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On the Interaction of Roundoff Noise
and Dynamic Range in Digital Filters*

By LELAND B. JACKSON
(Manuseript received October 22, 1969)

The interaction between the roundoff-noise output from a digital filter
and the associated dynamic-range limitations is investigated for the case
of uncorrelated rounding errors from sample to sample and from one error
source to another. The required dynamic-range constraints are derived in
terms of L, norms of the input-signal spectrum and the transfer responses
to selected nodes within the filter. The concept of “transpose configurations”
1s introduced and is found to be quite useful in digital-filter synthesis; for
although such configurations have identical transfer functions, their round-
off-noise outputs and dynamic-range limitalions can be quite different,
i general. Two transpose configurations for the direct form of a digital
filter are used to illustrate these results.

I. INTRODUCTION

With the rapid development of digital integrated circuits in the 1960’s
and the potential for large-scale integration (LSI) of these circuits in
the 1970’s, digital signal processing has become much more than a tool
for the simulation of analog systems or a technique for the implementa-

*This paper is taken in part from a thesis submitted by Leland B. Jackson

in partial fulfillment of the requirements for the degree of Doctor of Science in
the Department of Electrical Engineering at Stevens Institute of Technology.
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tion of very complex and costly one-of-a-kind systems alone. The
traditional advantages of digital systems, such as high accuracy, stable
parameter values, and straight-forward realization, have been supple-
mented through the use of integrated circuits by the additional advant-
ages of high reliability, small circuit size, and ever-decreasing cost.
As a result, it now appears that many signal processing systems which
have been in the exclusive domain of analog circuits may in the future
be implemented using digital circuits; while other proposed systems
which could not be implemented at all because of the practical limita-
tions of analog circuits may now be realized with digital circuits.”

The key element in most of these new signal-processing systems is
the digital filter. The term ‘‘digital filter”” here denotes a time-invariant,
discrete or sampled-data filter with finite accuracy in the representation
of all data and parameter values.’”® That is, all data and parameters
within the filter are “‘quantized’ to a finite set of allowable values with,
in general, some form of error being incurred as a result of the quantiza-
tion process. Implicit in this quantization is a maximum value or set
of maximum values for the magnitudes of these data and parameters
which, in the case of the data, is usually referred to as the “dynamic
range” of the filter.

Without the above quantization effects, linear discrete filters could
be implemented exactly. Of course, one very significant feature of
digital signal processing is that arbitrarily high accuracy can, in fact,
be maintained once the initial analog-to-digital (A-D) conversion (if
any) has taken place. However, there are still practical limitations to
the accuracy of any physical system, and often it is desirable to mini-
mize the accuracy of the implementation (while still satisfying the
system specifications) in order to minimize the cost of the system. Hence,
a thorough understanding of quantization errors in digital filters is
quite important if the full potential of digital signal processing is ever
to be realized.

II. QUANTIZATION ERRORS IN DIGITAL FILTERS

The specific sources of quantization error in the implementation and
operation of a digital filter are as follows:

(7) The filter coefficients (multiplying constants) must be quantized
to some finite number of digits (usually binary digits, or bits).
(7) The input samples to the filter must also be quantized to a
finite number of digits.
(#t) The products of the multiplications (of data by coefficients)
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within the filter must usually be rounded or truncated to a smaller
number of digits.

(7v) When floating-point arithmetic is used, rounding or truncation
must usually be performed before or after additions as well.

The first source of error above is deterministic and straightforward
to analyze in that the filter characteristics must simply be recomputed
to reflect the (small) changes in the filter coefficients due to quantizing.®"’
However, the inclusion of coefficient quantization in the initial filter
synthesis procedure in order to minimize (in some sense) the resulting
filter complexity produces a complex problem in nonlinear integer
programming which has only begun to be investigated.

The second source of error is often referred to as “‘quantization noise”.
It is inherent in any A-D conversion process and has been studied in
great depth.’ Hence, input quantization has not been included in our
investigation, except as it relates to other error sources of interest.

The third and fourth error sources are similar to the second since they
also involve quantization of the data, but they differ in two respects:
(1) The data to be quantized is already digital in form, and (ii) the round-
ing or truncation of the data takes place at various points within the
filter, not just at its input. To distinguish these sources of error from the
input quantization noise, the resulting error processes will be referred
to as “roundoff noise” (to be used generically, whether rounding or
truncation is actually employed). Because of (ii), the roundoff noise is
potentially much larger than the input quantization noise, and it is one
of the prineipal factors which determine the complexity of the digital
filter implementation, especially when special-purpose hardware is used.

There are three variables in the filter implementation which deter-
mine the level and character of the roundoff noise for a given input signal:

(Z) the number of digits (bits) used to represent the data within
the filter,
(%) the “mode” of arithmetic employed (that is, fixed-point or
floating-point), and
(#72) the circuit configuration of the digital filter. The number of
digits in the data may be thought of as determining either the quantiza-
tion step size or the dynamic range of the filter. We choose here the
latter interpretation in order to have the same step size for all filters.
Therefore, with this interpretation, the number of data digits does not
affect the level of the roundoff noise directly, but rather it limits the
maximum allowable signal level and hence the realizable signal-to-noise
ratio. Data within the filter must, of course, be properly ‘‘scaled” if the
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maximum signal-to-noise ratio is to be maintained without exceeding the
dynamic-range limitations. Among the principal results reported here
are the determination of appropriate scaling for certain important classes
of input signals and the calculation of the effect of this scaling on the
output roundoff noise.

The output roundoff noise from a floating-point digital filter is usually
(but not always) less than that from a fixed-point filter with the same
total number of data digits because of the automatic scaling provided
by floating-point arithmetic.’''* However, since floating-point arithmetic
is significantly more complex and costly to implement, most special-
purpose digital filters have been, and will probably continue to be, con-
structed with fixed-point hardware. Hence, we have considered only
fixed-point digital filters in this work although much of the analysis
could be adapted to floating-point filters. Oppenheim has recently
proposed another interesting mode of arithmetic for digital filter im-
plementation, called ‘‘block-floating-point’’, which provides a simplified
form of automatic scaling of the filter data.'* As would be expected, the
performance of block-floating-point appears to lie somewhere between
those of fixed-point and of floating-point.

The third variable in the implementation of a digital filter, that of
circuit configuration, is the principal factor determining the character
(spectrum) of the output roundoff noise and, along with mode of the
arithmetic, ultimately determines the number of data digits required to
satisfy the performance specifications. In fact, the key step in the syn-
thesis of a digital filter is the selection of an appropriate configuration
for the digital circuit. There are a multitude of equivalent circuit con-
figurations for any given linear discrete filter (whose transfer function
is expressible as a rational fraction in 2); but in the implementation of the
corresponding digital filter, these configurations are no longer equivalent,
in general, because of the effects of coefficient quantization and roundoff
noise. As noted previously, the effects of coefficient quantization are
deterministic and can thus be accounted for exactly as a (typically
small) change in the transfer function of the discrete filter. Therefore,
assuming that the coefficients for the configurations under consideration
have been (or can be) quantized satisfactorily, the choice between these
configurations is then determined by the level and character of their
output roundoff noise. As we will show, there can be very significant
differences between the roundoff-noise outputs of otherwise equivalent
digital filter configurations.

The content and complexity of any analysis of roundoff noise are
determined to a large extent by the assumed correlation between round-
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off errors. If these errors may be assumed to be uncorrelated from sample
to sample and from multiplier (or other rounding point) to multiplier,
then the roundoff-noise analysis is relatively straightforward, and the
results are independent of the exact nature of the input signal to the
filter. If, on the other hand, uncorrelated errors may not be assumed,
then the analysis is much more complex, and the results are generally
dependent on the particular input signal or class of input signals. This
paper is concerned exclusively with the uncorrelated-error case because
this assumption seems to be valid for most filters with input signals of
reasonable amplitude and spectral content. Even in this case, the in-
clusion of the associated dynamic-range constraints makes the analysis
reasonably involved and the corresponding synthesis problem quite
complex.

Although the generic term ‘‘roundoff noise’” has been used to include
the case of truncation as well as rounding, we actually econcentrate on
the rounding case. As long as the assumption of uncorrelated errors can
be made, our results are applicable to either case, with the error variance
for truncation being four times that for rounding. However, as the
input signals become less “random’, the uncorrelated-error assumption
tends to break down for truncation more readily than for rounding.
Hence, additional care must be exercised in applying these results to the
truncation case.

III. FILTER MODEL FOR UNCORRELATED-ROUNDOFF-NOISE ANALYSIS

The analyses appearing in the literature concerning roundoff noise
in digital filters usually employ the simplifying and often reasonable
assumption of uncorrelated roundoff errors from sample to sample and
from one error source (multiplier or other rounding point) to
another.”'*** This assumption is based on the intuitively plausible
and experimentally supported notion that for sufficiently large and
dynamie signals within the filter, the small roundoff error made at one
point in the network and/or in time should have little relationship to
(that is, correlation with) the roundoff error made at any other point
in the network and/or time. The advantage of assuming uncorrelated
errors from one sample to another is that the noise injected into the
filter by each rounding operation is then “white”’; while the advantage
of assuming uncorrelated error sources is that the output noise power
spectrum may then be computed as simply the superposition of the
(filtered) noise spectra due to the separate error sources.'” Experimental
results which support the validity of this assumption, even in the case
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of a single sinusoidal input, are presented in Ref. 1. In this section, we
introduce the notation and develop the analysis pertaining to uncor-
related roundoff noise for later use in investigating the synthesis of
digital filters.

Digital filter networks are composed of three basic elements: adders,
constant multipliers, and delays. The interconnection of these elements
into a particular network configuration is the key step in digital filter
synthesis. For our purposes here, we need only consider the network
as a directed graph, with the multipliers and delays being represented
by graph branches. The branch interconnection points, or nodes, will
be divided into two types: “summation nodes”, which correspond to
the adders and have multiple inputs and a single output, and “branch
nodes”’, which correspond to simple “wired” interconnections that have
a single input and one or more outputs.

A digital filter network may thus be represented as shown in Fig.
1. The input to and output from the filter at time ¢ = nT are denoted
by u(n) and y(n), respectively. The corresponding output from the
18 branch node is denoted by v;(n); while the roundoff error introduced
into the filter at the j* summation node is denoted by e;(n). Since
with fixed-point arithmetie, rounding is performed only after multiplica-
tions, non-zero roundoff errors are “input’” to the filter only at those
summation nodes which follow constant (non-integer) multiplier
branches, as depicted in Fig. 2.

s/ : Ny
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Fig. 1— General digital filter model.
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Tig. 2 — Constant multiplier with preceding branch node and succeeding sum-
mation node.

For a unit sample input to the filter at ¢ = 0 and no rounding [that is,
u(0) = 1, u(n) = 0forn # 0, and ¢;(n) = 0for all j and n], the resulting
output values y(n) and v;(n) for all n = 0 and all < are designated as
h(n) and f,;(n), respectively. Alternatively, for a unit sample input to
the 7t summation node and zero inputs otherwise [that is, e;(0) = 1,
e;(n) = 0forn # 0, and e,(n) = u(n) = 0 for all n and for k # j}, the
resulting output values y(n) for all » = 0 are denoted by g;(n). We
thus have the following transfer functions of interest, expressed in
z-transform form:

From filter input to output:

H*@z) = g hn)z". 6))
From filter input to 7t branch-node output:

Q) = 2 107 @
From j* summation-node input to filter output:

GO = T ol ®

These transfer functions are indicated in Fig. 1.
The frequency responses (Fourier transforms) corresponding to the
above transfer functions are given by *7°

H(w) = H*E""), 4@
Fi(w) = F¥°7), 6)
Gilw) = GE@E™7). ®)
This notation will be used throughout this paper. That is, for any
z-transform A*(z) which converges for |z| = 1, the corresponding

Fourier transform is given by

Aw) = A*(*T).
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If scaling has been included in the filter design in order to satisfy certain
dynamic-range constraints, then prime marks (*) are added to denote
this fact [for example, Fi(w), F#/(2)].

Each error source (rounding operation) within the filter is assumed
to inject white noise of uniform power-spectral density N, . Assuming
uniformly distributed rounding errors with zero mean, the variance of
the roundoff noise from each error source is given by'*'**

o2 = A*/12 (")

where A is the spacing of the quantization steps (after rounding). To
eliminate the sampling period 7' from certain expressions of interest,
we now define N, = ¢ . Hence, the variance, or total average power,
corresponding to an arbitrary power-density spectrum N (») with no
DC component (which implies a zero-mean process) is given byt

o = 1 N(w) dw 8)

ws Jo
where w, is the radian sampling frequency given by
w, = 2n/T. (C)]

Assume now that k; error sources input to the j% summation node.
The spectral density of the roundoff error sequence {e;(n)} is then just
k;N, by our assumption of uncorrelated error sources. The total roundoff
noise in the output of the filter thus has a power-density spectrum given
by12

Nw) = o3 Sk | Gi) [ (10s)

where we have substituted ¢ for N, . If scaling has been included in the
filter design, then the corresponding expression is just
N = o) k| Gi@) I (10b)

where k! = k; to account for the additional scaling multipliers.

IV. DYNAMIC-RANGE CONSTRAINTS

The ultimate objective of the synthesis procedures to be investigated
will be the minimization of some norm of N, () for a given quantization
step size A, subject to certain “constraints”. One constraint is that the

t This normalization of N(w) is further motivated by the derivation in Section
V leading to equation (30b).
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specified transfer function H*(z) must be maintained. Another funda-
mental, but often overlooked, constraint is the finite dynamic range of
the filter. Specifically, the signals v;(n) at certain branch nodes within
the filter cannot be allowed to “overflow” (that is, exceed the dynamic-
range limitations), at least not more than some small percentage of the
time, in order to prevent severe distortion in the filter output.

Overflow constraints are required only at certain branch nodes in the
digital circuit because it is only the inputs to the constant multipliers
which cannot be allowed to overflow when several standard numbering
systems are used (for example, one's- or two’s-complement binary).'*
Specifically, in the summation of more than two numbers, if the magni-
tude of the correct total sum is small enough to allow its representation
by the K available digits, then in these numbering systems the correct
total sum will be obtained regardless of the order in which the numbers
are added, even if an overflow occurs in one of the partial sums. Hence,
those node outputs which correspond to partial sums comprising a
larger total sum may be allowed to overflow, as long as the total sum is
constrained not to overflow. This property also applies when one of the
inputs to a summation node has overflowed as a result of a multiplica-
tion by a coefficient of magnitude greater than one.

Turning to the formulation of the required overflow constraints, we
may easily derive an upper bound on the magnitude of the signals
v;(n) for all possible input sequences {u(n)}, neglecting the (small)
error signals e;(n). Assuming zero initial conditions in the filter and
e;(n) = 0 for all j and n, the ¢* branch-node output »;(n) is given by

7 v;(m) = ifi(k)u(n — k), all =n. (11)

Therefore, given that u(n) is bounded in magnitude by some number
M for all n, an upper bound on the magnitude of v,(n) is given by’

|v,-(n)|§_M§%[fi(k) l, all a. (12

Thus, if the node signal v;(n) is also to be bounded in magnitude by
M for all possible input sequences, the associated scaling must ensure
that

i | fi() | < 1. ' (13)

That (13) is not only a sufficient condition to rule out overflow for all
possible input sequences {u(n)}, but also a necessary condition, is easily
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shown by letting u(n) = M for all n, with sgn [u(n, — k)] = sgn [f.(k)]
for some n = n, and all & = 0. Then from equation (11) we see that
(12) is satisfied with equality in this case, and thus (13) is a necessary
condition, as well.

The norm of fi(k) employed in (13) is not very useful in practice
because of the difficulty of evaluating the indicated summation in all
but the simplest cases. Also, for large classes of input signals, (12) and
thus (13) are overly pessimistic. Therefore, we now derive alternate
conditions on (the transform of) the scaled unit-sample response {f}(n)}
which ensure that for certain classes of input signals, the corresponding
branch-node output »;(n) cannot overflow. The derivation of these
conditions for discrete systems closely parallels the corresponding
derivation for continuous systems, as given by Papoulis.*®

An alternate expression for equation (11) in terms of z-transforms is
derived as follows: Consider an (absolutely summable) deterministic
input sequence {u(n)} possessing the z-transform

©

Ut@) = 2, u@)a™, a<|z|<b, (14)
for some ¢ < 1and b > 1. Stability requires that F*%(2), defined in equa-~
tion (2), exist for all | 2| > ¢ for some ¢ < 1. Hence, the z-transform of
{v:(n)} is given by®

Vi) = FfU*@E), d<|z|<b, (15)
where d = max (a, ¢). The inverse transform of equation (15) is given
by*

0() = 5 b V@S ds (16)

where the contour of mtegratlon T' is contained in the region of con-
vergence d < |z| < b. Sinced < 1 and b > 1, let I be the unit circle
in the z plane (| z| = 1), and perform the change of variables z = ¢'“”
in equation (16). Using equation (15), the resulting equation becomes

vin) = wl fo Y P UWe™" do. a7

The conditions to be derived from equation (17) are most easily
expressed in terms of L, norms, defined f or an arbitrary periodie function
A(-) with period w, by"”

Mm=&fmww$p  asw
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for each real p = 1 such that

[T14@ 1 o < w.

0

It can be shown'” that for A(-) continuous, the limit of equation (18a)
as p — o exists and is given by

4]l = max | 46| (18b)

Assume now that | U(w) | is bounded from above by some number
M(that is, || U || £ M). Then, from equation (17),

ot | s 2 [P | do

or

o) [ = | Filli[] Ul - (19)
In exactly the same manner, we may also show that

o) [ = || Fallo Il Ul (20)

Applying the Schwarz inequality to equation (17), on the other hand,
yields that

e PS5 [ IR P [ 106 Fa
or
lo:) | = ([ Fello- ]| U la (21)
Note that (19), (20), and (21) are all of the form

@ ls e, G+iz1) e

for p, ¢ = 1, 2, and . It can be shown' that (22) is true in general for
all p, ¢ > 1 satisfying 1/p 4+ 1/¢ = 1; and we have shown in (19) and
(20) that if the L, norms exist, then (22) holds for p, ¢ = 1, as well.
The general relation in (22) for all p, ¢ > 1, is derived from Holder’s
inequality.

A simple, but important special case of (22) results from letting F*(z)
= F.(w) = 1.Since || 1 ||, = 1forall p = 1, we then have simply

lum) | = | U|l, all ¢=1. (23)
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But since (23) holds for all sequences {u(n)}, it must also be true that
o) | S || Vell,, all r= 1.

This is, in fact, the basis of (22), for Holder’s inequality actually states
that

o< || 7 1,1_ )
visie o, (+ien
Therefore, the real implication of (22) is that the mean absolute value
of V(w) is bounded by || F:||,|| U |le, and this, in turn, provides a
bound on | v;(n) |.

Assume, therefore, that the input transform U(w) satisfies || U ||, £ M
for some ¢ = 1. From (23) we immediately have that | u(n) | < M for
all n. Then, if |v;(n) | is also to be bounded by M, (22) provides a
sufficient condition on the scaling to ensure this, namely

el =1, (U]l = M) (24)

for p = q/(¢ — 1). Inequality (24) is the desired condition to replace
the more general, but often less useful condition given by (13).

From an engineering viewpoint, the most significant values for p
and q would seem to be 1, 2, and «. The case p = 1, ¢ = o« requires
that the input transform U(w) be everywhere bounded in magnitude by
M (thatis, || U || £ M), in which case only the L; norm of the scaled
transfer function F;(w) need satisfy (24). For an input of finite energy
E = Y. u*(n), Parseval’s identity implies that || U |2 = E, and thus
with M = ()}, (24) can be satisfied for p = ¢ = 2.

The case of p = », ¢ = 1in (24) implies the most stringent condition
on F/(w) because from equation (18) it is evident that

HF L = 1] F (25)

for all p = 1. It is clear, for example, that for a sinusoidal input of
amplitude A = M and arbitrary frequency w, , we must have | F/(w) |
=< 1 for all w (that is, [| F} ||« = 1) to ensure that |v;(n) | £ M for
all n. However, a sinusoidal input sequence {u(n)} is not absolutely
summable, and thus U*(z) as defined in equation (14) does not exist
in this case. This difficulty may be circumvented, as is common in
Fourier analysis, by assuming a finite sequence of length N and then
passing to the limit as N — «. The resulting (Fourier) transform of
{u(n)} is of the form

Usle) = 5 6“0 — ) + 30 — @+ 0], OSwsw) @)
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where 8(w) is the familiar Dirac delta function defined by

&w) = 0, w # 0,

- @n

f 8(w) dw = 1.
U,(w) is, of course, periodic in w with period v, . From equations (18a),
(26), and (27), we immediately have that || U, ||, = 4 £ M, and thus
with p == «, (24) is applicable for sinusoidal input sequences, as ex-
pected.

V. RANDOM INPUT CASE

In the case of random input sequences, (24) is not directly applicable
because the z-transform U*(2) is not defined. Similar conditions may be
obtained, however, by considering the discrete autocorrelation function
¢(+), defined for a (wide-sense) stationary sequence {w(n)} by

¢a(m) = Elw(myw(n + m)] (29

where E[-] is the expected-value operator. A z-transform ®%*(z) may be
defined for the sequence {¢,(m)} as in equation (14) with an inverse
transform as in (16). Assuming ergodicity and a zero mean (E[w(n)] = 0)
for {w(n)}, we immediately have from equation (28) that the variance,
or total average power, of {w(n)} is given by

‘Pw(o) = E[w2(n)] = U«f ) (29)

and from equation (16) we also have

0u(0) = 5717—] 55 Bt ds. (30a)

Letting I' be the unit circle (z = ¢'“7), equations (29) and (30a) imply
that
oy =

f " 8.() do. (30b)

0

E =

Hence, from equation (8) we see that &,(w) is just the power-density
spectrum of the sequence {w(n)}.

For an input sequence {u(n)} whose autocorrelation function has
the z-transform &% (2), it is well-known that the corresponding transform
for the output {v:(n)} is given by

k(@) = FI@FiE )2 (31a)
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or
P,,(@) = | Fi(w) " ®ul). (31b)
Equations (29) through (31) imply then that
o= [P P o) de. (32)
s Y0

Since equation (32) is of the same basic form as (17), a derivation similar
to that leading to (22) must yield the following relations for p, ¢ = 1:

‘ 1.1
= F L] @ e, (— —=1> 332
Asirlel,  (G+g (330)
or, from equation (17),
2 2 1 1
Aosimiblel, (C+iz) @
Y4 q
Two cases of (33) are of particular interest, namely
o 2 || F: 2] @0 |]o (34)
and
ao S| F (5] @]y - (35)

In view of equation (25), we see that (34) implies the most stringent
condition on the input spectrum &,(w), whereas (35) yields the most
stringent condition on the transfer function F;(w). From (34) and (30b),
for example, we have that if the input power-density spectrum is “white”
[that is, ®,(w) = ¢ for all w], then o2, < || F, ||302 . Hence, if the input
sequence {u(n)} is a Gaussian process,"”” the node output sequence
{vi:(n)} will overflow no more (in percentage of time) than does the
input, provided only that

IFille = 1. (36)

The inequality in (35) requires, on the other hand, that for an input
sinusoid of arbitrary amplitude and frequency, F/(w) must satisfy

| Fille =1 (37

to ensure against overflow, as we have seen earlier from (24).
To summarize, dynamic-range constraints of the form

Nri,<1, p=z1 (38)

have been derived for both deterministic and random inputs, where
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Fi(w) is the (scaled) transfer response from the filter input to the ¢
branch node and || - ||, denotes the I, norm defined in equation (18).
For a deterministic input with amplitude spectrum U(w), (38) assumes
that

R
HUIll.=M, ¢ » (39)

where M is the maximum allowable signal amplitude. For a random
input, on the other hand, the use of (38) requires appropriate conditions
on|| @, |,,r=p/(p —2) and p = 2, where ®,(w) is the power-density
spectrum of the input sequence.

The effect of (38) and (39) is to bound the mean absolute value of the
amplitude spectrum at the ¢** branch node (that is, || V; ||,) which, in
turn, bounds the peak signal amplitude at that node. The use of (38)
in conjunction with (33), however, bounds only the average power at
the 4t branch node, and thus the relationship between this average
power and the peak signal amplitude at the node must also be deter-
mined in order to provide an effective dynamic-range constraint.

VI. TRANSPOSE SYSTEMS

In the evaluation of different circuit configurations for a given digital
filter, a useful concept relating certain of these configurations is that
of “transpose configurations’”. This relationship is a general property
of linear graphs® and will be presented here in terms of a state-variable
formulation.

The general state equations for a linear, time-invariant discrete system
are given by”'

x(n + 1) = Ax(n) + Bu@),
yn) = Cx(n) + Dun)

where x(n) is an N-dimensional vector deseribing the state of the system
at time ¢ = nT, u(n) is the corresponding J-dimensional input vector,
y(n) is the corresponding I-dimensional output vector, and 4, B, C,
and D are fixed parameter matrices of the appropriate dimensions relat-
ing the input, state, and output vectors as given by equation (40).
The (N + I) X (N + J) matrix S defined by

S = [A B] 1)
¢ D

(40)
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provides a convenient single parameter matrix which describes the
complete discrete system.

A transfer function matrix 5¢%(z) may be defined for the system (de-
scribed by) S relating the input and output vector sequences {u(n)}
and {y(n)} by

Y*(2) = 3c5()U*() (42)

where U*(z) and Y*(z) are the vector z-transforms of {u(n)} and {y(n)},
respectively. 3¢%(2) is readily shown to be given by*'

35(z) = C(z2I — A)7'B+ D (43)

where (+)”' denotes the matrix inverse and I is the N-dimensional
identity matrix.
Counsider now a new system which is described by the parameter

matrix S*, that is,
g = {A 0] @)
B' D
where (-)* denotes the matrix transpose. From equations (41) and (43)
it is easily seen that the transfer function matrix for the new system
S’ is given by
3e%(z) = B'(zl — AY)7'C' + D'
= [3c5@)]".

Thus, the transfer function matrix for the system S‘ is simply the
transpose of the transfer function matrix for the system S. That is,
the element H *(z) from 3C%(2), which is the transfer function from the
7™ input to the ¢t output of system S, equals the element H*:(z) from
JC%.(2), that is, the transfer function from the 7t input to the jt output
of S*. Note also that while the system S has a total of J inputs and I
outputs, the system S* has I inputs and J outputs.

The concept of transpose systems will be particularly useful to us in
conjunction with the digital-filter model introduced in Section III and
depicted in Fig. 1. Defining the input and output vectors for the filter by

(45)

u(n) y(n)

) = 9@ | and y@) = |20 (46)

e;(n) v(n)
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respectively, the transfer function matrix for the filter is given by
H*@) Gf -+ Gi@)
Fi@)

1He) = (47)

F?‘. @)

where the specific expressions for the elements in other than the first row
and first column are unimportant for our purposes. By equation (45),
the transfer function matrix for the corresponding transpose system is
then simply

H*@) Fi@ -+ Fi@)
Gt @)

1R = (48)

G5(2)
Note, in particular, that the transfer function from input-1 to output-1
[that is, H*(z), the ideal transfer function from filter input to filter
output] is the same for both systems.

As discussed more fully in Ref. 1, the circuit configuration realizing a
given system S is not necessarily unique, and hence neither is the con-
figuration for the transpose system S°. However, given a particular
configuration for the system S, a unique “transpose configuration’,
which realizes S°, may be derived from the given configuration for S
by simply reversing the direction of all branches in the given network!
In particular, then, all delays and constant multipliers remain the same
except for the change in direction. All summation nodes in the given
configuration become branch nodes in the transpose configuration, and
all branch nodes become summation nodes. Likewise, all inputs in the
given configuration become outputs in the transpose configuration, and
all outputs become inputs.t

That the transpose configuration defined above actually realizes the
transpose system S’ is easily seen by considering the state equations in
(40). The constant multiplier(s) corresponding to the element d;; of the
matrix D and relating the j* input and the ¢** output of the original
configuration must relate the ¢ input and the j* output of the transpose

t Note that the transpose system S‘ is fundamentally different from the “ad-

joint” system?22 because, although the signal flow is reversed in both, the trans-
pose system does not run “backwards in time.”
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configuration, and thus d;; = d}; for all 7 and j. The multiplier(s) cor-
responding to the element b;; of B and relating the j input and the
tth state of the original configuration must, on the other hand, relate
the ¢t state and the j* output of the transpose configuration, and thus
b;; = ci; for all 7 and j. Similarly, ¢;; = b}; for all < and j. Finally, the
multiplier(s) corresponding to a;; and relating z;(n) and z;(n + 1) in
the original configuration must, in the transpose configuration, relate
z;(n) and z;(n + 1), and thus a;; = a}, for all ¢ and j. Therefore, the
transpose configuration indeed realizes the system S°.

VII. AN EXAMPLE: THE DIRECT FORM

To demonstrate the application of the results of the preceding sections,
we now evaluate and compare the roundoff-noise outputs from two
transpose configurations for a digital filter. The secaling required to
satisfy the overflow constraints in (38) is derived, and the effect of this
scaling on the output roundoff noise is determined.

The transfer function H*(z), defined in equation (1) and relating
the input and output of the digital filter, may be expressed as a rational
function in 2z of the form®**

i az"’ *
H*@e) = fnoN = g*gg (49)
1+ Z bz"

i=1

Assuming that ay and by are not both zero, N is referred to as the “order”
of the filter. There are many different, but equivalent, forms in which
equation (49) may be written, with a number of equivalent circuit
configurations corresponding to each of these forms (at least two trans-
pose configurations). Those forms such as equation (49) which require
the minimum number of multiplications and additions in the general
case (that is, 2V + 1 and 2N, respectively) are referred to as “canonical”’
forms. In general, however, it is necessary to add additional scaling
multipliers to these canonical forms in order to satisfy the overflow
constraints in (38).

The form of H*(z) given in equation (49) is often called the ‘‘direct
form” of a digital filter. It has been pointed out by Kaiser® that use of
the direct form is usually to be avoided because of the sensitivity of the
roots of higher-order polynomials to small variations (that is, quantiza~
tion errors) in the polynomial coefficients. The roundoff-noise outputs
from the direct form can also be much larger than from other canonical
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forms.'®> Nevertheless, the direct form is of theoretical interest, and it
provides a convenient illustration of our results. Similar investigations
for the two canonical forms most commonly employed in practice—the
cascade and parallel forms—are described in Ref. 1.

Two transpose configurations which implement the direct form with
scaling are shown in Figs. 3 and 4. These configurations actually realize
H*(2) in the form

N

KL > ale™
1=0
N

14+ > b2
i=1

H*@) = (50)

where ;a! = a;/K}, and the additional scaling multipliers K}, k =
1, 2, are required to satisfy (38) in the general case. The configuration
in Fig. 3 will be designated as form 1 (that is, ¥ = 1), and Fig. 4 as
form 2 (thatis, k = 2).

The branch nodes at which overflow constraints are required (because
these signals input to multipliers) are indicated by (*). The dynamic-
range limitations are obviously satisfied (by assumption) at the input to
the filter, but for completeness, an overflow constraint is included there
as indicated. The sealed transfer responses .F’(w) to these nodes are
noted in Figs. 3 and 4, and the corresponding unscaled responses ,F;(w)
apply, of course, when K/ = 1

——‘ Fi(o) l« —————— (G (o) __'________’____
() (<)
u(n) g ,/\2 ) P 2/\ y(n)
K 1 a6
7
ey(n) ex(n)
-b, E_ZI 18’
—b, : 1ah
'Z_1
pd I
-bn ’ lza’N

Fig. 3 — Direct form 1 with scaling.
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Fig. 4 — Direct form 2 with scaling.

It is intuitively clear that to preserve the greatest possible signal-
to-noise ratio, the scaling should reduce the magnitude of ,F(w) no more
than is necessary (or should increase it as much as possible, as the case
may be). In other words, .#(w) should satisfy

l+Fi ], = 1. (51)
This condition will be satisfied if the scaling factors .s;, defined by
Wi (@) = 180l (w), (52a)
are given by
i = 1/” Fs ”» . (52b)
It is readily seen from I'igs. 3 and 4 that
Fi) = .Fiw) = 1, (53)

and hence equation (51) is automatically satisfied for these responses.
Of more interest, however, are the responses

Fifes) = ]% = K{ \Fa) 64
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and

H(w) — 2F1@.
K, K;

From equations (52), (54), and (55), it follows that (51) is satisfied
for these configurations if (and only if)

K =1/[|1/B ||, (56)

ZF;(“’) =

(55)

and
Ki=11Hll,. (57)

The rounding-error inputs e¢;(n) are also shown in Figs. 3 and 4
along with the transfer responses ,G%(w) from these inputs to the output
of the filter. Note that in form 2 (Fig. 4) the error input e,(n) incor-
porates the roundoff errors from all of the multipliers except K} even
though these error sources are separated by delays (¢7*). This is done
for convenience and is possible because of the assumption of uncorrelated
errors from sample to sample and source to source. The noise weights
k! [see equation (10)] for form 1 are thus

k) =1k = N + 1; (58a)
while for form 2,
7 =1 and .k, = 2N + 1. (58b)

The indices ¢ and § of the ,F;(w) and ,G;(w) have been assigned in such
a way that forms 1 and 2 are related as in equations (47) and (48).
That is, these unscaled responses satisfy the following equations:

lFi(w) = zGi(w), 'L = 1, 2, (593:)
1Gi(w) = ,F(w), j=1,2. (59b)

Note that the scaled responses .F(w) and ;G/(w) are not related as in
equation (59) because, in general, K/ # K} . In particular,

i = H@ _ (K3 o,
lGl(w) = I(; = <I{;>2F1(‘*’); (60)
while

) = B = (B, (61)

However, we do have, as in equation (53), that
1Gi(w) = .Gj(w) = 1. ‘ (62)
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From equations (10) and (53) through (62), the power-spectral den-
sities of the roundoff-noise outputs from these two configurations are
thus computed to be

N = a0+ o+ | 3] 1 ) (30

and

1 2
B ‘}‘ (6ah)
The variances, or total average powers of the output roundoff noise
from these configurations are then, from equations (8) and (18), simply

AT

Vo) = {1+ @V 1) [T |

12, 1y

2OV + 1){1 +%

and

5 } (64b)

The peak noise densities || .V, || are, on the other hand, bounded by

1, 11 = {1+ @N + 1 (17

. 1p:s lli} (65a)

WMMéﬁW+%H_%

and

IA

1 2
B m}~ (65Db)
We now compare direct forms 1 and 2 on the basis of (64) and (65).
Although comparisons based on bounds for || .V, ||» as in (65) do not,
of course, necessarily hold for || .V, ||, itself, experimental results have
indicated that such comparisons are quite effective qualitatively, and
often quantitatively as well." Consider first the expressions in equation
(64) for p = 2 and in (65) for p = «» (thatis, || N, ||,,r = 1, », for
p = r + 1]. In these two cases, the only difference between the (a)
and (b) expressions for forms 1 and 2, respectively, are the k! , as given
in equation (58). In particular, for || 1/B ||| H |2 >> 1 as is often the
case, the || N, ||, for form 1 are approximately half, or 3 db less than,
those for form 2. This result simply reflects the fact that only half of the
noise sources in form 1 input at other than the filter output; whereas
in form 2, all but one input within the filter. Hence, if the gains from
these inputs to the output are large, form 1 is preferable to form 2 by
up to 3 db.

1, 11 < oL+ @Y 4 1) (1 7
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For p # r + 1, however, the differences in the k! are of secondary
importance compared with the potential differences due to the mixture
of L, and L,, norms in (64) and (65). In particular, letting

1
Bm— HB

we immediately see that if 6,5 > 6., , then form 2 is better for p = «
while form 1 is better for p = 2. If, on the other hand, 6., < 65, , then
the opposite applies.

To gain insight into the above conditions, we rewrite equation (66a)
as

2

p”HHg’ (66a)

2 2

1

B

It is then clear that the difference between 6., and 6, is due entirely
to the effect of 4(w) on the L, norms of A (w)/B(w) for ¢ = 2, » versus
the corresponding norms of 1/B(w). In particular, A (w) affects the L.,
norm in 8, . But the L, norm of a function “concentrates’ exclusively
on the maximum absolute value of that function; whereas the L, norm
of a function reflects the r.m.s. absolute value of that function over
all argument values. Therefore, the effect of 4 () in 6, results from the
alteration of the maxima of | 1/B(w) | in | A(w)/B(w) |; while in 6.2,
the effect concerns the difference between | 1/B(w) | and | A (w)/B(w) |
over all w.

Intuitively, one expects that the former effect is potentially much
greater; that is, in many cases 4 (w) should affect the L, norm in 6,
much more than the L, norm in 8, . In particular, if | A(w) | signifi-
cantly attenuates the maxima of | 1/B(w) | [as in a band-rejection filter,
for example], then 6,, should be much smaller than 6., . In this case,
form 2 should be used for p = «, and form 1 for p = 2. If, however,
| A(w) | does not provide such attenuation, then | A(w) | must be rela-
tively constant within the band(s) where | 1/B(w) | is largest [by the
nature of A(w)], and hence

A4

B

b,y = ‘ (66b)

P q

A 1
B %lA(wo)l'H]—;’ 67)
where w, is a frequency at or near a maximum of | 1/B(w) |. But then,
1 1
O, l A(“’O) I E ) E . = by (68)

and the difference between direct forms 1 and 2 should be less in this
case.
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VIII. SUMMARY

The interaction between the roundoff-noise output from a digital
filter and the associated dynamic-range limitations has been investigated
for the case of uncorrelated rounding errors from sample to sample and
from one error source to another. The spectrum of the output roundoff
noise from fixed-point implementations was readily shown to be of the
form

N,() = o Z k| Gi) P (69)

where the G/(w) are scaled transfer responses from certain ‘‘summation
nodes” in the digital circuit to the filter output. ¢} is the variance of the
rounding errors from each multiplier (or other rounding point), and the
k! are integers indicating the number of error inputs to the respective
summation nodes.

Defining F’(w) to be the scaled transfer response from the input to
the 7t “branch node’’ at which a dynamic-range constraint is required,
constraints of the form

| Fill, =1 (70)

for p = 1 were then derived, where || F/ ||, is the L, norm of the response
F%(w). The appropriate value of p is determined by assumed conditions
on the spectra of the input signals to the filter. The effect of (70) is to
bound the maximum signal amplitude (for deterministic inputs) or the
maximum average power (for random inputs) at the 4t branch node.

A state-variable description was employed to formulate the general
concept of “transpose configurations” for a digital network and to
illustrate the usefulness of this concept in digital-filter synthesis. A
particularly important result is that for a given unscaled configuration
with transpose responses F,(w) and G;(w), as described above, the re-
sponses Fi(w) and Gi(w) for the corresponding transpose configuration
are given by

Fi(w) = Gi(w) and Gj(w) = Fi(w). (71)

Hence, although the overall transfer functions for these two configura-
tions are the same, their roundoff-noise outputs can be quite different,
in general. The transpose configuration is obtained by simply reversing
the direction of all branches in the given network configuration, and
the poles and zeros of the network are thus realized in reverse order in
the transpose configuration.

To illustrate these results, the roundoff-noise spectra N,(w) for two
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transpose configurations for the direct form of a digital filter were cal-
culated and compared. The direct form should usually be avoided in
practice,’ but it is still of theoretical interest and provides a convenient
example of our general approach. Using a very natural assignment of
the indices ¢ and 7 for the unscaled F;(») and @;(w), equation (69) was
shown to be of the form

M@ =i+ SE I LG 2

for these (scaled) configurations for the direct form, where M is the
number of error inputs at other than the output of the filter. Hence, the
variance, or total average power, of the output roundoff noise is simply

M
= aftt SHIRENGIE; 0
i=1
while the peak spectral density || N, ||, is bounded by

M
HNu”méa'g{kﬁhu"‘ ;k:HF:”iHGJH‘:} (74)

Identical expressions to (72) through (74) can also be derived for the
parallel and cascade forms of a digital filter." The relationship between
the noise outputs of corresponding transpose configurations is immedi-
ately indicated by (71) through (74) [although, in general, k! # Fk!‘].
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An Optimization Method for
Cascaded Filters

By SHLOMO HALFIN
(Manuscript received August 1, 1969)

This paper presents a procedure for decomposing an uth order filter
into cascadable second order sections. The procedure is optimal in that it
minimezes the maximal response range for the sections within the frequency
band of interest. The procedure, based on a modified version of the Bottle-
neck Assignment Algorithm, describes methods of listing all the optimal
decompositions as well as of finding a special “‘nested” optimal decom-
position.

I. INTRODUCTION

Let ¢(s) be a transfer function

_ 1
o) = g(s)

where f and ¢ are polynomials with real coefficients, and the degree of
f = degree of g.

We consider all the decompositions of the form ¢(s) =¢;(s)pa(s) -+
¢.(s) where

f i(S)
80 = 25 (1)
f:(s) and g,(s) are real polynomials and the degree of f; does not exceed
the degree of g; . The g; are quadratic polynomials, except when the
degree of ¢ is odd; then one g; is linear.
Let L be a passband region for ¢, where L is a finite union of passband
intervals. Then for every ¢, , a number d(¢;) is defined by

Max |¢a(]‘*’) l
d(¢:) = 20 logs mw—)—l ' @

185
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Also let
d = Max dp,). 3)
i=1,..., 13
Then d is a function of the decomposition. We present a procedure
that determines the decomposition(s) with a minimal d. E. Lueder
proposed this optimality criterion.'

II. METHOD

First, we artificially equate the number of zeros [zeros of f(s)], and
poles [zeros of g(s)], by adding a suitable number of “zeros at infinity”’
corresponding to constant unit polynomials. Next we make this mutual
number even by adding a zero and a pole at infinity, if necessary. In
this way we get, say, 2t zeros and 2¢ poles.

Pairing two zeros creates an f; ; a real zero can be paired with any
other real zero, while a complex zero must be paired with its conjugate
in order to get a real f; . The same is true for creation of ¢g; by pairing
of poles.

In the following we assume that all poles, except perhaps one, are
complex and therefore fixed paired. We call the real zeros which are
not fixed paired free zeros.

Next we make all possible pairings of the free zeros. Each such
pairing, together with the fixed pairing, decomposes f(s) and g(s):

1) = f1(9fa(s) -+ 1.(8);

9(6) = g:(9g2(s) -+ g:(9).
Then we compute the matrix D = (d,:), where the elements

dow = d(i) @

are computed from definition (2). The element d., represents the “cost”
of matching zero-pair ¢ with pole-pair k.

An assignment is a feasible set of matchings. Using the Bottleneck
Assignment Algorithm, we determine an assignment &, , --- , k, for
which

Max d,
i t
will be minimal. We call this minimum the opiimal d value for this
pairing of free zeros. Going through all the possible pairings of free
zeros, we find an optimal pasring which yields the smallest optimal
d value.
Since an optimal assignment (for a given optimal pairing) is usually
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not unique, procedures for obtaining all the optimal solutions (assign-
ments) or a nested solution are given. A nested solution is obtained by
taking an optimal solution, fixing the matching with the largest d
value, and then proceeding to look for an optimal assignment for the
remaining {—1 f.’s and t—1 g¢;’s, and so on.

III. THE BOTTLENECK ASSIGNMENT ALGORITHM

This section discusses the Bottleneck Assignment Algorithm and its
adaptation to the present problem.

Let U = (u;;) be a real ¢ X ¢t matrix. A matching is an ordered pair
of integers (7, , j,) 1=54,=t, 1=4,=t. We associate with the matching
(% , jx) the corresponding cell in U. The element in this cell u,; is
called the cost of the matching.

Aset A = {(4,4); k=1, .-+, t} of t matchings (cells) is called an
assignment if in every row and in every column of U there is a cell that
belongs to A. The bottleneck assignment problem looks for an assign-
ment which minimizes the maximum of its matchings’ costs.

The Gross algorithm®, is based on the following iterative step:

(*) An assignment 4 and a real number «, which does not exceed
all the costs of A, are given; then either a new assignment A’ is con-

A=ARBITRARY ASSIGNMENT

1

a =MAXIMAL COST OF
MATCHINGS OF A

l

APPLY THE ITERATIVE STEP (%)

YES

A=A

TFig. 1 — Flow chart for solving the bottleneck assignment problem.
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structed, so that « exceeds more costs in A’ than it does in 4, or it is
established that no such A’ exists.

The flow chart in Fig. 1 solves the bottleneck assignment problem.
This algorithm is fast and requires small memory space, since only the
present assignment must be stored.

d=00 A={(11),(2,2)seeesseneny (1)}

!

FORM AN UNCHECKED PAIRING
OF THE FREE ZEROES

1

U=D MATRIX OF THE PRESENT PAIRING

l

———l a=MIN (d, MAXIMAL COST OF MATCHINGS OF A)‘

1

l APPLY THE ITERATIVE STEP (%) I

r STORE THE PRESENT PAIRING

YES

UNCHECKED
PAIRINGS LEFT
?

Fig. 2 — Flow chart for finding the optimal pairing and its optimal d-value.
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The basic algorithm was modified to find the optimal pairing of the
free zeros and its optimal d-value (Fig. 2). Note that the value of « In
every iterative step (*) does not exceed the minimum of the optimal d
values of the checked pairings. Thus any pairing that does not reduce
the d value already obtained is immediately disregarded.

Also, for each pairing we use the optimal assignment of the preceding
pairing, as an initial assignment. Thus the costs of the initial assignment
matchings that eorrespond to the fixed paired zeros do not exceed the
current d value. These procedures considerably reduce the amount of
computation required for finding the optimal pairing and its optimal d
value.

IV. CREATION OF THE NESTED SOLUTION

Let U denote the cost matrix which corresponds to the optimal
pairing. The nested solution is created by successively applying the
bottleneck assignment algorithm ¢ times and modifying U each time
in such a way that the matching with the largest cost becomes fixed
and irrelevant in the further computations.

Let (2%, j%) be the matching with the largest cost at a certain stage.
Then (¢% , j%) becomes a part of the nested solution. U is then modified
as follows:

Ui+, = o forall s j¥;
Ua‘ikt
Uik*.ik* = 0

o forall s f;

It is easy to verify that this modification has the properties described.

V. A COMPUTATIONAL METHOD TO GENERATE ALL THE OPTIMAL
ASSIGNMENTS

Let U denote again the cost matrix which corresponds to the optimal
pairing, and let d* be the optimal d value. We call a cell (7, ) admissible
if u;; = d*. The problem of listing all the optimal assignments then
becomes the problem of listing all possible assignments that use only
admissible cells. Using the flow chart of Fig. 3 can accomplish this.
The number of operations can be seen to be dependent on the order of
the columns of U. The dependence is quite complicated. However, a
good rule of thumb for reducing the number of operations is to re-
arrange the columns in ascending order according to the number of
their admissible cells.
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[1()=0,T(2)=0,..., 1(1)=0 |

IS
1(5), ) NO

ADMISSIBLE

YES
FOR SOME

K<
?

PRINT OUT THE ASSIGNMENT

[(101),1),(1(2),2)yee e, (1 (1, 1)]

Fig. 3 — Flow chart for generating all optimal solutions.
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Measured Quantizing Noise Spectrum for
Single-Integration Delta-Modulation
Coders

By R. R. LAANE
(Manuscript received October 14, 1969)

We give experimental verification, for idle-channel and sinusoidal tnputs,
of a recently developed quantizing noise theory for asymmetrical, single-
wntegration delta-modulators.

A recent paper by Iwersen described a procedure for calculating
quantizing noise for single-integration delta-modualtion coders employ-
ing unequal positive and negative integrator step sizes." The purpose of
this note is to provide experimental verification of the theory.

Measured quantizing noise for both idle-channel and sinusoidal inputs
is given and the idle-channel noise spectrum is calculated.

Defining the positive, ¢, , and negative o- , integrator step sizes as

g, =0+ €
o-= —o+ e 6))

where ¢ is the average step size, an error wave is generated by the
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Fig. 1 — Asymmetrical integrator output for an idle-channel input, shown for
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Fig. 2 — Observed idle-channel noise spectrum, f, = 156 MHz, ¢ = 0.0937.
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Fig. 3— Expanded idle-channel noise spectrum: (a) 0 — 100 kHz, (b) 100 —
200 kHz.
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integrator for idle-channel inputs as shown in Fig. 1. The quantizing
noise spectrum resulting from the error wave is a line spectrum, and the
line frequencies, f; , for a one-sided spectrum from zero to one-half the
sampling frequency are given as a function of the integer index I by

= [ QU — #)/2f, | 2
where
Qe) = a — N(a),
N(a) = integer nearest «

and ¢ is the integrator step imbalance ¢/¢ and f, the sampling frequency.
The power at the frequency of index [ is calculated from

P, = 25°/x°L. 3)

The resulting noise-spectral lines will subsequently be referred to as
lIlines (1-line, 2-line, 14-line, and so on).
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Fig. 4 — Calculated idle-channel noise spectrum, f, = 1.56 MHz, ¢ — 0.0937.
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Measurements of the quantizing noise spectrum were made using
a delta-modulation coder designed for telephone switching applications.?
A 1.56 MHz sampling frequency and an average integrator step size
of 13 millivolts were used for the measurements. Figure 2 shows the
observed idle-channel spectrum of the coder for a frequency range from
0 to 1 MHz. The region near the 2-line is expanded in Figs. 3a and 3b
where the noise spectrum is shown for frequencies from 0 to 100 kHz and
100 to 200 kHz respectively.

The calculated spectrum from 0 to f,/2 (0 to 0.78 MHz) is shown in
Fig. 4 for & = 0.0937. Excellent correlation can be observed with the
measured spectrum in Fig. 2. For a more detailed comparison, Table I
gives the calculated and measured frequencies and powers of the l-lines
for the band from 0 — 200 kHz. With respect to frequency, the agree-
ment is within experimental error. However, measured peak powers of
higher order I-lines fall below the calculated values. This discrepancy is
believed to be due to modulation broadening of the lines by a low-level
noise input of unknown origin.

Figures 52 and 5b show the effect of sinusoidal inputs on the coder
noise spectrum. As suggested by Iwersen, inputs to the coder phase-
modulate the idle-channel lines and force the frequency band occupied
by each l-line group, Af, to become proportional to the slope of the
input signal, 2rAf, , and to the index of the l-line,’

Af ~ 2xlAf, 4)

where 4 is the amplitude and f, the frequency of the input signal. This
is illustrated in the figures where broadening of the 1-line, 2-line, 3-line
and 4-line as a function of signal amplitude is clearly visible.

TaBLE I—CoMPARISON OF MEASURED AND CALCULATED NOISE
SeecTRUM FOR 0 — 200 kHz

Measured Calculated
l-line fz P 1 fz P 1
2 146 kHz —48 dBm 146 kHz —48 dBm
9 121 —61 121 —61
11 24 —66 24 ~63
13 171 —67 170 —64
20 98 —-69 98 —66
22 48 —-72 48 —69
24 194 —74 194 —-70

31 73 —-75 74 -72




QUANTIZING NOISE THEORY 195

POWER IN dBm (6002)

400 600 1000
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TFig. 5 —Effect of 1 kHz sinusoidal inputs on noise spectrum; (a) —40 dBm
input, (b) —30 dBm input.

Additional discussion of the noise characteristics as well as a de-
seription of the design of the delta-modulation coder will be presented
in a future paper.”
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Use of the Discrete Fourier Transform
in the Measurement of Frequencies
and Levels of Tones

By D. C. RIFE and G. A. VINCENT
(Manuscript received May 7, 1969)

This paper considers the application of a digital computer and discrete
Fourier transform (DFT) fechniques to the measurement of signals known
lo comprise only single-frequency tones. We discuss the use of weighting
functions to improve the effective selectivity of a measurement system that
estimates the frequencies and levels of tones from the coefficients of their
DFT. We present three classes of weighting functions which may be used
to improve the tnherent accuracy of such a system. The form of the weighting
functions was chosen to minimize the amount of computer memory required,
without using foo much compuier time. Several formulas are derived for
estimating the frequency and level of a tone from its DFT coefficients. We
chose the formulas to minimize computation time.

Simulation resulls indicate that, through the use of a proper weighting
function, a DFT measurement system that uses 512 samples taken at a
sampling frequency of 7040 Hz can be designed so that the maximum error
in the frequency estimates of two tones near 1000 Hz and separated by
approximately 50 Hz 1s about 0.03 Hz. The corresponding maximum error
wn the level estimate is on the order of 0.03 dB.

I. INTRODUCTION

There have been numerous articles, in recent years, dealing with the
use of the diserete Fourier transform (DFT) in the area of spectrum
analysis. Much of this interest was motivated by the availability of a
computational algorithm that facilitates the rapid computation of
DFET coefficients by a digital computer. The algorithm is, of course, the
fast Fourier transform (FFT).

We are concerned with the problem of applying DFT techniques to
the measurement of the levels and frequencies of single-frequency tones,

197
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LOW=-PASS A/D DIGITAL OUTPUT
S(t) ot “2lTER - [~ CONVERTER || COMPUTER ™™ DISPLAY

TFig. 1— A DFT measurement system.

particularly tones from a data set during a test. Figure 1 shows the
system we have in mind. A band-limited received signal, known to
comprise one or more single-frequency tones, is periodically sampled by
an A-D converter. A total of N samples are taken and the DFT co-
efficients are computed from the samples. The computer determines
which of the DFT coefficients are “large”’, indicating the approximate
frequencies of the received tones, and then proceeds to compute accurate
estimates of the frequencies and levels. Methods for achieving the first
part of the procedure are well known. This paper is devoted to a con-
sideration of how best to go about the last step in the process, the ac-
curate estimation of the frequencies and levels of the received tones.

In data set testing, the tone measurement system would be used
occasionally during a test and would have to consume a minimum
amount of real time. Thus we have directed our attention toward estima-
tion methods that use simple formulas and require a minimum amount
of computer memory.

Our attention is confined to the problem of leakage, its reduction by
smoothing (windowing) functions, and the development of formulas
which extract tone levels and frequencies from the list of DFT coeffi-
cients. We don’t discuss the important, but secondary, problems of
round-off errors and other noise sources.

II. REVIEW OF DISCRETE FOURIER TRANSFORM

The definition and properties of the discrete Fourier transform are
discussed in Refs. 1 and 2. The following review is to refresh the reader’s
memory and establish the notation that we will use later.

2.1 Definition of Discrete Fourier Transform

Consider an ordered set of numbers {X,} wheren = 0,1, 2, --- ,
N — 1. Following Cochran, and others,' we define the discrete Fourier
transform (DFT) of the set {X,} to be another set of numbers, {Ax},
with

N—-1
Ag = D2 X, ™" all integer K. 1)
n=0
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The inverse transformation is

1 N-1

X, =y > Age®*™ Y, n=0,1,2,--- ,N — 1. )
K=0

2.2 Useful Properties

Several properties of the DFT are utilized in later parts of this paper.
The important properties are recorded in this section for future ref-
erence. Reference 2 provides a more complete list. Derivations are
included only for results that may not be well known.

From equation (1) it is obvious that if the X, are real, then

A_g = A% (* denotes conjugate), 3)
AK+N = AK; (4)
and
AN_.K = A_K - A;;. (5)
2.2.1 Convolution
Let
N-1 .
BK — Z Xﬂe—zzwnK/N (6)
n=0
and
N-1 .
Cx = 3 ¥, @
n=0
then
N-1 . 1 N-1
An = 2 X,V = = 3 ByCrx . (8)
n=0 K=0

In other words, if {Bx} and {Ck} are the DFT of {X,} and {VY,},
respectively, then the DFT of {X,Y,} is given by equation (8).
2.2.2 Power

It can easily be shown, for X, and Ax defined by equations (1) and
(2), that

1 N-1 " N-1
—ZAKAK= ZXyz.- (9)

K=0 n=0

If the X, are samples of some function, f(¢); that is, if X?> = f*(nT/N),
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then
TS e "
lim = Z X: £ di
N-oco N 0

if the integral exists. Thus, for large N,

T . - Z N-1 .
[ roa~y T x:. (10)
Hence, from equation (9),
LI ram s 31 acr. (11)

2.3 Relationship to Fourier Transform

The DFT of samples of a signal has a simple relationship to the
regular Fourier transform of the signal. It is instructive to examine this
relationship.t

Let g(¢) be an arbitrary function, zero for ¢ < 0 and ¢ > T and con-
tinuous over 0 < ¢ < T. The function is allowed to be discontinuous
at ¢ = 0and at ¢ = T. Assume that g(0+) and ¢(T—) exist.

A well-known application of the Poisson sum formula gives*

3000 + 300 + 2 o() = X 5 oY)
where
Gw) = fo " e dt. (13)

Adopting a notation similar to that of Papoulis,* we define the “#”’
operation by

W =7 2 0 — Ko, (14)
where
w, = 2aN/T. (15)
Then equation (12) can be rearranged to give
N-1
52 o) = @' + 3604) — o, (16)

where g(0) is taken to equal g(0-+).

T The recent article by Bergland touches upon this subject and also contains
an extensive list of references.?
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Let i(t) be any function of the sort used above for g(f) with the ad-
ditional property: h(0) = h(0-+).
Let s(f) be the signal to be analyzed and define

&) = s(Oh(). 17)
Let g(t) = f(t)e™*“* and define
A(w) — Z:f(?;[_T)e_ian/N' (18)

Then from equation (16) and the definition in equation (14) we have

A(w) = F*(w) + 3[/(04) — (T —)e™*7], (19)
where
e = [ " e . (20)
If X, = f(nT/N) then the A defined by equation (1) are given by
2rK
4 = 4(%) @D

Thus the DFT of the set {f(nT/N)} are points along the curve described
by equation (19). These points are 1/7 Hz apart.

Observe that at w = 27xK/T the term in brackets in equation (19)
becomes 1[f(0+) — f(T—)] which is independent of K and vanishes
if f(0+) = f{(T—).

2.4 Weighting Functions

If the DFT is to be taken of the set {s(nT/N)} for n = 0 through
N — 1, then h(f) must be a function whose value is unity at { = nT/N;
n=20,1, -+, N — 1. The function with this property that is usually
taken to be A(¢) is the function h(f);

1 0=it<T;
hat) = { » Dsits (22)
0, otherwise.

Other weighting functions, k(f), are often formed by multiplying % ()
by a nontime-limited function. Weighting functions play a very im-
portant role in systems that use the DFT. The following paragraphs
attempt to develop and present some of the pertinent theory.
From equation (19) we see the role that F'*(w) plays in A(w). Since
@) = s@r®),
F(w) = S(w)*H (w), (23)
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where the * denotes convolution and S{w) and H(w) are the Fourier
transforms of s(f) and A(f). It can be shown that, subject to the usual
convergence constraints,

F*(0) = [S@*H(@)]* = S()*H" («). (24)

Thus H(w), or equivalently H*(w), plays a central role in the DFT of
(weighted) samples of s(¢). From the development that led to equations
(19) and (21), we see that, if h(0+) = h(T—), the DFT of samples
of h(t) is a set of points taken along the periodic curve described by
H*(w). It follows, therefore, that the values of 2(n7T/N) can be obtained
from

A

0

Also,

2 = 5, h("T) TN — FROPIL — e (26)
n=0

Weighting in the time domain is actually done at the points ¢ =
nT/N;n =0,1,2, --- , N — 1. For every set of weights to be applied
at these points there exists a continuous function with the same values
at the indicated time points. Thus there is no loss of generality due to
discussing weighting in terms of weighting functions, A(t), that are
continuous over (0, T) and zero outside that interval. We have to re-
member, however, that if the set {A(nT/N)} is specified, h(f) is not
unique