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Information in the Zero Crossings 
of Bandpass Signals 

By B. F. LOGAN, JR. 

(Manuscript received October 4, 1976) 

An interesting subclass of bandpass signals /h} is described wherein 
the zero crossings of h determine h within a multiplicative constant. 
The members may have complex zeros, but it is necessary that h should 
have no zeros in common with its Hilbert transform h other than real 
simple zeros. It is then sufficient that the band be less than an octave 
in width. The subclass is shown to include full-carrier upper-sideband 
signals (of less than an octave bandwidth). Also it is shown that full­
carrier lower-sideband signals have only real simple zeros (for any ratio 
of upper and lower frequencies) and; hence, are readily identified by 
their zero crossings. However, under the most general conditions for 
uniqueness, the problem of actually recovering h from its sign changes 
appears to be very difficult and impractical. 

I. INTRODUCTION 

Voelcker and Requicha 1 raised the question, among others, as to when 
a bandpass signal h (t) might be recovered (within a multiplicative 
constant) from sgn /h(t)}, that is, from its zero crossings. There are really 
two questions here that should be treated separately: the question of 
uniqueness and the question of recoverability. Recoverability implies 
that there is an effective (stable) way of recovering the signal from the 
data. Uniqueness does not always imply recoverability. For example, 
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a band-limited signal is uniquely determined from its samples (at slightly 
greater than the Nyquist rate) just on a half line, say t < 0, but there is 
no stable way of recovering the signal from the half-line samples. How­
ever, to demonstrate recoverability we must first establish uniqueness. 
Here we examine the question of uniqueness. 

There are countless ad hoc ways of choosing a subset Z of bandpass 
signals such that 

(1) 

implies 

(2) 

e.g., by choosing the first member in an arbitrary way and then choosing 
successive members that have distinct signum functions. However, the 
subset Z could be considered interesting only if it reveals basic con­
straints on the sign changes of members of the whole class. Our objective 
is to illuminate the structure of bandpass functions (signals) having the 
same signum function. 

In connection with (1), we are going to assume that the function sgn 
\h(t)} has no removable discontinuities,* and, hence, does not mark the 
location of zeros of even multiplicity. Also, in the context of the problem 
here we say two functions are distinct only if one is not a constant mul­
tiple of the other. 

We first focus on the problem of constructing distinct bandpass 
functions having the same signum function. This leads to the concept 
of the "free" zeros of a bandpass function h. 

The free zeros of h are those zeros that may be removed or moved 
around (by replacing the removed zero with another) without destroying 
the bandpass property of h. Removing (or moving) any zero of h does 
not destroy the overall low-pass property of h but may destroy the 
bandpass property. The simple examples sin t and t- 1 sin t illustrate 
this fact. 

We show that the free zeros of h are simply the common zeros of hand 
its Hilbert transform h. These are further identified as common zeros 
of certain low-pass functions in the representation of h. In case of real­
valued h(t), the free zeros of h are conveniently identified in the repre­
sentation 

h(t) = Re \f(t )ei~t} 

as the real zeros of f and those complex zeros of f that occur in conjugate 

* According to the usual convention, sgn 0 = 0, the function set) = sgn lsin:! t\ would have 
removable discontinuities at the zeros of sin t. Here we assume that the function of t, sgn 
lh (t)\, takes the value 0 only at points where h (t) changes sign. 
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pairs. Here f(t) is an arbitrary complex-valued band-limited function 
which need not have complex zeros occurring in conjugate pairs. 

It follows readily that if a real-valued bandpass h(t) has free zeros 
other than real simple (free) zeros, then there is a distinct function in 
the same class having the same signum function as h (t). So, in the ab­
sence of some meaningless ad hoc rule, we must restrict our attention 
to functions that have no free zeros other than real simple zeros if we 
require sgn lh(t)l to determine h(t) within a constant multiplier. 

It is possible, however, as shown by an example, for distinct bandpass 
functions to have the same signum function when neither has any free 
zeros. This is possible only when the passband spans an octave or 
more. 

Our main result is that (1) implies (2) when Z = Z(a,{3) consists of 
those real-valued h(t) having no free zeros other than real simple free 
zeros and having spectrum confined to [a,{3] (and [-{3,-a]), where ° < 
a < {3 < 2a. 

The key to this result is the simple identity (37) 

h1(t)h 2(t) - h2(t)h 1(t) = g(t), 

where in terms of the representation (9), 

hi (t) = pdt) cos , .. it - qi (t) sin J.Lt (i = 1,2), 

g is given by 

g(t) = P2(t)ql(t) - Pl(t)q2(t). 

Here Pi and qi are band limited to [-),,/2,),,/2] and, hence, g is band 
limited to [-)..,)..], where).. = {3 - a. Then, if hI and h2 have enough 
common zeros ltk I = S, we can conclude from 

that 

and, hence, that 

g(t;J = ° all tk in S 

g(t) == 0, 

hI(t) h 2(t) 

hr(t) == h 2(t)' 

Then, if hI and h2 have no free zeros, i.e., no zeros in common withtheir 
Hilbert transforms, we can conclude that 

The same conclusion can be obtained with some additional argument 
when 
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is replaced by 

sgn hI (t) == sgn h2(t) 

and hI and h2 are allowed free zeros that are only real and simple. 
It is well known that g can have no more zeros, roughly speaking, than 

cos At without vanishing identically. It is also known that hi must have, 
roughly speaking, at least as many sign changes as cos at. In any par­
ticular case, all we really need in addition to the free-zero constraint is 
that hi has, roughly speaking, more sign changes than cos At, where A 
is the width of the passband. This is always assured, then, when a> A, 
i.e., when {3 < 2a, but of course may obtain in other cases. 

For the rigorous development of our results we first require some basic 
definitions. 

II. BAND-LIMITED FUNCTIONS 

These are restrictions to the real line of entire functions of exponential 
type, which are bounded on the real line. The standard reference on the 
subject is the book by Boas.2 It is convenient to introduce a notation for 
subclasses of band-limited functions. 

Definition: Bp (A), (1 ~ p ~ 00) denotes the collection of functions f(t), 
- 00 < t < 00, which belong to Lp on the real line and extend as entire 
functions ((r), r = t + iu, of exponential type A, A ~ O. [Bp(O) is empty 
except for p = 00.] 

For 1 ~ P ~ 2, the functions in Bp (A) have ordinary Fourier transforms 
that vanish outside [-A,A]. This follows from the Paley-Wiener theorem3 

for B2 and the fact that* 

(3) 

Thus, Boo(A) contains.Bp(A) for all p ~ 1 and it has been shown4 that for 
(in Boo(A) (see Appendix), 

lim IT (1 _ltl) f(t)e-iwtdt = 0, Iwl > A. (4) 
T-oo -T T 

So, in a very real sense, the Fourier transforms of functions in Boo(A) 
can be said to vanish outside [- A,A]. 

III. BANDPASS FUNCTIONS 

These are bounded functions whose spectra are confined to the in­
tervals [a,,B] and [-,B,-a] where 0 < a <,B < 00. 

* See Ref. 2, Theorem 6.7.18, page 102. 
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Definition: Bp (ex,/3) denotes the class of functions of the form 

h(t) = fl(t)e iJlt + !2(t)e- iJlt, (5) 

where hand f2 belong to Bp (A/2), 

A = /3 - ex (0 < ex < /3 < 00) (5a) 

ex +/3 
J,l = --. (5b) 

2 

It follows from (3) that 

Boo(ex,{3) ~ B p(ex,/3), 1 ~ p < 00, 

so we focus on the more general class Boo (ex,{3). 

Functions of the form (5) have Hilbert transforms (see Ref. 5) h(t) 
given by 

(6) 

(We could take (6) as the definition of the Hilbert transform of a 
bounded bandpass function and show that it agrees with the usual def­
inition.) We have 

h(t) + ih(t) = 2h(t)e iJlt 

h(t) - ih(t) = 2!2(t)e-iJlt 

We may write (5) and (6) in the forms 

where 

h(t) = p(t) cos J,lt - q(t) sin J,lt 

h(t) = p(t) sin J,lt + q(t) cos J,lt, 

(7) 

(8) 

(9) 

(10) 

Then for real-valued h (t), we must have p and q real and, therefore, 

!2(t) = h(t). (12) 

That is, a real-valued function in Boo(ex,{3) is completely described by one 
complex-valued function f in Boo (A/2), A = /3 - ex, or equivalently by two 
real-valued functions p and q in Boo(A/2); i.e., 

h(t) = Re If(t)eiJltj, (13) 
where 

f(t) = p(t) + iq(t), p,q E Boo (A/2). (13a) 

It is sometimes convenient to exhibit one of the end points of the interval 
[ex,/3] in the exponential factor by writing for (13) 

h(t) = Re If+(t)e iat }, (14) 
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where 

f+(t) = f(t) exp {i ~t} == x(t) + iy(t) (14a) 

or 

h(t) = Re If_(t)eiiJtj, (15) 

where 

f-(t) = f(t) exp {- i~t} == ret) - is(t). (15a) 

In (14a) f + is a function whose spectrum is confined to [O,A] and whose 
real and imaginary parts x and y belong to Boo(A). In (15a) f _ is a function 
whose spectrum is confined to [-A,O] and whose real and imaginary parts 
rand -s belong to Boo(A). In the form (14), h(t) may be interpreted as 
the upper single-sideband signal associated with x (t) and carrier fre­
quency a, whereas in (15), h(t) may be interpreted as the lower single­
sideband signal associated with r(t) and carrier frequen~y {3. Usually one 
thinks of y as the Hilbert transform of x and s as the Hilbert transform 
of r. However, such a relation does not follow without further restrictions 
on f; e.g., f E Bp (A/2), p < 00. Because x and y (r and s) are interde­
pendent through p and q, the representation (13) is usually more con­
venient to work with. 

IV. FREE ZEROS OF BANDPASS FUNCTIONS 

If h belongs to Boo (a,{3) and h(~) = 0, then the function 

at + b 
get) == -- h(t) (16) 

t - ~ 

for arbitrary (a,b) certainly belongs to Boo({3), since geT) is an entire 
function of exponential type {3 bounded on the real line. However, it does 
not follow that g belongs to Boo (a,{3). For this reason, it is not so easy to 
construct distinct bandpass functions having the same signum func­
tion. 

Definition: A complex (or real) number ~ is said to be a free zero of h if 
the function g defined in (16) belongs to Boo(a,{3) whenever h belongs to 
Boo (a,{3). 

Theorem 1: A complex (or real) number ~ is a free zero of a function h 
in Boo (a,{3) if and only if 

h(~) = 0 

and 
h(~) = o. 
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(In other words, the free zeros of h are the common zeros of h and its 
Hilbert transform). 

Proof: In order for the function gin (16) to belong to Boo(a,{3), it must 
be of the form (5); i.e., 

And since 

we must have 

g(t) = gl(t)e illt + g2(t)e- illt 

gbg2 in Boo(A/2). 

h (t) = fl (t)e illt + h(t)e -ill! 

fbh in B oo(A/2), 

and, therefore, we must have 

and, hence, from (6) 

h(~) = 0 

h(~) = 0; 

h(~) = o. 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

So h (~) = h (~) = 0 is a necessary condition for ~ to be a free zero. On the 
other hand, if 

(24) 

and 
(25) 

it follows that 

h(~) = h(~) = 0, (26) 

and, hence, that gl and g2 defined in (19) and (20) belong to Boo(A/2) and, 
therefore, thatg defined in (16) belongs to Boo(a,{3). Hence, h(~) = h(~) 
= 0 is a necessary and sufficient condition for ~ to be a free zero of h. In 
the course of the proof, we have established the following results which 
we label for future reference. 

Theorem 2: If h belongs to Boo (a,{3) and h(~) = h(~) = 0, theng(t) = (at 
+ b)/(t - Oh(t) belongs to Boo (a,{3) and has the Hilbert transform 

at + b (' 
g(t) = -- n(t) also in Boo (a,{3). 

t - ~ 
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Theorem 3: The free zeros (if any) of a function of the form (5) are the 
common zeros of It and /2, or equivalently, the common zeros of p and 
q in the representation (9). 

Corollary 3.1: A real-valued function h of the form (13) has a free zero 
~ if and only if 

f(~) = f(~) = 0. 

Corollary 3.2: If the function f( T), T = t + iu, in (13) is zero-free in either 
half-plane u ~ 0 or u ;§ 0 then h has no free zeros. 

In connection with Corollary 3.2, we note that for f to be zero-free in 
the (closed) upper half-plane u ~ 0, it is sufficient that x (t) defined in 
(14a) satisfy 

x(t»o, -co<t<co. (27) 

Also, for f to be zero-free in the (closed) lower half-plane u ;§ 0, it is 
sufficient that r(t) defined in (15a) satisfy 

r(t) > 0, -co < t < co. (28) 

This follows from the fact that a function f +( T) bounded and analytic 
in the upper half-plane may be represented by the Poisson integral6 

f+(t+iu)=.lf
CO 

( ~2 2f+(~)d~ u>o. 
7r -co t - ~ + u 

Hence, if Re If +(t)} = x (t) > 0, then Re if + (t + iu)} > ° for u > O. A similar 
statement holds for functions f -( T) bounded and analytic in the lower 
half-plane. 

Now the role of free zeros in the problem under consideration is made 
clear by the following: 

Theorem 4: If hI is a real-valued function in Boo (ex,{3) having a complex 
free zero ~ = a + ib, b > 0, or a multiple real free zero ~, then there is a 
function h2 in Boo (ex,{3) such that 

sgn IhI(t)} = sgn Ih 2(t)}, -co < t < co 

and 

h 2(t) ¥: AhI(t)' -co < t < co. 

Proof: It follows from Corollary 3.1 that if ~ = a + ib, b > 0, is a free zero 
of hI, then ~ = a - ib is also a free zero of hI. Hence, we may take h2 to 
be 

h (t) = P 2(t)h I (t) . B ( {3) 
2 (t _ ~)(t _~) In 00 ex, , (29) 
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where P2(t) is any polynomial of degree 2 satisfying 

P 2(t) > 0, -co < t < co, P 2(t) ~ A(t - ~)(t - ~). (30) 

In case ~ is a multiple real free zero of hI (i.e., of multiplicity ~ 2), then 
(29) is still valid with ~ = ~. 

The converse of Theorem 4 is not true. We need a condition on how 
often h I and h2 vanish together. 

V. BANDPASS FUNCTIONS WHICH VANISH TOGETHER ON LARGE SETS 

Here we would like to investigate the implications of 

hl(Tk) = h 2(Tk) = 0, all Tk E S, (31) 

where hI, h2 belong to Boo(a,{3) and S is a set of uniqueness for Boo (>..), 
>.. = {3 - a. We suppose that (31) does not imply that hI or h2 vanish 
identically. 

Definition: S = {Tk! is said to be a set of uniqueness for Boo(>..) if 

g(t) in Boo(>..) 

and 

imply 

g(t) == 0. 

We do not assume that hI and h2 are real-valued (on the real axis) and 
write, using (7), (8), and (11), 

hl(t) ± ihl(t) = {PI(t) ± iql(t)!e±iJlt (32) 

(33) 

where PI, ql, P2, q2 are arbitrary functions in Boo(>"/2) and J.l = (a + (3)/2 
> >"/2. Then, 

{hl(t) + ih 1(t)l{h 2(t) - ih 2(t)! = {PI(t) + lql(t)l{P2(t) - iq2(t)1 (34) 

{hl(t) - ih l (t)l{h 2(t) + ih2(t)! = {Pl(t) - iql(t)l{P2(t) + iq2(t)!. (35) 

It follows from (34) and (35) that 

h l (t)h 2(t) + h l (t)h 2(t) = PI(t)P2(t) + ql(t)q2(t) E Boo(>") (36) 

h l (t)h 2(t) - h 2(t)h l (t) = ql(t)P2(t) - PI(t)q2(t) E Boo (>..). (37) 

Thus, the functions on the left in (36) and (37), apparently of type ;§ 2{3, 
in fact are of type ;§ >.. as the functions on the right show. Then, from (37), 
if h I (T) and h 2 ( T) vanish together on a set of uniqueness for Boo (>..), the 
functions on the right and left vanish identically. We state this result 
as a theorem for future reference, using the representation (9). 

BANDPASS SIGNALS 495 



Theorem 5: Let hI and h2 belong to Boo (a,{3) 

and 

hI(t) = PI(t) cos J.tt - qI(t) sin J.tt 

h 2(t) = P2(t) cos J.tt - qdt) sin J.tt 

Then (31) implies 

and 

PI(t)q2(t) == qI(t)P2(t), 

and, hence, if qIq2 ~ 0, 

PI(t) == P2(t) == N(t). 
q 1 (t) q2(t) 

(38) 

(39) 

(40) 

We should note in connection with (40) that qi == 0 implies PI ~ 0 
(since hI ~ 0) and, hence, from (39) that q2 == O. By symmetry, qIq2 == 
o implies 

{
hI(t) = PI(t) cos J.tt, h 2(t) = P2(t) cos J.tt 

hI(t) = PI(t) sin J.tt, h 2(t) = P2(t) sin J.tt. (41) 

We cannot, according to the hypotheses, have qi == 0 and P2 == 0 (or PI 

== 0, q2 == 0), i.e., 

hI (t) = PI (t) cos J.tt 

h 2(t) = qdt) sin J.tt 

for then common zeros of hI and h2 are necessarily common zeros of PI 

and q2 so that (31) would imply, since PI and q2 belong to Boo('A/2), that 
hI == 0, h2 == 0, contrary to hypothesis. For a similar reason, qi == 0 (or q2 

== 0) implies that the set S in (31) includes a lot of the zeros of cosJ.tt in 
(41). 

Now the function M (t) in (39) is a meromorphic function, the quotient 
of two functions in Boo (a ,(3) C Boo ((3). The zeros of M (t) are zeros of hI 

not common to hi. Hence, if h 1 and hI have no common zeros, i.e., if hI 

has no free zeros, then the zeros of M(t) are precisely the zeros of hI. The 
zeros of a band-limited function determine the function within an ex­
ponential factor which in turn depends on the (actual) spectral end 
points. It follows from a theorem of Titchmarsh 7 (with an additional 
minor argument) that the zeros of a function f in Boo({3) whose spectral 
end points are centered about the origin, i.e., a function whose spectrum 
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is confined to [-{1',{1'], ({1' ~ m but to no smaller interval, determine the 
function within a constant multiplier. For such functions, 

f(t) = At m IT (1 - ~), 
h=I Th 

(42) 

where 

ITh+II ~ IThl > ° 
with the product converging conditionally (owing to the ordering of the 
zeros). In particular, (42) holds for a band-limited function which is 
real-valued on the real axis. Hence, if hI in Theorem 5 is real-valued on 
the real axis and has no free zeros, the zeros of M(t) determine hI within 
a multiplicative constant. M(t) is, in principle at least, determined by 
any non-null function in Boo(a,m, say h2' which vanishes on S. There is 
by hypothesis at least one such function. We may state this result as 
follows: 

Theorem 6: Let hI and h2 belong to Boo (a,{1) and be real-valued on the 
real axis and have no free zeros. Then, 

hI(Th) = h 2(Th) for all Th in S, 

where S is a set of uniqueness for Boo (A), A = {1 - a, implies (if h2 ~ 
0) 

hI (t) == Ah2(t). 

Actually, for the problem at hand, we are interested in sets S which 
consist of points Ith I, where hI and h2 change sign. If this set has an upper 
density in excess of A/;r, then it is well known (see Levinson8 for example) 
that S is a set of uniqueness for Boo(A). So in Theorem 6 we may take S 
to be any set Ithl where the number v(T) of tk in the interval (O,T) 
satisfies 

. v(T) 
hm sup -- > A/7r. 

T-.oo T 
(43) 

Roughly speaking, if hI and h2 just vanish together (not necessarily 
change sign together) more often than cos At, then the conclusion follows. 
We know, furthermore, that real-valued functions in Boo(a,m must 
change sign (on either half line), again roughly speaking, at least as often 
as cos at. 

Theorem 7 (from Ref. 9): Let h be a real-valued function in Boo(a,{1), 
h ~ 0, and denote by (J{T) the number of sign changes of h(t) in the 
interval (0, T). Then, 

I· . f (J(T) / 1m In --? a 7r. 
T--·oo T-

Hence, we have (since lim sup ~ lim inf): 
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Theorem 8: In Theorem 6 if hI ~ 0, we may always take S to be the set 
ltk} where hI (t) changes sign provided a > A; i.e., provided a > {3/2. 

The necessity of the strict inequality a> (3/2 in Theorem 8 is shown 
by the one-parameter family 

h(t;a) = Re 1(1 + iaeit)e it }, -% < a < % 
= cost - a sin 2t = (1 - 2a sin t) cos t. (44) 

Here, h(t;a) belongs to Bco(I,2) and 

sgn lh(t;a)} = sgn lcos t}, -% < a < %. (45) 

Also, h(t;a) has no free zeros, which follows by identifying fin (13) 
as 

f(t) = (1 + iaeit)e -itI2, 

which is clearly zero-free in the closed upper half-plane and, hence, by 
Corollary 3.2, h(t;a) has no free zeros. Yet all members of the family have 
the same sign. There are similar examples for Bco(m,n), m and n positive 
integers, m < 2n. 

If hI (t) changes sign at It k}, then 

sgn lhl (t)} = sgn lh 2(t)} 

is a stronger statement than 

hl(tk) = h 2(tk) = O. 

By replacing the latter condition by the former, we can with a little more 
work obtain the conclusion of Theorem 6 by allowing hI and h2 to have 
only real, simple, free zeros. (Note that h(t) may have a high-order zero, 
say at t = 0, and yet have only a simple free zero there that would require 
only that h(t) have a simple zero at t = 0.) This is the most we could hope 
for in view of Theorem 4 and theexample in eq. (44). 

We denote by Z(a,{3) the class of (real) bandpass functions that have 
no free zeros other than simple, real, free zeros. That is, 

Definition: Z(a,{3), 0 < a < (3 < 00, consists of all real-valued functions 
h(t) of the form 

h(t) = Re If(t)e illt }, 

where J1 = (a + (3)/2 and f(t) belongs BcoCA/2), A = (3 - ct, and has no pair 
of complex conjugate zeros and no real zeros that are not simple. 

We should note that Z(a,{3) includes all real-valued functions in 
Bco(a,{3) that have only real simple zeros. For if ho is such a function, then 
fo in the above representation has no pair of complex conjugate zeros, 
since these are common zeros of ho and ho. Similarly, fo can have no 
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multiple real zeros, since these also belong to ho and ho, and ho has only 
simple real zeros. 

Theorem 9: Let hI and h2 belong to Z(ex,{3). Then, 

sgn Ih1(t)1 = sgn Ih 2(t)I, -00 < t < 00 

implies 

h1(t) = Ah 2(t), -00 < t < 00 

provided (5(T), the number of sign changes of hI (t) in (O;T), satisfies 

(;) I. (5(T) {3 - ex 
~ lmsup-->--. 

T-oo T 7r 

Furthermore, (i) is always satisfied if hI ~ 0 and (ii) ex > {3/2. 

Proof: We may assume that hI ~ 0 and, hence, that h2 ~ o. Otherwise 
the conclusion is trivially true. Then, since hI and h2 vanish together on 
a set of uniqueness for Boo(A), we have from Theorem 5, 

~l(t) == h 2(t) == M(t). 
hdt) h 2(t) 

The poles and zeros of M(t) are determined by any non-null function 
in B co (ex,{3) that vanishes at the points of sign change. The zeros of M(t) 
identify the zeros of hi that are not common to hi (i = 1,2). That is, the 
free zeros of hi are missing. All we have to show is that the locations of 
the free zeros of, say h h are uniquely determined by the zeros of M and 
the points of sign change of hI and h 2. It would then follow that hI and 
h2 have the same set of zeros, and then the conclusion follows from 
(42). 

Denote by I~kl the free (real, simple) zeros of hI and by 17kl the zeros 
of M and define 

I1 I(t) = II (1 -~) et/f.k 
k ~k 

(46) 

I1o(t) = II (1 -~) et/Tk, 
k 7k 

(47) 

where we have assumed, as a matter of convenience in writing, that h 
~ 0, 7k ~ o. [When the zeros of hI are thus separated into two sets, the 
exponential factors are generally required to make the infinite products 
in (46) and (47) converge. We could have, for example, h = k, k = 1,2,. ... ] 
We have by the Hadamard factorization Theorem* 

(48) 

* See Ref. 2, page 22. 
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for some real c, which is irrelevant to the argument. The I Tk 1 appear in 
conjugate pairs so both llo(t) and lll(t) are real-valued. We may assume 
that hdO) > O. Then, 

sgn Ihl(t)} = sgn ITIo(t)} sgn IllI(t)} -00 < t < 00. (49) 

Now llo(t) and, hence, sgn ITIo(t)1 are (in principle) given and sgn 
Ihl(t)1 is known [except at even-order zeros of hdt)]. We have 

sgn IllI(t)} = sgn ITIo(t)} sgn Ihl(t)1 for almost all t, (50) 

and since the zeros of TIl (t) are real and simple, (50) defines them 
uniquely; i.e., they are the points where the function on the right changes 
sign. 

VI. THE ZEROS OF FULL-CARRIER LOWER-SIDEBAND SIGNALS 

In connection with condition (28), which is a sufficient condition for 
a function to have no free zeros and, hence, to belong to Z(a,{3), it is worth 
noting that the condition is also a sufficient condition for the function 
to have only real simple zeros. In particular, functions of the form 

h(t) = Re [11 + x(t) - ix(t)le i{3t], (51) 

where 

Ix(t)1 <1 (52) 

and 

x,x (real) belong to Boo("A), 0 ~ "A < (3, (53) 

which are called "full-carrier" lower-sideband signals, have only real 
simple zeros. We have the following more general result. 

Theorem 10: Let f be a (non-null) bounded band-limited function whose 
spectrum is confined to the interval [-"A, "A], 0 ~ "A < 00, but to no smaller 
interval; i.e., eiJltf(t) does not belong to Boo ("A) for any Jl different from 
zero. Also, let f( T), T = t + iu, be zero free in the closed lower half-plane 
u ~ o. Then the zeros of the function h defined by 

(54) 

are real and simple provided Jl > 0, or provided f.1 ~ 0 if f ~ con­
stant. 

Note that h(t;f.1) in (54) need not be bandpass; i.e., we do not require f.1 
> "A. The function is just a special kind of band -limited function. The 
result is independent of "A so long as "A < 00. The only significance of "A is 
to indicate that the spectral end points are centered about the origin. 
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Proof: The conclusion is trivial for f = constant, so we assume that f ~ 
constant and, consequently, has an infinite number of zeros. From (42) 
we have 

f(t) = f(O) IT (1 - ~), 
}~= 1 Tk 

(55) 

where the product converges conditionally with the provision I Th+ 11 ~ 
I Th I· We have by hypothesis 

Then, 

We have 

B(t) o,1(t) = J(olk[I, (1 
- t) = frO) [I (1 - t) 

f(t) f(O) 00 ( t) f(O) h=1 ( t )' II 1-- 1--
k=1 Tk Th 

where the last product converges absolutely since 

L (! -~) = 2 L ImIT}:1 
Tk Th I Th 12 

converges absolutely. * Since 

we have 

Hence, 

1 _ t + iu 2 

ah - ib" 

t + iu 1----1 
aJ? + ibk 

IB(t+iu)l<l foru<O. 

for u < 0, 

(56) 

(57) 

(58) 

(59) 

(60) 

IB(t + iu)e- i2tt (t+iu)1 = e2ttU IB(t + iu)1 < 1 for u < o. (61) 

Therefore, since f( T) does not vanish on the real axis nor in the lower 
half-plane, it follows from (57) and (61) that h(T) has no complex 
zeros. 

* See Ref. 2, Theorem 6.3.14, page 86. 
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Now log f( T) is analytic in the upper half-plane and we may write 

where 

Then, 

f(t) = If(t) 1 ei.p(t), 

ip(t) = 1m llog f(t)l and (say) 

° ~ ip(O) < 27r. 

h(t) = If(t)1 cos lip(t) + ILtl· 

(62) 

(63) 

(64) 

(65) 

Since f(t) does not vanish on the real line, the zeros of h(t) are the zeros 
of cos lip(t) + ILtl. Now if cos lip(tk) + ILtkl = 0, then 

C'(tk) == :t cos (ip(t) + 1Lt)lt=th = -Ill + ip'(tk)l sin lip(tk) + ILtkl (66) 

or 

(67) 

We have 

B(t) = e-2i .p(t) (68) 

and 

B'(t) = _ 2iip'(t) = 2: {_1 ___ 1_} = -2i2: bk (69) 
B(t) t-Tk t-Tk It-Tk12 

or 

'( ) - '" b
k ° ip t - L 1 12>' t - Tk 

(70) 

Hence, if IL ~ 0, 

(71) 

and, therefore, all zeros of h are real and simple. Since 1m If(t)eiJ.ltl = Re 
l-if(t)ei,.Ltl the conclusion of Theorem 10 also holds for 1m If(t)eiJ.ltl and, 
since IP' (t) > ° and since the zeros of cos lILt + ip( t) I and sin lILt + ip( t ) I 
interlace (IL > 0), we have proved 

Theorem 11: If f satisfies the hypotheses of Theorem 10, then the 
functions 

h 1(t;IL) = Re If(t)eiJ.ltl 

h 2(t;lL) = 1m If(t )eiJ.ltl 

have all real, simple, interlacing zeros for IL > o. 
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In applying Theorems 10 and 11 to functions of the form (51), we 
set 

g (t) = 1 + x (t) - ii (t ). 

The spectrum of g is confined to an interval [-a,O] (where a ~ A) but not 
to an interval [-a,E], where E < 0. Otherwise {I + x(t)1 > ° would belong 
to Boo(E,a) and would, therefore, have an infinite number of sign changes, 
which is a contradiction. We suppose further that the spectrum is not 
confined to a smaller interval; i.e., that a is the left end point of the 
spectrum. We then set 

{
iat} f(t) = g(t) exp 2 ' 

so that f meets the hypotheses of the theorem. Then writing 

h = Re {g(t) exp (i{Jt)1 

= Re {f(t) exp (i{Jt _ i;t) } 

we may state the result as 

Corollary 10.1: A function of the form (51) has only real simple zeros 
when the condition in (53) is replaced by {J > A/2 ~ o. 

When (J > A, as in (53), h has a Hilbert transformh(t) = 1m [{I + x(t) 
- ii(t)\ei/Jt]. So we have 

Corollary 11.1: A function h of the form (51) and its Hilbert transform 
h have only real, simple, interlacing zeros. 

We state one more result which follows from the proof of Theorem 
10: 

Theorem 12: Let f be a bounded (non-null) band-limited function whose 
spectrum is confined to the interval [a,{J] but to no smaller interval, 
and let f( T), T = t + iu, be zero-free in the upper half-plane u ~ o. Then 
the phase function cp(t), defined uniquely by 

(i) cp(t) is continuous 

(ii) ° ~ cp(O) < 27r 
(iii) f(t) = If(t) I ei<p(t) 

satisfies 

(iv) 
a+{J 

lrl(t) :s --. 
y - 2 
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It follows, in particular, if x(t) is a positive function in BeoCA) and has 
a Hilbert transform x (t) and 

then 

x(t) 
tI"{t) = tan- 1 -
't' x(t)' 

cp' (t) ~ A/2. 

(Since x is positive, the smallest interval containing the spectrum of 
x + ix is [O,A/] for some A' ~ A.) We note that without further qualifica­
tion, x must be bounded away from zero in order to obtain a (finite) lower 
bound for <p', as the example 

x(t)=l+acost, (a=l-E) 

shows. 

VII. DISCUSSION AND CONCLUSIONS 

The zeros of a bandpass function h that can be moved around without 
destroying the bandpass property of h; i.e., the free zeros of h playa key 
role in the problem here and it is safe to assume that they will be im­
portant in other problems. We have shown (Theorem 1) that the free 
zeros of h are simply the common zeros of h and its Hilbert transform 
h (whether or not h(t) is real). It follows (Theorem 2) that moving a free 
zero of h simply alters its Hilbert transform in the same way; i.e., only 
the corresponding (common) zero of h is moved. 

If we are given a large enough subset S of the zeros of h, then (Theorem 
5) S determines h/h. Without further qualification of S or h, this is all 
that S determines. If real-valued h has enough sign changes, slightly 
more (roughly speaking) than cos At, where A is the width of the pass­
band (of the whole class), then the zero crossings Ith} constitute a set S 
which determines h/h. This, without further qualification, is all the in­
formation the zero crossings may convey. If, in addition, it is known that 
h has no free zeros, then under the stipulated conditions Ith} determines 
h within a constant multiplier. 

If h has free zeros, then we cannot determine (a multiple of) h (t) from 
sgn Ih(t)}, because (Theorem 4) there are other functions in the same 
class having the same signum function. In this connection, we note the 
following: 

In the representation 

h(t;/-l) = Re If(t)eiJ.lt}, /-l > A/2, 
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where I is regarded as a fixed (complex-valued) function in Bro(>-./2) and 
Jl as a parameter, the zero crossings of h(t;Jl) for arbitrarily large Jl give 
no more information about I than for Jl = 3>-'/2 + ~, ~ > ° (when the band 
spans less than an octave). The free zeros of h(t;Jl), which are crucial to 
identifying h (or f) are invariant with /-to 

These results may be generalized and specialized in various ways. We 
should note a specialization to functions of the form 

h(t) = cos /-tt - q(t) sin /-tt, 

where q(t), real, belongs to Bro(>-'/2) and Jl > >-'/2. This describes a com­
mon sort of phase modulation. Here h(t) has no free zeros because the 
corresponding function in (13), 

l(t) = 1 + iq(t), 

clearly has no real zeros, and if ~ is a complex zero of I we have 

q(~) = i 

and, hence, since q (t) is real, 

q(~) = -i 
and so 

I(n = 2. 

Thus (Corollary 3.1) h has no free zeros. Then, if we consider two func­
tions hI and h2 of this form and return to the basic identity (37), we have 
PI = P2 = 1 and 

hI (t)h 2(t) - h2(t)h I (t) = qI(t) - q2(t), 

which belongs to Bro(>-'/2) rather than Boo(>-.). Now, 

hi (k7r/ Jl) = cos k7r = (-1) k, k = 0, ±1, ±2, ... , (i = 1,2) 

so hi (t) has at least as many sign changes as cos Jlt. Thus, if /-t > >-'/2 Gust 
enough for high-pass), the zero crossings {tk} of hi constitute a set of 
uniqueness for Bro(>-'/2) , which is all we need to conclude that 

sgn hI(t) == sgn h 2(t) 

implies 

i.e., 

In this case the recovery problem is much simpler than in the general 
case. Here we are given ' 
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and seek q(t); i.e., knowing p(t) = 1 vastly simplifies the problem. 
As to generalizations, the results may be extended to bandpass func­

tions that are not bounded (e.g., sample functions of gaussian processes). 
We can replace Bco(A) by B(A), which consists of restrictions to the real 
line of entire functions of exponential type A whose growth (on the real 
line) is less than exponential (see Ref. 7). The zeros of these entire 
functions have ordinary densities, separately in the right and left half­
planes, which are equal and do not exceed Ahr.7 Hence, sets {tk I of upper 
density greater than A/7r constitute sets of uniqueness for B(A). 

It is clear from the Hadamard factorization 

f (t) = f (0) e c t IT (1 - ~) e t /T h 

k=l 7k 

that the zeros {7kl of real-valued f in B(A) determine f within a constant 
multiplier. Since the 7k occur in conjugate pairs, the product is real­
valued on the real axis and, hence, the exponent c must be real. Then 
c will be determined by the condition that the growth on the real axis 
be less than exponential. 

Then we define B(a,f3) analogous to Bco(a,(3), and for h in B(a,(3), we 
let h be defined by the right-hand side of (6) with II and h in B(A/2), and 
simply call it the generalized Hilbert transform of h. It is not important 
what we call it; the free zeros of h are still the common zeros of hand h, 
or equivalently the common zeros of p and q. Then Theorem 7 must be 
generalized to B(a,f3). It is clear that the proof in Ref. 9 extends easily, 
so all the uniqueness results may be extended to B(a,f3). 

In connection with this generalization, it might be interesting to study 
the free zeros of sample functions of bandpass gaussian processes {hi. 
The free zeros are going to be very rare (in the ergodic case) to say the 
least. It may be advisable to begin the study with the case of periodic 
sample functions. 

There are still other questions that arise in connection with the 
problem considered here. For example, we have not shown that given 
an arbitrary real h in Bco(a,f3) there is a corresponding function in Z(a,(3) 
having the same signum function. The difficulty occurs when h has an 
infinite number of free zeros which, for example, may be complex and 
restricted to the right half-plane and have positive density there. (Such 
functions can be constructed on the basis of Corollary 3.1.) The Hada­
mard product composed of the free zeros will then not even belong to 
the broader class B (.) just discussed. The remaining zeros will not have 
equal densities in the right and left half-planes and, hence, the Hada­
mard product composed of these zeros will not belong to B(·). There 
seems to be no way to replace the free zeros with non-free zeros and ob­
tain a function in Z(a,f3) with the same signum function as h. It appears 
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that the argument can be completed to prove that the proposition is 
false. 

Another problem is that of characterizing those h for which there is 
not another distinct function in the whole class Boo(a,{3) having the same 
signum function. Of course, h must belong to Z(a,{3) but now other 
arguments of a Fourier nature are required. The end points of the 
spectrum play an important role in this problem. For example, cos at 
and cos {3t are special functions in Z(a,{3) which for {3 < 2a meet the 
conditions of the problem, a result we state without proof. It appears that 
the "full-carrier" sideband signals, which have spectrum at one or the 
other end points, are also special functions of this type when {3 < 2a. The 
decay of h (t) also enters in the problem; i.e., (1 + t 2)h (t) must not belong 
to Boo (a,{3). The basic idea is that one should not be able to multiply h(t) 
by a positive function and obtain a function in Boo (a,{3). This obviously 
will be possible if the spectrum,of h is confined to [a',{3'] (and [-{3',-a']), 
where a < a' < {3' < {3. 

Given h(t) in a form other than (13) with an explicit factorization of 
f, it is obviously difficult to determine whether or not h belongs to Z(a,{3). 
However, it is easy to synthesize functions in Z(a,{3), e.g., the full-carrier 
sideband signals. 

The problem of actually recovering functions in Z(a,{3) from their zero 
crossings appears to be difficult (to say the least) under the most general 
conditions for uniqueness. A general "method" suggested by the proof 
of Theorem 9 requires first finding any non-null test function in Boo (a,{3) 
that merely vanishes at the points of sign change or some subset of the 
points that constitute a set of uniqueness for Boo(A). However, this in 
itself is a difficult, if not intractable, problem except in the simple pe­
riodic case. Assuming such a test function to be found, it will, in general, 
have complex free zeros and/or real free zeros which the sought after 
function h does not have. So, in effect, the test function and its Hilbert 
transform must be factored to discard common zeros (free zeros), which 
amounts to finding the zeros of M(t) in (38), or the poles and zeros of 
N(t) in (40). Then one constructs as in the proof of Theorem 9, a function 
IIo(t) with the zeros of M(t), i.e., the non-free zeros of h. Then the 
missing (real simple) free zeros of h can be determined by comparing the 
sign changes of IIo(t) and the given sign changes of h (t) as in (50). 

The overall recovery procedure is obviously hopeless except in the case 
of periodic functions. There may be some simpler procedure under more 
restrictive hypotheses; e.g., condition (27), ensuring that f be zero-free 
in the closed upper half-plane. Condition (28), ensuring that f be zero­
free in the closed lower half plane, was shown to imply that the corre­
sponding h (e.g., a full-carrier lower-sideband signal) has all real simple 
zeros, in which case h can be recovered by forming an infinite product 
having simple zeros at the points of sign change. This fact, aside from 
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questions of practicality, might suggest a preference in full-carrier 
sideband transmission for the lower sideband. 

The results here have theoretical interest in that they provide a sat­
isfactory answer to the general question as to what information (in our 
sense) is conveyed by the zero crossings of bandpass functions. As far 
as practicality is concerned, the results cannot be extrapolated with 
abandon to "almost bandpass" functions. Although there is no argument 
with the assertion that practical signals can be closely approximated with 
bandpass signals, it does not follow that there even exists a bandpass 
signal (to which the results apply) with the same zero crossings as the 
practical signal, much less one which has the same zero crossings and 
is everywhere close to the practical signal. Clearly one must have a very 
severely constrained class of signals in order to assert that the zero 
crossings "closely" determine the signals. 

APPENDIX 

Here we sketch a proof of the fact 

7' It I 
lim f (1 - -) f(t)e-iwtdt = 0, for Iwl > A, 

7'-00 -7' T 

fin Boo(A). (72) 

First we set 

h(t) = h(t;w) = f(t)e- iwt, fin Boo(A) (73) 

and observe that for I w I - A = a > ° (w = real), h belongs to the class 
H oo(a) consisting of all bounded functions h (high-pass functions) sat­
isfying 

(74) 

Indeed, f(t)g(t) belongs to B 1(a + A) and, hence, its Fourier transform 
is continuous and vanishes outside (-{3,{3), (3 = a + A. 

Let us then define 

C(t;T)=1-1~1, Itl~T 

=0, Itl>T. 

Then we wish to prove 

(75) 

i~ i: C(t;T)h(t)dt = 0, h in H oo(a) (a> 0). (76) 
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There are several ways to prove this. In Ref. 4 we used the notion of 
the "unbiased" integral of h(t), denoted by h(-1)(t), which is a particular 
integral of h also belonging to H 00 (ex). In general, we may define the nth 
unbiased integral of h by 

h(-rI)(t) = i: h(x)Kn(t - x)dx, n = 1,2,···, 

h in H 00 (ex) (77) 

where Kn is any kernel of L 1 whose Fourier transform satisfies 

i: Kn(t)e-iwtdt = (iw)-n for Iwl ~ ex. 

Then we can show that h (-n) in fact does satisfy 

J.b h(-n)(t)dt = h(-n-1)(b) - h(-n-1)(a) 

(-co<a<b<co). 

It suffices to show this for n = 0, h(O) == h, and then use induction. 

(78) 

(79) 

Achieser10 shows (in another context) that the minimal L 1-norm 
kernels have norm 

4 00 (-I)h(n+1) 
IIKn 111 = ex-

n 
-; h~O (2k + l)n+1 = ex-nMn . (80) 

Then we have, integrating twice by parts, 

roo C(t;T)h(t)dt = l/-2h(-2)(0) + h(-2)(T) + h(-2)(-T)1 (81) 
J-oo T 

and, hence, 

I f oo 1 4M,) C(t;T)h(t)dt ~ -2 - sup Ih(t) I, h in H oo(ex). 
-00 ex T t 

(82) 

Then (76) and (72) follow from (82). 
Actually, for h of the form (73) we can replace M 2 in (82) by 1. For h 

having one-sided spectrum, say the half line [ex,co), ex > 0, we only re­
qUIre 

Here we may obtain the minimal-norm kernels simply by making their 
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Fourier transforms even about w = Q'. It then follows from convexity 
that 

(84) 

and 

(85) 

In general, if one defines a class of bounded functions having a spectral 
gap (a,b) by an orthogonality condition similar to (74), then a simple 
modification of the proof gives the gratifying result that their Fourier 
integrals are actually summable (C ,1) to zero in the gap. 
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A noise-loading measurement set is described, which uses coherent 
averaging to measure intermodulation noise that lies below thermal 
noise. This technique also lends itself to a new way of measuring the 
addition of intermodulation noise over a string of repeaters. Noise 
loading and law of addition data are presented. 

I. INTRODUCTION 

Noise loading has been used for many years to test wideband com­
munications systems.1 In this technique, the system load is simulated 
by thermal noise of the same bandwidth and total power as the actual 
load. This is particularly effective for equipment designed to carry 
hundreds of telephone circuits, because the multiplexing together of 
many independent circuits naturally leads to a total signal that is 
gaussian. Small frequency bands (notches), usually a few kilohertz wide, 
are eliminated from the thermal noise load at several places in the band. 
This noise signal is applied to the device under test, and the noise that 
appears at the notch frequencies after the device is detected and mea­
sured. The noise in these narrow notches is a fairly accurate measure of 
the circuit noise that a customer would overhear. This noise may be 
broken down into several components: thermal, intermodulation, in­
terference, and so on. In modern, long-haul, repeatered telephone sys­
tems, intermodulation noise is usually a big contributor that must be 
held at or below the thermal noise, which limits the power at which each 
repeater may be operated. Until now, intermodulation noise was usually 
measured by raising the output power until intermodulation became far 
larger than the thermal noise. This is possible since intermodulation 
noise increases with an increase of input power and thermal noise does 
not. The difficulty with this approach is that the noise is then being 
measured outside of the equipment-design range. Another important 
factor in estimating the total intermodulation noise for many tandem 

511 



repeaters is that, since intermodulation depends on the input signal, 
there is the possibility of coherent addition of this noise between re­
peaters. The degree of coherency, or law of addition, has been estimated 
in the past by connecting several repeaters in tandem and measuring the 
intermodulation noise of the string. Since many repeaters (about 12 or 
more) are needed to estimate the addition accurately, this is difficult to 
do in the laboratory. 

In 1971, work was started on a new noise-loading scheme to measure 
intermodulation noise that is below thermal noise and to estimate the 
law of addition. The scheme replaces the thermal-noise source by one 
that is periodic but appears to be noise-like: a pseudorandom noise 
source. The intermodulation noise is produced from the signal through 
the nonlinearity of the repeater. It has the same basic period as the input 
signal and so may be coherently detected and summed at the device 
output. As successive periods are summed, the intermodulation noise 
will add on a voltage basis, but the thermal noise will add on a power 
basis. Thus, a 3-dB enhancement is achieved with each doubling of the 
number of periods of the source. 

A test set to perform this measurement was completed in 1973. The 
basic layout, special features, and test results of the instrument are de­
scribed in Section II. Estimation of intermodulation noise for many re­
peaters in tandem, using the pseudorandom noise loading (PRNL) test 
set, is described in Section III, and test results are presented. The chief 
advantages of this test set are summarized in the conclusions, Section 
IV. 

II. OVERVIEW OF OPERATION 

The pseudorandom noise loading (PRNL) test set is comprised of three 
main units: a transmitter section to generate the broadband noise source, 
a receiver section that includes an analog-to-digital converter and 
memory for coherent addition of the measured signal, and a master 
timing unit to achieve repetitive and coherent operation of the trans­
mitter and receiver sections. The noise signal may be applied to the test 
device at either baseband, IF or RF (4 GHz). 

The power in the notch is preselected at the output of the device being 
tested by the PRNL receiver. The receiver has a noise figure of 10 dB or 
better at IF and 8 dB at baseband. Due to these low noise figures, the 
noise floor below which signal averaging is required is usually set by the 
noise figure of the test device. Up to 42-dB improvement in signal to 
noise is possible by the averaging process, corresponding to the sum­
mation of 16,384 successive periods of the pseudorandom test signal. 
Ninety seconds of averaging is required to achieve the 42-dB improve­
ment. 

The ultimate capability is determined by noise in the notch that is 
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Table I - Attainable notch depth 

Notch 
Signal Power Depth Notch Frequencies 

Baseband (dBm) (dB) (MHz) 

380 kHz to 20 MHz 0 80 3.886,11.7,17.842 
IF 

60 to 80 MHz 2 96 63.886,71.7,77.842 
RF 

Any 20-MHz channel in 6 35 No notch filters at HF: notches at 
the 3.7- to 4.2-GHz baseband and IF are translated 
band to the HF channel 

coherent with the signal. This is due to leakage of signal through the 
notch filter and intermodulation from the transmitter at higher output 
power. These limits are given in Table 1. 

The notch depth is enhanced when the test device has gain. The gain 
allows source levels to be low, which, in turn, reduces intermodulation 
from active devices in the source. A notch depth limit of 120 dB due to 
filter characteristics can be realized at IF and RF with sufficient gain. 

2. 1 PRNL transmitter 

Shown in Fig. 1 is a block diagram of the PRNL transmitter. The noise 
source is a 25-stage shift register operating at 300 MHz. The output is 
a very long pseudorandom digital sequence at the bit rate of 300 Mb/s. 
The digital signal is first band limited from 380 kHz to 20 MHz by 
bandpass filter BPI to form a noise source having statistics close enough 
to gaussian to approximate the telephone load. Reference 2 gives the 
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statistics of the signal for various filter bandwidths. As a comparison, 
separate noise-loading curves were run on the same amplifier, using 
thermal and pseudorandom noise sources. Within the range where the 
intermodulation noise was sufficiently above thermal noise level, the 
two results agreed to 0.1 dB, which is within the measurement accuracy 
of the test. 

Next, one of three band-elimination filters (BEF2, BEF3, and BEF4) is 
selected. These filters are narrow band-stop filters with an 80-dB re­
jection band, 6 kHz wide, centered at 3.886,11.7, and 17.842 MHz, re­
spectively. The signal is next level adjusted at baseband. Lowering the 
signal level before all the active devices in the signal path assures lowest 
intermodulation from the test set and, consequently, the deepest notches. 
This signal may be used to load at baseband. To load at IF, the signal is 
then up converted to an IF center frequency of 70 MHz by a modulator 
and 60-MHz local oscillator (LO). 

The IF signal is first amplified and then passed through BPF5. This 
filter passes the upper sideband while attenuating the lower sideband 
by 60 dB and the LO signal by 90 dB. At this point in the transmitter, the 
notch depth (for a broadband power of 0 dBm) has been reduced to 50 
dB due to intermodulation in the modulator. 

To obtain a notch depth of 120 dB (at Ie ± 2 kHz, where Ie is the 
notch-center frequency), the proper IF band-stop filter (BEF6, 7, or 8) 

is selected to align in frequency with the translated baseband notch. The 
IF notch frequencies are 63.886, 71.7, and 77.842 MHz. As shown in Fig. 
1, this signal is applied to the device under test for IF noise loading. When 
an RF (4-GHz) noise-loading signal is required, an up converter and the 
associated tuners and filters are used to translate the noise load to RF. 

Notch depths at RF are limited to 46 dB by the up converter for broad­
band power levels of 0 dBm. 

2.2 PRNL receiver 

A block diagram of the receiver is shown in Fig. 2. For detection of a 
4-GHz signal, RF preselection provides a I-MHz signal centered on the 
notch frequency. This signal is then attenuated and down converted to 
IF. Attenuation is necessary to insure that the intermodulation products 
produced in the down converter are at least 20 dB lower than the signal 
to be measured. To insure coherency, the same LO source used to up 
convert to RF must be used to down convert to IF. 

The first function performed at IF is that of preselection by narrow­
band (±1.5-kHz) crystal filters. Since the signal being preselected may 
be 80 dB lower than the loading signal, multistage preselection and 
amplification is used. The multistage process produces a gain of 75 dB 
and out-of-band rejection of 120 dB. The noise figure of the IF receiver 
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is determined by the preselect filter which varies between 5.4 and 8 dB 
of loss, depending on the frequency of preselection. The preselected 
signal is then down converted to baseband in a single stage of demodu­
lation. The LO for this stage of demodulation is generated by mixing the 
IF transmitter LO (60 MHz) and the detector oscillator (set to 6 kHz 
below the baseband notch frequency) and selecting the sum frequency. 
The resulting notch signal is centered at 6 kHz, whereupon it is filtered 
and detected. 

2.3 Final detection 

The final detection process is performed by the signal-averaging unit. 
This is a commercial unit slightly modified to meet the specific re­
quirements of PRNL. The functions performed by the averager are an­
alog-to-digital conversion, storage, summation of the digitized signal, 
and the ability to play back the stored signal in real time for measure­
ment with a power meter. The analog-to-digital converter takes a 9-bit 
sample of the input signal every 20 j.lS and stores it in an 18-bit register. 
Since there are 1024 word locations in the register, a repetitive signal with 
a period of 20 ms could be handled. In practice, a period of 5.28 ms is used 
and 256 samples taken during each period. The number, N, of successive 
sweeps by the averager is preselected for values of M (2 M =, N) up to 14. 
The coherency of the detection process is preserved by starting successive 
averager sweeps at the start time of the pseudorandom source and at a 
fixed phase of the detection oscillator. This timing is performed by the 
master timing circuit described in Section 2.4.1. The digitized sample 
points are summed to corresponding locations in memory for each 
sweep. 

Finally, the stored word in the averager can be played back in real time. 
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The real-time play-back signal can be displayed on an oscilloscope, ap­
plied to a spectrum analyzer, or to a power meter. The signal averager 
is also interfaced with a computer. The computer can be used to control 
the measurement and to further process the data. The computer inter­
face is described in Section 2.4.2. 

2.4 Special features 

2.4.1 Master timing circuit 

The heart of the noise loading set is the master timing circuit. The 
three major functions of the circuit are to 

(i) Lock the start of the pseudorandom data transmitter and signal 
averager to a common oscillator (detector oscillator), which de­
modulates the signal in the notch to baseband. 

(ii) Start the signal averager. 
(iii) Start-stop the pseudorandom data transmitter. 

Of the three functions listed above, synchronization (lock) is most 
important since it is essential for coherent signal addition. A simplified 
block diagram of the master timing circuit is shown in Fig. 3. 

The critical section of this circuit is the coincidence function. The 
coincidence circuit phase-locks the relative high-frequency notch-de­
tector strobe pulse (3.6 to 17.8 MHz) to the low-frequency divide-by-n 
counter output pulse (approximately 200 Hz). The resulting output pulse 
is used to initiate functions (ii) and (iii) above, thus- insuring coherent 
operation of the PRNL set. 

A second PRNL set, with 6-GHz capabilities, is under construction. 
This set is discussed in more detail in Appendix C. The major difference 
(besides the 6-GHz capability) is the absence of the above described 
coincidence circuit. In the new PRNL set, the LO as well as a,ll notch­
detect LOs are derived from one master oscillator, thereby assuring a 
constant phase relationship between all LO signals. The disadvantage 
of this design is, of course, less flexibility due to fixed notch-detect LO 
frequencies. 

2.4.2 Computer interface 

Another one of the features of the PRNL set is its operating capabili­
ty through computer control, which permits unattended operation and 
data processing for law of addition measurements. The setup is illus­
trated in Fig. 4. 

The program that operated the noise-loading set could operate either 
through a teletype request or automatically. In either mode, the com­
puter sends a start command to the PRNL set. The PRNL set synchronizes 
this computer start command with its internal start commands and 
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executes a measurement. Upon completion of the measurement, the 
PRNL set sends a finish command to the computer which, in turn, ini­
tiates a data transfer from the memory of the signal averager to the 
computer disk memory for storage. The automatic mode of operation 
was used to make repetitive measurements through the use of the real­
time clock of the computer. In this mode, a measurement can be re­
quested, either at a specified time, or at a specific interval. 

2.5 Calibration 

The purpose of calibrating the noise-loading test set is to obtain an 
absolute measure of the intermodulation signal in a notch at the output 
of the device under test and to establish the signal power density near 
the notch frequency. The difference in these measurements yields the 
noise-power ratio (NPR) which is a measure of the linearity of the de­
VIce. 

The precise calibration relates the power as measured at the signal­
averager output for one cycle of the averager to the power in the notch 
at the output of the test device. To do this, the receiver was calibrated 
to determine the equivalent noise bandwidth of each set of preselect 
filters, and the gain of the receiver was measured for the center frequency 
of each set of preselection filters. 

The intermodulation signal in the notch at the output of the device 
under test is determined by level adjusting the power as measured at the 
signal-averager output by the measured receiver gain and the amount 
of averaging performed. The signal-power density near the notch fre­
quency is found by measuring the total output power at the output of 
the test device and subtracting the selectivity of the receiver. 

2.6 NPR results 

Two important features of the PRNL test set are the averaging feature 
and the multifrequency capability. Both are important for characterizing 
intermodulation noise in a repeater. The averaging feature permits NPR 
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measurements below thermal noise. The multifrequency feature allows 
measurements on portions of the repeater so that the effect of these parts 
can be seen on the overall NPR performance. The data shown below il­
lustrate both these points. 

Examples of data showing the averaging and multifrequency capa­
bilities of the set are shown in Figs. 5 and 6. In Fig. 5, the device under 
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test was a 4-GHz traveling-wave tube (TWT) measured RF-tO-RF. The 
figure shows the measured NPR (ordinate) as a function of the TWT 

output power (abscissa). At an output power of 21.4 dBm, the thermal­
noise power in the notch equalled the intermodulation (1M) power in the 
notch. The test set residual 1M was 50 dB lower due to the high TWT gain. 
The 2:1 slope indicates dominance of third-order intermodulation 
products. Multifrequency capability of the PRNL set is illustrated in Fig. 
6. Shown are the results of an IF-to-RF noise-loading measurement on 
an experimental single-sideband transmitter that includes a TWT. In 
this measurement, the thermal and intermodulation powers in the notch 
are equal for an output power of 28.5 dBm. The NPR performance of the 
additional units (besides the TWT) that make up a transmitter account 
for the noticeable change in the results shown in Figs. 5 and 6. 

III. TANDEM PERFORMANCE AND THE LAW OF ADDITION 

Telephone transmission over more than a few miles requires repeaters 
to maintain adequate speech volume. Since intermodulation is produced 
by the signal at each repeater, intermodulation from tandem repeaters 
may be coherent and add on a voltage basis. For instance, in a system 
of 150 repeaters, the difference in output intermodulation power at the 
end of the string between coherent and random addition is 22 dB. It 
would be helpful to have a way of quantifying and predicting this addi­
tion for a few repeaters in the laboratory,.since direct measurement of 
many tandem repeaters in the laboratory or field can be expensive. 

We show below that the intermodulation power at the end of a tandem 
string is related only to the crosscorrelation of the intermodulation sig­
nals from all pairs of repeaters. Therefore, the crosscorrelation can be 
used as a quantitative measure of the buildup of intermodulation noise. 
Since the PRNL set can measure the crosscorrelation, when linked to a 
computer, it is a tool that we can use to predict the addition of inter­
modulation products for many similar repeaters by measurements on 
a few repeaters in the field or laboratory. Data are shown to substantiate 
the relationship between total intermodulation noise power and the 
crosscorrelation. The theory and results here hold only for linear systems. 
Digital and band-limiting repeaters using frequency modulation (FM) 
cannot be handled by these techniques. 

3. 1 The model for intermodulation addition 

Figure 7 is a schematic representation of a model of a repeater used 
to study intermodulation noise addition for linear repeaters. The as­
sumption is made that the repeater can be split into two parts: a purely 
linear part (linear filter) followed by a purely nonlinear part (gain). This 
is not the most general case, but works well for microwave radio re-
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peaters, where the power stage that generates most of the intermodu­
lation noise is broadband, and for certain cable repeaters. 

The critical point of this model is that the intermodulation produced 
by the repeater, m (t ), depends only on the signal, s (t ), not the incoming 
intermodulation, n(t). This is easily demonstrated. Suppose the non­
linear device is third order so that its intermodulation noise increases 
3 dB for every dB increase in total power. Since the intermodulation 
must be small for a practical system, take it to be 40 dB down from the 
signal. In the next repeater, the signal will produce intermodulation 40 
dB down from its level; but the incoming intermodulation will generate 
intermodulation that is 120 dB down from the signal-induced inter­
modulation. Such low-level signals will not affect system performance 
and may be ignored. In other words, the system is purely linear to small 
signals such as intermodulation. With the assumption that the noise 
generated at a repeater does not depend on the incoming noise, the total 
noise at the end of a tandem connection of repeaters is just the sum of 
these separately produced noise signals. The power of the total noise then 
depends on the average of products of the noise signals, which are cor­
relations of these signals. 

3.2 Experimental validation of model 

The point we wish to test is that the total intermodulation from all 
repeaters in a tandem connection is the sum of the intermodulation from 
each repeater, where the intermodulation from each repeater is produced 
independently of the intermodu~ation from all other repeaters. To 
demonstrate this, the PRNL set was connected to the input of the first 
repeater and the output of the last repeater of four experimental sin­
gle-sideband repeaters that were connected in tandem. The NPR of this 
arrangement was measured as a function of power, with all repeaters at 
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nominal operating conditions. This result is plotted in Fig. 8 as the 
tandem data curve. Next, the first repeater was kept at nominal load, 
but the gain controls in the remaining three repeaters were adjusted to 
keep the transmitters, which generate most of the intermodulation, at 
low power. In this way, the intermodulation at the end had to be only 
that from the first repeater. * Notice that the intermodulation traversed 
all three remaining repeaters, just as when all repeaters were at nominal 
power. This is important when the repeaters are frequency selective, with 
even small amounts of delay distortion across the band, since the in­
termodulation from each repeater passes through different numbers of 
repeaters and so is distorted differently. For many repeaters in tandem, 
this effect can lead to considerable decorrelation of the products. 

Measurement of intermodulation from each repeater proceeded in 
the same way with the repeater to be measured at nominal power and 
all others at low power. The PRNL set recorded the voltage waveform of 
the intermodulation from each measurement and transferred the re­
sultant digital representation to a computer, as described in Section 2.4.2. 
These voltage waveforms were added together in the computer the power 
was computed for the composite waveform, and the results plotted in 
Fig. 8 labeled computer sum. The two curves are well within measure­
ment accuracy, which substantiates the claim of addition of intermod­
ulation. 

The intermodulation is normally below the thermal noise, but in this 
experiment, it was at least 20 dB under the excess thermal noise created 
when repeaters were operated at low gain. The experiment could not 
have been performed without the noise-reduction capability of the PRNL 

set. 

* This technique was proposed by H. Miedema of Bell Laboratories. 
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3.3 Tandem performance in terms of correlations 

In Appendix A, formulas are derived for the intermodulation noise 
power over a string of repeaters in terms of the correlations between the 
noise from pairs of repeaters. The correlations available from the 
noise-loading set are calculated as 

J
T / 2 

Mij(O) = ui(t)uj(t)dt, 
-T/2 

(1) 

where T is the period of the pseudorandom source, and Ui(t), Uj(t) are 
the intermodulation-noise voltages measured at the input of the PRNL 

set. This quantity was calculated using a computer interface with the 
set, as described in Section 2.4.2. As pointed out in Appendix A, eq. (10), 
Mij(O) is a sample of the broadband intermodulation-noise spectrum, 
Jlij(W). The particular frequency sampled depends on G(w), the preselect 
filter transfer function. 

The intermodulation noise in terms of these correlations is given by 
eq. (7), repeated here: 

J
T/2 N N-l N 

Pn = u 2(t)dt = L Mii(O) + L L Mij(O), 
-T/2 i= 1 i= 1 j=i+ 1 

(2) 

where Pn is the intermodulation-noise power at the end of N repeaters 
in tandem and u(t) the intermodulation-noise voltage. The correlation 
is defined as 

Mi;(O) 
p = -;::;:::::::==::::;::::===:= 

VMii(O)Mjj(O) 
(3) 

and is a function of frequency, since Mij(O) is a function of frequency. 
If p is a constant for a particular type of repeater, then eq. (2) may be 

used to extrapolate results on just a few repeaters, for which p has been 
measured, to N in tandem. Other formulae are given in Appendix A, 
where the effects of the linear portions of the repeaters may be studied. 
Mij(O) includes the effects of the linear filter part of the repeater, as well 
as the nonlinear part, as expressed in eq. (12) in Appendix A: 

(4) 

Hi (w) is the overall linear transfer function from the output of the ith 
repeater to the Nth repeater, as illustrated in Fig. 9. According to our 
model, hj, the correlation between the intermodulation noise from the 
nonlinear element of repeater i to that of repeater j, is independent of 
frequency. 

3.4 Experimental results 

Correlations were calculated for the four experimental repeaters 
mentioned in Section 3.2 using the correlation technique described of 
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reducing the power on all repeaters but the one of interest in order to 
isolate the intermodulation noise from that repeater. The total noise of 
all four in tandem was also measured. Results of the correlations for 
various power settings at the 71.7-MHz notch are given in Fig. 10; the 
tandem results are shown in Fig. 11. 

In Fig. 10, the circles give the mean correlation of the measurements, 
and the error bars indicate one standard deviation from the mean as 
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computed from the data. The error in a correlation measurement is re­
viewed in Appendix B and shown to be about 10 percent. Thus, the large 
deviations observed must be attributed to the variability in intermod­
ulation correlation between the repeaters. Although the data shown are 
all positive, negative correlations are possible and were observed. 

The curve labeled "tandem data" in Fig. 11 is the actual total NPR 

measured for the four repeaters in tandem at power levels corresponding 
to those in Fig. 10. For comparison, results assuming power (p = 0) or 
voltage (p = 1) addition are included by appropriately summing the NPRs 

from each repeater at a given power level. 
A rough comparison of the results of Figs. 10 and 11 can be made by 

referring to eq. (18) in Appendix A. This indicates, with some manipu­
lation, that the tandem-data curve should have an NPR less than that 
for the power-sum curve by 10 10g[1 + (N - l)p] = 10 10g(1 + 3p). For 
example, at a relative power of -2 dB, the spread in correlation implies 
an NPR worse than power addition by 1.1 to 4.5 dB; for + 1 dB relative 
power, the spread is 4.2 to 5.7 dB. The maximum is 6 dB for p = 1, or 
voltage addition. The broad range in correlation of Fig. 10 therefore 
corresponds to a broad range in the possible tandem-data curves of Fig. 
11, of which the curve shown is just one possibility. The filter charac­
teristics of these repeaters were fairly flat at the midband of 70 MHz, 
so the range of values of Fig. 10 were probably due to variability in the 
intermodulation noise produced by the nonlinear elements. 

We can see from Fig. 10 that power addition does not occur anywhere 
in the measured power range for this type of repeater, despite the clear 
dissimilarity between repeaters. This means that, for a large number of 
repeaters, intermodulation addition will approach a voltage law, as 
predicted by eq. (19) in Appendix A. 
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IV. CONCLUSIONS 

The pseudorandom noise-loading set has made accurate, reliable, 
reproducible noise-loading measurements of inter modulation noise that 
is below thermal noise. This has permitted testing single-sideband re­
peaters in their nominal operating power range, tests that would not have 
been possible using conventional noise loading. The set has multifre­
quency capability that allows testing of pieces of a heterodyne system 
as well as the whole. Another unique capability of the set, when linked 
to a computer, is the computation of correlation of intermodulation noise 
between different repeaters. Estimates of the addition of intermodula­
tion products on a tandem connection of repeaters can be made from 
these correlations. 

APPENDIX A 

Tandem Response Using Correlation 

The tandem response of a single-sideband system can be calculated, 
using the repeater model shown in Fig. 9. The basic assumption of this 
model, as explained in the text, is that the intermodulation is produced 
by the signal load and not by other intermodulation signals. Three cal­
culations are made in this appendix. First, the intermodulation' power 
as measured by a noise loading set on a tandem connection of repeaters 
is shown to depend only on the crosscorrelation of intermodulation noise 
on pairs of repeaters. Crosscorrelation can be computed from the digital 
output of the PRNL set. Secondly, the crosscorrelations are broken down 
to show explicitly the relationship between the crosscorrelation of in­
termodulation noise and the linear filter part of each repeater. These 
two results on correlations permit prediction of the addition of inter­
modulation for many repeaters from measurements on a few. Lastly, the 
relationship between correlations and a quantity, known as the law of 
addition, are given. This quantity is often used as a figure of merit for 
a tandem connection of repeaters. 

A.1 Intermodulation in terms of correlations 

For this calculation, refer to Fig. 9. The PRNL set is being used to 
measure N repeaters in tandem, with each repeater modelled as in Fig. 
7. The preselect filter on the noise-loading set has been brought out 
separately; its transfer function is H(w), and its impulse response is h(t). 
Now suppose that the intermodulation time function recorded at the 
PRNL set from the ith repeater is Vi(t), and from the jth, Vj(t). These 
functions might be measured using the technique explained in Section 
3.2 of the text. The crosscorrelation of these two functions for zero shift 
can be found as4 

(5) 
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where T is the period of the PRNL source. This number may be calculated 
as a sum, using the digital representation of v(t). Since the total inter­
modulation noise is 

the power is 

N 
v(t) = L Vi(t), 

i=l 

rT/2 N N-l N 

Pn = J-T/2 v
2
(t)dt = i~l Mii(O) + 2 i~ j=~l Mij(O), 

(6) 

(7) 

which is the desired result. In Sections A.I through A.3, the units are 
volts, kilohms, and milliwatts. All voltages are normalized by dividing 
them by the square root of the effective input resistance of the PRNL 

set. 

A.2 Effect of linear filters on the correlation 

Consider the effect of the preselect filter of the PRNL set on an inter­
modulation measurement. Call the broadband intermodulation noise 
from each repeater, as seen at the final repeater, qi(t) for the ith repeater. 
If g(t) is the impulse response of the preselect filter, G(w) its Fourier 
transform, then 

(8) 

where Vi (t) is the intermodulation measured by the PRNL set, as given 
in the last section, and the asterisk is convolution. Then, by the tech­
niques of Ref. 4, 

(9) 

and 

(10) 

where Mij (t) is the cross correlation of Vi with Vj, and Ilij (w) is the spec­
trum of the correlation of the broadband noise, qi(t) with qj(t). This says 
simply that the preselect filter acts as a window on llij(W). Usually only 
Mij(O) is computed, since this is what is needed for the power estimation 
from eq. (7). The addition of products is a function of w, and G(w) selects 
the w of interest. For example, in Fig. 10, the w is 27r X 71 X 106 Mrad/s. 

Now consider the effect of the linear filters associated with the re­
peaters. According to Fig. 9, Hi(W) is the net tandem linear response of 
the repeaters after the ith one until the end of the string. If mi (t) is the 
intermodulation noise generated in the ith repeater, then 

(11) 
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where qi(t) is the broadband intermodulation voltage, as defined earlier, 
and hi(t) is the impulse response, the Fourier transform of Hi(W). By the 
arguments of Ref. 4, 

(12) 

where t/lij is the Fourier transform of the correlation between mi (t) and 
mj(t), and the asterisk indicates complex conjugate. Equation (12), in 
conjunction with (10) and (7), permits calculation of the noise on a string 
of repeaters from measurements on individual repeaters. Telephone 
repeaters are built the same for ease of manufacture. In the ideal case, 
Hi (w) = H(w) for all values of i; furthermore, t/lij = t/lc for all i ~ j, and 
t/lii = t/l8' for all i values of j. Equation (12) reduces to 

J.Lij(W) = t/lc(w)HN-i(w)[HN-l(w)]* 

= t/ls(w)IHI2(N-i) 

Equation (7) becomes 

Pn = i: IG(w)1 2dw L~l t/lsIHI2(N-i) 

i ~ j 
L = J. 

N-l N ] 
+ 2 i~ j=~l t/lcHN-i(w)HN-j(w)* . 

A.3 Law of addition 

(13) 

(14) 

In systems calculations, it is common to make the simplifying as­
sumptions that the intermodulation power from all repeaters is the same 
and that the correlation of the intermodulation is the same between any 
two repeaters. Neither assumption is true, but since a large number of 
repeaters is involved, average quantities may be used if the distributions 
of noise and correlation are narrow. If, in this case, the total intermod­
ulation power in a narrow band over a tandem connection of repeaters 
N is PN in dBm, and the intermodulation power of anyone repeater in 
the same narrow band is P in dBm, then the law of addition, ~, is defined 
as 

(15) 

The value of ~ is 10 for incoherent (power) addition and 20 for coherent 
(voltage) addition. The advantage of using the law of addition is that 
~IOglON and the required NPR for a third-order dominated system both 
enter the system noise equations as the sum, ~loglON + NPR. Therefore, 
for the same noise performance, the NPR must improve by the same 
amount that ~IOglON grows larger. 
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To relate Ll to the correlation of the intermodulation noise between 
any two repeaters, assume that H(w) = 1, so that 

and 

P = Mii(O), 

where 10 log p = P. Then eq. (7) becomes 

PN = Np[l + (N - l)p]. 

The definition of eq. (15) gives 

Ll = 10 {I + loglO[l + (N - l)P]}. 
10glON 

(16) 

(17) 

(18) 

(19) 

Whereas p is a constant for any length system, Ll depends on N. Notice 
that, for p =F- 0, Ll- 20 for N - co. In any case, p = 0 corresponds to Ll 
= 10, and p = 1 to Ll = 20, as would be expected. 

APPENDIX B 

Errors in Noise Loading Measurements 

Errors in a measurement of intermodulation power were given in 
Section II and are reviewed here. In addition, errors in correlation 
measurements are given. 

B. 1 Intermodulation power and NPR 

In Section II, the basic error in an intermodulation power measure­
ment with this set was given as ±0.25 dB, or 0.14 dB 1 (J". All errors are 
independent, so that error bars on Fig. 10 for assumed power or voltage 
addition are derived by summing the variances of the errors for each 
repeater measurement. 

B.2 Errors in estimates of correlation coefficient 

The correlation coefficient is defined as 

Mij(O) 
Pij = -y-;:M:;::::;::ii::::;:( O~):::;M:::;J=j ~(O::::;) (20) 

Amplitude errors occur in the measurement of intermodulation, but 
these do not affect the correlation. The significant sources of error are 
extraneous delays between the two signals being measured and sample 
size. Extraneous delays are delays introduced by the measurement 
equipment, rather than true signal delays in the repeatered string under 
test. In heterodyne single-sideband repeaters, such extraneous delay may 
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A 50% DUTY CYCLE. 

Fig. 12-Digital oscillator divider chain. 

come from improperly functioning phase-locked loops. The error due 
to these delays in our data was estimated to have a standard deviation 
of 3 percent of the computed correlation. 

The error in the correlation coefficient due to sample size may be es­
timated by assuming that the intermodulation noise in a notch is 
gaussian. For the noise-loading set used, the line spacing was about 200 
Hz with a notch width of nearly 3 kHz, giving 15 lines for an intermod­
ulation signal. This number of sine waves is well approximated by 
gaussian statistics.5 The approximate mean and variance of an estimate 
of the correlation coefficient is (%)log (1 + p/1 - p) and 1/(n - 3), re­
spectively, where n is the number of points, and p is the estimate.6 For 
the 255 data points available from the averager, this comes to a standard 
deviation of the error of about 6 percent. The standard deviation of the 
total error in an estimate of correlation is about 7 percent. 

APPENDIX C 

6-GHz Noise Loading Set 

In the latter part of 1974 and early 1975, another PRNL set was de­
signed for the 6-GHz band. Besides a much improved physical design, 
this set was designed with all LOs derived from a single source. This 
change reduced the cost of Logeneration and also simplified the master 
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timing circuit. In addition, the set was designed to operate in the 4-G Hz 
band with minimal changes. These design changes are described 
below. 

In the 6-GHz set, only one master oscillator is used, either 300 MHz 
or 450 MHz (see Fig. 12), depending on whether a 20-MHz or 30-MHz 
IF is desired. 

Using digital dividers, a number of basic frequencies are derived from 
this single oscillator. Double balanced mixers (see Fig. 13) are used to 
combine the appropriate basic frequencies as well as notch-detector 
frequencies. Crystal filters select the local oscillators so that spurs are 
more than 70 dB down. This keeps signal leakage into the notches at 
tolerable levels. 

The block diagram for the new master timing circuit is shown in Fig. 
14. The major difference between this and the previous circuit is the 
absence of the coincidence circuit. This circuit could be eliminated since 
all local oscillator frequencies, as well as all notch-select frequencies, are 
derived directly from one master oscillator. If the pseudorandom source 
repetition frequency is made a multiple of the lowest common denomi­
nator for all these LOs, coherence is assured. This lowest common d~ 
nominator is 0.5 MHz, and the source frequency is usually chosen as 
192.3 Hz, i.e., 2600 periods of the 0.5 MHz frequency. 

Each single cycle of the test signal has to be slightly larger than the 
5.12-ms single-sweep average period. This is achieved by setting the 
divide-by-n counter to the desired period. The complementary start-stop 
circuit, the delay circuit to assure a minimum reset period, the combining 
of Start commands (manual start, computer start, cursor trigger), 
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and the ready circuit are all similar to those shown in Fig. 3. The principal 
difference is simply the absence of the coincidence circuit. The strobe 
circuit is not needed since all notch-detect frequencies are coherently 
related to the 3-MHz oscillator frequency used to set the source period. 

Output pulse jitter for this circuit is less than 0.25 ns, which makes 
it possible to achieve 42-dB signal-to-noise improvement routinely. 
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Caustics created by internal reflections 'and interface refraction 
have been observed in the molten drawdown zones of fibers during 
manufacture in a laser furnace. These regions of high luminescence are 
associated with the rapid change in cross-sectional area. that occurs 
in the drawdown zone. Observations made with solidified samples of 
the molten drawdown zone reveal the nature of the caustic envelopes. 
Algorithms which incorporate ray tracing techniques have been de­
veloped and used with surface profile measurements to generate caustic 
loci. The results from these numerical experiments are in good agree­
ment with observations. The caustics are found to be particularly 
sensitive to asymmetries in the drawdown profile. A simple technique 
for monitoring the maximum gradient of the drawdown zone is also 
described. 

I. INTRODUCTION 

The drawdown zone of a silica fiber manufactured in a laser furnace 
has a cross section that varies rapidly along its axis. When this zone is 
internally illuminated with a collimated beam parallel to the axis, a re­
gion of high-intensity radiation is observed (see Fig. 1). The radiation 
is the result of multiple internal reflections and a refraction of the beam 
caused by the rapidly varying boundary of the glass. The locus where 
the rays of geometrical optics form an envelope is known as a caustic. 
Along such a surface the luminous intensity is a maximum.! Normal to 
the caustic, the intensity is characterized mathematically by an Airy 
function, decaying exponentially on one side, the shadow region, and 
varying harmonically in the opposite direction. For simple geometries, 
the techniques used to calculate the caustics are straightforward; e.g., 
a collimated beam reflected from a semicircular concave mirror forms 
a caustic which is part of an epicycloid. When the reflecting boundaries 
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Fig. I-High-intensity drawdown zone labeled with the relevant geometrical para­
meters. 

are not given analytically, however, the calculation of the caustic ge­
ometry is more laborious. 

It is our hypothesis that light reflected and refracted from the draw­
down zone in the form of caustics can provide an extremely sensitive 
measure of the surface geometry and, possibly, such physical quantities 
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as the index of refraction and temperature. Observations made during 
an actual silica-fiber drawing operation confirm the existence of caustics 
in the molten zone. In that case, the emission is the result of the high­
intensity radiation along numerous ray paths, many of which are 
skewed. 

In this paper, we restrict our attention to an examination of the so­
lidified drawdown zones of a number of fused-silica samples. For the 
most part, we concentrate on the radiation produced by an internal plane 
wave traveling along a sample; this is not, however, a limitation as ex­
periments with a diffused source will show. Our observations are used 
to illustrate that"the caustics originate from light rays traveling through 
different regions within the cross section. Furthermore, we show that 
the drawdown contour plays an important role in defining the caustic 
geometry and that small changes in the profile gradient can produce large 
variations in the caustic patterns. For a given index of refraction, ray 
theoretic analysis and geometrical optics confirm that the observed 
far-field caustic phenomenon can be predicted with good accuracy 
provided the boundary of the drawdown zone is well defined. Conversely, 
careful observation of the caustic patterns might be used to determine 
important aspects of the drawdown zone's geometry. We also show that 
a reflected caustic generated by external illumination of the drawdown 
zone may be used to provide a practical and accurate measure of the 
maximum profile gradient. 

We consider two limiting cases and describe these as an "upstream" 
and a "downstream" caustic, in order to designate their nominal location 
relative to the silica flow during the drawing operation. These caustics 
do not appear in the drawdown zone of preforms being heated in an in­
duction furnace since the profile gradient is too small. However, a geo­
metrically relevant caustic can always be generated by external illumi­
nation of the drawdown zone regardless of how small the profile gradient 
becomes. This point will be discussed further below. 

II. EXPERIMENTAL METHODS 

Solidified samples of the transition region between the preform and 
the fiber were cut and polished square to the axis on the preform end 
some 50 mm ahead of the drawdown zone. Each sample began at a pre­
form of a uniform diameter between 6.5 mm and 8 mm, and terminated 
at a fiber diameter of typically 200 ,urn. * All the samples were of fused 
silica with an index of refraction, n, of 1.457 at a wavelength of 643.8 nm.2 

Individual samples were mounted in a gimballed mirror mount with 
micrometer adjustment. The sample was usually illuminated internally 

* Although the drawdown region continues much further-to a final fiber diameter of 
about 100 ~m-this region is of no interest to the current study" 
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by a light beam entering the preform parallel to the fiber axis. This 
technique generated the upstream and downstream caustics. The sample 
could also be illuminated externally by a beam normal to the fiber axis 
and incident to the drawdown zone. This alternative generated a re­
flected caustic from which the maximum gradient of the drawdown 
profile could be determined. An Argon Ion or He-Ne laser, A. = 514.5 and 
632.8 nm, respectively, provided the illumination. In either case, the 
beam was expanded through a spatial filter and collimated to a diameter 
greater than the preform. Particular regions of the preform cross section 
were selectively illuminated via adjustable slits and diaphragms. When 
required, the collimated beam was altered by introducing a diffuser at 
the polished end of the sample. The experimental arrangement is illus­
trated in Fig. 2. 

Images of the caustic patterns emitted from a particular sample were 
recorded in planes parallel and perpendicular to its axis. These far-field 
caustic images (see Figs. 3 and 4 for typical examples) were obtained by 
mounting the film in a Polaroid* film holder and exposing it in a dark­
ened room, or, by photographing the image formed on a suitable screen 
in the same plane. By translating the sample relative to the reference 
plane, the locus and orientation of the caustic was determined. The 
precise location of the caustic at the surface of the sample was obtained 
by adjusting a toolmaker's height gauge, in contact with the surface, until 
it interrupted the display of the far-field caustic image. 

III. EXPERIMENTAL RESULTS 

3. 1 Origins of the caustics 

A diaphragm aperture was used to vary the incident-beam diameter 
to determine which annular regions within a transverse cross section of 
the sample transmitted light that contributed to each caustic. With a 
ground glass viewing screen in position 1 or 3, Fig. 2, the incident beam 
diameter was reduced until the caustics disappeared. Figure 3 shows 
typical far-field photographs taken during these tests. When the beam 
and preform diameters were equal, both upstream and downstream 
caustics were visible. When the beam diameter was reduced approxi­
mately five percent, the downstream caustic vanished, while the up­
stream caustic remained unaffected. The upstream caustic remained 
intense until the beam diameter was red ucedto between 60 and 55 percent 
of the sample diameter, when it began to lose intensity rapidly. These 
observations show that the downstream caustic originates from a region 
very near the shoulder of the drawdown. The upstream caustic has its 
source close to the inflexion point of the drawdown zone. 

When the image plane was oriented parallel to the preform axis, po-

* Registered trademark of Polaroid Corporation. 
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Fig. 2-Experimental arrangements for measuring various caustic loci. 

sition 2 in Fig. 2, the caustic pattern for a symmetric sample became 
hyperbolas. The photographs in Fig. 4 show a comparison of the caustic 
images recorded using beams of different diameters with and without 
a diffuser. The principal observation is that both caustics can be seen 
in the full beam photographs. Although the detailed structure that occurs 
with the collimated beam has been eliminated by the diffuser, the skew 
rays introduced thereby do not eliminate the caustics. A reduction in 
the collimated beam diameter below that of the preform quickly elimi­
nates the downstream caustics. However, they can still be seen whenever 
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Fig. 3-Variations of the far-field caustic images (positions 1 and 3) with changes in 
illuminating-beam diameter; sample 1. 

the diffuser is placed in the beam because the light scattered towards 
the surface can be reflected to form the downstream caustic. Signifi­
cantly, as the beam is stopped down further, so that the upstream caustic 
also starts to disappear, the resolution of both caustics becomes relatively 
more apparent with the diffused beam. Considerable additional caustic 
structure, which is completely obscured in the patterns recorded with 
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Fig.4-Variations of the far-field caustic images (position 2) with collimated and 
diffused illuminating beams of changing diameter side views. 

the fully collimated beam, becomes visible in patterns recorded over 
much longer times with diffused beams of substantially reduced diam­
eter. 

3.2 Propagation paths of the emergent caustics 

Accurate* determinations of the propagation directions of the caustics 

* See Appendix for estimates of accuracy. 
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Fig. 5-{a) Comparison of the measured far-field caustic trajectories and the graphical 
ray traces for adjacent rays bounding the caustic ray. 

and the precise loci of their emergence from the preform were made as 
described in Section II. This information was subsequently compared 
with emerging caustics identified by geometrical ray tracing through a 
known preform geometry. The ray tracing was performed graphically 
on a fiftyfold enlargement. Figure 5a shows, on a necessarily reduced 
scale, the excellent agreement between the experimental observation 
and the graphical ray tracing in a typical sample, such as sample 4. 

From the above comparisons, we conclude that the observed caustics 
do indeed result from light following the paths determined by the 
graphical ray tracing. In Fig. 5a we see that the upstream caustic is 
generated by rays traveling down the sample at about the half radius 
which reflect internally once. These rays then cross the sample and strike 
the diametrically opposite side at such an angle that they emerge up­
stream of the downstream caustics. A caustic represents a limiting 
phenomenon at which the field of emerging refracted rays folds back 
upon itself. Thus, the upstream caustic represents the furthermost up-
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Fig. 5-(b) Comparison of the same observations with the numerical calculations. 

stream limit that rays can emerge from the preform. It is possible, 
however, that the upstream caustic will not appear because the field of 
emerging rays is terminated at the critical angle. Then, before the field 
can fold back upon itself, it is internally reflected. The upstream image 
for such a condition is shown in Fig. 6b where no caustic is seen at the 
boundary between the light and dark regions. A similar internal reflec­
tion occurs locally with the original sample shown in Fig. 3. The asym­
metry of the caustic observed in Fig. 3 and its local extinction are due 
to asymmetries in the drawdown profile, the effects of which will be 
discussed in Section 3.3. 

Referring now to the downstream caustics, we have already established 
in Section 3.1 that these arise from light traveling down the sample very 
close to its surface. Their behavior is similar to the upstream caustic; 
however, the graphical ray tracing reveals an important distinction be­
tween the two families. The downstream caustic is formed by rays that 
have reflected twice before crossing the sample and emerging (see Fig. 
5a). As noted earlier, there is excellent agreement between the con­
structed and observed caustic locations. This caustic is unique in that 
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Table I - Synopsis of the drawdown sample geometries 

Sample Station 
Taper 
L/D* 'Y - (d

y
) 

- dx max 
{3 = arc cot 'Y 

3 0.73 0.87 48.9° 
6 0.73 0.92 47.3° 
9 1.01 44.6° 

12 0.98 45.6° 
2 3 0.62 1.02 44.5° 

6 0.63 1.12 41.7° 
9 1.05 43.5° 

12 0.99 45.2° 
3 3 0.44 1.95 27.1 ° 

6 0.46 1.89 27.9° 
9 1.89 27.9° 

12 2.14 25.0° 
4 3 0.94 0.82 50.6° 

6 0.97 0.67 56.0° 
9 0.72 54.2° 

12 0.88 48.8° 

* The taper information relates to pairs of profiles, so the information in row 3 refers 
to profiles 3 and 9 while information in row 6 refers to profiles 6 and 12. 

no other ray paths give rise to a downstream caustic with a greater cone 
angle. 

3.3 Studies of geometrical effects 

3.3.1 Upstream caustics 

Four samples with different geometries were studied to develop an 
understanding of the relationship between the shape of the drawdown 
region and the caustic loci. These samples, described in Table I, were 
selected to span the range of geometries to be expected from the laser 
drawing process. Every sample was examined in two orthogonal planes, 
parallel to the axis. These planes intersect the drawdown zone in four 
curves labelled 3, 6, 9 and 12 when viewed from the fiber end. The 
drawdown taper (LID) ranges from 0.4 ~ LID ~ 1.0. Here D is the pre­
form diameter, and L is the distance along the axis from a diameter of 
0.98D to one ofO.15D. The maximum gradient, 'Y = (dyldx)max, ranged 
from 0.67 to 2.14. Since the caustic formation depends upon interactions 
between the ray trajectories and opposite boundaries of the drawdown 
zone, asymmetries on any particular cross section are of considerable 
significance. 

The most extensive studies were made on sample 1 and have been 
discussed earlier. The other three samples were examined only with a 
full collimated beam (see Fig, 2) to establish the caustic geometries. 
Typical far-field caustic patterns from each sample are given in Figs. 6 
and 7. The upstream images (see Fig. 6) illustrate the diversity of pat­
terns that arise because of variations in the profile geometry. Figure 6a 
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Fig. 6-Far-field upstream (position 3) caustic images observed from three different samples, illustrating the effects of geometrical variations. 
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Fig. 7-Far-field downstream (position 1) caustic images observed from four different 
samples. 

shows a single caustic with considerable asymmetry, one segment of 
which vanishes where internal reflection occurs. Figure 6b shows an 
occurrence in which there are no upstream caustics, which is again the 
result of internal reflection. Referring to Table I, we note that the angles 
of the normals to the profile, {3, for samples 1 and 2 are in the neighbor­
hood of 45°. Here {3 = arc cot 'Y. Since the upstream caustic ray paths 
intercept each boundary once, this assures that the significant incident 
rays approach the second surface at angles close to the critical value of 
43.2° (n = 1.46). In these circumstances, the ray trajectories for sample 
1 are such that the incident angle, ¢, is usually less than, but close to, the 
critical angle. On the other hand, for sample 2, ¢ is everywhere greater 
than the critical angle. Snell's law predicts an increased sensitivity of 
the refracted ray to changes in the incident ray path in the vicinity of 
the critical angle; this is illustrated in Fig. 8. Clearly in regions close to 
the critical angle small changes in incidence are magnified considerably. 
Thus, sample 1 shows large caustic eccentricity associated with modest 
profile asymmetry, while sample 2 exhibits no upstream caustic at all. 
It does, of course, exhibit a transition between dark and light regions in 
the upstream field. However, the locus of this transition is associated 
with the limiting rays of an internal reflection. 

Consider now Fig. 6c, in which one observes the appearance of two 
( 
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Fig. 8-Sensitivity of the angle of refraction, ;p, to changes in the angle of incidence, r/J, 
as 1> approaches the critical angle. 

upstream caustic boundaries. The condition arises because of the com­
plicated reflections and refractions that occur in this sharply tapered 
drawdown region. The severity of the profile gradient allows some of the 
incident beam to refract from drawdown zone on the first interception 
with the boundary. * The small percentage of light that is internally re­
flected due to the low surface reflectance traverses the drawdown zone 

* This emitted light forms a caustic at the inflexion point which is refracted downstream 
at a negative angle. This phenomenon is not classified as a 'downstream' caustic because 
it intercepts the drawdown surface only once before it is emitted. 
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Fig. 9-Far-field caustic trajectories taken from sample 3, showing two upstream and 
a single downstream caustic. Each individual caustic can be identified on the accompanying 
photograph. 

and emerges in the upstream direction bounded between two caustics 
(Fig.6c). 

Sample 4 is the shallowest of all those examined. Consequently, the 
ray trajectories are straightforward although the upstream caustic 
propagates downstream over an appreciable region of the polar angle. 
For that reason, no upstream photographs were made, and all data were 
recorded from position 2 (Fig. 2). Those measurements are given in the 
inserts of Fig. 5. The formation of the upstream caustic is the same as 
in sample 1, but since the local slope is much shallower, the incident ray 
angles are much less than the critical angle. Hence, the upstream caustic 
pattern for sample 4 is not as sensitive to deviations in the drawdown 
asymmetry. 

3.3.2 Downstream caustics 

Far-field images of the downstream caustics are shown in Fig. 7. The 
image for sample 3 is not apparent because it emerged almost normal 
to the axis. Data for this sample was therefore recorded from the side 
view, position 2, and is given in Fig. 9. Compared with the upstream 
caustics, the downstream ones are relatively well behaved and vary 
continuously with the surface geometry. The local caustic extinction 
found in the upstream cases does not now occur because the incident ray 
trajectories relative to the emergent ~3Urface are far removed from the 
critical angle. Careful analysis of these data shows that the downstream 
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caustic asymmetry can be related to the asymmetry of the drawdown 
geometry. Figure 10 presents a correlation of the ratios of the caustic 
angles {)j{)j, with the ratio of the maximum slopes 'YJ'Yj for all samples. 
The error bars represent the uncertainty in the measurement of the 
caustic angles, typically in absolute terms ± 1 o. With the exception of 
sample 3, the maximum gradients of the samples were obtained by spline 
fitting the original profile data measured with the Nikon comparator. 
The exterior reflected caustic technique was used to measure the gra­
dient of sample 3 because its profile was too steep and irregular to be 
measured with the comparator and analyzed accurately. The significant 
aspect of the curve shown in Fig. 10 is the trend toward decreasing caustic 
angle ratio with increasing slope ratio. The scatter observed arises from 
the uncertainty in determining the slopes, and also from the probable 
dependence of the caustic asymmetry on factors other than the maxi­
mum gradient. 

IV. MATHEMATICAL AND NUMERICAL ANALYSIS OF THE INTERNALLY 
ILLUMINATED CAUSTICS 

In the preceding sections, we discussed the optical phenomena seen 
when the drawdown zone of a silica fiber is appropriately illuminated. 
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The experimental evidence presented shows that many important fea­
tures of these phenomena could be explained by geometrical optics in 
terms of families of rays and their envelope curves or caustics. In this 
section, we derive equations for the rays in these families as well as 
equations for their caustic curves. These equations have been evaluated 
numerically, and we compare these numerical results with experimental 
results. Since the index of refraction of the glass is uniform, all the rays 
are straight lines between intercepts with the glass-air boundary. The 
continuation of a ray after its intercept with the boundary is determined 
by the laws of reflection and refraction of geometrical optics. 1 We assume 
that initially all rays are parallel to the axis of the preform, as is indicated 
in Fig. 11. A given initial ray in the preform and the axis of the perform 
determine a plane, called the initial plane. If the drawdown zone were 
axially symmetric, it is easily seen that at every reflection or refraction 
at the boundary, the ray would remain in that plane. In all the fibers we 
have considered, the drawdown zone is not axially symmetric. We have 
continued to make the approximation in our calculation~, however, that 
any ray always remains in its initial plane. The good agreement between 
theory and experiment leads us to believe the error introduced by this 
approximation is small. Nevertheless, because the two curves in which 
the initial plane intersects the drawdown zone are different, any asym­
metry of the drawdown is taken into account. 

The derivation of the equations for the rays and the caustic curves is 
essentially the same for the double- and triple-intercept rays. As shown 
in Fig. 11, we express the boundary curves in the (~;1]) coordinate system 
and the equations of the rays and caustics in the (x ,y) coordinate system. 
A given ray is parameterized by the abscissa ~ of the point at which it first 
intercepts the boundary curve g (~) of the drawdown zone. We then trace 
the ray until it emerges from the preform and write the equation of the 
emergent ray as 

a(~)x + b(~)y = c(~). (1) 

Equation (1) represents a one-parameter family of straight lines with 
the parameter ~. The envelope of this family of lines isa caustic curve.! 
To obtain the envelope, we differentiate eq. (1) with respect to ~, ' = 
d/d~, 

a' (~)x + b' (~)y = c' (~). (2) 

The solution x = x (~), y = y(~) of eqs. (1) and (2) is the caustic curve in 
parametric form. 3 

Consider first the family of double-intercept rays, and refer to Fig. 
lla. Here normal vectors to the curves are denoted by n, tangent vectors 
by t. The ray is first reflected from the lower curve at the point [~, -g(~)]. 
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calculations. All angles are positive measured in the counterclockwise sense. 
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Since the angle of incidence equals the angle of reflection, elementary 
geometry yields 

cot 0 = tan [~ - 0 ] = -g'(~), 
0' = g"(~) sin20, 

7r 
P, = 20 --. 

2 

(3) 

(4) 

(5) 

Equation (4) is obtained by differentiating eq. (3), and eqs. (3) and (4) 
together determine O(~) and O'(~). Note thatg'(~) < 0, so (3) determines 
O(~) as an angle in the first quadrant. The use of eq. (5) for p, and simple 
trigonometry show that 

A = ~ - g(~) cot 20. (6) 

The ray next intersects the upper curve at the point[p,f(p)]. Observing 
the triangle with vertic~s (A,O), (p,O), and [p,f(p)], and making use of (5), 
we find 

p - A = -f(p) cot 20. (7) 

Sinr.p. (J :mn A::lrP. known fundiom; of!= from (3) and (6). we can determine 
p(~) as the solution of (7). If eq. (7) is differentiated with respect to ~ and 
eqs. (3), (4), and (6) are used, it can be shown that 

p'W = [ -g'W - ~;~; Ig(~) + {(p)}] 

[ 
df ]-1 

X sin 20 + dp (p) cos 20 . (8) 

Next, by definition, 
df 

tan 1/; = dp (p), 

and by differentiating (9) we get 

d 2f 
1/;' = - (p)p' cos21/;. 

dp2 

Simple geometry and Snell's law require that 

(9) 

(10) 

7r 
¢ = "2 - 1/; - 20, ¢' = -1/;' - 20', (11) 

sin¢ = n sin ¢, ¢' = (n cos ¢/cos ¢)¢', (12) 

where n is the index of refraction of the glass. The equation of the 
emerging ray is 

(x - p) cos (¢ + 1/;) + (y - f(p)) sin (¢ + 1/;) = 0. (13) 

552 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1977 



If eq. (13) is differentiated with respect to ~ and eq. (9) is used, we get 

-(x - p) sin (¢ + 1/;) + [y - f(p)] cos (¢ ~ 1/;) = F(~), (14) 

where 

F(~) = (p' cos ¢)j{(¢' + 1/;') cos 1/;}. (15) 

Equations (13) and (14) can be solved for x and y to give the parametric 
equations of the caustic curve 

x(~) = p - F(~) sin (¢ + 1/;), y(~) = f(p) + F(~) cos (¢ + 1/;). (16) 

We evaluated x(~) and y(~) for the double-intercept rays by choosing 
a value of ~ and then successively determining (), ()', p, p', 1/;, 1/;', ¢, ¢', ¢, 
and ¢, from eqs. (3) through (12). These values were then used to de­
termine x(~) and y(V from (15) and (16). Values of x(~) and y(~) were 
evaluated at a number of closely spaced values of ~ and then plotted. The 
treatment of the triple-intercept rays, shown in Fig. lIb, uses the same 
type of argument. The calculations were carried out on a Honeywell 6000 
digital computer. Most of the calculations involved only the use of 
standa~d trigonometric subroutines and either the N~wton-Raphson 
method4 or Brent's algorithm.5 

The actual profile functions were approximated by sixth-order B­
splines6 possessing four continuous derivatives (a sixth order B-Spline 
is a piecewise polynomial of degree five). The approximations were ob­
tained by making least squares fits of the B-Splines to the original profile 
data measured with the Nikon comparator. The fitting was done using 
an algorithm and subroutine developed by N. L. Schryer of Bell Labo­
ratories. 

In forming the caustic of double-intercept rays, only those rays were 
employed that intercepted the curve 7J = -g(~) once and made an angle 
less than the critical angle with the normal to the surface at its inter­
section with the curve 7J = f(~). Similarly, in forming the caustic of tri­
ple-intercept rays, only those rays were used that intercepted the curve 
7J = -gU) twice in succession and made an angle less than the critical 
angle with the normal to the curve 7J = f(~) on intersecting it. 

In Figs. 12a and 12b, we show the caustics for sample 1 which lie in the 
6-12 initial plane. This is the same sample shown in Fig. 1, although the 
initial plane of Fig. 1 is not the 6-12 plane. In both Figs. 12a and 12b, f(~) 
is profile 6 and g(~) is profile 12. Only those caustics corresponding to 
rays initially incident on profile 12 are shown. These caustics are rep­
resentative of all those we have calculated, although of course there are 
important differences of detail. In both figures the heavy curves are the 
caustics, while the lighter straight lines are typical rays emerging from 
their point of tangency with the caustic. 

For sample 1, all the i:ncident rays were totally iJ?ternally reflected at 
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their first intercept with the surface for the double-intercept rays, and 
for the first two consecutive intercepts for the triple-intercept rays. 
Sample 1 had a preform radius ro = 3.242 mm, and all the incident rays 
of the double-intercept family of Fig. 12a lay in the strip 0.160 ro ~ g(~) 
~ 0.929 ro, while all the incident rays of the triple-intercept family of Fig. 
12b lay in the strip 0.942 ro ~ g(~) ~ 0.973 roo 

The caustic curves themselves for both the double- and triple-inter­
cept families consist of two branches. The point of the caustic [x (~) ,Y (~)] 
in Fig. 12a, which corresponds to the smallest permissible value of~, is 
labeled (1). As ~ increases, the caustic is traced out in the direction shown 
by the arrows. It has a cusp below the axis of the preform and then 
emerges from side 6 and goes to infinity in the direction shown. The 
second branch returns from infinity at the bottom of the figure [shown 
schematically by (2)], crosses the lower boundary, has two cusps, and 
ends near the upper boundary. Note that all the finite cusps are virtual, 
that is inside the silica. The important point to note is that the tangents 
to both branches of the curve at infinity are parallel and are superim­
posed. This part of the caustic, which goes to infinity, we referred to 
earlier as the emergent or far-field upstream caustic. The emergent rays 
thus form a fan parameterized by ~. As ~ increases, the rays, initially 
pointing downstream, rotate counterclockwise until they reach the 
limiting position tangent to the caustic at infinity, and then rotate back 
in a clockwise direction. It is the accumulation of the rays in the direction 
of the tangent to the caustic at infinity which produces the observed 
far-field image. The angle obtained from our calculations between the 
axis of the preform and the tangent to the caustic at infinity was 57.3°. 
The measured value was 54.6°. The caustic curve of the triple-intercept 
family of rays (Fig. 12b), although simpler, has the same general struc­
ture. The calculated value of the angle between the axis of the preform 
and the tangent to the caustic at infinity was 44.9° and the measured 
value was 45.5°. 

Although we have consistently talked about caustic curves, there is 
also a caustic surface, which is the envelope of the caustic curves. Al­
though this caustic surface is not symmetric about the preform axis, it 
can nevertheless be roughly visualized by rotating the caustic curves in 
Figs. 12a and 12b about the preform axis. The upstream caustic surface 
describes reasonably well the upstream separation between the light and 
dark regions shown in Fig. 1. However, the downstream separation be­
tween the light and dark regions in the drawdown zone has not been 
completely explained on the basis of the caustics we have been 
studying. 

In Table II we have summarized the calculated and observed angles 
between the preform axis and the tangents to the caustics at infinity for 
the four samples studied. The station number labels the profile curve 
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Table II - A comparison of the observed and calculated caustic 
angles for four drawdown samples 

Caustic Angles in Degrees, () 

Upstream Downstream 

Sample Station Calculation Observation Calculation Observation 

3 54.5 46.1 46.2 49.4 
6 57.3 54.6 44.9 45.5 
9 75.3 72.5 37.3 40.0 

12 65.3 54.2 42.9 46.8 
2()A = ();l + 09 129.8 118.6 83.5 89.4 
20A = ()f; + (h2 122.6 108.8 87.8 92.3 

2 3 No emerging caustic, (46.2) NC* 57.2 
6 extinction boundary (47.6) 49.2 53.0 
9 at47 (46.9) NC 56.8 

12 (48.8) 64.6 65.2 
20A = ();l + 09 No caustic (93.1) NC 114.0 

2()A = ()6 + 012 No caustic (96.4) 113.8 118.2 
3 3 48.0[64.1] 46.0[63.4] 83.6 78.3 

6 NC 43.7[63.4] NC 81.5 
9 49.0[65.1] 45.5[61.3] 80.7 84.6 

12 NC 45.5[62.5] NC 84.6 
2()A = ();l + ()9 97.0[129.2] 91.5[124.7] 164.3 162.9 
20A = ()6 + 012 NC 89.2 NC 166.1 

4 3 NC 101.0 NC 29.0 
6 86.5 86.0 41.9 39.5 
9 NC 86.6 NC 37.2 

12 104.7 105.0 25.5 26.1 
2()A = ();l + 09 NC 187.6 NC 66.2 
2()A = 0(; + ()12 191.5 191.0 66.6 65,5 

* NC means not calculated. 

through which the observed rays emerge. In Fig. 5b we show the observed 
. and calculated caustics in the 6-12 plane for sample 4. The agreement 
between theory and experiment is very good in most cases. Several cases 
are of special interest. No upstream caustic was observed in sample 2, 
and none was exhibited by the model. Two upstream caustics wereob­
served in sample 3, and the model also exhibited these two caustics and 
the agreement between the model and experiment is good. In short, we 
feel that our geometrical optics model has explained a variety of com­
plicated effects very well. 

v. DISCUSSION 

Table II shows the agreement between the experimental observations 
of the emitted caustic angles and the predicted values. Most of the 
comparisons agree within 6 percent. The only exceptions are the up­
stream caustics at the 3 and 12 o'clock orientations on sample 1. As ex­
plained in Section 3.3, these upstream caustics are associated with an 
approach to the critical angle where the geometrical dependence becomes 
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exaggerated beyond the precision of the profile data. In other words, the 
accuracy of the profile measurement is insufficient to compute properly 
the emerging angles, 1>, when the differential quantity, d1>/d¢, is so large 
and changing so rapidly, see Fig. 8. The above exceptions are related to 
a singularity in the dependence of the upstream caustic on the maximum 
profile slope at which the caustic disappears. The caustic vanishes when 
the maximum slope approaches unity, causing it to intercept the opposite 
side of the drawdown at an angle greater than the critical and thus be 
reflected internally. At a slightly greater slope, depending on the index 
of refraction, the incidence of the internal rays at the first side is less than 
the critical angle. Consequently, most of the incident light will refract 
from the glass instead of reflecting across the drawdown. The low-in­
tensity light which is reflected internally also forms a caustic originating 
at the inflexion point. That caustic crosses the drawdown zone at even 
steeper angles as the maximum slope increases until it intercepts the 
opposite side at an angle less than the critical angle and emerges. For 
sufficiently steep gradients the fan of light behind the caustic can also 
arrive at angles incident to the surface within the critical angle and 
emerge to form yet another caustic by refraction from the curved profile 
of the drawdown, e.g., sample 3. 

The angles given for the upstream caustic directions of sample 2 are 
shown parenthetically in Table II because they represent limiting rays 
governed by internal reflection rather than caustics. As such they can 
be expected to equal angles very nearly tangent to the maximum slopes, 
Table I, and/or angles complimentary to the critical angle, 43.2°. The 
observed values satisfy these criteria quite well. The bracketed values 
given in Table II represent calculated and observed caustic angles for 
the second upstream caustic generated by sample 3 and discussed ear­
lier. 

A comparison of the measured included caustic angles with the average 
tapers computed for each orthogonal profile pair is shown in Fig. 13. 
There it can be seen that as the taper, L/D and (3 decrease, e.g. with 
slower drawing rates or higher temperatures, the included angles of the 
upstream caustics likewise decrease and those of the downstream 
caustics increase. In addition we have found that, aside from the 
anomalous extinction when (3 is near the critical angle, the number of 
caustics increases as L/D decreases, and the interaction between re­
flected and refracted light wave fronts becomes more complex. Con­
versely, as L/D increases, the included angle of the downstream caustic 
decreases continuously until that caustic disappears entirely by internal 
reflection. In extreme cases, such as long tapered drawdowns from fur­
naces, the upstream caustic rotates so far downstream that it also reflects 
internally, and ultimately no light is emitted. In that case (L/D » 1), 
the drawdown acts as a waveguide for the light entering the preform and 
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transmits all of it into the drawn fiber. This behavior is actually observed 
in furnace-drawn fiber drawdowns. 

VI. SUMMARY 

Our studies have shown that two unique families of caustics can be 
formed by light emanating from within a drawdown. We have chosen 
to designate these two families as "upstream" and "downstream" 
caustics; their character is rigorously defined in terms of the number of 
intercepts the trajectory makes with the drawdown profile. A very 
gradually tapered drawdown will emit no light and no caustics are 
formed. As the slope increases, light will appear in a downstream di­
rection where the two intercept rays strike the opposite side at less than 
a critical angle, eventually forming an "upstream" caustic headed 
downstream. As the slope increases still further, the propagation di­
rection of the caustic rotates upstream. Soon the downstream caustic 
appears and progresses in a similar manner with increasing slope. A 
singularity in the dependence of the upstream caustic on the maximum 
profile slope occurs near unity, causing the caustic to disappear by in­
ternal reflection. 

External illumination of the drawdown zone by a collimated beam 
produces a far-field caustic pattern. This reflection caustic provides a 
direct measure of the maximum slope of the drawdown. Obviously the 
difference between the behavior of the externally illuminated caustic 
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and the internally illuminated downstream caustic, which is also slope 
related, will evolve from the optical properties of the glass and the sec­
ondary geometrical properties of the drawdown profile. 

We have also found that the far-field images of all the caustics exhibit 
asymmetries related to geometrical asymmetries of the drawdown zone. 
The downstream caustic asymmetry is a fairly direct measure of the 
asymmetry of the slopes of the opposite drawdown profiles, while the 
upstream caustic responds to a more complicated interplay of geomet­
rical factors. The enhanced geometrical sensitivity at incident angles 
near the critical produces an exaggerated asymmetry sensitivity in far­
field upstream caustic images. 
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APPENDIX 

Estimations of accuracy 

Profile measurements of the solidified samples were made on a Nikon 
optical comparator. Data were recorded every 0.13 mm (0.005 in.) along 
the profile to an accuracy of 0.005 mm (0.0002 in.). These data were used 
in the geometrical ray tracing procedures and the numerical computa­
tions. During the experiments in which the caustic images were recorded 
and/or measured, translatory motions were determined to an accuracy 
of 0.025 mm. All detailed analysis of the caustics were made by direct 
measurement of the images displayed on suitable screens. The caustic 
location was established with a metric scale and a vernier rule. We esti­
mate that, with the screen in a horizontal position (e.g., position 1 or 3, 
Fig. 2), the caustics can be located, with respect to the preform, to within 
±0.1 mm vertically and ±0.2 mm horizontally. When the beam size was 
reduced by slits or iris diaphragms, the aperture was measured to within 
a 0.001 mm with a traveling microscope. 

Measurements of the maximum gradient of the drawdown profile 
using the external reflected caustic (see Section II), were found to be 
repeatable to within 1 percent. These results were more easily and more 
accurately obtained by the caustic technique than by analysis of the data 
obtained by the Nikon comparator. 
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A method is developed to quantify the effect of day-to-day variation 
in offered load on the accuracy of functions of traffic measurements. 
The method is applicable to any smooth function of the standard 
trunk-measurements-i.e., peg count, overflow, and usage. As an ex­
ample, the accuracy of the trunks-required estimator for probability­
engineered, full-access trunk groups is approximated. A sensitivity 
analysis shows that the major contributor to the variance of the esti­
mator is day-to-day variation. 

I. INTRODUCTION 

Most of the traffic-engineering procedures in use in the Bell System 
require data collected over periods of up to several days. It has long been 
recognized that the daily offered loads estimated from trunk-group data 
show considerable variability even for data taken during the same hour 
of successive days.l,2 This variability can cause significant differences 
between the observed blocking and the objective grade of service. It also 
can induce large fluctuations in the estimation of network requirements 
and must be accounted for in the traffic-engineering procedures. (For 
details on a model for this day-to-day load variation, see the Appen­
dix.) 

Two important applications that can be affected by day-to-day load 
variation are trunk servicing and trunk forecasting. The former is the 
use of traffic measurements to determine when trunk groups are sig­
nificantly overloaded or underloaded. In this case, not allowing for 
day-to-day load variation can cause either repeated rearrangements 
(churning) or, more typically because of the emphasis on providing good 
service, overprovision of the traffic network. Trunk forecasting is the 
prediction of future network requirements. The accuracy of the forecast 
is strongly influenced by the day-to-day load variation. That accuracy, 
in turn, affects the procedures used to implement the forecast. 
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Most earlier work has attempted to quantify the effect of day-to-day 
load variation on averages of functions of traffic data.2- 6 Several 
trunk-engineering practices are now based on that work.7 However, most 
of the previous studies that have examined statistical accuracy (as 
measured by variances) of functions of traffic measurements other than 
offered load have assumed that the true offered load (also called the 
source load) was a constant (e.g., Ref. 8). The purpose of this study is to 
provide an extension of the earlier work on traffic-measurement accuracy 
(which usually considered the stochastic nature of traffic and the effects 
of finite sampling) to include the effect of day-to-day load variation. 

The most general work on the accuracy of single-hour measurements 
is that of Neal and Kuczura.8 That work is used as a starting point for 
a more general model developed in Section II. The new model can be used 
to estimate the accuracy of any sufficiently differentiable function of 
the standard traffic measurements-i.e., peg count (number of arrivals), 
overflow, and usage. The model is used in Section III to approximate the 
standard deviation of estimates of the number of trunks required for 
probability-engineered groups. Section IV illustrates the application 
of the results of Section III to trunk servicing. 

This paper uses concurrent work on mathematical models for day­
to-day variation.9 The reader should be familiar with that work, or for 
a short description of the main results, see the Appendix. 

II. THEORETICAL RESULTS 

For completeness, a brief review of notations and definitions is in­
cluded here.8 On each day, the measurements are taken over a time pe­
riod denoted as (O,t], with t usually taken to be one hour. The standard 
trunk-group measurements are: 

(i) A(t) is the measured number of arrivals (peg count) in (O,t]. 

(ii) O(t) is the measured number of overflows in (O,t]. 

(iii) Ld (t) is the measured usage based on a discrete scan [typically 
by a lOO-second-scan traffic usage recorder (TUR)] of the number 
of busy trunks in (O,t].* 

It was found during this study that when day-to-day variation is in­
cluded, the additional effect of the sampling errors in Ld (t) is negligible 
for data from the message trunk network (see Section 3.3.5). Conse­
quently, L(t) will be used throughout the paper with the results being 
equally valid for the discrete, 100-second scan measurement, Ld (t). 
The triple of measurements (A(t),O(t),L(t)) is taken for an interval of 

* A continuous scan of the number of busy trunks (i.e., the total usage) is considered and 
is denoted by L(t). 
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length t on each of n days. The total collection of data is described as 
(Ai(t ),Oi (t ),Ldt)), i = l,.··,n. 

For the model assumed in this study, the trunk group contains c 
trunks, whose holding times are assumed to be from a negative expo­
nential distribution with mean h. During the ith measurement interval, 
the arrival epochs form a renewal process with mean interarrival time 
Ai-I. The offered load during the ith interval is assumed to be constant 
and given byai = Aih, and the peakedness of the traffic is Z.l The offered 
source loads a l,.··,an are assumed to be independent and identically 
distributed (iid) according to a specified probability distribution, r, 
which will be assumed to be a gamma distribution.4 Note that because 
ai and aj, i ~ j, are independent, the processes associated with them are 
also independent. * 

Any customer who arrives when there is an idle server will enter service 
immediately. Because this is a study for trunk groups with typically low 
blocking, a customer arriving to find all servers busy is assumed to depart 
and has no further effect on the system; i.e., customer retrials will be 
ignored. 

2. 1 The approximation 

Let ~ij, j = 1,2,3, i = 1,···,n be the 3n random variables representing 
the data; i.e., ~il = Ai(t)/t, ~i2 = Oi(t)/t, and ~i:) = Li(t)/t. For a fixed i, 
each ~ij, j = 1,2,3 is a random variable whose parameters are functions 
of another random variable ai. Denote the mean and conditional mean 
of ~ij by 

and 

(}j(ad = E[~ijlad. 

Then, setting ~ = (~1l,62,~13,bI,···,~n:3) implies that the mean of ~ is 

~ = E(~) = (OJ,82,03,81,.··,8;3)' 

Now consider any differentiable function g(Xll,.··,Xn :1) = g(~). Expand 
g in a Taylor series about ~ neglecting terms of order greater than one 
to get 

(1) 

* Studies have shown that the day-to-day variation in peakedness is small and is neg­
ligible for most network engineering applications. Recent studies have also shown that 
the effect of a systematic variation in load (e.g., as a function of the day of the week) is also 
negligible.Io Finally, simulation data from this study have indicated that including the 
effect of calls with different exponential holding times on one group (e.g., effective and 
ineffective attempts) have little effect on the results. 
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The mean of g(~) is approximated by 

E[g(~)] ~ g(~) + .f:. .f. Og(~.) I E(~ij - OJ) 
1=1 )=1 OX1) -!=~ 

~ g(~). 

For the variance of g(~), 

E[g(~) - g(~)]2 ~ E {[.f:..f. Og(~.)1 (~ij - OJ)] 
1=1)=1 OX1) -!=~ 

x [f:. f. Og(~)1 (hi - Oz)]} 
k= 1 1= 1 OXkl -!=~ 

= ittl il:;~l=Q It I~ il:~~/ I.=e 
X E[(~ij - OJ)(hl - 0/)]. (2) 

Because ai and ak are independent for k ~ i, the expectation in (2) 
vanishes unless k = i, in which case it isll 

E[(~ij - OJ )(~il - Oz)] = E COV(~ij,~ill ad + Cov(Oj (ai ),01 (ai»). (3) 

Because (3) does not depend on the subscript i (the ai are iid), we may 
drop it and replace ~ij by ~.j and ~il by ~.l in the sequel. Substituting (3) 
into (2) provides the approximation for the variance* 

E[g(~) - g@)2 '" i~jt It il:;~l=Q il:;~l=Q 
X [E Cov(~.j,~.zla) + Cov (O/a),O/(a»)]. (4) 

2.2 Computational considerations 

The term in brackets in (4) is given by 

J[Cov(~.j,~.tla) + (OJ(a) - OJ)((h(a) - Ol)]df(a). (5) 

The functions in the integrand given in Ref. 8 are too complicated for 
the integral to be computed exactly, hence numerical quadrature is re­
quired. 

In previous work several different quadrature schemes have been used 
on integrals similar to that in eq. (5). Because the functions are usually 
smooth, these schemes are generally successful. For this study, a com­
pound 7th-order Newton-Cotes form was chosen.12 The tails of the 
gamma distribution tend to zero sufficiently quickly that the infinite 
region of integration can be truncated to a finite region with no prob­
lem. 

* When g(E) includes the averaging of n days of data, each term og(:rJloxij contains the 
factor lin, so that the variance of g(E) is of the order of (lin). 
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III. EXAMPLE: VARIABILITY OF THE TRUNKS-REOUIRED ESTIMATE 

The methods described in Section II were applied to the specific 
problem of computing the standard deviation, 0"(8), of the trunks-re­
quired estimate, 8, for probability engineered full-access trunk groups. 
The function g in this case is defined by a set of algorithms described 
in the Appendix. The partial derivatives of g are approximated by di­
vided differences. Approximations were computed for several typical 
cases to cover a reasonable range of engineering interest. To test the 
accuracy of the approximations, they were compared with corresponding 
sample standard deviations from a simulation. These results are de­
scribed in the following two sections. An application using these results 
to compute probability intervals for estimates of trunk required is il­
lustrated in Section IV. 

3. 1 Basic calculations 

For the main results, the existing trunk group size is fixed and the 
mean offered load a, peakedness z, and levels of day-to-day variation 
are varied over the range of interest. Following Bell System practice, it 
is assumed that measurements are taken over a 20-day period (i.e., 20 
independent one-hour measurement intervals) and that the trunk group 
is to be designed for an average-blocking objective of 0.01 (denoted 
130.01). It is also assumed that the calls have a mean holding time of 180 
seconds. The sensitivity of the results to these assumptions are described 
in Section 3.3. 

To validate the theoretical computations, sample variances from a 
simulation program were computed for each of several sets of input 
conditions (each variance was computed from a sample of size 50, which 
was large enough to give stable results and still be computationally 
feasible). For some input sets, the simulation runs were repeated to 
provide an indication of the variability of the estimated standard de­
viation. (An analytic approach would require computations of the 
4th-order moments and cross-moments of the measurements and was 
not practical.) 

3.2 Results 

Results were computed for trunk groups ranging in size from 10 to 68 
circuits. Illustrations of typical results are presented in Fig. 1 showing 
plots of 0"(8) as a function of input offered load and peakedness on trunk 
groups with 68 circuits. It has been observed in actual data that peak­
edness and level of day-to-day variation are correlated. Hence, combi­
nations of peakedness and levels of day-to-day variation were selected 
to cover most values encountered in practice, with z = 1 and low variation 
selected to illustrate groups which first-routed traffic; z = 4 and medium, 
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Fig. I-Standard deviation of trunk estimate, O"(c), vs offered load on a 68-trunk 
group. 

and z = 7 and high were related to illustrate groups serving overflow 
traffic. In all cases, it was assumed that measurements are taken on a 
trunk group of the specified size, and the number of trunks needed to 
achieve an average blocking of 0.01 was estimated. 

The input loads in general correspond to a range of blocking values 
from less than 0.01 to greater than 0.15. Except for z = 1, O"(c) has a 
minimum at a load that corresponds to an observed blocking in the 0.02 
to 0.03 range. * For lower blocking values and z > 1, O"(c) increases as the 
load decreases because the coefficients of variation (standard-devia­
tion-to-mean ratio) of the measurements, especially overflow, increase. 
As the load increases, O"(c) also increases; however, the coefficient of 
variation of trunks required decreases slowly, probably because the 
coefficient of variation of the offered load decreases with increasing a, 
causing the coefficients of variation of the measurements to de­
crease.9 

3.3 Parameter sensitivity 

The sensitivity of O"(c) to the various parameters is illustrated in Figs. 
2 and 3 and is described below. 

3.3. 1 Blocking objective 

As illustrated in Fig. 2a, the first parameter tested was the design 
blocking. For the design range of 0.01 to 0.03,t there is very little change 

* As discussed in the Appendix, when z = 1, the peakedness is not estimated, which 
causes the O"(c) curve to have a different shape. 

t The Bell System design objective is 0.01, but in some private networks and other ad­
ministrations, higher values are used. 
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in O"(c) when z = 1 and low variation. For blocking in this range, the re­
sults for 0.01 can be used as an upper bound. Changes in the design 
blocking have more of an effect for more variable data, as illustrated by 
the data for z = 4 and medium variation. 

3.3.2 Call-holding time 

As the call-holding time h increases, the relative length of the one­
hour measurement interval decreases. The result is a relative decrease 
in the amount of data available and a resultant increase in the standard 
deviation of the measurements.8 However, for a fixed observed-load 
variance and for holding times in the range of 3 to 6 minutes, the effect 
is mostly offset by a decrease in the true day-to-day variation of the 
source loadY This is illustrated in Fig. 2b. 

3.3.3 Level of day-Io-day variation 

The assumption to which the results are most sensitive is the level of 
day-to-day variation. The day-to-day variation of offered source-load 
is characterized by four levels, called no, low, medium, and high. 
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Fig. 3-Effect of level of day-to-day variation on a lO-trunk group. 

Figure 3 provides a comparison of results for different levels of vari­
ation for a lO-trunk group. The labels, N, L, M, and H on the figure 
correspond to no, low, medium, and high variation, respectively. * The 
largest relative impact is for the case z = 1 when changing from no to low 
variation. In fact, the standard deviation of the trunk estimate doubles 
when such a change is made. Thus, inclusion of day-to-day variation in 
the model has a significant effect on the standard deviation of trunk 
estimates. 

For large peakedness, shown by z = 7, as the load decreases, the curves 
coalesce. This rather unexpected behavior can be explained by the model 
for day-to-day variation (see Ref. 9). For groups with small loads, low 
day-to-day variation, and large z, the variance component due to sam­
pling in a finite measurement-interval may be most or all of the total 
variance of the observed load. In this situation, the day-to-day compo­
nent in the model of observed-load variance decreases to zero. For most 
practical applications, the large values of z are associated with medium 
or high levels of day-to-day variation, and this phenomenon does not 
occur. 

3.3.4 Number of samples 

As stated earlier, all of the plots are based on an average of 20 hours 
of data. If the number of hours, n, of available data is different from 20, 
the effect can be determined analytically from (4). The standard de­
viation for n hours is computed by multiplying the given results by the 
factor (20/n)1I2. 

3.3.5 Effect of usage sampling errors 

The effects introduced by a discrete measurement of usage (TUR) 

* These levels are defined in the Appendix. 
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Table I - Comparison of continuous and discrete usage 
measurement effects 

a(c) using 

a z Level Ld L 

7.0 1.0 Low 0.4007 0.4372 
7.0 4.0 Medium 1.012 1.043 

30.0 4.0 Medium 2.138 2.174 
30.0 7.0 High 2.949 2.999 
40.0 7.0 High 4.172 4.211 

were found to be negligible for the message-trunk network. Typical re-· 
suIts of calculations using Ld (t) and L (t) are presented in Table I. The 
first four columns of Table I are the trunk group size, load, peakedness, 
and level of day-to-day variation. The next two columns are the ap­
proximations of the standard deviation of the trunk estimates with Ld (t) 
and L(t), respectively. The difference between the last two columns is 
negligible for traffic-engineering applications. Note that the relationship 
of the two columns is the opposite of what might be expected. This re­
sults from a bias in the asymptotic approximation for Var[L(t)] for the 
small loads included in the region of integration.8 

IV. APPLICATION: PROBABILITY INTERVALS FOR TRUNK ESTIMATES 

One of the first applications for the methods described in this paper 
was the development of probability intervals for trunk estimates. The 
intervals are used to determine if the estimated number of trunks re­
quired for a given circuit is (statistically) significantly different from the 
number presently in service. If the difference between the estimate and 
the current number is within the interval, then that difference is con­
sidered to be the result of the statistical nature of the data. Such a dif­
ference should not be the cause for action. 

These intervals have application in two different areas of the trunk­
engineering process. First, they provide an upper limit for the accuracy 
that can be attained by the trunk-forecasting process. Sources of error 
that have not been included here, such as wiring errors and load-pro­
jection errors, must increase the variability of the data. Second, they 
enable a trunk-servicer to evaluate the output of a mechanized trunk­
servicing system and to determine if (and where) network rearrange­
ments are necessary. 

Data from the simulation described earlier indicate that the estimates 
of trunks required appear to have a normal probability distribution, with 
mean and variance computed as described in Section II. Using this in-

* This is not true when day-to-day variation is ignored.1> 
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formation, the probability intervals for the trunk estimates have been 
constructed. Examples of such probability intervals are shown in Fig. 
4. The solid line on Fig. 4 shows 95-percent intervals for trunk groups 
with z = 1 and low day-to-day variation. For example, for a correctly 
engineered 50-trunk group, 95 percent of the estimates of trunks re­
quired, based on traffic measurements, will lie between 47 and 53 trunks. 
The crosses on Fig. 4 show similar data for traffic with z = 7 and high 
variation. 

The method described in Section II has also been successfully applied 
to approximate the variance of observed blocking for probability-engi­
neered trunk groups. That result has been used to develop intervals of 
acceptable measured blocking for use in network servicing. 
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v. SUMMARY 

A method for computing the effect of day-to-day variation in offered 
load on functions of traffic measurements has been presented. The 
method, which is applicable to any smooth function of the common 
traffic measurements, was used to compute the standard deviations of 
estimates of trunks required for probability-engineered trunk groups. 
In the associated sensitivity analysis, the daily variation in source load 
was identified as the significant contributor to the total variation of the 
estimate. In fact, day-to-day variation was so large that it was possible 
to neglect errors introduced by a discrete 100-second-scan measurement 
of the usage. (This extends a result derived analytically by Hayward for 
traffic with Poisson arrivals. I3) 

The variability in trunk estimates depends very strongly on levels of 
peakedness and day-to-day variation. For first-route traffic and low 
day-to-day variation, probability intervals for trunk estimates grow 
slowly with c, while for higher levels of variation they expand rapidly. 
These results are presently being used to develop methods to assist trunk 
engineers in the forecasting and servicing of the traffic network. 

APPENDIX 

Details of the Computational Models 

This appendix contains some of the engineering details necessary for 
the computations in Sections III and IV. The first section gives a brief 
description of the model for day-to-day load variation used in Section 
3.1.9 The second section discusses the conversion of traffic measurement 
data into estimates of the trunks required to meet an objective grade­
of-service. 

A. 1 Model for day-to-day variation 

Four levels of day-to-day load variation described as no, [ow, medium, 
and high are used for trunk engineering. For the latter three classes, the 
variance v of the measured (observed) offered loads is related to the mean 
offered load 0: by the formula 

v = 0.13 (0:)1>, 

where 1> = 1.5,1.7, or 1.84 for low, medium or high, respectively. The 
mean 0: is assumed to be constant during the measurement period (any 
variation of 0: during the measurement period will cause the estimated 
peakedness to be larger). 

The variance of the observed loads is composed of two parts: the true 
source-load variance and the variance contributed by estimating the 
traffic parameters from data collected over a finite measurement in­
terva1.9 The latter component is given by 20:z/(t/h) where 0: is the mean 
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of the daily loads, z is the peakedness of the offered traffic, t is the length 
of the measurement interval, and h is the mean call holding time. Thus, 
by subtraction, the source-load variance is assumed to be 

( ) _ { -1> _ 2liz } 
Var a - max 0.13a (tlh)' 0 . 

A more detailed discussion is given in Ref. 9. 

A.2 Trunk-engineering process 

The trunk-engineering process starts with an estimation of the traffic 
parameters obtained from trunk-group measurements. Time-consistent 
busy-hour measurements of the number of arrivals (peg count), the 
number of overflows, and usage are gathered for a period of several days 
(up to 20 business days when all data are available). They are then used 
to estimate the mean of the busy-hour loads and the peakedness of the 
offered traffic. The mean load is computed by averaging the hourly 
loads 

Ldi(t) a i = ---=':-"'-'---

1 _ Oi(t)' 

Ai(t) 

where Ldi(t), Oi(t), and Ai(t) are defined in Section II. The sample mean, 
a = lin ~ ai and sample variance v = 1/(n - 1) ~ (ai - a)2 are computed 
next. In practice, the level of day-to-day load variation is selected by 
picking the value of cJ> as the one that provides the closest agreement 
between v and v. For the computations here, cJ> was assigned by the 
program input. The next step in the traffic-engineering process is to 
apply a correction for the effect of retrials on a and 13 = lin ~ [Oi (t) I 
Ai (t)]. (Because the region for the usual application of these results was 
for small blocking values, the retrial correction was not included in the 
analysis.) 

The traffic peakedness is estimated by an iterative procedure. Given 
c, a, and 13, a preliminary estimate of z is determined so that the theo­
retical blocking predicted by the equivalent random method matches 
the observed .blocking.1 The preliminary estimate of z is adjusted to 
correct for day-to-day variation using the procedure described in Ref. 
7 to give the corrected estimate, Z, of the peakedness. In the case of trunk 
groups known to serve only first-offered traffic (i.e., none of the traffic 
has overflowed from some other' group), the theoretical value of z = 1 
is assumed and no estimation of peakedness is performed. 

Once a and z have been determined, the number of trunks required 
to satisfy the engineering objective (usually 130.01) can be determined 
from established trunk-capacity tables or appropriate computer algo-
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rithms. These algorithms specify that any fractional trunk-requirement 
will be rounded up unless it is less than 0.3. This rounding rule induces 
the slight nonsymmetry seen in Fig. 4. 
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Reliability considerations associated with multiple-spot-beam sat­
ellite systems are explored. If each coverage area is serviced by a single 
transponder, then loss of transponders due to failure eliminates all 
service to the areas covered by those transponders. Thus, failures are 
quite costly compared to a system employing global coverage with 
multiple transponders, where a limited number of transponder failures 
results in a slight increase in the traffic demand upon the survivors. 
Since the total orbital weight of a satellite is fixed, any redundant 
hardware deployed to improve reliability reduces the number of active 
transponders that can be supported, and a highly efficient redundancy 
strategy must be employed. Cold standby redundancy with complete 
spare interconnectivity is studied and appropriate reliability formulas 
are derived. A specific satellite concept dominated by final power 
amplifier failures is studied in detail, and it is found, for typical failure 
rates, that a 27-percent reduction in capacity must be accepted to 
provide for a single satellite lifetime reliability of 99 percent. Various 
techniques for employing the in-orbit redundancy of a spare satellite 
are investigated to increase reliability while minimizing capacity re­
duction. Bounds are derived and a reliability of at least 99 percent is 
shown possible for a system containing three active satellites plus one 
spare, at a cost of 9 percent in potential capacity of the active satel­
lites. 

I. INTRODUCTION 

Multiple-spot-beam antennas for communication satellites offer the 
potential for greatly increasing the traffic capacity of the satellite since 
the allocated frequency band can be reused in the various spot beams. l -4 

In such a configuration, we might reduce the number of required satellite 
transponders by allocating a single wideband transponder, consisting 
of a receiver and a transmitter, to each antenna port as shown in Fig. 1. 
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An on-board switch is provided to route messages originating within the 
coverage area of one antenna beam to their destinations in the coverage 
areas of other beams. Access to the satellite is by time division multiple 
access (TDMA), and the up and down link frequency bands are the same 
for all beams. This arrangement is often referred to as satellite-switched 
TDMA. 

If each coverage area is serviced by a single transponder, failure of that 
transponder eliminates all communications to that area. Thus, reliability 
requirements are generally much higher than in earlier satellite systems 
employing frequency-division multiple access global beam coverage 
wherein failure of a single transponder results in partially reduced traffic 
handling capability to all users.5,6 

The higher reliability requirement of multiple~spot-beam satellite 
systems implies that either (i) additional redundant hardware must be 
provided and/or (ii) a more efficient strategy be adopted for deploying 
existing redundant units. Since the total orbital weight of the satellite 
is fixed by launch vehicle capability, it is desirable to maintain the weight 
of redundancy-related equipment at a minimum in order that as much 
weight as possible be available for active communication transponders. 
In this paper, several configurations employing cold standby redun­
dancy7-10 are proposed and explored, and additional weight vs reliability 
trade-offs are established. Consideration is limited to failures of the final 
high power traveling wave tube amplifiers (TWTAS) since the relatively 
high failure rate and large weight of these devices would dominate in a 
more detailed study. Exact results are provided for single satellite sys­
tems; from these, reliability bounds for multiple satellite systems, in­
cluding an in-orbit spare, are derived for a variety of philosophies for 
spare satellite utilization. 

576 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1977 



In Section II, the mathematical formulas pertaining to single satellite 
reliability employing cold standby M -on-N redundancy (M standby 
spare units for N active units with full interconnectivity) are derived 
assuming that the cold failure rate is zero. From these, we can find, at 
each point in time, the probability that j transponders have failed, 0 ~ 
j ~N. 

These formulas are applied in Section III to a specific satellite concept, 
appropriate for a Thor-Delta launch, to determine transponder reli­
ability vs capacity trade-offs under a weight constraint. Also investigated 
in Section III is the interconnectivity trade-off; that is, reliability vs total 
capacity for conditions other than full interconnectivity. 

In Section IV, upper and lower reliability bounds are derived for 
satellite systems containing an arbitrary number of active satellites plus 
an identical in-orbit spare. Various approaches to spare satellite utili­
zation, differing in degree of complexity, are explored. Results indicate 
that significant reliability improvements can be achieved through ap­
propriate utilization of the spare satellite. These results, however, are 
to be interpreted as indicative of a trend rather than as concrete design 
tools since the probability of catastrophic failure of an active satellite, 
requiring complete utilization of the spare satellite, was assumed to be 
zero in deriving the results. 

II. RELIABILITY FORMULAS 

In this section, a model for predicting the reliability of a multibeam 
communication satellite employing M-on-N standby redundancy is 
developed and analyzed. Complete interconnectivity is assumed, that 
is, any of the M cold standby redundant units may be substituted for 
any of the N active units upon failure of one of the latter. The cold 
standby failure rate is assumed to be zero, as is the failure rate of the 
interconnecting redundancy switches, and the failure rate for each active 
unit, A, is assumed to be constant. Failures are assumed to be charac­
terized by a Poisson point process. An expression for the probability that 
N units are operational at any point in time is easily established;ll this 
result is extended to find the probability of having j active channels as 
a function of time, 0 ~ j ~ N. 

Let the system state j be the number of operational units at time t, 
o ~ j ~ N + M, and let Pj (t) be the probability of finding the system in 
state j at time t. Then, since there are N active units for states j = N, N 
+ 1, ... ,N + M, the following relationships hold for those states: 

PN+M(t + ~t) ~ (1 - NA~t)PN+M(t), (1) 

Pj(t + ~t) ~ (1 - NA~t)Pj(t) + NA~tPj+l(t), N ~ j < N + M, (2) 
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where the approximations become exact as f1t -- 0. Similarly, since 
there are j active units for states j = 0, 1, ... , N, 

Letting f1t -- 0, the following set of differential equations results for the 
system 'state probabilities: 

dPN+M --- = -N"APN+M. (4) 
dt 

dP' 
~ = -N"APj + N"APj+b N:::;j < N + M. 
dt -

d;i = -j"APj + (j + 1)"APj+1, ° ~ j < N. 

Initial conditions are: 

PN+M(o) = 1. 

Pj(o) = 0, ° ~ j < N + M. 

(5) 

(6) 

(7) 

(8) 

Solutions of these equations are readily obtained for N ~ j ~ N + M. 
The solutions are: 

(N"At)N+M-je-NAt . 
Pj(t) = (N + M _ j)! ,N ~ J ~ N + M. (9) 

Solutions for ° ~ j < N are considerably more difficult and are derived 
in the Appendix. 

The exact solutions are rather cumbersome, provide little physical 
insight into the benefits of standby redundancy, and require high pre­
cision arithmetic to obtain numerical results. Approximate formulas are 
therefore derived in the Appendix, valid for the region of interest (N -
j)At/(M + 3) « 1. Letting Qj be the probability of exactly j surviving 
operational transponders, we obtain: 

Q = NtM p. ~ 1 _ [ M + 2 ] (NAt)M+l e-NAt. (10) 
N j=N ) M+2-NAt (M+1)! 

[ 
M2 + 5M + 6 + At ] [(NAt)M+le-NAt] 

QN-l = PN-1(t) ~ (M + 2)(M + 3 - At) (M + I)! . 

(11) 

N!NM(M + 3)2(At)M+N-je-NAt . 
Qj = Pj(t) j!(N _ j _ l)!(M + 2)!(M + 3 _ At)N-j' ° ~ J ~ N - 2. 

(12) 
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III. SATELLITE TRANSPONDER WEIGHT AND RELIABILITY 

We will now study the reliability vs weight trade-off for a particular 
satellite concept, appropriate for a Thor-Delta launch weight class. The 
following assumptions are made: 

(i) The satellite can support the weight of 11 transponders without 
any traveling wave tube redundancy. (Normalized weight = 
11). 

(ii) The weight of a traveling wave tube amplifier (including power 
supply) is equal to one-third the weight of a single transponder 
(including the weight of prime power sources for that tran­
sponder). 

(iii) Each switch point needed for redundancy has a weight equal to 
1/15th the weight of a traveling wave tube amplifier. 

These assumptions are consistent with weight and power budget re­
quirements of a system described elsewhere. 12 

From these requirements, we see that the following redundancy ar­
rangements are possible: 

(A) 10 active transponders 
2 standby TWTAs 
Complete redundant interconnectivity 
(Normalized weight = 10.9) 

(B) 9 active transponders 
4 standby TWTAs 
Complete redundant interconnectivity 
(Normalized weight = 10.7) 

(C) 8 active transponders 
6 standby TWTAs 
Complete redundant interconnectivity 
(Normalized weight = 10.5) 

(D) 9 active transponders 
6 standby TWTAs 
Redundancy provided in 2 on 3 arrangement 
(Normalized weight = 11.2) 

Numerical results have been obtained for TWTA failure rates between 
1500 and 6000 fits (one fit is a failure rate of 1 per 109 hours). These ex­
tremes are based upon (i) actual space experience and life test data for 
space qualified TWTAs, (ii) changes in TWT electrical design objectives 
such as power rating, operating frequency, and multi-mode capability, 
and (iii) projections for future technology improvements. 

Shown in Fig. 2 are the reliability predictions vs time for an II-tran­
sponder satellite with no redundancy. Results are plotted for a failure 
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Fig. 2-Active transponder probabilities for a satellite with 11 active transponders and 
no spare TWTAs. QJ is the probability that exactly J transponders are operational at time 
t, 0 ~ J ~ 11. 

rate of 6000 fits. Since the reliability predictions are dependent upon 
the product, At, predictions can easily be inferred for other failure rates 
by scaling the time axis by the ratio of 6000/A, A being the failure rate 
under consideration. Such a scaling has been performed in Fig. 2 for A 
= 3000 fits. 

Results for Cases A-D are shown, respectively, in Figs. 3 through 6. 
Since Case D employs less than full redundant interconnectivity, we solve 
equations (4) through (8) for N = 3, M = 2, and use these to calculate 
the desired probabilities: 

Q9 = Pl3 active transponders in each of 3 groups} 
= (Q3')3. 

Qs = PI3 active transponders in each of 2 groups and 
2 active transponders in the third group} 

= 3(Q3')2Q2'. 
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Fig. 3-Active transponder probabilities for a satellite with 10 active transponders and 
2 spare TWTAs. Each transponder can access any spare amplifier. QJ is the probability 
that exactly J transponders are operational at time t, 0 ~ J ~ 10. 

Q7 = P/3 active transponders in each of 2 groups 
and 1 active transponder in the third, or 2 
active transponders in each of 2 groups and 
3 active transponders in the third} 

= 3( Q3')2QI' + 3( Q2'FQ3', etc. (15) 

Figures (2) through (6) represent a mesh of the exact solutions of the 
Appendix and the approximate solutions (10) through (12); that is, for 
large t, the exact expressions have been plotted, while, for small t, the 
approximate solutions are used since they provide better accuracy than 
possible via numerical evaluation of the exact solutions. In all cases, 
agreement was better than 5 percent at the cross-over point between the 
exact and approximate solutions. 

We now interpret the results appearing in Fig. (2) through (6). A 
seven-year satellite life is assumed. We see from Fig. 2 that service is 
quite unreliable in the absence of redundancy. For a TWTA failure rate 
of 6000 fits, the probability of providing service to all coverage areas is 
less than 2 percent at the end of satellite life; this figure rises to about 
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13 percent for a failure rate of 3000 fits and to 36 percent for A = 1500 
fits. In fact, the probability of providing service to seven or fewer of the 
original 11 overage areas is 41 percent for A = 3000 fits. Performance is 
unacceptable for a satellite system employing multiple spot beams, and 
this case will not receive any further attention. 

The expected number of surviving transponders for Cases A through 
D are plotted in Fig. 7 as functions of time. From these curves we con­
clude that Case A (10 active transponders, 2 spares, full interconnecti­
vity) provides the maximum number of expected transponder years. 
From Fig. 3, we see that for this case, the probability of losing at least 
one transponder by satellite end-of-life is 72 percent for A = 6000 fits, 
26 percent for A = 3000 fits, and 6 percent for A = 1500 fits. However, the 
probability of having seven or more active transponders at satellite 
end-of-life is 88 percent for A = 6000 fits, 99 percent for A = 3000 fits, 
and 99.99 percent for A = 1500 fits. Thus, such an arrangement is prob­
ably unacceptable for multiple spot-beam satellites, but is a prime 
candidate for a global coverage satellite since it provides maximum ex-
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Fig. 7-Expected number of active transponders vs time. Cases A, B, C, and D are as 
defined in the text. 

pected transponder years with high probability of providing at least 
70-percent throughput at satellite end-of-life. 

For a multiple spot-beam satellite, we see that Case C provides the 
most dependable service, but that the expected number of transponder 
years is lower than that for Cases B or D. For Case B, we see that for A 
= 6000 fits, the probability of at least one transponder failing has risen 
to 24 percent by end of satellite life, and that the probability that no more 
than one transponder fails is only 88 percent. However, for A = 3000 fits, 
Case B provides for complete service with a 97 -percent probability at 
end of satellite life; the probability that no more than one transponder 
fails is 99 percent. For A = 1500 fits, the corresponding probabilities are 
99,9 percent and 99.99 percent. Thus, for a TWTA failure rate of 1500 fits, 
Case B appears superior to Case C in that an additional transponder is 
provided with high probability over the life of the satellite. Conversely, 
for a high TWTA failure rate (6000 fits), Case C is to be preferred since 
it provides for more dependable service toward the satellite end-of­
life. 

It is noted further that for a multiple spot-beam satellite, Case B is 
marginally preferable to Case D if the probability of providing complete 
service over the life of the satellite is to be maximized (97 percent vs 95 
percent for A = 3000 fits). Case D, however, provides for a smaller 
probability that more than one transponder fails (0.5 percent vs 1 per­
cent). Since Case B requires twice the number of switch points to provide 
for complete interconnectivity, its marginal advantage might disappear 
if the switch reliability were to be included in the analysis. Conversely, 
Case D requires slightly more weight than Case B. Thus, for the partic­
ular parameters selected for this study, Case Band D are virtually in­
distinguishable; both provide for highly reliable service over the life of 
the satellite if the TWTA failure rate is sufficiently small. 

We conclude this section with a plot of satellite capacity vs end-of-life 
reliability for each case discussed (satellite weight constraint). Fig. 8a 
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is applicable for A = 3000 fits; Fig. 8b for A = 6000 fits. For these plots, 
reliability is defined as having no more than 0, 1, or 2 failed transpon­
ders. 

IV. APPLICATION TO MULTI-SATELLITE SYSTEMS 

We now apply the results of Sections II and III to determine bounds 
on the success probability, Po';, of a system containing S identical active 
satellites. Success is defined as having all design transponders (S X N 
total) available at end-of-life. All satellites are assumed to be launched 
simultaneously. 

Obviously, at any point in time, Ps (t) = Q!Jv(t), where QN(t) is the 
probability of all transponders being active on any given satellite at time 
t. Results for the cases studied in Section III appear in Table I. 
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Table I - Satellite system success probability; unutilized in-orbit 
spare 

s Case A Case B CaseC Case D 

(a) A = 6000 fits 

2 0.08 0.57 0.98 0.52 
3 0.02 0.44 0.97 0.37 
4 0.01 0.33 0.96 0.27 

(b) A = 3000 fits 

2 0.54 0.94 0.999 0.90 
3 0.41 0.91 0.999 0.86 
4 0.30 0.89 0.998 0.81 

(c) A = 1500 fits 

2 0.82 0.996 0.9999 0.984 
3 0.74 0.994 0.9999 0.976 
4 0.67 0.992 0.9999 0.968 

From Table I, we conclude that, with the exception of Case C, the 
success probability is unacceptably low at the higher fit rates. For A = 
1500 fits, Case B is relatively attractive. 

Since, by any measure, the cost associated with total failure of one 
satellite of a satellite system is prohibitive, satellite systems generally 
contain an in-orbit spare. In the following, we explore the possibility of 
using this spare to improve reliability of systems containing S active 
satellites plus an identical spare. 

Suppose we use the spare satellite by assigning to it all the traffic of 
the first active satellite to experience a transponder failure. Upon such 
a failure, each ground station permanently reroutes all communications 
with the failed satellite to the spare. From eq. (9), the probability r(t )dt 
that anyone of the active satellites loses its first transponder in [t, t + 
dt], given that the first loss occurs somewhere within [0, T], is: 

(NAt)Me-N>"t 
NA M! dt 

r(t )dt = ---------

So
T (NAt)Me-N>"t SoT 

NA dt NA 0 PN(t)dt 
o M! 

(16) 

The probability u that the spare satellite then successfully completes 
the mission of the 'failed active satellite is given by: 

u = So T r(t )QN(T - t )dt, (17) 

where QN is given by eq. (10). Since, for the mission to be successful, the 
remaining active satellites must be operational at end-of-life, and since 
the spare, if needed, can be assigned to any of S satellites, we obtain 
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Table II - Satellite system success probability. Spare satellite 
replaces first active to fail 

No. Active Case A Case A CaseB CaseB CaseC 
Satellites A = 1500 fits A = 3000 fits A = 3000 fits A = 6000 fits A = 6000 fits 

1 0.975 0.961 0.997 0.970 0.999 
2 0.938 0.872 0.993 0.883 0.996 
3 0.903 0.762 0.988 0.773 0.993 
4 0.866 0.621 0.983 0.659 0.989 

Ps = Q~ + SNAUQ~-l SoT PN(t)dt. (18) 

The evaluation of eq. (17) is straightforward and is omitted. Evaluation 
of (18) for Cases A, B, and C of Section II yields the results appearing 
in Table II. 

By comparing these results against those of Table I, we see that the 
availability of the spare satellite has greatly enhanced the probability 
of mission success. However, for Case A, we again conclude that the 
success probabilities are toolow for systems employing two or more ac­
tive satellites. In what follows, we explore the advantages of deploying 
the spare satellite in a different manner. 

Suppose the spare satellite is used by assigning individual transpon­
ders on the spare satellite, as needed, to replace failed transponders on 
the active satellites. Each ground station, then, must be capable of dy­
namically routing that portion of its traffic destined for the coverage 
areas of the failed transponders to the spare satellite. Since, for this 
study, the spare satellite is identical to the active satellites, we conclude 
that the mission is successful if (i) the total number of failed transpon­
ders on all active satellites is ~N, (ii) no two transponders servicing the 
same footprint fail on the active satellites, and (iii) the assigned tran­
sponders on the spare satellite survive after activation for the remainder 
of the mission. From this, we derive upper and lower bounds on the 
probability of success as follows. 

Let Pi be the probability that i transponders have failed on an active 
satellite; i.e., Pi = QN-i. Then, the number of ways, W, that i l out of N 
transponders fail on active satellite 1, i2 out of N transponders (covering 
footprints different from the i I failed transponders of satellite 1) fail on 
satellite 2, ... , and is out of N transponders (covering footprints dif­
ferent from the i I failed transponders of satellite 1 and the i2 failed 
transponders of satellite 2, etc.) fail on satellite S is given by: 

Wil,i~, ... ,is= (~) X (N~il) X ... X (N-i l -i 2 -'" -is-I) 
II l2 is 

N! 
(19) 
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where (7) represents the·binomial coefficient k!/j!(k - j)! The total 
number of outcomes T in which ij transponders fail on the jth satellite, 
1 ~ j .~ S, is given by 

(20) 

The probability of mission success is given by 

(21) 
i\, ... ,is 

Obviously, P(slir, i 2, ... , is) = 0, i 1 + i2 + ... + is> N, 
for then the spare satellite has too few transponders to provide complete 
coverage. 

Let us define Bk as the probability that none of k specific transponders 
on the spare satellite have failed at mission end-of-life, given that all 
spare TWTAs on the spare satellite are available to these k transponders, 
and that the remaining N - k transponders on the spare satellite are 
unactivated. The k active transponders are activated at the beginning 
of the mission; the probabilities Bk are obtained by solving eqs. (4) 
through (8) for N = k. 

Now, for a given set lij 11 ~ j ~ Sl, all outcomes of failures are equally 
likely. Thus, assuming that the transponders on the spare satellite 
needed to take over for failed transponders are available and do not fail, 
we see that 

W' '. 
P(SI ' . ) < 1\, ... ,I.'" 

lr, ... ,lS = . 
T· . 1\, ... ,IS 

(22) 

Similarly, by assuming that i 1 + i2 + ... is transponders are initially 
activated on the spare satellite and that spare TWTAs are available only 
to these transponders, we see that 

w· . 
P(SI ' . ) > 11,··· ,lSB 

ll, ... ,lS = T. . i\+i:!+ ... +is' 
t], . .. ,IS 

(23) 

Thus, 

., . (N - id!(N - i 2)! . .. (N - is)! B.. ., 
L Pl1Pl:!' .. PIS (N,)S-l(N _ . _. _ _ ')' q+l:!+ ... +IS 

il, ... ,is . II l2 ... lS· 
il+i:!+ ... +is~N 

(N - i1)!(N - i 2)! ... (N - is)! 
~ Ps ~. L. Pi IPi2'" Pis (N,)S-l(N _. _. _ . )" (24) 

11, ... ,IS . II l2 . . . lS· 
iI+i2+ ... +is~N 

We apply these bounds to Case A for A = 3000 fits and to Case B for 
A = 6000 fits. Results appear in Table III. We note that dynamic tran-
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Table III - Satellite system success probability. Spare satellite 
transponders assigned dynamically without priority 

No. Active Satellites Case A CaseB 

1 
3 

0.998 ~ P" ~ 1.0 
0.946 ~ P., ~ 0.951 

0.999 ~ Ps ~ 1.0 
0.951 ~ Ps ~ 0.953 

sponder assignments on the spare satellite have raised the success 
probability for Cases A and B appreciably. 

Another redundancy strategy, applicable to improving the reliability 
of systems employing two or more active satellites, also evolves about 
dynamic assignment of the transponders of the spare satellite as re­
quired. For this scheme, however, all available spare TWTAS on the active 
satellite are allocated on a priority basis such as to maximize the prob­
ability of success. For example, if there are two active satellites and one 
has a single failed transponder whose traffic load has been assumed by 
the spare satellite, and the transponder covering the same footprint 
should fail on the second active satellite, then any available spare TWTAs 
on the second active satellite would be assigned to that failed tran­
sponder; if such a spare had previously been brought on line to replace 
a different failed transponder, the spare satellite would then be employed 

-to pick up the traffic of this second transponder. Again, each ground 
station must dynamically route that portion of its traffic destined for 
the coverage areas of the failed transponders to the spare satellite. 

The analysis of Section II is not directly applicable to this scheme. This 
analysis, however, can be applied to a slightly modified scheme whereby 
not only the spare TWTAs, but also those originally assigned to active 
transponders, are assigned, as needed, on a priority basis to maximize 
the probability of mission success. Then, the mission is successful, pro­
vided that (i) no more than N transponders have failed on the active 
satellites, and (ii) no needed transponders on the spare have failed. The 
probability of success, therefore, is upper-bounded by: 

(25) 
i].i:2 .... .is 

i]+ ... +is::;,N 

Assuming, as before, that i 1 + i2 + ... + is transponders needed on 
the spare satellite begin to fail at time t = 0 and that all TWTAs on the 
spare satellite are available to these transponders, we obtain a lower 
bound as: 

P s ~ L Pi]Pi:2··· PiSBi] +i2+ ... + is· 
i] .... . is 

i]+i:2+. " +is::;,N 

(26) 
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We apply these results to a system containing three active satellites 
plus a spare. For Case A, with a failure rate of 3000 fits, the success 
probability exceeds 0.992, while for Case B, with a failure rate of 6000 
fits, the success probability exceeds 0.995. For both these examples, the 
upper bound given by eq. 25 is within 0.02 percent of unity. 

V. CONCLUSION 

The concept of satellite-switched TDMA was briefly reviewed, and the 
need for highly reliable transponders was discussed. Since, in a satel­
lite-switched TDMA system, each coverage area is serviced by a single 
transponder, failure of that transponder eliminates service to that cov­
erage area. 

Reliability formulas were derived for the probability of having j out 
of N active transponders operational, 0 ~ j ~ N, as a function of time 
for a system employing M-on-N cold standby redundancy. From these, 
approximate formulas, valid for highly reliable systems, were found. 
These results were then applied to study the reliability vs the number 
of transponder trade-off under a total transponder weight constraint. 
A specific concept, allowing 11 transponders with no redundancy, was 
studied. It was assumed that each transponder was equivalent in weight 
to two TWTAs plus interconnecting redundancy switches. Failure rate 
for the TWTA was varied between 1500 and 6000 fits. 

Results indicated that for A = 6000 fits, 6-on-8 redundancy with 
complete interconnectivity is required to achieve a success probability 
greater than 99 percent after seven years. Thus, for this case, reliability 

"requirements result in a capacity reduction of 27 percent. For a lower 
failure rate of 3000 fits, 4-on-9 redundancy with complete interconnec­
tivity would provide for 97.3-percent reliability; the capacity reduction 
is then 18 percent. For A = 1500 fits, 4-on-9 redundancy with complete 
interconnectivity would provide 99.8-percent reliability. 

Various schemes employing a spare satellite to increase the reliability 
of a system employing S active satellites were proposed and studied. 
Such a spare satellite is generally provided to protect against catastrophic 
failure; the probability of catastrophic failure was assumed to be zero. 
We saw that for a failure rate of 1500 fits, a reliability of 97.5 percent 
could be achieved for a single active satellite system employing 2-on-l0 
complete interconnectivity redundancy; the spare was utilized by as­
suming the "entire burden of the active satellite when the first tran­
sponder failure occurred. Similarly, a 99.7-percent reliability could be 
achieved for a 4-on-9 redundancy and a failure rate of 3000 fits. For the 
former case, reliability falls to under 95 percent when two or more active 
satellites are contained in the system. By contrast, a 6-on-8 strategy 
employing complete interconnectivity provides for reliability exceeding 
99 percent for A = 6000 fits and 3 active satellites. 
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To improve reliability of the 2-on-10 and 4-on-9 concepts at higher 
TWT failure rates, a different utilization of the spare satellite was ex­
plored. This utilization consisted of dynamically assigning to the spare 
satellite only the traffic of failed transponders, rather than the entire 
traffic load of the first active satellite to lose a transponder. Such a 
scheme would require that each ground terminal be capable of com­
municating, simultaneously, with all active satellites plus the spare. 
Then, for a TWTA failure rate of 3000 fits, a system employing a single 
active satellite with 2-on-10 redundancy plus an identical spare satellite 
would have a success probability exceeding 99.8 percent. Thus, high 
reliability is achieved at the expense of 9-percent traffic-handling re­
duction of the active satellite potential. Under the same conditions, a 
system containing three active satellites plus a spare would have a success 
probability between 94.6 percent and 95.1 percent. 

To increase the reliability of multiple satellite systems still further, 
a concept again utilizing dynamic transponder allocation to the spare 
satellite was proposed. For this concept, however, the TWTAs of the ac­
tive satellites were assigned among the active transponders on a priority 
basis to prevent failure when possible. It was then found that a system 
employing three active satellites plus a spare, each of 2-on-10 redun­
dancy, would have a success probability exceeding 99.2 percent for a 
TWTA failure rate of 3000 fits; a 3-active plus spare satellite system, each 
of 4-on-9 redundancy, would have a success probability exceeding 99.5 
percent for a TWTA failure rate of 6000 fits. 

Thus, we conclude that for the type of satellite-switched TDMA 
system studied, we must accept a 27 -percent reduction of capacity to 
achieve a 99-percent probability of losing no transponder if we do not 
utilize the presence of a spare satellite. If the spare satellite is properly 
employed, and if the probability of catastrophic failure is vanishingly 
small, we achieve even higher success probabilities at the expense of 9 
percent in traffic-handling capability. Since a greater volume of traffic 
can then be handled, and since the total traffic demand upon the satellite 
system grows with the number of service areas which can be intercon­
nected at a rate greater than the traffic demand of individual additional 
areas, we conclude that utilization of the spare satellite, as proposed 
above, is highly desirable. 

APPENDIX 

In this appendix, we obtain exact solutions to eqs. (4) through (6), 
subject to initial conditions (7) and (8). Approximate solutions are also 
derived. For N ~ j ~ N + M, the exact solutions are: 

Pj(t) 
(N'At)N+M-je- NAt 

(N+M-j)! ,N ~j ~N+M. (9) 
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For 0 ~ j < N, we solve via Laplace transform techniques. From eq. 
(6), 

p.(s) = (j + 1)APj+1(s) . 
} s + jA 

(27) 

Thus, 

P _ (s) = NAPN(S) 
N 1 S + (N - l)A 

(28) 

P S = N(N - 1)A2PN (s) 
N-2() [s + (N - l)A][S + (N - 2)A] 

(29) 

Pj(S) = N!~N-j PN(S) 
)! N-j 

IT [s + (N - k)A] 

(30) 

1<=1 

From eq. (9), 

(NA)M 
(31) 

Thus, 

o ~ j < N. (32) 

The various P/s are seen to possess a multiple pole of order M + 1 at S 

= -NA and simple poles at S = -(N - k)A, k = 1, ... ,N - j. All poles 
are in the left-half complex s-plane. We find Pj(t) by inverting a partial 
fraction expansion. The result is: 

N'NM N-j 1 
Pj(t) = _ .. -, - e-NAt .L . 

). t=1 i M + 1 Nil} (i - k) 
1<=1 
h~i 

[

. M (iAt)M-I] 
X e lAt - L . 

1=0 (M - l)! 
(33) 
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We now obtain approximate formulas for Pj(t), 0 ~ j ~ N. Let 

M CA )M-I 1= e iAt - L --,--l_t--,--_ 
1=0 (M -l)! 

00 (iAt)1 
= L-

I=M+l l! 

(iAt)M+l[ iAt (iAt)2 ] 
= (M + I)! 1 + M + 2 +(M + 3) (M + 2) + . .. . 

For iAt/(M + 3) « 1, 

I ~ 1 + --+ -------'-----'---(iAt)M+l [iAt (iAt)2 

- (M + I)! M + 2 (M + 2)(M + 3) 

(iAt)3 ] 
+ (M + 2)(M + 3)2 + ... 

~ (iAt)M+l [M + 3] [M + 2 + ~ 
(M + I)! M + 2 M + 3 M + 3 

(iAt)2 (iAt)3 ] 
+ (M + 3) 2 + (M + 3 r~ + ... 

~ (iAt)M+l [M + 3] [ __ 1_ + 1 
- (M + I)! M + 2 M + 3 

+--+ + ... iAt (iAt)2 ] 
M + 3 (M + 3)2 

(iAt)M+l[M+3][ 1 1 ] 
~ (M + I)! M + 2 1 _ ~ - M + 3 . 

M+3 

Now, it is readily shown that 

Thus, 

1 

N-j 
II (i - k) 

k=l 
ko;Ci 

(-l)N-j-i 

(N - j - i)!(i - I)! 

N!NMe-NAt N-j (-l)N-j-i 
Pj(t) ~ ., .L (N _ . _ ')'(' _ 1)' 'M+l J. [= 1 ] l. l .l 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

[
(iAt)M+l] [M + 3] [1 1 ] (42) 

X (M + I)! M + 2 1 _ ~ - M + 3 . 

M+3 
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For At/(M + 3) « 1, 
i 

1-~~[1-~]' 
M+3 M+3 

(43) 

Let 

N _j (N _ j) ( 1 ) i 
S = .L (_I)ii . . 

t= 1 l At 
1---

M+3 

(45) 

Now, for any {3, 
(1 - (3)N-j 

= Nf.j (N ~ j) (_{3)i (46) 
i=O l 

Thus, 

~ [(1 - (3)N-j] = -(N - j)(1 - (3)N-j-l (47) 
d{3 

N-j . (N - j) . = L -l . (_{3)t-l 
i=O l 

= 1: Nf.j (N~j) i(_{3)i 
{3 i=O l 

= ~ [s f3 = \t]' 
1--­

M+3 

(48) 

(49) 

(50) 

s = - [1 _ ~] (N - j) [1 -1 _ ~]N-j-l (51) 

M+3 M+3 

594 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1977 



Now, 

Thus, 

Nij (_l)ii (N ~ j) = 81 
i=l l {3=1 

{ 
O,j ~ N - 2 

= -1, j = N - 1" 

P _ t ~ [ M2 + 5M + 6 + At ] [(NAt)M+le -NAt] 
N l( ) (M + 2)(M + 3 - At) (M + 1)! 

N!NM(M + 3)2(At)M+N-je-NAt . 
p·(t) ~ ° < J < N - 2 

J =j!(N - j - l)!(M + 2)!(M + 3 - At)N-j = = . 

(52) 

(53) 

(54) 

(55) 
Finally, we obtain an approximate formula for the probability QN that 

all N transponders are active at time t. We note that 

N+M 
QN(t) = L Pj(t) 

j=N 
N+M (NAt)N+M-j 

= e-NAt L 
j=N (N + M - j)! 

= e-NAt [eNAt - f (NA,t)k]. 
k=M+l k. 

For NAt/(M + 2) « 1, 

Thus, 

(NAt)M+l 

(M + I)! 

[
NAt (NAt)2 ]} 

X 1 + M + 2 + (M + 2)2 + ... 

~ 1 _ (NAt)M+l e -NAt [ 1 ]. 
(M + I)! NAt 

1---
M+2 

t ~ 1 - e-NAt . [ 
M + 2 ] (NAt)M+l 

QN ( ) - M + 2 - NAt (M + I)! 
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Calculation of Propagation Parameters 
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An algorithm for computing the electromagnetic propagation modes 
and their associated propagation constants (i.e., the loss and phase 
shift per length) is rigorously developed for uniform cables. The con­
ductors (including the shield, if present) are assumed to have circular 
cross sections and to be covered by two layers of dielectric insulation. 
By means of the algorithm, it is now possible to compute the propaga­
tion parameters of uniform cables for all frequencies below the micro­
wave range. The algorithm consists of calculating the eigenvectors and 
eigenvalues of a certain matrix, which are the set of conductor voltages 
of the modes and the associated propagation constants, respectively. 
The matrix in question is computed by methods developed in a com­
panion paper on charge densities. 

I. INTRODUCTION 

Multipair cables consist of a collection of insulated wires surrounded 
by other dielectric materials, all of which are usually enclosed in a 
jacketed, metallic shield for mechanical protection and electrical isola­
tion. The wires in a cable are generally helically twisted in pairs and, in 
practice, other, often undesired, nonuniformities occur along the cable. 
Nevertheless, the uniform cable, whose wires are straight and parallel, 
defined by the property that all its longitudinal cross sections are iden­
tical, has successfully modeled some aspects of electrical propagation 
(such as loss per length) over a pair in a cable. 1 Also, some cables are 
directly modeled as uniform cables; so there is a need for studying uni­
form cables. Moreover, further experience using the uniform-cable model 
may lead to a more exact model for nonuniform multi pair cables. 

A rigorous analysis of electromagnetic propag&tion over uniform ca­
bles' starting from Maxwell's equations, was performed by Carson2 for 
cables having homogeneous dielectric material separating the wires. 

597 



Subsequently, Mead3 applied his method to the shielded balanced pair 
to get a set of formulas for the primary constants (R, L, C, G). 

Later, Kuznetsov4 developed another procedure for calculating the 
propagation parameters of uniform cables. He too assumed the dielectric 
separating the wires was homogeneous; also, he did not consider the 
presence of a shield. His procedure was abstractly stated, but he did 
derive a concrete formula for the loss and phase-shift per length in the 
special case of a single pair in free space (see Ref. 4, Chap. 2). Both 
Kuznetsov and Carson assumed that the frequency of excitation was high 
enough that the associated skin depth was less than the radius of the 
WIres. 

In this paper, the electrical behavior of uniform cables is analyzed from 
first principles along the lines developed by Kuznetsov. The analysis 
pertains to all frequencies of excitation below the microwave range, it 
pertains to' cables with or without a shield, and it provides for two layers 
of dielectric on the conductors* (including the shield). The final result, 
making use of results from the accompanying paper,5 is an algorithm, 
suitable for use on a digital computer, that computes the various prop­
agation parameters of the cable. 

The analysis starts with the concept of a modal solution. For a sinus­
oidal excitation of frequency w/27r, a modal solution for the electric field 
has the form, 

E = exp (iwt - ')'z) E, 

where the Cartesian coordinate z runs along the 'cable, ')' denotes a 
propagation constant of the cable (giving the loss and phase-shift per 
length of the mode), and the vector field E is independent of time (t) and 
z. Thus, the electric field distribution for a modal solution is the same 
for all transverse cross sections of the cable, apart from a multiplying 
factor that gives the loss and phase shift per length for the mode, and 
similarly for the magnetic field. The general solution is a linear combi­
nation of modal solutions. 

For propagating solutions, in particular, Kuznetsov has shown that 
there is a potential function V(i.e., a solution of Laplace's equation) 
defined in the dielectric-region, independent of z, and constant on the 
surface of. the conductors, such that external to the conductors 

E = -\7V + izEz, 

where iz denotes the unit vector in the z-direction and the function Ez 
denotes the z -component of E. (His argument for this electrostatics 
approximation is enlarged in the next section to account for the shield 

* This permits the modeling of a new type of wire insulation recently introduced into 
cable manufacture: a layer of expanded insulation surrounded by a "skin" of solid insu­
lation. The insulation on the shield is included for formal completeness. 
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and inhomogeneities in the dielectric). The various propagation modes 
of the cable, called here the excitation modes, are specified by the set 
of values for Von the conductors, which are simply the conductor volt­
ages. 

The set of wire voltages at z = 0 (the shield is always assumed to be 
grounded) is represented by the vector 

where M is the number of wires in the cable. Certain particular volt­
age-vectors correspond to excitation modes of the cable. Usually, there 
are M such normalized voltage vectors, each corresponding to a distinct 
propagation constant. But it can happen that two or more linearly in­
dependent voltage vectors correspond to the same propagation constant; 
in this case, the propagation constant corresponds to the subspace 
spanned by these vectors, and the dimension of the subspace is called 
the multiplicity of the propagation constant. For either situation the 
collection of excitation modes and their associated propagation constants 
are the specific propagation parameters that are sought. The usual pri­
mary constants of a transmission line or mode, if desired, can be deter­
mined by standard formulas6 from the propagation constant in con­
junction with the capacitance matrix. 

Under the idealized conditions that the conductors are perfectly 
conducting and the dielectric is homogeneous, there is a single propa­
gation constant, 

(1) 

where t and J.L denote the permittivity and permeability of the dielectric, 
respectively. In such a case, the multiplicity of ike is M. This is the so­
called TEM mode,6 where the longitudinal components of the electric 
and magnetic fields are zero. Other modes are evanescent, since the 
frequency range considered here lies below their cutoff frequencies. Since 
the dielectric in the cable may be inhomogeneous and the conductors 
are good but not perfect, the propagation solutions or modes are per­
turbations of the TEM mode, the result being in general a set of excitation 
modes having distinct propagation constants. 

In the next section, the algorithm for computing the excitation modes 
and associated propagation constants is derived. The modes correspond 
to the eigenvectors of an M X M matrix, the propagation constants are 
simple functions of the associated eigenvalues, and the matrix itself is 
related to the capacitance and admittance matrices of the cable. In the 
third section, the algorithm is applied to the shielded balanced pair and 
a high-frequency approximation is indicated. Experimental testing of 
these results is reported in Ref. 7. 

UNIFORM CABLES-I 599 



II. PROPAGATION MODES FOR UNIFORM CABLES 

In this section, an algorithm for computing the propagation modes 
and their associated propagation constants is derived for a uniform cable. 
The analysis pertains to cables having M straight and parallel wires of 
circular cross section, enclosed by a circular metallic shield. 

The geometry, materials, and excitation of the structure to be con­
sidered are specified as follows: 

(i) The radius of the mth conductor is denoted Rm for m = 0, 1, ... , 
M, where Ro refers to the inside radius of the shield. The shield has a 
uniform thickness tho 

(ii) The conductors have two layers of insulation with thickness (Rm1 

- Rm) and (R m2 - Rmd for the wires (m = 1, ... , M) and (Ro - ROl ) and 
(ROl - R02 ) for the shield. The permittivities (possibly complex) are Em 

and Em! for the first and second layers, respectively, for m = 0, 1, ... , M. 
In general, the subscript "0" will refer to the shield. 

(iii) The materials are nonmagnetic, and the permeability is /l 

throughout. 
(iv) The material in the interstitial space outside the conductors and 

their insulation has permittivity E (possibly complex). 
(v) The excitation frequency w/27r satisfies (w/27r)Ro(E/l))/'2« 1, that 

is, the wavelength is much greater than the radius of the cable. Since Ro 
generally exceeds 0.1 inch, this means that the frequency is below the 
microwave range. 

(vi) The conductivity of a conductor is denoted am and WE« am for 
m = 0, 1,···,M. 

(vii) When the cross-sectional plane of the cable is viewed as the 
complex plane, the centers of the conductors are associated with the 
complex numbers bo = 0, bI, •.. , bM . A typical cross section is indicated 
in Fig. 1. 

The electrical behavior of a cable is described by the electric and 
magnetic fields, E and H, which satisfy Maxwell's equations. A modal 
solution, as discussed in Section I, has the form, 

E = exp(iwt - ),z)E 

H = exp(iwt - )'z )H, (2) 

where the vector fields E and H are independent of z and t. In terms of 
their longitudinal and transverse parts, 

E = Etr + izEz 
(3) 

where the vector fields Etr and Htr are the projections of E and H, re­
spectively, onto the transverse plane. Maxwell's equations imply that 

600 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1977 



b Em1 

m" " \ \ 

I 
\ \ 

I I 
J I I 

I I I 
I I I 
I I I 
I I I 
I I I 
I I I 

2RO 2R01 2R02 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I 
I 
i 

Fig. 1-Typical cable cross section. 

(see Ref. 4, page 3) 

-X2Etr = "("VEz + iwJ.1, "VHz X iz 

-X2Htr = "("VHz + (k 2/iwJ.1,) "VEz X iz, 

where taking E as the permittivity as a function of position, 

in mth conductor 
(k 2 == -iwlI (J m = 0 1 ... M 

k 2 = 'm f"" m '" t k; " w 2Jt' outside the conductors, 

(4) 

(5) 

where the subscript "e" refers to the region exterior to the conductors, 
and 

(6) 

The form of the solution in the space separating the conductors is 
determined by the electrostatics approximation. Kuznetsov4 has vali­
dated this approximation in three steps: 

(i) Both Eze and Hze and their derivatives are determined to better 
than one part in 2.4/kcRo as solutions of Laplace's equation. 

(ii) There is a function V such that Etr = -"V V and "V2V = o. 
(iii) On each conductor the tangential part of Etr is zero; so V is 

constant on the conductors. 

For point (i), the original proof must be enlarged to deal with the pres­
ence of a shield and inhomogeneities in the dielectric; this is done in 
Appendix A. Point (ii) is a direct consequence of point (i) because in eq. 
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(4) both the divergence and curl of 'lHz X iz are zero, which implies it 
is the gradient of a solution to Laplace's equation, and point (iii) comes 
from the estimate, (k;/k~ « 1 for all m) [see Ref. 4, eq. (2.3) and Ap­
pendix 1]. 

The potential which is one on the kth conductor and zero on the others 
is denoted Vk k = 1, ... , M. These form a basis set since for any potential 
V (which is zero on the shield) there are coefficients Uk k = 1,···, M such 
that 

M 
V= L UkVk. 

k=l 
(7) 

Likewise, when E ze (k) denotes the longitudinal component that cor­
responds to the potential Vk k = 1, ... , M, then 

M 
E ze = L UkEze(k) 

k=l 
(8) 

corresponds to the potential V. The coefficients Uk k = 1, ... , M form the 
excitation vector 

(9) 

To find those excitation vectors that correspond to propagation modes 
and their associated propagation constants, a set of constraints is de­
veloped, one for each conductor, by relating V and Eze at the conductor 
surfaces. At the outside surface of the mth wire (W m), eq. (4) implies 

2 _ oEze iwJ.l oHze - (10) - X e E p e - l' + m - 1, ... M, 
m opm Rm o¢m, 

where (Pm, ¢m) denote polar coordinates based at the center of the m th 
conductor. But EPme = -oV/oPm, so 

x2 50 2
11" oV d = 50 2

11" oEze d 
e ~ ¢m l' ~ ¢m 

o uPm 0 uPm 
m = 1,···, M, (11) 

where the derivatives are evaluated on W m. By eqs. (7) and (8), this is 
expressed as 

m = 1, ... , M. (12) 

The mk- element of the M X M capacitance matrix C is 

50
211" OVk 

Cmk = EmRm -- d¢m, 
o oPm 

(13) 
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and by eq. (4) for the transverse magnetic field, the mk-element of the 
M X M admittance matrix Y is 

Y = §. H (k) d = iWf.mRm So27r oEze (k) d 
mk ¢m S ') ¢m. 

Wm X; 0 oPm 
(14) 

Thus, the set of constraints in eq. (12) is jointly represented by the matrix 
equation, 

iw Cv = ,),Yv, (15) 

where the excitation vector v is viewed here as a column vector. 
But, as will be shown, the matrix Y has the form, 

Y = l,W')' Y 
X~ , 

(16) 

where the matrix Y is independent of ')'. Consequently, eq. (15) can be 
expressed 

(17) 

This means that to correspond to an excitation mode, the excitation 
vector v must be an eigenvector of the matrix C-l Y, and conversely. If 
A is the associated eigenvalue, then the corresponding propagation 
constant')' is 

(18) 

The remaining problem is to calculate the matrices C and Y. 
The elements of the capacitance matrix C can be computed by the 

method developed in Ref. 5 (see in particular Section III). This consists 
of inverting a matrix and is a standard operation on a digital computer. 
The elements of the Y-matrix are evaluated by deriving a boundary­
value problem for the function E ze (in the region separating the con­
ductors), then again applying methods from Ref. 5 to solve it. 

As the first step in determining Y, in Appendix B it is shown that Eze 
satisfies the following conditions: 

(i) \J2Eze = 0, where \J~ denotes the Laplacian, (02/ox 2) + 
(02/0 V 2). 

(ii) Across dielectric interfaces E ze is continuous and o( oEzc/op) = 
')'0(0 V/op), where %p denotes the normal derivative and 0 denotes the 
difference or jump. 

(iii) (oEze/oPm) - DwEze = ')'(oV/oPm) at Pm = Rm for m = 0,1, ... , 
M, where Dw is a linear operator such that for m = 0, 1, ... , M 

Dw: ein¢m -- (Xcm/anm) ein¢m n = 0, ±1, ±2, ... , (19) 

and the coefficients a nm (which depend on w) are defined in eq. (58) for 
m = 0 and in eq. (52) for m :;C 0, both in Appendix B. In other words, in 
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condition (iii), Dw alters the Fourier series of Ezc on each conductor by 
multiplying the respective Fourier components. 

This boundary problem is simplified by putting 

E ze = 'YV + E~e. (20) 
Then the corresponding conditions on the function E~e are 

(i) \12E~(' = 0. 
(ii) Both E~e and its derivatives are continuous across dielectric in­

terfaces. 
(iii) (oE~e/oPm) - DwE~(' = "jDw V at Pm = Rm for m = 0, 1, "', M. 

The function E~e restricted to a conductor surface is represented by 
a Fourier series expansion and this by an infinite vector whose compo­
nents are the Fourier coefficients. If, consistent with the notation in Ref. 
5, u denotes the concatenation of these vectors for each conductor and 
p the concatenation of the vectors corresponding to fm (oE~eloPm) m 
= 0, 1, ... ,M, then condition (iii) can be expressed by the matrix equa­
tion, 

p - Dwu = Dw V, (21) 
where Dw denotes the diagonal matrix with elements fmXm/a nm for ° 
~ m ~ M and n = 0, 1,2, .... Also, there is a vector {3 and matrices To, Ho, 
and Go (defined in Ref. 5) such that 

U = Tofl and p = Gofl - Hou, (22) 

where the subscript "0" emphasizes the context of homogeneous di­
electric, in accordance with condition (ii) for E~e. It follows that 

(Go - HoTo - Dw To) {3 = 'YDw V (23) 
or 

(3 = -'Y[(Ho + Dw)To - GoJ-l Dw V. (24) 

But it follows from eq. (14) and eq. (16) that for 1 ~ m, k ~ M, 

- fmR m r 211" oE:e (k) 
Y mil - emf< = -- Jo 0 d¢m = 27rRmPOk/'Y = 27rffloh/'Y, 

l' 0 Pm (25) 

where the latter equality is shown in Ref. 5, eq. (9). Therefore, the mk 
element of the "V-matrix is computed by carrying out the matrix inver­
sion in eq. (24) for V = V m to give flOh. Of course, in practice, this in­
version is performed on a truncated approximation of the matrix [(H 0 

+ Dw)To - GoJ. 

III. APPLICATION AND EXTENSIONS 

In this section, the general results of the last section are applied to the 
so-called shielded balanced pair. Also, extensions of the results to cables 
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without a shield and cables with circular holes in the interstitial dielectric 
are discussed. 

The shielded balanced pair (SBP) consists of a pair of identical wires 
placed symmetrically inside a circular shield (the center of the shield 
lies on the line joining the centers of the wires and midway between 
them). Since the structure is symmetric about the perpendicular bisector 
of the line joining the wire centers, there will be a balanced mode: the 
potential and fields will be antisymmetric about this line and, in par­
ticular, the wire-voltages will be equal and opposite in sign. The problem 
is to determine the propagation constant ('Y) of the SBP. For convenience, 
the dielectric will be assumed to be homogeneous with permittivity L 

The excitation vector v = (1, -1) is an eigenvector for the matrix C-l Y 
and the corresponding eigenvalue is 

A = (Yll - YI2)/(C ll - CI2 ). (26) 

Equation (18) gives 'Y in terms of A. When V 12 == VI - V 2, 

§, OV12 
Cll - C12 = E --ds == Ql, 

WI OPI 
(27) 

which is the total charge on wire no. 1 (WI), and 

- - §, oEZ(' Y ll - Y 12 = (d'Y) -- ds. 
WI OPI 

(28) 

These two quantities are evaluated as in section II (relative to the po­
tential function V I2 ): Ql by methods from Ref. 5, and Yll - Y12 by eqs. 
(24) and (25). 

A suggestive formula for 'Y is obtained by applying Green's identity 
to eq. (28). Since both V 12 and Eze are antisymmetric functions, and since 
V 12 = 0 on the surface of the shield (Sh), 

J: oEze ds =!. J: oEze V 12 ds, 
::PWI OPI 2::P1' or] 

(29) 

where r denotes the entire boundary of the dielectric (W], W 2, Sh) and 
%r] denotes the normal derivative on r (into the dielectric). Since both 
Eze and V 12 satisfy Laplace's equation, Green's identity (see Ref. 8, Vol. 
2, page 252) implies that the derivative in the integrand can be switched 
to give 
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where ql and qo denote the charge densities on WI and Sh, respectively. 
Thus, 

'Y = ike [ 1 - (Qr}-1 §Wl ql (Eze/'Y )ds 

(31) 

the Fourier components of (Eze/'Y) - V 12 on W, and Sh are Tof3 with f3 
given byeq. (24). This formula for 'Y indicates the contribution from each 
conductor. A comparison between measurement and theory for the SBP 
based on eq. (31) is presented in Ref. 7. 

For high frequencies (i.e., W for which wlloR 1 » 1), the formula for E ze 
can be simplified by neglecting the first term of condition (iii) (see Ref. 
4, eq 5.8, where Xe should be Xd. This gives 

E ze = -('Y/E)D:;l qm (m = 0, 1,2). (32) 

This approximation together with the approximation 

(1 - 0)-1/2 ~ 1 + %0 

gives 

'Y = ike { 1 + (2Qr)-1 [§Wl ql(D:;1 qr)ds 

+ % r, qO(D:;1 qo)ds]}. (33) 
;J'Sh 

The integrals in (31) and (33) can be expressed in terms of the Fourier 
coefficients of the charge density for convenience in calculating these 
expressions. 

The development in Section II can be extended to cables without a 
shield and to cables with circular holes in the interstitial dielectric. The 
calculation of the charge components, and hence, the capacitance and 
admittance matrices, in both of these situations was treated in Ref. 5, 
Section III. Again, eq. (17) must be solved for eigenvectors and eigen­
values; but in the absence of a shield, the capacitance matrix is not in­
vertible and the problem is what Kat09 calls an eigen-problem in the 
generalized sense. In principle, these can be solved on a digital computer 
as before. 

The results presented here in conjunction with the computation 
techniques of the companion paper on charge densities allow compu­
tation of the excitation modes and their associated propagation constants 
for uniform cables under a broad range of conditions. These include 
capacitive and resistive unbalance, caged shields that consist of a col­
lection of unconnected wires, and many decades of excitation frequen-

606 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1977 



cies. As the simplest, nontrivial example, the formulation was applied 
to the shielded balanced pair. As indicated in Ref. 7, the calculations 
agree reasonably well with measurements. 

APPENDIX A 

The Electrostatics Approximation 

The proof of the electrostatics approximation is broken into three 
parts in Sectioh III. In this appendix the first part is verified; for the other 
two parts the reader is referred to Kuznetsov's work.4 It is shown in 
particular that within an error for Eze of one part in (2.4/heRo) (typically 
250 for 10 MHz), 

'\12Eze = 0, 

and the same argument will hold for H ze . 
As indicated in eq. (1.5) of Ref. 5, 

('\12 + X~)Eze = o. 

(34) 

(35) 

If E~(' is a function such that E~(' = Eze on r, E~(' is continuous across 
dielectric interfaces and 0 (oE~e/op) = o(oEze/op) there, and 

(36) 

then Eze = E~e + E;e, where E;e = 0 on r, E;e and its derivatives are 
continuous across dielectric interfaces, and 

(37) 

When 1/;1 denotes the first eigenfunction of - '\12 that is zero on r, then 
the L2-norm of E;eis bounded by 

(38) 

where Al is the eigenvalue associated with '/;1. The smallest eigenvalue 
of - '\12 in the circle of radius R 0 relative to a boundary condition of zero 
on the circumference is 2.4048/Ro [2.4048 is the first zero of Jo(x)] and 
(see Ref. 8, Vol. 1, page 409, Theorem 3) 

(39) 

Hence, 

(40) 

and since Xe ro.J he, 

(41) 
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which was to be proved. Clearly, the same argument holds for the x and 
y derivatives of Eze . 

APPENDIX B 

Boundary Problem for Eze 

From the various conditions on Ez, a boundary problem for Eze can 
be deduced. The result is stated as three conditions in Section II. In this 
appendix these conditions are verified. 

(i) From the electrostatics approximation, \7 2 E z (' = O. 
(ii) Since Ez is a tangential component of E, it is continuous across 

interfaces. The difference in normal-derivative across the dielectric in­
terfaces is deduced from eq. (4). Since H ze is continuous across inter­
faces, 

2 _ (OEze ) -o(Xc Epme) - 'YO --
oPm 

m = 0,1,···, M (42) 

at the interfaces. But by the usual boundary condition for the normal 
E field, o(k;, Epe) = 0; so for m = 0, 1, ... , M, 

(43) 

at the dielectric interfaces. 
(iii) By the same reasoning as in (ii) 

o~e o~m ) -- - --= -'Y(Epe - Efim at Pm = Rm, 
oPm oPm 

(44) 

where Ezm and Epm refer to components of E in the mth conductor for 
m = 0, 1, ... , M. Since 

(45) 

for all m, eq. (44) to a good approximation becomes 

oEze oEzm oV 
-- - -- = 'Y - for m = 0, 1, ... , m. (46) 
oPm oPm 0Pm 

Finally, it is proved that 

oEzm = D E for m = 0, 1, ... , M, oPm wm zm 
(47) 

and since Ezm = Eze at Pm = Rm, this will verify the third condition. This 
is proved first for the wires, then for the shield. 

Inside a wire, 

\72Ezm + X~ E zm = ° m = 1,··· , M, (48) 
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and since )'2 « X;11 the quantity X~ can be replaced by k ;1' The solution 
for E zm has the form, 

In(kmPm) . 
Ezm = ~ an I

n 
(kmRm) exp(zn¢), (49) 

where the an are the Fourier coefficients of Ez at Pm = Rm and I n denotes 
the nth order Bessel function of the first kind. The radial derivative at 
Pm = Rm is 

oEzm J;I (kmRm) (. ) k D E () 
0Pm = km ~ an I

n 
(kmRm) exp zn¢m = m Will WI, 50 

where Dwm is a linear operator, which for m = 1,···, M, 

Dwm: exp (in¢m) -- (km/anm ) exp(in¢m) n = 0, ±I, ±2,···, (51) 

and 

(52) 

Inside the shield, 

\72 Ezo + k'd Ezo = 0, (53) 

where X0 has been replaced by kg. The s.olution has the form, 

bnJn (kopo) + en Yn (kopo) (. rI, ) 
Ezo = L an exp zn<pO , 

n bnJn (koRo) + en Yn (koRo) 
(54) 

where the an are the Fourier coefficients of Ez at Po = R o, the bn and en 
are determined by reference to the boundary condition on the outside 
surface of the shield (Po = Ro + th == R~), and Yn denotes the nth order 
Bessel function of the second kind. Assuming the cable is not in the vi­
cinity of sources or other conductors, the potential outside will be zero; 
hence, there is no charge on the outer surface of the shield, and by eq. 
(4) oEz/opo is continuous at Po = R~. Since outside the cable, Ez has the 
form 

(
R' Inl 

Ez = L in ---.2) exp(in¢o), 
n:;eO Po 

(55) 

for some in, it follows from the continuity of oEz/opo that in eq. (54), 

bn = Yn-l(koR~) and en = -In-l(koR~) n = 0, ±I, ±2,···. (56) 

The radial derivative of Ez at Po = Ro is 

oEzo . 
-- = ko L (an/ano) exp(zn¢o), (57) 
oPo n 
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where 

Yn-l(koR~)Jn (koRo) - In-1(koR;)) Yn (koRo) 

Yn-l(kOR~)J~(koRo) - In-l(kOR~) Y~ (koRo) 

n = 0, ±1, ±2, .... 

Hence, at Po = Ro 

oEzo 
-- = koD wO Ezo, 
opo 

(58) 

(59) 

where Dwo is a linear operator as in eq. (51) with m = O. The direct sumlO 

of the Dwm for m = 0, 1, ... , M is Dw, as given in eq. (19). 
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Calculation of Charge Components 
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The analysis of electromagnetic propagation over uniform cables 
depends on the calculation of the charge densities on the conductors, 
relative to a potential function that is not necessarily constant on the 
conductors. By considering such a potential function as the real part 
of an analytic function, two Laurent series are derived, one of which 
involves the Fourier components of the potential function and its as­
sociated charge densities on the conductors. The second series accounts 
for the relative location of the conductors. The two series are equated 
to give a system of linear equations that can be solved for the charge 
components. The results obtained, which apply to uniform cables whose 
conductors (including the shield, if preserit) have circular cross sections 
and are covered with two (ayers of dielectric insulation, can be used to 
calculate the propagation modes and propagation constants of the 
cable. 

I. INTRODUCTION 

Multiconductor cables for telecommunications have distributions of 
charge on each conductor. The surface charge density on the conductors 
is proportional to the normal derivative of a potential function (i.e., a 
solution to Laplace's equation), which is defined in the region separating 
the conductors and is constant on the conductors. The constant values 
of the potential are the voltages of the conductors, and the proportion­
ality constant is the permittivity of the material next to the conductor. 
Also, generalized charge densities are defined for potential functions, 
such as the longitudinal component of the electric field, which are not 
constant on the conductors. 

In the present work an algorithm is developed for computing the 
charge densities in this generalized sense for uniform cables. Thus, the 
conductors of the cable are assumed to be straight and parallel, so that 
each transverse cross section is identical. The wires are assumed to have 
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Fig. 1-Typical cable cross section 

circular cross sections and to be covered by two circularly symmetric 
layers of homogeneous dielectric material. Surrounding the collection 
of wires is a circular, metallic shield, and it too is assumed to have two 
uniform layers of dielectric on its inside surface. A typical cross section 
is shown in Fig. 1. 

Interest in the charge densities was spurred by the recent finding that 
the modes of a cable and their associated propagation constants can be 
expressed directly in terms of the charge densities when, as in Kuznet­
sov's work, l low frequencies are excluded. Subsequently, it was found 
that the analysis could be extended to low frequencies by using the notion 
of generalized charge densities associated with the longitudinal com­
ponent of the electric field. These matters are developed in detail in 
Ref. 2. 

Previous work on calculating charge on the conductors of a cable 
usually involved the simplifying assumption of homogeneous dielectric 
in the region separating the conductors. For two identical wires in free 
space, an explicit formula is available for all the Fourier components of 
the charge density on a wire (see Ref. 1, page 41). Goluzin,:~ using the 
theory of complex variables, has developed a continued fraction ex­
pansion for a potential function in a region bounded by circles; the ex­
pansion converges under certain conditions on the size and location of 
the circles. Nordgard4 has developed an algorithm involving a matrix 
inversion for computing Fourier components of the charge densities for 
a pair in a shield. Also, the capacitance elements (the zero-order com­
ponent of a charge density) have been calculated in a variety of cir­
cumstances. 5,6 

For inhomogeneous dielectrics, the calculation of charge density has 
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been approached by a finite-difference technique 7 coupled with a Fourier 
analysis8 of the normal derivative to give the Fourier components. This 
technique, by calculating more information than is needed, has proved 
to involve more computer expense than the technique to be described 
here. 

In this paper, techniques from the theory of complex variables are used 
to develop a set of linear equations for the charge components. Following 
Goluzin (see Ref. 3), the potential function is viewed as the real part of 
an analytic function; then two Laurent series are calculated for it about 
each conductor. The first is expressed in terms of the Fourier compo­
nents of the charge density and the potential function on each conductor; 
the second is expressed in terms of singularities located at the centers 
of the conductors (at infinity for the shield). Since the two Laurent series 
must be identical, their corresponding coefficients can be equated to give 
a system of linear equations from which the charge components can be 
calculated. For convenience, the system of equations is expressed in 
matrix form. 

The matrix equations are developed in the next section, with details 
of the calculations and proofs relegated to appendices. In Section III, 
the development is summarized and then extended to apply to cables 
without shields, to cables with holes in the dielectric, and to more general 
boundary problems that arise in determining the admittance matrix and 
other propagation parameters of the cable. Numerical examples and 
experimental testing of this work is presented in Ref. 9. 

II. CALCULATION OF THE CHARGE COMPONENTS 

The cable to be considered consists of M straight and parallel wires 
with circular cross sections surrounded by a circular shield of inside ra­
dius Ro. The wires and the inside surface of the shield are covered by two 
different layers of dielectric insulation. For the m th wire (1 ~ m ~ M) 
the radius is Rm; the permittivity of its first layer of dielectric is fe m with 
thickness Rm 1 - Rm; and the permittivity of its second layer is fe m 1 with 
thickness Rm2 - Rml. On the shield (referred to as the m = ° conductor), 
the permittivities of the first and second layers are feO and feOl with 
thickness Ro - ROl and ROl - R02, respectively. The permittivity of the 
material separating the insulated conductors is €. 

When the cross-sectional plane of the cable is viewed as the complex 
plane, the centers of the conductors can be specified as complex numbers. 
These are denoted bm (m = 0,1,· .. ,M), where bo = ° refers to the center 
of the shield. A typical cross section is shown in Fig. l. 

With (Pm, cf>m) as polar coordinates based at the center of the m th 
conductor (m = 0, 1, ... , M), a potential function U is assumed to satisfy 
the following conditions: 

(i) In the region separating the conductors, 9 2U = 0, where 9 2 = 
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(a2/ax 2) + (a2/ay2) and (x, y) denote Cartesian coordinates in the plane 
(i.e., U satisfies Laplace's equation). 

(ii) At the surface of the mth conductor (Pm = Rm), U has the Fourier 
series: 

U = L U nm exp (in <Pm ) m = 0, 1,··· ,M. (1) 
n 

(iii) When ~ denotes the permittivity as a function of position, then 
both U and ~(aU /aPm) are continuous across dielectric interfaces about 
the mth conductor for m = 0, 1, ... ,M. The charge density associated 
with U at the mth conductor is 

aUI . Pm = Em -- = L Pnm exp (m<Pm) 
aPm fim=R m n 

m = 0,1,··· ,M. (2) 

Thus, the problem is to determine the Fourier components, Pnm. 
The boundary problem for U is put into the context of complex vari­

ables by viewing the cross-sectional plane of the cable as the complex 
plane. Then, in the region separating the conductors, there is an analytic 
function f(z) (unique within addition of an imaginary constant) such 
that U is the real part of f(z). And f(z) can be represented as a Laurent 
series.lO 

In Appendix A, a Laurent series is calculated for f(z) in a neighborhood 
of bm in terms of the Fourier series of U and Em (aU/OPm) at the surface 
of the mth conductor [eq. (1) and eq. (2), respectively] for m = 0, 1, 
... , M. The result, eq. (26) of Appendix A, shows the coefficients of the 
Laurent series about z = bm depending only on Pnm and U nm (n = 0, ±1, 
±2, ... ) with no explicit indication of interconductor coupling. 

A second representation for f(z), which is based on Cauchy's integral 
formula is 

M 
f(z) = fo(z) + L fm(z), (3) 

m=l 

where 

co ( Z )n fo(z) = f300 + L f3no
R 
-

n=l 0 
(4) 

is analytic everywhere inside the shield and 

fm(z) = f30m fn (Z ;,:m) + n~l f3nm (Z ;,:m)-n (5) 

is analytic everywhere outside the mth wire for m = 1,· .. ,M (see Ref. 
3). The coefficients f300, ••• , f30M are real, and in general the f3nm (for 1 
~ m ~ M and n > 0) are complex. In Appendix B, a second Laurent se­
ries is calculated for f(z) in a neighborhood of bm by combining these 

614 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1977 



functions. The result is eq. (38) for m = ° and eq. (39) for m = 1, ••• , 
M. 

The two Laurent series must be identical since they represent the same 
function fez). Therefore, their coefficients can be equated, and, as shown 
in Appendix C, this leads to systems of linear equations in Unm, Pnm, and 
(3nm for m = 0, 1, ... ,M and n = 0, 1, .•.. It suffices to deal with non­
negative values of n because U and Pm are real quantities for all m 
(hence, U-nm = u*nm and P-nm = P*nm, where * denotes complex con­
jugate). 

The systems of equations are conveniently expressed in matrix form 
with the various coefficients combined into vectors. Accordingly, the 
following infinite vectors are defined: 

Pm = (Pam, Plm, ••• ) 

(3m= ((30m,(31m,···), 

all for m = 0, 1, ... , M and the joint vectors, 

u = (uo, ••• , urn) 

P = (Po, ••• , Pm) 

(3 = ((30, ~ •• , (3m). 

(6) 

(7) 

As indicated in Appendix C, when these vectors are taken as column 
vectors, there are matrices T, G, and H such that 

T(3 = u and P = G(3 - Hu. (8) 

In particular, G and H are such that 

POm = (dRm)(3om m = 1,··· ,M. (9) 

If only the zero-order components of the charge-densities are of in­
terest, then it suffices to invert the T -matrix to give 

{3 = T-1u, (10) 

whereupon eq. (9) is used. When all the components of the charge den­
sities are of interest, then combining the equations in (8) gives 

P = (GT-l - H)u. (11) 

(That the T-matrix is invertible follows from the well-known uniqueness 
of solutions to Laplace's equation with prescribed values on the 
boundary.) 

In practice, the infinite vectors Urn, Pm, and (3m m = 0, 1, ••• , Mare 
truncated to give N-vectors, and the matrices T, G, and H are truncated 
to (M + l)N X (M + l)N matrices. The matrix operations indicated in 
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eq. (11) are then carried out on the truncated m"atrices to give an ap­
proximation to the first N components of the charge density on each 
conductor. 

A detailed study of the matrix truncation has not been carried out, 
though the cables studied in Ref. 9 provide some experience in this 
matter. For the cables whose wires and shield were mutually separated 
by more than one wire diameter (the 754E and Focal), it more than 
sufficed to consider five harmonics on the conductors, including the zero 
order (i.e., N = 5). When N was set to 6, there was a difference in the 
coefficient of the dominant harmonic (zero order) of less than 1 in 10,000; 
furthermore, the coefficient of the extra harmonic was four orders of 
magnitude less than that of the zero-order harmonic. For the cable whose 
wires and shield were separated by a small fraction of one wire diameter 
(the Proximity cable), eight harmonics were required: the coefficient 
of the seventh-order harmonic was about %5 that of the zero-order har­
monic. When N was set to 10, again there was a difference in the domi­
nant coefficients of less than 1 in 10,000; and the extra coefficients were 
two orders of magnitude less than that of the zero-order harmonic. 

A second practical matter is the presence of conjugation operators in 
the T -matrix. When it is known (e.g., by symmetry) that the coefficients 
{3cm are real for aIle and m, then the conjugation operator has no effect 
and can be ignored. The case where the conductor centers are collinear 
is handled in this way. 

In general, the coefficients have an imaginary part. Then {3cm is ex­
pressed as the two-vector 

(
Re{3cm) 
1m {3cm 

and the element of the T -matrix, Tkm (n, e), which multiplies {3cm, is 
expressed as 

(
Re Tkm (n, e) 

1m Tkm (n, e) 

- 1m Tkm (n, e») 

Re Tkm (n, .e) 

The first component of the matrix product is the proper real part and 
the second is the proper imaginary part of the product, Tkm (n, e){3em. 
When a conjugation operator appears, the 2 X 2 matrix above must be 
multiplied on the right by 

(this corresponds to changing the sign of the imaginary part of (3em). The 
result is the matrix 

(
Re Tkm (n, e) 

1m Tkm (n, e) 

1m Tkm (n, .e) ). 
- Re Tkm (n, e) 
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When these matrices are substituted for the elements of the T-matrix, 
then the resulting matrix can be inverted in the usual way. 

III. SUMMARY AND EXTENSIONS 

Matrix equations have been derived which relate u, p, and the auxil­
liary vector {j. These are 

T{j = u and p = G{j - Hu. 

From these equations, the vector p can be determined when u is given. 
When the potential function U is the constant 1 on the m th conductor 
and zero on the others, the quantity 

(12) 

isthe km-element of the M X M capacitance matrix C. Thus, the ca­
pacitance matrix is calculated as a special case of the analysis in Section 
II. 

These results can be readily extended to cables without a shield and 
with some modification to cables with circular holes in the interstitial 
dielectric. When no shield is present, two changes must be made: 

(i) Components of u, p, and {j associated with m = ° must be elimi­
nated, and the corresponding submatrices in the matrices T, G, and H 
must be eliminated. 

(ii) The T-matrix must be bordered by one row and one column to 
give 

- (0 C) . T = C t T wIth c = (e}, ... , e r), (13) 

where el = (1,0,0,· .. ) is repeated M-times. Then the first equation in 
(8) becomes 

(14) 

where Q is the total charge of the cable and ~ is a constant to be deter­
mined. The second condition comes from the requirement that the total 
charge be specified, but that the potential on the boundary (the surface 
of the conductors) be specified only within an additive constant (~). This 
holds for any exterior problem for Laplace's equation in two dimen­
sions. II 

Circular holes in the interstitial dielectric are treated like extra con­
ductors with unspecified potential values at their surface (Ph = Rh). But 
if Unh denote the Fourier components of the potential fmiction at the 
surface of the hole, then inside the hole, 

(
Ph)n U = ~ Unh Rh exp (in¢h); (15) 
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and if fh is the permittivity of the material in the hole, then 

aUI aUI . Ph = f - = fh - = L (nfhUnh/Rh) exp (lncPh), 
aph out aph in n 

(16) 

where the normal-derivatives are evaluated on the outside and inside 
surfaces of the hole as indicated. Therefore, in terms of their Fourier 
components 

(17) 

where Dh is the diagonal matrix with main diagonal {nfh/Rh I for n = 0, 
1,2, .... Also, by eq. (46) 

(18) 

From eq. (17) and eq. (18), (3h can be calculated in terms of Uh. This 
in conjunction with the matrix-equation T(3 = U is sufficient to determine 
first (3h, then (3, and then by the second equation in (8), p. Details are not 
supplied here. 

The problem can also be generalized by specifying more complicated 
boundary conditions on the conductors. For example, the longitudinal 
component of the electric field satisfies a boundary condition of the 
form, 

p - Su = g, (19) 

(see Ref. 2) where S is some matrix and g some vector. It follows imme­
diately from (8) that 

(G - HT - ST)(3 = g. (20) 

Thus, under certain conditions on matrix S, (3 is obtained by inverting 
(G - HT - ST), U is obtained as T(3, and p is then obtained from eq. 
(19). 

The latter problem is involved in determining the elements of the 
admittance matrix for the cable (see Ref. 2, eq. 21). As shown in Ref. 2, 
this is an intermediate step for calculating the propagation modes of the 
cable and their associated propagation constants. The finite-difference 
technique, which had been used to calculate charge densities,7,8 was not 
capable of dealing with this type of boundary condition. But even for 
cases such as the calculation of the capacitance matrix where the finite 
difference technique could be applied, the technique described here has 
a cost savings of more than one order of magnitude for 0.1 percent ac­
curacy. Thus, the technique has proved to be flexible in solving potential 
problems associated with uniform cables and relatively inexpensive. 

APPENDIX A 

The First Laurent Series 

When the cross-sectional plane of the cable is viewed as the complex 
plane,the potential function U is the real part of an analytic function 
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f(z). In this appendix a Laurent series is deduced for f(z) in a neigh­
borhood of each conductor, starting from the Fourier series for the charge 
density and U at the surface of the conductor, as given in eq. (1) and eq. 
(2). 

In the first layer of insulation for the mth conductor (for Rm ~ Pm ~ 
Rml m = 1, ... , M or Ro ~ Po ~ R Ol ), the potential function is 

U(Pm, ¢m) = UOm + Pom(Rm/Em)fn ~m + % L 
nr"O 

X exp (in¢m)[unm (~~ + ~~n) + Pnm (Rm/nEm)(~~ - ~~Il)], (21) 

where ~m = (Pm/Rm). This is validated by noting that it satisfies La­
place's equation and it satisfies the boundary conditions of eq. (1) and 
eq. (2) at Pm = Rm (i.e., when ~m = 1). 

In the second layer of insulation (for Rml ~ Pm ~ Rm2 m = 1, ... , M 
or ROl ~ Po ~ R 02 ), the potential function is 

U(Pm, ¢m) = UOm + Pom(Rm/Em) fnrm + POm(Rm/Emdfn~ml 

+ % L exp (in¢m)[unmG~m(pm) + Pnm (Rm/nEm)G;;m (Pm)], (22) 
nr"O 

where ~ml = (Pm/Rml), 

rm = (RmdRm), Om = (EmdEm) (23) 
and 

G;m (Pm) = (r~l ± r~n)(~~ll + ~~'D 
+ (om)-l(r~ =r= r;;;fl)(~~~lI - ~;;;I{). (24) 

This satisfies Laplace's equation and the continuity conditions on U and 
HoU/oPm) at the interface Pm = Rml (i.e., when ~ml = 1 and ~m = rm). 
For U this is obvious, but to check the continuity of ~(oU /oPm), it is 
useful to refer to the calculation, 

(n/Pm)H;m(Pm) == ~ 0 
G;m(Pm) = (n/Pm)[(r~l ± r;;;Il)(~~l - ~~'D 

UPm 

+ (om)-l(r~ =r= r;;;n)(~~ll + ~~/D]. (25) 

Outside the insulation (for Pm ~ Rm2 + ,m = 1, ... , M or Po < R 02 ), 
the analytic function whose real part matches U is 

f(z) = UOm + POm(Rmf<)Km + POm(Rm/,)fn C ~:m) 
+ % f (Z - bm)n [unmAnm + Pnm (Rm/nEm)Bnm] 

n=l Rm 

(26) 
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where * denotes complex conjugation, 

Anm = (rmrmd-n(G~m + (Omd-lH~m) 
Bnm = (rmrml)-n(G;;m + (Oml)-lH;;m) 

Enm = (rmrml)n(G~m - (Oml)-lH~m) 

(27) 

(28) 

Fnm = (rmrml)n(G;;m - (Oml)-lH;;m)' (29) 

Substituting z = bm + Rm2 exp (in¢m) into f(z) and taking the real part 
gives 

+ 1fs :L exp (in¢m)[u nm (Anm (rmrml)n + Enm(rmrml)-n) 
nr"O 

since U-nm = u~m and P-nm = P~m' As is easily checked, this matches 
U in eq. (22) for Pm = Rm2 (i.e., for ~ml = rml). Likewise, it is straight­
forward to check that the Pm -derivative of the real part of f(z) matches 
(f.mr!f.m)oU/oPm evaluated at Pm = R m2-. This validates eq. (26) for 
f(z). 

When the dielectric is homogeneous, then rm = rml = Om = Oml = 1. 
It follows that in this case Km = 0 and Am = Bnm = Enm = -Fnm = 4. 

APPENDIX B 

The Second Laurent Series 

An analytic function f(z) in the region separating the conductors has 
the form given in eq. (3) through eq. (5). In this appendix, a single Lau­
rent series is derived for f(z) in a neighborhood of each conductor (in­
cluding the shield) by combining these equations. 

The functions f m (z), as given in eq. (4) and eq. (5), are analytic in a 
neighborhood of bk for m =;6- k and k =;6- 0; hence, they are represented by 
a power series about z = bk, 

m = 0, 1, ... ,M. (30) 
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The coefficients Cmk (n) are related to the derivatives of 1m (z) at Z = bk 
by the formula 

cmk(n) = ____ m n = 0, 1, 2,.·.; (Rk)n ant I 
n! ozn z=bk 

(31) 

in particular, Cmk (0) = 1m (bk). 
The results of the calculation in eq. (31) are indicated at the end of 

this appendix. When the formula is evaluated for lo(z), as given in eq. 
(4), the result is eq. (40), and for Im(z), as given in eq. (5), the result is 
the combination of eq. (41) and eq. (42). The combined Laurent series 
for I(z) about z = bk is indicated in eq. (39). 

In a neighborhood of the surrounding shield, the Laurent series of eq. 
(5) holds for 1m (z) (m = 1,··· , M). This is rewritten as 

1m (z) = f30m en (~o) + f30m en (:~) + gm (z), (32) 

where 

(
z - b) co (Z - b ) -e gm(z) = f30m en __ m_ + L f3em -R m . 

Z e=1 m 
(33) 

Since gm (00) = 0, it follows that gm (R6/Z) is analytic in a neighborhood 
of Z = 0; so it is represented there by a power series, 

gm ~ = L cmo(n) - ; (R2) co (z)n 
Z n=1 Ro 

(34) 

and accordingly, 

gm(z) = L cmo(n) - . co ( Z )-n 
n=1 Ro 

(35) 

The coefficients cmo(n) for m = 1,· .. ,M are obtained from the for­
mula, 

Rn d
n 

[ R2] I cmo(n) = ~,) - gm (~) n = 1,2,···. 
n. dz n z z=O 

(36) 

The result of applying this formula to eq. (33) is 

emo(n) ; (~:r (- {J~m + t (Jim G =~) (!:)-} (37) 

n = 1,2,··· 

The combined Laurent series for I(z) in a neighborhood of the shield 
IS 

I(z) = f f3no (R
Z 

)n + ~ [f3om en (R
Z 

) 
n=O 0 m=1 0 

(RO) co ( Z )-n] + f30m en -R + L cmo(n) - . 
m n=1 Ro 

(38) 
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The combined Laurent series for f(z) about z = bk (k -:;c 0) is 

(
z - bk) ro (Z - bk)-n 

f(z) = 2: Cmk(O) + f30k fn -R- + 2: f3nk -R ' 
m~k k n=l k 

ro (Z - b k) n ( ) + 2: -- 2: cmk(n) . 
n=l Rk m~k 

(39) 

The coefficients obtained by carrying out the calculations in eq. (31) 
are 

COk(n) = (~)-n f: f3eo(f) (Ek)e k -:;c0,n=0,1,2, ••• 
Rk e=n n Ro 

(40) 

(41) 

(42) 

for n = 1,2,···. 

APPENDIX C 

Equate the Two Laurent Series 

Equating the constant, logarithmic, nth power, and -nth power terms 
(n ~ 1), respectively, in the Laurent series about the shield. [i.e., in eq. 
(26) and eq. (38)] gives the linear equations, 

. M Ro 
(l) f300 + 2: f3mo fn - = Uoo + Poo(RO/€)KO 

m=l Rm 
M 

(ii) 2: f30m = Poo(Ro/ €) 
m=l 

(iii) f3no = %[unoAno + Pno(Ro/n€o)Bno] 

M 
(iv) 2: cmo(n) = %[u~oEno + p~o(Ro/n€o)Fno]. 

m=l 

For the kth wire (k = 1, ... , M), the corresponding equations are 

(i) 2: Cmk(O) = UOk + POk(Rk/€)Kk 
m~k 

(ii) f30k = POk (Rk/ €) 

(iii) 2: cmk(n) = %[UnkAnk + Pnk(Rk/n€k)Bnk ] 
m~k 

622 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1977 

(43) 

(44) 



The charge coefficients can be solved from (ii) and (iii) in the first set 
and from (ii) and (iv) in the second set to give 

M 
Poo = (dRo) L {3om 

m=l 

PnO = (4Eon/RoBno){3no - (EonAno/RoBno)uno 

POk = (dRk){3ok 

Pnk = (4Ekn/RkFnk){3;lk - (EknEnk/RkFnk)Unk. (45) 

In terms of the vectors defined in (6) (viewed as column vectors), these 
equations are expressed 

k = 0, 1,···,M, 

where the nf -elements of these matrices for n, f = 0, 1, ... are 

n=O 

n=f~O 

otherwise 

Gk (n, f) = (dRk ) 

(k = 1, .•• ,M) {~4'kn/RkFnk)(*) 
n=f=O 

n=f~O 

n~f 

Ho(n, f) = ! ~onAno/RoBno) n=f 

n~f 

Hk(n, f) = {(EknEnk/RkFnk) n = f 
(k = 1, ... ,M) 0 n ~ f 

In terms of the joint vectors defined in (7), 

p = G{3-Hu, 

(46) 

(47) 

where G and H are the direct sum of the matrices, Gk and Hk , respec­
tively, for k = 0, 1, ... , M (see Ref. 12, p. 159). 

The charge components can be eliminated in the original set of 
equations by means of the identity, 

BnkEnk - AnkFnk = (32/o;.J)kd 
n = 0, 1, . .. and k = 0, ... , M. (48) 
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The result is the set of equations, 

. M (RO ) (~) f300 + m~1 f30m fn Rm - KO = UOO 

M 
(ii) - (oooOlFno/8 )f3no + (oooOIBno/8 ) L c~o(n) = UnO 

(iii) L cmdO) - f30k Kk = UOk 
m-,t-k 

m=1 

(iv) - (Ok OkIFnk/8) L Cmk(n) + (OkOkIBnk/8)f3~k = Unk 
m-,t-k 

for k = 1, ... , M and n = 1, 2, .... 

These equations can be expressed in the matrix form 

[

TOOTOl ••• TOM ]'[f30] [UO] TlOTl1 ••• TIM f3I UI 
Tf3 == . . = . == u, . ., . .. 

TMOTMI ••• TMM f3M UM 

(49) 

(50) 

where f3 and U are viewed as column vectors. The symbols Tkm for k, m 
= 0, ... , M denote submatrices of T defined as follows: 

1 n=f=O 

T ( f) _ ((ooooIFno/8) n = f :;t: 0 
00 n, - to n "" e 

Ro fn-- KO 
Rm 

Tom'(n, f) = 
-(oooQ1Bno/8n) (~:r (*) 

(m = 1,···, M) 

o 

TkO(n, f) = 

(k = 1,···, M) 

n=f=O 

e = 0; 
n = 1,2,··· 

f = 1,···, n; 
n = 1,2,··· 

otherwise 

1~n~f 

f = 1,2,··· 

otherwise 
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n=f=O 

n = 0; f = 1,2,··· 

f = 0; 
n = 1,2, ••. 

n, f ~ O. 
The symbol (*) throughout means that complex conjugation is to be 
performed. These elements of the various submatrices are read off the 
appropriate coefficients in the system of equations in (49) in conjunction 
with the equations for the Cmk (.) in eqs. (37), (40), (41), and (42). 
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Experimental verification is presented for a recently developed 
method for calculating propagation parameters, such as loss and 
phase-shift per length, of uniform cables. For the shielded balanced 
pair (SBP), a computer program has been written to carry out the cal­
culations. In this paper, these calculations are compared with mea­
surements of three different cables that can be modeled as SBPs. 

Agreement between calculation and measurement was within 3.3 
percent over the frequency range 50 Hz to 10 MHz. The greatest de­
viation occurred in a cable with substantial air space in the interstitial 
dielectric; for the other two cables agreement was within 2 percent. 

I. INTRODUCTION 

A method for calculating propagation parameters of uniform cables 
is presented in Ref. 1. The method depends on algorithms for deter­
mining the charge densities on the wires and shield, and this is presented 
in Ref. 2. For the shielded balanced pair (SBP) in particular, a computer 
program has been written to carry out the required calculations. To test 
the method, three different SBP cables were fabricated and, with the 
cables laid straight, their attenuation and phase-shift per length were 
measured over a broad range of frequencies and then compared with 
calculated values. The results of this experimental test are presented 
in this paper. 

The three cables were constructed to conform to the SBP model. In 
this model, the two wires are identical, they are straight and parallel, and 
they are symmetrically located inside a cylindrical, metallic shield of 
uniform thickness. Also, the dielectric material separating the wires and 
shield is homogeneous and isotropic. A cross section of an ideal SBP is 
shown in Fig. 1. 

The first cable is an untwisted version of a standard twisted-pair cable 
built by Western Electric, called the 754E. This cable deviates somewhat 
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Fig. I-Cross section of a typical shielded balanced pair. 

from the SBP model since its shield instead of being solid is braided from 
fine eu wires coated with Ag. The second cable was constructed by Bell 
Laboratories and is called the FOCAL cable. For this cable, a polyethylene 
belt was extruded over two insulated 19-9age wires (as in the 754E cable) 
and bordered by two polyethylene rods for stability, resulting in sub­
stantial air space. This was then covered by a solid Al shield. The third 
cable was also constructed by Bell Laboratories; it was designed to ac­
centuate the proximity effect by having the wires and shield relatively 
close to each other. This is called the proximity cable. Photographs of 
the cross sections of each cable are shown in Fig. 2. 

The geometric and material parameters used in the SBP model for 
these three cables correspond to certain electrical measurements of the 
cable. Though the parameters are specified, in practice the nominal 
values are neither accurate nor constant enough along the cable to permit 
testing the model. Also, the SBP model, though essentially descriptive 
of the cable, does not account for any unbalance, air spaces in the di­
electric, eccentricity of the wires and shield, axial variations of the wires 
and other nonuniformities along the cable, and other practical matters. 
Accordingly, with the exception of cable length, the input parameters 
are computed (in a way now to be described) as average values from 
electrical measurements. 
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(MAGNIFIED 8x) 

(MAGNIFIED 9x) 

( MAGNIFIED 20x) 

Fig. 2-Photographs of cable cross sections. 

For each cable, the wires were made of eu; and when the temperature 
and purity are known, the conductivity, (J, is determined to within 0.5 
percent. The temperature is assumed to be 73°F, which corresponds to 
a (J of 5.73749 mho/m. The diameter of the wires d is computed from the 
measurement of their DC resistance by the formula, 

£ 4£ ( e )112 RDc= =--ord=2 ---
(J(Area) 7r(Jd 2 7r(JR DC ' 

(1) 
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where f denotes the length of the cable .. The distance 8 separating the 
two wire centers is computed from the measurement of low-frequency 
inductance L by the formula, 

/-La (28) /-La d [7rL ] L = - fn - + - or 8 = - exp - - % , 
7r d 47r 2 /-La 

(2) 

where /-La denotes the free-space permeability (see Ref. 3, page 155). This 
formula assumes that the materials comprising the cable are nonmag­
netic. It also assumes that the wires are straight; so the cable must be 
unreeled to get the proper measurement of L. 

The "effective" dielectric constant ~ of the model is chosen so that the 
measured and calculated values of the phase shift per mile {3 agree at a 
frequency of 10 MHz. In the FOCAL and proximity cables there were air 
spaces in the cable, and the effective dielectric constant for these rep­
resents a kind of average of the dielectric constants for air and poly­
ethylene. The value of ~ is estimated from the formula, 

(3(10 MHz) = w~ + 0 = 337.286 V ~ + 0, (3) 
~o 

in units of radians per mile, where w denotes the excitation frequency 
in radians per second, ~o denotes the free-space permittivity, and 0 is a 
positive number that corrects for proximity effect (e.g., calculation has 
shown this is approximately 4 rad/mi for the 754E cable and 36 rad/mi 
for the proximity cable). Since 0 is positive, an upper bound for ~ is 

eu = [{3(10 MHz)/337.286]2 ~o. 

Experience has shown that, apart from ~, 0 is relatively insensitive to 
changes in the input parameters; hence, it can be estimated as the cal­
culated {3 at 10 MHz (with nominal dimensions and with ~ = ~u) minus 
the measured {3 at 10 MHz. When this estimate of 0 is inserted into eq. 
(3), an estimate of ~ can be obtained that usually gives a calculated {3 at 
10 MHz within 1 percent of measurement. 

The inside diameter of the shield D is chosen so that the calculated 
mutual capacitance matches the measured value (though a variation of 
this is used for the FOCAL cable). This calculation presumes that the 
parameters d, 8, and ~ have already been obtained. The thickness t and 
the conductivity (Js of the shield are selected to match the DC resistance 
of the shield according to the formula, 

f f 
RDC S = ---= -----

, (Js(Area) (Js7rt(D+t) 
(4) 

There is one degree of freedom left in selecting the pair ((Js,t); this is used 
to minimize the deviation between measured and calculated values of 
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Table I - Initial measurements on 754E cable 

RDC RDC RDC 
Length Condo 1 Condo 2 Shield L 50 Hz 

1043 ft 9.009n 8.700Q 1.0044Q 13.072 nf 18.24 nf 18.02 nf 0.2706 mh 

loss per mile (a) over the range of frequencies for which there are mea­
surements. 

By means of this procedure a set of input parameters was chosen for 
each cable. Parameters for which there was latitude in choosing were 
selected by trial and error, and the result is not optimal in any re­
spect. 

In general, it was found that calculations of a agreed with measure­
ments to within 3.3 percent for frequency samples over the range 50 Hz 
to 10 MHz. The best agreement was for the proximity cable, which had 
a deviation within 1.6 percent over the range 5 kHz to 10 MHz. For {3, 
agreement was always within 1 percent. 

In the next section, the detailed results of the experiment are pre­
sented. In the final section, conclusions are drawn and application to 
multi pair cables is discussed. 

II. RESULTS 

In this section, the results of the experimental test are presented. First, 
initial measurements were made on a Wheatstone bridge of mutual ca­
pacitance, capacitance to ground of both wires, DC resistances, and 
low-frequency inductance for the three cables. These, together with the 
length of the samples, are shown in Tables I, IV, and VII for the 754E, 
FOCAL, and proximity cables, respectively. 

Next, measurements of loss a in dB/mi and phase-shift (3 in rad/mi 
were made on the computer-operated transmission measuring set4 

(COTMS) corrected for varying terminal impedance at low frequency5 
for frequencies from 4 kHz to 10 MHz. For lower frequencies, 50 Hz to 
10 kHz, values of a and {3 were deduced from bridge measurements of 
AC resistance, AC inductance, and capacitance. It was found in this 

(J 

d 
S 
t 

D 
t 

Table II - Parameter estimates for 754E cable 

Description 

Cu wire at 73° 
19 gage (35.9 mils) 
117 to 127 mils 
Polyethylene 
290 mils 
Shield has braided wire construction 
about 32 mils thick 

Estimates 

5.73749 X 107 mho/m 
34.84 mils 
116 mils 
2.288 to 
280 mils 
38 mils 
1.292 X 107 mho/m 
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Table III - Calculated vs measured a and {3 for 
754E cable 

Calc. ex Meas. ex Diff. Calc. {3 Meas.{3 Diff. 
(dB/mi) (dB/mi) (%) (rad/mi) (rad/mi) (%) 

50Hz 0.267 0.265 <1 0.0309 0.0305 1 
100 Hz 0.376 0.376 <1 0.0438 0.0437 <1 
500Hz 0.826 0.822 <1 0.0998 0.0992 <1 

1 kHz 1.143 1.135 <1 0.1446 0.1438 <1 
5 kHz 2.209 2.169 1.8 0.387 0.386 <1 

10kHz 2.700 2.682 <1 0.649 0.656 <1 
20kHz 3.047 3.074 <1 1.176 1.185 <1 
50kHz 3.507 3.580 2.0 2.817 2.809 <1 
80kHz 4.013 4.045 <1 4.457 4.437 <1 

100 kHz 4.372 4.383 <1 5.53 5.52 <1 
500 kHz 9.391 9.263 1.4 26.54 26.52 <1 

1 MHz 13.109 13.085 "-'I 52.48 52.45 <1 
5 MHz 28.85, Fp = 0 29.830 258.38 258.06 <1 

29.97, F6I = 1000 tLrad 
10 MHz 40.6,Fp =0 42.796 514.84 514.09 <1 

42.88, F p = 1000 tLrad 

process that the COTMS measurements of a at low frequencies had to 
be increased ("",1 percent for 10 kHz and "",2 percent for 5 kHz) for the 
754E and FOCAL cables, presumably because the low-loss values went 
beyond the sensitivity of the machine, which is lflOO dB. The losses in the 
proximity cable were large enough at all frequencies to be within the 
range of sensitivity for COTMS. 

The parameters of the SBP model for the three cables were calculated 
as indicated in the introduction when feasible. But each cable deviated 
to some extent from the model, so there were some exceptions and extra 
considerations to accommodate the deviations. This is discussed in the 
appendix. The parameters selected for the SBP model are given in Tables 

Table IV - Initial measurements on FOCAL cable 

RDC RDC RDC 
Length Condo 1 Condo 2 Shield L 50Hz 

249.2 ft 2.0086Q 2.0083Q 0.3968Q 2.956nf 4.098nf 4.069nf 0.065mh 

(J 

d 
S 
( 

D 
t 

Table V - Parameter estimates for FOCAL cable 

Description 

Cu wire at 73° 
19 gage (35.9 mils) 
125 mils 
Polyethylene & air spaces 
280 mils 
Solid Al sheet 10-mil thick with overlap 

Estimates 

5.73749 X 107 mho/m 
36.068 mils 
119.27 mils 
2.06 (0 

278 mils 
9.22 mils 
3.54 X 107 mho/m 
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Table VI - Calc. vs measured a and (3 for FOCAL cable 

Calc. 0' Meas.O' Diff. Calc. {3 Meas.{3 Diff. 
(dB/mi) (dB/mi) (%) (rad/mi) (rad/mi) (%) 

50 Hz 0.247 0.251 1.5 0.029 0.029 
100Hz 0.349 0.354 1.5 0.041 0.041 
500 Hz 0.764 0.775 1.5 0.093 0.094 1 

1 kHz 1.054 1.069 1.5 0.134 0.136 1 
5kHz 2.012 2.034 1 0.364 0.370 1 

10kHz 2.491 2.516 <1 0.617 0.628 1 
20 kHz 2.890 2.799 3.3 1.117 1.124 <1 
50 kHz 3.339 3.268 2.1 2.651 2.677 <1 
80 kHz 3.764 3.735 <1 4.192 4.223 <1 

100 kHz 4.069 4.076 <1 5.213 5.223 <1 
500 kHz 8.397 8.229 2.1 25.122 25.071 <1 

1 MHz 11.751 11.421 2.9 49.714 49.752 <1 
5 MHz 25.757,~:: 0 25.884 244.973 245.048 <1 

26.289, p-

500/lrad 
10 MHz 35.260, ~:: 0 37.194 488.238 488.179 <1 

37.320, p-

500/lrad 

II, V, and VIII for the 754E, FOCAL, and proximity cables, respective­
ly. 

Calculations of a and (3 for the model over the range of measured 
frequencies are given in Tables III, VI, and IX for the 754E, FOCAL, and 
proximity cables, respectively. These tables also give the measured values 
and the percent deviation in the comparison of calculated and measured 
values. 

The calculations for the models agreed with measurement for all 
frequencies considered and all cables to within 3.3 percent for a and 
within 1 percent for (3. For the 754E cable, calculation of a agreed with 
measurement to within 2 percent, and for the proximity cable, agreement 

Table VII - Initial measurements on proximity cable 

RDC RDC RDC 
Length Condo 1 Condo 2 Shield L 50 Hz 

634.4 ft 3.273 Q 3.267 Q 4.63 Q 43.396 nf 30.59 nf 28.80 nf 0.0773 mh 

(J 

d 
S 
E 

D 
t 

Table VIII - Parameter estimates for proximity cable 

Description 

Cu wire at 73° 
17 gage (45.3 mils) 
50.3 mils 
Polyethylene with air spaces 
105.6 mils 
4-mil-thick Al 
Shield with overlap 

Estimates 

5.73749 X 107 mho/m 
45.06 mils 
47.74 mils 
2.132Eo 
109.9 mils 
5.3 mils 
3.365 X 107 mho/m 

EXPERIMENTAL TEST 633 



Table IX - Calculated vs measured ex and {3 for proximity cable 

Calc. a Meas. a Diff. Calc. {3 Meas. {3 Diff. 
(dB/mi) (dB/mi) (%) (rad/mi) (rad/mi) (%) 

5 kHz 4.109 4.096 <1 0.671 0.671 <1 
10 kHz 5.284 5.310 <1 1.118 1.114 <1 
20 kHz 7.150 7.122 <1 1.970 1.976 <1 
50kHz 11.998 11.895 <1 4.211 4.229 <1 
80 kHz 15.817 15.670 <1 6.241 6.263 <1 

100 kHz 18.016 18.037 <1 7.538 7.573 <1 
500 kHz 44.219 44.953 1.6 31.338 31.248 <1 

1 MHz 67.295 67.498 <1 59.445 59.231 <1 
5MHz 181.01, Fp = 0 179.42 "",1 271.03 270.957 <1 

181.60, 

10 MHz 
Fp = 500/lrad 
270.02, 267.18 "",1 528.09 528.12 <1 
Fp = 0 
271.34, 
Fp = 500/lrad 

was within 1.6 percent. Agreement between calculation and measure­
ment for the FOCAL cable was the poorest of the three (with a maximum 
deviation of 3.3 percent). This may be attributed to the presence of 
substantial air space in the dielectric region and to the short length of 
the sample (249.2 ft). Since the sensitivity of COTMS is %00 dB, for this 
cable the measurements are uncertain to about (249.2/5280) (1/200) ~ 
0.1 dB/mi, an amount which exceeds the difference of calculation and 
measurement for frequencies below 500 kHz. 

The power factor F p of the dielectric is generally important to the loss 
of a cable when the frequency exceeds 1 MHz. Since an independent 
measurement of F p was not available for this experiment, a is calculated 
for power factors equal to 0 and to some upper bound. This gives an in­
terval of possible values for CY. As shown in Table III, the measured loss 
for the 754E cable at 5 MHz and 10 MHz lies in such an interval when 
o ~ Fp ~ 1000 f.lrad. This range of Fp is within the usual range of values 
estimated from measurements of pairs in a multipair cable.6 The mea­
sured loss for the FOCAL cable at 5 MHz and 10 MHz lies within the 
calculated range when 0 ~ F p ~ 500 f.lrad, as shown in Table VI. The 
calculated loss for the proximity cable at 5 MHz and 10 MHz (assuming 
Fp = 0) exceeds the measurements, so no estimate of Fp is possible for 
this cable. If, however, Fp is assumed to be 500 f.lrad, for example, then 
the error is 1.5 percent at 10 MHz. 

III. SUMMARY AND CONCLUSIONS 

The SBP model has been used to represent three different single-pair 
cables. Though each of these departs from the model to some extent, the 
cables are close enough to SBPs so that the model represents them with 
sufficient accuracy for engineering purposes. The calculations agreed 
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with measurement in all cases and all frequencies considered to within 
3.3 percent, and usually it was closer. Though more controlled tests may 
be devised to test the SBP theory, the tests presented here indicate 
enough agreement between theory and practice that it could be used to 
predict the electrical behavior of a nominally balanced pair in a 
shield. 

By a similar controlled experiment, the theory of the uniform cable1,2 

might be checked for unbalanced pairs in a shield and for other uniform 
cables. Given a test cable, the DC resistances would give the wire diam­
eters of the model, the low-frequency inductances would give the wire 
separations, the capacitance measurements would give the size and 
location of the shield, and the range of phase velocities would give an 
effective dielectric constant. The shield thickness and conductivity could 
be estimated as before. In general, there will be several excitation.modes 
having distinct propagation constants; their measurements could then 
be compared with calculations on the deduced model, as was done for 
the SBP. 

The major application of the theory of the SBP, or more generally, of 
uniform cables is to a pair in a multipair cable. This extension is com­
plicated by these factors: 

(i) Nonuniformities along the cable arise from twisting, stranding, 
cabling, and various perturbations. 

(ii) The shield of a pair effectively consists of the other pairs around 
it; thus, the effective shield is caged, not solid. 

(iii) Small unbalance of 1 to 2 percent is almost always present. 
(iv) The dielectric materials around the wires often are inhomo­

geneous. 

Detailed consideration of points (ii), (iii), and (iv) in the context of 
uniform cables is in progress, but consideration of twisting and stranding 
goes beyond the scope of the uniform cable modEJ. 
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APPENDIX A 

Details of Parameter Selection for the Model 

Each of the three cables deviates from the SBP model to some extent. 
In this appendix, details are provided of the parameter selection process 
used to accommodate these deviations. 

Initial measurements of the 754E cable indicated a resistive unbalance 
of 3 percent. This means the wire diameter d and, hence, the wire sepa­
ration S could not be exactly determined. Instead, a range of possible 
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values for d and S was indicated, and selection was made within these 
ranges to give acceptable agreement between calculated and measured 
values of ex for the frequencies considered. 

The FOCAL and proximity cables have insignificant resistive unbal­
ance; hence, unambiguous values of d and S can be calculated for them 
as indicated in the introduction. Though all the cables have some 
capacitive unbalance (with a maximum of 5 percent for the proximity 
cable), this has no direct effect on the selection of parameters for the 
model. 

A significant departure from the model is the presence of air spaces 
in the dielectric region for the FOCAL and proximity cables. This is in­
dicated by the photographs in Fig. 2 and by the effective dielectric 
constants, 2.06€o for the FOCAL cable and 2.132€o for the proximity cable, 
which are lower than the dielectric constant of polyethylene (2.29€o). The 
air spaces cause no direct ambiguity in selecting parameters for the 
model, as did the resistive unbalance, but they do seem to affect the 
appropriateness of the model itself. For the FOCAL cable in particular, 
a set of parameters for the model could not be found that satisfies all the 
conditions of the introduction and that gives a loss (a) within 5 percent 
of measurement for all frequencies considered. Instead, a compromise 
model is used whose mutual capacitance is 2.8-percent lower than 
measured. 

For the proximity cable, no compromise model is required despite the 
presence of some air space, and the mutual capacitance of the model 
agrees with measurement to within 0.1 percent. The effective dielectric 
computed for the 754E cable indicates an absence of air space, and again 
the mutual capacitance of the model agrees with measurement to within 
0.1 percent. 
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CHEMISTRY 

Assignment of a Ligand in Stellacyanin by a Pulsed Electron Paramagnetic Reso­
nance Method. W. B. Mims and J. Peisach, Biochemistry, 15, No. 17 (1976), pp. 3863-
3869. The electron spin echo decay envelope for the blue copper protein, stellacyanin, 
and for a number of other Cu(II) complexes has been studied. Particular attention was 
given to the form of the "nuclear modulation" patterns, which show the effects of coupling 
between the electron spin and the neighboring nuclei. The envelopes for the hydrated 
cupric complex and for copper(II) glycylglycine were essentially the same and indicative 
of the coupling to protons. The peptide complex contains nitrogen nuclei coupled directly 
to Cu(II), but the coupling constant is so large for these nuclei that a modulation pattern 
ascribable to 14N is not seen. For copper(II) bovine serum albumin, on the other hand, a 
contribution due to the coupling of the remote nitrogen belonging to a histidyl imidazole 
ligand was observed. The modulation pattern for this complex and for stellacyanin closely 
resembled one another, strongly suggesting that an imidazole is ligated to the copper in 
this blue protein. 

Auger Studies of Au Diffusion Through Pt Films: Dependence on Pt Thickness and 
Annealing Ambient. C. C. Chang and G. Quintana, Appl. Phys. Lett., 29, (Nov. 1976), 
pp.453-454. The outdiffusion kinetics of Au through Pt/Au couples with ~2000 A 
to ~10,000 A Pt films, heat treated between 250 and 350°C in 1 atm.'N2 and in vacuum, 
were determined using Auger electron spectroscopy. The Au outdiffusion time, in 1 atm. 
N2 ambient, was approximately proportional to d1.3 for Pt thickness 2000 ~ d ~ 10,000 
A. Au was found to outdiffuse through ~ 10,000 A Pt at a rate fifteen times faster in 1 atm. 
N2 than in vacuum, at 350°C. 

Electrodeposition of Gold. Depolarization Effects Induced by Heavy Metal Ions. 
J. D. E. McIntyre and W. F. Peck, Jr., J. Electrochem. Soc., 123 (December 1976), pp. 
1800-1813. Addition of trace quantities (ppm) of heavy metal ions such as PbOI) or 
Tl(I) to soft gold electroplating baths induces a marked cathode depolarization effect that 
extends the current density range in which bright, uniform, fine-grained deposits can be 
obtained. It is shown that this phenomenon arises from a catalytic electrochemical dis­
placement reaction made possible by the underpotential deposition of depolarizer ada toms 
on gold and specific adsorption of de polarizer ions in the double-layer. 

Photovoltage Studies of Clean and Oxygen Covered Gallium Arsenide. S. C. 
Dahlberg, Surface Sci, 59 (1976), pp. 83-96. The photovoltage of GaAs was measured 
by the retarding potential electron beam technique. The photovoltage light-intensity 
dependence deviates from steady state models. The photovoltage shows additional 
structure near the bandgap and in the below bandgap region; it is lower for uncleaned 
surfaces. Work function shows that oxygen adsorption is second order. 

Photovoltage Studies of n-Type InP (l00). S. C. Dahlberg, Surf. Sci., 60 November 
(1976), pp. 231-238. The photovoltage of InP (100) decreases as the intensity and/or 
duration of the light exposure decreases. The photovoltage spectra has been studied as 
a function of temperature and it shows considerable structure above the bandgap energy. 
Both the photovoltage and work function decrease sharply after Ar bombardment, 
probably due to preferential sputtering of P. 
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Polycrystalline Thin Film InP/CdS Solar Cells. K. J. Bachmann, J. L. Shay, S. Wagner, 
and E. Buehler, Appl. Phys. Lett., 29, No.2 (July 15, 1976), pp. 121-123. Polycrystalline 
films of p-type InP were prepared via chemical vapor deposition on glass, molybdenum, 
and carbon substrates. Cd or Zn were us~d as dORants yielding net a~ceptor concentrati?ns 
N A - N D ~ 2 X 1018 cm-3. Polycrystalhne InP /CdS solar cells fabrIcated by evaporatmg 
CdS onto such InP films on carbon have a solar power conversion efficiency of 3 per­
cent. 

ELECTRICAL AND ELECTRONIC ENGINEERING 

Spin Flip Raman Laser at Wavelengths Up to 16.8 JLm. C. K. N. Patel, T. Y. Chang, 
and V. T. Nguyen, Appl. Phys. Lett., 28, No. 10 (May 15, 1976), pp. 603-605. An InSb 
spin flip raman (SFR) laser is pumped with an optically pumped NH3laser line at 780.515 
cm-1 to obtain tunable first Stokes laser radiation at wavelengths up to 16.8 JLm. We report 
results on the power output, tunability, and preliminary spectroscopy of UF6. 

MATERIALS SCIENCE 

Low-Field Depoling Characteristics of Pb(Zr,Ti)03 Ceramics. J. B. Koeneman, 59, 
No. 9-10 (September-October 1976), pp. 59-61. Low-electric-field depoling mea­
surements were made on Pb(Zr,Ti)03 ceramics. The apparent activation energy for the 
depoling process was calculated to be 33 kcal/mol. The data indicate that the materials 
tested should be very stable when subjected to depoling fields on the order of one-fourth 
of the coercive field. 

Oxidation Induced Stacking Faults in n- and p-Type (100) Silicon. S. P. Murarka 
and G. Quintana, J. Appl. Phys., 48 (January 1977), pp. 46-51. The formation of 
stacking faults during thermal oxidation of silicon has been investigated. The length and 
the density of stacking faults, in both n- and p-type 2-inch-diameter (100) silicon wafers 
obtained from various manufacturers, were determined as a function of time and tem­
perature of oxidation in dry and steam ambients. Two categories of stacking faults were 
established. 

A Simple Titanium and Nickel Sublimation Pump (TNSP). C. A. Haque, 13, No.5 
(September/October 1976), pp. 1088-1090. One filament of a commercially available 
Titanium Sublimation Pump (TSP) was replaced with a nickel filament on a tungsten 
support. This Titanium and Nickel Sublimation Pump (TNSP) besides having the at­
tributes of a TSP, effectively minimizes the hydrogen contamination problem omnipresent 
in most stainless steel ultrahigh vacuum chambers, with nickel acting as a getter for hy­
drogen. 

Sources of Oxidation Induced Stacking Faults in Czochralski Silicon Wafers: A 
One-to-One Correlation With Native Defects. G. A. Rozgonyi, S. Mahajan, M. H. Read, 
and D. Brasen, Appl. Phys. Lett., 29 (November 1, 1976), pp. 531-533. Using optical 
microscopy/etch pit techniques for the delineation of defects in [100] Czochralski silicon 
wafers, we have made a one-to-one correlation between bulk stacking faults in oxidized 
wafers and etch hillocks identified at the same sites before oxidation. Transmission electron 
microscopy of the hillock defects shows them to be clusters of precipitates ranging in size 
from 0.01 JLm to 0.3 JLm. 

MATHEMATICS AND STATISTICS 

On the Set of Distances Determined by the Union of Arithmetic Progressions. F. 
R. K. Chung and R. L. Graham, Ars Combinatoria., 1 (1976), pp. 57-76. Suppose a 
set ofreal numbers A = lal < a2 < ... < atl is a union of n ~ 2 arithmetic progressions, each 
with common difference 1. Let Ll(A) denote lak+ 1 - ak: 1 ~ k < t I. It is shown that I Ll(A) I , 
the number of elements of Ll(A), satisfies lLl(A) I ~ 3n - 3 and that this inequality is best 
possible. A similar result with 3n - 3 rep aced by 3n holds when A lies on a circle. 

Simulation and Extension of a Minimum Mean Squared Error Estimator in Com­
parison With Stein's. H. D. Vi nod, Technometrics 18 (November 1976), pp. 491-
496. We discuss a fixed point solution of the iterative process underlying Farebrother's 
minimum mean squared error (MSE) estimator. A simulation study favors Stein's 
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shrunken least squares estimator and our fixed point solution over ordinary least squares. 
Farebrother's estimator almost never has the minimum MSE. 

MECHANICAL AND CIVIL ENGINEERING 

Optimal Aseismic Design of Building and Equipment. S. C. Liu, M. R. Dougherty, F. 
Neghabat, J. Eng. Mech. Div., EM3, (June 1976), pp. 395-414. A method for earth­
quake-resistant design was developed and applied to the problem of protecting industrial 
equipment in multistory buildings. In contrast with deterministic methods of analysis, 
attention is focused on the random properties of the environment and structural response. 
This approach has the advantage of including earthquake damage cost, protection cost, 
and reliability with conventional design factors. The results disclose cost effective and 
optimal designs. 

PHYSICS 
The A. C. Stark Shift for High Light Intensities. P. F. Liao and J. E. Bjorkholm, Bull. 
Amer. Phys. Soc., 36, No. 26 (June 28,1976), pp. 1543-1545. We report measurements 
of optically induced energy-level shifts produced by nonresonant light in sodium vapor. 
Intensities are sufficiently high such that the shifts depart substantially from the linear 
behavior predicted by second-order perturbation theory. 

Determination of N onradiative Decay Rate in Electron-Hole Drops in Ge at 1.6 OK. 
R. F. Leheny, J. Shah, and M. Voos,* Solid State Commun. 20 (November 1976), pp. 
819-821. We show that microwave photoconductivity measurements of optically ex­
cited carriers in Ge at 1.6°K can be used to determine the importance ofnonradiative re­
combination within electron-hole liquid drops. Our results show that the nonradiative 
lifetime is 80 /J-S from which we calculate a radiative efficiency of 0.5 ± 0.1 for the condensed 
phase. *Groupe de Physique des Solides, De L'Ecole Normale Superieure, Paris, 
France. 

Grain-Boundary Electromigration in Thin Films. I. Low-Temprature Theory. K. 
L. Tai and M. Ohring,* J. Appl. Phys., 48, No.1 (January 1977), pp. 28-35. A macro­
scopic mathematical theory is presented accounting for grain-boundary diffusion and 
electromigration in the presence of a simultaneous flux of atoms into the surrounding bulk 
lattice. The model employs a semi-infinite bicrystal geometry with a constant source at 
the origin, and both integral and numerical solutions to the subsequent non-steady-state 
transport equations are given. A comparison between the present theory and a previous 
treatment based on an extension of the Fisher analysis will be made. Application to recent 
results in thin films will be discussed. *Department of Metallurgy, Stevens Institute 
of Technology. 

Grain-Boundary Electromigration in Thin Films. II. Tracer Measurements in Pure 
Au. K. L. Tai and M. Ohring,* J. Appl. Phys., 48, No.1 (January 1977), pp. 36-45. The 
first direct measurement of the grain-boundary ion drift velocity in thin Au films over 
the temperature range 120-250°C is reported. Central regions on the narrow stripe con­
ductors were selectively embedded with 195Au tracer atoms and the extent of the subse­
quent transport were evaluated by a high-resolution autoradiography technique employing 
the scanning electron microscope. *Department of Metallurgy, Stevens Institute of 
Technology. 

The Nucleation and Growth of an Epitaxial Monolayer of Cd on Ge(lll): A Si­
multaneous Rheed-MB Study. K. J. Matysik, J. Appl. Phys., 47 (October 1976), pp. 
4359-4363. The correlation between structures and mass spectrometric molecular 
beam spectra is presented. The spectra are discussed in terms of the atomistic rate theory 
of nucleation. The results suggest that a convention of nucleation rate theory, that growing 
clusters act as monomer capture centers which increase in capture efficiency with time, 
does not hold at submonolayer coverages. 

A Photometric Ellipsometer for Measuring Flux in a General State of Polarization. 
D. E. Aspnes, Surface Sci. 56 (June 1976), pp. 161-9. The theory and operation of a 
rotating analyzer/compensator ellipsometer capable of measuring all four Stokes pa­
rameters of generally polarized flux is described. Applications presented include an in­
vestigation of the effects of internally and externally stray and scattered light and surface 
roughness on measured values of the dielectric function. 
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Photovoltaic Properties and Junction Formation in CuInSe2. B. Tell and P. M. Bri­
denbaugh, J. Appl. Phys. 47, No.2 (February 1976), pp. 619-620. Studies of diffusion 
and photovoltaic effects in CuInSe2 pn junctions are reported. Junctions were formed by 
annealing Zn, Cd, and Cu plated p-type samples at temperatures from 200-450°C. The 
most efficient junctions are formed by 5-10 minute anneals at 200°C with a calculated 
interdiffusion coefficient"""'5 X 10-10 cm2/s. 

SYSTEMS ENGINEERING AND OPERATIONS RESEARCH 

Sea Plow IV-An Underseas Vehicle for Burying Ocean Cable. G. S. Cobb, Oceans, 
September 1976, PB. 19BI-19B6. A newly developed SG cable system, schedule for 
TAT -6, will have 1 V2 times the channel capacity of all present transatlantic cables com­
bined, meaning significantly higher cost of providing interim service in the event of a 
trawler break. To provide the cable protection required for TAT -6 both in terms of burial 
performance and operating-depth capability, SEA PLOW IV was designed and tested 
over a IS-month period beginning in January, 1974 and was successfully used to bury both 
shore ends of TAT-6 during August and October, 1975. 
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