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Methods of Interpreting Diagnostic Data 
for Locating Faults in Digital Machines 

By H. Y. CHANG and W. THOMIS 

(Manuscript received August 29, 1966) 

Several techniques for translating the results of diagnostic tests into 
specific fault identities are described. This translation can be difficult in 
large and complex machines. The amount of test data required to isolate 
faults, and the obscure symptmns some faults generate, preclude efficient 
manual test-by-test interpretations. 

The additional observed fact that a significant number of faults yield 
inconsistent test results frmn diagnosis to diagnosis demands a flexible 
interpretation of data. Techniques are described for producing fault dic
tionaries which can be used by the maintenance craftsman to identify ma
chine faults in a relatively short time. These techniques utilize multidimen
sional geometric representations of diagnostic results, methods for identifying 
and ignoring inconsistent tests, pseudo-random mappings, and other pro
cedures for condensing and organizing the information contained in 
diagnostic test data. 

The results of applying these techniques to data obtained from the Bell 
System's No. 1 Electronic Switching System are also discussed. 

1. INTRODUCTION 

The. problem of locating faults in digital systems is becoming more 
acute with the increased complexity of these machines and their ex
panding use in real-time applications. The need for automatic testing 
te.chniques for locating faults by automatic programmed diagnostic 
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tests has been realized for some time and is being actively pursued in 
many areas.1

, 2 This need has particular urgency for a system designed 
to provide uninterrupted service. Such systems require extensive sub
system duplication as well as facilities for rapid fault isolation, loca
tion, and repair. The Bell System's No.1 Electronic Switching System 
(No. 1 ESS), designed to control telephone switching functions, is an 
example.3 

When machines were smaller and simpler, even the use of diagnostic 
tests to provide relevant trouble location symptoms was rare. An 
expert could usually locate the trouble by a quick survey of the be
havior of the machine. This may be described as the "eureka" ap
proach. 

With large complex machines, however, analysis of symptoms by 
mere observation is lengthy and costly. Strange behavior sometimes 
occurs which even the expert is hard put to explain. Even the addition 
of test points and special diagnostic tools such as programmed testing 
may not immediately clarify the situation. Further, the sheer quantity 
of test data necessary to isolate a trouble to one of the myriad of 
components comprising the machine often demands preprocessing 
before presentation to the maintenance craftsman. 

The techniques described in this paper evolved during the develop
ment of No. 1 ESS. They were devised in response to the need for 
translating the output of diagnostic programs into specific fault identi
ties. Such translation techniques had to use a minimum of real time 
and memory while being accurate and rapidly applicable by rela
tively unskilled personnel. Our results were obtained by applying these 
techniques to the data generated on the No. 1 ESS. This system and 
particularly its central processor is sufficiently like other digital ma
chines that we believe our conclusions have some general validity. For 
readers who are not familiar with No.1 ESS, a brief description of its 
functions and maintenance plan is provided in Appendix A. 

Section I reviews several conventional diagnostic data interpreta
tion techniques-the so-called exact-match presentations, and points 
out some of their shortcomings. Section II reports some general facts 
concerning the inconsistency of test results and suggests a number of 
solutions to the problem. These solutions fall into two general cate
gories: the phase dictionary approach and the cell dictionary approach. 
Section III describes the phase dictionary approach, its implementa
tion in No.1 ESS, its advantages and disadvantages, and also discusses 
some alternate techniques. Section IV introduces the cell dictionary 
approach and describes how it was implemented on No.1 ESS. Evalua-
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tion results, obtained by applying these techniques to data obtained 
from No.1 ESS, are discussed in Section V. 

1.1 Terms and General Background 

A diagnostic test consists of the application of special inputs to a 
machine for the purpose of locating a possible fault. The correspond
ing responses are termed the test results or diagnostic data. A fault can 
be defined as a physical defect in a logical element which will cause 
incorrect machine operations. Test results are generally processed and 
interpreted, either automatically by programs or by other manual 
means, to give field maintenance personnel the necessary information 
to locate and identify the faulty circuit component or packages. A 
circuit package is the smallest replaceable module of a machine.. In 
No. 1 ESS, it consists of a relatively small number of components 
mounted on a printed wiring board.3 

There are at least two types of programmed procedures for fault 
diagnosis: the "combinational" approach and the "sequential" approach. 
In the combinational approach a fixed set of tests is applied to the 
machine, and the results analyzed to identify the. fault. The identifica
tion process generally utilizes a fault dictionary which is a listing of 
the test results of known faults organized in a fashion convenient for 
look-up.2 In the sequential approach, the set of tests applied to the ma
chine is not fixed. 4 The result of each test is used as a basis for deter
mining the next test to be applied. Each fault, or a group of faults 
giving identical diagnostic results, is then identified by a certain test 
sequence-no additional data analysis or dictionary look-up is neces
sary. It is noted that this distinction is to some extent academic. A 
sequential analysis can be performed on data generated by the com
binational approach. In cases where faults cause large numbers of 
tests to give inconsistent results, this may be advantageous since the 
sequential approach will be costly in terms of memory storage. Only 
if the average running time of the sequential approach is significantly 
less than the. combinational approach and time is at a premium will 
the sequential approach be a better choice. For these reasons, the com
binational approach is used in No.1 ESS. 

The fault diagnostic information necessary for generating diction
aries can be obtained by two fundamentally different procedures. The 
two approaches are known as "program simulation" and "hardware 
simulation." In program simulation the logic description of a machine 
is compiled into a computer program which is designed to simulate 
the behavior of the object machine. A particular fault can then be 
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"introduced" into the object machine simply by appropriately chang
ing the program description of the machine's logic. Subsequent logical 
simulation of the machine under control of its diagnostic program re
veals the object machine's actions under test in the presence of the 
fault. In hardware simulation, faults are physically introduced into a 
real machine by replacing good circuit components with catastrophic 
failures such as shorts or opens. The diagnostic tests are performed 
and results recorded each time a fault is inserted. A fault dictionary 
can then be generated by processing test results obtained by either 
method. 

1.2 Straightforward Dictionary Presentations 

One method of presenting diagnostic data for dictionary use is 
simply to list for each fault only the. failing tests. This method is quite 
efficient when, on the average, few diagnostic tests faiP A sample page 
(with added comments) of such a listing appears as Fig. 1 (a). 

In this example, the tests were grouped into so-called test phases 
such as phase A, B, ... G, H, ... etc. The tests in each phase are 
numbered sequentially. Ordering of entries in the dictionary is first by 
phases in alphabetical order, then by test numbers within the phase. 
This type of dictionary was employed in the first Electronic Central 
Office which was in commercial use at Morris, Illinois between 1960 
and 1962. A detailed description of its format and implementation is 
contained in Ref. 5. 

As can be seen, such a technique enables a relatively unskilled 
maintenance man to trouble-shoot by merely searching for matches of 
any particular pattern with entries in the dictionary. Furthermore, in 
this representation, the exact configuration of test results is pre.served. 
This feature may be useful when dictionary look-up fails to locate the 
trouble. The maintenance man may be able to locate faults by a direct 
examination of the test pattern with the aid of other documents such 
as diagnostic program listings, logic flow charts, etc. 

However, this type of presentation suffers from the disadvantage of 
bulk when the diagnosis is of any considerable size. (i.e., more than 
about 1000 tests). Further, large numbers of diagnostic tests result 
in large and complicated patterns, which in turn increase the diffi
culty of finding matches with dictionary entries [see Fig. 1 (b)]. This 
technique is one of a class of methods called exact-match techniques 
since an exact match between a test pattern generated by a real fault 
and a pattern in the dictionary is required to identify the trouble. 
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PHASE G 
166 167 170 

PHASE H PARTIAL 
061 

CIRCUIT 
_--PACKAGE 

LOCATION 

021 PHASE H/// ,/,/'/'/'/- CIRCUIT 
_ _-PACKAGE 

- TYPE 

// ///,/ _FAULT 

~, ,J.! ,,e.,./- NUMBER 

Sl-322 G-F52615-5 
Sl-322 F-F52616-11 
SO-316 R-F52620-5 
Sl-322 P-F52620-5 

**************************** 

PHASE G 
166 167 170 

PHASE H PARTIAL 
061 

PHASE H 
021 076 

) 

ORDERED LIST 
< _____ OF FAILlNG _____ ~ 

DIAGNOSTIC 
TESTS 

SO-316 
Sl-322 

R-F52620-1 }-< __ _ 
P-F52620-1 ''-'' 

**************************** 

PHASE G 
166 167 170 

061 

076 

PHASE H PARTIAL 

PHASE H 

" \ 
\ 

\ 
CIRCUIT PACKAGE 

LOCATION AND 
TYPE PLUS 

FAULT IDENTITY 
\ 
\ 

\ 
\ 

" , 
'-

PHASE A 

000 001 004 006 007 
010 011 013 014 015 
017 020 021 024 025 
026 027 030 031 032 
033 034 035 036 037 
040 041 042 043 044 
045 046 047 050 051 
052 053 055 055 056 
057 060 061 062 063 
064 065 066 067 070 
071 072 073 074 075 
076 077 101 102 103 
104 105 106 107 110 
III 112 113 114 115 
116 117 120 121 122 
123 124 125 126 127 
130 131 132 133 134 
135 136 137 140 141 
142 143 144 145 146 
147 150 151 152 153 
154 155 156 157 161 
162 163 164 165 166 
167 

PHASE B 
021 022 025 026 033 
034 037 040 042 043 
044 045 046 047 050 
051 052 053 054 055 
056 057 060 062 063 
064 065 066 067 070 
071 072 073 074 075 
076 077 100 102 103 
104 105 106 107 110 
III 112 113 114 115 
~16 117 120 123 124 
126 

SO-316 
Sl-322 

R-F52620-3 
P-F52620-3 '----:> cc-306 P-F52617 -16 

(a) (b) 

Fig. 1- Sample page of fault dictionary. 

1.3 An Improved Exact-Match Technique 
In order to reduce the problem of dictionary bulkiness and the 

difficulty of manual look-up of large and complicated fault patterns, a 
"number generation" technique is used in No. 1 ESS. This technique 
is essentially a "hash" storage technique which effectively "reduces" 
each diagnostic to a smaller fixed-length decimal number by means of 
a psuedo-random mapping.6 Conceptually, the probability of mapping 
two or more large binary numbers into the same decimal number of 
relatively small size can be made arbitrarily small by a proper selec
tion of the decimal sample space. A detailed discussion on the particu
lar technique used in No.1 ESS is incorporated as Appendix B. 
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One interesting result is that if the mapping is truly random, the 
expected number of diagnostics that will map into the same random 
number is 

where N is the number of diagnostic test results to be mapped and k 
denotes the smallest integer greater than or equal to loglo N, i.e., the 
number of digits required in the decimal number. Thus, for No.1 ESS, 
in which the largest sample of fault patterns for any unit is no greater 
than 105

, a 12-digit representation will suffice to insure that the number 
of replications, as a result of the data reduction mapping, will be less 
than one (if, of course, the mapping is truly random). 

Fig. 2 shows a sample of a No.1 ESS exact-match dictionary entries. 
Each of the 12-digit numbers was derived from a fault pattern by a 
pseudo-random manipulation of the pattern. As described in Appendix 
B, the results of this pseudo-random mapping method agreed very well 
with the theory. 

It is estimated that a five-to-one reduction in bulk was thus achieved. 
In addition, it was found that the time required for look-ups was 
greatly reduced. 

5755 5302 0696 
5757 2149 0556 
5757 6284 5657 
5758" 3201 1135 

5758 4144 6651 

"DICTIONAR~5761 7903 4116 
NUMBER 

5764 2170 7969 
5768 1286 6872 
5772 6230 7601 
5776 0873 1508 
5776 3084 5734 

0-30-36,Ao06 
0-24-28, A074 
0-10-46,A094 
0-10-33,A091 
0-10-36,A091 
0-24-14 A006"} EQUIPMENT LOCATION 
0-c24-30;A006 P~~%Ag':CJ:;E 
0-08-16,A095 
0-10-08,A093 
0-12-06, A093 
0-24-22, Ao06 
0-26-28,Ao04 
0-14-38,AOll 
0-21-41,Ao08 
0-26-10,A003 
0-26-14,A003 

Fig. 2 - Sample format of No.1 ESS dictionary entries. 
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1.4 Shortcomings of "Exact lJI] atch" Techniques 
A major problem in using such approaches is that occasionally a 

diagnostic generated in the field does not exactly match a dictionary 
entry. This will arise if the results of the field diagnosis of a given 
fault differ from those yielded by a diagnosis on the same fault which 
was used to prepare the dictionary, i.e., the test results are inconsistent. 
There are many possible causes of inconsistent test results. Some of the 
more obvious ones are (i) improper machine initialization, i.e., if the 
effect of the fault is such that it prevents the machine under diagnosis 
from being properly initialized, the test results may then vary from 
time to time, depending on the state of memory elements at the time 
the fault occurs, (ii) presence of intermittent or marginal faults, i.e., 
faults that cause machine malfunction at some times but not at others, 
and (iii) other factors such as the presence of noise and/or variations 
in circuit component values, etc. Consequently, supplementary te.ch
niques are desirable. 

II. GENERAL FACTS CONCERNING INCONSISTENT TEST RESULTS 

Suppose one had the fault patterns for a number of sample faults 
that were simulated on a test model of a digital machine for purposes 
of producing a fault dictionary. Further, suppose that these same 
faults were introduced into a different but supposedly identical ma
chine and the fault patterns collected. A comparison of the two sets of 
data is revealing. 

Two such sets of data were collected using No. 1 ESS. A sample of 
faults was inserted in the central processing unit of a No. 1 ESS office 
in Chase, Maryland and compared with dictionary results obtained 
from another No. 1 ESS at the laboratory. The sample consisted of 302 
faults selected so as to be both well distributed and representative of 
expe.cted troubles. Of the 302 faults inserted, 58 produced printouts 
that could not be found in the exact-match dictionary. For various 
reasons, only 40 of these 58 inconsistent printouts could be analyzed. * 
This experiment and a comparison of the test results of these 40 faults 
with their corresponding dictionary patterns show that: 

(i) About 15 to 20 percent of the data for corresponding faults 
disagree. 

(ii) Among the diagnostics that are inconsistent, the majority differ 
in only a few bits. 

* This experiment is reported fully in Section 5.1. 
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(iii) Furthermore, these differences generally cluster, i.e., a rela
tively small group of adj acent test bits are affected. Several groups 
may be affected but in general, the groups do not consist of more than 
about 25 tests (about i percent of the overall diagnostic). 

(iv) Within these clusters the diagnostics produced by the test 
model tend to have somewhat fewer failing tests. 

(v) Only about 25 percent of the inconsistent diagnostics have ex
tensive differences. 

These observations are qualitative in nature and can only claim to 
be representative of No. 1 ESS. However, they serve to suggest a 
number of ways to attack the problem. 

Observation (iii) above suggests that two differing patterns for the 
same fault could be made to match if the cluster of differing test bits 
were masked out. This idea resulted in the Phase Dictionary, the 
Phase Prime Dictionary, and the Test Group Dictionary (see Sec
tion III). 

Observations (ii) and (1:V) suggest that the two differing patterns 
are related and that their relationship could be expressed perhaps by 
some function of their Hamming distance. This idea resulted in various 
forms of "Cell" Dictionaries (see Section IV). We shall consider first 
the Phase Dictionary and some of its relatives. 

III. PHASE DICTIONARY APPROACH 

3.1 Characteristics of Diagnostic Data 

The usual technique used to design diagnostic tests for a large and 
complicated machine is to divide the machine functionally into many 
small and disjoint (if possible) logic blocks. A logic block can be taken 
as a group of functionally related circuits, such as an order decoder 
or an index register, etc., whose input-output terminals are readily 
accessible. The tests are then designed to pinpoint faults which may 
exist in each logic block, assuming other logic blocks in the machine 
are faultless. The overall diagnostic is therefore composed of a con
catenation of test results of many so-called test phases, each of which 
consists of tests that are aimed at testing a particular logic block. 

Normally, when a fault occurs, it is expected that the fault will be 
detected by many of the tests that are specially designed to test that 
part of the circuitry where the fault lies. Thus, one would expect that 
in each overall diagnostic, the test failures would be roughly dis
tributed over a certain number of test phases, rather than over all test 
phases. This is, indeed, the case as one examines, for example, the 
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diagnostic data of one unit of the No.1 ESS central processor complex, 
the Central ControZS (see Fig. 3). The Central Control has a total of 
28 test phases; the overall diagnostic is about 5000 bits long. Out of 
102,518 faults simulated, over 97 percent of them yield diagnostics 
which indicate some-tests-failed in only four or fewer test phases.-

3.2 General Description of 111 ethod 
The essential idea of the Phase Dictionary approach lies in the 

notion of identifying "phase diagnostics," i.e., the failure patterns of 
individual test phases. That is, in addition to the normal "exact
match" dictionary (as it is described in Section 1.3) one further pre
pares a supplementary Phase Dictionary which is divided into many 
chapte.rs, each of which is produced by processing each diagnostic 
phase as if it were the whole diagnostic. Then a fault would be re
dundantly identified by a number of dictionary entries: one in the 
exact-match dictionary and many in the phase dictionary, as many as 
the number of test phases that failed in its overall diagnostic. For 
example, a fault, Ii, which has failed some tests in test phases 2, 3, 4, 
and 6 would be identified by an entry in the exact-match dictionary 
and four additional entries in the phase dictionary, one each in 
chapters designating test phases 2, 3, 4, and 6. 

X 103 

32,---------------------------------------. 

30- ., 
DISTRIBUTION OF NUMBER OF FAULT DIAGNOSTICS, 

R, WITH P TEST PHASES FAILED 28 I-

26 -

24 -

22 -

20 

18 

R 16 

14 

12 

10 

8 

4 

NOTE: 

TOTAL NUMBER OF TEST PHASES = 28 

TOTAL NUMBER OF FAULTS SIMULATED 
=102,518 

2 

°OL-~I--JI-~'==~~==~=L--~~~I--~I--~I--~I--~I~ 
2 4 6 8 10 12 14 16 18 20 22 24 26 28 

P 

Fig. 3 - No.1 ESS central control diagnostics. 
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Now suppose ii is diagnosed in the field and its failure pattern 
obtained. Five numbers will then be generated: a normal exact match 
dictionary number, which is generated by the overall pattern of the 
diagnostic and four phase numbers, each of which results from manipu
lating diagnostics of test phases 2, 3, 4, and 6. The. maintenance person
nel normally will first try to find the overall number in the exact-match 
dictionary. If there is a match, he can simply replace the circuit 
package (s) indicated by the dictionary entry. If, on the other hand, 
he cannot find a match, he will then consult the phase dictionary 
by matching phase numbers with dictionary entries in chapters 
2, 3, 4, and 6. Assume the inconsistency in the diagnostic is small and 
is confined to, for example, test phase 3 only. The maintenance man 
will probably discover that he can successfully match phase numbers 
for test phases 2, 4, and 6 with some entries in chapters 2, 4, and 6. 
He will not, however, find a match in chapter 3 because the field diag
nostic of ii which generate.d the phase number for test phase 3 differs 
from the diagnostic which was used to generate the dictionary entry. 
Nonetheless, the maintenance man can still examine the circuit pack
age (s) indicated by the phase dictionary entries of test phases 2, 4, 
and 6 where he finds a match to determine which package(s) is to be 
replaced. Since he knows that the circuit package (s) associated with 
fault, h ideally would be listed under all of these entries, he should, 
therefore, select the package (s) that has appeared the greatest number 
of times. This maj ority rule approach not only leads one toward re
placing the proper circuit package (s) but also reduces the number of 
unnecessary package replacements. 

A slightly more sophisticated form of the phase dictionary can 
eliminate ~he need for the somewhat laborious majority rule approach. 
The phase dictionary consists of entries formed by masking out all 
failing test bits except those in a single phase. The Phase Prime Dic
tionary consists of entries formed by masking out only a single phase 
at a time. Thus, if tests in phases 3, 4, and 5 failed during diagnosis, 
a number for phases 3 and 4, one for 3 and 5, and one for 4 and 5 
would be produced. Then if the inconsistencies fall only in say phase 3, 
only the number produced for phases 4 and 5 could be matched. Note 
that the majority rule is not needed here as the dictionary for phases 
4 and 5 has already performed that function automatically. 

The phase prime dictionary, of course, is a little less general than 
the phase dictionary in that it is useful only if inconsistencies are 
confined to a single phase. 
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3.3 Implementation in No.1 ESS 

The general program flow for implementing the phase dictionary is 
shown in Fig. 4. The diagnostic data obtained through simulation are 
originally stored on magnetic tapes. Each diagnostic is read into core 
and is divided into many segments, one segment of each test phase. A 
phase dictionary number is then generated for each test phase by 
manipulating diagnostic data in that phase. The phase dictionary 
number computation is performed for each phase of all fault diag
nostics. All phase dictionary numbers of the same. test phase are 
grouped together and sorted. The sorted listings are then printed to 
form the various chapters of the phase dictionary. 

3.4 Advantages and Disadvantages 

The major advantage of the phase dictionary over the exact-match 
dictionary is its ability to locate faults whose diagnostics are incon
sistent. That is, if the inconsistency of test results is confined to a 
small number of test phases, the phase dictionary can still locate 
faults by matching phase dictionary numbers. Further, the use of 
phase dictionary numbers also offers a possibility for identifying mar
ginal faults. This can be done by repeatedly exercising (on -line) cer
tain phase (s) of the diagnostic tests and then matching the phase 
numbers, since repeatedly exercising all diagnostic tests could be ex
tremely costly in terms of system real time. 

The phase dictionary in general tends to be bulkier than the exact
match dictionary. This is because each fault is multiply listed in the 

o 
TEST DATA 

FROM 
SIMULATION 

DATA 
SEGMENTATION 

PHASE NUMBERS 
GROUPING 

Fig. 4 - Program flow for phase dictionary implementation. 
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dictionary. For the particular example shown in Fig. 3, a phase 
dictionary is approximately 2} times the size of the exact-match 
dictionary, as can be determined by calculating the average number 
of failing test phases per diagnostic. Another shortcoming of the 
phase dictionary is that if the inconsistency of test results affects 
all test phases or if the phase which the inconsistency affects 
is the only failing phase in the overall diagnostic, the fault cannot 
be successfully identified with this approach. Although wide variations 
in test results for the same fault are less likely to arise in a good 
diagnostic design, they nevertheless represent a problem. 

3.5 The Test Group Dictionary 
A third form of dictionary that uses the idea of masking out incon

sistent tests has been investigated. This dictionary was constructed by 
considering each test of the diagnosis independently and determining 
what faults caused this test to fail. Those faults would then be 
grouped and associated with that test. When this was done for all tests, 
the Test Group Dictionary was formed. 

It was originally hoped that the list of faults associated with a 
given test would be small enough on the average so that a majority 
rule technique could be used to advantage when analyzing a field 
diagnostic result. Unfortunately, in all of the cases implemented so 
far, the average listing is well over 30 faults per test. This precludes 
its use as a manual tool. If stored on tape, however, and searched by 
machine, it gives promise as being a valuable laboratory tool. It might 
also be use.ful if the maintenance facilities for a number of machines 
were centralized. 

IV. CELL DICTIONARY APPROACH 

4.1 Introduction 
The phase dictionary approach is a technique for finding exact 

matches between patterns by eliminating those portions of the patterns 
where differences are found. The "cell" dictionary approach, on the 
other hand, is not concerned with exact matches between patterns but 
with near matches. In the cell approach, the entire fault pattern is 
examined and a measure of its "similarity" to other patterns in the 
dictionary is made. On the basis of this measure, those faults in the 
dictionary associated with the most "similar" patterns are identified as 
being more likely to have caused the observed fault pattern.* This 

* This assumption can only be justified ultimately by satisfactory results in its 
application. 
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then provides the maintenance man with a list in order of probability 
of faults to repair. 

Clearly, the efficacy of this approach depends on (i) the way in 
which "similarity" is defined and measured, and (ii) the manner in 
which this measure is used. 

4.2 "Similarity" and "Dissil1tilarity" of Diagnostics 
If every test in a diagnosis was of equal significance in the task of 

isolating faults, one could say that two diagnostic test patterns were 
dissimilar in proportion to the number of corresponding tests in which 
the two patterns differ. If the diagnostic results were expressed as 
binary numbers, their dissimilarity could be expressed as having a 
direct relationship to their Hamming distance. The greater the Ham
ming distance, i.e., the more places in which two patterns differ, 
the less alike the patterns are. Conversely, the smaller the Ham
ming distance, the more similar two patterns are. Consequently, 
Hamming distance can be used a measure of both similarity and dis
similarity. 

Hamming distance is a readily computable measure. And further, it 
can be easily modified to take into account the fact that diagnostic 
tests differ in significance. For the purposes of explaining the idea of 
significance, consider a small sample of faults and just those tests of 
the diagnosis which fail for at least one fault in that sample. Suppose a 
number of these tests always pass or fail together as a group for any 
given fault. Then the results of the entire group could be predicted by 
examining the result of anyone of the tests. Here the information 
provided by each test in the task of locating a fault is the same but 
diluted by a factor equal to the number of tests in the group. One 
would say that the significance of these tests was low. On the other 
hand, a test whose result cannot be predicted by the results of other 
tests would have a higher significance. Intuitively speaking, the signifi
cance of a test should also be affected by its consistency. Less signifi
cance should be attributed to inconsistent tests. 

A natural and satisfying way of expressing these considerations 
quantitatively would be to assign weights to tests in accordance with 
their significance. Section 4.9 gives a brief discussion of some mathe
matical techniques available to do this.8 

Suppose now only that each test has been assigned a weight. Then 
similarity would be computed by summing the weights of the differing 
tests in the patterns. Similarity is, thus, now measured by a weighted 
Hamming distance. Whether or not test weights have been assigned, 
however, similarity is measured by an easily calculated number. 
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4.3 A Problem 

It would be possible to store the dictionary (i.e., all the fault pat
terns) in a computer memory and to use the similarity measure just 
described to search the dictionary for patterns similar to some arbi
trary pattern when desired. As a practical matter, however, the time 
required for the search and the storage required for the dictionary are 
prohibitive. In the case of No.1 ESS, for example, it is estimated that 
about 2.5 X 107 36-bit words would be required to store the dictionary 
for the central control alone. The time required for a single search 
would be on the order of 10 minutes provided the dictionary were 
stored in core (rather than on tape or disk) and provided the central 
control did no other work. Since No. 1 ESS is a time-shared machine, 
no one job is run for longer than 10 percent of any extended interval. 
Consequently, a single search would run well over one hour. Clearly, 
a more sophisticated method is needed. 

4.4 A Geometric Model for the Dictionary 

Consider, for the time being, that diagnostic results are representable 
by binary numbers and that similarity is measured by simple Hamming 
distance. It is possible to construct a geometric analog of the binary 
number system in binary space. In this analog, each binary number 
represents a unique point in the space and the "distance" between points 
corresponds to the Hamming distance between the patterns representing 
those points. Thus, there are exactly 2N distinct points or patterns in 
an N-dimensional space. 

Suppose that all of the data in the dictionary were placed in some 
N-dimensional space. For example, the dictionary data for the No.1 
ESS central control consists of about 105 different patterns of order 5000 
(i.e., N equals 5000). Thus, 105 points out of a possible 25000 ~ 101500 

points would be taken up by dictionary data. (The space is very sparsely 
populated.) Now suppose some arbitrary pattern (produced by some 
real fault) is placed at point A in the N-space. If point A is already 
occupied by a dictionary pattern, then the two patterns match and the 
real fault is almost certainly the same as the dictionary fault associated 
with that pattern. If, however, point A is unoccupied, we have (pre
sumably) the case of an inconsistency. Then it would follow, since 
Hamming distances are preserved in the analog, that those dictionary 
points that are closest spatially will be the most similar ones according 
to our definition. The faults associated with these nearby points would 
then represent those dictionary faults which could most probably have 
produced the inconsistent pattern. 
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4.5 The Cell Dictionary Concept 

Imagine first that a number of points, ci(i = 1, 2, ... , m), in the 
N-space are selected arbitrarily. Now imagine that every point, XI< , in 
the space is associated with a Ci such that the Hamming distance 
d(c i , Xk) is least. This procedure would then produce a number of 
"cells" Ci with "centers" Ci , each containing all points Xk, such that 
d(c, , Xk) < d(cj, XTo), for i ~ j. Applying this procedure to dictionary 
data will result in a Cell Dictionary. The dictionary would consist of an 
ordered list of those cells which contained diagnostic results together 
with the fault identities corresponding to those results. Each cell can 
be conveniently identified by its Ci • Such a dictionary could be used as 
follows: 

(i) Place in memory a list of occupied cells (i.e., cells which have 
diagnostic results associated with them). 

(ii) Given an arbitrary pattern, a search would consist of computing 
the cell containing it and finding the two or three closest occupied cells. 

(iii) Likely faults could now be found by consulting the printed 
dictionary. 

This method would be practical if such cell lists were relatively small. 
Unfortunately, No.1 ESS data does not lend itself to small lists. There
fore, a different form of cell dictionary was adopted. 

4.6 Selection of Practical Cell Center Lists 

In this section, we shall discuss an algorithm which permits the gen
eration of a list of cell centers (c/s) that, given an arbitrary pattern, 
can be rapidly searched. 

Consider all binary numbers of order N (i.e., having N bits) and a 
partitioning of the N bits into k equal parts (assuming N is divisible 
by k). Suppose that all bits in each part, Pi , of the partitioning are 
assigned like values-either all O's or all l's. Then the subset of all 
numbers of order N meeting the above requirements can be placed into 
one-to-one correspondence with the set of all binary numbers of order 
k. This subset can then be taken to form a set of 210 cell centers which 
divides the N space into 210 equal-sized (i.e., containing the same number 
of points) cells. 

To show that every point is contained in some cell and every cell 
contains the same number of points, imagine an arbitrary pattern of 
order N is divided into k equal parts. Then all binary numbers having 
more O's than l's within part Pi of this pattern are closer Hamming 
distance-wise to a cell center whose Pi is all O's. Similarly, all binary 
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numbers having more O's (l's) than l's (O's) within other parts, P /s, of 
this pattern are closer to a cell center whose P/s are all O's (l's). It fol
lows, therefore, from the definition of a cell that each point is contained 
in some cell. Moreover, if N /k is odd, each point will be contained in one 
and only one cell. 

Since, in general, there are C;:' possible binary patterns of order n with 
1n O's (or l's),* the number of binary numbers having more O's than l's 
in Pi equals the number of binary numbers having more l's than O's. 
Since this holds for any Pi , and further it holds independently of any 
other Pi , itholds for the entire partition. Thus, each cell center will 
have exactly the same number of points closer to it than to any other 
cell center. 

From the nature of the construction of cell centers, a binary number 
can be assigned to a cell merely by partitioning it and counting either 
the O's or l's in each part. This greatly simplifies and speeds up the 
assigning of patterns to cells. Furthermore, cell sizes can be varied at 
will merely by changing the partitioning. Very large cells will be gen
erated if the Po's are large and vice versa. 

4.7 The Multiple Cell Dictionaries Approach 

When these techniques were applied to No.1 ESS, it was decided to 
produce a number of cell dictionaries, each corresponding to a different 
cell size. This approach evolved because of the problems encountered 
in apparently simpler implementations. For example, as was discussed 
in Section 4.5, one way of implementing cell dictionaries in the field 
would be first to produce only one cell dictionary from the laboratory 
data. Then, a list of those occupied cells (i.e., celIs containing dictionary 
fault patterns) would be stored in the field ESS machine. This would 
enable the machine to take a pattern for a field trouble, compute the 
cell containing it, search the cell list, and print out a number of nearby 
occupied cells. In the case of No.1 ESS, however, the list of occupied cells 
was very large (requiring on the order of 15,000 36-bit words of memory) 
and search times prohibitively long. The next possibility, which was 
tested and then discarded, was to print the cell dictionary (i.e., an 
ordered list of occupied cells) and search it manually. A search consisted 
of checking whether or not a cell containing a real fault was occupied. 
If it was not, then a check of the nearby cells was necessary. Thus, the 
search required that No.1 ESS machine compute and print the cell 
containing the real fault and its neighboring cells in N-space. Unfor
tunately, the number of nearby cells in N-space can be enormous. For 

* Cmn = the number of combinations of n out of a total of m things. 
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example, there are, in general, C~ adjacent cells a distance dN Ik from 
any given cell (N and k are as previously defined and d = 1, 2, 3, ... ). 
Thus, if N = 5001 and Ie = 1667, the closest cells to the given d = 1 
will be a distance of only 3 away and there will be 1667 of them. For 
d = 2, the number of cells will be about 1.4 X 106

• As a result, unless 
the cell containing the fault pattern was occupied, the time for finding 
any nearby occupied cell could be extremely long. Consequently, a 
modification of this idea, the so-called 111 ultiple Cell Dictionaries ap
proach, was finally adopted. 

Suppose the ESS machine computes the name of the cell that contains 
a real fault, and a check in the cell dictionary shows that the cell is 
unoccupied. Now suppose the machine repeats a similar calculation to 
obtain the name of a larger sized cell. Then, in general, a different 
cell name will result. In order to check whether or not this cell is oc
cupied, a cell dictionary corresponding to this sized cell would have 
to be available and searched. Suppose the search was again unsuc
cessful; then the machine could compute another even larger cell and 
so on, for as many times as there are available dictionaries. Ultimately, 
as the cells grow larger, they must become occupied cells for some cell 
dlctionary. 

The computation of cells of different sizes for a real fault is relatively 
simple. In order to use the computed cell names, however, a number of 
corresponding cell dictionaries must be made available. Thus, the mul
tiple cell dictionaries approach is a trade-off of bulk for search time. 
The increase in bulk, however, is not so great as might at first be sus
pected. This is because as the cell sizes increase the number of cells 
decreases and the number of faults in the "zero" cell* (which is not 
printed in general) increases. A qualitative evaluation of the results 
achieved will be presented in Section 5.1. 

It should be noted that a partitioning such that each Pi consists of a 
a single bit will result in an exact-match cell dictionary. Thus, the cell 
approach can be extended to cover both the case of exact matches as 
well as the case of inconsistencies. 

The form of cell dictionaries is exactly the same as the exact-match 
dictionary. This is achieved by scrambling cell center coordinates in 
a fashion similar to the procedure for scrambling diagnostic results 
for the exact-match dictionary (see Section 1.3 and Appendix B). The 
scrambled cell center coordinate serves as the cell name when printing 
the cell dictionary. 

* The "zero" cell is one whose center has an all O's pattern. 
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4.8 Some Disadvantages 

Although the major advantages of the cell dictionary are fairly 
obvious, some of its disadvantages may not be. 

First, the smallest practical cell sizes are formed with a partitioning 
such that each Pi consists of 3 bits. This means that any pattern that 
never groups at least two l's within a single Pi will fall in the zero 
cell. Since the "all zeroes" diagnostic result represents the healthy 
machine, it could be expected that many faults that cause the machine 
to be "slightly sick" will fall into the zero cell or its neighbors. This is 
indeed the case as revealed in the No. 1 ESS diagnostic data. Thus, a 
fault falling in the smallest zero cell in many cases renders the cell 
dictionary useless because of its poor resolution. Fortunately, the 
situation is ameliorated by the fact that most inconsistencies occur 
with faults which cause many test failures. 

A second disadvantage concerns the process of computing larger cells 
around the real inconsistent fault pattern. It is true that as the parti
tioning increases, larger cells containing the real fault are examined 
but two facts should be noted: 

(i) The real pattern will not necessarily be close to the center of 
the cell, and 

(ii) The centers of these cells will not usually coincide. 

These facts mean that some faults not necessarily close to the real 
fault may occasionally be implicated and also that a cell may not be 
completely included in the next larger sized cell. Eventually, of course, 
as cell sizes increase, the smaller cells will be completely included but 
at the cost of a greater number of implicated faults. 

Both of these considerations are affected by the algorithm used to 
select cell centers. A better algorithm might eliminate these problems. 
Also, an approach such as Kruskal's (see Ref. 8) can reduce if not 
eliminate them. 

4.9 Test Weighting 

The modification of similarity measurements by the inclusion of 
test weights should take the following considerations into account: 

(i) The significance of a test relative to other tests in the task of 
isolating faults, and 

(ii) The consistency of the test, i.e., what is the probability that on 
multiple diagnoses of the same fault, the test will give the same result 
as it gave on previous diagnoses. 



INTERPRETING DIAGNOSTIC DATA 307 

Item (i) can be derived from the test results obtained from diction
ary production. Consider a matrix formed such that each row repre
sents the binary diagnostic result for a fault (see Fig. 5). Then each 
column represents the results a given test yields for each of the faults. 
To calculate the significance of a test relative to other tests, first 
obtain the correlation coefficients Pij of column i with every other jth 
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Fig. 5 - Test weights. 

column using standard statistical definitions. The relative significance 
of the ith test which we will call (J'i is 

P is squared to obviate sign difficulties and down-weight small correla
tions. 

Item (ii) consists of the ratio of the number of faults for which the 
test was consistent to the total number of sample faults. * The con-

* This ratio may be obtained practically by repeatedly performing the diag
nosis on a given fault and observing the results of the tests. This could be done 
during physical simulation (at a considerable time cost). Otherwise, field data 
would have to be collected over a period of time. Kruskal has an idea (yet to be 
verified) of how to predict the inconsistency of a test theoretically. See Ref. 8. 
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sistency factor Ci of test i can be defined as: 

total number of faults for which the test i was consistent 
C j 

total number of faults 

A test weight W; then is 

A suggested function is 

Wi = (1 + c. log Ci + (1 - Ci)JOg (1 - Ci))Ui • 

The quantity [1 + Ci log c, + (1 - Ci) log (1 - co)] is the usual en
tropy function. It essentially makes Ci = t the zero point (which is the 
value we would expect if the test was completely inconsistent) and 
spreads the intermediate factors appropriately. 

This formulation of test weights is due to J. B. Kruskal. Ref. 8, 
Section VIr contains an elegant discussion of test weights excluding 
inconsistency considerations. 

Test weighting has not, as yet, been used with No.1 ESS data. The 
process of calculating 5000 X 4999 + 2 correlation coefficients (assuming 
a diagnosis of 5000 related tests in a diagnosis) is very time consuming. 
However, results obtained without test weights (i.e., every test given 
the same weight) appear quite satisfactory. 

v. RESULTS AND CONCLUSIONS 

5.1 Dictionary Evaluation Results 
An experiment was conducted to evaluate the effectiveness of the 

No. 1 ESS exact-match dictionary, which is being used in the field, 
and the phase and cell dictionaries, which are being implemented. A 
sample of faults was inserted in the central control at a field No. 1 
ESS office located in Chase, Maryland. The sample, which consists of 
302 central control faults, was selected by persons who were not in
volved in the dictionary production project so as to reduce the possi
bility of bias in the selection. The faults selected were well distributed 
with respect to their types and locations, and were representative of 
expected troubles. Each fault was inserted when the office was running 
under a simulated traffic load and a diagnosis was performed. The 
corresponding diagnostic printout had three possible outcomes: (i) a 
printout that matched the correct dictionary number in the exact
match dictionary, (ii) a printout which did not match the dictionary 
number in the exact-match dictionary, or (iii) a printout indicating 
all-tests-passed. 
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TABLE I-ExACT-lVIATCH DICTIONARY EVALUATION OF FAULTS 

INSERTED IN No.1 ESS OFFICE AT CHASE, MARYLAND 

Faults inserted 302 

( i) 
(ii) 

(iii) 
(iv) 

Found in exact-match dictionary 216 
Produced diagnostic printout, but not found in exact- 58 

match dictionary 
Produced all-tests-passed printout 25 
Produced invalid data for analysis 3 

(72.2%) 
(19.4%) 

( 8.4%) 

Of the 302 faults inserted, there were 216 faults that were success
fully located by the exact-match dictionary, 58 faults producing a 
printout not found in the dictionary, 25 faults producing all-tests
passed printouts, and 3 faults whose test results were either invalid 
or incomplete for this analysis due to errors made in the fault insertion 
procedure. The evaluation results for the exact-match dictionary are 
shown in Table 1. Since the diagnostic programs were designed under a 
pressing time schedule with little opportunity for the feedback of 
evaluation results, we consider these figures quite gratifying. 

Further analysis revealed that out of 25 faults producing all-tests
passed printouts, 5 were faults that could not be detected by programs 
because of inherent circuit redundancy and 20 were faults that were 
not detected due to test inadequacy. Out of 58 faults producing print
outs which did not match any dictionary numbers in the dictionary, 
9 were those diagnostic data had not been simulated during the dic
tionary production process and 9 were faults whose data were incom
plete for the purpose of analysis with phase or cell dictionaries. Thus, 
only the data of the remaining 40 faults were analyzed to illustrate the 
feasibility and the effectiveness of phase and cell dictionaries. As 
shown in Table II, only 2 faults could not be located; all other 38 
faults were found in either phase or cell dictionaries. In addition, 80 
percent of the faults located by the cell dictionary were isolated to 
10 or fewer circuit packages. (For this evaluation, only 5 sections of 

TABLE II-PHASE AND CELL DICTIONARY EVALUATION OF FAULTS 

INSERTED IN No.1 ESS OFFICE AT CHASE, MARYLAND 

Faults producing inconsistent test results 

(i) 
( ii) 

(iii) 
(iv) 

Found in phase ictiodnary 
Found in cell dictionary 
Found in either phase or cell dictionaries 
Found nowhere 

40 

27 
35 
38 

2 
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the multiple cell dictionary were constructed. The partitioning of the 
diagnostic for each section was 3, 5, 11, 21, and 41 bits, respectively.) 
This is indeed a significant improvement. However, it must also be 
cautioned that this sample of faults producing inconsistent test results 
is too small to draw any meaningful quantitative conclusions. What 
can be said is that significant improvements over present exact-match 
techniques can be expected and that the cell dictionary approach may 
be somewhat superior to the phase dictionary approach. 

The exact-match dictionary has been in use in No.1 ESS office in 
Succasunna, New Jersey, since May 30, 1965. Its effectiveness has been 
more or less compatible with our evaluation results. The machine can 
usually be diagnosed and repaired within twenty minutes when the 
dictionary look-up procedure is successful. The phase and cell diction
aries will be implemented for the No.1 ESS office in Beverly Hills, 
California, which will begin service sometime in the fall of 1966. The 
detailed field performance of all these dictionaries is not covered in the 
scope of this paper. 

5.2 Concluding Remarks 

The major advantages of these techniques, as a whole, are that they 
provide the maintenance craftsman with rapid methods for extracting 
the information from diagnostic test patterns for the purpose of faults 
location. The techniques require a very modest amount of machine 
time and memory. They can be quite effective especially if some care 
is taken during the fault simulation phase of dictionary production. 

Each technique has its limitations, however. The "exact-match" 
dictionary will not handle inconsistencies. The phase dictionary will be 
of assistance if at least one phase is consistent, but at the cost of reso
lution and time consumed while manually searching for fault identities 
using the majority rule approach. The phase prime dictionary will 
eliminate the manual search but will work only if the inconsistency is 
confined to a single phase. The cell dictionary is ineffective when the 
fault falls into the zero cell. 

We think that the results obtained will be fairly typical of what can 
be expected when implementing a maintenance dictionary approach on 
a digital machine. The combination of techniques is not perfe.ct but is 
one of the most powerful for locating faults in real-time systems. 

A logical continuation of this work would probably involve: 

(i) A study of why tests are inconsistent. This would permit a 
better technique for eliminating inconsistencies from test patterns 



INTERPRETING DIAGNOSTIC DATA 311 

when generating phase dictionaries. It would also permit modifica
tions of the measure of "similarity" between fault patterns. 

(ii) Development of better cell center algorithms for the particular 
form of cell dictionary described. An "ultimate" cell dictionary is 
probably an implementation of Kruskal's ideas.8 

(iii) Develop criteria for establishing figures of merit for dictionary 
techniques which take into account: (a) the percentage of real troubles 
located (as compared to simulated faults), (b) the resolution, (c) the 
speed or facility with which dictionary look-ups can be made, and 
(d) the machine time and memory processing requirements. 

Some progress has already been made on items (ii) and (iii) but 
considerably more is needed. 
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APPENDIX A 

No.1 ESS System Organization and AI aintenance Plan 

No. 1 ESS is a general purpose electronic telephone switching ma
chine which employs for its control a time-shared multiple-program 
computer operating in real time.3 Functionally, the system can be 
divided into a central processor and a peripheral system (see Fig. 6). 
The central processor, which operates with 5-! microsecond cycle time, 
provides the data processing facility for telephone, maintenance and 
administrative functions. It consists of program stores, call stores, and 
a central control. The program store, which is a read-only type of 
semi-permanent memory, contains the stored program and translation 
information that are needed to switch calls and provide services as 
well as maintenance programs. The call store, which is a temporary 
ferrite sheet memory, stores all transient information for processing 
calls, such as the digits dialed by the subscriber or the busy-idle states 
of lines and trunks. The central control consists mainly of wired logic. 
Its duty is to coordinate and command all system operations. 
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Fig. 6 - No. 1 ESS block diagram. 

The peripheral system consists of a ferreed switching network, 
scanners and distributors, and a master control center. The switching 
network provides the connections between lines, trunks, and service 
circuits (i.e., auxiliary devices such as tone sources, signal receivers, 
and signal transmitters). The scanners are used to collect information 
from lines, trunks, and points internal to the system. The distributor 
is made up of two units: the central pulse distributor, which operates 
at machine cycle speed, is used for signaling logic circuits, whereas, 
the signal distributor is used for controlling slower devices such as 
relays in trunk circuits. The various subsystems are interconnected 
with balanced ac coupled bus systems. The master control center 
includes a teletypewriter for input-output, a panel for manual testing 
of lines and trunks, and some controls and displays. 

The No.1 ESS was designed for a high degree of maintainability 
and dependability. These obje.ctives require that telephone service is 
not interrupted even in the presence of internal component failures. 2 

To achieve these objectives, the major units of the central processor 
are duplicated, and circuit and program facilities are provided for 
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detecting troubles, locating the faulty subsystems and re-establishing 
an operational configuration without interrupting telephone service. 
Once a faulty subsystem is identified, the diagnostic programs are called 
in to analyze the trouble. These programs are executed (on-line) by 
the operational configuration; they are segmented and interleaved 
with the main call processing program to avoid interference with the 
normal system operation. The diagnostic programs carry out a fixed 
sequence of tests by observing the normal outputs of the faulty 
subsystem or by monitoring some special test points strategically 
embedded within the unit. The combinational testing approach is used 
to conserve program storage space and to simplify the processing of 
test results. The pass or fail test data are recorded and processed 
using the exact-match techniques discussed previously (in Section 1.3 
and Appendix B) to produce a compact diagnostic printout on the 
teletypewriter. The translation of a diagnostic printout into the loca
tion of the replaceable faulty circuit package (s) is then accomplished 
with the aid of a dictionary. The data for the dictionary are generated 
through hardware simulation, i.e., by actually inserting almost every 
possible simple hard fault sequentially into the unit and then recording 
its diagnostic. The general approach of dictionary production is similar 
to the one on Morris machine5 and therefore, will not be described 
here. A sample format of exact-match dictionary entries is illustrated 
in Fig. 2. 

APPENDIX B 

Pselldo-Random iVumbel' Generation 

In No. 1 ESS, the diagnostic test results of each fault is represented 
by an n-bit binary number where each bit or a sequence of bits desig
nates the pass or fail result of a particular test(s). The number of bits 
n is usually very large, e.g., n ~ 5000. The "hash" technique used to 
reduce No. 1 ESS diagnostic data to a smaller fixed length number 
employs a "pseudo-random" function which manipulates an arbitrary 
and large pattern of test results to produce a number with relatively 
few digits. The reduction procedure is pseudo-random in the sense 
that the mapping is deterministic but approximates the process of 
assigning one truly random number to each fault pattern. 

This process is analogous to the problem of selecting numbers at 
random from an urn. Assume the urn has N distinct numbers. A total 
of k numbers are selected, one at a time with replacement, from the 
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urn. The probability P that all these k numbers are distinct is 

P"-'l 

k-l ( i) 
p=II1--

;=1 N 
k-l 

Li 
-~=1 

N 
k(k - 1) 

2N 
for k« N. 

Thus, suppose k denotes the total number of distinct fault patterns 
and d = [loglo N] denotes the number of decimal digits in the diag
nostic printout (the symbol [x] denotes the smallest integer greater 
than or equal to x). The probability of generating, at least con
ceptually, all distinct d-digit numbers from a pseudo-random number 
generator can be made arbitrarily large by increasing d. However, in 
practice the number of digits d in the printout should be kept reason
ably small so as to simplify the look-up process and to reduce the 
dictionary's bulkiness. Hence, for a sample of 105 distinct fault pat
terns, a 12-digit representation would probably suffice, since it yields a 
probability of 0.995 that all resultant numbers will be distinct. 

When the ratio of k to N is not exceptionally small, a few duplicated 
(and replicated) numbers could result. Thus, it is also necessary to 
compute the expected number, E r, of replicated pseudo-random num
bers when k fault patterns are assigned random values from a sample 
space N. Suppose Ee represent the expected number of distinct numbers 
generated, then the probability that a particular number is selected, 
at least once, from the urn in k selections is 1 - (1 - liN) k. This 
probability is also equal to EeIN. Thus, 

The expected number of replicated numbers becomes, 

Er = k - E. = ~ (_l)i+lC~+I(~r. 
Hence, for a sample of 105 distinct fault patterns, the expected number 
of replicated numbers in a 6-digit representation is about 4837 whereas 
the expected number of replicated numbers in a 12-digit representation 
is less than one. 

An experiment was performed to verify the hypothesis that this 
method of diagnostic data reduction is analogous to the problem of 
selecting numbers at random from an urn. A sample of 964 fault pat
terns each consisting of approximately 1000 bits of test results was 
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used. Initially, the reduction process just used the addition and rota
tion instructions to produce a 6-digit number, nine duplicated re
sulted. On the subsequent attempts, shift and other peculiar instructions 
were added to better scramble the data; the number of duplicates finally 
decreased to zero. From the urn analog, the expected number of dupli
cates in assigning a 6-digit pseudo-random number to 964 distinct 
patterns is 0.5, and the probability of no duplication is 0.61. 

The experiment demonstrates the feasibility of number generation 
schemes. An effective method can readily reduce each pattern of a col
lection of diagnostics to a smaller fixed-length number with very little 
loss in resolution. Since the greatest possible total number of fault 
patterns for any No. 1 ESS subsystem is about 105

, the diagnostic 
printout uses a 12-digit representation. As mentioned earlier, this rep
resentation is am all enough so that the dictionary look-up process is 
easy, yet large enough so that the probability of all generated numbers 
being distinct is quite high and the expected number of duplicates is 
very small. 

Basically, each fault pattern undergoes two stages of reduction pro
cess. In the first stage, each binary fault pattern of n bits is ANDed 
(bit-wise) with each member of a set of m preselected reference vectors 
R1 , R2, ... Rm, and the resultant "bit-sums" S1' S2, ... , Sm are 
collected (m « n). That is, suppose the binary fault pattern of fault 
F is T1T2 ... Tn(Ti = 1 or 0), and the pattern of reference vector Ri is 
rrr~ ... r!(r~ = 1 or 0). Then the bit-wise ANDing operation will gen
erate a "bit-sum" Sj where, 

n 

Si L: Ti·r! 
i=1 

and j = 1, 2, ... , In. To further reduce the size of the fault pattern, 
each set of bit-sums S1 , S2, ... , Sm undergoes three independent 
stages of "data scrambling" manipulation, each resulting in a 4-digit 
number. Each stage is a pseudo-random number generation procedure 
based on the shift, rotation, and addition orders. 

The final diagnostic printout is, therefore, a 12-digit number, formed 
by a concatenation of three 4-digit numbers. Fig. 7 shows the general 
program flow of the final reduction process. 

The final three stage reduction process used was evolved through 
experimentation. The resolution of the dictionary so generated was quite 
high, high enough so that most entries in the dictionary associate with 
only four or fewer circuit packages. For example, in the case of the cen
tral pulse distributor,7 which has 3312 simulated faults and whose 
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Fig. 7 - Data reduction. 

TABLE III-DICTIONARY RESOLUTION STUDY 

(CENTRAL PULSE DISTRIBUTOR) 

N(i) 

1st stage 1st & 2nd stage All three stages 

436 910 924 
300 653 663 
101 68 67 
65 26 26 
18 4 3 
49 12 10 
5 4 2 

54 1 1 
8 1 1 
7 1 1 
3 1 1 
3 0 0 
0 0 0 
1 0 0 
0 0 0 
1 1 1 
0 0 0 

N(i) = Number of dictionary numbers having i associated packages. 
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fault pattern has 1150 bits, 15 reference vectors were used. Initially, 
only the first stage of the final reduction process (rotation and addition) 
was used to produce a 4-digit number. In the resultant dictionary only 
59 percent of the entries were associated with four or fewer circuit pack
ages and the mean was 2.56 packages per entry (see Table III). As the 
second stage was added to better scramble the data, 90 percent of the 
entries in the dictionary associated with four or fewer circuit packages 
and the mean was improved to 1.62 packages per entry. The third stage 
was added and the resultant dictionary had 95 percent of its entries 
associating with four or fewer circuit packages and a mean of 1.58 
packages per entry. Further experimentation with the addition of a 
fourth stage reduction process did not provide significant improvement 
in resolvability. Thus, a three-stage reduction process was adopted. 
The dictionary is rather compact; it has only 52 (8-! by 11) pages (for 
the central pulse distributor). A sample of the format printout is shown 
in Fig. 2. Sample evaluation results of this type of dictionary are dis
cussed in Section V. 
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Dynamic Response of Systems of 
Mutually Synchronized 

Oscillators 

By M. B. BRILLIANT 
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Recent studies have been concerned with conditions for the stability of 
synchronized systems and expressions for equilibrium frequency. This 
paper describes the transient response of special configurations of syn
chronized systems of arbitrary size, as well as frequency response and 
jitter response for a few cases. Tentative extrapolations to more general 
configurations are suggested. 

r. INTRODUCTION 

Recent studies have established the sufficiency of certain rather 
broad conditions for the stability of linear synchronized networks, 1 

and have shown that valid expressions for the equilibrium frequency 
of such systems can be obtained if initial conditions are taken into 
account. 2 Description of the transient response of such systems is of 
interest, but results for general configurations have not been obtained. 
This paper describes the results of studies of special configurations 
of systems of arbitrary size, and some tentative conclusions about 
more general configurations are suggested. 

II. SYSTEM EQUATIONS 

The equations for the synchronized system will be taken III the 
form used by Gersho and Karafin 1 in their (9): 

N 

p~(t) = vn(t) + hn(t) * L: anm[Pm(t - Tnm) - Pn(t)], 
m=l 

n = 1, '" ,N (1) 

(where the star denotes convolution). In Laplace transformed form, 
assuming zero initial conditions, 

319 
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N 

sPn(S) = Vn(s) + Hn(s) L anme-STnmp m(S) - Hn(s)Pn(S) , 
m=l 

n = 1, ... ,N. (2) 

In these equations, Pn(t) is the phase of the oscillator at the nth station, 
vn(t) is the free-running frequency of that oscillator with the effects 
of local disturbances added, hn(t) is the impulse response of a control 
filter at the nth station, rnm is the delay on the transmissIon link from 
the mth station to the nth, and anm is an averaging coefficient asso
ciated with that link. The coefficients are normalized so that 

N 

L anm = l. (3) 
m=l 

Normally, ann is zero. The filter gain Hn(s) has the dimensions of inverse 
time; its zero-frequency value, assumed to be nonnegative, is 

(4) 

These equations, as pointed out by Gersho and Karafin, are conformable 
with the linear equations used by Karnaugh2 if vn(t) is understood to 
include not only the free-running frequency of the oscillator at the 
nth station but also the sum of the transient disturbances at that 
station as well as some initial condition terms. 

The assumption of zero initial conditions in (2) depends on the 
following simplifying procedure. Since only dynamic responses are to 
be studied, and since the equations are linear, the steady-state solution 
can be subtracted from the total response. Thus, vn(t) and Pn(t) will 
be taken to represent only the disturbance component. Where the 
disturbance is transient, the vn(t) will be assumed to have zero values 
before the disturbance begins, and the initial phases will be taken as 
zero. The result of this procedure shows only the response to the dis
turbance, to which the steady-state solution would have to be added 
to determine the total frequencies and phases. 

Although formal results for arbitrary filters and arbitrary delays 
will be obtained in a few cases, emphasis will be placed on the simple 
case of flat filters Hn(s) == "An (in effect, no filters) and zero transmission 
delays. In this case, the filter gains "An determine the time scale of the 
response. There seems to be no compelling practical reason to make 
the "An much greater than the reciprocal of a second. The response time 
can then be assumed to be large compared with the transmission 
delays expected in most cases as well as large enough so that the re
sponse would not be severely affected by the inherent low-pass filter 
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effects of ordinary electromechanical control elements. The results are 
sufficiently encouraging, from a practical standpoint, to suggest that 
it may not be necessary to incorporate filtering by design, so that the 
simple case appears to have some practical value. 

III. AN ELECTRICAL ANALOG; RECIPIWCITY 

Although explicit transient responses have been derived only for 
specific system configurations, it is possible to state, for systems of 
arbitrary configuration, a condjtion sufficient to guarantee that the 
transient response is not oscillatory. This condition is a reciprocity 
condition derived from the properties of a passive electrical network 
analog. 

3.1 Case 1: Tnm == 0, Hn(s) == An 

Consider an electrical network as shown in Fig. 1, having N nodes 
in addition to a ground node. A capacitor Cn is connected from the 
nth node, n = 1, ... , N, to ground, and a resistor Rnm = Rmn is con
nected between some, not necessarily all, pairs of nodes n, 1n. A current 
source delivers current from ground into each node. The Laplace
transformed "node equations are 

(5) 

Fig. 1-Part of the electrical analog of a reciprocal system with flat filters and 
zero delays. 
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These equations are similar in form to (2) representing a synchronized 
system, and can be identified with them if the nth node of the electrical 
network is identified with the n'th station of the synchronized system, 
and 

En(s) = P n(S) , (6a) 

In(s) = Cn Vn(S) , (6b) 

Rnm = 
1 

(6c) 
anmAnCn 

, 

'Tnm = 0, (6d) 

Hn(s) = An • (6 e) 

Note that Vn(s) is not a voltage, but a reference frequency. 
The reciprocity condition 

(7) 

imposes a condition on the averaging coefficients and filter gains in 
addition to the simplifying conditions of flat filters and zero delays. 
This condition immediately gives, from (6c), 

(8) 

The capacitances Cn are to a certain extent arbitrary, in that if 
a system has an analog with given Cn, equivalent analogs can be formed 
by multiplying all the Cn by any common factor and~rescaling the other 
elements. The capacitance at the node corresponding to anyone selected 
station can therefore be chosen arbitrarily; (8) shows how the capaci
tances for stations to which it is connected can then be derived using 
only parameters of the synchronized system: 

(9) 

For a station that is connected to the selected one by a path of M 
links, via 111 - 1 intermediate stations, iteration gives a formula of 
the form 

= anon1 . an1n • ... anM_lnM AnoCn• 
an1no an•n1 anMnM_l' AnM - , 

(10) 

where n is the index of the selected station and nk is the index of the 
kth station in sequence along the path. 

Unambiguous determination of the Cn requires that if two or more 
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paths exist between two stations, the formula (10) should give the 
same result on all paths. This is equivalent to the condition that the 
product of the averaging coefficients taken counterclockwise around 
any closed loop must equal the product of the averaging coefficients 
taken clockwise around the loop: 

(11) 

This condition will be called the reciprocity condition for synchronized 
systems; a system that satisfies this condition will sometimes be called 
a reciprocal system. It is easily seen that the reciprocity condition 
is both necessary and sufficient for the existence of a passive electrical 
analog of the form of Fig. 1, assuming that the conditions of fiat filters 
and zero delays are also satisfied. 

Since the poles of an RC network response function are all simple 
and lie on the negative real s-axis,3 its transient response consists 
entirely of real exponential components. It follows immediately that 
a reciprocal system with fiat filters and zero delays cannot have an 
oscillatory transient response. Moreover, errors in parameter values 
that cause small departures from reciprocity cannot immediately 
result in the appearance of oscillatory components. Such components 
are represented by conjugate pairs of complex poles; since the pole 
locations are continuous functions of the parameter values, no pole 
can move off the real axis until it has first moved along the axis and 
joined another real-axis pole to form a double pole, assuming that the 
departure from the reciprocal ideal is not of such form as to add new 
poles. 

3.2 Case 2: Tnm small, Hn(s) nearly flat 

This conclusion is strictly true only for zero delays and fiat filters. 
However, it may be expected that delays much smaller than the system 
response time, or filters that are nearly fiat up to frequencies much 
larger than the reciprocal of the response time, will have little effect 
on the transient response. In fact, it can be shown in specific cases 
that the addition of any delay, however small, introduces an infinite 
number of oscillatory components, which nevertheless are small in 
amplitude and rapidly damped so that their total effect is small. It 
may be assumed that the omission of delays and high frequency cutoffs 
is comparable to the neglect of the same parameters in ordinary circuit 
analysis. 

It is not necessary that the filters be fiat in order that the system 
have an electrical analog. The resistors can be replaced by any 2-terminal 
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networks so as to simulate any filter that has a "positive real" fre
quency response function. If the transfer function of the filter can be 
synthesized as the admittance of a network of resistors and capacitors 
only, the analog will still be an RC network and the transient response 
obviously remains nonoscillatory. 

While this study is nominally confined to dynamic behavior, the 
Appendix shows how the reciprocity condition simplifies the steady
state analysis. 

V. E. Benes has pointed out that if the anm are considered as the 
transition probabilities of a Markov process, as in his original study 
(unpublished work, 1959) of stability and equilibrium frequency, the 
reciprocity condition introduced here is equivalent to the condition 
of reversibility of the Markov process, which in turn is related to 
detailed balance in statistical mechanics. 

IV. TWO-STATION SYSTEMS 

The analysis of a system of two stations offers not only an introduction 
to the techniques of analysis but also an example of the behavior of 
small systems for comparison with the behavior of the large systems 
to be described in later sections. 

An impulse disturbance of frequency is assumed to occur at one of 
the stations, which we then designate (without loss of generality) 
as station 1. This form of disturbance can be interpreted as a brief 
rise in frequency which is almost immediately corrected, leaving a 
residual phase error of one unit of phase. Alternatively, it could rep
resent any disturbance that gives rise to the sudden appearance of a 
phase error. 

The system equations, from (2), are 

SPI(S) = 1 + HI(s)e-ST12P2(S) - HI (s)P I (S) , 
(12) 

SP2(S) = H2(s)e-ST21PI(S) - H2(S)P2(S). 

These equations are easily solved to give 

PI(S) = S + H2(S) 
S2 + S[HI(S) + H2(S)] + HI(s)H2(s)[1 - e-S

(Tt
2

+T
21 )] , (13) 

Pls) = H 2(s)e-
8T21 

S2 + S[HI(S) + H2(S)] + H I(s)H2(s)[1 _ e- S (T1 2+
T

21)] 

The final value theorem gives 

(14) 
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as the ultimate displacement in phase caused by the disturbance. The 
equality of the two final values, signifying no net change in the phase 
difference between the two stations, is a necessary consequence of the 
uniqueness of the steady-state solution. 

4.1 Case 1: Hn(s) == An, Tnm == O. 

lVIore explicit results for the transient response are obtained in the 
special case of flat filters and zero delays. The transforms become 
simple enough for inversion by inspection; the result in the time domain 
IS 

PI(t) A2 + Al e-<X'+>'2)t, 

Al + A2 Al + A2 
(15) 

A2 [1 _ e-<>'l+>..)t]. 

Al + A2 

These equations indicate a simple exponential approach to the final 
value, starting with initial phases [immediately after the impulse in 
VI(t)] of 1 at the first station and 0 at the second. Such behavior appears 
satisfactory for a practical system. 

4.2 Case 2: Hn(s) == A, Tnm == T. 

To determine the effect of delays, the system will be made as simple 
as possible in other respects. The filters will be assumed flat with equal 
gains, and the delays will be assumed equal. In this case, the solution 
(13) becomes 

(1 G) 
Ae-ST 

P2(S) = 
i + 2AS + A2 - A2e- 2sT 

The denominator can be factored, and a partial expansion in partial 
fractions gives 

PIeS) ![QI(S) + Q2(S)], 
(17) 

P2(S) ![QI(S) - Q2(S)], 

where 

QI(S) 
1 

S + A - Ae- ST 
' (18) 

Qls) 
1 

S + A + Ae- ST 
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One approach to the inversion of these transforms is to divide num
erator and denominator by 8 + A and treat the result as the summation 
of a geometric series. Expansion of the series gives 

00 Am -ms1' 

]; (8 : A)m+l , 
(19) 

from which, by (17), 

00 A 2k -2ksT 
t; (8 +e A)2k+l , 

(20) 

Inversion term by term gives 

(tf] A2k(t - 2kT)2ke-}..(t-2kT l 

k~O 2k! 
(21) 

where the square bracket in the limit of summation (but only there) 
denotes the integer part of the enclosed expression. This result can 
be numerically evaluated term by term if the product AT is known. 
I t gives an exact result (for the assumed model) up to a time depending 
on the number of terms evaluated. Fig. 2 shows a graph of the cal
culated results for AT = 0.1, that is, delay equal to one-tenth of the 
reciprocal of the filter gain. 

The interpretation of this result is that the response of each station 
to changes in phase at the other is delayed for a time equal to the link 
delay T. Thus, from t = 0 to t = T, station 2 is completely undisturbed. 
Meanwhile, from t = 0 to t = 2T, station 1 observes no change in the 
frequency received from station 2 and therefore, its response is ex
ponential with time constant l/A. Therefore, from t = T to t = 3T 

station 2 responds to the exponential response received from station 1, 
and so on. The result (21) could in fact have been derived by tracing 
out the response of the system in this manner. 

A second approach, inherently inexact but more useful for times 
that are long compared to the transmission delay, is to complete the 
partial-fraction expansion of (18). This requires in principle determina-
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Fig. 2-Impulse response of a two-station system. 

tion of the locations of all the poles, which are determined by the 
transcendental equation 

S+A=±Ae-8T
, (22) 

where the "plus" sign refers to Ql(S) and the "minus" sign to Q2(S), 
This equation has, in general, an infinity of solutions. However, if 
AT is a small number, the most important components will be those 
due to poles of the order of magnitude of A. The exponent in (22) 
is then small, so that the exponential can be approximated as 

(23) 

Using this approximation in (18) gives a form which is easily inverted 
to give, finally, from (17), 

(t) I"'V ! [ 1 + 1 -2At/(l-AT) ] 
Pl I"'V 2 1 + AT 1 _ AT e 

(t) I"'V ! [ 1 _ 1 -2Xt/(l-AT) ] • 
P2 I"'V 2 1 + AT 1 - ATe 

(24) 
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This obviously has an error at t = 0, which is small if AT is small, but 
has the correct final value determined by (14). This result is compared 
with the exact response, as well as with the response of a zero-delay 
system, in Fig. 2, which illustrates the case of AT = 0.1. The approxi
mation is better for smaller AT. 

V. LARGE FULLY INTERCONNECTED SYSTEMS 

N ext to be considered is a network of N identical stations in which 
all stations transmit via identical direct links to all others. All co
efficients anm are assumed equal: 

1 
anm = N - 1 ' n = 1, ... ,N, m ~n. (25) 

If an impulse disturbance occurs at the first station, all the other 
stations display identical responses, so that 

(26) 

The system response can, therefore, be described III terms of two 
equations in PI(S) and P2(S): 

SPI(S) = 1 + H(s)e- STP2(S) - H(s)PI(s) 

These equations can be formally solved to give 

where 

s + H(s) - (%-=-i)H(s)e-
ST 

H(s)e- ST 

(N - l)~ , 

d = s' + SH(S>[2 - (~ =: i)e-"] 

(27) 

(28) 

+ H2(S) [ 1 - (~ = ~)e-ST - (N ~ 1)e-2sT ]. (29) 

The final value theorem gives 

1 
(30) 

N(l + AT) 
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5.1 Case 1: Hn(s) == A, Tnm == o. 
In the special case of flat filters and no delays, InVerSIOn of the 

Laplace transforms gives 

PI(t) = ~ + (1 -1 )enXt/(N-IJ 
(31) 

P2(t) = ~ [1 - e-nXt/(N-IJ]. 

In this case, the response is an exponential approach to equilibrium 
as in the 2-station system. When one station is disturbed, the other 
stations respond in unison, as one. 

5.2 Case 2: Hn(s) == A, Tnm == T 

In the case of equal positive delays and flat filters, the solution (28) 
in transformed form can be partially expanded in partial fractions 
to give 

1 
PI(S) = N [QI(S) + (N - I)Q2(s)], 

(32) 
1 

P2(S) = N [QI(S) - Q2(S)], 

where 

1 

(33) 

1 

This is similar in form to (17) and (18), and the same methods can 
be used to evaluate the transient response. The principal difference 
between this and the 2-station case is that the conditions for cancella
tion of odd or even terms in the series of delayed responses (21) do not 
hold in the many-station case, and the antisymmetric component, Q2(t), 
is more rapidly damped than the symmetric component ql(t). The results 
for the zero-delay case and for the case of AT = 0.1 are shown for a 
6-station system in Fig. 3. 

The simplicity of both the analysis and the result can be attributed 
to the condition that all stations and all paths are identical. Although 
the effects of slight departures from this condition may be of practical 



330 THE BELl .. SYSTEM TECHNICAL JOURNAL, FEBRUARY 1967 

FREQUE~~~~MPULSE -_ t 

6 Ck---+--+---'r--'?D2 

z 
0 

~ 
I-' 0.6 f/) 

5~-\--+-+-""O3 

r 
'C: 
I-« 
w 0.4 
f/) -- AT=O.t 
« 
I 

--- ZERO DELAY 
a.. 

0.2 

5T::.==========~-~-~--~-~-~-~-~---------l n 2 6 ----
o ------=-,;:..;.!--- -- tOT 

o 0.5/A LolA I.S/A 
TIME, t 

Fig. 3 - Impulse response of a fully interconnected 6-station system. 

interest, the slightest departure will destroy the symmetry and vastly 
complicate the analysis. As a guess, it may be supposed that the effect 
of a slight dissimilarity among paths will be smaller than the effect 
of removing some of the paths. When all but N paths have been re
moved, in such a way that the system forms a ring in which each station 
receives only from its two nearest neighbors, a new form of symmetry 
appears, which will be used in the next section. 

VI. THE BILATERAL RING 

A bilateral ring is defined as a ring of N identical stations, with 
2N identical one-way links forming N two-way links by which each 
station sends to, and receives from, its two nearest neighbors, one on 
each side. This may be viewed as the opposite extreme to the fully 
interconnected system, providing the longest possible indirect paths 
in a system of N identical stations. (Longer paths are possible in a 
chain, but the stations cannot be identical because each end station 
has only one neighbor.) 

The equations of the bilateral ring, in transform form, are 

sPnCs) = Vn(s) + H(s) {!rpn+1(s) + Pn_1(s)]e- S
1' - Pn(S)}, 

n = 1, 2, ... ,N, (34) 
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where addition in the index n is performed modulo N, so that PN+l(S) 
is P 1(s), Po(s) is PN(s), and the (N - m)th station can be alternatively 
designated as the (-m)th. This system of equations will be simplified 
by a form of Fourier analysis. We define 

N 

Qk(S) = L Pn(s)e- i 27:nkIN, k = 1, ... ,N, (35) 
n~1 

where j is the imaginary unit. It can then be shown by direct sub
stitution that 

Pn(s) = N1 ± Qk(s)ei27rnkIN, n = 1, ... ,N. (36) 
k=l 

Similarly, variables Uk(s) will be defined by transformation of the 
Vn(s) as in (35), with inversion as in (36). The linearity of the Laplace 
transformation implies similar relations among the variables in the 
time domain. All these relations remain unaffected if any n or k is 
changed by adding or subtracting N. 

Let the nth equation in (34) be multiplied by e-i27rnkIN, and the equa
tion summed over all n. The result is 

SQk(S) = Uk(s) + H(s) [!(ei27rkIN + e-i27rkIN)e-ST - I]Qk(s) , 

k = 1, ... ,N. (37) 

This can be solved immediately to give 

Qk(S) = Uk(s) 
S + H(s)[1 - e- ST cos (27rk/N)] 

(38) 

Given a set of transient frequency disturbances vn(t), one may find 
their Laplace transforms Vn(s), find the Uk(s) using (35), find the 
Qk(S) using (38), use (36) to obtain P n(S), and find the phase disturbances 
Pn(t) by inverse transformation. . 

In the case of an isolated impulse in frequency at the Nth station, 
we have 

n = 1,2, ... ,N - 1; (39) 

By using (35) we get 

Uk(s) = 1, k = 1, ... ,N. (40) 

Explicit solutions will be obtained here only for cases in which the 
filters are flat. Under these conditions, 

(41) 
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The complexity of the result depends on whether the delay T is assumed 
zero or positive. 

6.1 Case 1: Hn(s) == A, Tnm == 0, N < 00. 

If the delay is zero, (41) can be inverted immediately to give 

qk(t) = exp { - A[1 - cos (27rk/N) ]t} 

and the phase disturbances, using (36), are 

(42) 

Pn(t) = ~ t, ei21fnk/N exp {-).[1 - cos (27rk/N)]t} (43) 

The Nth term in this sum is real, as is the (N /2)th term if N is even. 
For all other k, the kth term is the complex conjugate of the (N - k)th 
term, so that the sum is real, and may be expressed as the sum of the 
the real parts of the individual terms: 

1 N 
Pn(t) = N ~ cos (2-rrnk/N) exp {-A[1 - cos (27rk/N)]t}. (44) 

The Nth term in this sum is a constant term, which applies equally 
to all stations and does not affect the phase differences between sta
tions. All other terms are real exponentials approaching zero with 
increasing time. The dashed curves in Figs. 4, 5, and 6 show the response 
of a 6-station ring calculated from (44). 

6.2 Case 2: Hn(s) == A, Tnm == 0, N = 00. 

This result can be extended to rings of indefinitely large size in two 
different ways, so as to specify the response either a given number 
of stations away from the source of the disturbance, or a given fraction 
of the circumference away from the source. For the first approach, 
which gives an exact result for an infinite ring, let 

(45) 

and let N increase without limit (approach infinity). Then the limit 
of (43) defines the integral 

e . e -Xt 121f 
Pn(t) = 2;- 0 e1n exp (At cos e) de, (46) 

which is related to a known integral form4 for the modified Bessel 
function of the first kind, order n, and gives 

Pn(t) = e-Xtln(At), n = ... -1,0, 1, ... 

= P-n(t). (47) 
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Curves calculated from this equation are shown as the solid curves 
in Fig. 4. 

Full exploitation of this result requires that the station at which 
the disturbance originates be called the zeroth, and that neighboring 
stations be indexed with positive integers to one side and negative 
integers to the other side. At any time t, the largest phase disturbance 
is at the station at which the original disturbance occurred. The asymp
totic approximation for large x, 
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(48) 

shows that the phase disturbance decreases with increasing time 
roughly as 

1 
p (t) ~ --. 

n V2ill (49) 

Although this result gives the wrong limit for a finite system, it gives 
a clear picture of the early behavior while the response is still sub
stantially localized. 
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6.3 Case 3: H .. (s) == A, rnm == 0, N large, t large. 

The alternative approach provides a better approximation for large t 
after the disturbance has spread around the ring. When t is large, 
the dominant terms in (44) are those in which cos (27rk/N) is closest 
to unity, including not only those in which k is small but also those 
in which k is close to N, or, equivalently, k is small and negative. 
Since the kth term and the (N - k)th or (-k)th term are equal, the 
latter terms can be effectively included by doubling each term for 
small k. For large N, the approximation 

x 2 

cos x ~ 1 - 2" (50) 

can be used for these terms. The Nth or zeroth term is a constant liN. 
The other terms, which are small, can be omitted or included as con
venient; since it is difficult to specify in advance which terms are 
negligible, it seems safest to include them all, at least formally. Thus, 
approximately, for large N, 

1 2 00 (- 27r
2
k

2 
) 

Pn(t) ~ N + N ~ cos (27rnk/N) exp N2 At· (51) 
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The time constants are proportional to the square of the number of 
stations in the ring. The components have sinusoidal spatial distribu
tions around the ring, and the time constant is inversely proportional 
to the square of the spatial frequency. Some curves calculated from 
(51) are shown in Fig. 5, compared with the response of a 6-station ring. 

6.4 Case 4: Hn(s) == A, Tnm == T, N < 00. 

If the delays are positive but all equal, the methods used in the 
2-station system can be applied to the inversion of (41). The exact 
result is 

(.12) 

The approximation based on (23) gives 

(t ~ 1 { At[ 1 - cos (27rk/N) ]} 
qk ) r-...J 1 + AT cos (27rk/N) exp - 1 + AT cos (27rk/N) (53) 

which may be compared with (42). Curves calculated from these 
equations for a 6-station ring with AT = 0.1 are shown in Fig. 6 and 
compared with the zero-delay case. 

VII. BILATERAL CHAINS 

I t has been mentioned previously that a chain lacks the simplicity 
of a ring because of the exceptional nature of the end stations. However, 
given any chain of N stations, an analogous ring can be formed by 
duplicating all stations except the end stations so as to form a second 
chain between the end stations as shown in Fig. 7, and taking the value 
! for each of the two averaging coefficients at each end station, leaving 
all other parameters unchanged. The response of the chain to a dis
turbance at any station can be found by applying the same disturbance 
at the corresponding station or stations in the analogous ring; the 
response of each half of the ring will be the same as the response of 
the original chain. 

A bilateral ring, as studied in the preceding section, will result if 
the stations in the chain all have equal filter gains and if all averaging 
coefficients (except at the end stations) equal !. Such a chain will be 
called a bilateral chain. Thus, in particular, the response shown for 
6-station rings in Figs. 4, 5, and 6 will also be observed in 4-station 
bilateral chains disturbed by an impUlse at an end station. The response 
to a disturbance at any other station may be obtained by superposition 
of two station responses calculated from the ring; the responses to be 
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Fig. 7 - A chain and its analogous ring. 

superposed may be identified by supposing that the disturbance is 
propagated in both directions from the source and is reflected at either 
end of the chain. 

Alternatively, in principle, the response of either the ring or the 
chain might be determined by superposition of an infinite number of 
terms of the infinite-ring response determined in the preceding section. 
The response of an infinite ring is the same as that of an infinite chain 
extending in both directions from the source of the disturbance, since 
the two networks are indistinguishable. The response of a finite ring 
could be calculated by supposing the disturbance to propagate around 
the ring an unlimited number of times in both directions. For a finite 
chain, the disturbance could be considered to spread in both directions 
(except when the disturbance originates at an end station) and to be 
reflected whenever it reaches an end station. This method may be 
useful in large chains or rings as a refinement of the simple approxima
tion of a large chain or ring as an infinite one. 

VIII. UNILATERAL RINGS AND CHAINS 

All the networks studied in previous sections have satisfied the 
reciprocity condition, and in consequence all components of the response 
have been nonoscillatory: strictly so in the zero-delay case, and ap
proximately in the case of small AT. In this section, the opposite ex
treme is studied. In the unilateral ring, the product of the averaging 
coefficients in one direction is positive, while every coefficient in the 
other direction is zero. 
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8.1 Rings 

To define a unilateral ring, we assume a ring of N identical stations 
and assign a positive direction around the ring. Each station transmits 
only to its nearest neighbor in the positive direction. Each station 
then receives from only one other station and thus has only one averaging 
coefficient equal to unity. All links are identical. The system equations 
are 

n = 1, ... ,N. (54) 

The transformation defined by (35) and (36) may be applied to this 
network also. In place of (41), assuming the same impUlsive disturbance 
as given in (39), we get 

1 
(55) 

8.1.1 Case 1: Hn(s) === A, Tnm == 0, N < 00 

Only the case of zero delays has been studied in detail. In this case, 

qk(t) = exp {-A[1 - cos (27rk/N)]t} exp [-}Atsin(27rk/N)]. (56) 

Hence, 

Pn(t) = ~ t, exp {j[2?rnk/N - At sin (27rk/N)]} 

. exp {-A[1 - cos (27rk/N)]t}. (57) 

The sum is real and may be alternatively expressed as 

1 N 
Pn(t) = N t; cos [2?rnk/N - At sin (27rk/N)] 

. exp {-A[l - cos (27rk/N)]t}. (58) 

The components are not real exponentials, but exponentially damped 
sinusoids. 

8.1.2 Case 2: Hn(s) == A, Tnm == 0, N = 00 

In the infinite unilateral ring, using (45) in (57) and passing to the 
limit, 

(59) 

Expanding exp (Ate- i8
) as a power series in Ate- i8 and integrating term 

by term gives 
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n = 0,1, ... 
(60) 

= 0, n = -1, -2, 

This result is plotted in Fig. 8. The phase disturbances at adjacent 
stations are in the ratio 

Pn(t) _ At 
Pn-l(t) - n ' 
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so that for fixed t, and increasing n, Pn(t) increases until n ~ t. There
fore, at any time t the largest disturbance is at the mth station, where 

At - 1 ~ m ~ At. (62) 

For large t, the magnitude of the largest phase disturbance, obtained 
with the aid of Stirling's approximation for the factorial, is asymp
totically 

1 
Pm(t) t'-' V 27rAt . (63) 

This is the same as the asymptotic value (49) obtained for the infinite 
bilateral ring, except that in the unilateral case the peak precesses at 
the rate of A stations per unit time. 

8.1.3 Case 3: Hn(s) == A, Tnm == 0, N large, t large 

Application of the approximation (50) together with 

sin x ~ x 

gives, for large t in a large ring, 

1 2 00 (-27r
2e ) 

Pn(t) ~ N + N ~ cos [27rk(n - At)/N] exp N2 At· 

(64) 

(65) 

Compared with (51) this shows a response that resembles that of a 
bilateral ring except that it precesses around the ring in the positive 
direction at the rate of A stations per unit time. The oscillatory nature 
of the response is associated with the progression of the disturbance 
around the ring. 

8.2 Chains 

A finite unilateral chain is a system with one master station and 
N - 1 slaves. If such a system is disturbed at one of the slave stations, 
the response of each station following it in the positive direction is 
the same as that of the corresponding station in an infinite unilateral 
ring. An impulse disturbance at the master station, however, does not 
correspond directly to any situation in a unilateral ring. A permanent 
phase shift of one unit occurs in the master station output. The effect 
at the second station is the same as that of a step of magnitude A in 
the free-running frequency of the second station, and, a step being 
the integral of an impulse, the response of the entire chain can be 
inferred by integrating the response to an impulse at the second station. 
Each station can thus .be shown to approach its new equilibrium phase 
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monotonically. If the nominal time of response of each station is defined 
as the time of maximum rate of change of phase (maximum frequency 
shift), each station responds with a delay of 11A after the preceding 
station. The effect of positive link delays in the unilateral chain is to 
further delay the response without changing its form. 

The unilateral ring is not the analog of any chain in the sense of 
the preceding section. 

IX. RECTANGULAR ARRAYS 

A rectangular array, in which each station is connected to four 
nearest neighbors, can be considered as intermediate between a fully 
interconnected system and a chain or ring, and may be more appropriate 
than either as a model of a network of stations on the surface of the 
earth. A rectangular network with no edges or corners can be laid 
out on the surface of a toroid as in Fig. 9. This network can be analyzed 
by methods similar to those used for rings. 

The stations are most conveniently indexed with double subscripts, 
m = 1, ... , M 1 , and n = 1, ... , M2 ; the number of stations is 
N = M IJJ12 • Assuming equal filters and equal delays, the system equa
tions are 

sP mn(S) = V mn(s) - H(s)P mn(S) 

+ H~s) e-ST[P m,n-l(S) + P m,n+l(S) + P m-l.n(S) + P m+l,n(S)], (66) 

Fig. 9-A toroidally-connected rectangular array. 



342 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1967 

assuming addition modulo Ml in the first index, and modulo M2 in 
the second. Defining 

lIfl lIf. [( k l )] 
QkZ(S) = ~ ~ P mn(S) exp -j27r ;'1 + ~2 ' 

k = 1, ... , Ml , l = 1, ... ,M2 (67) 

and proceeding as with the bilateral ring, we obtain, in the case of fiat 
filters and zero delays, with an impulse disturbance at the M 1 , M2th 
(or zero-zeroth) station, 

1 M 1 M. [ • (mk nl )] 
Pmn(t) = N L L exp J27r M 0+ M 

k=1 l=1 1 2 

[ ( 27rk 27rl) ] . exp - A 1 - ! cos M 1 -! cos M 2 t . (68) 

Comparison with the bilateral ring is most convenient in the limiting 
cases of large systems. For the infinite array, 

Pmn(t) = e -AT I m(~t)I n(~t) (69) 

which has the asymptotic form 

(70) 

indicating a more rapid approach to the final value in the rectangular 
array than in the ring. The approximation (50) for large t in large 
arrays gives 

1 00 00 [(m k n l )] 
Pmn(t) ~ N k~OO l~OO cos 27r Ml + M2 

• exp [ -1r'At(~i + ~;)} (71) 

The longest time constant is shorter for a rectangular array than 
for a ring with the same number of stations. Fig. 10 shows some curves 
calculated from (69). 

A bounded rectangular array in a plane is more complicated than 
a toroidally connected array because of the exceptional edge and corner 
stations. However, a bounded M 1 by M 2 array can be analyzed in 
terms of an analogous 2M 1 - 2 by 2M2 - 2 toroidal array as shown 
in Fig. 11. All columns except the first and last are duplicated and 
connected as shown by the solid lines to form a cylindrical array, and 
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then all rows except the first and last are duplicated and connected 
as shown by the dashed lines; averaging coefficients are divided by 
two whenever a station receives from duplicate stations. The toroidal 
array has one station corresponding to each original corner station, 
two for each edge station, and four for each interior station. The re
sponse of the original bounded array to a disturbance at any station 
is identical with the response of the corresponding part of the toroid 
when the original disturbance is applied to corresponding stations. 
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Fig. 11-The toroidally-connected array analogous to a bounded rectangular 
array. 

Alternatively, in principle, the response of a finite toroidal array 
can be determined from that of the infinite array by considering the 
response to propagate around a toroidal array in the four cardinal 
directions, or to be reflected from the sides of a bounded array. 

X. RESPONSE TO SINUSOIDAL DISTURBANCES 

The steady-state response of a linear system to a sinusoidal dis
turbance is sinusoidal, and the phase difference between the response 
and the input disturbance, together with the ratio of the amplitudes, 
is given by the frequency response function as a function of frequency. 
The impulse response is equivalent in principle to the frequency response 
function as a specification of dynamic properties, since either can be 
expressed in terms of the other through Fourier or Laplace transforma
tion. The frequency response functions of a bilateral ring, in particular, 
are the functions Pn(jw), which are the Pn(S) evaluated along the 
"real frequency axis" S = jw, for real w. 

The frequency response will be determined in this section for infinite 
rings, both bilateral and unilateral, in the case of arbitrary equal 
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filters and arbitrary equal delays. Although the expressions are more 
complicated than the impulse response expression in the case of flat 
filters and zero delays, they do not become very much more complicated 
in the more general case, for which closed form expressions for the 
impulse response have not been obtained. 

10.1 Case 1,' Bilateral Ring, N = 00 

For the bilateral ring, an expression for Qk(S) is obtained from (38) 
using (40), and Pn(s) is obtained using (36). Using the substitution 
(45) and passing to the limit of infinite N gives 

1 1211" einlJ de pes) = - --------
n 271' 0 S + H(s)(l - eBT cos e) 

'1'0 evaluate this by contour integration, let 

z = eilJ
• 

Then 

1 f zn-l dz 
P s =-

n ( ) j2 [- 8 T ( 1) ] ' 
71' S + H(s) 1 - T z + -; 

(72) 

(73) 

(74) 

integrated counterclockwise around the unit circle centered at the 
origin in the z-plane. 

When n ~ 0 the integrand has two poles in the z-plane, located 
at the roots of the quadratic equation 

z' - 2e"[ 1 + H'(S)} + 1 ~ O. (75) 

Since the denominator of the integrand is symmetric in z and liz, 
one root is the reciprocal of the other. We defer consideration of the 
case where both roots have unit magnitude; then one pole will lie 
inside the path of integration and the other outside. Denote the root 
inside the contour by 

z, ~ e"[ 1 + H'(sJ - ~e'''[ 1 + H'(sJ' 1, (76) 

where it is understood that the square root is to be taken to have 
whichever sign gives Zl the smaller magnitude. 

For convenience, let 

(3(s) 
H(s) 

s + H(s) , 
(77) 
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this incidentally being the quantity whose magnitude is required to 
be less than unity in the sufficient condition for stability given by 
Gersho and Karafin. 1 Then 

VI - {32(s)e- 2BT 
Zl = -----'---''-'---

{3(s)e- BT 
1 

(78) 

{3(s)e- ST 

1 + VI - (3\s)e- 2ST ' 

where the second form can be obtained by rationalizing the numerator. 
The integral around the contour is 27rj times the residue at this pole, 
so that P n(S) is equal to the residue, which can be put in the alternative 
forms 

H(S){3n-l(s)e- nST VI - {32(s)e- 2ST (79) 

_ (3n+l(s)e- nsT 

- H(s) VI - {3\s)e- 28T [1 + VI - {32(s)e- 28T r 
For negative n, (74) can be transformed into an integral in y = liz 
to show that 

(80) 

The deferred case in which Zl has unit magnitude will now be briefly 
considered. In this case, the quadratic equation (75) has two conjugate 
roots of unit magnitude, or double roots at 1 or -1, and it is easily 
shown that this occurs when {3(s)e- ST is real and has magnitude 1 or 
greater. If the sufficient condition for stability mentioned earlier is 
satisfied, this cannot occur in the left half s-plane or on the real fre
quency axis except at zero frequency, where a singularity is expected 
to occur in any system configuration. 

Where (3(s)e-'T is ±l, Pn(S) is infinite and will ordinarily have a 
branch point. This always occurs at s = 0, and occurs for other values 
depending on the filters and delays. Where (3(s)e- ST is real and has 
magnitude greater than unity, Pn(s) will be finite but will have a step 
discontinuity, because as s passes through a value at which (3(s)e-'T 

is real, Zl crosses the unit circle and must immediately be redefined 
as Z2 , and the square roots in (79) abruptly change sign. The function 
Pn(s) is thus defined as a single-valued function in the s-plane with 
line discontinuities where it might be expected to have branch cuts. 



DYN A:\IIC RESPONSE 347 

If the system is stable, these discontinuities are confined to the interior 
of the left half s-plane except for s = O. 

Thus, (79) defines Pn(jw) as a continuous single-valued function 
except at w = O. In the case of flat filters and zero delays, Pn(s) is 
the Laplace transform of (47). Fig. 12 shows the magnitude of Pn(jW) 
for this case and for the case of AT = 0.1. 

10.2 Case 2: Unilateral Ring, N = 00 

For an infinite unilateral ring, a similar procedure gives 

l.S/A 

~1.0/A 
3 . ...., 

-- ZERO DELAY 

-- AT =0.1 

SA 
w 

Fig. 12 - Frequency response of an infinite bilateral ring. 

(81) 
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to be integrated over the same path as (74). When n ~ 0, the integrand 
has a single pole at z = {3(s)e- ST . If the magnitude of {3(s)e- 8T is less 
than 1, the pole is inside the unit circle, and for nonnegative n 

(3n+l(s)e- nsT 
P n(S) = H(s) , n = 0,1,2, ... , (82) 

while for negative n under the same conditions, the substitution y = 1/ z 
puts all poles outside the unit circle and 

n = -1, -2, .... (83) 

Fig. 13 shows the magnitude of PnCiw) graphically. As the magnitude 
of (3(s)e- H becomes greater than 1, the pole crosses the unit circle 
and there is a step discontinuity in P n(S) for all n. However, the suffi
cient condition for stability mentioned previously is both necessary 
and sufficient, in the unilateral ring, for these discontinuities to be 
confined to the left half-plane. 

The finite value of Pn(O), where a singularity should occur, is at
tributable to the fact that every station in the infinite unilateral ring 
is a slave station, and no finite change at any given station can alter 
the equilibrium frequency. The infinite unilateral ring is in this sense 
a pathological limiting case of the unilateral chain in which the master 
station recedes to infinity and becomes inaccessible. 

1.o/X ..,...-------------------------, 

O.B/A 

O.6/A 

O.2/X 

2A 

ZERO DELAY 

4A 
w 

Fig. 13-Frequency response of an infinite unilateral ring. 

7A 
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XI. JITTER RESPONSE 

Jitter denotes random variations in the phase of a signal. In a digital 
signal, jitter can occur as a result of pattern-induced retiming errors 
in regenerative repeaters. 5 Jitter reducers6 can reduce the high-frequency 
components of jitter, but, because the jitter reducer output frequency 
is slaved to the input frequency, the low-frequency components cannot 
be reduced. 

In a mutually synchronized system, the low-frequency components 
of jitter will affect the observed phase differences used to control the 
clocks. Even if the variations in the received phase, after jitter reduc
tion, are not themselves objectionable, they might cause objectionable 
variations in clock phases through the cumulative effects of each clock 
acting on the next. To simplify the analysis, only the effects on the 
clock phases are considered; the immediate ,effects of jitter are omitted. 

It is assumed that the effect of jitter on the link from the mth station 
to the nth is to add a random component J..lnm(t) to the phase Pm(t - Tnm) 
that would be received without jitter. This random component is 
assumed to have the properties of white Gaussian noise and to be 
independent on different links. Assuming that a jitter reducer can be 
designed that will compensate the immediate effects of jitter, we 
determine only the cumulative effect of jitter propagating through the 
system as a result of its effect on the station clocks. 

The autocorrelation function assumed for J..lnm(t) is 

(84) 

Here "E" stands for the "expectation" or mean value, the star denotes 
complex conjugation (immaterial here since J..lnm is real), and oCt) is the 
Dirac delta function. K represents the noise power density, assumed 
to be the same for every link in the systems to be considered. 

11.1 Case 1: Phase-Locked Oscillator 

As a standard of comparison, consider the effect of this jitter on a 
simple phase-locked loop of gain A, in which an oscillator is controlled 
by the signal received from an unperturbed source over a jittered link. 
The equation for the output phase pet) in this system is 

p'(t) = Fl + A(Fat + J..l(t) - p(t» , (85) 

where Fl is the free-running frequency of the controlled oscillator, 
F 0 the frequency of the master source, and the link delay is assumed 
zero. Since the system is linear, and we are interested only in the random 
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component of the output, we may set F 1 = F 0 = 0 without loss of 
generality. Thus, the Laplace-transformed system equation becomes 

spes) = AM(s) - AP(S) (86) 

with solution 

A 
pes) = s + A M(s). (87) 

We obtain the mean-square value of pet) from its autocorrelation 
function cp(x) evaluated at x = O. This is determined from the power
density spectrum 

( ) 1 foo () -jwx d <I>\.w = 271" -00 cp x e x (88) 

by means of the inverse transformation 

cp(x) = i: <I>(w)eiWX dw. (89) 

The power-density spectrum of the input J.1.(t), obtained from (84) and 
an integral of the form of (88), is fiat, equal to 1(/271", for all w. The 
output power density is obtained by multiplying this by the square 
of the magnitude of the frequency response, obtained from (87): 

A2K 
<p(w) = 271" 1 JW + A 12 (90) 

The inversion integral (89) is evaluated by means of a partial-fraction 
expansion. The analytic continuation of (90) in the s-plane, s = jw, 
has poles in both the right and left half-planes. Since (89) is a Fourier 
(not Laplace) inversion, terms due to poles in the right half-plane will 
be zero for positive x; thus, for positive x we need only consider the 
left half-plane. We obtain 

and, as a limit, 

AKe-xx 
cp(x) =--

2 

cp(O) 
AK 
2 

(91) 

(92) 

is the mean-square value of pet). The rms phase error is of course the 
square root of this. 

11.2 Case 2: Bilateral Ring 

We now consider a bilateral ring with flat filters and small delays. 
Each station receives two inputs, each with jitter with the autocor-
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relation function (84), and therefore power density K/27r. Each input 
is multiplied by }"/2, to produce an error-signal component with power 
density (}../2)2](/27r, and when two independent components are added, 
their power densities add to produce a total power density of 2 (}"/2)2K/27r, 
or }..2](/47r. The effect of the two jitter components is thus equal to 
the effect of a white noise component of power density }..2K/47r added 
to the free-running frequency. We ignore the steady-state components 
and consider this to be the only input at each station. Thus, we assume 

}..2K 
E[v!(t)vn(t + x)] = 2 o(x). (93) 

The variables Uk(t) are derived from the vn(t) as in (84); direct evalua
tion gives 

k = l; 
(94) 

k ~ l. 

This shows that the Uk(t) are uncorrelated, and therefore (since we 
have assumed Gaussian distributions) independent, each with power 
density }..2K/47rN. It follows, since each qk(t) depends only on the cor
responding Uk(t) as in (38), that the qk(t) are independent. Denoting 
their autocorrelation functions by Y;k(X), we obtain their power-density 
spectra, using the frequency response given by (38), as 

'If ( _ }..2K/47rN 
k w) - [ +. "\ -jWT ]["\ • "\ jWT ] , }.. JW - I\e cos Ok /\ - JW - I\e cos Ok 

(95) 

where the substitution (45) is used as an abbreviation. 
When k = N, (95) indicates infinite power density at zero frequency. 

The autocorrelation function Y;N(X) is consequently infinite for all x, 
and in particular the mean-square value of qN(t) is infinite, so that 
the mean-square value of each Pn(t) is infinite. This occurs because 
the random variations that the jitter induces in the system frequency 
cause the system phase to execute a random walle However, since qN(t) 
contributes equally to every Pn(t), it does not affect the phase differences 
between clocks, and all other qk(t) have finite mean-square values. 
It follows that while the phase of each clock tends to deviate indefinitely 
far from that of an unperturbed clock of the same frequency, the 
deviation between clocks in the same system tends to remain bounded. 

Weare primarily interested in the phase difference between the 
clock at each station and the delayed signal received from an adjacent 
station. The mean-square value of this phase difference will be denoted by 
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<Pn,n±l = E{ [Pn(t) - Pn±1(t - 7)]2}. (96) 

We express the phases in terms of qk(t) using (36), writing the square 
of the real sum of these complex quantities as the product of the sum 
by its conjugate so that expansion of the product gives terms of the 
form of the left side of (84) ; thus, 

N-l 

<Pn,n±l = 2 L {lh(O) - Re [e'fi Ok1fk(7)]}. (97) 
k=l 

Therefore, (95) should be used in an integral of the form of (89) 
to determine 1fk(O) and 1fk(7). The analytic continuation of (95) in the 
s-plane has, in the left half-plane, all the poles of (41), and in addition 
the reflections of these poles in the right half-plane. We continue to 
use (23) as an approximation when A7 is small. The result is 

AK exp [ -Axe 1+ ~:~::koJ ] 
1fk(X) ~ 4N(1 _ cos Ok)(l + A7 cos Ok)' x ~ O. (98) 

In particular, to the first order in 1\7, 

1fk(O) ~ AK(l - A7 cos Ok) 
.' 4N(1 - cos Ok) 

and, again using the linear approximation to the exponential, 

Al((l - A7) 
1fJ 7) ~ 4N(1 - cos Ok) . 

We now find, from (97), that 

(
N - 1) I\K 

<Pn,n±l ~ -;v- 2' 

(99) 

(100) 

(101) 

The mean-square phase discrepancy observed in received signals is 
thus substantially independent of the size of the system and sub
stantially unaffected by small link delays. It is roughly equal to the 
mean-square phase error, given by (92), that would be induced, by 
the jitter in a single link, in a simple phase-locked oscillator with control 
gain A. 

11.3 Case 3: Unilateral Ring 

In a unilateral ring, each station receives only one input, so that 
the equivalent vn(t) has power density A2K/27r and its autocorrelation 
function has twice the value given in (93). The appropriate frequency 
response is given by (55), so that instead of (95) we get 
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(102) 

We continue to use (23) to determine a simple approximation. The 
result is 

(103) 

In particular, 

(104) 

and 

(105) 

Equation (97) is equally valid for the unilateral ring as for the bilateral 
ring, giving 

(
N - 1) 

<Pn,n-l ~ AK -N 

[ (N - 1) . (N - 2)] 
<P",n+l ~ AK ~ + 2Ar ~- . (106) 

The mean-square phase discrepancy is essentially twice that which 
occurs in the bilateral ring. The link delay has a first-order effect 
on the signal received at each station from the station to which it 
transmits timing control because of the round-trip delay. 

XII. SUMMARY AND CONCLUSIONS 

In this section, I propose to extrapolate the specific results of the 
preceding sections to general conclusions that, although not strictly 
proven, seem quite likely to be true from a practical standpoint. 

It was shown in Section III that a system that satisfies the reciprocity 
condition and has fiat filters and no delays will have a nonoscillatory 
transient response. The response was described more specifically in 
later sections for specific configurations: 2-station systems, fully inter
connected systems, and bilateral rings and chains, all of which met these 
conditions. These configurations appear to span the extremes of practical 
systems. 
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The effect of delays was determined specifically only for these special 
configurations and for the special case of equal delays and flat filters. 
The effect was shown graphically for AT = 0.1; it appeared to be small 
and unobjectionable. Fig. 6 shows that at all stations, over the time 
range shown, the response to a transient disturbance is actually smaller 
when delays exist. At the zeroth (or Nth) station, where the disturbance 
originates, this can be attributed to the short period after the disturb
ance during which the neighboring stations remain undisturbed and 
are, therefore, reliable indicators of the original state. At other stations, 
the appearance of smaller disturbances is due in part to the delayed 
peak of the response. 

I propose to conjecture that the dynamic effect of delay in any 
reciprocal system with flat filters will be equally unobjectionable as 
long as the product of the largest filter gain and the largest single link 
delay is less than 0.1. This would be a unjustified extrapolation from 
a purely mathematical standpoint, but it seems reasonable in the light 
of the physical interpretation suggested in the preceding paragraph. 

The effect of filters with other than flat frequency response has not 
been shown at all in terms of transient response. Two aspects of this 
question appear important. In the first place, it may be possible to 
obtain some improvement in transient response by appropriate filter 
design, but further analysis appears necessary to answer this question. 
In the second place, assuming that the flat filter gives a satisfactory 
response, the effect of high-frequency cutoff, which is inevitable in 
a practical system, must be estimated. A tentative answer to this 
question can be obtained by examination of the expressions for fre
quency response pes) developed for specific configurations. In all 
these expressions, the system response is substantially the same as 
in the flat-filter case as long as the filters Hn(s) remain substantially 
flat until the frequency s becomes large compared with the zero-fre
quency filter gains An. This condition establishes an approximate 
bandwidth requirement for the filters. The extrapolation to arbitrary 
configurations is proposed in this case also. 

The effect of departure from the reciprocity conditions is illustrated 
in only one case: the unilateral ring. Here, although the departure 
from reciprocity is the greatest possible, the effect on the transient 
response is mild. The magnitude of the response, and its rate of sub
sidence, are substantially unchanged; the principal effect is the preces
sion of the disturbance around the ring. The oscillatory components 
in the response can be associated with this precession. 

Extrapolation of this result appears uncertain. The reciprocity condi-
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tion can be stated in terms of the equality of the products of averaging 
coefficients in opposite directions around any loop. It can easily be 
conjectured that if the product of the averaging coefficients around 
any loop is much larger in one direction than the other, there will 
be a tendency for disturbances to precess around the loop in this direc
tion, thereby generating oscillatory components in the response. On 
the other hand, it is hard to imagine pure precession in a multiloop 
network. A possible answer is suggested by the argument in Section III, 
in terms of pole loci, suggesting that a considerable departure from 
reciprocity could be tolerated before oscillatory components began 
to appear. 

This extrapolation is suggested only for the case of flat or nearly 
flat filters and zero or small delays. For other cases, departures from 
reciprocity may give rise to a stability problem. This is suggested 
by the analysis in Section VIn of the discontinuities in the frequency 
response of an infinite unilateral ring, which showed that the stability 
condition that has been shown in the general case only to be a sufficient 
condition is in this case not merely sufficient but necessary. The latitude 
for filter shaping may be smaller in the nonreciprocal case, limited 
not simply by instability but by the deterioration of transient response 
that generally accompanies an approach to instability. 

The analysis of jitter response shows that in certain representative 
cases the effect of jitter does not accumulate in a large system. This 
gives a definite negative answer to the question of whether cumulative 
jitter necessarily occurs in a large system. It seems reasonable to 
conjecture that this conclusion is independent of configuration, and 
remains true for substantially flat filters and small delays, but less 
reasonable to suppose that it will remain true for arbitrary filters. 

Nothing in this study should be construed to indicate a preferred 
configuration for a practical system. Full or nearly full interconnections, 
nearest-neighbor connections, branching networks, or other forms may 
be appropriate. In particular, the apparent superiority of the fully 
interconnected network from the standpoint of transient response must 
be tempered by the practical considerations against setting up a large 
number of very long connections. 
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APPENDIX 

Reciprocal Systems in the Steady State 

The assumption of zero initial conditions, used in the study of tran
sient behavior, must now be dropped. Thus, the transformed (2) are 
no longer valid, but the original equations (1) may be used. In the 
steady state, the rate of change of phase at every station is equal to 
the common system frequency j, 

p~(t) = f, n = 1, ... ,N (107) 

so that 

-oo<t<oo. (108) 

Thus, in the steady state, the vn(t) being constant, the system equations 
(1) become 

N 

f = Vn + An 2: anm(t/lm - t/ln - fTnm) , n = 1, ... ,N. (109) 
m=l 

The general solution to these equations is the expression given by 
Gersho and Karafin 1 in terms of cofactors of a matrix derived from 
the anm . In the reciprocal case, let the nth equation in (109) be multiplied 
by Cn and the equations be assumed over all n; when the reciprocity 
condition in the form of (8) is applied, all the terms in the phases t/ln 
drop out and one gets 

N N N N 

f 2: Cn = 2: Cnvn - f 2: AnCn 2: anmTnm. (110) 
n=l n=l n-l m=l 

This can be solved immediately for f, the expression being similar 
in form to the solution reported by Gersho and Karafin, except that 
the Cn , which are easily determined by (9), replace the matrix cofactors. 
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Deformation of Gas Lellses by Gravity 

ByD.GLOGE 

(Manuscript received September 14, 1966) 

Gravity forces cause distortions in tubular gas lenses. A theory is derived 
here which yields excellent quantitative agreement with measured distortions 
for various tube lengths, diameters, and gases. It is shown that in a gas 
lens of optimum design the displacement of the optical center has a maximum, 
at the end of the lens. The amount of displacement increases with the fourth 
power of the tube dialneter and with the square of the gas pressure. 

1. INTRODUCTION 

If a cool gas is blown into a hot tube (Fig. 1), the gas heats up first 
at the wall of the tube and remains cool longer at its center. The density 
therefore, is higher in the center of the tube and decreases toward the 
wall. The increase in density is accompanied by an increase in dielectric 
constant. In this way the gas acts as a positive lens. 1 ,2 

At the same time, however, the cooler gas tends to sink down because 
of gravity, thus causing an asymmetric density profile in a horizontal 
tube.3 Though a simple approach already gives an estimate of this 
effect,4 a more rigorous theory is derived here using a perturbation cal
culation which determines the transverse convection currents from the 
unperturbed temperature profile and then uses the currents to correct 
the temperature profile. 

II. TRANSVERSE CONVECTION CURRENTS 

The tube walls are at a temperature Tw and AT degrees warmer than 
the entering gas. Heat diffuses toward the axis and determines the tem
perature field. Using the coordinate system shown in Fig. 1, the tem
perature field may be approximated by2 

7' = Tw - dT[ 1 - 2 ~ :,1. + (x' :, iL)']e-,j·, (1) 
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Fig. 1-Convection currents and temperature distribution in a gas lens. 

where a is the tube radius and s a decay length given by the formula 
2 a Vzn 

S = --. 
7.3a 

(2) 

V:z o is the gas velocity along the axis and a the thermal diffusivity defined 
as the ratio of heat conductivity K to heat capacity: 

K 
a =-. 

pCp 
(3) 

The heat capacity is written here as the product of density p and specific 
heat at constant pressure. 

The temperature is related to the density p and the pressure p by 
the gas equation 
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p = RpT. (4) 

The density determines the gravitational forces gp which drive the gas 
particles in the transverse direction. The transverse components of the 
velocity field vex, y, z) can be found from Newton's Law 

d 2 dv 
gp = gra p - v p V v + p dt ' (5) 

where v is the kinematic viscosity determining the frictional forces. The 
acceleration is described by the total differential dv I dt and for the steady 
state takes the form 

dv 
dt - (v grad) v . (6) 

In the problem under consideration the gas may be treated as a 
quasi-incompressible (Boussinesq) fluid. That means that variations 
of density may be neglected, except insofar as they modify the action 
of gravity. Forming the curl of (5) therefore, yields 

curl (gp) = -vp curl V 2v + p curl ~;. (7) 

Using (4) and rearranging (7) one finds 

(
grad T grad p) dv 

g X --- - -- = v curl curl curl v + curl-· 
T p dt 

(8) 

Here grad pip can be neglected compared with grad TIT, and T in 
the denominator will be replaced by the mean (absolute) temperature 
To. Finally, by inserting (6) one finds 

~o (g X grad '1') = v curl curl curl v + curl (v grad)v. (9) 

To solve this equation, a tentative velocity distribution is introduced 
which represents the flow lines shown in Fig. 1. The unknown coefficients 
are chosen in such a way that the equation 

div v = 0 (10) 

is fulfilled, which assumes that the gas is incompressible. Then the 
velocity components 
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v 0 ( 2 2 2) ( 2 2 5 2) Vx = - a4 a - x - y a - x - y 

Vo (2 2 2) 
Vy = - 4 a 4 xy a -:c - y (11) 

VZO (2 2 2) 
Vz = a2 a - x - y 

result which leaves only the coefficient Vo unknown, since the velocity 
V zo is determined by the forced laminar flow in the tube. Vo is the vertical 
gas velocity at the tube center caused by the gravitational forces. It 
may be assumed to be much smaller than the longitudinal velocity Vzo. 

Though Vo is a function of z the variation of v in the z-direction is neg
ligible compared to its variation in the cross-sectional plane and has 
to be considered only in the acceleration term where avo/az occurs 
multiplied with the velocity V oz • 

With these approximations, Vo can be determined by inserting (1) 
and (1]) into (9) which yields 

4g I1T e-z/sy = 192 v~ y + 18vzo aavo . 
~ a z 

(12) 

Third- and higher-order products of x and yare neglected in this equa
tion since they are only important at the wall of the tube and contribute 
little at the tube center. 

Equation (12) is a linear inhomogeneous differential equation in z 
with the solution 

Vo = fll1T a
2 

_8_ (e- z / s _ e- z / q ) 

v To 488 - q , 
(13) 

where 

(14) 

A discussion of (13) is postponed in order to proceed with the cal
culation of the lens disturbance by using the derived convection cur
rents to correct the temperature profile which, in turn, gives the density 
distribution and the lens profile. 

III. DISPLACEMENT OF THE OPTICAL CENTER 

The gravitational forces cause a continuous flow of cool gas toward 
the bottom of the pipe, which distorts the temperature profile more and 
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more in the way shown in Fig. 2. The growing temperature gradient at 
the bottom, however, will increase the heat diffusion toward the center 
and counteract the convection effect. The equality of both effects is ex
pressed by the equation 

a\j2T = v grad T (15) 

which determines the actual temperature profile under the boundary 
condition that T = Tw at the tube wall. 

Considering that the temperature function for axial direction is 
much less curved than the radial one, a2 T / ai may be neglected and 
(15) separated with respect to Z.6 This yields 

(
a2T a2T) aT aT T - T IV 

a ax2 + ay2 = Vx ax + Vz ay + Vz S ' 
(16) 

where T - Tw is an exponential function of z as already introduced by 
(1) for the undisturbed temperature profile. 

No straightforward solution of (16) is known. Assuming, however, 
that the gravity effect, to first order, tilts the temperature profile in the 
x-direction as shown in Fig. 2, the amount of this disturbance can be 
calculated. The assumption implies that by transforming T(x, y, z) 
into new coordinates 

YJ = y; r = z (17) 

the undisturbed profile can be regained, which in the following is denoted 
by (J(~, YJ, r). Since this is symmetric with respect to ~, the corresponding 
transformation in (16) must generate a differential equation for (J 

which contains only even terms in ~. The requirement that the odd terms 

+a 

I 

8 ( 
~) --r--~---=-+-T-w'" T 

Tw- 8 ~=O 
t 
I 

Fig. 2-The temperature function T(x) and its transformation into a sym
metric function 8(x - aT). 
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cancel yields the following equation for 0: 

2 ~(aO)2!= aO+2~ O-Tw aO . 
au a~ ~ Vx a~ uVz s a~ (18) 

The locus of the minimum of the temperature T(x) is of particular 
interest, for this is the optical center of the distorted lens profile. Fig. 
2 shows that this center occurs at a distance 

d = o(Tw - O)~=o (19) 

below the tube axis. Using for 0 the undisturbed temperature profile 
given in (1) and solving (18) for o(Tw - 0) at ~ = 0 yields 

d = __ v,,-o --

2 Vzo + 8 a
2 

S a 

By inserting (2) and (3) into (20) one finally finds 

d - _1_ ga
4 

LlT _q_ ( -Z/8 _ -z/Q) 
- 750 a2 To s _ q e e. 

(20) 

(21) 

The diffusivity a and the viscosity v for perfect gases are related by 
Eukens formula 7 

(22) 

c. being the specific heat at constant volume. As Table I shows, the 
decay lengths sand q given by (2) and (14) differ very little. Since (21) 
is not defined for s = q it is more convenient to use the following ap
proximation for (21): 

(23) 

which is valid for z < 2sq Iq - sl. 
In Fig. 3 the displacement of the center of the lens profile is plotted 

TABLE I 

Cp/Cv a/v q/s 

He 1.66 1.55 1.03 
N2 1.41 1.35 0.93 
CO2 1.31 1.30 0.89 
CH4 1.31 1.30 0.89 
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Fig. 3 - Displacement of the profile center in a tubular gas lens of %-inch i. d. 
for flow rates of 0.5, 1, and 3 liters per minute using air. (a = 0.22 cm2js). Meas
ured data by DeGano.8 

versus the distance from the tube input for flow rates of 0.5, 1, and 3 
liters per minute. A tube of i-inch diameter and 100°C wall temperature 
is assumed. The gas enters at room temperature. The mean temperature 
during the process is assumed to be To = 50°C. The gas is air with a 
diffusivity a = 0.27 cm2 

/ s. 
All curves show a linear increase of the displacement at the tube input, 

determined by the transverse acceleration of the gas. Further from the 
input the displacement follows the exponential decay of the temperature 
profile. The maximum displacement occurs at z = s. Measurements at 
the end of a 16-cm gas lens using the mentioned parameters are in fair 
agreement with the theory.8 

In Fig. 4 the displacement is shown for a tube of i-inch diameter 
and two different gases: CO2 with a = 0.125 cm2/s and N2 with a = 
0.25 cm2 

/ s. The temperatures are the same as in Fig. 3. The flow rate 
is 1 liter per minute. In this case, data are available for various tube 
lengths. 3 They show an excellent agreement with the predicted behavior 
of d versus z. 

The focal length of the tubular gas lens has a minimum if the flow 
rate is chosen in such a way that s equals the tube length. The maximum 
displacement occurs at the end of such a lens and has the value 

1 ga4 AT 
dmax = 2040 "7 T· (24) 

A more useful measure for the gravity effect is the distance D by 
which a light beam has to be displaced off the tube axis to pass the lens 



364 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY ID67 

without deflection. Integrating at x = D over the tube length L 
finds D from the requirement that the total deflection cancels: 

l L aTI - dz = O. 
o ax x=D 

one 

(25) 

The development of the (disturbed) temperature field T about the axis 
yields for small distortion 

lL [D - d(z)]e- Z
/

3 dz = 0; 

and finally, by using (23) one has 

1 ga4 1 (~L + 1 )e-
2LIs 

D = 3000 7 --~--L-/--..... 1 - e- 6 

(26) 

(27) 

In Fig. 5 the displacement D is plotted versus the flow rate for CO!! 
in a 7-inch tube assuming the same temperatures as in Figs. 3 and 4. 
Data measured by Steier3 show good agreement with the theory. For 
L>s 

1 ga4 

D~30007 (28) 

is a good approximation. According to this formula, the optical center 
of a CO2 lens of optimum design would occur outside the tube if the 
tube diameter is larger than 1 cm. 
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Fig. 4 - Displacement of the profile center in a tubular gas lens of lt4-inch i. d. 
for a flow rate of 1 liter per minute using C02 (a = 0.1 cm2/s) or N2 (a = 0.2 
cm2/s). Measured data by Steier.s 
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Fig. 5 - Displacement of the optical center of a tubular gas lens using CO~ 
and a tube of 7 inches long and 1,4-inch diameter. Measured data by Steier.3 

IV. CONCLUSIONS 

The calculations show that the temperature distribution in a gas
filled tube undergoes a distortion which increases with the fourth power 
of the tube radius. A square law dependence on pressure is predicted for 
the range of 0.05 to 50 atmospheres where the thermal conductivity is 
independent of the pressure and therefore, the diffusivity a ex: lip. 

As a measure of the distortion, the displacement of the effective 
optical center in a tubular gas lens is calculated. Using CO2 at room tem
perature and a tube of 10-mm diameter at 100°0 wall temperature the 
optical center occurs at the bottom of the tube. 
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Acoustic Light Modulatol"s Using 
Optical Hetel"odyne Mixing 

By R. W. DIXON and E. I. GORDON 

(Manuscript received September 21, 1966) 

Acoustic light l1wdulators are discussed in which the optical carrier 
is reinserted in the diffracted, frequency-shifted light beam. Reinsertion is 
accomplished in a novel fashion using a K (isters prism. In contrast to the usual 
acoustic modulator, the diffracted light is power modulated at the acoustic 
frequency. Modulation bandwidth and depth are each calculated as a func
tion of the optical and acoustic beam parameters, assuming a Gaussian 
optical beam and rectangular acoustic beam. It is shown that the modulation 
bandwidth increases proportional to the optical beam diffraction angle and 
equals the inverse of the transit time of the sound across the waist of the 
optical beam. The optimum modulation depth, for a given acoustic power, 
corresponds to approximate equality of the optical and acoustic diffraction 
angles. Confirming experiments in the frequency range 250/350 MHz are 
described. 

I. INTRODUCTION 

Detection of optical radiation using heterodyne mIxmg was pio
neered in the classic experiments of Forrester, Gudmundsen, and 
Johnson.1 They successfully detected the microwave beat between two 
Zeeman components of a mercury arc. vVith coherent light sources the 
technique was utilized initially in the investigation of the mode struc
ture and frequency stability of the helium-neon laser.2 Subsequently, 
optical heterodyne mixing has been used as a sensitive, high-resolution 
detector of frequency shifts in the study of Brillouin scattering3 and 
of the frequency broadening of Rayleigh scattered light.4 

It is well known that under the correct circumstances an optical 
beam, passing through a transparent material containing a traveling 
acoustic wave, has part of its energy diffracted by the refractive index 
variations associated with the acoustic wave. In the proper range. of 
parameters, known as the Bragg region, the diffracted light is con-

367 



368 'l'HE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1967 

fined around a single direction. The system acts as a single-sideband 
suppressed-carrier modulator in which the diffracted light is intensity 
modulated with the envelope of the modulation subcarrier. Depending 
on the relative directions of the light and sound the diffracted light 
frequency is increased or decreased by the frequency of the modulation 
subcarrier. 

One may arrange to have the diffracted light fall into the same solid 
angle as a portion of the original light, and thereby allow detection 
of the diffracted beam by heterodyne mixing with the undiffracted 
beam. Heterodyne mixing of light in which the signal frequency is 
shifted by diffraction from sound in a liquid cell ultrasonic modulator 
has been demonstrated by Cummins and Knable,5 and the increased 
sensitivity of this technique has been briefly pointed out by Goodwin 
and Pedinoff.6 

Optical heterodyne procedures in combination with Bragg scattering 
can also be used as a sensitive detector of sound. For example, 
Lastovska and Benedek3 have shown that thermal sound (thermal 
Brillouin scattering) may be detected in this way. In fact, in some 
applications-e.g., at very high frequencies-this technique can be a 
more sensitive detector of sound than the best available transducer. 
The advantages of optical techniques for investigating sound beam 
intensity profiles, angular distributions, etc. at any point in the me
dium in which the acoustic wave propagates have been pointed out 
earlier7 and may now be supplemented by the increased sensitivity and 
spectral range which the utilization of optical heterodyne detection 
affords. An additional advantage of this method of optical detection is 
that solid-state photodetectors may be used instead of photomulti
pliers, without compromising sensitivity, whenever sufficient light is 
available that the shot noise associated with the optical local oscilla
tor limits detector sensitivity.8 

This paper is concerned with the detailed properties of an acoustic 
modulator when optical heterodyne detection of the modulated light 
is employed. A coherent optical source is assumed. The range of useful 
modulation frequencies for this technique extends at present well 
into the microwave region. Present limitations of efficient thin-film 
transducers limit operation to below 10 GHz. Acoustic loss for some 
applications becomes important at lower frequencies than this. The 
frequency response of commercial photodiodes extends to about 30 
GHz. 

The analysis includes a discussion of modulation bandwidth and 
optimum modulation conditions and concludes with the prediction that 
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very large dynamic bandwidths may be obtained using optical hetero
dyne mixing in conjunction with an acoustic modulator. A series of 
experiments involving a novel beam splitter and various modulat
ing materials confirm this prediction. It is shown that bandwidth is 
related to the diffraction angle of the optical beam and may be varied 
over a large range by changing this angle. Experiments have been 
restricted to solid modulating materials, but the results are applicable 
without modification to liquids if their higher acoustic loss can be 
accepted. It is concluded that large modulation depths should be prac
tical at modulation frequencies well into the microwave region and at 
optical frequencies throughout the visible and infrared. It is also 
pointed out that for small diffracted light intensities, proportionately 
much larger modulation depths are possible using this technique than 
if the transmitted light beam alone were monitored. 

The relation of modulation depth and bandwidth for a given acoustic 
power is discussed, and experimental confirmation of the conclusions 
is presented. In addition, it is shown that with these acoustic light 
modulators frequency and phase information, as well as power modu
lation, may be transferred to the light with large dynamic bandwidth. 

II. DISCUSSION 

2.1 Optical Beam Geometry 

In order to obtain two beams for use in optical heterodyne mixing 
experiments, it has been common practice to use a beam splitter and 
mirror assembly similar to that shown schematically in Fig. 1. The con
figuration shown would be appropriate for coherent detection of light 
modulated by Bragg diffraction from an acoustic wave. 5 In the experi
ments described here it has been found very useful to replace the mirror 
and beam splitter of such an experiment with a Kosters prism.9 These 
prisms have been commonly used in Michelson interferometers and 
similar apparatus where ease of alignment is desired.10 Probably this 
prism has not received the attention it deserves for applications in 
modern physical experiments. 

Fig. 2 shows ·the general construction of a Kosters prism. Two 
accurately constructed 30-60-90° prisms are carefully cemented to
gether with a dielectric beam splitter between them. Because the two 
exit beams travel symmetrical paths to their intersection with any 
plane perpendicular to the beam splitter, they are optically identical. 

The experimental apparatus used in the present series of experiments 
is shown schematically in Fig. 3. The two beams from the Kosters 
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Fig. 1- Mirrors and beam splitters arranged for optical heterodyne detection 
of Bragg diffracted light (after Cummins and Knable, Ref. 5). 

prism are set to intersect within the acoustic beam at an angle equal 
to twice the Bragg angle so that Bragg diffracted light from each of 
the incident beams falls into the diffraction angle of the other beam. 
The Kosters prism assures symmetrical paths for the diffracted and 
undiffracted light and thereby makes alignment very easy. A lens of 
appropriate focal length is positioned so that the optical beam waists 
intersect with the desired convergence angle in the center of the modu
lator's acoustic beam. 

Consider, in Fig. 3, fin acoustic traveling wave originating from the 
transducer. The frequency of the light diffracted from beam 1 into 
beam 2 is increased by the acoustic frequency while the light diffracted 

INCIDENT ___ 
OPTICAL-

BEAM 

-_BEAM 
SPLITTER 

EXIT 
BEAM 1 

TOTAL ~~:--___ +-___ EXIT 

INTERNAL-..... BEAM 2 
REFLECTION 

Fig. 2 - A IG:istcrs prism or double image beam splitter. 
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Fig. 3 - Schematic diagram of experimental apparatus. 
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from beam 2 into beam 1 is decreased by the same amount. The 
diffracted and transmitted beams interfere at the photodiodes after 
which the difference frequencies are amplified and detected. Since the 
difference frequency signal from diode 1 is 180 degrees out of phase 
with that from diode 2, the two signals may be fed, if desired, into a 
hybrid and will add at the port for which the output is the difference 
between the two inputs (the push-pull output). This has the advantage, 
which was not important in the present experiments but which might 
be for some applications, that amplitude noise on the incident optical 
beam (such as the beating of various laser modes) does not appear at 
the same output as the detected signal if the two sides of the detection 
system are balanced. In some of the experiments discussed only one 
diode was used, in others the balanced system worked very well and 
was no more difficult to align than the system employing a single diode. 
Modulation frequencies were normally near 300 MHz. 

2.2 Modulator Bandwidth 

In order to appreciate the limits on modulation bandwidth, it is 
instructive to consider qualitatively several special cases. For simplicity, 
assume that only photodiode 2 is used and that only an outgoing acoustic 
wave is present. The K6sters prism is positioned so that the two light 
beams of frequency v which are incident on the acoustic modulator have 
their point of intersection at the center of the acoustic beam. They 
intersect at twice the Bragg angle, 200 , [sin 00 = !fo~/v]' which is a 
function of the desired modulator center frequency fo, the acoustic 
velocity v, and the optical wavelength in the medium ~. The optical 
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Fig. 4 - A k-vector diagram of the Bragg diffraction process in which optical 
and acoustic diffraction angles are assumed negligibly small. 

velocity is c'. The wave vector relation (momentum conservation) 
among the three waves may be writtenko + K = k', where / ko / = 27rv/c' 
and I k' / = 27r(v + fo)/c' are the incident and scattered optical k-vectors, 
and K is the k-vector of the ultrasonic wave. Since to order / fo/v / « 1, 
I ko / = / k' / it is possible to make the elementary but useful construction 
shown in Fig. 4. The dotted circle has radius / ko I and defines the locus 
of allowed / k' /. Only a phonon of precisely the correct / K / will scatter 
ko if one assumes that neither the optical nor acoustic beam has any 
angular width. 

In order to appreciate the effect of nonzero diffraction angle, consider 
the limiting case in which the diffraction angle of the acoustic beam is 
large compared with the diffraction angle of the optical beam (Fig. 5); 
K has a well-defined magnitude but an angular width D.O. Only those 
acoustic k-vectors near the direction of Ko scatter light into spatial 
coherence with the heterodyning beam k~. Thus, the detected signal 
amplitude is lower than if the same acoustic power were confined to a 
smaller diffraction angle. 

If the acoustic frequency is increased to a new value, / K / is increased 
and the construction shown dashed is appropriate. No signal will be 
observed on the photodiode because no K can scatter into k~. This 
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modulator therefore, not only produces low modulation intensity but 
also possesses small bandwidth. 

Now consider the other limiting case in which the diffraction angle 
of the optical beam is much larger than that of the acoustic beam (Fig. 
6). In this case, only that portion of the optical energy near the center 
of the diffraction angle can be scattered by the acoustic wave of vector 
Ko and heterodyned with the other optical wave. Therefore, the scat
tered intensity is much less than it would be for the same optical and 
acoustic powers, if the diffraction angle of the light were decreased. 

If the frequency 10 is changed slightly, a new K is defined which is 
slightly different in magnitude but which has the same direction as 
Ko . In this case, however, the detected optical signal at the photodiode 
is essentIally unchanged as long as the deviation ~K is such that Ko + 
~K still connects two points on the dashed circle which are within the 
diffraction angles of the incident and hetrodyning optical beams. By 
varying lone traces out the angular profile of the optical beam. A 
bandwidth may be approximately defined by the condition 

{ I Kmax I - I !(min I } ~ V2 ~()oko cos ()o (1) 

from which it follows that the bandwidth ~I B is given by 

~fB ~ V2 (viA) ~()o cos ()o (2) 

......... >"'--------. 
\" I \ \ I \ I 

\ I 

\ .. ,-

Fig. 5 - A k-vector diagram of the Bragg diffraction process in which the 
acoustic diffraction angle is large compared with the optical diffraction angle. 
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in which A is the optical wavelength. The center frequency f 0 is defined 
by sin ()o = !fov/A. The optical beam diffraction angle l1()o may be ex
pressed in terms of the beam waist diameter Wo ,11 corresponding to a 
Gaussian beam for which Wo is the full width at ha1f intensity, 

Wo 1100 ~ A(2 ~l 2). (3) 

Substituting for 1100 yields for the bandwidth 

l1tn ~ (2 '\1'2 In 2) v cos~ 
7r Wo 

(4) 

which approximates the reciprocal of the transit time of the sound across 
the waist of the gaussian light beam. This important result shows how 
acoustic modulators with large bandwidths are made possible by in
creasing the diffraction angle of the optical beam. The fact that the 
diffraction angle l1()o of the optical beam must be less than the Bragg 
angle requires that the fractional bandwidth of the modulator obeys 
the inequality, using (2) and (3), 

l1tB < _1_. 
fa '\1'2 (5) 

Fig. 6 - A k-vector diagram of the Bragg diffraction process showing the origin 
of acoustic modulator bandwidth; the optical diffraction angle is large compared 
with the acoustic diffraction angle. 
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Thus, fractional bandwidths as large as 70 percent are possible if trans
ducer bandwidths can be made compatable with this requirement. 

It should be clear now for the situation depicted in Fig. 6 that increas
ing the acoustic diffraction angle would increase the detected signal 
without affecting the bandwidth. Likewise, from Fig. 5, in the other 
extreme the beat signal increases but the bandwidth is unchanged when 
the acoustic diffraction angle is decreased. It is therefore, plausible on 
the basis of the foregoing comments that the choice of acoustic diffraction 
angle approxil1wtely equal to optical diffraction angle is the optimum 
choice for a given bandwidth. The bandwidth is determined entirely 
by the diffraction angle of the optical beam. This conclusion is given 
quantitative expression in Appendix A. 

III. THEORY AND COMPARISON WITH EXPERIMENT 

In order to check the preceding ideas quantitatively, the photodiode 
current which would be expected with the geometry shown in Fig. 3 
was calculated for the case of light beams with identical Gaussian pro
files and an acoustic beam with rectangular cross section. It was known 
that these beam profiles could be accurately approximated experi
mentally. The lens was positioned in the incident optical beam so that 
the optical beam waist occurred at the center of the modulator. The 
diode photo current was computed as the far-field interference integral 
of the product of the acoustically diffracted optical amplitude and the 
heterodyning optical amplitude. Details of the calculation are presented 
in Appendix A. The expression for the component of photo current at 
the modulating frequency j, apart from material and numerical con
stants, is 

LCt) = 

where 

. 1 foA 
SIn 80 == ---. 

2 v 

(6) 
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Again Wo is the full width at half intensity of the Gaussian beam, 200 

is the intersection angle inside the modulating medium and fo is the 
acoustic frequency for which 00 is the Bragg angle. The acoustic beam 
height is h and its width (dimension in the plane formed by the acoustic 
and optic propagation directions) is L. The distance to the detector is 
R. Equation (6) is the basic relation which is subject to experimental 
verification. 

The first experimental checks of (6) confirmed that the acoustic and 
optical power dependences are correct. Experimentally, a 3-dB decrease 
in optical intensity or a 6-dB decrease in acoustic power as expected 
decreased the detected current by one-half. The other most interesting 
predictions made by (6) are contained in the terms Erf(b)/b! and 

[ 

7r2 (f - fo)2W:] 
exp - 4 In 2 v2 cos2 0

0 
• 

The former is concerned with the maximum detected signal amplitude 
and the latter with the dynamic modulation bandwidth, both as func
tions of the diffraction angle of the incident light. 

3.1 Bandwidth vs Beam Waist Diameter 

Consider first the term 

[ 

7r2 (f - fo)2W:] exp---2 . 
4 In 2 v cos2 00 

When the modulating frequency f changes from the value to, this 
term describes the decrease in detected signal. An acoustic half-power 
bandwidth, f),.fB , for which the detected current is greater than 1/\1'2 
below its maximum value, may be defined and is given by 

(2V21n 2) 
Wo D.fB = 7r V cos 00 • (7) 

The beam waist diameter times the bandwidth is thus a constant for 
a given material at a given center frequency fo(Oo). By making the beam 
waist smaller, e.g., by focusing the incident optical beam, the dynamic 
bandwidth may be increased. As indicated earlier the bandwidth is 
intimately related to the transit time of the acoustic wave across the 
optical beam. In fused quartz for longitudinal waves at frequencies low 
enough that cos 00 ~ 1, (7) becomes 

Wo f),./n = 3.70 X 105 cm/sec. (8) 

In Fig. 7 the measured bandwidth f),.f B , for modulation in fused quartz, 
is plotted against w:- 1 and (8) is shown plotted as the solid line. The 
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Fig. 7 - Experimental dynamic bandwidth plotted against the reciprocal of the 
optical beam waist diameter. The solid line is the theoretical expression, (8). 

value of Wo was varied by placing lenses of different focal lengths F 
in the incident optical beam. The relation between Wo and F was assumed 
to be of the form given by Kogelnikll except that Wo is defined as the 
full width at half intensity of the Gaussian beam. In the limit appropriate 
for the present experiments 

r-..I (2 In 2) FAo 
Wor-..l W ' 

7r 0 

(9) 

in which Wo is the beam waist of the incident laser beam and Wo is the 
beam waist of the beam in the scattering medium following its trans
formation by a lens of focal length F. Here, Ao is the free space wave
length. Equation (9) was used to convert from values of F to values'of 
Wo • Using a scanning slit and photomultiplier the value Wo = (1.00 ± 
O.Ol)mm was found. These measurements incidentally verified that the 
intensity profile of the laser beam was approximately Gaussian. 

The experimental points in Fig. 7 were obtained using apparatus 
which is shown schematically in Fig. 3. The lVIicrodot oscillator produced 
repetitive pulses of RF energy with each pulse having about l-,usec 
duration. Cadmium sulfide thin-film transducers converted these elec
tromagnetic pulses into acoustic energy.12 The deflected light pulses 
were detected in the indicated photodiode geometry followed by a stand
ard microwave superheterodyne receiver. In order to avoid IF detector 
diode nonlinearity the IF output of the system was usually viewed di
rectly on a broadband oscilloscope. Data were taken from the amplitude 
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of the first deflected light pulse (due to the initial outgoing acoustic 
wave) and were therefore, independent of acoustic resonance effects 
which would be associated with long acoustic pulses. The RF power 
incident on the transducer was kept the same at each frequency. A 
small amount of each RF pulse was fed, using a beyond cutoff attenuator, 
from in front of the transducer to the input of the receiver. This pulse 
served as a calibrating signal for the receiver and helped to correct for 
changes in receiver sensitivity as the frequency was changed. The 
transducer response in the 100-MHz region around 300 MHz was flat 
to within 1 dB. The scatter of the experimental points can be attributed 
to several causes, the most important of which is the unavoidable small 
changes in optical alignment between the time that each bandwidth 
curve was taken. It is believed that the largest observed value for any 
given value of Wo is the most appropriate and the agreement is considered 
to be good. 

3.2 Signal A11'tplitude vs Beam Waist Diameter 

Now consider the amplitude terms in (6) which involve the error 
functions. When f = f 0 

where 

Erf (a) Erf (b) 
ex: ~ --,;r- (10) 

In the experiments, the acoustic beam height h was made sufficiently 
large (3 mm) compared with the largest beam waist (~1 mm) that 
Erf(a) ~ 1 for all values of Wo of interest. Thus, the signal current as 
a function of Wo is given by 

A(wo) = Aowo Erf [(In 2)! L s~~ 0,,]. (11) 

This equation is plotted as the solid curve in Fig. 8; Ao has been con
sidered an adjustable normalizing parameter but the argument of the 
error function is determined using the experimental acoustic beam width 
of L = 7.00 mm. The experimental points were taken using the con
figuration shown in Fig. 3 and the beam waist diameter was obtained 
using (9). Again the agreement is quite good. 
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Fig. 8 - Experimental relative modulation frequency photo current vs beam 
waist diameter. The solid curve is the normalized theoretical expression, (11). 

3.3 Signal Amplitude vs Transducer Width 

The main interest thus far has been in determining the result on the 
signal amplitude of varying the optical diffraction angle and demonstrat
ing that it is solely responsible for the bandwidth. It is instructive to 
re-emphasize the effect of the acoustic diffraction angle by calculating 
the detected signal variation as a function of acoustic beam width L. 
For a given Wo , h, eo and acoustic power the detected signal amplitude 
at f = fo is given by 

A(L) = Ao Er~~(b) 
(12) 

It should be noted that b can also be written as 0.85 X (diffraction angle 
of light/diffraction angle of the sound). 

In the region of small L, (b « 1) 

A(L) = Ao(2/71'!)b! ex: L!. (13) 

Therefore, for a given acoustic power, the signal may be increased by 
increasing the transducer width. The diffraction angle of the sound is 
too large for optimum scattering from the given optical beam. In the 
opposite limit of large L, (b » 1) 
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(14) 

Increasing L decreases the signal. Here, the acoustic diffraction angle 
is too small to use all of the incident light. 

The signal amplitude has a broad maximum at b = 0.99 corresponding 
to approximate equality of the acoustic and optical diffraction angles for 
optimum modulator efficiency. This conclusion is expected to depend 
only weakly on the actual beam geometries. 

IV. MODULATION DEPTH 

Consider now the modulation depth which one would expect from an 
acoustic modulator. A simple computation of modulation depth is 
possible only when the waves are considered in a plane wave approxi
mation in the Bragg region. This situation should approximate qualita
tively the behavior expected with the present experimental configura
tion. In the Bragg region, there exists a well-defined angular relationship 
among the beam directions. Furthermore, all of the light diffracted 
from the main beam is diffracted into a single Bragg order. Under these 
circumstances, the solution of the problem of the generation of an optical 
beam by parametric coupling with an acoustic beam shows that the 
amplitude of the diffracted beam can be written 13 

PJ = =riP!pt sin TJ! exp i27r(v ± f)t, (15) 

while the transmitted beam has the form 

(16) 

in which TJ is a scattering parameter defined for a rectangular acoustic 
beam bi3 

(17) 

where L is the beam width, P a the acoustic power, h the acoustic beam 
height, p the appropriate photo elastic component, v the acoustic velocity, 
and p the mass density, and n the refractive index. 

For conventional acoustic modulation, a square law photo detector 
placed in the transmitted beam will produce a photo current proportional 
to IPtl which has a maximum value of P opt for no acoustic signal and 
a minimum value P opt COS

2
TJ! when the acoustic signal is present. Hence, 

a modulation depth 

(18) 
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may be defined which is some measure of the ability to detect the in
fluence of the acoustic energy on the light. 

Similarly for the superheterodyne case, the photo-current has the form 

1 P~ + P~ 12 = P opt(1 ± sin 21]t sin 27rJt) 

and 

2 sin 21]t 
m2 = 1 + sin 21]!· (19) 

Clearly, this modulation depth is superior to that obtained when the 
carrier is simply intensity modulated. This superiority is most dramatic 
when small deflected intensities are involved. Fig. 9 shows a comparison 
of the two modulatjon depths each plotted as a function of the scattering 
parameter 1] (which for 1] <: 0.1 is quite accurately equal to the de
flected intensity). It is seen that when 10 percent deflected intensity is 
obtained, the modulation depth with the optical heterodyne system is 
75 percent. For the very small deflected intensity of 0.01 percent, one 
still has a usable modulation depth of 4 percent in the optical heterodyne 
detector. 
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Fig. 9 - Theoretical curves, valid for plane waves, of the ordinary optical 
modulation depth ml and the optical heterodyne modulation depth m!J both 
plotted vs acoustic scattering parameter 'Y/. 
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Modulation depth was experimentally investigated using a modula
tion frequency of 20 MHz which was chosen instead of a frequency near 
300 MHz as in the other experiments described in this paper in order 
to display the modulation depth directly. At 20 MHz one photo diode 
could be directly connected to an oscilloscope with amplifiers having 
sufficient baseband bandwidth and gain to display both the dc diode 
photo current and the 20-MHz modulating photocurrent. Fig. 10 shows 
a typical oscilloscope trace of the diode output for longitudinal acoustic 
waves propagating in KRS-5 when the relative diffracted light intensity 
was about 20 percent. The baseline corresponds to no light. Fig. 11 
shows a comparison of the modulation depth measured from such photo
graphs compared with the total intensity diffracted from the incident 
beam under the same experimental conditions. KRS-5 was again the 
modulating medium. The very large modulation depths obtained for 
small diffracted intensities are, of course, the most interesting feature 
of these curves and qualitatively verify the ideas just discussed. 

There is some disadvantage in working at a frequency as low as 20 
MHz, viz., that the optical-acoustic interaction is not strictly in the 
Bragg region and a significant amount of light from the main optical 
beam is diffracted into orders other than that satisfying the Bragg 
condition. For this reason, the curve of m2 against acoustic power does 
not reach 100 percent as it would if the modulating frequency were 
high enough (greater than about 60 MHz) that Bragg diffraction was 
dominant. At these increased frequencies a direct display of the modula-

Fig. 10 - Oscilloscope trace showing 80 percent modulation depth at 20 MHz 
obtained using optical heterodyne detection. The relative diffracted intensity was 
about 20 percent. 
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Fig. 11- Experimental comparison of ordinary modulation depth ml and het
erodyne modulation depth m2 for logitudinal acoustic waves in KRS-5. 

tion depth, such as that shown in Fig. 10, becomes difficult for the small 
photo currents used experimentally. 

V. MEASUREMENT OF ACOUSTIC DIFFRACTION PATTERN 

It is known that Bragg diffraction can be used to determine the angular 
distribution or diffraction pattern of the acoustic beam. 7 Using a light 
beam sufficiently collimated that the diffraction angle of the ljght is 
much less than that of the sound, measurement of the scattered light 
power as a function of the angle of incidence of the light relative to 
the Bragg angle yields directly the angular distribution of acoustic 
energy. The angle of incidence is changed by slowly rocking the acoustic 
medium. 

A similar experiment can be performed using the arrangement of 
Fig. 3. In this case, the component of photo-current at the acoustic 
frequency measures the amplitude of the acoustic angular distribution. 

Typical results are shown in Fig. 12. Photograph (a) illustrates the 
case of a well-collimated light beam with diffraction angle much smaller 
than that of the acoustic beam, (b) and (c) are for progressively larger 
optical diffraction angles. In (c) the optical diffraction angle is large 
enough that the curve illustrates the Gaussian character of the light 
beam. The deviations from the expected sin X/X behavior relate to 
the lack of antireflection coatings on the acoustic medium. 7 

Homodyne detection of the photo current using the acoustic input 
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(a) 

(b) 

(C) 

Fig. 12 - Oscilloscope display of the modulation frequency photo current vs 
angle of rotation of the modulating medium (cf., Fig. 3). Traces (a), (b), and 
(c) show results for increasing values of the optical beam diffraction angle. 
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signal as a reference would allow determination of the phase of the 
acoustic angular distribution as well as the amplitude. Thus, this 
technique has some significant advantages over the original experi
ments described in Ref. 7. The increased sensitivity of this technique 
should also be noted. 

VI. CONCLUSION 

A novel type of acoustic modulator arrangement has been described 
which allows superheterodyne detection of the diffracted light. 

Distinct from electro-optic modulators, the optical modulation side
bands of acoustic devices are well separated in angle from the optical 
carrier and intensity modulation at the sub carrier modulation frequency 
is not possible. It has been shown that the optical carrier may be rein
serted in the appropriate direction in a simple and convenient fashion 
allowing intensity modulation at the modulation frequency. 

Optimum modulator configurations, corresponding to approximate 
equality of the optical and acollstic diffraction angles have been derived 
and the modulation bandwidth has been shown to be proportional to 
this angle or alternately to be equal to the inverse of the acoustic transit 
time across the optical beam waist. Confirming experiments in the 
frequency range 250-350 lVIHz have been described. 

VII. ACKNOWLEDGMEN'l' 

The authors are indebted to J. S. Wagner for supplying the thin
film transducers and to D. R. Herriott and M. G. Cohen for informative 
conversations. 

APPENDIX A 

Calculation of Photodetector Output 

The photo detector is usually placed in the focal plane of a collecting 
lens. For the purpose of calculation, one may assume that the surface 
of the photo detector is hemispherical, centered on the interaction 
volume, and sufficiently large that detection occurs in the optical far
field. The photo current is proportional to the instantaneous integrated 
intensity or power falling on the surface. The component of the power 
or photo-current at the acoustic frequency is proportional to the inter
ference integral of the transmitted and diffracted optical beams. 

The calculation is performed by determining the angular dependence 
of the transmitted and diffracted beams and integrating the product 
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R 

Yo 

Fig. 13 - Coordinate system used in the calculation of the heterodyne photo
current. 

of the two functions on the surface of a sphere of radius R. The observa
tion point (X, Y, Z) in Fig. 13 has coordinates 

X = R sin () 

Y = R cos (J cos cp 

Z = R cos (J sin cp. 

The near-field amplitude distribution of the transmitted Gaussian beam 
which is incident in the Xo - Yo plane at angle (Jo is given by 

.p. cxp- [ 2 !: 2 [(x. cos 8. -yo sin 8.)'+z!1+ik(y. cos 8.+x. sin 8.) ] ' 

(20) 

in which Wo is the half-power beam diameter and k is the propagation 
constant. The amplitude on the sphere is given by 
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if;k(X, Y, Z) = 1..-1+ 00 

dzo 1+ 00 

dxo [cxP - ikr (_~i) 
47r -00 -00 r a!J" (21) 

a exp - ikrJ + if;(xo , Yo , Zo) -a 
Yo r yo=o 

r = [(X - Xo)2 + (Y - Yo)2 + (Z - zo)2]! 

corresponding to the usual Green's function solution for an outgoing 
wave from a source in the Xo , Zo plane. Making the far-field approxima
tions xolR, zolR «< 1 and kR »> 1, where applicable, and performing 
the integration yields for the far-field amplitude 

ik exp - ikR ( w: ) 
t/;k = t/;o 8R [cos eo + cos e cos cp] In 2 cos eo 

k2w: . 2· • 2 2 
X exp - 8 In 2 [(cos e sm cp) + (sm eu - sm e) Icos ea ] (22) 

which can be recognized as the angular dependence of a Gaussian beam 
including the obliquity factor. The time-dependence is exp i27rvt. 

The diffracted beam of frequency v + t arises from a perturbation in 
the optical polarizability of the medium interacting with an optical beam 
moving at angle - eo . The perturbation is proportional to the strain 
amplitude of the acoustic beam through the appropriate components of 
the photo elastic tensor. The volume polarization, at frequency v + t, 
in the limit of scattering sufficiently weak that the local field amplitude 
of the incident beam is essentially unchanged by the presence of the 
acoustic wave, may be written 

p(xo , Yo , zo) exp i27r(v + f)t 
= if;k(Xo , Yo , Zo , - eo) exp (i27rVt)So exp i(27rft - Kxo) 

- !L ~ Yo ~ !L - !h ~ Zo ~ !h (23) 

and zero otherwise. A rectangular acoustic beam of width L and height 
h, moving along the xo-axis, has been assumed. The constant So rep
resents the perturbed susceptibility which is proportional to the strain 
amplitude. The function t/;k(Xo , Yo , Zo , - eo) is given by (20) with the 
appropriate change in the sign of eo . The diffracted beam amplitude at 
frequency v + t and propagation constant k' = 27r(v + f) Ie' may be 
written 

1+00 1+!L 1+!h exp - ik'r 
if;k'(X, Y, Z) = -00 dxo -!L dyo -!h dzop(xo , Yo , Zo) r (24) 

corresponding to the volume Green's function solution for an outgoing 
wave. 
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The integral in (24) may be evaluated in a straightforward but 
lengthy fashion to yield 

op.. = op .s. exp ~ ik'R ("f) ReEd [ ti3!( h - ik' 008/ Sin.,) ] 

sin (~ - 'Y/ tan (),,)L/2 k,2 [ 2 • 2 'Y/
2 ] 

X (~_ 'Y/ tan ()o)L/2 exp - 4{3 cos () sm cp + k'2 cos2 ()o ' (25) 

in which 

{3 = 2 lr; 2 
w ' o 

'Y/ = k' sin () + k sin ()o - K, 

~ = k' cos () cos cp - k cos ()o , 

and ReErf(z) is the real part of the error function of complex argument. 
I t may be shown that for the parameters of interest one can make 
the approximation 

with negligible error. 
Except for constant factors the photo current may be written 

(26) 

The integral in (26) may be evaluated using (25) and (22). After ap
propriate manipUlations the expression for the photo current takes the 
form 

L(f) = -8 l~ 2 Ci:
3

()oYPoPt ical(Pacoustic)! exp i27rf(t - R/c') 

X [Erf [(! In
1
2)!h/1fo]][Erf [(1n ?)!(L/w,,~ sin ~o]] (27) 

[(!In 2)'h/woP [(1n 2)'(L/wo) sm (),,]' 

. 7r
2(f - f(»)2W~ 

X exp - 4 In 2v2 cos2 ()o ' 

in which 

fo = (2v/"A) sin ()o 
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is the optimum frequency for Bragg diffraction and 
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Low-density polyethylene sheathing materials have water vapor per
meabilities on the order of 10-8 at 22°C. High-density polyethylenes have 
permeabilities about one-third to one-sixth that of the low-density poly
ethylene. Copolymers of polyethylene have higher permeabilities than the 
homopolymer. As an example, 15 percent ethyl acrylate comon01ner in
creased the permeability by a factor of 10 over that of straight low-density 
polyethylene. The nonolefinic polymers tested have higher permeabilities. 
For example, polyurethane plug compound has a permeability more than 
80 times higher than low-density polyethylene. Finally, it was found that 
the addition of carbon black decreases thr water vapor permeability roughly 
in proportion to the amount of carbon black, and that the permeability 
of these materials increases with increasing porosity. 

To make these measurements, two types of laboratory apparatus have 
been constructed. The first of these makes the permeability measure1nent 
on a tubular sample of the material, and the other on films. Both methods 
used an electrolytic moisture monitor, which is commercially available, to 
make necessary determinations of water transfer rate through the plastic. 

1. INTRODUCTION 

The post war years have seen a phenomenal proliferation of plastic 
materials throughout industry, and the Bell System has been no ex
ception. At least part of the reason for this widespread and ever in
creasing use is the attractive ease of fabrication of plastic materials 
and their relatively low cost. Their inertness to certain environmental 
factors and their chemical and physical stability also add to their 
value in a great number of applications, including environmental pro
tection. Not only are these plastics used to enclose and isolate an en
tire apparatus or structure from its environment, they are also used 

391 
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as protective coatings and as seals such as a-rings in metal containers. 
One of the undesirable and detrimental factors in the environment is 
water, and consequently, a need developed for information on the 
water resistant characteristics of the many plastics in use. This water 
resistant characteristic is the water vapor permeability (WVP) of the 
material, and has been measured for several materials of interest. This 
paper discusses the need for the measurements, the method of making 
and correlating measurements, and the significance of the results. 

Several problems have been documented involving moisture transfer 
rates in complicated, composite plastic materials. Water in small 
amounts, particularly in pulp insulated cable, has detrimental effects 
on the electrical characteristics of the core. Splicing an Alpeth cable 
into a paper insulated cable results in moisture accumulation in the 
latter cable, presumably as a result of moisture diffusion through the 
Alpeth sheath and subsequent migration into the paper core. Air fed 
into pulp cable through polyethylene air tubing also results in mois
ture accumulation in the pulp because of water transmission through 
the tubing walls. 

Most of the design and investigational calculations made in regard 
to these problems were based on sparse data for more or less idealized 
systems. Unfortunately, for the materials of interest, there are no 
moisture transfer rate data available to the engineer. The studies de
scribed in this report were motivated by this paucity of data and it 
was planned to acquire such data for practically pertinent systems 
for the design engineer. Although the work is directed toward prob
lems arising in the cable plant, the data and results of this study may 
be of use in other areas employing plastic materials. 

In order to correlate and understand the effects of different parame
ters on permeation, it was necessary to include in the investigation 
measurements on systems far removed from practically applicable 
systems. For example, an investigation of the effect of carbon black 
loading on permeability must include measurements on natural (un
loaded) polymers as well as actual sheathing materials which con
tain carbon black. 

The reader will not be subj ected to a long and detailed review and 
analysis of the previous literature in this field. There are two reasons 
for this; first, recent reviews1

,2 have been given of the literature on 
permeation processes in plastics. Secondly, the previous literature is 
principally concerned with purified materials and is not highly perti
nent to the problems and information dealt with in this paper. Previous 
papers1 ,3 have indicated that the permeabilities of polyethylenes to 
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water vapor are quite low, on the order of 2 X 10-8 SCC* /sec-cm-cm 
Hg. Also, the previous work has shown that permeability decreases 
with increasing polymer density.3 In addition, it has been found that 
the permeability is an exponential function of reciprocal absolute 
temperature3,4 and that the activation energy for permeation ranges 
from some 6 kilocalories to almost 10 kilocalories.3,4 

Water vapor permeabilities of other materials have also been given 
in the literature. It is generally found that the permeabilities of ma
terials such as nylon, cellophane, and other nonolefinic polymers are 
much higher than permeabilities of polyethylene.1

,2,4 

There is some disagre.ement3,4 among previously published values of 
permeability of polyethylene, and this has been explained3 in terms 
of differences in the samples of materials used, but all the previous 
work agrees on one point: The transport of water vapor through 
polyethylene obeys Fick's and Henry's laws. Fick's law relates mass 
transfer rate M to a concentration gradient and in finite difference 
form is 

!1C 
J.11 = DA

!1X ' 
(1) 

where. D is the diffusion coefficient, A is an area, and ~C is a concen
tration difference across an increment in length, ~X. Henry's law is 

C = Sp, (2) 

where S is solubility and p is the vapor pressure of penetrant. If 
Henry's law and Fick's law are combined 

Usually, 

the permeability. 

!1p iv! = DSA-· 
!1X 

DS =P, 

(3) 

(4) 

These laws are used to correlate moisture diffusion rates by cal
culating P from the definition and data on transfer rates. These data 
must include, of course, M, ~p, ~X. The principal experimental prob
lem is measuring these factors on practically pertinent systems so 
that P can be calculated. 

Essentially, the plastic sample separates two chambers, one of which 

* The term sec refers to cubic centimeter of vapor at standard temperature 
and pressure. 
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contains water at a known temperature. As this water permeates the 
sample, it is swept from the other chamber (with a carrier gas) and 
into a water measuring instrument. From the geometry of the. sample, 
A and 6.X in (3) can be determined and from the water temperature, 
6.p can be obtained. The problem is in measuring M, the mass flow 
through the sample. The water measuring instrument must be capable 
of measuring very small amounts of water: for example, if a plastic 
tube is 10 cm long, 2.5 cm in diameter with a wall thickness of 2 mm, 
there will be only 5 /Lg of water per hour permeating through the wall. 
Previous workers have indicated the rather large amounts of water 
that can accumulate in some of the older cable designs but this is in 
terms of miles of cable and years of time. Obviously, for experimental 
facility we must use shorter lengths of cable and must be able to work 
on a much shorter time scale and this, in turn, forces one to work 
with very minute quantities of water. So the.re is no inconsistency in 
the larger amounts of water in the cable plant problems and minute 
amounts encountered in the laboratory experiments. 

II. DESCRIPTION OF EXPERIMENTAL APPARATUS 

Moltz has described some of the more widely used techniques of 
measurement of permeability. Most of these methods we.re not directly 
applicable to water permeation in the materials of practical engineer
ing interest. One such earlier method uses a thermistor (to detect 
water) which can become fouled from plasticizers and other volatile 
additives in sheathing material. The "cup method" is usually used on 
materials with higher permeabilities. Moreover, both methods are more 
suited to very thin samples-less than 5 mils and sometimes as low as 
1 mi1.4 At these thicknesses, surface imperfections (holes, pits, etc.) 
can account for a large part of the water transferred across the film. 
For these reasons, it was felt desirable to construct a new apparatus 
based on an electrolytic water measuring technique which has proved 
reliable.5 

An instrument capable of making the necessary water measure
ments is available commercially (Consolidated Electrodynamics Cor
poration). This "moisture monitor" operates as follows: A glass cell 
is coated with phosphorus pentoxide which is a tenacious absorbent 
for water. The coat of phosphorus pentoxide is interspersed with 
platinum electrodes and a carrier gas sweeps the moisture from the 
test sample and into the cell. As the water is absorbed by the phos
phorus pentoxide it is electrolyzed to hydrogen and oxygen and the 
current necessary for electrolysis is directly related to the amount of 
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water so that the detector is calibrated essentially by the definition of 
electrical current. The precision of measurement depends on the preci
sion of a micro ammeter. The detector also has the advantage of being 
specific for water: other materials (such as antioxidants and light 
oils) which diffuse through the plastic or out of it do not interfere 
with the water measurement. 

Several factors are involved in deciding on size and form the sam
ple should have. Considerations of accuracy determine the size of the 
sample; the larger the sample area the greater the rate of water 
penetration which, in turn, permits more accurate measurement. 

The apparatus should be capable of making measurements on tubu
lar samples such as cable sheath and air tubing, for example, but 
certain test materials are not available in quantities sufficient to ex
trude tubes and certain others (e.g., polyurethane) cannot be extruded 
easily so that it was necessary to make measurements on films of 
these materials. Obviously, two different methods must be used-one 
for tubes and one for films. 

III. TUBULAR APPARATUS 

Briefly, the tube apparatus (Fig. 1) consists of one or more tubes 
of plastic material submerged in a tank of water and connected at 
one end to the "moisture monitor." Dry carrier gas is forced through the 
tube to sweep out water which has permeated the tube wall. The rate 
at which moisture is registered on the moisture monitor gives M in 
p..g/sec and from this and the geometry of the tube P is calculated. 

3.1 Carrier Gas Supply 

The water is swept out of the plastic tube and into the moisture 
monitor with an inert carrier gas and it is imperative, for accuracy, 
to have the carrier gas enter the tube dryas possible. The carrier gas 
used has a water content of approximately three parts per million 
which is in the order of the water content of the gas in the tube. Thus, 
it is necessary to remove even this small amount. This operation is 
accomplished with an electrolytic drier cell as shown in the upper left 
of Fig. 1. The "wet" carrier gas from the. supply cylinder is passed 
through the cell and the water is absorbed on the phosphorous pent
oxide and electrolyzed. This gives a carrier gas free of moisture. 

3.2 End Seals 

The ends of the plastic tubes are sealed into the apparatus with 
"Swagelok" fittings. These fittings were originally designed for metal 
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tubing but they were adapted to plastic tubing by inserting a support
ing element inside the tubing. These end seals were thoroughly tested 
and proved very effective as discussed below. 

The seal consists of an anvil and chuck and two swaged ferrules 
supported by an insert inside the plastic tube. When the anvil and 
chuck are tightened together, the ferrules deform inward against the 
tubing which is supported by the insert. The ferrules also make a 
tight metal-to-metal seal against the chuck and anvil, respectively, 
so there is no path for vapor leakage through the fittings. 

3.3 Fittings and Other Equipment 

Stainless steel tubing is used in parts of the apparatus which could 
contain water to minimize sorption of water on the tubing walls. In 
other parts of the apparatus which contain only dry gas, copper tub
ing is used because it is much easier to fabricate. 

The outlet from the moisture monitor is connected to a flow meter to 
insure that the carrier gas is not flowing so rapidly as to "flood" the 
electrolytic cell and permit water to escape electrolysis. 

3.4 Temperature Control 

Temperature affects permeability and the temperature of the water 
must be controlled accurately. This is accomplished with a large, con
stant temperature heat sink consisting of a glycol bath cooled con
tinuously with a refrigerator. The water is circulated continuously 
(two gallons per minute) from the sample tank through coils in the 
cold glycol bath and then back into the tank. This gives a large heat 
sink and effectively isolates the sample tank temperature from room 
temperature variations. The temperature of the water is regulated by 
heating with a temperature controller. Temperature variations can be 
kept below O.l°C at 30°C or above. The water in the tank is stirred 
to keep a uniform temperature throughout. A ten gallon per minute 
pump, located outside the tank, pumps water from the tank and 
directly back to the tank through a tube with holes. This effectively 
stirs and distributes the water and keeps it at a uniform temperature. 

3.5 Measurements 

To calculate P from the measurements on tubes, (4) must be put in 
cylindrical coordinates. This form of the equation has been given 
previously6 

p = Min (DoIDi) 
27r(Po - Pi)L ' 
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where L is the sample tube length and Di and Do are inside and out
side tube diameters. Pi and Po are water vapor pressures inside and 
outside the tube. Because the dry carrier gas sweeps water from inside 
the tube, Pi is small and can be neglected in comparison to Po. 

The inside and outside diameter required care in measurement be
cause the calculated values of P are sensitive to errors in Do and Di 
of the tube samples. These diameters were measured accurately in 
the case of clear plastic by means of water displacement. A measured 
length of the sample tube L (usually one meter) was filled with an 
accurately measured volume V of distilled water. Obviously, 

V = 7rD:L 
4 ' 

or 

Di = V4 V/7rL. 

D" can be calculated from the volume of water VJ contained in the 
length of tube, L. The thickness of the tube wall was measured by 
encapsulating a short segment of tube in epoxy resin and polishing the 
mount down until the tube cross section was exposed. The wall thick
ness was then measured with a stage micrometer. Do can be obtained 
from Di and the wall thickness. The outside diameters of opaque tubes 
are measured by inserting a sample tube (sealed at one end) into a 
graduated glass column and measuring the volume ~ VJ of water dis
placed by a given tube length, L. The outside diameter, Do can then 
be calculated from 

Do = V4Ll V/7rL. 

The inside diameter, Di = Do - 2 X wall thickness. 

3.6 Preliminary Measurements and Tests of Apparatus 

Initial measurements were made to prove the feasibility of the ap
paratus. It was necessary to check the seals at each end of the tubes 
to assure that they were watertight. This was done as follows: The 
permeability was measured for samples of different lengths (67.95 
em, 113.64 cm, and 154.31 cm) of the same material. If the end seals 
are secure, there should be no difference in permeability for these 
three samples because P is a property of the plastic and should not 
depend on the experiment. Fig. 2 gives the results of this test and the 
good agreement in P for three samples indicates the integrity of the 
end seals. These tests were made on low density (p = 0.917) poly
ethylene tubing supplied by Hydrawlik, Inc., Roselle, New Jersey. 
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Fig. 2 - Permeability as a function of temperature for various lengths of sample. 

IV. FIL1{ APPARATUS 

The film apparatus (Fig. 3) consists essentially of two aluminum 
discs; one on each side of the circular test film. The two discs are 
identical so that it is necessary to describe only one of them. Two 
cavities are machined in each disc: one of these is covered with an 
aluminum plate to form a reservoir for temperature controlled water; 
the other cavity is adjacent to the test film when the apparatus is as
sembled. The test film is clamped between the two discs with 6 bolts 
(see Fig. 3). Water, which is to permeate the test film, is put in the 
cavity immediately below the film; electrolytically dried N2 is passed 
over the film to expel the permeated water. The "wet" gas is then 
run through the moisture monitor and the rate of water permeation 
is measured. From this permeation rate, and the thickness and the 
diameter of the film, the permeability can be calculated. 

The diameter of the film exposed to moisture transfer is 5.75 inches. 
Several considerations influence this dimension of the cell. The first is 
precision of measurement of water vapor permeation rate. If the diame
ter of the film is too small, the rate at which water permeates the 
film will be low and the moisture monitor will be unable to measure 
accurately the permeation rate. On the other hand, if the diameter of 
the cell is large (greater than 8 or 10 inches), it becomes difficult to 
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DRY CARRIER 
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MONITOR 

/ 

#~~~~// 
----TEST FILM 

o 

Fig. 3 - Cut-away view of film cell. 

make films of uniform thickness. Moreover, large diameter discs are 
difficult to machine accurately and hard to handle in assembling the 
cell. The choice of diameter is a compromise. between these factors. 
Consideration of the sensitivity of the moisture monitor and the 
other factors noted above indicated a 5 to 6-inch diameter film would 
be optimum. A film of this diameter can be pressed to the necessary 
uniformity and a cell of this diameter would not be difficult to machine 
or handle in the laboratory. 

The films were made. by compression molding and their thickness 
was measured in two ways. First, the thickness was measured at 
several points with a micrometer and averaged. In the second method, 
a circle, 6i inches in diameter, was cut from the test film and weighed 
on an analytical balance. The density of this material was then meas
ured with use of density gradient columns. The volume of this cir
cular sample would then be given by the weight, W, of the 6i-inch 
circle divided by the density, p, of the material 
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Vol = ~ p , 

and this volume would also be given by the relation 

(where D is diameter of the circle and t its thickness) so that by com
bining these two equations and eliminating volume the thickness of the 
sample can be calculated. In one case, the first method (micrometer) 
gave an average thickness of 11.9 mils, and the. second method a thick
ness of 11.85 mils. This agreement indicates that the micrometer 
measurements, which are uncomplicated and much more convenient, 
would be as reliable and accurate as necessary. 

4.1 Tests of Film Apparatus 

Tests were made to determine the effect of film thickness on meas
ured permeability. If the films are extremely thin, say 1 mil or so, 
surface imperfections such as pits could contribute substantially to 
the. total moisture transfer rate through the film. These tests were 
carried out with two materials-a sample of low-density polyethylene 
(10- and 12-mil films) and a sample of high density polyethylene (7-
and 13-mil films). The comparison of the two film thicknesses for each 
material respectively is shown in Fig. 4 and indicates that the per
meability is not dependent on film thickness in the range of film thick
nesses (9 to 12 mils) used in these experiments. 

4.2 Additional Tests of Apparatus-C01nparison of Films and Tubes 

In Fig. 5 the measured permeability for tubes of the polyethylene 
materials are compared with the data obtained on films. The perme
ability of the polyethylene films is about 4 percent lower than for 
tubes of the same material, while the permeability of the PE-Butyl 
copolymer film is about 10 to 12 percent lower than that for the 
tube of this material. These differences are probably due to the dif
ferences in processing since the tubes were extruded and essentially 
quenched, while the films were compression molded and cooled more 
slowly (about 5°C per minute). The slower cooling anneals the films 
and they become more highly ordered. Because the permeability of 
the highly ordered regions is less than the amorphous portion, the 
permeability of the entire film would be less. 
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V. RESULTS AND DISCUSSION 

5.1 A Few Words About Organization 

The discussion will be. divided into two categories: the effects of 
chemical composition and of physical parameters. This is an his
torical classification rather than a logical one. In this study it was 
first desirable to measure WVP's of cable sheathing materials, both 
those in use and proposed. These were all basically polyethylenes but 
some contained varying contents of comonomers, viz. vinyl acetate, ethyl 
acrylate, and acrylic acid. Polymers of other chemical types (polyester, 
polyvinyl chloride, et aZ.) are also of interest because they, as sealing 
and plugging materials, help bear the brunt of nature's attack on the 
outside plant segment of the Bell System. 

As a consequence of this work, it was found that physical parame
ters such as porosity and other heterogeneities influence WVP and 
will be discussed last. 

5.2 Effect of Chemical Nature 

Fig. 6 contains the WVP's of representative samples of polyolefins 
to give an overall picture of these materials and to orient the. reader. 
The point to be noticed in Fig. 6 is the greater 'VVP's of low-density 
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polyethylene materials compared to those of high density. The ratio 
of WVP's of high- and low-density polyethylene ranges from 1 to t. 

The water vapor permeability of low-density polye.thylene has been 
reported earlier4 •6 as 2 X 10-8 , whereas the values found here for 0.92 
density polyethylene were on the order of 10-8

• This difference is most 
probably due to the differences in the types of polyethylene used and 
the differences in the. thickness of the film samples used. In the previ
ous measurements, the sample films were on the order of 1 to 2 mils so 
that surface irregularities such as pits could contribute substantially 
to the overall moisture transfer rate across the film. In the present 
measurements, the sample films were on the order of 10 to 12 mils 
thick, and at these thicknesses surface irregularities, if they are pres
ent, would not contribute substantially to the moisture. transfer rate. 

The WVP's of cable sheathing materials (shown in Fig. 7) were 
of the order of 10-8 scc/sec-cm-cm Hg. The homopolymers, in general, 
have lower WVP's than either copolymers or materials containing 
low molecular weight additives. This greater WVP is probably due to 
several factors. Copolymers and additives, even in small amounts, can 
affect molecular and morphological factors such as branching in the 
polymer chain, molecular weight, and crystallinity among others. 
Because all these factors influence permeability, it is not surprising 
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that copolymers and other additives should cause an increase. 
The WVP of polypropylene is intermediate to that of high- and low

density polyethylenes (Fig. 8). This is of interest for two reasons, one 
of them of practical interest, the other academic. In the first place, 
polypropylene and low-density polyethylene compete for use in some 
protective applications. If other factors are equal, advantage. should 
be taken of this lower permeability of polypropylene. 

A second point of interest in the findings of polypropylene perme
ability concerns the effect of density. In the case of polyethylenes, 
increasing the density decreases the permeability. However, this ob
viously does not hold true for polyolefins as a class because poly
propylene has a density of 0.91 and yet has a lower permeability than 
low-density (0.92) polyethylene. The lower permeability of poly
propylene can be attributed in part to its high crystallinity (about 80 
percent). Crystalline regions are much less permeable3 ,4 than the 
noncrystalline regions, hence, the material as a whole has a lower 
permeability. Moreover, it would be expected that the intermolecular 
friction would be higher in the case of polypropylene which would, in 
turn, decrease the diffusion rates through the amorphous regions of 
the polymer. 
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Finally, the measurements of permeability of polypropylene bring 
home another point. In searching for materials for use in environ
mental protection, we would like to find an inexpensive material with 
an extremely low water vapor permeability, and if possible, we would 
like to say that this material is impermeable to water vapor. We 
must be brought up short in this search, however, in view of the find
ings in the case of polypropylene. Here is a material that is about 80 
percent crystalline so that only 20 percent of the polypropylene con
tributes to moisture transfer, and even this 20 percent gives the 
polymer an overall permeability greater than some of the higher 
density polye.thylenes. It is not likely that we could obtain a flexible 
usable olefinic material with any higher degree of crystallinity, and 
in this direction polypropylene represents a limit in lowering the water 
vapor permeability of mate.rials by increasing crystallinity. 

5.3 Copolymers 

Interest in copolymers of olefins stems from two areas. In the first 
place, with even small percentages of copolymers such as vinyl acetate 
or ethyl acrylate the polymer is much more flexible and less suscepti
ble to mechanical failure from stress. In the second application, these 
copolymers are used to compound semiconducting materials by load
ing them with up to 40 percent carbon black. 

These copolymer materials have higher permeabilities than the 
straight polyethylene homopolymers. The permeabilities of the acrylic 
acid copolymers are shown in Fig. 9 as a function of acrylic acid copoly-
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mer content. These data indicate that the permeability increases with 
added acrylic acid in the polymer chain. The increase in permeability 
with the addition of these comonomers is due to morphological fac
tors: the comonomer interrupts the regularity of the polymer chain 
and thereby reduces the crystalline content of the polymer and in
creases the amorphous content. The amorphous, disordered regions are 
more permeable; hence, the permeability of the material is increased. 
In the case of ethyl acetate copolymers, the permeability increased by 
almost a factor of ten with incorporation of 15 percent copolymer. 

5.4 Oxidized Polymers 

The oxidized materials were made by atmospheric oxidation of 
unstabilized homopolymer. After oxidation and before the film sam
ples were made the materials were stabilized with Santonox. 

The permeability of these materials (Fig. 10) indicates that the in
troduction of polar groups, such as carbonyl groups in this case, does 
not necessarily cause an increase in permeability. Other factors can 
playa part. Table I compares permeability, density, and carbonyl 
content of these three materials. 

As the carbonyl content goes up the density also increases, and the 
permeability decreases. VVinslow 7 has shown that this increase in den
sity is due to an increase in molecular order in the polymer and be
cause the more highly ordered regions are less permeable, the denser 
material would have the lower permeability. This reduction in perme
ability with increased carbonyl content is of interest in cable sheath-
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TABLE I-EFFECT OF OXIDATION ON DENSITY 

AND PERMEABILITY AT 25°C 

Percent carbonyl 

o 
0.3 
0.6 

Density 

0.944 
0.956 
0.964 

Permeability 

2.20(10)-9 
1.57(10)-9 
0.82(10)-9 

ing applications for obvious reasons and more materials of this type 
will be obtained to investigate this effect in more detail. 

5.5 N onolefinic Polymers 

The results on polyester are compared with low density polyethylene 
in Fig. 11. The permeability of polyester films was reported4 several 
years ago as 1.3(10)-8 at 25°C. The value measured with the present 
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apparatus on polyester commercially available today was 2.3 (10)-8 at 
25°C. The older sample of polyester was unplasticized whereas that 
used in the present study was plasticized slightly and because of 
these differences a direct comparison is not entirely valid. 

The permeabilities of plasticized poly(vinyl chloride) and poly
urethane are also shown in Fig. 11; both are over an order of magni
tude greater than typical low density polyethylene. 

VI. EFFECT OF PHYSICAL PARAMETERS 

One is not likely to find pure, homogeneous plastic materials used 
in the telephone plant. In addition to the deliberately added and nec
essary heterogeneities such as carbon black, these materials have in
advertent imperfections such as pores or solid particles. To give an 
example a cross-section of polyurethane cable plugging compound is 
shown in Fig. 12. The black areas represent pores formed in poly
merization and indicate a porosity of up to 20 percent by volume al
though, superficially, the material usually appears to be homogeneous. 
Another example of porous material is the foamed polyethylene dielec
tric used in some coaxial cables. 

6.1 Porosity 
The effect of pores on permeability might not be straightforward: 

permeability involves both diffusion and solubility and although dif
fusion would be expected to increase with porosity, solubility decreases, 

Fig. 12 - Photomicrograph (SOX) showing pores in polyurethane. 
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because water is more soluble in the polymers of interest than in air 
or gas in the pore. First, the effect of pores on P will be calculated from 
a model for transport properties of heterogeneous, two-phase materials. 
These will then be compared with measurements of the effect with 
foamed silicone rubber. 

If we can calculate the effect of pores on diffusion coefficient D and 
on solubility S, we can calculate the effect on P because 

P(V) == D(V)S(V) (5) 

where V is 'porosity' or volume fraction pore.s. 
In calculating D (V), use is made of models developed originally by 

Maxwe1l8 in connection with the electrical transport properties of 
heterogeneous materials. With the analogies between Ohm's law and 
Fick's law, Maxwell's model can be used to calculate the diffusion 
coefficient of plastics containing small amounts of gas-filled cavities 
or pores. From Maxwell's work, the diffusion coefficient of a porous 
polymer is given by 

D = Dp[Dn + 2D1) - 2V(Dp - Da)] 
Da + 2Dp + V(Dp - Da) , 

(6) 

where Dp and Da are, respectively, the diffusion coefficients of the 
pene.trant in polymer and in air (or the gas in the pore). It should be 
understood that the model from which (6) is derived ignores the inter
actions between adj acent pores so that for the case of porous plastics 
the value of D would be somewhat low. For polyethylene 

(7) 

and for air 

(8) 

Neglecting Dp in comparison to Da, Maxwell's relation reduces to 

D(V) = Dp(1 + 2V). 
1 - V 

The solubility S (V) decreases linearly with V: 

(9) 

(10) 

where Sa is solubility of penetrant in the pore or in the gas within the 
pore; Sp is solubility of penetrant in the polymer. 

Putting these last two equations into the definition for P 

(11) 
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For the case of silicone rubber foam Sp » Sa and (11) becomes 

P(V) = [(1 - V)S.{ D. ~~ ~ W J. (12) 

The factors (1-V) cancel so that P is proportional to V and a plot of 
P(V)/DpSp vs V will have a slope of 2 and intercept (V = 0) of unity. 
Such a plot is shown in Fig. 13 for foamed silicone rubber and as 
anticipated the measured WVP's are somewhat greater than those 
calculated from the model. 

As Maxwell noted: 8 

"When the distance between the [pores] is not great compared with 
their radii ... other terms enter into the result, which we shall not 
now consider." 

For the time being, we will follow his 70 year old cue and use the 
result in a qualitative manner only. Pore interaction in moderately and 
in highly foamed materials and its effect on diffusion is the subj ect 
of continuing research and will be reported on in a subsequent paper. 

6.2 Effect of Carbon Black 

Two magnitudes of carbon black content were investigated. Those 
used in cable sheath materials (about 2.5 percent by weight) and those 
higher contents (up to 40 percent) proposed for semiconducting sheath
ing materials. Fig. 14 shows some representative data for materials 
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containing about 2.5 percent carbon black compared with the natural 
materials. The carbon black at these contents lowered the permeability 
only slightly. Note also, that at these low percentages, the temperature 
dependence of the filled and unfilled material are essentially identical. 

Materials highly loaded with carbon black also showed a linear 
decrease in permeability with increasing carbon black content. Fig. 15 
gives some representative data. Qualitatively, this decrease in per
meability with increasing carbon black content is not difficult to ex
plain. The carbon black particles are most probably impermeable to 
moisture; hence, their presence in the polymer decreases the volume 
available to moisture diffusion. Again, we can use Maxwell's model 
discussed earlier to describe this decrease in permeability with increas
ing carbon black content. For the case of a polymer interspersed with 
impermeable particles, Maxwell's equation for the diffusion coefficient 
is given by 

(13) 

where Dp is the diffusion coefficient of water vapor in the polymer and 
V cb is the volume fraction of carbon black. 
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The solubility of the loaded polymers decreases linearly with carbon 
black content 

(14) 

Combining the equation for D and S with the definition of P gives 

(15) 

This equation is shown as a dotted line in Fig. 15 and is slightly 
lower than the experimental values for WVP. In the equation for 
S(Vcb ) above, it was assumed that the solubility of water on the car
bon black was negligible, but as shown below there is some interaction 
and to be precise, we would be justified in assigning some contribution 
to S(Vcb ) due to the carbon black. This would increase the calculated 
values of P to agree more closely with the data. 

At higher carbon black contents (10 percent and above) the tem
perature dependence of filled and unfilled materials is markedly 
different. Fig. 16 gives an example of this behavior and shows that the 
activation energy for permeation, E p , is decreased by carbon black. 
The decrease in Ep for the case of water sorption in polyethylene 
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highly loaded with carbon black is not unexpected. For the water
polyethylene system, 

and 

D = Do exp (-ED/RT) , 

S = So exp (-jj,H/RT) , 

(16) 

(17) 

(18) 

where Do, So, and Po are constants; ED and Ep are activation energies 
for diffusion and permeation, respectively, and ilH is the heat of sorp
tion. Substituting these equations into the definition of P (4) gives 

Po exp (-Ep/RT) = DoSo exp [-(ED + jj,H)/RT]. (19) 

From this 

(20) 

For the case of water sorption on carbon black, ilH is negative and 
increasing the carbon black to 41 percent gives a greater negative con
tribution and Ep is therefore decreased. 
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VII. SUMMARY 

In general, the low-density polyethylene sheathing materials have 
permeabilities on the order of 10-8 scc/sec-cm-cm Hg at 22°C. High
density polyethylenes have permeabilities from 1/3 to 1/6 that of low
density polyethylene. The permeability of polypropylene is intermedi
ate to high- and low-density polyethylenes. Copolymers of polyethy
lene (for example, vinyl acetate, ethyl acrylate, and acrylic acid) have 
higher permeabilities than the homopolymer; in one case 15 percent 
ethyl acrylate. increased the permeability by a factor 10. 

N onolefinic polymers, in general, have higher permeabilities; for 
example, polyurethanes have permeabilities more than 80 times higher 
than low-density polyethylene. 

Heterogeneities in the plastic such as carbon black and pores in
fluence permeability. Addition of carbon black decreases the vVVP 
roughly in proportion to the amount of carbon black. The permeability 
of these materials increases with increasing porosity. 
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Statistical Analysis of the Level Crossings 
and Duration of Fades of the Signal 

from an Energy Density Mobile 
Radio Antenna 

By W. C.-Y. LEE 

(Manuscript received September 30, 1966) 

A theoretical analysis of signal fading using an energy density antenna 
is developed and compared with that from an isotropic antenna. The 
energy density antenna provides a signal proportional to the energy density 
of the mobile radio field. The number of crossings that the signal makes of 
a given signal level and the average duration of fades below a given signal 
level have been derived theoretically for these two cases using a sil1l,ple sta
tistical model. Comparing the number of level crossings of the electric field 
with that of the energy density, it is shown that the energy density fades less 
frequently than the electric field by at least a factor of two. The average 
duration of fades of the electric field is greater than that of the energy density 
only for lower signal levels. These results are in reasonable agreement with 
experimental measurements. 

I. INTRODUCTION 

The study of signal fading appears to be very important to mobile 
radio systems. When a steady sine wave is sent out from a fixed station, 
the signal received by a mobile receiver in motion fluctuates, or, in 
radio jargon, fades. The received signal fluctuates more rapidly as both 
the frequency of the transmitted wave and the speed of the mobile 
radio increase. For a field received by a moving isotropic antenna, the 
maximum fading frequency fd, as Ossanna1 has pointed out, is fd = 
2V lA, where V is the speed of the mobile radio and A is the wavelength 
of the steady sine wave. For instance, at 836 MHz and a speed of 15 
mileslhr, the signal fades at a rate of about 40 times every second and 
is a serious disturbance to the mobile radio communication. 

There have been many investigations of the fading problem. Aikens 
and Lacy2 made a test using 450-MHz transmission to a mobile receiver 
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in an urban area. Bullington3 investigated radio propagation variation 
at VHF and UHF. Young4 pointed out that for the test samples of signal 
strength taken over a small area, the amplitude follows a Rayleigh 
distribution to a fair approximation. Also S. O. Rice5 pointed out that 
the fluctuations of a received radio signal have the same behavior as 
the envelope of a narrow-band Gaussian noise. Recently, Ossanna1 

measured the power spectra of a mobile radio fading signal. They all 
treated the signal as obtained from an isotropic antenna. 

In this paper, a theoretical analysis of fading using an energy density 
antenna6 is developed and compared with that from an isotropic antenna. 
The concept of using the energy density antenna to reduce the effect 
of signal fading was suggested by J. R. Pierce.7 It will be discussed in 
detail later. The number of crossings n('lr) that the signal makes of a 
given signal level 'lr, and the average duration of fades t('lr) below a 
given signal level 'lr, have been derived theoretically from a statistical 
model using Gaussian random amplitudes and equal angles of arrival 
of an infinite number of incoming waves. The two statistical factors, n 
and t, first expressed by Rice,8 can describe the property of individual 
signal fading very well. In this paper, nand t for the isotropic antenna 
will be compared with the values for the energy density antenna. These 
theoretical results also will be compared with the experimental data. 

II. THE METHOD OF OBTAINING THE EXPECTED NUMBER OF LEVEL CROSS

INGS AND AVERAGE DURATION OF FADES 

From Kac's9 and Rice's8 paper, a brief derivation of the expected 
number of level crossings n('lr) of a given signal level 'lr and average 
duration of fades below a given signal level 'lr is as follows. We assume a 
random function t/; which is statistically stationary in time, and for 
which the joint probability density function of t/; and its slope tj; is 
pet/;, tj;). Any given slope tj; can be obtained by 

. dt/; 
t/;=-, 

r 
(1) 

where r is the time required for a change of ordinate dt/;, as shown in 
Fig. 1. The expected number of crossings of a random function t/; in 
the interval ('lr, 'lr - dt/;) for a given slope tj; in time dt is 

the expected amount of time spent in the interval 
dt/; for a given tj; in time dt 

the time required to cross once for a given tj; in 
the interval dt/; at if; = '¥ 
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t 

Fig. 1 - The notation used in obtaining the expected number of level cross
ings n('l') and the average duration of fades t('l'). 

= E(t) = p( tf, tf)dtfdtfdt 
T dtf 

tfp(w, tf)d tfdt. (2) 

~-
atif;='!r 

The expected number of crossings for a given tf in time T is 

(3) 

The total expected number of upward crossings in time T is 

N(w) = T 1'" tfp(w, tf)dtf. (4) 

The total expected number of crossings per second is 

(5) 

Since the expected number of crossings at a particular level w per second 
can also be stated as 

new) 
the expected amount of time where the 

function if; is below level w in one second 

the average duration of fades below level w 

PC tf < 'li) 
t(w) 

hence, the average duration of fades below level w is 

t(w) = PC tf < w) . 
new) 

(6) 

(7) 
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Hence, the results will be derived from the joint probability density 
function p(t/;, 1/;), and the problem is to derive this probability density 
function for the various signals. 

III. THE EXPECTED NUMBER OF LEVEL CROSSINGS AND THE AVERAGE 

DURATION OF FADES FOR A VERTICALLY POLARIZED WAVE 

In order to obtain the expected number of level crossings of a given 
signal level R and the average duration of fades below a given signal 
level R for the three field components of a vertically polarized wave, 
first we need to specify the forms of the three field components. Then a 
statistical model of the field components is assumed. From such a 
model, we find the joint probability density functions of amplitude R 
and its slope R for the three field components. Finally, we use (5) and 
(7) to obtain the result for each field component. 

Following Gilbert10 a vertically polarized plane wave Ez traveling 
in a direction u in the (x, y) plane is assumed. The three field compo
nents referenced to a receiver moving with velocity vector V can be 
written 

E z = ez =:= Au exp ( - j{3u· V t) exp (jwt) volt/ m 

Hz = 7](hz amp/m) Au sin fJu exp (-j{3u· Vt) exp (jwt) volt/m 

- Au cos fJu exp ( - j{3u· V t) exp (jwt) volt/ m, 

where {3 is a wave number and Au is a complex amplitude of an electric 
wave propagating at a direction u. u is a unit vector related to an angle 
fJu between the positive x-axis and the unit vector itself. 7] is free-space 
wave impedance. The time variation exp jwt can be dropped out of 
three field components for simplifying the derivation. Moreover, from 
now on, we will treat the units of all three components Ez , Hz, and 
H y in volt/ m which will also simplify the calculation. 

When N vertical polarized waves coming from N directions are re
ceived by an isotropic antenna of the mobile radio, the three components 
become 

N N 

Ez = L Au exp (-j{3u· Vt) L Au exp [-j{3Vt cos (fJ" - a)] (8) 
,,=1 u-l 

N 

Hz = L Au sin fJ" exp (-j{3u· Vt) 
u=1 

N 

L Au sin fJu exp [-j{3Vt cos (fJu - a)] (9) 
u=1 
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N 

HlI = L - Au cos Ou exp (-j{3u· Vt) 
v=1 

N 

= - L Au cos Ou exp [-j{3Vt cos (Ou - a)], (10) 
1<=1 

where Ou is the angle between the positive x-axis and the direction of 
uth wave u, and 0 ~ Ou ~ 271". a is the angle between the x-axis and the 
velocity V, and 0 ~ a ~ 271". Both Ou and a are shown in Fig. 2. 

In this paper, a statistical model is used as follows: The complex 
amplitude Au can be separated into a real and an imaginary part Au = 

Ru + jSu, hence N incoming waves have N real values of Ru and Su. 
We suppose all those 2N real values are Gaussian independent variables 
with mean zero and variance one. Also, we assume the N waves have 
uniform angular distribution, i.e., the kth wave Uk has an angle of arrival 
Ou = 271"kjN. Moreover, in this paper an infinite number of multiply 
reflected waves (N ~ Co) are assumed for finding the expected number 
of level crossings nCR) of a given signal level R, and the average duration 
t(R) of fades below a given signal amplitude R. 

3.1 Finding the Values of nCR) and t(R) from the Ez Field 

First of all, we need to obtain the joint probability density function 
of signal amplitude R and its slope R for the electric field component 
Ez using the statistical model we mentioned previously. We start from 
(8). The alternate form of (8) can be written as 

N 

Ez = L CR" + jS,,) [cos {{3Vt cos (Ou - a)} - j sin {{3Vt cos (0" - a)}]. 
,,=1 

v = VEHICLE VELOCITY 

U = DIRECTION OF PROPAGATION OF 
A RANDOM FIELD COMPONENT 

Fig. 2 - The coordinate system. 

(11) 
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Equation (11) can be separated into real and imaginary parts 

E z = Xl + jYl • 

The real part of E z is 
N 

L: (Ru cos CPu + Su sin CPu) 
/'=1 

and the imaginary part of E z is 
N 

Y l = L: (Su cos CPu - Ru sin CPu) I 

u=l 

where 

CPu = {3Vt cos (Ou - a). 

(12) 

(13) 

(14) 

(15) 

We assume that all N values of Rand S in (13) and (14) are time in
dependent. Then the derivatives with respect to time of (13) and (14) 
are 

N 

Xl = {3V L: (-Ru sin CPu + Su cos CPu) cos (Ou - a) \16) 
u=l 

N 

:VI = {3V L: (- Su sin CPu - Ru cos CPu) cos (011. - a). (17) 
11.=1 

The mean values, variances, and covariances of Xl , Y J , Xl , and :VI are 

m l = (Xl) = (YI ) = (Xl) = (:VI) = 0 

J1.11 = (X~) = (Y~) = N for any N (18) 

·2 ·2 2 N 
J1.il = <Xl) = (Y l ) = ({3V) 2" for N ~ 3 (19) 

and 

(Xl Y I ) = (XIXI) = (YlXl) = (YI :VI) = (Xl :VI) = (Xl :VI) = o. 
The above results are shown in the Appendix. 

From the central limit theorem, it follows that Xl , Y l , Xl , and :VI 
are four independent random variables which are distributed normally 
as the value N approaches infinity. The probability density function 
of four independent real random variables Xl, Y l , Xl , and :VI isll 

P(XI I YI I Xl , YI ) 

1 { 1 (X~ + Y~ X~ + :Vi)} 
= (211f iJ1.i! exp -2" J1.11 + J1.~1 I 

(20) 
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where the determinant l,ul of the covariance matrix is 

/,ul = (,u11,u[1)2 = ~4 ({JV)4. 

We may introduce the concept of the envelope 

E z = Xl + jYI = re /7]6 • 

423 

The quantity Te is the envelope and 7]e is the phase, both of which are 
slowly varying functions of the time. Then, 

Xl = re cos 7]e 

Xl = r. cos 7]. - r.iJe sin 7]e ; 

Y I = re sin 7]e 

YI = re sin 7]e + re~e cos 7]e • 

(21 a) 

(21b) 

The Jacobian of the transformation from (Xl, Y I , Xl, YI)-space to 
(r. , 7]. , re , ~e)-space isl2 I J / = r;. 

Therefore, the change of variables gives the probability density the 
form 

P(XI , Y I , Xl , YI) = r;q(r. , 7]. ,r. , ~.) 
= per. , 7]. ,r. , ~.) 

r; { 1 (r; r;7]; + r;)} 
= (27rt / ,u I! exp -2 ,u11 + ,u~l ' (22) 

where q(r., 7]. , r. , ~.) is the density obtained on substituting for 
Xl, Y I , etc., their values in re , 7]e , etc., obtained from (21a) and its 
time derivative (2Ib). To obtain p(re, r.), the probability density of 
the envelope and its rate of change, we must integrate over 7]. and ~. , 
the range of which are, respectively, (0 to 27r) and ( - 00 to + 00 ). From 
(22) we obtain 

. r e {I (r; r; )} p(re ,re ) = _ / / exp 2 -- +,- . 
v 27r,u11,uU ,uu,uu 

(23) 

It is observed that the expression on the right of (23) is independent 
of t. Hence, the expected number of level crossings n(Re) at a given signal 
amplitude (re = Re) can be obtained from (5) by using peR. , re) in (23). 

n(R.) = 1~ f,p(R, ,f,)df, = ~ V R, cxp (-2R
; ). (24) 

o ,u11 27r,u11 ,ul1 

N ow the variance of r e is 

(1';) = (Xi) + (Yi) = 2,ull = 2N. 
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Let 

R. = Re/v(r;> = Re/r.(rm8> = Re/V2N. (25) 

Substituting the values of variances J.Lll and J.Lil from (18) and (19) into 
(24), also applying the relations in (25), we obtain 

- ,BV - -2 
n(R.) = _;;;- R. exp (-R.) . 

V 27r 
(26) 

Equation (26) is plotted in Fig. 3 where the abscissa is R. in dB (20 log 
R.) and the ordinate is (y!2;/,BV)n(R.). 

The average duration of fades t(R.) of E z can be obtained as follows: 
The probability that the envelope r. is less than a given amplitude level 
R. is 

~ 

I 

P(r.(t) < R.) = iR. p(r.(t))dr.(t) , 

100~--------------~----~--~----~ 

hl 1o-1..-=:---1----+~~-+---~.-----"df---I 
\I) 

\I) 
\!l 
Z 
iii 
~ 10-2r--~F--~---+----~-r+--r-~ 

0: 
u 
..J 

~~ 
u. ......... 
o > 
0: co.. 
UJ 
OJ 
~ 
=> z 
o 
UJ 
t
U 

~ 10-5 
x 
UJ 

• n( ~t) THE EXPECTED NUMBER 
OF LEVEL CROSSINGS OF FADES 
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UJ 
I 

~ 

A n(Re) THE EXPECTED NUMBER 
OF LEVEL CROSSINGS OF FADES 
OF THE ELECTRIC FIELD/SEC. 

10-6 r---.------.------,------y----~--__+___i 

10-7 
-2~O-----~15------t~O-----~5-----0~--~5----~IO 
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(27) 

Fig. 3 - Comparison of the level crossing rate of the electric field with that of 
the energy density. 
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where p(re(t)) is the probability density obtained from P(Xl' Y 1). By 
changing the variables, we obtain p(re(t), YJe(t)) from P(XI , Y 1). Then 
we integrate p(re(t), YJe(t)) over from 0 to 271" to obtain13 

p(re(t)) = re(t) exp [_r;(t)] , (28) 
f.lll 2f.lll 

where f.lll is obtained from (18). Substituting (28) into (27) we get 

P(r.(t) < Re) = 1 - exp (-R;/2f.lll) = 1 - exp ( - R;). (29) 

The expected number of times per second that t.(t) passes upward (or 
downward) across the level Re is obtained from (24). The average dura
tion of fades during which teet) < R. may then be obtained by sub
stituting (24) and (29) into (7) 

t(Re) = P(r.Ct) < Re) = PCr.Ct) _< Re) = V2; ~ [exp (R;) - 1] (30) 
n(Re) n(Re) ,BV Re 

which is shown in Fig. 4. 

3.2 Finding the Values of n(Rhx) and t(Rhx) ftom the Hx Field 

Following the same steps as above, we are going to find the joint 
probability density function P(thx , 1'hx) of the envelope rhx and its slope 
1'hx of the Hz field component first. From (9) we find the real and imagi
nary parts of Hz which are expressed in the Appendix. The means, 
variances, and covariances of four real Gaussian random variables 
shown in the' Appendix are 

X2 y2 _ N f.l22 = 2 = 2 - 2 for any N 

. [cos2 a + 3 sin2 a] for N = 3 and N ~ 5 

(X2 Y2) = (X2X2) = (X2Y2 ) = (Y2X2) = (Y2Y2) = (X2Y2) = O. 

The probability density of the envelope of H x field and its rate of change 
p(rhx, 1'hx) is then obtained by following the same procedure used in 
deriving per. , 1'.). 

(31) 
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Fig. 4 - Comparison of the duration of fades of the electric field with that of 
the energy density. 

Hence, the expected number of level crossings n(RhX) at a given signal 
amplitude (rhx = R hx) can be obtained from (5) by using p(Rhx , Thx) 
in (31) 

~~2 ( RhX) (R~x ) - exp --- . 
J..I.22 V 27rJ..l.22 2J..1.22 

(32) 

The variance of rhx is 

N. 

Let 

Rhx ~ 
v<r~x> = rhx(rms) 

(33) 
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Substituting the values of the variances J.L22 and J.l~2 into (32) and replac
ing N by (r~",) we get 

- _,BV /cos
2 

a + 3 sin
2 

a R- _R-2 
n(Rhx) - V27r '\j 2 hx exp hx 

,BV _ / 1 - -2 = _;;;- V 1 - 2" cos 2a R hx exp -Rhx . 
V 27r 

(34) 

Equation (34) is the same form as (26) except for a multiplying factor 
which is a function of a shown in Fig. 5. Hence, nCRhx) is also a function 
of angle a. Thus, when the mobile is moving along the x-axis a = 0 or 
7r, and 

(34a) 

which is the minimum value of n(Rhx). When the mobile is moving on 
±y-axis a = ±7r/2, and 

- ,BV (3 - -2 
n(Rhx) = yI2; '\)"2 R hx exp - R hx (34b) 

which is the maximum value of n(Rhx). The ratio of level crossings for 
these two cases is 

n(RhX) (a = 0°, 180°) 1 (34c) 
n(Rhx)(a = ±900) v3' 

1.3 

1.2 

L1 

1.0 
Q;' 
~~ 0.9 

LOOP WHICH c 
::::: 0.8 

RECEIVES H:x; , 
H V .L:. 

w: 0.7 
......... 

C 
0.6 ;x; 

0.5 TOP VIEW OF _-7 
THE VEHICLE 

0.4 

0.3 
180 135 120 105 90 
0 45 60 75 90 

a IN DEGREES 

Fig. 5 - The effect of the angle a on the ratio of level crossing rates of the 
electric field to the x-component of the magnetic field. 
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For a = ±45° and ±135°, 

- t3V - -2 n(Rhx) = _ ~ R hx exp - R hx 
V 271" 

(34d) 

which is the same expression as (26) for R • . However, although (34d) 
and (26) are the same form, the magnitudes R. and Rhx are different, 
since (1';) in (25) is equal to two times (r~x) in (33). 

The average duration of fades t(Rhx) of H x can be obtained without 
difficulty. It is easy to prove that the expression for the average length 
of the intervals during which rhx < Rhx will have the same form as 
t(R.) in (30), except for a multiplying factor that depends on a, as 
follows: 

- y'2; 1 1 [ ( -2 ] t(Rhx) = ----r:;-V vi 1 R- exp Rhx) - 1 . 
fJ 1 - "2 cos 2a hx 

(35) 

(35a) 

which is the maximum value of t(Rhx), and when a = ±900: 

(35b) 

which is the minimum value of t(Rhx), The ratio of level crossings for 
these two cases is 

t(Rh:.)(a = 0°, 180°) = V3 
t(Rhx)(a = ±900) 

(35 c) 

which is the inverse of (34c). This tells us that when n(RhX ) reaches a 
maximum value, the average duration of fades reaches a minimum value 
and vice versa. 

For a = ±45°, ±135° 

- 271" 1 -2 
t(RhX) = -V R- [exp (Rhx) - 1] 

t3 hx 
(35d) 

which is the same form as the expression for t(R.) in (30). We may say 
at these angles a = ±45° and ±135°, the E field and the Hz field have 
the same average duration of fades below the level R. = Rhx • 
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3.3 Finding the Values of n(RhY) and t(RhY) from the Hy Field 

Similarly, we obtain n(Rhy), the expected number of level crossings of 
a given signal level R hy from the H y field. It is very easy to see that 
n(Rhx) and n(Rhy) are the same forms of distribution as expressed in 
(34), except for the multiplying factor that depends on a. The average 
duration of fades t(RhY) during which rhy(t) < R hy is also of the same 
form as t(Rhx ) in (35) except for the multiplying factor depending on a. 

The variances fJ.33 and fJ.~3 are given in the Appendix. We may thus write 
directly 

- = y'2; 1 _1_ [ex (R- 2 

t(RhY) (3V v'1 + 1. 2 R- p hy) - 1], 
2 cos a hy 

where 

R -~-~. 
hy - ~ - rhy(rms) 

It is obvious that 

n(Rhy) a=OO ,180° = n(RhX) a=±900 

n(RhY) a=±900 = n(Rhx) a=Oo ,180° 

(36) 

(37) 

IV. THE EXPECTED NUMBER OF LEVEL CROSSINGS AND THE AVERAGE 

DURATION OF FADES OF THE SIGNAL FROM AN ENERGY DENSITY 

ANTENNA 

J. R. Pierce7 has suggested utilization of the energy density concept 
as a possible means for reducing the signal fading in mobile radio. If 
we pick up the electric field e and the magnetic field h in free space and 
amplify the two fields by their appropriate relative gains, square and 
add these two fields, we obtain a signal proportional to· electromagnetic 
energy density 

(38) 

where € is dielectric constant, and J.l, is permeability. This idea can be 
realized by using a special antenna 6 which receives three field compo
nents ez , hx, and hy simultaneously. The three signal.s enter separate 
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square-law detectors, and the three detector outputs are added to obtain 
the energy density, 

W = ! (E 1 ez 12 + J.I. 1 hx 12 + J.I. 1 hy 12) . 

We may express W in a different form 

W ~ ~ [(Ie,I' + ~ Ih,I' + ~ Ih,I') vOlt'/m'] 

= ~ [lft(vole/m2
)] = ~--.!.. Joules/m3

• 

We define Ifc as a normalized energy density 

1ft = IEzl2 + IHxl2 + IHyl2 vole/m2 

(39) 

Ife + Ifhx + Ifhy (40) 

Gilbereo has done some work on finding power spectra in energy re
ception for mobile radio. His work provides very useful background 
for this paper. 

In this section, we are attempting to derive the number of crossings 
n('lrt) at a given level of signal magnitude 'lrc using (5) in Section II. 
First of all, we need to find the joint probability density function 
P(lft ,~t) of signal 1ft and its slope ~t . Since Ifc is a function of 
(Xl' Y l , X 2 , Y 2 , X 3 , Y 3 ), and ~c is assumed to be a function of 
(~6 , ~hx , ~hY)' we will find out that the variables (Xl, Y l , X 2 , Y 2 , 

X 3 , Y 3 ) and (~6' ~hx, ~hY) are two independent Gaussian variable 
groups. Then, 

p[lft(Xl , Y l , X 2 , Y 2 , X3 , Y3), ~t( ~6 , ~h:x: , ~hY)] 

= p[lft(Xl , Y 1 , X 2 , Y2 , X3 , Y3)] X P[~t(~6 , tlh:x: , tlhy)] 

= p(lft)P(~t). (42) 

A brief sketch of the method of finding P(lft) and p(~c) is discussed below. 

4.1 To get p(lft) 

Since we know from (41) that 

1ft = (X~ + Y~) + (X; + Y;) + (X; + Y;) 
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and since Xl, Y I , ••• are independent Gaussian variables, it is easy 
to get p(tft) from the Fourier transform of the characteristic function 
.ill ",,(V), where M ",,(V) = J11Xt ,ll1 y , ,1I1xo ,1I1 Yo' ... etc., and we can get 
these M's very easily. 

4.2 To get p( tit) 

All the terms in the summations of equations (79), (80), and (81) 
which represent tfe, tfhz and tfhy, respectively, in the Appendix are 
statistically independent. Then by the central limit theorem these 
three variables tf e , tfhz , and tfhy are Gaussian distributed. Hence, the 
joint probability density function p(tfe , tfhZ, tfhy) can be established. 
Since tft = tfe + tfhz + tfhy we can get p(tft) from the Fourier transform 
of the characteristic function M fl , but M fl must now be obtained from 
the general definition 

since we have no simple way of getting 111 f. , M fhz and M J,nu separately. 
Let us introduce a new variable E which can be anyone of the above 

Gaussian random variables. It has a zero mean and variance J.l. Then 
the probability density function of the square e

2 isl4 

p('Y = e
2

) = ~ exp (-21 1') 
27rJ.ll' J.l 

(44) 

for I' > o. The characteristic function corresponding to this probability 
density is 

(45) 

From the Appendix we know all six variables Xl , Y I , X 2 , Y2 , X3 and 
Y 3 are independent Gaussian variables. It is not hard to see that the 
Xi, Yi, X;, Y;, X;, Y; are independent variables by obtaining 
p(Xi , y~ , X; , Y; , X; , YD from the .Jacobian of the transformation l2 

of P(XI , Y I , X 2 , Y 2 , X3 , Y 3 ). Then X~ and Y~ have the same char
acteristic function (1 - 2jJ.lllV)-!. Also X;, Y;, X; , and Y; have the 
same characteristic function (1 - 2.:J.l22V) -!. Thus, by the addition theo
reml5 the sum tft which is defined in (41) has the characteristic function 

(46) 
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Then the probability density function p(if;t) can be obtained from the 
Fourier transformation of the characteristic function 

[ ) ( ) ] 

if; t exp ( -~) 
= fJ,11 2 exp (-~ - exp _~ + 2fJ,22 • 

2(fJ,22 - fJ,1l) 2fJ,1l 2fJ,22 4fJ,22(fJ,22 - fJ,Il) 

(47) 

The joint probability density P(tie, tih:e, tihy) has been derived in 
the Appendix 

p( tie , tih:e , tihy) 

= (271")~Ar exp {-!(/ All / ti; + / A22 / ti~:e + / A33 / tihY 

+ 2 / A12 / ti.tih;e + 2 / A13 / ti.tihy + 2 / A23 I tihxtihY)}' (48) 

where [A] is the covariance matrix of tie , tihx, tihY and the /A"ml are the 
cofactors of IAI, given in the Appendix. From (40), tit is the sum of 
the three random variables tie, tih.&, and tihlJ . Then the characteristic 
function for tit is 

00 

= III exp {jv( tf. + tfh:e + tihy) jp( ti. , tfhx , tihy)dtf.dtihxdtihlJ • 

-00 ~~ 

The details of this computation are given in the Appendix with the 
result (92) 

(50) 

where 

(51) 

The probability density of total tft is then 

( . ) 1 foo M ( .) -jv ~ Id 1 (1 ",2) p if; I = -2 ~ I ]V e v = _ rc:;-7 exp - -2 I 'Y t • 
71" -00 -v 271"PI PI 

(52) 

The joint probability density p(if;t , tj;t) of if;t and tit can now be ob
tained by substituting (47) and (52) into (42). 
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The expected number of crossings n('!Ft) at a given signal level "'t = 
'!Ft made by the total energy density signal in one second can be ob
tained from (5) 

n('!Ft) = l rYJ 

tftp('!Ft , tft)dtft = p('!Ft) l rYJ 

tftp( ~t)d~t 

where p: is given by (51) and /1-11 = N, /1-22 = N /2 as shown in the Ap
pendix. 

Also we know from Gilbereo 

In addition, p: 
letting 

{rt = _ ~(:,,2t) = ~ -v \ lJIl) If't (rms) 

we can simplify (53) as follows: 

n({<,) = ~11" {2v'2[ exp (-v: {<,) - exp (- V2~,) ] 

- 2 V ll{<, exp ( - V 22{< ,) }. (.'54) 

Equation (54) is a distribution which is independent of the angle 
a. When {It = 1, it means that '!F t is equal to its rms value. Equation 
(54) then becomes 

Also let R. 

- ,BV n('!F)~=l = _ /- X 0.1839. 
-v27l' 

1 in (26): 

- ,BV 
n(R.)il.=l = _ /- X 0.3678. 

v27l' 

It is shown that the expected number of crossings of the total energy 
density is one half the expected number of crossings of the envelope of 
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E field at their rms levels ({It = Il;). In other words, the energy density 
fades less frequently than the E field by at least a factor of 2. 

n({I t) ~ !n(it) 

for {It = Il! with respect to their rms values. The theoretical values 
of new) and n(Re) are in Fig. 3. 

The average duration of fades below a given level wt is given by (7) 

(55) 

where P(if;t(t) < Wt) is the probability function obtained from p(if;t(t)). 

P(if;t(t) < Wt) = i'lr t 

p(if;t(t))dif;t(t) 

( V 22 - ) _ /-- (_ /- - ) = 1-4 exp --2-Wt + (3 + v 22wt) exp - v 22'ltt , (56) 

where 

Substituting (54) and (56) into (55), we obtain the average duration 
of a fade below a given level 'ltt : 

t({I) = V27r ~ 
t {JV V2 

J 1 - 2 exp (-¥,p, +) exp (- V2W',) l 
° 12 [exp ( _ \22 ,p,) -exp (- V2:N,)l- V22>i<, exp (- V22>i<,) -1 r ° 

(57) 

When {It = 1, (57) becomes 

(- yI2; 
t Wt) = fjV X 3.74. 

When it = 1, (30) becomes 

- yI2; 
t(Re) = fjV X 1.7183. 

It is shown that the average duration of fades of the energy density 
below a level {rt is larger than the average duration of fades of the E 
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field below a level it where ~e = R; = 1. The curves of t(~,) and 
t(Re) have been plotted in Fig. 4 for comparison. 

v. DISCUSSION OF THE THEORETICAL RESULTS 

From the above derivation we know that 1/It and tft are two independent 
variables as shown by (42): 

and therefore (5) can be written as follows: 

n('lft) = p('lft) 100 

tftp(tft)dtft 

= p('lft) {tft} (58) 

where {tft} represents an integral. Equation (58) simply shows that 
the expected number of crossings n('lft) at given level 'If can be obtained 
from the probability density of level 'lf t times the integral {tft} . The 
average duration of fades, then, turns out to be 

t('lf) = P( 1/It < 'lf t) 
n('lf t) 

__ 1_ P(1/It < 'lf t) 
- {tft} p('lft) 

(59) 

vVe emphasize that (58) and (59) are valid only when 1/It and tf, are two 
independent variables. 

The two curves, n(Re) and n(~t), are plotted in Fig. 3, normalized 
by the common factor y2;/t3V. Both curves are plotted as functions of 
the signal level normalized to their own rms values. The value of n(Re) 
is, as shown, always higher than the value of n(~,) for any signal level. 
From these two curves, it may be said that the fading of the energy 
density is less frequent than the fading of the envelope of the electric 
field. The maximum expected numbers of crossings of both n(Re) and 
n(~,) are at the -3 dB level, which means for signal level at 1/v2 and 
! of their rms values, respectively, we will count the most fades. The 
curve of n(~,) has dropped faster on both sides of 0 dB than the curve 
of nUt), which means that the range of the signal amplitude 1/1, is 
less than the range of the signal amplitude r e • 

The average duration of the signal below a given amplitude level 
is another way of looking at the fading problem. Fig. 4 shows that the 
average duration of fades of the energy density t(~,) is always larger 
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than the average duration of fades of the electric field t(R.,) when the 
given signal levels are above - 3 dB with respect to their rms values 
({Fe = R; > -3 dB). The value of t({Fe) is less than t(it) when the 
given signal levels are more than 3 dB below the rms values {F t = R; < 
-3 dB. When the given signal level is at -3 dB ({Fe = R; = -3 dB)~ 
the average duration of fades t( -3 dB) of both the energy density and 
the electric field are the same. 

VI. COMPARISON OF THE THEORETICAL PREDICTION WITH THE EXPERI

MENTS 

The three field components E, Hz, and Hy have been received by a 
special antenna6

•
7 mounted on a mobile van moving at a speed of 15 

mile/hr. All the figures shown in this section were taken on Common
wealth Avenue, New Providence, New Jersey, from a transmitting 
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Fig. 6 - Comparison of the predicted level crossing rates to the observed rates 
for the electric field on Commonwealth Avenue, New Providence, New Jersey. 
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Fig. 7 - Comparison of the predicted average duration of fades to the observed 
:werage duration of fades for the electric field on Commonwealth Avenue, New 
Providence, New Jersey. 

antenna at 836 J\!lHz at Bell Laboratories, J\!lurray Hill. After adjusting 
the appropriate relative gains of the three fields, the energy density 
can be 0 btained by squaring and summing these three fields by computer 

oft = 1 E 12 + 1 Hz 12 + 1 Hy 1
2

, vole/m2
. 

Since the distance between the transmitting antenna and the mobile 
unit is relatively short, the angle swept out by the radius vector from 
the base station to the mobile unit varies considerably over a typical 
length of run. To reduce the variation of this angle the data for the 
entire run were cut into sections 8 seconds long, corresponding to 175 
feet of travel, for computer processing. Each section, either the en
velope r/J of the E field or the energy density oft , was used to obtain the 
number of level crossings n and the average duration of fades t by com-
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Fig. 8 - Comparison of the predicted level crossing rates to the observed rates 
for the energy density on Commonwealth Avenue, New Providence, New Jersey. 

puter program. However, since the experimental curves of nand t were 
almost all alike for all sections, we used only one for comparison with 
the theoretical curve. 

Fig. 6 shows a comparison of the curves of the expected number of 
crossings n(it) at any level -.it for both experiment and theory. The 
shape of the experimental curve is in fairly good agreement with the 
theoretical curve. Since the receiving antenna on Commonwealth 
Avenue is in line of sight with the transmitting antenna at Bell Lab
oratories, a small direct wave component may be introduced. This 
small direct wave component is not considered in our theoretical analy
sis, hence the values nCR.) from the experiments should be less than the 
theoretical results as we would predict. 

Fig. 7 shows a comparison of the curves of the average duration of 
fades tCR.) for both experiment and theory. They are quite alike. Since 
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a small direct wave component does exist, the average duration of fades 
for the experimental data should be higher than the theoretical results. 

Fig. 8 shows a comparison of the curves of the expected number of 
crossings neWt) at any level {It for both experiment and theory. The 
shape of the experimental curve is very much like the theoretical curve. 
It shows that the theoretical model used in this paper is quite acceptable. 

Fig. 9 shows a comparison of the curves of the average duration of 
fades t({lt) for both experiment and theory. The difference between the 
experimental curve and the theoretical curve may be caused by the 
small direct wave component. A small direct wave component intro
duced into our theoretical model may cause a little higher average dura
tion of fades than it might expect, but does not affect the number of 
level crossings. 
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Providence, New Jersey. 
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VII. CONCLUSIONS 

Comparing the expected number of level crossings and the average 
durations of fades of the energy density with that of the E field, we see 
that the fading of the energy density is much less severe than the fading 
of the envelope of E field. 

Referring to Fig. 5, which shows the fading rate related to the orienta
tion of the energy density antenna and the direction of vehicle motion, 
we see that when the two orthogonal loops are at 45° to the direction of 
motion, the fades of all three field components are the same. When one 
loop is lined up with the direction of motion and the other normal to 
it, the H field component received from the loop normal to the motion 
has less fading than either of the other two field components. 

The expected number of crossings/second of fades at a given signal 
level, n, for both Rd and We is proportional to the carrier frequency te 
and the mobile speed V, as shown in (26) and (54). They have the com
mon factor, (!3V / V2; = V2;(Vte/c), where C is the velocity of light. 
Hence, if either V or te goes higher, n becomes greater. 

The average duration of fades, t, is inversely proportional to the 
carrier frequency te and mobile speed V, as shown in (30) and (57). 
Hence, if either V or te goes higher, t becomes smaller. 

The foregoing theoretical analysis is based on a Gaussian model and 
does not include a direct wave component. Even so, this analysis is 
compared with the experimental results in Section VI with fairly good 
agreement. 
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APPENDIX 

A.l Finding the mean values, variances and covariances ot nine variables 
(Xl' Y I , X 2 , Y2 , X3 , Y3 , 1/te , 1/thx, 1/thY)' 

From (8), (9), and (10) we may express in the following forms 

Ez = Xl + jY1 

Hx = X 2 + j Y 2 

Hy = X3 + jY3 , 
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where 
N 

Xl = L Ru cos <Pu + Su sin <Pu (60) 
u=l 

N 

Y l = L Su cos <Pu - Ru sin <Pu (61) 
u=l 

N 

X 2 = L (Ru cos <Pu + Su sin <pu) sin Ou (62) 
u=l 

N 

Y 2 = L (Su cos <Pu - Ru sin <pu) sin Ou (63) 
u=l 

N 

X3= - L (Ru cos <Pu + Su sin <pu) cos Ou (64) 
u=l 

N 

Y3 = - L (Su cos <Pu - Ru sin <pu) cos Ou (65) 
u=l 

also 

<Pu = (3Vt cos (Ou - a) (66) 

and the angles 0,. and a are shown in Fig. 2. The time derivatives of 
Xl, Y l , X 2 , Y 2 , X3 , and Ya are 

Xl = (3V L (-Ru sin <Pu + Su cos <pu) cos (Ou - a) (67) 
u 

1\ = (3V L (- Su sin <Pu - Ru cos <pu) cos (Ou - a) (68) 
u 

X2 = (3V L (-Ru sin <Pu + Su cos <pu) sin Ou cos (Ou - a) (69) 
u 

Y2 = .sV L (- Su sin <Pu - Ru cos <pu) sin Ou cos (Ou - a) (70) 
u 

The mean values of all above random variables are zero (Xl) = (Y l ) = 
(X2 ) = (Y2 ) = (X3 ) = (Y3 ) = (Xl) = (YI ) = (X2 ) = (Y2 ) = (X3 ) = 
(Y3 ) = o. The variances of all above random variables are 
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J.Lll = (Xi) = (Yi) = N 

J.L22 = (X;) = (Y;) = ~ 

J.L33 = (Xi) = (Yi) = ~ 

(73) 

for any N (74) 

(75) 

for Nd.~ 3 (76) 

"2 "2 N 2 2 "2 f { J.L~2 = (X2) = (Y2 ) = 8" (,BV) [COS a + 3 SIn a] N = 3 (77) 
for 

"2 "2 N 2 2 2 
J.L~3 = (X3) = (Y3 ) = 8" (,BV) [3 cos a + sin a] N ~ 5" (78) 

Remark: The values of J.L~1 for N ~ 3 is derived as follows: The sum
mations of sine and cosine functions can be expressed 

x X 
N cos 2 - cos (2N + 1) 2 
L sin kx = ---------
k-1 " x 2sm 2 

"(N )x "x 
N sm 2 + 1 2 - sm 2 
Leos kx = ---------
k~1 2 " x sm 2 

Then in (67) 

and 

t. cos' (0. -C a) ~ ~ t. [1 + cos (u ; - 2a) ] 

N + cos 2a ~ 471" + sin 2a ~" 471" =-- -- L...J cosu- -- L...Jsmu-" 
2 2 1£=1 N 2 1£=1 N 
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But, 

. (4 + 27r) . 27r 
N 47r sm 7r N - sm N 
L cosu- = = 0 
u=l N 2 . 27r 

sm N 

and for N ~ 3. 

N 4 cos 2
N
7r - cos (47r + 2

N
7r) 

". 7r L...J SIn u - = = 0 
u=l N . 27r 

2sm N 

Thus, the average value of Xi or Yi is 

/ ± cos2 (27rU _ a)) = N for N ~ 3. 
\u=l N av 2 

Following the same derivation, we obtain the valid range of N for J.l~2 

and J.l~3 . Later on we will obtain the range of N for pil , P~2 , P~3 , pi2 , pi3 

and P~3 in the same way. 
QED. 

N ow we are going to find the relations between all the six variables 
Xl , X 2 , X 3 , Y I , Y 2, Y3 and their time derivatives. Since we know 
if two variables a and b are Gaussian, and also uncorrelated, (ab) = 0, 
then a and bare independent.16 Therefore, the covariance of Xl , Y 1 , Xl , 
and YI are 

(Xl Y I ) = (XIXI) = (Xl YI ) = (YIX I ) = (Y I Y1) = (Xl YI ) = 0 

hence, the four variables Xl , YI , Xl , and YI are statistically independ
ent. The covariances of X 2, Y 2 , X2 , and Y2 are 

(X2 Y2) = (X2X 2) = (X2 Y2) = (Y2X 2) = (Y2 Y2) = (X2 Y2) = 0 

hence, the four variables X 2 , Y2 , X2 , and Y2 are statistically independ
ent. The covariances of X3 , Y 3 , X3 , and Y3 are 

(X3Y~) = (X3X 3 ) = (X3 Y3 ) = (Y3X 3 ) = (Y3 Y3 ) = (X3 Y3 ) = 0 

hence, the four variables X3 , Y 3 , X3 , and Y3 are statistically independ
ent. 

Also we may show that 

(XmYn) = 0 for all m and n 

(XmXn) = (Y mYn) = 0 for m ~ n, 
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where 

hence the six variables Xl , X2 , X 3 , Y I , Y2 , Y 3 are independent. The 
rate of change of energy densities of three fields Ez , H x , and HII are 

tf ~ = :t 1/t e = :t (Xi + Yi) 

= /3V L [-(RuR. + SuS.) sin (cpu - <p.) 
u,. 

+ (SuR. - RuS.) cos (<pu - <p.)] X [cos (Bu - a) - cos (B. - a)], (79) 

. d .1, d (X2 + y2) 
1/;hx = dt 'Yhx = dt 2 2 

= /3V L [-(RuR. + SuS.) sin (cpu - <p.) 
u,. 

+ (SuR. - RuS.) cos (cpu - cp.)] 

·sin Bu sin B.[cos (Bu - a) - cos (B. - a)], (80) 

. d .1, d (X2 + y2) 
1/;hl! = dt 'Y hI! = dt 3 3 

= /3V L [-(RuR. + SuS.) sin (cpu - <p.) 
u,V 

+ (SuR. - RuS.) cos (<pu - cp.)] 

. cos Bu cos B.[cos (B,. - a) - cos (B. - a)]. (81) 

The only terms that exist in (79), (80), (81) are those for which u ~ v. 
There are N(N - 1)/2 different terms which are all statistically in
dependent in (79), (80), and (81). Hence, by the central limit theorem, 
tf e , tfhl! , and tfhx are Gaussian random variables. 

The variance of tf 6 , tfhx and tfhl! are 

for N ~ 3 (82) 

, ( • 2 ) (V)2 N(N - 1) [2 3' 2 ]1 (83) 
P22 = 1/;hx = /3 2 cos a + sm a {N = 3 

for 

, ( '2 ) (V)2 N(N - 1) [3 2 + . 2] N ~ 5. (84) 
P33 = 1/;hll = /3 2 cos a sm a 
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The co variances of tj;e , tj;hx , and tj;hll arc 

P{2 = P~l = (tj;e tj;hx) = - «(3 V) 22N(N - 1) sin
2 

a 1 for N ~ 3 (85) 

P:3 = P~l = (tj;etj;hll) = -«(3V)22N(N - 1) cos2 as - (86) 

P~3 = P~2 = (tj;hx tj;hll) = O. (87) 

It is very easy to show from (60) to (66) and (79) to (81) that the covari
ances of the variables between two groups (tj;e , tj;hx, tj;hll) and (Xl, Y I , 
X 2 , Y2 , X 3 , Y3 ) are zero. We may write 

for all nand m (88) 

:} = 1,2,3 

hence (tj;e , tj;hx , tj;hll) and (Xl' Y I , X2 , Y 2 , X3 , Y3) are two independent 
variable groups.16 

A.2 Derivation of M ~,(jv) in (50) 

The mean values of all three Gaussian random variables tj;", tj;hx, 
and tj;hY we observed from (79) to (81) are zero. Also (87) gives the 
covariance (tj;hxtj;hY) = O. The joint probability density function of three 
variables tj;e , tj;hx, tj;hY can be obtainedll 

( . " 1 {1 (I 1'2 1 I' p fe , fhx , fhll) = (27l")f 1 A I! exp -2TAT All fe + A22 fhx 

+ 1 A33 1 tj;~y + 2 1 Al2 1 tj;. tj;hx + 2 1 Al3 1 tj;e tj;hy 

+ 2 I An I t"t"l} , 

where 

[A] is a covariance matrix, and 
IAmnl is a cofactor of Pmn in the covariance matrix [A] 

[ 
, 

Pll 

[A] = P:2 

Pl3 

P{2 Pi3] 
P~2 0 

o P~3 

(89) 
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IAI = determinant of [A] = P~3(P~IP~2 - p~;) - P~2P~32 

I All I = P~2P~3 

IA I " ,2 22 = PllP33 - Pl3 

IA I " ,2 33 = PllP22 - Pl2 

I Al2 I = I A21 I = - P~2P~3 

I Al3 I = I A31 I = - p~2pf3 

I A23 I = I A32 I = p~3pi2 • 

From (38), ~t is the sum of three Gaussian random variables ~e , ~hx , ~hY : 

~ t = ~ e + ~hx + ~hY . 

The characteristic function for ~t is then 

Mfl(jv) = E[exp {jv(~e + ~hx + ~hY}] 
= i: i: i: exp {jv(~e + ~hx + ~hY) }P(~e , ~hx , ~hy)d~ed~hxd~hY 

= / 1,.100 100 

eiv(fe+fh:J:) 
(271") I A 12 -00 -00 

·exp {-2 IIA 1 (I An 1 of; + 1 A" 1 of;. + 2 1 A" 1 of,of,,)} 

X 100 ivfhy {_~ (.;,2 + 2(1 Al3 I ~e + I A23 I ~hx) .;, )} 
-00 e exp 2 I A I 'f/hy I A33 I 'f/hy 

·d~hyd~hxd~e • (90) 

The last integrand of ~Y is 

{_ ·1 Al3 I ~e + I A23 I ~hx + ~ (' Al3 , ~e + , A23 , ~hX)2} 
exp J I A33 I v 2 I A I I A33 I 

X 100 [_.(.;, +' A13 ' ~e +, A23 ' ~hX)J exp JV 'f/ hy I A I 
-00 33 

exp {_~ (,;, + ' Al3 , ~e + , A23 , ~hX)2}d.i' 
2 I A I 'f/y I A33 I 'f/hy 

_ (_ . (I Al3 , ~e + , A23 , ~hX) 
- exp JV I A33 I 

+ ~ (' Al3 , ~e + I A23 , ~hX)2} 
2 I A I I A33 I 

X i: exp (jV~ - ~l ~2 )d~. 
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From Cramer/5 p. 99 we obtain 

100 (. hI 2) {2; v
2 

-00 exp JV~ - 2" ~ d~ = \}h; exp - 2hJ ' 

where 

Then following the same techniques we find 

M ;;,(jv) ~ (211/1 A II L: exp (jv3~3 - ~ ~; )d~3 

where 

. i: exp (jV2~2 - ~2 ~; )d~2 i: exp (jVI~1 - ~l ~i )d~l 

1 f(2;t { [1 (vi v; vi)]} 
= (27r)~ I A I! \}w, exp -2" hI + h2 + h3 ' 

h-~ 
I - I A I 

B h2 = -:----:--:-----:-
I A I I A33 I 

h3 = I A I 11A33 I B [BG - A 2] 

( ~) V2 = 1 - I A33 I V 

V3 = [1 -~ - (1 -~) A]v I A33 I I A33 I B 

A = I Al2 I I A33 I - I A13 I I A23 I = - Pi2 I A I 
B = I A22 I I A33 I - I A23 12 = pi I I A I 
G = I All I I A33 I - I Al3 12 = P~2 I A I 

BG - A 2 = I A33 I I A 12. 

The constant value outside the bracket of (91) is 

1 ~(27r)3 __ 1_ II A 1
3 I A33 I 

(27r)~ I A I! hlh2h3 - I A I! \I BG - A 2 = 1 

447 

(91) 
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and the expression inside the bracket of (91) is 

1 [v; v; v~J exp - - - + - + -=-
2 hI h2 h3 

If _.Ie III [1 + (I A33 1 A 23 1)2 
exp 2 I A33 1 B 

[I A33 1 - 1 AI3 1 - (I A33 1 - 1 A 23 I) ~J2Bl ,l 
+ Be - A2 v f 

Thus, 
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Some Simple Self-Synchl'lonizing 
Digital Data Scramblers 

ByJ. E. SAVAGE 

(Manuscript received July 28, 1966) 

Two types of self-synchronizing d1'gital data scramblers and descramblers 
are introduced and examined. The descramblers recover synchronization 
quickly after the insertion or deletion of channel bits, and they are relatively 
insensitive to channel errors. The scramblers act to increase the period of 
periodic data sequences, and the periodic channel sequences produced have 
approximately half as many transitions in one period as there are bits in a 
period. These circuits find application in common carrier systems where 
short-period data sequences produce high-level tones in the transmission 
band and, as a consequence, interchannel interference. And they have appli
cation when receiver clocks derive synchronization from transitions in the 
channel s1·gnal. A number of variations and modifications of the scramblers 
which affect their cost and size are considered. 

The scramblers and descramblers are shnilar in construction and consist 
of linear sequential filters with either feed-forward or feedback paths, 
counters, storage elements and peripheral logic. The counters, storage 
elements and peripheral logic monitor the channel sequence but react in
frequently so that the scramblers and descramblers behave principally as 
linear sequential filters. 

1. INTRODUCTION AND SUMMARY 

In this paper, we present two basic types of self-synchronizing digital 
data scramblers and descramblers. A scrambler is a digital machine 
which maps a data sequence into a channel sequence and, when the 
data sequence is periodic, into a periodic channel sequence with period 
which is many times the data period. When the source is periodic, the 
channel sequence produced by the scrambler also has many transitions. 

A simple scrambler and one which is often used is a machine which 
adds a maximal-length shift-register sequence1

•
2 to the data signal. 

449 
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The scrambled data signal is then descrambled by the subtraction of 
the same maximal-length sequence. While this procedure is simple and 
easily implemented, it suffers from the serious disadvantage that the 
insertion or deletion of bits in the channel signal results in a descrambled 
sequence which is a garbled version of the data signal. The scramblers 
presented in this paper have the self-synchronizing property* and 
recover quickly from the insertion or deletion of channel bits. 

There are two important applications for our scramblers. In common 
carrier systems small nonlinearities are present in modulators and 
demodulators which are used to frequency multiplex a bank of channels. 
Consequently, high-level tones in one channel may produce interference 
in other channels as a result of the nonlinearities in the mixing process. 
For this reason, systems engineers place limits on the levels of isolated 
tones in a customer's transmission band. Tones, in turn, are produced 
in digital data transmission systems by periodic data sequences and 
the limit on tone levels is then translated into a lower bound on the 
period of periodic channel sequences. Thus, our first application is to 
insure that any periodic source sequence is mapped by a scrambler 
onto a periodic channel sequence with sufficiently large period. 

The second application for our scramblers concerns the need for 
transitions in the amplitude of the channel signal so that receiver clocks 
can derive bit or frame synchronization from the channel sequence. 
Receiver clocks often derive synchronization by passing the received 
signal through a filter tuned to the spectral component corresponding 
to the basic baud length and then observing the zero crossings of the 
filter output. Since the amplitude of the filter output will decrease to 
the background noise level if no transitions occur in the amplitude of 
the received signal or if the density of transitions is small, it is clear that 
in this application it is desirable to guarantee many closely spaced 
transitions in the amplitude of channel sequence when the source is 
periodic. 

We introduce two basic types of self-synchronizing, digital data 
scramblers called multi-counter scramblers and single-counter scramblers 
and they are discussed in Sections IV and VI, respectively. Each 
scrambler consists of a "basic scrambler" and a "monitoring logic" 
which consists of additional storage elements, counters and incidental 
logic. We show in Section II that the "basic scrambler," which is a 
linear sequential filter with feedback paths and tap polynomial hex), 
responds to a periodic data sequence of period s by producing a periodic 

* R. D. Fracassi and T. Tammaru introduced the self-synchronizing descrambler 
in a special scrambler for which they have a patent pending. 3 
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channel sequence whose period is either s or the least common multiple 
of s and pm - 1, where In is the number of stages in the basic scrambler 
and p is a prime greater than or equal to the number of elements in 
the source alphabet. The basic scrambler responds in this way to periodic 
inputs when its tap polynomial hex) is primitive over the modular 
field of p elements, GF(p). The counters, logic, and storage elements 
of the monitoring logic monitor the channel sequence and respond 
whenever this sequence has as periods, one of the known data periods. 
The monitoring logic then reacts and changes the state of the basic 
scrambler, forcing it to have the long-period output. 

We show in Sections IV and V that a multi-counter scrambler exists 
for binary as well as non-binary sources and we find the smallest thresh
olds required on counters in the monitoring logic of this scrambler. 
The single-counter scrambler is considered in Sections VI and VII and 
because of analytical difficulties we are only able to show the existence 
of this scrambler when the source is binary (p = 2) and the source 
periods are all prime to 2m 

- 1, where In is the size of the basic scrambler. 
lVIixtures of the scramblers for binary sources are examined in Sec
tion VIII. 

In Section IX we show that the scrambler output, when the input 
is periodic, contains many closely spaced transitions and that there 
are half as many transitions in one period as there are digits in that 
period. In Section XI we perform representative calculations to de
termine the spectrum of the scrambler output and find when the source 
is periodic that the output spectrum has P times as many tones as the 
unscrambled spectrum and each tone has 1/ Pth the energy, where P 
is the factor by which the source period is increased. 

The descramblers for each of the scramblers are discussed in the 
sections in which the scramblers are introduced and they are also 
discussed separately in Section X. In that section, we show that the 
descramblers recover synchronization rapidly after the insertion or 
deletion of channel digits and we observe that the principal effect of 
infrequent channel errors on the descramblers is to multiply the number 
of channel errors by w(h), where w(h) is the number of nonzero terms 
in the tap polynomial hex). In Section X we also note that the monitoring 
logics at the scrambler and descrambler reach threshold infrequently 
when the source is random and at most once when the source is periodic 
so that the descrambler monitoring logic may be removed and the 
descrambler considerably simplified as long as thresholding in the 
monitoring logic occurs at a tolerably low rate. 

An example is given in Section XII of the application of the scramblers 
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and descramblers and representative calculations are performed to 
determine which scrambler configuration is least expensive. Section 
XIII closes with conclusions. 

II. BASIC SCRAMBLER AND DESCRAMBLER 

The shift register circuit shown in Fig. lea) is a linear sequential 
filter with feedback paths4 and is an example of the scrambling circuit 
which is basic to the multi-counter scrambler and to the single-counter 
scrambler discussed in later sections. The linear sequential filter with 
feed-forward paths4 shown in Fig. l(b) is the complementary circuit 
to that shown in Fig. lea) and regenerates the data sequence from the 
channel sequence. We assume in these two examples that data is 
presented as a binary sequence, that addition is taken modulo 2 and 
that the storage elements provide one bit of delay. 

Examination of the circuits of Fig. 1 show that they have the re
quired synchronization property since the effect of a bit lost or added 
in the line sequence is felt only as long as the values stored in the 
descrambler disagree with those stored at the scrambler, which is five 
bit intervals in our example. 

A more general form for the basic scrambler when the data is assumed 
to be a sequence of digits from the modular field of p elements, GF(p) = 
{O, 1, ... , p - I}, where p is prime, is shown in Fig. 2. Here, addition 

DATA 

LINE 

(a) 

LINE 

Fig. 1 - (a) A basic scrambler; (b) a basic descrambler. 
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------1.+ 

DATA 

LINE 

Fig. 2 - General basic scrambler. 

is taken modulo p and the outputs of the storage elements are mul
tiplied by the tap constants {c I , C2, •••• , cm} drawn from GF(p). 
Here, multiplication is also taken modulo p. The tap constants must 
be constrained in a particular way if our scramblers are to extend the 
period of periodic sequences in the desired manner. Namely, the tap 
polynomial hex) in the indeterminate x given below 

(1) 

must be a primitive polynomial* over the field GF(p). This condition 
will guarantee that the sequence generated by the basic scrambler in 
the absence of input will be either all zero or a maximal length sequence, 
that is a sequence which repeats but once every pm - 1 digits. In 
the example given in Fig. 1, the tap polynomial is primitive over the 
binary field and it will generate a maximal length sequence of period 
25 

- 1 = 31. (h(x) is a primitive polynomial of degree m over the field 
GF(p) if it is irreducible, that is, has no factors except 1 and itself, 
and if it divides xn - 1 for n = pm - 1 but does not divide it for any 
smaller n.) 

Theorem 1: The basic scrambler described above when excited by a periodic 
sequence of periodt s will respond with a periodic line sequence which 
has either period s or a period which is the least common multiple (LCM) 
of s and pm - 1 (LCJJ1(s, pm - 1)). The period with which the scrambler 
responds is a function of the initial values stored in the scrambler storage 
elements, that is, its initial state, and there is but one such state (for each 
phase of the input sequence) for which the line sequence has period s. 
Fo}' all other such initial states the line sequence has the larger period. 

This theorem is basic to all later results. It states that for only one 
starting state will the basic scrambler respond with period s to a data 

* A nonprimitive polynomial may produce more than two output periods for an 
input period (see Theorem 1). 

t A sequence will be said to be of period s if it has no smaller period. 
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sequence of that period. Thus, our objective, which is to extend the 
period of periodic sequences, is equivalent to detecting whether data 
preceding a periodic sequence has left the scrambler in the critical 
state for that sequence. Two basic methods of detecting the presence 
of the critical starting state when sequences of different periods arc 
expected in the data are given in later sections. 

III. PROOF OF THE BASIC SCRAMBLER THEOREM 

Model a periodic input to the basic scrambler with a circulating 
register, as shown in Fig. 3 for an input of period 3. The initial state 
of the circulating register will be the first period of the periodic sequence. 
We let the vector y represent the state of the new circuit. Thus, if 
the input has period s and the basic scrambler has 1n stages, then y 
has s + m components where the first s represent (in reverse order) 
the first period of the periodic input and the last m components rep
resent the values stored in the corresponding storage elements when 
the periodic sequence begins. For example, y = (101101001) if the 
basic scrambler has the stored values 01001 when the sequence 
1101, 1101, 1101, ... arrives. 

The circuit of Fig. 3 is linear since the next set of stored values 
is a linear combination of the preceding set. Thus, the state y' following 
y can be found by a matrix operation on y by the matrix T given below, * 
that is, y' = Ty where y and y' are taken to be column vectors. 

0 0 1 0 0 0 0 0 

1 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 
T= (2) 

0 0 1 1 1 1 0 1 

0 0 0 1 0 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 0 1 0 

For the general basic scrambler and an input of arbitrary period, 

* For an excellent discussion of the matrix approach to linear sequential switching 
circuits see B. Elspas, The Theory of Autonomous Linear Sequential Networks, 
IRE Trans. Circuit Theory, 6, pp. 45-60, 1959, which is reprinted in Ref. 13. 
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LINE 

Fig. 3 - Model of basic scrambler with periodic input. 

say s, the matrix T has the following form 

1'=[~.II~,l (3) 

where R is s X s and is shown below 

fo 0 0 

~l R = 11 
0 0 

[ 
1 0 

lJ 0 

(4) 

T" is m X m and js given as 

Cl C2 ~ml 1 0 

T" = 0 1 o I 

(5) 

0 0 lJ 
Since the state y' is found from y' = Ty, all succeeding states are 

found by taking powers of T, that is, the ith state succeeding y is 

(6) 

The line sequence generated by a periodic input to the basic scrambler 
is periodic of the same period as the state Yi of the circuit which models 
the basic scrambler and periodic input. Thus, we prove Theorem 1 
by studying the cycles of (6). 

There is an indirect approach5 that one can take to study the cycles 
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of (6). It amounts to a proof that these cycles are isomorphic to cycles 
of a matrix T* obtained from T by eliminating the solitary 1 shown 
in (3). This amounts to disconnecting the circulating register from 
the basic scrambler and observing that the basic scrambler, which is 
a maximal length sequence generator,6 has period 1 or pm - 1, m = 

deg hex), so that cycles of T* have period s or LCM(s, pm - 1). The 
proof that the register can be disconnected amounts to showing that 
the minimal and characteristic polynomials of T are the same and equal 
those of T*. Then, the elementary divisors of T and T* are the same 
and their cycles are isomorphic. 

Since there is a direct proof of Theorem 1 which contains many 
results important to the remainder of the paper, we present it here. 
If the basic scrambler with periodic input starts with state y, then 
it has a cycle of length g if TOy = y. The basic scrambler output will 
then be periodic with period g. We now ask for those values of g for 
which TOy = y has a solution. We begin by writing 

y = Ys + Ym , (7) 

where Ys is such that its first s components equal those of y and its 
last m components are zero. The vector y m is zero in its first s com
ponents and is equal to y in its last m components. We can interpret 
y m as the "starting state" of the basic scrambler and Ys as the state 
of the· model for the periodically driven basic scrambler when the 
starting state is zero. 

If 

(8) 

then 

(9) 

since T is a linear operator. We assume that the periodic input is fixed 
and has period which is strictly s. Then, the left-hand side of (9) is 
fixed and we ask whether a solution Ym for it exists for a given value 
of g. We note that 

T' = [~ I I ~:J ' (10) 

where the asterisk indicates some submatrix. Therefore, TOYm - Ym is 
a vector whose first s components are zero. The left-hand side of (9) 
has its first s components zero only when g is a multiple of s because 
in that case RO = Is , the s X s identity matrix, and otherwise RO -
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Is ~ 0 which means that a cyclic shift of the first s components of Ys 
when added to Y8 is nonzero unless g = ks for some integer k ~ 1. 

If we use the notation (y), to indicate the last m components of y 
we have for (9) the following when g = les 

(-Tksys + Ys)' = [T~S - I](Ym)' (11) 

where I is now 1n X m. We use the following theorem on (11). 

Theorem, 2: The 1natrix Th has characteristic polyn01nial hex) which ~s 
assU1ned prim,itive over GF(p). Therefore, T~ - I is nonsingular for 
i = 1, 2, ... , pm - 2 and Tn = I for n = pm - 1. 

Proof: See appendix. 

Since T~ = I for n = pm - 1, we can reduce les modulo n so that T~s 
can be written as a power of Th less than n. In particular for k < leo 
where kos is the least common multiple of sand n, which we call e, 
that is, 

e = leas = LCM(s, pm - 1), (12) 

the matrices T~s can be written as T~k where 0 < ik < n. We have 

T~oS = T~ = (T~y/n = (I)eln = I. (13) 

Returning to (11) we see that T ks 
- I is nonsingular for 1 ~ le < ko . 

Therefore, when k = 1, (11) possesses a unique solution Ym . That is, 
there exists a unique starting state Ym for each periodic sequence 
(modeled by Ys) having period strictly s such that TS(Ym + Ys) = Ym + Y8 • 
Similarly, there exists a unique solution to (11) for each 2 ~ k < ko . 
However, if TSy = y, Y = Ym + Ys , then Thy = Y so that the cycles 
having period ks are really repetitions of the single cycle having period s. 
Also, when k = ko , Tkos = I and TkOBy = Y for all y. We conclude 
that for a prescribed input having period strictly s, the basic scrambler 
will respond with period s for only one starting state Y m and for all other 
starting states will respond with period e given by (12). This proves 
Theorem 1. 

We have finished our discussion of the basic scrambler. We now 
consider the techniques used to detect the presence of a periodic sequence 
of low period on the line and present the first of two methods for altering 
the starting state of the basic scrambler. This first method is more 
general than the second and allows for the simultaneous detection 
of sequences of several periods. The second method applies only when 
the sequences expected on the line have periods which divide one of 
two numbers. 
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IV. THE MULTI-COUNTER SCRAMBLER 

The general form of the multi-counter scrambler (MCS) is shown 
in Fig. 4. (The descrambler is shown in Fig. 5.) There are N counters, 
one for each period Si , 1 ~ i ~ N, and the ith counter will generate 
+1 if it reaches its threshold tSi . A counter is reset whenever the 
reset lead is nonzero so that tSi consecutive zeros on the reset lead 
of the ith counter will cause it to reach its threshold. All counter out
puts are fed to the OR circuit shown so that a 1 is generated at the 
exclusive OR and added to the "tap sum"* whenever a counter reaches 
threshold. At the same time, all counters are automatically reset. 

Fig. 4-Multi-counter scrambler. 

The input to the ith counter is the difference between the present 
line digit and the digit transmitted Si clock intervals earlier. If the 
line sequence has period Si, then these two digits agree and the dif
ference is zero. Then, the ith counter will reach threshold, the tap 
sum will be altered and the state of the basic scrambler changed. t 
The line sequence will then be changed from period Si to period 
LCM(Si, pm - 1) where p is the size of the modular field GF(p) and 
m is the number of stages in the basic scrambler. 

* We define the "tap sum" as the quantity added to the next data bit at the input 
to the basic scrambler. 

t If the starting state of the basic scrambler is critical for a sequence of period Si , 

then the state after j clock intervals is critical for the jth cyclic shift of the input 
sequence. Hence, a change in the tap sum will force the next state to be noncritical. 
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vVe observe, then, that the multi-counter scrambler for any choice 
of thresholds {lsi' 1 ~ i ~ N} will force the basic scrambler to switch 
from a critical state to a noncritical state whenever the input has 
period 81 , 8 2 , ••• , or SN or some period which divides an Si • It should 
be clear, however, that it is not necessary and perhaps not desirable 
to change the tap sum and the next state of the basic scrambler when 
the output does not have period Si, 1 ~ i ~ N, or some period which 
divides an Si • The next theorem specifies the minimum values of the 
thresholds ts i , 1 ~ i ~ N, so that the tap sum is changed only when 
"necessary." (Note that random data may generate line sequences 
which resemble periodic sequences and in such cases it will be "necessary" 
to change the tap sum.) 

Theorem 3 OvICS Theorem,): The 1nulti-counter scrmnbler shown in 
Fig. 4- will scrmnble a periodic sequence of period s if s divides Si for 
some i, 1 ~ i ~ N, and will produce a periodic line sequence of period 
LClJ1 (8, pm - 1) if the following two conditions are nwt: 

(i) The tap polynomial hex) of degree 1n is prhnitive over GF(p) where 
data sequences have components from GF(p). 

LINE 

Fig. 5 - Multi-counter descrambler. 
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(ii) The thresholds tSi , 1 ~ i ~ N, are chosen as 

t. i ~ (m - 1) + max Sj . 
l~j~N 

j""i 

If all input periods divide So , then the theorem holds when condition (i) is 
met and a threshold of t80 ~ m is used. 

The descrambler for the MCS, shown in Fig. 5, has the self-syn
chronization property as long as line errors do not occur. When line 
errors occur, the counters in the descrambler may not read the same 
levels as the corresponding counters in the MCS. However, as seen from 
the MCS theorem, the counters must reset at least once every (m - 1) + 
max Si clock intervals when the input is periodic so that counter syn-

i 

chronization is easily established in this case. With random data the 
situation is not quite so clear. The question of descrambler synchroniza
tion, including the effect of channel errors, is considered in detail in 
Section X. 

V. PROOF OF THE MCS THEOREM 

We use the notation developed in Section III for the proof of The
orem 3. Fig. 6 shows the basic scrambler with periodic input of period 
S and one counter. The only input to the basic scrambler other than 
the data input is the lead from the counters which is used to change 
the tap sum. The counter shown is assigned to the detection of line 
sequences whose periods divide 8 •• 

To prove Theorem 3 we must show that ta; can be chosen such that 

I 
I 

RESET 

Fig. 6-0ne counter of the MCS with periodic input. 
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the ith counter does not reach threshold when the data sequence is 
periodic unless the line sequence has period Si or some period which 
divides Si. Before we begin our proof we introduce some notation. 
In Fig. 6, we use l; to indicate the jth line digit calculated with data 
from a periodic input of period s. The basic scrambler is shown and we 
indicate with the vector y the state of the linear sequential filter com
posed of the circulating register of S stages and the m stages of the 
basic scrambler. Call this filter of s + m stages the driven basic scrambler. 
Then, from (6) the next state of the driven basic scrambler, y', is 

y' = Ty (8) 

provided that the monitoring logic is not active. If it is active, that is, 
if one or more counters reach threshold, then 

y' = Ty + Yt (14) 

where y t contains a single one in its (s + l)th position. 
The first line digit calculated with the periodic input, l1 , is 

II = [Ty + u 1YtL (15) 

where 

[z]. = Z.+l , (16) 

the (s + l)th component of the vector z, and 

monitoring logic active at first calculation, 
(17) 

otherwise. 

In general, the jth line digit is 

li = [Tiy + ± U/Pi~kYt 'J 
k=l • 

(18) 

where 

monitoring logic active at lcth calculation, 
(19) 

otherwise. 

N ow consider the sequence {ai} calculated at point A of Fig. 6. 
If a run of consecutive zeros in this sequence is large enough, the ith 
counter will reach threshold unless some other counter reaches threshold 
before it. When the periodic input begins, the counters in the MCS 
will be at unknown levels and the (max s.) stored values will be, in 

• 
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general, unrelated to the input; thus one or more counters may reach 
threshold before II reaches the sith storage element of the MCS.* We 
now wish to show that the sequence {ai, j ~ Si + I} will contain a 
run of no more than max (l1t - 1 + sJ zeros if the line sequence is periodic 

ir'-i 
with a period which does not divide S; • 

We have for j ~ Si + 1 

ai = -li + li-s; (20) 

and 

ai = - [Ti-Si(Tsiy - y) + ± UkTi-kYt - ifi UkTi-Si-kYt] . (21) 
k=l k=l 8 

If U Bih = 0 then let jo be such that Ui = 0, S; + 1 ~ j < jo and Uio = 1, 
that is, the most recent thresholding occurs at j = jo. (The case Ui = 0 
for all j ~ Si + 1 is trivial, so we assume that Uio = 1 for some jo .) 
Then, if we write Zi as 

i 0 

~ T i - k 
Zi= L..JUk 0 Yt 

k=1 

1·0-8" 

L ukTio-Si-kYt 
k=1 

and if we ignore all counters except the ith, we have 

(22) 

(23) 

for jo ~ j ~ jo + t8 i-I. For this range of j the ai can be viewed as 
the values appearing in the (s + l)th storage element of the driven basic 
scrambler with starting state y~ 

(24) 

Now, assume that input period s does not divide Si • Then, the first s 
components of Tio- Si {118iy - y} are not all zero. Since Zi is zero in 
its first s components, the starting state y~ is nonzero in some of its 
first s components. Consequently, the state of the driven basic scrambler 
(of s + m stages) can never be completely zerot so that the sequence 
{ai' j ~ jo} cannot contain more than s + m - 1 consecutive zeros 
if s does not divide Si .t We shall now show that, in fact, the sequence 
{aj , j ~ jo} cannot contain more s + m - 2 consecutive zeros if s ,r Si • 

We shall also show that there exists an input of period s if Si = ks ± 1 

* Note that the lead from the counters will be active at most once during the first 
Si calculations if Si ~ min tSj • 

i 
t Note that the matrix operator l' just circulates the first S components of y*. 
t We will use the notation S ,r Si to mean S does not divide Si • 
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for some integer k ~ 1 such that the sequence {ai' j ~ jo} will have 
this many consecutive zeros. 

In (24) the first s components of y~ are a cyclic shift of the first s 
components of TSiy - y. Recalling the definition of T from (3) we see 
that these s components are the components of the vector (R Si 

- I)(ys)" 
where R is s X s and is given by (4) and (Ys)" is the vector containing 
the fLrst s components of Ys . The vector (R Si 

- I)(ys)" cannot contain 
a single nonzero element if s l' Si as seen below by example: Let s = 4, 
Si = 5 and (Ys) have components YI , Y2 , Ya , Y4 . Then, we have 

(R Si 
- I)(ys)" 

-1 o 
o -1 

1 

o 
1 

o 
o -1 0 Y3 

1 0 -1 Y4 

where b is the single nonzero element. Thus, 

-YI + Y3 = b ~ 0 

-Y2 + Y4 = 0 

+YI - Y3 = 0 

+Y2 - Y4 = o. 

b 

o 
o 
o 

(25) 

(26) 

It is clear that two equations, the first and third, cannot both be satis
fied. This will be true regardless of the location of the single nonzero 
element. Hence, there l1WSt be at least two nonzero elel1wnts in the first s 
components of y~ . Consequently, {ai' j ~ jo} cannot contain a run 
of more than S + m - 2 consecutive zeros. If Ys contains a single non
zero element and if Si = ks ± 1 then (R Si 

- I)(ys)" will contain two 
consecutive nonzero elements. Also, since Ym is in general arbitrary, 
it can be chosen so that the first s + m - 2 digits generated with y~ 
as the starting state will be zero. 

At this point, we have shown that a periodic input of period s, where 
s I Si , some j ~ i but s1' Si , will not cause the ith counter to reach 
threshold more than once after the sith line digit is transmitted if 
we choose ts i to be 

ts; = (m - 1) + max Si . 
ir5i 

(27) 

This is true since the sequence generated at point A of Fig. 6 will not 
show more than ts; consecutive zeros after the first time the monitoring 
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logic is active following the transmission of the sith line digit. We 
also note that a threshold of the size given above may be necessary 
if there exists an s such that Si = lcs ± 1, some lc ~ 1, where S I Si , 

some j. 
Consider next the case where S I Sf • If the line sequence is periodic 

of period S (see Theorem 1) at any time after the periodic sequence 
begins, the sequence at point A will contain an indefinite number of 
zeros so that the ith counter will definitely reach threshold (unless 
S I Sf , some j ~ i, and t3j < tSi , in which case the jth counter may 
reach threshold first). Since there is only one critical state for each 
periodic sequence, the change in the tap sum resulting from the detection 
of the period S line sequence will cause the output to have period 
LCM(s, pm - 1). In this case the vector y~ in (24) cannot be entirely 
zero (its first s components are zero, however) because it would then 
result in an all zero sequence at point A. Thus, the last m components 
of y~ must contain at least a single nonzero component. But [Ti-foY~]a 
(which generates {ai' j ~ jo}) then is just the output of a maximal 
length sequence generator (see appendix) so that no more than m-l con
secutive zeros will be seen at point A if sIs. and the output has period 
LCM(s, pm - 1). 

In conclusion, if s I Si but the output does not have period s or if s { Si 

but S I Sf some j ~ i, then the ith counter will reach threshold at most once 
after the transmission of the sith line digit if the ith threshold ts; is chosen 
as 

ts; = (m - 1) + max Sf • 
for'. 

Of course, the same is true for any threshold larger than ta; . 

VI. THE SINGLE-COUNTER SCRAMBLER 

(28) 

The single-counter scrambler (SCS) is shown in Fig. 7 (and the de
scrambler is shown in Fig. 8). This scrambler is designed to scramble 
periodic binary sequences whose periods divide either S1 or S2 or both. 
I t has a single counter and for some applications may be less costly 
to build than the multi-counter scrambler. And while we consider 
the SCS when the input periods divide either SI or S2 or both, one may 
be able to design for the case of many more input periods. 

The SCS has two circuits for detecting periodic sequences. If either 
or both of the two detecting circuits produces 0 at anyone time, one 
cannot with a single measurement determine whether the line sequence 
has period SI or S2 • On the contrary, if both circuits produce a nonzero 
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LINE 

Fig. 7 -Single counter scrambler. 

output, it is clear that the line sequence does not have period 81 or 82 

and that the counter should be reset. A 2-input AND gate has a non
zero output only when both inputs are nonzero, consequently, we use 
it as input to a counter, as shown in Fig. 7. This counter will reach 
threshold after t line transmissions if each of t consecutive pairs of 
outputs of the detecting circuits contains one or more O's. 

The major design problem of the 8C8 is the choice of the counter 
threshold. This is not an easy problem, unfortunately, and all that we 

LINE 
m s, 

+~+------( --.....(+ 

+~---------------------------------~ 
DATA 

Fig. 8 - Single counter descrambler. 
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have been able to say about it is that counter thresholds do exist when 
p = 2 (the source is binary) and the input periods are relatively prime 
to 2m 

- 1 and then to only give a gross upper bound on the smallest 
permissible threshold. The following theorem states what is known about 
the threshold for the SCS. 

Theorem 4- (SGS Theorem,): A single-counter scrambler which will 
scramble all periodic binary sequences with periods which divide SI or S2 

(S1 < S2 , s,r S2) exists if 

(i) the tap polyn01nial hex) of degree 1n is primitive over GF(2), 
(ii) S1 and S2 are relatively prinw to 2m 

- 1, and 
(iii) a counter threshold, t, t ~ s2(2m 

- 1) - 2m
-

1 + 2 is chosen. 

This theorem does not rule out the possibility that an SCS exists 
when S1 and S2 are not both relatively prime to 2m 

- 1 nor does it 
rule out an SCS for nonbinary data. It simply states that when condi
tions (i) and (ii) are met, one can show that a counter with threshold 
t, t ~ s2(2m 

- 1) - 2m
-

1 + 2, will not reach threshold when the output 
of the basic scrambler has period s X (2m - 1) where s divides SI 

or S2 or both. In fact, the bound on the threshold required to prevent 
the counter from reaching threshold prematurely is many times larger 
than necessary. In the example given in Section XII the bound is 
more than 35 times too large. 

VII. PROOF OF THE SCS THEOREM 

For the proof of Theorem 4, we recall the proof of Theorem 3. In 
particular, it is instructive to review the discussion surrounding equa
tions (20) through (24). We recall that at of (20) is the jth digit cal
culated (after the arrival of the periodic data sequence) at the input 
to the ith counter of Fig. 6. We argued that if the ith counter reaches 
threshold on the joth calculation, jo ~ Si + 1, then aj could be cal
culated from 

(29) 

for j ~ jo and until the next time the ith counter reaches threshold. 
Here [Ys] indicates the (s + l)st component of y and y~ is given by (24). 
Thus, the sequence generated at point A of Fig. 6, namely ai. , ai.+1, ... 
can be viewed as generated by the basic scrambler with periodic input 
and y~ as starting state. 

In Theorem 4 we assume that the data sequence is binary so that 
the above equations apply if we interpret subtraction as addition since 
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they are equivalent on the binary field. In Fig. 7 the sequences {b j } 

and {Cj} are generated at points Band C, respectively. We wish to 
show that the largest run of consecutive zeros in the logical AND of 
{b i } and {Cj} after a certain transient period cannot exceed 8 2 (2m 

- 1) -
2"'-1 + 1 when 81 < 82 and 8 1 and 82 are both relatively prime to 2m 

- 1. 
Consider the sequences {b j , j ~ 8 2 + I} and {Ci , j ~ 8 2 + I}. Then, 

if the counter reaches threshold at* jl , j] ~ 82 + 1, these two sequence~ 
will cause the counter to reach threshold only once more if the line 
sequence has period 8, 8 I 8 1 or 8 I 82 or both. If the line sequence has 
periodt 8 X (2m - 1), then neither {b i , j ~ jl} nor {Cj, j ~ jl} can 
be all zero since this would imply that the line sequence has period 
8 1 or 8 2 • 

We now consider two cases, case I when 8 divides both 8 1 and 82 

and case II when 8 divides 8 1 but not 82 or vice versa. From (24) it 
is clear that in case I both {b i , j ~ jl} and {Cj , j ~ jl} are the outputs 
of basic scramblers with no input and with nonzero starting states 
so that they repeat with period 2m 

- 1. In case II when 8 I 8 1 , say, 
but not 82 , {b j , j ~ jl} is the output of a basic scrambler with nonzero 
starting state and has period 2m 

- 1 while {Cj , j ~ jl} is the output 
of a driven basic scrambler with input period 8. (The input may not 
be strictly of period 8, however, as we shall see later.) 

The logical AND of the sequences generated at points Band C 
of Fig. 7 can be interpreted as the sequence generated by the normal 
arithmetic multiplication of bi and Cj . Thus, the sequence at point D 
of Fig. 7 has period 2m 

- 1 in case I and period 8 X (2m - 1) in case II. 
Let Bn and en be n component vectors with Bl = bi1 + l and Cl = Cidl • 

Then, at point D, the vectors Bn and en generate the n-vector Dn = Bn· en 
where multiplication of Bn and en is term-by-term, i.e., 

(30) 

Let W(Yn) be the Hamming weighe of the n-vector Yn , that is, 
the number of l's in Yn . Then we haveS 

where addition is modulo 2. vVe now wish to use this last equation to 
find a lower bound on the number of l's Dn . From this we can obtain 
an upper bound on the number of consecutive D's in Dn and an upper 

* It may indeed reach threshold for 1 ;;£ j 1 ;;£ 82 but this does not affect our analysis. 
t 81 and 82 are relatively prime to 2m - 1 so that the line sequence has period 

8 X (2m - 1) if 8 I 81 or 8 I 82 as seen from Theorem 1. 
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bound to the threshold required to prevent the counter of Fig. 7 from 
making unnecessary changes in the tap sum. 

In case I we let n = 2m 
- 1, which is the period of the sequence 

generated at point D. Thus, Dn is one period of this sequence. Bn and Cn 

are each one period of the output of the basic scrambler (which is a 
maximal length sequence generator). Thus, Bn can be obtained from 
Cn by a cyclic shift and they both have the same Hamming weight. 
Then, we have the following result. 

Lemnw 1 : If n = 2m 
- 1 and Bn and Cn are periods of a 17wximal length 

sequence with Bn = Cn , then w(Dn) = w(Cn) = 2m
-

I
• If Bn ~ Cn , then 

w(Dn) = w(Cn)/2 = 2m
-

2
• 

Proof: We need only show that w(Cn) = 2m
-

I
• From the comments 

at the end of the appendix we have that the state of the autonomous 
basic scrambler, as a binary m-tuple, ranges through all 2m 

- 1 nonzero 
binary m-tuples. Since the first digit of each m-tuple is a line digit, 
there will be exactly 2m

-
I I's in one period of the line sequence generated 

by the autonomous basic scrambler. (Note that the scrambler does not 
start with the zero state.) Q.E.D. 

In case I, then, the number of consecutive zeros in the sequence 
at D cannot exceed 2m 

- 1 - 2m
-

2 and a threshold of 2m 
- 2m

-
2 will 

guarantee unnecessary tap sum changes in this case. 
Consider now case II where {b j , j ~ jl} has period 2m 

- 1 and 
{Cj , j ~ jl} is the output of a driven basic scrambler characterized by 

Cj = [Ti-ilytJ. , 

where yt is an (s + m)-vector which from (24) has the form 

yt = T i
l-

8
2 {T 8 .y + y} + z 

(32) 

(33) 

where y is an arbitrary (s + m)-vector, except that its first s components 
model a periodic sequence of strictly period s, and z is zero in its first 
s components and arbitrary in its last m components. The first s com
ponents of T 8 .y + y cannot be all zero if s { S2 • It may model a periodic 
sequence of period So , however, where So < s and So I s. In particular, 
we may have So = 1 in which case the first s components of yt may 
be l's and {Cj , j ~ jl} may have an output of period 1 consisting of 
the all 1 sequence. If this is true Dn = Bn' Cn = Bn and Dn will have 
no more than m - 1 consecutive zeros. If {Cj, j ~ j1} has period 
So > 1 it will contain no less than a single nonzero component in each 
period nor no more than So - 1 nonzero components in each period. 
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Thus, if n = So, So > 1, and en represents one period in the output 
of period So , we have 

(34) 

When {Ci , j ~ il} has period So X (2m - 1) let n = So X (2m - 1) 
in (31). We now show that for this case 

(35) 

The state of the driven basic scrambler with input of period So can 
be represented with an (so + m)-vector. There are So X 2m admissible 
state vectors since the last m components are arbitrary and the first So 

components must be a cyclic shift of the first So components of some 
other state vector. The last m components- of these So X 2m vectors 
range through each of the 2m m-tuples So times. Since the (s + l)st 
component of each state vector is a line digit ween) ~ So X 2m

-
1 which 

is the number of l's shown in these positions. We also have ween) ~ 
So X 2m

-
l 

- So since the components of en are generated by only 
So X (2m - 1) of the So X 2m admissible state vectors and the missing 
state vectors may all contain 1 in the (s + l)st components. 

Returning to (31) we see that the vector Bn + en appears. It represents 
the first n components of fbi + Ci , j ~ jl}' This is the output sequence 
of a driven basic scrambler driven with period So and which has as 
a starting state the state which produces {Cj , j ~ jd and which is 
modified by the addition in its last m components of the starting state 
of the autonomous basic scrambler which produces fbi , j ~ jd. Since 
this last state is arbitrary, Bn + en can be expected to have period 
So or So X (2m - 1) and the bounds on the weight of en for these two 
periods apply to Bn + en . 

We now combine our bounds with (31) to obtain a lower bound 
to w(Dn) for case II. Remember that n = so(2m 

- 1). 

(i) Let en have period So , then Bn + en has period So X (2m - 1) and 

w(Dn) ~ So X 2
m

-

l + (2 m
;- 1) - So X 2

m
-

1

2
m 

;- 1 (36) 

where w(Bn) = So X 2m
-

I from Lemma 1. 

(ii) Let en have period So X (2m - 1) and Bn + en have period So • 

Then 

w(Dn) ~ So X 2
m

-
1 + so(2

m
-

1 
-21) - (so - 1)(2

m 
- 1) = 2

m 

;- 1. (37) 



470 THE BELL SYSTEM TECHNICAL JOUHNAL, FEBHUAHY 1!J67 

(iii) Let en and Bn + en have period 80 (2m - 1). Then 

w(Dn) ~ 8 0 X 2
m

-

1 + 80(2m-~ - 1) - 80 X 2
m

-1 ~ ~ (2m-1 _ 1). (38) 

Therefore, the number of l's in the sequence Dn of n = 80 X (2m - 1) 
components for case II must exceed (2m - 1)/2 - ! and the number 
of consecutive zeros cannot exceed 8 0 X (2m - 1) - (2m - 1)/2 + !. 

Combining the results for cases I and II we find that the number 
of consecutive zeros at point D of Fig. 7 when 8 1 < 82 , 8 1 ,r 82 and the 
input has period 8, 8 I 8 1 or 8 I 82 or both, will not exceed 82 (2m 

- 1) -
(2m - 1)/2 + ! unless the line sequence has period 8. The threshold 
then need not be any larger than 82 (2m 

- 1) - 2m
-1 + 2 to prevent 

unnecessary changes in the tap sum. Q.E.D. 

VIII. MIXTURES OF THE SCRAMBLERS 

The two types of scramblers given above are distinguished by the 
structure of their monitoring logics. The MCS has one counter for each 
of the input periods 8 1 , 82, .•. 8N and the SCS has a single counter 
to detect the presence of one of two periods, 8 1 or 82 • We have found 
the smallest threshold required on each counter of the MCS so that 
they change the tap sum only when necessary. Also, we have shown 
the existence of a finite threshold on the single counter of the SCS 
when the source is binary and input periods are relatively prime to 
2m 

- 1, where Tn is the number of stages in the basic scrambler. 
Since the monitoring logic for both counters acts to detect the pres

ence of periodic sequences of known periods in the line sequence, 
it should be clear that a monitoring logic containing a mixture of the 
MCS logic and the SCS logic may be used. We know of an SCS monitor
ing logic only when the source is binary, however, so that the mixture 
must be restricted to the binary source case. Thus, we may now con
sider a scrambler with a monitoring logic, a portion of which has counters 
detecting the presence of one of a pair of periods and another portion 
consisting of individual counters for single periods. The outputs of 
all counters are fed to an OR gate which in turn i~ added modulo 2 
to the tap sum. The output of the OR gate is also used to reset all 
counters. 

IX. TRANSITIONS IN A SCRAMBLED SEQUENCE 

The basic scramblers described above may have applications in 
situations where bit framing at the receiver is derived from transitions 
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in the line signal. In this section we show that transitions occur fre
quently in a scrambled periodic sequence and that in one period of a 
scrambled sequence there are approximately half as many transitions 
as there are digits. These results are shown when the source is binary 
and the scrambler input periods are relatively prime to 2'" - 1, where 
m is the size of the basic scrambler. 

Let 1 represent one period of the line sequence generated by the basic 
scrambler when the input has period s. If the source is binary, if the 
basic scrambler has 1Ft stages and if s is relatively prime to 2'" - 1, then 
1 is an s(2'" - 1) component vector. If we assume that the binary line 
sequence is converted into a line signal by the mapping 1 ~ 1 0 ~ -1, 
and if it is linearly modulated, then transitions in the channel signal 
occur whenever transitions in the line sequence appear. Thus, we should 
like to know the number of transitions in 1 and the maximum separation 
between transitions. 

Theorem 5: The binary vector 1 of length s(2'" - 1) representing the 
response of a binary scrambler to an input of period s, when s and 2m 

- 1 
are relatively prime, has at least one transition every s + m digits and has a 
total of Tr(l) transitions where 

~ (~: == ~) ~ s(~r C.!} 1) ~ ~ (2m 2~ 1)' (39) 

We begin by showing that every set of s + 1Ft consecutive line digits 
must contain at least one transition. The scrambled sequence is the 
response of the basic scrambler of Fig. 2 to an input of period s. We 
note that if the basic scrambler is in the all zero state then the tap 
sum (which is added to the data bit) is zero. Similarly, if it is in the 
all 1 state the tap sum is zero because if not, h(l) = 0 and hex) is 
divisible by x-I which is impossible since hex) is irreducible. Then, 
if s + 171, consecutive outputs of the scrambler are identical, the last s 
of the (s + In) corresponding tap sums are zero so that s consecutive 
data bits must be identical. This cannot happen if the source is periodic 
with period greater than 1. When s = 1, the line sequence must have 
period 1 if s + m consecutive line digits are identical, which also cannot 
happen since the line sequence has period 2m 

- 1 in this case. 
We now bound Tr (l), the number of transitions in one period, 1, 

of the line sequence. We use the notation of Section V so that the jth 
digit of 1, namely l i is written 

(40) 

where T is given by (3) through (5) and y is the state of the driven 



472 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1967 

basic scrambler at the beginning of a period of the data sequence. 
Let us now observe that a transition occurs in between two digits in 1 if 
they sum to 1 modulo 2. Thus, the number of l's in 1 + l' (where l' is 
one cyclic shift of 1 and addition is term-by-term) is the number of 
transitions in l. For example, if 1 = 10110, l' = 01011 and 1 + l' = 11101 
then the number of transitions in 1, including the implicit transition 
at the first digit is the Hamming weight of 1 + l'. 

In the process of proving Theorem 4 we have shown (see (35» that 
the Hamming weight of one period of the output of the basic scrambler 
when the input is binary of period So and So and 2m 

- 1 are relatively 
prime lies between so(2

m
- 1 

- 1) and s02m-l. Hence, if we can show 
that 1 + l' is one period of the output of the scrambler with input 
period So , we will have established Theorem 5. 

We note that 

li + l~ = [Tiy + Ti-1y]. 

so that we now examine Ti+ly + Tiy. We have 

(41) 

(42) 

As in (7), let y = Ys + Ym where Ys is zero in its last m components, 
Ym is zero in its first s components and they represent the periodic 
input and starting state of the basic scrambler, respectively. Then, 

(T + I)y = Ys + y~ + (Q, Ys , Q) + Ym + TYm , (43) 
m-l 

where y~ is a single cyclic shift of Ys in its first s places and (Q, Ys , Q) 
is a vector with a single component y. in the (s + l)st position. If we 
use (z), to represent the last m components of z, then 

(44) 

In the appendix it has been established that Th + 1m is a nonsingular 
matrix. From this we deduce that the last m components of (T + I)y 
range over all 2m m-tuples as Ym ranges over all m-tuples. 

N ow consider Ys + y~, which represents the first s components 
of (T + I)y. While y. models one period of a data sequence with period 
exactly s, Ys + y: may model a sequence with period So , So I s. For 
example, let Y4 = (1001000), then Y4 + y~ = (0101000) and its first 
4 components represent two periods of a period 2 sequence. Thus, 
we must view (T + I)y as the starting state of a driven basic scrambler 
with input period So where So I s. We then ask if the sequence generated 
by this state has period So or so(2

m - 1). Since y is noncritical, the 
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sequence generated by (T + I)y must have the larger period because 
if y were critical (T i + I)y = 0 for some i, 1 ~ i ~ so(2

m 
- 1) - 1 

and (T i + I) (T + I)y = 0 as well for some i in this range so that 
(T + I)y is a critical state. But we have shown in Theorem 1 that 
there is only one critical state for each periodic input. In the last para
graph we have seen that there is a one-to-one mapping between the 
last m components of y and the last m components of (T + I)y, hence 
if y is noncritical, (T + I)y is noncritical and the line sequence gen
erated by (T + I)y has period so(2m 

- 1) where So I s. 
The vector 1 + l' contains sf So periods of a sequence of period So . 

Let Cn represent one such period. Then from (35), the number of l's 
in C n , W(Cn), is bounded by 

so(2m- 1 
- 1) ~ w(Cn) ~ s02m-l. (35) 

Then, 

Tr (1) = w(l + 1') 

and 

s(2m- 1 
- 1) ~ Tr (1) ~ s2m- 1 (45) 

which gives the desired result after division by s(2m - 1). 

X. THE SELF-SYNCHRONIZING DESCRAMBLERS 

In this section, we show that the descrambler for each of the scramblers 
given above has the self-synchronizing property, that it is relatively 
insensitive to channel errors and that in some applications it can be 
considerably simplified by removal of the monitoring logic. 

Each scrambler is of the form shown in Fig. 9. Each descrambler can 
be represented as shown in Fig. 10. The output marked "data" in 
Fig. 10 is indeed data if the scrambler and descrambler are both started 
in the same state and no channel errors occur since (i) the line sequence 
will then pass through both basic scramblers and (ii) the modulo p 
sum of a data bit, tap sum, line bit, and monitoring logic output is 
zero at both the scrambler and descrambler. 

If there are no channel errors we would like to show that the de
scrambler will synchronize itself should it ever lose synchronism. The 
descrambler will be said to be out of synchronism with the scrambler 
if either the values stored in the basic scrambler and the delay elements 
differ from those stored in corresponding sections of the scrambler 
or if the counters in the monitoring logic are not at the same levels as 
those at the scrambler or both. It is clear that the SN stages (if the largest 
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Fig. 9 - Block diagram of the scrambler. 

expected period is 8N) of the basic scrambler in the descrambler and 
delay section will be purged after 8N clock intervals and replaced with 
accurate information if there are no channel errors. Then, after 8N 

clock intervals the monitoring logic at the scrambler and descrambler 
both are fed the same information. The monitoring logics will then 
reach synchronism when either (i) counters at the scrambler and de
scrambler reach threshold together in which case all counters are reset 
simultaneously or (ii) the last 8N + 1 digits of the line sequence is 
found to be inconsistent with a periodic sequence of period 8 1 , 82, .•• 

or 8N and the counters at the descrambler are reset individually but 
in synchronism with those at the scrambler. When the data sequence 
is periodic of period 8 1 , 8 2 , ••• or 8N the ith counter of the MeS is 
reset (following the transient interval associated with the arrival of 

LINE 

Fig. IO-Block diagram of the descrambler. 
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the periodic sequence) at least once every t s , = m - 1 + max 8i clock 
ir'i 

intervals. With the SCS the single counter is reset at least once every 
8 2 (2'" - 1) - 2",-1 + 2 clock intervals when the input has period 
8 1 or 8 2 , 8 1 < S2 • Should the input sequence be random, the monitoring 
logics may be brought into synchronism because one of the counters 
reaches threshold and all counters are reset, which is unlikely, or because 
the counters are reset individually in synchronism with the scrambler 
counters, which is very probable and increases in probability very 
rapidly to one. (If the source is binary with independent, equiprobable 
outputs, the ith counter of the MCS descrambler is resynchronized 
in the second manner after n clock intervals with probability 1 - 2-n

; 

similarly, the counter of the SCS descrambler is resynchronized with 
probability 1 - (it.) 

Channel errors can affect the process of resynchronization. However, 
if we assume that they are relatively few in number, say, occurring 
once in every 105 transmissions, there will be long intervals during 
which resynchronization can take place. Since the descrambler re
quires at most SN + max ts; (which equals 2sN + m - 1 in the lYICS 
case when Si ~ 8N and is at most 822m - 2

m
-

1 + 2 in the SCS case) 
clock intervals to resynchronize when the source is periodic, resyn
chronization will not be a problem with periodic inputs if m and 8N 

(or 8 2 ) are reasonable in size. When the source output is random and 
is a sequence of independent, equiprobable binary digits, the average 
number of clock cycles required by the ith counter of the lYICS de
scrambler to resynchronize (in the second way described in the preced
ing paragraph) is two so that the lYICS descrambler will resynchronize 
on the average in SN + 2 clock intervals. The counter of the SCS de
scrambler will require four clock intervals on the average to resyn
chronize so that the SCS descrambler will be resynchronized on the 
average in SN + 4 clock intervals. Hence, we may conclude that re
synchronization in the presence of channel errors which are relatively 
few in number will not be a problem when the source is random. In 
fact, it may be easier to resynchronize when the data is random than 
it is when the data is periodic. 

N ow assume that the scrambler and descrambler are operating in 
synchronism and consider the effect of channel errors on the descrambler 
output. If we neglect the monitoring logic for a moment, it will be 
be seen that an isolated channel error, as it passes through the basic 
scrambler, will cause w(h) output errors, where w(h) is the number of 
nonzero terms in the tap polynomial hex). The monitoring logic, however, 
may fail to act when it should or act when it should not and thereby 
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introduce additional errors. If we consider the effect of a single channel 
error on the monitoring logic, we see that this error has a direct effect 
on the ith counter of the MCS at two occasions, when it enters the basic 
scrambler and when it reaches the sith storage element. A single channel 
error has a direct effect on the counter of the SCS three times, once 
when it enters the basic scrambler and again when it enters the slth 
and s2th storage elements. When the channel error effects a counter 
of the descrambler, it may cause it to reset when it should not, which 
will not cause any harm if the counter is about to be reset before 
reaching threshold, as is the case for the known periodic inputs or as 
frequently happens with a random source. A channel error which 
causes a counter to continue to count when it should reset may indeed 
be harmful since it may result in its reaching threshold and introduce 
an unnecessary change in the descrambler output. This event is un
likely to happen for the known periodic source sequences since the 
counters reset frequently, and the number of clock intervals between 
a set of three normal counter resets is often less than a given counter 
threshold. It is also unlikely that a channel error will eliminate a reset 
and cause a counter to reach threshold when the source is random. 
For example, when the source is a binary, equiprobable, independent 
letter source the average separation between three resets on the MCS 
counters is four clock intervals and is eight clock intervals on the SCS. 
We may conclude then that channel errors have a small effect on the 
monitoring logic and thus affect the descrambler primarily by producing 
approximately w(h) as 11wny output errors as channel errors. 

The descrambler can be considerably simplified, the problem of 
synchronization loss in the descrambler monitoring logic eliminated, 
and the problem of output errors due to the monitoring logic solved, 
all by the removal of the monitoring logic at the descrambler. This 
is not the drastic solution that it might seem for the monitoring logic 
reacts infrequently on random data and at most twice on known 
periodic inputs (if counter thresholds all are larger than the largest 
expected input period). With a binary, independent, equiprobable 
letter source, one or more of the N counters of the MCS reaches thres
hold in n transmissions with a probability, PllI(n), which is less than 
or equal to 

N 

P lII (n) ~ L (n - ti + 1)2- t
; , (46) 

;=1 

where ti is'the threshold on the ith counter and ti ~ t8i . The single 
counter of the SCS reaches threshold t in n transmissions with prob-
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ability PsCn) where 

P sCn) ~ (n - t + I)Ct)-t. (47) 

Hence, if the thresholds are large enough so that PM (n) or P 8 (n) is 
less than 0.1, say, when n equals the average number of transmissions 
between channel errors, then we may safely say that the monitoring 
logic at the descrambler is not necessary on random data inputs. 

When the source is periodic of period s however, one of the pm starting 
states* of the basic scrambler will result in a line sequence of period 
s which subsequently will require at least one and at most two outputs 
from the monitoring logic. Thus, if the data preceding a periodic input 
is random, the monitoring logic at the descrambler will with probability 
I/pm change at least 1 digit in the descrambler output. Hence, if a 
customer can tolerate such an error rate and if the thresholds are 
large enough, the monitoring logic at the descrambler can be removed 
and the descrambler will then simply consist of a basic scrambler. 

XI. THE SPECTRUM OF THE SCRAMBLER OUTPUT 

In this section, we perform representative calculations to show the 
effect of scrambling on the spectrum of a linearly modulated carrier. 
Assume that the source is binary and that a binary sequence is con
verted into a waveform by the mapping 0 -+ -1, 1 -+ + 1. Let To be 
the time interval alloted to each binary digit and let let) be the wave
form generated by the binary sequence 1. Then, we have 

~ 

ll(t) ·l2(t) = - (11 + 12)(t) (48) 

where addition is taken modulo 2 and multiplication is on the reals. 
The autocorrelation function of a waveform let) is defined as 

1 jT 
Rz(r) = ;~ 2T -T l(t)l(t + r) dt. (49) 

If 1 is the output of the scrambler when the input is an equiprobable, 
independent letter source, then 1 is a sequence of independent, equi
probable, binary digits. Then, we have 

{(
I _l2J) 

R,Cr) = 0 T, 
I r I ~ To , (50) 

I r I> To . 

* p is the input alphabet size and m is the number of stages in the basic scrambler. 
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The power density spectrum of let), which is the Fourier Transform 
of Rz(r) is for the random binary source 

Sz(f) = To(Si~f~Tor. (51) 

N ow let the source be periodic and assume, as an example, that 
it has period 8 and that the following sequence is one period of the 
source output: 10110010. Then, if 1 represents this sequence and if 
it is transmitted without scrambling, we find using (48) that it has the 
autocorrelation function, Rz(r), of Fig. 11. The power density spectrum 
of let), SzCt), is given below and shown in Fig. 12. 

8
1
(t) = 2To[(sin 7rfTo)2 _ (sin 2~fTo)2J i _1 o(f - ~). (52) 

7rfTo 27rfTo i=-oo 8To 8'10 

Here 0(·) is the Dirac delta function. Thus, SzCt) contains isolated 
tones spaced by IITl , Tl = 8To , the period of the data sequence. 

If the periodic data source of period 8 is now scrambled, the line 
sequence has period T o(LC1JI (8, 2m 

- 1)). Assume now, as an example, 
that 8 and 2m 

- 1 are relatively prime so that the line sequence has 
period PTl , P = 2m 

- 1, the scale-up factor, and Tl = 8To • the 
source period. Now let 1 represent one period of the binary line sequence. 
Then, if lk represents k cyclic shifts of 1 we have 

1 j PT
d

2 
A A 

RI(kTo) = PT l(t)lk(t) dt. 
I -PTd2 

(53) 

When k = ±1, ±2, ... , ±(P - 1), we have 

Rz(kTo) = - JT
I 

(No.1 's in (1 + lk) - No. O's in 1 + lk). (54) 

Since Rz(r) is linear in r for (k - l)To ~ r ~ kTo we need only have 
RI(r) at r = kTo , k = 0, ±1, ±2, .... We note that RI(kPT I ) = 1, 

Fig. 11-Autocorrelation function of period 8 sequence. 



DIGITAL DATA SCRAMBLERS 479 

Fig. 12 - Spectrum of period 8 sequence. 

k = 0, ±1, ±2, .... To further evaluate (54), however, we must 
return to Section IX. 

We have seen in Section IX that 1 + 11 represents several periods 
in the output of a basic scrambler driven by an input of period So , So I s, 
and started with a noncritical state y. The proof of this result amounted 
to showing that the operation (T + 1) on y mapped the last 1n com
ponents of y one-to-one onto the last 1n components of (T + I)y. 
Thus, if y is critical so is (T + I)y and since there is only one critical 
state for each periodic input (T + 1)y is noncritical if y is noncritical. 
We can show in a similar manner that (Tk + I)y is noncritical when 
y is noncritical as long as k is not a multiple of 2m 

- 1. Thus, 1 + h , 
which is produced by the starting state (Tk + I)y when y generates 
1, is the output of a basic scrambler with input period So and output 
period so(2m 

- 1) when k is not a multiple of 2m 
- 1 and So I s. Then, 

invoking (35). we have 

-liP ~ Rz(lcTo) ~ liP, k not a multiple of P = 2m 
- 1. (55) 

We note, however, that Rz(kTo) for such k may not all be equal. 
N ext consider 1 + lk when k is a multiple of 2m 

- 1. If 1 + lk represents 
an output which has period which divides s, then (T" + I)(Tk + I)y = o. 
We now show that (T" + I)(Tk + 1) = 0 for all y when k is a multiple 
of 2m 

- 1. We observe that 

T' + I = [2,1 1 T: ~ J (56) 

and 

(57) 
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since T~ = I. Because TB + I and Tk + I commute, we have 

(T" + I)(Tk + I) = (Tk + I)(T8 + I) = Q. (58) 

Thus, 1 + lk represents a scrambler output of period So , where So I s. 
It is clear then that the number of l's in one period of 1 + l'e is greater 
than or equal to 1 and less than or equal to So - 1. Also, 1 + lk is the 
same sequence for all multiples of P = 2m 

- 1 which are not multiples 
of sP. Thus, for k a multiple of P which is not a multiple of sP, we have 
from (52) that 

Cs - 2) ~ _ (Sf) - 2) ~ RI(kTo) ~ (so - 2) ~ s - 2 (59) 
s So So S 

when So ~ 2. 
To calculate a representative spectrum of the scrambled data sequence, 

we assume that Rl(r) has the following form, where u, 2 ~ u ~ 2s, 
is a function of the scrambler input (the number of l's in 1 + lk, Ie a 
multiple of P, depends on the input) : 

1 Ie = nsP, n = 0, ±1, ±2, ... , 

RI(leTo) 
s-u 

Ie = nP, 
s 

n ~ 0, ±s, ±2s, ... (60) 

1 
all other Ie. 

P 

The power density spectrum SIC!) then is 

SICf) = 1 oCf) + To(sin 7rfTo)2{_~ ± o(f _ _ J_. ) 

P 7rfTo 8PT) i=-oo PT) 

+ (1 - ~ - 1) _1 ± o(f - -j )}. (60) 
s P PTo i=-oo PTo 

When u is of the order of s we see that the second term in curly brackets 
has amplitudes which are proportional to 1/p2 and are thus much 
smaller than terms in the first sum. We show R I (r) with u = s, R I (To) = € 

in Fig. 13 and SIC!) in Fig. 14. The assumption that u = s is equivalent 
to the assumption that 1 + lie contains an equal number of l's and O's 
when k is a multiple of P. 

We deduce from this discussion of spectra that the principal effect 
of scrambling when the scrambled sequence is converted to a signal 
waveform in the manner given above is to increase the number of tones 
in a given bandwidth by a factor which is approximately P and to decrease 
the level of each tone by approximately the same factor. 
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-PT, -PTo T_ PT, 

Fig. l;~ - Autocorrelation function of a scrambled periodic sequence. 

XII. AN EXAMPLE 

We shall now consider an application for the scramblers and we shall 
compare the relative cost and effectiveness of the MCS and the SCS. 
We will report on a computer simulation directed at the determination 
of the smallest SCS counter threshold for our example. 

Assume that the source is binary and that it may occasionally contain 
sequences of period 1 (there are two-the all 0 sequence and the all 
1 sequence), period 2 (there is only one-the 1010 ... sequence, known 
as dotting), period 7 or period 8. Assume also that a line sequence of 
period less than 100 is undesir3.ble from spectra considerations. Since 
the least common multiple of 1 aYld 2m 

- 1 is 2m 
- 1, we will require 

that 2m 
- 1 > 100. The smallest value of 1n for which this is true 

is m = 7 for which 2m 
- 1 = 127, a prime. We next require a prim

itive, degree 7 binary polynomial for the tap polynomial. The poly
nomial hex) = 1 + X4 + x7 is one such. Given hex) our basic scrambler 
is fixed. We next observe that 1 divides 7 and 8 and that 2 divides 8 
so that we may build a scrambler which detects two periods 8 1 = 7 
and 82 = 8. 

We next consider whether the MCS or the SCS should be used 
for our problem. We see immediately from Theorem 3 that the threshold 

H 
l/PT, 

Fig. 14-Spectrum of a scrambled periodic sequence. 

f-
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on the first counter of the MCS, t81 , must be at least 14. Similarly, 
ta• of the MCS must be at least 13. Since a 4-stage binary counter will 
count to 16, we see directly that 8 counter stages, 8 shift register stages, 
3 OR gates and some peripheral logic will suffice to build an lVICS 
for our problem. 

From Theorem 4 we see that the threshold on the SCS need not be 
any larger than 954 or require more than 10 stages of a binary counter 
since 210 = 1024 > 954. A computer simulation of the SCS, however, 
shows that the bound of 954 is more than 34 times larger than the 
smallest required threshold, which was found to be 28. The results 
of this simulation are tabulated in Table 1. The largest run of con
secutive zeros at counter input was found for all period 7 and period 
8 sequences when the line sequences had periods 7 ·127 and 8 ·127, 
respectively. In Table I we list the fraction of the 384 periodic sequences 
which have the gap lengths (maximum run of zeros) shown. (We note 
that it is only necessary to simulate the SCS with one starting state 
of the basic scrambler when 2m 

- 1 is prime since all 2m 
- 1 noncritical 

starting states appear as states of the basic scrambler. Note also that 
we can neglect the first eight inputs to the counter following the argu
ment of the third paragraph of Section VII.) 

The SCS will scramble our periodic inputs if we choose a counter 
threshold of 32 which can be realized with a 5-stage binary counter. 
It will also require eight shift register stages, an AND gate and periph
erallogic. 

As far as random data is concerned, we see from (46) that the MCS 

TABLE I-GAP LENGTHS FOR PERIODIC INPUTS 

Period 7 Period 8 
----

Gap length No. % No. % 

13 14 10.92 0 0 
14 28 21.84 16 6.25 
15 14 10.92 16 6.25 
16 0 0 16 6.2.') 
17 0 0 16 6.25 
18 28 21.84 60 23.41 
19 14 10.92 18 7.04 
21 0 0 56 21.85 
22 2 1.56 2 0.78 
24 0 0 24 9.38 
25 0 0 16 6.25 
26 14 10.92 0 0 
27 14 10.92 16 6.25 

- -
128 256 
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for our application reaches threshold at least once in n transmissions 
with probability 

PM(n) ~ (n - 15)(3.06)10-5 (61) 

and we see from (47) that the SCS reaches threshold with probability 

(62) 

Thus, the lYICS has a slight edge on the SCS when it comes to scrambling 
random data since it is desirable to keep the frequency of threshold 
crossings low. 

In sum, it is safe to say that the SCS has the edge for our problem 
primarily because it is simpler and less expensive. Also, we note that 
the addition of a single-counter stage will reduce P sen) to (n - 31)10-8

• 

The autocorrelation function of the scrambled data sequence will be 
like that of Fig. 13 with I to I ~ 0.008. 

XIII. CONCLUSIONS 

We have introduced two major classes of self-synchronizing, digital 
data scramblers called multi-counter scramblers and single-counter 
scramblers. We have shown that these scramblers and combinations 
of the two will map a periodic sequence of period s into a periodic 
sequence of period LCNI(s, p'n - 1), where p is the size of the source 
alphabet (the SCS results require that p = 2 and that s and 2m 

- 1 
be relatively prime), if the basic scrambler tap polynomial hex) of 
degree 1n is a primitive polynomial over GF(p). We have found the 
smallest values for the counter thresholds in the lYICS and have shown 
the existence of finite thresholds for the successful operation of the SCS. 

We have shown that there are many transitions in the scrambled 
sequence and that they are well distributed. We have shown that the 
descramblers possess the self-synchronizing property and we have con
sidered the effect of channel errors on the descrambling process. We 
have seen that the principal effect of infrequent channel errors (occurring 
at a rate of one in 105 transmissions, say) is to cause approximately 
w(h) as many output errors, where w(h) is the number of nonzero 
terms in hex). Channel errors were shown to have a relatively small 
effect on the output of the descrambler monitoring logic. 

vVe have found the power density spectrum of the waveform gen
erated by the scrambler output for a representative case, namely, when 
the source is binary and the scrambled sequence is mapped onto a 
± 1 sequence. vVe have seen that scrambling does not affect the spectrum 
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of the line signal when the source is random and that its principal 
effect when the source is periodic is to introduce P times as many 
tones each having l/Pth as much energy where P is the factor by which 
the source period is increased. . 

I t has been shown that the counters in the scrambler and descrambler 
reach threshold infrequently when the source is random and at most 
once each time the source becomes periodic. Thus, it has been argued 
that the counters at the descrambler might be removed if the rate 
at which the counters at the scrambler reach threshold is less than 
the rate of occurrence of channel errors, and if the customer can tolerate 
occasional output errors when his data is periodic. 
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APPENDIX 

Proof of Theorem 2 

Let Th be the matrix shown below where the coefficients C1 , C2, 

••• , Cm are elements of the modular field GF(p) of p elements, p a prime 

CI C2 Cm - 1 ~ml 1 0 0 
T" = 0 1 0 

lJ 

m. (63) 

0 0 1 

Let hex) be the polynomial shown below in the indeterminate x where 
coefficients are those appearing in (63). 

(64) 

Then, one can show by direct calculation that the characteristic poly
nomial of Th , ~(x), defined by 

~(x) = det (Th - xl), (65) 

is related to h(x)9.lo by 

~(x) (66) 
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The matrix Th is called the "companion matrix" for the polynomial hex). 
We assume that hex) is a primitive polynomial over the field GF(p). 

A polynomial hex) is primitive if 

(i) hex) is irreducible over GF(p), that is, if there is no polynomial 
with coefficients in GF(p) which divides hex) except 1 and hex), itself, 
and 

(ii) hex) of degree 111, divides xn - 1 for n = pm - 1 but for no smaller 
integer n. 

If we replace the term Cm in hex) given in (64) by the matrix cmI, 
where I is the m X m identity matrix and replace x by T h , where 
powers of Th are defined as successive matrix products, then we have 
the well-known Cayley-Hamilton theoremll 

(67) 

where tp(x) is the characteristic polynomial of Th . Thus, a matrix Th 
satisfies its own characteristic polynomial. There is a smallest degree 
monic polynomial (coefficient of the highest degree term is 1), called 
the minimal polynomial, m(x), such that 

m(Th) = o. (68) 

Since hex) is irreducible, we have 

m(x) = hex). (69) 

We now wish to prove the following theorem. 

Theorem 2: The matrices T! - I are nonsingular for 1 ~ If, ~ pm -2. 

We first prove the following two lemmas. 

Lemma 2: If 0 ~ i, j ~ pm - 2, i ~ j, then T~ ~ T~ . 

Proof: If Ti = Ti for the i, j given above and i < j then 

T\Ti
-

i 
- I) = 0 

implies 

T i
-

i 
- I = 0 

since det Th = tp(O) ~ O. (If tp(O) = 0 then tp(x) is divisible by x and 
hex) is not primitive.) Consider now.the polynomial X

i
-

i 
- 1. Using 

the Euclidean division algorithm we have . 

X
i

-
1 

- 1 = h(x)q(x) + sex) 
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for unique q(x) and sex) and degree sex) < degree hex). Therefore, 

T~-l - I = 0 = h(Th)q(Th) + SeTh) 

which implies that 

SeTh) = o. 
But 1n(x) = hex) is the minimal polynomial of Th so that sex) = o. 
Therefore, hex) divides xn - 1, n = j - i < p'" - 1. Contradiction. 
Hence, Ti ~ T i

, i ~ j, 0 ~ i, j ~ pm - 2. QED 

Lemma 3: All nonzero' polyn01nials in Th with coefficients in GF(p) 
and of degree m - 1 or less are nonsingular. 

Proof: Let p(x) be a polynomial of degree m - 1 or less with coe
fficients in GF(p). Then, using the Euclidean division algorithm, we 
have that the greatest common divisor, d(x), of p(x) and hex) is given by 

d(x) ~ a(x)p(x) + b (x) h(x) , 

where a(x) and b(x) are unique polynomials. Since hex) has degree 
1n and is irreducible d(x) = 1 and 

1 = a(x)p(x) + b(x)h(x). 

Taking these polynomials in T h , we have 

or since h(Th ) = 0 we have 

I = a(Th)p(Th) = p(Th ) a (Th) , 

where the latter equality follows since the polynomials a(x) and p(x) 
commute. Thus, the polynomial peT,,) of degree m - 1 or less with 
coefficients over GF(p) in the matrix T" has both a left inverse and 
a right inverse and is nonsingular. QED 

Proof of Theorem 2: 

Since h(T,,) = 0 we have 

T: = c1Tr;:-1 + c2Tr;:-2 + ... + cmI. 

Thus, every power of T" , such as T~ can be written as a polynomial 
in T" of degree m - 1 or less. Hence, T~ - T~ ~an be written as a 
polynomial of degree m - 1 or less in T" . From Lemma AI, T~ - T~ ~ 0, 
i ~ j, 0 ~ i, j ~ pm - 2 so that T~ - T~ as a polynomial in T" of 
degree m - 1 or less is nonzero. From Lemma A2, T~ - T~ is nonsingular 
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and it follows by choosing j = O,i = k with 1 ~ k ~ pm 
T~ - I is nonsinguJ ar. 

487 

2 that 
QED 

Theorem 2 in effect says that if y is some arbitrary, nonzero column 
vector of m components chosen from GF(p) then Tky runs through all 
pm _ 1 nonzero vectors y as k ranges between 0 and pm - 2. Thus, 
the linear sequential filter with feedback paths described by 1\ is a max
imal-length sequence generator. Elspas5 comments that these results 
were noted by Zierler2 and Golomb. 12 
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A CaIn era Tube with a 
Silicon Diode Array Target 

By M. H. CROWELL, T. M. BUCK, E. F. LABUDA, 
J. V. DALTON, and E. J. WALSH 

A variety of electronic cameras have been developed for television 
systems. 1 Among these the vidicon2 and the Plumbicon3 have the in
herent advantages of high sensitivity, small size, and simple mechanical 
construction. The operating principles of the vidicon and the Plumbicon 
are quite similar since they both utilize a thin photoconductive layer 
to convert the optical image to a stored charge pattern which is periodi
cally scanned and erased by an electron beam. Erasing the charge pattern 
creates the video signal. However, there is a distinct difference in overall 
device performance since the photo conducting target in the Plumbicon 
(PbO) is deposited in a manner to form a single, large area, graded 
p-n junction, each layer having high resistivity. In the vidicon, the 
evaporated layers of Sb2S3 forming the target behave like a semi
insulating photo conductor. 

A new type of target consisting of an array of electrically isolated 
reverse-biased diodes, as first suggested by Reynolds,4 later discussed 
by Heijne5 and more recently by Wendland6

, has several valuable 
attributes. 

(i) The dark current and the light-induced current can be essentially 
independent of target (reverse bias) voltage and the response char
acteristic can have a gamma of unity as in the Plumbicon. 

(ii) The time constant associated with the charge leakage of an 
array of reverse-biased diodes can be very much larger than the in
trinsic (dielectric relaxation) time constant of the bulk material. This 
implies that an infrared responsive camera operating at room tempera
ture can be realized. 

(iii) The spectral response can cover a wide range including the 
visible and consequently much greater and more uniform sensitivity 
can be achieved than in the vidicon or Plumbicon. 

(iv) The target performance is insensitive to electron beam bombard
ment and is unaffected by intense light sources so that deleterious burn
in does not occur. 
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Fig. 1-Schematic drawing of the diode array. In practice the perimeter thickness 
was made =4 mils to obtain a self-supporting structure. 

(v) There is no image persistence due to photoconductive lag. 
(vi) The assembled tube may be processed using standard vacuum 

techniques including a high temperature bake. 
(vii) The operating lifetime can be expected to exceed that of the 

vidicon and Plumbicon by a considerable margin. 

In this brief, experimental results obtained from targets consisting 
of a 540 X 540 array of reverse-biased Si diodes are reported. The sub
strate is 10 n-cm, n-type Si, is self-supporting and can be anti-reflection 
coated. The p-type islands are formed by diffusing boron through 8f..L 
diameter holes in the SiOz film, the center-to-center spacing between 
holes being 20f..L. This arrangement provides sufficient diode capacitance 
~1000 f..Lf..Ltdlcm2) to integrate the diode photoresponse over the time 
interval of 1/30 sec (one frame period in commercial television). Ohmic 
contact to the array is obtained via the gold ring evaporated onto the 
n + region near the perimeter of the Si wafer chip. 

In normal operation, the electron beam, the diameter of which is 
larger than that of a single diode, periodically charges the p-type islands 
down to cathode (ground) potential while the potential of the n-type 
material is held at ~5 to 10 volts. This potential difference can be 
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sustained for a normal television frame time so long as the dark current 
is < 5 X 10-13 amps/diode. The Si02 film, also charged down to cathode 
potential by the beam, remains there and isolates the substrate from 
the beam. The incident light associated with the image is absorbed in 
the Si, creating hole-electron pairs. Since the thickness of a self-support
ing wafer is ~ 10-3 cm and the absorption coefficient of Si for visible 
light is greater than 3000 cm -t, most of the hole-electron pairs will be 
generated near the incident surface; the minority carriers (holes) then 
diffuse to the depletion region of the diodes, discharging the diodes by 
an amount proportional to the light intensity. The recharging of the 
diodes by the scanning beam creates the video signal. 

An exact analytical evaluation of the performance of the diode array 
shown in Fig. 1 is quite complicated. However, with a simpler model 
in which the p-regions of the array are replaced by one large homoge
nious p-region with no lateral conductivity, it is possible to estimate 
the loss in light sensitivity and resolution due to minority carrier re
combination and diffusion. An analysis of this simpler model indicates 
that for a minority carrier lifetime of ~10 }lsec, a surface recombination 

Fig. 2 - Photograph obtained with the 540 X 540 diode array target. The subject 
was a black and white transparency illuminated with a tungsten lamp. 
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velocity of ~104 cm/sec, and a wafer thickness of ~10-3 cm, the 
collection efficiency (ratio of collected holes to generated holes) for 
uniform illumination with visible light is ~80 percent. Lateral diffusion 
will degrade the spatial resolution. For example, if the spatial variation 
in the visible light were sinusoidal with a period corresponding to 
4 X 10-3 cm or twice the center-to-center spacing of the diodes, the ac 
signal would be reduced to i of the dc signal. 

The performance of a Si diode array is illustrated by Fig. 2. This 
photograph was obtained from a Kintef closed circuit system with 
commercial television standards. The usual vidicon camera tube was 
replaced by a tube using a 540 X 540 diode array target. The defects 
in the picture reflect a localized high dark current and can be partly 
attributed to defects in the bulk crystal from which the array was 
fabricated and to defects in the Si02 film. 

The measured spectral response of a camera tube with a diode array 
target is given in Fig. 3 for two wafer thicknesses. In these measure-
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Fig. 3 - Spectral response without reflection loss corrections of experimental 
diode array targets for two wafer thicknesses. The photograph shown in Fig. 2 was 
obtained with the 1.2-mil target. 
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ments, the whole diode array was illuminated with a uniform light 
intensity and the light induced dc current (average video signal) in 
the target lead was measured. Continuous laser transitions were used 
to obtain the absolute response at several wavelengths. The actual 
target collection efficiency was better than that indicated in the figure 
since no anti-reflection coating was used and no reflection loss corrections 
were made. For Si, the reflection coefficient varies from 30 percent in 
the near infrared to ~65 percent in the blue portion of the spectrum.8 

With a single layer anti-reflection coating, the reflection can be reduced 
to a few percent. This implies that if such a coating had been used on 
the experimental targets a maximum collection efficiency of ~20 per
cent would have been obtained. At this maximum, the sensitivity would 
have been 0.16 JLamps/JLwatt. Because of its wider spectral response, 
the camera tube with a diode array target was ~25 times more sensitive 
than an 8134 RCA vidicon for illumination with an incandescent lamp 
at normal operating temperature. The measured gamma was unity. 

The observed dark current for the entire array was ~5 X 10-8 amps 
for a reverse bias of 5 to 10 volts. This implies that the leakage current 
per diode was ~2 X 10-13 amps. The resolution was not limited by 
leakage between diodes. 
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