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W(p.s) �~� 
Z(p) .- k - PORTS 

n- PORTS -+-

Fig. 2 - Extraction of S-type inductors. 

Z (p) of equation (2) describes a lossless network. Once such a decom­
position is found, we can realize the given W (p, s) by realizing Z (p) 
by any of the existing techniques (see chapter 7 of Ref. 11) and 
terminating it at its last k ports with unit inductors in the s-plane. 

To establish that any given two variable reactance matrix W(p, s) 
can be decomposed as shown in equation (4), we first expand W(p, s) 
and the expression on the right side of equation (4) about s = 00 and 
find the expressions that relate Zl1, Z12, and Z22 with the expansion 
coefficients of W (p, s). We then show that a set Zll, Z12, and Z22, which 
satisfies the above relations and at the same time guarantees that the 
Z (p) of equation (2) is a reactance matrix in p, can always be found. 

The given two variable reactance matrix W (p, s) can be assumed 
to have no p-independent or s-independent poles by virtue of Theorem 
2 and hence can be written in the form 

lV( ) = BoCp)sr + B1(p)l-1 + ... + Br(P) 
p, s ao(p)sr + a1(p)sr-l + ... + arCp) (5) 

where the Bi (p) are real polynomial matrices in p and the scalar 

(6) 

is the least common denominator of the entries in W (p, s). For any 
ordinary value of p, W(p, s) can be expanded in the neighborhood of 
s = 00 as9 

(7) 

Expanding the right side of equation (4) in the neighborhood of s = 00 

For the equality in equation (4) to hold, we identify 

Zl1(P) = A_1(p) = W(p, (0) (9) 
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and 

Az(p) = (-1)Zz12z;2Z:2 l = 0, 1,2, ... 

Since the Z (p) formed out of Zll , Z12 and Z22 

has to describe a lossless network in the p plane, we must have 

z = -zt 
as given by equation (3), and hence 

and 

t 
Zll = - Zll 

169 

(10) 

(11) 

(12) 

(13) 

With the identification in equation (9), equation (12) is always satis­
fied, since by equation (9) 

Zu = W(p, 00) = -W(-p, - 00), 

and thus Zll is uniquely determined. The problem is to chose a pair 
Z12, Z22 to satisfy equation (10) and at the same time guarantee that 
equation (11) describes a lossless network in the p-plane. For Z (p) to 
describe a loss less network, it must be positive real and satisfy equa­
tion (3). 

Before proceeding further, we would like to know more about Az (p) , 
the expansion coefficients in equation (7). By equating the right sides 
of equations (5) and (7), 

Bo(P)sr + B1(p)l-1 + ... + Br(P) 

= [ao(p)s + a,(pjr' + ... + a,(P){ A-,(P) + t, ~:<,P,) J. (14) 

Equating coefficients of like powers of s on both sides of equation (14), 
(see p. ~07 of Ref. 12, Vol. II). 

aO(P)A-l(P) = Bo(P) 

a1(P)A_1(p) + ao(p)Ao(p) = B1(P) 

a2(P)A_1(p) + a1(p)Ao(P) + aO(P)Al(P) = B2(P) 
(15) 
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and 

aO(p)Ai(P) + a1(p)Ai-1(P) + ... + ar(p)Ai-r(P) = On for i ~ r. 

From equation (15) an expression for Az(p) can be written* in the con­
venient form (see p. 14 Ref. 9) 

Bo(p) ao(p) 0 

B1(p) a1(p) ao(p) 

o 
o 

o 
o 
o 

B z(p) al(p) al-1 (p) az-2(p) ao(p) 

B Z+l(P) aZ+l(p) az(p) az-1(p) a1(p) 

l = -1,0, 1,2, ... 

for l > r 
for l > r 

(16) 

where the (l + 2) X (l + 2) determinant is expanded formally in 
terms of its first column. In equation (16) the Bi are matrices, the at 
are scalars, and the determinant is not a determinant in the usual 
sense. From equation (16), it can be seen that Az(p) is of the form 

A ( ) = real polynomial matrix in p. (17) 
Z P a~+2(p) 

Another important property of the Az (p) 's is obtained from the rela­
tion 

W(p,8) = - W(-p, -8) 

which implies 

A_ 1(P) + t A/~r) = -A_1( -p) - L (_1)1+1 ~~\~p). (18) 
Z=O 8 S 

Hence by equating like powers of s 

* Alternate methods of obtaining these A z(p)'s are by diffe rentiation of W(p, 8) 

A ( ) = aZ+lW(p, s) I 
I P asZ+l .-GO 

or by long division. 
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(19) 

If, for the purpose of choosing a pair Z12, Z22 that satisfies equation 
(10) and, at the same time, guarantees that the Z(p) of equation (11) 
describes a loss less network in the p-plane, we define Pz (p) as 

i Z12 
I 

Pz(p) l:::::: (20) 

Z12Z22 

Then 
t t t 2t 2t z t t 

Z12 Z12 Z12 Z22 Z12 Z12 Z22 Z12 Z12 Z22 Z12 

t t t 2t t zt t 
Z12Z22 Z12 Z12Z22 Z22 Z12 Z12Z22 Z22 Z12 • •• Z12Z22 Z22 Z12 

2 t 2 t t 2 2t t 2 Z t t 

PzP; = 
Z12Z22 Z12 Z12Z22 Z22 Z12 Z12Z22 Z22 Z22 • •• Z12Z22 Z22 Z12 (21) 

z t 
Z12Z22 Z12 

z t t 
Z12Z22 Z22 Z12 

z 2t t 
Z12Z22 Z22 Z22 

z z t t 
· .• Z12Z22 Z21 Z12 

In the above matrix, the entry in the ith row and jth column is Z12Z;2Z;;Z:2 

and by equation (13) 

Since we wish the equality in equation (10) to hold 

i it t i i+i t ,: 
Z12Z22Z22Z12 = (-I)z12Z22 Z12 = (-1) A i + i 

If we define T z (p) as 

Ao(p) 

-Al(P) 

A2(P) 

Al(P) 

-A2(P) 

A3(P) 

A2(P) 

- A3(P) 

A4(P) 

(22) 

(23) 

Az(p) 

-AZ+l(P) 

Az+ip) 

(-I)ZAz(p) (-I)ZAz+l(p) (-I/A z+2(p) .. • (-I)ZA2z(P) 

(24) 

from equation (23), we can see that 

Tz = PIP; . (25) 
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Equation (25) suggests that a way of obtaining a pair Z12, Z22 would 
be to form the matrix Tl (p), factor it in the form of equation (25), 
and then try to identify Z12 and Z22 from these factors. We do not know 
in advance if the matrix Tl (p) formed from the expansion coefficients 
of W about s = 00 can always be factored as indicated in equation 
(25) ; hence we first study the properties of Tl (p) , to see if it can be 
factored in the desired form. 

Consider the matrix Tl(p) when l = r, r being the s-degree of g(p, s), 
as given in equation (6), 

1',~ -* -* -1: A,~: -1::: I. (26) 

r 
Ao Al A2 A r-l A r l 

(-l)r~lAr_l (-l):-lAr (-l);lAr+l (-1)":-lA2r_1 (_1)r~IA2r_l j 
LC -l)rAr (-l)rAr+l (-1)rAr+2 (-1)rA2r_l (-1)rA2r _ 

The matrix obtained by deleting the last column and row in equation 
(26) is T r- 1 , and by equation (15) it is easy to see that the last column 
is a linear combination of the first r columns. Hence" 

rank T r = rank T r-l 
and 

rank Tz = rank T r - 1 for l ~ r - 1. 

The rank of T r- 1 is connected with the s-degree 8s [W(p, s)] of W(p, s) 
which is defined in Definition 3 (see p. 10 of Ref. 9). 

Definition 3: The s-degree of a rational two variable matrix W(p, s) 
is obtained from the rule 

s = degree of W(p, s) = o.[W(p, s)] = max o[W(Po , s)] 
Po 

where 8 [W (Po, s)] is the McMillan degree (see part II of Ref. 13) of 
W (Po, s). For any fixed Po, W (Po, s) is a matrix of rational functions 
in s with its McMillan degree uniquely specified; hence the above 
definition uniquely specifies the s-degree of W (p, s). The relationship 
between the s-degree of W(p, s) and the rank of T r - 1 is stated formally 
in the following lemma. 

Lemma 1: The rank of Tr-1(p) is equal to the s-degree of W(p, 8). 

* By the rank of rational or polynomial matrix we mean the "normal rank," 
which is defined to be the rank everywhere except at a finite number of values 
of the variable. .. 
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The proof of this lemma for the one variable case can be found in 
Ref. 14 and on p. 200 of Ref. 10, and for the two variable case on p. 17 
of Ref. 9. 

To show that the matrix T r - 1(p) can always be factored in the form 
of equation (25), we need the following lemma. 

Lemma 2: The matrix Tr- 1 (p) defined by equation (24) for l = r - 1 
satisfies 

(i) T r - 1 = T:-1 

(ii) Tr-1(jW) is Hermitian and positive semidefinite. 

Proof: 

Since Az = (-1) IA: by equation (19), the proof of i is readily seen 
from equation (26) 

(27) 

To prove (ii), we first notice that by Theorem 1, for any real w, W(jw, s) 
has only simple poles, which are restricted to the imaginary axis in 
the s-plane. Hence W(jw, s) can be expressed in the partial fraction form 

W( . ) A (.) + ~ Ri(jW) JW, s = -1 JW L..J _. () 
.=1 8 Ja. w 

(28) 

where, Ri(jW) are the residue matrices at the poles jai(W), and the ai(w) 
are real. 

It is shown in Appendix A that the Ri(jW) are Hermitian and positive 
semidefinite for each w. Now, if each term in the sum on the right side 
of equation (28) is expanded about s = 00, we have 

W(jw, s) = A-1(jW) + t t (j~~r Ri(jW). 
i=1 «=0 S 

(29) 

For the purpose of comparison, equation (7), written with p jw, is 

W( . ) A (.) + ~ A q(jw) JW, s = -1 JW L..J~' 
q=O s 

(30) 

The right sides of equation (29) and (30) are expansions of W(jw, s) 
about s = 00, and because of the uniqueness of a power series expansion 

r 

Aq(jw) = L (jaitRi(jW). (31) 
i=1 

By noting that the ai are real and the Ri(jW) are Hermitian and positive 
semidefinite for each w, we have 
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r 

Ao(jw) = L Ri(jW) ~o (32)* 
i=1 

r 

Al(jW) = j L (XiRi(jW) (33) 
i~1 

r 

- L (X~Ri(jW) ~o (34) 
i=1 

r 

A4m-3(jW) . L 4m-3R C ) -J (Xi i JW (35a) 
i-I 

r 

A4m-2(jW) L 4m-2R (. ) - (Xi i JW ~o (35b) 
i=1 

T 

A 4m- 1 (jW) . L 4m- 1R C ) - J (Xi i JW (35c) 
i=1 

T 

A4m(jW) = L (X~mRJjw) ~ o. (35d) 
i=1 

By direct substitution of equation (33) into equation (24), Tr-1(jW) 
can be written as 

R. ja.R. -a~R. (ja.y-1R. 

-ja,R. a~R. ja~R. -(ja,),R. 

T,-l(jw) = t -a2R. -ja~R. a~R. (jay+lR, (36) 
.. -1 

The matrix sum on the right side of equation (36) can be written 

r
Ri 0 0··· 01 

. -~ ~ ~ ~:::~j* Tr- 1(Jw) - ~ Li/: : : : : Li (37) 

lo 00···0 

where 

* By the notation A ~ 0 or A ~ 0, we mean that the associated Hermitian form 
of A is positive semidefinite or negative semidefinite. 
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In 0 0 ···0 -1 

ja i 1n In 0 ···0 

L. a:ln 0 In ... 0 (38) 

( -IY(jay-l1n 0 0 In 

Since each RJjw) is Hermitian and positive semidefinite for each w, 
the sum on the right side of equation (37) is also Hermitian and positive 
semidefinite. Hence, we have proved the lemma. 

We have shown that T r - 1 , a matrix of rational functions, is para­
Hermitian and positive semidefinite on the imaginary axis. Such a 
matrix can always be factored in the form shown in equation (25), 
(see p. 133 of Ref. 15). It is tempting to factor T r - 1 at this stage and 
find Z12, Z22 to satisfy the required conditions, but we will factor a~r T r - 1 

instead of T r - 1 for the reason that the factors would be polynomial 
matrices. 

From equation (17) we can see that a~r T r - 1 is a polynomial matrix 
in p. To be able to factor a~r T r - 1 in the required fashion, we have to 
show that T = a~r T r - 1 is para Hermitian and positive semidefinite on 
the jw axis. To do this, we obtain the required additional information 
about the polynomial ao(p) from the following theorem. Since the 
theorem contains more information than we need at this point, we will 
only state it here; a proof is given in Appendix B. 

Theorem 3: If 

is a two variable reactance matrix, then for all i = 0, 1, , r 

(i) Bi is a reactance matrix in p 
ai 

(ii) ~ is a reactance function in p 
ai+l 

(iii) ai has all its zeros on the jw axis and these are simple 

(iv) XBiX for all constant real n X 1 vectors, X, is a reactance 
XB i+1X function in p 
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From this theorem, ao(p) can be represented as 

ao(p) = pV II (p2 + w:) = ±ao( -p) (39) 
.. 

where v = 0 or 1. Hence 

(40) 

From the form of ao shown in equation (39) and Lemma 1, it can be 
seen that 

except when simultaneously, v = 1 and r is odd; in which case 

Tr - 1 (jw) ~ o. 

(41) 

(42) 

We will assume that Tr-1(jW) ~ 0 in developing the synthesis procedure 
and discuss the needed modification when Tr - 1 (jw) ~ 0 later. 

If the s-degree of W(p, s) is equal to k, by Lemma 1 the rank of T r - 1 (p) 
and hence of T r- 1(p) is k. Since T r- 1 = 1':-1 and Tr-l(jW) ~ 0 there 
exists a factorization 16,17 

(43) 

where M(p) is an nr X k polynomial matrix and has a left inverse M-1(p) 
which is analytic in Re p > o. 

From the definition of T r-1, we have 

T
r

- 1(p) = 1l1(p)~\p). (44) 
ao 

M (p) can be partitioned into n X k blocks M i (p) 

1l1o(p) 

1l11(P) 
M(p) 

and hence 

(45) 

(46) 

Now by comparison of equation (45) with equation (20), we can im­
mediately identify a suitable Z12 as 

Mo z --. 
12 - a~ 

(47) 
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To find a suitable Z22' if we define Td as 

r 
-At 

l -~: Tip) = 

( - ~r Ar (-1): Ar+l 

(48) 

(-IY Ar+2 ... (-If A 2r 

from equations (20), (21), and (25) we see that Z22 must satisfy 

(49) 

Even though equation (49) does not uniquely specify Z22, we can choose 
for Z22 

Z22 = a~r 1l1- l T dM- l t. (50) 

From equation (19) and the definition of Td , we see that Td - T; 
and hence 

We now notice that by construction, the pair Zl2, Z22 defined by 
equations (47) and (50) satisfies 

(10) 

for all 0 ~ l ~ 2r - 2. Our aim is to find Z12 and Z22 that satisfy equation 
(10) for alll ~ o. It is not immediately clear that the pair Zl2, Z22 defined 
by equations (47) and (50) satisfy equation (10) for alll ~ o. 

To see that the chosen pair Zl2, Z22 does indeed satisfy equation (10) 
for alll ~ 0 and not just for 0 ~ l ~ 2r - 2, we introduce the generalized 
companion matrix n(p) defined bylo 

On In On On 

On On In On 

n(p) (52) 

On On On On In 

_ aT In - ar - l In _~-2 In ... _ a2 1 _ a l In 
ao ao ao ao 

n 
ao 
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From equation (15) it can be seen that 

Td = - T r - 1 n. 
Hence, by equation (43) 

and by equation (51) 

Hence 

and 

Z22 -a~r11f-1Tr_1nM-1t 

-l1f-111fM t nM -1 t 

_M tnM-1t , 

Z;2 = -l1f-1ntJlfMtnM-1t 

- a~r 11f-1 n tTr_
1 
nM- 1 t 

_a~r llf-1 n2tTr_IM-1 t 

-l1f-1 n2tM 

l> O. 

(53) 

(54) 

(55) 

From the definition of n, we see that g(p, ~) is its minimal polynomial, 
and hence the matrix polynomial 

g(p, n) = aonr + a1n
r- 1 + ... + ar1nr == Onr (56) 

and hence 

(57) 

By equation (55) 

g(p, Z22) = 11f-1 (-lr-1ao~rt + (-lr-2al~r-It + ... + ar1nr M, 

and by equation (57) and Theorem 3 

g(p, Z22) = ± M-1[g( -p, nt)]l1f == Ok' (58) 

From the last equation in equation (15), from equation (58), and from 
equation (10), which holds for 0 ~ l ~ 2r - 2, 

- a1A 2r - 2 - a2A 2r - 3 - ••• - arAr-1 

-z12[a1z;;-2 + a2z;;-2 + .,. + arz;;lJZ:2 
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Hence 

and by induction 

A l = (-1) IZ12Z~2Z:2 

for alll ~ 0, which is the same as equation (10). 
We thus have a set of three matrices Zll , Z12 , Z22 such that the in­

finite set of equations obtained by equating the right sides of equations 
(7) and (8) are satisfied. Hence the right side of equation (4) and JV(p, s) 
have the same Taylor's series expansion in the neighborhood of s = 00. 

By analytic continuation, for all p and s 

W(p, s) = zu(p) + Z12(P)[Z22(P) + slkrlz:2(p) , 

where Zu , Z12, and Z22 are defined by equations (9), (47), and (50), 
respectively. 

We have thus succeeded in decomposing W(p, s) as shown in equation 
(4). It now remains to show that Z(p) formed from the chosen Zll , 

Z12, and Z22 

Mo(P2 ] 
a~(p) 

a~r(p)M-l(p)Tip)M-l \p) 

(59) 

is a reactance matrix. 
To show that the Z(p) in equation (59) is a reactance matrix, we may 

choose any standard test, but we will choose the one given below since 
it is particularly suited for the problem at hand (see pp. 117 and 123 
of Ref. 11): 

Lemma 3: The necessary and sufficient conditions for a square matrix 
Z (p) to be a reactance matrix are: 

(i) Z is rational and real for real p. 
(ii) Poles of Z(p) are simple and restricted to the imaginary axis. 

(iii) Z + zt == o. 
(iv) Residue matrices are positive semidefinite Hermitian. 

Since all the entries of Z(p) in equation (59) are real and rational, con­
dition i is satisfied. 
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From equations (13a) and (15), Zll = A_I = Bo/ao is a reactance 
matrix by Theorem 3; hence its poles are simple and restricted to the 
imaginary axis. Also, the pole at p = 00, if any exists, is simple for 
this block. Since M 0 is a polynomial matrix, it is clear that the poles of 
the off diagonal blocks ZI2 and - Z;2 are in the zeros of ao and hence by 
Theorem 3 the poles of ZI2 are restricted to the jw axis. However, it is 
not clear that these poles are simple. To show that they are indeed 
simple we will use the fact that Ao defined by 

(60) 

is a polynomial matrix. From equations (10) and (47) 
t 

A - MoMo 
o - 2r 

ao 
(61) 

and from equation (39) ao 
case 

±a~ . We first consider ao = a~ in which 

(62) 

Equation (54) then shows that Ao = .A~ and Ao(jw) ~ O. Hence there 
exists an n X q polynomial matrix, Q, such that 

(63) 

where q is the rank of Ao . Equations (62) and (63) are two different 
factorizations of Ao , hence:17 

kf-°I = Q[lq : OkX(r-ql] V 
ao 

(64) 

where yep) is a Ie X Ie para unitary matrix, that is, vvt = l k • Since Q 
is a polynomial matrix, and yep) being para unitary can have no poles 
on the imaginary axis (see p. 186 of Ref. 11), the left side of equation 
(64) can have no poles on the imaginary axis. Hence a~-t, which has 
all its zeros on the jw axis, must divide Mo . Thus Z12 has all its finite 
poles in the zeros of ao . By Theorem 3, the zeros of ao are simple and 
restricted to the jw axis. In the above, we have assumed that ao = a~ ; 
if ao = -a~ and r is odd, the same proof holds; if r is even we can con­
struct a similar proof by factoring - Ao instead of Ao . 

To show that the pole of Z12 at P = 00, if any, is simple. Consider 
the following representation for Ao obtained from equations (15) and (17) 

(65) 



REACTANCE MATRICES 181 

Since Bl/al and Bo/ao are reactance matrices and at/ao is a reactance 
function, according to Theorem 3, the right side of equation (65) be­
haves as J{pV near p = 00, where J{ is a constant matrix and v is an 
integer such that - 2 ~ v ~ 2. But Z12 satisfies 

Ao = Z12Z~2 

and hence the pole of Z12 at P = 00, if any, must be simple. 
We now have to show that the Z22 block also satisfies condition (ii) 

of the lemma. By equation (54) 

(54) 

Since M-l is analytic in the open right-half plane and Q has all its poles 
in the zeros of a o , by equation (54) the poles of Z22 are restricted to the 
jw axis. To show that these poles are simple we will prove by contradic­
tion that aOZ22 is polynomial. 

From equation (52), the definition of Q, and equation (54) we see that 
if aOZ22 has a pole of multiplicity 0: at p = jwo. In the neighborhood 
of this pole, we have the approximation 

J{ 

aOZ22 ~ ( .)'" p - JWo 

where J{ is a constant matrix and 0: is a positive integer, and 
J{2 

a~z;2 ~---­
(p - jWO)2'" 

(66) 

(67a) 

Now by equation (55) Z;2 = - M- l
Q2tM, and hence in the neighborhood 

of p = jwo 

(67b) 

where J{l is a constant matrix and (3 is a positive integer. Since the poles 
of aOZ22 are contained in the poles of M-t, (3 ~ 20:. By comparison of 
equations (67a) and (67b), which must be equal, it is clear that either 
0: = {3 = 0 or J{l = J{2 = O. Since Z22 = -Z!2' J{ = K*, and hence 
J{2 = KK* = 0 implies that J{ = O. Thus aOZ22 can have no poles on 
the jw axis and this, coupled with the fact that Z22 can have poles only 
on the jw axis, guarantees that aOZ22 is always polynomial. We therefore 
conclude that all the finite poles of Z22 are in the zeros of ao , and their 
multiplicity cannot exceed that of the corresponding zeros of ao • Hence, 
again by Theorem 3, all the finite poles of Z22 are simple and restricted 
to the jw axis. 
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To show that the pole at p = 00 of Z22 , if any, is simple, consider 
equation (15) written in this form: 

A - Bo 
-1 -

ao 

Ao = B1.a1 _ Bo.a1 (68) 
a1 ao ao ao 

Al = B2 _ a2.a1 _ a1 [B1.a1 _ Bo.a1J _ a2.a1.Bo. 
a2 a1 ao ao a1 ao ao ao a1 ao ao 

Owing to the reactance nature of BJai and aJa;+l by Theorem 3, 
and from the form of A i shown in equation (68), near p = 00, Ai behaves 
as 

where Ki is a constant matrix and Vi is an integer such that 

i + 2 ~ Vi ~ - (i + 2). 

Also from equation (10) 

(69) 

(70) 

(71) 

Since Z12 has at most a simple pole at p = 00, in the neighborhood of 
p = 00 

(72) 

where K is a constant matrix and l is an integer such that l ~ 1. If 
Z22 behaves as K 22pm near p = 00, where K22 is a constant matrix and m 
an integer, then by equation (70), (71), and (72), (i + 2) ~ im + 2l ~ 
- (i + 2). For such to be true for any fixed l and all integral i ~ 0, 
m has to be less than or equal to unity. Hence the pole of Z22 at p = 00, 

if any, is simple. 
We have thus shown that condition ii of Lemma 1 is satisfied for 

each block in Z(p), and hence Z(p) also satisfies it. 
Since Zll is a reactance matrix, Zll = -Zi1 and Z22 = -Z~2 by equation 

(51), we have Z = -zt and thus condition (iii) of the lemma is also 
satisfied. 

Now to complete the proof that Z(p) is a reactance matrix, we have 
to show that the residue matrices at the poles are positive semidefinite 
Hermitian. To do this we need Lemma 4, which follows from the defini­
tions of a two variable positive real and two variable reactance matrices 
(see p. 34 of Ref. 8). 
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Lemma 4. It W(p, s) is a two variable reactance matrix with no p-in­
dependent or s-independent poles, W[p, s(p)] is a reactance matrix in p 
for any reactance function s (p) . 

To prove that Z(p) satisfies condition iv of Lemma 1, which requires 
that the residue matrix of Z (p) at any of its simple poles on the jw axis 
is positive semidefinite Hermitian, we note that at any pole, p = jw, 
of Z(p), if we set 

s(p) 
2lp 

= 2 2 
P + Wo 

for I Wo I < CIJ 

= lp for Wo = CIJ 

In 

W(p, s) = Zll + Z12(Z22 + Slk)-lZ:2 

[which is equation (4)] then by Lemma 4, W[p, s(p)] is a reactance 
matrix in p for all positive l. Since Z(p) is real for real p and Z = -zt, 
the residue matrix H at the pole p = jw is Hermitian; if we write it as 

then, K, the residue matrix of W[p, s(p)] at p = jwo is given by 

K = Hll - H 12 (H22 + l1k)-lHl~ . 

(73) 

(74) 

Since H, Hu , and H22 are Hermitian, there exist unitary matrices U1 

and U2 such that 

(75) 

and 

(76) 

Hence 

(77) 

where 

(78) 

If J 12i denotes the ith column of J 12 , the right side of equation (77) can 
be rewritten as 

(79) 



184 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1969 

Since I( is the residue matrix of a reactance matrix, for all l > 0, K is 
positive semidefinite. Au is also positive semidefinite, since Hu is 
the residue matrix of the reactance matrix Zll' J 12 ar2i is obviously 
positive semidefinite and the left side of (79) can be positive semi­
definite for all positive l only if all the Ai are nonnegative. Hence A22 

and H 22 are positive semidefinite. 
To show that H is positive semidefinite, we will show that H' defined by 

H' = (U~ + U~)H(UI + U2) = [All 
Jt2 

(80) 

is positive semidefinite. For this purpose, consider the Hermitian form 

where 

l > O. 

Since 

is positive semidefinite, we obtain from equation (81) the following 
inequality: 

[X~ X~J [All . J12] [Xl] 
Jt2 D22 X 2 

~ X~J12D~~Jt2Xl + X~J12X2 + X~Jt2Xl + X~A22X2 . (82) 

Since the right side of equation (82) can be expressed as G*G, where 
G = [D~~2Jr2Xl + A~~2X2], the Hermitian form in equation (81) is 
positive semidefinite for all l > 0; by a continuity argument we can 
see that H' and consequently H are positive semidefinite. 

'rVe have thus shown that Z (p) does indeed describe a lossless network 
in the p-plane and thus W(p, s) has the network representation shown 
in Fig. 2. 

In the development of the synthesis procedure we assumed that 
a~r(jW)Tr_l(jW) = Tr-l(jW) ~ O. If simultaneously, ao(p) is an odd 
function of p [in'other words v = 1 in equation (39)] and r, the s-degree 
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of the least common denominator of W(p, s) is odd, then Tr-l(jW) ~ O. 
In this case we factor - Tr-1(p) which is para Hermitian and positive 
semidefinite on the jw axis. We will then have 

- Tr - 1 = M Mt (83) 

and hence, as before equation (44), 

MMt 
T r - 1 = -;-t' 

ao a~ 

It is then clear that the identification of Z12 and Z22 can be done in 
exactly the same way as when Tr - 1 (jw) ~ O. 

It is of importance to notice that the number of s-plane inductors 
used in the realization of Fig. 2 is equal to the s-degree, os[W(p, s)] 
which in general is smaller than the number required in Koga's tech­
nique. Appendix C shows thatos[W(p, s)] is the minimum number of 
s-plane inductors required in any realization, and that if a realization 
is minimal in the variable s it is automatically minimal in the variable 
p, the minimum number of p-type reactances needed in any realiza­
tion being the p-degree, op [W(p, s)] .18 

The main result of this section can be conveniently put in the form 
of a theorem: 

Theorem 4: Every two variable reactance matrix W(p, s) can be realized 
as the impedance seen at the first n-ports of a lossless (n + k)-port con­
sisting of op[W(p, s)] reactances in the p-plane, terminated at its last k 
ports with o.[W(p, s)] unit inductors in the s-plane. Furthermore, such a 
realization uses the minimum possible number of reactances of each kind. 
(The roles of p and s are completely interchangeable.) 

Since several of the proofs involved in establishing Theorem 4 were 
rather indirect and lengthy, while the procedure for synthesis, sum­
marized in Section IV, is itself rather simple. 

IV. SUMMARY OF SYNTHESIS PROCEDURE 

Given an (n X n) two variable reactance matrix Wo(p, s), decom­
pose it as 

Wo(p, s) = W1(p) + W 2 (s) + W(p, s) 

where WI and W2 are reactance matrices in p and s, and W(p, s) is a 
two variable reactance matrix with no p-independent or s-independent 
poles. Such a decomposition is always possible by Theorem 2. 
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Expand W(p, s) as 

~ Az(p) 
W(p, s) = A_1(p) + L.J---r:tl 

1=0 S 

[which is the same as equation (7)] where the A (p) 's may be ob­
tained by equations (16) or (16a) or by long division. 

Find 9 (p, s), the least common denominator of the entries in 
W(p, s) and express it in the form 

g(p, s) = ao(p)sr + a1(p)sr-l + ... + ao(p). 

[which is the same as equation (6)]. 
Form the (nr X nr) matrix Tr-dp) , defined by 

Ao(p) 

-Al(P) 

A2(P) 

which is equation (24). 

Al(P) 

-A2(P) 

A3(P) 

A2(P) 

-A3(P) 

A4(P) 

Factor Tr-1(p) = a~rrpr_l(P)' a polynomial matrix, as 

'1\-l(P) = 1I1Mt 

Ar-1(p) 

-Ar(P) 

Ar+1(p) 

(43) 

unless simultaneously, ao = -a~ and r in equation (6) is odd, in which 
case factor -Tr-1(p). The factorization must be such that M is a 
(k X nr) polynomial matrix with k = rank of T r - 1 (p) and M-t, the 
left inverse of M analytic in the open right plane. The existence of such 
a factorization is guaranteed by Lemmas 1 and 2. 

Partition M(p) into (n X k) blocks of equation (45) 

Mo(p) 

M1(p) 
M(p) = 

M r - 1(p) 

Form the (nr X nr) matrix Q(p) defined by equation (52) 
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With the identification of equations (9), (45), and (54) .::. 

and 

and 

the decomposition 

Zl1(P) = A_1(p) , 

Mo(p) 
Z12 = ao(p) , 

W(p, s) = Zll(p) + Z12(P)[Z2ip) + slkr1z;2 

187 

(4) 

is obtained. Notice that this is equation (4). It should also be noticed 
that W(p, s) can be decomposed as in equation (4) even if it has 
s-independent poles, since the assumption that W (p, 00) is finite is 
enough to guarantee the validity of the procedure. For network reali­
zation it is usually more convenient to remove both p-independent 
and s-independent poles; we therefore removed them at the start of 
the procedure. 

To realize W (p, s) as the impedance of a passive network, we per­
form the following operations. 

Form the (n+k X n+k) impedance matrix Z(p) of the coupling 
network 

Z(P) 
[ 

A-l(P) :(~) 1 
- ~~(p) Iv[-\p) n \p)M(p) 

ao(p) 

(84)t 

Realize Z(p) as a lossless (n+k) port network in the p-plane and 
terminate its last k-ports with unit inductors in the s-plane. Also 
realize the reactance matrices W1(p) and W2 (s) as lossless p-plane 
and s-plane n-ports, and connect all three networks in series as shown 
in Fig. 1. The given Wo(p, s) is thus realized as a passive network. 

V. AN EXAMPLE 

It is desired to synthesize the two variable reactance matrixt 

* Equation (54) is used to determine Z22(P), in preference to equation (50) since 
equation (54) is easier to compute. 

t Equation (84) is the same as equation (59) except that for the Z22 block 
equation (54) is used instead of equation (50) for the reason mentioned in the 
previous note. 

t This example was given by Koga, (see p. 50 of Ref. 8). 
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[

(P2 + l)(l + 1) ps - 1] 
W o(p, s) = (p + s) (ps + 1) P + s . 

~ ps+1 
p+s p+s 

Since Wo(p, s) has no p-independent or s-independent poles the first 
step 1 of Section IV need not be performed, and Wo (p, s) = W (p, s). 
The least common denominator of the elements of W (p, s) is 

g(p, s) = pS2 + (p2 + l)s + p 

[which is equation (6)], and hence 

ao(p) = p, a1(p) = (p2 + 1), a2(p) = p, and r = 2. 

The least common denominator of the minors of W (p, s) is also g (p, s) 
and hence 

k = 08[W(P, s)] = 2. 

In the expansion, equation (7), 

~ Az(p) 
W(p, s) = A-l(P) + L..J--z+l 

1=0 S 

by the formula of equation (16) or by long division 

A-l(P) = 1: [p2 + 1 p2], 
P p2 p2 

Ao(p) = _ \ [ (p2 + 1)2 p2(p2 + l)J ' 
p p2(p2 + 1) p2(p2 - 1) 

Al(P) = \ [ (p2 + 1)3 p4(p2 + 1)] , 

p p\p2 + 1) p4(p2 - 1) 

A2(P) = _ 14 [p8 + 3p6 + 4p4 + 3p2 + 1 p6(p2 + 1)]. 

P p6(p2 + 1) p6(p2 - 1) 

T r - 1 (p) = Tl(P) defined by equation (24) is 

[

_P2(P2+1)2 -p4(p2+1): p(p2+1)3 P5(P2+ 1)"] 

1 _p4(p2+1) -p4(p2_1) I p5(p2+1) p5(p2-1) 

T
r
_

1
(p) = p4 =-;(;;+-i)3---=-:-p~(;;+1)-:;;+3~+4;:+3;;+1--;6(;;+-i) .. 

-p5(p2+1) -p5(p2_1) I p6(p2+1) p6(p2_1) 
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The polynomial matrix T1(p) = P~Tl(P) is factored by the method in 
Ref. 16 as equation (43) 

[ 

p(p2+1) 

1 p2(p-1) 
Tl(P) = M(p)Mt(p) - -

- (2)! p4_ p3+2p2_ p +1 

-p(p2+1) 1 
-p2(p+1) 

p4_ p3 

-p2(p+1) 

p2(p-l) 

_(p4+ p3+2p2+ p + 1) 

_(p4+ p3) 

_(p4_ p3+2p2_p+1) 

The (4 X 2) matrix M(p) is partitioned as equation (45) 

M(p) = [~o~2J 
M1(P) 

1 

_p2(p2 + 1) 

_p2(p + 1) 
2 ------------------------------------

p4 _ p3 + 2p2 _ P + 1 _ (p4 + p3 + 2p2 + p + 1) 

4 3 
P - P 

To find M-l (p), a left inverse of M (p), it is enough to find a left in­
verse of Jl1() if it exists, since 

[M~' : 0] [~J = 1, . 

In our example k = 2 and Mo is a nonsingular matrix and hence 
M-l (p) is given by 

M-l(p) = 3 -; 1 [_p2(P + 1) p(p2 + 1) l 0 OJ. 
2p (P + 1) _p2(P _ 1) p(p2 + 1) 1 0 0 

From the definition of n, equation (52) 

o 01 1 o 
1 

n(p) = o 0 : 0 1 
-------1-------------- . 

-1 1 1L±l OI-
1 P 

o 
1 
1 

O' -1: 
I 

o _1L±l 
P 
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Using equation (54) 

[

1L±l 
_ 2p 

(p _ 1)2 
2p 

- (p + 1)2] 
2p . 

p2 + 1 
2p 

Hence the coupling network formed by p-type elements has the 
(4 X 4) matrix of equation (84) 

Z(p) 

p2 + 1 
P 

p2 + 1 p2 + 1 
2p (2)!p - (2)!p 

P P 
P - 1 p+1 

(2)! l2T 
p2 + 1 p+1 p2 + 1 (p + 1)2 

(2)!p l2T 2p 2p 

p2 + 1 p - 1 (p _ 1)2 p2 + 1 
- (2)!p - (2)! 2p 2p 

Z(p) can be verified to be lossless, and the given Wo(p, s) can of course 
be realized as the impedance seen at the first two ports of Z (p) when 
it is terminated at its last two ports by unit s-plane inductors. 

VI. CONCLUSIONS 

The synthesis method for two-variable reactance matrices developed 
here, in general yields a nonreciprocal coupling network even when 
the given two-variable reactance matrix is symmetric, and if a 
reciprocal coupling network is desired, Koga's method for generating 
a reciprocal network from the nonreciprocal one can be used.8 This 
procedure generally yields a reciprocal network at the cost of in­
creased numbe~s of elements of both kinds. 

This method of synthesis of two-variable reactance matrices has 
been successfully applied to the synthesis of lumped-distributed RC 



REACTANCE MATRICES 191 

networks which are important in microelectronics circuits.7 In prac­
tice, the only laborious step in the synthesis procedure is the factoriza­
tion of polynomial matrix in the desired form. Of great importance is 
the approximation of desired characteristics by rational functions in 
two-variables; any work in this area would greatly enhance the use­
fulness of the two-variable theory. The synthesis problem of n-vari­
able positive real functions, for which many applications can be 
found/ can be reduced to the synthesis of (n+ 1) -variable reactance 
matrices.21

•
22 when n = 1 the two-variable method developed here 

gives rise to a new method of passive RLC synthesis, which is no more 
complex than the existing methods. 
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APPENDIX A 

Partial Fraction Expansion of W(jw, s) 

To guarantee the factorization of Tr-1(jw) as MMt we needed Lemma 
2, which asserts that T r - 1 is para Hermitian and that T r - 1 (jw) ~ O. 
In the proof of Lemma 2 we used the fact that Ri(jW), the residue 
matrices of W(jw, s), are positive semidefinite. The proof is given below. 

Under the assumption that W(p, s) has no p-independent of 8-in­
dependent poles, for each real w the s-plane poles of W(jw, 8) are simple 
and restricted to the imaginary 8-axis by Theorem 1. Hence, for any 
fixed w, we can write W(jw, 8) as 

W(jw,8) = A_l(jw) +:t Ri~W) 
i=l s - JCXi(W) 

(85) 

where the CXi(W) are real and the Ri(W) are the residue matrices at the 
poles jCXi(W). As in equation (9), r is the s-degree of g(p, s), the least 
common denominator of the elements of W. 

By complex conjugation on both sides of equation (85) 

W *(· ) - A* (. ) + ~ R~(w) JW, s - -1 JW LJ * + . ()' 
i=l S JCXi W 

(86) 

Since Wand A_1 are rational in jw, 

W*(jw, 8) = W( -jw, s*) 
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and 

A:~\(jw) = A_ 1 ( -jw). 

Hence equation (86) becomes 

W(-jw, s*) = A_l(-jw) + t R~(w) (87) 
i-I s* + jai(W) 

and 

~ R~(w) . -W(-jw, -s*) = -A-l(-jW) + L..J 
i=l s* - jai(W) 

(88) 

Since equation (88) is an identity for s*, we have 

W( · ) A ( .) + ~ R~(w) - - JW, -s = - -1 - JW L..J . • 
i=l S - Jai(W) 

(89) 

From the definition of a two variable reactance matrix, 

W(jw, s) = - W( -jw, -s) 

and by equation (19) 

Hence, by comparison of equations (85) and (89) we have the desired 
result 

Ri(W) = R~(w). (90) 

To show that the Ri(W) are positive semidefinite for each w, we first 
notice that if 

W(P s) = 1/;(p, s) 
, yep, s) 

where 1/;(p, s) is a polynomial matrix and yep, s) is the least common 
denominator of the entries in W, Ri(W) in equation (85) is given by 
(see p. 308 of Ref. 19) 

Ri(W) = 1/;(p, s) 
ay(p, s) 

as 

(91) 

Denoting ay/as by Ys and a1/;/as by 1/;s , for any n X 1 constant matrix 
X, (p. 39 of Ref. 8) 
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X*RiX = X*1/IX I 
Y. 'D-iw 

.-jao(w) 

= [(X*1/IX)Y8*- Y~X*1/I8X)]-1 
(X 1/IX) p~iw 

.-jao(w) 

Hence, if X*WX ¢ 0 

X*R.(w)X = [.i (X*WX)-l]-l 
as p=jw 

B=jai(w) 

193 

(92) 

From definitions 1 and 2, and Theorem 1, X*WX is a two variable 
positive function and for Re p = Re s = 0 

and 

Hence 

for 

.i (X*WX)-l as 

Re [X*WX] == 0 

a
a (X*WX) ~ O. s -

Rep=Res=O 

and consequently the left side of equation (90) is nonnegative. 
Thus we have proved that the residue matrices, Ri(W), are positive 

semidefinite Hermitian for each w. 

APPENDIX B 

Proof of Theorem 3 

Theorem 3: If 

W( ) _ Bo(p)sr + B1(p){-1 + ... + Br(P) 
p, s - ao(p)sr + a1(P)sr 1 + ... + ar(p) 

is a two variable reactance matrix, then for all i = 0, 1, ... r 
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BJai is a reactance matrix in'p. 
aJai+l is a reactance function in p. 
ai has all its zeros on the j axis, and these are simple. 
XBiXIXBi+1X for all constant n X 1 vectors, X, is a reactance function 

in p. 

Proof: For any constant n X 1 matrix X, 

is a rational function in p and s with possible complex coefficients. 
For convenience, if we define 

and as before 

bi = X*BiX 

w(p, s) = X*WX 

f(p, s) = bOST + bisT- 1 + ... + br 

g(p, S) = aosT + a1sT- 1 + ... + ar 

equation (93) can be written as 

w(p s) = f(p, s) . 
, g(p, s) (94) 

From the definition of a two variable reactance matrix, w(p, s) is a 
two variable positive function, and hence for any Po with Re Po > 0, 
w(po ,s) is a positive function of S.20 Consequently, for all s with Re s > 0 

Re f(po , s) ~ O. 
g(po ,s) -

(95) 

Since equation (95) has to be satisfied for all s with Re s > 0 and hence 
for arbitrarily small s, it can be seen from equation (93) that 

Re br(po) ~ 0 
ar(po) -

for all Po with Re Po > o. Hence, Br(p)lar(p) is a positive real matrix 
and since W = - Wt 

[~:J -[~:T 
and thus Brl aT is a reactance matrix in p. 
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If instead of starting froni the positive function f(po, s)/g(po, s), 
we start from 8 Pf(po, s)/8sP /8 Pg(po, s)/8s P

, which is also a positive 
function20 for all 0 ~ v ~ T, the same arguments used in proving that 
Br/ai is a reactance matrix can be repeated to show that BJai is a 
reactance matrix in p for all 0 ~ i ~ T. 

Now to show that ai+l/ai is a reactance function in p, we can use a 
similar proof based on the fact that 8P

-
1g(po, s)/8s P

-
1/8 Pg(po, s)/8s P 

is a positive function. 20 

Again, it can be seen from the fact that 

8 P
-

1g(po, s)/8s P
-

1/8 Pg(po , s)/8s P 

is a positive function. 20 that bi+dbi ' is a positive function satisfying 

[bb:'J = _[bb:T 
If X in equation (93) is chosen real bi+1/bi will be real for real p and 
hence XBi+1X/XBiX for any real n X 1 matrix, X, is a reactance func­
tion. 

To see that the zeros of ai are all simple and restricted to the imaginary 
axis: if anyone of the ai has a double zero on the jw axis or a zero off 
the jw axis, from the reactance nature of ai+l/ai for all 0 ~ i ~ r, 
-all the ai must have the same zero, and, consequently, W(p, s) will 
have an s-independent pole contradicting our original assumption that 
W has no such poles. 

We have thus proved all the claims of Theorem 3. 

APPENDIX C 

Proof of the Minimality of the Realization of W (p, s) 
in Both Variables 

In this appendix we show that the realization of W(p, s) that Sec­
tion III gives is minimal in both the p and s variables. From the def­
initions of 88 [W (p, s)] and8p [W (p, s)], it can be shown that if 
W(p, s) is finite at p = 00 and s = 00, 

o.[W(p, s)] 

op[W(p, s)] 

o.[?](p, s)] 

op[?](p, s)] 

,:her.e the two variable rea.lpolynol1lial 

'r](p; s)· == do (p}Sk .+ dl(P)Sk~.l .. + ... . 0:+ dk(p) . .: (96) 
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is the least common denominator of all the minors of W (p, s). The 
form in which TJ (p, s) is written in equation (96) immediately reveals 
that 

O.[W(p, 8)] = k. 

And if TJ (p, s) is written as 

TJ(p, s) = co(p)pm + Cl(p)pm-l + ... + cm(p), (97) 

it can be seen that 

C.l Minimum Elements 

N ext we would like to find the minimum number of elements of each 
kind needed in the realization of W(p, s). 

Lemma 1 states that k, the rank of Tr-1(p), is equal to the s-degree 
of W(p, s), and the realization obtained there uses exactly k s-type 
elements. By equation (4) 

W(p, s) = Zl1(P) + Z12(P)[Z22(P) + slkrlz~2(p), 
Suppose that there exists a realization with ko s-type elements, where 
ko < k = rank Tr-1(p). Then, 

W(p, s) = Zl1(P) + ~12(P)[~22(P) + slkor 1 ~~2(P) 

where the matrices ~12(P) and ~22(P) are n X ko and ko X ko ,respectively. 
Then by equation (25), Tr-1(P) = N(p)Nt(p) where 

~12(P) 

N(p) = ~12(P)~22(P) 

Z12(P)!2;1(p) 

is an nr X ko matrix and hence, rank N(p) ~ ko . Also, we have 

rank Tr-1(p) ~ rank N(p) ~ ko < k = rank Tr-1(p) 

which is a contradiction, and hence k = rank Tr-dp) = 88 [W(p, s)] 
is the minimum number of s-type elements required in any realiza­
tion. Now by repeating the same argument with a realization of 
W (p, 8) where p-type elements are extracted instead of s-type ele-
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ments, we can see that any realization must contain at least m p-type 
elements where m = Sp [ (p, s) ]. 

C.2 M inimality of the Realization in Section I I I 

vVe next discuss the minimality of the realization in both p-type 
and s-type elements. For the purpose of realization, the reactance 
matrix W(p, s) was decomposed as 

W(p, s) = Zll(P) + Z12(P)[Z22(P) + Slkr 1
Z:2(p) (4) 

where 

Z(p) = [ Z:l(P) Z12(P)J 

- Z12(P) Z22(P) 

(11) 

can be realized as the impedance matrix of a lossless (n + k) port 
in the p-plane. W(p, s) is the impedance seen at the first n ports when 
the above (n + k) port network is terminated with unit s-plane in­
ductors at its last k-ports. Since k is the s-degree of W (p, s), the 
realization uses the minimum number of s-type elements. To show 
that the realization uses the minimum number of p-type elements, 
we have to show that S[Z(p)] =Sp[W(p, s)]. For this we need a rela­
tionship that exists between the least common denominator of the 
minors of W(p, s) and the determinant IZ22(P) + sIkl. 

Every minor of [Z22(P) + sI k ]-1 can be expressed as p,(p, s)/cp(p, s) 
(See p. 21, of Ref. 12, Vol. 1) where p,(p, s) and cp(p, s) are polynomials 
in s with coefficients from the field of rational functions in p. Further-
more, 

'P(p, s) = I Z22(P) + si k I 
is a monic polynomial in s of degree k. 

Since W(p, s) has no p-independent or s-independent poles, every 
zero of 1](p, s) is a zero of cp(p, s), and since k = 88 [<p(p, s)] = 
88 [1] (p, s) ], cp (p, s) and 1] (p, s) / do (p) , which are monic polynomials in 
s with rational functions of p as coefficients, must be identical. Hence 

I () I 
1](p, s) 

Z22 P + si k = do(P) . (98) 

To show that o[Z(p)] = op[W(p, s)] (since we already know that o[Z(p)] ~ 
op[W(p, s)]) it is sufficient to show that o[Z(p)] ~ op[W(p, s)]. To establish 
this inequality, consider the matrix S(p, s) defined by 

S(p, s) = [Z(p) - sln+k][Z(p) + sln+krl. (99) 
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When s = 1, S(p, s) is the scattering matrix of a lossless network, 
since Z (p) describes a lossless network and (see p. 184 of Ref. 11) 

o[Z(p)] = o[S(p, 1)]. (100) 

Since S(p, 1) is para unitary (see p. 131 of Ref. 15) 

o[S(p, 1)] = 0[1 S(p, 1) 1]. (101) 

Equating the determinants of matrices on both sides of equation (99) 

\ S(p s) \ = \ Z(p) - sInH \. 
, \ Z(p) + sInH I 

Using a formula from the theory of determinants (see p. 46 of Ref. 
12, Vol. I) 

I S(p, s) I _ I (Zll - sin) + Z12(Z22 - sIk)-l Z!2 I· I Z22 - sik I 
- I (Zll + sin) + Z12(Z22 + sIkri Z:2 1·1 Z22 + slk I 
_ I W(p, -s) - sIn I I Z22 - sik I 
- I W(p, s) + sIn I ·1 Z22 + Slk I· 

Now if IW(p, s) + SInl is written as 

I W(p s) + sl I = k(p, s) 
, n 1J(P, s) 

(102) 

(103) 

where k (p, s) is a real polynomial in p and s, since the left side of 
equation (102) is finite at p = 00 

(104) 

Substituting equations (98) and (103) in equation (102), we have 

I S( s) I = k(p, -s) . 1J(p, s) .1J(p, -s). do(1!l 
p, 1J(p, -S) k(p, s) do(p) 'I'}(p, s) 

k(p, -s) 
k(p, s) 

and by equations (100), (101), and (104) 

o[Z(p)] = o[S(p, 1)] ~ op[W(p, s)]. 

,\Ve have thus shown that o[Z(p)] = op[W(p, s)]. 

(105) 

It should be noted that Z (p) is the impedance matrix of any loss­
less coupling network in a realization of W(p, s), minimal in s, and 
hence we come to the important conclusion that if a realization of 
W (p, s) is minimal in one of the variables it is automatically minimal 
in the other variable. 
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Computation of tIle Noncentral Chi-Square 
Distribution* 

By G. H. ROBERTSON 

(Manuscript received July 17, 1968) 

This article gives a formula that allows accurate values of the cumulative 
noncentral chi-square distribution to be computed. Although this distribution 
has been recognized for a long time, none of the standard references give 
formulae that are suitable for computing accurate values over an extensive 
range of the parameters; approximations in terms of the chi-square dis­
tribution are usually recommended. A program written by the author, based 
on the formula given here, has been successful for computations involving 
more than 10,000 degrees of freedom. Since many steps are required when the 
degrees of freedom are as large as this, the program is not "fast" but it is 
believed to be accurate. 

I. INTRODUCTION 

The Non-Central Chi-Square Distribution is encountered in many 
statistical problems, one of the most important in communications 
studies being the detection of signals in noise using a square-law 
detector.! Marcum discussed this application but concluded that a 
satisfactory algorithm for computing system performance could not 
be based on the formula he used. 2 This article shows that a satisfac­
tory algorithm can be based on the formula that Marcum derived if 
the expression is expanded in a power series and the terms are properly 
grouped before being evaluated. 

More recently Urkowitz3 discussed detection system performance 
in which the above distribution arose and recommended that approxi­
mations in terms of the chi-square distribution, given by Patnaik/ 
be used for computation. While these approximations are adequate 
for some purposes, it is desirable to have a reliable and accurate 
method of computing values, if only to check the approximations. 

* This work was supported by the U. S. Navy under contract N00039-68-C-3584. 
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II. INTEGRATION OF NON CENTRAL CHI-SQUARE DISTRIBUTION 

If the signal-to-noise power ratio is x for the sum of TJ independent 
samples of the output of a square-law detector, the following integral* 
gives the probability that the sum will be y or more. The variables 
are normalized to the variance of the individual noise samples, so 
the average signal-to-noise power ratio for one sample is x/TJ and the 
average output per sample is Y/TJ' Considering one sample of noise 
to be the sum of the squares of two independent gaussian variables 
of unit variance, the integral is related to the noncentral chi-square 
distribution by the conversions given in equation (8). 

f OO (Z)('1-1)/2 
Q = 1/; exp (-z - x)I'1-1[2(zx)'] dz. (1) 

From (Ref. 4, Section 8.445) [71-1 [2 (zx) %] is the modified Bessel 
function 

00 (t/2)m+2k 
I m( t) = ~ k! rem + k + 1)' (2) 

Thus 

Q = exp (-x) foo exp (-z)z'1-1 dz + exp (-x) foo exp (-z)z'1-1 
r(1]) 1/ f(1]) 1/ 

[ 
xz (xz) 2 (xz) 3 

] 

. 1! 1] + 2! 1](1] + 1) + 3! 1](1] + 1)(1] + 2) + ... dz. (3) 

Notice that 

fOO exp (-z)z'1- 1 dz = r(1], y) 
1/ 

(4) 

the incomplete gamma function (Ref. 5, Section 6.5.3). Since 

t f' exp ( - t) dt = - f' exp( - t) r + p t tH exp (- t) dt (5) 

equation (3) can be written 

Q = exp (-x) [f( ) 
r(1]) 1], y 

+ ;, {r(~, y) + (~)r exp (-y)} 

* Sometimes called the generalized Marcum Q-function. See Ref. 2. 



CHI -SQUARE DISTRIBUTION 203 

+ ~; {r(~, y) + (~ + ~(~ y~ 1»)Y'-' exp (-y)} 

+ ~; {r(~, y) + (~+ ~(/~ 1) + ~(~ + t3(~ + 2)Y'-' exp (-y)} 

+ ... and so on ] . (6) 

Summing the terms by columns gives 

Q = r(1], y) + yTl-l exp (-y) [U exp (-x) f xr 
r(1]) r(1]) 1] r=l r! 

2 (l) r 

y "x + ( + 1) exp (- x) L..J, 1] 1] r=2 r. 
3 (l) r 

y ( )" x + 1](1] + 1)(1] + 2) exp -x ~ r! 

+ ... and so on ] (7) 

A satisfactory computing algorithm can be based on equation (7) 
where we notice that Q can be expressed as the ~um of 'two parts, Q1 
= r(1], y)jr(1]) which is independent of x, and another part which 
we call Q2. 

III. DISCUSSION 

The' noncentral chi-square cumulative distribution can be written 
Q (x'2iv, A.) (see Ref. 5, Section 26.4.25), where the distribution is in­
tegrated from X'2 to infinity, the number of degrees of freedom is v, 

and the noncentral parameter is A.. This integral is the same as that 
given in equation (7) if we put 

(8) 

1\ = 2x 
so that 

Q(2y I 21], 2x) = Ql + Q2 
(9) 

= Q(2y I 21]) +Q2 

whereQ(2Yi21]) = Q(x2iv), the cumulative chi-square distribution 
(see Ref. 4, Section 26.4.2) .' 
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If M independent samples of the output of a square-law detector 
are averaged, when the input is narrowband gaussian noise plus a CW 
signal at the center of the band, Q can be used to find the probability 
that a threshold value will be exceeded. Expressing all parameters in 
units of the narrowband noise power, the desired threshold is yl"" xlTJ 
is the signal-to-noise power ratio, and M =",. 

It is interesting that the Rayleigh distribution, and the Rice dis­
tribution, are equivalent to the chi-square and non-central chi-square 
distributions respectively, when the latter are expressed in terms of a 
parameter X equal to the square root of x2

, and", = 1. 
Marcum2 gave an expression of the form shown in equation (3) 

for the output of a square-law detector. He stated that it could only 
be used satisfactorily for values of ", up to about 10. More recently 
Urkowitz3 has discussed the integration of a square-law detector out­
put and recommends that the non central chi-square distribution be 
computed using an approximation given by Patnaik1 in terms of the 
chi-square distribution. Patnaik compares with exact values some 
results computed using the approximation and finds errors of the 
order of 1 % around Q = 0.5. The accuracy is much less for values 
around unity and for values less than 0.01. 

Brennan and Reed have shown that, when the order of the Bessel 
function in equation (1) is zero, corresponding to one sample, a 
straightforward recursive method applied to the resulting equation 
(6) can be used to compute the integral.6 They suggested that a 
similar procedure could be used even on the form of equation (I) 
given here. However, as pointed out by Marcum, such a technique 
rapidly becomes useless as ", increases above about 10. 

A program written by the author, based on equation (7), has been 
used satisfactorily for ", as large as 8192, and simultaneously for 
values of xl", up to 0.1. The exact values given by Patnaik were 
checked. Further checks were made possible by the development of a 
uniform asymptotic expansion by S. O. Rice, with which it is possible 
to get results outside the useful range of the algorithm given here.7 

Table 1 compares values obtained with the author's program 
(CHISQ) and corresponding values supplied by S. O. Rice using his 
uniform asymptotic expansion (UAE) , with results obtained using 
the Patnaik1 and Gauss approximations (Ref. 5, Section 26.4.29). 

The accuracy of the algorithm given in equation (7) decreases as 
xl", increases in the table, and the value in the last entry depended 
quite sensitively on the last digit of a 18 digit double precision con-



X/fJ Y/fJ fJ 

0.01 1.05 8192 
0.05 1.05 8192 
0.08 1.05 8192 
0.1 1.05 8192 
o.n 1.05 8192 
0.12 1.05 8192 
0.13 1.05 8192 
---

TABLE I-COMPARISON OF COMPUTATION METHODS 

l-CHISQ UAE PATNAIK 

0.999801547E-00 0.9998015E-00 0.999801544E-00 
O. 501464546E-00 0.5014645E-00 0.501467E-00 
0.552623909E-02 O. 5526235E-02 O. 552472E-02 
O. 138627645E-04 O. 1386275E-04 O. 138700E-04 
o . 2811R6446E-06 0.2811860E-06 0.280145E-06 
0.316387190E-08 0.3163860E-08 0.314279E-08 
o . 20004E-10 0.199969E-10 0.197750E-1O 

GAUSS 

0.999809E-00 
0.50nOE-00 
O. 56050E-02 
O. 14803E-04 
O. 31438E-06 
0.37651E-08 
0.25799E-10 

a 
p:: 
1-1 
I 

UJ. 

§ 
r;; 
t'j 

l:' 
1-1 
UJ. 
8 
~ 
6j 
o 
8 
1-1 o 
Z 

tv 
o 
Q1 
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stant used in the program. Notice that even for the last entry, the 
value actually computed, (CHISQ), appears to be correct to 14 places 
after the decimal point. 

IV. EXTENSION TO A MORE GENERAL INTEGRAL 

A more general integral is obtained by writing, for example, the 
13th moment of the partial noncentral chi-square distribution, 

Q/3 = i<>O l(;) ('1-1)/2 exp (-z - x)I'1-1[2(zx)!] dz. (11) 

The corresponding form of equation (4) is 

f<>O l exp (_z)z'1-1 dz = r(~, y) 
1/ 

(12) 

where 

~ = r] + (j, (13) 

and the corresponding form of equation (7) becomes 

Q = r~~'r]f) exp (-x)lFl(~; r]; x) 

+ y~-l exp (-y) [y ( ) ~ xr (~ + l)r-l ---- - exp -x L...J-
r(r]) r] r=l r! (r] + l)r-l 

+ y2 () ~ xr (~ +. 2)r-l exp -x L...J-
r](r] + 1) r-2 r! (r] + 2)r-l 

+ y3 ( ) ~ xr (~ + 3)r-l exp -x L...J-
r](r] + 1)(r] + 2) r=3 r! (r] + 3)r-l 

+ ... and so on ] . (14) 

The confluent hypergeometric function IFI Ca; b; x) (Ref. 5, Section 
13.1.10) is defined by 

ax a(a + 1)x2 a(a + l)(a + 2)x3 

lF1(a; b; x) = 1 + bI! + b(b + 1)2! + b(b + l)(b + 2)3! + 
= i: (a)rxr . 

r-O (b)rr! 

(15) 

Equation (15) conveniently gives an example of Pochhammer's sym­
bol (a)r (Ref. 5, Section 6.1.22), also used in equation (14). 
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The structure of equation (14) is closely related to that of equa­
tion (7), so it can form the basis for a useful algorithm to compute 
the integral given in equation (11). 
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Uniform Approximation of Linear Systems* 

By HARRY HEFFES and PHILIP E. SARACHIK 

(Manuscript received August 6, 1968) 

A method for reducing the complexity of the class of linear, time-varying, 
dynamic control systems is developed where the approach taken is that of 
uniform approximation (that is, modeling for a region of initial conditions). 
The objective of the modeling procedure is to choose a linear time-invariant 
system of given dimension, that minimizes a "worst-case" type of error 
criterion. Some results from the theory of widths of sets in Banach space 
are used to obtain bounds on the optimal approximation error as a function 
of the dimension of the approximating system. The use of these bounds in 
choosing the order of the approximation is discussed. An example illustrates 
the use of the derived results. 

1. INTRODUCTION 

In the analysis and design of control systems it is often useful to 
have low order constant coefficient models for the system. The prob­
lem of modeling linear systems by lower order linear systems has 
received considerable attention, but these analyses have usually been 
restricted to the modeling of constant coefficient systems. 

References 1 through 5 contain various approaches to the system 
approximation problem; however, these analyses are generally re­
stricted to the modeling of constant coefficient systems or systems 
which are forced with a given input or initial condition. 

The control system analyst often finds himself dealing with non­
stationary systems, but little work has been done in the area of 
optimally modeling this class of systems. The emphasis here is on 
modeling the class of linear, homogeneous time-varying systems with 
constant coefficient models. Reference 6 considers approximation of 
forced systems. Rather than design the model requiring solutions of 
the actual and approximate systems be "close" for a prescribed initial 

* From a dissertation written as part of the requirements for a Ph.D. degree, 
New York University, 1968. 
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condition, the approach taken here is that of uniform approximation. 
Initial conditions are assumed to lie in some set in Euclidean space 
and a "worst-case" type of error criterion is defined. This eliminates 
tuning the model to specific conditions which may not be met when 
using the model. The material presented here thus generalizes previous 
work in that it extends the class of systems considered to time-varying 
systems and generalizes the error criterion to handle the more realistic 
problem of modeling for regions of initial conditions. 

The problem is of importance, for example, in trajectory analysis 
where the linear time-varying system is obtained by linearizing a set 
of nonlinear equations about a nominal trajectory. In this case the 
time-varying nature of the system is described by partial derivatives 
evaluated along the nominal trajectory. Solutions to the resultiI}g 
equations require simulation for each set of initial conditions. Using 
a constant coefficient model eliminates the need for repeated simula­
tion. 

The above example illustrates the use of a simplified model in 
analysis. The designer is interested in reducing the complexity of 
high-order nonstationary control system plants since this provides 
a means for designing simpler controllers based upon the model de­
scription. The results presented here not only allow one to obtain 
stationary models but simultaneously offer the opportunity to obtain 
lower order models of the original system. 

II. PROBLEM DEFINITION AND FORMULATION 

The system we are considering is described by the linear, time­
varying, homogeneous vector differential equation 

:t(t) = A (t)x(t) (1) 

with the outputs given by 

yet) G(t)x(t) (2) 

where 

x(t) is an n-vector 

A(t) is an n X n matrix whose elements are bounded and piecewise 
continuous on [to, tIl. 

G(t) is an m X n matrix whose elements are bounded and piecewise 
continuous on [to, tIl. 
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It is desired to obtain a constant coefficient system of kth order* 
(k ~ m) 

~(t) = Ax( t) (3) 

such that the first m components of the state vector x(t) closelyapproxi­
mate the components of yet) over the finite time interval [to, t,]. Writing 

fJ(t) = Cx(t) (4) 

with 

C = [Imxm : 0] 

the approximation problem can be viewed as choosing the elements of 
the k X k matrix A such that fJ(t) approximates yet) over [to , t,]. 

Since, in general, it is not known at the time of modeling what initial 
conditions will exist in the system, it is desirable to have the approxi­
mating system depend on a prescribed range of initial conditions rather 
than being tuned to any specific initial condition. The initial conditions 
are considered to lie in a closed, bounded convex subset of Euclidean 
n-space. That is, 

and the performance criterion is given by 

I
t! 

Jk(A) = max min (y - fJ)'W(t)(y - fJ) dt 
XoER XoEEI; to 

where 

[to, t,] is bounded 
yet) is the solution of (1) and (2) with x(to) = Xo 

fJ(t) is the solution of (3) and (4) with x(to) = Xo 

Wet) is positive definite and bounded for all t t [to. t,]. 

(5)t 

The above performance criterion corresponds to the worst case error 
in the approximation, corresponding to a given model, when the initial 
condition on the model, x(to), is chosen optimally in terms of the initial 
conditions on the actual system. The modeling objective is to choose 
A to minimize Jk(A)(that is, minimize the maximum approximation 
error). 

The approximation problem will be cast into a Hilbert space setting 

* Notice that k is not restricted from above. It may be desirable to have k 
> n if the original system is time-varying. 

t In all that follows the prime denotes transpose. 
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which will permit the use of many of the general results to be presented 
in the next section. Vector spaces of solutions of the original system 
equations and any member of the class of approximate system equations 
are established. These spaces are then imbedded into an encompassing 
Hilbert space. It then is shown that the problem of finding an optimal 
approximation can be viewed as a problem of finding the "best" subspace 
(of a given form) of the Hilbert space to use in approximating solutions 
of the original system. Writing the output vector of the original system 
in terms of the transition matrix leads to 

(6) 

where the transition matrix <p(t, to) satisfies 

(7) 

with initial conditions 
(8) 

Now if the original system is completely observable8
•
9 on the finite 

interval [to, tl ] the columns of the m X n matrix C(t)<p(t, to) are linearly 
independent as vector-valued time functions. That is, 

implies x(to) = O. For an observable system, the initial state can be 
determined uniquely from knowledge of the output. Since x(to) = 0 ::::} 
yet) == 0 and, from observability, yet) == 0 ::::} x(to) = 0 the linear in­
dependence of the columns of C(t)<p(t, to) follows. 

Let 11 be the linear space spanned by the n columns of C(t)Cf!(t, to). 
The solutions of the original system lie in 11, which is of dimension n for 
an observable system. Notice that the number of components (m) in 
the vector y and the dimension of the space 11 need not be the same. If 
the system is not completely observable on [to, tl ] the dimension of 11 is 
less than n. 

The solutions to equations (3) and (4) can be written as 

(9) 

where 

and 
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(10) 

It is thus seen that solutions yet) lie in the vector space spanned by the 
k columns of the m X k matrix CeA(t-t o

). Denote this vector space as 
'Yk . If A is such that the approximate system is observable then 'Yk is 
of dimension k and the k columns of CeA(t-t o

) form a basis 

{g. ; i = 1, ... , k} 

for the k-dimensional vector space 'Yk of approximating solutions. These 
basis elements can be written as 

gi(t) = CeA(t-t o) Ki 

gi = {gi(t); t E [to , tl ]} 

(11) 

(12) 

where Ki is the ith column of the k X k identity matrix. If the approxi­
mation is not observable the dimension of 'Yk is less than k. In any case 
vector spaces 'Yk with basis elements of the form (11) characterize the 
approximating systems where A is a k X k real matrix. Defining 

~k = {'Yk; gl, ... , gk span 'Yk} (13) 

where gi(t) is given by equation (11) and A is any real constant k X k 
matrix casts the problem into finding an element of ~k minimizing J k • 

The problem of finding an optimal approximation has been cast into 
the problem of finding an extremal space 'Yt E ~k of approximating 
solutions. A Hilbert space X containing ~ and all members of ~k will 
now be constructed. 

Recall that the elements of ~ and 'Yk are real, vector-valued, time 
functions having m components. Thus each element of the Hilbert 
space X to be constructed will have m components. The inner product in 
X is defined by 

(14) 

where Wet) is a real symmetric m X m matrix which is positive definite 
for t E [to , til and whose elements are bounded for t E [to, tiJ. Notice that 
this is the same matrix appearing in the performance criterion given 
by equation (5). The norm of an element in X is given by 

llyll = (y, y)i. (15) 

The Hilbert space X is defined as 

:Ie = {y; y has m components, II y II < co} 
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where II y II is given by (15) and the inner product given by (14). 

Since 

tf - to < 00 

and the elements of A(t) and C(t) are bounded it follows that solutions 
of equations (1) and (2) are bounded thus yielding 

-
'Y ex. 

Since elements of 'Yk are bounded over the finite interval [to, tf ] 

'Yk C x. 
That 'Yk and 11 are subspaces of X follows from the fact that any finite­
dimensional linear set in a normed space is closed 10. 

The set of functions to be approximated are solutions to the original 
system equations with the initial conditions x(to) satisfying 

x(to) £ R C En 

where R IS a closed, bounded convex subset of Euclidean n-space. 
Writing 

(16) 

gives 

Jk(A) = max min II y - y W (17) 
yt(f yt'lJ I: 

where the modeling objective is to find 

d~ ~ inf max min II y - y W. (18) 
'lJ .l;t:l).I; Yt(f Yt'lJ.I; 

Before proceding to solve the formulated approximation problem, 
some results from the theory of widths in Banach space are outlined. 
Lower bounds on the optimal performance are found as a function of 
the dimension of the approximating system. 

III. WIDTHS OF SETS IN BANACH SPACE AND LOWER BOUNDS* 

Classically, approximation theory was concerned with the follow­
ing problem. Given a function to approximate and a set of approxi­
mating functions (sinusoids, exponentials, and polynomials, for ex­
ample) find that linear combination of approximating functions which 

* Ref. 7 contains an excellent treatment of widths of sets in Banach space. 
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minimizes some distance function. Notice that here the approximat­
ing functions are given as part of the problem statement. 

Rather than approximate a single function, the problem under con­
sideration is to approximate the class of functions 5= given by (16). 
For a given class of functions 5= it is desired to obtain a "best" set of 
approximating functions rather than to choose the set arbitrarily. A 
measure of comparison is introduced which enables one to evaluate the 
efficiency of different sets of approximating functions. The following 
definitions serve to illustrate these ideas. 

Let ffi be a Banach space containing a set of functions 5= to be approxi­
mated by elements of an n-dimensional subspace, Xn , of ffi. It is desired 
to find the "best" n-dimensional subspace, or equivalently the "best" 
set of approximating functions to use in approximating elements of 5=. 

For a given f t 5= and Xn C ffi 

inf IIf-xll 
X£Xn 

represents how well one can do in approximating a given f with elements 
of Xn . Taking the supremum of the above quantity over all elements 
in 5= leads to the following definition. 

Definition 1: The deviation of 5= from Xn is given by 

Ex n (5=) = sup inf II f - x II· 
ft'J X£Xn 

The deviation represents the worst case approximation error over the 
class 5= when using elements of Xn . Notice that the deviation serves as 
a performance measure of X n • Taking the infimum of the deviation 
over all n-dimensional subspaces of ffi leads to the following definition. 

Definition 2: The nth width of 5= is given by 

dn( 5=) = inf EXn( 5=) 
Xnc(B 

= inf sup inf II f - x II. 
Xnc(B f£'J X£Xn 

Some of the elementary results following from the above definitions are 

(i) The monotonicity of the width: 

do(5=) ~ d1 (5=) ~ d2(5=) ~ 

and 

(ii) The nested property: If 5=1 C 5=2 C ... then 

dn(5=1) ~ d1i (5=2) ~ 
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Notice that 

(19) 

In defining d~ the infimum of the square of the deviation was taken 
over the j-dimensional (j ~ k) subspaces in ~k whereas in defining dk 

the infimum was taken over all k-dimensional subspaces of <E. Using the 
monotonicity property of the width, with X serving as the required 
Banach space, gives 

for any k X k matrix A. 

Definition 3: Un is a closed ball of radius r in Xn if 

Un = {xtXnillxll ~r}. 

(20) 

The following theorem, by Gohberg and Krein, is proved in Ref. 7 
and will be found useful. 

Theorem: If X n+1 is an (n + I)-dimensional subspace of a Banach 
space <E and if Un+ 1 is the closed ball of radius r in X n + 1 then dn(Un+ 1) = r. 

This theorem and the nested property of widths can be used to obtain 
lower bounds on dn(~)' This lower bound can be obtained by constructing 
a ball in an (n + I)-dimensional subspace and choosing r such that 
U n+ 1 C ~. Using the nested property then leads to 

(21) 

Since 
die ~ dk (22) 

the radius of ball also serves as a lower bound on (J Ie) i . 

Lemma 1: Let <I>(t, to) and C (t) be the transition matrix and output 
matrix, respectively, of the original system (1) and (2). Assume this system 
to be completely observable on [to, til. Let Wet) satisfy the previously stated 
conditions. Then the matrix 

f
t! 

M = <I>'(t, to)C'(t) W(t)C(t)cJl(t, to) dt 
to 

is positive definite. 

Proof: Consider the quadratic form x~Mxo = II y W ~ 0 where 

x(to) = Xo, that is, yet) = C(t)cJl(t, to)xo . 

NowllyW = O=}y(t) == Oon[to,tll· 

(23) 
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Since the system is observable y == 0 =} xo = O. Thus JJI is positive 
definite. 

The following theorem provides the lower bound on the performance. 

Theorem 1: Let R be the closed region of initial conditions on the 
original system and let x(to) = 0 be an interior point of R. Assume the 
system to be completely observable on [to, tl]' Denote the boundary of R by 
aR and let 

p2 ~ min x' (to) X (to) . (24) 
x(t o ) taR 

Let the eigenvalues of the positive definite matrix M be ordered Al (M) ~ 
A2CM) ~ ... ~ AnCM). Then the performance, for any k-dimensional 
approximating system, satisfies Jk(A) ~ p2Ak+lCM) for k < n. 

Proof: Let 

if = {y; yet) = C(t)ip(t, to)x(to), x(to) E R}. 

A k + 1 dimensional ball will now be constructed which is a subset of 
if. Consider the k + 1 dimensional ball of radius r 

Ek+l and r will be chosen such that Uk + 1 C if. Since M is real and sym­
metric it can be diagonalized with an orthogonal matrix T. Thus M = 
T' AT and 

where 

T' = T- l 

A = [A, ... 0 1 
o An 

and 

Defining 

Ek+l = {x(to); [TX(to)]i = 0, i=k+2,·'·,n}. 

and 
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gives 

Uk+l {y; yet) = C(t)CP(t, to)x(to), 

II y W ~ p2 Ak+1(1lif), [TXCto)]i = 0 

i=k+2,···,n}. 

Thus for y E Uk + 1 

n 

2: Z~Ai ~ p2A
k+ 1 • 

i=1 

Since 

i = k + 2, ... , n 

and 

for i ~ k + 1 

we have 
n 
"'2 ,<2 
L..., Zi = XoXO = P • 
i-I 

It then follows, from the definition of / and the fact that zero is an 
interior point of R, that Xo E R and therefore y E B=. Thus Uk+l C B= 
and the desired result 

k<n 

follows. 

Remarks: Recalling that the eigenvalues of M are ordered, we 
notice that the lower bound is a decreasing function of the dimension 
of the approximating system. This result can be used to determine 
what order aproximating system (at least) need be considered to 
achieve a given performance. We emphasize that the bound depends 
on the original system and is obtainable prior to the modelling proce­
dure. From an engineering viewpoint, if one has an approximating 
system whose performance is "close" to the bound it may not be 
necessary to seek the minor improvement. Notice that the only prop­
erty of R appearing in the lower bound is p and no attempt was made 
to take the orientation of the set into account. The bound will there­
fore be least conservative when R is a hypersphere of radius p. 
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IV. EVALUATING THE PERFORMANCE FUNCTION 

In this section the problem of finding the performance (or equi­
valently the deviation) of a given approximating system is considered. 
The optimal choice of initial conditions on the approximating system 
is obtained using some elementary Hilbert space concepts and it iR 
shown that 

is a positive semidefinite quadratic form in x (to) . Next, properties of 
convex functions are used to evaluate the performance for different 
classes of regions of initial conditions; namely, for ellipsoids and con­
vex polyhedra. The Powell algorithm for minimizing a function of 
several variables, without calculating derivatives, is then outlined 
and applied to the system approximation problem. 

The problem of finding 

fl = inf II y - y 112 (25) 
yt'll k 

is equivalent to finding the best choice of initial conditions on a given 
approximating system characterized by 'Yk E !:Ok. It can be shown 11 

that there exists a unique y* E 'Yk (y* is called the projection of y in the 
space 'Yk) such that 

fl = II y - y* W = II y W - II y* W· (26) 

Furthermore, since gl , g2 , ... , gk spans 'Yk , y* has the representation 

k 

y* = L gixt 
;=1 

where 

(27) 
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and G is the Grammian of {gi ; i = 1, ... , k}, that is, 

i, j = 1, ... , k. 

Any solution to (27) results in an optimum choice of initial conditions 
on the approximate system. If the g/s are linearly independent (this 
corresponds to the system being observable) the Grammian is invertible 
and j;* is unique. Thus 

where Gt is the pseudoinverse12 of G. 

The Grammian is given by 

(28) 

G(gl , ... ,gk) = f" eAICI-to)C'W(t)CeACt-to) dt (29) 
to 

and 
(30) 

where F is given by 

f
t

' F = eAIU-to)C'TV(t)C(t)<I>(t, to) dt. 
to 

(31) 

Using (30) in (28) gives 

(32) 

Thus the optimal initial condition on the approximating system 
is obtained by linearly transforming the actual initial condition with 
the (k X n) matrix GtF. Using the orthogonality property (26) yields 

II y - y* W = II y W - :l*'(to)G:l*(to). 

Letting 

f
t

' M = <I>'(t, to)C'(t) W(t)C(t)<I>(t, to) dt 
to 

and using (32) and the symmetry of G (and thus Gt) gives 

II y - y* W = x'(to)(M - F'GtF)x(to). 

In summary, 

02 = inf II y - y 112 = x/(to) Dx(to) 
yt'Y i 

(33) 

(34) 

(35) 
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with 

D = M - F'GtF. (36) 

Thus, finding the optimal initial condition on the approximating sys­
tems leads to the positive semidefinite quadratic form (35) for the 
approximation error. The above represents the first step in evaluating 
the performance of any given approximating system. 

Since D is a positive semidefinite matrix, 82 defined by (35) is a 
convex function of the initial state x (to). The following theorem from 
Ref.13 is useful in maximizing 82

• 

Theorem: If the absolute maximum of a convex function, defined 
on a closed, bounded, convex set, is finite then the absolute maxi­
mum is taken on at an extreme point of the set. 

Remarks: An extreme point of a convex set is a point in the set 
that cannot be written as a convex combination of two other points 
in the set. Notice that an extreme point is a boundary point; how­
ever, generally not every boundary point is an extreme point. Thus, 
if one is seeking the absolute maximum of a convex function defined 
on a closed, bounded, convex set only boundary points need be con­
sidered. Also if the domain of definition is a convex polyhedron (a 
closed, bounded, convex set with a finite number of extreme points) 
the absolute maximum can be obtained by simply evaluating the 
function at the extreme points and choosing the largest value. 

Two general classes of closed, bounded, convex regions of initial 
conditions are considered in this paper, the ellipsoid and the convex 
polyhedron. 

Let the region under consideration be an ellipsoid defined by 

(37) 

where B is a positive definite, symmetric matrix and r is finite. Notice 
that R is closed, bounded, and convex. Now the constrained maxi­
mization problem is one with an inequality constraint. Using the con­
vexity of R and 82 

, the absolute maximum of the quadratic form is 
seen to take place on the boundary of the set R. Thus the performance 
can be written 

Jk(A) = max x'(to) Dx(to) 
z(t o ) 

subject to the constraint 
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It can easily be shown that the x(to) maximizing the quadratic form 
is the eigenvector of the matrix B-1 D corresponding to the largest 
eigenvalue and the maximum is given by 

(38) 

A convex polyhedron is usually representative of the type of in­
formation one has as to the range of initial conditions. As an example 
of this situation consider the original system to represent linearized 
equations of motion of a space vehicle. Suppose it is known that the 
range of initial conditions are in terms of bounds on position, ve­
locity deviations, and so on. For example, 

I X1Cto) I ~ 100 feet. 

I X2(to) I ~ 5 feet per second. 

This particular region is described by a rectangular region III state 
space with the extreme points being the corners 

In general for this type of initial condition region, that is, 

i = 1, ... ,n, 
the region has 2n extreme points. Since 82 is an even function of x (to) 
it is only necessary to consider 2n-1 extreme points eliminating from 
consideration the negative of any point considered. 

The convex polyhedron region also is important, for example, since 
it may be used to simply approximate a more complex region. In gen­
eral, let 

XCi) i = 1, 2, ... , N 

be the extreme points of the convex polyhedron R. Using the con­
vexity of 82 in the initial state x (to) the absolute maximum 82 over 
R takes place at one of the X(i). Letting 

where D is given by equation (36) leads to 

(39) 
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v. MINIMIZING THE PERFORMANCE FUNCTION 

Since it is a fairly simple matter to evaluate the performance, whereas 
evaluating the gradient of the performance function requires significant 
computational effort, it is desirable to use a numerical procedure not 
requiring a gradient computation. Notice that Jk(A) is not generally 
differentiable. Here, for completeness, the Powell method of minimizing 
a function of several variables without calculating derivatives is pre­
sented. l4 Reference 15 contains a summary of the various minimization 
techniques available not requiring the computation of a derivative. 
See Refs. 14 and 15 for a more detailed description of the methods 
and their convergence properties. 

Consider a real, scalar, valued function of N real variables a1 , ... , aN 
written f(a). Powell's iterative scheme concerns itself with finding the 
minimum of f(a) without computing its derivative. 

Each iteration of the modified Powell procedure starts with a search 
down N linearly independent directions 

1]1 , 1]2, ••• , 1]N 

starting with an initial guess ao and defines a new set of directions for 
the next iteration. 

An iteration of the recommended procedure, suggested by Powell, is: 

(i) for j = 1, 2, ... , N calculate Ai such that f(a'-l + Ai1]i) is 
minimum and define ai = ai-1 + Ai1]i • 

(ii) Find the integer m, 1 ~ m ~ N, such that j(am- 1) - f(am) is 
a maximum and define .1 = f (am-I) - f (am). 

(iii) Calculate f3 = f(2aN - ao) and define 

f1 = f(a o) 

f2 = f(aN). 

(iv) If either f3 ~ f1 or 

(f1 - 2f2 + f3) (f1 - f2 - .1)2 ~ !Ll(f1 - f3)2 

use the old directions 1]1, ••• , 1]N for the next iteration and use aN 
for the. next ao , otherwise 

(v) define 1] = an - ao and calculate A such that f(aN + A1]) is 
minimum. Use 

1]1, ••• , 1]m-1 , 1], 1]m+1 , ••• , 1]N 

as the new directions and aN + A 1] as the new ao • 
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The performance functions, for the two classes of initial conditions 
being considered are given by (38) and (39) in terms of the matrix D 
defined in (36). The major effort in computing the performance func­
tion is seen to lie in the computation of D. Sylvester's expansion (see 
page 83 of Ref. 16) for computing eAI is useful in the computation of 
the matrices F and G. 

The basic procedure can be outlined as follows: 

(i) Compute and store C(t)iJ!(t, to) for t I: [to, tl ] using (7) and (8). 
(ii) Evaluate Musing (23). 

(iii) If it is desired to compute the lower bounds to aid in choosing 
the dimension of the approximating system, compute the eigenvalues 
of M and obtain the bounds from the result of Theorem 1. 

(iv) Choose starting values for A and choose the directions for the 
initial search in the modified Powell method to be 

1 o 
o 1 

o 

o o 

where the above are k 2 vectors. 

o 

o 

1 

(v) Use modified Powell method to determine the minimum of the 
performance function. Each element of the vector a in the Powell 
method corresponds to an element of A. 

VI. EXAMPLE 

A linearized missile guidance loop may be expressed in the form 

. H 
X2 = m _ t X3 , 3;3 = U (40) 

where Xl is the lateral position deviation from a nominal trajectory, 
X2 is the lateral velocity deviation, X3 is the attitude deviation in the 
given direction and u is the control signal. The relationship between 
the attitude and lateral acceleration is given through the time-varying 
gain H/(m - t) which accounts for the loss of mass because of fuel 
consumption. 
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Suppose it is desired to approximate homogeneous solutions to 
(40) for initial conditions (at beginning of a stage) lying in a set 
R (R is defined later) with solutions of a constant coefficient system. 
The actual system (40) can be written in the vector-matrix form 

:t(t) = A (t)x(t) (41) 

with output 

yet) = [1 0 O]x(t) = Cx(t) (42) 

where 

[

Xl (t)] 
x(t) = X2(t) 

X3(t) 

and 

A(t) = [: : m ~ 1 (43) 

Let 

(44) 

Before proceeding to find the approximation it is instructive to 
determine the lower bounds on the optimal performance. This will 
naturally aid in choosing the dimension of the approximating system. 
The matrix, .1.11, defined by (33), is given by 

M = faT Cf>'(tJ o)C'CCf>(t, 0) dt (45) 

with 

d 
dt Cf>(t, 0) = A(t)Cf>(tJ 0). (46) 

The transition matrix, which is the solution to (46) with the identity 
initial condition, is given by 
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Evaluating M leads to 

T 

J\[ = 

T2 

2 
H{~' - (m ~ T)' In (m;;: 7') + ~ (T' - 2mT)}1 

lYl23 

J 
with 

M _ H[T3 _ ~ 3 _ (2T + m)(m - T)2 
23 - 3 36 m 6 

.In (m : 7) + (m - T)2i!T + 5m)] 

and 

T3 _ (m - T)3 In2 (m - T) + ~ (m _ T)3 
33m 9 

.In (m - T) + ~ {m3 - (m - T)3l 
m 27 

_ 10 m3 _ (2T + m) (m _ T)2 
36 3 

.In (m : T) + (m - T)2i:T + 5m) 

Let the constants defining the problem be given by 

m = 15 seconds (normalized mass) 

T = 10 seconds 

H = 15 (pound-seconds per slug) X 10-3 

and let the region of initial conditions be given by 

R = {x(o); I x1(o) I ~ 30 feet, I X2(O) I ~ 2 feet per second, 

I X3(O) I ~ 1 milliradian l· 
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Evaluating 111 for the above values of the constants leads to 

with eigenvalues 

[ 

10 

JlI[ = 50 

206 

Al = 8393, 
\Ve have 

and 

Here Jo represents 

J o ~ 8,393 

J 1 ~ 31 

maxllYW· 
XotR 

1.1. 

227 

The second order approximation thus has the possibility of yielding 
a negligible approximation error. Thus in the remainder of this paper 
the optimal second order approximation will be sought. Thus 

and 

fj = [1 O]x. 

The initial choice for A in the iterative procedure is 

"L = [~ ~J 
which represents polynomial approximations to solutions of the orig­
inal system. 
The extreme points of R are given by 

x'" = [3~l, x'" [ -3~l, x'" = [~~l and x'" 
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and their negatives. Thus 

Jl.1o) = max {X(i)1 Dx(i)} = 340 , 
where D is evaluated from (36). It is thus seen that the performance 
function is far greater than the lower bound and the possibility exists 
for a significant improvement. The result of applying the Powell 
algorithm to this problem yields 

.1* _ [0.244 0.827 ] 

0.177 X 10-3 0.629 X 10-3 

and 

J 2 (.1*) = 33.4 

with the eigenvalues of .1* given by 

Al(A*) = 0.245 

AlA*) = 0.30 X 10-4
• 

The above results are obtained after three iterations of the Powell 
algorithm. The G, F and D matrices are given by 

and 

G = [271 771] 
771 2230 

F = [43.14 296.0 1459J 

112.2 832.6 4241 

[ 

4.4 X 10-6 -1.8 X 10-4 1.2 X 10-
4

] 

D = -1.8 X 10-4 7.3 3.5 X 10-3 
• 

Evaluating 

1.2 X 10-4 3.5 X 10-3 4.2 

max {x W DX(i)} , 
gives the maximum approximation error occurring at the extreme point 
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Figure 1 shows the solution of the actual and approximate system 
for this worst-case initial condition. The solutions are obtained from 

yet) = 30 - 2t + CP13(t, 0) 

and 

get) = 4.82 i 1t + 19.78 eA
•

t
• 

The matrix relating the initial conditions is given by G-IF, that is, 

x(o) = G-1Fx(0). 

x(o) = [ 1.00 
-0.295 

80 

1.86 

-0.271 

-1.68]X(0) . 

2.48 

j 
70 

I' 
'I 

I­
UJ 
UJ 
u.. 

~ 

60 

(/) 50 
z 
Q 
I­
:> 
-.J 
o 
til 40 

30 

II 

1/ 
i 
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",," V 1// 

"- ..... '\ 
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TIME IN SECONDS 

Fig. 1-Exact and approximate solutions in worst case. 
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VII. CONCLUSIONS 

A method for uniformly approximating solutions of linear, time­
varying, homogeneous differential equations has been presented. The 
problem of approximating systems subject to control or reference 
inputs is considered in Ref. 6 for the class of exponential polynomial 
control inputs. 

One of the obj ectives of modeling with constant coefficient systems 
was to obtain closed form approximations. Use of Sylvester's expan­
sion allows one to derive these closed form expressions. However, 
more general classes of approximating systems can be sought while 
still maintaining the property that approximations are in closed form. 
For example, a general model of the form 

j; = p(t)ifx 

where p (t) IS a scalar valued function possesses the closed form 
solution 

and pet) as well as if may be sought as part of the modeling procedure. 
A complexity constraint can be imposed on pet) by considedng it to 
be a polynomial of given degree and the search for the model reduces 
to finding the coefficients of the polynomial as well as the elements of if . 
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A Second Order Statistical Analysis of tIle 
Operatioll of a Lilniter-Pllase 

Detector-Filter Cascade 

By w. D. WYNN 

(Manuscript received August 30, 1968) 

This paper presents a second-order statistical analysis for the cascade of 
a bandpass limiter, and '£deal phase detector and a v£deo filter. This cascade 
forms an important subsystem, in the l1wthematical 1rwdel of some coherent 
communication systems where information is transmitted by phase or 
frequency modulation of the carrier . We derive the autocorrelation function 
R(t! , t2 ) of the video filter response when the bandpass limiter input is a 
fixed amplitude-phase modulated carrier plus stationary gaussian noise. 
The video filter response is wide sense stationary for some nontrivial cases; 
these include biphase, single tone, and stationary gaussian noise phase 
modulation. For these cases, we obtain the video filter output average power 
spectrum as the Fourier transform of R(T) for all values of the limiter input 
signal-to-noise power ratio. An application of the results of this paper is 
the performance of a F1J!I-P1Jl demodulator for a set of parmneters charac­
teristic of one mode of operation of the Apollo Unified S-Band communica­
tions system. We present the performance as a family of curves of sub carrier 
channel output signal-to-noise power ratio as functions of the limiter input 
signal-to-noise ratio where subcarrier phase modulation index is a param­
eter. The approach is similar to the analysis by Davenport of the signal­
to-noise ratio transfer characteristic of an isolated bandpass limiter. 

I. INTRODUCTION 

In some coherent communication systems, such as the Apollo Uni­
fied S-band system/ where information is transmitted by phase 
modulating a carrier, bandpass limiters2 are used in the IF channels 
preceding the coherent demodulators. Ideally the bandpass limiter 
removes any amplitude modulation that might exist before the signal 
is demodulated. 

233 
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Figure 1 shows a typical coherent phase demodulator used in such 
a system. This demodulator consists of a multiplication operation (a 
phase detector) with post-video filtering. The phase modulated signal 
is multiplied by a coherent carrier reference to yield a video signal 
containing the desired information. The signal into the limiter is 
usually accompanied by noise that is frequently assumed to be addi­
tive and gaussian. The presence of the noise affects the performance 
of the demodulator in a very complicated way because of the non­
linearity of the limiter. Thus it is difficult to evaluate the corruptive 
effect of the noise on the demodulated information. 

One criterion of performance at points in a communication system 
is the signal-to-noise power ratio (SjN). For the cascade in Fig. 1, a 
problem of interest to the systems engineer is the video filter output 
SjN as a function of the input SjN to the limiter when the input noise 
is additive, stationary, and gaussian. The relationship is known between 
input and output SjN for an ideal bandpass limiter where the input is 
the sum of a stationary gaussian noise and a signal pet) cos (wet + cp) 
(see Ref. 2). For the analysis there, pet) is a random process and is 
slowly varying compared with cos wet. The carrier phase cp is a random 
variable independent of pet) with a uniform distribution over [0, 2'71-], 

It is not possible to apply the known SjN transfer characteristic of 
the ideal bandpass limiter found in Ref. 2 directly to obtain the SjN 
transfer characteristic for the bandpass limiter-phase detector-video 
filter cascade. A knowledge of the form of the signal and the noise 
out of the bandpass limiter, and not just the SjN of this output, is 
necessary to determine the effect of the phase detector on the bandpass 
limiter response. 

To obtain the cascade SjN transfer characteristic we apply the 
mathematical tools used in Ref. 2. The form of the signal assumed in 
the analysis of the cascade is set) P cos [we + OCt) + cp] where P is 

p (t) cos [Wet + 0 Ct) + <l>J + NOISE 
// 

REFERENCE 
SIN (Wet +<1» 

I 
/ 
I 

1 
S(O, N 

I-----~ I 
Bl~D- :do! I I 
PASS 

FILTER 
(We) 

z(O 

OUTPUT 

Fig. 1-A coherent phase demodulator with IF bandpass limiting in the 
presence of additive noise. 
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a positive constant, O(t) is phase modulation that is slowly varying 
compared with cos wet, and cp is a random variable representing the 
arbitrary initial phase of the signal carrier. The probability density 
function of cp is assumed to be uniform in the interval [0, 27r]. The 
noise input to the bandpass limiter is assumed to be additive, stationary, 
and gaussian with zero mean and power spectral density N. The input 
noise, the modulation O(t), and the carrier phase cp are assumed to be 
jointly statistically independent. For the following analysis, the limiter 
is assumed to be ideal with limit level l. The transfer function of an 
ideal limiter is defined by 

f +l, 
y = lex) = l 0, 

-l, 

x > 0 

x = 0 

x < o. 
(1) 

A coherent carrier reference sin (wet + cp) is assumed to be available 
for the demodulator where cp is the phase of the carrier. 

II. THE SECOND ORDER STATISTICAL ANALYSIS 

2.1 A Cascade 1I10del when set) is Narrow Band Limited 

In order to obtain a SIN transfer characteristic for Fig. 1, the auto­
correlation function of z(t) is derived. When Rz(t1 ,t2 ) = Rz(T) the aver­
age power spectrum of z(t) is defined by the Fourier transform of Rz(T) 
and the SIN transfer characteristic can be found. An analysis of the 
autocorrelation function of z(t) does not seem possible for general set). 
However, if the signal set) is a narrow band-limited process such that 
the bandpass filters are narrow compared with the carrier frequency We , 

the response z(t) should be the same with or without the post bandpass 
filter that precedes the phase detector. The response of the nonlinearity 
lex) to an input x(t) = set) + net) that is narrow band-limited about 
±We is a family of terms narrow band-limited about the frequencies 
±nwc where n = 0, 1,2,3, ... (see equation 13-53, section 13-1 of Ref. 3). 
Any narrow band-limited input to the phase detector that is not about 
±We will generate a phase detector response above the cutoff frequency 
assumed for the video filter. For a narrow band-limited x(t) the auto­
correlation function of z(t) is obtained from the analysis of Fig. 2. 

2.2 The Derivation of the Autocorrelation Function of z(t) 

Assume that the input x(t) is narrow band-limited such that Figs. 1 
and 2 yield equivalent z(t). The autocorrelation function Rz(t1 ,t2) is 
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s(t), N IF 
BAND-PASS 

FIL TER 
(We) 

1, (X) 
VIDEO 

FILTER 
z(t) 

t 
I 
I 

:x: (t) = s (0 +n(t) 
REFERENCE 

SIN (Wet +4» 

fcc «fe 

Fig. 2 - The narrow band equivalent receiver for the derivation of RZ(tl, t2 ). 

obtained by first deriving Rw (tl , t2) from the model in Fig. 2. Since z 
and ware related by the linear video filter, R.(t1 , t2 ) follows directly 
from Rw(tl , t2)' 

The Laplace transform solution of a zero memory nonlinearity with 
stochastic excitation is used to derive Rw (tl , t2) (see Chapter 13 of Ref. 3). 
The limiter characteristic is 

lex) = -2
1

. [f f+(w) exp (xw) dw + f f-(w) exp (xw) dW] (2) 
7rJ c+ c-

where 

i + OO l 
f+(w) = lex) exp (-wx) dx = - , 

o W 
for Re [w] > 0 

and 

10 1 
f-(w) = -00 lex) exp (-wx) dx = ~ , for Re [w] < o. 

The variable w = u + jv is complex with Re[w] = u. The contours 
C+ and C_ are taken parallel to the v axis in the w plane with Re [w] > 0 
for C+ and Re [w] < 0 for C_ . For convenience lex) is written symbolicly 
as 

, 1 f lex) = -2' few) exp (xw) dw 
7rJ C 

(3) 

where equation (3) means the same as equation (2) when C + and C _ are 
not the same contours. 

Since wet) = sin (wet + ¢) ·l[x(t)], the autocorrelation function of 
wet) is 

(2!)2 i f(WI) Iv f(W2)E {sin (Wetl + ¢). exp (WISI + Wln l ) 

·sin (Wct2 + ¢). exp (W2S2 + W2n2)} dWI dW2 (4) 
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where Si = s(tJ and ni = n(ti), i = 1, 2. The order of complex integra­
tion and the expectation operation have been interchanged to get equa­
tion (4). For the assumed statistical independence of net), e(t), and cp, 
the expected value in equation (4) factors into 

. exp ![ciwi + 2Rn(T)W1W2 + (lw;] (5) 

where T = t2 - t l . The form for the cross correlation function 
E{ exp (wlnl) exp (W2n2)} where net) is stationary gaussian noise has been 
used in equation (5) (see pp. 476-477 of Ref. 4). 

For the case where set) is narrow band-limited with respect to We, 
the filter in Fig. 2 is a narrow bandpass filter, and is assumed to be 
symmetrical about We . Then net) can be written as (see pp. 373-374 of 
Ref. 4) 

net) = Xe cos wet - Xa sin wet 

where Xe and Xa are statistically independent stationary gaussian random 
processes, and 

(6) 

where Rv(T) = Rxc(T) = Rx.(T). For a narrow bandpass IF filter, the 
transform of Rv(T) is lowpass with a narrow bandwidth compared to We . 

With the substitution of 

t2 = t + T, 

cp* = cp + wet, 

_ exp (jcp*) - exp ( - jcp*) 
sin cp* - 2j 

and 
+00 

exp [Rn (T)W1W2] = L Im(wlw2Rp) exp (jmweT) (7) 
m=-OO 

(see Article 1, Chapter 3 of Ref. 5), equation (5) becomes 
+00 

(-t) L I m(W1W2Rv) exp (jmweT)·E {[exp (jwcT + j2cp*) 
m=-OO 

+ exp (- jWcT - j2cp*) - exp (jWeT) - exp (- jWeT)] 

. exp [wlP cos (e l + cp*) + W2P cos (e2 + cp* + WeT)]} . (8) 
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Since exp (jWeT) and exp [W2P cos (82 + cp* + WeT)] are periodic in WeT 
with the period 211", the function 

exp (jmweT)E{ } (9) 

in equation (8) is periodic in WeT. Since Rv(T) transforms to a narrow 
band-limited lowpass spectrum, the autocorrelation function of z(t) 
corresponds to the dc component of the Fourier expansion of equation 
(9). With the substitution of 0 = WeT, the dc component of equation 
(9) is 

12lr do 
- exp (jmo) ·E{ 

o 211" 

+00 +00 {12lr do 
= r~oo k~oo I r(wIP), I k(w2P) ·Eo 0 211" 

.[E •. {exp UCm + 1 + k)1i + j(2 + r + k)</>- + j(rO, + kO,)]1 

+ E",* {exp U(m - 1 + Ie) 0 + j( -2 + r + k)cp* + j(r81 + k(2)]} 

- E",* {exp [j(m + 1 + k) 0 + j(r + k)cp* + j(r81 + k(2)]} 

- E •• {exp UCm - 1 + k) Ii + jCr + Ie)</>- + j(rO, + kO,)]J ]}. (10) 

Since cp* = wet + cp, cp* has a uniformly distributed probability density 
function on [0, 211"]. The averages in equation (10) with respect to 0 
and cp* follow. For example, the first average with respect to 0 and cp* 
is zero if W + k + 1 ¢ 0 or k + r + 2 ¢ 0, and when k = -1 - m 
and r = -2 - k = m - 1 the double average is exp [em - 1)81 -

(m + 1) 82 ], Equation (8) reduces to 

c-t) j~~ ImC",,""R.{I~':.·i)I~(::)I)E{eXp [j(m - 1)0, - i(m + 1)0,]1 

+ I~w./t) I~~;"~l)E {exp [j(m + 1) 81 - j(m - 1) 82]} 

- I~:'t) I~~;"~)l)E {exp U(m + 1) 81 - j(m + 1) 82]} 

- I~~lt) I~~;"~l)E {exp [j(m - 1) 81 - j(m - 1) 82]} ]. (11) 

The terms in equation (11) for positive and negative m can be combined 
by noting that I -mex) = I m(x). With the substitutions 

(12) 
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and 

hm,k = 2~j fcf(w)wk exp (u~w2)Im(wP) dw, 

the autocorrelation function of z(t) is 

where 

00 00 R2a+m 
Rz(tl , t2) = l,~ ~ 22Q +

mE
;, (q + m) , 

. [h!+1,2a+mRe(m + 1, m + 1, tl , t2) 

+ h!-1,2a+mRe(m - 1, m - 1, tl , t2) 

Em = {I, 
2, 

m = 0 

m>O 

239 

(13) 

and Re(A, B, tl ,t2 ) = E {cos [AB(t l ) - BB(t2 )]} for any integers A and B. 

III. THE CLOSED FORM SOLUTION FOR hill, Ie 

The autocorrelation function of z(t) given in equation (14) contains 
the constants hm ,k where m + k are odd integers. For the ideal limiter 
characteristic of equation (1), there are closed form solutions for these 
parameters. Since f+(w) = l/w for Re [w] > 0 and f-(w) = l/w for 
Re [w] < 0, equation (13) becomes 

hm.k = -21 . f lwk-Ilm(wP) exp (u
2

2
w2) dw 

~J c- \ 

+ 2~j fc+ lW
k
-

1 
I m(WP) exp (U;2) dw (15) 

where C _ is the contour (- E - j 00, - E + j (0) and C + is the contour 
( + E - j 00, + E + j 00 ). By the change of variable w = jx and the sub­
stitution of Im(z) = (j)-m J m(jz) , analytic continuation can be applied 
for m ~ 0 and k ~ 0 to give 

h = I (')k+m-l 100 

(k-l) J ( P) [-U
2
X2] d 

m. k J x Tn x exp 2 x. 
~ -00 

(16) 

When m + k is even, the integrand of equation (16) is odd and hm,k = O. 
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When m + k is odd, the integrand of equation (16) is even and 

(
m + k)( p2)m12 

h = 2l (:\k+m_l.
r 
-2- 2c? F (m + k. + 1. _P2) (17) 

m,k 11" JJ [ u ]k 1 1 2 ' m '2u2 

2r(m + 1) (2)1 

where a solution has been used for the integral 

i~ Xk- 1 J m(xP) exp [ - ;2X2] dx (18) 

in terms of the confluent hypergeometric function IFl(a; f3; -x) (see 
equation A.1.49, p. 1079 of Ref.6). For the case when m and k are non­
negative integers IF1(m + k/2; m + 1; -x) can be expressed in closed 
form in terms of first and second kind modified Bessel functions. A 
list of these expressions is given by Middleton (see equation A.1.31, 
section A 1.2 of Ref. 6). A collection of hm,k in closed form for low order 
indices is given in Table 1. For Table I, x = p 2/2u2 is the input signal­
to-noise power ratio into the limiter in Fig. (2). 

Any of the hm,k in equation (14) can be found in closed form from 
Table I by using the recurrence relations 

2(m + 1) 4(m + l)m 
hm+2'k = hm,k - P hm-1,k-l + -P-2 -- hm ,k-2 , (19) 

P (k - m - 2) 
hm+1,k+l = --2 hm,k - 2 hm-1,k-l 

u u 

2(k - m - 2)m + U2p hm,k-2 , (20) 

and 

(m - k) p 2 (m - k) 
hm,k+2 = 2 hm'k + 4 hm- 2,k - U4 Phm-l,k-l. (21) 

U U 

Equation (19) is derived from equation (16) by using the Bessel 
function identity 

2(m + 1) . 
J m+2 (xP) = Px Jm+1(xP) - Jm(xP). (22) 

Equation (20) is derived through a by-parts integration of equation 
(16) and the application of equation (19). Equation (21) is derived 
through by-parts integration of equation (16). In the development of 
equations (19), (20) and (21), the integral in equation (16) is re-
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TABLE I-CLOSED FORM SOLUTIONS OF SOME hm,k 

m k hm,k 
-

1 0 e2Z;u e-
x
/
2
LIoex/2) + I 1ex/2)] 

-
/')'I! l 

o 1 ~ -x/2I e /2) 
- -

(rr)!u e a X 

2 1 - (2)! l -x/2 I e /2) 
(rr)!u e 1 X 

-

1 2 e2~)l~3 e-
x
/
2
[Ioex/2) - I 1ex/2)] 

-

3 2 (2~)1~, e-';{1o(X/2) - (1 + ~)1,(X/2) ] 
-

o 3 (~~)!l e-x
/

2 [el - x)Ioex/2) + xI1ex/2)] 
7r 2 U 

-

2 3 (2~:u' e -,n [ 1o(x/2) - (1 + ~)1, (x/2) ] 
-

4 3 (;:.~r:, e-'/{ (1 + ~ + ~)1,(X/2) - (1 + ~)1o(X/2) ] 
-

1 4 (2;~U5 e-x
/

2 [(3 - 2x)Ioex/2) + (2x - 1)I1(x/2)] 
-

3 4 (;:.~f:, e-,n[ (1 + 2~)1o(X/2) - (1 + 2: + ~ )1, (x/2) ] 
-

5 4 (~,,~f:, e-,n[ (H ;X + ~~)IoCx/2)-( H ;! +~~+~~)1,(X/2) ] 
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stricted to the half interval [0, 00) which is possible since the inte­
grand of equation (16) is even when m+k is odd. 

IV. THE AVERAGE POWER SPECTRUM OF Z (t) 

The autocorrelation function of z(t) given in equation (14) becomes 
time independent such that z(t) has the average power spectrum Sz(w) = 
F[Rz(r)] when Ro(A, B, t1 , t2) = Re(A, B, r) for integers A and B. 
There are some important cases of O(t) for which Re is time independent. 

If 0 is a biphase modulation with OCt) = ± I 0 I that has a zero mean 
and autocorrelation function (see equation 9-42, section 9-2 of Ref. 4) 

for 
(23) 

then 

R e (A, B, t1 , (2) 

= cos A I 0 I· cos B I 0 I + sin A I 0 I·sin B I 0 I'Te(r) (24) 

where Te(r) = Re(r)/I 0 12 is the normalized autocorrelation function 
of OCt). Then Re is a function of r = t2 - t1 . 

For a single tone modulation given by OCt) = 1n1 sin (WIt + ~) where 
~ is a random variable with a uniform probability density function 
on [0, 27r], a simple Bessel series expansion gives 

00 

Re(A, B, tl , t2) = L €nJ2n(Aml)J2n(Bml) cos (2nwIT) 

where 

n=O 

00 

+ L €nJ2n-l(Aml)J2n-l(Bml) cos [(2n - l)wlr] (25) 
n=l 

En = {I, 
2, 

n=O 

n> 0. 

For the single tone modulation, Re depends only on the time difference T. 

If OCt) is the sum of tones 
N 

OCt) = L mp sin (wpt + ~p) (26) 
p=l 

where ~p, p 1, ... , N, are independent random variables with 
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uniform probability density functions on [0, 271"], Re is again independent 
of time. 

If OCt) is a stationary gaussian process with zero mean, variance O"~ 
and autocorrelation function l(o(r) , then Re(A, B, tl ,tz) = Re(A, B, r). 
The second-order characteristic function for the stationary gaussian 
process is defined as (see equation 112, Chapter 7 of Ref. 4) 

<PO(Wl ,Wz ; r) = E(exp {j[wlO(t + r) + w2 0(t)]}) 
(27) 

Then 

Real Part E I exp (jAOI - jBOz)} 

exp [-~ (A' + B') }exp [ABK.(r)] (28) 

= Re(A, B, r). 

The validity of equation (14) depends on the narrow band-limited 
assumption for the modulated signal s (t) at the carrier frequency 
We. For s (t) to be narrowband limited, the parameter values that the 
modulation functions can have are restricted. 

v. AN APPLICATION OF THE Rz RESULTS TO THE PERFORMANCE OF A SUB­

CARRIER CHANNEL 

A modulation technique sometimes used for communication is FM­
PM where the carrier is phase modulated by a sub carrier that is in 
turn frequency modulated by the information waveform. The FM­
PM signal is of the form 

set) = P cos {wJ + ¢ + 1n1 sin [WIt + ~ + A(t)]} (29) 

where P, We , WI and 1nl are constants, ¢ and ~ are independent random 
variables usually assumed to have uniform probability density func­
tions over [0, 271"], and A(t) is the integral of the information waveform. 
In a typical application, We » WI and A(t) is slowly varying compared 
with cos WIt. With these restrictions the information }..(t) can be re­
covered from set) with the receiver shown in Fig. 3. 

The purpose of the bandpass limiter is to remove the effect of varia­
tions that might occur in P. For the ideal case where set) is not per­
turbed by noise, the sub carrier filter input z(t) is 



244 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1969 

BAND­
PASS 
FIL TER 

(We) 

BAND-

l( ) PASS 
t :x: ~ FILTER 
I I (We) 

VIDEO 
FIL TER 

SUB­
CARRIER 

BAND-

t ~~iESR 
: (WI) I I '-------' I L---_---' I L---_--' L---_--' I 

z(t) 

I I 
X(t) !j(t) 

REFERENCE 
SIN (wet +4» 

I 
z(t) 

Fig. 3 - FM-PM receiver with ideal bandpass limiter. 
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(30) 

If A(t) is slowly varying compared with cos WIt, the information can be 
recovered with a sub carrier filter that passes only the first component 
of the sum in equation (30). For the noiseless case the subcarrier filter 
response is then 

(31) 

After additional processing in a sub carrier demodulator, X(t) is obtained 
from equation (31). One criterion of performance of the receiver is the 
SIN out of the sub carrier filter as a function of the limiter input SIN, 
x = p2 12(J'2. Since A(t) varies slowly compared with cos WIt, the output 
SIN for the sub carrier filter is determined with sufficient accuracy by 
setting A(t) == O. If A(t) == 0, the sub carrier output SIN follows directly 
from equations (14) and (25). Substitution of equation (25) into equa­
tion (14) gives the power spectrum 

S.("') I ,~,",.in '0, .. " ~ 2h;o .t J;.~,(m,)· F[ cos (2n - I)"" T 1 

+ (t)[(J'hOI - (J'h21 J O(2ml)]2·F[rv(r)] 

00 

+ (!)(J'2h;1 L J!(2m1) ·F[rv(r)· cos (nwlr)] 
n=1 

00 

+ (!)(J'4h~2 L J;n-I(ml) ·F[r~(r)· cos (2n - l)wlr] 
n=l 

00 

+ Cl6) L En[(J'2h12 J n(ml) - (J'2h32Jn(3ml)]2·F[r;(r)·cosnwlr] 
n=O 
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00 

+ (l6)CT6h;3 L J~(2ml) ·F[r~(T)· cos nWlT] 
n=l 

00 

+ (riB) L En[CT3h23Jn(2ml) - CT3h43Jn(4ml)]2.F[r:(T)·cosnwlT] 
n=O 

00 

+ (lz)CT 8hi4 L J;n-l (ml) . F[r!( T)' cos (2n - l)wl T] 
n=l 

00 

+ (m) L En[CT4h14Jn(ml) - CT4h34Jn(3ml)]2·F[r!(T)·cosnwlT] 
n=O 

00 

+ (7As) L En[CT4h34Jn(3ml) - CT4h54Jn(5ml)]2·F[r!(T)· cos nWIT] (32) 
n=O 

where r" = R,,/R,,(O) = R,,/CT2
• The approximation, equation (32), 

neglects all the terms of equation (14) containing the factor R;a+m 

where 2q + m > 4. The terms in equation (32) are the significant terms 
of Sz(w) for the single tone modulation. The spectrum in equation (32) 
is the weighted sum of terms of the form 

F[r~( T) cos mWl T] = 2~ F[r~( T)] * F[ cos mWl TJ (33) 

where * is the convolution operation. Since F[cos mWIT] is a pair of 
impulses of weight 7r at ±mwl , 

where 

Sv,n(W) = F[r~(T)J. 

The first term in the spectrum of equation (32) is the signal content 
of z (t). All other terms of equation (32) correspond to noise alone or 
a combination of signal and noise. All terms of equation (32) except 
the first term are usually combined to give the interference (noise) 
spectrum at the output of the video filter. 

A computation was made for the subcarrier filter output SIN as a 
function of the input SIN x. The following conditions are assumed for 
the computation. 

(i) The power spectrum of the input gaussian noise to the cascade 
in Fig. 1 is uniform over the bandwidth of the prelimiter bandpass 
filter. 
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(ii) The prelimiter bandpass filter is assumed to have a gaussian 
transfer function such that 

r,Cr) ~ exp [ -;'w:} (35) 

(iii) The subcarrier amplitude transfer function is 

{

I, WI - il; < I W I < WI + ~w 
I H(jw) I = (36) 

0, all other w, 

where ilw « Wo . Also, Wo = 12.566 X 106 and WI = 6.434 X 106 are 
assumed. Substitution of equation (35) into equation (34) gives 

S •. n(w) = F[r~(r)J = ~ exp [-.!!:... (~)2J. (37) 
wo(n) 4n Wo 

From condition iii, the noise spectrum in the passband of the subcarrier 
filter is approximately constant when w = WI' The signal and noise 
powers out of the sub carrier filter follow from SzCWI)' The signal power 
is 2hioJi(m l ); the noise power is 

where ilf is the width of the subcarrier filter and where S~ is equation 
(32) with the first term omitted. The function 

S(ml) = 2h~()~~(ml) (38) 
X[Sz(Wl) ] 

was computed for x between 0.01 and 100 with m l as a parameter. The 
results of the computation are shown in Fig. (4). For a given m l and x, 
the output S/N for the subcarrier filter is x/2ilf· S(ml)' 

VI. SUMMARY 

A general, second order statistical analysis is presented for the cascade 
of a narrow bandpass limiter, an ideal phase detector, and a video filter. 
In this analysis, the input to the limiter is assumed to be the sum of a 
stationary gaussian noise and a fixed amplitude phase modulated sine 
wave. The autocorrelation function of the cascade response is obtained 
as a function of the signal-to-noise ratio x at the limiter input, the nor­
malized autocorrelation function of the lowpass equivalent for the 
limiter input noise rver), and the phase modulation (J(t). 

The cascade response z(t) has the autocorrelation function Rz(tl , t2 ) 
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that can be time dependent. However, for some important cases of e(t), 
Rz(t1 , t2 ) = Rz(r), and the cascade response has the average power 
spectrum Sz(w) = F[Rz(r)] where F is the Fourier transform operation 
with respect to r. The cases of e(t) considered that yield Rz(r) are the 
random biphasewaveform e= ±I e I, the single tone e(t) =1n1 sin (w1t+O, 
and the stationary gaussian process with autocorrelation function 1(o(r). 

The dependence of Rz(t1 , t2 ) on the limiter input SIN appears in the 
h parameters. These parameters can be obtained in closed form as func­
tions of the modified Bessel functions Io(xI2) and Il(x/2). The lower 
order h parameters encountered in the first few terms of the series for 
Rz are found, and recurrence relations are derived through which 
higher order h parameters can be derived easily. 

For the modulation types that make Rz a function of r alone, the 
power spectrum Sz(w) is known for all values of the limiter input SIN x. 
Then the SIN can be derived in any frequency band at the output of 
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the video filter in Fig. 1 as a function of any SIN into the limiter. 
The performance of a sub carrier channel was considered where e(t) = 

m i sin [WIt + A(t) + ~]. The sub carrier was assumed to be phase mod­
ulated by a narrowband low pass process A(t). The SIN at the output 
of the subcarrier filter was obtained by computation of the approxima­
tion of equation (32). For this example, a gaussian prelimiter bandpass 
filter was assumed. For this filter shape, r;(r) and its transform Sv.n(w) 
are gaussian for all integers n. Some representative parameters from 
the Apollo unified S-band communication system i were assumed. These 
were 

(i) A prelimiter noise equivalent bandwidth of 4 l\t1Hz. 
(ii) A sub carrier frequency of 1.024 l\t1Hz. 

(iii) A sub carrier noise equivalent bandwidth of 0.2 l\t1Hz. 
(iv) An input SIN range of 0.01 ~ x ~ 100. 
(v) A set of modulation indices m i = (0.2)k, k = 2, 3, 4, 5, 6, 7, 8, 

9,10. 

The results are given in Fig. 4. The differential between subcarrier filter 
output SIN at low and high values of x is a monotonically increasing 
function of m i for 0.4 ~ m i ~ 2.0. The shapes of the curves are similar 
to that of the (S/N)o/(S/N). curve obtained by Davenport. 2 
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Multiplex Touch-Tone® Detection Using 
Time Speed-Up 

By J. F. O'NEILL 
(Manuscript received August 19, 1968) 

A signal may be read from a storage medium faster than the rate that 
would correspond to real time reconstruction of the signal; this process has 
been named time compression or time speed-up. Cheap serial shift registers 
make time speed-up an attractive means to detect Touch-Tone ® calling 
(or other format) signals on a multiplicity of channels using a single 
detector. 

I. BACKGROUND 

Time speed-up (TSU) of a signal consists of reading the signal 
from a store faster than the rate at which it was recorded. (This is 
generally faster than real time reconstruction of the signal, thus the 
name). I propose this process for multiplexing several voiceband 
channels in time, so that one multi frequency receiver can detect 
Touch-Tone@ signaling on a multiplicity of channels. 

Processing of a single signal using TSU configurations based on 
electric or acoustic delay lines (called DELTIC systems, for delay line 
time compression) has been done since the 1950'S.1,2 At Bell Lab­
oratories, TSU is being investigated for multiplexing Picturephone ® 

visual telephone channels on slightly nonlinear microwave radio sys­
tems.a 

The inherent simplicity and versatility of a digital TSU signal 
processing system is enhanced by the availability of inexpensive serial 
shift registers based on the insulated gate field effect transistor. These 
registers typically store 64 bits, and are sufficiently fast to permit a 
single detection circuit to serve eight to 16 Touch-Tone voiceband 
signaling channels or hundreds of channels in a low frequency ap­
plication, such as 20 Hz ringing detection. 

The attractiveness of TSU multiplex tone detection is demonstrated 
by, and most of this article treats of, the Touch-Tone detection case. 

249 
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If the system is realized as a digital multiplexer (concentrator) in 
tandem with an analog frequency detector, it will become apparent 
that the frequency detector can (but need not) be exactly the type of 
circuit now used, but with a scaling applied to all reactances. This 
scaling is to raise all spectral features by a constant factor which is 
the ratio of time compression. Thus, all the linear and nonlinear signal 
processing now used can be included in a TSU system and its per­
formance would simulate that of present Touch-Tone receivers. By 
adding additional data. smoothing, which could involve using the 
signal samples more than once, the present tolerance to digit simula­
tion by speech can be exceeded. 

II. SIXTY-FOUR CHANNEL TSU RINGING DETECTOR 

An exploratory key telephone system must detect the presence of 
20 Hz ringing on 64 central office lines. This detection could be per­
formed on each channel, but the availability of 64 bit serial shift 
registers has made centralized TSU detection economically more 
attractive. 

Figure 1 shows the TSU arrangement to be used in this exploratory 
system. A transducer Vi, i = 1, 2 ... 64 at each channel slices (limits) 
the ringing signal and presents a rectangular wave at logic level to the 
sampling gates Sai. Binary data is sufficient to specify the input signal 
because it is basically a single tone; there are interfering tones from 
power line cross-coupling but are suppressed to a large extent by the 
larger 20 Hz signal and the limiting operation. (It will be apparent 
that a multitone format such as Touch-Tone signaling would not be 
well represented by binary coded signal samples.) The sampling gates 
load the long serial register SRI with a sequence of samples V x from 
all the channels. The order of the samples is the same as the order of 
the channels: ... , 1,2, ... 63,64, 1,2, .... 

The register SRI has taps every 64 bits, however, and at these 1n 

taps (including the input and output) the samples at any instant are 
all for the same channel, as shown by Vy • These samples can be pro­
cessed in a high speed detector, and the result registered in either a 
common or per-channel answer depository. A digital detector, for 
instance, could examine the 1n samples in a time consisting of a few 
logic gate delays. Alternatively, the 1n samples can be placed in an 
independent register SR2 as shown in Fig. 1, from which they can be 
clocked into an analog frequency discriminator of any type, such as a 
two-pole resonator. With this system, the SR2 read-out clock is in-
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Fig. 1- 64 Channel TSU single frequency detector. 

herently a part of the detection process, since it controls the ratio of 
time speed-up; if the channels are sampled at rate is per second and 
the SR2 register is read at kis per second, then k is the ratio of time 
compression (and spectral expansion). 

JVIodifications to the Fig. 1 TSU tone detector permit detection of 
a single tone of unspecified frequency. To do this, more detectors 
could be added at the output of SR2. The same result would be at­
tained by using only one detector with various clock rates to read out 
SR2, and a return path from SR2 output to input, so that the samples 
for a particular channel could be processed repeatedly. 

In the exploratory key telephone ringing detector the 64 channels 
are sampled at seven times per cycle of the input 20 Hz wave and a 
digital detector is used to examine the samples from one cycle (1ft = 7). 
The detector stores this tentative result in another serial shift register, 
and when enough 50 msec intervals appear to have ringing present, a 
RING output is delivered to the common controller. This detection 
operation is low Q, but this is by design, and is not dependent on either 
the TSU structure or the technology. An analog detector in this system 
would need m » 7 but would not require the added integration. As 
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always, an appropriate trade-off between selectivity (high Q) and fast 
detection (low Q) must be made. 

The effectiveness of the detector in suppressing frequencies other 
than 20 Hz is a function of the sampling rate, as well as the param­
eters of the detector. Waveform preservation is not necessary for 
detection, so the sampling theorem requirement (two samples per 
cycle at the highest frequency of interest) need not be met. As few 
samples as possible should be handled to conserve storage, but the 
lower limit is set by the signal duty cycle variation and the size and 
frequency of the interfering signals. The equivalence between pe­
riodic sampling and modulation permits intelligent selection of the 
sampling rate. 

III. EIGHT CHANNEL TSU Touch-Tone DETECTOR 

The TSU configuration of Fig. 1 could be adapted to multifrequency 
detection by means of a few additions. First, incorporate at the regis­
ter SRI input an analog to digital converter to code the signal sam­
ples sufficiently accurately to preserve the information content, say 
b bits per sample. Replace shift register SRI by b parallel shift regis­
ters, one for each bit at the analog-digital output. Finally, add a 
digital to analog converter at the output of the b parallel read-out 
registers (SR2 in Fig. 1). No change in principle is involved; the 
added circuitry only preserves the signal amplitude through the TSU 
system. A delta coder with a (longer) single shift register could be 
used for the digitizing operation; the type of code is a detail. 

However, the structure of Fig. 1 is not well suited to Touch-Tone 
detection. The serial registers are conveniently available in 64 bit 
and larger sizes. (Smaller sizes would be economically wasteful; adding 
taps increases the lead count perilously.) Only seldom is there a 
need to detect 64 Touch-Tone signals simultaneously, and reliability 
requirements would be excessively difficult, even if the need existed. 
By using the Fig. 2 TSU configuration, the 64 bit registers are used 
very efficiently. 

In Fig. 2, each channel has a private b-register store. The channel 
i(i = 1, 8) inputs are sampled in multiplex by switches Sai and coded 
by a common analog-to-digital converter. The coded samples are 
steered by logic gates Sbi to the registers for channel i. Sometime be­
tween (or synchronized with) input samples, the registers are read at 
high speed into the digital-to-analog converter, which is assumed to 
be simple enough to build for each channel. Transmission gate Sci 
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simultaneously connects the (per channel) converter output to the 
detector input bus, so that the detector is time shared by all channel 
circuits. This detector can be a carbon copy of any of the standard 
receivers, but with all reactances scaled up in frequency by the time 
compression ratio. Or, it could be all-digital. In either case, the read­
out of the channel register bank must be sufficiently fast to permit 
the detector to answer and return to quiescence before the next chan­
nel is examined. 

An important feature of the Fig. 2 parallel register TSU system is 
that the channel registers need be supplied only for as many channels 
as are actually required. The Fig. 1 serial system must be built en­
tirely in order to operate at all. 

An 8-channel Touch-Tone receiver using 3 bit (b = 3) coding has 
been built and operated by Mr. R. J. Violet of Bell Telephone Labora­
tories. In this demonstration system, the channel sampling is done at 
4000 Hz with 64 samples being stored per channel. Each channel is 
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examined every 4 ms, and the detection requires 0.5 ms. Half of this 
0.5 ms is to allow the receiver to become quiescent. The time com­
pression ratio is the sampling interval divided by the sample read time, 
or 64. The detector is thus constructed for input frequencies at 64 
times the normal Touch-Tone frequencies. This simple demonstration 
system immediately registers the detected results through gates 8di 

in a per-channel flip-flop bank (shown in skeletal form). An attractive 
feature of TSU detection is that further processing, such as delay or 
data format conversions, can be made by common equipment. Thus, 
Touch-Tone signal to dial pulse translators for conversion of step-by­
step switching machines could be very effectively built using TSU 
multiplexing. 

If the input signal can vary considerably in amplitude, either a per­
channel automatic gain control or more accurate sample coding would 
be required to preserve the signal waveform through coding and decod­
ing. Also, a sampling rate higher than 4000 Hz and a larger number 
of samples per detection might be used in a production circuit. In 
compensation, a rate of more than 8 channels is within the speed 
capability of the circuitry; additional signal integration to improve 
the tolerance to digit simulation is easy to incorporate. 

The economic advantages of large scale production can be gained 
through the use of 64 bit serial shift registers in many of the digital 
systems. Preliminary economic analysis indicates that the marginal 
cost of one Touch-Tone detector in a TSU multiplex system would 
be less than the equivalent single channel receiver; a cost crossover 
can be expected at about three channels. In comparison with multiplex 
receiving based on digital filtering, TSU offers easier maintenance, 
per-channel modularity, and the ability to incorporate future im­
provements in the detector circuitry. 
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Data Transmission Error Probabilities 
in tIle Presence of Low-Frequency 

Removal and Noise 

By B. R. SALTZBERG and M. K. SIMON 

(Manuscript received July 19, 1968) 

Upper bounds on error probability are derived for data trans111,ission 
systems which are subjected to gaussian noise and to the removal of the 
low-frequency components of the signal. This error probability can be quite 
low for random, data, even though the eye pattern is closed. Both standard 
format and partial response signaling are considered, as are binary and 
multnevel alphabets. Numerical results are given for a high-pass filter 
containing a single pole and fo1' a cascade of several such identical filters. 

1. INTRODUCTION 

It is frequently desirable, or unavoidable, that the low-frequency 
components of a data signal be eliminated. This may occur through 
the use of capacitor or transformer coupling in the terminal equip­
ment or in the baseband transmission facilities. Another instance 
results from the necessity of removing low-frequency baseband com­
ponents before modulation in order to provide a spectral guard band 
in the vicinity of the carrier frequency. 

Since dc is usually completely attenuated, no linear operation can 
correct for low-frequency removal. One commonly used approach 
uses nonlinear feedback to restore the low-frequency components.1 

Another solution to this problem involves dc-free signal formats. 2
, 3 

We evaluate the penalty resulting from the removal of low-fre­
quency components from a standard format data signal (Nyquist I 
shaping) and a partial response signaling format (multilevel exten­
sion of duobinary with precoding.) 4 Clearly, in both of these cases, 
the degradation is most severe when the transmitted data sequence 
contains long strings of identical digits. In fact, when the system 
bandwidth is less than the signaling rate, which is usual in data 
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communication systems, the received signal will be zero. This follows 
from the fact that for a periodic input impulse train the lowest fre­
quency components are at dc and the signaling frequency, both of 
which are filtered out. However, the degradation of a random signal 
can be quite small when the cutoff frequency of the offending high 
pass filter is far below the signaling rate. 

We consider binary and multilevel data-transmission systems with 
signaling formats as above, degraded by a single-pole high-pass filter 
or a cascade of such filters. The systems are evaluated for error proba­
bility in the presence of additive gaussian noise. A previously derived 
error probability bound5 is used, which takes the form of a gaussian 
distribution of the signal to noise ratio, in which the larger intersymbol 
interference components subtract from the signal amplitude and the 
smaller ones add to the noise power.5 In general, the optimum splitting 
of intersymbol interference terms between signal amplitude and noise 
power cannot be determined analytically. We show that for inter­
symbol interference components, related by a single exponential damp­
ing factor, an optimum subdivision can be explicitly specified. Where 
the eye is open, the error probability bound is given directly in terms 
of the eye opening to rms noise ratio. 

We also discuss the refinements of the generalized bound in the 
case of interysmbol interference from a single exponential signal tail, 
and then apply the results to Nyquist I shaped and partial response 
signaling formats respectively. Single poles and a cascade of identical 
poles are considered, and numerical results are given for practical 
data system parameters. 

II. DERIVATION OF A SIMPLIFIED ERROR PROBABILITY BOUND FOR SINGLE 

EXPONENTIAL INTERSYMBOL INTERFERENCE 

Reference 5 gives an upper bound for the probability of error in 
the reception of a random digital message perturbed by gaussian 
noise and intersymbol interference. This gives 

'" 1 < _1_0 -
LJ k N - 1 ktK 

(1) 
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where 

N is the number of levels of the input random message. 
u! is the variance of the additive noise. 
f(t) is the signaling waveform. 

1 
T 

is the signaling rate. 

fk = {I f(kT) I for standard format signaling 

I f[(k - !)T] I for N level partial response signaling with 
precoding* 

and 

A 
for standard format signaling 

for N level partial response signaling with 
precoding 
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We notice that the applicability of the error probability bound to 
partial response signaling formats was not discussed in the original 
paper but is presented here as a further extension of the result. 5 

The sets k £ K and k ~ K include all members except k = O. It is 
also shown in Ref. 5 that 

(2) 

Thus, if the signal sample set {fk} excluding k 0 is rearranged in 
order of decreasing magnitude to form a set {gd, then the sums in 
equation (1) may be replaced by 

(3) 
00 

L f~ = L g~. 
k¢K k=M+l 

For an arbitrary signaling waveform, t(t), the optimum M [in the sense 
of minimizing the right side of equation (1)] must be determined by a 
trial comparison method as decribed in Ref. 5. 

* In the partial response case, i1 must be replaced by i1-io in both numerator 
and denominator summations of equation (1) since only the unintentional inter­
symbol interference should be included there. 
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For an exponential signal tail, 

o < T < 1; k = 2, 3, .,. (4) 

Thus, since f(t) is already monotonically decreasing for all t ~ T, 
the ordered sets {fk} and {gk} are identical in this case. 

t fk = f1[1 - r
M

] 

k~l 1 - r 
(5) 

00 f2 2M 

L f~=~' 
k=M+l 1 - r 

To minimize the right side of equation (1), it is sufficient to maximize 

(6) 

Differentiating Q with respect to M gives 

dQ = [ (N - 1) J[ (N - 1) J[ t~ ] dll! x In r to - 1 _ r t 1 (1 - x) to - 1 _ r f 1 1 _ r2 

where 

(0 ~ x ~ 1) 

and 

(N - 1) 
1 - r t1(1 - x) < fo . (8) 

Three separate cases must now be examined. 
(i) If fo - (N - l)fd(1 - r) < 0, then the eye is closed. From 

equation (7) it follows that dQ/ dM < 0 for 0 < x ~ 1. Therefore 
the positive maximum of Q occurs at the boundary x = 1, so the optimum 
value of M is M opt = O. 
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(ii) If 

fT!(N - 1) > 1 
(N' ;; 1 )(1 ~ J[to - (N

1 
-=- l;f'J ' 

it is implicit that 10 - (N - 1)/1/(1 - r) > 0, and the eye is open. In 
this case it is again true that dQ/dM < 0 for 0 < x ~ 1, and MOIlt = O. 

(iii) If 

° < fT!(N - 1) < 1 

(N
2 - 1) (_II ) [/0 _ (N - 1)/IJ ' 

3 1 + r (1 - r) 

it is again implicit that 10 - (N - 1)/1/(1 - r) > 0, and the eye is open. 
In this case a positive maximum for Q occurs in the interval ° < x < 1. 
Solving for the point where dQ/dM = 0, we obtain 

rllfoPt = fT!(N - 1) • 

(N
2

;- 1)(/0 - (N1 -=- ~/l)(1 ~ r) 
(9) 

Notice that condition (8) is automatically satisfied. 
Since the solution for MOIlt as given by equation (9) is not necessarily 

integer, the error probability bound as given by equation (1) must be 
modified in terms of the actual choice of an integer M. We will arbitrarily 
use the next higher integer. Letting [MoIlt ] denote the next higher integer 
to MOIlt and 

(N - 1)(1 + r) 
z=3 N + 11 - r , 

equation (6) may be expressed as: 

where 

[Sp - Imax(1 - rlllfoptl)]2 

Q = 2[fT! + I!axr2Il1foptl/z] 

b = rlllfoptJ-lIfoPt, r<b<1. 

(10) 

(11) 

lmax (N - 1)ld(l - r) denotes the maximum intersymbol inter-
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[(Sp - Imax)2 + b<T;Z]2 
<T;[(Sp - I max)2 + b2<T;z]· 

In terms of the error probability, 

P e < A exp [-Q] 

J (Sp - Imax)2 + 3r(~)(~)} 
< A '1 <Tn N + 1 1 - r 

e~ L 2 . 

(12) 

For the situations where Mopt = 0 (that is, cases i and ii) equation (1) 
becomes 

P e < A exp J - S! t . (13) 

1 [ 2 1 (N + 1)(1 - r) 2 JJ 2 <Tn + 3 N _ 1 1 + r I max 

III. ERROR PROBABILITY PERFORMANCE WITH A STANDARD· FORMAT INPUT 

DATA SIGNAL 

Figure 1 is a block diagram of the system considered. Although a 
basebahd system is shown, a system using linear modulation and de­
modulation can readily be fit to this model. pew) is the basic shaping 
filter and it is assumed that the receiver is matched to this shaping 
filter. For simplicity, pew) is chosen to be real. The added .noise is 
white gaussian. H(w) is the narrow high-pass causal filter whose effects 
are considered. Since H(w) is narrow, it makes little difference whether 
the noise is added ahead of, behind, or somewhere in the middle of 
this filter. 

The source generates symbols randomly from an N-ary alphabet 
at a rate of liT symbols per second. The transmitted signal may be 
represented by 

00 

set) = L:akP(t - kT) 
k--oo 

where the ak'sare independent, zero,;,mean random variables ·wnich take 
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one of N equally spaced values with equal probability, and pet) is 
the impulse response of P (w) . 

It is assumed that there is no distortion other than H(w) and that 
Q(w) = P2(W) is a Nyquist shaped filter of bandwidth less than liT, 
so that 

q(kT) = 0, all k ~ O. (14) 

If we let P(O) 1, then 

q(O) = ;7f J Q(w) dw = TIP. (15) 

The power of the transmitted signal is 

S = <a~>av J P2(W) dw = ~~ 
27fT T2 (16) 

where IT~ is the variance of ak . 
The signal presented to the sampler may be written in the form 

00 

ret) = L: ak[q(t - kT) + e(t - kT)] + net) 
k=-oo 

where e(t) is the error signal caused by the low frequency removal, 
H(w). From equations (14) and (15), 

r(mT) ~ am[~ + e(O) ] + k~ a,e[(m - k)T] + n(mT). (17) 

The effect of the low frequency removal is both the reduction of the 
~ignal amplitude [since e(O) is negative] and, more important, the in­
troduction of intersymbol interference. 

The Fourier transform of the error signal is 

E(w) = Q(w)[H(w) - 1] (18) 

so that 

e(t) = i: q(t - x)h_1(x) dx 

where h_1(t) is the inverse Fourier transform of [H(w) - 1]. 
In all cases of interest, H(w) - 1 is much narrower than Q(w). The 

time function h-l (t) therefore is virtually constant over a time interval 
equal to the effective duration of q(t) . We may therefore approximate 
q(t) by a delta function, whose area is unity since Q(O) = 1. 

e(t) = i: oCt - x)h_1(x) dx. 
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Fig. 1- System block diagram. 

t=kT 

SAMPLE 

If H(w) is causal (which is the case we are interested in), then 

e(t) 

t < 0 

t = 0 

t > 0 

(19) 

where e(t) is the negative of the impulse response of a narrow causal 
low-pass filter. The generalized bound given in equation (1) can be 
applied to this case as: 

2(N - 1) J [~+ e(O) - (N - 1) 6 1 e, 1]'1 
P e < N exp 1 [2 N 2 

- 1 2J f . 
2 Un + 3 2: ek 

k¢K 

(20) 

The quantity u! is the noise power at the sampler input and is also 
equal to the noise power at the receiver input, measured in a bandwidth 
equal to half the signaling rate. For the N-Ievel system, 

In terms of the signal power, equation (16), equation (20) may be 
rewritten as 

2(N _ 1) {[I + g(O) - (N - 1) t; I gk 1]2} 
P e < N exp [ 2 ] (21) 

2 2 Un + '"'" 2 
U a S LJ gk 

k¢K 

where get) is the normalized error signal 

get) = Te(t) (22) 
G(w) = T[H(w) - 1]. 

To apply the simplified bounds derived in equations (12) and (13), we 
must first specify the high pass filter, H(w). 
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3.1 Single Pole Filter 

A very common type of low frequency removal results from the 
use of a single capacitor or transformer. The transfer function is 

ST 
H(s) =--

ST + 1 

where T is the time constant of the low frequency removal circuit. Its 
corner frequency is then 1/(271"T). From equation (22), the normalized 
error signal is 

G(S) 
T 

(23) ----
8T + 1 

and 

get) = -~ exp ( -~)u(t) 
where u(t) is the unit step function. Introducing the normalized quantity 

then 

Letting 

and 

T 
a=­

T ' 

1
0 

a 
g(kT) = -2' 

-a exp (-ka), 

k < 0 

k = o. 
k>O 

Tfo = 1 + g(O) 

Tfk = I gk I, k = 1,2, ... 

-0 r = e , 

the normalized eye opening becomes 

(24) 

(25) 

(26) 

Tf - (N - 1)Tfl = 1 _ ~ _ (N - 1)ae-
0 < 0 (27) 

o 1 - r 2 1 - e- a 
• 

Thus, lVIopt = 0, and equation (13) becomes 
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f (1 - iY 1 
P < 2(N - 1) -=--__ ---:: 

e N exp 1- [2 a2 
] J 

2o-2a o-Sn 1 + exp (2a) 

(28) 

When a« 1, we may approximate equation (28) by 

P, < 2(N N 1) exp r (,1 )] . 
l 2o-~ ~ + i 

(29) 

The error bounds for binary, 4-level and 8-level systems are plotted 
in Figs. 2, 3, and 4, respectively, as a function of the signal to noise 
ratio, S/o-! , and the normalized reciprocal time constant, a. The dashed 
curves are the exact values for no low-frequency removal. 

(that is, P, = 2(N N- 1) erfc VJ = 2(N N 1) erfc ~~: ' 

where ( ) 1 100 

-t2/2 ) erfc x = (27r)! x e dt· 

It IS seen that, III the region of 10-5 error probability, these exact 
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Fig. 2 - Upper bound of the error probability of a binary standard format 
system with a single-pole high-pass filter. 
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Fig. 3 - Upper bound of the error probability of a 4-level standard format 
system with a single-pole high-pass filter. 
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Fig. 4- Upper bound of the error probability of an 8-level standard format 
system with a single-pole lligh-pass filter. 
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curves differ from the corresponding bounds by approximately a 
factor of 10 in error probability, or 1 decibel in signal to noise ratio. 

In the binary case, it is seen that a simple high-pass filter with a 
time constant of 50 bit intervals introduces a degradation of only 
about 1 decibel in the region of 10-5 error probability. On the other 
hand, a time constant of 10 bit intervals leads to totally unacceptable 
performance. For the same amount of degradation and the same 
symbol rate, the 4- and 8-level systems must have high-pass time 
constants respectively 5 and 21 times that of the binary system. 

3.2 Cascaded Single Pole Filters 

In many cases, several single-pole high-pass filters are contained 
in the transmission path of the system. If n identical networks are 
used, then the overall high-pass transfer function is 

Hn(s) = C7 s~ 1r. (30) 

In many cases, a transfer function containing a large number of real 
poles of different values can be approximated by a transfer function 
of the form of equation (30).6 

The Laplace transform of the error signal is 

To find gn (t) , we first evaluate 

£[¥ exp (~)g"(t)J ~ (8 - )M 1 = ~ t (n)(_!)ksn-k 
S k=l k 7 

~ (~)( -~r (k t:1

1)! ' t > 0 

T (t) n-l 1 ( )( t)k -- cxp -- L - n --, 
. 7 7 k=O k! k + 1 7 

t > o . 
At the sampling times, 

0, m < 0 

m = 0 (31) 

-a exp (-ma) % (k ~ 1) (_~a)k , m>O 

where again a = T /7. 
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This function may also be expressed in terms of the generalized 
Laguerre polynomial,7 

L<-l)(x) =.! t (n) (_X)k 
n n k=l k (k - I)! 

gn(mT) = ~ exp ( - ma)L~-l) (ma) , 
m 

(32) 

m> O. 

It has been found empirically in several numerical examples that 
the best error probability bound was obtained when all intersymbol 
interference terms were added to the noise (that is, Jl10Pt 0). The 
resultant bound is therefore 

J (1 - n2
at 1 

P e < 2(NN- 1) exp - 2 00 2 • (33) 1 2u;[~ + ]; (: exp (-ma)L~-"(ma») JJ 
An example of practical interest is the evaluation of the perform­

ance of a baseband binary 50,000 bits per second data set without 
dc restoration, operating over a transmission facility using trans­
former coupled repeaters. The transformers each have a corner fre­
quency of 15 Hz, and therefore a time constant of 

1 
T = 271" X 15 = 10.6 msec. 

so that 

2 X 10-5 

a = 0.0106 = 0.00188. 

The results of Fig. 2 indicates a degradation of only about 0.1 
decibel when a single transformer is introduced. However, several 
transformers are usually present in actual systems. The error signals, 
gn (t), and error probability bounds have been computed for both 14 
and 28 transformers. The error signals for these two cases are shown 
in Fig. 5. Remember that one millisecond is equal to 50 bit intervals. 

Figure 6 shows the error probability bounds for these situations; 
28 transformers lead to unacceptable performance while 14 transformers 
introduce a degradation of 3 decibels at 10-5 error rate. It is significant 
that n transformers produce more degradation than a single transformer 
with a corner frequency n times greater. Also, under the assumptions 
of this paper, all of the above results apply independently of the roll-off 
characteristic of Q(w), as long as it is a member of the Nyquist I class. 
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Fig. 5 - Errors signal for a cascade of transformers with 15 Hz corner fre­
quencies. 
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IV. ERROR PROBABILITY PERFORMANCE WITH AN N-LEVEL EXTENSION OF 

A DUOBINARY INPUT DATA SIGNAL 

The system model considered here is identical to Fig. 1 except 
that (i) a precoder which converts the input N-level sequence {ad 
to another N-Ievel sequence {b k } according to the relation 

(34) 

is inserted between the source and the transmitting filter, pew), and 
(ii) a decoder follows the sampler which decodes the received levels 
modulo N to recover the original symbols an . The important point for 
our application is that by including precoding at the transmitter, no 
knowledge of any symbol or sample other than the received sample, 
rk , is involved in deciding ak • 

til, Instead of the Nyquist shaping characteristic, the cosine filter is 
used for the composite signal shaping characteristic, Q(w) = P2(W), 
that is, 

T 
Q(w) = cos "2 w, 

The system impulse response is given by 

2 [ cos 7rt/T -'J 
q(t) = 7rT 1 - 4e/T2 , 

so its values at the sampling instant are 

q[(k - ~)Tl = {:' 
le = 0, 1 

le ~ 0, 1. 

The power of the transmitted signal is 

S = ~~)av j7rIT Q(w) dw = 2(J"~ 
... 7rT -7rIT 7rT 

(35) 

(36) 

(37) 

where (J"~ is the variance of bk • If the input symbols ak are equally likely 
and independent, then so are the pre coded symbols bk • Thus, (J"~ = (J"~ . 
The sampler input waveform, r(t), may be expressed as 

00 

ret) = L bk[q(t - leT) + e(t - leT)] + net) (38) 
k=-oo 

where once again e(t) is the degradation caused by the low frequency 
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removal, H(w). Substituting equation (36) in equation (38), 

r[(m - !)T] = r m = (brn + bm- 1) 2~ + bme( -~) 
+ L bke[(m - k - !)T] + n[(m - !)T]. (39) 

k,,<m 

If H(w) is causal as before, then e( - T /2) will be zero. l\!{aking the same 
assumptions as in the standard signal format case, we arrive at an ex­
pression for error probability analogous to equation (21) 

(
N2 _ 1) {[! -(N - 1) t; I gk IJ

2

} 

P e < 2 N-2 - exp [ 2 J' (40) 
2 2 2ern + " 2 era S L..J gk 

7r ktK 

Here we consider only the single pole high-pass filter for H(w). The re­
sult for a cascade of n identical poles follows immediately. 

4.1 Single Pole Filter 

We start by examining the normalized eye. Letting 

and r = e- a 

T/o = 1/2 

T/k = I gk I; k = 1,2, ... 

T/ _ (N - 1)/1 = ! _ (N - l)ae-
a 

0 
o 1 2 1 a <. -r -e 

Thus, M opt = 0 and equation (13) becomes for a « 1 

P, < 2(N'N~ 1) exp f - (1~4 r 
1 2er! !~ + ~ J 

(41) 

(42) 

(43) 

Figures 7, 8, and 9 illustrate the behavior of the error probability 
bounds versus S/er; for binary, 4-level and 8-level partial response 
signals with the normalized reciprocal time constant, a, as a parameter. 
The dotted curves give the exact values of P e for the case a = 0 

[thatis, P, ~ 2(N'N~ 1) erfc ((S;~~)l)J 
We once again observe that in the neighborhood of 10-5 error proba­
bility, the exact curves for a = 0 differ from the corresponding bounds 
by approximately a factor of 10 in error probability, or 1 decibel in 
signal to noise ratio. 
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Fig. 7 - Upper bound of the error probability of a binary partial response sys­
tem with a single-pole high-pass filter. 
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Fig. 8 - Upper bound of the error probability of a 4-level partial response 
system with a single-pole high-pass filter. 
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Fig. 9 - Upper bound of the error probability of an 8-lcvel partial response 
system with a single-pole high-pass filter. 

However, to achieve a SIN degradation of only 1 decibel in the 
region of 10-5 error probability with a simple high-pass filter, the 
time constant must be about four times that needed for the standard 
format signal. The above statement is true for the binary, 4-level, 
and 8-level cases. This more stringent requirement on the location 
of the low frequency cutoff may be viewed as a tradeoff for the saving 
in bandwidth associated with partial response signaling. 

V. CONCLUSIONS 

Although a high-pass filter will always close the eye pattern of 
i a standard format data signal (Nyquist I shaping) or iii a multi­
level partial response signal (duobinary format), the error probability 
may still be quite low for random data provided that the high-pass 
filter is sufficiently narrow. This effect permits the use of capacitor or 
transformer coupling in the data terminals or transmission facilities. 
l\1ultilevel systems require a longer time constant for these networks 
than do binary systems for the same performance. 

Upper bounds of error probability have been given for binary, 
4-level, and 8-level systems with gaussian noise and a single-pole 
high-pass filter (exponential time response). A binary system with 
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a standard format input signal is degraded by only about 1 decibel 
by a simple high-pass filter whose time constant is 50 bit intervals. 
Four-level and 8-level systems require time constants of 250 and 
1000 baud intervals, respectively, for the same performance. 

A data system whose input is a binary, 4-level, or 8-level partial 
response signal must have a low frequency cutoff which is two octaves 
lower in order to achieve the same performance as a standard format 
system. 

The error signal for a multiple-order pole is an exponential multi­
plied by a generalized Laguerre polynomial. The performance of a 
system with an nth order pole high-pass filter is worse than one with 
a single pole n times as large. 
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Computer-Aided Circuit Design 
by Singular Imbedding 

By E. B. KOZEMCHAK and M. A. MURRAY·LASSO 

(Manuscript received August 5, 1968) 

We give a new and powerful method for the direct solution of circuit 
design problems. The method begins with a prespecified topology and some 
or all elements undetermined in value. The designer imposes on the circuit 
any desired set of node-pair voltages, branch currents, or driving point 
and transfer immittances. Values of circuit elements that satisfy the con­
straints are directly calculated. This direct method of solution avoids the 
usual iterative analysis-optimization schemes, reducing computer times by 
up to three orders of magnitude. 

A linear set of design equations is formulated by choosing undetermined 
element currents and node voltages as the variables. Singular elements are 
introduced to impose the desired constraints. Inequality as well as equality 
constraints are permitted. Element values are determined from the solution 
of these equations. In this paper we emphasize our method of solution in 
relation to de networks. 

r. INTRODUCTION 

The most significant advances made in computer-aided circuit de­
sign have been in analysis programs. The designer can now choose 
from among several general purpose programs that program which 
most nearly suits his particular needs. In designing a circuit to meet 
a given set of requirements, the usual approach has been to use 
analysis programs in some optimization scheme. Through an iterative 
process, carried out by the machine, the man, or a man-machine inter­
action, a final design is reached. The approach presented here pro­
vides a direct solution, and does not rely on such iterative schemes. 

The method is most fertile in the area of active network design, 
where one often wishes to choose element values in a specified topology 
in order to meet some set of requirements. The method has been 
applied to a number of design problems of current interest including 

275 
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biasing direct coupled transistor circuits; designing transistor ampli­
fiers for specified midband gain, input, and output impedances; and 
simultaneously realizing several specified impedance or admittance 
parameters of a network. 

In the design of electronic circuitry, one usually wishes to imbed 
passive elements into a network containing active devices, and to 
determine the required passive element values. Therefore, this paper 
deals with the determination of element values in a prespecified 
topology for which a given performance is required. Two new ele­
ments, a voltage forcing element (VFE) and current forcing element 
(CFE) , are introduced in order to constrain network voltages and 
currents. These elements may be realized with independent voltage 
and current sources, and the nullator, a somewhat "pathological" 
element used in theoretical network studies. 

The method of singular imbedding places the VFE's and CFE's 
in a network to constrain the desired variables. The terminal voltage­
current behavior of the variable elements is not specified. Instead, 
the constraints imposed upon the network by the VFE's and CFE's 
are used to determine allowed voltage-current relations for the variable 
elements. The formulation remains linear in these variables. The last 
step involves determining the element values through Ohm's law 
once the allowed voltage-current relations are known. 

By appending the original set of equations with a set of inequality 
constraints, it is possible to restrict the range of element values in 
the solution. For example, realizations employing only element values 
between specified lower and upper bounds are possible. For simplicity, 
only the case of linear dc networks are illustrated. Extensions of 
the method to ac and nonlinear design are considered elsewhere. 

II. A NEW APPROACH 

To understand the philosophy of this new approach to design, con­
sider the train of events in realizing a set of requirements with elec­
tronic circuitry. Since the choice of topology is better handled by the 
man than the computer, we will assume some specified topology in 
which some or all of the element values are to be chosen to meet the 
given criteria. For example, in designing transistor circuitry it is nec­
essary to choose some resistance values to properly bias the transis­
tors. Similarly, one must often choose element values to give a desired 
voltage gain, driving point impedance, transfer impedance, or similar 
network function. 
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The invariant feature in all of these problems is that a set of net­
work currents and voltages, or their ratios, has been constrained. The 
design problem is to find any set of element values consistent with 
these constraints. If the problem is posed with sufficient freedom, 
many sets of element values may exist consistent with the imposed 
constraints. Conversely, if the problem is posed with insufficient free­
dom, inconsistent equations arise and there is no solution. 

If one can find a general method of imposing these network con­
straints, and can simultaneously monitor the voltage-current relations 
these constraints force at the terminals of the variable elements, then 
indeed a direct solution to many computer-aided design problems will 
have been found. 

Before proceeding, however, consider a very simple example of 
how one might presently handle the design problem and the diffi­
culties that would ensue. Suppose in the network of Fig. 1, one wishes 
to choose G1 and G2 such that V'is constrained to be 0.1 volt. A set 
of nodal equations may be written: 

[lJ+ GI -GI] VI] = 1]. 
- G1 GI + G2 V 2 0 

(1) 

The first step involves a transformation of coordinates so that 
the desired quantities appear explicitly in the equations. In general, 
this will necessitate using hybrid parameters. For this case, the fol­
lowing transformation might be used: 

~~] = [~ (2) 

Inverting the relation, we have 

[~ 1] V: 
1 V~ 

(3) 

Fig. (~-:Simple design problem. 
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and the current-law equations become 

~J (4) 

(5) 

Substituting the constant V' = V\ = 0.1, the set of equations becomes 

0.1(1 + G1) + V; = 1 
t 

-0.lG1 + G2 V 2 = O. 
(6) 

Thus, even if one is successful in finding a transformation to a 
basis that includes the variables that are constrained, the result is 
usually a set of nonlinear equations in the network elements and 
voltage variables. Solving this set of nonlinear equations for the 
unknown voltages and element values is extremely difficult. A method 
of handling this difficulty has been suggested, involving the use of 
optimizing techniques to vary element values until the network vari­
ables take on their desired values-in this case V' = 0.1 volt.1 While 
this is a useful approach, it has several disadvantages. First, it is 
time consuming since many iterations are required for convergence. 
Second, local minima, or lack of sufficient numerical accuracy, may 
prevent convergence to a correct solution. Finally, although an infinity 
of sets (G1 , O2) exist to satisfy the given constraints, the optimization 
yields only one of these sets. 

With these difficulties in mind, let us repeat the philosophy of 
design presented here. We first determine how the requirements con­
strain network currents and voltages. We then force these currents 
and voltages to take on the desired values. Finally, we determine the 
effect of such constraints upon the voltage-current relations at the 
terminals of variable elements. These v - i relations then determine 
the values of the variable elements. 

III. NETWORK CONSTRAINTS 

The common feature of all network synthesis problems is that they 
require some specified relation between some voltages and currents in 
the network. For example, synthesis of a given driving point im­
pedance constrains the ratio of a port voltage to the current at that 
port. Synthesis of a tranSfer impedance constrains the ratio of a port 
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voltage to the current at a different port. A specified voltage or cur­
rent gain constrains the ratio of two port voltages or port currents, 
respectively. Indeed the synthesis of entire network matrices is a 
combination of such constraints. Similarly, the static design problem 
in electronic circuits involves fixing certain branch currents and 
branch voltages. For example, one usually wishes to bias a transistor 
for a given collector current and collector-emitter voltage. Resistance 
values are chosen consistent with these constraints. 

It is essential to demonstrate a method for constraining voltages 
and currents in a network. The required constraints are shown in 
Fig. 2. We introduce two new elements, a current forcing element, 
CFE (10 ) , and a voltage forcing element, VFE (Vo) , which will be real­
ized with more conventional elements shortly. We want the CFE(Io) 
to be such that it constrains the current through branch j to be 10 , 

without otherwise affecting the behavior of the network. We want the 
VFE (Vo) to be such that it constrains the voltage across branch j 
to be Vo without otherwise affecting the behavior of the network. 

In discussing the properties of the CFE and VFE, we use the concept 
of admissible or allowed pairs of voltage and current variables (v, i).2 
The set of voltage-current pairs that a system N allows can be used to 
completely describe that system.3 For example, let the system under 
consideration, N R, consist of a single resistor of value R. Then the 
system is completely described by its allowed terminal voltage and cur­
rent pairs; namely, (Ri, i) t N R • Similarly, a capacitance of value C, 
denoted N c , is completely described by its allowed pairs (v, d(Cv)/dt) t 

N c . 

We now define the CFE (Io) and VFE (Vo) in terms of their allowed 
pairs. 

Current forcing element (Io) : 

(0,1 0 ) t NCFE(]o) • (7) 

Here we postulate an element which allows no voltage drop across 
its terminals, and passes only a specified current 10 , 

Next, we postulate an element which allows only a fixed voltage 
Vo to exist at its terminals, and passes no current. 

Voltage forcing element (Vo) : 

(Vo,O) t NVFE(Vo) • (8) 

Figure 2 makes clear the use of these elements in constraining net­
work variables. In Fig. 2a, the current in branch j is forced to be 
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(0 ) 

BRANCH J + 

Va 

(b) 

Fig. 2 - Network constraints. (a) Branch J current constrained by current 
forcing element (CFE); (b) Branch J voltage constrained by voltage forcing 
element (VFE). 

10 by inserting a CFE in series. Since the CFE (10) allows no voltage 
to exist across its terminals, its presence affects Kirchhoff's current 
and voltage laws only to the extent that branch j current is con­
strained to be 10 • Notice that this would not be the case had we in­
serted a current source in series with branch j. The current source 
would allow some voltage to exist between its terminals which would 
have been included in Kirchhoff's voltage law equations. Thus, a 
current source of value 10 would not only constrain branch j current 
to be 10 , but would also introduce a new degree of freedom, namely, 
the voltage across the current source. 

Similar reasoning can be applied to Fig. 2b. Here a VFE (Vo) is 
applied across branch j to constrain that voltage to be Vo. Since the 
VFE (Vo) passes no current, Kirchhoff's laws are affected only to the 
extent that branch j voltage is now constrained to be Vo. The net­
work cannot respond with a new degree of freedom, as it could if a 
voltage source were placed across branch j and thus allowed to in­
troduce a new current variable in Kirchhoff's current law equations. 
It should be noted that the VFE (Vo), can be placed between any 
two nodes to constrain the voltage between those nodes; it need not 
be placed across a branch. 

By using current sources and voltage sources in conjunction with 
VFE's and CFE's, current-voltage ratios may be constrained. For 
example, in Fig. 3a, 

(9) 

In Fig. 3b, 

(10) 
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Fig. 3 - Methods of constraining current-voltage ratios. (a) Impedance forcing 
element [IFE(Z)]; (b) admittance forcing element [AFE(Y)]. 

Thus we are constraining the network N to have, in the first case, 
a driving point impedance Z, and in the second case, a driving point 
admittance Y. The configurations used to constrain impedances or 
admittances will be denoted impedance forcing elements, IFE (Z) , 
and admittance forcing elements, AFE (Y) . Notice that IFE's and 
AFE's are composed of CFE's, VFE's, and independent sources. They 
are useful in constraining a network to have a desired driving point 
impedance or admittance. 

We already mentioned that VFE's and CFE's could be realized in 
terms of existing elements. The necessary elements are the ideal cur­
rent source, the ideal voltage source, and the nulla tor, a somewhat 
"pathological" network element introduced by Tellegen.4 Returning to 
the allowed pair concept, the nullator is defined to be a two-terminal 
element for which the only allowed voltage-current pair is (0, 0). It 
can be looked upon as a simultaneous open and short circuit, since it 
allows only zero voltage at its terminals and passes no current. 

From its definition, one could not hope to physically realize and 
isolate such a device. However it's characteristics may be observed at 
the input to an operational amplifier imbedded in a feedback net­
work, where the input .is at a virtual ground (short circuit) and yet 
passes no current (open circuit). The nullator is represented sche­
matically in Fig. 4. 

By appropriate connections of voltage sources, current sources, 
and nullators, the VFE's and CFE's may be realized as in Fig. 5. 
Remembering that the nuJlator passes zero current and has zero volt­
age across its terminals, the equivalents of Fig. 5 becomes clear. In 

0-----1 o t----o 

Fig. 4 - Schematic representation of nullator. 
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(a) (b) 

Fig. 5 - Equivalent circuits for VFE and CFE using nullators. 

Fig. 5a, the terminal voltage must be Vo , and since no current exists 
in the element the combination voltage source and nullator is by 
definition a VFE (Vo). In Fig. 5b, a current 10 exists at the terminals 
but no voltage drop exists across the terminals. Thus by definition, 
the combination current source and nullator is a CFE (10)' 

IV. ADDING FREEDOM TO THE NETWORK 

In the previous section, we placed constraints on the network that 
would generally lead to a set of inconsistent equations if all the 
elements were also specified. However, if some network elements are 
variable, we can determine how the constraints affect the voltage­
current relations at the variable element terminals, and then choose 
variable elements in such a way as to be consistent with these v -
i relations. 

We propose two methods of characterizing the variable elements. 
First, since the element is variable, we can ascribe no functional rela­
tion between the voltage and current of that branch. This is handled 
in writing the nodal equations for the network by explicitly adding 
the currents through variable elements into the equations, rather than 
first transforming them into voltage variables through a functional 
rela tion of the form 

(11) 

where the b implies the variable refers to some branch. The nodal 
equations are of the form 

[Yf]V] = Is] + [elI], (12) 

where 

V] is an n-vector of node voltages. 
Is] is an n-vector of forcing currents at each node. 
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[Y f] is the n X n nodal admittance matrix of the fixed portion of the 
network. 

I] is an r-vector of unknown currents through variable elements (r 
is the number of variable elements). 

[e] is the n X r node cutset matrix for the graph of variable elements. 
I] and V] are both vectors of network variables, and may be combined 

by matrix partitioning as 

[-C I y,] [:J ~ Is]. (13) 

Equation (13) describes a network in which some element values 
can be chosen to meet the given constraints. In the remainder of this 
paper, we combine the added degrees of freedom given by the variable 
elements in equation (13) with the constraints imposed by the CFE's 
and VFE's. All networks, satisfying the VFE and CFE constraints 
and the specified topology, with be generated. 

A simple example will help clarify these concepts. Figure 6 is the 
network of Fig. 1, with the I-ohm resistor replaced by a known resis­
tance of R ohms. Currents II and 12 are those carried by the variable 
conductances G1 and G2 , respectively. The set of nodal equations is 

[l~R ~] ~:] ~ ~] + [ - ~ 
Rearranging into the form of equation (13), 

I1 

[ 1 0:1 0] 12 

-1 1: 0 0 V 1 

V2 

(14) 

(15) 

From this example, the method of generating equation (13) should 
become clear. 

Fig. 6 - Simple design problem. 
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The second approach useful in dealing with variable elements in a 
network is the introduction of another pathological element, the nora­
tor, shown in Fig. 7, also introduced by Tellegen.4 The norator is a 
two-terminal element with allowed pairs (v, i), with v and i independ­
ent and arbitrary. Thus, any voltage and current may appear across 
its terminals simultaneously, which is the property that we desire of 
variable elements. We do not wish to force any functional relation 
between the voltage across and the current through variable ele­
ments. We wish only to observe constraints that may be imposed on 
the v - i relations by the VFE's and CFE's. The norator allows the 
network the extra degree of freedom taken away by the introduction 
of nullators. 

v. FORMULATION OF NETWORK EQUATIONS 

Since the introduction of nullators and norators into a network will 
generally introduce singularities into the corresponding equations, we 
call the approach we are considering the method of singular im­
bedding. It has been demonstrated that the design problem can be 
reduced to the appropriate imbedding of nullators, norators, and in­
dependent voltage and current sources. Let us now examine the effect 
of such imbedding on the network equilibrium equations. Since a 
nodal admittance formulation is used, it is important to determine 
the effect of nullators and norators on the admittance matrix. 

Independent voltage sources may be conveniently incorporated into 
an admittance formulation. If a series impedance exists with the 
voltage source, application of Norton's Theorem is sufficient. If no 
series impedance exists, the introduction of positive and negative im­
pedances is necessary in transforming the voltage source to an inde­
pendent current source (see Fig. 8). 

The effect of nullators and norators upon the admittance matrix 
of a network has been considered by A. C. Davies.5 Let us write the 
nodal equations for the network with all nullators and norators re­
moved. The equations are of the form 

[Y.,] V] = I..,] (16) 

Fig. 7 - Schematic representation of norator. 
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-R -R 

1 r y 
v

T 
R 

-=-v 
I 

Fig. 8 - Equivalent circuit for ideal voltage source. 

where 

[yo] is the admittance matrix of the network with nullators and 
norators removed 

V] is the vector of node voltages with respect to ground 
Is] is the vector of currents injected into each node. 

Suppose now that a nullator is connected between nodes i and j. 
Since the nullator passes only zero current, the current law equations 
at those nodes are not affected. However, since there is zero voltage 
across the nullator, Vi and V j are now constrained to be equal. Call 
this new value Vij. Clearly, one degree of freedom has been removed 
from the network response. In addition to the matrix equation (16), 
one equation of the form 

(17) 

is added for each nullator imbedded in the network. Thus, if k nulla­
tors are imbedded, k additional constraint equations are added. 

Two viewpoints can be taken here. First, the original set of equa­
tions, equation (16), has been appended by a set of the form 

[B]V] = 0] (18) 

where 

V] is the n-vector of node voltages. 
[B] is a k X n matrix of -1, 0, 1 entries expressing the set of con­

straints of equation (17) for the k nullators. 

The final set of equations becomes 

-. 

(19) 

A,_ second approach to the:- problem was suggestedpy Davies.5 In 
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the nodal equations below 

-, . 
... YIn I 

I V; 
... Yii ... Yii 

I • 

I : 
(20) 

I 

I Vi 
... Yni ... Yni ... Ynn J . 

Vn 

the addition of a nullator between nodes i and j makes Vi = V j = Vij • 

The ith and jth column of the Y matrix are both multiplied by Vij , 

thus they may be added and the equations written as 

VI 
Yll (Yli + VIi) .•. YIn 

Y2I (Y2i + Y2i) Y2n 
Vii = Is]. (21) 

YnI (Yni + Yni) ... Ynn 
Vn 

The addition of k independent nullators (no nulla tor loops) causes k 
additions of columns of Y and reduces the dimension of V] by k. We 
denote the reduced set of equations by 

[Y~]nX(n-kl V'](n-klXl = I~]nxl. (22) 

In either interpretation, we observe that the resulting set of equa­
tions is no longer square. In the first interpretation, we are increasing 
the dimensionality of the vector space that the column vectors must 
span, without adding new basis vectors to span that space. In general, 
the equations will be inconsistent. In the second interpretation, we are 
keeping the dimension of the space fixed, but reducing the number of 
vectors available to form a basis and the space may no longer be 
spanned. Again inconsistencies will generally arise. In either interpre­
tation, the inconsistencies are to be expected since nullators (VFE's 
or CFE's) have been introduced to constrain network variables. 

Let us now examine the way in which variable elements (additional 
degrees of freedom) remove these inconsistencies. Again two points of 
view may be taken. One provides us with new basis vectors to span 
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the space of possible injected current vectors Is], the second reduces 
the dimensionality of the space of Is] in order that the existing number 
of basis vectors might again span the space. 

Section III gives the essence of the first interpretation with the 
important result, equation (13). Observe that imbedding variable 
elements in a network provides an additional set of column vectors, 
namely, those of [-C], that may be used as basis vectors in spanning 
the space of possible Is]. Thus, if one has complete freedom in selecting 
variable elements, a set of column vectors, the columns of [- C] can 
always be found to assure that the space of all possible Is] will be 
spanned, regardless of how the nullators reduce the space of the column 
vector of the Y matrix. This concept, which involves growing new 
elements to satisfy imposed constraints, will be the subject of future 
study. 

A second approach in handling the freedom introduced by variable 
elements is to replace each variable element by a norator, as suggested 
in Section III. The method of Davies may then be employed to analyze 
the network containing norators. 5 Again assume that the admittance 
matrix Yo of the network without nullators and norators is available. 
Thus, 

[Yo]V] = Is]. (23) 

Now suppose that a norator is connected between nodes hand k, and 
that the reference direction for the arbitrary norator current 10 is 
from h to k. The current-law equations for nodes hand k will be of 
the form 

ISh - 10 = I: YhiVi (24) 
i 

ISk+Io= I: YkiVi' (25) 
i 

Since 10 is arbitrary, and is not needed to solve for the node volt­
ages, adding the two equations gives 

ISh + I Sk = I: (Yhi + Yki)Vi. (26) 
i 

This corresponds to the addition of rows hand k of the nodal equa­
tions of the network without norators. Thus for a network containing 
n nodes and r norators, only n - 1 - r independent equations can be 
written. 

Observe in Fig. 9 that the effect of connecting the norator between 
nodes hand k is to replace the nodal equations for nodes hand k 
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Fig. 9 - Effect of connecting norator between two nodes. 

by a single current law equation for the ambit (broken line) sur­
rounding both nodes hand k. Thus any functional relation between 
the current and voltage of branch j is removed, as is desired for a 
variable element. 

To summarize thus far, the following manipulations may be per­
formed on the network current law equations to deal with VFE's, CFE's 
and variable elements. To include network constraints, first imbed the 
CFE's and VFE's. ',,"rite the Y matrix with nullators removed. Then 
reduce the matrix by adding appropriate columns. This may be stated 
compactly by a matrix transformation as5 

Is] = [Yo] [UclV] (27) 

where rUe] is a matrix obtained from the unit matrix by adding columns 
corresponding to nodes between which nullators are connected. Since 
the transformation [Uc] is singular, not all components of V] are deter­
mined. The undetermined ones are found from the relation 

[B]V] = 0]. (28) 

To include variable elements, either 
(1:) Augment the Y matrix of the fixed portion of the network with 

the node cutset matrix of the graph of the variable elements to get 

(29) 

or 

(i1:) Add the current law equation : corresponding to nodes to which 
a nullator is connected. This is compactly stated by a matrix transforma-
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tion as5 

(30) 

where [Ur ] is a matrix obtained from the unit matrix by adding rows 
corresponding to nodes between which norators are connected. The 
vector of currents through variable resistors is then formed by equation 
(29). 

VI. SOLVING THE NETWORK EQUATIONS 

We now wish to solve the set of equations after imbedding CFE's, 
VFE's, and variable elements. We assume equation (29) to be our 
starting point. A similar formulation may be made using equation 
(30) as the starting point. CFE's and VFE's are imbedded, variable 
elements are specified, and nullators are removed to generate the set 
of equations 

[-c : Yo] ~J = Is]. (31) 

Addition of nullators to the network adds the set of equations 

BV] = 0] (32) 

and, from equation (27), the corresponding transformation rUe] on 
the admittance matrix. Thus the final set of equations becomes 

[-C i Yf UeJ 1J = IsJ. (33) 
o : B V 0 

As seen in the previous section, the transformation [Ucl (which adds 
columns of Y f) is consistent with the set of equations [B]V] = o. Thus 
the second matrix equation in equation (33) will always have a solu­
tion, provided the first one does. It remains only to solve 

[-C : Y, U,] ~J = Is]. (34) 

in order to determine the proper element values. Let 

IJ - = x] 
V (r+n-k) Xl • 

By using the Gauss-Jordan method one can bring these equations 
into the form 

(35) 
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where 

X1 1X2] is a vector of node voltages and currents through variable 
resistors, 

[U] is the unit matrix, 
[Q], lSI], I s2] are the resulting sub matrices after transformation. 
If 182] = 0 (the equations are consistent), the first equation can be 

solved for Xl] in terms of X2]. 

(36) 

The case 182] ~ 0 implies that there are no values of variable elements 
consistent with the imposed constraints. For 182] = 0], equation (36) 
generates all solutions to the problem. Some network variables X2] 

can be chosen arbitrarily and the remaining variables Xtl determined. 
At each setting of X2] the variable elements can be determined since 
all node voltages and currents through variable elements are known. 

Thus 

for ~ = 1, r (37) 

where il and i2 are connection nodes of the ith variable element. By 
allowing the free variables X2] to take on a continuum of values, all 
solutions to the problem are determined directly. 

Returning to the example already discussed (Fig. b), let us apply 
the method of singular imbedding. The circuit is redrawn in Fig. 10 
with the introduction of a VFE to constrain the voltage between nodes 
1 and 2 to be 0.1~:· volt. With the nullator removed, a set of nodal 
equations is written in the form of equation (13) 

II 

[-~ 
o : I/R 0 

°r'- -o·~l I 

1 : 0 1 -1 VI (38a) 
I 

0: 0 -1 1 V 2 0.1 

Vs 
The introduction of a nullator between nodes 1 and 3 results in the 
addition of the corresponding columns and the equality VI = Va = 

* Since the nulla tor passes zero current, the series battery in the VFE model 
may. have a nonzero resistance and still maintain the proper terminal voltage. 
Thus the introduction of positive and negative resistances are unnecessary here. 
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Fig. 10 - Network after singular imbedding. 

I
f 1 0 l/R 

-1 1 -1 

o 0 1 
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V 2 J 
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(38b) 

With R = 1 ohm for ease of visualization, elementary row operations 
yield 

[~ 
0 0: 

-~] 
II 0.9' 

I 
12 1 0: = 0.9 . (39) 

I 
V 13 0 1 : O.lJ 
V2 

Thus, 

I, ] 0.9] 
V, ~J 12 = 0.9 - (40) 

V 13 0.1 -1 

It is clear that V2 can take on arbitrary values while maintaining the 
constraints. We will demonstrate this for two particular values of 
V 2 • For V 2 = 0 
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II 0.9 

12 0.9 

V 13 0.1 

V2 0 

VI - V2 

II 

R2 = i12 = O. 

1 
9 ' 

It is easily verified that these values, when substituting into the 
circuit of Fig. 1, result in V' = VI - V 2 = 0.1 volt. 

Similarly for V 2 = 0.6 volt 

II 0.3 

12 0.3 

V 13 0.7 

V 2 0.6 
and RI = lis, R2 = 2. 

Again it is easily verified that V' = VI - V2 = 0.1 volt. With this 
simple example in mind, let us consider the solution of more com­
plicated networks by computer. 

VII. COMPUTER SOLUTION 

A program has been written to solve the design problem for resis­
tive networks. The program performs the following operations 

(i) Accepts input of circuit description in conversational mode. The 
circuit may contain resistors (both fixed and variable), VFE's CFE's 
batteries, independent current sources, and current controlled current 
sources. 

(ii) Generates C, Y f , and Is matrices for the network. 
(iii) Reduces equations to triangular form by a Gaussian reduction 

which pivots around largest elements in array. 
(iv) Those variables not in the basis after gaussian elimination are 

passed to the right side and stepped through specified range. Resistance 
values are printed for each setting of the free variables. Each set of 
resistance values will satisfy the given constraints. 

Four examples demonstrate the flexibility of the method. Suppose 
in the circuit of Fig. 11 one wishes to choose Rl and R2 to provide 
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12V 

SET Ie = smA 

Fig. 11- Transistor design problem. 

a collector current of 5 mAo A CFE of value 0.005 is placed in series 
with the collector and the circuit of Fig. 12 is fed into the program as 
in Table 1. After the program sets up the equations and performs the 
gaussian elimination, it prints, that the voltage at node 3 is free. It 
can be arbitrarily chosen to generate sets of solutions. 

This free voltage is then, at the user's request, stepped from 7 volts 
to 10 volts in 1 volt increments. Combinations of Rl and R2 which 
provide a collector current of 5 mA are printed in Table I. To verify 
these results the program DCANAL7 was used to determine the transistor 
collector current for the fifth set of resistor values. As the table shows, 
the collector current is 5 mAo 

A second example involves simultaneously constraining Ie = 5 mA 
and VCE = 5 volts. As Fig. 13 shows, R 1 , R 2 , and R3 are variable. 
The network with a VFE and CFE imbedded is shown in Fig. 14, and 
the results given in Table II. Verification of the first set of resistance 
values is given. Observe that Ie = 5 mA and VCE = 5 volts. 

1n. 

1
12V 

Fig. 12 - Network after transistor modelling and singular imbedding. 
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TABLE I-PRINTOUT OF THE SESSION TO SOLVE THE CIRCUIT OF FIGURE 11 
TYPE NO. OF BRANCHES.NODES.CO~TROLLED SOURCES,8ATTERIES,CURRENT SOURCES 

A:7 5 I .3 0 
TYPE BRANCH RESISTANCES 
8:1. I. 1260.200. 1.E3 I.E4 I. 
lYPE FOR EACH BRANCH: I~ITIAL NODE,FINAL NODE,BATTERY NO. 
C: I 5 I 4 3 1 I 5 2 5 2 3 1 2 1 3 2 I 1 4 2 
TYPE VALUES OF BATTERIES 
0:0. 12. -.7 
TYPE FOR EACH CONTROLLED SOURCE: BRANCH NO. AND CONTROLLING BRANCH NO. 
E:6 4 
TYPE VALUES OF BETAS 
1":75. 

OPTION COMMANDS:OESIGN R 

TYPE NO. VAR. RESISTANCES,NO. VOLTAGE CONSTRAINTS, AND NO CURRENT CONSTRAINTS 
1:2 " 1 
TYPE BRANCH NO. OF VARIABLE RESISTANCES 
J:I 2 
TYPE BRANCH CURRENTS BEING CONSTRAINED 
M:6 
TYPE VALUE OF EACH CURRENT BEING CONSTRAINED 
N: .005 

THE FOLLOWING NODE VOLTAGES ARE FREE 
3 

ENTER LOWER LIMIT AND INCREMENT FOR EACH FREE VARIABLE AND NO. OF SETTINGS 
0:7. I. <1 

THE FREE VARIABLE: 7. 
R( 1):1.1850722E+03 
R( 2):9.9900005E+02 

THE FREE VARIABLE: 8. 
R( 1):1.IB4IHl4EHl3 
R( 2):7.9900003EHl2 

THE FREE VARIABLE: 9. 
R( 1):1.1831496E+03 
R( 2):5.99000000E+02 

THE FREE VARIABLE: tel. 
R( 1):1.1821898E+0.3 
Re 2):3.9899998E+02 

DESIGN COMMAND:KEEP 
ENTER VALUES OF FREE VARIABLES FOR DESIRED SET 
:10. 

OPTION COMMAND:TRAN ALL 

VCE IC 
TRANS # 

I 4.9398502 4.9999999E-03 

12 V 

SET Ic= 5mA 

Vc E=5V 

Fig. 13 - Transistor design problem. 
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~ 
-=-12 Y 

1260 

~1 
12V -=-

I 

Fig. 14 - Network after transistor modelling and singular imbedding. 

A third example involves the rather complex three transistor circuit 
illustrated in Fig. 15. The imbedding of VFE's and CFE's to con­
strain collector emitter voltages to 5 volts, and collector currents to 
10 rnA is shown. 

Table III illustrates the results of a computer solution to the problem 
by the method of singular imbedding. Observe that currents through 
variable resistors 10 and 14 can be arbitrarily chosen and sets of resistors 
RiO through R18 generated. Four such sets are presented in Table III. 
Observe the results of an analysis indicating one such set properly 
biases the network. Table IV presents the results of an optimization 
program, based on pattern search,l to bias the network, for which 
forty-eight exploratory moves and 105 pattern moves were required. 
Each exploratory move involves between eight and 16 circuit analyses. 
Each pattern move involves an average of four analyses. Thus, approxi­
mately 1000 matrix inversions are required. Since each inversion involves 
(n3

) /3 operations, the number of operations to generate a single bias 
network ~243,000. 

Singular imbedding increases the number of nodes from 9 to 15. 
However, only one matrix inversion is required to generate a solution. 
Thus the number of operations ""n3/3 "" 1125. 

Singular imbedding increases the efficiency in finding a solution to 
this problem by a factor of approximately 200. What is even more 
important is the ease with which equivalent networks are generated. 
Each equivalent network is generated by a matrix multiplication of 
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TABLE II-PRINTOUT OF THE SESSION TO SOLVE THE CIRCUIT OF FIGURE 13 
TYPE NO. OF BRANCHES.NODES.CONTROLLED SOURCES,BATTERIES,CURRENT SOURCES 
A:7 5 I 3 0 
TYPE BRANCH RESISTANCES 
B:I. I. I. 126~. 200. I.E4 I. 
TYPE FOR EACH BRANCH: INITIAL NODE.FINAL NODE.BATTERY NO. 
C:I 3 I I 2 I 5 4 I I 3 2 3 2 3 4 2 1 I 5 2 
TYPE VALUES OF BATTERIES 
0:0. 12. -.7 
TYPE FOR EACH CONTROLLED SOURCE: BRANCH NO. AND CONTROLLING BRANCH NO. 
E:6 5 
TYPE VALUES OF BETAS 
F:75. 

OPTION COMMANDS:DESIGN R 

TYPE NO. VAR. RESISTANCES. NO. VOLTAGE CONSTRAINTS. AND NO CURRENT CONSTRAINTS 
1:3 I 1 
TYPE BRANCH NO. OF VARIABLE RESISTANCES 
J:I 2 3 
FOR EACH VOLTAGE CONSTRAINT, TYPE PLUS AND MINUS NODES 
K:4 2 
TYPE VALUE OF' EACH VOLTAGE CONSTRAINT 
L:5. 
TYPE BRANCH CURRENTS BEING CONSTRAINED 
M:6 
TYPE VALUE OF EACH CURRENT BEING CONSTRAINED 
N:.005 

THE FOLLOWING NODE VOLTAGES ARE FREE 
3 

ENTER LOWER LIMIT AND INCREMENT FOR EACH FREE VARIABLE AND NO. OF SETTINGS 
0:4. 2. 2 

THE FREE VARIABLE: 4. 
R( 1):6.3601035E+02 
Re 2):6.4979250E+02 
Re 3):7.4140005E+02 

THE FREE VARIABLE:6. 
Re J):1.2760788EHl3 
Re 2):1.0450373E+03 
Re 3):3.4140001 E+02 

DESIGN COMMAND:KEEP 
ENTER VALUES OF FREE VARIABLES FOR DESIRED SET 
:4. 

OPTION COMMAND5:TRAN ALL 

veE 
TRANS /I 

I 5.0000 EHl0 

the vector of free variables, which is stepped through a specified 
range, and the matrix of vectors not taken into the basis after tri­
angulation. In this case the matrix is 19 X 2 and the vector of free 
variables is 2 X 1. Each multiplication involves 2 X 19 = 38 opera­
tions. This means that up to 14,000 equivalent networks can be gen­
erated with the same number of operations needed to give one solution 
by optimization techniques. 

The value of singular imbedding is apparent here. Only one equa­
tion need be solved, and from it, all solutions are generated. 

As a fourth example, a network was designed for a specified Zll 
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+45V~----~----------------~------~A,A~----~ 

lk 

9065 

~--------~----------------4---------------~~--~-45V 

Fig. 15 - Three transistor network with VFE's and CFE's imbedded for desired 
biasing. 

and Z21 simultaneously. The circuit is given in Fig. 16. R1 , R2 , and R3 
are to be selected to give Zu = 213 and Z21 = 113. After proper imbed­
ding of VFE's and CFE's the network of Fig. 17 results. Table V 
gives the results of a computer run to design the circuit. The third 
set, Rl = R2 = Ra = 2 is shown to give the desired z-parameters 
through the Y - A transformation of Fig. 18. 

VIII. RESISTOR CONSTRAINTS 

In many design problems it is desirable to constrain the values that 
the parameters take to lie within certain limits. For example, in 
biasing a transistor network, although solutions in which some resis­
tors are negative are mathematically correct, in practice such net­
works are unacceptable. 

If the designer has a good feeling for the circuit he is working 
with, his choice of the free variables resulting from gaussian elimina­
tion with maximum pivoting will usually yield resistors with posi­
tive values. There are, however, instances involving multiple feed­
back paths where intuition cannOli always be relied upon. In these 
instances it is possible that the values given by the designer to the 
free variables yield negative resistances. Furthermore, it may be 
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TABLE III-PRINTOUT OF THE SESSION TO SOLVE THE CIRCUIT OF 

FIGURE 15 
THE FOLLOWING BRANCH CURRENTS ARE FREE 

10 
14 

ENTER LOWER LIMIT AND INCREMENT FOR EACH FREE VARIABLE AND NO. OF SETTINGS 
0:I.E-3 I.E-3 I.E-2 .2E-2 2 

THE FREE VARIABLES ARE 
1.000 E-03 1.000 E-02 

R(IO):4.2366667E+03 
R(ll) :1.1028088E+09 
R(12):3.700B484E+03 
R(13):4.0579244E+03 
R(14):4.1685477E+03 
R(16):3.3704454E+03 
R( 17) :3.7811070 EH'3 
R(18):4.1917495E+03 

THE FREE VARIABLES ARE 
2.000E-03 1.000E-02. 

R( 10) :2.1183333 E+03 
R<lI):I.1372716E+09 
R(12):3.9956586E+03 
R(13):3.7284580E+03 
R(14):4.1685477E+03 
R(16):3.3704454E+03 
R(17):3.7811070E+03 
R( 18) :4.1917495E+03 

THE FREE VARIABLES ARE 
1."00E-03 1.20"E-"2 

R(IO>:4.2366667E+03 
R( 1 I) :2.1183293E+03 
R(12):3.7008484E+03 
R( 13) :4.9290360E+03 
R(14):3.4737897E+03 
R(16):3.3704454E+03 
R(17):3.7811070E+03 
R( 18) :4.1917495E+03 

THE FREE VARIABLES ARE 
2.000E-03 1.200E-02 

R(J(l):2.1183333E+03 
R<ll) :2.1183293E+03 
R(12):3.9956586E+03 
R(13):4.4512615E+03 
R(14):3.4737897E+03 
R(16):3.3704454E+"3 
R( 17) :3. 7811"70E+"3 
R(18):4.1917495E+03 

DESIGN COMMAND:KEEP 
ENTER VALUES OF FREE VARIABLES FOR DESIRED SET 
:2.E-3 I.E-2 

OPTION COMMANDS:TRAN ALL 

TRANS # 
1 
2 
3 

VCE IC 

5.0000E+00 
5.0"00EH'0 
5.0000EH'0 

I.0000E-02 
1.0000E-02 
9.9999E-03 

difficult to explore the space of the free variables looking for regions 
where all the resistors are positive. 

One possibility for finding positive resistor regions is to use an 
optimization technique in which, considering the free variables as 
adjustable parameters, the sum of the absolute magnitudes of the 
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negative resistors is reduced to a minimum. If there exist solutions 
with all resistors positive, the minimum (zero) hopefully would be 
found automatically by the optimization routine. 

This optimization is more efficient than solving the problem by 
exploring a space in which all the variable resistors are parameters 
to be adj usted.1 

Although the method given has been tried with success, a superior 
method having several advantages over the one proposed is explained 
in Section IX. The method avoids some of the most important problems 
associated with nonlinear programming. 

Some of these problems are: 

(i) The routine may get trapped in local minima. 

(ii) Depending on the shapes of the surfaces involved and on the 
methods used the convergence towards the minimum may be very slow. 

(iii) If the optimization is with constraints the nonlinear constraints 
are usually difficult to handle. 
If it were possible to reduce the problem to a linear programming 
problem, the following would have been gained: 

(i) If the problem has a finite minimum it will be achieved in a 

TABLE IV-PRINTOUT OF OPTIMIZATION PROGRAM 

INITIAL BRANCH RESISTANCES 

R C "J> :0.5'",''' E+04 
RCII):0.5000E+04 
R(12):0.3000E+04 
R(13):0.3000E+04 
RCI4):0.3000E+04 
R( 16) :0.3000E+04 
R( 17) :0.3003E+04 
R (18) :0.3000 E+04 

EXPLORATORY MOVES 48 

PA TTER H MOVES 105 

FINAL BRANCH RESISTANCES 

R(10):0.3730E+04 
RCII):0.4340E+04 
R( 12) :0.3732 E+04 
RCI3):0.4377E+04 
R(14):0.3795E+04 
RC 16) :0.3312E+04 
R( 17):0.3783E+04 
RCl8):0.4197E+04 

TRANSISTOR OPERATING POINTS 

TRANS # 
I 
2 
3 

VCE 
5.000E+00 
5.000EHl0 
5.000E+00 

IC 
1.0e0E-02 
1.000E-02 
1.000E-02 
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2/3 2/3 

SET Z 11= 2/3 
Z21= 1/3 

Fig. 16 - Z-parameter design problem. 

finite number of steps. No local minima which are not also global 
minima exist. 

(ii) Algorithms exist which converge to the minimum efficiently. 
(iii) The linear constraints generally complicate the problem only 

moderately. 

In Section IX the problem of biasing transistor networks is reduced 
to a linear programming problem. 

IX. APPLIED LINEAR PROGRAMMING 

Let us start by assuming a network in which the designer knows 
the correct signs of the node voltages with respect to the datum and 
the direction of the currents in the variable resistors. Generally the 
former is an easy task since it only involves knowing the nodes with 
the lowest potential. If this node is chosen as the datum, all the node 
voltages will be positive. Knowing the correct direction of the cur­
rent through the variable resistors requires a better understanding of 
the circuit operation. Furthermore, there may be solutions in which 
the current through some resistors may flow in either direction. For 
this reason this requirement will eventually be relaxed. 

Linear programming requires the right side vector of equation (33) 

2/3 2/3 

Fig. 17 - Network after singular imbedding 
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TABLE V-PRINTOUT OF THE SESSION TO SOLVE THE CIRCUIT OF FIGURE 16 

TYPE NO. OF BRANCH2S,NODES,CONTROLLED SOUnCES,BATiERIES,CURRENT SOURCES 
A:6 4 0 1 I 
TYPE BRANCH RESIST~NCES 
B:I. I. 1 •• 66666667 .66666667 .66666667 
TYPE FOR EACH BRANCH: INITIAL NODE,FINAL NODE,BATTERY NO. 
C:I 2 1 1 4 I 2 4 1 2 3 1 3 4 1 3 I I 
TYPE VALUES OF BATTERIES 
D:0. 12. -.7 
TYPE FOR EACH CONTROLLED SOURCE:BRANCH NO. AND CONTROLLING BRANCH NO. 
E:6 5 
TYPE VALUES OF BETAS 
F:75. 
TYPE FOR EACH INDEPENDENT SOURCE: INITIAL NODE AND FINAL NODE 
G=I 2 
TYPE VALUE OF EACH INDEPEflDENT CURRENT SOURCE 
H=I. 

OPTION COMMANDS:DESIGN R 
TYPE NO. VAR. RESISTANCES,NO. VOLTAGE CONSTRAINTS, AND NO CURRENT CONSTRAINTS 

1=3 2 0 
TYPE BRANCH NO. OF VARIABLE RESISTANCES 
J:I 2 3 
FOR EACH VOLTAGE CONSTRAINT TYPE PLUS AND MINUS NODES 
K:2 1 4 1 
TYPE VALUE OF EACH VOLTAGE CONSTRAINT 
L=.66666667 .33333333 

THE FOLLOWING BRANCH CURRENTS ARE FREE 
I 

ENTER LOWER LIMIT AND INCREMENT FOR EACH FREE VARIABLE AND NO. OF SETTINGS 
0:-1. .33333333 3 

THE FREE VARIABLE: -1.0000 
Re 1)= 0.66666670E+00 
Re 2)=-0.66666667E+00 
Re 3)=-0.66666680E+00 

THE FREE VARIABLE: -0.6667E+00 
Re 1)= 0.10000000E+01 
R( 2):-0.20000000E+01 
Re 3)=-0.19999999E+01 

THE FRE VARIABLE = -0.3333E+00 
Re I): 0.19999997E+01 . 
Re 2)= 0.20000000E+01 
R( 3): 0.20000013E+01 

2 

2/3 2/3 

(a) 

ZI1:::; 2/3 
Z21= 1/3 

1 

: ,! VV'v 

2 

(b) 

Fig. 18 - Verification of computer solution. 

I' : 
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to have positive entries. This may be achieved by multiplying by -1 
all those rows in equation (33) which have a negative entry in the 
right side vector and thus obtain the set of equations 

(41) 

where 

is obtained from 

l ~c Y~U'l and ~] from ~ J 
by possibly multiplying some rows by -1. 

To force all the branch voltages to be positive let us add the constraint 

- [C]V] ~ 0] (42) 

where [C] is the matrix appearing in equation (12). 
Equation (41) and inequality (42) together with the condition 

~J !?; 0] (43) 

can be looked upon as a linear programming problem in which it is 
desired to find the value of a positive vector satisfying a set of linear 
equalities and inequalities and which minimizes the linear function 
where 

z = D~J '--'v (44) 

E. = [0, 0, ... , 0]. 

Since the minimization of the constant zero is of no interest, all that 
is required is to obtain the feasible solutions of the linear programming 
problem.6 

Once the feasible solutions are obtained, the fact that the solution 
satisfies equation (41) guarantees that the circuit is properly biased 
while the positivity condition on the vectors ~ and - [C]V] guarantee 



CIRCUIT DESIGN 303 

that all the variable resistors are positive, since both the currents 
and voltages across them are positive. 

To obtain the feasible solutions phase I of the two phase simplex 
method may be used. 6 

Phase I of the simplex method finds the basic positive solutions of the 
system of equations 

[~~_O l~l ~l o H3 0 V = 0 
----- - -

o -c - U w 0 

(45) 

where the vector w] (which is constrained to be positive) is a slack 
vector and U is a unit matrix. 

By denoting with A the matrix on the left of equation (45), with x 
the column on the left, and with b the column on the right side, equa­
tion (45) may be written 

Ax = b. (46) 

Let the dimensions be: A, m X n; x, n X 1; b, m X 1. Let A and [A I b] 
have rank r. This implies equation (46) is compatible. (The case in 
which this is not true is of no interest since in such case no solution­
whether positive or not-exists.) 

Phase I of the simplex method finds positive solutions of equation 
(46) for r of the variables Xi, i = 1, 2, ... ,r setting the rest of the 
xj, j = r + 1, ... , n to zero.;} Each one of this set is a basic feasible 
solution. There may be several such sets for a given problem. The 
totality of nonnegative solutions of equation (46) is the convex hull 
of the basic solutions. By extending the simplex algorithm so that 
once a basic feasible solution is found the other basic feasible solu­
tions are also searched for, it is possible to obtain all basic feasible 
solutions. 

Suppose Xl, x2
, ••• ,xP are basic feasible solutions. Then any vector 

X satisfying 

and 

x = A,X' + A,X' + ... + APxPl 

Al , Az , ••• , Ap ;:;; 0 J 
Al + Az + ... + Ap = 1 

(47) 
with 

is also a feasible solution. 

* In case no nonnegative solutions to equation (46) exist, the simplex algorithm 
is able to detect it. 
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If xl, X 2
, ••• ,xP is the set of all basic feasible solutions, then all the 

solutions of equation (47) constitute the complete set of feasible solu­
tions. 

X. RESISTORS WITH UPPER AND LOWER BOUNDS 

In the previous discussion the appearance of nonnegative resistors 
was precluded by adding inequality (42). Often it is desirable to im­
pose lower and upper bounds for the resistors because the technology 
used to realize them requires it. For example, if tantalum thin film 
resistors are used it is desirable to restrict them to lie between 10 and 
105 ohms. 

Let the kth variable resistor be connected from node i to node j. The 
value of Rk is given by 

R - Vi - V j 

k - lk • 

If it is desired to have this resistor lie within 10 and 105 ohms the 
following conditions are imposed 

Vi - V j > 
h = 10, 

Vi - Vi < 105, 
h = 

which may be rewritten (recall h is nonnegative) 

Vi - Vi - 10lk ~ O}. 
Vi - V j - 105l k ~ 0 

(48) 

If instead of equation (42) inequalities similar to equation (48) 
are written for all variable resistors, the resulting circuits will have 
all variable resistors within specified upper and lower bounds (except 
for the possibility I k = 0, which implies an open circuit, in which 
case the resistor disappears altogether). 

The problem of biasing of transistor networks with positive resis­
tors is equivalent to solving 

(49) 
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[D, I -C] ~J ~ ~J 

1J ~ QJ V - 0 

305 

where DI and D2 are diagonal matrices whose diagonal elements contain 
the minima and maxima for the variable resistors. By adding positive 
slack vectors WI and W 2 , equation (49) is equivalent to 

HI H2 0 0 I f 
- ---- -

0 H3 0 0 V 0 
- ---- - (50) 
DI -c -u 0 W l 0 
-----

~JW2 D2 -C 0 0 

where U is a unit matrix and the vector on the left is restricted to be 
nonnegative. 

XI. RELAXING SIGN CONDITIONS 

So far it has been assumed that the direction of the current flow in 
variable resistors is known beforehand. This condition may not hold 
for some cases and hence it is desirable to relax it. 

When a variable in a linear programming problem is not required 
to be positive it is customary to write it as the difference of two posi­
tive quantities. Thus if II,; and V j - V I,; = V are not required to be 
positive one may write 

Ik = I k, - I k" 

Vz = V z' - V z" 

where h, , h" , V z' , V z" ~ O. 
A current Ik of variable sign may be restricted to have a magnitude no 

less than I ok ~ 0 by imposing the pair of conditions* 

(51) 

Likewise a branch voltage V z of variable sign across a resistor may be 

* The constraint set on the currents is not convex, therefore it is necessary to 
solve the problem twice, once with each inequality, and take the union of the 
two solutions. If n variable resistors may have currents flowing in either direc­
tion, the solution will be the union of the solutions of 2'" problems in which 
all the combinations of the inequalities are used. 
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restricted to have a magnitude no greater than V ok ~ 0 by imposing the 
pair of conditions 

(52) 

If V l is the voltage across the kth resistor and 1 k its current, then in­
equalities (51) and (52) insure that the magnitude of the kth resistor 
satisfies 

(53) 

The resistor Rk may be negative or positive. However, if each variable 
resistor is made of two resistors in series one of value V ok/l ok and the 
second to be determined by the computer subject to equation (53), the 
series combination of the two resistors will never be negative. This 
constitutes a technique for guaranteeing positive variable resistors 
without previous knowledge of the directions of current flows. ** 

The method described can also handle circuits with variable resistors 
whose values lie within upper and lower limits. If R kmin and Rkmax are 
the minimum and maximum values allowed for the kth variable resistor, 
the fixed series resistor should be 

RkJ = R kmin + V ok/l ok 

with V ok/l ok chosen such that 

(54) 

(55) 

The value of Rkmin may be zero. Thus, a resistor may disappear as a short 
circuit. If instead of bounding the value of a resistance from above, the 
value of an admittance is bounded, a dual method may be used to 
guarantee positive resistors. 

Instead of equations (51) and (52) the following restrictions are 
imposed 

(56) 

(57) 

* Both VOk and 10k are variables in the linear program which will be determined 
by the simplex al~orithm. The ratio is constrained by a linear inequality 101< I RI< I 
- VOl< =::; 0, where I RI< I is given. 

** Another approach is to reverse the reference direction of the current and 
voltage drop across each variable resistor and apply the methods of the previous 
section. If n variable resistors may have currents flowing in either direction 
it is necessary to consider 2n possibilities. 

t See footnote to equation 51. 
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These guarantee that 

(58) 

where Gk = 1/ Rk • Gk may be positive or negative if each variable 
resistor is made of two resistors in parallel, one of admittance Iok/Vok 
and the second to be determined by the computer subject to equation 
(58). However, the parallel combination of the resistors will never be 
negative. 

The dual method can also handle circuits with variable resistors whose 
admittance lies within upper and lower limits Gkmax and Gkmin • The value 
of Gkm1n may be zero. Thus a resistor may disappear as an open circuit. 

XII. CHOOSING TOPOLOGY BY COMPUTER 

As already pointed out, Phase I of the simplex method obtains the 
basic feasible solutions of a set of linear equations. The set of equa­
tions may come from a set of equalities and inequalities to which 
slack variables have been added. Usually the number of variables 
(including slack variables) is greater than the number of equations 
and the system is redundant. If r is the rank of the system and n is 
the number of variables (including slack variables), at least n-r 
variables are set to zero in obtaining a basic feasible solution. Some of 
the variables set to zero may be node voltages or variable resistor 
currents. If a node voltage is set to zero, the corresponding node is 
grounded. If a variable resistor current is set to zero, the corre­
sponding resistor disappears as an open circuit. If a slack variable 
is set to zero, the inequality constraints are met with equalities. 

For example, for equation (50) if the kth entry of w, is zero, the 
kth resistor acquires its minimum allowed value. 

One way of viewing equation (50) is to consider the columns of 
the matrix on the left as elements of a vector space and the entries 
of the column multiplying the matrix as those positive coefficients 
which synthesize the column on the right in the form of a linear com­
bination of the columns of the matrix. A final tableau of Phase I of 
the simplex method will contain a number of independent unit col­
umns (with all entries zero except one) equal to the rank of the mat­
rix on the left side of equation (50). The unit columns are obtained 
by the special gaussian reduction provided by the simplex algorithm. 
Each column corresponds to a variable in the column multiplying the 
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matrix of equation (50). Those variables whose corresponding col­
umns are not unit columns are set to zero. 

If a set of columns corresponding to the currents through a set of 
variable resistors are linearly dependent, one or more of the currents 
will be set to zero. This implies the disappearance of a resistor as an 
open circuit. The choice of which resistors disappear is automatically 
determined with the aid of the simplex algorithm, so that the non­
zero currents acquire positive values (if such a choice exists). If two 
columns of the matrix of equation (50), corresponding to currents 
through variable resistors, are linearly dependent it means that Kirch­
hoff's voltage and current law may be satisfied with one of the cur­
rents zero, making one of the resistors unnecessary. 

The above argument provides a method for letting a computer pro­
gram choose the topology and resistor values of a dc network in 
which certain voltages and currents are imposed by CFE's and VFE's. 
One connects an excess of resistors between different nodes (includ­
ing additional internal nodes if desired). By using a linear program­
ming formulation some node voltages and variable resistor currents 
are set to zero by the computer program, thus determining a set of 
"linearly independent positive resistors" 'that satisfy all the circuit 
equations. 

XIII. EXAMPLES 

Consider the circuit of Fig. 19 (a). The equivalent circuit is shown 
in Fig. 19(b) with a VFE and CFE in place. As indicated on Fig. 
19 (b) it is desired to impose on the transistor a collector current of 
5 rnA and a collector-emitter voltage of 5 volts. The resistors marked 
R1 , R2 and R3 are variable. 

The nodal equations for the circuit after the effect of the nullators 
introduced by the VFE's and CFE's are taken into consideration 
are, in matrix form 

1. 1. O. 0.005 -0.005 O. -1 X 10-10 

O. O. 1. -0.38 0.3811 -0.0011 O. 

O. O. O. O. O. 0.00333 O. 

1. O. O. -1. X 10-10 O. O. 1. 

O. O. O. O. -0.001 0.001 O. 

O. O. O. 0.375 -0.3751 0.0001 O. 
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In 12V 

11'l 

® 

(a) CIRCUIT (b) MODEL 

Fig. 19 - Circuit biased with constrained singular imbedding; (a) circuit, (b) 
model. 

II 0.0035 
12 -0.27 
13 0.035 
V2 12. 

(59a) 

V3 0.005 

v'j 0.2675 
V5 

By multiplying the second row by -1, the entry -0.27 in the right 
side vector is made positive. (As indicated above, linear program­
ming assumes the right side vector is nonnegative). Notice that since 
the matrix in equation (59a) is 6 X 7, we therefore generally expect 
a one parameter infinity of solutions. If the system of equations were 
solved using the simplex method (with arbitrary cost coefficients), 
solutions in which all the variables acquire non-negative values may 
be obtained. Resistors R2 and R 3 , which are grounded, will auto­
matically be positive. :However the voltage differences across un­
grounded resistors may turn out to be negative, yielding negative re-
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sistances. To assure a non-negative voltage difference across R, the 
following additional constraint will be imposed 

V5 - V 2 ~ 0 
which may also be written* 

V 2 - V5 ~ O. 

There are two basic feasible solutions to this problem: 

II 5.788 5.9966425 X 10-5 

5.78794 

5.060073 X 10-3 

6.212 

5.5 

10.5 

O. 

5.060073 X 10-3 

6.212 

5.5 

10.5 

V5 6.212 11.99994 

The first basic. solution yields the following set of resistors 

R - V5 - V 2 _ 6.212 - 6.212 - 0 h 
1 - II - 5.788 - 0 ms 

V 2 6.212 7 h 
R2 = Y; = 5.78794 = 1.0 32660 ms 

R3 = i
3
3 = 5.0600:4

5 
X 10-3 = 1086.941 ohms. 

Rl is a short circuit. 
The second basic solution yields the set 

R1 = 97008.514, R3 = 1086.941. 

(59b) 

(60) 

(61) 

R2 is an open circuit. Notice also that Rg is the same for both solu­
tions. This is expected since the voltage of node 3 is virtually fixed 
by the requirements. 

The totality of the solutions with non-negative voltage differences 
across the variable resistors may be written, according to equation (47) 

x = AX1 + (1 - A)x2 

where Xl and x2 are the basic feasible solutions of equation (60), and 
O~A~l. 

* When the right side of an inequality is zero, it is preferable to write it as 
a ~ inequality because the corresponding slack variable may be used as an 
artificial variable with savings on the size of the matrix to be manipulated. 
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2.89402 

2.89397 

5.060073 X 10-3 

X = 6.212 

5.5 

10.5 

9.10597 

which yields the set of resistors 

Rl = 0.997906, R2 = 2.146532, 

311 

R3 = 1086941. 

A continuous set of equivalent circuits, which achieve the require­
ments exactly and which have positive resistances, is obtained by 
varying A between 0 to 1. 

Suppose now that further considerations require that Rl lie be­
tween 1000 and 2000 ohms. By replacing (59b) by 

V5 -;: V 2 ~ 1000 

which may be written 

and V5 - V 2 ~ 2000 
II 

1000 II - V5 + V 2 ~ 0 

- 2000 II + V 5 - V 2 ~ 0 

the resistor Rl is forced to remain between 1000 and 2000 ohms. 

(62) 

When the new problem is solved the basic feasible solutions are 

5.782218 X 10-3 2.892554 X 10-3 

5.722218 X 10-3 2.832554 X 10-3 

5.060073 X 10-3 5.060073 X 10-3 

Xl = 6.212 x2 = 6.212 

5.5 5.5 

10.5 10.5 

11.99422 11.99711 
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The basic feasible solutions yield the following sets of resistors 

Xl : Rl = 1000., 

X2 : Rl = 2000., 

R2 = 1085.593, 

R2 = 2193.074, 

R3 = 1086.941 

R3 = 1086.941. 

Notice that Rl acquired its allowable extreme values in each basic 
feasible solution. 

Other sets of resistances may be obtained by convex combinations 
of the two basic feasible solutions. 

As an example in which the topology of a circuit is determined by 
the computer, consider the circuit of Fig. 16 in which Rb R 2 , and R3 
are to be selected to give Zll = % and Z:n = 113. The example was 
previously solved without linear programming techniques. Several 
solutions appear in Table V. By maximizing the negatives of the cur­
rents in the resistors, those currents which may be set to zero by tak­
ing them out of the basis for a basic feasible solution will be con­
verted into open circuits. After the effect of the nullators introduced 
by the VFE's is accounted for, the matrix corresponding to the 
circuit of Fig. 16 is 5 X 6. We therefore expect a one parameter in­
finity of solutions and two basic feasible solutions which are 

II 0.0 l 0.28174743 

12 5.9652404 X 10-3 4.5937138 X 10-3 

Xl 13 5.965238 X 10 -3 
X2 0.0 

V2 44.096881 

j 
43.602828 

V3 0.3333333 0.33639577 

V4 0.3333333 0.3333333 

Notice that V4 remains constant for both basic feasible solutions. This 
is expected since a VFE is connected from node 4 to node 1 (datum). 
The resistances corresponding to the basic feasible solutions are 

00 

154.4759, 

R2 = 55.879273, 

R2 = 72.5629, 

R3 = 7336.429 

R3 = 00. 

In both basic feasible solutions one of the resistances disappeared as 
an open circuit. This indicates that given R 4 , R5 and R6 with the 
values indicated in Fig. 16 the circuit is achievable with two topologies, 
each containing 5 resistors. 

Let us now make R6 a variable resistor. The nodal matrix after the 
elimination of the nullators is now.5 X 7. Thus we expect a two 
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parameter infinity of solutions and at least 3 basic feasible solutions. 
The following sets of resistors correspond to basic feasible solutions 

co, 1.33333, R6 = 0.16666667 

co, 0.333333, Ra = 0.4444456, 

(iii) Rl = 0.88888898, 

(iv) Rl = 1.3333336, 

R2 = 1.333333, Ra = co, 

R3 = co, R6 = 0.66666651. 

These sets provide four different topologies with which given two 
of the resistors (R 4 and R 5 ) a resistive network having Zll = 2/s, Z21 

= lis may be realized. 
The example illustrates how using the methods of this paper can 

solve the problem of realizing portions of a resistive matrix with cer­
tain elements prespecified. The prespecified elements need not be 
resistors but may also include controlled sources, gyrators, ideal trans­
formers, and so on. 

The methods discussed have been implemented on a time-shared 

TABLE VI-PRINTOUT OF THE SESSION TO SOLVE THE CIRCUIT OF 

FIGURE 19 
TYPE NO. OF BRANCHES,NODES,CONTROLLED SOURCES,BATTERIES,CURRENT SOURCES 
A=7 5 I 3 0 
TYPE BRANCH RESISTANCES 
B=I. I. 1.200. I.E4 300. I. 
TYPE FOR EACH BRANCH: INITIAL NODE, FINAL NODE,BATTERY NO. 
C =5 2 I 2 I I 3 I I 2 3 2 4 3 I I 4.3 I 5 .3 
TYPE VALUES OF BATTERIES 
D=O. -.7 12. 
TYPE FOR EACH CONTROLLED SOURCE: BRANCH NO. AND CONTROLLING BRANCH NO. 
E=6 5 
TYPE VALUES OF BETAS 
F=75. 

OPTION COMMANDS=DESIGN CKT 
TYPE NO VARIABLE RESISTANCES, NO. VOLTAGE CONSTRAINTS, AND NO CURRENT CONSTRAINTS 
I =3 I I 

TYPE BRANCH NO. OF VARIABLE RESISTANCES 
J=I 2 3 
TYPE PLUS AND MINUS NODES FOR EACH VFE 
K=4 3 
TYPE VALUE OF EACH VFE 
L=5. 
TYPE BRANCH CURRENT FOR EACH CFE 
M=5 
TYPE VALUE OF EACH CFE 
N=.005 
TYPE COST COEFFICIENTS 
0= I. I. I. I. I. I. I. 
TYPE MINIMA OF VARIABLE RESISTANCES 
P=100fl. 0. 0. 
TYPE MAXIMA FOR EACH VARIABLE RESISTANCE 
Q=2000. I.E8 I.E8 

R( 1)= 9.9999995E+02 
R( 2)= 1.0855930E+03 
R( 3)= 1.0869498EH,3 
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computer system. The program is conversational. A portion of a ses­
sion in which a basic solution corresponding to the circuit of Fig. 19 
with Rl constrained betwen 1000 and 2000 ohms appears in Table VI. 

XIV. CONCLUSIONS 

The method of singular imbedding has been shown to be efficient for 
solving the following problem: Given a circuit with a prespecified 
topology, some of whose elements are prespecified, find the values of 
the unspecified elements which will yield desired node-pair voltages 
or branch currents. The unspecified element values may be restricted 
to lie within given upper and lower bounds. 

By letting the upper and lower bounds become infinite and zero, 
the problem of finding the topology for the circuit may be also solved. 

The method has been implemented on a time-shared computer, 
and several examples, including some practical transistor circuits, are 
given. 

The usual approaches to the problems of this paper have been itera­
tive analysis-optimization schemes. Singular imbedding requires, for 
a three transistor amplifier, three orders of magnitude less computa­
tion time. This makes the method appealing for time-shared applica­
tions. 

Two new singular network elements, the voltage forcing element 
and the current forcing element, constrain node-pair voltages and 
branch currents without otherwise affecting the circuit. Elements of 
unspecified value are modeled by branches carrying unknown cur­
rents. 

With the aid of these elements, the problem of design is reduced to 
one of analyzing a circuit containing unknown current sources and 
nullators. If there are more free elements than requirements, the solu­
tion space may be a linear manifold. By allowing the free circuit 
variables to take on a set of discrete values, sets of exact solutions 
to the design problem may be generated economically. 

When the unspecified elements are required to lie within upper and 
lower bounds, the problem is one of analysis with linear inequality 
constraints. This may be solved efficiently using linear programming 
techniques. 

Among the practical problems solved by singular imbedding are 
biasing a direct coupled transistor amplifier, designing midband gain 
and driving point impedance, synthesizing networks for several given 
admittance parameters, and determining circuit topology. 

Areas being investigated include using singular imbedding in the 
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synthesis of resistance networks (the synthesis of a single column of 
a specified resistance matrix has been illustrated). Synthesis of an 
entire resistance matrix results from the intersection in resistance 
space of the solution spaces for each column of the matrix. Similarly, 
by considering the intersection of solutions spaces for both a small 
signal design and a biasing design, the method may be extended to 
designing transistor circuits for desired small signal design and bias 
points simultaneously. 

Although only fixed value CFE's and VFE's were used in this 
paper, CFE's and VFE's which may take any value within a given 
range may also be used. For example, a branch current may be forced 
to be greater than 1 rnA and less than 10 rnA. These elements are also 
useful in insuring that models for devices stay within their valid 
limits. For example, a transistor can be constrained to remain in the 
active region, for which the linear model used is valid. 

For simplicity, only the case of linear dc networks has been il­
lustrated in this paper. However, the method has usefulness in ac 
design, combined ac and dc design, and non-linear design. These topics 
will be covered elsewhere. 
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