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Convection and Conduction Cooling of
Substrates Containing Multiple
Heat Sources

By V. L. HEIN
(Manuscript received April 12, 1967)

An analysis is made of the steady-state temperature distribution in a
substrate with heat inputs from multiple sources. The problem is of interest
in connection with integrated and thin film circuits mounted on ceramic or
glass substrates. In these applications, convective heat transfer is present
with either conduction along the leads joining the substrate to the heat
sink or conduction to one end of the substrate which is heat sinked. A
formal three-dimensional solution 1s obtained which 1s evaluated for
various geometries, thermal conductivities, coefficients of convection and
heat-sinking conditions.

I. INTRODUCTION

The remarkable technologies of beam-leaded and thin film inte-
grated circuits have resulted in a new approach to the physical design
of electronic circuits.! This approach as shown in Fig. 1 consists of
bonding beam-leaded integrated circuits to ceramic or glass substrates
containing thin film components and conductors. At present, dissipa-
tion of the thermal energy generated in these circuits is one of the
most severe limitations and affects both device performance and
reliability.

The results of this analysis will provide a better understanding of
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Fig. 1 — Integrated circuit substrate.

the heat transfer phenomena by showing the effects of substrate area,
shape, thickness, and thermal conductivity. Included are the effects of
the source area, the coefficient of convection and two heat-sinking
conditions. The two heat-sinking conditions are: onc edge of the
substrate is an isothermal boundary, and the leads from the substrate
are connected to a heat sink.

Convection is considered on only the two large faces of the sub-
strate since the area of the sides is much smaller. The coefficients of
convection are distinguishable for both large faces since some mount-
ing positions will require that these values be different.> For instance,
the coefficients of convection are quite different for the top and bottom
faces of a horizontal plate.

Although the dimensions of most substrates suggest a two-dimen-
sional thin plate model, the very small areas of some heat sources
indicate that large thermal gradients in the direction of the normal
to the large faces will be present under these sources. This condition
is also magnified by the poor thermal conductivity of some substrate
materials. Thus, the solution obtained must be three-dimensional to
include these effects.

By superposition, multiple sources are considered and the interac-
tions between sources are determined. This provides the necessary in-
formation to design the substrate with the desired isolation between
temperature sensitive components.
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II. MATHEMATICAL MODEL AND BOUNDARY CONDITIONS

The geometry of the problem is shown in Fig. 1 for the case where

a substrate is connected to a heat sink through leads. The second

heat-sinking condition to be considered is easily visualized if the

leads are removed and one edge is considered an isothermal boundary.

The temperature in a homogeneous solid of thermal conductivity k&

satisfies Poisson’s equation,

6T _T_ T _ —Q, y,2) ,

o2 + + FY B A 0))

where @ 1is the source strength per unit volume. Since there are

multiple sources in many of the cases to be considered, it is con-

venient to use the Green’s function approach. It is easﬂy shown?® that
the formal solution can be expressed as :

T(x,y,2) = j; fn fo Gu,v, w |z, v, 2)Q, v, w) du dv dw

+lcf f GT., M—TG w= du dv
+ch f ar, b - TG‘ du duw
+kf [ GT. =:—TGul:Odvdw, @)

where a, b, and ¢ are the substrate dimensions in the z, ¥, and 2
directions, respectively, and T, denotes d7/du. The Green’s function
Gz, y,2|u v, w) which is symmetric with G'(u, v, w | z, ¥, 2), satisfies

G G _ = =) 8y —») 8 — w)

ax° s I ' 3)
The boundary condltlons for G (x, 1, 2 | u, v, w,) and T'(z, y, 2) are
T, =G, =0 z = q,
T,=G,=0 y =0 and b,
kT, = hT and kG, = hG z =0,
—kT, = h,T and —kG, = hG z =c¢,
and either
T=G=0 or T,=G, =0, a=0. ()

The boundary conditions reference the ambient temperature to
zero, and h; and hs are the coeflicients of convection on the two large
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faces of the substrate. The choice of the last boundary condition
depends on whether the substrate under consideration has an iso-
thermal boundary on one end or is supported by leads. If the sub-
strate has leads, the latter boundary condition is used and the heat
lost by conduction along the leads is considered by assuming negative
sources® located at the lead bonding areas. The magnitude of these
sources is determined by noting that the temperature difference be-
tween the ends of a lead is given by the product of the lead thermal
resistance and the amount of heat conducted along that lead.

The case where the leads conduct an appreciable amount of heat
is somewhat more difficult and cumbersome than the case of an
isothermal boundary at x equals zero or the case where the lead’s
thermal resistance is of sufficient magnitude to be approximated by
an insulated boundary. In what immediately follows, the three cases
will be treated separately and generally only one source is considered.
The general case of multiple sources follows by superposition and
will be treated last.

2.1 Substrate With High-Resistance Leads

The solution to this problem is obtained by taking finite cosine trans-
forms* of (3) in the x and y directions. The eigenvalues are chosen
to satisfy the boundary conditions given by (4). Taking the double
cosine transform gives

6. — @ + 32)é _ —8(z — w) lfos au cos B ’ ®)
where « = mr/a (m =0,1,2, ---),8 =nx/b(n =0,1,2, ---) and
G denotes the transformed dependent variable G. A third transform
of (5) is not taken to avoid a triple summation in the final solution.
Although the triple summation is no great obstacle, it increases the
number of terms needed for numerical evaluation. Thus, (5) is solved
for the cases of

o+ =0 and o + B = 0.
If « and B8 are both zero, by standard methods® the solution to (5),
satisfying the boundary conditions given by (4) is

- _ (k/hoe — w/e + D -+ k/h)
G(Ov Ov 2 l u,v, w) - ]C(,C/hlc + IC/th + 1) ! ? (6)

_ (k/hee — 2/c + D)(w + k/h])‘
- k(k/he + k/hec + 1)  *

IIA
&g

v
IS

G=(01 Ov z | u, v, w)
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For a or 8 not equal to zero, the solution of (5) leads to

Gla, 8,2 |uy v, w) = 9&"‘,’5"—8@ [ ot = w
Jo

B(YE) — ¢@ YD ds + Ae() + BY(E),
where
#(z) = sinh vz, ¥(2) = cosh vz
and
v =@+ ) )
Again by standard methods, (7) leads to
Gla, B,z | u, v, w) = cosau cos B[p@) + (kv/h)¥(@)

YOI = (R/ky¢(w)] — 6@[¢(w) = (ha/ky)d(w)]
ley[(he/ly + ly/R)o(c) + (1 4 ho/ha)¥(c)) ' ®)

é((x, B,z | u,v, w) = cosau cos Bolp(w) + (ky/h)¥(w)]

YOWE — (h/ke@)] — 6©@lb@) — (he/k)¥()]
ley[(he/Ty + kv/h)oe) + (1 + ho/l)¥(Q] 7

The inversion for the double cosine transforms is easily derived* and
upon substitution into (2) gives

¢ b a _
T(x,y,2) = [) [0 j; [al_—b G, v, w|0,0,2)

+;12—bzé(uyv,w|a,0,z) oS ax

A
S

fiv

w.

+ 2 3 G, v, w0, 8,2 cos By
ab 5

+ % > > G, v, w | e, B, 2) cos ax cos ﬁy:lQ(u, v, w) du dv dw. (9)
« B

It should be noted that the surface integrals of (2) are identically
equal to zero because of the boundary conditions and the subsequent
choice of eigenvalues. Consequently, these terms do not appear in (9)
and the determination of the temperature distribution merely requires
the substitution of the appropriate Green’s functions from (6) and
(8) and the integrations indicated in (9). For the applications cited,
the sources are on the z equals zero surface and therefore Q(z, y, z) =
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Q(z,y) 8 (2). Substituting this into (9) gives
b a 1 =
T(x,y,2) = fo fo [EG(u,v,O | 0,0,2)
+ a&b Zé(u,v,o | @, 0,2 cosaz
2 =
+ = 32 G,v,0]0,82) cos By
ab B

+ aél; > é(u, 2,0 | a, B, 2) cosax cos ,By]Q(u, v) du dv. (10)
= B

Note that in this case @ (u, v) represents real sources since the leads
are assumed to be of very high resistance and thereby produce
negligible effects.

2.2 Substrate With Heat Conducting Leads

The method of solution for this case makes use of the results up to
(10). It has been stated that the leads will be treated as negative
heat sources and thus by superposition (10) will read

T(x,y,2) = f:/:l:%é(u,v,OI0,0,z)

+%Zé(u,v,0 |, 0,2) cos ax
+£Eé(u,v,0]0,5,z) cos By
ab 5

+(—;% 33 G, v, 0 | a, B, 2) cos ax cosﬁy]
« B

[Q,v) — F(u,v)] du dv, (11)
where F (u, v) represents the heat sources due to leads. It is important
to note that both @ and F can represent any arbitrary number of
real sources and leads, respectively. This is important since it is quite
common for a substrate to have as many as sixteen or eighteen leads.
It is obvious at this point that F(u, v) must be specified. The ap-
proach used here is to assume a uniform heat source over each lead
bond area and determine the magnitudes of these sources by using
other available information. The required information is available
from (11) since the temperature can be evaluated at each lead loca-
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tion in terms of each source power density. Thus,

F(u’ 2)) = flgl(u! 1)) + f292(uv 2)) + - fngn(uy U) (12)
represents the sources due to each lead location and fy, fa - fa
are unspecified at this time. The functions ¢;(u, v) are a combination
of step functions that give unity at the lead bond area and zero else-
where. To determine fy, fs, -+ f,, the condition that the temperature
difference between the two ends of a lead is equal to the product of
the thermal power and thermal resistance of that lead is used. Equat-
ing these two expressions for the temperature at each lead location
gives n equations and n unknowns in f;. In matrix notation this can
be expressed as

(4 + R|[F] = (B], (13)
where A is an n by n matrix representing the influence coefficients due to
the action of the negative sources. R is also an n by n matrix but the
only non-zero elements are those where 1 = j. These elements are the
thermal resistances of the leads. The column matrix F consists of
f1, fo, =+ fun and represents the unknowns to be determined. The
matrix B is a column matrix which represents the effects of the real
heat sources. By substitution of A + B = C, then (13) becomes

CF = B,
and, therefore, (14)
C™'CF = C7'B,

where C-* is the inverse of C. Since C*C = I, where I is the unit
matrix, then

IF = C™'B (15)

gives the desired results.® Using these values of fi, f», - -+ f, in (11)
permits the calculation of the temperature at any point in the
substrate. In the results reported here, the temperature was always
evaluated at the center of the lead bond area and the flux was
assumed constant over that area. This is a reasonable approximation
since the lead material generally has a much higher thermal con-
ductivity than the substrate. However, the problem can be solved
for other functional representations of the flux if there is evidence that
these representations are significantly better approximations of the
physical situations. Similarly, the reported results for substrates with
leads will be for a single heat source although @ (u, ») and the matrix
B are not restricted to such situations and can represent any arbitrary
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number of sources. Thus, the method of obtaining a formal solution for
the temperature distribution in a substrate containing multiple sources
and leads has been indicated.

2.3 Substrate With Isotherm on One Boundary

The solution of the temperature problem for the £ = 0 boundary
being an isotherm is obtained by taking a finite sine transform* in the
z direction and retaining the cosine transform for the y direction.
Applying these transforms to (3) gives

(;7',, — e+ 62)5' _ —8(z — w) Zm au cos B ’ (16)

wherea = 2m — D)w/2a (m = 1,2,3, -+ ), =nr/b(n=0,1,2, ---).
Comparing (16) and (5) indicates the solution to (5) can be used as
the solution to (16) provided sin au is substituted to replace cos au
and « is now given by (16). The solution to (5) was given by (6) for
o + 8% = 0and (8) for " 4 B° = 0. Since o -+ B° is never equal to
zero in (16), (6) is not needed and (8) gives the solution provided the
indicated changes are made. The inversion formula for these multiple
finite transforms gives the temperature distribution as

b e _
T(x,1,z)=/oj;[%ZG(u,v,OIa,O,z)sinax

-+ % > é’(u, v,0 | @, B8, 2) sin ax cos 61/]Q(u, v) du dv, 17)
« B

where again G(u, v, w | 2, y, 2) = G(z, y, 2 | , v, w). It should be
noted that in (9), (10), (11), and (16) the summations on « and 3 are
only for the non-zero eigenvalues since the &« = 0 or 8 = 0 terms, if
they appear, are already indicated in the inversion formulas.

It should be apparent that similar physical situations such as two
opposite boundaries being isotherms poses no new or additional prob-
lems. For instance if the boundaries + = 0 and ¢ = a are isotherms,
(17) is valid provided a = mx/a(m =1,2,8, -+ ).

III. NUMERICAL RESULTS

In this section results are given for the three cases discussed in
Sections 2.1, 2.2, and 2.3. For the results reported, it is assumed that
the heat sources have uniform power density. Thus, they are mathe-
matically represented by a combination of step functions. The results
are reported in terms of thermal resistance where thermal resistance
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(R¢) is defined as the difference in maximum and minimum tempera-
tures based on one watt of power dissipation. Dimensionless variables
are used to present the results in their most general form except for
several instances where specific results are desired. The dimensionless
variables are Ax/a, xo/a, ¢/a, Ay/b, yo/b, ¢/b, Az/c, 2o/c, hic/k, and
hoc/k, where Az, Ay, and Az are the source dimensions and x, yo, and 2,
the coordinates of the source center. For the applications cited, the
sources are always plane sources located on one face of the substrate
and thus Az/c = zy/c = 0 in (10), (11), and (17) and consequently, in
all the results.

Previously, it was suggested that a three-dimensional solution would
be necessary to accurately represent the thermal behavior of a low
thermal conductivity substrate containing very small heat sources.
This is because the temperature gradient in a direction normal to a
plane source must increase at the same rate as the source area decreases
if the same amount of heat is dissipated. Thus, small sources require
large gradients near the source even though the body temperature
may be nearly uniform elsewhere as would be expected if the Biot
number is small, i.e., h¢/k < 1. The following physical parameters
are chosen as a typical example of a substrate with a small centrally
located heat source:

afc = 26.0, b/c = 10.0,
zo/a = 0.50, %,/b = 0.50,
Az/a = 0.0123, Ay/b = 0.0320
hie/k = 0.93 X 107°,  he/k = 0.93 X 107°,

Fig. 2 presents the results where the dependent variable is the dimen-
sionless quantity ckT (zx, v, 2). These results clearly indicate the prob-
lem is three dimensional near the source due to spreading resistance
and thus a three-dimension solution is required to accurately describe
substrates containing small sources.

The next numerical results are for square and rectangular substrates
containing one centrally located heat source and leads that conduet a
negligible amount of heat. Thus, the leads can be ignored in the anal-
ysis and the equations of Section 2.1 are applicable. Obviously, this
model always gives an upper bound for the substrate thermal resist-
ance unless the leads are heat sinked at a higher temperature than the
atmosphere surrounding the substrate. Except for this unlikely situ-
ation, these results give an easy-to-obtain first approximation of the
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Fig. 2 —Integrated circuit substrate temperature, ckT(z, y, 2z) as a function of
position: a/c = 26.0, b/c = 10.0, zo/a = yo/b = 0:50, Az/a = 0.0123, Ay/b = 0.0320,
hic/k = hoc/k = 0.93 X 1073, P = 1 watt. i

substrate thermal capability and are given in Fig. 3 (a) and (b).
Each solid line represents a given substrate whereas each broken line
represents a given source. Although the broken lines represent redun-
dant information, they assist in illustrating the effects of various pa-
rameters. Thus, Fig. 3(a) and (b) clearly show the effects of heat
source and substrate areas.

Results for the case where one end of the substrate is an isothermal
boundary are given in Fig. 3(c¢) and (d). The equation for these re-
sults was developed in Section 2.3. By following one of the broken lines,
a constant heat source area is being maintained and the effects of
changes in the substrate area can be observed. It will be noted that
increasing the substrate area provides little benefit since, with a cen-
trally located source, increases in the thermal resistance due to longer
conduction paths almost cancel the decreases due to larger convection
areas. As with the previous case, it is noted that the square substrate
is slightly more efficient than the rectangular one. The Biot number
used for the results presented in Fig. 3(a) thru (d) is a typical value
for a thin alumina ceramic substrate with free convection from both
faces. _

Results for a substrate with heat conducting leads are more difficult
to generalize since the thermal resistance of the leads, the lead bond
.areas and locations, and the number of leads are parameters which
.affect the results. To illustrate the effects of leads, two alumina ceramic
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substrates containing beam-leaded monolithic integrated circuits are
considered. These substrates will be identified as Substrates I and
II, and are very similar to the one in Fig. 1 except that both have
one heat source. Substrate I is supported by sixteen copper leads,
but due to symmetry only one quadrant of the substrate need be con-
sidered. Thus, the problem is simplified to a substrate containing one
source and four leads. Using the procedure outlined in Section 2.2 gives

608.7 500.3 476.6 466.0
500.3 585.1 489.7 475.2

A =
476.6 489.7 583.7 497.1
1466.0 4752 497.1 602.0
5 25
, 4 @ |, ®
- 7 Dpe
axl Vv a/c=20
‘_,3 <~ —q-—>
@
S

2.0

0.5

0
100 10! 102 103 104 109 10! 102 103 104
ab/AxAy ‘ ab/AxAy

Fig. 3—Substrate thermal resistance: (a) and (¢) a/c = b/e, Ax/a = Ay/b,
Zo/a = yo/b = 0.50, hic/k = hec/k = 0.93 X 1073; (b) and (d) a/¢c = 2b/¢c, Az/a =
Ay /2b, zo/a = yo/2b = 0.50, hic/k = hsc/k = 0.93 X 1073,
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and

124.2
g 1213 20)
118.1

116.1

where the total output from the heat source has been taken as one-
fourth watt since only one-fourth of the real heat source lies in the
quadrant being considered. Lead spacing was 0.190 em (0.075 inch),
and each lead bond area was 0.038 ecm (0.015 inch) by 0.038 ¢cm. To
continue the analysis and determine the f’s, it is necessary to specify
the thermal resistances of the leads as these values are the diagonal
elements of the matrix R. To obtain a better understanding of the ef-
fects of the leads, it is useful to present the substrate thermal resist-
ance as a function of the lead thermal resistance, These results are
given in Fig. 4 and clearly indicate that the substrate thermal resist-
ance can be substantially reduced by heat sinking the leads. Fig. 4
also gives results for 0.107 by 0.107, 0.157 by 0.157, and 0.208 by 0.208
cem square (0.042 by 0.042, 0.062 by 0.062, and 0.082 by 0.082 inches
square, respectively) sources to illustrate the effects of source size for
substrates with leads. For these physical situations, the change in
thermal resistance due to changes in source size is within 1°C/watt of

i20
Ry =149 °C/WATT AS R{—+c0
100}
e
g Axr=
> 0.107 CM
& 80
z 0457¢M
<+
hd
0.208 CM
60}
40 ! I 1
0 300 600 900 1200

LEAD RESISTANCE,Rq IN °C/WATT

Fig. 4 — Thermal resistance of Substrate I:a = 1.61 cm, b = 0.89 cm, ¢ = 0.0635
em, Az = Ay, k = 0.202 watt/cm-°C, by = h, = 0.003 watt/cm?-°C.
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80
R{=80 °C/WATT AS R —=0
60~
e
<
=
o
o 40
Z
End
o
20}~
0 1 ! 1
[¢] 300 600 900

LEAD RESISTANCE, RL IN °C/WATT

Fig. 5— Thermal resistance of Substrate IT: ¢ = 3.30 cm, b = 0.89 cm, ¢ = 0.0635
cm, Az = Ay, k = 0.202 watt/cm-°C, hy = h, = 0.003 watt/cm?-°C.

the results obtained for substrates without leads. This indicates that
for small sources the source area effects are local and the effects of
moderate changes in source area can be approximated by the results
for substrates without heat conducting leads.

The results for Substrate I are given in Fig. 5. This design is very
similar to the previous one except the substrate is approximately twice
as long, contains eighteen leads on 0.381 em (0.150 inch) spacing and
each lead bond area is 0.038 em (0.015 inch) by 0.076 em (0.030 inch).
These results indicate a thermal resistance of 80°C/watt for this sub-
strate as compared to 149°C/watt for the previous one if the effects of
the leads are not included. These substrate resistances are reduced to
45 and 62°C/watt, respectively, if the thermal resistance of each lead
is 600°C/watt. To illustrate the effects of the leads, Fig. 6 shows the
percent reduction in the substrate thermal resistance due to each lead.
In this figure the leads are numbered beginning with the lead closest
to the heat source. Although results for these two designs do not permit
a generalization of lead effects, they do illustrate what effects may be
expected for geometries that are reasonably similar.

This significant effect of the leads illustrates one of the disadvantages
of glass and glazed ceramic substrates. At present most leads bonded
to these substrates have had much higher thermal resistances than
those bonded to unglazed ceramics. This is because of the inability to
repeatedly bond thick copper leads to glass or glazed substrates with-
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Fig. 6 — Percent decrease in substrate thermal resistance due to leads.

out fractures at the time of bonding or upon subsequent thermal
cycling. Thus, the effect of replacing thick copper leads with thin gold
ribbon, as is commonly used, can easily result in an additional thermal
resistance of 20 to 40°C/watt. These results also suggest that when
necessary, ceramic substrates could be glazed in only those areas as
required for component performance and thus permit the use of low
thermal resistance leads.

A substrate dimension of obvious interest is the thickness. Results
considering this parameter are given in Fig. 7(a) and (b) for the
indicated rectangular substrates. For the substrate without leads, the
change in thermal resistance due to a 40 percent increase in substrate
thickness is insignificant whereas for the substrate with an isothermal
boundary on one edge a 20 percent improvement in thermal resistance
is possible for the small substrate areas. These conclusions are made
by comparing the results of Fig. 3(b) and (d) with Fig. 7(a) and (b),
where again the Biot number has been chosen to represent a thin
alumina ceramic substrate with free convection from both faces.

The coefficient of convection and the substrate thermal conductivity
are also parameters that have significant effects on substrate heat
transfer characteristies. If the dependent variable is chosen as ckR., it
is possible to consider the effects of changes in the coefficient of con-
vection and the substrate thermal conductivity by considering various
values of the Biot number since these two parameters always appear
in this non-dimensional form. However, for the applications cited the
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thermal conductivities are approximately 0.202 watt/cm-°C for
alumina ceramie, 1.35 watt/cm-°C for beryllia ceramic and 0.020
watt/em-°C for glass while the coeflicients of convection range from
0.003 to 0.010 watt/cm?-°C. These coefficients of convection represent
the range from free to very moderate forced convection. Since this
range is much smaller than the range of thermal conductivities, the
results from the evaluation of these two parameters are presented
separately. To illustrate the cffects of the coefficient of convection, a
rectangular substrate without leads is chosen and the results are
presented in Fig. 8. As specific examples, the Biot numbers chosen
can represent a thin alumina ceramic with free convection in equip-
ment, free convection under laboratory conditions with small substrates
and moderate forced convection. These results illustrate the need for
adequate air volume and velocity around the substrate since the coeffi-
cient of convection? is dependent upon both.

All previous results were for Biot numbers in a range applicable to
thin alumina ceramiec substrates subjected to free or moderate forced
convection. The following results will be applicable for beryllia
ceramic and glass substrates under the same conditions. Since typical
glasses used for thin film substrates have thermal conductivities ten
to twenty times smaller than those of alumina ceramics, the results are
obviously less favorable. However, if the average temperature term of
(10) is considered, it will be noted that this term is most strongly
influenced by the reciprocal of the product of the coefficient of con-

(b)

100 10! 102 103 104 10° 10' 102 102 10%
ab/AxAy ab/AxAy

Fig.7— Substrate thermal resistance: (a) and (b) a/c = 2b/ec, Az/a = Ay/2b,
zo/a = yo/b = 0.50, hic/k = hsc/k = 1.3 X 1073,
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mmg Mo

0.5

10° 10! 102 10° 10%
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Fig. 8—Substrate thermal resistance for several Biot numbers: a/c = 2b/c,
Ar/a = Ay/2b, To/a = yo/b = 0.50, hic/k = hsc/k; (D) hic/k = 0.93 X 107¢; (L)
hic/k = 1.6 X 1073; (F) hic/k = 3.2 X 1073,

vection and the substrate area. Thus, the substrate thermal conduc-
tivity has a minor effect on this term. As the source area-to-substrate
arca ratio approaches unity, this term is the significant term in the
answer since the substrate begins to approach a uniform temperature
which is also the average temperature. Thus, the conclusion can be
made that if the source area is approximately equal to the substrate

4
fo T T 1
V/
7
73
- 103 |Ax| /_Y‘ —
g -
= D
o
P4
+102|— |
o E
F
10! ] ! 1
10° 10! 102 103 10%
ab/AxAy

Fig. 9— Thermal resistance of glass, alumina and beryllia ceramic substrates:
a="b=254cm,c=0.0635cm, Ar/a = Ay/b, xo/a = yo/b = 0.50, by = h = 0.003
watt/em?-°C; (D) k& = 0.020 watt/em-°C; (E) k = 0.202 watt/em-°C; (F) k = 1.35
watt/cm-°C.
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area, the effects of low thermal conductivity substrates will be minimal
but if the source area is very small, as is typical with semiconductor
sources, the increase in substrate thermal resistance will be most
significant. Fig. 9 illustrates these effects for a 2.54 by 2.54 cm (1.0
by 1.0 inch) square substrate.

A direct comparison can be made between alumina and beryllia
substrates by comparing the results given in Fig. 10(a) thru (d)
with those previously given in Fig. 3(a) thru (d). By choosing sev-
eral points from the corresponding figures, one can quickly demonstrate
the advantage of the high thermal conductivity substrate since the
thermal conductivities differ by a factor of 6.7 if the same thickness
and coefficient of convection values are used. Specific results giving
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Fig. 10— Substrate thermal resistance: (a) and (¢) a/c = b/c, Az/a = Ay/b,
zo/a = yo/b = 0.50, hic/k = hsc/k = 0.14 X 1073; (b) and (d) a/c = 2b/c, Ax/a =
Ay/2b, zo/a = yo/b = 0.50, hic/k = hac/k = 0.14 X 1073
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such a direct comparison are given in Fig. 11(a) and (b). These fig-
ures demonstrate that for very small sources or for substrates with an
isothermal boundary on one edge, the beryllia substrate can make
possible approximately a 60°C/watt reduction in the substrate thermal
resistance. Since adequate power dissipation is one of the present prob-
lems of thin film and integrated circuits, the use of high conductivity
substrates should be considered.

The final numerical results illustrate the thermal interaction be-
tween sources which must be considered if some components have
temperature sensitive parameters. A synchronous clock logic circuit
is chosen for this example. One version of this circuit consists of four
flat packages appliqued to an alumina substrate and inserted into a
socket. The socket design is such that the edge of the substrate which
makes contact closely approximates an isothermal boundary. Kach
flat package contains two or three integrated circuit chips and dis-
sipates approximately one-fourth watt. To complete this analysis the
only required additional computation is to calculate the temperatures
at other source locations and superimpose these effects. Fig. 12 gives
the temperature profile of the substrate based on a one-fourth watt
power dissipation from each flat package. It should be emphasized
that the temperatures given are referenced to a heat sink and ambient
of zero degrees centigrade and that the flat package and integrated cir-
cuit chip thermal resistances must be added to the values obtained for

200 200
. (a) (o)
27, A
160} ﬂ 5 160 |~ _ | ab=
1Ax] A H.s. _y tl) 0.5x05
/;L

ab/AxAy BeO ab/AxAy BeO

Fig. 11 —Substrate thermal resistance: (a) a/c = 2b/c, Az/a = Ay/2b, x/a =
Yo/b = 0.50, hic/k = hec/k = 0.14 X 1073, ¢ = 0.0635 cm, & = 0.202 watt/cm-°C;
(b) a/c = b/c, Ax/a = Ay/b, xo/a = yo/b = 0.50, hic/k = hoc/k = 0.14 X 1073,
¢ = 0.0635 cm, £ = 0.202 watt/cm-°C.
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Fig. 12— Temperature profile (°C) per watt for synchronous clock logic circuit:
aj/c = b/c = 80, Ax/a = Ay/b = 0.20, zo/a = 0.25 and 0.75, y,/b = 0.25 and 0.75,
hic/k = hae/k = 0.63 X 1073, ¢ = 0.0635 cm, & = 0.202 watt/cm-°C.

the substrate to obtain the overall thermal resistance. A reasonable
temperature rise for the flat package and integrated circuit chip is
9.5°C so that the hottest temperature in the circuit should be no
greater than 85°C if it is assumed that the maximum ambient tempera-
ture is 65°C. Less than a 5°C difference in temperatures due to inter-
action between the four flat packages is also expected. Thus, the
temperature sensitive components of this ecircuit should track reason-
ably well. This ability to predict interaction effects between sources
is obviously important for circuits with temperature sensitive com-
ponents.

IV. CONCLUSIONS

The three-dimensional thermal problem of convection from the two
large faces of a substrate with heat conducting leads has been solved
for a substrate with isothermal edges, insulated edges or combinations
of these boundary conditions. Results from this solution show the
effects of substrate area, shape, thickness and thermal conductivity.
Included are the effects of source area and the coefficient of convection.
Two of the more important conclusions concerning heat transfer char-
acteristics of glass and ceramic substrates follow:
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(1) The coefficient of convection has a significant effect on the
thermal resistance of substrates with insulated edges or high resistance
leads and becomes the dominant parameter as the heat source area
approaches the substrate area.

(&t) The thermal conductivity of the substrate is the dominant
parameter affecting the thermal resistance of a substrate containing
small area heat sources which are typical of beam-leaded integrated
circuits.
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Characteristics of Superconductor Strip
Transmission Lines with Periodic lLoad

By J. K. HSIAO
(Manuscript received June 9, 1967)

The characteristic tmpedance and propagation constant of a thin film
superconducting strip transmission line has been derived by use of London’s
two fluid model. It s shown that this line at moderate Jrequency has neg-
ligible attenuation and dispersion. A periodically loaded cross film cryotron
cireuit s also analyzed. The attenuation, phase constant, and characteristic
impedance of this loaded line is given and related to the parameters of
the unloaded line by the factor K which is the ratio of the gate separation
to the gate width.

I. INTRODUCTION

This paper presents a study of the high-frequency performance of
thin film superconducting transmission circuits. Particular attention
is given to transmission lines between eryotron elements and between
substrates each carrying many eryotrons.

These interconnections are microstrip lines with very low char-
acteristic impedances. Since the separation between the transmitting
strip and the ground plane is very small in comparison to the width
of the strip, edge effects can be neglected. This simplifies the analysis
and gives an easy understanding of the propagation phenomena.

II. MICROSTRIP TRANSMISSION LINE WITH SUPERCONDUCTING STRIP

Due to the finite conductivity of the strip and ground plane in a
non-superconductive microstrip transmission line, the phase char-
acteristic has some dispersion and the attenuation is frequency de-
pendent.* If the strip and ground plane are superconducting, the phase
dispersion and the attenuation will disappear at frequencies below 1
GHz. This was shown by Swihart? using Maxwell’'s and London’s
equation. Using a very simple but not rigorous approach, the character-
istic impedance and propagation constant are presented to give an

1679
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understanding of this type of transmission line. The inductance,
capacitance, and conductance in the dielectric region are the same
as for non-superconducting strip line and have the following values:*

€ eh

r=f ®

c=5 @
b

9= ©)

provided b/h < 1,
where

l° is the inductance per unit length,

¢ is the capacitance per unit length,

g is the conductance per unit length,

b is the width of the strip,

h is the distance between the strip and the ground plane, and

k., €, and o, are, respectively, the permeability, permitivity, and
conductance of the dielectric material between the strip and ground
plane.

The internal impedance of the conducting strip and ground plane
of the superconducting line are different. These are found by the
following manipulation. Assume that a superconducting strip of thick-
ness ¢ = d and infinite width y, has a current flowing in the z-direction
as shown in Fig. 1. The superconducting strip is immersed in a uniform
dielectric material. The current is uniformly distributed along the y
direction. London’s equation that is based on a two fluid model® in-
cludes the following relations:

DIELECTRIC
O¢ = CONDUCTIVITY
Je = PERMEABILITY
€e= PERMITIVITY

_SUPERCONDUCTOR
¢ =RESIDUAL CONDUCTIVITY
Jhc =PERMEABILITY
€c=PERMITIVITY
Ac=PENETRATION DEPTH

Fig. 1 — Current flowing in a superconductor strip.
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J=LA+T. @
VXN], =H ®)
b L) = E, ©

where

J. is the superconducting current,

J.. is the normal conducting current,

J is the total current,

H and E are, respectively, magnetic and electric fields,
\. 1s the penetration depth of the superconductor, and
K. is the permeability of the superconductor.

Maxwell’s equations applicable to both the superconducting and
dielectric regions are as follows:

V-D=p D= )

V-B=0 B=H ®)
JH

VXE=—#W )

vxn=e(%)+1. (10)

These equations are based on MKS units.

From these equations, in the superconductor region, replacing J
by J, + Js and then using (6) and (7) through (10), we have a gen-
eral expression of London’s equation.

1
\
where o, is the residual normal conduectivity. This is the conductivity
measured just above critical temperature. E,, p., and ¢, are, respec-
tively, the E-field, permeability, and permittivity in the superconductor
region.

The three terms on the right side of this equation are contributions
of superconducting current, normal current, and the displacement
current, respectively. In the superconductor region the displacement
current term can be neglected. Hence, (11) becomes

2 1 dEc
V'E, = X E. 4+ o - (12)

d’E,

dE,
VE. = S E. + o.u. N + ep. E @1
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In the dielectric region, we have

dE, d’E,
V’E, = o, T ek T 13)

Use the coordinates defined by Fig. 1 and assuming the fields to be
sinusoidal with respect to time,

&I, t, .\,

_d?—ﬂ = (? + ]wcrcuc>1-’z“ (14)
d°E, .

dxz < = (_wzeeue + ]w‘feﬂe)Ez, . (15)

The solutions of the above equations are, respectively,

IL,, = A, cosh kix 4+ A, sinh &z 0z2=d

Il,, = B exp (—kx) d £ x,
where k, and &y are defined as
1 . . a1
kl = )\_ (1 + ]wa—c”r)\c)z (16)

ks = joV p.€, (1 - ]-Ue >7. 17

we,

In the superconducting region, we retain two solutions in order to
match the boundary condition at # = d, while in dielectric region we
retain only one solution because we assume that the dielectric ma-
terial is uniform and extends to infinity, and there is no reflection

wave.
The I1-fields in both regions are, respectively,

jou.H,, = — A;k, sinh kyx — Ak, cosh k2
jopH,, = Bk, exp (—k.x).
At the boundary z = d
E.=E,, H,=H,.
Hence,

k/ky sinh k,d 4+ cosh k,d

" sinh k,d 4 ki /k, cosh k,d for we = p.. (18)

Az/Al =
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At
z =0
ch = 4,
H,“ = _Jl Azkl .

By use of Ampere’s Law the current inside the superconductor can
be found. For unit width, it is

H, |seo = Hy, |o-a
= o (= Aahy + Al sinh Bid + Ask cosh lnd). (19)
The internal impedance of a conductor is defined as*
7 = I% ohm/m?, (20)

where E, is the surface E-field and I is the total current in the con-
ductor for unit width. Hence,

Zt‘ _ % k?/kl -+ coth &.d .
" ky 1+ kso/k, tanh k,d/2

The classic skin-effect depth of a normal conductor is defined as*

1

d = ————-
V 7fuco.

From this and (16), for the superconducting region

@n

1 A
h=z@+mg.

For several common superconducting materials, the classic skin-effect
penetration depth § are listed as follows:

Conductivity®

Transition® at transition ) )

temperature temperature at f = 108 Hz at f = 10° Hz
Lead 7.22°K 0.52 %10 mho/m 0.7 X 10°A 0.216 X 10'A
Tin 3.74 0.896 X 10 0.53 X 10* 0.167 X 10*
Tantalum 4.38 0.806<10° 1.77 X 10* 0.56 X 10*
Indium 3.374-3.432 0.36 X10° 2.65 X 10¢ 0.84 X 10*

The pentration depth X, is in tbe vicinity of thousand A (for lead,
it is 500A, while for tin it is 1500 A). Hence, in general, at a frequency
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10° Hz \,/8 ~ 1/10. This is assumed at a temperature T which is
at least 0.1°K below transition temperature. Under this condition,
for a good approximation

701 [ }\—c
The ¢,/we, term in (17) is defined as the loss tangent of dielectric
material. For most dielectric material at room temperature, it is ap-
proximately 107 to 107%.° For SiO, it is 107™® at 1500 Hz. There is
no available data at helium temperature. However, for reasonable

approximation we can say that
o,

< 1.

we,

Hence,

ky & jw \/uee,
2

N]K:y

where A, is the wave length in the dielectric. For SiO its relative permi-
tivity is approximately 5.7 Hence, A, ¢ 74.5 cm at 10° Hz.
The | k. |/] k, | ratio is then
A

| K l/“‘hl%EleO_-{-

Under this assumption, (21) can be approximated as
Z' = jwu, coth d/\, ohm/m®. (22)

Next let us assume that a superconducting strip transmission line
is formed by two strips immersed in a dielectric material as shown in
Fig. 2. For this line, its series impedance is the sum of the Z* and the
inductance in the dielectric; hence, its series impedance and parallel
admittance are, respectively

Z = jop. % (1 + % coth dy/\., + )‘};”

coth dz/)\c,) (23)

I % (24)

If the dielectric loss and classic skin-effect loss is not negligible, then
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//// //// / /// SUPER%ONDUCTOR STRIP
———— Agyrber O
7/ / REGION 1
DIELECTRIC
% / SUESRCONDUCTOR
dz ® ~V7 ____GROUND PLANE

AcosMeyOc,
T REGION 2

Fig. 2— Superconductor Strip Transmission Line.

2 \-}
Z = jou, ’—; [1 A;L* ( 2?) coth ud
2
+ h <l + 25 c) coth kzd:| (23a)
y = i 9(1 - "—) (242)
./ - ]OJE, h j(JJEe

* The characteristic impedance and propagation constant of this line
can be found by use of the following relations:

Z.= VZy
ve = VZy.

Hence, by use of (23) and (24), we get

Z==\/;z(1+ I

oV e (1 + “ coth di/Ae, + ” coth d2/)\c,> . (26)

c1

L e

I

Ve

Set v, = j8. .
Then the phase velocity of this strip line is

1
\/ﬂcec

And its delay time is

n=\/—(1+ -

C1

<l + Ae, coth d; ,_.,) ’ m/sec.

ca

b
c,) sec/m.
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While by use of (23a) and (24a) we get

_ |uh
Z. = € b

A,

3
“}:’ (14 24\2,/80)7F coth kyd + (1 242, /63)"% coth kgd]

(1 - jo'e/wee)%

1+

—/

(25a)

Ye = joV e (1 — jae/we,,);lil + 5h— (1 + 2jA%,/60)7F coth kyd

+ Z‘h— (1 + 2j72,/8,)7 coth lczd]’. (262)

At frequencies below 1 GHz with the temperature at least 0.1°K
below transition temperature, (25) and (26) give fairly accurate re-
sults, providing the dielectric loss is negligible. Then the characteristic
impedance is a real number with negligible frequency dependence.
The propagation constant is directly proportional to frequency; hence,
its group velocity and phase velocity are the same and there is no
attenuation.

Fig. 3 shows the characteristic impedance and delay time of some
superconducting strip lines with various dielectric thickness (h).

It is shown that the thickness (d;) of the strip line film has little
effect on the characteristic impedance and delay time. However, the
characteristic impedance changes proportionally with dielectric thick-
ness (h) while the delay time 7, decreases nonlinearly by only 20 per-
cent for an order of magnitude change in h.

III. A SUPERCONDUCTING STRIP LINE WITH PERIODIC STRUCTURE

The cross film cryotron consists of a control strip and a gate strip
crossing and perpendicular to each other. In a memory circuit or in a
tree-type selective circuit, a single control strip usually crosses many
gate strips. At each intersection there exists coupling between the
control and gate strips to form a periodic structure. The characteristic
impedance and propagation constant of the control line are functions
of the periodic loading. (Refer to Fig. 4.)

The control line and gate line are assumed to be terminated with
their respective characteristic impedances Z, and Z,. The control line
is also assumed to be uniform without discontinuity except for the
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TFig. 3 — Relation between characteristic impedance delay time, and dielec-
tric thickness for superconducting thin film strip line.

periodic loading of the couplings to the gates. The equivalent circuit is
shown in Fig. 5.

In Fig. 5, y, is the propagation constant of the control line, Y, is the
coupling admittance between gate and control line. The characteristic
impedance and propagation constant of this periodically-loaded line is
as follows (see Appendix A):

YZ, :
Zy = Z”[l " sinh 2y, + YZ, cosh® 'ycl:l D
vo = cosh™ [cosh 2v.l + YZ./2 sinh 2v.1], (28)
where
- Y, l=%d, +W,).

1+ Lv.Z,
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Fig. 4 — Periodic gate crossing of a cryotron circuit.

If the ratio of the control line width b to the distance h, between
gate and controls lines are large (b/h) > 10’ this capacitance to a very
good approximation is®

=i, (299)
where A is the intersection area of the control and gate lines, and e,
is the permittivity of the insulation material.

Since the magnetic fields in control and gate lines is assumed
orthogonal to each other; therefore, there is no magnetic coupling, and

Y, = #C.

If we want to take into account of the dielectric loss of the insula-
tion material, Y, becomes

. A .

Y. = joe, 77 (1 - ) , (29b)

h we,

where o, is the conductivity of the insulation material. For SiO, o./we,

is approximately 10-2.7 Hence, this term can be neglected in this case.
By use of this result, we find

o O
1+ 307,
For a typical cryotron, the width of the gate is approximately 20

milli-inches and the width of control line is 5 milli-inches. The insula-
tion material SiO has a relative permittivity of 5. If A” is 5000 A, then

Y (30)



SUPERCONDUCTOR STRIP TRANSMISSION LINES 1689

1 oy 20 X5 X254 X 107"
C =355 X107 X5 5% 10
C ~ 5.7 X 107" farads.

If the gate is terminated by its characteristic impedance, then Z,
is approximately one ohm for an ordinary cryotron. Hence,

wCZ,~ 6 X 107°
at a frequency of 100 MHz. Therefore, (30) can be simplified as
Y ~ juCd — %juCZ,). 31

We have shown in Section II that the propagation constant of a
" superconducting strip line is an imaginary number; therefore, we set

'YC = jﬂc .
Hence,

wCZ (1 — 2jwCZ,) ] (32)

Zo = ch:l  sin 26800 + wCZ(1 — j3wCZ,) cos’ Bl

TFor typical cryotron circuits, the spacing between gates (d,) is
about equal to the gate width (WW,) for maximum compactness. At a
frequency of 10° Hz,

B.l ~ 107 radians.
Hence,
sin 2 B0 &~ 2 8,1

cos® 2 8.l ~ 1.

: H Z . 4
L. 1. 1,
ZC :YC)Y(;
Z4/2 Zg/2 §29/2
r zl¥ ol

NI

Fig. 5 — Equivalent circuit of a periodic loaded cryotron.
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Neglecting the (wC)*Z,Z, term, we find

1 3
%—%P‘:ﬁﬂﬂ-
wCZ,

By use of (25), (26), and (29a), we find
28,1 _ W, + W)

wCZ,  hW,
If A’ = h, then
_ W, + d, )*
Zo = ZC<2W, + d,
Setting
d, = KW, ,
{1+ K)'*
Zo ZQ+K'

1967

(33)

(34)

(35a)

(35b)

For maximum package density, the gates are placed as close as
possible, and thus, d, and consequently K are made as small as pos-
sible. However, to avoid interference between adjacent gates, it is
usual to set the distance between gates at least equal to their width.
Tor this condition, Z, = 0.815 Z, . As K becomes larger, Z, approaches

Z. in value.

In the next step, the propagation constant of the periodic-loaded

line is determined.
First substituting the following condition in (28):

Yo = jBe
sinh 2v,.l ~ 28,1

(28.D°

cosh 2v. i~ 1 — 5

and set
Yo = ap + jﬁo .

Equation (28) can be rewritten as

cosh (o + ) = 1 — 2L —

wCZ.8.1 + j2(C)’Z.Z,8.1.
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It is noticed that the real part on the right side of this equation
is very close to but less than 1. The imaginary part is very small.
Hence, we conclude that o, and 8, must be a small quantity. The
real and imaginary parts of this equation become, respectively,

1— @2-& — WCZ.B. (36a)

Il

cosh «, cos g,
sinh a, sin B, = 1(wC)°Z.Z,8.1. (36b)
Using the approximate relationship

2
cosha0%1+0§

B

cosBorr 1 — )

Sinh oy R o

sin 8, & Bo

Z.~Z,
and defining the following constants [see (34)]:
wCZ, T, _
8.1 4+, =1 37)
28.1 =46, ,

where 6, is the phase shift between gate crossings along the control
line without loading, (36a) and (36b) can be rewritten, respectively, as

aoBe = 1R’6; .
Neglecting the o83 term, we find
B — i = 6. + R6;
aoBy = 1R’6; .
Hence,

Bo = \i/.é 00{(1 + R)[l " (1 T %(ﬁigg;2>%]}%.

1(R%0,) < (1 + R)?,

Since
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B, becomes
_ ! 1 _RY >
TFurther neglecting R*62/(1 4+ R)*, then we obtain

Bo = 6.1 + R)}

R?
— 1p2__ Y
%“4&0+Rﬁ

Replacing R by (37), we obtain

2 3
o= o[22 o

we
_ 1p2 g A
“0 = @ X WA, + 2w (390)

Using the relation d = KW, , then

_ (2% K>% _
Bo = 06(1 TK phase constant (404)

1 .
o = 16 K rDE T — attenuation constant. (40b)
Equations (40a) and (40b) are phase constant and attenuation per
period.* If there are n gates crossing in one meter length.of control
line and if they are equally spaced, then the phase constant and attenua-
tion per meter is

2 + K\
B = Bd, + WJn(I—::__—K) rad/m

102 2 ]-
Iﬁc(da + Wu) n (1 + I{)%(2 + I{)

T neper/m,

[04

Replacing 8, by 7. and realizing that n = 1/d, + W, , we find

B8 = rcw(%i—gy radians/m (41a)

1
1 2 2
a =it W, & T DK F 2 neper/m. (41b)

*One period is the distance (d; 4+ W,) between cryotron gate crossing of
the strip line.
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The delay time per meter of the loaded line is

3
To = n(? i ﬁg) sec/m. (42)

For a typical cryotron having control width 0.005 inch an(oi gate
width W, = 0.02 inch, SiO as dielectric of a thickness 5000 A, and
K = 1, then its attenuation at 10° Hz becomes

I

(¢4

2.56 X 107° neper/m
or
=212 X 107 dB/m.

With this configuration, on a 3”7 X 3" substrate from one side to
the other side of the substrate, 75 cryotron can be laid down. The
attenuation will be only about 5 X 107* dB. This is extremely small.
For larger K, this attenuation will still be less. Hence, for our purpose,
it can be neglected. The delay time for this particular example is
approximately 10 nanosecond per meter. For the same substrate, the
time for a pulse to travel from one side to the other side of the substrate
is approximately one nanosecond.

IMig. 6 shows the relation between characteristic impedance Z,,
delay time 7, and the ratio (K) of gate separation (d,) to gate width
(W,). From Tig. 6 it is shown that the characteristic impedance Z,
of loaded line is less than the characteristic impedance Z, of an un-
loaded line at smaller K (at K = 1, Z, &~ 0.82 Z,). As K becomes
larger, (K > 10) Z,/Z. ratio approaches unity. The delay time 7,
per meter of a loaded line is larger than the delay time of an unloaded
line (at K = 1 7, = 1.22 7.). However, their ratio also approaches
unity as K becomes larger.

IV. CONCLUSION

Section IT derives the characteristic impedance and propagation con-
stant for typical thin film superconducting strip lines used for inter-
connecting cryotron elements. The characteristic impedance is shown
to be a real number with negligible frequency dependence. The propaga~
tion constant is shown to be directly proportional to frequency and
hence the group and phase velocity is identical. It is found that the
transmission performance of these lines are, for practical purposes,
independent of film thickness when in excess of 500 A. Iig. 3 shows
the characteristic impedance (Z,) and delay time 7. for a film strip
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1.2 N\
N
1.0}~
Zo/Z¢
0.8}~ 5 {1+k\z
Zo=Zc (2+k)
AR
NORMALIZED T0 Zc,T; p— (2+k>2
FOR STRIP LINE WHERE 1+K
0.6}~ THERE ARE NO PERIODIC

LOADINGS FROM GATE
CROSSINGS SEE FIG.3.

0.4k m r/"l

) 5
0.2
k=g
Wy
o] | i | |
o]} 2 4 6 8 10

Eig. 6 — Relation between characteristic impedance (Z,) delay ( ), and
ratio (k) of gates separation (d) and gate width (W,) of superconducting strip
line with periodic gate crossing.

of 5 milli-inches width on SiO dielectric. For other widths, Z, is in-
versely proportional to width and 7. is independent of width. For
example, at a dielectric thickness of 5000 A and film width of 5 milli-
inches, Z, = 0.725 ohms and 7. = 8.2 X 10~° sec/meter.

Section IIT derives the characteristic impedance (Z,) and propagation
constant for thin film superconducting strip line used as a common
control which crosses a series of cryotron gates periodically spaced.
This is related to the transmission characteristics (Z,, r,) for the
strip line if they did not eross eryotron gates. Fig. 6 shows this relation
with plots of characteristic impedance and delay time per meter versus
the ratio (K) of distance between gate crossing with gate width. For
high packing density K = 1, it is found that the characteristic impedance
is reduced almost 20 percent due to the loading of the gate crossings.
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The delay time 7, is increased 20 percent. The attenuation constant
(ap) 1s extremely small, hence it can be neglected for practical purposes.

APPENDIX A

Referring to Fig. 5 from point 1-1’ to point 2-2’ the control line
has characteristic impedance Z. and propagation constant .. The
voltage and current equations in terms of the Z, and vy, are®'* "'

V. coshy,l Z.smhvyl|| 7V,
=, : (43)
I, 7 sinh vy,  cosh vy I,
where
l=13d, + W,).

From point 2-2’ to point 3-8, the voltage and current relations are

'Vz‘z 1 0! V, , (44)
I, Y 1 I, .
where

Y = Y

1+3Y.2,

If the gate lines are terminated in their characteristic impedance
then Z, is the characteristic impedance and a real number independent
of frequency. Otherwise, Z, might be a complex and be frequency
dependent.

Similarly, from point 3-3’ to 4-4’ we have

V, coshy.l Z.sinhvyl|]| V.,
=1, . (45)
I, 7 sinhy.l  cosh vy, I,
Hence, for each period, we have
V.| _|4 B ‘ l V.
I, C Dl I,

where
A = cosh 2y, 4+ YZ./2 sinh 2v.l,

4 =D,
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B = Z,sinh 2yl + YZ2 sinh® v.1,

C = %sinh 9.0+ ¥ cosh® ..

Since A = D this is a symmetrical circuit, accordingly its charac-
teristic impedance Z, and propagation constant v, are

Zy = VB/C

2
(=]
Il

(46)

oo ]
¢ sinh 2y.l + YZ, cosh® 7.l

-1
cosh™ A4 7)

Il

cosh™ [cosh 2y.l + YZ./2 sinh 2v.1].

LIST OF SYMBOLS USED

I° = Inductance

o

g
W,dib, b, d,

He

I

]

I

It

i

i

I

I

I

I

It

l

Capacitance

Conductance

Geometric Parameters
Permeability of dielectric material
Permittivity of dielectric material
Conductivity of dielectric material
Permeability of superconductor
Permittivity of superconductor
Residual normal conductivity of superconductor
Current Density

Electric Field

Magnetic Field

Angular velocity

Penetration depth of superconductor
Classic skin-effect depth
Impedance

Characteristic Impedance
Progapation constant

Phase constant

Wave length

Delay time
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Scattering Relations in Lossless Varactor
Frequency Multipliers

By C. DRAGONE and V. K. PRABHU
(Manuscript received May 22, 1967)

In recent years, the use of varactor diodes for harmonic generation has
become increasingly widespread. Varactor harmonic generators come under
the general class of pumped nonlinear systems, which are networks driven
periodically by a pump or a local oscillator at o frequency w, and its har-
monics. For such systems, a general method has been presented in this
paper to oblain the scattering parameters which relate the small-signal
fluctuations present at various points in the system. In particular, the
scattering parameters of lossless abrupt-junction varactor harmonic gen-
erators of order 27, 3°, and 2"3° with minimum number of idlers have
been obtained. It has been shown for these multipliers that there is no
amplitude-to-phase or phase-to-amplitude conversion if fluctuations are
in the vicinity of the carriers. With minor modifications this theory can
be extended to the study of lossy varactor harmonic generators.

I. INTRODUCTION

The carrier voltages and currents present in a varactor frequency
multiplier are perturbed by small amplitude and phase fluctuations
due to a variety of causes, such as noise, synchronizing signals, etc.
In some applications, these fluctuations may be due to modulations
purposely applied to the carriers. An example of such applications is
that in which a frequency modulated signal is multiplied in frequency
to increase its modulation index. It is the purpose of this paper to
study how these perturbations propagate in the circuit of a multiplier.
In other words, this paper considers the problem of determining the
small-signal behavior—a problem which is of basic importance in un-
derstanding the problem of stability and noise performance in high
efficiency varactor multipliers.

i See Ref. 1. The problem of stability is also treated in a subsequent paper.2

Part of the results obtained in this paper represent generalizations of some of
the results presented in Refs. 1, 3, and 4.

1699
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In the earlier part of this paper, a general method has been presented
in order to obtain the scattering parameters of pumped nonlinear sys-
tems which are networks driven periodically by a pump or a local
oscillator at a frequency{ wp and its harmonics. Harmonic generators
discussed in this paper come under this class of systems. Some of the
formalisms usually used to describe the fluctuations in these systems
are also briefly reviewed.

In the second part of this paper we discuss varactor multipliers in
which the diode is not overdriven and is of the abrupt-junction type.
The equivalent circuit of this type of multiplier consists of an ordinary
linear, passive, and time-invariant circuit connected to the time-vary-
ing component of the elastance S(¢) of the varactor.® In general, it is
shown that a complete solution of the small-signal behavior of such
a circuit requires that S(¢) be known. On the other hand, it is well
known that certain properties of the small-signal behavior of a multi-
plier do not depend at all on the particular form of S(¢). For instance,
a general and well-known property of a multiplier of order N is that
slow fluctuations in the phase of the input drive produce N times as
large fluctuations in the phase of the output signal. One of the main
results of this paper is that, under certain general conditions, many
other properties of the multiplier are related in a simple way only
to the order of multiplication N. All the small-signal characteristics of
a multiplier that are of practical interest can, therefore, be readily
determined without having to calculate S(t).

Specifically, we consider a lossless multiplier of order N = 2"3° =
2, 3, 4 ete., which is tuned at all carrier frequencies§ and has the least
number of idlers. Then, if the various small-signal fluctuations of such
a multiplier are properly normalized with respect to the corresponding
carriers, one finds that the small-signal terminal behavior of the elastance
S() is completely determined by N only. It is important to point out
that this is exactly true only for w << w, , where w is the frequency of the
fluctuations and w, is the carrier frequency of the drive. If this in-
equality is not satisfied, then the small-signal behavior will also depend
on w. A consequence of these results is that the AM and PM scattering
parameters of the multiplier of order N = 2"3° considered in this paper
only depend on n and s, in the vicinity of the carriers. They are given,
respectively, by the two matrices

In this paper the word frequency has been used exclusively for the angular
frequency of a sinusoidal signal. If f is the frequency of a signal in Hz its angu-
lar frequency w is given by w = 2xf in radians/second.

§ Tuning of idlers, and input, and output circuits usually gives near optimum

efficiency ™8
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l — (-1)" {)_" —_ n‘)_n — no—s
3 3 2 (=Dn"2 0 (=1D"3
T 3 1 (_1)7' n
D) 2 _ =
1 0 2"3 3 3 2

It is important to point out that for the above multiplier it has been
assumed in deriving the results that the bias circuit is properly designed
so that there are no low-frequency fluctuations of the average capaci-
tance of the varactor diode.® This assumption leads to the result that
there is no amplitude-to-phase and phase-to-amplitude conversion if
w/wo < 1.

Several other results are also presented in this paper. For instance,
it is shown that, if the number of idlers is minimum, then an abrupt-
junction varactor multiplier of order N = N; X Ny X ... X N, is
equivalent to a cascade of n multipliers of order Ny, Na, ..., N,. If
the varactor is not overdriven, this property furnishes the basic equiv-
alent circuit for studying the properties of most of the higher-order
multipliers encountered in practice (N = 4, 6, 8, ete.).

Finally, it is important to point out that techniques presented in
this paper are applicable to the derivation of scattering parameters
of multipliers, of any order, with any arbitrary configuration of idlers,
and using a varactor diode having arbitrary capacitance variation and
drive level. We only assume that the elastance S(¢) of the diode used
in the multiplier has a Fourier series.i

II. SOME CONSIDERATIONS OF PERIODICALLY DRIVEN NONLINEAR SYSTEMS

As mentioned earlier in this paper, frequency multipliers come under
the general class of nonlinear systems driven by a strong periodic car-
rier. It is our interest to study in this paper how small perturbations
on the periodic driving of such systems are propagated, and to this
end we shall give a brief introduction§ of a circuit theory which enables
us to relate the perturbations at different parts of the system. The
perturbations or fluctuations that we would like to analyze could be
caused by desired or undesired modulation, noise, hum, or synchroniz-
ing signals. The origin of these sources of fluectuations is not relevant
to our development of this theory.

Let us consider a nonlinear system. It is our assumption that the

t The conditions under which a periodic time function z(t) has a Fourier series
are well-known; and can be found in any book on Fourier series. See, for ex-

ample, Ref. 9.
§ See Ref. 10 for a more detailed account of this theory.
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large-signal voltages and currents at various parts within the system
are, by design, periodic with some frequency w,. Thus, the voltage at
some specific point within the network or across one of its terminal
pairs, v (t), is of the form

u(t) = k_Z Ve exp (jkw,t), (1)
where the V,’s are half-amplitudey Fourier coefficients, with V., =
V+%. However, the actual voltage »(f) may deviate from (1) because of
fluctuations present in the system. Thus,

v(t) = kz Ve exp (Fkwot) + 6v(d), 2
where &v(f) is small compared to v(f) in (1). The circuit theory that we
shall use in the rest of this paper is one which describes perturbations
sv(t) and relates them to similar perturbations of voltages and currents
in other parts of the system. The perturbations are assumed to be small
and they are at frequencies close to the carriers.||

The carrier voltage at some particular point in the system is of the
form

V. exp (Gkwot) -+ V¥ exp (—jkwot), 3)

where V, has some phase angle ¢,, . The actual voltage v,(f) in the
vicinity of this carrier deviates from (3) because of the perturbation
v (D);

n(®) = Vi exp (hawot) + Vi exp (—jhwot) + dv.(2). 4)

Similar expressions can be written for currents and voltages at various
places in the network. The various voltages like v(f) obey Kirchhoff’s
voltage law, and various currents #(¢) defined at various points in the
network obey Kirchhoff’s current law. Furthermore, the carrier voltages
and currents at various points in the network obey these Kirchhoff’s
laws, leading us to conclude that the perturbations like dv(¢) and 8i(z)
also obey them.

Let us now assume that the perturbation 6v.(f) contain frequencies
that are located in a band of width 2w, centered about frequency kw,
where 2w, < w,."” We can write'® v,() as}

{ Note the use of half-amplitudes, rather than amplitudes or rms values.

]ﬂ The large signal voltage or current present in the system at frequency ke
will be referred to from hereon as the carrier voltage or current at that frequency.
In frequency multipliers carriers are at different frequencies at different parts of

the system.
% In writing (6), it is assumed that | ve(¢) |/| Vi | < 1 for all ¢.
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vi(f) = 2 Re [| Vi | + va(t) — (D] exp [(kwot + ¢.0)] ®)

~ ; _ ()
~2Rel| V| + va(D)] exp {j[kwot + ou [V, I]} ) (6)

where v,,(t) and v,.(f) are slowly varying functions of time. The voltage
v.(t) can be interpreted, since it is small, as a perturbation on the
amplitude | V, | of the carrier. Similarly, voltage v,.(f), because of (6),
can be interpreted as a perturbation on the phase kwet -+ ¢, of the
carrier. We shall refer to v,.(f) as amplitude (AM) fluctuations and
to v,.(t) as phase (PM) fluctuations. Similar AM and PM fluctuations
can be defined at various points in the system.
If these AM and PM fluctuations are sinusoidal, we have§
Var(f) = Vi exp (jwi) + V¥ exp (—jwit) )
and
Dph(t) = Vplc €xp (]wt) + V:k €xXp (—]wt> (8)
The actual voltage v,(f) is then given by
vk(t) = 2 Re [[ Vk l + (Vak - ijh) €xp (Jwt)
+ (V& — iV exp (—jwd)] exp [j(kwot + ¢.)]  (9)
= 2 Re { V. exp (jkowot)
+ V. exp [jlkwo + w)t] + Vi exp [j(—kwo + w)i]}, (10)

where V.., Vg, Vi, and V,, are related. The relation is

My 7
LI ak i — Bvlcl:vakj’ , (11)
/varJ VBlc

where the matrix )\, is a function of only the carrier phase angle ¢,, .
The matrix ), can be represented as

N L S
j ——.7 O exp (j‘pvk)

Equation (10) shows explicitly the three frequencies kw,, kwy, + o,
and —kw, + w. The two sidebands here are both higher in frequency
than kw, , and —Fkw, , respectively, and therefore, these representations
are referred to as upper sideband (« — f) representations. We will
use them along with the representations of the form (9) in the rest

§ Since the fluctuations vaux(¢) and v,(¢) are band limited around de¢, « must
be less than w. in magnitude, where 2w, < wo.
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of this work. Their mutual relation is given in (11). Because of (10)
we shall refer to w as the fluctuation difference frequency.

Let us now consider a pumped nonlinear system exchanging power
at the carrier frequencies 4-wy , 2w, , ++ - , Z=nw, . A nonlinear system
exchanging power at a number of frequencies can be considered as a
multiport multifrequency system as shown in Fig. 1. In Fig. 1 the
system exchanges power at n carrier frequencies and it is assumed,
without loss of generality, that no two ports exchange power at the
same carrier frequency. Let the perturbation voltage and current
at port & be denoted by év.(t) and 67.(¢), respectively. Since 6v’s are
small, they must be linearly related.] Hence, there is a relation which

To

————0

v BIAS

0 VOLTAGE

Fig. 1—Pumped nonlinear system exchanging power at n carrier frequencies.

relates v, to 67’s of the form

suu(f) = Z‘,f hui(t, ) 81,(¢ — 7) dr, (13)
i=1 Y-

where h;; (¢, 7)’s are functions of time ¢, as well as of time difference 7.
Since the driving is periodie, if 67’s were applied one period later,
8v, would be the same, except that it would be delayed by one period.
This argument leads to the conclusion that h,;({, 7)’s are periodic
functions in ¢, with period T, = 27/w, and can be expressed in a Fourier
series of the form

% This is because only first-order terms in §v’s and &i’s are retained. Higher-
order terms are assumed to be negligible even when first-order terms vanish.
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0

hii(t, 7) = _Z: (hi)1(7) exp (jlosot), (14)
where (h;;),(7) is a function of r. Upon substituting (14) in (13), we
find

n ©

() = 3 3 ew Glot) [ (@) it = D dr. (1)

i=1 l=—c0

If 6v.(t) is represented in the & — B form,

du(t) = 2 Re { V. exp [j(kwo + w)f] + Vi exp [J(—kwo + w)t]}, (16)
we findi

[iVakJ _ [Zakal Zukﬂl et Zakvxk Zakﬂlc e Zakan Zakﬂn:fI (17)
Vﬂk Zﬂkal ZﬁkBl tct Zﬂkak Zﬂkﬂk e Zﬂkan Zﬁkﬁn

where§

I={IalyIﬁlp"'yIakrIﬁk)"'on:nvIﬁn}- (18)

III. SMALL-SIGNAL ANALYSIS OF PUMPED NONLINEAR SYSTEMS

For the nonlinear systems that we shall consider in this paper,
we shall assume that the total voltage v(t) across the nonlinear element
is related to the current 7(f) through it by the equation

v(®) = FE()}, (19)

where F{i(t)} is a single-valued functional of 7(f).

Assuming that there are carrier currents flowing in the system at
frequencies 17w, , 0 < ¢ < m, the spot frequency terminal behavior of
this system at a difference frequency « is given according to (17) by an
equation of the forml||

1 Essentially, we are discussing impedance formalism here which relates volt-
ages to currents through an impedance matrix. Several other kinds of formalisms
like scattering matrix representation or chain matrix representation can also be
used to relate other desired sets of variables.

§ A column matrix a is written in the form {a;, as, ..., a.}, the curly braces
being used to identify it as a column matrix.

{1f there are any physical sources of fluctuations (such as noise sources) in
the pumped nonlinear system, (20) is to be suitably modified. For the discussion
of t}ig (Ease in which noise sources may be present in the pumped nonlinear system,
see Ref. 11.

|1 Tt must be pointed out that this equation only relates the small-signal fluctu-
ations present in the system and not the carrier voltages and currents.
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VaO ZaOaO ZaOal Za()ﬂl e Zaoai Zaoﬁi e Zo((]an Zaoﬂn—‘ 11\0

Val Zala() Zalal Zalﬂl M Zalou’ Zalﬂi M Zutlntn Zawn Inl
Vﬁl Zﬁlao Zﬂlal Zﬂlﬂl et Zﬁlai Z,Blﬁi tte Zﬁlan Zﬂlﬂn Ial

Vai = thia() Zou'al Zaiﬂl Zou'cxi Zaiei Zaian Zal’ﬂn chi ’ (20)
Vﬂi Zﬂmo Zﬂial Zﬁiﬂl e Zﬂiou' Zﬂiﬁi e Zﬁian Zﬂ-‘ﬁn Iﬂ:’

Van Zame Zanozl Z.’xnﬂl et Zotnai Zanﬂi tet Zmnan Zanﬁn ]an
Vﬂn_ _ZﬂnaO Zﬂnal Zﬁnﬂl M Zﬁnai Zﬂnﬂi cce Zﬂnan Zﬂnﬁn— _-[ﬂn—

where V,; and Vy; are the terminal voltages at frequencies jw, +
and —jw, -+ w, respectively; and I,; and Iz are the corresponding
terminal currents. We would like to note here that V,, = Vg 1s the
small-signal terminal voltage at the frequency . We shall, for brevity,
write (20) as
(Va—ﬂ)n = (_Za—ﬁ)n(:[a—ﬁ)n . (21)
Let us now specifically consider a varactor diode which is pumped
at a frequency w, and its harmonics. The varactor model that we shall
use is shown in Fig. 2. It is a variable capacitance in series with a

S@) Rs
o /{’\/' “\NN——>
Fig. 2 — Varactor model.

constant resistance R, .I The instantaneous varactor voltage v(f) can
be written as some function f of the charge, plus the drop across the
series resistance R, :

v = fle®] + R, (22)
where

o) = f_ ; i) dt. 23)

For such a varactor, we can make use of the small-signal equations
given in Ref. 5 in order to obtain the impedance matrix Z,_z in (21).
If the elastance S(f) of the varactor diode can be written in a Fourier
series of the form
S(t) = > 8, exp (jkewot), (24)
k=-—c0

f Mainly we shall be concerned with varactor diodes which are lossless in the
succeeding sections of this paper. For a lossless varactor diode R, = 0



the matrix (Z.-s). can be represented as§

Sy _ St S,
Jo  Jlw + ) j(—w + w)
S S S,
Jo  jlwo + @) j(—w + @)
St S S,
Jo  jlwo + @) j(—wo + @)
Si Si—l Si+l
Daed)e = | 22 = .
Ga-s) jo  jlwo +w) j(—wo + w)
St Sk, St
jo  jlwo + @) j(—wp + w)
Sy Sams S
jo  Jlwo + @) j(—w + w)
S* S¥eq Sk,
Ljw jlwo + @) j(—wo + w)

§ We have put B, = 0 in order to obtain (25). If R, # 0, (Zx_p)n =

in (25)} + Ril2ny1. 1a is the unit matrix of order n.

S¥ S,
Jwo + @) j(—1wy + w)
:’k—l Si+1
j(we + @) j(—iwe + w)
Si‘k+1 Si—l
j(iwo + w) ].(’“’iwo + w)
So SQi
J(wy + w)  j(—1wo + w)
S So
j(iwo + w) j(_iwo + w)
S,._,‘ Sn+i
i(iwe + @) j(—two + )
Sk Sk,
J(we + @) J(—iwo + w)
{(Za—ﬁ)n

Sk S,
iwy + @) j(—nwo + w)
S:—l Sn+1
jwo + @) j(—nw + w)
SrT+l Sn—-l
inw + @) j(—nwo + w)
S:{‘—i Sn+i
Jwo + ) j(—nwo + w)
Sf-*i Sn—c’
jwy + @) j(—nwo + w)
S, Sz
Jwo + @) j(=nwo + w)

S;kn SO
inewo + @) j(—nw + )]

- (25)

SNOILVTIHY DNIYHLLVDS

LOLT
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Equation (25) shows that the impedance matrix (Z,-s), always exists
for a pumped varactor diode as long as the elastance S(¢) is expressible
in the form (24).

Let us now assume that the input carrier frequency is lw,, 1 £ I £ n;
and that the output carrier frequency is sw,, 1 < s =< n (see Fig. 3).
Let us also assume that the terminal constraints at other carrier fre-

quencies are such that
V= —Zi 4, (26)

where V/ is an @ — B terminal voltage column matrix given by

VaO
V{xl

Va(l+l)

Il

\'4 Vf?(l+1) . (27)

Va(s—l)
Vﬂ(s—l)
Vn(s+l)

I/vﬁ(s~+-l)

I’ is the corresponding terminal current column matrix. Z',_s is the
impedance matrix determined by the terminal constraints imposed by
the external circuits on the system. These terminal constraints at all
carrier frequencies excluding lw, and sw, are assumed to be known.
Even though the currents flowing in the varactor are not limited by

the diode in the range of available frequencies, it is assumed that the
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external circuits are such as to offer an infinite impedance at any fre-
quency very far from the carrier frequencies present in the multiplier.
This enables us to consider the multiplier as a finite port multifrequency
system.

It may now be seen that by using (25) and (26) we can obtain a
relation between V.., Ve, Tary Loy Vaey, Ve Las, and Ig . In

sotat | o las .

Val Vas

o | L
Za-g)1-

N IﬂL ( a-B)1-s IBS .

\/:38 Vgs

I -

Fig. 3 — Small-signal terminal behavior of pumped nonlinear twoport.

particular we can write}

Vi Wrar Zihe Zlas Zlhige || T
Vool _ | Zolar Zjisi Ziias Zhiss || Inn (28)
Vs Zlar Zpy Zllyas Zllips || Las | -
Ve Zar Zigt Zhias Zhipedl L,
or
(Vaepie = (Za-p1-a-p)i-. . (29)

Equation (29) relates the small-signal fluctuations existing at input
and output terminals of a pumped varactor diode. In case one is in-
terested in relating the AM and PM fluctuations at the input and output
terminals of a pumped varactor diode, we make use of (11). If ¢,,,
©.0 5, i1, and @,, are the phase angles of carrier voltages and currents
at the input and output of a pumped varactor diode we get the fol-
lowing equation which relates the different fluctuations:

1 In certain cases it is possible that the matrix (Z,-g)i_s does not exist. Even
though (Z,—-g) 1—s may not exist, in most cases of practical interest, we can always find
a relation between the terminal voltages and currents at the sideband frequencies
in the vicinity of input and output carriers. This will be shown to be true in the case
of a tripler which is discussed elsewhere in this paper. However, the matrix (Z,—_g)n
always exists for a pumped varactor diode.
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I/al Ial
Vpl = (Za—p)l—s Ipl ] (30)
Va.s Ias
Vo I,
where
(—Za—p)l—s = (Z\r)l—s(Za—ﬂ)l—s{(z\i)l—s}_]y (31)
r l b
A = | 20 0] (32)
L0 i 2l
and
r | 7
O)ime = | 2t 0. (33)
L 0 } Ao

The matrices )\’s are given as in (12).

Once we have obtained the impedance matrix representation for the
pumped varactor diode other kinds of representations like scattering
matrix representation or chain matrix representation could be derived
for any specific application or convenience. Mutual relations between
these representations are given in Refs. 11 and 12, and we shall not
discuss them in this paper. Scattering matrix representation of loss-
less abrupt-junction varactor multipliers is extensively treated in
later sections of this paper.

IV. SCATTERING PARAMETERS FOR PUMPED NONLINEAR SYSTEMS

The total voltage »(f) in the vicinity of a carrier at frequency =kwo
can be represented as in (5) or (6). v,.(t) can be interpreted as a small
perturbation on the amplitude | V, | of the carrier, and v,,(t) as a per-
turbation on the phase kwot + ¢,, of the carrier. Since the device acts
as a time-variant linear device to the fluctuations and since super-
position holds, v.(f) and v,.(f) can be represented as in (7) and (8).

The voltage AM and PM modulation indexes at the carrier frequency
kw, may, therefore, be defined as

_ Vak
Mo = I Vk l (34)
and
Tfﬁk (35)
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The AM and PM indexes at the input and output of a pumped non-
linear system are, according to (30), related by an equation of the form

My mq
0 0;
*! = (Zm—-ﬁ)l—s ! ’ (36)
My Mis
L 01:3 ois
where
-1
l Vl I 0
V -1
(Zm—o)l—: = ' ' l ) . (—Za—P)l—a
0 l V8 I—
[v. ™
' Il | 0
[ 1]

: (37)
L 0 1. |
| 1|

It is assumed that carrier voltages at frequencies lw, and sw, are nonzero.
~ Until now we have exclusively used the impedance formalism to
describe the properties of the pumped nonlinear system at the side-
band frequencies. The choice of an appropriate formalism is particularly
important in theoretical studies where important properties of the
system may be obscured by complicated equations. The scattering
parameters of a system are a set of quantities which can describe the
performance of the system under any specified terminating conditions,
just as the impedance (or admittance) quantities can, but while the
scattering coefficients may not be particularly convenient for short or
open-circuit computations, they may be applied in a relatively simple
fashion when the network is terminated in a prescribed load impedance.
Since we will be mainly interested in studying proper terminations for
the system in order to realize certain desirable characteristics, scattering
matrix formulation to describe AM and PM fluctuations in pumped
nonlinear systems seems to be the most desirable.’**'** Equation (36)
relates the AM and PM indexes or normalized voltages and currents
at the input and output of a pumped nonlinear system.f The incident

I Most of these concepts can be extended in a straightforward fashion if the
pumped nonlinear system has more than two accessible ports.
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and reflected AM and PM indexes (see Fig. 4) can, therefore, be written'
as

(my); = ¥(m,; + m,;), i=1s, (38)

(m); = $(m,; —my), j=1s, (39)

(0); = 2(0,; + 6:3), i=1s, (40)
and

(0.); = 3(6,; — i), i=1s. (41)

Using (37) through (41), we can now obtain the following scattering
matrix representation for a pumped nonlinear system:

el | gt s, | O
(mr)s — e _:l o (7)7,;)8 . (42)
(6. g L8, || (0
(6.). i (6,

The relation between scattering matrix in (42) and impedance matrix
in (37) is easily derived.'® In our case, this is given by

(8)i-s = Ls = 2{Li + (Zh-)1=u} 7, (43)

where 1, is the unit matrix of order 4, and where Z/,_, is related to
Zms in (37) by

1 0 0 O 1 0 0 O
0 010 0 010
(Zr’n—ﬂ)l—s = (Zm-—ﬂ)l—s ° (4:4)

01 00 0100
00 01 0 0 01

+ 0~ ML B o4

My Mys

O PUMPED -
o NONLINEAR o

" il SYSTEM LS ¥

61 bys

Jr. S— — 0

Fig. 4 — Representation of AM and PM fluctuations in a pumped nonlinear
system. ' :
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The scattering matrix which relates the small-signal fluctuations of a
pumped nonlinear system is, therefore, given by (43). We assume that
the matrix 1, + (Z%_,).—, is nonsingular.

We would like to point out here that the matrices S.o, Sap, Spa,
and S,, are all square matrices of second order. For reasons which are
evident from (42), the matrix S,. will be referred to as AM scattering
matrix, S,, as the AM-PM scattering matrix, S,, as the PM-AM
scattering matrix, and S,, as the PM scattering matrix.

V. SCATTERING MATRICES OF NOMINALLY DRIVEN LOSSLESS ABRUPT-
JUNCTION VARACTOR FREQUENCY MULTIPLIERSI:

The theory developed in the preceding sections will be utilized from
hereon in order to obtain the scattering parameters of nominally
driven lossless abrupt-junction varactor frequency multipliers. The
elastance S(¢) of the varactor diode as it is pumped is assumed to be
given by$§

S() = i Sk exp (kwol). (45)

k=—o0
k=0

In this section we shall first obtain the scattering matrix of a varactor
doubler whose input and output circuits are tuned. In the later part
of this section the scattering parameters of a tripler, whose input, output,
and idler circuits are tuned, are also derived. The discussion of the
. scattering parameters of multipliers of higher order is postponed to
later sections of this paper. For all the multipliers considered in this
paper it is assumed that the bias circuit is properly designed so that
there are no currents flowing at the sideband frequencies +w.® Even
though the currents flowing in the varactor are themselves not limited
by the diode in the range of available frequencies we assume that the
external circuits connected to the diode are such that they allow currents
to flow in the varactor if and only if the frequency spectrum of these
currents is in the vicinity of input, output, and idler carrier frequencies.
This enables us to consider the multiplier as a finite port multifrequency
system.

1 See also Refs. 3 and 4 for alternate derivation of some of these results.

§ The average elastance S, of the varactor diode can always be included with
the external circuit. The assumption that S, = 0 made in this section does not,
therefore, involve any loss of generality.
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5.1 Scattering Parameters of a Doubler.

In a doubler, the only nonzero elastance coefficients are S.,, and
S,z . The impedance matrix (Z._s). in (25) is represented as (see Fig. 5)

- 9 Ir.
V. N Sk s BENUN L
an s I & nel Al (46)
s : L 0 Ls
Vu| | 0 I(:f_*m ’ N

We shall now assume that input and output circuits are tuned which
usually gives near optimum efficiency for a doubler.>"”** We also assume
that

w
oKL 47)

With these two assumptions, we can write the following matrix equa-
tion for a doubler:

vl T o [ 0 e

W 2wq

Ve l__[fz 0 0 18] Ig

2w
= 0 . (48)
S
Vaz _J——l—]' 0 O O Iaz
Wo
S
14 0 —J—-——'—[ 0 0 I
L ﬂz._ L Wo L 52,
+ O—-LD ‘__I(X2_0+
Vai wotw 2wy + 0 Va2
o ] e o
VARACTOR
I DIODE
+ Bt { c——iﬁ-za——o+
Vg ~Wo+ @ 2wyt @ \73
— — ————C

Fig. 5 — Small-signal behavior of a varactor doubler.
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The phase angles} of carrier voltages and currents are given by®

o1 = 0, (49)

en =0, (50)

Qv =, (51)
and

o, = T. (52)

From (31) the impedance matrix (Z.-,). is, therefore, written as§

18], I8l 4 ]
Wo 2(’.’0
o LSl LS|
Zu)e = “o 2o (53)
18] f‘ 0 0 0
L Wo n

Equation (53) clearly shows that in a doubler which is properly tuned
and whose bias circuit is properly designed, there is no amplitude-to-
phase and phase-to-amplitude conversion.®

It is shown in Appendix A that

1 Vel 18] 69

IIII Wo !

[ Vo] _ 18]
L] = &8s [ (35)

Il _ 181 (56)

IIz I 2(.00

1 Without loss of generality the phase angle of input carrier voltage at frequency
wo is assumed to be zero. g2 is the phase angle of the current through the load con-
nected to the doubler,

§ The matrix (Z)1—, will be written as (Z), in case this does not lead to any
ambiguity.
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and

RANSTA] -

l ]1 | 2(00
According to (37) and (53), the matrix (Z,.-,). is represented as

1 0 -1 0
0 -1 0o —1
(Zm—0)2 = : (58)
2 0 0 0
0 2 0 0]

The scattering matrix of a doubler, whose input and output circuits
are tuned is, therefore, according to (43)

3 —% |: 0
e N S ; (59)
0 E 0 -1
21
(§aa 2 = [% _%J 9 (60)
1 0
(§ap) = QJ (61)
(S,0) = 0, (62)
and
(S,) = [0 ‘IJ- (63)
2 1

5.2 Scattering Parameters of a Tripler.

In a tripler, carrier currents flow at the frequencies 4w, , 2w, , and
+3w, . The impedance matrix (Z,—-4)s is given as



Se St Ss S§

0 T T @t (2wt Gt
St 0 St s,
How + @ a0+ @ J(—20 @
S, S, 0 0 __.’S;k_.
oo+ @ (—aet @ B + @
S S
oo @ H—wmt@ O 0 0
s, 3,
Hen + ) 0 o + @ 0 0
s St
L0 [ E——— 0 (=200 + @) 0

0

Se

H(—3we + w)

0

(64)

SNOILVIAH ODNIYALLVOS

LILY
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If we now assume that

L1 (65)
and also that input, output, and idler circuits are tuned and that®

ev1 =0, (66)

¢n =0, (67)

oys = 0, (68)

ez = 0, (69)

ey =, (70)
and

e = m, (71)

we can show that the impedance matrix (Z,.,)s does not exist for a
tripler.] It is also shown in Appendix A that

| Ss | =18 /2. (72)

Equations (64)-(72) show that§

1, 2

Va 3

V.2 (74)

1, 2
and

v, 1

V"2 76

Equations (73) through (76) show that even though the amplitude-phase
impedance matrix may not exist for a pumped nonlinear system (such as

i The termination at the idler port just tunes out the average elastance of the
varactor diode at the carrier frequency 2wo.

§ We note that a tripler behaves like an ideal transformer of ratio 3/2 to the
amplitude components of the fluctuations. Higher order terms in w/w, are as-
sumed to be negligible, even when first-order terms vanish. The frequency-
dependence usually introduced by the external idler termination, therefore, does
not appear in the scattering matrix of the tripler.
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a tripler) we are able to find a relation between the different terminal
variables. These relations are sufficient to obtain the scattering param-
eters of the network.'> We immediately note from (73) through (76),
that there is no amplitude-to-phase or phase-to-amplitude conversion in
a tripler. Accordingly,

(‘Sab 3 = Q (77)
and
(Spa)s = 0. (78)
It is shown in Appendix A that
[ Vil _3
V.~ 2 (79)
and
L] _2
AL (80)
From (34), (35), (73) through (76), (79), and (80), we can show that
[0 1
(’Saa)z = J (81)
11 0
and
I -1
3
(.Spp)3 = 0 :l' (82)
13 0

Equation (81) could have been written down by noting that a tripler
behaves like an ideal transformer of ratio 2 to the amplitude components
of its fluctuations.

The scattering parameters of a tripler, whose input, output, and
idler circuits are tuned, are therefore, given by

(S)s = L _____ 3 _____ . (83)

In order to obtain scattering parameters of multipliers of higher
order with the least number of idlers we shall show that a multiplier
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of order 2" is equivalent to a cascade of n doublers, a multiplier of order
3* is equivalent to a cascade of s triplers, and that a multiplier of order
2"3° is equivalent to a cascade of n doublers and s triplers.

VI. EQUIVALENCE OF A MULTIPLIER OF ORDER N = N, X N, T0O A
CASCADE OF TWO MULTIPLIERS OF ORDER N; AND N,{

In this section it is shown that, if the idler configuration of a multiplier
of order N = N, X N, satisfies certain conditions, then the multiplier
can be represented as a cascade connection of two multipliers of order
N, and N, . In this and in the following two sections, no restriction is
placed on the type of input, output, and idler circuits. Therefore the
following discussion also applies to the case of a multiplier which is
lossy and not tuned.

Consider an abrupt-junction varactor multiplier of order N =
N, X N,. Let B denote the set of all positive and negative integers
which are equal in magnitude to the orders of the various harmonics
present in the varactor current. Furthermore, let B, indicate the subset
of B which consists of the elements of magnitude equal to or less than
N, , and let B, denote the subset of B which consists of the elements of
magnitude equal to or greater than N, . In this section it will be shown
that, if B satisfies the following condition:

B is such that, if (r, s, h) is a subset of B and if r 4+ s 4+ h = 0,
then either (r, s, ) C B, or (r, s, h) C B., (84)

then the multiplier is equivalent to a cascade conncetion of two multi-
pliers of order N, and N,. Notice that an abrupt-junction multiplier
of order N = N, X N, which satisfies (84) must have an idler at the
harmonic N,w, . In fact, for such a multiplier this idler is necessary in
order to produce harmonics of order higher than Ncw,.®

Consider then a multiplier of order N, X N, which satisfies (84)
and let it be represented by the very general equivalent circuit shown
in Fig. 6. The generator v,(?) is sinusoidal and is of frequency w, . Z(w),
the impedance of the external multiplier circuit as seen from the non-
linear part of the capacitance of the varactor, is assumed to be finite
only in the vicinity of the input, output, and idler frequencies. Since
Z(w) includes the average elastance and the series resistance of the
varactor, the nonlinear capacitor of Ilig. 6 has a ¢-v characteristic of
the type: v = Ag®, in which A is a constant multiplier. Consider now

1 The results of Sections VI, VII, and VIII represent extensions of an carlier
result, the equivalence demonstrated in Ref. 1 for the case N = 2.
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Z(w)
AVO=AC O
Vg

Fig. 6 — Varactor harmonic generator,

the circuit shown in Fig. 7. It will be shown that this circuit provides
an alternative and complete representation of the multiplier of order
N,; X N,. The two nonlinear capacitors of Fig. 7 and that of Fig. 6
are assumed to have the same ¢-v characteristics. The three networks
F,, F,, Fs are ideal filters which have zero impedances at the carrier
frequencies which satisfy respectively the relations w < N,wo , w = Nywo,
w > Nyw,, and also at their sidebands. Furthermore, at frequencies
different from these, they have infinite impedance.

Before beginning the demonstration of the equivalence of the two
circuits of Figs. 6, and 7, it may be profitable to examine briefly the
behavior of the circuit of Fig. 7. The circuit of Fig. 7 represents the
cascade connection of two multipliers of order N, and N, . More pre-
cisely, consider the network connected on the left side of the first ca-
pacitor. For o < N,w,, it is equivalent to the network connected to
the capacitor of Fig. 6. Therefore, it pumps at w = w, the first capacitor
of Fig. 7 and, in addition, it provides the proper idler terminations for
the generation of the harmonic N,w,. A current component at this
harmonic is therefore gencrated by the first capacitor and it flows in
the second loop shown in T'ig. 7. The second capacitor is thus pumped
at w = Nyw, by this current. Note that the network connected to its
right provides the proper idler terminations for the generation of the

(=9 (,=d%2 L.dds
Y=t 275 ST
i -— Z(w) —
Fi 1 Fa —{ 1 -1 Fs
Z(w)
L SV 12 (28 vo=At )2—4’ 3RO Z(w)
- @+92)" {Loopr ) V2=A(qztAs 7+ \LooP
Vg

Fig. 7— Equivalence of a multiplier of order NiN. to a cascade of multipliers
of orders Ny and No.
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output harmonic N,N.w,. Therefore, the second capacitor delivers
power at this harmonic to the network on its right.

Proof: First, consider the circuit of IFig. 6. The nonlinear capacitor has
a g-v characteristic of the type:v = Ag’. Thus, V_, , the complex ampli-

tude of »(¢) at the frequency w = —hw, , is related to the various com-

plex amplitudes of ¢(¢) through the relation
Va=4 2 Q0. (85)

AN
By introducing the constraint given by the linear circuit at w = —hw, ,
one obtains

Vor + fhanZ@Qs = 4 3 QQ., heB, (86)

r+:+f=0

where V,,_, is the complex amplitude of v,(¢), and is zero for | A | # 1.

Relations (86) give the equilibrium equations of the circuit of Fig. 6
and they determine the various charge amplitudes @, , Q. , etc. Notice
that in the summation of the righthand side of (86) one has r-+s+h=0
and (r, s, h) C B. Therefore, from (84) one obtains the following three
cases:if | h| < N, , then (r, s, h) C B, ;if | h| = N, , then, depending on
the values of r, s, either (r, s, k) C B, or (r, s, h) C Bz ;if |h| > Ny,
then (r, s, h) C B, . Accordingly, (86) can be written as

Voor + jheonZQ = 4 2 QQ,, if |h|<N,. (87)

(r,s)c B,y
r+s8+h=0
haoZQon = Al 2 QQ.+ X QQ.), if |[h|=N, (88)
r(:':l}?fol ::’:::foa
heoZQ = A > QQ., if |h]|>N,. (89)
(r,s)c B,
r+s8+h=0

Let now the circuit of Fig. 7 be examined. Consider the charges ¢, (t),
q=(?) and ¢;(?) flowing through the three filters F, , F', , and F; . Notice
that ¢,(t) + ¢:(f) is the total charge of the first capacitor, and that
g=(8) + gs(t) is the total charge of the second capacitor. Because of the
characteristics of the three filters F,, Fy, Fs, q:(t) + ¢.(f) contains
(all and) only the frequencies 7w, for which r ¢ B, . Similarly, g.(¢) +¢s(¢)
contains only the frequencies for which r ¢ B, . Now consider the total
charge

@) = o) + ¢() + () (90)

and let the symbol ( )’ distinguish the complex amplitudes of ¢'(f)
from those of ¢(¢). It will be shown that ¢(f) = ¢/(f); more precisely,
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it will be shown that the two circuits of Figs. 6 and 7 have the same
equilibrium equations at the carriers.

First notice that, for w = —hw, , the complex amplitude of the voltage
of the first varactor of Fig. 7 is
42 Qe ©D
(r,s)c By

r+s+h=0

and that of the second varactor is

A ( Z,B QQ’ . (92)
r+f+:=;

Next, notice that the equilibrium equations of the circuit of Fig. 7
for | w| < N,we are obtained by applying Kirchhoff’s law to the first
loop of Fig. 7. Similarly, for |w| = N,w,, one considers the second
loop and, for [w]| > N,w,, one considers the third loop. Therefore,
by taking into account (91) and (92), one obtains that the equilibrium
equations of the circuit of Fig. 7 are given by (87), (88), and (89), with
Q. , Q, replaced by Q! , Q. Therefore, ¢’(t) = q(¥).

The preceding demonstration has shown that the two circuits of
Figs. 6 and 7 are equivalent at the carrier frequencies. At the various
sideband frequencies, the equivalence is demonstrated in very much
the same way. Since the elastance coefficients of the two circuits are
equal, one finds that the sets of small-signal equations of the two circuits
are equal.

VII. DISCUSSION OF THE TWO PARTICULAR CASES N = Nl X 2 AND
DJ = fVl >< 3

In this section the two particular cases N, = 2 and N, =3 will be
examined. More precisely, it will be shown that in these two cases
condition (84) becomes:

If N, = 2, the two highest harmonics present in the varactor
current are N,w, and 2N,w, . (93)

If N, = 3, the three highest harmonics are N,wo , 2N w0 , 3N 1wo . (94)

The demonstrations are very much the same in the two cases and there-
fore, only the case N, = 2 will be considered.
Proof: Consider the case N, = 2 and suppose that (93) is satisfied.
Then, consider the three sets B, B, , B, defined in the preceding section.
From (93) one has B, = (—2N,, —N,, N,, 2N,).

Now, consider a subset (r, s, ) of B and suppose that r + s + h = 0.
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First, notice that (r, s, h) cannot belong to both B; and B, because this
would give [r] = |s| = |h| = N,, which violates the hypothesis
r 4 s 4+ h = 0. It is therefore, sufficient to prove that if (r, s, k) does
not belong to B, , then it must belong to B, .

Suppose therefore, that (r, s, ) does not belong to B;,. Then one
of the three elements r, s, » has magnitude equal to 2N, and, since
r 4+ s 4 h = 0, the remaining two elements have magnitude equal to
N, . Therefore, (r, s, h) C B,.

The conclusion is that, if (r, s, ) C Band r + s + h = 0, then either
(r, s, h) C B, or (r, s, h) C B,. This concludes the demonstration.

VIII. EQUIVALENCE OF A MULTIPLIER OF ORDER 2"3° TO A CHAIN OF
DOUBLERS AND TRIPLERS

Consider an abrupt-junction varactor multiplier of order N = 273°
which has the least number of idlers. In this section it will be shown
that this multiplier is equivalent to a chain of doublers and triplers.
The order in which the various doublers and triplers are connected
depends on the particular idler configuration. This will be clarified by
the following demonstration which shows how to derive the equivalent
chain of multipliers.

Proof: Since the multiplier has the least number of idlers, there are two
cases:” either the highest idler frequency is Nw,/2, or the two highest
idler frequencies are Nwo/3, 2Nwo/3. In both cases, the results of the
preceding sections are applicable and therefore, the multiplier can be
represented by means of a cascade of two multipliers of order N, and
N, . Note phat N, is 2 in the first case and 3 in the second case. Note,
furthermore, that if » + s = 2, then either N; = 2 or N; = 3, and
therefore the demonstration would end at this point.

If n 4+ s > 2, on the other hand, then N; > 3 and the decomposition
of the multiplier of order 2"3° into two multipliers of lower order can
evidently be continued by the decomposition of the first of the two
multipliers, the multiplier of order N, . If this process is carried as far
as possible, the final structure will be a chain of doublers and triplers.

It is important to point out that the results of this and the preceding
section can be generalized in the following way:

An abrupt-junction varactor multiplier of order N = N, X

N, X -+ X N, which has the least number of idlers can be (95)
represented by a cascade of n multipliers of order N,, N,,

etc., each with minimum number of idlers.
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In fact, if » = 2, then (95) follows directly from the equivalence dem-
onstrated in Section VI because it can be shown that a multiplier
which has the least number of idlers satisfies (84).

If n > 2, then the multiplier can be decomposed into multipliers of
lower order as it has been done for the particular case N = 273°.

IX. SCATTERING RELATIONS FOR HIGHER-ORDER LOSSLESS ABRUPT-
JUNCTION VARACTOR FREQUENCY MULTIPLIERS

The scattering matrices of lossless abrupt-junction varactor fre-
quency doubler and tripler are derived in Section V. Multipliers of
order 27, 3°, and 273" with least number of idlersi are treated in this
section.

9.1 Multipliers of Order 2" with Least Number of Idlers

A lossless abrupt-junction varactor frequency multiplier of order 27
with least number of idlers has been shown to be completely equivalent
to a chain of n doublers. We shall assume in this section that the input,
output, and all idler circuits are tuned, and that these idler terminations
are lossless. The idlers are at frequencies 2'w,, 1 < 7 £ (n — 1). The
equivalence of a multiplier of order 2" to a chain of doublers can be
utilized in getting the scattering relations for multipliers of order 2"
when n > 1. The scattering relations when n = 1 are given in (59).

We can show that a multiplier of order 2" with least number of idlers
has the following scattering matrix:

1 (=" _n} -
{5 -3 2y (=02

(§)2n Eof [ (96)

9.2 Multipliers of Order 3° with Least Number of Idlers

Multiplier of order 3° with least number of idlers has the idler cur-
rents flowing at frequencies 2w, , 3wo, 6wy, Ywo, -+ , 8 ‘wy, 3" —
37wy, 3wy, +++ , 3" — 3w, . We have shown that such a multiplier
is completely equivalent to a chain of s triplers.

+ Tt is assumed that all these idler circuits are tuned and that the idler termina-
tions are lossless. Tt is also assumed that input and output circuits are tuned.
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The scattering parameters of a tripler are shown to be
|
(8)s =|_____ i _____ - 97)
|
|

If s such triplers are cascaded, we obtain a multiplier of order 3°
with minimum number of idlers. The scattering parameters of a cascade
of s triplers can be shown to be given by}

0 11 4 ]

(‘S)sl =l ----- ': ————— ' (98)

9.3 Multipliers of Order 2"3" with Least Number of Idlers

It has been shown that a lossless abrupt-junction harmonic generator
of order 2"3", n and s integers, with least number of idlers is completely
equivalent to a cascade of n doublers and s triplers connected in proper
order depending upon the idler configuration.

The AM and PM transfer scattering matrices’® of a doubler and
a tripler can be shown to be

(To)e = | } 99)
L0 1

To)e = | 1 0}, (100)
r

(Taa)s = 1 0] (101)
0 1

and

(To)s = 37 0}‘ (102)

Lo 3

1 We have assumed that input, output, and all idler circuits are tuned, and loss-
less.
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Since AM and PM transfer scattering matrices of a tripler are scalar
matrices,™ values of (T,,)zn3 and (T',,)2n3e are independent of positions
of the triplers in the cascaded multiplier.f This shows that

- (Iaa)2”3‘ = (Taa)?"

(103)
pen 1 (=D
(=027 3-"352
0 1
and
(Tma)2"3' = 3’.8(1’1(”’)2") (104)
1" 0
= n 37",
(_1) _ _1_ 2—n 2—7:.

3 3

Since we also know that there is no AM to PM and PM to AM con-
version in both a doubler and in a tripler it follows that
(Sep)znar = (Spa)anae = 0. (105)

Using (103) through (105), we conclude that the scattering param-
eters of a multiplier of order 2"3° with minimum number of idlers are
given by

1 _ (=02 o
3 g~ (-2 | 0
i
(Qamse = | - _1_ ________ (.)_ S D ; (106)
E 0 (—1)"3"
0 g 1 (=D
L : 3 3 |
or
r n
_1_ — (_1) —n — no—n
(.Saa ongs = 3 3 2 ( 1) 2 (107)
L 1 0
and
) (=13~
(§pl’ et = 2ﬂ36 _:_I'_ —_ (_1)" 210 ' (108)
L 3 3

1 Matrix product 4B is not, in general, commutative.!
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Equations (106) and (107) show that the scattering parameters
of a multiplier of order 2"3" are independent of the idler configuration
of the multiplier. For example, 1-2-3-6-12 and 1-2-4-6-12 multipliers
have the same scattering matrix. This result arises because of the scalar
character of AM and PM transfer scattering matrices of a tripler and
is not true in general.]

X. RESULTS AND CONCLUSIONS

A general method to obtain the scattering parameters of a pumped
nonlinear system when the system is subjected to small band limited
fluctuations has been presented.

For a lossless abrupt-junction varactor frequency multiplier of order
2" which has minimum number of idlers and whose input, output, and
idler circuits are tuned, it is shown that the scattering matrix S is
given by

1 (=D in o o ]
3 5 2" (=172 i 0
1 0 |
(S = | o _l___ E ____________ . (96)
0 (—1)"
0 .
ton 1 (=17,
] 23—y 7

Such a multiplier has also been shown to be completely equivalent
to a cascade of n doublers.

Tror a lossless abrupt-junction varactor harmonic generator of order 3°
with minimum number of idlers and whose input, output, and idler
circuits are all tuned it is shown that the scattering matrix S can be
represented as

_____ (98)
130 .
A multiplier of order 3° has been shown to be equivalent to a cascade
of s triplers.

However, for a lossless abrupt-junction varactor multiplier of order
2"3" with minimum number of idlers it has been shown that this multi-

i The transfer scattering matrix (I')y,n, is not, in general, equal to (I)y,n,.
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plier is equivalent to a cascade of n doublers and s triplers, and that the
scattering matrix S can be written as

L (=D e jyigen
3~ 3 2 (=D27 0
1
1 1
(S)amge = | oo L A . (106)
I! 0 (—1)"3~*
0 | n
Lompe 1 (=D" .
i R

For lossless abrupt-junction varactor multipliers of order 27, 3°, and
2"3°, n and s integers, with minimum number of idlers, one of the general
results is also that if w/w, < 1, there is no amplitude to phase or phase
to amplitude conversion or equivalently

Sep = S = 0. (109)

The scattering matrices, of lossless abrupt-junction varactor multi-
pliers of order different from those treated in this paper can be ob-
tained by straightforward application of the methods presented in this
paper. We, however, feel that most of the lossless abrupt-junction
varactor multipliers commonly encountered in practice are covered in
this paper. If the junction characteristic of the varactor diode is far
from being abrupt or if the junction is overdriven, the same general
methods can be applied in order to get the general scattering matrix
which relates the fluctuations at different parts of the system. If the
bias circuit is poorly designed so that there are currents flowing in the
system at frequencies =4-w, the techniques developed in this paper are
still applicable.

At present very little is known about the stability of driven systems
like harmonic generators. The results derived in this paper can be
made use of in studying the stability of such systems and, in particular,
in obtaining the restrictions imposed by the condition of stability on
the available circuit configurations. This theory also enables us to de-
rive an expression for the output signal of a pumped nonlinear system
having noise sources at several locations in the circuit. A complete anal-
ysis of the noise performance of the systems like harmonic generators
can be carried out once we know the general scattering parameters of
the system. All these and other related results are reserved for a future
publication.
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APPENDIX A

Large-Signal Analysis of Abrupt-Junction Varactor Doubler and
Tripler

The large-signal equations of a varactor harmonic generator are
given in Ref. 5. The varactor considered in this paper is a lossless var-
actor whose average elastance S, is considered to be a part of the ex-
ternal circuit for the sake of convenience. Let S(t) be the elastance of
the varactor as pumped. For an abrupt-junction varactor diode we
also note® that

jkaSk — j(k b l)wOSk_l - ... jQwOSZ 'wOSI

Ik Ik—l I2 Il ’
k an integer. (110)
The large-signal equations for a doubler can be written as

_ Sl 4 St

v, . 111
Ton (111)

and

= Sl

= o (112)

V.

It can be shown® that the time origin can be chosen so that I;, and I,
are both real. From (110) through (112), we can now write

Lol (113)
()

Vol IS (114)

Ig =4lSzlwo,

Kl =1_&J, (115)

Iz 20.)0

and

Vol _ 1S,
=% (116)

The large-signal equations for a tripler can be written as
S;If + SoIF¥ + S3I, + S%l,
Jwo

_ SIt + 8T + St
VZ - ]20)0 ’ (118)

V, = , 117)
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and

_ S+ S,

V3 ]3(00

(119)

It can again be shown® that if we choose I; to be real and positive
I, and I; are real. Let us assume that the idler termination is tuned
and is lossless. From (118) we can write

| Ss ] =18.]/2. (120)
According to (110), (117), (119), and (120), we also have

LAl 2 (121)

[ L]
and

Vil _3

’ 7 i=3 (122)
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Effect of Redirectors, Refocusers, and
Mode Filters on Light Transmission
Through Aberrated and Misaligned Lenses

By E. A. J. MARCATILI
(Manuscript received June 16, 1967)

The field distortion of a beam propagating through a sequence of identical,
misaligned and slightly aberrated lenses s calculated as a perturbation
of the Qaussian beam that would propagate in the absence of aberration.

It is found that most of the converted power goes to the first and second
modes. They produce deflection and spot-size change of the ideal beam,
respectively. The power coupled to modes higher than the second deform
the Gaussian profile.

In general, the mode conversion per unit length of guide can be reduced
by making the spot size small and by avoiding in-phase coupling .at every
lens. This last condition s achieved by choosing the period of oscillation
of the beam different from an tnieger number of lens spacings. :

Before the beam becomes too distorted, the converted modes must be
eliminated. Power in the first and second modes can be reconverted loss-
lessly to the fundamental Gaussian beam by means of servoloops that
redirect and refocus the beam. If refocusers are mot used, the power in
the second mode, as well as the power in the higher-order modes must
be absorbed in mode filters such as irises.

For lenses with fourth-order aberration such that at a beam half-width
distance from the cenler the focal length departs & percent from ideal,
the following typical results are obtained:

In a guide in which the distance between the beam and guide axes is
a constant plus a stnusoid, the converted power s proportional to &,
to the fourth power of the amplitude of the sinusoid and to the square
of the number of lenses, but is roughly independent of the curvature of
the guide axis.

On the other hand, in a guide in which the distance between the beam
and guide axes s a constant plus a random quantity the converied power
is proportional to &°, to the square of the guide curvature, to the mean
square of the random deviation, and to the number of lenses.

1733
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For 8 = 1 percent, a 1 percent power conversion to the second mode
occurs in typical examples, after a few tens of lenses, and the order of
magnitude of mode conversion is 0.001 dB/lens. Most of that power %s
in the second mode and can be recovered with refocusers.

I. INTRODUCTION

Sequences of widely separated glass lenses® or periscopic mirrors,”
as well as sequences of low loss closely spaced gas lenses,® * have been
proposed as beam waveguides for long distance optical transmission.

The theory describing the wave and ray propagations through a
sequence of misaligned, thin, perfect lenses is known, and those results
are applicable even if aberrations are present, provided that the num-
ber of lenses is small. Nevertheless, when that number is large, the
cumulative effect of lens imperfections must be included.

Before introducing aberrations, though, let us briefly review what is
already known about wave and geometric optics in a beam waveguide,
assuming throughout the two-dimensional problem instead of the
more realistic and complex, but not more enlightening, three-dimen-
sional one.

A paraxial Gaussian beam launched in a periodic sequence of
identical thin, aberration-free, but misaligned lenses®®"# conserves
throughout the Gaussian transverse field distribution. The spot size
depends on the initial conditions, the focal length f of the lenses and
their spacing L, but is independent of the lens alignment and does not
grow with the number of lenses. The geometry of the beam axis, on the
other hand, depends also on f, L, and the initial conditions, but more
important, it depends on the alignment of the lenses. In general, the
beam axis oscillates about the guide axis and the amplitude of the
oscillations increases with the number of lenses. For a given set of
lenses through which a beam is to be guided, there are then alignment
tolerances which must be satisfied in order to prevent the beam from
hitting the edges of the lenses. Those tolerances can be drastically
alleviated by using redirectors,® that is, servoloops that realign the
beam axis with the guide axis.

Nevertheless, if the lenses have aberrations, the beam does not con-
serve the Gaussian profile, but deforms itself*®11.12.13 a5 it travels along
the guide, the definition of the beam axis then becomes fuzzy, the re-
directors become less and less effective, and eventually the grossly dis-
torted beam hits the edges of the lenses.

Gloge!* has found the effects of random aberrations such as those
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which occur both in glass lenses and in the controlled atmosphere be-
tween them. Because of the randomness of the aberrations, the beam
distortion is independent of the beam trajectory. On the other hand,
if all the lenses have the same aberration such as in gas lenses, the
beam deformation is strongly dependent on the relation between the
beam and the guide axes.

This paper gives an estimate of the beam deformation as a function
of systematic aberrations, lens misalignments, and presence or absence
of redirectors. It also suggests ways of preventing the beam deteriora-
tion together with their price tags.

II. WAVE TRANSMISSION THROUGH SLIGHTLY ABERRATED AND MISALIGNED
LENSES

We begin reviewing the wave transmission through ideal lenses and
afterward the lenses are slightly perturbed and the mode conversion is
calculated.

The wave transmission through a sequence of ideal, thin, equidistant
and misaligned lenses as those shown in Fig. 1 is known.5%78

The guide is completely defined by the focal length f of the lenses,
their separation L and the radius of curvature R, of the guide axis at
every lens.

The beam axis is characterized by its distance s, to the guide axis
at the nth lens. If the beam is launched through the center of the first
lens, it is known?® that s, is related to L, f, and R, by

X Aan_, GUIDE
N s AXIS

LENS N-1i

GAUSSIAN Sn-t v
BEAM AL

A BEAM
AXIS

Fig. 1 —Beam transmitted through misaligned ideal lenses.
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L’ Ssinln — m)o
= 1
$» = Sin 6 = R, ’ )
where
L
-1 — =, 2
cos 0 1 of @)

The field distribution at every equiphase surface is Gaussian, and its
width varies along the beam. Nevertheless, if properly launched, the
beam maintains the same half-width w and the same radius of curva-
ture r of the wavefront at every lens. As depicted in Fig. 1, the beam
between surfaces «,-; and 8, is the same for all n.

Proper beam launching is achieved if, at the first lens, the radius
of curvature of the wavefront is

r=2f, @)

and if the beam half-width w is related to the wavelength A and the
guide parameters in the following manner:

AL 2\ 6
w~\/7rsint9— ?]‘tan2~ ®)

Assuming the lenses to be two-dimensional, then the Gaussian beam
is also two-dimensional and the electric field measured along the
circles o, Or B3, is

E = Do(2%) = % ®)

and
z
&= (6)

Strictly speaking, the normalized length ¢ measured along the sur-
faces a, or 8, does not coincide with x/w, but if the beam is paraxial,
the discrepancy is negligible.

If a higher mode is launched with the same wavefront curvature
1/r and the same width w, the field distribution at every surface o, , 8.
is described by the parabolic cylinder function'®

D,(2¢) = ¢ " He,(28) @

in which He,(2¢) is the Hermite polynomial of order p. Between the
surfaces «, and B..,, the phaseshift of the pth mode is pé# radians
smaller than the phaseshift of the fundamental Gaussian mode.
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Now let us calculate the phaseshift in passing from the equiphase
surface B8, to the equiphase surface «,, Iig. 2. The length AB of a
typical ray path between those two wavefronts is

AB—x7+_‘

Calling
o, =2 ®)
w
and using (3), (4), and (8), we obtain
B = 2 @0 + ) tan 2.
T

The total phaseshift in passing from surface g, to a, is

oo, +8) = 2008 + £) tan g + Bfoa + 8. ©

@n

[

)
By /
\}A/Y\' -

\ \\\
~

Y — +~-_LENS CENTER

NTH LENS

i

Fig. 2 —Phase front change through a lens.
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It is made essentially of two terms. The first is the phase due to the
path AB, the second, ®,(s, + £), is the phase contributed by the lens.
Only if the lens is ideal the surface o, will be an equiphase, and ¢,(c, + §)
is a constant. The phaseshift through a perfect lens is then

Boisenon + ) = const. — 220, + £) tan 3 (10

and since the constant introduces only an uninteresting uniform phase-
shift, we will call it zero throughout.

On the other hand, if the lens is not perfect, ¢,(¢, + £) is not a
constant and the field on the surfaces «, and 8, can no longer be de-
scribed by a single mode, but rather by a superposition of modes
as those given in (7). In general then, the field on the surface «, is

Ea) = Z a0 Dy(28). (11)

The amplitude a,, of each mode has been calculated in (57) under
the assumptions of small lens distortions and small beam departure
from ideal, that is,

[eulon +8) | K7 (12)
and
| @ | €1 for ¢ > 0. (13)
That amplitude is
Qg = Z Cogue'?"™™° (14)

v=1

in which ¢,,, is the coupling coefficient between the fundamental and
the gth mode at the »th lens, and its value, derived in (58), is

1 if ¢=0,

CD v = d o0
a i Z 1 gv ()
2%q! = 2%l 9o,

Within the approximations involved, the fundamental mode has ampli-
tude one throughout. The amplitude a,, of the gth mode immediately
after the nth lens, (14), is made up of n terms. All of them have simple
physical meaning. Consider the wsth term. The fundamental mode
couples coq, into the gth mode of the »th lens and this travels up to the
nth lens without further conversion; its phaseshift with respect to the
fundamental mode is g(v — n) 4.

(15)

if ¢>0.
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Since c,o, = 1, the reconversion into the fundamental mode is not
calculated explicitly. Nevertheless, it is automatically taken into ac-
count when the power in the higher order modes is ascertained.

The amplitude of the coupled mode a4, can be maintained small
by techniques well known from coupled waves theory and which will
be used later on:

(7) Selecting the phase at the coupling points to provide destructive
interference.

(17) Dissipating the power in the unwanted mode.

(72) Providing mode transformers capable of changing unwanted
modes into the fundamental one.

III. RECOVERY OF THE FUNDAMENTAL MODE

Physical interpretations of the deformation of a beam traveling
through aberrated lenses and ways of preventing that deterioration
are considered next.

The field (11) after the nth lens is made essentially by the funda-
mental mode slightly modified by higher-order modes. Neglecting
powers of a4, bigger than one, because of (13), and grouping the first
three terms,

B) = (1 — a,)Do[2t(l — 2a,,) — 2a,,] + Z D20, (16)

The first term is a Gaussian beam different from the ideal one. Its
axis is at a distance

¢, = Re ay, it
from the beam axis of Fig. 1, and its half-width is
w, = 1 4+ Re 2a,, . (18)

Both dimensions are normalized to the ideal beam half-width w.
Furthermore, the angle between the two axes is

A
en - W Im aln (19)
and the radius of curvature of the wavefront results

tan -

r, = 2f [l — —é—a Im @,,J- (20)
2
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Expressions (17) through (20) are valid as long as

l (¢5%% l K1 (21)

| @2 | K 1.

These inequalities can be satisfied for an arbitrarily large number of
lenses by periodically realigning the beam and changing its width to
the proper size.

The realignment of the beam can be made with redirectors.® A feed-
back servoloop as shown in Fig. 3 senses the position of the beam with
photosensors p; and p, which are centered, for example, on the axis of
the pipe in which the lenses are housed.

The difference signal from the sensors is amplified in A and used to
displace lens n — 1 laterally until the beam axis passes through the
center of the photosensors. In general, at every servoloop the beam’s
axis will pass through the center of the sensor.

The beam size and the curvature of the wavefront can also be ad-
justed with servoloops which we will call refocusers. The principle of
operation is shown in Fig. 4. The beam is aligned with three lenses
and three photosensors py, ps, and ps, are placed at distances from the
axis such that an ideal beam would produce equal signals. The dif-
ference signal between p; and p» is amplified in A and controls the
focal length of lens n — 1, while the difference signal between ps and ps
is amplified in B and used to change the focal length of the nth lens.
Once these differences are small, the three signals from the photo-
sensors are practically identical and the beam coincides with the ideal
one.

Beam size correction is also possible changing the distance between
lenses instead of their focal length.

Obviously, if the lenses are three-dimensional instead of the two-

Py

I

BEAM//\ v
AXIS
P2

LENS nN-t

LENS N

Fig. 3 — Redirector:servoloop for beam realignment.
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B

T e Jp2 pa/\

BEAM /\ -~

VLENS n-{ YLENS n LENS n+1v

Fig. 4 — Refocuser:servoloop for beam-width adjustment.

dimensional considered above, similar servoloops must be used in
two perpendicular directions.

For gas lenses of the tubular type,® the beam deflection and focusing
may be achieved by dividing the tube in four sectors (Fig. 5) and con-
trolling the temperature T' of each of them.* If Ty = Ty = T3 = Ty,
the lens focuses only, but if T = T3 = T4 < T4, the lens focuses and
deflects the beam downward. If Ty = T3 > T. = T4, the focusing in
the vertical direction is stronger than in the horizontal direction.

For focusing devices such as periseopic mirrors? (Fig. 6), the deflec-
tion of the beam may be achieved by rotating one or both mirrors
around perpendicular axes z and y. As suggested by R. Kompfner,
beam refocusing may be obtained by mechanically deforming the
mirrors in the two perpendicular directions.

The beam losses in the process of beam refocusing and redirection
are due to the interception of the beam by the photosensors, and, in
principle at least, they can be made very small indeed. These devices
then operate on the idea of reconverting higher unwanted modes into
the fundamental.

Unfortunately, it is not simple to make a mode converter capable
of taking care of the modes higher than the second contained in the
summation in (16). For them and also for the second mode, if re-
focusers are not used, S. E. Miller suggested another technique which

cootL
GAS

Fig. 5 — Tubular gas lens for beam realignment and refocusing.
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BEAM AXIS

— e

Fig. 6 — Periscopic mirrors.

is essentially lossy, but may be simpler to implement. It consists of
using mode filters, perhaps irises aligned with the centers of the re-
directors’ photosensors.

What are the powers involved in these filtering schemes? At the nth
lens, the power in the second mode normalized to that in the funda-
mental one is

PV = 2| ay, | (22)

If ay, is real, the radius of curvature of the wavefront (20) coincides
with the ideal one 2f, while the half beam-width departure from ideal
results from (18),

|w, — 1] = V2P®, (23)

At the same lens, the power carried by the higher-order modes is

PP =2 |au | g 29
q=3
There is another filtering scheme which consists of using at every
lens redirectors and filters capable of absorbing the second- and higher-
order modes. The power absorbed by the filters in the n first lenses
normalized to the power in the fundamental mode is

PP =2 3 ¢! (o) I, (25)
y=1 ¢=2
In the following section, several examples are considered and a
comparison is made between the powers P!V, P{®, and P!® to find
the most efficient way of avoiding beam deterioration.
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IV. EXAMPLES

Let us assume that all the lenses are imperfect but identical, and
that the aberration is of fourth order. The phaseshift introduced by
the aberration

¢.(0)) = b0, (26)

means physically that at a beam half-width w from the center of the
lenses, the phaseshift due to aberration is § radians, while the ideal
phaseshift (10) is —2 tan 6/2. Another physical interpretation is
provided by the focal length

o) = (1 + s ) 1)

calculated from (10). At a distance w from the center, the focal length
is 8f/tan 6/2 longer than ideal. For gas lenses,® a typical value for
8 is 0.01.7

Then, the coupling coefficients between the fundamental and the
higher-order modes at the vth lens (15) are

Cozy = 136(1 + 40?)
Cozy = ié o
o3y T v
? (28)
Cotr = i1_6_

Cogy = 0 for ¢ > 4

and the amplitudes of the different modes after the nth lens (14) turn
out to be

Qon = 1208 D (1 + dod)e?™?
v=1

A = ig Z O_'eiii(v—n)ﬁ
vt (29

_ii S i4(v=n)d

16 p=1 ¢

e =0 for ¢q > 4.

Qyp =

To assign values to ¢, we consider two examples.
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4.1 Beam Guide with Curved Axis

The lens centers are on a circle of radius B and the beam axis
intersects the vth lens at a distance

g, = ho + hl COoS VB (30)

from its center. This means that the beam axis oscillates sinusoidally
with amplitude h, about a circle of radius B + how.

The constant h; depends only in the beam launching conditions,
while Ao is related to the other parameters of the guide®® by

_ L _ L.
" 4uwRsin® 0/2  wR

Substituting (29) in (22) and (24), as well as (26) in (25), assuming
6 to be of the order of /2 and neglecting terms that do not grow with
n, the following powers are derived:

)|

» sin 3/2716)2 (lz_f 1_) sin’ 2n0] o
g [(h" sin 3/20 T\ T 16/ sin® 26 (32)

2
P® = 352[1 + 10(h§‘+ }2ﬁ> + 12k + 36h2R:

ho (31)

sin 3/2n6
sin 3/26

sin 2n6
sin 26

Pv(z” = %B‘Zh‘]?[ho

h,
+ 7 (n =+

2
P =

wle

sin 2n6
sin 26

sin 3/2n6 ]n
sin 3/246 ’
To minimize these quantities, one must choose the distance L between

lenses in such a way that 4 is different enough from =/2 and 2x/3 as
to satisfy the inequalities

+ %hf(S + ) + 12hohi

™

2
2 2

3 > 3n

This choice prevents the systematic in-phase coupling of higher-order
modes at every lens. This result can be extended to guides of identical
lenses with any aberration. The separation L must be chosen in such
a way that the period of oscillation of the beam about the axis does not,
coincide with an integer number of lens spacings.

r
and
lo

™
>
2
2n 33)
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If (33) are satisfied, the powers of (32) become

PV = f6°hin’ (34)
P® =0 (35)
PY® = %62[1 + 10(h§ + ’2'—‘> + 12h; + 36hgh; + %h;‘]n. (36)

Since P{¥ = 0, there is no build-up of power in the third and fourth
modes. The beam maintains a Gaussian profile and can be refocused
without any power loss.

The power in the second mode grows proportionally to the square
of the number of lenses and to the fourth power of the amplitude of
the beam axis oscillations, but is independent of 2, and consequently
independent of the radius of curvature R of the guide.

If absorbing mode filters are used, one observes that, while PV
grows proportionally to n®, (34), P grows only proportionally to n.
There is cross-over at a number of lenses n, for which P’ = P It is

2
Ny = 3% [1 + 10(h§ + —g—‘) + 12hg + 36hgh; + %h‘i]- (37)

If n < n, it is less power consuming to have one filter every n lenses.
If n > ng it is better to use filters at every lens.

For
hy = 1,*
hi =1, and
5§ = 0.01,

we calculate from P{" in (84) that the power converted to the second
mode is 1 percent after 19 lenses.

Furthermore, one mode filter at the 19th lens, or filters at every
lens, would dissipate, respectively,

Py = 0.01 equivalent to 0.0023 dB/lens

and
P® = 0.049 equivalent to 0.011 dB/lens.
* This value hy = 1 is derived from (81) using the following typical quantities:
L =07m
R =1km
w = 0.5 mm
0 = /3.
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It is roughly five times less power consuming to use one filter every
19 lenses. This occurs because the conversions at successive lenses
have enough phaseshift to interfere destructively and reduce the
converted power level from 0.011 dB/lens to 0.0023 dB/lens.

Given the lenses with aberrations and a length of guide D, is there
less mode conversion crowding the lenses or keeping them far apart?
To answer this question, (34) is rewritten substituting for n the ratio

D/L,
o _ (9 6°ht 2> tan® 0/2‘

Poz = (32 tan® 6/2 D L’ (38)
Because of the normalizations (8), (27), (30) to the ideal beam size
w, the parenthesis is a constant and P, is minimized by making
tan® 6/2/L? as small as possible. From (2)

tan® /2 1 )
L L*¢4f/L — 1)

This expression and consequently the power PJ), is independent of
the wavelength A and can be minimized by choosing the separation
of the lenses as close to confocal as possible without violating the
inequality (33).

Following a similar line of thought one deduces from (32) that
the power P{®, in modes higher than the second, is reduced by choosing
N as small as possible. This result is illustrated next via a computer
experiment'® that goes beyond the limits of applicability of the per-
turbation analysis developed in this paper.

Consider a sequence of aberrated, aligned, two-dimensional lenses
of width 2a, spacing L, and focal length

f= 10[1 + 0.02@2]- (39)

A Gaussian beam of half-width w, which is the correct spot size
for a sequence of ideal lenses of focal length f = f,, enters parallel
to the guide axis at a distance a/3. Assuming

L = 2f, (confocality)

and

’

SEES
QO | =t

the distorted power beam profiles at the 167th and 168th lenses are
illustrated in Fig. 7(a).
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/ &H LENS
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POWER DENSITY IN ARBITRARY UNITS
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)
=
a

Fig. 7—DPower beam profile after many lenses of focal length f = fi[l +
0.02(s/a)?). (a) L = 2f, (confocal lenses); w/a = . (b) L = 1.8f, (109, off confocal);
w/a = 1/3+/3 (shorter wavelength).

Conversion to distorting high-order modes is substantially reduced
by avoiding confocality and by reducing the beam width. For example,
assuming

L = 1.8f,
and
1

3

the power beam profiles after the same length of guide, Fig. 7(b),
are still close to Gaussian.

&g
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4.2 Beam Azxis Randomly Dispaced from a Circle

This beam axis occurs, for example, in the following beam guide.
Assume a metallic tube in which the lenses are housed and whose axis
is a circle of radius B. With each lens there is a redirector rigidly con-
nected with the tube. To keep the beam away from the wall, the photo-
sensors’ centers should coincide with the tube axis, but they don’t
because of alignment tolerances. At the nth photosensor, their separa-
tion is a Gaussian random length d, , Fig. 8, which we have normalized
to the beam half-width w.

The beam axis forced to pass through the center of every photosensor
will also depart from the tube axis d, .

From Fig. 8, one finds that d, , B, L, and f are related to the normal-
ized distance o, between beam axis and lens center by the expression

g, = 2 dn - dn—l - dn+1 + hO (40)

in which 4, is once more the constant defined in (31).
Since d, is a Gaussian random variable, it follows from (35) with
obvious nomenclature

<U> = hyo (41)

(@) = 6(d") + ks (42)

(¢*) = 108(d*)* + 36hs(d”) + hq . (43)
%TW /,,——(dn‘dn—t)v—ﬁ/

-7 (dn‘dn +1)VEV

L -
R/A

BEAM
AXIS
\\\\ TUBE AXIS
// -
K\\LENS, (RADIUS =R)
CENTER
yd \GUIDE
AXIS

LENS N-i{ n+1

Fig. 8 —Beam axis at random distance d, from a circle of radius R.
op = 2dn _dn—l bt dn+1 + ho, hn = Lf/wR.
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Now we calculate from (22), (24), and (29) the expected power in
the second mode and in the higher-order modes at the nth lens

(P = 38((c") — (")) (44)
@y _ ase| g e _1_<sin 2n0)2 < sin 3/2n0>2:|'
(P.7) = %0 [(<6> {o)m + 16 \sin 26 + e sin 3/20 (45)
The expected power to be absorbed by mode filters at every lens is
deduced from (25) and (28). It is
(P¥y = 36°(1 + 10{c") + 12{(a")n. (46)

More explicit results are obtained substituting in the last three
expressions the averages (s), {¢°), and (¢*) with their equivalents
in (41) through (43):

(P”y = 1088%(d*) (ke + 3(d*)n 47)
O\ (0 82/02 3_( sin 2n0)2 §< sin 3/2710)2
(P7) = 96%dn + 32 o sin 26 T 2 8ho sin 3/26 (48)

(P®y = 361 + 10K2 + 1208 + 12(d°)(36k2 + 5) + 1296(d*)In. (49)

The power in the second mode grows proportionally to the number
of lenses, and if A2 >> 3(d®), is proportional to the mean square dis-
placement and also proportional to 7} .

To prevent build-up of (P{®) proportionally to 7% it is necessary
to avoid choosing § = 2x/3 or 6§ = /2.

In general, (P{?) < (P!); therefore, it is less power consuming
to use beam refocuser and mode filters after several lenses and not
at every lens.

For
he =1
5 =001
Vi =01

an expected power conversion to the second mode of 1 percent occurs
after 90 lenses. At that lens (47), (48), and (49) become

(P&Y = 0.01 equivalent to 0.00048 dB/lens
(P$PY = 0.0008  equivalent to 0.00004 dB/lens
(P& = 0.095 equivalent to 0.0047 dB/lens.
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If only mode filters every 90 lenses are used, the loss is &0.00052
dB/lens. If beam refocuser and mode filters are used every 90 lenses,
the loss is 12 times smaller, 0.00004 dB/lens.

Differently from the previous example, the conversion per unit
length is reduced by choosing both the separation L between lenses and
the wavelength A as short as possible.

V. CONCLUSIONS

A beam transmitted through few tens of identical misaligned and
aberrated lenses becomes distorted due to coupling to unwanted
higher-order modes. Unless the beam is restored to ideal shape, the
distortion continues until power is lost through the edges of the lenses.

In general, mode conversion per unit length of guide is minimized
but not eliminated: (¢) by choosing the distance between lenses such
that the period of oscillation of the beam does not coincide with an
integer number of lens spacings; (it) by reducing the spot size, that is,
by using short lens spacing and wavelength.

Most of the converted power goes to the first and second modes.
They change the beam path and the beam size, respectively. In prin-
ciple, both can be corrected with negligible loss by means of servo-
mechanisms which redirect and refocus the beam.

Power converted to higher modes than the second distort the wave-
front and must be absorbed by mode filters such as irises, for example.

For lenses with fourth-order aberration such that at a beam half-
width from the center the focal length is 1 percent shorter than on
axis, a 1 percent power conversion to the second mode occurs after
few tens of lenses. Mode filters every few tens of lenses restore the
original beam with losses of the order of 0.001 dB/lens. If refocusers
and filters are used simultaneously, the second-order mode power is
recovered and the losses are reduced by one order of magnitude.

Mode filters at every lens are, in general, lossier.

Long distance transmission through aberrated lenses such as our
present form gas lenses seems possible, but it hinges heavily on our
ability to build efficient and reliable redirectors, refocusers, and mode
filters.

APPENDIX
Field in a Sequence of Distorted Lenses

The field on the surface o, (Fig. 1) is made of a superposition of
normal modes
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Bla) = 3 auD.(29). (50)

This field is related to the field E (8,) on the surface 8, by the phase-
shift ¢, (o, +£) given in (9). Thus,
E(a,) = E(B,) exp [ip.(on + £)]. (51)

Furthermore, the field E(8,) on the surface 8, is related to that on the
surface a1 through the phaseshift of every mode,

E@,) = Z; Qano1 €xp (—1q0) D, (2£). (52)
Substituting (50) and (52) in (51), we obtain

Z 00 Do) = exp [igu(on + )] Z GosD(20) exp (ig6)  (53)

and because of the orthogonality property of the parabolic cylinder
function

Qgn = Z Opn—1Cpgn €XP (_1170), (54)
»=0

where

e

[ e lied(o. + DID.@0D,(@2)
- === (55)

[ Dy a
is the coupling coefficient between the pth and gth mode at the nth lens.
We are interested only in small lens distortions and small beam
departure from ideal; therefore,
| ulon +8) | L
e K1 for ¢ >0,

Accordingly, keeping only first-order perturbation terms and expand-
ing ¢, (o, +&) in Taylor’s series, we obtain for (54) and (55)

cﬂan

(56)

G = 3 Cour X [igly — 1)0] 57

y=1
and
1 if ¢=0,
Coqr = . ) a+2n (58)
7 1 0%p,(0,) .
57! > —==22 if ¢ > 0.

u=0 2“#! 60’ﬁ+2"
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Communications and Radar Receiver Gains
for Minimum Average Cost of Excluding
Randomly Fluctuating Signals
in Random Noise

By STEPHEN S. RAPPAPORT
(Manuscript received October 25, 1966)

The problem of automatic gain conirol is approached from a statistical
point of view. A simple generic equation ts found whose solution yields
the required receiver gain or attenuation for minimum average cost of
excluding (from the receiver’s limited dynamic range) randomly fluctuating
signals in random notse. A canonical phase-incoherent link is considered
and the resulting lranscendental equation is solved using an tterative
technique. The analysis and the results obtained apply to both linear and
nonlinear tncoherent recetvers tncluding those of the logarithmic or lin-log
type and to a range of fluctuation models including Rician, Rayleigh,
and nonfluctuating cases. It is shown that the optimum recetver gain s
relatively insensitive to the ratio of cosis of saturalion at the upper and
lower dynamic range bounds, differing at most by about 3 dB from the
optimum for the equal cost (minimum exclusion probability) case for
typical parameters. The effect of noise tniroduced by the gain adjusiment
cascade ttself is discussed.

The resulls, presenied in concise normalized form, are applicable to
a wide range of signal, noise, and channel conditions and have important
tmplications for communications through fading channels as well as for
radar observation of fluctuating targets.

I. INTRODUCTION

Since the ability of both communications and radar receivers to per-
form satisfactorily can be seriously degraded when the signal ampli-
tude does not lie within the dynamic range of the receiver, the setting
of receiver gain to minimize or prevent saturation at the upper and
lower dynamic range bounds is an important problem. The problem
arises in various forms. In simple receivers, the gain might be fixed

1753
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to optimize performance for nominal signal and noise parameters.
More complicated receivers can adjust the gain automatically by any
of several methods. The most common AGC circuits, for example, use
a time averaged baseband signal as an indication of signal strength.
Another possibility is to have the gain adjusted on command from a
digital computer. This latter configuration has important implications
for communications terminals which can use sophisticated techniques
for estimation of signal and noise parameters as well as for certain
radars which must observe from look-to-look radar targets of differ-
ent cross-section which have been illuminated by various transmitted
waveforms. The analysis presented here does not depend on the
particular configuration and is applicable to both linear and non-
linear receivers including those of the logarithmic and lin-log type.
The application to a nonlinear receiver can be accomplished by re-
ferring the overall dynamie range of the signal processing chain to
a point before the nonlinearity.

In a recent correspondence, Ward! determined the placement of
dynamic range bounds to minimize the probability of excluding a
Rayleigh distributed signal. This was extended by Rappaport* who
determined dynamic range bounds for minimum probability of exclud-
ing a signal from the dynamic range of incoherent radar or com-
munications receivers. The viewpoint taken there? considered ran-
domness due either to background noise or target fluctuations (channel
fading). This paper considers several further generalizations of the
problem. The case in which the randomness is due to both causes
together is treated. In addition, the criterion for optimization is taken
as the minimum average cost of exclusion. The required receiver
gains as well as the optimum dynamic range bounds are determined.

The present paper proceeds from the specific to the general. That
is, first the determination of optimum dynamic range bounds for
minimum exclusion probability with non-fluctuating target (no chan-
nel fading) is presented.

The criterion is then generalized from minimum exclusion prob-
ability to minimum average exclusion cost; the former being a special
case of the latter. Finally, dynamic range bounds and receiver gains
for minimum average exclusion cost in an environment of fluctuating
targets or channel fading is determined. It is assumed throughout
that the signal, noise, and fluctuation parameters are known to the
receiver. By letting the parameters involved assume certain values the
relations for the fluctuating case reduce to the nonfluctuating case.
Hence, the general treatment presented here includes either criteria
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and either the case of fluctuating or nonfluctuating SNR. Rician and
Rayleigh SNR fluctuations are considered.

Fig. 1 shows a model for an incoherent radar or communications
link. The blocks labeled K;, K,, and K3 represent variable gain de-
vices (perhaps, variable attenuation pads) whose total gain K =
K,K,K3 is to be adjusted so that the random signal appearing at (E)
is in some sense confined to a specified range. The model used for
the propagation medium and/or target is described in Section IV.
Extension of the explicit results obtained here to an important class
of nonlinear receivers by conceptually including a zero-memory
nonlinear device between points (D) and (E) will be described subse-
quently. The other blocks in the figure require no further explanation.
The figure is presented so that the reader can obtain a clear under-
standing of where in the signal processing chain various quantities
arising in the following analysis are being determined. However, the
analysis applies to incoherent signal processing links in general and
is not constrained, for example, by the number of components or IF
frequencies that may be used.

The receiver structure shown in Fig. 1 may be used for recovering
the envelope of a transmitted sinusoidal signal or it may represent
an optimum incoherent receiver for the detection of finite duration
signals of known form in a background of Gaussian noise. The
probability density function (pdf) of interest in the former case is
that of the voltage appearing at the input to the video processing

PROPAGATION RECEIVER
MEDIUM AND/ OR
o TARGET —0
_i6_  _i8 _id
TRANSMITTER ye =ae 3%+ 5e7Y AMPT_'I:FIER
®
18 le—0— ' RF \
MIXER K
AMPLIFIER [ & € 2 AMPLIFIER Ky
LOCAL
OSCILLATOR
ENVELOPE POSSIBLE
L -
K —O—a ZERO-MEMORY VIDEO
3 DETECTOR ® NONLINEAR 0> brocEssING —
CHARACTERISTIC ®

Tig. 1— Model for an incoherent radar or communications link,
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[point (E) in Fig. 1] while in the latter case the pdf of concern is
that of the voltage at the same point in the receiver at the decision
time only. Either of these cases gives rise to a Rician pdf. Differences
between the two are reflected only in the definition of a suitable
SNR.*¢

The analysis presented here can be easily extended to determine
optimum gain settings for an important class of nonlinear incoherent
receivers; namely, those in which the nonlinearity can be represented
by a memoryless nonlinear device acting on the envelope of the received
signal. For example, logarithmic or lin-log receivers can be repre-
sented by a logarithmic or lin-log characteristic inserted between
points (D) and (E) regardless of whether the actual nonlinear device
is a video or IF amplifier. One needs only to first refer the dynamic
range and equivalent limiting voltages from the output of the non-
linear characteristic [point (E)] to the corresponding values at the
input to the characteristic [point (D)] and then to determine the
gain setting by considering only the linear portion of the receiver.
In what follows it will be assumed that this first step has been taken
if necessary and only the linear incoherent receiver will be treated
explicitly.

II. DYNAMIC RANGE BOUNDS FOR MINIMUM EXCLUSION PROBABILITY WITH
NONFLUCTUATING SNR

For nonfluctuating SNR the voltage gain of the radar or communi-
cations link is fixed. It is convenient to assume (without loss of
generality) that the voltage gain ¢, of the propagation medium
and/or target [i.e., the portion of the link from (4) to (B) in Fig.
1] is unity. In the more general case of fluctuating SNR, the voltage
gain of this portion of the link will be treated as a random quantity.

The optimum placement of dynamic range bounds for incoherent
receivers is determined by the pdf of the envelope detected signal, v,
which appears at point (D) in Fig. 1. Let ¢ be a normalization
parameter and define

R = normalized envelope of received signal = v/c
a = lower normalized bound of dynamic range

ad = upper normalized bound of dynamic range

D = 20 log,, d = dynamic range in dB,

where these quantities are referred to point (D) in Fig. 1. If p, (R)
denotes the pdf of the normalized envelope, the corresponding exclu-
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sion probability is

Pla,d) =1 — fﬂdp1(R) dR. 0

To minimize P,(a, d) with respect to a for fixed dynamic range d,
(1) is differentiated with respect to a and this derivative is set to zero.
This yields the necessary optimization condition

py(@) = dp,(ad) @)
which must be solved for a. Consider an optimum incoherent receiver
for detection of signals of known form in Gaussian noise. Let 2¢* be
the mean square value of the signal voltage envelope, v, when only
noise is present. In this case, the pdf of the normalized signal envelope
is

p.(R) = R exp [—R*/2]. (3)
The optimization condition (2) for this case leads to

=21n(d)_A_

2
A=

A 4)
in which 4 £ @/+/2 is the optimum normalized lower dynamic range
bound. When signal-plus-noise is present the probability density of
the normalized envelope has a Rician distribution®'*

p,(R) = R exp [—(R* + v°)/21I,(vR) 6)
in which

I,(z) = modified Bessel function of first kind and order zero
v = voltage signal-to-noise ratio for ¢y = 1.

In this case condition (2) gives the following transcendental equation
which must be solved for the optimum normalized lower dynamic
range bound 4 = a//2:

1

A= At oy n L4 dyV2) — n LAy V2)]. (6
The minimum exclusion probability becomes
P.a,d) =1 — Qkv, AV?2) + Qv, 4dV'2) )

in which Q(e, 8) is the tabulated® @Q-function defined by

Q@®=EHWF@+ﬁMM@% ®)
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Solutions to (6) for various ¥ and d are presented in Ref. 2 along with
minimum exclusion probabilities for this case. The solutions can be
obtained from Fig. 2 with v used in place of ¥ and 4 in place of A.

III. DYNAMIC RANGE BOUNDS FOR MINIMUM AVERAGE EXCLUSION COST
WITH NONFLUCTUATING SNR

In certain situations it may not be desirable to use dynamic range
bounds which minimize the exclusion probability. It may be reason-
able to favor saturation at one dynamic range bound to the other.
In the case of a radar, for example, the signal is invisible if it falls
beneath the lower dynamic range bound, while if the receiver satu-
rates at the upper dynamic range bound the presence of the signal
would be detected although its information content would be cor-
rupted by the limiting. In such cases, a more reasonable criterion
might be to minimize the average cost of excluding the signal from
the receiver’s dynamic range.

Suppose that when the signal falls below the lower bound a loss,
¢, is incurred, while saturation at the upper bound causes a loss, c»

60
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Fig. 2— Optimum dynamic range centering for vas = 0.
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(c1, c2 > 0). The expected or average cost of excluding the signal
from the dynamiec range is

L=c [ 0.@®) iR+ f p.(B) dE. ©)

It is convenient to divide (9) by ¢; to obtain the normalized
average exclusion cost

L= [ p@ar+ v [ p.w)ar (10)

in which » is the cost ratio, » £ ¢y/c,. It is seen that for » = 1 the
normalized average exclusion cost, I, reduces to the exclusion prob-
ability. In order to minimize the average exclusion cost, the derivative
of (10) with respect to a is set to zero. One then finds that the optimum
lower normalized dynamic range bound ¢ must satisfy

p,(@) = v dp,(ad), (11)

which reduces to (2) for v+ = 1 as it should. For the incoherent
receiver substitution of (5) in (11) leads to the following transcen-
dental equation for the optimum normalized lower dynamic range
bound*®

1

A% = AL+ AL+ Ty (I (4 dyV2) — In LAy V2]  (12)

in which by definition

_ _Iny
S d -1

A? (13)

It is noted that it is entirely possible for ¢, to be less than ¢, making
A? negative. However, the sum A? + A? is positive if vd” is greater
than unity. Using (12) it is seen that for y = 0, i.e., Rayleigh distributed
envelope, the optimum normalized lower bound can be determined
explicitly from

Ay = A+ AL (14)

When the cost ratio, v, is unity (14) reduces to (4) as expected. It is
convenient to measure the cost ratio in dB using

Vg — 20 10g10 V. (15)

*The desired lower dynamic range bound is the positive real root of (12).
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Thus, positive values of vy imply ¢, > ¢;, while negative values
imply ¢, < ¢;. vgg = 0 is the case of minimum exclusion probability.
If vas = —2D, then 47 is 0 and A® = 0 solves (12) for any v. For the
foregoing formulation to be meaningful, 4% must be positive. Hence, (4),
(12), (13), and (14) require that vgy > —2D. If this constraint is not
satisfied, then the average exclusion cost, I, is not stationary with
respect to A. For given v, d, and » it is generally necessary to solve (12)
for A. This equation is of the general form z = f(z). A proposed scheme
to find the solution is to iterate z;., = f(x;) beginning with an approxi-
mate solution z, . It can be shown that this scheme will converge if the
magnitude of the derivative of the RHS, | f/(z) |, is less than unity in the
neighborhood of the solution, z, . Moreover the convergence is faster
as | f’(x,) | is closer to zero. In order to speed convergence an exirapolated
iteration scheme can be used by introducing another parameter, 8.
Consider the equation

= @) — Blz — {@)]. (16)

Provided 8 # —1 the solution to this equation is the same as that
of z = f(x). If one could choose

"(z) ,

B - 1 _ f,(xs) f(xa) # 1: (17)
the derivative of the RHS of (16) would be zero at z,. However,
since z, is not known at the outset the approximate solutions are
substituted for z, in (17) to speed convergence.

Using this approach (12) can be solved to any desired accuracy with
the aid of the iteration formulas

A?+l =F; ~ ﬁi(A? - F@') B: %= —1 (18)

Fi= A1+ A1+ oy I LA v VD) = I L(Aa V)] (19

G = V2 [d L(A; dyV2) _ L(Am@]
o2d = DAL T4, dvV2)  I(ArV?2)
in which I,.(x) denotes the modified Bessel function of the first kind
and nth order. One may begin with small values of v, ¢ = 0, 42 given
by (4) and A2 given by (13). The iteration is stopped when | 4., — 4 |
is less than the allowable error. Equation (12) was solved by this

method for various values of vy , D(dB), and v(dB).
For d > 1 an approximate solution to (12) can be found explicitly.

(20)
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Neglecting the second term in brackets in comparison with the first
and taking I,(z) & ¢° reduces (12) to a quadratic equation in Ad
which has the solution Ad ~ (v/V2) + V(*/2) + In» d°. Thus,
the optimum normalized upper bounds (as shown in Fig. 2 for » = 1)
continue to increase slowly as D increases.

The solutions obtained using (18) to (21) show that the optimum
lower bounds for a wide range of cost ratios do not differ appreciably
from those for vqy = 0. The difference (in dB) in optimum lower bounds
for values of vgs = =25 and vy = 0, and for vgy = 50 and v4py = 0
for various values of ¥ and d are shown in Fig. 3(a) and (b). (For non-
fluctuating SNR take 4 in the figures as v and A4 as A.) It can be seen
that for any given values of » and d, the largest difference is for ¥ = 0.
This maximum deviation can be determined explicitly. From (14)

Az = A1 + A7/ A7), (22)
LEquations (4), (13), and (15) then yield
20 log,, Az — 20 log, 4, = 10 logy, (1 + %d—DB-> (23)
o 6
o] .
z ()} \~ (b)
5 . \ \ (¥=0) RAYLEIGH
Z;_; (7:|o) RAYLEIGH N Jag=-
i’: Yyp=-00 \ 5\ V4g=50
S 2 . AN \
2?: © \ Vyg=25 10\\\ ]
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0
5 —I . o — }\ I 20 |
: =t ——>0 2 —
af ] ‘ 10///‘@8:‘2/5 Irj\//%
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& l (¥=0) RAYLEIGH I / Yyp=-00
1 / 7 f
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2 | | |
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DYNAMIC RANGE, D, IN DECIBELS

Tig. 3.— Increase in optimum normalized dynamic range bounds or in required
receiver attenuation due to nonunity cost ratio. (a) van = —2525; (b) vaz =
—50,50.
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Thus, the maximum difference in optimum dynamic range bounds
is determined by the ratio of the cost ratio in dB to the dynamic range
in dB. A plot of (23) is shown in Fig. 4.

The fact that the optimum bound is relatively insensitive to cost
ratio at least for large D and large 4 is an important one since exact
assessment of the costs ¢, and ¢, is difficult or impossible. However,
this analysis shows that for large ¥ and D an optimum solution for
vgp = 0is nearly optimum for —D = ygg = 2D. For ¥ = 0 the optimum
dynamic range bounds are most sensitive to cost ratio but in this
region differ only by about 3 dB from the optimum for » = 1.

When the optimum normalized lower bound, 4, is determined, the
normalized minimum average cost of excluding the signal is given in
this case by B

I=1— Q4, AV?2) + vQ(y, 4dV?2). (24)
These minimum average exclusion costs are shown in Fig. 5, in which
the parameter ¥ is to be taken as . For s = 0, (24) becomes the
minimum exclusion probability (7).

IV. A MODEL FOR TARGET FLUCTUATION AND FADING CHANNELS

Thus far this paper has considered the case where the SNR at the
receiver is fixed. However, in the case of radar the target cross section

4

I
10 LOGo[1+vgn/2D)]

e

6—20 LOGjo Ao OR

Y=

An(v,0,d)~An(1,0,d) IN DECIBELS

-2

~

20 LOGi0 A

-2 -1 0 1 2 3
vas/D

. Fig. 4 — Maximum change in optimum normalized dynamic range bounds or
in required receiver attenuation due to nonunity cost ratio.
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presented to the receiver generally varies, while in communications
links the phenomenon of fading generally causes fluctuation in the
received SNR. Consider the case in which the SNR fluctuation is
slow so that it is essentially fixed for the duration of a given signal
but will fluctuate over longer time intervals.

Following Turin® it is assumed that the medium from the trans-
mitter to the receiver can be characterized as propagating two com-
ponents, a fixed or specular component and a completely random or
scatter component. Thus corresponding to a transmitted signal
Re {s(t) exp (jw.t)} the reciever’s IF signal [point (C) in Fig. 1] with
K & K.,K.,K, = 1is given by Re {z(f)} where

z(l) = s(t — 7)la exp (—j8) + S exp (—jo)]
-exp (jw,t) + n(t) exp (jw,f). (25)

In (25) o and 8§ are fixed while S and ¢ are independent variates;
S having a Rayleigh pdf with mean square 2u? and ¢ a uniformly
distributed phase over an interval of 2x. o, and o, denote the angular
frequencies of the transmitted carrier and the receiver intermediate
frequency, respectively. n(t) is a narrowband Gaussian noise process.
It can be shown? ¢ that the joint distribution of the resultant ampli-
tude, ¢, and phase, 6, of the sum of the fixed vector (e, 8§) and the
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random vector (S, ¢) is

p(¥, ) = 2;0#2 exp I:_ Vv +a — 2;::20 cos (0 — 5):|

for 0=y 06— 6= 2nm. (26)

In (26) & can be regarded as the strength of the fixed component
while 4° is proportional to the strength of the scattered component.
The quantity 8° & o/u® is twice the ratio of the energy received via
the specular component to that received via the scatter component.
The variates ¥ and 6 are, respectively, the instantaneous voltage gain
and phase shift of the path from the transmitter to receiver and &
is the average phase shift of the path. Note that (26) is just the two
dimensional Gaussian distribution in polar form. The pdf of ¥ is found
by integrating (26) over the range of § giving®'®

o) = Low| - CEC (W) o yzo e

|

= 0 elsewhere.
Letting r = y/u, (27) becomes™

ps(r) = 7 exp [— (" + 8)/21L.(8r). (28)
The voltage gain of the propagation medium and/or target [from
(4) to (B) in TFig. 1] is ¢ = wr. The model above is an adequate
representation of propagation conditions which are encountered on
ionospheric and tropospheric radio links.® The pdf (27) is sufficiently
general since as B approaches zero (no specular component) (27)
becomes the Rayleigh distribution with parameter p while if g ap-
proaches infinity (presence of specular component only (27) may
first be approximated by a Gaussian pdf of mean « and variance p?
and in the limit by a delta function, §(y—a) corresponding to the
case of no SNR fluctuation. Radar target fluctuations have been
described by Rayleigh statistics”™ a special case of the above model
(B = 0). In this case, p? is proportional to the average target cross-
section. It is reasonable to expect that radar targets which ean be
modeled as a single large reflector plus a large number of independent
scatterers will yield signal returns of the form (25). For this more
general Rician fluctuating target p?(14-82/2) is proportional to the
average target cross-section.
mthat (28) is a pdf of the same form as (5) as it must be since either

equation is the probability density of the magnitude of the sum of a constant
vector and a Gaussian vector.
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V. GENERAL CASE: DYNAMIC RANGE BOUNDS FOR MINIMUM AVERAGE
EXCLUSION COST WITH FLUCTUATING SNR

The phenomena of radar target fluctuation and channel fading are
evidenced by fluctuating SNR in the receiver. To account for these
fluctuations, v in (10) must be weighted by a random voltage gain
pr, where p is a parameter and r is a random variable whose pdf 75(r)
determines the form of the SNR fluctuation. The normalized average
exclusion cost can then be obtained from (10) giving

= [ pu®ar +» [ g ar, (29)

where

Pa® = [ 5s00p ®) dr. (30)

In (30), vy is the voltage SNR at the receiver for unity channel gain,
e, for ¢y = ru = 1. The product ruy appearing in the integrand is
the voltage SNR at the receiver for a particular realization of the
random gain ¢ = rp; that is, the “instantaneous” voltage SNR at the
receiver.

The condition for minimization of the average exclusion cost (29)
becomes

ﬁuv(a) =V dﬁ#7(ad) . (31)

Consider phase incoherent reception of signals in Gaussian noise with
fading or target fluctuations described by the probability law (28),
i.e., pa(r) = ps(r). In this case the integral appearing in (30) becomes

pa® = [ "Rt exp [—(F + 8)/21.(80)

rexp [~ (WY’ + RY)/21LGRY dt (32)

which can be evaluated using an identity in Watson* giving

_ R [_ (RZ—I—quzB?)] ( wyBR >
pF‘Y(R) - 1 _|__ #272 exp 2(1 + “272) Io 1 + “272 (33}

To evaluate the average exclusion cost (29) one needs to integrate
(32) or (33) with respect to B from some number 5 to co. This
integral of (33) can be easily evaluated using the “definition (8).

*See Ref. 8, p. 395. Take Watson’sa = tpyR, b = 18, » = 0; p? == (1 + u2y2)/2.
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Performing the integration with respect to B in (32) then establishes
the resulty

[ po@dr = [ tew - + #2600, 7 it

(34)
_ Q( Y8 1 )
V14 VI + e
Using (34) in (29) yields
T — ( wB____a )
N+ Vitar
uyB ad )
) 35
+ VQ('\/I + I-l'z')’z ,\/1 + 'u'z’yz ( )

in which a is the optimum normalized lower dynamic range bound
obtained as a solution to (31). By substituting (33) in (31) and
manipulating the result it can be shown that the optimum a must

satisfy

___az—_zA?_*_A?_'___l___
2(1_*_”272) c 4 (d2_ 1)

) __wyBad > _ ( wyBa ):l
I:ln I"(l T In1, T+ 5F (36)

Let
1= (37)
V2 V1 4 1%
and

5 = —_mB (38)
V14 'y

From (33) it can be seen that if 8 is zero the mean square value of
Ris 2(1 4 1*+%). Thus 4 is the optimum lower dynamic range bound
normalized to the rms voltage that would appear at the output of the
envelope detector [point (D) in Fig. 1], if the specular component were
zero. Since pf = o the quantity ¥ in (38) is twice the ratio of the rms
voltage that would appear at (D) when only the noiseless specular com-

t The integral to the right of the first equality in (34) would appear if the
average cost for the nonfluctuating case is determined first as in (24) and then
this cost is averaged over the random fluctuations of .
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ponent of (25) is present, to the rms voltage that would appear if only the
scatter and noise components of (25) were present. The mean square
voltage at the output of the envelope detector when specular, scatter,
and noise components are present is 26°[1 + p’y* + (’v")/2]. Using (37)
and (38) in (36) gives

A* = A7+ AL+ @——1_—1—) [n I,GA dV2) — m LAV (39)
and (35) becomes

I=1-Q# AV2) +Q@F, A dV72). (40)

Equations (39) and (40) are of the same form as (12) and (24), re-
spectively, with v replaced by ¥ and A by A. These results show that
the optimum dynamic range bounds and performance curves obtained
previously for nonfluctuating SNR can be used directly for the more
general case of fluctuating SNR by merely changing the variables
via (37) and (38). Therefore, although there are two additional param-
eters in the fluctuating case it is not necessary to increase the number
of curves to describe performance. For vz = 0 the criterion reduces
to the minimum average exclusion probability as in the case of non-
fluctuating SNR.

VI. RECEIVER GAIN REQUIRED FOR THE GENERAL CASE

The optimum gain or attenuation required for insertion in the
signal processing chain at a point preceding the components which
limit the dynamic range can now be calculated. Let ¢ be the lowest
voltage at which the signal processing chain can operate satisfactorily,
referred to the output of the envelope detector.* Optimum dynamic
range utilization requires that the signal be multiplied by a factor K
such that the scaled lower normalized dynamic range bound is equal
to the voltage ¢, when normalized to the same base. That is,

Ka = c¢/o. (41)
Substituting from (37) for ¢ and transposing, (41) gives
KeV2/9 V14 py’ = 4™ (42)

in which A is the solution to (39). Denote the LHS of (42) as K.,
the normalized voltage gain, and let A, be the normalized required
attenuation in dB. Then
A, = —20 logy, K, = 20 log,, 4 43)
* Point (D) in Fig. 1.
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which expresses the normalized required attenuation in dB as a function
of the optimum normalized lower dynamic range bound. Since 4 is
the solution to (39) A, depends only on », 4, and d. It is fortunate
that the normalized results can be expressed in terms of only a few
parameters since this permits a concise description of optimum per-
formance for many signal, noise and channel conditions. Optimum
normalized attenuation required for the case of minimum exclusion
probability (vqg = 0) is shown plotted in Fig. 6. From (43) the actual
required attenuation in dB can be obtained. Let A = —20 log,q K
denote the actual required attenuation in dB. Then (42) and (43) yield

A = Ay, 7, d) + 20 logi, (6V2/¢) + 10 logio (1 + 1) (44)

in which the functional dependence of A, is shown explicitly.

From (43) and (44) it can be seen that the difference in optimum
receiver attenuations is the same as the difference in optimum normalized
dynamic range bounds. Hence, Fig. 3(a) and (b) also show the differences

An(yy ¥, d) - An(ly ¥, d) (45)

for values of vgp = =£25, =50, and various values of ¥. For given
v, ¥, and d one can, therefore, determine A, (v, ¥, d) by finding A,.(1, ¥, d)

\\\ N
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Fig. 6 — Required attenuation for minimum exclusion probability. vz = 0.
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in Tig. 6 and adding the difference (45) found in T'ig. 3. Tig. 4 is a
plot of the differences

A, 0,d) — A1, 0,d), (46)

that is, a plot of (45) for zero SNR. IFor given » and d these differences
are of the same sign as (45) but are always larger in magnitude. Hence,
Tig. 4 shows the maximum change in optimum receiver attenuation

due to a nonunity cost ratio.
The definitions of the parameters appearing in (44) are summarized
by the following list:

v = cost ratio

¢ = noise power with no fluctuation

v = voltage signal-to-noise ratio for unity propagation
and/or target gain (i.e., ¢ = 1)

u® = strength of scatter component of the propagation
medium .

B = twice the ratio of strength of specular component of

w1+ 6%/2)

SH

Il

=2

the medium to that of the scatter component

for the case of Rician fluctuating radar targets this
quantity is proportional to the average target cross-sec-
tion over all target fluctuations. 3 = 0 corresponds
to the case of Rayleigh fluctuating targets

dynamic range of receiver

B/ V1 + u’y?

rms voltage at (D) for noiseless specular component only
rms voltage at (D) for scatter and noise components only

In the general analysis presented here, which includes fluctuating

or nonfluctuating SNR and the criteria minimum average exclusion
cost or minimum exclusion probability, special cases which may arise
in various applications are represented when the parameters take on
particular values. Some special cases are shown in Table I. The entries
in the table are for either criterion.

TABLE I — CoONSTRAINTS ON PARAMETERS FOR SPECIAL CASES

Type of envelope

Type of fluctuation
i detected signal

Constraints on parameters or fading

w>0,8>0 v>0 Rician Rician

vw>08=0 +v>0 Rayleigh Rayleigh

rk—0,8—> 0, u8 =a vy >0 none Rician
s =a,y =0 none Rayleigh
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It is noted that for g, 8, and v greater than zero one has the general
case of Rician SNR fluctuation and Rician envelope detected signal.

When B is zero the medium from transmitter to receiver does not
propagate any specular component and the envelope of the received
signal has a Rayleigh pdf independent of the other parameters. Setting
B to zero in (33) shows that the envelope of the received signal in this
case has a mean square of 26°(1 4+ u’v®). When v is zero only noise
at the receiver is demodulated again giving rise to a Rayleigh distributed
envelope but of mean square 2¢° independent of the other param-
eters. In each of these two cases (i.e., 8 = 0 and v = 0), the optimum
normalized lower bound is found from (14), Az = VA% + A%. Since
the minimum average exclusion cost (40) depends on the value of 4
the minimum costs are equal for these two cases. However, it can be seen
from (44) that the actual optimum lower bounds or actual required atten-
uations for these cases differ. This is because the quantity, ¢ /1 + p*7
to which the received signal voltage envelope is normalized is different in
these instances. Note that in the former case (8 = 0) the required
receiver attenuation (44) is affected by the randomness of the scatter
component while in the latter case (y = 0) it is not. This can also be seen
from (25). When B is zero there is no specular component and the
received signal (25) depends upon the scatter component while if v is
zero the entire first term can be omitted and the received signal consists
of only noise.

When u goes to zero and 8 approaches infinity such that uf = «
(a constant), the medium from transmitter to receiver propagates only
a specular component with a voltage gain of «. In this case there is
no SNR fluctuation (nonfluctuating case) and the envelope of the
detected signal is Rician if ¥ > 0 and Rayleigh if v = 0. Letting u = 0
and u8 = «in (33) and (38) shows that for this case the SNR at the
reciever is ay, a result which is clear from (25) if the scatter component
of the medium is deleted. There is no essential loss in generality in
this case if « is taken as unity. With » = O and @ = u8 = 1 in (33)
that equation reduces to the pdf considered in Sections IT and III.

Forvy > 0, u > 0, 8 finite, the optimum gain settings for the fluctuating
and nonfluctuating cases differ and the minimum average exclusion
cost (probability) for the fluctuating case will be greater for the same
values of v, d, », and a.

VII. EFFECT OF NOISE INTRODUCED BY THE GAIN ADJUSTMENT CASCADE

In the foregoing discussion, the attenuation or gain required for
optimum dynamic range utilization has been idealized as a multiplica-
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tive parameter. These results apply when the noise introduced by the
gain adjustment cascade itself is virtually independent of its gain.
This condition is often realized in practice. When this eondition is not
satisfled some modification is necessary. The phenomenon can be
represented by using an equivalent noise source at the point in the signal
processing chain where the dynamic range calculations are being made.
The quantities ¢ and v used previously must be replaced by equivalent
o, and 7., respectively. Let %,(3) be the operating noise figure’ of the
cascade when it is set for an available gain of § (dB). Then the equiv-
alent noise power when the gain is G, is

2 o 250(9)
20) = —2 47
a.(S) 5.0 €]
in which G, is the gain for which the SNR is v and the noise power

is ¢°. The equivalent SNR is determined by

v _ 5@
7:Q) = 5.9 (48)
In the case where the noise depends upon the gain, K, (g = 20log,;, K),
both the quantities v and a in (29) or (35) depend upon gain. Hence,
the optimization condition must be found by differentiating (29) or
(35) with respect to K (or §) rather than a and setting that derivative
to zero. However, this condition is generally too complicated to be
useful and it is usually better to evaluate (29) or (35) for various G
to determine the optimizing value. For the general case of the incoherent
receiver the normalization for R in (29) is with respect to ¢, rather
than ¢. In addition v, and ¢, must be used. Define

a, = ¢/[Ko.(9)) SN CY)

and

T - a .
O = i o

T _ 7 m(go)]*[l + uzvz]%
Ag(g) A[$O(9) 1 + “273 (51)
_ c-10¢-%/20 [9’0(80)]%
a\/§ V14 pz'yf Q) J°

From (38), (47), and (48) one can find

Then

o) — — B
O = T sieT 2
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In order to find the optimum receiver gain (47), (48), (51), and (52)
are used in conjunction with

I=1-Qr.©, V2 A4,]+»QW.Q),dV2 A9 (53)

which must be minimized with respect to G. It is easiest to use a numer-
ical method which requires only successive evaluation of (53) for various
values of G, as opposed to methods requiring analytical evaluation of
the derivative of (53). In the important case where only a finite number
of gain settings G;, ( = 1, 2, --- N) are possible, minimization of
(53) is easy requiring at most N evaluations for any given set of pa-
rameters. Likewise when —[ is a unimodal function of G any of various
search methods can be used.'

VIII. SUMMARY AND COMMENTS

This paper considers the general problem of determining optimum
receiver gains for radar and communications receivers. Dynamic range
bounds and receiver gains are determined which yield minimum average
cost of excluding fluctuating signals in noise. The analysis is general
enough to include minimum exclusion probability as a special case
as well as a range of fluctuation models including Rician, Rayleigh,
and nonfluctuating cases. The analysis is applicable to both linear
and nonlinear receivers and has important implications for certain
radar processors and communications terminals which can use sophis-
ticated techniques for signal and noise parameter estimation. The
results are presented in a concise normalized form making them ap-
plicable to a wide range of signal, noise, and channel conditions. It is
shown that the optimum receiver gain is relatively insensitive to cost
ratio for —D = wygy X 2D differing at most by about 3 dB from the
optimum gain for v = 1. The effect of noise introduced by the gain
adjustment cascade is discussed.

The analysis presented assumes that certain signal, noise, and channel
parameters are known to the receiver. In practice the receiver would
be required to estimate these parameters. When these estimates are
good, performance of the system will approach that described here.
An extension of this work is to study both the optimization problem and
the deterioration in performance when the parameters are not known to
the receiver. Optimum dynamic range utilization for various coherent
and partially coherent receivers can also be studied.
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Floating-Point-Roundoff Accumulation
in Digital-Filter Realizations

By I. W. SANDBERG
(Manuscript received June 20, 1967)

In this paper, several results are presented concerning the effects of
roundoff in the floating-poini realization of a general discrete filter governed
ideally by a stable difference equation of the form

M N

w, = Z bin-r — Z G Wn—p n=N (1)
k=0 k=1

in which {w,} and {z,} are output and input sequences, respectively.

In particular, for a large class of filters it ¢s proved that there is a func-
tion f(K) with f(K) — 0 as K — o« and a constant ¢, both dependent
on the by, the a, the order in which the products on the right side of (1)
are summed in the machine, and t, the number of bits allotted {o the mantissa,
such that

(e)x = cy)x + f(K)

for all K = N, in which, with {y,} the compuied output sequence of the
realized filter,

W = (Kit ] é | 4. |2>%

and

(e = <K}+— 1 g [ we — ¥a |2>%.

Bounds on {(K) and c are given that are not difficult to evaluate, and which,
in many realistic cases, are informative. For example, for the second-order
bandpass filter:

Wy = Ty ~ Wy — CoWpz , N = 2 ®

with a, and a, chosen so that its poles are at approximately £ 45° and
at distance approximately (but not less than) 0.001 from the unit circle,
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we find that ¢, an upper bound on the “asymptotic output error-to-signal
ratio”, is mot greater than 0.58 X 107™*, assuming that t = 27, that the
terms on the right side of (2) are summed in the machine in the order in-
dicated (from right to left), and that the z, in (2) are machine numbers.
If the x, are not machine numbers, and hence must be quantized before
processing, then ¢ £ 0.76 X 107*. ‘

In addition to error bounds, an inequality is deried which, if satisfied,
rules out certain types of generally undesirable behavior such as self-
sustained output limit cycles due to roundoff effects. This inequality
s satisfied for the example described above.

I. INTRODUCTION

The difference equation
M N
W, = Z by — Z ApWy—k n=N (1)
k=0 k=1

with M =< N defines the behavior of a general time-invariant discrete
filter which acts on an input sequence z,, z,, ®;, *-- to produce an
output sequence Wy, Wxy+1, Wys2, -+ that depends on the starting
values wo, wy, * -, Wy_y -

There is a vast literature concerned with techniques for designing
discrete filters [i.e., for determining the a; and the b; in (1)] to meet
specifications of various types (see, for example, Refs. 1, 2, and 3), and
a good deal of material is available on the subject of roundoff effects
in fixed-point realizations of discrete filters (see, for instance, Refs. 4
and 5). In this paper, we derive some bounds on a meaningful measure
of the overall effect of roundoff errors for discrete filters realized as
digital filters on a machine employing floating-point arithmetic oper-
ations. This type of realization, as opposed to the fixed-point kind, is
of particular importance in connection with, for example, digital com-
puter simulations of systems, as a result of the large dynamic range
afforded by the floating-point mode.

There are basic differences concerning fixed-point and floating-point
error estimation problems which stem from the fact that the modulus
of every individual arithmetic error in the fixed-point mode is bounded
by a constant determined by the machine, whereas the maximum
modulus of the error in forming, for example, the floating-point sum
of two floating-point numbers is proportional to the magnitude of the
true sum. For this reason, the approach® presented here, as well as the
mpproach can be extended in several different directions. For example,

it can be used to obtain statistical error estimates based on the assumption that
each roundoff error is an independent random variable.
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character of the results, are quite different from those of earlier
writers concerned with fixed-point realizations.

In addition to error bounds, an inequality is derived which, if
satisfled, rules out certain types of generally undesirable behavior
such as self-sustained output limit cycles due to roundoff effects.

II. ASSUMPTIONS AND RESULTS

2.1 Assumptions
It is assumed that:

(¢) each machine number ¢ is equal to sgn (¢) a 2° in which
the exponent b is an integer, and a, the mantissa, is a {-bit number
contained in [, 1] or [, 1] U {0};

(77) the range of values of b is adequate to ensure that all computed
numbers lie within the permissible range;

(747) the machine operations of addition and multiplication are per-
formed in accordance with standard rounding conventions* (described,
for example, by Wilkinson®); and

(iv) the coefficients a, and b, in (1) are machine numbers.f

2.2 Results: z, Machine Numbers

It is assumed throughout Section 2.2 that the x, of (1) are floating-
point machine numbers.
If the discrete filter (1) is realized on a floating-point machine, then

pia N
Yo = ﬂ<2 biuer — 2 akyn_k) , nzN )

k=0 k=1
in which the y, are approximations to the infinite precision numbers
w,, and fl(ZX — Z) denotes the machine number corresponding to

(£ — Z) with the understanding that the floating-point numbers cor-
responding to the products bz, . and a:y._: are to be machine-added
in some specified order.

Let

D@ 21+ i w2 ", 6))

*That 1s, conventions for which the first two equations of Section III are
satisfied.

It is certainly true that preliminary design considerations may lead to coeffi-
cients that are not machine numbers, and one may then be interested also in
the overall effect of approximating the coefficients by machine numbers. That
problem also can be treated with the approach used here.
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let

(Qx = ( i >

+ 14
for every sequence {g;} and all K = 0, and let e, denote the nth error
(y, — w,) forn = 0. :

Our first result (all proofs are given in Section III) is as follows.
If D(z) £ 0for | z]| = 1 [i.e., if the discrete filter (1) is stable], then

N—1 3
(e)x £ max | D)™ | <K{l- 1 ; | 7n [2)

O0sSws2T
“(Zinie) mx 10 | (Fy 3 1np)

k=0 Ozsws27 K + ]- n=N-—M
N

2/( 3 | or o) max [ DE) | (e @
k=1 0sws2T

for all K = N, in which, with y, = w, = 0 forn < 0,
N
M = gak(yn—k_wn-k) n=0’1’2y“"(N_1)

and the o, and B, are easily evaluated nonnegative numbers which
depend on the order in which the produets in (2) are summed.

Since the first term on the right side of (4), which arises as a result
of the possibility of differences in the starting values, approaches zero
as K — «, we see that, after a reasonable number of evaluations of
the successive ¥, , {¢)x is bounded essentially by a constant times the
root-mean-squared value of the input sequence, plus another constant
times the root-mean-squared value of the output sequence.

In order to determine the o; and B, we draw a signal-flow graph
that indicates the ordering of the operations that would be used to
compute

f l(:Z:O bin-r — gl akyn—k> ®)

if z, and ¥, were unity for all n. This graph is to contain an input
node with input b; for each b; < 0, an input node with input a} for
each a; # 0, no other input nodes, and a single output node 8 which
is associated with

N
— > al.

k=1

M=
=

=
It
o
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All other nodes represent an addition or subtraction of two signals
to produce a third signal. Exactly one branch is connected to each
of the input nodes and to the output node. We assign the value p to
all of the branch transmissions with the exception of those branches,
if any, which terminate on an input b, or a} for which b, or a; , respec-
tively, is equal to unity. These branches are assigned unity transmission.
Then, by inspection, we evaluate the signal at 6, which must clearly
be of the form

M N
b/ ¢pk) + a/ ¢ a (k) 6
1; kP ; kP ( )

in which ¢s(k) and ¢.(k) are positive-integer valued functions. In
terms of these functions™

Br = (1.06)¢5(k)

a, = (1.06)p, (k).

For example, if the right side of (2) is computed as the floating-point
difference of the machine sums

fl(bOxn + bz + - bufvn—m)
and
fl(lh?/n—l + @Yuo + - + aNyn—N);

each obtained by performing machine summations in the order indicated
(from left to right), if all of the b, and a, are nonzero and not unity,
and if M = 1 and N = 2, then the relevant flow graph is shown in
Fig. 1, from which it follows that

Bo = (1.06)(M + 2)
B = (1.06)(M + 2)
B =QQ06)8B+M—-1k; k=23 ---,M
a, = (1.06)(N + 1)
a = (1.06)(V + 1)
ap = (10603 +N —%; k=3,4,---,N.

The bound (4), although revealing, requires a knowledge of both
(x)x and (y)x and is, therefore, not as explicit as we would like.
*We are assuming here oply that max lpa(k)[27* < 0.1 and max |pa(k) |27

< 0.1. Also if gg(k) = 1, then we can take fx = 1, and similarly for ga(k).
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bo a'y

Fig. 1 — Flow graph for the example.

For the important case in which b, 5% 0 and N(z) £ > ¥ bz 0
for |2| = 1 (i.e., for the minimum-phase filter case) we prove that
if the filter (1) is stable and if

min | NE™) | > 27 20 | be | B, @

0fws27 k=0

then there exists a constant ¢, independent of K, and a function f(K)
with the property that j(K) — 0 as K — « such that

(@x = cy)x + 1K) )

for all K = N. Moreover, it is proved that

Osws2m

¢ < 27" max |D(e"w)-1[{;lak]ak+ ;Ibklm

max | D(™)/NE*®) | + max | NE)™" |27 2 | a: | ak[

. , ©
1 - 2—t ; ] bk | B, max I N(etw)_l l

and

1

1) 5 mas | D | (g 35 7)o+ mas | D 2
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. 1 N-1 1
max | N | (g7 2 0. 1)

(10)

Ar
1 -2 ; | b | B max | N(™)™" |
i=0 @

for all K = N, in which, with ¢y = 1 and z, = 3, = 0 for n < 0,
M

N
4 = Z W Yn—r — Z bkxn_k
k=0 k=0

forn =10,1,2, ---, (N — 1).

Since (y)x is the root-mean-squared value of the computed output,
and since f(K) — O fairly rapidly as K — «, we may interpret the
smallest value of ¢ for which (8) is satisfied (for all input sequences)
as an ‘“output error-to-signal ratio” of the realized digital filter. Note
that the bound (9) on ¢ is not difficult to evaluate.

2.2.1. Stability in the Presence of Roundoff

If roundoff effects are ignored, it is well known that the discrete
filter is stable in several different senses of the word if D(z) 5 0 for
| z| = 1. In Section III it is proved that, with roundoff effects taken
into account, the digital filter is stable in the sense that there is a
constant ¢, and a function f,(K), with f,;(K) independent of the values
of z, forn = N and f,(K) — 0 as K — o, such that

W = ele)x + f1(K) (11)
for all K = N, provided that D(z) = Ofor | 2] = 1, and

min | D) | > 27* i | a | ay . (12)

Roughly speaking, inequality (12) is satisfied if the damping of the
infinite precision counterpart of the digital filter is sufficiently large
relative to the number of bits allotted to the mantissa. Stability in
the sense of (11) rules out, for example, the possibility, due to roundoff
effects, of a limit-cycle response to a zero input sequence or to an
input sequence {z,} that approaches zero as n — «©.*

* There are simple examples which illustrate that instability may result with
D(z) = 0for | z| = 1if (12) is not satisfied. For instance, suppose that each machine

number is represented in the form (—m20 4+ m271 4 m272 + .- + m270)20
with the m; zeros or ones, and ¢ > 1. Let

Wo = (1 — 270w q + (1 — 27927, o forn = 2, with we = wy = — 1.
Then fI[(1 — 279w] = —(1 — 27%), fIl(1 — 2792 tw] = —(1 — 278274 and
fl—(1 =2t — (1 — 271)27%] = —1, which shows that the computed approximation
Yn to wy satisfies y, = —1 for all n = 0. This example is a slight modification of one
suggested by S. Darlington.
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2.3 A Result Concerning the Overall Effect of Input Quaniization Errors

In many applications the sequence {z,} of (1) is obtained by quantiz-
ing an input sequence {%,} [i.e., by replacing each Z, with the machine
number (or one of the possibly two machine numbers) of closest value].
The infinite precision response Wy, Wy:1, --- to the sequence {Zy}
satisfies

M N
’lI),I = Z bkjn—k - Z akwn—k ) n g N (13)
k=0 k=1

with @, , 1, , - -+, Wy_, some set of starting values. Let wy , wysy, - *
be defined by (1) with w, = @, forn = 0,1,2, --- , (N — 1). It is
clear that {y — ®W)x, the root-mean-squared value of the difference
of the computed output and the infinite precision response to {z,.},
satisfies

¥y — W) = ¥y — w + {(w — W)k . (14)

Bounds on the first term on the right side of (14) are given in Sec-
tion 2.2. In Section III it is proved that if both N(z) and D(z) have
no zeros on or outside the unit circle, b, # 0, and

M
min | NE™) | > 27 ;]bklﬂk,

then* there is a constant ¢, and a function f,(K) such that f,(X) — 0
as K — o, and

(w — Dx = ey + f2(K) (15)
for all K = N. It is proved also that

M
¢, <270 X | by | max | DE™)™" |
k=0 )

max | D('*)/N('®) | + max | N(™)™ | 2™ :; | @i |

I ) (16)
1 =27 > | b | B max | NE™“)™ |
k=0 w

2.4 A Realistic Example
For the ideally stable second-order bandpass filter
Wn = Tp — OyWpey — QaWy—z , nzz2

*1t is assumed here that the range of values assigned to the mantissa includes
the number zero.
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with poles in the z-plane at angles ~ +45° and at distance ~~ 0.001
(but not less than 0.001) from the unit circle, we have a, & —1.41,
a, &~ 1, and min, | D('“)™"| &~ (0.00141)"'. We assume that the
operations are performed as indicated in Fig. 2, so that 8, = 1, @; =
3(1.06), and o, = 3(1.06). Assuming that ¢ = 27, we find that ¢ our
bound on the ‘“asymptotic output error-to-signal ratio,” ignoring
input quantization effects, is approximately 0.584 X 107* For this
problem, our bound on ¢, is approximately 0.18 X 107*. Thus, even
taking into account input quantization effects, the error-to-signal
ratio is not more than 0.764 X 107*. Finally, a simple calculation
shows that this filter is stable in the presence of roundoff, in the sense
of inequality (11).

III. PROOFS

3.1 Derwation of Inequality (4)

If @ and b are floating-point machine numbers, then the floating-
point product and sum fl(ab) and fl(a + b), respectively, satisfy®

fUab) = ab(l + ¢
flla + ) = @+ b + 9

with [ e] £ 27 and | 6| £ 27", Thus,

M 4
ﬂ(Z byt — E akyn—lc)
k=0 k=1

is equal to the value of the output signal 6 of the flow graph described
in Section 1T with
(@) b, = bixns

0} = QlYn-r

Fig. 2 —Flow graph for the second-order band-pass filter.
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and

(77) each of the branch transmissions of the form: (1 4+ € with
| e| = 27° (recall that in certain special cases e is taken to be

zero), or —(1 + ¢) with | e | = 27°. Therefore,

M N
fl( Z bkxn—k - Z akyn_k>
k=0 k=1

is equal to
M N
E bkxn—qu - z Y-k
k=0 k=1
in which
(L =27 5 g < (142797 (17)
and
(L —249® <p < (L4 279", (18)
Inequalities (17) and (18) imply®
1 — (1.00)¢s(R)27" = g = 1 + (1.06)pp(k)27*

1 — (1.06)p. ()2 < 7 < 1+ (1.06)g. (k)2

provided that 27° max, ¢s(k) < 0.1 and 27° max, ¢.(k) < 0.1
Thus, forn = N

M N
fl( Z bk:l’-n—k - Z akyn_k>
. (19)

A N
= Z by — Z CYnr T+ Mn
k=0 k=1

Yn

with
174 ¥
1 Mn | =2 kz I b I[ M 1 B: + 27 kz lak II Yn—r Iak (20)
=0 =1 .

and

Be = (1.00)gs(k),  an = (1.06)pa(k>.

Using (1) and (19),

N
E AQpn—t = Nn n
k=0

1%

0
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in which, with y, = w, = O for n < 0,

N
M = kZ ak(yn—k - wn—k)
forn =0,1, ---, (N — 1). By Propositions 1 and 2 (see Sections 3.5
and 3.6)
@ = max | DE) (e, Kz o0 @1)
0fws2m

By Proposition 3 (Section 3.7), inequality (20), and Minkowski’s
inequality

(e < <rlﬁ Z . [2),,1_

tot Sinlaleh 2o i) 2 2w a2

N

for all K = N. This proves inequality (4).
3.2 Inequality (8)

Here we assume that both D(2) and N(z) are zero free for |z | = 1
that b, # 0, and that

min | N(E*) | > 27° Z [ b | B . (23)

O0ws2m

Trom (19), we have, with a, = 1,

N r
Z GYn—r = Z bt + ., n = 0, (24)
k=0 k=0
where
=1, nz=N
N 2
= Zakyn—k_ Zbkxn—ky n=01 1y21.” )(N_l)
k=0 k=0

with z, = y, = 0 for n < 0. Therefore, by Propositions 1 and 2,
(@) = max | D™ )/NE™) | ()« + max | NE)™ g, Kz 0.
(25)
Using Proposition 3, Minkowski’s inequality, and (20),

e s (g7 Sl l) +27 3 151 8ok

+ 2 Z law | e, K =N.  (26)
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Therefore,

max | D(*)/N(™®) | + max | N(**)™ | 27 é | @ | e

(-77)1{ = I; = ' W«
1 -2 kZO | by | B max | N(™)™" |
| NG LS )
max | N('™“)™" | ( n 2)
ir K+1%~ -

1 -2 i | by | B, max | N(™“)™ l

for all K = N, which together with (21) and (22) yields

Sws27

() = 27° max | D)™ | {; | i |« + ; | bc | Bs

max | D(e*“)/N(’®) | + max | N('™“)™" | 27 ZN: | ax Iak]\
- T = = W)«
1—27" 3| b |8 max | NE™)™ | J

k=0
1

Twy—1 1 T 2% Twy—1 —t
+ max | D("™) [(HIE)I%I) + max | D)7 [ 2

o 1 N-1 i
M max I NE™) ! l <K—_ Z I qn |2>

) Z l bi l B - M + 2= : (28)
ko 1—27" 3| b | B max | NE™) |

This proves that there exists a constant ¢ and a function f(X) with
the property that f(K) — 0 as K — « such that (8) is satisfied for all
K = N, and of course it also proves that ¢ and f(X) are bounded as
stated in Section 2.2.

3.3 Proof of (11) Under the Conditions Stated
TFrom (24) and Propositions 1 and 2,

(W) S mox | N )/DE™) | (e + max | DE)™ | (g

and using (26)
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max | N(¢**)/D(") | + max | D)™ |27 Z_j [ b | B
W) < A @)
1— 27" 3 | | max | D)™ |

k=1

Twy—1 1 g 2%

max | D™ | (g 5 10 F)
+ w ~ n=0 ,
1 — 27 > | ax | o« max | D)™ |

which completes the proof.

3.4 Derivation of Inequalities (15) and (16)
We have, from (1) and (13),

N
ak(wnfk - u-)n—k) = En ) n g 0 (29)
k=0
in which a, £ 1,
M
gn = Z bk(xn—k - x_"—k‘)l n g. N
k=0
and
£ =0, n =20, 2, -« (V- 1).

Since &, = sgn (&,)h2" for some integer b and some h ¢ [3, 1] (assuming
that &, £ 0), the magnitude of the error in approximating &, by the
closest machine number z, = sgn (%,)a2’ is at most 127'2° = 127"
|z, | £ 27" | 2, |. Therefore, forn = N

M
I'En §2 Z bkl'lxn—k[r
k=0
and by Propositions 1, 2, and 3

(w — W)x < max | DE*)™ | 27
x 3
Z|bk (zc+1nZM'”"'2>' KzN. (30
From (30) and (27)

M
(w—W)x 27 2| by | max | D)™ |
k=0 w
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N

k=1

max | D(e*)/N(™®) | + max | N“)™" |27 D | ax | ax

M
1-27 kz_o | by | B max | N("™)™" |

M

W«

3 b max | D o | V@ | (g S 0 )

+

M
1—27 g | b | B max | N(e*™)™" |

for all K = N, provided that N(z) = Ofor |z | = 1,

A
min | N@™®) | > 27 2 | b | B -
© r=0
This completes the derivation.

3.5 Proposition 1:
It

L L’
Z Cilp—1 = Z dlsn—l + fn ’ n
1=0 1=0

with: 7, = s, = 0forn < 0,¢, # 0, and D7, ¢iz”
then

bo # 0, and

0

'#0for|z| =1

n n
= kz WorS T+ kz: vn—kfk ’ n
=0 =0
in which
o« o]
2lul<ew,  Xlon|<=,
n=0 n=0
< —inw __ < —ilw - —ile
Z U8 = Z d.e Z ce ,
n=0 =0 =0
and

0 L
Z vne—znw =1 Z cle—zlw
n=0 1=0

for0 £ w £ 2r.
Proof :*

b

*The proof of this result, although rather trivial, is included because the
writer knows_of no reference where it is proved without the assumption that the

sequences {s.} and {fs} are z-transformable. )
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Let M > 0, and let

§,=s, for n <=M

=0 for n>M

Jao=1f. for n =M

=0 for n> M.

Then r, = #, for n = M, with

chrnl_zdlsn—l—i_fny n;o
and with {#,}, {3}, and {

fa
R@) = <:§ diz” )( z'l>_ SGe) + <l;0 clz_’>_ F)

in which

} z-transformable. Therefore, we have

R@i) = Z 2"
R 2
86) = 2se
. i
PO = X 1
Thus,
fr = Ui + Z Un—kfk y n =0
k=0 k=0
and hence
= Z Un—1Sk + Z vn—kfk ] (31)
k=0 k=0

forn = 0,1, --- , M. However, since M is arbitrary, (31) is satisfied
for all n = 0. This proves Proposition 1.

3.6 Proposition 2:
If

n
= ch—lgl ’ n g 0
=0
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with 2.2, | ¢; | < =, then

(Hx = max

Osw=2m

foral K =2 0

Proof:
K 1 27 K . n 2
. _ —inw . d
ZJ | f l 27[) ;}e ; 141 w
1 27 K ) n 2
= —f e Coorfy | dow
27 J, 7=0 =0
in which
§l=gl’ l:O'I"]{
=0, l>K
Thus,
i’ ) 1 27 0 . n 2
A é il e-znw Co A d
n=0 lf I 2m Jy ;, 1=0 W9 ¢

1 27 ¢ ) 2
< P —1il —inw A
= o l;) ci€ Z
0 i 2 1 T 0
S —tlw - znw A
= mwax ;)c,e 271_[0 Z
0 IZ K
é max Z —ilw | Z l
w 1=0 n=0
which proves Proposition 2.
3.7 Proposition 3:
If
L
Ifnl§;3lgzl'lhn—z|y nz=zN

with L < N, then

(i) = (Zra)( £, r)

for all K = N.
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Proof:

IIA
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L 2
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in which

ho=h, =n=0,1,2 - ,K
=0 n > K.
Therefore, by the Schwarz inequality,
K L L
2 LIS
n=N n=N 1=0 1=0

IA
M“
N
Mn
[
@
M=
:;)
L
-

1=0 =0 n=N
L L K—-1
=D APAD (PRI NI NY
L 2 K
s(Ste)) > nr
1=0 m=N—L

This completes the proof.
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An Approach to a Unified
Theory of Automata

By J. E. HOPCROFT* AND J. D. ULLMAN

(Manuscript received April 7, 1967)

A model of an automaton, called a balloon automaton is proposed, It
consists of a finite control, which may be deterministic or nondeterministic,
an input tape which may be one way or two way, and an abstract, infinite
memory, called the balloon, which can enier any of a countable number
of states. There is assumed to be a recursive function which manipulates
the state of the balloon, and another which passes a finite amount of in-
formation from the balloon to the finite control.

A subset of the balloon automata is considered a closed class if it obeys
two very simple closure properties. Certain closed classes recognize exactly
the languages recognized by such familiar automata as the pushdown
automalon or stack automaton. Unjfortunately, no closed class recognizes
the sets accepted by linear bounded automaia or the time and tape com-
plexity classes of Turing machines.

It 7s shown that many of the usual closure properties of languages
accepted by the pushdown automaton, stack automaton, etc., hold for an
arbitrary closed class of balloon automata. For example, the languages
accepted by a closed class of one-way, nondeterministic balloon automata
are closed under concatenation. Of special interest is the fact that a closed
class of two-way deterministic balloon automata is closed under inverse
g.s.m. mappings. This fact is not obvious, and was not known for all
of the types of automata which form closed classes of balloon automata.

It should be emphasized that the purpose of this paper ts not to propose
another “model of a computer.” Rather, we are proposing a method of
proving the standard theorems about existing and future models. Hope-
fully, when a model is proposed in the future, one will simply show it
equivalent to a closed class of balloon automaia, and have many of the
closure properties automatically proven.

* Currently at Cornell University, Ithaca, N. Y.
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I. INTRODUCTION

In the past, and especially recently, people have been examining
various species of automata, perhaps as models of the compiling and
translating processes, or for the insights they lend to computation. A
partial list includes the Turing machine,* pushdown automaton? ®*
deterministic pushdown automaton,® counter machine,® ? stack auto-
mation, in all its forms, two-way,® one-way,” 1> ' nonerasing,'? de-
terministic and nondeterministic, the nested stack automaton,’* and
the time'* 1% and tape'® " 1% hounded Turing machines. This list is
not meant to be a complete survey of past writings, and more can
be expected in the future.

Many of the propertics of cach of the automaton classes mentioned
are the same. For example, one would expect the set of languages
accepted by each class to be closed under intersection with a regular
set. Our plan is to propose a model of an automaton abstracting the
common features of most of the models mentioned. We will define a
class of automata to be a subset of the set of all such automata if
it satisfies certain simple and physically meaningful closure properties.
Then, from these closure properties, we will derive many of the
common closure theorems which have been proven for the specific
types of automata mentioned, and which, presumably, would be
proven for future types.

The basic model is shown in Fig. 1. It consists of a two-way tnput
tape, with end markers, a finite control, and an infinite storage of
unspecified structure, called the balloon.

We assume that the states of the balloon are represented by the
positive integers. A move of the automaton is a three-stage process.
First, a recursive function is used to get a finite amount of informa-

[¢ INPUT $

INPUT HEAD

FINITE
CONTROL

BALLOON

Fig. 1 — Balloon automaton.
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tion from the balloon. Typically, this information is analogous to the
symbol scanned by the storage head of an automaton with a tape
memory. Second, based on the information from the balloon, the state
of the finite control, and the symbol scanned by the input head, a new
state of finite control and a direction of input head motion is de-
termined. Third, based on the new state of finite control, and the
current state of the balloon, a recursive function determines the next
state of the balloon. Certain states of the finite control are final
states. If the input causes the automaton to enter a final state, the
input is accepted.

A subset of the set of balloon automata is called a closed class, or
simply a class, if:

(z) It contains the finite automata.

(1) If two automata are in the class, a third in the class can be
found by associating in any way, the recursive functions getting
information from the balloon and determining the next state of the
balloon.

The latter condition is vague, but will be made formal.

Most, but not all, of the types of automata mentioned can be
interpreted as classes under our definition. It seems that a type of
automaton is a class if its definition involves only the ways in which
the infinite storage may be locally manipulated. Sets such as the time
and tape complexity classes of Turing machines do not form classes.
With special emphasis, the linear-bounded automata unfortuately do
not form a class in our formulation. Note that single changes in the
next state of finite control function for a Turing machine may cause
it to use much more time or tape than did the original machine, so
condition (72) would not be satisfied. Some of the automata, all two-
way deterministic, which do form classes are:

() Pushdown automaton.

(&z) Stack automaton.

(71t) Nonerasing stack automaton.
(iv) Nested Stack automaton.
(v) Single counter machine.

(vt) Finite automaton.

(viz) Turing machine.

Our model shall be modified to treat nondeterministic and one-way
input devices later in the paper. We have chosen two-way determinis-
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tic devices to treat first because, with one exception, the theorems
involved are quite straightforward.

II. THE TWO-WAY DETERMINISTIC BALLOON AUTOMATON

A balloon automaton consists of:

(%) A finite, nonempty set of states, S.

(%) A finite set of input symbols, I, which includes ¢ and §, the left
and right end-markers of the input, respectively.

(72%) A set of balloon states, which is always the positive integers,
denoted by Z.

() A finite, nonempty set of integers, M, known as the balloon
information.

(v) A total recursive function, , from Z to 3, known as the balloon
information function.

(v7) A function g, with finite domain, S X I X M and finite range
S X {—1,0, +1}. We will also allow ¢, the null set, in the range of ¢.
We call ¢ the finite control function.

(viz) A partial recursive function, f, from S X Z to Z, known as
the balloon control function.

(vie7) A subset, I, of S, called the final states.

(iz) A state g, in S, the start state. To simplify matters later, we will
here assume that the start state isnot a final state. The balloon automaton
is denoted (S, I, M, {, g, h, g0, F).

We denote a configuration of the automaton 4 = (S, I, M, f, g, , g0, I')
by (g, w, j, 7), where:

(7) ¢ is a state of the finite control, in S.

(72) w is in I*. More specifically, w = ¢a.a, -+ @,$, n = 0, where
for1 £k =, aisin I — {¢, $}. Thus, ¢ marks the left end and $
the right end. We call n the length of w. Endmarkers do not contribute
to the length.

(7€) j is an integer between 0 and n -+ 1, denoting the position of
the input head of A.

(@) 7 is a positive integer, the state of the balloon.

As previously mentioned, a move of A is a three-stage process. Let
(g1, w, 4;, %) be a configuration of A, and the j;th symbol of w be a.
Let w, exclusive of endmarkers, consist of n symbols. We call ¢ the
Oth symbol, $ the n + Ist, and number the non-endmarker symbols
from 1 to n from the left. Suppose h(7;) = m. Then, find ¢g(q,, a, m).
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If it is ¢, no move is possible. Suppose ¢g(q,, a, m) = (g., d), where
g:isin Sand d = —1, 0, or +1. Then, compute, if possible, f(gz, 7,).
Let it be ¢, . If j, = j, + d lies in the range 0 to n -+ 1, we say that a
move is possible, and the next configuration is (g, w, j», %2).

Note that f(gz, %,) does not necessarily have a value. In that case,
there is no move possible.

Intuitively, to make a move of A, we get what information we can
from the balloon by calculating h(7,). Then, using ¢, we find the new
state of finite control and direction of motion of the input head. Finally,
using f, with the new state of finite control, we find the new balloon
state.

If, from configuration (¢, , w, 4, %), the next configuration of A4 is
(g2 , W, Js , T2), we say: (g1, W, j1, %) |7 (g2, W, Jo , 72). If A can go from
configuration (¢, , w, i , %,) to configuration (q., w, J., %) Ey some
number of moves, including zero moves, we say: (¢, , w, j1 , 71) |7 (g2 , W,
jz ’ ’[2)-

Notation: We will, for a balloon control function f and state ¢
in S, often use f,(¢) for f(g, 7). Also define a'® to be the function from
Z to Z such that «‘”(7) = 4 for all 4. Let «'”, for integer j = 1, be
the function that takes ¢ to j for all 7 in Z.

IftA=(S1,M,1{, g, h g, F) is a balloon automaton, let the tapes
accepted by A, denoted T(A), be the set of w such that

* . B
(QO y W, Oy 1) |;1- (Qv w, .7: Z)

for some ¢ in F, input head position, j, and balloon state, 7. That is,
starting in the start state with the input head at the left endmarker
and the balloon in state 1, w must cause A to enter an accepting state.

Note that if g determines, in some configuration, that A enters
state p, and p is an accepting state, but for the state of the balloon,
1, [,(?) is not defined, then A has no next move, hence does not accept.

Let C be a subset of the set of all balloon automata. We say C is
a closed class, hereafter shortened to class, if it satisfies the following
two conditions:

1.(S, I, M, {,9,h q, F) isin C for any finite sets, 8, I, F C 8§, ¢oin S,
and arbitrary mapping g from S X I X M to (S X {—1,0, +1}) U {e}.
We restrict & to be «'” for some j = 1 and M = {j}. Also, for each
gin S, f,is « for some & = 0.

II-Let(Sl;Il1M1;flagl)h1’Q17F1) and(s2:I27ﬂ[2’f2,92:h27
g2, Fy) bein C. Then (S;, I3, Ms, s, ¢s, hs, qs, Fs) is in C if;
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(#) S; and I; are arbitrary finite sets.
(¢7) M, is the range of h; .

(2‘1’2’) Qg3 iS in S3 .

() F3C 8,.

(v) gs is an arbitrary mapping from

Ss X Iy X My to (S; X {—1,0, +1}) U {e}.

(i) Tor each ¢ in S;, (fs), is (f1), or (f,), for some p in S, or S:,
respectively.t
(viz) ks is a total recursive function such that if hs(7,) 5 ha(4,) then
either h,(z,) 5 hy(i2) or hy(2,) 3= hy(is).

Intuitively, assumption (¢) causes each of the regular sets to be
accepted by some automaton in the class. Note that the function A
is such that no information can be obtained from the balloon.

Assumption II insures that balloon control functions can be used
interchangeably. The function associated with some state may be
associated with none, one, or many states of a new automaton.

The information obtainable from %, is no more than the information
obtainable from the combination of 4, and 2, .

If C is a class of automata, then the set of languages which can be
recognized by some automaton in C' is called a closed class of languages,
or simply a class of languages.

It should be clear thatto every class, C, there corresponds a set
of allowable balloon information functions, H, . That is, a function, k,
is in H¢ if and only if it is the balloon information function for some
automaton, 4, in C. Likewise, there is a set of functions, F,, which
is the set of allowable balloon control functions restricted to a single
state. That is, f is in F, if and only if for some automaton 4, in C,
with balloon control function f,, f(z} = f.(q, %) for some fixed state
q of A.

Note that «'” is in H, for all ¢ = 1, and «'” for 7 = 0 is in F¢,

or any class C. We can use the following obvious result:

Lemma 1:LethbeinHqand{f,,f», - ,f.beinFq. LetS={q,,q2, "+, ¢},
I be an arbitrary set of inputs including ¢ and $, M the range of h, g
an arbitrary map from S X I X M to (S X {—1,0, +1}) U {¢}, and
FCS S Then (S, 1, M, {, g,k g, F)isin C for any g, in S, and f defined
by f(gi, ©) = £:(2) for all <.

Proof: Let By = (8o, I, M, ds, go, b, po, Fo) be an automaton in C

T Recall (fs)4 is by definition the function such that (fs).(?) = f:(gz) for all 2.
Likewise (f1), and (f2)p.
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with balloon information function h, and A, = (S;,I;, M., d:, 9., h:,
P, ;) be automata in C such that for each ¢, 1 = ¢ £ s, there is a state,
r:, in S;, such that d;(r; , j) = f:(4) for all j.

For 1 £ 1 £ s, define B; from B,_, and A; according to rule II.
LetBi = (S’ I’ Zl/[y €i, 4, h: ar F); Where (ei)ai = fi lf] é i) a'nd (ei)ai =
f. if 7 > 4. Surely, ¢, = {, so B, is our desired balloon automaton.

Lemma 2: Let A = (S, I, MM, {, g, h, qo, F) be an automaton in Class C.
LetA, = (Sl C I, My, g0,k g, Fy) be such that for every pin Sy, (f1),
is either a'” for some © = 0 or f, for some q in S. Then A, is in class C.

Proof: All f,, for ¢ in S are in F¢ , and h is in He . Also, a'” is in F¢
for all ¢ = 0 by rule (I). A, is in class C by Lemma 1.

We should comment that it is quite natural to force «” to be in
I for any class, C. Intuitively, the consequence is that an automaton
may do computation in its finite control without affecting the infinite
portion of storage. We also force a'”, for 7 = 1 to be in F . These
mappings enable us to reset the infinite memory to any given state.
Their use will be apparent, but their justification is not so clear. We
only observe that for any of the seven types of automata mentioned,
suitable modifications, which do not change the power of the devices,
can be made, so that a device can reset itself to a given state.

For example, a Turing machine can surely erase its tape and print
any given tape string thereon. Of course, it takes more than one
move to do so, but this fact should not concern us. Even a nonerasing
stack automaton can print a dummy “end of stack” marker at the
top of stack to simulate an erasure of the stack.

Ezample: Let us indicate how to interpret a two way deterministic
pushdown automaton as a class of balloon automata. We will not
give a formal definition here. Most readers should be familiar with
the concept of an automaton with pushdown storage, usually taken
to be nondeterministic, with a one-way input. The two-way, de-
terministic variety is defined formally in Ref. 4.

Informally, the infinite storage is a pushdown tape, of which the
automaton can at any time read only the top symbol. The pushdown
tape can be altered by erasing the top symbol, or by adding a symbol
to the top of the list.f The pushdown automaton has a finite control,
input tape and input head, similar to these portions of a balloon
automaton.

+ The model of Ref. 4 allows one to add any finite number of symbols, but this
mode is equivalent to adding one at a time.
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We shall not formally prove that there is a closed class of balloon
automata accepting exactly the sets accepted by two-way, determin-
istic pushdown automata. We shall merely give the sets H¢ and F¢
of balloon information and balloon control functions, and indicate
how they reflect the pushdown structure of storage. We shall also
indicate how any balloon automaton in the class can be simulated by
a two-way, deterministic pushdown automaton.

To begin, we shall assign the usual Gédel numbering to pushdown
tapes. That is, let the allowable pushdown symbolsbe Z, , Z,, - -+, Z,, .
Represent the pushdown list Z.,Z;, --- Z;, by 273"5" - [x(k)]™.
Here #(¢) stands for the 7th prime. (7w(1) = 2, #(2) = 3, #(3) = 5, ete.).
Define u(2), for ¢ % 1, to be the number of the largest prime dividing <.
and define «(z) to be the number of times = (u(7)) divides 7. Let u(1) = 0:
k(1) also is 0. For example, u(75) = 3, because the third prime, 5,
is the largest prime dividing 75. «(75) = 2, since 5 divides 75 twice.

Define F to be a set of recursive functions given by:

() «'”, foralli = 0isin F.

(¢7) For any integer, d, the function f, defined by 1(5) = i[x(u(@) + 1)
7 = 1, is in F. Note that f(z) finds the prime above the largest prime
dividing ¢, and multiplies ¢ by that prime, raised to the power d.

(742) The function f, given by f(1) is undefined, f(7) = %/[x(u(2))]**",
1 > 1, is in F. This function divides ¢ by the largest prime dividing 7,
as many times as it divides <.

The set H includes «'” for ¢ = 1. H, also includes any total recursive
function 4 if there is an integer d such that k() 5= h(j) only if «(¢) # x(7),
and at least one of «(7) and x(j) is equal to or less than d.

Let a given pushdown automaton, P, have m pushdown symbols,
Zy,Zy,  ++,%,. Wewill find a balloon automaton, 4, whose balloon
information function is in H, and whose balloon control function for
any given state is found in F. The balloon information function, #,
will have h(2) £ h(j) if k() 5 «(j) for k() and k(j) each =m. According
to the Godel numbering of pushdown tapes we mentioned, k(z) will
always indicate the top pushdown symbol of the tape numbered ¢, -
provided tape 7 involves symbols Z, , Z,, --- , Z,, only.

Based on the top pushdown symbol, the statc of P’s finite control
(which is carried in the finite control of A), and the symbol scanned
by A’s input head, A ecan move its input head, and change state accord-
ing to what P would do. 4 may then have to adjust its balloon state
to simulate a change in P’s pushdown store. If P does nothing to the
pushdown store, the function «'” serves. If P erases the top symbol,
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the function f, in I by rule (¢7¢) must be used. If P prints Z; on top
of the pushdown list, the function f, in F by rule (¢2), with d = j suffices.

There is a subset, C, of balloon automata defined by placing an
automaton in C exactly if its balloon information function is in H
and its balloon control function, restricted to any particular state,
isin F. We claim that C is a closed class. Surely every balloon automaton
defined by rule I of the definition is in C.

In rule II, we have two automata, 4; and A,, in C, and must show
that a third automaton, 45, constructed from A, and A4, is also in C.
Certainly, the balloon control functions of A; are in F. Let A, and
hs be the balloon information functions of A, and A., respectively.
Assume &, and h, are in H. Let h; be the information function of A4, .
Suppose h3(Z) £ hs(j). Then either A,(2) # hy(§) or hy(2) = h.(j), by
rule I1. In either case, x(7) # «(j). Also, since &, and h, are in H, we
can find an integer, d, such that oneof x(¢) and «(j) is = d. Thus, hyisin H.

Now we must show that any balloon automaton in C can be simulated
by a two-way pushdown automaton. The details of simulating the
finite control and input head of the balloon automaton can be left
to the reader. We shall only discuss how the balloon can be simulated.

Let A = (S, I, M, {, g, h, g0, F) be in class C. Some f, , for ¢ in S,
may multiply the ballon state, ¢, by a prime raised to some power, d.
Note that this prime cannot divide ¢. Let d; be the maximum such d.
Some f, may be «'” for j = 1. Now, let d be the maximum number
of times a prime divides 7, and let d; be the maximum such d. I'inally,
let ds be max (d, , d.).

The pushdown automaton, P, simulating A, will have d; -+ 2 push-

down symbols, X, Z,, Z,, -+, Zs, . X will mark the bottom of the
pushdown list. F_‘or some k, each in_teger, 2, can be expressed in prime
factors as [w(1)]"[x(2)]* --- [#(k)]*, where each 7;, 1 < j £ F, lies

between 0 and d; , but 7, # 0. Then ¢ will be represented by pushdown
tape XZ.. Z;, --- Z;, . It should be clear that if A(z) & h(j), then the
tapes representing ¢ and § have different top (rightmost) symbols.

Suppose A uses a balloon control function that is in F according to
rule (¢i7). Then P erases the top pushdown symbol. P must also erase
from the top, any occurrences of Z,. Suppose A uses a balloon control
function that is in I’ by rule (¢¢), with some particular value of d.
Surely 1 = d = d;. P must print Z, on the top of its pushdown list.
Tinally, if A uses balloon control function «‘”’, 7 = 1, P erases its
tape down to X, then prints Z;.Z;, -+ Z;, on its stack, where ¢ =
[w(D)]*[x(2)]"* --- [x(k)]"*. Note that by definition of d;, we must
have ¢; = d; for all ;.
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From the way F is defined, it is easy to show that for any automaton
with balloon control functions chosen from F, there is some d; , chosen
as above, such that if the balloon can enter a state Z, then no prime
divides ¢ more than d; times. Thus P, as above, with d; + 2 pushdown
symbols, can simulate the balloon of A.

III. SOME THEOREMS ABOUT TWO-WAY DETERMINISTIC BALLOON AUTOMATA

We have spent time defining closed classes of automata. Our goal
is not so much to talk about the classes themselves, but rather about
the properties of the closed classes of languages that they define. Let
us begin with a not unexpected result.

Theorem 1: Let A = (S, I, M, f, g, h, qo, F) be a balloon automaton.
Then L = T(A) is a recursively enumerable set.

Proof: We shall describe, informally, a Turing machine recognizing L.
First, we have assumed f to be partial recursive and h total recursive.
Hence, there is a Turing machine, T, which, given a block of 7 1’s
on its single tape will halt with A(Z) 1’s on its tape. Likewise, let S =
{¢:, g2, ** , ¢.}. Then there are Turing machines T, T», --- , T,
such that given ¢ 1’s on its tape, 7; will eventually halt with f,;(z) 1’s
on its tape if f,,(?) is defined, and not halt otherwise, foreachj, 1 £ j < s.

We will now construct a Turing machine, T, recognizing L, by simulat-
ing 4. 7" is shown in Fig. 2. It has a read only input tape with end-
markers, and two storage tapes. The first is used to store the state
of the balloon of 4.

The second is used for the computation of & and f. The finite control
of 7' will store the state of A’s finite control.

Initially, the input head of T’ is at the left endmarker. Its finite
control records that A’s finite control is in state g, . Storage tape 1

(¢ INPUT $]
FINITE
CONTROL
««+ STORAGE cee
ese TAPES oo

Fig. 2 — Turing machine 7'.
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has a single 1 on it, corresponding to the initial state of A’s balloon,
and tape 2 is blank.

Suppose T has simulated some number of A’s moves with given
input. That is, 7”s input head is at the same position as A’s would
be after that number of moves. The finite control of 7" holds the state
of A’s finite control, and tape 1 holds the state of A’s balloon. We will
show how 7 simulates the next move of 4, if A has a next move.

(7) Copy tape 1 onto tape 2.

(#7) Simulate 7', on tape 2. When T, halts, suppose there are m 1’s
on tape 2 at that time.

(7%2) Suppose T has recorded that g is the state of A’s finite control.
The symbol scanned by 7’s input head is a. Then 7' moves according
to g(g, a, m). If g(q, a, m) = ¢, T never completes simulation of the
move of 4. If g(q, a, m) = (p, d), T records p as the state of A’s finite
control replacing ¢. 7 moves its input head in the direction indicated
by d. If to do so would cause the input head to leave the input, 7' makes
no move, but halts without accepting.

(zv) If T has simulated the first two stages of A’s move, it again
copies tape 1 onto tape 2. Let p be ¢; for some j, 1 = j < s. ThenT
simulates T'; on tape 2. If f,, is defined for the number of 1’s on tape 2,
T; will eventually print on tape 2 a number of 1’s equal to the new
state. If not, T will not halt, hence no move of A is simulated.

(v) Finally, T copies tape 2 onto tape 1 and prepares to simulate
another move of A. However, if the three phases of the move of A
have each been successfully simulated, and p is in F, then 7' simulates
no further moves of 4, but rather, halts and accepts.

It is straightforward to see that 7' will simulate all moves of A4,
and will accept exactly when A reaches an accepting configuration.

We shall now consider three properties of closed classes of languages.
These properties are that closed classes of languages are closed under
reversal, intersection and inverse g.s.m. mappings. The third property
is perhaps the only one in the paper that is difficult to prove.

Theorem 2: Let C be a class of automala. Let L = T(A) for some A =
(S, I, M, f g, h g, F)in C. For any w = ¢a,a, + - a.$ in I*, define
w = ¢a,a,_, -+ a; $. Define L' = {w | w" is in L}. Then there is an
automaton, A, , in C such that L' = T(4,).

Proof: Let S = {q,, q», +*- ¢,}. Define S; = {q1, q=, *** ¢s+1}, and
Ay = (S, I, M, {1,9:, %, qui1, F). We define f, and ¢, as follows:
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(@) (f)e = fofor ¢in S.

@@ (e = a'?.

(7z) Suppose ¢(q, a, m) = (p, d) for some ¢ in S, m in M, and «a
in I — {¢, $}. Then g,(¢q, a, m) = (p, d) whered = +1, 0 or —1 as
d = —1, 0 or 41, respectively.

(@) Suppose g(q, ¢, m) = (p, d), for ¢ in S and m in M. Then
91((1, $7 m) = (P; d-) If g(Q: $7 m) = (p; d)) then 91((1: ¢7 m) = (P; d)

©) 9:(@uer, & M) = (e, +1) formin M and ain I — {$}.

(1)1;) gl(q.s+1) $; m) = (p) C-Z) for m in M: where 9(91, ¢) m) = (p: d)'

(vit) ¢ is ¢ if not defined by (¢42)—(v?).

A, is in class C by Lemma 2. We must show that 7'(4,) = L". Let
the input to 4, be w, of length n. By rules (¢7) and (v) it is seen that
(@es+1, w, 0, 1) ]A‘ (qes1, w, » + 1, 1). From that configuration, 4,
never returns to state g, , but snnulates A with the direction of input
head reversed.

That is, by rules (Z) and (1), (g,+1, w, n + 1, 1) |7, (p, w, j, ¥) if
and only if (¢,, w", 0, 1) |7 (p, w", n + 1 — §, ). Also, by rules (2),
(77z) and (), for any ¢ and p in S, integers ¢, , ¢;, j1, J2, With 7; and
j» between 0 and n + 1, (¢, w, j;, ) |7, (@, w, j2, ©2) if and only if
(g w,n+1—ji,3) |z (p w,n+ 1—js, i). Thus, by induction
on the number of moves made by 4, starting with one move,

* . -
(an y W, 0: 1) [Zx (py w, 1, 'L)
if and only if (g,, w", 0, 1) |§ (p, w, n + 1 — j, 7). We conclude that
A, accepts its input, w, if and only if A accepts w”. That is, T(4,) = L.
Note that 4 could not accept without making a move, since ¢, is not
an accepting state.

Notation: Let hy and h, be balloon information functions, with ranges
M, and M., respectively. Let M, have maximum element k. Define
hy+h, to be the function [hy-h.](z) = h(z) + (B + 1)h.(s). Define
M,-M, to be the range of h,-hy . We will also need the functions which
are partial inverses of the - operator. So, we define ¢,(k, ) = j modulo
k=4 1, and ao(k, 7) = [§/(k + 1)].T If k is as above, and j = [k, hs](7),
then a,(k, j) = hi(2) and ook, 5) = hy(2).

Note that according to the definition of closed class, if &, and &, are
in H¢ , then h,+h, is in H for any closed class, C.

Theorem 3:If A, = (S;,I,, M., f1,0.,h,q,F.)and 4, = (S,, I.,
My, fa, gs, b, qa, IFy) are automata in class C, then there is an automaton
Az in C accepting L = T(A,) N T(A,).

1 [z] is the integer part of z.
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Proof: By a simple application of Lemma 2, we can find automata
accepting T'(4,) and T(4,), each of whose set of input symbols is
I, U I,. S0, we will assume that I, = I, = I. Likewise, from Lemma 2,
we can assume S, and S, are disjoint. We construct a third automaton,
Ay = (S5, I, My, fs, g3, hs, q1, Fs). Here, S; = S, U 8; U {g},
where ¢; is not in S; or S, . Also, My = M,-M, and hs = hy-h,. We
define f; and g, as follows:

() If gisin S;, then (fs), = (fi).. If ¢isin S, , then (f5), = (f2). .

(@) (fa)ey = ™.

(727) Let k be the largest element in M, , and let m be in M, , with
m; = oy(k, m) and m, = ¢(k, m). Let a be in I. Suppose ¢ is in S,
but not in F,, and ¢,(q, @, m;) = (p, d). Then gs(g, ¢, m) = (p, d).
I gisin Fy, gs(g, @, m) = (gs, 0).

Suppose ¢ is 1n S, , instead, and g.(q, a, m,) = (p, d). Then g;(q, @, m) =
(p, d).

(@) gs(qs, @, m) = (qs, —1), forallain I — {¢} and m in M, .

(1)) g3 (q3 b ¢J '"7“) = (py d) if 92(!22 ) ¢; m?) = (py d)) ‘Vhere m2 iS as in (Z’L'l).

From rules (¢) and (4%7) it is clear that until A, enters an accepting
state, A, enters a configuration (¢, w, j, 7), ¢ in S, if and only if 4,
would enter that configuration. If (q;, w, 0, 1) |, {(p, w, j, ©), where
p is in F,, and no accepting state has been previously entelcd then
by rules (7) and (ii7), (1, w, 0, 1) 5, (0, w, 4, ) |7, (2, w, 4, 1). H w
is not accepted by 4., then A3 will never enter state ¢; .

By rules (¢7) and () (g5, w, §, 1) ]Aa (g5, w, 0, 1). By rules (¢) and
), (g5, w, 0, 1) |z, (g, w, 4, 7) if and only if (¢., w, 0, 1) |7, (g, w, j, ©)-
TFrom this point, 4; simulates A, in a straightforward manner, entering
an accepting state with w as input if and only if A, dees. Thus, in order
for A; to accept w, both A, and A, must accept it, and whenever these
accept w, A; will likewise accept w. In other words, T'(4;) = T(4,) N
T(A,).

By part II of the definition, and Lemma 2, A; is in class C.

We are now going to prove a theorem on inverse g.s.m. mappings.
A generalized sequential machine (g.s.m.) is a finite state transducer."
It is usually defined as a 6-tuple, G = (X, Z, A, §, \, po). K, = and A
are the finite sets of states, input symbols and output symbols, respec-
tively. ¢ is a mapping from K X 2 to K, and X is a mapping from
K X Z to A* Lastly, p, is in K and is called the start state. We extend
6 and N to domain K X Z* as follows: 8(g, ¢} = ¢ and N(q, ¢) = ¢
for all ¢ in K. For w in * and a in T, 6(q, wa) = 8(8(¢g, w), a) and
Mg, wa) = Ng, w)\(8(g, w), a). Define G(w) = N(p,, w).
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We can define a function y for the g.s.m. @, as above. v maps K X =*
to the subsets of K. If ¢ is in K and w is in Z£* then

v(g, w) = {p| 8, w) = q}.
Forwin Z* and a in Z, given (g, w), we can find v(g, aw) by: v(g, aw) =
{p | for some p, in ¥(g, w), 6(p, @) = p,}.

We intend to prove that if A is a balloon automaton of class C,
and G is a g.s.m., then there is an automaton, 4,, in C, such that
T(A,)) = {¢w$|if Glw) = w,, then ¢w,$ is in T(4)}. We need an
auxiliary definition and a lemma.

A two-way finite automaton™ is a device with a two way, read only
input tape and a finite control. Formally, the device is denoted 4 =
(K, Z, 6, po, I'). K and Z are finite sets of slates and input symbols,
respectively. T always includes ¢ and $, the left and right endmarkers
of the input, respectively. F € K is the set of final states, and p,,
in K, is the start state. § maps K X Z to K X {—1, 4+1}. Intuitively,
if 8(q, @) = (p, d), then A, scanning a on its input, in state ¢, goes
to state p, and moves its input head left or right, depending on whether
d= —1or 1.

We denote a configuration of A, with input w, by (¢, w, 7). We assume
w can be written as ¢w,$, where w, is in (2 — {¢, $})* Let w, consist
of n symbols. The position of the input head is indicated by <. That is,
7 = 0 if the input head is scanning ¢, if ¢ = n + 1, the head scans §,
and if 1 < 7 = n, the head scans the 7th symbol of w,, counting
from the left. Thus, ¢ is the zeroth symbol of w, and $ the n + Ist.
Of course, ¢ is the current state of 4.

Say that (g, , w, %1) |7 (g2, w, ©2) if @ is the 7,;th symbol of w, é(q, , a) =
(g2, d) and 7, = 4, + gl However, we must have 0 < 7, < n + 1.
We define the relation |7 by (¢, w, 1) [ (¢, w, %), for any configuration,
(¢, w, 7), of A, and (q,, w, 7,) ]; (qm , w, 1,,) if there are configurations
(g2, w, ©2), (qs, w, 23), **+ , (Qu_1, W, Tm_q) such that for 1 = j < m,
(gi, w, ) |7 (@i+1, W, 7;+1). Although we are not concerned with
acceptance by two-way finite automata, (they accept the regular sets,
as is well known) we will define the tapes accepted by A, denoted
T(A), to be {w | win ¢(Z — {¢, $})*$, (po, w, 0) |A (p, w, z) for some
p in F and integer, ¢].

Lemma 3: Let @ = (K, Z, A, 8, \, p,) be a g.s.m., with ¢ and $ not in Z.
Then, we can construct a two-way finite automaton,

A = (Kl,E\J{¢,$},81,QQ,F)

with the following properties:
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(2) K, is expressed as K, X K. Elements of K, are denoted [q, p] where
gisin K, , pin K.

(%) q, and g, are particular elements of K, .

(4%1) Let w = a,ay -+ a, be tn 2% each a, tn 2, 1 < k =< n. Suppose
8(Po, 4182 -+ a;iy) = p, 1 = 2. Then

(q:, Pl #0$, ) |5 (g2, al, ¢w$, i — 1),

where 8(po, 0,02 -++ @;n) = q. Never is q, or g, the first component
of state of A, except for the first and last configurations.

(1) go and F are irrelevant, since the lemma concerns, not the recognizing
power, but the structure of two-way finite automata.

Proof: This lemma was essentially proven in Ref. 11, with direction
of input head reversed. We shall, therefore, not give a formal proof,
but just sketch the argument. The result in Ref. 11 did not involve
the function 6 of a g.s.m., but another function which had the properties
needed, properties which & has. These properties are:

(7) 6(q, w) is unique for ¢ in K, w in =*,

(72) If v is defined as in the definition of the g.s.m., and p, and p,
arein K, p, # p,, then for any w in =* w # ¢, yv(p,, w) and v(p., w)
are disjoint. (For if p were in both, then §(p, w) = p, = p. , violating (7).)

(#7) If ps is iny(p, , w) and p, iny(p, , w), and w = w,w, with w, = ¢,
then 6(ps , wy) ¥ 6(ps, wy). (For if not, let 6(ps , wy) = 8(ps, w1) = p.
Then y(p, , w,) and y(p. , w.) each contain p, and w, ## ¢, violating (4%).)

(i) If p, and p, are in v(p, w), then &(p., w) = &(p., w) = p, by
definition of .

We will now sketch the design of A. Let ¢w$ be its input, w =

a,a; *+- a,, as in the statement of the lemma. Suppose the input head
of A is scanning a, , and A is in state [¢q, , p]. Presumably,

8(Po, @10z -+ a;_y) = P.

A moves its input head left, and computes v(p, a;_.). If v(p, a:_)
contains a single element, p,, then p, must be 6(p,, a,as -+ a;_).
A can easily enter configuration ([¢g. , p.], w, ¢ — 1).

It is not possible that v(p, a;-,) is empty. Suppose v(p, a;-;) con-
tains r elements, r > 1. Let these be p,, p:, -+, p.. A moves left.
Forj=1¢— 27— 3,7 — 4, --- it successively computes

Y(Pry @054 -7+ Qiss)

from v(pi, @;41G542 ++* a;_2) for 1 < k = r. Unless the process ter-
minates, in one of two ways we will describe, 4 then drops v(pi , @;110;42
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-+ @;—p) from memory. Given &, we can find an upper bound on r,
so the amount of information stored in A’s finite control is bounded.

(7) Suppose that for some largest 4, for only one value of &, say k = m,
18 ¥(Pr , @;@;41 -+ * G;—5) nonempty. Then surely p,, is §(po , @05 - * + Gi_z).
A must find its way back to position ¢ — 1. Presumably, one can find
kq and ky such that v(pr, , G104z« @i_s) and Y(Pr, , Gj1Girn =+ * Qo)
are not empty. Choose s; and s, from these sets, respectively. 4 then

moves right, computing 6(s; , @;41@;42 **+ a;) and 6(s2, @;417.2 ** -+ Q1)
forl=37+ 1,74 2, -+ . By comments (747) and (&) above, we will
not have (s, , @;11G;42 <+ @) = 8(82, Gj11@;42 ++- @) untill = 7 — 1.

A is thus positioned properly, and can enter configuration
([92 2 pm]) w, T — 1)

(%) Suppose that no j satisfies condition (¢). Then A will eventually
reach the left endmarker. It must be that for some m, p, is in v(p,.,
@y -+ Q;_p). Thus, p,, is 6(po, 1@z *+* a; ;). A must find its way
back to position ¢ — 1. So, 4 chooses s, and s, in v(ps, , @14z *** G;-2)
and y(px, , @10z ¢+ * a;_,) for some k; # k, . A moves right, successively
computing 6(s; , @@y -+ @;) and 8(sy, @@z <+ @) forl = 1,2, --- .
When 6(s;, a,as **+ a1) = 6(s2, 610z ** - @;), we must have [ = ¢ — 1.
A easily enters configuration [q, , p,.J, w, 7 — 1).

Theorem 4:Let A, = (S,,1,,M,f,,g.,h, 1, F.) beaballoon automaion
inclass C. Let G = (K, =, A, §, \, po) be a g.s.m., where A = I, — {¢, $}.
Then there is an automaton, A, in class C, such that

T(4,) = {¢w$ | ¢G(w)$ s in T(4,).}.
T(A,) is commonly called an inverse g.s.m. mapping of T'(A,).

Proof: Let A = (K,, Z \J {¢, $}, 6., qo, ') be the two-way finite
automaton constructed from G in Lemma 3. Let 4, = (S, I,, M,
f2; g2, h: T2, F2); where I2 =zU {¢; $} Let ‘S2 = {[Q) Y ZRENCS l; k] l q
inK,,pin K, rin 8;, u a string in (I; — {¢, $})* of length at most
max (| A(s, @) | for s in K, ¢ in =), I an integer between 0 and | u |,
and k an integer between 1 and 8}.f K, is defined as in Lemma
3, as are its particular elements, ¢, and ¢.. 7, = [g2, Do, 71, € 0, 1].
F, is the set of all states in S; whose last component is 8.

We shall call the last component of states in S, the pointer. It in-
dicates, among other things, if 4, is simulating 4, A, or G. The first
component is part of a state of A. It is needed because 4, may move its

T |z| denotes the length of string =.
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head left to simulate A,. In that case, the routine A is needed to
determine the state of G at the new position of A4,’s input head. The
second component of A,’s state indicates what state G would be in if
it had processed whatever is to the left of A,’s input head. The third
component is the state of A,. The fourth component is the output
when the input to G is the symbol currently scanned by A,’s input
head. The fifth component indicates where, among the symbols of the
fourth component, 4,’s input head would be. In Fig. 3, the construction
of A, is symbolically indicated.
We define f, by:

(7’) (f?)[a,p,r.u.l.kl =a®fork = 3,56,7,8.
K,,rin S, but not in Fyand ain I, — {¢, $}, we define g, by:

(@) 92(Ig2 , Po , 7, € 0, 1], ¢: m) = ([q2 1y Do,y 8y € 0, 1], 0) ifgl(r: ¢; m) =
(s, 0). (4, simulates A4, , scanning and remaining at ¢ on its input.)

(7'7)) 92([q2 yPo, T, € 07 1]) ¢: m) = ([92 1y Po, 8 € O: 2]; +1) ifgl(r; ¢: m)=
(s, +1). (4, simulates 4, moving right from ¢. The pointer is set to 2,
so A, will next compute the output of G for the symbol it will next
sean on its input.)

(Z)) 92([q2 y D Ty 6 O: 1]’ $7 m) = ([q2l D, 8§ ¢ O: 1]: 0) if gl(r; $7 m) =
(s, 0). (A, simulates 4, scanning and remaining at $.)

(2)2) 92([q2 'y D, Ty 6 O: 1]: $’ m) = ([ql ' Dy S, € O: 4]: 0) if gl(r: $7 m) =

FINITE FINITE
CONTROL CONTROL
OF Az OF A

—

|
|
I
SR A

BALLOON
OF A

Fig. 3 — Automaton 4..
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(s, —1). (4, simulates A, moving left from $, and prepares to simulate
A. The pointer is set to 4, and the first component to ¢,.)

(U’LZ) !]2([9, DT, O’ 4]; a, m) = gz([q, P, T, e 0: 5]> a, m) = ([q,y p,} T, €
07 5]7 d) if 51([% p]) a) = ([qu p,]: d)y for q = qz and a in I2'
(A, simulates A in A,’s first two components of state. The pointer
is held at 5.)t

(U’lZ’L) g2([q2 »y D, T, € 07 5]’ a, m) = ([q2 y D, T, U, l; 6]7 O) ifu= k(py a)
and u = €. Here, | u | = . (4, computes the output of G and prepares
to simulate 4, . The pointer is set to 6.)

(2:6) If inStea’d) A(p; a) =€ gz([sz b) p’ T, 0; 5]: a; m) = ([ql: D, 7',
e, 0, 5], 0). (A, must simulate A again to find an input symbol that
gives an output > e.)

(III) g2([Q1 sy Pos Ty & O; 4]: ¢: m) = g2([Q1 y Doy Ty 6 0’ 5]7 ¢y m) and is
equal to g,([g2, Do, 7, € 0, 1], ¢, m) as defined by rules (s7¢) and (iv).
(4. was prepared to begin simulating A, but found itself at the left
endmarker. Note that in this case, the state of G must be p,. 4, im-
mediately simulates 4, .)

(xi) {h([(h ) py Ty, § 0: 2]! a} m) = gz([€12 ) p’ 7', €, 07 7]’ a: m) = ([qZ ’
p, r, u, 1, 6], 0) if A(p, @) = w and u # e (4. has simulated a move
right of A,’s input head. It computes the output of G and prepares
to simulate 4, . The pointer is set to 6, as in rule (v#i7).)

(xit) If instead, Mp, @) = ¢, 9:(Igz, P, 7, € 0, 2], a, m) = g:([gz, P,
r,€0,7,a m) = (lga, 8,7, ¢ 0, 7], +1) if 6(p, a) = t. (A, must search
right, in order to find an input symbol that does not give e output
when given to @.) ‘

(2117) gz([Qz y D, 7y 6 0, 2], 8, m) = g:([g2, », 7, & 0, 7], $, m) and is
equal to ¢:({qz, p, 7, ¢ 0, 1], §, m) as defined by rules (v) and (vi). (4.
was simulating a move by 4,, but encountered the right endmarker.
A, immediately simulates another move of 4;.)

(xiv) Suppose u # eand 1 = I < | u [. Also, suppose g,(r, b, m) =
(s, d), where b is the Ith symbol of v, and 1 <1 4 d < | u |. Then,
gZ([QZ » Dy, T, U, ly 1]: a, m) = gZ([QZ: D, Y, l) 6]1 a, m) = ([Qz » Dy S
u, I + d, 1], 0). (4. simulatesa move of A,, where 4, is assumed
scanning the /th symbol of «.)

(zv) Under the assumptions of (zw), if I + d = 0, g.({g2, », 7, u,
L1, a,m) = g:(lgz, Py 75 %, L, 6], @, m) = ([gn, P8, 6 0, 4], 0). (4,
simulates 4, , but finds that 4, moves left from u. 4, prepares to sim-
ulate 4.)

(zvi) Under the assumptions of (xiv), if I + d > [u |, ¢9:(l¢=, p, 7,

t Recall 8, is the next state mapping of A.
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u: l: 1]: a: m) = 92([(12 ’ p; T: u: lr 6]; a; m) = ([QZJ t: S, € O: 2]: +1)7
where ¢t = §(p, a). (A, simulates A,, but finds that 4, moves right
from u. A, simulates the state transition of G.)

For rin F, and any k:

(zviz) go(lg, p, v, u, L, k), @, m) = (g, p, 7, u, I, 8], 0). (4, has been
simulated entering an accepting state. A, sets the pointer to 8 and
accepts.)

By rule (zvif) above, we see that exactly when A, gets to a state
with third component in F, will it accept. It is sufficient to show that
A, can simulate any single move of 4; which does not start from an
accepting state.

TFormally, let us focus our attention on a particular input, ¢w$,
to A,, where wisin (I, — {¢, $})* Let G(w) = v and | v | be n. For
this particular w, and configuration (r, ¢v$, j, 1) of A,, we define the
inverse image of (r, ¢v$, j, 1), denoted II(r, ¢v$, 4, ) as follows:

() If j = 0, then (g, po, 7, ¢ O, K, dus, 0, ) is in II(r, 48, 0, 4)
if either k¥ = land g = quork = 4and g = ¢q,,ork = 5and g = ¢, .

(@) If j = n + 1, then ((gz, p, 7, ¢ 0, k], ¢w$, ny + 1, 4) is in II(r,
8, n+ 1,7 if p = 6(p,, w) and k = 1, 20r 7. Heren, = | w |

@) I 1 =j =n, (g, p 1,4 K, ¢ws, 1, 1) is in II(r, ¢§, j, 1)
if one can write v = v,uv, and w = w,aw., a in I, — {¢, $}, such that
the following is true:

(@) @o, w) =p
(b) )‘(po y wl) =0
(©) Np,a) =us>=e
@ ji=lw|+1
(& j=1lv.|+1
# k= 1orb6.

Intuitively, A,’s input head is scanning the symbol giving rise,
when fed to G, to the symbol scanned by the input head of 4, .

We must show that if (r, ¢v$, j,, 1) |7, (s, €8, j2, 72), and r is not
in F,, then if ([g, p1, 7, us, L, ki), ¢w$, 45, 7,) is a configuration
in II(r,, €8, j,, %), then there is some configuration ([¢’ , P2, S, Us ,
Ly, ko), ¢w$, js, 4.) in II(s, ¢$, j», ©.) such that:

([Q y D1, Ty Uy, ll ’ kl]: ¢’LU$, J3, ]1) IZ, ([q' y D2, 8 Uz, l2 ) k2]) ¢w$’ Ja, 12)‘

Case 1:j;, = j, = 0. The result follows trivially from rules (¢z), (i:%)
and (z). :
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Case 2:j, = j, = n + 1. Trivial from rules (2), (v) and (zi7).

Case 3: j;, = 0, j, = 1. By rules (42), (iv) and (z), (g, po, ", € O, kI,

¢’U)$, O) 7/1) ,I, ([92 3 Doy S, & O: 2]; ¢w$7 ly*i‘-’)- By rules (’L)’ (xz) and (xu),

if v = € ([Q2 y Doy S € 0} 2]) ¢U)$, 17 12) IZ, ([qﬂ y Dy $ U, 1: 6]7 ¢U)$, j; 7:2):

where if w = a,a; -+ @, , then §(po, @10s -+ a;_1) = P, AMPo, G102
+ ;=) = eand A(p, a;) = u. If v = ¢ by rules () and (272) ([gz,

Do, S & O) 2]’ ¢w$7 1; 7’2) I%n ([q2 Dy 8 6 0) kl]: ¢w$: L3 + 17 7:2): where
= §(po, w)and k, = 2 0or 7.

Case 4: j: = n + 1, j» = n. By rules (%), (v7) and (2i77), (lgz, p:,
160,k ¢wsn, + 1,4) |7, (¢1, P15 8 €0, 4], ¢w$, ny + 1,2,). If v 5= e
by Lemma 3 and rules (), (v72), (véér) and (iz), ([¢y, P1, S ¢ O, 4],
¢w$, n, , 1) IA, (g2, P2, 8, u, I, 6], ¢w$ 7, 2.), where if w = a,a, -+ a,, ,
6(p0a1a2 MR 75 1) = D2, 7\(pO’ 8z - G- l) = U, hu =0, and
Mpz, a;) = u. If v = ¢ by Lemma 3 and rules (z), (v) and (iz),

([QI ) pl b S é, 0 4]: ¢w$; nl ) 7’2) IA, ([(h ) pO 3 3; e 0 k] ¢’LU$, O 7‘2)} Where
k= 4ora.

Case 5: j,is not 0 or n + 1. Also, I 4 j, — j; lies between 1 and | u |,
where [ and « are defined in part (¢77) of the definition of inverse image.
The result is immediate from rules (72) and (z7v).

Case 6:j,isnot0Oorn + 1, but ! = | w | and 7, = j; + 1. By rules ()
and (1131)7:), ([q2 y Pu, 7, U, l: k]; ¢w$y j2 ) 7/1) l;, ([q2 s D2, S, € 0! 2]) ¢’U)$,
js + 1, 45), where ([g2, p1, T, u, [, k], ¢w$, 75, ) is either of the inverse
images of (r, ¢v$, j1 , 71). The rest of the argument for this case is similar
to that of case 3, and will be left to the reader.

Case 7: j;isnot Oorn + 1,but ! = 1 and j, = j, — 1. By rules (¢%)
and (2v), (lg2, p, 7, 4, 1, K], ¢w$, js , 2) 7, (g2, Dy s, 6 0, 4], ¢w$, fs , 12),
where the former configuration is again either of the inverse images
of (r, ¢v$, j,, 7,). The argument proceeds as in case 4.

We claim, from the above, that ([q., po, 71, ¢ 0, 1], ¢w$, 0, 1) l i
([Q: D, U, l k ¢’LD$, 1y 7) 'A, ([q, YRR uy*l 8, ¢W$, J1s 7), for some r
inF,,k 8, if and only if (ry, ¢v$, 0, 1) |3, (r, ¢v$, 4, 1) by a sequence
of moves for which A, never previously enters an accepting state.
Here u, I, j and j; are related as in part (572) of the definition of inverse
image. Thus, T(4,) = {¢w$ | for some v with ¢v$ in T(4,), G(w) = v}.
We must add that by Lemma 2, A4, is in class C. The theorem is thus
proven.
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1V. OTHER TYPES OF BALLOON AUTOMATA

We have considered the two-way deterministic balloon automaton.
To complete the story we should consider three other models—non-
deterministic two-way balloon automata, and one-way balloon auto-
mata of the deterministic and non-deterministic varieties.

A nondeterministic deviee typically has the choice of a finite
number of possibilities for each move. We choose to make the finite
control funetion nondeterministic. This added capability enables us to
represent the nondeterministic versions of the seven types of automata
which we could represent by a deterministic balloon automaton.

A one-way balloon automaton is, quite naturally, a two-way
balloon automaton, restricted so that the input head can only move
right or not move at all.

We shall not repeat the definitions for each of the three new types
of balloon automata, but, as a model, shall make use of the definition
of two-way deterministic balloon automata.

A two-way, nondeterministic balloon automaton is denoted A =
(S, I, M, f, g, b, qo, F) where all components are defined exactly as
for the deterministic case, except that g is a mapping from S X I X M
to the subsets of S X {—1,0 4 1}.

A one-way, deterministic balloon automaton is denoted as are the two-
way types, but ¢ is a mapping from S X I X M to (S X {0, +1}) U {¢}.

A one-way nondeterministic balloon automaton is denoted as are the
two-way types, but ¢ is a mapping from S X I X M to the subsets
of § X {0, +1}.

The closed classes of one way nondeterministic balloon automata are
similar to the abstract families of acceptors in Ref. 21.

We shall use the abbreviations 2DBA, 2NBA, 1DBA, and 1NBA
for, respectively, two-way deterministic, two-way nondeterministie,
one-way deterministic and one-way nondeterministic balloon automata.

A configuration of any of the four types is denoted as for the 2DBA,
(¢, w, 4, ©), where, ¢q is the state of finite control, w the input, j the
input head position, and 7 the state of the balloon.

The possible moves of the 2NBA are determined as one would
expect. One uses the balloon information function. Based on the value
of that function, the input symbol at the position of the input head,
and the state of finite control, one chooses a pair of next state of finite
control and direction of input head, according to g. Then, based on
the new state, the balloon control function is used.

Formally,if A = (S, I, M, {, ¢, h, qo, F)is a 2NBA, and (¢, , w, j, , %1)
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and (go, w, j», 7,) are configurations of A, with n the length of w,
then we say (¢, , w, 7, , 1) goes to (q. , w, j» , 7.) by a single move, denoted
(g1, w, j1, %) |7 (@2, w, j2, ©5) exactly when for some m in M, a in
I,d = —1, 0 or +1, we have k(¢,) = m, the j,th position of w is a,
9(q, , @, m) contains (¢, d) and f,,(7,) = 1,. Also, j; 4 d is between 0
and n 4+ 1land j, = 4, + d. If (¢, w, 7., %,) can go to configuration
(g2, w, j=, ©») by some number of moves, including 0, then we say
(01, w, v, 1) |3 (g2, W, a2, %2).

The notion of move, and the relations [~ and ]‘ are defined for the
1DBA and INBA exactly as for the 2DBA and 2NBA, respectively.

A 2NBA accepts an input, w if for some choice of moves it enters
an accepting state. Formally, define T(4), for a 2NBA, A = (S, I,
M, f, g,k qo, F) to be {w]| (g, w, 0, 1) |3 (g, w, j, ©) for some ¢ in F}.

For the one-way types, we require that the input head reach the right
endmarker when it accepts. That is, if A = (S, I, M, f, g,k q,F)isa
INBA or 1DBA, then T(4) = {w] (g, w, 0, 1) [A (g, w, n + 1, 7)
for some ¢ in F, where n is the length of w}.

The notions of closed class of balloon automata for the 2NBA, 1DBA
and INBA are defined exactly as for the 2DBA.

Note that, for example, a 1DBA is not a 1INBA, although there are
obvious relationships. Also, strictly speaking, a closed class of 1IDBA
is not a closed class of INBA. Both parts I and IT of the definition for
INBA would require nondeterministic finite control functions in any
class of INBA. Analogous statements hold between 2DBA and 2NBA,
1DBA and 2DBA, 1NBA and 2NBA.

It is trivial to see that Lemmas 1 and 2 hold for the 2NBA, 1DBA
and 1NBA.

A set of languages is said to be a closed class (or simply class) for the
2NBA, 2DBA, INBA, or 1DBA if they are exactly the languages
accepted by a closed class of automata of that type.

V. TWO-WAY NONDETERMINISTIC BALLOON AUTOMATA

Theorems 2, 3 and 4, proven for the 2DBA also hold for the 2NBA.
In each case, the simulation by an automaton in some class, C, of one
or two other automata in C' was involved. In the 2NBA case, the simula-
tion can be nondeterministic if the simulated automata are. We will
therefore omit the proofs of the three theorems for the nondeterministic
case.

Likewise, Theorem 1 holds for the 2NBA. We can simulate a 2NBA
by a nondeterministic Turing machine just as we simulated the 2DBA
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by a deterministic Turing machine. A nondeterministic Turing machine,
as is well known, can be simulated by a deterministic Turing machine.

There is one additional, simple theorem we can prove for the 2NBA
but not the 2DBA.

Theorem 5: If L, and L, are languages accepted by automata A, and
A, , respectively, in class C of 2NBA, then there is an automaton, A, ,
in C accepting Ly, \J L, .

Proof: Let Ay = (Sy, I,, My, f1, g1, b, g1, Fy) and 4, = (S,, I,
Ms,fs, g, hey q2, F2). As was mentioned, by Lemma 2 we can assume
that S, N\ 8, = g and I, = I, = I. Consider a new automaton, 4; =
Ss, I, My, fs, 95, hs, qs, FF3). Ss = 8, U 8, U {gs}, where g; is not
nS IS . Fa=F \JF,. My = M,-M; and h; = hy-h,.T Define
](3 by (f3)u: = a(O)’ (f3)a = (fl)a 1f€113 in Sl ’ and (fa)u = (f2)a if q isin S2 .

Let the largest element of M, be k. We define g; as follows. For a
in I and m in M, , let m, = o,(k, m) and m, = o,(k, m). If ¢isin 8,,
then gi(q, @, m) = gi(q, a, m,). If ¢ is in Sz, gs(g, @, m) = ¢x(q, a, m,).
Finally, g:(gs , @, m) = ¢:(q:, @, my) Y g:(¢z , a, ms).

It is straightforward to see that 4; is in class C.

It should be clear that for any input, w, (g5, w, 0, 1) |7, (g, w, §, )
exactly when either ¢ is in S, and (g,, w, 0, 1) |7, (g, w, 4, ) or ¢ is
in S, and (g., w, 0, 1) |7, (g, w, j, ). Also, once in a state of S;, A;
remains in a state of S; and simulates 4,. Likewise, in a state of S,, A
simulates A, . Thus, by induction on the number of moves made,
starting with one move, we have (g5, w, 0, 1) | 4. (g, w, 4, 7) if and only
if (g:, w, 0, 1) [5, (g, w, 4, %) or (g2, w, 0, 1) [3, (g, w, j, ). Thus, since
Iy = F,\UF,, and neither ¢, or ¢; may bein F; , it follows that T'(4;) =
T(4,) \J T(4,).

VI. ONE-WAY DETERMINISTIC BALLOON AUTOMATA

The 1DBA is the poorest of the four types in terms of the operations
on languages which preserve membership in a closed class of languages
for given types. Of the operations preserving membership in class for
the two-way devices, only inverse g.s.m. mappings preserve member-
ship in class for the 1DBA. The proof is along the lines of that of
Theorem 4, but is simpler because the input head never has to move
left. We will omit the proof.

There is one new operation which does preserve classes for the
1DBA, and, incidently, the 1INBA. This operation is intersection with

W,

T Recall the definition of the operation , o1 and ¢; in Section ITIL.
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a regular set. Classes for the 2NBA and 2DBA were closed under
intersection of languages in the class. A simple use of part I of the
definition of closed class shows that every regular set is in every closed
class, so intersection with a regular set surely preserves membership
in class for the 2NBA and 2DBA.

We shall give the usual formal definition of a finite automaton.
See Ref. 20, for example. A finite automaton is a 5-tuple, A = (K, Z,
3, ¢o, F). K is the finite set of siates, = the finite set of input symbols.
I is a subset of K, the final states, and ¢, , in K is the start state. 6 is
a map from K X Z to K. We extend & to domain K X Z* by 8(g, ¢) = ¢
for all ¢ in K, and 6(g, wa), for ¢in K, w in Z* and a in = is §(5(q, w), a).
Define T(4) = {w | 8(qo, w) is in F}. The finite automata accept
exactly the regular sets.

Theorem 6: Let C be a class of one-way, deterministic balloon automaia.
Let L be accepted by some automaton, A in C, and let R be a regular set.
Then L M R 7s accepted by some automaton in class C.

Proof: Let A = (S, I, M, f, g, h, o, F) be a IDBA. Let R, = R N
¢(I — {¢, $})*$, and let B, = {w | w$ is in R,}. If R is regular, then
R, and R, are both regular. It is sufficient to show that there is an
automaton in C accepting L M R;. To that end, let 4, = (X, I, 3,
Do, 1) be a finite automaton with 7(4,) = R, . Define A, = (8., I,
M, ., g:,h s, F2) 10 be a IDBA, with S, = S X K, g5 = [go, o]
and F, = F X F,. Define f, and g, as follows, for all g and ¢, in S, p
and p,in K, ¢in I and m in M :

(¢) Suppose g(g, @, m) = (g1, 0). Then for all p in K, g.(lg, p], a, m) =
([q1 ’ p]) 0)-

(#) Suppose g(g, @, m) = (g1, +1) and é(p, a) = p, . Then g.((g, ],
a, m) = ([q:, pi], +1).

(#72) (f2)1q.p1 = fo for all pin K.

The states of A.’s finite control have two components. The first
is a state of A and the second a state of A,. By rules (7) and (47),
when the input head of A does not move, 4, simulates a move of 4,
but does not change the state of A,. By rules (¢2) and (¢iz), when
the input head of A moves right, A, simulates that move also, but
adjusts the state of A, in the logical manner.

Formally, we can show by induction on the numb*er of moves of
4 or 4, , starting with 0 moves, that ([go, po), w, 0, 1) |3, ([g, p], w, j, )
if and only if:
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*

(i) (qO ’ ’Ll), O: 1) IZ (Q; w, j} 1); 3‘nd

(¢2) 8(po, w,) = p, where w, is that portion of w to the left of posi-
tion j.

Now a word, w of length n, is accepted by A, if and only if ([, , ],
w, 0, 1) IA, lg, pl, w,n 4 1,7), forsome ¢in F, pin F, and any integer, 7.
The above is equlvalent to saying that (¢, w, 0, 1) [ 7 (g, w,n 4 1,7)
and 8(p,, w,) = p, where w,$ = w. That is, w is in T(A) and w, is
in T(A,). But w, is in B, = T(A,) if and only if w is in R, . Thus,
T(A:;) = LN R, . It should be clear, by Lemma 2, that 4. is in class C.

Corollary 1: If L is a language in class C for the 1DBA, and R s a
regular set, then L — R is in class C.

Proof: Let L be contained in I* for some finite alphabet, 7. Then L —
R = LN (I* — R), which is in class C by Theorem 6.

Theorem 6 applies also to the 1INBA. In fact, there is an additional
corollary that can be shown for the INBA.

Corollary 2: Let L be in class C of 1INBA, and let R be a regular set not
involving symbols ¢ or $. Then L \J ¢R$ is in class C.

Proof: The results is a simple extension of Theorem 6, and will be
left to the reader.

VII. ONE-WAY NONDETERMINISTIC BALLOON AUTOMATA

As the 1DBA was the poorest of the four models, in terms of provable
properties, the INBA is the richest. Theorem 4, concerning inverse
g.s.m. mappings, certainly holds for the 1NBA, as do Theorem 5,
Theorem 6 and its corollaries.

To begin a study of the INBA, we will show that with the proper
definition of acceptance, endmarkers on the input are not necessary.
Let A = (8, I, M, f, g, b, g0, FF) be a INBA. We informally define
T(A) as the set of strings, w, in (I — {¢, $])* which cause 4 to leave
w moving right, at the same time entering an accepting state.

We need a slightly revised notion of a configuration. Since w has
no endmarkers, its length is the number of symbols comprising w.
(Recall, we never counted endmarkers in determining length.) Let w
be of length n. Then (g, w, j, 7) is a configuration of A if ¢ is in S, <
is an integer and'1 = j = n. The initial configuration for a INBA
without endmarkers is (g,, w, 1, 1). For convenience, we define a
configuration, (*), which is imagined to result when 4 is in a configura-
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tion (g, w, m, %), and the finite control function allows 4, on the next
move, to move its input head right and enfer an accepting state.t
There is no change in the definitions of |7 and |7. The former relates two
configurations if the second is obtainable from the first by a single move,
and the latter — if by some finite number of moves. Note that no con-
figuration can result from (¥). .

Now, we define 7'(4) as {w] (¢., w, 1, 1) |3 (*)}. When talking
of a INBA and the 7' definition of acceptance, we will allow the start
state to be an accepting state. If so, we shall, by convention, say that
e is in T(4). We will endeavor to show that a language is T(4,) for
some INBA, A4, , if and only if it is T'(4,) for 4, , a INBA in the same
classes as 4, . The result is broken into two parts.

Theorem 7: Let A, = (S,, I, M, fi, g1, b, ¢, F1) be a INBA with

= T(A,). Then there is another INBA, A, = (S., I, M, f., g, h,
Q2 , F), such that ¢L$ = T(A,).1 Moreover, if A, is in some closed class,
C, then A, isin C.

Proof: Choose g, to be a symbol not in S;, and let S, = S, U {qg,}.
F,=F,if g isnotin F,; F, = F, U {g.} otherwise. Define f, and g,
as follows:

@ (e = a®
(@) (f)e = (fi)o for gin S, .

Torallain I — {¢, $} and all m in M:

(173) g:(q, @, m) = g.(q, @, m), for ¢ in S, .
(@) g:2(¢2, @, m) = gi(q1, a, m).
(l)) gz(q; $J m) = ¢ for q inS,.
(D’L) g2(q2; ¢) m) = {(Q2, +1)}-
(vi7) g.(q, ¢, m) = ¢ for gin S, .

Let w, of length n = 1 be in (I — {¢, $})* By rules (1) and (v),
we have (., ¢w$, 0, 1) |7, (g2, ¢w$, 1, 1). By rules (¢¢) and (2v), it
follows that (g, , ¢w$, 1, 1) |7, (g, ¢w$, 4, ©) if and only if (g,, w, 1, 1)
l7. (g, w, 4, ©). Then, by induction on the number of moves made,
starting with one move, we see that (¢, ¢w$, 1, 1) [ 7. (g, ¢w$, 4, 1)
if and only if (¢, w, 1, 1) |7, (g, w, j, %), for j S n. Finally, by rules
(@) and (#t5), if (g, w, n, 2) |7 (*), then it must be that ¢,(g, @, m) con-

1 Strictly speaking we require also that the balloon control function be defined
for ¢ and the new state if configuration (*) is to be entered.

1 Recall that by convention, ¢ and $ are in every set of input symbols, even if
endmarkers are not used.
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tains (p, +1) for some p in I, , where 2(Z) = m and a is the nth symbol
of w. Also, £,(2) is defined, so (g, ¢w$, n, 1) |7, (p, ¢w$, n + 1, 7,), where
@ = f,(i). Thus, if w is in 7'(4,), then ¢w$ is in T'(45).

If (¢, ¢w$, 0, 1) |7, (p, ¢w$, n + 1, 2), where p is in F; , from rule
(v) we see that A, could not have made a move while scanmng the §.
Thus, for some ¢ in S and integer, %, (¢,, ¢w$, 0, 1) ] 7 (g, tw$, n, k)
[z, (p, ¢w$, n + 1, 7). From the previous paragraph, we know that
(qr, w, 1, 1) IA, (g, w, n, k) and (g, w, n, k) |5, (*). Thus, if ¢w$ is in
T(4,), then wis in T'(4),).

One detail remains, concerning the case w = e If € is in T'(4,),
then ¢, is in F, . Thus, ¢, is in I, . By rule (v2), (g2, ¢$, 0, 1) |z, (g2,
¢$, 1, 1), so ¢$ is in T(4,). If € is not in T'(A),, then ¢, is not in F,
and ¢, is not in F, . By rules (v) and (v7), only one move of 4, is pos-
sible, and A, does not accept ¢$. We conclude that T(4,) = ¢L$.
It is clear from Lemma 2 that A, is in class C.

Theorem 8: Let Ay = (S, I, M, {,, 9., h, q., F,) be a INBA, in some
closed class, C, with L, = T(A,). Let L, = {w | ¢w$ is in L,}. Then
there is a INBA, A, = (S;, I, M, f2, g2, by 91, 1], F2) in class C, with
T(Ay) = L,.

Proof: We will place in S, all symbols of the form [q, 7], where ¢ is in
S;and ¢ = 1,2, 3,or 4. If ¢$isin L,, then F, = {[q,, 1]} Y {lg, 4] | ¢
in 8,}. If ¢$isnot in L;, F, = {[q, 4] | ¢ in S,}.T Define §, and g, as
follows:

('l) (fg)(a',’] = (fl)q fOI‘ all q ln Sl andi = 1, 2, 3, 4:.
Forall min M, qin S, and ain I — {¢, $}:

(7’1) .‘h([q, 1]) a, m) = {([py 1]; O) I (p7 O) iS in gl(Q: ¢7 m)} % {([p: 2]: O)
| (p, +1) is in g,(g, ¢, m)}.

(i”) g?([Qr 2]: a, m) = {([p; d) I (p’ d) is in gl(Q: a, m); d=20
or+1} U {([p, 3],0) | (», +1) lsmgl(q,a m} U {(p, 4, +1) [ (p, +1)
is in g,(q, @, m) and p is in F,}.

(@) g:(lg, 31, @, m) = {(lp, 3], 0) | (p, 0) is in g.(g, §, m) and p is
not in F1} \J {([p, 4], +1) | (p, 0) is in ¢:(g, §, m) and p is in F,}.

() g:(g, 4], a, m) = ¢ for any a in I, including ¢ and $.

Intuitively, when the second component of state of A,is 1, A, imagines
it is reading ¢ on its input. If the second component is 3, it imagines

T Obviously, it may not be possible to tell whether ¢$ isin L,. In that case, the
procedure given here can be thought of as defining two automata, one of which
accepts L, . Computation of A, from 4 is not effective, but this fact will not alter
our theoretical results.
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it is reading $. If the second component is 2, it uses the symbol actually
scanned. A second component of 4 indicates an accepting state.

Formally, let w be in (I — {¢, $})*, of length n = 1. From rules (7)
and (#7), we see that (g, , 1, w, 1, 1) ]A, (p, 1], w, 1, %) if and onlyif
@, #8, 0, 1) |5, (p, u$, 0, 7). Also, (g, 1], v, 1,5,) |z, (p, 2}, w, 1, 72)
if and only if (q, $uS, 0, 3,) [z, (@, $u$, 1, &),

Next, by rules (7) and (m), (Ip, 2], w, 1, 7,) [A, (Ip, 2], w, n, %) if
and only if (¢, ¢w$, 1, 3) 7, (», ¢w$, n, 12) Also, (Ig, 2], w, n, %) |7,
(p, 8], w, n, &) if and only if (g, $w$, n, ) |7, (B, $wS, n + 1, is).
In addition, ([g, 2], w, n, %) |z, (*) if and only if (g, ¢w$, n, 4,) [z, (P,
¢w$, n + 1, 7,) for some p in F,. For in the latter case, ([p, 4], +1)
will be in g,(g, a, m), where m = h(:;) and a is the nth symbol of w.
Note that (f2)(,.4; is defined exactly when (f,), is deﬁned

Third, by rules (z) and (), ([g 3], w, n, 7,) ]A, (Ip, 3], w, m, %) if
and only if (g, ¢w$, n + 1, 7)) |7, (p, ¢w$, n + 1, 1,) by a sequence
of moves such that 4, does not enter a state of F; . Also, (g, 31, w, n, %.)
[z, (*)if and only if (g, ¢w$, n + 1, 4)) |7, (p, fw$, n + 1, 42) for some
pin F,.

Putting together the resu]ts above, we have that for w, of length
nz 1, (g, 1, w,1,1) [5, (*) if and only if (g:, ¢w$, 0, 1) [5, (v, fw$,
n + 1, 7) for some p in F, and integer, z. Also, [¢,, 1] is in F, if and
only if ¢$ is in L,. Thus, € is in T(4.) exactly when ¢$ is in T(4,).
We conclude 7(4,) = L,. It is again straightforward to see that
A, is in class C.

We say a closed class of automata is recursive if there is an algorithm
to determine if any given word is in T'(4), for any automaton 4 in
the class. We have a corollary to Theorem 8.

Corollary: If C is recursive, then for L, and L, as tn Theorem 8, we can
effectively find an automaton, A, , with T(A,) = L, , from the specification
for 4,.

Proof: It is sufficient to note that in this case, we can effectively de-
termine if ¢$ is in L, , hence we can effectively find 4, .
We can now prove a series of closure properties of the INBA.

Theorem 9: Let A, and A, be INBA in some closed class, C. Let L, =
T(A,) and L, = T(4,). Then there exists A in C with T(As) = L,L,
fw|w=wand uisin L,, v in L,}.

Proof: Let A, = (8,, I, M., {i, ¢1, hl, ¢, Fy) and 4, = (S,, I,
Mz, fz, g2, ha, q., F,). By Lemma 2, we can assume that S; and
8, are disjoint, and L, and L, are contained in (I — {¢, $})* Define
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A3 = (‘SS, I: Ma; f3; g3, h3; [91; 1]) F2): where h3 = hl'h27 ZW:* =
M-M,,and S; = S, U {g:} U {[g, 7] | ¢ in Sy, 2 = 1 or 2}, where
¢s is a new symbol. T'(4;) will not be L,L,, but rather {w|jw = w, u
and v # ¢ uin L, , v in L,}. We define f; and g, as follows:

@) () = (fi)if qisin 8,7 = 1or 2.
(@) (fa)e = (f2), if ¢isin S,.
(@) (fa)ey = V.

TForallain I — {¢, $} and min M, , with k the largest element in 3/, :

(iv) If ¢isin S, but not in F, , then g5((q, 3], a, m) = {(p, 1], 0) | (p, 0)
isin ih(q, a, o,(k, m))} U {(p, 2], +1) | (p, 1) is in g,(q, a, o:(k, m))},
t=1or?2

(v) If qisin F, , then gs([q, 1], a, m) is defined as in (2v). g5([g, 2, a, m) =
{(p, 1], 0) [ (p, 0) is in g(g, @, o:(k, m))} Y {([p, 2], +1) | (», +1)
is in g(g, a, o:(k, m))} \J {(gs, 0)}.

) 95(gs, @, m) = g:(q2, @, o2(k, m)).

(v1t) ga(g, a, m) = g2(q, @, o2k, m)) for all ¢in S, .

Note that if A; is in a state of the form [g, 2], then on its last move,
its input head moved right. If in a state of the form [g, 1], the input
head did not move right on the previous move. When A4; has just
moved right and entered an accepting state, according to rule (v),
it has the option of continuing to simulate A, or going to state ¢s,
resetting the balloon to state 1, and then simulating 4, .

Formally, from rules (z), (é) and (v), it is straightforward to show
that ((g:, 1], w, 1, 1) [z, ([p, 2], w, 4, 9) for j = 2 and pin F, if and only
if (g1, u, 1 1) IAI (*), where u is the first § — 1 symbols of w. Certainly,
if and only if p is in F, does ([p, 2], w, 4, %) |7, (¢, w, 4, 1), by rules
(i) and (). Finally, by rules (i), (vi) and (vid), (qa, w, j, 1) |7,
if and only if (g,, v, 1, 1) [, (*), where v is the jth and subsequent
symbols of w.

Thus, T'(45) = {w|w = uv with u, v % ¢, w in L, , v in L,}. Clearly,
A, is in C. Suppose ¢ is in L, . By Theorem 5, redone for the 1INBA,
and Theorems 7 and 8, there exists 4, in € with T(4,) = T(4s) Y Ls.
If eisnotin L,, let A, = A, . If eisin L,, there exists 45 in C with
T(A,,) = P(4) U L,. If eis not in L., let A; = A,. Finally, if e
is in both L, and L,, by Corollary 2 to Theorem 6, redone for the
INBA, and Theorems 7 and 8, there exists A, in C with T(ds) =
T(45) U {€}. Otherwise, let A; = A;. In any case, it should be clear
that T'(4s) = L,L,.

Corollary: If C is recursive, A4 can be effectively found.
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Proof: Immediate from the corollary to Theorem 8.

Theorem 10: Let A be a INBA in class C, with T(A) = L. Then there
is an automaton, As , in C, with T(4;) = L* = {¢} U LU LL U
LLL\J -,

Proof: By Corollary 1 to Theorem 6, redone for INBA, and Theorems
7 and 8, there exists 4, in € with 7(4,) = L, = L — {¢}. Note that
L* = L* . Moreover, since e is not in 7'(4,), we can always effectively
find A4,. Let 4, = (S,, I, M, fi, g1, h, ¢, F,). We will construct

= (S.,I,M,fs,g2,h,q., F.) in C, with T(4,) = L% — {¢}. Define
S. = {g.} U {lg,7]]|¢in S;, ¢ = 1 or 2}, where ¢, is a symbol not
in S, . Let I, = {[g, 2] | ¢ in F,}. Define f, and g, as follows:

(@) (fDien = (f)oforgin S, ¢ = lor2.

@) (e = a®.

TForallain I — {¢, $} and m in M :

(@) If g isin 8, — Fy, g2(lg, 4, @, m) = {([p, 1], 0) | (p, 0) is in
9:(g, a, m)} \J {([p, 2], +1) | (p, +1) is in g:(g, @, M)}, 7 = Lor 2.

() If gisin Iy, ¢.([g, 1], @, m) is as in rule (¢22). ¢.([g, 2], @, m) =
{(p, 1], 0) | (p, 0) is in g:(g, @, m)} U {([p, 2], +1) | (p, +1) is in
gl(% a’ m)} U {(qZ; 0)}

) g:(gz2, a, m) = g.(q:, a, m).

The significance of 1 and 2 in the second component of state
of S, is as in Theorem 9. 4, simulates 4,, but when in an accepting
state, just having moved its input head right, has the optlon of entering
state ¢, . Thus, it is casy to see that (g., w, ji, D ]A, p, 21, w, 2, ©),
with j, > 4, if and only if (¢, %, 1, 1) IAx (*), where u is symbols 71
through j, — 1 of w. Exactly when pisin F, do we have ([p, 2], w, 42, ©)
[7, (@2, w, j», 1). Thus, if and only if (g., w, 1, 1) IA, (*), can w be
written in the form w,us -+ uy, kb = 1, whereu;, 1 £ 7 =2 k,isin L, .

Thus, T(4,) = L% — {e} = L* — {e}. Surely, A4, is in class C.
By an argument used in Theorem 9, we can find A4 in C, with T(4,) =
T(4,) U {e} = L* Moreover, since ¢ is in T(4s), we can always
effectively find 45 .

Theorem 11: Let A = (S, I, M, {, g, h, g0, F) be a INBA in class C.
Let @ = (K, I — {¢, $}, I, — {¢, $}, &, A, po) be a g.s.m. We assume
for convenience that I, is a finite alphabet containing ¢ and $. Let L =
{w | ¢w$isin T(A)}. Then there is an automaton, A, in C, with T(4,) =
¢L,$ and L, = G(L).
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Proof: Let A, = (S84, I,, M, {1, g1,k ¢., F). The proof is represented
in Tig. 4. The finite control of A, contains a generator which non-
deterministically generates symbols in I — {¢, $}. These symbols
are processed by G, and compared with the input. The input head
rests on the leftmost uncompared symbol. A; also uses the generated
symbols as inputs to A, which it simulates. A, accepts if 4 accepts
while 4, is scanning $ on the input, with no symbols left to compare.

We define S; = {[q, p, a, u, 7] | g in S, pin K, ainI — {$}
ora=¢%=120r3and uin (I — {¢, $})* but |u| < max (| \(p, a) |
for pin K, a in I.}. The first component keeps track of the state of A4,
the second, of the state of G. The third component holds the symbol
generated, and the fourth, the output of @ for that symbol and the
current state of G. The last component is 1 usually. It is 2 when A
would have just moved its input head right, and it is 3 when A would
be scanning ¢ or §$.

Define F'; = {[q, p, ¢, ¢, 2})] ¢gin F, ¢ = 1 or 3}. Also, ¢, = [qo, Do,
€ € 3.

Define f, by:

(@) (Diew.au 1 = fqif either a # eori = 3.
(’L‘/I’) (fl)[q.p.a.u,z‘] = a(O) Other‘vise.

Tor all min M, bin I, — {¢, $}, ¢ in S and p in K, define:

l¢ INPUT $]
FINITE _'——j
CONTROL

} OF A G COMPARE

FINITE
GENERATOR SIMULATED INPUT, CONTROL

S |
|
|
r

Fig. 4 — Automaton Ai.
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(’LZ’L) gl([Q: Do, & ¢ 3]; ¢: m) contains ([8; Do, & & 3]) O) if (8, 0) is
in g(g, ¢, m).

(’l?)) gl([Ql Do, ¢ ¢ 3]: ¢7 m) contains ([S: Do, ¢; € 2]: +1) lf (S) + 1)
is in g(q, ¢, m). (4, simulates A with ¢ as input.)

(1)) gl([Q; D, € ¢ 1]; b; m) contains {([-S‘, D, 4, U, 1]7 O) lfOI' any @
in I — {¢, 8}, if (s, 0) is in g(g, @, m), p» = &(p, a), and u = \(p, a)}.
Likewise, if b = §.

() 9:(lg, p, € ¢ 1], b, m) contains {([s, p:, a, u, 2], 0) | for a in
I — {¢, 8}, if (s,+1) is in g(g, ¢, m), p, = 8(p, a), and u = \(p, a)}.
Likewise, if b = $. (The random generator generates symbol a, which
is stored in the third component. \(p, a) is stored in the fourth. The
new state of A, with a as input symbol is stored in the first component,
and the new state of G in the second. If A would immediately move
its input head right, the fifth component is 2. A 2 there tells 4, it is
finished with symbol a. Otherwise, a 1 is placed in the fifth component.)

(wi7) (g, p, @, u, 1], b, m) includes {([s, p, a, u, 1], 0) | (s, 0) is in
g(q, a, m)}. Likewise, if b = §.

(i) g:(lg, », @, u, 1], b, m) includes {([s, p, a, u, 2], 0) | (s, +1)
is in g(q, @, m)}. Likewise, if b = $. (4, s1mu1ates a move of A. The
fifth component of A,’s state becomes 2 if the input head of A moves
right.)

(7:12) 91([9, D, a,u, 2]: b: m) = {([Qy D, &, 1]) O)} Likewise, ifb = $
(Remove a as third component and set fifth component to 1.)

() For any u, g.(lg, p, ¢ by, 1], 5, m) = {(lg, p, & u, 1], +1)}.

(z2) g.([g, , ¢ bu, 1], b, , m) = ¢ for b, = b. (A, compares its fourth
component with the input.)

(zi2) 9:((g, p, ¢, ¢ 1], $, m) contains ([s, p, ¢ ¢ 3], 0) if 9(q, $, m)
contains (s, 0).

(.’L"L.Z?z) gl([Q; D, € ¢ 3]; $J m) contains ([SJ D, & ¢ 3]) O) 1f g({l: $) m)
contains (s, 0).

We will state a series of intermediate results that follow directly
from the rules given. We assume that G(w) = z.

L By rules (i) and (14%): (g0 , Do, € € 3], £2$, 0, 1) IA, (g, po, & &3],
¢$$ 0 7/) lf B,Ild OIlly lf (qO b} ¢U)$, O 1) 'A (Q: ¢w$)

II. By rules ('L); (u); (“})y and (’Lx) (Q: Do s € € 3]: ¢x$r 07 7’1) lIx

S: Do » ¢'1 € 2]) ¢CE$, 1, Z2) IA, ([8: Do, € ¢ 1]: ¢x$; 1: iZ) if and Only if
(g, ¢w$; 0, 21) ,A (s, ¢’ID$, 1, 7).

IIL. By rules (3), (v) and (5d): ([g, P, & ¢, 11, =8, 7, %) [, (s, 7, @, w, 1],
¢x$, j, i,) by a sequence of moves for Whlch the third component of
state never becomes ¢, or the fifth = 2, if and only if (g, ¢w$, k, 7,)
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E (s, ¢w$, lc, 1,), where the kth symbol of w is a, d(p, a) = r and
Ap, a) =

, IV. From III and rules (2), (i) and (viid): ([q, p, ¢ ¢ 1], ¢x8$, 4, 1)
l 7. s, 7, a, u, 2], ¢2$, j, .), by a sequence of moves in Whlch the third
component of state never becomes e if and only if (g, ¢w$, k, 7)) |3
(s, fw$, k + 1, ;) by a sequence of moves in which the input head
remains at position k& until the last move is made. Here, again, the
kth symbol of w is a, 6(p, @) = r and N\ (p, a) = u.

V. From rule (iz), (g, p, a, u, 2], ¢2$, 4, 9) |7, (g, p, & u, 1], €28, j, 9)
for any a # ¢, and if the ﬁfth component is 2, no other move is possible.

VI From rule (CU), ( q’ p; € u: ¢x$) .71 ) 1) IA. ([q: p; € € 1]; ¢x$: ]2 : 2)
by a sequence of moves for Whlch the third component of state remains
¢ if and only if symbols j; through j, — 1 of z form .

VILI. Comblmng IV, V, and VI: (g, p, ¢ ¢ 1], ¢28$, 51, 71) ] 7, (s, 7,
¢, ¢ 1], ¢x$, 5., ©2) by a sequence of moves in which the third component
changes from € to a symbol in I — {¢, $} back to e only once, if and
only if for some a in I — {¢, $} and win (I, — {¢, $})*, we have

(@) 8(p, a) = r;

®) AMp, a) = u;

(¢) Symbols j, through jo» — 1 of z are u;

@) (q, ¢w$, k, i,) | 2 (s, ¢w$, k + 1, 7,) by a sequence of moves in
which A4’s input head remains stationary until the last move, and
a is the kth symbol of w.

Note that j, = j» = n 4 1 is not prohibited.

VIII. Using I, II, and VII iterated: ({0, o, ¢ ¢ 3], £2$, 0, 1) ] =
([q, D, & ¢ 1], ¢x$, n + 1, 7), where | z | = =, if and only if, for some
win (I — {¢, $H* oflength k:

(@) (qo, ¢w$, 0, 1) l 1 (g, ¢w$, k + 1, 2) by a sequence of moves
in which A’s input head does not reach $ untll the last move;

() 8(po, w) = p;

() Mpo, w) = =.

IX. Directly from VIII, A, accepts ¢z$ by entering a state [g, p, ¢, ¢, 1],
where ¢ is in F, if and only if there is a w as in VIII such that A accepts
¢w$ by entering state ¢ on the same move on which A first moves
its input head to §$.

X. I‘rom rules (zi7) and (2742), ([q, , ¢ ¢ 1], ¢w$, n + 1, 12,) | 7. (s, P,
¢ ¢ 3], ¢x$, n + 1, 4,), where | x| = n, by a sequence of moves in
which the thlrd component of state remains ¢, if and only if (g, ¢w$,
k+1,1,) [A(s,¢w$ k+ 1, 4,), where k = |w |.

XI. From VIII and X, 4, accepts ¢x$ by entering a state [s, p, ¢, ¢, 3]
if and only if A accepts ¢w$, where A(p,, w) = z, by a sequence of
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moves in which A enters state s while its input head remains scanning §$.
XII. Finally, from IX and XI, we have that A, accepts ¢x$ if and

only if A accepts ¢w$, where )\(po, w) = x. Thus, T'(4,) = ¢G(L)S.
We need only add that A, is, by definition, in class C.

Corollary: If L = T(A) for some 1INBA, A, in class C, and G is a g.s.m.,
then there is an automaton A, in class C, for which T(A,) = G(L).
If class C is recursive, we can effectively find 4, .

Proof: Direct from Theorems 7 and 8.

Theorem 12: Let L = T(A) for some INBA, A, in class C. Let R be
a regular set. Then there is an automaton, A, , in class C, with T'(4,) =
L/R = {w | for some x in R, wx is in L}.

Proof: et A = (S, I, M, §, g, h, g0, F). We can surely find a finite
automaton, 4, = (K, I — {¢, $}, 8, po, F1) accepting RN (I — {¢, $})*.
Intuitively, 4; will simulate A, but will always have the additional
choice of guessing that it has seen w. It then nondeterministically
chooses the symbols of z, continuing to simulate 4. We will construct
A, to accept L/R — {e}. The reader can easily see how e can be added
to the set accepted by A4, .

Formally, let A, = (S., I, M, 2,92, h, qo, F2). So = S\U {[g,p,al | ¢
inS,pinK,ainl — {¢, $}ora=¢}.F, = {[g,p, el |ginF, pin F,}.
Define f, and g, as follows:

(@) (fo)e = fo for g in S.

(%) (f2)iep.a) = foforallgin S, pin K, ain I — {¢, $} ora = e
TorallbinI — {¢, $}, min M:

(i77) ¢.(q, b, m) contains (s, d) if g(q, b, m) contains (s, d).

(t) g¢.(q, b, m) contains ([s, po, €], +1) if g(g, b, m) contains (s, +1).

() g2(q, b, m) contains ([s, p, al, 0) if g(g, b, m) contains (s, +1)
and 8(po, a) = p, for any ain I — {¢, $}.

(v3) g:(lg, p, al, b, m) contains ([s, p, al, 0) if g(g, a, m) contains (s, 0).

(vit) g:(lg, p, al, b, m) contains ([s, 7, a,], 0) for any a, in I — {¢, §}
if g(q, a, m) contains (s, +1) and é(p, a,) = r.

(vii7) ¢.([q, p, a], b, m) contains ([s, p, €], +1) if g(g, @, m) contains
(s, +1).

Note that no moves are possible if the third component of A,’s
state is e. From rules (7) and (¢47), we see that (g0, w, 1, 1) |7, (g, w, 4, ©)
if and only if (g0, w, 1, 1) [ 7 (g, w, 7, 7). Let w be of length n. By rules
(#2) and (i), (g, w, n, 7,) [z, (*) if and only if p, is in F, (i.e., eisin R)
and (g, w, n, 9) |3 (*)-
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By rules (i7) and (v), (g, w, », 9) [z, (s, p, al, w, n, %) if and only if
(g, wz, n, y) |7 (s, wx, n + 1, 1), where the first symbol of = is a and
3(po, a) =ptLlet|z| =k Then, by rules (¢7), (v7), and (viz), gq, , al,
w, N, ;) IA, (s, 7, a,], w, m, 1) if and only if (g, wx, n + 1, 7y) |7 (s, we,
n + k, 75), 8(p, x) =7, and x ends with a, .

By rules (¢2) and (vie2), ([q, p, @], w, n, 1) | 7, (%) if and only if (g, wz,
n + k, ) {7 (¥), where the last symbol of z1s a, and z is 1n R.

Putting the above together, we see that (g,, w, 1, 1) | 7. (*) without
ever entering a state of the form [q, p, a, a e if and only if € is in
R and (¢, w, 1, 1) IA . Also (go, w, 1, 1) |A, (*), entering a state
lg, p, a], a = 1n so doing, if and only 1f for some z in (I — {¢, $})%
(g1, wz, 1, 1) lA (*) and z is in B — {e}. If 4, is modified to accept e,
provided e is in L/R, then the resulting device is 45 .

VIII. CONCLUSIONS

We have considered four types of general automata, and defined
closed classes for each of these four types. We have shown certain
common operations to preserve these classes, in the sense that if a
language, L, is accepted by an automaton in the class, and L, is the
result of the operation applied to L, then L, is accepted by some
automaton in the class.

The classes model many of the common devices which have been
heretofore considered in the literature, such as stack automata and
counter machines. It seems as though they could be expected to
model any future class of automata which are defined solely by the
ways in which their infinite storage can be locally manipulated. The
classes do not model such things as linear bounded automata or
time/tape complexity classes of Turing machines, intuitively because
such automata are defined by global restrictions on memory. (I.e., one
may use “this much” memory, and no more.)

In Table I, we list the types of balloon automata and the opera-
tions considered. A check indicates that the operation preserves
membership in a closed class of automata.

It is hoped that when models of automata are proposed in the
future, theorists will find it efficient to show that their model is
equivalent to a closed class of balloon automata. They will then have
a variety of standard theorems already proven for them.

T Note, however, that the first symbol of z does not affect the operation of 4
at this step.
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TasLe I
2DBA 2NBA 1DBA 1NBA

Reversal V4 v
Intersection V4 v
g.s.m. inverse vV Vv Vv
Union Vi
Intersection with regular set V4 Vv Vv

Concatenation (-)

Kleene closure (*)

g.s.m. forward

AN AN AN AN ENAN

Quotient with regular set (/)

IX. FUTURE PROBLEMS

There are various theorems about automata that have not been
reflected in the results on balloon automata. For example, one-way
deterministic pushdown automata are closed under complement. It is
probably true that all common types of one-way or two-way de-
terministic automata are closed under complement, although proofs
have not been published in all cases. Likewise, many one-way de-
terministic devices are closed under quotient with a regular set. Most
one-way nondeterministic devices seem to be closed under reversal, and
S0 on,

We therefore propose as an interesting and worthwhile problem, the
question of putting additional restrictions on closed classes of balloon
automata such that some or all of these results can be proven. Of
course, the conditions must be liberal enough so that the usual auto-
mata are still modeled.

Second, it would be useful to have a model, like the balloon auto-
maton, which could describe, as closed classes, such things as linear
bounded automata and computational complexity classes. The prop-
erties of these classes deserve some treatment, and an approach sim-
ilar to the one taken here might be a reasonable one.

It is hoped that the methods we have used to prove certain
theorems plus the fact that we could not prove some others will shed
some light on why some theorems are hard to prove, or visualize, while
others are easy. Specifically, we have an indication as to why certain
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theorems seem easier to prove for nondeterministic devices than
deterministie.
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Extensions to the Analysis of

Regenerative Repeaters with
Quantized Feedback

By M. K. SIMON
(Manuscript received May 23, 1967)

The functional iterative approach giwen by Zador for calculating the
average bit error probability in a regenerative repeater with quantized
feedback 1is extended to the vector case. For a channel with a rational {rac-
tion transfer function, the vector extension permils us at least formally
to deal with the following practical conditions:

(7) The pulse transmission plan is described by an m-ary alphabet
with independent digits.
(72) Perfect and imperfect low-frequency tail cancellation cases are con-
sidered.
(77) High-frequency signal shaping and its interaction with the pre-
dominantly low-frequency tail are taken into account.

Expressions for error probability on the kih digit are derived in terms of
the kth vector iterate of a known function. The restriction to independent
notse samples is also removed. The resulting expression for kth bit error
probability is then derived from an operational ileration procedure which
acts on the k + 1 dimensional joint disiribution of the noise samples.

I. INTRODUCTION

In the design of digital communication links, various reasons exist
for the removal of low-frequency components during or prior to trans-
mission of a pulse train. In the case of vestigial sideband (VSB)
modulation® of data over voice-frequency channels, the de and low-
frequency signal components are removed at the transmitter before
modulation and ecarrier reinsertion. This is required to insure satis-
factory carrier recovery at the receiver for relatively low transmitted
carrier power. In the T-1 Carrier System,? the loss of low-frequency
information results from transformer coupling of an unbalanced

1831
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repeater to the balanced line. In either event, the effect of low-fre-
quency suppression is to cause the positive impulse response of the
overall equalized medium to exhibit an undershoot which gives inter-
symbol interference.

One means of reducing the effect of low-frequency suppression in a
regenerative repeater is to feed back a signal in an attempt to cancel
the long transient tail. This method of compensation has been called
quantized feedback and its use dates back to the 1920’s (as noted by
Bennett?). We assume that the reader is familiar with Bennett’s ex-
cellent expository paper. Until recently, analysis of the effects of
quantized feedback on average bit error probability in a noisy en-
vironment has received essentially no attention. The first to examine
this problem were Anderson, Gerrish, and Salz* who considered the
polar binary case, neglecting signal shaping and assuming perfect
matching of the feedback cancellation signal to the input signal tail.
They have obtained results, with the aid of the computer, that have
provided insight into the problem. In addition, they have exposed com-
putational difficulties involved in grinding out numerical results for
any given set of system parameters.

A more analytical approach to the basic problem is found in Zador®
who used the theory of generalized random jump processes® to obtain
an iterative procedure for computing error probability. Unfortunately,
the class of physical systems that can be handled by Zador’s approach
as originally stated is quite restrictive in the following sense (see
Fig. 1):

() The transmitted message sequence is composed of independent
binary digits.

(1) The low-frequency behavior of the channel as represented by
G (s) is dominated by a single pole.

(#1) G'(s) and H(s) are exact complements of each other so that
perfect feedback tail cancellation is achieved.

(tv) The time dispersion of the transmitted pulses caused by the
medium, C(s), with or without equalization E (s) is strictly limited to
two pulse intervals.

(v) The noise samples at the input to the threshold detectors are
assumed independent.

It is our intention here to remove some of the above restrictions. In
particular, we extend Zador’s approach along the following lines:

(1) By allowing a multilevel threshold device as a regenerator, the
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Fig. 1 —Block diagram of reconstructive repeater with quantized feedback.

allowable pulse transmission plan is extended to include m-ary alpha-
bets with independent digits. (The ternary case is treated in detail.)

(12) The high- and low-frequency behaviors of the channel may be
individually characterized by rational functions. The implication of
this is twofold. First, the predominantly low-frequency tail is now
described by several exponentials. Secondly, the impulse response of
the overall equalized medium C(s) E(s) is not restricted to be time-
limited.

(#1) The restriction to perfect tail cancellation is removed to allow
for imperfections in the forward and/or feedback paths.

(tv) The more realistic case of correlated noise samples is examined.

Extensions (¢), (¢), and (#%) are possible only through a vector ap-
proach based on Zador’s original iteration scheme. The assumption of
a nonflat noise spectrum as in (iv) leads to an operational iteration
procedure for calculating bit error probability. It is to be emphasized
that the question of computational procedures, which even in the sim-
ple binary case was a formidable task, grows considerably in com-
plexity with the degree of generality assumed

The generalizations listed above will be treated one at a tlme S0 as
to demonstrate individually the necessary changes in Zador’s original
formulation. A review of his model is given in Section II.

Section III assumes an unrestricted ternary message sequence to-
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gether with the remaining restrictions as imposed by Zador. An ap-
plication of the results is given for a particular high-frequency behavior
of the system. The response of the high-frequency portion of the chan-
nel, C(s) E(s), to a transmitted rectangular pulse is assumed triangular
in shape and time-limited to two pulse intervals.

Section IV derives the general expression for error probability when
the overall channel, Y (s) = C(s) E(s) G(s) is assumed to be charac-
terized by a rational function. The fecedback network, H(s), is de-
signed to cancel only the low-frequency poles, i.e., those of G(s). The
special case of a binary input format is treated in detail.

Section V modifies the results of Section IIT by including the case
of imperfect match of the G'(s) and H(s) characteristics.

Section VI begins with Zador’s original assumptions on the signal-
ing format, channel, and feedback network characteristics, but re-
moves the restriction of independent noise samples. An expression for
kth bit error probability is derived from an operational iteration pro-
cedure which acts on the & + 1 dimensional joint distribution of the
noise samples. The analogy between this scheme and the functional
iteration proposed by Zador for the uncorrelated noise case is demon-
strated.

II. REVIEW OF ZADOR’S MODEL

We begin with a brief review of Zador’s mathematical assumptions
and emphasize their physical significance. Consider once again the
repeater-to-repeater transmission link illustrated in Fig. 1. The out-
put of the nth repeater at time r7T is a binary rectangular pulse*
d.p (t—rT) where

p(f) = po |t|§t0
=0, Lt > 4

d, = =1, and 1/7T is the pulse rate of the system. Zador does not ex-
plicitly describe the high-frequency behavior of the system. The class
of channels that satisfies his underlying assumptions is discussed below.
Let the response of C(s)E(s) to the pulse p(t), denoted by z(¢), be time
limited to 27", and zero at its end points. It is understood that in practice
these conditions are usually met only approximately. Then, by passing
2(?) through a single pole high-pass filter, G(s), the part of the resulting

* Zador assumes =1 impulses as repeater output. As we shall see, in the sam-
pled systems we consider, this modification has no effect on the ensuing analysis.
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response, g(t), for ¢ = 27T is dominated by a single exponential. If s(t)
is sampled at time ¢ = 7 and held until¢ = T' - ¢ , then by employing
an ideal slicer element as a threshold detector a unit rectangular output
pulse, b(f) is regenerated. Furthermore, by passing this pulse through
H(s), the response tail of s(t) for ¢ = 27T may be exactly cancelled in
the absence of noise and circuit imperfections. These observations are
illustrated in Fig. 2 for a triangular pulse shape z(t). The response of
H(s) to the regenerator output pulse is denoted by k(). Turning now
to a sample notation, let g, , &, , and b, represent the values of g(¢), 2(t),
and b(t), respectively, at time (k + 1)T, k = 0, 1, 2. Then, from Fig.
2, it is obvious that the following conditions must hold, in general, in-
dependent of the waveshape of z(f) within the 27 interval:

('L) go > O, h[) = 0
(ll) h,+gt=0 7:=].,2,"‘

(Zi’i) g,' == 7‘g,’_.1 7: g 2
] _______
{
by /|
=
~ l
|
i
o 1
T 2T
Jo[—————"—> !
| 1
1
= i
EN 1 2T
T i
i
9y
h(t)=-g(t)
T t>aT
=
<
ho
o
T T+t, 2T
t —

Fig. 2— System pulse responses.
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where r is related to the single pole, «, of G(s) by r = e 7. Con-
dition (7%%) is clear upon noting that the response of a single pole high-
pass filter to a time limited signal of width 2T has a single exponential
response for values of ¢ = 27. Statements (z) to (%) as above are
identical with Zador’s restrictions on the system as reported in Ref.
5.¥ The shape of z(f) is solely used in determining the two dependent
quantities g, and ¢, . For a triangular z(f) waveshape of unity height
(Fig. 2) and G(s) = s/s + «,

—aT]

1
go=mll —e
___1__ — paTy2
gl_ C!T[l € ]‘

III. TERNARY PULSE TRANSMISSION

When considering a ternary system, the only essential modification
of the model suggested by Zador is an ideal slicer with positive and
negative pulse detection thresholds set at +ao and —a,, respectively.

Letting s, denote the total reshaped input at the & + 1th timing
instant, and c¢; the feedback voltage at the same instant in time as
before, the slicing operation is described by

bk = 1 if Sy +nk +6k g o
=0 if _‘a1<8k+nk+ck<a0
=—1 if s4+n e = —a ’

where
k

= oede B=0,1, -

=0

k
Ck=zhk_,‘b; k=0,1,"'

1=0
and ny is a sample from a stationary noise process n(t) having a fixed
but arbitrary distribution function N (z), and independent samples.
The process n(t) is actually the result of passing the additive white
noise process in the system, £(¢), through E (s). We assume, however,
that the correlation between noise samples introduced by the above
is small and can be ignored as a first approximation. When this as-

*Note that Zador also requires g: < for ¢ = 1. This restriction is not neces-
sary although it is often true.
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sumption is invalid, the method discussed in Section VI must be used.

It is of prime interest to examine the conditions under which the
system will operate error-free in the absence of noise. For 0 < a,,
a; = ¢o,

So 4 ¢ = godo
thus if,
a, =1, S+ ¢ = ¢go, by =1
= 0, S+ ¢ = 0, by =0
= —1, So+¢C = —¢o, by = —1,
or by, =d,.
Continuing, in this way k = 1, 2, N Jk—1,

k-1
s godk + Z (gk—i + hk—i)di
i=0

= gody .

Thus, if b, = d;y form = 0,1, - - -,k — 1, then b, = d;; and the sys-
tem operates error-free in the absence of noise.
For the more general case when noise is present,

k-

s+ e = Z gk_l(d; - b,') + godi = T, + gods
0

-

bizdi

where xy represents the cumulative effect of any and all errors prior
to time k.

Letting p and ¢ denote the d priort probabilities of a plus one and
minus one, respectively, the probability of error on the kth digit p(k)
can be written as

p(k) = p Prob {n,+ 2, < ay — g0} + q Prob {n,+z, > —a, + go}
+ (1 —=p—¢qProb{n, + 2 =a;m+ = —al.

The independence of n; and z;, allows p (k) to be expressed in terms of
the noise distribution function N (z) and the distribution function of
2y, Iy, () as follows:

pk) =p f_: N(ay — go — ) dFi(x)
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+o[ 1= N - a =21 dnE

+U=p=9 [ IN(=a 2 +1 - N — 9] .

For the case of a zero mean symmetrical noise distribution and equal
@ priori probabilities for all input symbols (e, p =¢= (1 — p — q) it
is easy to show that the optimum threshold settings are =4-¢,/2 with

M = 1 =p) [ 1= N2 = 9 + N(=go/2 = 9] dF.@).

It now remains to show that the sequence of random variables
%o, &1, + + - are representative of a random jump process studied in
Ref. 6 and thus p(k) can be expressed as the kth iterate of a known
function evaluated at z, with a finite limit as k — .

Consider,

k
Tpe1 = Zo gk+1—i(di - b-)

k—

gx(dk - bk) + ngk—i(di - bi)

i=

L1 = gl(dk - bk) + ray .

There are five possible transition states each of which takes place
with probability depending on the value of z, .

-

Il

Ifd, =1, b, = —1, thenz,, = rx, + 2¢, with probability p,(x;).
Ifd,. =1, b, =0
or , then z,,, = rz, + g, with probability p.(z,).
d =0, b, = —1
Ifd, = b, then z,,, = rx, with probability ps(z.).
Ifd, = —1,b, =0
or , then z,.; = rz, — ¢, with probability p,(z,).
di =0, b, =1

If d, = —1, b, = 1, then z,,, = rx;, — 2¢, with probability ps(z.).
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The transition probabilities p,(z:), n = 1, 2, ---, 5 are defined by
P = pN(—a, — go — @)
p2() = p[N(ao — go — @) — N(—a1 — go — )]
+ 1A —p— QIN(—a: — z)]
ps(@) = 1 — pi(@s) — pa(2) — pa(ze) — ps(zh)
pa(x) = q[N(ao + go — z:) — N(—a: + go — 2]
+ (@1 —p— 9l = N — z)]
ps(@s) = ¢[1 — N(ao + go — ).
Note,

20 = [ i@ + 2:@) + pu0) + @] IR,

Defining U'[f(2)] = p:(®)f(rz + 2g1) + p(0)f(rz + g1) + pa(2)f(r2)

+ p@fCz — g1) + ps@)f@rz — 2g1)
and denoting the kth iterate of U'[f(x)] by U*[f(x)],

p(k) = Uk[p1(x) + pz(x) + ZM(x) + ps(2)] lz=z.,=o .
If A(z) is the limiting distribution of Fy(z), then

limp®) = [ i) +p0) + pia) + 7o) dAG)

k—o0

= EPl Uk[pl(x) + Zh(x) + p4(x) + ps(x)] szzo=0 .

A few remarks are now presented to indicate the obvious extension to
the m-level (m-ary) pulse transmission scheme. A random jump proc-
ess with 2m — 1 transition states will result requiring an iteration func-
tion U*[f(z)] having 2m — 1 terms. It should be indicated that com-
putationally the amount of computer storage or operations required to
evaluate p (k) is of the order (2m — 1)*.

IV. RATIONAL FUNCTION APPROXIMATIONS OF THE CHANNEL AND
FEEDBACK NETWORKS

As the subtitle indicates, we are interested here in studying the
repeater error performance under the assumption of a rational func-
tion approximation to the channel and feedback networks. This gen-
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eralizes the assumptions of Section III in that () the tail of the pulse
response, ¢ (t), is no longer described by a single exponential, and (1)
the high-frequency behavior of the channcl allows its time response to
exceed two pulse intervals. To isolate these effects, however, perfect
feedback tail cancellation is still assumed and we return to a binary
message format.

It is convenient to represent the output rectangular pulses of the
nth repeater as the impulse response of a filter F(s) = (1/s)[1 — e **]
where ¢, is the pulse width. Including this filter in the forward path
of Fig. 1, the overall channel link between repeaters, T'(s) = F(s)C(s)
E(s)G(s), is assumed to be characterized by a rational function as
follows:

M
T(s) = Gy —— x —L©

TG+ e ,ﬁ,@“”‘)

with its associated impulse response

M N
g() = X At + > Be ™t
i=1 i=1

Note, the impulse response of T'(s) is the same as the rectangular
pulse response of Y(s) = C(s) E(s) G(s) and is thus denoted as be-
fore by ¢(¢). All poles are assumed to be simple, but in general may be
complex. The terminology used henceforth will refer to the set {},
1=1,2, - - -, M as low-frequency poles and the set {8;}, 1 = 1, 2,

, N as high-frequency poles. The inference here is that the B8;'s are
predominantly responsible for signal shaping and the o;'s determine the
low-frequency cutoff of the channel.

A low-pass quantized feedback path H (s) is proposed which in the
absence of noise would provide perfect low-frequency tail cancellation
at all sampling instants beyond the input pulse peak (the effect of im-
perfect low-frequency compensation will be diseussed in Section V).*
Thus, if

H(s) = H, 7,N—(S)— e’

H (s + a)

i=1
where 7o represents the physical delay in the feedback path beyond the
occurrence of the input pulse peak at & = ty,y, then, the response to a
*It is to be emphasized at this point that all of the following is easily gener-

alized in terms of MacColl’s conception of quantized feedback” wherein restora-
tion of both low- and high-frequency signal components is attempted.
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positive regenerator output pulse at ¢t = {,.x would be

M M
h(t) = D D@ ¢mtmesmmemt) = 3T Re™ for § 2 hyas + 7o + o

i=1 i=1

Ideally, for perfect low-frequency tail compensation, we desire

M aAr
ZE,‘e—a” + Z Aie—a;‘t — 0
i=1

i=1
at all instants ¢ + n7,n =1, 2, -+, where T is the uniform sam-
pling period.
Letting h; and g, represent the values of the pulse responses h(t)
and ¢(t), respectively, at the kth sample point the above statements
may be expressed in brief as follows:

N
(77) hi + g = ZG;,n 2% 0
n=1

=1,2 - ,N
€in = Zn€i-1,n
i =2
60‘,, = O
2, = e—ﬁ..T
M
D) hi = 2 hin
n=1
n=12+--,M
hi,n = rnhi—l.n ’ ’ !
=2
rn=e¢ ",

The term e; , represents the residual intersymbol interference at the
1th timing instant due to the nth high-frequency pole. To simplify
what is to follow and at the same time allow a better comparison with
the previous work of Zador, we introduce the following vector nota-
tion:

Py 0 Qeeenees 0 2 0 0reeenns 0
0 Pger v Q 0 ot Q
R = S ; Z = :
0 : 0
Qe vvvemmeennens Tar [0 veeremeenennn 2y
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ho,l h1,1 hz,l h3,1 R
H = ho,2 hl,? hz,z ]13,2 e e
ho.ar by haoa hS,M R
GJo,1 g1 g2 Js.1 Gk —l
G = Go.2 G1.2 J2,2 3.2 Jk,2
I\g(),III+N gr.ar+n  Go,aren G3.ar4x o Ge,aand
0 e e e - ek,l_l
E 0 e2 6.2 €3 Cr.2
0 erx €xy €x - Cun

Using H as an example, the ith row written as a column vector is de-
noted by h' and the ith column by the vector h; . Also any vector written
not in bold face is by definition the scalar representing the sum of its
elements (e.g., b’ = D>_*_, h, ;). Finally, we denote the column vector
obtained by summing all rows of H (i.e., whose ith component is ;)

by h. All of the above statementsﬁare equally applied to the matrices

R, Z, G, and E.
In terms of the above, (¢), (4Z), and (472) may now be rewritten as:
@ ho =0, go >0
(i) hdtg=e
e; = Ze;_y, i=>2
(742) h; = Rh;_,, iz 2.

Some further interpretation of the above statements in terms of
the actual system operation might prove helpful at this point. (7)
indicates a positive input pulse peak (g, > 0) and a delay in the feed-
back path (e = 0). Statements (77) indicate that perfect feedback tail
cancellation is achieved at the sample points starting with the second
except for the effects of the high-frequency poles (8;, B2, --* , Bx).
In contrast to the previous sections, we do not assume that the high-
frequency components of the response have died out before the oc-
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currence of the next input pulse peak. FFeedback cancellation of only
the channel low-frequency poles is described by statements (z7).

For the binary message case, the threshold detector box of Fig. 1
reduces to a simple ideal slicer element operating between 41 and
—1 levels. The input sequence {d;} is a random train of 41 and —1
impulses represented by the vector d with elements d; .

The total reshaped input at the & 4- 1th timing instant, s, , and the
feedback voltage at the same instant, ¢, , are described by,

S = (d*g): E=012 -
Clc=(b*h)k

where the kth element of b, b, = sgn {s, + ¢; + n;} is the kth regenerator
output digit. The notation (a * b), represents the convolution of two
k -+ 1 dimensional vectors a and b (i.e., D_%_, a:bes).

Considering first operation in the absence of noise, we see by in-
spection b, = d, . (This tacitly assumes that no intersymbol interference
due to precursors is present.) Proceeding as in Zador,® if b,, = d,, for
m=20,1, --- , k — 1, then

St o= ({d*e) = gudi + (d*e) .

From this, one concludes that if
k—1
Jo > Z; Iei lv

then b, = d; and the eye is open. The system will therefore operate
error-free in the absence of noise for any length input sequence if

go > ;]eil'

If all N high-frequency poles (8,, Bz, -+, 8x) have positive residues,
the above criterion reduces to

N
6],n
go > ;1 — 2z

The above implies that the eye is open if the total high-frequency
contribution at all sample points beyond the firstis smaller than the
pulse peak.

More specifically, the values of e,,, and z, may be related to the
allowable amount of degradation of the eye., That is, for any eye which
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is X percent closed.

N
ern_ _ X
Z:1—zn‘1oog°'

n=1

Turning now to the more realistic situation in the presence of noise

8+ 6 = godi + (A * 8-y + (b *h)y .
Consider subdividing the vector d into two parts d’ and d” in such
a way as to separate the input digits into two classes corresponding
to b; = d; and b; £ d; respectively. That is,
d; = d; ; di =0 {2; b; = d;}

=0 =d.' {1; b;#d,’}.
(Obviously d = d’ + d”.)
Then, using (¢7),

u, = (d * ET)}:—I ;e = —2(d * HT)k—l

St + e = godx + U + Vs
= godix + Zx,

where (d * (), is a vector whose ith component is the convolution of d
with theith column of G. Again omission of the bold face notationindicates
summation over all the components and T’ is the transpose operator.

The first term in x, denoted by wu, represents intersymbol inter-
ference due to residual high-frequency tail components irrespective of
previous decisions. The second term v, again represents the cumulative
effect of any and all errors prior to time k.

The expression for error probability on the kth digit is identical
to that given by Zador, namely,

20 =p [ N(—g =2 a@) + 0 [ 1= N = 9] R,

The only difference being the nature of the distribution function F,(z).
The recursive properties of the intersymbol interference @, are now
examined.

Tpor = @ *E7), — 2@’ * H"), .
If b, # d,, then
Tisr = (6 — 2h)d;, + z7(d * E")_, — 207"’ * H"),,
= (&, — 2h)d, + z™uy + 17V .
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If bk = dL y then
a1 = d, + ZT(d *ET)k_l — 2rT(d” * HT)k_l
=ed, + z'u, + 17y .

Letting @ = —2h,, the intersymbol interference sequence z,,
x; , -+ - may be expressed as a random jump process,”® with the following
transition states:

If d, = 1 # b, , then with probability p,(z:)
Teor = 2 + & + 17V + a.

Ifd, = 1 = b,, then with probability p,(x)
Zps1 = ZUx + e 17V .
If d, = 1 # b, , then with probability ps(z;)
Tppr = ZUx — e, + 17V — a.
If d = —1 = by, then with probability p,(x:)

T, T
Tpsr = Z U — € +F T Vi,

where

i) = pN(—go — 1)
p2(2) = pll — N(—go — @4)]
ps(x) = q[1 — N(go — )]

() = q[N(go — )]

In the above, N (x) is the distribution function of the stationary noise
process, and p and ¢ are the a priort probabilities of a plus one and
minus one, respectively. In terms of the above elementary probability
density functions, the error probability on the kth digit may be ex-
pressed as:

p® = [ 0@ + p@) dr).

We propose a vector extension of Zador’s procedure, namely; an M + N
dimensional iteration scheme in which each of M + N wvariables is re-
placed by a linear transformation on itself during each iteration. To
elucidate the meaning of M + N dimensional iteration and at the same
time recall some of our earlier vector notation, the first-order itera-
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tion function U'f is written in summation notation as:

U'f(e, o) = m(ﬁ? 6, + m}; sam) [Z (200 + €1.) + Z (rnom + am):l

n=1 n=1 m=1

-f Z (2.0, + €1..) + Z (Tmsom)]

L. n=1

i

i (2.0, — €1..) + :é T o — am):l

n=1 m=1 L n=1

+MZ@+Z%f
+ p4<§1 0. + =1 f ; (znon - el.n) + ;l (Tm¢m)]'

It follows that the probability of error on the kth digit is

p(k) = Uk[pl + pa] lo.p=0

where U* is the kth M + N dimensional iterate of U*. The convergence
of p(k) in the limit as k& — o has not been examined for an M + N
dimensional branching process. From Zador’s work on one-dimensional
branching processes® we may conjecture that absolute system stabil-
ity (i.e., all poles in left-half plane) implies convergence in the multi-
dimensional case.

Although the notation in the foregoing analysis appears formidable
(quite an understatement) the procedure and its usage are straight-
forward (at least analytically) for a particular example. At the ex-
pense of being redundant, we once again point out that even in sunple
cases, numerical results are hard to come by.

V. IMPERFECT LOW-FREQUENCY TAIL CANCELLATION

It is relatively simple at this point to include the effect of imperfect
low-frequency cancellation in the results of Section IV. As an example,
such a phenomenon might be caused by a delay of amount = in the
feedback path. Defining an L matrix by

0 ll.M lz,M la,u lk.M
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where

Lim= hl.,,,[l — exp (—- % log, :—)] m=1,2,---,M,

statement (it) of Section IV may be modified as follows:
(%) h+4+g=e—+1
L = Rl i=2
e; = Zej_y .
The effect of this on the recursion relationship for z, is as follows:
If b, 5 d;, then
T = (o + I — 2h)d, + z"uy + 17V + 1oy
If b, = d;, then
Trer = (e + L)y + 27w +7vi + oy,

where o, = (d * L"), .

If d, = 1 £ b, , then with probability p, ()
Tper = ZUx + e + 17V + a + 1o, + 1.
If d, = 1 = b, , then with probability p,(z:)

Tper = 20 + € 17V + 170w + L.
If d, = 1 # b, , then with probability ps(x:)
Tpor = ZUx — e 1"V —a +1r'o — 1.
If d, = —1 = b, , then with probability p.(z,)
Tpor = Z g —e; + 17V 170 — 1,
where p;(2;), p2(zs), Pa(x:), and p.(z;) are still defined as in Section IV.
The kth bit probability of error is now evaluated by a 2M + N

dimensional iteration scheme where the first-order iteration function
U'f is written as
M

Ulf(o’ (9’ Y) = pl<21 0n + { Pm + ; 7m)

m=

N A M
.f[gl (zneﬂ + el.ﬂ) + ‘S___-:l (rm¢m + am) + ; (Tm’Ym + ll,m)]
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N M M
+p2(; 0n+ ;¢m + ZI’Ym)

M M
-f l(znan +e.) + Z (o) + Z oivm + ll,m)]

L. n=

N M A

N

f Z (Z,,e,, - el,n) + Z (rmiom - am) + ; (Tm'Ym - ll.m):l

L. n=1 m=1

+p4(§1 On + 2 0n + va)
'f Z,; (ann - el,n) + ; (rmgom) + Z=; (T,n’)/m - ll.m)}'

It once again follows that the probability of error on the kth digit is

p(k) = Uk[pl + pB] |0,¢,-(=0 y

where U* is the kth 2M + N dimensional iterate of U’.

To reward the reader for his patience up to this point, we will at
least demonstrate that the general expression for p(k) given above
reduces to Zador’s result for the single low-frequency pole, perfect
cancellation case. The assumption of no high-frequency signal shaping
and perfect cancellation imply that 0, e,, and ~, 1; are, respectively,
zero. Furthermore, a single low-frequency pole results in 7, ¢, , and
a, being the only nonzero components of r, @, and a, respectively. Under
these conditions,

p(k) = U'lpy + 2] |4n=0

where
U'f = p@frer + a) + pale)fer)
-+ pa(ﬂf’l)]‘(ﬁ% - 111) + p4(¢1)f(1”1¢1)

which is identical to Zador’s result upon combining ps(¢;) and ps(e1).

Vi. THE EFFECT OF NOISE CORRELATION

In this part, the emphasis is placed upon removing the restriction of
uncorrelated noise while at the same time arranging the results in a
form which allows easy comparison with the uncorrelated case. The
approach to be followed is the reformulation of Zador’s work into
an operational iteration procedure which acts on the joint distribution
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of the noise samples. The details are presented for the simple binary
case with perfect feedback cancellation considered by Zador. With
sufficient patience, extension to the more general situations covered in
the foregoing sections can be accomplished, but that is not done here.

To review, the operation of the simplified system may be described
by the equation

b, = sgn {n. + godi + 2.}, @
where

&

-1
2 =2 L gk—ide (2)
bi=—

@

represents the intersymbol interference accumulated at time ¢, as a

result of errors (d; = b,) prior to that time.
The system output b, is in error when

n + 2 < —go and d, =1 ©)
Ny + T, > Jo and dk = —1.

Since the noise samples are not assumed to be independent, the random
variables n, and z, are not independent. Hence, the distribution of the
effective noise n, + x, is not simply the convolution of the distributions
of n, and z,. Instead, the expression for error probability p(k) =
prob {b, # d,} must be written as

p® =p [ [ matn ) dneda,

+ q f f My , xi) dng dx,. 4

where ma(ny, x;;) is the joint density function of n; and 23 and p and ¢
are the a priort probabilities of a 41 and —1, respectively.

A careful examination of the branching process described in Refs. 5
and 6 for the uncorrelated case shows that a similar process governs
in the correlated noise case. Define the integral operators p; (z), pa2(x),

ps(z) by
p(@) =p f_ ;—

po = [ —o [ -af ©

ps(2) = qfw

go—x ¢
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Note that the action of each of these three operators on a single di-
mension Gaussian density function results in the three transition prob-
abilities defined by (13) of Ref. 5. If f(x) is defined analogously (but
operationally) as

f@) = pi(@) + ps(z) = p f_ ;— +q j; : , 6

then the first-order iterative operator Uf(z) is expressed as in Zador,
namely:

Uf@) = p@fz — @) + p(@)f02) + ps@)ftz + o) @

with ¢ = —2¢,;. We note that after separating f(x) into its two com-
ponents parts, each term of (7) represents a double integration and
thus (7) has meaning only when applied to a second-order density
function. Proceeding as in Zador, the error probability on the k--1th
digit in a random input sequence is expressed as the kth iterate of the
operator Uf(x) acting on the k41 dimensional joint density function
of the noise process vy11 (y1,v2, = * *, yus1) evaluated at z = 0, i.e,,

pk) = ka(x)[vk(’)’l d Y2 e s Vi) lxxo.* (8

The meaning of iteration for the operators defined here is the same
as in Zador’s functional case. As an example, we write out p(1) in
detail:

p(1) = U@katn v o = 2° [ [ e v i e
+ pg f_: _/;i v:(v1 , v2) dvi dv: + D f_i f_: v:(v1 , ¥2) dvi dvs
+q f: fw v:(v1 , 7v2) dyy dye — P [_: f_: v:(71 , 7o) dvi dye
— Dy f_: f;w (71 5 72) dvi dva — pg f:o f_: v2(v1 5 v2) dv1 dve
-q /;w fpw v:(v1 , ¥2) dvy dvs + pg fyw f_:o—a v2(v1 4 72) dvi dv,

+ ¢ j; f va(y1 5 ¥2) dyi dys . 9)

go—a

*The convergence of the operational iteration procedure defined by (7) and
(8) has not yet been proven. Nonetheless, we proceed with our results.
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The above expression for p(1) can be simplified for a symmetric den-
sity function v,. It is further emphasized that the arguments of each
term in the operator as defined by (7) determine the limits on the
integralsin (9) (i.e., the region of integration).

VII. CONCLUSIONS

The analysis presented in this paper might in a broad sense be
described as vector and operational extensions of the work of Zador.
In addition to simply considering a vector of low-frequency poles,
however, the vector approach has enabled us to remove certain other
restrictions from the basic regenerator problem such as lack of high-
frequency signal shaping and perfect tail cancellation. Although, the
question of convergence of the operational iteration scheme for cor-
related noise samples remains as yet unanswered, the formulation itself,
is of interest. Little has been suggested for solving the exact computa-
tional problem. A future paper will discuss some useful approximations
to cases of relatively low dimensionality. This will generalize results
given in Ref. 8.
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Factoring Polynomials
Over Finite Fields

By E. R. BERLEKAMP
(Manuscript received May 9, 1967)

We present here an algorithm for factoring a given polynomial over
GF(g) into powers of irreducible polynomials. The method reduces the
factorization of a polynomial of degree m over GF(q) to the solution of
about m(q — 1)/q linear equations in as many unknowns over GF(g).

There are many applications in which one wishes to factor poly-
nomials. Some programming systems, such as Brown’s ALPAK,* deal
with polynomials and rational functions with integer coefficients. In
such a context one is interested not in approximate numerical values
for the real and complex roots, but rather in irreducible factors which
are themselves polynomials with integer coefficients. One of the stand-
ard tricks mentioned by Johnson? for finding such irreducible factors
is to reduce all of the coefficients of the original polynomial modulo
some prime, p, and then factor the reduced polynomial over the Galois
Field, GF (p). If the reduced polynomial factors, one gets certain
constraints on the factors of the original polynomial; if the reduced
polynomial does not factor over GF (p), then one may conclude that
the original polynomial is irreducible over the integers. The success
of this method for factoring polynomials over the integers clearly de-
pends upon having an efficient procedure for factoring polynomials
over GF (p).

The problem of factoring polynomials over finite fields arises di-
rectly in Golomb’s study® of feedback shift register sequences. In
Golomb’s words, this study “. . . has found major applications in a wide
variety of technological situations, including secure, reliable and ef-
ficient communications, digital ranging and tracking systems, deter-
ministic simulation of random processes, and computer sequencing and
timing schemes.” The properties of all eyclic error correcting codes,
including the important Bose-Chaudhuri*-Hocquenghem?® codes, de-
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pend on the factors of their generator polynomials in some finite field.

Such codes have been studied extensively by Peterson® and Mac-

Williams.” Recent advances in decoding techniques by Berlekamp?

make these codes even more attractive from the practical standpoint.
We present here an algorithm for factoring a given polynomial,

10 = 212, e G,

into powers of irreducible polynomials.
First, we construct the m X m matrix Q over GF(q), whose 7th
row represents z°“~" reduced modulo f(z). Specifically,

m—1
2% = kz: Q.’+1,k+lzk mod f(z).
-0

The @ matrix may be computed with a shift register wired to multiply
by 2z mod f(2). The register is started at 1, which is the first row of Q.
After ¢ shifts, the register contains the second row of @; after ¢ more
shifts, it contains the third row of @, --- , etc. After q(m — 1) shifts,
it contains the last row of Q.

Given any polynomial g(z) of degree <m over GF(q), g(2) = >_ "2} g:2°,
we may compute the residue of (g(2))* mod f(z) by multiplying the
row vector [go, g1, -** , gm—1) Dy the @ matrix. This follows from the
observation that

m—1 m—1 m—1

(9@)* = g(") = ZO gt = ;0 <§ giQi+1.k+12k>
m—1 m=1

= Z <Z 9£Q£+1,k+1>zk-
k=0 \i=o

Similarly, we could compute (g(2))* — g(2) mod f(z) by multiplying
the row vector [go, g1, *** , gm_1] by the matrix (@ — I), where [
is the m X m identity matrix over GF(q).

Second, we find a set of row vectors which span the null space of
(@ — I). This may be done by appropriate column operations on the
matrix (Q — I).® Each such row vector in the null space of (@ — I)
represents a polynomial g(z) which satisfies the equation (g(2))* —
g(z) = 0 mod f(2), and conversely, each g(z) which satisfies this equa-
tion is represented by a row vector in the null space of (@ — I).

Third, we select any of the polynomials ¢g(z) found in the second step,
and apply Eueclid’s algorithm to determine the greatest common
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divisor of f(z) and ¢g(z) — s for each s ¢ GF(q).* We then have the
factorization

@) = GIPI) (g.cd. (f@), 9@ — 9)).
Remark: If g(z) is a scalar, then this factorization degenerates into

) = g.cd. (), 0) H g.cd. (b(), 9)
=16 I] 1.

870
However, if g(2) has positive degree, then the factorization is non-
trivial.
Proof: Since (g(2))* — g(z) = 0 mod f(2), f(z) divides (g(2))* —
9) = [Lecorw(@®) — s. Therefore, f(2) also divides

I.orw(@ed. (@), giz) — ).

On the other hand, g.c.d. (f(2), g(2) — s) divides f(2). If s & ¢, and
s, t £ GF(g), then g(z) — s and ¢(2) — ¢ are relatively prime, as are
g.ed. (f2), g(&) — 9), and g.c.d. (f(2), g(z) — t). Therefore,

ILcrw(ged. (), 9@ — 9))

divides f(z). Assuming both polynomials to be monic, they must be
equal since each divides the other. Q.E.D.

Ezample I: Let {(2) be the binary polynomial 1110001110001, or f(z) =
142+ 2"+ 2° + 2" + 2° 4 2. The successive powers of z are

100000000000 111000111000
010000000000 011100011100
001000000000 001110001110
000100000000 000111000111
000010000000 111011011011
000001000000 100101010101
000000100000 101010010010
(000000010000 010101001001
000000001000 110010011100
000000000100 011001001110
000000000010 001100100111
000000000001

_*In practice, there is no need to perform all of Euclid’s Algorithm g separate
times to determine all of the g.c.d.s. A short cut will be seen in the example.
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100000000000 000000000000
001000000000 011000000000
000010000000 001010000000
000000100000 000100100000
000000001000 000010001000

S0 000000000010 and 000001000010
@ = 111000111000 @ — I = 111000011000.
001110001110 001110011110
111011011011 111011010011
101010010010 101010010110
110010011100 110010011110
001100100111 001100100110

If we number the columns of @ — I from 0 to 11, then the upper
right quarter of the @ — I matrix may be zeroed if we add the 3rd
column to the 6th column, the 1st, 2nd, and 4th columns to the 8th
column, and the 5th column to the 10th column. The lower right
quarter of the @ — I matrix then becomes

011000

111110
_ 011001
© 010110°

011110

001110

The equation [gs, g7, -++ , gnu]B = 0 is found to have solutions
96,97, <+, gu] =[4,0,0, 4,0, A] where A = 0 or 1. The first six
coordinants of g are then readily found from the equation g(Q — I) = 0,
with solutions ¢ = [B, 4,0, 4, 4,0, A, 0,0, 4, 0, A]; A, B £ GF(2).
Finally, we apply Euclid’s algorithm to f(z) = 1110001110001 and
g(2) = s10110100101. By letting ¢ = s 4 1, and leaving s as an in-
determinate, we may effectively find the g.c.d. of 111000111001 and
010110100101 with the same computation that computes the g.c.d.
of 111000111001 and 110110100101:

1110001110001
10110100101
14001110101
510110100101
s0 t11101
1001110101
1051501
s0 {11101
1tti0¢

R
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If t = 0, the g.c.d. is 10011101; if s = 0, the g.c.d. of 1110001110001
and 010110100101 is equal to the g.c.d. of 111101 and 11001001, which
is 111101. Both 111101 and 10011101 are irreducible and the factoriza-
tion is complete:

Atz +2" 27+ + 2
=14z24+24+24+04+24+2"4+2°+2) over GF(2).
In general, suppose f(z2) = [[: (" (2))*, where each p‘”(2) is
an irreducible polynomial over GF(q). Then {(2) divides

HatGi‘(q) (9(2) — )

if each (p*“'(2))* divides g(z) — s; for some s; ¢ GF(g). On the other
hand, given any set of scalars s, , 5, ++- , s, ¢ GF(q), then the Chinese
remainder theorem guarantees the existence of a unique g(z) mod f(2)
such that g(z) = s; mod (p*(2))** for all 7. Since there are ¢" choices
of 8;,8,, -+ ,s,, there are exactly ¢" solutions of the equation (¢(2))® —
g(2) = 0 mod f(z). Therefore,

The number of distinct irreducible factors of (2) is equal to the dimen-
sion of the null space of (Q — I).

In particular, the polynomial f(z) is the power of an irreducible
polynomial iff the null space of (@ — I) has dimension 1. In this case,
the only solutions of (g(2))* — g(2) = 0 mod f(z) are scalars in GF(qg),
and the null space of @ — I contains only vectors of the form
[s, 0, 0, --- , 0]. If the null space of @ — I has dimension =, it has a
basis consisting of n monic polynomials: ¢’ (), ¢’ @), -+- , 9™ (2).
Without loss of generality, we may assume that g*”(2) = 1 and that
the other n — 1 basis polynomials have positive degree.

When we apply Euclid’s algorithm to f(z) and ¢’ (2) — s, we obtain
a factorization of f(z). If this gives fewer than n factors of f(2), then
we may compute the g.c.d. of g*’(2) — s and each known factor of
f(2). By this process, we may continue to refine the factorization of
f(2). The following argument shows that this process must eventually
yield all n irreducible-powers which are factors of f(2).

Let C be the » X 7 matrix over GF(q) defined by the equations
g = C;; mod (p*’(2))*. Then C must be nonsingular. For if
2. A;C;; = 0 for all 4, then > ; A;g'”(2) = 0 mod (p*“(2))** for
all 7, whence _; 4;9'”(2) = 0, contradicting the linear independence
of gM (), g¥(@), -+, 9" (2). When we apply Euclid’s algorithm to
f(2) and g‘?(2) — s, we obtain a factorization of f(2) into as many
different factors as there are distinct elements in the jth row of C.
The irreducible-powers (p‘”(2))* and (p* (2))** are separated iff C;,; #*
C..; . Since C is nonsingular, for every 7 and k there exists some j such
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that C;,; # C,.;. Thus, any two irreducible-power factors of f(z)
will be separated by some g‘”(2).

The factorization of any power of an irreducible polynomial is
readily accomplished by applying Euclid’s algorithm to the poly-
nomial and its derivative.

We conclude with another example.

Ezample II: Following a suggestion of R. L. Graham, we let f(z) =
z" — 1 over GF(q), where n and ¢ are relatively prime. Then @,y ,;4: =1
if ¢¢ =7 mod n. Specifically, suppose n = 15 and ¢ = 2. Then

100000000000000 000000000000000 O
001000000000000 011000000000000 1
000010000000000 001010000000000 2
000000100000000 000100100000000 3
000000001000000 000010001000000 4
(000000000010000 000001000010000 5
000000000000100 000000100000100 6
000000000000001 @ — I = 000000010000001 7-
010000000000000 010000001000000 8
000100000000000 000100000100000 9
000001000000000 000001000010000 10
000000010000000 000000010001000 11
000000000100000 000000000100100 12
000000000001000 000000000001010 13
..000000000000010 000000000000011 14

By suitably permuting the rows and columns, we can bring @ — I
into the form

0/0000)j0000/000000 0O
011100/0000{0000{00 1
0/0110)0000(0000|00 2
0j0011;0000j0000[00 4
0{1001}0000j000000 8
0l0000{1100{0000/00 7
0{0000{0110{0000/00 14
0/0000(0011/0000|00 13
0(0000(1001{0000/00 11
0/0000j0000{110000 3
0/0000/0000{0110{00 6
0/0000/0000|0011j00 12
010000/0000{1001/00 9
0,0000/0000/0000/11 5
010000]0000j0000;11 10
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A basis for the null space of @ — I is seen to be
9P =+ 4+
07@) =& +2" 27 + 2"
97@ =2+ + 2"+ 2
90 = 2° + 2.
In general, if f(2) = 2" — 1 over GF(q), then we may choose

keC

where C' is any set of numbers which is closed under multiplication
by ¢ mod n. Each such polynomial g(z) has some nontrivial factor in
common with 2" — 1.
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The Enumeration of Information

Symbols in BCH Codes

By E. R. BERLEKAMP
(Manuscript received May 9, 1967)

This paper presents certain formulas for I(q, n, d), the number of
information symbols in the g-ary Bose-Chaudhuri-Hocquenghem code of
block length n = ™ — 1 and designed distance d. By appropriate ma-
nipulations on the m-digit q-ary representation of d, we derive a simple
linear recurrence for a sequence whose mth term s the number of informa-
tion symbols in the BCH code.

In addition to an exact solution of all finite cases, we obtain exact as-
ymptotic results, as n and d go to infinity while their ratio n/d remains
fized. In this limit, the number of information symbols increases as n’.
Specifically, we show that for fized u, 0 £ u < 1,

bom ¢ ™1(q, ¢" — 1,uq™) = 1,
where s 1s a singular function of u. The function s(w) is conttnuous and
monotonic nonincreasing; it has derivative zero almost everywhere. Yet
$(0) = 1 and s(I) = 0. For q = 2, s(u) s plotted in Fig. 1.

Any cyclic code of block length n over GF(g) may be defined by its
generator polynomial, g(x), which is some factor of 2" — 1 over GF(g),
or by its check polynomial, h(z) = (2" — 1)/¢g(x). The number of
check digits in the code is given by the degree of g(x); the number of
information digits, by the degree of h(z). We assume that n and ¢
are relatively prime. It is most convenient to work in a particular ex-
tension field of GF(q), namely GF(q™), where m is the multiplicative
order of ¢ mod ». In this field, 2* — 1 factors into distinet linear factors:

" — 1= ] @ — o).
i1

Here « is any primitive nth root of unity in GF(¢™); «* = 1. From the
factorization 2" — 1 = g(x)h(x), we see that every power of « is a root
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1,07

0.9

0.8

0.7

0.6

s(u)

0.3

0.2
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Fig. 1 — Graph of s(u) vs. u.

of either g(z) or of h(z), but not both. Thus, a cyclic code partitions
the powers of « into two sets: those powers which are roots of the
generator polynomial, and those powers which are roots of the check
polynomial. If g(z) and h(z) were permitted to have coefficients in
GF(¢™), then any partition of the powers of « would define a cyclic
code. However, the coefficients of g(z) and A(z) must lie in the ground
field GF(q). Consequently, if o’ is a root of g(z), then so are the con-
jugates of of, namely a%, &'®, &'®, --- . Conversely, if all conjugates
of roots of g(x) are also roots of g(x), and all conjugates of roots of
h(x) are also roots of h(x), then all of the coefficients of the polynomials
g(z) and k(z) lie in GF(g).

The previous remarks hold for all cyclic codes.

A g-ary BCH code of block length n over GF(q) may be defined as
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the cyclic code whose generator’s roots include only «, o, +-- , a*™
and their conjugates. This code is capable of correcting any combina-
tion of less than d/2 errors; (c¢f. Berlekamp') the minimum Hamming
distance of this code is at least d. For this reason, d is called the designed
distance of the code.

The first result on the number of information symbols in BCH codes
is the following lemmas:

Classical Lemma I: Let I(q, n, d) be the number of information symbols
in the g-ary BCH code of block length n and designed distance d.

Define [ 4] by the equations
i=[7]modn and 1 =[7] = n.

Then I(gq, n, d) is the number of integers j, suchthat1 £ j £ nand[j¢"] = d
for all k.

Proof: o' is a root of the generator polynomial of the BCH code iff
there exists some k(j) such that [j¢*] < d. Conversely, a’ is a root
of the check polynomial iff [j¢"] = d for all k. Q.E.D.

The classical lemma enables one to compute the number of informa-
tion symbols in any g¢-ary given BCH code without doing any cal-
culations in GF(g) or its extensions. One need only enumerate certain
types of residue classes mod n. In practice, this enumeration is still
often tedious, particularly when n and d are large.

In order to obtain more tractable results for large » and d, we prefer
to start from an alternate form of the classical lemmas:

Classical Lemma I1: Let I(q, n, d) be the number of information symbols
in the q-ary BCH code of block length n and designed distance d.

Define | 7| by the equations
i={4i|modn and 0= |7|]=n— 1.

Then, I(q, n, d) 7s the number of integers 7, such that 0 < 7 = n — 1
and | i¢° | < n + 1 — d for all k.

Proof: 1= j=<nand[jffl=dforallkif 0 = (n —j) <n-—1

and | (n — §)¢" | £ n — dforallk. Leti=n — j Q.E.D.

In the wide sense, BCH codes may be defined over any alphabet
whose order, ¢, is a prime power, and for any block length, n, which
is relatively prime to ¢. In the narrow sense, however, n is required to
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be one less than a power of g. For narrow sense codes, the smallest
extension field of GF(g) which contains the nth roots of unity is GF(n+41).
For wide sense codes, this extension field is always larger, usually
much larger. Since the decoder must perform certain computations
in this extension field, narrow sense BCH codes are more easily im-
plemented than their more general wide sense counterparts.

We shall enumerate the information symbols in narrow sense BCH
codes by reducing the problem to the enumeration of certain kinds of
sequences over the alphabet consisting of the integers 0, 1,2, ---,q¢ — 1,
as first suggested by Mann.”? We begin by defining the appropriate
manipulations with such sequences.

We shall always use capital letters for sequences. We let (@ — 1)
denote the sequence consisting of the single letter ¢ — 1. Unless other-
wise stated, we allow every sequence to be either finite or infinite.

Let V. = V,V,V; --- be any finite or infinite g-ary sequence (i.e.,
a sequence of numbers V;, where V; is an integer, 0 = V; £ ¢ — L.
Welet V = V,V,V; --- denote the complement of V, defined by V; =
(gq— 1) — Viforalle. f W = W,W, --- W, is a finite g-ary sequence,
then we may form the cyclic shifts of W: W.Ws --- W.W., W,W,
coo WW Wy, «-- . If X is a finite g-ary sequence, X = X, X, ---
X,;, then we may form the concatenation X * V = X, X, X3 ---
X,;V,V,Vy --- . This concatenation may be formed whenever V is
a finite or infinite ¢g-ary sequence. If V is a finite ¢g-ary sequence, then
V * X is a cyclic shift of X * V.

The ¢-ary sequence Y is said to be a prefix of X iff X = Y * Z for
some Z; Y is said to be a suffix of X iff X = Z * Y for some Z. A prefix
must be a finite (or empty) sequence; a suffix may be empty, finite,
or infinite. V is a proper prefiz of X iff X = V * Z, and neither V nor
7 is empty. Z is a proper suffix of X iff X = V * Z and neither V nor
Z is empty. If X is a finite ¢-ary sequence, X = X, X, --+ X, , then we
may form the dterated concatenation of X with itself, X = X,X, ---
XX, X, --- X --- . In particular, (@ — 1) denotes the infinite g-ary
sequence all of whose letters are ¢ — 1.

Wesay X < Y iff there exists a jsuchthat X; = Y, fori=1,2, -- -,
i—LbutX; <Y,.If X ¢ Yand Y &« X, then one is a prefix of
the other.

This ordering is similar to the numerical ordering of g-ary fractions,
but there are important differences. For example, + = 0.01 < 0.0101 =
5/16, but the sequences 01 and 0101 are incomparable, because one is
a prefix of the other. On the other hand, 0.0111111 ... = 0.1 = },
yet 01111 --- < 1. This type of example may be excluded by writing
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all fractions in their terminating form if they have one. We may then
assert the following:

Let
u = Z U,‘(]—i, v = Z V."q—‘, U = U1U2U3 b

and V = V,V, V5 - -+, and suppose that (Q = 1) is not a suffix of U or V.
Then
U< V=u<v

U<V
u=sve or
1U s a prefiz of V.

We say that X is an smmediate subordinate of Y iff X is a finite se-
quence, X = X, X,X; - X;,and X, =Y,, X, =Y,, -, Xy =
Y.y, but X, < Y,. The sequence Y has Y, immediate subordinates
of length 1, ¥, immediate subordinates of length 2, Y, immediate
subordinates of length 3, ... ¥V, immediate subordinates of length k.
If the sequence Y has only a finite number of nonzeros, then we may
define the greatest immediate subordinate of Y. If the last nonzero in
the sequence ¥ = Y,Y, ... is Y, then the greatest immediate sub-
ordinate of ¥V is Y,Y, .-+ Y, (Y, — 1). If the sequence Y contains
an infinite number of nonzeros, then Y has infinitely many immediate
subordinates. All of them are less than Y itself, but none of them is
the greatest immediate subordinate.

Similarly, we say that Y is an smmediate superior of X iff ¥ = Y,Y,Y,
-+ Y,,whereY, = X,,Y, =X, , Y, =X, bt ¥, > X,.
IfX = XX, .-+ X, and X, # (@ — 1), then the least immediate
supertorof Xis Y = YV, Y, --- YV,; Y, = X;fori=1,2, --- | k — 1,
and Y, = X, + 1. It should be evident that the least immediate superior
is among the longest immediate superiors, and the greatest immediate
subordinate is among the longest immediate subordinates.

Definition: If ¢ is any integer, U is any infinite g-ary sequence and
m is any integer, we define J(g, U, m) to be the number of ¢g-ary m-
tuples all of whose cyclic shifts are less than U.

Lemma ITT: (Complemented form of Mann’s Lemma)
If
n=g¢"—1, n4+l-d=2Uqg"", 0=U:.<g,
i=1
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U=UU,---U,,andY is any q-ary sequence then
I{g,n,d) = J{q, U * Y, m).

Proof: Lemma III reduces to Lemma II under the following cor-
respondence: The g¢-ary m-tuple U corresponds to the integer n -+
1 — d; another ¢g-ary m-tuple W = W,W, --- W,, corresponds to the
integer w = ™, W.g""". The first cyclic shift of W is the sequence
W,Ws; --- W,W,, which then corresponds to the integer

m—1

Wt AW, = quw — (" — DWW, .
i=1

Modulo n = ¢" — 1, the integer corresponding to the first cyclic shift
of W is seen to be congruent to qw. Therefore, the successive cyeclic
shifts of an m-digit ¢-ary sequence W correspond to the integers [ w |,
Lwq |, Lwg® ], - -+, Lwg™™" ]. These integers are all <n + 1 — d iff all
cyclic shifts of W are <U, which is true iff all cyclic shifts of W are
<U=*Y,forany Y. Q.E.D.

The choice ¥ = U has an interesting interpretation:
; U™ = ,; U = (Z qu—‘>/(1 —q")

(Sve ) -n=1-

i=1

Mz

i=1

@=1n,
n

I

Thus, the sequence U is the g-ary expansion of 1 — (d — 1)/n. For
this reason, we may investigate the behavior of I(g, n, d) for large n
and d with a fixed fractional error correction capability, (d — 1)/2n,
by studying J (g, U, m) as a function of m for fixed ¢ and U.

We shall temporarily ignore the periodicity of the U sequence,
and consider the function J(g, V, m) for an arbitrary ¢-ary sequence
V. We assume only that the sequence V has no terminal zeros.

From the definition of the immediate subordinates of V, it is clear
that ¢f an m-digit g-ary sequence W s less than V, then some immediate
subordinate of V is a prefix of W. For if W is less than V, then there
exists a k such that W, = V;for7i=1,2, ...,k — 1,but W, < V,,
and the sequence W,W, --- W, is a prefix of W and an immediate
subordinate of V.

Now suppose that some m-digit sequence W and all of its cyclic
shifts are less than V. Since W itself is less than V, some prefix of W
must be an immediate subordinate of V. Are all possible immediate
subordinates of V possible prefixes of W? In general, they are not, for
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some immediate subordinates may have suffixes which are greater
than V. If X * Y is an immediate subordinate of V and Y is greater
than V, then X * ¥ cannot be a prefix of W. TFor, if W = X * Y * Z,
then one of the cyeclic shifts of W is ¥ * Z * X which is greater than V.

For example, consider the ternary sequence V = 20212. Its im-
mediate subordinates are 0, 1, 200, 201, 2020, 20210, and 20211. The
immediate subordinate 20210 has the suffix 210 which is greater than
V. Therefore, if 20210 is the prefix of W, then the second cyclic left
shift of W is greater than V. Similarly, V’s immediate subordinate
20211 has the suffix 211, which is also greater than V.

For some sequences V, this difficulty does not arise. If V' exceeds
all of its own proper suffixes, then we have the following theorem:

Theorem 1: Let V be a g-ary sequence which exceeds all of its oun
proper suffizes. Then:

() No immediate subordinate of V is a proper prefix of any other
immediate subordinate of V.

(i2) Every suffix of every tmmediate subordinate of V is a concatena-
tion of other itmmediate subordinates of V.

(#25) If W and all of ils cyclic shifts are less than V, then W can be
uniquely decomposed into a concatenation of tmmediate subordinates of V,
mcluding a (possibly empty) end-around immediate subordinate. Spe-
cifically W = W« WP % oo s WO s WP 5 WO 5 Lo U0 4
WP Ww®R, W, .., WYY are immediate subordinates of V; W *
W s WP % .. x WP 4s the end-around immediate subordinate. The
end-around immediate subordinate has a prefix, W*'?, which is a suffix
of W, and a sufic W = WP = ...« W which is a prefix of W, as
well as a concatenation of the shorter immediate superiors W, W |
cee , WL

() Every concatenation of immediate subordinates of V, including
a (possibly empty) end-around tmmediate subordinate yields a sequence
which has the property that all of ts cyclic shifts are less than V. No
such sequence of length m can exceed the maximum m-digit concatenation
of tmmediate subordinates of V. If Y 4s the maximum m-digit concatena~
tion of immediale subordinates of V,and Y < U £ V, then J(q, V, m) =
J(g, U, m).

©)

J(q, V,m) = mV, + 2, ViJ(g, V, m — &),
k=1

where V; 1s taken as 0 if j exceeds the length of the sequence V.
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(vi) Let
n=gq"—1 d=2Dg"", 02D, <y,
D=DD,---D,.
If
V+*@ -1 <DE
least m-digit concalenation of immediate superiors of V,

then,
I{(q,n,d) = J(q, V, m).

Proofs:

(7) This property of immediate subordinates does not even depend
on the suffix condition on V. From the definition of immediate sub-
ordinates, each immediate subordinate must disagree with V only
in the immediate subordinate’s last digit, and hence no immediate
subordinate can be a prefix of any other.

(77) Let us first prove the weaker assertion:

(a) Every proper suffix of every immediate subordinate of V has
a prefix which is a shorter immediate subordinate of V.

Let S be an immediate subordinate of V, and let S® be a suffix
of S. We may write S = S® * §®, Since § differs from V only in its
last digit, 8 is a prefix of ¥V, and V = S * V., Since 8 < V,
S® < V. Since V exceeds all of its own proper suffixes, V* < V.
Therefore, S < V. Therefore, some prefix of S® is an immediate
subordinate of V.

(b) If every suffix of an immediate subordinate has a prefix which
is an immediate subordinate, then every suffix of every immediate
subordinate is a concatenation of immediate subordinates.

For, suppose F is a suffix on an immediate subordinate, then I/ =
B % F® where B is an immediate subordinate. Since F'® is a suffix
of F, it is also a suffix of an immediate subordinate, and F® = B® % F®,
where B® is an immediate subordinate - -+ F = BV« B® « B® ... |

(433) Since W < V, it contains a prefix W™ which is an immediate
subordinate of V. After shifting this prefix around to the end, we may
similarly identify W®, W, ... | WY each of which is an im-
mediate subordinate of V. The sequence W * W™ « W™ % ... %
W4V is a cyclic shift of W, and so it must have a prefix, P, which
is an immediate subordinate of V. P is not a prefix of W*”, so W
must be a prefix of P. Suppose that W * W™ % ... «+ W is a prefix
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of P, but that W # W™ % ... W is not a prefix of P. (This
defines 7.) Then P = W« W % ... « W™ % §, where the (possibly
empty) sequence S is a proper prefix of W“*, Since S is a suffix of
P, which is an immediate subordinate of V, S is itself a concatenation
of immediate subordinates of V. But no immediate subordinate of V
is a proper prefix of any other immediate subordinate of V, so S must
be empty.

(#v) This is the converse of (4¢7). Suppose we are given the sequence
W = S(i) % W(l) * W(2) K .. ¥ W(:’—l) * P(i), where W(l), W(2)’ cee
WY and W = P9 % §% are immediate subordinates of . We must
show that all eyclic shifts of W are less than V. Any cyeclic shift is of the
form C — S(k) * H](le) * W(k+2) K el ¥ W(i) * W(l) * W(2) ® . ¥
WD« P where W* = P® « %, If S* is empty, C has the
prefix W**?, which is an immediate subordinate of V. If S’ is not
empty, by (¢2) it has a prefix which is an immediate subordinate of V,
which is a prefix of C. In either case, C' has a prefix which is an im-
mediate subordinate of V. Therefore, C < V.

(v) V has V,, immediate subordinates of length m, each of which
has m distinet cyclic shifts. Thus, W may be chosen as a single end-
around immediate subordinate of V in mV,, ways.

If W is a concatenation of several immediate subordmates of V,
W=WPs*W2 % ... W s W where W, WP, ..., wi™>
are immediate subordinates of V and W*? is a (possibly empty) proper
prefix of the immediate subordinate W'” # W % ... % W then the
length of W is the length of W™ plus the length of W™ * W™ ... %
W42 % W, For each k, there are V, choices of W™ of length F,
and J(q, V, m — k) choices for W™ * W % ... x Wi » 9,

(vi) Least special case: Suppose D is the least m-digit ¢-ary sequence
greater than V * (Q — 1). Letting

d = EDiqm—.{, V= EV,»qm—i, D= Eviqm—i,

it is evident that d - » = n 4 land v = n + 1 — d. According to
Lemma III, I(q, n,d) = J(q, V, m).

(vi) Greatest special case: Let D be the least m-digit concatenation
of immediate superiors of V. Complementing, D is the greatest m-digit
concatenation of immediate subordinates of V. In the notation of
part (), D = Y. Letting d = =D,¢""",d = n — d. Lettingn 4+ 1 —

= 2U.""*, U > Y because n + 1 — d > n — d. Theorem follows
from part () and Lemma III1.

(i) The general case follows because J(q, U, m) is a monotonic
function of U. Q.E.D.
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Ezample I: Let V be the binary sequence 1101. We compute

Bose distancet Designed distance

m  J(q, V, m) Binary Decimal Binary Decimal
1 1 1 1 1 1
2 3 01 1 01 1
3 4 011 3 010 2
4 11 0011 3t 0011% 3
5 16 00111 7 00110 6
6 30 001101 13 001100 12
7 50 0011011 27 0011000 24
8 91 00110011 51 00110000 48
9 157 001100111 103 001100000 96
10 278 0011001101 205 0011000000 192
11 485 00110011011 411 00110000000 384

12 854 001100110011 819 001100000000 768

Here J(q, V, m) is computed by Theorem lv. The designed distances
are computed according to Theorem 1vi, using V = 0010, with im-
mediate superiors 1, 01, and 0011. ¥V * (Q = 1) = 001011111111 --. .

Evidently, the binary BCH code of block length 2'* — 1 and designed
distance 768 is identical to the binary BCH code of block length 2'* — 1
and designed distance 769 or 770 or --- or 819. This code has 854
information symbols. This code is distinct from the binary BCH code
of block length 2 — 1 and designed distance 820. This is true in
general, because the least m-digit concatenation of immediate superiors
of V is necessarily minimum among all of its own cyclic shifts. This
“greatest designed distance” is called the Bose distance.

It happens that the binary BCH code of block length 2> — 1 and
designed distance 768 is also distinct from the binary BCH code of
block length 2 — 1 and designed distance 767, because the 12-digit
binary expansion of 767 is minimum among all of its cyclic shifts.
This, however, need not be true in general. For example, the binary
BCH code of block length 2* — 1 and designed distance 3 is not distinet
from the binary BCH code of block length 2* — 1 and designed distance
2, because the 4-digit binary expansion of 2 = 0010 is not minimum
among its cyclic shifts; the minimum is 0001.

1 Defined later in the text.

t This code is identical to the binary BCH code of block length 15 and de-
signed distance 2.
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In general, we would like to determine the number of information
digits in the g-ary BCH code of block length n = ¢ — 1 and designed
distance d = ZD;¢" *. The previous theorem gives us a solution to
this problem if we can find a sequence V which is greater than all of
its own suffixes and has the property that

V@ <~1) <D=

least m-digit concatenation of immediate superiors of V.
Complementing this condition gives

V>Dz
greatest m-digit concatenation of immediate subordinates of V.
or
V>D*@Q =~1) >
( greatest m-digit concatenation) _
of immediate subordinates of V/ * (0 > X,

where X is the greatest immediate subordinate of V. We may assume
that V has no terminal zeros, and that the length of ¥V does not exceed
the length of D. Since X and V have the same length, X is a prefix of D.

Since V is the least immediate superior of X, the problem of finding
V is reduced to the problem of finding X, which is a prefix of D. The
solution is as follows:

Theorem 2: Let X be the shortest prefix of D such that
D=X*F, Fx@Q@-=1)zD=*@Q-=Y,
and let V be the least tmmediate superior of X. Then
@ V*@=1)<DE=
least m-digit concatenation 