation 
. Connection 

1-2 Females 
2-1 Female-l Male 
3-1 Female-l Male 
4-1 Female-1 Male 

Total 
Percentage Accuracy 

(b) Speed of detection 
1. Recordings 

Connection 
1 
2 
3 
4 

Total 

Time Ratio = 82.7
6
9
7 

= 2.63 
31.4 

2. Conversation 
Connection 

1 
2 
3 
4 

Total: 
T' R' 35.24 

lme abo = 31.702 = 1.11 

Energy System 
25.42 sec 
12.89 
38.04 
6.44 

82.79 sec 

Energy System 
25/43-18UD 

100/100 
3/29-26UD 

100/100 

228/272-44 UD 
83.8% 

Energy System 
100/100 
100/100 
98/98 

100/100 

398/398 
100% 

Zero Crossing System 
84/100 

100/100 
100/100 
100/100 

384/400 
96.0% 

Zero Crossing System 
93/100 
99/100 
98/100 
100/100 

390/400 
97.5% 

Zero Crossing System 
7.347 sec 
8.040 
8.040 
8.040 

31.467 sec 

Energy System 
7.21 sec 
9.10 

Zero Crossing System 
7.798 sec 
7.974 

6.82 
12.11 
35.24 sec 

7.890 
8.040 

31.702 sec 

it was busy tone. For conversations 7 of the 10 errors were audible ring 
tone, with 2 reorder, and 1 busy tone. 

For recorded announcements the energy system required, on average, 
20.7 seconds, whereas the zero crossing required 7.9 seconds. Thus the 
zero crossing system was about 2.6 times faster. For conversations, 
however, the average detection time was 8.9 seconds for the energy 
system, and 7.9 seconds for the zero crossing system. Therefore the zero 
crossing system was only about 1.1 times faster. 

The only other comparison which was made between the two tone
detection systems was in terms of ease of implementation. The zero 
crossing system appears to be less costly to implement than the energy 
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system since it requires only a simple threshold device, a counter, and 
some simple logic, whereas the energy system requires arithmetic com
putations to compute the average run length, and the distance measure 
DN . 

VI. SUMMARY 

We have presented two relatively simple methods for detecting tones 
based on temporal and spectral properties of the signals. The main re
quirement on the systems was that they be as accurate as possible in 
classifying tones or speech within the constraints of each individual 
system. Computer simulations of both systems were performed to 
compare and contrast the two systems. In terms of tone detection, both 
systems were essentially 100 percent reliable; however, the zero crossing 
system was from 4 to 10 times faster than the energy system. For re
corded announcements the zero crossing system was more accurate than 
the energy system; however, for conversations the energy system was 
better by a small percentage. The processing time for the zero crossing 
system was always less than for the energy system, although the differ
ences for speech were much less than for tones. Finally, in terms of im
plementation, it was argued that although both systems are relatively 
easy to implement, the zero crossing system is somewhat less costly than 
the energy system. I 

In summary, this study showed that the constraint of not using de
tailed tone frequency statistics in the detection process for the energy 
system led to an algorithm which was considerably slower than the zero 
crossing method, but equally accurate. 
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This paper describes some experiments in adaptive and predictive 
Hadamard transform coding of still pictures using a small transform 
block (2 X 2 X 2). Predicti.ve coding of the transform coefficients is 
discussed using certain combinations of coefficients of the present as 
well as previously transmitted blocks as predictors. Two separate 
adaptive quantization techniques are considered. The first technique 
relates to PCM quantization, in which a uniform PCM quantizer with 
a different number of quantization levels is used, depending upon the 
spatial activity within the block. The second technique alters the 
quantizer of a predictive transform coder based on a weighted sum of 
already transmitted coefficients of the present and previous blocks. 
Finally, we give a comparison of three coding techniques: (i) adaptive 
predictive transform coding, (ii) nonadaptive transform coding, and 
for comparison, (iii) nonadaptive predictive coding in the picture el
ement domain using a two-dimensional prediction. 

I. INTRODUCTION 

In a recent paper! we considered Hadamard transform coding of still 
pictures using a small three-dimensional block (a 2 X 2 X 2 array of 
picture elements). There we described the design of optimum quantizers 
for the Hadamard transform coefficients based on psychovisual criteria 
in the transform domain. Starting with subjective tests to evaluate the 
visibility of quantization noise, we then developed a design procedure 
to minimize the "mean-square subjective distortion" (MSSD) due to 
quantization noise. We compared the performance of the resulting 
quantizers with the widely used Max-type2 quantizers (i.e., quantizers 
which minimize the mean-square quantization error) and demonstrated 
our quantizers to be better in terms of picture quality and entropy of the 
quantizer output, for a given number of levels. 

The present paper, which consists of three parts, extends the previous 
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work by considering techniques for adaptive and predictive coding of 
the transform coefficients, based on both statistical and psychovisual 
criteria. In the first part, we develop prediction algorithms for predictive 
coding of the coefficients. Although the small block size that we use 
ensures that the quantization noise can be placed in those parts of the 
picture where it is least visible, thereby permitting coarser quantization 
and thus achieving a higher coding efficiency, it does not exploit the 
statistical correlation between adjacent blocks. To overcome this, we 
consider predictive coding for the coefficients. We predict the value of 
a coefficient using a linear combination of already-transmitted values 
of other coefficients of both the present and the previous block. The 
prediction error is then quantized and transmitted. A reverse operation 
is performed at the receiver to reconstruct the picture elements. Our 
predictors are not limited to small block sizes. We show how they can 
be extended to larger spatial blocks as well as to spatiotemporal 
blocks. 

The second part of this paper is concerned with two separate tech
niques for adaptive quantization, one useful in PCM quantization and 
the other in predictive quantization of the coefficients. These adaptive 
quantizers change to match the fidelity requirements of a viewer in 
different parts of the picture, as measured by subjective tests. We il
lustrate our methodology only for the coding of the first Hadamard 
coefficient. In PCM quantization, we use coefficients within a block 
representing a measure of spatial detail, to determine when to change 
the number of levels of the quantizer. Based on a theoretical analysis, 
we obtain a formula to change the number of quantizer levels and 
demonstrate the usefulness of this formula on a hardware system. In 
predictive quantization, the quantizers are switched on the basis of a 
weighted sum of the coefficients of the present and previous blocks. In 
areas of low spatial detail, a fine quantizer optimized for that area is used, 
whereas in areas of high spatial detail, a coarse quantizer is used which 
is optimized for such an area. The advantage of adapting the quantizer 
is evaluated by measuring the entropy for a given picture quality. 

The third part of the paper deals with some comparisons between the 
techniques discussed in the first two parts and in our previous paperl. 
These comparisons are based on the picture quality versus entropy 
tradeoffs. They show that adaptive-predictive transform coding requires 
about 1.84 bits/pel for an excellent picture quality; and this represents, 
for the same picture quality, a decrease of almost 1.3 bits/pel over the 
bit rate obtainable by two-dimensional predictive coding in the picture 
element (pel) domain. 

1.2 Relationship with some previous work 

The combining of transform coding with predictive coding has been 
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discussed by many authors. Reudink3 investigated simple DPCM coding 
of Hadamard transform coefficients which are obtained from a transform 
of 4, 8, or 16 pels along a scan line of video. Habibi4 generalized the 
combining of transform and predictive coding. He considered several 
different transforms using one-dimensional blocks or small two-di
mensional blocks and found that such a hybrid coding system performed 
better, in terms of signal-to-noise ratio for a given bit rate, than either 
the transform coding or the predictive coding system separately. Ishii5 

has considered a similar coding scheme using Hadamard transform 
coding, whereas Heller6 and Roese et al. 7 have extended this concept to 
interframe coding. 

Our contribution here is twofold. First, we develop methods for pre
diction that use coefficients from the present as well as previous blocks. 
Second, we develop a technique to quantize coefficients taking into ac
count subjective effects of the quantization noise. 

Adaptive coding of transform coefficients has been discussed by many 
authors.8 Simple techniques of threshold sampling, which transmit only 
those coefficients whose magnitudes exceed a certain threshold, have 
been in existence for some time. Tasto and Wintz9 have used local sta
tis tical properties of pictures to divide the picture into a number of 
segments and have chosen the coding strategy suited for each subpicture. 
Their division of pictures does depend on spatial activity, although not 
explicitly. It should be noted that their "best" quantizers were from those 
encountered in their trial-and-error procedure. GimlettlO has proposed 
a definition of an "activity index" using a weighted sum of absolute 
values of the transform coefficients and assigned more bits for coding 
those subpictures having a higher "activity index". This does not take 
advantage of the observer's reduced sensitivity for reproducing areas 
of higher activity. 

Our adaptive quantization techniques divide the picture on the basis 
of subjective noise visibility and then design the quantizer for each 
segment. This is done using the data from the subjective tests in which 
noise visibility is related to certain measures of spatial detail. 

II. PREDICTORS FOR TRANSFORM COEFFICIENTS 

The objective of this section is to show that, for predictive coding of 
the transform coefficients, predictions better than the corresponding 
coefficients from the previous block can be made. In general, a predictor 
can utilize the information contained in the corresponding coefficient 
as well as other coefficients of the previous block. It can also utilize in
formation contained in the other coefficients of the same block that may 
be available to the receiver when reconstructing the coefficient which 
is being differentially encoded. 
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BLOCK BLOCK 
r------, r-------i 
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L ______ ~ L ______ ~ 

Fig. I-Pel locations of two successive Hadamard transform blocks. 

To illustrate the technique, we take a specific example of a 2 X 2 block 
of pels and develop a predictor for H b the first transform coefficient. 
The configuration of the block is shown in Fig. 1, where A is the current 
pel, B is the previous pel in the same line, C is the pel corresponding to 
A in the previous line in the same field, and D is the previous element 
with respect to C. After Hadamard transformation, the four coefficients 
are defined as follows: 

HI=A+B+C+D 
H2 = A +B - C-D 

H3 = A -B - C+D 
H4 = A -B + C-D 

(1) 

Now consider two horizontally consecutive blocks (as in Fig. 1), one 
having pels A, B, C, D giving rise to coefficients HI, H 2, H3, H4; and the 
other having pels A, Ii, C, D giving rise to coefficients HI, H2, H3, H4. 
Then the prediction for HI is taken to be 

(2) 

where subscript Q denotes the quantized values available both at the 
transmitter and the receiver. The prediction error is evaluated, quantized 
and transmitted. 

The prediction error in the absence of quantization will be 

tllli = HI - HI - H4 - H4 

= (D - C) + (Ii - A) + (D - C) + (Ii - A) (3) 

From Fig. 1, (D - C) and (Ii - A) are the element differences and are, 
in general, small. Thus, the problem of transmitting HOI is converted to 
the problem of transmitting a sum of certain element differences. The 
prediction error using the previous block HI as the prediction of HI is 
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X 2 
VERTICAL 

H 

H, = A+S+C+D+E+F+G+H 
-------

H, = A +S+C+ D+E +F+G+H 

H4 = A+C+E+G-S-D-H-F 

- - - - -
H4 = A+C+E+G-S-O-H-F 

PREDICTOR FORH, = H, + H4 + H4 

Fig. 2-Predictor for HI of a spatiotemporal transform block. 

given by 

t:JiI = HI - HI 

= (D - C) + (Ii - A) + (C - D) + (if - B) 

X, 

HORIZONTAL 

(4) 

Comparing the prediction errors [eqs. (3) and (4)], we see that the first 
two terms of the right-hand side are identical. However, the next two 
terms in eq. (4) will in general have higher values due to larger spatial 
separation, and therefore the predictor shown in eq. (2) will have a lower 
average error. 

The example described above can be extended to more general cases 
than a spatial block of 2 X 2. Thus, better prediction of HI is possible 
in the case of spatiotemporal blocks as well as larger spatial blocks. As 
an illustration, we show in Fig. 2 a case with a 2 X 2 X 2 "spatiotemporal" 
block. The definition of the predictor is shown in the same figure. Notice 
that the prediction error can again be written as a summation of certain 
spatially adjacent element differences and this reduces the entropy of 
the prediction error. 

The above procedure can be used for constructing better predictors 
for other transform coefficients. As an example for the blocks in Fig. 1, 
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Fig. 3-Pellocations of two successive large transform blocks. 

the predictor for H 2 is taken to be 

(H2 + H3 + H 3) 

It is easy to see that the prediction error is given by 

21E + C - (A + D)} 

(5) 

(6) 

which is two times H 3 of the intermediate block with pels IE, A, D, C}. 
Since H 3 generally has very small value, the prediction error will again 
have lower entropy as compared to the entropy of (H 2 - H 2). We note 
in passing that, instead of using a horizontally adjacent block as above, 
coefficients from the vertically adjacent block can also be used to con
struct predictors (e.g., the prediction for H4 can be (H¥ + H¥ + H3), 

where superscript V denotes coefficients from the vertically adjacent 
block). 

As an extension of our predictor to larger blocks, consider a block of 
8 pels as shown in Fig. 3. Hadamard transformation of the pels from 
"previous block" gives us 

HI 1 1 1 1 1 1 1 1 A 
H2 1 1 1 1 -1 -1 -1 -1 B 
H3 1 1 -1 -1 -1 -1 1 1 C 
H4 1 1 -1 -1 1 1 -1 -1 D (7) 
Hs 1 -1 -1 1 1 -1 -1 1 E 
H6 1 -1 -1 1 -1 1 1 -1 F 
H7 1 -1 1 -1 -1 1 -1 1 G 
Hs 1 -1 1 -1 1 -1 1 -1 H 

Hadamard transformation of the pels from the "present block" which 
generates HI, ... , H 8 are similarly defined. The prediction error by using 
HI as a prediction of HI is given by 

HI - HI = [(15 - A) + (E - B) + (H - E) + (0 - F) 

+ (E - C) + (tr - D) + (P - G) + (E - H)] (8) 

We note that the last four terms of the right-hand side are often larger 
because of the wider separation of picture elements. A better predictor 
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Fig. 4-0riginal picture used for subjective tests. 

for HI is taken to be HI + H 4 + H 4 and then the prediction error would 
be 

= [(D - A) + (E - B) + (H - E) + (0 - F) 

+ ([5 - A) + (E - B) + (H - E) + (0 - F)] (9) 

The first four terms of eqs. (8) and (9) are equal; but comparing the last 
four terms, we see that in general the right-hand side of eq. (9) would be 
smaller than that of eq. (8). 

We evaluated the performance of the new prediction scheme by 
hardware simulation using a 2 X 2 X 2 block. We considered a still pic
ture; and, therefore, except for frame-to-frame noise, this is equivalent 
to considering a 2 X 2 block. The picture entitled "Library Girl" shown 
in Fig. 4 was used for all the experiments discussed in this paper. We 
calculated the entropy of the unquantized prediction error for both 
predictors. The entropy of prediction error of eq. (3) was 4.99 bits/block, 
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Fig. 5-Visibility function for noise in H 1. Prediction error I D.H 11 is used as a control 
variable. 

and of eq. (4) was 6.35 bits/block, clearly showing that the new predictor 
is better for the picture used. Quantizers were then designed for each 
of these predictors. They were optimized by performing subjective ex
periments to measure the visibility of quantization noise as a function 
of the unquantized prediction error; and then, following a procedure 
analogous to that in Ref. 1, the mean-square subjective distortion due 
to quantization noise was minimized. We note that the prediction error 
DJI I with respect to which the noise visibility is determined in these 
experiments is a better choice than D.H I since DJI I is the sum of element 
differences spatially closer to block fA, B,C, D, If, F, G, H}, where the 
quantization error appears. This provides a better spatial masking of 
the quantization noise. A 

The visibility function* fH/o) for noise in HI as a function of D.Hl is 
shown in Fig. 5. Quantizers were obtained for a different number of 
quantization levels (N), and their performance was observed by the 
authors. For N = 21, a fairly good picture was obtained with an entropy 
of 3.13 bits/block. There was a noticeable (not objectionable) noise 

* The method of obtaining visibility function is described in Ref. 1. 
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pattern with some structure in the gray regions. For N = 23, very good 
picture quality was obtained. A noise pattern was slightly visible in the 
gray regions of the picture, and the entropy was 3.17 bits/block. For N 
= 25, a near perfect picture was obtained with a very slight amount of 
noise in the gray regions of the picture. The entropy was 3.19 bits/ 
block. 

During these evaluations, the other coefficients H 2, H 3 and H 4 were 
unquantized. Even though the picture was stationary, the experiment 
was done in real time, so that the effects of camera noise which changes 
from frame to frame were included. 

It is interesting to compare these observations with results 1 obtained 
using HI as the predictor for HI. In that case, a near perfect picture was 
obtained with N = 36 and an entropy of 4.25 bits/block. This shows that 
the new predictor gave about 25 percent lower entropy than the previous 
block coefficient predictor. 

III. ADAPTIVE QUANTIZATION OF THE FIRST COEFFICIENT 

In this part we discuss two separate techniques for the adaptive 
quantization of the first transform coefficient HI. The first technique 
is applicable to PCM quantization, and the second to DPCM quantization 
of the coefficients. 

The general approach is to identify measures of spatial luminance 
activity in terms of certain transform coefficients and then to obtain 
relations between noise visibility and these measures by subjective ex
periments. The visibility function is used for the categorization of blocks 
into subpictures of approximately equal visibility for a given quantity 
of noise. Separate quantizers are used for each category. We will now 
describe the application of this general approach for the quantization 
of HI. 

3.1 Adaptive PCM quantization of H1 

In general, a picture may be categorized into several regions depending 
on spatial detail. HI can be specified with different accuracy in each of 
these regions without degrading the picture quality as seen by a human 
viewer. The magnitude of either H2 or H4 or both is large in the busy 
regions of the picture and, hence, is taken as an indication of picture 
busyness. Since H 2 and H 4 are available to the receiver prior to decoding 
of H 1, there is no need to transmit information regarding the adaptation 
of coding of HI explicitly to the receiver. 

3.1.1 Design of adaptive PCM Quantizer for H1 as a function of I H21, I H41 

Let 
x = max (jH21, IH41) 
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f(x) = visibility function for noise in HI obtained as a function of 
x 

p (x) = probability density of x, measured for picture of Fig. 4. 
We carry out our derivation for a uniform quantizer with "f 1" levels 

used for quantizing HI from all blocks where 0 ::; x ::; X 1, X 1 being a 
positive number, and "f 2" levels used for all other cases. Assuming that 
the quantization noise is proportional to I/(fi)l', i = 1,2, for a positive 
constant ,)" we can express the visible distortion (D) due to the quanti
zation noise ast 

D = ~ fXI f(x) dx + ~ foo f(x) dx 
f1 Jo 1:2 JXI 

(10) 

Assuming no variable-length coding, the average number of bits required 
for such quantization is t 

So
XI ioo B = log f1 p(x) dx + log f2 p(x) dx 

o Xl 
(11) 

Using calculus of variations, we solve the problem of minimizing D, for 
a given B, with respect to fb f2, and Xl. It is seen that the optimum f1 

and f 2, defined as f~, f;, are given by 

I
x! 
o p(x)dx 

I
x! 

r f(x)dx 
o 

(12a) Q* ex:: 
J 

rf 00 f(x)dx 
XI 

f 00 p(x)dx 
XI 

(12b) 

Also the optimum x~ is given by 

f(x~) log (f;/f~) 
--ex: * * 
p(x~) (f 1)-1' - (f 2)-1' 

(I2c) 

As shown in the next section, we simulated a system with adaptive 
quantization to check the above equations. 

3. 1.2 Experimental investigation and results 

An experiment was performed to obtain a value of')' and to verify 
the result of Section 3.1.1. First, the visibility function was obtained by 
subjective testing. Figure 6 shows the visibility function f(x) obtained 
with x as the control function. 

t Except for a proportionality constant. 
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VISIBILITY OF NOISE IN H1 

0.1 

o 10 20 30 40 50 60 70 

Fig. 6-Visibility function for noise in HI. Max (IH2 1,IH4 1) is used as a control vari
able. 

In the experiment, two quantizers, QA and QB, were used to quantize 
HI. For a block, the function x = max (I H 21,1 H 41) was determined t and 
the value compared with a threshold to decide whether quantizer QA or 
QB should be used. The block diagram of the experimental setup is 
shown in Fig. 7. Condition I refers to nonadaptive quantization of HI 
by a uniform quantizer. We considered two cases: for case 1 the uniform 
quantizer uses 128 levels, and for case 2, 64 levels. Condition II pertains 
to quantization of HI by either quantizer QA (for x ~ T) or quantizer 
QB (for x > T). In an A-B test, two subjects compared pictures corre
sponding to conditions I and II and adjusted the threshold T to the 
smallest value at which the pictures appeared to be of the same quality. 

t Effect of quantization of H2 and H4 was neglected. 
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x = max [ IH2 I, 1 H 4 I] ------, 

THRESHOLD T -----..... 

~------. H,O CONDITION I 

--o-_.,..H, o CONDITION II 

I 
I 
I 
I 
I 

___ -.J 

Fig. 7-Experimental setup for quantizer optimization. HI is quantized using a PCM 
quantizer Q and the resulting picture compared with the picture obtained by using PCM 
quantizers QA or Qn. The choice ofQA or Qn depends on whether max (IH21,1H41) is <T 
or ~ T, respectively. 

The results of the test are shown in Table I. QA was a quantizer with the 
same number of levels as the uniform quantizer used for condition 1(7 
or 6 bits per HI sample, as the case may be). QB had a smaller number 
of levels. By changing the threshold T, the percentage of blocks which 
were coded by QA and QB were varied. The table gives N A, the number 
of coefficients coded by the quantizer QA and N B, the number of coef
ficients coded by the QB. The entropies of the output signals of the 
quantizers QA and QB are denoted by E A and E B, and the overall entropy 
is given by E. The entropy of HI for condition I with 64-level quantiza
tion was 5.66 bits/block, and with 128-level quantization it was 6.64 
bits/block. 

The table also shows the advantages of adaptation. It is seen that to 
get the same quality as a picture with 7 -bit quantization of H b the 
combination of 7 and 6 bits for QA and QB, respectively, results in lower 
entropy than combinations 7 and 5 or 7 and 4 bits. Using the combination 
of 7 and 6 bits, the saving in entropy is of the order of 15 percent over the 
nonadaptive quantization. 

In order to judge the usefulness of eq. (12), we took values of f~/f; and 
x ~ obtained from the above experiments and found that an approximate 
value of 2 for l' gave a good fit to all the different cases. The precise value 
of x~ which could be obtained from eq. (12c) was checked by evaluating 
the proportionality constant (between the left-hand side and the 
right-hand side of the equation) for different cases and was found to vary 
by about 14 percent. This allows us to conclude that our experimental 
results are within reasonable agreement of the optimality conditions of 
eq. (12). 

1542 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1977 



Table I - Results of adaptive PCM quantization of H1 

m Conditional Conditional 
X Number of Number of entropy of entropy of Overall 
"U Test Bits for Bits for Bits for Threshold blocks in A blocks in B blocks from blocks from entropy of m 
:D no. Subject quantizer QA quantizer QR quantizer Q T (average) (average) QA QR bits/block 
~ 42 m z 7 4 7 9286 521 6.665 2.922 6.467 -I II 47 en 

Z 19 
I 2 7 5 7 6903 2902 6.688 4.230 5.960 
}> II 23 
0 
}> 

5 ~ 
}> 3 7 6 7 2482 7363 6.503 5.518 5.770 
:D II 5 0 
-I 35 :D 
}> 4 6 4 6 8816 990 5.671 3.048 5.340 
z II 35 en 
"'T1 
0 12 
:D 5 6 5 6 5729 4066 5.699 4.348 5.140 
~ II 6 
() 

Entropy of HI with 6-bit quantization = 5.657 bits/block 0 
0 Entropy of HI with 7 -bit quantization = 6.642 bits/block 
Z 
(j) 

..... 
(11 
.1:10 
W 



3.2 Adaptive DPCM Quantization of H 1 

In this section we describe our experiments in adaptive predictive 
coding of HI using a (2 X 2 X 2) block. This is done by switching the 
quantizer in the predictive coder "loop" as a function of a measure of 
spatial detail. We define the spatial detail S as 

(13) 

This is used as a measure of spatial detail for the transform block con
sisting of elements fA, B, C,D, E,F, G, HI of Fig. 2. Weight a is used to 
compensate for the wider separation between the lines due to interlace. 
We took a to be equal to 1/2. Weight{3, which was taken to be 1/2, com
pensates for the spatial separation between the blocks consisting of lA, 
B, C, D, E, F, G, HI and fA, B, C, 15, E, F, G, HI. Weight 0 was taken to be 
1/4 and compensated for the spatial separation as well as effects of in
terlace. 

Using this measure of spatial detail, we performed subjective tests to 
determine the visibility of noise in HI as a function of S. The visibility 
function from these tests was used to divide the picture into subpictures. 
This is done by making a two-step approximation (i.e., piecewise con
stant approximation with two pieces) to the visibility function. The 
threshold T, corresponding to th,e point of separation of the two pieces 
of approximation, is used to divide the picture. Thus, if S ~ T, the block 
consisting of fA, B, C, D, IE, F, G, HI belongs to subpicture I, otherwise 
it belongs to subpicture II. Each subpicture contains blocks wherein the 
visibility of a unit of quantization noise is approximately equal. 

We performed subjective experiments to determine the characteristics 
of the quantizer for each subpicture. We used the new predictor for H b 

as described in Section II. The conditional visibility function, i.e., the 
visibility function for noise in HI for all blocks belonging to sub picture 
I,.is obtained by adding noise to HI as a function of the unquantized 
prediction error (HI - HI - H4 - H 4 ), whenever the spatial detail for 
the block is less than T. This visibility function is shown in Fig. 8. The 
quantizer for the prediction error of HI from blocks in subpicture I is 
obtained by minimizing the mean-square subjective quantization error, 
using the visibility function as the weighting function. The quantization 
characteristics for HI of subpicture II are obtained similarly. 

We used the quantizers obtained by the above procedure in the real
time system. The picture of Figure 4 was quantized using a 15-level 
quantizer for subpicture I and a 21-level quantizer for subpicture II. The 
entropy of the quantized output was 2.41 bits/block for the first trans
form coefficient. The picture produced by such a quantization was fairly 
good, although the quantization noise was certainly visible (but not 
objectionable). The quality of this picture was approximately the same 
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Fig. 8-Conditional visibility functions for noise in H 1. Prediction error / W 1/ is used 
as a control variable. Segment I circles (-) is for the quiet area and segment II (squares) 
is for the busy area. 

as the quality using a nonadaptive 21-level quantizer. Thus the saving 
in entropy using adaptive quantization was 0.22 bits/block for H b which 
was about 7 percent. We also did adaptive quantization to produce al
most perfect picture quality. This required a 17 -level quantizer for 
subpicture I and a 25-level quantizer for subpicture II. The picture 
quality for this case was equivalent to that produced by 25-level no
nadaptive quantization; the advantage of adaptation is about 0.18 
bits/block, which amounts to about 6 percent. 

IV. SOME COMPARISONS BETWEEN PREDICTIVE CODING AND 
PREDICTIVE TRANSFORM CODING 

In this part, we give a comparison of some of the techniques discussed 
in our previous paper! and the first two parts of this paper. This com
parison, done on our real-time system, is limited to the performance in 
terms of entropy for a given picture quality. 
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We simulated, for the purpose of comparison, two predictive coding 
systems in the pel domain. One used the previous element prediction, 
and the other used a two-dimensional prediction (the predictor for 
picture element A of Fig. 1 was B + C - D). For each of these cases, we 
optimized the quantizer characteristics by doing subjective experiments 
in which the visibility of noise was determined by adding noise to the 
picture element being coded as a function of its prediction error. Pictures 
of different quality were produced by quantizers having a different 
number of levels (N). In the case of the previous element predictor, for 
N = 23, a near perfect picture was obtained. There was very slight noise 
in low-brightness regions. The entropy was 3.57 bits/pel. For N = 16, 
the picture quality obtained was good; however, a slight amount of slope 
overload and edge busyness was observed. In the low-brightness area 
the picture was more noisy than for N = 23. The entropy was 3.20 bits/ 
pel. For a 13-level quantizer, noise was observed in low-brightness levels. 
Slope overload and busyness were observed on the edges. The picture 
was acceptable but impairments were certainly visible. The entropy was 
3.02 bits/pel. 

Using the two-dimensional predictor and a 16-level optimized quan
tizer, a near perfect picture was obtained. There was slight slope overload 
observed in the corner of the mouth of the picture in Fig. 4. The entropy 
was 3.12 bits/pel. For N = 13, a very good picture was obtained except 
for the slight slope overload in regions of large changes. The entropy in 
this case was 2.82 bits/pel. 

We recall from our earlier work l that nonadaptive transform coding 
(in which the first coefficient is coded using predictive coding techniques 
with the previous block coefficient as the predictor and the other coef
ficients are PCM encoded) is capable of generating an excellent picture 
quality with 2.17 bits/pel. Thus there is almost a 0.95 bit/pel advantage 
by using transform coding over DPCM with a two-dimensional predictor, 
and a 1.4 bits/pel advantage over DPCM with a previous element pre
dictor. This advantage is increased by using our new predictor for coding 
of H 1 and adapting the quantizer. An excellent picture would then be 
obtained with 1.80 bits/pel. It should be noted, however, that the DPCM 

techniques which we used for comparison are rather simple, and they 
can be made more sophisticated to decrease the bit rate significantly.ll 
Also, the advantage of transform coding in localizing the transmission 
error to within a block is lost by doing predictive coding of the coefficients 
or by adapting the coding using coefficients from many surrounding 
blocks. 

v. SUMMARY AND CONCLUSIONS 

We have described techniques for adaptive and predictive coding of 
Hadamard transform coefficients. We have shown how predictors for 
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transform coefficients could be designed to reduce the bit rates. For the 
picture we used, the advantage of using our predictor for HI appears to 
be about 25 percent in terms of entropy reductions over the conventional 
predictor using the corresponding coefficients from a previous block. 
We demonstrate this by simulating a predictive coder for coding of HI. 
Adaptive quantization, in which a coarse quantizer is used for areas of 
pictures with larger spatial detail and a fine quantizer is used for rela
tively flat areas of the picture, was demonstrated by PCM quantization 
of H h as well as by predictive quantization of HI. We showed that ad
aptation reduces the bit rate by about 5 to 15 percent without changing 
the picture quality. We attempted a comparison of the predictive coding 
in the pel and transform domain. Here, on the basis of picture quality 
and bit-rate considerations only, we found that using a 2 X 2 X 2 block 
for transform coding allows a lower bit rate by about 1.8 bits/pel over 
simple DPCM techniques using the previous element predictor and 1.3 
bits/pel over DPCM with a two-dimensional predictor. This comparison 
does not consider complexity of the encoding schemes. It should be noted 
that throughout this paper our emphasis has been on investigation of 
certain techniques rather than a description of a complete coding system; 
several aspects (e.g., channel errors) which are important to a coding 
system have not been discussed. 
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We propose a satellite with a high gain, movable spot beam to com
municate with individual earth stations time-sharing a single channel 
in the TDMA (Time-Division Multiple Access) mode. It is estimated that 
this approach could readily save some 20 dB in the link budget while 
still providing full U.S. coverage. When this 20 dB is apportioned with 
the objectives of reducing the earth-station antenna size, increasing 
the satellite capacity, and reducing transmitter power, the effects are 
dramatic. This technique can be combined with a fixed-spot beam 
system serving major traffic areas. This combination can provide both 
full area coverage as well as multiple reuse of the frequency band. A 
TDMA burst organization is proposed, and estimates of burst lengths, 
beam switching intervals, and buffer storage size are made for a 100-
earth-station network operating on a 600 Mb/s channel. A phased array 
antenna with each element irradiating the entire U.S. is employed to 
form the movable spot-beam. This provides an attractive solution even 
though a closed-loop beam-forming algorithm may be required. It ap
pears feasible to construct such an antenna with nearly 50-dB gain 
capable of forming a spot beam toward any position within the conti
nental United States with a switching time of a few nanoseconds. 

I. INTRODUCTION 

The current approaches to domestic-satellite systems divide along 
the lines of area-coverage and spot-beam concepts. Each system has its 
merits as well as disadvantages. A spot-beam satellite system1,2 allows 
high antenna gain and several reuses of the allocated frequency spec
trum. In Ref. 1, a 12/14-GHz system with 11 frequency reuses was de
scribed which could provide reliable service at digital rates of 600 Mb/s 
with 30 watts peak transmitter power, employing a satellite antenna 
having 47 -dB gain in each spot-beam. The disadvantage of such a system 
stems from the fact that each spot-beam covers only a small area. To 
avoid cochannel interference, a dead space between any two adjacent 
beams much larger than the beam coverage area (e.g., 3-dB contour) is 

1549 



required.3,4 Also, there are regions needing service which do not have 
enough traffic to justify a dedicated spot-beam. 

Area coverage satellites, such as used by AT&T/GTE, Western Union, 
or RCA use broad antenna beams covering the whole United States. They 
are capable of providing service everywhere within the continental U.S.A. 
but lack channel capacity because the alloted spectrum can be reused 
at most once by polarization reuse. A more significant disadvantage, 
however, is the power penalty associated with the gain of an area-cov
erage antenna. The 3-dB contour gain of a U.S. coverage antenna is only 
27 dB, and there is little that can be done to improve it further. To obtain 
the same SNR as the previously mentioned spot-beam antenna system, 
the required RF power to transmit at a 600-Mb/s data rate would be 3 
kW. Equivalently, one could use a 10 times larger diameter earth station 
antenna than used by a spot-beam system. Since neither alternative is 
practical, the link SNR must be compromised by approximately 10 dB. 
As a result the rain outage at 12 G Hz might be expected to increase by 
an order of magnitude.5 Even with a 10-dB sacrifice in margin, an ad
ditional10 dB must be obtained through a combination of higher satellite 
transmitter power and larger earth stations. This is the unfortunate price' 
one must pay to use a wide-area-coverage antenna. 

In this paper, we discuss a new concept which achieves area coverage 
using a rapidly scanned spot-beam. The beam is steered so that all parts 
of the country can be covered, but at different times, which works per
fectly with a time-division multiple access (TDMA) configuration. Be
cause only one ground station accesses the satellite at a time, a spot-beam 
toward that ground station is all that is needed and spreading energy 
over the entire United States is not necessary. To achieve total service, 
it is necessary to scan both the transmit and receive beams, coordinating 
their movements in accordance with the pair-wise traffic demands of 
the system. Each station is assigned a time slot where it transmits bursts 
of information to other stations. It is envisioned that the antenna gains 
would be of the order of 50 dB so that approximately 1 percent of the U.S. 
is illuminated at anyone time. Thus, 100 beam directions will provide 
complete U.S. coverage. Once a particular scanning sequence is set up, 
it would be repeated at a frame period of perhaps a few milliseconds. 

Let us examine the potential advantage of such a scanning spot-beam 
system. At 12/14 GHz, with polarization reuse, an area coverage satellite 
has enough bandwidth (1 GHz total) to support about a 1.2-Gb/s data 
rate. Under the conditions of Ref. 1, which assumed a large margin to 
minimize outage due to rain, the area coverage system would require 6 
kW ofRF power. Even using the 10 dB less margin, the required weight 
in solar cells is so Jarge polarization reuse cannot be employed if the most 
popular of today's launch vehicles is used. * In a scanned-beam system 
only 30 watts of RF power are needed for a 600 Mb/s transmit beam. 
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Since the weight required for electrical power generation by solar cells 
scales linearly with power, the scanning spot-beam concept potentially 
offers a 100-fold decrease in the weight required for electrical power 
compared with an area coverage system operating with the same sig
nal-to-noise ratio. Thus, it appears that the scanned beam offers 
significant satellite weight savings, provided the scanning system can 
be realized without an exorbitant cost in weight. 

The weight savings may be utilized in a number of ways. An important 
first option might be to choose a smaller, cheaper booster to launch the 
payload. A second option might be to increase the satellite transmitter 
power, consequently allowing smaller earth station attennas, or third, 
to attempt to increase the satellite capacity. A technique which readily 
lends itself to increased capacity is to combine a fixed spot-beam and 
scanning spot-beam system. By letting the scanning beams (one transmit 
and one receive) occupy one polarization they can be dedicated to serving 
the low-traffic areas, while cross-polarized fixed spot-beams would be 
concentrated on the major metropolitan areas. These spot beams would 
be spatially separated far enough from one another to allow complete 
reuse of the frequency spectrum; as many as 10 simultaneous reuses of 
the frequency band may be possible. 

Let us see how the advantages of this technique might effect an overall 
system. In Table I below we have selected typical values of some key 
elements of the earth-space link for both an area coverage and a scanning 
spot beam system. Because of reciprocity the 20 dB advantage for the 
scanning spot beam is enjoyed on both the up-link and down-link. Ob
viously, there are many tradeoffs to be considered among the various 
link parameters, even for an area coverage satellite system; in the ex
amples given below the major consideration was to provide a system 
capable of serving many low-cost earth stations. Employing several fixed 
beams together with the scanning spot-beam system, a 10~fold increase 
in capacity is possible, and moreover, earth-station antenna size can be 
significantly reduced while providing the same signal-to-noise ratio as 
a conventional area coverage system. 

For the remainder of this paper we will concentrate only on the 
scanning spot-beam portion of the system and defer consideration of 
combinations with fixed spot-beams to a later publication. In the next 
section we shall describe the system concepts and in particular the burst 
formats and timing organization. In Section III, the formation of rapidly 

* The high-power Japanese Broadcast Satellite6 generates dc power at 0.23Ib/W. Al
lowing a 40 percent overall transmission efficiency, 7.5 kW (or 17251b) are needed for an 
average coverage satellite with high rain margins. As a comparison, the Thor-Delta 3914 
rocket provides about 400 lbs payload for the communication and power supply packages. 
The Atlas-Centaur provides about 800 lbs. Significantly higher payloads will be possible 
with the advent of the Space Transportation System. 

SCANNING SPOT-BEAM SATELLITE 1551 



Table I - Example differences of key elements in 12/14-GHz 
satellite systems when one has a 20-d8 advantage in the link 

budget 

Fixed and 
Area scanning 

coverage spot-beam dB 
system system difference 

Up-link: 
Earth station antenna (meters) 6 2.25 8.5 
Earth station transmitter (watts) 500 35 11.5 

W 
Down-link: 
Earth station antenna (meters) 6 2.25 8.5 
Receiver noise temperature (kelvin) 200 280 1.5 
Satellite transmitter power (watts/500 MHz) 300 30 
Total transmitted power (watts) 300 300 
Capacity (Mb/sec) 600 6000 10.0 

W-

scanned beams is discussed. The array design and its performance is 
examined in Section IV. 

II. TDMA BURST ORGANIZATION 

There may be hundreds of ground stations in a scanned spot-beam 
system. For example, with 100 ground stations in the system, the number 
of possible distinct links is 4950 pairs. Of course, at any particular time 
the total number of connected links may be far less than this, and the 
number of channels required between various pairs of earth stations 
would be by no means equal. We shall discuss one possible organization 
format that provides the connections among the ground stations in the 
following paragraphs. 

To illustrate a possible organization of such a system let us refer to 
Fig. 1. Shown here in the time domain are time-interleaved bursts from 
100 ground stations which are repeated at a frame length T. Each burst 
occupies a time length Tk and consists of preambles as well as data 
streams for all other earth stations as illustrated by the burst T2 in Fig. 
1. The preamble enables carrier and timing recovery on the satellite. At 
the satellite, the digital bursts are detected and remodulated onto a 
carrier and are sent down to the ground stations via the scanned spot
beams as shown in the time-sequence plot of Fig. 2. Consider burst TI, 

which consists of many subbursts intended for different ground stations. 
The scanned spot-beam has to be formed and moved fast enough at the 
sub-burst rate to illuminate all the ground stations in the duration of 
the burst length Tl. Each ground station only receives the intended 
message; the time domain sequence of the received sequence of subbursts 
is shown in Fig. 2b. Again, each subburst should carry a preamble to 
facilitate carrier and timing recovery at the ground station. 
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Fig. I-Uplink frame and burst format. Frame length T, burst length Tk, Subburst 
Length Tij. 

With 500-MHz bandwidth available, it is reasonable to assume a bit 
rate of 600 Mb/s or 300 Mbauds/s using four-phase PSK modulation. 
Assuming 32 kb/s per channel, the total capacity is 18,800 circuits or 9400 
two-way circuits. Allowing the simultaneous participation of 100 ground 
stations and that each station might communicate with 10 other stations, 
each burst would then average 94 circuits and each sub burst carries only 
9.4 circuits. In fact, it is quite possible that some subbursts may carry 

NO.1 NO.1 NO.1 NO. 100 NO. 100 NO. 100 
TO TO .. . TO .... . TO TO ... TO 

NO.2 NO.4 NO. 100 NO.1 NO.2 NO. 95 

~-------Tl--- -----~ k---------T100-------~ 
~------------------~------------------J 

liIo.l 
TO 

NO.2 

(a) DOWNLINK BURSTS 

m NO.2 

~-T12-~ k-T 42-~ k--Tl00,2--J 

~-------------------T-------------------~ 
(b) DOWNLINK BURSTS INTENDED FOR GROUND STATION NO.2 

Fig. 2-Downlink burst formats. 

t 
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only one or two circuits at a time. For a frame length of 125 f.Lsec, i.e., 
8-kHz sampling rate, a subburst carrying one voice circuit consists of 
only 4 bits. This is far less than the preamble requirement and results 
not only in inefficiency but also in an unrealistically high switching rate 
of the spot-beam. However, by buffering at ground stations, the frame 
length may be lengthened by a factor of 100 to, say, 12.5 msec. This added 
round-trip delay of 50 msec is still small compared to the 480 msec 
round-trip delay over the satellite path and should not cause significant 
echo degradation. In this way, each subburst contains a minimum of 400 
bits and the necessary preamble 20 to 40 bauds7 becomes a small penalty, 
even in the case of single channel subbursts. The required switching time 
of the spot beams should be achieved in the order of a few bauds, e.g., 
10 ns. 

The number of bits in a frame is simply 600 Mb/s times 12.5 ms = 7.5 
X 106 bits. A station using 1 percent of the capacity of the channel would 
need to buffer only 150 kb for both up- and down-link transmission. 
Since 16k bits of memory are available on integrated circuits chips today, 
the buffer requirement can be readily satisfied with minimal cost and 
effort. 

III. BEAM-FORMING NETWORKS 

There are many ways to form rapidly scanned beams.8 The simplest 
approach for satellite application is to use a parabolic reflector with 
multiple feeds as shown in Fig. 3. In Fig. 3a, a 5 X 5 feed horn array is 
shown at the focal plane of an offset paraboloid. Each feed horn, if singly 
excited, would produce a main lobe which coincides with the intended 
coverage area on the ground. Figure 3b illustrates the far-field pattern 
of two adjacent beams, e.g., beam No.1 and 2. However, there are sig
nificant drawbacks with this approach in that the beam switching must 
be performed at high power level because all the power is fed into a single 
horn. As a result, the switching speed and/or drive power presents serious 
design problems. Furthermore, to produce full area coverage, the adja
cent beams overlap at the 3-dB points. This requires an undersized feed 
horn and thus antenna gain suffers because of spillover loss. Significant 
cross-coupling loss into the adjacent feed horns further reduces the re
flector antenna gain. One possible alternative is to form a beam by si
multaneously feeding the center horn and the adjoining horns with re
duced magnitude.9 This reduces the spillover and cross-coupling loss 
but most of the power is still handled by the center horn. Furthermore, 
the feed network becomes extremely complicated. 

A more attractive approach is to form an array of high-gain elements. 
For example, employing element patterns covering the United States 
with 27-dB edge gain, only 100 elements are needed to produce a 47-dB 
gain beam-forming array. A typical radiated power requirement of 30 
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Fig. 3-Beam forming by multiple feeds. 

watts is distributed among the 100 elements resulting in 0.3 watts per 
element. This should permit the use of solid -state microwave power 
devices such as GaAs FET amplifiers at each element as the final power 
stage. This may allow a weight reduction and will increase reliability 
because failure of elements merely reduces the radiated power. Beam 
forming is easily achievable by micros trip phase shifters which can 
change state within a few nanoseconds. By placing the phase shifters 
before the GaAs FET amplifiers at the low-power points, rapid beam 
switching can be controlled easily with high-speed logic. 

IV. ARRAY DESIGN 

Phased arrays have some characteristics different from reflector an
tennas that affect their performance. When a phased array is scanned 
off-axis there is a difference in path length between the array edge and 
its center. This limits its useful bandwidth. Also, it is most convenient 
to form a beam using discrete phase steps, and using steps which are too 
coarse will reduce the array gain. Another source of gain degradation 
arises when elements fail. Finally, component phase drift may make it 
impossible to form beams in an open-loop manner. 

To treat the above topics in a quantitative manner is beyond the scope 
of this brief paper, and they will be published at another time. We have 
calculated, however, that a 120A aperture phased array scanning ±3 
degrees would satisfy the bandwidth requirements of 500 MHz at 12-
GHz carrier frequency with little degradation. Such an antenna would 
serve the continental United States from geosynchronous orbit. 

Since we would envision that the phase shifter settings for all the 
possible beam-pointing angles would be stored in a digital memory, the 
values for the individual phase shifts necessarily become quantized. It 
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is interesting to note that very coarse approximations to the precise phase 
settings result in very little gain degradation. For example, quantizing 
the phase into one of four quadrants (± 45 degrees) results in an expected 
value of on-axis gain decrease of less than 1 dB for a 100-element array. 
Other considerations such as sidelobe performance and high assurance 
of little gain loss for any scan angle will probably dictate phase shifters 
quantized to either ±22.5 or ±11.25 degrees. This results in a storage 
requirement of 3 or 4 bits per element per beam position. Thus, on-board 
the satellite 30 to 40 thousand bits of memory are required for a 100-
element array to scan to 100 positions. Since upwards of 16,000 bits are 
readily available on a single memory chip, this is a very modest re
quirement. 

Let us consider briefly the array gain degradation due to failure of 
elements. Denote the gain of an N-element array by N. Let each element 
radiate unity power, so that the EIRP in the main beam direction is Po 
= N2. If M elements fail, the array gain reduces to N-M and the EIRP 
becomes (N-M)2. We are assuming, of course, that there is no mutual 
coupling between elements, which is reasonable because the aperture 
size of the elements is large. Thus, the EIRP for the case of failed elements 
becomes 

p=Po(N~M)2 

It is interesting to note the above equation is identical to the failure 
performance of cascaded hybrid power combiners. If 10 percent of the 
elements fail, 19 percent of the radiated power would be lost compared 
with a perfectly functioning phased array. 

In both the case of failed elements and discrete phase-shift settings, 
the sidelobe performance may be adversely affected. This does not pose 
a significant problem in these considerations because only one spot-beam 
is contemplated. However, for a more sophisticated system which would 
have two or more cochannel spot-beams, the questions of sidelobe per
formance and mutual interference would have to be seriously ad
dressed. 

For a synchronous satellite located at 98° E longitude (mid-U.S.A.), 
the continental U.S.A., when viewed from the satellite, spans about 6 
degrees in the east-west direction and 3 degrees in the north-south di
rection as shown in Fig. 4. We want to concentrate the array radiated 
power into the main beam so that for a given gain, the spot-beam will 
cover the largest area. This would reduce the number of spot-beams 
required for total U.S.A. coverage. The above requirement implies arrays 
with closely packed elements. Thus the use of random arrays or other 
forms of thinned arrays is ruled out of our considerations and a periodic 
array is more appropriate. 
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Fig. 4-The United States as viewed by a synchronous satellite at 98° E pointed at 98° 
E and 36° N. 

To reduce the number of array elements we use high gain elements 
for the individual radiators. This invariably leads to grating lobes. To 
avoid grating lobes falling on the continental United States while the 
array is scanning across the desired coverage area, the grating lobes 
should be at least 3 degrees apart in N -S direction and more than 7 de
grees in E-W direction. Recall that a grating lobe angle,1/;, is related to 
element spacing, d, by 1/; = "AId radians, the maximum allowable spacings 
are: 

dE-w = ~ 180 = 8.2"A 
7r 7 

"A 180 
dN-s = - - = 19.1"A 

7r 3 

The array is shown in Fig. 5 with element spacings prescribed by the 
above equations. The elements are rectangular in shape with dimensions 
of 8.2"A and 19.1"A. A pyramidal horn antenna would be one simple method 
of realizing the array element. A more attractive antenna design would 
be one which accommodates spot-beams on one polarization and the 
scanning beams on the other. This work will be published later by other 
authors. 

The 3-dB beamwidths expressed in radians of these elements in the 
two principal planes are approximately 

(J3dB = 1.2 "AId 
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NORTH 
6° • GRATING LOBE LOCATIONS 

WHILE STEERED TO CENTER U.S.A. 

* GRATING LOBE LOCATIONS 
WHILE STEERED TO E-W EXTREMES 

4° 

• * ---- ------ * /"------ ~--- ............... 
• 

/ ~ 
/ ----- "-

/ // '\ \ 
W_E~~rT~l~/_+I __ -HG_*~ __ +-____ ~ ____ -r __ +* ~ I 1 

8° \' 6° \4 0 4'l 6° T 
\" / I 
'\ '--- _/ / 

'-... 2o-~-3dBCONTOUR / 

'............... --.,../' -;.---- --r-;-" • • 
"-

4° 
..... -10 dB CONTOUR 

6° 
SOUTH 

Fig. 6-Element pattern and grating lobes locations. 
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For the dimensions given, (J3dB(E-W) = 8.4 degrees and (J3dB(N-S) = 3.6 
degrees. Assuming 50 percent aperture efficiency the gain of this high
gain element would be 

G = 10 log (0.5 4~~) = 29.9 dB 

In Fig. 6, the equal intensity contour of the individual radiator, extrap
olated from Silver,lO is plotted over a map of the U.S.A. Also shown are 
the grating lobe locations when the array beam is pointed toward mid
U.S.A. For off-center scanning beams, the grating lobe locations are 
shifted according to the angles scanned. It can be seen that grating lobes 
will be outside of the United States for all cases as expected. The array 
gain when all elements are equally excited is 50 dB at the center of the 
United States and will drop to 47 dB when scanned to the 3-dB edge of 
the element pattern. 

The array shown is basically circular in shape; this has reduced side
lobes compared with a rectangular array. Further control of the sidelobes 
is possible by a minor amount of spatial tapering of the intensity of the 
array excitation, but of course gain will be sacrificed. A more detailed 
study is needed to determine the optimal design. 

V. CONCLUSIONS 

The best approach for digital communications among multiple earth 
stations with varying traffic requirements appears to be Time-Division 
Multiple Access (TDMA). In an area coverage concept all earth stations 
time-share a single up-link channel; a single antenna broadcasts all 
messages on a common down-link channel and each station selects only 
those messages intended for it. In this paper we propose using a movable· 
spot-beam to radiate to each earth station consistent with the TDMA 

approach. With a reasonable-size aperture antenna it is estimated for 
the equivalent SNR of an area coverage antenna that approximately 20 
dB can be saved in the link budget. This savings can be advantagenously 
applied to reduce the satellite transmitter power, increase its capacity, 
and significantly reduce the size of the earth station antennas. 

A TDMA burst organization is proposed, and estimates of burst lengths, 
beam-switching intervals, and buffer storage size are made for a 100-
earth-station network operating on a 600-Mb/s channel; all requirements 
for operating such a system appear feasible and within the state of to
day's art. Two approaches for forming rapidly scanning spot-beams were 
discussed. One approach used a single reflector with a multiple feed-horn 
array; the other employs a phased array with each element radiating the 
entire U.S. An equally spaced array of rectangular elements arranged 
inside a circle appears to provide an attractive solution. Using this ap
proach an antenna capable of forming spot-beams with nearly 50-dB gain 
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in any direction within ± 3 degrees of center within 10 ns appears fea
sible. 
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Use of Variable-Quality Coding and Time-Interval 
Modification in Packet Transmission of Speech 

By S. A. WEBBER, C. J. HARRIS, and J. L. FLANAGAN 

(Manuscript received December 14, 1976) 

Speech transmission by switched digital packets offers several op
portunities for increasing the utilization of transmission capacity. We 
comment here upon a combination of variable-quality coding and 
time-interval modification that can efficiently load a transmission facility 
and accommodate fluctuating demands on it. 

Consider, typically, that a conventional voice switch detects speech 
energy bursts and demarks each as a packet. A time stamp is given to 
each packet, and the interburst silences are discarded. Each packet is 
digitally encoded with a quality that reflects service demands being made 
on the transmission facility at the moment. Coding bit rate and time
stamp are written in the header data for each packet, along with neces
sary supervisory information, such as destination and source addresses. 
Successive packets are assembled in a transmit buffer and are trans
mitted when capacity is available. Figure 1 illustrates the process. 

At the receiver, arriving packets are accepted into a receive buffer. The 
receiver decodes each packet (in accordance with the header bit rate), 
reassembles the packets in temporal order (according to the time-stamp), 
and reinserts the silent intervals, not necessarily exactly as in the original, 
but with a variation that is perceptually acceptable. 

Relevant design questions include: (i) how much saving in transmis
sion capacity can be achieved by discarding the silent intervals, (ii) what 
range of signal quality is acceptable in digitally coding the packets, (iii) 
what latitude is perceptually acceptable in reconstructing the speech 
silent intervals, (iv) what total round-trip delay time is allowable in a 
packet system, (v) what transmit and receive buffer sizes are required, 
and (vi) what packet sizes are attractive for transmission economy. 
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Fig. I-Speech energy bursts detected by a voice switch, digitally coded, and formed 
into packets. 

Question (i) is thoroughly addressed in the extensive literature on 
Time Assignment Speech Interpolation (TASI) systems. We will add here 
one more bit of confirmatory data. Questions (ii) and (iii) dramatically 
influence the buffer requirements for the system. Our purpose here is 
to remark about preliminary observations on these issues, and to em
phasize these points as candidates for quantitative study. 

Extensive data from satellite transmission and echo canceller tech
nology relate to question (iv) and suggest that round-trip delays of 0.6 
sec, and in some cases up to 1.2 sec, can be used. Questions (v) and (vi) 
can properly be addressed only in the context of a complete system de
sign and its optimization. Our remarks, therefore, relate to the points 
(i), (ii) and (iii). For convenience, all our observations assume that each 
speech burst is coded as one packet. We implement our experiment by 
simulation on a laboratory computer, and we process sentence-length 
signals. 

Within-sentence silence time. Our particular voice switch utilizes the 
Hilbert envelope of the speech signal, and includes a hysteresis logic for 
positive switch action. The total within-sentence silent time made 
available by the switching is of course a function of the switch threshold. 
Too low a threshold provides too little silent time, and too high a 
threshold eliminates too much signal. Our laboratory observations 
suggest that within-sentence silent time equal to about 15 percent 
(of the total sentence duration) can be usefully eliminated. This figure 
also appears consistent with related studies on voice switching. (Addi
tionally, of course, there are substantial between-sentence silences and 
natural pauses in conversation flow that can be eliminated.) The sound 
spectrogram of Fig. 2a shows an input sentence with the significant silent 
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Fig. 3-Modifications of the within-sentence silent intervals for the sentence of Fig. 
2. The output is reconstructed from five high-quality packets. 

intervals detected by the voice switch. Fig. 2b shows the same signal after 
passing through the voice switch. In this instance the eliminated silent 
time is approximately 17 percent of the total duration. 

Variable-quality digital coding. We digitally encoded each of the five 
packets demarked (separated) by the silent intervals in Fig. 2a, using 
adaptive-differential PCM (ADPCM). The digital coder was also computer 
simulated. We let the packets be coded successively at bit rates of 40K, 
30K, 20K, 30K, and finally back to 40K bits/second, simulating a mo
mentary heavy demand on the transmission system. 

The sound spectrogram for this digital coding is shown in Fig. 2c, 
where the signal packets are reconstructed with silent intervals identical 
to the original input. One sees that the greatest quantizing noise appears 
for the momentary quality dip to 20K bits/sec in the third packet. The 
overall subjective impression of this coding is that the quality is rea-
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sonably acceptable. t The perceptual palatability of ADPCM coding also 
contributes to this result. In this particular instance, the average bit rate 
for the transmission is 28.6K bits/sec. 

Time-interval modification. Latitude in reconstructing the silent 
intervals in the signal at the receiver can significantly relieve buffer re
quirements. What modifications in time intervals might be perceptually 
acceptable? Figure 3 shows receiver reconstruction of high-quality 
packets with constant, multiplicative modifications of the silent time 
intervals of 0.5, 1.0, 1.5, and 2.0. (0.0 and 4.0 were also examined, but are 
not shown here.) One silent interval (the last) is selected and marked 
for comparison across the signals. Perceptual assessment of these re
constructed packets suggests that interval modifications of the order 
of ±50 percent are tolerable. This latitude is also large enough to be 
advantageous in buffer design. * Interval lengthening of more than 200 
percent, and shortening down to 0 percent, are clearly not acceptable. 

t Extensive current work on TASI-D also gives insight about this coding range. 
* Additionally, the possibility exists for modifying the durations of the active signal 

packets (by spectrum-preserving techniques such as the phase vocoder). 
. Technical material in this note was presented orally to the 93rd meeting of the Acoustical 
Society of America (J. Acoust. Soc. Am. 61, S69, June 1977). 
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