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Resistivity of Bulk Silicon and of
Diffused Layers in Silicon

By JOHN C. IRVIN
(Manuseript received July 25, 1961)

M easurements of resistivity and tmpurity concentration in heavily doped
silicon are reported. These and previously published data are incorporated
in a graph showing the resistivity (at T = 300°K) of n- and p-type silicon
as a function of donor or acceptor concentration.

The relationship between surface concentration and average conductivity
of diffused layers in stlicon has been calculated for Gaussian and comple-
mentary error function distributions. The results are shown graphically.
Similar calculations for subsurface layers, such as a transistor base region,
are also given.

I. INTRODUCTION

A diffused layer in silicon is generally characterized by four parame-
ters: the concentration, C, , of diffused donors or acceptors at the surface,
the concentration, Cp, of acceptors or donors originally in the material
(background concentration), the depth, x;, of the resultant junction,
and the sheet resistivity, p, , of the layer. A knowledge of the relationship
between these parameters is essential to the establishment of device
processing recipes, the evaluation of diffusion techniques, and investiga-
tions of the thermodynamic properties of silicon.

The desired relationship may be readily calculated, given a knowledge
of the distribution of the diffused impurities, the variation of the re-
sistivity of n- and p-type silicon with donor or acceptor density, and a
fast electronic computer. The results of such a computation were first
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made generally available three years ago, in the form of curves relating
C, to 1/psx; for a given Cp, for n- and for p-type layers in silicon, and
for several common distributions.! Recent calculations, however, based
on new and more extensive silicon resistivity data, have indicated con-
siderable error in the earlier results. Thus a comprehensive recomputa-
tion has been undertaken, the outcome of which is presented herewith.

A necessary adjunct to the calculation is an accurate knowledge of the
resistivity of n- and p-type silicon with varying dopant concentration.
To this end, most of theextantdata havebeenreviewed and supplemented
here and there with some new determinations. The results of this search
are also presented here.

II. THE RESISTIVITY OF SILICON AS A FUNCTION OF IMPURITY CONCEN-
TRATION

The variation of the resistivity of silicon at 300°K as a function of the
concentration of acceptors or donors is shown in Fig. 1. This graph
represents the author’s judgment of a most reasonable compromise to
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TABLE I — RESISTIVITIES AND IMPURITY CONCENTRATIONS
IN Sinrcon (T = 300°K)

Resistivit; : mpurit; ot
(ohm-cm)y Impurity Conceitr%t{ony(cm‘f‘) Concentcrigr(:lr (cm™3)
0.00076 B 1.66 X 1020

0.00089 B 1.41 X 1020

0.0010 B 1.49 X 102
0.0010 B 1.12 X 1020

0.0012 B 1.04 X 10%°

0.0011 B 1.12 X 1020

0.0014 B 9.23 X 101

0.0013 B 8.84 X 10w

0.0067 B 1.43 X 10v

0.0073 B 1.43 X 101

0.013 B 7.41 X 108

0.014 B 7.03 X 10

0.00095 As 1.80 X 10%°

0.00094 As 1.86 X 102

0.00094 As 1.1 X 102
0.00093 As 1.87 X 10%°

0.00094 As 1.97 X 1020

0.00088 As 2.10 X 102%°

0.00088 As 2.19 X 10%

0.00089 As 1.1 X 102
0.00083 As 2.30 X 10

0.00083 As 2.20 X 102

0.00080 As 2.46 X 1020

0.00082 As 2.44 X 10%

the mass of available and not altogether compatible data on the subject.
These data include most of the previously published work (Refs. 3-12),
recent, unpublished results kindly provided by other investigators,™™
as well as some measurements obtained expressly for the present study.

The last data are shown in Table I. The crystals involved were pulled
from quartz crucibles, and hence can not be expected to be particularly
low in oxygen content. After dissolution of the boron-doped crystals
and separation of the dopant,'* boron concentrations were determined by
a photometric carmine technique essentially similar to published meth-
ods."® Arsenic concentrations were measured by gamma-ray spectrometry
after pile neutron activation. Resistivity measurements were done with
a four-point probe. In the case of a few samples, resistivity and carrier
concentration were measured in Hall-effect apparatus (where it was
assumed ug/u = 1).

Drawing curves through these many points was accomplished by a
succession of smoothing procedures, which were primarily visual. 75 per
cent of the data points deviate less than 10 per cent from the curves thus
obtained, both for the p-type and the n-type cases. The uncertainty is
greatest in the degenerate region. For p-type silicon, suitable data be-
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come scarce at dopings greater than 10” ¢m™, and none are available
beyond 3 X 10” em™. For n-type material, there is an abundance of
rather conflicting data representing donor concentrations between 10"
em™ and 6 X 10* em™. In this region a 10 per cent variation in the
chosen line still includes 67 per cent of the data, however.

A single pair of curves obviously can not characterize with the same
degree of accuracy all silicon material, regardless of dopant employed
or degree of compensation. However, over the range 10 em™ < N; <
10* em™, and subject to the limitations discussed below, Fig. 1 is con-
sidered to be within 10 per cent of reality. This graph refers specifically
to uncompensated silicon containing a donor or acceptor impurity con-
centration, Ny, consisting of arsenic, phosphorus, or antimony for
n-type, and aluminum, boron, or gallium for p-type material. (Actually,
even among samples doped with the aforementioned impurities, small
but consistent differences in carrier concentration and mobility, depend-
ing on the specific choice of donor or of acceptor, have been reported
recently for silicon in the 0.001 ohm-cm region.”") In case of moderate
compensation, the net impurity density, ]N + — N»p |, should be used
for N . However, heavy compensation requires allowance for the added
impurity scattering.

For impurity densities near or greater than 10 em™°, Fig. 1 can not
be considered very reliable. At such concentrations, impurity band
conduction is prominent and its effects are apt to differ appreciably
depending on choice of impurity. Even more serious are the degrees of
impurity precipitation and lattice imperfection which occur in highly
doped material and which furthermore vary with growth conditions
and history of the crystal. It will be noted with some consternation that
the p-type and n-type curves are shown to cross near Ny = 3 X 10" em ™.
The paucity of data, of course, casts considerable doubt on this result.
However, for what they are worth, such are the indications. Perhaps this
can be understood in light of the acceptor action of imperfections,
especially vacancies, which are abundant in very highly doped material.

The calculations discussed in the remainder of this paper require a
mathematical representation of Fig. 1. Straight-line approximations of
the form (1/p) = BN:® have been obtained, which depart 10 per cent
from the desired curve at the turning points and rapidly approach
coincidence elsewhere. The parameters B and « are listed in Table II
for the respective straight-line regions.

III. DIFFUSION PROFILES AND CALCULATIONS

The diffusion profiles of current practical interest are the comple-
mentary error function, C, = C, erfc (x/24/Dt), and the Gaussian,
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TaBLE II — VaALUES oF B AND o 1IN THE KqQuaTtioN (1/p) = BN,
REPRESENTING STRAIGHT-LINE APPROXIMATIONS TO THE p VS
N CURVES OF n-TYPE AND p-TYPE SiLicoN (T = 300°K)

Region (cm™3) B @

n-type
2.35 X 102 = Np 1.04 X 10-¢ 0.456
6.00 X 10 = Np £ 2.35 X 102 1.43 X 10712 0.744
9.50 X 10" = Np =< 6.00 X 10¥ 2.00 X 10716 0.940
1.00 X 107 £ Np = 9.50 X 108 6.93 X 10™° 0.543
3.50 X 10t* = Np £ 1.00 X 10v7 6.97 X 10~ 0.837
Np = 3.50 X 1015 2.00 X 10716 1.000

p-type
1.50 X 10 = N4 4.00 X 10~v7 0.966
2.40 X 10®¥® = N4 = 1.50 X 10 1.47 X 1014 0.832
1.50 X 10 £ N, £ 2.40 X 10 3.30 X 1071 0.650
N4 =1.50 X 108 7.20 X 10777 1.000

C. = C,exp (—2*/4Dt). In these expressions, z, D, and ¢ are the depth,
diffusion coefficient (assumed independent of impurity density), and
time, respectively. C, is the concentration of the diffused impurity at
depth z and C, , that at the surface. The former distribution is expected
when diffusion takes place with the surface concentration C, held con-
stant; the latter when the total impurity diffusing is constant. Unfor-
tunately it must be admitted that the accuracy of these expectations is
open to question in some situations.”'® Also, precipitation and compen-
sation of impurities near the surface may further distort the distribution.
However, it is still useful to solve the problem under these assumptions,
leaving corrections for later determination.

The “average conductivity” of a diffused layer (which throughout
this paper is assumed to be diffused into a silicon slice of opposite con-
ductivity type and uniform doping C3) is given by the expression

5= s = (1/2) [ auC

where ¢ is electronic charge, u the carrier mobility typical of a total
ionized impurity density of C; 4+ C, C = r(C, — C3) is the density of
carriers, r being the fraction of uncompensated diffused impurity atoms
which are ionized, and C, the total density of diffused impurity atoms at
depth . (Possible variation of the mobility as a function of the proxim-
ity of the surface is a hazard which should be recognized in passing but
is otherwise ignored in the present calculation.) Multiplying and dividing
within the integrand by ' (C, 4+ Cg), where ' is the ionized fraction
associated with an uncompensated dopant density of (C. + Cg), and
writing
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qur’'(Cy + Cp) = o(careny = B(C, + Cp)”
the average conductivity becomes

¢ = (1/z;) fo (r/r')(C. — Cp)B(C, + Cu)* " du.

Now (r/r’") represents the ratio of degrees of ionization corresponding
to C;, — Cp and C, + Cp respectively. This ratio is very nearly unity
unless C, and Cp are comparable in magnitude. Such is the case only for
the lamina nearest the junction, which contributes negligibly to the
conductance of the whole layer. Hence, (7/r') may be justifiably taken
as equal to unity, and writing C, = Csf(x), where f(«) depends on the
profile of interest,

¢ = /) [ 10() — CoBICH () + Col* d.

A program for the evaluation of this expression has been devised
previously by others and employed in the analysis of diffused layers in
germanium.” With slight additions to facilitate automatic plotting, the
same program has been used in the present work. Computations were
performed on an IBM 704, and plotting of points was carried out with
an Electronic Associates Variplotter.

IV. PRESENTATION OF RESULTS

Of frequent interest in transistor design and in the analysis of diffused
layers, are the characteristics of a “subsurface” layer such as illustrated
in Fig. 2. This layer, bounded on one side by the junction and on the
other by a plane paralleling the junction at depth x, may be characterized
by an average conductivity

o= 1/[Ps’(xj — )] = (_@i—?) fx J quC dx

where p,’ is the sheet resistance of the subsurface layer. It will be recog-
nized that the base region of a diffused-base, alloyed-emitter transistor
is an example of a subsurface layer. Another example is that portion of
a diffused layer remaining after-removing the top strata of depth x.
Here, however, it must be remembered that the value of C, specifying
this layer pertains to the original surface at x = 0.

Since a subsurface layer becomes the entire diffused layer when » = 0,
it is convenient to display the properties of both in the same plot by
introducing the parameter (z/z;). On pages 394 to 410 such graphs are
presented for n- and p-type diffused layers of Gaussian and comple-
mentary error function profile. Each graph contains the family of ten
curves (z/z;) = 0,0.1,---,0.9, and relates the average conductivity of
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IMPURITY CONCENTRATION —>

DEPTH =—>

Fig. 2 — Profile of a diffused layer with subsurface layer shaded.

each layer to the surface concentration (at the original surface) for a
given value of Cp. A separate graph is required for each value of Cjp,
which in the present work ranges from 10" em™ to 10% em™ at one-
decade intervals. In each plot the range of surface concentrations
spanned is from C to 10* em™. The so-called “Backenstoss” curve for
a particular Cjp is simply the right-most line (z/2; = 0) in each graph.

The wiggle in the n-type average conductivity for diffusant concentra-
tions near 10® em™* is ascribable to the rather large change in slope oc-
curring in the n-type resistivity plot at N; = 10" em™.
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A Miniature Tuned Reed Selector of High
Sensitivity and Stability

By L. G. BOSTWICK
(Manuscript received August 23, 1961)

This paper describes a selective contacting device that is responsive only
to sustained frequencies tn a discrete narrow band and is insensitive to
speech and noise interference. It is of small size suitable for use in a pocket-
carried radio receiver and is sufficiently stable to permit 33 discrete res-
onant frequencies, spaced 15 cycles apart, in less than an octave between
517.6 and 997.5 cycles per second. It has a threshold sensitivity of about 36
microwatts and other operating characteristics that are essential in large
capacity systems.

I. INTRODUCTION

Tuned reed selectors used as selective receivers in multifrequency
systems involving large numbers of individual selections, such as per-
sonal radio signaling,! must operate within close and specifiable limits
in order to avoid false signaling and to assure satisfactory performance
under devious environmental and circuit conditions. In particular, three
operating characteristics, or their equivalents, must be controlled,
namely: the resonant frequency, the sensitivity (current or power needed
at the most sensitive frequency), and the bandwidth (the frequency
band in which contacting occurs with an input power twice that needed
at the most sensitive frequency).

The permissible variation in these characteristics is much smaller than
would seem necessary from first considerations. Resonant frequency
changes that seem negligible compared to the frequency spacing between
adjacent selectors often become important when other system require-
ments are considered simultaneously. I'or example, the frequency range
over which contacting will occur depends upon the electrical input level
and the selector bandwidth. Consequently, feasible limits for both of
these latter quantities must be considered, and in determining allowable
frequency deviations from nominal, the lowest probable input level and

411



412 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1962

the narrowest bandwidth must be taken into account. On the other
hand, excessively high input levels cannot be allowed even in those
unusual instances where conserving power is unimportant, because this
necessitates wider channel separations in order to avoid transient opera-
tion of adjacent selectors, particularly those having high sensitivities.
Furthermore, high input levels result in longer decay times, which often
cannot be tolerated. When these and other related factors are considered
and the widest manufacturing tolerances are sought, it is found that the
above three selector characteristics are closely interrelated, and one
cannot be relaxed without making one or both of the others more
stringent.

The tuned reed selectors described in this paper have factory adjust-
ment provisions and sufficient structural stability to control in a practical
manner the resonant frequencies, the sensitivities and the bandwidths
within adequate and compatible limits. As a result, it is feasible to use
33 discrete resonant frequencies, 15 cyecles apart, in less than an octave
between 517.5 and 997.5 cycles. An available electrical power of 35
microwatts at each individual resonant frequency will just operate the
contact, and a power of 100 microwatts will close the contact to a low
resistance over 20 per cent or more of the reed period. These and other
capabilities to be deseribed distinguish these selectors from many others
that are not adequate for reliable operation in large systems.

II. GENERAL DESCRIPTION

Fig. 1 is a photograph showing one complete reed selector with the
outside shell removed. Fig. 2 is a partially exploded view showing
the subassemblies and indicating how the parts are fitted together.
The shell is formed from permalloy sheet; it serves as an effective shield
from extraneous fields and as a high-permeability flux path for the
internal magnetic circuit. All parts are electrically insulated from the
shell. The complete selector weighs about 8 grams.

As shown in these photographs, a tuning fork formed from two reeds
brazed to a base block serves as the resonant element. This balanced
type of structure does not require a massive support as would a single
cantilever reed in order to isolate it from extraneous influences, an im-
portant matter for a miniature device. This fork is freely supported
within the shell by a compliant frame that further isolates any small
residual vibration of the fork base from the rest of the selector, and yet
is sufficiently stable to permit the vibrating contact on the end of the
tuning-fork tine to be precisely positioned with respect to the stationary
contact. This latter contact is carried by a loop of wire spot-welded to a
rotatable stud that fits into a tapered hole in an insulating bushing in
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Fig. 1 — Tuned reed selector with shell removed.

the frame between the tines. A magnetic polepiece is positioned between
the open ends of the tines, forming two equal gaps. Polarizing magnetic
flux is set up in these gaps by a small permanent magnet attached to
the opposite end of the polepiece. The energizing coil surrounds the
center portion of the polepiece.

The tuning fork is made of a nickel-iron-molybdenum alloy? (vibralloy)
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Fig. 2 — Exploded view showing individual parts.

having controlled elastic and magnetic properties. Annealed permalloy
with low coercive forece and high permeability is used for the polepiece
and shell to reduce magnetic flux changes. The materials and shapes of
other parts are chosen to minimize dimensional changes with time and
environmental conditions.

III. FREQUENCY SELECTION AND FINE TUNING

The range of resonant frequencies is obtained with tuning forks that
have the same over-all length but varying free tine lengths. The small
dimensions of these forks require the brazing fillets and the free reed
lengths and thicknesses to be precisely controlled. By special attention
to rolling of the reed stock, precise jigging of the reeds and base block,
and brazing with minimum fillet dimensions, it is feasible to produce
forks in which the individual tine frequencies are sufficiently close to
chosen nominal frequencies spaced 15 cycles apart so that they may
then be accurately tuned to these desired frequencies.

Precise or fine tuning is accomplished with spring sliders that may be
moved along the tines. This requires a slider that will stay in place
under shock and vibration, will provide an adequate tuning range, and
will allow the necessary fineness of frequency adjustment. This is
achieved by means of small spring clips that snap on and ride along the
edges of the tines. These sliders are shaped so that pressure at the center
releases the force with which the slider seizes the reed and permits it
to be moved. Each slider has a mass of about 1 milligram and provides
a tuning range of about 10 eycles on forks near 500 cycles and of about
25 cycles on forks near 1000 cycles. The sliders may be moved in incre-
ments less than a thousandth of an inch, permitting the resonant fre-
quencies to be readily set to a desired value within 40.05 cycle. The
seizure forces are large so that shock and vibration acceleration in ex-
cess of 1500 G are required to move the sliders.
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IV. CONTACT FACILITY AND SENSITIVITY ADJUSTMENT

The sensitivity is adjusted in manufacture by changing the contact
gap separation. A fine rhodium wire having a resonance frequency above
the frequency range of the tuning forks is supported by a loop of larger
wire that may be rotated on a tapered stud through the frame. The
fine wire is pretensioned with a prescribed force against the loop wire to
form a lift-off type of contact that is accurately positioned and will
follow large tine excursions without objectionable interference with the
tine motion. This construction® results in a contact that makes to a low
resistance with the vibrating contact on the reed for intervals of time
that may be 25 per cent or more of the reed period, depending on the
applied power. The operating sensitivity of the selector is precisely set by
rotating the loop on the stud axis and thereby causing the end of the
contact wire to move toward or away from the reed contact. The point
of contact is close to the axis of rotation so that a fine control of the
contact gap may be achieved.

Bandwidth Conitrol

The bandwidth or sharpness of the resonance curve is determined pri-
marily by three dissipative factors, namely: internal frictional losses in
the reed material, viscous losses in the air surrounding the reeds, and
eddy-current losses in electrically conducting parts. The last factor has
been chosen as the adjustment or control means for bandwidth. A
copper washer is placed around the polepiece and where flux changes
due to motion of the reeds induce eddy currents in the copper. By
selecting the proper washer thickness and diameter and by setting the
magnet strength to yield the proper flux density, eddy currents are
developed when the tines vibrate that absorb energy and reflect into the
system as an effective mechanical resistance that broadens the resonance
curve by the desired amount.

V. VIBRATING SYSTEM PARAMETERS

Tabulated in Table I are some measured and derived data that show
the magnitudes of the more important vibrating system constants of
two selector samples with resonant frequencies nearly an octave apart.
These are typical values that will be of interest to those concerned with
the vibrational mechanics, electromechanical coupling, and other ana-
lytical design factors.
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TaBLE I
Nominal Frequency Nominal Frequency
517.5 cps 997.5 cps

Reed dimensions — length 1.4 cm 1.01 ¢m

thickness 0.015 cm 0.015 cm

width 0.254 cm 0.254 cm
Effective reed stiffness 1.45 X 10° dynes/em | 3.88 X 10° dynes/cm
Resonant frequency as brazed 560 cps 1068 cps
Resonant frequency with contact | 530 cps 1011 cps
Resonant frequency with slider as | 517.5 cps 997.5 cps

tuned

Effective reed mass as brazed

Effective reed mass with contact

Effective reed mass with slider as
tuned

Electrical impedance at resonant
frequency

Llectrical blocked impedance at
same frequency

Electrical motional impedance at
same frequency

Current to just close contact

Bandwidth

Effective mechanical resistance
of fork at resonance

Electromechanical coupling fac-
tor

Effective magnetic gap stiffness
(each gap — from frequency
shift measurements)

Corresponding gap flux density

Maximum tine flux density (as-
suming fringe flux equal to gap
flux)

0.0118 grams
0.0130 grams
0.0138 grams

478 + 5231

220 + 5277

258 — 746
0.275 milliamps

1.1 cycles
0.19 mechanical ohms

2.24 X 10° [5° dynes/
abamp

—0.02 X 105 dynes/
em

200 gauss
4000 gauss

0.0087 grams
0.0096 grams
0.0099 grams

448 4 7430
235 - 7485
213 — 555
0.275 milliamps

1.3 cycles
0.16 mechanieal ohms

1.88 X 108 [7.2°
dynes/abamp

—0.02 X 10% dynes/
cm

200 gauss
4000 gauss

VI. PERFORMANCE OBJECTIVES

Consideration of the over-all system operating requirements for

personal radio signaling pertaining to such factors as the needed number
of individual selections, practical radio receiver power levels, calling
rates, and environmental conditions, led to the following objectives for
the performance of the reed selectors:

1) Nominal frequency range — 517.5 to 997.5 cycles.

2) Nominal frequency separation — 15 cycles.

3) Frequency deviation limits — =40.3 cycle, including adjustment
tolerances, aging, shock, magnetic changes, and all other instabilities
except those due to temperature changes.

4) Temperature-frequency deviation limits — ==0.2 cycle over tem-
perature range of 35°F to 110°T" (2°C to 43°C).

5) Nominal bandwidth — 1.0 cycle.
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6) Bandwidth deviation limits —0.8 to 1.4 cycles resulting from
temperature changes and all other causes.

7) Nominal current to just operate contact — 0.25 milliamps for a
nominal 500-ohm coil impedance at resonance.

8) Just-operate current deviation limits — 2=3.0 db resulting from
temperature changes and all other causes.

These objectives are mutually consistent in that the limits given in
each case are as large as can be tolerated without reducing the limits on
some other factor. There are other important design considerations that
must not be neglected, such as weight, size and shape, contact life,
shock tolerances, corrosion resistance, magnetic interaction and so
forth, and with respect to which the selectors must, of course, be ade-
quate. However, the above-tabulated characteristics are the most sig-
nificant from an operating standpoint and are sufficient under marginal
conditions to assure positive operation and avoid false signaling.

VII. TYPICAL MEASURED DATA

Presented below are measured data showing that the above-described
reed selector meets these objectives. By means of the spring sliders, the
two tine frequencies are made alike within a small fraction of a eycle
and are given values that result in a combined fork frequency well within
requirements. Attention is given in the assembly and adjustment pro-
cedure to magnetically and mechanically stabilize the whole structure.
The magnet is stabilized well below its maximum remanence; the whole
final assembly is subjected to a moderately high temperature to relieve
residual stresses; and the tines are vibrated at a suitable level to bring
them into a normalized magnetic state prior to final adjustment. The
resulting selectors have resonant frequencies that will remain within
#0.3 cycle from their nominal frequencies at normal room temperatures
and under reasonable conditions of mechanical shock and electrical over-
load. Negligible changes occur under shocks up to 1500 G (2 milli-
seconds duration) or with input levels 20 db above the just-operate
values.

IFrequency stability with temperature is achieved by making the
forks of a nickel-iron-molybdenum alloy of such a composition that
magnetic permeability changes are small and the temperature coefficient
of Young’s modulus is low and of a magnitude to compensate for di-
mensional changes with temperature. Operate current stability is real-
ized by additional attention to the design geometry and materials so
that changes in temperature cause variations in contact scparation that
are a small fraction of a mil-inch.
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Fig. 3 — Variation with temperature in the operating characteristics of a
typical lower-frequency tuned reed selector.

Fig. 3 and Fig. 4 are graphs of measured data showing variations with
temperature in the resonance frequency, just-operate current and band-
width of two typical samples, one at each end of the nominal frequency
range. The range covered by these graphs is much wider than that
required for most applications. In the more common temperature range
of 35° to 110°TFF, the deviations are well within the limits tabulated above.

TFig. 5 and TFig. 6 are electrical impedance diagrams of the same two
selector samples with resistance and reactance as coordinates and fre-
quency as the variable parameter. This form of plot emphasizes the
interesting values near resonance and may be used for analytical pur-
poses.t IFrom these graphs, it can be determined that the conversion of
electrical to effective mechanical power is about 46 per cent and that
the available electric power necessary to just operate the contact is
about 33 microwatts.
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Fig. 4 — Variation with temperature in the operating characteristics of a
typical upper-frequency tuned reed selector.

VIII. NOMINAL OPERATING LEVELS AND TIMES

The electrical power source supplying selectors in a system must have
an available power capacity sufficient to cause dependable contacting
under the worst temperature and adjustment conditions. These worst
conditions obtain when the frequency deviation from nominal and the
just-operate current are at their maximum values. Considering the
limits permitted in these selectors and making allowance for contact
quality and life with some statistical advantage taken of the small
chance of all limiting conditions occuring simultaneously, it was deter-
mined that the minimum electrical input power should be 6 db above
that needed to barely close the contact of a nominal selector. At this
level, the time required to close the contact after energizing the coil is
equal to the time needed for the reed amplitude to decay below contact-
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Fig. 5 — Vector impedance diagram of a typical lower-frequency unit.

ing amplitude after the coil current is stopped. FFor nominal selector
constants, this time is approximately 225 milliseconds. Input levels
higher than 6 db above just-operate will result in faster operating times
and slower decay times, but the sum of the operate and decay times will
increase less than 20 per cent up to input levels 12 db above the nominal
just-operate value.

IX. CONTACT CAPACITY AND LIFE

The contact has greater capability than would at first seem likely.
Such a light contact is most frequently used in circuits to change the
potential on a tube or transistor and thereby trigger some desired sig-
naling or switching function without the contact current exceeding a few
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Fig. 6 — Vector impedance diagram of a typical upper-frequency unit.

milliamperes. The contact closure is intermittent at a rate corresponding
to the frequency of the selector, and the duration of the individual
closures is a small fraction of a millisecond, depending upon the fre-
quency and input level. These short closures, however, occurring at a
rate of several hundred times per second, may control current pulses that
have an integrated or averaged power that is a substantial fraction of a
watt.

The maximum power that can be controlled depends mostly upon the
reactive elements in the contact circuit and the life needed from the
selector. As an example of what may be expected, Fig. 7 shows changes
that occurred in the resonance frequency and the sensitivity of a typical
selector when operated continuously (except for a few minutes about
every 100 hours during check test) over a period of 1500 hours. The
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Fig. 7 — Variation with time in the sensitivity and frequency of a selector
closing a 12-volt battery through a 240-ohm resistor.

electrical input was 9 db above the just-operate value, and the contact
closed a 12-volt battery through a 240-ohm resistor, giving a closure
current of 50 milliamperes. Throughout the test period the resonance
frequency changed only slightly and the just-operate current increased
about 20 per cent. This later change was due to erosion of the contact
wire, which increased the contact gap. Erosion was minimized by con-
necting the fine contact wire to the negative side of the battery. At the
end of the test, the diameter of the contact wire was approximately half
its original value.

X. APPLICATIONS

The manner in which these selectors are used in the circuits of the
BELLBOY Personal Radio Signaling system will be deseribed in a paper
to be published on the pocket radio receiver. In this system, three tuned
reed selectors are operated simultaneously in the receiver, and these
trigger a transistor oscillator that gives an audible signal. The power
controlled by the contacts in this case is small.

The substantial power capacity of the contacts can be used to operate
relays and other devices directly. Pulses of current from a battery at
the selector frequency can be supplied to a smoothing or integrating
capacitor, and the relatively constant voltage across the capacitor can
be used to operate a sensitive dec relay. The battery may be at the loca-
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Fig. 8 — Reed selector actuated mercury relay for selective control of multiple
functions requiring substantial powers.

tion of the reed selector or may be supplied by superposition over the
same circuit used to transmit the selector frequency.

The contact may also be used as a synchronous rectifying means to
generate de from the same ac source that operates the selector, as shown
in Fig. 8. When the source frequency corresponds to that of the reed
selector, the contact of the selector closes in synchronism once each cycle
to send unidirectional pulses to the capacitor and relay in parallel. The
capacitor smoothes the pulses and gives a nearly constant current in the
relay winding. For maximum sensitivity it is desirable that the contact
closures occur near the peaks of the supply voltage wave, and this is
accomplished by connecting 'a large reactance (either inductive or
capacitative) in series with the selector winding. This reactance also
serves to attenuate the supply voltage applied to the selector winding
to avoid overdriving the reeds, because a supply voltage large enough to
operate a relay is ordinarily many times that needed to operate the reed
selector. Combination circuits using reed selectors and mercury-wetted
contact relays provide a simple means of selectively controlling sub-
stantial powers to perform a multiplicity of functions over a single pair
of wires.

When operated just below the contacting level, these selectors have a
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Q (resonant frequency-to-bandwidth ratio) in the range of 500 to 1000
and therefore may be used effectively in a selective bridge or filter circuit
as described in a previous paper.® The use of such a selective circuit in
the feedback loop of a single transistor oscillator results in an attractively
simple source of frequency having a precision corresponding to that of
the selector.
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An X-Ray Diffraction Study of the

Structure of Guanidinium Aluminum

Sulfate Hexahydrate

By S. GELLER and H. KATZ{}
(Manuscript received March 21, 1961)

The Busing-Levy IBM 704 least squares program has been applied to
three-dimensional X-ray diffraction data from crystals of guanidinium
aluminum sulfate hexahydrale taken with the Bond-Benedict single-crystal
automatic diffractometer. Indications of interactions between parameters
were evident in the early stages of refinement and were not removed in the
subsequent cycles. Strong interactions were subsequently corroborated by
large values of many of the correlation coefficients of pairs of parameters.
In this case these interactions prevent refinement. The correctness of the
general features of the structure as given in a previous paper on the gallium
isomorph is nevertheless corroborated by the present investigation.

To enable those who have had similar difficulties to compare results, a
Sfairly detailed account vs given of the course of the attempt to refine the
structure. The effects of highly correlated parameters are emphasized.

I. INTRODUCTION

The purposes of the investigation to be described were manifold. An
approximate structure of the isomorphous gallium compound has al-
ready been reported." The gallium compound with the heaviest metal
atom among the isomorphs appeared to be best for establishing the
general features of the structure.” However, in the hope of finding a
closer relation between the structure and its electrical properties, it
appeared that a refinement of the structure would be very worthwhile.
In such a case, one would wish to have all of the atoms of more nearly
the same scattering power; thus the guanidinium aluminum sulfate
hexahydrate (G.A.S.H.) compound scemed most suitable for this pur-

1 The contribution of H. Katz to this work was made during a period of employ-
ment at Bell Telephone Laboratories in the summer of 1959.
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pose. FFurthermore, this crystal would have the lowest linear absorption
coefficient for all practical radiations; the importance of this feature will
be discussed later. But probably most important, it was anticipated
that the aluminum compound would be the one on which most measure-
ments of various sorts would be made. This has indeed been the case.

While our earlier paper' was in press, a note’ appeared in Kristallo-
grafita which gave an approximate structure for G.A.S.H. and its iso-
morphs which differed from that reported by us. A check with our data
indicated that the structure reported by Varfolomeeva et al.® was incor-
rect,” but this did not mean that the structure reported by us was neces-
sarily correct. We had to face the question as to whether the correct
structure might lie between the two structures or as mentioned in our
first paper, perhaps some subtle disorder existed in the structure. In any
case the appearance of the other result gave additional impetus to
completion of work that had been started several years ago.

There is a further importance of this work. The quantitative X-ray
data were taken with the Bond-Benedict single-crystal automatic dif-
fractometer.’ It is the only crystal so far studied with this equipment
and perhaps is the first X-ray structure analysis to be based on three-
dimensional data collected automatically. Thus at least a small part of
this paper will be devoted to an assessment of this equipment and sug-
gestions as to future plans.

Perhaps the most frustrating experience encountered is to find inde-
terminate a problem which has taken considerable expenditure of time
and cffort of various sorts. One such reported problem in the field of
X-ray crystallography is that of the determination of the structure of
tetragonal BaTiO; ; this problem was found by Evans® to be indeter-
minate by X-ray analysis, at the very least on the basis of the data
collected. The results of the work on the three-dimensional data of
G.A.S.H. indicate that the structure as originally reported by us is
essentially correct. But we find that although a low discrepancy factor
and standard error of fit are obtained by the least squares method of
refinement, the structure cannot be refined; that is, convergence is not
attained: there are parameter oscillations in each least squares itera-
tion; some improbable interatomic distances and large error estimates
are obtained. The cause appears to be strong interdependence of many
of the parameters.

In this investigation the correlation matrix is used to demonstrate the
existence of the strongly interacting parameters. The importance of this
approach has also been demonstrated by a recent investigation de-
seribed in a paper written by one of us (S.G.).°
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TaBLE I — LarTicE CoNsTANTS OF GUANIDINIUM ALUMINUM
SurLraTE HEXAHYDRATE

Investigators a,A A
Wood 11.77 =+ 0.04 8.98 =+ 0.03
Ezhkova, et al 11.737 + 0.002 8.948 & 0.002
This work 11.75 =+ 0.02 8.9+ =+ 0.01

II. CRYSTAL DATA

Guanidinium aluminum sulfate hexahydrate, C(NH,);A1(SO4),-6H,0,
is isostructural with the previously reported' gallium compound. The
morphology and unit cell dimensions have been reported by Wood.”
Lattice constants have also been reported by Ezhkova et al.* The central
values of our lattice constants, obtained from careful measurement of
Buerger precession camera photographs, differ from those reported in
both of the aforementioned papers, but are in better agreementt with
those of Ezhkova et al.’ Tor purposes of comparison, the variously re-
ported values are listed in Table I.

As described earlier,’ the most probable space group to which the
crystal belongs is P31m and the unit cell contains three formula units.
The molecular weight of the Al compound is 387.29, the volume of the
unit cell is 1,069 f&g, and the X-ray density is 1.804 g/cc.

III. DETERMINATION OF THE STRUCTURE

The determination of the structure has been described in the paper
on the gallium compound. The evidence for the correctness of the general
features of the structure described in that paper, including the orienta-
tion of the guanidinium ions, is conclusive as will be shown subsequently.

IV. EXPERIMENTAL

The Bond-Benedict single-crystal automatic diffractometer* was used
to collect the three-dimensional data. Some changes from the original
design of the instrument and in the electronics were made before the
final data were taken. A detailed description of these changes must be
left to the original authors. However, it should be mentioned that for
these particular data (which were taken in 1956), a proportional counter
replaced the Geiger counter and the “back-set” correction® was virtually

1 Dr. E. A. Wood and Mrs. V. B. Compton have informed us that their recent

measurements of lattice constants of G.A.S.H. give values which agree more closely
with those of Ezhkova et al.8 and of the present work.
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eliminated by circuitry changes. Also, the internal geometry of the
collimator was changed to square cross section.

The need for a collimator with square cross section derived from the
mechanics of the instrument. The “back-setter” produces a jarring of
the goniometer head which could at times translate the crystal very
slightly out of the original alignment in the X-ray beam. If the beam
has a circular cross section, slight deviation from coincidence of crystal
cylinder and rotation axes causes significant differences in intensity
when the diameter of the crystal is large relative to the beam cross
section. This is not true of a beam with a more or less square cross
section.

Of course, one would not have to worry too much about this if small
crystals were being used. However, for this instrument and the use of
the usual type of sealed X-ray tube, it is necessary to use large crystals
to obtain the data. (This will be discussed further later.)

Two cylindrical crystals were used to obtain the data attainable by
this instrument with CuKe radiation and a pentaerythritol mono-
chromator. The crystal aligned along the c-axis had a diameter of 0.67
mm; the crystal aligned along the [20-1] direction (orthohexagonal
A-axis) had a diameter of 0.54 mm. With a linear absorption coefficient
for CuKa radiation of 48.7 em™, the values of uR for these crystals are
1.64 and 1.32 respectively.

As described in the paper by Bond,' the single-crystal automatic
diffractometer works on a principle similar to that of the equi-inclination
Weissenberg camera. With CuKe radiation, seven levels were obtain-
able about the c-axis and fifteen about the orthohexagonal A-axis.

Data from a particular level n were collected as follows: The align-
ment of the erystal was checked. This was done in two ways whenever
possible. A microscope could be used to align the crystal cylinder axis
with the rotation axis of the instrument. The equi-inclination angle was
calculated and the crystal set to this angle. The arrangement of the
counter of the instrument is always set so that the diffracted beam is
incident perpendicularly to the window. Thus the counter is actually
moved to twice the angle of the crystal from the zero level situation.
If a particular reflection (for example, 00-7 on the Ith level about the
c-axis) was observable when the counter angle was equal to zero de-
grees for a given layer, this reflection was used to readjust crystal and
counter.

To obtain the weak intensities, the diffraction unit settings were usu-
ally 40 kv and 20 ma. To obtain the stronger reflections, proper settings
of the voltage and tube current were made so as to record enough
moderate reflections to establish a scale between the two patterns.
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Integrated intensities, crystal angles and counter angles for each level
were recorded automatically by the Leeds-Northrup two-pen recorder
as described in the papers by Bond and Benedict. As indicated above,
resetting was made manually for each new level.

TFollowing the collection of the data by the recorder, it was necessary
to index the data: This was the most time-consuming (i.e., on a man-
hour basis) part of the data processing required to obtain the observed
amplitudes. The indexing was carried out with the use of the plotting
device.* (The indexing problem will be discussed further later.)

IFollowing the indexing of all the data, the usual absorption, Lorentz-
polarization and Tunell’ rotation factorst were applied to extract the
relative | F, . (The polarization correction is for monochromatized
radiation.) The calculation was programmed for the IBM 704 by R. G.
Treuting. The corrections calculated were based on the formulae}
given by Bond and the tables used for the absorption corrections are
those given in Bond’s paper.” The program written by Treuting put the
resultant | F, |’s or | F, |’s out on cards as well as on a print-out. The
individual Lorentz-polarization, absorption and Tunell rotation factors
were also printed out for each reflection for each layer on which it
appeared.

Having extracted the | F, |”s for each layer about each of the two
axes, the next step involved an iterative cross-calibration process to
bring the values to the same basis. An IBM 704 program written by
W. R. Romanow allowed us to apply constant factors to the sets of
| 7, |* put out by the intensity correction program. Romanow’s program
also put out new cards so that we could apply a different constant to the
new values if necessary.

When we felt we had arrived at the best values, it was decided to
carry out the subsequent least squares refinement on the basis of the
| F, | values. Using a short program written by Romanow, square roots
were taken of all the | 7, [s and put out on cards. Those that came from
layers about the orthohexagonal A-axis were then sorted on the values
of [ for ease in setting up the data for the least squares refinement.

As described in the Bond-Benedict papers, some reflections do not
get entirely into the counter; thus, in order to be sure that all are ob-

t The proportional counter employed had a linear response to counting rates of
over 20,000 cps. Because for even the strongest reflections, observed counting rates
over 10,000 cps gave integrated intensities which went off scale on the recorder, no
dead-time correction* was necessary for any of the reflections.

t The formula for P; on p. 380 of Bond’s paper should read

o _q = sinty . 20 }
P, Fsm20/{l+ ((1+q) cos2v> (1 + cos 26) 1_|_q(1+cos2l))).
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tained, the instrument was designed to obtain each reflection twice.
Tor this reason the counter has a 4° window. Even at that, not all the
reflections of a given form will have the same intensity, but usually
about a twofold axis, a form of reflections of moderate intensity will
have two with the same intensity. About a threefold axis, perhaps eight
of twelve reflections from a given hk-[ form will have the same intensity
or 12 out of 16 of a given hk-0 form. Unfortunately, the weaker reflec-
tions do not give as good results as the moderate to strong ones. In the
case of the c-axis layers, if there was a variation in the height of peaks
which appeared to have been fully in the window, the value taken for
the integrated intensity was the average of the several peaks. In the
case of the orthohexagonal A-axis layers, because there were fewer
peaks contributing to a form and therefore a greater possibility that
only one peak was squarely in the window, the value recorded in most
cases was the measure of the highest peak.

In taking the averages of observed structure amplitudes, the weighting
was in accord with the above. For example for a given | Fy.; |, h,k,l = 0,
the value from the c-axis layer was weighted four times and a value from
an orthohexagonal A-axis layer once. The standard deviation was cal-
culated in accordance with the analysis given in Chapter 16 of the book
by Dixon and Massey" and as suggested earlier by Ibers.”” However,
for the unobserved, the standard deviation was taken as equal to half
the minimum observable. For | Fg.; |’s which would have unity weight
since they appear only once, the ¢ was taken in accordance with a
subjective estimate comparing the particular | Fop.;| with others of
similar value. The agreement between or among | F, |’s from the same
form but from different layers was quite good generally except for the
weakest reflections.

In the CuKa sphere, there is a total of 895 X-ray forms of guanidi-
nium aluminum sulfate hexahydrate. The geometry of the Bond diffrac-
tometer allows us to observe only 842 of these. Of those possibly ob-
servable by the instrument, only 546 were actually obsecrved.

V. ATTEMPT TO REFINE THE STRUCTURE

Because the major point of this paper is to demonstrate that the
refined structure under discussion is effectively unattainable from the
X-ray diffraction data, it seems worthwhile to give some of the details
of the calculations. To make such a discussion simpler, the pertinent
data are collected in tables. In Tables IT and IV the values of parameters
and some other important information are listed. In Table IT two col-
umns are assigned to each cycle; the left one lists the starting parameters,
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the right, the calculated “corrected” parameters. A blank space in the
left column indicates that the last previous calculated value was the
starting value for the particular parameter. In the cases of cycles 9 and
10, all of the parameters had the last previous calculated values of
cycles 8 and 9 respectively.

The order in which the atoms are listed in Tables IT and IV is not
the same as that of the paper' on the gallium isomorph, but the atom
labeling is. In writing the special position symmetry patch for the
Busing-Levy"” IBM 704 least squares refinement program, it is most
convenient to list the atoms in general positions first. Then to avoid
mistakes in the listing of results, it is best to leave the order the same
as that of the output of the program.

In the caleulation of structure amplitudes the following atomic scat-
tering factors were used: for O, AI**, N and C, those of Berghuis er al;"
and for S, those of Viervoll and Ogrim."

In cycles 1 and 2, 895 reflections, all those representing independent
forms and observable in the CuK« sphere, but perhaps not observable
with the single-crystal diffractometer, were included. Eight of the
parameters were scale factors, all of which were initially equal to 0.6667,
one for each value of I from 0 to 6 and the eighth value for all the re-
maining [ values. Also in the first two cycles, isotropic temperature
factors were used despite the fact that it was obvious that the thermal
motions of the atoms in this crystal must be highly anisotropie.

The starting structural parameters for the first cycle were those given
for the gallium isomorph' except for changes in the S and Al tempera-
ture factors and the y-parameter of N(II), which was inadvertently
taken as 0.418 instead of 0.333. Now it may be seen in Table IT under
cycle 1, that this y-parameter did not change as radically as one might
have hoped, in fact as one might have expected, for an incorrect parame-
ter. But the temperature factor of the atom did increase considerably,
perhaps indicating that the atoms did not want to be at the positions
indicated. On the other hand, the temperature factor of the N in the
special position decreased considerably to a negative value as if to
compensate for the other. This, in retrospect, was already indicative of
strong interaction between the thermal parameters of these two atoms.
Another important change was the large one, to —0.392, in the value of
the O(III) z-parameter; this implies a very short S—O distance, 1.31
fi, in one set of the SO4 groups.

The estimated error of fit™* at the end of the least squares calculation
of cycle 1 was very much lower than the first computed error of fit,”
and it appeared that by readjustment of some of the temperature factors
we could go a step further toward convergence before changing to aniso-
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tropic temperature factors. Initially cycle 2 showed that even with the
readjustment of temperature factors, the I valuet had dropped from
0.473 to 0.303, the weighted R from 0.299 to 0.193. But the error of fit
was higher than that estimated in cycle 1 on the basis, of course, of the
parameters computed in that cycle, some of which were physically
impossible (i.e., negative temperature factors).

However, cycle 2 ended with an estimated error of fit somewhat lower
than that of cycle 1. The N(II) y-parameter decreased toward the value
which we believe to be the more nearly correct one, but the N(II) B
value increased greatly and the N(I) B value became a large negative
value. Also the z-parameter of N(I) decreased to imply an unlikely short
C-—N distance. Changes in the S and Al positional parameters were not
large but several oscillations occurred. The O(ITI) (atom 10) z-parameter
returned to —0.400, but even this value implied a rather short S—O
distance, 1.37 A.

At this point, it seemed necessary to change to anisotropic thermal
parameters. The Busing-Levy program will compute these from the
isotropic thermal parameters using the following relations: 8 = Ba*'/4;
B2 = (Ba*b* cos v*)/4; ete.

The starting parameters were those computed in cyele 1 and adjusted
for eycle 2 (see Table II). For cycle 3, a critical estimate of the reflec-
tions really observable by the single-crystal automatic diffractometer
was made. This resulted in the removal from the calculation of 43
unobserved reflections, some of which had rather high calculated struc-
ture amplitudes when compared with the respective estimated threshold
values. Included in cycle 3 was a rejection test: that is, when A/o was
>10.00, the reflection was not counted in the calculation of the R
values or the standard error of fit, nor was it included in the least squares
calculation. This reduced the number of Fi.,’s used in the least squares
calculation to 790. (Unfortunately the R values and the calculated
amplitudes computed in this c¢ycle have been lost.)

The estimated error of fit resulting from the cycle 3 least squares
calculation decreased from 4.99 to 2.30, an apparently tremendous im-
provement. However, the still incorrect N(II) y-parameter did not
improve; also the values of the N(II) thermal parameters greatly in-
creased. The O(III) values still implied a short S—O distance. The
C(I) z-parameter indicated possible nonplanarity of the guanidinium
ion in the special position, but this parameter also had an apparently

+ Unless otherwise stated, the R value is that for the independent F:..’s, i.e.,
multiplicity is neglected. This is the R value calculated by the Busing-Levy pro-
gram.
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large estimated error, 0.0115, indicative of potential difficulty. Twelve of
the atoms had calculated thermal parameters which did not satisfy all
the criteria for physical reality (see Ref. 13). Therefore, for cycle 4 some
of the thermal parameters had to be adjusted to satisfy these criteria.
Also, the N(II) y-parameter was corrected. The R value and error of fit
decreased considerably since cyele 2, but the weighted R value increased
slightly. The same rejection test as used for eycle 3 allowed 809 reflections
to be included in the cycle 4 calculation. The least squares calculation
led to an estimated error of fit of 2.23, not too different from that esti-
mated in the previous cycle.

In cycle 4, the values of the N(II) thermal parameters decreased,
indicating that the high values had been caused by the wrong y-parame-
ter. One would prefer to think, however, that the y-parameter should
have tended to approach the correct value rather than to have the
thermal parameters act as if thie atom should be removed. This time the
z-parameter of N(I) (atom 6) became rather large, implying too large a
C—N distance. A number of the other positional parameters showed
oscillation, and again there were twelve atoms which had thermal
parameters not satisfying the criteria for physical reality (Table II).
The O(III) z-parameter continued to imply a short S—O distance.
The C(IT) and N(II) atoms did not have the same values in z-parame-
ter, nor did the C(I) and N(I) atoms have the same z-parameter. Also,
in this cycle many of the scale factors, especially s, had almost reached
their starting values after having at first decreased substantially.

The necessary adjustments were made on the thermal parameters
before eycle 5 was carried out. Also, the rejection test was removed. Five
reflections which appeared to have substantial contribution from the 54
hydrogen atoms or to have suffered from extinction were given zero
weight. Thus, of the 852 reflections, 847 were used in the cycle 5 least
squares caleulation. Because some of the initially estimated o(F,)’s werc
really very small, a few of these also were readjusted. Initially the R
value was 0.198, while the weighted R decreased to 0.139, this latter
reduction resulting mostly perhaps from the few adjustments made on
the o(F,)’s. The error of fit for the 847 reflections was larger than for
the 809 of the previous eyele. The calculated estimated error of fit after
the least squares caleulation did decrease, however.

But in cycle 5 there was no improvement in the way the calculation
was going. There were further oscillations, and, very important, the
C(II)—N(II) distance continuing from cycle 3 was short, whereas the
C(I)—N(I) distance continued to be long. Considering the guanidinium
ion to be planar, the C—N distances were respectively 1.22 and 1.48 A&,
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the average is 1.35 Ain good agreement with the acceptable guanidinium
C—N value 1.34 A.16 Again this indicated interaction between the N(IT)
2- and y-parameters and the N(I) z-parameter. Also, the parameter
values of the S(I) and O(III) atoms still indicated an improbably short
S—O distance. There were other indications of interaction: for example,
the y-parameters of the O(V) and O(VI) atoms (2 and 3 respectively)
behaved strangely, that of O(V) indicating an improbably large [SOy]
0—O0 distance, that of O(VI), too small an [SO4] O—O distance.

It seemed at the time, however, that there might be other possibilities
for explaining the course of events in the attempt to refine the structure.
For example, there could be many reflections to which the hydrogen
atoms would contribute, and, perhaps particularly because this is a non-
centrosymmetric structure, the affected structure amplitudes were hav-
ing a detrimental effect. Therefore, in cycle 6 all reflections for which
sin’/A* < 0.0800 were given zero weight. Necessary adjustments were
made in thermal parameters (Table IT); the N(I) and N(II) positional
parameters were readjusted each to yield the C—N distance 1.34 R;
and the O(V) and O(VI) y-parameters were adjusted to yield more
reasonable [SO4 O—O distances. The R value for the 755 amplitudes
(with nonzero weights) was 0.200, weighted ® = 0.128 and error of fit,
2.82.

In the cycle 6 least squares calculation, only 43 parameters were
varied: the scale factors and all positional parameters except the N(I)
a-parameter. The estimated error of fit decreased to 2.38, but this cycle
was also discouraging in that again there were oscillations and some
rather large changes in parameter. The S(I)—O(ITI) distance continued
to remain improbably short; the O(VI) y-parameter again implied too
short an [SO,] O—O distance; and the values of the N(II) z- and y-
parameters implied a C(IT)—N(II) distance of 1.25 A.

In the paper on the gallium isomorph,' we had concluded that the
arrangement of the guanidinium ions on the threefold axes were related
to that at 3m to close approximation by %,2,0 and %,3,0 — (u,0,w;
0,u,w; %,a,w). However, some doubt remained, and therefore it was
decided to try some different orientations of the guanidinium groups.

Tor eycle 7, the N(II) parameters were readjusted, presumably back
to the starting parameters of cycle 6. However, a card-punch error
(0.5333 instead of 0.5533) was made in the ax-parameter. The N(I)
parameter was set to —0.1130. This we shall call the (—,— ) orienta-

T This symbolism is derived as follows: The =+ orientations of N (I) are those for

which in (x,0,2) of positions 3¢, zn(y = ==u where w is very nearly +0.113. The &

orientations of N (II) are those for which in (z,y,z) of positions 6d, zxan = % =+ u,
y = %. Thus (=,—) here means that axq) = — 0.113, zxan = 0.220, ynan = 0.667.

By symmetry the latter two are equivalent to 0.553 and 0.333 respectively.
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tion. The positional parameters of O(VI) were also readjusted. The R
value for the 755 reflections increased to 0.250, the weighted R to 0.187,
and the error of fit to 4.10. In cycle 7 all scale and positional parameters
were varied. At the end of the cycle, the estimated error of fit was 3.53.
The C(II)—N(II) distance again was too short, ~1.21 A; again the
O(VI) y-parameter decreased from the adjusted value; the difference in
the C(I) and N(I) z-parameters increased. Also again there were oscil-
lations. The results of cycle 7 did not look promising.

In eycle 8, the (4, ) arrangement of the guanidinium ions was tried
with the other starting parameters the same as those used in cycle 7.
In this case the R value for the 755 amplitudes was 0.231, weighted R,
0.155, and error of fit, 3.40. Again only scale and positional parameters
were varied. The estimated error of fit obtained at the end of the least
squares calculation was 3.14. The results of this cycle looked promising.
The C—N distances looked good; the O(V) and O(VI) parameters
were not too bad. However, the S(I)—O(III) distance still looked
improbably short. The agreement for individual amplitudes actually did
not look as good as it did in cycle 6, but it was felt that perhaps some of
this poorer agreement resulted from hydrogen contributions and/or from
required changes in thermal parameters.

It was decided to continue to cycle 9 using the values of scale and
positional parameters obtained in cycle 8. The R value increased to
0.240; the weighted R value decreased to 0.140; the error of fit was very
close to that previously estimated. Despite this, the parameter results
of this cycle (Table II) looked even better than those of the previous
cycle, but the S(I)—O(III) distance continued to be improbably
short.

The scale and positional parameters resulting from ecyecle 9 were used
in cycle 10. There was not much change in R, weighted R or error of fit.
In eycle 10, all scale and positional parameters which had changed less
than 1¢ in cycle 9 were held constant and all thermal parameters were
allowed to vary. The estimated error of fit at the end of the cycle was
2.55. It appeared that the thermal parameters of the N(II) atom in-
creased considerably as if trying to eliminate this atom, and as before
this seemd to be an indication that the N(II) atom was not placed
correctly. Also as if to compensate, the previously large B33 of N(I),
0.01480, decreased to —0.00095. Kight of the atoms had thermal
parameter matrices which were not positive definite.

With this continued disappointment, another notion became more
important. Was it possible that the structure given by Varfolomeeva
et al* was correct? It seemed advisable to make the calculation with the
model proposed by those authors. The results proved that the structure
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cannot possibly be correct. The initial R was 0.559, weighted R, 0.473
and error of fit, 10.38 for the 755 reflections. Examination of the calcu-
lated and observed amplitudes showed a great many very large dis-
crepancies indicative of an improbable structure. Only the scale and
positional parameters were varied in the least squares calculation.
Thermal parameters for the N atoms were those initially used in cycle 6.
All other thermal parameters were essentially those obtained in cycle 10
with necessary adjustments made. The initial and final positional
parameters are shown separately in Table II1, The estimated error of fit
was 8.92, indicating no real possibility of convergence. The parameter
changes were mostly drastic. The N(I) a- -parameter, for example, would
imply a C(I)—N(I) distance of 1.16 A. Interestingly enough, the
S(I)—O(III) distance continued to remain very short.

In cycle 12, the guanidinium ions on the two three-fold axes (i.e., at
2 L and % %) were turned 30° from their original positions. The thermal
parameters were the same as those used initially in cycle 11 and are
shown in the next to the last columns of Table II. The R value was
0.238, weighted R, 0.154, and error of fit, 3.38 (the latter two being
somewhat higher than for the starting parameters of cycle 10). The
estimated error of fit obtained from the least squares caleulation was 3.14.
The results of this calculation did not look promising. The C(I)—N(I)
distance was large; there was an extraordinarily large change in the
z-parameter of O(VIII). Also, agreement of many individual amplitudes
was poorer than for the very first orientation of the guanidiniums. In
fact, from the calculations of eycles 7-10 and cycle 12, it had become
apparent that the (4,— ) orientation was indeed the best. It also ap-
peared that disorder or rotationt of the guanidinium ions was highly
unlikely unless very subtle. In the case of complete disorder or the
equivalent free rotation, there would be no contributions from the nitro-
gen atoms to the amplitudes F..;, b — k £ 3n, exactly as in the case
of the (+4,+) orientation. This alone makes it appear that the orig-
inally reported' (+,—) orientation of the guanidinium ions was corrob-
orated.

In cycle 12, the normal equations and inverse matrices were obtained.!
Examination of the inverse matrix showed that there were large values
of correlation coefficients, p;; = b:;/\/bib;; , for many pairs of parame-
ters. A few examples are:

1 Two reports!?-18 based on nuclear magnetic resonance investigations of G.A.
S.H. mention the possibility of rotation of the guanidinium groups. We have
learned (by private communication) from, and have been permitted to quote, the
author, D. W. McCall, of one of these,” that further investigation now indicates
that this rotation is highly unlikely.



TaBLE III — PosrrioNan ParaMeETERS. CYCLE 11
Coordinates Coordinates
Atom Atom

x y z x y z
1-N1I) 0.2200 —0.3330 0.0000 Initial 10 - O(I1I) . 0.3699 0 —0.0820
0.2047 —0.3304 —0.0305 Final 0.3651 0 —0.1185
2-0(V) 0.3449 0.1166 —0.3130 Initial 11 - O(1II) —0.4412 0 0.2764
0.3512 0.1250 —0.3122 Final —0.4246 0 0.2739
3-0(VI) —0.3211 —0.1137 0.2450 Initial 12 - O(I) 0.4538 0 —0.3260
—-0.3281 —0.1123 0.2025 Final 0.4688 0 —0.3351
4-0(IX) —0.4654 0.3272 0.3400 Initial 13 - S(I) 0.3479 0 —0.2433
—0.4639 0.3327 0.3434 Final 0.3469 0 - 0.2502
5-0(X) 0.4647 —0.3391 0.5600 Initial 14 - S(1I) —0.3174 0 0.3144
0.4647 —0.3422 0.5294 Final —0.3200 0 0.3079
6-N() 0.1132 0 0.4500 Initial 15 - C1ID) 1 2 0.0000
0.0987 0 0.4124 Final 3 2 0.0110
7 - O(VIII) —0.1304 0 -0.1208 Initial 16 - A3+ (I1) 1 2 0.4430
—0.1375 0 —0.1073 Final 3 2 0.4396
8- O(VIID) 0.1426 0 0.1175 Initial 17 - C(I) 0 0 0.4500
0.1367 0 0.1260 Final 0 0 0.40694

9-0(1V) —0.2912 0 0.4756 Initial 18 - A+ (D) 0 0 0

—0.3180 0 0.4471 Final 0 0 0

‘H'S'V'D J0 XaALs AVU-X
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Zo(vy — Zoam, 0.81
Zov) — 2o,  0.58
2Zoax) — Zo(vin, 0.84
2oatv) — 2oain, 0.65
2s(m — %ap, 0.96.

It is noteworthy that the correlation coefficient for zyap—axa@ was
very low, 0.10; it will be seen later that this low value resulted from the
incorrect orientation of the guanidinium (II) ions.

It seemed unlikely that the weighting scheme could be the cause of
the difficulties encountered. Nevertheless, it was decided to try a
weighting scheme radically different from that used in the first twelve
cycles.

In cycle 1’ (Table IV), all amplitudes with sin’9/A*> < 0.0800 were
still weighted zero. Also all unobserved amplitudes were to be weighted
zero and all observed, unity. However, a number of amplitudes which
should have been weighted zero were weighted unity, and a few which
should have been weighted unity were weighted zero. This left 534
reflections included in the least squares calculation. The initial parame-
ters were those from cycles 9 and 10, except for the N’s which were
started at the exact (+,—) orientation and the O(III) z-parameter
which was started at —0.405 to give an S—O value closer to 1.48 A.
The R value was 0.204, weighted R, 0.149 and error of fit 2.19 for the
534 amplitudes and these parameter values. The least squares calcula-
tion gave an estimated error of fit of 1.90. Again the S(I)—O(III) distance
decreased to 1.38 fi, the C(I)—N(I) distance increased again and the
C(II)—N(II) distance decreased again. Some of the other distances are
listed in Table V.

Starting with this calculation, the vector v; = (v wD:) (VwA) was
obtained as outputf as well as the direct and inverse matrices,” the
purpose being to see whether Ap.’s from the diagonal term approxima-
tions would be much different from those obtained by the exact solution
of the normal equations. Not many of these were checked in this and
subsequent cycles, but enough differences were found to indicate the
importance of the off-diagonal terms.

It appeared that it would be most convenient to have the correlation
or normalized inverse matrix to examine in each cycle. A program patch
to enable us to do this was written by Misses D. C. Leagus and B. B.
Cetlin.

T The program patch for this calculation was written by Miss D. C. Leagus.
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TaBLe V— SoMe InTeERATOMIC DIisTaANcES OBTAINED FROM
LeAasT SQUARES CALCULATIONS (SEcoND SET oF WEIGHTS)

. Cycle 1/ Cycle 2/
Distance i i
C(N)—N() 1.40 1.43
C(II)—N(II) 1.29 1.25
S(IH—O0(V) 1.46 1.44
S(I)—O(I1I) 1.38 1.38
S(IH—0(I) 1.46 1.44
S(II)—O(VI) 1.47 1.48
SII)—O(IV) 1.48 1.50
S(I1)—O(II) 1.50 1.49
AlD)—O(VID) 1.92 1.89
AND)—O(VII) 1.86 1.86
Al(ID)—O(IX) 1.90 1.92
Al(ID—O0(X) 1.91 1.91

In cycle 2’ the starting parameters were the same as those resulting
from cycle 1’ (new weights) except for the z-parameters of N(I) and
N(II) and the z-parameter of N(I). Also, it was found that under the
conditions set for the weighting in cycle 1’, only 496 amplitudes should
have been weighted unity. IFor these reflections and the starting parame-
ters shown in Table III, the R value was 0.176, weighted R, 0.119 and
error of fit, 1.85. Again only scale and positional paramcters were allowed
to vary. Changes were not large except for the N and C(II) parameters.
Some distances calculated from these parameters are given in Table V.
(C—N distances are always on assumption of planarity of the guani-
dinium group.) Note that again the C(I)-—N(I) distance is short, the
C(II)>—N(II) long, but the average is the expected value for such a
bond. Also noteworthy is the continued tendency of S(I)—O(ILI) to
be short. In fact, there is a tendency throughout for the S(I)—O dis-
tances to be shorter on the average than the S(IT)—O distances. Ex-
amining the correlation matrix for this cycle we may summarize the
results as follows (Table VI). Only those pairs for which | p | = 0.40 are
listed. Thus of the 946 p;; (¢ # j) terms only 75 are =0.40. Important
also is the fact that a large number, 677, of the terms are less than 0.10,
many much less than 0.10; 194 of the | p;; | lic between 0.10 and 0.40.
These could be important especially if one parameter has many inter-
actions of moderate size with other parameters.

Earlier we gave some examples of | p;; | that were calculated from the
inverse matrix of cycle 12 (old weights). It is seen from examination of
Table VI that the values for the particular | pi; | obtained from cycle 2
are essentially the same except for the value for the xygp—2on@ in-
teraction. The value is much higher, 0.62, than the one, 0.10, obtained



TaABLE VI — CorreLaTION COEBFFICIENTS FROM CycLE 2’ (ONLY | psj| > 0.4 ARe LisTED)

o] —Jt, 52,58,
0.40-0.50 11-17,20,23,27,29,37; 14-41; 17-20,23,27,29,31,35,43; 20-25,33,37; 23-31,33,37; 25-29,39; 27-31,37,43; 20—
31,33,37; 31-37; 33-39; 35-37
0.50-0.60 9-10; 11-39,41,43; 12-15; 14-17,37; 17-39,41; 18-19; 20-31,43; 21-22; 23-43; 27-29,30,41; 20-39,41 43;
31241,43; 33-41: 37-39,41 43
0.60-0.70 9-24; 11-25; 13-34; 16-36; 18-28; 20-23,27,35,39,41; 21-26; 23-29,41; 31-33,39; 38-40
0.70-0.80 23-39; 39-43; 41-43
0.80-0.90 14-35; 17-37; 20-29; 23-27; 42-44
0.90-1.00 39-41
Parameter Numbers
Parameter S1 S2 83 84 S5 Se Sz Sg N{ID):x Y z
Number 1 2 3 4 5 6 7 8 9 10 11
OV):z Yy z O(VD):z Y 2 O0(IX):z Y z
12 13 14 15 16 17 18 19 20
O0X):x y z N{I):z z O(VIIL):z z O(VID):z z oO1V):x 2z
21 22 23 24 25 26 27 28 29 30 31
O(I1l):x z OII):z z o) :x z S(D):x z S(I):z z C(I):z
32 33 34 35 36 37 38 39 40 41 42
Al(D):z | C(D):z
43 44

0¥y
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from the incorrect orientation of the guanidinium ions. Thus, éncorrect
values for paramelers can uncouple parameters. Furthermore, this ap-
pears to be the reason that there was not much change in the incorrect
y-parameter of N (II) in the first three cycles. That is, a parameter which
is given a value which tends to make it independent may not change
rapidly to a value which tends to make it dependent.

The purpose of the next cycle was to see the results of allowing the
parameters, both positional and thermal, of only the N and O(III)
atoms to vary. Before carrying out this calculation, however, the posi-
tions of hydrogen atoms were estimated. The guanidinium ions were
considered to be essentially planar, and the z-parameters of the guanidi-
nium H’s taken as 0.55 for those about the threefold axes at 3,2 and
2 %, and 0.505 for those about the axis at 0,0. I'or the water molecules,
the links with the SO, oxygen atoms were considered and the tilt of the
water molecule estimated accordingly. In any given level of HyO mole-
cules about either of the nonequivalent axes, the z’s were taken equal.
The H—O—H angle was taken as 105° and the O—H distance, 0.96
A. (The initial H-parameter values will not be listed; however, the
last set used will be listed later.) First, H contributions to the F.; for
h,k,l positive were calculated for two different orientations of the
guanidinium ions, namely: (+,—) and (+4,+). (The program used
for this caleulation was written by R. G. Treuting; the atomic scattering
factors for H were those of Viervoll and Ogrim."®) These calculations,
together with consideration of previous calculations of the amplitudes,
corroborated the conclusion that the (4,—) orientation was the most
probable one.

The N-parameters were readjusted to yield the most probable C—N
distance, and the z-parameter of O(II1) was started at —0.405. Those
observed amplitudes with sin’6/\*> < 0.0800 which were not strongly
affected by extinction were reweighted unity. The total number of re-
flections weighted unity was 568. The H atoms were put into the calcu-
lation as ““fixed atoms” (sec Ref. 13) with isotropic temperature factor
B = 3.00 A% The over-all R value was 0.177, weighted R, 0.117, and
error of fit, 1.90.

The results of the least squares calculation are given in Table 1V
cycle 3’. It is seen that the O(III) z-parameter returned to that of the
previous cyecle. The N(I) x-parameter increased somewhat, implying a
C(I)—N(I) distance of 1.37 A. The parameters of N(II) imply a
C(I1)—N(II) distance of 1.33 A.

In Table VII, we list those correlation coefficients greater than or
equal to 0.40. If this table is compared with Table VI, one finds that the
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coupling of N(I) and N(II) positional parameters is still as strong as in
the previous cycle. In both cyeles 2" and 3, the correlation matrices
showed no strong interaction between O(III) and nitrogen atom
parameters. The correlation matrix of cycle 3’ indicated that there are
some very strong interactions in pairs of thermal parameters. As ex-
pected, there was corroboration of a strong interaction between the
Bss’s of the N atoms.

For this case, it might be worthwhile to show the Ap,’s obtained from
the complete solution of the 21 normal equations compared with those
obtained from the diagonal term approximation. These are given in
Table VIII together with the ¢’s calculated by the Busing-Levy pro-
gram. As expected, several of the Ap/’s for particular 7 are quite different,
particularly for those which are highly correlated (see Table VII).

Before proceeding to the next cycle, the calculated and observed data
were examined for any outstanding discrepancies and rechecks were
made on the intensity data. It was found that 27 of the reflections which
were listed as observed should have been listed as unobserved. It was
also found that 5 reflections which were recorded as unobserved should
have been observed by the instrument but were missed. These were
obtained from film data.

Slight changes were made in the H-parameters; the x-parameter of
N(I) was returned to 0.113 and necessary changes made in the B;; and
B3 thermal parameters of N(I). Now the Busing-Levy program calcu-
lates and stores all derivatives, so that it is possible to allow different
sets of parameters to remain constant and solve for sets of Ap; for each
initial set of parameters. In cycle 4’a, therefore, we first allowed only
the N(I), N(II), and O(III) parameters to vary and then in 4’b,

TaBLE VII — CorreraTioN CoOEFFICIENTS FROM CycLe 3/

Io] i,j
0.40-0.50 1,2 7,12 8,9 8,15
0.50-0.60 4,7
0.60-0.70 1,10 5,7 5,14 .
0.70-0.80 311 6,13
0.80-0.90
0.90-1.00 12,14 18,20
Parameter numbers
| x ¥ z B B2z B33 ‘ Bz P13 ‘ Baa
N(1I) 1 2 3 4 5 6 7 8 9
N() 10 11 12 13 14 15
O(III) 16 17 18 19 20 21
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TABLE VIII — PARAMETER CHANGES AND IERROR LESTIMATES
FroM CycLE 3’

443

Pmeower | Busing Lewy Disgonal term AL
1 —0.0029 —0.0020 0.0027
2 —0.0056 —0.0027 0.0022
3 0.0058 0.0046 0.0037
4 —0.00661 —0.00105 0.00268
5 0.00270 0.00418 0.00245
6 0.00231 0.00477 0.00420
7 —0.00273 —0.00136 0.00202
8 —0.00227 —0.00333 0.00271
9 —0.00371 —0.00053 0.00225

10 0.0048 0.0051 0.0025
11 0.0057 —0.0030 0.0048
12 0.00411 0.00023 0.00296
13 —0.00124 0.00172 0.00527
14 0.00614 0.00113 0.00466
15 —0.01098 —0.00983 0.00552
16 —0.0003 —0.0009 0.0014
17 0.0121 0.0120 0.0023
18 0.00092 0.00160 0.00228
19 —0.00216 —0.00133 0.00311
20 —0.00145 —0.00230 0.00307
21 0.00419 0.00025 0.00351

varied all parameters except the scale factors. The results are shown in
Table IV. Again in both cases, the N(I) z-parameter increased; there
were changes in the N(II) parameters, but the implied C—N distance
1.35 A was good. Also the z-parameter of O(III) seemed to improve,
especially when all the parameters were allowed to vary. But in 4'a,
the thermal parameter matrix of the N(I) atom was not positive defi-
nite, while in 4’b, seven atoms had thermal parameter matrices which
were not positive definite. Also there were continued oscillations and
large error estimates. It was evident that real convergence would not be
attained.

However, because the N and O(III) parameters did look encouraging,
it was decided to try one more cycle. This time the parameters of the
water hydrogen atoms were recalculated in a somewhat different way.
In a recent paper,” Aleksandrov, Lundin and Mikhailov report results
of a study of the distribution of hydrogen atoms in guanidinium alumi-
num sulfate hexahydrate by means of proton magnetic resonance experi-
ments. They report that the nearest neighbor p—p (proton-proton)
vectors are perpendicular to the a; , a» and a; axes.t They argue that on
the basis of symmetry considerations all H atoms bonded to O’s in a

1 Previously, Spence and Muller!® had reported this to be so for the p — p

vectors of the water molecules, but had concluded that the p — p vectors of the
guanidinium groups could be parallel to the c-axis with a separation of 2.05 A.
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single octahedron layer about a threefold axis must have the same
z-parameter. Of course, this is true only for those hydrogen atoms
bonded to N(I) atoms and to the water molecules about the threefold
axis at 0,0. The trigonal axes and planes of symmetry are such that only
three atoms about the axis at $,% and three about the axis at 2,1 must
have the same value of z. !

Thus contrary to the statements of Aleksandrov et al,” symmetry
conditions do not require all the nearest neighbor H—H vectors to be
parallel to the (00-1) plane, nor must they all be perpendicular to the
a;, a; and a; axes. Only for those about the threefold axis where the
mirror planes intersect, namely at 0,0 must this be the case. However,
it is possible that the nearest neighbor H—H vectors about the three-
fold axes at 3 2, 2 1 are close to parallelism with the (00-1) plane and
perpendicularity to the a, , as , a; axes.

Turthermore, Aleksandrov et al refer to the trial structure reported
by Varfolomeeva et al.’ Although that structure is incorrect, it would
have no noticeable cffect on the conclusions of Aleksandrov et al, since
they discuss only the nearest neighbor H—H veetors.

Thus, in calculating the H parameters, the tilting of the water H—H
bonds out of the (00-1) plane and skewness to the a;, @y, a; axes was
permitted in those water molecules about the threefold axes at § %, £ 1.
(The guanidinium ions, however, were assumed to be planar.) In calcu-
lating the H positions, the water molecules were assumed to lie in the
planes connecting the water oxygen atom with the two sulfate oxygen
atoms involved in the hydrogen bonding. The bisector of the H—O-—H
angle of 105° was taken as the line passing through the center of the
water oxygen atom and the center of the line connecting the two sul-
fate oxygen atoms involved. The parameters of the N and O atoms
involved were those from cycle 4’b. The H-parameters thus deduced are
listed in Table IX. The new parameters caused some differences in the

TaBLE IX — H PAraMETERS UsEDp IN FIiNnaL CycLE

Description x y z
on N(I)(atom 6) 0.205 0.086 0.51
on N(II)(atom 1) 0.465 0.256 0.56
0.564 0.434 0.56
on O(VIII)(atom 7) 0.139 0.218 —0.148
on O(VII)(atom 8) —-0.072 0.134 0.156
on O(IX)(atom 4) 0.457 0.257 —0.124
0.526 0.400 —0.111
on O(X) (atom 5) —0.452 —0.260 0.205
0.464 0.588 0.219
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contributions to several amplitudes, but in general not very important
ones.

Some necessary adjustments of thermal parameters resulting from
cycle 4'b were made. In cycle 5'a,t only those positional parameters
were varied in which changes greater than ¢/5 occurred between previ-
ous cycles 2’ and 4/, all thermal parameters were varied in which there
were changes greater than o/5 between cycles 1’ and 4/; all scale factors
were kept constant. In b, only those parameters were varied in which
changes in 5’a were greater than ¢/5. In 5’¢, only positional parameters
were varied. In 5'd all parameters were varied. All results are listed in
Table IV. Differences range from very small to very large and are in-
dicative of the unattainability of convergence. We list also the ¢’st in
the Ap,’s for the last cycle 5’d in the last column of Table IV. These
are especially large for most of the thermal parameters and for most of
the z-parameters, and reflect the strong interdependence in pairs of
parameters.

The correlation matrix} for cycle 5'd contains 6,670 p;;(¢ # 7) terms.
Thus we shall again only list the values of | p;; | = 0.40 (Table X). Of
the 6,670 terms in the matrix, 176 have values greater than 0.40; 1,389
have values greater than 0.10.

On examining Table X, one finds that no interactions of scale factors
with positional parameters are listed. In fact, the correlation coefficients
for such combinations are all very low. However, there are all the other
types of interactions, namely: scale factor-thermal parameter, thermal
parameter-thermal parameter, positional parameter-positional parame-
ter, and several (those with asterisk) positional parameter-thermal
parameter. Most often, also, the interdependence is between analogous
parameters; for example, a z-parameter of an atom interacts with z-
parameters of other atoms. Even when a positional parameter inter-
acts with a thermal parameter, an analogy exists, e.g., a z-parameter
interacts with a Bs-parameter. This makes physical sense, of course,
and gives us some confidence that the correlation coefficients reflect the
structural interdependence of the paramecters. Correlation may be
caused partially by the experimental technique§ but it is unlikely to
result mainly from the ill-conditioning of the normal equations by a

1 It should be kept in mind that all cycles 5’ refer to the derivatives evaluated
with the parameters of cycle 5'a.

1 It is worth emphasizing that statistical theory precludes the use of the error
estimates or normal equations matrix to determine the statistical significance of
the parameters listed. Only if convergence is actually attained can these numbers
be so used. Nevertheless, in a practical way, the error estimates and correlation co-
efficients do give us important information in the course of refinement or, as in the

present case, relative to the unattainability of convergence.
§ X-ray vs neutron diffraction.
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TaBLe X — CoRRELATION CoOEFFICIENTS FroM CycLE 5'd.T
(ONLY | pij| > 0.40 ARE LisTED)

lpl = 1,752,438,

0.40-0.50 | 3-4,5; 4-105; 6-75; 7-75; 8-75; 11-38,47,61,67,85; 15-56; 18-19,34;

20-471,61,97,103; 21-30; 24-30,86,88; 25-26,27; 29-47,61; 30-33;
36-37; 38-61,103; 40-51,62; 42-68; 43-661; 44-461; 45-46; 47-55,
67,73,85,91,103; 51-64; 52-53; 55-97,103; 57-59; 61-73,79,85,91,
63-60; 67-103; 75-81; 77-791,83; 79-831,97,103; 81-83; 97-108,114,
103-108,114; 105-113; 108-110%; 113-116

0.50-0.60 | 4-5,6,7,8; 5-113; 8-99,113; 11-97,103; 12-15; 13-15,58; 16-50;
10-84; 20-01; 22-24; 26-89; 27-941; 29-85,97,103; 30-94; 37-531;
38-47,97; 39-42; 41-50,63,69; 43-71; 47-97; 48-51; 50-69; 51-62;
61-97.103; 67-97; 73-831,97,103; 85-91,97,103; 110-115
0.60-0.70 | 5-105; 13-56; 14-57; 20-29; 21-24,88; 23-86; 27-92}: 28-90; 30-92;
37-46; 40-42,49,68,70; 49-64; 52-65; 7278 801,821; 74-78%; 76~
781; 86-88; 96-1041,1061; 98-102%; 100-102f; 108-1153; 1111163

0.70-0.80 5-6,7,8; 8-105; 9-54; 18-27; 21-86; 32-93; 35-95; 36-66; 45-60;
49-51,62; 50-63; 96-102; 108-114; 111-115%

0.80-0.90 6-7,8; 11-55; 25-91; 38-67; 62-64; 73-79; 98-100
0.90-1.00 7-8; 47-01; 56-58; 68-70; 74-76; 80-82; 92-94; 97-103; 104-106

T See last column of Table IV for parameter numbers.
1 Positional-thermal parameter correlation.

reasonable but not necessarily ideal weighting technique. It will be
noticed also that the same pairs of parameters show very nearly the
same measure of interdependence as indicated by earlier calculations,
again corroborating the point that it is the structural model (including
atomic form factors) which causes the interactions.

TFor the sake of completeness, we show in Table XI a list of observed
amplitudes compared with those calculated from the parameters used
initially in cycle 5" and including the contributions of the H atoms with
parameters shown in Table IX. Including consideration of multiplicity
and the differences when calculated amplitudes are greater than the
threshold values (with half the threshold value included in the denom-
inator) for reflections not observed, the discrepancy factor is 0.11.F

The over-all agreement is quite good despite several discrepancies in
which a caleulated amplitude is above the threshold value for an unob-
served reflection.I Table XI attests to the validity of the conclusion
that the general features of the structure are correct.

+ Six amplitudes, those of reflections 30-0, 11-1, 211, 221, 42-1 and 2] .2, suffer-
ing from extinction were excluded in calculation of this discrepancy factor.

1 These are a product of the instrument which sometimes missed reflections,

which, according to visual estimates of photographic intensities, it should not have
missed.
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VI. FURTHER COMMENTS ON THE INDETERMINACY OF THE EXACT STRUC-
TURE OF GUANIDINIUM ALUMINUM SULFATE HEXAHYDRATE

6.1 Importance of the Weighting Procedure

The use of two very different weighting procedures did not break down
the high correlations existing between parameters. It is doubtful,
especially in the case of so large a number of parameters, that any
reasonable weighting procedure would succeed in uncoupling the parame-
ters sufficiently to lead to greater determinacy.

6.2 Effect of Keeping Some of the Paramelers Constant while Allowing
Others to Vary

In the case that there is correlation between parameters, it would seem
that, at least in the final stages of the refinement, holding of such parame-
ters constant could lead to erroneous results. In a case involving a smaller
number of parameters it might be possible to obtain a confidence region®
for all the parameters by holding some of the parameters constant, but
at several different values. For example, suppose the problem involves n
almost independent parameters and two almost completely dependent
parameters which appear to prevent convergence. Choosing several
judicious values of one of the latter and making the calculation for each
one will give sets of values for the other parameters which will allow the
construction of the equiprobability ellipsoids.

However, in a problem involving many parameters, and many large
and multiple correlations, such a technique would appear to be im-
practical. It should be mentioned that if the model were very nearly
linear, only those correlations very near 41 would be important in the
unattainability of convergence. However, it is possible that the more
nonlinear the model, the more important the other correlations become.

6.3 Posstble Effects of Increasing the Number of Observed Data

There are two ways in which the number of data might be increased.
One is to obtain more of the weak intensities by increasing the detector
sensitivity. It does not seem that this would have the effect of decreas-
ing the correlations. This was shown to some extent by the calculations
based on the two different weighting schemes. In the first case the
weighted evaluated derivatives for unobserved reflections were included;
in the second, these were given zero weight and therefore excluded.
Also, the exclusion of reflections for which sin*/A\*> < 0.0800 did not
have an apparently significant effect on the correlations. (Compare, for
example, analogous values in Tables VI and X.)
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The other way in which to increase the number of data is to use shorter
wavelength radiation. Now, it is not necessary actually to measure these
data before determining the effect on the correlations because the cor-
relation coefficients, as calculated, depend only on the model and the
evaluated derivatives. It is unlikely that the situation would change very
much if the additional terms were included because the relationship of
the derivatives with respect to correlated paramecters would probably
not change very much. ‘

In the case of tetragonal BaTiO;,”® higher index reflections would
have almost no important contributions from the oxygen atoms. Thus
the interactions among oxygen ion parameters will not be affected.
Similarly, interactions among the metal ion parameters will probably
not be much affected. But interactions between the two groups could be
reduced. However, in the case of an all light atom structure, it would
appear that the extra data would probably not reduce the correlations.

6.4 Possible Effect of Greater Accuracy in Measurement of Observed In-
tensitics

The effect of greater accuracy in measurement of the observed in-
tensities is not really predictable in this case. To be sure, in each iteration

the reduction of s = V/ =(VwA)’/A/m — n would reduce the apparent
size of the equiprobability surfaces. This we certainly know.

However, we must ask first whether there is a limit to the accuracy of
the observed amplitude. One would suspect that there is such a limit.
Turthermore as pointed out by Caticha-Ellis and Rimsky,” there will
always be a diserepancy between the calculated and true values of the
amplitudes. Thus s has a lower positive limit.

Reduction of s would not only decrease the size of the equiprobability
surfaces (and therefore, of course, the standard estimates of error) but it
would also decrease the components of the vector v, v; = Z(\/wD;)-
(v/wA), where the D, are the evaluated derivatives. Thus, for example,
if eycle 5’d were repeated with each A decreased to 3 of its value, each v;
and therefore each Ap; = Y _; b;v; would be reduced to the same extent.
Of course an average reduction of 4 might not do the same thing. In fact,
with a poor distribution of the reduction in A, the Ap; in some cases
could even be larger, depending on the algebraic values of the D; .

Actually the nature of the shape of the equiprobability surfaces might
give the best clue to what might happen if,increased accuracy of measure-
ment were attainable. The nonlinearity of the model would probably
play an important part. The more nonlinear, the more important are apt
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to be those correlations which are not perfect. Of course, even one perfect
correlation =1, renders the whole problem indeterminate’ if insistence
is made on allowing all parameters to vary in an iteration. This is not
necessary, however, and one could learn a great deal about the parame-
ters of a structure which has only one perfect correlation and the rest
very small ones (see Section 6.2). In the present case, there are many
correlations having absolute values between 0.90 and 1.00 (Table X).
These have the specific values: 0.917, 0.905, 0.913, 0.907, 0.975, 0.963,
0.901, 0.979, and 0.902, respectively. Perhaps the most important ones
are the three closest to unity.

In the case of gross nonlinearity it seems possible that these and so
many of the other high correlations of Table X could cause unattain-
ability of convergence even if the lowest limit of s were attained. That is,
the shape of the equiprobability surface may be such as to prevent the
practical attainment of separate estimates of the parameters (see also
Ref. 21) from the given data. This seems to be true of the BaTiO;
case.™® '

Needless to say, a measure of doubt remains. Further work might aid
in removing this doubt. This would involve trying to obtain more data
and of greater accuracy, and further calculations. Our doing this is not
presently contemplated.

6.5 Fourier Synthesis vs Least Squares

In the case of tetragonal barium titanate, Ifourier synthesis produced
no improvement on the least squares method.” It is likely that with the
present data, the situation in the case of the G.A.S.H. would be the
same. On the other hand, there is no requirement of linearity in the
Fourier synthesis: the actual amplitudes are the Iourier coefficients.
In the least squares technique, an approximation is used: i.e.,

Fr(pr,p2, - +pn) = Fua(Pr + Apy, Do + Ape, -+, + Apy)

Oy,
= Fua(Pr, P2, -+ Pn) + Z rit

j=1 J i |p;

Ap;

where $;,7:, +--,P. are approximate but nearly true values of the
parameters. It is possible that higher order terms could be important
here, but it is not clear that inclusion of the next higher order terms would
necessarily lead to improvement. Also, the calculation would increase in
complexity.

Cochran has shown that a rather close relationship exists between the
Fourier synthesis and least squares techniques. There are conditions on
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this relationship given by Cochran® and Hoard and Geller®, and in
addition in the actual least squares calculation, an approximation is
made and nearness to linearity is assumed. Therefore, if the nonlinearity
is not serious, convergence should be attainable in either case. If it is
serious, the relationship could break down further and the TFourier
synthesis could conceivably converge when the least squares calculation
tends not to converge.

VII. COMMENTS ON THE SINGLE-CRYSTAL AUTOMATIC DIFFRACTOMETER

As mentioned carlier, the data used in this work were collected four
years ago. Since that time only one or two attempts were made to use
the instrument for other studies. These were unsuccessful because of
difficulties which are probably surmountable, but require modification
of the instrument.

The present instrument puts & lower limit on the sample size. To keep
the time for recording a layer within reasonable bounds and to prevent
the instrument from reacting to background scattering, only intensities
above a certain preset count energize the circuitry which sets the crystal
back and shifts speed. To obtain satisfactory counting rates the use of
large crystals is required. (The intensity is proportional to the number
of unit cells irradiated.) However, to obtain adequate or meaningful
intensities from highly absorbing materials one must have small crystals.
In short, the instrument presently is suited mainly to crystals with low
absorption and from which sizable eylindrical specimens can be made.

The indexing of the reflections was a tedious process. The possibility
of error, particularly at the high angles, was great, but the use of photo-
graphs and cross examination of data helped prevent errors. An improve-
ment on the Bond-Benedict automatic single-crystal diffractometer
would be provision for foolproof pre-indexing of the reflections.

VIII. SUMMARY

Extensive application of the least squares refinement technique
(through the use of the Busing-Levy IBM 704 program) to three-
dimensional X-ray data from crystals of guanidinium aluminum sulfate
hexahydrate indicated that although the structure as originally reported
for the isostructural guanidinium gallium sulfate is essentially correct,
an exact structure is unattainable from the present data by means of the
least squares method of refinement. The numerous high correlations of
pairs of parameters, apparently linked with the nature of the structure,
appear to be a primary cause of prevention of convergence.
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The course of the calculations has been outlined with special emphasis
on some of the more obvious parameter interactions, but tables are given
to enable the more interested reader to examine the results in somewhat
greater detail.

The work also further demonstrates the importance of the correlation
matrix as a tool for establishing the existence or nonexistence of inter-
dependence of structural parameters.
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Discrimination Against Unwanted Orders
in the Fabry-Perot Resonator

By D. A. KLEINMAN and P. P. KISLIUK
(Manuseript received September 20, 1961)

It is proposed here that the usual Fabry-Perot interferometer structure of
the optical maser may be modified in a very simple way to provide discrimi-
nation against unwanted orders. The modification is an extra reflecting sur-
face suitably positioned outside the maser which can greatly affect the losses
of the various orders. A simple one-dimensional analysis is given for the
effect, and numerical results are presented for a realistic case, showing that
the effect can be large. It 1s concluded that this technique may be useful in
preventing unwanted oscillations in the optical maser.

I. INTRODUCTION

The Fabry-Perot interferometer has recently become important as a
resonant cavity for electromagnetic radiation at optical frequencies.'***
The nature of the modes of such a cavity has been discussed by Schawlow
and Townes' and by Fox and Li.’ The modes may be specified by three
quantum numbers, one of which is the familiar order number giving the
separation of the plates in units of the half-wavelength. The other two
quantum numbers specify the possible field configurations across the
plates, which are essentially identical in each order. FFox and Li have
investigated these configurations and the corresponding frequencies and
losses for interferometers consisting of perfectly reflecting plates in air. In
the usual laboratory interferometer the Fox and Li modes cannot be
resolved because of insufficient reflectivity of the plates. Therefore the
role played by these modes in optical masers is not settled. On the other
hand, fine structure which could be due to various Fabry-Perot orders
has been seen in the output of both the gas® and the ruby’ optical maser.
It has been pointed out® that the optical maser is inherently a multi-
mode device, and that the excitation of many modes can lead to unde-
sirable effects in the noise, stability, and ultimate usefulness of the de-
viee. Therefore it is proposed here that it would be useful to discriminate
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against many of the Fabry-Perot orders which can occur in the output
by increasing their losses relative to other “preferred” modes.

The Fabry-Perot orders present a problem only when the fluorescence
emission of the maser covers a frequency band wider than (2ud)™ wave
numbers, where u is the refractive index and d the separation of the
plates. This is the case in the gas maser of Javan, Bennett, and Herriott®
where (2ud)™" ~ 0.005 cm™" and the doppler broadened Ne transition
would be expected to have a width ~0.05. Also, in the ruby optical maser
of Collins et al’, (2ud)™ ~ 0.1 while the fluoresence line width at room
temperature ~10. The orders cannot be eliminated in these cases by
shortening the maser and hence spreading the orders, because the gain
would then be insufficient to produce oscillations.” In ruby, however, the
gain could be increased’ by more than an order of magnitude by cooling,
so that the crystal could be shortened. At the same time, the cooling
could decrease the line width by more than an order of magnitude, so
that elimination of orders appears possible in ruby optical masers by cool-
ing. These examples show the interrelation of gain, line width, and the oc-
currence of Fabry-Perot orders in the optical maser output.

The idea of using a Fabry-Perot interferometer to discriminate against
unwanted orders in the optical maser has occurred to a number of
people. Indeed, if the external beam contains several orders, a Fabry-
Perot etalon could be constructed which would transmit only one of
them. This, of course, would not necessarily have any effect on the losses
of the various modes in the maser. If the etalon were put in the internal
beam, elementary considerations do not tell us what to expect for the
relative losses of the modes. The structure to be proposed in the next
section is equivalent to making the etalon one of the reflecting ends of
the maser. It is believed that a detailed discussion of how discrimination
comes about in such structures is given here for the first time.

II. A MODIFIED INTERFEROMETER

It is proposed that another reflecting plate parallel to the maser plates
be provided outside the maser with a means for adjusting the separation
of the new plate from the maser. This would produce a modified inter-
ferometer having three essential optical surfaces with the active medium
in the space between two of these surfaces. It is expected that the separa-
tion of the third surface from the maser will be much less than the length
of the maser. The purpose of the extra surface is to provide discrimina-
tion between the Fabry-Perot orders of the original maser by making
some orders very lossy compared to other orders. The losses may be due
to scattering by inhomogeneities in the medium and irregularities on the
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reflecting surfaces, absorption by processes other than the fluorescence
process of the active medium, and transmission through the outer reflec-
ting surfaces. For convenience of discussion, all losses may be ascribed to
the last mechanism by assigning suitable effective reflectivities to the
outer surfaces. In any case, it is clear that the proposal has meaning only
when losses are taken into account, since the only other effect of the extra
surface would be to shift the frequencies of the already existing orders
by amounts less than (2ud)™" and to introduce new frequencies corre-
sponding to the increased over-all length of the modified interferometer.
Therefore the performance of the device cannot be deduced in an ele-
mentary way by considering the two regions between the surfaces as two
interferometers with the shorter preferentially selecting and rejecting
certain orders of the longer. The truth is that the modified interferometer
has more, not fewer, orders than the original maser, but unlike the latter
the orders may have very different losses.

III. ANALYSIS

For analysis it is convenient to consider the one dimensional problem
shown schematically in Fig. 1. A medium of real dielectric constant
e > 1 and real conductivity o occupies the region —a < 2z < a. For

b

-b -a [ a b
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b > —
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Fig. 1 — Schematic diagram of one-dimensional symmetric structure chosen
for analysis of modified interferometer. The value of the constant A is not needed
in the analysis.
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2] > aitis assumed that e = 1 and ¢ = 0. At # = +b are placed re-
flecting surfaces having the reflectivity for amplitude
r=e". (1)
Since the phase angle of reflection is unimportant here, it has been as-
sumed zero. For later use the quantity
T = tanh f (2)
will now be defined. The reflectivity of the surfaces at z = +a is
= (Ve—1)/("e+ 1). (3)
From (1), (2) and (3) one can write
= (1 —r)/(1+mn)
1/Ve= (1= r)/(1 +7a).

It is therefore possible in this example to consider arbitrary reflectivities
at z = sa,=+b by suitable choices for 7' and 14/¢ in the range 0 to 1.

The symmetry of I'ig. 1 about a plane at z = 0 causes the field to be
either even or odd with respect to reflection in this plane. The even solu-
tions are shown by (4 ) and the odd solutions by (—) signs in Flg 1.
The propagation constants are given by

ko = w/c

k= kel 4 i(4mo/ew)]’ (5)

ko€ + 1(2ma/c\/€) + - -

The continuity of the field and its derivative at 2 = a gives the conditions
k tan(ka) = —ko tan(ked — koa + 2f) (6)

(4)

li

for even modes, and
ko tan(ka) = +Fk cot(ked — koa + Zf) (7)

for odd modes. These equations give, in general, complex eigenvalues for
the angular frequency w.

It is convenient to require that w be real and allow & to assume an ap-
propriate negative value. Both w and ¢ are determined by (6) or (7) for
even or odd modes respectively. Physically this corresponds to supplying
sufficient gain through the negative ¢ to maintain steady oscillations at
frequency w. The larger the value of —¢ the greater are the losses of the
mode in question. Now let the dimensions be so chosen that

n(b — a) = mave (8)
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where m,n are positive integers. It is then possible to write
ko(b — a) = mx 4+ (m/n)A
Viekoa = nr + A.
The conductivity to be determined is contained in the parameter
x = tanh(2moa/cV/e). (10)

In any practical case the ratio k/ko occurring in (6) and (7) can be con-
sidered real, k/k; ~ 4/e. The equations for the real frequency and con-
ductivity then reduce to

(9)

m 1+ VeTx
tan A = —(tan —A ) —F——F7F-—F= (11)
an (an P ) Vot Ty
x = —T 1 — vV/e tan A tan (m/n)A (12)
Ve — tan A tan (m/n)A
for even modes, and to
tan A = <cot ’i’A> Vet xT (13)
)1+ A/exT
= —T Ve tan (m/n)A + tan A (14)

tan (m/n)A + /e tan A

for odd modes. When tan A is eliminated between (11) and (12) or be-
tween (13) and (14) the same quadratic equation for X is obtained,
namely

X' +2px+1=0 (15)
where
9y = & + T? + (1 + €I?) tan? (m/n)A (16)
P T\ e(1 + tan® (m/n)A)
The solution of (15) which reduces properly asr, — 0 (T — 1) is
x=—p+ |0 -1 (17)
When | x | < 1, this reduces to
2
o~ T+/e(1 + tan® (m/n)A) . (18)

e + tan? (m/n)A

The most practical method of solution is to find the frequencies by neglec-
ting T'x in (11) and (13), which gives
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Vietan A = —tan(m/n)A (even) (19)
tan A = Ve cot(m/n)A (odd) (20)
respectively. IFrom these solutions, the values of tan(m/n)A can be sub-
tituted into (17) or (18) to obtain x.
From (15) and (16) it is seen that x depends upon A through
tan’(m/n)A. As a result of the “tuning”’ condition (8), A = 0 is a solu-
tion of (19); this is the “preferred” mode having the lowest loss

Xmin = _T/\/; (21)

The largest losses belong to modes having tan’(n/n)A >> 1. The solut.on
(17) gives two results in the limit tan®(m/n)A — o, depending on
whether 77 < 1 or > 1 ’

Xmax = _T'\/E (€T2 < 1)

, (22)
= —1/(T\Ve) (eT? > 1).

Xmax

Let the quantity
R = X/Xmin (23)

be called the discrimination ratio; then R.x = e or 1/7? whichever is
smaller. Therefore the extra reflecting surface should satisfy
Ty g Ta (24)

to achieve the maximum discrimination, but there is no advantage in
making r, exceed 7, . It should be noted that the practical approximations
(19) and (20) are not valid if 7% > 1.

IV. DISCUSSION

The properties of the solutions are best discussed with the aid of an
example. For simplicity, a case is chosen in which (19), (20) are valid.
Let

m/n = 1%
Ve =10 (25)
T = 0.02,

The corresponding reflectivities for amplitude are r, = 0.82, 7, = 0.96.
According to (21) the loss of the preferred mode A = 0 is measured by

x(0) = Xmin = —0.002. (26)
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From (19) it is seen that A = 5x/2 is a solution with tan’(m/n)A = o«
80 that according to (22)

X(57T/2) = Xmax = —0.2. (27}

The graphical solution of (19) and (20) is sketched in Fig. 2 with circles
representing even solutions and squares odd solutions. The results are
summarized in Table I up to A = 57/2 = 450°; the remaining roots in
the fundamental period of 5= may be obtained from the symmetry about
A = 57/2. The roots are alternately even and odd as shown in the second
column, and tan(m/n)A in the fourth column rises monotonically from
0 to « corresponding to increasing losses. The discrimination ratio R,

10COT A/5

-1/10TAN A/5

Fig. 2 — Graphical representations of (19) and (20) for m/n =1/5, v/¢ = 10.
0dd solutions are indicated by squares and even solutions by circles except at
A = 57/2, where the intersection is at 2= .
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TABLE I—SuMMARY oF REsurTs FOR NUMERICAL EXAMPLE WITH

m/n = 1/5, Ve = 10

A type tan A tan A/S R
0 even 0 0 1
88°10’ odd +31.46 +0.318 1.1

175°58° even —0.0705 +0.705 1.49
262°34’ odd +7.67 +1.304 2.66
345°217 even —0.261 +2.61 7.27
412°38’ odd +1.31 +7.63 37.4
450° even © © 100

given in the fifth column, increases from 1 to 100. These results are fur-
ther summarized in Fig. 3, where the spectrum just calculated is com-
pared with that of the “original”’ interferometer having no surfaces at
z = -£b. The loss in the original interferometer is x = —1/4/¢ = —0.1
for all modes. The heights of the spectrum lines in Iig. 3 are proportional
to 1/R to indicate the relative “Q” of each mode. The total number of
frequencies in the fundamental period is twelve compared with ten in
the original interferometer for the same period. This is exactly what one
would expect, corresponding to the 20 per cent increase in optical length
of the modified interferometer. Also as one would expect, the spacing of
the preferred modes corresponds to the orders of an ordinary Fabry-
Perot interferometer of spacing d = b — a.

It will be seen in Fig. 3 that the three modes on either side of a pre-
ferred mode have frequencies very close to modes of the original inter-
ferometer at A = +#/2, 7, £37/2. The losses of these modes can be

A

Fig. 3 — The calculated spectrum with the “@” of each mode indicated by
the height of the lines. Shown below for comparison is the spectrum of the “origi-
nal”’ interferometer.
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calculated to a good approximation from these values of A. In general
the approximation is

tan(m/n)A ~ tan[(m/n)Nx/2] ‘ (28)

where N = 0,1,2, - - - but N < n/m. Using (28) the evaluation of (17)
or (18) can then be carried out immediately without solving for all of
the frequencies. This is very convenient since only the modes near the
preferred mode are expected to be of interest. It will be noted that the
extra modes introduced by the extra surface are among the lossy modes.
The periodicity in the above example is a result of choosing n/m an
integer. If n/m is chosen not an integer, the periodicity is destroyed, but
A = 0 remains a preferred mode with minimum loss. Except for extra
modes in the regions of high loss, the general effect of the extra surface is
to impose a modulation of period (n/m)x on the original modes. It is of
course not essential for the desired effect that this modulation have a
period commensurate with the period of the orders of the original inter-
ferometer. Greatest advantage in discrimination against unwanted
Fabry-Perot orders is obtained by setting

b—a~ (2a»)77 (29)

where Av is the half-width at half-maximum of the fluorescence emission.

V. SUMMARY

The theory of the orders of the modified interferometer has been
treated in one dimension by considering the symmetrical structure of Tig,. 1.
The analysis clearly shows the nature and magnitude of the effects to be
expected. These effects do not depend in any essential way upon the
symmetry assumed for convenience in the analysis, and similar results
would be expected for an unsymmetrical modified interferometer with
only one extra reflecting surface. It is clear that details in the analysis
could be generalized in various ways without changing the substance of
the conclusions. The most important of these would be to allow arbitrary
reflection and absorption at the interfaces at 4-=a to represent the prop-
erties of deposited metal layers. On the basis of what has been presented,
however, it can be asserted that a third surface of suitable reflectivity
and properly positioned can provide considerable discrimination between
the orders of a Fabry-Perot interferometer.
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The One-Sided Barrier Problem

for Gaussian Noise

By DAVID SLEPIAN
(Manusecript received September 21, 1961)

This paper s concerned with the probability, P[T,r(r)], that a stationary
Gausstan process with mean zero and covariance function r(r) be nonnega-
ttve throughout a given interval of duration T. Several strict upper and lower
bounds for P are given, along with some comparison theorems that relate
P’s for different covariance functions. Similar resulis are given for
F[Tr(7)], the probability distribution for the inierval between two successive
zeros of the process.

INTRODUCTION

Let X (¢) be a real continuous parameter Gaussian process, stationary
and continuous in the mean. We shall assume throughout that
EX(t) = 0 and shall write r(7) = EX($)X (¢ + 7). We further assume
throughout that we are dealing with a separable, measurable version of
the process.

Our main concern in this paper is the probability P[T»(r)] that X (¢)
be nonnegative for 0 < ¢ £ 7. This quantity is of interest as a means of
describing the duration of the excursions taken by the process from its
mean. From P[T,r(7)], the distribution function F[\,»(7)] of the inter-
val between successive zeros of the process can be determined by differ-
entiation [see (19)]. This latter quantity is of importance in a variety of
engineering applications of noise theory.

Considerable effort has been directed in the past toward the numerical
determination of F[\r(7)] both theoretically’™ and empirically.**™
These researches have resulted in various approximations for F[A\r(7)],
but many of these are neither upper nor lower bounds for ¥, and exact
circumstances under which they are good approximations are not clear.
Generally speaking, they are good for small values of A and become nuga-
tory for sufficiently large A. There appears to be nothing rigorous in the
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literature concerning the asymptotic behavior of I for large A. (An ap-
proximation method is given in Ref. 21.)

In this paper we summarize some known results and present a number
of new strict bounds and comparison theorems for P[Tyx(7)] and
F[Ar(7)]. The most important of these are: Theorem 1, Section 1.3;
Theorem 3, Section 1.4; and Theorem 10, Section 1.8. Theorems 12 and
13 (Section 2.7) dealing with class 2 covariances (defined in Section 1.1),
though of less importance for our goal, are perhaps of more than passing
interest. These and other results presented shed some light on theoretical
questions regarding P and F. Their utility in numerically determining
these quantities will be discussed elsewhere.

The paper is divided into two parts: Part I presents definitions, results,
and discussions; Part II contains the more technical aspects of proofs
and other supportive material for Part I.

PART I — DEFINITIONS, RESULTS AND DISCUSSIONS

1.1 Preliminaries

Trom its definition, it is clear that P[T,r(+)] is a nonincreasing function
of T. It assumes the value 3 for 7' = 0. It obeys the scaling laws

P[T\r(7)] = P[Tr(7)] (1)
P[Tyr(Ar)] = PINT,r(7)] (2)
A>0.

In asserting (2) for all A > 0 we have assumed r(7) given for all 7.
This is a convention that will be adhered to throughout this paper. It is
to be noted, however, that P[T,r(7)]for0 < T' < T, depends only on the
“piece” of the covariance function 7(7),0 < 7 = T, .

The scaling law (1) suggests normalizing the covariances to be con-
sidered so that

r(0) = 1. (3)

We adopt this convention hereafter.

The scaling law (2) suggests that a normalization of the time scale is
in order. There does not appear to be a convenient way to do this for the
class of all covariances. For processes continuous in the mean, such as
are being considered here, all one can say in general about covariances is
that they are even continuous nonnegative-definite functions. This is a
rather large class of functions containing a great variety of pathologies
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such as nowhere differentiable continuous functions. In what follows we
shall have occasion to consider covariances r(7), strictly monotone in
some right neighborhood of 7 = 0 and such that »(7) — 1 behaves like a
nonnegative power of | 7 | for sufficiently small | 7 | . We normalize and
define this class as follows: The continuous covariance r(r) is said to be
of class a if, as T approaches zero,

Edl

T'{a + 1)

and if r(r) is strictly monotone in some right neighborhood 0 < 7 < 7,
of the origin. Here necessarily 0 = « < 2 and I'(e + 1) is the usual
gamma, function. The normalization is contained in the specific choice
of the coefficient of | 7 |

To the author’s knowledge, when the scaling laws (1) and (2) are
taken into account, there are only three distinct covariances for which
P[T,r(7)]is known explicitly. These are:

(0)  rm(r) =€, 0=7= o,

r(r) =1 — + o(| 7 [%),

P[T,ry(7)]

A

T <

[

2 .=
Zarcsine’, 0
™

1—[32+{32COS(Z>, 0= 17< oo, 0=8=1,

8
B sin (%):l ) 0= ,BZ < 2m,

T 1 .
< o5

(¢@) r:(B,7)

1
é — Er —_ Zr arcesimn
P[Tr(B,7)] =

N T

L—|r], |rl=1
721,

(12) ry(r) = {

U] = § + %_[arcsin(l —T)—TE=T), 0=<Ts=L

The process with covariance r;(7) is Markovian, and it is this special
property that permits determination of P[7,r;(7)] in this case (see Ref.
22 or Ref. 21, Section IX).

Case (7¢) corresponds to the stochastic process

X(t) =A+Bcos[%+¢],

with 4, B and ® independent random variables, the two former being
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normal with mean zero and variances 1 — 8 and 8 respectively, and the
latter being distributed uniformly in (0,27). The determination of P
in this case is an exercise in integration and elementary probability the-
ory that will be omitted here. Ior the obvious generalization of this case,
namely,

X(t) = A + 2 B coslt/B: + @4,
1

P[Tr(7)] can be expressed in principle as a (2N -+ 1)-fold integral. Ex-
cept in the case N = 1 presented, the integrals appear untractable.

The form for P[T,rs(7)] given follows from results found in Ref. 23.
Note that it is valid only for 7 < 1. We have been unable to extend P
beyond this point.

These examples shed little light on the many questions that naturally
arise concerning the behavior of P[T,r(7)], both as a function of T' and
as a functional of (7). What are possible asymptotic behaviors of P
for large T? What features of r(7) determine this behavior? To what
extent is P determined by the behavior of r(7) in the neighborhood of
7 = 0? (For example, if (7) is analytic in the neighborhood of r = 0,
then it can be extended as a covariance in only one way, namely, by its
analytic continuation. In this case, then, P[T,r(7)] is completely deter-
mined by the behavior of r(7) near + = 0.) If ¢(+) is another covariance,
in some sense close to 7(7) for 0 £ 7 = T, is P[T,r(7)] close in some
sense to P[T,g(7)]? How can P[T,r(7)] be determined numerically for a
given covariance r(7)?

These and many other hasic questions await to be answered in full.

1.2 P[Tr(7)] as a Limit

Let0 = ¢ <t < -+ < t, = T be a partition of the interval (0,T)
into n — 1 parts. The n random variables X (#;), X(t), --- , X(t,) are
jointly Gaussian with covariance matrixr = (r:;), where ri; = r(t; — t;).
Denote by P.(r) the probability that these n random variables be non-
negative. Because of the assumed separability of the process,

P[T;r(7)] = lim P,(r), (4)

where it is understood that the limit is taken as the partition is refined
with mesh tending to zero: If r(7) is positive definite, then | r | = 0 for
any choice of partition, and one can write explicitly

Pa(r) = (20)™" |2 fo de - - - fo do, i (5)
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It is somewhat surprising that information about P[T,r(7)] is so difficult
to obtain when it can be expressed as the limit of the apparently not too
unwieldy expression on the right of (5). This integral is deceptive. For
n > 3 it cannot be expressed in terms of elementary functions of the co-
variance elements r;; . Series expansions and upper and lower bounds can
be easily written for this integral, but most of the obvious ones yield
vacuous results in the limit as the partition is refined.

The integral (5) admits of a simple geometric interpretation obtained
by reducing the quadratic form in the exponent to a sum of squares by
a linear transformation and performing a radial integration. P,(r) is the
fraction of the unit sphere in Euclidean n-space cut out by n-hyperplanes
through the center of the sphere. The angle 6;; between the normals to
the 7th and jth hyperplanes directed into the cutout region is given by

cos 0i; = rij 1,7 = 1,2, -+, n. This geometric interpretation of P,(r)

holds even when |r| = 0. For n = 2 and 3, this picture gives at once
1 1 1 .

P2 = 2‘7‘_ [7!" — 012] = 1 + —2—7—1_&1'05111 T12 (6)

1
P; = i 27 — 61 — 613 — 6Oy]
- :
(7)

1 + 1 laresin 72 4+ arcsin r3 -+ arcsin ra).
8 4rx

Seen on the surface of the sphere, the region described above is the
generalization of the spherical triangle in three-space and is known as an
n-dimensional spherical simplex. Geometers have studied the problem
of expressing the content of the spherical simplex in terms of the angles
between its bounding surfaces.”* Many of their results can be readily
derived from known results in probability theory using the connection
with P,(r) just mentioned (see Section 2.1).

It is clear that P,(r) is an upper bound for P[T,r(7)]. The result (7)
then is a simple upper bound for P[T,r(r)], where 72 = 7(ta — t),
ri3 = r(ls — t), rs = r(fs — &) and 4 , by, {3 are any three points in the
interval (0,7"). For very small values of 7', this upper bound can be made
close to the true value of P{T,r(7)]. For large values of 7, this is gen-
erally not the case. If, for example, r(7) is never negative, P; is always
greater than §. If 7(+) oscillates in sign, there is a minimum value for P;
different from zero (unless r(7) achieves the value —1) obtainable for
any choice of ¢; < &, < {3, and hence this bound for P[T,r(7)] does not
approach zero for large T.
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1.3 A Comparison Theorem for P[T,r(7)]

Recall that in the geometric picture of P,(r), r;; = cos 6;; where 6;; is
the angle between the inward normals to hyperplanes 7 and j. Intuitively,
it is clear that if this angle is decreased, i.e., if r;; is increased, P,(r)
should also increase. This is borne out by the following

Lemma 17— Let P,(r) be the probability that n jointly Gaussian vari-
ales with mean zero and normalized covariance matriz r(r;; = 1) be non-
negative. Let q be another normalized n X n covariance matrix. If ri; = qi;
forij=1,2, -+ n,then P,(r) = P.(q).

Note that the matrices r and q need only be nonnegative definite (as
distinguished from positive definite).

By regarding P[T,r(7)] as a limit of P,(r), as explained in the pre-
ceding section, Lemma 1 can be used to deduce the following comparison
theorem.

Theorem 1 —1If r(7) = q(7) for 0 = 7 £ T,, then P[Ty(7)] =
PITg(x)] for 0 < T < T,.

The covariance function of a process is generally regarded as a rough
measure of how much the process “hangs together.” This view is sup-
ported by the theorem. A process with a larger covariance function
hangs together more and is more likely to maintain the same sign than
one with a smaller covariance.

The comparison theorem can be used with the three covariances
(Section 1.1) for which P[T ()] is known exactly to bound this quan-
tity for other covariances. The theorem is particularly useful for com-
paring covariances of the same class. Let 7(7) and ¢(7) both be of class
a, and suppose that »(7) = ¢(r) in some neighborhood of the origin.
Then P[T,(7)] = P[T,q(7)] in this neighborhood. But, for any A >
1,¢(7) = r(A7) in some sufficiently small neighborhood of the origin,
so that also P[T,q(7)] = P[T,(A7)] = P[AT,x(7)] by the scaling law
(2). Choosing X appropriately leads to the following

Theorem 2 — Let r(7) and q(7) be of class e with r(7) = q(7) in some
netghborhood of v = 0. Then for some T* > 0,

P[Tyr(1)] 2 P[Tyg(7)] 2 P (a(T);r(7)], 0 =T =T

The theorem is proved in Section 2.3 where the determination of 7*
and the choice of proper branch for »~'(¢) are also discussed. Knowledge
of P[T,(7)] thus provides both upper and lower bounds for P[T,q(7)]
near 7 = 0.

t Proved in Section 2.2. A special case of this lemma was proved by J. Chover?

by a completely different method. He applied his result to obtain a weak version
of our Theorem 1. Chover’s result inspired much of the present paper.
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1.4 Some Related Resulls Useful for Large T

IFFrom Lemma 1, it is easy to deduce (see Section 2.4)
Theorem 83— Let Ty = 0,72 = 0,T; = 0 be such that Ty + 1>, = T;.

Ifr(r) 2 0for0 = 7 = Ty, then
P[Ts, r(7)] 2 P[Ty, r(v)]P[T:, r(7)]. (8)

This theorem provides some asymptotic information on P[7r(7)] for
covariances that are never negative. It implies for these covariances
that —(1/T) log P[T,r(7)] approaches a nonnegative limit as T’ becomes
infinite. In this sense, then, for nonnegative covariances, P[T,r(r)] cannot
decrease asymptotically more rapidly than exponentially. An exponential
lower bound for these covariances is found by iterating (8). Thus, if
T = NT,, P[T,(r)] = PINT,, r(v)] 2 P[T,, r(r)]". One obtains in
this manner the exponential bound

PTr(r)] 2 PPI™ T 2T, | 9)

which holds for nonnegative r(7) with P, = P[T,, r(7)], T > 0.

TFor covariances for which P[T,r(7)] is not known, (9) still gives useful
information by replacing P, by a lower bound. For example, from the
lower bounds presented below Theorem 6 in Section 1.6, it follows that
for nonnegative r(7) of class 2, P[T,r(7)] = f(T') where

1 T
5[1‘;]’ 0

113 T T
;[é‘;]’ 3 =7

1/ T,

I\

T=

(r) = (10)

1A

IIA
ol ol

By choosing 7', to maximize f(7,) ' "° and using this maximum value for
P, in (9), one obtains the following

Lower Bound — If r(7) s of class 2 and nonnegative, then
PITr(7)] = 0.121 ¢ 2™ 1 > (1.016)7.

For a specific nonnegative covariance of class 2, a somewhat smaller
exponent can often be obtained by using for f the lower bound of Theo-
rem 6, or a lower bound obtained from. the comparison theorem and
example (¢7) of Section 1.1.

For covariances (such as r3(7) of Sectlon 1.1) that are identically zero
for r = T, for some T; > 0, an exponential upper bound can readily be
written for P[T,r(7)]. For example, if 7' = (2N — 1)T,, then
P[{(2N — 1)T, r(7)] is certainly not greater than the probability that
the process be nonnegative in the intervals (0,74), (2T., 3Ty), -+ ,
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((2N — 2)T1, (2N — 1)T:). But the process in any one of these inter-
vals is independent of the process in the other intervals because of the
vanishing of r(7) for r = Ty. Thus, P[Tr(7)] = {P[T:, r(+)}}".
Arguing in this manner, one arrives at the

Upper Bound — If r(7) vanishes for r = T, then

1
P[T)T(T)] é _\/Fl PIT/2T17 T g Tl)
where Py = P[Ty, r(7)].

1.5 Bounds from Rice’s Series

Let0 =4 <t < --- <&, = T be a partition of the interval (0,7
into n — 1 parts. Let A; denote the event: “X(¢) changes sign at least
once in the interval t; < ¢ < tiy1,” ¢ = 1,2,---,n — 1. Then, by the
method of inclusion and exclusion,
2P(Tyr(7)] = 1 — >, Pr{dy + >, Pr{d, N 4}

i i <7
i <7<k

—I_. [ + (-—1)"_1Pr{A1nAgn tee nAn—l})

is the probability that none of the events 4; occur. If 7”(0) exists, the
- above series approaches as a limit as the partition is refined with mesh
tending to zero

T 1 T T
2P[Ty(r)] =1 — fo q(t) dty +§'f0 dtlfo dbsga(ty, 1) — «- -,
(compare Rice,” Equation 3.4-11) which we write as

2P(T;r(n)] = 1+ 3 (::L),—B",
. . (11)
Bn = ‘/0‘ dtl"' \[0 dthn(tly "')t")’

Here q.(t;, - - - ,t.)dt;- - -dt, is the probability that X (¢) has one or more
zeros in each of the intervals (¢, 4 + dt1),- - -,(¢, + di,). The existence
of r”(0) assures us that X(¢) has a derivative almost everywhere in
(0,7) for almost all sample functions. One then has

Qn(tl,“';tn)=.[wd£1"°f_wdsﬂlgl"‘£nl (12)

[P(El, tTty Enyxl; crcy, xn)]r’s=0-
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Here p(&, -+ ,€., 21, -+ +,2n) is the joint density for the random vari-
ables X'(#),- -, X'(£.),X(#),- - -, X (t.) with & associated with X'(%.)
and z; associated with X (¢,), = 1,2,---,n. X'(¢) is the derivative of
X (¢) with respect to ¢.

From the derivation of the method of inclusion and exclusion, suc-
cessive partial sums of (11) alternately overestimate and underesti-
mate 2P(7T'). We therefore have the sequence of bounds

0 < 2P[Ty(+)] £ 1,

Bi < opirp(ey =1 - B 4 Be

— <
L= = =l-q+3 (13)
B, B, B; B, B, B3 B
1—ﬁ+2—!_3—!§2P[T,7'(T)]§1—ﬂ+2*!—§+4—!,

ete. Unfortunately, except for n = 1,2,3, the integrand ¢,(&, « - -,l.)
occurring in the definition of B, cannot be expressed in terms of ele-
mentary functions. For covariances r(7) of class 2, one has

q(th) = 1_1:-’
@(h, ) = 71—.-_2#3/2[\/1_(_1—:_2 ;};;/frcsin o ,
where
b= (== ) = =
a=[(1 ="+l =7 =",
and

r =7t — ), = 1(ty — 4), r” = r"(t; — h).

The expression for ¢; is too complicated to warrant display here.
Bounds given by partial sums such as (13) cannot be expected to
yield useful results for large T. Typically, for large 7', B, behaves like
T": the upper bounds exceed unity for large 7 and the lower bounds
become negative.
For small 7', however, (13) yields useful information. One has

Ifr(r) =1 — 7/2 + er'/4! + 0(+°), a very tedious computation shows
that for small T,
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3
c—1T v m3
By = —— — 4 oT
24 ( ),
o(T°).

From this and the inequalities (13) follows
Theorem 4 — If for small =

B;

I

2 4
r(r) =1 -2 + 7+ 00",

then the first three righi-hand dertvatives of P[T,r(7)] with respect to T
exist at T = 0 and are given by

Plor(r)] = &,

P+ = —o,

. ) m
P'0+,(1)] = 0,

1774 ' _ 3 c — 1
P [0+,7'(T)] = é 481r .

The assumed form for r(r) in Theorem 4 is important. It has been
shown by Longuet-Higgins' that if 7(7) = 1 — 7*/2 + b | 7 |* + 0(+),
b # 0, then for small T, B, = O(1?) for n = 2,3/4,---. One can only
conclude in this case that P/[0+,7(7)] = — 1/2x.

The power series 1 + 21” B, \"/n! can be written formally as

exp Z c\"/n.
1

Expand the latter in a power series, equate coeflicients of like powers

of A and set A = —1. There results the formal identity using (11)
QP[Tr(7)] = ¢ Hea/fmeslitio "
where ‘
¢ =B = T
™
e BB BNCE)

¢z = By — 3BB: + 2B/
Cy = B4 _— 4BlB3 — 3322 + 1231232 —_ 6314,
ete., with the B’s given by (11) and (12). Relations (15) are the usual
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ones connecting semi-invariants with central moments (see Ref. 39, p.
37 or Ref. 40, p. 186). Kuznetsov, Stratonovich and Tikhonov* have
suggested the use of (14) keeping a finite number of ¢’s as a better ap-
proximation to P than series (11). For large T, (14) will perhaps yield
a better approximation than (11), but it is difficult to see under just
what circumstances this will be true. A knowledge of the asymptotic
behavior of the ¢’s for large 7" is needed, but this appears to be a difficult
point.

A truncated form of (14) will not in general yield the correct asymp-
totic behavior of P[T,r(r)]. For example, retaining only ¢;, (14)" gives
2 P[Tr(7)] ~ ¢ "' for all class 2 covariances. That this is not in general
correct can be seen from a family of simple counterexamples. If ¢(7) is
of class 2, then so is

7*(r) = qlar) Sigff, (16)

where @ = 4/1 — /3 and 0 < 8 < \/§ If X(¢) has covariance r*(r),
then since r*(nr/8) = Om = *1,£2,-- -, the random variables

X(w/B), X(27/B), X(37/B)," - -
are independent. Set N = [87/x]. Then

P[Ty*(r)] = Pr{X(jx/8) 2 0,7 = 1,---,N} = (%)N
< 2(%)“/” — 9p (8 g DTIT

Thus if

1
V3=1732=8> g3 = 1.442, (17)
¢'"P[T,r*(r)] approaches zero exponentially for large T, and the first
term in the exponent of (14) yields an incorrect asymptotic behavior.
It is interesting to note that the form ¢ ™" obtained from (14) by
retaining only ¢; would be correct for a process in which the axis cross-
ings were independent. One would then have ¢.(t, - - -,t.) = [[ai(t;),
B, = (B))" and ¢, = O,n > 1. For processes with the covariance (16)
with 8 given by (17), P[T,r*(+)] decays even more rapidly. This has
nothing to do with the asymptotic behavior of 7*: by proper choice of
g(7), this can be altered at will. One must suppose this rapid decay of
P[Tr*(r)] is due to the fact that typically r*(7) takes negative values
so that at certain time separations the process is anticorrelated. Indeed,
it is tempting to conjecture that for nonnegative class 2 covariances,
e""P[T,r(r)] increases without limit for large 7.
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1.6 Some Other Bounds for P[T r(7)]

In this section we list a few miscellaneous bounds on P[T,»(7)].
Theorem 6§ —
2 1
Py <2 [ (1 = w) aresin r(T) du,
0

The theorem is proved in Section 2.5. If  arcsin r(7) is integrable, the
bound in Theorem 5 approaches zero like 1/7T.

Lower bounds for P[T, 7‘(7’)] are difficult to obtain. One is given by
(see Section 2.6)

Theorem 6 — If r(r) is of class 2,
8_T
8 4rn
This bound goes negative for relatively small values of T (at least be-
fore T = 27). It gives somewhat more information than the bound

PIT(+)] 2[1 - g] (18)

P[Tyr(r)] = + %r arcsin r(T).

obtained from Rice’s series (Section 1.5) by retaining only B;. The
bound obtained by retaining B;, By and B; is of course generally much
better than that of Theorem 6 but is so complicated that it can be used
only with difficulty even with a modern computer. For nonnegative
covariances of class 2, Theorem 6 gives P[1T',r(7)] = 3§ — T/4x. This,
together with (18), gives (10).

Theorem 7 — If in the neighborhood of T = 0,

4
wa=1~~+w@+<w

then

PlTsr(7)] = % — %_ — 2—17|_ arcsin [ﬁ sin (gﬁ)] 0

where Ty = min{(Bm,7,) and 7, is the smallest positive value of 7 for which
r(r) = 1 — 24/p. This theorem follows from the comparison Theorem
1, the result (#7) of Section 1.1 and the fact (see Theorem 14, p. 494),
that for 0 < r = T:, the covariance of Theorem 7 is dominated by

'r?(ﬁyT)'

1A

T < Ty,
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Theorem 8 — If r(r) is nonnegalive and of class 2, then
1 T 1 1 T T
Y > - - - - a1 _— —_— < T < —=,
P[Tr(r)] = 57 I — g, oesin I:\/é sin \/2:| , 0=TE¢< G

This theorem follows from the comparison Theorem 1, the result (7z)
of Section 1 and the fact (see Theorem 13 in Section 2.7) that for 0 =
r £ w/4/2, every nonnegative covariance of class 2 is greater than
T2(1/\/§;T)'

We conclude this section with a rather weak, but sometimes useful,
result proved in Section 2.8.

Theorem 9 — Let h(£) be nonnegative for 0 < £ = 6 and let h(§) = 0
for 8 < 0and & > 6. Define

Gow) = [ iz + DR

and set

re(7) = j_m r(r — 2)Ge(2) dz.

Then
P[Tre(7)] =2 P[T + 0,r(7)].

1.7 Relationship Between P[Tr(r)] and F[\r(7)]

If ”(0) exists, then almost all sample functions X (¢) possess a deriva-
tive almost everywhere. If »”(0) does not exist, then almost all sample
functions are nowhere differentiable. In this latter case, if a realization
X(t) has a zero at ¢ = 0, it almost certainly has infinitely many zeros
in every right neighborhood of ¢ = 0. In discussing F[\r(7)], the
distribution of the interval, I, between successive zeros of X(t), we ac-
cordingly restrict our attention to covariances for which r”(0) exists.

The quantity P[T,r(7)] — P[T + A;(7)] is the measure of those
sample functions which are nonnegative in (0,7") but are not nonnega-
tive in (—A,0), i.e., the measure of those sample functions that are
nonnegative in (0,7') and have at least one axis crossing in (—A,0).
Divide this quantity by the probability »A + o(A) that X(¢) have one
or more upward axis crossings in (—A,0) and allow A to approach zero.
There results

AT = =2 L pPITa)] = 1 — FITr()]. (19)
vdT

Here Q[T,r(7)] is the conditional probability that X(¢) be nonnegative
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in (0,7') given an upcrossing of the axisatt = 0; F\,r(7)] = Pr(l £ \)
is the distribution function for the interval [ between zeros. One should
note carefully that the condition in the definition of Q is in the “hori-
zontal window sense” (see Ref. 10, Section 2 for a more complete dis-
cussion of this term). We shall find @[7,r(7)] more convenient to deal
with than F[Tr(7)].

From its definition, Q[7T,r(7)] is nonincreasing as a function of 7. It
assumes the value 1 for 7 = 0. Like P[T,r(7)], it satisfies the scaling
laws

QT (7)) = QITr(r)]
QIT,r(A)] = QINT,r(7)] (20)
A>0.

For most purposes, then, it suffices to consider only class 2 covariances.

In this case (see Ref. 19, Equation (3.3-10)) » = 2i and (19) becomes
™

QT r(r)] = —2r (;iT PIT (o)), (21)

Clearly upper and lower bounds on Q[7',r(7)], say
QulTr(n)] 2 QTr(r)], O0=T=T,
QuTr(n)] =QITr(n)], 0=T=T,,
furnish bounds on P[T»(7)] by integration:

%_ QLW fo Qulz,r ()] dz < P[Tyr(r)] < % - %r fo Qulz,r(7)] de,

0=T=T.

However, since @ is nonincreasing, it is also possible to obtain weak
bounds on @ from known bounds on P. For example, since @ is non-
increasing, if b > a = 0,

(b — a)Qla,r(r)] 2 f Qlyr(D)] dv = (b — a)Qlbyr(+)],

or from (21)

Q[G,T(T)] > or P[a:T(T)] - P[b,T(T)] > Q[b,T(T)] (22)

b—a -
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Thus if Py(7T) and P.(T) are respectively upper and lower bounds for
P[T,r(7)] valid for all T,

max 27 L2(T) = Pol@)
=T x—T

(23)
Py(z) — PL(T)
m .
0szsT T —u
Note that the left inequality of (22) for a = 0, b = T again gives (18).
Also from (21) and the fact that @ is nonincreasing, it follows that
P[Tr(7)] for class 2 covariances must be convex downward.
To the author’s knowledge, when the scaling laws (20) are taken into
account, the only covariance for which Q[7',r(7)] is known explicitly
is ro(B,7) of (27), Section 1.1. One has

r(Br) = 1 — 8 + B cos <§> 0<BE1,
T
COoS | ==
%1+ <2B> | 0§§521r,
QIT,ro(7)] = 4/ 1 — g sin® (%)
Oa 2 é %é 0

1.8 A Comparison Theorem for Q[T r(r)]

Imposing the condition that X (¢) have an upcrossing at { = 0 in the
horizontal window sense greatly complicates computation of probabil-
ities associated with the process. IFor instance, when X(¢) is conditioned
in this manner, the random variables X (#),X(%),::+,X(f,) are no
longer jointly Gaussian. If r(7) is of class 2, their joint density is

27 j[; dE EP(E, To, X1, "'7xn)50=01

where p(&, @, 21, -+ +,&,) is the Gaussian density of the unconditioned
variables X’(0), X(0), X(#),---,X(t.).

It is possible, nevertheless, to derive a comparison theorem for
Q[T (7)) and Q[T,q(+)] for class 2 covariances somewhat in the spirit of
Theorem 1. (See Section 2.9 for proof.) The function g(f) = ¢ 4r(¥)]
plays a role here. Writing » = g(¢), then ¢(r) = r(¢). For a given value
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of t, we choose g(f) as the smallest positive value of 7 for which ¢(7) =
r(t). At ¢t = 0, we have r = 0. As ¢ increases from 0, so does 7. One of
two difficulties can occur as ¢ increases: r(f) may reach a local minimum
r(t,) at ¢ = t, before ¢() has reached its first local minimum, say ¢(r1);
r may assume the value 7; when ¢ assumes the value ¢, < ¢,. In the
former case we define ¢g(f) only for 0 = ¢ < {,; in the latter case, we
define g(¢) only for 0 < ¢ < t;. The comparison theorem can now be
stated as follows:

Theorem 10 — Let r(7) and q(r) be of class 2 and let g(t) = ¢ '[r(¢)]
be defined as above. If for all nonnegative x and y with x +y =< T,,

g(x) + g(y) = g(x +¥), (24)
thenfor0 = T = T,

QITr(7)] = Qlg(T),q(7)]- (25)

It is easy to show that if r(7) = ¢(7) in some neighborhood of the origin,
then ¢(t) has the subadditive property (24) in some sufficiently small
neighborhood of the origin so that the theorem is not vacuous.

The steps which led from Theorem 1 to Theorems 2 and 3 are no
longer valid when X (¢) is conditioned to have an upcrossing at ¢t = 0.
We have found no analogue of these theorems for Q[7,r(7)].

By using (21), one can integrate the inequality (25) to obtain a more
complicated comparison theorem for P[7,r(7)], namely

g(T)
PITy(r)] > 3 + f h'(E)%P[E,q(T)] dt = Plg(T),q()/g'(T)

g(T) ”
_ f Pleq(nI” (8) d,
valid for 0 £ T < T, . Here h(£) = g~(&) = r '[q(£)].
PART Il — PROOFS AND SUPPORTIVE MATERIAL

2.17 The Geometric Approach to P,

We wish to consider the probability P,(r) that n jointly normal
variates, each with mean zero and normalized covariance matrix r, be
nonnegative. Throughout this section we assume that r is nonsingular.
Then P,(r) can be written as in (5). Denote the eigenvalues and nor-

1 The material in this section was developed in 1952. Many of the results have

been obtained independently by other workers and have been reported in the
literature. Cf. Plackett® in particular.
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malized eigenvectors of r by \; and ¢ = (1"’ )i = 1,2,
One has

; rage = A
24 = 2 W = b,
Ty = ; MY

(26)

7":.7. = 1727' s
In (5) make the substitution z; = D i ¥"v/N#x . There results

Pur) = @0 [ o [y oo dyo ™,
R

where the region R is defined by
=2 ¥ zZ0, i=12-n
k

Denote by 4, the (n — 1)-dimensional content of the intersection of
this region with the surface of the unit sphere having center at the origin.
Then, by changing to a spherical coordinate system,
= (21r)_"'2A,,f drr e = é‘,
0 Sa

where 8, = 27™*/T'(n/2) is the area of the unit sphere. Thus, P, is the
fraction of the unit sphere on the positive side of the = hyperplanes
H; = 0. The unit normal a* to H; directed into R has components a;" =
¥i*/: . From the last of (26), we find for the angle 6;; between a‘ and
a’, cos 0;; = a*-a’ = ryj.

As mentioned in Section 1.2, expressions for the content A4, of the
spherical simplex in terms of the angles between its bounding surfaces
are not known for n > 3. However, for the determination of P[T,r(7)]
one is concerned with the limit as n — « of P, where the angles 6;;”
are given, for example, by cos 6;; = r[(i — j)T/n] with r(r) a given
positive definite function. Thus, sufﬁciently tight bounds for P, might
in the limit yield useful results concerning P[7,r(7)]. The geometric
picture suggests a large number of such bounds. Unfortunately, none
has been found which yields useful limits. Since, however, approxima-
tions for the n-variable normal integral P, are of interest in their own
right, we digress to mention several such bounds which may be useful.
(See Ref. 42 for a bibliography on the multivariate normal integral.)
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Circular cones with vertices at the origin can be inscribed and ecir-
cumscribed about the region R. The half-angle of the inscribed cone is

found to be given by

sin 01,

1/2 T (27)

and the half-angle of the eircumscribed cone is given by

1
> ri N ra N (28)
Kz

cos 6, =

The fraction of the unit sphere cut out by a circular cone of half-angle
6 is

F.(8) = \}W—z—n(gl—jf de sin" ¢ = Lgine <n ; 1,%) (29)

2

where 7 is Pearson’s incomplete beta function.” One has
Fo(6:;) = P, < F.(6.). (30)

Bounds for P, can also be written in terms of inscribed and circum-
scribed Euclidean simplexes. The planes H; = 0 intersect n — 1 at a
time in lines which pass through the origin and a vertex of the spherical
simplex. Let b* denote the unit vector from the origin to the vertex not
contained in H; = 0. One finds for the components b, = ¥* (™) ™2
and for the content of the Euclidean simplex determined by the origin
and the end points of the b’,

_ 1
n! '\/m'\/ IIr; ! ’

This simplex lies within the region of interest. The hyperplane through

the end points of the vectors b* sec 6, is tangent to the unit sphere. The

Euclidean simplex determined by the origin and the ends of these vec-

tors therefore contains the region of interest. Thus,
G, sec” 0,G,

Un < < 8¢ Yl
v, ===

where V, = #"?/T(n/2 + 1) is the content of the unit sphere, 6, is

(31)

(32)
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given by (28) and G}by (31). Incidentally, for the cosines of the angles
between the b’s one finds the interesting reciprocal relations

—1 —1
Tij 8ij

—— T > E e—————
) ij —
\Y% mi‘lrjj_l '\/Sii_le'jj_l

which is the natural generalization of the usual relationship between the
sides and angles of a spherical triangle in three-space. '

One can expect the bounds in (30) to be close to each other when the
b’ are nearly coplanar, e.g., when all the entries of r are near unity. One
can expect the bounds in (32) to be close to each other when the b* are
nearly codirectional, e.g., when all the entries of r™* are nearly equal.

An important differential recursion relation first derived by Schlafli®
for the content of the spherical simplex can be obtained in an analytic
manner from the expression (5) for P, . We write

S = bi'bj =

P.(r) = j; dxy - fo dxagn(x1, »+ 0, Tait) (33)

where the n-variate Gaussian density is given in terms of its character-
istic function by

© ) :
gn(xl y Tt 'yxn;r) = f d£1 A f dEn ezzxﬁj&_%zrjksjsk-
—© —o0

TFrom this latter expression it follows that

Gn _ 629n

a7 ax ;00 ’

k> (34)

Here we regard g, as a function of the n(n — 1)/2 variables ry , k > j,
and recall that r; =1, rjz = ;. Regarding P, as a function of this same
set of variables, we find from (33) and (34)

AP, (r) f“’ f“’ 8
= day - - - Az, ——— gu(T1, - - -, Tast).
(97'12 0 e 0 v axlang ( ! )

Perform the integrations indicated on z; and z, . There results

Pulz) _ [ - f d.gn (00,23, -+ wut) Z 0. (35)
aris 0 0
Now if g, is the density for the random variables X, , - -+, X, ,
gn(xl 3 ;r) = p(ﬁcl ’ $2)p(x3, ERRER T | 1, 332),

where p(x, ,x2) is the joint density for X; and X, and

p(x3$ *t T ‘ wl:IZ)
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is the conditional density of X3, ---,X, given that X; = z; and X, =
x,. In the case of Gaussian variates, these densities are well known
Evaluating this expression at z; = z, = 0, one finds

1
27"\/1 — i
When combined with (35) and generalized for arbitrary indices, this
yields

g.(0,0,23, - -, TuiT) = Jn2(Zs, * * + TiLo12).

oP,(r) 1
= Pn— (r. 'k) g 0.
arje 20V 1 — ry? e
Here r- j is the customary notation of the statistician for partial corre-

lation coefficients (see Ref. 40, Section 23.4 and pp. 318-319), so that,
for example with u # j)k, v # j,k

(36)

Tw  Tuj  Tuk I
Ty 1 T ik |
Ty 7Tk i 1 I

Tuv- b =

1.

1 1
1 rey rwl |1 1y 7|
Tju 1 Tk Ty 1 Tk
Tk Tkj 1 Tky Tkj 1

Bquation (36) is Schlifli’s celebrated differential recursion formula.
His many relations connecting the angles of the boundary simplexes are
familiar to the statistician as identities among partial correlation co-
efficients.

We close this section with a simple demonstration that for odd =, P,
can be expressed in terms of the content of lower dimensional simplexes.
Let p; denote the probability that X; be nonnegative, p;; denote the
probability that X; and X; be nonnegative, etc. Then P, = pia.... . Set
My = Zp;, M, = Z,-< ; Pij, ete. Then from the well-known inclusion
and exclusion formula, the probability @, that none of the variates be
nonnegative is '

Qu=1—-My+ M — --- + (=1)"M,.
But from symmetry, P, = @, = M, so that
- (=P, =1—My +My— - + (=1)"'M,_,.

(Cf. Sommerville,” Chapter IX, Section 1.9.) No recursion is known for
even n.
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2.2 Proof of Lemma 1

Lemma 1 follows directly from (35). Note that in the derivation of
this result, it was not necessary to normalize the covariance matrix.
This result thus states that if p is a position definite symmetric matrix,
then

Pulo) 5 o > (37)
9pi;

with P,(g) defined by (5).

Now let r and q be nonnegative definite n X n symmetric matrices with
ri = qi; = 1. Then g = Ar + (1 — A)q + €I, where I is the n X 7 unit
matrix, is positive definite for each ¢ > 0 and each \ satisfying 0 <
A = 1. Consider P,(p) as a function of A. It is readily established that
P, (o) possesses a continuous derivative and indeed that

dP.(¢) _ 5~ 9P.(e) dpi;
d\ i>i 9pi;  d\
= — \Ts; — qij).
’ jgi apﬁ ( J] QJ)
If now r;; 2 ¢i;,7 > €, (37) then gives
dP,(p)
A\

Integration on X from 0 to 1 yields P.(r + eI) = P, (q + ¢ I). From
well-known continuity theorems (see Cramer,” Section 24.3 and 10.7),
Lemma 1 follows by letting e tend to zero.

= 0.

2.3 Proof of Theorem 2

Let r(7) and ¢(7) both be of class @ > 0 and suppose that r(7) =
q(7) for0 = 1 = T,. Then for any A > 1,

r(r) Z q(7) 2 r(Nr)
0<7=rnd),
for some suitable 71(A). By Theorem 1, then, and the scaling law (2)
P[Tn(7)] 2 P[T\q(7)] 2 PINT,r(7)]
0=T = n(N).

To see how best to choose A to obtain a good lower bound for P[7,q(7)],
it is convenient to define a version of A(7) = r '[¢(7)]. Let 7, be the

(38)

(39)
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smallest value of + > 0 for which ¢( ) is not decreasing. (Strictly speak-
ing, 7, = inf. of those T for which ¢(+) is not strictly monotone for
0 < 7 = T.If this T set is empty, define 7, = «.) Define 7, in an anal-
ogous manner. The function 7 *(¢) is defined for 1 = ¢ = r(r,) by the
branch having values between 0 and 7, . Similarly we define ¢ '(r) for
1 = r = ¢(r,) by the branch having values between 0 and r, . If ¢(7,) =
r(r,), we define h(7) = r [g(7)] only for 0 < 7 < ¢ '[r(.)]. If q(74) =
r(1r), we define h(7) for 0 = 7 < 7,. Clearly 2(0) = 0. As 7 increases
from zero, h(7) is at first at least as large as 7, since r(7) = ¢(7) near
7 = 0. For small 7, 7(h) = ¢(r), so that b'(7)r'(k) = ¢'(7) or

B(04) = lim C) iy T i (}il)>l o B (0+)
t»04 7" (h) tso+ L ek \ T !

so that A’(0+) = 1. Three typical curves for y = h(r) are shown in

Fig. 1. Note that k() is strictly monotone in its domain of definition.

Consider now the plots of ¥y = h(r) and ¥ = A7 as shown on Ifig. 1.
For all values of X, these curves have the origin as a point in common.
When A = 1, the straight line ¥y = A7 is tangent to ¥ = h(7) at the
origin. As A is increased from 1, a second point of intersection moves
out from the origin. It may happen, as in Iig. 1(a), that the line y =
A becomes tangent to ¥ = h(7). If so, we denote by 7T* the abscissa
of the first such point of tangency as A increases from unity and we de-
note the corresponding value of A by A*. If no such tangency occurs, we
denote by T* the largest value of 7 in the domain A(7). In this case we
set A* = h(T*)/T*. (Note that \* may be infinite.) Observe that for a
given A < A*, the abscissa of the first point of intersection of ¥y = Ar
with y = h(r) to the right of the origin, say 7;, satisfies h(7) = Any
or ¢(71) = r(Ar1). For 7 £ 7,, the right inequality of (38) maintains;
for r = 71 4 (A7) > g(7) for small positive e.

The lower bound PA\T»(7)] on the right of (38) is a nonincreasing
function of A for a fixed 7'. For a given 7" < T, then, this bound is made
as large as possible by choosing X as the smallest value greater than unity
for which ¢(7) = r(AT). With this choice, AT has the value A(T) and
Theorem 2 is proved. The largest 7* for which the theorem as stated in
Section 1.3 is true is the value 7™ defined in the previous paragraph.

Note that if r(7) and ¢(7) cross at 7, > 0, i.e., r(7,) = q(7,), T* is
necessarily less than r,, for in this case, ¥y = h(7) crossesy = 7 at 7,
as in Fig. 1(a) and a tangency occurs as indicated.

2.4 Proof of Theorem 3

Let 7y > O0and Ty > 0 be given and set 75 = T; -+ T, . Consider
the approximation to P[T, r(7)] given by the probability P,(r) that
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X(t1>)' : ':X<tn1)’ X(Tl)y' : ':X(TM)
all be nonnegative. Here 0 = #; < #y < --+ < t,, = T, is a partition

of (0,70) and Ty < 71 < 72 < -++ < 74, = T is a partition of (T},
T: + T.) and n; + no = n. The covariance matrix r can be written in

block form
_ (A B
=\ ¢/

where A is an n; X n; normalized covariance matrix with elements
r(t; — t;) C is an ny X n, normalized covariance matrix with clements

o
NS
-

*

To

y=h(n) y=r7

y=h(r)

(b) (c)

T w— T —

Fig. 1 — The curve y = h(r).
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r(r; — 7;), and B has n; rows and n, columns and elements »(¢; — ;).

Now
P A O
—\0 C)’

is also a covariance matrix, and if r(r) = 0 for 0 < r < T:, the ele-
ments of r are not less than the corresponding clements of i. From Lemma
1, it follows that P,(r) = P.(%). But f is the covariance matrix for two
independent sets of random variables so that

Po(r) 2 Po(1) = Pny(A)Pry(C).

By refining the partition with mesh tending to zero, one has P[T; , r(7)]
= P[T,,r(7)]P[T:,r(7)] and the theorem is established. (It is trivi-
ally true if 7' or T, or both are zero.)

2.5 Proof of Theorem &

Theorem 5 is a consequence of the following more general

Theorem 11 — Let the random variables X, , X, , -+, X, , n > 2 have
a joint density p(xy, ---,x,) with the property p(—x1, +-+,—x,) =
p(wy, -+« ,T0). Then

. 1
PriX;=0,i=12 ---n} < n(n % ,§<:, Pr{X; = 0,X, = 0}.

The proof of this theorem follows that of a theorem by Gaddum®

concerning spherical simplexes and their angle sums. We introduce the

following notations: P;; = Pr(X; =2 0, X; 2 0),P =Pr{X: =2 0,7 =

1,2,' . ',’IL}, R(al,(lz, . ~,a,,) = Pr{a1X1 g 0, ang g O, .. ‘,(lnX" g 0},
= +41,7=1,---m Thus P = R(1,1,---,1) and

Z R(a11a27 : "’an) = 1’
an e,
where in the sum each a takes values +1 and —1. The 2" symbols R
are equal in pairs; :
R(al y g, '5an) = R(_al y —Q2, v "_an)-

We call R(—a;, —ap, -+ +,—a,) the complement of R(a;, @, ++,as).
One has

Py,=P+ Z,R(l,l,aa y gy o .’a")
Py =P+ 2R(l,a:, 1,04, ** *,0z) (40)

Pn(n—l) =P + E’R(al y Qo , » ¢ yQpg, 1,1).
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Here the B symbol on the right of the equation having P;; as left mem-

ber has a 1 in the #*" and j** places and a’s elsewhere. In each equation,

the sum is over all combinations of plus and minus 1 for the a’s except

for the combination all a’s plus 1. '

Now consider adding the n(n — 1)/2 equations (40). One has

;jP,-,- = [n(n — 1)/2]P 4+ 8,

where S is the sum of all the sums of R symbols on the right of (40). A

given R symbol with precisely j of its arguments +1 will occur j(7 — 1)/2

times in S, 7 = 2,3,---,n — 1. Denote by T'; the sum of all R symbols

that have precisely j of their arguments 1. Then

i<i 2 2 L (41)
4 ];J(J - Do,
Now
22]_(_]2—_1) T, = :Z__:: (n —J')(nz—j — Doy
so that
230_2—1_) T, %2‘ [m_;lg T, 4+ —j)(v;—j —1) T,,_j].

But since an R symbol and its complement are numerically equal, 7'; =
T._;, so that (41) becomes

ZPU=n(n—1)P+(n_l)(n_l) T,

i<q 2 2
15 JjGG — 1) (n = —-—j—11],
+_j§2:| + Iqj_

Now, for j = 2,3,---,n — 2,
G- (=P =j=1  nn=2)

2 2 4 ’
so that
> Pz n(n — l)P i (n—1)(n —2) T,
i<i 2 2

+n(n—2) nZ_ij ;n(n—2)P+n(n-—2) nif’l}.
8 = 2 8 i=1
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However, the last appearing sum is 1 — 2P and Theorem 11 follows
directly.

In the case of a Gaussian process X(¢) with normalized covariance
function r(7), we consider the application of Theorem 11 to the random
variables X, = X(¢T/n),7 = 12,---,n. Then from (6), P;; = ¥ +
1/27 aresin r[(¢ — j)T'/n]. By taking limits as n becomes infinite, The-
orem 11 then yields

21

T v
P(Tr(r)] £ = dyf dx arcsin r(y — z).
x T2 Jo 0

Elementary manipulations then lead to the result stated as Theorem 5.

2.6 Proof of Theorem 6

Consider n random variables, X;, X,, --+,X,, and the following
mutually exclusive events: (4) the variables are all nonnegative; (B;)
the first j variables are nonnegative and the (j + 1)* is negative, j =
1,2,3,---,n — 1. The union C of these events is the event X; = 0. We
suppose Pr{C} = % and write P, = Pr{d},V; = Pr{B;},7=12,---m — 1
so that

n—l1
P,=1%— Zl V;.
=

But V; = Pr{X; 20,X;20,X;1 <0},j=2,---n — 1so that
n—1
P,=21—Pr{X;20,X,50} — 2 Pr{X;20,X,20,X,,, <0}. (42)

=2

Consider a stationary Gaussian process X (¢) with a class 2 covariance
r(7). In (42) set X; = X(§jT/n). From (7), one obtains

PI‘{X1 = O,Xj = O,Xj+1 < 0}

1,1 . . T [T inrl L
=3 + s I:arcsm r I:(j - 1) 7—1—1] — aresin r [_7 77:| — arcsin r [;%-il:l’

and from (6)
™

PriX; =2 0,X, = 0} = }l — 2i arcsin r (7—,{)

Insert these values in (42) and pass to the limit as » becomes infinite.
Theorem 6 results.
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2.7 On Class 2 Covariances

Let r(7) be a class 2 covariance. I'rom the Bochner representation
r(r) = j;w cos A7 dIF(\),
where we now have
1 = fow dF(\) = f: NdF(\),

it is not hard to show that r is continuous, that »’(7) exists everywhere
and is continuous, and that r”(7) exists and is continuous everywhere
except perhaps at r = 0.

If the process X (1) with mean zero has r(7) as its covariance func-
tion, then the four random wvariables X(0),X’(0),X(¢),X'(t) have
covariance matrix

1 0 r r’
0 1 —r —r”
7 —7r’ 1 0
r! —r” 0 1

where we write r = r(¢),r’ = d/dt r(t),r” = d’/dt’ r(t). For this to be
a nonnegative definite matrix 1t is necessary that the determinant of
all major diagonal submatrices ke nonnegative. Evaluating these deter-
minants, one finds the system of differential inequalities

(1 — 7 — (1 = =) — (' + 7") 20, (43)

1—7—7z=0, (44)
1—7F =20, 1 —7" = 2z0,
1—7=20, 1—"=20 1-—r"20.

These inequalities can also ke derived without raising the question of

existence of the derivative process by demanding that the covariance

matrix of the four random variables X (0), X(e) — X(0), X (), X(t+e¢)

— X(t¢) be nonnegative definite for arbitrarily small values of e.
Consider now the family of covariances

r(Byr) =1 — B* + B cos <B> 0<B <=1, (45)

introduced in Section 1.1. In what follows, we shall be concerned with the
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family, I, of curves r = r,(8,7), where for each 8 with 0 < 8 =< 1 we
restrict our attention to the interval 0 < = £ #B. Several members of
the family are shown in Ifig. 2. The following statements, evident from
the figure, are easy to prove analytically. (1) The curves of the family
do not intersect each other except at + = 0. (2) A horizontal line r =
7, with | 7, | < 1 intersects exactly once each member of ' with param-
eter value in the range 1 = 8 = /(1 — r,)/2. For each value of «
satisfying — /1 — r2 £ a = 0, there is a unique member of the famly
that intersects the line r = r, with slope «. If 3(«) denotes the param-
cter value of this member of F, 8(«) is a continuous strictly monotone
decreasing function of @, —4/1 — 72 < a < 0.

We shall say that the curve r = r(7) intersects the curve r = ¢(r)
from below if at the point of intersection r’ > ¢’.

Lemma 2 — Let r( ) be of class 2.

a. If the first local minimum of v(7) is at 71, then r = r(7) cannot
tntersect from below any member of the family F,

7‘=7‘2(6,T>=1_—62+62cos<§>, Oéréwﬁ, 08

A
—

in the interval 0 < 7 < 71.

b. If r = r(7) passes down through the point (7, ,r,) with slope r,
satisfying — /1 — r2 < r,) < 0, then there is a unique translated member
of Iy say r = ro(Bo, 7 — u) which passes through (=, ,r,) with slope r,'.
If ro(B, , 7 — u) and r(7) are nonincreasing for + < v =< 1,, then r(7)
SErBo,r —pwfors =1 =7,.

1.0

08 —/3=0.35
0.6
B=05
0.4 \\
02
r oo Ao B =0.707

N\

N T—Tp3=085
e \\
-0.8 ~ P
-1.0 —
0 30 60 90 120 150 180

7 IN DEGREES

Fig. 2 — The family F.
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Proof — Part a of the lemma will be deduced from part b. The first
conclusion of part b is the remark (2) above. The second conclusion of
part b follows from the inequality (43). If | | £ 1, this latter can be
written by elementary algebraic manipulations as

The right-hand inequality can be rewritten as
" 7,'2 1

T
A= T aO=r = =¥

IIA

or,if ¥ =0, as

!t n
2r'r

(1 —=r)

2y 2

taomEao oy

or

_d__L> a 1
dr (1 —r)2 =~ "drl — ¢’

Integrate this expression from 7 to 7, with 7 < 7, to obtain
7”’2 B 9 < Tol2 B 2
I—=7)2 1—=—r=(0=mr)2 1-—r1r’
where the subscript o refers to quantities evaluated at 7,. Denote the

right member of this inequality by — 1/A%, and note that, as is indicated
by the notation,

12l —r) =" (L4 —7r) —n" _1—r2—r"

(46)

- = > = =0
h? 1 —r)? - (1 —7,)? X—=r)p =7
by (44). Inequality (46) now becomes
o2l =) s —5 (=0

or what is the same

’ 1

7’ a0 =n0-N,
where

N =1— 21 (47)

It follows then that

I |

VA =r)(r =2 Th’
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with & a nonnegative quantity. Integrate this again from 7 to 7, to ob-
tain

.ro—(l-l—)\)/Z_ .T—(1+)\)/2>_7'0—7'
arcsin W arcsin (1 — )\)/2 = A .
Thus one finds

1 + N 1= [r— (14+2)/2
T(T) < + sin [ h + arcsin T_:—m——jl (48)

= ¢(r).

This inequality is valid in a 7-range to the left of 7, until either ¢(7) or
r(7) has a local maximum.
Now by (47), q(7) can be written

q(r) =1—h2+hgcos<7;”>,

for suitably defined g, and one finds by using the various definitions
q(70) =1,

q(r) =

Thus ¢(7) is the member of the family F which, when translated in the
7-direction, passes through the point (7,,7,) with slope ,”. To the left
of 7,, the curve r = r(7) remains below this translated member of F.
Part b is thus proved.

Now suppose that » = r(7) intersects a member of the family F from
below, say at (7,,7,) with 7, < 7;. Let the parameter value of this
member of F be 3, . Since 0 = (To) > 12'(B,, 7o), the translated mem-
ber of F passing through (7,,7,) with slope #’(7,) has a parameter
value 8 = B, < B, . This translated version of » = 7,(8;, 7) has no local
maximum in the interval (0,7,), and its value at 7 = 0 is less than unity.
One thus has the contradiction #(0) < 1 and the lemma is proved.

Theorem 12 — Let r(1) be a class 2 covariance. Then
r(r) = cos 7, 0=+

Proof: In a region where r'(7) = 0, inequality (44) implies
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Integrating from 7, to 7 > 7, assuming that +/(7) < 0 throughout
(7o, 7), one finds

— (r — 7,) + arccosr, < arccosr = (r — 7,) + arccos r, ,

where r, = r(7,). This in turn implies cos[r — 7, — arccos r,] = r(r)
and r(7) = cos[r — 7, 4+ arccos r,], where the former inequality holds
from 7 = 7, until the cosine assumes the value unity, and the latter
inequality holds from 7 = 7, until the cosine assumes the value minus
unity. The result may be stated as follows: Let the class 2 covariance
r(7) pass downward (= not upward) through the point (7, ,r,) in the
7-r plane. The curve » = cos 7 can be translated in the r-direction
to pass downward through (7,,7,). Then to the right of 7,, r = r(7)
lies above this translated cosine curve until either the cosine curve or
7(7) has its next local minimum. Similarly, a cosine curve can be trans-
lated to pass up through (7, ,7,). To the right of 7, , 7 = r(7) lies below
this translated cosine curve until either 7(7) has its next local minimum
or the cosine curve has its next maximum.

A similar result holds if »(7) increases through (7, , 7).

Now let 7, = 0,7, = 1. Then » = r(7) liesabove r = cos 7 until the
first minimum of either. If the first minimum of (7) occurs at 7, = ,
the theorem is proved. Suppose now 7; < 7 and that r = r(r) crosses
r = cos 7 in (0,r). The first such crossing must be downward, since
r(r) 2 cos 7 from O to 7. If the crossing is at 7, then 7(7) = cos 7,
and 7'(7) £ — sin 7. If indeed '(#) < — sin 7, one obtains from (43)
the contradiction 1 = *(7) + r*(7) > cos’s + sin’f = 1. On the
other hand, if the crossing takes place with »'(7) = — sin 7, then b of
Lemma 2 shows that 7(7) =< cos 7 for + < 7 which contradicts the
assumption that the crossing was downward. Thus, the theorem is
proved.

Theorem 18 — If r(7) s of class 2 and
r(r) 20, 0<r7<—0
) NGE
then 7

1 _
r(r) = 1o (%,T) =14 1cos/27 = cos <L>

|

for
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The theorem is a consequence of repeated applications of Lemma 2,
We prove the theorem by supposing it false and then arrive at a con-
tradiction. We refer to the curve r = r(1/4/2,7),0 < 7 < n/4/2 as C.

Suppose now that 7(r) = 0for 0 < 7 < 7/+4/2 and that some point
P,onr = r(r), say (7., 7), lies below C. Denote r'(7,) by r,’. We can
suppose P, chosen so that 7, < 0, since r = r(7) cannot be nondecreas-
ing at all points where it lies below C. Let the horizontal line r = r,
through P, intersect C' at P; and denote the slope of C at P, by C’'(7,).
The point P; has larger abscissa than the point P, . The curve r = r(r)
possesses a continuous derivative. As the height r, of the horizontal line
r = 7, is continuously decreased to zero from its initial value, a value
must be found with P, to the left of P; and r,’ = C’(r,). By b of Lemma
2, a curve of the family F with parameter value 8 < 1/4/2 can be trans-
lated to the left to pass through P, with slope 7,/. In the interval 0 <
r £ 7,, this translated member of F lies strictly below C and is mono-
tone. The first local maximum of » = r(7) to the left of P, therefore
lies below C as must also the local minimum just preceding this maxi-
mum. A curve of ' can then be translated to pass through this local
minimum with slope zero, and repetition of the argument shows that
all local maxima of » = 7(7) for 0 = 7 =< 7, lie below C. In particular
r(0) < 1, which contradicts the initial assumption concerning r(7).
Q.E.D. -

Theorem 1/ — Let the covariance r(7) have the behavior
2 4
T T 4
r(r) =1 ——2—+m4—!+0(7),

near = 0. Then

r(r) £ re <‘\‘/177L,1>, 0

with ro(B,7) given by (46). Here T, = min(Bw,7,) and 7, is the smallest
posttive value of T for which r(7) = 1 — 2/m.

Proof — The first four derivatives of r(7) exist at + = 0. I'rom the
Bochner representation for r(7), it is easy to show using Schwarz’s
inequality that

IIA

TéTl)

v=m—120. (49)

It also follows that »”(r) exists everywhere and is continuous.
The Gaussian process X (¢) having covariance »(7) has first and second
derivates X'(¢) and X”(¢) almost everywhere with probability 1. The
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covariance matrix of the random variables X(0),X(¢),X’(¢),X”(t) is

1 ror r”
r 1 0 —1

r’ 01 0l
" =1 0 m

The determinant of this matrix cannot be negative. This is equivalent
to the inequalities

r 4+’
—_— < .
VI=—r ==
In any region where r’ < 0, the right-hand inequality gives

Y (r 4 ") d

- @ ’
,\/1—7.—2—7.12_ d —\/1_1»2_7«/2207‘.
- - T

I\

—0

Integrate this from 0 to 7 to obtain

VI =7 =2 2ol = 7). (50)
Note that if 7; is the first positive value of = for which +'(7) = 0, (50)
gives
v -1
417
Thus we have the interesting side result that if r(7) is everywhere non-

negative F=lorm = 2.
Squaring the inequality (50) and rearranging the terms, one finds

"z (1451 =)~ a),

r(r) £

where

¥ — 1
a—v—2+1<1. (51)
Since 7 = 0, this implies

'

r -
< - 2
Vi-ne—w = VitH
if > a. Integration from 0 to 7 yields
.7'—(1—05)/2_1<__ —T
aresin d=a)/2 5 = V1 +v T,
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where it is assumed that + £ 7, . If then

g —\/lﬂ—i——vzrl = g,
R s (5 - vTEE),

or, what is the same thing in virtue of the definitions (49) and (51),

r(r) £ 1 — n—lﬁ + %2 cos (mr).

The theorem is thus proved.

2.8 Proof of Theorem 9

Let h(£) be nonnegative for 0 < ¢ < ¢ and zero elsewhere. Then
t ©
v = [ - X dt = [ auhGX(t — w) du,
) | o

will certainly be nonnegative for 0 < ¢ < T whenever X (¢) is nonnega-
tive for —0 £ ¢ £ T. The probability that the ¥ process be nonnega-
tive in (0,7") is therefore not less than the probability that the X process
be nonnegative in (—8,7"). If X is Gaussian with mean zero and covari-
ance r(7), then Y is Gaussian with mean zero and covariance

n(r) = BYWY(t+ 1) = [ duf do hadh@EX( = X0+ 7 —0)
= '[w du '/_-w dv h(w)h(w)r(z — u -+ v)

= [ dwrc —2) [ dg btz + Oh(e).
One has then P[T,r(7)] = P[T + 6,r(7)], which is Theorem 9.

2.9 Proof of Theorem 10

Let0 =4 <t < --- <t, = T be a partition of (0,7"). Define Q,(r)
by

Pr(X(h) <0,X(t;) 20,4=2,3,---,n)

Qn(r) = Pr(X(4) <0,X(L) = 0)

,  (52)

where X (¢) is a Gaussian process with zero mean and class 2 covariance
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r(7). As the partition is refined with mesh tending to zero, @,(r) ap-
proaches Q[7T,r(7)] as a limit. The numerator on the right of (52) is
P.(#) where

1 _T(tZ) —T(t:;) tee —T(tn)
—T(tg) 1 T(ta — tg) v T(t" — t?)
= —T(ta) r(t3 —_ tg) 1 .. T(tn —_ l3) ’ (03)
—r(tn:) r(t, — 13) r(t, — t3) :1

and as usual P,(r) denotes the probability that n normal variates of
mean zero and covariance matrix r Le nonnegative. Note that the de-
nominator of the right of (52) depends cnly on r(¢,).

Let another Gaussian process, Y (¢), have class 2 covariance ¢(7).
Wedefine r (1), ¢ '(7), h(r) = r [¢(7)] asinSection 2.3 and set g(¢) =
q '[r(¢)] = B7'(t). Note that g(¢) is strictly monotone within its domain
of definition. Assume that 7' is within the domain of definition of g.
With the points ¢; given as in (52), set 7; = ¢g(4;), = 1,2,--- n. The
points 0 = 7 < 73 < --- < 7, = ¢g(T) form a partition of the interval
(0,9(T)). The mesh of this partition tends to zero with the mesh of the
{; partition.

Consider now the approximation to Q[g(7"),q(7)] given by

_Pr{Y(n) <0,Y(r;) 2 04 =1,2,3,---,n}
Qnla) = Pr{Y(n) < 0,V(r) = 0] - (54
The numerator here is P,(§) where § is given by (53) with r replaced
by ¢ and ¢ replaced by 7. Since 7; = g(&:), g(7:) = v(t;),2 = 1,2,-- - n, s0
that the first row and column of £ are the same as the first row and
column of §. FFor any other entry of t with ¢, = ¢;, one has

r(ti — &) = glg(t: — ¢5)]
= glri — 75 + {g(t: — t;) — g(t:) + g(¢)}].
Since ¢(7) is nonincreasing
r(ti — ¢) S q(re — 73)

and hence by Lemma 1

P.(%) = P.(d),
provided
g(t: — t;) — g(t) +g(t;) 2 0.
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or what is the same thing, provided

g(x) +g(y) = gz + ), (53)

where0 Sz =t <ti=2+y.

When (55) is satisfied, the numerator of (54) is not less than the
numerator of (52). The denominators of these expressions are equal
since they are the same function of (%) = ¢(72). Therefore, @,.(q) =
Q.(r). The conclusion of Theorem 10 results by passing to the limit as
the ¢ partition is refined.

2.10 Generalizations

A number of the results presented in this paper can be generalized in
a direct manner. We only mention here an obvious extension of Theorem 1.

In the derivation of Lemma 1, the lower limit of integration for z; in
(33) can be replaced by a;. Now choose a; = a(t;) with a(t) a given
function defined for 0 < ¢t < 7, and where the points ¢; form a partition
of (0,T). Proceeding as in the derivation of Theorem 1, one arrives at
the following more general result. Let X (¢) be a Gaussian process with
EX(t) = 0, EX(1)X(s) = r(s,t). Let Y(t) be a Gaussian process with
EY(t) =0, EY ()Y (s) = q(s,t). Then if

T(S;S) = Q(878)7 0=s=T
and

r(s,t) = q(s,t), 0=st=T

PriX(t) = a(t),0 St < T} = Pr{Y(t) = a(t),0 <t < T).

2.11 Asymplotics

As already remarked in the introduction of this paper, there appears
to be little in the literature concerning the asymptotic behavior of
P[T ()] for large 7. Intuition would indicate exponential falloff for a
wide class of covariances. Example (#7) of Section 1.1, though special
In nature since r,(B,7) is periodic, provides a counterexample to expo-
nential behavior, and so the class must be carefully defined. Here, by
the two bounds presented in Section 1.4, we have shown exponential
behavior for nonnegative covariances that vanish identically for r
greater than some 7, > 0. Recently, by using Theorem 1, M. Rosenblatt
has established an asymptotic exponential upper bound for P[7,r(7)] for
all covariances which are ultimately majorized by a decaying exponen-
tial. This, together with the lower bound of Section 1.4, establishes the
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asymptotic exponential behavior of P[T,r(r)] for all nonnegative co-
variances that themselves decay exponentially. Professor Rosenblatt has
also established that if 7(+) — 0 with increasing =, then T"P[T,r(7)] — 0
with increasing 7' for every n > 0.

We conclude with the remark that from (23) of Section 1.7, one can
show that asymptotic exponential behavior of P[T,r(7)] implies asymp-
totic exponential behavior for Q[T,r(7)].
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Probability Distributions for the Phase
Jitter in Self-Timed Reconstructive

Repeaters for PCM

By M. R. AARON and J. R. GRAY
(Manuseript received August 25, 1961)

Probability distributions for the timing jitter in the output of an idealized
self-timed repeater for reconstructing a PCM signal are approvimated.
Primary emphasts is focused on self-timed repeaters employing complete
retiming. In this case the probability distribution for the timing jitter reduces
to the computation of the phase error in the zero crossings at the output of
the tuned circuit excited by a jitter-free binary pulse train. It is assumed
that the tuned circuit is mistuned from the pulse repetition frequency, and
the individual pulses are either impulses or raised cosine pulses. Both
random pulse trains and random plus periodic trains are considered. In
general, the probability distributions are skewed in the direction of increasing
phase error. The approach to the normal law in the neighborhood of the
mean when the circuit € becomes arbitrarily large s demonstrated. Results
obtained from the analytical approach are compared with two computer
methods for the case of random impulse excitation of a tuned circuit char-
acterized by a Q of 125 and mistuning of 0.1 per cent. Excellent agreement
between the three techniques is displayed. For no mistuning and raised
cosine excitation two methods for computing the phase error are given and
numerical results obtained from both techniques agree closely.

Some attention is given to an idealized version of a reconstructive repeater
employing partial retiming and it is shown that the timing performance of
such a repeater for random signals is very much inferior to the completely
retimed repeater.

I. INTRODUCTION

Over the past several years the problem of maintaining pulse spacing
within very close bounds in PCM transmission has received considerable
attention both theoretically and experimentally. The effects of timing
jitter in degrading repeater performance, in introducing distortion in

503
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the decoded analog signal, and in enhancing the difficulty of dropping
or adding several pulse trains in time have been documented.” Sources
of mistiming in a self-timed reconstructive repeater are well catalogued
and include: noise, crosstalk, mistuning, finite pulse width effects, and
amplitude to phase conversion in nonlinear devices. The first four of
these sources have been considered in various analyses of timing jitter
in self-timed and separately-timed PCM repeaters. Amplitude to phase
conversion in nonlinear circuits has received attention primarily from
the experimental viewpoint.

The majority of the theoretical work to date has been concerned with
timing errors in self-timed repeaters when the timing-wave extractor is
a simple tuned circuit. FFor a random pulse train exciting the tuned circuit
in the presence of noise and mistuning, results have been obtained for
the mean displacement and the standard deviation of the zero crossings
from their ideal location. This analysis is appropriate to repeaters em-
ploying complete retiming. These time displacements can also be
considered as phase errors and we will use this terminology in what
follows. If the probability density function for the phase error is normal,
the mean and standard deviation are sufficient for a complete statistical
description. In this paper we will show that in general the probability
density function is not normal, and is inherently unsymmetrical about
the mean.

An approximation to the probability density and the cumulative
distribution for the phase error at the output of a mistuned resonant
circuit will be derived for both random and random plus periodic pulse
trains. A completely random pulse train is defined to be one in which
pulses and spaces are equally likely. The individual pulses of the binary
pulse train are assumed to be jitter free and are either impulses or raised
cosine pulses. The approach to the normal law when the circuit @ is
large is demonstrated. For a value of @ of 125, and a mistuning of 0.1
per cent from the pulse repetition frequency a comparison of numerical
results obtained from the analytical approach and two computer methods
is made. Agreement among the three approaches is excellent.

Our plan of attack is to place all of the manipulations required to
specify the tuned circuit response to the most general pulse trains in
the Appendix and concentrate on most of the probabilistic notions in
the main body of the paper. Appendix A covers the response of the
tuned circuit to a random or random plus periodic binary pulse train of
arbitrary pulse shape, and Appendix B is concerned with the specializa-
tion to raised cosine pulses. Section IT of the text deals with the terminol-
ogy required, covers the tuned circuit response to impulses, and briefly
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summarizes the results of Appendices A and B. In Section III, the
probability density function for the phase error is derived. Section IV
is devoted to the cumulative distribution function and Section V alludes
to the semi-invariants that are required in the evaluation of the density
and cumulative distribution functions. These semi-invariants are de-
rived in Appendix C. The approach of the probability density function
for the phase error to the normal law as the circuit @ becomes arbitrarily
large is displayed in Section VI with the algebraic support relegated to
Appendix D. The comparison of numerical results mentioned previously
with other computer approaches is made in Section VII. For zero mis-
tuning, but finite pulse width excitation, it can be shown that the proba-
bility distributions for the phase error can be related directly to the
probability distribution for the timing wave amplitude. This is demon-
strated in Section VIII. A discussion of further numerical results is given
in Section IX. We consider an idealized model of a partially retimed
repeater in Section X for purposes of comparison with the results of
Section IX. A wrap-up of the procedures, results, and future work
concludes the paper.

II. RESPONSE OF THE TIMING CIRCUIT

Before we go on to the general equation for the phase error due to
finite pulse width and mistuning, we will specialize to impulse excitation
of a simple tuned circuit characterized by its @ and mistuning from the
pulse repetition frequency. This should provide the casual reader with
some feel for how the more general equation for the phase error arises
without going through the detailed manipulations of Appendices A and
B. The procedure adopted in the analysis to follow is equivalent to that
of H. E. Rowe.”

Assuming the input to the timing circuit to be a train of jitter-free
unit impulses occurring at random with spacing T, the excitation may
be represented as

50 = 3 bt — 1), M

where a, is a random variable taking the values 0 or 1 with probability
3,5 8(t — nT) is a unit impulse whose time of arrival is a7, and the
spacing 1" is the reciprocal of the pulse repetition frequency f.. TFor a
parallel resonant circuit the impulse response is given by

* Unless otherwise specified, the case of equal likelihood will be considered in
all calculations.
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R(t) = A e TP% cos (2nfot + ), (2)

where

1 1 1\ 1

= —_— — — —_— _ —— 2
fo=g, 1/LC (QRC) A= VICH L

a1
tan 3G
Here f, is the natural resonant frequency as distinguished from the
steady-state resonant frequency f, = (1/2w)+/1/LC. Combining (1)
and (2), the total response to all impulses occurring in time slots up to
and including the one at ¢ = 0 may be written as

Q = 2xf,RC, and ©

n=0

F(t) = A4 X a,e ™" cos 2af,(t — nT) + ¢].  (3)

n=—00

This expression gives the output of the timing circuit for values of ¢
in the interval between ¢ = 0 and the arrival time of the next impulse.
Rewriting (3) in the form of a carrier with both amplitude and phase
modulation we get

F(t) = ANz + 2 ¢ TP cos [2nfi + ¢ + 6], (4)

where

0 = tan' 2,

81

o«
€t =2 ane TP cos 2nf T, and
n=0

y = Zoan ¢ LT gin OnfonT.

In the above x and y represent the in-phase and quadrature components
of the response. If the tank could be tuned exactly to the pulse repetition
frequency (f, = f» = 1/T), then the phase modulation would disappear
and the amplitude modulation would be dependent on x alone. In prac-
tical applications this is not possible and the phase shift ¢ does occur.
If we denote the fractional mistuning Af/f. by k, we may write f, in
terms of £, as follows ’

fa = fr(l + k)

In this case (4) becomes, neglecting & with respect to unity in the
exponential term
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F(t) = A2 + 2 ¢ 9% cos 2nf(1 + )t + o + 6], (5)

with
0
T = E a, ¢ 9" cos 27kn,
n=0
0
y= 2 a, e ™O" sin 2xkn,
n=0
and

0 = tan™" y/x.

To illustrate the relationship between the timing deviation #; and
the phase error 6, it is assumed that repeater delays have been adjusted
so that the timing wave supplied to the regenerator in the absence of
mistuning is properly aligned with the signal impulses in the information-
bearing channel. In this case, the negative-going zero crossing occurring
ideally at {, = T/4 determines the instant of regeneration. When mis-
tuning is present this zero crossing is displaced such that it occurs at
the instant ¢, = T(% — 6/27). The difference ¢, — t,” will then give the
timing deviation which, expressed as a fractional part of the pulse
spacing, is

(6)

From (6) and the definition of 6, the phase error corresponding to
the timing deviation is related to the random variables z and y by

0 = tan™’

(7)

8w

In deriving (7) it should be recalled that only the incidental approxima-
tion & <« 1 has been made. When we consider a binary pulse train in
which the pulses representing the binary ‘“‘one’ are of arbitrary pulse
shape, it is necessary to make other approximations to arrive at a tract-
able expression for the phase error. Furthermore, the excitation en-
compasses the infinite past as well as the tails of succeeding pulses to
accommodate driving pulses that may overlap or are not time limited.
The most general result given by (59) is an extension along two lines
of Rowe’s relationship for the timing jitter in the output of the tuned
circuit due to mistuning and finite pulse width. Ifirst, the results are
applicable to arbitrary pulse shape. Secondly, our relationship for the
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phase error is based on a different approximation in the case of finite
width pulses.

In appendix B we specialize to the case of raised cosine pulses in order
to make use of some of Rowe’s results. IFor this case the phase error is
given by (73) and takes the form

_y+ta
T x40

where a, b, and ¢ are constants that depend upon @, k, and the pulse
width 7'/s of the raised cosine pulse. x and y are correlated random vari-
ables that depend upon @, %, and the pulse pattern. They are defined
below (5) with the additional constraint that @, = 1 when we consider
finite width pulse; i.e., a pulse definitely occurs at the origin. In our
notation, a positive phase error corresponds to the zero crossing of
interest occurring prior to the reference. The largest pulse width we
consider is 1.57. This avoids the necessity of considering the effect of
the presence or absence of a following pulse on the negative-going zero
crossing of interest. Similarly, for positive-going zero crossings we do
not have to use special methods for considering the occurrence or non-
occurrence of a preceding pulse. This is not a serious analytical restric-
tion, since larger pulse widths can be handled by the machinery provided
in Section A-4. As a practical matter in the design of a self-timed recon-
structive repeater for operation in a long repeater chain, wider pulses
would introduce intolerable phase jitter. In the following, we will also
neglect the constant ¢ in (8), since it is independent of pulse pattern
and can in principle be compensated for in either the timing path or
information-bearing path in a self-timed reconstructive repeater.

9 + ¢, (8)

III. PROBABILITY DENSITY FOR THE PHASE ERROR

3.1 Preliminaries

From the above, the random variable of interest is

0_x+b 1 (9)

To determine the probability density p(8) or the cumulative distribu-
tion F(8), we consider the joint probability density of the correlated
random variables x; and 1, , p(@1, %1). F(8) = Pr (y1/a1) = 0), which
may be written

0z,

=] 0 0
F(6) =f0 day dysp (@1, 1) —I—[ d«'hj; dyip(21,41) .



PHASE JITTER IN PCM REPEATERS 509

Differentiation of F(8) with respect to 6 plus rearrangement yields
p(0) = / xip(ar, 0x1) day + fo op(—a1, —0x1) doy.  (10)
0

Therefore if p(x;,#1) is known, p(8) can be determined by integration.

As is typical of this class of problems when x; and y, are not correlated

normal variables, the exact determination of p(y, y;) is rarely obtain-

able. Therefore, we find it essential to proceed along approximate lines.
We can write the characteristic function o(uw) for p(a;, 1) as

e(up) =[ dxlf dyre” T p (e, ) (11)

If we take the partial derivative of (11) with respect to u, evaluate it
at u = —6v, divide both sides by 277, and integrate over » from — « to
o, we get
1 0 0 0 .
dv = — dvf dxlf dylxle’”y“h‘)p(xl,yl).
o o

u= —0v 4T J—x

17 de(up)
21!"1: —o0 ou

When we interchange the order of integration to integrate over v first,

1" de(up)

51 L ou dv = [m dxy f_w dywid(yr — B p(aan) ,

u= —fv

where 8(y; — 6x;) is the Dirac delta function. Integration over 3, then
results in

]

_L aiw_’v) dv = f xip(a1, 0z1) duy

271 o ou

u=—fv

w o (12)
= f 21p(y, 001) day — /0 zip(—x1, —0x1) day.
0
A comparison of (10) with (12) reveals that they are equal provided

that z; is always positive, in which case p(—x1, —6z,) is zero. Under
this condition’

dv. (13)*

u=—fv

o= [

)

In the following we will use (13) to approximate p(8); before doing
so we make a few remarks about the range of the random variables z;
and 6.

* The result in (13) is given as an exercise for the reader on p. 317 of Ref. 9.
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3.2 Mintmum Values of x, and

Our comments in this section will largely be confined to the case of
impulse excitation in which case z; = x and ¥, = y, where x and y are
defined following (5). From the definition of # it can be seen that it
attains its minimum value for the set of @, = 1 in which the argument
of cos 2wkn is in the second and third quadrants (modulo 27). With this
pulse pattern it is easily shown that

B sin 2rke™ "V (1 4- ¢ 1HO) (T4
Tmin = T S Gm0) (1 — 28 oos 0 + ) 20 (1 = o)
—(7/Q)

where 8 = ¢ and § = average value of y (from Appendix D).
For the values of k£ and @ that we consider, namely k@ less than about
0.1 and @ = 100, an excellent approximation for mi, is

Tmin = —2g¢ T,

When £Q is fixed at 0.1,
Zmin = 4]CQ2 e—2.51r
ks

and for @ = 100, Tmin = —0.005. The ratio 2min/E, where T = average
value of z, can be shown to be

Lmin = Alf) o (TEQ

= 4kQ ¢ ,

which for kQ = 0.1 is —0.00016, or very close to zero. Based on un-
published work of one of the authors, the probability of /% of even going
negative is so remote as to be completely unimportant and decreases
with increasing @ for k@ fixed.

Another interesting way of looking at the probability of 2 becoming
negative is to consider the probability of pulses occurring in the first
quadrant of the argument of cos 27kn to constrain the minimum value
of z to zero. This can occur in any of several ways. One possibility is to
choose a single pulse (a single a, = 1) in the sector of the first quadrant
bounded by » = 0 and the largest integral value of n that satisfies

B” cos 2wkn > | Zwmin |-

For @ = 100 and kQ = 0.1, the above is satisfied for a value of n that
is less than about 148. The probability of at least one pulse in this range
of nis1 — (1 — p)™ which is about 1 — 107" for equally likely pulses
and spaces. Therefore, x is positive with probability very close to unity.
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For increasing values of @, with kQ fixed at 0.1, the probability that
x is >0 approaches unity even more closely.

By an argument that parallels the above, the probability that y < 0
for £ > 0 and impulse excitation is very small. Similarly, probability
y > 0for k£ < 0 is extremely small.

For raised cosine excitation, i, is increased by 1 + b, which for
the pulse widths considered herein is always >0.25, thereby making
Zmin Positive for the @’s of interest to us. We also note that long strings
of zeros as required in attaining z.,; cannot be tolerated in a PCM
repeater with a simple tuned circuit timing extractor, since the timing
wave amplitude would fall well below the point at which it would be
useful in the repeater. A higher minimum on the timing wave amplitude
can be assured by constraining the transmitted pulse train to avoid such
long strings of spaces.” In this paper we simulate this constraint by the
introduction of a forced periodic pattern of pulses in the otherwise
random train. This serves to increase xmin and decrease the range of 6
as we shall see below and in Sections VII and VIII.

3.3 Range of 6

For random impulse excitation, it is apparent from (5) that 6 is un-
bounded when we choose a single a,, = 1 for n large and all the rest zero.
However, with a, = 1 and the values of @ we consider, = is always
positive, and from the results of Section 3.2 6 is essentially confined to
(0, w/2) for k > 0 and [0, — (w/2)] for k < 0. In the following we seek
tighter bounds under the practically important case a, = 1. Experi-
mentally, a, = 1 means that we examine only those time slots containing
pulses.

For the general form of 8, D. Slepian and E. N. Gilbert of Bell Tele-
phone Laboratories* have developed an algorithm for determining the
pattern that yields the maximum value of 6. Their result is particularly
simple when k@ < 1; then we can approximate x by

0
1 + Za/n e—(‘lr/Q)n
1
and y by

o«
21k Y a, ne” O™,
1

Under this condition Gilbert and Slepian have shown that the pulse

* Private communication.
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Fig. 1 — n, vs B for random impulse excitation.

pattern giving the largest value of 6 is specified by all pulses present for
n = n. and pulses absent for n < n.. The value of n. is obtained from*

Bn+1
(1 —pB)
where 8 = ¢ 9. Tor random impulse excitation @ = 0 = b. For this
case, 1, versus 8 obtained from (14) is shown in Fig. 1. For g < %, all
pulses present (n, = 1) yields the maximum value for 6. In the range
1 < B < 0.639 the pulse immediately adjacent to the origin is dropped
out to obtain 6.,,x and so on.

The maximum value attained in a specified interval is achieved for
the largest 8 in the interval and the niaximum value is given simply by
2xk times the n, defined by the 8 interval. The 8 intervals corresponding
to constant m, get smaller and smaller as 8 approaches one. This is
illustrated in Fig. 2, where we have plotted n. against @ rather than g,
showing a continuous approximation to the actual staircase character-
istic. We note that for Q@ = 100, n. = 80 and 0m.x = 27kn, = 1607k,
With t = 10_3, Omax = 0.167 radians.

* See Appendix E for the proof.

a

= nc<1 + b) - 271",0.

(14)
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For finite width pulses, @ and b are non-zero. With raised cosine pulses
of pulse width less than 1.5 time slots ¢ < 0.65 and 0 > —0.75 with the
largest negative value of b corresponding to the consideration of positive
going time slots. When the mistuning, k, is positive, the effect of finite
pulse width then is to raise the maximum value of n, over the impulse
case and consequently to raise 6,.x . On the other hand, when &t < 0,
fmax can be reduced over the impulse case. We will demonstrate this
effect in connection with the cumulative distribution in Section IX of
the paper.

As noted previously, the long string of spaces implied by large n.
make the timing wave amplitude so small as to be useless in a real re-
peater. The timing wave amplitude can be increased by forcing a periodic
pulse pattern. With the constraint that every Mth pulse must occur,
the pattern that yields the maximum value for 6 is as before where n,
is now given by

6n¢+1

= -2 A

- SO R e
MBY(1 — ™) - PRI
27k(1 — BM)? 27k(1 — gM)’

(15)

where 7 is the largest integer less than n./M. It can be seen that (15)



514 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1962

reduces to (14) as M — « as expected. Furthermore, since the difference
in the last two terms of (15) is positive and the term added to 1 + b is
also positive, it is apparent that the effect of the periodic pattern is to
reduce n, and consequently 6., as expected.

3.4 Probability Density Function, p(6)

With the above preliminaries disposed of, we will proceed to use (13)
to develop an approximate expression for p(#). To do this we assume
that the logarithm of the characteristic function possesses a power
series expansion in the neighborhood of ¥ = 0 = v. The general form of
this series is"

o - A1'3 i T/ 8§

log p(up) = 22 22 = (i) (i) (16)
rr; 83;0 O

where the A,; are the semi-invariants of the distribution for z; and y, .

Since

do d
=01
= %o llog ¢],
we may write
p(0) = L fw 9 [log ] exp [log o] dv. (17)
277 J—ew QU u= —0v u= —0v

Using (17) and performing the differentiation indicated in the integrand,
we get

5720
We now remove terms from the double summation for which r + s < 2.
The remaining terms we treat as u, and expand e” in a power series
retaining only the first two terms (¢ ~ 1 4 u). In this case p(8) be-
comes approximately

r+s=6 Y
p(0) < p(0) + 3 2 2

r4s>2

(=1)"pr(6), (19)

ris!
where

d[ i [*d . !
1.(0) = — [iﬂ_ f 71) exp —2w(Aof — A1) — % (A20f” — 2N + 7\02)],
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or p,(8) = (d/d8)f.(8), where f,(8) is defined by comparison with the
above.
Similarly,

_ d » 7 /wdv .\ rts
pu) = &[0 L [ @)

2
+€Xp — (Ao — A1) — % ()\2002 — 2n0 + Aoz):],

or

prs(o) = (’id_éfrs(o) .

An upper limit for the double summation in (19) is set in order to make
the approximation for p(6) consistent with the number of terms used
in the power series expansion for €*. The reason for 6 as an upper limit
will become apparent when we discuss the semi-invariants, A, , in detail
in Section V. Performing the differentiations and integrations indicated
in (19) we finally arrive at

1 A5(0) A,(0)°
V/2r A,(0)} ‘”‘p[ - 2A1<o>]

p(0) ~

T e
. Sy M AT \V244(8)
1 + Z Z ( 1) ] (\/2A1(0))r+3 (20)

r+s >2

A, (0) ]
+ H(r+s)—1 (\/2A1(0> Ars(e)J
(v/24,(6)) 0A2(0)

where
Ao(0) = Mo(0 — 0,),
A1(0) = Ngf® — 2M110 + o2,
As(0) = Nol0(A2080 — A1) — (Abo — Ne2)],
An(0) = s\ + (r — $)Auf — o,

Il

I

and

Ao
g, = 20
Ao
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The H’s are Hermite polynomials defined by

n 22 dn —22

HA(2) = (=" " (&™),
The result in (20) gives a general expression for p(8) as a function of
the semi-invariants of the distribution of z; and y; . The solution ob-
tained is approximate in that it depends upon an asymptotic expansion
analogous to the Edgeworth Series. As noted by Cramer,’ one is not
particularly interested in whether series of this type converge or not,
but whether a small number of terms suffice to give a good approximation
to the probability density function over a specified range of its argu-
ment. In our case, the statistical properties of the input pulse pattern,
and the parameters of the timing circuit are controlling in this regard.
With this in mind, the determination of the range in 8 over which a
valid approximation may be obtained in various cases is deferred for
the present.

IV. CUMULATIVE DISTRIBUTION FUNCTION

The cumulative distribution function #(8) may be determined using
the results derived in the preceding section. Beginning with (19) we
may write

k=6

p(0) ~ f, —1)"f4(8). (21)

1]1

r+k>2

By definition*
g
F(g) = ] p(u) du.

Integrating (21) between the limits indicated, F(8) becomes

r+s=6
FO) = £(0) + 2 X2 (-0l 5. 22)

r+s>2

Referring back to (19) and performing the integration over v necessary
to determine f,(8) and f+(8), we get

* The significance of the lower limit of integration in the definition of F(8)
will be discussed in connection with the numerical results.
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: 1, enf[_4.00) 7T 1
F@O) ~5+ 5 [\/2A1(0)] NCET)

LA\ (23)
I{(H—S)—l <—\/m)

(V24,(9)) 77
where 4,(6), A,(8) and H,,,, have been previously defined.

r 5 rls!

r+s>2

Ao(0)2 Sl Ars rar
'expl:_ 2A1(0)]Z Z (_1)6'

V. SEMI-INVARIANTS FOR THE DISTRIBUTION OF & AND Y

In this section we consider the coefficients of the power series expan-
sion for the logarithm of the characteristic function ¢(u,v). These are
determined as functions of the parameters of the timing circuit, and the
excitation and provide the necessary information for an explicit solution
for p(6) and F(8). A closed form for the A, is obtainable for all excita-
tions of interest under the condition p = 4 (pulses and spaces equally
likely ). [The semi-invariants for any p can be obtained by appropriate
differentiations of log ¢(u,w). We have not expended the energy for this
exercise.] The semi-invariants are shown below for random impulse
excitation under the condition kQ < = and are derived for all excitations
we consider in Appendix D.*

. 1 kB
M aiop M T a-ap )
—1)'B,. (27 — 1 o d 1
b oo = VBT = D ge £ (L) (29)

where 8 = ¢ 9 g = x/Q (r + s), and the B,, are Bernoulli numbers.

Since B,,; = 0for r 4 s odd and >1, we note that the odd order semi-
invariants given in (24) and (25) vanish beyond order 1. Therefore
since the \,; for » + s = 3 are zero, one can extend the upper limit in
the double summation in (19) to 6, and still maintain consistency with
the fact that only 2 terms in the power series expansion for the expo-
nential, €, were used in the approximation for p(8). This conclusion is
valid for all excitations of interest.

VI. BEHAVIOR OF p(f) FOR LARGE Q
When the @ of the resonant circuit becomes large, the past history of
the input signal becomes increasingly important in determining the

* The more general semi-invariants without the restriction £Q <« = are given
in Appendix D; however, they are too long to be repeated here.
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statistical properties of z and y. This follows from the form of the ex-
ponential term in the expressions for z and y given in (5). Invoking the
Central Limit Theorem under this condition, one would expect the
values of z and ¥ to begin heaping up about their respective means with
the probability density function p(z,y) approaching a two dimensional
normal distribution. Analogous behavior is expected of 6 and we will
now consider p(6) as given by (20) in the neighborhood of its mean for
large Q. The discussion is restricted to the case of random impulse
excitation, but the results for other excitations parallel those of this
section.

To determine p(6) near its mean, we write, using the previous condi-
tion kQ < ,

2rk Y, ame "
= = (26)

)
Z an e-—an
n=0

0 =

SRR

where

o =

Dl y

For this to hold as @ becomes arbitrarily large, we require the kQ
product to be constant. Since

0 can also be written as
d d x _
0 ~ —2xk 7o [log 2] = —2xk 7 I:log z + log x] , (27)

where & is the average value of z. Expanding log x/% in a power series
in the neighborhood of 1 (« near ), and keeping only the first term, 6
becomes

d _ dix — &
0~—21rk%l[logx]—27rk%t[ = ] (28)

Differentiating the above with respect to « we get for 6 in the neighbor-
hood of its mean

9~7_{+w, (29)
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In determining this result we make use of the fact that
_ d _
g = =2k — [z]. (30)
do

Using (29) one can determine the logarithm of the characteristic func-
tion of 6, and the associated semi-invariants of the 6 distribution. When
this is done, the mean of ¢ is

_ 27kg
=i-3
which also can be derived directly from (29). The standard deviation
and the 4th semi-invariant are given by
_ 2(2xk)2B?
(1 =81+ 8)?

f~2 =4, (31)

K

68°(1 + 8 (1 — B)*

_ —2(2xk)'6 [1 481 = B)

Ay = +

(1-sY (1 -8 (1 — B)?
_4p(1 — B)°(1 + 48" + 8°)
T~ 57 #2)
(1 — @1 + 118* + 118’ + %)
+ T = ) }

with 8 = ¢ * These same results can be derived using (20) and including
only the first correction term from the double sum (i.e., only those A
for which » + s = 4). The details of the calculation along with the A,
of interest are given in Appendix D. The final result for p(9) is

0 — 0,
2 H4—
p(ﬂ)N ;__ exp—(e—_?_‘ﬁ_<1+& 20’)- (33)

Jp 22 4! 40t

The above equation for p(6) is in the form of the standard Edgeworth
approximation. In the limit as @ becomes large (8 — 1), and with kQ
constant, p(6) reduces to

1 (6 — 6,)* 57 9 — 6,
PlO) ~ Zm e~ T [1 ~ fasg (x/ézr)] (34)

with 6, = 2kQ and ¢ = k/7Q. Equation (26) indicates the approach
to the normal law as @ becomes large with the first correction term going
as 1/Q. The above results for 6, and ¢ correspond to those derived




520 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1962

earlier by Bennett' by another method. If we rewrite o as kQ\/7/Q we
notice that p(8) becomes more peaked with increasing @, and falls off
quite rapidly as 6 departs from the mean. In the high @ case the concen-
tration about 8, becomes more pronounced as expected.

It is to be emphasized that the general properties of p(8) for large Q
demonstrated here will be true for the other inputs also. FFor example,
with random impulse excitation plus 1 out of M pulses forced, the
average value will remain the same as above but ¢ will be a function of
M;

. T M(M — 1) Q
T ,CQ/‘/Q ES f01m>>1

The effect of M is to reduce o and therefore increase the concentration
about the mean. As M becomes large (fewer pulses required to occur),
the effect of M becomes insignificant for this large @ case.

VII. NUMERICAL RESULTS FOR p(6) AND 1 — [7(f): IMPULSE EXCITATION

7.1 p(8)

To determine the behavior of the probability density function for
finite @, we must use the general form of the approximation to p(6)
given by (20), since most of the approximations made in the previous
section for @ arbitrarily large are no longer valid. By way of illustration
we consider the case Q@ = 100, k = 10~ with impulse excitation and all
pulses random (p = %). For negative mistuning, k = —107°, the curve
for p(8) will be identical with that for k positive except that 6 is re-
placed with — 6. The result for the probability density function is shown
in Tig. 3. The calculations® upon which this curve is based include
the first and second correction terms of (20); i.e., terms for which r -
s = 4and r + s = 6. Points beyond § = 0.13 radians on the lower end
and ¢ = 0.35 radians on the upper end are not included, since the ap-
proximation begins to fail at these extremes. More specifically, the
probability density obtained from (20) goes negative somewhere be-
tween 6 = 0.13 radians and 8 = 0.12 radians and 8 = 0.35 and 6 = 0.36
radians. However, as we shall see later, up to these points the results
for the cumulative distribution are in good agreement with computer
simulation. The cumulative distribution is also shown on Fig. 3 to point
out the fact that the median occurs slightly below the approximate mean
given by 2k@. In addition, it is apparent from the shape of p(6) and

* Equation (20) and all subsequent calculations for p(6) and F(8) were pro-
grammed for the IBM 7090 computer by Miss E. G. Cheatham.
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Fig. 3 — p(6) and F(6) as a function of ¢ for £ = 1073 and @ = 100. Random
impulse excitation.

F(6) that the probability density is skewed in the direction of increasing
phase error. This is more easily visualized from Fig. 4 where we have
shown p(8) as in Iig. 3 plotted on log paper. The normal probability
density with the same mean and variance as our computed curve is also
shown to further illustrate the skewness.

On Fig. 5 we have plotted p(8), as defined in (20), to illustrate the
contribution of its constituent terms. From this figure we see that the
principal term (always positive) predominates over most of the range.
At the tails, the terms involving A, for r + s = 4 pulls p(6) in and
forces the density to become negative. The last term in the approxima-
tion, for which » + s = 6, serves to extend the region over which p(6)
remains positive.

When 1/M pulses are forced, the skewness is reduced, as is the vari-
ance. There are several ways of explaining this effect. First, as discussed
in Section 3, the denominator of 6 in (8) or (9) is raised, thereby reducing
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Fig. 4 — p(0) for k = 103 and @ = 100. The normal curve with the same mean
and variance is also shown for comparison. Random impulse excitation.

the range of variation of the timing wave amplitude and confining 4 to a
narrower range. This is expected from the physical standpoint, since
forcing a periodic pattern with the remaining pulses and spaces equally
likely is similar to increasing the probability of occurrence of a pulse in
an all-random sequence. Since the pulses, when they occur, have the
proper spacing, they will tend to correct for the departure of the zero
crossings from the mean that has occurred during the free response of
the tuned circuit in the absence of a pulse. Indeed, in the limit when
M = 1 (all pulses definitely occur), all the probability is concentrated
at the mean, 2k@), which is identical to the steady state phase shift of
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the tuned circuit in response to a sine wave at the pulse repetition fre-
quency. This behavior is also predicted mathematically from (20) and
the fact that A\, goes to zero for r + s > 1 when M = 1. The same effect
oceurs when @ approaches infinity with £@Q constant and it can be shown
from the results of the previous section that p(6) goes to 6(8) when the
limit is taken. In this light, we can view the introduction of forced pulses
as effectively increasing the @ of the tuned circuit while maintaining £Q
fixed.
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Fig. 5 — Contributions of various terms involved in the p(6) approximation
given by (20). Random impulse excitation is assumed, with £ = 10~% and @ = 100.
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Fig. 6 — The effect on p(8) of requiring 1/M impulses to occur. bk = 1073, Q@ =
100.

In practical applications, the effect of a pulse at the origin is of par-
ticular interest. Mathematically, this corresponds to M = . Physically
this means we examine and record phase error only for those time slots
containing a pulse. Fig. 6 illustrates the narrowing of the density func-
tion for M = < (pulse at the origin), and M = 16, 8, and 4. It is
interesting to note that, for these cases, the probability density function
remains positive over the range of 8 we have used in the computations
from 0.1 to 0.4 radian. This encompasses values of p(6) < 1077 on the
left of the mean and p(6) < 107° to the right of the mean. This is to be
expected since A\, decrease with decreasing M for r + s = 2, thereby
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reducing the importance of the terms involving the Hermite polynomials
in (20) and improving the approximation.

Irig. 7 depicts the behavior of p(6) as @ grows with kQ fixed at 0.1.
The results are consistent with the predictions of the previous section.

7.2 1 — F(0)

IFor a closer inspection of the behavior of the distribution at its tails,
1 — F(6) will be examined. This function as evaluated from (23) for
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Fig. 7 — The effect on p(#) of increasing @ with kQ = 0.1 and random impulse
excitation.
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Q = 100, k = 10~°, and purely random excitation (p = 3) is shown in
Fig. 8. The plot shown gives the probability that § deviates from its
mean by more than some constant C times ¢. In the same figure a
comparison of the calculated approximation with the normal curve of
identical mean and standard deviation indicates a substantial departure
from the normal law as the phase error increases. When periodic patterns
are interspersed with the random train, the departure from the mean is
further reduced, as can be seen from Fig. 9. Similar behavior is exhibited
in Fig. 10, where @ is increased from 100 to 500 and k@ maintained
constant at 0.1.
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N
—40-2 N
w10 \\
(O] . \
Al . ALL PULSES
q? \ RANDOM
v . \ 0= 0.018
o, Y
\
§ 1073 N
o \
5 \
NORMAL \\
CURVE
g =0.018 \
2

1075

O

Fig. 8 — Comparison of 1 — F(6) with the normal curve in the vicinity of the
tails. The normal curve is computed assuming the same mean and variance used
in determining 1 — F(§). Random impulse excitation with @ = 100 and k& = 1073
is assumed for computing 1 — F(9).
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7.3 Comparison with other approaches

Since we have made approximations in arriving at our expression for
the phase error, it is natural to ask how these approximations affect our
computed results. A comparison of our results with two other approaches
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impulse excitation.

will be made for the case of impulse excitation. We recall from Section 2
that the phase error under impulse excitation is given by
tan 0 = Q.
z

For kQ sufficiently small we can write
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> na.B"
0 - n=0
2xk © )
N > a,8"
n=0

The approximation of tan 8 by its argument is not crucial in this case,
since a straightforward transformation can be made on the probability
distribution to correct for this approximation [i.e., p(8) = sec’ 6p(tan 6)].

H. Martens* shows that (35) can be manipulated to yield a recursion
relationship for the phase error that is in a convenient form for digital
computer evaluation. T. V. Crater and S. O. Rice used this approach in
some of their work, and a probability distribution so determined is
shown by the dots in Fig. 11 for @ = 125. For the same value of @, we
have computed the probability distribution from the series in (23), and
it is displayed as the solid curve of Fig. 11. It can be seen that the agree-
ment between the two approaches is excellent. The scattering of the
“experimental” points at the 10 level and below is due to the limited
number of pulse positions considered by Crater and Rice. Specifically,
10* pulse positions were processed after an initial transient of some
5 X 10° pulse positions had elapsed.

In addition, S. O. Rice in unpublished work has shown that the tail
of the distribution should behave as A (4)”*™, where 4 is an unknown
constant. When we take the values of 6 at the 10~ and 10™* levels and
substitute these in Rice’s asymptotic form and form a ratio, the con-
stant A cancels out and we should obtain 10. The actual value for the
ratio is 10.9, which tends to indicate that the asymptotic behavior has
virtually been reached. This suggests that an extrapolation of the distri-
bution to larger values of 6 by merely continuing with the same slope
should be valid. :

We also note that we can write

(35)

(%)6/21rk — (%)aq/ﬂso
where we have made use of 6, = 2kQ. With kQ constant, one would
expect the cumulative probability to fall off faster for larger @, as is
indeed the case. The slopes of the curves of Fig. 10 follow Rice’s pre-
dictions quite closely.

While the above comparisons are comforting, they only indicate that
our final expressions for p(8) and F(6) are accurate for computing these
quantities from the initial defining equation for 6. Approximations have
been made in arriving at the starting relationship. A check on these
initial approximations may be obtained from a simulation of the problem.

* Unpublished memorandum.
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Fig. 11 — Comparison of 1 — F(8) computed by (23) with the results of the
Crater-Rice simulation for @ = 125. Random impulse excitation is assumed.

One such simulation has been accomplished by Miss M. R. Branower
using a combination of analogue and digital computers. The principal
errors introduced in this process involve the stability of the analogue
computer with time and the number of pulses processed. For a tuned
circuit characterized by a Q of 125 and mistuning & = -+107°, the
computer simulation yields the results of Fig. 12. Results obtained using
(23), the exact semi-invariants of Appendix C, and the tan 8 transforma-
tion mentioned previously yield the ‘“‘computed curve” of Fig. 12.
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Again the results are in very close agreement. To indicate the effect of
the approximation k@) < w, we have repeated the computed curve of
Tfig. 11 on TIfig. 12.

VIII. RAISED COSINE EXCITATION

8.1 Results for 1 — F(6)

With raised cosine excitation, the computations are performed as before
and only the semi-invariants N\, for » 4+ s = 1 are changed from the
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Fig. 12 — Comparison of 1 — F(6) computed by (23) with the results of an
analog simulation due to M. R. Branower. Random i1mpulse excitation with
Q = 125 and k = 1073 is assumed. The effect of the tan § approximation is shown
together with results for both approximate and exact semi-variants.
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previous case. Results obtained for this excitation are shown on Fig. 13,
where it is apparent that the use of widest pulses and positive-going zero
crossings yields the largest phase error. The effect of @ and M with this
type:of input is the same as with impulses.



PHASE JITTER IN PCM REPEATERS 533

8.2 Comparison with another approach when kb = 0
In the absence of mistuning, the phase error becomes

a

i

(36)

and the probability distribution for § may be obtained by methods given
previously, or by the following relationship:

> ) = %>
Prob (8 = \) Prob <x T3 2 A

— b\
-P <? .
rob<x_ ~ >

(37)

Therefore, if the distribution for x is known, the distribution for § may
be determined from it. The random variable x is the normalized timing
wave amplitude defined by Rowe. This random variable has been con-
sidered by S. O. Rice in unpublished work and he has developed a pro-
cedure for closely approximating its probability distribution. Using the
method of moments, one of the authors also computed this distribution.
The results were in excellent agreement with Rice’s results and the
cumulative distribution obtained by the moment method is shown in
Fig. 14. It can be shown that the probability density for z is unimodal
and symmetric about its mean; therefore, the data on I'ig. 14 suffices to
specify the complete distribution. With this data and (37) we can
determine the distribution for 6. Alternately, we can use (23) to make
this computation. A comparison of the distribution obtained by the two
approaches is shown in Fig. 15 and it can be seen that the agreement is
very close. Thus we have found another check on our series approxima-
tion for p(6). Conversely, we can use the distribution for 8 to compute
the distribution for z. In this regard it is interesting to note that when
the Edgeworth expansion including semi-invariants through order 6 is
used to approximate the distribution for x, the density function begins
to turn negative in the neighborhood of 3¢ from the mean indicating
failure of the approximation. On the other hand, using the same number
of semi-invariants in the expansion for p(6), where 6 in this case is es-
sentially the reciprocal of x, we obtain a good approximation to the
cumulative distribution for z. This is believed to be due to the narrowness
of therange of § as compared with x; i.e., x variesfrom 1 to 1/(1 — 8) =
Q/=, while 1/x goes from 1 — 8 = #/Q to 1.
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IX. OPTIMUM TUNING — FINITE PULSE WIDTH

In the case of impulse excitation it should be apparent that zero mis-
tuning, k¥ = 0, is the desired objective for no phase error. On the other
hand, with finite width pulses zero mistuning does not yield zero phase
error. Mistuning can be purposely introduced in the finite pulse width
case to make the mean value of # zero, to minimize the variance of 6, or
to.optimize some other parameter of the 6 distribution.

. An approximation to making the mean of 6 zero may be obtained by
choosing k such that the average value of the numerator of  is zero.
This means that

»
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Bomat ot s =, (38)

or
2
L = ___a(l - 6) .
03
For example, when @ = 100 and a = 0.65, as for raised cosine pulses of

width 1.57, then k = —2.05 X 107" to satisfy (39). In the high Q case
(39) becomes k = — (an/Q").

(39)
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Fig. 15 — Comparison of the distribution of 6 as computed by (23) and that
determined from the distribution of the timing wave amplitude of Fig. 14. Raised
cosine pulses of width 1.5T drive a tuned circuit with a @ = 100 and zero mistun-
ing. %imicrilg deviations in the neighborhood of negative-going zero crossings are
considered.
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When the objective is to minimize the variance of 6, we consider ¢
as defined in Appendix Dj i.e.

(N2oBs” — 2Anbo + Aax) '
Ao '

A plot of ¢ versus k is shown in Fig. 16, where it is seen that the minimum
o occurs close to the “zero mean” value of &. Probability distributions
for values of & that encompass the optimum are shown on Fig. 17. The
narrowing of the density function for the optimum value of & is evident.

The results of this section suggest that when the tuned circuit in a
self-timed repeater is adjusted, it should be excited with a random pulse
train and the tuning adjusted to minimize the jitter on the leading edge

(40)
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Fig. 16 — Standard deviation of phase error as a function of mistuning with
raised cosine pulses 1.57 wide. Negative-going zero crossings are considered. @ =
100.
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Fig. 17— p(8) for raised cosine excitation with various mistunings in the
neighborhood of the optimum mistuning. Negative-going zero crossings and
pulses 1.57" wide are assumed in making the calculations. @ = 100.

of the output pulse train as viewed, for example, on an oscilloscope. This
is the method used for the adjustment of the repeater of Ref. 8.
X. PARTIAL RETIMING

In Section VIIT we have shown that, in the absence of mistuning, the
variable 6 can be related to the normalized timing wave amplitude x
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and the distribution for 6 determined from the distribution for 2. Here
we will also make use of the distribution for x in order to analyze an
idealized version of a forward-acting partial retiming scheme. The
scheme we consider has been described by E. D. Sunde’ and analyzed
for periodic pulse patterns in Ref. 7. We make the same assumptions
here as in the later reference, namely
1. The pulses exciting the tuned circuit are so narrow that they can
be considered impulses. They are obtained by processing incoming
pulses to the repeater and they excite a simple tuned circuit.
2. The timing wave is so clamped that its maximum excursion is af
ground.
3. Reconstruction of the raised cosine pulse takes place when the
algebraic sum of the timing wave and the raised cosine pulse crosses
a threshold assumed to be at half the peak pulse amplitude.
TFor random impulse excitation of the tuned circuit prior to { = 0 and
the definite occurrence of a pulse at { = 0, we have, according to the
above assumptions (with no pulse overlap)

1 27ts T 27t 1
-2-<].+COS—T—>_'2—1_;(1_COST>—§ (4:1)
for |t| = T/2s
where
T =2 a8,
n=0
a, = 1 (the pulse at the origin definitely occurs),
and

T = average value of z.

Equation (41) is based on the assumption that the average timing wave
has a peak-to-peak amplitude equal to the peak pulse height (i.e., when
x = &, the timing wave amplitude varies between —1 and 0). If we
define ¢, as the time at which regeneration takes place and 6, = 2xt,/T
as the corresponding phase angle, then it can be seen from (41) that
this phase is a random variable dependent upon the random variable z.
We will solve for 8, under the condition s = 1, which means that the
information-bearing pulses are resolved.* Under this condition — (7/2)
< 6, < 0. Consistent with our previous definition of phase error, we will
consider the negative of 6, , since this makes the phase error positive

* Other pulse widths and different ratios of average timing wave amplitude to
pulse peak can be handled, but we will not consider them here.
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when we take our reference as the phase corresponding to the time at
which the pulse peak occurs (at ¢ = 0). In this way a positive phase
error corresponds to regeneration prior to the pulse peak and permits
direct comparison with the results of section 8 for the complete retiming
approach. Solving (41) for cos 6, gives

z
cos f, = —= - (42)
1+
z
and
Prob (cos8, < \) = Prob (6, = cos '\)
= z 43)
= Prob L - = A =Prob<x§T)\x—>\>.
1 +Z:_: (L =2

It is apparent from the above that we can use the distribution for  to
determine the distribution for 6, . For @ = 100, the distribution for x
is shown in Fig. 14 and with (43) enables us to obtain the distribution
for 6, as shown in Fig. 18. When we compare this result with that of I'ig.
15, which shows 1 — F(8) for the case of complete retiming, it is ap-
parent that partial retiming results in a considerably larger variation of
phase error. This supports the contention made in Ref. 7.

XI. CONCLUSIONS AND FUTURE WORK

We have derived an approximate relationship for the probability
density and cumulative distribution for the phase error at the output of a
tuned circuit when it is excited by a random or random plus periodic
pulse train. The effects of mistuning of the tuned circuit and the finite
widths of the driving pulses have been considered. Three independent
checks of our results indicate that the expressions given are excellent
approximations to the true state of affairs for k@ < 0.1 and @ > 100.
Regions defined by these limits encompass values of k and @ of interest
in PCM systems under consideration.

More specifically, we have shown that the distributions are not normal
and are skewed in the direction of increasing phase error. When we
consider pulse positions in which a pulse definitely occurs, it has been
shown that the maximum phase error is bounded. In addition with
raised cosine excitation we have demonstrated that the mistuning can
be adjusted to minimize the mean or variance of the distribution for the
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Fig. 18 — Distribution of the phase error with partial retiming. @ = 100 and
k = 0. Raised cosine excitation pulse width = 7'.

phase error. The performance of an idealized version of a forward-acting
partial retiming scheme has been analyzed and shown to be considerably
inferior to a completely retimed repeater.

There are several desirable directions to proceed from our present
position. First, it appears to be possible, in the case where we examine
pulses only, to start from the maximum value of 6 and work back toward
the mean to better approximate the distribution near the tails. 8. O. Rice
has used this approach in related problems with success. Second, it is of
interest to determine the pattern to give the maximum phase error at
the output of a string of repeaters. This is not necessarily the pattern
that creates fm.x in a single repeater. In this regard, we have concen-
trated on only a single repeater. Obviously it is of interest to extend our
results to a repeater string. This extension remains elusive.

<
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APPENDIX A. DERIVATION OF EQUATION FOR NORMALIZED TIMING ERROR

A-1. Response of tuned circuit to random pulse train

The impulse response of a parallel resonant circuit is well known to be

1 J ) —(x[Q)f ot ,+i2mfot
— _ 1 v o 0 .
h(t) = Real part of I:C ( + 50 e e (44)
Following Rowe,’” we will imply the real part in all subsequent calcula-
tions involving complex quantities. The pulse train applied to the tuned
circuit is given by

r(t) = D awg(t — nT), (45)
where:
a, = 1 with probability p,
a, = 0 with probability 1 — p, and

g(t) = pulse shape representing the binary 1.

The response of the tuned circuit to »(t) is

rt

2(1) = jwr(r)h(t — ydr (46)

In view of (45), this can be written

2(t) =T fanh(t —nT)

'f(t/T)—" J(2T) exp l:(fog"r - j27rfoT> CL:I dz.

(47)
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Define
14

f, = ‘7’1‘ (1 k), (48)
with k¥ = fractional mistuning from the pulse repetition frequency.
Equation (47) can be manipulated to yield

z(t) — IA(t) Ie;"[?rfrt+<1>(t)]7 (49)
where
®(¢) = tan™* -2% + 2af,kt

> an e"’Q(Hk)"[—Il <Tt, — ) sin 27kn
+ I, (% - ) cos 27rlcn] (50)
D> e etthn [Il (% — n) cos 2wkn

+ I, (%, — ) sin 21rkn]

= Re fZ/T)_n g(aT) exp [(%foT — j27rf,,T> x:l dx, and
B (51)

= Im e g(xT) exp [(%foT — j27|'foT) x:l dz.

In (49), | A(2) | represents the amplitude modulation on the carrier,
while ®(¢) represents the phase modulation, the quantity of primary
interest here.

A-2. Equation for normalized ttming error

There is no loss in generality and it is convenient if the timing error
is evaluated in the neighborhood of the pulse that occurs for n = 0.
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In this neighborhood, negative-going zero crossings occur where ‘-

2nfit + ®(t) = g
or
t 1 ®(1)
AR (52)
Similarly, positive-going zero crossings occur for
R - 10))
T "1 % (53)

In the absence of tuning error, and with impulse excitation, ® = 0
and the negative and positive-going zero crossings occur close to =7'/4
respectively.* Using these zero crossings as a reference, it is easily seen
that the equations for normalized timing error become '

]. €1
o _ _‘I’<4+T> (54)
T 27
for negative-going zero crossings and
@_ _g(-lia
= @ ( it T> (55)

for positive-going zero crossings.

With the exception of the minor generalization to arbitrary pulse
shape, the method employed thus far is identical with that used by
Rowe.” At this point in the evaluation of the timing error, we depart
from his approximate solutions of (54) and (55) and attempt other
approaches. Before proceeding in this direction, an indication of the
approximation used by Rowe will be given. For the high @ case, ® will
be small and will change only a small amount for small changes in 2xf.4.
Based on this assumption,

e . _ 2(%)

T 27 (56)
5

ex . _2(=%)

T 2r

* Neglecting tan™? L in (50)
2Q
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It should be pointed out that these initial approximations are good for
Rowe’s purposes (steady-state error for 1/M patterns). However, for
our purposes they need to be improved.

A-3. Approximate solution of equation for normalized timing error

One method for improving the accuracy of the initial approximation
is to expand @ in a power series about 7'/4 for negative-going zero cross-
ings and retain two terms in the expansion to get

a. 2 (57)
1 27 + ¥'(3)
The form of & makes this approach messy and makes the determination
of the probability distribution more difficult.

Another approach that is more tractable involves the separate Taylor
expansion of I; and I, (51) in ® about the reference time. If we retain
only the first two terms in the Taylor expansion, replace the arctangent
by its argument, and neglect & with respect to unity, we obtain for
negative-going zero crossings

e1 1 k

T ~4rQ 4

i @, e™O" [—sin 27kn (Li(E — ) + ey (2 — n)
1 + cos 2mkn(La(t — n) + ol — )]
2 i ane™P"(cos 2xkn (Ii(3 — n) + ey’ (3 — n)) |
- F sin 2ekn (1(3 — n) + aly'(E = )]

If terms in (e/T)* are neglected, multiplication of both sides of (58)
by the long denominator on the right results in a linear equation for
e;/T. This equation is applicable to arbitrary pulse shape, time-limited
or not, and has been applied by one of the authors to periodic patterns
of both Gaussian and raised cosine pulses in unpublished work. The
results were compared with digital computer simulation and were in
excellent agreement, thereby giving us confidence in using this approach
for random pulse patterns. In this paper, we will concentrate on raised
cosine pulses. This enables us to make use of some of the results given
by H. E. Rowe in Section 2.5 of his paper.’ For these time-limited pulses,
the limits of integration on the I’s of (51) are modified in an obvious
way, and the upper limit on the sum over n is limited to the pulse im-

(58)
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mediately succeeding the time slot of interest at » = 0 for negative-
going zero crossings. The evaluation of the various I’s required is dis-
cussed in Appendix B.

Subject to the above conditions, the normalized timing error, as de-
rived in Appendix B, can be written in the following form:

ee Ay + Bz 4+ C

T Dy + Bz + F° (59)
where
y =D ae "9 sin 2rkn,
n=0
eo (60)
x =2 ae 7" cos 2rkn,

I
o

n

and a, = 1 (a pulse definitely occurs for n = 0). A through F are de-
fined in Appendix B and are functions of the pulse width and @ and
mistuning of the tuned circuit. In addition, C' and F are functions of the
presence or absence of a pulse in the succeeding time slot for negative-
going zero crossings if sufficient pulse overlap exists. For positive-going
zero crossings the form of the equation for the normalized timing error
is the same and the new C and F are dependent upon the presence or
absence of a pulse in the preceding time slot. This assumes that the
pulse width is less than 2.57.

A-4. Modification of probability distributions for pulse overlaps

With the dependence on the occurrence of a succeeding pulse, as is
the case for negative-going zero crossings with sufficient pulse overlap,
we must modify the determination of the probability distribution as
given in the main body of the paper. If we denote e;/7 and C = C;,
F = F, for a; = 1 (a succeeding pulse definitely occurs), and denote
ep/Tand C = Cy, F = Fyfor g; = 0, then the average probability dis-
tribution for the timing deviation will be given by

Prob (2 < >\> = p Prob (2 < >\> + (1 —p) Prob (® < >\>. (61)
T T T

When the pulse width is less than 1.57, C; = C,, F; = F;, and there-

fore e;; = e;2 and the above modification is not required. A similar pro-

cedure is applicable for positive-going zero crossings.
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APPENDIX B. RAISED COSINE PULSES

B-1. Determination of I’s

For a raised cosine pulse centered at the orlgln and of width 7'/s, I
of equation (51) becomes

1
I(z) =0 v < —5
I(z) = [ (1 + cos 2mszy )l O gp, lz| < 1 (62)
(1/29) 2s
1 1
1a) = 1(%) e>
where
K=(14+k)
The integral inr(62) is readily evaluated to give
| [elr@—enKs /=K s
—I = —
2rK (1 + >
2Q
N -—e[(fr/Q)—J'Zvr]Kx e+J21rsr _ e—[(vr/Q)—ﬂir]K/?s
‘E K —3s)+ ; K (63)
i ( )+ 50
N 1 —e[(w/Q)—i%r]Kx 6—i21rsx _ e—[(v/Q)—j27r]K/2s
4 K
i (K +s) + J QZ)

The derivatives required in the evaluation of (58) may be obtained
from

dl . e (ResVE -
d__x — e(ﬂ'/Q)K:c [e 2r Kz + _;_ e 2r(K—s)z + % ¢ .127r(1&+8)r]. (64>

In the evaluation of I and dI/dwx, mistuning makes very little differ-
ence for the allowable values in practical systems. Therefore, with K = 1

Iomips = —j & [1 + cos —8] (65)

2

Iemoys = j €™ [1 + cos %s] (66)
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Moesys = j o™ [1 + cos 3%3] (67)
r . w/4Q 37s
Ihe—sp = —Je 1+ cos 5= | (68)

Equations (65) and (68) above are required for negative-going zero
crossings, while (66) and (67) are needed for positive-going zero cross-
ings.

B-2. Equation for Normalized Timing Error with Raised Cosine Pulses

From (58) we can write the equation for normalized timing error as
e it (69)

where N and P are defined by comparison with (58). Cross multiplica-
tion by P, neglecting terms in e, and collecting terms, yields

ee Ay+ Bz 4 C
T Dy+Ez+F’ (70)

where z and y are defined by (60), and A through F' are as follows:

AR

B 0(5) - [ i)n(a)

e 5[0 - 2@ - [m il 6 -1 @)
+ a0 {21} I:sin omkl, (—Z) — cos 2nkl, (-2)]
[t ][5 zmin. (=) + cos2mis ()]

o

i)

RN
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+ a, ™9 {cos 2k [%r I, (—%) + 1, <_Z>
1 ] 3 . . _ 1 , _3
+<4 Q-I- )11 <—;>]+s1n2rrk[ §1_r[1 ( 1)
3 3
o (") * <4WQ + ) (‘1)]}'

Tor positive-going zero crossings, only the constants C' and F are
changed.

B-3. Numerical Evaluation of Constants

In order to make use of some of Rowe’s results, we will choose the
same two cases for pulse width that he used.

Case 1. s = 1, Pulses Resolved s

a. Negative-Going Zero Crossings. Since mistuning has a small effect
on the evaluation of the I'’s, we neglect it in this regard. Neglecting
terms in 1/Q° and %/Q, after some arithmetic one arrives at
1 ! k 00795 0.0316
—y — 4 0085k
e Ax? (mQ s) + + Q + 090

T 3 0.06 -

2 —1

167rQ (:c ) + 0375 + =—— 0
@ > 50 and k@ < 0.2 encompass values of practical interest. In this
region the term in y in the denominator of (71) can be neglected and
the numerator term 0.0085% is also negligible. It is also convenient to
deal with phase error rather than timing error. Thercfore, we rewrite

(71) as
11« 0.397
) _27re1_y_@[1—§w] + 0194 =5 (79)
' T 0.12 '

The multiplication by —2# is used to avoid any questions later on as
to which way certain inequalities are to be taken. This means that 6 is
the negative of the phase error as previously defined. A positive value
of 9 signifies that the zero crossing occurs prior to 47'/4 for negative
going and positive going zero crossings respectively. The general form
of 6 for all the cases to be considered herein then can be written as
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_yta
6 =" 5 + c. (73)
For the situation under consideration in this section,
0.334 T
= (0.159 —_— ~k
a=0 + 0 + 8’
0.12
b= —-025 + ==
Q

111 =
C=_—Q'[4_§’CQ].

b. Positive-Going Zero Crossings. Proceeding in the same way as in
Sections B-2 and B-3 above, the phase error for positive-going zero
crossings is as in (73) with

0.2 3
=0159 ——=+=—1F
“ Q + 8]
0.62
b= -075 + ==
5+ 0

1(1 T
c = _QI:‘I - §7¢Q].

In this case it should be noted that with zero mistuning (y = 0) and
with a pulse for n = 0 and nowhere else, a positive-going zero crossing
does not occur in the neighborhood of —7/4. Under this special con-
dition, x = 1 and (73) with the constants of this section would predict
an incorrect error in the positive-going zero crossing. Of course such a
sparse pattern occurs with probability zero. Fortunately, for all other
more reasonable periodic patterns, results obtained from (73) are in
good agreement with computer simulation.

Case 2. s = %, Pulses Overlapping, Base Width = 1.5T

a. Negative-Going Zero Crossings. In this section we will dispense
with all of the algebra and arithmetic and simply write down the final
results. For the case at hand

0255 1

_ 1
27ry Q

Q

-(0.034 — 0.02kQ)
0255z — 0.062 + 0.048/Q ’

(0.073 — 0.064kQ)x + 0.0264 +
(74)

=)
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When this is converted to the form of (73), we have

a = 065+ 0—Q4 — 021k

L 0.188
b= —0243 + 2
¢ = — L8 — 158K0].
Q

b. Positive-Going Zero Crossings

a = 065 — 04 + 0.94k

1.66
b = —0. :
0.753 + 0
¢ = ~L [1.8 — 1.58kQ)]
Q . . v .

The remarks made in connection with positive-going zero crossings
for Case 1 are equally applicable here.

APPENDIX C. SEMI-INVARIANTS FOR THE JOINT DENSITY FUNCTION OF
Z1 AND Y1

C-1. One out of M pulses definitely occur; the remaining pulses are in-
dependent and occur with probability %; raised cosine pulses.

The characteristic function is defined as
e(up) = E exp i(ux1 + vin), (75)

where F is the expectation operator, and from Appendix B

2= ¢ ™ cos 2rkMm + b 4+ D, a.e " cos 2rkn,

m=0 nEmM

" - (76)
n=, ¢ sin2xkMm + a + D, a.e ™" sin 2rkn,

m=0 n#EmMM

with « = 7/Q. Substituting (76) in (75) and performing the expecta-
tion operation gives
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0
o(up) = exp iy, ¢ O™ (4 cos 2nkMm + v sin 2xkMm)
m=0

cexp i(ub + va) X ] exp{;— e_(”Q)”(ucos27rlm+vsin27rlm)} 7

nFEmM
o Ie*(r/Q)n .
x 11 cos| — (u cos 27kn -+ v sin 27xkn)
nFEmMM \ &

which may be rearranged to

. o

eluw) = epr::L3 > {ef("/Q)M" (u cos 2xkMn + v sin 2xkMn)

& n=0 {
+ ¢ O (y cos 2rkn + v sin 27rlm)}:| exp 1(ub + va)
e—-(r/Q)n I (78)
3 (u cos 2xkn <+ sin Q‘Hm)f

je—(W/Q)Mn
COSY

o |
When we take the logarithm of (78), we obtain

COoS

X

=M=t

(u cos 2xkMn + v sin kaMn)}

n

log o(up) = % > 18 (u cos 2xkMn + v sin 2xkMn)
n=0
+ B8*(u cos 2xkn -+ v sin 27kn)]

+ i(ua + vb) + z=:0 log cos [% (u cos 2xkn -+ v sin 21rlm):| (79)

Mn

— > log cos I:% (w cos 2k Mn + v sin 27rIcMn):l ,
n=0

where g8 = ¢ 9.

The first sum in (79) may be carried out, and when combined with
t(ua -+ vb) yields the semi-invariants Ay and Ay which are of course
the mean values for x, and ¥, respectively. Since the last two terms of
(79) are similar in form, we will confine our manipulations to the next
to the last term. We denote this term by

Flup) = ;0 log cos l:% (u cos 2wkn + v sin 21rlm):| . (80)
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Using the infinite product expansion for the cosine and the power series
expansion for the log; i.e.,

and
log(l—w)=—zw. (z* < 1).
F(up) becomes

F(up) = —i .

7o m=o S i(2m + 1)¥gp¥’ (81)

where C,, = ¢ " cos 27kn and S, = ¢ *" sin 2xkn. The sum over 7 may
be obtained by virtue of

> 1 _ (27 = 1)(=1)"(2m)"B,;
= (2m + 1)¥ 2:+1(24) 1

where the B,; are the Bernoulli numbers. With the above sum over m
and the expansion of (uC, + vS,)” in a binomial series, we arrive at

_ s (=1)By (2% — 1) ¢ 2j> S (S )T
Plug) = 3 SO BEIZ D 52 () 5 0w s 32)
Proceeding in the same manner that took us from (80) to (82), it can
be verified that the last term of (79) takes the same form as the right-
hand side of (82) with n replaced by nM. These results and comparison
with the definition of the semi-invariants for a two dimensional dis-
tribution® lead to the following for the semi-invariants for the process
under consideration:

\ _1,: 1 —peos2rk 1 — " cos 2xkM :|+b
Y21 —28cos 27k + B | 1 — 28 cos 2xkM + B ’
! 8 sin 27 BY sin 27kM :I
Ao = 2[1 — 28 cos 2k +ﬁ2+ 1 — 28™ cos 2nkM + g™ T4
and
CBPET DS s e s
)\rs]r+s>l - —r? s [Cn Sn - CnM SnM ] (83)

The sum over n can be shown to be a geometric series multiplied by
two finite series if the sines and cosines in S and C respectively are rep-
resented in exponential form and use is made of the binomial expansion.
After some algebra, an alternate form for (83) can be shown to be
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B (277 — 1)1l -
)\rs]r+s>1 = (7‘ + 8)27‘(27,.)3 G(T,S,B,Iv,ﬂ[), (84:)
where G(r,s,8,k,M) is (shortened to @)
r s (—1)‘1
G =
;o;)q!(r — p)lgl(s — !

1
'I:l — B exp [i27k(r + s — 2p — 2q)]

1
T 1 — B exp [i2xkM(r + s — 2p — 2q)]]'

For u and v in the neighborhood of zero, the contributions to the series
in (79) become smaller as n becomes larger. The importance of suc-
cessive terms is judged by the exponential decay factor ¢ "™?. If we
consider all terms up to some 7. Where Ny > Q/7 and knmax K 1,
then we arrive at the following inequality

kQ < 1. (86)

™
Under the above condition cos 2rkn can be replaced by unity and sin
2xkn by 27kn for all terms of importance in the series and (79) becomes

approximately

ful 1 1 Y Mp”
log (up) ~ 1 {éLlTﬁ + W] +omh [(1 —Br T = B")J
+ (ub + va)} + > log cos {%n (u + 27rknv)} (87)
n=0

© Mn
— > log cos {62 (u + 27ranv)}.
n=0

Paralleling the operations performed on (80) to obtain (82) it can
be shown that the semi-invariants obtained from (87) under the con-
dition (86) are

1 1 1
)\10#§<1—6+1—6M>+b’
M
Aot = 7k <(1 —613)2 + (1IYBBM)2> + a, and (88)
_ . sBr-i-s(QH-s - 1) L\ 8 ds < 1 _ 1 >
)\rs]r+8>1 = ( 1) W (QWL) d_g* —— 1 — g0

with g = (r + $)7/Q.
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C-2. Same as I Above Except That Pulses are Impulses

For this case the semi-invariants are as above with a = 0 = b.

C-3. Impulse Excitation, All Pulses Random
With this type of excitation, we have

\ =1|: 1 — B cos 27k ]
Y 9| 1T =28 cos 27k + B2’

N _1[ B sin 27k :|
"7 9211 — 28 cos 27k + &2

and

_ B, (27 - 1)7!81[ ~ 5 (=1)*

Moy = S w5 & i — )il = )

1
"1 = pteexp [i2nk(r + s — 2p — 2q)]:|'

It is readily shown in this case that the approximate semi-invariants
[subject to (86)] are

1 1
Mo _5(1 —6)’

Ny = B (90)

(1 —p8)

sBr32T+s_1) sds 1
Neslrpss1 = (—1) —Jr—(;—_{“_s—— (27k) ‘—iE (1———_6:;>’

with g = (r + 8)7/Q.
APPENDIX D

High Q Behavior of p(6)

To illustrate the behavior of the probability density function when
the @ of the resonator becomes large, we consider p(8) in the neighbor-
hood of the mean, 6,. We include terms of the double summation in
(19) for which » 4+ s = 4. Since the Bernoulli numbers B,,, = 0 for
r + s odd and >1, the terms A,, for r + s = 3 are zero. For 6 ~ 4,
therefore, p(#) becomes
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p(0) = Mo
\/271' (Aaofe? — 2Aubo + Aoz)?
_)\102 (6 — 00)2
P T ThdE — 2hatdo T oa) (91)
H < - )\10(6 - 90) )
_1+4 V2ol — 2\ + Ae2)? fi(:w ﬂi
L V2Neofe — 2Mifo + Ne2)? RN s! Aot
)\]0

The semi-invariants of interest in the above equation are given below
and were determined using the results of the previous section for the
case “‘all impulses random,”” subject to kQ << .

_ 1 _ )_\21 _ 2rkB
T ) e T T =8
=i L = 7r’c g N = (k)81 + 6°)
YD) T2 -y " (1 —p)?
o = L Lk 8 (k)8 + 8Y)
40 801 — a9 31 1 (1 =g 22 5 1= By
A = —(71'76)3( 64)4(1+4B + 8%
4
Aoy = 2<7rk>“( e (1 + 116" + 118" + ).

Using the above expressions for the A’s, the following quantities in (91)
may be reduced to

>\10 — 1 — 1
(Naob2 — 2Nufs - No2)? V2(2xk)B a’
(1 =1 —p)t
et r A 00 _ 1 2(2ak)’6
ZZ (_—1) 7“8’)\10 N _Z—l 1 — 64
r+s>2
,[1 _ 40 —p) | 680+ 690 - p)’
(I —pY) (1 —p)*
_ 480 - '+ 48"+ 67 | (1 —8)'(1+ 118" + 116° + /312)]
(1 —p)* (1 — g

or
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r48=4 r

S5 (may de B
T8 718! Aot 4!
T4s>2

The probability density therefore takes the form

(0=, (0\;§z> . (92)

1
p(0) = o= exp =g Yl

This result is in the form of the standard Edgeworth approximation
with 6, , ¢, and A4 the mean, the standard deviation and the 4th semi-
invariant of the 8 distribution, respectively. In the limit as @ becomes
large (8 — 1) we approximate 1 — 8 by 7/Q and

o kNTQ 0, — 2kQ

The coefficient of the 4th Hermite polynomial approaches — (57/128Q).
EEquation (92) then indicates the approach to the normal law with the
first correction term going as 1/Q. The results for 6, and ¢ correspond
to those derived earlier by Bennett, Rice and others.

APPENDIX E

Determination of Omax
For kQ < =, a good approximation for 6 is (from Appendix B)
a+ 27k ). a.ng"
=0

6 = 3 : (93)
b+ 2 anf"

When a, = 1, we have

a 0
0 — m + nZ=1 a"nﬂ (94)
1+b+ D a8
n=1

7wk

It is of interest to determine the pulse pattern that yields the maximum
value of 6/2rk. This is equivalent to the determination of a one-zero
sequence of a,’s such that (94) is a maximum.
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Assume that an initial pattern has been chosen such that 6/27k =

A,/B,. If a single a, is changed from zero to one (pulse added); then
8/2xk is changed to (4, + n8")/(B, + 8"). Clearly, we should effect
this conversion if

A+n6> 0

B,+B* = B

or

%

A,
n B (95)

On the other hand if a one is changed to a zero (pulse removed), then
6/2xk will be increased if

A, — 08" _ A,
Bo - ﬁn > E
or
4,
n < ‘E;. (96)

The process is continued in this manner until all a, = 1 for n = n, and

all @, = 0 for n < n, (except a,, which is constrained to be unity).
n. may be determined from the above process, since

+ > g
Ny = omax _ 211"(1 n= n; , (97)
1+b+ 2 6
which can be rearranged to
netl
(—IE:‘W:_;%_F?%(I—FM. (98)

When a periodic pulse pattern of 1 out of every M pulses is forced,
flmax 18 found in the same manner as above and the relationship between
the various parameters to achieve this maximum is given by (15) of
the main body of the paper.
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Properties and Design of the Phase-
Controlled Oscillator with a
Sawtooth Comparator

By C. J. BYRNE
(Manuseript received September 1, 1961)

‘A sawiooth phase comparator has advantages over the more common
stnusoidal comparator in a phase-controlled oscillator because its output
is linear for larger values of phase error. For some applications, it s no
more complex or expensive than the sinusotdal comparator.

This paper analyzes properties of the phase-controlled oscillator with a
sawtooth comparator that have been mentioned in the literature for sinu-
sotdal comparators. In addition, there is mew theoretical material on the
effect of fast jitter and noise.

The properties of the circuit are presented in a manner which s con-
venzent for design.

Since it 1s easier to analyze the circuit with a sawtooth comparator, many
applications of the device have been considered. Because of this wide view-
point, the paper may be helpful in understanding the phase-controlled
oscillator in general.
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I. INTRODUCTION

The phase-controlled oscillator (see Ifig. 1), otherwise known as the
phase-locked oscillator, is often used to produce a signal whose frequency
and phase are controlled by an input signal. The literature'** on the
subject assumes that the phase comparator, which is the error detector
of the loop, produces an output which is proportional to the sine of the
phase difference.

This paper considers the case of the sawtooth comparator, whose
output is a linear function of the phase difference over a periodic range
(see Fig. 2a). Because of this linearity, the sawtooth comparator is
superior in operation to the sinusoidal comparator for some applica-
tions. In general, the sinusoidal comparator is simpler and cheaper, but
in applications involving digital signals, the two are comparable in cost
and complexity.

The purpose of this paper is to present a comprehensive survey of
many propertics of the phase-controlled oscillator, relating to many
different applications. We have drawn heavily on the literature, modify-
ing the analysis to make it apply to the sawtooth comparator. In addi-
tion, there is new theoretical material on the effect of fast jitter and
noise. New results derived by A. J. Goldstein in a companion paper*
are presented in an abbreviated form, more suitable for design.
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Most of the properties are presented in a graphical form which facili-
tates design.

II. DESCRIPTION

2.1 General

The block diagram of a phase-controlled oscillator is shown in Fig. 1.
Notice the resemblance to a negative feedback amplifier or a servo loop.?
There is a forward gain path, a feedback path, and a subtracting or
error detecting device.

The input and output signals are not the voltages themselves, but
are the phases of the nearly periodic voltages. If the input and output
voltages are at different frequencies, dividers or multipliers must be
used to bring them to a common frequency at the phase comparator.
In this paper, we will assume that the output and the input are at the
same frequency. We will however, consider the use of dividers to allow
the comparator to operate on the Nth submultiple of the input and out-
put frequency. We will measure phase of the submultiple signals in
radians of the original frequency.

2.2 Phase Comparator

The phase comparator is the error detector of the servo loop. It pro-
duces a voltage which depends on the phase difference between the input
submultiple and the output submultiple.

Of course, the comparator cannot distinguish between different cycles

VARIABLE
PHASE FREQUENCY
DIVIDER COMPARATOR FILTER OSCILLATOR
INEYT = OUTRUT
N Vi—f(?e) Vi Vo= 0t H(S)V, Vo P _“3\/
= 2= %2 1 =5 Va2
?L =0 Pe 0 ) Po
Fe=P."% FORWARD GAIN:
o O, .
p=—""H(s)= ZH(s)

DIVIDER | N

Fig. 1 — Block diagram of the phase-controlled oscillator.
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of the input and output submultiples. Therefore, its output must be a
periodic function of the phase difference between input and output, with
a period equal to one cycle of the submultiple frequency or N cycles of
the input and output frequency. We see that the greater the divider
ratio, the greater the range of the phase comparator, in cycles of the
input and output frequency.

The sawtooth and sinusoidal comparator functions are shown in Fig. 2.
The phase error is measured in radians of the input and output fre-
quency. The gains have been adjusted so that the slopes at zero are
identical. This means that the functions have the same small-signal
performance at zero quiescent phase error. Note that the peak output
of the sawtooth comparator is 7 times the peak of the sinusoidal com-
parator. : ,

The ‘sampler and mixer types of sinusoidal comparator are described
in the literature.’

Since the sawtooth characteristic is not common, we will describe
one method of building such a comparator. We assume that the input
and output signals are available as short pulses. If the signals are orig-
inally sinusoids, the pulses can be obtained from zero crossings. As
shown in Fig. 3, these pulses control a flip-flop. The input is sent into
the set terminal of the flip-flop and the output is sent into a comple-

+ TN,

-27TN —77N (o} +77N +27TN
PHASE
ERROR

— —~7TNK,

OUTPUT

(@) SAWTOOTH CHARACTERISTIC

/\ +N“‘7\ /
/—277'N -WN\/J + ﬂN\/+277'N
-No

(b) SINUSOIDAL CHARACTERISTIC

Fig. 2 — Characteristics of the sawtooth and sinusoidal phase comparators.
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TT1T17 1T PHASE

INPUT ouTPUT
— S : —— LOW-PASS | —_—
oL [ FILTER f (%e)
FLIP-
FLOP
ouTPUT
—_— _lc o
O
JI III }ll {II INPUT
[ ! ] A I I £i
ouTPUT
%
r
! 1
| I R
0 | l ] 1 | FLIP-FLOP
] 1 | ] OUTPUT
|
| 1] ! | |
o FILTER
OUTPUT

Fig. 3 — Flip-flop sawtooth phase comparator.

ment (or count) terminal. Therefore the time spent in the set state
will be the time between the input pulse and the output pulse.

If the flip-flop puts out a positive voltage in the set state and an equal
negative voltage in the reset state, the average output voltage will be
a linear function of the phase error. The average output will be zero
when the pulses are 180° out of phase. Therefore one of the signals
should be inverted before pulse forming if the output is desired to be
in phase with the input.

If the phase error exceeds =+, the pulses will pass each other. There
will be a sudden discontinuity, and the voltage will change quickly from
one extreme to the other.

If the input signal is turned off, the flip-flop acts like a binary counter,
driven by the output signal. The average output voltage will be zero.

The average voltage will be extracted from the flip-flop output by the
low-pass filter. It should have a cutoff frequency low enough to remove
signal components near the submultiple frequency.
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Since this type of comparator works on zero crossings, its conversion
zain is independent of signal amplitude.

A sampler comparator can also have a sawtooth characteristic, if the
input has a sawtooth waveform.

Because of the operation of the phase comparator, the phase-con-
trolled oscillator is really a sampled system. E. G. Kimme has shown®
that the phase-controlled oscillator can be treated as a continuous sys-
tem if the sampling frequency is so high that its effects are strongly
attenuated by the closed loop. We will assume this to be the case through-
out this paper.

2.3 Filter

The filter has a low pass characteristic to attenuate fast changes in
the phase error due to noise in the input signal. It also helps to smooth
out the high frequency component of the phase comparator output.
Usually a simple RC filter or a phase lag filter is used, as shown in Fig. 4.

2.4 Oscillator

The variable oscillator produces the output signal. When its input
voltage v, is zero, the output frequency is the design center frequency
w, . If vy is not zero, the output frequency varies in proportion to v, .
Since the important property of the output is the phase, which is the
integral of the frequency, the variable oscillator acts like a perfect in-
tegrator.

III. OPERATION

Readers who have a background in servo systems may find it helpful
to think of the phase-controlled oscillator as a type 1 servo system, such

R R
\/ 1 V; Vi 1 V,
A ! i
T,=R,C T=(R +Rz)C
7i=aR,C Ra 7= (Ri1+R2)C
c T2=0 T2=R,C
:[ 7=0 c TzzaRzC
| 1+ST,
S)= S)=
1 H(s) 1+ST :_]; H(s) 14T,
(a) R-C FILTER (b) PHASE LAG FILTER

Fig. 4 — Filters.
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as a velocity motor with position feedback.” The analogy is clear from
Trig. 1.

3.1 Aligned Operation

Let the frequency of the input signal be identical to the center fre-
quency of the oscillator and let the phase error be zero. Then the input
to the oscillator is zero and its frequency will be identical to that of the
input.

Now let us quickly advance the input phase by a small amount and
continue at the center frequency. There will be a positive error voltage
which will increase the output frequency. The output phase will advance
until it catches up to the input. The circuit cannot settle down until
the output phase is identical to the input phase, because of the integrat-
ing action of the oscillator.

3.2 Mistuning

Assume that the input frequency increases a little, causing the input
phase to continually advance. As before, a positive error signal will
result, increasing the output frequency. Therefore the output phase will
continually advance. When the circuit settles down to a steady state,
the phase error will be constant, and just sufficient to detune the oscil-
lator so that its frequency will be identical to the input frequency. The
greater the phase-to-frequency gain of the forward path, the less phase
error will result from a given input frequency deviation.

3.3 Jitter

Now let the average input frequency be constant, but assume that
the phase is jittering back and forth. Suppose the jitter is very rapid.
Even if there were no filter, the integrating action of the oscillator would
smooth out the jitter so that the output would be more stable than the
input. The low-pass filter, of course, smooths the error signal before it
gets to the oscillator and attenuates the jitter even more.

If the amplitude of the jitter is too great, the phase comparator will
go through a discontinuity, and when the circuit settles down again, it
will have slipped N cycles of the input, either ahead or behind.

As the rate of jitter decreases, the operation of the loop becomes more
complex. Because of the integration, jitter in the oscillator phase lags
the fluctuations in its input voltage by 90°. If the low pass filter also
has about 90° phase lag at some frequency of jitter, we see that we have
positive feedback instead of negative feedback. The open loop phase
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gain is the ratio of a change in output phase to a change in phase error.
If this is large enough at a frequency where we have positive feedback,
we can actually have an increase in jitter, or even a jitter oscillation’
which would destroy the usefulness of the device for most purposes.

If the jitter is very slow compared to the loop time constants, the
servo loop will track it, and the jitter will be passed on to the output.

If the jitter is distributed in a wide band, such as that caused by the
addition of white noise to a coherent signal, the circuit will respond only
to that jitter resulting from noise components near the frequency of the
coherent signal. Therefore the circuit can be used to enhance the signal-
to-noise ratio of a phase-modulated carrier. This property also allows
the circuit to lock on a coherent signal of approximately known fre-
quency although it is surrounded by strong wide-band noise.

3.4 Phase Modulation

The error signal v; (see Fig. 1) is essentially proportional to the phase
modulation of the input at frequencies higher than the circuit can track,
and to the frequency modulation at frequencies that can be tracked.
The signal at v, is filtered to reduce noise. Therefore the circuit can be
used as a demodulator of phase or frequency modulated signals in noise.

The circuit can also be used as a phase modulator. The carrier is con-
nected to the input. The modulating voltage is added tc the output of
the comparator. The feedback tends to keep the oscillator input voltage
small. Therefore the comparator output must be nearly equal to the
negative of the modulating voltage. This means that the output phase
is nearly proportional to the modulating voltage. At high frequencies,
the loop gain dreps, and these relations are no longer valid.

3.5 Quieling

If the input signal is smooth, but the oscillator itself is jittery because
of internal noise, the oscillator will be quieted by the feedback, especi-
ally at low frequencies where the problem is likely to be most serious.

3.6 Discontinuziies

We have looked at the small-signal linear performance of the phase-
controlled oscillator; now let us examine its operation when it is passing
through discontinuities. Suppose we increase the input frequency until
the phase crror is necarly cqual to +Nw, where N is the divider ratio.
A small further increase will cause the phase comparator to go through
a discontinuity, making the error —N. This will start to decrease the
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oscillator frequency and the error will rapidly return to +N, and then
jump to — N7 again. After a short time, the error will settle down to a
periodic behavior, with discontinuities at regular intervals. Since the
average error must be somewhat less than 4N, the average output
frequency will be somewhat less than the input frequency, and the fre-
quency of the phase error will be the beat frequency between input and
output, divided by N.

3.7 Pull-in

As the input frequency is reduced in this “flickering” state, the beat
frequency decreases. Finally, the phase error does not quite hit a dis-
continuity at its highest excursion, and the error settles down to a static
value. We say the loop has pulled into lock with the input.

Depending on the nature of the filter, there may or may not be hys-
teresis in the pull-in action. If there is hysteresis the pull-in frequency
deviation will be less than the deviation which can be held in lock, once
lock has been established.

IV. APPLICATIONS

The phase-locked oscillator has many interesting capabilities, and
consequently has found many diverse applications." Some of the func-
tions and examples of use are:

a. Locking a high frequency signal to a submultiple; television sync
signals are locked to the power frequency.

b. Locking a strong steady signal to a weak, intermittent signal;
television color carrier recovery.

c¢. Locating and locking on a weak coherent signal in wide-band noise;
space communication.

d. Detecting phase or frequency shifts in a signal; space communica-
tion,

e. Smoothing a jittery signal; smoothing jitter in a digital signal.

f. Locking a high-power oscillator to a more stable low-power osecil-
lator; microwave generation.

g. Phase modulation of a reference carrier.

h. Frequency synthesis.

Each of these applications requires a different viewpoint in analyzing
the circuit. An optimization process for one application may be useless
in another. Even an expression such as noise bandwidth may not have
the same meaning with a jitter reducing circuit as with a microwave
source.

The application we have foremost in mind is that of capturing and
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smoothing a jittering timing signal for a digital channel. Most of the
properties we analyze are chosen for this application. However, we
present additional material which is needed for other applications. We
have attempted to be explicit in revealing our viewpoint when we define
noise bandwidth, figure of merit, ete.

V. QUIESCENT OPERATION

5.1 Steady-State Error

If a phase-locked oscillator is synchronized with a signal whose fre-
quency is not identical with the oscillator’s center frequency, there
must be a steady phase error. The comparator converts this phase error
into the voltage required to tune the oscillator so that its output fre-
quency will be identical to the input frequency.

The gain « is the low frequency conversion gain from phase error to
frequency (see IFig. 1). 1t is the change in output frequency (in radians
per second) that results from a change in phase error of one radian. The’
mistuning frequency w, is the difference between the input frequency
and the oscillator center frequency. Then the steady phase error is

Pe = w_m. (l)
04

The phase error is directly proportional to the mistuning. With a
given mistuning, the error may be made as small as desired by increas-
ing the gain, . However, we shall see that high gain has undesirable
effects also.

5.2 Lock Frequency

The greatest frequency mistuning that can be locked in synchronism
is determined by the maximum output of the phase comparator. At the
limit,

| wm| = wy, = Nra. (2)
We call w,, the lock frequency.

5.3 Phase Error Margin

One of the advantages of the sawtooth comparator over a sinusoidal
comparator is that the small-signal performance is independent of the
steady mistuning, since the gain does not depend on the phase error.
However, mistuning reduces the margin between the steady phase error
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and the error which will cause a discontinuity. This limits the permis-
sible peak jitter amplitude, if no discontinuities are allowed.
The phase error margin is

Cor = er—]w—m]. (3)

[41

VI. RESPONSE IN THE LINEAR REGION

As long as the circuit is in synchronism and the phase error does not
exceed the bounds of 4N, the phase controlled oscillator acts like a
linear feedback system.

6.1 Phase Response

From Fig. 1, we see that the forward gain of the loop is the product
of the gains of the comparator, filter, and oscillator:

= lellott ()1 %

_ H(s)
—a= 2,

(4)

where o = ayaos .

The feedback is
g =1 (5)

The response of the output phase to changes in the input phase is
given by the familiar negative feedback equation:

b, M _aH(s)

Y =22 = = .
& 14+ p8 s+ aH(s) (©)
The signals ®; and ®, are phases of the input and output voltages.
The phase error, as a function of the input phase, is
s
o, = — B, = ——— P,
s all(s) T (7)

Notice that we measure phase of the submultiple signals in radians of
the original signals.

The filter is usually either an RC filter or a phase lag filter, as shown
in Fig. 4. For the phase lag, the more general case,

_1+8Tg

H(s) _ﬁs—Tl’

(8)
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where

b

1%
=)
=

In the RC case, T» = 0.
When we substitute (8) into (6), the transfer ratio becomes

1 —l-sT—2
Y = (9)
1+ s 1—|—7'2+ 2 T1
where
Tl=0£T1, T2=0£T2.

The phase error response is found from (7):

§<1+SZ}>
P, = ®

1+ 1+72+2

i (10)

Note that the denominator of transfer functions (9) and (10) is a sec-
ond order polynomial, of the form

2
1+3?_§+32(l> ,
Wp Wy,

where:

(11)

17, +

2 vV
Equations (9) and (10) appear frequently in the literature, but have
been included here for completeness. Some of the literature'” uses the
natural frequency w, and the damping ratio £ as defining parameters
of the system. We shall use «, 71 and 7, more often, because they are
more closely related to physical quantities.

Most of the important properties of the phase-controlled oscillator
can be expressed as normalized ratios which are independent of «. There-
fore we shall present these properties as functions of the two remaining
design parameters, 7; and 7, . As an example of our method of presenta-
tion, contours of constant damping ratio £ are shown on a plot of 7 vs
71 in Iig. 5. We will call this the filter plot. Properties of the filter plot
are discussed in Section IX.
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6.2 Voltage Response

As we have mentioned, the phase-locked oscillator can be used as a
phase modulator by adding a modulating voltage vy to the error voltage
1 . The response of the output phase is:

o, = LYV, (12)
o

where Y is given by (6) and (9). Note that we have used V for the
transform of vy . Examination of (9) shows that the output phase will
follow the input voltage as long as the modulating frequency is low
enough, since Y approaches unity as s approaches zero.
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If the phase-locked oscillator is used as a demodulator the output
can be taken before or after the filter. Therefore we present the response
equations for the voltages at each point (see Fig. 1).

Vl = 011(1 - Y)‘I>i (13)
1

Vz = — SY‘I’,’. (14)
[e%]

VII. SMALL-SIGNAL PROPERTIES

The small-signal properties we shall analyze are the response of the
output phase to sinusoidal jitter of the input phase, the noise bandwidth,
the peak jitter gain, the response to a step change in phase, and the
response to a step change in frequency. All of these effects are not per-
tinent to every system, but each is useful in some of the applications.

7.1 Sine Wave Jitter Response

The small signal transfer ratio Y between input phase jitter and out-
put phase jitter was given in (9). IFor sinusoidal jitter, the squared
magnitude (power gain) of ¥ (w) is

F(a) [ = (D)
et 1+ (g)z [1 — 2(r — ) + o7l + <2)4 nt

The phase of YV(w) is

. (&) a+m
0(w) = tan™" <—> s — tan’ i——z——. (16)
a w
BoE
(¢%
The jitter attenuation curves for several sets of filter parameters are
plotted in Fig. 6.
In Case I, no filter, we have simply an integrator with unity feedback
around it. At low frequencies the jitter is not attenuated; at high fre-
quencies there is a 6 db per octave roll-off. When an RC filter is added,

the additional high frequency attenuation produces a 12 db per octave
roll-off. When the filter time constant is very large, the phase shift in

(15)
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Fig. 6 — Jitter attenuation with various filter parameters.

the forward loop results in positive feedback, and causes a region where
jitter is amplified.

When a phase lag filter is used, the second break point caused by the
resistor in series with the capacitor can be used to stabilize the feedback
loop and reduce the peak jitter gain. Since the attenuation of the phase
lag filter is constant at high frequencies, the final slope is 6 db per oc-
tave.

7.2 Noise Bandwidth

One of the functions of a phase-controlled oscillator is to reduce noise.
In the absence of better information, it is usual to assume that some-
where in the system the noise is white and Gaussian. Since most of the
noise at the output is usually restricted to a narrow band by the filter-
ing action of the circuit, it is convenient to express the amount of noise
that remains as the bandwidth of an ideal filter (i.e., rectangular filter)



574 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1962

that would pass the same mean square noise. The familiar formula for
computing noise bandwidth is

B = f:[G(w) 1 do, (17)

where G(w) is the normalized transfer function between noise input and
noise output, and B is in radians per second. The transfer function which
is used for G(w) will depend on where the noise input and output are,
and this in turn will depend on the application.

When the phase-controlled oscillator is used to clear up jitter in dig-
ital signals, the appropriate transfer function is Y, the ratio of output
phase shift to input phase shift, as given in (9). We will call the noise
bandwidth of ¥ the jitter bandwidth B; . When we substitute (9) into
(17), we have

_1 Sy (18)

We recall that N is the lock frequency. An increase in N increases the
lock frequency without changing B; .

For no filter, or for any RC filter, the normalized jitter bandwidth is
1 For /7 much greater than 1, the normalized jitter bandwidth
approaches %(7s/71). The jitter bandwidth is shown on the filter plot
in Fig. 7.

With a sawtooth phase comparator, the jitter bandwidth is inde-
pendent of the mistuning. This is not true of the sinusoidal comparator.
The jitter bandwidth for the sinusoidal case is

2

T2
14+ — cos e

T1

1 + 72 cos e,

SR

COS @, (19)

1
2
where « is the gain at zero error.

Equation (19) can be obtained from (18) by replacing « by (a cos
¢.), the small signal gain at a quiescent phase error ¢. . Note that « is a
factor in 7, and 7. . Notice that the jitter bandwidth for the sinusoidal
comparator decreases as the mistuning (and therefore ¢,) increases.

Now let us consider the effect of interference due to broad-band noise
added to the input signal. To justify a small signal analysis, we must
assume that filtering limits the total energy of the interference, to keep
it well below the signal level. However, we assume that the filtered
noise is essentially flat in a band around the signal which is much wider
than the interference noise bandwidth which we shall derive.
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The effect of interference depends strongly on the type of phase com-
parator in the system. We shall analyze the linear zero-crossing case
and the sinusoidal mixer or sampler case.

Interference noise disturbs both the phase and the amplitude of the
input signal. When a zero-crossing comparator is used, only the phase
disturbance is detected. If the noise power density is v, (volts® per
radians per second) and the input sinusoid has a peak v;, the jitter
“power” density for phase in radians is (v,/»;)" (radians’ per radians
per second). ‘

The output jitter will be

— vn2

5902 = BJ—

; (20)
v;

The effect of broad band input noise is quite different when a sinu-
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soidal sampler or mixer phase comparator is used. The following dis-
cussion assumes that the reader is familiar with the literature of the
sinusoidal comparator. With this type of comparator, noise at the input
produces a voltage at the output of the comparator which is independent
of the amplitude and phase of the input signal. The noise density of the
comparator output voltage is (ay/v;)*v,2 where v; is the expected peak
signal amplitude used in computing the expected oy at zero error (if no
limiting is used with this type of comparator, the gain depends on the
signal amplitude). When the comparator is connected in a feedback
loop, the appropriate method of analysis is to consider the interference
noise injected at the output of the phase comparator. The appropriate
transfer ratio is that previously used for modulation in (12).

The interference bandwidth B; can be found by substituting (12) into

(17);
2
14 (T—2 cos qoe>
_\n @ 7/
1 4 (72 cos @)

This is the noise bandwidth given by Rey.!

Notice that the interference bandwidth B, increases as the phase
error increases, while the jitter bandwidth B; decreases. The reason for
the difference is that the sampler and mixer comparators are sensitive
to the amplitude of the input signal as well as the phase.

Now we can compare the output phase noise performance of the linear
zero-crossing comparator with the sinusoidal sampler or multiplier type.
If they have the same gain at zero error, they will have the same re-
sponse to jitter and interference at zero error. In the presence of mis-
tuning, however, the sinusoidal comparator will be more sensitive to
interference and less sensitive to jitter while the linear comparator will
not change.

When the phase-controlled oscillator is used as a demodulator, still
another definition of noise bandwidth is required. If we take the output
signal after the filter, which cuts off some of the noise, and assume that
interference noise is added to the input signal, we have for the zero-
crossing detector,

B; 1 _
— =5 (cos @o) " (21)

vy = [i Y] iz /i (22)

53 U1

By substituting the expression in brackets into (17), we can find the
demodulator noise bandwidth, Bp . This bandwidth is not finite for the
phase lag filter, because the transfer ratio does not approach zero at
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high frequencies. Therefore higher order filters are desirable for this
application.

7.3 Peak Jitter Gain

We have shown in Fig. 6 that it is possible for the jitter transfer ratio
to be greater than unity. In most systems, this is not very harmful.
However, where phase-controlled oscillators are connected in cascade,
gain can be very troublesome.

We can find the peak gain | ¥ | by examining (15) for its maximum.
The frequency at the peak is

(‘_;) - %[(1 + (E)z [2(ry — 1) — 1]>% - 1}. (23)

A. J. Goldstein* has shown that the square of the peak magnitude can
be written

1

A (24)
v ()

An examination of (23) shows that there is no peak, and the gain is
never greater than unity if

Y[ =

n— 7 < 3 (25)
The peak gain is shown on the filter plot in Fig. 8.

7.4 Response to a Step Change in Phase

* Iast phase changes can occur because of quick changes in the trans-
mission path or because the signal has been deliberately modulated.
When a step in phase occurs there is a sudden change in the phase error,
since the phase of the oscillator cannot change instantaneously. The
error signal controls the oscillator so that the error returns eventually
to its quiescent value.

To act like a step change, the phase shift does not have to be instan-
taneous, as long as the rise time is much less than the shortest time
constant of the phase-controlled loop. Therefore if the phase comparator
works from a subharmonic of the input frequency the amplitude of the
phase change can be several input periods, as long as the change is slow
enough for the subharmonic generator (counter, etc.) to follow, but
faster than the loop time constants.

If a counter is used as a subharmonic generator, an error in the counter,
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Fig. 8 — Contours of peak jitter gain on the filter plot.

or an extraneous pulse introduced into the counter, will act like a step
change in input phase.

The response of the phase error to the phase input is given in (10).
When the input phase is a step of amplitude Ae;, the time response of
the phase error can be shown to be

g9
¢e = Apie " | cosh (VB = lwnt) — 2

VE -1

(26)
-sinh (/2 — 1wat) |.
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- For the underdamped case (£ < 1) the hyperbolic functions in (26)
become {rigonometric functions. The damping ratio £ and the natural
frequency w, have been defined in (11).

At t = 0, just after the step, we see that the phase error equals the
change in input phase. If we examine the initial derivative of (26), we
find that it is never positive. This means that the phase error will never
exceed its initial value.

Some examples of the phase error response to a step change in phase
are shown in Fig. 9.

7.5 Response to a Step Change in Frequency

A sudden change in frequency can occur because of a change from
one source to another, because of malfunction, or because the signal has
been modulated. When a frequency step occurs, the error signal builds
up until the oscillator frequency catches up to the input frequency,

PHASE ERROR

: =54
TIMEI1CM =57

(a) NO FILTER

PHASE ERROR

PHASE ERROR

: =5-L
TIME:{CM =52

(C) UNDERDAMPED: 71 =10, 7, = 0.6

Fig. 9 — Scope traces of the response of the phase error to a step change in
phase of the input.
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leaving a static change in phase error. If a low-pass filter is used between
the phase comparator and the oscillator, the transient phase error can
have a peak value much greater than the quiescent phase change.

Let us assume a frequency change Aw;. This is equivalent to a ramp
phase input, Awd. We can use (10) to find the response of the phase
error:

_Aw;

1 — ¢ **| cosh (VE = Twt) -

Pe
¢4

(27)

[43

- —\—(;-7LE2—1 sinh (\/ 52 - lwnt)

Some examples of the phase error response to a step change in input
frequency are shown in Fig. 10.
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PHASE ERROR
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(b) OVERDAMPED: 7; =20, 75=8

PHASE ERROR
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(C) UNDERDAMPED: 7;= 10,75 = 0.6

Fig. 10 — Scope traces of the response of the phase error to a step change in
frequency of the input.
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The peak phase error is of particular interest. For the overdamped
case it is

_ Aw;

A

Pe

¢ ‘canh—ll/ﬁ:—l . (28)

Ve -1 P

14 (r — 72)¥ expf —

T'or the underdamped case, the inverse hyperbolic tangent is replaced
by the inverse trigonometric tangent. The value of this angle is between
zero and 7. An expression closely related to (28) has been derived by
R. D. Barnard,” as a capture condition.

A large value of 7; can result in overshoot which is many times the
quiescent phase error. This means that the response of such a system
to a sudden frequency shift looks like a pulse. This characteristic is
useful in demodulation of a frequency shift signal.

The large overshoot can throw the loop out of synchronism if it ex-
ceeds the capacity of the phase comparator. This effect will be discussed
more fully in Section 8.5.

The normalized peak phase error is shown on the filter plot in Fig. 11.

VIII. LARGE-SIGNAL PROPERTIES

We have examined the operation of the synchronized phase-controlled
oscillator when the error is within the range of the phase comparator.
For this “small-signal” case, the problem was completely linear. When
the circuit is not in synchronism, or when disturbances of the input
signal are large enough to produce a phase error which exceeds the range
of the comparator, discontinuities are present in the output and the
problem becomes nonlinear. Despite this difficulty, we have been able
to analyze certain large-signal properties of the phase-controlled loop
with a sawtooth comparator. These are the pull-in frequency, the seize
frequency, the settling time, the maximum allowed frequency shift,
and the effect of certain types of jitter on large-signal performance.

8.1 Pull-in Frequency

A very important property of the phase-locked loop is the range of
frequencies that can pull the oscillator into synchronism. In general,
this range is smaller than the range of frequencies which can be held in
lock. When the system is not synchronized, the phase comparator goes
through periodic discontinuities, which prevent the loop from synchro-
nizing. Whether or not a loop will pull a given frequency into lock de-
pends on the past history of the loop and the jitter of the signal.

We define the pull-in frequency as the maximum steady mistuning
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Fig. 11 — Contours of normalized peak phase error caused by a step change
in frequency,

of the input frequency that will always pull the circuit into synchronism.
Frequencies outside of the pull-in range but inside the lock range may
or may not be pulled in, depending on the initial conditions.

We can determine the pull-in frequency experimentally by mistuning
the input beyond the lock frequency and then slowly reducing the mis-
tuning until the circuit locks. When the mistuning exceeds the lock
range, there are frequent discontinuities in the phase error; it appears
to “flicker.” As the mistuning is slowly decreased, the flicker rate de-
creases. .

When the mistuning is brought down to the pull-in frequency, the
flicker mode becomes unstable. With the mistuning then held constant,
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just under the pull-in frequency, the phase error trajectory from dis-
continuity to discontinuity slowly changes as shown in Fig. 12. Finally,
the error misses a discontinuity and synchronism is achieved.

The pull-in frequency, then, is the mistuning for which the stable
asynchronous mode disappears. For lower values of mistuning, the cir-
cuit must eventually reach a synchronous condition since there is no
asynchronous solution.

A. J. Goldstein® has found an exact answer for the pull-in frequency
Wp 3

wp 1—-D

= 1
Nra tanh %EwnTo + (D) tanh 2$wnTo . (29)

where T, the critical flicker period, is the smallest positive solution of

o tanh Lfw, T
\/TI VE? -1 ta,nh %\/22 — 1 wnTo

and D is given by

_a(WnE—1) —n(E - 1)
D = 012 —_ T1(£2 —_ 1) ’

For the underdamped case (damping ratio ¢ < 1) the hyperbolic tan-
gent is replaced by the trigonometric tangent.

A. J. Goldstein* has used a digital computer to evaluate (29). The
data is presented on the filter plot in Fig. 13.

We can see from (29) that the pull-in frequency is directly propor-
tional to the lock frequency Nwea, for a given set of parameters =, and
72 . We will call w,/Nwa the pull-in to lock ratio, or the relative pull-in.

I
AN E VAT
IIMWHMIAEHO
] ’
NN NNENANEEN
-

TIME =—>

PHASE ERROR

Fig. 12 — Scope trace of the phase error after the mistuning is brought just
below the pull-in frequency. The flicker mode becomes unstable.
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Fig. 13 — Contours of the pull-in to lock ratio on the filter plot.

We have shown that the small-signal properties of the phase-con-
trolled oscillator are completely specified by the parameters 7;, 7. and
a. Therefore, for constant small-signal performance (such as noise band-
width), the pull-in range is proportional to the count ratio N. We can
get any pull-in frequency we wish by using a large enough count ratio.

There are two limitations on increasing the count ratio. The first is
economy; high counts require more equipment. The second is theoretical.
The comparator supplies data only once every period of the submultiple
frequency. For our analysis to be valid, the submultiple frequency should
be much higher than the cutoff frequency of the forward path, which
is of the order of w, . This limits the maximum count.
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Tor 7o > 1, and 7o/71 < 0.5, the pull-in frequency approaches

9 _
Yp oY = T_2
Nra — /3 /‘/71' (30)

It is interesting to compare the pull-in frequency of a sawtooth com-
parator to that of a sinusoidal comparator! with the same gain at zero
error. The normalized pull-in frequencies for both types of comparator
are shown in I'ig. 14, for a damping ratio £ of 3.

Irig. 14 shows that the sawtooth phase detector has a pull-in frequency
at least twice that of a sinusoidal detector which has the same small-
signal performance.

8.2 Figure of Merit

In most applications, a large pull-in frequency and a small noise band-
width are desired. Unfortunately, these requirements are antagonistic,
since a small noise bandwidth means that the loop cannot react to a
rapidly flickering phase error. Iixamination of the formulas for pull-in
(29) and jitter noise bandwidth (18) shows that both are proportional
to the gain, a. Therefore a natural figure of merit is the ratio of pull-in
frequency to the jitter noise bandwidth:

Wp

Since the pull-in frequency is proportional to the count ratio N while

1.0
0.8
\\
E o ~_SAWTOOTH COMPARATOR
S
% \
éL \
o4 ‘\\
0.2 — SINUSOIDAL COMPARATOR —
) T ———
0
1 2 4 6 8 10 20 40 60 80 100 200 400 600 1000
Ti

Fig. 14 — Normalized pull-in of the sinusoidal and sawtooth comparators for
a damping ratio of 1/2.



586 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1962

the noise bandwidth is independent of N, the figure of merit is propor-
tional to N. This means that we can get as large a value of pull-in as we
wish for a given noise bandwidth, if we:are willing to use a large count
ratio.

The normalized figure of merit M /N is shown on the filter plot in
Tig. 15.

D. Richman® has defined a different figure of merit, since he wished
to compromise between noise bandwidth and gain. His figure of merit
Is equivalent to our normalized noise bandwidth (18), plotted in Tig. 7.
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Fig. 15 — Contours of normalized figure of merit on the contour plot. The
normalized figure of merit is the ratio of the pull-in to the noise bandwidth, di-
vided by the count ratio N.
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8.3 Setze Frequency

As long as the mistuning of a signal is less than the pull-in frequency,
we can be sure the circuit will lock; but it may flicker for a long while
before it does.

For some applications, it is important that the circuit synchronize
immediately on a signal that has just started, without flickering through
discontinuities. We define the seize frequency s as the maximum mis-
tuning of a suddenly connected signal that cannot cause a discontinuity
after the initial phase jump (see Fig. 16).

We have described a phase comparator which produces a zero error
signal when there is no input signal. With such a device, the effect of
suddenly connecting a signal is equivalent to a step phase shift of an
arbitrary value between —N# and + N7 and a step change in frequency
equal to the mistuning of the signal w,, .

In the marginal case, the phase error between the oscillator and the
signal at the instant of connection is nearly Nw. The seize frequency is
the value of mistuning for which the initial derivative of the phase error

: =5-1
TIME: 1CM =55

PHASE ERROR

(a) SEIZE
MISTUNING SLIGHTLY LESS THAN SEIZE
FREQUENCY. SEVERAL VALUES OF INITIAL
PHASE ARE SHOWN. 73 =10, 7=2

. =101
TIME:{1CM. =10 73

 +N77

PHASE ERROR

(b) puLL-IN
MISTUNING GREATER THAN SEIZE
BUT LESS THAN PULL~—IN FREQUENCY.
NOTE THE DISCONTINUITIES. 7;=10, 7=2

Fig. 16 — Scope traces of the phase error during capture.
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is zero, so that no discontinuity results. It is easily shown that

W _ T2 (32)

Nra 7’

Note that a circuit with an RC filter (7 = 0) may go through a dis-
continuity for any nonzero mistuning, if the initial phase shift is large
enough.

According to Richman® the seize frequency for the sinusoidal com-
parator is a(7s/7;). As indicated by a comparison with (32), the seize
frequency in general is simply 7o/7; times the lock frequency.

8.4 Settling Time

The settling time is the time required for the phase error to settle
nearly to its steady state value after a change in input conditions. If no
discontinuity occurs, the settling time ¢, may be estimated to be the
time at which the damping term ¢ **** [in (26) and (27)] decays to 0.1.
Then, substituting for ¢ according to (11),

4.6
ts = p—— T, . (33)

If a discontinuity is crossed, an additional time will be required to
allow the flickering to die out. During each flicker period a small charge
is added to the filter capacitor, bringing the average output frequency
of the oscillator closer to the input frequency. Finally, the circuit locks.

The flicker time for a given mistuning depends on the initial conditions,
especially on the initial capacitor voltage. For the special case of a sud-
denly connected signal (initial capacitor voltage zero), D. Richman has
derived® an approximation for ¢, the time in the flicker state, for the
sinusoidal comparator.

He assumes that the capacitor voltage does not change appreciably
during a single flicker period; in effect, he replaces the capacitor with a
variable battery. I'urther, Richman neglects the effect of the initial
phase. By applying his methods to the sawtooth comparator, we ob-
tain:

T1 Wr
TolT - d -
Ei = le ' T2 (O)L)
T: wml0L Wy T1 Wr T2 —1 [ T1 Wy -’
2 —{==)+(1—=")|coth™ | ==
wr, To W, T T2 Wy,

where w; is an “instantaneous mistuning” parameter introduced by
Richman,

(34)
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Equation (34) is a good approximation for 7, > 1 and ¢» > ¢, .

To carry out the integration, we must use numerical methods. We have
plotted tr/T, against w,/w;, for various values of /7, in Fig. 17. Ex-
perimental results are also shown in Fig. 17.

Note that ¢ goes to zero as w, approaches the seize frequency and
to infinity as w, approaches the pull-in frequency. If a short pull-in
time is important, the mistuning frequency should not be allowed to
approach the pull-in frequency.

8.5 Mazimum Frequency Shift

Consider a phase-controlled oscillator which is locked on an input
which is frequency modulated by a digital signal (frequency-shift key-
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Fig. 17 — Flicker time during pull-in. The time is zero for mistuning less than
the seize frequency and infinity for mistuning greater than the pull-in frequency.
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ing). Let us find the maximum frequency shift that will not cause the
phase error to cross a comparator discontinuity. We assume that the
center frequency of the oscillator is set midway between the two signal
frequencies. We further assume that the time constants of the phase-
controlled oscillator are much smaller than the maximum time between
shifts, so that the circuit may be in steady state before the next shift
oceurs.

We will consider the case of a sudden increase of frequency Aw;. The
initial phase error is — (Aw;/2a). The maximum allowed phase error is
+N7. Thus the peak change in phase error &, , caused by the maximum
allowable change of input frequency Ad;, is

Ad;

¢e=Nﬂ'+2a

(35)

The error ¢. has been given in (28). Solving (35) for A®; in terms of
./ Ab; , we have:

Ady; 1

Nra  ag, (36)

i .
Ad; 2

In the presence of mistuning, N= in (35) and (36) is replaced by the
margin g., , given in (3). Values of a@./Aw; have been plotted in Tig. 11.

8.6 Effective Comparator Characteristic in the Presence of Fast Jitter

One of the functions of a phase-locked oscillator is to produce a steady
output despite jitter and noise in the input signal. Therefore, we can
expect that a major part of the phase comparator output will have fre-
quencies much higher than the oscillator can follow. In such a situation
only the low frequency component of the comparator output is signi-
ficant in controlling the circuit.

The low-frequency component of the comparator output is the time
average taken over a time interval which is longer than the period of
the predominant jitter, but shorter than the response time of the cir-
cuit. The following analysis assumes that such an intermediate time
range exists; i.e., that there is very little jitter whose frequency is low
enough to cause the circuit to respond.

Let us write the phase error as the sum of a low-frequency component
¢ and a fast jitter component ¢.; . Then the instantaneous output of
the phase comparator is f(¢.0 + ¢.;). The average output of the com-
parator is
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_ 1 [*
vl:ﬁ o

where 7', is the averaging time.
Let us define an effective comparator characteristic in the presence of
jitter:

! v = fi(ew). (38)

This new characteristic governs the response of the circuit to slow phase
changes in the presence of fast jitter.

Now we assume that the time of integration is such that the time
spent at each value of ¢.; is proportional to the probability density of
¢.; at the value. For random processes, this requires that 7, be much
greater than the correlation time of the process. If ¢,.; is periodie, it is
sufficient that 7', be equal to one period.

If this assumption is valid, we can replace the time integral (37) by
an- ensemble integral:

af(soeo + ;) dt, (87)

o0
filpe) = » Fleoo + €ei)p(@ei) dees (39)

where p(¢.;) is the probability density of the jitter.

Equation (39) represents a smoothing operation by the jitter prob-
ability function upon the comparator characteristic. If the density func-
tion has even symmetry, (39) is analogous to the general filter equation

+oo
vel) = [ valt = i) dr (40)

where 2(7) is the impulse response of a hypothetical filter.

The effective sawtooth comparator characteristic for Gaussian, sinu-
soidal, and square wave jitter is shown in Fig. 18. These photographs
were obtained by opening the phase-controlled oscillator loop and allow-
ing the oscillator to free run. This means that the average phase error
@0 increases linearly with time. The phase comparator output was passed
through a low-pass filter to obtain f;(¢e).

Note that jitter always decreases the peak comparator output voltage.

For Gaussian noise, we can evaluate (39) by neglecting the possi-
bility of jitter crossing two or more discontinuities. Then the effective
comparator characteristic for (—N7r < ¢ < +N7) is

1 R |
—(z2/2)

— dx — —

—0 '\/27|'e v 9 '\/27!'

—xy

fi (0e0) = @a0 + NZW[ e_(xm)dx] (41)
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where

Xy =

Xg =

_N7I'+(Pe[)

(¢c)rms ’

_ Nm = o and
(¢c)rms °

(¢.)rms is the root mean square phase error due to fast jitter.
The peak effective comparator output for Gaussian jitter is plotted

in Tig. 19.

The effective comparator function for the sinusoidal comparator is
very easy to find, using the filter analogy:

o) = sin ¢,

filow) = e3¢ gin o

(42)

Therefore the effect of high-frequency Gaussian jitter for the sinu-
soidal comparator is simply to reduce the loop gain.
In general, the presence of fast jitter causes a deterioration of large

(8) NO JITTER

(b) cAussIAN
JITTER

(C) sINuUsOIDAL
JITTER

i

(d) sQuARE wavE
JITTER

=N77 0 +N77

PHASE ERROR

“‘?'m

-N77 +N7T
PHASE ERROR

OUTPUT

=N77 O N7
PHASE ERROR

TNT 0 #NTT
PHASE ERROR

Fig. 18 — The phase comparator characteristic in the presence of fast jitter.
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Fig. 19 — Normalized lock frequency (peak comparator output) in the pres-
ence of fast Gaussian jitter.

signal performance. For example the lock frequency depends directly
upon the peak comparator output, which decreases as jitter increases.

8.7 False Synchronization Mode

As shown in Ifig. 18(d), the sawtooth comparator characteristic can
have a region with positive slope centered on an average phase error
N7. This means that the circuit can synchronize in this region instead
of the region near zero error. In this false mode the jitter continually
crosses and recrosses the discontinuity.

Fortunately, this undesirable mode is possible only for certain types
and amplitudes of jitter. We can test for the possibility of the false mode
by examining the slope of f;(¢.) at No. We can write f(¢.) in the vicin-
ity of N as ¢ — 2N7U(¢. — Nr), where U is the unit step function.
Substituting this in (39) and taking the derivative, we have

dfi(eeo)

(o) |we 1 — 2N=p(0), (43)
where p(0) is the probability density of ¢.; at 0. Therefore the false
mode is possible when p(0) < 1/2N7.

For square wave jitter, p(0) = 0. Therefore the false mode is always
possible.

For sine wave jitter with an amplitude A,p(0) = 1/Ax. Therefore
the false mode is possible only when 4 > 2N. Since the comparator can
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accommodate only jitter error amplitudes less than 7N in the normal
mode, we are not likely to encounter sinusoidal jitter large enough to
support the false mode.

It can be shown by using the filter analogy that Gaussian jitter cannot
produce the false mode; the slope of f;(Nw) is always negative. The p(0)
criterion is not applicable in the case of Gaussian jitter because more
than one discontinuity is involved.

We see that the false mode need be considered only for signals with
jitter such that p(0) is very small.

Even if the false mode has been established, a lull in the jitter will
cause the circuit to jump to the normal mode. It will stay in the nor-
mal mode even if jitter returns, as long as no discontinuities occur.

IX. DESIGN METHODS

We have analyzed many properties of the phase-controlled oscillator
with a sawtooth comparator. Some of these properties, notably the lock
range, pull-in range, and noise bandwidth are significant in nearly all
applications of the device. Others, such as peak jitter gain, seize fre-
quency, and settling time are important only for certain specific applica-
tions.

Usually, in a particular design problem, two or three of the properties
will be of prime importance and the rest can be neglected. Then the
problem is to find the values of the design parameters («, 71, 72) which
yield the best combination of the important properties. If the properties
are simple, like the lock frequency (Nwa), it is easy to find the best
design.

9.1 Iilter Plot

Unfortunately, most of the properties of the phase-controlled oscil-
lator turn out to be complicated transcendental functions of the design
parameters 7; and 7. . Therefore we have presented many of the prop-
erties as contour curves on a plot of 7, vs. 72, which we call the filter
plot (Figs. 5, 7, 8, 11, 13, and 15). Most of the properties are normalized
through division by the gain constant «. In some cases, the count ratio
N is also used as a normalizing factor.

71 and 7 are the time constants of the phase lag filter (Fig. 4b), mul-
tiplied by the gain «. We have plotted 7 and 7, on logarithmic scales,
to allow the presentation of large ranges. A useful property of these
scales is that a given percentage change in r; or 7, appears as a constant
displacement on the plot. This facilitates estimating the effect of vari-
ations of the parameters.
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7, 18 always larger than 7, ; therefore the possible designs are restricted
to the region below the 45° line on the plot. Points along this 45° line
are identical, and correspond to the case of no filter. When 7, is zero,
the phase lag filter degenerates to the RC filter. Since this case is of some
interest, we have provided a zero 7, axis below the plot and indicated
the intersection of the various contours with this line.

9.2 Approximate Relations

An examination of the filter plots shows that there are large regions
where the contours approach straight lines. It is possible to derive sim-
plified formulas for these regions. A summary of these approximations
and the conditions for their validity is given below.

: e 2/
Pull-in frequency: 37" =< V3 4/7-—1 (re > 1) (44)
Noise bandwidth: — ~1 = (r'/m1 > 1) (45)
T™ T1
. - M _ 4 Jro
Tigure of merit: N =3 /‘/7—_; (ra /71> 1) (46)
Peak error, fre- ag. _ 71 (rod/r1 > 1) (47)

quency step: Aw; To

Equation (44) has been derived from (29) by A. J. Goldstein.! Equa-
tion (45) can easily be found from (18). Equation (46) is found by
dividing (44) by (45), according to the definition (31). Equation (47)
can be derived from (28).

These approximations sometimes allow analytic methods to be used
to find an approximate optimum solution. This requires justification of
operating in the region where the approximations are valid.

9.3 Optimazation Techniques

There are several types of optimization methods, which we shall dis-
cuss in order of increasing difficulty.

The simplest method optimizes one property by varying one param-
eter, all other parameters being fixed. This yields a class of designs which
has one less parameter than the general case. The remaining param-
eters can be assigned to satisfy requirements on other properties, in
confidence that the final design will have high performance for the op-
timized property.

An example of this approach has appeared in the literature.* The
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gain « and the time constant r; (which together specify the resonant
frequency) are held constant and the time constant r; is varied to min-
imize the noise bandwidth B;. This process restricts the design to

nt+l=+r+L (48)

For large values of 7,, the damping ratio £ approaches 0.5. Equation
(48) is plotted in Fig. 20, against the figure of merit contours.

Let us describe one procedure for designing a circuit using (48). The
gain o can be set to give the proper lock frequency. Then r; and 7, can
be set to give the required pull-in frequency, while satisfying (48).

This approach is good, and yields rather useful designs. However, it
does not necessarily produce the best possible design for a given set of
requirements.
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Fig. 20 — “Optimized”’ designs of Jaffe and Rechtin® and T. Rey,! with the
figure of merit contours on the filter plot.
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Ifor example suppose the lock and pull-in frequencies have been speci-
fied, with a pull-in to lock ratio of 0.5. Following the above procedure,
we compare Figs. 13 and 20 to find that =, and 7, should be 18 and 3.2
to satisfy (48) and have w,/w, = 0.5. From Ifig. 7 we find that the nor-
malized noise bandwidth is 0.19.

To see that a better design than this is possible, suppose that r; and
72 were 100 and 20. Then the noise bandwidth would be 0.12, a large
improvement.

A more powerful technique is possible when some properties are speei-
fied by system requirements and another property should be optimized.
The specified properties are used to restrict the range of the design
parameters. Then the remaining range is examined to seek the optimum
design.

Tfor example, suppose that the lock range has been specified, and the
normalized noise bandwidth is required to be less than 0.2. It is desired
to maximize the pull-in frequency. A comparison of Ifig. 7 and Fig. 13
shows that the design should lie on the upper part of the 0.2 noise band-
width contour, and 7; and 7, should be as large as possible.

The most common problems require a compromise design which yields
good results for two or more properties. Sometimes it is possible to ex-
press the relative importance of the properties mathematically. Then
the optimum design can be derived analytically. A good example of this
is given by Jaffe and Rechtin," where the desirable properties are low-
noise bandwidth and a high peak phase error due to a frequency step.
Their design curve is shown in Fig. 20.

More often the relative importance of the propertics is indistinctly
known, and the engineer must use his judgment in striking a compro-
mise. The filter plots are intended to aid this process by giving the en-
gineer a ‘feel” for the circuit properties over the entire range of the
parameters.

9.4 Numerical Example

To show how the design aids we have presented can be used in practice,
we will do a realistic problem.

A phase-controlled oscillator is to be designed to smooth jitter in a
1.5 megacycle signal. In the worst case of mistuning, the circuit must
pull itself into synchronism. We wish to design a circuit with low jitter
noise bandwidth.

The uncertainty of the input signal is 4=107° or =15 cycles per second.

The oscillator center frequency is controlled by a frequency deter-
mining element, which we shall assume to be a crystal, and by the sur-
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rounding circuit. We take the range of the crystal as +107° or £15 cps.
The effect of variations in the circuit will depend on the control the cir-
cuit has on the crystal, which is in turn related to the gain . We assume
that the range of center frequency due to circuit variations is +0.2
Nra.

The count ratio N is 4.

Let us make the following definitions:

d, — maximum deviation of the signal frequency (rad per sec)

8 — maximum deviation of the crystal tuning (rad per sec)

e — maximum deviation of the oscillator center frequency due to
circuit variations, divided by Nra.
Then the maximum mistuning (which determines the pull-in frequency)
is

Om = wp = & + 8 + eNrwa. (49)

If we assume that the final design will be in a region where the ap-
proximate relations hold, we can use (44) and (45) for the pull-in fre-
quency w, and the jitter noise bandwidth B; .

When (44) and (49) are combined, we find

T2 3 0s + 0o z
T1 T4 ( N7a + e) ' (50)

For this value of 7,/7;, the jitter bandwidth is

3 0 1+ 6 2
Bj=8'7ra(N—:_a0+e>. ‘ (51)

Note that the only variable is «. When we minimize B; by varying «,
we obtain

_ Bs + 60
T Nure
L. 3¢,
71 (52)
wp = 2(8; + &), and
?) (58 + 50)6
B; = 5T N

When the numerical substitutions are made, we have
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a = 75 rad/sec per radian,

T2 _
= =012, (53)

wp = 377 rad/sec, or 60 cps, and
B; = 14 rad/sec, or 2.25 cps.

Now we have not yet completely specified the design, because we only
have the ratio of 7, and r, . We can be confident of the numbers above
for any value of 71, as long as we have the proper value of 7,/7; and as
long as we stay in the region where the approximate relations are valid.

If we make 7; very large, we will require a very long time constant
in the filter. Therefore we will make 7, just large encugh to satisfy the
condition for the approximate noise bandwidth relation, =.°/7 > 1.
Let us set 7.°/7, = 4. Then, from (53)

T2 = 33,
T1 = 275,
T, = ;—2 = 0.44 sec, and (54)
T, = 2 = 3,67 sec.
o

If high accuracy is required, the values of 7, and =, given in (54) can
be used to find the exact values of w, and Bj;, instead of using the ap-
proximate values given in (53).

X. CIRCUIT MODIFICATIONS

A two mode system has often been used" to increase the pull-in fre-
quency. In this system, a frequency detector as well as a phase detector
is used; the output of the frequency detector adjusts the oscillator tuning
until the phase-controlled loop can synchronize. This scheme greatly
extends the pull-in range, but requires additional hardware.

Another means of extending the pull-in frequency has been published
by R. Ley.’ Back-to-back diodes are placed across the series filter re-
sistor R;. When the circuit is in synchronism and the jitter is small,
the diodes do not conduct. The small signal properties are just as we
have analyzed them. However, if the circuit is not synchronized, the
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flickering error voltage will cause the diodes to conduct, shorting out
R, . This will bring the pull-in frequency up near the lock frequency.
The major drawback of this method is that large jitter error voltages
will make the diodes conduct, and be passed on to the oscillator.
Either or both of these methods may be used to greatly extend the
pull-in range if the other system requirements permit their use.

XI. SUMMARY

Nearly all the properties of the phase-controlled oscillator which
have appeared in the literature have been analyzed for the case of the
sawtooth comparator and the phase lag filter.

New theoretical material has been introduced on the effects of fast
noise and jitter. -

The sawtooth comparator has advantages over the sinusoidal com-
parator for many applications. The reason for this is that the gain of
the sawtooth comparator remains constant over a broader range of
operation.

The properties of the phase-controlled oscillator are presented in a
manner which facilitates design without unnecessary restrictions. Vari-
ous methods of design are discussed, and numerical examples are pro-
vided to illustrate the methods.
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GLOSSARY OF IMPORTANT SYMBOLS
A Laplace transform is denoted by capitalizing the symbol.

Bj; jitter noise bandwidth
B; interference noise bandwidth
Bp demodulator noise bandwidth
f(ge) comparator function
filew) effective comparator function
(#(w) any normalized noise transfer function
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frequency to voltage ratio, oscillator
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comparator output voltage
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interference noise density
signal voltage amplitude
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jitter transfer function
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phase error due to fast jitter
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input frequency

change in input frequency
maximum frequency shift
mistuning frequency

natural frequency

lock frequency
pull-in frequency
seize frequency
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Analysis of the Phase-Controlled Loop

with a Sawtooth Comparator

By A. JAY GOLDSTEIN
(Manuseript received October 18, 1961)

Because of the recent interest in phase-controlled oscillators, a discussion
of the phase-controlled loop with a sawtooth comparator is presented. The
main emphasis is on finding the pull-in range of the loop. A companion
paper in this issue (Ref. 4) deals with applications and shows how design
parameters can be obtained from results developed here.

I. INTRODUCTION

The phase-controlled oscillator has evoked much interest in recent
years. Some of its applications are to synchronism in television,"* syn-
chronization to a harmonic of a crystal oscillator,® elimination of jitter
in pulse code modulation,* tracking filters, ete.

The general phase-controlled oscillator loop is given in Fig. 1. The
incoming signal and the variable oscillator have the same free-running
frequency w. . The phase comparator has as its output some function f
of the phase difference ¢. = ¢; — ¢o . As examples of f(¢.) we have

the linear case: . flee) = e
the sinusoidal case: flg.) = sin ¢,
the sawtoothed case flee) = o for ——g <@ < g
(see Tig. 2): fle. + nd) = f(o.) for n= -+ —10,1,--.

The output of the phase comparator passes through a filter whose im-

pulse response is 2(t). The output of the filter v(¢) controls the variable

oscillator according to the equation
dgao

T = av(t).

—
—
N
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S'N(“’ct“‘"‘), PHASE Flei=vo) |rrer| VW) | variase | SN “’Ct+9°°)>

| COMPARATOR hit) OSCILLATOR

t

Fig. 1 — The general phase-controlled loop.

Thus, the frequency of the controlled oscillator is
deo _
we + rr w, + av(l).

In a companion paper in this issue, C. J. Byrne* discusses the engineer-
ing origins and applications of the sawtoothed comparator and shows
how design parameters can be obtained from the results of this article.

This article is primarily concerned with finding the pull-in range of
the loop. This is defined precisely in Section III. Briefly it is the maximum
asymptotic (in ttme) value of the mistuning de./dt for which the slave
oscillator eventually synchronizes or locks to the input frequency. All of the
literature cited in the references deals with this problem for the case of
a sinusoidal or linear phase comparator. The linear case is easily solved
since the resulting differential equation is linear. (See in particular
Labin® for a detailed discussion.) In the sinusoidal case the differential
equation of the system is nonlinear. Only in the cases of no filter and an
ideal integrator has the equation, up to the present, been solved in closed
form. See Labin’® for an excellent discussion of the no-filter case. In order
to handle the nontrivial filter, many authors have used methods of
phase plane analysis.®”® Phase plane analysis is restricted to the prob-
lem of capture range in which the mistuning and phase error are zero
for negative time, and the mistuning is constant for positive time. This

f(‘l“e)

VS S

N\
N\

Fig. 2 — The sawtoothed phase comparator characteristic. The phase error
¢. is difference between the input and output phases of the loop.
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kind of analysis gives only upper and lower bounds for the capture
range and is restricted to a lag filter (Ifig. 3). For an RC filter (R. = 0),
Barnard® shows how phase plane analysis can give exact results.

To obviate the mathematical complexities, people have resorted to
making various hypotheses about the nature of the solution of the non-
linear differential equation. These assumptions are based upon physical
intuition and gross behavior observed in the laboratory. Different as-
sumptions have led to different approximate solutions for the capture
range. Moreover, they deal primarily with the lag filter, since it leads
to a second-order differential equation while a more general filter gives
a higher-order differential equation.

The loop equation when expressed as an integral equation is

de.
dit

d%’

—Lﬁ' - avo(t).

= —ozj; flo(OIR(t — ') dt’ +

It is surprisingly tractable for the sawtooth comparator, and the pull-in
range can be computed for any filter. Fig. 4 shows the excellent agree-
ment between theory and experiment for the lag filter. These experi-
mental results were obtained by C. J. Byrne.

To obtain our results, we too must make an assumption. While the
assumptions other authors have made deal with the behavior (in steady
state) when far outside the pull-in range, ours deals with the behavior
just outside of the pull-in range (see Section 4.4). This hypothesis is
easily verified experimentally and has been so verified by C. J. Byrne
for a representative selection of RC filters.

A brief description of each section follows.

Section II gives the basic integro-differential equation of the loop.

Section IIT defines the lock and pull-in range. The former is called by
some the pull-out range. The lock range is the maximum frequency
difference that the loop can lock to. It is given by

W = afmaxH(O)

R1
R2

C
o L .

Fig. 3 — The integral compensating or lag filter. The normalized time con-
stants are 1 = a(R; + R2)C and 7, = aR:C. For an RC filter r; = 0.« = (V.F.O.
output frequeney shift )/(V. F. O. input voltage).
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Fig. 4 — The relative pull-in range. For critical damping (72 4 1)?/4 = 7; and
for the RC filter R, = 0.

where H(0) is the de gain of the filter and fum.x is d/2 for the sawtooth
comparator.

Section 4.1 gives the solution of the basic loop equation. This solution
is the sum of (1) the solution of the linear phase comparator problem,
(2) a series of step functions, and (3) a series of damped exponentials.
The solution is obtained by representing the phase comparator function
as the sum of the phase difference [giving (1)] and a series of translated
unit step functions [giving (2) and (3)].

Section 4.2 gives the steady-state solution when not captured. In this
case the output of the phase comparator is a periodic function whose
period for a fixed filter depends on the asymptotic relative mistuning
(Fig. 5). By examining this non-capture situation we obtain the pull-in
range. We observe that in non-capture state the period and relative
mistuning must correspond to a point on a curve typified in Fig. 5.
Hence a relative mistuning lying below the minimum point of the curve
corresponds to a capture or synchronized situation, and the height of
the minimum gives the ratio of pull-in to lock range (the relative pull-in
Vp)-

Section V gives all the explicit design formulae for the lag filter. For
the special case of the RC filter (R, = 0 in Fig. 3) an explicit formula
for relative pull-in can be given, namely
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tanh j{ (@R C — 1) (aRC = 1)

).

In all other cases we must find the roots of a transcendental equation by
numerical approximation methods.

Byrne® gives graphs of the results of Section V for the lag filter. These
are graphs of relative pull-in (Fig. 13), noise bandwidth (small signal)
(Fig. 7), figure of merit (relative pull-in/noise bandwidth) (TFig. 15),
and maximum loop gain (small signal) (Fig. 8).

The noise bandwidth is a measure of the ability of the loop to reject
small phase noise. More explicitly, the noise bandwidth N of a network
is defined to be the bandwidth of that ideal low-pass filter which passes
the same white noise power as the given network.

There are many possible ways of defining a single measure of the
performance of the system, depending on the particular application in
mind. We have chosen the figure of merit v,/N, i.e., a large figure of merit
implies high noise rejection and large relative pull-in.

e

Yo =
1 (aR:iC =

e

o

T = PERIOD —3>

Fig. 5 — Relative mistuning w,/w; in a non-synchronized steady state vs the
period T of the comparator output. (a) no filter, (a) and (b) overdamped loop and
(¢) underdamped loop.
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For small phase deviations of the input, the comparator can be con-
sidered linear. We can then discuss the gain of the loop as a function of
the frequency of the phase deviation. The maximum of the loop gain is
denoted by Y. In some applications ¥ is restricted by stability considera-
tions to be less than unity.

Section VI is devoted to the derivation of several interesting asymp-
totic results for the lag filter. A simple formula is obtained for the
relative pull-in for large values of the filter time constants. It is also
shown that if the maximum loop gain is allowed to have a fixed value
greater than unity, then, by appropriate choice of the time constants,
arbitrarily large values of the figure of merit can be obtained.

This work could not have been completed without the aid of M.
Karnaugh who suggested the problem, E. G. Kimme who proved that
the sawtooth comparator is a continuous approximation to the original
discrete sample data system, C. J. Byrne whose experimental work con-
firmed the formulae derived here, D. E. Rowlinson who constructed the
contour curves from the computer data, and R. D. Barnard with whom
many fruitful discussions were held.

II. THE BASIC LOOP EQUATION

We obtain an integro-differential equation for the loop by noting that
the output of the filter can be written as a convolution plus initial condi-
tions

o(0) = [ fle Ot = ) at’ + w0

where v5(2) is the filter output due to residual charges and fluxes in the
filter at time zero. vy(t) damps out exponentially in all filters of interest.
Substituting this into (1) and replacing ¢y by ¢; — ¢. we obtain

W oo [ SOt = O + % —an(). (@)

In order that the derivations which follow not be unduly complicated
by inessential parameters, we make the following normalizations

(1) = @e(t) /fmax  (fmax = d/2)
C(@(t)) = f(@e(?))/Fmax
o(t) = ¢i(t)/fmax -
The normalized form of (2) becomes
dz

B e —a [ =) @+ % — ) fne . (3)
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III. DEFINITIONS OF LOCK RANGE AND RELATIVE PULL-IN

If the input frequency w, + dg;/dt is increased ‘“very slowly” to a
value which is not too large, the output frequency w, 4+ dpo/dt will
follow it (i.e., be always equal to, or locked to, the input frequency).
The maximum value of de;/dt for which lock-in will occur is called the
lock range and is denoted by w, . More precisely, w, will be determined
from (1) when the maximum de voltage v is obtained. This maximum
value is clearly the product of @, fu.x the maximum value of the com-
parator function f and H(0) the dc gain of the filter.*

w = ofmaxH (0). : (4)

Suppose that the input frequency is not increased slowly, but in some
sudden or erratic manner. Suppose moreover that the input frequency
approaches a limiting value, w., the mistuning; i.e.

. de;
1 P o=
tljg dt

W .

In general, even if 0 < w, < wy (that is, we are in the lock range), the
output frequency will not asymptotically lock to the input frequency
(that is, be captured), but will be a modulated frequency. We define
the relative pull-in range v, to be that normalized maximum frequency
difference such that

d‘Pi

—vpwr < lim — = w, < vpoL (5)
>0 dt
implies
. deg
lim — = wn.
tlj:} dt ¢ (©)

Notice that we make no restriction on how dep/dt approaches w,, , as
long as | wn | < vpwr, .

IV. DERIVATION OF RESULTST

4.1 Basic Equation
Let
0<ty <ty s <ty < ---

* We shall use capital letters to denote the Laplace transform of the function
denoted by corresponding lower-case letters.
t From here on we are dealing with the sawtooth comparator.
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be all the instants (called discontinuity points) at which the phase
difference z(¢) crosses the discontinuity of C, i.e.,

lim z(¢, — A) = 2(t,—) =1 + 20/
ree

where the first equality is a definition of z(f,—) and where »n’ is an
integer dependent on n. Let

a, = 1if z is increasing at ¢,
a, = —1 if z is decreasing at ¢,
a, = 0if x is stationary at ¢, .

Using the unit step function

0 for t <0
u(t) =
1 for t=0
we can express C'(x(¢)) in the analytically useful form
¢ t <
Gl _ Ay~ 3 auts ~ 1) (7)
izo

where 7, is an integer so chosen that this equation holds at ¢ = 0.
We note here for future reference that

2(ty—) = ng = L + Zoaj. (8)
-

Substituting (7) into the loop equation (3), we obtain

1dx a ¢ ’ ’ ’ ! ’ ’
) t
+a) ajf w(t’ — t)h(t — t') dt’ (9)
7=0 0
1de
+ § % - a1)0<t)/2fmax .

Solving this by Laplace transform methods we obtain

! _ s8(s) — [po(0) + aVo($))/fumax | mo ol (s)
$X(s) = 3(s 1 aH(s)) EERERO)

S ae i aH(s)
+ :Z:; s s+ aH(s)’
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Letting
1
we have
1 — sR(s) = ﬁgg(lg%ﬁ' (11)

Note that sR(s) is the transfer function between input phase ¢; and
comparator output phase ¢, for the linear comparator case. r(¢) is then
the phase response at the linear comparator output due to a step in
input phase. Since applications will require the system to synchronize
to a step in phase, we will assume that r({) — 0 as { — .

Using this equation and taking inverse transforms in the equation for
X (s) we obtain

220 1+ ) +Za,u<t — 1) = Zaﬂt — ) (12)

where
Sq)(S) - <P0(0) + aV{)(s>]/fmax
Xuls) = s + aH(s) ’

x. () is the solution of the loop equation in the case of a linear com-
parator function f(z) = z.
Using the final value theorem'® we have

(o) = limz,(f) = hm sX,(s) = lim ¢'(¢)

>0 t>o
H(0
aH(0) (13)
L aH(0)  ws
From (12) and (7) we have for the comparator output
CE®) _zull) _ S~ onth = 1) + nor(d), (14)
2 2 i=o
In a steady-state condition this reduces to
Clz(t)) =22 -2 Z ar(t — &) (15)

where the ngr(¢) term vanishes because of the remarks following the
definition of R(s).
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4.2 Steady-State Solution When Not Captured

When we are not locked and in steady state, the output of the phase
comparator will be a periodic function.* We give here a simplified
heuristic derivation of the steady-state periodic solution. A rigorous
derivation is easily obtained using the heuristics as a guide. In steady
state, the normalized comparator output y(¢) = C(x(¢)) will be periodic
with a period which we will call 7'. In a given period there may be many
discontinuity points ¢; ; let us suppose there are k. Then assuming we
are in steady state, we can write

tuyi = nT + Ti + 7, {Z‘ — o 0’ N 10,;1’_' N (16)
where
=Ty << - <Tey <T.
These relations are illustrated below.
1bnke lnk 1 R a4 k-1 e 4 1k
nT + = nr+T4++ - 2T+ T+ (n+ 1T +1
l T I
The a,’s will be periodic in steady state and we let
TR et v LIS (g
It is no I‘CStI‘lLthn to assume a time shift so that + = 0. Then, let
“ t—mT-l—u(0<u T) (18)
and combine the above three equations with (14). We obtain
y(t) = Cla(t)] = Cla(mT + u)]
= wn/wr — 2 Z Qi (MT + 4 — by
= &n/wg — 2 >ﬁ1A n_Zwr[(m —n)T 4+ u — T
(The second summation has the upper limit m because r(¢t) = 0 for
t £ 0.) Letting 7 = m — n, we obtain
y(t) = »—2I§AZ (GT +u — To). (19)

* A mathematical proof is not at hand. Indications of its truth are given in
- Benes? and experimental observations confirm this.
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Let us define a periodic function

©

_Z;r(t—i—jT) (0<t=sT
p(t —nTT) (T <t=(n+ 1)T)

p(T) = (20)

or
~+0
p(tT) = 2 r(t + 4T).

(r(t)) = Ofor ¢ < 0 makes p(¢,T) a well defined function.) With this
definition, the normalized steady-state comparator output, when not
locked, can be written

y@=ﬂ 2me ). (21)

The expression for p(¢,7) is familiar to those in the field of sample
data systems.* Though superficially formidable, it can be expressed in
closed form quite easily for the only important class of the filter transfer
functions H(s), namely rational functions. In that case R(s) is a rational
function too. Hence »(t) is a linear combination of exponentials of the
form £"¢* (real part of 8 negative). Then p(4,T) for 0 < t < T is a
linear combination of geometric series, each of the form

o) = 2 (b4 JT)
=0

— % i B(t+351T) (22)

=
a
ST =
This steady-state solution consists of a constant term 2w, /daf(0),
which is the normalized steady-state output for a linear phase com-
parator plus a linear combination (with coefficients 1) of time trans-
lates of the function p(Z,7'), which is periodic of period T. The derivation
shows that every steady-state periodic solution of the loop equation has
the form of (21).
Equation (21) hides several pitfalls. These are:
1. We must have |y(¢) | £ 1. Hence only certain T and T'; are
admissible.

* Tt is the response of a filter R(s) to an input E 8t + 57T).

j=—00



614 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1962

2. Are the solutions represented by (21) physically realizable?
3. Are the solutions represented by (21) stable with respect to small
noise perturbations?
These three topics are grouped under the title Boundary Conditions
and will be discussed following a discussion of the pull-in range.

4.3 Relative Pull-in

From the definition of T, y(T—) = =1 and by an appropriate choice
of 7 in (16) (if w, > 0) we may assume y(7) = 1. Then from (21)

k-1
Em— 142> Ap(T — T;,T). (23)
wr, =0
Now the minimum value of w,, > 0 for which we have a non-constant
periodic steady-state stable solution is by definition vy,w. , hence
k—1
vp=1+42min > Ap(T — T;,T). (24)
=0
where the minimum is taken over all 7' and over all steady-state solu-
tions satisfying conditions 1, 2 and 3 above.

4.4 Boundary Conditions

4.4.1 Discontinuity Point Condition

y(1), being the normalized phase comparator output, satisfies —1 =<
y(t) £ 1. Also y(¢’—) = =1 if and only if for some n and 7, ¢’ = T; +
nT, or y(t) is stationary at ¢’ (i.e., ¥'(¢’) = 0 and y at ¢’ is increasing if
y(') = —1 or decreasing if y(¢') = 1). These are equivalent to

2 Ap(t —T:,T) —p(T —T:,T)) =0

if and only if ¢/ = oT + T;or y(¢’) — y(T) is stationary. at ¢’. This
restriction will be called the discontinuity point condition.

To analytically determine whether this condition is satisfied, in a
general case, is clearly very difficult. For the case of the lag filter we
can solve the problem analytically but must rely on an experimental
fact. C. J. Byrne has found experimentally, in a large class of RC filters,
that there is just one discontinuity per period 7, i.e., the &k in (21) is
one. We will call this the FExperimental Hypothesis. Thus

y(t) = %Z — 2p(4,T) (25)

and
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Yp = 14+ 2 min p(T,T). (26)

In the section on the lag filter we show that if

p(T",17) = min p(7T,T) (27)

then p(¢,7") satisfies the discontinuity point condition. Thus if p(¢,7")
is realizable (it is — see below) and is stable under noise (we do not
know, but have some evidence — see below) then

v» = 1+ 2p(7",1") (28)
for the lag filter.

4.4.2 Realizability Condition

Does there exist, for each of the steady-state functions represented
in (21) satisfying the discontinuity point condition, a corresponding
input function ¢(¢)? That is, are the y(¢) in (21) physically realizable?

In Appendix A we prove realizability for any filter but not in quite
the form stated above. We do the following:

(a) A particular input () = 2w,/d is injected.

(b) The loop is broken at the output of the phase comparator.

(¢) Into the filter, at this point, is injected a voltage which asymptot-

ically has the form (21).

(d) One shows that the output of the phase comparator has asymp-

totically the same form.

(e) In steady state the loop is closed.

4.4.3 Non-Synchronous Stability

Are the solutions stable? By this we mean: Will a steady-state solution
be thrown into synchronism by a ‘“small’’ noise? In formal terms, we
suppose that a solution y(¢) has a discontinuity point, say ¢ shifted by
noise to {, -+ A, . Each of the following discontinuity points ¢, , ¢, -- -,
tw, -+ isshifted to & + Ay, te + Ay, - -+, 8, + A, , - -. It suffices for
our purposes that the (¢, + A,)’s be asymptotically periodic (i.e., the
noise sends us into another periodic solution and not into synchronism).
The best we have been able to prove is that

lim [dA—” :| =c¢ < o,
Ag=0

no |_dAo
This has been done for the lag filter using the experimental assumption
that k¥ = 1 and that 77 — ¢ < T < 7", for € sufficiently small, where
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T' is given in (28). Now it would suffice for stability to show that A, is
bounded for A, sufficiently small, but the above does not imply this, for
all it says is that

An = C’AO + EIEA['?

and we do not know that e, is bounded.

V. LAG (INTEGRAL COMPENSATING) FILTER

5.1 General Resulls

This section gives all the explicit formulae for design procedures in
the case of the lag filter (IMig. 3). We assume the experimental hypothesis
(see Section 4.4) throughout this scetion.

The transfer function of the filter is

bs + 1
Hs) =31
where
h = (Rl + RZ)C-
tz = RQC
Hence
_ 1 _ tls + 1
k(s) = s+ aH(s) 48+ (ats + 1)s + «
1 1
p+ T P2 + L1

Pl_ms“pl_m—ms—pz
where p; and p, are the roots of denominator of R(s). In particular,
introducing the normalized dimensionless time constants
A T = al;, 1 =12
we have for the roots
1

; (a+ (—1)b)

P =
where

a=(rn+1)/2=4%

b2 = Ct2 -7 k

* The real or imaginary part of b is non-negative.
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The denominator of R(s) can be written in the form
§* 4+ 2w.ts + w,
where
w.' = (a/h)
and £, the damping factor, is
= (n+ D/2Vn = a/(d — )

In this notation we obtain
r(1) = % [—(a — b — 1) exp (—(a — b)E/t)

+ (a+b—1)exp(—(a+ b)t/t)].

Because r(t) is a linear combination of exponentials, we can easily sum
the infinite series for p(¢,7), obtaining

e Ay gy _espl=(a = D)y
p(4T) —p(n,n)—Q—b[ (a—b—1) 2B 8 o

[—(a + b)y] =)
exp[— (a 7
b—1
oy et |
where " = t/t; and 7 = T'/# are dimensionless time variables.
To obtain v, using the results of (27) we must find
min p(T,T)
T
or the roots of
_ ap(am)
0 - 'd—n .
Differentiating the expression for §(»,7) we obtain n # 0 and
sinh’® (a — b)n/2 _ (@ — b)(a — b — 1) (30)

sinh? (a + 0)n/2  (a +b)(a +b — 1)

or n = . And upon using the addition formula for the hyperbolic sine,
we have

tanh an/2 b tanh by/2 -9 d+b—a
tanh an/2 20 — 1

= 2¢ (31)

% tanh by/2

which defines ¢, or = .
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Use of the quadratic formula gives

tanhan/2 _ VE =B = ci(ad) (32)

% tanh bn/2

or = «.* In special cases considered it was found that the minimum
of p(n,n) occurs at the first positive zero of its derivative (or at 5y = « ),

5.2 Critical Damping

From (31) we see that as b approaches zero (damping factor equals
one),

tamh an/2 _ gale = 1) _ 0y i o> 1

n/2 2a — 1 (33)
7=, If 1<a<l.

Thusy, = 1forb =0and 1 <a < 1.

5.3 No Filter and RC Filter
The filter parameters satisfy
0 < T2 é T1

which upon conversion to the a and b parameters become
(a — 1)’V
and

a

v
(S

Equality holds in the first case, when B, = 0 or C = 0 (i.e., there is no
filter) and in the second case, when R, = 0, (i.e., a simple RC filter.)
For no filter,a + b — 1 = 0ora — b — 1 = 0, and referring to (30)
we have only # = . Thus min p(7,7) = Oand v, = 1.
For the RC filter B, = 0, a = %, we obtain from (30) 5 # 0 and
sinhby = Qorgp = ». If bisreal, y = « and v, = L. If b is imaginary

ﬂ:mﬂ'/b ’m=l,2,-'-

* If the negative sign were used in the quadratic formula then  would be nega-
tive (complex) when b was imaginary (real).
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and we easily find that p(mmx/bmr/b) is minimum at m = 1, giving
finally

IR 1
tanhz (1'1 - Z) if 1> ‘I
T = . (34)
. 1
1 if T1 é 1

The results of these special cases are graphically summarized in Fig.
6. (Also see Ifig. 13 of Byrne, Ref. 4.) In the shaded area of Fig. 6 the

.|
<
w
2
a a-b=1
0.5 atb=1

0 0.5 1.0
> : 8 =
<
1
X
s Fe)
“l’l (a)

\90?
=72 __ ??p
(NO FILTER) N
B
o
UNDERDAMPED
T2 LooP
1
2
1+ 7
=7 =( 2 )
(b)
0 |
0 025 1.0 .

Fig. 6 — In part (a) the parameters a and b are restricted to lie below and/or
to the right of the polygonal curve. The heavy lines and the shaded area give
values of a and b for which the relative pull-in is unity. In part (b) the same in-
formation is given for the normalized time constants =, and 72 .
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relative pull-in is unity. This follows from the fact that the left-hand
side of (31) is bounded below by 2b* while

2c —20 =2(a —b—1)(a —0)/(2a — 1)

is negative in that region. Hence in (31) we must have n = oo,

5.4 Computational Procedures

Except in the special cases of no filter (R; = 0) and the RC filter
(R, = 0), there is no simple way of computing the relative pull-in. We
must solve (32) by an iterative procedure and substitute the result into
the equation for p(n,n). If 5 is the solution of (32) or (33) we have a
simpler equation for v, , namely

= [1 — D sech’ an/2]/tanh an/2
where

a— 1)¢ —

_
D =St (b 0)

and
D= (a—%/a (b= 0).

An upper bound for 5 is obtained from (32) and (33). Using the fact
that tanh 2 < 1, we obtain

[2(tanh™ b/c) /b (b = 0)

77<12/01 (b=0)

(35)

A lower bound for 7 in the case b is real is obtained by using the in-
cqualities
2 — z3/3 < tanhz £ 2

Using this in the equation for 4 we have

J (ap) tanb bn/2 tanh bn/2

ch(a,O)n/2

(345) =0

*The left-hand side of (31) is of the form b(x + 1/x). For = positive this is
bounded below by 2b. .

an/2 — (an/2)*/3 < tanh an/2 = < om/2

giving the lower bound
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We note here for future reference that if bis imaginary, b = 40’ then
(35) implies the inequality

0L 9 < s . (36)

5.5 Discontinuity Point Condition for the Lag Filter
To prove that this condition is satisfied, it suffices to show that

:%?50 for 0<t<T. (37)

Tror, since we may suppose ,
y(1) =1,
it follows that if
y(t') =1 (0<t <t)

then Rolle’s theorem tells us that there exists a't” with ¢ < ¢ < T
such that »'(¢”) = 0. This contradicts (37). It suffices also to prove
(37) for that T which minimizes p(7,1):

Recall that we are assuming we have a lag filter and that & = 1 in
(21) (experimental hypothesis). Assuming (37) false, we obtain from
(29) after some calculation

— ] —(a+Db)n/2
e (at+b)n’/ 1 — ¢ (a+b)n)

= (38)

e—(a—b)n'/2 1 — e—(a—b)n/?

where n minimizes p(u,u). Note that 0 < 3" < 7.
Case 1, b real. Then a > b and.

e—(a+b)n’/2

P

e (a+b)n}2

= e—(a—b)n/Z

— (a2
1—6™
>

1 — e—-(a—b)q/2’
Hence (38) is false.

*H0<z<y<l,thenz/y>2—1/y — 1, for —z > —y implies zy — =z >
zy — y; hence in factoring and dividing we obtain the desired inequality.
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Case 2, b imaginary. Let b = b/, then (38) becomes
—b'n'/2 + mr = arg(e” TR — 1), (39)

Now the real part of ¢ “**’"? — 1 is negative and the imaginary part

is negative (since by (36), 0 < b'n/2 < =/2). Hence the right-hand
side is an angle in the third quadrant. But the left-hand side is an angle
which can only be in the second or fourth quadrant, since

0< by <bp<m.

Hence (39) is false, proving the discontinuity point condition,

5.6 Small-Signal Properties of the Loop

In this section we give formulae for design parameters of the loop
when we are operating on the linear portion of the phase comparator.
Then the closed loop transfer function Y is

a(tzs + 1)
82t1 + (at2 + 1)8 + a'

Restricting our attention to real frequencies and normalizing the fre-
quency o by

Y(s) =

Q= w/a
and recalling that
n=al, 1=od
we obtain _
0+ 1

| Y(@) " =

(e + @ + (1 — @)’
With the phase shift

(1 + mm@")Q
(1 hd Tlﬂz) + T2(]. + T2)292
0 if denominator positive *
7 if denominator negative’

6 = —arctan

Important parameters for design are the maximum gain and the
frequency and phase shift at which it occurs and the range of frequencies
for which the gain exceeds one. Differentiating | ¥(2) |* and solving for
its zero gives

* The arctan is an angle in the first or fourth quadrant.
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[(2T1 - 1)/27‘12 if T = 0, T1 =
Dmax = {[L + (2(r1 — 7)) — Dr/m) — 1)/7° f 7 — 7

0 if n—7mn=4i

v
[N

1%

Solving | Y(Q) |* = 1 gives

where

1%
Bl

]f TL — T2

1A
ol

0 if T1 — Tg
We also have the interesting inequality
'\/é Qmax é Ql

with equality when 7, = 0. The cases 7o = 0 and 7, — 7 £ } are im-
mediate. The case 11 — 72 = % gives '

Qma.x2 = {[1 + 7'22912]% - 1}‘/722

p— 912

[+ w20 + 1
<o
=2

proving the result in this case.
We wish to emphasize that the maximum gain is unity if and only if
71 — 7 = 1. Peak gain = constant contours are given in Fig. 8 of Ref. 4.
The 3 db point occurs at @ = Q; where

Y|P =1%

.

from which we obtain
o' =B+ (32‘+ )}
where .
B = (v + 2(r1 — 1) — 1)/20".
The noise bandwidth N is defined by*

N=f0 | ¥ () 1 de.
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It can be evaluated in various ways, for examplesee Ref. 10. One obtains
N = na(l + 722/‘&)/2(72 + 1).

In the no-filter case (72 = 7, = 0) and RC case (7: = Rs = 0) we have
N = wma/2. N = constant contours are given in Ref. 4, Iig. 7.

As discussed in the introduction, the figure of merit was chosen to be
the ratio N/v, . N/v, = constant contours are given in Ref. 4, Fig. 15.

VI. ASYMPTOTIC RESULTS

In this section we obtain the asymptotic results stated in the introduc-
tion. Since the derivations are tedious, the results are first summarized.

From computer data, the contour curves of relative pull-in v, =
constant with ordinate and abscissa the normalized time constants

T = Ol(Rl + R?)C
Ty = (XRQC

seem to be asymptotic to straight lines for large values of the normalized
parameters. (See Fig. 13 in Ref. 4.) This observation led to the con-
jecture that for fixed v, and large 7.

= K(m + 1).
In Appendix C we prove this and show that
1/K =1 — (1/v, — 7p)*(tanh™" v,)%

With respect to the figure of merit (see Iig. 15 in Ref. 4), the following
very important results are derived in Appendix B for the lag filter. Sup-
pose the peak small-signalzphase gain ¥ of the loop is restricted to be
unity (it is always unity at de). Then the maximum merit obtainable
for filters giving the unity peak loop gain is 2.27. If, however, we permit
a fixed peak gain greater than unity, we can have an arbitrarily large
merit figure. This usually results in very poor transient response. More
precisely, the following results are derived in Appendix B. Let us con-
sider those lag filters for which the peak small-signal (phase) gain is
fixed at ¥. Define M by

M=1-Y"

Then for a filter with normalized time constants r; and 7, and normalized
frequency @ = w/a, for which the loop has peak gain Y occurring at
frequency Qumax , we have
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Qmax2 = M/Tl
and
= (M’7 + 2ry + 1)/2(1 4+ M).

Asymptotically for =, large we obtain for the noise bandwidth (with
a = (T2 -l‘ ].)/2)

N/ma = (1 + (——M—"]l_[)>/4 + O(a—2)*

and for the relative pull-in range

-1 2 M —1
'ypza’____,\/—
Vi

2 (r+ 1\
= —_— = 0 H «
2 (221) + ottanm
Thus the llolse bandwidth decreases as @~ while the relatlve pull-in
decreases as a~*. Hence the figure of merit increase as a’.

The derivatlons of the preceding results are given in Appendices B
and C.

+0(a™)

-1

APPENDIX A

Realizability of Steady-State Solutions
Reecall that (assuming d = 2)

)

y(t) =(1—;-(’%)—2;A12r(t—T,—nT) (40)

where [see (13)]
W
2 = a(0) = /2.
L= au(=) aH (0)
Since we assume y(¢) satisfies the discontinuity point condition
k—1

H(O) =1 +2ZA,p(T— T:,T).

Break the loop at the output of the phase comparator, inject y(t)

* Two functions f(z) and g(z) satisfy f(z) = 0(g(x)) if and only if | f(z)/g(z) | =
constant < « for z sufficiently large.
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into the filter, and let the input phase be w.t + z, — ¢ (where ¢ is
defined below). The phase output of the oscillator is given by

d“"’”) f YR — ) dt’

and upon intéigrating once and substituting (40),

et = H“("a)f f W) dt” dt’
k—1

t pt’
-2 Z A; Z f f ar(t” — T; — nT)h(t' — ¢") dt” dt’.
0

By taking the Laplace transform of the double integral in the summa-
tion and by using the relations in (10) and (11), we find

¢ t’
oo(t) = H(O)f fo R(t") dt” dt
i k—1 0

—2;Ai{iou(t— T; —nT) — >, r(t — T —nT)}.

n=0

Now the remaining double integral is the integral of the step response
of the filter and for large ¢ is of the form H(0)¢ + ¢. Using this and the
definition of y(¢), we obtain for large ¢

(t)Nwmt+c—22A Zu(t—— T: — nT) — y(t) + z,.
g== n=0
Now using the discontinuity point condition and the representation of
the comparator in (7) we find the comparator output is asymptotically
y(t). Hence in steady state we may close the circuit without any dis-
turbance.

APPENDIX B

Figure of Merit for Constant Peak Gain and Large Time Constants (Lag
Filter)

From Section 5.6 we have for the closed loop small-signal (phase)
gain

1'2292 + ].

YT = e a —eo

(41)
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Differentiating with respect to @ and equating the result to zero gives
712722anax + 27'12annx - [2(7'1 - 7'2) - 1] = 0. (42)

We can also represent the square of peak gain ¥* as the ratio of the
derivatives of the numerator and denominator of (41) evaluated at
Qmax '*

2

YS 72
(r2+ 1) — 21 (1 — Q)

2
T2

T — 2(71 — 72) — 1] 4+ 2r202,.°

This, after using (42), gives

U T (43)
Defining M = 0 by
M=1—-77
we have
0SM<1, since 1Y < =,
Also (43) gives
T ax = M. (44)

Substitute (44) into (42) and solve for 7; . Then
= (M7 + 27, + 1)/2(1 — M).

Using this result in the formula for the noise bandwidth (Section 5.6),
we have for Y constant and 7, large (and hence a = (7. + 1)/2 is
large)

2(1 — M )) -
= = N 7 4
N 4<1+ —20) + o(a. (45)
We now turn to the problem of obtaining asymptotic expressions for
the relative pull-in range for Y fixed and greater than unity.
We can rewrite the expression for 7; as

2M2
1 —

*If f(x) = p(x)/q(x), then f'(zo) = 0 implies f(xo) = p’(x0)/¢’ (x0). One obtains
this result by Iogarlthmlc differentiation of f(z).

&+ 2(1 + Ma (46)

T =

_M+1
5
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Using the definition b* =
we have for large a

b_(y_ 2 %<l_1—M
a 1—M 1 —2M

@ — 7, (46) and the binomial expansion,

+ O(a_2)> (47)

Q=

if M = 1and
b= —3(a — 1) (48)

if M = %. In the following we suppose M # %. Recall (31) that to find

the relative pull-in we need the root of
tanh by/2
C ————

tanh an/2 = 5
where
o =c+ (& =)
and
c=(+ V¥ —a)/(2a —1).
Hence
c= (2 —a—1)/(2 — 1)
=all = n/a(2a — D] = a — :_Z (49)
¢ = al:l — M + O(a-l):l.
1 - M
Also

giving
(¢ — b} =11[1 _}<12> _1 Z?>2.|_0 ™’
2 T 8 71 '7'13 )

Finally
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¢ = (a — E) + (¢ = bHF
72
(51)
G =a I:l — ‘)l—a + O(a_2):|.

4

Setting z = an/2, we have
tanh z = < tanh llz. (52)
b a

We will show that for large a, z is small and then obtain an approximation
to z by using a power series expansion for tanh z. Ifirst note that the
derivative at zero of the right-hand side of (52) is

a_1-Ltow
a 2a

which approaches 1 from below for large a. Also

01__(_1 -1

7= b+0(b )
oM* \7* 4
(1—-1_M> + o).

Hence | ¢;/b | is bounded away from 1 (and greater than 1).
A sketch of the curves of the two sides of (52) with the above two
facts shows that

limz = 0.

a—>0

Using power series expansions in (52) we obtain for large a
c—toal (DL 9))
3 b a 3 a

1 — c/a
1 — clb2/a3

or

2 =3

2% + 0(a™®) .
=3 53
2M* )
, = (301 — M)
a oM

ot 0(ah).
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From Section 5.4 the relative pull-in is

=u+Dtanh

an
an 2
tanh (§>

where _
D= ((a — e — b)/(ci’ = bY).
Then
N (a—a+1)
1=-D= a — /ey
and
_a—a+1
1—D = — 5 (54)
since
a + b/ey = 2.
Using (49) and (51) we have
1—p =224 o). (55)

4all?®

We now obtain the asymptotic formula for v, by substitution into
the formula for v, the approximations for D, 1 — D and the approxima-
tion tanh (an/2) ~ an/2 = z with 2z approximated as in (53).

_2(1 — M)}

Yo = W—a_% + O(a—%)

(56)
- 33 ((r2 + 1)/m)} + 0(rY).

APPENDIX C

Relative Pull-in (Lag Filter, Large T, and 75)
Assuming that for a large a
n = 2Ka + L+ 0(a™) (57)
we obtain from the definition

2
b =a2—T1
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that
o _L+K N
Expanding the square root we obtain
o 1 L+K 3 ]
b=(a—K) [1 5ta & T 0(a™) (58)
and
oy K@, (59)
a a
From (57) since
a=(r+1)/2
we have
o g+ B R o (60)
T2 T2

From (50) we have

(-
T2 T2

and by using (60) we have

(L+ K)(2K — 1)
KK = 1)

v -1+ Lroe].
T2
Using the binomial expansion

;12 +0(r " :' (61)

K2 — K
From (49)
C = — .7_-.1.
T2
and using (60), we obtain
c=a—K—L;l-K+O(‘rg—2). (62)
2

Then
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a=c+ (¢ =)

, \ » (63)
= (a— K) + (K — K)"+ 0(r.).
Finally from (58) and (63)
a _a/(a ~ K)
b~ b/(a = 21() »
=1 +££—_al—()z+ 0(a™?).

Letting z = an/2, (31) becomes
tanhz = [1 4+ (K> — K)*/a 4+ 0(a™*)] tanh (1 — K/a 4+ 0(a *))z. (65)
Using the addition formula for tanh (A + B)z and simplifying, we have
tanh’ tanh (K/a + 0(a %))z — [(K* — K)*/a + 0(a™®)] tanh z
+ 1 4+ (K* — K)!/a + 0(a™)] tanh (K/a + 0(a™®))z = 0.

We show that z/a approaches zero with a and use this to simplify (66).
From (35) ’
. < 2 tanh ™ [1 + (K* — K)¥/a + 0(a7?)]
1 — K/a + 0(a™?)

o L)

1 — K/a + 0(a™2)

Since

IimIn w/u =0

u-—>0
we have

lim z/a = 0.

a—>0
Returning to (66), we now have asymptotically

K — 1>%tanhz _
z

tanh22+< ® 1=0.

Solving for K we obtain

i 1 ’ 2
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Now the relative pull-in given in Section 5.4 is

1-D

tanh 2 4+ D tanh 2

Yo =

and we easily show that [using (54)]

i — a +'1
2c

(K- K'—K+ 140"
B a— K+ 0(a)

= 0(a™).

1—D =

Hence asymptotically for fixed z,

v, = tanh z + 0(a™"). (68)

Thus for given relative pull-in, the above gives us z and tanh z, and

then (67) gives K from which (57) gives for large 7,

= K(r 4+ 1). (69)
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Reliability of Components for
Communication Satellites

By I. M. ROSS
(Manuscript received August 15, 1961)

This article considers the reliability of components such as transistors,
diodes, and solar cells in relation to the design of a communication satellite
with adequate reliability. Consideration is given to methods for determining
the reliability of high-gquality components and of techniques for selecting the
most stable components for this application. It is concluded that, at least for
a stmple communication satellite, components can now be obtained that will
lead to a satisfactory life.

I. INTRODUCTION

All the necessary components and circuit techniques are available to
fabricate a simple communication system using low-orbit satellites.!
Such a system would use many satellites at an altitude of a few thousand
miles and be capable of global communications with a few megacycles
baseband. The ground receiver portion of the system could achieve
adequate signal-to-noise for very low received power by use of high-gain
receiving antennas, low-noise maser receivers and FIM modulation with
feedback. The satisfactory performance of this type of receiver was
demonstrated in the Echo I experiment.? In conjunction with such
sensitive ground receiver equipment, it is possible to use a satellite re-
peater putting out only a few watts of power from an isotropic antenna,
and hence avoiding the additional complexity of attitude stabilization.
The components needed for such a satellite, including the traveling-wave
tubes, transistors, diodes and solar cells, are all either available or
achievable within the capability of existing technology. Thus a com-
munication satellite system is feasible in principle. Whether or not it is
economical and therefore practical, depends upon the life expectancy of
the system, and specifically on the life of the satellite itself. It will be
assumed here that a satellite life of at least five years is a reasonable
target in the design of a practical communication system. By the very
nature of the system, repair of the satellite is presently impossible (and if

635
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ever possible, would be exorbitantly expensive), and because of the cost
penalty of additional weight in orbit, extensive redundancy is most
undesirable. Thus, the practicality of the system depends critically on the
reliability of the components that make up the satellite itself. This paper
is devoted to a discussion of the reliability of components in relation to
the design of a satellite with adequate reliability. Although the discussion
is directed specifically to low-orbit (several thousand miles altitude)
satellites, many of the ideas could apply equally well to higher orbits.

In Section II, below, consideration is given to the order of component
reliability needed in a simple communication satellite. Section ITI deals
with the reliability of components in general with emphasis on means for
attaining highly reliable components and for determining quantitatively
their degree of reliability. Section IV discusses the level of reliability that
can be achieved in three critical classes of components, namely transistors
and diodes, traveling-wave tubes and solar cells. Finally, it is concluded
that, with careful manufacture and selection, components can be ob-
tained for a practical communication satellite system.

II. COMPONENT RELIABILITY REQUIRED FOR COMMUNICATION SATELLITES

For the consideration of reliability it is convenient to divide the life of a
satellite into three periods, namely pre-launch, launch, and orbit. It is
usual practice to assume that any failure that occurs a reasonable time
prior to lift-off can be corrected by replacement and that, at the worst,
this could result in some delay in the launch time. For such an assump-
tion to be valid, it is necessary that components or batches of components
be accessible and removable so that failed portions of the satellite can be
replaced. The design for such flexibility does necessitate some weight
increase. Although the launch period is short, it is accompanied by large
mechanical stresses liable to cause failure. As will be discussed later, in
the section on traveling-wave tubes, experience with many launches has
shown that with well designed components and equipment, failure during
launch of the electronic equipment in a satellite is not a significant factor
in the over-all reliability of the satellite. It is the third period, life in
orbit, which dominates the reliability design of a satellite. In this section
we consider the relationship between the reliability of components and
the anticipated life in orbit.

In calculating the probability of survival of a system containing a
large number of components, it is frequently assumed that the failure
distribution of any type of component is exponential. On such an assump-
tion, the performance of a given type of component can be characterized
by a mean time to failure or a failure rate. One of the more convenient
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ways to represent the failure rate is in terms of a number of failures for a
given number of component operating hours. A method which is in in-
creasing use defines failure rate as the number of failures per 10° compo-
nent hours (1 failure per 10° hours corresponds to a failure rate of 0.0001
per cent per 1000 hours). By way of calibration, a good resistor or
capacitor has a failure rate in the range 5 to 10 per 10° component hours,
while an entertainment receiver tube will have a rate in the neighborhood
of 100,000 per 10° hours.

If we assume that a given system contains n; components of a given
type, and that the failure rate for that type is fi per 10 hours, we expect
statistically that there will be n, f; failuresper 10° hours. Hence in a time ¢
hours we expect tnyf1/10° failures. Assuming that failure probability is
random and that the failure of any one of these components leads to
failure of the system — that is, assuming no redundancy — the proba-
bility P; that the system will not fail in ¢ hours due to failure of one of the
ny components, is given by:

P = exp[—mlfl]. (1)

Similarly, if we have a system composed of n , 72, etc., components of
types having failure rates fi, f2, ete., and we again assume no redun-
dancy, the probability P, of survival for time ¢ is given by:

P, = exp[ i Z (Mnfi) ] (2)

This simple equation can be used to estimate probability of system’s
survival, provided that the following conditions are met:

a) The failure mode of the components is assumed random with
recognized exceptions being treated separately.

b) The system contains no redundancy.

Assumption b) is unrealistic since a certain degree of redundancy will be
featured in any good design. However, because of weight limitations in a
satellite, redundancy cannot be used to correct for poor reliability per-
formance of a majority of the devices. Hence the equation is useful in
determining desired objectives.

Table I shows the results of reliability calculations for a hypothetical
communication satellite. At the left of the table are listed the types and
numbers of critical components used. These types and numbers, which
are representative of a very simple repeater of a few megacycles base-
band, do not include any allowance for redundancy, nor do they include
allowance for the telemetry invariably associated with such a system.
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TABLE I — RELIABILITY CALCULATION FOR SIMPLE COMMUNICATION

SATELLITE
Case I Case I Case III
Type of Component Number (n) | Failure {ailure Fatilure
R(ii‘t:il(-f> Pro};uct (al’szetil(-i) Prod;x ct R&“aeil(-f) P rodfuct
ures/10? (nf) ures/10° (nf) ures/10° (nf)
hrs) hrs) hrs)
Transistor 140 20 2800 | 10 1400 | 5 700
Diodes 161 15 2415 | 10 1600 | 5 805
Resistor 400 5 2000 | 5 2000 | 2 800
Capacitor 250 10 2500 | 5 1250 | 2 500
Inductor and Transformer 40 20 800 | 16 600 | 5 200
Relays 6 50 300 | 25 150 | 6 120
Ni-Cd Cells 20 50 1000 | 25 500 | 15 300
Totals 1017 11,815 7510 3425
Average Failure Rate 11.6 7.4 3.4
Probability of success — 1 0.901 0.94 0.97
year
Probability of success — 5 0.60 0.72 0.86
years

Excluded from the list is the traveling-wave tube. The unique life proper-
ties of the single traveling-wave tube in a nonredundant satellite warrant
special treatment. Also excluded are the solar cells which, as will be
discussed later, will probably fail through wear-out resulting from radia-
tion damage and thus cannot be treated with the statistics of equa-
tion (2).

The table shows three cases, each assuming somewhat different failure
rates for the components. For each case the table gives the failure rate f
assumed for the component, the product of the failure rate times the
number n of each component, the total sum > 7 (n,f.) and the average
failure rate. Also shown in the table is the probability of success of the
satellite, i.e., no failure of any component as calculated using (2), for
one-year operation and for five-year operation. It is seen that case 1
represents satisfactory performance for one year and poor performance
for five, while case 3 represents satisfactory performance for five years.
Case 2 is an intermediate case. Using some judgment as to the relative
values of failure rates for various components, the failure rates were
chosen in the three cases to give the above results. Thus the table shows
what level of component reliability is needed to meet a given systems
performance.

It must be emphasized that considerable caution is needed in the
interpretation of the results shown in Table I. Implicit in the calculations
are many assumptions, the validity of which could be questioned. The



COMPONENTS FOR SATELLITES 639

results should therefore be used as a guide to the order of magnitudes of
reliability required and should not be considered to be precise predictions
of systems performance. There are, nevertheless, a number of general
conclusions to be drawn from the table. The first is that although thisis a
fairly simple system — 1000 components — average failure rates in the
neighborhood of 10 per 10° component hours are required to give any-
thing approaching economical life. As seen from (2), the life expectancy
for a given probability of success varies inversely with the average
failure rate. Thus, an average failure rate in the neighborhood of 100
would be intolerable, while an average failure rate in the order of 1 would
permit increased design life and/or complexity. A second conclusion is
that all the components that are numerous, i.e., all the transistors,
diodes, resistors and capacitors, require an equally high order of reliabil-
ity. This conclusion results directly from forbidding redundancy for the
high-runner components. A final conclusion is that, at least for the more
reliable designs, the reliability of connections between components can-
not be ignored. ¥or the 1000 components of Table I there would be
several thousand connections and hence, in order that there be an in-
significant probability of a connection failure, they must have failure
rates substantially less than 1 per 10° hours. Although there is little
quantitative information regarding reliability of connections, it is
believed that those liable to fail are eliminated during the vibration,
temperature cycle, and vacuum tests normally carried out as part of the
acceptance test of a complete satellite.

III. RELIABILITY OF COMPONENTS

Fig. 1 shows a possible failure pattern for a batch of components.
Such a curve could be obtained by taking a large number of new compo-
nents of a specific type, operating them under typical conditions, and
plotting the failure rate versus time for the batch. The distribution has
two regions of relatively high failure rate, one early in life and attrib-
utable to “manufacturing freaks,” one later in life attributable to “wear-
out,” separated by a region of low failure rate labeled “random failure.”
These three regions will be discussed separately.

3.1 Wear-Out Failure

In some manufactured products there is a mechanism or a collection of
mechanisms which systematically reduces the useful performance of the
produet until a point is reached at which it has no further utility and is
“worn out.” Typical examples of wear-out mechanisms are friction of
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Fig. 1 — Possible failure distribution for a large number of new components.

bearings, corrosion of relay contacts, and deactivation of electron tube
cathodes. If, for a given batch of components, conditions were identical
during fabrication and use, then all components would fail in response
to wear-out simultaneously. However, because conditions are not
identical, simultancous failure does not oceur, and the failure distribution
is characterized by a peak of finite width. Region III in Fig. 1 shows the
onset of wear-out. Once wear-out failure commences, the failure rate of
the batch of components increases vary rapidly, and effectively all
components of that type must be replaced. In systems such as satellites,
where replacement is not possible, the time at which wear-out becomes
significant should be greater than the designed life of the satellite.
Lengthening of the time to wear-out can only be achieved by under-
standing the wear-out mechanisms and by designing the components
either to minimize or eliminate these effects.

3.2 Manufacturing Freak Failure

There is a certain percentage, preferably small, of any product that
fails unusually ecarly in life because of some defect in manufacture.
These are, in a sense, objects that were not made according to the design.
For example, such early failures can occur both in tubes and semicon-
ductor devices as a result of defective seals or of the presence of particles
inside the encapsulations. The prevalence of manufacturing freaks can
be reduced drastically by quality control in manufacture. Remaining
freaks can usually be detected and rejected by rigorous pre-aging tests,
such as leak tests, vibration and shock tests. In addition, the product can
be aged for a period longer than that corresponding to Region I, so that
the remaining freaks will fail during this “pre-age period.”
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3.3 Random Failure

LEven in a well designed and well manufactured product there may be
a substantial period, after that exhibiting high failure rate due to manu-
facturing freaks and before wear-out occurs, of a continuing failure
rate. These failures include components which, through presumably
detectable causes, fail in response to manufacturing weaknesses much
later than the majority of freaks, and others which fail through similar
causes to, but earlier than, the wear-out failures. The failures that occur
during this period may generally be attributable to a large number of
different causes, each of which occurs so rarely that it would be exorbi-
tantly expensive to identify all of them. This period is in essence the
useful life of the product. If the frequency of such failures is sufficiently
low, as indicated, these may be essentially below the noise level of
identification of mechanisms, and a random failure mechanism, and
hence a constant failure rate, may be assumed. Although there may be
considerable doubt as to the validity of this assumption for some com-
ponents, it has proved useful in the estimation of over-all systems relia-
bility.

Fig. 2 summarizes the steps that can be taken to cope with the vari-
ous modes of failure shown in Fig. 1. The region of high failure rate
corresponding to wear-out can be moved further out in time by design
based upon knowledge of the failure mechanisms. The number of devices
subject to early failure through manufacturing freaks can be reduced
by quality control, rejected after testing and annihilated by pre-aging.
Hence, provided sufficient care is taken, it is possible to obtain a prod-
uct which, during the intended life of the system, will exhibit substan-
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Fig. 2 — Summary of steps that can be taken to reduce failures of various
types.
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tially only a low failure rate corresponding to Region II. This failure
rate can be determined from the results of extensive life tests involving,
for the most reliable components, thousands of devices for thousands
of hours.

The low failure rate of Region II is that characteristic of the product.
Where reliability is of supreme importance, it is desirable to select
from the product as a whole those components that exhibit the greatest
degree of stability. This can be achieved by putting on life test a num-
ber of components many times that needed in the system, and after a
given length of time selecting from the batch only those components
which have shown the minimum change in their parameters. The dura-
tion of the life test prior to selection will depend upon a number of
factors, including the life required in the system and the system’s
schedule which, itself, frequently limits the life-test period. In the selec-
tion of submarine cable tubes, a period of seven months is used. Al-
though it is expected that the selected product will have a lower failure
rate than the batch from which it was selected, it is difficult, if not
impossible, to estimate the degree of this improvement. The consensus,
however, is that a factor of 10-100 improvement could be achicved.

In order to achieve the reliability potential of a carefully designed
and manufactured component, it is essential that the same care go into
the design and assembly of circuits and subsystems. Circuits must be
designed with adequate margins, and power dissipations must be deter-
mined so that temperatures do not reach values at which reliability of
the components is no longer adequate. Assembly procedures should be
arranged to avoid excessive mechanical or thermal shock. The conserva-
tive use of a component is thus an important part of the achievement
of reliability.

IV. RELIABILITY OF SPECIFIC COMPONENTS

The components that appear in large number in a typical satellite
and require reliabilities corresponding to 10 failures per 10° hours, in-
clude transistors, diodes, resistors and capacitors. Passive components,
resistors and capacitors, have for many years been available with relia-
bility in this range. However, until recently such low failure rates had
not been achieved in the active components. For this reason the discus-
sion in Section 4.1 below is restricted to transistors and diodes.

The traveling-wave tube used to generate the output power in most
communication satellite designs does not require the high degree of
statistical reliability called for in transistors and diodes. However, it is
required to operate without failure for a period much longer than the
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life of ordinary tubes and also to withstand severe mechanical stress
during launch. The expected performance of satellite tubes is discussed
in Section 4.2 below.

The solar cells, although as numerous as the transistors and diodes,
are expected to fail due to “wear-out’” from radiation damage. The ex-
pected life of these components is discussed in Section 4.3.

4.1 Transistors and Diodes

As indicated previously, the reliability of a component in the final
analysis is limited both by the design of the component and the care
with which it is manufactured. The attention to design and manufacture
is particularly important in the case of transistors and diodes which are
both delicate and particularly sensitive to contamination, yet are re-
quired to exhibit failure rates comparable to those of the more rugged,
passive components. Mechanical techniques have been developed
whereby small semiconductor wafers can be bonded to headers and
even smaller leads connected between the wafers and the headers, such
that the resulting structure will easily withstand the mechanical shock
and vibration experienced during the launch of a satellite and the tem-
perature cyeling that may be experienced while in orbit. Final cleaning
and sealing techniques have also been developed which insure a degree
of initial cleanliness and subsequent protection from outside contamina-
tion, such that adequate reliability for satellite applications can be
achieved.

Table II outlines the complete reliability testing program proposed
by Bell Laboratories for providing transistors and diodes for satellite
applications. The first step is to insure that the design itself has ade-
quate reliability potential. In order for a design to qualify for satellite
use, it must pass mechanical tests which represent conditions more
rugged than will be experienced during launch. The devices are further
subjected to electron and proton bombardment simulating many years
exposure to Van Allen radiation. Finally, devices are subjected to relia-
bility evaluation to determine the reliability potential of the design.

The second step, that of screening and pre-aging, is designed to elimi-
nate those few remaining freaks that were not eliminated by quality
control. These tests include mechanical shock and vibration tests to
eliminate weak components. In the reliability portion of these tests, a
sample from the particular manufacturing lot is tested at increasing
temperatures until all devices in the sample have failed. The median
temperature for failure and the distribution of failures with temperature,
when compared with similar figures for previous manufactured lots,
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TABLE II—RELIABILITY PROGRAM FOR SATELLITE TRANSISTORS
AND DIODES

1. Design Qualification Tests

Mechanical
Temperature cycling —65C to 4-85C
(—120C to +40C for blocking diodes)
Temperature-humidity cycling
Shock

) g
Centrifuge 5,000-10,000 g
Vibration 60g, 100-2,000 cycles
Radiation
Reliability

Accelerated aging
Life testing
Ficld expericence

2. Screening and Pre-aging

Mechanical
Centrifuge 2,000 g
Temperature-humidity cycle
Tap or shock
Reliability
Accelerated temperature sample
High-temperature aging

3. Life Test and Selection

Reliability
System simulation and selection

indicate whether or not there are major differences from previous lots.
In addition, all the devices that may be used in satellites are subjected
to a short period of high temperature aging. Since, as discussed later,
aging is accelerated by raising temperature, this pre-age eliminates
many devices that otherwise would have exhibited unusually early
failure.

The third step consists of choosing from the components that have
passed step two, a number many times greater than the number that
are finally to be used, and putting them on life test for six months under
power and temperature conditions simulating those anticipated in
operation. The duration of this test, which ideally should be a sub-
stantial fraction of the design life of the system, is frequently limited by
economic factors or by the time available prior to the system’s opera-
tion. During the life-test period, the characteristics of the components
are measured at frequent intervals. The components needed for the
system are chosen on the basis of their performance during the life-test
period. If proper choices have been made, the components used should
be ones which have shown no change in characteristics.
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Steps 2 and 3 in this program are intended to insure that the com-
ponents selected are truly representative of the design and do not in-
clude any freaks. Assuming these steps to be successful, the most sig-
nificant portion of the program in determining system performance is
the evaluation in step 1 of the reliability potential of the product. Since
the reliability required is in the neighborhood of a few failures per 10°
hours, this reliability evaluation can involve tens of thousands of com-
ponents for tens of thousands of hours. It is with the object of reducing
the numbers and times involved that considerable emphasis has been
put on the development of accelerated aging techniques.?+#:5 The results
of a typical accelerated aging experiment are shown in Fig. 3. Plotted
in the figure is the median life of a germanium transistor as a function
of the temperature at which the transistor is operated. The data shown
as solid points were obtained for some germanium transistors manu-
factured by the Western Electric Company in 1958. The temperatures
at which the transistors were tested range from 100°C to as high as
as 350°C, while the range in time to median failure is from about 20
minutes to just over 1 year, nearly 5 decades. The fact that the points
fit a straight line on a 1/7 versus log time plot suggests that raising
the temperature is accelerating some failure mode which can be charac-
terized by an activation energy. It has been found that within experi-
mental error, the apparent activation energy is the same for all ger-
manium transistors and, in addition, that there is a single but slightly
different activation energy for all silicon transistors and diodes. The
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Fig. 3 — Results of a typiecal accelerated aging experiment on germanium
transistors.
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Fig. 4 — Failure rate vs temperature for germanium transistors.

triangles in Fig. 3 are for transistors manufactured by the Western
Electric Company more recently. It is apparent that substantial im-
provements have been made at least in the high-temperature perform-
ance of the product. The data in Fig. 3 are for the median life. In per-
forming the accelerated aging experiments, one also obtains the dis-
tribution of failures in time for a given temperature or, alternatively,
in temperature for a given time. It is found that these distributions
have the same shape, i.e., log normal in time* and normal in tempera-
ture, for all transistors and diodes. The widths of the distributions do
not change with temperature for a given device type, that is, for fixed
design and manufacturing procedure. This uniformity of failure distribu-
tion gives further confidence that raising temperature is accelerating a
failure mode characteristic of the product.

Knowing the variation of median life with temperature and the dis-
tribution of failures in time for a fixed temperature, it is possible to
derive a more useful plot for the systems designer, that of failure rate
against temperature as shown in Fig. 4. The points are for the older
transistors from the previous figure. A straight line is observed in the
plot of 1/T against log failure rate. Extrapolating the line to room tem-
perature, one would predict a failure rate of 10 per 10° hours for these
transistors. The prediction of a failure rate of 10 per 10° hours from
the acceleration curve of Fig. 4 is, however, liable to be optimistic be-
cause there is no guarantee that the curve does not dip below the straight
line for times greater than the longest at which a measurement was
made. There is no guarantee that in raising the temperature we are

* This is an example of a component that in the region of low failure rate does
not exhibit the exponential failure distribution usually assumed.
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accelerating all the failure mechanisms or even a guarantee that we are
accelerating the most important failure mechanism at operating tem-
peratures. For example, although one might expect that raising the
temperature would increase the rate of reaction between the germanium
surface and any water vapor inside the transistor can, one has no rea-
son to suspect that elevated temperature would affect the occurrence
of a short-circuit caused by a metal chip falling between emitter and
base contact.

The accelerated aging curve, when extrapolated to room tempera-
ture, indicates the potential reliability of the design, and in the final
analysis one must depend upon laboratory tests or field experience
under operating conditions. The triangle on IFig. 4 shows the failure
rate observed in the field trial of a new system using about 40,000 of
these same transistors for about 10,000 hours. It is encouraging that
the failure rate is only a factor of about 2 higher than that predicted
from accelerated aging, and particularly so since the system failure
rate includes failures due to mishandling and is for devices which were
subjected to no special selection. It is therefore reasonable to estimate
that the failure rate for these older germanium transistors, when prop-
erly handled and selected in a manner proposed for satellite use, would
lie somewhere in the neighborhood of 10 to 20 per 10° hours.

The line through the squares in Tig. 4 is the accelerated aging curve
for the more recent Western Electric product. Note again that there is
a substantial improvement. The accelerated aging curve for recent sili-
con transistors and silicon diodes does not differ significantly from that
for germanium transistors. With such an improvement in the reliability
potential of the product, and with careful pre-aging and selection, one
is confident that failure rates substantially lower than 10 per 10° hours
are now achievable and that they may well be lower than 1 per 10°
hours. However, complete confirmation of this prediction will have to
await results of field trials.

The acceleration curves serve to emphasize the importance of con-
servative circuit design in the achievement of high reliability. It is seen
from the slope of the curves that failure rate increases very rapidly
with temperature. It is therefore important that power dissipation in the
device be maintained sufficiently low that temperature rise above am-
bient does not impair reliability. It is equally important that the am-
bient temperature be maintained at a suitably low value.

4.2 Traveling-Wave Tubes

Tig. 5 is a photograph of the traveling-wave amplifier under develop-
ment at Bell Telephone Laboratories for use in experimental communi-
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Fig. 5 — Traveling-wave amplifier under development for satellite use.

cation satellites. Table IIT lists the more important characteristics of
this tube. Before discussing the performance and reliability of the
M4041 satellite traveling-wave tube, a few words are in order on the
reasons for selecting traveling-wave tubes to provide the output power
in the satellite. It would appear that if a solid-state device could pro-
duce several watts at a few thousand megacycles, it would be, because
of its small weight and potential reliability, an obvious choice over the
traveling-wave tube. To date, however, schemes for generating power
at several thousand megacycles using solid-state devices — harmonic
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TasLe III—SareLuire Tuse CHaArAcTERISTICS M4041 (7/7/61)

Operating point 0 dbm input satu-
rated output

Output power (minimum) 3.5w
Gain (at saturation) 35.5 db
Gain (low level) 41 db
Anode voltage 1770 volts
Helix voltage i 1540 volts
Collector voltage 740 volts
Cathode current 17.0 ma
Cathode current density 85 ma/cm?
Collector power (includ- 12.5 w

ing helix and anode)
Heater power 1.6 w
Weight 7.1 1bs.

generators, for example — operate at efficiencies very much lower than
that of a traveling-wave tube, even when heater power is included. The
weight of the additional solar cells needed to provide power for the
solid-state device would more than offset the decrease in weight from
that of a traveling-wave tube. The weight penalty for extra power is
particularly severe for satellites subjeet to Van Allen radiation, where
account must be taken not only of the weight of the solar cells and
their mounting but also of the nccessary protective covers. The higher
gain of the traveling-wave tube gives it a distinct advantage over other
tubes such as triodes, which would require at least two stages and,
through consequent loss of efficiency, lead again to greater over-all
weight. The high efficiency of the traveling-wave tube results from the
distinct separation between the microwave interaction region and the
beam formation and collection regions. After the microwave interaction
takes place, the beam is allowed to enter a region of retarding field, where
the beam is slowed before collection. This is usually done by depressing
the collector voltage below that of the helix, as shown in Fig. 6. Since
very little current is intercepted on the helix and the anode, the input
power is very nearly proportional to the collector voltage. By depressing
the collector voltage, efficiencies as high as 39 per cent have been
achieved and 36 per cent is typical. When the power required by the
cathode heater is included, this value falls to typical value of 31 per
cent. A second effect of collector depression is that ions generated be-
tween the anode and the collector will flow to the collector and not to
the cathode. This results in a substantial decrease in the possible ion
current bombarding and consequently damaging the cathode.

The traveling-wave amplifier for a satellite must be a new design in
order optimally to meet the specific needs of the system. With any
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Fig. 6 — Traveling-wave tube circuit with depressed collector.

reasonable time scale, it is not possible to carry out a long-term evalua-
tion of tube life, nor is it possible to do shorter experiments on very
large numbers of models as is done with semiconductor devices. It is
therefore necessary from the viewpoint of reliability to employ a design
closely derived from experience gained with previous tubes and to
utilize a “pedigree” approach in the assembly process. These earlier
tubes include the pentodes used in telephone submarine cables,® the
traveling-wave tubes used for microwave transmission at 6 kme’ and
the rocket-borne traveling-wave tube used in a Bell Telephone Labora-
tories missile guidance system.® The salient features of these tubes are
discussed in the next few paragraphs.

The submarine cable tube, the 175HQ, was the first tube designed
to meet long-life reliability requirements somewhat similar to those
encountered in satellite work. The failure pattern for this tube was
found to agree with that shown in Tig. 1. The dominant wear-out
mechanism in this case was determined to be the deactivation of the
cathode, an effect which increases rapidly with increasing cathode tem-
perature. Design information was developed which permitted the choice
of a cathode temperature low enough to insure the desired life of the
tube. The techniques of quality control to eliminate manufacturing
freaks, and of life test and selection to insure the minimum random
failure rate, were used extensively on this tube. As a result, the tubes
that have been manufactured and put into operation in submarine
cables easily meet the systems requirements. For example, Tig. 7 shows
the accumulated tube life of the tubes in operation to date in submarine
cables. There are now over 1600 tubes in such operation, some for as
long as five years, with an accumulated life of 49 million tube-hours and
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no failures. It is on the basis of this evidence that it is believed possible
to make long-life tubes and, in particular, to eliminate failure due to
cathode deactivation.

The second tube of interest is a 6 kme traveling-wave tube used as a
ground-based microwave repeater, the M1789, now the WECo 444A.
This traveling-wave tube was the first designed by Bell Telephone
Laboratories specifically for long life, and it used many of the design
principles and many of the selection techniques developed for sub-
marine cable tubes. This tube also was designed to operate with a de-
pressed collector. A little over four years ago, twelve of these tubes
were placed on life test at their normal operating power of 5 watts.
Table IV shows the accumulated hours on each of these tubes as of
May, 1961, at which time there had been no tube failures. On the basis
of this experience and the fact that the satellite traveling-wave tube
has been designed to have a substantially lower cathode loading and
cathode temperature than the 6 kme tube, the satellite tube has an
expectation of a life considerably in excess of four years.

The third tube is a traveling-wave tube designed to operate in the
Bell Telephone Laboratories Command Guidance System, the M1958,
now the 7116. In this system, the rocket to be guided contains a re-
ceiver, decoder and transmitter. There is a component count approxi-
mating 1000, including one traveling-wave tube. This system has been
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- TABLE IV—M1789 TrRAVELING-WAVE TuBgE LiFe TEsT

Tube Number Accum;x/l:il;g(il Hours
BC-856 39502
BC-1342 39630
BC-1363 39319
BD-14 39256
BD-660 39401
BH-69 39256
BH-208 33994
BH-413 37813
BH-464 36840
BH-559 35394
BS-41 36615
BS-102 34352

used in the guidance for about one-third of the U.S. satellites now in
orbit. It was used, for example, with Echo I and with the three Tiros
satellites. There have been to date over fifty successive firings using
this guidance package with no failure. Since the guidance system needs
only to operate for a few minutes, it gives us little information on long
term reliability. However, since it not only must survive launch but
must also operate during launch, this performance is a very potent
demonstration that traveling-wave tubes can be made rugged enough
to withstand the strains of launch. It further demonstrates that an
electronic system containing roughly the number and kind of compo-
nents needed in an active satellite can also survive launch.

To summarize, then, it is known from experience with the submarine
cable tube and with the microwave relay tube that traveling-wave
tubes can be designed with a life expectancy considerably in excess of
four years. The performance of the guidance tube demonstrates that
techniques are available for making a traveling-wave tube sufficiently
rugged to withstand launch.

4.3 Solar Cells

Communication satellite designs for the immediate future rely on
silicon solar cells as the prime source of power. These cells will be sub-
ject to radiation in the Van Allen belt,® which consists of electrons with
substantial densities at energies up to 1 mev and protons at energies
as high as 100 mev. Fig. 8 is a map of the Van Allen belt on a plane con-
taining the earth’s magnetic axis. There is a peak in the electron intensity
at an altitude of about 2000 miles, and a second peak at about 10,000
miles with a substantial density of electrons at intermediate altitudes.
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Fig. 8 — Map of Van Allen radiation belt in plane through earth’s axis.

The protons, which are much less numerous, have a distribution which
also peaks at around 2000 miles and falls off in some undetermined
manner to negligible values beyond 10,000 miles. Bombardment of
solar cells with particles of such energy results in a continual decrease
of power output with time, at such a rate that this degradation could
result in the failure of the power supply within the desired life of the
satellite. Here then is an example of probable failure due to wear-out,
in which case it is particularly important both to understand the mecha-
nism of wear-out and to design the devices to minimize the effect. In
this section, we discuss the effects of Van Allen belt radiation on solar
cells, the means of designing cells to minimize the effects, and the pre-
dicted performance of such specially designed cells.
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As shown in Fig. 9, a solar cell typically consists of a slice of n-type
silicon with a thin p-type layer on one surface and contacts made to
both surfaces. When light falls on the p-type surface, the photons pene-
trate the silicon to depths dependent upon their wavelengths and are
absorbed with the creation of free carriers, hole-electron pairs, in the
silicon. The free carriers created in response to the longer wavelength
light are created deeper in the material. Some of the carriers move to
the junction, and in crossing the junction create a current flow in the
external circuit. Thus an illuminated solar cell is a source of electric
power and has a voltage-current characteristic typically as shown in
the figure.

In discussing the optimum design of solar cells, it is convenient to
divide the generated carriers into two classes, namely those that are
generated in the body of the material beneath the pn junction, and
those that are generated in the surface layer above the pn junction.
Those generated beneath the junction will reach it only if they are
generated within a distance called the diffusion length, that is, the
distance that generated carriers may move in the material before being
annihilated by recombination. The diffusion length is a property of a

7

V —>

Fig. 9 — Solar cell construction and typical voltage-current characteristic.
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particular material and depends eritically upon its perfection and purity.
For a solar cell to have the maximum efficiency, this diffusion length
should be as long as possible in order that effectively all carriers gen-
erated beneath the junction may reach the junction and contribute to
the output current. A somewhat different situation exists for the carriers
generated in the surface layer. This layer is usually quite thin compared
to a diffusion length. However, the surface of the semiconductor acts
as a sink for carriers and thus competes with the junction for carrier
collection. The net result is that the efficiency for collection of carriers
generated above the junction is less than that for carriers generated
below the junction. It is therefore desirable to minimize the thickness of
the surface layer.

The perfect solar cell therefore would have a zero thickness of surface
layer and an infinite diffusion length. A zero thickness surface layer,
however, would lead to infinite series resistance. Obviously a compro-
mise is necessary. IFFig. 10 shows the distribution of carriers generated
in silicon in response to sunlight. The plot gives the percentage of car-
riers generated beyond the value of the abscissa. It is seen that about
75 per cent of the carriers are generated below 1 micron depth, and
that for a junction depth about 1 micron, essentially all the carriers
are generated below the junction.

When high-energy electrons or high-energy protons are incident on a
silicon solar cell, they create local disorder in the crystal which results
in a steady decrease of diffusion length with time. A simple theory for
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Fig. 10 — Distribution of free carriers generated in silicon in response to sun-
light.
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the degradation of diffusion length predicts that the diffusion length L
should depend on the total flux ® of electrons or protons according to
the equation:

1 1

ot L + K& (3)
where Ly is the value of the diffusion length before irradiation and K is
a constant for a given energy of particle and for a given semiconductor.
Hence, for large enough radiation fluxes, the diffusion length is in-
versely proportional to the square root of the flux. Fig. 11 shows a plot
of diffusion length versus flux of 1 mev electrons. The experimental
points were obtained by measuring the diffusion length in silicon after
successive exposure to 1 mev electrons from a Van de Graaff generator.
The line on Fig. 11 is a two-parameter fit of (3) to the experimental
data. Similar results are obtained for proton bombardment.

As the diffusion length in a solar cell decreases with exposure to
radiation, fewer and fewer of the carriers generated deep in the silicon
are collected at the junction. Thus, the power output of the solar cell
decreases. Since, as pointed out earlier, the depth of generation increases
with the wavelength of light, the solar cell degrades initially by loss of
response to the longer wavelength, i.e., the red light. This fact has a
number of implications for the design of solar cells for use in the Van
Allen belt. Firstly, since it is the blue response that is likely to be main-
tained, and this response involves the carriers generated closest to the
surface, it is most important for satellite solar cells that the junction
depth be minimized. Sceondly, it is important that any” antireflective
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Fig. 11 — Diffusion length vs flux of 1 mev electrons.
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coating be optimized for blue light, not for red. Initial good response to
red light, which calls for long diffusion length, becomes of lesser im-
portance.

It has been found by several investigators that the decrease of diffu-
sion length in response to electron and proton bombardment is less
rapid in p-type silicon than it is in n-type silicon.1® IFor this reason, cells
for satellite use are preferably made with a thin n-skin on a p-type
body rather than the other way around. Ifig. 12 is a schematic diagram
of a solar cell designed at Bell Telephone Laboratories and incorporat-
ing the features just discussed.' It is made on a p-type silicon body
with an n-layer 1 micron thick. In order to produce such a thin layer
with good properties, it is necessary to minimize surface damage. FFor
this reason the surface used is given an optical polish. Such a thin layer
tends to have high sheet resistance and calls for many contact fingers
to minimize the effect of series resistance. I'inally, the cell is given an
antireflection coating of thickness designed to optimize the response to
blue light.

Having designed a cell to minimize the effects of radiation damage,
it is then necessary to consider what, if anything, can be done to shield
the cells from the radiation. In the case of electrons, substantially all of
which have energies of less than 1 mev, such shielding is practical using
materials like quartz or sapphire. I'ig. 13 shows the measured degrada-
tion of the short-circuit current of variously shielded solar cells after
electron bombardment corresponding to increasing time in the Van
Allen belt. The shield thicknesses are represented as g/cm?. It is seen
that over the range for which the measurements were made — which
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Fig. 12 — Structure of Bell Laboratories solar cell for satellite use.
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Fig. 13 — Solar cells with various shielding: measured degradation of short-
circult current after electron bombardment.

was equivalent to two years in the Van Allen belt — the effect of elec-
trons was eliminated by the use of 0.3 g/cm? of shielding. Shielding of
protons, which are much more energetic, would require intolerable
weights of material. However, the 0.3 g/em?, which eliminates the elec-
tron damage, does provide some reduction in the proton damage.

Tig. 14 is a plot of the anticipated power output of the solar cells
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Fig. 14 — Anticipated power output of solar cells as function of time in Van
Allen belt; with present data, error factor may be as great as 3 in time.
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shown in Tig. 12 as a function of months in the heart of the Van Allen
belt. The curves were obtained by estimating the densities and energy
distributions of electrons and protons in the Van Allen belt and subject-
ing the cells to electron and proton bombardments simulating Van Allen
conditions. There may be considerable errors in the estimation of Van
Allen radiation and, as a result, the time to a given degradation may
well be in error by a factor as great as 3. It should further be noted
that the curves have been calculated for the case of a satellite that
spends all its time in the Van Allen belt, and this is certainly pessimistic.
A satellite in a circular polar orbit, for example, would spend approxi-
mately % of the time in the Van Allen belt.

The most significant feature of the curves in Fig. 14 is that the plot
of power output per solar cell versus log time is approximately linear
after initial degradation. This dependence is consistent with the antici-
pated variation of diffusion length with flux, Tig. 11, and the distribu-
tion of carriers generated in the silicon, Fig. 10. The degradation with
time becomes progressively less severe at longer times. Thus, for the
case of 0.3 g/ecm? protection, the output after 10 months has dropped
from an initial value of 24 mw to about 16 mw while at the end of 100
months it has dropped further only to 11 mw. This additional decrease
in power output for a factor of 10 increase in time could be compen-
sated for by a 50 per cent increase in the number of solar cells. It appears
then that provided there has been no gross underestimate of the nature
and effeet of the Van Allen belt radiation, solar cell power can be pro-
vided for a design life of five years and that the design life could be in-
creased without excessive penalty. The curves also illustrate the design
choices that can be made in selecting the mass of front protection. It
is seen that for a given power output per cell, a factor of 3 increase in
weight of protection yields about a factor of 5 improvement in life.
However, the same improved life for a given power output could be
achieved by retaining the lighter front protection but increasing the
number of cells by 30 per cent. Just which is the best design of front
protection thickness will depend on the particular satellite under con-
sideration. For the case of the experimental satellite being designed at
Bell Telephone Laboratories, a front protection consisting of 0.3 g/cm?
of sapphire was found to be the best choice. Fig. 15 is a photograph of
some solar cell modules with and without the sapphire protection.

The solar cell is yet another example of a component which can give
adequate life performance only if the component is properly designed
and used conservatively. In this case, conservative use involves paying
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Fig. 15 — Photograph of solar cells, without protection (center) and with
sapphire shields.

the weight penalty of sufficient radiation protection and increasing the
number of solar cells to allow for some inevitable loss of power output
per cell in response to radiation.

V. CONCLUSIONS

Returning to Table I, it is scen that the failure rate of 20 per 10°
hours chosen for transistors in case I is probably a conservative figure.
This degree of reliability has already been observed in the field on older
devices that did not have the benefit of more recent design improve-
ments and that were not life tested, selected and carefully handled as de-
vices would be for satellite use. With proper selection and handling
care, these older devices would almost certainly meet the requirements
for case II and possibly for case II1. The results of accelerated aging of
the newer product lead to predictions of at least one order of magnitude
improvement in transistor reliability. Assuming that at least some of
this improvement will be realized under operating conditions, one ex-
pects that transistor performance is adequate for case ITI. The relia-
bility of diodes, which approximates that for transistors, is similarly
adequate for case III. Should transistor and diode failure rates indeed
turn out to be in the region of one per 10° hours, then more complex
satellites could be designed with life expectancy much longer than five
years.
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It further appears that traveling-wave tubes can be made that will
survive launch and should not limit the life in orbit. Finally, even under
the most pessimistic assumptions as to the nature of the Van Allen
belt, solar cell power plants can be provided, at a weight penalty, to
meet the required life. More precise design of solar cell power supplies
will only be possible when more precise and extensive data are availa-
ble on the nature of the Van Allen belt.

Adequately reliable communication satellites can therefore be made,
provided they incorporate components of proven integrity which are
used in a conservative design. The use of components of proven in-
tegrity involves expense for high-quality design, careful manufacture
and painstaking selection. The use of such components does not permit
the performance advantages that might be gained with use of develop-
mental components. In the final analysis, conservative design leads to
more weight per given function. Typical examples are the increased
weight of a rugged traveling-wave tube, the weight of solar cell protec-
tive covers, the weight of additional solar cells to allow for the inevitable
degradation in the Van Allen belt, and the additional weight of cir-
cuitry designed with ample margins.

Hence, limitations of weight in orbit and requirements of long life in
orbit both result in a limit on the complexity of the satellite. Communi-
cation satellites in the immediate future must be simple. As higher com-
ponent reliability is demonstrated and as improved vehicles permit
greater payloads, so can the complexity of the satellites increase.
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Automatic Stereoscopic Presentation of
Functions of Two Variables
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Spatial models of functions of two variables are often a valuable research
tool. Nomograms and artistic relief drawings in two dimensions are diffi-
cult to prepare and stell lack the direct impact of a spatial object. It has been
demonstrated (see Ref. 2) that objects with a randomly dotted surface permat
the determination of binocular parallax and, thus, can be seen in depth even
though they are devord of all other depth cues. This rand