




























































































































































































OVERFLOW OSCILLATIONS 3001 

OUTPUT= fev) 

Fig. 2 - Instantaneous transfer function of the accumulator. 

1(,) the nonlinear characteristic of the accumulator, we have the basic 
equation 

yet + 2) = f[ay(t + 1) + by(t) + x(t + 2)]. (1) 

We shall be concerned with the self-sustaining oscillations of the device 
that are observed even when no input is present [x(t) = 0], and when 
linear theory would predict the device to be stable. 

By making this linear approximation f(v) = v, the linearized version 
of equation (1) becomes, with no driving term in the equation, 

yet + 2) - ay(t + 1) - by(t) = O. 

The roots of the characteristic equation for equation (2) are 

a ~ (a2 + 4b)! 
P1.2 = 2 

(2) 

(3) 

and the region of linear stability corresponds to the requirement that 
I Pi I < 1. This region is depicted as a subset of the a-b plane in Fig. 3. 
One has I Pi I < 1 if and only if one is within the large triangle shown in 
Fig. 3. For this situation any solution of (2) will damp out to zero after 
a sufficient period of time. Now note that (2) is not necessarily a valid 
reduction of (1) even when x(t) = O. The output, by choice of I, has been 
assumed to be constrained to be less than unity, but this is not sufficient 
to guarantee that the argument of the function I is less than unity. For 
this to be the case we require 

I ay(t + 1) + by(t) I < 1. (4) 

Since I yet) I < 1, equation (4) will always be satisfied provided that 

lal+lbl<1. (5) 
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(-1,2) a 

(1,0) 

b 

(-1,-2) 

Fig. 3-Some interesting regions in the "space" of feedbaek tap weights. The hatching 
indicates stability even with the nonlinearity. 

The subset of the a-b plane for which (5) is true is shown in Fig. 3 
with vertical hatching, and is a subset of the region of linear stability. 
It is shown in this Section that if (5) is not satisfied there always exist 
self-sustained oscillations of the digital filter and hence (5) is both a 
necessary and sufficient condition for absence of self-sustained oscilla­
tions. * One way to avoid the oscillations in question is simply to impose 
the requirement (5). This trick has its limitations, however, for it clearly 
restricts design capabilities. The region of the s-plane which is shaded 
in Fig. 4 shows the allowable pole positions. Roughly speaking, one con­
cludes that there are desirable filter charaeteristics that can be realized 
with this restriction and there are desirable characteristics that cannot. 

It is not our purpose here to outline those applications for which (5) 
will not be restrictive; we proceed to sketch the situation when I a I + 
I b I > 1 and the threat of oscillation is present. Sections III and IV 
contain, we believe, a novel and interesting mathematical treatment of 
the general problem of classifying the self-oscillations of the nonlinear 
difference equation (1). However, for the user of digital filters a simple 
proof of the I a I + I b I > 1 being sufficient for threat of oscillations is 
of more immediate interest. After reading the simple proof of this fact 
given next in the present section, such a reader may wish to proceed 
directly to Section V. 

Consider the possibility of undriven nonlinear operation giving a de 

* I. W. Sandberg has informed tho authors that the necessity and sufficiency of 
(5) holding for absence of oscillations has also been obtained jointly by him and 
L. B. .r ackson. 
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output, that is, Yk ~ Y for all k. Equation (1), with x(t) 0 becomes 
y = f[(a + b)y]. Assuming for definitness that y > 0, we can easily see 
from Fig. 2 that the above equation will be true if (a + b)y = y - 2, 
which implies Y = 2/(1 - a - b). One can show (see discussion follow­
ing equation 17), that this y will have magnitude < 1 provided only 
that the tap values a and b lie in the region labeled I in Fig. 3. Thus a 
consistent dc oscillation is always possible for all (a, b) pairs in this 
region. N ext consider the possibility of a period 2 oscillation. This 
amounts to finding a consistent solution to y = f[(b - a)y]. Proceeding 
as before we obtain 

2 
y=l+a-b' 

Thus Yk will be given by (_l)ky, and will have magnitude less than unity 
if the (a, b) pair lies anywhere in region II of Fig. 3. 

III. FURTHER ANALYSIS OF THE OSCILLATIONS 

To analyze equation (1) in greater detail, it is very convenient to 
write it in the form similar to (2), 

yet + 2) - ay(t + 1) - by(t) = L anu(t + 2 - n), (6) 

Fig. 4 - Pole locations in the s-plane (shaded region) realizable under the constraint 
that lal + Ibl < 1. 
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where u(t) is a square pulse of unit height that one may conveniently 
think of as lasting from t = 0 until t = 1. This, of course, means that 
one interprets the solution of (6) to be a piecewise constant function 
like the actual output of the digital filter. For mathematical manipula­
tions it is sometimes desirable to also interpret (6) as a difference equa­
tion, defined only for integer t. In this case one would write that u(t - n) 
= Dtn where Dtn is the familiar Kroneker symbol. 

The point of the right side of (6) is simply to keep 1 f(v) 1 < 1 re­
gardless of what value v has. From Fig. 2 we see that if 1 v 1 < 1, this 
added term is not needed and we take an = O. If 1 < v < 3 then we take 
an = -2, and if -3 < v < -1 we take an = +2. Since we have that 
1 yet) 1 < 1 and that linear stability (see Fig. 3) implies 1 a 1 < 2, 1 b 1 < 1, 
we need not consider further values of 1 v I. Thus in (6) an = 0, ±2 
depending on whether or not vet) == ay(t + 1) + by(t) crosses the lines 
v = ±1. It will be convenient to have a word for such crossings; we 
shall call them "clicks", borrowing a favorite word from FM theory. 
Then an = 0, ±2 depending on whether or not a click does not, or does, 
occur. 

Note if one knew what the click sequence {an} was, one could solve 
(6) simply by using the clicks to be the driving term for a linear equation. 
We are mainly interested in describing the self-sustained steady state 
oscillations of arbitrary period N. Hence initial conditions will play no 
essential role for us, for while they determine which oscillating mode 
appears as t ~ 00, they play no role in describing the modes. Our pro­
cedure will be as follows: 

(i) Assume a click sequence of period N; 

l = 0,1, 

O~k<N-1. 

(7) 

(ii) Using the assumed {an}, find the steady state solution of (6). 
However, only solutions that have 1 yet) 1 < 1 for all t are allowed. 
(iii) Check that this steady state solution actually generates the as­
sumed click sequence. 

In carrying out the above program for some simple cases we observed 
that step iii never seemed to yield anything new. Indeed, surprising as 
it seems at first glance, step iii never has to be carried out. If one obtains 
a solution with 1 yet) 1 < 1, this solution is consistent. That is, it auto­
matically generates the assumed click sequence. The proof is simple. 
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One calculates the argument of the function f from (6): 

ay(t + 1) + by(t) = yet + 2) - L anu(t + 2 - n). (8) 

We have a click at time t + 2 = m if 1 ay(m - 2) + by(m - 1) 1 > l. 
From (8), 

1 ay(m - 2) + by(m - 1) 1 = 1 y(m) - am I· (9) 

Note then if in (9) am = 0, then 1 ay(m - 2) + by(m - 1) 1 1 y(m) 1 

< 1; thus if there is no click at a particular time in the assumed click 
sequence the "solution" will not generate one. Next assume am = +2; 
then 

ay(m - 2) + by(m - 1) = y(m) -2 < -1, (10) 

where we use 1 yet) 1 < 1 again. Equation (10) says if a positive click 
is present in the assumed click sequence then the solution obtained from 
the linear equation (6), given by this click sequence, will reproduce the 
positive click. Obviously the same argument holds for a negative click, 
am = - 2, and the proof of this point is complete. 

The steady-state solution of our fundamental equation (6) for an 
arbitrary click sequence {am} of period N is derived in the appendix. 
If we define 

(11) 

and 

D(z) == Z2 - az - b, (12) 

and let r i , i = 1, ... ,N, be the N Nth roots of unity, then the (periodic) 
output values are given by 

(13) 

The above expression gives the {Yk} output sequence for any click se­
quence. We emphasize, however, that it is only a solution correspond­
ing to a self-sustained oscillation of the digital filter if we have 1 Yk 1 < 1, 
all k. Whether or not this is true depends on the particular click sequence 
assumed. 

Another form of the solution can be obtained by manipulation of (13). 
To write this down, define 

(14) 
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where we understand ai == 0 if j does not lie between 0 and N - 1, 
inclusive, and aj == aj if it does. One of the a's in (14) will thus always be 
zero and b~k) has values of ± 1, O. The other form of the solution is then 

2 N-I [n n ] 
Y = --- '"' b(k) __ PI_ ~--

k L.i n N - N 
PI - P2 n=O 1 - PI 1 - P 2 

k = 0, 1, ... , N - 1 (15) 

where Pi are given in (3). 
In (15) we have N vectors of dimension N, namely the {b~k)} k = 

0, 1, 2, ... , N - 1. Note from (14), however, that they are all cyclic 
permutations of one another. Hence we may refer to the b vector, b, of 
a solution, understanding that the b and all its cyclic permutations 
generate a solution in the sense of (15). Note that a cyclic permutation 
of the Yk has no real significance here; it simply changes the origin of 
time. 

An interesting property of the solutions which we have written down 
follows from the fact that if we transform the point (a, b) in the ab-plane 
into another point by 

a~a' -a 
(16a) 

b~ b' b 

then under this transformation 

PI ~ P~ -P2 (16b) 
P2 ~ P~ = -PI· 

The property is this: Let N be an even integer and let b = (bo , b1 , ••. , 

bN - 1) be a click vector generating a solution at point (a, b). Then the 
vector b' = (bo , -b1 , b2 , -b3 , ••• , bN - 1) generates a solution at 
reflected point (-a, b). The proof is simple. Note from (15), 

Y
,(k) = ___ 2 __ '"' b,(k) [ p~n _ p~n ] 

I I £...i n ,N ,N 
PI - P2 n 1 - PI 1 - P2 

= __ 2 _ L: (-l)k+nbn
[ (- P2): _ (- Plt

N
] = (_l)ky(k). 

- P2 + PI n 1 - P2 1 - P 1 

Hence if I y (k) I < 1 then I y' (k) I < 1. Note that the proof also supplies 
the value for y' (k) in terms of y lk). This theorem will be used later to 
generate new solutions from old ones. 

Before leaving this general discussion in favor of exhibiting some 
solutions in the next section, we list a few more observations related 
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to the click vector b. The click vector b, whose only allowed component 
values are ±1, 0, completely characterizes the associated oscillation. 
Clearly there can then only be a finite number of oscillations of given 
period N. This number is upper bounded by 3N

, but will generally be 
much less. Also note that a cyclic permutation of the components of b 
cyclically permutates the output values yk, and this latter is merely a 
shift in time. The permutated values are not physically distinct. 

Also note that if we perform b --7 - b then y --7 -y, and a solution 
of opposite sign is obtained. While this may often be distinguishable 
from the first solution, it is trivially related to it. Finally if one were to 
count the number b vectors of dimension N that yield new information, 
one would wish to exclude subperiods of N. Thus if (+, 0, 0) is an gen­
erating b vector for period 3, (+, 0, 0, +, 0, 0) generates a period 6 
oscillation but this is not new information. We have not solved the prob­
lem of counting how many of the 3N vectors are left after we impose the 
requirements of cyclic shifts, sign changes, and subperiods. At any rate, 
it is essential to test the ones that remain to check that they generate 
allowed solutions, I yk I < 1. 

IV. SOME EXPLICIT PERIODS AND REGIONS OF OSCILLArrION 

N ow for a few explicit solutions. Consider the possibility of a dc 
"oscillation", namely, set N = 1. The only nontrivial click vector is 
b = (+). The solution is more immediate if we use (13). We have 

2 
y = -----

1 - a - b (17) 

for the dc value of output. For what values of a and b within the triangle 
of Fig. 3 will we have I y I < 1 ? We require 

11-a-bl>2 (18) 

which is equivalent to either 

l-a-b>2 (19a) 

or 

-1 + a + b > 2. (19b) 

Inequality (19a) (coupled with the linear stability requirement) defines 
the triangle labeled "1" in Fig. 3, while (19b) is outside the stability 
region and needs no further consideration. Thus any portion of the 
region a < ° that we have not excluded from oscillations has now been 
shown to have them. They are of period 1; other period oscillations may 
(and do) occur in this region. 



3008 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1969 

At this point it is amusing to use an earlier remark on the possibility 
of generating new solutions from an even period one by "reflection". 
Letting N = 2, the click vector b = (+, +) certainly generates a period 
2 oscillation (albeit one with subperiods) in region I. Then the click vec­
tor b = (+, -) generates something really new: a period 2 oscillation 
in the region labeled II in Fig. 3. The amplitudes of the output are 

(Ie) ()Ie 2 Y = -1 -----
l+a-b' 

a> O. (20) 

One more possibility of a click vector exists for period 2, and that is 
b = (+, 0). From (13) we write for possible output values 

1 1 
Yo = ----- + ---­

l-a-b l+a-b 

1 1 
YI = ---- - -----. 

l-a-b l+a-b 

(21) 

After a little uninteresting analysis one can conclude that we cannot 
have I Yo I < 1, I YI I < 1 in (21) for any allowed values of a and b. Thus 
there are no other period 2 oscillations. 

On to period 3. Now there are four click vectors which must be con­
sidered. These are (+00), (++0), (+ -0), (++ -). Even in this case 
an exhaustive check that the "solutions" generated are legitimate ones is 
trying. Therefore, we resort to a trick; we look for periods which may 
exist in the immediate neighborhood of the point (a = 0, b = 1). This 
means PI = i, P2 - i. In this immediate neighborhood P2 = P1, and 
(15) reads 

2 . N-l b n 

y=--ImL~N' 
1m z n=O 1 - z 

where we have let z = PI . Letting N = 3, z = i gives 

Yo = - bo + bi + b2 

YI = - bi + b2 + bo 

Y2 = - b2 + bo + bi • 

(22) 

(23) 

We now require Yk = ±1 as a test for the click vector b. We see that 
only (+00) qualifies as possibly yielding a solution in the neighborhood 
of (a = 0, b = -1). A computer study shows that indeed the solution 
extends into the interior of the triangle and the region found is shown 
in Fig. 5. This immediately implies existence of the period 6 oscillation 
generated by (+00-00) in the reflected region. Similarly, a period 5 
oscillation region (with the concomitant period 10) generated by 
(+0000) is shown in Fig. 6. 
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a 

-0.7 -0.6 

Fig. 5 - A region for period 3 oscillations. 

It is very tempting to conjecture that the point (a = 0, b = -1) is a 
boundary point of any allowed region of oscillation. If this is true, a 
procedure like that used above may eliminate some otherwise very 
respectable b vectors from consideration. Note that for N = 2, b = 
( +, 0) satisfies the required condition at Pi = i, but we have shown this 

b 
-0.9 -0.8 

a 

-0.6 

-0.8 

Fig. 6 - A region for period 5 oscillations. 
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OUTPUT = f (V) 

INPUT =V 

Fig. 7 - Zeroing arithmetic, shown above, also gives rise to oscillations. 

is not extendable into the interior of the triangle. Hence existence at 
z = i does not guarantee an allowed solution. 

V. STABILITY WITH A MODIFIED ARITHMETIC 

In an attempt to eliminate these oscillations, proposals have been 
made which rely on detecting overflow. One such suggestion dictates that 
when overflow occurs, the adder is directed to shift out zero. For ref­
ereace we call this zeroing arithmetic. The effective transfer function of 
the adder for zeroing arithmetic is given in Fig. 7. However, it can be 
shown by numerical example that such a procedure still leads to oscil­
lations. Another possibility, "saturation arithmetic," is displayed in 
Fig. 8. Here a one (with the appropriate sign) is put out when overflow 
is detected. The remaining portion of this paper is devoted to proving 
that saturation arithmetic leads to stable operation whenever linear 
theory would predict it to be so. 

To begin, we suppose for the moment that we ignore the fact that 
the digitally implemented adder is nonlinear. Then the second-order 
linear difference equation which governs the behavior of the undriven 
system has solutions Yk which may be described as follows: 

Case 1: Complex roots for characteristic equation 

Yk = Re Ko exp (-exk), Ko and ex complex, Re ex > 0. 

k = 0, 1, 2, ... (24) 

Case 2: Real but unequal roots 

Yk = Kl exp (-exk) + K2 exp (-{3k). Ie real; ex > 0, {3 > 0. (25) 
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Case 3: Real and equal roots 

Yk = [KI + K2k] exp (-ak). Ie real; a > o. (26) 

Using this information, coupled with knowledge of Yi and Yi+l for some 
j, it is easy to give a bound on the magnitudes of all future (k ~ j) 
values of the output and to show this value goes to zero with increasing 
j. This is just another way to say that the solutions go to zero for the 
linear case. In the nonlinear case we cannot exclude the situation that 
some Yk+l will exceed unity and the nonlinearity will be operative. For 
saturation arithmetic the offending value must be set to unity if, for 
example, Yk+l > + 1. We can, for conceptual purposes, regard this as a 
"squeezing" of the output from a value greater than unity down to the 
value one which is performed in a continuous fashion. The crux of the 
proof now comes in showing that the partial derivative of our bound 
(on future outputs) with respect to the most recent output Yk+l has, for 
saturation arithmetic, the same sign as Yk+l • Hence decreasing a value 
that is too large in magnitude will decrease the bound as well, and it 
will go to zero at least as fast as it does for the linear case. 

To show how the above outline works, consider first the linear case 
with complex roots. From the form of the solution 

Y k = Re K 0 exp (- ak), Re 0: > 0, k = 0, 1, 2, 

it is clear that if we define 

(27) 

then Y~ ~ Bo for all k ~ O. We now express Bo in terms of the values 
Yo , YI which are initially stored in the shift registers to yield 

B = 2 + [YI - Yo Re exp (-0:)J2 . 
o Yo [1m exp (_0:)]2 

This suggests that one define the more general set of numbers 

B. = ~ + [Yi+l - Yi Re exp ~ -a)J2 . 
1 Y, [1m exp (-o:)J 

Clearly, from the way that Bi is defined, we have that 

Yk = Re Ki exp [-a(k - j)], k ~ j 

where K i is some appropriate complex number that satisfies 

(28) 

(29) 

(30) 

(31) 

From (30), the additional inequality that Y; ~ B j for all k ~ j follows. 



3012 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1969 

Furthermore, one can see by comparing (30) and (24) that 

1 K J 12 = 1 K 0 12 1 exp (- O'.j) 12. (32) 

Hence, since the real part of a is positive, B j goes monotonically to 
zero with increasing j. 

To generalize the above arguments to a nonlinear situation of in­
terest, * consider the following equation which follows from (29): 

aB j = 2 
a [I -(--)J'2 [Yi+l - Yi He exp (-O'.)J. (33) 

Yj+l m exp -a 

Now imagine B j - 1 has been calculated from values stored in the registers. 
From linear theory we predict y~~~ and B~L) ~ B i - 1 exp (-20'.), by (32). 
Now if the Y~~~ generated by the linear equation were too large, say, then 
decreasing it to unity would, according to (33), decrease the bound B i if 
we knew that 

Yi+l - Yi Re [exp (-a)] ~ 0 for Y~~~ ~ Yi+l ~ Y;~~ (34) 

where Y;~i is the linear prediction for Yi+l and Y~~~ is the correct value 
for the nonlinear circuit resulting from "squeezing" Y~~i down. Since 
1 Yi 1 ~ 1 and Re exp (-a) < 1, (34) is always true for saturation 
arithmetic (see Fig. 8) because Y;~i = + 1 (assuming Y~~i > + 1) and 
(34) can never swing negative. Similar things happen, of course, if 
Yi+l < -1. Thus the bound decreases at least as fast as for the linear 
case (which is exponential) and stability is assured. For zeroing arith­
metic Y~~~ = 0, and thus the appropriate sign for (34) cannot be guar­
anteed which is in satisfying agreement with the known instability for 
this case. 

For the next case of real but unequal roots, we now have reference to 
equation (25) and define our initial bound as 

Bo = 2(Ki + K;) 

= 2 [Yl - exp (-O'.)YoJ
2 + [Yl - exp (- /3)YoJ

2 
• (35) 

[exp (-a) - exp (- j3) J 2 

The remaining details are too similar to those of the preceding case to 
warrant recording again; stability for saturation arithmetic holds here 
as well. 

The last case to discuss occurs when we have real and equal roots. 

* Bi calculated from (29) is a bound on future outputs for the nonlinear as well as 
the lifiear case. If B j ~ 1 the two cases coincide, while of B j > ] the conclusion 
follows equally trivially since IYkl ~ 1 for the nonlinear situation. 
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OUTPUT = f (V) 

INPUT=V 

Fig. 8 - The above nonlinearity corresponds to saturation arithmetic and leads to 
stable behavior. 

This situation, represented for the linear equation by equation (26), 
is more difficult to treat than the previous ones. The analog of (27) and 
(35) now is 

{

4Ki 

Bo = max ~f:' 

That (36) yields a bound follows from the facts that (for t ~ 0) 

y! ~ max [(Kl + K2t) exp (-at)J2 

~ 2 max [Ki + K;t2
] exp (-2at) 

t 

{

max Ki exp (-2at) 
~ 4 max t 

max K;t2 exp (-2at) 
t 

{
K~ 

= 4 max K; ex:, (-2) 

(36) 
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Since 

Ki = Y~ (37) 
K; (Yl exp a - YO)2 
-2"- = 2 
a a 

we define our general bound as 

{Y~ B j = 4 max ( )2 
Yi+l exp a - Yi 

2 • 
a 

(38) 

Using the solution Yj = (Kl + K2j) exp (-aj), we see that 

O
. = (Yi+l exp a - Yi)2 
1 - 2 

a 
(39) 

decreases by the multiplicative factor exp (- 2a) for every unit increase 
of j. Further, suppose that B j = 4y~ for some j. That is, suppose 

(40) 

This implies 

Y~+l < y~(1 + a)2 exp (-2a), (41) 

and so if next time B j + 1 = 4Y~+1' then we have decreased by 
(1 + a)2 exp (-2a) < 1. On the other hand, if at the next step we have 
to choose Bj+l = 40 j +l , we see 

B i + 1 = OJ±l. < °i+l < exp (-2 ) 
B 2 = 0 = a. 

j Yj j 

(42) 

Likewise if we go from 40 j to 40 j +l we decrease by exp (-2a). Finally, 
a "transition" from 40i as a bound to 4Y~+1 decreases the bound by a 
multiplicative factor of (1 + a)2 exp (-2a). To see this we note that, 
by assumption, 

(43) 

Using the left-hand equality in (43) implies 

I I < a(Bi)! + I I Y i + 1 exp a = 2 Y j • (44) 
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while B j ~ 4y~ yields 

I Yi I ~ (~j)!. (45) 

Using (45) in (44) then allows us to deduce that 

B j +1 = 4Y~+1 ~ (1 + a)2 exp (-2a)B j (46) 

as was claimed. To extend these arguments to the nonlinear case we 
again observe that 

(47) 

for saturation arithmetic. 

VI. GENERALIZATIONS TO OTHER STABLE NONLINEARITIES 

Aside from the three nonlinearities already mentioned, there does 
not appear to be immediate engineering interest in seeing which other 
nonlinearities will or will not give rise to stable behavior of the filter. 
Having come this far, however, it is hard to resist asking if the method 
of proof we have used, or some slight extension of it, does suggest other 
nonlinearities for which stability will hold. The extension we consider 
is not to require 

all during the "squeezing" operation, but merely that 

B~ - B~ ~ 0., (48) 

where B~ is the value of the bound using linear theory and B~ is the 
"correct" value. An inspection of the previous proofs shows that this 
is equivalent to 

(y7+1 - ayj)2 - (y7+1 - ayj)2 > 0. 

for all real a such that I a I < l. 
A little manipulation reduces (49) to 

(yf+l - yf+l)(yf+l + yf+l - 2aYk) ~ o.. 

(49) 

(50) 

Assuming yf+l > 0, the first term in (50) to be nonnegative, and I Yk I 
~ 1, makes it apparent that 

(51) 
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is sufficient. The "stable nonlinearities" deduced from this kind of 
reasoning are outlined in Fig. 9. Thus any nonlinearity whose graph 
coincides with the identity function on the interval [-1, 1] and whose 
remaining portions lie in the closed shaded region of Fig. 9 will be stable. 
The function in these regions need not be continuous and need not obey 
f( -u) = -feu). 

An even higher degree of generality is achieved when we realize that 
nothing in our proofs required the nonlinearity feu) to be the same for 
successive values of the parameter k. This is tantamount to allowing the 
nonlinearity to be random in the following manner. Suppose a value of 
Y~+l > 1 has been predicted from linear theory (see Fig. 9). The per­
pendicular P to the v axis through Y~+l intersects the shaded region 
shown in Fig. 9 along a line segment. Choose randomly from this line 
segment the "value" of the nonlinearity to give yf+l . The discussion in 
this Section shows that the solutions of the difference equation 

(52) 

which has the stochastic nonlinearity just described will be stable when­
ever the linear version has stable solutions. 

APPENDIX 

Derivation of the Steady-State Solution 

We obtain the steady-state solution of our fundamental equation (6) 
using z-transforms. Recall that if one has a bounded sequence of number 
{ an}, the z-transform is defined by 

00 

fez) = 2: anz-n (53) 
n=O 

where (53) converges and is analytic outside the unit circle, I z I > l. 
It is easy to show that if {an} is periodic of period N, that is if aN+n = an , 
then (53) becomes 

(54) 

where A N - 1 is the polynomial of degree (N - 1) in liz given by 

(1) N-l 

A N - 1 - = 2: anz-n
• 

z n=O 
(55) 

The N poles of fez) at the N roots of unity are apparent from (12), and 
there are no other poles. 
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fey) 
p 

Fig. 9 - Any nonlinearity whose graph coincides with the identity function on the 
interval [ -1, + 1J and whose remaining portions lie in the (closed) shaded region will 
be stable. The possibility of generalizing this to a stochastic nonlinearity is also noted 
in the text. 

Denoting by Y(z) the z-transform of yet) excluding the additive terms 
involving initial conditions (since these will damp out because of linear 
stability) we have from (6) that 

AN-l(~) 
Y(z) = ------­

(l - az - b)(1 - Z-N) 
(56) 

The z-transform of the steady-state solution fez) must still be ex­
tracted from Y(z). Since the unit circle I z I = 1 corresponds to the 
frequency axis if one were using Fourier transforms, we know, by anal­
ogy, the state steady-state portion of (56) will be the pole-terms. Let 
ri , i = 1, ... , N be the N Nth roots of unity and define 

_ 1: (l)N-l-k(.!)k 
k=O ri z 

Note (57) implies 

Q~-l(~) = Nr; . 

Then from (56)-(58) we have 

Y(z) 

1 -N -z 
1 1 

(57) 

(58) 

(59) 
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where we have let 

D(z) = Z2 - az - b. (60) 

Using (57) once more, the steady-state solution (59) may be written 

(61) 

Referring back to the discussion at the beginning of this section, we see 
that (61) is the z-transform of a sequence {Yk} of period N where 

k = 0, 1, ... ,N - 1. (62) 

Using (57) in (62) we obtain 

(63) 

where, in writing (63), we have used the fact that r~ = 1. Expression 
(63) thus gives the {Yk} sequence for any click sequence. It is a solution 
corresponding to a self-sustained oscillation of the digital filter only if 
we have I Yk I < 1, all k. 

Two sums appear in (63). The explicit one shown is the sum over the 
roots of unity; the hidden one is the polynomial A N - 1(I/rJ. We will 
exhibit another form of solution (63) by explicitly doing the sum over the 
N roots. We begin by writing 

pz = ±1, o. (64) 

Thus pz are the coefficients, except for the factor of 2, of the polynomial 
A N - 1(Z). We also write, by factoring D(z) and expanding in partial 
fractions, 

1 1 1 [1 1 ] 
D(z) = (z - PI) (z - P2) = PI - P2 Z - -;;: - z - -;;; . (65) 

Now note that if z is such a number than ZN = 1, we have (since I P I < 1 
and I z I = 1) 
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1 1 00 (p)n -=-L: - . 
z - P Z n-O Z 

(66) 

Let us look at the sum of the n = 0, N, 2N, etc., terms in the right side 
of (66), that is 

N 2N 3N 
P P P I+ N + 2N +3N'+ 
Z z z 

Treating the sum of terms 

n = 1, N + 1, 2N + 1, 

n = 2, N + 2, 2N + 2, 

1 

n = N - 1, N + (N - 1), 2N + (N - 1), ... 

similarly, we have 

(67) 

_1_ = .!. 1 [1 + .e. + .e.; + ... + p
N

-

I

]. (68) 
Z - p z 1 _ pN Z Z Z N-I 

Finally letting Z = l/r i gives 

1 N-I 
r i ""' [ In --- = ---N L.J pri . 

1 1 - p n=O --p 
ri 

(69) 

Using (65) and (64) in (63) yields 

1 2 (N-I) 
Yk = ---.- L: r~ L: P: 

PI - P2 N i l=O ri 

[
1 N-I 1 ( p~ p;)] . - L: -n ---n - ---n . 

ri n=O r i 1 - PI 1 - P2 
(70) 

Two sums in (70) are immediately done. First look at the sum over the 
roots of unity. This involves observing that 

""' k-l-I-n _ {N if k - l - 1 - n == 0 mod N, 
L.J ri -

i 0 otherwise. 
(71) 

The congruence indic~ted in (71) c~n only be s~tisfied here if l = k -
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1 - n or if l = k - 1 - n + N. Thus it is useful to define 

(72) 

where we understand ai == 0 if j does not lie between 0 and N - 1, in­
clusive, and ai == ai if it does. One of the a's in (72) will thus always be 
zero and b~k) has values, like the p's, of ±1, o. Using the discussion above 
surrounding equations (71) and (72) we perform next the sum over l 
and write another form of the solution: 

_2 __ ~ b(k)[~ ~J Yk = L.J n N - N 
Pl - P2 n=O 1 - Pl 1 - P2 

k = 0, 1, . .. , N - 1. (73) 
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Rate Optimization for Digital 
Frequency Modulation 

By J. E. MAZO, HARRISON E. ROWE, and J. SALZ 
(Manuscript received June 12, 1969) 

The data rate of a multilevel digital F M system is optimized subject 
to fixed RF bandwidth, signal-to-noise ratio, and output error rate. The 
possibility of optimizing such a system was first considered by J. R. 
Pierce at Bell Telephone Laboratories. He made the observation that it 
is possible to send many levels slowly or fewer levels rapidly for an F M 
wave of fixed RF bandwidth and error rate, and that there must be a choice 
of signaling rate and number of levels that optimize the data rate. The 
rigorous treatment of this problem is the subject of this paper. The mathe­
matical model we analyze uses frequency-shift keying at the transmitter 
and ideal discrimination detection with an integrate-and-dum p circuit as 
the post-detection filter. Our results are exhibited graphically showing the 
various dependencies among the pertinent system parameters. 

1. INTRODUCTION 

In this paper we optimize the information rate (subject to certain 
constraints) of a multilevel digital FM system. This problem of 
delivering the maximum information through an FM system has 
recently been formulated by J. R. Pierce. 1 Specifically, he considered 
how one should choose the baseband signaling rate and the number 
of levels to get the most information through the channel, subject to 
fixed bandwidth, fixed RF signal-to-noise ratio, and fixed output error 
rate. This optimization has recently been carried out under the assump­
tion that the conventional FM receiver can be linearized. 2 Small-noise 
linear FM theory is satisfactory when analyzing analog systems, but 
has its well known pitfalls in digital applications. 

The purpose of this paper is to reexamine this problem more rig­
orously, paying particular attention to the anomalies (clicks) which 
can result from the nonlinear character of the receiver. In order to 
do this we must choose a particular mathematical model for digital 

3021 
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Fl\1: which is amenable to analysis. Such a model uses frequency-shift 
keying (FSK) at the transmitter and ideal discrimination detection 
with an integrate-and-dump circuit as the postdetection filter. The 
noise at RF is assumed to possess gaussian statistics. Although realizable 
FM systems do not exactly conform to this ideal mathematical model, 
we feel that the results predicted with the use of this model are applic­
cable to real FM systems. In any case, the numerical results agree 
well with those derived from the linear theory. According to our present 
calculations, this is due to the circumstance that the optimum number 
of levels leads to small enough deviations so that the contribution 
of the clicks to the error rate can be neglected. 

II. ANALYSIS 

Consider an n-Ievel FSK communication system with a sample rate 
N = l/T, square-wave modulation, and a level separation (in frequency) 
llf. Such a system would yield a data rate R given by 

R = N log2 n = 1.443 N In n bits/s, 

and, according to Carson's rule, occupy a bandwidth* 

B = N + (n - 1) llf. 

(1) 

(2) 

The FM signal plus gaussian noise enters a receiver consisting of an 
ideal RF filter (bandwidth B), limiter, discriminator, integrator (in­
tegration time T), and sampler (sampling rate N). The sampler out­
puts are simply the successive values of the instantaneous phase of 
the modulated wave following each (rectangular) modulation pulse, 
and would be separated by multiples of 

fl.¢ = 27T" ~ rad ians (3) 

in the absence of noise. 
The simplicity of the present system (that is, the finite-time integrator 

post-detection filter) has permitted a fairly rigorous determination of 
the probability of error for high RF signal-to-noise ratio.4 It is shown 
in Ref. 4 that the parameter ll¢ given in equation (3) plays a very 
important role in the theory of error rates for digital FM. In particular, 
it is known that if ll~ < 7T" (or equivalently, llf/N < !), then it is 
the smooth noise at the baseband output which determines the error 

* Comparison with the exact FSK spectra for n = 2, 4, 8 suggests that thifl 
approximation. is valid for present purposes, 3 
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rate; while if Il~ > 7r (llflN > !), then the clicks dominate, which 
is the basic reason for the probability of error taking on different forms 
in these two cases. 

The optimum systems considered here are shown to correspond to 
the Ilf IN < ! case, for which clicks are unimportant. Therefore we 
take the probability of error* P as given by twice equation (17a) of 
Ref. 4, with ~ ~ 1l~/2 = 7r IlfIN; 

(7r 111) 

P I cot 2, N [,. 2 (7r 111)] 
1'-1 (27rp)! ( (Ill))! exp - ~p sm 2, N ' 

cos 7r N 

111 1 
p » 1, N < 2, , (4) 

and subsequently verify that IlflN is indeed less than! for the re­
sulting optimum systems. Here p is the RF signal-to-noise ratio in 
the frequency band B. We treat the asymptotic approximation (for 
large p) of equation (4) as an equality in the following. 

For fixed error rate P and RF signal-to-noise ratio p, equation (4) 
determines IlfIN. Rewriting equation (2), 

B 111 
N = 1 + (n - 1) N ; 

substituting equation (5) into equation (1), 

R 
B 

1.443 In n b't I 1 111 1 s cyc e. 
1 + (n - 1)-

N 

(5) 

(6) 

We set the derivative of equation (6) equal to zero, determining the 
optimum number of levels no and maximum rate Ro . 

1 
no(ln no - 1) = 1l11N - 1. 

Ro _ 1.443 
B - no(1l1IN) 

(7) 

(8) 

Alternatively, once the optimum number of levels no has been de-

* For multilevel output samples, most errors will be to adjacent levels. Assuming 
that something like the Gray code is used, the symbol probability of error P of 
equation (4) will be approximately the bit probability of error for the final recon­
structed binary signal. 



3024 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1969 

termined via equations (4) and (7), we may express the other parameters 
of the (optimum) system in terms of no only: 

tlf _ 1 
N - no(ln no - 1) + 1 ' 

IJ; ~ 1.443 [In no + ~o - 1] bits/cycle, 

B no In no 
N - no(ln no - 1) + 1 

Note that the restriction tlf/N < ! implies via equation (7) that 

Finally, the Shannon capacity for the RF channel is 

~ - 1.443 In (1 + p) bits/ cycle. 

III. RESULTS 

(9) 

(10) 

(11) 

(12) 

(13) 

Figures 1 to 7 illustrate the parameters of optimum multilevel 
FM systems using a finite-time integrator as a post-detection filter 
for two representative error rates (P = 10-6

, 10-8
). 

The solid curves of Fig. 1 show the optimum number of levels no 
versus the RF signal-to-noise ratio in dB, 10 loglo p, for the two values 
of P. The curves terminate at no = 4, according to equation (12). 
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Fig. 1-Number of levels for maximum data rate versus RF signal-to-noise ratio. 
Dashed lines indicate small-angle approximations. 



FM RATE OPTIMIZATION 

w 2.4 ,----..,...----r----...,.--.,.....--...., 

~ 
a: 

~ 2.0 I----+-~~--+---t----l 
..J 
::J 
a. 
........ 
~ 1.6 t-----t---------t-----"""I:~-+----l 
<{ 
ill 

LL 1.21---+------+---j---+----j 
0:: 
1 

m I z 1.0 "-_--'--_--'-_---!. __ .J....-_-' 
o 10 20 30 40 50 0 
10 LOG lO p- RF SIGNAL-TO-NOISE 

RATIO IN DECIBELS 

_\ 
(b) 

\ 
"-r---

10 20 30 40 
no-OPTIMUM NUMBER 

OF LEVELS 

3025 

-

50 

Fig. 2 - Bandwidth expansion factor for maximum data rate. 

no increases rapidly as p increases, for fixed P. The small-angle approx­
imation for the trigonometric functions in equation (4) is shown by 
the dashed curves of Fig. 1; in this approximation changing P simply 
translates the curves of Fig. 1 horizontally. This is a reasonable ap­
proximation for the smallest no permitted [by equation (12)], for the 
values of P of interest here. 

Figures 2, 3, 4, and 5 show optimum system parameters plotted 
against two horizontal scales: 

(i) 10 loglOP-the RF signal-to-noise ratio in dB. Two plots are 
shown, for P = 10-6

, 10-8
• Using the small-angle approximation in 

equation (4), changing P translates these curves horizontally. This 
horizontal axis is the parameter of most direct physical interest. 
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Fig. 4 - Relative phase shift per level in one sample interval for optimum systems. 

(ii) no-the optimum number of levels, determined from Fig. 1. 
Here a single universal plot suffices rigorously for all P [That is, without 
small-angle approximations in equation (4)]. 
The vertical axes show: 

Figure 2-BIN, the bandwidth expansion factor, roughly* one-half 
the ratio of RF to base-bandwidth. This factor varies from about 2 at 
small p or no , to an asymptotic limit of 1 as p, no -7 00. For large p, no 
we have small-index phase modulation, with only the first sideband 
significant. Even for the smallest p, no considered here the bandwidth 
expansion is moderate. 

Figure 3-Rol B, the normalized maximum rate in bits per cycle. 
This quantity increases monotonically with p, no . 

Figure 4-360· At IN represents the relative phase change in degrees 
corresponding to a change in modulation of one level. 

Figure 5-360 (n - 1) AtlN represents the maximum relative 
phase change in degrees in one sampling interval, corresponding to a 
change in modulation from the lowest to the highest level. The maximum 
value for this quantity, occurring for the smallest p, no (that is, no = 4) 
is not far' from 3600

• As p, no increase, the maximum phase change be­
comes small for optimum systems. 

Within the small-angle approximation, discussed in connection with 
Fig. 1, changing P merely shifts the horizontal (dB) axes of Fig. 1 
and Figs. 2(a) to 5(a). Let us adopt the P = 10- 6 curves as standard, 

* This is because the square-wave modulation assumed here is not strictly band­
limited; in fact, its spectrum falls off so slowly that its rms bandwidth is infinite. 
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Fig. 5 - Maximum relative phase shift in one sample interval for optimum systems. 

and plot the number of dB to be added to the 10 loglo p axes a sa function 
of P. This is shown in Fig. 6. We remark that this is only an approxi­
mation, and will begin to fail sooner as P decreases. 

Finally, Fig. 7 compares the maximum data rate for the multilevel 
FIVI system with the Shannon capacity of the RF channel. The optimum 
data rate ranges from about 19 to 27 percent of the ideal RF channel 
capacity, for error probabilities P between 10-6 and 10-8

• 

We have so far dealt with optimum systems. However, the number 
of levels may be fixed by other constraints, so that suboptimum systems 
are of interest. For example, it may not be practical to have the large 
number of levels required for optimum systems at large RF signal-to-

4 
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-3 
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PROBABILITY OF ERROR 

Fig. 6 - Correction for modifying P = 10-6 curves to other error probabilities. 
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Fig. 7 - Ratio of maximum data rate to Shannon capacity. 

noise ratios p; we may be restricted to 8 (or 16) levels, and it is necessary 
to determine how much the data rate will be reduced. Now rather than 
maximizing R by varying Nand n in equation (1) subject to the con­
straints of equations (2) and (4), we fix n in equations (5) and (6). 
Figures 8 and 9 show the optimum rate RoJ B versus 10 loglo p [given 
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Fig. 8 - Best data rate for suboptimum systems with two, four, and eight levels 
compared to maximum data rate for optimum system. Dashed line-maximum data 
rate for optimum system, Ro/B (see Fig. 3). 
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Fig. 9 - Best data rate for suboptimum systems with two, four, and eight levels 
compared to maximum data rate for optimum system. Dashed lined-maximum 
data rate for optimum system, R 0/ B (see Fig. 3). 

also in Fig. 3(a)], together with the rates for two, four, and eight levels, 
determined from equation (6) with n = 2, 4, and 8 for P = 10-6

, 10-s in 
equation (4). While eight levels is strictly optimum only at the point 
of tangency between the Rs and the Ro curves, we see that the optimum 
is fairly broad. The corresponding bandwidth expansion factors are 
found from equation (5). 

IV. DISCUSSION 

We have presented the results of Figs. 1 through 9 as continuous 
curves. Actually, only isolated points of these curves are significant, 
since the number of levels must be integral. These continuous curves 
should consequently be replaced by appropriate "staircase" functions, 
but the difference will be significant only for small numbers of levels 
(that is, at low RF signal-to-noise ratios). 

The present theory excludes two- and three-level systems. Naively, 
one might try to extend the present results to these cases by equation 
(17c) and Fig. 5 of Ref. 4. This may not be accurate for the error rates 
considered here (P = 10-6

, 10-S
), because the RF signal-to-noise ratio 

p becomes small, and the basic results of Ref. 4, that is, equations 
(17), (26), and (27), are asymptotic as p becomes large. However l for 
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very much smaller error rates, for example, P ~ 10-3°, it is possible 
that this approach would be productive. 

I t would be desirable to extend the present results to binary and 
ternary systems; this will require a different or improved approach 
from the asymptotic evaluation of Ref. 4 for the error probability. It 
seems likely that clicks will dominate the error behavior for optimum 
two- and three-level systems. 

The principal limitation in the present treatment (aside from the 
assumptions of the model, such as a finite-time integrator post-detection 
filter) lies in our lack of knowledge of the precise way in which the basic 
result for the probability of error P (equation (4) above) fails. We have 
merely assumed that this result holds for signal-to-noise ratios down to 
about 10 dB, independently of P or t:.t/N. This provides additional 
motivation for further study of the asymptotic theory of Ref. 4. 
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Power Spectrum of Hard-Limited Gaussian 
Processes 

By HARRY M. HALL 

(Manuscript received September 10, 1968) 

The power spectral density at the output of an ideal hard limiter (one­
bit quantizer) is examined when the input is driven by a narrowband gaus­
sian signal plus an additive gaussian noise that consists of a broadband back­
ground component plus narrowband interference. Assuming that the input 
signal-to-noise power ratio is small by virtue of the large bandwidth of the 
observed broadband noise, calculations are made of the average output signal 
power, the average output noise power in the signal band, and the average 
power of the strongest intermodulation product. The results support the 
intuitive conclusion that spectrum analyzer performance is degraded by 
the presence of the limiter and that this degradation is more pronounced 
when a strong narrowband interfering signal is present. They also indicate 
that the degradation can be minimized by making the bandwidth observed 
by the limiter sufficiently wide that the broadband noise power dominates 
both the signal and interference powers. In particular, for a typical example, 
the signal-to-noise power ratio measured in the signal band is degraded by 
less than about 1.3 dB by the presence of the limiter and the ratio of output 
signal power to power of the strongest intermodulation product is greater 
than about 14-.5 dB as long as the broadband noise power exceeds the inter­
fering-signal power. 

1. INTRODUCTION 

In this paper we examine the power spectral density at the output of 
an ideal hard limiter when the input is driven by a collection of inde­
pendent gaussian processes. This work is motivated by the fact that in 
spectrum analysis, it is often convenient from the point of view of signal 
processing to precede the analyzer with a hard limiter. In order to deter­
mine the effect of the limiter on analyzer performance, it is of interest 
to compare the power spectral density at the limiter output with that 
at the limiter input. With this goal in mind, the ideal limiter to be ana-

3031 
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lyzed is shown in Fig. 1. It is assumed that the limiter input is driven 
by the signal 

Fig. 1 - Ideal hard limiter. 

x(t) = set) + n(t), (1) 

where set) is a sample function of the gaussian "signal" process set) and 
net) is a sample function of the gaussian "noise" process N (t). More 
precisely, it is assumed that Set) and N(t) are statistically independent, 
zero-mean, stationary, real, gaussian processes having continuous co­
variance functions RS(T) and RN(T) respectively. Further, motivated by 
the spectrum analysis application, the covariance functions Rs(T) and 
RN(T) are specified: the signal process Set) is assumed to be a narrow­
band process with covariance function 

RS(T) = Ro(T) cos WoT (2) 

where SoCt) , the Fourier transform of Ro(T), occupies a narrow band 
centered at zero frequency. The noise process N(t) is assumed to consist 
of a broadband background component plus narrowband interference 
that is statistically independent of the background noise. The covariance 
function of the broadband background noise is assumed to be a continous 
covariance function that is given in the formt 

R1(T) = R1(TI ; T) 

= Co p(Ld) cos WIT, 
Tl Tl 

(3) 

where p(x) satisfies the conditions 

p(o) = 1, (4) 

100 

I p(x) I dx < 00. (5) 

This specification of R 1 (T) has the properties: 

t For example, consider the exponential covariance 

RtE(T) = - exp -{J - cos WIT. Co ( , T ') 
Tl Tl 
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(i) The total average broadband noise power RI(O) increases linearly 
with 7~I where 71 > 0 is defined to be the broadband noise "correlation 
time." 

(ii) The average broadband noise power observed in any fixed band 
of finite extent approaches a finite constant as the correlation time 71 

approaches zero. 
Finally, the covariance function of the narrowband interference is 

assumed to be given by R2(7) cos W27 where S2(f), the Fourier transform 
of R 2 (r), occupies a narrow band centered at zero frequency. Therefore, 
the covariance function of the noise process N(t) is given by 

(6) 

where Rl(r) satisfies equation (3). 
It was stated that the covariance functions just specified are suggested 

by the spectrum analysis application, and this is true in the following 
sense: it is often the case that one desires to analyze narrowband signals 
that lie at a priori unknown locations within a relatively wide band, and 
in fact it may be that the total bandwidth to be searched is a significant 
fraction of the band center frequency. Given such a spectrum analysis 
problem, it is proposed that the situation of greatest interest is that in 
which the average noise power in the narrow band actually occupied by 
the signal mayor may not be comparable to the average signal power, 
but in which the total average noise power is much larger than the aver­
age signal power by virtue of the large noise bandwidth. Having such a 
situation in mind, it is seen that the model for the broadband covariance 
function RI(r) specified in equation (3) does in fact exhibit the desired 
behavior when the correlation time 71 is appropriately small. 

However, in addition to this "weak-signal" situation in which the 
narrowband signal power Rs(O) is much smaller than the broadband 
noise power Rl (0), it is also of interest to allow the presence of "strong" 
narrowband signals whose average power is comparable to that of the 
broadband background noise. The presence of such strong narrowband 
signals is expected to be obvious at the limiter output, and in fact these 
signals are of interest since we expect that their presence will lead to the 
generation of intermodulation products that may interfere with the 
analysis of any weak signals that are present. In order to examine this 
situation, a narrowband interference has been included, and it is con­
venient to consider this interfering signal to be part of the additive 
noise N(t). 

Before proceeding with the analysis of the problem stated above, it 
is noted that the ideal limiter described in Fig. 1 has received a great 
deal of attention in the literature. The noiseless case has been considered 
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and output amplitudes examined when the input consists of a collection 
of sinusoids. 1

•
2 The noise-alone case has been examined and results ob­

tained for the autocorrelation function and power spectral density at the 
limiter output both for the case of broadband gaussian noise alone 
[Rl(r)] and for the case of narrowband gaussian noise alone [R 2 (r) 
cos W2r].3.4 The ratio of output signal-to-noise ratio (SNR) to input SNR 
has been evaluated for the case in which the input consists of one or two 
sinusoids plus narrowband gaussian noise. 5

-
7 These same workers have 

examined the strengths of intermodulation products, and the analysis 
of output signal and intermodulation product power has been extended 
to the case of an arbitrary number of sinusoids plus gaussian noise.8

•
9 

In addition, analysis of the limiter has played an important part in 
studies of the performance of angle-modulation systems, and these 
analyses have generally assumed that the limiter is driven by a narrow­
band process. 

On the other hand, it does not appear that much has been reported 
for the situation in which the limiter is driven by a narrowband signal 
plus noise that includes a broadband component. Known results that 
have application to this situation include those of Manasse, and others, 
which apply when the limiter is driven by a "weak" narrowband signal 
plus narrowband gaussian noise whose bandwidth is much larger than 
that of the signal,IO plus approximate results that apply when the input 
includes a narrowband component that is "much stronger" than the sum 
of the other inputs present. ll We address this problem by examining the 
the output power spectral density when the limiter input is given by 
equation (1); namely, the input is made up of a narrowband gaussian 
signal plus a gaussian noise consisting of a broadband background com­
ponent plus narrowband interference. In particular, this examination 
is carried out by calculating the output power spectral density in Sec­
tion II, as the broadband noise correlation time rl approaches zero. 
This calculated result is then used in Section III to evaluate three 
performance measures. An example of a system to which these per­
formance measures apply is a spectrum analyzer preceded by the ideal 
limiter. 

(i) The degradation in the ratio (SNR) of average signal power to 
average noise power in the spectral band occupied by the signal is 
calculated. This degradation is important because the signal-to-noise 
power ratio measured in the signal band is often one of the important 
parameters in determining system performance. 

(ii) The ratio (SIR) of average output signal power to average image 
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power is calculated where, if the narrowband signal is centered at a 
frequency fa and the narrowband interference is centered at a frequency 
/2 , then the signal image is defined to be that intermodulation product 
centered at the frequency 1 2f2 - fa I. This is the strongest of the inter­
modulation products of the signal with the additive noise, and thus it is 
reasonable to use the SIR as an indication of whether or not these inter­
modulation products will have a significant effect on system perform­
ance. 

(iii) The ratio S2NRo of average output interference power to aver­
age output broadband noise power in the spectral band occupied by the 
interference is calculated. As discussed previously, the distinction in 
this work between signal and interference is made based upon average 
power at the limiter input. That is, it has been assumed that the presence 
of any narrowband signal having an average power comparable to that 
of the broadband background noise will be obvious at the limiter out­
put, and that such an input may in fact interfere with the analysis of 
other narrowband inputs. S2NRo is calculated to check the assumption 
that in fact the presence and location of such an interfering signal will 
be obvious upon analyzing the power spectrum at the limiter output. 

Since the performance measures listed above are calculated as the 
broadband noise correlation time r1 approaches zero, it follows that they 
will all apply in practice to situations in which the broadband component 
of the input noise has been shaped by a low-pass filter whose bandwidth 
is large compared with the center frequencies of the narrowband inputs 
that may be present. An example of a situation in which such a model is 
viable occurs in the spectrum analysis of underwater acoustical signals. 

On the other hand, the SNR and S2NRo results obtained will not apply 
directly to communication situations in which the bandwidth of the 
additive broadband noise is much larger than that of the narrowband 
signal but much smaller than the system center frequency. This situa­
tion is discussed in Section IV, and it is pointed out there that the results 
can be modified to encompass this situation by letting the center fre­
quencies of both the narrowband signal and additive noise increase 
linearly with r~l. 

II. THE OUTPUT POWER SPECTRAL DENSITY 

The output power spectral density can be calculated by using the 
expression for the output autocorrelation function Ry(r) given by 
Davenport and Root (Ref. 12, p. 308) 
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= 0, otherwise, (7) 

where rex) denotes the gamma function; in conjunction with the ex­
pression for RY(7) given by Van Vleck (Ref. 3, p. 23) 

R ( ) 2 . [RS(7) + RN(7)] 
y 7 = -; arcsm Rs(O) + RN(O) . (8) 

Defining a to be the fraction of the average noise power due to the 
broadband background noise, 

II Rl (0) Rl (0) 
a = RN(O) = Rl (0) + R2(0) , (9) 

it is seen that the ratio YJs of average signal power to average noise power 
at the limiter input is given by 

II Rs(O) Rs(O) 
YJs = RN(O) = a --c;: 71 • 

(10) 

Now, it was pointed out in Section I that we are interested in the situa­
tion in which the signal-to-noise power ratio YJ s is small, and in fact 
the case of interest is that in which YJ s is small because 71 is small, that is, 
YJs is small due to the large bandwidth of the observed broadband back­
ground noise. Motivated by this, it is shown in Appendix A, using 
the expressions for Ry(7) given by equations (7) and (8), that when 
a > 0 the output power spectral density Sy(f) is given by 

S y(1l ~ ~ {f.~ arcsin PN(T) cos WT dT 

Rs(O) 100 

+ a --c;: 71 0 [pS(7) - (1 - a)p2(7) cos W27] 

. [1 - (1 - a)'p;(T) cos' w,Tj-1 cos WT dT} + OCT,) (11) 

as 71 ~ 0, uniformly in f, where 

'Y = S, N, 0, 1,2, (12) 

are assumed to be absolutely integrable. 
Equation (11) exhibits the components that dominate the output 

power spectral density when the broadband noise correlation time 71 
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approaches zero. In particular, inspection of equation (11) shows that 
these dominant contributions include a component that is just the out­
put power spectral density observed when the noise N (t) alone is present 
at the limiter input, a component that has the spectral characteristics 
of the signal S(t), and a component that is due to interaction of the 
signal with the interference component [P2(T) cos W2T] of the noise. In 
order to quantitatively analyze these components where, in particular, 
we desire to use Sy(f) to calculate the performance measures discussed 
in Section I it is convenient to make use of the fact that both the signal 
Set) and the interference component of the noise have been assumed to 
be narrowband processes, plus the fact that the broadband component 
of the noise becomes white across any fixed band of finite extent when 
Tl -7 O. These properties can be exploited by expanding both [1 -
(1 - ~)2p;(T) cos W;Tr! and arcsin PN(T) followed by an appropriate 
collection of terms. This is carried out in Appendix B and the result is 

S (1) S (1) S () 4 Rs(O) ~ r2(m + !) ( )2m 
y = y, + y. 1 +;"2 ~ T Tl !::'o Em r(2m + 1) 1 - ~ 

· iOO 

2Fl[m + !, m + !; 2m + 1; (1 - ~)2p;(T)] 

· PS(T)p;m(T) cos 2mw2T cos WT dT 

_ .§. ~ Rs(O) T f rem + !)r(m + !) (1 _ ~)2m+l 
7r

2 Co 1 m-O r(2m + 2) 

· i OO 

2Fdm + !, m + !; 2m + 2; (1 - ~)2p;(T)] 

· p;m+1(T) cos (2m + l)w2T cos WT dT + O(Tl) (13) 

as Tl -70, uniformly in f, where 2Fl(a, b; C; x) is Gauss's hypergeometric 
function (Ref. 13, p. 556), Em is the Neumann factor Eo = 1, Em = 
2(m = 1, 2, ... ), and where SY1 (f) and Sy.(f) are given: 

4 100 

Sy,(I) = - Tl {arcsin [~p(x) + 1 - ~] 
7r 0 

- arcsin (1 - ~)} dx + O(Tl) (14) 

as Tl -7 0, for all f «fmax < 00 for arbitrary fixed fmax t and 

t Recall from equation (3) that 

( ' T ') Pt(T) =p -:;:;- COSWIT 

where p(x) satisfies equations (4) and (5). 
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Sy.(f) = 42 i: r2(m + !) (1 _ a)2m+l 
7r m=O r(2m + 2) 

. irfJ 

2Fdm + !, m + !; 2m + 2; (1 - a)2p;(T)] 

. p;m+l(T) cos (2m + I)w2T cos WT dT. (15) 

The expression given by equations (13), (14), and (15) exhibits in a 
useful fashion the components that dominate the output power spectral 
density when the broadband noise correlation time approaches zero. To 
see this more clearly, it is convenient to assume that the narrowband 
interference in fact has a line spectrum, that is, 

(16) 

This assumption is convenient since it simplifies the calculations with­
out obscuring the most important effects that result from the presence 
of narrowband interference. This assumption is applied in Appendix B 
to equations (13), (14), and (15), and it is shown that, when P2(T) == 1, 
we can write 

'2Fdm + !, m + !; 2m + 1; (1 - a)2] 

. [Ss(f - 2m/2) + Ss(1 + 2m/2)] 

where Sy, (f) is given by equation (14), 

Sy.(f) = \ i: r2(m + !) (1 _ a)2m+1 
7r m=O r(2m + 2) 

. 2Fdm + !, m + !; 2m + 2; (1 - a)2] 

(17) 

• {0[1 - (2m + 1)/2] + 0[1 + (2m + I)/2]} (18) 

where o(x) denotes the Dirac-delta function, and where 

SsCf) = 2 i rfJ 

RS(T) cos WT dT (19) 

is the power spectral density of the signal Set). Equations (17), (14), 
and (18) give the representation we desire, and they demonstrate that 
there are three contributions that dominate the output power spectral 
density when the broadband noise correlation time Tl approaches zero. 

(i) There is a component Sy, (I) that becomes white across any fre­
quency band of finite extent as Tl ~ O. When a = 1, this component is 
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just the output power spectral density that would be observed if the 
broadband component of the noise was present alone at the limiter 
input. Moreover it is necessary to specify the broadband covariance 
function Rl(T) in order to calculate Sy,(f). For example, if R1(T) is the 
"triangular" covariance function 

I T I ~ Tl 

~ 0, I T I> Tl , (20) 

then equation (14) gives the result 

Sy,.(j) ~ ~ : [~ - arcsin (1 - ,,) - (2" - ,,')lJ + O(T,) (21) 

as Tl ~ 0, for all f ~ fmax < 00 for arbitrary fixed fmax . 

(ii) There is a component Sy.(f) consisting of line spectra located at 
I f I = kf2 ,k = 1,3, .... When a = 0, this component is just the power 
spectral density that would be observed if the narrowband interference 
was present alone at the limiter input. 

(iii) There is a component consisting of a term that has the spectral 
characteristics of the signal plus terms that are intermodulation products 
of the signal with the narrowband interference component of the noise. 

2.1 Noise Consisting of Broadband Component Alone 

It is clear from inspection of equations (17), (14), and (18) that 
the output power spectral density is greatly simplified when the additive 
noise consists only of the broadband component (a = 1), and in fact 
it is seen that in this case equation (13) reduces to the simple result 

(22) 

as Tl ~ 0, uniformly in f. lVloreover, the calculation of Sy, (f) is simpli­
fied when a = 1. For example, if Rt(T) is given by the triangular function 
in equation (20), then it is seen that, when a = 1, 

SYltlf) = ~ ('"' arcsin (1 - I...) cos WT dT. 
7r J 0 Tl 

(23) 

This integral can be evaluated using Erdelyi [Ref. 14, item 4.8(1)], 
and we find 

SYu,(f) = 2Tl [J O(WTl) sinc (2fTl) - ..L HO(WTl) cos WTIJ (24) 
WTl 
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where J vex) denotes the Bessel function of the first kind of order v and 
Hv(x) is a Struve function of order v (Ref. 14, p. 372).t Note that equa­
tion (24) holds for all 1 and for all Tl • Sy It" (I) is plotted in Fig. 2 along 
with 

(25) 

the power spectral density at the limiter input corresponding to Rtt,,(T). 
The plotted data are normalized so that both processes have the same 
average power. Thus the data plotted in Fig. 2 show explicitly how the 
ideal limiter redistributes the average broadband noise power across the 
band and demonstrate in particular the power-spreading effect that 
takes place due to the limiter nonlinearity. 

III. EVALUATION OF PERFORMANCE MEASURES 

It is now desired to use the output power spectral density results 
derived above to evaluate the performance measures discussed in Sec­
tion I. These calculations use directly the results derived above except 
that the assumption that the narrowband interference has a line spec­
trum can be relaxed. That is, the results derived below continue to be 
useful as long as the interference is a narrowband gaussian process with 
the covariance function R 2(T) cos W2T specified in Section I. 

3.1 Degradation in Signal-to-N oise Power Ratio 

The degradation in signal-to-noise power ratio in the spectral band 
occupied by the signal is obtained by calculating the ratio SNRo/SNRI 

of output signal-to-noise power ratio to input signal-to-noise power 
ratio, where these SNR's are calculated in the spectral band B occupied 
by the signal. lV[oreover, we assume that: 

(i) The band B contains significant contributions from only the 
narrowband signal and the broadband component of the noise, that is, 
the narrowband interference and intermodulation products of the 
narrowband signal with the narrowband interference have negligible 
power in the band B. 

(ii) Rl (T) is the triangular function in equation (20) since it is neces­
sary to specify the covariance function of the broadband component of 
the noise. 

Making these assumptions, the ratio SNRo/SNRI measured in the 

t Note that sine x £ sin 7rx. 
7rX 
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band B of finite extent can be calculated using Sy(f) given by equation 
(17), and it is seen that 

lim SNRo = 
Tl-+O SNRr 

i SYs(f) df i SI(f) df 

i Sy,(f) df i Ss(f) df 

(26) 

where SY1(f) is given by equation (21), Ss(f) is the power spectral 
density of the narrowband signal Set), and SYs(f) and SI(f) are given: 
Sy s (f) is defined to be the contribution to Sy(f) that has the spectral 
characteristics of the signal Set) and thus is determined by setting 
m = 0 in the sum in equation (17). This gives 

SYs(f) = ~ cO' 2Fd!.!; 1; (1 - a)2]T 1Ss(f) 
7r 0 

(27) 

which (using p. 387 of Ref. 14) can be written as 
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(28) 

where K(k) denotes the complete elliptic integral of the first kind. Sl(f) 
is defined to be the power spectral density at the limiter i~put due to 
the broadband component of the noise and thus, using equation (25), 
is given by 

(29) 

as Tl ~ 0, for all f ~ fmax < 00 for arbitrary fixed fmax . Thus, making 
the appropriate substitutions into equation (26) yields 

lim SNRo = a
2
I(1 - a) (30) 

T,-0 SNRI [7r 2 lJ 7r "2 - arcsin (1 - a) - (2a - a ) 

This relative signal-to-noise power ratio result is plotted in Fig. 3 and 
demonstrates the expected result that the degradation in the signal 
band increases when there is a strong narrowband interfering signal 
present at the limiter input. However, it is important to note that the 
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narrowband interference must be very strong to cause a significant in­
crease in the degradation. In particular, it is seen that the degradation 
is less than about 1.3 dB as long as a is greater than 0.5, that is, as long 
as the broadband noise power is greater than the narrowband inter­
ference power. 

3.2 Signal-to-Image Power Ratio 

The signal-to-image power ratio (SIR) is obtained by calculating the 
ratio of average output signal power to average image power where the 
image has been defined to be that narrowband component of Sy(f) 
centered at the frequency I 2f2 - fa I. The SIR can be calculated using 
Sy(f) given by equation (17), but it should be noted that, when Tl ~ 0, 
the SIR does not depend on the particular choice of R1(T) within the 
class specified by equation (3). Using equation (17), it is seen that 

(31) 

where Sy 8 (f) is given by equation (28) and SYr(f) is found by setting 
m = 1 in the sum in equation (17). That is, 

S (1) - l a(l - a)2 F [3 3. 3· (1 )2] 
Yr - 47r Co 2 1 2", 2"" - a Tl 

which, using Abramowitz and Stegun [Ref. 13, item 15.2.1] together 
with Price [Ref. 15, p. 10] and Dwight [Ref. 16, items 788.1, 788.2], 
can be written as 

8 a [1 + 2a - a
2 

] SYr(f) = 7r2 (1 _ a)2C
o 

2 I{(l - a) - E(l - a) Tl 

. [Ss(f - 2/2) + Ss(f + 2/2)] (33) 

where E(k) denotes the complete elliptic integral of the second kind. 
lVlaking the appropriate substitutions, there results 

. (1 - a)2K(1 - a) 
;~~ SIR = (1 + 2a - a2)K(1 - a) - 2E(1 _ a) . (34) 

This SIR result is plotted in Fig. 4 and demonstrates that the signal­
to-image power ratio decreases when there is a strong narrowband 
int~rfering si~nal present ~t the limiter input. In fact~ equation (34) 
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<1 R 1 (O) 
a = R 1(O) + R 2(O)" 

has the limiting behavior 

lim lim SIR = I, 
a-+O Tl-+0 

(35) 

'which agrees with the approximate result obtained when one assumes 
that the input to the limiter includes a narrowband component that is 
much stronger than the sum of the other input components present. 11 

However, the most interesting result demonstrated by Fig. 4 is that 
the narrowband interference must be very strong for the image power 
to be comparable to the signal power at the limiter output. In particular, 
it is seen that the SIR is greater than about 14.5 dB as long as the broad­
band noise power is greater than the narrowband interference power. 

3.3 Output Interference-to-Broadband Noise Power Ratio 

The output interference-to-broadband noise power ratio S2NRo is 
obtained by calculating the ratio of average output interference power 
to average output broadband noise power, measured in the spectral 
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band B2t occupied by the interference. In order to perform this calcu­
lation it is necessary to specify the broadband covariance function, and 
is is assumed that R1(7) is the triangular function in equation (20). 
Having specified R 1(r) in this manner, S2NRo can be calculated using 
Sy(f) given by equation (17), and it is seen that 

f Sy.(J) dt 
lim S2NRo = -=B=.'--__ _ 

L. SYt(!) dt 
(36) 

Tl--+O 

where SYt (f) is given by equation (21) and Sy. (f) is given by equation 
(18). Proceeding with these substitutions and making the assumption 
that the components of Sy.(f) concentrated at (odd) harmonics of the 
fundamental frequency t2 contribute negligible power in the band B2 , 
there results 

r S NR _ a(1 - a) 2F1 [!, !; 2; (1 - a)2] 

.:~' 0 - 2T'[~ _ arcsin (1 - a) - (2a - a')I](L. dt) , 
(37) 

which, making use of Price [Ref. 15, p. 10], can be written as 

. 2a[E(1 - a) - (2a - ( 2)K(1 - a)] 
hmS2NRo = [ ] 
Tl-+O 7r 2 i 

71"(1 - a) 2 - arcsin (1 - a) - (2a - a ) W 71 

(38) 

where 

W ~ f df· 
B. 

(39) 

The normalized power ratio limT1 ->o W 71 (S2NRo) is plotted in Fig. 5, and 
the plotted data are seen to support the intuitive assumption made in 
Section I that the presence and location of a narrowband input having 
an average power comparable to that of the broadband background 
noise will be obvious at the limiter output. 

A result of perhaps more interest than S2NRo is the ratio S2NRo/ 
S2NRI of output interference-to-broadband noise power ratio to input 
interference-to-broadband noise power ratio. This calculation can be 
carried out in the same way that SNRo/SNR I was calculated earlier, 
and we find 

t This calculation is not of interest if the interference truly has a line spectrum 
(that we can resolve). However, it is of interest here since these results are useful as 
long as the interference is a narrowband gaussian process, 
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R 1(O) 

f Sr.(f) dl f SI(f) df 
lim S2NRo = ---=:;.:B.'-___ --'B~. __ _ 

"~O S,NR, f.. S,,(f) dt f.. S,(f) dj 
(40) 

where Sr. (I) is given by equation (21), Sr. (f) by equation (18), Sl (f) 
by equation (29), and 

(41) 

Making these substitutions and using the definition of a in equation (9) 
yields 

lim S2NRo = 2a
2
[E(1 - a) - (2a - a

2
)K(1 - a)] (42) 

r.-O S2NRr [7r 2 .1] 71'(1 - a)2 2 - arcsin (1 - a) - (2a - a )2 

This relative (interfering) signal-to-noise power ratio result is plotted 
in Fig. 3 and is particularly interesting since the plotted data can be 
viewed as a plot of S2NRo/S 2NRr versus the input interfering signal­
to-total broadband noise power ratio S2N TRr . That is, it is seen that 
the ratio of average input interfering-signal power to total average input 
broadband noise power is given by 
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S N R A. R 2(0) _ 1 - a. 
2 T I - Rl (0) - a (43) 

With this interpretation in mind, the plotted data show that there is a 
degradation in signal-to-noise power ratio in the signal band at all levels 
of input signal-to-noise power ratio as 71 ~ 0, and that this degradation 
increases monotonically with increasing input signal-to-total noise power 
ratio. We note the contrast of this result to that found by Davenport 
for the case in which the limiter is driven by an unmodulated sinusoid 
plus narrowband Gaussian noise where he shows that there is an en­
hancement in signal-to-noise ratio (measured in the narrow noise band) 
at high input signal-to-noise ratios. 5 It is also noted that the data plotted 
in Fig. 5 together with that in Fig. 3 show, that although the degradation 
increases monotonically with S2N TRI , it does not increase as rapidly as 
W 71 (S2NRI) itself is increasing. 

IV. CONCLUSIONS 

This paper has concentrated on analyzing the power spectral density 
at the output of an ideal limiter when the input is driven by a narrow­
band gaussian signal plus an additive gaussian noise that consists of a 
broadband background component plus a narrowband interference. 
Conclusions that can be drawn from this work depend upon the system 
in which the limiter is used, and one is led to the following conclusions 
when this system consists of a spectrum analyzer preceded by the ideal 
limiter: Spectrum analyzer performance will be degraded by the presence 
of the limiter, and this degradation can be substantial when there is a 
strong narrowband interfering signal present at the limiter input. This 
intuitive conclusion follows from the fact that the signal-to-noise power 
ratio SNR measured in the signal band may be significantly degraded by 
the presence of the limiter when there is a strong narrowband interfering 
signal present at the limiter input, plus the fact that intermodulation 
products of the narrowband signal with the narrowband interference 
may be troublesome as indicated by a decreased signal-to-image power 
ratio SIR. 

However, it is important to note that the results also indicate that the 
degradation in performance can be minimized by making the band­
width observed by the limiter sufficiently wide that the average broad­
band noise power dominates both the signal and interference powers. 
This conclusion follows from the fact that such a procedure minimizes 
both the degradation in SNR and the decrease in SIR mentioned above 
since it ultimately requires that a approach unity. In particular, the 
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data plotted in Fig. 3 show that the signal-to-noise power ratio SNR is 
degraded by less than about 1.3 dB as long as the total average broad­
band noise power is greater than the average narrowband interference 
power. In addition, the data plotted in Fig. 4 show that the signal-to­
image power ratio SIR is greater than about 14.5 dB as long as the 
total average broadband noise power is greater than the average narrow­
band interference power. This SIR result is interesting since it is indic­
ative of the fact that intermodulation products do not grow as rapidly 
with increasing interfering-signal power in the situation analyzed here 
as they do when the ideal limiter is driven by two sinusoids plus narrow­
band Gaussian noise. This conclusion follows from comparison of Fig. 
4 with the results of Jones as presented in his Fig. 4.7 The difference 
in behavior appears to be due primarily to the fact that the strong 
narrowband signal in this analysis is a gaussian process and not a 
sinusoid. 

It is of course true that the conclusions reached above based on the 
data plotted in Fig. 3 are conclusions based on the assumption that 
the broadband covariance function R1(T) is the triangular function 
specified in equation (20). This example was chosen as a typical ex­
ample that is computationally convenient for studying the degradation 
in signal-to-noise power ratio SNR as a function of interfering-signal 
strength. It is also of interest to study the dependence of the degrada­
tion in SNR on the choice of R1(T), and it is noted that this can be ac­
complished by using SYl (f) given by equation (14) instead of SYIA (1) 
given by equation (21) in the calculation of SNRo/SNR1 • 

Finally, it is emphasized that the results leading to the above con­
clusions are asymptotic results that apply when the broadband noise 
correlation time Tl approaches zero. As discussed in Section I, our 
interest in small Tl stems from a desire to model the situation in which 
the average noise power in the spectral band occupied by the narrow­
band signal may be comparable to the average signal power but in 
which the total average noise power is much larger than the average 
signal power by virtue of the large noise bandwidth observed by the 
limiter. Thus we have a practical interest in the situation of small Tl , 

although it is of course true that the situation of engineering importance 
is that in which Tl although small is greater than zero; for example, 
a < 1 makes physical sense only if Tl > O. With this in mind, it is of 
interest to determine the conditions that must be satisfied for the 
results of this work to be useful when Tl > 0, and inspection of the 
analysis performed leads to the following conclusions (when the broad­
band noise covariance function Rl (T) is written such that the band-
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width of the broadband noise is approximately T~I): In order for the 
power spectral density result given by equation (11) and the signal­
to-image power ratio result plotted in Fig. 4 to remain useful, it is 
necessary that certain conditions be satisfied: 

(i) The broadband noise correlation time must itself satisfy the 
condition Tl « l. 

(ii) The input signal-to-noise power ratio 

A Rs(O) Rs(O) 
'1]s = RN(O) = a ----c;- Tl 

(10) 

must satisfy the condition r}s « l. 
In addition to these conditions, in order for the power spectral density 

results given by (13) and (17) and the signal-to-noise power ratio results 
plotted in Fig. 3 and 5 to remain useful, it is necessary that the condition 

i = 0, 1,2, (44) 

be satisfied. This last condition requires that the bandwidth of the broad­
band background noise be much larger than the largest of the center 
frequencies Wo , WI , and W2 • The necessity of this condition was noted in 
Section I, and it was pointed out that this condition is not satisfied in 
communications situations in which the bandwidth of the broadband 
noise is much larger than that of the narrowband signals that may be 
present but much smaller than their center frequencies. However, in­
spection of the derivation of equations (13) and (17) shows that, if we set 

and (45) 

then we have constructed a model for these "narrowband" communi­
cations situations for which equation (13) and (17) hold except for the 
term SY

1 
(f) which is now given by 

- arcsin [(1 - a)p2(T) COSW2T]} COSWT dT. (46) 

Signal-to-noise power ratio results corresponding to those plotted in 
Figs. 3 and 5 can be calculated (numerically) using equation (17) with 
SYl (f) given by equation (46) after making the simplifications that fol­
low from the definitions of Wo , WI , and W2 given in equation (45). When 
a = 1 and Wo is large, the signal-to..:.noise ratio result corresponding to 
Fig. 3 will reduce to the result derived by Manasse, and others. 10 
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APPENDIX A 

Calculation of Output Power Spectral Density 

Using the characteristic function method discussed by Rice [Ref. 17] 
it can be shown [Ref. 12, p. 308] that, if the input to the ideal limiter of 
Fig. 1 is given by equation (1), then the autocorrelation function at 
the limiter output 

(47) 

is given by equation (7). Defining the input signal-to-noise power ratio 
r]s according to equation (10), it follows that 

co co 2k+mr2[(lc + m)/2] k 
RY(T) = t;]; 7r2k! m! r]s 

. [ PS(T)_]k[ PN(T) ]m k + m odd 
1 + r]s 1 + 'Y}s ' 

= 0, otherwise. (48) 

It was pointed out in the text that we are interested in the situation 
where r]s is small due to the large bandwidth of the broadband back­
ground noise. Motivated by this, it is noted that, upon summing on 
m, equation (48) can be written as 

RY(T) = f 2:+1 r2(k + 1) 
k-O(even) 7r k! 2 

. F {k + 1 k + 1 . ~ . [ PN ( T) ] 2} PN ( T) [p S ( T) ] k k 
2 1 2 ' 2 ' 2' 1 + 'Y}s 1 + 'Y}s 1 + 'Y}s 'Y}s 

+ j'~dd) 1r:~! r'@ ,F',{~ , ~ ; ~ ; [(+(~J'}[:~~J ~~. (49) 

Noting that 2F1(a, b; c; x) is finite for all I x I < 1 as long as c ~ m 
. (m = 0, -1, - 2, ... )t [Ref. 13, p. 556], it follows that 

t Gauss's hypergeometric function is also absolutely convergent at I x I = 1 as 
long as Re (c - a - b) > O. Thus in fact 

F (1 1.. 3. 1) _ 7r 
2 1 2", 2, 2"" - '2 

which implies that the series 

. 1 1.3 + arCSIn x = x + - x3 + -- x5 ••• 2.3 2.4.5 

converges for all , x I ~ 1. 
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R () = ~{F [1 1.~. (PN(r) )2J pN(r) 
y r 7r 2 1 2' 2 ' 2' 1 + 7Js 1 + 7Js 

+ ,FlU ,~ ; ~ ; V~T~JJ /~T~8 ~8} 
+ O[7J~p~(r)pN(r)] + O[7J~p~(r)] (50) 

as 7Js -? 0, for all r such that I PN(r) I < 1. Moreover, by expressing the 
hypergeometric function in the first term of equation (50) in its series 
form and then appropriately collecting terms, it can be shown that 

PN(r) F [1 1. ~ . ( PN(r) )2J 
1 + 7Js 2 1 2' 2 ' 2' 1 + 7Js 

= arcsin pN(r) - pN(r)[l - p~(r)r!7Js + O[7J~PN(r)] (51) 

as 7Js -? 0, for all r such that I PN(r) I < 1. Also, it is immediately recog­
nized that, in the second term in equation (50), 

ps(r) F [1 1.1. (~L)2J 
1 + 7Js 2 1 2' 2 ' 2' 1 + 7Js 

= ps(r)[l - p~(r)r! + O[7Jsps(r)] (52) 

as 7Js -? 0, for all r such that I PN(r) I < 1. Therefore, recalling that the 
noise N (t) contains a broadband component so that in fact 

(53) 

for all I r I > o,t it is concluded upon substitution of equations (51) 
and (52) into equation (50) that 

Ry(r) = ~ {arcsin PN(r) + [ps(r) - pN(r)][l - p~(r)r!7Js} 
7r 

+ O[7J~ps(r)] + O[7J~PN(r)] (54) 

as 7Js -? 0, for all I r I > O. 
In order to calculate the power spectral density Sy(f) at the limiter 

output it is necessary to evaluate 

(55) 

t Note that this follows from the integrability condition placed on the broad­
band covariance function Rl (T) by (5). This integrability condition implies that 
I p(x) I < p(O) for all I x I > 0 and requires that the power spectrum of the broad­
band noise contain no line components. 
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As it stands, Ry(r) given by equation (54) is not enough because of the 
difficulty as r ~ 0. It is not clear from the foregoing analysis whether 
or not the representation given by equation (54) is valid as r ~ ° 
when 1]s ~ 0, and in fact this representation may be valid for all ps(r) 
and PN(r) of interest [compare Ref. 18].* In any event, the difficulties 
involved in evaluating the remainder terms in order to examine this 
possibility can be circumvented by using the well-known result that 
Ry(r) is also given by equation (8).3 Thus, 

Ry(r) 2 . PN(r) + 1]sps(r) 
= - arcsm 

7r 1 + 1]s 
(56) 

which implies that 

(57) 

as 1]s ~ 0, uniformly in r. In fact, making use of the expressions for 
Ry(r) given by equations (54) and (57) in conjunction with the expres­
sion for 1]s given by equation (10) and the integrability condition in 
equation (5), it is seen that, if R 1(r) can be written in the form speci­
fied by equation (3) and the parameters ex and Rs(O)/Co satisfy the 
conditions ex > 0, Rs(O)/Co < 00, then Ry(r) can be expressed:t 

Ry(r) = ~ arcsin pN(r) + 0(1), 
7r 

° ~ I r I ~ r1 

= ! {arCSin PN(T) + a RC~O) [PB(T) - PN(T)j[l - p~(T)rITI} 
+ O[rips(r)] + O[r~PN(r)], I r I ~ r1 , (58) 

sa r1 ~ 0. Substituting this result into equation (55) and assuming 
that the integrability conditions 

i~ I ps(r) I dr < 00 (59) 

i~ I PN( r) I dr < 00 (60) 

are satisfied, there results 

* McFadden derives a similar expression for the case of a weak sinusoid in additive 
gaussian noise and asserts that the expansion is valid at T = 0 as long as PN(T) 
satisfies certain differentiability conditions. 

t Another method for obtaming equation (58) is to expand equation (56) in a 
Taylor series about PN(T). 
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Sy(f) = ~ {f.~ arcsin PN(r) cos wr dT 

+ 0: RC~O) r, f [p s(r) - PN(r)][1 - p~( r) r' cos WT d r} + o( r,) 

(61) 

as rl -7 0, uniformly in f. This result can immediately be simplified by 
observing that the predominant contributions to Sy(f) due to interaction 
of the signal and noise processes are due to interaction of the signal 
process with the narrowband interference component of the noise. 
In fact, noting that 

PN(r) = apl(r) + (1 - a)P2(r) cos W2r, (62) 

it can be seen that equation (61) reduces to equation (11). 

APPENDIX B 

Derivation of Output-Power Spectral Density Expansion 

It is shown in Appendix A that the output power spectral density 
can be expressed according to equation (11); namely, that 

. [1 - (1 - a)2p;(r) cos2 W2rrl cos wr dr + o(rl) (63) 

as rl -7 0, uniformly in f, where 

SyAf) ~ ~ 100 

arcsin [apl(r) + (1 - a)p2(r) cos W2r] cos wr dr (64) 
7r 0 

is the output power spectral density when the noise N(t) alone is present 
at the limiter input. Sy(f) can be put in a more useful form by expanding 
both [1 - (1 - a)2p;(r) cos2 W2rrl and arcsin [apl(r) + (1 - a)p2(r) 
cos W2r]. Proceeding with expansion of the latter it is seen that [Ref. 
13, item 15.1.6] 

arcsin [apl(r) + (1 - a)P2(r) cos W2r] 

1 ~ r2(m + !) [ () ( ) () ]2m+l = -2 ! L.J r( + l!) ,apl r + 1 - a P2 r cos W2r 
7r m-O m 2 m. 

1 00 r2(m +!) 2m+l (2m + I)! 
= -2 ! L: r( + l!) , L: (2 + 1 - ")' ., 7r m-O m 2 m. i=O m J .J. 
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. 1 ex) r2(m + !) 
= arCSIn [(1 - a)P2(T) cos W2 T] + 2! I: r( + 2.) , 

7r m-O m 2 m. 

~ (2m + I)! [(1 ) () ]i[ ()]2m+l-i . f='o (2m + 1 _ j)! j! - a P2 T cos W2 T apl T • (65) 

Thus, substituting equation (65) into equation (64), we have 

(66) 
where 

S (f) = ~ l ctJ i: r2(m + !) f (2m + I)! 
Y

1 

7r! 0 m=O rem + !)m! i=O (2m + 1 - j)! j! 

. [(1 - a)P2(T) cos w2T]i[apl(T)]2m+l-i cos WT dT (67) 

and 

(68) 

We have succeeded in breaking Sy(/) into a broadband component 
S y 1 (I) plus a component S y. (I) consisting of narrowband contributions. 
In fact, letting x 4: T / Tl , it can be seen, using the integrability condition 
of equation (5), that 

i ctJ 

[(1 - a)P2(T) cos w2T]i[apl(T)]2m+l-i cos WT dT 

= Tl i ctJ 

[(1 - a)P2(T1X) COSW2Tlx]i[ap(x) COSWITIX]2m+1-i COSWTIX dx 

(69) 

as Tl ~ 0, for all f ~ fmax < 00 for arbitrary fixed fmax , as long as j < 
2m + 1. Moreover, using this integrability condition plus the fact that 
the series in the integrand is absolutely convergent, it can be shown that 

S (f) = 2 l ctJ ~ r2(m + !) ~ (2m + I)! 
y. :3 Tl L..J r( + 3) ,L..J (2 + 1 ')'" 7r 0 m~O m 2" m. i=O m - J • J • 

. (1 - a)i[ap(x)]2m+l-i dx + O(Tl) (70) 

as Tl ~ 0, for all f ~ fmax < 00, which can be written as 

4 l ctJ 

Syt(f) = - Tl {arcsin [apex) + 1 - a] 
7r 0 

- arcsin (1 - a)} dx + O(Tl) (71) 
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as Tl ~ 0, for all f ~ fmax < 00 for arbitrary fixed fmax . Thus it is seen 
that the broadband component Sy, (f) becomes white across any fre­
quency band of finite extent as Tl ~ 0 and moreover that, if a = 1, 
then Sy, (f) is just the output power spectral density that would be 
observed if the broadband component of the noise was present alone 
at the limiter input. 

Turning now to Sy.(f) given by equation (68), it is seen that 

arcsin [(1 - a)P2(T) cos W2T] 

1 ~ r2(k + !) ( ) () ]2k+l 
= 27r! 6 r(k + !)k! [ 1 - a P2 T cos W2T 

1 ~ r2(k + !) [( ) ()]2k+l 
= 27r! 6 r(k + !)k! 1 - a P2 T 

k (2k + I)! . f.; (2k + 1 - r)! r! 22k cos (2k + 1 - 2r)w2T. (72) 

Now, letting k - r ~ m and then interchanging the order of summation 
on k and m, there results 

arcsin [(1 - a)P2(T) cos W2T] 

1 00 00 r2(k + !)(2k + I)! 
= 27r! ~ k~ r(k + !)k! (k + m + I)! (k - m)! 22k 

. [(1 - a)P2(T)]2k+l cos (2m + l)w2T. (73) 

However [Ref. 13, item 6.1.18], 

(2k + I)! = (27r)-!22k+!r(k + 1) r(k + !) (74) 

so that equation (73) can be rewritten as 

arcsin [(1 - a)P2(T) cos W2T] 

1 00 00 r2(k + !) 
= - L L [(1 - a)P2(T)]2k+1 cos (2m + l)w2T 

7r m=O k=m (k + m + I)! (k - m)! 

1 ~ ~ r2(j + m + !) [(1 ) ()]2i+2m+l (2 + 1) . = - L.J ~ r(· + 2 + 2)" - a P2 T cos m W2 T 
7r m=O 1-0 J m J. 

- 1: ~ r2(m + !) F { 1 + 1·2 + 2. [(1 ) ()]2} 
- 7r ~ r(2m + 2) 21

m + "2, m "2, m , - a P2 T 

(75) 

Substituting this result into equation (68), we obtain the result stated 
in equation (15). 
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The expansion of [1 - (1 - a)2p;(r) COS
2 2rr! in the second term in 

equation (63) can be pursued in a manner identical to that used above 
for the expansion of arcsin [(1 - a)P2(r) cos W2r], and the result obtained 
is that given in (13). 

It is pointed out in the text that the assumption P2(r) == 1 greatly 
simplifies the expression for Sy(f) without obscuring the most important 
effects that result from the presence of narrowband interference. In 
particular, it is seen that the assumption P2(r) == 1 violates the inte­
grability condition in equation (60). As a result, equation (13) does 
not hold uniformly in f under this assumption since the points f = ±kf 2 , 

Ie = 1, 3, ... , must be excluded. However, it is observed that equation 
(13) can be made to hold at these points as rl --7 0 by addition of the 
remainder term 

(76) 

Moreover, it is seen from equation (15) that, when P2(r) - 1, Sy.(f) is 
nonzero only at f = ±kf2' k = 1, 3, ... ,and its value at these points is 

Thus in fact it can be seen that, when P2(r) - 1, it is meaningful to 
write Sy(f) as given by equation (17). 
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Rate-Distortion Functions for 
Gaussian Mark~ov Processes* 

By BARRY J. BUNIN 

(Manuscript received June 5, 1969) 

The rate-distortion function with a mean square error distortion criterion 
is investigated for a class of Gaussian JIll arkov sources. It is found that for 
rates greater than a certain minimum, the rate-distortion function is equiva­
lent to that of an independent letter source. This minimum rate was found 
to be less than n bits per symbol, where n is the order of the Markov se­
quence. Comparisons between the rate-distortion function, and two quantiz­
ing systems are made. 

1. INTRODUCTION 

Suppose in the communication system of Fig. 1, the source emits a 
sequence of continuous-valued random variables. The exact specifica­
tion of such variates requires an infinite number of binary digits. Hence 
exact transmission would require a channel of infinite capacity. Since 
no physical channels possess infinite capacity, we see that exact trans­
mission is impossible through this system. 

However, if we are willing to accept some error in our specification 
of the source output, then finitely many binary digits are necessary. 
In the study of digital encoding systems, a useful quantity to know is 
the fewest number of binary digits necessary to represent an analog 
signal within a certain error. Such a quantity would give us a perform­
ance criterion wjth which to compare existing systems, and also tell us 
how much improvement is possible. 

The quantity we seek is given by Shannon's rate-distortion function. 1,2 

The rate-distortion function gives, for any bit rate, the minimum pos­
sible error achievable. 

In this paper we study the rate-distortion functions for the important 

* This research was partially supported by the Air Force Office of Scientific 
Research under Contract AF 49(638)-1600. This paper is part of a dissertation 
submitted in 1969 to the Faculty of the Polytechnic Institute of Brooklyn, in partial 
fulfillment of the requirements for the Ph.D. degree in systems science. 
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Fig. 1 - General communication system. 

class of gaussian Markov sources. We measure our error by the mean 
square error criterion. Also, the performance of two quantizing systems, 
differential peM and block quantizing, is compared to the rate-distor­
tion bound. 

II. DISCUSSION OF RESULTS 

We have studied the rate-distortion functions of gaussian Markov 
sources with a mean square error criterion. We express our results in 
Fig. 2 by plotting signal-to-noise ratio in dB, versus bit rate R. The 
signal-to-noise ratio is given by 

2 
(7 

SIN = 10 loglo D (1) 

where (72 is the variance of the source output, and D is the mean square 
error. 

It was found that for rates R greater than a certain Rmin , the rate 
distortion function is given by 

(2) 

t 
siN IN dB 

Fig. 2 - Rate-distortion bound of a Markov-n source compared with block quantiz­
ing system and differential PCM. 
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or 
2 

SIN = 6.02R + 10 loglo (J' 2 
(J'm 

(3) 

where (J' ~ is the minimum mean square prediction error one step ahead. 
The point Rmin occurs in the interval (0, n) where n is the order of the 
Markov process that the source emits. The exact location of Rmin de­
pends on the exact shape of the power spectral density of the process, 
as we shall see. At R = Rmin , the rate-distortion function has a dis­
continuity in the third derivative. 

If the source were followed by the optimum prediction system of Fig. 
3 then the output sequence produced would be uncorrelated with vari­
ance (J' ~ • Such a sequence has the rate-distortion function given by (2). 
Hence for rates greater than Rmin the sequences at the input and output 
of the prediction system have equal rate-distortion functions. For rates 
less than Rmin they do not. 

A lower bound on the performance achievable by the block quantizing 
system of Fig. 4 was found. The result is also shown in Fig. 2, where it 
is seen that this system can be made to perform within 4.34 dB of the 
bound. 

Also shown in Fig. 2 is the performance bound for a differential PCM 
system (see Fig. 5) as derived by O'Neal. This bound however, holds 
only for high bit rates. 

III. RATE DISTORTION FUNCTIONS FOR MARKOV-N SOURCES 

3.1 Introduction 

Consider again the communication system of Fig. 1. The source emits 
the discrete time, stationary random process X t , t = 0, ± 1, ±2, .... 
After N seconds, a column N vector X is obtained, and after encoding, 
transmission and decoding, the receiver obtains a replica X of X. The 
mean square error between the transmitted and received vectors is 

Fig. 3 - Predictive communication system. 
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UNITARY f---...., TRANSFORMATION f---"'" 

defined by 

A 

Fig. 4 - Block quantizer for correlated source. 

1 A T A 

D = - E(X - X) (X - X) 
N 

(4) 

where E denotes expectation and X T is the transpose of X. It is reason­
able to ask what the minimum bit rate is, at which we must transmit, 
so as to be able to achieve a mean square error less than some prescribed 
amount. The answer is given by Shannon's rate-distortion function 
which is defined as follows: 1

•
2 

R(D) = 1~ min ~ ff P(XN)P(XN I X N) 

I P(XN I X N) -:-r ( ) 
• Og2 p(X--;;;- dXN dX N 5 

where the minimization is taken over all P(XN I X N) satisfying 

(D) = ~ If (XN - XN)T(XN - XN) 

'p(XN)P(XN I X N) dXN dXN ~ D (6) 

and where 

p(XN) = probability measure of the source vector X N 
P(XN I X N) = conditional probability measure of X N given X N 

p(XN) = probability measure induced on X N by p(XN) and 
P(XN I XN)' 

Fig. 5 - Differential pulse code modulation system. 
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(The subscript N is included to emphasize that we are dealing with an 
N-vector.) 

Suppose the source emits a stationary gaussian time series with cor­
relations E(XjXk) = rj-k = rr. Then the discrete time power spectral 
density is given by 

f(A) (7) 
r=-QO 

and the rate distortion function is given parametrically by3 (see Fig. 6 
for interpretation) 

R(cjJ) = ! flOg f(A) dA 
2 A cjJ 271" 

8 (a) 

D(cjJ) = f cjJ 2dA + f f(A) 2dA 
A 71" A' 71" 

8 (b) 

A {}.. : f(A) ~ cjJ} 

A' {}.. : f (}..) < cjJ} 

and 

Hence, if we are given a distortion D, from (8b) we can find cjJ, and 
then from (8a) we can find the theoretically minimum rate R necessary 
to achieve a mean square error less than or equal to D. If {x t } consists 

f CA) 

Fig. 6 - Graphical interpretation of equations 8a and b. The set A = (- 7r, A-4) 
V (A_31 A_2) V (A_II AI) V (A21 A3) V (A41 7r). A' = (A_41 A_a) V (A-21 A-I) V (Al, A2) 
V (A31 A4). 
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of independent Gaussian variates, with variance (i, then f(A) = (7"2 and 
(8a) becomes 

2 

R(D) = ! log2 ; bits/symbol. (9) 

If we restrict the class of sources to be wide sense IVIarkov of order 
n, then teA) assumes the following form: 

f(A) = --=n--}-(-­

IT 1 eiA 
- ai 12 

j=1 

with 0 < ai < 1, ai ~ ak if j ~ k, and I( is chosen to satisfy 

1 f7r (7"2 == E{x;} = -2 teA) dA. 
7r -7r 

(10) 

(11) 

In the remainder of this paper we consider some properties of the 
rate distortion function as given by (8a) and (8b) for processes with 
power spectral density (10).* 

3.2 The M arkov-n Sequence 

In this section we present some results from prediction theory. 
For details and proofs see Refs. 6 and 7. 

A process with power spectral density given in (10) is known as a 
Markov-n process.7 Performing the indicated multiplication in (10) 
results in 

teA) = n (12) 

IT 1 
iA 12 e - aj 

j=1 

A sequence with the spectrum (12) can be shown to satisfy the autore­
gressive relation 

n 

Xn + L bixn-i = En 
i=1 

(13) 

where {En} is a sequence of uncorrelated random variables with variance 
K. 

Writing (13) in the form 
n 

Xn = - L bixn-i + .En 
i=1 

(14) 

* T. Berger, in a recent paper condiders similar properties for the Weiner process4• 
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it can be shown by the orthogonality principle (Ref. 8, Section VII-C) 
that the best linear predictor in the mean square sense, of Xn given the 
infinite past is just 

n 

in = - L bixn-i • 
i=1 

(15) 

Hence for a Markov-n process the best prediction involves only the 
n previous samples. 

The error is 

The minimum mean square error is thus 

a-! == E(En)2 = K. 

From (10) and (17) 

(16) 

(17) 

~7r 1_11"11" log2 t(t.) dt. = log2 a-~ - ~7r ~ 1_11"11" log2 1 ei
-'" - aj 12. (18) 

From Peirce's tables,9 number 540, it can be shown that the integral is 
zero (recalling that 0 < aj < 1) . We state our conclusion as a theorem. 

Theorem 1: For a sequence with spectrum given in (10) the minimum 
mean square error resulting from an optimal prediction one step ahead is 
a-!, where 

(19) 

Theorem 1 is a special case of the theorem proved in Ref. 6, page 183. 

3.3 Evaluation of R(D) for D ~ f(7r) 

We next consider the particular form that equations (8a) and (8b) 
assume when f(t.) is as given in (10). 

Theorem 2: Given a process with 

f(t.) = -n--
K-

II ·-,.. 2 
1 e

1 

- aj 1 
j =1 

for some integer n. For mean square errors satisfying 0 ~ D ~ f(7r), R(D) 
is given by 

2 

R(D) = ! log2 i") bits/symbol. (20) 
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Proof: From (8a) and (8b) 

R(cjJ) = ! f log2 t(,,) d" 
2 A cjJ 27r 

D = 21 f cjJ d" + f t(,,) d". 
7r A A' 

The power spectral density f(,,) is monotonically decreasing with a 
minimum at" = 7r. Hence forcjJ in the range 0 ~ cjJ ~ f(7r) , A = (-7r, 7r), 
A' = 0, and 

1 f'll" 
D = ~ cjJ d" = cjJ. 

27r _'II" 

(21) 

I t follows that 

1 f'll" d" 
R(cjJ) = RCD) = 2" _'II" Jog2 t(,,) 27r - ~ log2 D. (22) 

From Theorem 1 the first term is ! log <T~ so R(D) = ~ log2 <T~/D 
which holds for 0 < D ~ f(7r). This is (20). 

The rate-distortion function (20) is precisely the rate-distortion func­
tion of a process consisting of independent gaussian random variables 
with mean 0 and variance <T~ [see (9)]. 

Figure 7 illustrates why the rate-distortion function depends on 
f(7r) in this way. The shape of the spectrum of D in (8b) is that which 
would be assumed by water if it were poured into a container shaped as 
fC"). As we pour in water, it distributes itself uniformly so long as its 
level is below f(7r). Hence D is independent of t(,,) so long as D < f(7r)· 
Once D = f(7r) the exact shape of fC,,) comes into play. 

Consider next the predictive communication system of Fig. 4. The 
source emits the gaussian process with power spectral density (10). The 

f (>.) 

Fig. 7 - Typical Markov spectrum, illustrating water filling interpretation of the 
rate-distortion function. 
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optimum predictor makes a prediction of Xn based on {xd ~:~ . This 
prediction is then subtracted from Xn and the error is transmitted. The 
transmitted sequence is thus the sequence {En} [see (14)] which is a 
sequence of uncorrelated gaussian random variables with variance (J" ~ • 

Its rate-distortion function is thus also given by (20), for D in the in­
terval 0 < D ~ (J" ~ • 

From (1) 

2 
(J" 

SIN = 10 loglo D 

2 2 

= 3.01 log2 (J"D
m + 10 loglo ~2 

(J"m 

2 

= 6.02R + 10 loglo (J" 2 
(J"m 

(23) 

since R is given by (20). Hence SIN is a linear function of R over the 
range of R for which 0 ~ D ~ f(7r). This range depends on n, the order 
of the Markov process, as given in theorem 3. 

Theorem 3: For an nth order gaussian Markov process, the rate-distortion 
function is given by 

2 

R(D) = ! log2 ~ bits/symbol 

for rates R ~ R min • The value of R min depends on the exact shape of the 
power spectral density f(A) and assumes a value satisfying 

o < R min < n bits/symbol 

depending on the a/s of f(A) [see (10)]. 

Proof: From (10) 

From this 

f(A) = 
K 

f(7r) = -n--
K-­

II 11 + aj 12 
i=l 

(24) 

(25) 
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At D = f(7r) 
2 

Rmin = R(f(7r» = ! log2 fe;) bits/symbol (26) 

which from Theorem 1 is 

= ~ [i" f. log, f(A) dA - log, f(.-) ] 

= -2
1 

[log2 K - 21 t f7r log2 1 eiX 
- aj 12 dA. 

7r 1=1 -7r 

- log, K + t. log, (1 + a,l' ] . (27) 

As in (18) the integral is zero and 
n 

Rmin = 2: log2 (1 + aJ bits/symbol. (28) 
j=1 

Since 1 aj 1 < 1, Rmin < n bits/symbol. Hence, 0 < Rmin < n bits/ 
symbol, which is the desired result. 

3.4 Behavior of R(D) at D = f(7r) 

With f(A.) as given in (10), the rate-distortion function is, from (20) 

2 

R(D) = ! log2 ~ 

for 0 < D ~ f(7r), and from (8a) and (8b) 

1 1x 
f('Y) 

R(A.) = 27r 0 log2 f(A.) d'Y (29a) 

D(A) = ~ [[ f(A) doy + f f(oy) doy ] (29b) 

for f(7r) ~ D ~ (l. Writing (8a) and (8b) in this form follows from the 
observation that for a monotonically decreasing power spectral density 
the set A equals the simply connected interval (0, A.) and cf> = f(A.), for 
the appropriate A.. 

From (20) 

dnR = (_l)n en - I)! D-n 1 2 
dDn 2 n (30) 

and from (29) 
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dR 1 1 
dD = "2 /(,,) In 2 (31) 

d2R 7r 1 
dD 2 = "2 "r(,,) In 2 (32) 

d3R = _ 7r2 r(,,) + 2,,/(,,)f'(,,) I 2 
dD3 2 ,,3r(,,)f'(,,) n 

(33) 

for f(7r) < D < (J"2, where f'(") = df(")/d,, 
From (30), (31), and (32) we see that dR/dD and d2R/dD2 are con­

tinuous at D=f(-rr). But from (33) we see that d3R/dD3 
---., - ro as D---., 

f(7r) from above (since f'(7r) ---., 0), whereas d3R/dD3 is bounded as D ---., 
t(7r) from below. Hence d3R/dD3 is discontinuous at D = t(7r). 

IV. QUANTIZING CORRELATED SOURCES 

4.1 Introduction 

Consider a source that emits a sequence of independent gaussian 
random variables of mean 0, variance (J"2. It is desired to optimally quan­
tize the source by using an M level quantizer. lVlax10 has shown that by 
optimally choosing the quantizer input ranges and output levels, a mean 
square quantization error of 

(34) 

can be achieved where K(M) is a function of M. Further, it is shown 
numerically that I{ (111) ~ 2.72, and that the inequality becomes an 
equality as M ---., 00. Hence for any 111 

(35) 

For an M level quantizer the number of bits/symbol is R = log2 M, so 
that (35) can be written 

2 
(J" 

Dq ~ 2.72 22R ' (36) 

The rate-distortion function of the process is from (9) 

2 

R = t log2 ; 

so that the minimum possible mean square error achievable with a fixed 
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bit rate R is 

(37) 

Hence Max's scheme can be made to achieve a mean square error 
satisfying 

(38) 

where Dmin is the minimum mean square error aR given by rate-distortion 
theory. 

In this section we find a bound on a quantizing system studied by 
Huang and Schultheiss. 11 Our result is that (38) holds also for correlated 
sources, when D min is as given by the appropriate rate-distortion fun­
tion. For the case of IVlarkov sources we plot this result in Fig. 2. 

4.2 Description of the System 

Referring to Fig. 4, the source emits correlated gaussian variates (not 
necessarily Markov), of mean 0 and with correlation matrix CR = 

E(XXT). The operator A accumulates source N-vectors X, and rotates 
them in such a way that 

Y = AX (39) 

and 

E(yyT) = E(AXXT AT) = AE(XXT)A T = ACRA T = J (40) 

where J is a diagonal matrix whose ith entry is Ai , the ith eigenvalue 
of CR. Hence Y is an N-vector whose components are independent ran­
dom variables with mean 0 and variance Ai , and A is a unitary trans­
formation. 

The sequence of independent variates {yd (the components of YN ) 

are then quantized step by step.lO·11 The jth quantization can be opti­
mized to produce a mean square error of 

D j = K(Mj)AjMi2 < 2.72AjMi2 (41) 

where M j is the number of quantization levels used to quantize Y i • 

Denoting the output of the quantizer by the vector Y', the average 
mean square error is 

D = 1- E(Y - y')T(y - Y') = 1- E(Y - y,)T AT A(Y - Y') N N 

= 1- E(X - X')T(X - X') (42) N .. 
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where we have used the fact that for a unitary transformation AA T = 
AA -1 = I, the identity matrix. Hence the system mean square error 
equals the quantizer mean square error. 
From (41) and (42) 

lIN 
D = NE(Y - Y'f(Y - V') = N E t; (Yi - YD2 

~ ~ 2.72 t, A;l.11~2 == Du . (43) 

4.3 Optimization over the M j 

We next tighten the upper bound by optimally choosing the J11 /s 
subject to the following constraints. 

(i) lJ1j ~ 1 for every j. The quantizer must have at least one output 
level. 

(ii) The bit rate is limited by the channel capacity, C bits per symbol. 
We can thus use J11 = 2c levels per symbol or J11N levels per vector. 
This implies the constraint 

N 

lVIN = II M; . (44) 
;=1 

Hence we wish to minimize the right side of (43) subject to (44), while 
keeping in mind constraint (i). 

With v a Lagrange multiplier, we form 

A differentiation with respect to Mk yields 

Ak 
-2 =J.L 
Mk 

where J.L is a constant. Using (44) to solve for the constant gives 

and 

2.72 (N )l1N 
Du = M 2- IT Ai • 

However constraint (i) will only hold if in (47) 

(45) 

(46) 

(47) 

(48) 
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for every k. 
The right side of (49) can be written 

2{~ f~1I" log.J(>') d>.} 

lv/ 2 

2 
O"m 

= M2 

(49) 

(50) 

(51) 

(52) 

where we have used the fact that the eigenvalues of CR approach the 
ordinates of f(A.) equally spaced in (-71', 71') as N ~ 00 (see Ref. 6), and 
then applied the definition of a Riemann integral. Finally, we used 
(19). Hence the constraint (i) is met if 

for all k. Using (50), (51), and (52), (48) becomes 
2 

D11. = 2.72 ;;2' 
In terms of signal to noise ratio we get 

for 

2 2 

SIN = 10 loglo ; ~ 10 loglo ;11. 

2 

= 10 loglo 0" 2 + 20 loglo 2 log2 M - 4.34 
O"m 

2 
0" = 10 loglo 2 + 6.02R - 4.34 
O"m 

2 

R 1 1 O"m > 2 Og2 1(71') 

and where we used the relation 

R = log2 M. 

(53) 

(54) 

(55) 

(56) 

(57) 

Suppose, however, that for some A.k'S (53) is not met. Specifically, 
arrange the eigenvalues such that A.l ~ A.2 ~ A.3 ... ~ A.N and suppose 
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that (47) yields 

k = 1,2, ... J 

k = J + 1 ... N. 

3073 

(58a) 

(58b) 

Set those Mk in (58b) equal to one, and reoptimize over the Mk of 
(58a), the expression 

(59) 

subject to the constraint 

(60) 

We would find that optimally 

k = 1 ... J (61) 

where the right side of (61) is a constant. Without loss of generality, 
we can assume that all Jllk obtained from (61) are greater than or equal 
to one. Otherwise we would set the infeasible 1J1 k equal to one, and 
reoptimize. The procedure would return us to an equation similar to 
(61). As N ~ 00 

Dq ~ 2.72 ~ (~ ~7 + i=t.1 Ai) 

1 ( J N) 
= 2.72 N t; 'Y + i!;;.1 Ai 

~ = 2.72[;" L 'Y dA + ;.. L f(A) dAJ (62) 

where A and A' are as given in (8) with ¢ replaced by 'Y. 

Similarly 

(63) 

which, upon rearrangement, becomes 

1 J Ao 
R == 10g2 M = 2N 2: 10g2 -2. i-1 'Y 

1"..1 = l f 10g2 teA) dA. 
47r A 'Y 

(64) 



3074 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1969 

By comparing (8a) and (8b) with (62) and (64) we see that (62) has 
the optimal spectrum for a rate given by (64). This implies that our 
procedure of setting infeasible M k'S equal to one does indeed lead to an 
optimum result. 

Further, the terms in brackets in (62) is the minimum mean square 
error for a rate given by (64). Hence the quantization procedure has 
yielded 

which is (38). 
This result is plotted in dB In Fig. 2, for the case of a Markov-n 

process. 
There is an approximation involved in obtaining this result. The M i 

obtained may not be integers. However, the large M i will be little 
affected by rounding, and the looseness of the bound of (38) for small M i 
counteracts the effects of rounding the small Mi. In fact, for very small 
Mi the bound is conservative, as we can see from Fig. 2. Clearly SIN 
should approach zero as R goes to zero. Hence our lower bound on SIN 
is loose in this range. 
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The Optimum Linear Modulator for 
a Gaussian Source Used with 

a Gaussian Channel 

By RANDOLPH J. PILe 
(Manuscript received June 12, 1969) 

The optimum linear modulator and demodulator which provide transmis­
sion of a gaussian vector source through an additive gaussian vector channel 
are derived in this paper. The measure of performance that is used is 
the transmission distortion, which is defined here as the mean square error 
between the source output and the decoder output. It is assumed that the 
source and channel are mutually independent but that correlations can 
exist among the components of each. The performance of the best linear 
system is then compared with the distortion shown by Shannon to be 
theoretically obtainable when no functional constraint is imposed at the 
modulator other than an energy constraint. Although the precise form of 
this optimum modulator is not known for general gaussian vector sources 
and channels, it is known to be nonlinear and to require arbitrarily long 
coding block lengths. However, it is a commonly held notion that when 
the source and channel dimensionalities are equal the optimum modulator 
is linear and requires a block length of only one. It is shown here that 
this belief is incorrect except in very particular situations which are de­
scribed. Some relations between the optimum linear modulator-demodulator 
pair and Shannon's test channel are discussed, and an example is in­
cluded which shows that the nonoptimality of linear devices can be quite 
small. 

I. INTRODUCTION 

Weare concerned here with the transmission of a gaussian vector 
source over an additive gaussian vector channel. The mean square 
difference between the source and decoder outputs is used to measure 
the transmission distortion in the system and is, therefore, attempted 
to be minimized in the design of the encoder and decoder. In this 
design the encoder is constrained to present only a limited energy to 

3075 
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the channel, thus constraining the transmission capacity of the system. 1 

It is because the transmission capacity of the system is limited in this 
way that the given gaussian vector source cannot be transmitted with 
arbitrarily small error. 

The distortion which necessarily must exist in the system is pre­
scribed by Shannon's rate-distortion theory.2 This theory states that 
when the transmission rate in a system is limited to R, the transmission 
of the source must include an average distortion of at least dR , which 
in general is a function of the source statistics and the distortion measure. 
The theory further states that the distortion level dR is attainable 
with some modulator-demodulator pair. Unfortunately, the precise form 
of this modulator and demodulator is not known in general, except 
that it is nonlineal· 4 and that it requires the use of arbitrarily long 
coding block lengths. 2 

Since the nonlinearity of the optimum encoder is probably a very 
complex twisting of the source space locus within the channel input 
space, the implementation of the optimum encoder, even if it were 
known, would be extraordinarily complex. Of course, the long coding 
block length requirement does nothing to help the situation. For these 
reasons we study in this paper the optimum linear transmission system, 
restricting both the encoder and decoder to be linear operators. Such 
a system uses a block length of only one and is very simple to implement. 
(It is later shown that increasing the block length does not improve 
the performance.) 

The degradation in performance with the use of the optimum linear 
system is found by comparing the resulting distortion to that of the 
optimum nonlinear system as found by Shannon. Contrary to popular 
belief, the best linear system does not provide the minimum attainable 
distortion, even when source and channel dimensionalities are equal, 
except in very particular situations that are described. However, in 
many cases the difference is small. At the end of the paper we discuss 
some relations between the optimum linear modulator-demodulator 
pair and Shannon's test channel. 2 

II. THE LINEAR TRANSMISSION SYSTEM 

The system considered is shown in Fig. 1. The N 8 dimensional 
zero-mean source vector w is linearly modulated by A to form the 
input to the Nc dimensional additive gaussian noise channel. We 
assume the noise vector n to be independent of w. The linear demodu­
lator B extracts from the received vector y an estimate w of the source 
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Xl 
+ 

ld 1 W1 

nt 

X2 
+ ld 2 W2 

A B 
n2 

+ 

Fig. 1 - The linear system. 

which is presented to the user. In summary 

w = By = B(x + n) = B(Aw + n). (1) 

The measure of distortion in the system is taken to be the sum 
of mean-square errors between the components of wand w, that is 

d = E[I w - '" I'] = E[ ~ (w, - ",,)'} (2) 

The modulation matrices, A and B, are sought which minimize this 
distortion, their choice subject only to an average channel input energy 
constraint, 

No 

L Var Xi , (3) 
i-I 

(4) 

which obviously will be met with equality in the optimum system. 
It is well known that the minimum mean square error estimate of 

any quantity (here the source vector w) based on the observation 
of a second quantity (here the channel output vector y) is the condi­
tional expected value of the first given the second. 4 Further, the average 
error made with such an estimate is the conditional variance of the 
first given the second. Therefore, we have 

i = 1,2, ... ,N. 
(5) 

N. 

d = L Var (Wi I y). 
i-I 

The required conditional density p(wly) can be found from 
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and 

p(y I W) = k2 exp [-!(y - AW)t<p;l(y - Aw)] 

by application of Bayes rule. The result is 

pew I y) = ka exp [-!(w - w)tcp:fy(w - w)] 

with 

(6) 

and 

(7) 

From these equations we have one immediate result, that is, the optimum 
demodulator matrix is given in terms of A by 

If we now rewrite equations (5) and (3) as 

d = trace <Pwl y 

S T = trace <Px 

(8) 

(9) 

(10) 

we can restate our problem as that of finding the matrix A which 
minimizes the trace of <Pwl v subject to a constrained maximum trace 
of CPx • 

III. THE SOLUTION UNDER CERTAIN ASSUMPTIONS 

We first restrict our attention to systems in which the source and 
channel dimensionalities are equal, N, = Nc = N, and in which the 
correlation matrices <Pw and CPn are diagonal. From equation (6) we 
have 

CPw<P:~y = <PwA tcp;lA + I 
and from equation (1) that CPx = A <PwA t and CPy 
provides 

(11) 

(12) 

Noting that <Py enters these equations in a more symmetric way than 
dose <Px , we recast the energy constraint in equation (10) to be in 
terms of the received energy at the channel output. This energy equals 
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= trace <PII 

= trace <P", + trace <Pn 

which, if trace <Pn == No, is constrained to satisfy 

SR ~ So + No. 

3.1 The Proof that the Optimum Modulator JJ1 atrix is Diagonal 

3079 

(13) 

If we denote the characteristic polynomial of a matrix JJ1 in the 
variable A by 

c.p. [M, A] = det (M - AI) 

and state that Mi is square, we can use the following two matrix 
properties:5 

(i) 

(ii) 

c.p. [MIM2 , A] 

c.p. [Ml , A] 

c.p. [M2Ml , A] 

c.p. [Ml + I, A-I] 

to conclude from equations (11) and (12) that 

c.p. [<PW<P:~II' A] = c.p. [<py<P:-\ A]. 

(14) 

(15) 

(16) 

It is this equation which provides the important relations among the 
correlation matrices in the system. 

We note that the set of matrix pairs <Pw I y, <Py which are consistent 
with equation (16) include many pairs which do not satisfy both equa­
tions (11) and (12) for any given A. The latter equations of course 
specify the relations among <Pw I y and <Py which must exist in the com­
munication problem under consideration. Nevertheless, we will work 
with equation (16) to perform the optimization and then show that 
the solutions for <Pwl Y and <Py can be realized with some modulator 
matrix A and, therefore, are consistent with the more restrictive equa­
tions (11) and (12). 

Equation (14) and the assumed diagonal form of <Pw and <Pn allows 
us to rewrite equation (16) as 

c.p. [<p~<P:~y<P~ , A] = c.p. [<p:-~<Py<P:-~, A]. 

As <Pw and <Pn are system constants not under the control of the user, 
any specification of <Py completely determines the roots of <P:-!<Py<P:-!, 
which we denote by {ad, i = 1, 2, ... , N. The roots of <P:i<Pwlll<P:' 
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are also determined and are equal to {a;I}. Our claim now is that 
among all matrices <P with roots {a;l}, the one which produces the 
minimum trace of <Pwlll = <p!<pcI>! is diagonal. 

If CPij are used to denote the elements of <P, the trace of cI>wllI equals 
N 

trace cI>w III = L U~CPi i • 
i=1 

At this point we impose, without loss of generality, that the variances 
u~ be ordered such that ui ~ u; ~ ... ~ u;. Since the minimum 
trace of <Pwlll is sought, clearly the diagonal elements CPii should cor­
respondingly satisfy CPu ~ CP22 ~ ••• ~ CPNN. This presents no re­
striction on <P as a simultaneous interchange of rows and columns 
produces no change in the characteristic equation of <P. 

N ow consider any nondiagonal candidate for the desired <P. In 
particular, let cpmk = CPkm, m > k, be nonzero. Because the submatrix 

cI>(km) = [lPkk lPkm] 

lPmk lPmm 

is itself a correlation matrix, it can be diagonalized by some orthogonal 
matrix T such that 

iP'(km) = TiP(km)1" = [\?~' \?~J 
From (14) it is known that the characteristic polynomials of <p(km) 
and <p' (km) are equal. The trace and determinant of each are therefore 
equal. It follows that lP~k = CPkk - c and lP:"m = lPmm + c; c > 0, or that 
the larger diagonal element is increased and that the smaller one is 
decreased. 

The diagonalization of the submatrix cI>(km) within <P can be effected 
by an orthogonal matrix Q which contains T in the appropriate sub­
matrix position and identity matrix elements in the other positions: 

q'j = tij; (i, j) = (k, k), (k, m), (m, k), (m, m) 

qii = Oii; other (i, j). 

We then have <p' = QcI>Q' with only the elements in <p' in rows and 
columns k and m changed from those in <P. If <p' is used to generate 
a new correlation matrix cI>~ III = <p! <p' cI>! , we have 

N N 

tr CP~III = L U~CP~i L U~CPi i - c(u~ - U!) 
i-I i-I 
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= tr <P", I - c(o-~ - o-~) 

(17) 

which establishes the claim of this section. That is, any nondiagonal 
correlation matrix <P with roots {a~l} conjectured as providing a 
minimum trace correlation matrix <P~<PCP~ = CPwly can be improved 
upon by cpl. The desired matrix for <P is therefore diagonal and equal to 

<P = [a~l Oii] 

with the corresponding form of <Pwl y equal to 

(18) 

(19) 

It follows that among all matrices CPw I y consistent with equation (16) 
with any given CPy , the one with minimum trace is diagonal. 

An identical argument yields the symmetric conclusion. That is, for 
any specified CPwlY the matrix <Py with minimum trace among those 
consistent with equation (16) is also diagonal and equal to 

(20) 

The argument assumes only that the noise varIances are ordered 
0-;1 ~ 0-;2 ~ ... ~ o-;N' 

We can now state that the minimization of the trace of <Pwl y over 
all pairs <Pwl y , CPy which satisfy equation (16) and the constraint equa­
tion (13) is obtained with a pair of diagonal matrices parametrically 
related as in equations (19) and (20). Any pair not so related can be 
altered, one matrix at a time, to decrease either the error (trace CPw I y) 
or the received energy (trace <Py). Although we have worked with 
pairs CPw I y, CPy consistent with equation (16) rather than the smaller 
set satisfying equations (11) and (12), the solution forms for <Pwl y and 
<Py are still valid as they do satisfy these equations. 

The modulator matrix which produces the correlation matrices <Pw I y 
and CPy in the optimum form can be found from either equation (ll) 
or (12) to be 

(21) 

Equations (12), (14), and (15) and the fact that <P:-~ A CPwA t<p:-~ has 
nonnegative roots (it is a correlation matrix) can be used to show 
that a, ~ 1, i = 1, 2, ... , N which guarantees that the elements 
of A are real. It remains to solve for the set of roots {ai} which provides 
the desired optimization. 
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3.2 The Optimum Diagonal Modulator Matrix 

In terms of the set {ad, the distortion which is to be minimized 
is given by 

and the received energy constraint by 
N 

SR = trace <PII = 2: <T!iai ~ So + No . 
i=1 

A further constraint is that ai ~ 1, i = 1, 2, ... , N. As the set of 
permissible a/s is a convex set and the functions d(ai) and SR(ai) are 
convex functions, the Kuhn-Tucker theorem is applicable. 6 This states 
that at the point of minimization: 

a:, [d + ;2 S R ] ~ 0 if 0', > 1 

< 0 if ai = 1. 

Therefore we have 

< 0 if a, = 1 

or 

ai = max [(A~n) , 1 ] . (22) 

It has already been observed that al ~ a2 ~ •.• ~ aN and that 
ai = 1 corresponds to aii = 0 or no transmission of the ith source 
component. If we let N' denote the last ai strictly greater than one 
we have the following solution for the optimum modulator matrix 

_ [<TTli (~ - I)! Oij oJ. A - <Ti A<Tni , 

o 0 

1 ~ i, j ~ N'. (23) 

The solution for the distortion in the optimum linear system follows 
directly from equation (19): 

N' N 

d = 2: A<Ti<Tni + 2: <T;, (24) 
i=1 i=N'+l 
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as does the solution for the total received energy from equation (20): 

(25) 

In these equations, the parameter 'A is chosen to satisfy the constraint 
in equation (13) with equality. It should be remembered in the solu­
tion for 'A that N' is a function of 'A, being equal to the largest value 
of i for which (J'J(J'ni ~ 'A. For completeness, we give the optimum de­
modulator matrix: 

1 ~ i, j ~ N'. (26) 

IV. ELIMINATION OF THE ASSUMPTIONS 

4.1 A Source and Channel with Nonindependent Components 

We now consider systems in which cI>w and cI>n are not diagonal. 
Let P and R be the orthogonal matrices which respectively diagonalize 
these two correlation matrices, that is, cI>w' = PcI>wpt and cI>n' = RcI>nRt 
with cI>w' and cI>n' diagonal. Using the previous results, we can find the 
optimum modulator matrix A' in the primed system containing the 
correlation matrices cI>w' and cI>n' • Now consider the use of the modulator 
matrix A = RtA'P in the system with cI>w and cI>n. From equation (6) 
and cI>y = A cI>wA t + cI>n, it can be easily shown that using A' in the 
primed system and A in the unprimed system each produces the same 
distortion and uses the same energy. Consequently, A must be the 
optimum matrix in the unprimed system. If it is not, and Ao is better, 
A~ = RAopt would be a better choice than A' for modulator in the 
primed system contrary to A' being optimum. 

4.2 N one qual Source and Channel Dimensionality 

When N s ~ N c , we can appropriately modify either the source or 
channel to restore the equality. For example, when Ns < Nc , Nc - Na 
source components of arbitrarily small variance, say €, are added to 
the original source vector. The optimum modulator is then found as 
a function of € by the previous method, and finally the limit taken 
as € goes to zero. Similarly, when Nc < Ns , Ns - Nc , channel com­
ponents of arbitrarily large noise variance, say 1/ €, are added to the 
original channel, the optimum modulator found, and the limit taken 
as € goes to ~ero. We have seen that whenever either the source has 
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a component with small variance or the channel has a component 
with large noise variance, the number of source components actually 
transmitted, N', is smaller than N. Since the optimum modulator 
matrix is diagonal, N' is also the number of channel components 
actually used. Therefore, the limiting modulator form in both of the 
above situations is attained for a nonzero value of E, say El' This 
modulator form is then optimum for all E < El ~ O. 

V. COMPARISON OF OPTIMUM LINEAR AND NONLINEAR MODULATORS 

In 1959 C. E. Shannon introduced a relation between dR , the min­
imum attainable transmission distortion of a source, and R, the total 
information rate used in transmission. 2 This relation involves only the 
source statistics and the distortion measure in use. From it one is 
able to conclude that any channel with capacity R can be used to 
transmit the source with a transmission distortion arbitrarily close 
to dR • One need only use a "sufficiently complex" encoder and decoder. 

Another part of rate-distortion theory is the idea of a "test channel." 
Associated with each point on the rate-distortion curve, (dR' R), is 
such a test channel which has the significance that among all channels 
that transmit the source at a rate equal to R, it provides the minimum 
transmission distortion dR' Therefore, if there exist pre- and post­
operators which can transform a given capacity R channel into the 
test channel for the source at (dR' R), these operators must be optimum. 
An obvious necessary condition for this transformation, which is not 
always met, is that the capacity of the test channel at (dR' R) be equal 
to R. 

For a gaussian source with variance (l and squared difference distor­
tion, Shannon has found 2 both the rate distortion expression, dR = (ie- 2R 

and the test channel: 

w~EB~W. (27) 

i 
n 

In this reverse channel, wand n are independent gauss variables with 
respective variances (l - dR and dR • It can be shown that this channel 
is identical to the forward channel: 

(28) 
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with Al = (U 2 
- dR)/U2

, U! = A 1dR , and the independence between 
wand n. A similar form is given by Gallager in Ref. 7. Still another 
form of the test channel is: 

w~C?9~EB~C?9~w (29) 

iii 
A n B 

with A 2 = (u2 
- dR)u!/ u2dR , B2 = (u2 - dR)dR/ u2u!, and n any 

given additive gaussian noise. 
Now consider a single dimensional gaussian channel of capacity R. 

Since the received energy SR is accordingly restricted to u! exp (2R), 
we have from equations (23) through (26) that the optimum linear 
operators are 

A = ~ = uun • 

uUn SR 

Note that the distortion d equals u
2 exp (2R) , and that all and bll 

agree precisely with the test channel parameters in (29). Therefore, 
we can conclude that in this case the operators in equations (23) and 
(26) are optimum, even outside the linear class. 

The rate-distortion curve and the test channel for gaussian vector 
sources can also be found from Shannon's results. The results for the 
N-dimensional source with variances ui , u;, ... , u; are (we continue 
to assume that ui ~ u; ~ ... ~ u~): 

dR = N{e- 2R fr U;}IIN; 0 ~ dR ~ Nu~ 
0=1 

= u~ + (N - 1){e-2R IT U;}IIN-l; 
i=1 

N u~ ~ dR ~ u~ + (N - l)u~_J 

= u~ + U~-l + (N - 2){e-2R n u~}1IN-2; .-1 
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O"~ + ... + 0"; + 0"~e-2R; 
O"~ + ... + 20"; ~ dR ~ O"~ + ... + 0"; 

= O"~ + ... + O"i ; R = o. (30) 

This expression can also be applied to a gaussian vector source with 
correlated components if the variances O"~ are interpreted as those in 
the diagonalized correlation matrix <Pw' = P<Pw pt . The test channel 
for N > 1 is the product of elementary test channels given in (29) with 

A = AI' A2 , ... , AN , 

0"; = 0";1 , 0";2 , ... ,O";N = any noise vector. 

Let us now presume that the vector channel provided for use has 
the additive noise variances given by the vector O"~ and is constrained 
to have an output energy level equal to SR . This equivalently specifies 
the channel capacity as 

with 

~ 1 SR R = max L.J - log 2.2-
SRi i~l 2 O"ni 

SRi = max (S, O";i) 

(31) 

and S adjusted to have L SRi = SR. The comparison between the 
minimum attainable transmission distortion using linear transmitter 
and receiver operators (equation 24) and using unrestricted transmitter 
and receiver operators (equation 30) now reveals that contrary to the 
single dimension case, when N > 1 the linear operators are not, in 
general, optimum. The only exception is when both the vectors (]"2 

and O"! are uniform. Some intuition as to why the single and multi­
dimensional cases are different might be provided by the following. 

The test channel at (dR, R), for example, the one including the 
noise vector O"! in its form, is a result of a minimization of mutual 
information under a distortion constraint. It does not, therefore, 
necessarily divide the total energy presented to the gaussian vector 
channel in a way which uses this channel to capacity. Since this channel, 
by definition, transmits information at a rate equal to R, its total 
capacity is (except for the special case noted previously) strictly 
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greater than R. Consequently, when the same additive noise channel, 
<T!, is to be used for transmission but is stated to have a capacity 
of only R, it cannot be transformed into the test channel by any pre­
and postoperators. 

The impossiblity of such a transformation can also be observed 
by noting that the allowed total input energy on the given capacity 
R channel is restricted to a lower level than present on the test channel 
The uniqueness of the test channel, which is formed with linear op­
erators, and the continuity of both the mutual information and dis­
tortion with the modulator matrix then precludes the possibility of 
attaining the test channel's performance with the given capacity R 
channel and linear operators. 

One could argue that the comparison to this point is not fair in 
that Shannon allows modulators and demodulators that operate on 
blocks of letters, whereas the results in equations (23), (24), and (25) 
were derived using a coding block length of one. However, the previous 
results show that the optimum linear modulator does not mix indepen­
dent source components before presentation to the channel, assuming 
the channel has already been rotated in N-space so as to have indepen­
dent noise components. Neither does it cross-couple sets of source 
components having no cross dependence when presentation is to a 
channel with sets of noise components of equal respective dimen­
sionalities also having no cross dependence. Therefore, if successive 
source and channel (vector) events are independent, and their dimen­
sionalities filled out to be equal by adding either zero variance source 
components or infinite variance noise components, there is no memory 
introduced by the optimum linear modulator among elements of the 
encoded block. The consequence is that the distortion and the energy 
are only scaled by the block length in use. 

VI. AN EXAMPLE 

We cite here just one example which shows that at least in many 
cases the performance of the optimum linear modulator- demodulator 
pair compares favorably with that theoretically obtainable with more 
complex operators. We take <T1 = <T2 = 1, <Tn1 = a, <Tn2 = ae2

<P and use 
a and 'P as parameters that generate a set of different channels. To 
better compare the two performances, we fix the channel capacity at 
C which in turn fixes Shannon's minimum attainable distortion at 
do = 2e-o

. The total allowed received energy is thus specified ac­
cording to equation (31). 

Upon solution for A and d in equations (24) and (25) we have the 
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following expression for the ratio between the distortion obtainable 
with linear operators and that theoretically attainable: 

cosh2 ep O~ep~ !C 

deep) = cosh2 ep 
!C ~ ep ~ C 

de cosh (2ep - C) 

cosh C C ~ ep. 

We illustrate this function for several different values of capacity in 
Fig. 2. At ep = 0 (where both the vectors u2 and u; are uniform) we 
see that d(O) = de indicating the optimality of the linear modulator 
and demodulator for this case. Using a term introduced in Ref. 8, 
we can therefore say that when ep = 0 the source and channel are 
"matched." As ep increases, the source-channel mismatch increases and 
the nonoptimality of linear operators also increases. As the figure 
illustrates, the nonoptimality ratio, d(ep)/da , can be quite large when 
both the channel capacity is high and the additive noise vector is 
highly skewed in variance. However, over a significant region of interest, 
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Fig. 2 - The linear system non optimality for N = 2,0"1 = 0"2 = 1, O"n1 = I,O"n2 = exp 2q,. 
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<P ~ 1 (reflecting a noise component variance ratio of about 50), the 
nonoptimality ratio is small. 

VII. SUMMARY 

In this paper we have derived the optimum linear modulator and 
demodulator for the transmission of a gaussian vector source through 
an additive gaussian vector channel. It was found that when both 
the source and channel components are independent, both the modulator 
and demodulator matrices are diagonal. This specifies the separate 
amplification, transmission, and decoding of each source component. 
When both the source and channel components are correlated, the 
optimum modulator matrix was found to be the cascade of three 
matrices: (i) the orthogonal matrix which diagonalizes the source 
correlation matrix, (ii) the optimum modulator matrix which transmits 
this newly formed independent component source over the independent 
component additive noise channel which is formed by (iii) the orthog­
onal transformation matrix that diagonalizes the noise correlation 
matrix. We have found that in general the best linear system does not 
provide a distortion as small as that stated by Shannon to be attainable 
with a channel of the same capacity. The only exception is when both 
the source and channel noise variance vectors are uniform. The non­
optimality of linear modulators and demodulators can be quite large 
in some cases but, in many other situations, can be small enough to 
justify the use of these very simple operators. 
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Communication Systems Which Minimize 
Coding Noise 
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(Manuscript received May 28, 1969) 

The problem of minimizing coding or quantizing noise in a communica­
tion system is posed in a general setting. It is shown that if the messages to 
be transmitted are sample sequences drawn from a discrete-time random 
process meeting a certain simply stated criterion of "randomness" and if 
there exists a quantized communication system which is optimal in that it 
introduces a minimum amount of coding noise, then this optimal system 
can be realized using a transmitter of special form. Specifically, the opti­
mum transmitter is one which quantizes each message sample according to a 
scheme that depends only upon the quantized material already transmitted, 
rather than upon the (unquantized) material that has been previously offered 
for transmission. It follows that only digital storage is required at the 
transmitter or receiver. If the receiver is limited, a priori, to have only a given 
finite amount of storage, and if the system is optimum within this con­
straint, the transmitter need have only the same amount of storage. 

1. INTRODUCTION: THE MODEL 

Shannon's theory of communication, shows how to defeat noise intro­
duced in a communication medium by restricting the repertoire of trans­
mitted signals to a discrete set. 1 If the messages to be transmitted are 
not already in an appropriately discrete form, noise in the medium is 
then eliminated only at the expense of noise, here called coding noise, 
caused by the failure of the restricted family of available signals to 
represent faithfully the full family of possible messages. The amount of 
coding noise introduced is of course subject to control by design. 

This paper considers one aspect of the problem of minimizing coding 
noise. Noise in the medium is not considered. The paper limits attention 
to systems in which the random process representing the message is a 
discrete-time or sampled-data process. The sampling noise caused by 
creating such a process out of a continuous-time process is not considered. 

309l 
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The problem of selecting a coding scheme that maximizes the rate of 
communication over a noisy channe1 is not considered. Rather, the paper 
starts at the point that a coding scheme has been found, that is optimum 
according a fairly general criterion of fidelity. What is then shown is 
that the transmitter and receiver-encoder and decoder-of the system 
are of a special form. 

A Q-coded communication system is defined by a discrete set Q and by 
three jointly distributed random processes, {xn , qn , Yn I n = 0, ±1, 
±2, ... }. For purposes of this paper, the set Q will be either 

(i) the set {I, 2, ... , M}, where M is a given positive integer> 1, or 
(ii) the set {I, 2, 3, ... } of all positive integers. 

The process {xn} represents periodic samples derived from the message 
offered for transmission, each Xn is a real random variable. {qn} represents 
the transmitted signals; for each n, qn is a random variable, taking values 
from the set Q and measurable on the sample space of {xn' Xn- 1 , 

Xn-2, ... }. That is, for each n, the value of the integer variable qn 
depends only upon, and is determined (apart perhaps from events of 
probability zero) by the present and past of the message. {y,.} represents 
the version of the message reconstructed at the receiver; for each n, Yn 
is a real random variable measurable on the sample space of {qn, qn-l , 
qn-2 , ... }. Therefore for each n, Yn depends only upon, and is determined 
(apart perhaps from events of probability zero) by the present and 
past of the transmitted signal. 

The model at this point is very general. It provides that at each time, 
n a discrete valued random variable qn be generated in some way out of 
the material {Xn , Xn-l , Xn - 2 , ••• } then available from the message 
process, and that subsequently at the receiver a Yn be generated out of the 
material {qn , qn-l , •.. } there currently available. If all three processes 
{Xn, qn , Yn} are stationary we can call the system stationary. The ques­
tion of stationarity does not enter in what follows. 

What remains to be specified in this model is that in some sense the 
process {Yn} is to represent the process {xn}. At the start it appears 
natural to consider three cases; it develops that two are simply special 
cases of the third, one of them not interesting in the framework of this 
paper. 

We start with a given sequence {lfn I n = 0, ±1, ±2, ... } offunctions, 
in which each Ifn is a real valued Borel measurable function Ifn(X, y) of 
the real variables x, y. The use of a sequence {lfn} here is a largely deco­
rative generality that costs nothing. The conventional case is that in 
which all Ifn are the same function 1/;. These functions define a fidelity 
criterion as follows: 
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Case (i), the delay-free case: 

Here we choose to regard Yn as a replica of Xn , and evaluate our 
communication system at each time n by the quantity 

(1) 

where E denotes expectation over the message ensemble. 

Case (ii), the case of fixed delay: 

Here we are given a fixed integer d ~ ° and we choose to regard Yn 
as a replica of Xn-d , thus allowing qn to take advantage not only of 
{xn-d , Xn-d-I , ... } (the present and past of Xn-d) but also of {xn' Xn-I, ... , 
xn-d+d (a limited span of the "future" of Xn-d) in representing Xn-d . 
Here the criterion relative to Xn-d is (by a convention we will use with 
respect to indices) 

(2) 

lf d = 0, this case reduces to case i. 

Case (iii), block encoding with cycle time c: 

This is the situation that arises naturally in Shannon's theory. We 
are given a fixed integer c ~ 1, and the transmission process is repetitive 
with a cycle of length c. By a choice of time origin, we can describe it as 
follows. Let QI be a discrete set with MI < 00 members. At time ° the 
transmitter examines {xo , X-I' ... } and generates a QI-discrete variable 
which we shall call go • At time c, the transmitter then examines {xc , 
Xc-I, •.. } and produces gi ; the process repeats with period c. For trans­
mission, the random variable go is encoded into the string {qc , qc-I , ... , 
ql} of random variables each being Q-discrete, where M C ~ MI. At 
time c, all of go, g-I, ... are available at the receiver, being rep­
resented by the sequence {qc , qc-I , qc-2 , ... }. From these, the sequence 
{Y2c-l, Y2c-2, ... , Yc} is generated, representing Xo , X-I' ... , X-c+1 , 
respectively. We think of these y's as being presented to the output 
of the receiver in the order of their indices, Yc at time c, and so on. 

lf one follows through the functional dependencies here, he sees that 
indeed the processes {xn , qn , Yn} are so related that each qn depends at 
most upon {xn , Xn-I , ... }, and each Yn at most upon {qn , qn-I , ... }. 
Indeed, except at times which recur with period c, qn is not "up to 
date," depending in fact only on x's strictly prior to Xn . Similarly, Yn is 
only periodically up to date; at other times it depends only upon q's 
that are actually earlier than qn . 

In the situation as just described, the criterion of fidelity becomes 
E { 1fn (Xn-2c + I , Yn) }. Case iii is then also a special case of case ii, in which 
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d = 2c - 1 ~ 1. What makes it special is that in case ii, qn and Yn 
are permitted to be up to date at each value of n, however in case iii 
the block coding process restricts the currency of the data upon which 
most of the q's and y's depend. 

Actually, case iii as just described will turn out not to be covered, 
in general, by the theorems to be proved. This happens because, as is 
later be stated more precisely, we are interested only in communication 
systems that minimize (2) for each n, in comparison with all possible 
competing systems. Clearly, to impose the restrictions immanent in 
case iii upon one's reportoire of coding schemes limits the domain 
within which a minimum is to be sought. The system that brings 
about an absolute minimum is simply not, in general, to be found 
in this restricted domain. 

The previous observation is not to be entered as a criticism of Shan­
non's theory. Typically, in a noisy medium, it is necessary to use a 
highly redundant encoding {qc , qc-l , ... , qd to represent qo , so that 
the inefficiencies (as measured by expression 2) that are imposed by 
the block-coding process are needed in order to ensure that the Yn 
in (2) is an approximately error free replica of Xn-d . We must remember 
that (2) measures the noise introduced by the coding process, not by 
the noisy medium. It is interesting to a designer only if the latter 
noise has been eliminated. The price of this elimination is that one 
may not be able to minimize (2) in competition with systems that 
are not restricted to be of block coding form. 

A true engineering solution to the problems reflected in the remarks 
immediately above would consider (2) in which the expectation is 
taken over the joint ensemble of message and noise. The solution 
should balance coding noise against channel noise at, say, a fixed delay, 
to minimize (2). This paper is very far from solving such a problem. 

It does not follow that the results of this paper are without interest 
in the search for coding schemes to eliminate noise. Given a Q-coded 
communication system which does minimize (2), the {qn} process is 
in digital form. This {qn} process can then be redundantly encoded 
according to Shannon's theory, and recovered with few errors (and 
typically much delay) at the receiver. The {Yn} process then results 
(perhaps delayed) and has few errors. Then (2) does measure the 
total amount of noise introduced in this operation. 

II. STATEMENT OF RESULTS 

Given the message process {xn}, the sequence {Y;n}, and the delay 
d ~ 0, a Q-coded communication system {Xn , qn , Yn} will be called 
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I ~n , d}-optimal if 

(i) For each n = 0, ±1, ±2, 

E {I ~n(Xn-d , Yn) I} < 00, 

and 

(ii) For any other Q-coded communication system {xn , q~ , y~}, 

E{~n(Xn-d' Yn)} ~ E{~n(X~_d' yD}' 

for each n = 0, ±1, ±2, .... 

3095 

(3) 

(4) 

The simplest result of this paper is of such a form as to illustrate 
the nature of all of the results. We define a class J( of functions ~, 

and a class, here called CCD, of message processes {xn}, such that 
the following theorem is true. 

Theorem 1: Let {xn , qn , Yn} be a given Q-coded communication system 
that is {~n , OJ-optimal. If each ~n £ K, n = 0, ±1, ±2, ... , and if 
{xn} £ CCD, then each qn is equal with probability one to a random variable 
measurable on the sample space of {xn , qn-l , qn-2 , ... }. 

The force of this theorem is that it simplifies, in principle at least, 
the requirements for memory at the transmitter. Only the digital 
sequence {qn-l , qn-2 , ... } need be in storage at time n. The proof 
of the theorem will also develop a standard structure for the optimum 
transmitter difficult to summarize easily in a theorem. 

The definition of the class J( is long and is deferred to Section III. 
Suffice it here to say that J( is a large class that includes the conventional 

~l (x, y) = I x - y I, 

and any other continuous strictly increasing function of ~l. 

We define CCD, and a related class CCDf, thus: 

CCD consists of those processes {xn} such that: for each n = 0, 
±1, ±2, ... , if z is a random variable measurable on the sample 
space of {Xn-l , Xn- 2 , ••• }, then the probability that z = Xn is zero: 

P{z = xn} = 0. (5) 

CCDf consists of those processes {xn} such that: for each n = 0, 
±1, ±2, ... , if A is a finite Borel field or the completion of a finite 
Borel field, and if z is a random variable measurable on the smallest 
Borel field containing A and the sample space of {xn - 1 , Xn -2 , ••• }, 

then (5) holds. 
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Read CCD as "continuous conditional distribution." If {xn} I: CCD 
and if Xn has a conditional distribution given {xn- I , Xn- 2 , ••• }, that 
distribution must be continuous. 

We now define a more restricted class of Q-coded communication 
systems and a corresponding notion of optimality. 

Given an integer m ~ 0, a Q-coded communication system {xn, qn, Yn} 
will be said to have decoder memory span m if for each n = 0, ±1, 
±2, ... Yn is measurable on the sample space of {qn , qn-l , ... , qn-m}. 

A Q-coded communication system {xn , qn , Yn} will be called 
{if;n , d, m} -optimal if it has decoder memory span m, if (3) holds for 
every n, and if (4) holds for every n and for every {xn , q~ , y~} which 
has decoder memory span m. 

In the case of {if;n , d, m} optimality, then, the competition is re­
stricted to systems with decoder memory span m. We can put m = co 

to refer to the case of {if;n , d} optimality defined earlier. 
Perhaps our most surprising result is that case ii of our model, 

which includes case i as a special case, is also included in case i. This 
is shown by Theorem 2. 

Theorem 2: Let {xn , qn , Yn} be a given Q-coded communication system 
that is {if;n , d}-optimal. If each if;n I: K, n = 0, ±1, ±2, ... , if M, 
the number of elements of Q, is finite, and if {xn} I: CCDf, then each qn is 
equal with probability one to a random variable measurable on the sample 
space of {Xn-d , qn-l , qn-2 , ... }. Furthermore, the system {xn , q~ , y~}, 
where 

q~ = qn+d , 
n = 0, ±l, ±2, ... , (6) 

y~ = Yn+d , 

is a Q-coded communication system that is {if;~ , o} optimal, where 

n = 0, ±1, ±2, .... (7) 

Finally, we state a theorem that includes the two preceding ones. 

Theorem 3: Let {xn , qn , Yn} be a given Q-coded communication system 
that is {if;n , d, m}-optimal. If each if;n I: K, n = 0, ±1, ±2, ... , if 
M < co, and if {xn} I: CCDf, then each qn is equal with probability one 
to a random variable measurable on the sample space of {Xn-d , qn-l , 
... , qn-m} ({Xn-d} if m = 0). The system as defined by (6) is a Q-coded 
communication system with decoder memory span m that is {if;~, 0, m}­
optimal, where if;~ is given by (7). If, in the initial hypotheses, d = 0, 
then it suffices that {Xn} I: CCD and the restriction M < 00 may be removed. 
If m < 00, the hypothesis {xr } I: CCD! may be replaced by: 
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For each n = 0, ±1, ±2, ... , if z is a random.- variable that takes 
only finitely many values, then P {xn = z} = o. 

Theorem 1 shows the basic facts about measurability in the present 
context. Theorem 2 adds the fact that delay d > 0 gains no advantage 
(since the "future" of Xn-d is not known at the receiver, even if it is 
at the transmitter). Finally, Theorem 3 includes these facts and shows 
that a limitation on the memory span of the receiver allows a cor­
responding simplification of the transmitter. 

In the proofs of these theorems it is seen that they are true for classes 
of process slightly larger than CCD or CCDf. In particular, the final 
conclusion of Theorem 3 opens the case of finite memory span to any 
process {xn} that has a little additive nonsingular Gaussian noise in 
each sample. 

III. THE CLASS K 

The class K of cost functions allowed by these theorems can be 
very general. The definition below seems more inclusive than is called 
for by the applications I can think of; at the cost of elaboration, it 
can be enlarged further. 

We let K be the class of all functions 1/;(x, y) of two real variables 
x, y with the following properties. 

(i) 1/;(x, y) is continuous; 
(ii) for all x, y, 1/;(x, y) ~ 0; 
(iii) for all x, 1/;(x, x) = 0; 
(iv) for each y, there are at most countably many solutions x to the 

equation 

1/;(x, y) = 0, (8) 

in the sense that: there exist Borel measurable functions gk(y), k = 
1, 2, 3, ... , such that if (8) holds, then for some k, x = gk(y). 

v) If Y1 ¢ Y2 , there are at most countably many solutions to the 
equation 

(9) 

in the sense that: there exist Borel measurable functions fk(Y, z), k = 
1, 2, 3, ... such that if (9) holds and if Y1 ¢ Y2 , then for some k, x = 
fk(Y1 , Y2). 

It follows from this definition that 1/;1 E K, where 1/;1(X, y) = 1 x - Y I. 
Then also 1/;2 E K, where 1/;2(X, y) = (x - y)2. Similarly any other con-
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tinuous strictly monotone function of y/ is also in K. In all of these 
instances, (8) has the unique solution y = x, and (9) has a unique 
solution given by 2x = YI + Y2. 

IV. PROOFS 

Let {n, B, P} be a probability space: A set n of points w, a Borel 
field B of subsets of n, and a probability measure P on B with respect 
to which B is complete. This probability space is assumed given and 
fixed. 

A random variable x is a real-valued function x(w) defined on n 
and measurable B. 

If F C B is a Borel field, a random variable x is said to be essentially 
measurable F if x is equal with probability one to a random variable x' 
which is measurable F. If F is complete, such an x is then itself meas­
urable F. 

If F ~ B is a Borel field and x a random variable, {x} V F denotes 
the smallest Borel field such that: x is measurable {x} V F and 
F C {x} V F. 

A random variable taking its values in the set Q will be called Q­
discrete. 

Denote by [x I q, Fly, G] a mathematical object of the following 
kind: 

x is a random variable, 
q is a Q-discrete random variable, 
F is a Borel field, F ~ B, and q is essentially measurable on the field 

determined by F and the sample space of x, 
y is a random variable, 
G is a Borel field, G C {x} V F, and y is essentially measurable on 

the field determined by G and the sample space of q. 

For convenience let CQAx ("conditionally quantized approximation 
to x") denote the class of all objects of the kind described, based on 
the given probability space {n, B, PI, the given x, and the given set Q. 

Given a Q-coded communication system {xn , qn , Yn}, given a delay d 
and a memory span m, let Xn,d be the sample space of the selection 
{xn , Xn-l , ... } of random variables from which the specific variable 
Xn-d has been deleted. Let Qn,m be the sample space of the random 
variables {qn-l , qn-2 , ... , qn-m}. Then it is easy to see that {xn , qn , Yn} 
is a Q-coded communication system with decoder memory span m 
if and only if for each n = 0, ± 1, ±2, ... 
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Given 1/1, a [x I q, Fly, G] E CQAx will be called weakly 1/I-optimal if: 

(i) E{11/I(x, y) I} < 00, 

(ii) If random variables q' and y' are such that [x I q', FlY', G] E CQAx, 
then E {1/I(x, y)} ~ E {1/I(x, y')}. 

The qualifier "weakly" in this definition signals the fact that the 
fields F and G are not allowed to vary in the competition for optimality. 

Lemma 1: If {xn , qn , Yn} is a Q-coded communication system with 
decoder memory span m, and if {xn , qn , Y n} is {1/In , d, m} -optimal, 
then for each n [Xn-d I qn , Xn.d I Yn , Qn.m] is weakly 1/In-optimal. 

Proof: Fix an n; for convenience identify it as n = O. Suppose that 
we are given random variables q' and y', which we shall here call q~ 
and y~ , such that 

Define a new Q-coded communication system {xn , q~ , y~} thus: 

For n < 0, q~ = qn , y~ = Yn ; 

For n = 0, q~ and y~ are those above; 

For n > 0, q~ = 1 and y~ = O. 

That this is a Q-coded communication system with decoder memory 
span m follows at once from the definitions. Furthermore, the sample 
space of {q~l' q~2' ... q~} is QO.m. Because {xn' qn, Yn} is {1/In, d, m}­
optimal, we conclude that E {11/IO (X-d , Yo) I} < 00 and that E {1/I0(X-d , Yo) } 
~ E{ if/O(X-d , y~)}. 
These, however, prove that [X-d I qo , XO.d I Yo , Qo.m] is weakly 1/10-
optimal. Clearly this proof can be repeated for any other value of n. 

The proof of this lemma indicates, deliberately, the force of the 
notion of {1/In , d, m} -optimality for {xn , qn , Yn}. The competing com­
munication system {xn , q~ , y~} used in the proof sacrificed all reason­
able behavior for n > 0, yet was still allowed to compete at n = O. 
In particular, notice that even if {xn , qn , Yn} is stationary, it must 
compete with nonstationary systems designed to excel at only one 
value of n. The theorems of Section II are not proved for stationary 
systems which are known only to minimize each E {1/In(Xn-d, Yn)} 
against competing systems drawn from the class of stationary systems. 

Given a Borel field G C B, we define CCD(G) analogously to CCD: 
CCD(G) is the class of all random variables x such that: 

If z is a random variable measurable G, then P{x = z} = O. 
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The results of this paper all derive from Theorem 4. 

Theorem 4: Let [x I q, Fly, G] E CQAx and suppose that it is weakly 
t/t-optimal. If Q is a finite set, or if t/t is Borel measurable and for each 
x is bounded from below, then there exists a Q-discrete random variable 
q' and a random variable y' such that 

(i) [x I q', G I y', G] E CQAx, 
(ii) t/t(x, y') = t/t(x, y) with probability one. In particular, also, the 

object i is weakly t/t-optimal. 
If t/t E K and x E CCD(G) then also 
(iii) q' = q with probability one, and 
(iv) y' = y with probability one. 

I t then follows that the given q is essentially measurable on the Borel field 
{x} vG, determined by G and the sample space of x. 

We wish to use the given [x I q, Fly, G] as a model for some 

[xn-d I qn , Xn,d I Yn , Qn,m] 

in a Q-coded communication system. Conclusions i and ii show that 
for any given n we can find a q~ essentially measurable {Xn-d} V Qn, m 
and a y~ such that, according to the criterion defined by 1/;, y~ represents 
Xn-d as well as Yn did. Without conclusion iii, however, the substitution of 
q~ for qn can alter the subsequent Borel fields Q~+k,m , k ~ 0, to the point 
that we are no longer sure that [Xn+k-d I q~+k , Xn+k,d I y~+k , Q~+k,m], k > 0 
is weakly t/tn+k-optimal. Without iii, therefore, one cannot apply The­
orem 4 to prove the other theorems. 

It is convenient now to invoke a lemma which is a simple theorem 
from measure theory. The lemma provides a standard form for the 
variables q and y of an object [x I q, Fly, G] E CQAx. 

Theorem 2: Given a Q-discrete random variable q and a Borel field G, 
if y is a random variable measurable on the Borel field determined by G 
and the sample space of q, then there exist random variables {zp , P E Q} 
such that 

(i) each Zp is measurable G and 
(ii) for each w E (2, if q(w) = p then yew) = zp(w). 

Conversely, of course, given {Zp, p E Q}, each measurable G, any y defined 
by ii is measurable on the field determined by G and the sample space of q. 

The proof of this lemma consists in showing that the class of random 
variables of the type of y above, as the {zp , P E Q} are selected arbi­
trarily from the class of variables measurable G, exhausts the class 
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of all random variables measurable on the Borel field determined by G 
and the sample space of q. The proof is a straightforward exercise in 
measure theory and is omitted. 

To begin the main argument, given [x I q, Fly, G] E CDAx and 
a Borel measurable function 1f;(x, y), if for each x 1f;(x, y) is bounded 
from below, or if Q is a finite set, we can define the random variable 

Hw) = inf 1f;(x(w) , zr(w)). 
rtQ 

Then ~ is measurable {x} V G. 
Given P E Q and r E Q, we define sets T";" Tvr , Tv by 

T: = {w I 1f;(x(w) , zv(w)) = Hw)} , 

Tvr = {w I 1f;(x(w) , zv(w)) = 1f;(x(w) , zr(w)) } , 

Tv = T: - U Tvr . 
rr'v 
rtO 

Clearly each of these sets is measurable {x} V G. T";, is the set where 
the index p minimizes 1f;(x, zv), and Tv is that subset of T";, where this 
minimizing index is unique. It follows that if r r!: p then 

and as a consequence, Tp /\ Tr = ~, l' r!: p. 
Clearly 

Also 

T~ /\ T vr = T";, /\ T vr , 

(10) 

(11) 

since either side is the set where an index minimizing 1f;(x, zs) can be 
equal either to p or to r. 

In terms of these sets, the argument to be used can be outlined 
briefly. First, one shows that the T";, essentially cover Q, in the sense 
that there is a null set N such that 

Q - N = UT:. (12) 
VEO 

This follows without argument, and with N = ~, if Q is finite; it results 
from 1f;-optimality in general. 

Second, by definition 

T: - Tp ~ U Tpr . 
rEO rr'p 

(13) 
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Third, one observes that for p, r E Q and p ~ r, T PT consists of the 
set Spr 

Spr = {w I zp(w) = zr(w)} 

plus a disjoint remainder T pr - Spr . The hypothesis x E CCD(G) allows 
one to show that this remainder is a null set. Over the set Spr , on the 
other hand, the information about x conveyed by the family {zp , P E Q} 
is redundant. The hypothesis of 1fr'-optimality can then be violated, 
unless Spr is also a null set. It follows then that each T pr is a null set, 
and from (12) and (13) then that the T p partition n apart from a null set. 
From this the full theorem follows quickly. 

To proceed with (12), given p E Q, let N p be the set 

N p = {w I q(w) = p} !\ {n - UT~}. 
nO 

Fix an w E N p; then yew) = zp(w) but w ¢ Tt, so thatHw) < 1fr'(x(w) , zp(w». 
It follows that there is some r £ Q, r ~ p, such that 

1fr'(x(w), zr(w» < 1fr'(x(w), zp(w», (14) 

and indeed, since Q is bounded from below, that there is a least such r, 
call it rt(w). Notice that N p is measurable on the Borel field determined 
by the sample space of {x}, byF, and byG. SinceG ~ {x} V F, it follows 
that N p is measurable {x} V F. That subset R pk of N p where r;(w) = k 
is empty if k = p; otherwise 

R pk = N p !\ {w I 1fr'(x(w) , Zl(W» < 1fr'(x(w) , zp(w»} if k = 1 ~ p, 

R pk = N p !\ {w I 1fr'(x(w) , Zk(W» < 1fr'(x(w) , zp(w»} !\ 

k-l . n {w I 1fr'(x(w) , zJw» ~ 1fr'(x(w) , zp(w»} if k > 1, k ~ p. 
j=l 

It follows from these equalities that R pk and r; are measurable {x} V F. 
We now define the Q-discrete random variable q' by 

If P E Q and w E N p , q'(w) = rt(w); 
If WEn - UPtO N p , then q'(w) is the least value of r E Q such that 

wET; . 

Since the N p cover the complement of Ur T; , and since Q is bounded 
from below, this defines q'(w) for each WEn; clearly q' is Q-discrete. 
Given k £ Q, the set where q' ~ k consists of the union of 

URpk 
ptQ 
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with the set V k , where 

k > 1. 

Since each V k is measurable {x} V G c {x} V F, it follows that q' is 
measurable {x} V F. Furthermore, over Q - UPEO N p , q' is equal to a 
random variable that is measurable {x} V G, since each V k is measurable 
on this latter field. 

We now define the random variable y' by 

y'(w) = Zql(W)(W), W £ Q. 

Then y' is measurable on G and the sample space of q'. It follows that 
[x I q', Fly', G] £ CQAx, and from the hypothesis of weak ~-optimality 
then that 

E{ ~(x, y)} ~ E{ ~(x, y')}. (15) 

But now we claim that for all W £ Q 

~(x(W), y'(w)) ~ ~(x(w), yew)). (16) 

First, if w £ N p , we have 

~(x(w), y'(w)) = ~(x(w), Zr,,*(w) (w)) < ~(x(w), Zp(w)) 

= ~(x(w), y(w)) , (17) 

the inequality being by definition of r; . Therefore strict inequality 
prevails in (16) for w £ UPEO N p • Consider now an w £ (Q - UrEO N r) /\ 
{w' I q'(w') = pl. For this w we have w £ T; and ~(x(w), y'(w)) = 
~(x(CJJ), zp(w)) ~ ~(x(w), zr(w)) for any r £ Q, by definition of T; . But 
then (16) follows for this w because yew) = zr(CJJ) for some r £ Q. 

Now from (16), by taking expectations, we conclude the inequality 
opposite in sense to (15), hence (15) is an equality, and (16) is then 
an equality with probability one. Therefore ii of Theorem 4 is proved. 
Now by (17), (16) is a strict inequality over N = UPEO N p • Hence 
this latter set is a null set. Therefore i of Theorem 4 is proved, since 
q' is equal, over the complement of N, to a variable that is measurable 
{x} VG, as we noted earlier. Finally, since 

Q- U'P;= UNr=N 
PEO reO 

the T; essentially cover Q. This is (12), as was to be proved. 
It would be possible at this point to invoke the hypotheses ~ £ K 



3104 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1969 

and x I: CCD(G) to conclude iv of the Theorem. It will be more effi­
cient to prove iii and iv together. To do so requires, as our earlier 
outline suggests, that we examine the sets T; /\ Tpr over which re­
dundancy prevails (because on T; /\ Tpr either of Zp or Zr, where 
r ~ p, could be used to define the same value of y minimizing 1f;(x, y). 

We have concluded (12), that except for W I: N, a null set, for each 
W there is at least one p I: Q such that Hw) = 1f;(x (w) , zp(w)), that is, 
the minimizing index is uniquely p for w I: Tp - N. 

N ow define, as earlier, for r ~ p, 

Then if WI: Tpr - Spr, we have 

1f;(x(w), zp(w)) = 1f;(x(w), zr(w)), 

Since 1f; I: K, it follows that for some k = 1, 2, ... we have 

x(w) = !k(ZP(W), zr(w)). (18) 

N ow let A kpr be the set of all w such that (18) holds. We have just 
showed that 

00 

T pr - Spr ~ U A kpr . 
k=l 

(19) 

But now, since !k is Borel measurable and each Zp is measureable G, 
(18) constrains x on A kpr to be equal to a random variable measurable G. 
Since x I: CCD(G), then A kpr is a subset of some null set, 

k = 1,2, ... , 

and 

00 

L P{A kpr } = O. 
k=l 

This last with (19) makes P {Tpr - Spr} = o. Indeed, finally, since Q 
is countable, 

P{ U U (Tpr - Spr)} = o. 
ptQ rtQ 

rr' p 

It is important later that by definition, Spr is measurable G and 
therefore that, by (19), Tpr is essentially measurable G. 

We now define a new Q-discrete random variable q" and a corre­
sponding y". The construction depends upon an arbitrarily chosen 
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Po £ Q and an arbitrarily chosen real number a, although the notation 
will not emphasize this dependence. Later it will be shown that q" = q' 
and y" = y' each with probability one, so that the dependence upon 
Po and a is not essential. 

Fix a Po £ Q and select a real number a. Define the random variable 
z~~(w) by: 

z;:(w) = a, 

otherwise, z~:(w) = zP.(w). 

Then z;:(w) is measurable G. Define 

z~' = Zp, P £ Q, P ~ Po· 

Then certainly each z~', P £ Q, is measurable G. Define the Q-discrete 
random variable q"(w) by 

If w £ Tp. V [(T:. - TpJ A {w' I tf;(x(w') , a) < tf;(x(w') , zp.cw'»}] 

then q" (w) = Po ; 

if w £ (Tp*. - TpJ A {w' I tf;(x(w'), a) ~ tf;(x(w'), zP.(w'»} 

then q"(w) is the least value of P £ Q such that P ~ Po and w £ T~; 

if w £ Q - Tp*. , then q"(w) = q'(w). 

It is easily seen that this defines q" for all w £ Q. 

We now define the random variable y" by y" (w) = z~ ~ , ("') (w). Then 
y" is measurable on G and the sample space of q", so that by con­
struction [x I q", Fly", G] £ CQAx. Applying the hypothesis of weak 
tf;-optimality, we conclude that 

fa [tf;(x, y") - tf;(x, y)] dP = E{ tf;(x, y")} - E{ tf;(x, y)} ~ o. (20) 

We now partition the domain Q of integration into the four sets 

Al = Tp. 

A2 = (T:. - TpJ A {w I tf;(x(w), a) < tf;(x(w) , zP.(w»}, 

Aa = (T:. - TpJ A {w I tf;(x(w), a) ~ tf; (x (w) , zpo(w»}, 

That this is a partition follows from the definition and the fact, already 
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proved, that Tpo C Tv:' We consider the four resulting integrals 
individually, in the order of the listing. 

If W I: Tpo then either W I: Tpo 1\ N, or W I: T po - N. We may ignore 
the first case. For the second, by definition of Tpo , if T ~ po 

l/J(X(W), zpo(w)) < l/J(x(w), zr(W)). (21) 

Also, by definition 

and therefore by definition z;:(w) = zpo(w), and q"(w) = po. Then 

l/J(x(w), y"(w)) = l/J(x(w), z;~(w)) = l/J(x(w), zpo(w)) 

and from the inequality (21) we conclude that the integrand 

l/J(x(w), y"(w)) - l/J(x(w), yew)) < 0, 

since yew) is equal to some zr(w), r I: Q. Hence the integral over Al is 
not positive. 

If W I: A2 , then by definition q"(w) = Po and 

y"(w) = z~~(w). 

Again, we ignore the contribution of A2 1\ N. If w t A2 - N then by 
(13), 

W t U Tvor . 
rtQ 

r¢vo 

Then by definition z~: (w) = a. Hence, the integrand 

l/J(X(W), y"(w)) - l/J(x(w), yew)) 

= [l/J(x(w), a) - l/J(x(w) , zpo(w))] + [l/J(x(w) , zpo(w)) - l/J(x(w), y(w))]. 

The first bracket on the right is <0 by definition of A2 , and the second 
is ~O because w t Tp: and by definition of Tp: we have l/J(x(w), zpo(w)) ~ 
l/J(X(w) , Zr(w)) for all r t Q; among the latter is l/J(X(w) , yew)). Hence 
the second integral is not positive, and its integrand is strictly negative. 

N ow consider w t A3 . We ignore the integral over A3 1\ N I. If 
WI: A3 - NI , then q"(w) = p ~ Po and WI: T:t;, for some p t Q. For this 
W we have 

l/J(X(W), y"(w)) = l/J(x(w), z;'(w)) = l/J(x(w), zp(w)) ~ l/J(x(w), zr(w)) 

for all r I: Q; here the first equality is by definition of y", the second 
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by definition of z~' since P ~ Po, and the inequality is by definition 
of T~. But the inequality makes the integrand in (20) ~ 0, since 
yew) = Zr(w) for some r £ Q. Therefore, the integral over A3 is not 
positive. 

Over A4 , the integrand of (20) is 

[1f(x, y") - 1f(x, y')] + [1f(x, y') - 1f(x, y)]. 

The second bracket vanishes with probability one by ii of Theorem 4, 
already proved. The first bracket is 

1f(x(w), z~~(w)(w») - 1f(z(w), Zq'(W)(w) 

and this vanishes for all w £ A4 by the definitions because over A4 , 
Hw) < 1f(X(w) , zv.(w» so that q'(w) ~ Po; therefore by definition 
z~~(w)(w) = Zq'(w)(w). 

We conclude from these calculations that the integral (20) cannot 
be positive. By (20), therefore, the integral vanishes. But the argument 
showed that the integrand was ~ 0 with probability one, hence indeed, 
the integrand vanishes with probability one: 

1f(x, y") = 1f(x, y) with probability one. 

In particular, over A2 , the integrand was strictly < o. Therefore 
A2 has probability zero. We shall now exploit this fact. 

In the argument above, a was any real number. Let {an} be a countable 
dense set of real numbers and let 

Wn = {w I 1f(X(w) , an) < 1f(x(w), zpoCw»}. 

We have just proved that P {A 2 } = 0, which is to say that we could 
have proved, for each n, that 

Then also 

N2 = U (T:. - Tp.) /\ lYn 
n 

is a null set. Now if w £ N 2 , then w £ T p: - Tp. and also there is some 
number an such that 

(22) 

Conversely, if w £ Tp~ - Tp. and there is a number an such that (22) 
is true, then w £ N2 . Therefore if w £ (Tp: - TpJ - N2 , then for every 
number an we have 

(23) 
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Given an w £ (Tv~ - Tv.) - N2 , choose a sequence an ~ x(w). Assume 
that 1/1 £ K. Then 1/1 is continuous and from (23) we have 

o = 1/I(x(w), x(w)) = lim 1/I(x(w), an) ~ 1/I(x(w), zv.(w)) ~ O. 

Notice, incidentally, that it suffices here for each x that 1/1 (x, y) be 
continuous for y in some neighborhood of x. This is an example of one 
way in which K can be enlarged. 

From this and item iv in the definition of K, there is some integer K 
such that 

(24) 

Let Ok be the set of all w such that (24) holds. Since gk is Borel meas­
urable, over Ok , (24) constrains x to be equal to a function measurable 
G. If x £ OOD(G), then Ok is a null set. But we have just showed above 
that 

00 

(T:. - Tv.) - N 2 ~ U C k • 
k=J 

Therefore 

P{Tp~ - Tvo} = O. 

Since Po was arbitrary, this can be proved for each Po t Q; therefore 
from (12) the Tv, P t Q essentially cover Q. We proved along with 
definitions that the Tv are pairwise disjoint, hence they partition 
Q - N 3 , where N 3 is some null set. 

We continue the argument using the selected Po . For w t Q - N 3 , 

either w t Tv. or w t Tr where rt Q but r ~ Po. In this latter case, however, 
as we proved with the definitions, w t Q - Tv~ ; then by definition 
q"(w) = q'(w). If w t Tv. , by the definitions q"(w) = q'(w) = Po . There­
fore 

q" = q' with probability one. 

Furthermore we know that if w t Tv , then q'(w) = p. From (25) 

y"(w) = z~~(w)(w). 

(25) 

(26) 

If w t Q - Tv. , except at most on a null set we have q"(w) ~ po and 
from (26) and the definition of z~' 

y"(w) = z~~(W)(w) = Zq'(W)(w) = y'(w), (27) 

where N5 is a null set. Now if w t Tv. - N, we showed earlier that 
z~~(w) = zP.(w). Hence the equalities in (27) hold for w t Tp. - N as 
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well, so that 

y" = y' with probability one. (28) 

Equalities (25) and (28) free the constructions from any dependence, 
except on a null set, upon the initially selected Po and a. We need 
the Theorem to make identification with q and y. 

Let Sp be that subset of Tp where q(w) ~ p. Then if w E Sp , by de­
finition of Tp , 
1/I(X(W) , y'(w)) = 1/I(X(w) , zp(w)) < 1/I(x(w), Zq(W)(w)) = 1/1 (x (w) , yew)). 
From ii of Theorem 4, then, P{Sp} = 0, and P{UrEQ SrI = O. Since 
the T p , p E Q, essentially partition Q, it follows that q' = q with prob­
ability one, and at once that yew) = Zq(w)(w) = Zq'(w)(w) = y'(w) with 
probability one. These conclusions are iii and iv of the Theorem, the 
proof of which is now complete. 

To prove Theorem 1, let {Xn , qn, Yn} be a given Q-coded communica­
tion system that is {1/In , O} optimal. Given n, by Lemma 1, 

[xn I qn , Xn.o I Yn , Qn.oo] E CQAxn 

and is weakly 1/In-optimal. If 1/In E K and Xn E CCD(Qn. oo ), Theorem 4 
proves that qn is measurable on {xn} V Qn. co . But Qn,co is the sample 
space of {qn-l, qn-2, ... }, and is therefore contained in the sample 
space of {xn- 1 , Xn- 2 , ... }, since by hypothesis {xn' qn, Yn} is a Q-coded 
communication system. The hypothesis {xn} E CCD of Theorem 1 then 
implies that for the given n, Xn E CCD(Qn,oo), and Theorem 4 establishes 
Theorem 1. 

Turning to Theorem 3, let {Xn , qn , Yn} be a given Q-coded com­
munication system with decoder memory span m, and suppose that 
it is {1/In , d, m} -optimal. By Lemma 1, then, given n, [Xn-d I qn , Xn,d I Yn, 
Qn.m] E CQAXn-d and is weakly 1/In-optimal. By the hypotheses of The­
orem 3, 1/In E K, and {xn} E CCD!. Consider Qn.m , the sample space 
of {qn-l , qn-2 , •.. , qn-m}. Suppose first that m > d; then this sample 
space is the smallest Borel field which contains both the sample space 
of {qn-l , ... , qn-d} and that of {qn-d-l , ... , qn-m}. Since M < 00, 

the first of these is a finite field, and the second is a sub field of {Xn-d-l , 
Xn-d-2 , ... } (since {Xn , qn , Yn} is indeed a Q-coded communication 
system). The hypothesis {xn} E CCD! then implies that Xn E CCD(Qn,m)' 
If m ;£ d, the subfield of {Xn-d-l , ... } is empty, but the reasoning 
and conclusion are still valid. Then Theorem 4 applies and we conclude 
that qn is measurable on the sample space of {Xn-d , qn-l , .. , , qn-m}. 
This is the first conclusion of Theorem 3. We note now that a weaker 
hypothesis than {Xn} E CCD! could suffice here. Indeed, if m < 00, 
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it is sufficient that: if A is a finite field then Xn E CCD(A). This is the 
final conclusion of Theorem 3. 

Given that qn is essentially measurable on {Xn-d, qn-l, ... , qn-m}, 
for each n, we conclude by induction that qn is essentially measurable 
{Xn-d, Xn-d-l , qn-2, .. , , qn-m-l}, ... and finally then that qn is es-
sentially measurable {Xn-d , Xn-d-l , ... }. Define 

Y~ = Yn+d , n = 0, ±1, .... 

Then it is a simple translation of notation to verify that {Xn , q~ , Y~} 
is a Q-coded communication system with decoder memory span m 
that is {¥t~ , 0, m }-optimal, where ¥t~ = ¥tn+d , n = 0, ±1, .... This 
is the second conclusion of Theorem 3. 

Finally, if d = 0, then "{xn } E CCD!" may be replaced by: "{xn } 

E CCD." Then M is unrestricted, since no "future" is involved that 
must be restricted to a finite field. This completes the proof. 

Theorem 2 is a limiting case of Theorem 3, proved by putting m = 00 

everywhere in the proof of Theorem 3. 

V. A COROLLARY 

It is a consequence of Lemma 2 and of the proof of Theorem 4 that, 
given w, in a set of probability one, q(w) is that unique value of p which 
minimizes ¥t (x (w) , zp(w)). (This was remarked in connection with 
equation 25.) Applying this to the situation of Theorem 1, one sees 
that the transmitter of a delay-free Q-coded communication system 
{Xn , qn , Yn} satisfying Theorem 1 has the block diagram form shown 
in Fig. 1. (If d > 0, one simply puts an analog delay line in the input 
lead, ahead of the rest of the system.) 

This block diagram can be described thus: at time subsequent to 
t = n - 1 and prior to t = n, the transmitter has in its digital store 
the values qll-l , qn-2 , '" of the previously transmitted signals. From 
these, quantities Zl,n , Z2,n , Z3,n , ... are constructed. These are the 
Zp of Lemma 2, for the particular random variable Yn . When Xn becomes 
available, quantities ¥tn(xn , Zl,n), ¥tn(xn , Z2,n), ••• are constructed and 
the comparator identifies the least of these (unique with probability 
one). The transmitted qn is that value of the index which identifies 
the least ¥tn(xn , zp,n)' This index is transmitted to the receiver as qn 
and is also stored in the transmitter's memory for the next cycle. 
The receiver can be realized using a portion of the transmitter, as 
suggested in Fig. 2. Each function generator in these diagrams can 
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Xn~---------+----------~ 

COMPARATOR 

~--------.-------~------~qn 

Fig. 1 - Generalized form of optimum transmitter. 

of course be nonstationary. Connections to a master "clock" are not 
shown. 

VI. REMARKS ON K AND CCD 

One might ask to what degree are the central hypotheses of Theorem 4 
necessary to the conclusions. The theorem itself provides a partial 
answer: conclusions i and ii do not use x E CCD(G) at all, and use 
only a measurability and a boundedness property of 1/;. The critical 
conclusions are the uniqueness conclusions iii and iv. Clearly, something 

qn~----~----------------------------~ 

SELECTOR 
SWITCH 

Fig. 2 - Form of receiver. 
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is required of Vt(x, y) that makes it, in some sense, smaller when y = x 
than elsewhere, and not too indifferent to the value of y when y ~ x, 
if uniqueness is to be expected from the hypothesis of Vt-optimality. 
As we have already noted, the hypothesis Vt t K is fairly weak in this 
regard, and could, in the presence of CCD, be made weaker at the 
expense of further elaboration of the proof. 

The interesting hypothesis is x t CCD(G). This implies that if x has 
a conditional probability distribution relative to the field G, then that 
distribution is continuous. It is easy to see that the Vt-optimum quantiz­
ing of a random variable x need not be unique if the distribution of x 
is not continuous, even when one uses Vt(x, y) = (x - y)2. Since y 
in Theorem 2 Vt-optimally quantizes x for each event measurable on 
the conditioning field G, something like x t CCD(G) is necessary if 
conclusion iv is to follow. Thus we conclude a loose kind of necessity 
for this hypothesis. 

We notice finally that iii and iv were proved by confining the re­
dundancy among the {zp , P t Q} to a null set. In the application of 
this idea to the situation of Theorem 1, it seems likely that redundancy 
in the {zpn , P t Q} for some fixed n might indeed be exploited to improve 
some 

k> 0, (29) 

by selection, among the minimizing Zpn to which E { Vtn (xn , Yn)} IS lll­

different, one which actually contributes information about Xn+k and 
therefore allows a reduction in (29). I have no example to show this 
phenomenon, so its existence remains a conjecture. We have proved, 
of course, that its possible existence is ruled out by x t CCD(G). 
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A class of binary encoding algorithms called Harper codes has been 
studied previously as a means of encoding numbers for transmission over 
an idealized binary channel. This paper considers a more general and 
practical transmission system model. For any Harper code, it presents 
a technique for obtaining the expression for the average absolute numerical 
error that occurs during transmission. It shows that all Harper codes 
do not exhibit the same average absolute numerical error for all transmission 
systems that satisfy the model. However, there is a subset of Harper codes 
such that all codes in the subset give identical performance. The paper 
defines the subset and presents an expression for the average absolute nu­
merical error for any Harper code in the subset. The subset is important 
because it includes the natural binary representation, the Gray code, and 
the folded binary code. 

I. INTRODUCTION 

In order to send numerical data over a binary channel, each input 
number must be encoded into a suitable binary sequence for transmis­
sion. For example, when a sampler and quantizer are used, a binary 
sequence is assigned to each quantization level. For each sample, the 
number of the appropriate quantization level is transmitted by sending 
the binary sequence assigned to the level. But how should the binary 
sequences be assigned? One approach is to use the natural binary 
representation of each number. Alternatively, a Gray code might be 
used with the idea that its unit-distance properties are in some sense 
desirable. 

If the transmission system is error-free and if the binary sequences 
are unique, it does not matter how the sequences are assigned. How­
ever, if transmission errors can occur, some assignment algorithms may 
be preferable to others. In this paper, the performance of certain 
binary encoding algorithms is considered. The average magnitude by 

3113 
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which the number delivered to the destination differs from the trans­
mitted number is used as the criterion of performance. 

Previously, Harper presented a class of binary codes that we call 
Harper codes. 1 The class includes the natural binary representation, 
the Gray code, and the folded binary code. Reference 2 showed that 
for any set of 2k input numbers all Harper codes exhibit the same mean 
magnitude error when used with a specific binary transmission system 
model (see Section II) and that, when the probability of transmission 
error is sufficiently small, Harper codes are optimum. 

In this paper, a more general transmission system model is considered. 
For 2k equally spaced input numbers, a means of obtaining the expres­
sion for the average absolute numerical error (hereafter called average 
numerical error) for any Harper code is presented. All Harper codes 
do not exhibit the same average numerical error except in the special 
case when the transmission system model reduces to the model used 
in Ref. 2. However, there does exist a subset of Harper codes such 
that all codes in the subset are equivalent in performance. The subset 
is defined and an expression is given for the average numerical error 
for any Harper code in the subset. The subset is important because 
it includes the natural binary representation, the Gray code, and the 
folded binary code. 

II. SYSTEM MODEL AND PREVIOUS RESULTS 

A system model is shown in Fig. 1. In general, we wish to send over 
a binary transmission system t anyone of the 2k equally likely numbers 
of the form A + Bs where s is an integer, 0 ~ s ~ 2k - 1. At the 
transmitter, the binary encoder receives A + Bs and, based upon s, 
sends a k-bit binary sequence assigned by a Harper code and denoted 
by Hk(S). At the receiver, a binary decoder receives a k-bit binary 
sequence Hk(r) , 0 ~ r ~ 2k - 1, and generates A + Br. Let Pr[Hk(r) I 
Hk(s)] denote the probability of receiving Hk(r) when Hk(s) is sent. 
If all s are equally likely, the average numerical error (as in Ref. 3) 
that occurs is 

B 2Ll 2k_l 

ANE = 2" ~ f.; I r - s I Pr[Hk(r) I Hk(S)]. (1) 

The average numerical error is dependent upon the binary encoding 
algorithm and the transmission system through Pr[Hk(r) I Hk(S)]. 

t It is important to distinguish between the binary transmission system and the 
channel. The transmission system includes the channel and the encoder and decoder 
for error control. 
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Harper codes are defined in terms of the vertices of the Ie-cube!. 
Assign 0 to an arbitrary vertex; that is, Hk(O) is arbitrary. Having 
assigned 0, 1, 2, ... , l - 1, assign l to an unnumbered vertex (not 
necessarily unique) that has the most numbered one-distant neighbors. t 

In the remainder of this paper, certain properties of Harper codes 
presented in Refs. 1 and 2 are used without specific reference. 

We can now summarize the results in Ref. 2. In a binary transmis­
sion system as shown in Fig. 1, it was assumed that the errors between 

NUMERICAL 
SOURCE A+8s 

Fig. 1 - System model 

locations 1 and 2 are independent of the transmitted bits and occur 
independently of one another with probability PI . For such a trans­
mission system and for any set of 2k input numbers, it was shown that 
all Harper codes yield the same mean magnitude error and, thus, 
are equivalent. Also, it was shown that when PI is sufficiently small, 
Harper codes are optimum for any set of 2k input numbers because 
they minimize the mean magnitude error. Of course, the results in 
Ref. 2 are applicable to our set of 2k equally spaced numbers and 
indicate that all Harper codes yield the same average numerical error 
for a transmission system that satisfies the model in Ref. 2. 

However, the transmission system model in Ref. 2 is extremely 
restrictive. Channels with correlated errors are excluded. The model 
also excludes transmission systems using many types of error-cor­
recting codes even if the actual channel is a memoryless binary sym­
metric channel with probability of bit error p. In fact, even the Hamming 

t The weight of an n-tuple v is the number of nonzero components in v and is 
denoted by w[v]. The distance between two binary n-tuples u and v is w[u EB v] where 
EB denotes component by component modulo 2 addition of n-tuples. 
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perfect single error-correcting codes when used with a memoryless 
binary symmetric channel do not comply with the model in Ref. 2. 
The reason is that, in a Hamming code, all H k(8) of a particular weight 
are not encoded as code vectors of equal weight. Thus, all error 
patterns of equal weight in the Harper code sequences do not occur 
with equal probability. However, in order for a transmission system 
to satisfy the model in Ref. 2, all error patterns of equal weight must 
occur with equal probability. It follows that the Hamming code violates 
the model in Ref. 2. 

An interesting approach to coding for numerical data transmission 
is found in unequal error-protection codes4

• The idea behind unequal 
error-protection codes is to match the protection provided by the code 
to the numerical significance of the transmitted bits. Significant-bit 
codes (a subclass of unequal error-protection codes) have been shown 
to be effective in reducing the average numerical error and in many 
cases are easy to implement.3

•
5 However, the transmission system 

model in Ref. 2 excludes unequal error-protection codes which is un­
fortunate because these codes are directly applicable to the basic 
problem considered in Ref. 2, that is, reducing the average numerical 
error. 

Accordingly, it is important to examine the performance of Harper 
codes when a less restrictive and more practical transmission system 
model is used. For our model, we assume simply that the transmission 
system is binary and that the errors are independent of the transmitted 
bits. A binary transmission system satisfies this model if, for every 
integer r, 0 ~ r ~ 2k - 1, and integer 8, 0 ~ 8 ~ 2k - 1, there exists 
an integer t, 0 ~ t ~ 2k - 1, such that 

(2) 

where 

(3) 

and Bi(j) denotes the i-bit natural binary representation of the integer 
j, 0 ~ j ~ 2i - 1. Observe that equation (2) implies that the prob­
ability of a particular error pattern H k(t) in a Harper code sequence 
is independent of the transmitted sequence. 

Because the transmission system model is not very restrictive, the 
results to be presented are applicable to a wide range of practical 
systems. For example, the model is satisfied by the important class 
of binary transmission systems composed of 
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(i) a linear block code with a decoding scheme equivalent to Slepian's 
standard array6, and 

(ii) a binary symmetric channel in which the errors are independent 
of the transmitted bits. 

III. THE AVERAGE NUl\IERICAL ERROR FOR A HARPER CODE 

Let H' be a Harper code in which s is encoded as H~(s). From the 
definition of a Harper code, it is possible that H~(O) ~ Bk(O). We first 
show that if H~(O) ~ Bk(O), then a Harper code H [in which s is encoded 
as Hk(s)] can be constructed such that (i) Hk(O) = Bk(O) and, (ii) the 
performance of H' is identical to the performance of H. The average 
numerical error for H' is 

B 2k_l 2k_l 

ANE' = 2k ~ ~ I r - s I Pr[Hk(r) I H~(s)J. (4) 

Let H be a code whose elements are obtained from the elements of H' 
by the relation 

(5) 

From (5), Hk(O) = Bk(O). 
We now show that H is a Harper code. Clearly Hk(O) satisfies the 

requirements for a Harper code. Suppose that Hk(O) through Hk(l - 1) 
have been determined by (5). Now, if H~(s) is distance d from H~(l), 
then Hk(s) is distance d from Hk(l). Thus, if H~(l) is assigned to have 
the most numbered one-distant neighbors, H k(l) will have the most 
numbered one-distant neighbors. It follows that H is a Harper code. 

The average numerical error for H is given by equation (1). We 
must show that the expression for AN E is identical to the expression 
for ANE'. From (2), 

Pr[H~(r) I H~(s)] = Pr[H~(r) EB H~(s) I Bk(O)]. 

Also, from (2), 

From (5), 

Therefore, 

Pr[Hk(r) I Hk(s)] = Pr[H~(r) I H~(s)] 
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and, by (1) and (4), 

ANE = ANE'. 

Thus, every Harper code is equivalent in performance to a Harper 
code in which 

(6) 

For convenience and without loss of generality, we shall consider the 
performance of Harper codes that satisfy (6). At the end of Section IV, 
we remove this restriction and give, in general terms, the structure 
of all Harper codes that are equivalent to the natural binary rep­
resentation. 

N ow, let us consider the expression for the average numerical error 
for H. By substituting (2) into (1) and rewriting, 

B 2Ll 2k_l 

ANE = 2k t; f.; \ r t - S \ Pr[Hk(t) \ Bk(O)] (7) 

where rt is the value of r in (3), that is, 

Hk(r t ) = Hk(S) ffi Hk(t). (8) 

Now, (7) can be written as 

(9) 

where 
2k_l 

Ct = L: \ rt - S \. (10) 
8=0 

The expression for the average numerical error is determined by spec­
ifying each Ct (1 ~ t ~ 2k - 1). 

In order to evaluate C t , we proceed as follows. Divide the 2k elements 
of H into k + 1 sets called levels. The O-level contains Hk(O) exclusively. 
For 1 ~ j ~ le, the j-Ievel is the set of Hk(S) for which 2i- 1 ~ S ~ 2i - 1. 
Because H is a Harper code, the elements of level j are in the shadow 
of the (j - l)-subcube t formed by the elements of levels 0 through 
j - 1. From equation (6) and the definition of a Harper code, it follows 
that each element of the j-Ievel has a one in a particular position which 
we call the j-position. Thus, the j-Ievel consists of the k-tuples that 

t A (j - 1 )-subcube of the k-cube is a set of all k-tuples that are the same in 
k - j + 1 positions. The shadow of a (j - l)-subcube is obtained by changing 
one of the k - j + 1 fixed positions. 
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have zeros in positions j + 1 through k, a one in position j, and all 
possible (j - I)-tuples in positions 1 through.i - 1. 

Notice that the position numbers are determined by the structure 
of the Harper code and not by the order in which the bits are arranged 
for transmission. For example, in the Harper code shown in Table I, 
Pr[H4 (2) I B 4 (0)] is the probability that no transmission errors occur in 
positions 1, 3, and 4 and that a transmission error occurs in position 2. 
If transmitted in the order shown in Table I, Pr[H4 (2) I B 4 (0)] is the 
probability that the error sequence 0001 occurs. 

We must determine C t for each of the 2k - 1 nonzero values of t. 
Thus, we regard t as known and seek to determine C t • Let CT be an 
integer such that 

2,,-1 ~ t ~ 2" - 1. (11) 

Because H satisfies equation (6), Hk(t) has a one in position CT. To 
evaluate Ct , we rewrite (10) to exhibit the levels of s as 

( 

"2i-1 ) k 2i-1 

Ct = r t + ~ 8=~1 I r t - s I + i!;l 8=~1 I r t - s I (12) 

TABLE I-A k = 4 HARPER CODE 

Level 
H.(s) number 

0 o 0 0 0 0 

1 o 0 1 0 1 

2 000 1 2 
3 001 1 2 

4 o 1 1 1 3 
5 o 1 1 0 3 
6 o 1 0 1 3 
7 o 1 0 0 3 

8 1 000 4 
9 100 1 4 

10 1 0 1 1 4 
11 1 0 1 0 4 
12 1 100 4 
13 1 110 4 
14 1 101 4 
15 1 111 4 

position 4
J J ~ position 2 

position 3 po!;!ition 1 
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where the O-level is shown individually as r, and j indexes the levels 
from 1 to le. The parentheses enclose the contribution of levels 0 through 
u. From Appendix A, 

&' + 1; .J, 1 T, - s I) = 2"-'. (13) 

Now, consider the set of Hk(S) in the j-Ievel where u + 1 ~ j ~ k 
and 2i- 1 ~ S ~ 2i - 1. First, we define a run as follows. t In the j-Ievel, 
there is a run in position m, 1 ~ m ~ j - 1, that starts at So and is 
of length R(m, so) if and only if 

(i) R(m, so) = 2l for some integer l ~ 0, 
(ii) the set of Hk(s) for So ~ S ~ So + 2l - 1 forms an l-subcube 

of the k-cube where m is one of the k - l fixed positions, 
(iii) the set of Hk(s) for So + 2l ~ S ~ So + 2l

+
1 

- 1 forms an l­
subcube that is in the shadow of the subcube in (ii) , 

(iv) the subcube in (iii) is distinguished from the sub cube in (1:i) 
by position m, and 

(v) the Hk(S) for 2 i
-

1 ~ S ~ So - 1 can be divided into runs of 
length 2l although perhaps not in position m. 

An example from Table I will illustrate the definition of a run. 
Consider the 4-level. Then H4(8) starts a run of length 1 in position 2, 
a run of length 2 in position 1, and a run of length 4 in position 3. Thus, 

R(I, 8) = 2 R(2,8) = 1 R(3,8) = 4. 

Let W[Hk(t)] = wand let t1 , tz , "', tw denote the w nonzero 
positions in Hk(t). Then RCtm , 2 i

-
1

) is the length of the run in position 
tm that starts at 2 i

-
1 (that is, the length of the first run in position 

tm in the j-Ievel). Let 

From Appendix C, 

2 i -'+Z-Yi,dt)-1 

:E I r t - S I 
8=2; -, 

2 i -'+-Yi.dt)-1 2 i -'+2-Yi,dt)-1 

:E (r t - s) + . 2: (s - r t ) = 21'~,l(t), 
,=2 i -' 8=Zl-'+-Yi,,(t) 

t Appendix B contains a more complete discussion of the structure of the j-Ievel 
of a Harper code and the relationship between the structure and the concept of a 
run. It is shown that runs are basic to the structure of Harper codes and that the 
definition of a run is meaningful and consistent. 
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The above process can be extended to obtain 'Yi,i(t) after 'Yi,l(t), 
'Yi,2(t), ... ,'Yi,i-l(t) are known. Specifically, 

Then 
i 

2 j -'-1+2 L l'i.l(t) 
1=. 

L I r t - s I = 2'Y~,i(t). 
i_l 

s=2 j -'+2 L l'i,I(t) 
1~1 

By continuing the process, we eventually exhaust the 2i
-

1 values 
of s in the j-Ievel. Let g i denote the number of 'Y i,; (t) needed to cover 
the j-level, that is, 

2 :t "I i , i (t) = 2 i -1 • 

i=1 

It follows that 

(14) 

From (12), (13), and (14), 

Ct = 22
"-1 + 2 :t :E 'Y~,i(t). (15) 

i=,,+1 ;=1 

By substituting (15) into (9), 

(16) 

where (}' is given by (11). The expression in (16) is particularly useful 
because it consists exclusively of error probabilities conditional upon 
Bk(O) being transmitted and the 'Yi,i(t) can be obtained directly from 
the Harper code. A numerical example that illustrates the use of (15) 
and (16) is given in Appendix D. 

We now consider the condition under which two Harper codes give 
identical performance. Let H' be a Harper code that is not H (that is, 
H' cannot be obtained from H by a relationship of the form H£(s) = 
Hk(s) EB Bk(SI) where SI is an arbitrary integer, 0 ~ SI ~ 2k - 1). 
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From (9), for H', 

Then H and H' exhibit identical performance for any transmission 
system that satisfies our model only if, for every t, C~, = Ct where 
t' is determined by H,(t') = Hk(t). Conversely, if C~, ~ Ct for at least 
one value of t, the two codes mayor may not give the same performance, 
depending upon the error statistics of the transmission system. 

IV. CODES EQUIVALENT TO THE NATURAL BINARY REPRESENTATION 

Because of the considerable structure in the natural binary rep­
resentation, it is easy to use (15) to compute each Ct , 1 ~ t ~ 2k - l. 
For a given t, we first find (j by (11), that is, (j - 1 is the largest power 
of 2 in t. Then, for each j, (j + 1 ~ j ~ k, we determine g i and the 
'Yi.i(t). For the natural binary representation, 

for 1 ~ i ~ gj so OJ = 2
j
-0-- 1

• Therefore, by (15) and (17), 

k 

Ct = 22
0--1 + 2 L 

j=o-+1 

21'-0'-1 

L 2 20--2 = 2 k +0-- 1 • 

i=1 

(17) 

(18) 

Notice that each Ct , 20--1 ~ t ~ 20- - 1, is equal to 2k+0--l. Thus, 
Ct is determined simply by the largest power of 2 in t. Substituting 
(18) into (9) and rewriting, we obtain 

k 2"-1 

ANEB = B L 20--1 L Pr[Bk(t) I Bk(O)] (19) 
0-=1 t=2"-1 

where ANEB denotes the average numerical error for the natural 
binary representation. 

Is it possible to find a Harper code H that is not the natural binary 
representation but that exhibits performance that is identical to the 
natural binary representation for all transmission systems that satisfy 
our model? The answer is yes. We now show that a necessary and 
sufficient condition is that 

(20a) 

for 1 ~ i ~ g j and 

(20b) 
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for each t, 1 ~ t ~ 2k - 1, and for each j, (j + 1 ~ j ~ le (where (j is 
chosen so that 2<1-1 ~ t ~ 2<1 - 1). 

If (20) is satisfied, then by (15), C, = 2k+<1-1. The average numerical 
error for H (denoted by ANEH ) is 

k 211-1 
ANEH = B L 2<1-1 L Pr[Hk(t) I Bk(O)]. (21) 

<1=1 1 =2 11 - 1 

By the definition of a Harper code and the definition of a level, 

211-1 211-1 
L Pr[Hk(t) I Bk(O)] = L Pr[Bk(t) I Bk(O)]. (22) 

1=2 11 - 1 1=2 11 - 1 

Therefore, by (19), (21), and (22), ANEB = ANEH • It follows that 
(20) is a sufficient condition. 

We now show by contradiction that (20) is a necessary condition. 
Consider the set of coefficients C211-1 for 1 ~ (j ~ le. From (15), 

k g j 

C2 11-1 = 22 <1-1 + 2 L L I'~,i(2<1-1). 
i=<1+1 i=1 

The term 22 <1-1 is independent of the particular Harper code used. 
Thus, we need only consider the summation part. Suppose that it is 
possible to arrange the I'i,i(2<1-1) so that they are not all equal to 2<1-1 
but keep C211-1 = 2k+<1-1. If this is done, at least one I'i,i(2<1-1) will 
be less than 2<1-1 and at least one I'i,i(2<1-1) will be greater than 2<1-1. 
However, in order for one I'i,i(2<1-1) to be less than 2<1-\ there must 
exist a (j' < u such that I'i' ,i,(2<1'-I) > 2<1'-1. But in order for C2IT'-1 = 
2k+<1'-t, there must be at least one I'i',i,(2<1'-1) < 2<1'-1. The argument 
continues until we reach I' i", i" (2°) where there must be at least one 

(23) 

However, in order for C2 0 = 2\ (23) implies that there must be at 
least one I'i" ,i,,(2°) < 2°, which is impossible. It follows that (20) 
must hold in order for a Harper code to be equivalent to the natural 
binary representation. 

We can show the existence of a great many Harper codes other than 
the natural binary representation that satisfy (20) by presenting 
explicitly the structure implied by (20). At this point, we no longer 
assume that Hk(O) = Bk(O) but state the structure for any Harper 
code. List the Hk(s) sequentially as s runs from 0 to 2k - 1. For po­
sition i, 1 ~ i ~ le, divide the s into 2k

-
i
+

1 consecutive intervals each 
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of length 2i
-

1
• Let j index the intervals where 0 ~ j ~ 2k

-
i

+
1 

- 1. 
A Harper code is equivalent to the natural binary representation 

if and only if, for every odd numbered interval (j odd), the binary 
digit in position i is the complement of the binary digit in position i 
in the immediately preceding even numbered interval (j even). The 
digit in position i in the even numbered intervals is arbitrary. 

The structure is presented graphically in Table II for k = 5. The 
symbol bi • i denotes the binary digit in position i in the jth interval. 
For odd j, bi • i = br. i-I (where b'!', i-I = 1 EB bi • i-I) and, thus, br. i-I 
is shown in Table II for odd j. For all even j, bi • i can be assigned arbi­
trarily for each i. 

The expression for the average numerical error of the Harper codes 
that are equivalent to the natural binary representation is interesting. 
From (21), the set of error probabilities Pr[Hk(t) I Bk(O)] for 2<T-l ~ 
t ~ 2<T - 1 (that is, for t in the <T-level) all have the weighting coeffi­
cient 2<T-l. Thus, the cost of a particular error pattern is the numerical 
significance of the most significant bit in error. When one considers 
unequal error-protection codes, the structure in (21) is very convenient 
because the protection against transmission errors can be matched 
to the significance of the bit positions. However, for a Harper code 
that is not equivalent to the natural binary representation, the average 
numerical error does not exhibit the above structure. Therefore, un­
equal error-protection codes appear to be less applicable. 

v. THE GRAY CODE AND THE FOLDED BINARY CODE 

The Gray code and the folded binary code are of interest because 
of their possible applicability to numerical data transmission.7

•
8 This 

section shows that both of these codes exhibit performance that is 
identical to the performance of the natural binary representation for 
all binary transmission systems that satisfy our model. 

Let the k-bit binary representation of S be Bk(s) = (bk , bk- 1 , ••• , b1) 

where bi , 1 ~ i ~ k, is the binary digit in position i and 

k 

S = L bi 2
i
-

1
• 

i=1 

As in Section III, the position numbers are defined in terms of the 
structure of the code, not the order in which the bits are transmitted. 
From Ref. 7, the Gray code representation of s, denoted by Gk(s), is 
Gk(s) = (bk , bk EB bk- 1 , ••• , b2 EB b1). We show that the Gray code 
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is equivalent to the natural binary representation by showing that 
the structure of the Gray code conforms with the structure in Table II. 
Consider position i. As in the construction of Table II, divide the 
range for s into consecutive intervals each of length 2i

-
1 and number 

the intervals sequentially from 0 to 2k
-

i
+

1 
- 1. The binary digit in 

position i of Gk(s) in an even numbered interval is bi +1 EB bi and the 

TABLE II-STRUCTURE FOR A HARPER CODE EQUIVALENT TO THE 

NATURAL BINARY REPRESENTATION; k = 5 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

5 4 

H.(s) 

Position Number 
3 2 

r 
r 
r 
r 
l' 
r 
ba ,6 

1 

r 

b1,o 
bf.o 
bl ,2 

bf.2 
bl ,4 

bf.4 
bl ,6 

bf.6 
bl,s 
bf.s 
bl ,10 
bf.l0 
b1 ,12 

bf.12 
b1 ,14 

bf.14 
b1 ,16 
bf.16 
b1 , IS 

bf.18 
b1 ,20 
bf.20 
b1 ,22 
bf. 22 

b1 ,24 

bt,24 
b1 ,26 

bt,26 
b1 ,28 
b!,2S 
b1,ao 
bt,ao 
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binary digit in position i in the immediately following odd numbered 
interval is bi + 1 EB b~ = (b i + 1 EB bi )*. Therefore, from the structure 
in Table II, the Gray code is equivalent to the natural binary rep­
resentation. 

It is also interesting to consider the folded binary codes. Let Fk(S) 
denote the representation of s. Then Fk(S) = (bk , bt EB bk- 1 , •• , , 

b~ EB b1) where b~ = bk EB 1. As in the case of the Gray code, consider 
position i and divide the range for S into intervals of length 2i

-
1

• The 
binary digit in position i of Fk(S) in an even numbered interval is 
b~ EB b, . The binary digit in position i in the immediately following 
odd numbered interval is bt EB bf = (b~ EB bi )*. Therefore, from the 
structure in Table II, the folded binary code is equivalent to the natural 
binary representation. 

VI. CONCLUSIONS 

The model used in this paper for the binary transmission system 
is quite general and is satisfied by a wide range of practical systems 
including many that utilize error-correcting codes. A technique is 
presented for determining the average numerical error for any Harper 
code. All Harper codes do not exhibit equal performance for all trans­
mission systems that satisfy the model. Because the performance of 
a given Harper code is closely related to the error statistics of the 
transmission system, it does not appear possible to specify a Harper 
code that is best for all applications. However, a subset of Harper 
codes is defined such that all codes in the subset give identical per­
formance for all transmission systems covered by the model. The 
subset is important because it includes the natural binary represen­
tation, the Gray code, and the folded binary code. Unequal error­
protection codes appear to be particularly applicable to Harper codes 
in the subset. 

APPENDIX A 

Contribution of Levels 0 through (]" to Ct 

To determine the contribution of levels 0 through (]" to C t , we must 
evaluate 

" 2; -I 2 U -I 

r t + L L I rt - S I = L I rt - S \. 
j=1 8=2;-1 8=0 

From equation (8), for every S in the range 0 ~ S ~ 2"-1 - 1, there 
exists a unique r, in the range 2,,-1 ~ r, ~ 2" - 1. As 8 runs from 0 
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through 20'-1 - 1, every rc in the range 20'-1 ~ rc ~ 20' - 1 occurs 
once and only once. Similarly, as 8 runs from 20'-1 through 20' - 1, 
every rc in the range 0 ~ rc ~ 20'-1 - 1 occurs once and only once. 
Accordingly, 

2 a - 1 -1 2a_l 

2: (r t - 8) + 2: (8 - rc) = 22
0'-1. 

a~O 8~2u-l 

APPENDIX B 

The Structure of the j-Level of a Harper Code 

Consider the set of H k (8) in the j-level of a Harper code where 
2 i

-
1 ~ 8 ~ 2' - 1. For clarity, Table III illustrates the ideas pre­

sented here by applying the ideas to the 4-level of the Harper code 
in Table 1. 

Let p be an integer, 1 ~ p ~ j - 1. For each value of p, the j-level 
can be divided into 2i

-
p sets of consecutive values of 8 each set of 

length 2P
-

1
• The sets are numbered consecutively from 0 through 

2i
-

p 
- 1 as follows. Let ~ be an integer, 0 ~ ~ ~ 2i

-
p

-
1 

- 1. For each 
value of ~, there will be two sets; an even numbered set whose number 
is of the form 2~ and an odd numbered set whose number is of the form 
2~ + 1. 

An even numbered set contains the Hk (8) for 2i -
1 + 2~2P-l ~ 8 ~ 

2i
-

1 + (2~ + 1)2P
-

1 
- 1 and forms a (p - l)-subcube because H 

is a Harper code. Similarly, an odd numbered set contains the Hk(S) 
for 2i

-
1 + (2~ + 1)2P

-
1 ~ S ~ 2 i

-
1 + (2~ + 2)2P

-
1 

- 1 and forms 
a (p - l)-subcube. The important point is that for each value of ~, 

a useful relationship exists between set 2~ and set 2~ + 1. Specifically, 

TABLE III-DETAILS OF 4-LEVEL OF HARPER CODE IN TABLE I 

P = 1 P = 2 P = 3 

8 H4(S) Set ~ Set ~ Set ~ 

8 1 000 0 0 0 0 0 0 
9 100 1 1 0 0 0 0 0 

10 101 1 2 1 1 0 0 0 
11 101 0 3 1 1 0 0 0 
12 1 100 4 2 2 1 1 0 
13 1 110 5 2 2 1 1 0 
14 1 101 6 3 3 1 1 0 
15 1 1 1 1 7 3 3 1 1 0 

position 4-j L Lpo'ition 2 
position 3 position 1 
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the (p - 1)-subcube formed by set 2~ + 1 is in the shadow of the 
(p - 1)-subcube formed by set 2~. Accordingly, all Hk(s) in set 2~ + 1 
differ in exactly one position from all Hk(s) in set 2~. Denote the po­
sition that distinguishes the subcubes by m. Therefore, the 2~ set 
consists of 2P

-
1 elements each of which has the same binary digit in 

position m. Similarly, the 2~ + 1 set consists of 2P
-

1 elements each 
of which has in position m the complement of the binary digit in PO­
sition m in the elements of set 2~. 

The above sets form what we call a run in position m of length 2P
-

1 

that starts at 2 i
-

1 + 2~2P-1 (the first H k(S) in set 2~). The definition 
in Section III follows from the preceding sentence. 

APPENDIX C 

Contribution of First 21'i.1(t) Values of s in Level j to Ct 

From equation (8), as s runs from 2 i
-

1 through 2i
-

1 + I'i,I(t) - 1, 
every rt in the range 2i

-
1 + I'i,1(t) ~ rt ~ 2i

-
1 + 21'i,1(t) - 1 occurs 

once and only once. Similarly, as s runs from 2i
-
1 + I'i,1(t) through 

2 i
-
1 +21'i,1(t) -1,everyr t intherange2 i

-
1 ~ r t ~ 2i

-
1 +I'i,I(t)-1 

occurs once and only once. Therefore, 

2 i - 1 +')'i . .<t)-1 2 i - 1 +2')'i.'<tl-l 

~ (r t - s) + . ~ (s - r t) 
0_2 i - 1 .-2' -1+,), i. dt) 

APPENDIX D 

Numerical Example to Illustrate Equations (15) and (16) 

Consider the Harper code given in Table 1. We show how to use 
equation (15) when t = 2 and t = 3 to find C2 and C3 , respectively. 
For t = 2, u = 2 so, from (15) 

4 g i 

C2 = 8 + 2 ~ ~ I'~,i(2). 
i=3 i=1 

In the 3-level, 1'3,1(2) and 1'3,2(2) are shown in Table IV. Therefore, 
(f3 = 2. Also, in the 4-level, 1'4,1(2), 1'4.2(2) and 1'4,3(2) are given in 
Table IV. Thus, (f4 = 3. It follows that 

C2 = 8 + 2 (1 2 + 12 + 12 + 12 + 22) = 24. 
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TABLE IV-ILLUSTRATION OF EQUATION (15) ApPLIED TO THE 

HARPER CODE IN TABLE I 

o 

2 
3 

4 
5 
6 
7 

8 
9 

10 
11 
12 
13 
14 
15 

O-level 

I-level 

2-level 

3-level 

4-level 

H4(8) 

o 0 0 0 

o 0 1 0 

000 1 
001 1 

011 1 
o 1 1 0 
o 1 0 1 
o 100 

1 000 
100 1 
101 1 
1 0 1. 0 
1 100 
1 110 
1 101 
1 1 1 1 

7;,;(2) 7i,;(3) 

')'3,1(2) = 1 

')'3,2(2) = 1 

')'4,3(2) = 2 

position 4~ ~P08ition 2 

position 3 position 1 

Similarly, for t = 3, (J' = 2 so, from (15), 
4 gj 

C3 = 8 + 2 2: 2: 1'~,i(3). 
j=3 i=l 

In Table IV, 1'3,1(3), 1'4,1(3) and 1'4,2(3) are given. Thus, 

C3 ~ 8 + 2 (22 + 22 + 22) = 32. 

3129 

By similar reasoning, the remaining Ct can be found. The expression 
for the average numerical error of the Harper code in Table I is 

ANE = ~ (24Pr[1 I 0] + 24Pr[2 I 0] + 32Pr[3 I 0] + 64Pr[ 4 I 0] 

+ 64Pr[5 I 0] + 64Pr[6 I 0] + 64Pr[7 I 0] + 128Pr[8 I 0] 

+ 128Pr[9 I 0] + 128Pr[10 I 0] + 128Pr[11 I 0] + 128Pr[12 I 0] 

+ 128Pr[13 I 0] + 128Pr[14 I OJ + 128Pr[15 I OJ). 
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B.S.T.J. BRIEF 

Solving Nonlinear Network Equations Using 
Optimization Techniques 

By ALLEN GERSHO 

(Manuscript received September 10, 1969) 

A class of nonlinear equations arising in transistor network analysis, 
as well as in other areas, has the form 

n 

li(Xi) + L aijXj - bi = 0 ~ = 1,2, ... ,n (1) 
i=1 

or in matrix notation 

F(x) + Ax - b = 0, (2) 

where the nonlinearities Ii (.) are continuously differentiable, strictly 
monotone increasing functions. Results by Willson 1 and Sandberg and 
Willson2

,3 on nonlinear networks have included broad conditions for the 
existence and uniqueness of a solution to equation (2). However, con­
vergent computational algorithms for finding the solution have been 
given only for restricted subclasses of the class of equations that have 
unique solutions. 1,2,4,5 These subclasses are characterized by a variety 
of restrictions on the matrix A and on the type of nonlinearities. In this 
brief we show that a single convergent algorithm exists for solving these 
equations under conditions virtually as broad as the known existence 
and uniqueness conditions. Peripherally, we obtain under these condi­
tions a conceptually simple proof of the existence of a solution. 

The approach is to use the old technique (probably due to Cauchy) 
of converting a root-finding problem to a minimization problem. Let 

rex) ~ F(x) + Ax - b, 

and define the scalar valued "potential" function 

Q(x) ~ rTBr 

(3) 

(4) 

where B is an arbitrarily chosen symmetric positive definite matrix and 
T denotes the transpose. Then Q(x) is positive unless x is a solution 
of equation (2). Consequently, minimizing Q(x) is equivalent to solving 
equation (2) if in fact the nonlinear equation (2) has a solution. 
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Since Q (x) is continuous, we may regard it as a continuous surface and 
observe that if 

Q(x) ~ 00 as Ilxll ~ 00 (5) 

the so-called "level sets", 

{x : Q(x) < c}, 

are bounded for each number c > 0 and there must exist a point x* where 
Q(x) attains a global minimum. Under what conditions will this mini­
mum satisfy Q(x*) = 0 so that x* is a solution of equation (2)? From 
equations (3) and (4) the gradient of Q is easily found to be 

(6) 

where Dx is the positive diagonal matrix whose ith diagonal element is 
I~ (Xi) where the prime denotes differentiation. Since the gradient must 
be zero at a minimum, either (i) 

r(x*) = 0, 

or (ii) 

det {Dx + A} = 0 at x = x*. 

If A is in the class of matrices Po characterized by the property3 

det {D + A} ~ 0 for all diagonal matrices D > 0, (7) 

it follows that condition (i) holds so that x* is a solution of equation (3) 
for A in Po if condition (5) is satisfied. But Theorem 5 of Ref. 2 implies 
that condition (5) is satisfied if A is in Po and the range of the non­
linearities Ii (.) is the entire real line. * Uniqueness of the solution of 
equation (2) is very simply shown in Ref. 2. Reference 3 shows that the 
basic condition, A in Po , is satisfied for large classes of transistor net­
works. 

The minimum of a continuously differentiable function with bounded 
level sets can always be found by a gradient descent algorithm when the 
gradient has a unique root. 6 No assumption regarding convexity or the 
behavior of the Hessian matrix is necessary. Clearly, a sufficiently 
small change in x in the negative gradient direction will always decrease 
the potential Q(x) unless x is already at a minimum. A sequence of itera­
tions of this type, that is, 

* Recently Sandberg5 has shown that condition (5) holds without any require­
ments on the range of the nonlinearities if A is nonsingular as well as in Po. 
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(8) 

monotonically reduccs the potential Q(x) and yields a bounded sequence 
of points X k because the level sets are bounded. Convergence of the 
algorithm (8) is assured if the step sizes can be made large enough so that 
the potential Q(xk ) approaches zero rather than a positive limit. This 
can be achieved by making 'Yk depend on the size of the gradient in such 
a way that 'Yk cannot approach zero unless the gradient is approaching 
zero. Goldstein6 gives the following procedure for selecting 'Yk • Define 
the normalized potential drop: 

( ) 
_ Q(x) - Q[x - 'Y VQ(x)] 

9 x, 'Y - 'Y II VQ(x) W ' 'Y > 0, (9) 

a continuous function of'Y which assumes all values between 1 and 0 as 'Y 
ranges between zero and some positive value. Then for any 0 with 

o < 0 < ! 
choose 'Yk so that 

(10) 

if g(Xk ,'Yk) < 0; otherwise let 'Yk = 1. Note that 'Yk can be chosen by trial 
and error computation in each iteration. For small 0 few trials are neces­
sary; but the resulting drop in potential in each iteration is smaller so 
that more iterations are needed. With this method of choosing 'Yk , con­
vergence of the algorithm (8) is assured for any starting point Xo . 

In summary, using the optimization approach and a result of Ref. 2 
we have shown the existence of a solution to equation (2) and the 
availability of a convergent algorithm to find the solution under the 
following conditions. 

(I) the nonlinearities Ii (.) are continuously differentiable, strictly 
monotone increasing, and map the whole real line onto itself, and 

(II) the matrix A is in the class Po . 
The original existence conditions given in Ref. 2 do not include the 

"continuously differentiable" assumption but are otherwise identical to 
conditions I and II above. 
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