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Domains in Bull~ Semiconductors 

By K. KUROKA W A 

(Manuscript received June 23, 1967) 

This paper discusses the dynamics of high-field propagating domains 
in bulk semiconductors such as gallium arsenide. First, the origin of a 
high-field domain and its nucleation mechanism are discussed. Next, 
important properties of a steady-state high-field domain are briefly re­
viewed. Then, the "unequal" areas rule is derived to explain transient 
domain behavior. Domain buildup or decay speeds are discussed in detail, 
and conditions are presented under which two or more domains can exist 
simultaneously. Finally, the above discussions are applied to explain the 
high-field domain behavior in pulse circuits, variable frequency oscillators, 
waveform generators, and domain bypassing schemes. Numerical examples 
are also given to illustrate how fast these operations can be performed. 

I. INTRODUCTION 

In the past several years, it was found that several bulk semi­
conductors showed voltage-controlled differential negative resistance 
over a certain range of applied electric field. The cause of this nega­
tive resistance is vastly different from one material to another. For 
example, it is attributable to field dependent trapping effect in gold­
doped germanium, to phonon-electron interaction in CdS and to 
inter-valley scattering mechanism in GaAs, InP, CdTe and ZnSe. 
Regardless of the origin, however, the voltage-controlled differential 
negative resistance effect nucleates a high field domain in the bulk.1 

Once it is nucleated, the domain travels toward the anode with al-

2235 
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most constant velocity; e.g., 107 cm/sec for GaAs and 105 cm/sec for 
CdS.2 As the domain is absorbed into the anode, another domain is 
nucleated in the bulk and the whole process repeats again. 

Although the detailed mechanism of the negative resistance is still 
a subject of intense discussion, the high-field domain itself appears 
to have a great significance in future electronics. The objective of this 
paper is to clarify the dynamics of high-field propagating domains in 
bulk semiconductors. Since the high field domain in GaAs is presently 
best understood, we shall mostly concentrate on it. However, similar 
discussions must be possible for the high field domains in other ma­
terials as well. 

II. DOMAIN NUCLEATION 

The inter-valley scattering effect in GaAs is explained as follows.3 ,4 

When electrons are accelerated to a certain drift velocity by an applied 
electric field inside the bulk, they acquire enough energy to jump into 
a different valley of the conduction band where the mobility is low 
compared to the original valley and their drift velocity is reduced. As 
the applied field increases, more and more electrons come into the low 
mobility state and on the average the electron drift velocity v (E) 
decreases. Thus, the material exhibits the differential negative resist­
ance effect as shown in Fig. 1 between Ep and Ev. If the field is in­
creased further, the material shows positive resistance again since 
most of the electrons are now in the low mobility state and the transi­
tion effect fades away. Suppose that we attach two electrodes at the 
ends of the bulk and slowly increase the voltage. between them until 
the inside field reaches some point in the negative resistance range. 
The field can stay there indefinitely if no disturbance is applied. How-

1 
:> 

Fig. 1-Electron velocity vs field inside GaAs. 
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Fig. 2 - Nueleation of a high-field domain. 

ever, suppose a small spatial disturbance is given to the field due to 
noise or due to other transient effect as shown by the solid line in Fig. 
2. Then, the electrons in the disturbed region become slower than 
elsewhere. Hence, the electron density at the trailing edge of the 
disturbance increases while the leading edge is depleted. This in­
creases the field in the region further and since the area under the 
field curve should be equal to the applied voltage, the field outside the 
region decreases slightly. Therefore, taking into account the motion of 
electrons as a whole toward the anode, the field distribution should 
look like one of the dotted lines in Fig. 2 sometime after the initial 
disturbance is applied. When the disturbance is fully grown it is 
called a high-field domain since the field there is higher than else­
where. On the other hand, suppose that the opposite type of disturb­
ance is initially given to the field as shown by the solid line in Fig. 3. 
Then, a similar reasoning to the above leads to a conclusion that the 
disturbance grows with time into a low field domain as illustrated by 
the dotted lines in Fig. 3. These two disturbances are equally likely 
to take place. However, if we raise the field from zero to the value 
just slightly above the threshold field, Ep in Fig. 1, the first type of 
disturbance grows but the second one does not since the disturbed 
portion in the latter is mostly in the positive resistance range. There­
fore, under ordinary circumstances, the first one is expected to domi­
nate. If the applied voltage is instantaneously increased to a large 
value and then gradually reduced, the second type will dominate. 

Now since we saw that a small disturbance grew, let us consider 
how fast it grows initially. To do so, we have to investigate two equa-
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Fig. 3 - Nucleation of a low-field domain. 

tions governing the phenomenon. The first one is a one-dimensional 
Poisson's equation 

aE e 
-=-(n-n) a 0 , 

Z E 
(1) 

where -e is the electron charge, n the electron density, and no the 
donor density. The second equation is 

an aE 
J = env(E) - eD az + Eat, (2) 

where J is the total current density, D the diffusion constant and € 

the delectric constant of the material. The total current consists of 
the conduction, diffusion and displacement currents. The positive di­
rection for J and E is taken to be from the anode to cathode and that 
for v (E) from the cathode to anode. Suppose some disturbance is 
given inside the bulk and assume that the effect on the electron den­
sity has not yet reached Zl and Z2, where Zl is on the left and Z2 on the 
right-hand side of the disturbance. Then, from (1) we have 

aE(Zl) = aE(Z2). 
az az 

Furthermore, J = J (Zl) = J (Z2) gives 

a 
E at {E(Zl) - E(Z2)} = en{v(E(z2)) - V(E(Zl))} . 

The initial condition is E (Zl) - E (Z2) :;:::: 0, hence E (zd has to stay 
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equal to E (Z2)' Let Eo be the field at Zl. Then, 

Eo = E(Zl) = E(z2)' 

In terms of Eo, the current through the device is given by 

.J = ennv(Eo) + E a:ro. 

Substituting (1) and (3) into (2), we have 

a en a2E . aE 
at (E - Eo) = -:- {v(Eo) - v(E)} + D az2 - veE) az' 

Integrating with respect to Z from Zl to Z2, we obtain 

d jZ' jZ' en dt (E - Eo) dz = _0 {v(Eo) - v(E)} dz. 
Z1 ZI E 

2239 

(3) 

(4) 

This equation holds even when the disturbance is large. However, 
when it is small, using the relation 

veE) "-' v(Eo) + :~ (E - Eo) (5) 

(4) becomes 

d jZ' (en dV) jZ' - (E - Eo) dz = - -'!. - (E - Eo) dz. 
dt %1 E dE Zt 

(6) 

Since e is positive and dv/dE is negative in the negative resistance 
range, the size of the disturbance 

I t (E - E.) dz I 
increases with time. The time constant is given by 

T = (e~o ~~)-1 (7) 

The negative value means the growth instead of decay. 

III. STEADY STATE DOMAIN 5t 
Next, let us consider the domain in the steady state. When a domain 

travels with a constant speed without changing its shape, we call it 

t This section closely follows Ref. 5. However, it is included here for com­
pleteness and continuity of discussion. 
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in the steady state. Let Va be the velocity of the domain. Then, both 
nand E must be functions of a single variable ~ = Z - vat in the 
steady state. Therefore, we have 

aE dE aE dE an an 
8z = d~ , at - -Vd d~ , -=-. 

az a~ 

Equation (1) becomes 

(8) 

This shows that n = no whenever dE/d~ = 0 and vice versa. As a 
result, nand E should look like Fig. 4 (a) and (b) , respectively. Note 
that the maximum field is located at the neutral position. On the 
other hand, (2) becomes 

dn 
D d~ = n(v - Vd) - nivo - Vd)' (9) 

where Vo is the electron velocity outside the domain and use is made 
of J = enovo. Eliminating ~ from (8) and (9), we have 

t 
c 

no 1--------

t 
w 
Eo~------~--~-----------·~-

Fig. 4 - Steady-state high-field domain. 
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which is equivalent to 

n - no dn = _€_ [v _ Vd - no (Vo - Vd)]. (10) 
nno dE enoD n 

Integrating (10) with respect to E and remembering that n = no when 
E = Eo, where Eo is the field outside the domain, we get 

The integration on the right-hand side can be carried out over the 
leading or trailing edge of the domain. However, when the upper 
limit is set equal to the peak field Ed of the domain, the integral 
should vanish in both cases since n = no at the peak point. However, 
this is impossible unless Vo = Vd, since the integral of (v - Vd) is the 
same while the integral of the remaining term is different in the two 
cases because n < no over the leading edge and n > no over the trail­
ing edge. It follows from this that the velocity of the steady-state 
domain is equal to the electron velocity outside the domain. Further­
more, since 

for a given vo , Ed can be determined by equating two shaded areas in 
Fig. 5. Thus, the relation Vo vs Ed should look like the broken line in 
Fig. 5. As the domain becomes larger, Ed increases from Ep and Vo 

decreases from the peak velocity Vp. However, Ed cannot exceed Edm , 
the field corresponding to the intersection between the broken line 
and the solid line. This is because the equal areas rule cannot be satis­
fied beyond this point. 'Vhen Ed reaches Edm , the outside field becomes 
Eom and the velocity vom . 

The relation between nand E for a domain can be determined from 

(11) 

With this known n vs E, the shape of the domain can be calculated 
using the integral of (8), i.e., 

t = ~ +~fE ~ 
., 0 e Ed n - no ' 

where ~o indicates the position of Ed . 



2242 THE BELL SYSTEM 'l'ECHNICAL JOURNAL, DECEMBER 1967 

Vp 

Vo 

t :> Vom 

E~ 

Fig. 5 - The broken line shows the domain velocity vs peak field. 

If the diffusion constant is small, the right-hand side of (11) becomes 
large; hence, n » no over most part of the trailing edge and n rv 0 
over most part of the leading edge. As a result, the trailing edge becomes 
considerably shorter than the leading edge. 

The integral defined by 

is called the domain excess voltage.6 This amount of voltage is neces­
sary to support the domain in addition to the voltage drop in the 
bulk given by Eol, where l is the sample length. Vex is a function of 
Eo. When Eo is close to Ep , Ed is also close to Ep , the domain is small 
and Vex is small. As Eo decreases, Ed increases as we saw in Fig. 5 and 
Vex increases. The highest field in the domain is limited by Edm . How­
ever, Vex can increase without limit by increasing the domain width. 
For Eo below Eom , there is no steady-state domain. As a result, Vex 
as a function of Eo should look like the solid line in Fig. 6. The de­
tailed shape changes with no. In general, for a giyen Eo, Ye.r decreases 
with increasing doping. 

Now, suppose we apply voltage V to a device with length l. Let us 
draw a straight line through (0, V) and (V Il, 0) in Fig. 6, as shown 
by the broken line and let P be the intersection with the Vex curve. 
Since V - Vex is exactly equal to E ol for P, the terminal voltage be­
comes V if a domain determined by P exists in the device. Suppose 
somehow Vex becomes higher than the value given by P. Then, for 
the steady state, E(/ becomes smaller but not enough to compensate 
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the increase in Vex; hence, Vex has to decrease. Similarly, when Vea; 
decreases, it has to return to P to satisfy the terminal voltage condi­
tion. Consequently, P represents the stable operating point. Thus, 
Fig. 6 can conveniently be utilized to determine Vex and Eo of the 
steady-state domain. Note that if the applied voltage is high, Vex is 
correspondingly high and Eo becomes almost equal to Eom. Then, the 
current density enov (Eo) becomes almost constant regardless of a 
small variation in the applied voltage. Such a domain is called a 
saturated domain. 

'Vhen V /l is slightly smaller than Ep but V is large, there exists 
two intersections between the solid and broken lines in Fig. 6. In this 
case, the field in the absence of a domain is smaller than Ep and no 
domain will be nucleated. However, if a domain exists, it can continue 
to travel without collapsing. Of these two intersections, only the one 
which corresponds to the smaller Eo represents the stable operating 
points. For the other intersection, if Vex increases slightly, Eol de­
creases more than enough to compensate the increase in Vex; hence, 
Vex has to increase further until the stable operating point is reached. 
Similarly, if Vex initially decreases, the domain will disappear. Sup­
pose that the broken line is momentarily raised up to launch a domain 
by applying additional voltage to the terminal. As the additional 
voltage decreases, the intersection moves down and reaches the stable 
operating point without ambiguity. Epl is called the threshold voltage 
since it is necessary to launch a domain. 
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Fig. 6 - Domain excess voltage vs the outside field. 
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IV. TRANSIENT BEHAVIOR OF DOMAINS 

Now, suppose that we apply a certain voltage higher than Epl to a 
device increasing from zero value. ~ince the field reaches the threshold 
value Ep first near the cathode because of high resistive layer or in­
homogeneity generally existing there, a disturbance grows into a high­
field domain near the cathode and travels toward the anode. As the 
disturbance grows, the cathode current decreases until it reaches JxS 
= enov(Eo)S, where Eo is determined from Fig. 6 and S is the cross­
sectional area of the device. This current is maintained until the 
high-field domain reaches the anode. As the domain disappears into 
the anode, the field E in the device and hence the current increases 
to keep the terminal voltage constant. When the field near the cathode 
reaches the threshold value again, another disturbance grows into a 
high field domain and the whole process repeats. As a result, the 
cathode current like that in Fig. 7 is obtained. The height of the peak 
current is determined by enov(Ep)S plus the displacement current due 
to the rapid change in E. The displacement current initially increases 
as Vex increases. However, the peak current tends to saturate with 
further increasing Vex. Also note that for a given Vex the longer sample 
gives less displacement current. Similar displacement current exists 
during the decrease of the current and it may show up as the overshoot 
of decreasing current. 

To get a high-field domain, some initial disturbance in the field dis­
tribution is necessary. This may well be due to noise, if the field is 
increased very slowly. However, in most cases the following process 
is considered to dominate. Suppose there is a region where the donor 
density is slightly lower than elsewhere. For each value of the field 
strength well outside the region, there is a corresponding steady state 

t 

Fig. 7 - Cathode current of bulk semiconductor oscillator. 
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Fig. 8 - Origin of small disturbance in the field distribution. 

field distribution. Except for some deviations near the ends of the 
region, the inside field E" should be related to the outside field Eo 
through 

noiv(E,) = noov(Eo) , 

where noi is the donor density in the region and noo outside the region. * 
Therefore, the field should look like the solid lines in Fig. 8 (b) or (c) 
depending on whether it is in the positive or negative resistance range, 
respectively. However, if we change the outside field quickly, from 
the positive to negative range, since the displacement current has to 
be approximately equal everywhere and since the inside change is 
smaller than the outside, the inside field will overshoot the steady­
state value as shown by the broken line in Fig. 8 (c). As a result, a 
definite discrepancy from the steady-state value takes place which 
grows into a high-field domain. In practice, there may be a number 

* In this case, corresponding to (4), we have 

which is equivalent to 

d 1%' 1%2 en dt (E - E 8 ) dz = _0 {veE,,) - v(E)} dz, 
%1 %1 E 

where E. indicates the steady-state field. Since this is identical to (4) excppt 
that Eo is replaced by E" no major modIfication is required in our discussion 
of growth rate if Vc:e is redefined by the integral on the left-hand side. 
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of such nucleating sites. However, only one domain will be fully grown 
since two steady-state domains cannot exist at a time as we shall 
discuss shortly. 

So far, we have studied the case where the terminal voltage is kept 
constant. Next, let us consider the case with a constant current source. 
When we gradually increase the current from zero, except in the 
vicinity of the cathode, the electron velocity in the device follows the 
v (E) vs E curve in Fig. 1 until it reaches v (Ep). If we increase the 
current further and if the sample does not burn out, E probably 
jumps to a high value where v (E) is equal to v (Ep) and then follows 
the v (E) vs E curve as before. If we decrease the current, the electron 
velocity follows the curve until it reaches v (Ev) and then E jumps to 
a low value where v (E) = v (Ev). There is hysteresis. However, dur­
ing this process, the field is almost everywhere in the positive resist­
ance range and the device is stable. Now, suppose somehow a high­
field domain is already present. If the source happens to supply the 
same current as the steady-state domain requires, it will continue to 
travel. However, if the supply current is slightly different, say, larger 
than the domain current, the electron density increases at the trailing 
edge and decreases at the leading edge of the domain. As a result, Vem 
increases. However, the larger the Vex is the smaller the steady-state 
current becomes. Therefore, no steady state can be achieved. A simi­
lar argument holds for the case where the supply current is smaller 
than the domain current. In this case, Vem decreases to zero. To consider 
the same problem from a different angle, let us draw a line repre­
senting the constant current condition in Fig. 6. It becomes a vertical 
line. The possible intersection with the Vex curve gives an instable 
operating point which we discussed before. Thus, with a constant cur­
rent source, a high-field domain is instable. The reason why two 
steady-state domains cannot exist simultaneously in a device can be 
seen in a similar manner. If one of them requires a larger current than 
the other, Vex of the second one increases. As a result, the first one 
quickly disappears and all the excess voltage is absorbed by the second 
one requiring less current. We shall have more to say about this later. 

Next, let us consider the situation where no high-field domain exists 
but the field is in the negative resistance range over a certain length 
of the device. Suppose a small disturbance exists inside the region. In 
this case Eo is fixed but (6) still shows that the initial disturbance 
grows with time with the time constant given by (7). As a result, the 
terminal voltage should fluctuate considerably. 

In many cases, it is desirable to estimate how quickly domains 



HIGH FIELD DOMAINS 2247 

can grow or decay. The starting point is (4). If the diffusion constant 
is small, the trailing edge is considerably shorter than the leading edge; 
hence, the primary contribution to the integral comes from the leading 
edge. Since n ~ 0 over the leading edge, we have 

f~2 n;e {v(En) - v(E)} dz "-J L:d 

{v(Eo) - v(E)} dE, 

where use is made of (1). Substituting the above results into (4) we 
obtain 

dV fEd 
d/x "-J Eo {v(Eo) - v(E)} dE. (12) 

For the steady state, dVcx/dt = 0 and (12) reduces to the equal areas 
rule discussed before. It is now obvious that if we draw a figure similar 
to Fig. 5 and if the lower-right shaded area is larger or smaller than 
the upper shaded area, the domain grows or decays, respectively. As 
the difference becomes larger, the rate of change of the domain size 
increases. It is also obvious why a domain is instable under a constant 
current condition. Since Eo is fixed if Ea increases slightly from the 
steady-state value, Vex increases and hence Ed further increases and 
no steady state is reached. 

,Vhen Ed - Eo is small, llsing (5), (12) becOlllcs 

dVex = fEd (_ dV)(E _ E) dE = (_ dV):!(E _ E)2 (13) 
dt Eo dE 0 dE 2 do' 

However, if we assume that the leading edge w is depleted, by inte­
grating (1) twice, we have 

!(Ed - Eo)2 = ~ (n:w er = n;e (~n;e w2
) ''-In;e Vex. (14) 

Substituting (14) into (13), we obtain 

dVex ~ (_ dV) nne V 
dt - dE E ex 

which gives the same answer as (6). Therefore, provided that Ed 
is calculated from Vex through (14), the simple formula (12) is also 
applicable for small disturbances whose electron density distribution 
is quite different from the one assumed in the derivation. 

Now suppose that there are two regions in a device where the donor 
density is slightly lower than elsewhere. If the terminal voltage is in­
creased to a certain value to bring the field into the negative resist­
ance range, the field disturbances at these two regions start to grow 
exponentially and at the same time the field Eo outside the disturbances 
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decreases to compensate the increase of the field in the disturbances. 
After a while the disturbances become large enough so that we can 
call them domains. The domain from the larger nucleation site of the 
two is larger than the other but both continue to grow until Eo reaches 
a point where the right-hand side of (12) becomes zero for the smaller 
domain. Then, the smaller domain stops growing and starts to decay 
because the larger one continues its growth. As a result, the smaller 
domain will finally disappear and the one from the larger nucleation 
site remains. However, suppose that the difference in .size between 
the nucleation sites is small. Then, when the smaller domain stops 
growing, the right-hand side of (12) for the larger one is also small; 
hence, some time elapses before the larger one absorbs the excess 
voltage from the smaller one. If the larger domain is on the anode 
side of the smaller one, it may reach the anode before the absorption is 
completed. If this happens, the smaller domain starts to grow again 
as the larger one disappears into the anode. As a result, if there are 
several nucleation sites of comparable size in a device, one period is 
not completed until the largest remaining domain becomes smaller 
than the initial disturbance the largest nucleation site can give. 

Summarizing the above discussion, we list some of the important 
properties of a domain as follows: 

(i) A high-field domain is nucleated when the field reaches the 
negative resistance range from the lower side of the v vs E character­
istic. 

(ii) With a constant voltage source, the domain reaches a steady 
state. However, with a constant current source, no steady-state domain 
is realized. 

(iii) The steady-state domain velocity is equal to the electron drift 
velocity outside the domain. 

(iv) For a given terminal voltage, the domain excess voltage and 
the outside field can be determined from Fig. 6. 

(v) The transient behavior of a domain can be approximately 
determined by (12). 

In the above discussion, the diffusion constant was assumed to be 
independent of the field. However, many theoretical studies indicate 
that it is a function of E. In that case, the equal areas rule no longer 
holds and the domain velocity may not be equal to the electron 
velocity.* Furthermore, an inhomogeneity in the material may create 

* If Danjaz is replaced by ajaz (Dn) in (2), (4) follows even when D is a 
function of E. Therefore, (12) is considered to be a valid approximation as 
long as the magnitude of D is small. 
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an extremely high but localized field within the bulk which ionizes 
deep donors or even generates hole-electron pairs. Then, the effective 
no becomes larger and Vex lower. However, the following discussions 
will not be affected. 

v. PULSE CIRCUITS 

Let us consider the I-V characteristic of a device with the possible 
presence of a domain. Since for each I, the terminal voltage is equal 
to Vex plus the voltage drop in the device, it should look like Fig. 9. 
There is hysteresis, but otherwise the curve is very similar to the I-V 
characteristic of a tunnel diode. Therefore, many pulse circuits devel­
oped in connection with tunnel diodes are also applicable with the 
present devices; e.g., relaxation oscillator, monostable circuit and 
pulse inverter. The main difference is that once a domain is launched, 
it determines the device current rather than the external circuits and 
after a while the domain disappears at the anode. 

VI. VARIABLE FREQUENCY OSCILLATOR; 

Suppose the device has the form of a trapezoid as shown in Fig. 10. 
If the taper is gradual, high-field domains are expected to have similar 
properties to one in a uniform device. Therefore, assuming that the 
relation between the domain excess voltage and the field immediately 
outside the domain is given by Fig. 6, let us consider how to obtain 
the outside field as a function of the domain position. First assume 

t 

Fig. 9 - I-V chamcteristic of a uniform device. 
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Fig. 10 - An example of trapezoidal oscillators. 

that the outside field is Eo when the domain is located at z = ~. The 
conduction current is given by env (Eo)S(~). Neglecting the diffusion 
and displacement currents outside the domain, the field at arbitrary z 
except the domain location can be determined from Fig. 1, utilizing 

I = env(Eo)S(~) = env(E)S(z). 

Once the field is determined as a function of z, the area under it plus 
Vex (Eo) gives the terminal voltage. Keeping this in mind, draw a 
family of field curves with the terminal current as a parameter as 
shown in Fig. 11. The highest field curve needed corresponds to 
I = env(Ep)S(O) and is called the threshold line and the area under 
it the threshold voltage Vth • Calculate the area under each curve and 
add Vex for each point on the E - z plane to obtain the terminal 
voltage V. From this, we obtain a family of constant terminal voltage 
contours as shown in Fig. 12. Note that a straight line E = Eom cor­
responds to V = 00. Also note that there is no contour crossing the 
vertical axis above a certain value Ee which is determined as follows. 
On the Vex vs Eo plane draw a curve representing the area between 
the threshold line and various field curves as a function of the field at 
the cathode. This curve intersects the E axis as well as the Vex curve 
at Ep. The other intersection with Vex, if any, gives Ee as shown in 
Fig. 13. Suppose we apply a certain terminal voltage slightly larger 
than V th and a domain starts to form at the cathode. Then, the field 
inside the device drops. But if it is higher than Ee at the cathode, the 
decrease of the area exceeds the corresponding Ve,X'; hence, the domain 
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Fig. 11- Field curves in a tapered device. 

further grows until it becomes Ec. If the device length is sufficiently 
short, Ec may not exist depending on the shape of Vex vs Eo. 

As the domain travels toward the anode, the field immediately out­
side the domain follows one of the constant voltage contours in Fig. 12. 
When the contour intersects the threshold line, the field at the cathode 
reaches the threshold value Ep and a new domain starts to nucleate. 
Since the new domain in the narrow region grows according to the 
unequal areas rule given by (12), the old one in the wider region 
quickly decays and a new period begins. However, the cathode current 
does not decrease as quickly as in a uniform device since the old do­
main tends to keep the cathode field up as it decays. Some contours 
passing through the vicinity of Eo may turn back before they cross 
the threshold line. In such a case, at the turning point, the terminal 

v=oo 

Fig. 12 - Constant terminal voltage contours. 
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Fig. 13 - Explanation for the method to obtain Ee. 

voltage becomes insufficient to support the domain due to the voltage 
drop in the bulk. The domain quickly decays and the field rises to the 
threshold line to start a new period as before. Note that the maximum 
current at the end of a period is approximately env(Ep)S(O) regard­
less of the terminal voltage. In general, as the terminal voltage in­
creases, the turning point or the intersection is further away from the 
cathode and the domain velocity becomes slower. As a result, the 
period gets longer. This effect gives a voltage-controlled variable fre­
quency oscillation as shown in Fig. 14. If the straight line E = Eom 
intersects the threshold line within the device, no matter how large 
terminal voltage is (of course within a certain limit), the domain 
cannot reach the anode. On the other hand, if the intersection is out­
side the device, the domain can reach the anode generating a pulse 
similar to the one shown in Fig. 7 at the end of a period. 

VII. CURRENT WAVEFORM GENERATORS8 

For a saturated domain, the velocity is constant and the current 
density at the domain is constant. If the cross-sectional area of the 
device varies with the distance from the cathode, the cathode current 
also varies as the domain moves along the sample since it is propor­
tional to the current density times the area. Provided that the vari­
ation of the cross section is gradual, the current waveform should 
become an exact replica of the shape of the device excluding the 
pulse corresponding to the domain disappearance at the anode. In 
order to start the domain at or near the cathode, the field there should 
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Fig. 14- Variahle frequency oscillation of a trapezoidal oscillator. The sup­
ply voltages are indicated on the left-hand side. 
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Fig. 15- Explanation for the sudden change in frequency observed III cer­
tain nonuniform devices. 

reach Ep before it does elsewhere. This limits the smallest cross­
sectional area we can make. In some cases because of the high resistiv­
ity layer at the cathode, this minimum can be about 80 percent of the 
cathode cross section. In order to let the domain arrive at the anode, 
the threshold field line should never be lower than Eam anywhere in 
the device. This limits the largest cross-sectional area we can make. 
However, letting the threshold line cross the Eam limit, the pulse due 
to the domain disappearance at the anode can be eliminated. In some 
waveform generators, the frequency of oscillation suddenly increases 
as we decrease the terminal voltage. For instance, the constant termi­
nal voltage contours for the device shown in Fig. 15 (a) should look 
like Fig. 15 (b). Therefore, if the terminal voltage is reduced slightly, 
the domain travels only halfway through and the frequency rises ap­
proximately one octave as shown in Fig. 16. 

VIII. DOMAIN BYPASSING!) 

So far, we have considered the shaping of an active bulk region. 
However, a similar effect can be obtained by changing the doping 
density. In addition to this, there is an interesting method of getting 
similar or more versatile functions by means of bypass circuits. To 
explain the principle, let us consider the simplest case illustrated in 
Fig. 17. There are two additional ohmic contacts attached to the ac­
tive bulk region. Let Dl be the part between the cathode and the first 
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Fig. 16 - Current waveforms observed with a ueviee illustrated in Fig. 15. 

contact, D2 between two contacts, and Da the remainder. Let d indi­
cate the length of D2 and h the device thickness. If a saturated domain 
is in D 1 , the cathode current is given by enov (Eom)S. When the do­
main moves into D2 , the current becomes approximately enov(Eom)S 
+ (Vca:+Eomd) jR, where R is the resistance of the interconnection 
between the additional contacts. Finally, when the domain gets into 
D a , the current returns to enov(Eom)S again. Therefore, the cathode 
current should look like Fig. 18 (a). In addition to regular pulses, 

R 

~----~----~-----n----~ 
I 
h 
I 

~----~----~----~----~ 

Fig. 17 - Domain bypassing scheme. 
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there are broad pulses corresponding to (Vex+ Eomd) IR. Now, suppose 
the interconnection is open circuited, then the additional pulses dis­
appear as shown in Fig. 18 (b). Thus, we get a means of controlling the 
waveform from the outside. The height of the additional pulses, how­
ever, cannot be made higher than the regular pulses. If we try to get 
higher pulses by decreasing R, the field at the cathode reaches the 
threshold value making a new domain nucleate there and the old one in 
D2 disappear. The sharpness of the pulse edge is limited probably due 
to the spreading resistance of the contacts. As the thickness h of the 
bulk gets thinner, the definition is expected to improve. 

There are many variations of the above scheme. By providing sev­
eral contacts and interconnecting them through appropriate networks, 
various waveforms can be realized. Alternatively, contacting a rela­
tively large electrode through a high resistive layer on one side of 
the active region and shaping the electrode, again produces various 
waveforms. Another interesting possible application is a photosenser. 
Suppose R is photosensitive. Then, the height of the additional pulses 
varies with illumination. If many such photo elements are lined up 
along a relatively long device, the domain provides automatic scan­
ning action. A solid-state videcon might be a possibility, if a two­
dimensional array of photo elements is made by placing many such 
devices side by side and the domain in each device is triggered by the 
pulse in the adj acent device. 

1.5.--------------------. 

Cf) 
w 
a: 0.5 
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~ 
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Fig. 18- Waveforms observed with a device illustrated in Fig. 17. 
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IX. NUMERICAL EXAMPLES 

The domain velocity for GaAs is approximately 107 cm/sec. If the 
device length is 1 mm, 100 p" or 10 p" the oscillation frequency is 
about 100 MHz, 1 GHz, or 10 GHz, respectively. The terminal voltage 
necessary to launch a domain in a uniform device is Epl. Since Ep is 
approximately 3000 V /cm, 300 volts are required for 100 MHz sam­
ples, 30 volts for 1 GHz samples, and 3 volts for 10 GHz samples. The 
current is given by env(E)S. If S = 0.3xO.3 111m2 and no = 5X1014/ 

cm3 

I = env(E)S = 1.6 X 10-19 X 5 X 1020 X 105 X 0.9 X 10-7 = 0.7A. 

1"'he peak current is about twice this value. 
The domain thickness is a function of doping as well as Vex. For 

simplicity, let us assume that the diffusion constant is small and 
hence the thickness is approximately given by w. Then, as we calcu­
lated in (14), 

For Vex = 50 volts and no = 5 X 1014/cm3
, since € ::: 12.5 X 8.85 X 

10- 12 F /m for GaAs 

_ /2 X 50 X 12.5 X 8.8.~ X 10-
12 

12 X 10-6m 
w - ~ 1.6 X 10-19 X 5 X 1020 

or w = 12 p,. For larger no, w becomes smaller. 
The time constant of the initial growth of disturbances depends on 

the value of / dv / dE /. There are many theories and experiments sug­
gesting various values ranging from 300 to 10,000 cm2/secV. This fact 
alone may well indicate how little we know about GaAs. For the 
moment, let us assume 3000 cm2/secV. Then, 

I T 1= € 

1.6 X 10-19 X 5 X 1020 X 0.3 ~ 4.5ps. 
12.5 X 8.85 X 10-12 

dv 
eno dE 

This is the time for a small disturbance to become about 2.7 times the 
original size. If this rate continues, the size becomes 1000 times within 
32 ps and more than 100,000 times within 50 ps. In comparison, the 
time for a domain to disappear after its leading edge reaches the anode 
is of the order of w/v. For a domain 12 p, long, it is of the order of 
120 ps. 
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If there is a region extending out a length b where the doping is 
reduced .a percent, the initial size of the disturbance can be shown 
from Fig. 8 to be about 2Ep baxO.01. For 10 percent inhomogeneity 
and b = 5 IL, we have 

2 X 300,000 X 5 X 10-6 X 0.1 = 30 X 10-2 volts. 

The corresponding (Ea-Eo) calculated through (14) is given by 

(Ed - Eo) = ~2:oe Vex = 6.5 X 103 V / em 

when no = 5 X 1014/cm3
• This is large and we have to use (12) for the 

growth rate calculation. For simplicity, let us consider the fastest 
possible growth. From the area consideration, Fig. 5 shows that the 
fastest growth takes place when Eo is fixed at Ep. Then, the integral in 
(12) can be roughly approximated by (Ea-Ep) {v(Ep) - v (Ev)} pro­
vided that there is a broad and fiat valley region. Since Eo = Ep , 

171 V "-' /2n oe V 
!;d - 1~p = '\j-€- eX' 

Thus, (12) becomes 

d~ex "-' ~2:ne Vex {veEp) - v(Ev)}. 

The solution is given by 

where c is a constant determined by the initial value of Vex. If Vex is 
small at t = 0, c can be neglected. For GaAs, veEp) - v(Ev) "-' 107 em/sec 
and if no = 5 X 1014/cm3 the above expression gives 

Veo: = 3.6 X 102\t + C)2. 

Since Vez "-' 0.3 volts at t~= 0, c is approximately 9 ps. Vex becomes 
approximately 36 volts when t + c = 100 ps or t = 91 ps. If the terminal 
voltage increases slower than the above rate, Eo decreases and the 
growth of Vex closely follows the terminal voltage. On the other hand 
if the terminal voltage increases faster, then Eo has to increase to 
accommodate the balance of the voltage since the growth rate of Vex 
is no longer able to follow the applied voltage. 

Finally, suppose that a steady-state domain exists and the terminal 
voltage is suddenly decreased so that Eo is decreased by 13 percent. 
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In this case, the right-hand side of (12) is approximated by 

-O.OIf3E o d~~o) X (Ed - Eo) "-' -O.OIf3Eo dVd~o) ~2~oe Vex . 
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For Vex = 50 V, no = 5 X 1014 jcm3
, dv(Eo)jdE "-' 6000 cm2jV, f3 = 

10 percent and Eo = 1500 V jcm, we have 

dVex 
_ -0.1 X 150,000 X 0.6 dt -

X 12 X 5 X 10
20 

X 1.6 X 10 19 50 "-' -7.6 X 1010 Vjsec. 
'\j. 12.5 X 8.85 X 10-12 
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A Millimeter Wave, Two-Pole, Circular­
Electric Mode, Channel-Dropping 

Filter Structure 

By R. D. STANDLEY 

(Manuscript received May 19, 1967) 

Interest in circular-electric mode channel-dropping filters has been 
stimulated by recent advances in the repeater art. This paper presents the 
theory and establishes design procedures for filters having two-pole maxi­
mally flat response functions. The basic structure uses mode-conversion 
resonators, i.e., the resonating mode is the TEo2 circular electric mode, 
for three of the resonators. The rejection filter portion of the structure is 
conventional in that two resonators separated by an odd multiple of 7r / 2 
radians realize the desired characteristic. The branching filter is novel 
in that a rectangular waveguide is wrapped around a mode-conversion 
resonator and coupled to the TEo2 resonating mode via a multl'plicity 
of apertures. The rectangular guide is then resonated to permit realization 
of the two-pole branching filter. The theory developed is an extension of 
M arcatili' s original work on mode-conversion resonators. The mode-con­
version resonator parameters are related to the elements of a lumped con­
stant prototype network thus extending the utility of mode-conversion 
resonators. 

Experimental results are presented on several filter models. The agree­
ment between theory and experiment is generally good. Four filters were 
developed for use in an all solid-state repeater experiment with successful 
results. 

I. INTRODUCTION 

The TEol circular-electric mode in round waveguide has received 
considerable attention due to its low-loss characteristic. The problem 
of multiplexing in communication systems using this mode was first 
approached by Marcatili.1 His scheme used low-loss, TEo2 circular-

2261 
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electric mode resonators'::' to realize channel-dropping filters having 
single-pole, maximally flat responses. Interest in channel-dropping 
filters with multiple-pole responses was stimulated by recent advances 
in the repeater art. An all solid-state repeater having a 51.7 GHz 
carrier and operating at a bit rate of 306 megabits per second has been 
constructed.2 The repeater performance is such that a 15-mile repeater 
spacing could be achieved using propagation in the TEo! circular­
electric mode in two-inch i.d. round guide. Since high bit rates imply 
increased bandwidth, multiple-pole filters are required to maximize 
usable channel capacity. 

A design procedure has been developed for diplexers having a two­
pole, maximally flat amplitude response. Section II describes the 
structure. Section III presents some preliminary considerations in­
volving arrays of such structures. Section IV outlines the design pro­
cedure. Experimental results are presented in Section V. 

The major theoretical contribution of this work lies in relating the 
parameters of the structure to the elements of a low-pass prototype 
network. This extension of Marcatili's work makes it possible to 
utilize mode-conversion resonators in multiple-pole filter structures. 
The analysis is summarized in Appendix A. 

The novelty in the physical structure lies primarily in the realiza­
tion of the branching filter. (See Fig. 1.) A mode conversion resonator 

PORT t 
(tNPUT) 

MODE CONVERSION RESONATORS 
(REJECTION FILTERS) 

/ \ 
I \ 

CO~~:SION~// -J ~ __ t=-__ "'I ___ -
RESONATOR BRANCHING ",'= zn+1 'IT RADIANS 

- 2 FILTER 
(SEE FIG.4 

FOR DETAIL) .1."= 2m +t 'IT RADIANS .,. - 2 

Fig. 1-Cross section view of two pole diplexer structure. 

is coupled to a wrapped rectangular waveguide to permit realization of 
a two-pole system. The rejection resonator portion of the structure is 
conventional in that two resonators separated by an odd multiple of 
7r/2 radians is utilized to realize the two-pole characteristic. 

* Throughout this paper, the TEo2 mode resonators will be referred to as 
mode conversion resonators. 
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II. TWO-POLE FILTER STRUCTURE AND PROTOTYPE EQUIVALENT CIRCUIT 

Fig. 1 shows the physical structure and identifies the resonant ele­
ments. The input and output guides are above cutoff for the TEol 
mode and just below cutoff for the TEo2 mode. The large guide sec­
tions are just above cutoff for the TEo2 mode. The rectangular wave­
guide output is coupled to the mode-conversion resonator nearest the 
input port via a wrapped rectangular waveguide. 

A qualitative description of the behavior of the structure is ob­
tained as follows. First, consider an individual rejection resonator. A 
signal incident in the TEol mode is coupled to the TEo2 mode via a 
symmetrical diameter discontinuity. Since the input and output guides 
are below cutoff for t~e TEo2 mode, the power in that mode is trapped 
in the large diameter region. Marcatili's analysis of the structure 
shows that at resonance the transverse mid-plane of the resonator is 
effectively a short circuit.1 The center frequency and bandwidth are de­
pendent on the length of the resonator and the ratio of the input guide 
to resonator guide diameters. The details of the relationship are given 
by Marcatili.1 Now, in the structure of Fig. 1, the mid-planes of 
adjacent mode-conversion resonators are electrically separated by odd 
multiples of 7r/2 radians. Hence, at resonance, the rejection resonator 
pair presents an open circuit at the mid-plane of the input mode­
conversion resonator. All of the incident TEol mode power appears at 
the rectangular waveguide output when the various coupling 
coefficients are properly chosen. 

Further insight into the electrical behavior of the structure is ob­
tained by considering the prototype network shown in Fig. 2. The 
prototype network consists of complementary admittances connected 
in shunt. The elements of the network have been chosen to yield a 
two-pole, maximally flat insertion loss response between ports 1 and 2 
while maintaining a constant input admittance as a function of fre-

PORT 1 

90=1 OHM 
91,93 = 0.707 FARADS 

92,94 = 1.414 HENRIES 

go PORT 2 

PORT 3 

90 

Fig. 2-Prototype network for a two-pole diplexer. 
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quency.4.5 Total power transfer occurs at zero frequency, and half­
power transfer occurs at an input angular frequency of one radian per 
second. The prototype network is converted to a network having total 
power transfer at some frequency Wo through use of the angular fre­
quency mapping function 

where 

w' 

w' = angular frequency of the prototype network 
W = angular frequency of the desired network 

QL = WO/(WI - Wz) 
WI , Wz = half power angular frequencies of the desired network. 

(1) 

The relationship between the prototype network parameters and 
the parameters of the structure shown in Fig. 1 are discussed in de­
tail in Appendix A. For the purpose of obtaining a qualitative under­
standing of electrical behavior it is sufficient to state that the perform­
ance of the microwave structure will be identical to that of the fre­
quency mapped prototype network subject only to the approximations 
involved in relating their respective parameters. 

III. PRELIM IN ARY CONSIDERATIONS 

The general problem is to develop an array of channel-dropping 
filters. The use of mode-conversion resonators results in several 
fundamental performance limitations as described below. 

First, consider the case where the input guides to all filters in the 
array have the same diameter. Since the input guide must be below 
cutoff for the TEo2 mode at the highest significant frequency, the 
diameter, b, of the input guide is restricted to 

b < 7.016Xu/7r, (2) 

where At! is the free-space wavelength at the highest significant fre­
quency, fu. At the same time, the TEol mode at the lowest significant 
frequency in the overall system must be passed requiring that 

(3) 

where AL is the free-space wavelength at the lowest significant fre-
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quency, /L. Combining (2) and (3) gives 

~/ < 0.8309/£ , (4) 

where ill is the bandwidth of the filter array. 
The next case to be considered is that in which successive filters 

have varying input guide diameters. This arrangement would permit 
maximization of the intrinsic Q's of each of the resonators. (A short 
taper is required to interconnect the filters.) 

Now assume that the lowest frequency channel is to be dropped 
first. For the first channel-dropping filter in the array to operate 
properly, it must be terminated in a matched impedance throughout 
its passband. Hence, the smallest diameter guide in the system must 
be above cutoff to the TEo1-mode at the lowest significant frequency 
to be dropped. This argument leads to the same restrictions on the 
overall bandwidth of the array as given by (4). 

If the highest frequency channel is the first to be dropped, then the 
argument leading to (2) and (3) again applies resulting in the band­
width restriction (4). 

In the case of varying input guide diameters, there are other limita­
tions on the array performance which are dependent on the order in 
which the channels are dropped. If the highest frequency channel is 
the first to be dropped, then the diameter discontinuities produce a 
small residual return loss at out-of-band frequencies over and above 
that produced by a conventional resonator. This is true of each suc­
cessive filter in the array. The effect can become cummulative for 
certain filter-to-filter spacings. If the lowest frequency channel is the 
first to be dropped, then the discontinuities cause conversion of 
power from the incident TEo1-mode to the TEo2-mode which can now 
propagate. In addition, the bandwidth of the array is further restricted 
by the possibility of TEo3Q resonances in the mode-conversion reso­
nators. This occurs when the input and output guides to a given reso­
nator are just below cutoff for the TEo3-mode and the large diameter 
region is just above the TEo3-mode cutoff. The diameter discontinuity 
again produces mode conversion with the TEo3-mode power trapped 
in the resonator. The ratio of the TEo3 to TEo2-mode cutoff frequencies 
is 

k = 1.45. 
/C02 

Hence, this problem occurs in the vicinity of 1.45 times the resonant 
frequency of the first filter in the array. 
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A more detailed analysis to select the optimum dropping order is 
beyond the scope of this paper. In the following, it is assumed that the 
above restrictions have been observed prior to establishing the design 
for a given filter in the array. 

IV. DESIGN PROCEDURE 

The necessary design equations are derived in Appendix A. It is 
possible to begin with those results and design the three mode-con­
version resonators as described by Marcatili. However, a sufficiently 
accurate and more rapid approach is to use the data obtained by 
C. N. Tanga6 shown here as Fig. 3.* Equations (6), (19), and (20) 
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D=0.7128"1 

I 
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Fig. 3 - Design chart for TEolo - TEo2° mode conversion resonators (from ref. 
6). 

are used to compute the required external Q's of the resonators. The 
data shown in Fig. 3 are used to obtain a design scaled to a lower 
frequency. Frequency scaling techniques are applied to convert the 
design to the frequency of interest. 

That portion of the structure of Fig. 1 consisting of the first mode-

* While the range of the parameter D is somewhat restricted, the data is 
believed sufficient for most practical applications. 
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(a) SIDE VIEW (CROSS SECTION) (b) CROSS SECTION A-A 

Fig. 4-Physical structure of branching filter. 

conversion resonator and the wrapped resonator is defined as the 
branching filter. See Fig. 4. The wrapped resonator of the branch­
ing filter is designed using equations (5) and (11). The addi­
tional requirement that the coupling apertures are to be separated by 
one guide wavelength in the wrapped structure at resonance must 
also be observed. This is controlled primarily by the width, aw , of the 
wrapped resonator and the diameter of branching-filter mode-con­
version resonator established earlier. The thickness of the wall in 
which the coupling apertures arc placed is also significant. 

The coupling aperture dimensions are determined by (18) and (16). 
Finally, the magnitude of the normalized coupling reactance required 
at the output of the wrapped resonator, (Xi/Rd, is determined from 
(10). 

The lengths of the guide sections separating the mode-conversion 
resonators is determined so as to provide an odd multiple of 90 electri­
cal degrees separation between resonators. The calculations required 
are similar to those given by Marcatili for single-pole filters.1 Experi­
mental work has shown that a minimum separation of 7 7r/2 radians 
is required to avoid fringing field interaction. 

Note that the two rejection resonators are not identical in that 
their respective input-to-output guide diameter ratio must be different. 
(See Appendix A.2). Three methods of realizing this result are possible: 

(i) The resonator diameters can be made the same in which case 
either a small step or taper is required in the diameters of the con­
necting lines. The small step case is indicated in Fig. 1 in exaggerated 
form. In practice, the difference between the diameters band b' is only 
a few tenths of a percent. 
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(ii) The input guide diameters can be made the same in which 
case the resonator diameters are different. 

(iii) Both input guide diameters and resonator diameters can be 
different for the two. 

V. EXPERIMENTAL RESULTS 

The procedures outlined above were used to develop several channel­
dropping filters. All of the filters had the physical form of Fig. 1 with 
six coupling apertures in the branching filter. The data of Fig. 3 was 
used to compute the required dimensions of all mode conversion 
resonators. In developing the filters, the first step was to construct 
the branching and rejection filters separately. The measured char­
acteristics of the individual parts were then compared with theory 
through use of the transfer coefficients of Appendix B. The first model 
developed showed good correlation for the separate parts. However, 
the complete filter characteristic was found to have less than the 
theoretical bandwidth. Subsequent measurements indicated that the 
separation between branching and rejection filters (tf;' of Fig. 1) was 
too small. This produced interaction between resonators which we be­
lieve produced the bandwidth discrepancy. It was found experi­
mentally that a minimum separation of 7 7r/2 radians was required to 
inhibit this interaction. 

Figs. 5 and 6 show the characteristics of two other filter models. The 
theoretical and measured 3 dB bandwidths were, respectively, 1388 
and 1210 mHz for the filter of Fig. 5 and 1130 and 1144 mHz for the 
filter of Fig. 6. 

The filter in Fig. 5 had resonator separations of 

Vi = 77r/2 

1/;" = 571'/2. 

Some interaction effects were noted between the rej ection resonators. 
The separation tf;" was increased to 7 7r/2 for the filter of Fig. 6. Note 
that the out-of-band return loss was much improved for the latter 
arrangement. 

The insertion loss of all filters tested was of the order of 0.5 dB at 
mid-band. 

The finite return loss observed at the circular waveguide input port 
is believed to be due primarily to dimensional tolerance problems. For 
example, the data of Fig. 3 indicates that a mode conversion resonator 
having an input guide diameter of 0.493 inches and a cavity diameter 
of 0.579 inches should have a 400 mHz bandwidth when resonant at 
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Fig. 5-Freqllency response of experimental dropping filter (1// = h-/2, 1/;" =511'/2). 

51.7 GHz. A one mil decrease in the input guide diameter would result 
in a 419 mHz bandwidth at 51.7 GHz. This rapid variation of electri­
cal characteristics with dimensions makes precision machining abso­
lutelynecessary. 

Another critical parameter was the width of the wrapped resonator. 
The height of the wrapped resonator for the filters described was 
0.074 inch. This resulted in a variation of resonant frequency of the 
wrapped resonator of about 300 mHz per mil change in the resonator 
width. Hence, extreme care was required in machining the branching 
filter to obtain the desired resonant frequency. 

Four filters with characteristics very nearly identical to those 
shown in Fig. 6 were successfully incorporated into the circuitry of 
the solid-state repeater described in the Introduction.2 

VI. CONCLUSIONS 

Marcatili's original work has been extended to permit realization of 
two-pole channel-dropping filters using lmv-Ioss mode-conversion 
resonators. The theory developed relates the mode-conversion resona­
tor parameters to those of a lumped constant prototype network. This 
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step leads to a straightforward design procedure which permits rapid 
determination of structural dimensions. The method can be readily 
applied to multiple-pole structures once the exact form of the addi­
tional resonators required in the branching filter has been determined. 
The latter might take the form of additional wrapped resonators or 
additional resonators in the rectangular waveguide output. 

The design procedure evolved has been shown to yield filters whose 
characteristics compare well with theory. Dimensional tolerances have 
been shown to be extremely important. 
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APPENDIX A 

Derivation of the Degign Equations 

A.1 Branching Filter 

The branching filter consists of a TEol - TEo2 mode-conversion 
resonator coupled to a wrapped rectangular waveguide resonator. The 
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physical parameters of the latter are to be related to that portion of 
the network of Fig. 2 consisting of the elements go, g1, and g2. The 
parameters of interest are the external Q's, Qe, of the two resonators 
and the coefficient of coupling between them, k12 . Using the notation 
of Chapter 8, Ref. 4, there is obtained 

Q _ 'Q _ w~Q" 
",0 - [joglWl [, - V2 

Qem = g2gowiQL = V2 wiQ,< 

(5) 

(6) 

(7) 

where wi is the bandpass edge angular frequency of the prototype 
network, and QL is the desired loaded Q of the diplexer. The subscripts 
wand m refer to the wrapped resonator and the mode-conversion 
resonator, respectively. 

The next step is to derive the expressions for the external Q's and 
coupling coefficient in terms of the physical parameters of the structure. 

An analysis of Marcatili's results shows that 

Qem = QL , (8) 

where QL is given by Marcatili's Equation (70).1 
The external Q of the wrapped resonator, Qew is obtained from the 

defining equation 

"'0 iJX, I 
Qew = 2 a; w" 

c 

where 

Wo = angular resonant frequency, 
Xl = resonator reactance function, and 
Rc = coupled resistance. 

(9) 

The structure of Fig. 4(b) is used to evaluate Xl and Rc . The resulting 
expressions when substituted in (9) yield 

Q 
_ ZlOOo(AgIO/')..l 

ew - 4(X~/Rl) , (10) 

where 

ZlO = characteristic impedance of the wrapped guide, 
AgIO = guide wavelength of the wrapped guide at resonance, 
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Xi = reactance of the input iris, 
Rl = characteristic impedance of the input guide, and 
00 = length of the wrapped structure in radians at resonance. 

In general, 00 = 7rp where p is the number of coupling apertures. 
For loose coupling 

(11) 

where 

(12) 

is the power coupling coefficient between guides. 
The coupling coefficient k12 is given in terms of the resonator param­

eters by 

where 

X 12 = coupling reactance, 

Xl = Wo dX l 
1 = slope parameter of the first resonator, and 

2 dw Wo 

X2 -- Wo dX 21 I f h d = s ope parameter 0 t e secon resonator. 
2 dw Wo 

(13) 

To evaluate k12 , requires calculation of X 12 as it is related to the 
physical structure. The slope parameters are known from the external 
Q calculations. For loose coupling, X 12 is related to the power coupling 
coefficient between the TE02 waveguide and the TEIO wrapped wave­
guide, 1 r 12 1

2, by, 

\ \
2 "-' X~2 

r 12 = 2Z Z ' 02 10 

where Z02 is the characteristic impedance of the TE02 waveguide. 

(14) 

If the coupling apertures are assumed sufficiently small so that the 
electromagnetic field is essentially constant over the aperture, then 
Bethe's small hole coupling theory can be applied to yield 

\ \

2 18p2eG Ag02 M2 
r 12 = bR4 , a AgIO 

(15) 
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where 

a = wrapped guide width, 
b = wrapped guide height, 
p = number of apertures, 
lc = 7.016, 
G = 0.07075, 
R = radius of TE02 guide, 

Au02 = TE02 guide wavelength, 
AUla = wrapped guide wavelength, and 
ill = magnetic polarizability of the aperture. 
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The above assumes the apertures to be Aula apart in the wrapped 
structure. The magnetic polarizability of the aperture is determined 
from 

i1 Mo v d[ = 210-[(2.73tA/Xec) I-(Xec/X)') 

1 - (Aca/A) 

where 

ilIa = static polarizability of the aperture, 
Aca = cutoff wavelength of the dominant aperture mode, 

t = aperture thickness, and 
A = empirical constant. 

(16) 

Equation (If>) permits use of Bethe's small hole theory for large aper­
tures. 4 Ref. 4 contains an excellent collection of data on 1110 for various 
types of apertures. 

The above analysis when rearranged yields 

lc
I2 

= ~2Z02ZlO I r
12 

I __ 1---::::= 
XIX2 - W~Ql, vg;g; (17) 

from which 

(18) 

The latter then represents the relationship between the required 
aperture dimensions and the characteristics of the filter. 

A.2 Rejection Filters 

From Ref. 4, it is found that the loaded Q's of the rejection filters 
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must be 

QLl = v2 QL 

QL2 = 2 v2 QL , 

(19) 

(20) 

where QLl applies to the rejection filter nearest the branching filter. 
The loaded Q's of the rejection filters in terms of the physical parameters 
are given by Marcatili's Equation (139).1 

APPENDIX B 

Transfer Functions and Reflection Coefficients 

The transfer coefficients and reflection coefficients, of the individual 
diplexer networks are of interest since the experimental development 
of a diplexer usually requires adjustments on the separate networks. 
Figs. 7 and 8 show the individual networks with the ports of interest 
identified. The analysis is straightforward yielding the following 
results: 

S 
_ 2V2 

ab - D (21) 

(22) 

S = 1 + .iglW' 
Saa = cc D (23) 

(24) 

2 
Sbc = D ' 

where 

(25) 

PORT a PORT C 

Fig. 7 - Branching filter prototype. 



MILLIMETER WAVE FILTER s'rRUC'l'URE 2275 

li'ig. 8 - Hejection filter prototype. 

and 

(1 - 2g3g4W'2) + j(g3 + g4)W' 
(26) 

The above expressions were used in Section IV to compare theory 
and experiment with an assumed frequency mapping function 

w' = WfQL(!!l... _ wo
). 

Wo W 
(27) 

Note that (27) represents a narrow bandwidth approximation to the 
actual waveguide resonator frequency variation. The accuracy of thc 
result will probably be sufficient for filter bandwidths up to a few 
percent. It should also be noted that Marcatili obtained good cor­
relation between theory and experiment using the approximate map­
ping function 

for filters having bandwidths of the order of one percent.1 The latter 
mapping function has been shown to yield good results in the fre­
quency range where 

I 2(f - /0) I « (~)2, 
/0 Ag02 

where Ao is the free space wavelength at frequency f o. 
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Sheet Resistivity Measurements on 
Rectangular Surfaces-General Solution for 

Four Point Probe Conversion Factors 

By M. A. LOGAN 

(Manuscript received July 20, 1967) 

Voltage-current ratios, measured using probes on the surface of a homo­
geneous conducting sheet, are converted to resistance per square by "con­
version factors". For rectangles, a closed form solution for these factors 
is obtained by using the complex Jacobian sine-amplitude function 

x + iy = sn [( u + iv), k] 

as a transformation. 
After transformation, an insulated edge rectangle becomes a semi­

infinite sheet. Two conjugate current point images establish the boundary 
condition. A double-sided rectangle becomes an infinite sheet directly, 
needing no images. 

New tables have been prepared for a pattern of probe center locations 
uniformly distributed over the surface. The probe chosen for these tables 
is a common arrangement having four equally spaced points on a line 
parallel to the longer edge of the rectangle. 

1. INTRODUCTION 

Sheet resistivity measurements, made with probes on a bounded 
surface, are converted to resistance per square by "conversion fac­
tors". These factors are a function of the geometry and relative 
dimensions of the parts. For rectangular slices, tables of such factors1 , 2 

are available for the special case of four equally spaced points sym­
metrically placed on a center line. These tables were computed by use 
of convergent infinite series, derived for insulated edge and double­
sided sheets. 

A general closed form solution has been developed for rectangles 
with arbitrary point locations. The method is applicable to any other 

2277 
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surface shape which, through a conformal transformation, can be 
converted into a semi-infinite plane. For a rectangle, the transforma­
tion is the complex Jacobian sine-amplitude function. 

New tables have been computed for four equally-spaced probe 
points in a line, but with the probe center at points distributed in a 
uniform pattern over the rectangular surface. With these tables and 
interpolation, determination of the sheet resistivity now can be made 
anywhere on the rectangular surface, for either insulated-edge or 
double-sided conduction. Of course, a new factor can be computed 
directly for any point not tabulated, rather than calculated by inter­
polation. (The new tables begin on page 2292.) 

The purpose of using the transformation is to change the boundary 
of the actual slice to the X-axis of a semi-infinite plane, and the 
points to equivalent locations in this semi-infinite sheet. Only two 
mirror images are added when the slice has insulated edges; none 
when double sided. This compares to the double infinity of images 
needed for the former tables, even with the maximum possible sym­
metry assumed. 

II. METHOD 

A sketch of a rectangular slice having dimensions of a and d with 
four arbitrarily located points is shown in Fig. 1. Without loss of 
generality, this rectangle can be placed in a coordinate system with 
the lower edge on the abscissa and the origin at the center of that 
edge. With this choice and a linear normalization of dimensions to be 
described later, the (w-plane) rectangle is transformed into a (z-plane) 
semi-infinite sheet* of the same sheet resistivity by the complex sine­
amplitude function, 

x + iy = sn [( u + iv), k]. (1) 

After transformation, the rectangle occupies the entire upper semi­
infinite plane. The second part of Fig. 1 shows the locations of the 
four transformed points. The perimeter of the rectangle becomes the 
entire X -axis. 

In order that the desirable logarithmic potential of a current source 
in an infinite sheetl shall apply, it is necessary to complete the lower 
half of the infinite plane with an attached conducting sheet of the 
same sheet resistivity. 

* Ref. 3, page 57, Example 3. 
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Fig. 1-Complex sine-amplitude transformation of a rectangle. 

2.1 Case 1: Insulated Edges 

2279 

The first case described will be that of a transformed insulated edge 
rectangle. The needed lower sheet may be connected, provided that 
mirror current images for each real source or sink are included to 
maintain the boundary condition. Fig. 2 shows the complete point 
array. An outline for the computations to determine the conversion 
factor will be given later. 

2.2 Case 2: Double-Sided Conduction 

The second case will be that of a double-sided or folded sheet. An 
extra operation to the rectangle is performed before applying the same 
transformation as used above. First cut three edges of the double-sided 
rectangle, unfold and arrange in the coordinate system shown in Fig. 
3. This places the upper surface exactly as the insulated edge sheet 
had been placed in Fig. 1, but the unfolded connected under surface 
extends the new single sheet into the like area below the abscissa. 
Now when the sine-amplitude transformation is applied to this entire 
surface, the rectangle in the upper half of the w-plane fills completely 
the upper semi-infinite z-plane, as for the single-sided sheet, and the 
lower rectangle now fills the lower semi-infinite plane. At the same 
time, this reconnects the two surfaces along the X-axis, eliminating 
the temporary effect of the cut. The four points again have been 
transformed exactly as in the lower half of Fig. 1. However, as there 
now is no boundary condition to fulfill, no images are necessary. 
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Pie 

Fig. 2 - Mirror images added with lower sheet to maintain insulated bound­
ary condition. 

Thus, the formula will be even simpler than for the insulated edge case. 
It is clear that this method can be applied to any surface which 

can be transformed into a semi-infinite plane. For example, in Ref. 2, 
this was done with a circle as a step in the proof that a double-sided 
circular slice behaved exactly as if it were an infinite sheet. This 
simple result does not apply to a double-sided rectangle because of the 
singularities of the sn-function. 

III. LOGARITHMIC POTENTIAL 

As mentioned earlier, the method used for derivation of the con­
version factors is based on use of a conformal transformation leading 

I 
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Fig. 3 - Cut and unfolded double sided conduction sheet. 
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to an infinite sheet. In an infinite sheet, a current source gives rise to 
the simple logarithmic potential 

Ips 1 
cp - CPo = -- n l' 

271" ' 
(2) 

where If is the potential, I the current, ps the sheet resistivity, and l' 

the distance from the current source. For a sink, the sign is reversed. A 
sketch of a surface with a current source Pl is drawn in Fig. 4. Two 
points, P2 and Pg , have been shown, representing the "voltage points" 
of a four-point probe. A resistivity measuring set determines their 
voltage difference. The voltage difference is 

V I PB 1 1'13 
CP2 - CP3 = = - n -. 

271" 1'12 
(3) 

There is a similar expression for each current source or sink. The 
simple addition, one for each current source or sink is the solution 
when summing the effects of any number of points. This is because 
superposition applies. 

IV. CONVERSION FACTOR 

The potential difference between the two voltage points (P2 and P3 ) 

due to all real and image current source points is: 

V + = Ips (In 1'13 + In 1'~3 + ... ) , 
271" r12 1'12 

(4) 

Fig. 4 - Logarithmic potential difference. 

where each radius marked by a prime is the distance from an image 
point to a voltage point. 
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Likewise for all sinks: 

(5) 

4.1 Case 1: Insulated Edges 

For a rectangle with insulated edges, there are two real current 
points 1, 4 and two mirror image current points 1', 4'. Adding the two 
equations above: 

(6) 

Rearranging 

Ps (J) X C.F., (7) 

where 

C.F. (8) 
In [(r13)(r~3)(~24)(r~4)J· r12 r12 134 r34 

4.2 Case 2. Double-Sided Sheet 

For a double-sided sheet, there are no images. Clearly the conversion 
factor can be written directly from (8) above simply by omission of 
the prime terms: 

C.F. 

In [ (~::)(~::) ] 
(9) 

v. JACOBIAN ELLIP'l'IC FUNC'.rION, S11 W 

A description for each of the steps needed for a determination of a 
conversion factor for a rectangular surface, with arbitrary point loca­
tions, has been given. Involved is the use of the complex sine-ampli­
tude function, sn w. The next two sections with Appendices A, B, and 
C, will briefly present all needed material for determination of this 
function. 

The more general but possibly more familiar Schwarz-Christoffel 
transformation relates a semi-infinite plane and any polygon. The 
relation is an integral expression between points in the wand z planes. 
Equation (10) is the form for ft rcctangle3 shown in Fig. 1. In this form 
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it may be considered as one of a transform pair, whose inverse is the 
equivalent sine-amplitude function, sn w. The pair 

l
z dz 

w = 0 V(l _ z2)(1 - ez2) 
(10) 

z = sn (w, k). (11) 

The Schwarz-Christoffel transformation is a directly written ex­
pression which serves to identify the sine-amplitude function (11) 
as a solution for the present problem. 

Equation (11) is more convenient for computations to determine 
where a transformed point from a rectangle in the w-plane appears in 
the z-plane. This is the complex sine-amplitude function, which is 
related to elliptic functions. Ref. 7 has charts of this function. 

Tables are in Ref. 8. However, these are double entry tables since 
the value of an elliptic function depends not only on the argument, but 
also on the modulus k. Interpolation between tabulated values is 
laborious and subject to error. Fortunately, the functions are repre­
sentated by rapidly converging series. 

VI. ELLIPTIC FUNCTION PARAMETERS 

There are five elliptic function parameters k, k', I(, K', K'II( and 
two auxiliary nomes q and Q19 , only one of which is independent. For 
the coordinate choice of Fig. 5, the relation which can be identified 
through similarity of the rectangles is 

K' = 2(~)' K - d (12) 

Starting with this, Appendix A defines the nomes and compiles a list 
of rapidly converging series for the other parameters. 

Appendix B tabulates the real sn, cn, and dn functions, using the 
very rapidly converging Theta series.5 Finally, Appendix C defines 
the complex sine-amplitude function (11), (38) in terms of the real 
functions of Appendix B.6 

VII. COMPUTATION-GENERAL CASE 

A summary of the steps for the general case of arbitrary point 
locations follows: 

Step 1: Determine the elliptic function parameters using (20) 
through (26) starting with the side length ratio aid of the rectangle. 
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Step 2: Transform the points in the rectangle to their place in a 
normalized rectangle, such as Fig. 5, by linear multiplication of all 
dimensions with (2[(/ d) . 

Step 3: Compute the real elliptic functions of (31) through (36) 
for each probe point. 

Step 4: Transform each of the normalized probe point locations 
with the complex sine-amplitude function, (38). When the rectangle 
has insulated edges, add complex conjugate mirror image current 
points, as in Fig. 2. 

Step 5: Determine the distances from each current point to the 
voltage points. 

Step 6: Substitute in (8) when edges are insulated, or (9) when the 
slice is two-sided for the conversion factor. 

VIII. COMPUTATION-FOUR EQUALLY SPACED PROBE POINTS 

New tables have been computed for a commonly used four-point in­
line probe, having equal point spacings. Fig. 6 shows the probe on the 
rectangle. The dimensions necessary to determine a particular con­
version factor, are defined in the figure as a, b, c, d, s, and t. The letters 
a and d represent the sides of the rectangle, and s the point spacing. 
The slice thickness t is needed for double-sided conduction. \Vith 
double-sided conduction (d + t) and (a + t) are used for d and a, re­
spectively. There are two new dimensions, band c. These relate the 
center of the probe to the center of the rectangle. 
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Fig. 6 - General arrangement for the four point probe on a rectangular sheet. 

A FORTRAN computer program has been written by S. G. Student, 
Jr. The computer program and the tables use a dimensionless notation, 
involving only ratios of these lengths. The notation is shown in Fig. 7 
where thirty probe point centers chosen for the tables have been 
plotted. The number of the center of the probe point location is the 

c/d OR c/(d+t) 
! 

/ " 0 0.1 0.2 0.3 0.4 0.5 

2~ 26+ 2+ 2'4- 2\ 30 0.4 

1~ 2~ 24- 22+ 23+ 24 0.3 

TABLE 13+ 1~ 15+ 16+ '+ 18 0.2 b/a OR 
# b/(att) 

"4- tq. 9+ 10+ 1~_ 12 0.1 

+ 2+ 3+ 4.r 5+ 6 0 

Fig. 7 - Plot of the 30 locations selected for the probe center-dimensionless 
notation. 
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. same as that of the corresponding table. Hence this figure also serves 
as an index for the tables. 

The probe center locations have been located at the intersections of 
b/a = 0, 0.1, 0.2, 0.3, and 0.4 with c/d = 0, 0.1, 0.2, 0.3, 0.4, and 0.5. 
There is a restriction for relative point spacing d/s to keep the four 
points on the sheet. An expression for this restriction is 

~ > b + 3s 
2 = 2 

which may be rearranged to be 

(~) > 3 
s = (a/d)[l - 2(b/a)] 

(13) 

The tables are for probe center points shown only in one quarter. Be­
cause of symmetry, these tables apply to all quarters. That is, b can 
be either above or below the horizontal center line and c can be either 
right or left of the vertical center line. 

The four-point locations before normalization are 

P 1 = C + i(~ + b _ ~s) 

P2 = C + i(~ + b - ~) 

P 3 = C + i(~ + b + ~) 

P 4 = C + i(~ + b + ~s). 

(14) 

For a given a/d, the elliptic parameters are computed for Step 1. The 
rectangular coordinates of the above four points are normalized by 
multiplication by (2K/ d). The four normalized points then are 

U 1 + iVll 

U 2 + iv2 1 
\ 

U3 + iV3j 
U 4 + iV4 

(1.5) 

o ~ v ~ K'. 

This completes Step 2. For Step 3, compute the real elliptic functions, 
and with Step 4, determine the four real point locations in the semi-
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infinite upper half plane. 

Xl + iYI = sn ([Ul + ivl], k) 

X2 + iY2 = sn ([U2 + iV2]' k) 

Xa + iYa = sn ([Ua + iVa], k) 

X4 + iY4 = sn ([u4 + iV4], k). 

The mirror images are the conjugates of the first and last lines: 

Then for Step 5 the distance equations are 

(I 12 + 1 12)! r 12 = X2 - Xl Y2 - Yl 

r la = (I Xa - Xl \2 + 1 Ya - Yl 12)! 

1"24 = (I X4 - X2 12 + 1 Y4 - Y2 12)! 

ra4 = (I X4 - Xa 12 + 1 Y4 - Ya 12)!. 

If the sheet is insulated then the image distances are 

ri2 = (I X2 - Xl 12 + 1 Y2 + Yl 12)! 

ria = (I Xa - Xl 12 + 1 Ya + Yl n! 

r~4 = (I X4 - X2 12 + 1 Y4 + Y2 12)! 

r~4 = (I X4 - Xa 12 + 1 Y4 + Ya 12)~. 

2287 

(16) 

(17) 

(I 8) 

(19) 

Finally, for Step 6, substitute these values in (8) and (9) for the 
conversion factors. 

IX. EDGE EFFECT 

The solution for two-sided conduction does not include two effects 
which actually are present. First, the equivalent flattened surface de­
fined by using (d+t) and (a+t) for the outside dimensions includes, 
at the four corners, small square pieces of size t by t, which actually 
are not present. Second, under every edge there is a region of increased 
conductivity because the diffused impurity entered through two sur­
faces. This extra diffusion causes the equivalent skin thickness both 
to be increased and to be lower in bulk resistivity under the edge. 



2288 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1967 

Thus, there exists "frames" of lower resistivity surrounding the 
surface being tested. It is believed the coefficients may be in error and 
too low when points are close to an edge of a two-sided slice. This 
effect has neither been evaluated nor included in the tables. 

X. VERIFICATION 

As described above, Table I has previously been determined from 
infinite series obtained by use of image arrays.* There are some dis­
crepancies in the fourth and fifth significant figures. A few of the 
earlier factors have been recalculated using the series method. For 
each case the error was in the prior table. 

From Tables I, VII, XIII, XIX, and XXV, some limiting double 
sided cases may be determined by appropriate changes of the di­
mensionless parameters. For instance, consider an insulated edge 
surface with the points on the vertical bisector. Now fold the sheet 
on this line, placing the right side say, underneath. Note that because 
of the original symmetry, at every point where the edges now come 
together, the potentials before connection were identical. Therefore, 
when connected to form a two-sided sheet, no change in current occurs, 
and the V /1 ratio at the four points is unaltered. Thus, the double­
sided sheet with the points on one edge made by folding, has the same 
numerical conversion factors as the original single sheet with the 
points in the center when the appropriate (a/d) and (d/s) parameters 
are identified. 

Two examples: b/a c/d d/s a/d C.F. 
Single Sheet 0 0 3 1 2.4562 
Double-Sided Sheet 0 0.5 1.5 2 2.4562 
Single Sheet 0 0 3 2 2.7000 
Double-Sided Sheet 0 0.5 1.5 4 2.7000 

The same type of identification can be made for other values of b/a. 
Some limiting insulated edge checks also can be made from Tables 

I, VII, XIII, XIX, and XXV, through appropriate changes to the 
dimensionless parameters but this time halving the conversion factor. 
These new sheets are made by cutting the original sheet along the 
vertical bisector. Because of vertical symmetry, no current crossed 
this line before the cut and therefore the field pattern is unaffected 
after the cut. As before (a/d) and (d/s) are doubled and halved, re­
spectively. However, now all the current flows in half the area. This 

* The tables begin on page 2292. 
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causes all potential differences to be doubled. As the sheet resistivity 
has not been affected, the conversion factor therefore is just half. 

Two examples: b/a c/d d/s a/d C.F. 
Single Sheet 0 0 5 1 3.5098 -;- 2 
Single Sheet 0 0.5 2.5 2 1.7549 
Single Sheet 0.2 0 3 2 2.6647 -;- 2 
Single Sheet 0.2 0.5 1.5 4 = 1.3323 

For an intermediate probe center location, a chart of the complex 
sine-amplitude function for (a/d) = 1.2173, included with Ref. 7, 
can be read to about three-figure accuracy. Several conversion factors 
not given in these tables were verified this way. 

Finally, when the two current points are on the top and bottom 
edges of a slice, the double-sided conversion factor is twice that for 
the insulated edge sheet. This is because exactly half the current 
flows across the back when double sided. 

APPENDIX A 

Elliptical Function Parameters 

The elliptic function parameters are related to the rectangle through 
the identity 

(20) 

This relation uniquely determines the other elliptic function coefficients. 
It is convenient to define the nomes: 

q = exp ( -7r ~ ~) (21) 

ql = exp ( -7r ~,) • (22) 

Then the modulus: 

. _ _ [I, + q2 + q6 + q12 + '" qn(n+l) + '" J2 
lv-4vq 4 9 • • 

1 + 2(q + q + q + ... qn + ... ) (23) 

The complementary modulus: 

le' = VI - e 

[
1 - 2q + 2q<1 - 2q9 + ... 2( _ltqn

2 + .. 'J2 
1+2(q+q4+ ... qn"+ ... ) • 

(24) 
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The complete elliptic integral: 

7r [1 2 4 9 n' + ]2 = 2 + 2q + q + 2q + ... 2q . .. . 

The complementary complete elliptic integral is 

K' -1 1 

dt 
- 0 VC1=t2)(1 - k'2 t2) 

= ! [1 + 2ql + 2q~ + ... 2q~' + ... ]2 
2 

= _ 7rK = 2K(~) 
In ql d 

(25) 

(26) 

so that K' is the same function of the complementary modulus k' as 
I( is of k. 

APPENDIX B 

Real Elliptic Functions 

The elliptic functions can be expressed in terms of certain auxiliary 
functions called the Theta functions (Ref. 5, p. 471). The following 
definitions and notations are chosen: 

00 7rU 
()o(u/2K, q) = 1 + 2 ~ (-ltqn' cos 2n 2K (27) 

()1(u/2K, q) = 2ql ~ (_ltqn(n+l) sin (2n + 1) ;~ (28) 

()2(u/2K, q) = 2qi ~ qn(n+l) cos (2n + 1) ~ (29) 

()a(u/2K, q) = 1 + 2 ~ qn. cos 2n ;~ . (30) 

Then 

sn (u k) = _1_ ()t (u/2K, q) 
, vIk ()o(u/2K, q) 

(31) 
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fi? ()2(u/2K, q) 
en (u, k) = \}k" ()o(u/2K, q) 

VI - sn2 (u, k) 

dn (u, k) = Vk' ()3(u/2K L!12 
()o(u/2K, q) 

VI - e sn2 (u, k). 

2291 

(32) 

(33) 

For a complex variable a second set for v will be needed, obtained by 
permuting the values of q and Ql, k and k', and I( and K', in (27) 
through (30). 

dn (v, k') = 

VI - (k' sn (v, k'))2. 

APPENDIX C 

Complex Sine-Amplitude Elliptic Functions 

For brevity we putG 

s = sn (u, k) 

c = en Cu, lc) 

d = dn Cu, k) 

S1 = sn (v, k') 

C1 = en (v, k') 

d1 = dn (v, k'). 

(34) 

(35) 

(36) 

(37) 

Note that the complementary modulus k', etc., go with the suffix 1. 
Then 

x + iy = sn [( u + iv), kJ 
S d1 + ic dS1 C1 

ci + k
2s2si 

(38) 

A substitution, to avoid a negative sign in the denominator, has been 
made in (38) from page 20 of Ref. 8. 

(References nrc listed on page 2322.) 
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TABLE I - FOUR POINT PROBE CONVERSION 

FACTORS FOR RECTANGLES 

Insulated Edge Sheet 

c/d = O. b/a = 0 

diS aid = 1.000 aid = 1.200 aid = 1.500 aid = 2.000 aid = 4.000 

1.00 0.9994 
1.25 1.2468 
1.50 1.4787 1.4893 
1. 75 1. 7197 1.7239 

2.00 1.8978 1.9454 1. 9475 
2.50 2.2244 2.3342 2 3fi32 2.3541 
3.00 2.4fi62 2.6298 2.6897 2.7000 2.7()O5 
4.00 3.11:l4 3.1927 3.2197 3.2244 3.2246 
5.00 3.5098 3.5563 3.5721 3 5749 3.5ifiO 
7.50 4.0089 4.0282 4.0347 4.0358 4.0358 

10.00 4.2208 4.2314 4.2350 4.2356 4.2356 
15.00 4.3878 4.3925 4.3940 4.3943 4.3943 
20.00 4.4498 4.4534 4.4533 4.4534 4.4534 
40.00 4.5114 4.5120 4.5123 4.5123 4.5123 

00 4.5324 4.5324 4.5324 4.5324 4.5324 

Double Sided Sheet 

c/(d + t) = O. b/(a + t) = 0 

d +t a +t a +t a +t a +t a + t 
-- = 1.000 -- = 1.200 -- = 1.500 -- = 2.000 -- = 4.000 

S d +t d +t d +t d +t d +t 

1.00 1.9497 
1.25 2.3549 
1.50 2.9575 2.7010 
1. 75 3.1508 2.9887 
2.00 3.7956 3.3381 3.2248 

2.50 4.4488 3.8987 3.6409 3.5751 
3.00 4.9123 4.3701 4.0231 3.8545 3.8109 
4.00 4.6477 4.3823 4.2023 4.1123 4.0888 
5.00 4.5791 4.4183 4.3068 4.2505 4.2357 
7.50 4.5415 4.4735 4.4254 4.4008 4.3943 

10.00 4.5353 4.4976 4.4708 4.4571 4.4534 
15.00 4.5:{29 4.5164 4.5045 4.4985 4.4969 
20.00 4.5325 4.5233 4.5166 4.5132 4.5123 
40.00 4.5324 4.5:~01 4.5284 4.5276 4.5273 

00 4.5324 4.5324 4.5324 4.5324 4.5324 
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TABLE II - FOUR: POINT PROBE CONVERSION 

FACTORS FOR RECTANGLES 

Insulated Edge Sheet 

cld = 0.100 bla = 0 

diS aid = 1.000 aid = 1.200 aid = 1.500 aid = 2.000 aid = 4.000 

1.00 0.9970 
1.25 1.2407 
1.50 1.4566 1.4779 
1. 75 1.69:35 1.7062 
2.00 1.8529 1. 9143 1.9233 

2.50 2.1637 3.2801 2.3124 2.3182 
3.00 2.3911 2.5601 2.6:306 2.6525 2.6568 
4.00 3.0388 3.1222 3.1600 3.17:32 3.1761 
5.00 3.4414 3.4938 3.5186 3.5278 3.5298 
7.50 3.9638 3.9876 3.9995 4.0041 4.0051 

10.00 4.1913 4.2050 4.2119 4.2146 4.2153 
15.00 4.3731 4.3793 4.3825 4.3838 4.3841 
20.00 4.4411 4.4447 4.4465 4.4472 4.4474 
40.00 4.5091 4.5100 4.5105 4.5107 4.5107 

o:l 4.5324 4.5324 4.5324 4.5324 4.5324 

Double Sided Sheet 

c/(d + t) = 0.100 bl(a + t) = 0 

d +t a +t a +t a +t a +t a +t 
-- = 1.000 -- = 1.200 -- = 1.500 -- = 2.000 -- = 4.000 

S d +t d +t d +t d +t d +t 

1.00 1.9493 
1.25 2.3548 
1.50 2.9132 2.7009 
1. 75 3.1216 2.9R87 
2.00 3.7058 3.3173 3.2247 

2.50 4.3275 3.8442 3.6286 3.5751 
3.00 4.7822 4.2873 3.9R64 3.8463 3.8109 
4.00 4. 57fiO 4.3364 4.1823 4.1079 4.0R·~8 
5.00 4.5327 4.3R91 4.2942 4.2477 4.2:357 
7.50 4.5209 4.4606 4.4198 4.3996 4.3943 

10.00 4.5237 4.4903 4.4677 4.4564 4.4534 
15.00 4.5278 4.5132 4.5032 4.4982 4.4969 
20.00 4.5296 4.5215 4.5158 4.5130 4.5123 
40.00 4.5316 5.5296 4.5282 4.5275 4.5273 

o:l 4.5324 4.5324 4.5324 4.5324 4.5324 
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TABLE III - FOUR POINT PROBE CONVERSION 

FACTORS FOR RECTANGLES 

Insulated Edge Sheet 

cld = 0.200 bla = 0 

diS aid = 1.000 aid = 1.200 aid = 1.500 aid = 2.000 aid = 4.000 

1.00 0.9905 
1.25 1.2243 
1.50 1.3971 1.4466 
1. 75 1.6229 1.6565 
2.00 1.7297 1.8285 1.8539 

2.50 1. 9913 2.1294 2.1947 2.2119 
3.00 2.1964 2.3604 2.4601 2.5096 2.5227 
4.00 2.8111 2.9100 2.9757 3.0090 3.0179 
5.00 3.2254 3.2!l62 3.3444 3.3689 3.3754 
7.50 3.8117 3.8496 3.8758 3.8891 3.8926 

10.00 4.0882 4.1116 4.1277 4.1359 4.1381 
15.00 4.3202 4.3314 4.3392 4.3431 4.3441 
20.00 4.4098 4.4163 4.4208 4.4231 4.4237 
40.00 4.5009 4.5026 4.5037 4.5043 4.5045 

00 4.5324 4.5324 4.5324 4.5324 4.5324 

Double Sided Sheet 

cl(d + t) = 0.200 bl(a+t) =0 

d +t a +t a +t a +t a +t a +t 
-- = 1.000 -- = 1.200 -- = 1.500 -- = 2.000 -- = 4.000 

S d +t d +t d +t d +t d +t 

1.00 1.9482 
1.25 2.3544 
1.50 2.7943 2.7007 
1. 75 3.0440 2.9885 
2.00 3.4595 3.2622 3.2246 

2.50 3.9827 3.6963 3.5963 3.5750 
3.00 4.3928 4.0532 3.8872 3.8248 3.8109 
4.00 4.3589 4.2077 4.1282 4.0962 4.0888 
5.00 4.3951 4.3075 4.2600 4.2403 4.2356 
7.50 4.4601 4.4247 4.4048 4.3964 4.3943 

10.00 4.4895 4.4702 4.4593 4.4546 4.4534 
15.00 4.5126 4.5042 4.4994 4.4974 4.4969 
20.00 4.5211 4.5164 4.5138 4.5126 4.5123 
40.00 4.5295 4.5284 4.5277 4.5274 4.5273 

00 4.5324 4.5324 4.5324 4.5324 4.5324 
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TABLE IV-FoUR POIN'!' PROBE CONVERSION 

FACTORS FOR RECTANGLES 

Insulated Edge Sheet 

cld = 0.300 bla = 0 

diS aid = 1.000 aid = 1.200 aid = 1.500 aid = 2.000 aid = 4.000 

1.00 0.9823 
1.25 1.2027 
1.50 1.3201 1.4040 
1. 75 1.5299 1.5868 
2.00 1.5640 1.7110 1. 7534 

2.50 1. 7446 1. 9197 2.0193 2.0470 
3.00 1.8930 2.0691 2.2046 2.2797 2.3002 
4.00 2.4394 2.5629 2.6564 2.7067 2.7203 
5.00 2.8395 2.9345 3.0053 3.0428 3.0528 

7.50 3.4871 3.5438 3.5852 3.6067 3.6124 
10.00 3.8453 3.8825 3.9094 3.9233 3.9270 
15.00 4.1837 4.2027 4.2163 4.2234 4.2252 
20.00 4.3258 4.3371 4.3452 4.3494 4.3505 
40.00 4.4779 4.4809 4.4830 4.4841 4.4844 

00 4.5324 4.5324 4.5324 4.5324 4.5324 

Double Sided Sheet 

c/(d + t) = 0.300 bl(a+t) =0 

d +t a +t a +t a +t a +t a +t 
-- -- = 1.000 -- = 1.200 -- = 1.500 -- = 2.000 -- = 4.000 

S d +t d +t d +t d +t d +t 

1.00 1.9469 
1.25 2.35~8 
1.50 2.6402 2.7004 
1. 75 2.9453 2 9883 
2.00 3.1281 3.1929 3.2245 

2.50 3.4892 3.5019 3.5558 3.5749 
3.00 3.7860 3.7237 3.7579 3.7979 3.8108 
4.00 4.0283 4.0290 4.0583 4.0R17 4.0R87 
5.00 4.1864 4.1949 4.2160 4.2312 4.2356 
7.50 4.3685 4.3753 4.3855 4.3924 4.3943 

10.00 4.4~82 4.4426 4.44R5 4.4523 4.45~4 
15.00 4.4R99 4.4920 4.4!146 4.4U64 4.4U69 
20.00 4.5083 4.5096 4.5111 4.5120 4.5123 
40.00 4.5263 4.5266 4.5270 4.5273 4.5273 

00 4.5324 4.5324 4.5324 4.5324 4.5324 
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TABLE V-FOUR POIW.r PROBE CONVERSION 

FACTORS FOR RECTANGLES 

Insulated Edge Sheet 

cld = 00400 bla = 0 

diS aid = 1.000 aid = 1.200 aid = 1.500 aid = 2.000 aid = 4.000 

1.00 0.9754 
1.25 1.1841 
1.50 1.2542 1.3657 
1. 75 1.4485 1. 5217 
2.00 1.4153 1.6026 1.6552 

2.50 1.5066 1.7206 1.8386 1.8708 
3.00 1. 5715 1. 7774 1.9336 2.0171 2.0395 
4.00 2.0054 2.1399 2.2375 2.2882 2.3(H6 
5.00 2.3020 2.3998 2.4695 2.5052 2.5146 
7.50 2.8301 2.8871 2.9269 2.9471 2.9524 

10.00 3.2128 3.2521 3.2793 3.2930 3.2966 
15.00 3.7128 3.7353 3.7508 3.7fj86 3.7607 
20.00 3.9938 4.0082 4.0181 4.0231 4.0244 
40.00 4.3709 3.3752 4.3781 4.3796 4.3800 

00 4.5324 4.5324 4.5324 4.5324 4.5324 

Double Sided Sheet 

c/(d + t) = 00400 bl(a +t) = 0 

d +t a +t a +t a +t a +t a +t 
-- = 1.000 -- = 1.200 -- = 1.500 -- = 2.000 -- = 4.000 

S d +t d +t d +t d +t d + t 

1.00 1.9458 
1.25 2.3.134 
1.50 2 .• ~085 2.7001 
1. 75 2.8631 2.9882 
2.00 2.8307 3.1356 3.2244 

2.50 3.0133 3.3337 3.5225 3.5749 
3.00 3.1430 3.4163 3.6475 3.7759 3.8108 
4.00 3.6924 3.8660 3.9990 4.0698 4.0887 
5.00 3.9774 4.0930 4.1788 4.2237 4.2356 
7.50 4.2778 4.3309 4.3693 4.3891 4.3943 

10.00 4.3R76 4.4177 4.4394 4.4505 4.4.~34 
15 00 4.4675 4.4RIO 4.4f106 4.4f1.~6 4.4f169 
20.00 4. 49fl8 4.5034 4.50S8 4.5116 4.5123 
40.00 4.5232 4.5251 4.5264 4.5271 4.5273 

00 4.5324 4.5324 4.5324 4.5324 4.5324 
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TABLE VI-FoUR POINT PROBE CONVERSION 

FACTORS FOR RECTANGLES 

Insula ted Edge Sheet 

c/d = 0.500 b/a = 0 

dIS aid = 1.000 aId = 1.200 aid = 1.500 aid = 2.000 aid = 4.000 

1.00 0.9727 
1.25 1.1766 
1.50 1.2281 1.3fiOO 
1. 75 1.4155 1.4941 
2.00 1.3539 1.5567 1.6122 

2 . .,0 1.4025 1.6333 1. 7!l49 1. 7R74 
3.00 1.4201 1.6434 1.8019 1.88:H 1.90.54 
4.00 1.7716 1.8994 I.Y878 2.0:326 2.0444 
5.00 1.9429 2.0256 2.0821 2.1104 2.1178 
7.50 2.1192 2.1564 2.1814 2.1939 2.1972 

10.00 2.1828 2.2038 2.2179 2.2249 2.2267 
15.00 2.2289 2.2382 2.2445 2.2476 2.2484 
20.00 2.2452 2.2.")04 2.2540 2.2557 2.2562 
40.00 2.2609 2.2622 2.2631 2 2635 2.2637 

co 2.2662 2.2662 2.2662 2.2662 2.2662 

Double Sided Sheet 

c/(d + t) = 0.500 b/(a + t) = 0 

d +t a +t a +t a +t a +t a + t 
-- = 1.000 --> 1.200 -- = 1.500 -- = 2.000 -- = 4.000 

S d +t d +t d +t d +t d +t 

1.00 1.9454 
1.25 2.3532 
1.50 2.4.562 2.7000 
1. 75 2.8311 2.9881 
2.00 2.7078 3.1134 3.2244 

2.50 2.8050 3.2666 3.5098 3.5749 
3.00 2.8403 3.2868 3.60:38 3.7674 3.8108 
4.00 3.5432 3.7987 3.9757 4.0652 4.0887 
5.00 3.8859 4.0511 4.1641 4.2208 4.2:J56 
7.50 4.2385 4.3127 4.3629 4.3878 4.3Y43 

10.00 4.3657 4.4076 4.4358 4.4498 4.4534 
15.00 4.4578 4.4765 4.48!)0 4.4!).12 4.4tl68 
20 00 4.4tlO3 4.5009 4.5079 4.5114 4.5123 
40.00 4.5218 4.5245 4.5262 4.5271 4.5273 

co 4.5324 4.5324 4.5324 4.5324 4.5324 
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TABLE VII --FOUR POINT PROBE CONVERSION 

FACTORS FOR RECTANGLES 

Insulated Edge Sheet 

cld = o. bla = 0.100 

diS a.ld = 1.000 /lId = 1.200 ttld = 1.1i0O aid = ::l.OOO aid = ·1.000 

1.00 0.9993 
1.25 1.2467 
1.50 1.4893 
1. 75 1.7239 
2.00 1.9341 1.9475 

2.50 2.2859 2.3487 2.3541 
3.00 2.6639 2.6976 2.7005 
4.00 3.0068 3. 14R2 3.20R2 3.2233 3.2246 
5 00 3.4487 3.5305 3.5654 3.5742 3.5750 
7.50 3.9840 4.0176 4.0319 4.0355 4.0358 

10.00 4.2072 4.2256 4.2335 4.2355 4.2356 
15.00 4.3818 4.3899 4.3934 4.3942 4.3943 
20.00 4.4464 4.4510 4.4529 4.4534 4.4534 
40.00 4.5106 4.5117 4.5122 4.5123 4.5123 

00 4.5324 4.5324 4.5324 4.5324 4.5324 

Double Sided Sheet 

c/(d + t) = O. bl(a + t) = 0.100 

d +t a +t a +t a +t a +t a +t 
-- = 1.000 -- = 1.200 -- = 1.500 -- = 2.000 -- = 4.000 

S d +t d +t d +t d +t d +t 

1.00 1.9609 
1.25 2.3594 
1.50 2.7034 
1. 75 2.9903 
2.00 3.4342 3.2259 

2.50 4.0::l06 3.6978 3.5757 
3.00 4.1124 3.S925 3.8113 
4.00 4.7200 4.4!i04 4.2.513 4.13:~0 4.0R90 
5.00 4.6254 4.4616 4.3378 4.26:~5 4.2:358 
7.50 4.5621 4.4926 4.4390 4.4065 4.3!:l44 

10.00 4.5468 4.50R3 4.47~4 4.4603 4.4535 
15.00 4.5a~n 4.5211 4.5079 4 4\)99 4.4969 
20.00 4.53.54 4.5259 4.51R5 4.£)140 4.5123 
40.00 4.5331 4.5:307 4. 52R9 4.5'177 4.5273 

00 4.5324 4.5324 4.5324 4.5324 4.5324 



HESIS'l'IVl'l'Y MEASUREMENTS 2299 

TABLE VIII - FOUR POINT PROBE CONVERSION 

FACTORS FOR RECTANGLES 

Insulated Edge Sheet 

cld = 0.100 bla = 0.100 

diS aid = 1.000 aid = 1.200 aid = 1.500 aid = 2.000 aid = 4.000 

1.00 0.9964 
1.25 1.2405 
1. 50 1.4778 
1. 75 1.7061 
2.00 1.8996 1.9232 

2.50 2.2323 2.3047 2.3181 
3.00 2.6030 2.6473 2.6568 
4.00 2.9402 3.0792 3.1459 3.1701 3.1760 
5.00 3.3844 3.4678 3.5095 3.5256 3.5298 
7.50 3.9400 3.9762 3.9952 4.0030 4.0051 

10.00 4.1780 4.1985 4.2094 4.2140 4.2153 
15.00 4.3672 4.3764 4.3814 4.3835 4.3741 
20.00 4.4378 4.4430 4.4458 4.4471 4.4474 
40.00 4.5083 4.5096 4.5103 4.5106 4.5107 

00 4.5324 4.5324 4.5324 4.5324 4.5324 

Double Sided Sheet 

c/(d + t) = 0.100 bl(a + t) = 0.100 

d +t a +t a +t a +t a +t a +t 
-- = 1.000 -- = 1.200 -- = 1.500 -- = 2.000 -- = 4.000 

S d +t d +t d +t d +t d +t 

1.00 1.9584 
1.25 2.3584 
1.50 2.7029 
1. 75 2.9899 
2.00 3.4003 3.2256 

2.50 3.9670 3.6766 3.5756 
3.00 4.0671 3.8780 3.8112 
4.00 4.6529 4.4024 4.2253 4.1250 4.0890 
5.00 4.5813 4.4302 4.3211 4.2584 4.2358 
7.50 4.5420 4.4784 4.4315 4.4043 4.3944 

10.00 4.5354 4.5003 4.4742 4.4590 4.4535 
15.00 4.5330 4.5175 4.5060 4.4993 4.4969 
20.00 4.5325 4.5239 4.5175 4.5137 4.5123 
40.00 4.5324 4.5302 4.5286 4.5277 4.5273 

00 4.5324 4.5324 4.5324 4.5324 4.5324 



2300 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER H167 

TABLE IX - FOUR POINT PROBE CONVERSION 

FACTORS FOR RECTANGLES 

Insulated Edge Sheet 

cld = 0.200 bla = 0.100 

diS aid = 1.000 aid = 1.200 aid = 1.500 aid = 2.000 a/d = 4.000 

1.00 0.9885 
1.25 1.2235 
1.50 1.4461 
1. 75 1.6562 
2.00 1.8043 1.8537 

2.50 2.0797 2.1788 2.2117 
3.00 2.4261 2.4976 2.5226 
4.00 2.7315 2.8679 2.9541 3.0010 3.0178 
5.00 3.1765 3.2675 3.3288 3.3630 3.3753 
7.50 3.7885 3.8348 3.8674 3.8859 3.8926 

10.00 4.0744 4.1026 4.1226 4.1340 4.1381 
15.00 4.3138 4.3271 4.3367 4.3422 4.3441 
20.00 4.4061 4.4138 4.4193 4.4225 4.4236 
40.00 4.4999 4.5019 4.5033 4.5042 4.5045 

00 4.5324 4.5324 4.5324 4.5324 4.5324 

Double Sided Sheet 

c/(d + t) = 0.200 bl(a + t) = 0.100 

d +t a + t a +t a +t a + t a +t 
-- = 1.000 -- = 1.200 -- = 1.500 -- = 2.000 -- = 4.000 

S d + t d +t d +t d +t d +t 

1.00 1.9518 
1.25 2.3558 
1.50 2.7014 
1. 75 2.9890 
2.00 3.3059 3.2250 

2.50 3.7832 3.6188 3.5752 
3.00 3.9378 3.8389 3.8110 
4.00 4.4425 4.2593 4.1522 4.1035 4.0888 
5.00 4.4431 4.3373 4.2743 4.2448 4.2357 
7.50 4.4790 4.4366 4.4107 4.3983 4.3943 

10.00 4.4997 4.4767 4.4625 4.4556 4.4534 
15.00 4.5170 4.5070 4.5008 4.4978 4.4969 
20.00 4.5236 4.5180 4.5145 4.5129 4.5123 
40.00 4.5301 4.5287 4.5279 4.5275 4.5273 

00 4.5324 4.5324 4.5324 4.5324 4.5324 



RESISTIVITY MEASUREMENTS 2301 

TABLE X-FOUR POINT PROBE CONVERSION 

FACTORS FOR RECTANGLES 

Insulated Edge Sheet 

c/d = 0.300 b/a = 0.100 

diS aid = 1.000 aid = 1.200 aid = 1.500 aid = 2.000 aid = 4.000 

1.00 0.9786 
1.25 1.2012 
1.50 1.4031 
1. 75 1.5863 
2.00 1.6736 1. 7530 

2.50 1.8593 1.9946 2.0467 
3.00 2.1594 2.2613 2.3000 
4.00 2.3720 2.5147 2.6260 2.6945 2.7201 
5.00 2.7913 2.8983 2.9825 3.0337 3.0527 
7.50 3.4592 3.5226 3.5720 3.6016 3.6124 

10.00 3.8270 3.8687 3.9008 3.9200 3.9270 
15.00 4.1744 4.1957 4.2120 4.2217 4.2252 
20.00 4.3203 4.3329 4.3426 4.3484 4.3505 
40.00 4.4764 4.4798 4.4824 4.4839 4.4844 

a::l 4.5324 4.5324 4.5324 4.5324 4.5324 

Double Sided Sheet 

c/Cd + t) = 0.300 b/Ca + t) = 0.100 

d +t a +t a +t a + t a +t a +t 
-- = 1.000 -- = 1.200 -- = 1.500 -- = 2.000 -- = 4.000 

S d + t d +t d +t d + t d +t 

1.00 1.9435 
1.25 2.3525 
1.50 2.6996 
1. 75 2.9878 
2.00 3.1760 3.2242 

2.50 3.5083 3.5422 3.5747 
3.00 3.7510 3.7879 3.8107 
4.00 4.0782 4.0364 4.0499 4.0759 4.0887 
5.00 4.2066 4.1950 4.2096 4.2274 4.2356 
7.50 4.3730 4.3736 4.3823 4.3907 4.3943 

10.00 4.4400 4.4413 4.4466 4.4514 4.4534 
15.00 4.4904 4.4913 4.4938 4.4959 4.4968 
20.00 4.5086 4.5092 4.5106 4.5118 4.5123 
40.00 4.5264 4.5265 4.5269 4.5272 4.5273 

a::l 4.5324 4.5324 4.5324 4.5324 4.5324 



2302 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1967 

TABLE XI - FOUR POINT PROBE CONVERSION 

FACTORS FOR RECTANGLES 

Insula ted Edge Sheet 

cld = 0.400 bla = 0.100 

diS aid = 1.000 aid = 1.200 aid = 1.500 aid = 2.000 aid = 4.000 

1.00 0.9703 
1.25 1.1820 
1.50 1.3646 
1. 75 1.5209 
2.00 1.5537 1.6547 

2.50 1.6423 1. 8091 1.8705 
3.00 1.8792 1.9966 2.0393 
4.00 1.9280 2.0841 2.2048 2.2759 2.3015 
5.00 2.2469 2.3605 2.4465 2.4966 2.5145 
7.50 2.7986 2.8648 2.9140 2.9423 2.9523 

10.00 3.1911 3.2368 3.2705 3.2898 3.2966 
15.00 3.7005 3.7267 3.7458 3.7568 3.7606 
20.00 3.9858 4.0027 4.0150 4.0219 4.0244 
40.00 4.3686 4.3736 4.3772 4.3792 4.3800 

00 4.5324 4.5324 4.5324 4.5324 4.5324 

Double Sided Sheet 

c/(d + t) = 0.400 b/(a + t) = 0.100 

d +t a +t a +t a +t a +t a +t -- -- = 1.000 -- = 1.200 -- = 1.500 -- = 2.000 -- = 4.000 
S d +t d +t d +t d +t d +t 

1.00 1.9367 
1.25 2.3498 
1.50 2.6982 
1. 75 2.9869 
2.00 3.0566 3.2235 

2.50 3.2235 3.4755 3.5744 
3.00 3.5696 3.7444 3.8104 
4.00 3.6212 3.7988 3.9552 4.0526 4.0885 
5.00 3.9241 4.0485 4.1508 4.2129 4.2355 
7.50 4.2518 4.3106 4.3569 4.3843 4.3943 

10.00 4.3726 4.4063 4.4324 4.4478 4.4534 
15.00 4.4607 4.4759 4.4875 4.4944 4.4968 
20.00 4.4919 4.5005 4.5071 4.5109 4.5123 
40.00 4.5222 4.5244 4.5260 4.5270 4.5273 

00 4.5324 4.5324 4.5324 4.5324 4.5324 



RESISTIVI'l'Y MEASUREMENTS 2303 

TABLE XII - FOUR POINT PROBE CONVERSION 

FACTORS FOR RECTANGLES 

Insulated Edge Sheet 

cld = 0.500 bla = 0.100 

diS aid = 1.000 aid = 1.200 aid = 1.500 aid = 2.000 aid = 4.000 

1.00 0.9670 
1.25 1.1744 
1.50 1.3488 
1. 75 1.4933 
2.00 1.5034 1.6116 

2.50 1.5453 1.7243 1.7871 
3.00 1. 7453 1.8636 1.9052 
4.00 1.6839 1.8439 1.9578 2.0218 2.0442 
5.00 1.8899 1.9912 2.0633 2.1036 2.1177 
7.50 2.0966 2.1415 2.1733 2.1909 2.1971 

10.00 2.1702 2.1955 2.2133 2.2232 2.2267 
15.00 2.2233 2.2346 2.2425 2.2469 2.2484 
20.00 2.2420 2.2484 2.2528 2.2553 2.2561 
40.00 2.2601 2.2617 2.2628 2.2634 2.2637 

00 2.2662 2.2662 2.2662 2.2662 2.2662 

Double Sided Sheet 

cl(d + t) = 0.500 bl(a + t) = 0.100 

d +t a +t a +t a +t a +t a +t 
-- = 1.000 -- = 1.200 -- = 1.500 -- = 2.000 -- = 4.000 

S d +t d +t d +t d +t d +t 

1.00 1.9341 
1.25 2.3487 
1.50 2.6976 
1. 75 2.9866 
2.00 3.0068 3.2233 

2.50 3.0906 3.4487 3.5742 
3.00 3.4906 3.7271 3.8103 
4.00 3.3679 3.6877 3.9157 4.0435 4.0885 
5.00 3.7797 3.9824 4.1266 4.2072 4.2355 
7.50 4.1931 4.2830 4.3465 4.3818 4.3942 

10.00 4.3405 3.3910 4.4266 4.4464 4.4534 
15.00 4.4467 4.4692 4.4850 4.4938 4.4968 
20.00 4.4841 4.4967 4.5056 4.5106 4.5123 
40.00 4.5203 4.5234 4.5257 4.5269 4.5273 

00 4.5324 4.5324 4.5324 4.5324 4.5324 



2304 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER H)67 

TABLE XIII - FOUR POINT PROBE CONVERSION 

FACTORS FOR RECTANGLES 

Insulated Edge Sheet 

cld = O. bla = 0.200 

diS aid = 1.000 aid = 1.200 aid = 1.500 aid = 2.000 aid = 4.000 

1.00 
1.25 1. 2451 
1.50 1.4889 
1. 75 1.7237 
2.00 1. 9475 

2.50 2.2874 2.3541 
3.00 2.6647 2.7005 
4.00 3.1175 3.2086 3.2246 
5.00 3.1345 3.3772 3.5128 3.5656 3.5750 
7.50 3.8589 3.9553 4.0103 4.0320 4.0358 

10.00 4.1388 4.1915 4.2216 4.2335 4.2356 
15.00 4.3520 4.3750 4.3882 4.3934 4.3943 
20.00 4.4297 4.4426 4.4500 4.4529 4.4534 
40.00 4.5064 4.5096 4.5114 4.5122 4.5123 

00 4.5324 4.5324 4.5324 4.5324 4.5324 

Double Sided Sheet 

cl(d + t) = O. bl(a + t) = 0.200 

d +t a +t a +t a +t a +t a +t 
-- -- = 1.000 -- = 1.200 -- = 1.500 -- = 2.000 -- = 4.000 

S d +t d +t d +t d +t d +t 

1.00 
1.25 2.4187 
1.50 2.7359 
1. 75 3.0111 
2.00 3.2405 

2.50 3.9559 3.5843 
3.00 4.0662 3.8170 
4.00 4.4278 4.2278 4.0921 
5.00 4.7608 4.5990 4.4499 4.3234 4.2377 
7.50 4.6225 4.5536 4.4885 4.4329 4.3952 

10.00 4.5809 4.5426 4.5062 4.4750 4.4539 
15.00 4.5532 4.5364 4.5202 4.5064 4.4971 
20.00 4.5440 4.5345 4.5255 4.5177 4.5124 
40.00 4.5352 4.5329 4.5306 4.5287 4.5274 

00 4.5324 4.5324 4.5324 4.5324 4.5324 



RESISTIVITY MEASURE:\IENTS 2305 

TABLE XIV-FoUR POINT PROBE CONVERSION 

FACTORS FOR RECTANGLES 

Insulated Edge Sheet 

cld = 0.100 bla = 0.200 

diS aid = 1.000 aid = 1.200 aid = 1.500 aid = 2.000 aid = 4.000 

1.00 
1.25 1.2362 
1.50 1.4756 
1. 75 1. 7047 
2.00 1.9222 

2.50 2.2374 2.3174 
3.00 2.6069 2.6562 
4.00 3.0539 3.1484 3.1757 
5.00 3.0884 3.3212 3.4534 3.5113 3.5295 
7.50 3.8212 3.9148 3.9704 3.9962 4.0050 

10.00 4.1126 4.1642 4.1953 4.2100 4.2152 
15.00 4.3385 4.3612 4.3750 4.3816 4.3840 
20.00 4.4217 4.4345 4.4422 4.4460 4.4474 
40.00 4.5043 4.5075 4.5094 4.5104 4.5107 

CXl 4.5324 4.5324 4.5324 4.5324 4.5324 

Double Sided Sheet 

cl(d + t) = 0.100 bl(a + t) = 0.200 

d +t a +t a +t a +t a +t a +t 
-- = 1.000 -- = 1.200 -- = 1.500 -- = 2.000 -- = 4.000 

S d +t d +t d +t d +t d +t 

1.00 
1.25 2.4074 
1.50 2.7294 
1. 75 3.0068 
2.00 3.2375 

2.50 3.9067 3.5825 
3.00 4.0296 3.8158 
4.00 4.3898 4.2062 4.0915 
5.00 4.7307 4.5683 4.4239 4.3093 4.2373 
7.50 4.6071 4.5384 4.4762 4.4265 4.3951 

10.00 4.5718 4.5337 4.4992 4.4714 4.4538 
15.00 4.5491 4.5323 4.5171 4.5048 4.4970 
20.00 4.5416 4.5322 4.5237 4.5168 4.5124 
40.00 4.5346 4.5323 4.5302 4.5284 4.5274 

CXl 4.5324 4.5324 4.5324 4.5324 4.5324 



2306 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1967 

TABLE XV - FOUR POINT PROBE CONVERSION 

FACTORS FOR RECTANGLES 

Insula ted Edge Sheet 

cld = 0.200 bla = 0.200 

diS aid = 1.000 aid = 1.200 aid = 1.500 aid = 2.000 aid = 4.000 

1.00 
1.25 1. 2121 
1.50 1.4396 
1. 75 1. 6517 
2.00 1.8503 

2.50 2.0931 2.2094 
3.00 2.4367 2.5209 
4.00 2.8538 2.9614 3.0166 
5.00 2.9283 3.1329 3.2598 3.3342 3.3745 
7.50 3.6832 3.7711 3.8316 3.8704 3.8921 

10.00 4.0140 4.0647 4.1007 4.1244 4.1378 
15.00 4.2861 4.3094 4.3263 4.3376 4.3440 
20.00 4.3903 4.4036 4.4133 4.4198 4.4236 
40.00 4.4959 4.4993 4.5018 4.5035 4.5044 

00 4.5324 4.5324 4.5324 4.5324 4.5324 

Double Sided Sheet 

cl(d + t) = 0.200 bl(a + t) = 0.200 

d +t a +t a + t a +t a +t a +t 
-- = 1.000 -- = 1.200 -- = 1.500 -- = 2.000 -- = 4.000 

S d +t d + t d +t d +t d +t 

1.00 
1.25 2.3768 
1.50 2.7121 
1. 75 2.9957 
2.00 3.2296 

2.50 3.7584 3.5779 
3.00 3.9223 3.8128 
4.00 4.2683 4.1442 4.0898 
5.00 4.6181 4.4612 4.3420 4.2693 4.2363 
7.50 4.5493 4.4861 4.4382 4.4086 4.3946 

10.00 4.5377 4.5034 4.4774 4.4613 4.4536 
15.00 4.5334 4.5186 4.5073 4.5003 4.4969 
20.00 4.5327 4.5244 4.5182 4.5142 4.5123 
40.00 4.5324 4.5303 4.5288 4.5278 4.5273 

00 4.5324 4.5324 4.5324 4.5324 4.5324 



RESISTIVITY MEASUREMENTS 2307 

TABLE XVI-FoUR POINT PROBE CONVERSION 

FACTORS FOR RECTANGLES 

Insulated Edge Sheet 

cld = 0.300 bla = 0.200 

diS aid = 1.000 aid = 1.200 aid = 1.500 aid = 2.000 aid = 4.000 

1.00 
1.25 1.1809 
1.50 1. 3916 
1. 75 1.5786 
2.00 1.7473 

2.50 1.8795 2.0430 
3.00 2.1753 2.2973 
4.00 2.5060 2.6369 2.7183 
5.00 2.5907 2.7616 2.8926 2.9907 3.0514 
7.50 3.3551 3.4443 3.5196 3.5768 3.6116 

10.00 3.7602 3.8176 3.8668 3.9040 3.9265 
15.00 4.1405 4.1697 4.1947 4.2136 4.2250 
20.00 4.3001 4.3175 4.3324 4.3436 4.3503 
40.00 4.4711 4.4757 4.4796 4.4826 4.4844 

00 4.5324 4.5324 4.5324 4.5324 4.5324 

Double Sided Sheet 

c/(d + t) = 0.300 bl(a + t) = 0.200 

d +t a +t a + t a +t a +t a +t 
-- = 1.000 -- = 1.200 -- = 1.500 -- = 2.000 -- = 4.000 

S d +t d +t d +t d +t d +t 

1.00 
1.25 2.3364 
1.50 2.6901 
1. 75 2.9816 
2.00 3.2197 

2.50 3.5218 3.5721 
3.00 3.7603 3.8089 
4.00 4.0533 4.0551 4.0877 
5.00 4.3434 4.2388 4.2024 4.2130 4.2350 
7.50 4.4122 4.3821 4.3757 4.3838 4.3940 

10.00 4.4580 4.4441 4.4422 4.4474 4.4533 
15.00 4.4972 4.4920 4.4917 4.4942 4.4968 
20.00 4.5122 4.5094 4.5094 4.5108 4.5123 
40.00 4.5272 4.5266 4.5266 4.5270 4.5273 

00 4.5324 4.5324 4.5324 4.5324 4.5324 



2308 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1!JG7 

TABLE XVII - FOUR POINT PROBE CONVERSION 

FACTORS FOR RECTANGLES 

Insulated Edge Sheet 

c/d = 0.400 b/a = 0.200 

dIS a/d = 1.000 a/d = 1.200 a/d = 1.500 a/d = 2.000 a/d = 4.000 

1.00 
1.25 1.1542 
1.50 1.3494 
1. 75 1. 5111 
2.00 1.6477 

2.50 1.6645 1.8662 
3.00 1.8960 2.0363 
4.00 2.0700 2.2156 2.2997 
5.00 2.0458 2.2102 2.3514 2.4543 2.5133 
7.50 2.6821 2.7787 2.8602 2.9185 2.9516 

10.00 3.1105 3.1777 3.2338 3.2736 3.2961 
15.00 3.6540 3.6929 3.7250 3.7476 3.7604 
20.00 3.9559 3.9810 4.0016 4.0161 4.0242 
40.00 4.3597 4.3671 4.3732 4.3775 4.3790 

00 4.5324 4.5324 4.5324 4.5324 4.5324 

Double Sided Sheet 

c/(d + t) = 0.400 b/(a + t) = 0.200 

d +t a +t a +t a +t a + t a +t 
-- = 1.000 -- = 1.200 -- = 1.500 -- = 2.000 -- = 4.000 

S d +t d +t d +t d +t d +t 

1.00 
1.25 2.3014 
1. 50 2.6718 
1. 75 2.9701 
2.00 3.2117 

2.50 3.2608 3.5674 
3.00 3.5961 3.8058 
4.00 3.7889 3.9704 4.0860 
5.00 3.7970 3.9021 4.0414 4.1606 4.2339 
7.50 4.1715 4.2390 4.3073 4.3613 4.3936 

10.00 4.3241 4.3650 4.4044 4.4349 4.4530 
15.00 4.4382 4.4572 4.4750 4.4886 4.4967 
20.00 4.4791 4.4900 4.5000 4.5077 4.5122 
40.00 4.5190 4.5217 4.5242 4.5262 4.5273 

00 4.5324 4.5324 4.5324 4.5324 4.5324 



RESISTIVITY MEASUREMENTS 2309 

TABLE XVIII - FOUR POINT PROBE CONVERSION 

FACTORS FOR RECTANGLES 

Insulated Edge Sheet 

c/d = 0.500 b/a = 0.200 

diS aid = 1.000 aid = 1.200 aid = 1.500 aid = 2.000 aid = 4.000 

1.00 
1.25 1.1437 
1.50 1.3323 
1. 75 1.4828 
2.00 1.6043 

2.50 1.5672 1.7828 
3.00 1. 7614 1.9023 
4.00 1.8259 1.9673 2.0427 
5.00 1.6678 1.8474 1.9815 2.0694 2.1168 
7.50 2.0041 2.0801 2.1378 2.1760 2.1967 

10.00 2.1191 2.1613 2.1935 2.2149 2.2265 
15.00 2.2009 2.2195 2.2337 2.2432 2.2483 
20.00 2.2294 2.2399 2.2479 2.2532 2.2561 
40.00 2.2570 2.2596 2.2616 2.2629 2.2636 

co 2.2662 2.2662 2.2662 2.2662 2.2662 

Double Sided Sheet 

c/(d + t) = 0.500 b I(a + t) = 0.200 

d +t a +t a +t a +t a +t a +t 
-- = 1.000 -- = 1.200 -- = 1.500 -- = 2.000 -- = 4.000 

S d +t d +t d +t d +t d +t 

1.00 
1.25 2.2874 
1.50 2.6647 
1. 75 2.9656 
2.00 3.2086 

2.50 3.1345 3.5656 
3.00 3.5229 3.8046 
4.00 3.6519 3.9345 4.0854 
5.00 3.3357 3.6948 3.9629 4.1388 4.2335 
7.50 4.0083 4.1601 4.2756 4.3520 4.3934 

10.00 4.2382 4.3227 4.3870 4.4297 4.4529 
15.00 4.4017 4.4390 4.467.5 4.4864 4.4966 
20.00 4.4589 4.4798 4.4958 4.5064 4.5122 
40.00 4.5140 4.5192 4.5232 4.5259 4.5273 

co 4.5324 4.5324 4.5324 4.5324 4.5324 
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TABLE XIX - FOUR POINT PROBE CONVERSION 

FACTORS FOR RECTANGLES 

Im.ulated Edge Sheet 

cld = O. bla = 0.300 

diS aid = 1.000 aid = 1.200 aid = 1.500 aid = 2.000 aid = 4.000 

1.00 
1.25 
1.50 
1. 75 
2.00 1.9342 

2.50 2.3488 
3.00 2.6976 
4.00 3.0207 3.2233 
5.00 3.1364 3.4573 3.5742 
7.50 3.3137 3.6363 3.8599 3.9877 4.0355 

10.00 3.8480 4.0185 4.1394 4.2092 4.2355 
15.00 4.2264 4.2998 4.3523 4.3828 4.3942 
20.00 4.3597 4.4006 4.4299 4.4470 4.4534 
40.00 4.4890 4.4992 4.5065 4.5107 4.5123 

00 4.5324 4.5324 4.5324 4.5324 4.5324 

Double Sided Sheet 

c/(d + t) = o. bl(a + t) = 0.300 

d +t a +t a +t a +t a +t a +t 
-- = 1.000 -- = 1.200 -- = 1.500 -- = 2.000 -- = 4.000 

S d +t d +t d +t d +t d +t 

1.00 
1.25 
1.50 
1. 75 
2.00 3.4160 

2.50 3.6878 
3.00 3.8860 
4.00 4.5183 4.1295 
5.00 4.6857 4.5081 4.2613 
7.50 4.7125 4.6570 4.5933 4.5144 4.4056 

10.00 4.6317 4.6009 4.5651 4.5208 4.4597 
15.00 4.5759 4.5623 4.5464 4.5267 4.4996 
20.00 4.5567 4.5491 4.5402 4.5291 4.5139 
40.00 4.5384 4.5365 4.5343 4.5315 4.5277 

00 4.5324 4.5324 4.5324 4.5324 4.5324 
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TABLE XX - FOUR POINT PROBE CONVERSION 

FACTORS FOR RECTANGLES 

Insulated Edge Sheet 

cld = 0.100 bla = 0.300 

diS aid = 1.000 aid = 1.200 aid = 1.500 aid = 2.000 aid = 4.000 

1.00 
1.25 
1.50 
1. 75 
2.00 1.9007 

2.50 2.3055 
3.00 2.6478 
4.00 2.9618 3.1705 
5.00 3.0931 3.3997 3.5259 
7.50 3.2943 3.6086 3.8240 3.9476 4.0031 

10.00 3.8317 3.9977 4.1143 4.1825 4.2141 
15.00 4.2170 4.2885 4.3393 4.3693 4.3835 
20.00 4.3539 4.3938 4.4222 4.4390 4.4471 
40.00 4.4875 4.4973 4.5044 4.5086 4.5106 

00 4.5324 4.5324 4.5324 4.5324 4.5324 

Double Sided Sheet 

c/(d + t) = 0.100 bl(a + t) = 0.300 

d +t a + t a +t a +t a +t a +t 
-- = 1.000 -- = 1.200 -- = 1.500 -- = 2.000 -- = 4.000 

S d +t d +t d +t d +t d +t 

1.00 
1.25 
1.50 
1. 75 
2.00 3.3858 

2.50 3.6685 
3.00 3.8728 
4.00 4.4810 4.1222 
5.00 4.6662 4.4813 4.2566 
7.50 4.7137 4.6520 4.5820 4.5013 4.4035 

10.00 4.6317 4.5974 4.5582 4.5131 4.4586 
15.00 4.5757 4.5605 4.5432 4.5233 4.4991 
20.00 4.5566 4.5481 4.5383 4.5271 4.5136 
40.00 4.5384 4.5363 4.5338 4.5310 4.5276 

00 4.5324 4.5324 4.5324 4.5324 4.5324 
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TABLE XXI - FOUR POINT PROBE CONVERSION 

FACTORS FOR RECTANGLES 

Insula ted Edge Sheet 

cld = 0.200 bla = 0.300 

diS aid = 1.000 aid = 1.200 aid = 1.500 aid = 2.000 aid = 4.000 

1.00 
1.25 
1.50 
1. 75 
2.00 1.8077 

2.50 2.1812 
3.00 2.4995 
4.00 2.7720 3.0022 
5.00 2.9396 3.2080 3.3639 
7.50 3.2150 3.4999 3.6905 3.8065 3.8864 

10.00 3.7634 3.9138 4.0187 4.0857 4.1343 
15.00 4.1766 4.2418 4.2884 4.3192 4.3423 
20.00 4.3289 4.3654 4.3917 4.4093 4.4226 
40.00 4.4806 4.4897 4.4963 4.5007 4.5042 

00 4.5324 4.5324 4.5324 4.5324 4.5324 

Double Sided Sheet 

c/(d + t) = 0.200 b/(a + t) = 0.300 

d +t a +t a +t a +t a +t a +t 
-- = 1.000 -- = 1.200 -- = 1.500 -- = 2.000 -- = 4.000 

S d +t d +t d +t d +t d +t 

1.00 
1.25 
1.50 
1. 75 
2.00 3.3004 

2.50 3.6157 
3.00 3.8369 
4.00 4.3519 4.1024 
5.00 4.5820 4.3905 4.2441 
7.50 4.7042 4.6211 4.5352 4.4576 4.3980 

10.00 4.6230 4.5771 4.5301 4.4879 4.4555 
15.00 4.5707 4.5506 4.5301 4.5119 4.4978 
20.00 4.5535 4.5423 4.5309 4.5207 4.5128 
40.00 4.5376 4.5348 4.5319 4.5294 4.5275 

00 4.5324 4.5324 4.5324 4.5324 4.5324 
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TABLE XXII - FOUR POINT PROBE CONVERSION 

FACTORS FOR RECTANGLES 

Insulated Edge Sheet 

cld = 0.300 bla = 0.300 

diS aid = 1.000 aid = 1.200 aid = 1.500 aid = 2.000 aid = 4.000 

1.00 
1.25 
1.50 
1. 75 
2.00 1.6792 

2.50 1.9984 
3.00 2.2641 
4.00 2.4283 2.6964 
5.00. 2.6075 2.8365 3.0351 
7.50 2.9833 3.2084 3.3665 3.4872 3.6024 

10.00 3.5491 3.6726 3.7679 3.8456 3.9205 
15.00 4.0408 4.0979 4.1446 4.1840 4.2220 
20.00 4.2420 4.2751 4.3026 4.3260 4.3485 
40.00 4.4560 4.4645 4.4718 4.4779 4.4839 

00 4.5324 4.5324 4.5324 4.5324 4.5324 

Double Sided Sheet 

cl(d + t) = 0.300 bl(a + t) = 0.300 

d +t a +t a +t a +t a +t a +t 
-- = 1.000 -- = 1.200 -- = 1.500 -- = 2.000 -- = 4.000 

S d +t d +t d +t d +t d +t 

1.00 
1.25 
1.50 
1. 75 
2.00 3.1805 

2.50 3.5449 
3.00 3.7897 
4.00 4.0884 4.0769 
5.00 4.3423 4.2144 4.2280 
7.50 4.6078 4.4946 4.4119 4.3770 4.3909 

10.00 4.5564 4.4985 4.4579 4.4423 4.4515 
15.00 4.5371 4.5133 4.4972 4.4915 4.4960 
20.00 4.5339 4.5209 4.5122 4.5092 4.5118 
40.00 4.5325 4.5293 4.5272 4.5265 4.5272 

00 4.5324 4.5324 4.5324 4.5324 4.5324 
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TABLE XXIII - FOUR POINT PROBE CONVERSION 

FACTORS FOR RECTANGLES 

Insulated Edge Sheet 

c/d = 0.400 b/a = 0.300 

diS aid = 1.000 aid = 1.200 aid "" 1.500 aid = 2.000 aid = 4.000 

1.00 
1.25 
1.50 
1. 75 
2.00 1.5604 

2.50 1.8134 
3.00 1.9996 
4.00 1.9827 2.2778 
5.00 2.0607 2.2895 2.4979 
7.50 2.3738 2.5410 2.6924 2.8250 2.9430 

10.00 2.8994 3.0123 3.1180 3.2096 3.2903 
15.00 3.5308 3.5969 3.6585 3.7112 3.7570 
20.00 3.8758 3.9189 3.9588 3.9928 4.0221 
40.00 4.3356 4.3486 4.3606 4.3706 4.3793 

00 4.5324 4.5324 4.5324 4.5324 4.5324 

Double Sided Sheet 

c/Cd + t) = 0.400 b/Ca + t) = 0.300 

d +t a +t a +t a +t a +t a +t 
-- = 1.000 -- = 1.200 -- = 1.500 -- = 2.000 -- = 4.000 

S d +t d +t d +t d +t d +t 

1.00 
1.25 
1.50 
1. 75 
2.00 3.0681 

2.50 3.4825 
3.00 3.7491 
4.00 3.6999 4.0553 
5.00 3.8172 3.9776 4.2145 
7.50 4.1431 4.1234 4.1814 4.2771 4.3851 

10.00 4.2733 4.2859 4.3298 4.3871 4.4482 
15.00 4.4063 4.4183 4.4409 4.4673 4.4946 
20.00 4.4595 4.4674 4.4806 4.4956 4.5110 
40.00 4.5137 4.5159 4.5194 4.5231 4.5270 

00 4.5324 4.5324 4.5324 4.5324 4.5324 
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TABLE XXIV - FOUR POINT PROBE CONVERSION 

FACTORS FOR RECTANGLES 

Insulated Edge Sheet 

cld = 0.500 bla = 0.300 

d/S a/d = 1.000 aid = 1.200 aid = 1.500 aid = 2.000 a/d = 4.000 

1.00 
1.25 
1.50 
1. 75 
2.00 1. 5103 

2.50 1.7287 
3.00 1.8665 
4.00 1.7316 2.0234 
5.00 1.6789 1.9240 2.1046 
7.50 1.6878 1.8696 2.0106 2.1132 2.1914 

10.00 1.9485 2.0459 2.1230 2.1798 2.2235 
15.00 2.1268 2.1689 2.2027 2.2277 2.2470 
20.00 2.1880 2.2116 2.2305 1.2445 2.2553 
40.00 2.2467 2.2526 2.2573 2.2607 2.2635 

00 2.2662 2.2662 2.2662 2.2662 2.2662 

Double Sided Sheet 

c/(d + t) = 0.500 b/(a + t) = 0.300 

d +t a +t a +t a +t a +t a +t 
-- = 1.000 -- = 1.200 -- = 1.500 -- = 2.000 -- = 4.000 

S d +t d +1 d +t d +t d +t 

1.00 
1.25 
1.50 
1. 75 
2.00 3.0207 

2.50 3.4573 
3.00 3.7330 
4.00 3.4632 4.0468 
5.00 3.3578 3.8480 4.2092 
7.50 3.3755 3.7392 4.0211 4.2264 4.3828 

10.00 3.8970 4.0917 4.2460 4.3597 4.4469 
15.00 4.2535 4.3379 4.4054 4.4554 4.4940 
20.00 4.3761 4.4232 4.4610 4.4890 4.5107 
40.00 4.4934 4.5051 4.5145 4.5214 4.5269 

00 4.5324 4.5324 4.5324 4.5324 4.5324 
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TABLE XXV - FOUR POINT PROBE CONVERSION 

FACTORS FOR RECTANGLES 

Insulated Edge Sheet 

c/d = O. b/a = 0.400 

diS aid = 1.000 aid = 1.200 a/d = 1.500 aid = 2.000 aid = 4.000 

1.00 
1.25 
1.50 
1. 75 
2.00 

2.50 
3.00 
4.00 3.0207 
5.00 3.4573 
7.50 3.3139 3.9877 

10.00 3.3588 3.8481 4.2092 
15.00 3.3790 3.7411 4.0217 4.2264 4.3828 
20.00 3.8996 4.0929 4.2463 4.3597 4.4469 
40.00 4.3769 4.4235 4.4611 4.4890 4.5107 

00 4.5324 4.5324 4.5324 4.5324 4.5324 

Double Sided Sheet 

c/(d + t) = O. b/(a + t) = 0.400 

d +t a +t a +t a +t a +t a +t 
-- = 1.000 -- = 1.200 -- = 1.500 -- = 2.000 -- = 4.000 

S d +t d +t d +t d +t d +t 

1. 00 
1.25 
1.50 
1. 75 
2.00 

2.50 
3.00 
4.00 4.5179 
5.00 4.5079 
7.50 4.6912 4.5143 

10.00 4.6490 4.6204 4.5207 
15.00 4.5981 4.5915 4.5838 4.5711 4.5267 
20.00 4.5692 4.5655 4.5612 4.5540 4.5291 
40.00 4.5415 4.5406 4.5396 4.5377 4.5315 

00 4.5324 4.5324 4.5324 4.5324 4.5324 
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TABLE XXVI - FOUR POINT PROBE CONVERSION 

FACTORS FOR RECTANGLES 

Insulated Edge Sheet 

c/d = 0.100 b/a = 00400 

diS aid = 1.000 a/d = 1.200 a/d = 1.500 a/d = 2.000 a/d = 4.000 

1.00 
1.25 
1.50 
1. 75 
2.00 

2.50 
3.00 
4.00 2.9619 
5.00 3.3997 
7.50 3.2950 3.9477 

10.00 3.3505 3.8323 4.1826 
15.00 3.3769 3.7375 4.0159 4.2173 4.3693 
20.00 3.8979 4.0904 4.2426 4.3541 4.4390 
40.00 4.3763 4.4228 4.4600 4.4875 4.5086 

00 4.5324 4.5324 4.5324 4.5324 4.5324 

Double Sided Sheet 

c/(d + t) = 0.100 b/(a + t) = 00400 

d +t a +t a +t a +t a +t a +t 
-- = 1.000 -- = 1.200 -- = 1.500 -- = 2.000 -- = 4.000 

S d +t d +t d +t d +t d +t 

1.00 
1.25 
1.50 
1. 75 
2.00 

2.50 
3.00 
4.00 4.4807 
5.00 4.4812 
7.50 4.6949 4.5012 

10.00 4.6576 4.6218 4.5131 
15.00 4.6050 4.5972 4.5874 4.5714 4.5232 
20.00 4.5731 4.5687 4.5632 4.5542 4.5271 
40.00 4.5425 4.5414 4.5401 4.5378 4.5310 

00 4.5324 4.5324 4.5324 4.5324 4.5324 
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TABLE XXVII - FOUR POINT PROBE CONVERSION 

FACTORS FOR RECTANGLES 

Insulated Edge Sheet 

c/d = 0.200 b/a = 00400 

d/S a/d = 1.000 a/d = 1.200 a/d = 1.500 a/d = 2.000 a/d = 4.000 

1.00 
1.25 
1.50 
1. 75 
2.00 

2.50 
3.00 
4.00 2.7720 
5.00 3.2081 
7.50 3.2172 3.8065 

10.00 3.3128 3.7650 4.0857 
15.00 3.3662 3.7202 3.9890 4.1775 4.3192 
20.00 3.8895 4.0783 4.2250 4.3293 4.4093 
40.00 4.3736 4.4191 4.4550 4.4807 4.5008 

00 4.5324 4.5324 4.5324 4.5324 4.5324 

Double Sided Sheet 

c/(d + t) = 0.200 b/(a + t) = 0.400 

d +t a +t a +t a +t a +t a +t 
-- = 1.000 -- = 1.200 -- = 1.500 -- = 2.000 -- = 4.000 

S d +t d +t d +t d +t d +t 

1.00 
1.25 
1.50 
1. 75 
2.00 

2.50 
3.00 
4.00 4.3517 
5.00 4.3904 
7.50 4.6922 4.4575 

10.00 4.6800 4.6167 4.4879 
15.00 4.6288 4.6151 4.5962 4.5680 4.5119 
20.00 4.5863 4.5786 4.5679 4.5520 4.5207 
40.00 4.5458 4.5438 4.5412 4.5371 4.5294 

00 4.5324 4.5324 4.5324 4.5324 4.5324 
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TABLE XXVIII - FOUR POINT PROBE CONVERSION 

FACTORS FOR RECTANGLES 

Insulated Edge Sheet 

cld = 0.300 bla = 00400 

diS aid = 1.000 aid = 1.200 aid = 1.500 aid = 2.000 aid = 4.000 

1.00 
1.25 
1.50 
1. 75 
2.00 

2.50 
3.00 
4.00 2.4284 
5.00 2.8366 
7.50 2.9868 3.4873 

10.00 3.1754 3.5519 3.8456 
15.00 3.3173 3.6457 3.8834 4.0423 4.1840 
20.00 3.8497 4.0240 4.1538 4.2429 4.3260 
40.00 4.3599 4.4019 4.4338 4.4561 4.4780 

00 4.5324 4.5324 4.5324 4.5324 4.5324 

Double Sided Sheet 

c/(d + t) = 0.300 bl(a + t) = 00400 

d +t a +t a +t a +t a +t a +t -- -- = 1.000 -- = 1.200 -- = 1.500 -- = 2.000 -- = 4.000 
S d +t d +t d +t d +t d +t 

1.00 
1.25 
1.50 
1. 75 
2.00 

2.50 
3.00 
4.00 4.0885 
5.00 4.2144 
7.50 4.6047 4.3770 

10.00 4.6784 4.5547 4.4423 
15.00 4.6732 4.6360 4.5890 4.5364 4.4915 
20.00 4.6099 4.5888 4.5625 4.5334 4.5092 
40.00 4.5513 4.5460 4.5395 4.5323 4.5265 

00 4.5324 4.5324 4.5324 4.5324 4.5324 
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TABLE XXIX-FoUR POINT PROBE CONVERSION 

FACTORS FOR RECTANGLES 

Insulated Edge Sheet 

c/d = 0.400 b/a = 0.400 

d/S a/d = 1.000 a/d = 1.200 a/d = 1.500 a/d = 2.000 a/d = 4.000 

1.00 
1.25 
1.50 
1. 75 
2.00 

2.50 
3.00 
4.00 1.9828 
5.00 2.2896 
7.50 2.3770 2.8250 

10.00 2.6425 2.9019 3.2097 
15.00 2.9967 3.2263 3.3934 3.5325 3.7112 
20.00 3.5598 3.6860 3.7872 3.8768 3.9928 
40.00 4.2459 4.2797 4.3089 4.3358 4.3706 

00 4.5324 4.5324 4.5324 4.5324 4.5324 

Double Sided Sheet 

c/(d + t) = 0.400 b/(a + t) = 0.400 

d +t a +t a +t a +t a +t a +t -- -- = 1.000 -- = 1.200 -- = 1.500 -- = 2.000 -- = 4.000 
S d +t d +t d +t d +t d +t 

1.00 
1.25 
1.50 
1. 75 
2.00 

2.50 
3.00 
4.00 3.7000 
5.00 3.9777 
7.50 4.1463 4.2771 

10.00 4.3750 4.2751 4.3871 
15.00 4.6073 4.5018 4.4276 4.4071 4.4673 
20.00 4.5562 4.5026 4.4671 4.4598 4.4956 
40.00 4.5338 4.5219 4.5146 4.5137 4.5232 

00 4.5324 4.5324 4.5324 4.5324 4.5324 
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TABLE XXX -FOUR POINT PROBE CONVERSION 

FACTORS Fon RECTANGLES 

Insulated Edge Sheet 

c/d = 0.500 b/a = 00'100 

diS aid = 1.000 aid = 1.200 aid = 1.500 aid = 2.000 aid = 4.000 

1.00 
1.25 
1.50 
1. 75 
2.00 

2.50 
3.00 
4.00 1. 7317 
5.00 1.9240 
7.50 1.6895 2.1132 

10.00 1.6914 1.9498 2.1799 
15.00 1. 6921 1. 8751 2.0188 2.1274 2.2277 
20.00 1.9518 2.0496 2.1282 2.1884 2.2445 
40.00 2.1891 2.2127 2.2319 2.2467 2.2608 

00 2.2662 2.2662 2.2662 2.2662 2.2662 

Double Sided Sheet 

c/(d + t) = 0.500 b/(a + t) = 0.'100 

d + t a +t a +t a +t a + t a +t 
-- -- = 1.000 -- = 1.200 -- = 1.500 -- = 2.000 -- = 4.000 

S d + t d +t d +t d +t d +t 

1.00 
1.25 
1.50 
1. 75 
2.00 

2.50 
3.00 
4.00 3.4634 
5.00 3.8481 
7.50 3.3790 4.2264 

10.00 3.3829 3.8996 4.3597 
15.00 3.3842 3.7502 4.0376 4.2548 4.4554 
20.00 3.9035 4.0992 4.2564 4.3767 4.4890 
40.00 4.3781 4.4254 4.4639 4.4935 4.5215 

00 4.5324 4.5324 4.5324 4.5324 4.5324 
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Scaling Laws for Large Shields 
ill Quasi-Stationary Magnetic Fields 
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The application of the classical scaling laws of electro-magnetic fields 
to the design of a scaled-down model of, say, a building-sized shield is 
often difficult, even when using the simplifications permissible with a 
quasi-stationary magnetic field. The reasons are that (i) the scaled wall 
thickness often becomes impractically thin and (ii) the required scaling 
of frequency sometimes reduces the ratio of intrinsic wave-length in air 
to the enclosure length such that the quasi-stationary field theory no longer 
applies. 

In the case of a completely closed shield these limitations can be cir­
cumvented by having a model with two distinct geometric scaling factors, 
one for the wall thickness and one for the overall dimensions. The modified 
scaling laws governing this type of model are derived. 

r. INTRODUCTION 

Protection of electronic equipment against electromagnetic inter­
ference is often achieved by providing a metallic enclosure. Large 
electronic complexes, such as radar installations and data processing 
centers may be protected by covering the entire building with a metal­
lic shield. (Some penetrations into this enclosure are usually required 
for the purpose of air-vents, cable-inlets, access tunnels etc.) The 
performance of the enclosure is measured by the shielding effective­
ness, which is the ratio of the field strength at an exterior location 
where the field is undisturbed by the shield to the field strength at a 
point inside the enclosure. 

A first approximation of the shielding effectiveness can be ob­
tained analytically.1 In this case, (i) constant permeability is as­
sumed, and (ii) the actual shape of the enclosure is replaced by a 
geometrically simpler shape, such as an infinite cylindrical shell or a 
spherical shell. 

2323 
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The evaluation of the shielding effectiveness by testing is, for eco­
nomical reasons, best conducted on scaled down models of the en­
closure. The following discussion concerns itself with the constraints 
on the scaling-factors for distance, time, conductivity, etc., necessary 
to produce a model either having the same shielding effectiveness as 
the original, full-scale enclosure or having one of known relation to it. 
It will be seen that full compliance with the ideal constraints on 
scaling-factors is rarely possible. However, useful results can be ob­
tained with partial compliance, especially in the case of large en­
closures. 

II. IDEAL CONSTRAINTS ON SCALING FACTORS 

An ideal, scaled model is a replica of the original configuration with 
each physical parameter scaled up or down by a fixed ratio. To each 
point in space and time of the original exists a corresponding point in 
the model. The ratio of any distance, time, field strength, etc. of the 
original to its counterpart in the model is called a scaling-factor. If 
one identifies any parameter or variable of the original with the index 
"1" and of the model with the index "2" one can write the scaling­
factors for distance, time, electric and magnetic field strength, per­
meability (instantaneous ratio of magnetic flux density to magnetic 
field strength), dielectric constant, conductivity as lz/ll , tz/tl , E2/El , 
H2/Hl , 1l2/lll , €2/€1' U2/Ul . (For instance, II , represents the distance 
between two arbitrarily selected points of the original, full-scaled 
enclosure, whereas, l2 represents the distance between the correspond­
ing points of the model. ) Were these scaling-factors selected arbitrarily, 
the model would not be physically realizable because the electromagnetic 
field of the model would not satisfy l\1axwell's equations, These equa­
tions when formulated for the original and for the model contain the 
constraints required to make the model physically realizable, They 
also interrelate the scaling-factors for electric and magnetic field 
strengths, The results* are expressed by (1), (2), and (3) 

~2) (HI) C2) el
) (1l2) El ' H2 = z: ' lz ' III 

(1) 

l;'U2'1l2 li'Ul'll1 (2) 
t2 tl 

l; , €2 ' 112 li ' €l ' III (3) t; t~ 
* For the mathematical derivation see either Appendix A or Ref. 2, p. 488. 
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Introducing the angular frequency, w, one obtains the following scaling 
constraints for CW fields: 

III. INTERPRETATION OF THE MATHEl\IATICAL RESULTS 

(4) 

(5) 

First, it should be pointed out that the derivation of (2) and (3) is 
not based on a field-strength-independent permeability or dielectric 
constant. Consequently, model tests of ferromagnetic shields of vari­
able permeability will give correct answers, provided the model uses 
the same steel as the original, is tested at the field strength encoun­
tered in the original and satisfies (2) and (3). 

Second, the shielding effectiveness, TJ, of geometrically similar models 
changes from model to model only if the expressions (2) and (3) 
change. In other words, the shielding effectiveness of geometrically 
similar models IS a function of these two dimensionless quantities 
only, i.e., 

(6) 

Here, l might be the length of the enclosure, t, the pulse duration, 
etc. 

The physical meaning of (4) and (5) becomes clearer if we intro­
duce the skin depth,* 0, of a conductor of constant permeability and 
the intrinsic wavelength in a pure dielectric, Ae: 

o=~ 
27r 

AE = WVEJ.l. 

Substituting these values into (4) and (5) one obtains 

k=~ 
02 01 

~=lL 
AE• AEl 

* Here (27TO) is equal to the intrinsic wavelength in metal, AcT. 

(7) 

(8) 

(9) 

(10) 
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In other words, the skin depth of the shield material as well as the 
intrinsic wavelength of the surrounding space have to be scaled by the 
same ratio as the linear dimensions of the model. 

It can now be seen that it usually is not feasible to produce a model 
which satisfies both (2) and (3). For instance, after the scaling fac­
tor (ldh) has been selected, (2) and (3) can be satisfied only if two 
other parameters, such as conductivity, a, and time, t, are properly 
scaled. Unfortunately, the only scaling factor which usually can be 
suitably controlled is that of time (duration of an applied pulse, 
period of an applied ac field). Consequently, only one of the scaling 
requirements, either (2) or (3) can be readily satisfied. Therefore 
one has to be content with imperfect models which will be discussed 
next. 

IV. SEVERAL TYPES OF IMPERFECT MODELS 

4.1 The Geometrically Perfect Model in a Quasi-Stationary Magnetic Field 

A model shall be considered geometrically perfect if all of its 
dimensions, the overall dimensions such as width, height, and length 
as well as the thickness of the shield and the size of its openings are 
scaled by the same factor. 

The quasi-stationary magnetic field is a well known simplifying 
concept which is applicable whenever the linear dimensions of the 
configuration are small compared to the intrinsic wavelength of the 
dielectric medium. It is the magnetic field one obtains mathematically 
if one assumes the time derivatives of the electric displacement, a/at 
(€E), to be zero. 

In this case, as shown in Appendix A, one obtains only one con­
straint equation for the scaling factors, namely that expressed by 
either (2), (4), or (9). 

In order to obtain an idea of the error caused by this simplification, 
one may look at a geometrically simple shield, such as a spherical 
shell, for which analytical solutions are available.1 According to a 
graph given in Ref. 1, the magnetic shielding effectiveness at the cen­
ter of a spherical shell, if calculated on the basis of a quasi-stationary 
field, is in error by less than 2.6 dB for a wavelength to diameter 
ratio of 2.8 or higher. The electric shielding effectiveness (electric 
field outside of the shielded space to that inside) is equal to the mag­
netic shielding effectiveness at this wave length to diameter ratio and 
increases rapidly for higher ratios. 
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Unfortunately, there are two serious shortcomings to this type of 
model. First, the wall-thickness of the scaled-down enclosure often 
becomes impractically thin. For instance the original enclosure may 
have been built with O.OIO-inch thick copper. Assuming a geometric 
scaling factor of 0.1 the model would have to be built of O.OOI-inch 
thick copper. Second, (assuming identical a, Il, and € for model and 
original) due to the scaling of frequency, as called for by (4), the 
ratio of the intrinsic wavelength in air to the length of the model 
becomes proportional to the geometric scaling factor, (l2/l1). This 
is a simple consequence of (4,) and (8). Sometimes, this ratio decreases 
for the model to the point where the quasi-stationary field theory no 
longer applies. 

As shall be shown next, both of these shortcomings can be circum­
vented in the case of large enclosures without openings by using two 
geometric scaling-factors, one for the overall dimensions and one for 
the wall thickness. 

4.2 Models with Two Geometric Scaling-Factors, One for the Overall 
Dimensions and One for the Wall-Thickness of the Enclosure in Quasi­
Stationary Magnetic Fields 

In the following, models of large enclosures without openings will 
be considered. The scaling factor for the overall dimensions is des­
ignated as (L 2/L 1 ) and that for the wall thickness as (d2/d1 ). (The 
wall thickness does not have to be uniform). Assuming the wall thick­
ness to be very small compared to the overall dimensions of the en­
closure, the spaces internal and external to the enclosure of the model 
remain geometrically similar to those of the original. 

With this in mind, it will be shown that the internal and external 
magnetic fields of this type of model, individually, are substantially 
similar to those of the original if the ratio of shield thickness to skin­
depth remains unchanged. 

The validity of this statement rests on two simplifying assumptions: 
namely (i) that, the external magnetic field is almost identical to that 
outside of an enclosure of infinite conductivity (the field component 
normal to the surface is negligible compared to the tangential one), 
and (ii) that within the shield (see Fig. 1) the rates of change of the 
tangential magnetic and electric field strength in the direction normal 
to the surface (aHJay) and (aEx/ay) are much larger than the rate 
of change of the field strengths normal to the surface in the tangential 
direction (aHII/az) and (aEII/ax); i.e., aHy/az « aHz/ay and aEII/ax « 
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Fig. 1-Local coordinates of the field in the shield. 

aE,jay. (The field changes rapidly across the shield but only gradually 
in the tangential directions.) 

From assumption (ii) it follows that the tangential magnetic field­
strength at some point D on the outside of the shield, H ZD , is deter­
mined by the tangential electric and magnetic field strengths, Hz,o 
and Ea:,o, at the opposing point "0" on the inside surface of the en­
closure. Specifically, Hz is governed by the following differential equa­
tions; 

a-E = aH" 
x ay (11) 

a aE 
- at (p.H,,) = - ayX (12) 

and by the following boundary conditions: 

At Y = 0: (13) 

In the case of a sufficiently large enclosure, the boundary condi­
tions can be simplified. Specifically, Appendix B shows that the ef­
fect of Hz, 0 on Hz ,D can be neglected if the following inequalities are 
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satisfied: .::. 

d> ~2 (14) 

d < Oav .. 
V2 

(15) 

(p.r) av is the average relative permeability of the shield,t and Sav is 
the skin-depth based on (p.r) av' The equivalent diameter, D, is four 
times the cross section of the enclosure divided by its circumference, 
measured in a plane which is normal to the field and which bisects 
the enclosure. (For simplicity, one may use for D the smallest major 
dimension of the enclosure.) 

If the above inequalities are satisfied the boundary conditions 
simplify to 

y = 0: Hz = 0; Ex = Ex.o • (16) 

Now, let us put the following question: Provided the internal elec­
tric and magnetic fields of model and original are similar to each 
other, under which condition will the external magnetic fields be 
similar, too? According to assumption (i) the only conditions are (i) 
that the distributions of the tangential magnetic field strength at the 
outside surface of the shield of the model and of the original are 
similar to each other and (ii) that, of course, the applied external 
fields are similar to each other. With the internal fields being assumed 
similar to each other, condition (i) is satisfied if the field distributions 
across the shields are similar, too. In consideration of the simplified 
field equations (11) and (12) this is the case if, (i) the general scaling 
equation (2) is satisfied with respect to the y-coordinate (see Fig. 1), 
i.e., if 

d~·(T2·J1.2 = d~·(Tl·J1.1 
t2 tl 

(17)t 

and (ii) if scaling equation (1) is valid for the boundary values H z •o 
and E x •o (using the shield parameters, d and P.shield). For the special 

* Note, that, for d > OaY/ yl2, ifjnequality (14) is satisfied, inequality (15) will 
be satisfied too and for d < OaY/ yl2, if inequality (15) is satisfied, inequality (14) 
will be satisfied too. 

t If the shield is several skin depths thick, (}-tr) ay is the permeability near the 
inside surface of the enclosure. 

t For field-strength independent }-t the expression vt/u}-t is proportional to the 
skin-depth, 0, and (17) becomes dd 02 = dd 01. 
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case of a large enclosure for which inequalities (14) and (15) are 
valid, it was shown that Hz,o may be assumed equal to zero without 
substantial effect on the external field. However, with Hz,o being zero, 
scaling equation (1) as applied to the boundary values Hz,o, Ex,o is 
automatically satisfied since the term (HI/H2 ) becomes (0/0). Con­
sequently, internal and external fields of the model and the original 
are individually similar to each other if (17) and inequalities (14) 
and (15) are satisfied. 

The relation between the shielding effectiveness of model and orig­
inal is obtained by using (1). Specifically, (HZ,D,d/(Hz,D,2) and 
(EX,O,l) /(Ex,o,z) are related to each other as follows: 

E x ,Q,2·Hz ,D,1 d2 ·t1 ·J.l2 

EX ,Q,1·Hz ,D,2 = d1 ·t2 ·J.ll· 
(18) 

Applying, again, (1) to the internal air field one obtains 

(19) 

From (18) and (19) one obtains 

(20) 

Since the ratio Hz,D/ Hz,o is proportional to the shielding effective­
ness one obtains the following relation between the shielding effec­
tiveness of model and original: 

(21) 

Note, that (21) is valid only if the similarity requirement for con­
ductors, as expressed by (17), is satisfied, and if the quasi-stationary 
field theory is applicable (wavelength in air larger than the linear 
dimensions of the enclosure). If the scaling factor for the overall di­
mensions (L2/Ld is chosen so that the similarity requirement for air 
is also satisfied [see (3)] it appears that the restriction to quasi­
stationary fields can be dropped. Strictly speaking, this is not so. 
First, at half wavelengths close to or less than the dimensions of the 
enclosure, the internal field will no longer be approximately uniform, 
as this was assumed in Appendix B. This assumption was necessary 
to show that, for large enclosures, the tangential magnetic field 
component at the inside surface of the shield is of negligible effect on 
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the magnetic field at the outside surface. However, the higher the 
frequency the less important becomes the assumption of an approxi­
mately uniform magnetic field. 

Second, the ratio of magnetic to electric field strength in air along 
the outside surface of the shield will not satisfy the scaling require­
ment (1). This latter imperfection, however, will be of minor con­
sequence if the characteristic wave-impedance in the shield is low 
compared to that of the waves in the external space. In this case, 
almost complete reflection occurs at the outside wall of the shield, 
which means that the effect of the tangential electric field strength 
on the external field is negligible. 

All things considered, it is advisable to satisfy for relatively short 
wavelengths the similarity requirement for air [see (3)]. 

Appendix C illustrates, with the aid of a numerical example, the 
above derived scaling laws. 

4.3 Shielding Effectiveness of an Enclosure with Uniform Wall 

In Section 4.2 it was shown that the fields internal and external to 
a model of an enclosure without openings are practically similar to 
those of the original if the wall of the model is such that the ratio 
of external tangential magnetic field strength to internal tangential 
electric field-strength is similar to that of the original. For CW fields, 
this requirement is satisfied if the inequalities (14) and (15) are 
satisfied, the shield is uniform along its tangential coordinates (how­
ever, it may be nonuniform along the normal coordinate such as in 
the case of laminated metals) and the permeability and conductivity 
are constant (field strength independent). Specifically, in the case for 
which the shield is uniform throughout (including along the normal 
coordinate), the ratio between tangential magnetic and electric field 
strength can be given in closed analytical form. According to Ap­
pendix D, the external tangential magnetic field strength, H zD, is 
related to the internal tangential electric field strength, E xo, (see Fig. 
1) as follows: 

H •. D = [( ~) sinh (vi iWl'ud') } •. o • (22) 

According to the law of induction, Exo is proportional to some rep­
resentative internal magnetic field strength, Hi, to its angular fre­
quency, w, to a representative linear dimension, L, of the shielded 
space and to its permeability, p,o (assuming air). Consequently, one 
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obtains for H zD , 

H •. n = c(~o) sinh (Viw,,<Fd').H, 
J ·w/.ur 

(23) 

in which C is a constant independent of the scaling factors. The 
ratio of Hz,D to the internal field strength, Hi, is proportional to the 
shielding effectiveness, '1]. Consequently, 

~ 2 W·u'Mo 2 2 
'YJ = K -. -·L ·sinh (Vjwwrd) 

J'M 
(24) 

in which K is a constant, independent of the scaling factors. It de­
pends only on the geometry of the shielded space, on that of the ap­
plied field and on the reference points for external and internal field 
strengths. K is obtained by measuring 'I] on a model of known param­
eters (()2, L2, 0"2, etc.). Note that, in general, (i.e., if the scaling equa­
tion (17) is not satisfied), the scaling factor for '1], i.e., ('I]2/'I]d, is fre­
quency dependent. Therefore, the response of the model to a pulsed 
field is not similar to the response of the original. 

For the case that the thickness, d, is large compared to the skin 
depth, 8, one can write (24) in the form 

K ~WUM~ 2 _ ;-:------:;2 
'YJ ~"2 J;- L exp v JWM(Jd , d» o. (25) 

For the case in which d is small compared to 0, one can write 

d« o. (26) 

In the latter case ('I]2/'I]d is frequency independent. Therefore, the 
model can be used to evaluate the effect of pulsed fields as well as 
CW fields. 

V. SUMMARY 

The shielding effectiveness of the scaled model of a metallic en­
closure is identical to that of the original if (i) the ratio of the wave­
length in air to some specified linear dimension (say, the length of 
the enclosure) remains unchanged, and (ii) the ratio of the skin 
depth of the shielding material to some specified linear dimension 
remains unchanged. In the case of nonlinear, ferro-magnetic mate­
rials, instead of the second requirement, the expression of length2 X 
frequency X conductivity X permea bility has to be the same for model 
and original. Given a certain scaling factor for the length the above 
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requirements could be met by properly selecting two other scaling 
factors, say, those for time and conductivity. Usually, however, only 
the scaling factor for time can be readily controlled. Consequently, 
one has to be content with imperfect models which, however, will 
yield good results over given ranges of frequency. 

If one is concerned with the magnetic shielding effectiveness only, 
the first requirement may be waived, provided the intrinsic wave­
length in air is large compared to the linear dimensions of the model. 
For enclosures of building size this applies to frequencies up to sev­
eral magacycles. Unfortunately, there are two shortcomings to this 
type of model: (i) The shield thickness of the scaled-down model 
often becomes impractically thin, and (ii) due to the necessary scal­
ing of frequency, the ratio of the intrinsic wavelength in air to the 
length of the model sometimes decreases to the point where the quasi­
stationary field-theory becomes invalid. If the enclosure is free of 
openings one can use a model with one scaling factor for the overall 
dimensions and another one for the thickness of the shield, provided 
the scaling factor for time is selected such that the ratio of skin 
depth to wall thickness remains unchanged. In this case, a simple 
formula relates the shielding effectiveness of the original to that of 
the model. If the enclosure is free of openings, of uniform thickness 
and of a material of constant permeability (nonferromagnetic metal) 
and if the applied magnetic field varies sinusoidally with time the 
dependence of the shielding effectiveness on scaling factors can be 
established analytically. Consequently, no constraints are put on the 
selection of the scaling factors of the model. 
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APPENDIX A 

Derivation of the General Scaling Constraints for Electromagnetic 
Models 

Maxwell's Equations if applied to the original configuration can 
be written in integral form as follows. 

(27) 
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f al HI ·dl1 = fil 0"1' E1 ·ds1 + a~1 fil El' El ·ds1 (28) 

(al is a closed path in the original, or model "I". Al is an area bounded 
by al. The symbol dSI represents a surface element of AI') Using the 
corresponding closed path in the model as well as corresponding length, 
area and time increments and introducing the scaling factors, Max­
well's equations for the model read as follows: 

(29) 

(30) 

From (27) and (29) one obtains 

(31) 

From (28), (30), and (31) one obtains 

(32) 

In general, the ratio (fIA l 0"1·El·ds1)/(a/at1 IIAl El·E1 ·ds1) is a func­
tion of time. It then follows that (32) can be satisfied only if each of 
its terms in parenthesis is zero, which leads to the following two scaling 
equations: 

l;·0"2·J..L2 l~ . 0" 1 . J..Ll (33)* 
t2 t1 

l;· E2 . J..L2 l~ . El • J..Ll (34) 
t; 

=-2-' 
t1 

In the case of a quasi-stationary magnetic field which assumes the term 
a(eE)/at to be negligible only (33) is needed to satisfy (32). 

* See Ref. 2, p. 488. 
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APPENDIX B 

Conditions Under Which the Effect of the Magnetic Field Intensity at 
the Inside Surface on that at the Outside Surface is Negligible 

Equations (11) and (12) of Section 4.2 can be readily integrated 
for the special case of constant permeability, p.. The result of this 
integration with E and H being sinusoidal time functions is 

U • (V2J.d). (V2J.d) 
H z •D = E x •o• VjWJ.Lu·smh Q + H z •o • cosh Q • (35) 

For V2·d > Q the sinh-term is of the same order of magnitude as 
the cosh-term. Consequently, the effect of H.o on H.D is negligible if 

I E x •o ~ I» 1 H z •o I; 
JWJ.LU 

o 
d>-· V2 

(36) 

For V2' d < Q the sinh-term and the cosh-term shall be approximated 
by the first terms of their Taylor-series. One obtains 

H z •D ~ E x •o _ I~ • V2.J.~ + H z •o·1 (37) 
v JWJ.LU 

In this case, the effect of H z •o on H z •D is negligible if 

IE"o ~.V2J~ I »H.,o; d < ~' (38) 

If, as in the case of iron, the permeability is variable it appears reason­
able to replace in inequalities (36) and (38) the permeability J.L by an 
average permeability J.Lav and the skin depth Q by an average skin 
depth, Qav , which is equal to Y2/w·J.Lav·U*, The conditions for making 
the effect of H.o on HzD negligible become then 

I Ex.o Y' U I » 1 H •. o I; d > -Q~"-2 
JWJ.Lav· U ·V 

I 
U _I-.dl 

E x •o y' . v 2J ~ »1 H •. o I; 
J'W' J.Lav· U U av d < ~~. (39) 

The order of magnitude of (EIlJ.o/Hz•o) for an enclosure of regular 

* In the case that Oav is small compared to d, as this is usual with iron shields one 
best uses for J..Lav the average permeability of that part of the shield that is within a 
distance Oav from its inside-surface. This is based on the thought that if H. is prac­
tically independent of H.o at y = Oav/ v'2 it will remain so for larger values of, 
y, regardless of the permeabilities at larger values of y. 
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shape can be evaluated. The average magnetic field strength normal 
to the area Ao (see Fig. 2) which passes through point 0 and is normal 
to the direction of the internal flux will be called H.av,o. The average 
electric field strength tangential to the line of length, lo, which is 
formed by the intersection of plane Ao and the inside surface of the 
shield will be called Eav,o. H av,O and Env,o are interrelated as follows: 

(40) 

If one assumes that the ratio Hz,o/Ex,o is of the same order of mag­
nitude as Hav,o/Eav,o one obtains for the order of magnitude of 
Ex,o/Hz,o 

j-w· /J.o· Ao 
lo 

(41) 

If one calls 4 (Ao/lo) the equivalent diameter D, recalls the expres­
sion for ·8 and introduces the average relative permeability ({Lr) nv 
one obtains from expressions (39) and (41) 

d > Oav 
V2 

(42) 

z 

Hzo 

~_-=~""",,-_~...,..~Ea~bgB i~o-+--y 
.lo/ 

Fig. 2.- Local coordinates at two points of the enclosure. 
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and 

2· (J-Lr)av ·o:v « 1 . 
d·D ' 

d < Oav. 
V2 

(43) 

If one selects as reference point, point B of Fig. (2) one obtains a 
relationship as given by (40) between the normal internal magnetic 
field strength and the tangential, internal electric field strength. 
'Since, with respect to area An, the direction of the magnetic field is 
predominantly normal the tangential magnetic field component is 
less than the normal one. Consequently, as before, the effect of the 
tangential internal magnetic field strength on the external one is 
negligible if the inequalities (42) and (43) are satisfied with, D, 
being the equivalent diameter of the area An. [For symmetry rea­
sons the tangential flux-density approaches zero as the center-line is 
approached. Consequently, its effect is negligible in this area (small 
D) regardless of inequalities (42) and (43).] 

APPENDIX C 

Numerical Example for the Scaling Laws of a Model of Two Distinct 
Geometrical Scaling Factors 

The shielding effectiveness of an enclosure to a magnetic field pulse 
shall be evaluated by testing a scaled down model. The size of the 
enclosure is 15 mX 15 mX 15 m. Its material is sheet steel of thick­
ness d = 0.00317 m (0.125 inch), of average relative permeability 
(/Lr) av = 500 and of conductivity -CT = 1 X 107 mho/m. The peak excur­
sion of the applied magnetic pulse is 10 oersted and its significant 
frequency content is within a band from 1 X 104 to 5 X 106 Hz. * (The 
corresponding range of the intrinsic wavelength in air is from 30,000 
to 60 m.) 

Tentatively the scaling factor for the overall dimensions, L2/ L1 , 
is selected as 0.1. Since the minimum intrinsic wavelength in air is 
only four times the length of the enclosure it is advisable to satisfy 
(3) (keeping the ratio of intrinsic wavelength to length of the model 
unchanged). Accordingly, the time scaling factor (t2/t1) becomes O.l. 
According to (17) the thickness scaling factor (dz/ d1) becomes VOJ" = 
0.316. The shielding effectiveness of the original, 7]1 , according to (21), 

* It is assumed that the frequency content of the pulse below lOl cps is so 
small that it will not cause any damage even though the shielding effectiveness 
of a large enclosure approaches unity at very low frequencies. 
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becomes 

1]1 = (0~1) X 0.316· 1]2 • 

Because of the high intensity of the applied pulse the iron-shield 
will be driven into saturation near its outer surface. Consequently, 
the model enclosure must be built of the same steel as the original 
and the peak intensity of the magnetic pulse applied to the model 
must be equal to that acting on the original. 

Finally, one has to test whether the inequalities (14) and (15) are 
satisfied. Based on a frequency of 1 X 105 Hz (the lowest significant 
frequency applied to the model) the average skin-depth is 

(0 •• ), = ~(2"- X 100,000) X (4,,-X;0 'X 500) X (1 X 10 ') 

= 2.3 X 10-5m . 

With the smallest overall dimension, D, being 1.5 m one obtains for 
the expression of inequality (14) 

0·2 X
D 

(J1.r)av· Oav 0 X 2 X 5~~5 X 2.3 X 10-
5 

= 0.022. 

One can readily verify that inequality (14) is satisfied for the 
original as well. 

APPENDIX D 

Integration of the Differential Equations (11) and (12) of the Field in 
the Shield for Constant fL and (J" 

For a G\V field, (11) and (12) read as follows: 

oB = dHz 

x dy (44) 

. H dEx 
JWJ1. =-. 

z dy (45) 

Eliminating Ex, one obtains 

. H d
2

Hz 0 (46) JWJ1.U z - dy2- = . 

The general solution of this equation is 

Hz = C1 exp (+ VjWJ1.U y) + C2 exp (- VTw,.LU y). (47) 



SCALING LAWS FOR MAGNETIC FIELDS 

With the boundary conditions given by (16) one obtains, 

LIST OF SYMBOLS 

Hz,D = (1 X

'O ).sinh (V]wJ_uI·d) 
JWJ..Lu 

C = constant factor. 
d = thickness of shield. 
E = electric field strength. 
H = magnetic field strength 
j = vCl. 

K = proportionality factor. 
l, L = distance proportional to the size of the model. 
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(48) 

t = time proportional to a specified time interval of the applied 
electromagnetic field (for instance duration of a pulse). 

o = skin depth V2/w}.Lu. 
E = dielectric constant. 

J..L = permeability (usually of the shield). 
J..Lo = permeability of vacuum, (47l' X 10-7 Henry/m). 
J..Lr = relative permeability 

U = conductivity. 
W = angular frequency. 

A. = in trinsic wavelength in dielectric 27l' / W -v-;;.. 
A" = intrinsic wavelength in conductor 27l' V2/wJ..Lu. 

1] = shielding effectiveness. 
<P = magnetic flux. 

(Ld L 1) = linear scaling factor of overall shield dimensions. 
(d2/ d1) = scaling factor of shield thickness. 
(l2/l1) = linear geometric scaling factor if (LdL1) == (d2/d1). 
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Optimal Routing in Connecting Networl(s 
Over Finite Time Intervals 

By v. E. BENES 
(Manuscript received May 31, 1967) 

A telephone connecting network is given, and with full information 
at all times about its state, routing policies are sought which minimize 
the expected number of attempted calls denied service in some finite interval. 
I n this paper, the search is pursued as a mathematical problem in the con­
text of a standard traffic model in terms of optimal control theory and dy­
namic programming. Certain combinatorial properties of the network, earlier 
found to be the key to minimizing the loss, also turn out to be relevant 
here: they lead to policies which differ from optimal policies only in 
accepting all unblocked call attempts, and provide a "practical" 
solution of the problem posed. In many cases, the policies found vindicate 
heuristic policies earlier conjectured to be optimal. 

I. INTRODUCTION AND SUMMARY 

We study the problem of optimally routing calls in a telephone 
connecting network during a finite time interval [0, t] over which the 
traffic intensity need not be constant. The present work reports on 
extensions of earlier results! on routing in telephone networks with 
constant traffic intensity; the principal novelty lies in the fact that 
whereas previously we minimized the probability of blocking* here 
we seek to minimize simply the expected total number of call attempts 
denied service in a given fixed time interval [0, t] on which the traffic 
intensity may vary. 

A traffic model, the same as that used in Ref. 1, is described (Sec­
tions II to IV), and the problem is formulated mathematically in the 
manner of optimal control theory (Section V). The associated Hamilton­
Jacobi equation is written and it is noted that this equation has a 
solution constructible in terms of functions satisfying nonlinear integral 

* Defined asymptotically as the stochastic limit, as t becomes large, of the 
fraction of attempted calls blocked or rejected in [0, t]. 

2341 
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equations derived from the principle of optimality, (Section VI). An 
isotony theorem, based on the same combinatorial properties as were 
used in Ref. 1 to minimize the loss fraction, then exposes the optimal 
policies to within rejection of unblocked attempted calls. That is, 
policies are arrived at which differ from optimal policies only in that 
the latter might reject some unblocked calls at some times (Sections 
VII and VIII); these policies are the same as those that were arrived 
a t in minimizing the loss. 

II. STATES, EVENTS, AND ASSIGNMENTS 

The mathematical model of Ref. 1 will be used. The elements of 
this model separate naturally into combinatorial ones and probabilistic. 
The former arise from the structure of the connecting network and 
from the ways in which calls can be put up in it; the latter represent 
assumptions about the random traffic the network is to carry. The 
combinatorial and structural aspects are discussed in this section; 
terminology and notation for them are introduced. The probabilistic 
aspects are considered in a later section. 

A connecting network v is a quadruple v = (G, I, n, S), where G 
is a graph depicting network structure, I is the set of nodes of G which 
are inlets, n is the set of nodes of G that are outlets, and S is the set 
of permitted states. Variables x, y, z at the end of the alphabet denote 
states, while u and v (respectively) denote a typical inlet and a typical 
outlet. A state x can be thought of as a set of disjoint chains on G, each 
chain joining I to n. Not every such set of chains represents a state: 
sets with wastefully circuitous chains may be excluded from S. It is 
possible that I = n, that Inn = () = null set, or that some inter­
mediate condition obtain, depending on the "community of interest" 
aspects of the network v. 

The set S of states is partially ordered by inclusion ~, where x ~ y 
means that state x can be obtained from state y by removing zero 
or more calls. If x and y satisfy the same assignment of inlets to outlets, 
i.e., are such that all and only those inlets utI are connected in x 
to outlets v t n which are connected to the same v in y (though possibly 
by different routes), then we say that x and yare equivalent, written 
x t'..J y. 

The set S of states determines another set S of events, either hangups 
(terminations of calls), successes (successful call attempts), or blocked 
or rejected calls (unsuccessful call attempts). The occurrence of an 
event in a state may lead to a new state obtained by adding or removing 



ROUTING IN CONNECTING NETWORKS 2343 

a call in progress, or it may, if it is a blocked call or one that is rejected, 
lead to no change of state. Not every event can occur in every state: 
naturally, only those calls can hang up in a state which are in progress 
in that state, and only those inlet-outlet pairs can ask for a connection 
between them in a state that are idle in that state. The notation e 
is used for a (general) event, h for a hangup, and c for an attempted 
call. If e can occur in x we write e t x. A call c t x is blocked in a state 
x if there is no y t S which covers x in the sense of the partial ordering 
~ and in which c is in progress. For h t x, X - h is the state obtained 
from x by performing the hangup h. 

We denote by Ax the set of states that are immediately above x 
in the partial ordering ~, and by Bx the set of those that are immediately 
below. Thus, 

Ax = {states accessible from x by adding a call} 

B:r- = {states accessible from x by a hangup}. 

For an event e t x, the set A ex is to consist of those states y ~ x to 
which the network might pass upon the occurrence of e in x. Thus, 
if e is a blocked call, A ex = (); also 

U A hx = Bx 
htx 

CtX 

c not blocked in x 

The number of calls in progress in state x is denoted by Ixl . The 
number of call attempts C t x which are not blocked in x is denoted 
by sex), for "successes in x." The functions 1·1 and s(·) defined on 
S play important roles in the stochastic process to be used for studying 
routing. In addition, we use 

{3x = number of idle inlet-outlet pairs blocked in state x 

ax = number of idle inlet-outlet pairs in state x, 

and note that a = {3 + s. 
It can be seen, further, that the set S of states is not merely partially 

ordered by ~, but also forms a semilattice, or a partially ordered 
system with intersections, with x n y defined to be the state consisting 
of those calls and their respective routes which are common to both 
x and y. 

An assignment is a specification of what inlets should be connected 
to what outlets. The set A of assignments can be represented as the 
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set of all fixed-point-free correspondences from I to n. The set A is 
partially ordered by inclusion, and there is a natural map ')I ( .): S ~ A 
which takes each state x £ S into the assignment it realizes; the map ')I ( • ) 

is a semilattice homomorphism of S into A, since 

x ~ y implies ')I(x) ~ ')I (y), 

')I(x n y) ~ ')I(x) n ')I (y). 

We denote by Fz the set of calls that are free or idle in x, i.e., 

Fz = {c: c is idle in x} = hey - x): y £ Az}, 

where y - x is the state obtained from y by removing all the calls 
of x ~ y. 

III. PROBABILISTIC ASSUMPTIONS 

A Markov stochastic process x, taking values on S is used as a 
mathematical description of an operating connecting network subject 
to random traffic. Specifically, the Markov process of Ref. 1 will be 
used, with the modification that the calling-rate per idle inlet-outlet 
pair can depend on time. This model can be paraphrased in the informal 
terminology of "rates" by two simple assumptions: 

(i) The hang-up rate per call in progress is unity. 
(ii) The calling-rate between an inlet and a distinct outlet, both 

idle at time u, is A(U) ~ O. 

The transition probabilities of x, will be described after a discussion 
of system operation and routing. 

IV. ROUTING POLICIES 

It will be assumed here, as in Ref. 1, that attempted calls to busy 
terminals are rejected, and have no effect on the state of the network; 
similarly, blocked attempts to call an idle terminal are refused, with 
no change of state. Attempts to place a call are completed instantly 
with some choice of route, or are rejected, in accordance with some 
routing policy. 

A routing policy over [0, t] will be described by a measurable matrix­
valued function of time, denoted by R(u) = (rzll(u)), x, y £ S, 0 ~ u ~ t, 
having the following properties and interpretation: for each x £ S, 
let llz be the partition of Az induced by the relation r-..J of "having the 
same calls up," or satisfying the same assignment of inlets to outlets; 
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it can be seen that fix consists of exactly the sets Acx for c t X, C not 
blocked in x; for each U t [0, t], Y t fix, rXI/(u) for y t Y is a possibly 
improper probability distribution over Y, (that is, it may not sum 
to unity over Y), 

rxx(u) = sex) - L rXI/(u) , 
I/tAs 

and rXI/(u) = 0 in all other cases. 
The interpretation of the routing matrix R(u) is to be this: any 

Y t fix represents all the ways in which a particular call c (free and not 
blocked in x) could be completed when the network is in state x; for 
y t Y, fXI/(U) is the chance that if call c is attempted in state x at time 
u, it will be completed by being routed through the network so as 
to take the system to state y. That is, we assume that if c is attempted 
in x at u, then with probability 

(1) 

it is rejected (even though it is not blocked), and with probability 
rxvCu) it is assigned the route which would change the state x to y, 
for y t Acx . The possibly improper distribution of probability 

{fxvCU) , y t Y} 

indicates how the calling-rate A(U) due to c at time U is to be spread over 
the possible ways of putting up the call c, while the improper part (1) 
is just the chance that it is rejected outright. 

It is to be noted that, as in Ref. 1, routing is carried out with perfect 
information about the current state of the network. The problem of 
optimal routing with only partial information is much more difficult 
(than the problem to be considered here), and it is not taken up. 

Alternatively, we may define the convex set C of all (routing) matrices 
R = (rxJ such that fXI/ ~ 0, fXI/ = 0 unless y t A .. , and 

L rXI/ ~ 1, 
I/tAcs 

for c t x not blocked in x, 

rXX = sex) - L rXI/ , 
IItA., 

and describe the routing policies as measurable functions on [0, t] 
taking values in C. 

A routing policy R(·) with fXI/(U) == 0 or 1 is called a fixed policy. 
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v. FORMULATION OF THE PROBLEM 

For the purpose of defining a Markov stochastic process it is con­
venient and customary to collect the probabilistic and operational 
assumptions made above in a time-dependent matrix Q(.) of transition 
rates. Indeed, each routing policy R(·) determines such a matrix func­
tion, and so a process, according to the relationship Q = Q(R) given 
in detail by 

J 1, y t Bx 

qx,lu) 
'A(u)rXy(u) , y tAx 

i- IXI - 'A(u) [sex) - rxx], y = x 

0, otherwise. 

If the routing policyR(·) is used, the transition probability matrix 
P(u, t) = (PXI/(u, t», with 

PXI/(u, t) = Pr tXt = Y I Xu = x}, 

will develop according to the backward Kolmogorov equation 

pet, t) == I, Q = Q(R) 

a 
au P(u, t) = -Q(u)P(u, t), o ~ u ~ t. 

In particular, if the system starts at 0 with an initial probability 
distribution given by the column vector p(O), then its distribution p(u) 
at time u is [p(O)'P(O, u)]" which satisfies the equation p(u) = Q(u)'p(u). 
If the network is in state x at time u, the rate at which blocked or 
rejected calls are being generated is 'A(u)[rxx(u) + .8x]. Thus, with 
r(u) = r(R(u» the vector function {rxx(u), x t S}, the total expected 
number of calls denied service during [0, tJ is just 

D = D(P(O), t) = it p(u)'[r(u) + .81'A(u) duo (2) 

We may, therefore, state our routing problem thus: Minimize D 
subject to the conditions p(O) given, p(u) = Q(u)'p(u), Q = Q(R), 
R(u) t C, for u t [0, tJ. 

Let us now view the I S I-dimensional probability vector p = p(u) 
as a "state-variable" whose "motion" is governed by the linear dif­
ferential equation p(u) = Q(u)'p(u). The criterion D is linear in p(. ) 
and the matrix entries of the control R(·) appear as coefficients in 
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the equation and in the criterion. The problem of minimizing D can be 
approached and solved by the now classical methods of the theory 
of optimal control. 

VI. THE HAMILTON-JACOBI EQUATION 

Let p, q be I S I-dimensional vector variables, and introduce the 
Hamiltonian function 

H(p, u, q, R) = }..(u)p'((3 + r) 
+ L Px{ L qll + }..(u) L rxllqll - (}..(u)rx + I x Dqx}. 

x litE. IItA. 

Let H* be the minimum of H for R (: C, i.e., 

. H*(p, u, q) = min {}..(u)p'Hq + }..(u)p'Rq - L px[}..(u)rx + I x I]qx}' 
RtG x 

where H = (hxlI ) is the "hangup matrix" such that hXII = 1 or 0 ac­
cording as y (: Ex or not. The Hamilton-Jacobi equation associated 
with the minimization of D above is just 

aV *( av) _ au + H p, u, ap - 0 I o ;£ u ;£ t, p ~ o. 
(3) 

V(p, t) == O. 

It follows from a known theorem2 of the theory of optimal control 
that if we can find a continuously differentiable solution V(p, u) of the 
Hamilton-Jacobi equation (3), then a control policy R(·) = (rxlI ('» 
such that by components 

R(u) aa
V 

(P, u) = min R aa
V 

(P, u) I 

P REG P 

is optimal. 
To find a solution of the Hamilton-Jacobi equation (3) let us con­

sider the problem of starting the connecting system at a time u < t, 
and operating it until t so as to minimize the expected number of blocked 
calls over (u, t). We define, with t fixed, and u < t, 

Ex(u) = expected number of blocked calls in (u, t) 
using an optimal policy, starting in state x. 

To solve the problem we note that two possibilities arise: Either an 
event occurs in (u, t), or else none does. In the latter case, the system 
stays in its initial state x throughout (u, t), and no calls are blocked 
during the interval. In the former case the first event e to occur does so 
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at some time epoch r E (u, t) and can lead to one of the states in Aex U 
{x}. The minimum expected blocking to be suffered in the remaining 
interval (r, t) is just 

With 

{min{l+Ex(r)'~l::Ey(r)} if e=c 

Ex-h(r) if e = h. 

cx(u) = I x I + axX(u) , 

Gx(u) = l u 

cx(v) dv, 

the probability density that the first event to occur does so at r, and 
is e, equals 

cx(r) exp {-Gx(r) + Gx(u)} .jc)r) , 
A(r) 
cx(r) , 

e = h 

e = c. 

Hence, applying the "principle of optimality," we conclude that the 
vector function E(u), 0 ~ u ~ t, satisfies the equation 

Ex(u) = 11 exp {-Gx(r) + Gx(u)} 

o[ LEy(r) + X(r) L min {1 + Ex(r) , min Ey(r)}] dr. (4) 
ytB" ytA c " 

We now observe that if E(·) satisfies (4), then the scalar function 
V(p, u) = p'E(u) satisfies the Hamilton-Jacobi equation. This is of 
course not surprising since the equation for E(·) was obtained from the 
optimality principle. To see it we differentiate (4) with respect to u, 
obtaining 

- X(u) L min {I + Ex(u) , min EvCu)} 
IItAc. 

[I x I + X (u)s (x) ]Ex(u) - L Ey('u) - X(u){3x 
ytB:x; 

- X(u) L min {I + Ex(u) , min E,lu) l. 
CEX ilEAc. 

c not blocked in x 
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N ow note that 

L min {I + Ex(u) , min EII(u)} 
Ctx IItAce 

c not blocked in x 

L min {(I - L rXII) [Ex(U) + 1] + L rXIIEvCu)} 
CtX Rte IItAce IItAce 

e not blocked in x 

= min { L (1 - L rxlI) [ExCu) + 1] + L rXIIEvCu)} 
Rte ctx IItAc", IItA ce 

e not blocked in x 

= min {[S(X) - L rXIIHEx(u) + 1] + L rXIIEiu) } 
Rte IItA", IItA. 

= min {rxx[Ex(U) + 1] + L rXIIEII(u)}. 
Rte IItA. 

Therefore, 

a
a Ex(u) + min {- (I x 1 + A(U) [SeX) - rxxDEx(U) 
u Rte 

+ L Eiu) + A(U)[fJx + rxx] + L rXIIEy(u)} = O. 
IItB", IItA. 

Now with V = p'E and aVjap = E, r = r(R) = {rxx, x {: S}, P ~ 0, 

~~ + r:;}~ {A(U)p'(fJ + r) - ~ Px(1 x 1 + A(U) [sex) - rxxDEx(U) 

+ L Px( L + L rxll)EII(u)} = O. 
x IItB" IItAe 

This is the Hamilton-Jacobi equation. It follows that the minimum 
of D is achieved by a fixed policy, as could be expected on intuitive 
grounds. 

VII. ISOTONY THEOREM 

In Ref. 1 we introduced some combinatorial "monotone" properties 
of the partial ordering (S,~) of states which (when present) provide 
an intuitive and straightforward description of the routing choices 
for accepted calls which minimize the loss probability. These properties 
are also relevant to minimizing the criterion D of (2). 

The properties in question can be paraphrased as follows: the relative 
merit of states vis a vis blocking is consistent or continuous, i.e., if 
a state x is "better" than another y, then the neighbors of x in ~ are 
in the same sense better than the corresponding neighbors of y. Spe­
cifically, we deal in detail only with the weakest property used in Ref. 1, 
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and we say that a reI a tion P on S has the weak monotone property 
if xPy implies 

(i) I x I = I y I, 
(ii) 3 p.: B% ~ BII and z t B% implies zPp.z, 

(iii) 3 v: FII ~ F% and (a) C t FII , Z t ACII imply 3 w t A (vc)% with wPz, 
(b) c, c' t FII , vc = vc' imply c = c'. 

We now prove the following isotony result: 

Theorem: If P is a relation on S having the weak monotone property, 
then xPy implies 

aV < avo 
apx = apy 

Proof: Define recursively Ex(O, u) == 0, 

E%(l, u) = /3%[C%(t) - C%(u)] exp {Cx(u) - Cx(t)} 

= Pr {first & only event in (u, t) is a blocked calli Xu = x I, 

E%(n + 1, u) = it exp {Cx(U) - Cx(r)} 

. [ L EII(n, r) + f3xA(r) [Ex(n, r) + 1] 
ytB" 

+ A(r) L min {1 + Ex(n, r), min EII(n, r)}] dr. 
ctx ytA c • 

e not blocked in x 

It follows easily that E(l, u) ~ E(u), and that E(n + 1, u) ~ E(n, u). 
Furthermore, standard methods3 using the inequality 

I min y i-min (y i + Ei) I ~ max I Ei I 
l:oi:on l:oi:on l:oi~n 

show that the functions E%(n, .) converge monotonely as n ~ 00 to 
the unique solution of (3). 

If now xPy, then /3x ~ /311 , cx(·) == cll (·), and so Ex(l, u) ~ E II (l, u). 
Assume as a hypothesis of induction thatxPyimpliesEx(n, u) ~ EII(n, u), ° ~ u ~ t. Then with p. and 11 as in the definition of the weak monotone 
property 

Ez(n, u) ~ Ep.z(n, u) for z t B% 

min {I + E%(n, u), min EzCn, u)} 
ztA Coe). 

~ min {I + Ein, u), min Ez(n, u)} 
ztA ew 
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L Ez(n, u) + f311'A(U) [EII(n, U) + 1] 
ztBJI 

+ 'A(u) L min {1 + EII(n, u), min Ez(n, u)} 
Ctll ztA cJI 

c not blocked in II 

~ L Ez(n, u) + f3x'A(u)[Ex(n, u) + 1] + 'A(u)(f311 - f3x)[EII (n, u) + 1] 
z.B e 

- 'A(u) [EII(n, u) + 1] 
CtX 

c¢rnup 
c not blocked in x 

1 

+ A(u) L mIll {1 + Ex(n, u), min Ez(n, u)} . 
CtZ z tA c. 

c not blocked in x 

I t can be seen that with I X I the cardinality of a set X, 

{311 - f3x ~ I {c EX: c ¢ rng v, c not blocked in x} I, 

whenceEx(n+1,u) ~ E II (n+1,u).SinceaVjap=EandE(n,u) i E(u), 
the theorem follows. 

VIII. THE NATURE OF THE OPTIMAL POLICIES 

Where it is applicable, the isotony theorem allows us to infer the 
optimal routes for accepted calls. Its relevance to the optimal policies 
for networks for which there is a relation P with the weak monotone 
property is this: Let c E x be a call that is not blocked in state x, so 
that Acx ~ 0, and suppose that there is at least one y E Acx such that 
ypz for every z E Acx . It follows from the isotony theorem that at any 
time u, such a y is at least as good a way of routing c (if c is attempted 
at u) as any other state of Acx. The only action which might con­
ceivably be better in this situation than accepting c and routing it 
so as to take the system to y is rejecting c altogether. Such a rejection 
would be optimal if and only if 

1 + aV ::; aV . 
apx· - aplI ' 

for u's close to t, clearly, this is false. In these circumstances a policy 
that routes c in x so as to take the system to y can differ (so far as x 
and c are concerned) from an optimal policy only in the respect that 
the latter might reject c in x. 

In Ref. 1, the notation 

sup Acx 
p 
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was used for the set 

{y: z t Acx implies ypz} (\ Acx , 

whenever this set was nonempty. The set sup Acx consists precisely 
p 

of the possible states to which an optimal policy takes the system 
from state x if it accepts the attempted call c. 

The preceding observations are summarized in the Corollary: If P 
on S has the weak monotone property then there exists an optimal policy 
R(·) such that C t~, Y t Acxrxll(u) > 0, 0 < U < t imply 

y t sup Acx . 
p 

The theory of routing for minimal D constructed here can be de­
veloped in greater detail in the fashion of the optimal routing theorems 
of Section XVIII of Ref. 1; however, the isotony theorem and corollary 
embody the basic idea, and we shall leave the topic at this stage. 
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Restoration of Photographs Blurred 
by Image Motioll 

By DAVID SLEPIAN 

(Manuscript received May 16, 1967) 

The blurring of photographs by image motion during exposure is 
studied by means of a simple model. Conditions under which it is possible 
to recover the unblurred image are determined and some methods of res­
toration are described. 

I. INTRODUCTION AND SUMMARY 

This paper is concerned with the feasibility of restoring photographs 
that have been blurred during exposure by relative motion between the 
camera and the entire scene beingphotographed.* It is assumed that all 
objects of the scene are at rest relative to each other. Several simple 
mathematical models of this situation are investigated. 

Section II treats the case of uniform translation between film and 
image. During exposure an area, A, of the image crosses over the margins 
onto the film. It is shown that unique restoration of the scene from 
the blurred photograph is, in general, impossible without a priori 
knowledge of certain portions of the undistorted image of area A. 
An algorithm is given for the restoration when this a priori knowledge 
is available, and a filtering technique is described that covers a case 
of frequent interest,-the photographing of a small object viewed 
against a uniform background. 

The restoration techniques require knowledge of the translation 
undergone. Section III describes a method of estimating this displace­
ment from the blurred photograph. 

In Section IV more general image motions are considered. The case 
of pure rotation has many features in common with that of pure transla­
tion. Estimation of the parameters of the motion, however, appears 
to be more difficult in this case. 

* This work was carried out at the Woods Hole 1966 Summer Study on Restora­
tion of Atmospherically degraded Images held by the National Academy of Sciences. 
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II. IMAGE TRANSLATION 

Weare concerned here with photographs blurred because of a uniform 
relative motion during exposure between the camera and the object 
being photographed. For mathematical simplicity, in this section we 
treat the problem as one-dimensional; the modifications necessary to 
describe the more accurate two-dimensional model are evident. 

Let g(x) denote the illuminance from a scene or object being photo­
graphed that would result along a line in the image plane of the camera 
if there were no relative motion between the camera and the object. 
We suppose g(x) defined for all values of x. The film occupies the interval 
I x I ~ L. Imagine now that during the exposure time T the image 
moves with constant velocity v along the image plane in the x-direction. 
The total light energy e(x) incident on a point x in this plane is 

e(x) = Cl iT g(x - vt) dt 
(1) 

= C2 i~a g(y) dy, 

where a 
then 

vT. In appropriate units, the density of the photograph is 

f(x) = r[e(x)] , Ix I ~ L, (2) 

where r(e) is the response curve of the film. Our aim is to recover g, 
or a portion of g, from a knowledge of f(x), I x I ~ L. If we assume 
the film response is monotone and known, knowledge of f(x) is equiv­
alent by (2) to knowledge of e(x) = r-1[f(x)], I x I ~ L. For our pur­
poses, then, it suffices to assume e(x) known, or equivalently, to assume 
that the film response is linear. Accordingly, we henceforth consider 
recovering the undistorted scene g(x) from the blurred photograph 

f(x) = i~a g(y) dy, I x I ~ L, (3) 

where it is assumed that a is known. (The problem of estimating a 
is treated in Section III.) 

From (3) we obtain at once 

f'ex) = g(x) - g(x - a) 

or 

g(x) = f'(x) + g(x - a), Ix I ~ L,' (4) 
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the basic recovery equation. If g(x) were known for -L - a ~ x ~ -L, 
say 

g(x) = ~(x), -L - a ~ x ~ -L, (5) 

then g could be determined at once from (4) across the entire film 
interval. One has 

g(x) = f'ex) + ~(x - a) 
-L ~ x ~ -L + a 

g(x) = f'ex) + g(x - a) 

= f'ex) + f'ex - a) + ~(x - 2a), 

-L + a ~ x ~ -L + 2a 
k-l 

g(x) L f'ex - ja) + ~(x - lea), (6) 
j=O 

-L + (le - l)a ~ x ~ -L + lea 

k=l,2,···,K 
K 

g(x) L f'ex - ja) + ~[x - (K + l)a], 
j=O 

-L + Ka ~ x ~ L, 

where K = [2L/a] is the largest integer not greater than 2L/a. Similarly, 
if g(x) is known on any interval H of length a contained in the interval 
I == (-L - a, L), (4) can be used to determine g first in the intervals 
of length a adjacent to H and then successively to determine g through­
out I. More generally, if g is known on a set S of intervals in I whose 
translates by various multiples of a form a set containing an interval 
of length a in I, then g can be determined everywhere in I by repeated 
application of (4). We call such a set S an admissible a priori set. 

Two quite different cases of restoration are now evident: (i) g known 
beforehand on an admissible a priori set; (ii) g not so known. In the 
former case, exact restoration is possible in principle. In the latter 
case, unique restoration is not possible. Indeed, a given blurred photo­
graph f could arise from infinitely many different scenes. For example, 
if no a priori knowledge of g is available, choose g(x) = ~(x) for -L -
a ~ x < -L with ~ arbitrary. Use (6) then to determine g for -L ~ 
x ~ L. This scene g will give rise to a blurred photograph differing 
from f by at most a constant. (By judicious choice of background, 
and by moving the camera, it is possible to make the devil appear 
as only a slightly-blurred saint!) Similar considerations show that if 
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g is not lmown beforehand on some admissible a priori set, its values 
can be assigned arbitrarily on some set of points in I and determined 
elsewhere to give a scene that could produce a given blurred photograph. 
There seems to be little useful that can be said, in general, about 
restoration of blurred photographs when g is not known on some 
admissible a priori set. 

A case of importance in practice where something of value can be 
said concerns the restoration of a photograph of a small object moving 
across a uniform background. We suppose the background corresponds 
to photographic density zero and that the blurred object image is 
smaller than the photograph. Specifically, assume that it is known 
a priori that the unblurred object image g(x) would be nonzero only 
in the interval Xo ~ x ~ Xo + (p - l)a, where Xo ~ - L, XO + pa ~ L. 
The blurred photograph then would have a density different from 
zero only for - L ~ Xo ~ x ~ Xo + pa ~ L. We define f everywhere 
by taking 

f(x) == 0, x < Xo , x > Xo + pa. (7) 

We define g = ° for x < Xo and x > Xo + (p - l)a. In this case, the 
solution of form (6) becomes simply 

p-l 

g(x) L f'(x - ja), x ~ Xo + pa (8) 
;=0 

p 

g(x) L f'(x - ja), Xo + pa < x ~ Xo + (p + l)a 
;=1 

p+n-l 

g(x) L f'(x - ja), Xo + (p + n - l)a < x ~ Xo + (p + n)a 
j=n 

n = 1,2, .... (9) 

Because of our assumptions, the sums in (9) must give zero for n = 1, 
2, ... and x in the indicated ranges. They are in this sense nugatory. 
Equation (8) gives g = ° for x < Xo because of (7). In the range of 
interest Xo ~ x ~ Xo + pa, it gives a simple algorithm for obtaining 
a true picture of the object. 

Equation (8) can be instrumented in many ways. The derivative l' 
of the blurred photo extended by (7) can be obtained as a transparency 
by optical filtering techniques. The sum (8) then can be found by p­
tuple exposure of a film with the image of l' being translated by an 
amount a by a mirror between each exposure. 
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An alternate restoration method suggested by (8) sheds some light 
on a filtering technique previously reported in the literature. l Let us 
define for all x 

1'-1 

g(x) == L f'ex - ja) (10) 
j=O 

with f defined everywhere by (7). 
For x ~ Xo + pa, g will coincide with g, but for x > Xo + pa it gives 

values different from g. From the Fourier representation 

if follows that 

f'(x - ja) = i: eiXXiAF(A)e-i;Xa dA 

so that (10) can be written 

g(x) = i: dA eiXXiAF(A) % e- iiXa 

= foo dA eiXXAF(A) si~ (Apa/2) ie- iCp- 1 )(Xa/2) 
-00 sm (Aa/2) 

whichshowsthatg[x + (p - 1) (a/2)] can be obtained from the extended 
blurred photograph f by processing with a filter having transfer function 

yeA) = iA sin (Apa/2) . 
sin (Aa/2) 

(11) 

A different filter for restoration in the present case can be derived 
as follows. Recall our assumption that 

g = 0 for x ~ -L and x > L - a. 

Then 

f(x) = i~a g(y) dy 

= i: hex - y)g(y) dy 

holds true for all x. Here 

hex) = {I, 
0, 

-a ~ x ~ 0 

otherwise. 

(12) 

(13) 
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Taking the Fourier transform of (13) yields 

G('A) = 7re- (ia}./2) sin (~a/2) F('A) (14) 

which shows that g[x + (a/2)] can be obtained from the extended 
blurred photograph by processing with a filter having transfer function 

'A Y = 7r-----
00 sin ('Aa/2) 

(15) 

as has been reported previously.1 
The filter (15) has poles at the points 'A = 2n7r/a, I n I = 1, 2, 

and hence cannot be realized in practice. Some ad hoc scheme for 
assigning a finite value at these pole positions must be made. Just 
what these modified filters do to picture quality is not easy to analyze. 
The filter (15), could it be instrumented, would yield g, that is, a 
picture with infinite white skirts. The filter (11), on the other hand, 
has no poles and hence can be realized. * It restores g correctly in the 
interval xo ~ x ~ Xo + pa where this quantity is different from zero. 
It gives uninterpretable values for x > Xo + pa and the value zero 
for x < Xo. It would appear that the infinities in (15) with their at­
tendant difficulties are due to insisting that the processed picture yield 
the value zero over an infinite region where from a priori knowledge 
one would accept no other value anyhow. 

I t is worth noting that if (12) is violated, then (13) does not hold 
for all x and one cannot write (14). These edge effects have been over­
looked in past treatments of the problem based on (14).1 

III. ESTIMATION OF MOTION PARAMETERS 

The restoration technique of the preceding section presupposed 
knowledge of the direction and amount of the image displacement 
during exposure. We now consider how these quantities might be 
determined from the blurred photograph itself. 

We suppose the blurred photograph density to be given by 

f(x, y) = iT g(x - ut, Y - vt) dt, I x I ~ L 1, I y I ~ L2, (16) 

where g(x, y) is the image that would result if there were no motion. 
Again to avoid edge effects we suppose g(x, y) defined everywhere 

* Because of the growing factor X, both (15) and (11) must ultimately be cut off 
at some point beyond the largest spatial frequency of interest in the photographs. 
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and different from zero only in the rectangle -Ll ~ x ~ Ll - uT, 
- L2 ~ Y ~ L2 - vT, so that defining I = 0 for I x I > Ll , I y I > L2 
we can write 

I(x, y) = iT g(x - ut, y - vt) dt, - 00 ~ x, y ~ 00. (17) 

Into (17) now introduce the Fourier representation 

There results 

I(x, y) = iT dt i: d~ i: d'fJ G(~, 7])ei[~(x-ut)+'1(II-VI)) 
(18) 

on performing the t integration. Here 

a = uT, b = vT. 

Since (18) holds for all x and y, we see that the Fourier transform of I 
is given by 

F(t. ) = G(t. ) -i[(ta+'1b)/2) sin (~a + 7]b)/2. 
l,;, 'fJ l,;, 7] e (~a + 'fJb)/2 (19) 

As seen from (19) the transform of the blurred photograph is zero 
on the family of parallel lines 

n = ±1, ±2, .... 

These lines of zero density in F should provide a reasonable means 
of estimating the parameters a and b. Due to noise, the curves of zeros 
of F will not appear as straight lines. The job of fitting straight lines 
to these curves of zeros should be greatly simplified however by the 
knowledge that the lines are parallel and uniformly separated. Once 
the fitted lines are drawn, value of a and b are readily found. 

IV. MORE GENERAL MOTION 

In the present model, the blurred photograph that results from the 
general nondistance-distorting motion of a small object is 
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I(x, y) = iT dt g[(x - u) cos cp - (y - v) sin cp, 

. (x - u) sin cp + (y - v) cos cpl. (20) 

Here g(x, y) is the illuminance that would result if the object were 
at rest with respect to the film during the exposure, u and v are functions 
of t giving, respectively, the x and y coordinates of the origin of a 
coordinate system fixed with respect to the body, and cp = cp(t) is 
the angle that this second coordinate frame makes with respect to the 
x-y frame. In the case of most immediate interest 

u = Xo + iit 
v = Yo + vt 

cp = wt. 

(21) 

One finds without difficulty that the Fourier transform of I and g 
are related by 

F(~, rJ) = iT dt e-i[uUV'7IG[~ cos cp - rJ sin cp, ~ sin cp + rJ cos cpl. (22) 

This equation appears somewhat simpler in polar coordinates. We write 

~ = p cos e 
u = V cos a 

and set 

F(~, rJ) = Pcp, e) 

Then (22) becomes 

rJ = p sin e 
v = V sin a 

G(~, rJ) = G(p, e). 

Pcp, e) = iT dt e- ipV 
cos (O-alG(p, e + cp). 

Here V, a and cp are functions of t. 

(23) 

Under these general conditions, I have been unable to find a practical 
method for obtaining the undistorted scene g from j, either in the space 
domain, or from the transform statements (22) and (23). Even in the 
case of combined uniform translation and uniform rotation given by 
(21) no method is as yet evident. 

The case of pure uniform rotation, ii = ii = 0 can, however, be 
treated and complements the case of pure translation (w = 0) already 
discussed in Sections II and III. Working directly in the space domain, 
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(20) becomes 

I(x, y) = iT dt g[(x - Xo) cos wt - (y - Yo) sin wt, ' 

·(x - xo) sin wt + (y - Yo) cos wt]. 

Introduce polar coordinates located at the center of rotation 

x - Xo = P cos e 

y - Yo = p sin e 

j(p, e) = f(x, y), {)(p, e) = g(p cos 0, p sin 0). 

We now have 

J(p, 0) [7' dt {)(p, e + wt) 

1 [O+WT 
= - de' {)(p, 0') 

w 0 

2361 

(24) 

which is basically of the form (3) already treated. The basic restoration 
equation is 

d A '" ' 

O(p, 0) = -w dO j(p, e) + g(p, 0 + wT), (25) 

where p is to be regarded as a parameter, () and J are periodic in e 
with period 271" and the equation holds for all values of e. 

If {)(p, 0) is known a priori as a function of 0 along an arc of angular 
extent wT radians, (25) can be used successively to determine 0 for 
all B. It is not hard to show that if 0 is not known a priori on a 0 set 
of angular measure wT, unique restoration is impossible. Indeed, there 
exists a scene with values assigned arbitrarily (except for an additive 
constant) in a wedge of angle wT which, when rotated, will give rise 
to any preassigned blurred photograph. 

In the case of a blurred photograph of a rotating unknown object, 
for example, if the center of rotation is within the body, unique restora­
tion is impossible in the neighborhood of this center. If restoration 
is to be made, one must use some form of a priori lmowledge to specify 
() or an estimate of () in some angular interval of amount wT. 

Restoration by means of the difference equation (25) presupposes 
knowledge of wand [from (24)J the center of rotation Xo, Yo. We have 
not found a simple way of estimating these parameters. Unlike the 
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case of pure translation, the Fourier transform of the blurred picture, 

F(p, (}) = e-ip(xo cos 8+uo ein 8) iT dt G(p, () + wt), 

does not seem to offer special clues. If the object has some straight 
line edges, their initial and final positions may show clearly enough 
in the blurred photograph to allow estimates of Xo, Yo and wT to be 
made. For example, if l1 and l~ are the lines along the initial and final 
positions of some edge of the body, the angle between l1 and l~ is clearly 
wT. Let l2 and l~ be lines along the initial and final position of some 
other straight line feature of the object and let P be the intersection 
of l1 with l2 and P' be the intersection of l~ with l~ • The center of rota­
tion 0 must lie on the perpendicular bisector of the segment PP', and 
its position is chosen so that L POP' = wT. It is likely that, in practice, 
restoration with several different trial values of the parameters will 
have to be made and the best result selected. 
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Cathode Activity Measurement: 
a Modification of the Dip Test 

By D. W. MAURER 

(Manuscript received August 17, 1965) 

A method of cathode activity measurement which yields fundamental 
cathode parameters has been developed. Basically, it is a modified dip test 
and consists of plotting cathode current vs cathude temperature. A simple 
geometric analysis of the data plot yields data that can be related from one 
tube to another and to the cathode work function. Thus, experience gained 
by this simple and rapid technique may be translated from one tube type 
to another. 

This technique can be used to obtain the work function as a function 
of cathode temperature and a method is suggested for obtaining work 
function as a function of current density. 

1. INTRODUCTION 

The activity measurement technique to be described, was developed 
to fill the need for a standard technique to be used on a rather large 
diode program. The requirements of an activity measurement for this 
program which are common to any tube development, may be stated 
briefly as follows: 

(i) The measurement must cause a minimum disturbance to the 
chemical equilibria existing in the tube, in other words not interrupt 
the life processes. 

(ii) The measurement should be rapid, to permit regular study of a 
large number of tubes. 

(iii) The parameter (s) measured should be related to some funda­
mental property of the cathode, independent of the tube. 

(iv) The technique should not require complicated or specialized 
electronics which are subject to break down or drift. 

A review was made of the currently available techniques. All of them 
suffer from one or more shortcomings when evaluated by the above 
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requirements. Child's law plots or perveance measurements are use­
ful but tend to sUbstantially upset the tube equilibrium especially 
when data are taken at higher cathode loading than the normal op­
erating point of the tube. The higher power invariably leads to deac­
tivation, especially in close spaced diodes. If data above the operating 
point are taken with short (1 to 2 ILsec.) pulses this problem is 
eliminated but the process is very time consuming and involves com­
plex electronics. Use of single high-voltage pulses to obtain the cur­
rent at a fixed point in the Schottky region yields good information so 
long as equipment is stable and capable of precise calibration. How­
ever, it gives no information on uniformity of emission or possible 
changes in the shape of the Schottky line. The use of short pulses is 
also difficult without elaborate precautions in the life rack to eliminate 
stray capacitance and high voltage breakdown. Any of the above tech­
niques are inappropriate in gun-type tubes because of high-voltage 
breakdown in the tubes and, in the case of traveling-wave tubes, be­
cause the beam current is limited by the magnetic field strength. Shot 
noise measurements are useful and give information on uniformity as 
well as activity, but require complicated equipment. 

Dip testing as first described by Bodmer1 would satisfy all the re­
quirements previously stated if the data taken could be related to 
fundamental cathode parameters. That these techniques are effective 
given good cathodes has been demonstrated. However, for the proposed 
Bell Laboratories diode program, in which at least some of the 
cathodes would be of poor activity, and probably of nonuniform 
emission, this method did not appear suitable. The relationship to 
basic cathode parameters had also not been shown. Another concur­
rent and independent piece of work on the dip technique was de­
scribed by Dominguez, Doolittle and Varadi.2 They have explained 
the shape of the curve and used the data to follow the activation of 
production tubes. 

This paper will describe a modification of the dip technique which 
is based on a method first used by A. J. Chick3 in connection with the 
life study of the Telstar® TWT in 1962. Instead of measuring the 
usual dip in cathode current in a given time, he substituted a dynamic 
recording of cathode current and temperature to facilitate the study 
of the transition region between space charge and temperature limited 
emission, i.e., the knee. Plotting the knee temperature during life, he 
found it to be an accurate indication of cathode activity. 

The technique has now been further improved and a simple and re­
liable method will be described to establish the knee even if the transi-



CATHODE ACTIVl'l'Y MEASUREMENT 2365 

tion is poorly defined. An cxtcnsive diode program has been evaluated 
with this technique and its utility is shown by following tube activity 
on life. It will also be shown how data taken in this way can be used 
to determine basic cathode parameters and to obtain measurements 
of these under conditions not previously obtainable. Examples will 
also be shown of its use in analyzing the effects of cathode tempera­
ture on work function. 

II. THE TES'l' i\1E'l'HOD 

In this section the experimental technique and the method of data 
analysis will be discussed followed by an example of its use. Then 
the details of several experimental problems will be discussed. 

2.1 The 1I1easurement Technique and Data Analysis 

In the modification of the dip test developed here, an X -Y recorder 
is used to plot cathode current vs cathode temperature when the 
heater power is turned off. The experimental apparatus is shown in 
Fig. 1. The cathode current of the tube on test is recorded on the Y­
axis of the X-Y recorder. The temperature, monitored by the infrared 
pyrometer, is recorded on the X-axis. A typical curve obtained by 
this technique is shown in Fig. 2. This consists of two regions: on the 
right is the current vs temperature in the space-charge limited region 
and on the left is the current vs temperature in the temperature 
limited region. These two regions are separated by a knee. The round­
ness of the knee is caused by nonuniformities of emission and the 
energy distribution of the electrons. The decrease in current with 
temperature in the space-charge limited region is caused by changes 
in spacing with cathode temperature and by a movement of the space-

x-v RECORDER 

Fig. 1-Apparatus for IR dip measurement. 
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charge minimum in front of the cathode towards the cathode as the 
temperature decreases. The decrease in current in the temperature 
limited region depends on the work function and is exponential in 
shape. Experimentally, the upper part of the exponential region can 
be approximated by a straight line over a short range, as shown in 
Fig. 2. This is extrapolated up to the initial current and is used to 
define the knee. The temperature at the knee which is characterized 
in this way (Tm) corresponds roughly to the temperature at which 
the tube could be operated and just maintain space charge limited 
operation at the operating current density. Higher values of Tm 
derived from this plot imply lower activity and lower values, higher 
activity. 

2.2 A Life Plot 

An example of the use of this technique to make a life plot is shown 
in Fig. 3. This is a plot of data taken after activation on a set of six 
diodes with experimental cathodes. The curve is the average of data 
from six diodes. As the end of life approaches, (due in this case to 
coating depletion), the dip temperature rises to approach the operat­
ing temperature, i.e., there is no space-charge limited region at the 
operating temperature at the failure time. 

2.3 Experimental Problems 

A difficulty in the use of an infrared pyrometer to monitor tem­
peratures in tubes containing borosilicate glass (Kovar sealing glass) 
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envelopes is that the glass has a relatively high infrared absorption. 
Therefore, flaws and variations in thickness of the glass, etc., would 
have relatively large effects on the temperature measured. To circum­
vent this problem the temperature of the cathode is adjusted with an 
optical pyrometer. This technique allows the infrared pyrometer to be 
calibrated each time the tube is read. That is, glass flaws, variations 
in the thickness of the glass, etc., enter as correction terms to the 
emissivity. To demonstrate that these factors would have no effect 
on the dip temperature, this was measured with the infrared pyrometer 
in these various situations: 

(i) The infrared pyrometer at various angles to the axis of the tube 
and at various distances from it. 

(ii) The pyrometer sighted on the cathode base nickel or on the 
molybdenum cathode heater sleeve. 

(iii) The pyrometer sighted on the image of the cathode nickel in 
a gold-backed mirror. 

In all cases the dip temperatures were identical. 

Another difficulty in the use of an infrared pyrometer is that the 
scale reading, and thus, the X axis of the plot, is not a linear function 
of temperature and a conversion chart must be used to obtain the 
temperature. Since most of our diodes are operated at one of three 
temperatures we have alleviated this problem by making a plexiglass 
ruler which has the three temperature scales for the X axis cor­
responding to each tube temperature. In this way, it is a simple proc­
ess to measure the knee temperature directly from the plots. 
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Thermocouples may also be used to measure cathode temperature; 
however, these are often unreliable over long periods of time. In 
some cases thermocouples are not pratical and the cathode cannot 
be directly viewed with a pyrometer. This is usually the case for a 
traveling-wave tube in its magnetic circuit. In this case, we have 
obtained a temperature vs time curve for a dip outside the circuits; 
then a current vs time plot was taken in the circuit. The current-time 
curve is analyzed in the same manner as current-temperature curves 
to give a knee time. The temperature can then be obtained from the 
temperature-time calibration. This calibration must be checked pe­
riodically due to changes in cathode support welds, heater resistance, 
etc. 

III. OTHER APPLICATIONS OF THE TEST METHOD 

In this section the analysis of the data will be extended to show 
how the information obtained from the dip plots is related to the 
work function !p. First, the method of obtaining !p from the test data 
will be described. Then the description of the method of obtaining it 
as a function of temperature independently of the A constant will be 
given. Finally, a method will be proposed for the determination of 
work function as a function of current density. 

3.1 Measurement of Work Function 

In the temperature limited region shown in Fig. 2, the current 
follows the well-known Richardson equation modified due to the 
Schottky effect caused by the field on the cathode.4 The equation for 
the combination of the two effects is easily obtained by substitution: 

where 

J ( t €CP) 1 In 'jl2 = In A + 0.44(GV) - k 'jl' 

J = current density, 
T = absolute temperature, 
A = the Richardson Constant, 
G = geometry factor, 
V = voltage, 

E = electronic charge, 
k = Boltzman constant, 
cp = work function. 
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According to this equation, in the temperature limited region at con­
stant voltage, if the log of J IT2 is plotted against 1 IT, a line should 
be obtained whose slope is a combination of the work function and 
the geometric factor. A calculation shows that the geometric term 
should be negligible for planar diodes with respect to the work func­
tion term at the voltages used.* Under these conditions this equation 
reduces to the Richardson equation. Originally, a series of dips were 
taken at various tube voltages and the knee temperatures (Tm on 
Fig. 2) were used to make a Richardson plot. These plots were always 
straight lines. This was taken as confirmation of the utility of the 
knee temperature as a significant measure of cathode activity. 

Data have also been taken from a single dip curve below the knee 
and fed into a computer to determine a least squares fit, calculate the 
work function and plot the data. An example is shown in Fig. 4. 
There is a very good fit to a straight line. The slope corresponds to 
a work function of 1.2 e V. 
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Fig. 4 - Riehardson plot for tube 370. 

3.2 lVork Function as a Function of Temperatu1'(~ 

11.0 11.5 
X 10-4 

As as basis for discussion in this section and the following one 
(Section 3.3) several points from the generally accepted hypothesis 
of cathode operation are pertinent: 

(i) The cathode is a semiconductor with mobile donors which mi-

* The term GV is the field at the cathode. For parallel plane geometry, G = 
liD where D is the separation distance. Other geometric configurations may be 
('alculated appropriately, see Ref. 4, p. 30. 
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grate under the influence of fields. The time constant for donor redis­
tribution is of the order of milliseconds. 5 

(ii) The lifetime of donors in the coating is much longer than their 
transit time across the coating. Usually the lifetimes are of the order 
of hours. 5 , 6,7 

(iii) The work function of the cathode is a slowly varying func­
tion of donor concentration at the surface down to a critical value, 
whereupon it rises rapidly with further decrease in concentration. 

The fact that donors redistribute themselves within milliseconds 
under the influence of fields means that the work function measured 
by the dip technique will not contain the effect of current density. 
Therefore, measurements should be made at low current densities 
where these effects are small; otherwise an average of the donor dis­
tribution will be obtained and the effect will be difficult to analyze. 
On the other hand, the fact that donor loss is quite slow, means that 
the total donor concentration (not the concentration gradient) wIthin 
the cathode will be essentially "frozen in" as the cathode cools and 
the effect measured will be that of a cathode as it exists at the start­
ing temperature. Thus, with this technique, we can measure the work 
function and the A constant independently at a given cathode tem­
perature. This point is important. The usual technique of getting the 
temperature dependence of the work function is to measure J and T, 
insert them into the Richardson equation and solve for cp assuming 
A = 120. This assumption is not a good one for oxide cathodes. The 
A constant contains a term which is the "effective" emitter area, i.e., 
that area which is actually emitting electrons. It has been widely 
demonstrated in the literature that oxide cathodes are composed of 
an aggregate of small areas of high and low work function. Further­
more, measured A values for oxide cathodes determined by the con­
ventional plotting techniques mentioned above vary widely (10-3 

to 2.8 X 104).8 
The advantage of this technique in measuring work function is 

demonstrated from data taken on two similar diodes. The work func­
tion of one was measured by the usual technique of taking Schottky 
data at various cathode temperatures. A plot of these data is shown 
in Fig. 5. Data from these curves were then replotted according to 
the Richardson equation to give the plot shown in Fig. 6. This plot 
has a straight line section with a slope which corresponds to a work 
function of the order of 1.5 e V. The points deviating from this line at 
the higher temperatures are characteristic of what is observed on 
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Fig. 5 - Schottky plot of tube 246. 

many cathodes and represent a changing cathode system in these 
regions which results in an increasing work function and probably a 
changing A value. The most likely explanation is that the donor 
depletion at the higher temperature increases faster than the donor 
production rate. This results in cathodes of higher work function at 
the higher temperature. This was confirmed on another tube where 
the work function was measured by the dip technique described above. 
The work function measured at an initial cathode temperature of 
750 0 brightness was 1.5 e V in good agreement with the results of the 
Schottky plot. However, the work function measured at 850 0 bright­
ness was 1.7 eV. 
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Fig. 7 - cp (T) for an experimental cathode. 

This technique has been used to demonstrate electrolytic activation 
in an experimental cathode which is described elsewhere.!) In this 
case the work function was measured for various cathode temperatures 
using both dc and 500 fLsec pulses. The results are shown in Fig. 7. 
Notice that the values obtained by using dc follow what might be 
considered the normally expected pattern and are relatively con­
stant. The pulse values, however, are constant only up to about 
750 0 B where they increase rapidly with further increase in tempera­
ture. The explanation for the pulse results is the same as for the plots 
previously presented: The donor loss increases faster than donor 
production. The dc values remain constant because electrolysis is 
contributing to the donor production, and therefore, cp remains low in 

X-v RECORDER 

Fig. 8 - Apparatus for measurement of cp vs J. 
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"alue. It may be expeeted that the de values would increase if the 
temperature were taken higher. 

The utility of this technique in measuring work function in an 
operating temperature range where the work function of the cathode 
is changing as a function of cathode operating temperature has been 
demonstrated. The possibility of measuring work function independ­
ently of A at a set temperature in a region where rp is changing as a 
function of temperature was not recognized before. Thus, it is a new 
tool for the investigation of the mechanism and operation of cathodes 
in this region. 

3.3 Proposed llIeasurement of Work Function as a function of Current 
Density 

If one wanted to observe the variation in work function with cur­
rent density, the following technique could be used. The apparatus is 
shown in Fig. 8. Here, microsecond pulses are to be superimposed on 
a de operating level. The pulse current is to be used to make dip 
measurements. In this way the temperature limited region well above 
the operating current density can be monitored to define the work 
function while the dc operating current density is still in the space­
charge limited region. By this means, the point at which the work 
function begins to rise rapidly with current density, i.e., the dc cur­
rent density at which donor depletion at the surface becomes appreci­
able, can be determined. This limiting current density is a measure of 
the minimum donor concentration required in the surface of the 
cathode under given dc conditions. 

IV. CONCLUSIONS 

The modified dip test described here yields data which can be re­
lated to a fundamental cathode parameter, namely the work function. 
This permits quantitative studies of cathode activity throughout life. 
The technique can further be used to determine information about 
the concentration of the donors in the cathode. The method described 
is of general practical utility; the data can be obtained rapidly and be 
directly compared from one tube type to another. 
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The CPC: A Medium Current Density, 
High Reliability Cathode 

By D. W. MAURER and C. M. PLEASS 

(Manuscript received March 1, 1967) 

The coated powder cathode is an inexpensive, reproducible emitter which 
combines the virtues of various conventional cathode types, and is suited 
to use in modern high-power, high-reliability electron tubes. It is best 
considered as a modification of the classic oxide cathode in which each particle 
of the emissive. coating is covered with a thin layer of nickel. Inherent 
advantages of this cathode over the oxide cathode include the> ability to 
sustain current densities up to 1 amp/cm2 over long, calculable lifetimes, 
increased flexibility in time and temperature during processing, and 
improved coating adhesion. This paper describes the concept, fabrication 
and mechanism of the cathode and presents data obtained from a diode 
evaluation program. 

I. INTRODUCTION 

Modern requirements for high-power microwave tubes having very 
high reliability have accentuated the demand for cathodes capable 
of dc or long pulse emission in the range 0.5 to 1.0 amps/cmz over 
lifetimes up to 50,000 hours. The best oxide cathodes available func­
tion only at the lower end of this range over relatively short lifetimes, 
and in consequence metal matrix types are normally used. The most 
widely used of these is the tungsten matrix, but this demands oper­
ating temperatures of the order of 1000°0,* and the reliability of the 
tube then begins to depend on factors such as the integrity of the 
cathode heater and its radiation shielding. Nickel matrix cathodes, 
prepared from powder compacts of nickel and active oxides, and 

* Throughout the remainder of this paper, °C will be used to mean degrees 
Centigrade true temperature. The abbreviation °B will be used to mean degrees 
Centigrade brightness on nickel as measured by optical pyrometer on the side 
of the cathode button. 

2375 
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capable of operating at temperatures between the tungsten matrix 
and oxide cathodes, are limited in high-reliability applications by 
their shrinkage, residual gas context, and local inhomogeneities. The 
conventional oxide cathode, with its low operating temperature and 
"clean" structure, would normally be the best choice if it were pos­
sible to modify it in such a manner as to permit emission of the order 
of 1 amp/cm2 over lifetimes in excess of 20,000 hours. 

The coated powder cathode (CPC) can be regarded as a modified 
oxide cathode in which the active coating is prepared from particles 
of conventional electron tube grade carbonates, each lightly coated 
with nickel. The nickel normally constitutes only 1 to 3 percent by 
weight of the carbonate. Its primary effects are to change the electrical 
resistance, sintering behavior, and emissivity of the coating. The im­
proved performance of the coated powder cathode can be interpreted 
in terms of these primary effects. 

If an oxide cathode coating is permeated by metal forming electrical 
contacts between the base and the vacuum interface, the field lines 
along which electron donors drift during high current density operation 
are modified. The major component of the field will become transverse 
when the distance between metal "electrodes" in the coating becomes 
substantially less than the coating thickness. The donors will then re­
main in the surface layers of the cathode coating, keeping the work 
function low. This situation exists in metal matrix cathodes, where 
relatively small particles of oxide are embedded in nickel or tungsten, 
an analogy being one of metal tubes filled with oxide extending to the 
surface. The donors in such systems would be expected to move toward 
the metal-oxide boundary at the surface as current density is increased, 
giving an oxide-vacuum surface having a nonuniform but essentially 
constant concentration of donors. Despite the nonuniformity, the 
average or effective work function remains low. 

The CPC is constructed with a novel distribution of nickel in the 
active coating, which achieves the surface donor retention mentioned 
above with only 0.5-3.0 wt percent of metal. * This should be com­
pared to 70-80 wt percent metal normally required to provide a con­
ducting path through a conventional matrix cathode. In reducing the 
amount of metal involved in the surface one approaches the lowest 

* Normal oxide cathodes have resistances of the order of 1-10 O/cm2
• Assum­

ing the bulk resistivity of nickel, the nickel coating of a epe particle could in 
theory be of the order of 10-13 cm thick to have a resistance comparable to the 
activated oxide. Therefore, films of the order used (0.01 p,) should have sub­
stantial effects even if the resistivity of the film is substantially greater than 
the bulk resistivity. 



COATED POWDER CATHODE 2377 

practical work function-that of the classic oxide cathode. Thus, the 
operating temperature of the CPC (700-800°C) is comparable to that 
of the oxide cathode, and is essentially unaffected by the emission 
level in the region studied. Operating temperature is, however, in­
fluenced by the vehicle employed, in proportion to the rate of poison­
ing reactions. Thus, a close-spaced diode normally requires a cathode 
temperature of the order of 800°C, while a travelling-wave tube with 
a slow wave structure and remote collector will operate in the 700-
750°C region. 

The nickel film uround each particle also inhibits the growth of 
relatively inactive, large single crystals of (Ba, Sr) 0 during high 
temperature outgassing. In this respect, note that Eisenstein1 has 
shown (Ba, Sr)O crystallite growth in oxide cathodes to be relatively 
rapid above 900°C and many workers have observed the degraded 
high current density characteristics of oxide cathodes that experienced 
appreciable time at temperatures above 900°C. This is consistent with 
the suggestion2 that donor movement in single crystal material is very 
fast, leading to deep donor depletion layers. 

CP cathodes can be processed at temperatures as high as 1150°C 
without detectable degradation in subsequent emission. This has 
practical advantages in the reduction of time on the tube processing 
station, and in the thorough degassing afforded the heater-cathode 
assembly. 

The inhibition of crystallite growth extends to the reprocessing of 
an activated CPC which has been exposed to room atmospheres. Al­
though X-ray diffraction photographs taken before and after exposure 
show that water and carbon dioxide are indeed reabsorbed, the coating 
does not lift or "bloom," and if reprocessed by a conventional schedule 
will normally reactivate. This implies that the mixture of barium and 
strontium hydroxides and carbonates formed within each nickel shell 
is largely retained within the shell during reprocessing, reducing the 
tendency to form a glassy phase. 

When sprayed onto a nickel base with a conventional nitrocellulose 
binder, the CPC coating shows excellent adhesion, resisting a Scotch 
Tape test. This appears to be related to the slight roughness of the 
particle surface. This is visible in Fig. 1, which shows representative 
photomicrographs of coated and uncoated powders. During breakdown 
of the carbonate to oxide, the nickel film is split to allow the escape 
of carbon dioxide, and at the same time, nickel-to-nickel sintering be­
gins. The latter is effective in increasing the adhesion to the base and 
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Fig. 1-Electron micrographs of nickel coated and uncoated double carbonate 
particles. 
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the cohesion of the coating still further. The oxidation of the nickel 
shell during carbonate breakdown is found to be very slight. In tubes 
requiring ultra-smooth coatings (ultrafine powder), excessive cohesion 
between particles can give rise to surface cracking known as "mud­
flatting" unless care is exercised during the processing. However, 
through the particle size range normally used in oxide cathode tech­
nology, the integrity and adhesion of the processed coating is excellent. 

The nickel network responsible for the improved performance of the 
CPC is maintained during life by sublimation of nickel from the base 
alloy into the coating. An equilibrium is attained, wherein nickel is 
lost, by evaporation from the surface of the coating, and replenished 
from the base. Thus, a CPC coating, applied to a low vapor pressure 
metal such as platinum, would slowly lose its metal network during 
life, and transform into a simple oxide cathode. This transformation 
has been observed, but has not been studied quantitatively. However, 
many of the advantages of the CPC are gained by establishing nickel­
to-nickel contact between each particle prior to breakdown and activa­
tion, and use on substrates other than nickel to gain processing ad­
vantages is not unreasonable. Notice that the overall rate of nickel 
sublimation from a CPC is identical to that of an oxide cathode 
operating at the same temperature. 

II. PREPARATION OF THE NICKEL COATED POWDER 

A useful technique for the preparation of metal coated powders in­
volves the decomposition of a thermally unstable metal compound in 
a "fluid bed." In conventional nickel coating, the powder is normally 
maintained "fluidized" by the passage of hydrogen through a sintered 
disc at the foot of a vertical tube containing the powder. Nickel 
carbonyl, Ni(CO)4, is introduced to the hydrogen stream and ther­
mally decomposed to nickel on contact with the heated powder. This 
method is excellent for use with metal powders or insulating materials 
of particle size >50 JL. However, in the range 50JL ~ 5 JL the agglom­
eration of insulating particles as a result of the accumulation of 
static charge becomes increasingly serious, and it has previously been 
considered impractical to coat each individual particle of an insulating 
powder of particle size <5 fL. 3 Since most cathode powders are sub­
stantially <5 fL, and the coating of individual particles was most 
desirable, a new technique was required. This was found in a method 
we choose to call "wet" fluid-bed coating. The powder is maintained 
suspended in a suitable inert liquid and Ni (CO) 4 introduced through 
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a bubbler. This eliminates agglomeration, at the expense of an addi­
tional processing step-the removal of the liquid. 

Since we are dealing with a cathode material where trace contami­
nation may poison the emission and cause tube failure, extreme care 
in handling under ultraclean conditions is imperative. All vessels and 
handling devices must be cleaned according to normal oxide cathode 
preparation specifications, and all materials used must pass oxide 
cathode specifications for impurity content. Once cleaned, vessels 
must be protected from contamination prior to use. 

The powders used in these experiments were coprecipitated from 
nitrate solutions with ammonium carbonate and havc been extensively 
used for conventional cathode coatings. For the present study the "as 
received" powders were reduced in particle size by ball milling to give 
very smooth "high density" cathode coatings. * This procedure does 
not improve emission, and is, therefore, only required where electrode 
spacings require tight tolerances on coating uniformity and smooth­
ness. Where the particle size of commercially available carbonate is 
appropriate for the tube requirement, "as received" powder may be 
nickel-coated without any preconditioning. 

Fig. 2 is a schematic of the nickel coating apparatus. The apparatus 
is composed of a reaction vessel and a flow system. Hydrogen is the 
carrier gas used during the reaction. Nitrogen is used for flushing to 
keep the system free of contamination while on standby and to purge 
the hydrogen at the termination of the reaction. 

A modified 500 cc gas wash bottle is used as the reaction vessel. It is 
modified to bring a gas entry tube down the wall inside the vessel to 
within 1 inch of the bottom. The center of the vessel is then free for a 
nickel stirring rod adapted to the vessel through a nickel taper fitting 
in the ground glass joint at the top. The nickel taper is, in turn, 
fitted to a rotary vacuum feed-through coupled to an electric motor. 
All of the joints are vacuum tight and only nickel faces the inside of 
the vessel, thus avoiding foreign contamination. The entire vessel is 
immersed to just below the gas inlet tube in an oil bath and the con­
tents of the vessel brought to the reaction temperature of 110°C with 
a hotplate. A suspension of the carbonate in amyl acetate is added 
to the reaction vessel before sealing the system. A condenser is in­
stalled at the exhaust end of the reaction vessel to allow reflux of the 
amyl acetate that vaporizes at 110°C, thus keeping the solution level 
constant. 

* Partielc size: 90 percent <1.6 fL; coating density: approximately 2 glee. 
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The Ni(CO)4 chamber is made of metal, with a gas inlet tube run­
ning to within 112 inch of the bottom, and an inlet port that can be 
opened for filling and sealed during the reaction. A measured excess 
of carbonyl is added before every reaction and the chamber emptied 
and flushed with nitrogen at the completion of every run. 

After the system is sealed and purged with nitrogen, a flow of hydrogen 
is established, bypassing the carbonyl chamber, such that vigorous 
bubbling occurs in the reaction chamber, and a hydrogen flame is 
established at the exhaust. Some hydrogen is then diverted through 
the carbonyl chamber and this proportion increased until the hydrogen 
flame at the exhaust become luminous with green fringes, indicating 
that excess carbonyl is being burned. Under these conditions of excess 
carbonyl and constant bath temperatures, with a given system and 
powder particle size distribution, the percent nickel deposited depends 
on the reaction time. For our system and particle size distribution, 
we achieved 2.5 ± 0.3 weight percent nickel in 3! hours, although 
this is not a linear function of time (the reaction is autocatalytic). 

The thickness of nickel on each particle will be constant under the 
above conditions regardless of the particle size distribution. The per­
cent nickel in the lot, however, will vary with the particle size. Thus, 
the operating parameters of a given system must be determined em-
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pirically. Note that since the powder used in the study described here 
was very fine, values of approximately 1.0 wt percent Ni would cor­
respond to comparable Ni thickness on coarser, conventional powder. 

During the coating reaction there is essentially no agglomeration 
of the coated powder; however, pure nickel is deposited on some parts 
of the reaction vessel and flakes off into the mix. To remove these 
flakes the coated suspension is sieved, first through a 37 p. sieve and 
then through a 20 p. sieve. Concentrated nitrocellulose solution is then 
added to bring the suspension to a condition suitable for spraying. 
Spray mix prepared from nickel-coated powder has similar settling 
characteristics to conventional oxide cathode mixes. If long shelf-life 
precedes use, ultrasonic agitation should be used to resuspend prior to 
transferring to spray equipment. 

Fig. 3 shows the effect of nickel coating on the particle size of the 
carbonate crystallites and indicates the change to be of the order of 
10 to 15 percent of the initial size. This may be accounted for by 
slight agglomeration rather than particle size growth. This conclusion 
is supported by the many photomicrographic comparisons made be­
tween coated and uncoated double carbonates. (Fig. 1) It can be seen 
that the coated powder has a rougher surface than the uncoated pow­
der. This roughness may account for the superior adhesion character­
istic of the coated powder. 

Data shown in Table I indicate an analysis representative of a 
CPC surface ready for activation compared with an analysis of the 
as-received powder. No pick-up of undesirable elements should occur 
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TABLE I - SPECTROGRAPHIC ANALYSIS OF BARIUM-STRONTIUM 

CARBONATE BEFORE AND AFTER NICKEL COATING 

Before After 
Element (as received) (Ni coating) 

Barium Major Major 
Strontium Major Major 
Nickel O.OUX Major low 
Calcium O.X high O.X high 
Sodium O.OX O.Ox 
Copper O.OOx O.OX low 
Silicon Not found Not found 
Magnesium O.OOX O.OOX 
Iron O.OOX low O.UOX 
Lead O.OOX low O.OUX 
Potassium O.OUX low O.OOX 
Manganese O.OOOX O.OUOX 
Silver O.OOOX low O.OOOX low 
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Elements checked but not found: zinc, cadmium, indium, bismuth, antimony, 
arsenic, tin, thallium, gallium, germanium, zirconium, cobalt, chromium, moly­
bdenum, vanadium, tungsten, lithium. 

Note: Major = >5% Estimated 

O.X, O.OX, O.OOX, etc. = Concentration of Elements estimated to nearest 
decimal place, e.g., O.OX = 0.01 - 0.09% estimated. 

as a consequence of the coating operation. Infrared spectrographic 
analyses were made of the amyl acetate before and after the coating 
process. No contamination or change in the amyl acetate absorption 
spectrum was observed. 

It is important to determine carbon introduced by the coating process, 
since carbon activation of the cathode would result in premature loss 
of oxide. Control analyses performed on nickel coated MgO of similar 
particle size shows that the carbon introduced (corrected for intrinsic 
carbon and absorbed amyl acetate) is of the order of 0.1-0.2 percent 
by weight of powder. This carbon appears to be completely removed 
during the breakdown of the carbonate to the oxide, probably through 
the high temperature oxidation-reduction reaction C + CO2 ~ 2CO 
which favors the production of CO at temperatures above 800°C. 
This view is supported by the fact that there is no immediate activation 
in diodes, and that mass spectrometer analyses of platinum-based 
cathodes show no CO tail after breakdown. 

III. EMISSION AND LIFE TESTING 

3.1 Cathode Preparation, Vehicle, Processing and Testing 

The application of the coated powders to cathode bases used in the 
study described was carried out by conventional spray techniques. 
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Binder burnout4 was used throughout diode testing. However, this has 
been found undesirable in processing large area cathodes coated with 
powder of a conventional particle size, since the coating coherence 
after binder burnout was minimal and did not allow good yields in 
assembly. Cathode bases were preconditioned by a rigorous method 
based on volatile acid cleaning5 and including a liquid honing of the 
surface by calcium oxide. The base metal was high purity 0.1 weight 
percent zirconium/nickel alloy (see Table II) unless otherwise stated. 
This alloy is used to obtain long life, and is relatively inactive by 
comparison to standard alloys such as 220 grade nickel. 

The test diode is illustrated in Fig. 4. It features a 0.085-inch 
cathode in a ceramic insulator, mounted on a massive anode heat sink, 
which includes a nickel button anode. The diode contained conven­
tional tube materials including Kovar, steel, molybdenum, copper, 
nickel and ceramic. The final closure of the tube was done by heliarc 
welding. Pieceparts and subassemblies were cleaned by rigorous 
processing techniques and were atomizer clean.5 , 6 Minimum grade: 
3. These techniques were designed to eliminate activation or deactiva­
tion by extraneous variables and permit the study of deliberate 
changes in processing or material variables with a minimum of 
samples. The success of this can be estimated from the narrow spread 
in activity of "identical" diodes (Section 3.2.5) and the fact that the 
yield of tubes in the entire program was approximately 98 percent 
seal-in. 

Tubes were processed in groups of six on individual getter-ion pump 
stations. Bakeout was for 16 hours at 425°C, at which point, the pres­
sure was normally in the 10-9 torr range. All tubes then passed through 

TABLE II - IMPURITY SPECIFICATION FOR HIGH PURITY 
ZIRCONIUM-NICKEL CATHODE ALLOY 

Element Percent max. Element Percent max. 

Copper 0.005 Iron 0.005 
Manganese 0.005 Carbon 0.003 
Silicon 0.005 Sulphur 0.001 
Titanium 0.005 Magnesium 0.005 
Tungsten 0.005 Oxygen 0.001 
Hydrogen 0.001 Nitrogen 0.001 
Cobalt 0.005 Each Other Metal 0.005 

All other impurities than those listed shall not exceed a total of 20 
ppm and no individual impurity shall exceed 1 ppm. 
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Fig. 4 - M-4059 diode. 

a standard processing cycle which is described in Appendix A. They 
were then placed on aging racks with the cathodes at 900 0 e and with 
dc voltage applied. After 16 hours at this condition, the cathode 
temperature was lowered to 810 0 e and emission current adjusted to 
0.3 amps/cm2

• This was the predominant current density throughout 
the diode program, and was based on past experience of adverse "diode 
effects" observed in the diode used at higher loadings. In addition, 
it represented a cathode design objective at the time. 

The test method used for all of these tubes was the IR dip." This 
is a modification of the dip test in which the cathode current-tempera-
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ture transient is plotted on an X - Y recorder when the heater power 
is turned off. Cathode activity is given by the temperature of the 
transition from space charge limited emission to temperature limited 
emission. Unless otherwise noted, all measurements were made at 125 
mA/cm2 rather than the operating level, to be assured of an activity 
measurement in extreme cases where the emission is not space charge 
limited at the operating level. With this analysis, high temperature 
indicates low activity, and low temperature high activity. 

3.2 Results of Diode Program 

Except where noted, each of the curves of diode activity shown in 
this section represent the average of six identical diodes. Since the 
significance of the difference between two such curves is difficult to 
assess without a knowledge of the spread in the data, the values of the 
probability that there is a difference between two curves are shown at 
significant points on the plots. The probability, P, is based on Student's 
t-test. 

3.2.1 Reproducibility 

Fig. 5 shows the individual "IR dip" temperatures on a batch of six 
diodes processed according to the standard technique (Appendix A). 
The spread is rather wide early in life, and becomes much smaller 
after about 1000 hours as the tubes "age in." This allows an estimate 
of the spread inherent in the data to be illustrated in subsequent 
figures. 
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Fig. 5 - Typical spread in the data for six "identical" diodes. 
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Fig. 6 - Reprouucibility of the coating batches. 

3.2.2 Reproducibility of Coating Batches 

2387 

4 

Fig. 6 shows the results of three groups each containing six diodes 
processed by standard technique, sprayed from three independent 
coating batches which were prepared in an "identical" manner. There 
is approximately 35°C spread in temperature initially, but by 1000 
hours this spread is completely insignificant. This indicates that while 
there are some differences, perhaps in the small details of the process­
ing cycle, or in the trace amounts of impurities within the system, 
these are lost after approximately 1000 hours. 

3.2.3 Percent Nickel in the Coating 

Fig. 7 shows the average dip temperatures for two groups of six 
diodes each made from the same coating batch which had been 
divided into two parts to permit different exposure times to nickel 
carbonyl. Batch 15b has 7.26 percent by weight of nickel," and batch 
15a 2.58 percent. As nickel content is reduced, we approach the oxide 
cathode which represents the lowest attainable work function in the 
system, useful as such when the required current density causes no 
appreciable donor depletion. Note that these measurements were 
carried out at a life condition of 0.3A/cm2

, where the detrimental 
effect of excessive nickel coating is accentuated. At higher current 
densities where donor depletion in the uncoated oxide is more signifi­
cant, the beneficial effect of nickel coating tends to dominate even if 
nickel is applied in thicknesses substantially greater than the optimum. 

* This cannot be considered a representative batch since it was deliberately 
created with an excessive nickel content to produce a pronounf'ed effed. 
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Fig. 7 - The effect of the IWl'eent niekcl in the coating batch. 

3.2.4 The Effect of Cathode Coating Thickness 

8 10 4 

This effect is shown in Fig. 8 in which we have plotted the data 
from cathodes coated with batch 15b which was discussed above. 
One group is sprayed 2-mils thick, the other O.65-mils thick. The 
thicker spray coating yields a higher activity level. These effects may 
be explained as follows. The thin coating would be of the order of 
five particle diameters thick. The likelihood of a barium atom pro­
duced at the coating-base interface simply evaporating from a pore­
end is relatively high. However, in the thicker coating there is a 
larger cross section for adsorption of the barium atom into the oxide 
lattice. Hence, the donor concentration in the surface of the thicker 
coating is likely to be higher than the concentration in the thinner 
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coating, and the activity level higher in the former. One would expect 
this effect to be less pronounced with coatings which have a lower 
percentage nickel since there would be a higher probability of barium 
adsorption in the latter case. 

a.2 .. 1i Coatings Applied by Electrophoresi::; 
A technique for applying the nickel-coated carbonate to cathode 

bases by electrophoresis was developed by M. Hanes8 using a nickel 
nitrate activator. Diodes were made from six cathodes coated by this 
technique. These were processed by the standard technique and the 
results are shown in Fig. 9. These results are essentially the same as 
those obtained by other coating techniques and demonstrate that the 
nickel nitrate used as an activator in the electrophoresis process does 
not have an appreciable deleterious effect on the emission. This ap­
proach could prove useful in cases in which spray coating proved 
difficult, such as on very large radiused cathodes or filaments. 

3.2.6 Dependence on the Base Alloy 
Fig. 10 shows the results of two batches of six diodes based on two 

different cathode alloys. One group is on the alloy, used throughout 
the program, 0.1 percent zirconium/nickel the other is on a com­
mercial alloy called "RM No.8" which is essentially a magnesium/ 
nickel alloy. The latter alloy is quite active. As expected, the "RM No. 
8" activity is higher than the zirconium/nickel activity early in life 
since the former produces large initial amounts of reducing agent. 
Eventually, after approximately 1000 hours, the tubes are completely 
activated and give essentially the same result. Choice of base alloy 

800 

~ 750 
::J 
f-
<{ 

ffi 700 
[L 

::2 
w 
f- 650 

o 
g 600 

550 
2. 4 

-~ / V 1\ V- \ 
~ 

6 8 102 2 4 6 8 103 2. 4 6 8 104 

TIME IN HOURS 
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Fig. 10 - The effect of the base alloy. 

would, therefore, normally be made on the basis of desired life, since 
high initial activity is reflected in shortened lifetimes. 

3.2.7 The Effect of Processing 

Fig. 11 shows the results of three groups of six diodes each, pro­
cessed by different techniques. One set is processed by the standard 
technique already described. Another group marked "matrix," was 
processed according to a schedule originally developed for a nickel 
matrix cathode which features activation at 1050 0 B for 20 minutes. 
The detailed schedule is given in Appendix B. The third group marked 
"standard and bake" used the standard processing up to the point at 
which dc voltage had been applied. The dc voltage was turned off after 
about one hour and the cathode temperature reduced to approximately 
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750 0 B. The tubes were then replaced in the oven and baked at 425°C 
for an additional 16 hours. The filaments were then turned off, the 
getters flashed, and the tubes pinched off. 

The matrix processing results in tubes of much higher activity than 
either of the other processes; however, the rebake results in tubes of 
higher activity than the standard processing. In the case of standard 
plus bake, the substantial improvement in activity is attributed to 
reduction in "diode effects" such as gas on the anode. A rebake after 
the standard processing technique drives off a large amount of this 
gas and results in cathodes of higher activity, though this effect 
would not be so pronounced in an open structure. Matrix processing 
also achieves this by heating the anode to much higher temperatures 
than are encountered during the standard processing technique. 
Whether the cathodes processed by the matrix technique are inherently 
better than those processed by the standard technique other than be­
cause of diode effects is not clear. It is certainly evident that the 
matrix technique has no great detrimental effect on the cathode 
activity (as would be the case for an oxide cathode) and this con­
firms the function of the nickel network in inhibiting sintering. This 
property is of considerable practical importance. The fact that high 
temperatures are not detrimental means that temperature control 
during processing is no longer critical. More importantly, high tem­
perature processing means more rapid outgassing of the cathode and 
its environment and more rapid activation. Together, these advantages 
can lead to greatly reduced processing and aging time. 

3.2.8 Anode Power and Current Density 
Fig. 12 shows the results of three groups of six diodes each at dif­

ferent anode powers and current densities. All diodes were processed 
by standard technique and placed on life at 8000 B. One group was 
set at 0.3 amp/cm2 with 0.9 watts anode dissipation. A second group 
was at 0.3 amp/cm2 and 1.8 watts anode dissipation. A third group 
was set at 0.6 amp/cm2 and three watts anode dissipation. These anode 
powers and current densities were achieved by varying the voltage and 
the cathode-anode spacing. In the two groups operating at 0.3 amp/ 
cm2

, the higher the anode power, the lower the activity. This is due 
to outgassing of the anode and represents a "diode effect," as men­
tioned in the previous section. The third group, operating at twice the 
current density and at higher anode power has the highest activity 
level of all. This indicates that high current density per se is bene-
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Fig. 12 - The effect of anode power and current density. 

ficial to CPC activity and in this case was apparently sufficient to 
overcome even the effects of a higher power level on the anode. This 
activity enhancement by higher current density is probably a result 
of electrolytic activation. This effect will be discussed further in 
Section 4.3. 

3.2.9 The Effect ot Breaking the Coated Carbonates 

As discussed above, we postulate that a large proportion of the 
barium atoms in the top layer of the cathode coating arrive there 
by a process of diffusion through the pores of the intervening coating. 
Upon arrival, they must contact an oxide particle to be useful as 
donor precursors. A continuous nickel film surrounding these particles 
would obstruct entry of the barium atoms into the oxide lattice and 
make the effective donor production rate low. It is reasonable to sup­
pose that during the breakdown, (BaC03 ~ Baa + CO2 ) numerous 
fractures occur in the nickel film originally placed on the carbonate 
particles. These would be sites through which donor precursors could 
enter the surface particles. 

If the coated particles are fractured by milling, the area of exposed 
oxide would be substantially larger and the number of Ba atoms 
absorbed might be expected to be higher. At low current densities, 
where donor depletion effects are insignificant, one would prefer the 
extreme configuration-the classic oxide cathode. At intermediate 
current densities, an optimum degree of fracture should be observed. 
We have shown this at 0.3 amp/cm2 by ball milling the coated carbo­
nate particles for 20 to 40 hours to fracture them and increase the 
exposed carbonate area. The results of these experiments are shown in 
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Fig. 13. The 20-hour rolling yields the highest activity level; the 40-
hour rolling has caused some degradation. These rolled particles would 
not be expected to have as good high current density properties since 
the nickel network will be less complete. 

3.2.10 The Effect of Using Double or Triple Carbonates 
Fig. 14 shows the curves for two groups of six diodes prepared from 

nickel-coated double and nickel-coated triple carbonates, respectively, 
and processed by the standard technique. Both have the same amount 
of nickel in the coating. Obviously, the triple carbonates give much 
higher activity levels. Since one would expect the advantages due to 
the presence of nickel films to be common to any active oxide configu­
ration, further experiments have been initiated. 
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3.2.11 High Current Density Behavior 

The test diode used showed significant "diode effects" at current 
densities above approximately 0.5 amps/cm2, and these were pro­
nounced around 1 amp/cm2. These effects are difficult to analyze and 
assign, and in proving the ability of the cathode to withstand current 
drain up to 1 amp/cm::! it was necessary to rely on the IR dip 
characterization previously described.7 The validity of this approach 
can be illustrated by the following example. When cathodes were 
operated at 810°0 and 0.6 amps/cm2 in the diode, classic 12/3 vs V ac­
tivity plots entered the "knee" into temperature limited emission below 
the operating voltage. However, IR dip temperatures remained con­
stant with time, and < 700°0, implying that space-charge limited 
operation at 0.6 amps/cm2 should be attained near 700°0 in a "clean" 
structure. When the cathode was used in a traveling-wave tube oper­
ating at 0.6 amps/cm2, the absence of anode effects allowed space­
charge limited operation at temperatures as low as 700°0, and life is 
currently beyond 7000 hrs. with no sign of deterioration. 

Fig. 15 illustrates the variation in IR dip temperature with time 
for a group of six diodes operated at 810°0, all at identical anode 
voltages, but with diode effects causing variations in available current 
between 0.7 and 1.0 amps/cm2. Stability out to 25,000 hrs. is demon­
strated, with a 100°0 margin between the operating temperature and 
the maximum IR dip temperature observed. 

IV. LIFE EXPECTANCY 

This section describes evidence that the mechanism of operation and 
the life limiting factors of the OPO are similar to those of an oxide 
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cathode operated in a low current density regime where donor deple­
tion effects are insignificant. Coating depletion and reducing agent 
arrival rate are demonstrated to be life determining processes. The 
theoretical basis for life prediction and its experimental verification 
are also included. 

4.1 Activation.M echanism 

In the studies described here, the zirconium/nickel base alloy was 
given an extensive wet hydrogen firing to reduce the initial zirconium 
arrival rate at the coating base interface and to reduce the total carbon 
content and hence its coating depletion effects (cf. Section 4.2). It is 
presumed that the cathode actIvation, defined as the increase in 
donors in the coating to a maximum level of cathode activity, involves 
an equilibrium between (i) the production of donors by zirconium at a 
relatively low and constant rate over the activation time, (ii) the pro­
duction of donors by carbon at a relatively high initial rate which 
then falls off exponentially over a few hundred hours, and (iii) the 
loss of donors or reducing agent by oxidation in the initially poor 
environment which will improve with the arrival of reducing agents 
and the consequent irreversible consumption of oxidizing agents. 

To demonstrate this and to show that zirconium is the ultimate 
activator during the life of the cathode, two cathodes were processed, 
one on 0.1 percent zirconium nickel and the other on a "pure" nickel 
similar in all impurity levels other than the omission of zirconium. 
These were set to operate at 850 0 B to accentuate the effect. Both 
alloys had 0.002 percent carbon. The results are shown in Fig. 16. The 
"pure" nickel alloy was quite active initially but declined very rapidly. 
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It reached end-of-life at about the same point as the maximum in the 
zirconium nickel curve. It is reasonable to assume that the particular 
balance of the three factors mentioned above made carbon the domi­
nant activator initially; as this was exhausted the cathode began to 
show signs of deactivation in both cases. During this period, oxidizing 
agents were scavenged to a sufficient degree to allow the relatively low 
zirconium arrival rate to build up the donor concentration beyond 
200 hours-eventually completing the activation. 

It should be emphasized that much faster activation can readily be 
obtained by such techniques as reducing or omitting the wet hydrogen 
pre firing of the cathode base. However, for maximum life in a system 
limited by eventual coating depletion, excessive initial donor produc­
tion is undesirable. In such a case, the minimum donor production 
rate consistent with the tube meeting operating specifications as it 
leaves the processing station would normally be preferred. 

4.2 Coating Depletion 

If the arrival rate of reducing agent at the base remains above the 
emission cut off rate9 for the operating current density for a sufficient 
time, the life of the cathode will be limited by coating depletion. 
Coating depletion is the result of several effects, some of which we 
can only estimate: 

(i) Reaction of the coating with the reducing agent in the base. 
This can be calculated from the well-known diffusion equations. In­
cluded here must be the effect of prefiring on the zirconium and carbon 
profiles and the depletion during the activation cycle. 

(ii) Evaporation of the coating at the operating temperature. BaO 
is the only major active component of the coating which evaporates at 
an appreciable rate. Since coprecipitated carbonates were used, the 
oxides form mixed crystals, and the vapor pressure of the Baa will 
be reduced. As an approximation we have assumed that the vapor 
pressure of Baa will be proportional to the mole fraction of Baa in 
the mixed crystal. Furthermore, to be conservative, we have not as­
sumed that the vapor pressure decreases because of the decreasing net 
mole fraction of Baa as it evaporates. This is partially valid because 
many individual crystallites are involved (i.e., a large surface area) 
but the vapor pressure must decrease to some extent later in life. 
Therefore, the results of these calculations must be considered some­
what pessimistic as life considerations. Fig. 17 shows the results of a 
coating depletion calculation for cathodes given standard processing 
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Fig. 17 - Calculation of coating depletion at 850 0 B on alloy CA703. Coating: 
1.0g/cc, 0.6 mil thick. 

and accelerated through life at 850 oB. They were sprayed 1.0 glcc, 
0.6-mil thick on cathodes based on an alloy which had 0.1 percent Zr 
and 0.002 percent carbon. The curve marked "reaction" is the percent 
depletion due to carbon and zirconium. The curve marked "evapora­
tion" is the corresponding percent depletion by evaporation. The 
latter curve has a point marked "100 percent BaO depletion." This 
assumes that the "reaction" proceeds at an equal rate for BaO and 
SrO and the "100 percent BaO depletion" point is reached when the 
sum of 112 the "reaction" curve plus the evaporation curve equals the 
total amount of BaO. From this point on, the cathode is assumed to 
be pure BrO. Fig. 18 shows the IR dip temperatures for these six 
diodes. It can be seen that the agreement between theory and experi­
ment is good. 

Fig. 19 shows similar results on a set of diodes lifed at SOooB. The 
uncertainty shown results from assuming the thickness to be 0.6 ± 
0.1 mils. This gives some indication of the expected errors. As mentioned 
above, the calculation is somewhat pessimistic; therefore, the fact 
that the diodes run somewhat longer than the calculation predicts is 
not unexpected. 

4.3 Electrolytic Donor Production 

If the surface donor depletion under the influence of current in­
duced emf is inhibited by a nickel network in the coating, the effect 



2398 THE BELL SYSTEM TECHNICAL ,JOURNAL, DECEMBER 1967 

900 

~ 850 
::::> 

~ 
ffi 800 
a. 
::E 
UJ 

I- 750 
a. 
o 
~ 700 

650 
2 4 

/ 

V + 
I V 100%1 DEPLETED 

./ + I ---------./ i I 
BaO DEPLETED 

6 8 102 2 4 2 4 8 104 
TIME IN HOURS 

Fig. 18 - Coating depletion-comparison between theory and experiment at 
850°B. 

of electrolytic activation should be enhanced because donors will be 
trapped in the surface layers. We have observed the effect of electro­
lytic activation several ways: 

(i) By activity measurement on a set of eight diodes using the IR 
dip technique with 5, 50, and 500 fJ-sec pulses at 0.5 amp/cm2

• The 
duty cycle was maintained the same for each pulse length by varying 
the pulse frequency. In this way, the anode power level remained 
constant. The results are shown in Table III. The enhancement in 
activity with longer pulses is caused by the increasing concentration of 
donors induced in the coating by electrolysis. 

(ii) With the IR dip technique, the work function, If, may be deter-
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TABLE III-AVERAGE ACTIVITY MEASUREMENT ON EIGHT DIODES 

AS A FUNCTION OF PULSE LENGTH FOR CONSTANT DUTY CYCLE 

Pulse Length (t-tsec) 
IR dip Temperature, °C 

5 
725 

50 
681 

500 
672 

mined as a function of temperature independent of the Richardson 
constant A.7 When this is done for dc operation and for 500-micro­
second pulse operation on a CPO cathode at 0.3 amp/cm2

, the result 
shown in Fig. 20 was obtained. As the temperature increases, the donor 
concentration decreases because evaporation loss increases faster than 
the production rate. Since electrolysis augments production more in 
dc operation than in pulse operation, if remains constant over this 
temperature range for dc operation whereas it increases for the pulse 
operation. 

(iii) By the apparent lowering of the emission cut-off rate as will 
be discussed in the next section. 

4.4 Emission Cut-Off Rate, ECOR 
ECOR is defined as the minimum donor production rate from the 

reactions of reducing agents in the base which is necessary to sustain 
emission at a given level. This rate varies with current density be­
cause: (i) the number of donors required in the cathode surface is a 
function of current density and temperature, and (ii) at current 
densities above about 0.2 amp/cm2

, electrolysis of the coating adds 
to the donor concentration. Data shown by Kern9 for the ECOR of 
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oxide cathodes indicates that it varies rapidly with current density. 
His highest value is 1 X 10-8 fLmoles/cm2/sec at 200 ma/cm2. 

ECOR for the CPC at medium current densities would be expected 
to be lower than for the oxide cathode because electrolysis will con­
tribute to the net concentration of donors in the surface. Experimental 
results to date have established an upper limit on ECOR for coated 
powder cathodes at current densities up to 1 amp/cm2 as 1.5 X 10-8 

fLmoles/cm2/sec confirming the stability of the CPC in this operating 
range. 

4.5 Typical Lite Calculation 

In Fig. 21 we have plotted, for a typical cathode configuration, the 
barium production rate at 800°C as a result of zirconium diffusion in 
micromoles/cm2/sec vs time in hours for a cathode alloy of 0.07 ± 
0.01 percent zirconium, and for two different thicknesses of base metal. 
The higher percent zirconium results in a higher barium production 
rate. Thicker base metals yield the same barium production rates ex­
cept that the "knee" occurs further out in time. For the O.l-inch thick 
base the knee does not occur in the time interval shown. Since the 
ECOR is less than 1.5 X 10-8 JLmoles/cm2/sec a lower limit on the 
lifetime set by this mechanism is of the order 100,000 hours for the 
0.06-inch thickness, and will increase with base thickness. 

Coating depletion calculations have already been discussed. Fig. 22 
shows the results of such a calculation on a typical cathode. The 
cathode considered is based on a 100 mil thick 0.08 percent zirconium, 
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0.001 percent C alloy, sprayed with coated double carbonate at 1.1 
glcc, 1.5 mil thick. The base alloy has been pretreated in wet H2 at 
10500 e for 112 hour. The cathode is activated by the schedule; 800 0 B, 
1 hour; 950 0 B, 6 minutes; 850 0 B, 17 hours, and operated at 800 0 e. 
Following the analysis described in Section 4.2, BaO is 100 percent 
depleted after 40,000 hours. It should be emphasized that while opera­
tion at 800 0 e is reasonable for diodes, tubes such as TWT's with more 
open structures can normally run at sUbstantially lower temperatures, 
thus improving life expectancy still further. 

4.6 Life Prediction 

The lifetime of a typical ep cathode operating at less than 1 amp/cm2 

on a 0.10 inch thick 0.07 ± 0.01 percent zirconium/Ni at 800 0 e is 
therefore limited not by ECOR but by coating depletion, and in the 
typical examples described, BaO would be 100 percent depleted in 
>40,000 hours. The assumptions made in this prediction are supported 
by: (i) The failure of groups of diodes, on schedule, (Figs. 18 and 19) 
and (ii) 28 diodes currently on life, beyond 25,000 hours. 

Y. SUMMARY 

Examination of the theory of operation of the oxide cathode sug­
gests that in order to improve the high current density properties of 
oxide cathodes, the movement of donors under the influence of cur-
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rent-induced emf's should be inhibited. To do this a method of coating 
each individual particle of carbonate powder with a thin nickel film 
has been successfully developed. Carbonates coated in this manner 
have been used to prepare cathodes by conventional techniques. 

Extensive diode experimentsIPade mainly at 0.3 amps/cm2 have 
outlined the general character of such cathodes and the major factors 
affecting their performance. Definitive comparisons of maximum per­
formance with other cathode types were in general not attempted 
because diode effects were shown to obscure the interpretation of 
deliberate variations in cathode parameters at high current densities. 

It has been shown that the new coating can be prepared reproduci­
bly. The nickel film around each particle inhibits sintering of the 
oxide, enhances the beneficial effects of electrolytic activation, and 
allows operation of the cathode at temperatures in the range 700-
800°C over lifetimes which are essentially independent of the current 
density up to 1 amp/cm2. The cathode has been demonstrated to 
activate quickly and efficiently through high temperature processing 
schedules. Faster outgassing of the structure is therefore possible, and 
faster activation can be achieved. Direct substitution of CPC for 
oxide cathodes in production sequences is practical, since conventional 
activation schedules may also be used. In this case, the tolerance of 
the cathode to accidental overheating is helpful. 

Activation and life determining mechanisms operative in the CPC 
have been defined as reducing agent diffusion and coating depletion, 
with the latter determining end-of-life in most practical configura­
tions. Good agreement was obtained between theory and experiment 
for coating depletion, and a lower limit on reducing agent arrival 
rate of 1.5 X 10-8 p.moles/cm2/sec has been established for current 
densities up to 1 amp/cm2. On this basis lifetimes of 40,000 to 50,000 
hours are entirely feasible for CPC operating up to 1 amp/cm2

• 

The coated powder cathode, therefore, appears to combine many of 
the advantages of the standard oxide cathode with those of the matrix 
type. The system variables have been thoroughly explored, indicating 
its utility, particularly in the operating range 0.2 to 1.0 amps/cm2, 
where diode life tests have presently reached 25,000 hours. 
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APPENDIX A 

Standard Cathode Breakdown and Activation Schedule 

(OB Represents Optical Pyrometer Measurement on Cathode Base) 

1. Bake out 16 hours at 425°C. 
2. Outgas the getter. 
3. Outgas the heater by slowly raIsmg the cathode temperature to 

ca. 500°C keeping the pressure below 5 X 10-5 torr on the getter 
ion pump. 

4. Raise the cathode temperature as rapidly as possible to 800 0 B 
keeping the pressure < 5 X 10-5 torr. 

5. Hold until P ~ 10-7 torr. 
6. Raise the cathode temperature rapidly to 950 0 B and hold for five 

minutes then lower the temperature to 850 0 B. 
7. Apply 25 Vdc and age ca. one hour. 
8. Turn off anode voltage and heater voltage and flash getter. Pinch 

off tube within 30 second.:; after getter flash. 

APPENDIX B 

High Temperature Processing Schedule 

(OB Represents Optical Pyrometer Measurement on Cathode Base) 

1. Follow the standard schedule (Appendix A) through step 3. 
2. Raise the cathode temperature as rapidly as possible to 850 0 B 

keeping the pressure < 5 X 10-5 torr on the getter ion pump. 
3. Hold until P ~ 10-7 torr. 
4. Rise the cathode temperature rapidly to 10500 B and hold for 20 

minutes. 
5. Apply dc voltage to the anode to draw 1 amp/cm2 (40 rnA). 
6. When the activity reaches 1 amp/cm2 (usually immediately) lower 

the cathode temperature in 50° steps holding at each step until 
1 amp/ cm2 is attained. Continue until 8500 B is reached. 
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7. Turn off anode and heater voltage and flash getters. Pinch off the 
tube within 30 seconds after the getter flash. 
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Contraction Maps and Equivalent 
Lillearization* 

By J. M. HOLTZMAN 

(Manuscript received July 26, 1967) 

This study is primarily concerned with the question: If the method of 
equivalent linearization indicates the existence of a periodic solution, is 
there actually a periodic solution near the approximation of equivalent 
linearization? To answer this question, we use a modification of the con­
traction mapping fixed point theorem. We discuss applications to differential 
equations and difference-differential equations (with forcing functions). 
Also, we show that our use of contraction maps is not applicable (without 
modification) to autonomous systems because the mapping evaluated in 
the neighborhood of a periodic solution to an autonomous system is not a 
contraction in a space of periodic functions. 

r. INTRODUCTION 

The method of equivalent linearization is a most valuable tech­
nique to investigate nonlinear phenomena, particularly nonlinear 
oscillations. It has its roots in the method of Krylov and Bogoliubov 
and is related to (or equivalent to, depending on the specific defini­
tions) the method of harmonic balance, Galerkin's method, and the 
describing function method used by control engineers. The purpose 
of the present study is to develop a new technique for investigating 
the method of equivalent linearization. 

We shall be primarily concerned with the following question: If 
the method of equivalent linearization indicates the existence of a 
periodic solution Xo, is there actually a periodic solution near x o? To 
answer this question we first introduce a convenient modification of 
the contraction mapping fixed point theorem which is actually more 
general than just applicable to the question posed above.t We apply 

* Taken from a dissertation submitted to the Faculty of the Polytechnic In­
stitute of Brooklyn in partial fulfillment of the requirements for the degree of 
Doctor of Philosophy (System Science), 1967. 

t Appendix A contains some reading suggestions for engineers interested in 
this work but who are not familiar with the mathematics used. 

2405 
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our approach to systems described by nonautonomous differential 
equations. Then we show that there is no essential difficulty in also 
handling difference-differential equations. 

We shall try to clearly indicate what our method can and cannot do. 
The discussion of autonomous systems is particularly important in 
this regard. The relation of the present study to previous work is dis­
cussed in Section VIII. 

II. THE METHOD OF EQUIVALENT LINEARIZATION* 

Consider the following vector ~ifferential equation 

:t(t) = t(x(t) , t) = A(t)x(t) + net, x(t», (1) 

where 

t(x, t) = t(x, t + T) (2) 

for all (x, t) of interest. This, of course, includes the case of f (x, t) 
independent of t, i.e., 

I(x, t) = I(x). (3) 

We shall be concerned with the situation that permits an equivalent 
representation of (1) : 

x = LN(x) , (4) 

where x now represents a vector function, L is a linear operator, and 
N is a nonlinear operator (these terms will be made more precise 
later). If it is assumed that LN (x) has the following Fourier series, 

LN(x)(t) 1'0./ ~o + ~ (ak cos k;- t + bk sin k;- t). (5) 

Then we define LN(x) as follows: 

- 271". 271" 
LN(x)(t) = a1 cos T t + b1 sm T t. (6) 

That is, L extracts the fundamental component of the Fourier series. 
The method of equivalent linearization seeks a solution of the equation 

x = LN(x). (7) 

This study will be primarily concerned with the following problem: 

* See Minorsky/ p. 350, for a discussion of the relationship of the method of 
equivalent linearization to the method of Krylov and Bogoliubov. 
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Given an Xo satisfying (7), is there an x* satisfying (4) and if there is, 
how are xo, and x* related? 

Note that (4) is a functional relation more general than (1) and 
our method will be correspondingly applicable to a more general 
problem. 

The above discussion is now related to the method of describing 
functions* as commonly used by control engineers. They are con­
cerned with the feedback loop shown in Fig. 1. The linear operator L 

1-eL - J: • L-I __ n_--,~ H(wl 

Fig. 1-Feedback Loop. 

is represented in this case by a transfer function H(w) (see Kaplan4 
for a definition and discussion of transfer functions) and the nonlinear 
operator N is represented by a nonlinear function, 

y = n(ei - x), 

where ei is an input function. The engineer replaces the nonlinear 
function n by its describing function which is defined loosely as the 
complex ratio of the fundamental component of the output to a 
sinusoidal input. That is, ift 

n(A sin wt) = f ak sin kwt + bk cos kwt (w = 2T7r) 
k-l ~ 

then the describing function of n is 

A 

Note that while the describing function may be dependent on both A 
and w, it is still a relatively simple matter to replace n by its describ-

* For fnrther disr.ussion of the use of describing functions by engineers see 
e.g., Truxal2 or Graham and Mr Ruer.3 They give further references and historical 
barkgrouncl. The desrrihing funrtion method is assoriated with the names of 
Tustin, Goldfarb, Oppelt, Kochenberger, Dutilh, and Nichols and Kreezer. Also 
see Minorsky/ Chap. 17 for a discussion of the work of Theodorchik and Bla­
quiere. The work of E. C. Johnson is discussed in Ref. 2. 

t The constant term is assumed zero. 



2408 THE BELL SYSTEM TECHNICAL JOURNAL, D~C~MB~R 1067 

ing function, then to consider it as a "linear" (or quasi-linear) op­
erator and then use standard techniques for linear systems. Of course, 
such a procedure should be mathematically justified and, in fact, that 
is the purpose of this study. 

Before we embark on our investigation, it is well to review the argu­
ments used by engineers in their justification of the method. These 
arguments seem to be plausible and they are suggestive of what may 
be expected of a more rigorous investigation. If it is assumed that the 
combination of nand H(w) operating on a sinusoidal function is pri­
marily fundamental (i.e., the harmonics are "small" compared to the 
fundamental) then it would be expected that the describing function 
method might not be too inaccurate. The harmonics will be small if 
one or both of the following are satisfied: 

(i) the nonlinearity n is "not too nonlinear" 
(ii) the transfer function H(w) is low-pass, i.e., it attenuates har­

monics much more than the fundamental. (It is assumed that no sub­
harmonics arise). 

,Ve shall use Duffing's equation, 

fj + ay + by3 = f cos w t, 

as a running example to illustrate the methods discussed. We show 
here how this differential equation corresponds to a feedback control 
problem and then make no further explicit reference to feedback sys­
tems. The appropriate feedback system is shown in Fig. 2. 

The next section contains an approach to a problem much more 
general than the problem of equivalent linearization posed in this 
section. The remainder of the study will be primarily devoted to 
adapting the more general approach to the specific problem of equi­
valent linearization. 

It may be noted that we are not getting more abstract in the next 
section just for the sake of abstraction. It should be clear to the reader 

H(w) 

f cos Wo t y 

Fig. 2 - Feedback equivalent of Duffing's equation. 
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that the method of equivalent linearization leads to an integro-differ­
ential equation rather than an ordinary differential equation because 
Fourier coefficients are determined by integration (this is also pointed 
out in Bass5 , p. 898). ",Ve then cannot expect the theory of ordinary 
differential equations to answer our questions and we are led quite 
naturally to considering more general equations. In particular, the 
theory of operator equations in a Banach space is shown to provide 
the tools appropriate to the task. As an added bonus for the abstrac­
tion, we develop an approach which is applicable to problems unre­
lated to equivalent linearization. 

III. THE USE OF THE CONTRACTION MAPPING FIXED POINT THEOREM WITH 

DERIVATIVES IN A BANACH SPACE 

Let X be a complete metric space (with metric d) containing the 
the closed set 0 and let P map 0 into itself. P is a contraction map­
ping if 

d(P(x) , P(x'» ~ exd(x, x') (x, x' t Q) (8) 

with ex < 1. The contraction mapping theorem t states that if P is 
a contraction mapping then there is a unique x* t Q such that x* = P(x*), 
i.e., x* is a fixed point of the operation P. x* is the limit of a sequence 
{xn} where 

(9) 

and Xo is any clement of o. Furthermore, 

d( ) < d(x 1 , xo) = d(P(xo) , xo) 
Xn ,Xo = 1 - ex 1 - ex n = 1,2, .... (10) 

In order to use the contraction mapping fixed point theorem it has 
to be shown that some neighborhood of Xo is mapped into itself and 
that in this neighborhood the operation is contracting. Our approach 
will be simultaneously to determine a set containing Xo which is mapped 
into itself along with the contraction constant ex for the operation on 
that set. This is possible because of relationship (10). The use of opera­
tor derivatives will be seen to be convenient. The method will result 
in a relation in ex for which it is desired to find solutions with ex t [0, 1). 

The following is proven in Kantorovich and Akilov6 (p. 661). 

t See Kantorovich and Akilov,6 p. 627. 
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If X is a Banach space and P maps a convex closed subset n of X 
into itself and if P has a derivative* at every point of 0, then 

sup II PI(x) II = a < 1 (11) 
xdl 

implies that P is a contraction on n (and thus, there is a unique fixed 
point of P in n). 

The obj ect then is to find a neighborhood of Xo mapped into itself 
and in which the norm of the derivative is less than one. The follow­
ing simple theorem is a help in this direction. 

Theorem: Let B be a Banach space. F maps B into itself and Xo I: B. 
It is assumed that 

(i) F has a derivative at all x I: B 
(ii) There is a nondecreasing function g such that if x I: B, then 

II F'(X) II ~ g(11 x - XO II) 
(iii) There is an a I: [0, 1) such that 

where 

k ~ II F(xo) - XO II 
Then there is a unique x* I: n such that 

x* = F(x*) , 

where 

!l ~ {x: x. B, II x - XO II ;,; 1 ~ J 
Proof: We will show that II F'(x) \I ~ a for all x I: n and that F maps n 
into itself and thus, there is a unique fixed point in n. If x I: n, we have 
from (ii) 

II F'(x) II ~ g(11 :e - XO II) 

~ o(_k ) 
1 - a 

~ a. 

* See Kantorovich and Akilov,6 chap. XVII, for a general discussion of dif­
ferentiation in Banach spaces. For convenience/Appendix B of this study repeats 
the definitions. 
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F maps Q into itself because if x £ Q, then 

II F(x) - XO II ~ II F(x) - F(xo) II + II F(xo) - XO II 
~allx-xolll+k 

k 
~a--+k - I-a 

lc 
= 1 - a' 
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"'tVe further discuss the use of the contraction mapping theorem in 
Ref. 7. This modification of the contraction map theorem is less gen­
eral than some other modifications but is simpler to apply when ap­
plicable. 

IV. THE CHOICE 0]' BANACH SPACE 

In order to use the result of the previous section, an appropriate 
Banach space must be chosen. For most of our investigation it will 
be found convenient to use the space of continuous periodic functions. 
Another space worth considering is the space of periodic functions 
square-integrable over a period. Before discussing the desirable char­
acteristics of this space, a restrictive factor will be mentioned. The 
nonlinear operator of interest y = N (x) is often defined by the ordi­
nary function (satisfying the Caratheodory condition) 

yet) = net, x(t)). (12) 

A necessary condition that this operation map L 2 (O, T) into L 2 (O, T) 
is (see Krasnosel'skii,8 p. 27) that for some b > ° and some aCt) £ L 2 (O, T) 

I net, u) I ~ aCt) + b I u I t £JO, T]. (13) 

It is thus seen that the allowable nonlinearities are quite restricted. 
This is, in fact, the reason the present investigation will be carried out 
in a space of continuous functions where the requirement that a 
function map a continuous function into a continuous function is 
much more convenient. It should be noted, however, that in some 
cases one may focus attention on some subset of the Banach space 
and less restrictive requirements on the nonlinearities might be im­
posed. Also, for many control engineering problems the nonlinearities 
are Lipschitzian and the problems can be attacked in L2 • . 

The attractive feature of L2 is that Fourier series results can be 
fully utilized (in particular, Parseval's relation). More generally, L2 
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is a separable i
< Hilbert space with many useful properties and the 

trigonometric functions are a complete orthogonal system in L 2 • The 
norms can often be conveniently evaluated in terms of quantities as­
sociated with the "transfer function" or "frequency response". For 
example, L may be defined by the set of complex numbers {. . . , L 2 , 

L_1, Lo, L 1 , L 2 , ••• } (i.e., the transfer function evaluated at the fun­
damental and harmonic frequencies).t A simple sufficient condition for 
L to map L2 into itself is that 

sup I Ln I < 00. 

The evaluation of II LN (xo) - :ro II may be done as follows: 

II LN(xo) - XO II II LN(xo) - LN(xo) II 
~ II L - L II· II N(xo) II 

II L II = sup I Ln I· 
n 

The last relationship is proven in Appendix B of Sandberg.10 

Despite the above mentioned attractive features of L 2 , we chose 
to work in the space of continuous functions primarily because of the 
first-mentioned restriction placed on the nonlinearities in L 2 • Also, 
the sup norm (uniform norm) in the space of continuous functions 
seems more appropriate in error analysis (the error between an ap­
proximation and an exact solution) than does the L2 norm. The sup 
norm provides a bound on the magnitude of the error while the L2 
norm gives the integral of the square of the error. 

Section V will give the details of working in the space of continuous 
periodic functions. First (in Section 5.1) an integral equation equi­
valent to the differential equation of interest will be derived. Then 
in Section 5.2, the derivatives will be determined and finally in Sec­
tion 5.3, the quantity II F (xo) - Xo II will be evaluated. Application of 
the results will then be seen to be rather straightforward. 

Y. APPLICATION TO DIFFERENTIAL EQUATIONS 

5.1 The Equivalent Integral Equation 

Halanayll shows how to convert the quasi-linear differential equa­
tion 

* It is, of course, assumed that the measure is Lebesgue. Then L~ is s-eparable; 
see Kolmogorov and Fomin/l Vol. II, p. 88. 

t No confusion should arise because of the douhle usc hf'fc of the symbol L~. 
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dx(t) di- = A(t)x(t) + net, xU» (14) 

into an integral equation which is convenient for examination of pe­
riodic solutions. First, consider 

~l~~~t) = A(t)x(t) + J(t), (15) 

where A (t) and f (t) are both continuous and periodic of period 'T. 
The following theorem is proven in Halanay,l1 p. 223. 

'Theorem,: A necessary and sufficient condition in order that, for any 
periodic function f (t) of period T, system, (15) admits periodic solu­
tions of period T is that the corresponding homogeneous system 

dy(t) = A(t)y(t) 
dt 

does not adntit a non-trivial periodic solution of period 'T. 

(16) 

It is to be noted that if Y(t) is the principal fundamental solution 
matrix for (16) then the existence of the inverse of [1 - Y('T)]* is 
equivalent to the non-existence of a non-trivial periodic solution (of 
period 'T) to (16). Then the following proposition is proved in 
Halanay,l1 p. 225. 

Proposition: If [I - Y ('T)] -1 exists, the unique periodic solution of 
the system (15) can be put in the form 

x(t) = 1'1' G(t, s)f(s) ds, 
o 

where 

GCt, s) = {Y(t)[I - Y('T)r
1 
Y-l(S) , 

yet + 'T)[I - Y('T)r 1 Y-l(S), 

O~s~t~'T 

o ~ t < s ~ T. 

(17) 

(18) 

Since this reformulation into an integral equation is quite important, 
a sketch of the proof given in Halanay11 will be given here. Solution 
of (15) is 

x(t) = Y(t)x(O) + 1t yet) y- 1(s)f(s) ds. (19) 

* I is the identity matrix. 
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For periodicity, 

x(T) = x(O) Y(T)x(O) + iT YeT) y-1(s)f(s) ds (20) 

or 

[1 - Y(T)]x(O) = i 7' YeT) y-1(s)f(s) ds. (21) 

Since [1 - Y(T)] is assumed invertible, we can solve for xeD) and get 

x(t) = Y(t)[1 - Y(T)r1 iT YeT) y-1(s)f(s) ds 

+ it Yet) y-1(s)f(s) ds. (22) 

The form of G (t, s) given in the statement of the proposition results 
from algebraic manipulation of (22). 

Now suppose that 

dx(t) _ A(t)x(t) + net, x(t» 
dt - (23) 

with A (t) and net, u) both being periodic of period T and [1 - Y (T)] 
invertible. It is assumed that n(t, x(t» is continuous if x(t) is con­
tinuous. Then, from the previous discussion, if we can find a continu­
ous periodic x of period T satisfying 

x(t) = iT G(t, s)n(s, xes»~ ds, (24)* 

we have a periodic solution of (23). (It is easily shown that such an 
x satisfies (23) ; see Halanay,ll p. 237). 

The problem is thus reduced to finding a continuous solution of a 
nonlinear integral equation. We need only consider the interval [0, T] 
because G(t, s) was constructed so that x(O) = x(T). 

5.2 Computation of Derivatives 

It is shown here how to evaluate the Frechet derivativet of the 

* The nonlinear integral operation represented by the right hand of (24) is of 
the form sometimes referred to as a Hammerstein operator which is a special case of 
Uryson's operator defined by Ici K(t, s, xes)) ds (see Krasnosel'skii,8 pp. 32, 46). 

t The Frechet derivative is actually more than what is required. The Gateaux 
derivative (which does not require uniform convergence) would suffice for much 
of what follows. However, since the convergence is indeed uniform in most cases 
of interest and since the uniformity is easy to demonstrate, we shall derive the 
Frechet derivative. Furthermore, Frechet derivatives are needed in Section VI. 
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mapping?J = P (x) defined by 

yet) = 11

' G(t, 8)n(s, xes»~ ds t.: [0, TJ. (25) 

This operation is assumed to map into itself the Banach space of 
real-valued n-vectors continuous on [0, T] with norm 

\I x \I = max max 1 Xi(t) I· (26) 
i=l. "',n t£lO,T) 

To determine the derivative of the operation y = F (x) it is con­
venient to express it as y =, LN (x), where N (x) is defined by the 
nonlinear function net, x(t)) and L is the linear integral operator. 
Then F' (xo) = LN' (xo) (see Kantorovich and Akilov,6 p. 659). Thus, 
consider the mapping y = N (x) defined by 

yet) = net, x(t) 

n1(t, xCt» 

nn(t, x(t» 

(27) 

It is assumed that net, x(t) is continuous whenever x(t) is continu­
ous on [0, T]. For simplicity, the derivative will be determined for 
the case of 

ni(t, x(t» = 0 i = 1, 2, ... ,n - 1 

nn(t, x(t) = p(t)h(x1(t» + r(t), 
(28) 

where pet) andr(t) are continuous functions of t with period T and 
h (u) is a twice continuously differentiable function of u. This special 
case which covers our examples may arise, for example, when the 
matrix differential equation is actually derived from a scalar differen­
tial equation. The more general case offers no other difficulties than 
much more complicated notation (e.g., one must deal with matrices 
of partial derivatives). 

The derivative operation z = N' (xo)x is defined by 

z(t) 

o 
o 

o 
p( t)h' (XOI (t) )Xl (t) 

(29) 



2416 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 196i 

where 

XO(t) = (XOl(t) , , •. ,Xon(t»T, 

(superscript T denotes transpose) and 

h'(Xo1(t» = dh(u) I . 

du U=XOI (t) 

To prove this, it must be shown that 

I ' N(xo + J.l.x) - N(xo) P'() 1m = Xo x, 
J.L-->O J.I. 

that is, 

I ' I p(t)h(XOl(t) + J.l.X1(t» - p(t)h(XOl(t) 1m max 
p.-->O I dO,T) J.I. 

(30) 

(31) 

- p(t)h'(x,,(t))x,(t) I = 0, (32) 

with that convergence being uniform with respect to all x with II x II = 
1. Since 

I p(t)h(x,,(t) + /lX~t)) - p(t)h(x,,(t)) - p(t)h'(xo,(t))x,(t) I = I p(t) I 

h(x01(t»+J.l.x1(t)h'(xo1(t» + (J.l.X~(t»2 h"(x()l(t)+ O(t)J.l.X1(t» -h(XOl(t» 

J.I. 

° < O(t) < 1 

I p(t) I-I ~ I-I x,(t) I' I h"(x",(i) + 8(t)llx,(t)) I 

I pet) I max I h"(z) I (for I J.I. I ~ 1 and II x II = 1), 
Z[z 

(33) 

where 

z = {z: z = w + v; W = xo1(t), t £ [0, TJ; I v I ~ 1} (34) 

the uniform convergence relationship is seen to be satisfied, 
To summarize the result, the first derivative operation y = F' (xo) x 
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is defined by 

o 
yet) = iT G(t, s) ds. (35) 

p(s)h' (XOl (S))Xl (s) 

Loosely speaking, the derivatives of the integral operators are ob­
tained by differentiating under the integral. 

5.:{ Evaluation 0(11 LN(xo) - Xo II 
A bound on II LN (xo) - Xo II is given here. The relationship 

II LN(xo) - Xo II ~ II LN(xo) II + II Xo II (36) 

is too gross an estimate. The evaluation is simplified if the following 
rela tion is used: 

LN(xo) - Xo = (L - L)N(xo). (37)* 

Recall that the operation L suppresses all frequency terms except 
the fundamental. 

Consider the same system as in Section 5.2 and assume that 

() ( ~ 271" • 271" 
P t h x1(t)) + ret) = ~ aK cos k T t + bK sm k T t. (38) 

and also, for simplicity, that A is a constant matrix. Then, 

II LN(xo) - Xo II 

= max Inax 117

' Gin(t, s) kt-z (aK cos If, 2
T

7I" S + bK sin k 2
T

7I" s) dsl 
i=l,"',n tt[O,T) ° 

5.4 Example 

Consider Duffing's equationt 

y + ay + by3 = f cos wt (a > 0). (40) 

Equivalent linearization indicates that 

y = A cos wt (41) 

* From this expression, it is seen that II LN (xo) - Xo Ilmay be regarded as a 
quantitative measure of characteristics (i) and (ii) mentioned in section II. 

t Duffing's equation is discussed in great detail in Stoker.12 Also see Graham and 
McRuer3 for a treatment of Duffing's equation as a feedback control problem. 
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with 

!b A 3 + (a - w2
) A - f = 0 

is an approximate solution of the equation. 
Letting 

x = [::1 

the corresponding vector differential equation is 

The fundamental solution matrix for 

y = L: ~lY 
is 

y(t) = co~ Va t _ Va' 
[ 

sin Va tj 

- Va sin Vat cos V~ t 
G (t, s) is given by 

G(t, s) 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

1 [Sin Va (~-t+s) ~ cos V~ (~-t+s)l 
2 sin (V; T) _ Va cos Va (~-t+s) sin Va (~-t+s) , 

o ~ s ~ t ~ T (49) 

1 [-Sin Va (~+t-s) ~ cos Va (~+t-s)l ' 
. (Va T). - -(T) ('P) 2 sm -2- - Va cos Va 2+t-s -sin Va 2+t-s 

o ~ t < s ~ T. 



EQUIVALENT LINEARIZATION 2419 

The integral operation of interest, y = F(x), is defined by 

yet) = iT G(t, s) [ 0 ] ds. (50) 
o f cos ws - bx~(s) 

The approximate solution (obtained from harmonic balance) is Xo, 
i.e., 

XO(t) = [XOl(t)] = [ A cos wt ] 
X02(t) -wA sin wt 

with wand A being related by (42). 
From Section 5.3 we have that 

II LN(xo) - Xo II ~ T ~~,~ t'~[~~T) I Gi2(t, 8) II b13 

I 

~ Te I b13 

I, 

where 

(51) 

(52) 

(53) 

The derivative operation z = F' (xo)x is given by (see Section 5.2) 

z(t) = iT G(t, s) [ 2
0 

] ds 
- 3bxOl (S)Xl (s) 

~(T [-G12(t, S)3bx:1(s) 011'X1(S)l ds. (54) 

- G22(t, s)3bxOl(S) 0 xis)J 

The norm of the derivative operation at an arbitrary point x (not 
necessarily at Xo as [Lbove) is evaluated as follows: 

1
7' 

II F'(x) II ~ ~~,~ t~O~;) 0 I Gi2(t, s)3bxi(s) I ds 

~ 3 I b I eT( max I x1(t) \)2 
t dO, T) 

~ 3 I b I eT( max I xo1(t) I + max I x1(t) - Xo1(t) \)2 
tdO,T) tdO,T) 

~ 3 I b I erp( I A I + II x - Xo II) 2. (55) 
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The above relation defines the nondecreasing function g such that 

II F'(x) II ~ g(11 x - Xo II)· 
to use the theorcm of Section II, Id 

where 

(t;ee (52)). 

k = CT IbA3

1 
4 

If an a t [0, 1) can be found satisfying 

(56) 

(57) 

(58) 

(59) 

then there is an x* t Q such that x* = F(x*), i.c., Duffing's equation 
has a periodic solution in the neighborhood of the approximation obtained 
by harmonic balance. 

Rather than just solve the cubic relation (59) for particular numerical 
values of a, b, j, and w (which is, of course, the thing to do if one is 
given a particular equation of interest) we shall obtain some general 
results. Consider a, j, and w fixed and j ~ 0. Sincet for any a t [0, 1) 

[ ~12 
lim 3 I b I CT I A I + C~ _ 

4 
= 0 

b~O a 
(60) 

it is seen that for b sufficiently small, there will be an a t [0, 1) satis­
fying (59) (and thus a periodic solution neighboring the approxima­
tion). Note that while the result has been stated as an asymptotic 
result, it is possible to determine quantitatively \vhat is meant by 
"sufficiently small". This is in contrast to most asymptotic analyses 
based on "small nonlinearities". 

5.5 Special Cases 

In many cases, it is not necessary to convert the differential equa­
tion into a vector integral equation. For example, let the system be 

t See Appendix C for details. 
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described by the equation 

aox(m)Ct) + a1x(m-O (t) + ... + amX(t) = nCt, x(t)) , (61) 

where the ao, ... , am are constants, n(t , x) is continuous in t when 
x is continuous in t, and 

net + 'P, 'u) = net, u). (62) 

A periodic solution to the differential equation will satisfy the follow­
ing integral equation 

x(t) = iT fVT(t - u)n(u, x(u)) du, (63) 

where W T (t-u) is the appropriate convolution kernel (see Kaplan,4 
chap. 4 for details). All the manipulations of previous sections will 
be somewhat simplified as a result of not having to deal with matrices. 
In particular, the example of Section 5.4 could be repeated with some 
simplification. We omit the details because they exactly parallel the 
previous case. We felt it would be more useful to work out the details 
of the more complicated case. As the order of the differential equation 
increases it clearly becomes more advantageous to avoid the use of 
matrices. 

It may be noted that there is a finite Fourier transform Y (inw) 
(again see Kaplan,4 chap. 4) associated with the differential equa­
tion (61) 

Y(inw) = (. )-m _+1 __ +_ 
ao ~nw am 

(64) 

This Y (p), considered as a function of a complex variable p, evidently 
can only have poles and cannot have finite zeros. In many electrical 
engineering applications (e.g., control systems, networks) the relevant 
transfer function has both poles and zeroes. In these cases, we would 
start with the transfer function, rather than a differential equation of 
the form (61), find the corresponding convolution integral and then 
apply our method. For other applications it must, of course, be verified 
that the appropriate conditions are satisfied. 

5.6 Autonomous Systemst 

The describing function method has been used by control engineers 
primarily for the prediction of self-oscillations (i.e., with no forcing 

t Since the actual oscillation of an autonomous system may have a different 
period than that of the approximation, it is usually convenient to normalize the 
time variable and have the period be a parameter. 
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functions). It would seem at first glance that our approach should be 
appropriate for analysis of this problem. Suppose the describing 
function method indicates that there exists a non-trivial p~riodic 
solution, Xo, to the operator equation 

(65) 

Usually, N (0) = 0, so that it is of interest to investigate whether 
there is any non-trivial solution to the exact equation near Xo. If our 
method is successful, then we can guarantee that n does not contain 
the trivial solution (x = 0) if 

(66) 

since the fixed point x{, satisfies 

II * - II < II F(xo) - XO II. 
x Xo = 1 - a 

(67) 

Unfortunately, an attempt to use the approach in the autonomous 
case will be unsuccessful. The reason for the failure of our approach 
is due to the nature of the fixed point: the mapping is not a contrac­
tion in a neighborhood of the fixed point.t The discussion below will 
clarify this point. 

Assume that the differential equation of interest is 

x(t) = Ax(t) + n(x(t)) (68) 

with A a constant real valued matrix and n(x) is a real-valued func­
tion having continuous partial derivatives with respect to all of the 
elements of the vector x. Suppose that there is a continuous periodic 
x* of period T satisfying (68). Then x* satisfies the equivalent 
integral equation: 

x*(t) = iT G(t, s)n(x*(s)) ds. (69) 

The equation of first variation corresponding to (68) is 

yet) = Ay(t) + ::* y(t), (70) 

where fJn/fJx* is a matrix with entries fJni/fJXj evaluated along the 

t Actually, this should not be surprising since if x(t) is a periodic solution, then 
so is x(t + e). 
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traj ectory defined by x'::' (t). As is easily shown (by differentiation; 
see, e.g., Hochstadt,13 p. 251) the time derivative of x* (t) satisfies the 
cqurrtion of first vrrrirrtion and thus the equivalent integral equation 

i;*(t) = iT G(t, s) ::"1< i;*(s) ds. (71) 

Now consider the derivative operation y = LN'(x'*)x associated with 
the integral operation of (69). The derivative operation is defined by 

yet) = iT G(t, s) ::* xes) ds. 

We have shown above that i;* satisfies this last equation or 

i;* = LN'(x*)x*. 

Then 

\I i;* II ~ II LN'(x*) 11·11 x* II· 

Since" x* II > 0, we must have that 

II LN'(x*) \I ~ 1 

(72) 

(73) 

(74) 

(75) 

or LN cannot be a contraction in a neighborhood of x*. We leave open, 
however, the possibility that the contraction mapping theorem might 
be applicable in a subspace. 

The above reasoning also shows that there would he difficulty asso­
ciated with using Newton's method for the problem. To seek a zero 
of P(x), Newton's method uses the following iteration: 

n = 0,1, ... (76) 

Letting 

P(x) = x - F(x) (F(x) = LN(x)) , (77) 

we are led to investigating the inveritibility of 1 - F' (x) where 1 is 
the identity operator. Consider the operation 

y = P/(x*)x = (1 - F'(x*))x. (78) 

If x = 0, then y = 0. But because F' (x'*) is associated with the equa­
tion of first variation there is also a nonzero x (the time derivative 
of x* (t)) which results in y = 0. There is thus not a unique x satisfy­
ing y = ° and P' (Xl:') is not invertible (see Kantorovich and Akilov,6 
p. 168). 
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5.7 Properties of the Fixed Point-Dependence on Parameters; Stability 

The method of this investigation is to obtain a relation for a in terms 
of parameters of the differential equations. If certain conditions are 
satisfied and 0 ~ a < 1, then a represents a contraction constant. 
If a is a contraction constant and, also, a depends continuously on a 
parameter then for sufficiently small changes of that parameter a 
will still be a contraction constant and a periodic solution is still guar­
anteed. Once again note that "sufficiently small" can be quantitatively 
determined if one wishes to do that. As an illustration, in the Duffing 
equation example, a depends continuously on b. 

If our method indicates the existence of a periodic solution of period 
T then there is no neighboring solution of period T (for a sufficiently 
small neighborhood). This condition does not imply stability of the 
periodic solution. With a perturbation of the initial conditions, stabil­
ity is concerned with closeness to (asymptotic stability is concerned 
with the eventual approaching of) the original periodic solution. A 
perturbation of the initial conditions of the period solution of period 
T may result in a solution not of period T and thus, not even con­
sidered in the Banach space used. 

A sufficient condition for the asymptotic stability of a periodic 
solution (of period T) to a nonautonomous system is the asymptotic 
stability of the null solution of the corresponding equation of first 
variation (Hochstadt,13 p. 251). We are only able to show that the 
equation of first variation may not have a (nontrivial) periodic solu­
tion of period T if the fixed point is a contraction. The nonexistence 
of a periodic solution to the equation of first variation is (along with 
a continuous differentiability requirement) a sufficient condition for 
the continuous dependence of the periodic solution on a parameter. 
This result is not identical to but is compatible with our initial com­
ments on the continuity of the contraction constant with respect to a 
parameter. 

5.8 Perturbation Analysis 

A very common approach to nonlinear problems is to solve a linear 
problem ignoring the nonlinearity and then to use a series expansion 
or a perturbation about the linear solution (see, e.g., Hochstadt,13 Sec­
tions 6.5, 7.4). As useful as these procedures are, they usually suffer 
from the defect of not providing adequate quantitative information 
about the nonlinear solution, i.e., it may not be possible to determine 
quantitatively what is meant by "sufficient small". Our use of 
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the contraction mapping theorem may prove useful in this regard. 
As an illustration, again consider Duffing's equation and assume 

that XQ was obtained by ignoring the nonlinear term (by 3). In this 
case, Xo = F (xo) is defined by 

;cIl1 (/) = iT 012(t, s)f cos WS d::;. (79) 

Then arguments similar to (but simpler than) those of Section 5.4 
show that if b is "small enough" there is a continuous periodic solu­
tion to (40) which is "close" to the linear approximation 

(t) - f cos wt 
X0 1 - 2' a-w 

(80) 

Note that "small enough" and "close" may be quantitatively eval­
uated. 

VI. DIFFERENCE-DIFFER}JNTIAL EQUA'rIONS" 

Our use of the contraction map fixed point therom is not limited 
to ordinary differential equations or integral equations. As a further 
example, consider the difference-differential equation represented by 

(81) 

where y = Dllx is defined by 

yet) = x(t - h). (82) 

If the Banach space B of interest is the space of continuous periodic 
functions, then 

II Dh II = 1. (83) 

This follows easily from 

11 Dh 1\ = sup {\I Dhx 1\: x E B, \I x \I = I} (84) 
= sup {max \ x(t - h) \: x E B, max \ x(t) \ = I}. 

t t 

Assume that N maps B into itself. If N is differentiable (i.e., has a 
Frechet derivative) at Xo then N(Dhx) has a derivative at Xo (Kan­
torovich and Akilov,6 p. 658) given by N'(DhXo)Dh. Then LN(Dh) 
has a derivative at Xo given by LN' (DhXo) D h. The norm is easily 

* An interesting discussion of the problems of oscillations in difference-dif­
ferential equations is given in Chap. 21 of Minorsky.1 Halanayu contains much 
information (and references) on difference-differential equations. 
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evaluated: 

(85) 

Conceptually, the introduction of the time delay offers no great dif­
ficulty as compared to the case without the time delay. However, 
it will generally complicate the arithmetic involved in examples, in 
particular, in obtaining the solution to Xo = LN(xo). This relative 
lack of complication going from differential equations to difference­
differential equations is not typicaL In existence, uniqueness, and 
stability considerations one must consider initial function conditions 
in difference-differential equations while the initial conditions for dif­
ferential equations are merely at one time (or perhaps boundary con­
ditions at several times). 

To illustrate the above remarks, consider the following difference­
differential equation: 

fj + ay + by~ = f cos wt 

Yh(t) = yet - h) 

(86) 

(87) 

This is Duffing's equation but with the argument of the cubic term 
retarded. The corresponding operator equation is 

(88) 

where y = Nl (x) is defined by the cubic nonlinearity, L is the same 
linear operator as in Section V, and 

F(t) = r 0 ]. 
It cos wt 

(89) 

It is clear that 

II LN'(xo) II ~ II L:IIII N~(xo) II (90) 

and that the analysis will be completely analogous to that of Section 
V, except that the approximate solution, Xo, will be different. Note 
that the Banach space is the space of continuous periodic functions, 
not the space of functions continuous on one period. 

To obtain the equivalent linearization approximation let 

where 

yet) = A cos wt + B sin wt 

= C sin (wt + (), 
(91) 
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C=VA2 +B 2 

(92) 

o = tan- 1 (~). 
Substitution of this function into (86) yields 

-w2C sin (wt + 0) + aC sin (wt + 0) + iC3b [cos wh sin (wt + 0) 

- sin wh cos (wt + 0) + third harmonics] = f cos wt. (93) 

The approximation is obtained by neglecting the third harmonics and 
equating coefficients of cos wt and sin wt. It is interesting to compare the 
equivalent linearization solution obtained for the difference-differential 
equation with that obtained for the following differential equation 
(Duffing's equation with a damping term): 

y + ky + ay + by 3 = f cos wt. (94) 

Substituting (91) into (94) yields 

-w2C sin (wt + 0) + kwC cos (wt + 0) + aC sin (wt + 0) 

+ ibC3 sin (wt + 0) + third harmonics = f cos wt. (95) 

Comparing (93) and (95) it is seen that, as far as harmonic balance 
is concerned, the effect of the lag is to introduce a damping term 
with damping coefficient k, 

(96) 

(Also, one other term is multiplied by cos wh). 
For some parameter values, the equivalent damping is negative. 

Because of the negative damping, it appears that the periodic solu­
tion is not asymptotically stable. vVe say "appears that" rather than 
making a more definite statement for the following reason. While it 
seems plausible that the stability properties of the solution of the 
equation of equivalent linearization should carryover to the actual 
solution, the mathematical proof does not seem so obvious. 

VII. RELATION TO PREVIOUS WORK* 

As mentioned previously, the method of equivalent linearization 
has its roots in the method of Krylov and Boguliubov. For an ac-

* The literature on equivalent linearization is vast. We shall thus discuss only 
those references which seem most pertinent. Even in those cases, we shall discuss 
only those aspects which are directly related to the present study. The reader 
should consult these references for many other interesting ideas. 
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count of the very important work of Krylov, Boguliubov, and Mitro­
polsky in this area, see Minorsky.l Their work is primarily of the 
asymptotic type, i.e., leading to statements of the form, "for suf­
ficiently small /L, there exists .... " We may view our approach as 
using a fixed point theorem to be able to determine quantitatively 
what is meant by "sufficiently small" for a somewhat different but 
related problem. 

Bass5 considers the justification of the method of equivalent lineari­
zation in the autonomous case. In view of our comments on the inap­
plicability of the contraction map fixed point theorem, it is of interest 
to note that Bass uses a mucn more sophisticated fixed point theorem. 
Much of his analysis is interesting and important but his final results 
are unfortunately difficult to apply (as Bass himself points out). 

Sandberg10 considers the operator equation{~, 

x = LN(x + f) 

and the equivalent linearization approximation 

Xo = LN(xo + f). 

(97) 

(98) 

Sandberg's analysis is carried out in the space of periodic functions 
square integrable over a period. He presents conditions under which 
there exists a unique periodic response to an arbitrary periodic input 
with the same period as well as an upper bound on the mean square 
error in using equivalent linearization. He also gives conditions under 
which sub-harmonics and self-sustained oscillations cannot occur. 
Sandberg's method is to determine conditions that guarantee that 
LNt is a contraction mapping in the whole space. As mentioned pre­
viously, we do not try to obtain a contraction mapping in the whole 
space but only in a neighborhood of Xo. 'Ve thus free ourselves from 
Lipschitz type requirements. It may be noted that many nonlinearities 
encountered in engineering are non-differentiable and Lipschitzian 
(e.g., piecewise linear functions such as saturation-type nonlineari­
ties). For these, Sandberg's analysis is applicable while ours is not 
because we have required differentiability. Thus, Sandberg's work 
and ours complement each other in this regard. Also, Sandberg very 
fruitfully uses Fourier transform results in his analysis of feedback 
systems. 

* This is the same notation as in Section II except that in Section II we did 
not explicitly show the dependence on a forcing function. That is, y = N(x) 
could be defined by y(t) = n(x(t)+f(t» or by y(t) = n(x(t» + f(t). 

t Actually, an operator related to LN. 
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Cesari14 considers the real differential system 

x = g(x, t) 

(99) 

Xi = gi(X I , ••• , Xn , t) j = 1, ... ,n. 

(For the specific conditions imposed on the above functions see Ref. 
14). If 

co 

Xi(t) "-' aiO + L (ai. cos swt + biB sin swt) (100) 
8=1 

and m is a positive integer the vector function Px = (P1Xl . 
is defined by 

m 

PiX,.(t) = aiO + L (ai. cos swt + bi8 sin swt) 
8=1 

j = 1, 

The operation H (x) = (Xl, ... ,Xn ) is defined by 

, n. (101) 

co 1 
Xi(t) = L - (- bi cos swt + ai8 sin swt) j = 1, ... ,n. (102) 

.=m+1 sw 

The operation F(x) is defined by 

F(x) = H(I - P)g(x) , (103) 

where I is the identity map and 

g(x) = (g1X, ... , gnX) 
(104) 

giX = gi[X(t), t] (j = 1, ... ,n). 

Letting T = P + F, Cesari determines conditions for the existence 
of fixed points of x = Tx. He uses both Banach's fixed point theorem 
(contraction mapping theorem) and Schauder's fixed point theorem 
(which does not give uniqueness but requires weaker conditions). He 
then shows that if y is a fixed point, it satisfies 

(105) 

If 

j = 1, ... ,n (106) 
then 

yet) = g(y(t), t) (107) 
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Cesari discusses the solution of (106) which may be reduced to deter­
mining a Galerkin approximation. Cesari worked in the space of 
square integrable (periodic) functions and Knobloch15 adapted his 
approach to the space of continuous functions. 

While the above method has the use of truncations of Fourier 
series in common with our approach, there seems to be a closer rela­
tionship between Urabe's approach and ours. 

Urabe16 considers the real nonlinear periodic system 

dx 
dt = X(x, t), 

where X (x, t) is periodic in t of period 271". If 

m 

xm(t) = ao + V2 L an cos nt + bn cos nt, (108) 
n=l 

a Galerkin approximation~< of order m is obtained if one can deter­
mine the 2m + 1 coefficients ao, al, b1,. ., am, bm that satisfies the 
following equation: 

dXm 1 1271" dt = 27r 0 X [x ",(s) , sJ ds 

1 m { 1271" + -; ~ cos nt 0 X[x",(s), sJ cos ns ds 

+ sin nt {' X[Xm(s), s] sin nB dS}. (109) 

Urabe considers the problem of determining whether there is an exact 
periodic solution near an approximate (Galerkin) solution, Xo. He 
determines conditions under which an iteration starting at Xo converges 
to an exact periodic solution. Hjs proof, while not explicitly mention­
ing a fixed point theorem, is closely related to the contraction mapping 
fixed point theorem and uses the fact that a contracting iteration 
sequence must stay within a certain sphere centered about the initial 
point.t Our approach is in the same spirit but we take a more general 
viewpoint at the beginning. The basic theorem is derived in an arbi-

* The method of equivalent linearization is essentially a first-order Galerkin 
approximation. 

t It may be shown that Urabe's result (Proposition 3, p. 125 of Ref. 16) is 
essentially equivalent to requiring that the operator derivative have norm less 
than one (a contraction) in the appropriate sphere. 
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trary Banach space where derivatives of operators are fruitfully 
used. The more general viewpoint is very simple conceptually and 
also permitted the easy extension to difference-differential equations. 
Urabe in Ref. 16, and also in Ref. 17 and 18, considers many aspects of 
Galerkin's method for differential equations not touched on in our 
study. Also, see his comments on Cesari's method on p. 121 of Ref. 16. 

VIII. CONCLUDING REMARKS 

The development of analytical methods (other than asymptotic 
methods) for the equivalent linearization technique with autonomous 
systems remains a very important area for investigation." vVhether a 
modification of the contraction mapping theorem (perhaps using a 
subspace) might be applied to this problem remains to be seen. In con­
nection with autonomous systems, a question perhaps more important 
than the one we have considered (if equivalent linearization indicates 
a periodic solution, does there actually exist one?) is the following: If 
a non-trivial periodic solution exists, will the method of equivalent 
linearization indicate it? A typical engineering use of the describing 
function is to determine conditions under which no self-sustained oscil­
lations are predicted. The engineer would like these same conditions to 
also imply that there are no oscillations in the original (exact) system. 
Urabe16 has shown that the exIstence of a periodic solution will (un­
der certain conditions) imply the existence of a Galerkin approxima­
tion of sufficiently high order. The equivalent linearization technique 
is essentially a first-order Galerkin approximation and the first-order 
approximation may not be high enough to indicate the existence of 
a periodic solution according to a result of the type of Ref. 16. It 
would be very useful to determine conditions that would answer the 
question. This question is related to that rased by Aizerman's con­
jecture. 

Leaving the problem of autonomous systems we find our adaptation 
of the contraction mapping theorem to be quite convenient in ana­
lyzing equivalent linearization in forced systems. The calculations are 
straightforward and require no difficult mathematical argument in 
the execution of the basic idea. It is hoped that the method may prove 
useful in justifying and refining approximations. / 

It should be clear that our approach is easily adapted to the dual-

* A theory of autonomous systems, due to Urabe, is outlined in Chap. 3 of 
Halanay.ll. 
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input describing function approximation (see, e.g., Gibson/9 p. 402).* 
The remarks in Section VI concerning difference-differential equations 
apply in that case also. That is, the only essential difficulty is in ob­
taining the dual-input describing function solution (which has nothing 
to do with our method of investigating the accuracy of such a solu­
tion). It should be noted that the dual-input describing function 
method has been used primarily for two sinusoids with commensurate 
frequencies (one an integral multiple of the other) and is actually 
equivalent to a Galerkin approximation. When the ratio of the two 
frequencies is irrational, we are in the realm of almost-periodic func­
tions where analysis can get much more complicated. Boyer has 
presented an interesting approximate method of analysis (an account 
of which is given in Gibson/9 p. 408ff.) for an input consisting of two 
sinusoids with incommensurate frequencies but with one much larger 
than the other. Analysis of this method would be of interest. 
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APPENDIX A 

Guide to Some M athema.tical Background Reading for Engineers 

The purpose of this appendix is to make reading suggestions to en­
gineers interested in this work but who are not familiar with the 
mathematics used. The primary reference on functional analysis used 
for this work is Kantorovich and Akilov.6 A more elementary intro­
duction is given in Kolmogorov and Fomin.9t Lucid introductions to 
the theory of differential equations are given in HochstadU3 and 
Struble.20 The theory of oscillations is extensively covered in Minor-

* The dual-input describing function was apparently first used by J. C. West, 
J. L. Douce, and R. K. Livesly. In Ref. 7 there is an example of the existence of 
a subharmonic solution to Duffing's equation. This is actually an example of the 
dual-input describing function. 

t The reader should be cautioned that some of the terminology is not stand­
ardized among American and Russian writers. For example, Kantorovich and 
Akilov do not require a compact set to be closed while most American authors 
do. Also, a linear operator is necessarily bounded according to Kantorovich and 
Akilov but not necessarily bounded according to most American writers (Kolmo­
gorov and Fomin's definition agrees with American writers on this point). 
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sky! which also has a discussion on difference-differential equations. 
Kaplan treats Fourier series and finite Fourier transforms on an ele­
mentary leveU Further information on Fourier series (but still on an 
elementary level) can be found in Tolstov.21 

APPENDIX B 

Derivatives in a Banach Space 

The following material is abstracted from Chap. XVII of Kantoro­
vich and Akilov. G 

Let P map an open subset n of a Banach space X into a subset ~ 
of another Banach space Y. Let Xo E n and suppose that there exists 
a linear* operation U mapping X into Y such that for every x EX 

lim P(xo + tx) - P(xo) = U(x). 
t-+O t 

(110) 

The linear operation U is said to be the derivative of the operation P 
at the point Xo. 'Ve write this 

(111) 

The derivative thus defined is the Gateaux or weak derivative and 
U (x) is the Gateaux differential. 

If the convergence relationship of (110) is satisfied uniformly with 
respect to all x € X with /I x /I = 1, then the operation P is differentiable 
at the point Xo and the derivative P'(xo) is called the Frechet or strong 
derivative. 

APPENDIX C 

To discuss the satisfaction of (59), let 

, bA
3 

'J2 CT--
Z = 3 , b I CT I A I + 1 _ ~ . 

Consider a, f, and w fixed with f ~ 0 and let a E [0, 1). To show that 

lim Z = 0 
b-+O 

we must show that 

lim I bA2 I = 0 
b-+O 

* Kantorovich and Akilov6 include boundedness in their definition of linear. 
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smce 

J CT 1 bA2 12 l 
Z = 3CT11 bA

2 
1 + ~~ + (1 ~ aY 1 b~2 ,

3f· 
From (42) we have that 

Also 

b ..... O 

f a - w2 lim A 

so that 

limbA2 o. 
b ..... O 
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Power Density Spectrum of the Sum of 
Two Correlated Intermodulation Noise 

Contributors in FM Systems 

By T. G. CROSS 

(Manuscript received August 15, 1967) 

In the recent literature, two noise contributors in F M systems have 
been analyzed:(i) intermodulation noise due to transmission deviations, 
and (ii) AM/PM intermodulation noise. Even though different, these 
two contributors have the same property of being functions of the baseband 
signal. Hence, one would expect them to be correlated to some degree. 

In this paper, we derive the expression for the power density spectrum 
for the sum of these two noise contributors. The resulting expression has 
been programmed on a digital computer. It has been found that, under 
certain conditions, the correlation can be quite significant. In fact, an 
example using a representative F M radio relay system shows that the 
correlation can result in greater than 4- dB error if the two contributors 
are assumed to be uncorrelated. 

I. INTRODUCTION 

Two noise contributors in FM systems are: (i) intermodulation 
noise due to transmission deviations, and (ii) AM/PM intermodula­
tion noise. The first noise contributor is generated when an FM 
signal is passed through a linear transmission medium which has 
transmission deviations. The second noise contributor is generated 
when an FM signal is passed through such a medium which is fol­
lowed by an AM/PM conversion device. These two noise sources 
are different, in general, but have in common the property that they 
are a function of the baseband signal. Therefore, one would expect 
that they are correlated to some degree. This would mean that com­
bining the two noise power density spectra together assuming random 
addition (uncorrelated random variables), i.e., power addition, might 
not be sufficient in general. 

2437 
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In this paper, we will derive the power density spectrum for the 
sum of these two noise contributors. We will then examine the results, 
with the help of a digital computer program, for the conditions under 
which the two noise contributors are correlated. We will also present 
an example using a representative FM radio relay system. However, 
before considering the correlation problem, we will first briefly con­
sider the two noise contributors individually. 

II. INTERMODULATION NOISE DUE TO TRANSMISSION DEVIATIONS 

Intermodulation noise is produced in FM systems whenever the FM 
signal is passed through a linear transmission medium which has 
transmission deviations.+:- This situation is depicted in Fig. 1 where 

Fig. 1-Generation of intermodulation noise due to transmission deviations. 

the transmission medium, Y (w), is represented by power series gain 
and phase transmission deviations up to fourth order, or 

Yew + we) = [1 + glW + g2w2 + g3w3 + g4W4] 

. exp i[b 2w
2 + b3w

3 + b4w
4
]. (1) 

where We =, carrier frequency in radians per second. The output 
signal is phase modulated by the desired signal, If (t), as well as the 
phase modulating distortion function 1fT (t). This distortion function 
consists of first- (linear), second-, third- and higher-order functions 
of the input phase modulating function If (t). Because of their signifi­
cance in FM radio relay systems, we will concentrate on the second­
and third-order terms which will generate second- and third-order 
intermodulation noise once the signal is demodulated. In other words, 
we will let 

(2) 

where 1f2 (t) and 1f3 (t) represent the second- and third-order intermodu­
lation noise components produced by the transmission deviations in 
Y(w). In Ref. 1, these components were derived and are given by 

* Transmission deviations are defined as any deviation in the gain and phase 
characteristics from the ideal characteristics of constant gain and linear phase 
for all frequency components of the FM wave. 
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(3) 

(4) 

with the prime (') notation depicting the derivative with respect to 
time. The A and l coefficients can be expressed in terms of the trans­
mission deviation coefficients of the transmission medium by the ap­
propriate equations in Ref. 1. Equations (2), (3), and (4) can be 
represented as shown in Fig. 2 where 

Hl(W) = [-t-2"l3iW2 - !A2i] + i[!l2iW] 

H2(W) = l4l4i 

H3(W) = [lA3r] + i[ --t-2"llrW]. 

(5) 

(6) 

(7) 

The autocorrelation function of <PT(t) is given by 

R'PT(7) = <PT(t)<PT(t + 7) 

= [<P2(t) + <P3(t)][<P2(t + 7) + <P3(t + 7)] 

= <P2(t)<P2(t + 7) + <P3(t)<P3(t + 7) 

+ <P3(t)'P2(t + 7) + <P2(t)'P3(t + 7) 

= R'P.(7) + R'P3(7) + R'P3'P.(7) + R'P''P3(7), (8)' 

where the bar notation depicts the time average of the function over 
an infinite interval, and e.g., R'P3'P.(7) is the cross correlation of <P3(t) 
and 'P2(t). In the Appendix of Ref. 2, it was shown that 

R'P3'P.(7) = R'P''P3(7) = 0 (9) 
so 

(10) 

Fig. 2 - Block diagram of total intermodulation nOlse due to transmission 
deviations. 



2440 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1967 

Taking the Fourier Transform of (10) gives 

S"'T(W) = S",.(w) + S"'3(W), (11) 

where S'" T(W) is the intermodulation noise power density spectrum due 
to transmission deviations. We see from (11) that the second- and third­
order noise contributions are additive on a power basis since they are 
not crosscorrelated. It can be shown thae 

S"'T(W) = 2 1 Hl(W) 12 5=[R~'(T)] + 2 1 H2(W) 12 5=[R~"(T)] 

+ 2[H1( -W)H2(W) + H2( -W)Hl(W)J5=[R~,,,,"(T)] 

+ 6 1 H3(W) 12 5=[R~'(T)], (12) 

where 5= denotes the Fourier Transform. 

III. AM/PM INTERMODULATION NOISE 

We see in Fig. 1 that the output signal from the transmission me­
dium is both envelope and phase modulated. If the transmission 
medium shown in Fig. 1 were followed by an AM/PM converter'~, i.e., 
a device that converts envelope variations at its input to phase per­
turbations at its output, then the signal at the converter output will 
possess an added phase modulating distortion function along with 
that shown in Fig. 1. This situation is depicted in Fig. 3. The added 

AM/PM 
CONVERTER 

K (DEGREES/dB) 

eOUT (t) = vet) COS [We t + fP (t) + fPr (t) + Or (t)] 

Fig. 3 - Generation of AM/PM intermodulation noise. 

distortion term, ()T (t), is similar in format to CPT (t) and analogously 
we will concentrate on the second- and third-order AM/PM inter­
modulation noise components. That is, 

(13) 

where ()2 (t) and lJ3 (t) are the second- and third-order AM/PM inter­
modulation noise components. These components were derived in Ref. 

* The characterization of the AM/PM converter is discussed on pp. 1750-51 in 
Ref. 2. 
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2 and are given by 

O,(t) = { -~X" + tl" :t - hi" ~:, JI"'(t) + k[.'.l"jl''''(t) (14) 

O,(t) = { -*X" + hi" ~tJI"'(t), (15) 

where the A and l coefficients can be determined from Ref. 2, and lc is 
the AM/PM conversion parameter which is defined as the phase 
modulation index in radians divided by the amplitude modulation 
index. Equations (13), (14), and (15) can be represented as shown 
in Fig. 4 where 

G1(W) = [kl2 l3 rW
2 - k!}..2r] + i[k1l2rw] 

G2(w) = kfil4r 

G3(w) = [-k!-}..3i] + i[k-filliW]. 

Since ()'2 (t) and ()3 (t) are uncorrelated, we can write 

or 

(16) 

(17) 

(18) 

(19) 

(20) 

where SOT(W) is the AM/PM intermodulation nOIse power density 
spectrum. It can be shown thae 

SOT(W) = 2 1 G1(w) 12 ;J[R~,(r)] + 2 1 G2(w) 12 ;J[R~,,(r)] 

+ 2[G1 ( -w)G2(w) + G2( -w)Gl(w)];J[R~'I'''(r)] 

+ 6 1 G3 (w) 12;J[R!,(r)]. 

Fig. 4 - Block diagram of total AM/PM intermodulation noise. 

(21) 
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IV. POWER DENSITY SPECTRUM OF THE SUM OF TWO NOISE CONTRIBUTORS 

The previous two sections presented basic system models which were 
used to describe the two noise sources under study. In this section, 
we will treat the more general case whereby the signal to be demodu­
lated, after passing through a transmission system, will be given by 

e(t) ex cos [wet + <pet) + <PT(t) + BT(t)]. 
~----v--~ 

composite distortion 

The power density spectrum for each noise contributor has been de­
rived in Refs. 1 and 2, as previously discussed. However, adding these 
two spectra together on a power basis, i.e., assuming that they are 
uncorrelated, may yield a result which is grossly in error. In order 
to determine the degree to which !fT(t) and BT(t) are correlated, we 
must derive the crosscorrelation function and examine its effect. 

To examine the effects of crosscorrelation we combine Figs. 2 and 4 
as shown in Fig. 5. The autocorrelation function of the sum of the two 
noise contributors, !fT(t) and BT(t), is 

Rep+O(r) = [<PT(t) + BT(t)][<PT(t + r) + BT(t + r)] 
(22) 

= Rep T(r) + R OT( r) + BT(t)<PT(t + r) + <PT(t) BT(t + r). 

The first two terms are given by (10) and (19), respectively. Sub-

CPr (t) 

Fig. 5 - Block diagram of composite intermodulation noise. 
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stituting (2) and (13) into (22) gives 

Rep+o( r) = Rep T( r) + R OT( r) + 02(t)'P2(t + r) + 03(t)'P3(t + r) 
+ Oit)'P3(t + r) + 03(t)'P2(t + r) + <pit) 02(t + r) 
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+ 'P3(t) 03(t + r) + 'P2(t) 03(t + r) + <P3(t) 02(t + r) (23) 

which can be written 

Rep+o(r) = R'i'T(r) + ROT(r) + R 02 'i'2(r) + R 03 'i'3(r) + R02'i'3(r) 

+ R 03 'i'2(r) + R'i'20.(r) + R'i'303(r) + R'i'203(r) + R'i'302(r). (24) 

Using the same approach as in the Appendix of Ref. 2, it can be 
shown that 

so 

R",+o( r) = R'i' T( r) + Ro T( r) + R02 ",oCr) 

+ R 03 'i'3(r) + R'i'202(r) + R'i'303(r). (26) 

Hence, 

S'i'+O(W) = S'i' T(W) + SO T(W) + S02 'i'2(W) 

+ S03'i'3(W) + S"'202(W) + S'i'303(W), (27) 

4.1 Consideration of S03'i'3(W) and S'i' 383(W) 

To examine S03'i'.(W), the cross-power density spectrum of 03(t) and 
'P3(t), we reduce Fig. 5 to the block diagram shown in Fig. 6. Using 
the relationship for the crosscorrelation of linearly transformed random 
functions, we have 

S03'i'3(W) = G3( -W)H3(W)S'i"3(W), 

It can be shown thae 

R'i"3(r) = 6R~,(r) + 9R~,(0)R'i"(r). 

(28) 

(29) 

The term 9R~,(0) R'i',(r) is merely a scaled power density spectrum 
of the input baseband signal and hence can be neglected since it does 
not contribute to the intermodulation noise distortion. Therefore, 

(30) 

By inspection, we can write 

(31) 
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Fig. 6 - Third-order noise correlation. 

4.2 Consideration of S()''P'(w) and S'P'()'(w) 

To examine S()''P'(w), we reduce Fig. 5 to the block diagram shown 
in Fig. 7. Now 

[x(t) + y(t)][u(t + r) + vet + r)] 
= RxuCr) + Ruv(r) + Rxv(r) + RuuCr). (32) 

Taking the Fourier Transform of (32) and referring to Fig. 7, we 
can directly write 

S()''P'(w) = G1( -W)Hl(W)Scp"(w) + G2 ( -w)H2(w)Scp"'(w) 

+ G1 ( -w)H2 (w)Scp"cp'''(w) + G2 ( -w)H1(w)Scp"'CP"(w). (33) 

Now it can be shown thaV,2 

Scp,.(w) = 2~[R~,(r)] 

Scp'''(w) = 2~[R~"(r)] 

Scp"cp,,.(w) = 2~[R~'cp"(r)] = Scp"'cp,.(w) 

CP2 (t) 

Fig. 7 - Second-order noise correlation. 

(34) 

(35) 

(36) 
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neglecting the dc components. Hence, 

So. ",.(w) = 2G1 ( -W)Hl(W)g:[R~ ,( T)] + 2G2( -W)H2(W)g:[R~ ,,( T)] 

+ 2[G1( -W)H2(W) + G2(-w)HI(W)Jg:[R~,,,,"(T)]. (37) 

Similarly, 

S",.o.(w) = 2H1 ( -w)Gl(w)g:[R~'(T)J + 2H2( -w)G2(w)g:[R~"(T)] 

+ 2[H2( -w)GI(w) + H I( -w)G2(w)Jg:[R~,,,,"(T)]. (38) 

Substituting (12), (21), (30), (31), (37), and (38) in (27) gives 

S",+&(w) = 2{ 1 HI(W) 12 + 1 G1(w) 12 

+ GI( -W)H1(W) + H1(-W)GI(w) }g:[R~'(T)] 

+ 2{1 H2(W) 12 + 1 G2(w) 12 + G2(-w)H2(W) + H2(-W)G2(W)}g:[R~"(T)] 
+ 2 {H1( -W)H2(W) + H2( -W)H1(W) + G1( -w)G2(w) + G2( -w)G1(w) 

+ GI( -W)H2(W) + G2( -W)H1(W) + H2( -w)G1(w) 

+ H 1( -w)G2(w) }g:[R~, ",,,(r)] + 6{ 1 H3(W) 12 + 1 G3(w) 12 

+ G3(-w)H3(W) + H3( -w)G3(w) }g:[R~,(r)]. (39) 

This expression, (39), gives the baseband power density spectrum 
for the sum of two intermodulation noise sources: (i) intermodula­
tion noise due to transmission deviations, and (ii) AM/PM inter­
modulation noise. The effect of the crosscorrelation relationship shows 
up as cross products of the defining transfer functions for each noise 
source as would be expected. The second and third order distortions 
of the summed noise spectra are additive as was the case for the two 
individual noise contributors. 

4.3 Signal-To-N oise Rat'l·o 

The signal characterization is the same as in Refs. 1 and 2, or 

I f I ~ /b 
= pre-emphasized multichannel baseband signal power 

density spectrum at the input to an FM modulator. 

The constant Po is given by 

(40) 

Po = (;7rU) 
2 

4 6 (rad/sec)2/Hz, (41) 

2h( ao + at
b + ai

b + a~b) 
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where a = rms frequency deviation, in Hertz, due to the multichannel 
baseband signal; the a's are the pre-emphasis coefficients; and ib is 
the top baseband frequency, in Hertz. Hence, the signal-to-noise 
ratio is 

S<p'(w) ( 2) 
10 log 2S ()' 4 

W <p+ o W 

where the signal and noise are defined by (40) and (39), respectively. 

V. SOME BASIC TRENDS 

The power density spectrum for the correlated sum given by (39) 
does not readily lend itself to any generalized remarks as to the con­
ditions under which correlation exists and to what degree. In order 
to derive some useful information on the subj ect, (39) was pro­
grammed on a digital computer. The computer input consisted of the 
fundamental system parameters, e.g., peak frequency deviation, num­
ber of message channels in the baseband, etc., as well as the trans­
mission deviation values to be used for "AM/PM intermodulation 
noise" and those to be used for "intermodulation noise due to trans­
mission deviations. Note that the transmission medium may be dif­
ferent for the two cases. For example, we could have the case where 
the "Al\1/PM intermodulation noise" is created by a quartic gain 
transmission deviation prior to an AM/PM converter, and the "inter­
modulation noise due to transmission deviations" is caused by a linear 
delay distortion. The transmission functions for the two cases would be 

Yiw + we) = exp ib 2w
2

, YAM/PM(W + We) = 1 + g4W4. (43) 

As a clarifying point, it should be remembered that the AM/PM 
theory of Ref. 2, and associated computer program, are set up so that 
we only obtain the "AM/PM intermodulation noise" due to quartic 
gain, and not the "intermodulation noise due to transmission devia­
tions" caused by a quartic gain transmission deviation. 

Both of the noise sources discussed in Sections II and III have 
transfer functions associated of the basic form given in (1). Each 
transfer function can have seven transmission deviations, so the prob­
lem of permuting all possible combinations to see which are correlated 
becomes unreasonably cumbersome. However, a potentially useful test 
is to evaluate the correlation between IfT(t) and ()T(t) when Y1(w) and 
Y AM/PM(W) each have only one transmission deviation for each com­
puter run. There are 49 possible combinations, one of which is given 
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by (43). Any results one obtains will depend on the inputs used, and 
because of the format of (39), one cannot make one run using nor­
malized results and then scale all future runs according to some pre­
determined rules. For that reason, the results to be given can only 
be used to indicate trends. 

The 49 runs previously mentioned yielded eight significantly cor­
related combinations. The evaluation of the results was made by adding 
the individual power density spectra Scp T(W) and SheW) on a power 
basis and comparing the results with those obtained from SCP+8(w), 
i.e., the power density for the correlated sum. Only top channel noise 
was used in the comparison. A combination was considered to be 
significantly correlated when the power sum and correlated sum dif­
fered by more than a few tenths of a dB. The amount that they differed 
depended on the inputs, but for the values used, * some cases had 
the correlated sum up to 3 dB above the power sum, in the top channel, 
and some combinations caused the correlated sum to be as much as 
15 dB below the power sum, in the top channel. 

The eight significantly correlated combinations are shown in Table 1. 

TABLE I-CORRELATED COMBINATIONS 

Conditions under which the 
correlated sum is higher than 
the power sum (assuming k is 

Transmission deviation in positive) 

Yr(w) YAMfPM(W) 

1. (fa ba (fa or ba is negative 
2. b2 (f1 b2 is nega ti ve 
3. b2 (f2 b2 and (/2 positive or 

bz and (f2 negative 
4. b2 (/4 b2 and (f 4 positive or 

bz and (f 4 negative 
5. ba (fa ba and (fa positive or 

ba and (f3 negative 
6. b4 (f1 b4 is negative 
7. b4 02 b4 and (12 positive or 

b4 and (f2 negative 
8. b4 g4 b4 and (f4 positive or 

b4 and (/4 negative 

We see from Table I that the sign of the transmission deviations 
determine if the correlation is positive or negative, i.e., whether the 

* Same values as those used in Section 3.2.2 of Ref. 2: all gain transmission 
deviations have 1 dB distortion, relative to the carrier, at 10 MHz away from the 
carrier; all delay transmission deviations have 1 nanosecond distortion, relative 
to the carrier, a 10 MHz away from the carrier. 
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actual noise power is larger or smaller than the power one would obtain 
from power addition of the two individual contributors. Also, we see 
that all eight cases have the same format, i.e., if one transfer function 
has a delay transmission deviation, the other transfer function has a 
gain transmission deviation and vice versa. 

Referring back to (39), we see that all of the correlation terms have 
the same format, i.e., a Gi(±w)Hj(±w) product. Since these terms 
have Ie as a component, the sign of k will playa role in determining 
if we have positive or negative correlation. 

The results of Table I give us an idea of when to expect significant 
correlation, that is, when power addition should not be used. These 
results should prove useful for the more complex problems which are 
confronted in practice. 

VI. SYSTEM EXAMPLE 

In Section 3.3.4 of Ref. 2, a representative FM radio relay system's 
repeater characteristics were used in deriving the noise responses shown 
in Fig. 11 of Ref. 2 and reproduced here as Fig. 8. The radio system 
carried 1200 message channels, had a peak frequency deviation of 4 
MHz and a top baseband frequency of 5.772 MHz, and had an rms 
frequency deviation of 0.771 MHz. The system was pre-emphasized 
by the function shown in Fig. 5 of Ref. 2. The basic repeater was 
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Fig. 9 - Repeater model. 

gain and delay equalized and, from an analytical point of view, could 
be represented as shown in Fig. 9. The transmission characteristics 
for the equalized repeater, Yr(w), and for the bandpass filter, Y AM/PM(W), 
are shown in Fig. 10 of Ref. 2 and reproduced here as Fig. 10. The 
associated least squares fitted transmission deviations are as follows 

Transmission deviations 

- 9.67 X 10-11 

7.09 X 10-18 

1.17 X 10-25 

- 2.57 X 10-33 

6.50 X 10-18 

5.58 X 10-26 

- 3.16 X 10-33 

3.81 X 10-11 

9.17 X 10-19 

9.04 X 10-27 

-1.97 X 10-33 

-4.82 X 10-18 

8.09 X 10- 25 

-3.35 X 10-34 

The power sum of the Al\1/PlVI intermodulation noise and the inter­
modulation noise due to the equalized repeater's transmission deviations 
(both are shown in Fig. 8) is shown in Fig. 11. Also shown is the power 
density spectrum which includes the effects of correlation between 
the two contributors. We see for this example that the actual noise 
is 4.5 dB lower in the top channel than that obtained from power addition 
alone. 

Another interesting result is the curve shown in Fig. 12. This figure 
shows how the sign and magnitude of the AM/PM conversion factor 
can affect the noise response of a given system. 

In Table I, eight correlated combinations were given. Of these 
eight possibilities, the first combination is probably responsible for 
the correlated sum being smaller than the power sum as shown in Fig. 11. 
There are three reasons for this observation: (i) the parabolic delay 
in YAM/PM(W) is quite large, and the cubic gain in YI(W) is a significant 
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Fig. 10 - Gain and delay characteristics. 

part of the equalized repeater gain shape; (ii) this combination causes 
negative correlation when the transmission deviations are both positive 
and the A1VI/P1VI conversion factor is positive; and (iii) a negative 
value for K causes positive correlation,* for this combination, which 
is consistent with the results shown in Fig. 12. Hence, the trends given 
in Table I can be useful for more complicated problems and may serve 
as a tool for optimizing a system's noise performance. 

VII. CONCLUSIONS 

In this paper, we have studied the correlation which exists between 
two noise contributors in F1VI systems: (i) intermodulation noise due 
to transmission deviations, and (ii) Al\1/PM intermodulation noise. 
The first contributor is generated when an Fl\![ signal is passed through 
a linear transmission medium which has transmission deviations. We 
denoted this medium by YI(W), The second contributor is generated 
when an FM signal is passed through a similar medium, denoted by 
YAM/PM(W), which is followed by an Al\![/Pl\![ conversion device. These 

* When the transmission deviations arc both positive. 
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Fig. 11- Comparison of power sum and correlated sum for a representative 
radio system. 

two media mayor may not possess the same transmission deviations 
in practice. 

Even though these two contributors are different, they do possess 
the same property of being a function of the baseband signal. There­
fore, one would expect that they would be correlated to some degree. 
This would mean that combining the two noise power density spectra 
assuming random addition (uncorrelated random variables), i.e., power 
addition, might not be sufficient in general. 

To study the amount and character of this correlation, the power 
density spectrum was derived for the sum of the two noise contributors. 
The resulting equation was programmed on a digital computer and 
evaluated. Because of the format of the equation, no generalized re­
sults could be obtained. However, it was found that certain conditions 
exist under which the correlation can be significant. These conditions, 
even though not all engrossing, should prove useful in the complex 
problems which occur in practice. 

\ /'" ..... v 

-2 -1 0 2 3 
AM/PM CONSTANT K IN DEGREES PER DECIBEL 

Fig. 12 - Affect of sign and magnitude of AM/PM constant on correlated sum 
for a representative radio. system. 
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A representative FM radio relay system was examined, and it was 
found that the power density spectrum for the correlated sum of the 
two noise contributors was substantially different than the power ad­
dition of the individual noise spectra. In the top channel, the corre­
lated noise power was about 4.5 dB lower than the noise resulting 
from a power sum. 

It was also shown that a simple change in sign of the AM/PM 
conversion factor k, or certain transmission deviations, can cause the 
correlated noise to be substantially higher or lower than the power 
sum of the individual spectra. 
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Phase Progression in Conical Waveguides 

By ELLIOTT R. NAGELBERG 

(Manuscript received August 10, 1967) 

TVe studied the phase progression properties of normal modes in a 
conical waveguide in order to develop techniques for analysis of multimode 
microwave antennas. We found that the large-order asymptotic expansions 
of Bessel functions developed by F. W. J. Olver are most appropriate 
for such calculations by virtue of their simplicity and uniformity with 
respect to argument. These expansions are applied to analysis of the conical 
T E 11 and conical T M 11 modes and, in addition, to an examination of 
the "quasi-cylindrical approximation" in which the conical waveguide 
is regarded as a cylindrical waveguide with gradually changing cross section. 

1. INTRODUCTION 

For most applications to microwave communication systems, wave­
guides are designed in such a way that only the dominant mode can 
propagate. This has been the case principally for practical reasons, as 
evidenced for example by problems encountered in the development 
of millimeter-wave systems using the higher-order TEo~ mode. 1 Since 
the waveguide in this case must be oversized, small geometrical asym­
metries due to errors in fabrication, bends, and other structural perturba­
tions cause coupling to unwanted modes, which can result in a sig­
nificant degradation in performance. 

On the other hand, there has been considerable interest during the 
past several years in techniques which require the controlled excitation 
of higher-order modes combined with the dominant mode in, for ex­
ample, a conical waveguide. Two such applications have been the 
TE;i - TM~* precision autotrack system for the Telstar® satellite, 2 

and the TE;i - TMl~ dual mode conical horn3 which has been suggested 
as a primary feed configuration for low-noise satellite communication 
antennas. 

* The notation TE;;'n or TM;;'n will be used to designate conical waveguide 
modes. 

2453 
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A common feature of these techniques is the necessity for maintain­
ing a high degree of phase coherence among the various modes of 
propagation. It is therefore required, in order to design such systems 
and predict the effects of frequency, temperature and structural varia­
tions, to accurately determine the phase progression properties of the 
guided wave fields. 

The paper's contents may be summarized as follows : We first de­
scribe the conical waveguide modes, which are vector eigenfunctions 
of Maxwell's equations in what is essentially spherical geometry. We 
note that although these solutions are well known in principle, the 
actual computation of their phase progression properties is not 
straightforward. It is, therefore, necessary to consider the problem of 
numerically evaluating both the eigenvalues and vector eigenfunc­
tions so that we can apply these results to actual antenna problems. 
In order to do this we utilize certain uniform asymptotic expansions 
due to F. W. J. Olver4 which are found to be well suited to such cal­
culations. We thereby observe that a very common method of deter­
mining phase progression, which might be termed the quasi-cylindrical 
approximation, is not particularly accurate, and the errors associated 
with this method are evaluated. 

Rationalized MKS units and the (suppressed) harmonic time de­
pendence e-iwt will be used throughout. 

II. MODES IN A CONICAL WAVEGUIDE 

The normal modes characteristic of a conical waveguide are derived 
in the usual manner by finding separable solutions to Maxwell's equa­
tions in spherical coordinates, subject to the boundary condition that 
the components of electric field tangent to the lateral surface must 
vanish. The solutions thus derived may be partitioned into two types, 
TE< modes for which the electric field is transverse to the direction 
of propagation (the r-direction), and TM< modes for which the mag­
netic field is transverse to the direction of propagation. In terms of 
the coordinate system shown in Fig. 1, the components of electric field, 
for example, are given by, 5 

TM< 

(1) 
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Fig. 1-Conical horn geometry. 

imA d [_ /k- H(l) (7 )]pm( 0) imtp 
7 • 0 d(k) -v r 1'+1 fcr I' COS e , fcr SIn r 2 

(2) 

E TE iB H (1) (k) d [pm( )] imtp 
i tp = Vkr II+! r dO II cos 0 e . 

In (1) and (2), P";, (cos 0) denotes the associated Legendre function 
(m = integer) and H;l) (x) represents the Hankel function of the first 
kind, corresponding to outgoing waves under the assumed time de­
pendence e- iwt

• The constant k is the free-space wave number. 
The eigenvalues v and f..l are found as solutions of the respective 

characteristic equations 

[:0 P~(cos 0) te. ~ 0 

P:(cos (0) = 0 

for a specified horn half angle (}o. 

(3) 

(4) 

These eigenvalues can be computed by a variety of numerical meth­
ods. For example, one can represent the associated Legendre function 
in terms of the hypergeometric function 6 as 

P:(eos ()) = Csinm/2
() F (1 + 1n + v, m - v; 1n + 1; 1 - 2

cOS 0), (5) 
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where C is a constant. The v- or p,-zeros for a given ()o can then be 
found by a variety of root finding techniques. It is, however, worth 
noting that a first-order approximation may be determined from the 
formula 

(6) 

where Jm denotes a Bessel function. Since the roots of Bessel functions 
are well tabulated,7 (6) can be conveniently used to provide either 
an estimate of the eigenvalue or a starting value for an iterative algo­
rithm. The phase errors associated with this approximation will be 
discussed in a later section. 

To indicate the behavior of the zeros and to provide helpful in­
formation for design of dual mode conical horns, a partial list of v 

and p. values, computed using (5), has been prepared and is given in 
the Appendix. 

III. BEHAVIOR OF THE RADIAL FUNCTIONS. PRECISE CALCULATION OF PHASE 

PROGRESSION. 

Having obtained the appropriate eigenvalues as defined by (3) and 
(4), we may then proceed to the more interesting calculation of the 
radial dependence. In principle, the phase shift between the two 
spherical surfaces r = rl and r = r2 is given by 

oaTE = arg [H;~i(kr2)J - arg [H~~!(krl)J (7) 

oa™ = arg {dd [Vx H~~!(x)]} 
X x-kr. 

- arg {dd [V~ H~~\(X)J} (8) 
X x=krl 

for the TE and TM modes, respectively, where arg ( ) denotes the 
phase angle associated with a complex number. 

The difficulty which arises when one attempts to utilize these ex­
pressions is essentially one of computation, due to the particular 
regime of order and argument frequently encountered in analysis of 
conical horn waveguides. We are particularly concerned here with the 
so-called transition region where the argument and order of the Hankel 
functions are large and comparable. For example, when ()o = 5°, v = 
20.6155 and p. = 43.4109 (see Appendix), which means that we must 
allow for a range of arguments increasing from these values. 

Asymptotic formulas for Bessel functions have, of course, been 
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studied in great detail. Asymptotic forms in the t.ransition region kr 
;c v have been given, for example, by Watson and Langer.s Although 
of mathematical interest, these typically give only the limiting be­
havior of the function, with the remainder specified within some order. 
However, engineering design generally requires more precise results, 
which can be obtained only with the aid of complete asymptotic ex­
pansions. 

Expansions particularly appropriate for our problem have been 
given by Olver.4 These formulas represent the Bessel functions as 
asymptotic series in terms of reciprocal powers of the order, and are 
valid asymptotic expansions for all values of argument. Although 
their derivation is very complicated, and will not be discussed here, 
we shall state the general form of t.he result and indicate several sim­
plifications which are valid for most problems involving phase pro­
gression in conical horns. 

The complet.e asymptotic expansion for the Hankel function of the 
first kind, following Olver's notation, is given by 

In this expression, Ai, Ai', Bi, and Bi' represent Airy functions and 
their derivatives,\) and, is a constant related to x by the formula 

t = _{!(x2 
- l)t - !sec-lx}~. (10) 

The coefficients An (') and Bn (') are determined through an aUXI­
liary sequence {Un (t)} defined by the recursion formula 

Uo(t) 1 
(11) 

where the prime denotes differentation. The An and Bn can then be 
found using the relations 

A (r) = ~ bmU~n-m(T) 
n ~ .f::'o t 3m/2 (12) 

2n+l U ( ) 
B (t) = - L am 2n-m+l T 

n m=O t(3m+ll/2 , (13) 
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where 7 = (l-x2)-! and {am}, {b1l1} are given by 

(2m + 1)(2m + 3) ... (6m - 1) 
m! (144)m 

(14) 

(1.5) 

(16) 

Since for the range x > 1, which is of interest here, t is negative and 
7 is imaginary, it is also necessary to define the proper branches, which 
are as follows: 

7 = i(x2 
- 1)-! 

1 i 
t! = (-t)! 

(17) 

(18) 

(19) 

Using a table of Airy Integrals/lone can proceed to evaluate the 
required Hankel functions to whatever accuracy is needed. As an in­
dication of the number of terms required in a typical calculation, it 
has been observed by J. A. Cochran and C. M. Nagel" that for v ~ 10, 
four decimal place accuracy can be obtained simply by using terms 
including Bo and AI. The coefficients required for most horn calcula­
tions are thus given by 

Ao = 1 (20) 

81 T~ + 4627i + 385T~ _ 7(3T1 + 5T~) + 455_ 
1152 1152tf 4608t~ 

(21) 

B - 3T1 + 5T~ 5 
o - 24tr - 48t~ , 

(22) 

where 71 = (x2 
- 1) -1 and tl = -to 

IV. APPLICATIONS 

In this section we shall discuss several applications of the preceding 
results. After presenting examples of phase progression for different 
modes we consider the phase errors introduced by approximating the 
eigenvalues p. and v. Finally, we examine what might be called the 

* Private communication. 
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"quasi-cylindrical approximation," in which phase progression is 
calculated by considering the horn to be a cylindrical waveguide with 
slowly varying cross section. 

4.1 Phase progression of the TE0. and T1V1{1 modes. Effect of errors 
in v and J1.. 

A qualitative understanding of the phase progression properties of 
conical waveguide modes can be achieved by regarding a horn as a 
cylindrical waveguide with gradually increasing cross section. Although 
such a model has limitations, which will be discussed later in Section 
4.2, it correctly predicts the fact that the phase progression rates 
for both classes of modes begin at relatively low values and increase 
monotonically toward that corresponding to the far field of a spherical 
wave in free space. This limiting behavior is reached when the conditions 
kr » v or kr » J1. are satisfied, corresponding to conical TE or conical 
TM modes, respectively. 

Fig. 2 shows, for example, a direct computation of the phase shift as 
a function of kr:!,-krl for the conical TEll mode for half angles ()o '= 
3°, 10°. The value krl is in each case taken to be that corresponding 
to the cut-off cross section of a cylindrical waveguide, i.e., 

kr = _S_ 
1 sin eo ' (23) 

where S ;:::::::; 1.84118. Fig. 3 shows analogous results for the TlVI{l mode, 
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Fig. 2-Phase shift for the TE~l mode relative to the cross section at which cut 
off would occur for a cylindrical waveguide. rTE ~ 1.84118. 
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Fig. 3-Phase shift for the TM{l mode relative to the cross section at which cut 
off would occur for a cylindrical waveguide. rTl\l ~ 3.83171. 

the principal difference being in the more gradual increase in phase 
near krl . 

In view of the difficulty in computing the v- and J-t-zeroes of the 
Legendre functions, as required by (3) and (4), it is of practical in­
terest to determine how an error in the eigenvalue will effect the cal­
culation of phase shift. If, for example, we denote by ATE the error in 
phase shift due to a small error OV in the eigenvalue, then from (7) we 

TABLE I-MAXIMUM PHASE ERROR DUE TO 0.10 PERCENT 

MISCALCULATION OF v OR fJ. 

k(r2 - r 1) = 100 

TEu mode 

00 OP ATE = (71"/2) OP ATE actual 

3° 0.035 3.15° 2.04° 
5° 0.021 1.89° 1.26° 

10° 0.010 0.90° 0.61 ° 

TMu mode 

00 OIL A TM = (71"/2) OIL ATM actual 

3° 0.073 6.87° 4.68° 
5° 0.043 3.87° 3.14° 

10° 0.021 1.89° 1.16° 
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have that 

aTE = {:v arg [H:~!(lcr,)l - :v arg [m~l(kr,)l t.: 8v, (24) 
where Vo denotes the correct eigenvalue. Although the calculation 
required by (24) is, in general, very difficult, it is relatively simple to 
obtain an upper bound to A,'l'E. First, it can be shown (see Ref. 7, p. 
368), that at the cutoff radius rl, the argument krl is approximately 
equal to the eigenvalue v (or j-t) and furthermore that the partial 
derivative at that value tends toward zero as v or j-t becomes very 
large. It follows that an upper bound on the error ATE can be obtained 
by neglecting the second term on the right side of (24) and letting 
kr2 ~ 00. In this way we find, from the asymptotic behavior of the 
Hankel functions (see Ref. 6, p. 85), that 

max I Ll TEl = I OV I ~ 
2 

and, in a similar way for A,TM, 

max I Ll T 1\1 I = I Oj1. I ~. 
2 

(25) 

(26) 

In Table I we present a comparison between the actual computed 
error in differential phase shift, for an assumed relative' 0.1 percent 
error in the eigenvalue, and the upper bound as determined by (25) 
and (26). The results indicate that the predicted estimates are quite 
reasonable. Note that the larger phase errors for smaller angles are due 
simply to the fact that the eigenvalue and hence the absolute error 
is greater. 

The principal purpose of the previous exercise was to determine 
what error might be expected from using (6), which expresses the 
Legendre function in terms of a Bessel function. Results for the TMll 
mode show that (6) is sufficiently accurate in predicting the p'-zeroes 
that the maximum differential phase error for horns up to 30° in half 
angle should be less than 1 0. As might be expected, however the same 
approximation applied to the v-zeroes of the derivative of the Legendre 
function is not as accurate. Nevertheless, as shown in Fig. 4, for a horn 
with half angle equal to 30° the maximum phase error is approxi­
mately 6°, which would ordinarily be acceptable. 

4.2 Evaluation of the Quasi-Cylindrical Approximation 
The difficulty of making precise calculations of phase progression in 

conical horns has led to the use of an approximate formula derived 
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by assuming that the horn behaves as a cylindrical waveguide with 
gradually increasing cross sectional radius. The phase shift is then 
determined simply by integrating the local waveguide propagation 
constant, with the result that 

1 [T' V (k' )2 2 -1 t ] o{3 ~ t--() r sm (}o - t - t cos k' . () , an 0 T, 1 SIn 0 
(26) 

where t is the characteristic value for the particular mode (e.g., for 
the TE1~ mode t ~ 1.841 and for the TM1~ mode t ~ 3.832). This 
formula is, in fact, asymptotic to the true phase shift in certain limits. 
For example, let (kr sin (fo) be fixed and let (}o ~ O. Then it can be shown 
that (26) becomes essentially equivalent to the simple Debye approxi­
mation. (See Ref. 7, p. 366.) However, this formula is known to be 
invalid in the range where order and argument are comparable. N ever­
theless, it is useful to investigate the properties of (26) in order to 
determine what errors accompany its use. 

Fig. 5 shows the resulting error in differential phase shift when the 
quasi-cylindrical approximation is applied to the TE1~ mode, with 
krl = t/sin (}o (corresponding to the cut-off diameter) and (}o = 5°. 
The error is seen to grow very rapidly at first, showing that the quasi­
uniform approximation predicts too slow an increase in propagation 
constant with increasing cross section. Eventually, the error curve 
approaches a linear variation. This asymptote can actually be predicted 
fairly well by using the large argument behavior of the Hankel function, 
combined with the fact that for large 11 (see Ref. 7, p. 368), 

arg H~ll(11) ~ -71"/3. (27) 
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By letting kr sin ()o --7 00 in (26) and using (6), which relates t to v, 

we find that in the limit of large kr 

Oo:TE - o{3TE ~ ~ - t 1'E(~ - -~-) ~ + (1 - sin ()O)kr (28) 
12 ()o tan ()o 2 tan ()o 

which, for small ()o reduces to 

~ 1'E _ ~{31'E "-J ~ _ S1'E71" () + ()~ k' 
uo: U "-J 12 6 0 2 7. (29) 

This result, shown in Fig. 5 as the dotted line, is seen to predict very 
accurately the asymptotic behavior of the error. 

Fig. 6 shows the corresponding error for the TwI;i mode. In con­
tradistinction to the previous example, the quasi-cylindrical approxi­
mation at first predicts too high a phase progression rate, but eventually 
also conforms to the linear error predicted by the last term of (28). 
The formula analogous to (29) is given by 

Oo:1'M _ o{31'M = _~ _ S 1'M71" () + ()~ kr 
12 6 0 2 . (30) 

This result, shown in Fig. 6 as the dotted line, is also seen to cor­
rectly describe the asymptote. 

;A salient feature of these results is that the linear portion of these 
curves is quite independent of the type and order of the mode being 
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considered. This immediately implies that the error in differential 
phase shift between modes resulting from the quasi-cylindrical ap­
proximation is always bounded at a value easily predicted by (29) 
and (30). This latter result is considered to be one of the more sig­
nificant conclusions of this study. 

V. SUMMARY AND CONCLUSIONS 

In this paper, we have considered the phase progression properties of 
conical waveguide modes. The principal difficulties have been in com­
puting Bessel functions over their so-called transition region. It is 
suggested that, in view of the typically large orders involved, the 
asymptotic expansions due to Olver are the most applicable. An exam­
ination of the quasi-cylindrical approximation has shown that this 
latter formula, although not necessarily accurate for evaluating phase 
progression of a particular mode, can be used to determine differential 
phase shift between modes with an error which is bounded over the 
conical region. 
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APPENDIX 

Roots of p~ (cos e) = 0 and d/ de p~ (cos e) = 0 for a Given Value of e 

In order to assist in design of dual-mode conical horns, we have 
prepared an accurate table of the roots of the associated Legendre 
Function and its derivative for a given value of the horn half angle e. 
These values of v and J..I. may then be used to evaluate the vector wave 
functions which characterize the propagation of the TE~l and TMil 
modes in the horn section. 

The computational program consisted of using the hypergeometric 
series representation for the Legendre function, and determining the 
zeroes by a standard root finding method. The program was termi­
nated when the value of the function was less than 10-6 in amplitude. 

TABLE II-RoOTS OF p} (COS e) = 0 

() Jl () Jl 

3.00° 72.6819 17.00° 12.4239 
3.50 62.3379 17.50 12.0552 
4.00 54.3874 18.00 11.7070 
4.50 48.2893 18.50 11.3777 
5.00 43.4109 19.00 11. 0657 
5.50 39.4196 19.50 10.7697 
6.00 36.0935 20.00 10.4885 
6.50 33.2792 20.50 10.2211 
7.00 30.8669 21.00 9.9664 
7.50 28.7764 21.50 9.7235 
8.00 26.9471 22.00 9.4918 
8.50 25.3332 22.50 9.2703 
9.00 23.8985 23.00 9.0585 
9.50 22.6110 23.50 8.85.57 

10.00 21.4597 24.00 8.6613 
10.50 20.4146 24.50 8.4749 
11.00 19.4645 25.00 8.2960 
11.50 18.5970 25.50 8.1241 
12.00 17.8019 26.00 7.9589 
12.50 17.0704 26.50 7.7998 
13.00 16.3952 27.00 7.6467 
13.50 15.7700 27.50 7.4992 
14.00 15.1894 28.00 7.3570 
14.50 14.6490 28.50 7.2197 
15.00 14.1446 29.00 7.0871 
15.50 13.6728 29.50 6.9591 
16.00 13.2304 30.00 6.8354 
16.50 12.8149 
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TABLE III-RoOTS OF d/de p.I (COS e) 0 

(J " (J I " 
3.00 34.6743 17.00 5.7637 
3.50 29.6526 17.50 5.5881 
4.00 25.8867 18.00 5.4224 
4.50 22.9581 18.50 5.2657 
5.00 20.6155 19.00 5.1174 
5.50 18.6992 19.50 4.9768 
6.00 17.1026 20.00 4.8432 
6.50 15.7518 20.50 4.7163 
7.00 14.5943 21.00 4.5955 
7.50 13.5913 21.50 4.4804 
8.00 12.7139 22.00 4.3706 
8.50 11.9400 22.50 4.2658 
9.00 11.2522 23.00 4.1656 
9.50 10.6370 23.50 4.0697 

10.00 10.0835 24.00 3.9779 
10.50 9.5828 24.50 3.8900 
11.00 9.1279 25.00 3.8056 
11.50 8.7126 25.50 3.7246 
12.00 8.3321 26.00 3.6467 
12.50 7.9822 26.50 3.5719 
13.00 7.6593 27.00 3.4999 
13.50 7.3605 27.50 3.4306 
14.00 7.0831 28.00 3.3638 
14.50 6.8250 28.50 3.2995 
15.00 6.5842 29.00 3.2374 
15.50 6.3591 29.50 3.1775 
16.00 6.1481 30.00 3.1196 
16.50 5.9500 

REFERENCES 

1. Morgan, S. P., Mode Conversion Losses in Transmission of Circular Electric 
Waves through Slightly Non-Cylindrical Guides, J. Appl. Phys., 21, 1950, 
p.329. 

2. Cook, J. S. and Lowell, R., The Autotrack System, B.S.T.J., 42, July 1963, 
pp. 1283-1307. 

3. Potter, P. D., ANew Horn Antenna with Suppressed Sidelobes and Equal 
Beamwidths, Microwave J. 0, 1963, p. 71. 

4. Olver, F. W. J., The Asymptotic Expansion of Bessel Functions of Large 
Order, Phil. Trans., A, 247, 1954, p. 328. Also see Olver's Tables of Bessel 
Functions of Moderate or Large Orders, National Physical Laboratory 
Mathematical Tables, 0, 1962, Her Majesty's Stationery Office, London. 

5. Borgnis, F. and Papas, C. H., Electromagnetic Waveguides and Resonators, 
Encyclopedia of Physics, Volume XVI, Springer, Berlin, 1958, p. 356. 

6. Erdelyi, A., et al., Higher Transcendental Functions, Volume I, McGraw­
Hill Book Company, Inc., New York, 1953, p. 148. 

7. Abramowitz, M. and Stegun, 1. A., Handbook of Mathematical Functions, 
U. S. Government Printing Office, Washington, D. C., 1964, p. 409. 

8. Erdelyi, A., et al., Higher Transcendental Functions, Volume II, McGraw­
Hill Book Company, Inc. New York, 1953, p. 89. 

9. Miller J. C. P., The Airy Integral, Cambridge University Press, Cambridge 
(G. B.), 1946. 



Mode Conversion in Lens Guides 
witlI Imperfect Lenses 

By D. GLOGE 

(Manuscript received August 16, 1967) 

A coherent Gaussian beam transmitted through many imperfect lenses 
suffers a distortion of its profile. Particularly smooth polishing errors 
generate parasitic modes which travel with a slightly different propagation 
constant and about the same low loss as the beam. While the two modes 
of lowest order essentially influence position and width of the beam, all 
higher-order modes deform the profile and may hamper position control 
and detection if they build up to sufficient power. The calculations show 
that this effect can be reduced to a negligible amount if the beam cross­
section is of the order or smaller than the dimensions of the irregularities. 
This is in agreement with experiments. The perturbation of the beam 
in the air path between the lenses is also investigated and it is shown from 
experimental data that this e.ffect is negligible in a properly shielded under­
ground lens guide. 

I. INTRODUCTION 

There has been much uncertainty about the optical quality re-
. quired for the components in an optical transmission link. Particularly 
for a lens guide with thousands of lenses, this is a major cost factor. It 
has been shown that systematic lens aberrations may lead to a severe 
degeneracy of a transmitted laser beam,I but hardly anything is 
known about random errors. Previous work in this field dealt with 
antenna or imaging problems,2, 3, 4 but none of these theories can be 
applied to iterative structures. 

The theory presented here was developed in parallel with experi­
ments in a half-mile underground lens guide designed to gain data 
about the required component quality.5 This guide employed antire­
flection-coated quartz lenses separated by about 140 m. A loss of 
roughly 1 percent per lens was measured, so that a transmission over 
100 miles without amplification seems feasible. Systematic aber-

2467 
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rations are negligible as compared with random surface irregularities. 
These irregularities are of various nature and origin. There are 

minute scratches in the polished surface and tiny holes or craters in 
the antireflection coatings. Both cause a wide angle scattering and 
part of the measured overall loss without considerably changing the 
intensity profile or the phasefront of the transmitted light beam. 

On the other hand, the polishing process achieves a spherical sur­
face only to a certain degree, so there are always small smooth pro­
tuberances and recesses called "polishing errors." They show up in an 
interferometer check and their magnitude is usually given in fringes 
or wavelength of the light used in the interferometer. This magnitude 
defines the quality of the lens. 

It is this imperfection which will be of interest here, for, without 
introducing immediate loss, it distorts the light beam in a way that 
may lead to complete deformation of the intensity profile when oc­
curring repetitively. The consequence may eventually be an additional 
loss. Furthermore, it influences the choice of the receiving technique 
used at the end of a long lens guide because the efficiency of a hetero­
dyne system will depend on how well the signal and local oscillator 
beams can be matched. Thirdly, it affects the applicability and de­
sign of beam position control systems which probably will have to be 
employed in some sections of the lens guide to provide for occasional 
realignment.6, 7 

Refractive index variations in the atmosphere between the lenses 
are of course an additional source of beam distortion. Though weak 
in a shielded underground lens guide the influence might be comparable 
to that of imperfect optical components. The calculations in the last 
part of this work consider these index variations using the model of an 
imperfect waveguide.8 Though not as general or accurate as previous 
work9 this approach has the advantage that it yields simple formulae 
for the case of weak coupling. By inserting some experimental data 
the influence of the air paths and the optical components will be 
compared. 

II. THE STATISTICAL FEATURES OF IMPERFECT LENSES 

Restricting the following calculations to smooth irregularities has 
two consequences. First, in the proximity of the lens surface the ap­
proximations of geometrical optics may be applied, which means that 
the wavefront emerging from the surface exhibits a phase deviation 
but no amplitude change. 
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If there is, for example, a protuberance of magnitude 8 at a certain 
point of a lens surface, the phase retardation of a light ray passing 
this point will be 

'P = k iln 8, (1) 

where k is the propagation constant of the light outside the lens and 
6.n is the refractive index change at the surface. 

Second, the surface irregularities and consequently also the phase 
deviations may be described by a random function which is both 
well-behaved (with at least the first derivative being finite) and 
homogeneous over the whole surface, since the irregularities were 
generated everywhere by the same process. 

To proceed in the mathematical description, some assumptions 
must be made which seem to be reasonable for the random function 
under consideration, but will not be proved as valid here. One may 
conceptually construct an ensemble of identical optical surfaces 
which exhibit different point-by-point deviations, but are statistically 
equivalent. It is assumed that averages over the surface are replace­
able by ensemble averages, and that 8 and therefore 'P are Gaussianly 
distributed, have zero mean, and variance 6.2 and <1>2, respectively. 
Obviously, the correct lens surface can always be defined in such a 
way that the mean value of 8 is zero. 

For simplicity, the two-dimensional model shown in Fig. 1 is used 
at the beginning. 8 and 'P are now functions of the surface coordinate 
x only. The covariance 

(2) 

Fig. 1-Two-dimensional model of an imperfect lens. 
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can be shown to exist and be a function of the distance Xl - X2 only 
because of the assumed features of cp (x). For later calculations the 
identity 

(3) 

is needed, which can be derived from those assumptions also.3 

The fact that cp is smooth and stationary suggests a Gaussian 
covariance 

(4) 

where v is a correlation length determined by the dimension of those 
protuberances and recesses on the optical surface. 

III. COUPLING TO PARASITIC MODES 

A coherent light beam with Gaussian field profile conserves itself 
from lens to lens in a lens guide if it enters with the right phasefront 
curvature and the right half-width w of the field profileY This 
"Gaussian beam" is the lowest order of an infinite set of modes which 
can propagate in such a lens guide. All these modes have the same 
phase fronts, slightly different propagation constants and a field 
profile that can be described by the orthogonal set of hyperbolic 
cy linder functions 

D (2~) = e-x'/w'He (2~) 
n wnw ' (5) 

where Hen are the hermite polymonials.10
•

11 Note that Heo 1 and, 
therefore, Do describes the Gaussian beam profile. 

The higher the mode number, the further the profile extends about 
the lens area. As will be shown, the smooth irregularities under con­
sideration here generate mainly low order modes and those to an 
amount that the comparatively small losses at the lens apertures are 
negligible. It seems justified, therefore, to consider the lenses as un­
bounded. 

Assume that a perfect Gaussian beam traverses the optical surface 
in Fig. 1. Then the emerging wave function is 

u(x) = Do exp [icp(x)] (6) 

which, on the other hand, can be expanded into the infinite series 

u(x) (7) 
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The expansion coefficient Cn describes the coupling or scattering from 
the Gaussian beam to the nth mode. Using (6), (7), and the orthog­
onality relation given in Ref. 10, one fincts 

V2/7r 1+ 00 

• Cn = -,-- DoDn exp (~<p) dx. 
n. W -00 

(8) 

Multiplying this by its conjugate complex and averaging over the 
ensemble yields the average power coupled to the nth mode from a 
Gaussian beam of unit power passing one distorted surface. The calcu­
lation is shown in the Appendix. The result is 

V2}; 1+00 

2 pn = 12-n DoD2n exp [F( V2~) - p] d~. 
n. W -00 

(9) 

For a Gaussian correlation function F as defined in (4), the most useful 
representation is an expansion in powers of the variance <1>2 

(2n)! 2 00 p2q (qw2/v2r 
pn = 22n(n!)2 exp (-p) ~ q! (1 + qw2/v2r+t (10) 

This formula is valid for any value of <1> and v. In practice, the con­
verted power is only a small part of the total beam power and there­
fore, 

pw/v « 1. (11) 

In the case of a lens guide, this is a necessary condition for recon­
version from parasitic modes into the beam to be negligible. 

Two cases are of interest: <1> is large, say, of the order of 1 rad or 
larger, but (11) is satisfied since v is large at the same time. A series 
expansion in powers of <1>, as in (10), is not very useful in this case. 
However, expanding F in powers of w/v and truncating after the 
quadratic term yields for (9) 

(2n)! (p2W2 /v2r 
pn = 22n(n !)2 (1 + p2W2/V2)TI+t' (12) 

Probably of more importance are optical surfaces which cause a 
small rms phase distortion <I> but have a correlation length v of the 
order or even smaller than the beam width w. Then (10) may be used 
and terms with q > 2 in (10) may be neglected. Note that for both 
(10) and (12) a summation over all n yields unity. No power is lost 
in the conversion process. Po is the power that is left in the Gaussian 
beam and 1 - Po, consequently, the conversion loss. 
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IV. THE THREE-DIMENSIONAL REPETITIVE STRUCTURE 

To investigate the three-dimensional model, the additional assump­
tion is made that the irregularities are isotropic over the optical area. 
The correlation function (4) may then be extended to two dimensions 
by 

(13) 

The modes of the new model are defined by two numbers nand m. 
It can be shown that groups of modes with the same 

t = n + m (14) 

are degenerate, that is, they travel with the same propagation 
constant.l1 

The coupling coefficients for the three-dimensional model must be 
evaluated from double integrals which are separable if higher orders 
of <1>2 may be neglected. One finds for the average power coupled from 
a unit power beam 

Poo = 1 
(15) 

and 

(2n)! (2m)! cp2
V

2
/W

2 

Pnm = 22n(n!)2 22m(m!)2 (1 + v2/w2r+ m+1 for n, m = 1,2, .... 

Physically more meaningful is the computation of the average power 
that is coupled to a complete group of degenerate modes: 

and 

cJ>2 
Po = 1 - 1 + v2 / w2 , 

cp2V2 /W2 

P r = (1 + v2 /w2r+ 1 r = 1,2, .... 

(16) 

It has been shown in Ref. 1 that an optical surface can be adjusted 
in such a way that no power is coupled to the first group of parasitic 
modes. If this is done, the power loss is a minimum and the power 
kept in the beam may be found from (16) to be 

(17) 
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If, furthermore, one is free to adjust the width of the transmitted 
beam at the receiving end, say by a telescope arrangement or by 
adapting the local oscillator beam to the width of the signal beam, one 
can minimize the losses even further. In this case no power is coupled 
to the second mode group either.1 The power kept in the beam may be 
found from (16) to be 

(18) 

It seems reasonable to assume that the irregularities on both sides 
of a lens surface are uncorrelated, in which case the powers generated 
in both conversion processes simply add. Fig. 2 shows the conversion 
loss 1 - 2P 0 and the powers in the three parasitic modes of lowest 
order versus w/v for a lens quality of A/I0. For the first approxima­
tion, it is assumed that such a lens has an rms deviation of ~ = A/I0 
though actually the rms value should be somewhat smaller. ~n in (1) 
is 0.5. The loss increases rapidly with decreasing correlation length. 
For v < w, the loss approaches the value <1>2. For a correlation length 
larger than the beam width, almost all the losses are found in the 
first parasitic mode. 
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Proper adjustment reduces the loss by this amount. This is shown 
in Fig. 3. For v = 2w, a factor of 4 is gained by adjustment. The loss 
decreases by more than an order of magnitude if the beam spread is 
neglected also. The lens quality in this example is A/10. Fig. 4 com­
pares the losses for lenses of various qualities. Fig. 5 gives the same 
quantities when proper adjustment of the lenses is taken into ac­
count. Fig. 6 in addition neglects spreading of the beam. 

For hand-polished lenses, the correlation length can be expected 
to be of the order of cm. The beam width in a lens guide depends on 
the lens spacing and the wavelength of the transmitted light.n For 
lenses separated by 140 m and red light of 0.63 p", the beam width is 
2w = 1 cm. Fig. 6 shows that in this case the conversion loss is less 
than 0.1 percent and therefore, a negligible amount of the total loss. 
Nevertheless, poorly attenuated parasitic modes may build up and 
distort the beam profile. 

Certainly there is no correlation from lens to lens. So the average 
mode power simply increases proportionally to the number of lenses. 
The modes under consideration have about the same overall attenua­
tion as the Gaussian beam. Therefore, after N lenses, the average 
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Fig. 5 - Average conversion loss for lenses of various qualities (beam aligned 
on axis). 
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Fig. 6 - Average conversion loss for lenses of various qualities (beam spread 
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power in the rth parasitic group of degenerate modes is 

1 - 2NPo 
(19) 

times the power in the Gaussian beam, provided that the conversion 
even after N lenses is small enough to permit the negligence of re­
conversion and higher-order loss terms. The average amplitude 
ratio is 

V2NP: 
1 - NPr 

(20) 

The respective phases even of modes in the same group are undeter­
mined. 

To gain a conception of the distortion a situation is assumed in 
Fig. 7 to 9 where all modes are in phase. Fig. 7 shows a possible in­
tensity profile after passing a lens of quality AIIO and correlation 
length v =, 2w. The result is mainly a displacement. In Fig. 8 the 
beam passed 10 lenses but these now are adjusted so that the beam 
stays on the guide axis. The main effect is a spreading. Fig. 9 is a 
sketch of the profile after 100 lenses, all adjusted, and the profile is 
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Fig. 8 - Possible profile distortion after 30 lenses of quality X/lO (beam aligned 
on axis). 
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reduced to the nominal beam width. There is a slight tilt of the pro­
file and a side lobe, but no basic destruction of the beam. 

V. CONVERSION IN THE ATMOSPHERE BETWEEN LENSES 

Similar to the mode coupling at certain cross-sections of the lens 
guide there can be mode coupling all along the guide if there is a 
source of distortion. In the case of a gas between the lenses the source 
may be the random fluctuation of the refractive index of this gas. 

For simplicity let us return to the two-dimensional model of Fig. 
1. Here An, the deviation from the mean index no, is a function of x 
and z. Consider slabs of thickness AZ cut perpendicular to the guide 
axis. A light beam traversing a slab at z suffers a distortion of its phase 
front 

cp(x, z) = k Llz Lln(x, z). (21) 

This causes a conversion into parasitic modes which can be calculated 
from (8). The validity of this model has been investigated in Ref. 8. 
Its usefulness lies in its physical simplicity which allows controlled 
approximations. 

Contrary to the lens irregularities 8, the index variations An are 
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only "locally homogeneous," which makes it necessary to use struc­
ture functions instead of covariance functions for the statistical de­
scription. In two dimensions the structure function of If is 

S(X 1 - X2 ,Zl - Z2) = ([CP(Xl ,Zl) - CP(X2 , Z2)J2). (22) 

Instead of (3) the identity 

(23) 

will be used later, which may be derived in the same way as (3).3 
From Kolmogoroff's theory for a locally isotropic turbulent flow one 
finds12 

(24) 

(J' is called the refractive index structure constant and measures the 
strength of the index fluctuations. 

If ~z, the thickness of the slabs, is made very small the coupling 
per slab will be proportional to ~z, say cn~z for the nth mode. As­
sume that a Gaussian beam of unit amplitude traverses the air path 
from one lens to the next. Then in every slab an amplitude cn~z is 
generated in the nth mode. Assume that the coupling to all parasitic 
modes is so small that reconversion can be neglected. Then, at the end 
of the air path of length L, the amplitude in the nth mode is 

an = 10
L 

cn(z) exp (-in8z/L) dz. (25) 

nO/L describes the phase lag between the fundamental and the nth 
mode as they travel along the path.l For a confocal system 0 = 7r/2, 
i.e., the phase retardation of the first parasitic mode with respect to 
the fundamental is 7r/2 from one lens to the next. Considering that 
the patches of correlated index variations are much smaller than the 
lens distance, it can be expected that the phase between low-order 
modes changes only a negligible amount within the area of correlated 
coupling. In the following, therefore, the phase lag will be neglected. 

For the evaluation of (25) it has to be considered also that Cn is a 
function of the beam width w which varies slowly along the transmis­
sion path. In a confocal lens guide the modes are V2 times wider 
at a lens than in the center between two lenses. 11 It is by a factor of 
this order that the results will deviate from the true values if for the 
following w is kept constant and equal to the width at a lens. 

With this in mind the expected power coupled to the nth mode can 
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be calculated by multiplying (25) by its conjugate complex and taking 
the average, which in this case will be an average over an infinite time. 
The evaluation agrees with the one outlined in the appendix. Since S 
is proportional to the square of the small increment .:1z the exponential 
function in (23) may be expanded up to the linear term of the argu­
ment. The average power in the nth mode is finally 

_ V2k 1+00 

1-pn - ~2n DoD2n[1 - 2 8 L( V2 ~)] d~ n. W -00 

(26) 

with 

8L (X1 - X2) = iL iL 

S(XI - X2 , Zl - Z2) dZ l dZ2 • (27) 

SL has been calculated elsewhere in connection with the investiga­
tion of a plane wave propagating in a turbulent flow.13 It is called the 
phase structure function of a plane wave and describes the statistics 
of the phases in a phase front that has traversed a turbulent air path. 
Equation (26) states that under the employed approximations the 
parasitic power arriving at the path end can be calculated from the 
intensity profile of an undisturbed beam multiplied by the phase 
structure function of a plane wave at the path end. From Ref. 13 
one finds 

(28) 

As long as the function SL is of the form ~a for a > - 1 the follow­
ing general solution can be found for (26) : 

with 

00 = {I for n = 0 
n 0 for n = 1, 2, ... . 

For the three-dimensional case again groups of modes with equal 
propagation constants are combined. The expected power in the rth 
group can be calculated from an expression similar to (26) but with 
double integrals for the x and y coordinates. It is 
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In the case of the plane wave approximation ex = 5/3. 1 - Pr is 
the total average power loss for a Guassian beam. Note that the sum­
mation over all Pr yields unity. No power is dissipated. 

The application of the waveguide model is no longer useful if the 
refractive index variations are so large that reconversion from para­
sitic modes into the fundamental must be considered. The mode con­
version at the path end, however, may then still be calculated from 
the undisturbed profile multiplied by the appropriate phase structure 
function. Only, the phase fluctuations at the path end will then be so 
large that an expansion of the exponential function in (26) is no 
longer valid. For a configuration close to confocal the phase structure 
function SL of the plane wave will be a good starting point to calculate 
the expected powers 

(31) 

A better approximation would have to consider the amplitude varia­
tions at the path end in (34) as well. It has been shown elsewhere 
that its neglection results in an error of the order of two only.14 

The results given in Fig. 10 for the three-dimensional case were 
calculated from an expression similar to (31). Fig. 10 shows the loss 
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in the beam and the powers in the first four parasitic mode groups 
versus the correlation parameter 

(32) 

which is a measure for the correlation at the path end. This plot al­
lows a comparison with Fig. 2. 

For large v the curves in Fig. 10 turn into straight lines indicating 
a functional dependence W 5

/ 3 as given by the approximate formula 
(30). Also for large v the ratio between PI and the total loss is a con­
stant close to 1. By measuring PI the total power loss can be found. 

This has been done in an experimental underground lens guide 
using a photoresistor bridge. 7 The first mode group consists of two 
modes of equal average power orientated in perpendicular planes. The 
photoresistor bridge described in Ref. 7 measures the instantaneous 
amplitude of one of these modes as compared to the amplitude in the 
fundamental. Actually if this ratio is of the order of some percent or 
smaller it is equal to the ratio of bridge signal V to bridge battery 
voltage Vo (see Ref. 7). The variance of this signal is the ratio of ex­
pected first mode power to beam power and twice that is the loss. 
Neglecting a seasonal slow beam drift a variance of 3 10-7 was meas­
ured in a 400-foot section of the underground lens guide. The loss is 
consequently of the order of 10-6 of the total power. 

It cannot be asserted here that this loss is indeed due to atmospheric 
effects. Microseisms may cause fluctuations of the lens positions that 
lead to disturbances of the same order. The measurement must be 
understood merely as an upper limit for the conversion caused by a 
well-shielded air path. The conversion expected from the lenses is 
several orders of magnitude larger, but, being independent of time, 
it can only be measured in a large number of sections to represent a 
reasonable average. An experiment of this kind is described in Ref. 5. 

VI. CONCLUSIONS 

In a lens guide with widely separated solid lenses, aberrations are 
negligible as compared to random surface irregularities. How much 
a Gaussian beam is distorted by the irregularities depends not only 
on the rms deviation .6., but also very strongly on the dimension of 
the irregularities as compared to the beam cross-section. 

For a beam of width 2w, which loses no power into the two parasitic 
modes of lowest order, the conversion loss is proportional to (W'jV)6 
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where v is a correlation length defining the dimension of the irregulari­
ties. Consequently, W should be made small enough to assure that the 
conversion loss is negligible compared to all other losses and that the 
beam profile distortion caused by the generated parasitic modes is 
tolerable. 

A beam with nominal width of 1 cm seems to satisfy these condi­
tions if lenses with a quality A/10 are used. These calculations are 
based on a conservative estimate of 1 cm for the correlation length. 
In this case, the conversion losses are smaller than 0.1 percent per 
lens and 1/10 of all other losses. The profile after 100 lenses may, at 
best, exhibit small side lobes with a peak intensity of the order of 
1 percent of the beam peak intensity. 

Refractive index variations in the air path between the lenses also 
lead to a conversion loss. It grows with W 5

/
3 for weak distortions. In a 

400-foot section of the underground lens guide described in Ref. 7 an 
upper bound for this loss was measured to be 10-6 of the total power. 

APPENDIX 

A meaningful measure for the effect of surface imperfections is the 
power coupled from the Gaussian beam into parasitic modes, averaged 
over the ensemble of equivalent surfaces: 

(33) 

The coupling coefficients en are given by (8). After changing the order 
of integration and averaging process and by replacing the ensemble 
average by an average over the surface, one gets 

where all integrals here and in the following extend from - 00 to + 00. 

To separate the double integral in (34), it is appropriate to change to 
new coordinates 

t Xl - X 2 d Xl + X 2 

.. = V 2 an 11 = V2 (35) 

in the plane of integration. From the properties of the hyperbolic 
cylinder functions, the identity 

(36) 
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can be derived. The use of (35), (36), and (3) turns (34) into 

pn = ~-2 t (_2)-n(n) J DoD2n-2p dT] J DoD2peF
(v'2i)-<P d~ (37) 

n.7rW p=O P 

and because of the orthogonality of the D n , this can finally be sim­
plified to 

pn (38) 
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