
THE BEL L SYSTEM 

echnfcal ournal 
DEVOTED TO THE SCIENTIFIC AND ENGINEERING 

ASPECTS OF ELECTRICAL COMMUNICATION 

VOLUME XLVI NOVEMBER 1967 NUMBER 9 

An Automatic Transmission Measuring System for Telephone 
Trunks J. F. INGLE, J. J. KOKINDA AND G. E. MC LAUGHLIN 1935 

A Solid-State Regenerative Repeater for Guided Millimeter-Wave 
Communication Systems 

W. 1\1. HUBBARD, J. E. GOELL, W. D. WARTERS, R. D. STANDLEY, 

G. D. MANDEVILLE, T. P. LEE, R. C. SHAW, AND P. L. CLOUSER 1977 

A Qllantitative Theory of l/i Type Noise Due to Interface States 
ill Thermally Oxidized Silicon 

E. H. NICOLLIAN AND H. MELCHIOR ~019 

Stahility Considerations in Lossless Varactor Frequency Multi-
pliers v. K. PRABHU ~035 

Somc Properties of a Classic Numerical Integration Formula 
I. W. SANDBERG 2061 

A Normal Limit Theorem for Power Sums of Independent Random 
Variables N. A. MARLOW ~081 

Somc Properties of Power Sums of Truncated Normal Random 
Variables I. NASSELL ~091 

H:lIldom Packings and Coverings of the Unit n-Sphere 
A. D. WYNER 2111 

Slope Overload Noise in Differential Pulse Code Modulation 
Systems E. N. PROTONOTARIOS ~1l9 

A Generalized Nyquist Criterion and an Optimum Linear Receiver 
for a Pulse Modulation System D. A. SHNIDMAN 2163 

An Automatic Equalizer for General-Purpose Communication 
Channels R. W. LUCKY AND H. R. RUDIN 2179 

l\:Iinimum Cost Communication Networks E. N. GILBERT ~~09 

• 
Contributors to This Issue 2~~9 

COPYHIGHT © 1967 AMEHICAN TELEPHONE AND TELEGHAPH COMPANY 



THE BELL SYSTEM TECHNICAL JOURNAL 

ADVISORY BOARD 

P. A. GORMAN, President, Western Electric Company 

J. B. FISK, President, Bell Telephone Laboratories 

A. S. ALSTON, Executive Vice President, 
American Telephone and Telegraph Company 

EDITORIAL COMMITTEE 

W. E. DANIELSON, Chairman 

F. T. ANDREWS, JR. 

E. E •. DAVID 

C. W. HOOVER, JR. 

A. E. JOEL 

D. H. LOONEY 

EDITORIAL ST AFF 

E. C. READ 

E. D. REED 

M. TANENBAUM 

Q. W. WIEST 

C. R. WILLIAM SON 

G. E. SCHINDLER, JR.; Editor 

E. F. SCHWEITZER, Assistant Editor 

H. M. PURVIANCE, Production and Illustrations 

F. J. SCHWETJE, Circulation 

THE BELL SYSTEM TECHNICAL JOURNAL is published ten times a 
year by the American Telephone and Telegraph Company, B. S. Gilmer, 
President, C. E. Wampler, Vice President and Secretary, J. J. Scanlon, Vice 
President and Treasurer. Checks for subscriptions should be made payable 
to American Telephone and Telegraph Company and should be addressed 
to the Treasury Department, Room 2312C, 195 Broadway, New York, 
N. Y. 10007. Subscriptions $5.00 per year; single copies $1.25 each. Foreign 
postage $1.08 per year; 18 cents per copy. Printed in U.S.A. 



THE BELL SYSTEM 

TECHNICAL JOURNAL 
VOLUME XLVI NOVEMBER 1967 NUMBER 9 

Copyright © 1967, America Telephone and Telegraph Company 

An Automatic Transmission Measuring 
System for Telephone Trunl(s 

By J. F. INGLE, J. J. KOKINDA, and G. E. McLAUGHLIN 
(Manuscript received July 19, 1967) 

An Automatic Transmission Measuring System (ATJ11 S) has been 
designed to provide means for making rapid and accurate transmission 
measurements on telephone trunks. The system consists of a control unit 
(director) in one office and one or more responding units (responders) at 
distant locations. Trunk selection (not treated in detail in this paper) is 
accomplished either by a specially designed test frame in electromechanical 
offices or by special programming in electronic offices. 

All measurement sequences are under command of the director which 
in turn receives its information from a teletypewriter tape or punched cards. 
New measurement techniques utilized in AT M S which permit rapid and 
accurate measurements are discussed. System accuracy of ±O.l dB for 
loss and ±1 dB for noise is achieved using these techniques. Total measure
ment time (excluding trunk seizure and printout time) for loss measurements 
in both directions and noise at both ends is less than five seconds. 

Although the ATMS is presently capable of making only loss and noise 
measurements, additional measurements can be added conveniently because 
of its modular design and construction. 

Where responders are not installed at the distant offices, other kinds of 
existing Bell System transmission test lines may be utilized by the director 
to make whatever measurements the test line permits. 

Two schemes are described whereby measurements may be made on 
trunks between two remote central offices and the results sent to a controlling 
director in a third office. 

1935 
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1. INTRODUCTION 

The problem of trunk maintenance in the Bell System is magnified 
by the number of trunks which must be considered. A typical central 
office has more than a thousand trunks and there are about 2.7 million 
trunks in the Bell System. Proper maintenance of these trunks requires 
routine measurements at monthly or shorter intervals. In addition, at 
least four different transmission measurements are required to insure 
proper operation. 

In view of the large number of measurements required, fully mech
anized testing appears not only economical but necessary. The Auto
matic Transmission Measuring System (ATMS) discussed in this 
paper was developed to meet this need. 

II. BACKGROUND AND PRIOR ARRANGEMENTS 

In order to appreciate some of the intricacies involved in automati
cally measuring telephone trunks, a brief description of the telephone 
plant is in order. Fig. 1 is a simplified illustration of the telephone 
plant. A connection between customers is made up of two customer 
loops and 0, 1, 2 or more trunks. The loops shown connecting custom
ers to the central offices are generally passive, i.e., without amplifiers. 
The trunks connecting central offices, on the other hand, frequently 
have active devices associated with them. 

Fig. 2 depicts the make-up of a hypothetical trunk. A particular 
trunk contains some of the elements shown. They will be discussed 
only to the extent to which they affect measurements. 

-- INTEROFFICE TRUNK 
--- SUBSCRIBER LOOP 

Fig. 1- Simplified telephone plant. 
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ECHO // " ECHO 
SUPPRESSOR ~ COMPANDOR COMPANDOR , SUPPRESSOR 

Fig. 2 - Hypothetical trunk. 

(i) Systems with Amplifiers 

Trunks utilizing carrier systems or hybrid-type repeaters complicate 
transmission measurements since the transmission in the two direc
tions is affected by different elements. Thus, measurements must be 
made at both ends of the trunk. 

(ii) Echo Suppressors 

Echo suppressors, devices utilized in long haul trunks, affect remote 
automatic measurements because they prohibit simultaneous trans
mission in both directions. 

(iii) Compandors 

Compressors and expandors (known collectively as compandors) if 
functioning perfectly, are of no concern to transmission measurements. 
However, imperfect compandor action implies that the insertion loss 
of the trunk at one transmitting level differs from that at another 
transmitting level. 

The use of active devices demands closer surveillance of the trunk 
to detect changes in their characteristics due to aging, maladjustment, 
etc. Until a few years ago, an operator using cords made the connection 
between loops and trunks. Since the operator was required to com
plete any call, she could perform rudimentary tests to determine the 
suitability of the connection. By listening to the person placing the 
call and to the person to whom the call was placed, the operator could 
note excessive loss or noise if present, and if necessary, establish an 
alternative connection. With the introduction of Direct Distance 
Dialing (DDD), even this minimal transmission check has been lost. 

Trunks may be classed as incoming, outgoing, or two-way depending 
upon whether the trunk may be seized only from the distant office, 
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only from the near-end office, or from either office. These terms do not 
imply the transmission is limited to a single direction. It does mean 
that (in the case of manual measurements) if a transmission test is 
to be made on incoming trunks, the distant office must be requested to 
originate the test call. 

When a connection has been established, manual effort is required 
at each end of the trunk if measurements at both ends are desired. 
Perhaps the most serious disadvantage of such manual measurements 
is the time involved in coordinating the efforts at each end and the 
number of tests involved. 

Semiautomatic measurements are defined for the purposes of this 
paper as two-way measurements which are made manually using 
automatic far-end equipment. In this case, manual effort is required 
only at one end to make the measurements in both directions with 
the automatic far-end equipment. More will be said of this later. 

Automatic transmission measuring systems for measuring telephone 
trunks are not new. At least two other systems have. been developed 
prior to ATMS. One of these, which was developed by the Bell Tele
phone Laboratories in the early 1950's, is known as the automatic 
transmission test and control circuit (ATTC).l The other system was 
developed in the early 1960's by the Swedish Company Telefonaktie
bolaget L. M. Ericsson.2

, 3 Both systems utilize the measurement tech
nique illustrated in Fig. 3. After amplification and rectification, the 
resulting voltage is compared with a fixed reference voltage. The at
tenuator is then adjusted in discrete steps until the output voltage is 
equal to the reference voltage within the limits of the attenuator's 
step granularity. 

Here the similarity between the two systems ends. The far-end 
equipment associated with the ATTC adjusts a second set of attenua
tors to equal the near-to-far loss. The far-end equipment then sends 
a test tone first without and then with the additional loss stored in the 
second attenuator. The near-end equipment measures the far-to-near 
loss under both conditions and then computes the loss of the trunk 

INPUT VOLTAGE 
TO BE 

MEASURED 

EREFERENCE 

Fig. 3 - A transmiEsion measurement scheme. 
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in the near-to-far direction as the difference of the levels of the two 
received tones. The Ericsson system sends the information contained 
in the state of the relays controlling the adjustable attenuator to the 
near-end in digital form by means of a multifrequency signaling 
system. 

Each of these systems has its advantages and disadvantages. One 
of the attractions of the ATTC system is its adaptability to semi
automatic measurements. The results can be decoded by manual 
measurements. No special equipment is needed. On the other hand, 
imperfect compandors and other nonlinearities in the trunk being 
measured can cause appreciable errors. The system used by Ericsson 
circumvents this problem by coding. Specialized decoding equipment, 
however, must be used at the near-end for both automatic and semi
automatic measurements. 

Both the Ericsson system and the ATTC system are comparatively 
slow due to the process of adjusting discrete step attenuators. Both 
also make only noise checks, not noise measurements. In addition, the 
Ericsson system does not contain some of the self-checking features 
provided in the A TTC. 

III. REQUIREMENTS 

The following is a summary of the requirements upon which the 
A TMS design is based. 

3.1 Operational Requirements 

(i) The system must make measurements at both ends of trunks. 
(ii) Measurements at both ends must be made automatically with

out manual assistance. 
(iii) Measurements at the far-end should be controlled by signals 

sent by the near-end equipment. 
(iv) Measurements should be made of insertion loss in both direc

tions of transmission and background noise at both ends of trunks. 
Noise measurement results should indicate the amount of "back
ground" noise present such as thermal noise, crosstalk, steady tone, 
etc. These are kinds of noise most disturbing to a human listener. Im
pulse noise, although its effects may be very serious on trunks used 
for data transmission, should be included only to the extent that it 
disturbs the human listener. 

(v) Measurements should be made as rapidly as practical. 
(vi) All measurement results should be made available at the near

end. 
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(vii) Modular construction should be used to allow for future ex
pansion to include other tests and to facilitate maintenance. 

(viii) The near-end equipment should be capable of making tests 
to existing far-end measuring equipment to whatever extent practical. 

(ix) Measurements should be. possible on trunks where echo sup
pressors prevent simultaneous transmission in both directions. 

(x) All measurement results of loss and noise should be displayed 
in logarithmic (decibel) units as deviations from reference values. 

3.2 Accuracy and Range Requirements 

(i) Overall system accuracy should be ±0.1 dB for loss measure
ments and ± 1 dB for noise measurements. 

(ii) Loss measuring circuit should accept +5 to -15 dBm signals. 
(iii) Noise measurement range should extend from +15 to +50 

dBrne. 

IV. GENERAL SYSTEM DESCRIPTION 

4.1 System Functions 

In discussing a system which will automatically test the transmis
sion performance of all outgoing trunks in a telephone office, it is 
necessary to include associated equipment both in the originating and 
terminating offices. In addition to the measurement, the functions of 
gaining access to the desired trunk and of establishing a connection to 
the far-end test equipment must be considered. The complete measure
ment process can be broken down into a number of relatively simple 
steps which can then be related to specific equipment. These steps are: 

(i) accept priming information on trunks to be tested: i.e., tests to 
be made, the transmission requirements of the trunks, and so on; 

(ii) seize the trunk to be tested and dial up the far-end test equip
ment; 

(iii) coordinate the operations of the near-end and far-end test 
equipment; 

(iv) make transmission measurements at both ends of the trunk; 
(v) transmit the far-end test results to the near-end; 
(vi) display both the near-end and far-end results, in appropriate 

units, at the near-end; and 
(vii) release the connection. 
In addition, to increase the reliability of the system operation, two 

more steps may be added. These are: 
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(viii) repeat the test on a trunk when a transmission impairment 
is detected to determine if it is momentary or continual; 

(ix) periodically make internal system checks of the mCflsuring 
circuits to insure accuracy. 

4.2 System Equipment 

The overall system is comprised essentially of four units: the 
director, the responder, an automatic trunk test frame, and a test line 
(designated the I05-type test line). The director is used in conjunction 
with the automatic trunk test frame in the office in which the tests 
(and the trunks) originate (hereafter referred to as the near-end 
office). The responder, which is accessed through the I05-type test 
line, is far-end test equipment. 

4.2.1 ATlIl S Director 

The director was designed primarily to make measurements with 
the aid of the far-end responder and its associated test line. However, 
it is also capable of making limited measurements with other far
end arrangements. The director performs the following functions: 

(i) Receives instructions from the automatic trunk test frame. 
(ii) Sends commands to the responder. 
(iii) Send test tones. 
(iv) Provides a termination for far-end noise measurements. 
(v) Receives data signals from a responder. 
(vi) Makes far-to-near trunk loss and near-end noise measurements. 
(vii) Converts the trunk loss and noise measurements made by the 

director and data signals from a responder into numerical readings 
and cues (indications that limits have been exceeded). 

(viii) Provides these results to the automatic trunk test frame 
which causes them to be printed on the readout device. 

(ix) Performs a self-check of its operation and a check on the opera
tion of the responder when commanded to do so. 

4.2.2 ATlIl S Responder 

In addition to the basic measurement functions, which are similar 
to those of the director, the responder receives commands from the 
director over the trunk under test, converts the received level of the 
test tone or noise into data signals, and transmits the data signals to 
the director. 
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4.2.3 Automatic T1'unk Test Frames 

Several different automatic trunk test frames are used in the vari
ous types of telephone offices. ESS offices have special programs which 
provide the equivalent of a test frame. These test frames provide ar
rangements for seizing the trunks to be measured and for pulsing for
ward the codes of various test lines at the distant end of the trunk. 
Information necessary for the director to make appropriate transmis
sion loss and noise measurements and to evaluate the results is also 
supplied by the test frame. In addition, it provides facilities for print
ing the measurement results. 

Another test frame function is to maintain trunk supervision, which 
includes the ability to send and/or receive on-hook, off-hook, busy, 
and reorder signals. In addition, most test frames make operational 
tests on trunks (indeed, this may be their primary function) in con
junction with an operational test line in the terminating office. These 
tests check the trunk's ability to pass supervision and signaling and 
are made independently of the transmission tests. 

4.2.4 i~S-Type Test Line 

The responder must be accessed through a I~S-type test line. This 
test line provides holding and supervision, connects the responder 
through the switching system to the trunk being measured, and sup
plies transmission measuring information to the responder. A group 
of these test lines provides a parking arrangement which enables in
coming calls to wait and be served in turn if the responder is engaged. 

4.3 AT lIf S Operation 

A typical transmission measurement setup using the ATMS is 
shown in Fig. 4. A near-end connection to the trunk is made through 
the office switching equipment or special test connectors. The code of 
the far-end test line (in this case a lOS-type test line) is then pulsed 
forward, and the distant switching machine makes the connection. The 
lOS-type test line terminates in a responder. The automatic trunk 
test frame feeds the test conditions and trunk transmission require
ments to the director, connects the trunk to the director, and instructs 
the director to perform certain measurement sequences. 

As the director makes the measurements, it provides measurement 
data to the automatic trunk test frame which records the results on 
a Teletype printout or other readout device. At the end of the test 
sequence, the trunk and measuring equipment are released and control 
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Fig. 4 - Typical ATMS system. 

reverts to the automatic trunk test frame or central control (in an 
electronic office). 

The automatic test frame then advances the priming information 
source to the next trunk to be tested and the sequence is repeated. In 
the event that successive trunks have the same transmission character
istics and terminate in the same distant office, the priming information, 
except for individual trunk identity, is stored in the test frame until 
all trunks of this category have been tested. At this time, the test 
frame advances the priming source to the next trunk group. 

4.4 Additional Features 

A feature of the director that increases the usefulness of the test 
results is the ability to make a repeat test whenever a measurement 
exceeds predetermined (and selectable) limits. For example, suppose 
the deviation from the expected value of the near-to-far loss exceeds 
a preselected limit of ±1.5 dB. The director will complete the initial 
measurements (loss in both directions and noise at both ends) and 
then compare all the results against preselected limits. It then tells 
the test frame either "end of test" or "repeat test." When a "repeat 
test" is indicated, the test frame holds the connection to the responder 
and the director and responder repeat all four measurements. If the 
second measurement is also out of limits, the trouble is probably not 
momentary, for the time interval between the first try and repeat of 
any given measurement is about 5 seconds. A "good" second measure
ment indicates a momentary or varying trouble or a hit on the trunk, 
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either during the measurement or during data transmission of test 
results from the responder to the director. 

It was mentioned earlier that a self-checking feature is desirable 
to insure system accuracy and reliability. This is true particularly in 
a system like ATMS, for hundreds, even thousands, of trunks may 
be tested without manual intervention. 

The ATMS makes a self-check of both the director and responder 
when it advances to a new responder (a self-check command is in
cluded in the priming information supplied by the test frame). This 
self-check includes practically all of the measuring and data trans
mission circuits. 

A loss and noise deviation register panel is available, which accumu
lates statistical data on the measurements made by the ATMS. This 
is accomplished by dividing the complete measurement range into 
intervals and counting, or "scoring," the number of measurements 
that fall within each interval. This provides information which can 
be used in compiling measurement results statistics. 

Modular construction facilitates both maintenance and addition of 
new measurements. 

4.5 Other Transmission Test Lines 
Before completing a description of the ATMS, it is worthwhile to 

mention other transmission test lines that are currently in use. The 
ATMS director was designed with the capability to test to a number 
of existing Bell System transmission test lines and make all the 
measurements that are within the test line's capability. The exact 
measurements to be performed are dependent upon the capability of 
the far-end test line and the test requirements. Table I summarizes 
Bell System Test Lines to which the A TMS will test and the measure
ment capability they provide. 

V. MEASUREMENT TECHNIQUE 

In a sense the ATMS may be considered a very specialized digital 
voltmeter. However, the measurement technique employed by the 
ATMS must provide a number of features not generally imposed 
upon a digital voltmeter. Because measurements cannot be performed 
and the results transmitted simultaneously on the same trunk (a 
condition precluded by the use of echo suppressors on some trunks) 
some storage element must be used at least in the far-end equipment. 
Results of measurements made at the far-end must be in a form suit
able for transmission to the near-end by a means essentially inde-
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TABLE I - BELL SYSTEM TRANSl\USSION TEST LINES 

l\leasurements 
Test line 

type* Loss Noise Description 

lOOt Far-to-near Near-end 5 seconds of milliwatt followed 
by quiet termination 

102 Far-to-near No Milliwatt, interrupted at 
lO-second intervals 

104 Both ways Near-end Transmission measurement and 
noise checking circuit 

105 Both ways Both ends A TMS responder 

* This includes both toll test lines accessed by lOx codes and local and tandem 
types accessed by other than lOx codes. 

t This test line will be available soon. 

pendent of the transmission characteristics of the trunk over which 
the results are sent. Finally, all loss and noise measurement results 
should be presented to the user in logarithmic units to conform with 
the universal use of the decibel in the Bell System. 

One of the simplest schemes which accomplishes the above is used 
in the ATMS and takes advantage of the logarithmic character of an 
RC discharge. After the signal to be measured is amplified, rectified, 
and filtered, a capacitor is charged to the resulting voltage. The 
capacitor provides a needed means for temporary storage of the 
measurement. After the capacitor is charged, relay contacts remove 
the charging source, leaving the capacitor with a charge proportional 
to the. signal voltage being measured. 

The length of time that the capacitor is connected to the amplifier
rectifier is about 0.4 second in a typical case for ATMS. If the trunk 
being measured has a so-called beating problem (a condition as
sociated with some carrier systems which causes the gain to fluctuate 
slowly with time) and if the beating period is long, an ATMS measure
ment will give a result equivalent to the average value. of the received 
voltage during that time. 

The capacitor is now removed from the amplifier-rectifier for a brief 
period during which it will retain its charge. A resistor is then con
nected across the capacitor and the charge. on the capacitor decays in 
a known exponential manner as illustrated in Fig. 5. A voltage com
parator monitors the voltage on the capacitor and generates a pulse 
from the time the capacitor begins to discharge until the voltage on 
the capacitor reaches the reference voltage ER • The. duration of the 
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Fig. 5 - Voltagc-to-timc conycrsion. 

pulse so genera ted is 

t = Re In (E/ER) ' (1) 

where E is the initial voltage on the capacitor C and R is the value of 
the discharging resistor. 

This time interval is proportional to the signal voltage (measured 
in decibels) with the addition of a constant which is composed of 
known factors. By means of a frequency shift data transmitter and 
receiver the pulse length information can be sent to the director. 

Errors at the director in determining the length of the pulse sent 
from a responder may occur due to large impulse noise and the finite 
bandwidth of the trunk over which the information is sent. Impulse 
noise, if sufficiently large, may produce "holes" or additional error 
pulses in the received pulse. Either of these conditions will cause 
errors in determining the length of the pulse. Finite bandwidth implies 
that the beginning and ending of the received pulse cannot be precisely 
determined due to the finite rise and fall times of the pulse. Both the 
effect of impulse noise and the effect of bandwidth limitations can be 
mitigated by lengthening the RC time constant which in effect in
creases the period of the pulse transmitted per dB. It is possible then, 
at the expense of increased time spent in measuring, to achieve any 
practical degree of error desired. 

It remains now to determine the length of the pulse generated in 
order to ascertain the magnitude of the voltage being measured. 
Examination of (1) shows that equal intervals of time represent equal 
decibel increments. Therefore, a gated oscillator and counter circuit 
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such as shown in Fig. 6 may be used to determine how many decibels 
above the reference voltage the voltage on the capacitor was before 
discharge. For example, the oscillator's frequency may be set such 
that one cycle is equivalent to 1 dB. If then the voltage placed on the 
capacitor is 10 dB above the reference voltage, 10 cycles of the oscil
lator output will be gated to the counter. This is shown pictorially in 
Fig. 7. As a practical matter it can be shown that if the oscillator and 
gate are not synchronized, a one count ambiguity can occur. Since the 
exact time a pulse arrives cannot be arranged to correlate with the 
phase of the oscillator and since turning on a precision oscillator and 
obtaining full accuracy instantaneously is very difficult, synchroniza
tion is not feasible. An alternative solution used in ATMS is to employ 
a free-running oscillator whose frequency is much higher (36: 1 in the 
case of ATMS) than necessary. Then a gated divider is used which 
divides the oscillator frequency down to the desired frequency and 
gates the output to the counter. In this way the ambiguity is reduced 
by the ratio of the oscillator frequency to the gating frequency. In the 
case of an A TMS loss measurement, for example, where a tenth of a 
dB is represented by 2 milliseconds the ambiguity is reduced to 2/36 
milliseconds which corresponds to 0.0028 dB. 

The counter output in Fig. 6 is the difference in dB between the 
unknown voltage and the reference voltage, provided the counter was 
set initially to zero. In practice, the quantity of interest is the differ
ence between the measured voltage and the expected voltage. This 
can be obtained by the use of a presettable reversible counter. Fig. 7 
shows its operation. Assume that the readout is in dB's and that the 
expected voltage is 10 dB above the reference voltage. From this in
formation the counter is preset to 10 and set to count down. Further, 
assume that the measured voltage is 10 dB above the reference voltage. 
vVhen the capacitor discharges, 10 cycles of the oscillator output are 
gated into the counter causing it to count down to O. The resulting 

AMPLIFIER 
RECTIFIER 

~y 
C 

EREFERENCE 

Fig. 6 - Block schematic for measurement of time interval. 
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Fig. 7 - Loss deviation computation. 

digital display on the counter will therefore be 0, corresponding to the 
difference between the measured and expected voltages. 

If, however, the voltage on the capacitor was 11 dB above the refer
ence voltage, the counter would count down from 10, through 0, re
verse and count up to 1. The difference or deviation is then read out 
as 1 dB; the reversal of the counter indicates that the measured volt
age exceeded the reference voltage. 

To change the precision to which the results are displayed, it is 
only necessary to change either the oscillator frequency or the RC 
discharge time constant. In the ATMS, loss measurements are dis
played to the nearest 0.1 dB and noise measurements are displayed 
to the nearest 1 dB. The change is made by decreasing the RC time 
constant by a factor of 10 during noise measurements. 

VI. NOISE MEASUREMENT 

The previous section discussed how a loss measurement was made 
and the results displayed. The A TMS noise measurement is discussed 
in more detail because it is the first widespread application in which 
a noise reading made in a fraction of a second is taken as a measure 
of the disturbing effect of noise to a telephone customer. 

6.1 General 
The fundamental obj ective of message circuit noise measurement 

is to give the same reading on various kinds of noise that are judged 
to be equally interfering to a telephone customer. The accepted noise 
measuring set in the Bell System for measuring message circuit noise 
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is the 3A Noise :Measuring Set.4 The ATMS noise measurement circuit 
will give approximately the same results as a 3A Noise lVleasuring Set. 

6.2 Frequency Weighting 

The ATlVIS noise measurement circuit employs the same C-message 
weighting filter as the 3A set. This characteristic was determined 
during tests4 in which listeners were asked to adjust the loudness of 14 
different frequencies between 180 and 3500 hertz until the sound of 
each was judged to be equal in annoyance to a 1000-hertz reference 
tone. The results of these tests were averaged at each frequency, com
bined and smoothed to obtain the C-message weighting as shown in 
Fig. 8. 

6.3 Quasi-nns Detector Circuit 

The ATMS quasi-rms detector employs the same kind of detector 
as the 3A Noise lVleasuring Set. The appendix of Ref. 4 explains in 
detail the principle of operation of this circuit (see Fig. 9). 

Briefly, the quasi-rms detector is somewhere between a peak and 
an average detector. Since the rms value of a positive function lies 
between the average and peak value, it is instructive to investigate 
the action of a detector which gives a dc voltage corresponding to 
something between average and peak. 

6.3.1 SA Quasi-rms Detector Circuit 

Consider the capacitor of Fig. 9 to be large enough such that the 
circuit time constants are much longer than any associated with the 
input signal. The diodes conduct only when the input voltage is higher 
than the voltage across the capacitor. If Rl is zero ohms, then eout is 
equal to the peak value of the input signal minus any diode voltage 
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Fig. 8 - Response vs frequency of C-message weighting characteristic. 
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drop in Dl or D 2 • If Rl is made very large compared to R 2 , then eout 

is a measure of the average value of the input signal. By selecting the 
proper ratio of Rl and R 2 , the circuit can be made to produce equal 
eout for any two input signal waveforms of equal rms value. 

Thus, if one wishes that sine waves and white noise of equal powers 
produce the same eout then a ratio of 

R2 7 
Rl + R2 = O. 06. 

should be chosen. 

6.3.2 ATM S Quasi-rms Detector Ci1'cuit 

The ATJ\1:S quasi-rms detector circuit5 is shown in Fig. 10. The 
operation of this circuit may best be understood by first considering 
that diode D5 is an open circuit. Let the input be a sine wave. The 
gain of the amplifier from the input to point H will be very large until 
one pair of diodes D l , D2 or D3 , D4 is broken down. Dl , D2 will conduct 
on the positive swing at point II and D3 , D4 on the negative swing. 
Resistors Rlf are much higher than the forward resistance of a con
ducting diode. When the diodes are conducting the gain of the amplifier 
is determined by the feedback resistors (Rt. , R,. , and Ri .) and R& . 

Thus, the signal at point H will appear to be a magnified replica of 
the input signal sliced through at the zero voltage point with a square 
wave of peak-to-peak amplitude VDl + VD2 + VD3 + VD4 added. 
If one were now to look with an oscilloscope at point A, a positive 
half-sinusoid with an additional dc voltage of VDl would be observed 
when the signal at H swings positive. If the signal at point B were now 
subtracted from the signal at point A, a full-wave rectified signal riding 
on an added dc voltage equal to a diode voltage drop would be observed. 

It is this added diode voltage drop which now permits compensation 
for the voltage drop of D5 , which we will now reinsert. 

C is the storage capacitor (4.22 JlF) mentioned in Section V. If diodes 
Dl and D2 are conducting, then C is charged through the R l• across 

Dt 

IN:J Rt 

+1 
D2 R2 C eOUT 

-~ 
Fig. 9 - Simple quasi-rms detector. 
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R~ 

INPUT 

Fig. 10 - ATMS qum:i-rms detector. 

D3 and the two RJ.'s in series. The relationship between the resistors 
is as follows: 

R2 = 0796 
Rlt + RI1 + RIa + R2 . . 

'Vhen the signal is first applied to this circuit, diode D5 will be con
ducting most of the time. As C charges, D5 will conduct less of the 
time as determined by the input signal waveform. 

Diode D5 is chosen so that its forward voltage drop is the same as 
the forward voltage drop across Dl or D 3 , which carry higher cur
rents than D 5. The size of the R1's, R2 and C are chosen as described 
below. 

6.4 Noise Detector Transient Response 

The ATMS quasi-rms measurement circuit, as in the 3A set, is 
designed to match the transient response of the human ear. This 
response was determined6 during tests in which listeners were asked 
to match the loudness of bursts of 1000-hertz tone to that of a steady 
1000-hertz tone. 

The response of the ear could not be exactly matched with a quasi
rms charging characteristic so a compromise was made to ensure a 
close match in the 150 to 250 millisecond range (R2 = 42.2kn in Fig. 10). 

The selection of a time constant must take into account the fact 
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that the discharge time constant of the quasi-rms circuit is more than 
four times the initial charging time constant. Thus, for noise which 
falls off during the measurement interval it is desirable to have R2 
as small as possible. 

6.5 Noise 1J;[ easuring Interval 

The ATMS was designed to measure background noise rather than 
impulse noise. The most common types of background noise occurring 
on trunks are single-frequency tones, combinations of tones or white 
noise. The single-frequency tones can arise from such sources as power 
line harmonics and modulation products on carrier systems. The white 
noise arises from thermal and shot noise effects. The modulation 
products falling in a carrier channel from a large number of talkers 
in other channels also behave like white noise. 

How long a period is necessary to measure white noise? It has been 
shown7 that the error resulting from a noise measurement made over a 
short interval of time decreases with increasing bandwidth and in
creasing measurement interval. It was desired that successive ATMS 
noise readings of a stable white noise source exhibit a standard devia
tion no larger than 0.25 dB. With the quasi-rms detector time constant 
as determined previously, a measurement interval of 0.375 second was 
found to meet this requirement. 

Because of the characteristics of the quasi-rms detector, the meas
urement of a sine wave over this interval produces less than .05 dB 
error. 

6.6 AT111 S vs SA Noise Measuring Set Observers 

The ATMS noise measuring system performance was checked 
against 15 observers using a 3A Noise Measuring set on a series of 
noise tapes selected at random from a survey of 1069 intertoll trunks 
covering the whole Bell System. Fifteen-second noise samples from 15 
different trunks were selected from each of two trunk length ranges: 
250 to 500 miles and over 2000 miles. 

Each individual noise segment occurred twice at random positions 
on the tape. The ATMS made three measurements during each 15-
second segment for a total of six ATMS readings per segment. 

The results of these tests are shown in Table II. 
This data shows that the ATMS readings are consistent with the 

design requirements. Even greater reliability can be obtained by 
using the various repeat measurement modes. The possibility of rej ecting 
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TABLE II-COMPARISON OF ATlVIS AND 3A OBSERVEI~S 

250 to 500 mile trunks Over 2000 mile trunks 

3A 0 0.31-0.33 dB 0.33-0.35 dB 
observers 

Mean 31.7 dBrnC 38.8 dBrnC 

0 0.82-0.84 dB o . 60-0. 61 dB 
ATMS 

Mean 32.0 dBrnC 39.0 dBrnC 

a good trunk for high noise readings on two successiye measurements 
is remote. 

VII. OVERALL ATl\IS OPERATION 

7.1 General 
So far, the basic measurement technique employed by ATMS and 

some special considerations for the measurement of noise have been 
discussed. In order to operate satisfactorily as a system, a number 
of other functions must be considered. These relate back to the nine 
simple steps described in the general description (Section 4.1) and 
include: accepting priming information, coordinating simultaneous 
operation of director and responder, making measurements, and dis
playing all results at the director location. All ATMS operations may 
be related to specific circuit functions or subsystems as follows: 

(i) Measurement circuits. 
(ii) Computational (counting) circuits. 

(iii) Storage ( or registration) circuits. 
(iv) Signaling system. 
(v) Data transmission sytem. 

(vi) Control circuits. 
(vii) Timing circuits. 

(viii) Logic circuits. 

Before describing how these circuits and subsystems function to
gether, however, it is necessary to say a few more words about the 
measurement procedure. 

7 .1.1 Measurement Procedure 
As described in Section V, the ATMS amplitude-to-pulse-width 

converter generates a pulse whose length is proportional to the 
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logarithm of the input signal level. A complete measurement requires 
that this pulse length be converted into a digital output which can 
be used to drive a Teletype machine or other display device. This is 
shown in Fig. 11, a block diagram of the ATMS measuring circuits. 
Thus, the pulse length is converted into a number of pulses which are 
then fed into a binary-coded decade counting circuit. 

The counting circuit, functioning as described in Section V, deter
mines the difference between the measured and expected values. Thus, 
upon completion of a measurement, the result, regardless of whether 
the actual measurement was made by the director or the responder, 
is stored in the director counting circuits. 

7.2 1J![ easurement Sequence 

Using this information on the ATMS measurement procedure, the 
overall operation of the system may be described by a relatively 
simple sequence of events. In Fig. 12, a complete functional block 
diagram of the ATMS is shown. The procedure involved in gaining 
access to a trunk, making a measurement and advancing to the next 
trunk, is described in the General System Description, Section 4.3, 
which also discusses the functions of the automatic trunk test frame 
and the test line. The circuit blocks within the ATMS director and 
responder will be discussed as they occur in the description. 

Before the measurement sequence begins, the test frame supplies 
the director with all necessary priming information. This permits 
the logic and control circuits to preset counters and limit circuits to 
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Fig. 11- Block diagram A TMS measuring circuits. 
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their correct values, set up the correct measurement mode (discussed 
in Section VIII), set the input circuit for the correct impedance and 
level, set the measuring circuits for self-check or trunk test, and 
other similar operations. Once the responder has been connected to 
the trunk, the test frame instructs the director to start the measure
ment sequence. The measurement sequence can be described using as 
an illustration a test sequence which includes loss in both directions 
and noise at both ends. 

7.2.1 Loss Measurements 

The simultaneous activities carried on by the director and the 
responder during loss measurements and the time allotted for each 
of these activities are shown in Fig. 13. Loss measurements are 
initiated when the director sends a 2-out-of-6 (2/6) multi-frequency 
(MF) signal to the responder commanding it to begin a loss measure
ment sequence. The timing circuit of the responder is triggered by the 
receipt of the signal, and the next three steps occur automatically. 
The responder sends a I-kHz milliwatt test tone over the trunk to the 
director. The loss measurement circuit of the director amplifies and 
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I I I 
SEND 2/6 START I DISCHARGE i / GUARD DATA GUARD\' 
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I TIME~ 
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Fig. 13 - Loss measurement timing. 
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filters the signal. The amplitucle-to-pulse-wiclth converter rectifies the 
signal and uses the resulting dc potential to charge a storage capacitor. 

The director then performs two simultaneous activities. It dis
charges the storage capacitor of the amplitude-to-pulse-width con
verter. This pulse gates on the precision oscillator, and the decade 
counting circuits count these pulses to rate the trunk on its far-to-near 
loss. At the same time, the director transmits a I-kHz test tone to the 
responder as the first part of a near-to-far loss measurement. The loss 
measurement and the amplitude.-to-pulse-width converter circuits of 
the responder are identical to those of the director. These circuits 
charge the storage capacitor in the responder to a level which is de
pendent upon the near-to-far loss characteristic of the trunk. The loss 
measurements are completed as the responder sends data back to the 
director to indicate the near-to-far loss characteristic. When the stor
age capacitor of the responder is discharged, the pulse is used to con
trol a data transmitter which starts by sending guard tone (1200 Hz). 
It then shifts to data tone (2200 Hz) for the duration of the pulse, 
then returns to guard tone for a short period. The data receiver of the 
director converts this data signal into the dc pulse which gates on the 
precision oscillator so that the near-to-far loss deviation may be 
counted. Two-way loss measurements are accomplished in less than 
two seconds. 

7 .2.2 Noise 111 easurements 

Noise measurements begin when the director samples the noise 
present on the trunk under test. The noise is amplified, weighted with 
C-message weighting and rectified in the noise measuring circuit, then 
used to charge the storage capacitor. The responder at this time func
tions only as a quiet termination for the trunk at the far end. Next, 
the director commands the responder to make a noise measurement. 
It does this by transmitting a 2/6 lVIF signal to the signaling receiver 
of the responder. After sending the "start noise" measurement com
mand, the director provides a near-end termination for the trunk under 
test. The responder uses its own measuring circuit and amplitude-to
pulse-width converter to charge the responder storage capacitor from 
noise present at the far-end of the trunk. Simultaneously, the director 
discharges its storage capacitor which had been charged from the 
near-end noise. The resulting pulse gates the precision oscillator and 
the near-end deviation from the reference noise level is counted. Then, 
the responder discharges its storage capacitor and sends a data signal 



1958 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEl\1BER 19G7 

indicating the results of the far-end noise measurement to the director. 
The data receiver of the director converts the data signal into a gate 
pulse for the counting of the far-end noise deviation from reference 
level. 

7.2.3 N onmeasurement Functions 

At the appropriate time in the testing sequence, the measurement 
is transferred from the counter to the output register, a relay circuit 
which translates the results from a binary to a decimal code and 
stores them. The automatic test frame "reads" the ATMS output and 
causes the results to be printed. Once the results of a measurement are 
stored in the output register, the counting circuits may be preset and 
the sequence advanced to the next measurement. Note that this pro
vides the director with the capacity for the simultaneous storage of 
two answers; one in the output register and one in the counter. This 
feature is used to advantage to decrease the measurement time. 

In addition to the functions described above, counters are preset, 
results are compared with limits to determine cues (indications that 
a measurement has exceeded a limit), and a determination is made 
as to whether the trunk should be retested. 

VIII. MEASUREMENT MODES 

The ATMS provides its users with a choice in the amount of print
out information that may be obtained. In all the preceding discus
sions, the operation of the ATMS was described with all of the 
measurement results printed out. This would include self-check results 
and both initial and repeat results when a trunk test is repeated, and 
is the maximum printout available. There are occasions, however, 
where such complete results are not necessary (and indeed, may even 
make it more difficult to utilize the results), and when desired, the 
A TMS may be instructed to print out the results of only those trunks 
whose measurement results have exceeded some limit. The advantages 
of such operation include increased testing speed and a printed record 
of only those trunks exceeding certain maintenance limit. 

8.1 111 easuremenl Limits and Cues 

The ATMS director may be set for measurement limits that corre
spond to two different degrees of urgency: maintenance limits and 
immediate action limits. Any of ten maintenance limits and seven 
immediate action limits may be selected. During the measurement 
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sequence the director provides special indications called cues, along 
with the measurement results, whenever one or more measurements 
exceed one of these limits. A cue of "I" (Ql) is provided when a main
tenance limit is exceeded and a cue of "2" (Q2) is provided when an 
immediate action limit is exceeded. In addition, self-check limits are 
built into the director. A cue of "0" (Qo) indicates a satisfactory self
check and a cue of "9" (Qg) indicates a self-check limit has been ex
ceeded (±0.1 dB for loss and ±1 dB for noise). 

8.2 ]1.1 easurement and Printout Modes 

Four different measurement and printout modes may be set into 
the director by switch selection at the test frame. These modes are 
as follows: 

(i) Full Printout-No Repeat: All measurements are printed out 
and no repeat tests are made regardless of the cue. 

(ii) Full Printout-Repeat on Q2: All initial measurements are 
printed out and if Q'2' which is the highest limit, is exceeded, the 
measurements are repeated and printed out. 

(iii) Full Printout-Repeat Ql or Q2: All initial measurements 
are printed out and the measurements are repeated and printed out if 
either Ql or Q2 is exceeded. 

(iv) Abbreviated Printout-Repeat on Ql or Q2 : Initial measure
ments are not printed out. If no limit is exceeded, no record is made. 
If either Ql or Q2 is exceeded, the measurements are repeated and the 
results of the repeat test are printed out. 

All self-check results are printed out, both initial and repeat test, 
regardless of the print mode selected. 

IX. MECHANICAL FEATURES 

ATMS directors and responders each consist of a group of modules 
called circuit packs which plug into horizontal mounting shelves. The 
shelves, in turn, are fastened to the framework of 23-inch relay racks. 
A typical circuit pack is shown in Fig. 14. Each circuit pack is 8-3/8 
inches high, 8 inches deep, and either 1 or 2 inches wide. Most elec
trical parts are mounted on epoxy glass printed wiring boards. A few 
components, such as keys and jacks, are mounted in the face panel 
of the cast metal frame. A multiple plug at the rear of the circuit 
pack provides interconnection to other units through a mating con
nector and the shelf wiring. On the director, installer wiring termi-
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Fig. 14 - ATMS circuit pack. 

nates in several multiple plugs which engage mating connectors wired 
to appropriate circuit pack connectors. 

Circuit packs of the director mount in four horizontal shelves. The 
shelves are each 10 inches high. The overall assembly therefore oc
cupies 40 inches in a 23-inch bay. The director is shown in Fig. 15. 

The responder occupies only three horizontal shelves of a bay. The 
complete assembly, shown in Fig. 16 is 30 inches high and 23 inches 
wide. As shown in Fig. 15 and 16, both the director and responder 
contain circuit packs with no designations on the front. These are 
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Fig. 15 - ATMS director. 
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hlank circuit pack frames and represent the expansion space for the 
addition of new tests or additional features in the future. 

The loss and noise deviation register panel is 6 inches high and 23 
inches wide. It contains 34 message registers which provide informa
tion on the distribution of deviations in an office. An early version of 
the loss and noise deviation register panel is illustrated in Fig. 17. 

The alignment unit (Fig. 18) is a carrying case containing circuit 
packs used in testing the director and responder. It also holds a circuit 
pack extender to aid in making maintenance measurements and ad-

Fig. 16 - ATMS responder. 
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justments. The unit is 10 inches high, 15 inches wide, and 11 inches 
deep. It can be mounted by brackets in a 23-inch bay. In this case, 
the whole assembly is 10 inches high and 23 inches wide. 

X. MAINTENANCE 

10.1 Alignment 

Alignment of the director or the responder is accomplished by use of 
test circuit packs which normally are stored in the alignment unit. 
Alignment is necessary upon installation, when a critical circuit pack 
is replaced, and on a routine basis. Routine alignment is not expected 
to be necessary more often than every six months. 

10.2 Trouble Location 

l\1aintenance is facilitated by use of test points located on the face 
panels of the circuit packs. The test points provide access to particu
larly important points in the circuits. The circuit packs can be placed 
on an extender (included in the alignment unit) to make internal 
measurements or adjustments. No maintenance or repair of individual 
circuit packs is required by the user. Instead, the faulty circuit pack 
is simply located and replaced. The faulty circuit pack is then sent to 
a repair center. Special test procedures are provided for rapidly 
identifying faulty circuit packs. 

XI. ATMS FIELD TRIAL 

An extensive field trial was undertaken to assure that the A TMS 
and the associated switching equipment would function properly in 
the actual telephone offices. 

Fig. 17 - ATMS loss and noise deviation register. 
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11.1 Equipment Location 

The ATMS was on field trial in the Norristown, Pennsylvania, area 
between January, 1965 and January 1967. An ATMS director was 
associated with a No.5 Crossbar Automatic Progression Trunk Test 
Frame (APTT) in the Norristown, Pennsylvania, central office. Five 
responders were located as indicated in Table III. Other far-end offices 
with 102-type and 104-type test lines were included in the trial. 

11.2 Field Trial Results 

11.2.1 General 

The ATMS was found to meet all its design requirements. Trunks 
were tested more frequently and precisely than would have been 
possible with manual trunk testing by the telephone office personnel. 

Fig. 18 - A TMS alignment unit. 
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TABLE III - RESPONDEHS Fall ATMS FIELD TIUAL 

Airline distance to Type of access to responder 
Location of responder Norristown, Pa. in miles through 105-type test line 

Wayne, Pa. 6 4A toll 

Lansdale, Pa. 9 SXS toll, SXS local 

Philadelphia, Pa. 15 XB tandem, 4M toll 
IXB local, panel local 

Pottstown, Pa. 19 5XB toll, 5XB local 

Newark, N. J. 80 4A toll 

11.2.2 Trunk Testing Time 

It is desirable not only to reduce the time per trunk tested, but to 
reduce the holding time of the trunk so that it will be available to 
customers. The typical trunk was held for approximately eight seconds 
on a no-repeat loss and noise measurement to an ATMS responder. 
About half of this time was measurement time. The remaining time 
was necessary to complete the printing of the measurement results. 

The speed at which trunks can be tested varies considerably depend
ing on any or all of the factors below. 

(i) Number of trunks in the trunk group. 
(ii) Number of self-checks requested. 

(iii) Printout mode-no repeat or repeat. 
(iv) Number of trunks requiring a repeat measurement. 
(v) Busy trunks-this is a function of the time of day. 
(vi) Trunk seizure time. 

The trunk noise readings are usually highest during the hours of 
peak office activity. Unfortunately, busy hour testing implies a maxi
mum number of busy trunks (80 percent during one extended test) as 
well as competition with the customer for the few available trunks. 
The "busy hour" in Norristown extends almost all day, necessitating 
night-time testing. 

During the field trial, measurements were made in the Repeat-on
Ql-or-Q2 printout mode during the hours from midnight to 8 a.m. 
Dividing the total time by the number of trunks tested results in an 
average time of 50 to 60 seconds per trunk tested. 

Assuming 10 hours of usage per day, a seven-day week and an 



1966 THE BELL SYSTE:\1 TECHNICAL JOURNAL, NOVE~mER 19G7 

average trunk test time of 60 seconds per trunk, one may then test 
4,200 trunks per week. 

XII. REMOTE-OFFICE TESTING 

The classes of ATMS testing previously discussed permitted testing 
of trunks between an office containing an ATMS director and other 
offices with 100-, 102-, 104- or 105-Type Test Lines. See Table 1. 

Trunks between offices too small to justify an ATMS director and 
its associated test frame could not be tested with the ATMS until the 
advent of the Remote Office Test Line (ROTL). The ROTL (to be 
available soon) permits the director at Office A to obtain the results 
of measurements on trunks between Office B, equipped with a ROTL, 
and Office C equipped with a Code 100-, 102- or 105-Type Test Line. 

12.1 General 

The office containing the director and its associated test frame will 
be referred to as the near-end office, the office with the ROTL as the 
remote office, and the office containing the test line as the far-end office. 
The trunk between the near-end office and the remote office will be 
called the access trunk. 

Two kinds of remote office testing have been developed. 

(i) Remote-Office-Responder Testing-full accuracy, measurements 
made at the remote office using a modified responder-see Fig. 19. 

(ii) Remote-Office Through Testing-reduced accuracy, no measure
ments made at the remote office, lower cost-see Fig. 20. 

The remote office concept may be used to measure trunks if the 
far-end office is equipped with a 100-, 102- or 105-Type Test Line. 

Under control of the test frame the ROTL can seIze an outgoing 
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Fig. 19 - Remote-office-responder testing. 
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Fig. 20 - Remote-office through testing. 
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trunk to the far-end office, pulse forward a test line code and assist 
in making transmission tests on the outgoing trunk. 

The responder and test line can be in the same office or building 
as the director and test frame to permit testing of incoming trunks. 
An incoming trunk is defined as one which can be seized only at a 
distant office. An access trunk and ROTL are used to gain access to 
the originating end of these incoming trunks. 

12.2 Systems with Similarities to Remote-Office Testing 

12.2.1 L. M. Ericsson Remote-Controlled Measuremene 
The Swedish Ericsson system mentioned in Section II can operate 

in a mode in which the controlling set in office A can control test sets 
in offices Band C. The results of the measurement of the trunk be
tween Band C is then relayed to A by means of a multifrequency code. 
This system employs a slower measurement method. 

12.2.2 Loop-Around Test Line 
At the present time manual, one-man, two-way loss measurements 

are possible without 104-Type Test Line or ATMS equipment if the 
remote office is equipped for loop-around testing. 

All trunks in a group to the remote office are first measured in the 
far-to-near direction by seizing the Milliwatt Test Line in the remote 
office. One of these trunks is then selected as the reference trunk and 
is connected in turn through the loop-around test line to each of the 
other trunks in succession. Test tone is then sent from the originating 
0ffice through the trunk to be tested and back through the reference 
: "unlc Subtraction is then necessary to obtain the near-to-far loss of 
each trunk. 

Loop-around testing necessarily requires that a means be available 
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at the test location in the originating office for originating and holding 
two connections simultaneously. Only outgoing trunks may be tested 
by this method. 

There are many disadvantages to this method in addition to the 
. subtraction required. If the loss of the reference trunk varies with time 
or level (see Section II), then the computed near-to-far losses for the 
other trunks will be in error. Mistermination errors may occur when 
the reference trunk is connected to the trunk to be measured. As with 
all manual measurements, the procedure is slow. 

12.3 Remote-Oifice-Responder Testing 

All measurements in this mode are made by either the far-end 
responder (for the case of a 105-Type Test Line) or a modified re
sponder at the remote office. All measurement results are sent back to 
the director in the form of frequency-shift data signals. The loss and 
noise of the access trunk therefore do not degrade the accuracy from 
that of a director-to-responder measurement. 

12.3.1 Responder Modification 

A responder is modified to a remote-office responder by the addition 
of three circuit packs. These provide for modification of the timing 
cycles and independent output circuitry toward the access trunk. The 
remote-office responder is capable of transmitting different signals 
simultaneously, one toward the director and another toward the far
end equipment. This responder may still be utilized as a standard re
sponder, if desired. 

By using the isolation amplifier contained in the remote-office 
responder one can pass a signal through a remote-office responder in 
either direction. 2/6 commands may be passed through the remote
office responder to the far-end responder or the data from the far-end 
responder may be passed through the remote-office responder to the 
director. 

12.3.2 Remote-Oifice-Responder Testing Sequence 

Fig. 21 shows a two-way loss and noise measurement between a 
remote-office responder and a far-end responder. One new 2/6 multi
frequency command is necessary to make the near-end noise measure
ment. The other 2/6 commands are the same as those required for a 
normal director-to-responder measurement. It should be noted that a 
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Fig. 21- Remote-office-responder testing to a far-end responder. 

normal responder will not reply to any other 2/6 commands than those 
mentioned in Section VII. 

Both the remote-office responder and the far-end responder will 
reply to the 2/6 loss signal. The remote-office responder will measure 
the far-end responder test tone and at the same time transmit the 
1200-Hz guard tone to the director. The remote-office responder will 
now complete the data signal to the director which it is transmitting 
test tone toward the far-end responder. The director then receives the 
loss data signal from the far-end responder through the remote-office 
responded. 

The director then commands the remote-office responder to measure 
noise. After the director has received this data signal it commands the 
far-end responder to measure noise, and with the same signal, the 
remote-office responder to pass a data signal through to the director. 
When this final noise data signal has been completed, both responders 
return to a state where they can receive 2/6 commands. 

Loss and noise self-checks of the remote-office responder and the 
far-end responder may be completed in a somewhat similar manner. 

It is now clear that the loss and noise of the access trunk will have 
no effect on the accuracy or range of measurements. 

12.4 Remote-Office Through Testing 

This mode of testing necessitates connecting the access trunk to the 
trunk to be measured. If both of these trunks employed negative im
pedance repeaters, then a possibility of a singing condition exists due 
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to mistermination. This can be eliminated by the use of a buffer 
amplifier. 

12.4.1 Buffer Amplifier 

The buffer amplifier eliminates the effect of interaction between the 
impedances of the two trunks and provides terminations of nominal 
impedance during measurements. Because of its unilateral transmis
sion, however, the buffer amplifier necessitates more control functions 
in the ROTL. 

Since no measuring equipment is present in the remote-office equip
ment, the director must make the measurement for noise at the remote
office end of the trunk to be measured. Noise on the access trunk of the 
same level as that on the trunk to be measured can have a large effect 
on the measurement accuracy. For this reason a buffer amplifier gain 
of 20 dB was chosen for the period of this noise measurement. At all 
other times a buffer amplifier gain of 0 dB has the advantage of 
preserving signal levels. 

In the sequences which follow, the buffer amplifier is used in such a 
manner that its actual gain is relatively unimportant as long as the 
amplifier is linear. 

12.4.2 Remote-Office Through llf easurement Sequence 

Fig. 22 shows the actual sequence for a measurement to a far-end 
responder. Fig. 23 is a simplified diagram of the amplifier and the 
transmission portion of the ROTL. Table IV describes the sequence 
followed by the circuit shown in Fig. 23. 

The far-to-near loss measurement is made by first measuring the 
loss of the access trunk (interval t1 ) from the remote-office to the 
director and then subtracting this from the loss of the trunk to be 
measured and the access trunk in tandem (interval t3). During inter
val t4 the far-end responder is measuring the test power from the 
remote office. 

The director makes a measurement of the noise at the ROTL end 
of the trunk to be measured during interval t6. During interval ts the 
responder can make a valid noise measurement because the buffer 
amplifier is pointed toward the director. Not only does it block any 
noise on the access trunk, but it terminates the trunk to be measured 
in the correct impedance independent of the impedance of the access 
trunk. 
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TABLE IV - REMOTE-OFFICE THHOUGH TESTING SEQUENCE 

Helays opera ted Function being performed during 
Time interval Approximate -------- the time relays are operated 
from Fig. 22 time in seconds A B C D and relaesed as shown 

--------

il 3.00 X X 3 sec. MWT from Fig. 23 
to near end 

i2 0.08 2/6 freq. signal from 
near to far end 

t3 0.43 X MWT from far end 
to near end 

----
t4 0.64 X MWT from Fig. 23 

to far end 
----

i5 0.65 X Loss data from far 
to near end 

----
i6 0.38 X X N ear end measuring noise 

----

t7 0.15 2/6 freq. signal from 
near to far end 

----
is 0.43 X Far end measures noise 

----
t9 0.54 X Noise data from near 

to far end 

t10 0.08 2/6 freq. signal from 
near to far end 

It should be noted that the far-end responder receives commands 
from the director and acts on these commands in exactly the same 
manner as it would in a measurement without a ROTL. Thus, a re
sponder does not have to know whether its commands come through 
a ROTL. 

Testing to a 100- or 102-Type Test Line is accomplished by employ
ing parts of the 105-Type Test Line sequence shown in Fig. 22. 

12.4.3 Remote-Office Through Testing Limitation 

In the loss measurement portion of the sequence the director must 
make a measurement of the access trunk loss which it will subsequently 
subtract from the loss of the trunk· to be measured and the access 
trunk loss in tandem. The access trunk loss measurement is made during 
an initial transmission of the remote-office test tone through the remote
office buffer amplifier. Since the director cannot measure a received 
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level below -15 dBm the loss of the two trunks in tandem cannot be 
grea ter than 15 dB. 

Raising the gain of the buffer amplifier at the remote-office would 
increase this range but would also imply initial transmission of the 
remote office milliwatt at the level about 0 dBm. Such a transmission 
could cause overload and crosstalk problems on an access trunk over 
a carrier system. The most practical plan, therefore, is to use access 
trunks with as Iowa loss as possible. 

The subtraction process to obtain the loss of the trunk from the 
far-end office with the test line to the remote office involves two separate 
measurements made at different times and at different levels. With some 
carrier access trunks, beating of pilot frequencies can easily result in 
time-varying trunk loss variation of 0.2 dB. Compandor tracking errors 
can add another 0.1 dB or more of error. 

If the far-end test (100- or lOS-type) line permits noise measurement 
at the remote-office then the 20 dB buffer amplifier gain mode is em
ployed. The loss of the access trunk now affects the noise measurement 
accuracy, for the noise level at the director must be reduced by 20 dB 
minus the loss of the access trunk. This access trunk loss is stored in 
pads in the noise measurement path in the director. This loss is stored to 
the nearest 1 dB-thereby introducing a noise error of ±0.5 dB. Com
pandor tracking errors are greater at noise measure men t levels. These 
errors add to the carrier beating problem already mentioned. 

The necessity for the initial test tone transmission from the remote
office limits the printout to one mode--full printout-no repeat. 

No remote-office through automatic testing is attempted to a 104-
Type Test Line because its automatic mode (as opposed to manual 
mode) cannot be utilized. The half-minute cycle time for the 104 circuit 
in its manual mode restricts the number of trunks which could be tested. 

XIII. SUMMARY 

The Automatic Transmission IVleasuring System (ATIVIS) permits 
accurate and more rapid measurement of telephone trunks than was 
previously possible. The 1000-Hz loss of a trunk may be measured in 
both directions to an accuracy of ±0.1 dB. Noise measurements at 
each end of the trunk are accurate to ± 1 dB. The results of these 
measurements are printed on page copy, or perforated on punched 
tape or cards. 

An A TMS director is in one office and an A TlVIS responder is in 
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the other office. The responder may be commanded to make anyone 
of several measurements in conjunction with the director. 

The ATMS director works in conjunction with one of several auto
matic test frames or ESS central control which provides an interface 
for the director to the particular switching system. Interface for the 
ATMS responder is provided by a 105-Type Test Line. For most 
switching systems, the total ATMS measurement time for two loss 
and two noise readings is less than the overall time to read the trunk 
information from the input tape and seize the trunk. 

Personnel are needed only for loading the input, reading and inter
preting the output, periodic alignments and occasional maintenance. 
When an ATMS director and its associated test frame cannot be 
provided in a particular office, measurements may be made on trunks 
between central offices by using one of two Remote-Office Test Line 
(ROTL) concepts. 

The ATMS director can make measurements to four different far
end test lines-

(i) 100-Type 5 seconds of milliwatt followed by a quiet termina
tion (to be available soon). 

(ii) 102-Type Milliwatt, interrupted at 10-second intervals. 

(iii) 104-Type Transmission Measuring and Noise Checking Cir
cuit (TMANC). 

(iv) 105-Type ATMS responder. 

A director may make measurements through a remote-office to a 
100-, 102-, or 105-Type far-end test line. 

Flexibility and ease of maintenance result from the use of transistor 
circuits on plug-in circuit packs. The director requires 40 inches of a 
23-inch relay rack and the responder requires 30 inches of a 23-inch 
relay rack. 
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Recent advances in solid-state device technology for generating millimeter 
waves as well as advances in component design for IF and baseband portions 
of repeaters have renewed interest in millimeter-wave guided-wave com
munication systems. This paper describes a 306 Mb/s, all solid-state 
repeater which has been built using a 1.3-GHz IF and a form of differen
tially-coherent phase modulation. A signal-to-noise ratio of 13.6 dB is 
required for an error probability of 10-9 (compared with a theoretical value 
of 13.0 dB for an ideal differentially-coherent phase-modulated system). 
Sufficient gain for 15-mile repeater spacings (using two-inch circular wave
guide) has been obtained with an LSA diode, an IMPATT diode, and a 
varactor multiplier as the millimeter-wave power source. 

1. INTRODUCTION 

1.1 Guided M illiJrwter-Wave C O1n1nunication Systel1tS 

High-speed, long-haul communication by means of millimeter waves 
transmitted in the circular-electric mode in a multimode circular wave
guide was described by S. E. Miller! in 1954. Recent advances in solid
state devices for generating millimeter waves as well as advances in 
circuit design for the IF and baseband portions of the repeaters have 
renewed interest in such a system. 

The purpose of this paper is to describe the design and performance 
of an experimental all solid-state millimeter-wave repeater which has 
recently been built and tested. It operates at a carrier frequency of 
51.7 GHz and transmits binary PCM at a 306 Mb/s rate. The experi
mental repeater includes all of the active circuitry for one channel of 

1977 
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a complete repeater and contains channel filters representative of 
those needed to separate and combine the many channels of an actual 
system. It was built to demonstrate certain principles and no attempt 
is made here to describe or design a complete system. Certain system 
considerations are discussed in Section IV in order to give the reader 
some perspective concerning those factors which influenced the design 
of the repeater. 

In section II, we discuss a modulation scheme which was conceived 
to satisfy the requirement imposed by the nature of the system. The 
circuitry used in the repeater is discussed in Section III. Particular 
emphasis is placed on those portions of the circuit which the authors 
feel represent a significant advance in the state of the art. The per
formance of the repeater is described in Section V. Finally, the con
clusions which are to be drawn from the experimental performance of 
the repeater are summarized in Section VI. 

For a given repeater gain and spacing the communication capacity 
of such a system is set by the attenuation characteristics of the wave
guide. The system under consideration would use TEo! mode trans
mission in 2-inch helix or dielectric-lined circular waveguides. 

The characteristics of these kinds of waveguides have been studied 
theoretically by H. E. Rowe and W. D. Warters,2 S. P. Morgan and 
J. A. Young,s and H. G. Unger;4 and studied experimentally by A. P. 
King and G. D. Mandeville5 and W. H. SteierG for a straight wave
guide. More recently a study of typical route loss has been undertaken 
by W. G. Nutt and others.7 Their results, shown in Fig. 1 along with 
the results of the other measurements cited above, are used for the 
calculations in Section 4.1. From these measurements, one finds that 
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Fig. 1- TEol, mode attenuation characteristic of 2-inch circular waveguide. 
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the attenuation is less than 3 dB per mile over a band of frequencies 
extending from approximately 40 GHz to 100 GHz. This 60-GHz band 
of frequencies is considered the "usable bandwidth" of the waveguide. 
In Section IV, it is shown that approximately 200,000 two-way voice 
channels can be accommodated by the waveguide if 9 digit binary PCM 
transmission is used. 

The purpose of this experiment was to demonstrate the feasibility 
of building repeaters for a millimeter-wave communication system. 
When this experiment was begun early in 1966, the band-splitting 
filters and the IF amplifiers had already been developed and no prob
lems were expected in these areas-and in fact, none arose. Our 
initial efforts were concerned with building filters for dropping the indi
vidual channels and for injection of local oscillator power into the 
up- and down-converters, providing a source of millimeter-wave 
power, building up- and down-converters with attractive conversion 
loss, building FM deviators, and building baseband and timing recov
ery circuitry which would operate at the 306 Mb/s rate. Soon after 
this work began, the LSA (Limited Space-charge Accumulation) 
oscillator was developed by J. A. Copeland.s It provides what seems 
to be a suitable millimeter-wave power source. In addition, a 12.6-
GHz IMPATT (IMPact Ionization Avalanche Transit Time) diode 
driving a quadrupler, provides a suitable power source. More recently, 
a 50A-GHz IMPATT diode has been successfully tested as a milli
meter-wave power source. The other components were developed dur
ing the course of the experiment. Thus, it has been demonstrated that 
such a system is within the present state of the art. 

One significant component, a delay distortion equalizer, which will 
be required in an actual system, was not considered in this experi
ment. Several possible equalizers have been proposed in the past and 
while considerable study is still required before a choice can be made 
from among these alternatives, there do not seem to be any problems 
associated with equalization that would affect the feasibility of the 
system. A review of some work which has been done on equalization 
of delay distortion is presented briefly in Appendix A. 

II. MODULATION 

2.1 Modulation Requirements 

It was felt that the modulation scheme used in this repeater should 
satisfy four important requirements. First, in order to make efficient 
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use of the limited power available from solid-state devices-especially 
at millimeter-wave frequencies-it is important to use a type of 
modulation which gives good noise immunity, that is, one which will 
provide an acceptable error-rate with relatively small signal-to-noise 
ratio. 

Second, because the repeaters are to be regenerative, timing infor
mation must be provided at each repeater. vVhile this can be accom
plished in several ways, a very attractive way is to use a type of 
modulation which allows the repeater to extract timing directly from 
the signal regardless of message statistics. This eliminates the neces
sity of sending timing information on a separate channel or of includ
ing pulses into the bit stream to insure a timing signal even in the 
event the message causes a particularly unfavorable pulse pattern. 

Third, since the system is to operate at very high bit rates, it is 
important that the modulation scheme be one which can be. imple
mented with a minimum of circuitry. 

Finally, the modulation scheme must not be. excessive in its band
width requirement even though, due to the large bandwidth capability 
of the waveguide, one is willing to make a reasonable trade of band
width for noise immunity. 

The optimum noise immunity (consideration 1) would be achieved 
with binary coherent phase-shift-keyed modulation.!) However, this 
type of modulation requires that a reference phase be provided at 
each repeater. The need for a reference signal is eliminated by using 
a differentially-coherent signal at a cost of less than 0.5 dB in 
noise immunity at acceptable error rates (the order of one error in 
109 bits), as can be calculated from the equations in a review paper by 
J. G. Lawton.10 

2.2 Description of FM-DCPSK 

A modulation scheme which we have designated FM-DCPSK (Fre
quency-Modulated Differentially-Coherent Phase-Shift-Keyed) mod
ulation was conceived as a reasonable compromise among the four 
considerations. FM-DCPSK is a hybrid of frequency modulation and 
differentially-coherent phase-shift-keyed modulation. The signal has 
constant amplitude and is angle modulated in such a way that the 
information is carried in the relative phase, i.e., the phase shift between 
adjacent sampling instants. Optimum noise immunity occurs when the 
two possible signal states in a given time slot differ in phase by 7T. 
This can be achieved by shifting the phase by an amount +7T/2 or 
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--rr/2 between successive time slots (the choice of the sign depending 
on the message). A signal-space diagram is shown in Fig. 2. Fig. 3 
shows the variation of phase and frequency resulting from modulation 
with the binary train indicated at the top of the figure. It will become 
apparent when we discuss repeater circuits in Section III that the 
simplicity consideration is satisfied by the FM-DCPSK signal. 

Modulation from polar binary baseband to carrier IF is performed 
directly with an FM deviator. No flip-flop or other binary to differ
ential-binary translator is required because of the differential rela
tionship between frequency and phase. The deviator linearity is unim
portant since only the area under the frequency-versus-time curve is 
important. The constant-amplitude continuous-phase nature of the 
signal allows phase-locked oscillators to be used for gain and limiting. 

Because there is a phase change (hence, a frequency swing) in each 
time slot, regardless of the signal statistics, timing information is 
available in the signal itself. This can be readily extracted by means 
of a frequency discriminator and a narrow bandpass filter as described 
in Section 3.9. Finally, the bandwidth which gives optimum results is 
found experimentally to be slightly larger than the bit rate, which is 
in agreement with theoretical calculations for frequency modulated 
systems by R. R. Anderson and J. SalzY 

III. CIRCUITRY FOR THE REPEATER 

3.1 Introduction 
The repeater circuit is shown in block diagram form in Fig. 4. Fig. 

5 is a photograph of the repeater. This subsection will give a brief 
introductory discussion of the layout and operation of the repeater. 
Detailed discussion of the operation of various components is deferred 
to the following subsections. 

'1T' 

- 7r /2 --<:>----+---0-- 7r/2 

a 

Fig. 2 - Signal space diagram for binary FM-DCPSK ¢n = 0 or 7r for n = no, 
no + 2, no + 4, ..... ,¢n = + 7r/2 or - 7r/2 for n = no + 1, no + 3, no + 5, ..... 
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Fig. 3 - Phase and frequency variations of a FM-DCPSK signal. 

The signal enters in the TEol mode in 2-inch circular waveguide 
and first encounters a band-splitting filter which divides the 60-GHz 
band of the waveguide into two sub-bands. The signal in each of these 
sub-bands next encounters a channel-dropping filter which drops the 
individual channel for the individual repeater. In an actual system, 
several (perhaps as many as six) band-splitting filters would be used 
and a string of several (perhaps as many as 30) channel-dropping 
filters would follow each band-splitting filter. The first component 
which the individual signal encounters after the channel-dropping 
filter is a down-converter which translates the millimeter-wave signal 
frequency to the 1.3-GHz IF frequency of the repeater. The down
converter is followed by a low-noise transistor amplifier which pro
vides approximately 52 dB of gain. This amplified signal is then used 
to lock an oscillator which serves as a limiter. The output of this 
limiter is amplified by a second transistor amplifier having 27 dB 
of gain. The next component is a combination differential-phase de
tector and timing recovery circuit. This component provides both a 
timing signal which consists of a sine wave at the bit frequency re
covered from the transmitted signal and a baseband information signal 
whose polarity depends on the binary information transmitted. 
This polar baseband signal is then applied to a regenerator along 
with the timing signal and the regenerator makes a decision as to 
which of the binary states was transmitted in each time slot. The out
put of the regenerator drives an FJ\1 deviator which provides an 
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angle-modulated signal at IF. This signal is amplified by a third 
transistor IF amplifier and up-converted to the original millimeter
wave frequency. This millimeter-wave signal is now combined with 
the signals in other channels by means of a series of channel-adding 
filters and band-combining filters which are identical to the channel
dropping and band-splitting filters used at the input. The output is 
again in the TEo! mode in 2-inch circular waveguide. 

3.2 Band-Splitting Filters 

The band-splitting filters perform the function of splitting the 
40-GHz to lOO-GHz band into relatively wide sub-bands. The devices 
used for this purpose have been described in detail by Marcatili and 
Bisbee,12 For completeness, their scheme will be reviewed briefly. Fig. 
6 shows a constant resistance filter made up of two hybrids connected 
together by two identical high-pass filters. 

Power entering port 1 IS equally split by the hybrid H! with each 

INPUT FROM 2" 
CIRCULAR WAVEGUIDE 

Fig. 4 - Repeater circuitry. 

TO ERROR 
COUNTING 
CIRCUITS 
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half propagating through equal line lengths toward the high-pass 
filters. Frequencies above the cutoff frequency of the high-pass filters 
pass through the filters unattenuated, are recombined in the second 
hybrid and emerge at port 4. Frequencies below the cutoff frequency 
of the high-pass filters are reflected back towards the first hybrid 
where they recombine and emerge at port 2. J\1arcatili and Bisbee 
realized this structure in low-loss TEol circular electric mode com
ponents. 

The hybrids developed consist of a right angle tee junction of two, 
2-inch i.d. round waveguides with a thin sheet of dielectric material 
placed diagonally across the junction. The system can be analyzed on 
a quasi-optical basis with the result that proper selection of the 
dielectric material produces hybrid performance. 

The high-pass filters used were TEol mode guides with cutoff fre
quency equal to the splitting frequency. They were coupled to the 2-
inch helix guides by means of helix waveguide tapers. Experimental 
results on a composite filter show that the maximum loss in either sub
band is 1.5 dB and that the transition region takes up only 160 MHz 
of the spectrum. 

Fig. 5 - Experimental model of millimeter-wave repeater. 
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Fig. 6 - Band-splitting filter. III and II2 are hybrids (taken from Ref. 12). 

3.3 Channel-Dropping Filters 

The requirements for the channel-dropping filters are determined 
by such factors as tolerable insertion loss, intersymbol interference, 
and interchannel interference. Explicit analysis of intersymbol inter
ference and inter-channel interference problems associated with the 
type modulation used is as yet incomplete. Hence, a procedure for 
optimizing channel to channel spacing is not available. 

For the experimental repeater, attention was directed to two-pole, 
wideband channel-dropping filters because they afford a significant 
reduction in required channel spacing relative to that for single pole 
filters. A bandwidth of 1 GHz was chosen to prove the flexibility of 
the design procedure. The theory developed13 employed narrow band
width approximations; thus, the design of filters having smaller band
width would be no problem. As stated in Section 2.2 an overall channel 
bandwidth slightly greater than the bit rate yields optimum error 
rate. Based on this fact, consideration of all of the band-limiting 
elements in a given channel indicates that channel-dropping filter 
bandwidths of less than twice the bit rate will be adequate. 

Fig. 7 shows the physical structure and identifies the resonant ele
ments of the channel-dropping filters. Ports 1 and 3 are the circular 
mode input and output ports, respectively. Port 2 is the dropped (or 
added) channel output (or input) port. The input and output guides 
are above cutoff for the TEo! mode and just below cutoff for the TEo!! 
mode. The large guide sections are just above cutoff for the TEo:! 
mode. The rectangular waveguide output is coupled to the mode
conversion resonator nearest the input by means of a wrapped resona
tor of rectangular cross section. 

A qualitative description of the behavior of the structure is as fol
lows. First, consider an individual rejection resonator. A signal inci
dent in the TEo! mode is coupled to the TEo2 mode by means of a 
symmetrical diameter discontinuity. Since the input and output 
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Fig. 7 - Cross section view of channel-dropping filter. 

guides are below cutoff for the TEo2 mode, the power in that mode is 
trapped in the large diameter region. Marcatili's analysis of the 
structure shows that at resonance the transverse mid-plane of the 
resonator is effectively a short circuity The center frequency and 
bandwidth are dependent on the length of the resonator and the ratio 
of the input guide diameter to the resonator diameter. The details of 
the relationship are given by Marcatili.14 

In the structure of Fig. 7, the mid-planes of adjacent mode-conversion 
resonators are electrically separated by odd multiples of 7r/2 radians. 
Hence, at resonance, the rejection-resonator pair presents an open 
circuit at the mid-plane of the input mode-conversion resonator. All 
of the incident TEo! mode power appears at the rectangular wave
guide output when the various coupling coefficients are properly 
chosen. 

Further insight into the electrical behavior of the structure is ob
tained by considering the prototype network shown in Fig. 8. The 
prototype network consists of complimentary admittances connected 
in shunt. The elements of the network have been chosen to yield a two
pole, maximally flat insertion loss response between ports 1 and 2 
while maintaining a constant input admittance as a function of fre
quency. Total power transfer occurs at zero frequency, and half-power 
transfer occurs at an input angular frequency of one radian per second. 
The prototype network is converted to a network having total power 
transfer at some frequency wo through use of the angular frequency 
mapping function 

w' = QL(!!!.- _ wo) , 
Wo W 

(1) 
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where 

w' = angular frequency variable of the prototype network 
w = angular frequency variable of the desired network 
QL = wal (Wl - W2) 
Wl , W2 = half power angular frequencies of the desired network. 

For the purpose of obtaining a qualitative understanding of electrical 
behavior it is sufficient to state that the performance of the micro
wave structure will be identical to that of the frequency-mapped pro
totype network subject only to the approximations involved in relating 
their respective parameters. 

Four filters were constructed for use in the repeater system. The 
results were consistent from filter to filter. Figs. 9 and 10 show a set of 
typical characteristics. The insertion loss to the dropped channel is 
about 0.5 dB. The theory predicted an overall bandwidth of 1.13 GHz. 
The agreement between measured and theoretical values is good. 

3.4 Solid-State M illimeter-Wave Power Sources 

Three different solid-state millimeter-wave power sources were 
used. They were an LSA diode oscillator, an harmonic generator and 
an IMPATT diode oscillator. 

The first solid-state device used successfully in the repeater was an 
LSA oscillator.s The diode used in this experiment required dc power 
of 0.4 amps at 3.5 volts and delivered 4 m W of power at 50.4 GHz. 
(Similar units which deliver 20 m W at various frequencies in the 40-
to 100-GHz band have been built by Copeland.) The LSA oscillator 
was used in all of the error-rate and gain experiments described in 
Section V. 

The varactor quadrupler uses a zinc diffused gallium arsenide diode.15 

The diode was a planar array structure similar to the "honeycomb" 

PORT 1 

90 =1 OHM 
91, 93 = 0.707 FARADS 

92,94=1.414 HENRIES 

90 PORT 2 

PORT 3 

90 

Fig. 8 - Prototype network for a two-pole diplexer. 
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type described by Young and Irvin. 1G It was mounted in a Sharpless 
wafer as shown in Fig. 11. The input signal frequency was 12.6 GHz. 
The power output and overall efficiency of a typical unit are shown 
in Fig. 12. The maximum power output obtained was 10 m W at an 
efficiency of 6.5 percent. The input VSvVR was less than 2 to 1 and 
the output VSWR was about 7 to 1. The power source for the quad
rupler was an IlVIPATT oscillator which provided a 12.6-GHz signal. 

The millimeter-wave IMP ATT diode delivers approximately 50 m vV 
at 50.4 GHz. (Diodes of this type which deliver 130 m W at 70 GHz 
have been built by T. Misawa.17

) 

Each of these power sources gave an overall performance as good 
as that obtained from an Oki Klystron. 

3.5 Local Oscillator (LO) Injection Filters 

The local oscillator power is coupled to the up- and down-converters 
by means of a three port diplexer as shown in Fig. 13. The local oscil-
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Fig. 10 - Insertion loss from port 1 to port 2. 
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lator power is injected at the bandpass port (port 1) and the signal 
at the band rej ection port (port 3). The up (or down) converter is 
connected to the constant resistance port (port 2). 

The construction of an efficient millimeter wave diplexer was ac
complished by utilizing two low-loss TEoll circular cylindrical cavity 
mode resonators as shown in Fig. 14. The device operates as follows. 
Both resonators are tuned to the local oscillator frequency. At reson
ance, the rej ection cavity effectively open circuits the waveguide. The 
bandpass resonator (dropping filter) is located an odd number of 
quarter wavelengths from the transverse symmetry plane of the re
jection resonator. Hence, at resonance, a short circuit appears to exist 
at plane A of Fig. 14. 

Ideally, proper adjustment of the coupling apertures yields coupling 

SIGNAL 
INPUT 
~ 

LO INPUT 

f ~ f PORT I 

PORT 3) DIPLEXER (PORT 2) DOWN 
CONVERTER 

Fig. 13 - Schematic of the local oscillator injection arrangement. 
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Fig. 14 - Physical realization of local oscillator injector filter. 
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of 100 percent of the LO power to port 1 in the absence of dissipation. 
The details of the design procedure are given in Ref. 18. 

The requirements on the bandwidth of the diplexer were established 
by considering the tolerable dissipation of LO power at resonance, and 
the transmission loss through the diplexer over the signal band. The 
tolerable LO loss was set at 2 dB maximum based on the millimeter
wave power available from the solid-state source and the LO power 
requirements established for the up- and down-converters. Minimum 
attenuation to the signal band is achieved when the bandwidth is at a 
minimum consistent with the LO loss requirement. Experimental work 
indicated that a 50-NIHz bandwidth in the power transfer from the 
LO input port to the converter port was about optimum. 

Four diplexers were constructed with consistent results. The inser
tion loss to the LO averaged 1.4 dB. The return loss at the signal input 
port was better than 25 dB over the signal band. The return loss look
ing into the converter port was better than 15 dB at all frequencies of 
interest. Figs. 15 and 16 show typical frequency responses at the 
various ports. 

3.6 Down-Converters 
The down-converters developed for the system had the following 

characteristics: 

(i) IF frequency band from 1.0 to 1.6 GHz 
(ii) LO frequency of 50.4 GHz at a power level of -3 dBm 

(iii) Input signal from 51.4 to 52.0 GHz 
(iv) Conversion loss of 6.0 ± 0.5 dB over the above band 
(v) Converter noise temperature ratio of nearly unity. 
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This performance was achieved using Schottky barrier diodes at a 
fixed dc bias. 

The basis for the design was the converter mount described by 
Sharpless.1

!) The only modification required was the addition of an IF 
impedance matching network. The millimeter-wave portion of the 
structure was not changed. Fig. 17 shows the structure. The following 
paragraphs describe the equivalent circuit and give a brief discussion 
of the design procedure. 
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The equivalent circuit for the structure is shown in Fig. 18. The IF 
input admittance Y L was measured over the band with the LO on and 
the bias fixed. It was found that Y L could be closely approximated by 
a constant conductance shunted by a capacitive susceptance. At mid
band 

Y L = (59)-1 + j(150)-1 mhos. 

The admittance Y L was matched to 50 ohms at mid-band by a short 
length of transmission line having a characteristic impedance of 83 
ohms. This was followed by a biasing tap consisting of a quarter wave
length 50-ohm stub by-passed to ground. The excellent broadband 
behavior of the completed circuit is indicated by the small variation 
of conversion loss over the band. The latter is shown in Fig. 19. 

3.7 IF Amplifiers 

vVideband transistor amplifiers (with a center frequency of 1.3 GHz) 
of the balanced integrated circuit type originally developed by Engel-
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Fig. 17 - Down-converter structure. 
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Fig. 18 - Down-converter equivalent circuit. 

brecht and Kurokawa 20 were used in this repeater. Fig. 20, which is 
reproduced here from Ref. 20, shows the basic amplifier circuit. These 
amplifiers can be .built with excellent noise figures (less than 4 dB) 
and, because of the excellent match between sections, can be cascaded 
to achieve high gain. These amplifiers exceeded the required specifi
cations in all respects and have proved entirely satisfactory for this 
repeater. 

3.8 Limiter 

Because of the nature of the regenerator which is used in this re
peater, an improvement in error-rate performance for a given signal
to-noise ratio is expected from the inclusion of a limiter ahead of the 
differential-phase detector.21 A simple but effective limiter was 
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Fig. 19 - Conversion loss of down-converter. 
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Fig. 20 - Schematic representation of single-stage balanced amplifier. (Taken 
from Ref. 20). 

achieved by the use of a tunnel-diode oscillator built in 50-ohm 
coaxial transmission line and phase-locked to the IF signal (see 
Fig. 21). The tuning of the diode was inductive and was accom
plished by means of a shorted 75-ohm transmission line stub. The 
tunnel diode was of germanium point-contact construction and had a 
peak current of 2 rnA. Fig. 22 shows the output power of the oscillator 
versus gain (ratio of output power to input power) at the center fre
quency of the oscillator. Best error performance was found experi
mentally to occur at a gain of 8 dB. The change in output power with 
frequency for several values of gain is shown in Fig. 23. 

3.9 Differential Phase Detector and Timing Recovery 

The baseband and timing circuits are shown in Fig. 24. The couplers, 
delay lines, and diode mounts are microwave printed circuits; the 
filters and combining Tee are coaxial. The differential phase detector 
and the timing recovery circuit are combined (share. a common delay 
line) in order to save space and cost. 
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Fig. 21- Limiter circuit. 
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Fig. 25 shows the basic differential-phase detector or timing-re
covery circuit. A straightforward analysis (see the Appendix of Ref. 
22) shows that the output voltage of this circuit is given by 

Vet) = cos {wor + {, w(l') dt'} (2) 

for an input F~1-DCPSK signal given by 

Set) = V2 cos {wot + l' wet') dt'} , (3) 

with 

f
(n+!)T 

\ wet) \ = \ wet + nT) \, (n-!) T wet') dt' = ±7r/2. 

One can readily see that if WOT is chosen to be a multiple of 7r, 17 (t) 
is independent, to first order, of the sign of w(t) ; hence, the output is 
periodic in period T, where T is the reciprocal of the bit rate. By proper 
choice of WOT a signal is obtained with a strong frequency component 
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Fig. 23 - Change in output of the limiter vs frequency for several values of gain. 
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Fig. 24 - Differential phase detector and timing recovery circuit. 

at the bit rate. This signal is used to lock an oscillator at the bit rate. 
The oscillator, in turn, provides the timing signal to the regenerator. 

If WOT is chosen to be an odd multiple of 7r /2 and T is chosen equal 
to T, the reciprocal of the bit rate, one sees from (2) and (3) that at 
the sampling instants, [t = (n+i) T], the output is given by 

Vet) = cos {(m + !)7r ± 7r/2} = ±1. 
Thus, under these conditions the device is the desired differential-phase 
detector for this signal. 

3.10 Regenerator 
The regenerator consists of a balanced-line logic elemenV3 which 

is a modification of the standard Goto-pair circuit. The input signal 
is applied at the midpoint between the two tunnel diodes and a 
timing signal is applied across the pair of tunnel diodes as shown 
in Fig. 26. Ideally, the timing signal causes one and only one of 
the diodes to switch once each time-slot. The input signal deter
mines which of the two diodes switches. When one of the diodes 
switches, the resultant voltage drop across the other diode inhibits its 
switching and this voltage drop occurs across the output of the re-

OUTPUT 

Fig. 25 - Basic differential phase detector or timing recovery circuit. 
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generator. If the diode labeled Dl in Fig. 26 switches, the voltage pulse 
at the output of the regenerator is negative and, correspondingly, if D2 
switches the voltage pulse is positive. The transients initiated by the 
switching of the diode travel down the delay lines and are reflected 
with inverted polarity back to the diodes by the low-impedance termi
nation. These reflected signals reset the diode to its original condition. 
Thus, the information content of the signal is translated into a sequence 
of polar baseband pulses at the regenerator. 

E. G. Herzog24 has discussed limitations on the speed of operation 
of the Goto-pair. His conclusions also apply to the balanced-line logic 
element. He showed that for bias voltages above. a certain critical 
value the Goto-pair has a stable zero output state in addition to stable 
positive and negative output states. Due to the junction capacitance 
and the series inductance of the diode, it takes a finite time (talking 
time) for one diode to indicate to the other that it has switched. Thus, 
with a small input signal each diode can go to its second positive 
resistance region and if the synchronizing voltage passes the critical 
value too soon they will be left there and the zero output state will re
sult. Also, we have observed that if the voltage does not pass the criti
cal values soon enough both diodes will return to their first positive re
sistance region resulting in an intermediate amplitude output. In order 
to minimize the probability of occurrence of these undesirable opera
tions, the following properties are desirable for the diodes: First, the 
diode must have adequate peak current (if the peak current is too 
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Fig. 26 - Regenerator circuit. 
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low, the load will prevent bistable operation) ; second, it must have low 
junction capacitance (this decreases the talking time); third, the 
magnitude of the product of the negative resistance and the junction 
capacitance should be low enough to make the switching time short 
compared with a time-slot; and finally, the diode should have low 
series inductance (this decreases the talking time). For the regenera
tor, the third condition must be strengthened to make the switching 
time short compared to the round-trip time on the delay line. Since 
several round trips are required f~r the pulse to die out, the switching 
time of the diodes in the balanced-line logic element must be several 
times faster than for a Goto-pair. 

TD-252A germanium tunnel diodes have been found to meet the 
above requirements. They have a series inductance of 1.5 nH, a peak 
current of 4.7 mA and a junction capacitance less than 1.0 pF. The 
diodes are mounted in the circuit of Fig. 26 in the manner shown in 
Fig. 27. This circuit has been built in such a way that the diodes are 
placed as close together as possible in order to eliminate lead induc
tance. By building the diodes into the transmission line, connector 
mismatches have been eliminated. The inductance of the leads of the 
input and output resistors has very little effect on the output pulse and 
it is believed that it steers the current from one diode to the other dur
ing the short time required for switching. Fig. 28 (a) shows an eye 
diagram of a low signal-to-noise ratio input signal to the regenerator 
and Fig. 28 (b) the resulting output signal of the regenerator. This fig
ure illustrates the ability of the regenerator to remove noise from the 
signal. 

3.11 F}J!I Deviator 

The FM deviator is basically a tunnel-diode relaxation oscillator. 
The frequency of oscillation of the tunnel diode in this type of circuit 
is extremely sensitive to bias voltage, allowing it to be driven by the 
balanced-line logic element. Fig. 29 shows the circuit. Tests on a low
frequency prototype circuit showed that the oscillator could be tuned 
over a bandwidth of more than half an octave in a time interval cor
responding to less than 1 RF cycle. The total tuning range of the 
L-band deviator was greater than an octave, as shown in Fig. 30. 

The circuit of Fig. 29 was built for use in L-band using conventional 
(as opposed to printed) circuits with the circuit dimensions kept as 
small as possible. Fig. 28 (c) shows the differentially detected output 
eye of the deviator. 
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Fig. 27 - Mechanical layout of the regenerator. 

3.12 Up-Converters 

The chief goal in designing the up-converters was the maXImIza
tion of output power over the band from 51.4 to 52.0 GHz when used 
with a local oscillator supplying + 3 dBm of power at 50.4 GHz. 
Typical units exhibited 6-dB LO to RF conversion loss across the 
band. Fig. 31 shows the frequency response of a typical unit. Both 
GaAs Schottky barrier diodes and planar diffused gallium arsenide 
varactor diodes were used with similar results-the latter exhibiting 
slightly lower conversion loss. 

The physical structure for the units was similar in form to that of 
the down-converter described in Section 3.6. An E-H tuner preceded 
the converter block on the millimeter-wave side and was used to match 
the input impedance at the LO and signal band frequencies. All of the 
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(a) (b) 

(c) 

Fig. 28 - Eye diagrams. (a.) Degraded regenerator input. (b) Regenerator out
put. (c) Regenerated differentially detected IF. 

diodes were operated at zero bias voltage. A more detailed description 
of planar diffused diode performance is given in Ref. 15. 

3.13 Power and Space Requirements 

The baseband circuitry of the repeater requires approximately 0.3 
watts and the IF circuitry requires approximately 1.5 watts. Thus, the 
power requirement per channel per repeater is approximately 1.8 watts 
exclusive of the power required for the millimeter-wave. power source. 
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Fig. 29 - Deviator circuit. 
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The total power required per channel per repeater can thus be ex
pressed by 

Total Power Required = 1.8 

+ l\1illimeter-Wave Power Required Watts 
Efficiency of Millimeter-W ave Source 

The experimental repeater included many commercial components 
and no serious thought was given to miniaturization. Even so, it oc
cupies only a volume of the order of 2 cubic feet (exclusive of band
splitting filters). With printed circuit techniques, the total volume per 
channel per repeater can be of the order of 0.5 cubic feet or less. 
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Fig. 31- Varistor up-converter datu. (a) Output versus input data. (b) Fre
quency response (PIJi' = +6 dBm). 
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IV. SYSTEM CONSIDERATIONS 

4.1 Error-Rate as a Function of Signal-to-N oise Ratio 

The error-rate versus signal-to-noise ratio has been calculated in a 
manner which includes the effects of non-ideal regeneration of the 
signal and of intersymbol interference.22 Some results of this calcula
tion are shown in Fig. 32 for an ideal regenerator and for a regenerator 
which has a threshold of operation, T, 9 dB below the expected signal 
level, S. The term threshold of operation is defined as follows. Suppose 
that the expected value of the signal at the input to the regenerator is 
VI or - VI. The regenerator will then regenerate a positive or negative 
output pulse according to whether the input is positive or negative. 
However, if magnitude of the signal is too small the regenerator will 
not function properly. The minimum voltage at which the regenerator 
will function properly is the threshold of operation. 

It is impossible to consider quantitatively the effects of intersymbol 
interference unless the waveform of the signal is known accurately. 
However, it is plausible to assume that the intersymbol interference 
contributes phase shifts of the order of a few degrees in the sense 
described in Ref. 22. For that reason, Fig. 32 shows the results of error
rate versus signal-to-noise ratio for the case where there is no inter-
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Fig. 32 - Error-rate vs Signal-to-noise ratio for the repeater. 
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symbol interference and for the case where the intersymbol interfer
ence corresponds to a phase shift, 0, of 10 degrees. These values should 
constitute the bounds on the expected error-rate. From Fig. 32 one 
observes that the expected value of S/N for 10-0 error rate lies between 
13 and 14 dB. 

4.2 Model of a System 
Fig. 33 shows a model of a system which was used as an aid in the 

design of the repeater. This model is not an attempt to describe or 
design a complete system, it is intended only to give some perspective 
and insight into those factors which influenced the design of the 
repeater. 

An actual system would use both frequency division and time 
division multiplex to separate individual voice channels. One possible 
arrangement of filters to separate the individual frequency multiplexed 
channels in the system is shown in Fig. 34. The skew arrangement of 
the filters is chosen to offset in part the variation of loss with frequency 
in the waveguide bandwidth. That is, since certain channels experi
ence greater loss in the medium, the filters are arranged so as to give 
less loss to these channels at the expense of channels which have suf
fered less loss in the medium. Since the shape of the loss-versus-fre
quency curve is a function of repeater spacing (the relative loss in dB 
at two frequencies depends on the repeater spacing), the details of the 
arrangement of the filters are a function of repeater spacing. As an 
illustrative example, we assume a repeater spacing of 15 miles and 
attenuation curves for the medium given by Fig. 1. In addition, we 
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CHANNEL DROPPING FILTERS NO. OF 
CHANNELS 

TOTAL FILTER LOSS 5.0 6.0 604 5.2 + OAn 19.2 35 
IN CHANNEL: 

17 

18 
14.0 15.0 15.4 i4.2+0An 21.4 

15 
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14.0 15.0 15.4 14.2+0.4n 18.2 

12 
8.0 9.0 9.4 8.2+0An 13.0 

,1ST 2ND 3RD I n'TH ~ ',LAST j CHANNEL 
CHANNELS n>2 CHANNEL 

Fig. 34 - Channel-dropping filter army for the illustrative example. 

make the assumption that the power available from realizable solid
state sources falls off at a rate of 3 dB per octave in frequency.25 The 
loss of each band-splitting filter is taken to be 1.5 dbY Based on the 
data of Figs. 9 and 10, conservative estimates of channel-dropping 
filter losses are 1.0 dB to the dropped channel, 0.5 dB to the adj acent 
channel and 0.2 dB to all other channels which pass through them. 

Fig. 35 shows the waveguide loss as a function of frequency for a 
15 mile repeater spacing. It also shows the power at the input to a 
repeater relative to the power at the output of the up-converter of 
the 50-GHz channel (based on the curve of Nutt in Fig. 1 and the 
assumed 3 dB per octave fall off in available power). The points in 
the figure then show the total relative signal power at the output of 
the channel-dropping filter for each channel (based on the filter ar
rangement shown in Fig. 34). The term "relative power" here means 
the power relative to that available at the output of the up-converter 
in a 50-GHz channel. From Fig. 35 one observes that in the worst case 
the relative signal level is -58 dB for this model. Thus, the repeater 
gain (defined as the ratio of the output power of the up-converter to 
the signal power at the input to the down-converter which gives an 
error rate of 10-9

) must be 58 dB. Since this is the value which gives 
the maximum acceptable error-rate, it seems expedient to include a 
6-dB margin in the design of the repeater and thus the design goal for 
a 15-mile repeater spacing is a gain of 64 rIB. 
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Fig. 35 - Ratio of power at the output of the channel-dropping filters to power 
at reference point. The power reference point is the output of the up-converter of 
the 50-GHz channel of the preceding repeater. 

In this model, there are 100 channels spaced at 600-MHz intervals 
across the band. The experimental repeater described here uses a 
500-MHz bandwidth set by an inexpensive commercially available 
five-section Tschebycheff filter. (Only a slight degradation is experi
enced by using a 400-MHz filter of the same type.) Even smaller band
widths might well be practical if suitable attention is given to the 
phase characteristic of the filters. Thus, the 600-MHz spacing assumed 
in the model is a conservative estimate. The capacity of the waveguide 
based on this model is 30,000 Mb/s. Since 72 Kb/s are required for 
each voice-grade circuit, the capacity of the system would be 416,000 
voice-grade circuits or 208,000 two-way voice channels. 

4.3 Theoretical Gain 

The gain of the repeater in the sense in which it is used here can be 
expressed as 
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G = (P LO - LUG - Lr) - (L DG + F + KTB + SIN), (4) 

where 

P LO is the local oscillator power, 
LUG and LnG are the conversion losses of the up- and down-coIl

verters, respectively, 
Lr is the loss in the isolator, the waveguide between the LO and 

the up-converter, and the injection filter 
F is the noise figure of the first IF amplifier (since one finds ex

perimentally that aside from conversion loss, the noise figure 
of the down-converter is negligible), 

K T B is the thermal noise in the pass band of the IF section, and 
SIN is the signal-to-noise ratio required for the acceptable error-rate. 

As stated in Sections 3.12 and 3.16, one finds experimentally that 

Luc = 6 dB, L Dc = 6 dB and F = 3.7 dB. 

Using a 500-lVIHz bandwidth, the thermal noise power is -87 dBm. 
Therefore, the required local oscillator power for 15-mile repeater 
spacing is 

P LO = SIN + Lr - 7 dBm. 

If one assumes a value of 14 dB for SiN (from the discussion in Sec
tion 4.1) and 4 dB for L1 , he obtains 11 dBm as the required local 
oscillator power at the up-converter for a 15-mile repeater spacing. 
Since O.5m VV of LO power is required for the down-converter, the 
total millimeter-wave power requirement for a 15-mile spacing is 
approximately 12 dBm. 

V. EXPERIMENT AND RESULTS 

5.1 Description of the Apparatus 

The experimental apparatus used in the experiments to be described 
in Sections 5.2 and 5.3 consists of a transmitter, a receiver, and the 
repeater described in Section III as well as the necessary equipment 
and circuits for counting the errors made by the repeater, the receiver, 
or both. The transmitter is shown (in block diagram) in Fig. 36. The 
random-word generator consists of a regenerator of the type described 
in Section 3.10 driven by a similar regenerator which is, in turn, driven 
by differentially-detected wideband noise generated in a pair of X
band traveling-wave tubes. The random-word generator drives an 
FM deviator of the type described in Section 3.11. The remainder of 
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Fig. 36 - Transmitter. 

TO REPEATER 
OR RECEIVER 

the transmitter is identical to the portion of the repeater which fol
lows the FM deviator. 

Just as the transmitter is a duplicate of the second half of the 
repeater, the receiver is a duplicate of the first half, beginning with 
the down-converter and ending with the regenerator. It is shown in 
Fig. 37. 

All of the regenerators (including the random-word generator of the 
transmitter) are built with two outputs-one to drive the next follow
ing component in the circuit, the other to serve as a monitor port or 
as a source of pulses for error counting. The three pieces of apparatus, 
the transmitter, the repeater and the receiver are built so that they 
can be interconnected in either of two ways; the transmitter can be. 
connected to the repeater which is in turn connected to the receiver, 
or the transmitter can be connected directly to the receiver. This 
affords an A-B test of the performance of the repeater which is the 
heart of the gain experiment to be described in Section 5.3. 

5.2 Error-rate VB SIN Experiment 

One of the experiments performed_ with this apparatus measured 
the error-rate as a function of signal-to-noise ratio. This experiment 



SOLID-STATE MILLIl\IE'l'ER-WAVE REPEATER 2009 

was performed for the four possible cases, namely, errors introduced 
by the transmitter to repeater hop, those introduced by the repeater to 
receiver hop, those introduced by the transmitter to receiver hop,_and 
those introduced by the complete transmitter to repeater to receiver 
hops. Allowing for the differences in the noise figures of the a~tual 
devices used in each of these components, the results were quite con
sistent. Therefore, the experiment will be described for one case only, 
transmi tter to repeater. 

The signal from the extra output of the random word generator was 
delayed in a transmission line for a time interval equal to the time for 
the transmitted signal to be regenerated. The outputs from the random 
word generator and from the regenerator of the repeater were then 
combined in a "baseband hybrid" as shown in Fig. 38. The output of 
this "hybrid" is 0 if the two input pulses are of the same polarity and 
is some amount ±v jf the input pulses differ in polarity indicating 
that an error was made. These output pulses drive a pulse-height 
discriminator which has t,vo output channels. This device delivers a 
pulse to one of its two outputs if the magnitude of the input pulse 
exceeds a certain threshold value. If the input pulse is positive: the 
output occurs in one channel; if the input is negative the output oc-. 
curs in the other channel. These "error-pulses" are counted on a dual
channel counter. 

The experimental procedure is quite similar to that used in perform
ing similar experiments on a prototype model of the IF portion of this 
repeater. It is described in some detail in a previous paper2G and need 
not be repeated here. Certain differences should, howeverr-be pointed 
out. First, the error-counting technique has been improved by the 
use of the dual-channel counter as described above. Second, in this 
experiment the signal-to-noise ratio was adjusted by -changing the 
signal level and using the actual amplifier noise instead of injecting 
additional noise into the input of the repeater as was done in the experi
ment of Ref. 26. Finally, in addition to the checks on signal statistics 
listed in Ref. 26, the IF signal was observed on a spectrum analyzer. 

FROM TRANSMITTER 
LOCAL OSCI LLATOR 

Fig. 37 - Receiver. 

!DUPLICATES CIRCUITRYl 
OF REPEATER (FIG.4) 
THROUGH THE BASE- I 

I B~~D REGENERATOR (NO 
~VIATOR FOLLOWIN::2j 
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The biases on the random-word generator were adjusted until the 
spectrum was symmetric and free of "horns" or spikes (which are 
indicative of periodicities and hence nonrandomness in the signal). 

The results of this experiment are shown by the points plotted in Fig. 
32. Comparison between· theory and experiment can readily be made 
from this figure. 

5.3 Repeater Gain Experiment 

The second experiment consisted of setting up two arrangements 
of components mentioned in Section 5.1 and setting the attenuators 
betwe.en these components to the value which gave an error rate of 
one error in 109 pulses (the assumed acceptable error-rate). This ex
periment is illustrated in block diagram form in Fig. 39. The gain of the 
repeater (in the sense of Section 4.3) is then given by 

(Loss from Trans. to Rep.) + (Loss from Rep. To Rec.) 

- (Loss from Trans. to Rec.) 

after allowance is made for loss in the passive millimeter-wave cir
cuitry of the repeater. Experimentally, the loss between the trans
mitter and the receiver was found to be an amount Ao, the. loss be
tween transmitter and repeater plus the loss between repeater and 
receiver was found to be Ao + 43 dB for 10-D error probability at each 
regenerator. The loss in the passive millimeter-wave circuitry of the 
repeater was found to be 14 dB. Thus, the experimentally determined 
gain of the repeater is 57 dB. The measured local oscillator pow~r is 
6.0 dBm. From this one concludes that an additional 7 dB of LO power 
or a total of 13 dBm is necessary to achieve the 64-dB gain required 
for IS-mile repeater spacing ·with a 6-dB margin (from Section 4.2). 
This is in good agreement with the 12 dBm predicted by the argument 
of Section 4.3. 

VI. CONCLUSIONS 

A solid-state millimeter-wave repeater has been built which operates 
at a 306-Mb/s rate with an error-rate performance within 0.5 dB of 
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Fig. 38 - Error-coull ting circuitry, 
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Ll 

I TRANSMITTER I ~ I RECEIVER I 
(a) 

L2 L3 

I TRANSMITTER I $ I REPEATER I ~ ! RECEIVER I 
(b) 

Fig. 39 - Experimental arrangement for gain test. Lt = loss from transmitter 
to receiver, L2 = loss from transmitter to repeater, L3 = loss from repeater to 
receiver. 

the theoretical value. It gives a measured gain of 57 dB with a local 
oscillator power of 6 dBm. Since the repeater gain is proportional to 
LO power it is concluded that a 13-dBm local oscillator would give the 
64-dB gain necessary for a 15-mile repeater spacing with a 6-dB 
margin and a suitable channel-dropping filter array for over one hun
dred 300-Mb/s channels. 
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APPENDIX 

A.1 Introduction 
Several types of delay distortion equalizers have been proposed dur

ing the past several years. Five of these equalizers will be discussed 
in the following paragraphs. Any of the five could, in principle, be 
used to equalize the delay distortion of the waveguide; economic con
siderations will dictate which is the most practical. It might, for eco-
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nomic reasons, be desirable to use more than one type of equalization. 
For example, frequency frogging (Paragraph A.3) might be used to 
give partial equalization with a transversal equalizer used to complete 
the equalization. Other possible combinations will suggest themselves 
as the advantages and disadvantages of each type of equalizer are dis
cussed. 

Delay distortion is inversely proportional to the cube of the fre
quency. The delay distortion introduced across a 500-MHz band by 
15 miles of waveguide varies from 34 nsec at 40 GHz to 2.2 nsec at 
100 GHz. Therefore, considerable equalization is necessary in the lower 
bands and some equalization is desirable (although not required) in 
the upper bands. 

The pertinent characteristics of the delay distortion are summarized 
as follows. The time delay, T, in a length, l, of waveguide can be writ
ten as 

l a(3 
T=-=l-

VII aw ' 
where Vg is the group velocity in the medium and f3, the waveguide 
propagation constant, is given by 

Expanding f3 in a Taylor's series about (Vo, the center angular fre
quency of the channel, gives 

T = l[(31 + 2(32(W - wo) + 3(33(W - WO)2 + ... ], (5) 

where f31, f32 .•• are the expansion coefficients of the Taylor's series 
for f3. 

For frequencies and bandwidths of interest the terms of order f33 and 
higher are negligible for the 2-inch waveguide. Since the f31 term is a 
constant time delay, the only source of distortion is the (32 term. 

A.2 Reflection Equalizer 

The reflection equalizer, proposed by J. R. Pierce and W. S. Alber
sheim,27 is illustrated in Fig. 40. Since the higher-frequency compo
nents of the signal penetrate deeper into the taper before being re
flected~than the lower frequency components, their round trip transit 
time is longer. By properly designing the shape of the taper the distor
tion of the guide can, in principle, be exactly equalized. Equalizers of 
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Fig. 40 - Reflection equalizer. 

OUTPUT 

2013 

this type (operating at X-band) have been built by K. 'V0028 and 
also by C. C. H. Tang.29 This type of equalizer can be built with an 
adjustable delay characteristic; as an alternative, one might build a 
small number of "stock" tapers which give approximate equalization 
and use a different type of equalizer to "trim" the equalization. 

A.3 Transm,ission Equalizer 

A second type of delay distortion equalizer is the transmission 
equalizer shown in Fig. 41. If the frequency spectrum of the signal in 
the channel is inverted and this signal is then passed through a short 
piece of waveguide near cutoff the delay distortion can be equalized 
since the frequency inversion causes a sign reversal in the f3'2 term. 
VVriting the transit time in the medium as 

Trn = lrn[,Bl m + 2,B2mCW - wo)] 

and the transit time in the equalizer as 

Te = le[,Bl0 + 2,B2.(WO - w) + 3,B3.(WO - W)2 + ... ], 
one obtains for the total transit time 

T m + Te = [lm,Blm + le,Bl.J 

+ 2[,B2mlm - ,B2)e](W - wo) + 3,B3.le(WO - W)2 + 
The cutoff frequency of the equalizer can be chosen such that 
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~========~~ 

Fig. 41- Transmission equalizer. 
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The delay distortion of the medium is thereby removed. If, however, le 
is short, the equalizer must be operated quite near cutoff in order to 
satisfy this equation. If le is too short, the terms of order f33e and higher 
may contribute significant distortion to the signal. This, in fact, sets 
the lower limit on the length of the transmission equalizer. The mini
mum length of the equalizer depends on how much of this distortion 
is tolerable (which is not precisely known) and on the carrier fre
quency used in the equalizer. However, lengths of the order of ten 
feet or less are probably adequate for carrier frequencies above 50 
GHz. For frequencies between 40 and 50 GHz, the length of the 
equalizer would probably be prohibitive for channel bandwidths of 
500 MHz. However, transmission equalizers might be attractive as 
"trimming equalizers" for use with "stock" tapers or for use with the 
frequency-frogging scheme discussed in the next section. 

Recently, J. H. Johnson30 has built a transmission equalizer. His 
tests indicate that at the frequencies of interest, the phase charac
teristic is in agreement with the lossless theory and that the attenua
tion will not be prohibitive. 

A.4 Frequency Fragging 
The third approach to delay distortion equalization is due to D. H. 

Ring. 31 It is known as "frequency frogging" and consists of replacing 
every other regenerative repeater in the system with nonregenerative 
repeaters that invert the frequency spectrum of each channel and 
provide linear gain. This scheme is illustrated in Fig. 42. The medium 
itself in span 2 (see Fig. 42) then acts as a long transmission equalizer 
for span 1. If the spans are of equal length the equalization is exact 
except for the contribution from the f33, f35, etc., terms in (5) which is 
negligible for reasonable channel bandwidth and repeater spacings. If 
the spans are of unequal length, say Xl and X2, respectively, only the 
distortion 2f32 (w-wo) (XrX2) must be equalized. Since one would have 

I 2{32(W - wo)(x1 - X2) I « I 2{32(W - wo)x1 I 
the "trimming equalizer" required in such a system could be a com
paratively simple transmission or transversal equalizer. 

REGENERATIVE 
REPEATER 
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LINEAR 
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INVERTING 
REPEATER 
(OUTPUT 

POWER=P1.) 

Fig. 42 - Frequency fragging. 
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The chief disadvantage of frequency frogging is the requirement 
that the nonregenerative repeater be linear.{~ This will probably result 
in lower available power at these repeaters than is attainable at the 
regenerative repeaters. The effect on repeater spacing can be calcu
lated. If we define Pr and Pz to be the average power available at the 
output of regenerative and linear repeaters, respectively, Xo to be the 
maximum allowable spacing between repeaters in a system having all 
regenerative repeaters and ideal delay distortion equalizers, and Xl 

and X2 to be the lengths of the spans in the frequency-frogging sys
tem, the values of Xl and X2 which maximize the quantity Xl + X2 are 
given by 

Xl = Xo - 1 miles 

10 L P r ·1 
X 2 = Xo - 1 -:3 og P z ml es. 

(A loss of 3 dB per mile has been assumed in the above equations.) 
The fractional decrease in repeaters spacing using this scheme is thus, 

1 + Q LaO' P r 

2xo - (Xl + x 2 ) 3 0 P z 

1 + CPr/PZ) dB 
6 

2xo Xo Xo 

which, for example, amounts to only about 12 percent for Pr/Pz = 8 
dB and Xo = 20 miles. The amount of delay distortion which must be 
made up by a "trimming equalizer" is equivalent to A miles of guide 
where 

Ll = Xl - X2 = 10 Log P r • 

3 P z 

For the example cited above, A = 2.67 miles. 

A.5 Transversal Equalizer 

Baseband transversal equalization can be used in a linear system 
to improve the pulse response.32 This type of equalizer functions by 
adding time shifted images of the input pulse to itself in such a man
ner that the pulse response of the system is set to zero at a finite num
ber of instants an integral number of time slots from the pulse center. 
The addition of the time shifted images of the pulse is usually carried 
out by means of a tapped delay line and a summing network. 

* Since the delay distorted signal at the nonregenerative repeater may possess 
amplitude modulation, this repeater may have to be linear up to power levels 
higher than the average signal power. 



2016 THE BELL SYSTEM TECHNICAL .TOURNAL, NOVEMBER 1967 

Since the conversion to and from baseband in our system is non
linear, baseband equalization cannot be used. However, an IF trans
versal equalizer can be used. A possible configuration of the circuit is 
shown in Fig. 43. It can be shown that any realizable transfer function 
can be approximated over a finite band using this type of circuit.33 

Thus, this circuit can be used to compensate for the waveguide delay 
distortion. 

An alternate approach to transversal equalization can be used which 
is similar to baseband transversal equalization. It can be shown by 
taking quadrature components that the binary FM-DCPSK signal is 
equivalent to two polar pulse trains in phase quadrature. By proper 
choice of tap gains and phase shift the response of the system can be 
set to zero at instants that are mUltiples of a bit interval from the 
pulse center. 

Computations made by one of the authors, JEG, which will be pub
lished at a later date, show that transversal equalizers with about 11 
taps can be built to equalize the channels at 50 GHz and that above 
70 GHz extremely good equalization can be achieved with 5 or fewer 
taps. Also, under certain circumstances, the phase shifters can be 
eliminated. 

A.6 Equalization by Quasi-Periodic Structures 
In a recent paper/4 H. S. Hewitt has described a tapered meander 

line filter, shown in Fig. 44, which produced 300 ns of nearly linear 
delay distortion over a frequency band from 1.1 to 1.7 GHz. This de
vice, which had a total length of less than 18 inches, demonstrates the 
feasibility of using a filter of this type. It is believed that this type of 
structure deserves careful consideration. 

OUT 

Fi~. 43 - A mierowitvc rcitlization of the transversal cCl'mlizer. 
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Fig. 44 - Tapered meander line. 
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A Quantitative Theory of II! Type Noise 
Due to Interface States in Thermally 

Oxidized Silicon 
By E. H. NICOLLIAN and H. MELCHIOR 

(Manuscript received June 22, 1967) 

A quantitative theory of 1 If type noise is derived from the distribution 
of trapping times for charges in interface states. The distribution of trapping 
times has been recently explained quantitatively by means of a random 
distribution of surface potential caused by a random distribution over the 
plane of the interface of fixed charges located in the oxide. This model, 
which agrees with the interface state time constant dispersion measured 
by the 1111 S conductance technique, leads to a noise spectrum which is 
independent of frequency at very low frequencies, tends towards a lit 
dependence at high frequencies, and has an extended 1 If frequency de
pendence at intermediate frequencies. The mechanism for time constant 
dispersion is independent of temperature and silicon resistivity; it depends 
only on the majority carrier density at the silicon surface, the interface 
state density, and the density of fixed oxide charges. The dependence of 
open circuit mean square noise voltage on these parameters and frequency 
are illustrated for an MOS capacitor. 

1. INTRODUCTION 

It has long been recognized that states at the Si-Si02 interface which 
exchange charge with the silicon can give rise to llf type noise. Re
cently, Sah and Hielscherl have shown by experiment that the llf 
noise of a metal -Si02-silicon (MOS) capacitor is directly related to 
interface state density and capture conductance over the energy gap. 
Random capture and emission of carriers by interface states results 
in fluctuations of trapped charge. In an MOS capacitor, these charge 
fluctuations cause random changes in admittance constituting noise. 
These charge fluctuations can be calculated from the dispersion of 
interface state time constants. A major obstacle to a quantitative 
theory of II! type noise arising from interface states has been the lack 
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of an experimentally established mechanism for interface state timc 
constant dispersion. This obstacle has recently been removed. With 
the MIS conductance technique/, 3, 4 accurate small-signal measurc
ments have been made of interface state density and capture con
ductance over the middle half of the energy gap in the Si-Si02 system. 
A large interface state time constant dispersion was observed in the 
depletion and accumulation regions. An explanation which quantita
tively fits these measurements essentially without any arbitrary ad
justable parameters is that the dispersion arises from a random dis
tribution of surface potential over the plane of the interface. The 
random surface potential distribution is in turn caused primarily by 
a random distribution of built-in oxide charges and charged interface 
states over the plane of the interface. The noise measurements of Ref. 
1 and the small signal conductance measurements of Ref. 2 through 4 
suggest that a quantitative explanation of 11f type noise of an MaS 
capacitor can be given in terms of the interface state time constant 
dispersion caused by the random distribution of surface potential and 
the resulting capture conductance. 

It has been reported that low-frequency noise generated at semicon
ductor surfaces shows a Ilfn spectrum with n ~ lover many decades 
of frequency.5, G Various mechanisms have been proposed to explain 
this, such as slow states in the oxide or at the oxide-air interface or 
slow time dependent changes in the density of states at the semicon
ductor surface.5 , 7, 8 Atalla, et al,G have shown that surface generated 
l/f noise extending over many decades of frequency is considerably re
duced in magnitude when silicon is thermally oxidized. The noise theory 
presented here is based on conductance measurements made on ther
mally oxidized silicon samples prepared as described in Ref. 4. In these 
samples, oxide thickness is greater than 500 A. These samples have 
stable electrical characteristics at room temperature under bias. Also, 
losses in the oxide layer and bulk silicon are found to be negligible.2 • 4 

Thus, they should be free of noise mechanisms other than random emis
sion and capture of carriers by interface states having a time invariant 
density. The case where interface state transitions dominate the loss 
as in the measurements of Ref. 4 will be the only case considered here. 

This work clearly shows that in thermally oxidized silicon, surface
generated noise arising from random emission and capture of carriers 
by interface states does not explain a l/f noise spectrum over many 
decades of frequency. Measurements in which a l/f noise spectrum is 
found over several decades must involve additional mechanisms as 
mentioned. 
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The noise spectrum of a single level state, as is well knowl1,9,10 is 
independent of frequency ut low frequencies and has a I/J2 frequency 
dependence at high frequencies. \Ve shall show that the time constant 
dispersion found by conductance measurements introduces an inter
mediate range in the noise spectrum with a II! type frequency de
pendence. The resulting open circuit noise voltage appearing across 
the terminals of an lVIOS capacitor has been calculated and found to 
have a large 1/! type range and the same dependence on interface state 
density and capture conductance as in Ref. 1. 

The l\1[OS capacitor is the simplest case of interface state. II! type 
noise to treat quantitatively because there is no dc current flow. The 
theory for the MaS capacitor will be worked out here in detail. This 
theory can be extended to explain II! noise arising from interface 
states in lVIOS field effect transistors and oxide passivated bipolar 
transistors because in these devices, time constant dispersion also will 
be caused by the random surface potential distribution. This exten
sion will not be made here. 

II. THEORY 

'Ve shall u~e the Nyquist formula for the calculation of noise. This 
is justified by the fact that in the MOS capacitor it is reasonable to 
assume that the interface states and the silicon are in thermal equilib
rium with each other at each bias when no dc leakage current flows 
through the oxide layer. We shall consider the case where the applied 
voltage biases the silicon into accumulation or depletion up to within 
a few kT Iq of mid gap. In these regions, majority carrier density is 
several orders of magnitude greater than minority carrier density at 
the silicon surface. Neglecting minority transitions will cause little or 
no error at the frequencies considered in this paper (0.1 Hz to 108 Hz) 
because in these regions of bias there is virtually no recombination
generation through interface states or states in the silicon bulk.4 Dif
fusion from the bulk is also negligible. In the MaS capacitor, recom
bination-generation and diffusion are the only ways the minority 
carrier band can communicate with an external circuit. Thus, the 
noise we shall calculate arises primarily by the random capture and 
emission of majority carriers by the interface states. Fig. 1 shows the 
noise equivalent circuit for the MaS capacitor at a given bias and 
angular frequency w. Using the Nyquist formula, the mean square 
noise current per cm2 generated in Gp{w) is 

(i;) = 4kTBGp (w) I (1) 
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x 0------, 

Co 

:x: 0-----" 

Fig. 1- Noise equivalent circuit of MOS capacitor. Cox is oxide layer capaci
tance in farads/cm2

, CD is depletion layer capacitance in farads/cm2
, Cp(w) is 

the interface state capacitance given by (9) in farads/cm2 , Gp(w) is the interface 
state equivalent parallel conductance given by (8) mhos/cm2 , and <ig 2> is the 
mean square short circuit noise current in ampg2/cm2

• 

where Gp (w) is the interface state equivalent parallel conductance in 
mhos/cm2

, k is Boltzman's constant in Joules/oK, T is the absolute 
temperature in OK, and B is the bandwidth in Hz. The mean square 
open circuit noise voltage X cm2 appearing across the terminals x-x 
in Fig. 1 is then 

(2) 

where Cp(w) is interface state capacitance in farads/cm2
, and Cn is 

the depletion layer capacitance in farads/cm2
• 

The problem in evaluating (2) is essentially to find the interface 
state admittance as a function of bias and frequency. This has been 
done previously as described in Refs. 3 and 4. This derivation will be 
briefly outlined here. It is based on a model in which the interface 
state time constant dispersion required for a 1/! type noise spectrum 
is caused by a random distribution of surface potential. A detailed 
analysis of this mechanism complete with experimental documentation 
can be found in Ref. 4. 

2.1 Depletion 

With the silicon surface in depletion or accumulation, it has been 
shown experimentally (see Ref. 4) that the ohmic loss in the oxide 
layer and the silicon space-charge region is negligible compared to 
the ohmic loss arising from transitions between interface states and 
the maj ority carrier band. Bulk silicon series resistance and contact 
resistance can be made negligible in practice4 or calculated separately. 
Because this paper is restricted to a discussion of noise due to inter
face states, these two resistances will be ignored. 
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A single level interface state is not observed experimentally. Rather, 
the interface states are observed to be comprised of energy levels so 
closely spaced in energy that they cannot be distinguished as separate 
levels. They appear as a continuum over the bandgap of the silicon. 
The time constant dispersion observed is larger than expected for a 
continuum. A random distribution of surface potential caused by a 
random distribution of fixed oxide charges over the plane of the inter
face is found to quantitatively explain the time constant dispersion 
measured. To analyze this mechanism, we proceed as follows. Divid
ing the plane of the interface into a number of squares of equal area, 
the largest area within which surface potential is uniform is called 
the characteristic area of the random fixed oxide charge distribution. 
The admittance of the continuum of levels located in a characteristic 
area can be obtained by integrating the admittance of a single level 
over all the levels distributed in energy from the valence band to the 
conduction band. The resulting total interface state admittance 111 a 
characteristic area is4 

Y -' ~ fEe N s . ./o(1 - fo) dt/; 
8' - JW krl1 1 + . f I ' 

.I. Ev JW ° Cp P80 
(3) 

where q is the electronic charge in coulombs, j = v=:t, N 88 is the 
density of interface states cm-2 X eV-\ fo is the Fermi function at a 
given bias, Cp is the majority carrier capture probability in cm3/sec, 
p.o is the majority carrier density at the silicon surface in cm -3, and 
dt/; is a small energy interval in the bandgap in e V. The integrand of 
(3) is sharply peaked about the Fermi level with a width of about 
kT / q. Thus, (3) can be easily integrated because both N' 8 and Cp are 
experimentally observed to vary only slightly over several leT / q in a 
range of bandgap energy of about half the gap centered about mid-gap. 
Making the substitution fo(1 - fo) = (leT /q)(dfo/dt/;) transforms (3) 
into an integral over fo . Integrating from zero to unity yields 

Y qN •• I (1 + 2 2) + . Nss () 
88 = -2- n W T m Jq - arc tan \WTm , 

Tm Tm 
(4) 

where Tin = l/cppso. Equation (4) was first derived by LehovecY 
Typically Nss is in the range 10lOcm-2 X e V-l to 101lcm-2 X e V-I. This 

means that the interface states are spacially separated too far apart 
in the plane of the interface for the wave function of an electron in 
one center to overlap a neighboring center. Transitions from one cen
ter to another, even though the centers are closely spaced in energy, 
are therefore, highly improbable. Thus, transitions between the ma-
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jority carrier band and a particular level in the continuum located in 
energy near the Fermi level are not correlated to transitions between 
the majority carrier band and other levels nearby in energy. 

The total admittance Y T is obtained by multiplying the admittance 
contributed by each characteristic area Yss from (4) by the number of 
characteristic areas in which the surface potential is between Us and 
us+dus and integrating over all the characteristics areas under the 
field plate. The result is 

Y T = i: YssP(Us) dUB, (5) 

where P(us)clus is the number of characteristic areas in which the sur
face potential (in units of kT /q) is between 'L~s and 'us+dus and y.~s is 
given by (4). P(us)' the probability that the surface potential in a 
characteristic area is us, is obtained from the random distribution of 
fixed oxide charges.4 When the mean number of charges in a charac
teristic area is large, the probability of finding N charges in a char
acteristic area peN) is given by the Gaussian approximation of a 
Poisson distribution. Transforming P (N) to P (us) for the case of 
small fluctuations (see Refs. 3 and 4), we get 

(6) 

where .(j is the standard deviation of surface potential and Us is the 
mean surface potential in units of kT /q at a given bias. The standard 
deviation of surface potential is 

u= 
(q/kT)W(qQJa)~ 

(7) 

where W is space-charge width in em, QB is the fixed oxide charge density 
in coul/cm2

, a is the characteristic area in cm2
, Cox is the oxide layer 

capacitance in farads/cm2
, and fsi is the permittivity of the silicon in 

farads/em. 
Substituting (4) and (6) into (5), we get 

Gp(w) = ~qN""(27ru'2)-} 

f
ao 

? ? -1 ? 2 
• -00 exp [-(u" - u.,)~/2U-]T1n In (1 + W~To) du" (8) 

and 

Cp(w) qN8S(27ru'2)-~ . i: cxp [- (11,,, - 1I.,)2/2u2](WTm )-1 arc tan (WT m) du" . (9) 



NOISE DUE TO INTERFACE STATES 2025 

For p-type, Tm = IjcpPso = (1jcpN A )exp 'Us, where NLl is the accep
tor density in the silicon in cm-3 and Cp is the hole capture probability. 

These integrals can be evaluated numerically using the experimental 
observation that the density of states and the majority carrier capture 
probability vary very slowly over several kT of bandgap energy. 

The values of Gp (w) and Cp (w) calculated from (8) and (9) can be 
used in (2) to obtain the open circuit mean square noise voltage of the 
MOS capacitor. 

To illustrate the noise properties predicted by the statistical model, 
the spectrum of the trapped charge fluctuations in the interface states 
is derived from this model. First, the spectrum of charge fluctuations 
for a single time constant iso, 10 

(10) 

where T = fOTm and Ns is the density of states cnr:.!. 
The noise spectrum for the continuum of states located in a char

acteristic area is obtained by integrating (10) over bandgap energy in 
a manner identical to (3). The result is 

Ssc(w) = (2kTjq)BNss(w2Tm)-11n(1 +W2T~). (11) 

Integrating (11) over all characteristic areas similarly to (5), (8), 
and (9) yields for the actual spectral distribution 

Sew) = (2kT j q)BNss (27n/)-! 

·i: exp [-('Us - us)2j20"2](W2Tm)-1 In (1 + W2T~) d'Us . (12) 

Equations (8), (9), and (12) have been numerically integrated on an 
IBM 7094 computer using the trapezoidal rule. 

III. DISCUSSION 

3.1 Depletion 

Curve (a) of Fig. 2 shows the noise spectrum for a single level state 
calculated from (10) with the Fermi level at the trap level. Curve (b) 
of Fig. 2 shows the noise spectrum for the continuum of levels located 
in a characteristic area calculated from (11). Both of these curves are 
normalized to their low-frequency values. Comparing curve (a) to 
curve (b), it is seen that integration over the continuum of levels re
sults only in minor modifications of the shape of the spectrum. Curve 
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Fig. 2 - Log-log plots of normalized spectral density vs WT". for the mean 
square fluctuations of the number of electrons trapped at the interface states. 
Curve (a) is for a single time constant calculated from (0). Curve (b) is for a 
continuum of states calculated from (1). Curve (c) is a plot of (2) using a 
standard deviation of surface potential of 2.6. All three curves are calculated 
using a hole density at the silicon surface of 6.4 X 1012 cm-3 and a hole capture 
probability of 2.2 X 10-9 cm3/sec. The conditions: WTrn = 1.0, 1.98, and 2.5 
correspond to the values of WT". at which the Gp(w)/ct} curve peaks for each case. 

(c) of Fig. 2 shows the noise spectrum calculated from (12) using a 
standard deviation of surface potential of 2.6. This curve is also 
normalized to its low-frequency value. Curve (c) is seen to be sig
nificantly different from curve (a) and curve (b). Fig. 2 shows that 
the random distribution of surface potential for an experimentally 
observed standard deviation of 2.6 is the dominant influence on the 
shape of the noise spectrum. In fact, the random distribution of sur
face potential will be the dominant influence over the range of standard 
deviation between 1.8 and 2.6. This is the range found by conductance 
measurements on several [111] and [100] crystals both nand p type. 

In Fig. 3, curve (a) is the noise spectrum calculated from (12) and 
curve (b) the corresponding Gp(w)/w vs frequency calculated from 
(8). For the parameters given in the caption under Fig. 3, Gp(w)/w 
goes through a peak of 6 kHz. Fig. 3 shmvs that: 

(i) The noise spectrum becomes independent of frequency at low 
frequencies. For the case considered, this occurs at frequencies much 
lower than 6 kHz. 
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(ii) The noise spectrum tends towards a IIF frequency dependence 
at high frequencies. This will occur at frequencies much higher than 6 
kHz for the case considered. 

(iii) In the intermediate frequency range where Gp(w)lw has its 
highest values, the noise has a II! type frequency dependence. For the 
case considered here, this occurs around 6 kHz. 

A II! spectrum is drawn through curve (a) in Fig. 3. To see that the 
standard deviation determines the frequency range over which a II! 
spectrum fits our theory, we transform P('u/s) to P( 711/). 

(13) 

where P(ua) is the probability that the time constant in a characteristic 
area is Tm. From the relation Tm = (cpNA)-l exp Us given previously, 
(13) becomes 

(14) 

'Ve expand P(u s ) given in (6) in a power series. As long as the con
dition (us - us )2/2cr2 « 1 holds, all terms in the series except the first 
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Fig. 3 - Curve (a) is a log-log plot of (12) vs frequency and curve (b) a log
log plot of Gp(w)/w from (8) vs frequency. Both curves are calculated for a 
standard deviation of 2.6, a hole density at the surface of 6.5 X 1012 cm-3 , a 
hole capture probability of 2.2 X 10-9 cm3/sec, an interface state density of 
3 X 1011 cm-2 X eV-1 , and a temperature of 300 o K. 
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can be dropped. Then, from (14), P(Tm) = (27rO'2)-lT:l. Superposing 
spectra of the type T(l + w2T2) -1 with a time constant distribution 
proportional to liT gives a lit noise spectrum.12 The integration over 
the trap levels in one characteristic area results only in a minor change 
of shape of a T(l + W

2T2)-1 spectrum as shown in Fig. 2. Essentially 
only the frequency for Gp(w)lw maximum shifts to a higher value. Thus, 
a lit spectrum will fit our theory over a frequency range determined 
by the condition (us - us)2/2O'2 « 1. The width of the frequency range 
given by this condition is determined by O'. This can be clarified by an 
illustrative example. Let us replace P(us ) with a rectangular distribution 
of height (27rO'2)-! and width (27rO'2)!. This distribution gives a lit 
spectrum which is within a factor of 2 of curve (a) in Fig. 3 over four 
decades of frequency. The highest and lowest frequencies in this range 
are given by 

(15) 

where fp is the center frequency of the range and is the frequency at 
which the corresponding G p (w) I (J) vs log (I) curve peaks. This center 
frequency is proportional to the majority carrier density Pso at the 
silicon surface and is almost independent of 0". For the statistical model 
with 0' between 1.8 and 2.6, fp = (2.5/27l') CpPso. Equation (15) shows 
that the frequency range over which the 11f spectrum is observed de
pends exponentially on 0". 

Cp(w) and Gp(w) given by (8) and (9) are independent of tempera
ture and silicon resistivity. For a given 0", Cp , and w, these equations 
depend only on Pso through the variable Tm. The relation between Tilt 

and Pso is Tnt = 1/ CpPso. Measurements reported in Ref. 4 show that 
capture probability is independent of temperature. For a wide range of 
temperature and silicon resistivity, the same value of Pso in depletion 
or accumulation can be obtained just by adjusting field plate bias. 
Thus, our mechanism for time constant dispersion is independent of 
temperature and silicon resistivity. Silicon conductivity type is im
portant only because the capture probability for electrons is found to 
be about ten times larger than for holes. 

Fig. 4 shows open circuit mean square noise voltage for two dif
ferent values of Pso or bias calculated from (2) using (8) and (9). 
Curve (a) is for Pso = 6.4 X 1012 cm-3 and curve (b) for Pso = 3.5 X 
1014 cm-3 both for 0" = 2.6. Fig. 4 illustrates the bias dependence of 
the noise voltage vs frequency. The curves in Fig. 4 will be a function 
of temperature and silicon resistivity as seen from (2). 

Fig. 5 shows the influence of standard deviation of surface potential 
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Fig. 4 - Log-log plot of open circuit mean square noise voltage of MOS 
capacitor vs frequency calculated from (2), (8), and (9). Curve (a) and curve 
(b) are for hole densities at the silicon surface of 6.4 X 1012 cm-3 and 3.5 X 1014 

cm-3 respectively. For both curves, standard deviation is 2.6, hole capture prob
ability is 2.2 X 10-9 cm3 , acceptor density is 2.1 X 1016 cm-3 , interface state 
density is 3 X 1011 cm-2 X e V-1 , and temperature 300 o K. Mean surface potential 
is 8.1 in curve (a) and 4.1 in curve (b). Experimental points are taken from 
Fig. 1 of Ref. 1 at a gate voltage of -2 volts. Notice similarity of shape to 
curves (a) and (b). 

on the mean square noise voltage vs frequency for a majority carrier 
density at the silicon surface of 6.4 X 1012 cm-3

• Curve (a) is for a 
standard deviation of 2.6 and curve (b) for a standard deviation of 
1.8. These are the largest and smallest values found by conductance 
measurements on several MOS capacitors. 

Fig. 5 shows that: 

(i) The standard deviation has the greatest influence on the magni
tude of the mean square noise voltage at low frequencies. 

(ii) The range of frequencies over which the mean square noise 
voltage has a II! frequency dependence increases with increasing 
standard deviation of surface potential. 

Standard deviation is experimentally observed to be independent of 
bias over most of the depletion range. It is shown in Refs. 3 and 4 that 
the relation between characteristic area and space-charge width is 

(16) 
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Fig. 5 - Log-log plot of open circuit mean square noise voltage of MOS 
capacitor vs frequency calculated from (2), (8), and (9). Curve (a) is for a 
standard deviation of 2.6 and curve (b) for a standard deviation of 1.8. For both 
curves, hole density at the silicon surface is 6.4 X 1012 cm-3 • Hole capture prob
ability, acceptor density, interface state density, and temperature are the same 
as in Fig. 4. Mean surface potential is 8.1. 

Substituting (16) into (7), the fixed charge density causing the 
random distribution of surface potential can be calculated from the 
standard deviation. For a standard deviation of 2.6, fixed oxide charge 
density will be 1 X 1012 cm-2 and for a standard deviation of 1.8, fixed 
oxide charge density will be 5 X 1011 cm-2

• A doping density of 2.1 X 
1016 cm-3 and a mean surface potential of 8.1 have been used in calcu
latingthese values of charge density. 

It is found experimentally that (8) and (9) are valid over the fre
quency range from 50 Hz to 500 kHz. The curves in Figs. 3, 4, and 
5 cover the frequency range from 10-1 to 108 Hz. In extending these 
curves over a wider frequency range than covered by the conductance 
measurements, it is assumed that no new important ohmic loss 
mechanisms arise at the lower and higher frequencies. 

Fig. 6 shows open circuit mean square noise voltage calculated 
from (2) using (8) and (9) as a function of mean surface potential. 
A frequency of 10 kHz and a standard deviation of 2.6 have been 
used in this calculation. 
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In the practical case, the noise voltage curve peaks at the same 
value of mean surface potential and has the same shape as the equiv
alent parallel conductance vs Us which would be measured across 
terminals x-x in Fig. 1. 

At a given frequency, Fig. 6 shows that mean square noise voltage 
decreases at values of mean surface potential near flat bands and 
saturates in accumulation. A constant density of states with energy 
has been used in calculating the curve in Fig. 6. Actually, the density 
of states increases rapidly toward the band edges as shown by Gray 
and Brown.13 This means that mean square noise voltage would be 
greater near flat bands than indicated in Fig. 6. The noise spectrum 
in this region, however, would have a shape similar to the curves in 
Fig. 4. 

The mean square noise voltage decreases at values of mean surface 
potential near mid-gap. Because the theory developed here considers 
only majority carrier transitions, it does not apply without error when 
the Fermi level is within a few kT / q of mid-gap where both majority 
and minority carrier transitions become important. For this reason, 
the curve in Fig. 6 is shown as a dotted extrapolation in this region. 

In the region of weak inversion where the Fermi level has moved 
past mid-gap a few kT / q toward the minority carrier band, the time 
constant dispersion disappears.3

,4 In this region, the noise spectrum 
is expected to be similar to curve (a) in Fig. 2 for a single time con
stant. 
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Fig. 6 - Open circuit mean square noise voltage of MOS capacitor vs mean 
surface potential in units of kT/q. The curve is calculated from (2), (8), and (9) 
using a frequency of 10 kHz and a standard deviation, acceptor density, hole 
capture probability, interface state density, and temperature the same as in 
Fig. 4. Mid-gap is at u. = 14.1. Notice similarity in shape to experimental curves 
in Figs. 1 and 2 of Ref. 1. 
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IV. SUMMARY AND CONCLUSIONS 

A theory of l/J type noise has been presented based on a model for 
the interface state time constant distribution which quantitatively 
fits MIS conductance measurements. The noise spectra have been 
obtained from measured capture conductances Gp (Il) through the rela
tion s((/)) = 4kTB(qw)-:: Gp ((/)) which is independent of the particular 
model used. Thus, the noise spectra presented in this paper arc baEed 
solely on measured time constant dispersion. 

The mean square noise voltage vs frequency in the model discussed 
in this paper depends on three quantities for a given temperature and 
silicon resistivity 

(i) It depends upon the majority carrier density at the silicon sur
face which in turn is determined by field plate bias. 

(ii) It depends upon the standard deviation of surface potential 
which is related to fixed oxide charge density. 

(iii) It depends upon the density of interface states as seen from 
(8) and (9) combined with (2). 

This theory predicts that l/J type noise due to interface states can 
be reduced by decreasing the density of states which can exchange 
charge 'with the silicon and the density of fixed oxide charge. One 
consequence is that l/J type noise can be calculated from the elec
trical properties of the interface obtained by measuring the admit
tance of an MOS capacitor. 
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Stability Considerations ill Lossless 
Varactor Frequency Multipliers 

By V. K. PRABHU 

(Manuscript received May 31, 1957) 

A general analysis of stability conditions of pumped nonlinear systems 
is presented in this paper. The type of instability investigated for these 
systems is that which causes spurious tones to appear at any point in the 
system in the vicinity of an appropriate harmonic carrier. A set of stability 
criteria that assure stability for the system has been given in terms of 
scattering parameters of the system. These criteria have then been applied 
to investigate the stability of lossless varactor harmonic generators that 
have been shown in this paper to be potentially unstable systems. It is then 
investigated for these multipliers how instability arises, and how it can 
be avoided by proper terminations. For some simple terminations, which 
are usually used in practice, sufficient conditions, that assure total stability 
of the multipliers, are explicitly given. 

r. INTRODUCTION 

One of the principal limitations to efficient wideband harmonic 
generation with varactor diodes is the generation of spurious sig
nals. t

, 2,3 The origin of these signals is usually thoughtt to be due to a 
parametric "pumping up" of some signal in the multiplier passband, 
or to a parametric up-conversion process,t or a variation in the average 
capacitance of the diode at input frequency.3 A multiplier which con
tains these spurious signals is considered to be unstable,4 and it is 
this type of instability that is investigated in this paper. 

At the present time, much is not known about the stability of har
monic generators, even though it is a widely-known experimental fact 
that this is a serious problem in high-efficiency varactor multipliers.2, 4 

Very little is also known about the conditions imposed by stability on 
the available circuit configurations. Consequently, present design 
procedures leave the problem to be solved experimentally, and this is 
often done at the expense of efficiency. Very often isolators are used 

2035 
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to connect a chain of multipliers which arc individually stable in order 
to guarantee stability of the chain. 4 The isolators used in the chain 
always lower the overall efficiency. 

A start on this problem of stability in multipliers has been made by 
Ref. 4 which considers the stability conditions of multipliers of order 
211 with minimum number of idlers. Some simple conditions on the 
terminations have been obtained4 in order to ensure stability of the 
multipliers. This paper extends this analysis to harmonic generators 
of arbitrary order and also obtains refinements to the conditions ob
tained in Ref. 4. 

Varactor harmonic generators come under the general class of 
pumped nonlinear systems, ·which are systems driven periodically by 
a pump or a local oscillator at a frequency wo.s For such systems, a 
general method can be useds to obtain the scattering parameters which 
relate the small-signal fluctuations present at various points in the 
system. In particular, Ref. 5 obtains these scattering relations for 
lossless abrupt-junction varactor multipliers of order 2n , 38

, and 2n38
, 

nand s integers, with the least number of idlers. 
These scattering relations for pumped systems have been obtained 

in Ref. 5 when the difference frequency w is real and small. The. concept 
of analytic continuation has been used to obtain these scattering para
meters when this difference frequency is complex, and is still small 
in magnitude. 

Stability conditions for pumped systems are. then expressed in terms 
of the scattering matrix of the system and a certain characteristic 
equation is obtained which determines the stability of the system. For 
the system to be stable it is necessary and sufficient that the roots of 
this characteristic equation must lie external to a region R of the 
complex frequency plane. Proper terminations that guarantee sta
bility of the system can he determined for the pumped system from 
this equation. 

"\Ve then discuss AlVl-to-PlVI and PlVl-to-AJH conversion properties 
of a set of lossless interstage networks usually used with multipliers. 

Stability conditions of lossless abrupt-junction varactor multipliers, 
most frequently encountered in practice, are then considered. It has 
been shown that if the bias circuit is properly designedG so that there 
are no currents flowing in the vicinity of dc the characteristic equationt 
of the multiplier can be expressed as a product of an ANI characteristic 

t This condition can be ar·hieyed in practice by haying n. bias source with 
infinite internal impedance. 
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equation and a P:NI characteristic equation. If any root of the ANI 
characteristic equation lies in the closed right-half§ of the complex 
plane there will not be a finite upper bound to the AM fluctuations 
originating at some point in the system. Such a system is defined to be 
unstable with respect to its AM fluctuations. Similarly, the P:NI fluctu
ations will be finite if and only if all zeros of the PlYI characteristic 
equation lie in the open left-half plane. For total stability of the 
multiplier no zero of its A1VI and PlYI characteristic equations should 
lie in the closed right-half plane. ~ 

It has been shown for multipliers of order 2n that all roots of the A1VI 
characteristic equation always lie in the left-half plane. for arbitrary 
values of input, output, and idler terminations." It has also been 
proved for these multipliers that Pl\{ stability is not achievable with 
arbitrary terminal impedances. 

We then specifically consider PlYI stability of a 1-2 doubler, 1-2-4 
quadrupler, and 1-2-4-8 octupler when their terminations are single
tuned series circuits.:j: Simple restrictions to be satisfied by these 
terminations are obtained to guarantee Pl\1 stability of the multi
pliers. 

Stability of a 1-2-3 tripler for an arbitrary passive idler termination 
is the subject of discussion of the next section. vVe show that a tripler 
is potentially unstable for arbitrary input and output terminations. 
It has also been proven that a tripler is stable with respect to both 
AM and Pl\1 fluctuations if its terminations are single-tuned series 
circuits. 

vVe next assume that the bias source impedance Zo can be a finite 
number. vVe then show that the stability characterization of a multi
plier having finite bias source impedance is the same as that of a multi
plier having infinite bias source impedance. 

For a multiplier of any order, a general method of obtaining the 
conditions on available circuit configurations imposed by the condi
tion of stability has also been presented. 

§ The closed right-half of the complex plane is the region of A-plane where Rc 
A ~ O. The open left-half plane contains all the points of the A-plane for which 
Re A < O. 

IT For total stability of systems whose characteristic equation F(A) cannot be 
expressed as a product of AM and PM characteristic equations, it is necessary 
and sufficient that no zero of F (A) lies in the closed right-half plane. 

II All terminations considered in this paper are assumed to be linear and 
passive. 

t It can be shown that a single-tuned series circuit is a first-order approxi
mation to any circuit usually used in practicc, Bince the avernl!c ela~tance So of 
the varactor diode if'! almost alway~ nonzcl'O.' 
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II. SCATTERING RELATIONS IN LOSSLESS VARACTOR FREQUENCY MULTIPLIERS 

For a pumped nonlinear system a general method can be used 5 in 
order to obtain the scattering parameters which relate the small-signal 
fluctuations present at various points in the system.§ Such a method 
has been applied5 in order to obtain scattering relations for lossless 
abrupt-junction varactor multipliers of order 2n38"n and 8 integers, with 
minimum number of idlers. The scattering matrix S is given by 

! _ (-lr 2-" (-1),,2-": 
3 3 1 o 1 

1 

1 1 o 
__________________ 1 _____________ _ 

: 0 
1 o 
: 2"3 8 ! - (-lr 2" J 
I 3 3 

(1) 

(2) 

It is assumed that the bias circuit is properly designed and that 
w/wo « 1. ~ 

In order to discuss the stability of the multipliers it is necessary to 
include the effect of the external circuits on the scattering matrix S 
of the multiplier. This can easily be done as is shown in the succeeding 
sections of this paper. It is also assumed in Ref. 5 that the difference 
frequency w is real and small in deriving (2). Since we shall discuss 
stability of multipliers in this paper it is convenient to have a complex 
value for this difference frequency. The small-signal terminal voltage 
ovk(t) in the vicinity of the carrier frequency ±kwo is represented in 
Ref. 5 as 

OVk(t) = 2 Re [Vak exp (jlcwo + jw)t + V Pk exp (- jkwo + jw)t]. (3) 

Let the difference frequency have a complex value A = u+jw, u and w 
real. The terminal behavior of a pumped nonlinear system can be de-

§ Since the notation used in this paper is identical to that used in Ref. 5, details 
of these notations are not given in this paper for the sake of brevity. The assump
tions under which these scattering relations can be obtained are also given in 
Ref. 5. 

~ Only lowest order terms in w/wo are retained in deriving (2). Since frequency 
selective circuits are always llsed in a multiplier and since the average elastance So 
of the varactor can always be included with these external circuits for purposes of 
analysis, (2) is a first-order approximation to ~ in the vicinity of the carrier. 
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scribed5 by an equation of the form 

(4) 

where V and I are the terminal voltage and current column matrices 
and Z is an impedance matrix. We shall now utilize the principle of 
analytic continuation8 to obtain Z (and other parameters) of the pumped 
nonlinear system when the difference frequency is complex. This can 
be done by the simple expedient of replacing the variable jw by the 
complex variable A = ()" + jw wherever it occurs8 in (4).§ The truth 
of this statement, expressing a property of functions known as their 
permanence of form, follows directly from the identity theorem, since 
Z and its continuation obviously coincide on the jw-axis.8 

We can, therefore, obtain scattering parameters of all pumped non
linear systems (including those of lossless abrupt-junction varactor 
multipliers) when the difference frequency A is complex. 

III. STABILITY OF PUMPED NONLINEAR SYST.E.iMS 

vVe shall first begin with a discussion of stability of pumped non
linear systems in which small-signal fluctuations may be present at 
various points in the system. Since lossless varactor harmonic genera
tors are specific pumped nonlinear systems all these results and re
marks also apply to these harmonic multipliers. 

A small-signal fluctuation originating at some point in the system 
is propagated, in general, throughout the system. We shall define a 
pumped nonlinear system to be stable if and only if the amplitude of 
small-signal fluctuations at any point in the system is finite for a 
finite small-signal fluctuation originating at some point in the system. 

We shall make use of some of the results obtained in the study of 
stability of linear n-port systems.9

,10,l1,12,13,14 The stability of a linear 
n-port system is usually described by the statement that the roots of a 
certain characteristic equation F(A) of the system must be external 
to a region R of the complex frequency plane, that is, FCA) ~ 0 in 
region R, where A = ()" + jw is the complex frequency variable. Some 
set of stability criteria can also be obtained9

,1o,ll,12,13 for a general 
class of linear reciprocal and nonreciprocal n-ports. For a reciprocal 
twoport, a well-known result by Gewertz lO states that it is stable under 
all passive terminations if and only if it is passive. This theorem has 
been generalized by Y oula 12 to the reciprocal n-port. Very little, how-

§ In order that OVk(t) is small compared to the carrier at frequency kwo for all 
time t, it is required that q 2 o. 
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ever, is known1
:l.

14 about the stability of linear nonreciprocal n-ports, 
when n ~ 3. 

It is shown in Section II that the terminal small-signal behavior of 
noise-free pumped nonlinear system can be described by:j: 

(4) 

where Z a-{l is a function of jwo and A = () + jw. 
We shall restrict ourselves in this paper to the consideration of 

stability of pumped nonlinear systems having only two (physical) 
accessible ports. It can be noted, however, that most of the concepts 
developed for the system having two accessible ports can be extended 
in a straightforward manner if the system possesses more than two 
accessible terminal pairs. This will be evident to the reader when we 
discuss stability of a tripler elsewhere in this paper. 

If lwo and sWo are the input and out put carrier frequencies, it can be 
shown5 that the A1VI and Pl\1 fluctuations at different points in the 
system can be related through a scattering matrix S: 

(mr)Z (mi)l 

(mr). [ 8" : 8., ] (mi). (.5) 
(()r) 1 -i:l8~p- (()i) 1 

(()r) 8 (()i) 8 

where m and () are the AlVI and Pl\/I indexes of the system, Saa is the 
Al\1 scattering matrix, etc. We shall write (5) as 

b = Sa. (6) 

Let the system be terminated in linear passive impedances (see 
Fig. 1) ZI , Z2 , Z3, and Z4 with reflection coefficients PI , P2, P3 , and 
P4'§ Let us define a matrix e where 

e = dia. [PI , P2 , P3 , P4]' 

Since Zi'S are assumed passive, we have 

(7) 

t Let A be an arbitrary matrix. Then A t, A *, A t, and LlA stand for the transpose, 
the complex conjugate, the complex conjugate transpose, and the determinant of Lt, 
respectively. Column vectors are denoted by V, I, etc. A diagonal matrix [I-'ia;;] 
{aii = 1, i = j; aii = 0, i :;;C il, is denoted as dia. [1-'1, JL2, •.. , JLn]. !n is the unit 
rna trix of order n. 

§ The linear impedances Zl, Z2, Z3, and Z4 are normalized with respect to "char
acteristic impedances" at corresponding carrier frequencies. Characteristic im
pedance at input port is the "input impedance"7 and that at the output port is 
the "load impedance".' 
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I Pi I ~ 1, 1 ~ i ~ 4, (8) 

for Re A ~ 0. 
From (6), we can show that the system isstablc if and only if§ 

Ll{l:!. - §e} ~ 0, for ReA ~ o. (9) 

vVe can, therefore, state that the charactcristic cquation of the system 
is given by 

F(A) = Ll{I.t - Se} = 0; (10) 

und for stability of the system it is necessary and sufficient that no 
root of F(A) lies in the closed right-half plane. ~ 

-+-

(mL)l (mL)s 

Zl - -- Z3 

(mrh (mr)s 

~ -Uhh (OL)s 

Z2 Z4 

(8r )l (8r )s 

Fig. 1-Pumped nonlinear system, in amplitude-phase representation, termi
nated in linear passive impedances. 

Theorem 1: We shall now show13 that two systems described by 
scattering matrices §1 and §2 possess identical stability characterizations 
if §1 and §2 possess identical principal minors15 of all order. 

The characteristic equation F(A) of a system described by scattering 
matrix S for a certain termination described by matrix e is given by 
(10). If S is nonsingular, we can write (10) as 

Ll{S-1 - e} = o. (11) 

§ The constraints imposed on S for a twoport system may be found in Ref. 14. 
These constraints, if satisfied, gtiarantee stability of the system independent of 
the terminations. 

IT The reader will recognize that F(l\.) = 0 gives the natural frequencies of the 
system. For stability of a system, simple zeros of F(l\.) on the jw-axis are usually 
allowed, since this just leads to sustained response of finite amplitude. However, 
multiple order zeros on the jw-axis lead to instability of the system. 
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Now .1{S-l 
follows: 

e} can be expanded in terms of the elements of e as 

4 4 

.1 {S-l - e} = .1S-1 
- L PkBk + L PkPrBk,r , (12) 

k=l k<r 

where Bk is the principal minor of S-l obtained by striking out the 
kth row and column, Bk,r is the principal minor obtained by deleting 
the kth and rth rows and the kth and rth columns. It, therefore, follows 
that two systems described by scattering matrices Sl and S2 have 
identical stability characterizations if S~l and S;l have identical prin
cipal minors of all order. We know that S~l and S;l possess identical 
principal minors of all order if and only if Sl and S2 possess identical 
principal minors of all order. This proves the theorem. 

If F("A) ~ 0 for Re "A ~ 0 for all allowable values of e, we shall say 
that the pumped system is absolutely stable. If there is only a set of 
e which meets this requirement the system will be considered to be 
conditionally (or potentially) stable. It can be observed that if one port 
of the system is terminated in a linear passive impedance Zt , and if 
the real part of the impedance across any other· pair of terminals is 
negative for Re "A ~ 0, the system cannot be absolutely stable. This 
is one of the methods to investigate absolute stability of a system. 

Fig. 2 - Typical interstage network used in a multiplier. All series and shunt 
arms are resonant at frequency kwo. 

IV. SOME PROPERTIES OF A CLASS OF LOSSLESS INTERSTAGE NETWORKS 

Frequency separation is obtained in harmonic generators by using 
linear bandpasst filters. A typical example of a class of filters most 
commonly used in harmonic generators is shown in Fig. 2. This filter 
has a passband centered around carrier frequency ± kwo • Such filters 
with proper terminations are connected at accessible ports of a multiplier 
so as to obtain the desired frequency separations and proper impedance 

:j: This can be a low-pass filter at the lowest carrier frequency present in the 
multiplier and a high-pass filter at the highest carrier frequency.4 
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terminations at different carrier frequencies present in the multiplier.§ 
A multiplier with input frequency Wo , output frequency nwo , and 
interstage networks Nl , N 2 , ••• , N k , ••• , N n is shown in Fig. 3.~ 

For such interstage networks it will be shown that the scattering 
parameters" are given by 

xn 
MULTIPLIER 

Q 

Wo 

r §~.-[ -Q-J (13) 
Q I Qpp 

Zg 

Nt 

Fig. 3 - Lossless interstage networks as used in a frequency multiplier. 

so that these networks do not produce AM-to-PM or PM-to-AM 
conversion. 

Since the series arms are resonant at frequency kwo, and the anti res
onant frequency of the shunt arms is also kwo, if w/wo « 1, we can write 

V ai Zii 0 ZiO 0 

Ja'1 VlJi 0 Zii 0 ZiO IIJi • (14) 
VaO ZOi 0 Zoo 0 I aO 

V po 0 ZOi 0 Zoo IpoJ 

§ Eor example, this filter should also act as a matching filter at the input 
carrier frequency woo 

n It is assumed that all idler terminations are lossless. 
II Even though Nk is a two-port network we must obtain 4x4 scattering matrix 

of this network since amplitude and phase transmission characteristics of the 
pumped nonlinear system with which N k may be used are not necessarily the 
same.6 See Ref. 5 for the definitions of amplitude and phase transmission charac
teristics as used in this paper. 
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We shall now assume that large signal voltage at carrier frequency 
kwo is in phase with the large signal current.t 
We can now write 

V ai Zii 0 ZiO 0 Iai 

V pi 0 Zii 0 ZiO I pi (15) 

T'"o ZOi 0 zoo 0 lao 

Vpo 0 ZOi 0 Zoo J 1'0 

Equations (14) and (15) show that the scattering parameters of a 
lossless interstage network are given by (13). This shows that if such 
interstage networks are used in multipliers which are characterized 
by uncoupled§ scattering matrices the resultant scattering matrix is 
also uncoupled. 

V. STABILITY OF LOSSLESS ABRUPT-JUNCTION VARACTOR MULTIPLIERS 

The general analysis of the stability conditions presented in the 
earlier sections will be applied to investigate stability of frequency 
multipliers of order 2n38

, nand 8 integers, when lossless interstage net
works of the form discussed in Section IV are used with these multi
pliers. It will be shown that these multipliers are potentially unstable 
and we shall obtain some circuit configurations which guarantee their 
conditional stability. 

It has been shown5 that a multiplier of order 2n 3" with any input, 
output, and idler terminations can be considered as a chain of n doublers, 
s triplers, and 11, + 28 + 1 interstage networks (see Fig. 4). All these 
interstage networks «J will be assumed to be of the form presented in 
Section IV. A lossless abrupt-junction varactor tripler with an arbitrary 
lossless idler termination is shown in Fig. 5. It is assumed that the tripler 
is tuned at the idler frequency, Z2(2wO) = 0, and that w/wo « 1. By the 
techniques of Ref. 5 we can show that the scattering parameters of a 
tripler can be represented as 

t This condition usually leads to optimum efficiency of multipliers and is 
usually satisfied in practice! 

§ The scattering matrix is defined by us to be an uncoupled scattering matrix if 
Sap = Spa = O. 
- ~ Th~ average elastance So of the varactor diode is considered as a part of the 
interstage networks usd in the multipliers. 
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I OSCILLATOR ~=== 
Fig. 4 - Lo~sless abrupt-junetion nlraetor multiplier of order 2"3'. N i IS an 

interstage network of the form shown in Fig. 2. 

s= 

where 

0 
).t - 1/2 : 
).t + 3/2: 

1 0 
-1 1 

1 

1 
).t + 3/2: 

_________ 1 _______________ 

0 

1 -1 1 

1 

).t + 1/2 1 

1 

1 

3 1 

_ 3 181 12 

R02 - 8 1 8 2 1 Wo 

!).t - 3/2 
3).t + 1/2 

0 

For a tripIer, we can hence write 

Saa = 
[

0 ).t - 1/2] 
).t + 3/2 

-1 
1 ).t + 3/2 

r -1 1 ).t - 3/2.1 

3" ~ li' ~ 1/2 3 i' : 1/2 J 
and 

I 
1 

(16) 

J 

(17) 

(18) 

(19) 

(20) 

(21) 

Since a doubler,!) a tripIer, and all interstage networks used in the 
multiplier have uncoupled scattering matrices it follows that general 
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Fig. 5 - Lossless abrupt-junction V:lractor tripler with an arbitrary lossless 
idler termination Z2. 

scattering parameters of mUltipliers of order 2n38 are given by the 
following equation: 

s ~ [§~"-i B~-J (22) 

If such a multiplier is terminated in passive impedances as shown 
in Fig. 6, the characteristic equation of the system according to (10) 
can be written as 

F('}..) 0, (23) 

where 

e = dia. [Pml , pm2 , POI , P02] (24) 

r :~j-~-J 
L Q : Pfl 

-(mL) 1 (mL)2 

Zml Zm2 
(mr\ (m r)2 

- xN -(fh)j MULTIPLIER (BL)2 

Z81 - - Z02 

(Br)l (Br)2 

Fig. 6 - Multiplier of order N. AM :lnd PM ports of the multiplier are 
terminated in linear passive impedances. 
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From (22) through (24), we can write 

(25) 

(26) 

where 

(27) 

and 

(28) 

For stability of the multiplier it is necessary and sufficient that the 
zeros of Fa 0\) and Fp (A) lie in a region external to the closed right
half plane. Fa (A) and Fp (A) will be called the AM and PM charac
teristic equations of the multiplier respectively. It must be borne in 
mind that the uncoupled nature. of the scattering matrix of the multi
plier with a properly designed bias circuit enables us to express F (A) 
as a product of Fa (A) and Fp (A). If this cannot be done we will not 
be able to investigate the nature of roots of F (A) by studying only the 
roots of Fa (A) and Fp(A). 

For multipliers for which we can express F (A) as the product of 
Fa(A) and Fp(A) we can define AM and PM stability independently. 
If no zeros of Fa(A) lie in the closed right-half plane we shall say that 
the multiplier is AM stable. A multiplier is PM stable if all roots of 
Fp(A) lie in the open left-half plane. For total stability of the multi
plier it must be both AM and PM stable. 

5.1 AM Stability of 111 ultipliers of Order 2n 

The AM stability of lossless abrupt-junction varactor multipliers 
of order 2n wth minimum number of idlers will be considered in this 
section. It has been shown5 that a multiplier of order 2n is equivalent to 
a cascade of n doublers as shown in Fig. 7. It will be assumed that inter
stage networks are passive, do not produce AM to PM or PM to AM 
conversion, and that the load Zn is a linear passive impedance. Since 

Fig. 7 - Los~less abrupt-junction varactor multiplier of order 2n. Only AM (or 
PM) ports of the doubler and interstage networks arc shown in the figure. 



2048 THE BELL SYSTE:\1 TECHNICAL .JOURNAL, KOVK\iBER 11)(37 

Nn+l is a passive interstage network it follows that the amplitude 
terminal impedance for the nth doubler is also passive. 

Let us now assume that the terminal impedance of the jth doubler is 
Zi where Zi is passive. We shall now show that the input impedance 
(Zin) i of the jth doubler (see Fig. 8) is passive, 1 ~ j ~ n. Since the 
generator impedance is assumed to be passive, no AM instability can 
arise in the multiplier. 

The AM scattering matrix of a doubler is given by 

S = [~ -~]. _aa 

1 0 
(29) 

Le.t the reflection coefficient of Zj normalized to some convenient num
ber be Pj. It can be shown16 that 

I Pi I ~ 1, for He A ~ O. (30) 

From (29), we have,ttl 

(Pin)i = ~{1 - pd. (31) 

From (30) and (31), it follows that 

I (Pin)i I ~ 1, for ReA ~ O. (32) 

Equation (32) proves the desired result that if Zj is passive, (Zin) j is 
also passive. 

This shows that if input, output, and all idler terminations of a 
multiplier of order 2n are passive, the impedance measured at any ac
cessible pair of terminals is also passive. This result leads to the con
clusion13 that a multiplier of order 2n is absolutely stable with respect 
to its AM fluctuations. 

5.2 P JIll Stability of 1'.11 ultipliers of Order 2n 

The phase terminal behavior of a multiplier of order 2n has also been 
shown5 to be equivalent to a chain of n doublers as shown in Fig. 7. 

jTH 
DOUBLER 

Fig. 8 - jlh doubler. 
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The PlYI scattering matrix of a doubler is given by 

S., = [~ ~lJ (33) 

If the phaEe terminal impedance of jth doubler has a reflection coef
ficient (pp).i, we have 

(34) 

For (pp), = !, {(Pp)in}; = -2. This shows that the phase input im
pedance of jth doubler is not necessarily passive if its phase terminal 
impedance is passive. A doubler is, therefore, potentially unstable with 
respect to its PM fluctuations if its phase port is terminated in an 
arbitrary passive impedance. For this reason, we conclude that a 
multiplier of order 2n

, n ~ 1, can become unstable with respect to its 
PM fluctuations for some values of its input, output, and idler termina
tions. 

Fig. 9 - Lossless abrupt-junction varactor doubler. Interstage networks Nl 
and N2 are assumed t? be single-tuned series circuits. 

The PM stability of a doubler, a quadrupler, and an octupler when 
interstage networks are single-tuned series circuits is studied next. 
Since the average elastance of a varactor diode is always nonzero, 
these circuits are always a first-order approximation to any circuits 
usually used in practice. For any other set of interstage networks used 
in the multiplier re.course can be had to Section V to obtain the con
straints imposed by the condition of PM stability. 

5.3 p it1 Stability of a Doubler 

A loss less abrupt-junction varactor doubler with single-tuned series 
circuits for its generator and load impedances is shown in Fig. 9. Rl 
and R2 are the real parts of generator and load impedances of the 
multiplier.:j: These are given5 by 

:j: It is assumed that the generator is matched to the varactor diode at carrier 
frequency woo 
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(35) 

and 

(36) 

The bandwidths B/s for the single-tuned series circuits are defined 
as 

1 ~ i ~ 2, (37) 

where ROi is the normalizing number for the ith termination. It is as
sumed for the doubler that 

1 ~ i ~ 2. (38) 

From (28), (33), and (37), we can show that the PM characteristic 
equation Fp()...) of the doubler can be represented as 

(39) 

We can observe from (39) that a doubler is PM stable for any finite 
nonzero values of Bl and B2 • Therefore, it follows that a doubler is 
conditionally stable with respect to its AM and PM fluctuations if 
single-tuned series circuits are used for its input and output termina
tions. 

5.4 PM Stability of a quadruplet 

Before we discuss PM stability of a quadrupler we shall present in 
this section a systematic method to obtain the characteristic equation 
of a multiplier of any order which is equivalent to a ehain of multipliers.5 

Let us say that a multiplier of order Ivl l X 1112 is equivalentt to a 
multiplier of order 1111 cascaded with a multiplier of order 1112 as shown 
in Fig. 10. It is assumed that the 2 X 2 scattering matrices of Ml , M2 , 
and the linear interstage network N are known. The impedance Z1l111112 

is assumed to be normalized with respect to its port number. 16 The 
reflection coefficient P1I1 1 M. of the load termination Z1I1dlf. is given by 

(40) 

:j: The conditions under which this is true are given in Ref. 5. 
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N 

Fig. 10 - Multiplier of order MIXM2 • 

Since the scattering matrices of lVII, M 2 , and N are known, reflection 
coefficient pin can be calculated. If the generator reflection coefficient 
PfJ is given by 

Pu (41) 

the characteristic equation of the multiplier is given by 

1 - PuPin = O. (42) 

Let us now consider PM stability of a quadrupler. A lossless abrupt
junction varactor quadrupler is equivalent to a cascade of two dou
blers. We shall now investigate its P~1 stability when its input, output, 
and idler terminations are single-tuned series circuits as shown in 
Fig. 11. The normalizing impedance for the idler port is assumed to be 

(43) 

It can be noted that R02 is the "input impedance" of the second 
doubler. The bandwidths B/s are defined as in the earlier section. 

We can now show that the PM characteristic equation of a quad
rupler can be written as 

Fp(A) = 4A3 + 2A2(B4 - B2) + A(2BIB2 + B2B4) + BIB2B4 = O. (44) 

In order that a quadrupler is PM stable it is necessary and sufficient 
that no zero of (44) lies in the closed right-half plane. The Routh-

Fig. 11- Lossless abrupt-junction varactor quadrupler. Interstage networks 
N 1 ,N2 , and N, are single-tuned series circuits. 
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Hurwitz17 criteria can be used to obtain the constraints on the coef
ficients so that the quadrupler is PM stable. It can be shown from this 
criterion that if 

B4 > 2 BI + 1 
B2 B4 

(45) 

all the zeros of (44) lie in the open left-half plane and the quadrupler 
is PM stable. Hence, we conclude that a quadrupler can be made 
conditionally sta blet if (45) is sa tisfierl. 

Let us now assume that 

B~ B2 
-=-='Y Bz BI . 

(46) 

The minimum value of y which guarantees Pl\!1 stability of the multi
plier can be obtained from (45). 'Ve can show that (45) is satisfied if 
and only if 

'Y > 1.629. (47) 

Specifically, we would like to note here that a quadrupler becomes un
stabh~'with respect to its PM fluctuations if B::! ~ 00. 

Also, we note that it is PM stable if simple bandwidth restrictions 
given by (45) or (47) are satisfied. 

5.5 PM Stability of an Octupler 

The AM stability of an octupler has been proved earlier in this 
section. The PM characteristic equation of an octupler with single
tuned series circuits for its input, output, and idler terminations can 
be shown to be given by the following equation: 

Fp(}..) = 8}" 4 + 4}" !'.(Bs - B4 - B z) 

+ 2}..2(2BIB2 + 3B2B4 - B2BS + B4BS) 

+ }"(2BIB2BS + B2B4BS - 2B1B2B4) + BIB2B4BS = O. (48) 

Bi is the bandwidth of the multiplier at carrier frequency iwo. 
The Routh-Hurwitz criterion can again be used to get the con

straints on B/s so that the octupler is PM stable. These constraints 
can be shown to be 

:j: We have shown earlier in this section that a quadrupler is AM stable for all 
passive terminations. 
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(49) 

(.50) 

and 

lO(~~) + 2(~:)(~~) - 14(~:) - 2(~:)(~:) 

- (~:r + (~:)(~:)(~:) - 3(~:r + G(~:)(~:) 
- (~:r(~:) - 4(~:) - 12(~:) + 4(~:) 

- 3(~:)(~:) + 6(~:)(~:) + 2(~:)(~:) 
+ (~:)(~:) > O. (51) 

If we can choose B/s so that we can satisfy (49) through (51), the 
multiplier will be PlYI stable. Let us now choose 

Bg = B4 = B2 = x' (52) 
B4 B2 Bl ' 

and see whether there exists a value of x which satisfies (49) through 
(51) simultaneously. The answer is in the affirmative and we can 
prove that if 

x > 1.992 (53) 

the multiplier is PlYI stable. This shows that an octupleT can be made 
conditionally stable by using single-tuned series circuits which satisfy 
certain bandwidth restrictions. 

5.6 PM Stability of Multipliers of Order 2" 

l\1ethods presented in earlier sections can be used to investigate Pl\1 
stability of multipliers of order 2", n ~ 4. It is our conjecture based 
on earlier discussions and results that a multiplier of order 2" with 
single-tuned series circuits as interstage networks is PM stable if 
bandwidths B2 ;'s, 0 ~ i ~ n satisfy the following equation: 

B2i «1. 
B2 i+. 

(54) 
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VI. STABILITY OF A TRIPLER 

The scattering relations for a tripler are given in (16). Even if the 
idler termination for the tripler is lossless it is evident from examin
ing (19) and (20) that a tripler is not AM or PM stablet for arbitrary 
input, and output terminations. 

Hence, we shall assume that single-tuned series circuits are used 
for input, output, and idler terminations of the tripler as shown in Fig. 
12. Bandwidths Bl and B3 are defined as usual. B2 is defined as 

(.55) 

where R02 is given in (18). 

Fig. 12 - Lossiess abrupt-junction varactor tripler. N1 , N 2 , and N3 are singIe
tuned series circuits. 

We can now obtain Fa(A) and Fp(A) for the tripler from (19) and 
(20). These can be shown to be given by 

FaCX) = 6}.3 + }.2(5Bl + 3B3 ) 

+ }.(BIB2 + B2B 3 + 3B3B 1) + BIB2B3 

=0 

and 

(56) 

Fp(}.) = 6}.3 + }.2(Bl + 3B3 ) + }.(BIB2 + B2B 3 + B 3B 1) + BIB2B 3 (57) 

= O. 

:j: One of the reflection coefficients in Spp can be made in magnitude larger than 
unity by arbitrarily choosing J.L. Also Saa -does not satisfy the criterion given in Ref. 
14 for the absolute AM stability of th-e system. 
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By Routh-Hurwitz criterion, it is necessary and sufficient that 

5B1(B1B2 + 3B3B 1) + 3BaCB2B3 + 3B3B 1) + 2BIB2Ba > 0 (58) 

so that no zero of Fa (A) lies in the closed right-half plane. 
Similarly, for Pl\1 stability of the tripIer, it is necessary and suf

ficient that 

2 B3 + B 1 + 3 Ba + {B 1 + Ba _ 2} > O. 
Bl B2 B2 B3 Bl 

(59) 

Since (BdB3) + (B3IB 1) - 2 ~ 0 for all positive values of Bl and 
B 3 , it follows that a tripler is both AIVI and PM stable when single
tuned series circuits are used for its terminations. There are no band
width restrictions imposed by the condition of stability. 

This does not mean that a tripler can be connected with another 
circuit (for example a stable doubler) without affecting the total sta
bility of the system. We can indeed show that a 1-2-4-6 multiplier 
which is equivalent to a cascade of a doubler and a tripler imposes 
certain bandwidth restrictions on its external circuits so as to be as
sured of its stability. 

VII. BIAS CIRCUIT AND ITS INFLUENCE ON THE STABILITY OF 

HARMONIC GENERATORS 

It was assumed all along that the bias circuit in lossless abrupt
junction varactor multipliers is designed properly so that there are no 
currents flowing at sideband frequencies ±w. We shall now assume that 
the varactor harmonic generator has a finite impedance at frequencies 
±w so that there are currents flowing at those sideband frequencies. 
It will be our purpose in this section to investigate how this assumption 
affects the stability of the multiplier. The study of the influence of the 
bias circuit on the output signal-to-noise ratio of harmonic generators 
and other related results are reserved for a future publication in which 
we shall discuss noise performance of harmonic generators. 

We shall also restrict ourselves in this section to the consideration 
of lossless abrupt-junction varactor harmonic generators which satisfy 
the following condition. If we choose the time origin so that carrier 
current II is real and positive, all carrier currents Ik's, 2 ~ k ~ n, of the 
nth order harmonic generator are all real. We shall also assume that 
the multiplier is tuned at all carrier frequencies so that carrier voltages 
are in phase or out of phase with the respective carrier currents. 

There are a large number of multipliers which by design satisfy 
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these conditions."18 We known that the llluitipliers of order 2n3s dis
cussed in this paper come under this category. We. can also show7 that 
the 1-2-4-5 quintupler can be designed to satisfy this condition, 

Tuning circuits t for the multiplier are considered part of the termina
tions as shown in Fig. 13. We shall also assume that all idler terminations 
are lossless. The small-signal voltages V ak and V tlk at sideband fre
quencies ±kwo + w can be written as 

V "" Sk-l I "" Sk+m I Sk I 
ak = L.J -:---(l +-) al + L.J '( +) tlm + --;- aO J Wo W J - mwo W JW 

(60) 

"" S-k+l I + "" S-k-m I S-k I (61) 
L.J '( l + ) tll L.J '( +) '" m + -.- ,,() J - Wo W J mWO W JW 

Wo 

xn 
MULTIPLIER 

(62) 

Fig. 13 - Lossless abrupt-junction varactor harmonic generator of order n. 

With the assumption that w/wo « 1, and using amplitude-phase 
representation, we can ·write (60) through (62) as§ 

Yak = (6~j) 

(64) 

t Average elastanee Su of the "arador diode is induded in these terminations. 
§ Note that Sk'S are all pure imaginary IJPc1tuse of our assumptions about h's. 
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and 

(65) 

Let m; now a~l:illllle that all idh'l' and i>ia~ terminations arc such 
that~ 

VaO = -ZoIao 

2~k~n-l 

and 

V pk = -Zpk1pk , 2 ~ k ~ n - 1. 

From (63) through (68), we can write 

l
l::::: ::::: ~ ~ 1 

Z1Jlal Zplan Zp!pl Zplpn • 

Z1mal Zpnan Zpnpl ZpnpnJ 

(66) 

(67) 

(68) 

(69) 

The scattering parameters of a lossless abrupt-junction varactor 
harmonic generator hence can be described by 

(70) 

It follows from (62) through (68) that Saa and Spp in (69) are the same 
as those that can be obtained by assuming Zo = co. For example, the 
scattering matrix of a doubler with finite bias source impedance Zo is 
given by 6 

1 1 1 

2 -2 1 
Q 1 

1 0 
1 

S 
1 (71) = ______ 1 ______ 

1 

0 -1 
Spa 

1 

1 

1 
2 1 1 

The characteristic equation of a harmonic generator with finite bias 
source impedance Zo can, according to (10), be represented as 

F(>..) = L\{14 - Se} = 0, (10) 

IT See Section IV. 
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where e is defined in Section III. From (10), (24), (25), and (70), we 
can write 

(72) 

(73) 

Equations (70) and (72) show that stability of a harmonic generator 
is not affected by the finite bias source impedance present in the multi
plier even though it increases the output fluctuations of a harmonic 
generator.6 If a harmonic generator is stable for certain generator and 
load impedances for Zo = 00, it is also stable when Zo is finite. This is 
one of the important results of this paper. 

The conclusions arrived at in this section are applicable to harmonic 
generators of order 2n38 discussed earlier in this section. 

VIII. REMARKS AND CONCLUSIONS 

A general method has been presented in this paper to investigate 
the stability of pumped nonlinear systems, and to obtain the condi
tions imposed thereby on the available circuit configurations. The type 
of instability investigated is that which causes spurious tones to ap
pear at any point in the system in the vicinity of a carrier. 

It has been shown that the roots of a certain characteristic equation 

F(}") = .1{1 4 - Bel = 0 (10) 

should lie in the open left-half plane for the system to be stable. 
For lossless abrupt-junction varactor multipliers of order 2n38 in 

which a certain set of interstage networks are used it has been shown 
that there is no AM-to-PM and PM-to-AM conversion and the char
acteristic equation can be expressed as 

(25) 

(26) 

and that we can treat separately AM and PM stabilities of the system. 
A multiplier of order 2n has been shown to be AM stable for all 

passive terminations. However, it is not absolutely stable. with respect 
to PM fluctuations. 

The conditional stability of a 1-2 doubler, 1-2-4 quadrupler, and 
1-2-4-8 octupler is investigated next. All these multipliers are shown 
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to be P]\;I stable if single-tuned series circuits are used as their termi
nations, and banchvidths B/s of these terminations satisfy certain con
ditions. 

The Pl\1 characteristic equation of a doubler is given by 

Fp(A) = 2A2 + B2A + BJB2 = O. (39) 

It is PM stable for any finite Bl and B2 • 

A quadrupler has the following PM characteristic equation: 

Fp(A) = 4A3 + 2A2(B4 - B2) + A(2BJB2 + B2B4) + B1B2B4 = O. (44) 

The quadrupler is P]\;I stable if 

l' > 1.629, (47) 

where 

B4 B2 
-=-=')' 
B2 Bl . (46) 

An octupler has also been shown to be PM stable if 

x > 1.992, (53) 

where 

(52) 

The scattering relations for a tripler when its idler termination is 
a passive impedance Z2 are obtained. It has been shown that a tripler 
is not absolutely stable both with respect to its AM and PM fluctuations. 
However, it is stable when the interstage networks used in the tripler 
are single-tuned series circuits. The condition of stability does not 
impose any bandwidth restrictions. 

Finally, it has been shown that the scattering matrix S of a lossless 
abrupt-junction varactor harmonic generator with a finite bias source 
impedance Zo can be expressed as 

(70) 

where Saa and Spp are the same as those obtained by assuming Zo = 00. 

It is then shown that stability characterization of a lossless varactor 
harmonic generator is not affected by finite bias source impedance. 

The noise analysis of harmonic generators and other related results 
will be discussed in a future publication. 
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Sonle Properties of a Classic 
Nunlerical Integration Formllla 

By I. \V. SANDBERG 

(Manu::;cript received May 19, 1967) 

The numerical integration fonnula 

p P 

YII+1 = L a"Yn-k + h L b"y:'-k , n~p 
k=O k=-1 

(1) 

can be used to obtain a nwnerical solution of the system of nonlinear 
differential equations 

x + f(x, t) = 0, t ~ 0 [x(O) = xoJ. (2) 

In 1nany instances, it is known beforehand that the solution of (2) possesses 
a particular property such as boundedness or asymptotic periodicity with 
a given period, and it is then of interest to analytically detennine the range 
of values of the step size h such that the sequence {Yn} defined by (1) exhibits 
(at least) that property. In this paper, we consider problems of this type 
[but do not actually use assumptions concerning the character of the solution 
of (2)], and we study also the overall effect of solving instead of (1) the 
equation 

~ --n+l - .t a"Zn-k + h .t b"z:'_k + Rn , 
k=O k=-l 

n~p 

which takes into account the effect of local roundoff errors and errors in 
the starting values. We consider explicitly only the case in which x(t) is 
scalar valued. 

1. INTRODUCTION 

In this paper, we present some theorems concerning properties of 
the classic numerical integration formula 1 

p p 

Yn+1 = L akYn-k + h L bky:'-k , n~p (1) 
k=O k=-l 

2061 
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a formula which can be used to obtain a numerical solution of the set 
of first-order nonlinear differential equations 

j; + f(x, t) = 0, t ~ ° [x(O) = xol. (2) 

In (1) the Yn are approximations to the Xn ~ x(nh), where h, a positive 
number, is the step-size parameter; Yo , YI , ... , yp are starting vectors, 
the last p of which are obtained by an independent method; and 

y~ ~ -f(Yn ,nh). 

Specializations of (1) include, for example, Euler's method: 

Yn+1 = Yn + hy~ , 

and the more useful formula 

(3) 

(4) 

In many instances it is known beforehand that the solution of (2) 
possesses a particular property such as boundedness or asymptotic 
periodicity with a given period, and it is then of interest to analytically 
determine the range (or ranges) of step sizes that will lead to a se
quence {Yn} which exhibits (at least) that property. This is one type of 
problem that we consider. For related material concerned with the 
overall effect of local truncation errors, see Ref. 2. Our results dealing 
with questions of asymptotic periodicity of the Yn are restricted to 
cases in which the basic period is a multiple of the step size. h. How
ever, it is often reasonable to choose h in this way to reduce program
ming complexity. 

In addition to the fact that the solution of (1) differs from the sam
ples of the solution of (2) due to tn.mcation effects/,3 the problem of 
solving (2) is further complicated by the fact that the numbers ob
tained from the computer differ from the Yn of (1) as a result of round
off errors. The local roundoff error Rn introduced in calculating Yn+l 
can be taken into account! by replacing (1) by 

p p 

Yn+l = 2: akYn-k + h 2: bkY~-k + Rn , n ~ p. (5) 
k=O k=-I 

If b_ 1 ~ 0, the error in solving (1) for Yn+1 , caused typically by trunca
ting an iteration procedurel

,3 after a finite number of steps, can be 
accounted for by redefining Rn. The second type of problem that we 
treat is to bound (from below as well as from above) a measure of the 
overall error in solving (5) instead of (1). The problem of estimating 
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the Rn before the calculations are performed is by no means trivial, and 
is not considered here. On the other hand, since there exist methods for 
bounding Rn given Yk for (n - p) ~ k ~ n (see, for example, Wilkinson\ 
for bounds on the effect of roundoff in forming sums, products, etc.), 
our results suggest the feasibility of 'programming the computer to 
evaluate overall error bounds as the calculation of the successive 
Yn+ I proceeds. 

vVe shall explicitly consider only the case in which x(t) and the Yn 
are scalars. vVithout much difficulty, each of the theorems can be ex
tended to cover the vector case. In this extension, requirements on, for 
example, the derivative al (x, t) lax are replaced by conditions on the 
Jacobian matrix of I(x, t) (see Ref. 2). 

For reasons that will become clear to the reader, our theorems are 
quite naturally characterized as "frequency-domain" results. Some of 
these theorems are close relatives of earlier results concerned with the 
input-output stability of nonlinear feedback systems* (see Ref. 5 
and the difference-equation theorems stated without proof of Ref. 6). 
To the writer's knowledge, the only even remotely related material 
concerning (1) in the numerical-analysis literature, with the exception 
of Ref. 2, is Hamming's transfer-function approach.3 

II. RESULTSt 

We begin by introducing some definitions and assumptions. vVe as
sume throughout this section that Yn and I(Yn, nh) are real-valued 
scalars. 

Let a and (3 be two real constants, let a-I 4:. 0, and let 

F(z) 4:. 1 - t [ak - !(a + (3)hbdz-(k+I) (6) 
k=-l 

for all complex z ~ o. 
Assumption 1: It is assumed throughout that 1 + !(a + (3)hb_ 1 ~ 0, 
and that F(z) ~ 0 for all I z I ~ l. 
This assumption implies that the sequence of approximations defined 
by (1) is bounded and approaches zero as n ~ 00 for all sets of starting 
values when I(x, t) = !(a + (3)x. 

* The usual frequency-domain nonlinear system stability results such as 
Popov's criterion7 are not directly related because they do not deal with systems 
subjected to external inputs. 

t The proofs of the theorems stated here are given in Section III. 
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Definitions 

t bk exp [-i(lc + l)w] 
(i) P ~ ~(/1 - a)h max k~-l 

(ii) * l, ~ {{ s" I I t, I s" I' < oo} 
Zoo ~ {{ Sn} I sup I Sn I < oo} 

n~O 

(iii)* Let K be a positive integer, and let 

X ~ {{Sn} I Sn = Sn+K+l forn = 0, ±1, ±2, ... } 

(iv) 

~ b "[ i(lc + 1)27rq] 
k~J k exp K + 1 

Pi( ~ ~(/1 - a)h rr:t~X [( i27rq )] 
F exp [( + 1 

in which CR ~ to, 1,2, ... ,K}. 

2.1 Properties of (1) 

Theorem, 1: If 

Yn+l = t akYn-k - h t bd[Yn-k , (n - k)h] , 
k~O k=-l 

if p < 1, and if 

< feu, nh) - f(O, nh) 
a = ~ /1, u 

for all real u ~ 0, then 

(i) {teO, nh)} t Z2 implies that {Yn} t l2 
(ii) {teO, nh)} t Zoo implies that {Yn} t loo • 

Remarks: 

n~O 

The condition that p < 1 is satisfied if and only if the locus of 
p 

L ak exp (ikw) - exp (-iw) 
8(w) ~ k~O 

t bk exp (ikw) 
k=-l 

* We consider only real sequences. 

(7) 
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for 0 ~ W :$; 271" lies outside the "critical circle" C of radius !(/3 - a)h 
centered in the complex plane at [!CO'. + fJ)h, 0] (see Fig. 1). 

For Euler's formula (3), we have F(z) = 1 - [1 - !CO'. + fJ)h]z-\ so 
that F(z) ~ 0 for I z I ~ 1 if and only if 0 < !(a + fJ)h < 2. For this 
formula the locus of 8 is the circle shown in Fig. 2, since 8(w) = 1 -
e- i

"'. If ah > 0 and /3h < 2, then the critical disk (Fig. 2) is not in
tersected by the locus of 8, the condition that 0 < !(a + fJ)h < 2 is 
satisfied, and p < 1. Concerning the necessity of the condition p < 1, 
we note that if ah > 0, but /3h > 2, then for even the special case in 
which lex, t) = /3x, we have Yo, Yl , Y2, ..• unbounded (assuming 
merely that Yo ~ 0). 

For the formula (4): 

F(z) 1 + Ha + fJ)h - [1 - Ha + fJ)h]Z-l, and 

8(w) 1 - e-
i

.'" = 2i tan (~). 
HI + e-'''') 2 

We have 1 + 1(0'. + fJ)h ~ 0 and F(z) ~ 0 for I z I ~ 1 if and only 
if (a + fJ)h > o. The locus of 8 lies entirely on the imaginary axis of 
the complex plane, 

and obviously p < 1 if a > o. On the other hand, if a < 0, then for 
even the special case lex, t) = aX : Yo , YI, ••• is unbounded provided 
that Yo ~ o. 

The following theorem is concerned with conditions under which 

c 

ah {3h 

Fig. 1- Location of the critical circle C. 
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e 

Fig. 2 - The locus of ®(w) For Euler's method, and the critical circle C. 

asymptotically periodic f(O, nh) in (1) implies that {Yn} is asymptotically 
periodic with the same period as that of f(O, nh). 

Theorem 2: If 
p p 

Yn+l = L: akYn-k - h L: bkf[Yn-k , (n - k)h] , n~p 
k=O k=-l 

if p < 1, if [feu, nh) - f(O, nh)] = [feu, (n + K + l)h) - f(O, (n + 
K + l)h)] for all real u and n ~ 0, if 

a ~ af(~~ nh) ~ (3, 
n ~ ° 

for all real u, and if there exists a y~ t X such that [f(O, nh) -- y~] t l2 , then 
there exists a yt t X such that 

(i) (y - yt) t l2 
(ii) yt is independent of [f(O, nh) - y~]. 

Remarks: 

In many cases of interest [feu, nh) - f(O, nh)] is independent of n, 
and hence certainly satisfies the periodicity requirement. 

Theorem 3, below, provides a condition under which the sequence 
{Yn} of (1) cannot approach a "self sustained" limit cycle with period 
(K + 1). 

Theorem 3: If 
p p 

Yn+l = L: akYn-k - h L f[Yn-k , (n - k)h], n~p 
k=O k=-l 
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if [feu, nh) - f(O, nh] = [feu, (n + K + l)h) - f(O, (n + K + l)h)] for 
all real u and n ~ 0, 'if 

a ~ af(l~~ nh) ~ (3, n ~ 0 

for all real u, if f(O, nh) ~ ° as n ~ 00, and if there exists a Y* E X dif
ferent from the ze'(o element of X such that (Yn - Y~) ~ ° as n ~ 00, 

then PK ~ 1. 

Remark: 

For PK ~ 1, at least one of the complex numbers 

e(~) K+ 1 
q = 0, 1, 2, ... ,K 

must lie on or within the circle C of Fig. 1. 

2.2 Results Concerning the Effect of Rn and Errors in the Starting Values 

Theorem 4, below, is essentially the same as a result concerning the 
effect of local roundoff and truncation errors proved in Ref. 2. The proof 
of Theorem 4 given in Section III is considerably more direct than the 
corresponding argument of Ref. 2. 

Definition: 

(
IN )i 

(S)N 4: N + 1 ~ I Sn 12 

for all N ~ ° and every sequence {sn}. 

Theorem 4: If 
p p 

Yn+1 = L akYn-k - h L bd[Yn-k , (n - k)h), n~p 
k=O k=-1 

p p 

Zn+1 = L akZn-k - h L bkf[zn-k , (n - k)h] + Rn , n~p 
k=O k=-l 

if 

< af(u, nh) 
a = au ~ {3, n ~ ° 

for all real u, then for all N ~ 0: 

(i) (y - Z)N ~ (1 + p)-1 mm I F(e i
"') 1- 1 (1f;)N , 

0:;0 "':;02,.. 



2068 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1967 

and 

(i~) if p < 1, 

(y - Z)N ~ (1 - p)-1 max I F(eiw
) 1-1 (tf/)N 

O;:;w;:;2". 

in which 

tf/n = -Rn - 1 , n ~ (p + 1) 

p 

= (Yn - Zn) - L ak(Yn-k-1 - Zn-k-1) 
k=O 

p 

+ h L bk{f[Yn-k-1 , (n - k - l)h] - f[zn-k-t , (n - k - l)h]}, 
k--1 

n = 0,1,2, ... ,p 

with Yn = f(Yn, nh) = Zn = f(zn, nh) = 0 for n < o. 

Remarks: 

Ref. 2 considers two simple examples concerning the evaluation of 
the numbers 

Since 

p = H{3 - a)h{min 18(w) - Ha + (3)h I r 1
, 

w 

we see that p is the ratio of the radius of the circle C of Fig. 1 to the 
distance between c and e, where c is the center of C and e is apoint 
nearest c on the locus of 8 (w) . 

The following corollary provides asymptotic bounds on the differenee 
between the solutions of (1) and (5) when the solution {Yn} of (1) is, 
for example, asymptotically periodic. 

Corollary to Theorem 4: If 

Yn+l = t akYn-k - h t bkf[Yn-k , (n - k)h] , n~p 
k-O k=-l 

with 
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jor all real u and 11, ~ 0, ij there exists a sequence fJ such that (Yn - fjn) ~ ° 
as 11, ~ 00, and ij 

p p 

Zn+l = L akZn-k - h L bd[zn-k , (11, - k)h] + Rn , 11, ~ p. 
k=O k=-1 

Then 

(i) 

(z - fj)N ~ (1 + p)-1 mm I F(e iW
) 1-1 (1/I)N - I qN I 

O;:;w;:;27r 

with qN ~ ° as N ~ 00, 

and 

(ii) if p < 1, 

(z - fj)N ~ (1 _ p)-1 max I F(e iW
) 1-1 (1/I)N + I rN I 

with rN ~ ° as N ~ 00 

in which 

Remark: 

1/In = Rn- 1 , 

= 0, 

O;:;jw;:;2". 

11, ~ (p + 1) 

11, = 0,1,2, ... ,p. 

Note that the lower bound is valid under quite weak assumptions. 

III. PROOFS 

We first prove the following lemma which plays a role in the proofs 
of all of the theorems 

Lemma 1: If 
P 'P 

Yn+l = L akYn-k - h L bkf[Yn-k , (n - k)h] + Rn , n~p 
k=O k=-1 

then 
n n n 

Yn = L Wn-kg(Yk , !f,h) + L wn-kf(O, kh) + L Vn-k'Pk , n~O 
k-O k=O k=O 

in which {wn} and {vn} are the inverse z-transforms oj 
'P 

-h L b
k
z-(k+l) 

W(z) ~ ___ 'P __ ---.:k~.=_-_=_1 ------

1 - L [ak - !(a + ,B)hbk]z-(k+l) 
k--l 
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and 

respectively; 

and 

V(z) ~ ------------
1 - :t [ak - !(a + ,B)hbk]z-<Hl) 

k--l 

00 00 

I: I Wn I < 00, I: I Vn I < 00, 
n=O n~O 

g(Yk , kh) ~ f(Yk , kh) - f(O, kh) - !(a + ,B)Yk , 

l{Jn = Rn- 1 , n ~ (p + 1) 
p p 

= Yn - I: akYn-k-l + h I: bd[Yn-k-l , (n - k - l)h], 
k=O k=-l 

n = 0, 1, 2, ... ,p 

with Yn = f(Yn, nh) ~ ° for n < 0. 

Proof of Lemma 1,' 

From 

we have 
p 

Yn = I: akYn-k-l 
k=O 

p 

n~p 

- h I: bd[Yn-k-l , (n - k - l)h] + Rn- 1 , n ~ (p + 1) 
k=-l 

and, with the l{Jn as defined in the lemma, 
p p 

Yn = I: [ak - !(a + ,B)hbk]Yn-k-l - hI: bkon - k- 1 + l{Jn, n ~ ° 
k=-l k~-l 

where 

Ok = f(Yk , kh) - !(a + (3)Yk . 

Let M > 0. Then Yn = Yn for n = 0, 1, ... , M, in which 
p p 

Yn = I: [ak - !(a + (3)hbk]Yn-k-l - h I: bkt-k-l + ~n , n ~ 0, 
k=-l k--l 
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where 

8n = On for n ~ !VI 

= 0 for n > .1.11, 

~n = 'P1I for n ~ M 

=0 for n > lYI, 

and 

Yn = iCYn ,nh) = 0 for n < o. 
It is clear that {~n}, {~n}, and {Yn} are z-transformable. Let 

co co 

1/;(z) ~ L ~nz-n, L\(z) ~ L 8
11
z -n , 

n=O n=O 

and 
co 

Y(z) ~ L Ynz- n. 
n=O 

Then 

[1 - kt1 [ak - !(a + mhbk]Z-<k+l)] Y(z) 

p 

-h L bkz-<k+1) L\(z) + 1/;(z). 
k=-l 

Therefore, 

-h .t bkz-<k+l) 

Y(z) p k=-l L\(z) 

1 L [ak - !(a + ,B)hbk]z-<k+1) 
k=-l 

+ 
1 

1/;(z) 

.t [ak - !(a + ,B)hbk ]z-<k+l) 
k=-l 

and, with {wn } and {vn } the inverse z-transform of W(z) and V(z), 
respectively,* we have 

" " 
y" = L wll - k 8k + L Vll-k~k , n ~ 0 

k=O k=O 

* Recall that TV(z) and V(z) are defined in Lemma 1. 
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with (in view of Assumption 1) 

00 00 

L 1 Wn 1 < 00, and L 1 Vn 1 < 00. (8) 
n=O n=O 

Thus, 
n n 

Yn = L Wn-kOk + L Vn-kC{Jk (9) 
k=O k=O 

for n = 0, 1, 2, ... , M. Since M is arbitrary, (9) is satisfied for all 
n ~ O. Finally, with 

g(Yk , kh) ~ f(Yk , kh) - f(O, kh) - !(ex + (3)Yk, 

n n n 

Yn = L Wn-kg(Yk , kh) + L wn-kf(O, kh) + L Vn-kC{Jk , n ~ O. 
k=O k=O k~O 

We now prove a lemma which is used in the proofs of most of the 
theorems. We repeat the 

Definition: 

(
IN )' 

(S)N ~ N + 1 ~ 1 Sn 12 • 

for all N ~ 0 and every sequence {sn}. 

Lemma 2: If 
n 

Yn = L wn-ka(k)Yk + bn , n ~ 0 
k=O 

and if -!(f3 - ex) ~ a(k) ~ !(f3 - ex) for all k ~ 0, then 

(i) (Y)N ~ (1 + p)-l(b)N for N ~ 0, 

and 

(ii) if p < 1, then (Y)N ~ (1 - p)-l(b)N for N ~ O. 

Proof of Lemma 2: 

Let 

n 

qn ~ L wn-ka(k)Yk , n ~ O. 
k=O 

By Minkowski's inequality, 

( 10) 
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and 

(b)N ~ (Y)N + (q)N . 

Lemma 2 follows from (10), (11), and the inequality2 

3.1 Proof of Theorem 1,' 

By Lemma 1, we have 

(q)N ~ P(Y)N . 

n n n 

2073 

(11) 

Yn = L Wn-kg(Yk , kh) + L wn-d(O, kh) + L Vn-k'Pk , n ~ 0 
k-O k-O k-O 

with (because Rn = 0 for all n ~ p) 'Pn = 0 for::all n ~ (p + 1). 
Let 

n n 

bn = L wn-kf(O, kh) + L Vn-k'Pk , n ~ O. 
k=O k=O 

Since both {wn } and {vn } belong to l1 [i.e., since (8) i~ satisfied], b E l2 
if {f(0, kh)} E l2 and b E l~ if {f(O, kh)} E l~ . 

Suppose that b E l2 , and let 

a(k) = g(Yk , kh), for Yk ~ 0 
Yk 

= 0, for Y k = O. 

The function a(lc) satisfies the bounds of Lemma 2, and 
n 

Yn = L wn-ka(k)Yk + bn , n ~ 0 
k=O 

Therefore, by Lemma 2, 
y N ~ 

LlYn 12 ~ (1 - p)-2 L 1 bn 12 ~ (1 - p)-2 L 1 bn 12 
,,=0 n=O n-O 

for all N ~ 0, from which it is clear that Y E l2 . 

(12) 

If b E leo , then {Yn} satisfies (12) with b E leo • According to the first 
conclusion of the following lemma, this implies that Y E l~ . 

Lemma 3: If 
n 

Yn = L wn-ka(k)Yk + bn , n ~ 0 
k=O 

with b E leo , if p < 1, and if -!(/3 - ex) ~ a(k) ~ !(/3 - ex) for all k ~ 0, 
then 
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(~) Y t l</j 

(ii) there exists a constant C</j , which depends on only the ak , the bk , a, 

and (3 such that 

sup 1 Yn 1 ~ C</j sup 1 bn I· 
n~O n~O 

Proof of Lemma 3: 

The proof is essentially the same as that of the second part of Theorem 
2 of Ref. 2. The details are omitted.* 

3.2 Proof of Theorem 2 

Definitions: Let X denote the set of all real sequences {sn l such 
that Sn = Sn+K+l for all n = 0, ± 1, ±2, ... , and let <Jl ~ f 0, 1, 
2, "', K}. 

Lemma 4: Let g*(x, nh) be defined for all real x and all n = 0, ± 1, 
±2, ... , such that: g*(x, nh) = g*[x, (n + K + l)h] for all x and n, and 

-!((3 - a) ~ ag*~, nh) ~ !((3 - a) 
X 

for all x and n. If p t X and if PK < 1, then X contains exactly one element 
y* such that 

n 

y; = :L Wn-kg*(Yk, kh) + Pn 
k=-</j 

for n = 0, ±1, ±2, ... 

Proof of Lemma 4: 
With the norm 

II s II ~ (t, 1 Sn 12 y, 
the set X is a Banach space. The operator WG defined on X by 

n 

(WGs)n = :L Wn-kg*(Sk' kh), S t X 
k=-</j 

maps X into itself. By the contraction-mapping fixed-point theorem, 
it suffices to show that WG is a contraction when PK < 1. It is clear that 

II WGsa - WGs b II ~ II W II· II GSa - GSb II 
~ H(3 - a) II TV i I· II Sa - Sb II 

for all Sa t X and all Sb t X. 

* See also Ref. 6. 
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If s t X, then 

~ A ( i27rlk) 6 Sl exp l{ + 1 for k = 0, ±1, ±2, ... 

in which 

and 

K K 

L I Sn 12 = (l{ + 1) L I Sn 12. 
n=O n=O 

Thus, if 

n 

Un = L Wn-kSk for n = 0, ±1, ±2, ... 
k=-r:J:J 

with S t X, we find that 

n K A ( i27r I k ) 
Un = k~r:J:J Wn-k 8 Sl exp l{ + 1 

K A r:J:J ( i27r lk ) 8 Sl k~r:J:J Wn-k exp l{ + 1 (Wn = 0, n < 0) 

~ A ( i27rln) ~ (i27rln ) f:'o Sl exp l{ + 1 ~ Wn exp - l{ + 1 

~ [ (i27rl )J' ( i27rln) 6 W exp K + 1 81 exp l{ + 1 . 

Therefore, since 

I! u II I! W s I! ~ rr;,~x I w[ cxp (I~2~q J ] II! s I!, 
we have 

I! W I! ~ rr;,~x I W[ cxp (1~2~q JJ I 
and II WGsa - WGsb II ~ PK II Sa - Sb II for all Sa t X and all Sb t X. 
This completes the proof of Lemma 4. 

By Lemma 1, 

n n n 

Yn = L Wn-kg(Yk , kh) + L Wn-k!(O, kh) + L Vn-k'Pk , n ~ ° 
k=O k=O k=O 
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with 'Pk = ° for k ~ (p + 1). Here, since both {1On } and {v,,} belong to 
1) , we have 

n n 

L wn-kf(O, kh) + L Vn-k'Pk = pn + Cn , n~O 
k=O k=O 

with P I: X and C I: 12 • In fact, with Y~ as defined in Theorem 2, 
n 

pn = L Wn-kY~k' 
k=-<IJ 

n = 0, ±1, ±2, .... 

Let g*(x, nh) be defined by the conditions: g*(x, nh) = g*[x, (n + 
K + l)h] for all x and n = 0, ±1, ±2, ... , and g*(x, nh) = g(x, nh) 
for all x and n = 0, 1, ... , K. Then, since PK ~ P < 1, by Lemma 
4 there exists a yt I: X such that 

n 

Yb~ = L Wn-kg*(Ybt, kh) + Pn 
k=-<IJ 

for n ~ 0. Therefore, 
n 

Yn - Vb*,. = L w,,-dg*(Yk , Irh) - O*(Ybt , kh)] + dn , n~O 
k=O 

in which 
-1 

dn = en - L Wn-kO*(Ybt, kh), n ~ 0. 
k=-oo 

But 

I ,t~ W"-'U*(Yb~ • kh) I ;;; S:~~ I U*(y::, • nh) I .t~ I W,,-k I 

and, using the fact that there exist constants rJ > ° and ~ > ° such that 
l10n I ~ rJ exp (-~n) for n ~ 0, 

-1 <IJ <IJ 

L I Wn-k I L I Wm I ~ rJ exp [- ~(n + 1)] L exp ( - ~m) . 
k=-oo m=(n+l) 

Vve see that 
-1 

L Wn-kO*(Ybt , kh) I: l2 , 
k=-oo 

and consequently d r 12 • 
Let 

a(k) = g*(Yk , kh) - g**(?/I,t , kh) 
Yk - Ybk 

=0 

rn=O 
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Then -Hf3 - a) ~ a(/e) ~ Hf3 - a), and 
n 

Yn - Yb~ = L wn-ka(/e)(Yk - Yi,1) + dn , n ~ O. 
k~O 

By Lemma 2, we have (y - yt) t l2 , and since it is clear that yt depends 
on y*a , but not on [f(O, nh) - y*a], this completes the proof of Theorem 2. 

3.3 Proof of Theorem 3 

We need the following lemma. 

Lemma 5: If Yn = y~ + YJn with y* t X and YJn ---7 0 as n ---7 00, if 
{I(x, /eh) = g[x, (/e + K + l)h] for all /e ~ 0 and all x, if there exists a 
positive constant c such that I g(u1 , /eh) - g(u2 , /eh) I ~ c I U 1 - U 2 I for 
all real U 1 and U 2 and all /e ~ 0, and if 

n 

Yn = L Wn-kg(Yk , kh) + pn + 0" , n~O 
k=O 

with p E X and 0" ---7 0 as n ---7 00, then 
n 

y~ = L Wn-kg*(yt , kh) + Pn 
k=-~ 

for all n 
ditions: 

0, ± 1, ±2, ... , in which g*(x, kh) is defined by the con-

g*(x, kh) = g*[x, (/e + K + l)h] 

for all k and all x, and 

g*(x, kh) = g(x, kh) 

for all x and /e = 0, 1, 2, ... , K. 

Proof of Lel1t1na 5: 

For n ~ 0: 
n 

y~ + YJn = L Wn-kg[yt + YJk , kh] + Pn + On 
10=0 

t Wn-kg(yt , kh) + t W,,-k[g(yt + YJk , kh) - g(yt , kh) ] 
10=0 k=O 

n n 

L W,,-kg*(yt, kh) + L w,,-,jg(yt + YJk , kh) - g(yt , kh)] 
k=-~ 10=0 

-1 

- L Wn-kg*(yt , /eh) + Pn + On . 
k=-~ 
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Therefore, 
n 

Y~ - L Wn-kg*(yt , 'ch) - Pn = -1]n 
k=-~ 

n 

+ L Wn-k[g(yt + 1]k , kh) - g(yt , kh)] 
k=O 
-1 

- L Wn-kg*(yt , kh) + On , n ~ O. 
k=-~ 

Since {Wn } E II , both sums on the right-side approach zero as n --* 00. 

Thus, the left side also approaches zero as n --* 00. But the values of 
the left side are periodic. Therefore, 

n 

y~ - L Wn-kg*(yt , kh) - Pn = 0 (13) 
k=-~ 

for all n ~ 0, and since y* E X and p E X, (13) holds for all n. This proves 
Lemma 5. 

By Lemma 1, 
n n n 

Yn = L Wn-kg(Yk , kh) + L wn-d(O, kh) + L Vn-k'P/c , n ~ 0 
/c=0 /c=0 /c=0 

in which g(Yh , kh) is defined in Lemma 1, and 'Ph = 0 for k ~ (p + 1). 
Since {wn } and {vn } E II , and f(O, kh) --* 0 as k --* 00, we have 

n n 

L wn-d(O, kh) + L Vn-k'Pk --* 0 as n --* ex:. 
k=O k=O 

By Lemma 5 and the hypotheses of Theorem 3, 

n 

y~ = L Wn-kg*(yt , kh) 
k=-oo 

for n = 0, ±1, ±2, ... , with y* E X. If PK were less than unity, it 
would follow from Lemma 4 (in particular the uniqueness property 
of y* of Lemma 4) that y~ = 0 for all n, since g*(O, kh) = 0 for all 
k ~ O. Therefore, PK ~ 1, which completes the proof of Theorem 3. 

3.4 Proof of Theorem 4: 
According to Lemma 1, 

n n 

Yn - Zn = L Wn-k[g(Yk , kh) - g(Zk , kh)] + L vn-dl/c , n ~ o. 
k=O k=O 

Therefore, with 
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n 

bn = L vn-kif;k , 
k=O 

n~O 

we have, by Lemma 2, 

and if p < 1, 

(b)N ~ max I F(/W) 1-1 (if;)N , 
O~w~21l" 

it remains only to prove the following lemma. t 
Lemma 6: If 

then 

Proof: 

n 

dn = L Vn-kCk , 
k=O 

n ~ 0 

(d)N ~ mm I F(e iW
) 1-1 (C)N . 

O~w~21l" 

2079 

Let {ek} be the inverse z-transform of V- 1(z). Clearly, red £ l1 . We 
have 

n n m 

L en-m dm = L e n- m L Vm-kCk = en for n ~ O. 
m=O m=O k=O 

and, since F(z) V- 1(z), 

(d)N ~ (max I F(e iW
) 1)-\c)N 

O~w~21l" 

~ min I F(e iW
) 1-1 (e)N 

O~w ~21l" 

which proves Lemma 6, and completes the proof of Theorem 4. 

3.5 Proof of the Corollary to Theorem 4-

l\1inkowski's inequality. 

t Lemma 6 is proved in Ref. 2. The proof given here is simpler 
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A Normal Linlit Theorem for Power Sunls 
of Independent Random Variables 

By N. A. MARLOW 

(Manuscript received June 8, 1967) 

Suppose that 

Pn = 10 loglo [lOXdlO + ... + 10Xn/IO], 

where {Xn} is a sequence of independent random variables. The main 
result of this paper shows that under very general conditions on the sequence 
{Xn }, the power sums P n will be asymptotically normally distributed. 
This result supports a commonly used normal approximation, and shows 
why many physical quantities obtained by power addition of random van:ables 
tend to be normally distributed in dB. 

I. INTRODUCTION 

In many areas of transmission engineering, logarithms of sums of 
powers are considered in the form 

P n = 10 loglo [lOXdIO + ... + 10Xn/IO], 

where Xl, ... , Xn are random variables. Specifically, if Xl, ... , Xn 
are power levels in dB such that 

j = 1,2, ... ,n, 
where Wo , WI , ••• , Wn are powers (e.g., expressed in watts), then the 
power level in dB of the sum w == WI + ... + Wn is given by the so
called "power sum," 

P n = 10 lOglO (w/wo) = 10 lOglO [lOXdlO + ... + 10Xn/lO]. 

Quite often Xl, ... ,Xn are taken to be mutually independent random 
variables with specified distributions, and it is of interest to determine 
properties of their power sum P n. 

A major difficulty encountered in working with power sums is that 
the distribution and moments of such a sum usually cannot be ex-

2081 
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pressed in simple closed form. This includes, for example, the im
portant case when Xl, ... ,Xn are mutually independent and each has 
a truncated normal distribution. Even in the simpler case when Xl, 
... , Xn are mutually independent, identically distributed, and Xl is 
normal, the problem is intractable. The difficulty and importance of 
the general problem, in turn, has led to a number of methods for ap
proximating the distribution of a power sum.1 , 2, 3, 4, 5,6,7,8,9 

In the present paper, the asymptotic distribution of a power sum 
is studied. The main result is a limit theorem which shows that under 
very general conditions on the components Xl, X 2 , ••• ,the correspond
ing power sums P n will be asymptotically normal as n ~ CIJ. The par
ticular form of the result is as follows: Given a sequence {Xn} of 
mutually independent random variables satisfying certain conditions, 
there exist sequences of constants {cn } and {dn } such that 

!~~ P{ [CPn - cn)/dn] ~ x} = [1/ yI2;] iZ~ exp [- e /2] dt. (1) 

The conditions for (1) to hold are the central concern of this paper, 
but the implications of the results are equally important. In particular, 
one of the oldest and most useful approximations to the distribution 
of a power sum is a normal approximation. This approximation was 
first used at Bell Telephone Laboratories in 1934 by R. 1. Wilkinson/ 
and is based on the fact that many observed pmver sum distributions 
are "nearly normal." This includes pmver sum distributions obtained 
by numerical convolution, and empirical distributions of physical 
quantities such as noise levels on trunks and connections where the 
resultant noise (on a dB scale) can be viewed as an approximate power 
sum.10,11 The limit theorem proved in this paper thus provides mathe
matical support for a normal approximation, and substantially explains 
why many physical quantities obtained by power addition of random 
variables tend to be normally distributed in dB. 

II. A NORMAL LIMIT THEOREM FOR POWER SUMS 

2.1 Discussion 

Before stating the main results, it is instructive to show informally 
why one would expect power sums to be asymptotically normal. To 
take a simple case, suppose that {Xn} is a sequence of mutually inde
pendent, identically distributed random variables such that 

7 2 == Var [10Xt/lO] 



NORMAL LIMIT THEORE~:I 2083 

is finite. Let () = EIOx ,/ lO and put 

Sn = IOX,/IO + .,. + 10X"/IO. 

Then by the law of large numbers, one expects that for large n, 

Next, note that if x ~ 1, then loge x ~ x-I so for large n 

lVIultiplication by (() V~ )/T then gives 

(}V~ Sn Sn - n() 
-;.-loge n(} ~ Tvn (2) 

But, by the central limit theorem, the right-hand side of (2) is asymp
totically normal with mean 0 and variance 1. Thus, it is strongly sug
gested that 

lim p{(} V~ [loge Sn - loge (n(})J ~ X} 
n--+oo r 

= [1/ V27rJ 1_'"00 exp [ - t2 /2J dt. 

This, and more, is indeed true as will be shown. 

2.2 The Main Result 
The normal limit theorem for power sums is a consequence of the 

following result which will first be proved: 

Lemma 1: Let {Sn} be a sequence of positive random variables. Sup
pose there exist sequences of positive real numbers {an} and {bn}, and 
a distribution F such that 

(i) At each point of continuity of F, 

lim p{Sn -; an ~ x} = F(x) 
n--+OO n 

(ii) lim (bn/an ) = O. 
n-+oo 

Then at each point of continuity of F, 
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Proof: Let x be a continuity point of F, and let € > 0 be given. Because 
F has at most a countable number of discontinuities, there is as> 0 
such that F is continuous at x + Sand 

F(x + 0) - F(x) < E. (3) 

Next, define 

Then 

I P{ Vn ~ x} - F(x) I 
~ IP{Vn ~ x} - P{Un ~ x} 1+ IP{Un ~ xl - F(x) I. 

By assumption (i) therefore, 

lim I P{Vn ~ xl - F(x) I ~ lim I P{Vn ~ xl - P{Un ~ xl I· 

Let 

An(X) = I P{Vn ~ xl - P{Un ~ x} I· 
To complete the proof it suffices to show that 

lim An(X) = O. 
n->co 

To prove this note first from the inequality loge x ~ x-I, x > 0, that 
Vn ~ Un for all n. Thus, 

An(X) = P[{ Vn ~ x} n {Un> xl] 
= P {x < Un ~ (an/bn)[exp (bnx/an) - I]}. 

Using the inequality eY 
- 1 ~ yeY

, - 00 < y < 00, it follows that 

o ~ An(x) ~ P{x < Un ~ x exp (bnx/an)}. 

By assumption, (bn/ an) > 0 for all nand limn-+co (bnl an) 
there exists a natural number N such that n ~ N implies 

x < x exp (bnx/an) ~ x + o. 
So if n ~ N, 

o ~ An(X) ~ P {x < Un ~ X + o}. 

O. Thus, 

Because x and x + S are continuity points of F, it follows by assump
tion (i) and inequality (3) that 
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o ~ lim ~n(X) ~ F(x + 0) - F(x) < E. 
n--+OO 

Since € > 0 was arbitrary, the proof is complete. 
The importance of Lemma 1 is that it gives a sufficient condition to 

go from limit theorems for sums of random variables to limit theorems 
for logarithms of sums. In the important case of power sums of in
dependent random variables, general conditions for asymptotic nor
mality can thus be obtained from classical central limit theory as 
shown in the next result. 

Theorem 1: Let {Xn} be a sequence of mutually independent random 
variables and suppose that 

T~ == Var [IOXj/l0] 

is finite for every j. Let ()j = EIOx j/l0 and put 

n n 

i11n = L ()j , 
2 ~ 2 

Sn = L...J Tj • 

;=1 ;=1 

Denote the distribution of IOXj/l0 by Hj(x), and let 

Pn = 10 10g10 [IOX
tI1O + ... + IoX n/l0]. 

If the following conditions are satisfied: 

(i) The Lindeberg Condition: For every € > 0, 

tohere 

(ii) 

A jn = {x: I x - () j I ~ esn } 

lim (snl 111 n) = 0 
n->OO 

it toill follow that 

wheTe A = (loge10) /10 and 

cp(x) = [II y'2;J [Xoo exp [- e 12J dt. 

Proof: Let 
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Then condition (i) implies that 

lim p{Sn - 1I1n ~ xL. = <fJ(x) 
n .... oo Sn r 

(cf. Feller,12 p. 256). With the identifications an = l11n and bn = Sn it 
follows from condition (ii) and Lemma 1 that 

n-->oo 

The assertion of the theorem then follows by changing to logarithms 
with base 10. 

An interesting thing to note is that if the conditions of Theorem 1 
are satisfied then the sum of powers 

Sn = 10X1 /lO + ... + 10Xn/lO 

and the power sum in dB, Pn = 10 10gloSn, will both be asymptotically 
normal. Thus, not only will normality be observed on a "power scale" 
but on a "dB scale" as well. 

2.3 Identically Distributed Components 

The preceding result implies the asymptotic normality of P n when 
the components are identically distributed. To show this, suppose that 
{Xn} is a sequence of mutually independent, identically distributed 
random variables with H(x) = P{10XdlO ~ x}. Let 

7 2 = Val' [lOXdlO] 

and 0 = EIOx d lO. If 7
2 is finite, condition (ii) of Theorem 1 is clearly 

satisfied since 

Condition (i) is also satisfied because if E > 0, 

;~ ~ iin (x - Oi)2 dHi(x) = 12 in (x - 0)2 dH(x) ~ 0 as n ~ 00, 

where An = {x: I x - 0 I ~ E7 V~ }. It thus follows that 

lim p{'A oVn [Pn - 10 loglo (nO)] ~ x} = _ ~- IX exp [-ej2] dt, 
n-->oo 7 ·V 27r - 00 

hence, Pn is asymptotically normal with mean 10 10glo(nO) and vari
ance r2j(n>..202). 
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2.4 Bounded Components 

Suppose next that {Xl!} is a sequence of mutually independent ran
dom variables and that the following conditions are satisfied: 

(i) There exist constants band B such that 

o < b ~ 10Xj
/

10 ~ B for all j 

(ii) 2 ' 
Sn -7 00 as n -7 00. 

The conditions of Theorem 1 are easily shown to be satisfied in this 
case, and it follows that P n will be asymptotically normal. Note that 
condition (i) will be satisfied whenever lOx ;/10 represents power from 
a physical source. Condition (ii) , on the other hand, will be satisfied 
if T~ ~ C > 0 for some fixed c and an infinite number of indices j. 

III. THE NORMAL LIMIT THEOREM AND WILKINSON'S 

NORMAL APPROXIMATION 

One of the most useful approximations to the distribution and mo
ments of a power sum is based on a normal approximation as men
tioned in the introduction. The method consists of approximating the 
distribution of Pn by a normal distribution so that 

P{Pn ~ x} ~ P{a~ + {3 ~ x}, 

where ~ is normal with mean 0 and variance 1. 'V riting as before, 

]}[n = E10Pn
/

10 and s~ = Val' [lOPn/10], 

the parameters a and f3 are chosen so that 

and 

s~ = Var [10(ae+~)/10J 

which is equivalent to equating means and variances on a "power 
scale." If ~ is normal with mean 0 and variance 1 then 

and 

where 

A = (loge 10)/10. 
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Solving the above equations for a and (3, the approximation then as
serts that P n is normal with 

and 

(6) 

In light of the normal limit theorem, it is quite natural to assume 
that Pn is approximately normal, provided the conditions of the 
theorem are satisfied, and n is large. On the other hand, the estimates 
given by (5) and (6) are different from those based on (4): 

E(P n) == 10 loglo 111 n 

Var (Pn) == s!/(A]J1n)2. 

(7) 

(8) 

The difference, however, is easily resolved once it is realized that if 
condition (ii) of Theorem 1 is satisfied then (5) and (6) are asymptot
ically equivalent to (7) and (8). In fact, it is a simple matter to 
show (cf. Feller /2 p. 246 ) that if the conditions of Theorem 1 are 
satisfied then 

limP{[(Pn - Un)/V~] ~ x} = _ ~_lx cxp [-e/2] dt, (9) 
n-+oo 'V 271" -00 

where 

and 

Vn = ~O loglo [1 + (Sn/ 111 n)2]. 

In numerical applications, the normal approximation based on (9) 
is to be favored over that based on (4). In the first place, when 
Xl, ... ,Xn are mutually independent, identically distributed, and Xl 
has a truncated normal distribution, Monte Carlo studies by 1. NasellD 

have shown that the mean and variance estimates given by (5) and (6) 
are better than those given by (7) and (8) (although for large nand 
small variance of X I there is hardly any difference) . Secondly, the nor
malizing factors in (9) were obtained quite naturally by equating mo
ments on a power scale. This is analogous to the situation in classical 
central limit theory when the sequence (Sn-Mn)/sn converges in dis-
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tribution to the standard normal. The normalizing factors J.11 nand Sn 

are not the only ones that give this result, but they are chosen in a 
natural way to insure that for every n, the mean and variance of 
(8)>- .LvIn ) / Sn agrees with its asymptotic distribution. 

IV. ACKNOWLEDGMENTS 

I would like to thank D. A. Lewinski and 1. Nusell for their helpful 
comments and suggestions. 

REFERENCES 

1. Dixon, J. T., unpublished work, 1932. 
2. Wilkinson, R. 1., unpublished work, 1934. 
3. Holbrook, B. D. and Dixon, J. T., Load Rating Theory for Multichannel 

Amplifiers, B.S.T.J., 18, October, 1939, p. 624. 
4. Curtis, H. E., Probability Distribution of Noise Due to Fading on Multisec

tion FM Microwave Systems, IRE Trans. Commun. Syst., September, 1959, 
p. 161. 

5. Fenton, L. F., The Sum of Log-Normal Probability Distributions in Scatter 
Transmission Systems, IRE Trans. Commun. Syst., March 1960, p. 57. 

6. Roberts, J. H., Sums of Probability Distributions Expressed in Decibel Steps, 
Proc. lEE, 110, No.4, April, 1963, p. 692. 

7. Cyr, M. H. and Thuswaldner, A., Multichannel Load Calculation Using the 
Monte Carlo Method, IEEE Trans. Commun. Tech., COM-ll,., No.2, 
April, 1966, p. 177. 

8. Derzai, M., Power Addition of Independent Random Variables Normally 
Distributed on a dB Scale, IEEE Int. Conv. Record, Part I, March, 1967, 
p.40. 

9. Nasell, I., Some Properties of Power Sums of Truncated Normal Random 
Variables, B.S.T.J., this issue, p. 2091. 

10. Nasell, I., The 1962 Survey of Noise and Loss on Toll Connections, B.S.T.J., 
l,.3, March, 1964, p. 697-718. 

11. Lewinski, D. A., A New Objective for Message Circuit Noise, B.S.T.J., 43, 
March, 1964, p. 719-740. 

12. Feller, W., An Introduction to Probability Theory and Its Applications, Vol. 
II, John Wiley and Sons, Incorporated, New York, 1966. 





Some Properties of Power Sums of 
Trullcated N ornlal Randonl Variables 

By INGEMAR NASELL 

(Manuscript received June 15, 1967) 

The power swn of P n n c01nponents Xl , X 2 , ••• , Xn is defined by 
the relation 

The distributions of such power sums are studied both analytically and by 
111 onte Carlo sim,ulation techniques tor the case where the components are 
independent, identically distributed, truncated normal random variables. 
Results are given in terms of distributions and moments of P n • The nwn
ber of components varies from 2 to 256, and the standard deviation of the 
component variables before truncation ranges from 1 to 10 dB. The de
pendence of the results on the choice of truncation point is also investigated. 

1. INTRODUCTION 

It is common practice in communications engineering to express 
signal and noise powers on a logarithmic scale. As is well known, such 
a scale serves both to narrow the numerical range between large and 
small powers and to simplify some computations by replacing multi
plication by addition. The decibel scale is most commonly used. Em
ploying this scale, the power level x of a power w. is defined by 

W 
x = 10 loglo - , 

Wo 
(1) 

where Wo is a reference power, and x is expressed in decibels (dB) over 
the reference power Woo Note from (1) that w/wo = 10x/ lo. 

In the situation where a number of uncorrelated signal sources feed 
into the same load, the power level Pn of a sum of powers WI, .•• , Wn is 
given by 

pn = 10 loglo [10x
,/IO + ... + lOXn/10

], 

2091 

(2) 



2092 THE BELL SYSTEM TECHNICAL JOURN AL, NOVE~1:BER 1967 

where Xi is the power level of Wi. Examples of such sums arise in cross
talk computations, overload theory for multichannel amplifiers, noise 
calculations on carrier systems and multihop radio systems, and in the 
evaluations of noise distributions on built-up connections between 
telephone subscribers. Here, however, the power levels are in many 
situations random rather than deterministic variables. Thus, in analogy 
with (2), one is faced with the random variable 

(3) 

where each Xi is a random variable with known distribution. The clas
sical power sum problem consists of finding the distribution function 
and the moments of the power sum Pn defined in (3). This problem 
does not, however, possess a simple closed-form mathematical solu
tion. As a result, the task of finding approximate solutions has re
ceived extensive attention, beginning at least 35 years ago and persist
ing till this date. 

Among earlier contributions to the problem, we can distinguish 
those that give specific methods for numerical evaluation of the power 
sum distribution without introducing any other approximations than 
those that are directly related to the numerical technique that is being 
used.1 , 3, 4, 5, 6 Another approach is based on approximating the power 
sum with a normally distributed random variable.2

,7 This approach, 
due to R. 1. \Vilkinson,2 is quite appealing, since it leads to simple 
evaluation formulas. Moreover, it has now been put on a firm mathe
matical foundation with the development of a limit theorem by N. A. 
~1arlow. In a companion paper,s he proves that power sums are asymp
totically normally distributed, provided some mild conditions on the 
component variables are satisfied. 

The present paper considers power sums of independent, identically 
distributed, truncated normal random variables, since this is a situa
tion of considerable practical importance in transmission engineering 
work. Two approaches are being used. In the first one, asymptotic ex
pressions are developed for the mean and variance of Pn • The second 
approach is based on Monte Carlo simulation.9 This method has a 
number of distinct advantages over other numerical methods in that 

(i) it can accept any number of component variables with arbitrarily 
specified distribution functions, 

(ii) independence among the component variables is not required, 
(iii) computation errors do not cumulate as more than two variables 

arc added, and 
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(iv) accuracy can be determined through the evaluation of con
fidence limits. 

Our main results are numerical estimates of moments of P n and 
selected graphs of its distribution function. A wide range of component 
distributions is covered with n ranging from 2 to 256. IVlost of the results 
are based on a nominal symmetric truncation of the component variables 
at ±3.5 standard deviations from the mean. In addition, the effect OIl 

P n of choosing other truncation points is discussed, and some general 
trends are developed. 

II. ANALYTICAL RESULTS 

Consider first the case where the Xi are independent, identically 
distributed random variables. Assume that the expectation 

e = E[10X 
d10] 

and the central mom en ts 

Tj = E[10XdlO 
- e]\ 

exist and are finite for a sufficiently large range of j. We require -1 ~ 
j ~ 8 to derive the results for the mean of P n, - 2 ~ j ~ 12 for the 
variance and wider ranges for higher-order moments. 

Rewrite the power sum P 7I of Xl , X 2 , ••• , X 7I , as 

Pn = 10 10glo 8 n , (4) 

where 

8n = 10X
,I10 + ... + 10Xn/

1'). 

Now expand (4) in a finite Taylor series about the mean, nO, of Sn. 
This gives 

P
7I 

= 1:. [IOCT (ne) + Sn - nO _ 1:. (Sn - ne)2 + ... 
A 0 nO 2 nO 

+ (_1)m+1 (871 -no)m + R",(Sn - no)] (5) 
171, nO nO' 

where 

A = 10 1 1 ~ 0.23026 
Og10 e 

and log stands for loge. The remainder term in (5) can be expressed in 
integral form as 
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Rm(X) = (_I)mxm+l i 1 

/:d~t ' X> -1, (6) 

or, alternatively, as 

(_I)m ( X )m+l 
Rm(x) = m + 1 1 + ox ' X> -1, (7) 

where 0 < 0 < 1. 
With Rm (x) given by (7), one obtains 

R (Sn - n()) =::;; 0 for m odd, 
m n() -

so that from (5) we get our first result 

(8) 

where 

1 
LAPn = 10 loglo (n() = };" log (n() (9) 

is the level of average power. 
To derive asymptotic expressions for the moments of P n, we apply 

the Lemma in Appendix A and (6) to get 

E[ (8":e no)" (Rm(S' :e no))'] = O(n-!(a+8(mH))) (10) 

Next, to derive an asymptotic expression for E (Pn ) , we take the ex
pected value of both sides of (5) with m = 3. An application of (10) 
then gives 

E(Pn) = LAPn - 2~~2 ~ + O(I/n
2

) as n -7 00. (11) 

Here the independence of the component variables has been used to 
express the variance of Sn as nT2, and the third central moment of Sn 
as nT3. The term containing T3 is of order I/n2. 

To arrive at an asymptotic expression for the variance (12 (P n), we 
use (5) with m = 2 and (11) to get 

P _ E(P) = ! Sn - n() _ L (Sn - n())2 
n n}.. n() 2}" n() 
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Squaring (12), taking the expected value of both sides, and applying 
(10) to four of the resulting terms gives 

(13) 

A similar approach can be used to derive asymptotic expressions for 
higher-order moments. The measures of skewness and excess, denoted 
by Yl (Pn ) and Y2 (Pn ), respectively, are defined by 

and 

(P) = E(Pn ----.!}Pnt _ 3 
1'2 n (J"4(P n) . 

They are found to satisfy the expressions 

'Yl(Pn) = [~i - 3;~J ~~ + O(l/n~) as n~ 00 (14) 

and 

'Y2(P n) = [2:~ - 12T3 + 20;-2. - 3J 1:. + O(1/n2) as n ~ 00. (15) 
~ e~ e n 

The asymptotic results given in (11), (13), (14), and (15) are all 
consistent with Marlow's normal limit theorem.s The main virtue of 
the asymptotic results above is that they indicate the rate of convergence 
of the four quantities considered. This is of practical interest since 
engineering applications often involve a finite and fairly small number 
of component variables. 

In the particular case where the Xi are truncated normal with mean 
o dB, standard deviation before truncation of (J" dB, and symmetric 
truncation at ±C(J" dB, the results contained in Appendix B can be 
used to express (11), (13), (14), and (15) in terms of (J", C, and n. For 
the mean and the variance we get, respectively, 

(16) 

and 

(17) 
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where the truncation factor Uc(a) is defined by 

with 

cI>(e - ACT) cI>( -e - ACT) 
-'--------'-----'-

ep(e) cI>( -e) 

and 

1 IX cI>(x) = _ /- exp ( - t2 /2) dt. 
v 27r -00 

Derivation of the Wilkinson estimates for the mean and variance of 
the power sum P n is given in Appendix B. This derivation uses the same 
ideas employed by R. 1. Wilkinson in 1934.2 Thus, P n is approximated 
by a normally distributed random variable P nw • As above, the com
ponents are independent, identically distributed truncated normal 
with mean 0 dB, standard deviation before truncation of CT dB, and 
truncation at ±eCT dB. From Appendix B we then have 

J1.(P
nw

) = LAP
n 

- 5 loglo [1 + exp (}..2 CT2~Uc(CT) - 1 ] (18) 

(19) 

The first terms in the asymptotic expansion of (18) and (19), re
spectively, agree exactly with the results in (16) and (17). This agree
ment establishes the important result that expressions (18) and (19) 
are asymptotically correct to the order of n included in (16) and (17). 
Finally, we note that the actual result due to vVilkinson is contained 
in (18) and (19); the case with nontruncated component variables is 
obtained by putting the truncation factor Uc(a) = 1. 

III. MONTE CARLO RESULTS FOR C = 3.5 

Having established analytical estimates for the mean and variance 
of power sums of truncated normal random variables, let us now turn 
to estimation using the l\l{onte Carlo technique. The power sum problem 
is basically solved by estimating the distribution function of P n • Using 
the Monte Carlo method, one obtains an estimate of this function by 
random sampling. Each sample of the power sum is obtained hy selecting 
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n independent samples, one from each of the component distributions on 
the dB scale. The corresponding sample value of the power sum is then 
directly computed from (2). For the results presented here, the com
ponent samples have been selected via computer generation of so-called 
pseudo-random numbers. These have approximately a uniform distribu
tion over the unit interval. Using the inverse error function together with 
nominal truncation at ±3.S<T gave a random variable with truncated 
normal distribution. Because of requirements of computing speed, this 
transformation has been achieved via a table look-up scheme with 
values of the transformation stored in the computer memory. 

Table I summarizes lVlonte Carlo results in terms of estimates of 
the mean p..(Pn ), the standard deviation u(Pn ), and the measures of 
skewness and excess Yl (P n) and Y2 (P n). Monte Carlo estimates of 
these quantities are denoted by the corresponding latin letters m (Pn ) , 

s(Pn ), gdPn), and g2(Pn ). The standard deviation and the measures 
of skewness and excess are estimated directly by the corresponding 
characteristics of the sample distribution. The mean is estimated 
through the formula 

m(P n) = LAP n - (LAP MC - mMC)' (20) 

The value of LAPn is computed exactly from relation (9), while 
LAPJIC and mJIC are the LAP and the mean, respectively, of the sam
ple distribution. The mean p..(Pn) could also be estimated by mJIC. 
However, m(Pn) from (20) is preferred over mJIC because the Monte 
Carlo results show that it has a smaller sampling variance. 

An indication of the accuracy of the results in Table I is given by 
the number of decimals included. The half-width of the 99 percent 
confidence interval that represents the sampling uncertainty is between 
one and five times the unit in the least significant digit. For the mean, 
the confidence interval width has, however, been computed for mJlC 
instead of for m (Pn). The computation of these confidence intervals 
has been based on the asymptotic normality of the corresponding sta
tistics. 

Table I shows that the mean of the power sum increases by some
what more than 3 dB when the number of component variables is 
doubled for a fixed (J. This effect is illustrated in Fig. 1, where the 
mean is plotted as a function of the number of components n. This 
figure shows that the increase in the mean is substantially more than 
3 dB for a doubling of the number of components n in case n is small 
and (J is large. On the other hand, Fig. 1 indicates that the slope of the 



TABLE I-MoNTE CARLO ESTIMATES m(Pn ), S(Pn ), gl(Pn ), g2(Pn ) OF MEAN, STANDARD DEVIATION, MEASURE 

OF SKEWNESS, AND .l\IIEASURE OF EXCESS OF P n. THE COMPONENTS ARE TRUNCATED NORMAL WITH 

lVIEAN J.L = 0, STANDARD DEVIATION BEFORE TRUNCATION CJ', TRUNCATION AT ±3.5CJ'. 

,,: 1 2 3 4 5 6 7 8 9 10 

1n 3.07 3.23 3.5 3.8 4.1 4.5 5.1 5.5 6.1 6.6 
s 0.70 1.43 2.20 3.0 3.8 4.6 5.4 6.2 7.1 7.9 

n = 2 gl 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 
g2 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 

1n 6.11 6.36 6.75 7.3 7.9 8.6 9.4 10.2 11.1 12.1 
s 0.50 1.03 1.60 2.25 2.9 3.5 4.2 4.9 5.6 6.3 

n = 4 gl 0.0 0.0 0.0 0.0 0.1 0.2 0.2 0.2 0.2 0.2 
g2 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 

1n 9.13 9.43 9.90 10.54 11.3 12.2 13.2 14.3 15.4 16.7 
s 0.36 0.73 1.15 1.64 2.14 2.7 3.3 3.9 5.4 5.0 

n=8 gl 0.0 0.0 0.0 0.1 0.2 0.2 0.2 0.3 0.3 0.3 
g2 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.2 0.1 

1n 12.15 12.47 12.99 13.70 14.59 15.6 16.8 18.0 19.4 20.9 
s 0.252 0.52 0.82 1.19 1. 56 2.01 2.51 3.1 3.6 4.0 

n = 16 gl 0.0 0.0 0.0 0.1 0.2 0.2 0.3 0.3 0.4 0.4 
g2 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.2 

1n 15.162 15.49 16.04 16.79 17.74 18.86 20.12 21.5 23.0 24.7 
s 0.178 0.37 0.59 0.84 1.14 1.48 1. 91 2.36 2.8 3.3 

n = 32 gl 0.0 0.0 0.0 0.1 0.2 0.2 0.3 0.3 0.4 0.4 
g2 0.0 0.0 0.0 0.1 0.2 0.1 0.0 0.0 0.1 0.2 

1n 18.174 18.51 19.07 19.84 20.82 21.99 23.34 24.85 26.5 28.2 
s 0.126 0.260 0.42 0.61 0.82 1.10 1.42 1. 76 2.18 2.6 

n = 64 gl 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 
g2 0.0 0.0 0.1 0.1 0.2 0.0 0.0 -0.1 0.0 0.0 

1n 21.185 21. 525 22.09 22.87 23.87 25.07 26.46 28.02 29.73 31.6 
s 0.089 0.184 0.29 0.43 0.59 0.79 1. 04 1.30 1.63 1. 98 

n = 128 gl 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.3 0.3 
g2 0.0 0.0 0.0 0.0 0.1 0.0 -0.1 -0.2 -0.1 -0.1 

1n 24.196 24.537 25.10 25.89 26.90 28.12 29.53 31.13 32.89 34.81 
s 0.063 0.132 0.208 0.30 0.42 0.55 0.74 0.95 1.20 1.48 

n = 256 gl 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.2 
g2 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 -0.1 -0.2 -0.2 
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Fig. I-Monte Carlo estimates of J1-(Pn). The components are truncated normal; 
J1- = 0, truncation at ±3.5a-. 

graph of the mean levels off at approximately 3 dB for each doubling 
of the number of components at all values of a for n large enough. 

It is illuminating to compare these properties of the mean with the 
properties of LAPn • According to relation (9), LAPn increases by 
10 loglo 2 ~ 3 dB for each doubling of the number of components n, 
similar to the increase of the mean noted above. Furthermore, rela
tions (8) and (11) imply that LAPn - J.l.(P1!) is nonnegative and ap
proaches 0 as n increases toward infinity. The rate of decrease of 
LAPn - J.l.(Pn) is illustrated by the IVlonte Carlo results plotted in Fig. 2. 

Table I also shows that the standard deviation of the power sum 
decreases as the number of component variables is increased for fixed 
a. This is illustrated in Fig. 3, where lVlonte Carlo estimates of a(Pn) 

are plotted as a function of the number of components n. 
The measures of skewness and excess in Table I can be taken as an 

indication of the deviation from normality of the distribution of the 
power sum. These measures are zero for the normal distribution and 
they have low values for distributions that deviate only slightly from 
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Fig. 2-Monte Carlo estimates of LAPn-.u(Pn). The components are truncated 
normal;.u = 0, truncation at ±3.50". 
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Fig. 3-Monte Carlo estimates of O"(Pn ). The components are truncated normal; 
.u = 0, truncation at ±3.50". 
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normality. The table shows that g1 and g2 are very small for a-values 
up to four over the range of n-values considered. The table also shows 
that g1 is, in general, positive. This indicates that the power sum dis
tribution is positively skewed. IVloreover, g1 considered as a function 
of the number of components n has definite maxima around n = 32 
for all sufficiently large values of a. In particular, this means that the 
magnitude of g1 decreases as n becomes large enough. This behavior 
is consistent with the asymptotic behavior of the measure of skew
ness as expressed by relation (14). 

The results of the previous section show that both LAP n - fL(Pn ) 

and .a(Pn ) converge to 0 as n becomes infinite. From these two facts it 
follows that the distribution of Pn - LAPn converges to a distribution 
degenerate at O. Fig. 4 illustrates this convergence by plots of the 
IVlonte Carlo estimates of the distribution function of Pn for n = 1, 4, 
16, 64, and 256. This convergence is also illustrated in Fig. 5 where the 
1 percent and 99 percent points of the distribution function of P n are 
plotted in addition to the mean 1n (Pn ) and the level of average power 
LAPn , for a = 10. It is seen that the slope of the 1 percent point with 
a doubling of the number of components can be considerably larger 
than 3 dB, while the 99 percent point changes by somewhat less than 
3 dB whenever the number of components is doubled. LAPn does not 
represent a fixed percentage point on the distribution function as 
n is changing. It is, therefore, seen that the plots in Fig. 5 of some 
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Fig. 4 - Monte Carlo estimates of distribution function of Pn • The components 
are truncated normal; p, = 0, u = 10, truncation at ±3.5u. 
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percentage points would actually cross their asymptote LAPn from 
below before approaching it asymptotically from above. This is true 
for all percentage points of the component distribution that lie be
tween 0 and LAP1 • In other words, the fact that all percentage points 
approach LAP n asymptotically does not imply that the approach IS 

monotone. 

IV. COMPARISON BETWEEN ANALYTICAL AND 

MONTE CARLO RESULTS 

At this point it is natural to examine the relative agreement be
tween the various analytical approximations and the Monte Carlo 
estimates. Figs. 6 and 7 contain plots of the asymptote (16), the 
\Vilkinson approximation (18), and the Monte Carlo estimates of 
LAPn - JL(Pn ) for (J' = 6 and 10, respectively. Both figures show the 
asymptote as an upper bound for LAPn - JL(Pn ). The plots also in
dicate that the \Vilkinson expression gives a better agreement with the 
~1onte Carlo results than the asymptote, and they illustrate the de
gree of agreement between the Monte Carlo results and the analytical 
expressions for various values of n. Finally, a comparison between the 
two figures shows that the analytical approximations are better for 
low values of (J' than for high values. Figs. 8 and 9 present similar 
comparisons between Monte Carlo results and analytical approxima
tions for (J'(Nn ). The figures contain plots of the asymptotic expression 
(17), the vVilkinson expression (19), and the Monte Carlo estimate 
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Fig. 5-LAPn and Monte Carlo estimates of fJ,(Pn) and of two points on the 
distribution function of Pn • The components are truncated normal; fJ, = 0, (j = 10, 
truncation at ±3.5CT. 
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Fig. 5-Compar;son between three estimates for LAPn-.u(Pn). The components 
are truncated normal;.u = 0, u = 5, truncation at ±3.5u. 
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are truncated normal; .u = 0, u = 10, truncation at ±3.5u. 
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Fig. 8 - Comparison between three estimates for U(Pn). The components arc 
truncated normal; J1. = 0, u = 6, truncation at ±3.5u. 

of u(Pn) for.u = 6 and 10, respectively. The figures serve as a basis 
for conjecturing that the asymptote provides an upper bound for U(Pn). 
Furthermore, the figures indicate as above the degree of agreement 
between the analytic approximations and the 1\10nte Carlo results, 
and they show that the analytical approximations are better for low 
than for high values of u. 

V. INFLUENCE OF TAILS 

The results discussed thus far are all based on a truncation of the 
component distributions at ±3.5u. Truncations at other points can 
casily be studied with the tools used. Thus, Table II summarizes results 
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Fig. 9 - Comparison between three estimates for u(P n). The components arc 
truncated normal; J1. = 0, u = 10, truncation at ±3.5u. 
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SKEWNESS, AND MEASURE OF EXCESS OF P n • THE COMPO~ENTS ARE TRUNCATED NORMAL WITH 

J\IIEAN J1. = 0, STANDARD DEVIATION BEFORE TRUNCATION (J', TRUNCATION AT ±C(J'. 

c: 2.0 2.5 3.0 2.0 I 2.5 3.0 2.0 2.5 3.0 
u: 1 1 1 6 6 6 10 10 10 

1n 3.06 3.06 3.07 4.3 4.4 4.6 5.9 6.3 6.4 
s 0.62 0.68 0.70 4.0 4.4 4.5 6.9 7.6 7.8 

n=2 gl -0.1 0.0 -0.1 -0.1 0.0 0.0 -0.2 -0.1 0.1 
g2 -0.4 -0.3 -0.2 -0.5 -0.3 -0.1 -0.5 -0.3 -0.1 

m 6.09 6.10 6.10 8.1 8.4 8.6 10.9 11.5 11.8 
s 0.44 0.48 0.50 2.9 3.3 3.4 5.2 5.9 6.2 

n=4 gl -0.1 0.0 0.0 -0.3 -0.1 0.1 -0.3 -0.1 0.1 
g2 -0.2 -0.1 0.0 -0.3 -0.3 -0.1 -0.4 -0.3 -0.1 

1n 9.11 9.12 9.13 11. 6 12.0 12.2 15.1 16.0 16.5 
s 0.31 0.34 0.35 2.06 2.39 2.60 3.7 4.5 4.9 

n=8 a1 0.0 0.0 0.0 -0.3 -0.2 0.1 -0.3 -0.1 0.2 
g2 -0.1 0.0 0.0 -0.1 -0.2 -0.1 -0.3 -0.4 -0.2 

m 12.12 12.14 12.15 14.80 15.30 15.53 18.9 20.0 20.6 
s 0.222 0.241 0.248 1.44 1. 70 1. 92 2.61 3.3 3.8 

n = 16 a1 0.0 0.0 0.0 -0.3 -0.1 0.1 -0.5 -0.1 0.2 
a2 -0.1 0.0 0.0 0.1 -0.3 -0.2 0.0 -0.4 -0.3 

1n 15.137 15.153 15.160 17.93 18.47 18.75 22.22 23.6 24.4 
s 0.157 0.170 0.174 1.00 1. 21 1.40 1.81 2.39 2. !J6 

n = 32 gl 0.0 0.0 0.0 -0.3 -0.1 0.1 -0.4 -0.2 0.1 
(j2 -0.1 0.1 -0.1 0.2 -0.2 -0.2 0.1 -0.2 -0.4 

1n 18.149 18.165 18.172 20.99 21.56 21.87 25.41 26.93 27.8 
s 0.110 0.121 0.125 0.70 0.86 1.00 1.25 1.70 2.20 

n = 64 gl 0.0 0.0 0.0 -0.2 -0.1 0.0 -0.3 -0.3 0.0 
a2 0.0 0.0 -0.1 0.1 -0.1 -0.2 0.1 -0.1 -0.4 

m 21.160 21.176 21.183 24.03 24.61 24.93 28.51 30.10 31.10 
s 0.078 0.086 0.088 0.50 0.61 0.71 0.87 1.19 1.58 

n = 128 a1 0.0 0.0 0.0 -0.1 -0.1 0.0 -0.2 -0.2 0.0 
g2 0.0 0.0 0.0 -0.1 -0.2 -0.1 0.1 -0.1 -0.2 

m 24.170 24.186 24.194 27.06 27.65 27.97 31.56 33.19 34.25 
s 0.055 0.060 0.062 0.35 0.43 0.50 0.61 0.84 1.13 

n = 256 gl 0.0 0.0 0.0 -0.1 -0.1 0.0 -0.2 -0.2 -0.1 
g2 0.0 0.0 0.0 0.0 -0.1 0.0 0.1 0.0 -0.1 
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of IVlonte Carlo evaluations for symmetric truncations at ±2u, ±2.5u, 
and ±3u for u = 1, 6, and 10 dB, respectively, and with the same range 
of n-values as considered previously. A study of the table reveals that 
the truncation point can have a considerable influence on the distribu
tion of the resulting power sum. To exemplify this, Fig. 10 shows plots 
of the standard deviation of the power sum of 256 components as a func
tion of the truncation point c. The plots cover a wider range of c-values 
and u-values than found in Tables I and II. The extensions are based 
on the Wilkinson approximation. 

The plots in Fig. 10 exhibit the important trend that the. influence 
of the truncation point increases with an increase of the component 
standard deviation 0". The same conclusion can be drawn from a study 
of the c-dependence of the mean p.(Pn) or of the quantity LAPn -
fl(Pn ). 

Table II contains several cases of negative skewness of Pn • Hence, 
the earlier observation that Pn is in general positively skewed does not 
apply for c-values below 3.5. 

VI. CONCLUDING REMARKS 

The extension of the results given here to an even larger number of 
components (n > 256) is straightforward, but the computer time 
needed can easily become excessive. The agreement betweent asymp
totic expressions and Monte Carlo results for large enough n does, how
ever, indicate that the Monte Carlo technique is not necessary for 
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power sum evaluations beyond a certain n-value, namely, the one 
where the asymptotic expressions become sufficiently accurate. 

Finally, we note that the problem of evaluating the distribution of 
the power sum of nontruncated normal components has not been 
brought closer to its solution by the results presented here. This prob
lem is certainly of mathematical interest even though it represents a 
physically unrealistic situation. Some Monte Carlo studies with larger 
values for the truncation points have indicated that the convergence 
of the power sum to normality is much less rapid in this case, and that 
considerably larger values of the measures of skewness and excess can 
occur than those contained in Table 1. 
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APPENDIX A 

Let Xl, X 2 , 

variables. Put 
, Xn be independent identically distributed random 

Sn = 10XdlO + ... + 10Xn
/

10 

and let e = E[10XdlO
]. In order to prove the asymptotic results in the 

main body of the paper, we need the following. 

Lemma: Suppose 

1[1 1 

t
m 

dt Ji 
Q(x) = x 0 1 + xt ' x> -1 

where l, j, m are nonnegative integers. It E1021XdlO and EIO- iX';lO are 
bounded, then 

E[ Q( s. :0 no) J = O(n- Zj
,) as n ---+ <Xl. 

Proof: Let 

1
1 tm 

o 1 + xt dt, x > -1. 
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Then Q'(x) = x1[Im(x) ]j, and it follows from the Cauchy-Schwarz in
equality that 

1 E[ Q( s. :0 no)] I' ~ E( S. :0 nO)"E[ 1 .. ( S. :0 no) r 
The asymptotic behavior of the central moment of Sn of order 2l is 
found from Cramer.10 Hence, 

To complete the proof, it suffices to show that 

E[ 1 .. ( S. :0 no) r ~ 0(1) as n --> "'. 

To show this, we again apply the Cauchy-Schwarz inequality. Thus, 

2 ( ) 112m 11 dt 1 1 
I", X ~ 0 t dt 0 (1+ Xt)2 = 2m +1;- + 1 . 

Hence, 

[
. (Sn - ne)]2i ( e )i 1(n)i 

E 1m ---;;;0- ~ 21T" + 1 E Sn . 

Consider now the function u(x) = l/x i
, which is convex on (0, (0) for 

j ~ O. By Jensen's inequality it follows that if al , ... , an, Yl , ... , Yn 

are non-negative real numbers such that al + ... + an = 1, then 

u(alYl + + anYn) ~ alu(Yl) + ... + anu(Yn). 

In particular, 

Hence, 

(n/ Sn)i = u(Sn/n) ~ (1/n)[u(10xdlO) + ... + u(10Xn/IO)] 

(l/n)[10-iXdI0 + ... + 10-iXn/lO]. 

E(n/ Sn)i ~ E[lO-i X dl0]. 

The right-hand side of this inequality is finite by assumption, so the 
proof is complete. 

APPENDIX B 

Derivation of the Wilkinson Reslllts for Truncated Normal 
Components 

As in Appendix A, let Xl, X 2 , ••• , Xn be independent, identically 
distributed random variables, and assume further that they aU have a 
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truncated normal distribution. The density function of Xl is then 

x > f..L + Cff 

1 1 (x - f..L)2 
g(x) = <\>(c) - <\>( -c) V2rr u cxp ( - ----:2;;:,-) , j

O' x < f..L - Cff, 

f..L - Cff ~ X ~ f..L + Cff 

where <I> stands for the standardized normal distribution function. 
Now let lVi be the nonnegative random variable that expresses the 

power corresponding to Xi, i.e., 

TV i 10 Xi
/

IO
• 

The density function of lVl is 

few) = ro, w < 10(rCI1 )/10, tv > 10(I'+CI1)/10 

1 <\>(c) - \,( -c) 

l 

1 ( (log w - ")-..f..L)2) 
_I exp -~2-2-' 
V 27r ffAW -../\ ff 

The moments of TV 1 are therefore, 

where 

r _ <p(c - Aff) - <p( -c - Aff) 

Tc(ff) - <p(c) - <p( -c) 

accounts for the effect of the truncation. We note that Tc(ff) ~ 1 as 
c~ 00. 

The mean and variance of WI are found to be 

and 

72 = Val' OV1) 

where 

UT ( ) = TcC2ff). 
c ff T;(ff). 

(21) 

(22) 

Now let P n be the power sum of Xl , X 2 , ••• , Xn and take f..L = 0. 
Furthermore, let P n be approximated by a normally distributed random 
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variable Pnw . The independence of the X/s then allows us to establish 
two equations by adding the means and variances of the Wi'S to get 
the mean and variance, respectively, of 

Snw = 10Pnw/IO = WI + ... + TVn . 

Relations (21) and (22) allow mean and variance of Snw to be ex
pressed in terms of mean and variance of P nw . Hence, we get 

and 

n exp (A2(T2)T;(o-) [exp (A2(T2)Uc(T) - 1] 

= exp [2AJL(Pnw) + A2(T2(Pnw)][exp A2(T\Pnw) 1]. 

Solving these two equations for JL(Pnw ) and (T2(Pnw ) we find 

and 

where 

REFERENCES 

1. Dixon, J. T., unpublished work, 1932. 
2. Wilkinson, R. L, unpublished work, 1934. 
3. Holbrook, B. D. and Dixon, J. T., Load Rating Theory for Multichannel 

Amplifiers, B.S.T.J., 18, October, 1939, p. 624. 
4. Curtis, H. E., Probability DistrIbution of Noise Due to Fading on Multisec

tion FM Microwave Systems, IRE Trans. Commun. Syst., September, 
1959, p. 161. 

5. Roberts, J. H., Sums of Probability Distributions Expressed in Decibel Steps, 
Proc. lEE, 110, No.4, April, 1963, p. 692. 

6. Derzai, M., Power Addition of Independent Random Variables Normally 
Distributed on a dB Scale, 1967 IEEE International Convention Record, I, 
p. 40. March, 1967. 

7. Fenton, L. F., The Sum of Log-Normal Probability Distributions in Scatter 
Transmission Systems, IRE Trans. Commun. Syst., March, 1960, p. 57. 

8. Marlow, N. A., A Normal Limit Theorem for Power Sums of Independent 
Random Variables, B.S.T.J., this issue, p. 2081. 

9. Cyr, M. H. and Thuswaldner, A., Multichannel Load Calculation Using the 
Monte Carlo Method, IEEE Trans. Commun. Tech., COM-14, No.2, 
April, 1966, p. 177. 

to. Cramer, H., Mathematical Methods of Statistics, Princeton, 1945, p. 346. 



Random PacI(illgs alld Coverings of 
tIle Unit n-SpIlere 

By A. D. WYNER 

(Manuscript received July 13, 1967) 

It is well known that the quantity Mp(n, 8), the maximum nU111,ber 
of nonoverlapping spherical caps of half angle 8 (a "packing") which 
can be placed on the surface of a un,it sphere in Euclidean n-space is not 
less than exp [-n log sin 28 + o(n)] (8 < 7T"j4). In this paper we give a 
new proof of this fact by a "random coding" argument, the central part of 
which is a theorem which asserts that if a set of roughly exp (- n log sin 28) 
caps is chosen at random, that on the average only a very small fraction of 
the caps will overlap (when n is large). 

A related problem is the determination of 11;[ c (11" 8), the minim,um nU1n
ber of caps of half angle 8 required to cover the unit Euclidean n-sphere. 
We show that 1I1c(n, 8) = exp [-n log sin 8 + o(n)]. The central part 
of the proof is also a random coding argument which asserts that if a set 
roughly exp (- n log sin 8) caps is chosen at random, that on the average 
only a very small fraction of the surface' of the n-sphere will remain un
covered (when n is large). 

I. INTRODUCTION 

A problem in coding theory for the Gaussian channel is the deter
mination of jVfp(n, 0), the maximum number of points which may be 
placed on the surface of a unit n-sphere such that the spherical caps 
with centers at these points and half angle () are disjoint (the "pack
ing" problem). This quantity, though unknown, has been estimated 
by upper and lower bounds.5 In this paper, we give a proof of the 
known lower bound by a "random coding" argument. It is felt that 
this new method is of interest in itself. 

A related problem is the "covering" problem, the determination of 
Mc(n, 0), the minimum number of caps of half angle () required to 
cover the surface of a unit n-sphere. This problem is of interest when 
one wants to quantize an n-dimensional Gaussian vector with inde-

2111 
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pendent components (which with very high probability lies ncar the 
surface of an n-sphere). In this paper, Jl.fc(n, 0) is estimated with upper 
and lower bounds which are "exponentially" tight. The upper bound 
is also proved by a "random coding" argument. 

The random coding arguments owe much to Shannon.3 • 4 The ran
dom co·vering theorem in particular is similar to his approximation 
theorem in the latter reference. R. Graham has called my attention to 
the work of Rogers,t· 2 who has considered the problem of covering a 
large n-dimensional cube with spheres of a unit radius. Rogers' meth
ods and result parallel those given here. 

Let x, y with and without subscripts denote points on Sn , the surface 
of a unit sphere in n-dimensional Euclidean space. Let a(x, y) be the 
angle* between x and y, and note that a(x, y) satisfies the axioms of 
a metric. For 0 ~ 0 ~ 7r, let e(x, e) = {y : a(x, y) < e}, the open 
spherical cap of half angle e centered at x. A set S C Sn is said to be a 
e-covering (0 ~ e ~ 7r) if UxtS e (x, e) covers Sn , and S C Sn is said 
to be a e-packing if e(x, e) n e(y, e) is empty for x, YES, X ~ y. 
Let Mc(n, e) be the minimum number of points which can constitute 
a O-covering of Sn and let Mp(n, e) be the maximum number of points 
which can constitute a O-packing. These quantities are related by 

Lemma 1: Mc(n, 2e) ~ Mp(n, e). 

Proof: We say that S C Sn is a maximal O-packing if S is a O-packing, and 
for all y 1/ S, the union {y} U S is not a e-packing. We establish Lemma 1 
by showing that every maximal O-packing is a 2e-covering. Let S be a 
maximal e-packing. If S is not a 2e-covering then there exists a y such 
that a(x, y) ~ 2e for all XES. Thus, from the triangle inequality for 
a, e(x, e) n e(y, e) = cp for all x t S, and {V} U Sis a e-packing con
tradicting the maximality of S. Hence, the lemma. t 

The quantity ]Y[p(n, e) is well studied.5 In particular, it is known that 
(for e < 7r/4) 

exp [nPL(e)(1 + /In(e))] ~ lIfp(n, e) ~ exp [nP u(e)(1 + 'Yn(e»], (la) 

where f31l ,YIl ~ 0 as n -7 CIJ and 

P L(e) = -log sin 2e, (lb) 

* The angle is defined as follows. Say that the center of the unit sphere is the 
origin of coordinates in n-space. Then x and y may be thought of a unit vectors. 
The angle a(x, y) between them is defined by cos a = inner product of x and y, 
where 0 ~ a ~ 71'. 

t The fact that it does not seem possible to obtain a reverse inequality relat
ing Me and Mp may lead one to suspect that covering and packing are, in fact, 
not dual problems. This may account for the fact that random coding appears 
"better" for covering than for packing. 
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and 

Pu(fJ) = -log V2 sin f). (lc) 

Thus, roughly speaking l11p (n, 0) increases exponentially in n (as n 
~ 00) with exponent between P L and Pu. 

In Section III we give another proof of the lower bound in (1). The 
central part of this proof is a theorem that asserts that if a packing 
with roughly exp [nPL(O)] points is chosen at random, that on the 
average only a very small fraction of the caps will overlap (Theorem 
1). The lower bound of (1) is a corollary to this theorem. It is felt that 
Theorem 1 is of interest in itself. 

Now consider Mc(n, 0). ",Ve will show that it too increases roughly 
exponentially in n (as n ~ 00). But here we can find the exponent 
exactly, viz., (for 0 < 71'/2) 

(2a) 

where En -t 0 as n -t 00 and 

Re(f)) = -log sin f). (2b) 

The central part of the proof of the existence of a covering satisfying 
(2) is a theorem which asserts that if a covering with roughly exp [nRe(f))] 
points is chosen at random, that on the average only a very small frac
tion of Sn will remain uncovered. 

II. THEOREMS 

In this section we give precise statements of our theorems, leaving 
the proofs for Section III. We begin with some definitions. 

Assign the usual "area" measure to Sn . If A C Sn is measurable, let 
,u(A) be its measure. In particular, let 

( - 1) (n-O/21 a 

Cn(ex) = ,u( e(x, ex)) = ~[(n +7r 1)/2] 0 sin (n-2) <p d<p (3a) 

be the area (measure) of a cap of half-angle ex, and let 

n7rnl2 

Cn (7r) = r[(n + 2)/2] (3b) 

be the area of Sn . It is easy to show that (for ex < 7r /2) 

g:i:l = exp {n log l~ J + Den)}. (4) 

as n -t 00. 
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In connection with the packing problem, let S = {xd :~1 C Sn, 

and consider {e(Xi' e)} ::'1 the corresponding caps of half-angle e. 
Define 

1 M 

Fp(S, e) = M ~ gi(S, 8), (Sa) 

where gi (i = 1, 2, ... , 111) is defined by 

g.(S, e) = {I, e(Xi , e) (\ e(Xi , e) 

0, otherwise. 

cI> all j ~ i, 
(5b) 

Thus, Fp(S, e) is the fraction of the caps which do not overlap. Notice 
that S is a e-packing if and only if Fp(S, e) = 1. We now state 

Theorem 1: (Random Packing) Consider a random experiment in which 
the M members of S are chosen independently with uniform distribution 
on Sn . Fp(S, e) is then a random variable. Let e be fixed and let M increase 
as n ~ 00, then 

if (6a) 

and 

if 111 Cn (2e) 0 
C(7r) ~ , (6b) 

where E denotes expectation. 

Thus, in particular, if M = epn (p fixed), we have from (4) that 
EFp(S, e) ~ 1 or 0 according as p < -log sin 2e = PL(e) or p > PL(e). 
Further, since there must be a set S such that Fp(S, e) ~ EFp, we 
conclude that for any p < PL(e) and any e > 0 there exists an n suffi
ciently large and a set S C Sn with 111 = epn members such that 

(7) 

If we delete the (eM) members of S with overlapping caps we obtain 
a e-packing with M = ePn(l - e) points. This is equivalent to the lower 
bound of (1). 

Let us now turn to the covering problem. We can easily establish a 
lower bound on Mc(n, e) as follows. Let S = {Xd::'1 C Sn be a e
covering, so that U:~l en(Xi , e) covers Sn. Hence, 

11[ 11[ 

Cn(7r) = P,(Sn) = P, U e(Xi , e) ~ L p,(e(Xi , e)) = 1I1Cn(e). (8) 
i=1 ;=1 
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Thus, we have proved 

Lemma 2: Me(n, 8) ~ Cn (7r)/Cn (8). 

In the light of (4), Lemma 2 implies that 11ie is not less than the right 
member of (2a) for 8 < 7r /2. 

Let {3 > 0 and S ~ Sn be given. Define the set 

B(S, (3) = {y I: Sn : y ¢ e (x, (3) for all x I: S}. (9a) 

Then 

(9b) 

represents that fraction of Sn not covered by the caps e(x, (3), x I: S. 
We now state 

Theorem 2: (Random Covering) Consider a random experiment in which 
the M 1nembers of a set S are chosen independently with uniform distribu
tion on Sn • Then Fe(S, (3) is a random variable. Let {3 < 7r be fixed and let 
III increase as n ~ 00, then 

if (lOa) 

and 

if (lOb) 

Further, 

(11) 

In particular, if JJI = epn (p fixed) and {3 < 7r /2, we have from (10) 
and (4) that E(Fe) ~ 0 or 1 according as p > -log sin {3 = Rc({3) or 
p < Re({3). Further, since there must be at least one set S for which 
Fe(S, (3) ~ EFe , we conclude from (11) and (4) that for any {3 < 7r/2 
and any p > Re({3) there exists for each n = 1, 2, ... a set S C SA 

with M = epn members such that 

JJ.(~:~;){3» ~ exp {- exp [(p - Re({3»n(1 + A({3»]}, (12) 

where A({3) -7 0 as n -7 00. The following corollary (also proved in 
Section III) follows from (12). 

Corollary: Let 8(0 < 8 < 7r/2) be arbitrary and let p > Rc(8). Then for 
n sufficiently large there exists at 8-covering of Sn with M = epn points. 
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It remains to show that life is not more than the right member of (2a). 
For 0 < ?r/2 let 

p*(O) = lim sup! log 1I1c(n, 0). 
n-oo n 

Say p* > Rc(O). Let p' = (R(O) + p*(O))/2 < p'. We conclude that 
there is an infinite sequence of n's such that any set of eP'n points in 
Sn cannot be a O-covering. But since p' > Rc(O), application of the above 
corollary yields a contradiction. Thus, p* ~ Re(O). This taken together 
with Lemma 2 gives 

from which (2) follows. 

III. PROOFS 

Proof of Theorem 1: Let the points Xl , X 2 , ••• , XM t Sn be chosen in
dependently with a uniform distribution on Sn. The random variables 
fl. (i = 1, 2, ... , 111) defined in (5b) may be rewritten 

a(Xi , Xi) ~ 20, 

otherwise. 

Thus, the random variable Fp of (5a) has expectation 

1 U 1 M 

EFp = - LEg i = - LPr {g. = I}. 
M i=l M i=l 

j ~ i, 
(13) 

(14) 

Let i be fixed. If Xi = X then g. = 1 if and only if the (M - 1) inde
pendent choices of Xl , ••• ,Xi-I, Xi+l , ••• ,XM do not belong to e(X, 20). 
Since the Xi are uniformly distributed on Sn we have 

( 
Cn(20))lIf-l 

Pr {gi = 1 I Xi = X} = 1 - Cn(?r) , 

independent of x. Thus, from (14) 

E(F) = (1 _ Cn(20))U-l 
p Cn(?r) ( 

l)lln [(JIf-l/lln») 

1 -- , 
J..l.n 

(15) 

where J..l.n = Cn(?r)/Cn(20). Our result follows on noting that as n ---7 ex:> , 
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Proof of Theorem 2: Let the points Xl , X2, ••• , X.u [ Sn be chosen in
dependently with a uniform distribution on Sn. The random variable 
Fe may be written 

Fe = C
1
( ) r hey, Xl' X2 , ••• , XAI) dj.l(Y), (16) 

,,7r J Sn 

where 

I( ) - {I, if a(Xi, y) ~ e, 
1 y, Xl , ... ,X.u -

0, otherwise. 

1 ~ i ~ JJ1 

Since h ~ 0 we may interchange the expectation and integration opera
tions and obtain 

where as indicated Eh is computed with y held fixed. Now 

]If 

Eh(y, Xl , ••• ,X.u) = Pr {h = I} = Pr n {a(xi , y) ~ e} 
i=1 

from which (10) and (11) follow. 

Proof of Corollary to Theorem 2: Let p > Re(e) be given. Let I' be 
defined by RcC'Y) = p. Since p > Re(e) a decreasing function, we have 
I' < e. We will apply Theorem 2 with {3 = (e + 1')/2, so that p > R({3). 
Let Sn (n = 1,2, ... ) be the sets which satisfy (12). By (4) and (12), 
Cn[(e - 'Y)/2]jCn (7r) decreases much more slowly (as n ~ co) than 
[j.l(B(S •• , (3))]jC,,(7r) ~ On, so that we can find an N sufficiently large 
such that for n ~ N, 

o < Cn[(e - 'Y)/2J. 
" . Cn (7r) 

We claim that for n > N, the sets Sn are e-coverings of Sn. To show 
this observe that if y ¢ Ux;tSn e(Xi , e), then a(xi , y) ~ e, all Xi (: Sn. 
Thus, 

( () - 1') ( e + 'Y) e y, 2- n e Xi '-2- = <P for all Xi [ Sn , 
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which in turn implies 

( () - 'Y) ( () + 'Y) e y, -2- C B Sn , -2- . 

Thus, 

a contradiction. Thus, there is no such y and the corollary follows. 
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Slope Ovel"load Noise in 
Differential Pulse Code 

Modulation Systems 

ByE.N.PROTONOTARIOS 

(Manuscript received June 12, 1967) 

In differential pulse code modulation (DPC]J1) systems, often referred 
to as predictive quantizing systems, the quantizing noise manifests itself 
in two forms, granular noise and slope overload noise. The study of overload 
noise in DPCM may be abstracted to the following stochastic processes 
problem. Let the input to the system be a Gaussian stochastic process 
{x(t)} with a bandli111,ited (0, fo) spectrum F(f). Denote the output of the 
sy stem by y (t). J110st of the time y (t) is equal to x (t). During time intervals 
of this kind, the absolute value of the derivative x' (t) = dx(t) / dt is less 
than a given positive constant x~. (In a DPCJ11 system, x~ = kfs where 
k is the maximwn level of the quantizer and fs 1:S the sampling frequency.) 
There are time intervals, I i (t6 i

) , tii») (i = 0, ±1, ±2, ... ), for which 
y (t) ~ x (t). These ti11'te intervals begin at time instants t6 i) such that 
I x' (t6 i » I increases through the value x~ . For t E Ii , yet) = x(t6 i» + 
(t - t6i»X~. The interval ends at ti i ) , when x(t) and yet) become equal 
again. The overload noise in the DPCl\II system is defined to be net) = 

x(t) - yet). The problem is to study the random process {n(t)}. In the 
present paper, we will give an upper bound to the average noise power 
(n2 (t»av which at the same til11e is a very good approximation to the noise 
power itself. 

Two previous attenLpts have been made to find (n2 (t) )a • . One, due to Rice 
and 0' Neal, involves an approximation valid only for very large x~. 

Another approach to the problem" due to Zetterberg, includes an ingenious 
way of avoiding the determination of tii) . A new approach is given here 
that combines the best features of the two methods. The present result is a 
better approximation for slope overload noise than has been previously 
obtained. The result differs from previous results but is asymptotically 
equal to that given by Rice and 0' Neal for x~ ~ 00. In the region where 
overload noise is important, the present result is in very good agreement 

2119 
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with computer simulation and experiment. 'Phe technique used could be 
applied for the determination of other statistical characteristics of the 
error random process. 

I. INTRODUCTION 

This paper is concerned with the slope overload noise in Differential 
Pulse Code Modulation (DPCl\1:) systems, often referred to as predictive 
quantizing systems. Delta Modulation (~M), the simplest member 
of the DPCM family, is a European invention of the mid-forties. 1 

DPCl\1: was first revealed in a Phillips Company patene in 1951 and 
as a predictive quantizing system in a patent by C. C. Cutler3 of the 
Bell Telephone Laboratories in 1952. ~M and DPCl\1: are receiving 
renewed attention due to the present trend toward digital communica
tions and general efforts aimed at redundancy reduction4 in picture 
transmission. The present work was motivated, to a large extent, by 
the application of DPCM to Picturephone@ signal transmission. 

Work on ~M and DPCM was reported in the early and mid-fifties. 
l\1:ost representative are the papers by (i) DeJager5 on ~lJ![, mainly 
of introductory and descriptive nature, (ii) Van de Weg6 on uniform 
DPCM-we will refer to it in the sequel, and (iii) Zetterberg7 whose 
long paper on ~M is the most detailed study of the subject to date. 
Recent publications note the beginning of a "renaissance" period for 
~M and DPCM.8 ,9,1o,4 

In DPCM systems the quantization noise manifests itself in two 
forms, the granular noise and the slope overload noise. The granular 
noise is essentially uncorrelated with the input signal and has a more 
or less flat power spectrum and an approximately uniform amplitude 
probability distribution, resembling the granular noise in standard 
PCM. The granular noise for single integration DPCl\1: systems with 
a uniform quantizer has been studied by Van de W ego 6 

In contrast with a straight PCM system, which overloads in ampli
tude, a differential PCl\1: system overloads in slope. Consider a DPC1\I 
system (Fig. 1) with a single integrator in the feedback path and a 
symmetric quantizer which is not necessarily uniform. Practical DPCl\;f 
systems have leaky integrators. For simplicity, we are considering only 
perfect integrators here. Let k be the maximum level of the quantizer 
and fa the sampling frequency. Then the maximum slope that the system 
can follow is x~ = kf a, corresponding to the emission of a string of 
impulses of strength k by the quantizer of Fig. 1. For a fixed value of 
x~ = kf. and for k ~ 0 the granular noise tends to zero, and the total 
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noise is due to slope overload alone. In this paper, we concentrate on 
certain statistics of the overload noise defined precisely in Section III. 

II. SUMMARY OF RESULTS AND COMPARISON WITH PREVIOUS WORK 

There exist two previous papers concerning overload noise in DPC1Vl 
systems. Approximate results are given for the slope overload noise 
No in terms of the slope capability x~ of the DPCl\![ system and the 
power spectrum of the input signal, assumed to be Gaussian. The 
result due to Zetterberg7 (with some corrections) is as follows 

No,z = ~j (~:)(:~trA(A) exp (-;i:) I 

where b1 and b2 are the variances of the first and second derivatives 
of the input signal, respectively, and they are given in terms of the 
spectrum in (1) of the following section. The quantity A and the func
tion A(A) are defined in (31) and (32), respectively. The second result 
is due to Rice and O'Neal.s Their basic approximations are: (i) a trunca
tion of the Taylor series for x(t), around a transition point, including 
terms through the third derivative; and (ii) the assumption that the 
third derivative of x(t) at the transition points has, as a random variable, 
a very small variance compared to its mean value. Therefore, the third 
derivative is taken to be a deterministic constant with value equal to 
its mean. With these assumptions, (22) of Ref. 8 results in 

1 (b~)(3bt)5 (X~2) No,R = 4 V27r b
2 

x~ exp - 2b
1 

• 

There are two points that we want to make here: 

(i) When the formula above together with an expression for the 
granular noise given in Ref. 8 are used to compute SIN we see that the 
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agreement with computer simulation is not very satisfactory in the 
region of severe slope overload. This formula does, however, identify 
the peak of the SIN ratio quite successfully (see Fig. 11). 

(ii) When we compare Zetterberg's and Rice's results by considering 
the ratio No.z/No.R we get 

No.~ = ~ A(A) = _1_ A(A) 
N o.R 3571' 3.44 

10 loglo N o
.
z = -5.36 + 10 loglo A(A) dB. 

N o.R 

Thus, we see that the two results differ substantially. 
Hence, the question of the average slope overload noise power cannot 

be considered settled since the two results above are different and they 
both differ from computer simulation and experiment. The present 
paper sheds further light on the question of the slope overload noise. Our 
principle result is the approximation 

1 (bi)(3bi)5 (X~2) 
No = 4VZ; x~ x~ exp -2b

1 
A (x) , 

where the quantity X and the function A (x) are defined in (64) and 
(66), respectively. This expression, like the previous ones, is a function 
of only two things-the maximum slope capability x~ of the DPCM 
system and the power spectrum of the input signal. Indeed all the varia
bles appearing in this formula are calculated directly from these two 
quantities only [see (1) and (64)]. The present formula gives better 
agreement with computer simulation than the one by Rice and O'Neal, 
when used to compute SIN (see Fig. 11). 

We might also point out here that the present work applies to any 
system which is slope limited, not just to DPCM or digital encoding 
systems. 

III. PROBLEM DEFINITION 

With reference to Fig. 1 let the input {x(t)} be a stationary band
limited Gaussian random process. Let if;(T) be the autocorrelation func
tion of x(t) and F(f) the one-sided power spectrum. Let fa be the band
width of x(t) and Fs = fs/fo the normalized sampling frequency. The 
random process {x(t)} is assumed to be zero mean. Let bn be the variance 
of the nth derivative of x(t) (n = 1, 2, ... ). These numbers (bn ) will be 
extensively used in the sequel. They are given by the relation 
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1
,· 

bn = 0 (27rf)2n F(f) dt· (1) 

The output signal yet) follows the input signal x(t) during certain time 
intervals. Within these time intervals 

I 
dx(t) I < ' 

dt Xo . 

The rest of the time yet) follows segments of straight lines having slope 
x~ or -x~ . If to is a time instant at which a transition from the input 
signal to the straight line segment takes place, we have 

or 

For 

and for 

x'(to) - dx(to) - x' - ---;u- - 0, 

-x~ , 

x'(to) = x~ 

yet) = x(to) + (t - to)Xb 

x'(to) = - x~ 

x"(to) < o. 

where tl is the smallest time tl > to for which 

X(tl) = yetI) = x(to) + (tl - to)x'(to). 

Since the overload noise is defined to be 

net) = x(t) - y(t), 

(2) 

(3) 

(4) 

(5) 

(6) 

the problem boils down to the study of the random process {n(t)}. 
We will concentrate on the derivation of an upper bound to the average 
noise power (n2 (t) )a~ which at the same time is a very good approxima
tion to the noise power itself. Other statistical properties of net) can 
be obtained, but we will only mention them at the conclusion of the 
paper. 

In contrast with straight PCM the evaluation of the overload noise 
in DPCM systems is not easy. The beginning of a slope overload burst 
can be defined statistically in a clear manner. Difficulties arise in 
defining a valid tractable procedure for determining the duration of 
the burst and its end point (tl). 
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As pointed out before two previous attempts have been made to 
find (n2(t)a~ .7.8 One, due to Rice and O'Neal,s involves a Taylor series 
approximation for determining the end point tl of the burst valid only 
for very large x~, i.e., in a region where slope overload noise is not 
dominant since it is over-shadowed by the granular part of the quantiza
tion error. Another approach to the problem is due to Zetterberg.7 His 
approach includes an ingenious way of avoiding the determination of 
i1 . Unfortunately, his work contains a conceptual error in the averaging 
procedure. The error resides in his interpretation of continuous con
ditional probability density functions in the vertical window sense. 

A new approach is given here that combines the best features of the 
two methods. The result is asymptotically equal to that given by 
Rice and O'Neal for x~ ---+ 00. In the region where overload noise is 
important, the present result is in very good agreement with computer 
simulation and experiment. As noted above, the technique can also 
be applied to the determination of other statistical properties of the 
error random process. 

In Section IV, we give a critique of Zetterberg's work. It must be 
emphasized that Zetterberg's valuable work contains concepts and 
techniques on which our improved results are based. The wedding of 
the best in the methods of Rice and Zetterberg is accomplished in our 
Section V. Theoretical results are compared with computer simulation 
in Section VI and agreement is seen to be excellent.* Finally, in Section 
VII we indicate how other statistical properties of net) may be obtained 
by utilizing some of the approaches developed herein. 

IV. CRITIQUE OF ZETTERBERG'S APPROACH 

Using an argument based on the ergodicity of the random process 
{x(i)} Zetterberg7 states that 

/ r 1 )t (n
2
(t) = (n

2
(t)av = SXo'\J

o 
n2(to + s) ds , (7) 

where 

s = t - to 
(8) 

SI = tl - to 

and Sx' 0 is the average number of points of transition per second. In 
what follows, we summarize his procedure deviating slightly from his 
notation and arguments to clarify a few points. Consider the ensemble 

* Comparison with experiments will be given in another paper.ll 
t ( ) denotes ensemble average and ( )av time average. 
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of the sequences {ti(r)}, ti = 0, ±1, ±2, ,,' , of time instants such 
that x'(ti(r), r) = x~ and x"(ti(r), r) > ° or x'(ti(r), r) = -x~ and 
x"(ti(r), r) ± ° for i = 0, ±1, ±2, '" ,Zetterberg avoids the definition 
of the end point of the burst by defining a sequence of random processes 
{m.(s, r)} (see Fig, 2), with index corresponding to the above time 
instants, in the following way: 

mi(s, s) = [~(ti(r) + s, r) - x(ti(s) , s) - x~s] 'IL(S) 

'IL(X(ti(s) + s, s) - x(ti(r), r) - x~s) (9) 

I 

:t~ . I I 
nL(s)i~ 

I 
I I 

:~ mL(S)!~ 

Fig. 2 - An overload noise "burst" n, (s) and the approximating function mi (s). 

for 

and 

m;(s, r) [x(t i + s, r) - XUi , r) + X~S]IL(S) 

for 

x'(t i , r) 

(IL(S) is the unit step,) 

'IL( -x(ti + s, r) + :r(ti , S) - x~s) 

-x~ , X"(ti , S) < 0, 

(10) 

t For clarity we show in this paragraph the input random process as generated 
by an experiment with outcome K. 
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For brevity, we drop the index i and the argument r. We denote, as 
before, the beginning of a burst by to, the end by tl and by S1 its duration, 
such that for a "positive burst," i.e., x' (to) > 0 we have 

m(s) = [x(to + s) - x(to) - XbS]/l(S)/l[x(to + s) - x(to) - x~s]. (11) 

In general, as shown in Fig. 2, m(s) contains not only noise burst cor
responding to the transition point to but also some additional "bursts" 
cut from the function x(t) by the straight line starting at the point 
(to, x(to)) and having slope x~ . This makes 

100 

m
2
(s) ds ~ 181 

n
2
(to + s) ds (12) 

and 

<r m'(s) dS) ~ <1" n'(to + s) dS). (13) 

For sufficiently large values of x~/ y' b1 , (b1 is the variance of x' (t)), 
however, the probability is small that the situation depicted in Fig. 2 
will occur. Also, generally the additional sections in m(s) occur in 
reduced amplitude and the squaring reduces the introduced error still 
further. Denote by Rx' 0 the average number of points for which 

or 

It is seen from Fig. 3 that Rx' 0 ~ Sx' 0 , since a burst cannot start when 
another is taking place even if the conditions on the first and second 
derivative are satisfied. But again, for sufficiently large x~/ Vb; , Rx'o 
is a good estimate of Sx' 0 • It follows from the discussion above that 
the quantity 

Fig. 3 - K 1, K2 C Rx' 0 whereas Kl C Sx' 0 but K2 C[ Sxo' . 
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R".(r m'(s) dS) (14) 

is an upper bound and actually under certain conditions a good estimate 
of (n2 (t) )au • 

When one defines 

Q". '= (r m'(s) dS) = r (m'(s» ds, (15) 

where the equality above holds provided that the integrals exist, then 

(16) 

is Zetterberg's upper bound to the overload noise. 
At this point Zetterberg takes the ensemble average (m2 (s) in the 

following way: 

+ i: iX~-x'os (X2 - Xl + XbS)2p(XI , X2 I Xl = -x~ ; s) dX2 dXI , (17) 

where'p(x l , X2 I Xl ; s) is the conditional joint probability density 
function of the random variables Xl = X(tO)X2 = x(to + s) given the 
value of the random variable Xl = dx(to)/dt, understood in the vectical 
window sense. It turns out that the averaging procedure:as:_described 
by (17) is wrong for two reasons: 

(i) The joint probability density of Xl and X 2 should be subject 
not only to the condition Xl = dx(to)/dt = ± x~, but also to the 
condition ~t = d2x(to)/de ~ O. If we do not impose the above con
dition on the second derivative at the beginning of the burst, then an 
m(s) of the form depicted in Fig. 4 would erroneously add to the ap
proximation of the average slope overload noise power per burst. 

Ui) It is knownl2 that conditional probability densities must be 
treated with great caution. IVI. Rac and D. Slepian in Ref. 12 have il
lustrated with examples how different the expression for conditional 
probability densities might be, depending on the way we understand 
them. From the ensemble viewpoint quantities like the conditional 
joint probability density for the TV Xl = x(to) and X 2 = x(to + s) given 
that Xl = dx (to) / dt = Xb are not clearly defined since the set of sample 
functions with dx(to) / dt = Xb has probability zero. We can of course 
give meaning to the conditional densities by means of limiting proce-



2128 'fHE BELL SYSTEM: TECHNICAL JOURNAL, NOVEMBER 1067 

;X:1I(tO) < 0 

Fig. 4 - Consequences of not requiring x"(t o ) to be positive. 

dures. As Kac and Slepian point out, a condition like dx(to) / dt = Xb 
would be replaced by a condition, A, with nonzero probability, depend
ing on parameters, such that when these parameters tend to limiting 
values A becomes the condition dx(to)/dt = X6. It turns out that, in 
general, the resulting conditional probability density function depends 
on the manner in which A approaches the condition dx(to) / dt = Xb' 
Two window conditions are considered below. 

(i) A vertical window condition is a condition of the form 

X , < dx(to) < x' + 
o dt 0 o. 

Then, with reference to Fig. S(a), 

P(XI , X 2 I x(to) = Xb ; s)vw 

r
x'o+o 

• • :r' P(Xl' X2 , Xl ; s) dXl 
Inn " x' 0 + 0 

0-+0 1'0 P(Xl) dXl 

p(:C 1 , Xz , x~ ; 8) 
P(X;I) 

(18) 

(19) 

where P(XI , X2 , Xl ; s) is the joint probability density function of the 
random variables Xl = x(to) X 2 = x(to + 8) and Xl = dxl(to)/dt and 
P(Xl) is the probability density function of the derivative Xl = dx(to)/dt. 
Note that the time argument of the density functions above are written 
taking into account the stationarity of the input process {x(t)}. 

(ii) A horizontal window condition is a condition of the form dx (t) / dt = 
Xb for some t such that 

to ~ t ~ to + o. 
Then, 

P(XI ,X2 I x'(to) = Xb ; 8)hw 
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lim { ('/J d:r~' lII. P(XI , X2 , X~ , :r~' ; s) d:r~ 
0-+0 Jo X'O-X"IO 

+ ( ax[' ("-'"'' pix, ,x, , x[ , x[' ; s) <IX[} 

. { r~ dx~' lX'. p(x~ , x~') dx~ 
Jo X'O-X"IO 

+ (ax[' ('-'"'' p(x[ ,x[') axf' 

i: I xr' I P(XI , X 2 , x~ , xr' ; s) dx~' 

i: I x~' I P(Xb , x~') dx~' 

to 
°oL----------------L~------------~ 

TIME,t ~ 
(a) 

SLOPE ;t'I-, 

~~------

;t'; > 0 ;t'; < 0 

o~ ________ ~~--~~~----~ 
o to to + 8 o 

TIME,t ~ 

Cb) 

/' 
( 
\ d;dt) 

(20) 

--err-

to+ 8 

Fig. 5 - ([1) A "vertical window" condition. (b) A "horizontal window" 
condition. 
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where P(XI , X2, x~ , x~' ; s) is the joint probability density function 
of the random variables Xl = x(to), X 2 = x(to + s), X~ = dx(to)/dt and 
X~' = d2x(to)/de and p(x~ , x~') the joint probability density of the 
random variables X~ and X~' . Equation (20) follows ,from the fact 
that the "horizontal window" condition is equivalent (within first 
order in small quantities and for a given second derivative, say x~' > 0) 
to xri - x~' 0 ~ dx(to)/dt ~ xri. For x~' < 0 condition A is satisfied 
only if xri ~ dx(to)/dt ~ Xb - x~' 0 [see Fig. 5(b)]. 

Consider now according to Kac and Slepian an "empirical or time 
derived joint probability density for Xl and X2 given that x' (to) = Xb" 
resulting from taking one sample function of the process and observing 
the values of x(t) and x(t + s) at each value of t for which dx(t)/dt = Xb 
(s is of course a given number). It turns out that the empirical or time 
derived density thus obtained is equal to the conditional density defined 
in the horizontal window sense. 

Note that if we impose the additional condition x"(to) > 0 we have 

P(XI , X2 I x'(to) = :rb , x"(to) > 0; shw 

iOC> X~'P(XI , X2 , Xb , x~' ; s) dx~' 

10C> xi'p(xb , xi') dxi' 

(20a) 

It will become clearer in a later section where the averaging is done 
carefully that one should interpret the conditional probability densities 
in the horizontal window sense. 

Zetterberg defines the conditional densities in the integrals of (17) 
in the vertical window sense; this follows from the way that he computes 
them. 

But let us overlook for a moment these shortcomings of Ref. 7 and 
continue with the approach presented there. For a Gaussian input 
process {x(t)} Zetterberg derives the following expression for Qx'o. 

where 

'210C> 10::' Qx'o = "V;. 0 0 k(s)u
2 

exp { -!(u + g(s»
2 

} du ds, 

k(s) = 2( 1/;0 - 1/;(s) _ 1.. {d1/;(S)}2 
bi ds 

(s) = ~ {I + --L d1/;(S)}. 
9 Vk(S5 bls ds 

(21) 

(22) 

(23) 
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bn(n = 1, 2, ... ) is defined in (1) and 

tf;o = tf;(O). 

The following asymptotic expressions are valid (noted III Ref. 7). 
For 

s~O 

() ,Vb2 
gs ~xos~. 

For 

s ~ OCJ 

k(s) ~ 2tf;o 

x's g(s) ~ 0 • 

V2tf;o 

(Note the meaning of the symbol ~ as used here: 

.-r(s) ~ yes) for s ~ So 

if 

lim xes) = 1.) 
8 ..... 0 yes) 

(24) 

(25) 

(26) 

(27) 

An approximate calculation of the integral for Qx'o as given by (21) 
is based by Zetterberg on the following simplifications. He uses the 
asymptotic formula for g(8) for small 8. This is a justificable approxima
tion since the smaller values of g(s) are more important in the evaluation 
of the integral (21) and in any case the slopes of g(8) for 8 ~ 0 and 8 ~ OCJ 

do not differ drastically. 
For k(8) he sets 

{

b?S4 

4 ' 
k(s) = 

2tf;o , 

for s < S1 

(28) 
for s > S1 , 

where 81 is determined such that 

b28i = 2.', 4 'YO , 
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i.e., 

8
1 

= 4~. 
~b; (29) 

The evaluation of the integrals (21) for Qx'. are not correct as reported 
in Ref. 7.* In Appendix A the evaluation of the integral is made and 
the result is [see (90)] 

(30) 

where 

(31) 

and 

A (A) 1 + P(A)e-X
'/

2 
- Q(A)<I>(A) (32) 

with 

(33) 

Q(A) = 17 A7 + 3.1 A5 

24 16 
(34) 

<P(A) = i~ e- v2
/

2 dv. (35) 

For the number R x ' 0 both Rice and Zetterberg agree since the formula 
comes from one of Rice's classic papers;13 namely 

Rx ,. = - ~ exp -~ . 1 (b )! ( 12) 
7r b1 2b1 

(36) 

Therefore, the overload noise according to Zetterberg is 

(37) 

v. OVERLOAD NOISE--THE NEW APPROACHt 

In this section we will determine the overload noise using an approach 
which combines the more accurate model of Zetterberg with the correct 
averaging procedure given by Rice. 

* ZeUerberg's expression corresponding to the A (}..) given in (32) was not posi
tive for all values of}.. - clearly a nonphysical situation. 

t In the present section we assume, without loss of generality, teO) = 0-2 = 1. 
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This formulation proceeds as follows: 

(i) The average noise energy per burst is approximated by 
ave {f~ m2 (s) ds}, as per Zetterberg. This approach avoids Rice's ap
proximation of net) during a burst with a third-order polynomial and 
does not refer to the end point of the burst. On the other hand it yields 
clearly an upper bound on the overload noise, whereas in Rice's ap
proach the sense of approximation is not clear. 

(ii) The averaging process is done the "correct" physical way in the 
following paragraph. This paragraph is a paraphrasing of the lucid 
lecture given to us by Rice. 

Consider a very long record of the input signal (Fig. 6) of time duration 
NT, where N is a very large positive integer and T is an extremely long 
time interval compared with the time unit. lVlark on this time record 
of the input signal all points for which a positive burst begins-all 
points for which the derivative dx(t)/dl increases through x~ . lVlark on 
the record of the signal all time instants s time units following the 
beginnings of the bursts and measure the value of m(s). Let K be the 
average number of "positive" bursts per unit time. Then the total 
number of "positive" bursts in the time interval NT will be: NTK. 
The average value of m2 (s) over all these positive bursts will be 

NTK 

L {m7(s)} 
ave {m 2(s)} = -=i_=:=-l --

NTI( (38) 

N ow break up the total signal record into N equal records of duration 
'P and imagine them placed one below the other such that their begin
nings lie on the same vertical line as shown in Fig. 6. Divide the time 
interval into T / At equal small time intervals of length At and imagine 
vertical lines drawn at the dividing points. Consider a vertical strip 
of width At around time t and sum up the values of m 2 (s) over all 
members of the ensemble that have a "positive" burst which began in 
the time interval of duration At and around the time point t - s = to, 
i.e., s time units before t. This sum is independent of the vertical strip 
we consider and it is denoted by L~' m2 (s). 

If follows that 

(39) 

When a member x(t) is picked at random from the ensemble of the 
N x(t)'s we denote by p the chance that the following three things 
happen: 
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(i) A "positive" burst begins in the interval (t - s, t - s + b.t) 
or equivalently the derivative dx(t)/dt increases through xi> during 
t - s, t - s + b.t. 

(ii) The slope of dx(t)/dt at to = t - s lies between xf' and xf' + dxf' . 
(iii) In the time interval (t, t + b.t), m(s) lies between m(s) and 

m(s) + d(m(s». Since m(s) = x(t) - x(t - s) - XbS, this is equivalent 
to asking that Xl = x(t - s) lie between Xl and Xl + dXl where Xl is 
any real number and X 2 = x(t) lie between X2 and X2 + dX2 where 
x~ E (Xl + x~s, (0). 

Then we have 

where 

P(Xl ,. x 2 , x~ , xi' ; s) 

is the joint probability density function of the random variables 

~----------------------NT-----------------------~ 

N 

Fig. 6 - Illustration of the averaging procedure. 
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Xl = x(t - s) = x(to) 

X 2 = X(t) 

X~ = dx(t) I 
dt t=t. 

X~' = d2X~t) I . 
dt t=l. 

2135 

(40) 

For an extremely large number N of members of the ensemble of 
x(t)'s the number of members satisfying the three conditions above 
will be 

pN = (N I1t)x~'p(xI , X2 , x~ , x~' ; s) dX2 dXl dx~' (41) 

and therefore, 

'P(XI , X2 , Xb ,xi' ; s) dX2 dXI dxi' . (42) 

Consequently, 

'P(XI , X2 , Xb , xV ; s) dX2 dXl dx~' . (43) 

l\1ake the change of variables 

X2 = Xl + XbS + 'U. 

Then 

ave { m2(s)} = K1 100 100 
[0000 xi 'u2

p (Xl , Xl + XbS + u, xri , x~' ; s) 

·dx! dxi' du. (44) 

Remark: 

Note that13 

K = 100 
x"p(x~ , x") dx", (45) 
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where p(x', x") is the joint probability density function of the random 
variables X' = dx(t)/dt and X" = d2x(t)/dt2

• Using (20a), therefore, 
and substituting into (44) we can write 

ave {m 2(s)} 

= 100 100 

U2Phw(Xl , Xl + x~s + u I x'(to) = x~ , x"(to) > 0; s) 
o -00 

(46) 

Hence, the present "physical" averaging procedure amounts to taking 
conditional densities in the horizontal window sense. 

J( = ~2'O = 2~ (~:r cxp { -;i}· (47) 

On the other hand, 

( + ' + ' ") 1 { 1 11I1- l
} (48) PXl ,Xl XoS U,Xo ,Xl ;s = (2'7T? Ill! I!CXP -"2X " X, 

where 

X= 
Xl + x~S + u 

xi' 

and Xl is the transposed vector. 1I! is the 4 X 4 cross-correlation matrix: 
{Ilii}, i, j = 1, 2, 3, 4 and it is given in Appendix B. Ill! I is the deter
minant of M. 
After some very lengthy algebraic manipulations which are summarized 
in Appendix B we find [see (137)] 

{ 2)} kl(s) 100 

2 2 VI - A\S) 
ave m (s = V27l' 0 z exp [-!(Z+gl(S» ] A(S) 'P(~) dz (49) 

where kl(s), gl(S), and A(S) are complicated functions of s, expressed 
in terms of the signal autocorrelation function and its derivatives. They 
are given in Appendix B, (138), (135), and (128), respectively. Note 
that they do not coincide with Zetterberg's k(s) and g(s) as given by 
(22) and (23). Other symbols in (49) are defined below. 

A(S) 
(50) 
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(51) 

with 

([)2) 

Consequently, 

Up to this point we have made no approximations beyond those in
herent in the initial model. In the following, additional approximations 
are required to evaluate (53). In Appendix C it is seen that at 8 = 0, 
z = 0 

(54) 

and for 8 and z large 

~ r-...I 'YoZ + 008 , 

where 'Yo and 00 are positive constants defined in Appendix C. The 
function cp(~) is plotted in Fig. 7. It is easily seen that, for ~ > ° 

3 

Fig. 7 - The function cp (~). 
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For ~ > 0 we have 

and for ~ large 

Hence, for ~ large 

cp(~) = 1 + 3
e-

P/2 (1 - -i + ... ). 
V27r~ ~ V27r ~ 

The derivative of cp(~) is very close to V27r for large ~. Namely, 

Note also that 

cp(2) _ 
_ /- - 1.004, 

2v27r 
~(~) f'J 1.0002. 

3v27r 

Hence, for ~ ~ 2 the approximation 

cp(~) f'J ~V27r (55) 

is very good (error less than 1 percent). The approximations hold good 
even for ~ somewhat larger than 1, as seen in the calculations above. 
So that if ~o > 1, as given by (54), it is justifiable, for the sake of sim
plicity, to substitute ~ V27r for cp(~) in the integral (53). 

Another interesting comment here is that ~o, as given in (54), is 
equal to the ratio of the absolute value of the mean of the third deriva
tive of the input process x(t) over its standard deviation. Indeed, the 
mean of x" (to), where to is the beginning of a positive burst, is - b2x{Jbl 

and the standard deviation V (Blb l , where 

(B = Vb 1b3 - b; 
[see Rice's comments above (18) of Ref. 8]. Rice assumed that this 
ratio is large compared to unity. Here the approximation is good even 
with ~o close to 1. With the approximation introduced in (55) and using 
(50) we get 
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and consequently, 

Qx' 0 = loo lel(s) lct;) z\z + gl(S)) exp [- Hz + gl(S))2] dz ds. (56) 

Integrating in the inside integral by parts we get the simplified expres
sion 

5.1 Approximate Evaluation of the Noise Energy per Burst 

The following asymptotic expressions for leI (s) and gl (s) are found in 
Appendix C, for s small 

(58) 

(59) 

and for large s 

(60) 

(61) 

The function g(s) has an approximately linear variation for small 
and large values of s. 

To calculate Qx10 according to (57) we will use essentially the same 
approach used by Zetterberg; namely, use the asymptotic expression 
for gl(S) near 0 [see (59)] and for lees) the expression (58) when s ~ S2 
and (60) when s ~ S2 . Here, S2 is the value of s for which the two ex
pressions are equal; namely, 

(62) 

and 

where 

(63) 
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set 

V2 (2b 2 ) 1/8 X~ 
X = aS2 = 3 bf Vb

l
· (64) 

The nature of approximation of the functions kl(S) and Ol(S) by their 
values for large and small s is indicated in the Figs. 8 and 9. 

The evaluation of the integral (57) for Qx'o is done in Appendix D and 
the result is 

(65) 

where 
e - x 2/2 1 

A(x) = 1 - _ /- P(x) + _ /- cp(x)Q(x) 
V 27r v 27r 

(66) 

( ) (
16 5 1:1 ) 

P X = 2 15 X +:3 X' + X 

Q(x) = 2(~~ x6 + X4 - 1) (67) 

cp(x) = fOO e- z2/
'2 dz. 

x 

The average overload noise power is obtained by multiplying Qx' 0 by 
the average number of bursts per unit time, given approximately in (36). 

The average overload noise is, therefore, 

1 (bi)(3bt)'5 (Xri2) 
No = 4V27r b

2 
~ exp -2b

1 
A (x) , 

t 

/k 1 (s) 

''''--I 
/ ' ..... ......_------

Fig. 8-kl(S) and the approximation used for the evaluation of Qx'o. 

(68) 
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Fig. U-Approximation to 01(S) used for the evaluation of Qx'o. 
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where X and A(x) are given in (64) and (66), respectively. This result 
is equal to Rice's result [see (22), Ref. 8] times A (x). For X large com
pared to unity A(x) is very close to 1 and thus, in this case (equivalent 
to x~ being large compared to vb;) the two results are identical. This is 
very interesting when we note that the route taken in the two approaches 
differ markedly. 

The factor A (x), for X > 0 is a positive monotonically increasing 
function of X varying between 0 and 1. The function A (x) is studied 
in Appendix E and -10 10gloA (x) is plotted in Fig. 10. 

VI. COMPARISON WITH COMPUTER SIMULATION AND EXPERIMENTS 

The new formula for the average slope overload noise power gives 
results for both, flat low-pass Gaussian, and band-limited RC Gaussian 
input signals, that agree in a very satisfactory manner with O'Neal's8 
computer simulation. For flat low-pass Gaussian input signals we have 

b
1 

= (27rfnL 
3 

(27rfo) 4 
• 

5 

Using (64) we get, in this case, 

so that for /CFs 

(3 6)t 
X = ~. /- (leFs) r-..J 0.153(leFs) 

7rv6 

2, 4, and 8 we have, respectively, 
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30~~----------------------~ 

~ 25 
w 
aJ 
U 
~ 20 

XIS 

« 
1.9 10 
9 
o 
"I 5 

~~------~--------~2~------~3 
x 

Fig. 1O-The function -10 log1o A (x). 

Xl = 0.306 X2 = 0.612 

A(XI) rv 5.3 X 10-3 A(X2) = 4.95 X 10-2 

X3 = 1.224 

and the corresponding corrections in O'Neal's curves (Fig. 4 of Ref. 
8) would be 

-10 loglo Aexl) ::::::: 23 dB 

-10 loglo A(X2) rv 13 dB 

-10 loglo Aex3) ::::::: 5.7 dB. 

With these significant corrections the present analytical points pass 
through the computer simulation points, as seen in Fig. 11. Note that 
the slope overload noise as defined depends only on (kF.) and not F •. 

Excellent agreement with computer simulation also occurs for RC 
shaped bandlimited input signals. For RC-shaped signals with spectrum 
given by (6) of Ref. 8 we have 



And from (64) 

SLOPl<} Ovl<}RLOAD NOISl<} 

bl "" 0 .94f~ 

b2 "" 13.2f~ . 

x "" 0.744(kF.) 
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so that for kFa = 1 and 2 we have, respectively, Xl = 0.744 and X2 = 
1.488 yielding a correction to Rice's result of about 10.6 and 4.2 dB, 
respectively. A comparison with Fig. 5 of Ref. 8, reveals the agreement 
with computer simulation. 

For RC-shaped signals (Gaussian and bandlimited) with a = 0.068 
[corresponding roughly to the envelope of a black and white entertain
ment TV signal (FCC standard)] 

b1 = 0.267f~ 

b2 = 3.57f~ 

X = 1.62(kF.) 

so that for kF. = 1, !, and 1 the corrections are, respectively, 18.6, 
9.7, and 3.4 dB. Good agreement with computer simulation in this 
case may be noted by applying these corrections to Fig. 6 of Ref. 8. 

s 
N 

30~--------------------------~ 

25 

20 

15 

10 

5 

o 

GRANULAR 
NOISE 

Fig. 11- Flat bandlimited Gaussian signals-comparison of the new results 
with previous analytic results and computer simulation. 
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Comparisoll of the new :tnalytieal result with experiment will be 
covered elsewhere. 

VII. OTHER STATISTICAL CHARACTERISTICS OF THE OVERLOAD NOISE 

7.1 Probabnity Density 

The technique used in the present paper, i.e., the substitution of 
m(s) for net) and the application of the averaging procedure presented 
in Section V, can be used for the determination of other statistical 
characteristics of the slope overload noise. 

For example, let q(m, s, x~) be the probability density of m(s), where 
s is a given number, i.e., a parameter, taking on nonnegative values. 
Let us define the following auxiliary probability functions q± (m, s, x~) ds, 
the conditional probability that x(t) - x(t - s) =t= x~s lies between 
m and m + dm given that the derivative of x(·) increases (decreases) 
through x~ between t - sand t - s + ds, where m ~ 0 and s > o. 
Clearly, 

q-(m, s, x~) = q+( -m, s, x~) for m < o. 
Also using the same averaging procedure as in Section V and the defini
tion of conditional probability densities in the horizontal window sense, 
we find that [see (20a) and (46)] 

i: 100 

xi'p(xi , X 2 = Xl + x~s + m, x~ , xi' ; s) dx~' dXI 

i oo 

xi'p(x~ , xi') dxi' 

1 100 100 

= - xi'p(x i , X2 = Xl + x~s + m, x~ , xi' ; s) d:ri' dXI . 
J( -00 0 

From (100) and (101) we see that 

q+(m, s, x~) = ;! Iv P(m, s). 
(27r) 2 J( a(s) 

P( " .) is defined in (101) and is determined in (116), Appendix B. 
It is easy to verify that 
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( ') {q+(m, s, xri), for 1n > 0 q m, s, Xu = 
q-(m, s, x~), for m < o. 

Note also that there is a finite probability that 1n(s) = O. Hence, the 
density q(m, s, x~) contains an impulse at 111 = 0 with strength pes) 

pes) = 1 - 2100 

q+(m, s, x~) dm. 

The probability density of m, i.e., without specified s, is clearly 

PM(m, x~) = 100 

q(m, s, x~) ds. 

Clearly, PM(m, x~) contains an impulse at m = 0 of strength 

100 

pes) ds. 

7.2 Other Statistical Characteristics 

Another useful attribute of the noise is its covariance (x (t)n(t) ),W with 
the input random process. This quantity is of interest in comparing 
results obtained by a particular measured procedure with those obtained 
analytically. This will be discussed further in the paper referred to pre
viously. The evaluation of (xn)av has been performed applying the 
method presented in Section V. The calculations are even more com
plicated than the ones employed in the evaluation of (n2(t) )av and we 
will not consider them here. Moments of any order could be worked 
out. The expected value of I net) I has also been determined. There 
are many statistical problems that may be generated by the study of 
slope overload noise in DPC1VI. These problems have their counter-part 
in the theory of level-crossings of random processes, but they are even 
more complicated. 
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APPENDIX A 

Correction of Zetlerberg's Qx'o 

The evaluation of Qx' 0 (Q-y with the notation in equation 4.26 of 
Ref. 7) is not done correctly in Ref. 7 since A(x) in Equation (4.32) 
attains negative values. The integral to be evaluated is 

Qx.' ~ ~ f f k(s)u' exp [-Hu + g(s))'] du ds (69) 

with 

g(s) = as, (70) 

where 

x~Vb;; 
a=---

3b1 

[see (25) and the following comments] and 

{

b2S
4 

f 4' or s ~ SI 

(ii) k(s) = 

2y;o, for s > SI , 

(71) 

where 

(72) 

Make the change of variable 

u + as = v. 

Then 

Set 

XCv) 1" k(v ~ U )u2 du = 1" k(~)(V - Z)2 dz for v ~ aSI = A* (74) 

XCv) y 1" ( )2 4 v
7 

2Y;o/A 4 = 1 = 0 v - z z dz = 105 (75) 

* A. here corresponds to Zcttcrberg's x. (A. is introduced to avoicl confusion with 
the input x(t).) 
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For v ~ ">.. 

XCv) _ Y2 = i~ (v - Z)2Z4 dz + ">..41" (v - Z)2 dz 
21/;0/">..4 - (\ 

_~"7+">..Vl _,,52+,,6 
105 1\ 3 1\ V 1\ v. (76) 

Hence, 

Q = ~ ! 21/;0 [1~ -v'/2 L d 
x' 0 ~;;: a ">.. 4 0 e 105 v 

Consequently, 

Qx'o = ~ ~ ::;.~ [iJ7 (">..) + -3j-X
4
I 3 (">..) 

- 35X5I 2 (X) + 35">..611(">") - lla4.X7cI>(">..)], (77) 

where 

and 

In(">") = 1~ zne-z'/2 dz 

In(X) = i~ zne-z'/2 dz. 

(7S) 

(79) 

(SO) 

Integrating by parts we find the following recursive relations for In 
and J n , respectively, 

Clearly, 

10(">") = cI>(X) 

and 

II(X) = e-~'/2 

In(X) = _An-Ie-~'/2 + (n - 1)Jn- 2(X) 

(Sl) 

(S2) 

(S3) 

(S4) 
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with 

JO(A) = 1>- e- z2
/

2 dz = VZ; - cJ>(A) 
o 2 

JI(A) = 1 - e-P
/

2
• 

Applying these recursive relations we find 

and 

(85) 

(8G) 

(87) 

(88) 

J = 48[1 - e->-'/2(A
6 

+ A4 + A2 + 1)J. (89) 
7 48 8 2 

Substituting in (77) we get 

Qxo' = ~! ~ ~~ ~~ [1 + P 1(A)e->-2/2 - Ql(A)cJ>(A)], (90) 

where 

APPENDIX B 

PI(A) = ii-Afi + ~A4 - !A2 
- 1 

Ql(A) = ii-A7 + i*A5
• 

Algebraic AI anipulations with the Statistical Parameters 

Denote by 

AI = {lLii}(i, j = 1, ... ,4) 

the cross-correlation matrix of the random variables 

Then we have 

lLu = E(XD = 1 

Xl = x(to) 

X 2 = x(to + s) 
X' - dx(to) 

1 - dt 

Xl" = d
2

x(!o). 
dr 
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fJ.12 = fJ.21 = E(X1X 2) = E(x(to - s)x(to» = if;(s) 

fJ.13 = fJ.31 = E(XIXD = 0 

fJ.14 = fJ.11 = E(XIX~') = (_1)2 d2if;~r) I = - bl 
dr T=O 

fJ.22 = E(X;) = 1 

fJ.23 = fJ.32 = E(X2XD = - d~~s) = - ~(s) 

fJ.2.1 = fJ..12 = E(X2X~') = (_1)2 dJs~s) = ;r(.~ 

fJ.a3 = E(X~2) = b1 

fJ.:l4 = fJ.13 = E(X~X~') = 0 

fJ.H = E(X~,2) = b2 . 

1 if;(s) 

}'1 = if;(s) 1 

0 - if;(s) 

-b1 {;(s) 

0 -bl 

-~(s) {;(s) 

b1 0 

0 b2 

Call I }'1 I the determinant of NI. 
It turns out that 
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(91) 

(92) 

1111 I = (b2 - bi){ b1(1 - if;2(S» - if;2(S)} - b1 {if;(s) + bl {;(s)} 2. (93) 

Denote by },li ;(i, j = 1, ... , 4) the co-factors of the matrix }'1. Since 
}'I is a symmetric matrix, M- 1 is also symmetric and lII i ; = lII ji and 

(94) 

These co-factors are given in terms of the statistics of the input process 
as follows: 

JIIl 11 = b1 b2 - bl {;2(S) - b2 if;2(S) 

11112 = - bl (b2if;(s) + b1 {;(s» 

11113 = - if;(s) (b2if;(s) + b1 ((;(s» 

}'114 = bl (b1 + if;(s) {;(s) - if;2(S» 
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M22 = bl (b2 - bi) 

M 23 = tf;(s)(b2 - bD 

M24 = -bl(1f(s) + bl1/;(s» 

M33 = (1 - 1/;2(s»(b2 - bD - (1f(S) + bl t/l(s»2 

M34 = -tf;(S)(1f(S) + blt/l(s» 

M44 = bl (1 - 1/;\S» - tf;2(S). 

It is easily seen that 

xtM-Ix = I it- I (axi + 2bx l + c), 

where 

a = a(s) = Mll + 2Ml2 + M22 , 

a function of s only 

a linear function in xi' and (u + x~s) 
c = M 44Xi,2 + 2[M24(U + x~s) + M34X~] + M 22(U + X~S)2 

(95) 

(96) 

(97) 

+ 2M23X~(U + x~s) + M33X~2 (99) 

quadratic in xi' and (u + x~s). 
Integrating with respect to Xl in (44) we get 

K ave {m2(s)} 

~ (2.-)!~ f u' f xl' exp { 2 I ~ 1(0 - b;)} dx(' du 

1 100 

2 = 3_ ~ uP(u, s) du, 
(2'71}' V a(s) 0 

(100) 

where 

P(u, s) ~ f xl' exp { 2 I ~ I (0 - bJ} dx(' . (101) 

It is seen that 

I ~ I (0 - b;) ~ A(s)x(" + 2B(s, u, x~)x(' + C(s, u, x~), (102) 
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where 

A() = _1_ {M _ (MI4 + M24)2} 
S I ]J;[ I 44 a(s) (103) 

is a function of s only and 

B(s) = Bl(S)(U + x~s) + B2(S)X~ 
= BI(S)U + (SBl(S) + Bls))x~ (104) 

is a linear function in u, with 

B () = _1_ {M _ (MI4 + M 24)(MI2 + M22)} 
1 S I M I 24 a(s) (105) 

B () = _1_ {M _ (MI4 + M 24)(M!3 + llf23)}. 
2 S I M I 34 a(s) (106) 

Further, 

is quadratic in u, where 

C () = _1_ {M _ (Ml2 + M22)2} 
1 S I M I 22 a(s) (108) 

C () = _1_ {M _ (M!2 + M 2Z)(M13 + M23)} 
2 S I M I 23 a(s) (109) 

C () = _1_ {M _ (MI3 + M23)2}. 
3 S I M I 33 a(s) (110) 

Substituting in (101) we get 

P(u, 8) ~ exp { -~ (C - ~)} 

. f x(' exp {-~ (X(' + !)'} dx(' . (111) 

Make the change of variables 

VA (Xi' + 1) =~. (112) 

Then 
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1 () 1 {1 (f B2)} fcc ( B) _~2/" 
:> U, S = A(s) exp -2 C - -A B/"/A 1] - V A C - d1] 

1 {1 (C B2)}[ _B2/2A 1 foo -~2/2 d J = - exp - - - - e - ---=. e 1]. 
A(s) 2 A V A BlvA 

(113) 

Set 

~ = 
B(u, s) 

VA(s) 
BI(s) sBl(s) + B2(S) , 

- V A(s) u - VA(s) Xo (114) 

and 

(115) 

where 

Hence, 

P(u, s) = A~S) exp { -~ (c - ~) }'i'(~). (116) 

Clearly, 

C(u, s) = Cl(S)(1l + X~S)2 + 2C2(s)(u + x~s) + C3(S)X~2 

( - /-( ) *( »2 f
2 [C () C;(s)J = u V C l S + g s + Xo 3 S - Cl(S) , (117) 

where 

(118) 

and Ct , C2 , and C3 are given in (108), (109), and (110), respectively. 
Using these equations and the definition of a(s) in (97) we find 

11l[ 1 [c () - C;(s)J = 1lf _ (11[1:1 + 1lf23)2 
3 s CI(S) 33 a(s) 

We also note that 

{M23(lVIll + M 12) - M 13 (lVI 12 + 1l122) }2 
(Mll lJ!I22 - M~2)a(s) 

(119) 
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[use (95)]. 
From (119) and (120) it follows easily that 

I .ill I [C () - C;(S)J =]I _ ]I22 'i/. 
3 s C

1
(S) 33 bi 

Substituting the expressions for ]122 and ];[33 from (95) we find 

]I _ .i1122~2 _ lMJ. 
33 bi - b

1 

Hence, 

Set 

v = llVC 1(s). 

Then we have 
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(120) 

(121) 

(122) 

,2 

C = (v + g*(S»2 + Xn (123) 
b1 

and from (114) 

~ = - Bl(s) {v + V C1(s) (s + BlS»)x~}. (124) 
V A (s)C1(s) B1(s) 

Using (120), the definitions of B1(s), B 2 (s), C1(s), and C2 (s) in (105), 
(106), (108), and (109), respectively, and the relation 

(125) 

resulting from (95) we find 

(126) 

Hence, (124) becomes 

B 
~ = - V A = "A(s)(v + g*(s» , (127) 

where 
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"X(s) = (128) 

and g* is defined in (118). Note also that 

g*(s) = V Cl(s) (s + ~i:) )X~ . (129) 

From (123) and (125) we get 

B2 ,2 
C - - = (1 - "X\s»(v + g*(S»2 + ~. (130) 

A b1 

Using the value of K given in (47) we find for the quantity P as given 
in (116) that 

~ = j~) (~:)! exp [- !(1 - "X2(S»(V + g*(S»2]~(~). (131) 

Substituting in (100) and using the change of variable as given in 
(122) we get 

ave {m\s)} = (b t /b 2)! 
V27r A(s) va(s) (V C1(S»3 

.100 

v2 exp [-HI - "X2(S»(V + g*(S»2]~(~) dv, (132) 

where ~ and ~(~) are given in (127) and (115), respectively. 
N ow make the following change of variables: 

(133) 

and set 

so that from (129) 

gt(s) = xb: (b,s + >I(s» V A(S)~ B;(s). (135) 
1 A(s) 

Then 

(136) 

and 

{ 2()} k1(s) 100 

2 1( (»2 ~2(s) () d ave m s = V27r 0 z exp [-2 z + gl s] "X(s) ~ ~ z, 

(137) 
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where 

k () = (!b.)! -BI(s) vA(s) 
1 s b2 vIA(S) {A(s)C1(S) _ Bi(s)} 2 

(138) 

Finally, the average energy per burst becomes 

1 100 100 VI - X2(S) 
Qx'o = V271" 0 kl(S) 0 i exp [-!(z + gl(S))2] Xes) cp(~) dz ds. 

(139) 

APPENDIX C 

Asymptotic Behavior of Several Functions of s lor s -7 ° and s -7 00 

Assume that fF(f) is integrable for n less than or equal to 8. For 
bandlimited signals, the usual case _'in practice, 'this requirement is 
automatically satisfied. 

For small s the following Taylor expansions hold: 

2 4 6 S 

( ) 1 b s s s S (8) ( ) 

I/; s = - 1 2! + b2 4! - ba 6! + 8! I/; Os, 

where () is a number such that ° < () < 1 and 1/;(8) (Os) is the 8th deriva
tive of I/;(s) evaluated at Os. 

For a signal bandlimited to the band (0, fo) we have 

I I/;(S)(Os) I ~ b4 ~ (2n-/o)2ba . 

Therefore, the absolute value of the remainder term satisfies the fol
lowing inequality: 

I 
S8 .,,(8)(0) I < b S6. (271"f'1s)2 
8! 'Y s = 3 6! 56 

so that this term will be negligible if (271"10s)2 « 56, i.e., if fos « 1.2. 
In the expansion for the first and second derivatives of ..p(s) the first 
three terms are included and the remainder terms may be disregarded 
for the same values of s. 

Consequently, we have 

2 4 6 

.. ( ) b b s b S S (8)( ) 
tf; S = - 1 + 2 2! - a 4! + 6! I/; 02S 
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with 

o ~ ()l , ()2 ~ 1. 

We, now, obtain the asymptotic behavior of some expressions . Is 
which appear in the functions of s involved in the integral for Qx' •. 

Note that 

(i) 
S2 S4 S6 8 

1 - if;(s) = b1 2! - b2 4! + b3 6! + O(s) 

(ii) 1 - if;2(S) bl s
2 

_ (:~ + '~)S4 + (b~~2 + ~~3)S6 + O(i) 

(iii) tiles) = bis2 - b1 ~2S4 + (2~lt3 + (:~2 )S6 + O(l) 

(iv) \f(s) + bl = ~S2 _ ~~4 + 0(S6) 

(\f(s) + bl)2 = b~S4 _ b:~S6 + 0(S8) 

(v) \f(s) + bl if;(s) = b2 ; bi S2 + b) b2 4 ~ b:>, S4 + O(SO) 

(vi) (\f(s) + b
l 
if; (s)) 2 = (b 2 ~ bi)2 S4 + (b2 - bD ~~l b2 - b:>,) S6 

+ 0(S8). 

Using these formulas and the formulas of definition of the different 
functions of s we find after a considerable amount of algebraic manip
ulations, the following asymptotic expressions for s ~ O. Set 

(i) 

(ii) 

(iii) 

(iv) 

(B = bl b3 - b; . 

1111 I ~ (b 2 ~6 bi)(B S6 

A(s) "-' 9b1 

"-' (Bl 
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(v) 
~(S) 18b t His) = -b BI(s) ~ --3-

I CBs 

(vi) CI(S) ~ ~s~] 

(vii) C2 (s) = ii:) CI(S) ~ - ~S~l 

(viii) A(s)CI(s) - Bi(s) ~ ~~~ ~ 

(ix) 
BI(S) )..(s) = ----- ~ 1 

V A(s)CI(s) 

(x) 
VI - )..2(S) 1 ICE 

)..(s) ~ 3 '\j b
l
b

2 
·s. 

Using the formulas above we find that 

k (s) = - !b: BI (s) vATs) ,-...., b2s
4 

for s ~ 0 
I \j~ Va(s) {A(s)CI(s) _ Bi(s)} 2'-"'" 4 

and 

() _ I( + C2(S») V A(s)C](s) - Bi(s) "-' I ~ f 
g I S - Xl) S C ( ) _ rAi\ ,-...., Xo 3 b 8 or 8 ~ 0, 

] 8 V A(s) 1 

I.e., 

with 

b~ 
a = x ' -· 

o 3b
l 

For 8 ~ 00,1/1(8), -/;(8), and f(s) approach zero. 

The following asymptotic expressions are easily derived for 8 ~ 00: 

(i) 

(ii) 

(iii) 

(iv) 

a( 00) = bl (2b 2 - b~) 

I 1.11 I = b1(b2 - b~) 

2 
A(oo) = 2b

2 
- b; 
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(v) 

(vi) 

(vii) 

(viii) 

(ix) 

(x) 

B2 (00) = 0 

C1(00) = 2b2 b~ b~ 
C2 (00) = 0 

A(00)C1(00) - Bi(oo) = 2b
2 
~ b~ 

X(oo) = _b1_ 

~ 
VI - X2(00) V~b~ 

X( 00) b1 

U sing these expressions we find 

k'Xl = lim lees) = b1 [2 8~'Xl 'J~ 
and 

x's 
g1(S) ~ -V2 for s ~ 00. 

Note also that for ~ as defined in (50) we have 

(i) For z = 0 and s small 

t. = t.o = Xes) () ,-....;3~blb2!. ,~ 
.; .; .... / 2 g1 S = ID Xo 3b s. v 1 - X (s) v.) S 1 

Hence, 

(ii) For s large 

t. ~ V2b2 - bi + V2b2 - bi ,t; + ~ .; - b
1 

Z _ / XoS = /'oZ uos. 
b1 v 2 

APPENDIX D 

Approximate Evaluation of Q:z;IO 

From (57) we have 

Qx10 = 2 i'Xl k1(S) i'Xl z exp [-!(z + gl(S»2] dz ds, (140) 
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where 
gl(S) = as O<S<OO 

~ {kro(~)' , for S E (0, S2) 
kl(S) 

koo , for S E (S2 , 00). 

(141) 

The symbols a, S2 , and koo are defined in the relations (63), (62), and 
(60), respectively. 

Make the change of variables 

V = z + as. 

We then have 

Q = ~ 100 

-Y
2 /21 Y 

7 (V - z) d d .x'o e leI Z Z y. 
a 0 0 a 

Set 

Then 

Q = ~ leo X( ) -Y'/2 d x'o ye y. 
a 0 

For y ~ X = aSl 

X(y) y l Y 

4( ) d 1 6 
k

eo
/X4 = 1 = 0 '1'J y - '1'J '1'J = 30 Y • 

For y ;?; X 

X(y) X6 4 fY 8X6 5 lv2 
k oo/X4 = Y2 = 30 + X x (y - '1'J) d'1'J = Is - X Y + T' 

Consequently, 

Qx' 0 1 J + 1 4 I 5 I + 8 6 ( ) (142) 2koo/ ax4 = 30 6 "2 X 2 - X 1 15 X <I> X , 

where <I>(x), In(x), and In(x) are defined in (78), (79), and (80), respec
tively. 

Applying the recursive relations (81) and (84), we find 

Il(x) = e- x'/2 

Ilx) = xe- X
'/

2 + <I>(x) 

J 6 = 15YZ; - e- x'/
2(x5 + 5x3 + 15x) - 15<I>(x). 
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Substituting in (142) the values of J 6 , 12 , II , we get 

(143) 

where 

(144) 

and 

Q(X) = 2(ttx6 + X4 - 1), (145) 

i.e., 

Q = V27r koo A( ) 
x'. 2 4 X , xa 

where 

e- x '/2 1 
A(x) = 1 - ~ ~ P(x) + _ ~ cp(x)Q(x). (146) 

·V 27r v 27r 

Using the expressions (63), (64), and (60) for a, X, and !coo , respectively, 
we get 

Q.,. ~ ~ (:~')' b;l A (x) ~ (Rice's Results)· A (x) . (147) 

APPENDIX E 

The Function A(x) 

The function A(x) as defined in (66) is a monotonically increasing 
function of X in the interval (0, (0) with A (0) = 0 and A ( (0) = 1. 

The computation of A(x) for different values of X was performed using 
the computer and 10 loglo I/A(x), the correcting factors of Rice's 
result, is shown in Fig. 10. 

Expanding into Taylor series we can find that for X small 

A( ) 4 ~ 5 (113 16) 6 4( 2) X ~ X - 2 - X + _ / + 15 X I"'V X 1 - 1.6x + 1.44x ; 
, 7r 120v 27r 

whereas, for X large, using the asymptotic expansion for 

_1_ cp(x) = 1. erfc ( X _) 
y'2; 2 V2' 
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we get 
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A Generalized Nyquist Criterion and 
an Optimum Linear Receivel" for 

a Pulse Modulation System 

By D. A. SHNIDMAN 

(Manuscript received June 27, 1967) 

A pulse modulation system is modeled with JJI waveforms {sm(t)}:f , each 
of which is amplitude scaled and simultaneously transmitted over a single 
physical channel. An infinite pulse train is assumed with signal interval 
T, which is determined by bandwidth consideration of the channel. We 
restrict the receiver to be linear with AI outputs, one for each signal wave
form. 

At a high signal-to-noise ratio the main sources of interference at the 
input to the receiver are the intersymbol interference and crosstalk; by 
crosstalk we mean the interference between the different waveforms. It 
is desirable, therefore, for the receiver to eliminate both types of interference 
and to minimize the remaining error due to additive noise in the channel. 
This constraint on the intersymbol interference and crosstalk is defined as 
the generalized Nyquist criterion. 

The receiver which accomplishes the above is determined for a mean 
square error criterion. Finally, some examples are presented which de
monstrate the ease with whz'ch the generalized Nyquist criterion can be 
used to design waveforms without intersymbol interference or crosstalk. 

1. THE MATHEMATICAL MODEL 

The mathematical model for a pulse modulation system is shown in 
Fig. 1. The M waveforms {sm(t)}:f, which are assumed linearly in
dependent and of equal energy, are simultaneously transmitted over 
a single physical channel. Information is carried on each waveform by 
amplitude scaling the waveforms sm(t) by the real numbers {am}:f which 
are random variables. An infinite pulse train is assumed with signal 
interval T so that the resulting transmitted waveform is 

00 JI[ 

L L a"",smCt - nrC). (1) 
11,=-00 'fn=l 

2163 
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{an,} 
~ }-; 
00 M 

{ a n2 } 
PULSE n=-oom=l - MODULATOR 

{a~M} 

anm rm (t-nT) 
n= -00 m=l 

a nm Sm(t-nT) 

+ r----~ 

LINEAR 
TRANSMISSION 

NETWORK 

LINEAR 
RECEIVER . 

7)(t) 
0- {bnM } 

SAMPLE 
AT t = nT 

Fig. 1- Model of the pulse modulation transmission system. 

Characterizing the linear time invariant channel by its impulse re
sponse, h(t), we define rm(t) as the convolution of 8m (t) with h(t) so 
that the received signal waveform is 

00 },[ 

L: L: anmr mCt - nT). (2) 
n=-OO m=l 

To this the channel adds stationary zero mean noise, 'Y/(t), with cor
relation function neT) and spectral density Net). The received waveform 
is processed by a bank of receivers {Wk} ~[ whose M outputs are sampled 
at times t = nT, n = 0, ± 1, ±2, ... to give bnm which are the estimates 
of the anm • 

If we consider the set {8m (t) } ~[ with our one physical channel as 
comprising JJ;[ different channels then we can refer to the interference 
of the waveform due to 8k(t) with that of 8m (t) (m ~ k) as crosstalk. 

Restricting our attention to linear time-invariant receivers then we 
can characterize the receivers {wd ~[ by impulse response {Wk(t)} ~[ so 
that the output of the receivers can be expressed as 

(3) 

where 

(4) 

The sampled outputs are designated by bnk , 

(5) 
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At high ::;ignal-to-noi::;c ratio (SjN) where 
]I[ 

L v!m(O) 
SjN = m=1 

~ i: i: n(y - X)Wk(X)Wk(Y) dx dy , 

(6) 

the main sources of interference at the input to the receivers are inter
symbol interference and crosstalk. It is desirable, therefore, for the 
receiver to process its input so that the output eliminates intersymbol 
interference and crosstalk; i.e., that 

00 M 

L L apmvmk(nT) = ank (7) 
p=-oo m=l 

for all possible sequences of the anm • This is equivalent to requiring 
that 

m, k = 1, ... ,111 
(8) 

n = 0, ±1, ±2, ... , 

where the Oij are Kronecker delta functions. Further justification for 
imposing this constraint at high SjN is provided in the Appendix. 

vVe use as our error criterion the mean square error averaged ovcr 
the receiver outputs 

(9) 

wherc the expectation is with respect to the random variables an 1" and 
the noise. 

'Ve are now in a position to specify the problem concisely: to de
termine the linear receiver which minimizes the mean square error 
under the constraint that there be no intersymbol interference or 
crosstalk. 

II. A GENERALIZED NYQUIST CRITERION 

A waveform vet) is said to satisfy the Nyquist criterion1 for the 
signal interval T, if 

venT) = DnO n = 0, ±1, ±2, .... (10) 

Denoting the Fourier transform of v (t) by V (I) (upper case letters 
will be used throughout to denote the Fourier transforms of the func-



2166 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER Hl67 

tions represented by lower case letters), we can state that (10) is true, 
if and only if, 

1 f V(t - ~) = 1. 
T a=-oo T 

(11) 

T~is is easily shown using Poisson's sum formula (PapoulisP 

1 f <I>(f - ~) = f e- ia27r !Tc/>(aT). 
T a=-oo T «=-00 

(12) 

If we associate <p(t) with v(t) then (10) implies and is implied by 
(11) . 

Our constraint that the vmk(t) satisfy (8) requires not only that the 
vmm(t) satisfy (10) but also that the M(M - 1) waveforms vmlC(t) (m ~ k) 
be zero at t = nT. We refer to (8) as the generalized Nyquist criterion. 
The equation analogous to (11) is 

1 00 ( a) T a ~oo V mk f - T = Omk • 
(13) 

This will be used interchangeably with (8) in solving the optimiza
tion problem. Since the {V mk (f)} can be checked almost by inspection 
to see if they satisfy (13), the equation is very simple to use. 

III. THE CONSTRAINED OPTIMUM RECEIVER 

The object of this section is to determine the linear receiver which, 
subject to the constraints of (8), minimizes the error expression (9). 
Because of the constraint of (8) we have 

bnk - ank = i: 'Y}(X)Wk(t - x) dx (14) 

so that the error becomes 

J = 1 ~ i: Wm(f)W;(t)N(f) dt (15) 

which is independent of n. 
We are now left with the interesting variational problem of mini

mizing J with respect to all linear receivers W k (f) such that 

(16) 

i.e., which satisfy the generalized Nyquist constraint. In order to do 
this, we vary each Wk(f) by an amount € Tk(f) , where the Tk(f) must 
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be such that (16) is still valid. 'Ve require 

t. .t~ Rm(t - f)[ w,(t - f) + ,r,(t - f)] 

= ~ atoo Rm(t - ¥)Wk(t - ¥) + € atoo Rm(t - ¥)rk(t - ¥) = Omk 

k, m = 1,2, ... , M (17) 

so that r k (f) must satisfy the condition 

f Rm(t - ~)rk(t - ~) = 0 a=-oo T T 
m,k = 1,2, ... ,M. 

The error with variations becomes 

J(€) = ~ t, i: [Wk(f) + €rk(t)][Wt(t) + €rtCt)]N(f) dt 

1 JIf 100 

= M t; -00 Wk(f) Tvt(f)N(f) dt 

+ 1I~ t. Joo [rk(f)wt(t) + rt(f)Wk(t)]N(t) dt 

+ ~ t. i: rk(f)rtCt)N(f) dt· 

J(O) is minimum if (the wdt) are constrained to be real) 

Cfor each k = 1 ... M), 

where r k (f) must satisfy (I8). 
In order to solve for W 7c (f) we manipulate (20) as follows: 

i: rk(t)Wt(f)NCf) df 

= "too il:;2::~/: rkCt)WtCf)N(f) dt 

(18) 

(19) 

(20) 
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Comparing (21) with (18) it can be recognized that (21) is satisfied 
by a WT.; (f) such that 

k = 1, ... ,111, (22) 

where the Zcl.; (f) are arbitrary periodic functions of I with period liT. 
In order to completely specify W k (f) we must determine the Zcl.; (f). 

Substituting (22) into (16), we obtain 

(23) 

m, k = 1,2, ... , m 

since Zcl.; (I) is periodic with period liT. Let 

Lmc(f) = ~ at~ Rm(t - {j)R~(f - {j) / N(t - {j) (24) 

then (23) becomes 

m, k = 1, 2 ... 111, (2;j) 

or in matrix form 

L(f)Z(f) = I, (26) 

where 

and 

are M by M matrices. 
Thus, we have, if L is nonsingular for all I, that 

Z(f) = [L(f)fl (27) 
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l:iO tlmt I L I ~ 0 is a necessary and sufficient condition for a. solution to 
exist. lVk(f) is now completely specified and a realization of the optimum 
constrained receiver is shown in Fig. 2. 

A simple expression for the resulting mean square error is obtained 
from a manipulation similar to that of (21) : 

T !of jl/2T 

J oPt = 71{ L Zmm(f) df· 
1., m=l -1/2T 

(28) 

IV. EXAMPLES 

In this section examples are presented which demonstrate the ease 
with which the generalized Nyquist criterion can be used to design 
waveforms without intersymbol interference or crosstalk. 

4.1 Example 

We start out by making the simplifying assumption that N(f) = 1. 
In addition, if the transmitted waveforms {Sm(f)}:I are chosen such 
that Rm(f), where Rm(f) = Sm(f)H(f) satisfy the equation 

a"$;CIJ Rm(f - ~)R1(f - !f) = dm Omk , (29) 

then a solution exists since the L matrix becomes a diagonal matrix 

L = Iff,; (30) 

Fig. 2 - A realization of the optimum constrained receiver. 
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and 

(31) 

with the resulting error 

1 II! 1 
J = - I:-. 

J11 m=J dm 

(32) 

Under these conditions the outputs of the matched filters satisfy the 
generalized Nyquist constraint except for scale factors and the Zcm (f) 
functions need only perform the appropriate scaling. We consider next 
two cases where (29) is satisfied. 

4.2 Case I 

Only the case of M = 2 is presented here in detail although other 
values of M can similarly be handled. 

First, note that since matched filters are used the actual phases of 
the Ri (f) are not important since the output depends only on phase 
difference between Ri(f) and Rj(f). We use the phase of Rl (f) as a 
reference phase. 

R 2 (f) = 

I f I ~ liT 

I f I > liT 

{

ceilcP,(f)+t,.cP(f)) , 

0, 

I f I ~ liT 

I f I > 1/'P 

where .6.¢(f) = .6.¢( -f) ±71" for I f I ~ liT. The sign is chosen so that 
1.6.¢(f) I ~ 71". 

To simplify matters we can choose 

so 

1>0 
1 < 0 

111 ~ liT 

1 I > liT 



Therefore, 

PULSE MODULATION SYSTEM 

J 
. 2 

-JC, 
. 2 

1 
JC, 

0, 

o ~ f ~ liT 

-liT ~ f < 0 

elsewhere. 

atoo Rl(f - ~)R~(f - f,) = jc
2 

- jc~ = 0 (Fig. 3). 

Similarly, 

and 

SO 

and 

1 -T 

J:~ 1 R.,(f - ~) I' ~ 2c' 

IR 1(f)12 = IR 2(f)12 

c 2 

1 

T 

/jR 1(f) R2*(f) 

1 

1 
J o =~. 2c 

f 

t 
~O 

(\J 

;> 

T '" f 

m = 1,2 

-2T -T o 
TIME, t 

T 

Fig. 3 - Case I transforms at the output of the matched filter. 

2171 
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In the time domain we have 

V12(t) = c2( cos 2;t - 1) / 7ft 

and it is easily seen that 

v12 (nT) = 0 for n = 0, ±1, ±2, .... 

4.3 Case II 

Consider a set of band-limited frequency multiplexed signals {Rm(f)} ~[ . 
The bandwidths are (1 + 'Ym + 'Ym-l)IT where the 'Ym(O ~ 'Ym ~ 1) 
are parameters associated with the excess rolloff bandwidth, and the 
signals are separated in frequency by liT hertz so that the waveforms 
overlap the adjacent signals only. As in Case I, the actual phases are 
unimportant because of the matched filters so only phase differences 
CPm(/) from a reference phase cp(/) will be important. 

Rm(f) = I Rm(f) I exp j[¢(f) + ¢m(f)] 

Rm(f)R!+l(/) = I Rm(/)Rm+1(f) I exp j[¢m(f) - ¢m+l(f)]. 

We define roll-off characteristics as a real function Qm (f) such that 

Qm(f) = 0 for I f I > ;11 
and 

Qm(f) = -Q",( -I); for I f I ~ ;r· 
We can specify the Rm (f) as follows: 

I Rm(f) I 

= em ~l'ect (I f I;: m) + Q. (I J I + 2~ - ;) + Q m H ( - I f I - 2~ _ 1;) 
~m(f) = ¢m(f) - ¢m-l(f) 

and 

~m(f) = ~m( -I) ± 7f. 

'Vith the RlIl (f) specified it is easily checked that 
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!Rm(f) !!Rm-1(f)! exp [-j.1m(f)] 

~ CmCm-,{Em(t - m :;: ~) exp [jLlm(t)] 

+ Em (/ + m :;: t) cxp [- jLl,,.(f)]} , 

where Ell! (f) is an even real function with bandwidth 2Ym-dT. 

,Ve can specify ~11! (f) as 

f > 0 
.1",Cf) 

f < 0 

without really restricting ourselves. The resulting RmR'!_l is shown 
in Fig. 4. Looking at Fig. 4, we see by inspection that the {Rm} tf satisfy 
(29). 

f 

(f m-l/2)/V ~\ 
Q m - -T- (f m+ 1/2 ) 

-Qm+l +-T-

f 

(f m _1/2) 
~-Bm - T 

f 

Fig. 4 - Case II transforms at the output of the matched filter. 
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APPENDIX 

The Optimum Mean Square Error Receiver 

In this appendix the optimum mean square error receiver is obtained 
and it is shown that as SIN -7 C() this receiver and the optimum con
strained receiver of Section III converge to the same receiver when the 
{and are stationary. 

The general expression for the mean square error is 

1 ]I[ . { " 00 IV 

J n = Jll ]; E a;'m - 2 1'~oo {; anma1'kvkm(nT - pT) 

00 ill 00 ,1l 

+ L L L L a1'kariVkm(nT - p'P)vim(n'P - rT) 
1'=-00 k=1 r=-oo i=1 

- 2anm i: l1(x)wm(nT - x) dx 

+ 2 1'too t, a1'kVkm(nT - pT) i: 'r/(x)wm(nT - x) dx 

+ f(: l1(x)1](y)wm(nT - x)wm(nT - y) dx dY} 

1 ]I[ [ 00]1[ 

= Jll]; P::, - 2 1'~oo {; p~vkm(nT - pT) 

00 ilf 00 M 

+ L L L L p~;vkm(n7' - pT)vim(nT - rT) 
1'=-00 k=1 r=-oo i=1 

where 

Since the {and are stationary we can write 

n,1' _ (n-1') 
Pmk = Pmk • 

(33) 

(34) 

(35) 
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Defining 
00 

Jll mk(f) = L p~n;' exp ( - j2n-/nT) , (36) 

then J n can be written as 

which is independent of n so the index has been dropped. 
Using variational calculus we obtain as a necessary condition on the 

optimum {W m(t)} ~I that they satisfy the equations 

J; R~(f{ 1;,lIf.,,(f) ~ at R,(f - ¥)W,(f - ¥) - lIfmk(f) ] 

+ Wk(f)N(f) = 0 

The solutions for the {}Vk(f)} i1[ are 

M R~(f) 
WJf) = ~ N(i) Yck(f) 

k = 1,2, ... ,J11. 

k = 1, 2, ... ,111, 

(38) 

(39) 

where the Yck(f) are periodic functions of t with period liT. In order 
to see that the {Wk(f)}:1 of (39) satisfy (38) for the appropriate deter
mination of the {Yck(t)}, substitute (39) for Wk(f) in (38) to obtain 

M [M 1 00 

,~R;,(f) ~ J11m;(f) T a~oo Ri[f - (aIT)] 

M R~rf - (a/T)l ] 
. ~ N[f - (a/T)] Ycn[f - (a/T)] - J11mk(f) 

M 

+ L R~(f) Yck(f) = 0 k = 1, 2, ... ,J11 (40) 
c=l 

or since the Y el~ (f) are periodic 

J; R~(f{ Ym,(1) - M.m(1) + 1;, Mm,(I) ~ L,/f)Y,,(j) ] ~ 0 

k = 1, 2, ... ,J11, (41) 

where Die (f) is as defined in (24). 
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Defining AI (f) and Y (f) as matrices whose elements are, respectively, 
M i .i (f) and Y ij (f) and a column vector R (f) whose clements are Rm (f) 
(41) can be written as 

R(ff(Y(f) - M(f) + ll1(f)L(f) Y(f)) = 0, (42) 

where L (f) is as previously defined. Unless R (f) = ° we require that 

(J + ll1L) Y = ll1 

Y = (I + ll1L)-lllI. 

(43) 

(44) 

vVith Y so specified (39) satisfies (38) and the resulting mean square 
error IS 

1 JI[ r JI[ JOO lIf R (f) ] 
J opt = ll1 ]; L p~~ - t; -00 ll1 mk(f)R1(f) ~ N(f) Y:m(f) df . (45) 

Manipulating as in (21) and using the periodicity of J.11 (f) and Y (f) 
we then obtain 

T JI[ jl/2T [ JI[ JI[ ] 

J opt = ~f]; -1/2T lllmm(f) - (; ~ Mmk(f)Ltc(f)Y:m(f) df· (46) 

Lastly, recognizing that the integrand is Y!m(f) we get 

T JI[ jl/2T 
J oPt = llf]; -l/2T Y!m(f) df· (47) 

Finally, we wish to show that the optimum and constrained optimum 
receivers approach the same limit as SIN ~ 00. 

"\Ve define U to be the resulting L matrix when the SIN is unity, 
and we write for any other SIN 

L = aU, (48) 

where a is proportional to the signal energy. Since both receivers are 
of the same form, we need only show that Y ~ Z as a ~ 00. 

Y = (AIL + I)-11l1 

= (alllU + I)-1M 

= [(l/a)U- I M- I 
- (1/a2)(U- I M- I )2 + (1/a3)(U- I M- I

)3 - ••• Jilt 

= (l/a)U- I + O(1/a2), (49) 

where 0 (1/a2) indicates terms dropping off at least as fast as 1/a.2 As 
a ~ 00 the terms of order 1/a2 become negligible with respect to the 
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1/a term. Using the fact that L-1 = 1/a U-1, we obtain the result 

lim Y = L -1 = Z, (50) 
a-co 

and the two receivers converge and the constrained optimum IS opti
mum. 
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Communication Cllall1lels 
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The restriction imposed by linear distortion on the flow of information 
in a communication channel is well known. In the past, the effects of this 
distortion have been alleviated through the use of manually adjusted equaliz
ing or compensating networks. The adjustment of these networks is too 
cumbersome a process for the user of a switched communication serv1:ce 
to perform each time a new connection is established. Therefore, in present 
switched networks, control of linear distortion is imposed only on the in
dividual links. Variation between links and variation of the number of 
links in tandem result in channels with distributed performance. Lower 
distortion can be achieved by equalizing the overall connection. 

Recent developments have made automatic linear distortion removal 
(equalization) practical for synchronous data communication systems. 
Here an implementation is described wherein these techniques have been 
generalized so that automatic equalization can be provided for a communica
tion channel independent of the signal format used in that channel. For a 
number of applications the speed of automatic equalization makes efficient 
end-to-end equalization practical in a switched network. 

The implementation described affords automatic minimization of the 
discrepancy between a specified response and the actual response of a 
linear transmission medium. Thus, on the one hand, it permits the automatic 
reduction of transmission defects such as signal dispersion and echoes, 
and, on the other hand, it permits the mechanized synthesis of filters with 
specified transfer functions. 

This paper reviews the general aspects of automatic equalization, de
scribes an implementation of a general purpose automatic equalizer, dis
cusses the theoretical performance of such an equalizer as determined 
from computer simulations, and lastly presents results for the equaliza
tion of real channels using the implementation described. 

2179 
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r. INTRODUCTION 

Recent years have witnessed an increasingly intensive investigation 
of automatic equalization teclmiques.1 Equalization, itself, is neces
sary because of the increased demand for efficient use of communica
tion channels. Fixed compromise equalizers have been used in terminal 
equipment but they cannot remove all of the distortion because of 
variation between connections in a switched service. Two factors 
contribute to the distribution of distortion on different connections
differences in the characterist~cs of the individual links that may be 
switched together and differences in the number of links in a connec
tion. Better equalization and, therefore, greater transmission efficiency 
can be achieved by individually equalizing each connection after it 
has been established. Automatic equalization provides a practical 
means for rapidly and efficiently equalizing each connection. 

Several automatic equalization schemes have been published which 
provide equalization for specific, usually synchronous, communication 
systems. Some of the techniques for synchronous data transmission 
systems are those of CoIl and George,z,3 DiToro,4 Funk et al,5 and 
Lucky and Becker et a1.6

, 7, 8 These techniques are very powerful for 
the synchronous data transmission systems for which they are in
tended. Furthermore, the implementations of these equalization strat
egies possess considerable economy of design because they rely upon 
the peculiarities of the particular synchronous transmission systems 
for which they are intended. But, their use is restricted to such systems. 

The present paper is concerned with an equalization technique which 
is essentially independent of the transmission format to be used on the 
channel. The inclusion of such an equalizer in a communication chan
nel is shown in Fig. 1 in the simplest form. A test signal is transmitted 
through the channel and the equalizer controller adj usts the equalizer 
until optimum equalization has been attained. The equalizer adjust-

DATA 
TRANSMITTER 

Fig. 1-Preset mean-square channel equalizer. 
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ments are then locked and the equalized channel used for commum
cation. 

"Optimum" equalization is here defined as the minimization of the 
mean-squared difference between a specified channel response and the 
actual equalized channel response. Much work has been done on 
the problem of optimization under a mean-squared error criterion. The 
most famous of these is Wiener's classic paper.9 A paper by Narendra 
and McBride10 also relates to the present work. 

In the equalization schemes for synchronous data transmission/-8 

the data receiver is inside the equalizer control loop and the actual 
data transmitter is used to generate the test signal. Here, the equalizer 
can correct for distortion introduced by imperfections in the trans
mitter and receiver as well as in the channel, resulting in very effec
tive equalization. A general purpose equalizer of the type described 
does not have this capability (by intent) but instead has the advantage 
that it is not tied to a single communication system. The equalized 
channel can be used by arbitrary information transmission systems. 
The equalization is generally carried out at passband frequencies and 
the control circuitry could be shared by a number of communication 
channels. Thus, the technique described may be an attractive one 
when it is necessary to provide equalization for a variety of customers 
whose communication channels terminate at a common location. 

The equalizer described here uses a transversal filter to operate on 
the channel response so that the equalized channel response approxi
mates the desired response in an optimum fashion. Again, the criterion 
used to determine this optimum fashion is the minimization of the 
mean-squared error. 

In summary, this paper reviews some of the general aspects of auto
matic equalization, describes an implementation of a general purpose 
automatic equalizer, discusses the theoretical performance of such an 
equalizer, and presents results for the equalization of real channels 
using the implementation described. Some laboratory results are also 
presented for the application of these techniques to a network synthesis 
problem. 

The present paper expands on two previous brief disclosures in the 
literatureY·12 

II. THE TECHNIQUE 

2.1 The Basic Mathematics 
The notion of the mean-square equalizer starts in the frequency 

domain. Here, the channel transmission characteristic is equalized so 
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that it best resembles the ideal transmission characteristic. This "best" 
fit is made using a mean-square error criterion. Thus, the distortion 
to be minimized is 

El = i: \ H(w) - G(W) \2 dw, (1) 

where H (w) is the equalized channel characteristic and G (w) is the 
ideal channel characteristic. Notice that this errol' criterion includes 
both phase (and consequently delay) and amplitude information in 
:the goodness of fit. 

The error criterion given in (1) can be made more general by adding 
information concerning the relative importance of errors at various 
frequencies. For example, in most information transmission schemes 
the maj or portion of the signal energy is placed near the center of the 
band, so that the equalization should be most perfect there. Since rela
tively little signal energy is put near the band edges, the quality of 
equalization is not of as great concern in this region. Therefore, a real, 
nonnegative weighting function IW (w) 1

2
, which assigns a relative 

weight IW (w) 12 to the equalization error at each frequency w, is in
cluded in the criterion. The resultant criterion is 

E = i: \ H(w) - G(w) \2 \ W(w) [2 dw. (2) 

Usually the ideal characteristic G (w) would have flat amplitude and 
linear phase within the band of interest, while the spectral weighting 
function 1 W (w) 12 would resemble the spectral density of the signal 
likely to be transmitted, if this spectral density is known beforehand. 
The system is shown in block diagram form in Fig. 2. 

The equalized channel characteristic is the product of the unequal
ized channel characteristic X (w) and the equalizer characteristic C (w) . 

H(w) = X(w)C(w). (3) 

The frequency characteristic function of a (2N + 1) - tap transversal 
equalizer with tap gains Cn , n = - N, ..... , N spaced at T second in
tervals is 

N 

C(w) = L cne-inwT. (4) 
n=-N 

Notice that this response is periodic with period 27r /T, the real part of 
the response being even about frequencies 2n7r / T and the imaginary 



AUTO~IATIC EQUALIZER 2183 

Fig. 2 - Mean-square equalizer. 

part odd about these frequencies. Thus, the transversal equalizer offers 
independent control of the overall frequency response of the system 
over only one of the frequency intervals n7r/r ~ w ~ (n + 1)7r/r. 
The value of the tap spacing r must be picked such that the desired 
equalization frequency range is included in one of these intervals. A 
frequent case is that where the channel is essentially low-pass in nature. 
Here the tap separation r will be the Nyquist period 1/2W, where W 
is the highest frequency of interest. For bandpass channels, r will 
generally have to be less than a Nyquist period. 

The objective is the minimization of the distortion E as a function of 
the (2N + 1) variables Cn in automatic fashion. Because this minimiza
tion is more easily carried out in the time domain, Parseval's theorem 
is used to obtain an equivalent form for (2): 

E = i: I [k(t) - get)] * w(t)} 2 dt. (5) 

In (5), k (t) , g (t), and w (t) are the impulse responses corresponding to 
the frequency responses H (w), G (w) , and lV (w) , respectively, and the if 

symbol is used to represent convolution. 
If x (t) is the impulse response of the unequalized channel, the 

equalizer output response is 

N 

k(t) = L cnx(t - nr) (6) 
n=-N 
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and (5) can be written 

E = L: tt C.xU - nT) * wct) - get) • W(t)}, dt. (7) 

It can easily be demonstrated that E is a convex function of the tap 
gains Cn ; n = - N, N. Thus, there is a single minimum of E and this 
occurs when the (2N + 1) derivatives aE / aCn are zero. Setting these 
derivatives to zero gives (2N + 1) simultaneous linear equations which 
can be solved to effect a minimization of E. If the partial differentia
tion is carried out with respect to a particular tap setting (say Cj), the 
following relation is obtained: 

aE foo 
aCj = 2 -00 {h(t) * wet) - get) * w(t)} {x(t - jT) * w(t)} dt, 

-N ~ j ~ N. (8) 

The set of (8) contains all the information required for automatic 
optimization. First, if these equations are set equal to zero and solved 
for the cn's, the desired tap coefficients are obtained. Second, if arbi
trary values are chosen for the Cn's, the set of (8) dictates the direc
tion in which the coefficients must be changed to reduce the error E. 
Further, a comparison of the set of (8) with Fig. 3 yields a technique 
which facilitates the calculation of the partial derivatives which, in 

DISTORTED 
CHANNEL 

RESPONSE 

I 

t 
I 

r--------J 

TAP 
SIGNAL 

X(t-jT) * W(t) 

ERROR 
SIGNAL 

Fig. 3 - Mean-square transversal equalizer. 

EQUALIZED 
CHANNEL 

RESPONSE 

h(t) * w(t) 

g(t) * W(t) 
IDEAL CHANNEL 

RESPONSE 
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turn, provides the basis for an algorithm for automatic equalization 
under the mean-square error criterion. 

2.2 Basic Implementation 
The tapped-delay line structure which forms the basis of a trans

versal filter is shown in Fig. 3. The "attenuators" have the capability 
of supplying both positive and negative weights. The first term in the 
set of (8) is simply the error signal, or the difference between the 
equalized channel response and the ideal channel response. The sec
ond term, which multiplies the first, is the signal at the jth tap when 
(8) is written for dE/dej. Thus, the partial derivative of the distortion 
with respect to a particular attenuator setting is given by the time
integral of the product of the error signal and the signal at the par
ticular tap being considered. In other words, the partial derivative is 
given by the cross-correlation of the error signal with the tap signal. 

Coincident with the start of the equalization process, the various 
cross-correlation coefficients for all of the delay-line taps are calcu
lated by the correlators. The polarity of a particular cross-correlation 
coefficient indicates the polarity of the partial derivative of the dis
tortion with respect to the corresponding tap weighting coefficient. 
Because of the convexity of the criterion this polarity information 
indicates the direction in which the tap weight must be changed to 
reduce the distortion. When all cross-correlation coefficients become 
zero, no further adjustment of the weights can lower the distortion 
and the desired equalization is achieved. 

Some feeling for the algorithm can be obtained from the following 
argument. The signals at the various taps contribute to the error 
signal in linear fashion. The best that the equalizer can expect to 
achieve is the elimination of any systematic contribution between the 
tap signals and the error signal. Under a mean-squared error criterion 
the measurement of such a systematic contribution is cross-correla
tion. When all the cross-correlation coefficients are zero, nothing fur
ther can be done to reduce the error. 

2.3 Related Applications 
In the course of equalization, an automatic equalizer is called upon 

to perform a network synthesis. Specifically, it synthesizes that net
work within its repertoire which results in the minimum mean-squared 
error. It is possible to use the automatic equalizer simply as an auto
matic network synthesizer. 
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The distinction between these two cases (channel equalization and 
network synthesis) is made in Fig. 4. Fig. 4(a) shows the conventional 
application of the equalizer wherein the equalizer strives to first deter
mine and then synthesize the function 

C(w) r-.J I/X(w), (9) 

where X (w) is the frequency response function of the distorting chan
nel. If the equalizer could perfectly synthesize I/X(w) (plus an arbi
trary fiat time delay) the distortion would be completely removed. 
The use of the equalizer for network synthesis is shown in Fig. 4 (b) . 
Here, the transversal filter with complex frequency response C (w) 
strives to approximate A (w) directly so that the quantity 

E = i: 1 A(w) - C(w) 12 dw (10) 

is minimized. As in the case of channel equalization the error can be 
given a frequency sensitive weighting, W (w) . 

So far, the discussion has centered upon an equalizer of the trans
versal filter type (as in Fig. 3). This is by no means the only possibil
ity, and a more general equalizer/synthesizer is shown in Fig. 5. The 
common ground shared by the schemes (as shown in Fig. 3 and 5) is 
that both rely upon the sum of weighted responses. The parallel net-

DISTANT 
TRANSMITTER 
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TRANSMITTER 
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FI LTER 

A(w) 

MODEL OF 
DESIRED FILTER 

(b) 

Fig. 4 - (a) Channel equalization. (b) Filter syntheses. 
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Fig. 5 - Generalized mean-square equalizer/synthesizer. 
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work layout of Fig. 5 has greater flexibility than the series network 
layout of Fig. 3. The series layout has the advantage that much of the 
filtering necessary for one particular response is performed by the 
preceding networks. 

For practical reasons only it is required that the responses of the 
various networks shown in Fig. 5 be linearly independent; it is 
desirable (but by no means necessary) to have network responses 
orthogonal to each other so as to minimize the interaction between the 
setting of the various weighting coefficients. The desirable orthogonal
ity results when (11) is satisfied. 

i :;6. j. (11) 

In (11) the Yi (w) are the transfer functions of the various networks 
and X (w) the Fourier transform of their common input. A discussion 
of various sets of such orthogonal networks may be found in Lee.13 

If X(w) is constant from dc to fl Hz and if the taps on a delay line 
are spaced at 1/2fl second intervals, the desired (but again not neces
sary) orthogonality is obtained. In the case of the equalization of a 
communication channel, orthogonality can not usually be obtained. 
Here X (w) is affected by the amplitude response of the distorting 
channel and this of course is unknown, a priori. 

An application closely related to network synthesis is that of a 



2188 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1967 

relatively new technique for echo suppression: echo cancellation. This 
problem most commonly occurs in long-haul voice communication. 
Here the possibility of an improperly terminated hybrid makes un
desirable returned echoes probable. These echoes are generally dis
persed in time by the transmission medium. Previous techniques have 
introduced attenuation into the echo path. The recently developed 
technique uses, instead, principles identical to those developed here 
to generate a replica of the echo. The actual echo and its replica are 
then added together in such a fashion that they cancel. This can be 
achieved automatically and adaptively as discussed in Refs. 14 
through 17. 

2.4 Performance in the Presence of Noise 

In the network synthesis problem, the environment is largely under 
the control of the designer and as a result noise represents a negligible 
problem. This is not the case for equalization, where noise is definitely 
to be reckoned with. Noise effectively alters the equalized channel's 
frequency characteristic. It will be shown in what follows that the 
change in the frequency characteristic is a desirable one, i.e., the total 
mean-square error is minimized. 

Noise also increases the settling time in a very complicated fashion. 
However, in the implementation discussed, this increase is very small 
and for that reason will not be further discussed here. 

2.4.1 The Mean-Square Criterion in a Noisy Environment 

In the process of equalizing a communication channel to approach 
the desired flat amplitude and linear phase-frequency responses, care 
must be taken that the noise in the channel is not increased to harmful 
levels. Ideally, when noise is present the equalizer should mini
mize the average total error consisting of both the component result
ing from the imperfect channel frequency characteristic and the com
ponent resulting from noise. If the spectral weighting function W (w) 
is chosen properly, the equalizer described here attains this objective. 
The noise in the channel is assumed to be the same during and after 
equalization. It will be shown that the proper choice (in the sense 
above) is a W{w) function which makes the equalizer test signal's 
power spectrum duplicate the information signal's power spectrum. 

Consistent with the notation used previously, let the channel [with 
impulse response x (t)] be used to transmit information w (t). (The 
square of the amplitude frequency response of the error weighting 
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filter is thus picked to be identical with the power spectral density of 
the transmitted signal.) The received noise YJ (t) will be taken as a 
sample from a stationary random process. Thus, the received signal, 
y (t), is given by 

y(t) = w(t) * x(t) + 1](t). (12) 

The error criterion En is again taken as the average mean-square error 
between the equalized received signal h (t) and the transmitted signal 
passed through the ideal, noiseless channel G (w). 

En = ([h(t) - w(t) * g(t)J2). (13) 

The brackets < ) denote a time average. The equalized signal h (t) IS 

given by 

N 

h(t) = L Cn [1](t - nr) + w(t) * x(t - nr)] (14) 
n=-N 

using the transversal filter equalizer of Fig. 3. As before, the partial 
derivatives of the distortion are computed with respect to the various 
ta p gains Cj. 

~~~ = 2([h(t) - w(t) * g(t)J[1](t - jr) + w(t) * x(t - jT)]). (15) 
1 

vVhen this relation is compared with Fig. 3, it is seen that the expected 
value of the output signal of the cross-correlator is given precisely by 
(15). Thus, the equalizer does minimize the total expected mean
squared error in the presence of noise. Again, this is true provided 
that the test signal used for purposes of equalization has a spectral 
density identical to that of the signal to be transmitted over the 
equalized channel. 

Often the power spectrum of the information transmission signal is 
not known beforehand. In this instance a flat weighting can be used. 
Examples of the effect of various weighting functions are given in 
Section IV. 

III. IMPLEMENTATION 

This section is devoted to the description of an implementation of a 
general-purpose automatic equalizer. The discussion of the imple
mentation will be broken down into three parts: The automatic 
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transversal filter itself, carrier recovery, and timing recovery. The 
first part is of general interest and pertinent to both the problems of 
automatic equalization and network synthesis; the second and third 
parts are peculiar to the equalization process. The need for carrier 
recovery arises because of the incidental modulation which can occur 
in some transmission channels (notably those involving carrier facili
ties). Timing is needed to ensure the proper synchronization of the 
desired signal generated at the equalizer with the signal received from 
the distant transmitter. 

Throughout this discussion, reference will be made to Fig. 6. 

3.1 Implementation of the Automatic Transversal Filter 

Many sets of functions could have been used as the basis functions 
for the equalizer. Only one set, the set of functions generated at regu-

DISTANT TRANSMITTER 

TIMING 

Fig. 6 - Equalizer block diagram. 

EQUALIZED 
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larly spaced taps on a delay line, will be discussed here. There are 
two reasons for this, the first being that the transversal filter has been 
found to be a reasonably efficient means for the removal of distortion 
and the second being that considerable experience with the use of 
tapped delay lines is available.1 

In the selection of an appropriate delay line, three parameters must 
be established: bandwidth, tap spacing, and number of taps. Because 
the equalization is carried out at passband, it is clear that the usable 
bandwidth of the delay line must be at least coincident with the chan
nel's bandwidth. Often, as in a telephone voice channel, the passband 
extends sufficiently close to de that it is reasonable to use a line which 
provides delay from de to the upper frequency limit of the passband. 

The tap spacing has already been touched on in Section 2.1. For the 
case just mentioned, the tap spacing T was chosen equal to the recip
rocal of twice the upper band-edge frequency, thus making the tap 
spacing slightly smaller than the Nyquist interval. The alternative in 
this case would be separating the taps by the Nyquist interval and 
providing additional, frequency-independent phase shifting networks 
at the various taps. This is equivalent to translating the passband 
into a comparable low-pass channel, equalizing, and retranslating to 
passband. 

The number of taps necessary depends on the nature and degree of 
the dispersion (or distortion) likely to be found in the channel and 
on the precision of the equalization desired. A very rough approxima
tion can be obtained from paired-echo theory.18 This estimate equates 
the necessary number of taps to four times the number of cycles in the 
highest frequency Fourier series component needed to represent the 
distorting frequency characteristic function. The accurate determina
tion of the necessary number of taps can be made only by case-by
case calculation. Examples showing the effect of a varying number of 
taps will be given later. 

The attenuators associated with each tap on the delay line are 
capable of providing both positive and negative weights to the tap 
signals. The attenuators are controlled by digital counters composed of 
a number of binary memory elements. These are connected in such a 
fashion that the total count can be increased or decreased by one at 
any time and are therefore given the name up-down counters. All the 
attenuators are changed at the same time by a common clock. The 
outputs of the binary elements control the solid-state switching of 
constant-resistance ladder networks. A full count correRponds to a 
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normalized tap weight of + 1, a zero count to -1, and a half-full count 
to O. Each attenuator is thus a kind of granular potentiometer with 
constant increments. The number of increments is determined by the 
number of binary elements and for K elements is equal to 2K. 

The number of steps in the attenuator and the relative ranges of 
the attenuator determine an upper bound on the accuracy of the 
equalizer. Taking into account the required polarity information and 
assuming the attenuator settings to be off by half an increment, the 
accuracy to which an attenuator may be set is 1/ (2) K. If there are 
(2N + 1) taps, then the maximum signal-to-noise ratio (considering 
the residual distortion as noise) attainable is 

or 

(2)2K 
(S/NhE S = 10 loglo (2N + 1) dB 

(S/N)UE S r-../ 6K - 10 loglo (2N + 1) dB. 

(16) 

(17) 

In the implemented equalizer of 19 taps and 10-bit attenuator-counters 
this residual signal-to-noise ratio is about 54 dB. The relations above 
assume the ranges of all attenuators to be the same. Often the char
acteristics of the channels to be equalized permit the ranges of the 
various attenuators to be tapered as one moves from the center to
wards the ends of the delay line. This would make the above estimate 
somewhat pessimistic. 

The settings of the attenuators are controlled by the cross-correla
tors whose inputs are the error and delay line tap signals. The 
multiplying function necessary in measuring cross-correlation is ac
complished through the use of a switched modulator driven by a 
pulse-width modulated signal. The output so obtained is directly pro
portional to the normalized cross-correlation coefficient and the magni
tudes of the two input signals. This particular scheme was selected 
from the many available because first, it is capable of handling the 
very large dynamic ranges of the two input signals and second, it 
determines the true cross-correlation, thereby guaranteeing conver
gence for all reasonable input signals. 

The measurement of cross-correlation also requires integration in 
time, in fact, integration over the infinite interval. This is, of course, 
simply too long to wait. A simple resistor-capacitor low-pass filter 
provides a suitable approximation to real integration. 

The outputs of the low-pass filters in the correlators are sliced about 
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the zero level. The polarity of the output signals from the slicers deter
mines whether the corresponding counter is incremented or decre
mented when a repetitive clock pulse occurs:* (The repetition rate of 
this clock pulse will be discussed later.) vVhen the equalization 
reaches equilibrium, the clock pulses are removed and the attenuator 
weightings are retained permanently by the binary memory elements. 

An equalizer consisting of the elements just described is shown in 
Fig. 7. The tapped delay lines are shown clustered in the top left
hand corner. The remaining cards in the top row are the resistive
ladder attenuators. There are 20 attenuators, 19 associated with the 
19 delay-line taps and the remaining unit serving as part of the au
tomatic gain control loop which regulates the signal level on the delay 
line. The two rows below the attenuators serve only as lamp indicators 
for the attenuator settings. The two rows below the lamps contain 
the binary memory elements and associated logic. The bottom row of 
cards consists of the cross-correIa tors. This equalizer was constructed 
for voiceband use; the delay line has a usable bandwidth in excess of 
3,000 Hz, and the tap spacing is 150 microseconds. Examples of its 
performance will be given in a subsequent section. 

3.1.1 Settling Time 

The settling time (the time required for the equalizer to reach 
equilibrium) is determined in large measure by the time-constant of 
the low-pass filter in the correlators and the frequency of the clock 
which controls the counters. 

Nothing has been said to this point about the nature of the test 
signal used to determine the equalizer settings. The test signal is a 
passband signal obtained by modulating a smoothed pseudo-random 
sequencet into the passband frequency range. The pseudo-random 
sequence19 was used because this facilitates the generation of identical 
signals at the transmitter and receiver. The smoothing is done in ac
cordance with the error spectrum weighting filter W ((1)) ; the modula
tion is necessary because of the likelihood of frequency offset on car
rier transmission facilities. These subjects will be treated in greater 
detail later. 

The pseudo-random sequence has a periodic auto-correlation func-

* The magnitude of the cross-correlation coefficients can be used to control the 
rate of change of the attenuator settings as in Refs. 10, 15, and 16. 

t The pseudo-random sequence is a repetitive sequence of binary digits chosen 
in a random manner. The sequence can be generated by a binary shift register. 
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Fig. 7 - Photograph of 19-tap equalizer. 

tion. The sequence generator must be designed in such a manner that 
the period of this auto-correlation function is larger than the length of 
the expected dispersion in the channel. If this were not the case, the 
correlator would react to properties of the test signal, rather than to 
properties of the channel. It is then necessary to integrate, in the cor
relator, for a length of time corresponding to several periods of the 
pseudo-random sequence. In the implemented equalizer, the integra
tion is performed in a simple resistor-capacitor low-pass network; the 
RC-product was established at about four times the pseudo-random 
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sequence period. The polarity of the output of the correlator must be 
sampled at a still slower rate so that time is provided for the integra
tors to reach the steady-state after a change in the attenuator set
tings. Again, 'several time constants must be allowed for this to take 
place. The ratio of the repetition rate of the pseudo-random sequence 
to the sampling rate of the correlators is about 20 for this particular 
implementation. 

Thus, in general, the length of the dispersion of the channel in time 
(i.e., the length of the significantly nonzero portion of the channel's 
impulse response) determines the repetition rate of the pseudo-random 
sequence and, in turn, this repetition rate determines the rate at which 
the attenuators are adjusted. The settling time for the equalizer can 
then be calculated by dividing the number of steps the attenuator must 
change by the rate of change. 

As an example consider a voice channel wherein most of the dis
persion is confined to a five millisecond interval. If the repetition rate 
of the pseudo-random sequence is established at 10 milliseconds, then 
in accordance with the above comments the clock rate for the pulse 
controlling the attenuators should be 20 times slower or about 5 Hz. 
In an equalizer using 10-bit attenuators and starting from the reset 
condition of zero attenuator weights, the longest travel of an attenua
tor would be some 500 increments. It would take 100 seconds to tra
verse the full range. This is a rather long time to wait, even for an 
equalizer used in such a manner that it is divorced from the communi
cating modems. There is, fortunately, an easy remedy and this involves 
letting the attenuators run rapidly to their approximate values and 
then slowly to their exact values. This dual-mode operation of the at
tenuator clock can decrease the settling time by a considerable factor. 

The settling time for this particular implementation is 10 seconds. 
This is achieved by running the attenuator clock at a high rate for a 
fixed initial period and then by continuing operation at a slower rate. 

3.2 Carrier Recovery 

The implementation was designed for use on all voice-frequency 
channels, including carrier channels. The nature of carrier channels is 
such that the channel may introduce a slight frequency shift. If such 
a frequency shift were not compensated, the output of the correlators 
would be modulated by the shift frequency, ruling out the possibility 
of satisfactory operation. There are two equivalent means of dealing 
with this frequency shift. The first is to remove the frequency shift 
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from the received channel signal and the second is to alter the modulat
ing frequency of the generator of the comparison or desired signal as 
indicated ("carrier.+ offset") in Fig. 6. In either case, the frequency 
offset generated by the channel must be detected; the latter scheme 
was selected here. 

A technique suggested by F. K. Becker20 was used to recover both 
modulating frequency and the frequency necessary to drive the ran
dom sequence generator. In this approach, two pilot tones are added to 
the transmitted signal, one each at the upper and lower edges of the 
band of interest. These tones can then be combined in such a fashion 
that the transmitted carrier plus frequency offset can be recovered. At 
the same time, by combining the two pilot tones in another manner, 
the sequence genera tor clock can be recovered. In the case. of the 
equalizer shown in Fig. 7, the modulating carrier frequency (2400 Hz) 
plus carrier offset (0 Hz) is obtained from the two pilot tones at 600 
Hz and 3000 Hz as indicated by (18). 

(2400 + 0) = (3000 + 0) _ (3000 + 0) - (600 + 0). (18) 
4 

Once the proper modulating frequency is obtained, it remains to 
establish the proper phase. This is achieved by transmitting energy at 
the carrier frequency. The phase of the carrier generated at the 
equalizer is adjusted until it agrees with the received carrier phase as 
it appears at the output of the "main" equalizer tap. This is achieved 
through the use of a cross-correlator. After the proper phase has been 
established, the variable phase shift element is locked. 

3.3 Timing Recovery 

In conjunction with the discussion of settling time, it was stated 
that the test signal is derived from a pseudo-random sequence. gener
ator. It is necessary to synchronize the remote and local generators 
(which are identical) so that near-optimum use is made of the trans
versal filter. 

Like the modulating carrier, the clock frequency required to drive 
the sequence generator at the equalizer is derived from the two pilot 
tones. In the implemented equalizer shown in Fig. 7, the clock fre
quency of 2400 Hz is obtained via the relation 

(2400) = (3000 + 0) - (600 + 0). (19) 
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In addition to obtaining the proper phase for this clock, it is necessary 
to synchronize the random 53-bit sequences. These ends are attained 
in a sequence of two steps. 

It is known that the autocorrelation function Rpp (v) of a pseudo
random sequence of the variety used here has a shape like that of Fig. 
8(a). (In the equalizer, the vV(w) weighting function causes a smoother 
function to be generated for the autocorrelation function of the desired 
signal.) The timing recovery circuitry is built upon this fact. 

What in essence is needed is an estimate of the arrival time T of the 
received signal x (t). Knowing this, the desired signal g (t) can be 
properly synchronized. A maximum likelihood estimate of T is devel
oped using a correlation detector.21 Under the assumption that the 
noise is Gaussian, white, and additive, it can be shown21 that the 
maximum likelihood estimate of T can be found by adjusting T so that 

q(T) == i lt 

get + T)x(t) dt (20) 

is a maximum. Because of the noise component in x(t) there will be 
some ambiguity in deciding exactly where the maximum of q(T) is, 
but this ambiguity can be reduced by increasing the length of the 
observation time t1. In fact, when tl is very large q(T) approaches 
the Rpp (T) shown in Fig. 8 (a), assuming no spectral weighting, band 
limiting, or channel distortion. 

It is known that the effect of linear distortion in a bandlimited 
channel can be represented in terms of pairs of echoes of the impulse 
response in the time domain.ls An estimate of T is obtained for the 
distorted Xa (t) just as it was in the distortion-free case but because of 

63 
----63 BITS ----

E 
t THRESHOLD 

t 
0' 

o==~~=============*==== o;;==~*=============~~== 
(a) TIME, v~ (b) TIME,T~ 

Fig. 8 - Synchronization waveforms. (a) Autocorrelation function of pseudo
random word generator (63-bit length). (b) q(1') function for pseudo-random 
word generator in presence of linear distortion. 
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the distortion only an approximation to the maximum likelihood esti
mate is obtained. Again 

q(T) = itl get + T)xit) dt (21) 

is maximized. As in the distortion-free case the ambiguity in q result
ing from noise can be made vanishingly small by making tl very large. 
However, the distortion echoes do contribute systematically to q(T) 
and an increase in the observation time does not diminish their con
tribution. If the distortion were such that a single echo were introduced 
by the channel, the q (T) function might have the appearance of Fig. 
8 (b), again ignoring the effects of band-limiting and smoothing by the 
filter W (w). It can be seen, then, that linear distortion makes the 
search for the absolute maximum of q(T) more difficult by introduc
ing greater undulations in the q(T) function. Because of the com
plexity of the q (T) function, the search for its absolute maximum 
is made in two successive modes. 

In the first mode, gross synchronization is attained. This means 
that the timing of the desired waveform sequence is shifted until it is 
roughly lined up with the received signal as it appears at the "main" 
tap. This coarse alignment is obtained by cross-correlating the two 
signals just mentioned and comparing the result with a fixed threshold. 
Until the output of the cross-correlator, q(T), reaches the threshold, 
the phase of the timing signal is continuously increased (over an inter
val which may be as large as 63 symbol periods in the case of the 63-
bit sequence). When the threshold is reached the phase is locked. The 
threshold is determined empirically so that only the one large spike 
(corresponding to the undistorted pulse ) penetrates the threshold. 
Thus, in the first mode the proper "spike" of q (T) is found; in mode 
2 the maximum of this spike is found. 

The maximum of q(T) can be found by partial differentiation of 
(21) with respect to T and setting the result equal to zero. 

a~~) = 0 = il> g'(t + T)xit) dt, (22) 

where g'(t) is the time derivative of get). This approach could not 
be used from the start because q(T) can be assumed to be a convex 
function only over a small region. The operation indicated in (22) is 
achieved through yet another cross-correlator. 

A few words are in order about what has been called the "main" 
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tap-that tap which is used for both carrier and timing reference. The 
main tap would normally be the center tap on the delay line. It turns 
out empirically, however, that most distorting echoes lag the undis
torted impulse. Hence, lower residual distortion is obtained by shift
ing the main or reference tap to a position about two-thirds down the 
delay line. 

IV. PERFORMANCE 

4.1 Computer Simulations 

In order to determine the theoretical performance of this equaliza
tion technique, a computer simulation was made. Fig. 9 shows results 
for a voiceband channel. The unequalized channel characteristic was 
taken as a typical Direct-Distance-Dialed connection as given in 
Alexander, Gryb, and N ast.22 The amplitude characteristic has a 15 
dB/octave falloff starting at 240 Hz, is flat from 240 to 1100 Hz, has 
a linear logarithmic slope to 7.6-dB loss at 3000 Hz and an 80 dB/ 
octave loss commencing at 3000 Hz. The delay characteristic is para
bolic, centered at 1500 Hz, with a maximum delay of 1 millisecond at 
o and 3000 Hz. In the simulation, the error spectral weighting function 
W (w) used was of raised cosine shape, symmetric about a peak at 1650 
Hz and zero at 300 and 3000 Hz. The tap spacing was established at 
150 microseconds. In Fig. 9 the amplitude and delay frequency-response 
curves for both unequalized and equalized channels are shown. Three 
cases are shown, those of 9, 13, and 25 taps. 

A simulation was also made for a baseband channel with group 
bandwidth.:j: Only the amplitude frequency responses are shown be
cause the delay distortion was not significant in this particular case 
and remained essentially invariant throughout the equalization proc
ess. Both uniform and nonuniform spectral weightings were investi
gated. In the cases where a nonuniform spectral weighting W(w) was 
used, W(w) was selected as a half-cosine rolloff shape, essentially flat 
to 12.5 kHz, and then falling to zero at 37.5 kHz as a cosine. Energy 
at very low frequencies was given small weighting by a simple high
pass filter with 2-kHz corner frequency. Fig. 10 displays the ampli
tude characteristics on both linear and logarithmic frequency scales 
as the number of taps is increased from 13 to 51, all with the half-cosine 
rolloff weighting. Performance improves with the number of taps but 

t A "group" is twelve voice channels with a bandwidth of about 12 X 4 or 48 
kHz. 



2200 THE BELL SYSTE11 TECHNICAL JOURNAL, NOVEMBER 1967 

AMPLITUDE 
1.2,----------------, 

w 
(/) 

Z 

1.2,----------------, 

~ 0.9 
(/) 
w 
0:: 

w 0.6 
o 
::J 
I-

~0.3 
L 
<t: 

DELAY 

50 .25 
w 

(b) 

(d) 

o O~ __ ~~~_L __ ~ __ ~ 

1.2,----------------, 

(f) 

0.9 

0.6 

0.50 

0.3 
0.25 

OL-__ ~~~~ __ ~ __ ~ 
1000 2000 3000 4000 0 1000 2000 3000 4000 

FREQUENCY IN Hz 

Fig. 9 - Simulated voiceband performance (a) Amplitude characteristics, 9 
taps, raised cosine weighting. (b) Delay characteristics, 9 taps, raised cosine 
weighting (c) Amplitude characteristics, 13 taps, raised cosine weighting. (d) De
lay characteristics, 13 taps, raised cosine weighting. (e) Amplitude characteristics, 
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the change is rather subtle compared with the voiceband case. Fig. 11 
illustrates the effects of error weighting (weighted and unweighted) 
and the effect of signal-to-noise ratio for the case of white noise. Note 
that in the case of very small noise, the equalized channel character
istic may behave erratically in the region where the error has very 
little weight (i.e., hear 37.5 kHz). The addition of noise or the use 
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of a more uniform weighting prohibits this behavior. Note also that 
the use of weighting forces the best equalization to occur in the region 
of highest weight, i.e., 2 to 25 kHz. 

It may also be seen that in the case of abnormally high noise the 
equalizer minimizes the total error energy consisting of both dis
tortion and noise as predicted in Section 2.3. 

4.2 Measurements on Real Facilities 

Measurements have also been made with the experimental equip
ment operating over real facilities. Fig. 12 shows the equalization of 
an actual L-carrier looped facility from Holmdel, N. J. to Chicago 
and return. Both the unequalized and equalized delay and amplitude 
frequency responses are shown. The results are those for thirteen taps 
with a raised cosine error spectral weighting function with zero weight 
at 600 and 3000 Hz. Fig. 13 shows the binary eyes resulting from 
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transmission of an FM data signal on a DDD looped facility from 
Holmdel to Denver and return. A 19-tap equalizer was used for the 
rms-equalized case. As an example of asynchronous transmission over 
similar facilities, Fig. 14 shows facsimile transmission, equalized and 
unequalized. Fig. 14 was obtained using the Bell System DATA-PHONEu 

Data Set 602A which contains an FM modem. 
The nineteen-tap equalizer shown in Fig. 7 was used to equalize a 

* Service mark of the Bell System. 
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looped facility from Holmdel, N. J. to Omaha and return. The results 
of this test are shown in Fig. 15 with the requirements for a schedule 
4B line. The weighting function is identical to that used for the equali
zation obtained in Fig. 12. As can be seen, the 4B requirements are 
met by the equalized channel except at the band edges. 

4.3 Filter Synthesis 

As an example of automatic filter synthesis, the curves in Fig. 16 
were obtained. The system configuration is that of Fig. 4 (b). The de
sired or model amplitude response is shown for comparison with 5-, 
9-, and 19-tap approximations to it. 

V. CONCLUSION 

Automatic Equalization is a powerful tool for increasing the ef
ficiency of communication channels. The implementation described is 
of general utility and need not be married to a particular modem. It 
functions conveniently in the passband and is especially suited to 
the equalization of a large number of communication channels termi
nating at a common location where the adjustment circuitry can be 
shared. In addition, the principles of the techniques seem applicable 
to a wide class of problems. 

Much work remains to be done before generalized automatic equali-
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zation becomes practical. In addition, the equalizer described here 
does nothing for the problem of nonlinear distortion or for the time
varying channel. However, the results obtained thus far are encour
aging. 

The authors gratefully acknowledge the encouragement and contri
bution of their colleagues, especially F. K. Becker, L. N. Holzman, and 
E. Port. 
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Mininlum Cost CommUllicatioll Network~s 

By E. N. GILBERT 

(Manuscript received July 21, 1967) 

Cities A l , ••• , An in the plane are to be interconnected by two-way 
communication channels. N (i, j) channels are to go between A i and A j • 

One could install the N(i, j) channels along a straight line, for every pair 
i, j. However it is usually possible to save money by rerouting channels over 
longer paths in order to group channels together. In this way, large numbers 
of channels share such preliminary expenses as real estate, surveying, and 
trench digging. 

The geometry of the least expensive network will depend on the numbers 
of channels N(i, j) and on the function feN) which represents the cost per 
mile of installing N channels along a common route. If the preliminary 
expenses are the only expenses then feN) 'is a constant, independent of N. 
In that case the best network is obtained by routing channels along lines 
of the" Steiner minimal tree", a graph which has been studied extensively 
and which can be constructed by ruler and compass. In part, this paper 
generalizes Steiner minimal trees for the case of an arbitrary function 
feN). One again obtains a ruler and compass construction for a minimizing 
tree, which is likely to provide a best or good solution when preliminary costs 
are a significant part of the total cost. However the minimizing tree need 
not be the best solution in general because further cost reductions may now 
be possible by using graphs which have cycles. Other properties of Steiner 
minimal trees generalize only part way, and some examples nlustrate the 
new complications. 

The remainder of the paper considers functions f (N) with special prop
erties. A convexity property 

feN + 2) - 2f(N + 1) + feN) ~ 0, N = 1,2, ... 

ensures that there is a minimizing solution in which all N(i, j) channels 
between Ai and Ai take the same path (no split routing). If feN) is a 
linear function (f(N) = a + bN), one can obtain simple bounds on the 
minimum cost. The lower bound is fairly accurate. 

2209 
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1. INTRODUCTION 

Let points A l , ••• , An in the plane represent n cities which require 
a communications network. Let N(i, j) denote the number of channels 
which the network must supply between Ai and A j • The network 
sought must provide these channels at minimum cost. In calculating 
costs suppose that a monotone function f (N) represents the cost in 
dollars per mile to install N channels together along a common route. 

One possible network just connects each pair Ai, Aj by N(i, j) chan
nels installed along a straight line path. This network will be called 
the complete network because the routes used form a complete graph. 
Fig. 1 (a) is the complete network for a case with n = 4; the numbers 
on the lines are the N (i, j) . 

The complete network makes each channel as short as possible; it 
is the cheapest network if f (N) = N. However, most situations have 
more complicated functions f (N). In particular, there are usually some 
preliminary costs for surveying, obtaining the right-of-way, digging a 
trench, etc. These items have a non-zero cost f (0) dollars per mile 
regardless of how many channels are to be installed. 

In some cases preliminary costs may be so high that a network which 
merely minimizes preliminary costs is a reasonable choice. Such a net
work must minimize the total number of miles of right-of-way. For the 
example in Fig. 1 (a), the network which minimizes preliminary costs 
is Fig. 1 (b) [or, more simply, Fig. 1 (c) ]. Such networks can be drawn 
with a ruler and compass in a finite (possibly large) number of steps 
(see Ref. 1,2). 

'Vhen f (N) is not constant, the cheapest network is harder to find. 
Still the methods which minimize only the preliminary costs generalize 
far enough to be useful. Sections III and IV develop these generaliza
tions. In particular, if preliminary costs are a large fraction of the 

~ 
81L~r 

9 

(a) (b) (C) 

Fig. 1- Networks. 
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total cost one has a good chance of constructing the cheapest network 
by these methods. 

In many problems the cost function is linear, f (N) = a + bN. A 
linear cost function is obtained if the increm,ental cost f (N) - f (N -1) 
of adding an Nth channel to a group of N -1 channels is a fixed amount 
b dollars per mile, independent of N. The cost of' additional copper 
wires, channel filters, or repeaters usually does not depend on N. By 
contrast, consider waveguide systems. Each guide can supply thousands 
of channels. The incremental cost is small for most values of N but is 
large when adding channel N requires adding another guide; f (N) 
is a staircase function. Section VI obtains some bounds on the cost of 
the cheapest network when f (N) is linear. Section V finds a property of 
the minimal cost network when f (N) is merely convex. 

II. STEINER MINIMAL TREES 

A network may be represented, as in Fig. 1 (c), as a set of lines (the 
routes or right-of-ways) connecting AI, ... ,An and perhaps some other 
points where lines join. This representation will be called the graph 
of the network. Figs. 1 (b) and 1 (c) illustrate the distinction between 
a network and its graph. A Steiner point is a junction point of the 
graph which is not one of AI, ... ,An. Fig. 1 (c) has two Steiner points. 
The minimal graph is the graph of the cheapest network. A graph is 
relatively minimal if its Steiner points are located so that no small 
displacement of the Steiner points reduces the cost. If a graph is 
relatively minimal there is no guarantee that a more violent perturba
tion, altering the topology of the graph, may not secure a reduction; 
i.e., relatively minimal graphs need not be minimal. 

The procedure to be described here finds relatively minimal graphs 
which are trees having exactly three lines incident at each Steiner 
point. The cheapest of these relatively minimal trees will be called 
the Steiner minimal tree for AI, ... , An. The procedure in question 
is a modification of one which applies when the cost function is simply 
f (N) = 1. In order to have an easy terminology by which one may 
compare a given problem against the corresponding problem with f (N) 
= 1, I use the adjective ordinary freely to mean "having f(N) = I". 
Thus, "ordinary minimal graph, ordinary relatively minimal graph, 
ordinary Steiner minimal tree, ... " mean "minimal graph, relatively 
minimal graph, Steiner minimal tree, ... in the case f(N) = I". 

The ordinary case is a simpler one than the general case because the 
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ordinary minimal graph is the ordinary Steiner minimal tree. In gen
eral, the minimal graph need not be a tree (recall that the complete 
graph is minimal if f (N) = N). Moreover, even the cheapest tree need 
not be a Steiner minimal tree. For example, consider four cities AI, 
... , A4 at the corners of a unit square as shown in Fig. 2. For the de
mand matrix N(i,'j) take 

II N(i, j) II 

o 1 1 '1 

1 0 1 10 

110 1 

1 10 1 0 

and let N channels cost f (N) = 1 + N dollars per mile. Fig. 2 (a) shows 
the cheapest tree. It is not a Steiner minimal tree because four lines 
meet at its Steiner point. Fig. 2 (b) shows a typical tree in which three 
lines meet at each Steiner point. However, Fig. 2 (b) is not relatively 
minimal; its cost decreases when the two Steiner points are displaced 
toward the center of the square. If one continues to displace these 
Steiner points, in hopes of finding a relatively minimal tree, they 
finally merge together as in Fig. 2 (a). 

Ill. GENERALIZATIONS FROM THE ORDINARY CASE 

In Ref. 1 we gave some simple properties of ordinary relatively 
minimal trees and ordinary Steiner minimal trees. Some of these 
properties generalize directly while others do not. This section will 
discuss the simplest generalizations. In some cases the proofs are 
omitted because the arguments of Ref. 1 apply with only trivial 
changes. 

3.1 Mechanics 

A graph of a network may be interpreted as a mechanical system 
of elastic bands (the lines). AI, ... , An are fixed supports for the 

A1XA2 
3 12 

13 

12 3 A4 A3 
Ca) Cb) 

Fig. 2 - Four cities problem. 
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bands incident there but the bands at a Steiner point are merely 
joined together and left free to move. Let each band have a tension 
equal to the cost per mile of the channels in the corresponding line. 
Then the mechanical system has a potential function equal to the cost 
of the graph; the system is in stable equilibrium if and only if the 
gra ph is relatively minimal. 

3.2 Angles at a Steiner point 

At a Steiner point S let vectors v, v', v", ... denote the forces (ten
sions) exerted by the elastic bands. The condition for mechanical 
equilibrium (relatively minimal graph) is v + v' +v" + ... = O. The 
magnitudes lvi, Iv'l, Iv"l, ... are the costs per mile of the lines at S. 
\Vhen S has only three lines, the law of cosines determines the angles 
between the lines. For instance, 

cos (v', v") = (Iv 12 - lv' 12 - Iv" 12)/(2 lv' Ilv" I). (1) 

The analogous condition on ordinary relatively minimal trees, which 
stated that three lines meet at 120 0 at S, is an instance of (1) with 
Ivl = Iv'l = Iv"l· When four or more lines meet at S the equilibrium 
condition does not determine the angles at S. 

3.3 Number of Steiner points 

Consider any tree joining Ai, ... , An and let s be the number of 
Steiner points. It is no restriction to assume that no Steiner point has 
less than three lines; for clearly such Steiner points can save no cost. 
Then (see Ref. 1, Section 3. 4) 

s~n-2 

with equality holding if and only if each Steiner point has three lines 
and each Ai has one line. 

3.4 Uniqueness 

Suppose a graph, not necessarily a tree, is given for a network con
necting Ai, ... , An. The numbers of channels are also supposed pre
scribed for each line of the graph. Now perturb the positions of the 
Steiner points trying to reach a relative minimum cost for graphs 
with the same topology. As illustrated by Fig. 2, it can happen that a 
relative minimum may be only approached but not attained. In the 
ordinary case, when one does find a relatively minimal graph one can 
conclude that there are no others with the same topology. 

In the general case, there is no such uniqueness. For example, sup-
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pose AI, A2 , A3 are at the vertices of an equilateral triangle and sup
pose N(i, j) = 1 for all pairs (i, j). Let feN) = 1 + (3!-1) (N-I). 
Fig. 3 shows a possible graph and gives the angles, obtained from (1), 
which suffice for a relative minimum. These angles do not determine 
the locations of the Steiner points. It suffices to put each Steiner point 
81 at the same distance from the center 0 of the triangle and on the 
line OA i • 

Fig. 4 (a) shows that one may encounter non-uniqueness even when 
searching for a relatively minimal tree. To perturb 8 into a position 
of minimum cost, place 8 anywhere on the line segment A 2A3 • The in
dividual channels [N (i, j) = 1 for all i, j] appear in Fig. 4 (b). Steiner 
points, such as 8 in Fig. 4 (b), at which all incident lines meet at 
either 180° or 360° have no real interest. Any channel which makes a 
180° turn at 8 can be rerouted away from 8 over a shorter path using 
only existing right-of-ways. After the shortening [Fig. 4(c)] the 
Steiner point is gone. 

In spite of examples like Figs. 3 and 4, a weak kind of uniqueness 
holds even in the general case. Any relatively minimal tree is either 
the unique relatively minimal tree with the given topology or else it 
has a Steiner point, like S in Fig. 4(b), at which all lines meet at angles 
of either 180° or 360°. An outline of the proof follows. As in Ref. 1 the 
argument uses an "averaging" operation for graphs. If G and G' are two 
graphs with the same topology, the averaged graph pG + qG' (where 
p ~ 0, q ~ 0, and p + q = 1) has vertices of the form pV + qV' where 
V, V' are corresponding vertices, V £ G and V' £ G'. For each line V1 V 2 

of G (and correspondingly, V~V~ of G') pG + qG' has the line joining 
p V1 + q V~ to P V 2 + q V~ . If L is a line V1 V 2 of G and L' the correspond
ing line of G', let pL + qL' denote the corresponding line of pG + qG'. 
The lengths I L I, I L' I, I pL + qL' I of these lines satisfy 

2 

nIl = I 

f(2) =f3 

Fig. 3 - Example of non-uniqueness. 
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s 

ca) 

(C) o-----3--~o~--------4--------~o~--------3~------~o 

Fig. 4 - Non-uniqueness for trees. 

I pL + qL' I ~ p I L I + q I L' I (2) 

with equality holding only if the directions of the line segments VI V2 

and Vi V ~ are the same. 
One can now prove that all relatively minimal graphs with the same 

topology have the same cost. For suppose, on the contrary, that graphs 
G, G' have the same topology and have costs c, c' with c < c'. Because 
of (2) the cost of pG + qG' is no greater than pc + qc'. Then, taking 
p to be small, pG + qG' is a slight perturbation of G' and costs less than 
c'. Then G' cannot have been relatively minimal, a contradiction. 

If G and G' are two different graphs which both attain the relative 
minimum cost, then (2) shows that an average graph pG + qG' will 
cost even less (a contradiction) unless every line of G' is parallel to 
its corresponding line in G. Note that the graphs obtained from Figs. 
3 and 4(b) all had that property. Now suppose G and G' are relatively 
minimal trees. If G and G' differ some Steiner point Sin G is connected 
to vertices VI and V 2 such that Vi = VI, V~ = V 2 , but S' ~ S. For 
instance, VI and V 2 might be two of AI, ... , An. But, to avoid the 
contradiction noted above, SVI and S'VI must be parallel, as must 
SV2 and S'V2 • That can be true when S ~ S' only if S, S', Vt , V 2 

are colinear, whence VIS makes a 3600 angle with V 2 S. 

3.5 Number ot choices 

In Ref. 1 the solution to the ordinary case is found by constructing 
a relatively minimal tree, if one exists, for each of the topologically 
distinct ways of interconnecting At, ... , An. Because of 3.3 there 
are only a finite number of cases to consider. For s = 0, 1, ... , n - 2, 
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the numher of eases with s Steiner points turns out to he 

2-
SC ~ 2)(n + s - 2) !js!. 

In the general problem, each of these cases is again a candidate for 
the Steiner minimal tree. The total number of cases for n = 3,4,5,6, 7, 
... are 4, 27, 270, 3645, 62370, .... Of course the minimal graph may 
not be one of these trees; in general, there will be many more cases. 

Fortunately, it seems to be easy to guess topologies which, if not ac
tually best, cost only slightly more than the minimal cost. In Ref. 1, for 
example, we were unable to invent a problem in which the minimum 
cost was less than 86.6 percent of the cost of the (easily constructed) 
best tree having no Steine.r points. The four cities in the unit square of 
Fig. 2 illustrate the same thing. Again let f (N) = 1 + N and let 
lIN (i, j) II be the same as in Section II. Table I compares the cost of 
the cheapest graph, Fig. 2 (a), with some other simple ones. 

These comparisons suggest that one should be willing to accept a 
good network (perhaps the best relatively minimal network obtained 
for several reasonable topologies) even though it is not proved to have 
absolutely minimum cost. There are usually too many cases to find 
the best network by exhaustion; also the saving in cost is apt to be 
slight. 

IV. CONSTRUCTION ALGORITHMS 

The ruler and compass construction of relatively minimal trees is 
similar to the construction in the ordinary case. 

Consider first the case n = 3. Fig. 5 (a) shows a typical case with 
given points AI, A2 , A3 to be joined to a Steiner point 8. The costs Ci 

per mile of the three lines SA i are supposed known. The angles al, a2, 

Graph 

Fig. 2(a) 
complete graph 

TABLE I 

ordinary Steiner min. tree 

flO, 
3V t 

Cost 
(in dollars) 

24.04 
26.38 
25.55 

27.80 
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a3 at which lines meet at S are now determined from the equilibrium 
condition," e.g., by (1). A ruler and compass construction for a1, a2, 

aa is easy because these angles are the exterior angles to a triangle 
with sides C1, C2, Ca [Fig. 5 (b) ] . 

In general, C1, C2, Ca might have any values, including some which 
are not constructable by ruler and compass (e.g., perhaps C1 = 21

/ 3 , 

C2 = 71', C3 = e). Then Fig. 5(b) is itself not constructable without first 
using the ruler as a ICscale" to layoff segments of lengths C1, C2, C3. I as
sume that these segments have already been drawn. Then all other 

(8) (b) 

Fig. 5 - First construction with n = 3. 

constructions, such as the one for a1, a2, a3, can use the ruler and com
pass in the manner intended by Euclid. 

Since angle A 1SA 2 = a3, S lies on a circular arc of angle 271' -2a3 

through A1 and A 2 . By constructing this arc, and a similar arc for 
A2A3 or A3A1' one constructs S as an intersection of circular arcs 
[Fig. 5 (c) ] . The same construction appears in Ref. 4. 

In Fig. 5(c) consider the line A 3 S extended to meet the circle through 
At and A2 again. Let A t ,2 denote this new point of intersection [Fig. 
6(a)]. The point A l ,2 has interesting properties which are needed for 
solving cases with n ~ 4. 

First note [Fig. 6(b)] that the exterior angles of the triangle 
A 1A 2A 1, 2 are a1, a2, a3. Then this triangle is similar to the triangle of 
Fig. 5(b)and so can be constructed by ruler and compass (if IA1A21 

* If one of the c, exceeds the sum of the other two, say Cl + C2 < Ca, no choice 
of angles satisfy the equilibrium condition. The minimal tree consists just of two 
lines (A1Aa and A~a in the case cited). In many cases the function j(N) is convex, 
as defined in (3), and then Cl + C2 < Ca cannot happen. 
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=d, then IA lAl , 21 = dC2/CS)' The important fact used later on is that 
this construction will produce AI, 2 from Cl, C2, cs, AI, and A2, with
out using As. 

Another construction for the case n = 3 proceeds as follows. 'Vith 
AlA2 as a base erect a triangle i

< with sides IAlA21 = d, dC2/ Cs, and 
dCl/CS to construct Al,2' Circumscribe this triangle in a circle C12 • 

If As lies inside C12 there is no Steiner point (the cheapest solution 
consists of two lines AsAl and A3A2)' If A3 lies outside C12 draw the 
line segment AI, 2AS' Observe whether this segment crosses the arc 
AIA2 of C12 which does not contain AI, 2. If there is a crossing point 

(a) 

\ 

" 360 0 
- 2CXt 

ARC 

Fig. 6 - Construction of AI, 2. 

(b) 

S, then S is the desired Steiner point. If not, then there is no relatively 
minimal tree with the given topology. Tho best solution consists of 
AIA2 and AlAs if A2 and As are on opposite sides of the line AlAI, 2 ; 

use AlA2 and A2AS if A2Al , 2 separates Al from As. Fig. 7 shows how 
the cheapest tree depends on the location of As. 

When the construction produces a legitimate Steiner point [Fig. 
7 (d)], Ref. 1 showed, in the ordinary case, that the length ISAll + 
ISA21 + ISAsl of the tree is just IAsAl, 21. The appropriate generaliza
tion here is that the cost of the tree is the same as that of IA3Al • 2 1 

miles of circuit costing Ca dollars per mile, i.e., 

Cl 1 SAl 1 + C2 1 SA2 1 + C3 1 SA3 1 = C3 1 A3A l,2 I. (3) 

The proof of (3) will follow from a theorem in ptolemy's MEyciA'll 
~uvTa~l~ stating that the product of the diagonals of a quadrilateral 

* In general, there are two such triangles. Construct the one which places AI, 2 

and A3 on opposite sides of the line A 1A 2 • 
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A 2 \ 

(a) \ 

\ 

(d) 

Fig. 7 - Second construction with n = 3. 

equals the sum of the products of opposite sides.3 vVhen applied to the 
quadrilateral A 18A 2A 1• 2 in Fig. 6 the theorem becomes 

or 

Cl 1 SAl 1 + c2 1 SA 2 1 = c3 1 SA 1 ,2 I· 
Add C3 I SA 3 I to both sides to get (3). 

The construction of Fig. 7 may be used iteratively to find relatively 
minimal trees with n ~ 3 when each Steiner point is restricted to have 
only three incident lines. 

The details are similar to the ordinary case l and so it suffices here 
to give an illustrative example. Fig. 8 shows cities A 1 , ••• ,A5 to be 
interconnected by a graph having Steiner points 81 , 82 , S3.To locate 
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Fig. 8 - A construction with n = 5. 

the Si one begins by finding a pair of cities which are to be connected 
to a common Steiner point; As and A4 will serve in Fig. 8. Construct 
As,4 as in Fig. 6(b), and draw the circle circumscribing As, A4 and 
As, 4. 8s will be obtained ultimately by intersecting this circle with the 
line S2As, 4 [compare Fig. 7 (d)] but at the moment the position of 82 

is unknown. Nevertheless, the problem is now reduced to drawing a new 
tree for A1 , A2, As, 4, and A5 with Steiner points 81 and 82 (the cost 
per mile for the new line S2As, 4 is taken to be the same as the original 
cost per mile of 828s). Again pick a pair of cities with a common 
Steiner point, say A5 and As,4; draw the triangle with base A5As,4 
to construct a new point A 5 , (S, 4). Now the problem reduces to drawing 
a tree for A 1 , A2, and A5, (S, 4). This is a case with n = 3 which is 
solved as described above. The solution locates 81 • One can then locate 
S2 on the line SlA(s, 4), 5 and finally, 8s on the line S2A (S, 4). 

In geI)eral, one has n cities A 1 , ••• , An and at most n-2 Steiner 
points. By iterating the construction of Fig. 6 (b) at most n-2 times 
one ultimately reduces the problem to a solvable case. There are three 
cautions to observe. 

First of all, there are two triangles having a given base AiAj and 
given sides. The correct choice of triangle, and hence the correct Ai, j, is 
clear if one knows the location of the third point which shares the 
Steiner point of Ai and A j • If this third point is itself a Steiner point 
and not yet located, one may have to try both possibilities for Ai, j. 
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However, if one can guess the correct choice of Ai, j and then find a 
relatively minimal tree, the uniqueness result of Section III shows 
that one need not try the other choice. 

Secondly, at some stage in the construction, one may find the situ
ation shown in Fig. 7(a), (b), or (c) and so be unable to locate a 
Steiner point. This can happen either because no relatively minimal 
tree exists with the topology sought or because one of the Ai, j was 
chosen wrong. 

Thirdly, the construction described here produces only trees which 
have three lines at each Steiner point. A tree having Steiner points 
with four or more lines or a graph which is not a tree may be cheaper 
than the Steiner minimal tree in some cases. 

V. SPLIT ROUTING 

Unlike trees, which provide just one path between each pair of 
points, graphs with cycles offer a choice of paths. Then the N(i, j) 
channels from i to j may be distributed over two or more paths (split 
routing). The example in Fig. 9 shows that split routing is sometimes 
economical. The three cities are at the corners of a unit equilateral 
triangle and the demands are lV (1, 2) = 13, N (1, 3) = N (2, 3) = 1. 
The cost per mile for N channels is 

feN) = [(N + 2)/3]. 

Such a cost function might be encountered if channels are available 
only in cables containing 3 channels each; then f(1) = f(2) = f(3), 
f(4) = f(5) = f(6), etc. In Fig. 9(a) all channels follow direct paths 
in the complete graph. In Fig. 9(b) one of the channels from Al to A2 
has been rerouted through ..13. This reduces the cost of the line ..11..12 ; 

2 

COST = 7 COST = 6 COST = 5.732 

(a) (b) (C) 

Fig. 9 - Split routing. 
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it increases the number of channels in the other lines but docs not in
crease their cost. Fig. 9 (C) shows the minimal graph, which also uses 
split routing. 

The remainder of this section will show that split routing gains 
nothing if f(N) is a convex function, i.e., if 

feN + 2) - 2f(N + 1) + feN) ~ 0 (4) 

for all N. Suppose f (N) is convex and consider a network which uses 
split routing. Then one can find two channels, say a and {3, which join 
cities Ai, Aj by different routes. To make cost comparisons easy, sup
pose that all other channels of the network have been installed and that 
the two channels for a and {3 have been installed on those lines of the 
graph which belong to both a and (3. Now for n = 0,1,2 let Ia(n) be 
the incremental cost of installing n channels in each of the remaining 
lines of a and let I{3 (n) be a similar incremental cost for (3. The cost 
to finish constructing the network is 

(5) 

However, Ia (n) is the sum of incremental costs of adding n channels 
to certain existing lines. If the kth line has Nk [a] channels 

I a(n) = L {f(Nk[a] + n) - f(N,Ja])}. 
k 

Then (4) shows feN + 2) - feN) ~ 2lf(N + 1) - feN) 1, so 

I a(2) ~ 21 a(I), 

and similarly, 

Now (5) shows 

cost ~ ! 1I a(2) + Ij3(2)} 

~ lVlin {I a(2), Ij3(2)} . 

The last inequality shows that it would be as cheap to complete two 
copies of one of the channels a or {3 as to complete one of each. 

VI. LINEAR COST FUNCTIONS 

Suppose f (N) is linear, f (N) = a + bN. Consider any graph. Let 
Li denote the length of the ith line of the graph and Ni the number of 
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channels along that line. The cost of the network is 

cost = aL + L NiLi b, 
i 

where L = L1 + L2 + ... is the total length of the graph. 

2223 

(6) 

A simple lower bound on the cost of networks which satisfy a given 
demand for channels may be obtained by bounding the two terms in 
(6) separately. The preliminary cost term aL is at least as large as 
aLo, where Lo is the total length of the ordinary Steiner minimal tree 
connecting the given cities. The remaining cost in (6) would have been 
the cost of building the network if f (N) had been bN. This cost is 
minimized by the complete network. Then 

cost ~ aLa + b L I AiAi I N(i, j). (7) 
i<i 

Another way of writing (7) uses two new quantities, 

Lc = L I AiAi \, 
i<i 

(the length of the complete graph) and 

v = L~l L I AiAi I N(i, j) 
i<i 

(the average of the numbers of channels required between pairs of 
cities with the distance between cities as a weighting factor). Then 
(7), combined with the observation that the cost of the complete 
graph is an upper bound, becomes 

(8) 

The form (8) of (7) is useful when numbers of channels which will 
be required between cities can be predicted only relatively but not 
absolutely. Then v is a convenient measure of "traffic level". 

The lower bound (8) is an instance of a more general inequality 
expressing a convexity property of the minimum cost function C (v) : 

(9) 

for VI ~ V ~ V2' According to (9) linear interpolation between known 
values C(Vl), C(V2) gives a lower bound on c(v). In particular, (9) becomes 
the left half of (8) in the limiting case VI = 0, V2 ---7 00. 

In the proof of (9) which follows it is convenient to extend the 
definition of c (v) from a discrete set of v values [at which all N (i, j) 
are integers] to all positive real values. Although a line may require 
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a nonintegral number N of channels to satisfy traffic level v exactly, 
its cost will be computed still at a + bN dollars per mile. Now let 
c(G, v) be the cost of providing channels for traffic level v using graph 
G. In specifying G I intend that the location of any Steiner points be 
specified and not to depend on v. Then c (G, v) is a linear function of 
v. Since 

e(l') = Min e(G, v), (10) 
G 

the region below the curve e = c (v) is an intersection of the half
spaces lying below the lines c = c (G, v). Then the region in question 
is convex and (9) follows. 

The lower bound (8) is asymptotic to the minimum cost both for 
small v and large v. Even at intermediate values of v the lower bound 
is reasonably accurate. For example, when there are three cities at the 
vertices of an equilateral triangle and v channels are required between 
each pair of cities, the lower bound stays within 11.3 percent of the true 
minimum for all v. The worst disagreement occurs when v = (l+3!) 
a/b. 

For a more realistic illustration, I took the four cities New York, 
Chicago, Houston, and Los Angeles and the numbers of channels 
given in Table II. 

TABLE II - NUMBER OF CHANNELS BETWEEN CITIES 

Cities 

Houst.-L.A. 
Houst.-Chi. 
Houst.-N.Y. 
L.A. -Chi. 
L.A. -N.Y. 
Chi. -N.Y. 

Separation 
(miles) 

1374 
940 

1420 
1745 
2451 

713 

Number of channels 

x 
2x 
4x 
5x 

lOx 
20x 

Here x is another parameter to specify traffic level; the average num
ber of channels per pair of cities turns out to be v = 6.52x. The number 
of channels listed is nearly proportional to the product of the popula
tions of the cities.t~ The cost function was feN) = 17,000 + 7N 
dollars per mile. The complete graph and ordinary Steiner minimal 
tree have lengths 

La = 8,643 miles 

Lo = 2,980 miles 

* N. Y. population includes Philadelphia; Chicago population includes Detroit. 
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so the lower bound is 

50,660,000 + 394,400x 

dollars. Table III compares this bound with the true minimum cost. 
Fig. 10 shows some of the minimum graphs. The upper bound in (7) 
differs from the lower bound by 

TABLE III-CoST OF MINIMUM GRAPHS (MILLIONS OF DOLLARS) 

Minimum Lower Discrepancy 
x II cost bound (percent) 

30 195.6 63.2 62.5 1.1 
50 326 72.0 70.0 2.2 

100 652 93.2 90.1 3.4 
200 1,304 1~5 .. 2 129.5 4.2 
500 3,260 260.4 247.9 4.8 

1000 6,520 466.0 445.0 4.5 
5000 32,600 2096.0 2022.7 3.5 

a (La - Lo), which in this example is about 240 million dollars. Then, 
for values of x larger than those shown in Table III the two bounds 
will agree to better than 4.6 percent. 

Suppose one kind of technology, say coaxial cable, provides chan
nels with a linear cost function 

feN) = a + bN 

and suppose that a competing technology, say waveguide or micro
wave relay, has another linear cost function 

F(N) = A + BN. 

Suppose that a < A but B < b so that the first technology is the more 
economical one to use if v is small but the second is the more economi
cal if v is large. It is interesting to compare the two costs at various 
traffic levels and to find a value v = Vo at which the two technologies 
are equally expensive. 

Suppose one computes minimal graphs and minimal costs c(v), 
as in Table III, using the function f (N). The corresponding minimal 
graphs and costs C (v) for F (N) may be obtained immediately by the 
following "scaling" argument. First, note that if F (N) were just a 
multiple Af (N) of f (N) , the minimal networks in the two technologies 
would be identical and the costs would satisfy C (v) = AC (v). Secondly, 
note tha~ if F (N) = f (p.N) for some multiplier p., then the minimal 



x = 30, COST = $ 63 ,200,000 x = 200, COST = $ 135,200,000 

X=5000, COST= $2,116,000,000 ;x: = 5000, COST = $2,096,000,000 

Fig. 10 - Minimal graphs for three traffic levels (cf Table III). 
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network in the second technology is the same as the one which the 
first technology had at the traffic level fLV; also C (v) = C (fLV). Since, 
in general, 

F(N) = 'Af(p.N) , 

where A = A/a, and fL = aB / (Ab), the two observations above com
bine to show that 

C(II) = (A/a)c(aBII/(Ab)). 

Moreover, the minimal graph for the second technology is the one 
found for the first at traffic level aBv / (Ab). 

To get a very rough estimate of the traffic level Vo at which the two 
technologies are equally expensive one might use the lower bound in 
(8) as an approximation to the minimal cost. Doing this provides 
the estimate 

110 (A - a)Lo/ {(b - B)Lc }. 
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