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’On the Addressing Problem
for Loop Switching

By R. L. GRAHAM and H. O. POLLAK
(Manuscript received March 25, 1971)

The methods used to perform the switching functions of the Bell System
have been developed under the fundamental assumption that the holding
time of the completed call is long compared to the time needed to set up
the call. In considering certain forms of communication with and among
computers the possibility arises that a message, with its destination at
ils head might thread s way through a communication network without
awazting the physical realization of a complete dedicated path before
beginning on its journey. One such scheme has been proposed by J. R. Pierce
and may be called “loop switching.” We imagine subscribers, perhaps
best thought of as computer terminals or other data generating devices,
on one-way loops. These “local” loops are connected by various switching
points to one another as well as to other ‘‘regional”’ loops which are in
turn connected to one another as well as to a “national” loop. If a message
from one loop is destined for a subscriber on another loop it proceeds
around the originating loop to a suitable switching point where 1t may
choose to enter a different loop, this process continuing until the message
reaches its destination. The question naturally comes up, how the message
18 to know which sequence of loops to follow. It would be desirable for the
equipment at each junction to be able to apply a simple test to the destination
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address at the head of the message which would determine which choice
the message should make at that junction.

In this paper we propose a method of addressing the loops which has
several attractive features:

(&) It permits an exiremely simple routing strategy to be used by the
messages 1n reaching their destinations.
(1¢) By using this strategy, a message will always take the shortest
possible path between any two local loops in the same region.
(#7i) The method of addressing applies to any collection of loops, no
matter how complex their interconnections.

The addressing scheme we propose will be applied primarily to local
loops where the mutual interconnections may be quite varied. If a certain
amount of hierarchical structure is introduced into the regional and national
loop structure, as suggested by J. R. Pierce,” it is possible to achieve
addressings which are both compact and quite efficient.

I. INTRODUCTION

The methods used to perform the switching functions of the Bell
System have been developed under the fundamental assumption that the
holding time of the completed call is long compared to the time to set
up the call. It is thus sensible to hold portions of a route while the
attempt is made to establish the connection. In considering certain -
forms of communication with and among computers, as well as the
consideration of many schemes for time division switching, the
possibility arises that a message, with its destination at its head, might
thread its way through a communication network without awaiting the
physical realization of a complete dedicated path before beginning on its
journey. . ’

One such scheme has been proposed by J. R. Pierce,’ and may be
called ‘“loop switching.” We imagine subscribers, perhaps best thought
of as computer terminals or other data generating devices, on one-way
loops. If a meassage is destined for a subscriber on another loop it
proceeds around the originating loop to a suitable switching point where
it may choose to enter a different loop and continue the process until
it reaches its destination. ‘

The question now comes up, how the message is to know which se-
quence of loops to follow. A sufficiently complicated memory in the
originating loop might, of course, look up an appropriate route, and then
attempt to seize a complete path; but this is the old and perhaps in-
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appropriate solution. It would be more convenient and sometimes
preferable if the equipment at each junction could apply some simple
test to the destination address at the head of the message which would
determine which choice the message should make at that junction.

In the nation-wide loop switching system as conceived by Pierce, we
can envisage local loops, regional loops, and a national loop. The simplest
imaginable structure is one in which each local loop has an interchange
only with its regional loop and with no other loop; similarly each regional
loop interchanges with the national loop and otherwise only with its
local loops. How does it work? Suppose that a message originates in local
loop X, and has its destination in local loop Y, where X and ¥ may or
may not be identical. When the message comes to the interchange
between X and X’s regional loop, it exits onto the regional loop if and
only if ¥ # X. It later exits onto the national loop if Y’s region is
different from X’s region; otherwise the message stays on X’s regional
loop until it reaches Y. Therefore what should addresses look like? We
see that if a portion of the loop address represents the regional loop, and
another portion the local loop, routing decisions will be made on the
basis of identity or nonidentity of certain portions of the sending and
the receiving addresses.

The loop configuration just described is perhaps too special to be
practical. For example, it provides for no alternate routing, and for no
special direct connections between two local loops with high mutual
traffic. Pierce has shown how each of these difficulties can, to some
extent, be alleviated. There remain, however, the further problems of
the configuration of local loops belonging to a given region, and of the
configuration of regional loops themselves. It is quite likely that the
local loops attached to a given regional loop have many mutual switching
points among themselves, so that calls within one region are not normally
expected to use the regional loop. How should we address such local
loops so as to make routing easy? Much of the rest of this paper will
be devoted to this problem. We shall, in this and the next two sections,
speak of “loops” generally, but mean a system of local loops as the most
likely realization. We note in passing that a completely general national
configuration of loops on which no hierarchical structure has been
imposed will have the same addressing problem—but probably a much
larger number of loops. We return to the hierarchical situation in Section
Iv.

In some very simple arrangements of loops it is easy to see how
addressing might successfully be accomplished. Consider, for example,
Fig. 1 showing four loops which touch as if they were circles of radius § at
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Fig. 1—Simple arrangement of loops.

the vertices of the unit square. If the address of each loop were just the
two-digit numeral 7j, 7, j = 0 or 1, representing the coordinates of its
center, then routing could be done in the following extremely simple
manner: at each junction, go into the new loop if this decreases the
Hamming distance* between where you are and your destination. If it
doesn’t decrease the Hamming distance, don’t go. Thus, if you wish to go
from loop 10 to loop 11 then the Hamming distance is 1. You will not
take the exit from 10 to 00 if you reach it first, for this increases rather
than decreases the Hamming distance. You will, however, exit into 11
when you reach that junction. To go from 10 to 01 either exit, to 00 or to
11, improves the Hamming distance and either routine is equally good.

A simple potential routing scheme can thus be described as follows.
Each loop has a binary address, n bits long. You make an exit from one
loop to another if and only if it decreases the Hamming distance between
where you are and where you want to go. If several exits do the same job
then each one must lead to an equally short optimal path from sending
loop to receiving loop. Furthermore, the number of loops traversed
should, if possible, be exactly the Hamming distance between sender and
receiver, with each transfer decreasing the distance from the receiver by
exactly 1.

Can such an addressing scheme be devised for every collection of loops
with whatever adjacency structure? A little reflection shows that there
will certainly be difficulties. Let’s think of the collection of loops ab-
stractly as a graph, with each loop a vertex, and two vertices connected
if and only if the two loops have a mutual transfer point. Thus, the
graph of the previous example is as shown on Fig. 2. We have numbered
each vertex with a pair of binary digits so that adjacent vertices differ
in exactly one position, the number of edges required to pass from one
point to another is exactly the Hamming distance between the cor-
responding numberings, and all shortest paths between two points are
achieved by following routes of decreasing Hamming distance to the
destination. Another example (Fig. 3): if we wanted a collection of six

* The Hamming distance between two n-place binary numbers is the number of
places in which they differ.
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ol 1

00 10

Fig. 2—Graph of Fig. 1.

loops arranged eyclically we could use the numbering 000, 100, 101, 111,
011, and 010. We see that we are looking for a closed path on the 3-
dimensional cube with the additional property that two points are
exactly as far apart in Hamming distance as the number of edges to be
traversed between them —otherwise, the routing logic would be ruined.
Thus we can use the realization for a cycle of six loops shown in Fig. 4a.
The realization shown in Fig. 4b, however, would not be a valid solution.
In this latter picture, 100 and 110 have Hamming distance 1 and there-
fore should be directly connected. The path between them, however, has
length 3, the first link out increases rather than decreases Hamming
distance, and therefore would not represent a useful addressing scheme.

We thus see a difficulty caused by points coming too close together on
the cube for the addressing scheme to work, but there are even deeper
difficulties. Suppose we wish to construct an addressing scheme for a
system consisting of three pairwise adjacent loops (see Fig. 5). This ean
never be drawn on a cube of any dimension. For any closed path of
edges on a cube has even length, and 3 is odd. Is the scheme therefore
kaput? :

Not quite. We can still imagine the 3-cycle embedded on a cube in an
appropriate dimension (in this case a square) if we are willing to gen-
eralize what we mean. We shall attach to A the code 00, B the code 10,
and to C both 11 and 01. We shall denote the pair 11 and Ol by the
symbol d1, where d means ‘“don’t care.” Hamming distance between two
n-tuples of 0’s ,1’s, or d’s is computed by crediting 1 for every position at

Fig. 3—Cyclic arrangement of six loops.
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Fig. 4—Realizations for a cycle of six loops: (a) a valid solution; (b) not a valid
solution.

which one n-tuple has a 0 and the other a 1, and O for every other
position. Thus, the Hamming distance between 01d1d0 and 114010 is 2,
with the contributions coming from the first and fourth positions. With
this convention, the Hamming distance between any two of the three
addresses 00, 10, and d1 is certainly 1, and correct routing still consists
exactly of decreasing by 1 the Hamming distance at each junction at
which a transfer is made.

We now have a number of fundamental questions to answer. Can
every collection of loops be numbered by assigning to each loop an address
consisting of a sequence of 0’s, 1’s, and d’s? We require that every
shortest route between two loops can be found automatically by moving
from a loop to an adjacent one if and only if this decreases the Hamming
distance to the final destination by 1. How many bits long would such
an address have to be? Let’s state right away the fundamental theorem
of this paper: Every collection of n loops, with maximum distance s
between any two loops, can indeed be realized by giving each loop an
address of no more than s(n — 1) 0’s, I’s, or d’s. In fact, we know of no
example where more than (n — 1) “bits” are needed, and we shall give -
a construction that has found addresses no more than n — 1 bits long
in every case on which it has been tried. The construction, however, is
not quite an algorithm and we do not have a proof that it can always be
done with as few as n — 1 bits.

WITH ABSTRACT GRAPH

A B

Fig. 5—Three pairwise adjacent loops.
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How is this routing algorithm going to work in practice? Here we have
only the very earliest and simplest suggestions. The basic idea of the
scheme is to obtain the greatest poss1ble simplicity of routing strategy at
the expense of the length of the loop address. Thus, for example, you
could physically realize addresses consisting of 0’s, 1’s, and d’s by
encoding 0 as 00, 1 as 01, and d as either 10 or 11. The logic then says:
If the 2k — 1st digit of both addresses is 0 then compute the Hamming
distance between the 2kth digits. If the 2k — 1st digit of either address
is 1, ignore it. Add up over all k, and see if going into the new loop
decreases Hammlng distance to the destination. This could be very easy
to mechanize; the arbitrary bit following a 1 in an odd position could be
used for parity checks or other purposes.

It is not immediately clear who assigns the loop address to an in-
dividual message. The ‘“‘phone book” may contain a shorter code that is
translated in the first junction you come to, or the sending computer
itself may use the destination’s correct loop address. This problem is
connected with that of system growth. How many numbers do you have
to change if a loop is added to the system? The consequent desire for a
hierarchical loop address structure is to a large extent fulfillable and will
be discussed in Section IV.

Before we proceed with the general theory, let’s see how a particular
and not so simple example works out. Thus, consider the system of
loops in Fig. 6. The distance between pairs of vertices is given by the
following (symmetric) table:

A B C D E F

Alo 2 1 3 1 2
Bl2 0 2 1 1 2
cit 2 o0 2 1 1
D{3 1 2 o0 2 1
El1L 1 1 2 0 2
Fl2 2 1 1 2 0

We shall assign a sequence of five 0’s, 1’s, and d’s to each vertex in such a
way that the Hamming distance between the 5-tuples corresponding to
two vertices is exactly the distance in the table. One solution, as the
reader should verify, is the following:
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WITH ABSTRACT GRAPH

Fig. 6—System of loops.

A—1111d
B—001dd
C—11d0d
D—000d1
E—10dd0
F—010dd

In the sequel, we shall see how such a solution can in fact be found for
every possible system of loops. A really surprising amount of interesting
mathematics seems, at present, to be involved in the problem.

In order to see how a set of satisfactory loop addresses can always be
constructed, let us analyze the previous example in more detail. The first
column of the solutlon is:

A—1

We see that A, C, and E have the value 1 at this coordinate while B, D,
and F have the value 0. Thus, this coordinate will contribute a 1 to the
Hamming distance from any of ACE to any of BDF. We may denote



LOOP SWITCHING 2503

this as ACE X BDF. Therefore, the first column makes the following
contribution to the overall distance matrix.

A B ¢ D E F

Ao 1 0 1 o0 1
Bt 0 1 0 1 0
cio 1 o0 1 0 1
D1 0 1 0 1 O
Ejo 1 0 1 o0 1
Flt 0o 1 0 1 0

The second column may be written as ACF X BDE and contributes the
following to the distance matrix.

A B C D E F
Alo 1 0 1 1 O
B/t o 1 0 o 1
clo 1 o 1 1 o
D1 o 1 o0 0 1
E|1 0o 1 0 o0 1
Flo 1 0o 1 1 o0

The first two columns (i.e., coordinates) then contribute the sum of the
previous matrices to the distance matrix.

4 B C¢C D E F

Alo 2 o 2 1 1
Bl2 0 2 o0 1 1
clo 2 o 2 1 1
pl2 o 2 o 1 1
Elt 1 1 1 o 2
Flt 1 1 1 2 o
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The third column is:

It will contribute 1 between 4 or B and D or F. Since C and E have the
third coordinate value d, it cannot contribute to the Hamming distance
from C or E to any other point. We can write AB X DF and obtain the
following contribution to the distance matrix:

& g9 QO = &

F

4 B ¢ D E F
0 0 0 1 0 1
0 0 0 1 0 1
0 0 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
1 1 0 0 0 0

The first three columns (coordinates) thus contribute the following to the

distance matrix:

q o Q % &~

F

The last two columns are A X-C and

A B C€C D E F
0 2 0 3 1 2
2 0 2 1 1 2
0 2 0 2 1 1
3 1 2 0 1 1
1 ’ 1 1 1 0 2
2 2 1 1 2 0
D X E respectively. If the cor-
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responding 1’s are added to the distance matrix, we obtain the matrix of
our example. We see, therefore, that we can think of the distance matrix
for our example as generated by the sum of the products ACE X BDF,
ACF X BDE, AB X DF, A X C, D X E. Notice that in each product we
assign a 0 to each element of one multiplier, a 1 to each element of the
other, and a d to any possible multiplier which does not occur. Which set
you make 0 and which set you make 1 does not matter. If we carry this
out we obtain the coordinates for A through F given previously.

The same mathematics works in general. Take the system of loops for
which we wish to find an addressing scheme, and find the abstract graph
in which each loop represents a vertex and two vertices are connected if
and only if the loops touch. Now write down the (symmetric) distance
matrix for this graph. If the vertices of the graph are 4,, 4,, --- , 4,
and the Hamming distance between A; and A; is d;;, then we may take
d;; copies of 4; X A; and then sum over all 7 and j. The contribution to
the address of each A, will be d,; coordinates 1 to A;, 0 to 4;, and d to all
other vertices. Therefore, the total contribution to the distance matrix
will be d;; in the (%, j) position, and 0 everywhere else. Thus, the re-
sulting complete set of coordinates for the 4, will consist of 0's, 1’s,
and d’s calculated from each necessary copy of each 4; X A; and will
produce the desired distance matrix.

This proves that the addressing scheme is always possible, but we have
used a ridiculously large number of coordinates, perhaps

snln — 1)
2

where s is the largest point-to-point distance in the distance matrix. We
can save a factor n/2 if we take

A1 X(A27A37 )An)
+ 4, X (A": ) Aiz y T Aih) + 4, X (Aix y TN Aa’n) + -
where 4., , -+ A, are all those vertices for which d, ;,, = 2, 4,,, - --

A;,, are all those vertices for which d, ;, = 3, etc. We then repeat
for4, X (A;, --- A,) --- ,andsoonuptod,_, ,copiesof 4,_; X 4, .
This time we have at most s(n — 1) products, and therefore have
found a set of at most s(n — 1) coordinates for the A; such that loop

addressing will work in the desired way. We have proved:

Theorem 1: Given any system of n loops so that the maximum distance
between any two loops is s, a system of addresses such that every minimal
path between loops is oblained by switching to an adjacent loop if and only if
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the Hammang distance to the destination is decreased by I can always be
found. The length of each address can be taken to be no more than s(n — 1).

Let us remark right away that we believe the right answer to be
(n — 1) rather than s(n — 1). We have no proof and we have no counter-
examples. We will, however, prove the following theorems in the sequel.

Theorem 2: If the abstract graph of the loop system is the complete graph
on n vertices, then addresses of length (n — 1) are best possible.

Theorem 3: If the abstract graph of the loop system is a tree on n vertices,
addresses of length (n — 1) are best possible.

Theorem 4: If the abstract graph of the loop system is a cycle of length n,
then addresses of length n/2 are best possible if n is even, and addresses
of length (n — 1) are best possible if n is odd.

II. MATHEMATICAL DEVELOPMENT

Let us summarize what we have proven so far. Let (d;;) be the distance
matrix of the abstract graph ¢ with vertices A,. Let

N(G)

Z (Aict.x Aia,u.,) X (Aa'a,l Aia.'n) (1)

a=1

represent the graph @ in the sense that A; and 4; appear on opposite
sides of products exactly d;; times. The number of coordinates which we
must assign to each vertex of @ is the minimum of N(G) over all de-
compositions that satisfy the above conditions.
The problem is equivalent to a problem in quadratic forms. Write
Z d,','x,'fl','
1Zigi=n

N
= Z @is + o F 2 L@, o L) ©)

a=1
Since d;; = 0, no single z, can appear in both factors of any single
product. The equivalence is immediate since either decomposition will
immediately yield the other. Our problem then is to find the minimum
number N for any given quadratic form whose coefficients d,; are the

distance matrix of a graph. We shall prove the following lemma due to
H. S. Witsenhausen.

Lemma 1: Let n,, n_ be respectively the number of strictly positive and
strictly megative eignevalues of the distance matriz (d;;). Then

N = max (n,,n_).
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Proof: Let Q(z,, - , ,) denote the quadratic form D i.;z;cn di;z:2;.
As we have seen, the existence of a length k addressing of (is equivalent
to the existence of a decomposition of @ into the sum of k¥ products of the
form (z,, + -+ + z,.)(x;, + -+ + z;,). But we see that

k

Q = Z @i, + - + xiu.r(u))(xiu,l + -+ xiu.s(u))

u=1
1< 2
Z Zl {(xiu,; + et + xiu.r(u) + xiu.l + tee + xiu,a(u))
" 2
- (xiu,l + e + xl‘u,r(u) - a’iu,x - = xiu,s(u)) }
so that we have represented @ as a sum of k¥ squares minus another sum of
k squares. However, it is an easy consequence of the theory of quadratic

forms (cf. Ref. 2) that for any representation of @ as a sum of p squares
minus a sum of ¢ squares, we must have

p = index @ = n, ,
q = rank @ — index Q = n_ .

Therefore, & Z max (n., n-) and the lemma is proved. For most simple
examples equality seems to hold in the above lemma. However, most
unfortunately, in general N 5 max (n., n_). For the graph given in
Fig. 7, we have n, = 1, n_ = 5, but a computer search of possible

decompositions has shown N = 6.

Lemma 1 is strong enough to settle the best N in many cases. In
preparation let us prove Lemma 2, due to E. N. Gilbert.

Lemma 2: If the n X n distance mairiz (d;;) s cyclic (meaning d;; =
a(j — 7) mod n), then the eigenvalues of (d;;) are the values of

n—1
PE) = 2 a7
0

at each nth root of unity.

Fig. 7—Graph for Lemma 1.
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Proof of Lemma 2: Let the cyclic matrix M be

Qo A1 Gu
M = An—y o "t Gpz|
<51 Q2 )

If we try an eigenvector of the form

1
2
. b
zn.—l
then
1 G+ az+ 0 F @i
I D S Qoo™
i a + az 4 oo F a !
If 2" = 1, then the latter matrix equals
1
@+ az+ - + and )| °
n—1
Thus the values of o 4 @,z + -+ + + a,_,2" " if 2" = 1 are eigenvalues of

the matrix M. Since they are » in number, and since 3 has only =
eigenvalues, they are all the eigenvalues of M.

Theorems 2, 3, and 4 may now be proved by using these lemmas. Let
us prove a statement equivalent to:

Theorem 2: If G is the complete graph* on n vertices, then N(G) = n — 1.

Proof: For this graph, d;; = 1, 1 £ ¢ < j £ n. The corresponding
quadratic form is

n—1
Z Xy

15i<jsn

* i.e., any two vertices of G are joined by an edge.
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which is equal to
n—1

Z (@i + o ).

=1
Hence N(G) £ n — 1. To obtain an inequality in the opposite direction,
we examine the eigenvalues of the (d;;) matrix. By Lemma 2, they are
the values of

PR =z+2+ - +27
when 2°=1. But P(z)=[2(z"""'—1)/(2—1)], so that if z"=1 and 21,

Pl = —-1.1fz=1,P() = (n — 1). Hencen, = 1,n_ = (n — 1), and,
by Lemma 1, N(G) = n — 1. Hence N(G) = n — 1.

Theorem 3: If the graph G is a tree® with n vertices, then N(G) = n — 1.

Proof: We first examine the distance matrix D, for a tree with n vertices.
Congsider a terminal vertex v;, i.e., a vertex which is distance 1 from
just one other vertex, say v;. By a suitable relabeling we can assume 7 = n
and j = n — 1.V Thus,d,, =1+ d,,.forl =k =< n — 1. Hence,
the matrix D, has the form

F 0 d12 e dln—l 1 + dln—l—
dlz 0 e dZn—l 1 + d2n—1
O
dint e 0 1
L1 + din T 1 0 J

We wish to evaluate the determinant det (D,) of D, . Certainly we
can subtract column n — 1 from column n and row n» — 1 from row =
of D, without changing det (D,). This leaves us with a matrix D,
with the form

0 d]n_l 1

1

D! = :
dypey -0 e 1
1 1 —2|

*i.e., G is connected and has no cycles.

t We have chosen j = n — 1 to simplify the exposition of the first part of the
proof. In fact, any j, 1 £ 7 < n — 1, is acceptable. This generality is required later
in the proof.
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But, we now imagine removing the vertex v, from G, forming a tree
@,-, with n — 1 vertices. The interpoint distances in @, are given
exactly by the upper-left (n — 1)-by-(n — 1) submatrix of D/ . As
before, we ean suitably relabel the vertices of .., so that v,_; is a
terminal vertex adjacent only to v,-. . The corresponding rearranged
matrix D!’ now has the form

0 dy o dis 14 di, 1
dy» 0 - daez 14 dyues 1

peo| 1 R
dln—Z e 0 . 1
1+ dines 1 0 1

L1 e 1 1 =1

By subtracting column n — 2 from column » — 1 and row n — 2 from
row n — 1 we obtain

[0 de v de 11
diz 0 ot ds 11
pr—| o S
dins dou - 01 1
1 1 - 1 =2 0
L1 1 - 1 0 -2

It is not difficult to see that this process can be continued until we
reach the matrix

o 1 1 1 1 1]
1 -2 0 0 0
1 0 -2 0 0 0
Df={1 0 0 —2 0 0
1 0 0 0 --- —2 0
1 0 0 0 --- 0 —2

The first (surprising) conclusion we draw is that det (D,) depends
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only on the number of vertices n and not on the structure of the tree G.
By expanding det (D%) along the last column it is easy to get the
recurrence

= (_1)n—12n—2 - 2D,,,-1 y D1 = O, D2 = —'1
from which it follows that
D, = (—1""n — 12"% n =1

We next note that if we relabel the vertices of G, according to the
relabeling used to get the matrix D%, in the corresponding distance
matrix D, (which is a permutation of the original distance matrix D,)
the upper left-hand k-by-k submatrix D, of D, is just the distance
matrix for some k vertex subtree of G. Hence,

det (D) = (—1* 'k — 1)2*7%, k= 1.
Finally, the sequence of determinants
1, det (D,), det (D), --- , det (D,) ®3)
is just
1,0, —1,4, —12,32, --- , (—1)"'(n — 1)2" %,

Hence, the number of permanences of sign of this sequence (where 0
is fixed as either positive or negative) is just one! By a theorem in
matrix theory (cf. Ref. 2), the number of permanences in sign of the
sequence (3) is exactly the number of positive eigenvalues of D, which
we have seen is just one. Since D, . 18 nonsingular for n = 1, then D,
has no zero eigenvalues and hence, D, must have n — 1 negative eigen-
values. Therefore D, also has n — 1 negative eigenvalues and by
Lemma 1, N(G) 2 n — 1. | ,

The construction which gives N(G) = n — 1 has an easy recursive
definition: Each time we choose the next vertex v; in the tree to assign an
address to,* make sure that it is adjacent to a vertex »; which is already
addressed, and let A (v;) — A(v;) 1 and A (v;) — A (vy) O for the previously
addressed vertices (i.e., 1 and 0 are adjoined to the previous addresses).
Thus, after all vertices have been addressed, all addresses will have
length n — 1 and, in fact, no d’s are used. Therefore, N(G) = n — 1
and the theorem is proved.

Theorem 4: If G is a cycle on n vertices, then N(G) = n/2 if n is even and
(n — 1) if n s odd.

* Where we assign 0 to the first vertex and 1 to the second vertex.
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Proof: If n = 2m, then the vertices 4,, - -+ A.,, can be coordinatized as
follows:
A, =1 ---1,0---0) if 1=s=m+1,
—
s—1 m—s+1
and
A, =0---0,1:---1) if m+2=s=2m.
vV
s=—m—1 2m—s+1

Clearly d;; = min (¢ — j|, 2m — |[¢ — §]) is the number of places in which
A, and A; differ, and is the correet distance on a cycle. Hence N (G) = m.
On the other hand, d, .., = m, and hence A, and 4,,,, must differ in
exactly m coordinates. Therefore there must be at least m coordinates,
and hence N(G@) = m. Thus N(G) = m.
If n = 2m + 1, consider the following addresses:
2m
—
m m
—t— —A
A4, —000---00---000
4, —d00---00---001

A, —dd0---00---011

4, —ddd---dl---111
A,—1dd---dl---110
4, ..,—dld---dl---100
A,3—ddl---dl---000
4,, —ddd---10---000

We see that:

@ H0SiSjSmdy;=j—3

@) ifm<i=zj=2mdy; =37 — 1

(ti2) f 0 £ 7 < mand j = m -+ s where s > 0, then consider sepa-
rately ¢ > s and ¢ £ s. If 7 > s then the first m coordinates

contribute 0 and the second m contribute j — 7. If ¢ < s the

<
=
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first m coordinates contribute 1 and the second m contribute
7 + 2m — j, so that together they give 2m + 1 — j -+ 7 which
is the correct cyclic distance.

We thus know that N(G) < 2m
To prove N(G) = 2m, we use Lemmas 1 and 2.

P =z+2"+ - +m" +m" + (m — 1™ .. £ 257,

and we consider z such that 2*™*' = 1.

If 2, = exp (2wik/2m + 1), then

_ . 2jrk _
P(zk)—ZZ:lycos2m+1, E=0,1,2, , 2m.

P(1) > 0; we shall prove P(z,) < 0 for all other k. We find that if we
define

24
0@ = 3 sin g,

i=1

then
08 —2% — — cos mx
W =L 2mt 1 T
g —2 in T
8 2m + 1
Therefore
1 -+ sin 7z sin T + 1 COS TL COS LA
, T 2m+ 1 TP om 1 T oam 1 ™ o1
g'(@) =35 =
gin? —&__
2m + 1

is /(2m + 1) times the desired seriesif zis 1,2, - - - 2m. But ¢’(x) < 0 at
all of these points. Hence n, = 1,n_ = 2m, and N(G) = 2m by Lemma 1.
The theorem is proved.

III. ADDRESSES OF MINIMUM LENGTH

We describe an algorithm which is guaranteed to produce a valid
addressing for any graph (. This algorithm has always succeeded in
finding an addressing of length < n — 1 for every graph G on n vertices
to which it has been applied. However, no proof that this will always
happen is currently known.

The algorithm proceeds as follows:
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(?) Number the n vertices of G with integers {1, 2, - -+ , n} so that for
k > 1, the vertex numbered k is adjacent to some vertex with a smaller
number. Since G is connected, this is always possible. Let v(k) denote the
vertex to which &k has been assigned.

(#7) Assign the (partial) addresses of 0 to v(1) and 1 to »(2).

(777) In general, suppose we have assigned (partial) addresses to
v(1), v(2), -+ -, v(k), say, A(¢) has been assigned to v(z), so that d;; =
dy(A@), A(H)), 1 < ¢ < j = k, where dy denotes the Hamming distance
and d,; denotes the distance between v(z) and v(j) in ¢. We next search
for an address 4 (k 4 1) (of the same length as the 4 (z)) with the property
that max;cic, (di 1 — dg(4@), Ak + 1))) = my,, is as small as
possible under the constraint

ll?mk (dies1 — du(AQ), Ak + 1)) 2 0. *)
Of course, we can always find some address which satisfies (*), namely
the all d’s address. Typically we can choose A(k +- 1) so that m;,; = 1.
In fact, it is usually possible to do this by choosing A(k + 1) to be a
slightly perturbed copy of some A (I) where v(l) is adjacent to v(k + 1).
This is intuitively reasonable since in this case |di i1 — di,i| = 1.

After A(k + 1) has been chosen, we then adjoin m,., symbols to each
of the partial addresses A(z), 1 = ¢ < k + 1, as follows. To A(k + 1) we
adjoin m;., 1’s. To A (%) we adjoin M1 — (d;s zer — du(A (@), Ak + 1))
d’s and d; .1 — dg(A@®), Ak + 1)) 0’s. It is easy to check that for the
new augmented addresses A’(s), 1 < 7 < k + 1, we have

di; = du(A'(@), 4'(9)), 1 2¢<j=k+ 1L

We continue in this manner until the addressing is completed. By
construction, the terminal addresses will form a valid addressing for G of
length 1 -+ m; + -+ + m,.

As an example, we construct an addressing for the graph in Section I
by this process. In Fig. 8 we show this graph with a particular “adjacent-
numbering”’ chosen and also the distance matrix for the graph.

We start with

vertex address
1—0
2—1

Adjoining vertex 3, we see that any partial address of length one will
give m; = 1. We choose 0.
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. 1 2 3 4 5 6
i [e] 1 i 2 3 2
2 1 [o] 1 2 2 1
2 3
3 1 ] [e] 1 2 2
4 2 2 1 [o] i 2
6 4
5 3 2 2 { [e] 1
6 ]2 1 2|2 i [o)
5
D = (dy)

Fig. 8—Addressing example.

vertex address
1—0
2—1
3—0
We next adjoin m; = 1 1’s to A(3) and augment A(1) and A(2) ac-
cordingly.
vertex address
1—00
2—1d
3—01
Now adjoin vertex 4, choose partial address 01, calculate that m, = 1,
and augment the partial addresses accordingly.

verter address

1—000
2—1d0
3—010
4—011
Continue this for two more steps. Each time m; = 1.
vertex address vertex address
1—0000 1—0000d
2—1d0d 2—1d0dd
3—0100 3—0100d
4—0110 4—01100
5—0111 5—0111d

6—1d1d1
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The last array gives a length 5 addressing for G. Of course, different
partial addresses or a different initial vertex numbering will result in
different addressings for G.

As we have previously stated, we have no general proof that
N(G) £n — 11in all cases although a number of partial results in that
direetion have been given as well as a heuristic construction.

IV. ADDRESSING IN RESTRICTED LOOP SYSTEMS

The addressing scheme we have been describing has the very great
power of being able to handle an arbitrary configuration of loops, and to
provide alternate routing in an optimal way without any supervisory
memory. The price we have paid for this generality is in the length of the
address—typically n — 1 “bits” for n loops in the simplest encoding—
and in possible complications under system growth. It is clear that if a
new loop is added which greatly s]?ortens the distance between many
pairs of loops, then many addresses may change a good deal. There
would be various ways of handling this, but it is obviously a problem.
It arises essentially because the numbering in its full generality is not
hierarchical.

Typical Bell System loop configurations, as we noted in the intro-
duction, will not be arbitrary collections of loops, but will have a
hierarchical structure.

By correspondingly restricting the allowable adjacency graphs G, it is
possible to modify the routing algorithm and effectively take advantage
of a natural “product’’ construction, as pointed out by J. R. Pierce.' In
this system, as we saw, loops are partitioned into three classes—national,
regional, and local. The address portion of the message is subdivided
into three corresponding portions. The routing algorithm now consists of
three steps: (2) First apply the previous Hamming distance algorithm
to the “national” portions of the sending and the destination addresses;
(#7) When the distance in 7 becomes zero, then apply the Hamming
distance algorithm to the ‘“regional” portions of the addresses; (i)
Finally, when the distance in ¢ is zero, apply the Hamming distance
algorithm to the “local’” portions of the address.

This scheme combines the efficiency of the Hamming distance al-
gorithm with the savings in address lengths resulting from the hierar-
chical structure. As an example, the network in Fig. 9 has 44 local
vertices. For a direct Hamming algorithm addressing we should expect
addresses to have length of around 59. By distinguishing national,
regional, and local loops (capital letters, lower case letters, and integers
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Fig. 9—Network example.

respectively), with a small additional computed cost in routing (several
extra conditional transfers) we can have addresses of length < 11.
For example, let N, B, L denote national, regional, local, respectively.

One possible addressing begins:
N R L

A—(00, 000 -—)
B—(01, 000, ---)
C—(10, 000, ---)
D—(11, 000, ---)
a—(00, 001, 000)
b—(00, 010, 000)
¢—(00, 140, 000)
d—(01, 001, 000)
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1—(01, 001, 001)
2—(01, 001, 010)
3—(01, 001, 1d0)

44—(11, 000, 001)

Moreover, to add additional local stations to a regional station it is a
very simple matter to modify just the neighboring local addresses to
obtain a correct addressing for the augmented network. -

The restriction on local loops in the above addressing is that each one
must interchange directly with one and only one regional loop. If a local
loop meets no regional loop directly, but only other local loops, then the
addressing must make special provision for routing calls to other regions
properly. If a local loop meets more than one regional loop—really a
violation of the hierarchical concept—then routing becomes more
difficult, and must assure that a call to a different region exits the local
loop properly. As J. R. Pierce has pointed out,' a special trunk loop
connecting a local loop in one region to a local loop in another (i.e., a
preferred alternate route in a special case to the national loop) is no
problem. The exit from the local loop is just before the regional inter-
change, and the entrance to the local loop just after. Exit is made only if
the total loop address matches exactly. Alternate routes more generally
are perhaps most easily provided by duplicating portions of regional or
natural loops.

V. SOME VARIANTS OF THE ADDRESSING PROBLEM

The purpose of this section is to record very briefly some other
alternatives that have been considered. .

(7) We have required that in every alternate route between the loops,
Hamming distance decrease by exactly 1 at each transfer. One could
consider the "alternate problem in which any exit which decreases
Hamming distance is valid—even if it decreases it by more than 1. Under
special conditions, this can lead to shorter addresses, but we do not
have a solution for this alternate problem.

(¢7) Since the introduction of d’s causes some complication of the
address codes, it is interesting to consider the possibility of getting rid of
them. They arose originally because of the need for odd cycles, as in the
case of a 3-cycle. One way out of this example would be to double all the
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distances. If these vertices were located at 000, 110, and 101 respectively,
the Hamming distance between any pair is two, and correct routing
would be possible without any d’s in the addresses.

Unfortunately, this technique of doubling all the distances to get rid
of d’s does not generalize. Consider the graph in Fig. 10a. We double all

C D C D E

(a) (b)

A B A B
Fig. 10—Graphs to illustrate one variant of the addressing problem.

distances, so that AB = AC = AD = BC = BD = 2,CD = 4, Then
A =00---,B =11 ---, where the coordinates are identical from the
third onward. Now C must differ from each of A and B by 2. It therefore
must differ in one of the first two columns, and in one other, say the
third. Thus, we may assume 4 =000 --- ,B=110---,C =101 ---,
where the coordinates are identical from the fourth onward. D must also
differ in exactly two places from A and B and in four places from C.
Hence A = 0000 ---% B = 1100 -, C = 1010 --- , D = 0101 -- - .

So far so good. If we now require yet another point E (Iig. 10b) such
that KA = EB = 2, EC = ED = 4, we have no possible coordinates for
E left. E’s address must begin with 01 or 10 in order to differ from A4
and B by equal amounts, say with 10. To differ from C and D by equal
amounts the first four coordinates must be 1001. But it now differs
from A and B by 2 and from C and D by 2; no additional coordinates can
make EC = ED = 4 without destroying EA = EB = 2. Thus-doubling
distances will not get rid of d’s.

Similar arguments show that even if we are allowed to multlply all
distances by a fixed number m > 2, we still cannot get along without d’s.
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Heavy Traffic Characteristics of
a Circular Data Network
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Traffic behavior in the Pierce loop for data transmission is studied
under assumptions of heavy loading. A deterministic mathematical model
for describing traffic flows is developed and analyzed. The mathematical
problem 1s of a linear complementarity type which has not been dealt
with tn the literature of mathematical programming. An effective procedure,
the load-and-shift algorithm, for determining traffic flows 7s proposed.
The procedure yields all feasible solutions for traffic flows and reveals
the possibility of stations grouping into dominating classes and preventing
other stations from using the system. This property, which can be eliminated
by exercising appropriate control, also may affect the stochastic behavior
of the system when heavy traffic conditions do not prevail and therefore
deserves careful investigation. The paper includes two numerical examples
tllustrating use of the load-and-shift algorithm and numerical results
from a stmulation showing some of the effects of dominating classes when
heavy traffic conditions do not prevail.

I. INTRODUCTION

The concept of a loop network for data transmission has been proposed
recently by J. R. Pierce.! In such a network the stations are connected
to a closed loop main line on which one-way traffic is allowed. A message
to be delivered from one station to another is arranged, at the sending
station, into standard packets each carrying the address of the receiving
station. These packets are then delivered onto the main line, one at a
time, where they flow around in the allowed traffic direction. The address
of each packet is checked at each station on the way until it reaches
the receiving station where it is removed from the main line. Traffic
on the main line cannot be delayed; therefore, a station can deliver
a packet onto the main circular line only when permitted by the existence
of a gap in traffic or when receiving a packet from the main line. Principal

2521
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features of the system may be explained with the aid of the four-
station network shown schematically in Fig. 1.

The four-armed structure revolves around the central axis and stops
briefly every time the four packet-carrying compartments at the ends
of the arms are aligned with the four stations. During such a stop
each station is able to check the content of the aligned compartment.
If the compartment is empty, the station can load it with a packet.
If there is a packet in the compartment, it will not be removed unless
it is addressed to the said station, in which case the station is permitted
to load the compartment again after unloading it. A Pierce loop can
be represented by the mechanical analog structure shown in Fig. 1;
however, the number of revolving arms in the structure is not neces-
sarily equal to the number of stations in the loop. Rather, the number
of arms is determined by the ‘loop time’’ of the system (the time needed
for a bit to complete one round on the loop). Significance of the loop
time is discussed in more detail in Section V.

In the Pierce loop it is currently assumed that no outside control
is applied and each station strives to send its messages at the earliest.
Therefore, a station will never miss the opportunity to load a compart-
ment unless there are no messages waiting for delivery at the station.

This paper presents a study of the flow characteristics of such a
system in heavy traffic, i.e., when the system is not able to deliver all
messages, and infinite queues build up at some stations. In Section IT
the notion of “stable solutions” for the traffic flows is introduced and

STATION
3

L]

—
STATION | KS [

4 1 \y L
[ ]

STATION
1

STATION
2

Fig. 1—A schematic description of a four-station Pierce loop.
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formulated mathematically. The case of a totally saturated system is
analyzed in Section III where the basis is laid for the mathematical
development of the load-and-shift algorithm given in Section IV. A
detailed description of a Pierce loop for data transmission is given in
Section V where the alternating priorities effect due to dominating
classes of stations is studied by simulation. This section also discusses
the important aspect of the order of stations in the loop. Readers not
interested in the mathematical elaborations may skip Section IV.

II. MATHEMATICAL FORMULATION

We assume that the flow direction on the main circular line is counter-
clockwise. There are n stations, connected to the main line, numbered
from 1 to » in counterclockwise increasing order. The segment of main
line between the ¢th and the (¢ 4+ 1)th station, ¢ = 1,2, -+ , n — 1,
is called the ¢th branch. Similarly, the nth branch is the segment be-
tween station n and station 1. Let p,; be the proportion of flow (packets)
emerging from station 7 and destined for station j.

> = L. W

The n X n square matrix P = {p,;} possesses all the properties of a
stochastic matrix. Note, however, that the elements of P are not
necessarily probabilities.

The demand at station ¢ is given by X\; which is the average amount
of flow (packets per time unit) generated at the station. The capacity
of each branch equals 1, that is, each branch is capable of carrying
a maximum flow of one unit. In the schematic description given in
Fig. 1 assume that one full revolution takes four time units (in general
it will take the number of time units equal to the number of arms)
The capacity of each branch will then be one packet per time unit.

The average flow emerging from station ¢ will be denoted by z;
and the average flow in branch 7 by p; . Clearly

0=z, =\, 1:=1,2,"',’/L (2)
and
0<p <1, i=12--,n 3)

Let a;; be the proportion of flow emerging from station j and flowing
through branch z, then
@y = 2 Pir, @

keSij
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where

NG

1.

&=$+m+zm4> if
(2+171+27yn;1;2y:.7) if .7

Note that a;-1;—a.;=p;: = 0for all j # ¢ where ¢—1 is defined to equal
nwhent = 1, Forj = 7 we have a,; = 1 and a,_; = p;; = 1. In most
reasonable applications p,; = 0.

The average flow in branch 7 may now be expressed as a linear func-
tionof X = (2,, 2., + -+, ).

N Vv

P = Z a,-,w,» é 1. (6)
. i=1

Every X which is a feasible solution for the average flows must satisfy
relations (2) and (6). The set of all feasible solutions is therefore con-
tained in a convex polyhedral set. A central control could select a
particular solution from this set to suit a given objective.

In the circular network suggested by Pierce, however, there is no
central control. Rather each station is striving to maximize its own
flow onto the main line. FFor this case we define a stable solution as
a solution from which the system will not depart without outside
intervention. Suppose then that X* is a stable solution. Clearly X*
must satisfy relations (2) and (6) and the additional condition that if
pi = 2., a;x% < 1then % = X\, . To show that this is a necessary
condition assume that p; < 1 and z% < \; . However, station 7 strives
to maximize its flow and can increase it as long as % < \; and p; < 1.
Therefore, it is not possible that p; < 1 and z* < \; . This additional
condition is not generally sufficient for assuring that z* is a stable
solution.

Insufficiency is best demonstrated by a simple numerical example.
Suppose n = 4, \; = Ay = A3 = Ay = 2 and

0 0

1 0
P = 1 0 0 0
0 0 0 1
0 0 1 0
It is easy to verify that X° = (0, 0, 1, 1) and X* = (1, 1, 0, 0) both
satisfy relations (2), (6), and the additional necessary condition as
does X = aX’ + (1 — &)X  for 0 £ « < 1. For simplicity we assume
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that the flows generated at the stations are deterministic in nature
and each station generates exactly two packets each time unit.

Suppose now that the system (see Fig. 1) has one rotating arm only.
In such a case there are only two stable solutions, namely X°, (« = 1)
and X*, (e = 0). If the system has two rotating arms, an additional
stable solution, & = %, is added. If the system has k arms, there exist
k 4+ 1 stable solutions, « = m/k, m = 0, 1, --- | k. The system shall
settle for the stable solution @ = m/k if at time zero m compartments
contain packets from stations 3 and 4 and k¥ — m compartments contain
packets from stations 1 and 2. The necessary condition for stability
is also a sufficient condition if the flows generated by the stations
are continuous (as in the case of nonmixable fluids or small particles
such as vehicles and a loop consisting of a pipe or a road). In such a
case the set of feasible solutions is identical to the convex polyhedral
set given by relations (2) and (6).

We wish to find all solutions which satisfy relations (2), (6), and
the necessary stability condition (these will be all the stable solutions
in the case of a system with continuous flows). Our problem can be
redefined as one of finding all feasible solutions to the following set of
equations:

T+ U = N,

Zlaiixi_}—zi:l: 7":1:2)"')"' (7)

1%
=
g
(%
k=
sl\)
v
=

ugz; = 0, x;

This form resembles a linear complementarity problem,” where %, and
z; are slack variables. A feasible solution to the set of equations (7)
is a basie feasible solution to the set of equations (2) and (6) since at
least n of the variables must equal zero.

1II. COMPLETE SATURATION

For sufficiently large values of \; (forexample\; = 1,7 = 1,2, - -+ | n),
all the branches are saturated and p;, = 1,7 = 1, 2, --- , n. The set
of equations (7) takes the form

Zla,-,-fc,-zl, i=1,2, - ,n. (8)

This can be shown to be equivalent to the set of (n 4 1) linear equations.
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- Z Pii%; = 07 7= 1y 27 T, N, (ga)
i1
i; x,' di = b. (gb)

The 7th equation in (9a) is obtainable by subtracting the ith equation
of set (8) from the (¢ + 1)th equation of set (8). Equation (9b) may
be selected as any linear combination of equations (8). Note that one
equation in (9a) is redundent since »_r_, p;; = 1 for all 4.

Remark: The physical interpretation of equations (9) is that when
in complete saturation a station is able to deliver only when receiving.
The flow emerging from a given station must equal the flow entering
the station from the main line. This equilibrium relation is expressed
by the n equations of set (9a). The (n 4 1)th equation, (9b), expresses
the eapacity limitation of the branches. If we select d; = Sy a;
we have '

; x;d; = n, (10)

where d; is the average number of branches (distance) traveled by a
packet emerging from station j. Equation (10) states that the average
work (in terms of packets times distance) demanded from the system
per time unit must equal n, since all branches are saturated and each
traverses one packet per time unit. In matrix form we have

X’P = X7,

Z x; d; = b, (11)
i=1
where X" is the transpose of X, (note that all vectors are defined to
be column vectors).

P is a stochastic matrix and, therefore, the problem represented
by equations (11) strongly resembles one of determining the steady
state probabilities of a finite state space Markov chain. The difference
is that in the Markov chain problem d; = b for all j while in our problem
this is not necessarily so. In the followmg we shall make use of this
resemblance.

Definitions:

(z) S, shall be used to abbreviate “station z.”
(7) 8, is said to be accessible from S; , S; — 8, , if there exists a
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sequence of elements of P such that Py, Py, + -+ Px,_2.Pr; > 0.
In such a case it is also customary to say that S; leads to S; .

(ziz) If 8; — S; and S; — §; both stations are said to communicate
(8, 8,). Clearly if S; < S; and S, < S; then 8, & S, .

() Let C(G) = {8;: S; < 8:}. Clearly if S; ¢ C(3) then C(j) = C().

(v) A nonempty class of stations, C, is called a communicating

class if for some station S; ¢ €, C = C(7). It follows that two
communicating classes are either identical or disjoint.

(v7) A communicating class is closed if no station outside the class
is accessible from a station in the class.

(vir) A closed communicating class shall be called a dominating class
or a class of dominating stations. A station not belonging to any
dominating class is a dominated station.

From the theory of Markov chains we know that there exists at
least one class of dominating stations in a given Pierce loop. However,
it is possible that there will be no dominated stations. In such a case
all the stations are dominating and may form into one or more dominat-
ing classes. It may be shown that the number of dominating classes
is one if and only if there exists a station accessible from all other
stations in the loop. In the case that dominated stations exist each
must lead to at least one dominating station.

Each dominating class of stations is represented by a prmmpal sub-
matrix of P (a dominating submatrix). This submatrix is obtainable
by deleting all rows and columns of P corresponding to stations not
belonging to the particular dominating class. Similarly, all dominated
stations may be represented by one submatrix of P.

Theorem 1. Let B be a k X k submatriz of P representing a dominating
class of stations, then all vectors Y satisfying the equation,

Y'B=Y" (11a)

form a linear space of one dimension. Furthermore, all the elements of Y
must have the same sign, i.e., either all positive, or all negative, or all zero.

Proof. Theory of finite Markov chains (e.g., Kemeny and Snell®).

Corollary. Assume that the dominating class represented by B is C =
{8i, 85, <+, Su} then there exists a unique vector Y* = (y*, y*,
y*%,) satisfying equation (11a) and the scaling equation

k
Zl y¥ d;, = b. (12)

i=
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Clearly Y* > 0 and any solution to equation (11a) may be obtained
by multiplying Y* by some real number. We define a vector X =
(@1, %2, - ,2,) wherex; = 0if S, ¢ C,and x; = y%if ¢ = ¢; . The
vector X is called a dominating solution to equatlons (11) correspondlng
to the matrix B and the class C.

Theorem 2. Let Q be a k X k submatriz of P representing dominated
stations, then the only solution to Y'Q = Y™ 4sY = 0.

Proof. Theory of finite Markov chains.

Theorem 3. Suppose that the matriz P contains exactly m dominating

submatrices B, , B,, -+ , B, representing dominating classes C,, C,,
, C. and suppose that X, is the dominating solution corresponding
to B;,7=1,2, .-+, m. X is a solution {o equations (8) if and only if
X = Z a;X;
i=1
and
2o =1, (13)
i=1
where a; , 2 = 1,2, - -+, m are real numbers.

Proof. This is an immediate result of Theorems 1 and 2.

We conclude that in the case of complete saturation, (p;, = 1, 7 =
1,2, -- -, n), there always exists a nonnegative solution to our problem.
If there exists only one dominating class of stations in the loop, there
exists a unique solution to equations (8). If there is more than one
dominating class in the loop, then there exist infinitely many non-
negative solutions obtainable as convex combinations of the dominating
solutions.

IV. THE LOAD-AND-SHIFT ALGORITHM

Returning to the more general case, we describe in this section the
load-and-shift procedure for solving the set of equations (7) when
p: = 1,72 =1,2, .-+, n. The algorithm is based on the results obtained
in the foregoing analysis. Assuming that the capacity of the branches,
e, may be varied between 0 and 1; we start with ¢ = 0 and increase
it until ¢ = 1. While so doing we simultaneously load the system and
obtain the feasible solutions for any given value of 0 < ¢ < 1.

We shall start by outlining the procedure for finding just one solution.
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Start: r: = 0, e = 0, PV: = P, A" =\,

Step 1: Increase r by 1. In P’ find a square submatrix B repre-

senting a dominating class of stations C’, ¢ = (S, ,
Si, y T Sik}*T
Step 2: Find the unique positive vector Y = /A THARNEE R ThAY

satisfying the set of equations

(rNT(r) __ {(r\T
(Y7)'B"” = (Y™),

Z y(r) = 1.

To determine the value of d;, we select an 7 such that S; e C
and let d;, = a; ;, -
Enlarge Y7 to the form X = (", 2" , --- , 2{7),
where z{” = 0if S; ¢ C” and &{” =y if j = i,
Step 8 (Load): Find a number A such that

(r)

I\ A

AT = Min {~( = &7 ,
X x;

(r)

where the minimization is over all 7 such that S; ¢ 0.
IfA” 21— ¢set A =1 — ¢ set N = r, and goto “Last
Step.” Otherwise increase ¢ by A’ and continue.
Step 4 (Shift): If » = n, set N = n and go to “Last Step.” Otherwise
construct the (n — r + 1) X (n — r + 1) square matrix P“"*""
by adding the jth column of P to its (j + 1)th column (if j
is the last column, it is added to the first one) and then deleting
the jth column and the jth row. A\{"*V: = A7 — ATz{",
= 1,2, --+ , n. End of rth iteration. Go back to “Step 1.”

Last Step: The solution is
N
X = Z A(T)X(T). (14)
r=1

STOP.

Theorem 4: The procedure described above will alwa ys yield a vector
0 £ X £ \in at most n iterations.

Proof: All possible matrices P are stochastic. Therefore there always
exists at least one dominating submatrix of P denoted by B’.
Since X = 0and A = 0then X = D%, A“X"™ > 0. From the

T A procedure for determining B(" is described in the Appendix.
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algorithm we have A = XV, AVX 4+ A" = X 4+ \“, The algo-
rithm also ensures that \'” = 0,7 = 1,2, --- , N, and therefore X < \.
Since P is n X 7 the number of iterations cannot exceed n.

Theorem & (Existence): X obtained by the Load-and-Shift procedure
18 a feastble solution to equations (7).

Proof: We enlarge Y’ by adding zero elements corresponding to
columns of P’ not included in B . The enlarged vector, denoted
by Y° is a dominating solution to

Y'P” = Y7
ZR: yid; =1, (15)

where R, is the set of indices of columns included in P‘”. These equa-
tions are equivalent [see equations (8) and (9)] to

_ZRj aly; =1, ieR,. (16)
It is easily verified, by the use of equation (4), that
af = a;; . 17)

The vector X ‘" is obtained by adding to Y°‘” zero elements correspond-
ing to columns of P not included in P’. Therefore

AT Y aux” = AT, forall ieR, . (18)
im1

From the definition of @,; , equations (4) and (5), we know that
@;_1; = a;; forall jexcept § = 7, (where< — 1 =nif7 =1). If i ¢ R,

then z{” = 0. It follows that

AT g £ A, forall {¢R, . (19
i=1
Summing equations (18) and (19) with respect to » and then substitut-
ing equation (14) we obtain (for N < n)

n N

S age; = 2, A" =1, if {¢R, forall r=1,2 ---,N,
i=1 r=1

n N

agx; £ >, AT =1, otherwise. (20)

i=1 r=1

From the algorithm we know thatif ie B, forallr = 1,2, - -+ | N then
z; £ \; . Otherwise z; = \; . This completes the proof for N < n.
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In the case N = n it is possible that > Y., A"’ < 1 (nonheavy traffic).
The theorem still holds since z; = \;,72 = 1, 2, - -+, n. In the following
we illustrate the use of the algorithm in solving for the flows in a 5-
station loop:

Numerical Example 1

[0 1/2 172 0 0] [0.5]
2/3 0 1/3 0 0 04
P=]1/4 3/4 0 0 0 N=105
1/4 1/4 1/4 0 1/4 1.0
1i/4 0 1/2 1/4 0 | 0.8
Table of Results
CM-domi-
r | nating Class | (" 22" 23 24" x5 A €
11 81, 8, Ss. 0.6000 | 0.7000 | 0.5444 0 0 0.5714 | 0.5714
2| 8, Ss. 0.2500 0 1.0000 0 0 0.1953 | 0.7667
3| Sy, Sy Ss. 0.3123 0 0 1.0000 | 0.2500 | 0.2333 | 1.0000

The procedure terminated in three iterations yielding a solution:
x, = 0.4646
z, = 0.4000 = ),
zz = 0.5000 = X,
z, = 0.2333
z; = 0.0508

Actually the algorithm finds the value of one variable in each iteration.
When all variables equal to their respective \;’s have been determined,
the algorithm finds in one iteration the values of all the remaining
variables. It is therefore advisable to test the possible solution X = A
beforehand.

We note that in the example there is a single dominating class of
stations in each iteration (i.e., each matrix P has only one dominat-
ing submatrix B‘"). It will be shown later that if P has only one dominat-
ing submatrix then there exists a unique solution to equations (7).
In the general case, however, P’ may have more than one dominating
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submatrix. This may give rise to the existence of infinitely many solu-
tions. We would now like to improve the algorithm in order to be
able to determine all feasible solutions.

Theorem 6: If P has exactly one dominaling submatriz, say B,
then PV will also have exactly one dominating submatriz.

Proof: Suppose 7 is such that S; ¢ C”, then S; — S; for all j. We
apply the shift operation from ¢ to %, (adding column 7 to column k%
and then deleting row and column %), thus creating P“*". Clearly
now S; — 8, for all j. However, if there exists a station accessible

from all other stations there exists exactly one dominating class in
the loop. Furthermore C" " = C(k).

Corollary: 1f P has one dominating submatrix so will P, r = 1, 2,
-, N
, N.

Theorem 7: If P has m > 1 dominating submatrices, P " will have
either (m — 1) or m dominating submatrices.

Proof (outline): Let B{”, BS”, --- , B’ be the m dominating sub-
matrices of P and let C{”, C§”, --- , C be the corresponding
classes of dominating stations. @’ is the submatrix representing
dominated stations. We apply the shift operation from 7 to k& to obtain
PP Without loss of generality we assume that S; e C”. For S,
one of three alternatives must be true:

(7) S, & C{”. In this case a dominating class will be formed, con-
taining some or all the remaining stations of C{”. Note that S, must
be in the newly formed dominating class since it is accessible from all
remaining stations of C{”. Those stations of C{” which are not included
in the newly formed dominating class turn into dominated stations.
The matrix P”*" will then have m dominating submatrices, namely
B!, B{", ..., B{” and a newly formed one.

(@) S, e C{7, 1 ## 1. In this case every station in C{” is accessible
from any remaining station of C{”. Therefore all remaining stations
of C{” become nondominating, and P *" will have m — 1 dominating
matrices, namely B”, B{”, --- , B .

(722) S is nondominating. S, must lead to at least one dominating
class. If it leads to any dominating class other than B{” then this
case becomes the same as (7). If S, leads to B{” only, then a new
dominating class is formed. This class includes all stations accessible
from S, . Remaining stations of B{" which are not accessible from S,
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become nondominating. PY*" will have m dominating submatrices,
namely B{”, B, --- | B, and a newly formed one.

This completes the outline of the proof. It is important to note that
a dominating submatrix of P, say B{”, will be a dominating sub-
matrix of PV if S, ¢ C{7.

An Outline of the Complete Version of the Load-and-Shift Algorithm

In the procedure for finding just one solution, outlined in the pre-
ceding, we apply one load and one shift operation in each iteration.
In the complete version of the algorithm we need to apply several
such operations in each iteration. To eliminate possible confusion the
superseript denoting the iteration number will be placed at the upper
left side. Thus, for example, "’P is the stochastic matrix remaining
by the beginning of the rth iteration.

Definitions: Suppose ’P has m, dominating submatrices, "B, ,
“B,, -+, “B,, , representing classes "'C, , ’Cy, -+, C,. .
The matrix "’ P was obtained from ‘" P = P by executing some sequence
of load and shift operations. In order to keep track of these operations
we relate to “’B; a set "’ E; containing labels. If the label “a; ¢ 7 E;
we know that B, cannot be obtained unless the appropriate shift
operation is applied to *’B; . Thus, when K, ,¢ = 1,2, --- , m, ,
are given, the exact sequence of load and shift operations that led us
to P is known.

The n dimensional vector “’\ denotes the remaining unutilized
flows at the n stations of the loop. The m, dimensional vector e =
(e, Ve, o, “en,) describes the amount of branch capacity
utilization. Thus ¢, is the amount of branch capacity utilized by
the sequence of load and shift operations resulting in B, .

For each B, it is possible to determine the dominating solution
"X, and the quantity ‘’A; in the manner described in steps 2 and 3
of the procedure outlined previously.

We say that ”B; — B, if when applying a shift operation on the
appropriate column of ‘’B; all remaining stations of ‘’C; lead to
stations of C; . If ”C; consists of a single station then "B, —» OB,
if the shift is from this station to a station in “’C; or to a dominated
station leading to ’C; . The submatrices "B; , ¢ = 1,2, --- , m, ,
divide into three types: transient, terminal, and ring members.

Ring: Theset R = {""B., , "B, , ---, "B} is called a ring if
it satisfies three conditions:
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(l) (T)Bi, — (r)Biz . — (r)B“‘ — (r)Bi. ,
(@) B, ,j=1,2, -+, k, does not lead to any dominating
submatrix outside of the same ring,

Gy 1 — 2k (Ve — As) > 0.

Terminal: () If conditions ¢ and # above are satisfied while con-
dition 47 is violated the matrices ’B,, , "B,,, ---, "'B,,
are called terminal matrices.

(@) If VA; = 1 — ¢, then B, is terminal.
(@) If B, is terminal and “’B; — “’B; then ‘’B; is
terminal too.

Transtent: B, is called transient if it does not belong to a ring
and is not terminal.

There is a strong similarity between the notion of a ring and the notion
of a dominating class. To identify rings one may use essentially the
same technique proposed in the Appendix for identification of domi-
nating classes.

It is important to observe that when applying the appropriate shift
operations to all members of R, what remains of R will form one domi-
nating submatrix and possibly some columns and rows corresponding
to dominated stations will be left out. This property follows from
Theorem 7.

The following is an outline of the algorithm:

Start: r. =0, "P: =P, "xi =\ Pe =0, VE;: = ¢.

Step 1: r: =r + 1.

Find all the dominating submatrices of "’ P denoted by B, ,
“B,, -+, B, . Calculate the numerical values of A,
and X, corresponding to B, , '\, and Me; , ¢ =1,2, -+,
m, . Find all the rings of ’P denoted by R, , "R, , --- ,
R, . Identify the terminal and transient dominating sub-
matrices of “’P. If all dominating submatrices of ’P are
terminal go to LAST STEP. If the number of columns of
P equals the number of its dominating submatrices who
form into one ring, go to LAST STEP 1. Otherwise ’A; : = 0
for all "B, not belonging to a ring. :

Step 2: Execute the appropriate shift operations to all B, belonging
to rings and obtain “*VP. Note that in “*"P there will be
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one dominating submatrix corresponding to each ring of P
and, in addition, all terminal and transient dominating sub-
matrices of P will be dominating in “*V P,

Step 3:
(r+1))\ C = (r)>\ _ i (T)Ai (r)Xi .
i=1

(r+1)e'_ C = Z ((r)ei + (')A,»), i = 1’ 2’ e ,kr .

(7 :()BjelrIR;)

(r+l)e‘ C = (r)ei where (r+1)Bi — (r)Bi , 1= kr + 1’ kr + 2’ e

1

Myrr -

(r+1)Ei - U ((r)Ei U (T)Ol,'), 7 = 1,2, ... , k, .

(i:(YBje(MIRy)

C*VE, = OF, where "B, = B, i=k + 1,k +2 -,
M, . GO TO STEP 1.

Last Step 1: The unique solution is X = \. STOP.
Last Step: N: = r.

All the solutions are given by

N mr
X=> > “a "X, (1)
r=1 i=1

‘N my
z Z (T)Ol,' — 1, 0 é (T)Of,' < (T)Ai , (r)ai — 0’ r g 2,
r=1 i=1

unless ®a; = PA; forall ®a;e "E,. STOP.
Note that it is advisable to test the possible solution X = A beforehand.

Theorem 8:' The load-and-shift procedure will yield vectors 0 < X £ \
in at most n iterations. Each such vector, given by equation (21), is a
feastble solution fo set of equations (7).

Proof: The proof is practically identical to the proofs of Theorems
4 and 5.

The use of the algorithm is illustrated by a 10-station numerical
example.
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Numerical Example 2

S, 8 S S S S S 8 S S
o0 o0 1 0o 0 0 0 O 0 0]
0 0 0 1/21/2 0 0 0 0 0
1 0 0 0O O 0O 0 o0 0 O
0 14 0 0 34 0 0 0 0 O
p_wp_|0 34 0 14 0 0 0 0 0 0
0o 0 0 0 0 0 0 1 0 0
0 0 0 O O 1/4 0 0 3/4 0
0o 0 0 0 0 1 0 0 0 0
0O 0 0 0 O 0 1/4 0 0 3/4
l0 0 0 O 0 1/4 1/4 0 1/2 0 |
[0.10]
0.46
0.20
0.20
N = @y _|0:65
0.50
0.45
0.60
0.50
11.00
We first observe that ‘”P has m, = 3 dominating submatrices
S, S, S
S S, 0 1/2 1/2 Ss  Ss
‘”Bl=|:0 1}, wp, =|1/4 0 3/4|, ‘“BF[O 1}-
10 3/4 1/4 0 10

The calculated results for the first iteration are summarized in the
following table.



Results for First Iteration

We, = {8y, 8s) WX, =1 0100000 0 0)| WA =0.1 WB, - OB, | Tr We =0
WC, = {8, 8, S:} | ®X, = (@028 02228 0 0 0 0 0) | ®a =0.33 WB, - OB, We, =
WC; = {Se, Ss} WX; =0 0 0 001 01 0 0){ ®a =0.5 WB; — WP, Weg =0

Tr—Transient; Te—Terminal.
(1)‘R1 — {(I)B2}7 (l)R2 — {(I)Bg},
VB, =9, VE.=¢, VE,=3¢.

Note: VA, will be set to equal zero before continuing. Shift opera-
tions are performed from column 4 to 5 and from 6 to 7 in ‘VP. The
resulting 8 X 8 matrix, ® P, has three dominating submatrices.

S S Sw

S, S, [ 1/4 3/4 0
op, =10 11, @p,—lia o 84|, ®B, = "B

1o L/z 172 0

P\ =(0.10 020 020 0 0.37 0 045 0.10 0.50 1.00)

Results for Second Iteration

AC, = {8, Ss} X, =@ 1 0 01 0 0 0 0 0) @A = 0.20 @B — @By @e = 0.33
®AC, = {84, Sq, Si0} ®X, =0 0 0 0 0 023 O 2% 13) ®A, = 0.50 @By, — @B, Te @®e = 0.50
®C; = {81, S5} DX;=(1 01 0 0 0 0 0 0 0) ®A; = 0.10 @By — ®B, @e =0

ONIHDLIMS dO0T

L89g



®Op {(‘z)B1 (2)33},
PE, = {(1)a2}; PB, = {(l)aii}: (2)E3 = ¢.

Note: A, will be set to equal zero before continuing. Shift opera-
tions are performed from column 1 to 2 and from column 2 to 3 in ®P.
The resulting 6 X 6 matrix, P, has two dominating submatrices.

S;
“B, = [1, “B="B,.
U\N=(@ 0 010 0 0.17 0 0.45 0.10 .50 1.00)
Results for Third Iteration
AOC; = {83} DX, =0 01 0 0 0 0 0 0 0) ®A; =0.10 @B, — B, Te ®eg =0.63
®Cy = {81, S, Sio} ®X, =@ 0 0 0 0 0323 0 2%138) ®A, = 0.50 ® B, —» B, ®re, = 0.50

®R, = {(®B]},

(3)E11 — {(l)a2 , (2)a1 , (2)Ol3}, (3)E2 — {(1)(13}.

Note: ®A, will be set to equal zero before continuing. Shift opera-
tion is performed from column 3 to 5 in “P. The resulting 5 X 5

matrix ““ P has two dominating submatrices

(4)B
1

(4))\ —

Ss
=[], “B,=%B,.

@ 0 0 0 017 0 045 0.10 0.50 1.00)

884¢

161 YAAOLOO “IVNYNOL TVOINHOAL WALSAS TIdE THL



Results for Fourth (Final) Iieration

W0, = {Ss} WX, =0 0 0 010 0 0 0 0) WA =0.17 ®B, —» WB, Te We =0.73
W0y = {84, Se, S0} WX, =(0 0 0 0 0 033 0 3%1%) @A, = 0.50 ®B, — OB, Te We = 0.50
wpo= {(1>a2 , @ g , @ , (3)0[1}’ wp = {(1)a3}.

The iterative procedure terminates after completing the fourth itera-
tion since all dominating submatrices of ‘’ P are terminal.

The set of all feasible solutions to the 10-station problem is

(4)a1(4)X1 + (4)02(4)X2 + (3)061(3)X1 + (2)¢x1(2)){'1 _|_ (2)‘;!3(2))(3

+ (l)a2(l)X2 + (1)053(1))(3
b

X =

where

and

IANIA

IIA

IIA

c oo o o o o
IIA IIA

IIA

<07,

0.50,
0.10,
0.20,
0.10.

A IA A IATIA

IIA

0.50.

0.33.

4)

S © o ©

unless
unless
unless

unless

(4) (4) (3) (2) (2) (63} (¢}
a; + o + a; + a1+ a3+ a + 053=1;

P = 0.20 and Py = 0.10.

“ay = 0.10.
Py = 0.50.
Py = 0.33.

DNIHOLIMS d001

(1544
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It remains to show that the load-and-shift algorithm will yield all
the feasible solutions to equations (7).

Theorem 9: If X° = (22,25, - -+ , 2) is a feasible solution to equations (7),
then
N
\: 2 2} = Min {E pii% N}' (22)
i=1

Proof: The left-side inequality of (1) is part of equations (7). For the
right-side inequality, suppose first that 22 < A; , then

n n
Z a,','x? =1 and Z ai_”x? é 1.
i=1 i=1

Taking the difference we obtain

Z (@:; — a;—u)x? = 0. (23)
i=1
From the definition of a;; we have that
@ij — G;q; = —Pii, forall j =1,
and
i — Qo = 1 — pus .
Therefore

x? = Z p,-;x? . (24)
i=1
Tt follows then that z? = A, if D_"_, p;;2? = \; and therefore

o= ah > Min{z Py ,x.}-
i=1

Theorem 10: Let X° be a solution to equations (?), and assume that X > 0,
then

(2) If 27 = 0, then x} = O for all © such that S; — S; .

(7)) If ¥ > 0, then 2% > 0 for all ¢ such that S; — S; .
Proof: If S; — S, there exists a sequence P; &, » Peskas *** 5 Phos ks
Dx,.: whose product is positive. Suppose 2 > 0, then min Q_%_; Pzl ,
M) = panai > 0. From relation (22) it follows that 2, > 0 and simi-
larly z;, > 0, - -+ , 22 > 0. This proves 7. The proof of 7 is immediate.

Remark: The assumption X > 0 is not restrictive. If \; = 0, we apply
a shift operation to the ¢th column of P.
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Theorem 11: Let B be a dominating submatriz of P and assume,
without loss of generality that C'V = {S,, 8., ---, Si} is the class of
dominating stations represented by BY. AY and XV are then uniquely
defined. Suppose X° is a feasible solution to set of equations (7) then

Either: (1) 20 = ax®,7=1,2, -+ , k0 £ a £ A",
or: @) 20 =z A2 i = 1,2 ---, k, where the inequality
18 strict for at least one value of 7.
(iit) If 1 is the case then x° = O for all S; ¢ C'V and leading
to C'V. If there exists such an S; and z° > 0, then i is

the case.
Proof: Since B is a dominating submatrix then ».*_, p;; = 1 for
1=1,2, -,k
(7) We assume that 22 < \; for< = 1, 2, --- | k and then sum the
first k inequalities (24) to obtain
k k n k
Z Z zi + Z a; Z Dii -
im1 i=k+1 =1

For this relation to hold it is necessary that x? Y %, p;; = 0 for all
j =k + 1. If C is not accessible from S; then >k pi: = 0, other-
wise either D %_, p;; > 0 and therefore 2% must equal zero, or S; — S, ,
m=k+1,and ZLI Pmi > 0 and therefore z,) must equal zero. From
Theorem 10 we know that in this event & = 0. Concluding then that
a? = 0forall {j: S, ¢ CV} and S; — CV we obtain [in a manner similar
to the one used in obtaining relation (24)]

13
:Zpiix?: 7:':1;27"';]0;
i=1

yielding

22 =2, 1=1,2, -+ Lk

k3

Since 0 < 2% < \; we have that 0 £ a < A™. It also follows that if
there exists S; ¢ C*” and leading to C'" and 2% > 0 then there exists
at least one value of 7,7 = 1,2, --- , k, for which 2} = \,.

(77) Suppose there exists a value of ¢, ¢+ = 1, 2, -+ | k, such that
20 = A2V, From Theorem 10 it follows that 22 > 0 for all ¢ =
1,2, -+, k. We select a number o, A > a > 0, such that

0 1 (1] 1
Mln {2] — axi’) = 2}, — ax{l) = 0.
1=1,2, K

Clearly if such an a exists then 23, < Az and from relation (24)

m
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we have

T, Z D Piind . (25)

i=1

On the other hand we have
k
x?m = 01553.) = Z piimax;”‘ (26)
i=1

Subtracting equation (26) from (25) yields

n

k
0= 2 piia} —ax”) + 2 pionay .
i=1 i=k+1
Since 8;, € C* there exists a value of j, j %, and S; e C*”, such that
Piin > 0. It follows then that 27 = azx!’’ for7 = 1, 2, --- , m. This
is a contradiction, which completes our proof.

Corollary: Let ‘"B, , ‘"B, , -+, VB, be all the dominating submatrices
of P = VP, and let VCy, VCy, ---, C,, be the corresponding domi-
nating classes. If X° is a solution to equations (7) then either

m1 my
X' =3 Y, Xy, X Pai=1, 0= Pa; =P, @)
i=1

=1

or there exists at least one class of dominating stations, say VC, , such
that X° =z VA,CX, .

Theorem 12: If X° is a fedsz'ble solution to équations (7) it 1s obtainable
by the load-and-shift algorithm.

Proof: If X° is given by equation (27), it is obviously obtainable after
one iteration of the algorithm. Otherwise there exists a class of dominat-
ing stations, say ‘’C,, such that X° = “A,"X,. We execute a
shift operation involving the submatrix ‘”B; and obtain a stochastic
matrix P (note that P® = ®P). We let X°® = X° — PA,VX,
and \¥ = A — PAYX, . Clearly X°” is a feasible solution to equa-
tions (7) when using as parameters P and A\’ and replacing the
right side by 1 — ‘VA;. It is possible therefore to proceed with a
sequence of load-and-shift operations until X° is obtained. Since the
algorithm takes into account all possible sequences of load-and-shift
operations, X° is contained in the set of solutions given by equation (21).

Corollary (uniqueness): If P has exactly one dominating matriz then
there exists a unique feasible solution to equations (7). Note, however,
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that this is not a necessary condition for uniqueness. It is possible that P
will have several dominating submatrices and the solution will be unique.

V. DISCUSSION

The heavy traffic assumption enables us to regard the system as a
deterministic one. The analysis of the deterministic flows shows that
stations tend to “band” into classes with the ability of dominating
the system and preventing other stations from using it.

This undesirable property, which can be eliminated by exercising
appropriate control, also may affect the stochastic behavior of the
system when heavy traffic conditions do not exist. One can imagine
two classes of stations competing for domination of the system. Since
traffic is not heavy, all the stations in the system are able to deliver
their messages in finite time. Nevertheless, when one dominating class
controls the system, it will prevent other stations from using the belt
line until the queue at one of the stations belonging to this class becomes
empty. At that moment the competing dominating class is able to
take over and prevent other stations from using the belt line. This
may result in a situation of alternating priorities (see Ref. 4) where,
while one class is served, the queues at the competing class build up.
While average queue sizes may not be strongly affected, the strong
fluctuations in queue lengths may be undesirable. This possibility has
been explored numerically by the use of a digital simulator.® The
operating principles of the simulated system will be explained with
the aid of Fig. 2.

Each of the stations is represented by a B-box. A packet coming
out of a station is first multiplexed on the line by the B-box, provided
the line is free, and then is passed from B-box to B-box until its destina-
tion is reached. At each B-box on the way the address of the packet
is examined. At the particular B-box of destination the packet is taken
off the line. The main function of the A-box, shown in Fig. 2, is syn-
chronization of the loop.

Assume that the packets are made of L bits each and the address
is given in the first k& bits of the packet. A time unit in this system is
the time it takes to multiplex a bit on the main line by a B-box. Assume
also that the traveling time from one B-box to the adjacent one is
zero. Station < is allowed to start sending a packet at times mL 4 ik,
m = 0,1, 2, ..., providing that the main line is free. The A-box is
a buffer. Bits coming out of the B-box of station n accumulate in the
A-box. Suppose at time & B-box 1 starts sending a packet. At time
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STATION
4

STATION
3

STATION
1

Fig. 2—A schematic description of a loop with » stations.

kE + 1 the first bit reaches B-box 2 and is delayed there until time 2k
when the whole address of the packet has been received. If the packet
is addressed to station 2, it will be taken out and at the same time
B-box 2 can start sending out its own packet. If the packet is not ad-
dressed to station 2, it will be sent from B-box 2 to B-box 3 where the
same process will take place starting at time 3k. Bits arriving at the
A-box are buffered. At time L the A-box starts to send bits (at the
same rate as a B-box) until a whole packet has seen sent. If the buffer
is empty the A-box will wait another L time units and will start sending
at time 2L. In general, the 7th B-box checks its buffer at times mL + <k,
m-= 0,1, 2, -+, and if the buffer is empty it may start sending its
own packet. If the buffer contains the address of station 7, the B-box
will remove the arriving packet and may, at the same time, send out
its own packet. If the buffer contains an address different than station
1, the B-box will pass on the arriving packet.

In a similar manner the A-box checks its buffer at times mL, m =
1, 2, --- ,. If the buffer is not empty, it sends out L bits. If the buffer
is empty, the A-box remains inoperative for the next I time units.

The loop time is the time it takes a bit to complete one round of the
loop, and is measured in multiples of L. In the single A-box loop de-
scribed here the loop time is the smallest integer greater than or equal
to nk/L where n is the number of B-boxes in the loop. Clearly there
is a complete analogy between the loop described here and the one
presented in Fig. 1 if the number of revolving arms is taken as equal
to the loop time.
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It is important to note that the simulated system described here
represents only one conceptual way in which the loop may be operated.
It is possible, for example, that the packets will move from one B-box
to another in one block rather than bit by bit. This is equivalent to
placing an A-box between any two B-boxes (n rotating arms).

We have used the digital simulator to examine the queuing char-
acteristics of several small systems. The main purpose of the simula-
tion was to study the effects of dominating classes in nonheavy (non-
saturated) traffic situations. Numerical results are presented for an
8-station loop with two dominating classes C; = (S;, S:, S;, Ss)
and C, = (S5, S5, Sz, Ss). The loop time for this system was selected
to equal 1 (one rotating arm) and the system was simulated for three
different expected main line loads (utilization). The P matrix and
average queue sizes (in packets) at the stations are shown below.

Simulated Example: 8-Station Loop (Two Dominating Classes)

S 08 8 S, S Ss S S
Slo 1/3 1/3 1/3i 0 0 0 0
S,(1/3 0 1/3 1/3i 0 0 0 0
S1/3 1/3 0 1/3;, 0 0 0 0
S)1/3 1/3 1/3 0

!
|
p="42 e T o __C_
Ss{ 0 0 0 0:‘0 1/3 1/3 1/3
S 0 0 0 0 .1/3 0 1/3 1/3
|
S, 0 0 0 0 51/3 /3 0 1/3
SL0 0 0 0 .1/3 1/3 1/3 0 |
Line and
Source Average Queue Sizes

No. | Utilization | 8¢ S 8 S& S5 Ss Sy 85 | Ave. | Max.

1 A=0.239,|9.710.113.8 6.715.6 14.6 11.2 6.8 | 11.1 | 33-58
p = 0.956

2 |A=0.229, |56 56 6.1 3.0 5,0 6.8 5.2 3.2 | 5.1 |26-45
p =0.916

3 1A=0.213,{24 26 19 1.1 24 23 2.1 1.2| 2.0 1622
p = 0.852

The alternating priorities effect, due to domination, is demonstrated
in Fig. 3. The total number of packets at the four queues of C; (dotted
line) and C, (solid line) were plotted against time. For the case p =
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Fig. 3—Simulated queue sizes.

0.956 (high utilization) one can clearly see that only one dominating
class is served at one time. When stations of C, take over control
of the system the queues at stations of C; build up while at C, they
are being depleted until the queue at S; reaches zero and C, can take
over.! The average cycle time (time elapsing between two consecutive
peaks of the dotted or solid lines) for this case was 110 time units.
As the load on the system is decreased, the alternating priorities effect
becomes less and less distinctive. For p = 0.916 (not graphed) the
average cycle time reduces to 23 time units, and for p = 0.852 (see
Fig. 3) alternations are very frequent and cycles are practically un-
noticeable.

Notwithstanding the complete symmetry within classes the average
queue sizes at S, and Sg are consistently smaller than the average
queue sizes at the other stations. The explanation of this phenomenon
is as follows: At a moment when C, loses control to C, the queue size at
S, is zero while at S;, 8., and S; it is greater than or equal to zero.
From that moment on the queues of C; build up at equal average rates
until the moment control returns to C, (peak of the dotted line in Fig,. 3).
At that moment the queues start being depleted at equal average

t Note that the queue size at Ss being zero is a necessary but not sufficient condition
for losing control.
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rates. Since the expected queue size at S, is smallest, it has a higher
probability of being completely depleted first. This phenomenon tends
to shorten the alternations cycle.

The alternations cycle will be shorter when the number of rotating
arms (loop time) is increased. Therefore large loops (local or regional
loops) will be relatively more stable when high utilization occurs.

The nature of the stochastic process used for generating packets
at the stations of the loop is described in Ref. 5.

An important aspect, not analyzed in this study, is the question
of the order of stations in the loop. Clearly, the amount of traffic the
loop can carry and the resulting congestion are strongly dependent
on the specific order of the stations in the loop. In Example 1 we have
assumed counterclockwise traffic direction. If we reverse the direction
of traffic on the main line we shall get a different solution for the flows.
The two solutions are compared in the following:

Counterclockwise Clockwise Flow
Flow Direction Direction
2z, = 0.4646 z; = 0.5000 = \,
Xy = 0.4000 = )\2 Xy = 0.4000 = )\2
z3 = 0.5000 = ) x; = 0.5000 = A\
zs = 0.2333 r, = 0.0917
z; = 0.0508 x5 = 0.3667
Total: 1.6487 1.8584

Reversing the flow direction results in an increase of 13 percent in
the amount of satisfied demand.

In a practical situation not all orders are feasible. Still the number
of feasible orders may be overwhelmingly large and an appropriate
algorithm for determining best order is called for. An interesting pos-
sibility is a double loop system where each station is connected to two
loops with opposite traffic directions. This may increase reliability
and enable better utilization by allocating traffic in an efficient manner.
One possible allocation rule is shortest distance allocation where the
loop to be used is the one with the shortest travel distance for each
particular message (this is an example of a possible rule and is not
proposed as an optimal rule).

The bounded linear complementarity problem presented by equa-
tions (7) is of somewhat more general interest, bearing little relation
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to the Pierce loop. In matrix form we have
X+ U=\,
AX + 2 =1,
U'z2=0, U=0, Z=z=0 X=0.

Substituting X = A — U we obtain the same set of relations in a slightly
different form.

AU —Z = AN—1=¢
U'Z =0, Uuz0, Z=z0, U= (28)

Il

It is now possible to compare our problem to the Fundamental Problem?
treated by Lemke,’ and Cottle and Dantzig.’

AU —Z = ¢
U'Z =0, Uz0, Z=z=0. (29)

The only basic difference between the two problems is that in our
problem U is bounded from above while in Lemke’s problem U is
unconstrained. In this respect our problem is more general. The shift-
and-load procedure is, however, fundamentally based on the specific
structure of A and ¢ and may not prove useful for a wider class of
parameters.
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APPENDIX

In this appendix we outline a procedure for determining all dominat-
ing submatrices of a given stochastic n X n matrix P.

Step 1: Construct a matrix I = {=,;} where
1rw=[1 if pi >0,
0 otherwise.

t The term “Fundamental Problem” was coined by Cottle and Dantzig. 2
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Step 2: Q = {q;;}: = 1L

Doforj =1, 2, , N
Repeat until ¢,; , k = 1, 2, - -+ , n, remain unchanged.

=g+ 2 g, k=12,

{(1:@i5=1}

(Note that all additions are Boolean.)

If S; — 8S; then in the resulting matrix @ the element ¢;; = 1.
Otherwise ¢;; = 0.
Step 3: Construct a matrix @ = {¢?,} such that
7 = 47 = it -
If S; does not belong to a communicating class then ¢} = 0,

j=1,2, -+, n Otherwise ¢{2 = 1 and S; ¢ C(¢) if and only
if ¢i? = 1. C(?) is closed (dominating) if and only if the ¢th
row of Q'® is identical to the ¢th row of Q.
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Bending Losses of the Asymmetric
Slab Waveguide

By D. MARCUSE
(Manuscript received April 30, 1971)

The bending losses of the asymmetric slab waveguide are compuled.
The computation is based on the knowledge of the exact form of the solution
of Mazwell’s equations of the bent structure and the additional assumption
that the field near the bent waveguide can be approximated by the field of the
straight waveguide. The result of this theory is in good agreement with an
existing theory. It appears that the bending loss formula can be used to
estimate the bending losses of the round optical fiber <f the mode parameters
entering the formula are replaced by the corresponding mode parameters
of the round fiber. We present curves that allow the numerical evaluation
of the bending loss of the lowest order even TE mode of the symmetric slab
waveguide. '

I. INTRODUCTION

E. A. J. Mareatili has shown that a bent slab waveguide loses power by
radiation.! His analysis is based on a solution of the eigenvalue equation
of the bent waveguide. It is possible to derive the expression for the
bending losses from an approximate theory that is much simpler than
the solution of the eigenvalue equation. We use this method to derive the
formula for the bending losses of an asymmetric slab waveguide. The
symmetric slab waveguide is, of course, included in this treatment as a
limiting case. The result of this approximate theory is in very good
agreement with the theory of Marecatili. Furthermore, if the parameters
of the HE,; mode of the round optical fiber are used in the slab wave-
guide formula, loss values are obtained that agree well with experimental
loss values for this mode.”

The bending loss theory presented in this paper is based on the fol-
lowing idea. A bent slab waveguide can conveniently be described in a
cylindrical coordinate system whose axis coincides with the center of
curvature of the waveguide (Fig. 1). The solution of Maxwell’s equations

2551
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/
CENTER OF
CURVATURE

Fig. 1—Bent slab waveguide with a cylindrical coordinate system centered at the
center of curvature.

in the cylindrical coordinate system is known so that the shape of the
field distribution of the curved waveguide is known except for an un-
determined amplitude factor and for the value of the order number of
the cylinder function of the solution. Both of these unknown parameters
can be obtained if we assume that the field in the vicinity of the wave-
guide must be similar to the field of the straight guide as long as the
radius of curvature is large. The approximate solution is used to calculate
the power that is radiated from the waveguide so that the power loss
per unit length caused by the waveguide curvature can be determined.
This procedure leads to a simple equation for the curvature loss. The
theory breaks down when the curvature is so severe that the field near
the waveguide ecan no longer be approximated by the field of the straight
guide. The limits of applicability of the curvature loss theory can be
expressed by inequalities for the waveguide parameters.

II. THE FIELD OF THE STRAIGHT ASYMMETRIC SLAB WAVEGUIDE

The field of the straight asymmetric slab waveguide is obtained as the
solution of a straightforward boundary value problem. The geometry of
the structure is shown in Fig. 2. We assume that there is no field variation
in the y direction so that the waves of the structure are simple TE and
TM modes. We limit our d1scuss1on to TE modes The field is then given
by the following equations:®

E, = Ae"*? d

lIA

z < o, (1a)

E, = A cosk(x — d) — ;clsin k(x — d) —d =z =d, (1b)
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E, = A(cos 2%d + ’;Ysin 2Kd)68(x+d) —» <z £ —d. (le)

The amplitude of the field can be expressed by the power P carried by
the field:

1

| . I @
{ﬁ(m + 2 %)( +

A factor exp [¢(wf — Bz)] has been suppressed. The constants and param-
eters appearing in equations (1) and (2) are defined as follows:

o = 27f, radian frequency,

P = power carried by the mode,

u, = magnetic permeability of free space,
¢, = electric permittivity of free space,

B8 = propagation constant,
2d = slab thickness,

k = (mak® — g%, @)
v = (8 — nik)}, @
§ = (8 — n3k)}, (5)

= w(eoo)?, (6)

n, = refractive index in the region d < z,
n, = refractive index in the region —d < z < d,
ns = refractive index in the region — 0 <z < — d.

The magnetic field components are obtained from the equations

1 9%,

H, = _wpo a9z @
z
X
Ny n; Ny
-ﬂ 2d le

I;‘li_g. 2—Straight slab waveguide. n,, ns, and ns are the refractive indices of the three
media.
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and
i O,
H. = wl, 0% ®
The boundary conditions (requirement of continuity of the transverse
electric and magnetic field components at the two interfaces) lead to the
eigenvalue equation for the propagation constant 3,

tan 2xd = e B w2 9)
K(l - 12) k
K

III. THE FIELD OF THE CURVED STRUCTURE

The solution of Maxwell’s equations in the region (R 4+ d) < r < =
can be expressed as follows:

E, = BH® (nikr)e ", (10)

The Hankel function of the second kind and of order » represents an
exact solution of Maxwell’s equations in the coordinate system shown in
Fig. 1. There is no field variation in the direction of the axis of the
cylindrical polar coordinate system of Fig. 1. (In the coordinate system
used in Fig. 2 the direction of the polar coordinate axis would be y.) The
radial distance r is measured from the center of curvature of the bent
waveguide. The Hankel funection of the second kind is required since at
infinite distance, r — «, an outward traveling wave must result. With
our time dependence, exp (iwt), the field of equation (10) satisfies this
requirement.

The order number » need not be an integer in this case since we need
not require periodicity of the field as a function of the polar angle ¢. If
we were interested in an exact solution of the problem of the mode
traveling along a curved waveguide we would obtain the value of » as the
solution of an eigenvalue equation. In our approximate treatment we
assume that the field near the waveguide can still be approximately
described by the field of the straight structure. We can use the coordinate
system of the straight guide (Fig. 2) to describe the curved guide. The 2z
axis of the straight coordinate system becomes bent and we have the
relation

z = R¢. (11)

The function exp (—¢up) is equivalent to the propagation factor exp
(—1B2) of the straight waveguide so that we have the approximate
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relation

B = (12)

S

Since R is much larger than the wavelength of the field, » is a very large
number. Using » as defined by (12) in (10) constitutes the first approx-
imation. It remains to obtain a relation between the amplitude factor B
and the power that is carried by the guided mode. To achieve this we use
an approximation for the Hankel function that is valid for very large
order number » in the region

v > nkr. (13)

The desired approximation can be found in Ref. 4.

v(a~ tanh @)

HPmkr) = —f ——— (14)
A\ /7—; v tanh o

with
cosha = ——- (15)
oS = er
We obtain the hyperbolic tangent of « by the relation
r\* |?
o [r-os]
u = tanh o = [cosh” @ — 1F _ E . (16)

cosh « J¢]

Equation (12) was used to replace » by 8. Near the axis of the waveguide
we can use the approximation r/R & 1 so that we obtain from (4),
(12), and (16)

vtanh o = yR. %))

This approximation is adequate for the denominator of (14). The ex-
pression in the exponent must be approximated more accurately. We
use the x coordinate to describe the radial distance from the center of the
waveguide core and write

r X
I—B=1+]—B~ (18)

This x coordinate corresponds directly to the  axis of the straight guide -
as shown in Fig. 2. Using (4) and (16) we obtain
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2 2 T\’
" (7 = 2(nik) E) Ly [1 ~ <M>z E] )
- B B v/ R
We can express « by a well-known relation between the inverse hyper-
bolic tangent function and the natural logarithm*

- 1
a=tanhlu=%ln(1i-::)- (20)
The logarithm can be expanded in an infinite series
a=u+5u'+ 4+ w4 (1)
From (19) we obtain approximately
A <n_k>£ (1) 29
B (ﬁ> Py R\s @2

Substitution of (22) into (21) yields

a=z+l(z)3_,_l<z>5+
B 3\8 5\
_(M>2£Z|:1+£+(£>2+<7_2)3+ :' (23)
v/ RB gt \g 8
The first series can again be expressed by the logarithmic function. The

second part of (23) contains a simple geometric series. We thus obtain
the approximation

1+2 ,
a=73lIn B _ (n.k) 1 zg. @4)
1-2 w o zﬁR
s B
With the help of (4), (19), and (24) we can form the expression
1+7X
a—tawhe=a—u=7%h 1_5 o R
B

The approximations (12), (14), (17), and (25) allow us to express the Z,
component (10) in the following approximate form:

|
1
explégln 1—_—2 —l'yRJ'
E, = —iB B e (26)

N
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The functional dependence of (26) on the coordinate z coincides with
(1a).

For large values of R the field of the curved structure near the wave-
guide is approximately equal to that of the straight guide. The factor
exp (—1Bz) appearing in (26) was omitted from (1a). Comparison of (1a)
and (26) allows us, with the help of (2), to determine the amplitude
coefficient of the field,

J T auRP 7
B = ke ] ]
1B<2d + 5 + 5)(;3 + 7%
147 1
-expl— %glnl_s—l 'VR[- 27
B

Very far from the waveguide, » > R, the Hankel function can be
expressed by its approximation for large argument® so that (10) assumes

the form
E - B f 2 g imkTgE @y w /4 =i (28)
v wn.kr '

Equation (28) is very interesting. It shows that far from the waveguide
the field is very different from the field of the straight structure. Whereas
the field of the curved structure decays exponentially near the wave-
guide it assumes the form of a radiation field far from the guide. This
behavior of the exact field solution (10) of the curved structure explains
why curved dielectric waveguides lose power by radiation.

IV. THE BENDING LOSS FORMULA

Since we know the field far from the waveguide it is now easy to
calculate the power loss caused by the fact that energy is radiated away
from the waveguide. The amplitude of the radiation field is independent
of the z coordinate. The z dependent factor in (28) determines only the
phase of the field. The power loss suffered by the field at a given position z
can thus be caleulated by the radial power flow at the same position #,
even though the contribution to this radiation may have come from a
point z; with 2, < z, because each length element of the guide contributes
an equal amount of radiation. An element of unit length on the axis of the
waveguide is projected on an element of arc length

r
-7 (29)
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at a distance r — R from the waveguide. The power loss 2« per unit
length of waveguide is thus

r S,
20 = P (30)
S. is the r component of the Poynting vector,
S, = —1EHf = in, ;— |E, ?, (31

and P is the power carried by the mode. Using (27), (28), and (31) we
obtain from (30)

27’(2 2‘yd ~U
20 = T 1 (32)
with
J 1+ 1 )
2
: B R~ 5 2R (33)

e
1 =5 f

The approximation on the right-hand side of (33) holds for v/8 < 1.
The relation «* + v* = (nj — n})k’ was used to simplify (32). The range
of validity of the bending loss formula (32) eannot be given precisely.
We have already encountered the inequality (13) that was necessary
for the approximation (14) to hold. A similar inequality can be stated
for the field expressed by Bessel and Neumann functions inside of the
waveguide. In order to be able to express the field inside of the curved
waveguide by approximate expressions that reduce to the sine and cosine
functions appearing in (lIb) in the limit of large radius of curvature,
we must require

v < nokr (349)

everywhere inside of the waveguide. We can express these conditions in
the form

B> nlk(l + I_%) (35)
and

B < nlk(l - 1%)’ (36)
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The validity of our theory becomes doubtful if one or both of these
inequalities are violated. However, a comparison with Mareatili’s
theory' shows that our approximation is still quite good even in regions
where (36) no longer holds.

The simple expression (32) for the bendlng loss of an asymmetric
slab waveguide can be used only if the values of , v, 6, and 8 are known.
It is, of course, only necessary to determine one of these parameters
from the eigenvalue equation (9) since they are all interconnected by the
equations (3) through (6).

It is useful to point out that the loss equation (32) seems to be ap-
plicable to other types of waveguide than the one for which it was
derived. I have compared experimental values® of bending losses of a
round optical fiber with the loss predicted by (32). For such a comparison
it is necessary to use the parameters «, v, ete., that apply to the wave-
guide to which the formula is to be applied. In case of the round fiber the
parameters of the HE,; mode were used to compute the bending loss
from (32). The reason for this choice of parameters is the fact that the
parameter v determines the decay behavior of the field outside of the
waveguide. It is very important that the proper field decay is used, so
that it is more logical to use the v value of the round fiber instead of the
value computed from (9), if (32) is to be used to compute the bending
loss of the round fiber.

It is a curious fact that the loss formula (32) can also be obtained
without use of the Hankel function appearing in (10) if we use a field of
the form '

y = \/_3(-777 exp {—i fR v() dr} @37
with
v@) = [62 1—? - nWT- (38)

The validity of this claim can easily be checked by performing the
integration. The factor in front of the exponential function is somewhat
arbitrary. However, the exponential function itself admits of a physical
interpretation.

The straight waveguide has a field that, outside of its core, behaves
according to exp (—~vx). In the curved system z is naturally replaced
by r. If we consider that the process of bending the waveguide is likely
to lead also to a distortion of the phase fronts we can try to describe
the separation of consecutive wavefronts by an r dependent wavelength
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(A, is the wavelength of the straight guide),

D) =N 5 (39)

b

The propagation constant is related to the wavelength by the relation

27 R

B(T) - )\(,,,) =8 7,' (40)
By replacing the propagation constant in (4) with (40) we obtain (38).
Since v is now no longer a constant it is natural to replace yr by [ v dr
and thus arrive at the form of the exponential function appearing in (37).
By using (37) instead of (10) and proceeding exactly as shown in this
paper we obtain (32) once more. It is interesting that we have thus
obtained an approximation for the Hankel function that holds for the
region where the order number is very nearly equal to the argument as
well as for the region where the argument is much larger than the order
number. Equation (38) shows clearly that ¥(r) changes from real to
imaginary values as r increases.

One might hope that a similar procedure would allow us to obtain
approximate expressions for the bending loss of the round optical fiber.
However, such attempts lead to equations that are not in agreement
with experiment. On the other hand, the loss formula (32) agrees well
with experiment’ if the parameters of the round fiber are used.

The loss formula (32) holds for all values of the refractive indices n;,
N, and ng for which mode guidance is possible. Small index differences
are not required for (32) to be valid.

V. NUMERICAL EXAMPLES

Because of the large number of variables involved it is not possible to
provide graphic displays for all possible applications. The loss formula
(32) is sufficiently simple (except for the need of knowing the waveguide
parameters , v, ete.) so that loss values for cases of interest can easily be
calculated. We provide curves that aid in computing the bending loss of
the even TE mode of the symmetric slab waveguide.

Figure 3 is a comparison of our theory with the results of Ref. 1.
The ordinate is the function (2A)!aR while (8A)¥2dn,/\ is plotted on
the abscissa. The parameter A is defined as n, — n, (We are using
n, = n,). The expression 36n,RA*/\ assumes the constant value 60
for the curve of Fig. 3. The agreement with Marcatili’s theory” is re-

t A discussion of bending losses based on a similar argument is presented in Ref. 5.
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Fig. 3—Comparison between this theory and the theory of Ref. 1. A = ny — ny,
niy = ng, 36712RA%/)\ = 60.

markably good. The inequality (36) is violated for values of the abscissa
that are larger than 1.7. This may explain the departure between the
solid curve representing equation (32) and the dash-dotted curve
representing Marcatili’s theory. The fact that the solid curve actually
touches the asymptotic value shown as a dotted line in Fig. 3 (this
value is assumed for infinite values of the abscissa, its location as shown
in the figure has no meaning) is probably an accident since the solid
line increases again for larger values of the abscissa outside of the range
shown in the figure.

We restrict ourselves to the case of the symmetric slab waveguide
with n, = n;. It is possible to express « and v (which equals 6 in this
special case) as functions of

V = (ni — nd)kd. (41)

The propagation constant 8 depends not only on V but also on the value
of n,k so that it is not possible to express the bending loss only in terms
of V. However, in the special case that n, and n, are very nearly equal we
have 8 = n,k so that we need not actually solve the eigenvalue equation
to obtain the propagation constant. To aid in the evaluation of the
bending loss formula we provide curves for 2a8d°e” and for d*8°U/R in
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Fig. 4 as functions of V. The approximate expression given in (33) was
used to express U. If 8 can be approximated by n,k these two curves
enable us to calculate the bending loss without any difficulty. For
symmetric slab waveguides with a large value of n, — n, we can calculate
B with the help of (4) from known values of ¥ and n,k. A plot of vd as a
function of V is provided in Fig. 5. The parameter v is interesting in
itself since it determines the exponential decay of the guided mode out-
side of the waveguide core.

VI. CONCLUSIONS

The bending loss of an asymmetric slab waveguide has been calculated
using an approximation that is based on the assumption that the field
near the bent guide is still almost identical to the field of the straight
guide. The results of this approximate theory are in good agreement
with the bending loss theory of Mareatili' in the range of applicability
of our theory. It is hard to apply a similar analysis to the bent round
fiber because the exact form of the solutions of Maxwell’s equations for
the curved structure is not known. However, the bending loss formula
obtained for the slab waveguide model yields good agreement with

o /
IO‘ /
2aﬁ,dzeu %/
100 // Bz%au
RV
102 /
1073 /
o 0.5 1.0 1.5 20 2.5 3.0 3.5

\

Fig. 4—)The functions 2a8d%V and d382U/R are plotted versus V = (ny — n;)ikd.
(?’Ll = Ngs.
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Fig. 5—Plot of vd as a function of V. (my = ny.)

experiment’ if the mode parameters of the fiber mode are used in the loss
formula instead of the mode parameters of the slab waveguide.

For the case of small index differences, curves that allow the deter-
mination of the bending loss of the lowest order symmetric TE mode of
the symmetric slab waveguide are provided.
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Attenuation of Unwanted Cladding Modes
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This paper contains design criteria for the suppression of cladding
modes in optical fibers by means of a lossy jacket. The calculations are
actually based on the slab waveguide model. However, it is believed that the
results are representative, at'-least to order of magnitude, for the round
optical fiber. It is found that the cladding modes are absorbed most effectively
if the real part of the refractive index of the lossy jacket equals the refractive
index of the cladding material. However, slight deviations from this optimum
design are not critical. '

The loss of the cladding modes depends on. many parameters so that
general statements as to the order of magnitude of the expected loss are hard
to make. However, a loss of 1 dB/m should be easily obtainable.

I. INTRODUCTION

Losses in dielectric optical waveguides have been discussed by several
authors.”? In two earlier papers®'* we explored the problem of crosstalk
between two parallel optical waveguides. Two types of crosstalk were
considered. The directional coupler mechanism couples two dielectric
waveguides even if they have no imperfections of any kind. The coupling,
in this case, is caused by the exponentially decaying field tail of one
guide reaching to the region of the second guide. The second mechanism
causing crosstalk involves light scattering from waveguide imperfections.
The light that is scattered out of the guided mode of one guide can be
scattered back into the guided mode of a neighboring waveguide. Both
types of crosstalk can, in principle, be reduced by placing a lossy
material between the two guides. However, it was concluded that
isolation of the waveguides by means of a lossy surrounding medium is
really not necessary to avoid crosstalk. The waveguides must be de-
signed in such a way that their mode losses are low. The same mech-
anism that influences crosstalk also influences the mode loss. For
example, if two guides couple appreciably by means of the directional
coupler mechanism their mode fields penetrate each other to a con-

2565
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siderable extent. Adding loss to the surrounding medium thus also
causes added loss to the mode field. In fact, if the loss in the surrounding
medium is needed to reduce crosstalk it simultaneously adds so much
loss to the guided mode as to defeat its purpose. The cladding of the
fiber must thus be made sufficiently thick to protect the guided mode
from losses of its environment. But a sufficiently thick cladding also
provides adequate protection against crosstalk. The scattering cross-
talk problem, on the other hand, does not benefit from a lossy sur-
rounding medium for different reasons. Even if the cladding is made
sufficiently thick to protect the guided mode from losses of the sur-
rounding medium it is still possible to obtain substantial scattering cross-
~ talk. However, the same mechanism that produces scattering crosstalk
also causes scattering loss to the guided modes. Except for the unlikely
case of a systematic periodic distortion that persists throughout the
entire length of both waveguides, the scattering mode loss is more
critical than the scattering crosstalk so that it is necessary to build a
guide with sufficient accuracy to hold scattering losses down. Once this is
achieved scattering crosstalk is no longer a problem.

It thus appears as though it were not necessary to surround the
members of a bundle of waveguides with a lossy medium in order to
prevent crosstalk provided that the waveguides are built with low
scattering losses and with a sufficiently thick cladding. However, there
is one more reason why losses in the surrounding medium may be de-
sirable. We have so far ignored the possibility that power which is
scattered out of the core of the waveguide is trapped in the cladding.
These cladding modes are undesirable for two reasons. They couple some
of their power back into the core causing problems of delay distortion of
the guided core modes. In addition, these modes may reach the end of
the waveguide and there enter the detector giving further rise to un-
wanted, delayed signals. It is thus important to suppress cladding modes
by providing each waveguide with a lossy jacket. .

We must keep in mind that the loss requirements for the cladding
modes are more stringent than the loss requirements for the core modes.
A loss faetor that is prohibitively high for a core mode may be far too
low for a cladding mode. The cladding mode can be harmful even if it is
too lossy to propagate through the entire length of the waveguide by
itself. Cladding modes are continuously excited and reconvert to core
modes throughout the entire length of the waveguide so that their
presence is undesirable not only at the end of the waveguide but through-
out the entire length of the guide. It is thus desirable to ensure cladding
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mode losses far higher than the losses that appear exeessive if they
should occur for core modes.

A very effective way of suppressing cladding modes would be to
provide the waveguides of the cable with a surrounding medium whose
index is higher than that of the cladding. In this case the light can no
longer be trapped in the cladding but would rapidly escape into the
surrounding medium. However, if it were not attenuated there it would
still be harmful since some of it can scatter back into guided modes and
some of it may reach the detectors at the end of the guide giving rise to
crosstalk and delay distortion.

The next best thing, therefore, is designing a surrounding medium or
jacket with a refractive index whose real part nearly equals the index of
the cladding but which is sufficiently lossy to attenuate power that tries
to travel in it. This paper tries to provide the design criteria necessary to
build effective lossy jackets for the suppression of cladding modes.

II. CLADDING MODE LOSS FORMULA

Our interest is, of course, directed toward the cladding modes of
round optical fibers. In fact, the formula for core mode losses in round
optical fibers provided in Ref. 3 can be used to calculate cladding mode
losses in fibers with infinitely thick jacket by letting the refractive
indices of cladding and surrounding medium coincide and by shrinking
the cladding thickness to zero. However, a discussion of the cladding
mode losses for round optical fibers with finite jacket thickness is
complicated due to the complexity of the round fiber equation. As
always, the slab waveguide is much easier to treat than the round
optical fiber. Results obtained for the slab waveguide model are ap-
plicable to the round fiber at least as order of magnitude estimates.
Since order of magnitude estimates are all that we need in the present
situation and since the formulas for the slab waveguide are so much
easier to evaluate we shall base our discussion of cladding mode losses on
the slab waveguide model.

The slab waveguide model to be studied is schematically shown in
Fig. 1. We ignore the core of the waveguide since it does not contribute
appreciably to the propagation behavior of the cladding modes. The
refractive index of the fiber core is so close to the refractive index of the
cladding in most fibers of interest for communications purposes that we
can ignore the core altogether. The cladding mode losses are caused by
the fact that the reflection of the electromagnetic energy at the boundary
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Fig. 1—Sketch of a dielectric waveguide (core not shown) with a lossy jacket.

between cladding and jacket is not 100 percent efficient. It is thus the
plane wave reflection coefficient at the cladding jacket interface that
determines the cladding mode losses. The reflection coefficient is higher
for waves whose electric field vector is polarized parallel to the dielectric
interface (TE modes) compared to waves whose magnetic vector is
parallel to the interface (TM modes). The modes with the higher
reflection coefficient have lower loss. The TE modes have lower loss
than the TM modes. It is thus sufficient to study TE modes since the
TM mode losses must be higher. A design that succeeds in suppressing
TE modes does suppress TM modes even more effectively.

In order to obtain the mode losses for the structure shown in Fig. 1 we
study the reflection coefficient of a plane wave incident on the structure
shown in Fig. 2. The electric field vector is given by the equations:

B, = At 4 BT g <0, 1)
E,= C'™' + Fe T 0L 24, 2
E, = Ge'®te? A<z < o, 3)

The time dependent factor exp (fwt) has been suppressed. The param-
eters «, o, and p are defined by the equations:

= @ik — ), @
o = (mk’ — B}, (5)
p = (mik* — B}, (6)

with
k= w(epo)? = 27/ . )
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The magnetic field components are obtained from FE, with the help of
_t 9E, _ i 9B,

’

H, = — @®

wyo 02 T wpe 9T

The boundary conditions at the two dielectric interfaces determine the
relations between the amplitude coefficients:

a(k — p) cos cA + i(kp — ¢°) sin cA

B = o 1) cos oh + ifep + o) sin o8 ©)
C=T0 cosxgz-:?(e,::_;_ %) sin od A, (10)
F=%+» coggA_-}—lz"é,:::_ Fsmad (11)
G = 2kge’” 4 -

ok + p) cos oA + i(kp + A®) sin oA

The field that is deseribed by the equations (1) through (12) is the
cladding mode field of the waveguide. The type of mode that actually
results depends on the width 2D of the guide and on the angle at which
the plane wave travels in the slab; that is, it depends on the ratio «/B.
TFor the calculation of the mode losses we do not need to know this ratio
very accurately. It is clear, however, that lossless modes satisfy the

<~ A —>

Fig. 2—This diagram shows the interference between an incident wave and the
wave that has penetrated into the jacket.
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requirement | 4 | = | B |. The transverse field distribution in the slab at
—D = x £ D is thus a standing wave. Sinee it is very hard to achieve
a large loss coefficient « for the cladding modes we can assume a << 1/A
and have

|A|—1B]
— T KL 13
4] (13)
In order to obtain the mode loss, we calculate the power flow along the
waveguide axis,

4]

E,H* dx} = Re {—B— f | E, * dx}- (14)

1
P, = Re {—2 Son

—2D
Re indicates the real part of the quantity in brackets. The integral is
extended only over the cladding region of the waveguide assuming that
most of the power is contained in this region. For reasonably low loss
this condition is satisfied. Using (1) and (13) we obtain

Pl 4p, (15)

Wi

The amount of power at the cladding boundary that flows per unit area
out of the waveguide is given by

_ 177 I7% _ "_L_A § ( _ B 2).
S. = Re (3F,H*}._, = Som 1 I (16)
The power loss coeflicient 2« (@ is the amplitude loss coefficient) is
% = %f— (17)

The factor 2 on the right-hand side of (17) takes account of the fact that
equal amounts of power are lost at the cladding jacket interface on either
side of the waveguide. Substitution of (15) and (16) into (17) results in
the desired formula for the loss of the cladding modes:

K B 2)
= 28D ( al) 18
The coefficient B/A is obtained from (9). We consider only the case that

the medium outside of the waveguide jacket has the lowest refractive
index, n; < | n. | and 13 < n,. We thus have

p = —1y (19)

200

-

with
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v = (8" — nik’)? (20)

being a real quantity. We set
c=u— 1w (21)

with u and v both real and positive. In the limit of an infinitely thick
jacket, A — o, we obtain from (9) and (18)
_ 22U .
T BDW® + v + &° + 2ux)
It is interesting to consider two different alternatives. First we assume
that

2a

(22)

Re(nik®) > 8°. (23)
The refractive index of the jacket material is a complex number

O
Ny =n,—z?-

a; is the amplitude loss coefficient of a plane wave traveling in the
jacket. We assume

(24

n, > (25)
and obtain from (5) and (21)
w = [Ho5 + (oo + 4nke))') (26)
and
v = [—}os + 305 + 4nik’e)'] @7)
with '
o = (k" — B9 (28)

It is apparent from (22) that « vanishes for v = 0 and for v = . This
indicates that 2a must assume a maximum as a funection of u. By differ-
entiation of (22) we find that the maximum is located at

Umax = (€ + 07 (29)

The maximum value 2a,,,, that corresponds to (29) is given by

K2
BD[(¢ + o)) +«]

In order to express the condition for u,,, in terms of the refractive

(30)

20mx =
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indices of the waveguide we square (29) and substitute (26) on the
left-hand side and (27) on the right-hand side of the squared equation.
We obtain the solution

7o = K. (1)

Comparison of (4) and (28) shows that the maximum cladding mode loss
for an infinitely thick jacket is obtained if

N, = Ny, (32)

that is, for the case that the real part of the refractive index of the
jacket is equal to the refractive index of the cladding. The requirement
of an infinite jacket thickness means only that the effect of the boundary
between the jacket and the outside medium must be negligible. As a
practical matter this condition is satisfied if the product o;A is larger
than about 10 dB. For an infinitely wide jacket and as long as the
condition (23) holds we obtain maximum loss for vanishing v, that is, in
the case of a lossless jacket. Increasing the loss of the jacket decreases
the loss of the cladding modes slightly as long as » remains smaller than «.
For very high losses of the jacket material the cladding mode loss de-
creases with increasing jacket loss. This consideration shows that the
loss of the jacket material must not be made too high.
In the opposite case

Re(nik") < ¢’ (33)
we obtain
w=[—} 8" + 3(s" + 4nika))'! 34)
and
v = (38 + 36" + i) 35)
with
5= (8" — ik (36)

For vanishing loss in the jacket we now obtain u = 0 so that the cladding
modes propagate without loss in this case. The waves are totally in-
ternally reflected at the interface between cladding and jacket. The
condition for u,,. given by (29) can now not be satisfied. For numerical
calculation we shall always assume that the cladding modes are so
tightly guided that we can use

B = nk. (37)



SUPPRESSING CLADDING MODES 2573
Far from cutoff the values for « are obtained from®
«D = (v + 1)% (38)

with integer values of v. Even integers of » belong to even modes while
odd integers belong to odd modes. Equations (22) and (30) show that the
lowest order mode (v = 0) propagates with the lowest loss. Since we are
interested in maximizing the losses of all the modes it is thus sufficient to
consider the loss of the lowest order even TE mode and use

™
kD = 5 (39)

For finite-thickness of the jacket material and sufficiently low loss the
cladding mode losses vary as a function of cladding thickness A. Figures 3
and 4 show these loss fluctuations for the case kD = 50, n, = 1.6,
n, = 1.65, and ns = 1. The jacket loss was assumed to be 2«;D = 0.1
dB in case of Fig. 3 and 1 dB in case of Fig. 4. These loss variations as a
function of jacket thickness complicate the design of an optimum
jacket. Since we need a certain minimum loss for the effective suppression
of all cladding modes we are interested in the minimum values of the
loss. It is thus necessary to find the position of the loss minima of
equation (18). Since it is difficult to find the minimum values math-
ematically from the loss expression we use a physical argument based on
ray optics for the case n, > n,.

Figure 2 shows the geometry of the problem. Minimum loss is obtained
if the light rays that are reflected from the cladding-jacket boundary
add in phase to the light rays that penetrate into the jacket, are reflected
at its outer boundary, and reenter the cladding. The condition for
minimum cladding mode loss can thus be stated as follows

(nkn 4 ¢2) — (nikE + ¢1) = 2vm. (40)

The distance from point A’ to point D’ in Fig. 2 is £, the distance from
point B’ to C’ and on to D’ is 5, and the phase angles ¢, and ¢, are the
additional phase shifts that the wave suffers on reflection from the inter-
face between cladding and jacket and between jacket and the outside
medium. The number » must be an integer. Using simple geometry we
obtain

2A
sin 6

n = (41

The angle of the incident ray is shown vastly exaggerated in Fig. 2.
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Fig. 3—Fluctuation of cladding mode loss as a function of jacket thickness A.
(D = cladding thickness; 2«; = power loss coefficient of the jacket material; & =
propagation constant of free space; ni, n,, and n; are respectively the refractive
indices of the cladding, the (real part) of the jacket, and the outside medium).
kD = 50, 2a;D = 0.1 dB, n1 = 1.6, n, = 1.65, n; = 1.0.

For low-order cladding modes the angle between the incident ray and
the interface is very nearly zero. We thus obtain from Snell’s law
213
; - _m |t
sin 6 = [ nf:l (42)

Because the input ray intercepts the interface at grazing angles we can
approximate ¢ as follows

£ = 2A cot 0 = 20 —5— 2t (43)

n? — ni]?

The additional phase angle on reflection from the optically denser jacket
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is
¢ = . (44)

The phase angle ¢, is more complicated. From the Fresnel formulas for
the transmission of a plane wave across a dielectric interface we obtain

$; = —2 arctan [(ﬂ%_ﬂ_s_)_’] (45)

(o — i)t

Collecting all these equations we obtain from (40) the jacket width that
minimizes the cladding mode loss:

2 2%
’V7r-|—7§r—[— arctan {(ﬂ; m)}

(’I'L, - nf)%
Apin = 2 2\T :
k(n: — m)

(46)
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Fig. 4—Same as Fig. 3 except that 2¢;D = 1 dB.
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Numerical values of (46) agree with the position of the minima appearing
in Figs. 3 and 4.

III. NUMERICAL RESULTS

The theory presented on the preceding pages contains the information
for the design of lossy jackets for the purpose of suppressing cladding
modes. Because of the large number of independent parameters entering
equations (9) and (18) it is impossible to draw curves covering all
possible cases of interest. We are thus limiting the discussion of numerical
results to a few cases hoping to show the trend and the order of magni-
tude of the cladding mode losses that may be obtainable.

All curves are calculated for a cladding index n; = 1.6 and an index
of ng = 1 for the surrounding medium. Most curves apply to the case
kD = 50. Those curves are drawn as solid lines. Broken curves are
examples for kD = 100 and dash-dotted curves apply to kD = 500. A
comparison between these three £D values gives some indication of the
dependence of the cladding mode losses on the kD parameter.

The cladding mode loss 2aD for a guide length equal to the half
width D of the cladding is shown in Fig. 5 for n,/n, > 1 as a function of
the jacket loss 2a;A. (D = cladding half width, A = jacket thickness,
both losses are expressed in dB). Figure 5 was computed from (9), (18),
and (46) for the minima of the fluctuating loss curves (compare Figs. 3
and 4). It is important to remember that the first loss minimum occurs
for An;, of (46) for v = 0. The curves of Fig. 5 do not apply to values of
the jacket thickness A that are much smaller than this minimum thick-
ness. The loss curves shown in Figs. 3 and 4 drop off very rapidly for A
values that are smaller than the value at the first minimum so that the
mode losses obtained from Fig. 5 would be much higher than the actual
losses if the figure were applied to A values that are smaller than the
first minimum. For jackets that are thicker than the minimum value
(46) with » = 0 the curves of Fig. 5 show the lowest possible cladding
mode loss. The loss curves shown in IFig. 5 are correct for small values
of 2a;D (note that we have just replaced A with D). As long as it stays
below a certain critical value the curves are independent of 2«;D. For
larger values the cladding mode losses decrease with increasing 2e;D.
The critical value is different for each curve shown in Fig. 5. The depen-
dence of the cladding mode losses on 2«;D is shown in Fig. 6. This
figure presents the values of the cladding mode losses for infinite jacket
thickness A as a function of 2«;D. It is apparent from Fig. 5 that the
cladding mode losses become independent of the jacket thickness for
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Fig. 5—The minimum cladding mode loss as a function of the jacket loss 2a;A
for different values of n./n; > 1.

sufficiently large values of A. Figure 6 shows the mode losses of Tig. 5
after they have leveled off (A — ). It can be seen that the cladding
mode losses become less sensitive to the value of 2¢;D for increasing
values of the jacket-to-cladding index ratio n,/n,. However, the loss
curves for n,/n; = 1.001 become dependent on the jacket loss coefficient
a; already for 2a;D = 1 dB. It is important to keep this in mind when
using Fig. 5.

Comparison of the dash-dotted, broken, and solid lines in Figs. 5 and 6
shows that the cladding mode loss depends on the kD parameter as
(kD)* for A — «. It is very hard to see this relation from (18); however
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Fig. 6—Cladding mode losses for infinitely thick jacket, A — =, as functions
of the jacket loss parameter 2a;D for n,/n; > 1.

it can be seen from (22) and (26) for small values of v. It is interesting to
observe that the maximum loss (30) depends on kD only as (kD)™".

In order to obtain a feeling for the absolute loss values that can be
achieved let us assume that the cladding half thickness is D = 10um.
The loss factor 2aD = 107° dB thus corresponds to a cladding mode loss
of 20 = 1 dB/m. Cladding mode losses well in excess of 1 dB/m are thus
easily obtainable. In fact it appears possible to design jackets that
provide cladding mode losses of 100 to 1000 dB/m.

So far we have considered jackets with a refractive index whose real
part is larger than the index of the cladding material. If the real part of
the jacket index is smaller than the cladding index, n,/n, < 1, the
cladding mode losses are no longer even approximately independent of
2a;D. The loss curves can thus not be drawn as functions of 2a;A.
Tigures 7, 8, and 9 are representations of the cladding mode losses for
n,/n; < 1 as functions of A/D. The parameter 2a,D is used to label the
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different curves in each figure. Comparison shows that for equal values
of kD and 2«;D the loss curves are nearly identical for all three figures
for low values of A/D. The leveling off of the curves for large values of
A/D is, however, quite different for each value of #n,/n,. The dependence
of the cladding mode loss for n,/n, < 1 as a function of 2«a;D for A —
is shown in Tig. 10. The loss curves of Fig. 10 show maxima that shift
as a function of n,/n;. The mode loss 2aD is not an oscillating function of
the jacket thickness if n,/n, < 1. The curves shown in Figs. 7 through 9
are thus not the loss minima but the actual loss values as functions of
A/D.

The dependence on the kD parameter for n,/n; < 1 can be seen from

2a5D=1oodE/ / //

2aD IN DECIBELS
3
N
N
N
N

45 / / V4
o /
. // / //
0.1
. // y
A/
8 // / n, = 1.6 -
6 A -
4 // / L =0.999 | |
. // / kD = 50
10°6 /
2 4 6 2 4 6 - 2 4q 6

Fig. 7—Cladding mode losses as functions of the jacket thickness for n./n; = 0.999.
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the figures to be as (kD)~° for A — o while the dependence for small
values of A/D is as (kD)™>.

Even for jackets with a refractive index whose real part is smaller
than the cladding index, losses well in excess of 1 dB/m are obtainable.
However a comparison of the two ecases, n./n, > 1 and n,/n; < 1,
shows that jackets with a refractive index higher than the cladding
index provide more losses to the cladding modes.

Lossy jackets need not be very thick to be effective. For example, for
kD = 50 and A/D = 0.1 (for D = 10um this would correspond to a
jacket lum thick), we could choose n,/n; = 1.1 and obtain a cladding -
mode loss of 2aD = 2 X 107> dB (or 200 dB/m) with a total jacket loss
of 2a;A = 1dB or 2«;D = 10 dB. Figure 6 shows that the curve with
n,/n; = 1.1 is still constant at 2a;D = 10 dB so that Fig. 5 is applicable
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for a jacket loss of that magnitude. Increasing the jacket thickness to
much larger values would triple the cladding mode losses (in dB) in this
case. An increase of kD to kD = 500 reduces the loss to 7.2 X 107° dB
(or 7.2 dB/m).

IV. CONCLUSIONS

Losses for cladding modes have been caleulated with the help of a
slab waveguide model with a lossy jacket. It has been found that the
cladding mode losses are maximized if the real part of the refractive
index of the jacket material equals the refractive index of the cladding
material. However, high cladding mode losses can be achieved with
jackets whose real part of the refractive index is either lower or higher
than that of the cladding material. Losses in excess of 1 dB/m are easily
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Fig. 9—Cladding mode losses as functions of the jacket thickness for n,/n = 0.95.
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achieved. A careful design should make it possible to obtain cladding
mode losses between 100 and even up to 1000 dB/m, depending on the
kD value at which the fiber is operated.
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Improved Intersymbol Interference
Error Bounds in Digital Systems

By Y.S. YEH and E. Y. HO
(Manuseript received April 21, 1971)

A thorough solution to the problem of determining the error rate of a
digital communication system with intersymbol inlerference and additive
Gaussian notse is presented in this paper. The solution achieves for the
first time a combination of computational simplicity and a high degree
of accuracy, and ts obtained by deriving tight upper and lower bounds
on the error rate. It is shown that, for a system with a normalized peak
distortion less than unaity, these bounds can be made to differ by an arbi-
trarily small amount. The numerical evaluation of the bounds takes less
than one second on the GE-Mark II time-sharing system for almost all
the cases.

Examples are giwen for 2M-ary digital systems to demonstrate the
accuracy and computational efficiency of our method. The results show
that our estimates of error rate are generally orders of magnitude belter
than the Chernoff bound. For example, in the case of an ideal bandlimited
system [(sin t)/t pulse shape] with a signal-to-noise raiio of 16 dB and a
sampling instant deviation of 0.05 from the optimum value, the lower
and upper bounds on the error rate are 1.1 X 107° and 1.2 X 107%, respec-
tively.

This method can also be applied to the calculation of the performance
of certain phase-shift-keyed systems and certain systems with co-channel
wnterference.

I. INTRODUCTION

In many cases the transmission efficiency of a digital system is
largely limited by intersymbol interference rather than by additive
noise. Intersymbol interference may result from imperfect design of
the filters, distortion in the transmission channel, nonideal sampling
instant, or nonideal demodulating carrier phase. In analyzing such a
digital data system, it is important to determine the system error rate
due to intersymbol interference and additive noise.

2585
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Various methods'™ to evaluate the error rate have been proposed.
They provide either a loose upper bound of the error rate or the error
rate of a channel with truncated impulse response.

In this paper we present a simple method to evaluate both an upper
and a lower bound of the error rate without invoking the finite pulse-
train approximation. Furthermore, it is shown that for a system with
a normalized peak distortion less than unity, the upper and lower
bounds can be made arbitrarily close thus obtaining an accurate estimate
of the error rate of the system. This method can be applied to 2M-ary
AM and coherent phase-shift-keyed systems. }

The data system model will be described briefly in Section II. Various
proposed techniques to evaluate the error probability and their draw-
backs are discussed in Section III. In Section IV, we will present new
upper and lower bounds and the computation of the bounds by a series
expansion, Applications and the convergence properties of the bounds
are described in Section V. Throughout, additive Gaussian noise and
independence of information digits are assumed.

II. BRIEF DESCRIPTION OF THE SYSTEM

A simplified block diagram of a digital AM data system is shown in
TFig. 1. We assume that an impulse §(¢) having amplitude @, is trans-
mitted through the channel every T seconds. The system transfer
function is

R(w) = S(w)T(w)E(w). (1)

In the absence of channel noise, a sequence of input signals,

0

2. a8 — 1), )

l=—c0

will generate a corresponding output sequence,

0

> ar(t — 1), 3)

l=—c0

where 7(t) is the Fourier transform of R(w), {a,} is a.sequence of in-
dependent random variables, and o, = =£1, £3, --- & 2M — 1)
with equal probability for all integers, I. We also assume that additive
Gaussian noise is present in the system. Thus the corrupted received
sequence at the input to the receiver detector is

0

y() = X ar(t — IT) + (1), )

l=—w
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Fig. 1—Simplified block diagram of a 2M-ary data system.

where n(t) is additive Gaussian noise with power o° watts. At the
detector, y(t) is sampled every T seconds to determine the amplitude
of the transmitted signal. At sampling time ¢, , the sampled signal is

Zl(to) = aor(to) + 12 aﬂ'(to - + n(t0)~ (5)

10

The first term is the desired signal while the second and the third
terms represent the intersymbol interference and the Gaussian noise
respectively.

The set of slicing levels is'

0, £2r(ty), £4r(to), «+-, =2m — 2)r(ty). (6)

Based on the decision levels given by equation (6), for a particular
transmitted signal level, a, , the conditional error probability is

Ply(ts) =z —2(m — Dr(ty)}, a = —(2m — 1)
Ply(ty) < 2(m — Dr(to)}, 4o = 2m — 1

P.(e/a,) = @)
Pily(to) = (a0 + Dr()1Uly(t) = (@0 — Drta)l},
ap, # £(2m — 1),
where AUB is the union of the events A and B.
Substituting equation (5) into (7), we obtain
P{Y ar(ty — IT) 4+ n(ty) = ()}, a = —@m — 1)

1#0

P{Y ar(ty = IT) +n(t) £ —r(t)}, a = 2m — 1
P.(e/ar) = 0 ®
P{[Z an(to — IT) + n(te) = r(te)|U

~[Z ar(ty — I +n(ty) £ —r(ty)]}, ap & £2m — 1).
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Since D0 air(t, — IT) and n(tg) are equally likely to be positive or
negative, equation (8) reduces to

rP{ S ar(te — IT) 4+ n(tey) = r(t)}, ao= £2Cm — 1)
P,(e/a;) = e )
2P awr(ty — IT) 4+ n(ty) = r(t)}, ao # =(2m — 1).

1#0

The error rate of the system is

P, = Z P.(e/ao)P,(ao)

all ao

[(@m — D/mIP{ 3 aw(te — IT) + n(te) Z r(t)}.  (10)

We notice that in equation (10) the variables m, a;, , and n(f,) have
already been defined. The sequence r({, — I7') is assumed to be known*
in the following sense:

r(ty — IT) is finite and known Vle Sy, (11)
where Sy is a set of N + 1 distinet integers (including ! = 0) and’
:L;v Yty — IT) = o < . (12)

Define
X = Y anr(t, — IT). (13)

1#0

From equation (12) we conclude that the infinite sum X converges
absolutely to a random variable and equation (10) can be alternately
written as

0

Pof et [ e =y = () + XT/20 dy PO (1)

all X -

III. REVIEW OF EXISTING METHODS

The existing methods of evaluating equation (10) can be divided
into the following categories.

3.1 Worst Case Estimate

A worst case sequence’ or “eye pattern’” analysis is frequently used
to analyze a data system. The error probability is estimated by setting

* The sequence r(t, — [T') is either experimentally determined or calculated
through the system transfer function.

t ¢, is obtained through the application of Parseval’s theorem to equivalent
Nyquist pulse (p. 47, Ref. 1).
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> w0 @r(ts — IT) to its worst case value in equation (10). In many
cases, this estimate is exceedingly pessimistic since the occurrence of
such a worst case sequence is extremely rare.

3.2. Chernoff Bound

Recently, Saltzberg® and Lugannani® applied the Chebyshev in-
equality to equation (10) to obtain the upper bound on error prob-
ability. We have shown in Ref. 6 that these upper bounds are in many
cases still too pessimistic by orders of magnitude.

3.3. Finite Truncated Pulse Train Approximation*®

When r(¢) decreases rapidly relative to the sampling period T, we
may approximate the channel by a finitely truncated pulse train.
The error rate can be calculated by enumerating all the possible com-
binations of intersymbol interference. However, since each calculation
of the conditional error probability takes a great deal of computer
time, the number of m" must be held to several thousand.' This limita-
tion leads to a poor approximation of the true channel, and the error
probability so obtained is not very useful. Recently, Hill* has reported
that by computer simulation of the density function of Xy , the com-
putation time can be reduced.

3.4 Series Expansion Method

Recently, Ho and Yeh® and, independently, Shimbo and Celebiler’
discovered that equation (10) can be calculated in terms of an ab-
solutely convergent series involving moments of the intersymbol
interference.* Furthermore, the moments can be obtained readily
through recurrence relations, and the computation time is greatly
reduced. A better approximation of the real channel can be obtained
by increasing the number of terms in the pulse train approximation.
However, the error in the P, estimate introduced by the truncation
of the system impulse response is still unknown.

IV. ERROR BOUNDS AND COMPUTATION TECHNIQUES

In this section we shall derive new upper and lower bounds on the
error rates and define the range of applicability of our method. No
truncation of the intersymbol interference is required. Furthermore,
this method will give an accurate estimate of the error rate with a
negligible amount of computation time.

* Only truncated pulse train approximations are considered.
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4.1 Upper and Lower Bound of P,

Let the intersymbol interference be partitioned into two disjoint
sets where

Xy = Z ay(ty, — T, (15a)
10
leSw
and
Xz = 2 awr(te — IT). (15b)
l¢gSN

Equation (14) can be rewritten as

P = l@m—1/m [ / e

[ e (=l = 1) + X + Xal'/26%) dy dFCX) dF(X.

(16)
Proposition 1: P, is lower bounded by

P, = l@m—1/m [ (@roy

all Xn

[ ‘; oxp [—{y — r(ts) + Xx}%/26%) dy dF(X,),  (17)

provided the truncated system has an “open eye pattern,” i.e.,
r(te) — l; |r(te — IT) | = 0. (18)
ESN
1540

Proof: The complementary error function is concave upwards for

negative values of its argument and satisfies the following relationship:
Lerfe (2 + a) + Lerfe 2 — a) = erfe (2), 2z = 0. (19)

Since X, is symmetrically distributed around zero and X, satisfies
equation (18), we obtain, by applying equation (19), that

fmxn f_ow exp {—[y — r(t) + X + Xal"/20°} dy dF(Xs)

= f_w exp {—[y — r(ts) + XyI°/20°} dy. (20)

Substituting equation (20) into equation (16), we obtain the lower
bound of equation (17).
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Proposition 2: P, is upper bounded by

Po=[@n—1/ml [ (o)

[ e (=ly = r(e) + Xy P/261) dy dF(X,
where .
of = o’(1 — op/a”)7,
oz = (1/3)2m — 1)(2m + o},
and o2 is defined in equation (12).
Proof: Applying the following inequality,
exp {—Xz/20%} = 1,
to equation (16), we obtain
Posten—vm [ [ [ @
all Xy Y- Yall Xg
exp {—[y — r(to) + Xy]*/20")
cexp {—[y — r(to) + Xn1Xr/o"} dF(Xz) dy dF(Xy).
Knowing from equation (15b),

Xz = 2 ar(t, — IT),

l§SN

the average over X, can be performed, we thus have
[ e (=l = 1) + XalXa/o*} dF(X)

= H (exp {_[y - T(to) + XN]alT(tO - ZT)/62}>01 )

l§SN
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(21a)

(21Db)
(21¢)

(22)

(23)

(24a)

where (g(z)), means expectation of g(z). It has been shown* that the

following inequality holds.
(exp {a;x}),, < exp (2%7,/2) = exp {2°@m — 1)(2m + 1)/6}.
Substituting equation (24b) into (24a) we obtain

[ e (=ly = r(6) + XulXa/o") dF(X)

< exp {[y — r(t) + Xy]'or/20"},
* Appendix of Ref. 6.

(24b)

(24¢)
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where o7 is given by equation (21c¢). Substituting equation (24¢) into
(23) we obtain the upper bound of equation (21a).

It is interesting to note that the upper bound differs from the lower
bound only through a modification of the noise power by the truncated
terms. For a system with a peak distortion* less than unity, by taking
the set Sy large enough ¢ approaches zero, o7 approaches ¢°, and the
upper bound converges to the lower bound. Therefore, the exact error
probability can be located within a small range. The computation
time involved for large enough N is rather minimal when a digital
computer is used as will be illustrated in Section V.

4.2 Evaluation of Py, and P,

We have already shown in Ref. 6 that equations (17) and (21) can
be expanded into an absolutely convergent series involving moments
of the truncated intersymbol interference. '

The series expansion of equation (17) is

Pp = [2m — 1)/m] erfe [_T(to)/@%‘?’)]
+ [(@m — 1)/m)] ; (@171 (26%) @)™ exp (—1°(t)/26%)

'sz—l(r(to)/(Q%U))Mzk ’ : 