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On Communication of Analog Data from 
a Bounded Source Space 

By AARON D. WYNER and JACOB ZIV 

(Manuscript received June 5, 1969) 

We consider the probleln of the transmission of discrete-time analog data 
with a variety of fidelity criteria. The outputs of the analog source are as­
sumed to belong to a bounded set. Bounds on the minimum achievable average 
distortion for memory less sources are derived both for the case where the 
coding delay is infinite (an extension of the Shannon Theory) and also for 
S01ne cases where the coding delay is finite. Several eXalnples are given, for 
which the upper and lower bounds coincide. 

Further, we discuss the case where the assUlnption of the existence of a 
probabilistic model for the source is dropped. We adopt as our fidelity 
criterion the supremum over all possible source-output n-sequences x, of 
the conditional expectation of the distortion given x ("guaranteed distor­
tion"). The Shannon Theory is not directly applicable in determining the 
lninimum guaranteed distortion. We do obtain results for two important 
cases. Some generalizations and applications are also discussed. 

1. INTRODUCTION 

In this paper we are concerned with communication of discrete-time 
analog data over a communication channel with a variety of fidelity 
criteria. The central assumption about the analog source is that its 
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outputs belong to a bounded set, typically the interval [-A/2, A/2]. 
We begin with a rough outline of our results, leaving the precise formula­
tion and statement to Section II. Proofs are found in Section III. 

Suppose that we have a data source which emits a sequence of sym­
bols Xl , X 2 , ••• £ ~ (an arbitrary set) at a rate of Ps per second. This 
sequence is fed into an "encoder" which assigns to each successive block 
of n source symbols, say x = (Xl' X2, ... , xn), a channel input of dura­
tion n/ Ps = T seconds. At the receiving end of the channel, the T­
second output is transformed by a "decoder" into an n-sequence, say 
i = (Xl' X2, ... , Xn), which is delivered to the destination. The "dis­
tortion" between the source output sequence x and the received sequence 
i is defined as d(n) (x, i) = n- 1 L~=l d(Xk , Xk), where d(x, x) ~ 0 is 
an arbitrary function. 

The classical problem is that of a "memoryless" source, where suc­
cessive source outputs are statistically independent with identical 
probability distribution. In this case it is meaningful to let the system 
performance criterion (fidelity criterion) be the statistical expectation 
of the distortion d(n) (x, i). A quantity of interest is d*(T), the smallest 
attainable value of the fidelity criterion when the coding delay is T 
seconds. The Shannon Theory gives the asymptotic behavior of d*(T) 
as T ~ 00. In many cases this limit is difficult to evaluate analytically. 
Theorem 1 (in Section 2.2) considers the case where the source output set 
~ = [-A/2, A/2], and the function d(x, x) depends only on the dif­
ference x-x. This theorem gives a lower bound on limitT-+co d* (T). 
The examples which follow this theorem illustrate the applicability 
and utility of the bound. 

There are two cases in which we are particularly interested. In the 
first, the source set ~ = {O, 1, ... , K - I} with a uniform distribution, 
and d(x, x) = 0 or 1 according as x = x or X ~ x. Thus the fidelity 
criterion is the error-rate. For this case let d*(T) = PeCK, T). In the 
second case, ~ = [-A/2, A/2] with a uniform distribution, and d(x, x) = 
o or 1 according as I X - x I < 0 or I x - x I ~ 0 (where 0 > 0). In 
this case let d*(T) = Q(T, A, 0). It turns out that P e and Q are inti­
mately related. In fact it is a consequence of Theorem 2 (Section 2.2) 
that if A/(20) = K o , an integer, then Q(T, A, 0) = Pe(T, Ko). This 
result is valid for all values of the delay parameter T. From this result 
it can be deduced that the optimal encoder for the analog source ~ = 
[ - A/2, A/2] is a "uniform" quantizer followed by an optimal "digital" 
encoder. This is the only known case for which analog-to-digital con­
version is known to be optimal for finite T for the transmission of analog 
data from a memoryless source. 

We now drop the assumption of a memoryless source. In fact we do 
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not even assume that there is a probabilistic model for the source. 
Instead of the expectation of the distortion, we adopt as our fidelity 
criterion, the supremum, over all possible source output n-sequences x, 
of the conditional expectation of the distortion given x. We call this 
criterion the "guaranteed distortion". Let d*(T) be the minimum 
attainable guaranteed distortion for a system with delay parameter T. 
The Shannon Theory is not directly applicable in determining d*(T). 
We do obtain results for the two interesting cases discussed below. 

In the first, X = {O, If .. , ,I{ - I} and d(x, x) = 0 or 1, respectively, 
when x = x or x ~ x. For this case let d*(T) = Pe(T, K). It is a conse­
quence of Theorem 3 (Section 2.3) that limitT--+a:> P.(T, K) = limitT--+a:> 
Pe(T, I{), which is known from the Shannon Theory. 

In the second case, X = [-A/2, A/2] and d(x, x) = 0 or 1, respect­
ively, when, x - x, < 0 or , x - x, ~ o. For this case, let d*(T) 
Q(T, A, 0). Theorem 4 (Section 2.3) relates P. and Q by 

Q(T, A, 0) = P.(T, M), 

where JJf is the unique integer satisfying (M - 1) ~ A/(20) < M. 
Here too, we can deduce the optimality of analog-to-digital conversion. 
Theorem 4 is generalized by Theorem 5 (Section 2.4) to apply to an 
arbitrary set X with a distance-like measure defined on it (replacing 
, x - X D. 

In Section 2.5, we give some applications of the above results. In 
particular we obtain some results for the distortion d(x, x) = 'x - x '-. 

In order to state our results completely and precisely, it is unfor­
tunately necessary to give a rather large collection of definitions and 
to introduce a large number of symbols. In order to ease the reader's 
burden somewhat, we have included a glossary of symbols in the ap­
pendix. 

II. STATEMENT OF THE PROBLEM AND PRINCIPAL RESULTS 

In Section 2.1 we define a "channel" (and its "capacity") in a very 
general and abstract way. We do this because the nature of the channel 
does not figure explicitly in our results (except for the channel capacity), 
and we want our results to apply as broadly as possible. In Section 2.2 
we describe the communication system which we shall consider, and 
state our results for the case of a "memoryless" information source. 
The remainder of the results follows in Sections 2.3-2.5. 

2.1 Channel and Channel Capacity 

A channel is defined as follows. For every T > 0 we have a set OW T 

of "allowable" inputs and a set O"T of possible outputs. Every T 
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seconds some W I: W T is transmitted through the channel, and the chan­
nel output z is a member of 11 T • The output is related to the input W I: W T 

by a probability measure Ilw on the set liT • Thus given that W I: W T is 
transmitted, the probability that z I: B [where B is a (measurable) subset 
of liT] is Ilw (B). For example W T and 11 T may be the set of binary se­
quences of length [Trt. The measure Ilw is then a discrete conditional 
probability distribution. Another example is the case where W T and 
11 T are sets of real valued functions defined on the interval [0, T], and 
the members of W T have "energy" not exceeding PT. 

With T specified, a block code with parameter N is a set of N pairs 
{(Wi, B i) }f=l' where Wi I: W T are called code words and the 
collection of Bi is a set of disjoint (measurable) subsets of liT called 
decoding sets. If code word wi(l ~ i ~ N) is transmitted, the resulting 
error probability is 

Ai = Pr {z ¢ Bi I Wi is transmitted} = 1 - Ilw.(BJ. (1) 

The word error probability for the code is 

(2) 

Let A *(T, N) be the smallest attainable word error probability for a 
code with parameters T and N. The channel capacity C is defined as 
the supremum of those numbers R ~ 0, for which 

A*(T, [eRTr) -70, as T -7 00. 

Let us define the average word error probability by 
_ 1 N 

A = N t:t Ai • (3) 

Thus X is the resulting average error probability which results when 
each of the N code words are equally likely to be transmitted. Let us 
define X*(T, N) as the smallest attainable value of X for a code with 
parameters T and N. Since X ~ A for any code, it follows from the 
above definition of channel capacity that for any R < C, 

X*(T, [eRTr) -7 0, as T -7 00. 

Further it is known that for a large class of channels including the mem­
oryless gaussian channel and discrete memoryless channels, 1 

X*(T, [eCTr) -7!, as T -7 00. (4) 

[It is also true that for many of these same channels if R > C, 

t Throughout this paper we denote by [x]- and [x]+ the largest integer ~ x 
and the smallest integer ~ x respectively (0 ~ x < 00). 



ANALOG DATA TRANS~IISSION 3143 

X*(T, [eRTr) tends to 1 as T -7 00, but we do not need this fact here.] 
Let us remark here that for a large class of channels (including "mem­

oryless" channels and "finite state channels"), the capacity C is known 
to be the supremum of a quantity called the "information". In fact 
this equivalence is the essence of the Fundamental Theorem of Informa­
tion Theory. It will not be necessary, however, to explore this equi­
valence further. 

2.2 NI emoryless Source and COJnJrtunication With a Fidelity Criterion 

Consider the communication system of Figure 1. The output of the 
source is a sequence of random variables Xl , X2 , ••• from an arbi­
trary subset X of Euclidean p-space. Assume that these random vari­
ables are statistically independent and identically distributed with 
probability density function P s (x), X t X. If we allow impulses in the 
density function, then the X k can be discrete random variables. Say 
that the source outputs appear at a rate of Ps per second. The encoder 
waits T seconds (called the "delay") during which time n = PsT sym­
bols, say Xl , X 2 , ••• ,Xn t X, have appeared at its input. (Assume that 
PsT is an integer.) Denote the T-second output of the source by the 
random n-vector X = (Xl' X 2 , ••• ,Xn ) t xn. 

The channel is defined as above (Section 2.1), so that during the 
T seconds which it takes for the n-vector X to appear, the channel can 
process an input belonging to the channel input set W T • It is the task 
of the encoder to assign to each possible source output n-vector X = x, 
a channel input fE(X) t W T • The channel output is a member Z of the 
channel output set i} T , and it is the task of the decoder to assign to 
each possible Z = z an n-vector X = fD(Z) t Xn. Note that the source 
and channel statistics define a joint probability density on the random 
n-vectors X and X. 

N ow ideally we would like X == X. But this is most often not possible 
due to imperfections (for example, noise) in the channel. Thus we define 
a fidelity criterion which we use as a measure of the reliability of the 
system. Suppose we are given a non-negative distortion function 
d(x, x) defined on X X X. Typical choices of the distortion function are 
d(x, x) = I x - X 18 (s > 0) when X is a subset of the reals (that is, the 
dimensionality p 1), or the "Hamming" distance 

X=fD(z) 

Fig. 1- Communication system. 
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d(x, X) = dH(x, X) = Jo, 
11, 

where ~ is a discrete (that is, countable) set. 

x = x, 
x ¢ X, 

(5) 

The distortion between the n-vectors, x = (Xl' X2, ••. , Xn) and 
x = (Xl' X2 , ••• , Xn) is 

n 

d(n)(x, x) = n- 1 ~ d(Xk , Xk). 

Our system performance (fidelity) criterion, which we seek to minimize, 
is 

d = Ed(n)(x, X), 

where E denotes expectation (with respect to the joint probability dis­
tribution of X and X). For a given delay T, which corresponds to 
n = PsT, let d*(T) denote the infimum (with respect to all encoder­
decoder pairs) of the attainable values of d (for given Ps and source­
channel statistics). Although we usually do not know d*(T) exactly, we 
do know its asymptotic behavior as T -7 00. We proceed as follows. 

For 0 ~ {3 ~ 00, define ~({3) as the set of probability density func­
tions p (x, x) defined on ~ X ~ which satisfy 

(i) f oc p(x, x) dx = Ps(x), the source output probability density 
function, 

(ii) f oc f oc d(x, x)p(x, x) dx dx ~ (3. 

The information corresponding to the density p(x, x) 1: ~({3) is defined as 

I {p(x, x)} = fa: Lp(x, x) log P:&)p~~X) dx dx, (6) 

where P2(X) = f oc p(x, x) dx. It is easy to show that I ~ 0 with equality 
if and only if p(x, x) = P s (X)P2 (x). Finally define the equivalent rate 
of the source 

Req({3) = inf I {p(x, x)} . (7) 
p(",.x) .mr(/3) 

Req ({3) is usually called the "rate-distortion function". Note that Req ({3) 
depends only on (3 and Pa(x). 

Let us now return to the quantity d*(T). Shannon's well known 
theorems tell us the following. 2 For a given communication system 
(as in Fig. 1), 



(i) d*(T) ~ do , 

(ii) d*(T) -7 do , 
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for all T, 

as T -7 CX), 

where do is the smallest solution of 

PsReq (do) ~ C, 

and C is the capacity of the channel. 

3145 

(8) 

Some intuitive insight into the meaning of Shannon's theorem can be 
gained by thinking of p.Req({3) as the equivalent rate in nats per second 
of the source (when reproduced with distortion (3). It is reasonable 
then to suppose that the minimum attainable distortion do is that 
distortion for which the source rate is just equal to the channel capacity 
C. 

There are two well-known cases for which Req({3) is known explicitly. 
The first is the case where X = the reals, Ps(x) = (271")-1 exp (-x 2/2(i), 
and d(x, x) = (x - X)2. In this case, Req({3) = ! log (J"2/{32, so that do = 

(J"2 exp (-2C/ Ps). 

The second case (which is important in the sequel) is X = {O, 1,2, ... , 
K - I} (K = 2,3, ... ), P sex) = L~:~ (I/K)o(x - k)[o(x) is the unit 
impulse), and d(x, x) is given by equation (5). In other words, the source 
output is a sequence of independent random variables, each equally 
distributed on the Ii-ary alphabet {O, 1, ... , Ii - I}. The quantity 
d is the average fraction of symbols received in error, and is often called 
the "error-rate". In this case, we write d*(T) = Pe(T, K), where the 
dependence of Pe on K as well as T is indicated explicitly. For this 
case it is known thae 

-IIOg K - h({3) - {3 log (K - 1), 
Req({3) -

0, 

where 

Q<~ 
I-' = K ' 

(9a) 

Q>~ 
I-' = K ' 

h({3) = -{3 log {3 - (1 - (3) log (1 - (3), (0 ~ (3 ~ 1). (9b) 

Shannon's theorem, equation (8), tells us that 

Pe(T, K) -7 'Y(K, Ps , C), 

where 'Y(K, Ps , C) is the smallest solution of 

p.Req('Y) ~ C, 

(lOa) 

(lOb) 

and C is the channel capacity. A graph of 'Y(Ii, Ps , C) versus C / Ss for 
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1.0..--------------------------, 

0.75 

0.25 

o~_~~_~ __ ~_~ ___ ~ __ ~_=_~ __ =__~ 

o 0.5 1.0 2.0 2.5 3.0 3.5 4.0 4.5 

C/PS 

Fig. 2-'}'(K, ps, C) versus Cjps (K-a parameter). 

various values of K is given in Fig. 2. Notice that "I(K, Ps , C) decreases 
from (K - 1) / K to zero as C / Ps increases from zero to log K. 

Let us also remark that the quantity P.(T, K) is related to X*(T, 1\1) 
(the smallest attainable average 'Word error probability). In fact it is 
easy to show that 

! X*(T, IC) ~ Pe(T, K) ~ X*(T, IC) 
n 

(11) 

where n = PsT (assumed to be an integer). 
Now, in the general case [arbitrary Ps(x) and d(x, x)], it is usually 

not possible to obtain a closed form expression for Req((3). Theorem 1, 
which is stated below, gives a useful bound on Req ((3) for the case where 
P s (x) is a density and ~ is a bounded set. This theorem is an extension 
of a result of Shannon. 2 The proof is given in Section 3.1. 

Let ~ be the interval [-A/2, A/2], where A(O < A < 00) is arbi­
trary. Let the source outputs X have density Ps(x), and let d(x, x) 
rex - x), where r(u) satisfies 

(i) r(u) = r( -u), 
(ii) r(u) ~ 0, with equality at u = 0, 

(iii) r(u) is continuous at u = o. 
(12) 

Then it can be shown (see Ref. 3, Appendix A) that for 0 < (3 ~ 
1/ A f~~2/2 r(u) du, there exists a unique Ao({3) which satisfies 

J
A

/
2 

lA/2 r(u)e-'l-. o ({3)r(u) du = (3 e-'l-. o ({3)r(u) du. 
-A/2 -A/2 

(13) 
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Define the probability density g{J(x) on X by 

[f A/2 J-I 
( ) 

_ -Xo ({3) T (x) d -Xo ({3) T (xl g{J X - e x e , 
• -A/2 

(14a) 

[note that f r(x)g{3(x) dx = ,8], and let 

(14b) 

be the corresponding "entropy". 
For A = r.J'J, equation (13) has a solution in many cases. In particular, 

when r(u) = I u Is (s > 0), equation (10) has a solution for 0 < ,8 < r.J'J. 

Thus g{J(x) and H I(.8) are meaningful for A = r.J'J also. 
We now state the lower bound on Req (,8) as Theorem 1. 

Theorem 1: For the source defined above, for 0 < ,8 ~ A -1 f~~2/2 feU) du, 

(15a) 

where 

J
A/2 

Hs = - Ps(x) log Ps(x) dx 
-A/2 

(15b) 

is the entropy of the source density P sex), and HI (.8) is defined in equations 
(13) and (14). Inequality (15a) also holds for A = r.J'J, when r(u) = I u 1

8 

(s > 0). 

Examples: 

(i) Say X = the reals, and d(x, i) = rex - i) = I x - i 1
8

, where 
s > 0 is arbitrary. Theorem 1 is applicable with A = r.J'J. Solving equa­
tion (13), yields "0(,8) = (s.8)-I and 

(8-1)/8 
g{3(x) = s () exp [-I x I S/(s,8)J , 

2iJ lIs r .! 
s 

so that 

(16a) 

where 

1 [28er8(~),8J 
HI({J) = -; log ss-I , (16b) 

and Hs is given by equation (15b). 
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(ii) Quadratic Distortion: Let ~ = the reals, and d(x, x) 
Then from example (i), with s = 2, 

Req ({3) ~ H s - ! log 27re(3. (17a) 

Further Shannon 4 has given the following upper bound to Req ((3) : 
2 

Req((3) ~ ! log ~ , (17b) 

where (52 = f X2Ps(x) dx. Note that when Ps(x) = (27r(52)-! exp (-x2/2), 
the upper and lower bounds of inequalities (17) coincide for (3 ~ (52. 
[Since Req((3) is non-increasing, Req((3) = 0 for (3 > (52.] 

Another case of interest is ~ = [-A/2, A/2](A < 00), Ps(x) = A-t, 
and d(x, x) = (x - X)2. In this case Theorem 1 (applied for finite A) 
provides a lower bound on Req ((3) which is tighter than that of inequality 
(17a) and can be evaluated numerically. An upper bound can be found 
by computing I[po(x, x)], where Po(x, x), a joint probability density 
for X and X, is defined by the following: The variate X has density 
Ps(x). The variate X = a(X + Y), where the Y is a Gaussian variate, 
independent of X, with 

EY = 0 and Ey2 = (3A 2/(A 2 - 12(3), 

and 

a = (A2 - 12(3)/ A 2. 

Note that E(X - X)2 = (3. The information I[po(x, x)] corresponding 
to Po(x, x) can also be evaluated numerically and is an upper bound to 
Req ((3). Figure 3 is a graph of these bounds on Req ((3), and also of do , 
the solution of PSReq(do) = C. 

(iii) Say ~ = [-A/2, A/2]. Let Ps(x) = A-I and d(x, x) = rex - x) 
where, in addition to satisfying conditions (12), r(u) satisfies 

r(u) = rev) if u == v (mod A). (18) 

[If, for example, A = 27r and ~ represents an angle, then equation (18) 
must hold.] For r(u) satisfying condition (18), the bound (lSa) on 
Req((3) of Theorem 1 holds with equality, namely, Req = Hs - HI ((3). 
(Section 3.1) 

(iv) Threshold Distortion: Let ~ = [-A/2, A/2] and let d(x, x) 
be the "threshold" distortion defined by 

d(x, x) = do(x, x) = ro(x - x), (19a) 



ANALOG DATA TRANSMISSION 3149 

8 

7 

4 

3 

2 

oL-__ ~ __ -L __ -L __ ~~~~~~~ 
o 0.4 0.8 1.2 1.6 2.0 2.4 2.8 

C/ps' R ((3) 

Fig. 3-Bounds on f3/A2 versus Req(f3) or rk/A2 versus C/ps. (i) --- upper 
bound; (ii) - - - lower bound (Theorem 1); (iii) - - - - - lower bound 
(17a) . 

where 

ro(u) = {I, 
0, 

I u I ~ 0, 

I u 1< o. 

In this case, the bound (15) of Theorem 1 is 

(19b) 

Req({3) ~ Hs - h({3) - log 20 - {3 log (A/20 - 1), (20) 

where h({3) is defined in equation (9b). There is a case where inequality 
(20) is satisfied with equality, namely Ps(x) = A-I and A/(20) 
Ko = 1, 2, .... For this case, we show in Section 3.1 that 

_ flOg Ko - hljJ) - {:J log (Ko - 1), . 
Req({3) - .] 

0, . . 

° 
< R < Ko - 1 
= fJ = ](0 ' 

{3 ;:::: ](0 -1. 
. - Ko 

(21) 
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Notice the striking similarity of equations (21) and (9) for the discrete 
K-ary source. We will have more to say about this later. 

When A/(25) is not an integer, we show (in Section 3.1) the right 
member of (21) is an upper bound to Req({3) with Ko replaced by 
[A/25t = K+ . Thus with inequality (20), 

log [~J - h(~) - (llog [~o - 1] ;;; Ro,(ft) 

~ log K+ - h({3) - (3 log (K+ - 1). (22) 

A Result for Finite T for the Threshold Distortion is as follows. 
Let a: = [-A/2, A/2], Ps(x) = A -\ and d(x, x) = da(x, x), the thresh­
old distortion given in equations (19), as in example (iv) above. In the 
system of Fig. 1, let d*(T) = Q(T, A, 5), where the dependence on A 
and 5 is indicated explicitly. The results in example (iv) [equation (21)] 
and equation (10) imply that for A/25 = Ko, limT-->oo Q(T, A, 0) = 
limT-->oo P.(T, Ko) = "((Ko , Ps , C). This correspondence between Q and 
P e is extended to finite T in the Theorem 2 (proved in Section 3.2.). 

Theorem 2: Let K+ = [A/20t, K = [A/20r. For all T, 

Pe(T, K_) ~ Q(T, A, 0) ~ Pe(T, K+). (23) 

The quantities P e and Q are defined, of course, for the same channel and 
source output rate p s . 

A case of particular interest is A/25 = Ko , an integer, so that K+ = 
K_ = Ko and Theorem 2 yields 

P.(T, ](o) = Q(T, A, 0), all T. (24) 

For this case we deduce from equation (24) that (for all T) the optimal 
encoder for the analog source is a Ko-Ievel "uniform" quantizer with 
quantization levels [(2i - Ko - 1)5]~'::1 followed by an optimal "digital" 
encoder. This is the only known case for which analog-to-digital con­
version is known to be optimal for T < 00 for the transmission of analog 
data. 

2.3 Case Where The Source Has No Statistics 

Suppose that the source output is, as in Section 2.2, a sequence of 
symbols from the source alphabet a:, which appear at a rate of Ps per 
second. However, in this case, as distinct from above, we assume that 
there is no known statistical model for the source. Say that, as in Sec­
tion 2.2, the encoder waits T seconds during which time n = PsT source 
symbols x = (Xl' X2, ••• , Xn) £ a:n have appeared. Again, as above, 
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the encoder output is fB(X) E \V T , the channel output is Z E lJT and the 
decoder output is X = fD(Z) E ~n. The encoder-decoder pair and the 
channel statistics induce a probability density for X on ~n which de­
pends on x (the source output). Denote this density by f(x I x). As­
suming, as in Section 2.3, that a non-negative distortion function 
d(x, x) on ~ X ~ is given, then the average distortion when the source 
output is x is 

(l(x) = r [! t d(Xk , Xk)]f(X I x) dX, Jxn n k=l 

(25) 

where x = (Xl' X2 , •.. , Xn) and x = (Xl' X2, ... ,xn). Since we cannot 
take a meaningful statistical average over x, we adopt as our fidelity 
criterion, the "guaranteed" distortion 

d = sup (l(x). (26) 

Let d*(T) be the smallest attainable value of d for a given delay T 
(which corresponds to n = PsT). 

For the special case where ~ = {O, 1, ... , K - I} and d(x, x) = 
dH(x, x) [given by equations (5)] let d*(T) = Pe(T, K) where the de­
pendence on K is made explicit. Consider P e(T, K) (the average error­
rate in Section 2.2). Clearly, 

Pe(T, K) ~ Pe(T, K). 

The following theorem [taken together with equations (10)] shows that 
as T ~ 00, p. and P e are asymptotically equal. The proof is in Section 
3.4. 

Theorem 3: For the communication system described above with K-ary 
source alphabet, source output rate P s , and channel capacity C, 

limit Pe(T, K) = 'Y(K, Ps , C), (27) 

where 'Y(K, Ps , C) is given by inequality (lOb). 
A second important special case is ~ = [-A/2, A/2], and d(x, x) 

do (x, x), the threshold distortion given by equations (19). In this case 
let d*(T) = Q(T, 0, A). The quantity Q can be related to p. , and 
Theorem 4 (proved in Section 3.3) is analogous to Theorem 2, though 
somewhat sharper. 

Theorem 4: For 0 < 0 ~ A, let M(o) be the integer satisfying 

A 
il1 - 1 < -- < k[ = (20) . (28a) 
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Then for all T, 

Q(T, A, 0) = PerT, M (0)]. (28b) 

The quantities P e and Q are defined, of course, for the same channel 
and source output rate Ps • 

In constrast to Theorem 2, this theorem asserts the equality of cor­
responding values of Q and Pe for all values of A/(20). Also as in Theo­
rem 2, this theorem implies that the optimal encoder for the source 
~ = [-A/2, A/2], with d = da [with a fidelity criterion as in equation 
(26)] is a uniform quantizer [with M (0) levels] followed by an optimal 
digital encoder (see part (i) of the proof of Theorem 4). 

Theorems 3 and 4 can be combined to obtain the following. 

Corollary: For 0 < 0 ~ A, let M(o) be as in Theorem 4. Then 

lim Q(T, A, 0) = 'Y[M(o), Ps , CJ, (29) 
T-+oo 

where'Y is given by inequality (lOb). 

2.4 Generalization to Arbitrary Source Alphabets 

In this section we consider the case where the source alphabet ~ 
is an arbitrary space with an arbitrary metric or metric-like function 
defined on it. We then give a generalization of Theorem 4. First we give 
some preliminary definitions. 

Let ~ be a set and let Po(x, x) be real-valued function defined on 
~ X ~ with the properties 

(i) Po(x, x) = Po(x, x) 

(ii) Po(x, x) ~ 0 with equality when x = x. 

If in addition Po(x, x) satisfies 

(iii) Po(x, x) ~ Po(x, y) + Po(y, x), 

(30a) 

(30b) 

(30c) 

then Po(x, x) is a metric; but we will not require inequality (30c) to 
hold. For x t ~ and l1 > 0, let Sx(l1) = {x t ~ : Po(x, x) < l1} be the 
(open) sphere of radius l1 about x. 

A set A C ~ is called a "l1-covering" (of~) if UXtA Sx(l1) contains ~, 
and A is called a "l1-packing" (of~) if Sx(l1) n S£(l1) is empty for all 
x, X t A, x ~ x. Let M c(l1) be the minimum number of points which can 
constitute a l1-covering of ~, and let M p(l1) be the maximum number 
of points which can constitute a l1-packing. These quantities are related 
by the follo'wing lemma (proved in Section 3.4). 
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Lemma 1: Let 1] = SUPX,y,ZtX Po(x, y)/[Po(x, z) + Po(z, y)J. Then for .1>0, 

(31) 

In particular, if Po is a metric, 1] ~ 1. Inequality (31) is of course 
meaningful only if 1] < 00. 

N ow consider the communication system discussed in Section 2.3 
with an arbitrary source space xt. Let Po satisfy expressions (30a) and 
(30b), and define the "threshold" distortion do (x, x) by 

d ( ") {I, Po(x, x) ~ 0, 
a x, X = 

0, Po(x, x) < O. 

(32) 

Let d be the guaranteed distortion defined by equation (26) with the 
distortion d(x, x) = da(x, x) [given by equation (32)J. Finally, let 
G(T, 0) be the smallest attainable value of d for a system with delay T. 
(The dependence of G on 0 is made explicit.) Of course G(T, 0) also de­
pends on Ps as well as the channel characteristics. The special case 
treated in Section 2.3 is X = [-A/2, A/2J, Po(x, x) = I x - x I. In 
this case G(T, a) = Q(T, A, a). 

The following is a generalization of Theorem 4 and is proved in Sec­
tion 3.3. 

Theorem 6: Let M c(.1) and M p(.1) be as defined above for the source 
alphabet X [with a Po(x, x)J. Then G(T, a) satisfies 

PerT, Mp(a)J ~ G(T, a) ~ PerT, M c(a)], (33) 

where P e is defined in Section 2.3. Note that P e and G are defined for the 
same channel and source output rate P s • 

Theorem 5 reduces to Theorem 4 on noting that for X = [-A/2, A/2J 
and Po(x, x) = I x - x I, 

M pea) = M c(a) = M(a), (34) 

where M(a) is defined by inequality (28a). Let us remark that although 
M p == M c , the maximum a-packing is not in general identical to their 
minimum a-covering. For example, when a = A/4, M(a) = 3, and the 
maximum a-packing is unique, namely 

{-~,o,:}, 

t To be precise, we must assume that the space X and the encoder and decoder 
functions are measurable. 
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which is not a a-covering. There are many a-coverings, for example 

{_A 0 A}. 
3' '3 

2.5 Some Applications 

2.5.1 Rate at Which Q(T, A, a) Approaches its Limit 

Consider again the source with ~ = [-A/2, A/2], P sex) = A-t, 
and distortion d(x, x) = do(x, x) [defined by expressions (19)]. Suppose 
further that A/ (2a) = K o , an integer and that the channel capacity 
C = Ps log Ko . In this case "(Ko , Ps , C) = 0 [see expressions (9) and 
(10)], so that from expressions (24) and (lOa) 

lim Q(T, A, 0) = O. 
T-+oo 

We will now obtain a lower bound on the rate at which this limit is 
approached. From the first inequality in inequality (11), using n = PsT, 

Pe(T, K) ~ IT J:..*(T, eCT). 
Ps 

(35) 

For those channels for which expression (4) holds, the right member of 
inequality of (35) r-v (2p sT)-1. Combining expressions (24) and (35) 
we have that 

Q(T, A, a) ~ 2:sT [1 + HT)] I (36) 

where HT) ~ 0 as T ~ 00. Thus for the class of channels for which 
expression (4) holds and these parameter values, Q(T, A, a), approaches 
its limit no faster than T- 1

• Determination of the similar bounds on the 
rate of approach of Q to its limit for other parameters is an open question. 

2.5.2 The sth-M ean Distortion 

Consider the case where ~ = [-A/2, A/2], and the distor­
tion d(x, x) = \ x - X \8 (s > 0). When P sex) = A -\ let the smallest 
attainable average distortion d*(T) ~ ea(T). For the case of no source 
statistics (as in Section 2.3), let the smallest attainable guaranteed 
distortion d* (T) ~ t (T) . We establish some properties of ea and ;;8 
below. 

For any random variable Y (such that \ Y \ ;§; A), and any a1 , 
az(O & 01 , o~ & A), 
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0; PI' {I Y I ~ 01 } ~ ElY I S ~ 0; PI' {I Y I < 02} 

+ A' PI' {I Y I ~ 02}' (37) 

It follows from inequality (37) that for arbitrary 01 , 02 (0 ~ 01 , 02 ~ A), 

and 

o;Q(T, A, ( 1) ~ €"(T) ~ oHl - Q(T, A, (2)J + ASQ(T, A, (2), 

(38a) 

o;Q(T, A, ( 1) ~ e8 (T) ~ 0~[1 - Q(T, A, (2)J + ASQ(T, A, (2), (38b) 

where Q and Q are defined in Sections 2.2 and 2.3 respectively. Applica­
tions of Theorems 2 and 4 (and Q, Q ~ 0) yields 

o;Pe(T, K_) ~ e8 (T) ~ 0; + A 8Pe(T, K+), (39a) 

and 

o:Pe[T, NI(ol)] ~ e8 (T) ~ o~ + A SPe[T, 1I1(02)J, (39b) 

where K+ = [A/202r, K_ = [A/20 1r, and M(o) is defined by inequality 
(28a). Thus e8 and e8 too are related to the digital error rates P e and p •. 
Of course, 01 and 02 may be chosen to yield the tightest bounds. 

Examples 

(i) Since we know the asymptotic value of P e and Pe as T -7 00, 

we can apply inequalities (39) to obtain estimates of the limiting values 
e~ = limitr--+oo eS(T) and e~ = limit r--+oo €8 (T). For example, when the 
channel capacity C is large, setting A/201 = exp [(C/Ps)(l + AI)] 
and A/202 = exp [(C/ Ps)(l - A1)](A1 , A2 > 0), yields, after some 
computation, 

,; = exp {-:~ [1 + ~,(C)l} , 

,; = exp {-:~ [1 + ~'(c)l} , 

(40a) 

(40b) 

where h , ~2 -7 0 as C -7 00. Thus for large C, e~ and e: decay roughly 
exponentially in C. 

Let us remark that parts of inequalities (40) are obtainable by other 
means. Specifically, e~ ~ I{l (s) exp [-sC / Ps] follows from inequality 
(16). Further, e~ ~ exp [-(sC/Ps)(l + ~1)] and €~ ~ exp [-(sC/Ps) 
. (1 + ~2)] can be deduced from the work of Panter and Dite on quanti­
zation.5 Finally the bound €~ ~ exp [-(sC/ps)(l + ~2)] is new. 
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(ii) In this example, we apply the first inequality of (39a) to show the 
possible gains (with the 8th mean criterion) obtainable by using coding 
in a particular (though quite typical) case. 

Suppose that the channel is the additive white Gaussian noise channel 
with average power Po, one-sided spectral density No, with no band­
width constraint. 6 To begin with, suppose T = 1/ Ps , so that n = 1 
and there is no "coding", that is, each T-second channel input depends 
on exactly one source output. When the source is the K-ary digital source 
(with equi-distributed symbols), it is known that the minimum attain­
able error rate is lower bounded byt 

P.(T, K) ~ !~LK ~{~)~No)JI}, 
where 

<P(a) = (27r)-! i: e-uO
/

2 du, 

is the cumulative error function. 

(41) 

We now apply the lower bound of inequality (39a) together with in­
equality (41) to obtain a lower bound on eB(T) when the channel 
signal power Po made large, while T = 1/ Ps is held fixed. Setting 
01 = p;;l, we obtain from inequalities (39a) and (41) and cI>(a) rv 

(27ra2)-1 exp (-a 2/2) (as a ~ 00), that (with T = p~I held fixed) 

"(T) = .' CJ ~ exp {-2::ps [1 + MPo)l} (42) 

where ~3(PO) ~ 0 as Po ~ 00. 

Now suppose that for a given channel (and a given Po) we allow T 
to become large. In other words, we permit "source coding" in blocks of 
length n = psT. Since the channel capacity C = Po/No, we have from 
equation (40a) that 

limit eB(T) = e~ = exp {-2N
sPo 

[1 + ~4(PO)]} , (43) 
T~~ oPs 

where ~4(PO) ~ 0 as Po ~ 00. 

Now let () > 0 be arbitrary, and let PI be sufficiently large so that 
for Po ~ PI , 

Then from inequality (42), with P 0 ~ PI' the best attainable mean sth 

t This bound follows from Ref. 1 [equation (82)] when the signal energy nP 
in that reference is replaced by PoT our signal energy, and M is replaced by K. 
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error with no coding is bounded by 

ea (1..) ~ exp [-~ (1 + (J)]. 
Ps 2NoPs 

(44) 

The best attainable sth error with infinite delay T is from equation 
(43) with Po ~ PI , bounded by 

e~ ~ exp [- sPo (1 - (J)]. 
NoPs 

(45) 

We conclude that coding with large delay offers a saving of at least a 
factor of (28) in power Po or rate Ps (when Po ~ PI)' This of course is 
interesting when s > !. Similar results for s = 2 have been derived by 
Ziv and Zakai.7 This result can be generalized to arbitrary n (here we 
studied n = 1) and arbitrary channels simply by using appropriate 
bounds on Pe(T, K). 

III. PROOFS OF THEOREMS 

3.1 Proof of Theorem 1 and Related Examples 

3.1.1 Proof of Theorem 1 

Shannon [Ref., 2, pp. 155-156] has shown that for a difference dis­
tortion measure d(x, x) = rex - x), that 

(46) 

where H s is given by equation (15b) and cI>((3) is the maximum attain­
able entropy H {f(x)} for a probability density f(x) which satisfies 

i: r(x)f(x) dx ~ {3. (47) 

The entropy H {f(x)} is defined by 

H {f(x)} = - i: f(x) log f(x) dx. (48) 

A trivial modification of Shannon's argument shows that when X = 

[-A/2, A/2], inequality (46) remains valid if f(x) is further restricted 
to satisfy 

f(x) = 0, 
A Ix 1>-· 2 

(49) 

N ow the density g{J(x) [defined by expressions (13) and (14a)] satisfies. 
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conditions (47) and (49) and has entropy HI ((1) [defined by equation 
(14)]. We prove Theorem 1 by showing that if the density I(x) satisfies 
conditions (47) and (49), then H{/(x)} ~ HI ({3). 

Let us write g{3(x) = Be->.dx) where f.. = f..o({3) and where 

[J
A

/
2 J-l B = e->-'o({3)r(x) dx . 

-A/2 
Then 

J
A / 2 

HI ((3) = - g{3(x) log g{3(x) dx 
-A/2 

-log B + f.. JA

/

2 

r(x)g{3(x) dx = -log B + t..{3. 
-A/2 

Since I(x) satisfies condition (47), 

H I ({3) ~ -log B + t.. I_A::2 r(x)f(x) dx 

-1 I(x) log Be->.r(x) dx = - 1 f(x) log g{3(x) dx. 

Thus 

H{f(x)} - H 1({3) ~ - 1_:/22 f(x) log f(x) dx + I f(x) log g{3(x) dx 

= JA

/

2 

f(x) log g{3(x) dx ~ JA

/

2 

f(x) [g{3(X) - 1J dx = 1 - 1 = 0, 
-A/2 I(x) -A/2 I(x) 

where the second inequality follows from log u ~ u - 1. Theorem 1 
follows. 

Note that Theorem 1 will hold for A = 00 as long as we can find 
g{3(x). Examination of the derivation which establishes the existence of 
g{3(x) (Ref. 3, Appendix A) shows that Theorem 1 is valid in particular 
for A = 00 and rex) = , x ,8, S > o. 

3.1.2 Determination 01 Req ((1) in Example (iii) 

For X = [-A/2, A/2], P sex) = A -t, and d(x, x) = rex - x), where 
r(u) satisfies conditions (12); Hs = log A. Theorem 1 implies 

(50) 

We now show that if, in addition, r(u) satisfies equation (18), then 
inequality (50) is satisfied with equality. Let X and X be random varia-
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bles such that the density for X is Ps(x) = A -1(1 x I ~ AI2), and X = 
X + Y where the random variable Y is independent of X and has density 
gtl(Y) = Be-Xorll [defined by equations (13) and (14a)]. The information 
of p(x, x), the joint density for X, X, is 

J{p(x, x)} = H{P2(X)} - '(::2 Ps(x)H{p(x I x)} dx, 

where P2(X) is the density for X, p(x I x) is the conditional density for 
X given that X = x, and H { } is the entropy defined in equation (48). 

Now p(x, x) = Ps(x)p(x I x) = A -lBe-Xor (x-x), so that 

j
A/2 jX+A/2 

P2(X) = A -lB e-xor(x-x) dx = A -IB e-Xor(u) du. 
-A/2 x-A/2 

when x ~ 0 this becomes, letting v = u - A and using equation (18) 

j
A/2 jX+A/2 

P2(X) = A -lB e-Xor(u) du + A -IB e-Xor(u) du 
x-A/2 A/2 

l
A/2 jX-A/2 = A -lB e-Xor(u) du + A -IB e-Xor(v) dv. 

x-A/2 -A/2 

Hence, since f gfJ(x) = 1, 

For x < 0, a similar proof yields P2(X) = A-I. Thus H{P2(X)} = log A. 
Further p(x I x) = gfJ(x - x), and a similar use of equation (18) yields 
H{p(x I x)} = HI ((3), independent of X. Thus we conclude that 
J{p(x, x)} = log A - HI ((3). Since p(x, x) t ~m:((3), this and inequality 
(50) imply Req((3) = log A - H 1 ((3). 

3.1.3 Proof for Example (iv) 

We first verify equation (21) for the case AI (20) = 1(0 , an integer. 
That Req((3) is greater than or equal to the right member of equation 
(21) follows from inequality (20) (since H s = log A) and from Req((3) 
~ O. To show that Req((3) is less than or equal to the right member of 
expression (21) we produce a density Po (x, x) for which J {Po (x, x)} 
equals the right member of equation (21). But first we digress to define 
"entropy" for a discrete random variable. 

Consider a discrete probability density f(x) = Li ai o(x - Xi). Then 
the "discrete entropy of f(x) is defined by 

HD{f(x)} = - L ai log a, . (51) 
i 
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Now, say that p(x, i) is the probability density for two random vari­
ables X, g, such that X takes values at a countable number of points. 
Then the marginal density for X, denoted P2(i) and the conditional 
density for X given X = x [denoted p(i I x)] are discrete densities. It is 
easy to show that the information can be written 

where PI (x) is the marginal density for X. 
Return now to Example (iv). Let 0 ~ {3 ~ (Ko - l)/I{o, and let 

Po(x, i) be the density for X, X, where X has density Ps(x) = A -1 and 
g has conditional density Po(i I x) given as follows. Partition the 
interval [-A/2, A/2] into Ko subintervals {Id~o-1 of width 2D. Let Xi 

be the midpoint of Ii (i = 0, 1, 2, ... , Ko - 1). Then for x E Ii 

Po(i I x) = (1 - (3) D(i - Xi) + (Ko ~ 1) t; D(i - Xi)' 

In other words, X is an imperfectly quantized version of X. With proba­
bility (1 - (3), g is the midpoint of the subinterval in which X lies, and 
with probability {3, X is uniformly distributed among the remaining 
(Ko - 1) midpoints. Note that Ps(x) and Po(i I x) together determine 
Po(x, i), and that Po(x, i) E ~([3). 

Further, by symmetry, X is uniformly distributed on the Ko mid­
points, so that 

H D{P02(i)} = log Ko , 

where P02(i) is the marginal density for X [corresponding to Po(x, i)]. 
Also 

HD{Po(i I x)} = h([3) + {3log (Ko - 1), 

independent of x. Thus equation (52) yields 

I{po(x, i)} = log Ko - h({3) - {3 log (Ko - 1), 

the right member of expression (21). This establishes equation (21) for 
o ~ {3 ~ (Ko - l)/Ko. Since Req[(Ko - l)/Ko] = 0 and Req«(3) is non­
increasing, we have Req«(3) = 0 for (3 ~ (Ko - l)/Ko , establishing 
expression (21). 

It remains to verify the upper bound of expressions (22). But this 
follows immediately on noting that for fixed A and (3, Req«(3) is a decreas­
ing function of o. Thus decreasing 0 to 0' = A/2[A/2Dr results in an 
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increase in Req«(3). Since A/(20') is an integer, we can apply expression 
(21) to obtain the upper bound of expression (22). 

3.2 Proof of Theorem 2 

Theorem 2 relates the attainable distortions for a digital source and 
an analog source when connected to a given channel. The proof is in 
two parts [corresponding to the two inequalities in expression (23)], 
the second of which uses a bounding technique introduced by Ziv and 
Zakai.7 

In part (i) we are given an encoder and decoder for the digital source 
(with appropriate parameters), which when connected to the channel 
as in Fig. 1 results in an average Hamming distortion d = dH • We show 
how to quantize the outputs of the analog source (with appropriate 
parameters) to essentially simulate the digital source. When this 
quantizer is connected to the digital encoder, we show that we attain 
an average distortion for the analog source d5 ~ dH • This leads us 
directly to the second inequality of expression (23). 

In part (ii) we establish the first inequality of expression (23) in an 
essentially dual way. We begin by assuming the existence of an analog 
encoder and decoder. We then show how to modulate the outputs of 
the digital source to virtually simulate the analog source. Unfortunately, 
this is not as easy as the quantization in part (i), and we have to make 
use of an "averaging" argument in the course of the proof. 

(i) Let us denote by Sa , the analog source whose output is a sequence 
Xl' X 2 , ••• of independent random variables, each uniformly dis­
tributed on the source space ~a = [-A/2, A/2}. The random variables 
appear at a rate of Ps per second. For this source we use the distortion 
d(x, x) = do(x, x) defined by equations (19). Assume first that A/(20) = 
Ko an integer, and consider the following (uniform) quantizer. Partition 
the interval [-A/2, A/2] into 1(0 subintervals {1d~o-1 of width (20) 
where 

i = 0, 1, ... , Ko - 1, (53a) 

and 

i = 0, 1, ... ,Ko • (53b) 

To be precise, the first interval 10 should be closed on the left. The quan­
tizer q is defined by 

q(x) =~, if x t Ii (54) 
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Let us now consider the digital source Sd whose output is a sequence 
8 1 , 8 2 , ••• of independent discrete random variables, each uniformly 
distributed on the Ko-ary set ~d = {O, 1, ... , Ko - I}. These random 
variables also appear at Ps per second. (Note that we use 8k instead of 
X k as in Section II to distinguish the outputs of Sd from those of Sa .) 

Say that the distortion d = dIl as defined in equation (5). 
Suppose that Sd can be connected with delay T to a channel as in 

Fig. 1 with (digital) encoder f':) and decoder f1d
) , and average distortion 

dIl . We now show how to connect the "analog" source Sa to the 
channel [with the help of f':) and fi:)] to attain an average distortion 
do ~ dIl • Consider the system in Fig. 4. In T seconds the output of 
the analog source is an n-vector (n = Ps T)X = (Xl' ... , Xn). The 
"quantizer" output is the n-vector S = (81 , 8 2 , ••• , Sn), where 8 k = 
q(Xk ) (Tc = 1,2, ... ,n). Note that the 8 k are independent and uniformly 
distributed on {O, 1, ... , Ko - I}, as are the outputs of the digital 
source Sd. The digital encoder and decoder fkd

) and fi:) are as given 
above, and the output of the latter is the Ko-ary vector S = 
(81 , ••• , 8n ). Thus 

Ed(n) (S, S) = dlI . 

The "converter" output is the n-vector X = (Xl' X2 , 

Xk = (28 k - Ko + 1)0. 

In other words if 8k = i, then Xk is the midpoint (ei + ei+1)/2 of the 
ith subinterval. Disregarding the case when X k is equal to one of the 
endpoints ei of the subintervals, (an event with zero probability), it is 
clear that I X k - Xk I ~ 0 if and only if Sk ~ Sk (k = 1, 2, ... ,n). 
Thus 

It follows that 

Q(T, A, 0) ~ Pe(T, ~) , (55) 

when AI (20) IS an integer. The second inequality of expression (23) 

DIGITAL DIGITAL /\ /\ 

ANALOG X QUAN- 5 ENCODER ENCODER 5 CON- X 
SOURCE 10- TIZER 10-

f~d) 
r-- CHANNEL r--

f~d) 
~ VERTER r--

d 

Fig. 4 - An analog communication scheme. 
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follows on noting that Q(T, A, 0) is a nonincreasing function of o. Thus 
decreasing 0 to 0' = A/2[(+ does not result in a decrease in Q(T, A, 0). 
Since A/ (20') is an integer, we can apply inequality (55) to obtain the 
second inequality of expression (23). This completes part (i). 

(ii) Let us suppose that the analog source Sa defined in part (i) is 
connected with delay T to a channel as in Fig. 1. The T-second source 
output is the n-vector X = (Xl' X 2 , ••• , Xn) and the decoder output 
is the n-vector X (Xl' X 2 , ••• , Xn). Say we attain an average dis­
tortion 

(15 = Edin) (X, X). 

Letting E[d~n) (X, X) I X = xl be the conditional expectation of din) (X, X) 
given X = x, we can write 

(15 = f E[din) I X = x] 1.;; dx. 
[-A/2.A/2]n A 

(56) 

Suppose that (A/20) = [(0' an integer. Let us partition the interval 
[-A/2, A/2] into [(0 subintervals of width 20 as in equations (53). 
Let e be the set of left end-points of these subintervals, that is, 

{ }
Ko-I e = ei i=l • (57) 

Now consider the n-cube [-A/2, A/2r. Note that the random n-vector 
X is uniformly distributed on this cube. The partition of the interval 
[-A/2, A/2] defines a partition of the n-cube into [(~ subcubes, each 
the product of n subintervals. Let the members of en be denoted by the ' 
n-vectors ~j , j = 1, ... , [(~ , and let Cj be the corresponding subcube. 
(That is, C j is the product of the subintervals whose left end-points are 
the coordinates of ~j .) Then clearly, 

[
_ A AJn 

2 '2 j=l 

where L denotes disjoint union. Thus we can rewrite equation (56) as 

Kno r 1 
(15 = t; .fe; A;;E[d~n) I X = x] dx 

= I: T;;; f (2~)n E[di
n

) I X = ~j + od dex, (58) 
j=l 1\..0 [0.25]n U 

where the second equality follows from the change of variable of integra­
tion to ex = x - ~j , and the fact that A = 20[(0 . 

Some insight into what we have done may be gained by considering 
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the special case where Ko = 2 and n = 2. In this case the n-cube 
[-A/2, A/2r is a square, and there are K~ = 22 = 4 members of Sn 
denoted ~1 , ~2 , ~3 , and ~4 • (See Fig. 5.) The subcubes are C1 , C2 , C3 , 

and C4 as indicated. 
Let us consider now the digital source Sa defined in part (i) whose 

output is the sequence SI , S2' .... We would like to transmit the out­
puts of Sa through a channel (as in Fig. 1) with delay T, so that the 
source output must be an n-vector (n = PsT)S, and the decoder output 
an n-vector S. The fidelity criterion is 

dH = Ed;;) (S, S). 

Now suppose that we are given an encoder-decoder, fka
), f1a

), for the 
analog source Sa [for which A/ (20) = Ko], connected with delay T, to 
a given channel. Say this encoder-decoder attains an average distortion 
do. We show that there exists an encoder-decoder for the Ko-ary 
digital source Sa, connected with delay T, to the same channel such that 
the average distortion dH ~ do. From this we deduce immediately 
that for A/ (20) = Ko , 

(59) 

The digital encoder is given schematically in Fig. 6a. The analog en­
coder which we are given is fka

) (x), x t [-A/2, A/2r, and is realized in 
the right box of Fig. 6a. The function of the "modulator" is to assign to 
each n-vector S t {O, 1, ... ,Ko - l}n, a member of [-A/2, A/2r. This 
is done as follows. Let S be the set defined by equation (57). For s t 

{ 0, 1, 2, ... , K 0 - I}, let 

28 28 

1 
C 2 C 3 28 

~2 
~3 A 

0 
C I C4 28 

~1 
10 g4 II 

A 

Fig. 5 - A digital encoder. 
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5 g(n) (5)+ d ANALOG fE(d) (5) = fE(a) ~ In) (5) +ctJ 
ENCODER 

MODULATOR 

z 

(CHANNEL 
OUTPUT) 

ANALOG X =fD(a}(Z) 
DECODER 

fD(a) 

fE(a) 

(a) 

1\ (d) 1\ 
5=fo (Z)=gl(X) 

QUANTIZER 

(b) 

(el 

Fig. 6 - (a) Digital to analog encoder. (b) Analog to digital decoder. (c) Digital 
communication scheme. 

y(S) = (21l{S - ~oJ 
be the sth member of 8. For s = (Sl ,S2, ... ,sn) E {O, 1, ... ,Ko - l}n, 
let 

g(n) (s) = [g(Sl), g(S2), ... , g(S,i)]. 

When the input to the modulator is s, its output is 

a + g(n)(s), 

where a = (aI' a2, ... , an) E [0, 20r is a fixed vector. Thus the digital 
encoder is 

tkd
) (s) = tka)[a + g(n) (s)]. 

The digital decoder is given schematically in Fig. 6b. The left box is 
the analog decoder f1a

) which we are given. Its output x is a real n­
vector. The right box is a quantizer. When its input is x = (Xl' ... , xn ), 

its output is gl (x) = S = (Sl , ... , sn), where sk(k = 1, 2, ... , n) is a 
member of to, 1, ... ,Ko - 1} which minimizes 1 gk(Sk) + ak - XI, I. 

When the digital source Sd is connected to the channel with this en­
coder-decoder pair, the result is schematized in Fig. 6c. (Upper case 
X's and S's are used to signify random variables.) The portion of the 
system in the dotted lines is precisely the analog encoder-channel-
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decoder which would produce an average distortion a5 given by equa­
tion (56), if the analog input, X, where uniformly distributed on the 
n-cube [-A/2, A/2r. But this is not the case here. In fact, X takes only 
one of 1(~ possible values. However, the quantity E[din

) (X, X) I X = x] 
is exactly the same in the system of Fig. 6c as in equation (56), for x = 
g(n)(s) + a(sE to, ... ,1(0 _l}n). 

Let us write an expression for the average distortion all for the 
digital source. Note that Sk ~ Sk, only if IXk - [g(Sk) + ak] I ~ o. 
Thus 

and 

~ L K1nE[din)(X, X) I X = g<n)(s) + a], (60) 
s 0 

where Ls is the sum over the K~ equally-likely values of s. Let us now 
average the right member of expression (60) over all a in [0, 2or, with 
a assumed to be uniformly distributed. That average is 

If we note that the set {g<n) (s)} are in one-to-one correspondence with 
the K~ members ~i of Sn, this quantity may be written as 

Kn. 1 f 1 ~ ~ L TTn (2 ~)n E[do(X, X) I X = ~i + a] da, 
i = 1 L\" 0 [ 0 • 2 0 I n U 

which equals ao by equation (58). Since there must be at least one 
value of a for which the right member of expression (60) is as small 
as the average, we have proved inequality (59). 

The first inequality of expression (23) follows from inequality (59) 
on noting as in part (i) that Q(T, A, 0) is a decreasing function of o. 

3.3 Proof of Theorems 4 and 5 

Since Theorem 5 includes Theorem 4 as a special case we need only 
give a proof of Theorem 5. Our task is further simplified since the basic 
idea of the proof of Theorem 5 is the same as in Theorem 2 (Section 3.2). 
Here too we break the proof into two parts. In part (i) we assume that 
we are given an encoder-decoder for the digital source and deduce the 
existence of an encoder-decoder for the general source (which plays the 
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part of the analog source in Theorem 2). In part (ii) we do the opposite. 
However we do not have the complications here which necessitated an 
averaging argument in Section 3.2. 

(i) We prove here that G(T, a) ~ PerT, M c(a)], the second inequality 
of expression (33). The proof parallels that of part (i) in Section 3.2. 
Instead of the analog source space ~a we have here a general space ~. 
The distortion is do (x, x) with I x - x I replaced by Po(x, x). 

To transmit the source outputs which belong to ~ we use the system 
in Fig. 4. The digital encoder-decoder is for a 1(o-ary source where 
1(0 = M c(a). We assume that it attains a guaranteed distortion dIl . 
The quantizer is defined as follows. Let {.6d~o-l be a minimum a-cover­
ing of~. For x I: ~, let q(x) be the smallest i(O ~ i ~ 1(0 - 1) such that 
x I: SPieD). Then if x = (Xl' X2, ... , Xn) I: ~n is the source output, the 
quantizer output is s = qn(x) = [q(Xl), q(x2), ... , q(xn)]. The output 
of the digital decoder is S = (Sl , 82 , ••• , Sn) and the converter output 
is X = (Xl' ... ,Xn), where Xk = .6i when Sk = i. Clearly, if Sk = Si , 
then po(Xk , X k ) < a. Thus for any source output x, 

do(x) ~ dIl[q(n)(x)] ~ dIl , 

so that the overall guaranteed distortion do ~ dJ[, from which part (i) 
follows. 

(ii) We prove here that PerT, Mp(a)] ~ G(T, a), the first inequality 
of expression (33). As in part (i), the proof of part (ii) parallels that in 
Section 3.2. Again ~a is replaced by ~ and I x - x I by Po(x, x). 

As in Section 3.2, we assume that we are given an encoder-decoder 
for the general source with guaranteed distortion do . We set 1(0 = it! pea) 
and use the system of Fig. 6 to transmit the outputs of the 1(o-ary digital 
source. The modulator is defined as follows. Let {.6i}~~~l be a minimum 
a-packing of~. If source output is s = (S1 , S2 , ••• ,sn), then the modula­
tor output is g(n) (s) = (.6. , , .6s

2 
, ••• ,.6sJ. The output of the decoder is 

X = (Xl' ... , Xn), and the quantizer output is S = (81 , 82 , ••• , Sn), 
where 8k = i when Xk I: SpJa). If X k ¢ SpiCa) for all i (0 ~ i ~ 1(0 - 1), 
then Sk = O. 

Clearly, if po(Xk ,Xk) < a, then Sk = Sk . Thus for any source output 
s, the conditional expectation 

dIl(s) ~ do[g(n)(s)] ~ do . 

Thus the overall guaranteed distortion is dIl ~ do , completing the proof 
of part (ii) and the theorem. 
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3.4 Proofs on Packing and Covering 

In this section we give a proof of Theorem 3, the main part of which 
is a lemma on covering of the K-ary n-cube. We also prove Lemma 1 
relating packing and covering in Section 2.4. 

3.4.1 Proof of Theorem 3 

We first establish the following lemma. 

Lemma 2: Let 0(0 < 0 < (K - 1)/K) be arbitrary, and let r satisfy 

Req(O) < r < log K, 

where Rea(A) is the equivalent rate for the K-ary source given by expressions 
(9). Using the terminology of Section 2.4, let a-:: = to, 1, ... , K - l}n 
(the K-ary n-cube) and Po(x, x) = dj;) (x, x). Then for n sufficiently large, 
there exists a O-covering of a-:: with 111 = ern points. 

Proof: Let {Xi}~f be a set of K-ary n-vectors. Let F(XI , X2 , ••• , XM) 
be the number of members x of a-:: such that dj;) (Xi, xJ ~ 0 for all 
i = 1,2, ... ,M. If F = 0, then {Xd~f is a O-covering ofa-::. We can write 

where 

F(XI , ... ,xu) = L <I>(x, Xl , ... ,xu), 
ihX 

(
A) _ {I if dj;) (Xi , x) ~ 0, all i = 1, 2, ... , M, 

<I> X, Xl , ••• ,XlIf - ° otherwise. 

N ow consider an experiment in which M = ern n-vectors {Xi} ~f are 
chosen at random from a-:: independently with identical (uniform) dis­
tribution 

Then F(XI , X2 , ••• , Xu) is random variable with expectation 

EF = L E<I>(x, Xl , X2 , ••• ,XM ), 
x,X 

where, as indicated, E<I>is computed with x held fixed. Now for a given x, 

Eif>(x, Xl' ... ,XM ) = Pr {if> = I} 
M 

= Pr n {dj;)(x, Xi) ~ od 
i-I 
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where the last equality follows from the independence and identical 

distribution of the random vectors {Xi}. Letting an = I:O:>i<On (~). 
(K - l)iK- n be the probability that dll(x, Xi) < en, we have 

Ecp(x, Xl , ... , X.u) = (1 - an)''!! ~ e-a"lII, 

independent of x. Thus 
EF ~ Me-a" III. 

N ow it is well known (see for example, Ref. 8, p. 173) that for 0 < 
e < (K - l)/K, as n ~ 00, 

-nReq(O) +o(n) 
an = e . 

Thus since M = 2rn and r > Req (e), 

E(F) ~ Me-an.u = ern exp {_e[r-Req(O)ln+o(n)} ~ 0, as n ~ 00. 

Now, there must be at least one particular set {xd:! such that 

F(XI , X2 , ••• ,XlII) ~ EF. 

Thus if we choose n large enough so that E(F) < 1, F(XI , ... XM) = 0 
(since F is an integer valued function). Thus {Xi }:! is the required 
covering. 

The proof of Theorem 3 now follows the standard proof of a source­
channel coding theorem, with Lemma 2 playing the role of the source 
coding theorem. (See Ref. 2.) Roughly speaking the proof is as follows. 
When 'Y(K, Ps , C) = (K - l)/K, the entire theorem is trivial, since 
we can attain a guaranteed distortion of (K - 1)/1( without even using 
the channel by simply letting the decoder outputs take the value 
i(O ~ i ~ K - 1) with probability l/K. Thus assume that 0 ~ 'Y < 
(K - 1)//(, 

The channel can transmit eRT (where R < C, the channel capacity) 
in T seconds with arbitrarily high reliability (see Section 2.1). By the 
definition of'Y = 'Y(K, Ps , C) [expression (lOb)], 

Req('Y) ~ C/ Ps • (61) 

Let € > 0 be arbitrary. In Lemma 2, let r = C/ Ps - €l , where €l > 0 
will be chosen below. Then approximate the T-second source output 
(a Ko-ary n-vector, n = PsT) by a (covering) set with ern = e

rpsT mem­
bers. Since rps < C we can transmit these n-vectors through the channel 
with arbitrarily high reliability. Further, with € > 0 arbitrary, and if 

(62) 
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we have from Lemma 2 that the error in making the approximation 
will always be less than or equal to ('Y + EO) for T sufficiently large. In 
fact, if we set 

[since R(-y) as defined in equation (9) is strictly decreasing for 'Y < 
(K - l)/K], then [using inequality (61)] 

r = ~ - EOl = ~ - Req(y) + Req( 'Y + ~) . 

~ Req( 'Y + ~) > Req('Y + EO) 

and condition (62) is satisfied. 
We conclude that for T sufficiently large, we can make 

rill ~ 'Y + EO 

for arbitrary EO > O. Thus 

limit Pe(T, K) ~ 'Y + EO ~ 'Y, as EO ~ 0, 
T->oo 

which is Theorem 3. 

3.4.2 Proof of Lemma 1 

We say that A ~ X is a "maximal Ll-packing" if A is aLl-packing, 
and if for all v fA, the union {v} V A is not aLl-packing. We establish 
Lemma 1 by showing that every maximal Ll-packing is a (21]Ll)-cover­
ing. Let A be a maximal Ll-packing. If A is not a (21]Ll)-covering, then 
there exists a Va t X such that Pa(va, u) > 21]Ll, for all utA. From con­
dition (30b), Vo f A. We claim that {vol V A is a Ll-packing, con­
tradicting the maximality of A. If w t S»o(Ll), then for all utA (using 
the definition of 1]) 

Po(va ,u) ~ 1][Po(vo , w) + Po(w, u)], 

so that 

( ) Pa(vo , u) ( ) 21]Ll Po w, u ~ - Po Va ,w > - - Ll = Ll. 1] 1] 

Thus w f S,,(Ll) and {vol U A is a Ll-packing, establishing the lemma. 
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APPENDIX 

List of Symbols 

~ the source output space 
Ps(x) 
Ps 

N 
R 
"A 
"A*(T, N) 

~ 
d(x, x) 

dn(x, x) 
d 
d*(T) 

da(x, x) 

d(x) 
d 
d*(T) 
Q(T, A, 0) 
Q(T, 0, A) 
P.(T, K) 

'Y(K, Ps , C) 

the source probability density function 
source output rate (symbols per second) 
(Xi t ~) the ith output of the source 
(Xl , X2 , ••• xn) t ~n 

set of "allowable" channel inputs 
the set of all channel outputs 
the coding delay 

= PsT 

the encoding function, fE(x) t W T 
the decoding function, t D (z) t ~n 

the decoded n-vector, x = tD(Z) t ~n 

number of code words in a code 
= l/T log N, the rate of a code 

the word probability of error 
smallest attainable word error probability for a code 
with parameters Nand T 
average probability of error 
the distortion function 

X = x 

X~x 

= l/n L~=l d(XK , XK) 
= Ed(n) (x, x) 

the smallest attainable d for a given delay T 

Ix-xl<o 

the expectation of dn(x, x) given x 
= SUPXtOCn d (x) 

the smallest attainable value of d for a given delay T 
d*(T) for da(x, x) and x t [-A/2, A/2] 
d*(T) for di(x, x) and X t [-A/2, A/2] 
the minimum attainable per symbol error rate for an 
equiprobable K-ary memoryless source 

= limT->ao P.(T, K) 



3172 

c 
Pe(T, K) 

G(T, 0) 
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the channel capacity 
the minimum attainable guaranteed per symbol error rate 
for a K-ary source 
generalization of Q, defined in Section~ 2.4 
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On Digital Communication Over a 
Discrete-Time Gaussian Channel 

witlI Noisy Feedback: 

By AARON D. WYNER 

(Manuscript received April 21, 1969) 

We consider the problem of transmission of digital data over a discrete­
time Gaussian channel with the use of a Gaussian feedback channel. We 
are particularly interested in the case where the signal-to-noise ratio in the 
feedback channel is finite. By malf,ing use of simple extension of P. Elias' 
scheme for transmitting analog data over this channel with feedback, we 
show that it is possible at some transmission rates to increase the error­
exponent (reliability) compared to the error-exponent found by C. E. 
Shannon for the one-way channel. In particular at transmission rate zero, 
we show that the error-exponent can be improved by a factor of 1 + 
[p/(l + p)], where p and p are the forward and feedback signal-to-noise 
ratios respectively. 

r. INTRODUCTION 

We consider the problem of transmission of digital data over a dis­
crete-time Gaussian channel with the use of a Gaussian feedback channel. 
Weare particularly interested in the case where the signal-to-noise 
ratio in the feedback channel is finite. 

In Sections II and III we consider -Elias' scheme and a simple exten­
sion for transmitting analog data over this channel with feedback. 1 

,2 

In Section IV we apply this extended Elias scheme to the digital trans­
mission problem. The main result is that for any rate R < R*, a number 
less than the channel capacity, it is possible to transmit digital data at 
a rate R with error probability 

P e = exp [-E*no + o(no)], as no ~ 00, 

where no is the encoding-decoding delay, and E* > El , the "one-way" 
exponent estimated by Shannon.3 In particular, when R = 0, El = p/4 
and E* = (p/4)[1 + PC1 + p)-l], where p and p are the forward and 
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feedback signal-to-noise ratios respectively. Finally, we suggest a 
modfication of this scheme which will probably permit extending R* to 
capacity. 

Stimulated by the work of Schalkwijk and Kailath, a great deal of 
research has been done on this problem (see for example Refs. 4-11). 
To the present author's knowledge, however, the result in this paper 
is the first to show that a noisy feedback channel can improve the error­
exponent for digital communication on a band-limited channel. (Ref­
erences 4 and 8 treat the infinite band case.) Like the optimal coding 
schemes for the one-way channel, our scheme is not constructive. Let 
us remark here that this discrete-time channel is a model for the con­
tinuous-time Gaussian channel with a bandwidth constraint. (See Ref. 
12 or 13.) 

II. STATEMENT OF ELIAS' PROBLEM 

We define a Gaussian channel as follows. The input is a real number 
x and the output is a number y = x + z, where the "noise" Z is a Gaussian 
variate with mean zero and variance ()"2 and is independent of x. We 
assume here that the channel input x is a random variable, and require 
that the expectation Ex2 

::::; P, the "signal power". 
To begin with, let us suppose that we wish to transmit the value of a 

random variable (J with the use of N transmissions over a Gaussian chan­
nel (with parameters P and ()"2). Assume also that a feedback Gaussian 
channel (with parameters P and 0-2

) is available which we may use 
(N - 1) times alternating with the N forward uses. We assume nothing 
about the statistical nature of (J except that the expectation E(J2 = ()"~ . 
Our goal is to obtain an unbiased estimate e of 0 with minimum possible 
mean-squared error. Further, we restrict ourselves to linear processing 
of all data. We now state the problem and constraints precisely. 

The forward and feedback channels are memoryless Gaussian channels 
with signal power P and P respectively and noise power ()"2 and 0-2 

respectively. Thus for the nth use of the forward channel the input is 
Xn and the output is Yn = Xn + Zn , where Ex; = P and Zn is a Gaussian 
variate (independent of xn) with mean zero and variance ()"2. For the 
nth use of the feedback channel the input is xn and the output is fin = 
xn + zn , where Ex! = P and zn is a Gaussian variate (independent of 
xn) with mean zero and variance 0-2

• We assume that the random varia­
bles {O, Zn , Zn} are independent. The condition requiring "linear process­
ing" means the following. The input Xn to the forward channel (at the 
nth use) is given by 
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n-l 

Xn = anO + L bnkYk , n = 2,3, ... ,N. 
k=l 

The input to the feedback channel in (at the nth use) is given by 

n 

in = L CnkYk , 
k=l 

n = 1, 2, ... ,N - 1. 
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(1) 

(2) 

Finally, the receiver's estimate after N uses of the forward channel 
(and N - 1 uses of the feedback channel) is 

We require that () be unbiased, that is, that given that 0 
conditional expectation of 0 is 

The mean squared-error, which we wish to minimize is 

'l = E(e - 0)2. 

(3) 

(4) 

(5) 

Let "~PT be the minimum attainable value of ,,2 (over all choices of 
the coefficients an , bnk , Cnk , dn). It is easy to show that 

(i) "~PT depends on P and (52 only through their ratio p ~ P / (52 

(the forward "signal-to-noise" ratio), and on P and cJ2 only through 
p ~ p/cJ2. 

(ii) for a given N, p, and p, "~PT is proportional to (5~ • 

Thus we can write 

and our problem reduces to the determination of E~PT(P, p, N) (which 
can be thought of as a noise-to-signal ratio). 

Let us observe that from the linearity assumptions (equation 1, 2, 
and 3) it follows that 

o = aO +~, (6) 

where a is a constant and ~ is a Gaussian variate independent of o. From 
equation (4) it follows that a = 1 and E~ = 0, and from equation (5) 
Ee = ,,2. Thus we can rewrite equation (6) as 

o = 0 +~, (7) 

where ~ is a Gaussian variate (independent of 0) with mean zero and 
variance ,,2. The important point here is that the entire process may 



3176 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1969 

be thought of as reducing the N uses of the forward channel (and the 
N - 1 uses of the feedback channel) to a single one-way Gaussian channel 
with signal-to-noise ratio (Efi) / (E~2) = <T~ll. 

III. ELIAS' RESULT 

Elias solved our problem for the special case N = 2, where two uses 
of the forward channel and one of the feedback channel are permitted. I

•
2 

In his solution Elias admits the possibility that for the two uses of the 
forward channel, the signal-to-noise ratios are PI and P2 respectively, 
where PI is not necessarily equal to P2 • His result is that the smallest 
attainable mean-squared error is given by 

2 2 PIP2P 
[

A J-l 
"IE = <To PI + P2 + (1 + PI)(l + P2) + p . (8) 

As discussed at the end of Section II, we can consider the entire process 
as a single one-way gaussian channel with signal-to-noise ratio <T~/"I; . 

We now turn to our problem, and note that we can obtain a (suboptimal) 
solution by applying Elias' technique recursively. For N = 2 we can, by 
setting PI = P2 = P in equation (8), obtain a signal-to-noise ratio 
S2 = {2p + p2p/[(1 + p)2 + pl}. For N = 3 we can, by setting PI = S2 
and P2 = p, obtain a signal-to-noise ratio S3 given by 

S [s PpS2 J 
3 = 2 + P + (1 + S2)(1 + p) + p , 

and for arbitrary N we can obtain a signal-to-noise ratio SN given by the 
recurrence 

S S + + PPSN-I 
N = N-I P (1 + SN-I)(1 + p) + p , 

(ga) 

with initial condition 

(9b) 

Although equation (g) is difficult to solve explicitly we can obtain 
an approximate solution valid for large N. From equation (ga) 

SN-I + P ~ SN ~ SN-I + P + (1 ~ p) , (10) 

so that 

(11) 
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We will show that as N ~ 00, SN is asymptotic to the right member of 
inequality (11). Let us re\vrite equation (9a) 

p p [ 1 + p + pJ-1 
SN+1 = SN + p + (1 + p) 1 + (I + P)SN • (12) 

Let SN = [p + pp/(I + p)]N + ON , and expand the last term in equa­
tion (12) into a power series in (I + p + p)/[(I + P)SN]. We then obtain, 
after cancelling terms, 

pp [(1 + p + p) (1 + p + p)2 ] 
ON+1 = ON + (1 + p) (1 + P)SN + (1 + p)2S~ + ... . (13) 

From equation (11) we have that SN = O(N), so that equation (13) 
becomes 

ON+1 - ON = -O(I/N), (14) 

and therefore 

ON = -O(log N). (15) 

Thus we conclude that 

SN = [p + (1 ~ pJN - O(Iog N). (16) 

An exact solution for SN for various values of p, p, and N is given in 
Table 1. S-;/ provides an upper bound to e;PT . 

Elias also found a lower bound to e;PT , 

(17) 

This is the mean-squared error which results when the feedback chan­
nel is reversed and used in the forward direction, and we are allowed 
to use the forward channel N times and the feedback channel (N - 1) 
times. Combining these results we have that 

[(p + p)Nr' ~ '~PT ~ [(p + 1 ~ IN -O(Iog N) J'. (18) 

Let us remark here that the recurrence (9) can be solved exactly for 
the special case p = 00. In this case equation (9a) becomes 

(19) 

and the solution is 

(20) 
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TABLE I-THE EXTENDED ELIAS SCHEME 

FORWARD SNR = p, 

ASYMP. S . SN PP 
NR = lImN_co N = P -1- 1 + p' 

FEEDBACK SNR = P 

ASYMP. E(O) = E*(O) 

FORWARD SNR = 0.01 FEEDBACK SNR = 0.01 
ASYMP. SNR = 0.010099 ASYMP. E(O) = 2.52475E-03 t 

N EQ. SNR = SN EQ. E(O) = EN(O) CAPACITY = CN 

1 0.01 0.0025 4.97516E-03 
2 0.020001 2.50012E-03 4.95089E-03 
3 3 .00029E-02 2 . 50024E-03 4. 92693E-03 
4 4.00058E-02 2 . 50036E-03 4. 90328E-03 
5 5.00095E-02 2 . 50048E-03 4.87992E-03 
6 6.00142E-02 2.50059E-03 4. 85686E-03 
7 7.00197E-02 2.50071E-03 4. 83408E-03 
8 8 .00262E-02 2 . 50082E-03 4. 81158E-03 
9 9 .00334E-02 2 . 50093E-03 4. 78935E-03 

10 0.100042 2 . 50104E-03 4.76740E-03 

FORWARD SNR = 0.01 FEEDBACK SNR = 0.1 
ASYMP. SNR = 1.09901E-02 ASYMP. E(O) = 2. 74752E-03 

N EQ. SNR = SN EQ. E(O) = EN(O) CAPACITY = CN 

1 0.01 0.0025 4.97516E-03 
2 2.00089E-02 2.50112E-03 4. 95284E-03 
3 3.00266E-02 2 . 50222E-03 4 .93078E-03 
4 0.040053 2.50331E-03 4. 90895E-03 
5 5.00878E-02 2.50439E-03 4.88738E-03 
6 6.01309E-02 2 . 50546E-03 4 .86604E-03 
7 7.01823E-02 2.50651E-03 4.84493E-03 
S 8 .02417E-02 2 . 50755E-03 4 .82405E-03 
9 9.03091E-02 2.50859E-03 4.80340E-03 

10 0.100384 2.50961E-03 4.78297E-03 
20 0.20154 2 .51924E-03 4.59009E-03 
30 0.303354 2. 52795E-03 4.41569E-03 
40 0.40574 2 . 53587E-03 4.25704E-03 
50 0.508622 2.54311E-03 4 . 11197E-03 

100 1.02871 2.57178E-03 3.53701E-03 
150 1.55532 2.59219E-03 3.12725E-03 
200 2.0861 2.60762E-03 2.81727E-03 
250 2.61979 2.61979E-03 2.57283E-03 
300 3.1556 2.62967E-03 2.37410E-03 
350 3.69305 2.63789E-03 2.20869E-03 
400 4.23179 2 .64487E-03 2 .06844E-03 
450 4.77156 2 . 65087E-03 1.94771E-03 
500 5.31219 2.65609E-03 1 .84248E-03 

t The notation "3E-5" means 3 X 10-5• 
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TABLE I-(Continued) 

FORWARD SNR = 0.01 FEEDBACK SNR = 1 
ASYMP. SNR = 0.019901 ASYMP. E(O) = 4.97525E-03 

N EQ. SNR = SN EQ. E(O) = EN(O) CAPACITY = eN 

1 0.01 0.0025 4.97516E-03 
2 2 .00495E-02 2.50619E-03 4.96279E-03 
3 3.01483E-02 2.51235E-03 4.95045E-03 
4 0.040296 2.51850E-03 4.93816E-03 
5 5 . 04925E-02 2 .52463E-03 4.92591E-03 

10 0.102197 2 .55493E-03 4.86529E-03 
15 0.155082 2.58470E-03 4.80572E-03 
20 0.209115 2.61394E-03 4.74722E-03 
40 0.436077 2 .72548E-03 4. 52394E-03 
60 0.678846 2 .82852E-03 4. 31755E-03 
80 0.935508 2 .92346E-03 4.12731E-03 

100 1.20434 3.01085E-03 3.95214E-03 
300 4.31176 3.59313E-03 2 .78320E-03 
500 7.79234 3.89617E-03 2.17388E-03 
700 11.4295 4.08196E-03 1 .80005E-03 
900 15.1502 4.20840E-03 1 . 54552E-03 

FORWARD SNR = 1 FEEDBACK SNR = 0.1 
ASYMP. SNR = 1.05 ASYMP. E(O) = 0.2625 

N EQ. SNR = SN EQ. E(O) = EN(O) CAPACITY = c}; 

1 1 0.25 0.346574 
2 2.02439 0.253049 0.276677 
3 3.05731 0.254776 0.23342 
4 4.09453 0.255908 0.203521 
5 5.13433 0.256716 0.18139 
6 6.17584 0.257327 0.164227 
7 7.21857 0.257806 0.150457 
8 8.26222 0.258194 0.139122 
9 9.30658 0.258516 0.129599 

10 10.3515 0.258788 0.121468 

FORWARD SNR = 1 FEEDBACK SNR = 1 
ASYMP. SNR = 1.5 ASYMP. E(O) = 0.375 

N EQ. SNR = SN EQ. E(O) = EN(O) CAPACITY = CN 

1 1 0.25 0.346574 
2 2.2 0.275 0.290788 
3 3.4973 0.291441 0.250579 
4 4.84722 0.302951 0.220746 
5 6.22905 0.311453 0.197811 
6 7.63202 0.318001 0.179623 
7 9.04989 0.32321 0.164826 
8 10.4788 0.327462 0.152531 
9 11.9162 0.331005 0.142138 

10 13.3603 0.334007 0.133223 
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TABLE I-(Continued) 

FORWARD SNR = 1 FEEDBACK SNR = 100 
ASYMP. SNR = 51 ASYMP. E(O) = 12.75 

N EQ. SNR = SN EQ. E(O) = EN(O) CAPACITY = CN 

1 1 0.25 0.346574 
2 2.96154 0.370192 0.344158 
3 6.70566 0.558805 0.340326 
4 13.5159 0.844743 0.334405 
5 24.9907 1.24954 0.325774 
6 42.434 ] .76808 0.31427 
7 66.142 2.36222 0.300486 
8 95.3736 2.98042 0.285515 
9 ]28.952 3.58201 0.270398 

10 165.782 4.14455 0.255834 
50 2073.46 10.3673 7.63746E-02 
90 4079.34 11.3315 4. 61885E-02 

200 9646.14 12.0577 0.022936 

FORW ARD SNR = 100 FEEDBACK SNR = 1 
ASYMP. SNR = 100.99 ASYMP. E(O) = 25.2475 

N EQ. SNR = SN EQ. E(O) = EN(O) CAPACITY = CN 

1 100 25 2.30756 
2 200.98 25.1225 1.32704 
3 301.965 25.1638 0.95227 
4 402.952 25.1845 0.750162 
5 503.94 25.197 0.622444 
6 604.928 25.2053 0.533897 
7 705.916 25.2113 0.468637 
8 806.905 25.2158 0.418403 
9 907.894 25.2193 0.378457 

10 1008.88 25.2221 0.345879 

Since the capacity, ! log (1 + SN), of the equivalent Gaussian channel 
(with signal-to-noise ratio SN), cannot exceed N times the capacity, 
! log (1 + p), of a single channel (with signal-to-noise ratio p), SN as 
given by equation (20) is in fact optimal. Thus 

€~PT(P, 00, N) = [(1 + p)N - 1rt, (21) 

which is an exponential in N. 

IV. APPLICATION TO DIGITAL COMMUNICATION 

4.1 Schalkwijk-Kailath Technique 

Suppose we wish to transmit one of M equally likely messages over 
a Gaussian forward channel with signal-to-noise ratio p with the aid of 
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TABLE I-(Continued) 

FORWARD SNR = 100 FEEDBACK SNR = 100 
ASYMP. SNR = 199.01 ASYMP. E(O) = 49.7525 

N EQ. SNR = SN EQ. E(O) = EN(O) CAPACITY = CN 

1 100 25 2.30756 
2 297.078 37.1347 1.42434 
3 495.429 41.2858 1.03457 
4 694.043 43.3777 0.817997 
5 892.77 44.6385 0.679545 
6 1091.56 45.4816 0.583023 
7 1290.39 46.0853 0.511677 
8 1489.25 46.539 0.456669 
9 1688.12 46.8923 0.412887 

10 1887.02 47.1754 0.377164 

FORWARD SNR = 100 FEEDBACK SNR = 1000 
ASYMP. SNR = 1090.1 ASYMP. E(O) = 272.525 

N EQ. SNR = SN EQ. E(O) = EN(O) CAPACITY = CN 

1 100 25 2.30756 
2 1092.78 136.597 1. 74935 
3 2173.1 181.091 1.28073 
4 3258.25 203.641 1.01116 
5 4345.00 217.253 0.837702 

10 9786.78 244.669 0.459444 
15 15232.7 253.878 0.321.042 
20 20680.1 258.501 0.248424 
40 42474.8 265.467 0.133209 
60 64272.6 267.803 9.22575E-02 
80 86071.7 268.974 7.10184E-02 

100 107871. 269.679 5 .79435E-02 
120 129672. 270.149 4. 90532E-02 
140 151472. 270.486 4.26006E-02 
160 173273. 270.738 3.76957E-02 
180 195073. 270.935 3 . 38365E-02 
200 216874. 271.093 3 . 07177E-02 

a Gaussian feedback channel with signal-to-noise ratio p, using the 
forward channel N times and the feedback channel N - 1 times. Fol­
lowing Schalkwijk and Kailath,t° we assign to message i (i = 
1, 2, ... , M) the number 0 = Oi = i - (M + 1)/2. Thus the M mes­
sages are equally spaced on the interval [ - (M - 1)/2, (M - 1)/2] at 
distance 1 apart. We can now apply the results of Sections III and IV 
to transmit o. The expectation E02 = u~ is 

cr~ = (M + 1)(M - 1)/12, M = 1,2,3 . .. . (22) 
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When message i is transmitted, the output of the system is e = {}i +~, 
where ~ is a zero mean Gaussian random variable with variance "(2. We 
select as the decoder output, that j (1 ~ j ~ M) which minimizes 
I e - (}j I, so that we make an error only when I ~ I ~ !. This event has 
probability 

p. = 2<fJ( -1/2,,(), (23) 

where <p(x) = 1/(27r)! f~«l exp (-x 2/2) dx is the cumulative error 
function. Thus the smallest error probability attainable using this 
scheme (with parameters N, p, p) is 

[ 
1 ] P e OPT = 2<fJ ~ " 

, 2€OPT(P, p, N)(J'e 
(24) 

where (J'o is given by equation (22) and €OPT in Section II. The bounds 
on €~PT in Section III immediately yield bounds on Pe,OPT • 

Let us assume that every T seconds, a digital message source emits 
one of M = eR 

T equally likely messages (R is the message "rate"). 
Further assume that N = aT (for example, if the "physical" channel 
has bandwidth Wcps,thena = 2W). Considertwocases:p = oo,p < 00. 

(i) When p = 00, it follows immediately from equation (21) and 
(22) that as T -7 00 

1 '"'-' v3 (1 + p)aT = v3e(C-RlT, (25) 
2€OPT(P, 00, N)(J'e eRT 

where C = (a/2) log (1 + p) is the channel capacity in nats per second. 
Thus, provided R < C, as T -7 00 the argument of <P in equation (24) 
becomes infinite and Pe,OPT -7 O. In fact, (since <p(x) r-./ (27rx2 )-! exp 
(-x 2/2), as x -7 (0) 

P e, OPT = exp [e 2 (C-Rl T+O(Tl], as T -7 00, (26) 

a double exponential decay. This is the celebrated result of Schalkwijk 
and Kailath. 10,11 

(ii) If we try to apply the same scheme when the feedback signal­
to-noise p < 00, then from equation (18) (2€oPT(J'e)-1 -7 0 as T -7 00. 

Thus it is not possible using this scheme to obtain vanishingly small 
error probability as T -7 00 with fixed signal-to-noise ratios in the 
forward and feedback channel. This is so no matter how large p may 
be, provided it is finite. For finite T however, equations (18) and (24) 
yield useful estimates of attainable error probabilities. 



NOISY FEEDBACK 3183 

4.2 Improving the One-Way Error Exponent 

Suppose that, as in Section 4.1, we wish to transmit one of M eRT 

equally likely messages in T seconds. Suppose that we use only a for­
ward Gaussian channel (with signal-to-noise ratio p) no = aT times. 
Then it is well known that one can attain an error probability 

p. = exp [ -El(~ , p)aT + O(T)] , as T --->t 00, (27) 

where E1(R/a, p) > 0, if R < a/2log (1 + p) = C, the channel capacity. 
As indicated, the quantity E1(R/a, p) depends on R and a only through 
their ratio. Although El is not known exactly, estimates are given in 
Ref. 3.t In particular, E1(0, p) = p/4 and E1(C/a, p) = 0. 

N ow suppose we have a Gaussian feedback channel available with 
signal-to-noise ratio p. Let us divide the no forward channel uses into 
v = no/N groups of N forward channel uses. In each of these groups we 
use the extended Elias scheme, (of Sections III and IV, with N uses of 
the forward channel and N - 1 uses of the feedback channel) to gen­
erate an equivalent forward Gaussian channel with signal-to-noise ratio 
SN given by the recurrence (9). We then use a one-way coding scheme 
with v = no/N = (a/N)T uses of the equivalent forward channel. 
With N held fixed as T --->t 00, we can attain an error probability as in 
equation (27) with a replaced by (a/N) and p replaced by SN-namely, 

p. = exp [ _E,(R:: ' SN) ':jf + O(T)]' (28) 

Thus the new error-exponent is 

EN(R, p, p) = ~ El(R; , SN)' (29) 

Since N is arbitrary, we can state our result: 

Theorem: Given a forward and feedback Gaussian channels which can 
each process a inputs (independently) per second, with signal-to-noise 
ratio p and p respectively. Then it is possible to transmit digital data at a 
rate R nats per second with error probability 

P s = exp [-E*aT + oCT)], as (30a) 

t The conventional power constraint for a one-way channel is that the time 
average of the square of the inputs must not exceed P. The power constraint used 
here is that the statistical expectation of the square of each input not ex­
ceed P. Nither of these constraints imply the other. However, it is not hard to 
show that the estimates of El (in Ref. 3) are valid for both constraints. 
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where 

E* = E*(R ,p, p) = sup EN = sup l El(RN , SN) , (30 b) 
a l~N<oo l~N<oo N a 

8N is the solution to the recurrence (9), and El is the reliability (error­
exponent) tor the one-way Gaussian channel as in equation (27), and T 
is the encoding-decoding delay. 

Remarks: 

(i) Since 8 1 = p and E 1(R/a, p) > 0 for R < a/2log (1 + p) = C, 
then E*(R/ a, p, p) > 0 for R < C. 

(ii) Since El (0, p) = p/4, 

EN(O. P. P) = ~ E,(R: . SN) 1,-0 = ~ . 
so that from equation (16), 

E* (0 A) > 8 N p (1 + p) as N --7 00. , p, p = 4N --7 4 1 + p , 

In fact, since 8N /N can be shown to be non-decreasing, E*(O, p, p) is 
in fact equal to this quantity. Thus the use of the feedback channel 
represents an improvement of a factor of [1 + p/(1 + p)] in the error­
exponent at zero rate. 

(iii) We can get a rough idea of the behavior of E*(R/a, p, p) as 
follows. Let r = R/ a be the rate in nats per channel use. Let us crudely 
approximate the one-way exponent El (r, p) as r varies from 0 to c = 
Cia (the capacity in nats per channel use) by a straight line connecting 
(r = 0, El = p/4) and (r = c, El = 0). See Fig. 1. 
Then E2 has r = 0 intercept at 

A 8 2 P pp2 p 
E 2(0, p, p) = 2.4 = 4 + 8[(1 + p)2 + p] > 4 ' 

and E 2 (r, p, p) = 0 at r = C2 t (1/2) (1/2) log (1 + 8 2). Similarly, EN 
has r = 0 intercept at 

A 8N 8N 
EN(O, p, p) = 4N' 4(N - 1) , 

and EN(r, p, p) = 0 at r = CN ~ (1/2N) log (1 + SN). From Fig. 1, 
we see that for each value of r > 0, there is a value of N (1 ~ N < (0) 
which maximizes EN(r, p, p) to achieve E*(r, p, p). Values of EN(O, p, p) 
and CN are tabulated for various values of p, p, and N in Table r. 
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(iv) We see from Fig. 1, that the feedback scheme offers no improve­
ment over the one-way scheme (that is, EN < El , for N > 2) for r* ~ 
r < c where r* is the solution of E2 = El , that is, 

!El(2r*, S2) = El(r*, p). 

However, the rate r* ~ c as p ~ 00. 
Actually, it is probably possible to improve on our results substantially 

and in particular bring about an increase in the error-exponent for an 
r < c. Let {N 1 , N 2, ••. ,N k} be a set of positive integers (not neces­
sarily equal). Then divide the no = aT forward channel uses into v = 
no/ (N 1 + N 2 + '" N k) uses of an equivalent channel which is the 
parallel combination of k Gaussian channels with signal-to-noise ratios 
SNI , SN2 , ... , SNk . These k Gaussian channels are generated by 
Nl , N 2 , ••• , Nk iterations, respectively, of the Elias scheme. One 
must then compute the error-exponent for a parallel combination of 
channels to obtain a new improved exponent. 14 We leave this task as an 
open problem. 

(v) Let us finally remark that although the expectation of the channel 
input power x 2 is constrained, the quantity x 2 is in fact a random vari­
able distributed on the interval [0, 00). This is in contrast to the one-way 
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schemes where the channel input is bounded. This point is discussed 
in Ref. 13. 
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Mode Conversion Caused by Surface 
Imperfections of a Dielectric 

Slab Waveguide 
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This paper contains a perturbation theory which is applicable to the 
scattering losses suffered by guided modes of a dielectric slab waveguide as a 
consequence of imperfections of the waveguide wall. The development of 
the theory occupies the bulk of the paper. Numerical results appear in 
Sections VI and VIII to which a reader less interested in the theory is 
referred. 

The theory allows us to conclude that random deviations of the waveguide 
wall in the order of 1 percent, for guides designed to guide an optical wave 
of Ao = 1 J.L wavelength, can cause scattering losses of 10 percent per centi­
meter or 0.46 dB per centimeter. A systematic sinusoidal deviation of the 
waveguide wall can cause total exchange of energy from the lowest order to 
the first order guided mode in a distance of approximately 1 cm if the ampli­
tude of the sinusoidal deviation from perfect straightness is only 0.5 percent 
of the thickness of the guide. An rms deviation of one of the waveguide walls 
of 91 causes a radiation loss of 10 dB per kilometer (index difference 
1 percent, guide width 2.5J.L). 

I. INTRODUCTION 

The problem of how to transmit laser light over large distances or 
carry it short distances inside the laboratory has renewed the interest 
in dielectric waveguides. 1

-
s Such waveguides usually used in the form 

of clad fibers or as strips of a medium of larger dielectric constant 
embedded in another dielectric medium are capable, in principle, of 
guiding electromagnetic radiation. By proper dimensioning, a dielectric 
waveguide can be made to transmit only one guided mode. In this 
respect mode guidance by dielectric waveguides resembles mode guid­
ance by hollow metallic waveguides. Hollow metallic tubes can be 
constructed to allow only one mode to propagate so that mode conver-

3187 
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sion (except for conversion to the reflected dominant mode) becomes 
impossible. Such truly single mode operation is impossible for dielectric 
waveguides since these guides can always lose electromagnetic energy 
to the continuous spectrum of unguided modes. 

The possible solutions of IVlaxwell's equations for a dielectric wave­
guide consist of a discrete spectrum of a finite number of guided modes 
plus a continuum of waveguide modes.6 The guided modes have field 
configurations which concentrate the electromagnetic energy inside 
and in the immediate vicinity of the structure. The continuum of un­
guided modes extends to infinite distances from the waveguide and 
consists of a superposition of incident and reflected waves. A convenient 
way of visualizing the physical significance of the continuum of unguided 
modes is as follows. If a plane wave is incident on the dielectric wave­
guide at an arbitrary angle, part of it penetrates the dielectric structure 
while some portion is reflected. The resulting superposition field of 
incident and reflected waves satisfies 1\1axwell's equations and the 
boundary conditions at the dielectric waveguide and as such can be 
viewed as a mode of the structure, but the energy of this mode is not 
concentrated near the waveguide and there are no specific restrictions 
on the projection of the propagation vector in the direction of the guide 
aXIS. 

A perfect dielectric waveguide can transmit any of its guided modes 
without converting energy to any of the other possible guided modes 
or to the continuous spectrum. But any imperfection of the guide, such 
as a local change of its index of refraction or a deviation from perfect 
straightness or an imperfection of the interface between two regions 
with different index of refraction, couples the particular guided mode to 
all other guided modes as well as to all the modes of the unguided con­
tinuum. Imperfections of this type are unavoidable. They transfer 
energy from the desired guided mode to unwanted guided modes and 
the radiation field of the continuum of unguided modes, thus increasing 
the loss of the desired guided mode. 

This paper gives a simple, approximate theory of the losses of di­
electric waveguides, caused by imperfections of the boundary between 
the inner region of higher dielectric index and the surrounding outer 
region of the dielectric waveguide. Even though the method of analysis 
used here can be used to describe any arbitrary dielectric waveguide, 
we limit the discussion to a simple case. We describe the effects of mode 
conversion for a dielectric slab surrounded by vacuum, assuming for 
simplicity, that there is no variation of the dimensions or properties of 
the rod as well as the field distribution in one co-ordinate direction. The 
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restriction of demanding a / ay = 0 for one of the co-ordinates y is no 
limitation on the method of analysis but is imposed strictly for con­
venience. It simplifies the analysis considerably without drastically 
changing the conclusions. The tolerance requirements based on our 
analysis are rather stringent. They show the order of magnitude of the 
losses which can be expected from deviations from perfect geometry. 
Additional variations in the direction considered perfect in this paper 
is unlikely to improve any of the loss predictions. 

II. TE l\IODES OF A DIELECTRIC SLAB 

Let us consider the transverse electric modes of the dielectric slab 
of Fig. 1. True to the simplifying assumption discussed in Section I, 
we assume 

(1) 

with y being the co-ordinate perpendicular to the x and z directions, but 
parallel to the slab. The only nonvanishing field components are Ell , 
Hx , and Hz . 

Leaving the z and time dependence 

eiCwt -{3Z) (2) 

understood, we obtain the following modes of the ideal structure as a 
solution of Maxwell's equations satisfying the boundary conditions. 

z 

~+-----------~X 

2d 

Fig. 1- Geometry of a dielectric slab waveguide. 
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2.1 Even Guided Modes 

For even guided modes 

8y = A <e) cos KX for 1 x 1 ~ d, 

8
y 

= A <e) cos Kde-'Y<x-d) for x ~ d, 

_..i a8y 

WJ.L az ' 

JC =..i a 8 y 

Z WJ.L ax ' 

The field component 811 satisfies the wave equation 

!t_Ei.!!. + !t_Ei.!!. + n 2 k,2 8 = 0 
ax2 az2 0 y • 

(3a) 

(3b) 

(4) 

(5) 

(6) 

The value of the index of refraction no is different inside and outside of 
the dielectric slab. For simplicity, we assume 

no = 1 for 1 xl> d. 

The other constants are related as follows 

(7) 

(8) 

(9) 

(10) 

The propagation constant {3 is obtained as a solution of the eigenvalue 
equation 

tan Kd = 1. (11) 
K 

The mode amplitude A can be expressed in terms of the power P carried 
by the mode. 

P = ! Re 100 

(- 8 y JCn dx = ~ 100 

1 8 y 12 dx. (12) 
-00 wJ.L 0 

P is the power per unit length (unit length in y-direction) flowing along 
the z-axis. We obtain for the amplitude coefficient 

A<e)2 (13) 
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2.2 Even Modes of the Continuum 

The continuum of unguided modes of even symmetry is given by the 
equations: 

011 = B Ce
) cos ux for I x I ~ d, 

0
11 

= CCe)/px + DCe)e-ipx for x ~ d. 

(14a) 

(14b) 

The other field components follow again from equations (4) and (5) 
and 0 y is a solution of equation (6). The constants are related to each 
other by the equations 

u = (n2k2 
- (32)!, 

P = (k 2 
- (32)!. 

(15) 

(16) 

The radial propagation constant p can assume all values from 0 to 00. 

The continuous mode spectrum starts at (3 = k and continuous to {3 = 0 
at which point we have p = k. Larger values of p are obtained for 
imaginary values of (3 corresponding to modes of the continuum exhibit­
ing a cutoff behavior. 

The boundary conditions do not lead to an eigenvalue equation for 
(3 but they determine CCe) and D

Ce
) in relation to B

Ce
). 

cCe) = !BCe)e-iPd( cos ()d + i ~ sin ud) , (17) 

DCe) = cCe) *, (18) 

(the asterisk indicates the complex conjugate quantity). 
The normalization of the modes of the continuum involves a o-func­

tion. Instead of equation (12) we use 

(3 100 
p o(p - p') = - 0y (p) 0:(p') dx. 

WJ.L 0 
(19) 

With this normalization we get 

B Ce )' (20) 

2.3 Odd Guided Modes 

In a manner similar to that for obtaining the preceding equations we 
obtain the equations for the odd guided modes 

0 11 = A (0) sin KX for x ~ d, (21a) 
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0
11 

= A (0) sin Kde--r(x-d) for x ~ d. (21b) 

Equations (4) through (10) apply to the odd modes unaltered. The 
eigenvalue equation is given by 

tan Kd = ~ -"I' 

and the mode normalization is 

A(O)' 2wp, P 
(3d + f!. . 

"I 

2.4 Odd Modes of the Continuum 

(22) 

(23) 

As in Section 2.3 we obtain the equations for the odd modes of the 
continuum 

0 y = B(O) sin crx for I x I ~ d, 

0y = C(O)e iPx + D(O)e- ipx for x ~ d, 

C(O) = ~B(O) c-iPd(sin crd - i ~ cos crd) , 

D(O) = C(O)* , 

2wp,P 

7r{3(sin2 
crd + ~; cos2 (Jd) 

(24a) 

(24b) 

(25) 

(26) 

(27) 

All these modes are orthogonal to one another. The even modes are 
orthogonal to all the odd modes, the guided modes are orthogonal to 
all the modes of the continuum, and all guided modes as well as all 
modes of the continuum are orthogonal among each other. The or­
thogonality of the modes of the continuum among each other was 
already expressed by equation (19). Labeling the discrete modes by 
indices and dropping the vector component label y we can express the 
orthogonality of the discrete modes by the equation 

(28) 

III. MODE COUPLING CAUSED BY IMPERFECTIONS 

We want to study the losses which the lowest order guided mode 
suffers because of imperfections of the waveguide wall. A dielectric 
waveguide with wall imperfections is shown in Fig. 2. 
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Fig. 2 - Dielectric slab waveguide with wall distortions. 

The waveguide with wall imperfections is mathematically described 
by a refractive index distribution 

n 2 (x, z) = n~(x, z) + /).n2 (x, z). (29) 

The index distribution 

I x 1< d 

I x I> d 
(30) 

describes the ideal dielectric waveguide whose TE modes were given in 
the Section II. The additional term /).n2 describes how the guide deviates 
from its perfect shape. Consider a deviation shown in Fig. 3. The 
corresponding distribution /).n2 is (n g = index of refraction of the di­
electric material of the guide) 

o{x < d if d < fez) 

x < fez) if d > fez) 

/).n2 = n~ - 1 d < x < fez) if d < fez) (31) 
-(n~ - 1) fez) < x < d if d > fez) 

o{x > fCz) if d < fez) 

x>d if d > fez) 
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Fig. 3 - Illustration of the wall distortion function f (z). 

The field distribution Ev of this waveguide is a solution of 

~2~y + a;~l!. + (n~ + t:.n2)k2E II = 0 (32) 

with Hz and Hz given by equations (4) and (5). The modes of the perfect 
waveguide form a complete orthogonal set for all TE modes with no 
variation in the y-direction. It is, therefore, possible to express any 
field distribution on the waveguide with imperfect walls by the expansion 

(33) 

The first summation extends over all even and odd modes of the discrete 
spectrum of guided modes. The integral extends over all modes of the 
continuum, and .the summation sign in front of the integral indicates 
summation over even and odd modes. The expansion coefficients Cn 

and g(p) are unknown functions of z. 
To obtain a coupled system of differential equations for the expansion 

coefficients we substitute equation (33) into equation (32). Multiplying 
the resulting equation by 

~ 8* 
2

m, 
WJ.I. 

integrating over x from - 00 to + 00, and using the orthogonality rela­
tions and the fact that 8n and 8(p) are the (discrete and continuous) 
modes of the perfect guide leads to 

a
2

c.!!!. _ 2if3 aCm = F (z) az2 
m az m 

(34) 
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with 

F () - f3m
k2 [~G ( ) 100 

* 2 d m Z - - ') P L.J n Z 8m tln 8n X 
~w~ n -00 

+ L f dpg(p, z) i: 8~ tln'r,(p) dXJ. (35) 

Similarly multiplying by 

f3' - 8*(p') 
2w~ 

leads to 

a
2 

g(;') _ 2if3' ag(p') = G(p'Z) 
az az 

(36) 

with 

f3'k
2 

[ 100 

G(p', z) = -2 p L Gn(z) 8*(p') tln
2 8n dx 

w~ n -00 

+ L f dpg(p, z) i: f,*(p') tln' 8(p) dxJ. (37) 

Non-label on the power term P is necessary since we assume that all 
the normal modes are normalized to the same amount of power. The 
actual power carried by each mode relative to the power of the other 
modes is given by the Gn coefficients. Solutions of equations (34) and (35) 
with appropriate initial conditions provide us with exact solutions of 
the imperfect waveguide. It is interesting to note that this method of 
solution does not require the consideration of boundary conditions. 

The normal modes 8n and 8(p) were assumed to have the time and 
z-dependence of equation (2); this means they represent waves traveling 
in the positive z-direction. However, the solutions of equations (34) and 
(36) introduce waves traveling in positive as well as negative z-direction. 
To see this, let us assume that An2 = 0 so that Fn(z) = o. The equation 

a
2

Q>::. _ 2if3 aGn = 0 
az2 n az 

(38) 

has the solution 

(39) 

with constant A and B. The product of A with 8n results in a wave 
traveling in the positive z-direction but the product of B exp (2if3nz) 
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with 0n results in a wave traveling in the negative z-direction. So, even 
though we started out with waves traveling in the positive z-direction 
the expansion (33) contains partial waves traveling in positive as well 
as negative z-direction. 

For the purpose of obtaining perturbation solutions of equations 
(34) and (36), an integral form of these equations is more useful. Treat­
ing equations (34) and (36) as inhomogeneous differential equations, 
we can immediately write the following integral equations 

Cm = Am + Bme2if3mz + 2i~m i Z 

[e2if3m
(Z-n - 1JF mer) dr, (40) 

g(p', z) = C(p') + D(p')e2if3 ' Z + 2i~' faz [e2if3 ' (z-n - 1JG(p', r) dr. 

(41) 

It is important to know which part of equations (40) and (41) is as­
sociated with waves traveling in the positive or negative z-direction. 
Therefore, we introduce the notation. 

(42) 

with 

C~+>Cz) = Am - 2i~m iZ 

F mer) dr, (43) 

C~-) (z) = {Em + 2i~m { e -"'-' F m(l) d l" }eupm, . (44) 

The superscript (+) indicates the coefficient which after substitution 
into equation (33) produces waves traveling in positive z-direction, 
while ( - ) indicates the part which produces waves traveling in negative 
z-direction. A similar notation and resulting equations is used for g(p', z); 
however, the corresponding equations are obvious and are therefore 
omitted. 

The constants Am, Bm , and so on, occurrng in equations (43), (44), 
and the corresponding equations for g(p', z) must be determined from 
initial conditions. We always assume that the lowest order guided mode 
is incident on the imperfect waveguide at z = O. Using the subscript 0 
for this incident mode we get immediately from equation (43) 

C~+) = 0 for m ~ 0 at z = 0 
or 

Am = 0 for m ~ 0, (45) 
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but 

Ao = 1. (46) 

We imagine that at z = L the waveguide is connected to a perfect guide 
so that at that point there are no waves traveling in negative z-direction. 
This leads to the condition 

Bm = - 2i~m iL 

e-
2i

{jm
tF mer) dr (47) 

for all values of m. The power loss !1P of the incident mode due to mode 
conversion is given by 

Equation (48) states that the total power lost by mode conversion from 
the incident mode escapes at z = L in spurious modes traveling in posi­
tion z-direction and at z = 0 in spurious modes traveling in negative 
z-direction. The factor P is the normalized power factor of equations 
(12) and (19); it is the power incident in mode O. Notice that because 
of equations (45) and (47) only the integral terms of equations (43) and 
(44) (taken from z = 0 to z = L) enter into equation (48). 

The integral equations (43) and (44) can only be solved approxi­
mately. We perform first order perturbation theory by using Cm(O) 
instead of Cm(z) and g(p, 0) instead of g(p, z) in equations (35) and (37). 
Furthermore, we realize that C~-) (0) for all m is a quantity of first 
order and will therefore be neglected in equations (35) and (37). The 
same is true for C~+) (0) with m ~ O. In the spirit of first order perturba­
tion theory we use therefore 

Cm = DOm (49) 

and 

g(p) = 0 (50) 

in equations (35) and (37). 
The perturbation theory is feasible not only when n: 1 « 1 but 

also when n: - 1 is arbitrarily large but the geometrical deviation of 
the guide walls from perfect straightness is slight. In either case we 
obtain from equations (35) and (37) the simple approximations 
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F m(Z) = - :;~~; (n~ - 1) {[f(z) - d] 80(d, z) 8~(d, z) 

- [h(z) + d] 80 ( -d, z) 8~( -d, z)} , (51) 

G(p, z) 
(3k 2 

- 2wJ1.P (n~ - 1) {[f(z) - d] 8*(p, d, z) 80 (d, z) 

- [h(z) + dJ 8*(p, -d, z) 80(-d, z)}. (52) 

The function fez) describes the dielectric-air interface in the vicinity 
of x = d, while h(z) describes it near z = -d. We assumed that fez) 
and h(z) depart so little from x = d and x = -d that the functions 
8(x, z) could be replaced by 8(±d, z). 

IV. EVALUATION OF THE SPURIOUS MODE AMPLITUDES 

We begin the discussion of the consequences of our scattering theory 
by calculating the coefficients C~+l and g(+l. We obtain [from equations 
(43) and (51) with the help of equations (3a) and (13) for the even 
modes] the following 

C~:l (L) - Le (2 1) cos Kod cos Kmd (- 1/;) (53) 

- 2i n, - [(Pod + ~:)(Pmd + ~:) T ,om m . 

The coefficients 'Pm and t/lm are defined by 

'Pm = L i L 

[fez) - d]e-i<i3o-i3ml
z dz (54) 

and 

t/lm = L i L 

[h(z) + d]e-
i

(i3o-i3ml
z dz. (55) 

These are the Fourier coefficients of the functions fez) - d and h(z) + d 
which are expanded in a domain 

o ~ z ~ L. 

The amplitude of the mth even mode depends on the Fourier components 
of the wall function whose "spatial frequency" r is 

27r 
r m = Am = (30 - (3m • (56) 

The corresponding expression for the even modes of the continuous 
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spectrum is: 

g!+'(p, L) ~ 2~t;, (n! - 1) [( cos ~~ T u~[<p(fl) ~,~(fl:l ) T (57) 
f3 0d + 'Yo 13 cos ud + ~2 sin ud 

with [13 = f3(p) see equation (16») 

cp(f3) = I i L 

[fez) - d]e- i
<!3o-!3Jz dz, 

1/;(f3) = I i L 

[h(z) + d]e- i
<!3o-!3Jz dz. 

The corresponding expressions for the odd modes are 

(58) 

(59) 

< + J ( L) = Le ( 2 _ 1) cos Kod sin ud[cp(f3) + 1/;(13)] • 
~ 7r 130 2 U 2 go p, 2·( )! ng [( ) ( 2 )J! 

f30d + 'Yo 13 sin ud + ~2 cos ud 

(61) 

The Fourier coefficients cp and 1/; are given by equations (54), (55), 
(58), and (59) except that f3n and f3 are now the propagation constants 
of the odd modes. 

The corresponding expressions for C<-J and g<-J are obtained by 
replacing 13m with - 13m and f3 with - 13 in equations (54), (55), (56), (58), 
and (59). 

v. SINUSOIDAL WALL DEFLECTIONS 

As a specific example, let us assume that the wall imperfections have 
sinusoidal shape. Then 

fez) - d = a sin Oz (62) 

and 

h(z) + d = -a sin (Oz + ex). (63) 

The phase factor ex allows us to consider either a waveguide whose width 
varies sinusoidally 

ex = 0, (64) 
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or one whose direction changes sinusoidally 

a = 7r. 

We obtain from equation (54) with 

the Fourier component 

and from equation (55) 

e = 130 - 13m 

a 
'Pm = 2i 

.f, a ia 
't'm = -2i e . 

(65) 

(66) 

(67) 

(68) 

A term of the order aiL « 1 was omitted in equations (67) and (68). 
It is apparent that only one spurious mode is excited by the sinusoidal 
wall deflection since condition (66) can be satisfied for only one value 
of. 13m . If condition (66) is not satisfied, 'Pm and if;m are of the order of 
aiL « 1. The fractional power scattered into one spurious guided 
mode due to a sinusoidal wall irregularity is [from equations (48), (53), 
(67) and (68)] 

(69) 

for even modes or [from equations (48) and (60)] 

L 2 2k2 2 d . 2 d a (2 1)2 cos Ko sm Km • 2 a -- n - sm-

4 g (13od + ~:) (13md + ~:) 2 

(70) 

for odd modes. However only one even or one odd mode can be excited 
by one particular sinusoidal wall deviation since it is impossible to 
satisfy the "resonance" condition (66) for more than one mode simul­
taneously. 

If a = 0, that is if the width of the guide changes sinusoidally, only 
even modes can be excited while sinusoidal deviations from straightness 
(a = 7r) couple the even fundamental mode only to odd spurious modes. 
It must also be noticed that for a long period length 

A = 27r 
8 

(71) 
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equation (66) can be satisfied only for forward scattering modes. To 
couple to backward scattering modes, the period length D must be 
approximately equal to half the wavelength of the guided modes. 
The fact that only one spurious mode is coupled to the incident mode by 
sinusoidal wall imperfections (it can be shown that the coupling to the 
continuous mode spectrum is also weak if one guided mode can couple 
strongly) allows us to give a much better description of the coupling 
process. 

Since the mode amplitudes C m can change only slowly in the distance 
of one wavelength we can neglect the second derivative of C m in equa­
tion (34). Labeling the incident mode 0 and the one coupled spurious 
mode 1 we can write the equation system (34) in the following form 

aCI - * C az - KOI 0, 

(72) 

(73) 

(74) 

The coupling coefficient KOI of equations (74) holds for coupling from 
an even mode 0 to an even mode 1. The case of coupling from an even 
mode 0 to an odd mode 1 can be treated similarly. In fact, except for 
an unimportant phase factor, we get it from (l/L)[(LlP / P)O(l]! of equa­
rion (70). In equation (72) we omitted a term with Co on the right-hand 
side, and similarly a term with C1 was omitted in equation (73). These 
terms would be multiplied by sinusoidally varying functions and would 
describe the local change of phase velocity as the guide dimensions vary. 
These terms give no contribution if we use an average over Co and C1 

over the mechanical period length of equation (71). 
Assuming Co = 1, C1 = 0 at z = 0 the equation system (72) and (73) 

has the solution 

Co = cos I KOI I z, (75) 

C1 = (K01)! sin I KOI I z. 
KOI 

(76) 

Total exchange of energy is possible between the two coupled modes. 
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The distance D over which all the energy is exchanged is given by 

D = 7r 

2 \ KOl \' 

(77) 

Finally, we need the power loss to the modes of the continuous spectrum, 
From equations (48), (57), (61), (62), and (63) we obtain 

214 2 d = ~~ (n~ _ 1)2 cos Ko_ 

7r {Jod + {Jo 
'Yo 

1<I'J cos (j cos 2" s m (j sm 2" 

[ 

2 d 2a! '2 d '2a! 

• 0 fl( cos' ud + ~ sin' ud) + fl(sin' ud + ~; cos' ud t 
L 

sin2 [8 - ({Jo - (J)] 2 
[8 - ({Jo - (J)]2 dp. (78) 

The integration can be performed easily if one realizes that for large 
values of L only a very narrow region in the f3 range near f3 - {Jo - 8 
contributes to the integral. We consider all functions in the integrand 
as constant in this very narrow range and take them out of the integral 
with the exception of 

r L12 )sin [8 - ({Jo - (J)] "2 
1 8 - ({Jo - (J) J 

This remaining integral can easily be performed if we use equation (16) 
to obtain 

dp = _(i d{J. 
p 

Following this procedure yields 

= La~k4 (n~ _ 1)2 cos
2 

Kod 

f3 0d + f30 
'Yo 

[ 
P cos

2 
(jd cos

2 ~ p sin
2 

(jd sin
2 ~ 1 

• 2 2 d 2' 2 d + 2 • 2·d 2 2 ' (79) p cos (j + (j sm (j p sm (j + (j cos (jd 
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The parameters (]" and p follow from equations (15) and (16) with 

f3 = f30 - (). (80) 

Equation (79) holds only for f3 < k; we get t1P /P 0 for f3 > k. The 
most interesting aspect of equation (79) is its linear dependence on L. 
The scattering loss due to the modes of the continuous spectrum acts 
like a true loss process. By contrast, the corresponding equation (69) 
for the loss to guided modes is proportional to L 2 because coupling to a 
guided mode does not result in loss of energy but results in energy ex­
change between the two coupled modes. Energy loss to one of the guided 
modes is followed by energy gain when the energy exchange has reversed 
itself. 

VI. NUMERICAL EXAMPLES FOR SINUSOIDAL IMPERFECTIONS 

A few numerical examples resulting from equations (74) and (77) 
are listed in Table I. Two different values of the index of refraction ng 

have been assumed, and for each value of the index three different 
values of kd = 27r(d/Ao) have been chosen so that one, two, or three 
guided modes can exist simultaneously. The mode with f30 is the lowest 

TABLE I - NUMERICAL EXAMPLES FOR SINUSOIDAL IMPERFECTIONS 

aD 
ng kd {3od {31d {32d d2 Remarks 

1.3 1.729 - - - Single mode 
operation 

1.8 2.49.5 1.916 - 6.98 o - 1 coupling 
a =71' 

1.5 
6.17 o - 1 coupling 

a =71' 

3.0 4.336 3.831 3.051 
5.52 o - 2 coupling 

a=O 

8.0 8.041 - - - Single mode 
operation 

15.0 15.113 15.022 - 42.54 o - 1 coupling 
a =71' 

1.01 
36.28 o - 1 coupling 

a =71' 

23.0 23.199 23.112 23.002 
43.69 o - 2 coupling 

a=O 
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order even guided mode which is assumed to be incident on the wave­
guide with sinusoidal wall imperfections. This mode couples to the first 
odd mode with {31 or the next even mode with {32 • The values for the 
normalized, dimensionless quantitity (aD)/d2 [a = amplitude of the 
sinusoidal wall deviation according to equation (62) and (63), d = half 
width of the guide, and D = energy exchange length] have been ob­
tained with the assumption that equation (66) is satisfied for the two 
modes which are coupled together. Coupling from mode 0 to mode 1 is 
considered only for the case of sinusoidal straightness deviations of the 
waveguide (a = 7r) while coupling between even modes 0 to 2 is con­
sidered only for sinusoidal changes of the thickness of the waveguide 
(a = 0). It is immediately apparent from Table I that the energy ex­
change length D is shorter for a guide with larger values of the refractive 
index. 

To obtain a feeling for the numbers involved in this mode coupling 
phenomenon, let us assume that ng = 1.5 and that the free space wave­
length is Xo = 11-'. The value of kd = 1.8 corresponds to d = 0.2861-'. 
To achieve total exchange of energy between modes 0 and 1 in D = 1 cm 
requires the extremely small amplitude a = 5.72 10-51-' or a = 0.572 A!t 
The length of the mechanical period in this example is A = 3.11-'. 

Next, let us assume that the index of refraction is ng = 1.01. Using 
again, Xo = 11-', we obtain from kd = 15.0 the value d = 2.391-' for the 
half width of the waveguide. Requiring again, D = 1 em, we find a = 
243 A. 

We can look at this problem in a different way. It is unlikely that any 
optical waveguide has a strictly sinusoidal deviation from perfect 
straightness. In fact, the numbers just presented show that it would 
be impossible to produce such a waveguide intentionally. However, we 
have seen [equation (53)] that the mode conversion between two guided 
modes is produced by a Fourier component of the actual deviation func­
tion. It is therefore not necessary to have a strictly sinusoidal straight­
ness deviation. Any arbitrary deviation from straightness can be de­
composed into a Fourier series and the Fourier component at the 
mechanical frequency which satisfies equation (66) is responsible for 
the coupling. In the more general case of arbitrary straightness devia­
tions, there can be no complete exchange of energy between any two 
modes since power loss to other guided modes and the continuous 

t A mechanical period of a fraction of an Angstrom is somewhat unphysical due 
to the granular nature of matter. However, this result can be restated to say that 
complete power conversion occurs in 0.1 mm if the amplitude is a = 57.2 A. 
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spectrum of modes compete with each other since all of them are coupled 
simultaneously. 

We can now ask the question: What amplitude of the mechanical 
straightness deviation is required to transfer 10 percent of power from 
mode 0 to mode 1 in a distance of L = 1 cm? Again, we use the previous 
examples. From equation (76) [or directly from equations (53) and (77)] 
we obtain 

For the first example we obtain with ng = 1.5, t::,.p /P = 0.1, d = 0.286),£, 
and aD/d2 = 6.98 the value a = 0.115 A. t This result shows that if 
the Fourier component of the mechanical straightness deviation with a 
period length of 3.1),£ is a = 0.12 A (measured over a distance of 1 cm) 
the power loss caused by mode conversion to the first odd mode is 
10 percent. 

For the second example, we use again ng = 1.01, t::,.p /P = 0.1, d = 
2.39),£, and aD/d2 = 42.54 and obtain a = 48.8 A. The important 
Fourier component in this case has a period of A = 135),£. The power 
loss to the modes of the continuous spectrum caused by a sinusoidal 
change in thickness of the waveguide (which is very similar to its effect 
as a straightness deviation) can be calculated from equation (79) with 
a = O. 

Let us consider only one case, ng = 1.01, kd = 15, A/d = 25. For 
these values we obtain from equation (79) 

a~~ ~ = 4.6 X 10-
2

• 

Assuming again t::,.P /P = 0.1 for a guide length L 
with d = 2.39),£ 

a = 5.46 X 10-2),£ = 546 A.. 

1 cm, we obtain 

This number can be compared to the value a = 48.8 A which gave 
10 percent loss by conversion to one guided mode. However, for a 
meaningful comparison, we must remember that all the Fourier com­
ponents of a Fourier expansion of the guide imperfections scatter power 
into the modes of the continuous spectrum. The total loss would have 
to be obtained by integrating the scattering loss over the spectral dis-

t Again it is more reasonable to restate this example to say that 10 percent loss 
occurs over a distance of L = 0.1 mm if a = 12 A. 
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tribution of the Fourier components of the mechanical Fourier spectrum. 
Instead of doing this integration we use a different approach in Section 
VII. 

VII. STATISTICAL TREATMENT OF WALL IMPERFECTIONS t 

Equation (48) gives the relative loss of a guided mode caused by 
a definite (deterministic) distortion of the boundary of a dielectric 
waveguide. A quantity that may be even more interesting is the average 
of equation (48) taken over an ensemble of statistically identical sys­
tems. 

For simplicity, let us assume that one wall of the waveguide is perfect 
while the other is randomly distorted. If both walls are randomly dis­
torted, with no correlation between the distortions on opposite walls 
the loss value doubles compared to the case of only one wall being dis­
torted. If the distortions on opposite sides of the waveguide are per­
fectly correlated the amount of loss is at most increased four times. 
So to simplify the discussion we assume 

h(z) + d = O. (81) 

In order to be able to calculate (6.P /P)av , we must evaluate 

(\ 'Pm 12)av = -12 iL 

dz iL 

dz'R(z - z')e-i(~o-f3m)(z-z,) (82) 

We assumed that the correlation function 

R(z - z') = ([f(z) - dHf(z') - d])av (83) 

depends only on the difference between the coordinates z and z' but not 
on their individual values. 

A change of integration variables allows us to write 

2 1L (\ 'Pm \2)av = L2 0 (L - u)R(u) cos «(30 - (3m)U duo (84) 

To obtain equation (84) we made use of the fact that R(u) is an even 
function. 

The particular form of R(u) depends on the statistics of the wall 
imperfections. However, all correlation functions have two features in 
common. They all have their maximum value at u = 0 and decrease to 
zero as u ---* 00. If R (u) would not become 0 as u ---* 00 there would be a 

t An excellent statistical treatment of random coupling effects in metallic wave­
guides can be found in Ref. 7. 
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systematic distortion of the waveguide boundary instead of the assumed 
random behavior. To get an idea of what one might expect, we assume 
the following form for the correlation function 

R(u) = A2 exp (-r)· (85) 

A is the rms deviation of the wall from perfect straightness and B is 
the correlation length. Using equation (85) we obtain from equation (84) 

, 2A' 1 L (fto - Pml' - -J, l 
(I 'Pm 1 )av = L 2 1 lB + ( l)J (86) 

({3o - (3m) + B2 L ({3o - {3m)2 + B2 

where we neglected terms with exp (-L/ B) assuming that L/ B is 
sufficiently large. In fact if 

L»B, 

equation (86) can be simplified further: 

2 2A2 1 
(I 'Pm 1 )av = BL 2 1 

({3o - (3m) + Jj2 

(87) 

(88) 

Using equation (88) we obtain, from equation (53) for the ensemble 
average of the square magnitudes of the even guided modes, 

(I C 1
2) A2k4L ( 2 )2 

me av = --w-- nil - 1 

(89) 

The corresponding expression for the odd modes is very similar except 
that cos2 

Kmd is replaced by sin2 Kmd and {3m , Km , and "'1m are the param­
eters of the odd modes. 

The total loss caused by coupling to all guided modes supported by 
the dielectric waveguide is the sum over all (I Cm 12\v for even as well 
as odd modes traveling in positive ({3m = + 1 f3m i) as well as negative 
(f3m = -I f3m i) z-direction. It is noteworthy that equation (89) is pro­
portional to L and not to L2. The conversion to spurious guided modes 
by random imperfections appears as a true loss to the incident mode. 

The losses due to the modes of the continuous spectrum are obtained 
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from equations (48), (57), (61), (81) and (88) (with (3m = (3): 

(ilP) = A 2k4L (n2 _ 1)2 fk [ P cos
2 

Kod 

P av 2'rrB" -k ( 2 1 )( (30) 
«(30 - (3) + B2 (3od + -

'Yo 

( 
COS2 (J'd sin2 

(J'd )] 
• 2 2 d + 2 • 2 d + 2 • 2 d + 2 2 d d(3. (90) p cos (J' (J' sm p sm (J' (J' cos (J' 

The relation between (3, (J', and p is given by equations (15) and (16) 
while (30, Ko, and 'Yo are related by equations (9) and (10) and their 
value is obtained by solving equation (11). The integral in equation (90) 
is extended over (3 from - k to k, the range of real values of the propaga­
tion constant (in z-direction) of the modes of the continuous spectrum. 
Equation (90) thus includes the losses due to forward as well as back­
ward scattered radiation. The radiation modes with imaginary values 
of (3 can carry power away from the waveguide only strictly perpendicu­
lar to its axis. This power loss, if any, is not included in equation (90). 

VIII. NUMERICAL RESULTS FOR THE STATISTICAL CASE 

Figures 4 through 9 show numerical evaluations of equations (89) 
and (90). These figures can be grouped into two classes. Figures 4 
through 6 are drawn for a dielectric waveguide whose index of refraction 
is nIl = 1.01. Figures 7 through 9 apply to a waveguide with ng = 1.5. 
Within each of these two classes, the kd value was chosen to allow for 
three different cases. Figures 4 and 7 apply to waveguides which can 
support only the lowest order guided mode. In this case there is power 
lost only to the modes of the continuous spectrum. Figures 5 and 8 
apply to waveguides supporting two guided modes and Figs. 6 and 9 
apply to waveguides supporting three guided modes. Each figure shows 
the normalized loss caused by scattering into modes of the continuous 
spectrum as solid lines and the loss to the possible guided modes as 
dotted lines. Also shown are the ratios of backward to forward scattered 
power as solid lines for the modes of the continuum and as dotted lined 
for the guided modes. The total power lost to the lowest order guided 
modes is the sum of the losses to the continuum and the spurious guided 
modes. 

Several remarkable features of these loss curves are worthy of a com­
ment. The losses caused by the modes of the continuum as well as by 
the guided modes peak at certain values of the correlation length B. 
The location of these peaks are different, however, for the continuum 
and guided modes. 
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Fig. 4 - Normalized radiation loss (d3IA2L) (t:.P IP) and ratio of backward to 
forward scattered power t:.P-I t:.P+ as functions of the normalized correlation 
length Bid for n g = 1.01 and kd = 8.0. Single guided mode operation (d = half 
width of waveguide, A = rms deviation of one waveguide wall, L = Length of 
waveguide section, ng = index of refraction of waveguide, k = free space 
propagation constant). 

The losses to the guided modes increase with increasing number of 
guided modes supported by the waveguide. However, the losses caused 
by the continuum of modes also increase as an increasing number of 
guided modes can be supported. This increase is less rapid, however, 
as one might expect because of the dependence of equation (90) on the 
fourth power of k. The fourth power dependence on frequency (or inverse 
wavelength) is typical for Rayleigh scattering by small particles, and 
it is not surprising that we encounter it here. 

Finally, it is apparent from the curves showing the ratio of back­
scattered to forward scattered power that forward scattering is pre­
dominant for large values of the correlation length. The ratio of 
~P-/ ~p+ levels off for large values of B. In some of the curves the 
leveling of the ~p-/ ~p+ curves occurs out of the diagram but it is a 
common feature of all the curves. For small values of the correlation 
length there is as much scattering in the forward as in the backward 
direction. 

For many practical applications, a waveguide supporting only one 



3210 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1969 

I~~ 
5 

2 

"" r\ lIP-
" 

/// '- lIP+ 
/' 

1 '\ 1,\ 
\, 1\ 

\ \ 
1'. ~ 

\\ ~ 
,,~ ~ '\ ~ 

'" d3 
liP 

V'''' 

~ 
" KA2L P-

/ 
1\ 

\ /- ;----
V~ \ ,/' ~ ............ '\ 

~ // I---
" 

5 

2 

10- 2 

2 

10- 3 

0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 100 200 
Bid 

Fig. 5 - Normalized power loss and ratio of foreward to backward scattered 
power for radiation (solid curves) and spurious guided modes (dashed curves). 
Two guided modes (ng = 1.01, kd = 15). 
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Fig. 7 - Similar to Fig. 4. One guided mode (ng = 1.5, kd = 1.3). 
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Fig. 9 - Similar to Fig. 5. Three guided modes (ng = 1.5, kd = 3). 
- - - - two guided mode loss; continuum loss. 

guided mode may be of most interest. Let us assume Ao = 11-'. Figure 4, 
holding for led = 8.0 and ng = 1.01, applies to a waveguide whose half 
width is d = 1.271-'. Taking the worst possible case of Bid = 9 or B 
11.41-', we find from Fig. 4 

d3 t:J> 
-2- -- = 6 X 10-3

. 
A.u r 

If we want to know how much rms deviation A of one wall of the guide 
would be required to cause a 10 percent loss (6.P IP = 0.1) in one centi­
meter of waveguide (L = 1 cm) we find A = 5.85 X 10-21-' = 585 A. 
The ratio of A over d gives an idea of the relative tolerance require­
ments: 

; = 4.6 X 10-2 = 4.6%. 

If the waveguide were to conform to the conditions of Fig. 6, we would 
have for Ao = 11-' a half width d = 3.661-" The losses caused by the two 
spuriqus modes are of the same order of magnitude as the radiation losses 
caused by the continuous spectrum. For Bid = 10 or B = 36.61-' we get 
a total loss of 
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d
3 

IlP 1 -2 
A2L P = 3.4 X 0 . 

To cause IlP IP = 0.1 for L = 1 cm requires that 

A = 1.2 X 10- I
JL or ~ = 3.28%. 

The relative tolerance requirements are, therefore, approximately the 
same in both examples. 

As a last example let us use Fig. 9 corresponding (Ao = IJL) to a wave­
guide with ng = 1.5 and a half width d = 0.477 JL. For Bid = 1.3 or 
B = 6.2JL we find for the total loss 

d
3 

IlP 1 -1 
A2L P = 2.3 X 0 . 

We get IlPIP = 0.1 with L = 1 cm for 

A = 2.18 X 10-3JL = 21.8 A or ~ = 0.457%. 

The perturbation theory, strictly speaking, holds only for small values 
of IlPIP. However, it is reasonable to expect that the power scattered 
into the radiation modes escapes sufficiently rapidly so that no appreci­
able amount of power reconversion from the radiation field to the guided 
mode occurs. The incremental power loss, IlP IP = -aL, is therefore 
the same for any section of the guide so that we obtain the total scatter­
ing loss into the continuum of radiation modes P = Poe- aL

• We may 
now ask how much rms deviation is required to cause a radiation loss 
of 10 dBlkm or a = 2.3 km-1 = 2.3 X 10-5 cm- I

• Using Bid = 10, 
corresponding to the top of the loss curve of Fig. 4, we obtain the 
equation 

~32 X 2.3 X 10-5 = 6 X 10-3 

so that (A = 1JL, ng = 1.01, kd = 8.0, d = 1.27 X 10-4 cm) 

~ = 6.98 X 10-4 or A = 8.86 X 10-8 cm = 8.86 A. 

This figure dramatizes the stringent tolerance requirements of dielectric 
waveguides for long distance optical communications. In fact, such 
tolerances seem impossible to obtain. One can only hope that the cor­
relation length can be kept far from the worst possible value of Bid = 10 
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(in this example) so that these extremely stringent tolerance require­
ments might be eased. 

IX. CONCLUSION 

We have analyzed the losses suffered by the lowest order symmetric 
mode propagating on a dielectric slab waveguide caused by imperfec­
tions of the waveguide boundaries. The analysis was simplified by assum­
ing that there is no change in either the dielectric slab or the guided and 
unguided fields in one direction parallel to the slab. This assumption 
causes all our conclusions to be optimistic since variation of the slab 
in this direction can only cause additional losses. However, we expect 
that the results of this analysis give at least the correct order of magni­
tude of the actual scattering losses. 

The statistical analysis was limited to a study of the effects which 
an exponential correlation function might have on the waveguide losses. 
The actual form of the correlation function may be quite different from 
this assumed exponential shape. t Conclusions regarding loss predictions 
are further hampered by a lack of knowledge of the expected correlation 
length. 

However, our analysis does lead one to conclude that scattering losses 
suffered by optical fibers or other dielectric waveguide structures may 
be very serious. Deviations of the waveguide wall in the order of a few 
percent can cause a power loss of 10 percent or 0.46 dB/cm if the wall 
imperfection can be described by an exponential correlation function 
with a correlation length to guide half width ratio of approximately 
B/d = 10. An rms deviation of A = 9 A causes a radiation loss of 10 
dB/km if the free space wavelength is Ao = 1~ and the guide has an 
index of refraction of ng = 1.01 (with vacuum on the outside). The 
width of the slab in this last example is 2d = 2.54~. 

The mode coupling and radiation loss theory has been experimentally 
confirmed at microwave frequencies. A report on these measurements 
is given in Ref. 8. 

t Several other correlation functions have been tried and it was found that the 
results are insensitive to the particular choice of the function for values of Bid 
less than the value corresponding to the loss peak. In particular, the maximum 
loss value and the position of this loss peak were the same for different correla­
tion functions. However, the loss values for Bid larger than the value correspond­
ing to the maximum of the curve are very strongly dependent on the choice of 
the correlation function. 
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Mode Conversion Caused by Diameter 
Changes of a Round Dielectric Waveguide 

By DIETRICH MARCUSE and RICHARD M. DEROSIER 

(Manuscript received July 8, 1969) 

This paper presents the theory of mode conversion and radiation losses 
of the lowest order circular electric mode in a dielectric rod (fiber) wave­
guide and its confirmation by a microwave experiment. The theoretical re­
sults were obtained from a theory whose detailed development has been 
presented in an earlier paper. 

The microwave experiment was carried out at approximately 50 GHz. 
The optical fiber with imperfect walls was simulated by a teflon rod of 1 cm 
diameter and 1 m length with a periodically corrugated wall. 

M ode conversion was observed in excellent agreement with theory. The 
observed radiation losses are somewhat less than the prediction of the 
perturbation theory, but the agreement is quite good. The direction and 
width of the far-field radiation pattern was observed in agreement with 
theory. 

1. INTRODUCTION 

A theory of mode conversion and radiation losses of a guided mode in 
a dielectric slab was described in Ref. 1. The power conversion to spuri­
ous guided modes as well as to the continuum of unguided radiation 
modes was assumed to be caused by deviations from perfect straightness 
of the air-dielectric interface of the slab. The model of the dielectric 
slab waveguide was chosen for its simplicity. 

Even though the dielectric slab exhibits all the relevant features of 
mode conversion caused by surface roughness and allows one to draw 
conclusions as to the order of magnitude of the losses suffered by guided 
modes in dielectric waveguides of other geometries, it is desirable to 
report the calculations for a round dielectric rod. The results of cal­
culations for the dielectric rod are directly applicable to light trans­
mission along optical fibers. Furthermore, we wanted to test the pre­
dictions of the theory at microwave frequencies where a controlled 

3217 
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experiment, to check the effect of surface imperfections on mode guid­
ance, is feasible. We present in this paper the theoretical treatment of 
the round dielectric waveguide with wall imperfections and its con­
firmation by a microwave experiment. 

The mode conversion theory of round dielectric waveguides is only 
sketched in this paper since the basic method of calculation has already 
been described elsewhere. 1 The theory is simplified by limiting the 
discussion to circular electric modes. In order to avoid coupling between 
the circular symmetric and other modes, we assume that the symmetry 
of the rod is such that all derivatives with respect to the angle cp of a 
cylindrical polar coordinate system (r, cp, z) vanish (a/acp = 0). 

We conclude again (as in Ref. 1) that the radiation and mode con­
version losses caused by deviation of the waveguide walls from perfect 
straightness are extremely severe, imposing strict tolerance require­
ments on the fabrication of low loss optical fiber transmission lines. 

To confirm the basic aspects of our theory we conducted a microwave 
experiment. Because of the ready availability of equipment, the fre­
quency range of 50 GHz was chosen. Two teflon rods were used to simu­
late optical fibers. Both rods had 1 cm diameters and a length of 1 m. 
One rod was smooth and was used for calibration and reference purposes, 
while the other rod was machined with periodic grooves to simulate an 
optical fiber with wall imperfections (Fig. 1). 

The periodic wall perturbations cause two guided modes to be coupled 
together. In fact, it is possible to obtain complete power conversion 
between these two coupled modes. We have observed complete power 
conversion in agreement with our theory. 

In a certain frequency interval, the periodic grooves cause coupling 
to the continuous spectrum of radiation modes of the dielectric rod. 
The measured results are somewhat lower than the theoretical pre­
diction. The reason for this discrepancy can be partly explained by a 

SMOOTH DIELECTRIC ROD 

<~----------------~> 
CORRUGATED DIELECTRIC ROD 

1.93 em 

Fig. 1-The smooth and corrugated teflon rods used for the microwave ex­
periment (ng2 = 2.05). 
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certain ambiguity in the value of the effective radius of the corrugated 
rod. If we make the assumption that the effective radius is either the 
largest or smallest radius of our rod, we obtain two curves which bracket 
our experimental results. However, our experimental values are consis­
tently lower than the theoretical predictions based on an average diam­
eter which is the arithmetic mean of the largest and smallest rod 
diameter. It is more likely, therefore, that the loss prediction of the 
perturbation theory is slightly too large for losses which are as high as 
those which occurred in our experiment. 

Our theory also predicts the far-field radiation pattern caused by a 
strictly periodic wall perturbation. 2 We have observed the peak of the 
far-field radiation lobe and its width in agreement with theory. 

II. TE MODES OF THE DIELECTRIC ROD
3 

Imposing the condition 

a 
acp = 0, (1) 

the transverse electric field is composed of the components 

(2) 

The guided modes have the following form (normal modes of the perfect 
waveguide are indicated by script letters) 

(3a) 

C' - A _,D(Kna) HO)C' ) i(wt-/3nZ) for r > a. 
U cp - n H (1) ( • ) 1 1/'( nr e 

1 ~'Yna 
(3b) 

The two magnetic field components are obtained from the E cp component 

X =_~aEcp 
r Wf..t az (4a) 

i 1 a 
Xz = - - - (rE ). 

wf..t r ar cp (4b) 

The various symbols used in these equations have the meanings: 

a = radius of the dielectric rod, 
f3n = propagation constant of mode n, 

_ ( 27 2 R2)1 Kn - note - fJn , 

'Yn = (f3! - e)t, 
k = 27l' jAo = free space propagation constant, 

(5) 
(6) 
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ng = index of refraction of the waveguide (rod), 
W = radian frequency, 

J 1 = Bessel function of order 1, and 
HJl) = Hankel function of first kind and order l. 

The boundary conditions, requiring that the field components 0cp and 
:Ie. are continuous at r = a, lead to the eigenvalue equation for f3 

'Yn J 1 (Kna) . H~l)(i'Yna) ---- = -1, (1) • 

Kn JO(Kna) Ho (i'Yna) 
(7) 

The subscript 0 designates the Bessel and Hankel functions of zero 
order. It is convenient to express the mode amplitude An by the actual 
power carried by each mode: 

1 100 121r f3n 100 

2 P n = --2 dr dcpr0cp:Ie~ = 7r - r I 0cp I dr. 
o 0 WIl 0 

(8) 

The modes will be normalized to the same amount of power (1 watt, for 
example) so that we write 

Pn = P. (9) 

The mode amplitude can now be expressed as 

A2 _ 2wIl P 
n - 7ra

2 
f3n ( K2) 

1 + 'Y! I J o(Kna)J2 (Kna) 

(10) 

The modes of the continuous spectrum are given by the expressions 

(lla) 

(lIb) 

The two magnetic components are again obtained from equations (4a) 
and (4b). N 1 is the Neumann function of order 1 and the parameters 
(J' and p are defined: 

(12) 

The normalization of the continuous modes involves the Dirac 0-

function 

f3 100 

Po(p - p') = 7r - rEcp(p)E~(p') dr. 
WIl 0 

(13) 
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The boundary conditions at r = a determine the relations between the 
constants C, D, and B 

(14a) 

(14b) 

and these coefficients can be expressed in terms of the power carried 
by the mode 

(15) 

The actual field of a dielectric rod with imperfect walls can be expanded 
in terms of the normal modes of the perfect rod: 

(16) 

The remaining caluclation of the power loss to radiation and guided 
modes, as well as the energy exchange phenomena between different 
guided modes, are exactly analogous to those developed in Ref. 1 so 
that their derivation need not be repeated here. In Section III we simply 
quote the results of the corresponding calculations. 

III. SINUSOIDAL WALL PERTURBATION 

It was pointed out in Ref. 1 that a sinusoidal wall perturbation can 
couple only those two modes whose beat wavelength 

211" (17) 

coincides with the mechanical period h of the wall perturbation. It is 
therefore possible to consider the coupling phenomenon between only 
two modes with the result that the coefficient Co of the incident mode 
and the coefficient C1 of one of the spurious modes obey the relations 

Co(Z) = cos I K01 I Z (18a) 

C1(z) = (K01)! sin I KOI I Z 
K01 

(18b) 

with 
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aKOl 

(n! - 1) Ao (ka)2 
a 

Here, Ao is the amplitude of the sinusoidal wall deflection 

r(z) = a - Ao sin ez}o 

e = f30 - f31 

(19) 

(20) 

The microwave experiment was conducted with a teflon rod with 
meandering grooves cut into it. The depth of the grooves is given by 
2b as shown in Fig. 1. The amplitude of the fundamental Fourier com­
ponent of the periodic wall deflection of Fig. 1 is given by 

4b Ao =-. 
7r 

The two modes exchange their power completely over a distance 

D= 7r 
2 \ KOI \0 

(21) 

(22) 

The radiation loss of the dielectric waveguide of Fig. 1 can be calculated 
by the methods of Ref. 1 resulting in the following equation. 

!1P L 4(n~ - 1)2(~r (ka) 
4 

---
P a 7rf3oa 

J 2( ) N J2( ) 
o 1 Koa ~ 1 IT m a • 

(1 + ~l) I Jo(Koa)J,(Koa) I m-O (2m + 1)'[ (fi:J + (~:YJ 
(23) 

!1P is the power lost to radiation modes on a section of the waveguide 
of length L, and P is the power of the incident lowest order circular 
electric mode. The meaning of a and b is explained in Fig. 1. The sum 
in equation (23) takes account of the contributions of each component 
of the Fourier expansion of the distorted wall profile. The Fourier 
amplitudes of the function shown in Fig. 2 are 

4b 
Am = 7r(2m + 1) (24) 

[the zero component of this expansion appeared already in equation 
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r 

--------Ib 

h z 
-b 1--_____ "2 

Fig. 2 - The wall distortion function with Fourier expansion: 

00 4b. 2'1r 
r = m~o (2m + 1)'Ir sm [(2m + 1) 7i:z] 

(21)]. The index m, which has been added to the coefficients B, C, and 
D appearing in equations (14a and b) indicates that they must be 
evaluated for the following values of 

27r 
{3m = t30 - (2m + 1) d ' 

U m = (n~k2 - (3!)', 

Pm = (k2 
- (3;,,)!. 

(25a) 

(25b) 

(25 c) 

The physical reason for the occurence of these discrete values of the 
propagation constant {3 in the continuous spectrum of modes is the 
requirement (derived in Ref. 1) that only those values of {3 are ap­
preciably coupled to the incident guided mode which satisfy the relation 

27r 
{3o - (3 = -­

Am 
(26) 

where Am is the period length of a Fourier component of the wall dis­
tortion function. 

IV. THE STATISTICAL CASE 

To first order of perturbation theory, the expansion coefficient g(p, z) 
appearing in equation (16) is given by 

e(n~ - 1)(p)! 
g(p, z) = L (2) !i(t3o{3) ! 

(27) 



3224 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1969 

with 

cp = t i L 

[fez) - a]e-i(~o-~)Z dz. (28) 

It was pointed out in Ref. 1 that the average power loss caused by scat­
tering into the radiation field is given by 

(boP) 1k 2 {3 -P = (I 9 1 )av - d{3. 
av -k P 

(29) 

The symbol ( )av indicates an ensemble average. The ensemble average 
of 1 cp 12 is given by 

(30) 

with the correlation function 

R(u) = ([f(z) - a][f(z + u) - a])llv. (31) 

The relative power loss caused by radiation from the rod is obtained 
from equations (27) and (29) 

1.. / boP) = k\n; - 1)2 Ji(Koa) 1k [(I cp 12)avL ]Ji(o-a) d{3 (32) 
L \ P av ( K~) 1 J o(Koa)J2(Koa) 1 -k (Q)2 (D)2 . 

2{3o 1 + 'Y~ B + B 

v. NUMERICAL RESULTS FOR THE STATISTICAL CASE 

To be able to make numerical predictions, let us assume that the 
correlation function is given by 

(33) 

so that we obtain 

2 2A 2 1 
L( I cp 1 )av = 13 2 1 

(fJo - (3) + B2 
(34) 

Figure 3 shows a plot of (a3 
/ LA 2)( boP / P) as a function of B / a for 

ng = 1.01, ka = 23.0 and ng = 1.5, ka = 3.0. Both conditions are chosen 
so that only the lowest order circular electric mode can propagate in 
the dielectric rod. 

To get a feeling for the magnitude of the losses to be expected from 
random variations of the rod's radius, we calculate the rms deviation 
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FIg. 3 - Normalized radiation loss caused by random wall perturbations with 
exponential correlation function, a = radius of fiber, A = rms value of wall 
deviation, L = length of waveguide section, k = free space propagation con­
stant. The dimensions shown in the figure were chosen to ensure single guided 
mode operation. 

A required to cause AP/P = 0.1 for a rod length of L = 1 em for 
nil = 1.01 and the worst possible value of B / a = 2. Assuming A = III 
we get from ka 23 the value a = 3.661L for the guide radius. With 
(from Fig. 3) 

a3 AP 
A2L P = 0.16 

we find 

A 
a 

1.5 X 10-2 = 1.5% 

or 

A = 550 A. 
As discussed in Ref. 1, it may be permissible to apply the perturbation 

calculation of the radiation loss repeatedly so that from 

!::.P P = -az, (35) 

P = Poe- aL (36) 
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can be obtained. We can then ask for the rms deviation A of the rod's 
radius which causes a loss of 10 dB /km. With the numerical values 
used above we find 

A = 8.4 A. 
Almost the same figure was obtained for the rms deviation of the half 
width of the dielectric slab which causes a 10 dB/km radiation loss of 
the lowest order (even) guided mode. However, in the case of the slab, 
one wall was assumed to be perfect. 

VI. THE MICROWAVE EXPERIMENT 

The experimental setup is shown in Fig. 4. The microwave signal is 
generated by a reflex klystron whose rectangular waveguide output is 
fed into a round waveguide by means of a rectangular-to-round wave­
guide transducer. The round waveguide is connected to a section of 
round helix waveguide which serves as a mode filter suppressing all 
but the circular electric TE~~) mode. Transition between the TE6~) 
mode of the round waveguide and the corresponding TEol mode of the 
dielectric rod waveguide is achieved by inserting the rod into the wave­
guide. This mode launcher is not perfect since a small amount of TEo2 
mode of the dielectric waveguide is excited. The TE~~) mode of the 
round waveguide cannot excite the pure TEol mode of the dielectric rod 
since the field configurations of the two modes are slightly different. 
In addition to some residual TEo2 mode, small amounts of asymmetric 
modes of the dielectric rod are also excited because of imperfect center­
ing of the rod inside the round waveguide. 

To probe the field outside of the dielectric rod and detect the con­
version of power from the TEol to the TEo2 mode, we used a probe which 

KLYSTRON 

SQUARE WAVE 
MODULATION 

RECTANGULAR 
GUIDE 

HELICAL 
SECTION 

DIELECTRIC ROD 

<~------------~ 

Fig. 4 - Block diagram of the microwave experIment. 
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Fig. 5 - Buildup of the TEo2 mode along the corrugated rod. Groove depth 
= 7.6 X 10-3 cm. 

consisted simply of an L-shaped piece of RG 98U waveguide which was 
mounted on an optical rail, which made it possible to move the detector 
parallel to the dielectric rod. The receiver attached to the L-shaped 
probe consisted of a single diode detector followed by an amplifier which 
was tuned to 250 Hz. The klystron was amplitude modulated at that 
same frequency. The periodicity of the grooves of the corrugated 
dielectric rod (Fig. 1) was chosen equal to the beat wavelength between 
the TEol and TEo2 modes of the dielectric rod as given by equation (17). 

Mode conversion from TEol to the TEo2 mode can easily be observed 
with our detector arrangement because the TEo2 mode extends much 
farther away from the rod than the more tightly confined TEol mode. 
l\tloving the detector to approximately 4 mm from the surface of the 
rod made it impossible to observe any trace of the TEol mode, while 
the TEo2 mode could easily be detected. 

That the corrugation does indeed serve to transfer power from the 
TEol to the TEo2 mode is shown in Fig. 5. The measured values of 
TEo2 power are shown as dots on this figure. Also shown is a plot of the 
sin2 x function which gives the theoretical law of the power increase 
according to equation (18b). The slight scatter of the measured points 
is caused by interference between the TEo2 mode and some other residual 
mode which is unintentionally generated by the mode launcher. From 
equation (22) we calculate D = 80cm for our particular experiment. 
From Fig. 5 we see that the experimental value of the total energy ex-
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change length is approximately 75 cm. The remaining discrepancy be­
tween the theoretical and experimental values can easily be attributed 
to the machining accuracy of the rod which was no better than 2.5 X 
10-3 cm. Striking proof of the identity of the mode whose buildup is 
shown in Fig. 5 is provided by Fig. 6. 

Figure 6 was obtained by moving the L-shaped detector transversely 
at the end of either the smooth or the corrugated rod. The detector is 
thus probing the near field radiation pattern which results as the guided 
mode leaves the end of the rod and radiates into space. This near field 
radiation pattern is a faithful reproduction of the shape of the guided 
mode inside of the waveguide. The solid curve shown in Fig. 6 was 
obtained by probing the transverse field pattern of the smooth rod. 
This field pattern shows clearly the TEal mode. There is a slight dis­
tortion in the wings of this mode which is caused by interference between 
the TEal mode and a small amount of TEo2 power launched by the trans­
ducer. The dotted curve in Fig. 6 was obtained by placing the detector 
at the end of the corrugated rod. We took care to insert the corrugated 
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Fig. 6 - The near-field radiation patterns of the guided modes (transverse 
field distribution). Solid line = TEol mode at end of smooth rod; dotted line = 
TEo2 mode at end of corrugated rod. 
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Fig. 7 - Buildup of TEo2 mode along the corrugated rod. Groove depth = 2.3 
X 10-2 cm. 

rod so far into the launcher that the section protruding from the launcher 
was equal to the total power exchange length shown in Fig. 5. It is 
apparent that the TEo2 mode (instead of the TEol mode generated by 
the launcher) is present at the output end of the corrugated rod. It is 
also apparent that almost complete mode conversion has taken place. 
Figures 5 and 6 were obtained from a corrugated rod whose grooves 
had a depth of 7.6 X 10-3 cm. In order to be able to observe radiation 
losses, we deepened the grooves in this rod to a depth of 2.3 X 10-2 cm. 
The power buildup as a result of mode conversion from TEol to TEo2 
on the rod with deeper grooves is shown in Fig. 7. The TEo2 mode is 
shown to go through two complete power exchanges. The exchange 
length is now 25 cm in agreement with theory. 

Finally, we observed the radiation of power from the corrugated rod 
with the deeper grooves. Equation (26) indicates the relation between 
the z-component of the propagation vector of those radiation modes 
that couple to the TEol mode and the period of the periodic corrugation 
of the rod. It is clear that the basic Fourier component with length 
AD of the corrugated wall distortion function will contribute predomi­
nantly to radiation loss. Furthermore, since {3 < k is required for all 
radiation modes, we see that only very little power can be lost to radia-
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tion unless the relation 

Q _k~27r 
fJO - Ao (37) 

is satisfied. It follows from equation (37) that above f 51GHz very 
little radiation loss is to be expected. Indeed we see in Fig. 7 that com­
plete energy exchange between two guided modes is taking place which 
would be impossible if substantial amounts of power had been lost to 
radiation. However, below 51 GHz, equation (23) predicts considerable 
radiation loss. 

The applicability of the radiation loss theory to our experiment is 
somewhat questionable. We must not forget that equation (23) was 
derived from a perturbation theory under the assumption that only 
very little power is lost from the original guided mode. If the radiation 
detaches itself from the rod over a distance for which the power loss 
of the guided mode due to radiation is only slight, we may be justified 
in making the transition to equation (36). However, this procedure 
becomes more and more questionable as the radiation losses increase. 
Furthermore, the transition to equation (36) is less likely to be ac­
curate if the radiation is directed forward along the rod. It is shown in 
Ref. 2 that forward radiation results close to the region where the equal 
sign of equation (37) applies. 

Finally, there is some uncertainty what value "a" for the rod's 
radius should be used in equation (23). Since the radius of the cor­
rugated rod is variable, some suitable average value must be taken. 
Figure 8 shows three theoretical curves. The two dotted curves were 
calculated using the largest and smallest value of the radius in equation 
(23). The solid curve was obtained by using the average value of the 
radius. The crosses in Fig. 8 show the results of our loss measurements. 
It is apparent that most of these points fall within the two dotted curves. 
However, all points lie below the solid curve. These loss measurements 
were obtained by comparing the output power at the end of the smooth 
and corrugated rod. The accuracy of these measurements is no better 
than approximately ±! dB. In view of the discussion of the applica­
bility of the perturbation theory to high radiation losses, the agreement 
between theory and experiment must be considered as good. 

Figure 9 shows the angle of the far-field pattern of the radiation lobes 
caused by power loss due to the corrugated wall. The dots are measured 
values, while the curve is a result of the theory of Ref. 2. Again we see 
good agreement between experiment and theory. 
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VII. CONCLUSION 

This paper contains a perturbation theory of mode conversion effects 
and radiation losses of a round dielectric waveguide. This theory is 
applicable to light transmission in optical fibers. The theory developed 
here is limited to the circular electric modes of round dielectric wave­
guides. However, the order of magnitude of the losses for other modes 
is expected to be similar. 

The theory has been checked by a scaled experiment at microwave 
frequencies. The dielectric fiber with wall imperfections was simulated 
by a teflon rod of 1 cm diameter which was provided with periodic 
grooves. Mode conversion from the TEol mode of the dielectric rod to 
the TEo2 mode was observed in excellent agreement with experiment. 
The observed radiation losses are in reasonable agreement with theory. 
An existing discrepancy can be attributed to the limitations of the 
perturbation theory to predict correctly the high losses encountered 
in this experiment. 

The conclusion to be drawn from our theory for the operation of 
optical fibers is a need for very strict tolerance requirements. For ex­
ample, the radiation losses caused by surface roughness of a fiber 
designed for single mode operation at IJl wavelength can be as high as 
10 dB/km for an rms variation of the fiber wall of as little as 8 A. 
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Radiation Losses of Dielectric Waveguides 
in Terms of the Power Spectrum 
of the Wall Distortion Function 

By DIETRICH MARCUSE 

(Manuscript received July 23, 1969) 

In an earlier paper I described a perturbation theory of the radiation 
losses of a dielectric slab waveguide. The statistical treatment of the radiation 
losses was based on the correlation function of the wall distortion. This 
paper discusses the results of the radiation loss theory in terms of the power 
spectrum of the function describing the thickness of the slab. We found that 
only those mechanical frequencies () of the power spectrum contribute to the 
radiation loss that fall into the range f30 - k < () < f30 + k. (f3o = prop­
agation constant of guided mode, k = free space propagation constant.) 
The mechanical frequencies near both end points of this mechanical fre­
quency range contribute more to the radiation loss than the region well 
inside of this range. 

We also discuss the far-field radiation pattern caused by a strictly 
sinusoidal wall distortion. 

I. INTRODUCTION 

In an earlier paper I developed a perturbation theory of the mode 
conversion effects between guided modes and of the radiation losses of 
a given guided mode caused by deviations from perfect straightness of 
the waveguide wall. 1 For simplicity, the discussion had been limited to 
a waveguide in the form of an infinitely extended dielectric slab. 

The statistical discussion had been based on the description of the 
wall distortion by means of a correlation function. In Ref. 1 an exponen­
tial correlation function had been assumed. However, it has been estab­
lished that the shape of the correlation function has little influence on 
the radiation losses. 

It is possible to base the discussion of radiation losses not on correla­
tion functions, but on the mechanical power spectrum of the wall dis­
tortion function. This study provides information as to how the various 

3233 
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mechanical frequencies of the wall distortion function contribute to the 
radiation losses. 

The analysis of Ref. 1 was based on the use of radiation modes of the 
dielectric slab which represent standing waves in directions transverse 
to the propagation direction of the guided modes. The question naturally 
arises how a superposition of these standing waves can result in radiation 
flowing away from the rod. This question is answered by examining 
the far field radiation pattern caused by a sinusoidal distortion of one 
wall of the dielectric waveguide. This paper gives the relation between 
the length of the mechanical period, the wavelength of the guided mode, 
and the direction of the main lobe of the radiation. 

II. RADIATION LOSS AND POWER SPECTRUM 

The amplitudes of the modes of the continuous spectrum were derived 
in Ref. 1, equations (65) and (69). We have 

( L) = Lk2 (2 _ 1) p(cos Ko d cos O"d)[<p(e) - \fee)] 
ge p, 2·C )t nil [() J 1 ~ 7r f30 2 2 2 2 .. 

f3 f30 d + 'Yo (p cos 0" d + 0" sin 0" d) 

(1) 

for the even modes, and 

Lk2 2 1) p(cos Ko d sin 0" d)[<p(e) + \fee)] 
go(p, L) = 2i(7r)t (n" - [() Ji 

f3 f30 d + ~: (/ sin2 
0" d + 0"2 cos2 

0" d) 

(2) 

for the odd modes. The functions 

<p(e) = t i L 

[fez) - d]e- iOZ dz, (3) 

\fee) = t iL 

Chez) + d]e-
iOZ 

dz, (4) 

with 

e = f30 - f3 (5) 

are the Fourier transforms of the wall distortion functions fez) - d and 
h(z) + d. [x = fez) is the boundary of the dielectric-air interface, x = d 
describes the wall of the perfect guide, and x = h(z) is the distorted 
boundary near x = -d.] 
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The meaning of the constants appearing in equations (1) to (5) is: 

{3o = propagation constant of guided mode (propagating in z-direc­
tion) , 

{3 = component of the propagation constant of the continuum mode 
in z-direction, 

Ie = propagation constant in free space, 
L = length of guide section with wall distortions, 
ng = dielectric constant of slab, 
p (le 2 

- (32)! (6) 

CT = (n~e - (32)!, (7) 

Ko (n!le 2 
- (3~)!, (8) 

'Y~ ({3~ - e)!. (9) 

The y-component of the electric radiation field caused by the wall 
distortions is given by 

Ey = C" [ge(P, L)0e(p, z) + go(p, L)00(p, z)] dp. (10) 
"0 

The functions 0. and 0 0 are the even and odd radiation modes. The ratio 
of scattered power to incident guided mode power is obtained from 

~pP = jk (I ge(P, L) 12 + 1 go(p, L) n fi d{3. (11) 
-k p 

For simplicity we assume that one wall of the slab is perfect 

h(z) = -d, 

so that 

1f;(e) = 0, 

(12) 

(13) 

the relative scattering loss, follows from equations (1), (2), and (10) 

~ jk 1 P = -k d2 L 1 ep(e) 12 J({3) d{3 (14a) 

with 

(kd)4 2 2 cos2 Kod [ cos2 CTd 
J({3) = -4- (n g - 1) --r.; (pd) (d)2 2 d + (d)2 . 2 d 

7r {3od + ~ p cos CT CT sm CT 
'Yo 

(14b) 
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Since ep( e) is the Fourier component of the wall distortion function its 
absolute square value 

(15) 

is the "power spectrum" of fez) - d. It is apparent from equation (14) 
that !::.P / P depends on the power spectrum of the wall distortion func­
tion. Incidentally, equation (14) is not a statistical expression, but holds 
for a specific dielectric slab waveguide. We entered the power spectrum 
in the combination L \ ep \2 in equation (14) since this combination is 
independent of L for a randomly varying function fez) - d. 

Equation (14) allows us immediately to determine the range of 
mechanical frequencies e which contribute to the radiation loss. The 
integral in equation (14) is extended from -k to k, the f3 range of 
continuous radiation modes. The range of mechanical frequencies con­
tributing to the scattering loss is therefore given by 

f30 - k < e < f30 + k. (16) 

This is an important result since it states that those parts of the power 
spectrum which lie outside of the range, equation (16), do not contrib­
ute to radiation loss. 

This last statement must not be misconstrued to mean that a wave­
guide with a sinusoidal wall distortion extending over length L 

f (z) = d + a sin e' z (17) 

with ()' lying outside the range of equation (16) does not lose power by 
radiation. The power spectrum of equation (17) is 

[ 
L]2 sin (()' - e)-

\ ep(() \2 = L --()'-=e~ . (18) 

A term with ()' + () in the denominator has been neglected in equation 
(18). The accuracy of this approximation improves with increasing 
values of L. 

It is apparent from equation (18) that \ ep(() \2 has non-vanishing 
values for () ~ e' so that there is some small contribution to radiation 
loss even if ()' lies outside of the range of equation (16). 

However, if we consider the limit L ~ 00 we can approximate the 
power spectrum, equation (18), by a o-function: 

2 

lim \ ep(e) \2 = 7r
2L
a o(() - e'). 

L->co 
(19) 
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In this special case the expression (14a) for the scattered power becomes 

': = ~ (~r I(~o - ()'). (20) 

The scattering from a dielectric waveguide with a wall distortion func­
tion whose power spectrum is a a-function is proportional to I(~o - ()'). 

The function I(~) is plotted in Fig. 1 for ng = 1.01, kd = 8.0, and 
~o d = 8.041. The scattering caused by a wall distortion with a 0-

function spectrum (a sinusoidal wall distortion of infinite length) is 
nearly independent of the value of ~ = ~o - ()' over most of the ~-range. 
There are two sharp peaks at /3 ~ k and /3 ~ -k. The physical reasons 
for the sharp increase in loss at these values is easy to understand if 
we consider the direction of the radiation pattern as a function of ()'. 
We show in Section III [equation (35)] that the angle a between the 
waveguide and the main radiation lobe is given by 

~ ~o - ()' 
cos a = k = k . (21) 

The two peaks of the function 1(/3), or correspondingly of the radiation 
loss, are associated with 

a ~ 0 and a ~ 71". (22) 

This shows that the radiation loss is high when the radiation pattern is 
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Fig. 1- Graphical representation of the function l(fi) [eq. (14b)]. n g = 1.01, 
kd = 8.0, pod = 8.041. 
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directed very nearly parallel to the surface of the waveguide. The 
radiation modes gain more power if the guided mode can interact with 
them over a longer distance. An observation of this loss peak is re­
ported in Ref. 2. 

A power spectrum with sharp peaks much like that of equation (18) 
or (19) is not likely to occur for dielectric waveguides with random 
imperfections of the dielectric interface. It is much more reasonable to 
expect that such waveguides may have spectral distributions which are 
nearly independent of 8 over a certain range of 8 values. In the limit 
of a "white" spectrum, 

I cp(8) 12 = constant, (23) 

the scattering loss is proportional to the integral over the function J({3) 
shown in Fig. 1. The two peaks contribute very little to this integral. 
Numerical integration of J({3) of Fig. 1 including and excluding the peaks 
resulted in the values: 

[88 J({3) d{3 = 0.011, [77 .. 
8
8 J({3) d{3 = 0.0096, 

and [77 .. 
5
5 J ({3) d{3 = 0.0087. 

This result is reassuring for the use of the perturbation theory which 
was used to derive equation (14). The perturbation theory is based 
on the assumption that power is converted from the guided mode to 
the radiation field but that no power is converted back from the radiation 
field to the guided mode. This approximation is certain to yield better 
results if the radiation pattern is directed away from the rod. In other 
words, the perturbation theory will work poorest in the region of the 
peaks of Fig. 1. However, for spectra that do not particularly favor the 
regions of these peaks, the contribution of those regions (which at the 
same time give the least reliable results) to the total radiation loss is 
only slight. 

III. THE FAR FIELD RADIATION PATTERN 

The far field pattern of the radiation field (that is excited by the 
lowest order even guided mode traveling in the dielectric slab with 
sinusoidal perturbation of one wall) can easily be calculated from equa­
tion (10). The even and odd radiation modes were given in Ref. 1 (for 
Ixl > d) 



8 C,) = 
1/ 
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x [p cos p(lxl - d) cos (Jd - (J sin p(lxl - d) sin (Jd]eiCwt-i3z) (24) 

8 CO ) - ~ [ 2wJ1,P J! 
y - Ix I 7r{3(/ sin2 (Jd + (J2 cos2 (Jd) 

X [p cos p(lxl - d) sin (Jd + (J sin p(lxl - d) cos (Jd]e iCwt -{3Z). (25) 

With ..p(O) = 0 and 

[ l 
sin (0' - 0) f. 

ep(e) ~ i~ exp iCe' - O)~...J --o'---=---iJ~ (26) 

and with the help of equations (1) and (2) we get from equation (10) 

ak
2 

1. 2 ) cos Kod 
Ey = -(2)~7r (wJ1,p)2(ng - 1 ( )! 

{3od + {30 
'Yo 

X 100 

!!. {cos (Jd[p cos p(x - d) cos (Jd - (J sin p(x - d) sin (Jd] 
o {3 / cos2 (Jd + (J2 sin2 (Jd 

+ sin (Jd[p cos p(x - d) sin (Jd + (J sin p(x - d) cos (JdJ} 

/ sin2 (Jd + (J2 cos2 (Jd 

[ ] 

sin (0' - 0) f. 
X e '(0' 0) L 2 X iCwt-{3z) d xp 1, - "2 --0-'-=-0-- e p. (27) 

In the far field with x ~ 00 and z ~ 00 (but L finite) we can obtain an 
approximate solution of the integral in equation (27) by the method of 
stationary phase.3 The sine and cosine functions of argument p(x - d) 
can be expressed as sums of exponential functions. The most important 
terms of the integrand of equation (27) are, therefore, of the form 

exp [-i({3z ± px)]. (28) 

This exponential term is an extremely rapidly varying function of p as 
x ~ 00 and z ~ 00. All other terms in the integrand vary slowly by com­
parison, According to the method of stationary phase the contribution 
to the integral comes predominantly from a region that is determined by 

a 
ap ({3z ± px) = o. (29) 
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With the help of equation (6), equation (29) leads to the condition 

or 

with 

x 
z 

±Po 
{3 

Po = k sin ex 

{3 = k cos ex 

z z 
cos ex = (x2 + Z2)! = ~. 

(30) 

(31a) 

(31b) 

(32) 

For x > 0 and z > 0 only the + sign in equation (30) is possible. This 
is an important point. It shows that even though the radiation modes, 
equations (24) and (25), represent standing wave patterns in x-direction 
only, the outward traveling part of the decomposition of the standing 
wave into traveling waves makes a contribution to the radiation field, 
equation (27). 

All terms of the integrand with the exception of equation (28) can be 
taken out of the integral. The remaining integration can be carried out 
using the expansion 

(3z + px = k(x sin ex + z cos ex) - 2! k z 3 (p - PO)2 + 
cos ex 

. (00 -i({Jz+px) d = (1 + ")( )! (k)! cos ex -ik(x sin a+z cos a) 
Joe P 1, 7r (r) ! e . 

The far field is therefore obtained in the form 

__ 1_ ("?!:.) k!( )!( 2 ) cos Kod 
Ell - (7r)! exp 1, 4 a \wp,p np - 1 ( )! 

{3od + {30 
'Yo 

2 "" sin (0' - O)!::. 
Po sm 2(jod - 1,Po(jo cos 2(jod 2 

. (p~ + (j~) sin 2(jod - 2ipo(jo cos 2(jod --O-/~-

" P ["(01 _ O)!::.] ipod _1_ i[wt-k(x sin a+z cos all 
ex 1, 2 e (r)! e . 

(33) 

(34) 

The index zero was added to (j to indicate that it must be evaluated from 
equations (7) and (8) using Po of equation (31a). 

Equation (34) reveals several important features of the far field of 
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radiation. This field is essentially a plane wave traveling in the direction 
of a (tan a = x/z, and x and z are the coordinates of the point of ob­
servation) . 

The field intensity is inversely proportional to the square root of the 
distance r from (the sinusoidally distorted) waveguide section. The 
dependence on distance is inversely proportional to (r)! rather than r 
because the waveguide is infinitely extended in y-direction (see Ref. 1). 

The main radiation lobe occurs at the maximum value of [sin (0' -
O)L/21/(O' - 0) that is at 0 = 0' or from equations (5) and (31b) at 

(30 - 0' 
cos am = k (35) 

«(30 = propagation constant of guided mode). 
The width of the main lobe depends on the length L of the sinusoidally 

distorted waveguide section. The difference in angle between the peak 
of the lobe and the first null determines the half width of the main lobe 

27l" 
~a = Lk' for a ~ O. 

SIn a 
(36a) 

The width of the main radiation lobe is inversely proportional to L. 
The lobe is narrowest for a = 7l" /2 and becomes wider as a decreases 
toward zero. If the peak of the main lobe is at a = 0, we obtain 

(
47l")! ~a = Lk for a = O. (36b) 

The peak amplitude of the main radiation lobe is not strongly dependent 
on a. The increase in radiated power in forward direction (a = 0) which 
is apparent from Fig. 1 is caused by the broadening of the radiation 
lobe with decreasing angle. 

IV. CONCLUSION 

The radiation loss of dielectric waveguides caused by deviations from 
perfect straightness of the waveguide walls depends on the "power 
spectrum" of the wall deviation function. A sinusoidal wall perturbation 
gives rise to radiation into a particular direction in space. Each Fourier 
component of the Fourier expansion of the wall distortion function is 
responsible for radiation into a particular direction. The width of the 
radiation lobes is wide for scattering directions parallel to the rod so that 
those Fourier components responsible for forward and backward scat­
tering contribute more to the radiation loss than those causing scat-
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tering in other directions. However, this preferential loss behavior is not 
very pronounced, so that the Fourier components responsible for forward 
and backward scattering contribute only a small amount of the total 
radiation loss caused by a broad power spectrum. 

The coupling between two guided modes of the dielectric waveguide is 
also governed by equation (5). Only one component of the power spec­
trum of the wall distortion function influences the coupling between two 
guided modes, while the entire range of mechanical frequencies, equa­
tion (16), determines the radiation loss. 

The general predictions of this theory have been experimentally veri­
fied. l\1icrowave experiments on a periodically corrugated teflon rod have 
shown that the radiation losses are negligibly small if the period of the 
corrugation is such that () lies outside of the interval indicated by equa­
tion (16).2 However, if () falls inside of the interval, equation (16), con­
siderable radiation losses do occur. The peak of the radiation losses 
shown in Fig. 1 and the direction and width of the radiation lobes have 
also been observed in agreement with this theory. 
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Amplitude Distributions of Telephone 
Channel Noise and a Model for 

Impulse Noise 
By J. H. FENNICK 

(Manuscript received June 30, 1969) 

The noise waveforms found on voice bandwidth telephone channels are 
generally recognized to be non-gaussian in their amplitude distribution. 
This paper presents data which suggests that a simple exponential is a 
good function to describe amplitude densities in the extreme tails. 

A comprehenisve model of impulse noise as viewed on trunk groups is 
then presented. The model relates the distributions of impulse noise levels 
and impulse noise counts. 

1. INTRODUCTION 

Noise on telephone channels has been measured for years with in­
struments which are constructed to enable reasonably good correlations 
between the reading obtained and the annoyance of the noise during a 
telephone conversation. 1 Fluctuations of the meter pointer during a 
measurement are either ignored or mentally averaged by the observer, 
depending upon their frequency of occurrence and their magnitude. 
With the introduction of data transmission on the telephone network, the 
relatively frequent high amplitude excursions of the noise waveform 
were viewed as a "new" kind of noise, primarily because they were 
generally not annoying in voice communication and it was recognized 
that no meaningful measure of them could be obtained with the stand­
ard noise measuring sets. The term "impulse noise" was applied to 
these high excursions and new instruments were designed to measure 
them. 2 

The significance of impulse noise in data transmission has given rise 
to a great deal of effort devoted to its measurement, characterization, 
and evaluation as a transmission impairment.3

-
6 (For an extensive 

bibliography, see Ref. 3.) Several models have been suggested to de­
scribe the erratic behavior and clustering phenomena associated with 
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this type of noise. The Pareto model of Berger and Mendelbrot and the 
generalized hyperbolic model proposed by Mertz appear to be the best 
presented to date. 3

,7 A more mathematically tractible (than the hyper­
bolic) model has recently been applied to error rate data by Fritchman. 
He proposed a partitioned Markov chain model which would seem to 
show promise in this area although it does not seem to have been ap­
plied to impulse noise data as yet.s The model presented here does not 
deal specifically with the intervals between occurrences of noise pulses 
but is concerned directly with the number of occurrences per unit 
time above any threshold (in decibel) of observation. Extrapolation of 
occurrences of noise pulses to errors created in data transmission is a 
function of many parameters besides the occurrence of noise and will 
not be discussed here although good prediction techniques exist. 5 

In order to set the background for the discussion of impulse noise as a 
separate phenomenon, as opposed to the background noise or as a part 
of the composite noise waveform on a channel, data are first presented 
on the amplitude probability density function of the noise as observed 
and comparisons made with gaussian noise. The data reflect only the 
range of variables encountered and should not be considered as statis­
tically describing the amplitude distributions of noise on telephone 
channels. 

II. IMPULSE NOISE AS A DISTINCT PROCESS 

Typical oscillograph noise waveforms from a random noise generator 
and from a telephone channel are shown in Fig. 1. Each trace is 200 ms 
long and both have the same rms value. The upper one is from the noise 
generator, the lower one from a telephone channel. The occurrence of 
two "impulses" are shown near the left end of the lower trace. It is 
primarily the occurrence of such "pulses" that make real channel noise 
decidedly different from band-limited white gaussian distributed noise 
(the upper trace). 

Figures 2a and b show two such impulses extracted from a noise 
recording, sampled at a 15 kHz rate and analyzed to determine their 
amplitude and phase characteristics in the frequency domain. In both 
cases, the phase characteristic is shown to be relatively smooth, but the 
frequency content highly variable. Similar analyses on about 2000 noise 
pulses verified these observations. However, if a large sample of pulses, 
on the order of 200, is taken from a given channel, the average spectrum 
appears to be approximately the shape of the channel gain-frequency 
characteristic-not a very surprising result. Such an averaging is shown 
in Fig. 3. 
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Fig. 1-200 ms samples of random noise and telephone channel noise with 
equal rms levels. 
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Fig. 2 - Samples of impulses extracted from telephone channel noise with 
their amplitude and phase characteristics in the frequency domain. 
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Fig. 3 - Average spectral content of about 200 impulses from a single tele­
phone channel. 

Figures 1 and 2 serve as partial justification for treating impulse noise 
as a separate phenomenon. The pulses shown in Fig. 1 do not rise to 
strikingly high amplitudes compared to the rest of the noise waveform. 
Those in Fig. 2, however, are so large that the scale prohibits viewing the 
background noise waveform which continues beyond that shown. This 
extreme peaking will become more apparent in Section III. 

III. PERCENT OF TIME WAVEFORM IS WITHIN AN INTERVAL 

The percentage of time that the noise is within a given interval 
(±0.5 dB in this case) is a useful means of describing a random wave­
form. Data in the form of histograms were obtained by sampling, at a 
10 kHz rate, 30 minute tape recordings of telephone channel noise. 
Equipment limitations imposed a usable dynamic range of 30 dB, so 
the apparatus was adjusted to examine only the extreme peaks of the 
noise. In practice this usually required that the noise be examined at 
levels corresponding to percentages of 10-2 or less. This approach was 
also consistent with the nature of the problem-the relatively high noise 
amplitudes were of greatest interest. Logarithmic compression and 
decibel scaling were used and resulted in a unique presentation of the 
data. Instead of the usual scaling in voltage, the abscissa is scaled in 
decibels removed from the rms value of the noise. A negative sign pre­
ceding an abscissa value refers simply to one polarity of noise waveform, 
a positive sign refers simply to the opposite polarity. Zero on the ab­
scissa corresponds to the rms value of the noise waveform. For con­
venient comparison, the equivalent data for a gaussian distribution 
are also shown in each of the figures presented. The ordinate, proportion 
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of time the waveform is within ±! dB of the indicated level, is presented 
in powers of 10 from 10-2 to 10-8

• 

Figures 4 and 5 show the histograms as measured on two different 
channels. Figure 4 was taken from data recorded on a coaxial cable sys­
tem and Fig. 5 from a microwave radio system. The striking departure 
from a stationary gaussian process is obvious. The sampling rate of 
10 kHz over a 30 minute period resulted in 18 X 106 samples. Values 
on Fig. 4 of 5.5 X 10-8 represent one sample in 18 million and can 
hardly be considered significant. The values of 10-8 shown on Fig. 4 
represent voids in the data. Figure 6 shows a histogram constructed by 
combining seven 30 minute recordings, and so represents an "average" 
histogram over 3.5 hours of real time. The result is surprisingly linear 
for values below about 5 X 10-5 and suggests that the tails of the am­
plitude distribution of real channel noise are approximated quite well 
by a simple exponential. 

A total of 37 half hour recordings were analyzed in this fashion. 
Seventeen of these were taken from microwave radio channels and 20 
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from various types of cable or coaxial carrier systems. The variability 
observed on the microwave systems is much greater than that on cable 
systems so the two sets of data are treated separately. 

Since no data are available on the amplitude histograms at values in 
excess of 10-\ it is assumed here that the histogram for such values is 
represented by a truncated normal function. The observed data suggest 
that, if the noise is stationary, its amplitude density function then may 
be written: 

o· , x < -b 

clx -b ~x ~ -a 

p(x) <I>' , -a <x<a (1) 

-kx ce a ~ x ~ b 

O· , x > b 
where 

±b = realistic bounds on the voltage waveform (channel saturation), 
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Fig. 5 - Histogram of telephone channel noise amplitudes compared with 
gaussian distribution. Sample from a microwave radio system. Constructed as 
in Fig. 4. 
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Fig. 6 - Histogram of noise amplitude from cable and coaxial systems taken 
over 31h hours. Constructed as in Fig. 4. 

±a = points of departure of the density function from an assumed 
underlying Gaussian, 

<I> = gaussian density truncated at ±a. 
c, k = parameters describing the exponential density function. 

The value of b ranges from about 30 to 50 dB*, the value of a ranges 
from about 10 to 15 dB*, and k may be negative as illustrated in Fig. 5. 
The variable c ranges over 14 orders of magnitude from 10-7 to 107

• 

No significant correlations were found between any of the variables 
in the data analyzed. The point of departure from the assumed under­
lying truncated gaussian distribution a is given by the positive solution 
of the quadratic 

a = k ± {k 2 
- 2ln [c(2'lli]}!. 

Some values of k and c are given below. 

3.1 Histograms on Cable and Coaxial Carrier Systems 

As stated earlier, the histograms on cable and coaxial carrier systems 
showed less variability than those on microwave radio systems. In fact, 

* That is, above the rms value. 
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two of the 20 observations tracked the assumed gaussian distribution 
to within less than! dB over the entire range from 10-3 to 10-7

• These 
two observations lend credence to the assumption of an underlying gaus­
sian process and also show that at least two channels had no impulse 
noise in the sense of the term as defined in Section I. 

The data are summarized in two ways. First, the values of the vari­
ables k and c were examined, and then the intercepts (abscissa values) 
for various values of proportion were studied. 

For cable and coaxial carrier systems (20 samples) * the mean of k 
was 0.45 and the estimated standard deviation s was 0.46. Because of 
the extreme range of c, as mentioned in Section III, only the median 
appears to be of interest; it was found to be 0.0028. A probability density 
function using the mean value of k and the median of c is shown in Fig. 
7. The resultant exponential departs from the guassian distribution at 
about 4.5 X 10-6 on the ordinate. 

The second method of examining the data is considered to be more 
meaningful in terms of a representative average. The intercepts at 
proportion values of 10-4 to 10-7 were studied. The mean (X)av (in dB), 
estimated standard deviation s, median, and 90 percent confidence 
intervals (CI) about the mean, are shown in Table 1. The average and 
median functions so derived are also shown in Fig. 7. The distributions 
of intercepts were found to be very nearly log-normal for all four pro­
portion values (10-4 through 10-7

). This explains the differences between 
the means and medians as in Table I and Fig. 7. A skew distribution of 
the intercepts is of the form to be expected. A lower bound on the inter­
cept is imposed by the gaussian assumption and a gradual tailing off of 
the values at the high range might be expected. 

Taking the median value of the exponential distribution as being a 
representative value of conditions on cable carrier systems, it is of 
interest to compare tail values of the resultant cumulative distribution 
function (CDF) with the gaussian distribution. The median exponential 
intercepts the gaussian at an x value 12.6 dB above the rms. This cor­
responds to the log-l (12.6/20) = 4.260" point. If the noise amplitude 
were truly gaussian, only 0.004 percent of the waveform would lie beyond 
the ±4.260" points. However, 0.0134 percent of the area lies below the 
exponential portion of the density function, nearly a full order of magni­
tude difference. This sheds some light on the predicted performance of 
data systems, for instance, in the presence of gaussian noise, a typical 
analysis situation, and that actually observed in a working version of 
the system over real channels. 

* Each "sample" is 30 minutes of time. 
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Fig. 7 - Amplitude probability density functions. Estimated average and 
median taken over constant density values and derived from mean parameter k 
and median parameter c, compared to gaussian. Averages taken over 10 hours 
of noise on cable carrier systems. - gaussian; --- average; --- median, 
---- mean k, median C. 

3.2 Histograms on Microwave Radio Systems 

The data for the microwave systems were analyzed in the same way 
as the second method for the cable systems. The individual values of 
k and c were not computed because of the dubious value of such an 
effort. Averaging over the intercepts for constant values of density 
(method 2) illustrates the greater variability in the microwave systems. 
The results, presented in Table II, show this by the larger estimated 
standard deviations and wider 90 percent confidence intervals about the 

TABLE I-ESTIMATED PROBABILITY DENSITIES FOR CABLE 

AND COAXIAL CARRIER SYSTEMS 

Probability ~x).v s Median 90% CI 
Density dB) (dB) (dB) (dB) 

1O-~ 19.3 4.4 15 1.5 
10-6 24.6 4.9 23 1.8 
10-7 30.2 5.5 28 2.0 
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TABLE II-EsTIMATED PROBABILITY DENSITIES FOR 

MICROWAVE RADIO SYSTEMS 

Probability lX)sV s Median 90% CI 
Density dB) (dB) (dB) (dB) 

10-4 17.7 10.7 12.6 5.5 
10-5 23.2 12.8 18.5 5.2 
10-6 24.7 9.7 22 4.1 
10-7 29.6 9.4 27 4.1 

estimated means (compare with Table I). The median function so 
derived is shown in Fig. 8. The distributions of intercepts were again 
found to be closely approximated by the log-normal distribution and 
the median curve examined as for the cable carrier systems. The median 
exponential intercepts the gaussian distribution at 11.6 dB above the 
rms value. This corresponds to log-l (11.6/20) = 3.80", or 0.0165 percent 
of the noise waveform that would lie beyond ±3.80" of a gaussian dis­
tribution. The values of k and c for the median curve on Fig. 8 are 0.48 
and 0.042. Integration of the resultant exponential function over the 
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appropriate intervals yields 0.068 percent of the median waveform in 
excess of the 3.80" points of an assumed gaussian. In this case, the median 
difference is about a factor of four. 

IV. FORMAL DEFINITION OF AN IMPULSE AND SOME PULSE LENGTH DATA 

In the process of impulse noise analysis a formal definition is required. 
The definition is illustrated in Fig. 9 and was first proposed by Kaenel, 
and others. 9 The waveform illustrated in Fig. 9 represents an ideally 
rectified noise waveform being sampled by an AID converter. All 
portions of the noise waveform that remain below a variable slicing 
level, designated level 2, are considered as part of the underlying band­
limited white gaussian or background noise until level 2 is exceeded. 
Once level 2 is exceeded, the noise pulse, or impulse, is measured starting 
at the point where level 1 was exceeded as indicated in the figure until 
it returns below level 1 and remains for a specified amount of time 
referred to as a guard interval. The function of the guard interval is 
to distinguish between nodes of a single impulse and two impulses which 
occur close together in time. Various guard intervals have been used in 
the analysis of voiceband impulse noise, from 0.3 ms to 0.8 ms. The 
choice is somewhat arbitrary, but on the basis of the author's unpub­
lished interpulse time distributions, his choice is 0.6 ms as an optimum 
value. This is preferred because interpulse gap length histograms com­
monly exhibit a null at about 0.6 ms. The adjustment of levels 1 and 2 
vary, but level 1 is typically 10 dB above the rms value, and level 2 

VOLTAGE 

w 5 
~ 
<t: 
I.) 
(f) 

w 
l? 4 
~ 
o 
> 
~ 

~ 3 
S2 
o 

/ 
/ 
I 

/ 
/ 

/ 
/ 

/ 

__ THERMAL TYPE 
/ NOISE IGNORED 

-- BURST LENGTH --/ 

~---

I 

.-_-IMPULSE TYPE NOISE 
,,/" BURST CONSIDERED 

/ 
I 

------LEVEL2 

- LEVEL 1 
----~~~~~--~~~~~~~~~~~~~~~~_. TIME 

Fig. 9 - Ideally rectified noise waveform illustrating definition of pulse length. 



3254 THE BELL SYSTlDM TECHNICAL JOtJnNAL, DECEMBER 1969 

from 13 to 16 dB above rms. In the context of this formal definition, 
the impulse has been referred to as a burst.9 

Under the rules of the definition, just given, frequency functions were 
constructed for the lengths of several thousand impulses. A set of these 
are shown in Fig. 10; the set is shown as "envelopes of all the observed 
frequency functions." Only two points appear to be significant. The 
modes of the functions occur at about 1.2 ms, and lengths in excess of 
10 ms are almost never observed. The remainder of this paper discusses 
an impulse noise model. 

V. A MODEL FOR IMPULSE NOISE ON TELEPHONE CHANNELS 

This section describes impulse noise as viewed on a trunk group as 
it is used by a switched network subscriber. The distributions of the 
peak amplitudes of individual impulses have been of interest for some 
time, and extensive data conc~rning them have been collected. 2-4,6 
Methods of relating such, distributions to data system performance have 
also been derived. 5 

The data are most frequently collected by means of simple threshold 
detectors. Excursions of the noise waveform above the threshold are 
recorded on electromechanical counters.2 Such measuring devices have 
finite counting rates which may be exceeded at times by the rate of 
occurrence of impulses in clusters. For this reason, from this point on, 
"counts" referring to values recorded by the instruments will be used 
instead of the word "impulse." The count process necessarily differs 
in some respects from the impulse noise process for the reasons just 
cited. 

5.1 Terminology and Definitions 

Some jargon has accumulated in the area of impulse noise studies; 
it is sometimes conflicting as well as confusing. The following termi­
nology is adopted here. 
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Fig. 10 - Envelopes of length density functions derived under definition of Fig. 9. 
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(i) Count-Refers to a number registered on the counter of an im­
pulse noise threshold detecting type of measuring instrument, set at a 
specified level, during a specified measurement interval. (The count 
may be less than the actual number of impulses which exceeded the 
measurement threshold during the interval because of the finite maxi­
mum counting rate of the instrument.) Upper case C denotes the random 
variable count. 

(ii) Impulse Noise Level-A level, expressed in decibels, at which 
the recorded count in a specified measurement interval is equal to 
some specified count denoted Co. 

(iii) Level Distribution-A distribution of levels, expressed in decibels 
(dBm, dBrn, and so on), taken across a number of channels, at which a 
specified count Co is recorded in a specified measurement interval. 
Scdpt "//' denotes the random variable level. 

(iv) Count Distribution-A distribution of counts observed in 
measurements on a number of channels taken at a specified level. 

(v) Log-Count Distribution-A distribution of the logarithms of 
counts, expressed in decibels. Upper case "D" denotes the random 
variable log-count and is defined: D = -10 loglo (C/Co), where Co is an 
arbitrarily "specified reference count" greater than zero. Co is arbitrary, 
but once picked it must be held constant for its associated level distribu­
tion. 

(vi) Amplitude Distribution-A cumulative distribution of the peak 
amplitudes of individual impulses on a single channel. The average 
complementary distribution is linear on semi-log paper for counts in 
the range of interest; that is; C < ~300 in 30 minutes. 

(vii) Slope-When spelled with "S", Slope refers to the slope of the 
peak amplitude distribution. Through common usage, the number 
assigned to Slope is the negative reciprocal of the slope of the peak ampli­
tude distribution, designated "m", and expressed in decibels per decade 
of counts. 

5.2 General Comments on Level and Count Distributions 

Sample level distributions are constructed from data obtained through 
the use of multilevel impulse counters which record the number of 
counts at several levels, each separated by 2 to 6 dB, occurring during 
a prescribed measurement period. Level distributions may be con­
structed from the data depending upon the specific number of counts 
Co in which one is interested. Suitable interpolation between the levels 
actually observed permits one to estimate the level at which some 
specified number of counts Co actually occurred. Thus each level dis­
tribution has a number Co associated with it, as well as a specific meas-
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urement interval. The primary data used in this study consists of level 
distributions of 15 counts in 15 minutes and 90 counts in 30 minutes.4 

,6 

The number of counts observed in a multilevel measurement tends 
to decrease exponentially as the level, in decibels, increases. Some de­
partures from this rule are observed in individual measurements, but 
the average amplitude distribution taken over a large number of mea­
surements in a single class of trunks appears to be exponentia1.6 The 
number of counts C, at any level t, may be estimated from the number 
of counts C', at level t', by the empirically derived relation 

C = C' exp [(t' - t)j(Mm)]. (2) 

where M = (loge 10) -1. Because different types of transmission facilities 
exhibit different impulse noise properties, the average noise level and 
average Slope vary over an appreciable range as facilities change. 
However, within a given type of facility or within a class of trunks, 
greater homogeneity is observed.6 The model is therefore directed at a 
description of the noise as observed within popUlations of transmission 
channels on a single type of facility which are common to some larger 
grouping such as a trunk group. 

5.3 Assumptions 

The following two assumptions, supported by studies of available 
noise data, are basic to the model which is presented in Section 5.4. 

(i) Level distributions for a specified count Co are normal with mean 
to and standard deviation (J'l • 

(ii) (J'l is independent of Co within a given trunk class. The first 
assumption is the most reasonable in view of the data; there are con­
flicting data concerning the second and it appears to be more valid for 
compandored facilities than for noncompandored facilities. 4

,6 Under 
these assumptions, and one more stated below, it is shown below that 
the count and level distributions are completely described by the 
parameters associated with one level distribution: Co , to , (J'l, and the 
Slope m. The Slope is estimated by the straight line connecting the mean 
of the level distributions for different choices of Co .6 

5.4 The Model 

Any number of level distributions may be obtained from the data by 
choosing different values of Co. As Co increases, the corresponding 
level to will decrease and trace a path in the count-level plane given by 
equation (2). A family of such level distributions form a probability 
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density surface above the count-level plane with normal cross sections 
parallel to the level axis. Such a surface is illustrated in Fig. 11. Under 
assumption (ii), lines parallel to the mean Slope are projections of con­
stant probability density with the same functional form as equation (2). 
One of two cross sections may be taken which will define a probability 
density function. If the cross section is parallel to the count axis, a count 
distribution results. To see this more clearly, consider an experiment 
where impulse noise measurements are made on a group of similar 
trunks. A value for Co is chosen and the associated level distribution 
with mean to is found. The distribution will be normal with standard 
deviation (II • Another value of Co is chosen and a second level distribu­
tion is constructed. It will have the same standard deviation as the first. 
The experiment may be repeated any number of times to construct the 
family of distributions illustrated in Fig. 11. 

In the experiment just described, the noise level t associated with Co 
was the random variable. Now suppose one \vishes to let the count, or 
log-count, be the random variable while holding t fixed. It is noted 
that equation (2) is the relationship between the means to and Co. 
Assume for the moment that equation (2) holds completely and is indeed 
a fixed relation between the two possible random variables, t and C. 
Equation (2) may be rewritten, with t' = to = 0 and C' = Co as this 
constitutes an arbitrary shift in the decibel scale to define t' = 0: 
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Fig. 11- Probability density surface for the impulse noise count process on 
tnmk groups. 
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(3) 

Define D = -10 log (C/Co)' Then .t = Dm/10, and the log-count 
distribution, the probability that D is ~ some value x, is by assumption 
1, 

1 jXm/lO 
P[D ~ x] = P[.t ~ xm/10] = -(2 )! exp (-.t2/2u~) d.t. 

Ue 7r -00 

(4) 

The density function f(x) is found to be 

(5) 

Thus D is approximated by a normal distribution with mean zero and 
standard deviation UD = 10ue/m. * 

In the previous derivation, equation (2), a relationship between 
expected values was assumed to hold as a mapping between the random 
variables .t and C or .t and D. To check the validity of this assumption 
a second experiment can be performed on the data collected in the first. 
The level .t can be held fixed at .to , and the count distribution at .to 
obtained by interpolation as described earlier. The observed log-count 
distribution may be compared with that derived in equation (5). This is 
done in Section 5.5. 

5.5 A Check on the Model Using Count Distribution Data 

Figure 13 is an e?,ample of count distributions derived in three dif­
ferent ways from a set of data consisting of 127 measurements on non­
compandored carrier facility trunks 1,000 to 2,000 miles in length. The 
level distribution for these data, with Co = 15, is slightly skew, the 
mean is 6.129 dBrn and the median 61.8 dBrn. The count distribution 
at 61.8 dBrn, obtained by interpolation between levels measured, is 
shown by the circled points on the figure. A point-by-point mapping 
from the level distribution by use of equation (2) is shown, as well as 
the log-normal one predicted by equation (5). The coincidence of all 
three sets of data is striking. 

VI. THE TIME VARIABILITY OF IMPULSE NOISE 

An additional check on the validity of this model is provided by its 
implications in the time variability of the noise. To see this, one addi­
tional assumption is made, and predicted and observed results serve to 

* As a matter of interest, values ofuD calculated from the 1964 Intertoll Trunk 
Survey (Ref. 6), are shown in Fig. 12. 
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Fig. 12- Values of standard deviation of log-count distributions F(D) as 
observed on Bell System trunks. 

validate both this additional assumption and the preceding model. 
Consider making impulse noise measurements on a large number of 

channels at a fixed level to and recording the cumulative count on the 
ith channel Cni at times nT, n = 1, 2, .... Now assume that the ac­
crued count is a linear function of time so that each total count Cni 
after time nT may be estimated by Cni = nCli , where Cli is the count 
in the first interval T on the ith channel. If the same reference count 
Co is retained in the definition of D (log-counts), for all time intervals, 
then the mean value of D will increase as log (n) but the variance of the 
count distribution (as opposed to the log-count) behaves differently 
however, as shown by the following. 

Under the assumption that equation (2) holds as a mapping between 
t and C, the distribution of C (counts) may also be derived: 

P[C ~ y] = P[t ~ -m log (yICo)] 

(6) 

and the density of C is approximated by the log-normal: 

fey) = u~~l y-' exp [ - ~~';" In' (y/Co) ] 

In == log •. 
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The rth moment of C is then found to be 

(7) 

and the variance, (T6 = C!(e1
!G - e1

!2G) = C!A. Now, as the measure­
ment interval is increased as above, Co is replaced by nCo and (T6(nCo) = 
n2C!A. The variance of the count distribution increases as the square 
of time if the mean increases linearly. 

Note from equation (7), that the mean of the count distribution is 
not equal to the reference count Co which is associated with the level 
distribution. The two are related as* 

(C)av = Co exp [(T~/(2m2 M2)] 

~ Co(1.027)"'D·. (8) 

Thus, the mean of the count distribution at level to is always greater 
than the reference count Co. Furthermore, from the definitions of the 

* Note from Fig. 12 thatuD may be as large as 13.5 so (C)av may be as large as 
130 times Co. 
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level distribution and the quantity D, Co is equal to the median of the 
count distribution. Solving equation (8) for (JD yields 

(JD ~ 8.7(log (C)av/Co)i, 

and an estimate of the variance of the log-count distribution may be 
made from the mean and median of the count distribution. This rela­
tion should be very useful in practice. 

N ow consider measurements of length K2T taken on a number of 
channels with the counts recorded after KIT and I(2T, K2 > KI . Let x 
be a random variable that takes the value of the count at KI T, and y 

one that takes the value of the count at K2T. If it were true that the 
count on each channel is a linear function of time, then for the ith 
channel measurement, Yi = (K2/K 1)Xi and the coefficient of correlation 
PXII = 1. Such correlation coefficients were calculated for several sets 
of data. The results are presented in Table III. T was equal to 5 minutes 
in all cases. The notation Pi; indicates the correlation between the counts 
at the end of i 5-minute intervals with that after j 5-minute intervals. 
The mean ratio of the count after j intervals to the count after i intervals 
and the ratio of the variance after j and i intervals is also given. The 
expected values, derived from the model, are given in each case (in 
parentheses), as well as the observed values. While the correlation coef­
ficients are not all as close to unity as one might hope, especially for the 
5-minute versus 30-minute measurements (i = 1, j = 6), the mean and 
variance do appear to increase directly and as the square of time re­
spectively. 

On the basis of the data shown in Table III and Fig. 13, the model 
appears to be an adequate description of the observed behavior of the 
impulse noise on transmission facilities as viewed through impulse noise 
measuring sets. 

TABLE III-CORRELATION COEFFICIENTS AND RATIOS 

OF MEANS AND V ARIANCES* 

i, j Pii J1.i/J1.i 
Sample 

8j2/8;2 Size 

1,2 (1) 0.87 (2) 2.04 (4) 3.70 87 
1,2 (1) 0.92 (2) 1. 97 (4) 5.00 76 
1,2 (1) 0.90 (2) 1. 98 (4) 3.98 216 
1,3 (1) 0.96 (3) 3.10 (9) 9.90 161 
1,3 (1) 0.98 (3) 2.90 (9) 8.50 168 
2,4 (1) 0.97 (2) 2.06 (4)3.60 93 
1,6 (1) 0.58 (6) 6.76 (36) 46 161 

* For counts observed after i and j 5-minute intervals. Predicted values in 
parentheses are followed by observed values. 
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VII. SUMMARY 

The following relations and conclusions come from the model pre­
sented and the data upon which it is based. 

(i) Level distributions are normal with mean Co and variance O"~ . 
(ii) Count distributions are log-normal with mean (C)av which is 

linearly related to the length of the measurement interval, and variance, 
0" 6 , which is proportional to the square of the interval. Equivalently, 
log-count distributions are normal with mean proportional to the 
logarithm of the measurement interval and variance, O"E , independent 
of interval. 

(iii) 0"( is dependent upon the class of trunk but is independent of 
Co , an arbitrary reference count greater than zero. 

(iv) O"D = 100"t/m, m is a measure of the slope of the distribution of 
noise peak amplitudes. 

(v) O"D ~ 8.7 (lOgIO (C)av/Co)!, 
(vi) (C)av ~ Co(1.027)"D· 
(vii) The mean of the count distribution, (C)av Coe

l/
(4a) and the 

vanance 

V(C) = C~el/(2a) [el/ (2a) - 1]; 1 
Jjf - log. 10. 

(viii) The median of a count distribution, taken at level Co , is equal 
to Co and the mean (C)av, may be 100 times Co . Expected count by 
itself is accordingly a very poor statistic for describing impulse noise. 
However, the mean and the median completely describe the count or 
log-count distributions. 

The model helps to explain the apparent erratic behavior of impulse 
noise measurements. Any measurement is a sample taken from the bi­
variate sample space illustrated in Fig. 11. The fact that the distribu­
tion of counts is log-normal also accounts for the great fluctuation in 
the count observed on successive measurements on a given channel. 
I t is shown however that the average rate of occurrence is reasonably 
constant with time for intervals from 5 to 30 minutes. 
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The Determinability of Classes of 
Noisy Channels 

By LEONARD J. FORYS 

(Manuscript received June 30, 1969) 

This paper is concerned with the identification of a fairly general class 
of nonlinear operators using corrupted measurements. A precise mathe­
matical definition of identification is presented and the relationship between 
a priori information and identification is studied. The a priori information 
is represented as a subset of a metric space of nonlinear operators. N eces­
sary and sufficient conditions are developed to answer the question "When is 
identification possible?" 

I. INTRODUCTION 

A large body of literature already exists for the problem of identifying 
a control system or communication channel with noisy measurements. 
In the usual identification problems, a certain structure is assumed at 
the outset in order to reduce the identification problem to one of param­
eter estimation. The absence of such parametrization increases the 
difficulty of the problem substantially. It is often not clear if identifica­
tion is even possible. 

In this paper we are concerned with the determinability (identifi­
ability) of quite general nonlinear operators whose outputs are corrupted 
by additive gaussian noise. We introduce a norm on this space of non­
linear operators and define precisely what we mean by determinability. 
Loosely speaking, we say that we can determine an operator H if we 
can choose a finite observation interval [0, T], a test signal with con­
strained peak value over this interval, a finite set of linear measurements 
over [0, T], and an estimate fI of H which is a continuous function 
of our measurements such that fI is close to H in norm with high proba­
bility. 

The question of determinability is of course intimately related to the 
kind of a priori knowledge one has of the operator. We represent this 
a priori information by saying that the operator H belongs to a subset 
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:D of possible operators. We derive conditions on :D which are sufficient 
for determinability. We also show that most of these conditions are in 
fact necessary for the determination of H. 

Our results are motivated by the work on the determinability of 
noiseless channels done by Root, Prosser, and Varaiya. 1

-
4 They derive 

necessary and sufficient conditions to estimate a noiseless channel 
closely with a "one-shot" experiment. These conditions are similar to 
those presented here. Some work on the noisy problem has been done by 
Root. 5 His approach and results are fundamentally different than those 
presented in this paper. Root investigated a class of stochastic nonlinear 
operators represented by a Volterra series whose kernels are gaussian 
random variables. He derived necessary and sufficient conditions for 
the second moments of the kernels to be determinable. 

II. PRELIMINARIES 

The types of channels to be considered can be described as follows. 
The input signal x and observed signal ware related via the operator 
equation 

wet) = [Hx](t) + z(t) t E [0, 00) (1) 

where H is an operator and z is zero mean white gaussian noiset with 
covariance Ez(t)z(r) = oCt - r). (The colored noise case will be treated 
separately in Section V.) 

We constrain our input functions x to have peak value less than s, 

t The noise term z(t) in equation (1) must be interpreted symbolically since white 
noise cannot be parametrized with a time variable, but must properly be param­
etrized with an element of a space of "testing functions." However, we deal only 
with functionals of wet) of the form 

i b 

w(t)cP(t) dt, 

where cf> £ L 2(0, b), or with quantities derivable from these functionals. Hence we 
can define 

fob z(t)cP(t) dt 

to mean 

where rCt) is Brownian motion and the operations to be performed are readily 
justified. 
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that is, 

x £ L~(s) {x / x is a real valued measurable function on [0, 00) 

and / X(t) I ~ s for all t £ [0, oo)}. 

If we let II 112 denote the norm on L 2 [0, 00) and define the projection 
operator P T by 

then 

[P TX let) = x(t) for t ~ T 

= ° for t > T 

( 

T )! 
// P TX 1/2 = i x 2(t) dt ~ s(rp)t for all x £ L~(s). 

The types of operators which we consider are assumed to belong to 
the space X. The space 5C is defined: if H £ X then 

(i) H : L~(s) ~ L 2e 

where L 2e = {y I y is a real valued, measurable function on 

[0, 00), "PTy liz < 00 for all T > O}, 

(ii) H is causal; that is, for all T > 0, X £ L~(s), PTHx = P7,HPTx, 

(iii) "HI/ < 00. 

Using the usual definitions of addition of operators and multiplication 
by scalars, the norm of H, " H " is defined as: 

IIHII= sup 
T>O 

x,La> (8) 

IIPTxll.r'O 

"PTHx lh 
II P TX 1/2 . 

We consider H to be the zero operatort if " HI/ = 0. It is then easy 
to show that II II satisfies the norm axioms. Obviously II H II ~ ° for 
all H £ X and II AH II = I A I II H II for all scalars A. The triangle in­
equality is also satisfied since 

"H + K " = sup "PT(Hx + Kx) //2 = sup // PTHx + PTKx //2 

1/ P TX / /z 1/ P rX 1/2 

t The equivalence classes defined in this manner are not unreasonable. In fact, 
if II H II = 0 then II PTHx 112 = 0 for all x £ L~(8), II PTx 112 ~ 0 and all T > o. 
As far as we are concerned this is the zero operator since Hx is then the zero function 
in the L 2(0, 00) sense. 
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< [II PTHx 112 + II PTKx 112J 
= SUp II PTX 112 

< II PTHx 112 + II PTKx 112 = II H II + II T/ II 
= SUp II PTX 112 SUp II PTX 112 1\.. 

where the supremums are taken over all T > 0, X £ L~(s), II PTx 112 ~ 0. 
If we consider the metric induced by the norm II II then JC is a com­

plete metric space. The proof of this proposition is contained in the 
appendix. The completeness property is crucial to Theorem 2 of this 
paper. 

The space JC includes many types of operators familiar to those in 
communication and control theory. Linear time invariant convolution 
operators whose kernels are either in Ll (0, 00) or L 2 (0, 00) are in JC. 
If these operators are cascaded with a memoryless nonlinearity having 
bounded slope, the composite operators are also in JC. Operators des­
cribed by certain nonlinear dynamical systems are also in JC. Let x £ 

L~(s) be the input to the following dynamical system and let y be the 
output: 

with 

q(t) = j(g(t), x(t), t), g(O) = ° 
f : Rn X R X R ~ Rn 

yCt) = g(q(t) 

g : Rn 
~R 

I f(q, x, t) I ~ K2 I q I + K3 I x I 
for all q £ R n

, I x I < s, t > 0. Assume also that for each x £ L~(s) there 
exists a solution to the differential equation. Then, via the Bellman­
Gronwall inequality we see that 

I q(t) I ~ K3 it eK2
(t-T) I x(r) I dr. 

Hence, 

and 

Thus, the operator described is in JC with norm bounded by K1K2K3 . 
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Subsets of JC will be used to represent the a priori information in an 
identification problem. We call a subset ~ of X determinable if every 
member of ~ can be identified. The determinability of a subset ~ de­
pends of course on our definition of identification. We would like to 
consider only those identification procedures which could theoretically 
be implemented in real time. The identification procedures which we are 
concerned with must have the following properties. To identify H we 
must be able to 

(i) choose a finite observation interval, 
(ii) select an input function with constrained peak value, 

(iii) perform linear measurements on the noisy observations generated 
by this input, and 

(iv) operate on these measurements to yield an estimate of H which is 
a continuous function of these measurements, 

so that our estimate of H is close to H with high probability. 
The properties of such an identification procedure are physically 

very appealing. 'Ve obviously must be able to identify within a finite 
period of time. The peak value restriction is the usual kind of input 
constraint used in communication theory. Linear measurements are 
easily implemented and tend to reduce the sensitivity to unknown 
biases as does the continuity requirement on the estimate. Finally, 
we are usually satisfied to identify to within a small tolerance. 

For HEX and channel model given by equation (1) we may specify 
our definition of identification even further. A linear measurement over 
the time interval [0, T] is a finite collection of bounded linear func­
tionalst (Pi' w), i = 1, 2, ... N, Pi E L 2 [0, T] defined when PTw E 

L 2 [0, T] and 

wet) = [Hx](t) + z(t), 

is the received waveform with HEX, X £ Loo(s). We say that a class 
~ C X of channel operators is determinable if given arbitrary positive 
constants e and 7], there exists a finite observation interval [0, T], an 
input (test) signal x E Loo(s), a linear measurement [(PI, w), (P2 ,w), ... , 
(PN, w)] over [0, TJ, and a continuous function g : RN ~ X such that 
for each H E ~, 

Probability (II H - fill> e) < 7] 

where fI = g[(PI , w), (P2 ,w), ... , (PN , w)]. Thus, if ~ is determinable, 

t The symbol (j, h) is used to represent the inner product in L2[O, T]; that is, 
(j, h) = Sl f(t)h(t) dt. 
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we can "identify" any element of 5) to within any specified accuracy 
with sufficient processing and long enough observation time. 

The bulk of this paper is related to answering the following question. 
What structure must 5) have in order to be determinable? Theorem 1 
derives sufficient conditions on 5) in order to be determinable. The key 
condition is compactness. Theorem 2 indicates that this condition is in 
fact necessary for determinability. A number of corollaries are given 
which interpret these results for the case where 5) is composed of linear 
convolution operators. 

III. SUFFICIENT DETERMINABILITY CONDITIONS 

Despite the generality of our class of operators and the rather rigid 
nature of allowable identification schemes only two conditions guarantee 
the determinability of a subset of operators. Both conditions are some­
what obvious. One condition insures that the class may be approximated 
closely by a finite number of elements; the other insures that a test 
signal exists which will produce sufficiently dissimilar responses for 
dissimilar channels. These conditions are rigorously stated in Theorem l. 
Theorem 1: Let 5) be a subset of X having the following properties: 

(i) the closure of 5) is compact (thus ~ is also bounded; that is, there 
exists a constant R > 0, such that II H - K II < R for all H, K l: ~) 

(ii) given any 0 > ° there exists an unbounded sequence {T i } , a sequence 
of inputs Xi l: L\X)(s) and a positive number r such that 

II PTi(Hxi - KXi) II; > rTi 

for all pairs H, K l: ~ for which II H - K II ~ o. Then 5) is a determinable 
subset of x. 
Proof: Since the proof of this theorem is lengthy, we give here a brief, 
rough description of the key steps involved which the reader may use 
as a guide through the mathematical details. 

(i) Using (ii) of Theorem 1 we select an input Xi to give sufficient 
separation of outputs over [0, T i ] for sufficiently dissimilar channels. 

(ii) We then approximate the class 5) to within a judiciously chosen 
accuracy by a finite number of elements. 

(iii) The actual received signal due to the input selected in (i) of 
this proof is correlated over [0, T i] with the calculated outputs of the 
channels selected in step (ii) of this proof. 
. . (iv) If one of these correlations is larger than the others by some 
amount we select' as' our estimate the·· corresponding element of the 
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approximating class that yielded this correlation. If there is no such 
correlation we assign an arbitrary rule so as to make the identification 
procedure a continuous function of the correlated values. 

(v) We finally show that as i (and hence T i ) increases, the proba­
bility that there will not be a correlation larger than the others by some 
prescribed amount goes to zero. In addition, we show that the proba­
bility that our identification procedure yields an estimate which is 
further apart in norm from the actual channel than is desired is vanish­
ingly small as i increases. 
The formal statement of the proof follows below. 

We may assume that ~ is closed, since subsets of a determinable set 
of channels are determinable. Using assumption (ii) of Theorem 1 
with 0 = 3e/4 we have that there exists an unbounded sequence {Td, 
a positive number r, and for each i an input signal Xi E Loo(x) such that 
for all pairs H, K E ~ with 1/ H - K II > 3e/4 

1/ PT,(Hxi - Kx;) 1/; ~ rTi. (2) 

In what follows we will denote the operator which we wish to identify 
by H. Since ~ is closed, by assumption (i) of Theorem 1, it is also com­
pact and hence totally bounded (see for example Ref. 6, p. 22). There­
fore, given any TiE {T i} we can choose a finite number of balls of radius 
ro = min {ri /2s, e/4} with centers H a E ~, a = 1,2, ... , M to cover ~. 
There may be operators Hz ,Hk E {H a} for which 1/ PTi(HzXi - HkX;) 1/2 
= 0, in which case retain only the H a's with the lowest subscript. Thus 
we have a subset of {H a} which we label {H,6} for which 1/ PTi(HzXi -
HkXi) 1/2 > Oi > ° for some Oi and all Hz , Hk E {H,6}. For convenience 
order the {H,6} so that 1/ H - H,6 1/ ~ 3e/4 for {3 = 1, 2, ... , No - 1 
and" H - H,6 " > 3e/4 for (3 = No , No + 1, ... ,N, N ~ M. 

We can now choose an appropriate linear measurement over the 
interval [0, Ti]. We define the linear measurement mew) = {few, 1), 
few, 2), ... few, N)}: few, (3) = (w, 2H,6Xi), (3 = 1, 2, ... N where the 
inner product is defined over the interval [0, T i]. Thus for each received 
waveform wet), the linear measurement gives us a point in RN. From 
this measurement we will determine an estimator function g : RN ---7 JC. 
We first partition RN into N + 1 disjoint subsets: Al , A2 , ... ,AN, B, 
with 

- (HkXi , HkXi) + OJTi , 

and B the remainder of R N
, 

k = 1,2, ... N, k ~ j} 
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The disjointness of the above subsets of RN is easily verified by making 
use of the fact that OjTi > O. The estimator function is defined in 
terms of this partition: 

gem) = H; if mew) t A; 
N 

gem) = L (Xi (w)H i if mew) t B 
i=l 

wheret 

II d(!!J(w), A;) 
ir<i 

(Xi(W) = d(m(w) , A;) + II d(m(w) , A;) 
;r<i 

and 

d(x, A) = inf I x - Y I. 
ilEA 

It is not difficult to show that g is a continuous mapping from RN into 
x. Having given the identification scheme we now show that for any 
H t :Je, € > 0 

P{iIH-HII>€} ~ o. 
Ti~oo 

Recalling the definition of B, Ai and the labeling convention we have 
used, we see that 

P{IIH - g(m(w)) II > <l ~ P{m(w)<Bj + p{m(w) <;QA;} 

= p{m(w) < 6 A;} + p{ m(w) < ;Y A} (3) 

Let us first concentrate on obtaining bounds for the first term on the 
right side of equation (3). We rewrite A; as A; = (Uk"'; F jk)" where 

F;k = {q = (ai, a2 , ... ,aN): a j - ak ~ (H;Xi ,H;Xi) 

Thus 

t It turns out that the form of ai(w) is irrelevant since we show that P[m(w) I: B] 
vanishes as T i increases. It is merely included to make the estimator fW1ction 
eontinuous. 
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N N n A~ = n (U Fik)' (4) 
i-I i-I k~i 

Applying DelVlorgan's rules to equation (4), and after some thought, 
we see that 

N (N-I)N 

nA~ = U Dl (5) 
i-I I-I 

where Dl has the form 

Dz = FIll (\ F2Z2 (\ ••• (\ FNIN 

with lj ~ ,j for all j. We can upper bound P{m(w) I: Dz} by 

sUI? p{-~~i + (HiXi , HiXi) - (HkXi , HkXi) ~ few, k) - few, j) 
k,] • 
k~i 

Ne i } ~ T + (HkXi , HkXi) - (HjXi ,HiXJ . (6) 

To see this, define q(w, k) = few, k) - (HkXi , HkXi). Then P {mew) I: Dz} 
is the probability of the N events q(w, 1) - q(w, 11) ~ 8dTi , q(w, 2) -
q(w, 12) ~ edTi ... q(w, N) - q(w, 1N) ~ 8dTi occurring simul­
taneously. Suppose II = k. Then consider the two events q(w, 1) -
q(Wl' ll) = q(w, 1) - q(w, k) ~ edTi and q(w, k) - q(w, lk) ~ edTi . 
If lk = 1, then these two events are contained in the event - edTi ~ 
q(w, 1) - q(w, k) ~ edTi . If lk = j ~ 1 then consider the three events 

q(w, 1) - q(w, k) ~ edTi , 

q(w, k) - q(w, ,j) ~ edTi , 

q(w, j) - q(w, Ii) ~ edTi . 

If li = 1, then these three simultaneous events are contained in the 
event - edT ~ q(w, 1) - q(w, j) ~ 2edTi . If li = k, then these three 
simultaneous events are contained in the event - edT ~ q(w, k) -
q(w, j) ~ eJT i • Continuing in this fashion we obtain the bound in 
equation (6). 

Since q(w, k) - q(w, j) is gaussian, we can bound the value of the 
expression in equation (6) quite easily. 

Let 

aki = E[q(w, k) - q(w, j)] 

= II PT;(Hxi - HiXi) II~ - II PTi(Hxi - HkXi) II~ (7) 
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and 

Hence, 

p{ N ()i < ( ') (') < N ()i} - Ti = q w, Ie - q w, 1 = Ti 

jNOilTiUki (2) 
~ (2?T") -~ exp -~ dz 

-(NOiITukj) 

jNI2Ti (2) {Ilf/2Ti 
~ (2?T")-! exp -~ dz ~ (2?T")-! 

-(NI2T;) ""' • -(1Il/2Tj) 
exp ( -~) dz (9) 

(recall that N ~ M). 
Using equations (9) and (5) we see that 

(N-l) N 

P{ mew) I: n A~} ~ L P{ mew) I: Dzl 
i=l 1=1 

(10) 

Since the right side of equation (10) goes to zero as T i increases we can 
choose a T I: {T i} large enough so that this term is less than '11 /2. We now 
bound the second term on the right side of equation (3): 

p{m(w) £ /:1. AI} ~ i;. P{m(w) .A,}, (11) 

Recall that 

Ai = (U Fi kt = n F~k • 
k'l"i k'l"i 

Hence 

p{m(w) £ ,Q AI} = It. P{m(w) £ 0 F;,}. (12) 

Observe that for all k ~ j 

P{ mew) I: n F~d ~ P{ mew) t F~d (13) 
k'l"i 

= p{q(W, Ji - q(w, /0) > :;} (14) 
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100 1 (Z2) = --1. exp -- dz. 
8i/Ti-ajk/tr jk (271'-)2 2 

(15) 

Since 5) was covered by balls of radius ro , there exists at least one inte­
ger k < No such that /I H - Hf II < ro ~ e/4 and hence II PT,(Hxi -
HfXi)W < r~s2Ti . Note also that since /I H j - H /I > 3e/4 for j ~ No , 
/I PT,(Hxi - HixJ W > rTi' Hence, 

-ajf = II PTi(Hxi - HjXi) II; - II PTi(Hxi - HfXi) II; 

> T 2 2T > ( r)T 3 T = r i - r as i = r - 4; i = "Ir i • (16) 

Recalling that 5) was bounded, 

CT~f = 4 II PT.(HjXi - HfXi) /I; ~ 4R2S2Ti . (17) 

Using equations (16) and (17) in equation (15) we see that 

P{ mew) £ n F~k} ~ P{ mew) £ F~f} ~ 100 

(27r)-! exp (_~22) dz. 
kr'j 3rTi l /16Rs 

(18) 

Hence from equation (11) we see that 

p{m(w) £ 0 Ai} ~ M 100 

(27r)-! exp (_~22) dz. (19) 
j~No 3rTit/16Rs 

Thus we can select a T £ {T;} so that this term is less than r]/2. This 
T makes P{II H - fI II > e} < r] for all H £ 5). 

The identification technique proposed in the above proof is not 
necessarily a practical technique. Our intent is to indicate the possibility 
of identification rather than to derive easily implement able tec_hniques. 
Notice, however, that since the measurements are linear functionals on 
L 2(0, T) they are iterative in nature because of the integral representa­
tion of such functionals. 

Theorem 1 gives sufficient conditions for determinability. Theorem 2 
indicates that some of these conditions are in fact necessary for identi­
fication. 

IV. NECESSARY DETERMINABILITY CONDITIONS 

In this section we show that the approximability cop.dition given by 
condition (i) of Theorem 1 is in fact necessary. We also show that a type 
of separation property is necessary, although it is not as strong as that 
given by condition (ii) of Theorem 1. 
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Theorem 2: Let ~ be a bounded, determinable subset of x, then 

(i) the closure of ~ is compact 
(ii) given any 0 > 0 there exists an X l: Lco(s), T > 0 and a positive 

number r( 0) such that 

II PT(Hx - Kx) II; > reo) for all H, K l: ~ 

satisfying II H - K II ~ o. 
Proof: (i) Given e > 0, choose 1\ Xl: Lco(s), N linear measurements and 
an estimator g(?!J(H, w)) so thatt 

P{ II H - g(?!J(H, w)) II < e/2} >! for all H l: ~. 

Since ~ is bounded and the measurements are linear, there exists a 
compact ball Bf l: RN so that 

P{?!J(H,w)l:Bj,} < t forall Hl:<J). 

Thus, since g is continuous, g(Bf) is compact. We can therefore cover 
Bf by a finite number of balls of radius e/2. If g(Bf) ::J ~ we could 
also cover ~ by the balls. We don't have enough information to verify 
that g(Bf) ::J ~. Notice however that 

P{[w: II H - g(?!J(H,w)) II > ej2] n [w: ?!J(H,w) l:BfJ! 

= P{w: II H - g(?!J(H, w)) II > e/2} + P{w: ?!J(H, w) l: B T } 

- P{ [w: II H - g(?!J(H, w)) II > e/2] U [w: !!](H, w) l: B T]} 

~ ! + ! - 1 = !. (20) 

We conclude that there exists an Wo so that !!](H, wo) l: Bf and II H -
g(?!J(H, wo)) II < e/2. We can repeat this argument for each H I: ~. 
Therefore, ~ must lie within an e/2 neighborhood of g(Bf). By expand­
ing the balls of radius e/2 which cover g(Bf) by a factor of two, the 
expanded balls will also cover ~. Since this argument holds for any 
e > 0, ~ is shown to be totally bounded. Since X is complete, ~ is 
complete; and hence ~ is compact (see Ref. 6, p. 22). 

(ii) If ~ is determinable, then the closure of ~, ~, is also determin­
able. This is easily shown by noting that any channel in ~ can be 
approximated arbitrarily closely by a channel in ~. Hence the measure­
ments will be arbitrarily close and because of the continuity of the 
estimate, the estimate will be close with high probability. 

t Since the measurements are gaussian random variables we have included the 
dependence on the sample points w of the corresponding sample space o. 
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Since f> is determinable, for every € > 0 there exists an observation 
interval [0, T], a test signal x t Loo(s) , and an estimator g(m(·, w)) so that 

P{" H - g[m(H, w)] II < 0/2} >! for all H t :D. (21) 

Suppose that II Pf(Hx - Kx) 112 = o. Then, the measurements ob­
tained will be the same irrespective of whether H or I{ were used and 
therefore the estimates for K and H will be identical. Since 

P{w: II H - g[m(H, w)] II < 0/2} > ! 
and 

P{w: II K - g[m(H, w)] II < 0/2} > !, 
we see that 

P{[w: II K - g[m(H, w)] II < 0/2} 

n {w: II H - g[m(H, w)] II < o/2]} 

= P{w: II K - g[m(H, w)] II < o/2} 

+ P{w: II H - g[m(H, w)] II < o/2} 

- P{[w: II K - g[m(H,w)] 11< o/2} 

U {w: II H - g[m(H, w)] II < o/2]} 

~ ! + ! - 1 = !. 
Thus there exists at least one sample point Wo such that 

/I K - g(m(H, wo)) II < 0/2 

and 

II H - g(m(H, wo)) II < 0/2 

which together imply that II H - K II < o. If H, K t f> and II H -
K II > 0 then II Pf(Hx - Kx) 112 > O. 

Note that f> X f> is compact in the product topology and hence 
C(o) = {(H, K): II H - K II ~ 0, H, K t f>} is also compact. The func­
tion f(H, K) = II Pf(Hx - Kx) 112 is a continuous map of C(o) into the 
real line and hence it has a minimum value. This minimum value cannot 
be zero because we have already shown that f(H, K) > 0 for (H, K) t 

C(o). As a consequence, there exists a positive number reo) such that 

II Pf(Hx - Kx) II; > reo) for all H, K t :D 

satisfying II H - K II ~ o. 
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V. LINEAR CONVOLUTION OPERATORS 

When we specialize the results of Theorems 1 and 2 to linear convolu­
tion operators, it is possible to obtain the characterization of the deter­
minable sets in terms of the kernels of these operators. These results 
are given in Corollaries 1, 2 and 3 below. We note that the resulting 
conditions are similar to those obtained by Root and Prosser for the 
deterministic identification problem. 1 

Corollary 1: If JC is composed only of causal linear time invariant con­
volution operators H, [Hx](t) = n h(t - r)x(r) dr, hE L1(O, 00) and if 

(i) ~ = {h I hE L 1 (O, 00), HE 5)} has a compact closure in L I (O, 00), 
and 

(ii) for each 0 > ° there exists an x E Lct)(s) , T > ° such that II PTHx -
PTKx 112 > ° for allh, kE ~forwhich II h - kill = I~ I h(t) - k(t) I dt~ 
o then 5) is determinable. 

Necessary and sufficient conditions for i) to have a compact closure 
are (see Ref. 6, pp. 298-299): 

(i) ~ is a bounded subset of L 1 (0, 00), 
(ii) limT-->o I~ I h(t + r) - h(t) I dt = ° uniformly for h E ~, and 

(iii) limT-->ct) I; I h(t) I dt = ° uniformly for h E ~. 

Proof: We first show that if the closure of ~ is compact then the 
closure of 5) is compact in the respective topologies. Let II H II *, H E JC 
denote the usual operator norm, that is, 

II H 11* = sup xtL.(O,ct) 
x,.<O 

II Hx Ib 
II x 112 

Given any E > ° there exists T* > 0, x* E Lct)(s) such that 

II H II ::;; E + II PT.H~* 112 ::;; E + II PT.HP;*x* 112. (23) 
- \I P T*X 112 - II P TX 112 

Note however that PT*x* E L 2 (0, 00); hence \I H II ~ E + II H 11* for 
arbitrary E > 0, so 

IIHII ~ IIHII*· (24) 

Using the linearity of H and Holder's inequality we see that 

II H 11* = sup II Hx 112 ~ sup 
xtL.(O,ct) II X 112 xtL.(O,ct) 

II h I \1 /I X liz - II h II 
II x 112 - 1 • 

(25) 
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Thus compactness in L1 (0, (0) implies compactness in JC and condition 
(i) of Theorem 1 is satisfied. 

Given 0 > 0, choose Xo , TO so that condition (ii) of Corollary 1 is 
satisfied. We have already used the fact that II HPToxo 112 ~ II hill' 
II PToXo 112' Hence HPToxo is a continuous linear mapping (that is, 
mapping the kernels into time functions) from L 1 (0, (0) into L 2 (0, (0). 
Thus the image of :D under this mapping has a compact closure. We can 
therefore choose a number T > TO so that 

Define x as follows: 

x(t) = xo(t) for ° < t ~ TO 

=0 for TO < t ~ T 

= xo(t - T) for T < t ~ '1'1 + TO 

=0 for ']' + TO < t ~ 211 

= xo(t - n'1') for n'1' < t ~ n11 + TO 

= ° for nT + T" < t ~ (n + 1)'1' 

(27) 

Note that x I: L~(s). Following the same line of reasoning as in the proof 
of condition (ii) of Theorem 2 we can show that there exists an reo) > ° 
so that II PTO(HxO - Kxo) II; > reo) for all H, K I: ~ for which II h - lc 111 
> o. We now proceed to show that 

(28) 

where reo) = r(o)/4T. Let Yo(t) = [HPToxo - KPToxo](t) and Yi(t) = 
. Yo(t - iT). Then, by linearity and time invariance, 

iT iT 

fi-llT (Hx - ]{X)2(t) dt = fi-IlT [Yo(t) + Yl(t) + ... + Yi_l(t)]2 dt 

(29) 

and 

r~i+IlT y~(t) dt = f(i+1~il!j, y~(t) dt for j ~ i. (30) 
JiT (i-i)T 
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Using these relationships we see that 

(31) 

Hence 

II P.rCHi - Ki) II: = t y: dt + £,r (Yo + y,)' dt + 

I
nf 

+ . (Yo + ... + Yn_l)2 dt 
(n-l)T 

(32) 

We see that this relation implies that condition (ii) of Theorem 1 is 
satisfied; thus ~ is determinable. 

When J'C is composed only of causal linear time invariant convolution 
operators we can also strengthen the conclusion of Theorem 2. This 
result is given in the following corollary. 

Corollary 2: If J'C is composed only of causal linear time invariant 
convolution operators and if ~ is a determinable subset of J'C then 

(i) given any 0 > 0 there exists an unbounded sequence T i , a sequence 
ofinputsxitL~(s) andapositivenumberr(o) such that II P Ti (Hxi - KXi)2112 
> r(o)Ti for all pairs H, K t ~ for which II H - K II ~ o. 

Proof: As a consequence of Theorem 2 we know that for any 0 > 0 
there exists an X t L~(s), 11 > 0 and a positive number reo) such that 
II Pf(Hx - KX)2 112 > reo) for all H, K t ~ satisfying II H - K II ~ o. 

Obviously, II HPfX 112 ::s; II H 1111 PfX 112 . Hence HPfX is a continuous 
linear mapping from J'C into L 2 (0, (0). Thus the image of ~ under this 
mapping has a compact closure. We can therefore choose a positive 
number T > T so that 

L~ (HPfX - HPfX)2(t) dt < t for all H, K t ~. (33) 
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Proceeding as in the proof of corollary 1 we can easily establish (i) of 
Corollary 2. 

Corollary 3: If JC is composed only of causal Hilbert-Schmidt operators H, 
[Hx](t) = n h(t, r)x(r)dt, I~ I~ I h(t, r) 12 dt dr < 00, h(t, r) = 0 for 
r > t and if 

(i) :D = {h I HE!>} has compact closure in the Hilbert-Schmidt 
metric (II h - k II; = I~ I~ I h(t, r) - k(t, r) 12 dt dr) 

(ii)for each 0 > 0 there exists an unbounded sequence Ti , a sequence 
of Xi E Loo(s) and a P?!itive constant r(o) so that II PTi(Hxi - KxJ 112 ;::: 

r(o)Ti for all h, k E :D for which II h - k 112 > o. 

Then!> is detenninable. 

Proof: As in the proof of Corollary 1 we can show that II H II :::s; II H 11* 
where 

II H 11* = sup 
xtL. (0,00) 

II Hx 112 
II X 112 . 

From the Schwartz inequality we see that 

II Hx II; = .~oo (it h(t, r)x(r) r dt = 100 (1 00 

h(t, r)x( r) dr r dt 

;;<;; f [f 1 h(t, T) l'dT f 1 X(T) I' dTJ dt 

which implies that 

(34) 

(35) 

Hence, compactness of :D implies that!> is compact and condition (i) 
and (ii) of Theorem 1 are easily verified to hold. 

VI. COLORED NOISE 

Theorems 1 and 2 were derived for the case when z(t) the additive 
noise was a zero mean white stochastic process. The situation when 
Ez(t)z(r) = R(t, r) can be handled in a similar fashion. The only addi­
tional assumptions are: 

(i) R(t, r) is positive definite; that is, 

100 100 

R(t, r)w(t)w(r) dt dr > 0 for all WE L 2 (O, 00) 
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satisfying f~ I wet) 12 dt > 0, and either 

(ii) R(t, r) is Hilbert-Schmidt; that is, 

i~ i~ I R(t, r) 12 dt dr = C2 < 00, or 

(iii) if R(t, r) = Ro(t - r) then 

L: I Ro(t) /2 dt = C~ < 00. 

Inspecting the proof of Theorem 1, one sees that the whiteness assump­
tion was only used in equations (8) and (17). If Ez(t)z(r) = R(t, r), 
then equation (8) becomes 

O"~j = Var [q(w, k) - q(w, j)] 

= 4iTi iTi R(t, r)(Hkxi - HjXi)(t)·(Hkxi - Hixi)(r) dtdr. (36) 

Since Hk and Hi were chosen so that II PT,(HkXi - HiXi) II > 0, we see 
that since R(t, r) is positive definite, O"~j > 0. If we choose O. to be less 
than mini.k a~k instead of II PT,(HkXi - HiXi) II;, inequality (9) will 
remain true. 

Equation (17) is changed as follows. If Ez(t)z(r) = R(t, r), then by 
the Schwartz inequality 

O"~k = 4i
T
' iTi R(t, r)(Hixi - HkXi)(t)(HjXi - HiCxi)(r) dt dr 

~ 4 f' (H,x, - H.x,)(r){f' I R(t, r) l'dtY 

·{iT

' (H,x, - Ihxi)'(t) dty dr 

~ 4{f' f' I R(t, r) I' dt dry II P,.,(H,Xi - H,x,) II~ 
~ 4CR2s2T. . (37) 

On the other hand, if Ez(t)z(r) = Ro(t - r), equation (17) is changed 
as follows. 

O"~k = 4 iT. iT, R(t - r)(HiXi - HiCXi)(t)(HjXi - HkXi)(r) dt dr 

~ 4 f' I (H,x, - H,;c,)(t) I [[' I R(t - r) I' dr T 
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[i T. J! 
• 0 (HjXi - HiCXi)\T) dT dt 

~ 4CoRs(Ti)! iT. I (HiXi - HiCXi)(t) I dt 

;;; 4CoRS(TY([' dt)l[' (II;x, - II,x;)'(t) dtT 

~ 4CoRs(Ti)!· (Ti)! ·Rs(Ti )! = COR
2s2T! . 
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(38) 

From equation (37) we see that the limit of integration in equation (19) 
now becomes 3rTU 4RsCt. If we use equation (38), this limit becomes 
3rTU16RsCg. In either case this limit diverges as i increases. Thus 
Theorem 1 is still correct if the noise is colored. One can also see that 
Theorem 2 is true without any modifications. The whiteness assumption 
does enter into the proof in any substantial manner. 

VII. CONCLUSIONS 

In this paper we have attempted to formalize the notion of identifica­
tion and examined conditions under which the a priori information would 
guarantee that the problem of identification was well formulated. Our 
purpose has been to indicate when identification was possible and not 
to specify a given identification procedure. It is hoped that the condi­
tions derived here may motivate researchers to consider larger classes of 
identification problems than have hitherto been examined and also to 
indicate for what classes of problems identification is not possible. 
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APPENDIX 

Proof that the Space JC Is Complete 

In this appendix we show that the space X with the metric induced 
by its norm is a complete space. If {H n} is a Cauchy sentence in X, we 
show that there exists an element i1 £ JC such that lim n->C() II i1 - H n II = O. 

Let {H n} be a Cauchy sequence in JC. Then given any E > 0 there 
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exists a number N(e) such that if m, n > N(e), II Hn - H m II < e. From 
the definition of the metric, 

II H - H II > lLP TH llx - PTHmx 112 
n m = II P TX 112 

(39) 

for all T > 0, X £ Loo(S), II PTX 112 ~ 0. Using the definition of Loo(s), 

es(T)! ~ e II PTX 112 ~ II PT(Hnx - HmX) 112 (40) 

for all n, m > N(e), T > 0, X £ Loo(S) , II PTx 112 ~ 0. Thus, for each 
T > 0, X £ Loo(s), II PTx 112 ~ 0, {Hnx} is a sequence of functions in L 2e 

and for each T > 0, PTHnx is a Cauchy sequence in L 2 [0, T]. Hence, 
for each T there exists at least one time function YT t L 2e such that 
PTYT £ L 2 (0, (0) and limn-+oo II PTHnx - PTYT 112 = 0. Furthermore, 
YT is uniquely (except for a set of measure zero) specified over [0, T]. 
Because of this uniqueness, if Tl < T 2 , then P T1 YT. = P T, YT , . Hence 
there exists a unique function fj £ L2e such that P Tfj = P TY T for each 
T > O. This function can be constructed: 

yet) = Yl(t) for ° ~ t < 1 

= Y2(t) for 1 ~ t < 2 

= Yn(t) for n - 1 ~ t < n 

(41) 

For each x t Loo(s) , x ~ ° we have uniquely specified a function fj £ L 2e • 

For x = ° we arbitrarily put fj = 0. Call the operator defined by this 
associationH;thatis,Hx = fj. We now show that limn-+oo II H - Hn II = 0. 

For each T > 0, X £ Loo(s), II PTx 112 ~ ° we can use the triangle in­
equality to show that 

IIPT(Hx - HnX) 112 ~ llfTH~ - PTHmx 112 + IIPT(Hnx - HmX) 112. 

II P TX 112 - II P TX 112 II P TX 112 
(42) 

If H n, H m are members of the Cauchy sequence, from our previous 
development we know that there exists a number N (ej2) independent 
of x and T such that 
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Since limm---.oo II P T (fl x - H m X ) 112 
N*( e/2, x, T) > N (e/2) such that 

II PT(llx - HmX) 112 < 19 II PTX 112 e ... 

Hence for all T > 0, PTx ~ 0 

= 0 we can find another number 

for m > N*(e/2, x, T). (44) 

II P T(flx - H"x) 112 < f· > N(" I'J) (45) II P TX 112 e 01 n e ... , 

and if fl were causal it follows that fl £ :Ie with lim II fl - H n II O. 
The causality of fl is easily established. For each x £ Loo(s), T > 0: 

/I P THx - PTflPrx 112 

~ II PTflx - PTHnx 112 + II PTHPTx - PTHnx 112 (46) 

II PT(flx - H"x) 112 + II PT(flPTx - HnPTx) il2 . (47) 

For n sufficiently large each term on the right side may be arbitrarily 
small, hence 1/ PTflx - PTflpTx 112 = 0 for all x £ Loo(s), T > O. 

If :Ie is composed only of linear operators the completeness proof 
follows as above except to additionally observe that fi is linear. 
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The Theory of Cylindrical 
Magnetic Domains 

By A. A. THIELE 

(Manuscript received December 26, 1968) 

The theory of cylindrical magnetic domains provides conditions governing 
the size and stability of circular cylindrical magnetic domains in plates of 
uniaxial magnetic materials together with an estimate of the range of 
applicability of these conditions. The results of the theory are directly 
applicable to the design of cylindrical domain devices. Computation to first 
and second order of the energy variation resulting from general small 
deviation in the domain shape from an initially circular shape yields the 
conditions governing domain size and stability. The physical origin of 
the various terms in the energy expansion is examined in detail. A graph 
from which many domain size and stability properties may be obtained 
summarizes the results of the energy variation calculation. The minimum 
theoretically attainable domain diameter is approximately o-whrlVI; , where 
o-w is the wall energy density and Ms is the saturation magnetization. 
For domains to exist, the effective anisotropy field must be greater than 
47rMs • 

I. INTRODUCTION 

The recent development of a technique for the propagation of isolated 
magnetic domains in an arbitrary direction in anisotropic ferromagnetic 
thin films by P. C. lVlichaelis created a renewed interest in the use of 
domain propagation for device purposes. 1 The technique used by 
lVlichaelis for propagating domains along the easy axis is quite different 
from that used for propagation along the hard axis. During discussions 
on the possible application of these techniques, A. H. Bobeck, U. F. 
Gianola, R. C. Sherwood, and W. Shockley suggested that for general 
symmetrical domain propagation the direction of magnetization must 
lie normal to the plane of the film2. The recognition that rare earth 
orthoferrites have the required properties came in response to this 
suggestion.3 Experimental work on the application of this type of 

3287 
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domain motion device was then begun. Although at the present time 
this work has been largely concentrated on the orthoferrites, there exist 
other materials, such as the hexagonal ferrites and manganese bismuth, 
having the required properties. 

The present work directs attention to structures in which the prop­
erties of the material used require the magnetization to lie normal to 
the surface of the plate. The modes of operation of devices constructed 
from such structures are classified according to the effect of wall motion 
coercivity. In the case of very high wall motion coercivity, the applica­
tion of shaped applied fields determines the initial domain configuration 
which is then maintained by coercivity. For very low wall coercivity, 
on the other hand, the saturation magnetization, wall energy, plate 
thickness and bias field determine the domain size and shape. Between 
these two extremes, there is a continuum of intermediate modes. In 
either extremal mode, a complete set of operations (logic, memory, and 
transmission) may be performed.4 The present work concerns only the 
low coercivity mode and specifically, right circular cylindrical domains 
in plates of uniform thickness and small variations therefrom. When 
observed by means of the Faraday effect, cylindrical domains have the 
appearance (particularly when in motion) of bubbles and therefore are 
colloquially referred to as "bubbles". 

The present work largely treats the theory of cylindrical domains with 
experiments and applications being considered only briefly. Section II 
presents the domain model and mode of description. Section III contains 
the calculation of the energy derivatives used in the investigation of 
domain size and stability. Section IV contains an interpertation of the 
energy derivatives in terms of fields and potentials. Section V discusses 
the solution of the domain size and stability equations. Section VI 
discusses the range of validity of the domain model used in the previous 
sections. It is found that several assumptions implicit in the model are 
related, and a requirement on materials suitable for the production of 
circular domains is obtained. Appendix A contains a derivation the 
properties of certain elliptic integrals appearing in the theory of circular 
domains, Appendix B is a listing of the standard forms and series 
expansions of the magnetostatic force and stability functions, and Ap­
pendix C is a list of mathematical symbols. 

II. THE DOMAIN MODEL AND MODE OF DESCRIPTION 

Figure 1 shows the magnetic domain structure to be considered 
here. 5 The isolated magnetic domain is magnetized downward while 
the remainder of the plate is saturated upward. The domain will be 
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tz 

considered to be near circular. Examination of the variation of domain 
energy under a variation of domain shape from the assumed unper­
turbed shape yields domain stability. Once created, a cylindrical domain 
continues to exist if the magnetic configuration meets the conditions 
for stable equilibrium. The stability of a given configuration, however, 
does not guarantee that it can be produced. The generation of cylin­
drical domains is a separate problem which is not treated here. 

2.1 Description of the DOlnain 

A cylindrical (r, (J, z) coordinate system is placed at the center of the 
domain with its z-axis perpendicular to the plane of the plate. The 
plate is taken to have planar surfaces and a uniform thickness h. Only 
the case of a plate of infinite extent, 1'f = 00, is considered here. It is 
assumed that the material constraints allow the magnetization to lie 
only along the z-axis and the magnitude of the magnetization is inde­
pendent of the local magnetic field. The boundary between the two 
regions of magnetization, the domain wall, is assumed to be independ­
ent of z (no wall bulging) and to have a width which is negligible in 
comparison to the domain radius. It is assumed that a wall energy 
density per unit area (T w may be assigned independently of either the 
orientation or curvature of the wall. The assumptions about the de­
tailed magnetic configuration (the magnetization magnitude and orien­
tation and the wall energy and shape) are coupled by the material 
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properties. Section VI contains a detailed discussion of the validity of 
these assumptions and the cylindrical wall assumption. Even though 
the foregoing assumptions appear quite drastic and restrictive, experi­
mentally there does exist a region in which the results obtained under 
these assumptions are both accurate and useful. 

The expansion 
00 

rb(()) = L: rn cos [n(() - ()n)] (1) 
n=O 

of rb(()) in terms of the Fourier coefficients, rn and ()n, describes the 
domain shape in the plane. The n value is called the "rotational per­
iodicity." The condition 

00 

\ ro \ » L: n \ rn \ (2) 
n=l 

assures that the domain is near circular and that the function rb(()) 
is single valued and smooth. 

It is convenient to introduce the finite variations of the rn and ()n, 
~rn and ~()n, respectively, in order to describe small variations in 
domain size and shape from the strictly circular domain of radius 
ro [rb(()) = rol. In terms of these variations, a small variation of the wall 
shape from rb(()) = ro may be written as 

00 

rb(()) = ro + ~ro + L: ~rn cos [n(() - ()n - ~()n)] (3a) 
n=l 

where, by assumption, 
00 

\ ro \ » \ ~ro \ + L: n \ ~r n \. (3b) 
n=l 

Subject to the restrictions stated, equation (3) describes an arbitrary 
variation because of the completeness of the Fourier expansion. 

The externally applied magnetic field, H, is taken to be spatially 
uniform and to lie in the positive z direction. (The presence of a compo­
nent of the applied field in the plane of the plate has no effect to the 
approximation that the magnetization lies only along the z-axis.) 

The assumed simple forms of the applied field and magnetic con­
figurations permit the use of simple formal expressions for these quan­
tities. The expression for the externally applied field is 

H = Hi: (4) 

where H is a constant and iz is the unit vector in the z-direction. The 
magnetization may be written in terms of the unit step function, 
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(5) 

M = izlll. {I - 2u[rb(0) - T]}U(Z + !h)u( -z + !h). (6) 

2.2 The Energy Variation 

The investigation of domain size and stability proceeds by computing 
the first and second variations of the total system energy with respect 
to the l' n and On • The total energy of the domain is 

(7) 

where Ew is the total wall energy, EH is the interaction energy with the 
externally applied field, and E.M is the internal magnetostatic energy. 
The total wall energy, under the previously stated assumptions, is the 
product of the wall energy density (J' wand the wall area a: 

1 r27r { 2 [aTb( 0)J2}! Ew = a (J'w da = h(J'w J
o 

Tb(O) + ao dO. (8) 

The interaction energy of the magnetization with the externally applied 
field is 

Ell = -f M·HdV = _foo 1271" 1
00 

lllzHrdrdOdz, (9) 
v -00 a a 

and the internal magnetostatic energy is 

E.\[ = ! f f V·MV~;M' dV' dV 
2 v v' I r - r I 

alii z all] ~ 

__ k 100 1271" 100 100 1271" 100 a:;- aZ-/, ----rr' dr dO dz dr' dO' dr' 
... -00 a a -00 0 0 8 

(lOa) 

where 

8'2 == r2 + 1"2 - 21'r' cos (0 - 0') + (z - Z')2. (lOb) 

In expressions (9) and (10), V indicates volume and primes indicate 
quantities in the second coordinate system used in describing the in­
ternal magnetostatic interaction. 
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The variation in the total energy when the fn and ()n are varied is 

(11) 

where the subscript 0 refers to evaluation of the partial derivatives at 
the circular domain state, fb(()) = fo, and 0 3 refers to terms of order 
three and higher in the combination of .6.fn and .6.()n . The first partial 
derivatives of the energy, (aET/afn ) 0 and (aET/a()n)o , are the generalized 
forces of the system, while the second derivatives of the total energy 
form the elements of the stiffness matrix. 

Knowledge of the generalized forces and the stiffness matrix com­
pletely characterizes domain size and stability. It is shown in Section 
III that only the energy derivatives, (aET/aro)o and the (a 2E T/ar!)o, 
are non-zero when fb(()) = f o • The equation obtained by setting the 
only nonzero generalized force equal to zero is called the "force equa­
tion." The expansion (1) is a quasi-normal mode expansion since cir­
cular domains are completely metastable with respect to the ()n and the 
stiffness matrix is diagonal with respect to the r n • 

III. CALCULATION OF THE ENERGY DERIVATIVES 

3.1 Derivatives of the Wall Energy 

The derivatives of the total wall energy are computed by substituting 
the wall shape expression (1) into the wall energy expression (8), 
noting that 

(12) 

and differentiating under the integral sign. There results 

a!~ ~ hu. t {r, cos [n(e - eo)] - :~ n sin [n(e - eo)]} 

(13a) 

and 
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a2

E 1211" ({ arn a;m = haw 0 cos [nee - en)] cos [m(e - em)] 

+ nm sin [n(e - e.l] sin [m(e - eml] }[r: + (~;)'r 

- {r" cos [n(e - e.l] - :; n sin [n(e - e.l]} 

.{rb cos [m(e - eml] - :~' m sin [m(e - eml]} 

with analogous expressions for 

Evaluating equations (13) for a circular domain, 

rb(e) = 1'0 and [al\(e)/ae] = 0, 

the circular domain derivatives are 

(aElV) 
aro 0 = 27rha", 

n ~ 1 

3293 

(13b) 

(14a) 

(14b) 

and all of the first and second derivatives of the total wall energy not 
explicitly stated are zero. 

3.2 Derivatives of the Applied Field Interaction Energy 

The applied field interaction energy is evaluated by substituting the 
formal expressions for the applied field (4) and the" magnetic configura­
tion (6) into the applied field interaction expression (9), changing the 
order of integration, and integrating. 

Ell = -111sH 1211" .{~ i: {I - 2u[rb (e) - r]} 

X u(z + ~h)u( -z + ~h)r dz dr de (15a) 

= h1l1sH[.C1I" r~(e)deJ - constant. (15b) 

The infinite constant is independent of the rn and en and does not 
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contribute to the derivatives. Differentiating yields 

aE r2
1!" 

:\ Il = 2hllfJf rb cos [nCO - On)]dO 
urn . 0 

(16a) 

and 

(1Gb) 

with analogous expressions for 

Evaluation of equation (IG) for rb(O) = To yields 

(17a) 

(17b) 

n ~ 1, (17c) 

and all the other first and second derivatives of the applied field inter­
action energy are zero. 

3.3 Derivatives of the Internal M agnetostatic Energy 

The formal expression for the internal magnetostatic energy is ob­
tained by substituting the expression for the magnetic configuration 
(6) into expression (10). In dealing with the self-interaction energy, 
it is necessary to use two coordinate systems: an unprimed system and 
a primed system. Throughout the following calculation functions of 
the spatial coordinates (r, 0, and z) are written with primes whenever 
they are of the primed coordinates. Thus M, when considered as a 
function of the primed coordinates, is written M'. The subscripted rn 
and On are independent parameters and are never primed. 

The calculation begins with the evaluation of aMz/az by differentiat­
ing expression (6) and noting that 

d 
dx u(x) = o(x) 

where o(x) is the Dirac delta function. Then 

aMz = Jlf kg 
az S 

(18) 

(19a) 
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where 

(19b) 

and 

g(z) == o(Z + ~) - o( -z + ~). (19c) 

After changing the order of integration, the expression for the internal 
magnetostatic energy becomes 

Ell! = - 111; c gg rr dzdz' dOdO' drdr'. (20) 1 1 00 1 00 
1211" 1211" foo foo k~' , , 

2 0 0 0 0 -00 -00 s 

The factor g(z)g(z')/s contains the z and z' dependence of this integral. 
From expression (19c) it can be seen that this factor consists of four 
terms. Application of the transformation (z, z') -7 (- z, - z') to two of 
the terms under the integral sign combines these four terms into two 
terms. l\1:aking the transformation (z, z') -7 (z, z), where 

z == z - z', (21) 

on the remaining terms and carrying out the integration over z yields 
the expression for the internal magnetostatic energy in terms of an 
integral over surface magnetic charges. This expression is 

1
00 100 1271" 1271" kk' , 

E.\[ = 1I1;Z ~ dO dO' dr dr' 
o 0 0 0 s 

(22) 

where Z is an operator defined by 

Z{ } == i: dz[o(z) - o(z - h)] { } (23) 

(24) 

The factor kk' contains the rn and On dependence of the integral so 
that the derivatives of EM may be calculated by replacing this factor 
by its derivatives under the integral. Evaluating the first derivatives 
yields 

akk' = k _ak',- arb(O') + k'~ arb(O) 
arn arb(O) arn arb(O) arn 

ak' ak 
= k arb cos [n(O' - On)] + k' arb cos [n(O - On)] (25a) 
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alele' = le ale',- arb(O') + le' ~ arb(O) 
aOn arb(O) aOn arn(O) aOn 

= -le aa
le

' nrn sin [n(O' - On)] - le' aalr, nrn sin [n(O - On)]. (25b) 
rb rn 

Substituting these derivatives into the integral and exchanging the 
primed and unprimed rand o. The first term becomes identical to the 
second. The derivatives of the internal magnetic interaction energy are 
then 

aE]I[ 2 100 

1211" 100 

1211" 1 ,ale -- = 2M Z -le --
ar n 8 0 0 0 0 8 ar b 

. cos [n( 0 - On)]r'r dO' dr' dO dr (26a) 

a
2
E 100 

1211" 100 

f211" 1 ____ ]1[_ = 2]1;Z -
ar n arm 0 0 0 0 8 

{ 
a2le ale' ale 

. le' -a 2 cos [n(O - On)] COS [m(O - Om)] + -a --a 
rb rb rb 

. cos [n(O - On)] COS [m(O' - Om)] }r'r dO' dr' dO dr (26b) 

with analogous expressions for 

For circular domains (rb = ro) the factors le, le', ale/arb, and ale'/arb 
are independent of 0 and 0' so that the integrands are periodic in 0' with 
periodicity 271'. The range of integration of 0' may therefore be changed 
from [0, 271'] to [0, 271' + 0] so that after making the transformation 
(0, 0') ~ (0, r) where 

r == 0' - 0, (27) 

the range of integration of both 0 and r is again [0, 271']. Note that now 

8
2 = r2 + r,2 - 2rr' cos r + z 2 (28) 

depends only on r. 
Using trigonometric identities, the integrands of the integrals for 

the various derivatives are written as a sum of terms each of which is 
the product of a factor depending only on 0 and a factor depending on 
r. Carrying out the integration over 0 yields, for rb(O) = ro , 

( aEM) = 471'M:Z foo 100 

f211" ! le' aale r'r dr dr' dr, 
aro 0 0 0 0 8 rb 

(29a) 
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( a
2
E;\!) = 47r1l1: Z l CIJ l CIJ 

1271" .! (k' aa21~ + aak' aak)r'r ds dr' dr, (29b) 
ar 0 0 0 0 () s rb rb rb 

( 
a2k ak' ak ) 

. k' -a 2 + -a -a cos n s r'r ds dr' dr, n > 0, 
rb rb rb 

(29c) 

while all the remaining first and second derivatives are zero. Note that 
by inspection of these integrals and the definitions of k, k', and rb that 

and 

·r'r ds dr' dr, 

Noting that from expressions (18) and (19b) 

ak 
-a = -2o(r - rb ) 

rb 

(30a) 

n> o. (30b) 

(31) 

and using the definition of the Z operator given in expression (24), 
expression (29a) may be integrated with respect to rand z, and the 
second term of expression (30b) may be integrated with respect to r, r', 
and z. The result after some rearrangement is 

( aEJI[) = -(27rh2)(47r1l1:)F(2ro/h), 
aro 0 

(32a) 

(a:~t)o -(47rh)(47r111:) a:c~~:~~) (32b) 

- (2 h)(4 7I{2) aF(2ro/h) 
7r 7r1' 8 a (2ro/h) 

+ (h)(4?rM!) ~ [Ln( (-frJ) - Ln(O) ] (32c) 

where renaming r' to r and using expression (19b) 

F(2~o) == :~¥ [2B(ro , ro , h) - 2B(ro , ro , 0) 

- B(ro , 00, h) + B(ro , 00, O)J, (33a) 
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and where 

(33b) 

(33c) 

Ln[(Z/2ra)2J == i 7r [(Z/2ra)2 + HI - cos ~)r!(1 - cos n~) d~. (34) 

The Ln functions are reduced to standard elliptic integral form, and 
power series expansions are obtained for both large and small values of 
the argument in Appendix A. The B function is integrated once after 
displacing the origin of the cylindrical coordinate system from 0 to 
0' as is shown in Fig. 2. The transformation connecting the (r, ~) and 
(p, cp) coordinate systems is 

p sin cp = r sin ~ 

p cos cp = r cos ~ - r a • 

After the transformation 

B(ra , r, , z) 

(3Sa) 

(3Sb) 

(36a) 

(36b) 

Equations (36a) and (36b) are integrated to obtain, in either case, 

B(ra ,rf ,z) = i~~7r (p~ + l)! dcp - Ir~~7r I z I dcp (37) 

where Pb is the value of P along the boundary r = r f . For r, = ra , Pb = 
- 2ra cos cp so that 

Fig. 2 - The (r, r) and (p, rp) coordinate systems. 
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B(ro , ro , h) = f1r [h2 + (2rO)2 cos2 
CPJ! dcp - ~ I h I (38a) 

7r /2 

and 

B(ro , 1'0 , 0) = 21'0 • (38b) 

The remaining two terms of equation (33a) must be evaluated as a limit 

lim [B(ro , rf ,0) - B(ro , rf , h)] 

= lim 17r - [(p~ + h2)! - PI,] dcp + 7r I h I 
rr-'r:/:) 0 (39) 

= 7r I h I 
since Pb approaches infinity when 1'f approaches infinity. Combining 
these results yields 

F(2r,/h) ~ ~ (2r,/h)'{{i' [(h/2r,)' + sin' ,,]1 a" - I} (40) 

and 

a~~~~~) ~ (h/2ro){2F(2ro/h) - ~ {I' [(h/2r,)' + sin' "r1 d,,}. (41) 

Appendix B lists the standard elliptic integral form of the force 
function F and power series expansions for large and small values of 
the argument. In Fig. 3 the force function is plotted as a function of the 
domain diameter measured in units of the plate thickness 

d/h = 2ro/h. (42) 

The stability functions Sn , also shown on this plot, are defined in Sec­
tion 5.1. 

IV. THE ENERGY VARIATION-ORIGIN OF TERMS 

Summing the results of the last section according to expression (7), 
the total energy variation expression (11) is 

6.E = [27rhO"w + 47rrohM8H - (27rh2)(47r1l1:)F(2ro/h)] 6.ro 

+ ~ [47rhM ,H - (47rh)(47rM~) a~~~:~~) }Llr,)' 

1 ~ {7r h 2 H (h) ( 11 2) aF(2ro/h) + "2!=:. ~ 0" wn + 27rhJ118 - 27r 47r!J s a (2ro/h) 

+ (h)(47rM:) 2~" [L.«h/2ro)') - L.(O)] }(Llr.)' + 0 3 (43) 
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Fig. 3 - The magnetostatic radial force function F and stability functions. 
So - 810 , 81 = 0, as functions of domain diameter to thickness ratio, d/h. 

where F is defined by expression (33) and plotted in Fig. 3, the Ln are 
defined by expression (34), and all terms not explicitly stated are equal 
to zero. The remainder of this section treats the physical origin of the 
terms in the energy variation expression (43), 

4.1 The Generalized Forces 
The coefficients of the linear variation terms are the negatives of the 

generalized forces. All forces except the ro force are identically zero, 
which for a circular domain is a consequence of the rotational symmetry 
of the system. The first term in the coefficient of 6.ro is the product of 
the wall energy density (Tw and the rate of change of wall area with re­
spect to ro , 27rh. The second term is the product of the external field 
interaction energy density 2M sH and the rate of change of domain 
volume with respect to ro, 27rhro ' The third term is the rate of change 
of the internal magnetostatic energy with respect to ro ' 

The internal magnetostatic force may be identified in expression (43) 
and using expressions (32), (33), and (39) may be written in the form 

- (iJEM) = 27rh\47rM~)F(2ro/h) (44a) 
aro 0 

= (21rToh) (2M.){47rM. 

+ 4Ms [r21r ro ~!l! dt"! _ r
21r ro ~r dr]} (44b) 

h J 0 J 0 (p + h ) J 0 J 0 p 
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where / is given in expression (33c). In expression (44b) the first factor 
in parentheses is the domain wall area, the second is the change in 
magnetization at the wall as the wall moves, and the quantity in braces 
has the form of an H field whose origin will now be interpreted by super­
position of sources. The internally produced field arises from the super­
position of the internal field of a plate uniformly magnetized normal 
to its surface with magnetization magnitude Ms and two disks of mag­
netic charge of uniform magnetic surface charge density ±2Ms and 
radius ro . The first term within the braces is thus the demagnetizing field 
of the infinite plate of uniform magnetization. The second term is the 
difference in magneto static potential between a point on the edge of a 
disk of magnetic surface charge of uniform density 4M 8 and a point 
removed a distance h from this point in a direction normal to the plane 
of the charge disk divided by the distance h. This is just the z-averaged 
z-component of the field produced along the wall by the two charge 
disks since 

Q(h) - Q(O) 
h 

(45) 

where Q denotes the magnetostatic scalar potential and z is measured 
from the edge of the disk. Comparing expressions (44a) and (44b), the 
total internally produced z-averaged z-component of the magnetic field 
along the domain wall is 

(46) 

so that the total force per unit wall area (averaged over z) is 

The first term is the product of the wall energy density and the wall 
curvature and always corresponds to an inward directed force. The 
second term is the change of magnetization at the moving domain wall 
times the z-averaged z-component of the total field at the wall. [The 
problem may initially be set up using this fact (Ref. 2, pp. 1922-1925).] 
The properties of the force function will now be examined in some detail. 
From expressions (43) or (44a) the first order variation in internal 
magnetostatic energy, when ro is varied, is 

(48) 

The plot of F in Fig. 3, and the expansions for large and small values 
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of the argument show that the force function is everywhere positive, 
is monotonic increasing, and has a negative second derivative. Since 
the force function is everywhere positive, the internal magnetic inter­
action energy at all times acts in such a way as to expand the domain. 
Section 4.2 treats the effect of the slope and curvature properties of the 
force curve on domain size and stability. Substituting the expansion of 
the force function for small values of the argument (138d) into expres­
sion (48) produces the energy variation for small values for ro/h, 

~E 1II = {27rhro2Ms( -47r1l£.) + (47rM;)16r~ 
- (7rh2)(47rM;)2[!(2ro/h)3 - 634(2rO/h)5 + ... ]} ~ro . (49) 

(In the remainder of this section frequent reference will be made to the 
properties of F and the Ln given in Appendices A and B.) The inter­
action of the magnetization with the existing field from the infinite 
dipole sheet produces the first term in expression (49). This may be seen 
by comparison with expression (47) and observing that the field in­
ternally generated in the infinite dipole sheet with no reversals is 
- 47r M 8. In Fig. 3 a dashed line through the origin with numerical 
slope one represents this term and forms the small ro/h asymptotic of F. 

The second term in expression (49) is the only thickness independent 
term in the expansion and therefore must be identical to the variation 
of self-energy of the two disks of magnetic charge which form the ends 
of the reversal when ro is varied. Since the interaction with the infinite 
charge sheet and the self-energy of the disk have been taken into ac­
count, the remaining terms are the mutual interaction of the magnetic 
charge disks. 

For large ro/h, an energy expansion in terms of h/ro is appropriate. 
Substituting the expansion of the force function for large values of the 
argument (138c) into expression (48) yields 

t:,.Eu = -h'(47rM;){[1 + 136(hj2ro)' + O,J 

+[2 - Hhj2ro)' + O,J In 14 2~o I}t:,.ro • (50) 

This expansion obscures the identity of both the infinite sheet magnetic 
field term and the charge plate self-energy term so that a local (to the 
wall) magnetic energy lowering per unit line length description appears 
appropriate. However, the energy reduction per unit line length to 
lowest order in 2ro/h is 
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E }\[ (domain) - E }\[ (uniform magnetization) 

271"1'0 

3303 

= _ h
2 

(471"1\1~) In 1 ~ 2ro 1 (51) 
71" e2 h 

so that the energy lowering per unit line length for the domain of in­
finite diameter is infinite. [Equation (51) is obtained by integrating 
equation (50) to lowest order. The integration constant is determined 
to be zero by term by term integration of the expansions of F for large 
and small values of the argument and comparing at 2rolh = 1.] The 
conclusion that the energy lowering per unit line length for an isolated 
straight line reversal may also be obtained by considering the energy 
lowering in a strip reversal when the strip width approaches infinity. 
The author's intention at the outset of this entire calculation was to 
calculate the numerical value of this magnetic energy reduction per 
unit wall length. The internal magnetic interaction, however, retains 
just enough of its global character when the domain is very large so that 
no finite limiting value for this energy reduction exists. 

The internally generated magnetic field at the wall of the domain, 
for large folh is obtained from expression (46). To lowest order it is 

(H ) = - (471"1\18) ~ I 14 ~ 2ro 1 
M.~ 2 n e h 

71" ro 
(52) 

which approaches zero as the diameter approaches infinity as it must, 
since for an infinite straight line magnetization reversal, symmetry 
requires that the z-component of the field be zero along the reversal. 

4.2 The Stiffness Matrix 

The second variation of the energy with respect to the Fourier coeffi­
cients describing the domain determines the stability of the domain. 
Since the stiffness of the domain with respect to externally applied 
forces is proportional to the coefficient of the bilinear form which is the 
second variation of the energy, the matrix formed by these coefficients 
is called the stiffness matrix. The stiffness matrix is composed of three 
independent submatrices. The second derivatives of the energy with 
respect to the Fourier amplitudes form the radial stiffness matrix; 
the second derivatives of the energy with respect to the Fourier phases 
form the angular stiffness matrix; and the derivatives of the energy with 
respect to one Fourier amplitude and one Fourier phase form the mixed 
stiffness matrix. The derivative of the energy with respect to rn and r m 
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are called the (n, m) radial stiffness matrix element, with similar nota­
tion for the other submatrices. 

All derivatives not explicitly exhibited in expression (43) are zero. 
Thus, the angular stiffness matrix and the mixed stiffness matrix are 
zero and the radial stiffness matrix is diagonal so that the system is 
completely metastable with respect to angle and the amplitudes are 
normal modes of the system for small amplitudes. 

The (0, 0) radial stiffness matrix element is simply the derivative of 
the negative of the radial generalized force so that no further discussion 
of it is necessary. It should be noted that the derivative of the internal 
magnetostatic term with respect to wall position is not directly related 
to the radial field or potential at the wall since the derivative used in 
computing the radial field at the wall must be taken with the wall posi­
tion held fixed. 

4.2.1 The Radial Stiffness Matrix Elements for n ~ 1 

The diagonal radial stiffness matrix elements, for n ~ 1, are the sum 
of four terms in expression (43). The first term, which always has a 
stabilizing effect, is the increase in total wall energy due to the lengthen­
ing of the wall caused by the deviation from a strictly circular shape. 
Imposing a sinusoidal variation of amplitude D"s onto a straight line 
produces a relative increase in length of 

s + Ls = 1 + (7rD"rn)2 + '" . 
S An 

The corresponding wavelength in expression (43) is 

A = 27rro. 
n n 

The wall energy term in expression (43), 

LEwn = CJ'w 27rroh(7rtrnr ' 

(53) 

(54) 

(55) 

is thus the product of the wall energy density, the wall area, and the 
variation in wall area per unit area. Notice that the relative variation 
in wall length or area is independent of the wall curvature, 1/ro, to 
lowest order in the amplitude of the variation. 

The second order change in volume of the domain interacting with 
the externally applied field produces the second term in the radial stiff­
ness matrix elements while the rate of change of the internal mag­
netostatic forces at the wall produces the third term. The sum of the 
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second and third terms is one-half the (0, 0) radial stiffness matrix 
element. This factor of one-half relates to the fact that a variation of 
6.rn, n ~ 1 produces only one-half the mean square variation rb(O) 
as is produced by an equal variation in ro . This shape-independent, 
second-order variation in energy arises from the variation in the gen­
eralized forces, or fields at the wall, when the domain radius is varied. 
[See also the steps leading to expression (30b).] 

4.2.2 Translation I nvariance 

The requirement of translation invariance in the infinite plate com­
pletely determines the (1, 1) radial stiffness matrix element. Consider 
a cylindrical domain of radius ro with a cylindrical coordinate system 
placed at its center. Under a displacement of the coordinate system of 
magnitude s in the 0 = 7r direction, the description of the boundary 
in the new coordinate system is 

1 S2 1 S2 
rb(O) = ro - -4 - + s cos 0 + -4 - cos 28 + 04 • (56a) 

ro ro 

Thus, to second order in s, term by term comparison with definition 
(3) yields 

6.rl = s, and 

The formal change in energy under this displacement (11) is 

(57) 

Obtaining (aEjaro)o and (a2Ejar~)o from expression (43), and substitut­
ing expressions (84), (85), (86), (100), and (138a) verifies that 

(a
2E T) 1 (aE T) arr 0 = 2ro aro 0 • 

(58) 

The coefficient of S2 in expression (57) is thus zero as required by transla­
tion invariance, and further the (1, 1) stiffness matrix element is zero 
whenever the total radial generalized force is zero. 

4.2.3 The 111 agnetostatic Stiffness Terms 

The interpretation of the radial stiffness matrix elements for the 
higher n values is now considered. As in the case of the generalized 
forces, examination of the expansions for small ro allows the self-inter­
action energy of the two charge disks which make up the ends of the 
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domain to be separated from the mutual interaction of these charges. 
The variation in the internal magnetostatic energy due to a variation 
in some rn for a circular domain is in general from expression (43) 

2{ aF(2ro/h) [( h
2
) (]}( ~ .6.EMn == 471"111 s - (71"h) a (2ro/h) + ro Ln 4r~ - Ln 0) .6.rn) , 

n ~ 1. (59) 

Separating the h independent and h dependent terms of the power 
series representation in powers of 2ro/h uniquely separates the above 
expression into two parts, one part representing the self-interaction of 
the charge disks and the other representing the mutual interaction of 
these disks. The h independent terms then represent the self-interaction 
forces of the charge disks and the h dependent terms represent the 
mutual interaction forces. In the expansion of Ln for large (h/2ro)2, 
expression (129a), all terms of Ln[(h/2ro)2] are h dependent. Using the 
large (h/2ro)2 expansion of F, expression (138d), and the expressions 
for Ln(O), (115) and (116), the thickness independent part of expression 
(59) is 

n ~ 1. (60) 

This energy variation contains a term which results from the variation 
in the overall size of the disks of charge as well as the shape dependent 
terms. The size variation term will now be identified and subtracted 
out so that the shape dependent part of the self-interaction energy may 
be seen explicitly. From expression (49) and the discussion following it, 
the ratio of the variation in energy of two isolated disks to the variation 
in disk area is (471"M;)(16ro/271"). The variation in disk area for a varia­
tion in rn for n ~ 1 is (71"/2)(.6.rn)2 so that the change in self-energy of 
the two disks, other than that due to their mutual interaction or change 
in overall size, is 

.6.E Mn(Self-Shape) 

{

O' 

~ - (4"M!)4r,( t, 2j ~ 1) (1,r") , , 

n = 1 (61a) 

n > 1. (61b) 

It is not surprising that the variation of rl produces no shape related 
energy change, since from expression (56) this variation is to lowest 
order a displacement with a size change coming in second order. It is 
seen that the terms which remain after cancellation all come from Ln(O). 
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In expression (59) the first term is independent of n and the 
-47rM;raLn(0)(L\rn)2 term has been identified with the variation in the 
self-energy of the charge disks. The term 47r.l11;raLn[(h/2ra) 2] (L\Tn) 2 must 
therefore contain all of the shape dependent part of the charge disk 
mutual interaction energy. This term also contains a contribution due to 
the variation in the total amount of charge and contribution due to the 
shape independent, general smearing out of the charge distribution. 
Since the second order change in the total amount of charge is inde­
pendent of n for n ~ 1, these two contributions may be removed from 
the mutual interaction energy variation by replacing Ln by Ln - Loo . 
The remaining mutual interaction energy variation is specifically due to 
the shape of the variation. This energy variation is 

6E lIfn(Mutual-Shape) 

(41rM!)ro[ L.(~~) ~ L~(~:~) }'\,r.)', n ~ 1 

[ (2 )2n+l (2 )2n+3 
(47rJl;[;) ra J.1In.2n+ 1 ~o + 1I1n.2n+ 3 ~o + ... J, 

n ~ 1 (62) 

where the final form is obtained using the expansion for Ln , equation 
(131), and the M n • m are the constants of the expansion. The interaction 
energy of planar multipoles of order n and higher has the form of equa­
tion (62), as it must since the variation in the charge distribution for 
each n may be expressed in terms of such multipoles. 

The variation in internal magnetostatic energy due to a variation of 
rn , in the infinite sheet, for large 2ro/h, to lowest order in h/2ro , is 

n ~ 1 (63) 

using equation (59), the large 2ro/h expansion of F (138c) and of 
Ln(h2/4r~) - Ln(O) , (105), (116) and (125). 

The charge-disk self-interaction energy is not evident in this ex­
pansion because it is exactly cancelled by the leading term of the mutual 
interaction energy. In contrast to the energy reduction per unit line 
length for a straight line reversal in an infinite sheet (which has no 
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finite value), it is possible in the case of this variation of the domain 
structure to compute the energy variation per unit line length. In terms 
of the wavelength of the variation 'A, defined in expressions (54) or 
(127) and in the limit of ro -7 00, the total variation in energy when rn 
is varied is [using expressions (43) and (55) and the limit (128)] 

~!: ~ {k<Tw/h - (41rM;)" In 1 ~~ IJ ~ + O.(~) }(£;rn )'. (64) 

Comparison of expression (64) with expression (53) shows that the 
magnetostatic energy variation per unit line length for a circle of infinite 
diameter is the product of the magnetostatic energy density constant, 
the variation in line length, and the logarithm of a maximum effec­
tive interaction distance, 4e'A/7r. (The maximum effective interaction 
distance for the magnetostatic energy lowering per unit line length is 
proportional to ro.) Hagedorn has computed the magnetostatic energy 
variation per unit line length for the case of a sinusoidal variation im­
posed on an infinite straight line reversa1.6 The calculation was carried 
out by considering the energy variation produced by a sinusoidal applied 
to a strip domain pattern in the limit of infinite strip width. The result 
of this calculation is 

tlE lld (unit length) = - (47rM;)7r In I 'AI (2.111h) I (hl'A) 2 (!!J.r) 2, (65) 

which differs from the result for the infinite circle by the constant inside 
the logarithm. 

4.3 Summary 

The physical origin of terms of the energy variation has thus been 
traced in the limiting cases of both large and small rolh. In either of 
these limiting cases, it is thus possible to develop intuition with regard 
to the behavior of the domains. Since, as has been shown, the inter­
pretation of the meaning of the energy terms in the limiting cases is 
qualitatively different, the development of intuition in the transition 
region is quite difficult. In many device applications this transition 
region is the preferred region of operation, making the use of analytical 
and numerical methods a necessity. 

V. THE SIZE AND STABILITY OF CYLINDRICAL DOMAINS 

The energy variation expansion (43) in principle contains all cylin­
drical domain size and stability information. This section treats briefly 
the use of this expression in the determination of domain size and 
stability. The only non-zero generalized force in expression (43) is the 
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uniform radial force. When this force is set equal to zero (the force 
equation), the system is in equilibrium. Thus the condition that the 
system be in equilibrium provides, given a material and plate thick­
ness, an equation relating domain size and the applied field. The loca­
tion of the zeros in expression (43) (all terms not explicitly exhibited 
are zero) shows that the system is completely metastable with respect 
to angle and that the radial stiffness matrix is diagonal. The radial 
amplitudes are thus quasi-normal modes, and the study of stability 
reduces to the study of the stability of the individual radial amplitudes. 

5.1 N annal Form of the Energy Expansion 

Before proceeding with the discussion, it is appropriate to introduce 
some new notation and to rearrange the energy variation expansion 
into what will be called normal form. Since the stiffness matrix is of 
interest only when the domain is in equilibrium, the applied field H 
is eliminated from it using the force equation. The geometrical de­
pendences of the various magnetostatic stability terms are then com­
bined and normalized to the wall stiffness term by defining the "stability 
functions" as 

So(d/h) == F(d/h) - d aa
d 

F(d/h) (66a) 

and 

S.(d/h) - - n' ~ 1 {So(d/h) + i" (d' /h') [L.(h' /d') - L.(O)]}, 

n ~ 2. (66b) 

The S 1 function is undefined or may be taken to be zero since transla­
tion invariance in the infinite plate requires that the (1, 1) stiffness 
matrix element the identically zero whenever the generalized radial 
force is zero, as is assumed to be the case here. The Sn functions are 
plotted in Fig. 3 up to SlO ; they are given in standard elliptic integral 
form together with power series expansions for large and small values 
of the argument in Appendix B. The domain diameter, d = 2ro repre­
sents domain size in this section. The normal form of the energy expan­
sion is written as a function of the ratios of the three fundamental lengths 
of the system: the plate thickness h, the domain diameter d, and the 
"characteristic length" defined by 

l==~. 
471"M. 

(67) 
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The characteristic length depends only on the type of material used. 
Dividing the energy variation expansion (43) by the normalizing 

energy 2(47rM;)(7rh3) and introducing the notation of the preceding 
paragraph, the normal form of the energy expansion results: 

2(47rff~(7rh') ~ [t + ~ 47r!. - F(~) ] 6{, 

+ ~ {-(2 ~)[t - S,(~) J( 6{,Y 

+ t, (n' - l)(~)[t - S_~) J( 6;_)'} + 0,. (68) 

In expression (68) the coefficient - [l/h + (d/h) (H/47rM.) - F(d/h)] 
is the normalized radial force. Setting this force equal to zero yields 
the normalized force equation. The remaining bracketed quantities 
[l/h - Sn(d/h)] are proportional to the diagonal elements of the stiff­
ness matrix, and are called "stability coefficients." For uniform radial 
variation, the stability coefficient has the opposite sign from the (0, 0) 
element of the radial stiffness matrix; thus this stability coefficient 
is negative whenever the domain is stable. For the other rn variations, 
on the other hand, the stability coefficient has the same sign as the 
corresponding element in the stiffness matrix, and these stability co­
efficients are positive whenever the domain is stable. 

5.2 Graphical Solution of the Force Equation 

A graphical solution to the force equation 

l. + ~ ---.!L - F(~) = 0 
h h 47rlVIs h 

(69) 

may be obtained by constructing a straight line on Fig. 3 whose inter­
cept with the vertical axis is l/h and whose numerical slope is H/47rM •. 
The intersections of this straight line with the F curve are then the solu­
tions to the force equation. 

As was stated in Section 5.1, (i) the force function has a positive first 
derivative and negative second derivative for all nonzero values of its 
argument, (ii) it is zero and has a first derivative of unity when its 
argument is zero, and (iii) it becomes logarithmic for large values of 
its argument. From these properties and examination of Fig. 3, several 
properties of the solutions to the force equation may be appreciated. 
For negative values of the applied fields, there is only one solution to 
the force equation. Examination of the sign of the radial force which 
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results when the diameter is varied about the solution diameter while 
all other variables are held fixed shows that this solution is unstable. 
For small positive applied fields, there are two solutions to the force 
equation, the larger diameter solution being radially stable, the other 
radially unstable. However, a radially stable solution does not guaran­
tee that the system is stable with respect to all possible deformations, 
and this must be investigated separately. As the applied field is increased, 
the two solutions move closer together until they coalesce. When the 
applied field is increased beyond this point, there are no solutions. 
Since the function F is asymptotic to a straight line through the origin 
having unit slope, the solutions will always vanish for a value of the 
applied field which is greater than 471"1lf •. Stable isolated cylindrical do­
mains thus exist only in the presence of an applied field having magni­
tude between zero and 471" M 8 and polarity tending to collapse the 
domain. 

5.3 Graphical Determination of Domain Stability 

The stability coefficients are determined graphically by constructing 
a horizontal line at height ljh on the force stability graph. Metasta­
bility for each normal mode of deformation occurs at the intersection 
of this line with the corresponding stability function. Since the stability 
functions are monotonic, the diameter of metastability of each normal 
mode of deformation is uniquely defined and forms the boundary be­
tween the regions of stability and unstability. The circular domain will 
be stable with respect to all variations when its diameter is greater than 
the radial metastability diameter and less than the metastability diam­
eter for a variation with a rotational periodicity of two. The normal 
variations with rotational periodicity two are referred to as "elliptical" 
deformations. When the domain is stable with respect to elliptical 
deformation, it is necessarily stable with respect to the variations 
of higher spatial frequency since the stability functions of higher spatial 
frequency lie progressively (with respect to n) below the elliptical sta­
bility function. The radial stability function So and the elliptical stability 
function S2 thus form the boundary of the region of total cylindrical 
domain stability. Therefore, given the magnetic material type and 
plate thickness, the range of stable domain diameters and the correspond­
ing applied fields may be determined with the aid of these functions. 

5.4 Minimum Domain Diameter 

For any given value of ljh, the minimum domain diameter is the 
collapse diameter determined by So . The domain diameter measured in 



3312 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1969 

units of the characteristic length is d/l = (d/h)/(l/h) which is the in­
verse of the numerical slope of a line drawn in Fig. 3 from the origin 
to the operating point. The line of maximum slope, which both passes 
through the origin and contacts the So curve at at least one point, thus 
determines the smallest domain diameter attainable in a given material. 
The coordinates of this contact point are d/h ~ 1.2 and l/h ~ 0.3, so 
that the minimum attainable domain diameter is 

(70) 

VI. RANGE OF VALIDITY OF THE MODEL AND THE QUALITY FACTOR 

At the present time, no quantitative evaluation of the range of valid­
ity of the domain structure model used here has been carried out. The 
qualitative discussion given here, it is hoped, will provide the reader 
with an appreciation of the magnitude of the effects produced by the 
relaxation of the various constraints artificially imposed by the model 
and the dependence of these effects on the system parameters. It has 
been assumed that domain walls are cylindrical, have zero width, and 
have a definite energy per unit area which is independent of wall orienta­
tion or curvature, and that the magnetization lies perpendicular to the 
surface of the plate. Section 6.1 treats the effect of the relaxation of 
the cylindrical wall approximation only. In Section 6.2, the other 
assumptions are all shown to be coupled using the simplest uniaxial 
material model. A single dimensionless material parameter q, which 
complements the characteristic length l in characterizing circular domain 
materials, is used to express the results obtained from the simplest 
material model. 

6.1 The Cylindrical Wall Approximation 

The discussion of the cylindrical wall approximation uses the coordi­
nate system and domain configuration of Fig. 1 except that the walls 
are allowed to curve as shown in Fig. 4. The radius function, rb ((), z), is 
determined by the requirement that it minimize the total energy. The 
Euler equation which results from this two dimensional field variational 
problem is an integro-differential equation similar to those which appear 
in Hartree self-consistent field calculations. No solution of this equation, 
numerical or otherwise, has been attempted or is contemplated at the 
present time. The Euler equation consists of terms arising from: the 
wall energy, the interaction of the magnetization with the applied field, 
the self-interaction of the magnetostatic charges at the surface of the 
plate, the self-interaction of the charges produced by the slope of the 
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Fig. 4 - Cross section of fI, noncylindrical, nenr-circular, domain. 

domain wall, and the mutual interaction of the plate surface charges 
with the domain wall magnetic charges. Boundary conditions (obtained 
from the appropriate transversality condition7

) require that the wall 
surface be perpendicular to the plate surface at all intersection points 
(3 in Fig. 4). Physically (since in the model used here the crystal is 
assumed to be strain free) the surface cannot interact with the domain 
wall, and therefore the wall must intersect the surface at right angles. 

Although it is not clear that domains having a roughly conical shape 
are ruled out, it will be assumed that the domain has reflection symmetry 
through the central plane of the plate and that the radius is a function 
of Z only, rb(z). In this case the wall must be vertical at the central 
plane as indicated at e in the figure so that the single parameter b 
represents the magnitude of the wall bulging. Since the Euler equation 
requires the curve to be smooth, there must be an inflection point, g, 
between e and 3. The wall area, and thus total wall energy, is a quadratic 
increasing function of the wall curvature so that the concentration of the 
curvature at the center and ends of the wall, produced by the trans­
versality and symmetry conditions, tends to reduce the wall bulging. 

The radial field at the domain wall from the charges at the surface 
of the plate is directed as shown in Fig. 4. The effect of the interaction 
of the magnetostatic charges due to the slope of the wall with the radial 
component of the field from the surface charges is destabilizing for 
either positive or negative bulging. This interaction produces a negative 
quadratic term in the total energy. However, at the plate surface, where 
the magnitude of the radial field is greatest, the transversality condition 
requires that the charge density produced by the wall slope is zero so 
that the magnitude of this negative term is small. The z component of 
the field from the charges on the surface of the plate determines the 
direction of bulging. (The applied field, being uniform by assumption, 
need not be considered.) Along an initially cylindrical wall the internal 
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field is everywhere directed, so as to make the domain expand, and 
attains its greatest magnitude at the center plane of the plate. It there­
fore provides a linear term in the total energy which tends to bulge the 
wall in the positive direction as sho'wn in Fig. 4. 

Thus, for near cylindrical walls, the bulging is determined by the 
interaction of this force (tending to bulge the wall) with the wall energy 
(acting to stabilize the wall) and the radial field (acting to destabilize 
the wall). The self-interaction of the wall charges enters only as a 
higher-order term. It should be noted that the transversality condition 
acts both to strengthen the stabilizing term and weaken the destabilizing 
term. 

The relevant dimensionless wall energy for the wall bulging problem 
is l/h = IJ w /(h47rM;). Wall bulging is expected to decrease with increas­
ing wall energy. A second independent effect related to l/h may be 
appreciated by inspection of the So and S2 curves in Fig. 3. It can be 
seen from Fig. 3, equation (68), and the discussion following it that, 
since the So and 8 2 curves bound the region in which stable circular 
domains exist, d/h must increase with increasing l/h. By symmetry, 
the z-component of the internally generated magnetic field at a cylindri­
cal wall is zero for a domain of infinite diameter and clearly increases 
monotonically as the domain diameter to thickness ratio decreases. 
Thus, as the plate is made thicker, the bulging force becomes stronger 
and the stabilizing force becomes weaker. Since several independent 
effects cooperate to increase bulging with increasing plate thickness, 
the onset may be quite rapid when it does occur. Domain collapse data 
taken at d/h ~ 1 is in good agreement with predictions made on the basis 
of equation (68) and Fig. 3.8 This then provides some indication that 
the cylindrical wall approximation remains valid at this thickness. 

6.2 The Quality Factor 

The discussion of the approximations other than the cylindrical wall 
approximation uses a polar (M., 1], v) coordinate system where 1] is the 
polar angle and v is the aximuthal angle to specify the orientation of 
M. (See Fig. 5). The polar axis is taken to be the z-axis of the preceding 
sections. The domain wall is taken to be planar with its position and 
orientation specified by a plane at its center. The axis through the origin 
in the direction of the wall normal is denoted by ~. The position of the 
central wall plane is denoted by ~o • The orientation angles of the wall 
normal are denoted by Vw and 1]w, (see Fig. 5). 

In the simplest uniaxial material whose easy axis is the z-axis the 
magnetic energy density for a planar wall is (Ref. 9, pp. 189-192) 
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Fig. 5 - Coordinate system for specification of domain walls. 

PH A[ (~~)' + sin' ~(:;n + K. sin' ~ - H·M + 2-n-? (M·~' 
(71) 

where A is the exchange energy density coefficient, Ku is the anisotropy 
energy density coefficient, H is the externally applied field, and the last 
term is obtained by integrating \l . B = O. For a uniformly magnetized 
material in the absence of applied or internal fields, this expression 
reduces to PE = Ku sin2 

11 which has absolute minima at 11 = 0 and 
11 = 7r. The z-axis is thus the easy axis as is required for consistency 
with the preceding sections. 

The anisotropy energy density coefficient is sometimes expressed in 
terms of the effective anisotropy field Ha == 2ku/M •. The quality factor 
is now defined as the dimensionless anisotropy energy coefficient or 
dimensionless anisotropy field 

(72) 
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6.2.1 The Nucleation Field 

When a bias field H is applied in the positive z-direction and demag­
netizing fields are neglected the energy density is 

PE = Ku sin2 
YJ - HlM. cos YJ (73) 

which, for H < H a , has a local minimum at magnetization orientation 
YJ = 7r and an absolute minimum for YJ = O. When H > H a , only the 
minimum at YJ = 0 remains. In a perfect crystal the effective anisotropy 
field is thus the field at which the magnetization becomes unstable 
with respect to reorientation (assuming it is initially oriented in the 
negative z-direction). If a reorienting field is applied locally (local but 
over a region whose dimensions are much greater than a wall width so 
that the effect of exchange forces can be neglected), then Ha is the total 
local field required for the nucleation of a domain at that locality. If 
the nucleation field H N is understood in this sense, then in a perfect 
crystal q is the nucleation field measured in units of 47r M.: 

(74) 

In an imperfect crystal H N / 47r M. may be either larger or smaller than q. 
If it is larger, the material may be expected to have a high wall motion 
coercivity. 

6.2.2 Susceptibility 

When a transverse bias field H t (YJ = 7r /2) is applied and demagnetizing 
fields are neglected, the energy density becomes 

which has stable magnetization orientations 

YJ = 

1
· -1 (Ht) - . -1 (~1) 

sm Ha - sm 47r1l1. q , 

7r 
2' 

The transverse susceptibility is therefore 

aM {_I 
Xt = __ t = 47rq aHt 

o 

(75) 

(76) 

(77) 
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where M I = M 8 sin rJ is the component of the magnetization in the 
direction of HI' Thus, the susceptibility to tipping of the magnetization 
by a transverse field is inversely proportional to q. 

6.2.3 Wall Energy and W all Width 

Consider now a planar Bloch wall, ~. M = 0, between two regions 
whose magnetization at points far from the wall lies along the two easy 
directions, rJ = 0 and 7r, and again assume that there are no applied 
fields or fields produced by boundary surfaces. Under these conditions, 
the magnetic configuration is determined by minimization of the wall 
energy per unit surface area which in this case is (Ref. 9, pp. 189-192) 

If. = 1: [A(~~r + K. sin' ~ ] d~ 
Carrying out the minimization results in 

C7w = 4(AK.J! 

for 

where 

(78) 

(79) 

(80) 

(81) 

is the wall width. The definition of wall width is somewhat arbitrary 
since the wall extends over all space. In this case, following page 191 of 
Ref. 9, it is chosen so that the magnetization would complete its entire 
rotation of 7r radians in a length lw if the entire rotation took place at 
its maximum rate, the rate at the center of the wall. 

The ratio of the characteristic length, equation (67), to the wall 
width is 

l 2 - = - q 
lw 7r' 

(82a) 

so that the ratio of the minimum domain diameter, equation (70), to 
the wall width is 

dmin 4l 8 
-=-=-q 

lw lw 7r' 
(82b) 

The approximation of zero wall width thus improves as q becomes 
larger. 
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The approximation that the wall energy is independent of wall curva­
ture is clearly related to the wall width. At large distances from the 
planar wall equation (80) becomes 

11] - 1]0 1= 2exp(-7l" I~ - ~o I /lw) (83) 

where 1]0 is the appropriate equilibrium orientation of the magnetization 
at a distance far removed from the wall. Such an exponential relation 
will hold for the approach to any stable equilibrium orientation in the 
presence of isotropic exchange. The change in energy of the wall due to 
overlapping of the tails of the wall as the wall is curved is clearly related 
to q, becoming larger as q becomes smaller. In order to solve for the 
dependence of the wall energy on curvature it is necessary to solve the 
entire (including magnetostatics) micromagnetics problems. 10 

6.2.4 Summary 

The preceding results may be summarized by noting that the higher 
the q value, the more closely the simple uniaxial model obeys the con­
straints of the domain model used in the previous sections. It is clear 
that, for domains of the type considered to exist at all, q must be greater 
than one. For device operation, q should probably have a value greater 
than two. 

VII. CONCLUSIONS 

The theory of cylindrical magnetic domains yields conditions which 
predict the size and stability of these domains and provides an estimate 
of the range of applicability of the model used. The results of theory 
appear to be accurate in a range useful in the construction of circular 
domain devices. 

The domains considered are isolated right circular cylinders in plates 
of uniaxial magnetic material of uniform thickness cut so that the plate 
normal is parallel to the easy axis. The first and second order energy 
variations which result from a general small deviation from the strictly 
circular shape determine domain size and stability. The energy method 
was chosen in preference to the magnetostatic field method because of the 
uniformity it provides in accounting for the forces in both the equi­
librium and stability problems. The integrals arising from the energy 
method are interpreted physically in terms of fields and interacting 
charges. The physical interpretation of the integrals is quite different 
in the limiting cases of very large or very small domains. The integrals 
are related to special cases of the fields of uniformly charged disks 
computed by C. Snow and tabulated by N. B. Alexander and A. C. 
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Downing. 11 ,12 The present work obtains the needed properties of the 
integrals (expansions, recursion relations, and others) directly from the 
definitions. 

When the energy variation is described in terms of a Fourier decom­
position of the domain radius function, only the generalized force cor­
responding to a change in domain size is non-zero and the stiffness 
matrix is completely metastable with respect to angle (phase) and 
diagonal with respect to the Fourier amplitudes. Since the Fourier 
amplitude stiffness matrix elements are all found to be distinct, the 
description is unique and may be described as a quasi-normal mode 
description. 

The normal mode description is summarized by a single graph from 
which many domain properties may be determined by construction. 
Cylindrical domains exist only in the presence of a bias field directed 
so as to tend to collapse the domains and having a magnitude between 
o and 47r Ms. The uniform radial collapse of the domain and the run­
out of the domain into an initially elliptical shape bound in the region 
of stability. The minimum attainable domain diameter in a given 
material is dmin ~ 4l occurring a plate thickness of t'J 4l. It is estimated 
that the cylindrical wall approximation begins to become doubtful at a 
plate thickness greater than 4l. In order for cylindrical domains to 
exist, Ha ~ 47rJ11s and in general approximations such as the approxi­
mationofzerowall width become more accurate for Ha»47rMs(dmin/lw = 
8H a/ 47r2 M s where lw is the wall width). 

It is interesting to note that since stable cylindrical domains of a 
definite size exist in the total absence of wall motion coercivity and may 
be freely moved, they form a relative, easily observable, classical model 
for illustrating several particle-field concepts. They may be considered 
a two-dimensional particle which is produced as a singularity of finite 
extent in an underlying three-dimensional field (the magnetization). 
Cylindrical domains are particularly useful for demonstrating the con­
cept of identical particles since, while it is possible to put identifying 
marks on domain locations, it is not possible to mark individual do­
mains. (Cylindrical domains do exist in two species which may be 
distinguished by the direction of rotation of the spins in the domain 
wall. 13 All attempts to observe this difference up to the present time 
have been unsuccessful.) 
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APPENDIX A 

Integrals of Cylindrical Domain Theory 

This appendix contains the reduction to standard form of the elliptic 
integrals which arise in the theory of cylindrical domains in plates of 
infinite extent and power series expansions of these integrals. All the 
properties of the functions obtained here are used in either the physical 
interpretation of the energy variation expansion or in generating the 
numerical values of the force and stability functions. 

It is convenient to define functions U and V which appear repeatedly 
in cylindrical domain theory. The elliptic integrals which appear in the 
final results of the theory appear only in the forms U and V, U being a 
function of only the complete elliptic integral of the second kind and V 
being only a function of the complete elliptic integral of the first kind. 
Because of the form of the U and V functions, it has proven easier to 
obtain the needed properties, (such as the series expansions) directly 
from the integral definitions rather than deducing them from the tabu­
lated properties of elliptic integrals. 

The latter half of this appendix treats the properties of the Ln func­
tions. A recursion relation is obtained and used to reduce the Ln to 
functions of U and V. Power series expansions of the Ln are obtained 
directly from the definition (34). 

A.I Definition of the U and V Functions 

The functions are defined in the alternate forms 

U(x) == 1" [x + HI - cos a)]! da (84a) 

1
,,/2 

= 2 0 (x + sin2 (3)! d{3 (84b) 
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1~/2 
= 2 0 (x + 1 - sin2 'Y)! d'Y (84c) 

= 2(x + 1)!E(_I_) 
1 + x 

(84d) 

and 

Vex) == i~ [x + HI - cos a)r! da (85a) 

1~/2 
= 2 0 (x + sin2 

(3)-! d{3 (85b) 

1~/2 
= 2 0 (x + 1 - sin2 

'Y) -! d'Y (85c) 

= 2(x + l)-!K(_l_) 
1 + x 

(85d) 

where the dummy variables are related by {3 = a/2 and 'Y = 7r /2 - a/2 
and where ]{ and E are the complete elliptic integrals of the first and 
second kind respectively. The argument of the elliptic integrals is the 
parameter 1n of Abramowitz and Stegun. 14 The parameter 1n is equal 
to the parameter k2 of Jahnke and Emde or Groebner and Hofreiter. 15,16 

A.2 Differential Equations and the Power Series Expansion of U and V 

From the definitions (84) and (85) 

dU _ l.V 
dx - 2 • (86) 

The differential equations obeyed by U and V are 

[ 
d2 1J 

(x
2 + x) dx2 + 4 U(x) = 0 (87a) 

and 

[ 
d2 d 1J 

(x
2 + x) dx2 + (2x + 1) dx + 4 Vex) = o. (87b) 

The U differential equation is verified by substituting in the defining 
relation (84a) and then reducing the resulting equation to the indentity 

o = 1~!£ sin a Ida 
o da [x + !(1 - cos a)]' 

(88a) 

= X COS a "2 COS a - "4 - "4 COS a da l
1C" + 1 1 1 2 

o [x + HI - cos a)]! . 
(88b) 
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The V equation is then easily obtained by differentiation of the U equa­
tion. 

The roots of the indicial equations of these equations are separated 
by 1 [they are ° and 1 in equation (87a) and -1 and ° in equation 
(87b)] so that the series expansion of U is of the form 

V(x) t, V,x' where V, ~ V; + V;' ! In [I; [ (89", b) 

and 

Vex) f: ViX i where V· = V~ + V~/! In [16[. 
i=O 1 1 1 X 

(90a, b) 

The form of the logarithmic terms has been chosen with some foresight. 
Substitution of the expansions into the differential equations and 
comparing coefficients gives the recursion relations 

(j _ !)2 " 
j(j + 1) U i , j ~ 1, (91a) 

j -! [. 1 I (j + 1) II] 
j (j + 1) (J - "2) U i - j(j + 1) U i , j ~ 1, (91b) 

-G! irVjl, j ~ 0, (92a) 

j +! [(. + I)VI 1 1 VII] 
(j + 1)2 J 2 i - 2 j + 1 j , 

j ~ O. (92b) 

The starting values of V ~ , V ~ I , U ~ and U ~ I are determined directly 
from the integral definitions of the functions (84) and (85) and the 
differential equation (86) relating U and V. This is quite straightfor­
ward except for V which must be expanded 

i f d{3 /11'/2 d{3 2 2 X 
Vex) = 2 0 (x + {32y + 2 f sin (3 + O(x , E , ~2) (93a) 

and evaluated as a limit 

lim Vex) = In [16[. 
x-O x 

(93b) 

The limiting value of V may also be obtained quite easily from equation 
(85d) and the tabulated properties of the complete elliptic integral of 
the first kind. 15 The expansions of U and V are thus 

U( ) ( 
1 3 2 3 3 665 4 ) 

x = 2 + 2 x + 32 x - 64 x + 24576 x + ... 
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and 

() ( 
1 21 2 185 3 ) 

V x = 0 + 2 x - 64 x + 768 x + .. . 

+ (2 - .! x + JL X
2 

- ~~ X 3 + ... ).! In 1
16 1. (95) 

2 32 128 2 I x 

A.3 Expansion of U and V in Terms of Inverse Powers 

l\1aking a Taylor series expansion of equations (84b) and (85b) 
respectively and integrating yields the expansions of U and V in terms 
of the inverse powers of the argument 

U(x) = 2x! i"/2 (1 + X-I sin2 (3)! d{3 

~ -2 (2j)! -(i-~) 1"/2 . 2i 

= f::'o 2j - 1 (_4)i(j!)2 X 2 0 sm (3 d(3 

co -1 [(2j )!J2 _(i_I) 

= 7r ~ (2j _ 1)( -16)i (i!)2 X 2, 
(96a) 

1[1 + 1 -1 3 -2 + 5 -3 + ] = 7rX2 4 x - 64 x 256 x ... (96b) 

and 

Vex) = 2x-! (,,/2 (1 + X-I sin2 (3)-! d(3 
~ 0 

co (2 ')' ("/2 '" 2 J '-Ci+l) , 2i (3 d(3 = L.J -=--i -" 2 X 2 sm 
i = () ( 4) (J, ) <i 0 

(97a) 

(97b) 

AA Definition of the Ln Functions 

The Lit functions are defined in expression (34) by 

1" (1 - cos na) da 
Ln(x) == -[ +~(1 --)]1, 

o x "2 - cos a ' x ~ 0, n ~ ° (98a) 
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or with the change of variable (3 = a/2 

1,,/2 sin2 n{3 
Ln(X) = 4 (+. 2 Q)!. d{3, 

o x SIn fJ 2 

x ~ 0, n ~ o. (98b) 

I t can be seen directly from equation (98b) that for a fixed value of n 

dLn(x) < 0 
dx ' 

and Lo(x) = O. (99a, b, c) 

From definitions (84b) , (85b) , and (98b) 

Ll(X) = 2[U(x) - xV(x)]. (100) 

The higher L functions are determined by means of a recursion relation. 

A.5 The Ln Recursion Relation 

The Ln recursion relation is 

1 
Ln+l (x) = 2n + 1 [4n(2x + l)Ln(x) - (2n - 1)Ln - 1 (x) - 8nx V(x)] , 

n ~ 1. (101) 

The recursion relation is verified by substituting in the definitions of 
Ln and V, equations (98a) and (85a), and reducing the resulting equation 
to the identity 

o = i7r ta {sinna[x + HI - cos a)]!} da (102a) 

f7r n cos na[x + HI - cos a)] + i sin na sin a d (102b) 
Jo [x + HI - cos a)]~ a. 

The initial functions Lo(x) and Ll(X) are given by equations (99c) and 
(100). Note that for large values of x the recursion relation is unstable 
for increasing n. 

A.6 Power Series Expansion of the Ln Function 

The function Lo(x) is identically zero, equation (99c). The series 
expansion for L1(x), obtained from equations (100), (94), and (95), is 

L () ( 13 2 9 3 5255 4 ) 
1 X = 4 + x - 16 x + 16 x - 12288 x + ... 

(' 3 2 15 3 175 4 ) 11 1
16

1 + 0 - 2x + 4 x - 32 x + 512 x + ... "2 n -; . (103) 

From the recursion relation (101) and the initial functions (99c) and 
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(100) the general form of Ln(x) is 

Ln(x) = un(x)U(x) + vn(x)V(x) (104) 

where un(x) and vn(x) are polynominals of order n or less in x. Because 
of the form of U(x) and Vex), expressions (89) and (90), an expansion 
of the form 

(105a) 

where 

L',i ~ L~,i + L~:i ! In I ~ I (105b) 

clearly exists. 
Expressions for either the coefficients in the polynominals un(x) and 

vn(x) or the L n • i may be determined in closed form by similar methods. 
It has, however, proven more useful to use the recursion relation di­
rectly when the complete expression of the form of expression (104) 
is desired and the expansion (105) when a power series is desired. 

To obtain the Ln. i the expansion (105) is substituted in the recursion 
relation (101) and coefficients of x are compared to obtain a hierarchy, 
in j, of recursion relations, each member of the hierarchy being factor­
able and depending only on the preceding member. These recursion 
relations are then factored and successively summed. 

The coefficient of Xi is 

1 
Ln+l,i = 2n + 1 {4nLn • i (2n - l)Ln-l,i + 8n[Ln,i-1 - Vi-I]}, 

n ~ 0 (106a) 

where 

L n .- I = 0 and V-I = O. (106b, c) 

vVith the definition 

(107) 

the second order recursion relation (106) factors into two first order 
recursion relations 

n~O (108a) 
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and 

n~1. (10Sb) 

The recursion relations for j = 0 and j 
From expressions (99c) and (105a) 

1 will now be summed. 

L o. i = 0 (109) 

so that using expression (l07) 

Ql.; = L l .; . (110) 

For j = 0 using expressions (106b) and (lOGe), the recursion relation 
(lOSb) becomes simply 

By inspection of expression (103) the initial value of Qn.O is 

Ql.0 = L 1.o = 4 

so that from expression (111) 

Qn.O = 4, n~l. 

The recursion relation (10Sb) thus becomes 

4 
L n •o = Ln - 1 •o + 2n - l' n ~ 0 

(111) 

(112) 

(113) 

(114) 

which with the initial value of expression (109) may be summed to yield 

L n . o = n 1 

1 
0, 

4 L-:--=-' 
j=1 2J 1 

n = 0, 

n> O. 

From the form of the expansion (105) it can be seen that 

so that with (99a, b) 

n ~ 1. 

(115a) 

(115b) 

(116) 

(117) 

For evaluating the Qn.l and Ln.1 sums, two relations are needed: 
nil 
LL-
i=1 k=l 2k - 1 

n n 1 
LL-
k=l i=k 2k - 1 

t n - k +1 
k=l 2k - 1 
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= t(2n + 1) (t 2k ~ J - ~ (118) 

and similarly 

n.! 1 1 2
n 1 12 

~ J t; 2k - 1 = 8" (2n + 1) t; 2k _ 1 - 8" n . (119) 

Evaluation of the sums of expressions (118) and (119) is analogous to 
integrating xn log x where n = 0 and 1. With sufficient patience the sums 
can clearly be carried out for any finite n. 

For j = 1, expression (108a) becomes [using expressions (95), (109), 
and (115)] 

Q.+", = Q •. , + sn[ 4 t. 2j ~ 1 - In 1 :61], n ~ 1 (120) 

where the initial function is [using expressions (103), (105), and (110)] 

Q", = L .. , = 1 - In 1 :61· (121) 

Summing [using expression (119)] yields 

1
16

1 n [k 1 116 1 ] Qn+ 1, 1 = 1 - in - + L 8k 4 .?: 2' _ 1 - in -
x k=l 1 =1 J x 

-(2n + 1)' In 1 :61 + 4(2n + 1)' t. 2" ~ 1- (4n' - 1), 

n ~ 1. (122) 

The Ln • 1 recursion relation is then 

L.+ .. , = L •. , + (2n + 1) [ -In 1 :61 + 4 t. 2k ~ 1] - 2n + 1, 

n ~ 1 (123) 

which may be summed using the initial value of expression (121) and 
the sums (118) and (119): 

L.+", = 1 - In 1 :61 [1 + t. (2k + 1)] 
+ j; 4(2k + 1) t, 2j ~ 1 + j; (-2k + 1) (124) 
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J
O, n = 0. 

2(1 I 116 1) 2 (2 ) ~ 1 = 1-2n - n - - 2n + 4n - 1 L.J --- , 2 X k=l 2k - 1 

n ~ 1. 

(125a) 

(125b) 

It is clear that the procedure leading to expressions (115) and (125) 
may be carried onward to lead to an expansion of the form 

L.(x) - L.(O) = + t, [t, (LUl(j, k) t In II; I + L"'(j, k) 

(126) 

where the L(P)(j, k) are functions of j and k only. It is clear that in the 
limit x ~ 0, n ~ 00 an expansion in terms of 

(127) 

may be made where 'A/h is introduced as the finite expansion parameter. 
Replacing the sum in expression (125) by its approximating integral 
yields 

~ [L.(x) - L.(O)] = -2,,' ~ In I ~~ I + o.(~) (128a) 

where 

(128b) 

A.7 Expansions of L in Terms of Inverse Powers 
The expansion of L in terms of inverse powers of the argument is 

obtained by Taylor expansion of expression (98b) and integrating. This 
yields 

-11 7r/2 
sin

2
n{3 

Ln(x) = 4x' 0 (1 + X-I sin2 (3)! d{3 

_ ~ ~lL_ -(i+!) 17r/2 . 2 • 2i 
- 4 ~ (_4)i(j!)2 X 0 sm n{3 sm {3 d{3, 

n ~ 1 (129a) 
where for example 

L ( ) - ~ (2J + 1) _1 __ [(2 j ) !J2 -(i+!) 
I X - 7r f="o (j + 1) (-16)i (j!)2 X • 

(129b) 
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By considering the Fourier decomposition of sini {3 it can be seen that 

1
7r/2 1 {7r/2 

o sin2 
n{3 sin2i 

{3 d{3 = 2 0 sin
2i 

{3 d{3, 

(independent of n) so that 

Lo(x) = 0, 

7r (2j)! 
= 44i(j!)2' 

n > j 

n > j (130) 

L.(x) ~ 1r % (_ ~6j' [~~ji Tx- U
+

l ) + O[x-'·+l) J), n > 1 (131a) 

or identifying with expression (97) 

n>1. (131b) 

Evaluating expression (129a) directly in those cases in which expressions 
(129b) or (131a) cannot be used yields 

Lo(x) = 0, (132a) 

L ( ) = -1/2 _ 37r -3/2 + 157r -5/2 + O( -7/2) 
1 X 7rX 8 x 64 x x (132b) 

L ( ) = -1/2 _ ~ -3/2 + 157r -5/2 + O( -7/2) 
2 x 7rX 4 x 128 x x, (132c) 

L ( ) = -1/2 _ ~ -3/2 + 97r -5/2 + O( -7/2) 
n X 7rX 4 x 64 x x. (132d) 

A.8 The Gaussian Transformation 

In the neighborhood of x = 1, the convergence of the power series 
in x or X-I is rather slow. Either the gaussian or Landen transformations 
may be used to transform the U, V, or Ll functions into a region of rapid 
convergence.16 In the present case, the gaussian transformation is pre­
ferred since it does not introduce incomplete elliptic integrals as does 
the Landen transformation. 

The result of the gaussian transformation is 

Xl = 4x!(1 + x)![(1 + x)! + xl]2, (133a) 

or inversely 

(133b) 
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for the argument and 

Vex) = 2TV(x,), 

TU(x) = U(x,) - ~' V(x,) , 

TL,(x) = L,(x,) + 1 ~'T2 V(x,) , 

for the functions where 

APPENDIX B 

The Force and Stability Functions 

(134) 

(135) 

(136) 

(137) 

This appendix is a compilation of expressions for the force F and 
stability Sn functions. Each of the functions is written in terms of the 
U and V or Ln functions of Appendix A. Expressions in terms of the 
complete elliptic integrals of the first and second kind (denoted by K 
and E respectively) permit the use of tables'4 or numerical computation 
using the Landen transformation or the gaussian transformation. 16 

The gaussian transformation is used in Section A.8. The power series 
expansions provided are necessary in obtaining numerical values of the 
functions for either very large or very small values of the argument and 
also provide the asymptotic forms of the functions. The argument of 
the functions is the domain diameter to thickness ratio, d/h 2ro/h 

B.I The Force Function 

The force function is written in terms of U by comparing the form 
of F, expression (40), and the form of U, expression (84b) , 

(138a) 

This expression is written in terms of the complete elliptic integral of 
the second kind using expression (84d) 

(138b) 

It is expanded about h/ d = 0 using expression (94) 

(d) 1 {[I 3 (h)2 3 (h)4 665 (h)6 
F h =;: 2 + 32 d - 64 d + 24576 d + ... J 
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[ 
1 (h)2 3 (h)4 25 (h)6 + 1 - 8 d + 64 d - 1024 d + 

(138c) 

Additional terms may be generated using expressions (89) and (91). 
It is expanded about djh = 0 using expression (96b) 

(d) d 2 (d)2 1 (d)3 3 (d) 
5 

5 (d)7 F h = h -; h + 4 h - 64 h + 256 h +. .. . (138d) 

Additional terms may be generated using expression (96a). 

B.2 The Radial Stability Function 

The radial stability function is written in terms of U and V using the 
definition of the radial stability function [equation (66a)], the expression 
for F [equation (138a)], and comparing the derivative of F [equation 
(41)] with the form of V [equation (85b)], 

So(~) ~ -~ (~)'[ U(~) - (~)' V(~) - 2 J ' (139a) 

or in terms of Ll using the expression for Ll [equation (100)] and the 
expressions for L1(0) [equations (115) and (116)] 

So(~) ~ -2~ (~)'[ L, (~:) - L, (0) 1 (139b) 

Expression (139a) is written in terms of the complete elliptic integrals 
of the first and second kind using expressions (84d) and (85d), 

So(~) ~ -~ (~)'[ (1 + ~:rE[(l + h'jd'n 

- (~r( 1 + ~;)-! K[(1 + h2jd2)-lJ - 1 J. (139c) 

The expansion about hj d = 0 is obtained using expressions (139b) and 
(103). 

So(~) = ; {[-~ + ~~ (~r - 3
9
2 (~r + ~::756 (~r + ... J 

+ [1 - ~ (~)' + !! (~)' - 1~:4 (~)' + ... J In I ~d I}· 
(139d) 
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Additional terms may be generated using expressions (139a) and (89) 
through (92). The expansion about djh = 0 is obtained using expressions 
(139b), (132b), and (103) to obtain L1 (0) 

S (~) = ~ (~)2 _ ! (~)3 + ~ (~)5 _ l~ (~)7 + ... 
o h 11" h 2 h 16 h 128 h . 

(13ge) 

Additional terms may be generated using expression (129b). 

B.3 The Elliptical Stability Function 

From the general definition of the Sn of expression (66b) the elliptical 
stability function is 

(140a) 

Using expression (139b) for So , the Ln recursion relation (101) to reduce 
L2 to L1 , and V and (103) to obtain L 1 (0), S2 is written in terms of Ll 
and V: 

The function L1 is then eliminated using expression (100) to obtain the 
expression in terms of U and V: 

s,(~) = 9~ (~)'{2 - [1 + 8(~nU(~) + [5(~r + 8(~)']V(~)} 
(140c) 

which then is written in terms of the complete elliptic integrals of the 
first and second kind using expression (84d) and (85d): 

S,~) = 9~ (~)'{2 - [2 + 16(~)'](1 + ~rE[(1 + h'/d'n 

+ [10(~r + 16(~rJ(1 + ~;)-!K[(l + h2
jd

2
)-IJ. (140d) 

The expansion about hjd = 0 is obtained using expressions (140b), (95), 
and (103): 

S,(~) = ~ {[ _161 - !~ (~)' + #838 m' -::::6 (~)6 + 000 J 
+ [1 + ~ (~)' - 13;2 (~)' + 1~:4 (~)' + 00 oJ In I ~ I}o 

(140e) 
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Additional terms may be generated using expressions (140c) and (89) 
through (92). The expansion about d/h = 0 is obtained using expressions 
(140b), (97b), and (132b): 

(d) 2 (d)2 1 (d)5 5 (d)7 
S2 h = 971" h - 48 h + 256 h + .... (140f) 

Additional terms may be generated using expressions (140b), (97a), and 
(129b). 

B.4 The General Stability Functions 

Using the definition (66b) and the expression for So [equation (139b)], 
the Sn are written in terms of the Ln as 

n ~ 2. (141a) 

The leading term of the expansion about h/d = 0 is obtained using ex­
pressions (103), (105), (115), (116), (125), and (126): 

S.(~) ~ ~ [In [ ~ [- 2~:: == ~) t. 2j ~ 1 + 2~:; ~ ~)J + O,(n;), 
n ~ 2. (141b) 

The expansion about d/h = 0 is obtained using expressions (115), 
(116), (129b), and (131a): 

, (d) 1 {2 (d) 2 nIl n-].i 1 
8,. h = n 2 

- 1 -; h ~ 2j - 1 + 2 t; J+1 (-16) i 

[
(2 j ) !J2(d)2i+3 (d)} . C]02 h + 02n+3 h ' n ~ 2. (141c) 

APPENDIX C 

SYJr/,bol List 

Numbers in parentheses are defining equations or figures. 

A exchange constant (71) 
a area 
d mean domain diameter, 2ro (42) 
E(x) complete elliptic integral of the second kind (x = m = e) 
EH energy due to applied field (9) 
EM internal magnetostatic energy (10) 
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E T total energy (7) 
Ew total wall energy (S) 
F(x) generalized radial force function (33, 13S, Fig. 3) 
H magnetic field vector 
H uniform applied field 
H a anisotropy field 
H N nucleation field (74) 
(Hz\v z-averaged z-component of magnetic field (45) 
h plate thickness (Figs. 1, 4) 
K(x) complete elliptic integral of the first kind (x = m = k 2

) 

IC uniaxial anisotropy constant (71) 
Ln(x) integrally defined function (34, 9S) 
l characteristic length, <T w / 47l" M; (67) 
ltD wall width (SI) 
M magnetization vector 
M 3 saturation magnetization 
n rotational periodicity (1) 
Ok terms of order k 
q quality factor, IC/27l"M; = Ha/47l"Ma (72) 
r cylindrical coordinate (Figs. 1, 2) 
r f plate radius (Fig. 3) 
rn nth radial Fourier amplitude (1) 
ro mean domain radius (1) 
Sn(x) nth infinite plate stability function (66, 139, 140, 141) 
s distance between interacting magnetic charges (lOb, 24, 2S) 
U(x) integrally defined function (S4) 
u(x) unit step function (5) 
V volume 
V (x) integrally defined function (S5) 
z cylindrical coordinate (Figs. 1, 4, 5) 
z operator (23) 
z z - z' (21) 
!::.E variation in energy (11, 43) 
!::.rn variation in rn (3) 
!::. On variation in On (3) 
o (x) dirac delta function 
r 0' - 0 (27, Fig. 2) 
'YJ polar azimuthal angle (Fig. 5) 
'YJw polar angle of wall normal (Fig. 5) 
o cylindrical coordinate (Fig. 1) 
0" nth Fourier phase angle (1) 
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Xn wavelength of nth variation (54) 
v azimuthal angle (Fig. 5) 
Vw azimuthal angle of wall normal (Fig. 5) 
~o wall displacement vector (Fig. 5) 
p coordinate in displaced cylindrical coordinate system (35, Fig. 2) 
(J" w wall energy density 
<p coordinate in displaced cylindrical coordinate system (35, Fig. 2) 
Xt transverse susceptibility 
Q magnetostatic potential 
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Physical and Transmission Characteristics 
of Customer Loop Plallt 

By PHILIP A. GRESH 

(Manuscript received June 17, 1969) 

This report covers the principal physical and transm,ission character­
istics of the Bell System customer loop plant. Items covered include a 
statistical characterization of physical composition, measured and cal­
culated transmission characteristics, and measured noise and crosstalk 
performance. A survey conducted in 1964 provided the data base for this 
report and comparisons of data obtained from a similar survey in 1960 
illustrate that, in many respects the com position of loop plant changes only 
slowly with time. Consequently, the 1964 survey results are believed to be 
representative of today's plant. 

The types of analyses presented in this paper are of increasing interest 
to certain Bell System cust01ners because of the increasing number and types 
of services provided over local telephone facilities. 

1. INTRODUCTION 

This report covers the principal results of the 1964 Bell System cus­
tomer loop survey. This survey provides a statistical characterization 
of physical composition, measured and calculated transmission char­
acteristics, and measured noise and crosstalk performance of customer 
loop plant. Comparisons of data obtained from the 1964 survey and 
a similar survey made in 1960 are also presented. 

Several of the principal transmission characteristics of Bell System 
customer loop plant as defined by the 1960 loop survey were published 
in 1962 by R. G. Hinderliter. 1 Additional published data on the trans­
mission characteristics of Bell System toll connections is available in a 
BSTJ article by I. Nasell. 2 

The 1964 Bell System survey was comprised of two separate surveys 
which were merged for analysis and presentation purposes. The basic 
survey was the general loop survey which consisted of a simple random 
sample of 1,100 main stations selected from the population of all main 

3337 
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stations (45, 300, 000) as of January 1, 1964. However, since only 3.25 
percent of all main stations are served by loops longer than 30 kilofeet, 
only 35 samples would have been obtained to define the characteristics 
of the longer loops. Consequently, a long loop survey consisting of a ran­
dom sample of 955 main stations served by loops longer than 30 kilofeet 
was obtained. The data obtained from the long loop survey has been 
used in those instances where characteristics are being expressed as a 
function of length to permit better resolution of the characteristics for 
the longer loops. In both of these sub-surveys, official telephones, foreign 
exchange lines, dial teletypewriter exchange (TWX) lines and special 
service lines were omitted as it was felt that their design would not be 
representative of customer loop plant. 

II. SUMMARY OF RESULTS 

Analyses of data obtained in the 1964 loop surveys lead to six general 
results. 

(i) The average customer loop length is 10.6 kilofeet with only 
10 percent of the main stations located beyond 21 kilofeet from their 
serving office. The length distributions show a slight trend toward longer 
loops between 1960 and 1964, with the average loop length increasing 
by 300 feet. 

(ii) The average 1 kHz insertion loss of Bell System loop plant is 
3.8 dB and 95 percent of all main stations are served by loops having a 
1 kHz loss of less than 8 dB. At 3 kHz, the average loss is 7.8 dB and 
95 percent of the main stations have less than 17 dB insertion loss. 

(iii) The average noise balance of party-line loops is 56 dB, while 
the balance for individual line loops is 69 dB. Only 5 percent of the 
individual line loops have a noise balance of less than 50 dB while nearly 
20 percent of party-line customers are served by loops with less than 
50 dB of balance. The substantially lower balance for party lines is 
largely due to the inherent circuit unbalancing effect caused by the use 
of grounded ringers for party-line service. 

(iv) The average metallic circuit noise (C-message weighted) at a 
customer's station set is approximately 5.5 dBrnc including the noise 
contribution of the central office wiring as well the noise contribution 
of the outside plant facilities. Only 8 percent of the individual lines 
have noise in excess of the Bell System objective of 20 dBrnc. However, 
18 percent of the party-line customers have circuits which have noise in 
excess of 20 dBrnc because of the generally poorer circuit balance of 
party-line circuits. 
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(v) Comparison of measured and calculated transmission char­
acteristics of Bell System loop plant has demonstrated that the outside 
plant cable records are sufficiently accurate'~ to permit characterizing 
the loop plant transmission performance by theoretical calculations 
based on the physical composition of the loops as described in the outside 
plant records. 

(vi) IVlain stations served by loops in excess of 30 kilofeet in length 
were found to be exponentially distributed as a function of working 
length, with the population of main stations reduced by 50 percent with 
every ll-kilofoot increase in loop length (see Fig. 6). It is estimated 
that 1.5 million Bell System customers (3.25 percent of all customers) are 
presently served by loops in excess of 30 kilo feet in length. Due to the 
party-line character of longer loops, the 3.25 percent of all Bell System 
main stations included in the long loop segment of plant used only 
1.7 percent of the working Bell System exchange lines. 

III. DESIGN OF THE SURVEY 

The first steps in the survey were to define the population to be 
sampled and to obtain a complete list of the sampling units. In these 
two surveys (that is general loop and long loop), main stations were 
selected as the sampling units and all Bell System main stations as of 
January 1, 1964, were taken as the population to be sampled. A simple 
random sample was chosen as the sampling plan. 

The sample size of the general loop survey was selected to provide 
data of equal precision to that obtained in the 1960 survey. The design 
parameter chosen was the average distance to the sampled main sta­
tions, and the precision was measured in terms of the width of the con­
fidence interval bounding this average distance. The desired confidence 
interval (at 90 percent confidence level) of ±450 feet on the average 
cable distance to the sampled main stations dictated a sample size of 
1,100 randomly selected main stations. The actual confidence interval 
obtained was ±476 feet. 

In the long loop survey, lack of previous knowledge concerning the 
composition of long loops made it difficult to accurately determine 
the minimum sample size which would provide sufficient precision. The 
design parameter selected for the long loop survey was the average noise 
metallic (C-message weighting) measured at the telephone sets of the 
sampled main stations to a dialed-up termination. The precision aimed 
for was a ±1.0 dB confidence interval (at 90 percent confidence level). 
A sample size of 955 main stations was collected, and the confidence 
interval obtained was ±0.73 dB. 



3340 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1969 

The two surveys had satisfactorily wide geographical dispersion, with 
every associated company (except Canada) contributing to the survey. 
Reference to Fig. 1 will illustrate that the large companies and the 
metropolitan areas contributed heavily to the general loop survey and 
the rural areas contributed heavily to the long loop survey. 

IV. LOOP SURVEY RESULTS-PHYSICAL COMPOSITION 

Data obtained in the loop survey included detailed loop schematics 
indicating the loop composition of each of the loops sampled in the 
survey. All distributions of physical quantities discussed herein were 
derived by analysis of these loop schematics. Since similar data were 
obtained in the 1960 loop survey, comparison of the physical distribu­
tions obtained in the two surveys has also been made. 

Table I gives a summary of the statistics for the principal physical 
properties of loop plant. Data are included for both the 1960 and 1964 
surveys and significance levels for differences of mean values are pre­
sented when meaningful. Cumulative distributions of these factors are 
shown in Figs. 2 through 5. The distribution of working bridged tap 
is not given since 82 percent of the sampled main stations were served 
by loops having zero working bridged tap and consequently the dis­
tribution is not particularly enlightening. 

As indicated in Table I, the estimated average route distance from 
serving central office to main station in the Bell System is 10.6 kilofeet 
with 90 percent confidence that the true mean value lies within ±476 
feet of this estimate. Note that although the estimated mean working 
length in 1964 is over 300 feet longer than that estimated in 1960, it is 
not statistically possible to claim that the observed increase is indeed 

TABLE 1-1964 CUSTOMER Loop SURVEY SUMMARY 

OF MAIN STATION CHARACTERISTICS 

90% Confidence 
Mean (ft) Limits on Mean (± ft) Sign. Level for 

Main Station Difference of Means 
Quantity 1960 1964 1960 1964 in Percent 

Working length 10,288 10,613 450 476 * 
Total bridged tap 2,619 2,478 169 172 * 
Working bridged tap 381 228 107 74 95 
Airline distance 7,604 7,758 353 386 * 
Working length/ 

airline distance 1.45 1.50 0.02 0.03 98 

Drop wire excluded except when individual lengths exceed 400 feet. 
* Levels of significance less than 80 percent indicated by asterisk. 
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an increase. Reference to the cumulative distribution of working length 
depicted in Fig. 3 will, however, show that shifts in the distribution have 
occurred since 1960. Note that the percentage of longer loops increased 
from 1960 to 1964. 

Analysis of the long loop survey data has shown that the Bell System 
main stations served by loops in excess of 30 kilofeet are exponentially 
distributed as a function of working length as depicted in Fig. 6, with 
the main station population diminishing by 50 percent with each 11 
kilofeet increase in loop length. Survey analysis indicates that about 
1.5 million or 3.25 percent (with 90 percent confidence interval of 
±0.2 percent) of all Bell System main stations were located 30 kilofeet 
or more from their serving central offices as of the end of 1964. Due to 
the party-line character of the longer loops, the 3.25 percent of all Bell 
System main stations included in the long loop segment of plant used 
only 1.7 percent of the 39,300,000 Bell System lines working in 1964. 

Analysis of the survey data has also provided valuable insight into 
the type-of-service distribution of Bell System customers and the physi­
cal composition of the plant provided to meet this distribution as shown 
in Figs. 7 to 10. The type-of-service distribution was derived as a 
function of length to the sampled main station and took advantage of 
the pooling of data from the two surveys. To evaluate the physical 
composition (type of facility, gauge, and pair size) of the loop plant as 
a function of distance, the sampled loops from the general loop survey 
were inspected at intervals of 1,000 feet starting at the central office. 
Both the general loop survey and the long loop survey were similarly 
inspected to define these distributions beyond 30 kilofeet. 

The extent of party-line development as a function of loop length 
is shown in Fig. 7. Note the rapid increase in eight-party development 
for loop lengths greater than 30 kilofeet. Examination of the pair size 
distribution as a function of distance from the central office (Fig. 8) 
shows rapidly decreasing pair size with distance (at the 50-kilofoot point 
50 percent of the sampled loops are contained in cables with fewer than 
16 pairs). Similarly, the distribution of gauge shown in Fig. 9 illustrates 
a rapid transition to coarse gauge with increasing distance from the cen­
tral office. For example, at 30 kilofeet 60 percent of the sampled loops 
are composed of gauges coarser than 22 gauge. Note also (Fig. 10) that 
the longer loops are primarily developed with aerial facilities. For 
example, 78 percent of all plant is aerial at the 30-kilofoot point from the 
central office. For the longer loops where small pair sizes are used, the 
pole line costs become a significant portion of the total loop costs and 
this factor is one of the reasons for the present trend towards the use 
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of buried plant. Since the sampled loops were randomly selected from 
all existing plant, buried plant is not as prominent as it would be in a 
sample of new construction. Note, however, that beyond 30 kilofeet, 
buried facilities in 1964 accounted for approximately 20 percent of the 
loops. 

V. 1964 LOOP SURVEY RESULTS--TRANSMISSION PERFORMANCE 

Data obtained in the 1964 loop survey have provided considerably 
more comprehensive knowledge of the transmission performance of 
customer loop plant than heretofore available. In the 1960 loop survey 
all transmission performance data were developed by deriving equivalent 
"T" networks from the information supplied on the loop sketches and 
analyzing these networks for transmission performance at nine fre­
quencies in the voice band. Similar analysis has been performed for each 
of the sampled loops in the 1964 loop surveys, and in addition trans­
mission measurements were made. The measurements covered noise, 
crosstalk, insertion loss at 1, 2 and 3 kHz, and dc resistance. The com­
bination of these two sets of transmission performance data (one cal­
culated and one measured) permits three types of analysis: 

(i) changes in transmission performance since 1960 by comparison 
of calculated 1960 data with calculated 1964 data, 

(ii) comparison of measured versus calculated data for the 1964 
survey, and 

(iii) provision of heretofore unavailable data on the noise and cross­
talk performance of customer loop plant. 

Since measured insertion loss data was not obtained in the 1960 
survey, comparison of 1960 and 1964 data must be based on calculated 
values. Figure 11 depicts the 1 kHz calculated distributions for both 
surveys. It can be seen that insertion loss performance has remained 
virtually unchanged since 1960. 

For those transmission characteristics where measured data are 
available in addition to the analytically derived data, minor differences 
in performance are exhibited by the two distributions of data (Fig. 12). 
In this regard it is important to realize that the measured data should 
provide a more accurate estimate of performance. There are several 
reasons for greater confidence in the measured data. First, possible in­
accuracies in cable records or errors in transferring data from the records 
to the loop sketches can introduce errors in the calculated data. Second, 
errors in construction, such as omission or improper connection of load­
ing coils, cannot be detected from the records. Third, use of calculated 
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data assumes that all cables exhibit nominal characteristics and con­
sequently do not reflect manufacturing tolerances and environmental 
factors. 

The cumulative distributions of insertion loss at 1, 2, and 3 kHz for 
customer loop plant as derived from both measured and calculated 
data are presented in Fig. 12. These insertion loss measurements and 
calculations were made with a 900 ohm source and load as depicted in 
Fig. 13. l\1easured loss was found to be consistently higher than calcu­
lated loss across the entire voice frequency band. The absolute dif­
ferences between measured and calculated losses are small however, as 
indicated by the differences in mean losses. For example, at 1 kHz the 
measured loss was 3.8 dB and the calculated loss was 3.5 dB. This com­
parison of measured and calculated insertion losses demonstrates the 
feasibility of characterizing the loop plant transmission performance by 
theoretical calculations based on the physical composition of the loops 
as described by outside plant records. Still referring to Fig. 12, note 
that approximately 95 percent of all Bell System main stations are 
served by loops having a 1 kHz insertion loss of less than 8 dB with a 
mean loss of 3.8 dB. Similarly, at 3 kHz the 95 percent point is 16 dB 
and the mean loss is 7.8 dB. A scatter diagram of the 1 kHz measured 
insertion loss as a function of loop length is shown in Fig. 14. This dia­
gram was obtained by merging the data from both the general loop 
survey and the long loop survey and indicates that the high loss loops are 
not limited to the long loop category. The high losses observed on some 
of the short loops generally reflect excessive bridged tap. 

An insertion loss measurement of particular interest to designers 
of data equipment is the slope of loss versus frequency from 1000 to 
2750 Hz. Cumulative distributions of the 2750 - 1000 Hz insertion 
loss (insertion loss measured with 900 ohm source and load) have been 
provided for all Bell System loop plant and for those loops serving 
business customers in Figs. 15 and 16 respectively. 

Another important transmission characteristic is return loss, signifi­
cant from echo and singing considerations. Return loss performance was 
not available from the measured data; consequently, it was cal­
culated. Table II provides 1964 loop survey return loss results for nine 
frequencies and Fig. 17 presents the cumulative distributions and 
histograms for the 3 kHz singing return loss and echo return loss (equal 
weighting of the 500 to 2,500 Hz band). These data are all developed 
on the basis of looking into the customer loop at the central office end 
of the loop. The return loss is obtained by matching against a 900 ohm, 
2.16 JLF termination at the central office, with the customer end of the 
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TABLE II - CALCULATED RETURN Loss FROM OFFICE 

TOWARD STATION* 

1964 

90% Confidence 
Frequency (Hz) Mean (dB) Interval (± dB) 

200 8.0 0.11 
300 10.2 0.12 
500 13.4 0.17 

1,000 15.4 0.30 
1,500 13.1 0.27 
2,000 10.9 0.25 
2,500 9.1 0.20 
3,000 7.7 0.16 
3,200 7.1 0.15 
Echo 11.2 0.15 

* Station end of loop terminated in impedance of "off-hook" station set. 

loop terminated in the impedance of the "off-hook" station set. Similar 
data on return loss are presented later from the station end of the loop. 

The comparison of measured versus calculated loop resistance shown 
in Fig. 18 indicates that for general loop plant there is no significant 
difference between measured and calculated data but calculated loop 
resistance is slightly higher than measured resistance (574 ohms cal­
culated, 567 ohms measured). Measured values may have been in­
fluenced by the fact that measurements were made during the winter. 
Calculated resistances were based on an average temperature of 68°F. 

Theoretical calculations cannot be made of all transmission perform­
ance characteristics. Two such examples are noise and crosstalk. Since 
these characteristics are dependent upon external influences (induction 
from adjacent power lines, cable pair balance and the particular pair 
assignment), field measurements were made on each of the sampled 
loops using a Western Electric Company model 3A noise measuring set. 
The noise and crosstalk measurements were made as depicted in Figs. 
19 and 20. 

It is convenient to analyze loop noise in terms of the two factors 
which contribute to the resultant interference. The first of these is the 
magnitude of open circuit longitudinal voltage induced from power 
lines and the second is the circuit balance of the cable pairs and central 
office equipment. The cumulative distribution of the open circuit longi­
tudinal voltage for general loop plant is shown in Fig. 21 for 3 kHz flat 
weighting. This voltage is induced in a longitudinal mode, and conse­
quently only that portion of it which is converted to the metallic circuit 
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will create an interference problem. The circuit balance reflects the 
extent to which the longitudinal voltage is converted to metallic voltage 
and is, therefore, a measure of the susceptibility of the telephone plant 
to inductive interference such as power-line hum. * 

As seen in Fig. 22 party lines are much more susceptible to power­
line hum than individual lines because of the unbalance introduced by 
the grounded ringers associated with party-line station sets. On the aver­
age, individual lines have approximately 12 dB better balance than party 
lines. Part of this is a result of the shorter length distribution of in­
dividual lines which offers less opportunity for cable pair unbalances 
to accumulate; but it is reasonable to expect a balance improvement of 
10 dB with ringers isolated from ground. 

The combination of the induced longitudinal voltage and the circuit 
unbalance produces the metallic noise distribution at customers' station 
sets (in off-hook state) as shown in Figs. 23 and 24. For comparison 
purposes, the C-message weighted noise to ground (longitudinal noise) 
is also shown on these figures. Figure 23 depicts the noise contribution 
of the loop plant only, while Fig. 24 includes the noise contribution of 
the central office wiring. In both cases the station end of the loop was 
terminated in an off-hook 500-type station set with the transmitter 
and receiver replaced by equivalent resistors. The metallic noise has been 
measured with C-message weighting to reflect the relative interfering 
effects of the noise on voice transmission. The important limits to con­
sider are the Bell System long-term noise performance objective of 20 
dBrnc and the immediate remedial action limit of 30 dBrnc. As seen 
in Fig. 24, only 8 percent of the individual lines had total metallic 
noise in excess of 20 dBrnc. However, 18 percent of the party-line cus­
tomers have noise in excess of 20 dBrnc. 

The near-end crosstalk coupling loss characteristics of customer loop 
plant as derived from measured data from the general loop survey are 
shown on Fig. 25. Along with the overall distribution of crosstallc 
coupling loss is shown the distribution for nonloaded loops only (84 
percent of all sampled main stations). The nonloaded loop distribution 

* Loop circuit noise balance is defined here as 

20 1 open circuit longitudinal voltage 
OglO metallic voltage 

where both voltages are measured with C-message weighting. The validity of this 
definition depends on the assumption that the longitudinal voltage induced from 
adjacent power lines is the only source of metallic noise. This is generally not true 
when the noise to ground measures less than 20 dBrnc, and consequently loop 
balance for such loops cannot be computed from the measurements. 
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can be approximated by a normal distribution with a mean crosstalk 
coupling loss of 115 dB and a standard deviation of 12 dB. A comparison 
of these two curves indicates that the poorer crosstalk performance of 
longer loaded loops dominates the low loss tail of the general loop survey 
distribution. 

The final transmission characteristic to be discussed is the loop input 
impedance as calculated both at the central office and at the station set. 
Figure 26 presents the plot of loop input impedance as seen at the 
central office as a function of frequency (not including central office 
wiring or equipment). For these calculations the station end of the 
loop was terminated in an off-hook 500-type station subset with the 
transmitter and receiver replaced by equivalent resistors. Curves have 
been provided separately for loaded and nonloaded loops because of 
the large difference in their characteristic impedance. Also shown is the 
characteristic impedance of the central office matching network as a 
function of frequency. The function of this network is to provide high 
return loss performance across the voice frequency band by matching 
as close as possible the impedance of the various loops. It is apparent 
that both the nonloaded loops and loaded loops should have their 
highest return losses around 1 kilohertz and that the loaded loops 
should perform more poorly than nonloaded loops at the lower fre­
quencies. 

Plots of mean input impedances, such as in Fig. 26, are useful for 
indicating the general input impedance behavior as a function of fre­
quency. Variations that occur at each frequency, and their effects on 
return loss, are best shown as scatter diagrams. Figures 27 and 28 
present the loop input impedance at 1 kHz for nonloaded and loaded 
loops. Superimposed on all scatter diagrams are return loss circles 
referenced to the 900 ohm and 2.16 JLF matching network. Any loop 
having an impedance lying within a particular circle will have a return 
loss, when measured against the specified matching network impedance, 
which exceeds the given return loss value. Visual examination of the 
scatter pattern as it relates to the return loss circles provides a ready 
means of evaluating the return loss performance of various segments of 
the loop plant (assuming, of course, that the input impedances of loops 
in that segment are known). 

The range and shape of the input impedance scatter pattern at each 
frequency are of interest because they point up the difficulty of designing 
a simple matching network which, at even a single frequency, ,vill 
provide very high return losses for nearly all loops. Considering the 
characteristics of the nonloaded loops shown in Figure 27 it is evident 
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that many of the loops tend to follow a smooth curve, while the others 
are scattered about this curve. The smooth curve results from the varia­
tion in loop length, while the scatter is due to the effects of bridged tap, 
overgauging, and variations in types of subsets. 

Perhaps of particular interest to Bell System customers are the input· 
impedance characteristics of Bell System loop plant as seen from the 
station end of the customer loop. The input impedance of a customer 
loop as measured at the station set can vary considerably based on the 
type of facility connected to the loop at the central office. Various cir­
cuit connections may involve use of four-wire trunks, two-wire trunks 
or intraoffice circuits. In the following analysis a 900 ohm and 2.16 ,uF 
central office termination has been used to represent a four-wire trunk 
termination, and the midsection input impedance of 22 gauge H88 
loaded cable has been used to represent a two-wire trunk. For the simula­
tion of intraoffice calls, a lVlonte Carlo technique was used to select a 
random sample of 500 pairs of loops from the 1,100 loops in the general 
loop survey. A loop was randomly selected as the sample loop, and then 
the input impedance (from the central office) of another randomly 
selected loop was chosen for the central office termination. 

The 1,100 loops of the 1964 general loop survey were segregated into 
two groups (loaded and nonloaded loops) for all but the simulated 
intraoffice calls because of the great differences in impedance range of 
the two populations. Presentation of scatter diagrams of input im­
pedance from the station set has been limited to 1 and 3 kHz. These 
return loss circles were generated assuming the use of a 500-type station 
set and it was further assumed that the 500 set was operating on a cur­
rent equal to the average loop current of 45.5 rnA. 

Figures 29 through 32 are the input impedance scatter diagrams for 
loops with a simulated two-wire trunk (22 gauge H88 loaded cable) 
termination at the central office. The scatter is primarily a result of 
overgauging, open wire, and bridged tap or varied end section length. 
Smoothed curves of the mean input impedances of loaded and non­
loaded loops with a 22 gauge H88 cable termination are presented in 
Fig. 33. Scatter diagrams for the loops with a central office termination 
of 900 ohms and 2.16 ,uF (simulated four-wire trunk) are presented in 
Figs. 34 through 37. The general input impedance behavior of these 
loops as a function of frequency is indicated in Fig. 38 by the plot of the 
mean input impedances at nine voiceband frequencies. 

The scatter diagrams and the mean input impedance curve for the 
simulated intraoffice calls are shown in Figs. 39 and 40. The effect of 
connecting together two loops, one of which is terminated by a station 
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set, and the other whose input impedance is calculated at its station 
set, is shown by the mean input impedance curve for simulated intra­
office connections in Fig. 41. This curve has a shape characteristic of 
longer nonloaded loops. The mean input impedance curves for non­
loaded loops with simulated two- and four-wire trunk terminations at 
the central office are also shown in Fig. 41. The maj or differences in the 
characteristics of these curves are at the low frequencies where the shunt 
capacitance of the cable masks the termination less than it does at high 
frequencies. 
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Fig. 1- Geographic distribution of sampled loops for the 1964 customer loop 
survey. Eleven hundred loops were sampled for the general loop survey and 955 
loops were sampled for the long loop survey. 
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ohm output termination; the 3 A noise measurement set is equipped with 900 
ohm termination. 
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Fig. 16 - Distribution of insertion loss slope between 2750 and 1000 Hz for 
business loops only. 
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3376 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1969 

RESISTANCE IN OHMS 

Fig. 30 - Nonloaded loop input impedances at 3 kHz measured from station 
set with a simulated two-wire trunk termination at the central office. Return 
loss circles based on 500-type subset impedance. 
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set with simulated four-wire trunk termination at the central office. Return loss 
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Fig. 37 - Loaded loop input impedances at 3 kHz measured from station set 
with simulated four-wire trunk termination at the central office. Return loss cir­
cles based on 500-type subset impedance. 
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Fig. 40 - Input impedance of all loops at 3 kHz measured from station set 
with a simulated intraoffice circuit termination at the central office. Return loss 
circles based on 500-type subset impedance. 
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Radio-Relay Antenna Pointing for 
Controlled Interference with 

Geostationary Satellites 

By C. W. LUNDGREN and A. S. MAY 

(Manuscript received July 23, 1969) 

We present analytical methods (i) for calculating microwave radio re­
fraction for negative and positive initial ray angles accounting for station 
height and (ii) for determining refraction-corrected ranges of antenna point­
ing azimuth within which mutual interference with geostationary satellites 
in shared frequency bands is likely. 

r. INTRODUCTION 

When radio-relay and communication satellite systems share fre­
quency bands, as they do at 4 and 6 GHz, it is necessary to impose 
restrictions on both systems so that interference is not excessive. The 
CCIR (International Radio Consultative Committee) recommends 
that radio-relay antennas maintain a specified angular separation with 
respect to the geostationary (stationary equatorial) orbit or, where 
this is not practicable, the application of power limitations to terrestrial 
radio transmitters involving reception at the satellite. While the above 
restrictions protect satellites, designers of terrestrial systems should 
be aware of possible interference into radio-relay systems from satellite 
radiation arriving at low elevation angles and close to the on-beam 
directions of receiving antennas. Because the dielectric constant of the 
earth's atmosphere varies with altitude, the radio-relay beam is not 
straight, and atmospheric refraction must be considered when computing 
the directions of radio beams for which the restrictions apply. 

1.1 Simplified Exposure A10del 

Figure 1 introduces the geometry of the problem and illustrates 
significant trends and limits. Radio-relay site P located at North Lati­
tude cp degrees is shown as viewed from above the earth. An arc of the 
geostationary satellite orbit is also shown. The orbit longitude of point 
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Fig. 1 - Geometry relating unrefracted horizontal radio-relay beams and the 
geostationary orbit. 
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Sp and the earth longitude of site P coincide numerically (that is, Sp 
is in the direction of true south, PS~ , observed from P). 

Two radio rays from P intercept the orbit symmetrically at points S. 
The controlling geometric relationships are based upon triangles formed 
by points S, P, and geocenter O. Angle O-P-S is determined by the 
elevation angle of the radio-relay antenna including ray bending due 
to atmospheric refraction. A special case is depicted in Fig. 1, wherein 
unbent intercepting rays PS and also ray PS~ are assumed to lie in the 
local horizontal plane at P and remain tangent to the earth sphere at P. 
Thus, angles S-P-S~ are always antenna pointing angles to orbit inter­
ception referred to "true south." 

It is instructive to visualize the relationship between latitude cp at P 
and the location of orbit intercepts S, for a given fixed triangle OPS. 
As points S approach Sp , the constraints imposed above require that 
the station latitude cp approach a maximum latitude "visible" to the 
orbit. The resulting single pointing direction to orbit intercept is due 
south (from P to Sp). Conversely, the maximum separation between 
points Sand Sp obtains when cp is zero (for site P located on the equator). 
Since both intercepting rays are tangent to the equator at P, the limiting 
pointing directions are due west and due east. 

Note that a rotation in azimuth of the antenna (about the local 
vertical axis at P) between known orbit-intercept directions results in 
radio rays PS which fall below the orbit as viewed from P; rotations 
beyond these "critical azimuths" result in rays above the orbit. 

1.2 Computations 

Given the latitude and elevation angle of a microwave radio-relay 
antenna, one can calculate the pointing azimuth for which, neglecting 
refraction, the main beam axis intercepts the geostationary orbit. This 
calculation is repeated to produce screening charts like Fig. 2. Such 
charts are adequate for quickly determining a hazard condition, but 
often the true critical azimuths must be approached closely while main­
taining tolerable interference levels. 

A graphical procedure proposed for the convenience of system plan­
ners provides pointing angle estimates for most stations when caution 
is exercised in those steps accounting for atmospheric refraction. 1 An 
analytical technique adaptable to machine calculation is also required 
for rapid, accurate screening of large numbers of existing and proposed 
radio-relay sites for potential interference exposures. Precise evaluations 
are required for cases of unavoidable exposure. 

The method described in following sections can be used by the system 
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Fig. 2 - Screening chart, neglecting refraction. 

planner to determine critical azimuths and the ranges of azimuths to be 
avoided (accounting for atmospheric refraction) for prescribed minimum 
angular separations between main beam axes and the geostationary 
orbit. 

The Central Radio Propagation Laboratory (CRPL) Exponential 
Reference Atmosphere is adopted for the generation of microwave 
radio refraction curves by accounting for station heights and negative 
antenna elevation angles, for several representative refractive indexes.2 

Earlier extrapolations are based upon upper limits of the total bending 
associated with assumed earth-grazing rays. 3

.4 

A refraction anomaly arising from a temperature inversion, storm, 
ducting, or other departure from an assumed representative radial ray­
bending model precludes an absolutely confident evaluation of any given 
exposure at a given time. These phenomena are usually localized. How­
ever, the intent of these computations is to protect the geostationary 
orbit against continuous interference arising simultaneously from a large 
number of terrestrial systems. 

Following a development of the refraction model, we derive the critical 
pointing azimuth corresponding to orbit intercept. The geocentered 
longitude displacement between the radio-relay site and the point where 
the refracted beam intercepts the orbit is next determined by spherical 
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geometry. Then the apparent slope* of the geometric orbit trace, as if 
viewed unbent by refraction from the station, is obtained corrected for 
aspect (also dependent upon antenna elevation angle and concomitant 
refraction). Using the refraction data converted to geometric elevation 
angles (as without ray bending or obstruction), the geometric orbit 
is adjusted to the apparent position and shape that would be observed 
at the radio site. This apparent orbit is hereafter termed the refracted 
orbit. Subsequent sections describe the determination of azimuth zones 
to be avoided for prescribed beam-orbit separations and the permis­
sible transmitted power. Appendices are included to: provide means for 
estimating initial ray angles from commonly available radio-relay in­
formation when actual antenna angles are unknown; solve by manual 
calculation a representative numerical example, giving the applicable 
equations for each step; and verify governing equations using a different 
analytical approach. 

II. DETERMINATION OF REFRACTION FOR POSITIVE AND NEGATIVE ANTENNA 

ELEVATION ANGLES 

2.1 Ray Tracing Equations 

In the following equations eo is the initial anglet of a ray as it leaves 
the earth's surface and r is the total refractive bending corresponding 
to eo. Figure 3 illustrates this relationship and shows the geometric 
director with elevation angle € to an intercept with the geostationary 
orbit at S. Also shown on an arc through S centered at P is the apparent 
position of the intercept Sa and a horizontal reference, zero-elevation 
point A. The latter relationships are used in a subsequent section to 
describe a method for constructing the refracted orbit. 

Angle € is approximately, but in general not identical to, eo - rt. 
However, this approximation is reasonable for rays between terrestrial 
antennas and geostationary satellites well beyond the earth's atmosphere 
when relatively small effects of parallax associated with the controlling 
portion of the atmosphere near the earth's surface are neglected. 5 

Figure 4 depicts a ray entering the earth's atmosphere and the result-

* The first derivative with respect to pointing azimuth (azimuth-elevation plot 
of the orbit) is more completely defined in Section V. 

t ()o is generally used in ray-tracing equations to denote the initial ray elevation 
angle with respect to the local horizontal and is synonymous with ll!o used in 
subsequent sections to denote a radio-relay antenna beam elevation angle 
(namely, ll! in Figs. 6). 

t Calculations using equation (5) show that the actual ray angle with respect to 
the geocenter differs from that resulting from the assumption e = Bo - T by ap­
proximately 1.5 minutes of arc for limiting conditions used herein. 
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Fig. 3 - Refracted ray. 

ing path of the ray due to the refractive gradient. Depending upon the 
angle of arrival of the ray when it enters the atmosphere, the refraction 
causes it to intercept the earth, graze the earth, or become tangent to a 
unique earth-centered sphere at some height above the surface. If the 
ray does not intercept the earth it continues out into space again, being 
subjected to approximately the same refraction in exit as it encountered 
upon entering. 

At any point on the ray trace, the angle the ray makes with the local 
horizontal at that point is denoted by o. The angle between the tangents 
to the ray at any two points (a, b) is a measure of the refractive bending 
between them and is denoted by rea, b). 

The following presentation of refraction is based largely upon equa­
tions given in Refs. 2, 6, and 7 for zero or positive initial ray angles and 
as interpreted by the authors for application to negative angles. Appro­
priate uses of the equations and their application to the problem are 

o 

Fig. 4 - Maximally refracted nongrazing ray. 
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explained, but the reader is directed to the references for complete 
derivations and limitations including sensitivities to the microwave 
frequencies involved. 

The radio refractive index n varies with atmospheric pressure, relative 
humidity, saturation vapor pressure and temperature. The lower limit 
for n is unity-no atmosphere, while the upper limit is determined by 
local climatic conditions. For the southeastern section of the United 
States, a typical range of n at mean sea level is 1.00025 to 1.0004. In 
equations involving refraction it is convenient to express refractivity 
as N where N = (n - 1) X 106 or, for this case, N values are 250 and 
400 (N units). The average decay of N is approximately exponential 
with height and the difference in N between the surface and a height 
of 1 km above the surface is given by2 

6.N = -7.32 exp (0.005577 N 8)' (1) 

The subscript 8 denotes N at the surface. The decay constant with 
height is expressed by2 

(2) 

N at any height h (kilometers above the radio site surface elevation) is2 

(3) 

where h8 is the surface elevation above mean sea level corresponding 
toNa • 

N /I is sensitive to local elevations and hence, charts of N 8 for moun­
tainous regions are difficult to use because the N 8 contours are irregular 
and closely spaced. Therefore, obtaining an appropriate value of Ns 
for use in equations (1), (2), and (3) for a particular site is often dif­
ficult. However, charts are available giving N s reduced to mean sea 
level equivalents No which, in effect, reduce the height-dependent N 8 

values to a common base.8 Since charts of No are more easily interpreted 
and a single value of No usually applies over a large geographical area, 
they are used in this paper. 

No and Ns(h) are related6 by No = N. exp (-h/7). Conversely, for a 
given value of No, N s for surface height hs above mean sea level is 
determined from the expression 

N. = No exp (-hs/7), hs ~ o. (4) 

The Ns value obtained from equation (4) is used in equations (1), (2), 
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and (3). Figure 5a was generated using equation (4) and, for manual 
calculations, is convenient for determining N •. 

The conversion between No and N. above considers only the dry air 
effects of temperature and pressure related to the difference in elevation 
between mean sea level and the station surface height, whereas con­
stants of the expression given for D.N account for all terms contributing 
to a change in refractivity of the atmosphere with elevation above the 
surface height. 

A relationship exists between angle (}o at the point of origin of the ray 
and (} at any other point on the ray trace which is expressed by 

(1 + N. X 10-6)(a + h.) cos (}o 

= (1 + Nh X lO-6)(a + h) cos (} = C, (5) 

where C is a constant and a is the earth's radius at mean sea level (in 
kilometers). Thus, angle (} for any point on the ray trace is determined. 
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The incremental bending of the ray between closely spaced points 
on the trace is given by 

T(I, 2) = - ...!!:. cot O. I
n' d 

n, n 
(6) 

As suggested by Schulkin, the term l/n is taken as unity with an error 
of less than 0.0001 in the computed refraction and, for an iterative 
solution, equation (6) is expressed as7 

f
Ll.n. 

T(I, 2) = - cot 0 d6.n. 
l\n, 

(7) 

Shulkin also shows7 that equation (7) is approximated by (6.n1 -
- 6.n2)/Om where 6.n is n - 1 and Om is (01 + 02)/2. Hence the in­
cremental bending between two closely spaced points on the ray trace 
is expressed by 

(1 ') = 2(Nl - N 2 ) X 10-
6 

d 0 < 0 < 100 
T ,... 0

1 
+ O

2 
ra., = 0 = , (8) 

where Nl and N2 ,01 and O2 are the N values and ray angles (in radians), 
respectively, at the closely spaced points. 

2.2 A JJ1 ethod for Calculating Refraction 

The following paragraphs describe a procedure for calculating re­
fraction curves of the form in Figs. 6 for any values of No which is also 
applicable for the direct calculation of refraction corrections. 

2.2.1 Zero and Positive Initial Angles (+00 ) 

First assume a value of No, a station height h. , and an initial ray 
angle 00 • Equation (4) is used to determine N. for height h. and equa­
tions (1), (2), and (3) to determine N for a height h, where h = h. + 
6.h*. Equations (5) and (8) then give the ray angle 0 at the incremental 
height and the bending T in the first increment. For each successive 
increment of height, the previously solved-for values of Nand 0 become 
the initial values for equations (3), (5), and (8). The values of T for each 
iteration are accumulated to give the total bending for h. and 00 , 

Repeating the above procedure with other values of 00 results in data 
points to be used in plotting the refraction curve for the assumed sta­
tion height h.. A complete repetition of the above, beginning with 

* Incremental heights must be small in the lower atmosphere where n changes 
rapidly but may increase at the higher elevations. However, for the generation of 
Fig. 6, a const.ant increment of 0.25 km was used to a height of 90 km. 
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other station heights, results in a family of curves (namely, hs ) for 
zero and positive initial ray angles. 

2.2.2 Negative Initial Angles (- (} 0) 

The calculation of refraction for negative initial ray angles requires 
a modification of the technique used for positive angles. Note in Fig. 4 
that the bending of the ray from T3(h3 , - (}3) to Tl is the same as that 
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of the ray from Tl (hI' 00 = 0) to T3. The latter is determined utilizing 
the equations for positive angles but in a slightly different manner. 

First, assume a grazing ray (h = 0, 00 = 0) and, using the iterative 
method previously described, compute the bending r and angle 0 at 
each of the specific elevations h. desired for the chart, that is, in the case 
of Figs. 6: 1,2, and 3 km. The value of r for each height is then added to 
the maximum r determined for the same height (when 00 is zero as 
found in Section 2.2.1) to obtain the total bending for a ray with the 
initial angle, - 00 • In Fig. 4 this is r(T3, Tl) plus r(Tl, S). Repeating 
the above but beginning with h = 1, 2, and so on, provides the data 
needed to extend the curves for positive initial angles into the negative 
range. 

Note in Figs. 6 that all refraction curves terminate on a dotted ex­
tension of the zero-elevation ray representing a maximally refracted 
grazing ray. For a given height with an initial angle more negative than 
that represented by the point of termination, the ray is intercepted by 
the earth. 

2.2.3 Direct Machine Calculation 

For machine calculations it is desirable to compute the refractive 
bending directly without the use of refraction tables. For zero and 
positive initial ray angles, the calculation is straightforward as is des­
cribed in Section 2.2.1. However, for a ray originating at a specific height 
with a negative initial angle ()o , it is first necessary to determine the 
height of the ray where () is zero (hI at Tl in Fig. 4). A variation of 
equation (5) permits this determination. If the right side of equation 
(5) represents point Tl in Fig. 4 and the left the initial station, say T3 
at height h3 , then 

(1 + N T3 X 10-6
) (a + hT3) cos ()o 

= (1 + N Tl X 10-6 )(a + hT1 ) = C. (9) 

The variables for the left side of equation (9) are all determined and 
evaluation yields the constant C. Then, values are assumed for hTl 
beginning with zero, N 7'1 determined, and the right side evaluated until 
the result is equal to C. After hTl is determined, r(T3, Tl) and r(Tl, S) 
are calculated as described in Section 2.2.2 and added numerically 
to give the total refractive bending. However, when hTl is assumed to 
be 0 for the initial iteration and the right side is larger numerically than 
C, the beam intercepts the earth and a solution with angle ()o is not 
possible. In such cases it is often desirable to determine the initial graz­
ing-ray angle to the mean sea level horizon, which is accomplished by 
incrementing 00 upward until the equation is satisfied. 
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2.2.4 Angle from the Transmitting Site to the Radio Horizon 

The radio horizon, accounting for refraction and average local terrain, 
is determined by a variation of equation (9). Assuming that the height 
of a receiving station represents the average terrain height for some 
distance beyond, the initial angle aH (= (}o) of a ray which just grazes 
the terrain represents the angle to the radio horizon as seen from an 
elevated transmitting site. Letting the left side of equation (9) represent 
the transmitting location, the right side the receiving location (where () 
is zero), and solving for aH yields 

-1 [(1 + NR X 10-
6
)(a + hR )] d h h 0 

aH = cos (1 + NT X 10 6)(a + hT) ra, T ~ R, aH ~ , 

(10) 

where the subscripts Rand T refer to the reCeIvmg and transmitting 
stations, respectively. N R is obtained by equation (4) and NT by equa­
tions (1), (2), and (3), substituting N Rand hR for N. and h. , and hT 
for h. (For manual calculations, N Rand N T may be determined from 
Figs. 5. First enter Fig. 5(a) with hR ,No, and read N R from the ordinate. 
Then enter Fig. 5(b) with (hT - hR ), N R and read NT from the ordinate.) 

2.2.5 Refractive Index Limits 

We now illustrate the importance of including the effects of refraction 
in orbital computations relating to terrestrial radio-relay systems. 
Table I (reflecting the use of equations and techniques discussed in 
subsequent sections) demonstrates parametrically the sensitivity to 
radio refractivity of the orbit-intercept pointing azimuth and the com­
puted terrestrial transmitter power limitation. The 8 dB variation in 

TABLE I-INFLUENCE OF REFRACTION 

Station Statistics Assumed Values 

Path azimuth 103.5 degrees from true north 
Station latitude 55.0° north 
Station elevation mean sea level 
Antenna elevation angle ao o degrees 

Parametric results Computed values 

Radio refractivity N 8 , N units 0 250 400 

Geometric elevation angle, Eo, degrees 0 -0.555 -1.27 
Critical azimuth (from north),· degrees 102.6 101.76 100.7 
Maximum transmitter power, dBW 47 50.7 55 
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the power shown in the table indicates clearly that refraction must be 
included in calculations and that limits for refractivity should be care­
fully considered. 

World charts of No in Ref. 8 indicate appropriate limits of No are 
250 and 400. At specific locations and for short time intervals, the index 
may not fall within these limits. However, localized conditions will 
not affect large numbers of stations at any given time and a wider 
range of No would unnecessarily broaden the restrictive zone for radio­
relay systems. 

We suggest that the above limits be adopted for standardized cal­
culations. For a specific case where an antenna pointing angle is close 
to the orbit and transmitter power limitations are restrictive, refractive 
limits applicable to that locale should be used. 

2.2.6 Adjustment of Computed Geometric Orbit Traces for Atmospheric 
Refraction 

For many solutions, particularly those involving graphical procedures, 
it is desirable to "elevate" a computed geometric orbit trace to its 
apparent (refracted) position and shape. Such an adjustment yields a 
presentation permitting a given, arbitrarily-shaped radio beam power 
profile to be related unrefracted and hence undistorted to the easily 
obtained configuration of the refracted orbit. Figures 7 are charts to 
enable this manipulation, produced from Figs. 6 by plotting (a - Ta) 

versus T a • A method for using these charts is given in Section VI. 

III. DETERMINATION OF THE POINTING AZIMUTH TO ORBIT INTERCEPT 

Recall that the elevation angle (with respect to local horizontal) of 
the geometric director shown in Fig. 3 is denoted by E. Hence, station 
geometric elevation angle Eo may be replaced by a o - Tao where a o is 
the initial antenna beam elevation angle and Tao is the corresponding 
refraction correction. (A method for determining a o is given in Appendix 
A.) 

Note that available information for established radio-relay routes 
in the United States giving antenna elevations, path distances, and 
antenna elevation angles is generally expressed in units of feet, statute 
miles, and degrees, respectively; it is necessary to convert these quanti­
ties into kilometers and radians for use in many of the expressions which 
follow. 

Inspection of Fig. 8 shows that the azimuth displacement from the 
meridian through a station located at P to an intercept with the geo-
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stationary orbit is identical to angle A of spherical triangle PES'. 
From laws for right spherical triangles 

tan cp 
cos A = tan {3 , (11) 

where cp is the latitude at station P, and {3 is the arc equivalent of angle 0 
of plane triangle OPS. Note that {3 is numerically equivalent to the 
maximum visible latitude for assumed radio-relay antenna beam eleva­
tion angle a o and concomitant total ray-bending angle Tao. 

Angle {3 is determined from triangle OPS using the Law of Sines. 
This triangle is redrawn in Fig. 9, where 

sin n _ sin (7r /2 + Eo) 

a R 

n = sin -1 (1(-1 cos Eo), (12) 

where Eo is the station geometric elevation angle corresponding to a o , 

a is the earth radius, and R is the orbit radius, R/a = K. From inspec­
tion, {3 = 7r /2 - n - Eo • Substituting for n yields 

{3 = cos- 1 (K- 1 cos Eo) - Eo • 

Substituting equation (13) for {3 in equation (11) results in 

A -I [ tan cp ] = cos 1 • tan [cos - (1(-1 cos Eo) - Eo] 

(13) 

(14) 

IV. DETERMINATION OF RELATIVE LONGITUDE BETWEEN SITE AND ORBIT 

INTERCEPT 

The earth longitude displacement between radio-relay site P and 
suborbital intercept S' in Fig. 8 is side A of right spherical triangle 
PES'. From the Law of Sines 

sin A - . {3 
sin A - sm , 

from which: 

A = sin -1 (sin A sin (3), (15) 

where {3 and A are found by equations (13) and (14). Note that when 
A = 7r /2, corresponding to cp = 0, the maximum visible longitude 
displacement is {3. 
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Fig. 7 - Refraction versus geometric elevation angle for (a) No 
(b) No = 300. 
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V. GEOMETRIC ORBIT TRACE-CORRECTED FOR ANTENNA ELEVATION AND 

ATMOSPHERIC REFRACTION 

The geostationary orbit and earth's equator are coplanar; hence the 
orbit near the horizon normally appears to be tilted with respect to the 
local horizontal plane. Were an equatorial orbit sufficiently distant, 
as in celestial observations, the angle of tilt would equal the colatitude 
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of the observer's position. However, the maximum visibility circle in 
Fig. 8 is not a great circle, so the angle of tilt is less than the colatitude 
except where the latter circle crosses the equator. In the following para­
graphs, an expression is developed for the tilt of the geostationary orbit 
as if viewed from a unique location on the visibility circle. This tilt is 
defined hereafter as the apparent slope of the orbit trace (or first deriva-

p' 
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1 

I a'\ 1 

,\1 
__ --)jo 
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I 
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I 

I 
/ 

¢ I 

I 
h 

Fig. 8 - Geometry relating site P and geostationary orbit intercept. 
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S 0 
R 

Fig. 9 - Geometry of intercept-determining triangle. 

tive of the orbit trace, in elevation, with respect to direction, in azi­
muth).* 

The size of the visibility circle in Fig. 8 depends upon aD and Tao ; 

for given site latitude cp, the angular displacement in earth longitude A 
between site P and point S where the refracted beam intercepts the 
geostationary orbit (longitude of suborbital point S') also depends upon 
aD and Tao. Hence, the slope 8 of the geometric orbit trace constructed 
in Fig. 11 also depends upon a o and Tao • 

Note in Fig. 8 that the angle between orbit tangent to constructed at 
S and the local vertical plane at P through S is angle ¢ of spherical 
triangle PES'. From the Law of Sines 

• -1 (sin cp) 
¢ = sm sin (3 • (16) 

The complementary angle between orbit tangent to and the plane of a 
circle generated by radius CS (perpendicular to OP) is denoted by 
8' = 1r/2 - ¢. Substituting equation (16) for ¢ yields 

S::' -1 (sin cp) u = cos -.-. 
sm (3 

(17) 

Angle 8' is viewed in true magnitude from 0 (or S'), but is seen from 
radio-relay site P as a smaller angle 8 when rotated through angle n 
as shown in Fig. 10. Note that tan 8' = y/x and tan 8 (y cos n)/x, 
from which 

8 = tan -1 (tan 8' cos n). (18) 

Combining equations (17) and (18) yields 

8 = tan-1 {tan [cos- 1 (sin cp/sin (3)] cos n}. (19) 

* The orbit trace is envisioned as the locus of all pointing angles to the orbit, 
plotted on an azimuth-elevation chart aligned and calibrated according to the 
location of the observer. 
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!J 
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!J cos 12 12·~ 

Fig. 10 - Development of geometric orbit slope as observed from site P. 

VI. CONSTRUCTION OF THE REFRACTED ORBIT 

Figure 11 presents the geometry of the problem viewed from a radio­
relay station (similar, but not equivalent to the presentation given in 
Ref. 1). Reference to Figs. 1 and 3 may assist in interpretation of Fig. 11, 
wherein points A, S, and Sa correspond to similar points in Fig. 3 and 
intercept S corresponds to the left (easterly) intercept S in Fig. 1. Origin 
A is the beam-intercept direction from site P calculated from equation 
(14), accounting for atmospheric refraction. 

Since the orbit is tilted with respect to the local horizontal plane at 
site P, the elevation angle of the geometric director to the orbit con­
tinuously varies as the orbit is scanned in azimuth. The refractive bend­
ing of a ray is a function of the geometric angle, so that the position of 
the apparent, or refracted orbit, is above the geometric orbit and it 
exhibits a constantly changing slope with respect to the latter. 

The bent, refracted orbit is shown through point Sa (apparent posi­
tion of interception point S with refraction; also, the antenna elevation 
angle a o at the azimuth origin). The straight line labeled "geometric 
orbit" is tangent at S (Fig. 8) to a radial projection of the geostationary 
orbit on a sphere of radius P S centered at P. The horizontal line shown 
through S also represents an arc, in edge view of a great circle through 
S, parallel at S to the local horizontal plane at P, on this same sphere. 
Hence, the angle 0 obtained from equation (19), corrected for refraction 
while retaining the concept of a constant site latitude cp, is also accurately 
represented by the apparent slope of the plane-figure geometric orbit 
trace at the azimuth origin. Figure 11 illustrates the construction of 
the corresponding refracted orbit trace. 

The equation of the linear geometric orbit trace through S is 

E' = -tan (o).6.A + a o - Tao, (20) 
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where e' is the elevation angle of the geometric orbit trace corresponding 
to an arbitrary displacement in azimuth .6A from origin A. 

Figs. 7 are entered with values of (;' derived from equation (20) to 
obtain total refractive ray-bending angles T e" The refracted orbit 
trace in Fig. 11 is then constructed by plotting points with coordinates 
(A + .6A, a') and connecting these with a smooth curve, where 

a' = (;' + T E , • (21) 

VII. AZIMUTH DISPLACEMENT FROM INTERCEPT TO KEEP THE BEAM CENTER 

AN ANGULAR SEPARATION V FROM (AND BELOW) THE MINIMALLY 

REFRACTED ORBIT (No MINIMUM) 

Figure 11 also illustrates a solution to keeping an angular separation 
v between the center of a circular beam and the geostationary orbit. 
The circle centered on Sa and labeled "unrefracted beam" is a cross­
section of a conical figure of revolution with apex at antenna site P 

+ 

------------~~~=-~r---------~_t~--_.-ao 

Tao 

------------~--~~--~~L-----_r-------~-€o 

I 
/ 

_/~EFRACTED 
BEAM 

Fig. 11- Orbit geometry as observed from site P. 
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and 2v included angle (locus of all rays having angle v with respect to 
the beam center). If elevation angle a o of the antenna is fixed by radio­
relay path parameters, the orbit can be avoided only by an azimuth 
displacement of the beam. The required angular separation v between 
the orbit and the beam center results when the latter is moved in azi­
muth away from intercept until the unrefracted cone is just tangent 
to the refracted orbit trace. Note that an identical relationship exists 
between the elongated "refracted beam" and the geometric orbit trace. 
However, since the former presentation is easier to develop and can 
readily accommodate unsymmetrical beam cross-sections, it is pre­
ferred for following analyses. 

Figure 12 represents the analytical solution of an illustrative problem 
given in Appendix B and is helpful for visualizing subsequent pro­
cedures. From inspection 

t ~ - (a' - T a') - (ao - Tao) 

an u - IVI ' (22) 

where a' is any point on the refracted orbit corresponding to arbitrary 
displacement 111 from an azimuth intercept. Note that in the range of 
interest 111 is negative with respect to azimuth Amin , obtained from equa­
tion (14) using Eo = a o - Tao. Within a few degrees of intercept, the 
geometric orbit is approximated by a line of constant slope o. Recall that 
adjustment of the geometric orbit for refraction results in a refracted 
orbit trace having a constantly changing slope with azimuth displace­
ment from the intercept. This displacement for a given elevation of the 
refracted orbit is found by solving equation (22) for 111: 

M = (a' - T a ') - (a o - Tao). 

tan 0 
(23) 

Since the refracted orbit slope varies with elevation angle, no direct 
mathematical solution exists for determining that azimuth displacement 
providing an angular separation v between the beam center and the 
refracted orbit, measured in a direction normal to the latter. However, 
it is closely approximated by determining the slope of an orbit segment 
including the region of interest. Figure 12 suggests that the refracted 
orbit slope is everywhere less than the geometric slope. Hence, two 
judiciously chosen points on the refracted orbit having elevations 

a1 = a o + V cos 0, a2 = a o + v, 

always bracket the appropriate segment. Figures 6 and 12 also show 
that at these elevation angles the differential refraction is small. This 



MAXIMUM REFRACTION 

(NO 400) 

MINIMUM REFRACTION 

(No 250) 

REFRACTED GEOMETRIC ORBIT TRACE 

I 
I 
I 
I 
I 

TaH 

HORIZON RAY INTERCEPT, 
INTERCEPT, A MAX AMIN 

/ -C'BEAM; __ 
CENTER -----J.-~AMAX __ 
---- I 

EO Tao 

----Mf----~ Ap I I 

~~~-~--~ ~~ ~=:,:-----1------J 
I p'/ I I I 

A' 

~--------!----------- CRITICAL ZONE -------------------1 
Fig. 12 - Graphical representation of the analytical solution. 

+ 

(f) 
w 
W 
0:: 
I.:) 

(0,0) I w 
0 

?; 

z 
0 

~ > 
W 
-.J 
W 

:> 
Z 
8 
tr1 
Z 
Z 
:> 
I-d 
0 z 
j 
Z 
0 

C;..:i 
~ o 
~ 



3410 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1969 

supports the assumption that the slope of the small orbit segment in 
this region is virtually constant. 

The refraction corresponding to elevation angles ao , aI, and a2 are 
calculated or determined from the charts. Substituting a o , Tao, aI, 
and Tal in equation (23) gives the azimuth displacement Ml corres­
ponding to al. Similarly, M2 is determined by substituting ao , Tao, 

a2, and T a2 • Slope 01 between the two chosen points on the refracted 
orbit is given by 

tan 01 = (a2 - al)/(M2 - Ml), 

resulting in 

01 = tan- 1 [vel - cos 0)/ .6.M], 

where .6.M = M2 - Ml. 

(24) 

Figure 12 shows that azimuth displacement .6.A necessary to keep 
the beam center an angular separation v from the refracted orbit is 
Sac (equal to Sao plus oc).* By inspection, oc = v/sin 01, od = v/tan 01 
and Sao = M2 - ode Assembling these into an equation for .6.A yields 

.6.Amin = M2 - v/tan 01 + v/sin 01. (25) 

7.1 Special Case 

If a ray with initial angle a o intercepts the earth, a solution is obtained 
by calculating angle aH to the radio horizon as is described in Section II. 
Then, substituting EH for Eo in equation (14), the orbit intercept for a 
grazing ray is determined. When solving for the necessary azimuth 
displacement from this intercept, aH and T aH are substituted for a o and 
Tao in equation (23). Note, however, that in determining al and a2 for 
substitution in equation (23), the use of ray angle a o remains valid. 

VIII. AZIMUTH DISPLACEMENT FROM INTERCEPT TO KEEP THE BEAM 

CENTER AN ANGULAR SEPARATION V FROM (AND ABOVE) THE MAXI­

MALLY REFRACTED ORBIT (No MAXIMUM) 

The left side of Fig. 12 shows that the refracted orbit for the case 
of maximum refraction falls below the radio horizon with azimuth 
displacement from point Amax obtained from equation (14) using EH = 
aH - T aH. Since the earth intercepts all rays below the horizon, they 
cannot affect the orbit and it is only necessary to displace the beam 

* Notations such as SaC represent scalar distances between indicated points in 
Fig. 12. 
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center in azimuth sufficiently to maintain angular separation v from the 
horizon intercept. The required displacement is 

.6.Amax = [v2 
- (ao - aH)2]!. (26) 

In Fig. 12, aH( -0.25°) is the initial angle of a ray which grazes at a 
receiving station height of 0.4 km and originates at an assumed trans­
mitting height of 0.5 km. 

As demonstrated in Appendix B, little increase in the critical zone 
results if it is assumed that the angle to the radio horizon is equal to 
the initial ray angle. Therefore, for manual calculations involving small 
positive values of a o , these angles are assumed identical so that .6.A 
is simply an angular separation v from the orbit intercept determined 
for a o • For values of a g more negative than that for a grazing ray 
(determined from Figs. 6 or by calculation), it is necessary to determine 
aH and the corresponding orbit intercept using equations (10) and 
(14). Then equation (26) gives the necessary azimuth displacement. 

IX. DETERMINATION OF THE CRITICAL ZONES 

9.1 Critical Zones Defined 

The critical zones to be avoided at radio-relay transmitting sites to 
protect the geostationary orbit are defined: 

Zcrit = Amax + .6.Amax to AmiD - .6.Amin 

(degrees from South), (27) 

where values for A and .6.A for maximum and minimum refraction are 
obtained as in Sections III, VII, and VIII. These zones are converted 
to azimuth zones with respect to true north by subtracting the bound­
aries from 180 degrees for the easterly zone and adding them to 180 
degrees for the westerly zone. 

Calculations for stations in southern latitudes are identical except 
that they are referenced to north rather than south. The easterly azi­
muth zone with respect to true north is obtained directly from equation 
(27), while the zone boundaries are subtracted from 360 degrees for the 
westerly zone. 

9.2 Special Case 

At latitudes exceeding cp = cos- 1 (K- 1 cos 'IF) - 'IF it is impossible 
for the beam's center ray to be below the orbit with angular separation 
v. * Hence, for such extreme northern latitudes, a single critical zone 

* Derivation of this equation is given in Appendix C. 
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spans south with both easterly and westerly boundaries defined by 

Z ori t = Amax + .6.Amax (degrees from south). (28) 

X. DETERMINATION OF MAXIMUM PERl\HSSIBLE RADIATED POWER 

As mentioned in Section I, international agreements exist for maxi­
mum radiated powers.9 For 6-GHz radio-relay transmitters whose 
antennas point within v = 2° of the geostationary orbit, the power 
limitation for separations less than 0.5° is 47 dBW relative to the iso­
tropic case (EIRP), increasing 8 dB per degree to a maximum of 55 dBW 
(occurring at 1.5°). This limitation refers specifically to the center of 
the major lobe. For this case, only the relationship between the refracted 
center ray of the beam and the geometric orbit is considered. 

If an existing or proposed path direction is between the critical values 
computed as in Section III for maximum and minimum refraction, the 
refracted center ray is likely to intercept the orbit for appreciable periods 
of time. For such cases the maximum power is 47 dBW. 

If the path direction for a system in the northern hemisphere is within 
the critical zone but nearer to south (smaller) than A min , the actual 
separation p illustrated in Fig. 12 is 

(29) 

where Ap is the path direction measured from true south. 
Conversely, if Ap exceeds Amax, the separation of the beam center 

from intercept of the geometric orbit and the refracted horizon (Fig. 12) 
is 

(30) 

where 

Ell = all - Tall , Eo = 0'.0 - Tao. 

Note that Eo in equation (30) represents maximum atmospheric refrac­
tion. 

If a ray having initial angle 0'.0 intercepts the earth, Eo for use in equa­
tion (30) is indeterminate. For such special cases, a conservative ap­
proximation for the angular separation is p = Ap - Amax . 

The maximum permissible effective radiated power P e dBW (EIRP) 
is given for separation p according to the following criteria: 

p ~. 0.5°, P, = 47; 
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0.5 0 < p ~ 1.5 0
, 

p > 1.50
, 

XI. CONCLUSIONS 

8(p - 0.5) + 47; 

55. 
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(31) 

A direct analytical method involving few approximations and assump­
tions can be used by system planners for calculating refraction-cor­
rected ranges of pointing azimuth for microwave radio-relay antennas 
within which significant interference with geostationary communication 
satellites can be expected. Required angular separations between the 
refracted beam and the geostationary orbit are translated into required 
azimuth displacements of a radio-relay antenna from that calculated 
for orbit intercept; conversely, for cases where exposure is unavoidable, 
means for determining the maximum transmitted powers permitted 
by international agreement are presented. 

Since all analytical expressions including refraction corrections are 
readily amenable to machine calculation, both speed and improved 
accuracy in estimating the pointing azimuths are possible. The sug­
gested refractive index limits are believed to be representative for the 
large majority of exposures and useful for a standardized approach to 
the problem. For more general applications, where refractive index 
variations are known to be different, one may use the same principles 
to generate his own applicable correction curves. 
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APPENDIX A 

Estimation of Antenna Elevation Angles 

The initial beam elevation angle for a radio-relay antenna is deter­
mined by the geometry of transmitting and receiving locations, the path 
length, and refraction. The final alignment based upon transmission 
measurements, if recorded, is preferred for these calculations. The 
antenna elevation angle for proposed radio-relay paths can be estimated 
using the method given below with sufficient accuracy. 
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Figure 13 depicts radio-relay transmitter T and receiver R at eleva­
tions OT and OR above geocenter 0, assuming a spherical earth of radius 
ka. Coefficient k is the ratio of apparent earth radius to true earth radius 
and accounts for refraction in the lower atmosphere. 10 The path length 
is represented by arc D (great circle length at mean sea level). The trans­
mitting and receiving antenna heights with respect to mean sea level 
are denoted by hT and hR , respectively. 

Inspecting Fig. 13, cp = D/ka radians, C' = 2(ka + hT ) sin (cp/2) , 
and ao = E - cp/2 radians. From triangle TT'R and laws for plane 
triangles 

t E 
(hR - hT) sin (7r/2 - cp/2) an -/ = , 

C + (hR - hT) cos (7r/2 - cp/2) 
(32) 

It can also be shown that 

a. = tan- 1 
[ '" hR - hT ] - D/2ka radians, (33) 

tan (D /2ka) X (2ka + hR + hT) 

where hR , hT , D, and a are expressed in the same units. 
Reference 2 provides a formula and a table relating k and N a • For 

most calculations, a value of k = ! results in sufficient accuracylO (the 

R 

o 

Fig. 13 - Geometry of antenna elevation angle. 
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geometries of radio-relay systems within limits of normal site elevations 
require antenna elevation angles which are relatively insensitive to 
values chosen for k). 

APPENDIX B 

III ustrative Calculation 

Problem Input for a Particular Radio-Relay Site: 

Latitude <p - 38°N, 
Transmitter Height h T - 0.5 km, 
Receiver Height hR - 0.4 km, 
Path Length D - 28 km, 
Path Azimuth Ap - 97.75° with respect to true north, equivalent 

to 82.25° from south towards east, 
No Limits - 250 and 400 N units. 

B.1 Antenna Elevation Angle 

From equation (33) and using k = ~ 

-1 [ 0.4 - 0.5 ] 
a o = tan tan [(28/(2.66 X 6373)](2.66 X 6373 + 0.4 + 0.5) 

28 
2.66 X 6373 

= -0.00523 rad, which converts to -0.3°. 

B.2 Geometric Elevation Angle for No = 2.~0 

From Fig. 6a 

Eo = a o - Tao = -0.3 - 0.59 

B.3 Azimuth Intercept for No = 250 

From equations (13) and (14) 

f3 = cos- 1 [0.1509 cos (0.89°)] + 0.89 = 82.2°, 

Amin = cos- 1 [tan (38°)/tan (82.2°)] = 83.86° from south. 

B.4 Orbit Slope tor No = 250 

From equations (12) and (19) 

n = sin-1 [0.1509 cos (0.89°)] = 8.68°, 

o = tan- 1 [tan {cos-1 [sin (38°)/sin (82.2°)]) cos (8.68°)] = 51.26°. 
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B.5 'Azimuth Displacement for v = 2° below the Orbit 

From equations (23), (24), (25), and Fig. 6 (a) 

-0.3°, 

al = -0.3 + 2 cos (51.26°) = 0.95° , Tal = 0.35°, 

a2 = -0.3 + 2 1.7°, Ta2 = 0.28°, 

Ml = [(0.95 - 0.35) - (-0.3 - 0.59)] + tan (51.26°) = 1.19°, 

M2 = [(1.7 - 0.28) - (-0.3 - 0.59)] + tan (51.26°) = 1.85°, 

01 = tan- 1 {2[1 - cos (51.26°)]/0.66} = 48.62°, 

.0.Amin = 1.85 - 2/tan (48.62°) + 2/sin (48.62°) 

,:=:,,2.76° toward south from intercept. 

B.6 Horizon Intercept for No = 400 

From equations (1), (2), (3), (4), (10), (12), (13), (14), and Fig. 6(d) 

NR = 400 exp (-0.4/7) = 377.78 or from Fig. 5(a), 

.0.N = -7.32 exp (0.005577 X 377.78) = -60.2, 

C. = In [377.78/(377.78 - 60.2)] = 0.17, 

NT = 377.78 exp [-0.17(0.5 - 0.4)1 = 371.28 or from Fig. 5 (b), 

-1 [1.000377 6373.4J 0 250 
all = - cos 1.000371 X 6373.5 = -. , 

Tall = 1.22°, 

Ell = -0.25-- 1.22 = -1.47°, 

{3 = cos- 1 [0.1509 cos (1.47°)]+ 1.47 = 82.79°, 

Amax: = cos- 1 [tan (38°)/tan (82.79°)1 = 84.33° from south. 

B.7 Azimuth Displacement for v = 2° from Horizon Intercept 

From equation (26) 

.0.Amax: = [(2)2 - (-0.3 + 0.25)2]1 

= 1.99° toward north from intercept. 

B.8 Critical Zone 

From equation (27) 
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Zcrit = 84.33 + 1.99 to 83.86 - 2.76 

= 86.3° to 81.1 ° from south. 

B.9 Azimuthal Zones 

True-north azimuths: 

93.7° to 98.9° easterly, and 

266.3° to 261.1° westerly. 

3417 

The path azimuth of 97.75° falls within the easterly azimuthal zone. 

B.IO Relative Longitude to Suborbit Intercepts 

From equation (15) 

Amin = sin- 1 [sin (83.86°) sin (82.2°)] = 80.04°, 

Amax = sin-1 [sin (84.33°) sin (82.79°)] = 80.82°. 

B.ll Jll aximum Permissible Radiated Power 

Comparing the path direction of 82.25° from south with the critical 
zone found in Section B.8 and with Amin and Amax found in Sections B.3 
and B.6 reveals that equations (29) and (31) are appropriate for calculat­
ing the angular separation and permissible power: 

p = (83.86 - 82.25) sin (51.26°) = 1.23°, 

P t = 8(1.23 - 0.5) + 47 = 52.8 dBW at 6 GHz. 

B.I1.1 Alternate Power Calculation 

An alternate calculation is indicated when the path direction is further 
from south than Amax • Assume that Ap is, instead, 85.25° from south 
(left side of Fig. 12). The appropriate equations are now (30) and (31). 
A value of Eo for maximum refraction is required for equation (30). 

From Section B.5, Fig. 6(d), equations (30) and (31) 

p = [(85.25 - 84.33)2 + (-1.47 + 1.6)2]! = 0.93°, 

P t = 8(0.93 - 0.5) + 47 = 50.4 dBW at 6 GHz. 
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APPENDIX C 

Alternate Derivations of Basic Equations and Critical Latitudes 

All following relationships are expressed in terms of latitude <p of radio­
relay site Pv shown in Fig. 14 (a constant), and the maximum latitude 
for which the refracted geostationary orbit is visible to the antenna 
(a constant elevation angle). 

PLANE 0 - s - Pv = LOCAL 

VERTICAL PLANE THROUGH 
SATELLITE S 

Fig. 14 - Angle¢t between orbit tangent and local vertical plane O-S-Pv. 
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C.l Latitude Limit of Visibility for the Geostationary Orbit 

Figure 14 shows that the maximum latitude visible to the geosta­
tionary orbit is 

(34) 
= {3, 

where 

Cia = known elevation angle of the radio-relay antenna, 
T aa = corresponding total ray-bending angle due to refraction in­

ferred from CRPL Exponential Reference Atmosphere2 or from Figs. 6 
of text, and 

K = ratio of orbit radius R to assumed earth radius a. 

Hence, equation (34) is a restatement of equation (13). 

C.2 Pointing Azimuth to Orbit Intercept 

The larger of angles formed by intersection of site latitude circle cp 

and the visibility circle corrected for antenna elevation and refraction 
shown in Fig. 14 is a direct measure of the pointing azimuth to be avoided 
for a station located at that intersection (P v). Hence, angle AN between 
tangents T tp and Tv is the supplement of pointing angle A given by 
equation (14) referred to true south. From the geometry of Fig. 14 

A -1 { • [ -1 ( sm cp )] 
N = cos -sm tan I (1 _ sin2 cp - cos2 (3)~ 1 

[
t -1 (I (1 - sin

2 
cp - cos

2 
(3)! I)]} , 

. cos an cos {3 

7r/2 ~ I AN I < 7r. (35) 

Equation (35) yields two pointing azimuths which are of interest; 
one in the second quadrant referred to true north, corresponding to a 
westerly direction for stations in the northern hemisphere-and one 
in the third quadrant, or easterly direction. Reversed directions result 
for stations in the southern latitudes. 

Figures 15 illustrate changes of variables which simplify the demon­
stration of equivalence between equation (35) and equation (14). Since 
cos2 

{3 = 1 - sin2 
{3 and cos2 

cp = 1 - sin2 
cp, 

AN ~ C08-' {-8in [tan-' C (sin' (3s~ ~in' SO)I [)] 
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• COS [tan -, (I (cos' "c: ~os' (3)1 I) J}. 
Substituting Jl. and II (Figs. 15) and reducing the result yields 

AN = cos- 1 (-sin Jl. cos II). 

N ow, substituting for Jl. and II provides 

AN = cos-1 [-(sin ~/sin (3)(cos (3/cos ~)] 

-1 ( tan~) 
cos - tan {3 , 

which is exactly the supplement of the angle obtained from equation (11) 
in the text. 

C.3 Longitude Displacement of Orbit Intercept 

The earth-longitude displacement between radio-relay site P v and 
suborbital intercept Sf in Fig. 14 is also inferred from equation (35): 

'A = tan- 1 [I (1 - sin
2 ~ - cos

2 

(3)! IJ 
cos {3 . o ~ 1 'A 1 < 7r/2, 

= sin -1 (sin A sin (3), (36) 

from which first and fourth quadrant longitude adjustments are referred 
to the suborbital longitude. The equivalence with equation (15) is 
demonstrated using techniques indicated above and identifying angle {3 

uniquely with the maximum latitude for visibility ~max (Section C.1). 

C.4 Geometric Orbit Trace 

Since the size of the visibility circle in Fig. 14 depends upon a o and 
Tao, the earth-longitude displacement 'A between P v and S (same 
longitude as suborbital point Sf) also depends upon a o and Tao. Because 

DSIN. 
fl 'TT/2 

~1..1...1 ~ (COS'.-COS'P)' 
v 'TT/2 

I (SIN 2,B-SIN2rp)~1 cos,B 

(a) ( b) 

Fig. 15 - Change of variables: (a) angle fJ, and (b) angle v. 
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the resulting viewing aspect depends upon these parameters, the slope 
of the geometrical orbit trace constructed in Fig. 11 also depends upon 
a o and Tao as well as cpo 

Note that the angle between orbit tangent t constructed at 8 and the 
local vertical plane at P v through 8 is denoted by cf>t . This angle is 
observed undistorted at point 8', but appears to be a slightly enlarged 
angle cf>: for an observer at Pv (as if point 8 were visible without ray 
bending): 

cf>: = tan- l (tan cf>Jcos Q). (37) 

Hence, complementary angle 0 between orbit tangent t and a line 
through 8 perpendicular to the geometricalline-of-sight SPy and parallel 
to the horizontal plane at P v is also the slope of the corrected geometric 
orbit trace shown in Fig. 11, 

o = cor l (tan ¢t/ cos Q) 

_ t- l { tan [sin- l (sincp/sin(3)] } 
- co cos {tan- l [sin (3/(K - cos (3)]) 

= tan- l {tan [cos- t (sin cp/sin (3)] cos Q}, (38) 

for which equivalence to equation (19) is shown using the techniques 
incorporated in 8ections C.2 and C.3. 

C.5 Maximum Latitude Permitting Angular Separation v Below the Orbit 

A maximum latitude exists for each antenna elevation angle allowing 
the beam-center ray to be below the refracted orbit with prescribed 
angular separation v. Figure 16 illustrates the determination of this 
critical latitude. 8p is a point on the geostationary orbit having zero 
relative longitude with respect to station site Pv • A ray emanating from 
the antenna with initial vertical angle (7r/2 + a o + v) must just inter­
cept the orbit. Accounting for refraction, the angle between the geo-

N 

fl 

sp-=r-------------~=------------------+------~~ 

Fig. 16 - Geometry determining the critical latitude. 
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metric director of the elevated ray and the local horizontal is 'l' 
[ao + V - T(ao+'UJ Site latitude cp and 'l' are related by triangle OPvS p • 

From the Law of Sines 

Letting R/a K, 

sin (7r/2 + 'l') 
R 

sin n 
a 

n 
Since n + cp + 7r/2 + 'l' 

sin -1 (K- 1 cos 'l'). 

cp = cos-1 (1(-1 cos 'l') - 'l'. 
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An Extended Correlation FUllction of 
Two Randonl Variables Applied to 

Mobile Radio Transmission 

By W. C.-Y. LEE 
(Manuscript received June 16, 1969) 

The definition, properties, and applicatz'on of an extended correlation 
function of two random variables involving two common parameters are 
described and applied to mobile radio systems. The correlation functions of 
a predetection diversity combined signal (using a scheme of phase equalizing 
by multiple heterodyning) and of a directional antenna array signal are 
derived with the help of the extended correlation function. 

These correlation functions can be used to determine parameter values 
giving minimum correlation between two signals desirable for diversity 
systems. One can also obtain the power spectra by taking the Fourier trans­
form of these correlation functions. Thus extended correlation functions 
promise to be useful. 

1. INTRODUCTION 

If two random variables depend on only one common parameter, 
such as time or distance, conventional correlation formula can be ap­
plied to the two variables. However, if both of these variables involve 
not one but two common variable parameters, then the correlation 
formula found in the current literature is limited. * Since such cases occur 
in some of our mobile radio problems, as we discuss later, we need to 
define an extended correlation function and outline its properties and 
applications. 

II. DERIVATION OF AN EXTENDED CORRELATION FUNCTION OF TWO 

RANDOM VARIABLES INVOLVING TWO COMMON PARAMETERS 

A conventional normalized correlation function of two random 
variables 1'1 and 1'2, both of which are functions of one parameter 

* Prior to acceptance of this paper for publication, the author was advised that 
a similar concept was discovered independently by A. Papoulis in his recently 
published book.1 
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d[that is, r1 (d 1) and r2 (d2)] can be expressed as2 

(d d) - R 12(d1 , d2) - m1m2 
PI'2 1,'2 - (JI(J2 

(r l (d l)r2(d2)av - (rl(dl),.V(r2(d2)nv 
[(r~(dl)\V - (rl(dl);v]!· [(r;(d2)av - (r2(d2):V]~ 

(1) 

where m's are the mean values, (J2'S are the covariances, P12(d l , d2 ) is 
in the range 0 ~ I Pl2(dl , d2 ) I ~ 1, and R 12(d l , d2 ) = (rl(d l )r2(d2)av 
is the correlation function. t 

Supposing a random variable r l (Dl ; d l ) is a function of two parameters 
DI and dt , and another variable 1'2 (D2 ; d2) is a function of two param­
eters D2 and d2 ; the normalized correlation functions of these two 
variables can be deduced from equation (1): 

P12(DI , D2 ; dl , d2) 

R I2 (D I , D2 ; d l , d2 ) - m l m 2 

(rl(D I , dl)r2(D2 , d2)av - (rl(D] , dt)av(r2(D2 , d2)"v 
[(r~(D] ,dt)av - (rl(D] ,dl):v]t[(r;(D2 ,d2)av - (r 2(D2 ,d2);vJ~· 

(2) 

If the problem we are dealing with is a stationary random process for 
both of the parameters D and d, then 

R t2 (D I , D2 ; d] , d2) = R l2 (DI - D2 ; d] - d2), 

(rk(Dk , dk) )av = (rk(O, 0) )av = mk , 

(rZ(Dk , dk)av - m~ = (r~(O, O)av - m~ = (J~ , 

where lc = 1,2. Now mk and (Jk are constants and we may let D = DI -
D2 and d = d l - d2 • Then equation (2) becomes 

p]2(D; d) = RI2(D; d) - m l m2 • 

0"]0"2 
(3) 

We call PI2(D; d) a normalized extended correlation function of the first 
kind. Also we note that Pl2(D; d) in equation (3) is always smaller than 
P12(0; 0) which is equal to one: 

PI2(D; d) ~ PI2(0; 0) = 1. 

t The terms "correlation function R12(dl, d2) and normalized correlation func­
tion P12(d1, fh)" are adopted from Ref. 3, p. 59. 
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When the difference D is equal to zero, then 

P12(0; d) = P12(d). 

3425 

Now we should illustrate and extend equation (3). We are going to 
find an extended correlation function of the first kind from a function 
e(D; d1 , d2 , d3 , ••• , dm) where all the d's are function of D and another 
parameter Ol [that is, dieD, Ol) for i = 1, m], then 

R.(D; d1 I d2 I d3 I ••• I dm ) 

= (e[O; d1(0, 0), d2 (0, 0), d3 (0, 0), ... ) 

·e(D; dI(D, Ol), d2 (D, Ol), ... , dm(D, Ol)]\v, 

and the normalized correlation function can be derived from equation 
(2) as 

where 

Re(D; d1 , , dm ) - m: 
2 

(J". 

m. = (e[O; d1(0, 0), d2 (0, 0), d3 (0, 0), ... , dm(O, O)]\v 

(J": = (e2 [0;dI(0,0),d2(0, 0), d3 (0, 0), ... ,dm(O,O)])av - m:. 
If we consider the case dieD, Ol) is a constant for all D and Ol itself is 
a constant, then we may assign a new symbol R.(D I d1 , d2 , ••• , dm ) 

which can be expressed as 

R. (D I d1 , d2 , ••• , dm) 

= (e(O; d1 , d2 , ... ,dm)e(D; d1 , d2 , d3 , ••• ,dm))av. 

R. (D I d1 , d2 , d3 , ••• , dm) is a correlation function under a condition 
that all d1 , d2 , d3 , ••• , dm are constants. The normalized correlation is 

(D I d d ) 
- Re(D I d1 , d2 , ••• , dm ) - m: 

P. 1, 2,··· - 2 , 
(J". 

(4) 

where m. and (J"E have been defined previously. We call equation (4) 
the normalized correlation function of the second kind. As we will show 
in the Section III, the extended correlation function of first kind P12(D; d) 
and the extended correlation function of second kind P12(D I d) can be 
used to obtain the correlation of signals from two diversity scheme re­
ceivers easily. 

In order to give physical meaning to these functions, let us consider 
the following two cases. Suppose that two base-station multibranch 
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diversity receiver arrays are separated by a distance D. The antenna 
spacing between branch-antenna elements for the first array is d1 and 
for the second array is d2 • Both receivers simultaneously receive the 
signal from a distant mobile radio unit. We would like to determine 
the values of d1 , d2 , and D to obtain the least cross-correlation de­
sirable for the best diversity reception of these two received signals. 
The extended correlation of first kind P12(D; dl , d2 ) may be used in 
this case. 

The second case assumes that a mobile radio multi-branch diversity 
receiver array, with given uniform antenna element spacing d, moves 
along the street with a constant speed V. The autocorrelation of a 
signal E, received by the mobile receiver, can be obtained from the ex­
tended correlation function of the second kind PE CD I d). Alternatively, 
we can also consider a multielement directive antenna instead of the 
diversity scheme. In this paper, we only treat the latter case. The 
former case can be solved following the same technique. 

III. APPLICATION TO MOBILE RADIO PROBLEMS 

3.1 Derivation of the Correlation Function of a Signal Received from a 
Predetection Diversity Combining Receiver 

A multichannel predetection diversity combining system is a scheme 
for bringing a number of RF carriers to a common phase by means of 
multiple heterodyning. Then a linear combiner at the IF frequency is 
used to sum the individual channels. 4 

, 5 A signal received from this system 
is called a predetection diversity combined signal. 

Suppose that a signal consisting of multipath vertically polarized 
waves is received by an M -branch predetection combining mobile re­
ceiver with a M-antenna space diversity array. The M-antennas are 
spaced by d1 , d2 , ••• dM respectively from an arbitrary common point. 
After the array has moved a distance D, the received signal e, which is 
the sum of the M individual signal amplitudes received from M indi­
vidual antennas, can be expressed as6 ,7 

e(D; dl , d2 , d3 , d4 , '" , dM ) = rl(D; dl ) + r2 (D; d2) + r3(D; d3) 

+ ... + rllf(D; dllf) 

(5) 

where all r m are functions of distance D and antenna spacing dm (see 
Appendix A). For a mobile radio signal,7,8 or a long range fading signal,9 
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the r m are usually Rayleigh distributed. Suppose that all d's are con­
stants, then the autocorrelation function of the signal given in equation 
(5) as a function of the separation distance D is an extended autocorre­
lation function of second kind which can be expressed as 

R.(D I d1 , d2 , d3 , d4 , ••• ) 

= ([ ~>m(O; dm)][ ~>m(D; dm)])." 

= (~ ~ rm(O; dm)r.(D; d.)." 

]I[ ]I[ 

= L: L: Rmn(D; dm - dn). 
m=l n=l 

Using equation (3), this can also be written 

(6) 

R.(D I d1 ••• d]l[) = p.(D I d1 , ••• , dllf)(CJ!) + m: , (7) 

where 

(8) 

]I[ 1If 

L: L: (rm(O; dm)rn(O; dn»av 

]I[ 1If 

L: L: Rmn(O; dm - dn). (9) 

Substituting equation (8) into equation (7), and combining equations 
(6) and (7), we obtain 

1If lIf 

L: L: Rmn(D; dm - dn) - m: 
1 1 

1If 1If 
(10) 

L: L: Rmn(O; dm - dn) - m: 
1 1 

The terms Rmn(D; dm - dn) can be found from equation (3); 

and 
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(12) 

Hence the correlation function of equation (10) becomes, assuming 

]If ]If 

L L Pmn(D; dm - dn) 
m=l n=l (13) 

]If ]If 

L L Pmn(O; dm - dn) 
m=l n=l 

If all spacings between two adjacent antennas are equal, then dm -

dn = (m - n)d1 where d1 is the distance between two adjacent antennas. 
We may let d = d1 , and simplify the notation of equation (13) to 

]If ]If 

L L Pmn(D; d) 
PE(D I d) m=l n=l (14) 

]If ]If 

L L Pmn(O; d) 
m=l n=l 

Equation (14) shows that a normalized autocorrelation function of 
an M -branch predetection combined signal is a normalized extended 
autocorrelation function of second kind in terms of all individual nor­
malized correlation functions between branches. We notice that 

PE(D I d) ~ PE(D I d) = 1, 

and as stated in Section II 

Pmn(D; d) Pmn(d). 

We may also realize that 

P12(D; d) = P23(D; d) = P34(D; d) 
and 

P13(D; d) = P24(D; d) = P35(D; d) = 

Hence, equation (14) can be further simplified as 

PE(D I d) 

lYI Pll +(M -1)(P12+ P21)+(111-2)(P13+ P31)+' .. + PIM+ PJ.!l 

(15) 

(16) 

(17) 

M P~l +(M -1)(p~2+ p~l)+(M -2)(P~3+ P~l)+' .. + P~M + P~Il ' 
(18) 
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where Pmn = Pmn(D; d) and P~n(O; d) used in equation (18) are for sim­
plicity (Pmn and P~n are derived in Appendix A). If we let the antenna 
spacing d/X = 0, then PE (D I 0) from equation (18) represents the 
correlation function of two single-branch signals 

(19) 

which agrees with that in Ref. 6. 
Several numerical calculations have been carried out for the following 

example: Two four-branch diversity receivers, each of them with fixed 
antenna spacing d/X = 0.5 or d/X = 1.0, are mounted on the roof of 
the mobile unit, as shown in Fig. 1. These two receivers are separated by 
a distance D/X (D/X varies from 0 to 4) for two cases, a = 0° and a = 
90°. The calculations of the extended correlation function PE(D I d) of 
these two signals, obtained from their respective receivers when the mo­
bile unit is moving, are shown in Figs. 2 and 3. Both figures indicate the 
values of D /X which give the least correlation between two signals. We 
also note that the correlations at a = 0° are higher than that at a = 90°. 
Figures 2 and 3 can also represent the auto correlation of a signal re­
ceived from a single four-branch diversity receiver which has its antenna 
spacing d/X = 0.5 or 1.0 and moves on a street with a constant speed 
V(D = Vt). The power spectrum of such a signal can be obtained by 
taking the Fourier transform of its autocorrelation function. 

3.2 Derivation of the Correlation Function of a Signal Envelope Received 
from a Directional Antenna Array 

Signal reception from a directional antenna array with M antenna 
elements has been also suggested as a means of overcoming multipath 

Fig. 1-Coordinate system of aM-branch diversity mobile radio receiver 
(M = 4 branches). 
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Fig. 2 - Normalized autocorrelation function of a four-branch diversity re­
ceiver moving at a = 0°. 

fading in mobile radio propagation. 10-12 The derivation of the correlation 
function of this signal envelope is as follows. 

Suppose that the same kind of signal which consists of multipath 
vertical polarized waves as mentioned in Section 3.1 is received by a 
directional M-antenna array. The M antennas are spaced by d1 , d2 , 

I 0 0 0 0 I 
0.81--\-----+---+-----+----+---+-----===:;:=====;:::==---1 

,...., 0.6 r-\\---r---t_--+_--+----t----_t_---t---_\ 
-0 

'0 
'--' 

Q': 
O.41--~-~--~---+----+---+---~---r--~ 

O.2~-~-4~~-t_--+_--+_--+_--_t_--_r--_\ 

o~--~~--~~--~~--~~--~~--~~--=-~--__ ~ o 0.5 1.0 1.5 2_0 2.5 3.0 3_5 4.0 
D/>- - DISTANCE WHICH A FOUR -BRANCH DIVERSITY RECEIVER MOVES 

Fig. 3 - Normalized autocorrelation function of a four-branch diversity re­
ceiver moving at a = 90°. 
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d3 , ••• , du respectively from an arbitrary common point. Mter the 
antenna array is moved by a distance D, (see Fig. 4) the received 
signal envelope e which is the amplitude of the sum of M individual 
signals can be expressed as13 

e(D;dl ,d2 ,d3 , ••• ,du ) 

I sleD; dl) + s2(D; d2) + ... + sueD; du ) I 

I t Sm(D; dm) I 
I X(D; dl , d2 , ... ,du ) + jY(D; dl , d2 , ... , du ) I, (20) 

where Sm is a complex variable which represents the amplitude and the 
phase of an individual signal. X and Yare the real and imaginary parts 
of the total signal. 

If the spacings between adjacent antennas are equal, then antenna m 
and antenna n are separate dyb dm - dn = (m - n)d. Therefore X and 
Y of equation (20) are functions of D and d only. Suppose that all d's 
are constants, the autocorrelation function of signal envelope e can be 
obtained by using the equation:14 

~ 
/ 

I 
WHIP ANTENNA 

ELEMENT 

Fig. 4 - Coordinate system of a broadside directional antenna array (M = 8 
elements). 
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provided X and Yare gaussian variables, all (Xm)av are zeros, and 
<X~)av and <Y~)av are equal, where m = 1 or 2. These facts are shown 
in Appendix B. If the antenna spacing d/'A = 0, then PE(D I 0) actually 
represents the correlation between two single-branch signals, which 
agrees with equation (19) and Ref. 6. 

The normalized correlation function of a signal received from a 
broadside directional antenna array is 

PE(D I d) 

where 

_ ! {~ t. [Jo(A,) + Jo(E,) + Jo(A,) + Jo(E,)]Y 

- 4 [~ t, [Jo(Ao) + Jo(Eo)] T 

K=M 
2 

for M is even 

M+ 1 
2 M for is odd, 

(22) 

and Al , BI , A 2, and B2 are shown in equation (48). Ao and Bo are 
shown in equation (49). 

Several numerical calculations have been carried out for the following 
example: Two eight-element broadside antenna arrays, each of them 
with fixed antenna spacing d/'A = 0.5 or d/'A = 1.0, are mounted on 
the roof of the mobile unit. These two arrays are separated by a distance 
D /'A (D /'A varies from 0 to 4) for two cases a = 0° and a = 90°. The 
calculations of the extended correlation function PE(D I d) between two 
signals received from their respective arrays when the mobile unit is 
moving are shown in Figs. 5 and 6. Both figures indicate the values of 
D /'A which have the least correlation between two signals. The extended 
correlation curve of d/'A = 0.5 is quite different from that d/'A = 1.0 in 
both figures. The curve of d/'A = 0.5 in Fig. 5 shows that the high 
correlation and low correlation are about 0.25'A apart; however, this 
phenomenon does not appear for d/'A = 0.5, but rather for d/'A = 1.0 
in Fig. 6. It can be explained as follows. For the directional antenna 
array with spacing d = 'A/2, most of the energy is contained in the two 
major broadside lobes, while for the directional antenna array with 
antenna spacing d = 'A, most of the energy is contained in the two maj or 
end-fire lobes. As the vehicle moves, strong standing waves may occur 
when the major antenna lobes lie in line with the motion of the vehicle, 
such as for the case a = 0° and d = 'A/2; or the case a = 90° and d = 'A. 
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Fig. 5 - Normalized autocorrelation function of an eight-element directional 
antenna array pointing at a = 0°. 

The auto correlations obtained from these standing waves, then, be­
come oscillatory in nature, as we would expect. 

Figures 5 and 6 can also represent the autocorrelation of a signal re­
ceived from an eight-element broadside antenna array which has its 
antenna spacing d/A = 0.5 or 1.0 and moves on a street with a constant 
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Fig. 6 - Normalized autocorrelation fundion of an eight-element directional 
antenna array pointing at a = 90°. 
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speed V (D = Vt). The power spectrum of such a signal can be obtained 
by taking the Fourier transform of its autocorrelation function as we 
mentioned in Section 3.1. 

IV. CONCLUSION 

The derivation of a general correlation function of two random 
variables, each of them involving two parameters, has been obtained. 
The terms "extended correlation function of first kind" and "extended 
correlation function of second kind" have been defined. The application 
of the extended correlation function is demonstrated. The correlation 
function of a diversity signal and the correlation function of a directional 
antenna array signal are derived with the help of the extended correlation 
function in this paper. Several numerical calculations have also been 
carried out. From these correlation functions we can obtain the least 
correlations between two signals under certain circumstances. Also, 
we can obtain the power spectra by taking the Fourier transform of 
these correlation functions. Thus, it seems likely that these functions 
will find general application. 
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APPENDIX A 

Finding Normalized Cross Correlation Functions From Individual 
Branch Signals of a Predetection Diversity Combining Receiver 

It is easy to show that the signal from branch m in equation (5) is 

Tm = ItA. exp [+jtW cos (0. - a) + i(m - l){3d cos O.J I 

IXm+jYml, (23) 
where 

N 

Xm = 2: Ru cos cPu + Su sin cPu , (25) 
u=l 

N 

Y m = 2: Su cos cPu - Ru sin cPu , (26) 
,,=1 
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-CPu = {JD cos (Bu - a) + (m, - 1) {Jd cos Bu (27) 

(Rti. and Sti. are independent gaussian amplitudes with zero mean and 
unit variance). The diversity receiver is located at the point (D, a) in 
polar coordinate. The distance D, the angle a, and the arrival of uth 
wave at angle Btl. are shown in Fig. 1. We assume the N waves are uni­
formly distributed in angle. Now we can average the product of two 
components of two branches-branch m and branch n-as 

(Xm(D1)Xn(D1 + D»av 

where15 

= (Xm(O)Xn(D)\v 

= NE{cos [BD cos (Bu - a) - (m - n){Jd cos Bu]} 

= N[Jo(a)Jo(b) - 2J2 (a)J2(b) + 2J4(a)J4(b) 

- 2J6(a)J6(b) + ... ] 
= NJo(a2 + b2)!, 

a = f3D cos a - (m - n)f3d, 

b = {JD sin a, 

(28) 

(29) 

(30) 

a2 + b2 = (BD)2 + (m - n)2({Jd)2 - 2(111, - n){J2Dd cos a, (31) 

and 

(Xm(D1) Yn(Dl + D»av 
= (Xm(O) Yn(D»av 

= NE{sin [{JD cos (Bu - a) - (m - n){Jd cos Bu]) 

= O. (32) 
Also 

(33) 

Substituting equations (28), (32), and (33) into the following equa­
tion6

•
14 

(D' d) == (Xm(O; d)Xn(D; d»:v + (Xm(O; d)Yn(D; d»:v. (34) 
Pmn , . (X!(O; d»!v 

Then we obtain the final result 

Pmn(D; d) ~ J~[(,BD)2 + (m - n)2(,BD)2 - 2(m - n)2Dd cos a]! 

(35) 
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and 

Pmn(d) = Pmn(O; d) J~[(m - n){Jd]. (36) 

We also can show the relations 

P12 = P23 = P34 ; P43 , 

P13 = P24 = P35 ; P31 = P42 P53 , 

Pmn ~ Pnm for m ~ n, 

Pmn(D; d) = Pnm( -D; d). 

APPENDIX B 

Finding a Normalized Correlation Function From a Real Part and an 
Imaginary Part of a Signal Received From a Directional Antenna Array 

It is easy to show that a signal consisting of N multipath vertical 
polarized waves received from an equal-spaced directional antenna 
array at a distance D from a reference position is16 

N 

Ez(D; d) = L Au{1 + exp (jtf;) + exp (j2tf;) 
u=l 

+ exp (j3tf;) + ... + exp [j(1l1 - 1)tf;]} 

. exp (j{JD cos ()u), 

where Au was defined in equation (24), 

tf; = {Jd sin (a - Ou) + 0, 
d is antenna spacing between two antennas, 

M is the number of elements, 
a is the normal direction of the array, 
o is the relative phase between antennas, 

(37) 

D is the distance measured from the coordinate origin to the center 
position of antenna array. (The center position of the antenna 
array is assumed always on the axis, that is, at the position 
(D, 0).), and 

()u is the angle of arrival of the uth wave and is assumed to be uni­
formly distributed. 

The coordinate system of a directional antenna array is shown in 
Fig. 6. Since the spacings between antennas are equal, we can let the 
phase refer to the center point of the array. Then equation (37) can be 
simplified by combining the first term and the Mth term, the second 
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term and the (M - l)th term and so forth.13 The result becomes 
N 

Ez(D; d) = I: Au exp (j{3D cos Ou) 
u=1 

[ (1l1-1) (1l1-3) . 2 cos -2-if; +2cos 2 if; + + 2Q] , 
(38) 

where 

Q = 1 if 111 = odd 

= cos (!if;) if 111 = even. 

Equation (38) can be separated into a real part and an imaginary part as 

Ez(D; d) = X + jY 

and 

I Ez(D; d) I (39) 

where 

K N 

X = 2 I: I: [Ru cos ({3D cos Ou) - Su sin ({3D cos Ou)] 
m=1 u=1 

(1l1 + 1 - 2m "~,) . cos 2 If' 

K 

= 2 I: Xm (40) 
m=1 

K N 

Y = 2 I: I: [Ru sin ({3D cos Ou) + Su cos ({3D cos Ou)] 
m=1 u=1 

(
1'11 + 1 - 2m "~,) . cos 2 If' 

K 

= 2 I: Ym , (41) 
m=1 

where 

K = 111 
2 

if M is even 

M + 1 if M is odd. 
2 

(42) 
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Since Ru and Su are independent gaussian variables, it is easy to 
realize that all Xm and Ym are independent gaussian variables. Hence 
X and Yare also gaussian variables. The mean values of X and Yare 
zeros, and the mean squares of X and Yare the same. Therefore equa­
tion (21) can be applied. The following term in equation (21) can be 
replaced by 

(X1(0; d)X2(D; d)av = 4[t, xrn(O; d)][t. xrn(D; d)] 

K K 

= 4 L L (Xm(O; d)xn(D; d))uv . (43) 
m=l n=l 

The term (X1(0; d)Y2 (D; d) also can be obtained, and is equal to equa­
tion (43), by replacing Xn by Yn . Then equation (20) becomes 

PEeD/d) = 

where K is shown in equation (42), and 

N 
(Xm(O; d)xn(D; d))uv = 2 (cos ({3D cos Ou)' {cos [(111 + 1 - m - n)~J 

+ cos [em - n)1fJ })av , 

(Xm(O; d)Yn(D; d)lav = ~ (sin ({3D cos Ou)' {cos [(111 + 1 - m - n)1f] 

+ cos [( m - n) 1f] } ) u v , (45) 

and 

Now we may consider only a broadside directional antenna array, 
that is, 8 = O. Then the following terms can be derived:15 

(cos (a cos Ou)' cos [b sin (a - Ou)])uv 

= !(cos [(a + b sin a) cos Ou - b cos a sin OJ 

+ cos [(a - b sin a) cos Ou + b cos a sin Ou])av 

= ![Jo(A) + Jo(B)] , (46) 



EXTENDED CORRELATION FUNCTION 3439 

where 

A (a2 + 2ab sin a + b2)!, 

B (a2 
- 2ab sin a + b2)!, 

(sin (a cos Ou) cos [b sin (a - Ou)) = O. (47) 

Inserting the general formulas equation (46) and equation (47) into 
equation (45), it becomes 

N 
(Xrn(O; d)xn(D; d))av = 2 [JO(Al) + JO(Bl) + J O(A2) + J O(B2)] 

(xm(O;d)Yn(D;d)av = 0 (48) 

where 

~:} ~ !l[D' ± 2Dd(M + 1 - m - n) sina + d'(M + 1 - m - n)'j! 

~:} ~ /leD' ± 2Dd(m - n) sin 01 + d'(m - n)'j!. 

From equation (48), we can deduce the results 

(Xm(O; d)xn(O; d))av 

and 

= N {Jo[(3d(k] + 1 - m - n)] + J o[{3d(m - n)]} 

= N[Jo(Ao) + Jo(Bo)] (49) 

(X~(O; d)) = N{Jo[{3d(M + 1 - 2m)] + I}. (50) 

Then substituting equations (48) and (49) into equation (44), we com­
plete the derivation of a normalized correlation function of a signal 
received from a broadside directional antenna array. 
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Sputtered Glass Waveguide for Integrated Optical Circuits 

By J. E. GOELL and R. D. STANDLEY 

(Manuscript received September 16, 1969) 

A series of papers which appeared in the September 1969 issue of the 
Bell System Technical Journal treated the theory of dielectric wave­
guides and stressed the potential use of such media for optical communi­
cation circuits. 1

-
4 Here we report on the realization of low-loss, thin 

glass films which can be used for circuit fabrication. Methods of pre­
paring planar films and waveguides having rectangular cross section are 
described along with the techniques used in evaluating their optical 
characteristics. 

The films we used for waveguide fabrication have been prepar~d by 
RF Sputtering of suitable glasses. The sputtering system used was oil­
diffusion pumped and had five-inch diameter electrodes. Oxygen was 
used as the sputtering gas. The best films obtained to date were made by 
sputtering Corning 7059 glass. For convenience, in the early stages of 
this work, laboratory slides have been used as substrates. Necessary 
steps were taken to ensure that the substrates were clean. 

The index of refraction of the films was measured to be 1.62 by 
determining Brewster's Angle for the films as described by Abeles. 5 From 
the color of the film and by interferometer methods the film thickness 
was found to be about 0.3 jlm. 

The transmission loss of the films was measured by two methods. 
Both use prisms to launch a light beam into the film. 6

• 7 In method 1 it is 
assumed that the scattering centers in the films are uniformly distrib­
uted. A fiber optic probe is then used to measure the intensity of the 
light scattered at right angles to the film. In method 2, the intensity of 
the output beam is measured as a function of launcher position along 
the film. Method 2 appears least accurate due to variations in launching 
efficiency as a function of prism movement. Method 1 works well to 
losses of the order of 1 db per cm. Below this level, the variability in the 
strength of the scattering centers makes reliable measurements difficult. 
An increase in film length would partially overcome the difficulty of 
measuring low level scattering from random centers. 
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Fig. 1- Light scattered from a beam propagating in a Corning 7059 glass film. 
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Fig. 2 - Relative scattered power versus length (7059 glass film). 
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Fig. 3 - Section of a rectangular waveguide (X 1000). 

Fig. 4 - Light propagating in a curved section of rectangular waveguide. 
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Figure 1 is a picture of the light scattered from a beam propagating in 
the film. The intensity of scattered light as measured by the fiber optic 
probe is plotted in Figure 2. The average slope is less than -1 dB/cm. 
This result is in agreement with measurements made by the second 
method. The lack of uniformity of the scattered light intensity is due, at 
least in part, to inhomogeneities in the substrate. By using a higher 
quality substrate this source of scatter can be eliminated. 

Curved sections of rectangular waveguides have been constructed 
from 7059 glass films by back-sputtering using quartz fibers as shadow 
masks. The waveguides were about 0.3,um thick, 20,um wide, and had a 
radius of curvature of about! inch. A photograph of a typical section is 
shown in Figure 3. Figure 4 shows prism-launched light propagating in 
such a waveguide. Due to the small size of the waveguide our instru­
mentation will have to be improved before loss measurements can be 
made. 

Our initial efforts have demonstrated the feasibility of using sputtered 
glass films and sputter etching in the fabrication of optical waveguides. 
This approach shows promise as a method of producing low-loss optical 
integrated circuits. 

The authors are indebted to W. R. Sinclair for his valuable comments 
regarding the sputtering of glass films and the preparation of substrates, 
and to R. R. Murray who assisted in the preparation of the films and 
waveguides. 
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