It

1

Z

=AMLY
DESIGN
HANDBOOK

/8

ST 1989

AUGU

- EAYAI(8S;

Z8® Family
Design Handbook

) lNTRODUCTION

Zilog was founded in 1974, and within its first year
brought to market the most popular and best selling
microprocessor in the world, the Z80 8-bit
microprocessor.

With the unparalleled success of the Z80 CPU, the
name Zilog became synonomous with quality, design
integrity, and complete company support elements that .
remam integral to Zilog today.

Headquartered in Campbell, California, Zilog draws
upon the services and skills of the most talented high
technology minds in the industry. Zilog’s Nampa, Idaho
manufacturing facility, and assembly plant in the
Philippines are the best of their size today. They provide
Zilog customers with a total solution, from engineering,
to production, to worldwide on-time delivery of the
growing family of Zilog microprocessor and peripheral
products.

Z8 Family Design Handbook
Table of Contents

Z8 NMOS MCU Microcomputers Page
78600 MCU 2K 28-pin 1
28601/11 _ MCU 2K/4K

78603/13 MCU Protopak 2K/4K : 13
Z8671 MCU with Basic/Debug Interpreter 30
78681/82 MCU ROMiless 50
28691 MCU ROMless 71

Z8 CMOS MCU Microcomputers

Z86C08 MCU 2K 18-pin 89
Z86C00/C10/C20 MCU 4K/8K 28-pin 105
Z86C11 MCU 4K) 117
286C21/C12 MCU 8K ‘ 134
Z86E21 MCU 8K OTP 134
786C27 Digital Television Controller 155

Z86C91 MCU ROMless : 179

Z8 Application Notes and Technical Articles

Memory Space and Register Organization App Note 200
A Programmer’s Guide to the Z8 MCU 202
Z8 Subroutine Library) 227
A Comparison of MCU Units 277
Z86xx Interrupt Request Registers 291
78 Family Framing " 292
Z8 MCU Technical Manual) 295

Super8 MCU Microcomputer

Z8800/01 MCU ROMiess ‘ 431
78820 MCU 8K 43
28822 MCU 8K Protopak : 431

Super8 Application Notes and Technical Articles

Getting Started with the Zilog Super8 ., 463
Polled Asynchronous Serial Operation with the Super8 467
Using the Super8 Interrupt Driven Communications 473
Using the Super8 Serial Port with DMA ' . 479
Generating Sine Waves with Super8 : ‘ 485
Generating DTMF Tones with Super8 491

A Simple Serial Parallel Converter Using the Super8 495

Super8 Technical Manual

503

Military Electrical Specifications

Z8611 MCU 4K 637

78681 MCU ROMless 661

- Packaging Information 673
681

Ordering Information

Product Specification

28600 Z8°

Microcomputer

August 1989

FEATURES
] Compiete microcomputer, 2K bytes of ROM, 128 bytes of
RAM, and 22 1/0 lines.

m 144-byte register file, including 124 general-purpose
registers, four I/O port registers, and 14 status and
control registers.

W Vectored, priority interrupts for I/O and counter/timers.

® Two programmable 8-bit counter/timers, each with a 6-bit
programmable prescaler.

m Register Pointer so that short, fast instructions can
access any one of the nine working register groups.

m On-chip oscillator that accepts crystal or external
clock drive. .

m 8MHz

Single + 5 power supply—all pins TTL-compatible.

B Average instruction execution time of 2.2 ps,
maximum 1.5 ps. ’

GENERAL DESCRIPTION

The Z8600 microcomputer introduces a new level of
sophistication to single-chip architecture. Compared to
earlier single-chip microcomputers, the Z8600 offers: '

W faster execution
® more efficient use of memory

m more sophisticated interrupt, input/output, and bit
manipulation capabilities

TIMAI:CDE { —»| RESET +5V [
<«—]1DS XTAL1 |
CONTROL CLOCK
<> POy XTAL2 [—>
POy P34 je—
PORTO { +>|P02 P35 |—» ; PORT3
i P3g —>
P% 28600 ©
<«>|P0; MCU P1g >)
<> P05 P1y >
| P24 P12 j>
| P2; P13 j>
. PORT 1
PORT 2 <] P2; P1; >
: | P2, P15 |
| P25 Plg |
<—»| GND P17 jt>

Figure 1. Pin Functions

W easier system expansion

Under program control, the MCU can be tailored to the
needs of its user. It can be configured as a stand-alone
microcomputer with 2K bytes of internal ROM. In all
configurations, a large number of pins remain available for
1/0.

The MCU is offered in a 28 pin Dual-In-Line-Package (DIP)
(Figures 1 and 2).

+sv 1 28 [} p3,
xtaLz [2 27 [s, .
xmaLt [3 26 []p2g
reser [4 25 (2,
s[5 . 28 e,
pas o 28800 23 e,
eno [7 22 []p2,
Pop [8 21 [p1,
po,] o 20 [P1e
po,] 10 19 [Jp1s
Pog [11 18 []P1,
po, [12 17 [P15
Pos] 13 16 [JP1, .
P1o [14 15 []P1y

" Figure 2. Pin Assignments

PIN. DESCRIPTIONS

DS. Data Strobe (output active Low). Data Strobe is
activated once for each memory transfer. :

P0o-P05, P1y-P17, P24-P2;5, P34, P35, P3¢. //O Port lines
(bidirectional, TTL-compatible). These 22 /O lines are
grouped in four ports that can be configured under ‘program
control for I/0.

RESET. Reset (inp@t, active Low). RESET initializes the
MCU. When RESET is deactivated, program execution
begins from internal program location 000Cy.

XTAI:1, XTAL2. Crystal 1, Crystal 2 (time-base input and
output). These pins connect ‘a parallel-resonant 8 MHz
crystal to the on-chip clock oscillator and buffer.

ARCHITECTURE

The MCU’s architecture is characterized by a flexible I/O
scheme, an efficient register and address space structure,
and a number of ancillary features that are helpful in many.
applications. (Figure 3).

Microcomputer applications demand powerful 1/O
capabilities. The MCU fulfills this with 22 pins-dedicated to
input and output. These lines are grouped in four ports and
are configurable under software control to provide timing,
status signals, and parallel I/0.

OUTPUT INPUT

it b

Vcc GND

Two basic internal address spaces are available to support
this wide range of configurations: program memory-and the
register file. The 144-byte random-access register file is
composed of 124 general-purpose registers, four 1/0O port
registers, and 14 control and status registers.

To unburden the program from coping with real-time
problems such as counting/timing, two counter/timers with
a large number of user-selectable modes are offered
on-chip.

XTAL DS RESET,

ot |

MACHINE TIMING AND
PORT3 <— INSTRUCTION CONTROL
COUNTER/ o
1
PROGRAM
FLAGS MEMORY
INTERRUPT 2048 x 8-BIT
CONTROL REGISTER {}
POINTER]
REGISTER FILE —] PROGRAM
124 x 8-BIT 1 COUNTER

<>

{r

PORT 2

PORT 0

PORT 1

ik

110
(BIT PROGRAMMABLE)

vy

. (BYTE PROGHAMMABLE)

Figure 3. Functional Block Diagram

\

ADDRESS SPACES -

Program Memory. The 16-bit program counter addresses
2K bytes of program memory space as shown in Figure 4.

The first 12 bytes of program memory are reserved for the
interrupt vectors. These locations contain three 16-bit
vectors that correspond to the three available interrupts.

Register File. The 144-byte register file includes four 1/0O
port registers (Ro-R3), 124 general-purpose registers
(R4-R127) and 14 control and status registers (Ro41-Rass).
These registers are assigned the address locations shown in
Figure 5.

Instructions can access registers directly or indirectly with
an 8-bit address field. The MCU also allows short 4-bit
register addressing using the Register Pointer (one of the
control registers). In the 4-bit mode, the register file is
divided into nine working-register groups, each occupying
16 contiguous locations (Figure 6). The Register Pointer
addresses the starting location of the active working-register
group.

Stacks. An 8-bit Stack Pointer (Ross) is used for the internal
stack that resides within the 124 general-purpose registers

(R4-Ry27).

2047
: ON-CHIP
LOCATION OF ROM
FIRST BYTE gF
INSTRUCTION
EXECUTED N ——— — — —— — — — —
AFTERRESET 12\
11 IRQ5
10 IRQ5
9 IRQ4
R 8 IRQ4
INTERRUPT 7 RESERVED
: consh v~ RESEeD
)3 IRQ2
4
INTERRUPT 1Ra2
VECTOR-” 3 RESERVED
(UPPERBYTE) RESERVED
1 RESERVED
] RESERVED
Figure 4. Program Memory Map
LOCATION IDENTIFIERS
255 STACK POINTER (BITS 7-0) SPL
254 RESERVED L _ ! wrweesn | o000 Jas
253 REGISTER POINTER RP
252 PROGRAM CONTROL FLAGS FLAGS
251 INTERRUPT MASK REGISTER IMR THE UPPER NIBBLE OF THE REGISTER FILE ADDRESS
; >—— PROVIDED BY THE REGISTER POINTER SPECIFIES
250 INTERRUPT REQUEST REGISTER IRQ e ACTIVE WORKING. REGISTER GROUR.
29 INTERRUPT PRIORITY REGISTER IPR -
* 248 PORTS 0-1 MODE POIM 127
247 PORT 3 MODE P3M =
246 PORT 2 MODE P2M
245 TO PRESCALER PREO
244 TIMER/COUNTER 0 To =
243 T1 PRESCALER PRE1
242 TIMERICOUNTER 1 T
241 TIMER MODE ~TMR >
NOT .
IMPLEMENTED - THE LOWER
NIBBLE OF
THE REGISTER
127 . FILE ADDRESS
e B
THE INSTRUCTION
POINTS TO THE
' SPECIFIED
GENERAL-PURPOSE . REGISTER.
REGISTERS
4 = — =
3 PORT 3 P3 15
2 PORT 2 P2
N e — = P
1 PORT 1 P1 Yo PORTS 3
0 PORT 0 PO

Figure 5. Regisier File

k Figure 6. Register Pointer

COUNTER/TIMERS

The MCU contains two 8-bit programmable counter/timers
(To and Ty), each driven by its own 6-bit programmable
prescaler. The T4 prescaler can be driven by internal or

* external clock sources; however, the Ty prescaler is driven
by the internal clock only.

The 6-bit prescalers can divide the input frequency of the
clock source by any number from 1 to 64. Each prescaler
drives its counter, which decrements the value (1 to 256) that
has been loaded into the counter. When the counter reaches

the end of count, a timer interrupt request—IRQ4 (To) or

IRQs (T1)—is generated.

The counters can be started, stopped, restarted to continue,
or restarted from the'initial value. The counters can also be
programmed to stop upon reaching zero (single-pass

mode) or to .automatically reload the initial value and
continue counting (modulo-n continuous mode). The
counters, but not the prescalers, can be read any time
without disturbing their value or count mode.

The clock source for Ty is user-definable and can be the
internal microprocessor clock (4 MHz maximum) divided by
four, or an external signal input via Port 3. The Timer Mode
register configures the external timer input as an external
clock (1 MHz maximum), a trigger input that can be

" retriggerable or non-retriggerable, or as a gate input for the

internal clock. The counter/timers can be programmably
cascaded by connecting the Tg output to the input of Ty.
Port 3 line P3g also serves as a timer output (ToyT) through
which Tg, T1 or the internal clock can be output.

I/0 PORTS /
The MCU has 22 lines dedicated to input and output
grouped in four ports. Under software control, the ports can
be programmed to provide address outputs, timing, status
signals, and parallel I/0. All ports have active pull-ups and
pull-downs compatible with TTL loads.

Port O can be programmed as an |/O port.

Port 1 can be programmed as a byte I/O port.

Port 2 can be programmed independently as input or
output and is always available for I/O operations. In addition,
Port 2 can be configured to provide open-drain outputs.

Port 3 can be configured as I/O or control lines. P34 is a
general purpose input or can be used for an external
interrupt request signal (IRQy). P35 and P3g are general
purpose outputs. P3g is also used for timer input (Tyy) and
output (Toyr) signals. .

INTERRUPTS

The MCU allows three different interrupts from three
sources, the Port 3 line P34 and the two counter/timers.
These interrupts are both maskable and prioritized. The
Interrupt Mask register globally or individually enables or
disables the three interrupt requests. When more than one
interrupt is pending, priorities are resolved by a
programmable priority encoder that is controlled by the
Interrupt Priority register.

All interrupts are vectored. When an interrupt request is
granted, aninterrupt machine cycle is entered. This disables

all subsequent interrupts, saves the Program Counter and
status flags, and branches to the program memory vector
locations reserved for that interrupt. This memory location
and the next byte contain the 16-bit address of the interrupt
service routine for that particular interrupt request.

Polled interrupt systems are also supported. To accom-
modate a polled structure, any or all of the interrupt inputs
can be masked and the Interrupt Request register polled to
determine which of the interrupt requests needs service.

CLOCK

The on-chip oscillator has a high-gain parallel-resonant
amplifier for connection to a crystal or to any suitable
external clock source (XTAL1 = Input, XTAL2. = Qutput).

Crystal source is connected across XTAL1 and XTAL2 using
the recommended capacitors (C1 < 15 pf) from each pin to
ground. The specifications are as follows:

B AT cut, parallel resonant

‘m Fundamental type, 8 MHz maximum

m Series resistance, Rs < 100Q

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to
describe the addressing modes and instruction operations
“as shown in the instruction summary.

Assignment of a value is indicated by the symbol “<". For
example,

dst < dst + src

IRR Inanect register pair or indirect working-register indicates that the source data is added to the destination
pair address d) . A .
. . .) ata and the result is stored in the destination location. The
Irr Indirect working-register pair only notation “addr(n)” is used to refer to bit “n” of a given
X . Indexed address location. For example
DA Direct address - ’ ’
RA Relative address dst(7)
:,I(VI :;;rgzgrager working-register address refers to bit 7 of the destination operand.
r Working-register address only Flags. Control Register R252 contains the following six
IR Indirect-register or indirect working-register flags: ‘
address Cc Carry flag
Ir Indi(ect wor'king-regi.ster adc}ress oply z Zero flag
RR E Register pair or working register pair address s Sign flag
Symbols. The following symbols are used in describing the v Overflow flag)
instruction set. D Decimal-adjust flag
dst Destination location or contents H Half-carry flag
src Source location or contents Affected flags are indicated by:
cc COI’:IdItIOﬂ code (see !lSt) 0 Cleared to zero
@ Indirect a}ddress prefix) 1 Setto one
SP -Stack pointer (control registers 254-255) . Set or cleared according to operation
PC Program counter _ Unaffected
FLAGS Flag register (control register 252) X . Undefined
RP Register pointer (control register 253)
IMR Interrupt mask register (control register 251)
CONDITION CODES
Value Mnemonic Meaning Flags Set
1000 Always true —
0111 C Carry C=1
1111 NC No carry C=0
0110 4 Zero Z=1
1110 NZ Not zero Z=0
1101 PL Plus S=0
0101 MI Minus S=1
0100 ov Overflow V=1
1100 NOV No overflow V=0
0110 EQ Equal Z=1
1110 ~ NE Not equal Z=0
1001 GE Greater than or equal (SXORV) =0
0001 LT Lessthan (SXORV) =1
1010 . GT Greater than [ZOR(SXORV)] = 0
0010 LE Less than or equal [ZOR(SXOR V)] =1
1111 UGE Unsigned greater than or equal C=0
0111 uLT Unsigned less than C=1
1011 UGT Unsigned greater than (C=0ANDZ=0)=1
0011 ULE Unsigned less than or equal (CORZ) =1
0000 Never true —

INSTRUCTION FORMATS

j

OPC | MODE

dstisrc

] or [11 1 o] dstisrc

1

opPC

dst

JorR [1110] dst |

VALUE

dstisrc

b

j

dstisrc | OPC

sreidst | OR [1110] src |

CCF, D, EI, IRET, NOP,
- RCF, RET, SCF
wer
One-Byte Instructions
ﬁéﬁ‘vffh’c"‘.‘.’qgicb op OPC_| MODE) ADC, ADD, AND, CP,
A , POP, LD, OR, SBC, SUB,
PUSH, RL, RLC, RR, sre or 1110l s | 72 T XoR
RRC, SRA, SWAP dst OR[1110] dst |)
JP, CALL (Indirect)
OPC_| MODE ADC, ADD, AND, CP,
‘ dst or [i110o] dst] 42,0 SEC SUB.
. VALUE
MODE | OPC) LD
src orR[1110] sc |
ADC, ADD, AND,
CP, OR, SBC, SUB, dst OR[1110] ast |
TCM, TM, XOR
MODE | OPC Lo
LD, LDC, LDCI dstisrc X
ADDRESS
Lo cc_ | OPC P
DA,
DA,
LD]
OPC CALL
DAy
DINZ, JR DA,

Two-Byte Instructions

Three-Byte Instructions

Figure 7. Instruction Formats

INSTRUCTION SUMMARY

Addr Mode Opcode Flags Affected Addr Mode Opcode Flags Affected
Instruction ——— Byte ——m Instruction Byte ——
and Operation dst src (Hex) CZ S VDH and Operation dst src (Hex) CZSVDH
ADC dst,src (Note 1) 10 * % % * 0 » CPdstsrc (Note 1) ALl % % % * — —
dst<dst+sc+C © dst-src
ADD dst,src (Note 1) od * k% %k 0 % DA dst R 40 * ok x X ——
dst < dst + src dst < DA dst IR 41
AND dst,src (Note 1) 50 — % * 0 — — DEC dst R 00 — %k ok — —
dst < dst AND src dst<dst — 1 IR 01
CALL dst DA D6 —————— DECW dst RR 80 — %k ke — —
SP<SP -2 IRR D4 dst<dst — 1 IR 81
@SP « PC; PC < dst DI
CCF EF % ————— IMR (7)< 0 8F @ ——————
c-nore DJNZ rdst RA A ——————
CLR dst R BO —————— rer-1 r=0-F
dst< 0 R B1 ifr#0
COM Gt R 60 —wwo-_— _FO-PCLas
dst < NOT dst IR 61 9e: :

INSTRUCTION SUMMARY (Continued)

- AddrMode Opcode Flags Affected ' Addr Mode Opcode Flags Affected
Instruction —— Byte —mm Instruction —— Byte ——mMmm
and Operation dst src (Hex) 'C Z S VDH and Operation dst src (Hex) CZ S VDH
El F —————— "RLdst _—— R N www ok ——
IMR (7) < 1 IR 91
INC dist r £ —%%%x—— RLCdt———R 10 ke k ok ok — —
dst < dst + 1 ' r=0-F [R 11 '
R 20
RR dst R EO * ok k ok — —
IR 21 <] H R E1
INCW dst RR A0 —* k k— —
RRC dst R Cco * k kK — —
dst < dst + 1 IR Al . —
S St [IR Cc1
IRET BF
FEEEES SBC dst,src (Note 1) 30 * Kk ko x 1 *

FLAGS < @SP; SP <SP + 1

PC < @SP; SP <SP + 2 IMR(7) « 1 dst+dst+src«C
JP cc,dst DA D ————— g‘fﬂ bF 1 =====
if ccis true c=0-F ' i :
- SRA dst R DO 0 ——
PC < dst IRR 30 S |..-’ |R i * * *
JRce,dst RA B - _
if ccistrue, c=0-F SRP src m 31 -
PC < PC + dst RP < src :
Range: +127, —128 ' SUB dst,src (Note 1) 20 * ok k k1 %
LD dst,src r Im —————— dst < dst < src
dst < src r R 8
1 I
R ; 9 SWAP dst 5 R \ FO X * % X
r=0-F 1} IR F1
ro X Cc7 : TCM dst,src (Note 1) 60 — % * 0 — —
X r D7 (NOT dst) AND src ‘ '
roor Es TM dist,src (Note 1) 70 — % %0 ——
Ir d F3 dst AND src '
R R E4 .
R IR - E5 XOR dst,src (Note 1) BO — % % 0 — —
R M E6 dst < dst XOR src
IR M E7 . - - - — -
R R F5 NOTE 1: These instructions have an identical set of addressing modes,

: which are encoded for brevity. The first opcode nibble is found in
LDC dst,src r Irr C2 e the instruction set table above. The second nibble is expressed
' symbolically by a [J in this table, and its value is found in the

dst< s Ire r D2 following table to the right of the applicable addressing mode
LDCI dst,src I lrr C3 - pair
dst<src Irr Ir. D3 For example, the opcode of an ADC instruction using the
rer+1irrermr+1 addressing modes r (destination) and Ir (source) is 13.
NOP "OFF —————
Addr Mode Lower

OR dst,src (Note 1) 40 — % * 0 — — dst src Opcode Nibble
dst < dst OR src :
POP dst R 50 @ @—————— r !
dst+ @SP; IR r Ir
SP <SP + 1 R R ‘
PUSH src : R 70 @ ——————

R IR 5
SP<SP - 1;,@SP<src IR 71

R IM
RCF CF 0————=— @
Cw0 IR IM ‘
RET AF —_————

PC < @SP;SP <SP + 2

REGISTERS (Continued)

R248 PO1M
PORT 0 AND 1 MODE REGISTER
(F8H; Write Only)

P0,4-P0s MODE POy-PO, MODE
OUTPUT = 00 OUTPUT
INPUT = 01 = INPUT
STACK SELECTION
T 1= INTERNAL
P1g-P17 MODE
0= BYTE QUTPUT

01 = BYTEINPUT
11 = HIGH-IMPEDANCE DS

\

R249 IPR
INTERRUPT PRIORITY REGISTER
(F9H; Write Only)

[2:]0e[os [0 Jos o o, Joo
RESERVED :l_ I | INTERRUPT GR!?OUP PRIORITV

RESERVED
452 = 001
DON'T CARE o ® 524 = 010
542 = 011
. 245 = 100
DON’T CARE oo 425 = 101
254 =110

=111

DON'T CARE

R250 IRQ
INTERRUPT REQUEST REGISTER
(FAH; Read/Write)

RESERVED 1 IRQ2 = P3; INPUT (D2 = IRQS)
1RQ4 = To
1RQS = T

R251 IMR
INTERRUPT MASK REGISTER
(FBH; Read/Write)

[—

1 ENABLES IRQ-IRQs
(Do = IRQO)

1 ENABLES INTERRUPTS

R252 FLAGS
FLAG REGISTER
(FCH; Read/Write)

DICACACACACACACY

USER FLAG F1

USER FLAG F2

HALF CARRY FLAG
DECIMAL ADJUST FLAG
OVERFLOW FLAG
SIGN FLAG

ZERO FLAG

CARRY FLAG

IE

R253 RP
REGISTER POINTER
(FDH; Read/Write)

o]
REGISTER ‘s
POINTER | 1«

s

H

DON'T CARE

R255 SPL
STACK POINTER
(FFH; Read/Write)

I

STACK POINTER LOWER
BYTE (SP,-SP;)

Figure 8. Control Registers (Continued)

OPCODE MAP

Lower Nibble (Hex)
[} 1 2 3 4 5 6 7 8 9 A B [D E F
. ———— [p— -t
6.5 6.5 6.5 6.5 10.5 105 105 105 6.5 65 12/105 | 12/10Q 65 12/100 65
[} DEC DEC ADD ADD ADD | ADD ADD ADD LD LD DJNZ JR LD JP INC
Ry IRy rro rydrp Ro.Ry | IR2.R1 | RyIM | IRy.IM ry Ro ro.Ry ryRA | ccRA r M cc DA r
6.5 6.5 65 6.5 10.5 10.5 10.5 10.5
1 RLC RLC ADC ADC ADC ADC ADC ADC
Ry 1Ry ri.ro ry.lrp R2.Ry | IR2.Ry | RyIM | IRy.IM
65 6.5 6.5 6.5 10.5 10.5 105 105
2 INC INC sus suB sus suB SuB sus
Ry IRy riro | rdra | RaRy | IRaRy | RyIM | IRyIM
8.0 6.1 8.5 6.5 105 105 10.5 10.5
3 JP SRP SBC SBC SBC SBC SBC SBC
IRR4 M rrp | rdrz | RaRy | IRaRy | RyIM | IRqIM
8.5 8.5 6.5 6.5 10,5 105 10,5 10,5
4 DA DA OR OR OR OR OR OR
R4 IRy r.rp rylro Ro.Ry | IR2.Ry | RyIM | IRy IM
10.5 10.5 6.5 6.5 10.5 10.5 10.5 10,5
5 POP POP AND AND AND AND AND AND
Ry IRy r.ro rylrp Ro.Ry | IR2.Ry | RyIM | IRy.IM
6.5 6.5 6.5 6.5 10.5 10.5 10.5 10,5)
6 COM | COM | TCM TCM TCM TCM M TCc™M
Ry IRy r.rp rydrp Ro.Ry | IR2.Ry | RyIM | IRyIM
;v 10/12.1 | 121141 6.5 6.5 10.5 10.5 10.5 10.5
e 7 PUSH | PUSH ™ ™ ™ ™ ™ ™
3 Ro IRy rirp | rdra | RoRy | IRoRy | RyIM | IRqIM
z 105 | 105 61
g 8 DECW | DECW DI
g RRy IR
6.5 6.5 6.1
9 RL RL -El
Ry IRy
’ 10.5 10.5 6.5 6,5 10.5 10.5 10.5 105 14.0
A INCW | INCW CcP cp cP cP CcP cpP RET
RR; IRy rirp | rdre | RoRy | IRoRy | RyIM | IRy.IM
6.5 6.5 6.5 6.5 10,5 10.5 105 10.5 160
B CLR CLR XOR XOR XOR XOR XOR XOR IRET
R1 IRy rrp | ridra | RoRy | IRo.Ry | RyIM | IRyIM
6.5 6.5 12,0 18,0 : 10.5 6.5
c RRC RRC LDC LDCI LD RCF
Ry IRy rydrrg | drgderg r1.x.Rp
6.5 6.5 12,0 18,0 20,0 20.0 10,5 65
D SRA SRA LDC LDCI | CALL* CALL LD SCF
Ry IRy roldrry | Irplrry IRR4 DA |'ro.x.Ry
6.5 6.5 6.5 10.5 10.5 10.5 10.5 65
E RR RR LD LD LD LD LD CCF
Ry IRy r1JR2 | Ro.Ry | IR2Ry | RyIM | IRyIM
85 8.5 6.5 10.5 60
F SWAP | SWAP LD LD NOP
Ry IRy Iry.r2 R2.IRy \/ Y Y \/ Y \ Y
" — N—
- ~ / - \/\W_/
2 3 2 3
Bytes per Instruction
LOWER
OPCODE
NIBBLE -
EXECUTION PIPELINE Legend:
CYCLES 4 CYCLES R = 8-bitaddress
r = 4-bit address
UPPER 10,5 Ry orry = Dstaddress
OPCODE ——3» A| CP <¢——MNEMONIC Rporr = Src address
NIBBLE RoR
2 Sequence:
. Opcode, First Operand, Second Operand
FIRST SECOND
OPERAND OPERAND NOTE" The blank areas are not defined

*2-byte instruction, fetch cycle appears as a 3-byte instruction

REGISTERS

' R241 TMR
TIMER MODE REGISTER
(F1H; Read/Write)

MODES L NO FUNCTION
NOT UsgD = OAD Ty

To OUT = 0|

° T, OUT = 10 DISABLE T, COUNT
INTERNAL CLOCK ouT = 11
DES

EXTERNAL CLOCK INP“T = 00 ‘

GATE INPUT = 01
TRIGGER INPUT = 10

L
ENABLE T, COUNT

NO FUNCTION
LOAD T
DISABLE T, COUNT
ENABLE T, COUNT
(NON-RETRIGGERABLE)
TRIGGER INPUT = 11
(RETRIGGERABLE)

R242 T1
COUNTER TIMER 1 REGISTER
(F2H; Read/Write)

I

T, INITIAL VALUE (WHEN WRITTEN)
(RANGE 1 256 DECIMAL 01 00 HEX)
Ty CURRENT VALUE (WHEN READ)

R243 PRE1
PRESCALER 1 REGISTER
(F3n; Write Only)

LCDUNT MODE

0 = T, SINGLE-PASS
1 = T, MODULO-N
CLOCK SOURCE !
1= T, INTERN,
o=T, DXTERNAL TIMING INPUT

(Ti) MODE

PRESCALER MODULO
(RANGE: 1-64 DECIMAL
01-00 HEX)

R244 TO
COUNTER/TIMER 0 REGISTER
(Fan; ReadNVrite)

I

To INITIAL VALUE (WHEN WRITTEN)
(RANGE: 1 256 DECIMAL 01 00 HEX)
To CURRENT VALUE (WHEN READ)

- R245 PREO
PRESCALER 0 REGISTER
(F5H; Write Only)

I_COUNT MODE

1=

0 = T, SINGLE-PASS

To MODULO-N

RESERVED

PRESCALER MODULO
(RANGE: 1-64 DECIMAL

01-00 HEX)

R246 P2M
PORT 2 MODE REGISTER
(F6H; Write Only)

[0]s o, [s 0 [0 oo

P24-P25 DEFINITION
0 DEFINES BIT AS OUTPUT

1 DEFINES BIT AS INPUT

R247 P3M
PORT 3 MODE REGISTER
(F7w;/Write Only)

DDRDDRRN

|__o

PORT 2 PULL-UPS OPEN DRAIN
1 PORT 2 PULL-UPS ACTIVE

RESERVED
RESERVED
RESERVED
0P31 = INPUT (Tyy) P36 = OUTPUT (Toyp)

Figure 8. Control Registers

10

o N__/

S
e (|
IRQN \
0 ®
Figure 9. Timing
AC CHARACTERISTICS
Timing Table
28600
Number Symbol Parameter Min Max Notes*
1 TpC Input Clock Period 125 1000 1
2 TC,TfC Clock Input Rise and Fall Times .25 1
3 ™wC Input Clock Width 37 1
4 TwTinL Timer Input Low Width 100 2
5 TwTinH Timer Input High Width 3TpC 2
6 TpTin Timer Input Period 8TpC 2
7 TrTin, TfTin Timer Input Rise and Fall Times 100 2
8 TwiL " Interrupt Request Input Low Time 100 2,3
9 TwiH Interrupt Request Input High Time 3TpC 23
NOTES:

1. Clock timing references use S.BV for alogic “1” and 0.8V for a logic “0".
2. Timing references use 2.0V for a logic “1” and 0.8V for a logic “0”

3. Interrupt request via Port 3 (P34-P33).
* Units in nanoseconds (ns). s

11

" ABSOLUTE MAXIMUM RATINGS

Voltages on all pins with respect

toGND ... -0.3Vto +7.0V
Operating Ambient

Temperature See Ordering Information
Storage Temperature —-65°Cto +150°C

Stresses greater than those listed-under Absolute Maximum Ratings may
cause permanent damage to the device. This is a stress rating only;
operation of the device at any condition above those indicated in the
operational sections of these specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect
device reliability.

STANDARD TEST CONDITIONS

The DC characteristics listed below apply for the following
standard test- conditions, unless otherwise noted. All
voltages are referenced to GND. Positive current flows into
the referenced pin.)

Standard conditions are:

m +4.75V< Voo < +5.25V
m GND =0V

B 0°C<Tp< +70°C

21K

FROM OUTPUT
UNDER TEST

9.1

150 ps]: Ko

Figure 10. Test Load 1

DC CHARACTERISTICS
Symbol Parameter Min Max - Unit Condition
VcH Clock Input High Voltage 3.8 Vee \ Driven by External Clock Generator
VoL Clock Input Low Voltage -0.3 0.8 v Driven by External Clock Generator
VIH Input High Voltage 2.0 Vee v
ViL Input Low Voltage -0.3 0.8 \
VRH Reset Input High Voltage 3.8 Vee \Y
VRL Reset Input Low Voltage -0.3 0.8 ' \
VoH Output High Voltage 24 V loH = —250 A
VoL Output Low Voltage 0.4 \ loL= +20mA
; L Input Leakage -10 10 uA oV<VN< +5.25V
loH Output Drive Current 1.5 mA VOH = +2.4V
' 2.50 pA VOH = +4.0V
loL Output Leakage -10 10 WA oV V< +5.25V
IR Reset Input Current . -50 uA Vcc = +5.25V, VR = OV
Icc Vce Supply Current 150 mA

12

June 1987

Product Specification

78601/73603
Z8611/Z8613 Z8®

78601 Single-Chip MCU with 2K ROM
78603 Prototyping Device with 2K EPROM Interface
28611 Single-Chip MCU with 4K ROM
78613 Prototyping Device with 4K EPROM Interface

Features

B Complete microcomputer, 2K (8601) or 4K
(8611) bytes of ROM, 128 bytes of RAM, 32
1/0 lines, and up to 62K (8601) or 60K (8611)
bytes addressable external space each for
program and data memory.

B 144-byte register file, including 124 general-
purpose registers, four I/O port registers,
and 16 status and control registers.

B Average instruction execution time of 1.5 ps,
maximum of 1 ps.

B Vectored, priority interrupts for 1/O,
counter/timers, and UART.

® Full-duplex UART and two programmable
8-bit counter/timers, each with a 6-bit
programmable prescaler.

B Register Pointer so that short, fast instruc-
tions can access any of nine working register
groups in 1 ps. .

B On-chip oscillator which accepts crystal or
external clock drive.

® Single +5 V power supply—all pins TTL
compatible.

m 12.5 MHz.

General
Description

The Z8 microcomputer introduces a new level
of sophistication to single-chip architecture.
Compared to earlier single-chip micro-
computers, the Z8 offers faster execution; more
efficient use of memory; more sophisticated
interrupt, input/output and bit-manipulation
capabilities; and easier system expansion.

Under program control, the Z8 can be tailored
to the needs of its user. It can be configured as a

—»] RESI +5V
TN | <] RW GND fe—o
CONTROL | «—] DS XTAL1 fe—
— CLOCK
<« AS XTAL2 f—>
<] PO, P2 ja—>
~<—»] PO, P2 ja—>
<«—»{ PO, P2, fe—>
PORT 0 g P2, PORT 2
PROGRAM‘:IABBBI}E DI o Dl (GBITAPROA.
E)) <«—» <«—> [GRAMMABLE) .
1/0 OR Ag-Ass PO, P2, 110
<> P0; zgg01/11 P35 [+
<> POy MCU P2 fe—>
<>} PO, P2; ja—>
<] P1, P3y fe—o
<] P1, P3; je—
-] P1, P3; fe—o
PORT 1 PORT 3
(BYTE | <] P15 P3; Je—— | SERIAL AND
PROGRAMMABLE) | o, » { PARALLEL 10
1/0 OR ADy-AD; Pla P3 AND CONTROL
- <] Pig P3s p—>
<«—»{ Pig P3g —>
<«—>»] P1; P3; pb—>

stand-alone microcomputer with 2K or 4K bytes
of internal ROM, a traditional microprocessor
that manages up to 124K bytes of external
memory, or a parallel-processing element in a
system with other processors and peripheral
controllers linked by the Z-BUS® bus. In all
configurations, a large number of pins remain
available for I/O.

+5v [~7 4[] P3,
xtatz [2 39 [] s,
xTaL1 [3 38 [] P2,
P3, [] 4 a7 [P2
Py, s 36 [] P25
RESET [6 35] P2,
RW [7 3a[] p2,
ps[Je 33[] r2,
A [32[] r2,

P3; [] 10 2860111 31[] P2,
aNo [J11 MU 5 Fes,

p3, [12 29[p3,
Po, [] 13 28] p1;
Po, [] 14 27] P,
Po, [15 26 [] P1g
Po; [] 16 5[] P1,
po, [17 22 Py,
Pos [] 18 23[]r1,
Pog [] 19 2] P,
Po; [20 21[] P1,

Figure 2a. 40-pin Dual-In-Line Package (DIP),
Pin Assignments

13

Pin
Description

AS. Address Strobe (output, active Low).
Address Strobe is pulsed once at the begin-
ning of each machine cycle. Addresses output
via Port 1 for all external program or data
memory transfers are valid at the trailing edge
of AS. Under program control, AS can be
placed in the high-impedance state along with
Ports 0 and 1, Data Strobe and Read/Write.

DS. Data Strobe (output, active Low). Data
Strobe is activated once for each external
memory transfer.)

P0g-P0y. Ply-Ply, P29-P27, P3¢-P3y. /O Port
Lines (input/outputs, TTL-compatible). These
32 lines are divided into four 8-bit I/O ports

that can be configured under program control -

for I/O or external memory interface.

RESET. Reset (input, active Low). RESET ini-
tializes the Z8. When RESET is deactivated,

program execution begms from 1nternal
program location 000Cy.

' ROMIess. (input, active LOW). This pin is only

available on the 44 pin version of the Z8611.
When connected to GND disables the internal
ROM and forces the part to function as a Z8681
ROMIess Z8. When left unconnected or pulled
high to V the part will function normally as a
78611.

R/W, Read/Write (output). R/W is Low when
the Z8 is writing to external program or data
memory.

XTALI, XTAL2. Crystal 1, Crystal 2 (time-base
input and output). These pins connect a parallel
resonant 12.5 MHz crystal or an external single-
phase 12.5 MHz clock to the on-chip clock
oscillator and buffer.

> \5’

O TEL PP

/6 5 4 3 2 1 44 43 42 41 40
RESET |7 _ 39 | NC
RW |8 38 | P2,
DS |9 37 | P23
A3 |10 36 | P2;
" 35 | P2
G:j; 12 28611 3 Pz.‘,
P3; | 13 mcu 33 | P3,
POy | 14 32 | P34
POy § 15 31 | Pi7
Po; | 16 30 | P1s
‘ ROMiess |17 20| P15

\\ 18 19 20 21 22 23 24 25 26 27 28/

S

S M Q\ A \' ‘\0

Figure 2b. 44-pin Chip Carrier, Pin Assignments

14

2037-002

Architecture

Z8 architecture is characterized by a flexible
1/O scheme, an efficient register and address
space structure and a number of ancillary
features that are helpful in many applications.

- Microcomputer applications demand power-
ful I/O capabilities. The Z8 fulfills this with 32
pins dedicated to input and output. These lines
are grouped into four ports of eight lines each
and are configurable under software control to
provide timing, status signals, serial or parallel
I/O with or without handshake, and an address/
data bus for interfacing external memory.

Because the multiplexed address/data bus is
merged with the I/O-oriented ports, the Z8 can
assume many different memory and I/O con-
figurations. These configurations range from
a self-contained microcomputer to a micropro-
cessor that can address 124K (Z8601) or 120K
(Z8611) bytes of external memory.

Three basic address spaces are available to
support this wide range of configurations:
program memory (internal and external), data
memory (external) and the register file (inter-
nal). The 144-byte random-access register file
is composed of 124 general-purpose registers,
four I/O port registers, and 16 control and
status registers.

To unburden the program from coping with
real-time problems such as serial data com-
munication and counting/timing, an asynchro-
nous receiver/transmitter (UART) and two
counter/timers with a large number of userse-
lectable modes are offered on-chip. Hardware
support for the UART is minimized because one
of the on-chip timers supplies the bit rate.

OUTPUT INPUT Vce GND XTAL AS DS RW RESET
tt I IR
MACHINE TIMING AND
PORT 3 <_ INSTRUCTION CONTROL
UART K ALY
28601
FLAGS PROGRAM 2088 x 81T
MEMORY 11
COUNTER/ !
QUNTES 4096 x 8.BIT
REGISTER {}
POINTER
—
REGISTER FILE PROGRAM
INTERRUPT 124 x 8B] counter
CONTROL <i x BBIT

PORT 2 PORT 0 PORT 1

w33

o ADDRESS/DATA OR /0
(BIT PROGRAMMABLE) (BYTE PROGRAMMABLE)

(NIBBLE PROG RAII MABLE)

Figure 3. Functional Block Diagram

2037-003

15

Address
Spaces

Program Memory. The 16-bit program counter
addresses 64K bytes of program memory space.

- Program memory can be located in two areas:

one internal and the other external (Figure 4).
The first 2048 (Z8601) or 4096 (Z8611) bytes
consist of on-chip mask-programmed ROM. At.

- addresses 2048 (Z8601) or 4096 (Z8611).and

greater, the Z8 executes external program
memory fetches.

The first 12 bytes of program memory are’
reserved for the interrupt vectors. These loca-
tions contain six 16-bit vectors that correspond
to the six available interrupts.

Data Memory. The Z8 can address 62K (Z8601)
or 60K (Z8611) bytes of external data memory
beginning at location 2048 (Z8601) or 4096
(Z8611) (Figure 5). External data memory may

65535
EXTERNAL
ROM OR RAM
2048 4098
28601 2047 4095 28611
Location of OoN-CHip
first byt ;:,: ROM
executed N\ — — — — — — —
afterreset 12[%
k1 1RG5
10 IRQ5
] IRQ4
8 IRQ4
interrupt 7 IRQ3
P e—
vie) 3 IRG2
4 IRQ2
! Vector - IRQ1
(Upper Byte) 2 RQ1
1RGO
0 IRQO

Figure 4. Program Memory Map

be included with or separated from the external
program memory space. DM, an optional I/O
function that can be programmed to appear on
pin P34, is used to distinguish between data and
program memory space.

Register File. The 144-byte register file
includes four I/O port registers (R0-R3), 124
general-purpose registers (R4-R127) and 16
control and status registers (R240-R255). These
registers are assigned the address localtions
shown in Figure 6. ‘

78 instructions can access registers directly
or indirectly with an 8-bit address field. The Z8
also allows short 4-bit register addressing using

" the Register Pointer (one of the control regis-

ters). In the 4-bit mode, the register file is

EXTERNAL
DATA
MEMORY
2048 4096
28601 5047 4095 2861

NOT ADDRESSABLE

~ Figure 5. Data Memory Map

LOCATION IDENTIFIERS
255 STACK POINTER (BITS 7-0) spL
254 STACK POINTER (BITS 15-8) SPH
253 REGISTER POINTER RP
252 PROGRAM CONTROL FLAGS FLAGS
251 T MASK IMR
250 INTERRUPT REQUEST REGISTER IRQ
249 INTERRUPT PRIORITY REGISTER IPR
248 PORTS 0-1 MODE POIM
247 PORT 3 MODE P3M
246 PORT 2 MODE P2m
245 T0 PRESCALER PREO
244 TIMER/COUNTER 0 To
243 T1 PRESCALER PRE1
242 TIMER/COUNTER 1 Rl
241 TIMER MODE TMR
240 . SERIAL /0 sio

NOT
IMPLEMENTED
127
GENERAL-PURPOSE
REGISTERS
4
3 PORT3 | P3
2 PORT 2 P2
1 PORT 1]
0 PORT 0 PO

Figure 6. The Register File

| .
1 255
L st | 0000 |28
240
The upper nibble of the register file address
>—— provided by the register pointer specifies
the active working-register group.
127
- —
= —
=
b — The lower
nibble of
e
SPECIFIED WORKING- e address
REGISTER GROUP ~<T— provided by
the instruction
poim? ht: the
= register.
-
L 15
= e e e e e
. 1/0 PORTS 3

Figure 7. The Register Pointer

16

2037-004, 005, 006, 007

divided into nine working-register groups, each
occupying 16 continguous locations (Figure 6).
The Register Pointer addresses the starting
location of the active working-register group.

Stacks. Either the internal reqgister file or the
external data memory can be used for the stack.

A 16-bit Stack Pointer (R254 and R255) is used for
the external stack, which can reside anywhere in
data memory between locations 2048 (8601) or
4096 (8611) and 65535. An 8-bit Stack Pointer
(R2585) is used for the internal stack that resides
within the 124 general-purpose registers
(R4-R127).

Serial Port 3 lines P3y and P37 can be programmed as selection. If parity is enabled, the eighth bit is
Input/ serial I/O lines for full-duplex serial asynchro- the odd parity bit. An interrupt request (IRQy) is
Output nous receiver/transmitter operation. The bit rate generated on all transmitted characters.
is controlled by Counter/Timer 0, at 12 MHz. Received data must have a start bit, eight data
bits and at least one stop bit. If parity is on, bit 7
The Z8 automatically adds a start bit and two of the received data is replaced by a parity error
stop bits to transmitted data (Figure 8). Odd flag. Received characters generate the IRQ3
parity is also available as an option. Eight data interrupt request.
bits are always transmitted, regardless of parity
Transmitted Data Received Data
(No Parity) (No Parity)
[sp]sP[o;]os]0s] Da[2a] 0] 01 D,LST] [sp]o: o [os] D] 0a] 2] 04] nn]srl
—[' | START BIT ’ START BIT
, EIGHT DATA BITS EIGHT DATA BITS
TWO STOP BITS ONE STOP BIT
Transmitted Data Received Data
(With Parity) (With Parity)
EEDDPDDDDDD ErhEEEEbEE
! l I-—START BIT ‘ ! LSTARY BIT
SEVEN DATA BITS SEVEN DATA BITS
ODD PARITY PARITY ERROR FLAG
S TWO STOP BITS ‘ONE STOP BIT
Figure 8. Serial Data Formats
Counter/ The Z8 contains two 8-bit programmable pass mode) or to automatically reload the initial
Timers counter/timers (Tg and T}), each driven by its value and continue counting (modulo-n contin-
own 6-bit programmable prescaler. The T uous mode). The counters, but not the presca-
prescaler can be driven by internal or external lers, can be read any time without disturbing
clock sources; however, the T(prescaler is their value or count mode.
driven by the internal clock only. The clock source for T is user-definable and
The 6-bit prescalers can divide the input fre- can be the internal microprocessor clock
quency of the clock source by any number from divided by four, or an external signal input via
1 to 64. Each prescaler drives its counter, which Port 3. The Timer Mode register configures the
decrements the value (1 to 256) that has been external timer input as an external clock, a
loaded into the counter. When the counter trigger input that can be retriggerable or non-
reaches the end of count, a timer interrupt retriggerable, or as a gate input fof the internal
request—IRQy (tg) or IRQg (T)—is generated. clock. The counter/timers can be programmably
The counters can be started, stopped, cascaded by connecting the Tg output to the
restarted to continue, or restarted from the input of T;. Port 3 line P3g also serves as a timer
initial value. The counters can also be pro- output (ToyT) through which T, T} or the inter-
grammed to stop upon reaching zero (single- nal clock can be output.
{
2037-009

17

1/0 Ports

The Z8 has 32 lines dedicated to input and

output. These lines are grouped into four ports of |

eight lines each and are configurable as input,
output or address/data. Under software control,
the ports can be programmed to provide address

outputs, timing, status signals, serial I/O, and
parallel I/O with or without handshake. All ports
have active pull-ups and pull-downs compatible
with TTL loads.

N\

Port 1 can be programmed as a byte I/O port
or as an address/data port for interfacing
external memory. When used as an I/O port, Port
1 may be placed under handshake con-
trol. In this configuration, Port 3 lines P33 and

- P34 are used as the handshake controls RDY;

and DAV (Ready and Data Available).

Memory locations greater than 2048 (Z8601) or
4096 (Z8611) are referenced through Port 1. To
interface external memory, Port 1 must be
programmed for the multiplexed Address/Data
mode. If more than 256 external locations are
required, Port O must dutput the additional
lines.

Port 1 can be placed in the high-impedance
state along with Port 0, AS, DS and R/W,

allowing the Z8 to share common resources in
multiprocessor and DMA applications. Data
transfers can be controlled by assigning P33 as a
Bus Acknowledge input and P34 as a Bus

Request output.
@ PORT 1
(110 OR AD,-AD;)

HANDSHAKE comnOLs ’
DAV{ AND RDY;
(P3; AND Pa,)

)

Figure 8a. Port 1

Port 0 can be programmed as a nibble I/O
port, or as an address port for interfacing
external memory. When used as an I/0 port,
Port 0'may be placed under handshake con-
trol. In this configuration, Port 3 lines P3;and
P35 are used as the handshake controls DAV,
and RDY(. Handshake signal assignment is
dictated by the I/O direction of the upper nibble

P04-PO;.

For external memory references, Port 0 can
provide address bits Ag-Aj; (lower nibble) or
Ag-A;5 (lower and upper nibble) depending on
the required address space. If the address range
requires 12 bits or less, the upper nibble of Port 0
can be programmed independently as I/O while

the lower nibble is used for addressing. When
Port 0 nibbles are defined as address bits, they
can be set to the highimpedance state along with
Port 1 and the control signals AS, DS and R/W.

PORT 0
](uo OR Ag-Agp)

To

MCU
«— | HANDSHAKE CONTROLS
DAVg AND RDY,
B AND P39

- Figure 9b. Port 0

Port 2 bits can be programmed independently
as input or output. The port is always available
for I/O operations. In addition, Port 2 can be
configured to provide open-drain outputs.

Like Ports 0 and 1, Port 2 may also be
placed under handshake control. In this con-
figuration, Port 3 lines P3) and P3¢ are used as
the handshake controls lines DAV, and RDY),.

* The handshake signal assignment for Port 3 lines

P3; and P34 is dictated by the direction (input or
output) assigned to bit 7 of Port 2.

PORT 2(1/0)

HANDSHAKE CONTHOLS
)
(P3, AND P3g)

g
iRitiiki

Figure 9¢c. Port 2

Port 3 lines can be configured as I/O or
control lines. In either case, the direction of the
eight lines is fixed as four input (P3p~P33) and
four output (P34-P37). For serial I/O, lines P3y
and P35 are programmed as serlal in and serial
out respectively.

Port 3 can also provide the following con-
trol functions: handshake for Ports 0, 1 and 2
(DAV and RDY); four external interrupt
request signals (IRQy-IRQ3); timer input and
output signals (Tyy and Toyr) and Data
Memory Select (DM).

PORT 3
(IO OR CONTROL)

WU

Figure 9d. Port 3

18

2037-008

Interrupts

The Z8 allows six different interrupts from
eight sources: the four Port 3 lines P35-P33,

Serial In, Serial Out, and the two counter/timers.

These interrupts are both maskable and
prioritized. The Interrupt Mask register globally
or individually enables or disables the six inter-
rupt requests. When more than one interrupt is
pending, priorities are resolved by a pro-
grammable priority encoder that is controlled by
the Interrupt Priority register.

All 78 interrupts are vectored. When an inter-
rupt request is granted, an interrupt machine

cycle is entered. This disables all subsequent
interrupts, saves the Program Counter and status
flags, and branches to the program memory
vector location reserved for that interrupt. This
memory location and the next byte contain the
16-bit address of the interrupt service routine for
that particular interrupt request.

Polled interrupt systems are also supported. To
accommodate a polled structure, any or all of the
interrupt inputs can be masked and the Interrupt
Request register polled to determine which of the
interrupt requests needs service.

Clock

The on-chip oscillator has a high-gain,
parallel-resonant amplifier for connection to a
crystal or to any suitable external clock source
(XTAL] = Input, XTAL2 = Output).

The crystal source is connected across XTAL1
and XTAL2, using the recommended capacitors

(Cy = 15 pF) from each pin to ground. The
specifications for the crystal are as follows:
B AT cut, parallel resonant

B Fundamental type, 12.5 MHz maximum
B Series resistance, Ry = 100 Q

19

Z8603/13
Protopack
Emulator

The Z8 Protopack is used for prototype
development and preproduction of mask-
programmed applications. The Protopack is a
ROMless version of the standard Z8601 or Z8611
housed in a pin-compatible 40-pin package
(Figure 11).) :

To provide pin compatibility and interchange-
ability with the standard maskprogrammed
device, the Protopack carries piggy-back a 24-
pin socket for a direct interface to program
memory (Figure 1). The Z8603 24-pin socket is
equipped with 11 ROM address lines, 8 ROM
data lines and necessary control lines for inter-
face to 2716 EPROM for the first 2K bytes of pro-
gram memory. The Z8613 24-pin socket is '

Figure 11. The Z8 Microcomp

equipped with 12 ROM address lines, 8 ROM
data lines and necessary control lines for inter-
face to 2732 EPROM for the first 4K bytes of -
program memory.

Pin compatibility allows the user to design the
pc board for a final 40-pin maskprogrammed
Z8, and, at the same time, allows the use of the
Protopack to-build the prototype and pilot
production units. When the final program is -
established, the user can then switch over to the
40-pin mask-programmed Z8 for large volume
production. The Protopack is also useful in
small volume applica tions where masked ROM
setup time, mask charges, etc., are prohibitive
and program flexibility is desired.

Compared to the conventional EPROM

“versions of the single-chip microcomputers, the

Protopack approach offers two main
advantages:

B Ease of developing various programs during
the prototyping stage. For instance, in appli-
cations where the same hardware configura-
tion is used with more than one program, the
Protopack allows economical program
storage in separate EPROMs (or PROMs),
whereas the use of separate EPROM-based
single-chip microcomputers is more costly.

m Elimination of long lead time in procuring
"EPROM-based microcomputers.

Instruction
Set
Notation

Addressing Modes. The following notation is used
to describe the addressing modes and instruction
operations as shown in the instruction summary.

IRR Indirect register pair or indirect working-register
pair address

Icr Indirect working-register pair only
X Indexed address

DA Direct address

RA Relative address

M Immediate

R Register or working-register address

r ' Working-register address only .

IR Indirect-register or indirect working-register
address

Ir Indirect working-register address only

RR Register pair or working register pair address

Symbols. The following symbols are used in
describing the instruction set.

dst Destination location or contents

src Source location or contents

cc Condition code (see list)

@ Indirect address prefix

SP Stack pointer (control registers 254-255)
PC Program counter

FLAGS Flag register (control register 252)
RP Register pointer (control register 253)
IMR Interrupt mask register (control register 251)

Assignment of a value is indicated by the symbol

‘", For example,
dst — dst + src }
indicates that the source data is added to the
destination data and the result is stored in the
destination location. The notation “addr(n)” is used
to refer to bit “n"” of a given location. For example,
dst (7)

refers to bit 7 of the destination operand.

\

Flags. Control Register R252 contains the following

“six flags:

Carry flag

Zero flag

Sign flag

Overflow flag
Decimal-adjust flag

mo<®nuNQ

Half-carry flag
Affected flags are indicated by:

0 Cleared to zero

1 Set to one

* Set or cleared according to operation
- Unaffected

X

Undefined '

20

Condition Value Mnemonic Meaning Flags Set
Codes 1000 Always true
0111 C Carry C=1
1111 NC No carry C =0
0110 z Zero Z =1
1110 NZ Not zero Z =0
1101 PL Plus S =0
0101 MI Minus S =1
0100 ov Overflow vV =1
1100 NOV No overflow V=0
0l10 EQ Equal Z =1
1110 NE Not equal Z =0
1001 GE Greater than or equal (SXORV) =0
. 0001 LT Less than (SXORV) =1
1010 GT Greater than [ZOR(SXORV)] =0
0010 LE Less than or equal [ZOR(SXORV)] =1
1111 UGE Unsigned greater than or equal C=0
0111 ULT Unsigned less than C=1
1011 UGT Unsigned greater than (C=0ANDZ=0) =1
0011 ULE Unsigned less than or equal (CORZ) =1
0000 Never true ---
Instruction
Formats R LB o
e e
One-Byte Instructions
OPC_| MODE CLR, CPL, DA, DEC, OPC_| MODE ADC, ADD, AND, CP,
st on [T Toldawame] BECW: NG, low, poe, S P X SO T XA
" RRC, SRA, SWAP [dst JOR[1110] dst .
[orc] P, CALL (Indirect)
dst OR [1110] dst opC_| MODE ADC, ADD, AND, CP,
. dst or [T o] ast] +2,0% 556, sUB.
- WMODE LD
src OR|1110
o] oo, i B v
[mooe | orc | LD, LDE, LDE, %%OXE L
Los,Loct ADDRESS
dstisrc | OPC Lo
: ‘:clds! Jor 1110 src | 122 Muorc ®
A,
[ast [opc] Lo
oPC CALL
DA,

Two-Byte Instructions

Figure 12. Instruction Formats

Three-Byte Instructions

2037-013

21

Instruction
Summary

Instruction Addr Mode Op;::do Flags Affected Instruction Addr Mode Ogcodo Flags Affected
d O ti T aen . - T eom e —
and Operation 4., o0 (Hex) CZSVDH and Operation dst src (Hex) CZSVDH
ADC dst,src (Note 1) 10 * e k% 0 LDE dst,src ' r Irr 82 ------
dst — dst + src + C dst — src Irr r 92
ADD dst,src (Note 1) o0 * ok ox * 0 ¥ LDEI dst,src Ir Irr 8 ------
dst «— dst + src dst — src Irr Ir 93
AND dst,src MNote) 50 -+v0-- ‘or¥limomtl
dst — dst AND src NOP FF -=-=- -
CALL dst DA D6 - =-=---- OR dst,src (Note 1) 40 -**0- -
SPS- Sg -2 IRR D4 dst — dst OR src
@SP — PC; PC — dst POP dst P o - -_-_-
CCF EF *----- dst — @SP IR 51
. C~=NOTC SP—SP+1
CLR dst R B0 ------ PUSH src R 70 ------
dst = 0 IR Bl SP—SP-1; @SP~—src IR 71
COM dst R ‘60 - **0 - - RCF CF 0-===--
dst — NOT dst IR 61 C~0
CP dst,src (Note 1) AD ok e - RET i AF - === -~
dst - src PC~@SP; SP—-SP +2 -
DA dst R 40 ok ok X = — RL dst —] R 90 P,
dst — DA dst IR 41 - IR 91
DEC dst R 0 -#%#*%+-- BLCdst[——] R 10 o+ wow -
dt-dst-1 IR 01 IR I
DECW dst RR 80 -#w%w—- BRdt [Z[—7R B0 e -
dst — dst - 1 IR 81 IR El
o1 =T
IMR(7) - 0 8F _ _ ____ :
SBC dst,src (Note 1) 30 R
DINZ r,dst RA A —————— dst — dst-src-C _
r—r-1 r=0-F SCF DF l == ===
ifr+0 C+~1
PC —~ PC + dst
Range: +127, -128 SRA dst R DO » % %0 -~
ange O DI
El 9F —=-=-=-== SRPeac @ Im 3 =m0 -
IMR (7) — 1 SHP src_ m 3l
INC dst . r rE -k ok ok - — . B dst .
dst - dst + 1 . r=0-F bl Wote D 20 xwxr b
20
IR S 21 SWAP dst ——1- R FO X * *X - -
~ IR Fl
INCW dst RR A0 -k k ok - -
dst — dst + 1 IR Al TCM dst,src (Note 1) 601 - % *0 - -
IRET . BF T, (NOT dst) AND src .
FLAGS — @SP; SP—SP + 1 TM dst, src (Note 1) 70 - **0--
PC—@SP; SP—SP +2; IMR(7) ~1 dst AND src
JP cc,dst DA D ------ XOR dst,src (Note 1) BO - +*0--
if cc is true) c=0-F dst ~— dst XOR src
PC — dst IRR 30
JR cc,dst RA B === Note 1
if ;ccli}?é' + dst c=0-F These instructions have an identical set of addressing
Range: + 127, -128 modes, which are encoded for brevity. The first opcode
ge: . nibble is found in the instruction set table above. The
LD dst,src T Im C -----= second nibble is expressed symbolically by a [in this
dst — src T R r8 table, and its value is found in the following table to the
R T 19 right of the applicable addressing mode pair.
B r=0-F For example, to determine the opcode of a ADC
r X Cc7 instruction use the addressing modes r (destination) and
X r D7 Ir (source). The result is 13.
r Ir E3
Ir r F3
R R E4 Addr Mode Lower
g 1151 Eg dst sre Opcode Nibble
IR Im E7
IR R F5 r r
LDC dst,src r Irr cC2 ------ T Ir 3
dst — src - Irr r D2 R R @
"LDCI dst,src Ir Irr C3 === R IR B}
dst — src Irr Ir D3 R M ®
r—r+1lrr—rr+l R ™

8085-003 *

Registers R240 SIO
Serial I/0 Register
(FOy; Read/Write)

_[: SERIAL DATA (D, = LSB)

R241 TMR
Timer Mode Register
(Fly; Read/Write)
mmmmmmmm
MODES 0 =
Norus"é 1=
our - o1 0=
INTERNAL CLOCK OUT = " i=
mooEs 9=
EXTERNAL CLOCK INPUT =
GATE INPUT = 01 0=
TRIGGER INPUT = 10 1=
(NON-RETRIGGERABLE)
TRIGGER INPUT =
(RETRIGGERABLE)
R242 T1

NO FUNCTION
LOAD T,

DISABLE T, COUNT
ENABLE T, COUNT

NO FUNCTION
LOAD T,

DISABLE T, COUNT
ENABLE T, COUNT

Counter Timer 1 Register

(F2y; Read/Write)

l T, INITIAL VALUE (WHEN WRITTEN)
(RAI 2 00 HEX

R243 PRE1
Prescaler 1 Register
(F3y; Write Only)

GE 1-256 DECIMAL 01-{
Ty CURRENY VALUE (WHEN READ)

I-COUNT MODE
0 = T, SINGLE-PASS
1 = T, MODULO-N

- C‘l.OCK SOURCE

T, INTERNAL
T M

PRESCALER MODULO
(RANG
01-00 Hi

E: 1-64 DECIMAL
EX)

R
0= T| EXTERNAL TIMING INPUT

R244 TO
Counter/Timer 0 Register
(F4y; Read/Write) '

T INITIAL VALUE (WHEN WRITTEN)
ANGE 1-256 DECIMAL 01-00 HEX)

o CURRENT VALUE (WHEN READ)

R245 PREO
Prescaler 0 Register
(FSy; Write Only)

LCOUNY MODE
0 = T, SINGLE-PASS
1 = T, MODULO-N

RESERVED -

PRESCALER MODULO
(RANGE: 1-64 DECIMAL
01-00 HEX)

R246 P2M
Port 2 Mode Register
(F6y; Write Only)

[o: o osTo. o o2 oy o)
P2,-P2; 110 DEFINITION
0 DEFINES BIT AS OUTPUT

1 DEFINES BIT AS INPUT

R247 PIM
Port 3 Mode Register
(F7y; Write Only)

[0e[0s [0 s os] 0 Joo]
0 PORT 2 PULL-UPS OPEN DRAIN
1 PORT 2 PULL-UPS ACTIVE

RESERVED

0P32 INPUT P35 = OUTPUT
1P32 - DAVO/RDYO P35 = RDYO/DAVD

00 P33 INPUT P34 = OUTPUT
1

?o)m INPUT P34 = DM

11 P33 - BAVA/RDY1 P34 = RDY1/DAVi

0 . INPUT (T) P38 = OUTPUT (Toyy)
1P31 BAVZIRDY2 P38 = RDY2IDAVZ
0P30 : INPUT P37 = OUTPUT
1P30 . SERIAL IN P37 = SERIAL OUT
0 PARITY OFF

1PARITY ON

Figure 13. Control Registers

2037-014 -

23

Registers
(Continued)

R248 POIM
Port 0 and 1 Mode Register
(F8y; Write Only)

P0,-PO; MOD! Poy-eo; tODE
OUTPUT = = OUT?UT
INPUT = 0‘ ‘ = IN|
Az-Ags = 1X M'A“
EXTERNAL MEMDRV TlMING . STACK SELECTION
NORM, 0 = EXTERNAL
EXTENDED = 1 1 = INTERNAL
MODE
= BYIE OUTPUT
0‘ = BYTE INPUT

10 = AD,-AD,
MN= HIGN IMPEDANCE ADo-AD7,
AS, DS, RIW, Ag-At1, Arz-A1s
IF SELECTED

. R249 IPR
Interrupt Priority Register
(F9y; Write Only)

RESERVED I INTERRUPT GROUP PRIORITY
RESERVED = 000 .
IRQ3, IRQS PRIORITY (GROUP A) C>A>B =001
0 = IRG5 > IRQ3 &~ A>B>C=00
1 = IRG3 > IRGS A>c>B=ou
IRQ0, IRG2 PRIORITY (GROUP B) C2B2AC 101
0 = IRG2 > IRQD B2ASCL 0
1 = IRQ0 > IRG2 RESERVED = 111
1Rat, IRQ4 PRIORITY (GROUP ©)
= IRQ1 > IRQ4

1 = IRQ4 > IRQ1

R250 IRQ
Interrupt Request Register
(FAy; Read/Write)

|Dr D |Ds[0a|Ds [0z 04[O0
RESERVED j-—-—-——r————-mm =P3 mmt (Do = IRQO)

IRQ1 = P3; INP
IRG2 = P3 fand

IRQ3 = P3g INPUT, SERIAL INPUT
IRQ4 = To, SERIAL OUTPUT
IRQS = Ty

R251 IMR
Interrupt Mask Register
(FBy: Read/Write)

[o: o JouTou os o, [o: oo
I 1 ENABLES IRQ0-IRQS
(Do = IRQO)

1 ENABLES TS

REGISTER
POINTER

A2
s,
i3
A

R252 FLAGS
Flag Register
(FCH, Read/Write)

mmmmmmm

USER FLAG F1
USER FLAG F2
HALF CARRY FLAG'
DECIMAL ADJUST FLAG
OVERFLOW.FLAG
SIGN FLAG

ZERO FLAG
CARRY FLAG

Register Pointer
(FDy; Read/Write)

=

d

R254 SPH
Stack Pointer
(FEy; Read/Write)

Il

DON'T CARE

C11%5 %
————: STACK POINTER UPPER

BYTE (SPg-SPys)

R255 SPL
Stack Pointer
(FFy; Read/Write)

I

" STACK POINTER LOWER

Figure 13. Control Registers (Continued)

BYTE (SPo-SP)

24

2037-014

Opcode

Lower Nibble (Hex)

Map
0 1 2 3 4 5 6 7 8 9 A B (o} D E F
6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5 6,5 6,5 12/10,5 | 12/10,0 6,5 12/100| 6,5
0 DEC| DEC | ADD| ADD| ADD| ADD | ADD| ADD| LD LD | DJNZ LD P INC
Ri IRy | ry,r2 | r,Ir2| Rz,R1 mz,lh Ry, IM| IR, IM| 1), R2 | r2,R1 | r3,RA | cc,RA | r1,IM | cc,DA n
6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5
1 | RLC| RLC | ADC| ADC| ADC| ADC| ADC| ADC
R1 IRy | ryrz2 | r,lIrz| Rz, Ri| IRz, Ri| Ry, IM| IRy, IM
6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5
2 INC| INC | SUB| SUB| SUB| SUB| SUB| SUB
R IRy ry,r2 | r,Ir2 | Rz,Ri1| IRz, R1| Ry, IM| IRy, IM
8,0 6,1 6,5 6,5 10,5 10,5 10,5 10,5
3 JP | SRP | SBC| SBC| SBC| SBC | SBC| SBC
IRR) M ry,r2 | r,Irz2 | Rz, R1| IR2,R1| Ry, IM| IRy, IM
8,5 8,5 6,5 6,5 10,5 10,5 10,5 10,5
4 DA DA OR OR OR OR OR OR
Ri | IR ry,r2 | r,Ir2 | Rz, R1 | IR2,R1| Ry, IM| IR), IM -
10,5 10,5 6,5 6,5 10,5 10,5 10,5 10,5
5 POP | POP | AND | AND | AND | AND | AND | AND
R1 IR) ri,rz | r,lrz | R2,Ri | IRz, R1 | Ry, IM| IRy, IM
6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5
% 6 COM|COM|TCM | TCM| TCM| TCM | TCM| TCM
é’ R IRy ry,r2 | ry,lr2 | Rz2,R1 | IR2,R1 | Ry, IM| IR, IM
: 10/12,1(12/14,1| 6,5 6,5 10,8 10,5 10,5 10,5
I 7 PUSH|PUSH| TM ™ ™ ™ ™ ™
g Rz IR2 r1,r2 | ri,Ir2 | Rz, R1 | IR2,R1 | Ry, IM| IR, IM
P 10,5 | 10,5 | 12,0 | 18,0 6,1
& 8 DECW|DECW | LDE | LDEI 151
(=) RR) IR: 11, Irrz [Iry, Irr2
65 | 65 | 120 [180 6.1
9 RL RL LDE | LDEI 'm
- Ri IR) Irry [Irz, Irmy
10,5 10,5 6,5 6,5 10,5 10,5 10,5 10,5 14,0
A INCW | INCW | CP CP CP CP CcP CP BE"I'
RR1 IRy ri,r2 | r1,Ir2 | R2,R1 | IR2,R1 | R3, IM | IR, IM
6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5 16,0
B CLR | CLR | XOR | XOR | XOR | XOR | XOR | XOR mi:'r .
R IR 11,12 | r,Ir2 | Rz, Ry | IR2, Ry | Ry, IM | IR1, IM
6,5 6,5 12,0 18,0 10,5 6.5
C RRC | RRC | LDC | LDCI LD B'CF
R IRy |1, Irrz [Iry, Irr2 r1, x, Rz
6,5 6,5 12,0 18,0 20,0 20,0 10,5 6.5
D SRA | SRA | LDC | LDCI |CALL* CALL| LD S'CF
Ri IRy |r2,Irry |Irz, Irra| IRR) DA |rz2,x, R)
1 6.5 6,5 ' 6,5 10,8 10,5 10,5 10,5 6.5
E RR RR LD LD LD LD LD C’CF
R IR: r1,Irz | R2,R1 | IR2,R1 [R1, IM | IRy, IM
8,5 8,5 6,5 10,5 6.0
F |SWAP|SWAP LD LD J : | | Nop
Ri IR Iy, r2 Rz, IRy / / / \J V ‘
. o/ \u S\ AR N
Bytes per V. : v v
Instruction 2 3 2 3 1
Lower
Opcode
Nibble
Execution Pipeline Le
gend:
Cyeles ¢ Cyeles R = 8-Bit Address
r = 4-Bit Address
Upper 10,5 Riorr = Dst Address
" Opcode —» A | CP 4¢— Mnemonic Rz or rz = Src Address
Nibble R2,R1 |
Sequence:
First / Second Opcode, First Operand, Second Operand
Operand Operand

*2-byte instruction; fetch cycle appears as a 3-byte instruction

Note: The blank areas are not defined.

8085-002

25

Absolute Voltages on all pins Stresses greater than those listed under Absolute Maxi-
M . - N mum Ratings may cause permanent damage to the device.
Ma:_umum with respect to G_ND """"" -0.3Vto +7.0V This is a stress rating only; operation of the device at any
Ratings Operating Ambient condition above those indicated in the operational sections
. Temperature See Ordering Information of these specifications is not implied. Exposure to absolute
‘ AR maximum rating conditions for extended periods may affect
Storage Temperature........ -65°Cto +150°C device reliability.
The DC characteristics listed below apply for
the following standard test conditions, unless
otherwise noted. All voltages are referenced to
GND. Positive current flows into the reference FROM OUTPUT
pin. - UNDER TEST
Standard conditions are:
O +4.75V = Voo = +5.25V
OGND =0V '
00°C =Ty = +70°C
Figure 14. Test Load 1
DC ‘Symbol Parameter Min Max Unit Condition
Character-
istics Vcu Clock Input High Voltage 3.8 Vee .V Driven by External Clock Generator
Voo Clock Input Low Voltage -0.3 0.8 V Driven by External Clock Generator
Vg Input High Voltage - 2.0 Vee \4
Vi Input Low Voltage ' -0.3 0.8 \'
Vau Reset Input High Voltage 3.8 Vee v
Vi Reset Input Low Voltage -0.3 0.8 v
Vou Output High Voltage 2.4 V Ioyg = -250 yA
Vor. Output Low Voltage' 0.4 V Ior = +2.0mA
I, Input Leakage -10 10 pA 0V= V=< +525V
Io. © Output Leakage -10 10 uh OVs Vy < +525V.
Ir Reset Input Current -50 A Voo = +5.25V, Vg =0V
Icc‘ Vce Supply Current 150 mA

26

AC Characteristics

External I/0

or Memory RIW X X
Read and le@> D>
Write Timing PORT 0, X
DM (‘?
\
PORT 1 y) Ao-A7 Do-D7 IN }
(D> |«—D— e O
x _\r_.f ® BO% N -
«—(O—> N0 o
(mD.; M) \
PORT 1)(Ag-Ar X Do-D7 OUT
~—O— ~@®|
1 f‘,\ | E—
g N s

Figure 15. External I/O or Memory Read/Write

8 MHz

12.5 MHz

No. Symbol Parameter Min Max Min Max Notes*}°
1 TdA(AS) Address Valid to AS 1 Delay 50 35 2,3
2 TdAS(A) AS 1 to Address Float Delay 60 45 2,3
3 TdAS(DR) ZS 1 to Read Data Required Valid 320 220 1,2,3
4 TwAS ZS Low Width 80 55 1,2,3
5 TdAz(DS) Address Float to DS | 0 0 .
6 — TwDSR ———— DS (Read) Low Width 250 185 1,2,3
7 TwDSW DS (Write) Low Width 160 110) 1,2,3
8 TdDSR(DR) DS | to Read Data Required Valid 200 130 1,2,3
9 ThDR(DS) Read Data to DS 1 Hold Time [o] 0
10 TdDS(A) DS 1 to Address Active Delay 80 45 2,3
11 TdDS(AS) DS 1 to &S { Delay 70 55 2.3
12 — TdR/W(AS) —— R/W Valid to &S 1 Delay 50 30 2,3
13 TdDS(R/W) DS 1 to R/W Not Valid 60 35 2,3
14 TdDW(DSW) Write Data Valid to DS (Write) | Delay 50 35 2,3
15 TdDS(DW) DS 1t to Write Data Not Valid Delay 80 45 2,3
16 TdA(DR) Address Valid to Read Data Required Valid 410 255 1,2,3
17 TdAS(DS) &S 1 to DS | Delay 80 55 2,3
NOTES:
1. When using extended memory timing add 2 TpC. 1 Test Load 1.
2. Timing numbers given are for minimum TpC. © All timing references use 2.0 V for a logic "1” and 0.8 V for a logic "0".
3. See clock cycle time dependent characteristics table. * All units in nanoseconds (ns).
2194-011

27

AC Characteristics

2. This is a Clock-Cycle-Dependent parameter. For clock frequencies
other than the maximum, use the following formula: § TpC — 95

Additional
Timing
Table cLock
. B0
O} : |
IRQN , 1 r \
<——®—->
Figure 16. Additional Timing
8 MHz 12.5 MHz
No. Symbol Parameter Min Max Min Max Notes*
1 TpC Input Clock Period 125 1000 80 1000 1
2 TC,TIC Clock Input Rise And Fall Times 25 15 1
3 TwC Input Clock Width 37 26 1
4 TwTinL Time Input Low Width 100 70 2
5— TwTinH Timer Input High Width 3TpC 3TpC 2
6 TpTin Timer Input Period 8TpC 8TpC 2
7 TrTin,TiTin Timer Input Rise And Fall Times 100 100 2
8a TwiIL Interrupt Request Input Low Time 100 70 2,3
8 TwIL Interrupt Request Input Low Time 3TpC 3TpC 2,4
9 TwlH Interrupt Request Input High Time 3TpC 3TpC 2,3
4
NOTES: .
1. Clock timing references uses 3.8 V for a logic “1” and 0.8 V for 3. Interrupt request via Port 3 (P3-P33).
alogic“0". 4. Interrupt request via Port 3 (P3q).
2. Timing reference uses 2.0 V for a logic “1” and 0.8 V for * Units in nanoseconds (ns).
alogic“0”. .
" Memory Port } {
TimingY Ao-At0 X ADDRESS VALID X
! © ; 00—
Do-Dy DON'T CARE)(DATA IN VALID B
Figure 17. Memory Port Timing
No. Symbol Parameter Min Max Notes*
1 TdA(DI) Address Valid to Data Input Delay 320 1,2
2 ThDI(A) Data In Hold time 0 1
NOTES:
1. Test Load 2. f *Units are nanoseconds unless otherwise specified.

28

'2194-012 2037-019

‘l'l“lidn.dshdke DATA IN X DATA IN VALID K
ming ! i =
: O+ ® ‘
o A\ /
Figure 18a. Input Handshake
DATA OUT DATA OUT VALID
—— ‘
oy Y o
O 0
ey R : 1
Figure 18b. Output Handshake
No. Symbol Parameter Max Notes*
TsDI(DAV) Data In Setup Time
ThDI(DAV) Data In Hold time 160 '
TwDAV Data Avallable Width 120
TdDAVI{(RDY) DAV | Input to RDY { Delay 120 1,2
5—TdDAVO{(RDY) —— DAV ! Output to RDY | Delay 0 1,3
TdDAVIr(RDY) DAV t Input to RDY 1 Delay 120 1,2
TdDAVOr(RDY) DAV 1 Output to RDY 1 Delay . 0 1,3
TdDO(DAV) Data Out to DAV | Delay 30 1
TdRDY(DAV) Rdy ! Input to DAV 1 Delay 0 140 1
NOTES:
1. Testload 1 * Units in nanoseconds (ns).

2. Input handshake
3. Output handshake

1 All timing referencea use 2.0 V for a logic *1” and 0.8 V for

alogic“0".
_ Clock-
Cycle-Time- Number Symbol Equation
Oppendent T 1 TaAMS) TpC-50
2 TdAS(A) TpC-40
3 TdAS(DR) 4TpC-110*
4 TwAS TpC-30
5——TwDSR 3TpC-65*
7 TwDSW 2TpC-55*
8 TdDSR(DR) . 3TpC-120*
10 Td(DS)A TpC-40
11 TdDS(AS) TpC-30
12——TdR/W(AS) TpC-55
13 TdDS(R/W) TpC-50
14 TdDW(DSW) TpC-50
15 TdDS(DW) TpC-40
16 TdA(DR) S5TpC-160*
17 TdAS(DS) TpC-30
* Add 2TpC when using extended memory timing.
2194-013 29

Product Specification

Z8671 Z8® MCU
with BASIC/Debug
Interpreter

June 1987

FEATURES

m The Z8671 MCU is a complete microcomputer
preprogrammed with a BASIC/Debug interpreter.
Interaction between the interpreter and its user is
provided through an on-board UART. .

m BASIC/Debug can directly address the Z8671's internal
registers and all external memory. It provides quick
examination and modification of any external memory
location or 1/0 port.

B The BASIC/Debug interpreter can call
language subroutines to increase execution speed.

m The Z8671's auto start-up capability allows a program to
be executed on power-up or Reset without operator
intervention.

® Single +5V power supply—all I/O pins TTL-compatible.
® 8MHz

GENERAL DESCRIPTION

The Z8671 Single-Chip Microcomputer (MCU) is one of a

line of preprogrammed chips—in this case with a |

BASIC/Debug interpreter in ROM—offered by Zilog. As a
member of the Z8 Family of microcomputers, it offers the
same abundance of resources as the other Z8

Because the BASIC/Debug interpreter is already part of the
chip circuit, programming is made much easier. The Z8671
MCU thus offers a combination of software and hardware
that is ideal for many industrial control applications. The
78671 MCU allows fast hardware tests and bit-by-bit
examination and modification of memory location, I/0 ports,

machine

microcomputers.
(—| RESET +5V je—
ma::g <« RW GND e
conTRoL | «——] s XTALY [—)
cLock
U xTaL2 |—
~—>{ PO, P2 [—>
<—»] PO, P2, je—>
<«—>{ PO, P2, fe—>
PORT 0 P2 PORT 2
(vigBLE | <] Po, s [+ | (8IT PRO-
PROGRAMMABLE) | .| po P2, |«—» | GRAMMABLE)
110 or Ag Aus ‘ o
<1 P0; 28671 P25 la—>
<> POy MCU P% je—>
<] PO, P2; [e—>
<] P1, P3. fe—
<> P1, P3y je—
<> P1, P3; fe—oo
o P3 PORT 3
PORT 1{ ¢ ’ ?ﬁ?'ﬁi@? Eo
10 OR AD,-AD: | <] P1, P34 [| anD ConTROL
<—»{ P1y P3; p—>
«—>] P1g P3 >
o—— P3; p—>

+5v [~ 40 [] P3g
xTaL2 [2 39 [] r3,
xTaLt [3 38 [] r2,
p3, [] 4 37 [] p2,
Py, s 36 P2
SET [6 3s[] p2,
RW [7 34] p2,
ps [s 33[] p2,
A 32 g P2,
p3; [J10 28671 31[] p2,
ano 11 MOV 4 B P3;
P3, [12 29[3,
Po, [13 28 [] ap;
Po, [14 27 [] Aos
pPo, [15 26 [] aps
Po, [] 16 251 ap,
PO, E 17 24[] aps
po; [] 18 23] ap,
Pog [] 19 22 [Ap,
po; [20 21 [] Ao

Figure 1. Pin Functions

Figure 2a. 40-pin Dual-In-Line Package (DIP),
Pin Assignments

30

NON 1298Z

or registers. It also allows bit manipulation and logical
operatlons A'self-contained line editor supports interactive

© o0 ot (P
ifther speeding up program development. EEES

rss432144434241

The BAS ,Debug interpreter, a subset of Dartmouth - neser |7 NC
BASIC, operates with three kinds of memory: on-chip avi ls 38 | P2,
registers and external ROM or RAM. The BASIC/Debug 55 |o 37 | P2,
interpreter is located in the 2K bytes of on-chip ROM. As |10 36 | P2,
Additional features of the Z8671 MCU include the ability to g 28671 oy I
call machine language subroutines to increase execution P3; |13 ' meu 33 | P3y
speed and the ability' to have a program execute on POy |14 32 | 3y
power-up or Reset, without operator intervention. Po; |15 31| Pty
Maximum memory addressing capabilities include 62K ':’: :: :: ::
bytes of external program memory and 62K bytes of data

\18 19 20 21 22 23 24 25 26 27 28 /
Qg's QQ‘ ng, Qge QQ'\ Q\e q\‘* N Q\'s Q\h ‘x"

memory with program storage beginning at location 800y.
ThIS provides up to 124K bytes of useable memory space.
Very few 8-bit microcomputers can directly access this
amount of memory. Figure 2b. 44-pin Chip Carrier,

Each 78671 Microcomputer has 32 I/'O lines, a 144-byte Pin ASSIgnmen.ts
register file, an on-board UART, and two counter/timers.

OUTPUT INPUT Vcc GND XTAL AS DS R/W RESET
il b ittt
MACHINE TIMING AND
PORT 3 INSTRUCTION CONTROL
UART K ALY } ,
PROGRAM
FLAGS MEMORY
COUNTER/ 2048 x 8BIT
TIMERS -
REGISTER {}
POINTER
) REGISTER FILE' PROGRAM
INTERRUPT 124 x 8-BIT 1 COUNTER
CONTROL .
PORT 2 PORT 0 . PORT1
110 ADDRESS OR 1/0 ADDRESS/DATA OR 1/0
(BIT PROGRAMMABLE) (NIBBLE PROGRAMMABLE) (BYTE PROGRAMMABLE)

Figure 3. Functional Block Diagram'

31

ARCHITECTURE

28671 architecture is characterized by’ a flexible 1/O
scheme, an efficient register and address space structure,
and a number of ancillary features that are helpful in many
applications.

Microcomputer applications demand powerful 1/O
capabilities. The Z8671 fulfills this with 32 pins dedicated to
input and output: These lines are grouped into four ports of
eight lines each and are configurable under software control
to provide timing, status signals, serial or parallel I/O with or
without handshake, and an address/data bus for interfacing
external memory. -

Because the multiplexed address/data bus is merged with
the 1/O-oriented ports, the Z8671 can assume many
different memory and - 1/O configurations.” These
configurations range from a self-contained microcomputer

to a microprocessor that can address 124K bytes of external
memory.

Three basic address spaces are available to support this
wide range of configurations: program memory (internal
and external), data memory (external) and the register file
(internal). The 144-byte random-atcess register file is
composed of 124 general-purpose registers, four 1/0 port

registers, and 16 control and status registers.

To Unburden the program from coping with real-time
problems such as serial data communication and
counting/timing, an asynchronous receiver/transmitter
(UART) and two counter/timers with a large number of
userselectable modes are offered on-chip. Hardware
support for the UART is minimized because one of the
on-chip timers supplies the bit rate.

PIN DESCRIPTION

AS. Address Strobe (output, active Low). Address Strobe is
pulsed once at the beginning of each machine cycle.
Addresses output via Port 1 for all external program or data
memory transfers are valid at the trailing edge of AS. Under
program control, AS can be placed in the high-impedance
state along with Ports 0 and 1, Data Strobe, and Read/Write.

DS. Data Strobe (output, active Low). Data Strobe s
activated once for each external memory transfer.

POQ-P07, P10-P17, P20-P27, P30-P3;]. /O Port Lines
(input/outputs, TTL-compatible). These 32 lines are divided
into four 8-bit I/O ports that can be configured under

program control for /O or external memory interface.

RESET. Reset (input, active Low). RESET initializes the
Z8671. When RESET is deactivated, program execution
begins from internal program location 000C.

R/W. Read/Write (output). RW is Low when the Z8671 is
writing to external program or data memory.

XTAL1, XTAL2. Crystal 1, Crystal 2 (time-base input and
output). These pins connect a parallel-resonant crystal (8
MHz maximum) or an external single-phase clock (8 MHz
maximum) to the on-chip clock oscillator and buffer.

ADDRESS SPACES

Program Memory. The Z8671s 16-bit program counter
can address 64K bytes of program memory space.
Program memory consists of 2K bytes of internal ROM and
up to 62K bytes of external ROM, EPROM, or RAM. The first
12 bytes of program memory are reserved for interrupt
vectors (Figure 4). These locations contain six 16-bit vectors
that correspond to the six available -interrupts. The
BASIC/Debug interpreter is located in the 2K bytes of
internal ROM. The interpreter begins at address-12 and
extends t0 2047.

65535
EXTERNAL
ROM OR RAM
2048
2047
ON-CHIP _ BASIC/
Location of ROM DEBUG
first byte of
instruction
executed "\ — — — - — — o ——— p—
after reset 12
" IRQS
10 IRQS
9 IRQ4
8 1IRQ4
Interrupt 7 IRQ3
Vector
(Lower Byte) s . 1Ra3
s IRQ2
L3 4 IRQ2
"Vector” 3 1RQ1
(WUpper Byte) YY)
1 IRQO
0 1RQO

Figure 4. Program Memory Map

32

NDN 12982

Data Memory. The Z8671 can address up to 62K bytes of
external data memory beginning at location 2048 (Figure 5).
External data memory may be included with, or separated
from, the external program memory space. DM, an optional

* /0 function that can be programmed to appear on pin P34,
is used to distinguish data and program memory space.

Register File. The 144-byte register file may be accessed
‘by BASIC programs as memory locations 0-127 and
240-255. The register file includes four I/O port registers
(RO-R3), 124 general-purpose registers (R4-R127), and 16
control and status registers (Figure 6).

The BASIC/Debug Interpreter uses many of the general-
purpose registers as pointers, scratch workspace, and
internal variables. Consequently, these registers cannot be
used by a machine language subroutine or other user
programs. On power-up/Reset, BASIC/Debug searches for
external RAM memory and checks for an auto start-up
program. In a non-destructive method, memory is tested at
relative location xxFDy. When BASIC/Debug discovers
RAM in the system, it initializes the pointer registers to mark
the boundaries between areas of memory that are assigned
specific uses. The'top page of RAM is allocated for the line
buffer, variable storage, and the GOSUB stack. Figure 7a

illustrates the contents of the general-purpose registers in
the Z8671 system with external RAM. When BASIC/Debug
tests memory and finds no RAM, it uses an internal stack
and shares register space with the input line buffer and
variables. - Figure 7b illustrates the contents of the
general-purpose registers in the Z8671 system without
external RAM. .

Stacks. Either the internal register file or the external data
memory can be used for the stack. A 16-bit Stack Pointer
(R254 and-R255) is used for the external stack, which can
reside anywhere in'data memory between location 2048
and 65535. An 8-bit Stack Pointer (R255) is used for the
internal stack that resides within the 124 general-purpose
registers (R4-R127).

Register Addressing. Z8671 instructions can directly or
indirectly access registers with an 8-bit address field. The
28671 also allows short 4-bit register addressing using the
Register Pointer, which is one of the control registers. In the
4-bit mode, the register file is divided into nine
working-register groups, each group consisting of 16
contiguous registers (Figure 8). The Register Pointer
addresses the starting location of the active working-register
group. .

65535

EXTERNAL
DATA
MEMORY
2048
2047
NOT ADDRESSABLE

Figure 5. Data Memory Map

IDENTIFIERS

LOCATION
255 STACK POINTER (BITS 7-0) sPL
254 STACK POINTER (BITS 15-8) SPH
253 REGISTER POINTER RP
262 PROGRAM CONTROL FLAGS FLAGS
251 INTERRUPT MASK REGISTER IMR
250 INTERRUPT REQUEST REGISTER IRQ
249 INTERRUPT PRIORITY REGISTER IPR
248 PORTS 0-1 MODE POIM
247 PORT 3 MODE Pam
246 PORT 2 MODE P2m
25 T0 PRESCALER PREO
244 TIMER/COUNTER 0 T0
243 T1 PRESCALER PRE1
242 TIMER/COUNTER 1 T
241 TIMER MODE T™MR
240 SERIAL 110 sio
NOT
IMPLEMENTED

Figure 6. Control and Status Registers

33

Figure 7a. Genéral-Purpose ﬁegisters with External RAM

127

104
103

86
85

64
63

34
33

32

31

30
29

28
27

24
23

22
21

20
19

18
17

16
15

14
13

12
1

o ws v ~N®

SHARED BY EXPRESSION
STACK AND LINE BUFFER

GOsuB
STACK

SHARED BY GOSUB
AND VARIABLES

VARIABLES

FREE, AVAILABLE
FOR USR ROUTINES

COUNTER

' USED INTERNALLY

SCRATCH

POINTER TO
CONSTANT BLOCK

USED INTERNALLY

LINE NUMBER

ARGUMENT FOR
SUBROUTINE CALL

ARGUMENT/RESULT FOR
SUBROUTINE CALL

SCRATCH

POINTER TO NEXT
CHARACTER

POINTER TO LINE
BUFFER

POINTER TO GOSUB

POINTER TO BASIC
PROGRAM

POINTER TO GOSUB

FREE

110 PORTS

127

EXPRESSION
EVALUATION
STACK
64
63
FREE
34
33
COUNTER
32
31 USED INTERNALLY
30 SCRATCH
2 POINTER TO
2 CONSTANT BLOCK
27
2 USED INTERNALLY
23
LINE NUMBER
22
21 ARGUMENT FOR
20 SUBROUTINE
19 ARGUMENT/ROUTINE FOR
18 SUBROUTINE CALL
17 ’
SCRATCH
16
5 POINTER TO INPUT
14 LINE BUFFER
13 POINTER TO END OF
12 LINE BUFFER
n POINTER TO STACK
10 BOTTOM
9 ADDRESS OF USER
8 PROGRAM
7 POINTER TO GOSUB
6 STACK
s POINTER TO END
N OF PROGRAM
3
1/0 PORTS
0

Figure 7b. General-Purpose Registers without External RAM

Figure 8. The Register Pointer

. —|
T 255
L 7't | 0000 253
240
THE UPPER NIBBLE OF THE REGISTER
| FILE ADDRESS PROVIDED BY THE
REGISTER POINTER SPECIFIES THE
ACTIVE WORKING-REGISTER GROUP.
TR 127
= —
b
==
> THE LOWER
NIBBLE OF
THE REGISTER
. FILE ADDRESS
— | Rl <o
: THE INSTRUCTION
POINTS TO THE
SPECIFIED
L REGISTER.
-
15
—— e]
1/0 PORTS g

34

NOK 12982

PROGRAM EXECUTION

Automatic Start-up. The Z8671 has an automatic start-up
capability which allows a program stored in ROM to be
executed without operator intervention. Automatic
execution occurs on power-on or Reset when the program is
stored at address 1020y.

Execution Modes. The Z8671's BASIC/Debug Interpreter
operates in two execution modes: Run and Immediate.

Programs are edited and interactively debugged in the
Immediate mode. Some BASIC/Debug commands are
used almost exclusively in this mode. The Run mode is
entered from the Immediate mode by entering the
command RUN. If there is a program in RAM, it is executed.
The system returns to the Immediate mode when program
execution is complete or interrupted by an error.

INTERACTIVE DEBUGGING

Interactive debugging is accomplished with the self-
contained line ‘editor which operates in the Immediate
mode. In addition to changing program lines, the editor can
correct an immediate command before it is executed. It also
allows the correction of typing and other errors as a program
is entered.

BASIC/Debug allows interruptions and changes during a

program run to correct errors and add new instructions
without disturbing the sequential execution of the program.
A program run is interrupted with the use of the escape key.
The run is restarted with a GOTO command, followed by the
appropriate line number, after the desired changes are
entered. The same procedure is used to enter corrections
after BASIC/Debug returns an error.

COMMANDS

BASIC/Debug recognizes 15 command keywords. For
detailed instructions of command usage, refer to the
BASIC/Debug Software Reference Manual (#03-3149-02).

FO The GO command unconditionally branches
to a machine language subroutine. This
statement is similar to the USR function
except that no value is returned by the
assembly language routine.

GOsSuB GOSUB unconditionally branches to a
subroutine at a line number specified by the

user.

GOTO GOTO unconditionally changes the se-
quence of program executlon (branches to a

line number).

IF/THEN This command is used for conditional

operations and branches.

INPUT/IN These commands request information from
the user with the prompt “?”, then read the
input values (which must be séparated by
commas) from the keyboard, and store them
in the indicated variables. INPUT discards
any values remaining in the buffer from
previous IN, INPUT, or RUN statements, and
requests new data from the operator. IN uses

any values left in the buffer first, then requests
new data.

LET LET assigns the value of an expression to a
variable or memory location.

This command is used in the interactive mode
to generate a listing of program lines stored in
memory on the terminal device.

LIST

NEW The NEW command resets pointer R10-11 to
the beginning of user memory, thereby
marking the space as empty and ready to

store a new program.

PRINT PRINT lists its arguments, which may be text
messages or numerical values, on the output

terminal.

REM This command is used to insert explanatory

messages into the program.

This command returns control to the line
following a GOSUB statement.

RETURN

RUN RUN initiates sequential execution of all

instructions in the current program.

STOP STOP ends program execution and clears the

GOSUB stack.

35

'FUNCTIONS ,
BASIC/Debug supports two functions: A4ND and USR.

The AND function performs a logical AND. It can be used to
mask, turn off, or isolate bits. This function is used in the
following format:

AND (expression, expression)

The two expressions are evaluated, and their bit patterns are
ANDed together. If only one value is included in the
parentheses, itis ANDed with itself. A logical OR can also be
performed by complementing the AND function. This is
accomplished by subtracting each expression from -1. For
example, the function betow is equivalent to the OR of A
and B.

-1-AND(-1-A, -1-B)

The USR function calls a machine language subroutine and
returns a value. This is useful for applications in which a
subroutine can be performed more quickly and efficiently in
machine language than in BASIC/Debug.

The address of the first instruction of the subroutine is the
first argument of the USR function. The address can be
followed by one or two values to be processed by the
subroutine. In the following example, BASIC/Debug
executes the subroutine located at address 2000 using
values literal 256 and variable C.

USR(%2000,256,C)
The resultnng value is stored in Registers 18-19.

SERIAL INPUT/OUTPUT

Port 3 lines P3g and P37 can be programmed as serial /O

lines for full-duplex serial asynchronous receiver/transmitter .

operation. The bit rate is controlled by Counter/Timer 0, with
amaximum rate of 62.5K bits/second.

The Z8671 automatically adds a start bit and two stop bits to
transmitted data (Figure 9). Odd parity is also available as an
option. Eight data bits are always transmitted, regardless of

parity selection. If parity is enabled, the eighth data bit is
used as the odd parity bit. An mterrupt request (IRQ4) is
generated on all transmitted characters. '

Received data must have a start bit, eight data bits, and at
least one stop bit. If parity is on, bit 7 of the received data is
replaced by a parity error flag. Received characters
generate the IRQ3 interrupt request.

|sP[sP[D, [Ds|Ds| 04| D 02[D, [Do [7]

_r

|-— START BIT
EIGHT DATA BITS
TWO STOP BITS

TRANSMITTED DATA
(No Parity)

lSPISPi P]DGLbslotl Dal Dzﬁ| I Do| s1j

\—START BIT

SEVEN DATA BITS
0ODD PARITY
TWO STOP BITS

TRANSMITTED DATA
(With Parity)

[sp]o, [0,]Ds] Ds]Ds] D, [0, [Do] 5T]

L— START BIT

EIGHT DATA BITS
ONE STOP BIT

RECEIVED DATA
(No Parity)

BEERBRDDDDL]

L_ R
START BIT
SEVEN DATA BITS
PARITY ERROR FLAG
ONE STOP BIT
RECEIVED DATA
(With Parity)

Figure 9. Serial Data Formats

36

NOM 1298Z

I1/0 PORTS

The Z8671 has 32 lines dedicated to input and output.
These lines are grouped into four ports of eight lines each
and are configurable as input, output or address/data.
Under software control, the ports can be programmed to
provide address outputs, timing, status signals, serial 1/O,
and parallel I/0 with or without handshake. All ports have
active pull-ups and pull-downs compatible with TTL loads.

Port 1 can be programmed as a byte I/O port or as an
address/data port for interfacing external memory. When
used as an I/O port, Port 1 may be placed under handshake
control. In this configuration, Port 3 lines P33 and P34 are
used as the handshake controls RDY1 and DAV1 (Ready
and Data Available).

Memory locations greater than 2048 are referenced
through Port 1. To interface external memory, Port 1 must be
programmed for the multiplexed Address/Data mode. |f
more than 256 external locations are required, Port O must
output the additional lines.

Port 1 can be placed in the high-impedance state along with
Port 0, AS, DS and R/W, allowing the Z8671 to share
common resources in multiprocessor and DMA
applications. Data transfers can be controlled by assigning
P33 as a Bus Acknowledge input and P34 as a Bus Request
output.

Port 0 can be programmed as a nibble /O port, or as an
' address port for interfacing external memory. When used as
an I/0O port, Port 0 may be placed under handshake control.
In this configuration, Port 3 lines P3; and P35 are used as
the handshake controls DAVO and RDYO0. Handshake signal
_ assignment is dictated by the I/O direction of the upper

For external memory references, Port 0 can provide address
bits Ag-A11 (lower nibble) or Ag-A1s (lower and upper nibble)
depending on the required address space. If the address
range requires 12 bits or less, the upper nibble of Port 0 can
be programmed independently as I/O while the lower nibble
is used for addressing. When Port 0 nibbles are defined as
address bits, they can be set to the high-impedance state
along with Port 1 and the control signals AS, DS and RW.

Port 2 bits can be programmed independently as input or
output. The port is always available for I/O operations. In
addition, Port 2 can be configured to provide open-drain
outputs.

Like Ports 0 and 1, Port 2 may also be placed under
handshake control. In this configuration, Port 3 lines P34
and P3g are used as the handshake controls lines DAV2 and
RDY2. The handshake signal assignment for Port 3 lines
P34 and P3g is dictated by the direction (input or output)
assigned to bit 7 of Port 2.

Port 3 lines can be configured as I/O or control lines. In
either case, the direction of the eight lines is fixed as four
input (P3p-P33) and four output (P34-P3). For serial 1/0,
lines P3g and P37 are programmed as serial in and serial out
respectively.

Port 3 can also provide the following control functions:
handshake for Ports 0, 1 and 2 (DAV and RDY); four external
interrupt request signals (IRQO-IRQ3); timer input and
output signals (Ty and Toyr) and Data Memory Select
(DM).

o «
mbueP0¢POr
— —v—
“ PORT 1 [« P2
(O OR ADo-AD7) P1o-P17. il
. > 1 porT 2(/0)
28671 z8671 [0
Mcu mcu |
. l«—> / P27
HANDSHAKE CONTROLS HANDSHAKE CONTROLS
[} DAV1 AND RDY1 } DAV2 AND RDY2
> / (P33 AND P34) [/ (P15ANDP3¢)

Figure 10a. Port 1

: : P0;-P0; \ PORT O

. [P0o-P03 ((/O OR Ag-A1s5)
Z8671
MCU

HANDSHAKE CONTROLS
DAVO AND RDYO

— } (P32 AND P3s)

Figure 10b. Port 0

Figure 10c. Port 2

PORT 3
28671 (/0 OR CONTROL)
MCU

iR

Figure 10d. Port 3

37

COUNTER/TIMERS

The Z8671 contains two 8-bit programmable counter/timers
(TO and T1), each driven by its own 6-bit programmable
prescaler. The T1 prescaler can be driven by internal or
external clock sources; however, the TO prescaler is driven
by the internal clock only.

The 6-bit prescalers can divide the input frequency of the
clock source by any number from 1 to 64. Each prescaler
drives its counter, which decrements the value (1 to 256) that
has been loaded into the counter. When the counter reaches
the end of count, a timer interrupt request—IRQ4 (Ty) or
IRQ5 (T+)—is generated.

The counters can Be started, stopped, restarted to continue,
or restarted from the initial value. The counters can also be

programmed to stop upon reaching zero (single-pass .

mode) or to automatically reload the initial value and
continue counting (modulo-n continuous mode). . The
counters, but not the prescalers, can be read any time
without disturbing their value or count mode.

The clock source for T1 is user-definable; it can be either the
internal microprocessor clock (4 MHz maximum) divided by
four, or an external signal input via Port 3. The Timer Mode
register configures the external timer input as an external
clock, a trigger input that can be retriggerable or
nonretriggerable, or as a gate input for the internal clock.
The counter/timers can be programmably cascaded by
connecting the TO output to the input of T1. Port 3 line P3g
also serves as a timer output (ToyT) through which TO, T1 or
the internal clock can be output.

INTERRUPTS

The Z8671 allows six different interrupts from eight sources:
the four Port 3 lines P3¢-P33, Serial In, Serial Out, and the
two counter/timers. These interrupts are both maskable and
prioritized. The Interrupt Mask register globally or
individually enables or disables the six interrupt requests.
When more than one interrupt is pending, priorities are
resolved by a programmable priority encoder that is
controlled by the Interrupt Priority register.

All Z8671 interrupts are vectored; however, the internal

UART operates in a polling fashion. To accommodate a

polled structure, any or all of the interrupt inputs can be
masked and the Interrupt Request register polled to
determine which of the interrupt requests needs service.

The BASIC/Debug Interpreter does not process interrupts.
Interrupts are vectored through locations in internal ROM
which point to addresses 1000-1011y. To process

interrupts, jump instructions can be entered to the interrupt
handling routines at the appropriate addresses as shownin
Table 1.

Table 1. Interrupt Jump Instructions

- Hex Contains Jump Instruction and .
Address Subroutine Address for:
1000-1002 IRQO
1003-1005 IRQ1
1006-1008 IRQ2
1009-100B IRQ3
100C-100E IRQ4
. IRQ5

100F-1011

38

NI 129872

CLOCK

The on-chip oscillator has a high-gain, parallel-resonant
amplifier for connection to a crystal or to any suitable
external clock source (XTAL1 = Input, XTAL2 = Output).

The crystal source is connected across XTAL1 and XTAL2,
using the recommended capacitance (C. = 15 pf
maximum) from each pin to ground. The specifications for
the crystal are as follows:

m AT cut, parallel resonant
® Fundamental type, 8 maximum
m Series resistance, R< 100 Q

B 8 MHz maximum

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used -to
describe the addressing modes and instruction operations
as shown in the instruction summary. ‘

IRR Indirect register pair or indirect working-register
pair address

Irr Indirect working-register pair only

X Indexed address

DA Direct address

RA Relative address

IM Immediate

R Register or working-register address

r Working-register address only

IR Indirect-register or indirect working-register
" address

Ir Indirect working-register address only

RR Register pair or working register pair address

Symbols. The following symbols are used in describing the
instruction set.

dst Destination location or contents

src Source location or contents

cc Condition code (see list)

@ Indirect address prefix

SP - Stack pointer (control registers 254-255)
PC Program counter

FLAGS Flag register (control register 252)

RP Register pointer (control register 253)

IMR Interrupt mask register (control register 251)

Assignment of a value is indicated by the symbol “9" For
example,

dst < dst + src

indicates that the source data is added to the destination
data and the result is stored in the destination location. The
notation “addr(n)” is used to refer to bit “n” of a given
location. For example,

dst (7)
refers to bit 7 of the destination operand.

Flags. Control Register R252 contains the following six
flags:

(] Carry flag

z Zero flag

S Sign flag

\' Overflow flag

D Decimal-adjust flag
H Half-carry flag
Affected flags are indicated by:
0o Cleared to zero

1 Setto one

* Set or cleared according to operation
— Unaffected

X Undefined

39

CONDITION CODES

. Value Mnemonic Meaning) Flags Set
1000 ' Always true e
0111 Cc Carry C=1
1111 NC No carry .C=0
0110 z Zero Z=1
1110 Nz - Not zero Z=0
1101 PL Plus S=0
0101 Ml Minus S=1
- 0100 ov Overflow V=1
1100 NOV No overflow V=0
0110 EQ Equal Z=1
1110 ‘NE Not equal Z=0 X
1001 GE Greater than or equal (SXORV) =0
0001 LT Lessthan (SXORV) =1
1010 GT Greater than [ZOR(SXORV)] = 0
0010 LE Less than or equal " [ZOR(SXORV)] = 1
1111 UGE Unsigned greater than or equal C=0
0111 ULT Unsigned less than C=1 }
1011 UGT Unsigned greater than (C=0ANDZ=0)=1
0011 ULE Unsigned less than or equal (CORZ) =1
0000 Never true —
INSTRUCTION FORMATS
OPC CCF, DI, EI, IRET, NOP,
RCF, RET, SCF
ONE-BYTE INSTRUCTION
OPC MODE CLR, CPL, DA, DEC, OPC | MODE ADC, ADD, AND, CP,
[dstsc | or [1 1.1 0] dstisrc | Eﬁgmr"f%{“c?‘gﬁ,”°"’ st or[1110] src_| ';gh?';ﬁi%:“'
RRC, SRA, SWAP dst OorR[1110] dst |
‘ oPC] JP, CALL (Indirect)
[ast Jor[1110] dst] opc_| moDE ADC, ADD, AND, CP,
dst or [0] ast] 2,08 SEC SUB
[orc] e vALE o
MODE | opc LD
or[1110] src |
[opc_ | mooE] ADC, ADD. AND: :rs(: OR[1110| dst |
[ast | o] T, Tht xR ‘
[opc | LD
[mobE | opc | LD, LDE, LDEI, MODE
EraEz| Lot Lo ot
| dstisrc [OPC LD pos ‘ oFC »
| sreidst J]orR [1110] sc | DAy
DA,
‘
0P CALL
. DAy
[orc_] DINZ, JR DA

dst/CC | OPC

Two-Byte Instruction

THREE-BYTE INSTRUCTION

Figure 11. Instruction Formats

40

MNALT T FOoaory

INSTRUCTION SUMMARY

Addr Mode Opcode Flags Affected

Addr Mode Opcode Flags Affected
Instruction Byte Instruction Byte ————
and Operation dst (Hex) C ZSVDH and Operation dst src (Hex) C Z S VDH
ADC dst.src (Note 1) 10 * & % * 0 *» JR cc,dst RA [o] =
dst < dst + src + C if ccistrue, c=0-F
PC < PC + dst
ADD dst.src - (Note 1) (o]m] * % * x O & Range: + 127, — 128
dst < dst + src .
AND dst.src (Note 1) 50 — % * 0. — — LD dst.src rIm c ———-=--
dst < src r R r8
dst < dst AND src
' R r r9
CALL dst DA D6 —————— r=0-F
SP <SP -2 IRR D4 r X Cc7
@SP < PC: PC < dst X r D7
| E3
cek BF o= Irr rr F3
C<NOTC R R E4
CLRdst’ R BO —————— R IR E5
dst< 0 IR B1 R IM E6
IR M E7
COM dst R 60 — % * 0 — — R R F5
dst < NOT dst IR 61
LDCdstsrc r Irr (72—
CPdst.sre (Note 1) A * ok ok ok — — dst < src Irr r D2
dst — src .
LDCI dst,src Ir Irr C3 @ = — ———
DA dst R 40 * ok ok X — — dst < src IrrIr D3
dst < DA dst IR 41 Ferd Tirerr+ 1
geidjt ; Ig ¥ T***T T LDEdstec ror 82— — — — —
st—ost - : dst < src I r 92
‘353‘%“ 1 ITF? g? T***T T LDEdstsc It i 83 @ —————
_ st st- dst < src Irr Ir 93
DI : r<r+1;m<rm+1
IMR (7) <0 8F - — NOP FF —— == ——
DJINZ rast »RA A === OR dst,src (Note 1) 40 — % % 0 — —
rer- r=0-F dst < dst OR src '
fr#0 -
PC < PC + dst POP dst R 50 @@o— — — — — —
Range: +127, - 128 dst < @SP; IR 51
SP <SP + 1
El OF - = — — _ _
IMR (7) <1 PUSH src R 70 - — = — —
P<SP -1, « IR 1
INC dst ; E o ww S S ; @SP < src 7
dst < dst + 1 r=0-F RCF CF 0 — — — — —
R 20 C«0
R 21 RET A - ——
INCW dst RR A0 — ok k k — — PC < @SP;SP <SP + 2
dst<dst + 1 IR™ A1 AL dst R % PP
IRET . BF ok ok ok Kk * IR 91
FLAGS < @SP; SP <SP + 1 —
PC < @SP, SP <SP + 2: IMR (7) < 1 RLCast [=] g 1? * ook ow
JP cc.dst DA cD - —— . - —
ifccistrue c=0-F RR dst] IFI; E? * ok ok ox
PC < dst IRR 30 i

1

INSTRUCTION SUMMARY (Continued)

.

Addr Mode Opcode Flags Affected Addr Mode Opcode Flags Affected
Instruction ———— Byte ——mm Instruction —— Byte ——m
and Operation dst src (Hex) C Z S VDH and Operation dst src (Hex). CZ S VDH
RRC dst R Co * ok ok ok — — XOR dst,src (Note 1) BO — % * 0 — —
IR C1 dst < dst XOR src
SBC dst,src (Note 1) 30 * ok ok ok 1% NOTE: These instructions have an identical set of addfessing modes,
‘dst<dst<src<C which are encoded for brevity. The first opcode nibble is found in
SCF DF 1 the instruction set table above. The second nibble is expressed
----- symbolically by a O in this table, and its value is found in the
C<1 following table to the left of the applicable addressing mode pair.
SRA dst R DO * % * 0 — — For example, the opcode of an ADC instruction using the
L.m R Di addressing modes r (destination) and Ir (source) is 13.

SRP src . Im 31 - —— Addr Mode
RP < src : Lower

dst src Opcode Nibble
SUB dst,src (Note 1) 20 * Kk Kk % 1 %
dst < dst < src r r
SWAP dst R Fo X % % X —— r Ir

7 IR F1

L :
TCM dst,src (Note 1) 6] — % % 0 — —
(NOT dist) AND src R IR
TM dst,src (Note 1) 70 — % % 0 — — i M @
dst AND src IR IM

42

NOu 12982

R240 SIO
Serial I/0 Register
(FOH; Read/Write)

o n[eloslo]
—: SERIAL DATA (D, = LSB)

REGISTERS

‘ R241 TMR
Time Mode Register
(F1H; Read/Write)

ur MODES Lo = NO FUNCTION
nor U3E0"2 B0 1=L0ADT,
"’ our z °' 0 = DISABLE T, COUNT
INTERNAL CLOCK ou1 = u 1 = ENABLE T, COUNT
0 = NO FUNCTION
n MODES =
EXTERNAL CLOCK mvur =00 1=10ADT,
INPUT = 01 0 = DISABLE T, COUNT
1

TRI IGGEH INPUT = 10 : ENABLE T, COUNT

(NON-RETRIGGERABLE)
TRIGGER INPUT = 11
(RETRIGGERABLE)

R242 T1
Counter Timer 1 Register
(F2H; Read/Write)

[o:]0[os]0. [0, 0.[0. o,
T, INITIAL VALUE (WHEN WRITTEN)
(RANGE 1-256 DECIMAL 01-00 HEX)

T, CURRENT VALUE (WHEN READ)

R243 PRE1
Prescaler 1 Register
(F3H; Write Only)

L COUNT MODE

1= T, MODULO-N
0 = T, SINGLE-PASS

CLOCK SOURCE

1 = T, INTERNAL

0 = T, EXTERNAL
TIMING INPUT
(Tiy) MODE

PRESCALER MODULO
‘e (RANGE: 1-64 DECIMAL
01-00 HEX)

R244 TO
Counter/Timer 0 Register
(F4H; Read/Write)

[0 [04] o[04 [0s 0, 0 [oo]

Ty INITIAL VALUE (WHEN WRITTEN)
(RANGE: 1-256 DECIMAL 01-00 HEX)

To CURRENT VALUE (WHEN READ)

R245 PREO
Prescaler 0 Register
(F5H; Write Only)

LCOUNY MODE
0 = T, SINGLE-PASS
1 = To MODULO-N

RESERVED (MUST BE 0)

PRESCALER MODULO
(RANGE: 1-64 DECIMAL
01-00 HEX)

R246 P2M
Port 2 Mode Register
(F6H; Write Only)

CACACACACACACACY
P2,-P2, /0 DEFINITION
0 DEFINES BIT AS OUTPUT

1 DEFINES BIT AS INPUT

R247 P3M
Port 3 Mode Register
(F7H; Write Only)

0 PORT 2 PULL-UPS OPEN DRAIN
1 PORT 2 PULL-UPS ACTIVE

(MUST BE 0)
0 P3; = INPUT P35 = OUTPUT
1 P3; = DAVO/RDY0 P35 = RDYO/DAVO
00 P33 = INPUT P34 = OUTPUT
‘."1,} P33 = INPUT P3, = DM
11 RESERVED

0 P3; = INPUT (Tyy) P3g = OUTPUT (Toyp)
1 P3; = DAV2/RDY2 P3g = RDY2IDAVZ

0 P3p = INPUT P37 = QUTPUT
1P3 = SERIALIN P37 = SERIAL OUT
0 PARITY OFF

1 PARITY ON

Figure 12. Control Registers

43

7

REGISTERS

R248 PO1M

o Port 0 Register
(F8H; Write Only)

PO,-P0; MODE P0,-P0; MODE
QUTPUT = 00 00 = OUTPUT
INPUT = 01 01 = INPUT
As-Ays = 1X 1X = Ag-Ayy

EXTERNAL . STACK SELECTION
MEMORY TIMING 0 = EXTERNAL
NORMAL = 0 1 = INTERNAL
"EXTENDED = 1 .
RESERVED (MUST BE 0)

*ALWAYS EXTENDED TIMING AFTER RESET

R249 IPR
Interrupt Priority Register
(F9H; Write Only) ‘

RESERVED :— INTERRUPT GROUP PRIORITY

RESERVED = 000

IRQ3, IRQS5 PRIORITY. (GROUP A) C>A>B =001

0 = IRG5 > IRQ3 b~ A>B>C =010

1 = IRG3 > IRQ5 A>C>8 =01

IRQO, IRQ2 PRIORITY (GROUP B) 8282 Az

0 = IRG2 > IRQO B>A>C 2110

1 = IRQO > IRG2 RESERVED = 111
IRQ1, IRQ4 PRIORITY (GROUP C)
0 = IRQ1 > IRQ4

1 = IRQ4 > IRQ1

R250 IRQ
Interrupt Request Register
(FAH; Read/Write)

(- 10 [0 [ou [0 [oa o, oo

RESERVED (MUST BE 0) 1RQO = P3; INPUT (Dp = IRQO)
IRQ1 = P33 INPUT

IRQ2 = P34 INPUT

1RQ3 = P3¢ INPUT, SERIAL INPUT
IRQ4 = To, SERIAL OUTPUT

IRQ5 = Ty

R251 IMR
Interrupt Mask Register
(FBH; Read/Write)

[0:]2 [0 To. [0, [o; To, oo
L l 1 ENABLES IRQ0-IRQS
Q0)

(0o = IR

(MUST BE 0)
1 ENABLES INTERRUPTS

R252 FLAGS
Flag Register
(FCH; Read/Write)

‘_LUSEH FLAG F1
USER FLAG F2
HALF CARRY FLAG
DECIMAL ADJUST FLAG
OVERFLOW FLAG
- SIGN FLAG
ZERO FLAG

ARRY FLAG

R253 RP
Register Pointer
(FDp; Read/Write)

vyﬂ TQON’Y CARE

s

REGISTER
POINTER

R254 SPH
Stack Pointer
(FEH; Read/Write)

[0:]04os [0,] 0,0, o oo]
[STACK POINTER UPPER

BYTE (SPg-SPy5)

"R255 SPL
Stack Pointer
(FFH; Read/Write)

-

STACK POINTER LOWER
BYTE (SPo-SP;)

Figure 12. Control Registers (Continued)

AATLT T TOOrY

OPCODE MAP

Lower Nibble (Hex)
0 1 2 3 4 5 6 7 8 9 A B [+ D E F
6.5 6.5 6.5 6.5 10.5 10,5 10,5 10,5 6.5 6.5 12/10,5 | 12/10,0 6,5 12/10,0 6.5
0 DEC DEC ADD ADD | ADD ADD | ADD | ADD LD LD DJNZ JR LD JP INC
R IRy r1.r2 ridrp | RoRy | IR2Ry | RyIM | IRqIM | rq,R2 ra.Ry ri.RA | ccRA | r{IM | cc,DA r
6.5 " 65 6.5 6.5 10,5 10,5 10,5 10,5
1 RLC RLC ADC ADC ADC | ADC | ADC ADC
Ry IRy rir2 | rdra | RaRy | RaRy | RyM | IRyIM
6.5 6.5 6.5 6.5 10,5 10,5 10,5 10,5
2 INC INC suB suB suB SuB suB suB
Ry IRy rir2 | rdra | RoRy | IRaRy | RyM | IRyIM
8,0 6,1, 65 6,5 10,5 10,5 10,5 10,5 *
3 JP SRP SBC SBC SBC SBC SBC SBC
IRR4 M rire | ridra | RaRy | IR2Ry | RyIM | IRqIM
8.5 8,5 6.5 6.5 10,5 10,5 10,5 10,5
4 DA DA OR OR OR OR OR OR
Ry IRy r1.r2 ry.lro R2.R1 | IR2,R7 | RyIM | IRy;IM
10,5 10,5 6.5 6.5 10,5 10,5 105 10,5 ‘
5 POP POP AND | AND | AND AND | AND ‘| AND
R, IRy rrz | otz | Ra.Ry | IRaRy | RIM | IRyIM ,
6.5 6.5 6.5 6.5 10,5 10,5 105 10,5
6 com com TCM TCM ™M TCM TCM, ™M
Ry IRy r1.ro rylrp R2.Ry | IR2.Ry | RyIM | IRy IM
E 10/12.1 | 12/14.1 6.5 6.5 10,5 10,5 105 10.5
s 7 PUSH | PUSH ™ ™ ™ ™ ™ ™
E Ro IR ry,ro ry.lrp Ro.Ry | IR2.Ry | RyIM | IRy.IM
2 10,5 10,5 12,0 18,0 6.1
8 8 DECW | DECW LDE LDEI DI
% RR4 IRy rydrrg | gl
6.5 6.5 12,0 18,0 6,1
9 RL RL LDE LDEI El
Ry IRy rodrry | drolrry '
105 10,5 65 6.5 10,5 10,5 10,5 105 14,0
A INCW | INCW CcP cpP CcP cpP CcP CP RET
RR4 IRy rir2 | rdro | RoRy | IR2Ry | RpM | IRyIM !
6.5 6.5 6.5 6.5 10.5 10.5 10.5 10,5 16.0
B CLR CLR XOR XOR XOR XOR XOR XOR IRET
Ry IRy riap rq.lrp Ro.Ry | IR2.R1 | Ry.IM | IR{IM
6.5 6.5 12.0 18.0 10,5 6.5
c RRC RRC LDC LbCI LD RCF
R4 IRy rydrrp | drqdrrp r1.x.Rp
6.5 6.5 12,0 18,0 20,0 20,0 10,5 6,5
D SRA SRA LbC LDCI | CALL* CALL LD SCF
Ry IRy rolrry | lralrry IRR+ DA - | o, xRy
6.5 6.5 6.5 10.5 105 10.5 10.5 6,5
E RR RR LD LD LD b “ LD . CCF
Ry IRy r1JRs> | RaRy | IRoRy | RyIM | IRyIM
85 85 6.5 10.5 6,0
F SWAP | SWAP LD LD NOP
R IRy Iry.r2 Ra.IRy \J \J \J \J \ \i \J
— -~ \— [—
/ \/R,_/
2 3 2 3 1
Bytes per Instruction
LOWER
OPCODE
NIBBLE
EXECUTION PIPELINE Legend:
CYCLES 4 CYCLES R = 8-bit address
r = 4-bitaddress
UPPER 10,5 Rqorry = Dstaddress
OPCODE ——3» A| CP <——MNEMONIC Rporrz = Src address
NIBBLE AoR
2.1 Sequence:
Opcode, First Operand, Second Operand
FIRST SECOND
OPERAND OPERAND NOTE: The blank areas are not defined

“2-byte instruction fetch cycle appears as a 3-byte instruction

45

ABSOLUTE MAXIMUM RATINGS

Voltages on all pins with respect‘

OoGND.......o -0.3Vto +7.0V
Operating Ambient
Temperature See Ordering Information

Storage Temperature —65°Cto +150°C

Stresses greater than those listed under Absolute Maximum Ratings may
cause permanent damage to the device. This is a stress rating only;
operation of the device at any condition above those indicated in the
operational sections of these specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect
device reliability.

STANDARD TEST CONDITIONS

. The DC characteristics listed below apply for the following
standard test conditions, unless otherwise noted. All
voltages are referenced to GND. Positive current flows into
the referenced pin.

Standard conditions are:

B +4.75V< Vo< +5.25V
m GND =0V

® 0°C<Th< +70°C

FROM OUTPUT
UNDER TEST

‘SOP'I

The Ordering Information section lists package temperature
ranges and product numbers. Package drawings are in the
Package Information section. Refer to the Literature List for
additional documentation.

21K

Figure 13. Test Load 1

DC CHARACTERISTICS
Symbol Parameter Min Max Unit Condition
VcH Clock Input High Voltage 3.8 Vee \ Driven by External Clock Generator
Voo Clock Input Low Voltage -0.3 " 08 \ Driven by External Clock Generator
ViH Input High Voltage 2.0 Vee \Y
ViL Input Low Voltage -0.3 - 08 \
VRH Reset Input High Voltage 3.8 ‘VCC \
VRL Reset Input Low Voltage -03 0.8 \%
Von Output High Voltage 2.4 \Y loH = —250pA .
VoL Output Low Voltage 0.4 \ loL = +2.0mA
I Input Leakage -10 10 uA V<L Vn< +5.25V
loL Output Leakage -10 10 pA V<L Vi< +5.25V
IR - Reset lnput Current -50 KA Vo = +5.25V, VgL = OV
lcc Vce Supply Current 180 mA

1. When using extended memory timing add 2’TpCA

2. Timing numbers given are for minimum TpC.

3. See clock cycle time dependent characteristics table.

t Test Load 1.

RIW X
(1> <(13)—>|
PORT O,
o X X
o
)
PORT 1 Ag-A7 } Do-D7 IN }
I<-®-> <—@——> \ (9|
S _\T__.f o o]
s
(READ) <—@—>\ /
PORT 1 X Ao-A7 Dg-D7 OUT
| <—@->
— l< 1) W | Jfe——e—
DS a2,
(WRITE) N ‘ y
Figure 16. External I/0 or Memory Read/Write
.AC CHARACTERISTICS
External I/0O or Memory Read/Write Timing \
No. Symbol Parameter ' Min Max Notes*+°
1 TdA(AS) Address Valid to AS t Delay 35 2,3
2 TdAS(A) XS 1 to Address Float Delay 45 2,3
3 TdAS(DR) ZS 1 to Read Data Required Valid 220 1,2,3
4 TwAS &S Low Width 55 1,2,3
5 TdAz(DS) Address Floatto DS | 0
6 — TwDSR D3 (Read) Low Width 185 12,3
7 TwDSW DS (Write) Low Width 110 1,2,3
8 TdDSR(DR) D3 | to Read Data Required Valid 130 1,2,3
9 ThDR(DS) Read Data to DS + Hold Time 0
10 TdDS(A) DStto Address Active Delay 45 2,3
11 TdDS(AS) DS t to &S | Delay 55 2.3
- 12— TdR/W(AS) —— R/W Valid to &S 1 Delay 30 2,3
13, TdDS(R/W) DS 1 to R/W Not Valid' 35 2,3
‘14 TdDW(DSW) Write Data Valid to DS (Write) | Delay 35 23
15 TdDS(DW) DS t to'Write Data Not Valid Delay 45 2,3
16 TdA(DR) Address Valid to Read Data Required Valid 255 1,2,3
17 TdAS(DS) ZES 110 DS} Delay 55 2.3
NOTES:

° All timing references use 2.0 V for a logic *1” and 0.8 V for & logic "0”.

* All units in nanoseconds (ns).

47

CLOCK

<\

RGN
~—G)—
Figure 17. Additional Timing
AC CHARACTERISTICS 5
Additional Timing
No. Symbol Parameter Min Max Notes*
1 TpC Input Clock Period 80 1000 . 1
2 TC,TiIC Clock Input Rise And Fall Times 15 1
3 TwC Input Clock Width 26 1
4 TwTinL Time Input Low Width 70 2
5 — TwTinH Timer Input High Width 3TpC 2
6 TpTin ‘ Timer Input Period 8TpC 2
7 TTin,TfTin Timer Input Rise And Fall Times) 100 2
8a TwiL Interrupt Request Input Low Time 70 2,3
8 TwiL Interrupt Request Input Low Time 3TpC 2,4
9 TwiH Interrupt Request Input High Time 3TpC 2,3
NOTES: , '
1. Clock timing references uses 3.8 V for a logic *1”,and 0.8 V for 3. Interrupt request via Port 3 (P3)-P33).
alogic “0". 4. Interrupt request via Port 3 (P3q).
2. Timing reference uses 2.0 V for a logic "1” and 0.8 V for * Units in nanoseconds (ns).
alogic "0". .
Ao-A10 k X ADDRESS VALID
Do-D7 DON'T CARE x DATA IN VALID B
I
Figure 18. Memory Port Timing
AC CHARACTERISTICS
Memory Port Timing
No. Symbol Parameter Min Max Notes*
1 TdA(DI) Address Valid to Data Input Delay) 320 1,2
2 ThDI(A) Data In Hold time 0 ‘ 1
NOTES: k :
1. Test Load 2. *Units are nanoseconds unless otherwise specified.

2. This is a Clock-Cycle-Dependent For clock fr ies
other than the maximum, use the following formula: 5 TpC - 95

MNAALT T FOaOry

DATA IN XL DATA IN VALID X
O i O
- N :
O—1+— ®—
o \ 1
Figure 18a. Input Handshake
DATA OUT DATA OUT VALID
O—
oot N /
! O— | 0
% | U
9
R {
Figure 18b. Output Handshake
AC CHARACTERISTICS
Handshake Timing
No. Symbol Parameter Min Max Notes*
1 TsDI(DAV) Data In Setup Time 0
2 ThDI(DAV) Data In Hold time 160
3 TwDAV Data Available Width 120
4 TdDAVI{(RDY) DAV | Input to RDY | Delay 120 1,2
5— TdDAVOf(RDY) —— DAV | Output to RDY | Delay 0 1,3
6 TdDAVIr(RDY) DAV 1 Input to RDY 1 Delay 120 1,2
7 TdDAVOr(RDY) DAV t Output to RDY 1 Delay 0 ’ 1,3
8 TdDO(DAV) Data Out to DAV | Delay 30 1
9 TdRDY(DAV) Rdy ¢ Input to DAV 1 Delay 0 140 1
NOTES:
1. Testload 1 * Units in nanoseconds (ns).
2. Input handshake
3. Output handshake . .
1 All timing references use 2.0 V for a logic “1” and 0.8 V for
alogic "0".
CLOCK CYCLE TIME-DEPENDENT CHARACTERISTICS -
) Z8671-8 28671-8
Number Symbol Equation Number Symbol Equation
1 TdA(AS) TpC - 75 13 - TdDS(R/W) TpC - 65
2 TdAS(A) TpC - 55 14 TdDW(DSW) TpC - 75
3 TdAS(DR) 4TpC - 140* 15 TdDS(DW) TpC - 55
4 TWAS TpC - 45 16 TdA(DR) 5TpC - 215*
6 TwDSR 3TpC - 125* 17 TdAS(DS) TpC - 45
7 TwDSW 2TpC - 90*
8 TdDSR(DR) 3TpC - 175*
10 Td(DS)A TpC - 55
11 TdDS(AS) TpC - 55
12 TdR/W(AS) TpC - 75

* Add 2TpC when using extended memory timing

49

Product Specification

28681/82 Z8°

ROMless MCU

June 1987

FEATURES

m Complete microcomputer, 24 1/O lines, and up to 64K
bytes of addressable external space each for program
and data memory.

m 143-byte register file, including 124 general-purpose
registers, 3 /0O port registers, and 16 status and control
registers. N

m Vectored, priority interrupts for 1/0, counter/timers, and
UART.

m On-chip oscillator that accepts crystal or external clock
drive. .

m Full-duplex UART and two programmable 8-bit
counter/timers, each with a 6-bit programmable
prescaler.

m Register Pointer so that short, fast instructions can
access any one of the nine working-register groups.

m Single + 5V power supply—all I/O pins TTL compatible.

W Z8681/82 available in 8 MHz. Z8681 also available
in 12 and 16 MHz.

GENERAL DESCRIPTION

The Z8681 and 78682 are ROMless versions of the Z8
single-chip microcomputer. The Z8682 is usually more cost
effective. These products differ only slightly and can be
used interchangeably with proper system design to provide
maximum flexibility in meeting price and delivery needs.

——| RESET +5V je—
"MA':g ~«— RW GND je——0
CONTROL | «—] DS XTAL1 j——
— CLOCK
~—1 AS XTAL2 p—>
~—»] PO, P2) je—>
~«——»] PO, P2, je—>
1 PO, P2, le—»
PORT 0 P2 PORT 2
(NIBBLE | <] P0; s |<—> | (BIT PRO-
PROGRAMMABLE) | o P2, <«—> [GRAMMABLE)
110 OR Ag-Ass PO, 4 o
<> P0s zg681/182 "% [+
<«—»| PO; MCU P2 le—>
<] PO, P2; le—>
<] P1y P3) je—
<] P1, P3; je—
-] P1 P3; je——o0o
PORT 1 : : PORT 3
(BYTE | <] P13 P3; f— | SERIAL AND
PROGRAMMABI < PARALLEL 110
ADOAk[E: Pl P34 |—> | AND CONTROL
<] P15 P3; p—>
<] Pig P3; —>
<] P1; P3; b—>

Figure 1. Pin Functions

The Z8681/82 offers all the outstanding features of the Z8
family architecture except an on-chip program ROM. Use of
external memory rather than a preprogrammed ROM

‘enables this 28 microcomputer to be used in low volume

applications or where code flexibility is required.

N\

+5v[]1 40 [] P3,
xTaL2 [2 39 [] s,
xTAL1 [3 38 [] p2,
N Py, [4 3t] p2
P3, [5 36 [] P2,
RESET [6 35 [] P2,
RW [7 3a[] r2,
os []s 33[] r2,
As e 32[] p2,
P3; [10 zses1s2 31 | P2
GND [11 MCU 3o [] e,
P3, [12 29 [p3,
Po, [13 28] P1,
po, [J14 7 [P,
Po, [] 15 ‘ 26 [P15
Po, [] 16 25 [] P,
po, [17 24 [p1y
Pos [] 18 23] P1,
Pog []'19 22] Py,
po, [(J20 21] P,

Figure 2a. 40-pin Dual-In-Line Package (DIP),
Pin Assignments

50

The Z8681/82 can provide up to 16 output address lines,
thus permitting an address space of up to 64K bytes of data
or program memory. Eight address outputs (ADg-AD7) are
provided by a multiplexed, 8-bit, Address/Data bus. The
remaining 8 bits can be provided by the software
configuration of Port O to output address bits Ag-A1s.

Available address space can be doubled (up to 128K bytes
for the Z8681 and 124K bytes for the Z8682) by
programming bit 4 of Port 3 (P3,4) to act as a data memory
select output (DM). The two states of DM together with the
16 address outputs can define separate data and memory
address spaces of up to 64K/62Kbytes each.

There are 143 bytes of RAM located on-chip and organized
as aregister file of 124 general-purpose registers, 16 control
and status registers, and three 1/0O port registers. This
register file can be divided into nine groups of 16 working
registers each. Configuring the register file in this manner
allows the use of short format instructions; in addition, any of
the individual registers can be accessed directly.

The pin functions and the pin assignments of the
28681/82 40— and 44—pin packages are illustrated in
Figures 1 and 2, respectively.

%) 'L

& A FES e e

/' 6 5 4 3 2 1 44 43 42 &1 40\
RESET |7 39 | NC
RIW |8 38 | P24
S E 37 § P23
AS |10 36 | P2,
P3s | 11 35 | P2,
GND | 12 z,gg%‘ 34 | P2
P3; | 13 33 | P33
PO, | 14 32 | P34
POy | 15 31| Py
PO, | 16 30 | P1g
NeC |17 29 | P1s

\, 1819202122232425262728/

R SR g A AR

" Figure 2b. 44-pin Chip Carrier,
Pin Assignments

OUTPUT INPUT Ve GND XTAL AS DS RiW RESET
- MACHINE TIMING AND
PORT3 ¢ INSTRUCTION CONTROL
UART K ALU
FLAGS '?J.’é"ﬁga‘”
COUNTER/ 2048 x 8-BIT
“TIMERS
() REGISTER {}
POINTER]
REGISTER FILE PROGRAM
INTERRUPT 124 x 8BIT _] counter
CONTROL
PORT 2 . PORT 0 PORT 1

I

BIT PROG RAMMABLE)

(—
SO0

ADDRESS OR 1/0
(NIBBLE PROGRAMMABLE)

ADDRESS/DATA OR 110
(BYTE PROGRAMMABLE)

~~
Z-BUS WHEN USED AS
ADDRESS/DATA BUS

Figure 3. Functional Block Diagram

51

ARCHITECTURE

78681/82 architecture is characterized by a flexible /O
scheme, an efficient register and address space structure
and a number of ancillary features that are helpful in many
applications.

Microcomputer applications démand powerful 1/0O
capabilities. The Z8681/82 fulfills this with 24 pins available
for input and output. These lines are' grouped into three
ports of eight lines each and are configurable under
software control to provide timing, status signals, serial or
parallel I/O with or without handshake, and an Address bus
for interfacing external memory.

Three basic address spaces are available: program

memory, data memory and the register file (internal). The
143-byte random-access register file is composed of 124
general-purpose registers, three 1/O port registers, and 16
control and status registers. :

To unburden the program from coping with real-time
problems such as serial data communication and
counting/timing, an asynchronous receiver/transmitter
(UART) and two counter/timers with a large number of
user-selectable modes are offered on-chip, Hardware
support for the UART is minimized because one of the
on-chip timers supplies the bit rate. Figure 3 shows the
78681/82 block diagram.

PIN DESCRIPTION

AS. Address Strobe (output, active Low). Address Strobe is
pulsed once at the beginning of each machine cycle.
Addresses output via Port 1 for all external program or data
memory transfers are valid at the trailing edge of AS.

DS. Data Strobe (output, active Low). Data Strobe i$
activated once for each external memory transfer.

P0g-P07, P2¢-P27, P3,-P35. //O Port Lines (input/outputs,
TTL-compatible). These 24 lines are divided into three 8-bit
1/0 ports that can be configured under program control for
1/0 or external memory interface (Figure 3).

P1¢-P17. Address/Data Port (bidirectional). Multiplexed

address (Ag-A7) and data (Do-D7) lines used to interface with

program and data memory.

RESET . Reset (input, active Low). RESET initializes the
78681/82. After RESET the 78681 is in the extended
memory mode. When RESET. is deactivated, program
execution begins from program location 000Cy for the
28681 and 08124 for the Z8682.

R/W. Read/Write (output). RIW is Low when the Z8681/82 is
writing to external program or data memory.

XTAL1, XTAL2. Crystal 1, Crystal 2 (time-base input and
output). These pins connect a parallel-resonant crystal to the
on-chip clock oscillator and buffer.

SUMMARY OF 28681 AND 28682 DIFFERENCES

Feature Z8681 28682
Address of first instruction executed after Reset 12 2066
Addressable memory space 0-64K 2K-64K
Address of interrupt vectors 0-11 . 2048-2065
Reset input high voltage TTL levels * 7.35-8.0V

Port 0 configuration after Reset

External memory timing start-up configurations

Input, float after reset. Can be
programmed as Address bits.

Extended Timing

Output, configured as Address bit
Ag-A1s.

Normal Timing

Interrupt vectors 2 byte vectors point directly to service 2 byte vectors in internal ROM point to 3
routines. © byte Jump instructions, which point to
service routines.
Interrupt response time 26 clocks 36 clocks
*8.0V V) max.

52

ADDRESS SPACES

Program Memory*. The Z8681/82 addresses 64K/62K
bytes of external program memory space (Figure 4).

For the 28681, the first 12 bytes of program memory are.

reserved for the interrupt vectors. These locations contain
six 16-bit vectors that correspond to the six available
interrupts. Program execution begins at location 000CH
' after a reset. S

The Z8682 has six 24-bit interrupt vectors beginning at
address 08004. The vectors consist of Jump Absolute
instructions. After a reset, program execution begins at
location 0812 for the Z8682.

Data Memory*. The Z8681/82 can address 64K/62K bytes

" of external data memory. External data memory may be
included with or_separated from the external program
memory space. DM, an optional I/O function that can be
programmed to appear on pin P34, is used to distinguish
between data and program memory space.

Register File. The 143-byte register file includes three /O

port registers (RO, R2, R3), 124 general-purpose registers
(R4-R127) and 16 control and status registers (R240-R255).
These registers are assigned the address locations shownin
Figure 5.

78681/82 instructions can access registers directly or
indirectly with an 8-bit address field. This also allows short
4-bit register addressing using the Register Pointer (one of
the control registers). In the 4-bit mode, the register file is
divided into nine working-register groups, each occupying
16 contiguous locations (Figure 5). The Register Pointer
addresses the starting location of the active working-register
group (Figure 6).

Stacks. Either the internal register file or the external data
memory can be used for the stack. A 16-bit Stack Pointer
(R254 and R255) is used for the external stack, which can
reside anywhere in data memory. An 8-bit Stack Pointer
(R255) is used for the internal stack that resides within the
124 general-purpose registers (R4-R127).

28681 28682
65536 65536 -
PROGRAM
MEMORY
LOCATION OF FIRST
PROGRAM BYTE OF INSTRUCTION
MEMORY |, _~EXECUTED AFTER
—————— RESET (28682)
41 (812w) 2066
— has — @1 2088
— Ras —] .
3 BYTE INTERRUPT
— IRQ3 —]-<«— JUMP INSTRUCTIONS
— R@2]
— wra1
L PP
2047
NOT
LOCATION OF FIRST
BYTE OF INSTRUCTION | — — __ _ = ADDRESSABLE
EXECUTED AFTER ™
RESET (28681) :?
L IRQS —%
L IRQ4 - -
INTERRUPT 7
(Lows‘{agg;'?:) [Ras s INTERRUPT
-
Q2 —1s VECTORS _
INTERRUPT 4
VECTOR Rt -
(UPPER BYTE) 2
— IRQO — :,

Figure 4. Z8681/82 Program Memory Map

*This feature differs in the Z8681 and Z8682.

DEC HEX IDENTIFIERS
255 STACK POINTER (BITS 7-0) FF SPL
254 . STACK POINTER (BITS 15-8) FE SPH
253 REGISTER POINTER FD RP
252 PROGRAM CONTROL FLAGS FC FLAGS
251 INTERRUPT MASK REGISTER FB IMR
250 INTERRUPT REQUEST REGISTER FA IRQ
249 INTERRUPT PRIORITY REGISTER F9 IPR
248 PORTS 0-1 MODE F8 POIM
247 PORT 3 MODE F7 P3M
246 PORT 2 MODE F6 P2M

. 245 TO PRESCALER Fs PREO
244 TIMER/ICOUNTER 0 F4 To
243 T1 PRESCALER F3 PRE1
242 TIMERICOUNTER 1 F2 T
241 TIMER MODE F1. TMR
240 - SERIAL O Fo slo

NOT
IMPLEMENTED
127 7F
GENERAL-PURPOSE
REGISTERS
4 04
3 PORT 3 03 P3
2 PORT 2 02 P2
1 PORT 1 o1 P1
0 PORT 0 00 PO

Figure 5. The Register File

P ——

{ 1 - 255
L mhrs | 0000 253
l 240
THE UPPER NIBBLE OF THE REGISTER
FILE ADDRESS PROVIDED BY THE
REGISTER POINTER SPECIFIES THE
ACTIVE WORKING-REGISTER GROUP.
127
- — -
- — -
= —
= THE LOWER
NIBBLE OF
THE REGISTER
. FILE ADDRESS
| SRasswone L rowbesy
THE INSTRUCTION
POINTS TO THE
SPECIFIED
L REGISTER.
- — -
15
——— -,
1/0 PORTS °

Figure 6. The Register Pointer

SERIAL INPUT/OUTPUT

Port 3 lines P3y and P37 can be programmed as serial I/0
lines for full-duplex serial asynchronous receiver/transmitter
operation. The bit rate is controlled by Counter/Timer 0.

The Z8681/82 automatically adds a start bit and two stop
bits. to transmitted data (Figure 7). Odd parity is also
available as an option. Eight data bits are always

[sP[sP] ;] ps[0s] Dd] p,] D,| D, [, sT]

I— START BIT
EIGHT DATA BITS
TWO STOP BITS

Transmitted Data
(No Parity)

[sp]sP] P [s]Ds[0] Ds] 0.] 04 [0] s7]

LSTART BIT

SEVEN DATA BITS
ODD PARITY
TWO STOP BITS

Transmitted Data
(With Parity)

transmitted, regardless of parity selection. If parity is
enabled, the eighth data bit is used as the odd parity bit. An
interrupt request (IRQ4) is generated on all transmitted
characters.

Received data must have a start bit, eight data bits, and at
least one stop bit. If parity is on, bit 7 of the received data is
replaced by a parity error flag. Received characters
generate the IRQ3 interrupt request.

[or[oa oo oalo: el 57]
LSTART BIT

EIGHT DATA BITS
ONE STOP BIT

. Received Data
(No Parity)

[sp] e [os]Ds[04]05] ;] 0,] o] sT]
l—snnran

SEVEN DATA BITS
PARITY ERROR FLAG
ONE STOP BIT

Received Data
(With Parity)

Figure 7. Serial Data Formats

COUNTER/TIMERS

The Z8681/82 contains two 8-bit programmable
counter/timers (To and T4), each driven by its own 6-bit
programmable prescaler. The T4 prescaler can be driven by
internal or external clock sources; however, the Tg prescaler
is driven by the internal clock only.

The 6-bit prescalers can divide the input frequency of the
clock source by any number from 1 to 64. Each prescaler
drives its counter, which decrements the value (1 to 256) that
has been loaded into the counter. When the counter reaches
the end of count, a timer interrupt request—IRQ4 (Tp) or
IRQ5 (T1)—is generated.

The counters can be started, stopped, restarted to continue,
or restarted from the initial value. The counters can also be
programmed to stop upon reaching zero (single-pass

mode) or to automatically reload the initial value and
continue counting (modulo-n continuous mode). The
counters, but not the prescalers, can be read any time
without disturbing their value or count mode. ,

The clock source for T is user-definable; it can be either the
internal microprocessor clock divided by four, or an external
signal input via Port 3. The Timer Mode register configures
the external timer input as an external clock, a trigger input
that can be retriggerable or nonretriggerable, or as a gate
input for the internal clock. The counter/timers can be
programmably cascaded by connecting the Ty output to the
input of Ty. Port 3 line P3¢ also serves as a timer output
(TouT) through which T, T¢ or the internal clock can be
output.)

I1/0 PORTS

The Z8681/82 has 24 lines available for input and output.

These lines are grouped into three ports of eight lines each .

and are configurable as input, output or address. Under
software control, the ports can be programmed to provide

address outputs, timing, status signals, serial 1/O, and
parallel I/O with or without handshake. All ports have active
pull-ups and pull-downs compatible with TTL loads.

Port 1 is a dedicated Z-BUS compatible memory interface.
The operations of Port 1 are supported by the Address
Strobe (AS) and Data Strobe (DS) lines, and by the
Read/Write (R/W) and Data Memory (DM) control lines. The
low-order program and data memory addresses (Ag-A7) are
output through Port 1 (Figure 8) and are multiplexed with
data infout (Dg-D7). Instruction fetch and data memory
read/write operations are done through this port.

Port 1 cannot be used as a register nor can a handshake
mode be used with this port.

Both the Z8681 and Z8682 wake up with the 8 bits of Port 1
configured as address outputs for external memory. If more
than eight address lines are required with the Z8681,
additional lines can be obtained by programming Port O bits
as address bits. The least-significant four bits of Port 0 can

be configured to supply address bits Ag-A11 for 4K byte
addressing or both nibbles of Port 0 can be configured to

supply address bits Ag-A15 for 64K byte addressing.

PORT 1
(IO OR ADp-AD7
TO EXTERNAL
z8681/82 MEMORY
MCcu
Figure 8. Port 1

Port 0* can be programmed as a nibble I/O port, or as an
address port for interfacing external memory (Figure 9).
When used as an I/O port, Port 0 can be placed under
handshake control. In this configuration, Port 3 lines P3,
and P35 are used as the handshake controls DAV and
RDY(. Handshake signal assignment is dictated by the I/O
direction of the upper nibble P04-PO7.

For external memory references, Port 0 can provide address
bits Ag-A¢1 (lower nibble) or Ag-Ays (lower and upper
nibbles) depending on the required address space. If the
address range requires 12 bits or less, the upper nibble of
Port 0 can be programmed independently as I/O while the
lower nibble is used for addressing.

'In the Z8681*, Port 0 lines float after reset; their logic state is
unknown until the execution of an initialization routine that
configures Port 0.

*This feature differs in the 78681 and Z8682.

Such an initialization routine must reside within the first 256
bytes of executable code and must be physically mapped
into memory by forcing the Port 0 address lines to a known
state (Figure 10). The proper port initialization sequence is:

1. Write initial address (Ag-A1s5) of initialization routine to
Port 0 address lines.

2. Configure Port 0 Mode register to output Ag-Ays (or
Ag-A11). '

To permit the use of slow memory, an automatic wait mode of
two oscillator clock cycles is configured for the bus timing of
the Z8681 after each reset. The initialization routine could
include reconfiguration to eliminate this extended timing
mode.

55

The following example illustrates the manner in which an
initialization routine can be mapped in a Z8681 system with
4K of memory.

Example. In Figure 10, the initialization routine is mapped to
the first 256 bytes of program memory. Pull-down resistors
maintain the address lines at a logic 0 level when these lines
are floating. The leakage current caused by fanout must be
taken into consideration when selecting the value of the
pulldown resistors. The resistor value must be large enough
to allow the Port 0 output driver to pull the line to a logic 1.
Generally, pulldown resistors are incompatible with TTL
loads. If Port O drives into TTL input loads (I.ow = 1.6 mA)
the external resistors should be tied to Vgc and the
initialization routine put in address space FFOOy-FFFF.

In the Z8682*, Port 0 lines are configured as address lines
Ag-Aq5 after a Reset. If one or both nibbles are needed for

1/0 operation;, they must be configured by writing to the Port
0 Mode register. The Z8682 is in the fast memory timing
modeé after Reset, so the initialization routine must be in fast
memory.

P04-PO7
P0p-P03

PORT 0

(/0 OR Ag-A15

Zz8681/82
MCU

i

i

DAVo AND RDYq

} HANDSHAKE CONTROLS
(P3; AND P3;)

Figure 9. Port 0

PORT1

(

Z8681/82
mMcu

PROGRAM
MEMORY

(4K BYTES)

1/2 PORT 0 {

W\~
1H—AAA

—AAA
W
11—

I
lll‘—'\M—q

Figure 10. Port 0 Address Lines Tied to Logic 0

Port 2 bits can be programmed independently as input or
output (Figure 11). This port is always available for 1/O
operations. In addition, Port 2 can be configured to provide
open-drain outputs.

Like Port 0, Port 2 may also be placed under handshake
+ control. In this configuration, Port 3 lines P34 and P3¢ are
used as the handshake controls lines DAV, and RDY». The
handshake signal assignment for Port 3 lines P31 and P3g is
dictated by the direction (input or output) assigned to bit 7 of
Port 2.

P2g

PORT 2(l/0)
28681/82
MCU
P27

} HANDSHAKE CONTROLS

P

DAV AND RDY2
(P3; AND P3g)

Figure 11. Port 2

=

Port 3 lines can be configured as I/0 or control lines (Figure
12). In either case, the direction of the eight lines is fixed as
four input (P30-P33) and four output (P34-P37). For serial /0,
lines P3g and P37 are programmed as serial in and serial
out, respectively.

Port 3 can also provide the following control functions:
handshake for Ports 0 and 2 (DAV and RDY); four external
interrupt request signals (IRQO-IRQ3); timer input and
output signals (Tiy and Toyt) and Data Memory Select
(DM). .

*This feature differs in the Z8681 and Z8682.

: PORT 3
28681182 (/0 OR CONTROL)
Mcu

Hit

Figure 12. Port 3

56 - . -

INTERRUPTS*

The Z8681/82 allows six different interrupts from eight
sources: the four Port 3 lines P3p-P33, Serial In, Serial Out,
and the two counter/timers. These interrupts are both
maskable and prioritized. The Interrupt Mask register
globally or individually enables or disables the six interrupt
requests. When more than one interrupt is pending,
priorities are resolved by a programmable priority encoder
that is controlled by the Interrupt Priority register.

All Z8681 and Z8682 interrupts are vectored through
locations in program memory. When an interrupt request is
granted, an interrupt machine cycleis entered. This disables
all subsequent interrupts, saves the Program Counter and
status flags, and accesses the program memory vector
location reserved for that interrupt. In the Z8681, this
memory location and the next byte contain the 16-bit
address of the interrupt service routine for that particular
interrupt request. The Z8681 takes 63 crystal cycles to
enter an interrupt subroutine.

The Z8682 has a small internal ROM that contains six 2-byte
interrupt vectors pointing to addresses 2048-2065, where
3-byte jump absolute instructions are located (Figure 4 and
Table 1). These jump instructions each contain a 1-byte

opcode and a 2-byte starting address for the interrupt
service routine. .

Table 1. Z8682 Interrupt Processing

Hex ~ Contains Jump Instruction and

Address Subroutine Address For
800-802 IRQO
803-805 IRQ1
806-808 IRQ2
809-80B ! IRQ3
80C-80E IRQ4
80F-811 IRQ5
Polled interrupt systems are also supported. To

accommodate a polled structure, any or all of the interrupt
inputs can be masked and the Interrupt Request register
polled to determine which of the interrupt requests needs
service.

- CLOCK

The on-chip oscillator has a high-gain, parallel-resonant
ampilifier for connection to a crystal or to any suitable
external clock source (XTAL1 = Input, XTAL2 = Output).

The crystal source is connected across XTAL1 and XTAL2,
using the recommended capacitance (Cp = 15 pf
maximum) from each pin to ground. The specifications for
the crystal are as follows:

AT cut, parallel-resonant
Fundamental type

Series resistance, Rg < 100Q

For 8682, 8 MHz maximum

For Z8681—-12, 16 MHz maximum

78681/28682 INTERCHANGEABILITY

Although the Z8681 and Z8682 have minor differences, a
system can be designed for compatibility with both
ROMless versions. To achieve interchangeability, the design
must take into account the special requirements of each
device in the external interface, initialization, and memory

mapping.

7.35T0 8.0V v
RH
\
\
| W Vi
3.8V MIN
4 6
XTAL XTAL
[~ cLks > cks ™™
MAX MIN

Figure 13. Z8682 RESET Pin Input Waveform

*This feature differs in the Z8681 and Z8682.

External Interface. The Z8682 requires a 7.5V positive
logic level on the RESET pin for at least 6 clock periods
immediately following reset, as shown in Figure 13. The
28681 requires a 3.8V or higher positive logic level, but is
compatible with the 28682 RESET waveform. Figure 14
shows a simple circuit for generating the 7.5V level.

+V

7.35-80V

OPEN
COLLECTOR
TTL GATE

Figure 14. RESET Circuit

57

Initialization. The Z8681 wakes up after reset with Port 0
configured as an input, which means Port O lines are floating
in a high-impedance state. Because of this pullup or
pulldown, resistors must be attached to Port O lines to force
them to.a valid logic level until Port O is configured as an
address port.

Port O initialization is discussed in the section on ports. An
example of an initialization routine for Z8681/28682
compatibility is shown in Table 2. Only the Z8681 need
execute this program.

Table 2. Initialization Routine

Address Opcodes Instruction Comments

000C E60000 LDPO#%00 SetAg-Aisto0.

000F E6F896 LDPO1M#%96 Configure Port0 as
Ag-Aqs. Eliminate
extended memory

timing.
0012 8D0812 JP START Execute application
ADDRESS program.

65536
APPLICATION
PROGRAM
2066 A.P. PROG START ADDRESS
2063 JP IRQ5
2060 JP IRQ4
2057] JP IRQ3
2054 | JP IRQ2
2051 JP IRQ1
2048 JP IRQO
2047
NOT USED
21
18 JP %0812
15 LD PO1M #%96
12 LD PO #%00
10 IRQ5
8 IRQ4
6 IRQ3
4 1RQ2
2 IRQ1
0 IRQO

FFFFy

8124

8004
7FFH

154

Ox

28682 VECTORS
JUMP INSTRUCTIONS

28681
INITIALIZATION

28681
VECTORS

Figure 15. Z8681/82 Logical Program Memory Mapping

Memory Mapping. The Z8681 and Z8682 lower memory
boundaries are located at 0 and 2048, respectively. A single
program ROM can be used with either product if the logical
program memory map shown in Figure 15 is followed. The
78681 vectors and initialization routine must be starting at

ATFF 6K

address 0 and the Z8682 3-byte vectors (jump instructions)
must be at address 2048 and higher. Addressesin the range
21-2047 are not used. Figure 16 shows practical schemes
forimplementing this memory map using 4K and 2K ROMs.

CHIP SELECT = (Ay2 + A11) * Ajz * Ag * Ags
FFF

APPLICATION
PROGRAM
" 1015
1014
NOT USED
1000
FFF 4K
APPLICATION
PROGRAM

812
811

28682'VECTORS

812
811

800
7FF =«

NOT USED

15
14

28681 VECTORS

800
-TFF

15
14

AND INITIALIZATION

LOGICAL
MEMORY

PHYSICAL
MEMORY

a. Logical to Physical Memory Mapping for 4K ROM

FFF

APPLICATION
PROGRAM

835
834

NOT USED

820.
81F

APPLICATION

PROGRAM

812
811

28682 VECTORS

800

CHIP SELECT = Ay + Atz * Ays - Ana * Ars

A1 3— As TO ROM
As

7FF

35
34

7FF
NOT USED

15
14

28681 VECTORS

20
1F

12
1

AND INITIALIZATION

LOGICAL
MEMORY

PHYSICAL
MEMORY

b. Logical to Physicél Memory Mapping for 2K ROM

Figure 16. Practical Schemes for Implementing Z8681 and Z8682 Compatible Memory Map

59

INSTRUCTION SET ‘NOTATION

Addressing Modes. The following notation is used to

describe the addressing modes and instruction operations

as shown in the instruction summary.

!

Assignment of a value is indicated by the symbol “<" For
example,

dst < dst + src

IRR ?g;r:ggzgéster pair or indirect working-register indicates that the source dgta is addgd tq the de§tination
" . . . data and the result is stored in‘the destination location. The
Irr Indirect working-register pair only notation “addr(n)” is used to refer to bit “n” of a given
X Indexed address location. For example ' °
DA Direct address ’ '
RA Relative address dst (7)
:;A ::?;rggfe'ft; working-register address refers to bit 7 of the destination operand.
r Working-register address only :) .))
IR Indirect-register or indirect working-register :Iags. Control Register R252 contains the following six
address . ags:
Ir Indirect working-register address only C Carry flag
RR Register pair or working register pair address z Zero flag
Symbols. The following symbols are used in describingthe S Sign flag
instruction set.’ v Ovefflow flag
. D Decimal-adjust flag
dst Destination location or contents H Half-carry flag
z;c gzl:;z (I)?]Cs 332 ;;:ﬁgi?ms Affected flags are indicated by:
@ Indirect address prefix 0 Cleared to zero
SP - Stack pointer (control registers 254-255) 1 Settoone - ‘
PC Program counter * Set or cleared according to operation
FLAGS Flag register (control register 252) —_ Unaffected
RP Register pointer (control register 253) ' X Undefined
IMR Interrupt mask register (control register 251)
CONDITION CODES
Value Mnemonic Meaning Flags Set
1000 Always true —
0111 C Carry C=1 '
1111 . NC No carry C=0
0110 z Zero Z=1
1110 Nz Not zero Z=0
1101 PL Plus S=0
0101 Mi Minus S=1
0100 : ov Overflow V=1
1100 NOV No overflow - V=0
0110 EQ Equal Z=1
1110 NE Notequal Z=0
1001 GE Greater than or equal (SXORV) =0
0001 LT Less than (SXORV) =1
1010 GT Greater than [ZOR(SXORV)] =0
0010 © LE Less than or equal [ZOR (SXORV)] = 1
1111 UGE Unsigned greater than or equal C=0
0111 uLT Unsigned less than C=1
1011 UGT Unsigned greater than (C=0ANDZ=0)=1
0011 - ULE Unsigned less than or equal (CORZ) =1
0000 Never true —

60

INSTRUCTION FORMATS

CCF, DI, El, IRET, NOP,

RCF, RET, SCF
INC
One-Byte Instruction
l OPC l MdDE | CLR, CPL, DA..DEC. OPC l MODE ADC, ADD, AND, CP,
| dstisrc] orR [1 171 o] dstsrc | gﬁgx":tch:_’é?m‘_’op' sre orR[1110] src | '.,'.g'l“?ﬁ’us‘sx%nsus' '
RRC, SRA, SWAP dst OR[1110] dst |
[OPC] JP, CALL (Indirect)
| dst | OR[1110] dst | opc | moDE ADC, ADD, AND, CP,
dst or[1110] dst | #g.uo%sax%nsus,
[orc] sap VALE
MODE | oPC LD
or[1110] sc |
[opc_ | wooe | ADCAADDLAN, :'s‘: OR[1110] dst |
Cost | oo] i T von
MODE | OPC LD
[mopE | opc | LD, LOE, LDE), dstisrs | x
Idsllsrc I OoPC LD
l srcldst OR [1110] sc] £e DLUOPC P
DA,
[ast T opc | D
OPC CALL
DA,
[asucc | opc | DJUNZ, JR DA,
Two-Byte Instruction Three-Byte Instruction
Figure 17. Instruction Formats
INSTRUCTION SUMMARY
Addr Mode Opcode Flags Affected Addr Mode Opcode Flags Affected
Instruction Byte —— Instruction ——— Byte ———
and Operation dst src (Hex) CZSVDH and Operation dst src (Hex) € Z S VDH
ADC dst,src (Note 1) 10 * % % * O % DEC dst R 00 — %k k k — —
dst < dst + src + C dst < dst - 1 IR 01
ADD dst,src (Note 1) (o] * % % x 0 * DECW dst RR 80 — ok ok k — —
dst < dst + src dst < dst — 1 IR 81
AND dst,src (Note 1) 50 — % % 0 — — DI
dst < dst AND src IMR (7)< 0 8F @ - == — — —
CALL dst DA D6 - DJNZ rdst RA A —— - — = —
SP<SP -2 IRR D4 r<r-1 r=0-F
@SP < PC; PC < dst ifr£0
i BF v Ra'?wc; +P(1:2; d—St128
C<NOTC ge:)
CLR dst R BO —————— R . F o
dst<0 IR B1
CoM dst R 60 —xx0—— MO ' T
dst < NOT dst IR 61 R 20
CP dst,src (Note 1) AD * ok ok K — — IR 21
dst - src INCW dist RR AD — ok ok ok — —
DA dst R . 40 * % * X — — dst < dst + 1 IR Al)
dst < DA dst IR -4

61

"INSTRUCTION SUMMARY (C

ontinued)

. Addr Mode Opcode Flags Affected Addr Mode Opcode Flags Affected
Instruction Byte ——m—— Instruction Byte ——
and Operation dst src (Hexy CZSVDH and Operation dst (Hex) C Z S VDH
IRET o BF * ok ok ok ok ok RLCdst [—]R 10 * ok ok ok — —
FLAGS <~ @SP;SP <SP + 1 ; Lo p 11
PC < @SP;SP <SP + 2;IMR(7) < 1

RR dst —] R EO * ok ok ok — —
JP co dst DA D ———— IR Et
ifccis true c=0-F :

PC < dst IRR 30 RRC dst g g? ok ok ok ——
JR cc,dst RA B - -
if ccis true, c=0-F SBC dst,src (Note 1) 30 L

PC < PC + dst dst<dst<src«<C '

Range: +127, - 128 SCF DF 1
LD dst,src rim C ————— C<1
dst < src r R 8 SRA dst R DO % % % 0 ——
R 9 9 R D1
r=0-F .
r X C7 SRP src 31 - —
X I D7 RP < src !
ro E3 SUB dst,src (Note) 20 % % % % 1 %
Ir.r 3 dst < dst < src
R R E4
R IR ES5 SWAP dst R FO X % * X ——
R M E6 —7 IR F1
:ﬁ 'g’ ‘s; TCM dst,src (Note) 60 — % % 0 — —
(NOT dst) AND src '
LDC dst src ror gg _____ TM dst src (Notel) 70 — % % 0 — —
dst < src Irr r dst AND src
:D‘ﬂdSt'Sm I" 'l” gg ““““““ XOR dst,src _ (Notel) BO — % # 0 ——
st <= src r.ur dst < dstXORsrc ~
r<r+1;mr<rmr+1
LDE dst src r Irr 82 - —— — NOTE: These instructions have an identical set of addressing modes,
dst < sr(I: Irr ; 92 which are encoded for brevity. The first opcode nibble is found in
the instruction set table above. The second nibble is expressed
LDEI dst,src Ir Irr 83 @ - - - — — symbolically by a [J in this table, and its value is found in the
dst « sre Irr Ir 93 following table to the left of the applicable addressing mode pair.
rer+tirerr+1 For example, the opcode of an ADC instruction using the
addressing modes r (destination) and Ir (source) is 13.
NOP FF @ —— = — — —
OR dst,src (Note 1) 40 — % % 0 — — Addr Mode Lower
dst < dst OR src : dst src Opcode Nibble
POP dst R 50 @ —-——=—=——
dst < @SP; IR 51 r r
SP <SP + 1 r Ir
PUSH src R 70 ———— R R
SP<SP -1,@SP<src IR 71 R R
RCF CF 0 —————
R IM
C=0 (¢]
g IR M
RET AF = = = — — — !
PC < @SP;SP <SP + 2
RL dst I!; 3(1) * k k Kk — —

62

R240 SI10
Serial I/0 Register
(FOH; Read/Write)

BN
_—: SERIAL DATA (D, = LSB)

REGISTERS

R241 TMR
Time Mode Register
(F1H; Read/Write)

MODES I_o = NO FUNCTION
Not U3ED = 00 1= LOAD T,
T = 01
o 0 = DISABLE T, COUNT
T,0UT = 10 = o
INTERNAL CLOCK OUT = 11 1 = ENABLE T, COUNT
0 = NO FUNCTION
T;y MODES
EXTERNAL CLOCK INPUT = 00 1=L10ADT,
0"5 INPUT = 01 0 = DISABLE T, COUNT
IGGER INPUT = 10 1 = ENABLE T, COUNT
(NON- asmoeanam
TRIGGER INPUT = 11
(RETRIGGERABLE)

R242T1
Counter Timer 1 Register
(F2H; Read/Write) -

[0: [0 Jo:[ou e, o: 0, o]
A T. INITIAL VALUE (WHEN WRITTEN)
(RANGE 1-256 DECIMAL 01-00 HEX)

T, CURRENT VALUE (WHEN READ)

R243 PRE1
Prescaler 1 Register
(F3H; Write Only)

NT MODE
T, MODULO-N
T, SINGLE-PASS

OCK SOURCE

= T, INTERNAL

0 = T, EXTERNAL
TIMING INPUT
(Tin) MODE

PRESCALER MODULO
(RANGE: 1-64 DECIMAL
01-00 HEX)

Figure 18. Control Registers

R244TO

Counter/Timer 0 Register

(F4n; Read/Write)

CACACACACACACAEN

I To INITIAL VALUE (WHEN WRITTEN)
(RANGE: 1-256 DECIMAL 01-00 HEX)

To CURRENT VALUE (WHEN READ)

R245 PREO
Prescaler 0 Register
(F5H; Write Only)

I_(:OUNT MODE
0 = T, SINGLE-PASS
1 = To MODULO-N

RESERVED (MUST BE 0)

PRESCALER MODULO
(RANGE: 1-64 DECIMAL
01-00 HEX)

R246 P2M
Port 2 Mode Register
(F6H; Write Only)

P2,-P2, 110 DEFINITION
0 DEFINES BIT AS OUTPUT

1 DEFINES BIT AS INPUT

R247 P3M
Port 3 Mode Register
(F7H; Write Only)

CICACACACACACAEY
‘ 0 PORT 2 PULL-UPS OPEN DRAIN
1 PORT 2 PULL-UPS ACTIVE

RESERVED (MUST BE 0)

0 P3; = INPUT P35 = OUTPUT
1 P3; = DAVO/RDYO PS; = RDYO/DAVO
00 P3; = INPUT P34 = OUTPUT
93} p3s = INPUT P34 = DM
11 RESERVED
0 P3; = INPUT (T\y) P3g = OUTPUT (Toyy)
1 P3; = DAV2IRDY2 P3 = RDY2IDAV2
0 P3g = INPU P37 = OUTPUT
1P3 = ssnm IN P37 = SERIAL OUT
0 PARITY OFF
1 PARITY ON

63

REGISTERS " R248POIM

i Port 0 Register
(Continued) (F8,4:; Write Only)

RESERVED (MUST BE 0)

P0,-P0, MODE PO,-PO; MOD
OUTPUT = 00 00 = OUTPUT
INPUT = 01 01 = INPUT
A-As = 1X 1X = Ag-Ay

EXTERNAL STACK SELECTION
MEMORY TIMING 0 = EXTERNAL
NORMAL = 0 1 = INTERNAL
*EXTENDED = 1

*ALWAYS EXTENDED TIMING AFTER RESET

" R249 IPR
Interrupt Priority Register
(F9H; Write Only)

RESERVED - INTERRUPT GROUP PRIORITY

RESERVED = 000

IRQ3, IRQS PRIORITY (GROUP A) C>A>B =00
0 = IRGS > IRQ3 - A>B>C =010

1 = IRQ3 > IRQS A>C5>B =01l

IRQO, IRQ2 PRIORITY (GROUP B) F 344 et]
0 = IRG2 > IRQO BoASC= 110

1 = IRQO > IRG2 RESERVED = 111

IRQ1, IRQ4 PRIORITY (GROUP C)
0 = IRQ1 > IRQ4
1 = IRQ4 > IRQ1

R250 IRQ
Interrupt Request Register
(FAH; Read/Write)

T

RESERVED (MUST BE 0)
IRQ1 = P33 INPUT
IRQ2 = P34 INPUT

IRQ3 = P3g INPUT, SERIAL INPUT
IRQ4 = T, SERIAL OUTPUT
IR¢

Q5 = Ty

R251 IMR
Interrupt Mask Register
(FBH; Read/Write)

1RGO = P3z INPUT (Do = IRQO)

R252 FLAGS
Flag Register
(FCH; Read/Write)

USER FLAG F1

USER FLAG F2

HALF CARRY FLAG
DECIMAL ADJUST FUAG
OVERFLOW FLAG

SIGN FLAG

ZERO FLAG

CARRY FLAQ

R253 RP
Register Pointer
(FDH; Read/Write)

'1-] l
REGISTER /) '
POINTER | r,

i

|

DON'T CARE

R254 SPH
Stack Pointer
(FEH; Read/Write)

CIAACACACACY
STACK POINTER UPPER

BYTE (SPy-SPys)

|

! R255 SPL
Stack Pointer
(FFH; Read/Write)

R S—

1 ENABLES IRQ0-IRQ5
(Do = IRQO)

(MUST BE 0)

|

STACK POINTER LOWER
BYTE (SP,-SP;)

1 ENABLES ID’TERRUPYS

Figure 18. Control Registers (Continued)

Z8681/82 OPCODE MAP

Lower Nibble (Hex)
0 1 2 3 4 5 6 7 8 9 A B Cc D E F
6.5 6,5 6.5 6.5 10,5 10,5 10,5 10,5 6.5 6.5 12/10,5 | 12/10,0 65 12/10,0 6,5
0 DEC DEC ADD ADD ADD ADD ADD | ADD LD LD DJNZ JR LD JP INC
Ry IRy rir2 | ridrg | RaRy [IR2Ry | RyUM | IRyIM | ryRs | raRy | r1.RA | ccRA | riIM | cc.DA 1
6.5 6,5 6.5 6,5 10.5 10,5 10,5 10.5
1 RLC RLC ADC ADC ADC ADC ADC ADC
Ry IRy r.r2 r1.rp Ro.Ry | IR2,Ry | RiIM | IR{IM
6.5 6.5 6.5 6,5 10,5 10,5 10,5 105
2 INC INC sus suB suB SuB suB suB
Ry IRy rir2 | rdrpt | RaRy | IRaRy | RydM | IRyIM
8.0 6.1, 6,5 6.5 10,5 10.5 10,5 10,5
3 Jp SRP SBC SBC SBC SBC SBC SBC !
IRRy M r1.r2 ry.lrp RoRt1 | IR2,Ry | RyIM | IR1IM
85 85 6.5 6,5 10,5 10,5 10.5 10,5
4 DA DA OR OR OR OR OR OR
Ry IRy r.ro ry.lrg R2.Ry | IRg,Ry | R1IM | IRq,IM
10,5 10,5 6.5 6.5 10,5 10,5 10,5 10,5
5 POP POP AND AND AND AND AND | AND
Ry IRy rr2 | ridra | RaRy | IRaRy | RyM | IRyIM
6.5 6.5 6.5 6.5 10.5 10,5 10,5 10,5
6 COM | com TCM TCM M TCM TCM TCM
Ry IRy r.r2 ry.lrp R2.Ry | IR2,R1 | RyIM | IRy, IM
E 10/12,1 | 12/141 6.5 6.5 10,5 10,5 105 10,5
e 7 PUSH | PUSH ™ ™ ™ ™ ™ ™
5 Ry IRp rre | ridra | RaRy | IRaRy | RyM | IRyIM
z 105 | 105 | 120 | 180 6.1
2 8 DECW | DECW | LDE LDEI DI
g- RRy IRy rydrrg [rqlrrp
6.5 6,5 12,0 18,0 6.1
9 RL RL LDE LDEI El
R4 IRy ralrry | Irplrry
10,5 10,5 6.5 6,5 10.5 10,5 10.5 105 14,0
A INCW | INCW cP CcP cpP cP cp cP RET
RR4 IRy r.rp r.lrp Ro.Rt | IR2.R1 | RyIM | IR¢,IM
6.5 6.5 6.5 6.5 105 10,5 10,5 105 16,0
B CLR CLR XOR XOR XOR XOR XOR XOR IRET
Ry IRy rir2 | ridra | RaRy | IR2Ry | RiM | IR1IM
6.5 6.5 12,0 18.0 10,5 6,5
c RRC RRC LDC LDCl LD RCF
R4 IRy rydrrg | drqlrrp r1.x.Ro
6.5 6,5 12,0 18,0 20,0 20,0 105 6,5
D SRA SRA LDC LDCl | CALL* CALL LD SCF
Ry IRy rplrry Irp,Irry IRR4 DA | ra.xRy
6.5 6.5 6.5 10.5 10.5 10,5 10,5 6,5
E RR RR LD LD LD LD LD CCF
Ry IRy 1Rz | RaRy | IRaRy | RyIM | IRyIM
85 85 6,5 10.5 6.0
F SWAP | SWAP LD LD NOP
Ry IRy Iry.r2 Ra.IRy \J \J Y \J \i \ \J
N— \ J
—~ ~ ~ e N —_—— \/\W_/
2 3 2 3
Bytes per Instruction
LOWER N .
OPCODE
NIBBLE
PIPELINE Legend:
EXECUTION gen
CYCLES CYCLES R = 8-bitaddress
r = 4-bit address
UPPER 10,5 Ry orry = Dstaddress
OPCODE——3~ A| CP <&——MNEMONIC Roorrz = Src address
NIBBLE Ro.R
2.1 Sequence:
~ Opcode, First Operand, Second Operand
FIRST SECOND
OPERAND OPERAND NOTE: The blank areas are not defined.

*2-byte instruction. fetch cycle appears asa 3-byte instruction

ABSOLUTE MAXIMUM RATINGS

Voltages on all pins except RESET

withrespecttoGND -0.3Vto +7.0V
Operating Ambient .
Temperature See Ordering Information

Storage Temperature -65°Cto +150°C

Stresses greater than those listed under Absolute Maximum Ratings may
cause permanent damage to the device. This is a stress rating only;
operation of the device at any condition above those indicated in the
operational sections of these specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect
device reliability.

STANDARD TEST CONDITIONS

The DC characteristics listed below apply for the following
standard test conditions, unless otherwise noted. All
voltages are referenced to GND. Positive current flows into
the referenced pin. -

Standard conditions are as follows:

B +4.75V< Vo< +5.25V

m GND =0V

B 0°C <Tp < +70°C for S (Standard temperature)

m —-40°C< Ta < +100°C for E (Extended temperature)

21K

FROM OUTPUT
UNDER TEST

1sop|:|:

Figure 19. Test Load 1

DC CHARACTERISTICS
Symbol Parameter Min Max Unit Condition
VcH Clock Input High Voltage 3.8 Vce \ Driven by External Clock Generator
Voo Clock Input Low Voliage -03 0.8 \ Driven by External Clock Generator
ViH Input High Voltage . 2.0 Vee \Y ’
ViL Input Low Voltage -0.3 0.8 \Y
VRH Reset Input High Voltage é.8 Vee \ See Note
VRL Reset Input Low Voltage -0.3 0.8 \4
VoH Output High Voltage 2.4 \ lon = —250pA
VoL Output Low Voltage 0.4 \Y loL = +2.0mA
mn Input Leakage -10 10 WA OV < Vjy< +525V
loL Output Leakage -10 10 uA 0V < VN < +525V
IR Reset Input Current -50 A Vecc = +5.25V, VR = OV
lcc Vce Supply Current 150 mA All outputs and I/O pins floating

*The Reset line (pin 6) is used to place the Z8682 in external memory mode. This is accomplished as shown in Figure 13. '

66

RIW)< K
ponvﬁ% X r
(i6)
W
PORT 1 ' Ag-A7 } Doy | <
@ [«—— e
& _»—\'-_'/ @ LN
~—— <o~ ®
(REI?; 4—@__->\
PORT 1 x Ao-A7){ D-D7 OUT
| |« (5)>
— | (7 | —
R : /g
Figure 20. External I/0 or Memory Read/Write Timing
AC CHARACTERISTICS

External I/O or Memory Read and Write Timing

Z8681/82 78681 28681
'8 MHz 12 MHz 16 MHz

Number Symbol Parameter Min Max Min Max Min Max Notes
1 TdA(AS) Address Valid to AS TDelay 50 35 20 23
2 TJAS(A) AS T to Address Float Delay 70 45 30 23
3 TdAS(DR) E T to Read Data Required Valid 360 220 180 1,23
4 TwAS AS Low Width ‘ 80 55 35 23
5 TdAz(DS) Address Float to DS | 0 0 0
6 TwDSR DS (Read) Low Width 250 185 135 12,3
7 TwDSW DS (Write) Low Width 160 110 80 12,3
8 TdDSR(DR) DS | to Read Data Required Valid 200 130 75 1,23
9 ThDR(DS) Read Data to DS T Hold Time 0 0 0 23
10 TdDS(A) Bﬁ to Address Active Delay 70 45 2,3
11 TdDS(AS) DS Tto AS LDelay 70 55 30 23
12 TdRW(AS) R/W Valid to AS T Delay 50 30 20 23
13 TdDS(RW) DS Tto R/W Not Valid 60 35 30 23
14 TdDW(DSW) Write Data Valid to E (Write) | Delay 50 35 25 23
15 TdDS(DW) E T to Write Data Not Valid Delay 60 35 30 23
16 TdA(DR) Address Valid t6 Read Data Required Valid 410 255 200 123
17 TdAS(DS) AS 110 DS | Delay 80 55 40 23

NOTES: '

1. When using extended memory timing add 2 TpC.

2. Timing numbers given are for minimum TpC.

3. See clock cycle time dependent characteristics table.
4. 16 MHz timing is preliminary and subject to change.

* Allunits in nanoseconds (ns).
t Test Load 1 '
° Alltiming references use 2.0V for a logic “1” and 0.8V for a logic “0".

67

cLOCK \ ;F_—’PW'(
@*"%T—
TIN
<—@-—> 4—@——.

—7)
-
|-

o e

—&)
IRQN \
()
Figure 21. Additional Timing
AC CHARACTERISTICS

Additional Timing Table

Z8681/82

Z8681 Z8681
8 MHz 12 MHz 16 MHz

Number Symbol Parameter Min Max Min Max Min Max Notes
1 TpC Input Clock Period 125 1000 83 1000 62.5 1000 1

2 TiCTIC Clock Input Rise and Fall Times 25 ‘ 15 10 1

3 TwC Input Clock Width 37 70 21 1

4 TwTinL Timer Input Low Width 100 70 50 2

5 TwTinH Timer Input High Width 3TpC 3TpC 3TpC 2

6 TpTin Timer Input Period 8TpC 8TpC 8TpC 2

7 TrTin,TfTin Timer Input Rise and Fall Times 100 100 100 2
8A TwiL Interrupt Request Input Low Time 100 70 50 24
8B TwiL Interrupt Request Input Low Time 3TpC 3TpC 3TpC 25

9 TwH Interrupt Request Input High Time 3TpC 3TpC 3TpC 23

NOTES:

1. Clock timing references use 3.8V for a logic “1” and 0.8V for a logic “0".
2. Timing references use 2.0V for a logic “1” and 0.8V for a logic “0".

3. Interrupt request via Port 3.

4. Interrupt request via Port 3 (P34-P33)

5. Interrupt request via Port 3 (P30)

6. 16 MHz timing is preliminary and subject to change.

* Units in nanoseconds (ns).

68

DATA IN X: DATA IN VALID X
‘ O @ !
DAV
(NPUT) \w
(O —®
RDY /
(OUTPUT) \
Figure 22a. Input Handshake Timing
DATA OUT DATA OUT VALID
L——.———;
DAV
(OUTPUT) \ Z
|) | 7
2/ | 46 N
RDY 9 /
(INPUT) \
Figure 22b. Output Handshake Timing
AC CHARACTERISTICS
Handshake Timing
28681/82 Z8681 28681
. 8 MHz 12 MHz 16 MHz
Number Symbol Parameter Min Max Min Max Min Max Notes
1 TsDIDAV) Data In Setup Time 0 0 0
2 ThDI(DAV) Data In Hold Time 230 160 145
3 TwbDAV Data Available Width 175 120 110
4 TdDAVIf(RDY) DAV ! Input to RDY | Delay 175 " 120 115 1,2
5 TdDAVOf(RDY) DAV ! Output to RDY | Delay 0 0 0 1,3
6 TdDAVIRDY) DAV T Inputto RDY T Delay 175 120 115 1,2
7 TdDAVOr(RDY) DAV T Output to RDY T Delay 0 0 0 1,3
8 TdDO(DAV) Data Out to DAV | Delay 50 30 30 1
9 TdRDY(DAV) Rdy ! Inputto DAV T Delay 0 200 0 140 0 130 1
NOTES:
1. Testload 1

2 Input handshake
3. Output handshake

4. 16 MHz timing is preliminary and subject to change.
T Alltiming references use 2.0V for a logic “1” and 0.8V for a logic “0”.

* Units in nanoseconds (ns).

69

CLOCK CYCLE TIME-DEPENDENT

CHARACTERISTICS
28681/82 28681/82
, 8 MHz 12 MHz
Number Symbol Equation Equation
1 TAA(AS) TpC-75 " TpC-50
2 TdAS(A) TpC-55 TpC-40
3 TdAS(DR) 4TpC-140* 4TpC-110*
4 TwAS TpC-45 TpC-30
6 TwDSR 3TpC-125* 3TpC-65*
7 TwDSW 2TpC-90 * 2TpC-55*
8 TdDSR(DR) 3TpC-175* 3TpC-120*
10 TdDS)A TpC-65 - TpC-40
11 TdDS(AS) TpC-55 " TpC-30
12 TdRW(AS) TpC-75 TpC-55
13 TdDS(R/W) TpC-65 TpC-50
14 TdDW(DSW) TpC-75 TpC-50
15 TdDS(DW) TpC-55 TpC-40
16 TJA(DR) 5TpC-215* 5TpC-160*
17 TdAS(DS) TpC-45 TpC-30

* Add 2TpC when using extended memory timing

70

Product Specification

June 1987

Z8691 28°

'FEATURES

m Complete microcomputer, 24 1/O lines, and up to 64K
bytes of addressable external space each for program
and data memory.

B 143-byte register file, including 124 general-purpose
registers, 3 /O port registers, and 16 status and control
registers.

m \Vectored, priority interrupts for 1/O, counter/timers, and
UART.

® On-chip oscillator that accepts crystal or external clock
drive.

ROMIless Microcomputer

S

m Full-duplex UART and two programmable 8-bit
counter/timers,. each with a 6-bit programmable
prescaler.

B Register Pointer so that short, fast instructions can
access any one of the nine working-register groups.

®m Single + 5V power supply—all /0 pins TTL compatible.
B 8 MHz/12 MHz versions.

GENERAL DESCRIPTION

The Z8691 is a ROMIless version of the Z8 single-chip
microcomputer. The Z8691 offers all the outstanding
features of the Z8 family architecture except an on-chip
program ROM. Use of external memory rather than a

——»] RESET +5V je—
7"‘::: ~—] RW GND |e—
CONTROL | «——{ DS XTALY fe—
— CLOCK
-<+— AS XTAL2 p—>
<«—p1 PO, P2; je—>).
<> Po, P2, je—>
<—p{ PO, P2; [e—>
PORT O P2 PORT 2
PROGR (NIBBLE | <—>] P0; 3 [| (BIT PRO-
AMMABLE) P: GRAMMABLE)
0 OR Ag-Ars |] 7% i e I
-] PO, 28691 P2; je—>
<«—»{ P0; MCU P% |e—>
<—>] PO, P2 le—>
-«—>»{ P1, P3y je—o
<] P1, P3y jt—o
<> P1, P3; |e—o
PORT 3
PORT 1| <> P13 P33 [<—— | SERIAL AND
ADo-AD;7 p1 P3, PARALLEL 1/0
g B N > | AND CoNTROL
<1 Pig P35 —
<] P1g P3g
<+—»] P1; P3; —>

Figure 1. Pin Functions

preprogrammed ROM enables this Z8 rﬁicrocomputer to be
used in low volume applications or where code flexibility is
required.

+5v[]1 e 40 [p3g
xTaL2 [2 39 [] p3,
xTaL1 [3 38 [] P2,
P,] 4 37 [P2,
P3, 5 36 [P2,
RESET [] 6 s [] P2,
RW [7 3a[] 2,
os [e 33[] P2,
A 32] p2,
P3; [J10 28691 3 P2,
GND [11 mcu 30 [] r3;
P3, [12 29[ps,
PO, E 13 28] P1,
PO, 14 27 [Pt
PO, E 15 26 [] P15
pPos [] 16 5[] P,
po, [] 17 24 [] Py
pos [18 23] p1,
PO [] 19 22 p1y
PO, 5 20 21[] P1p

Figure 2a. 40-pin Dual-In-Line Package (DIP),
Pin Assignments

71

The Z8691 can provide up to 16 output address lines, thus
permitting an address space of up to 64K bytes of data or
program ‘memory. Eight address outputs (ADg-AD7) are
provided by a multiplexed, 8-bit, Address/Data bus. The
remaining 8 bits can be provided by the software
configuration of Port O to output address bits Ag-A1s.

Available address space can be doubled (up to 128K bytes)
by programming bit 4 of Port 3 (P3,4) to act as a data memory
select output (DM). The two states of DM together with the
16 address outputs can define separate data and memory
address spaces of up to 64K bytes each.)

"l«
O P o L

There are 143 bytes of RAM located on-chip and organized
" as aregister file of 124 general-purpose registers, 16 control

and status registers, and three /O port registers. This

" register file can be divided into nine groups of 16 working

registers each. Configuring the register file in this manner
allows the use of short format instructions; in addition, any of -
the individual registers can be accessed directly.

The pin functions and the pin assignments of the Z8691
40-pin and 44-pin packages are illustrated in Figures 1 and 2,
respectively. '

S o gl

(6 5 4 3 2 1 44 43 42 41 40, \
RESET |7 39 § NC
RW |8 38 | P24
DS |9 37 | P2;
AS |10 36 | P22
P3s | 11 35 | P24
GND |12 z’:g:" 34 | P29

33
32
31
.30

P33
P34
Pi7
P1g

\1819202122232425262728/

29 | P15

S S M

Q"" q"' \\0

Figure 2b. 44-pin Chip Carrier,

Pin Assignments
OUTPUT INPUT Vcc GND XTAL AS DS R/W RESET
: MACHINE TIMING AND
PORT 3 INSTRUCTION CONTROL
4y
UART ALY
FLAGS
COUNTER/
TIMERS
(2) REGISTER
POINTER]
REGISTER FILE] PROGRAM
INTERRUPT 124 x 8-BIT] COUNTER
CONTROL *
PORT 2 " PORT 0 K > PORT 1
ADDRESS OR 1i0 ADDRESS/DATA
®IT PROGRAMMABLE) (NIBBLE PROGRAMMABLE)

Z-BUS WHEN USED AS
ADDRESS/DATA BUS

Figure 3. Functional Block Diagram

72

ARCHITECTURE

78691 architecture is characterized by a flexible 1/0
scheme, an efficient register and address space structure
and a number of ancillary features that are helpful in many
applications.

Microcomputer applications demand powerful /O
capabilities. The Z8691 fulfills this with 24 pins available for
input and output. These lines are grouped into three ports of
eight lines each and are configurable under software control
to provide timing, status signals, serial or paralle! 1/0 with or
without handshake, and an Address bus for interfacing
external memory.

Three basic address spaces are available: program memory,

data memory and the register file (internal). The 143-byte
random-access register file is composed of 124
general-purpose registers, three 1/0 port registers, and 16
control and status registers.

To unburden the program from coping with real-time
problems such as serial data communication and
counting/timing, an asynchronous receiver/transmitter
(UART) and two counter/timers with a large number of
user-selectable modes are offered on-chip. Hardware
support for the UART is minimized because one of the
on-chip timers supplies the bit rate. Figure 3 shows the
28691 block diagram.

PIN DESCRIPTION

AS. Address Strobe (output, active Low). Address Strobe is
pulsed once at the beginning of each machine cycle.
Addresses output via Port 1 for all external program or data
memory transfers are valid at the trailing edge of AS.

DS. Data Strobe (output, active Low). Data Strobe is
activated once for each external memory transfer.

P0g-P07, P2¢-P27, P3¢-P3;7. //0 Port Lines (input/outputs,
TTL-compatible). These 24 lines are divided into three 8-bit

1/0 ports that can be configured under program control for
110 or external memory interface (Figure 3).

P1y-P17. Address/Data Port (bidirectional). Multiplexed

address (Ag-A7) and data (Dg-D-) lines used to interface with
program and data memory.

RESET. Reset (input, active Low). RESET initializes the
28691. After RESET the Z8691 is in the extended memory
mode. When RESET is deactivated, program execution
begins from program location 000C.

RIW. Read/Write (output). R/W is Low when the Z8691
is writing to external program or data memory.

XTAL1, XTAL2. Crystal 1, Crystal 2 (time-base input and
output). These pins connect a parallel-resonant crystal to the
on-chip clock oscillator and buffer.

73

ADDRESS SPACES

Program Membry. The Z8691 addresses 64K/62K bytes of
external program memory space (Figure 4).

The first 12 bytes of program memory are reserved for the
interrupt vectors. These locations contain six 16-bit vectors
that correspond to the six available interrupts. Program
execution begins at location 000Cy after a reset.

Data Memory. The Z8691 can address 64K bytes of external
data memory. External data memory may be included with or
separated from the external program memory space. DM,

an optional 1/0 function that can be programmed to appear .

on pin P34, is used to distinguish between data and program
memory space.

Register File. The 143-byte register file includes three 1/0
port registers (RO, R2, R3), 124 general-purpose registers
(R4-R127) and 16 control and status registers (R240-R255).
These registers are assigned the address locations shown in
Figure 5,

65,535

78691 instructions can access registers directly or indirectly
with an 8-bit address field. This also allows short 4-bit
register addressing using the Register Pointer (one of the
control registers). In the 4-bit mode, the register file is divided
into nine working-register .groups, each occupying 16
contiguous locations (Figure 5). The Register Pointer
addresses the starting location of the active working-register
group (Figure 6). '

Stacks. Either the internal register file or the external data
memory can be used for the stack. A 16-bit Stack Pointer
(R254 and R255) is'used for the external stack, which can
reside anywhere in data memory. An 8-bit Stack Pointer
(R255) is used for the internal stack that resides within the
124 general-purpose registers (R4-R127).

LOCATION OF FIRST
BYTE OF INSTRUCTION

EXECUTED AFTER ™,
RESET

PROGRAM
MEMORY

DATA
MEMORY

12
"

10

9
8

INTERRUPT

VECTOR
(LOWER BYTE) ™~ :r_____

INTERRUPT

VECTOR

4
3
(UPPER BYTE) 2
1
0

Figure 4. Program Memory Map

74

DEC HEX IDENTIFIERS —)
255 STACK POINTER (BITS 7-0) FF SPL [I 255
254 STACK POINTER (BITS 15-8) FE SPH b= Mt | 0000 253
253 REGISTER POINTER FD RP l 240
252 PROGRAM CONTROL FLAGS FC FLAGS THE UPPER NIBBLE OF THE REGISTER
251 INTERRUPT MASK REGISTER FB IMR - FILE ADDRESS PROVIDED BY THE
REGISTER POINTER SPECIFIES THE
250 INTERRUPT REQUEST REGISTER FA RQ ACTIVE WORKING-REGISTER GROUP.
249 INTERRUPT PRIORITY REGISTER F9 IPR 127
248 PORTS 0-1 MODE F8 POTM L I
247 PORT 3 MODE F7 PaM l
246 PORT 2 MODE F6 P2M
245 T0 PRESCALER F5 PREO L _ ‘
244 TIMERICOUNTER 0 Fa T0 l
243 T1 PRESCALER F3 PRE1 ‘
242 TIMERICOUNTER 1 F2 T I
241 TIMER MODE F1 TMR l
240 SERIAL 110 Fo sio ‘
IMPLEMENTED T l NIBBLEOF
‘ THE REGISTER
. | oemmwone L SSAES
l THE INSTRUCTION
POINTS TO THE
‘ REGISTER,
GENERAL-PURPOSE > ’
REGISTERS l .
.
4 04 l
3 PORT 3 03 P3 l 1
2 PORT 2 02 P2 e] 3
1 PORT 1 01 P1 l !0 PORTS o ¥
) PORT 0 00 PO
Figure 5. The Register File Figure 6. The Register Pointer
SERIAL INPUT/OUTPUT

Port 3 lines P3g and P37 can be programmed as serial 1/0
lines for full-duplex serial asynchronous receiver /transmitter
operation. The bit rate is controlled by Counter/Timer 0, with
a maximum rate of 62.5K bits/second at 8 MHz or 93.75K
bits/second at 12 MHz on the Z8691.

The Z8691 automatically adds a start bit and two stop bits to
transmitted data (Figure 7). Odd parity is also available as an
option. Eight data bits are always transmitted, regardless of

[sp]sP[o:[os]ps] 0.] 05] 0,] 0,] o] 5]

* L START BIT
EIGHT DATA BITS
TWO STOP BITS

Transmitted Data
(No Parity)

[sp]sp] P [oe]s] 0a] 03[0,] 0,] 0o s7]

l—START BIT »

SEVEN DATA BITS
ODD PARITY
TWO STOP BITS

Transmitted Data
(With Parity)

parity selection. If parity is enabled, the eighth data bit is
used as the odd parity bit. An interrupt request (IRQ4) is
generated on all transmitted characters.

Received data must have a start bit, eight data bits, and at
least one stop bit. If parity is on, bit 7 of the received data is
replaced by a parity error flag. Received characters
generate the IRQ3 interrupt request.

{'sp] o, e[Ds] 04 0] 0, [0, 5] 57]

l—— START BIT

EIGHT DATA BITS
ONE STOP BIT

Received Data
(No Parity)

[sP]Pos[0s]Da]0s]0.]0,] D]5T]

I—START BIT

SEVEN DATA BITS
PARITY ERROR FLAG
ONE STOP BIT

Received Data
(With Parity)

Figure 7. Serial Data Formats

75

- COUNTER/TIMERS

The Z8691 contains two 8-bit programmable counter/timers

(To and Ty), each driven by its own 6-bit programmable
prescaler. The Ty prescaler can be driven by internal or
external clock sources; however, the Tg prescaler is driven
by the internal clock only.

The 6-bit prescalers can-divide the input frequency of the
clock source by any number from 1 to 64. Each prescaler
drives its counter, which decrements the value (1to 256) that
has been loaded into the counter. When the counter reaches
the end of count, a timer interrupt request—IRQ4 (To) or
IRQ5 (T1)—is generated.

The counters can be started, stopped, restarted to continue,
or restarted from the initial value. The counters can also be
programmed to stop upon reaching zero (single-pass mode)

or to automatically reload the initial value and continue
counting (modulo-n continuous mode). The counters, but not
the prescalers, can be read any time without disturbing their
value or count mode. ’

The clock source for T4 is user-definable; it can be either the
internal microprocessor clock divided by four, or an external
signal input via Port 3. The Timer Mode register configures
the external timer input as an external clock, a trigger input
that can be retriggerable or nonretriggerable, or as a gate
input for the internal clock. The counter/timers can be
programmably cascaded by connecting the Tg output to the
input of T4. Port 3 line P3¢ also serves as a timer output (ToyT)
through which T, T4 or the internal clock can be output.

110 PORTS

The Z8691 has 24 lines available for input and output. These
lines are grouped into three ports of eight lines each and are
configurable as input, output or address. Under software
control, the ports can be programmed to provide address

outputs, timing, status signals, serial 1/0, and parallel 1/0
with or without handshake. All ports have active pull-upg and
pull-downs compatible with TTL loads.

Port 1 is a dedicated Z-BUS compatible memory interface.
The operations of Port 1 are supported by the Address Strobe
(AS) and Data Strobe (DS) lines, and by the Read/Write
(R/W) and Data Memory (DM) control lines. The low-order
program and data memory addresses (Ag-A7) are output
through Port 1(Figure 8) and are multiplexed with data in/out
(Do-D7). Instruction fetch and data memory read/write
operations are done through this port.

Port 1 cannot be used as a register nor can a handshake
- mode be used with this port.

The Z8691 wakes up with the 8 bits of Port 1 configured as
address outputs for external memory. If more than eight
address lines are required, additional lines can be obtained
by programming Port O bits as address bits. The

least-significant four bits of Port O can be configured to
supply address bits Ag-A¢; for 4K byte addressing or both
nibbles of Port 0 can be configured to supply address bits
Ag-A¢s for 64K byte addressing.

PORT 1
ADQ-AD7

TO EXTERNAL
MEMORY

Z8691
Mcu

Figure 8. Port 1

Port 0 can be programmed as a nibble /O port, or as an
address port for interfacing external memory (Figure 9).
When used as an 1/0O port, Port 0 can be placed under
handshake control. In this configuration, Port 3 lines P3, and
P35 are used as the handshake controls DAVy and RDY).
Handshake signal assignment is dictated by the /O
direction of the upper nibble P04-PO5.

For external memory references, Port O can provide address
bits Ag-Aq1 (lower nibble) or Ag-Aqs (lower and upper nibbles)
depending on the required address space. If the address
range requires 12 bits or less, the upper nibble of Port 0 can
be programmed independently as I/0 while the lower nibble
is used for addressing.

Port 0 lines are configured as address lines Ag-A¢s after a
reset. If one or both nibbles are needéd for 1/0 operation,
they must be configured by writing to the Port 0 Mode
register. .

To permit the use of slow memory, an automatic wait mode of
two oscillator clock cycles is configured for the bus timing of
the Z8691 after each reset. The initialization routine could
include reconfiguration to eliminate this extended timing
mode.

PORT 0
(IO OR Ag-A1s

P04-PO7

P0p-PO3

Z8691
Mcu

i

HANDSHAKE CONTROLS
} DAVo AND RDY,
(P3 AND P3g)

R

Figure 9. Port 0

76

Port 2 bits can be programmed independently as input or
output (Figure 10). This port is always available for 1/O
operations. In addition, Port 2 can be configured to provide
open-drain outputs.

Port 2 may also be placed under handshake control. In this
configuration, Port 3 lines P3; and P3g are used as the
handshake controls lines DAV, and RDY,. The handshake
signal assignment for Port 3 lines P3; and P3g is dictated by
~ the direction (input or output) assigned to bit 7 of Port 2.

P2

28691 «—> PORT 2(//0)

MCU | >
-

| —

P27

HANDSHAKE CONTROLS
= \ DAV, AND RDY,
(P3, AND P3g)

—

Figure 10. Port 2

Port 3 lines can be configured as 1/0 or control lines (Figure
11). In-either case, the direction of the eight lines is fixed as
four input (P3p-P33) and four output (P34-P37). For serial 1/0O,
lines P3p and P3; are programmed as serial in and serial out,
respectively.

Port 3 can also provide the following control functions:
handshake for Ports 0 and 2 (DAV and RDY); four external
interrupt request signals (IRQ0-IRQ3); timer input and output
signals (Tyny and Toyt) and Data Memory Select (DM).

 —

| «—

e«

<—— | PORT 3
28691 [—> [(1O OR CONTROL)
McU [—

—

—>
——

Figure 1. Port 3

INTERRUPTS

The Z8691 allows six different interrupts from eight sources:
the four Port 3 lines P3q-P33, Serial In, Serial Out, and the two
counter/timers. These interrupts are both maskable and
. prioritized. The Interrupt Mask register globally or
individually enables or disables the six interrupt requests.
When more than one interrupt is pending, priorities are
resolved by a programmable priority encoder that is
controlled by the Interrupt Priority register.

All interrupts are vectored through locations in program
memory. When an interrupt request is granted,.an interrupt
machine cycle is entered. This disables all subsequent

interrupts, saves the Program Counter and status flags, and
accesses the program memory vector location reserved for
that interrupt. This memory location and the next byte
contain the 16-bit address of the interrupt service routine for
that particular interrupt request. The Z8691 takes 63
crystal cycles to enter an interrupt subroutine.

Polled interrupt systems are also supported. To
accommodate a polled structure, any or all of the interrupt
inputs can be masked and the Interrupt Request register
polled to determine which of the interrupt requests needs
service.

CLOCK

The on-chip oscillator has a high-gain, parallel-resonant
amplifier for connection to a crystal or to any suitable
external clock source (XTAL1 = Input, XTAL2 = Output).

The crystal source is connected across XTAL1 and XTAL2,
using the recommended capacitance (C, = 15 pf
maximum) from each pin to ground. The specifications for
the crystal are as follows:

B AT cut, parallel-resonant

m Fundamental type

m Series resistance, Rs < 100Q
m 8or 12MHzmaximum

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is .used to
describe the addressing modes and instruction operations
as shown in the instruction summary.

Assignment of a value is-indicated by the symbol “<”. For
example, .

dst «dst + src

IRR r;:rsggrreesgslster pair or indirect working-register indicates that the source dgta is adde_d tq the degtination
Ir Indirect working-register pair only data gnd ‘t‘he resu)l't is stored in the destmgﬂqp !f)catxon. .The
X Indexed address notat}on addr(n)” is used to refer to bit “n” of a given
DA Direct address location. For example,
RA Relative address dst(7)
g\n ::?; g}:ﬂfger working-régister address refers to bit 7 of the destination operand.
r ' Working-register address only i) o . .
IR Indirect-register or indirect working-register Flags. Control Register R252 contains the following six
' address flags:
Ir - Indirect working-register address only c Carry flag
RR Register pair or working register pair address z Zero flag
Symbols. The following symbols are used in describing the S Sign flag
instruction set. v Overflow flag
D Decimal-adjust flag
dst Destination location or contents H Half-carry flag
src Source location or contents .
cc Condition code (see list) Affected flags are indicated by:
@ Indirect address prefix 0 Cleared to zero
SP Stack pointer (control registers 254-255) 1 Set to one
PC Program counter * Set or cleared according to operation
FLAGS Flag register (control register 252) - Unaffected
RP Register pointer (control register 253) X Undefined
IMR Interrupt mask register (control register 251)
CONDITION CODES
Value Mnemonic Meaning Flags Set
1000 Always true —
0111 (¢} Carry C=1
111 NC No carry C=0
0110 V4 Zero Z=1
1110 NZ . Notzero Z=0
1101 PL Plus S§=0
0101 Mi Minus S=1
0100 ooV Overflow V=1
1100 NOV No overflow V=0
0110 EQ Equal Z=1
1110 NE Not equal Z=0.
1001 GE Greater than or equal (SXORV) =0
0001 LT Less than (SXORV) = 1
1010 GT Greater than [ZOR(SXORV)] =0.
0010 LE Less than or equal [ZOR(SXORV)] = 1
1111 UGE Unsigned greater than or equal C=0
0111 uLlT Unsigned less than C=1
1011 UGT Unsigned greater than (C=0ANDZ =0) =1
0011 ULE Unsigned less than or equal CORZ) =1
0000 Never true —

78

INSTRUCTION FORMATS COF. DL EL IRET. NOP,
. RCF, RET, SCF
One—Byte Instruction
[opc | moDE | CLR, EPL. DA, DEC, opC_| MODE ADC, ADD, AND, CP,
e] on ([Talam] B5CH GO For. we] o [TTTa[] SBonAe SR
RRC, SRA, SWAP dst OoR[1110[ast | .
JP, CALL (Indirect)
dst OR |1 110f dst oPC J MODE ADC, ADD, AND, CP,
) dst orR[1110] dst ',Fg’MO% S?(%Rsua,
[orc] sap e
MODE | opc" LD
OR |1 110[src
[orc_wooE | ADC, ADD. AND, 2] on lTﬁ?l'ﬁ
Cot T ore] e, Tin XoR
) [opc ’ LD
[MoDE [orc | LD. LDE, LDE, HODE
DC. LDCI stisre | x
[dsusre [srcidst | Loc.Lo ADDRESS
dstisrc | OPC ‘ LD
| src/dst J]or 111 0] src | ce DIAUOPC P
DA,
[[ast [orpc | LD
oFC CcALL
DA,
DJINZ, JR DA,
[ra]
Two—Byte Instruction Three—Byte Instruction
Figure 12. Instruction Formats
INSTRUCTION SUMMARY
Addr Mode Opcode Flags Affected Addr Mode Opcode Flags Affected
Instruction Byte ——— Instruction Byte ————
and Operation dst src (Hex) C Z S VDH and Operation dst src (Hex) C Z S VDH
 ADC dst,src (Note 1) 10 * x % x 0 * DEC dist R 00 — ok ok ok — —
dst < dst + src + C dst«<dst - 1 IR 01
~ ADD dst,src (Note 1) orJ * % x * 0 * DECW dst RR 80 — % * *k — —
dst < dst + src dst<dst - 1 IR 81
AND dst,src (Note 1) 50 — % % 0 — — DI
dst < dst AND src) IMR(7) <0 8F @@ - — — — — —
CALL dst DA D6 - ———— DJNZ rdst RA A —— = — — —
SP<SP -2 IRR D4 r<r-1 r=0-F
@SP < PC; PC < dst ifr#0
CeF BF v == ' RaFr)wcg 5?2; d—St1 28
C<NOTC 95 -
CLR dst R B0 - — ﬁ\:lF((7)‘—1 F
dst< 0 ' IR B1
COM dst R 60 —xx0-— MCH ' T
dst < NOT dst IR 61 R 20
CP dst,src (Note 1) AO * *k * k — — IR 21
dst - sre INCW dst RR A0 —w ke ow— —
DA dst R 40 * * * X — — dst < dst + 1 IR Al -
dst < DA dst IR 41

79

INSTRUCTION SUMMARY (Continued)

Addr Mode Opcode Flags Affected Addr Mode Opcode Flags Affected
Instruction Byte ——— Instruction Byte ————
and Operation dst src (Hex) C Z S VDH and Operation dst src (Hex) C Z S VDH
IRET BF * %k k k Kk * RLCdst [—]R 10 * k k k — —
FLAGS < @SP; SP <SP + 1 IR 11
PC « @SP;SP <SP + 2;IMR (7) <1 v o =
S [— * Kk ok *k — —
JP cc.dst DA D —————— = IR E1
ifccistrue c=0-F
PC < dst IRR 30 RRC ast [F; g? ok ok ok — —
JRcc,dst RA B - i
‘ifccis true, c=0-F SBC dst,src (Note 1) 30 * ok ok k1 *
PC < PC + dst dst<dst<src<C
Range: +127, —128 SCF DF 1 - - — — —
LD dst,src rIm C —————— C+1
dst < src r R 8 SRAdst [1R DO % % %0 — —
R r r9 Y R D1
r=0-F
r X c7 SRP src ’ Im 31 - = = — —
X r D7 RP < src
f Ir E3 SUB dst,src (Note 1) 20 * k % *x 1 *
Irr F3 dst < dst < src
R R E4
R IR E5 SWAPdst R . FO X % «# X ——
R M E6 . —7 IR F1
‘Ig "';" E; TCM dstsrc. (Note 1) 60 — % %0 — —
j , : (NOT dst) AND src)
LDC dst.sro v cg ““““ TM dst,src (Notel) 70 — % % 0 — —
dst < src ’ Irr r D dst AND src
‘LDCldstsrc N o T XOR dit,src (Notel) BO — % % 0 — —
dst + src . " ! dst < dst XOR src
rTer+ 1mremr+1
LDE dst,src r Irr 8 - — - — - NOTE: These instructions have an identical set of addressing modes.
dst« sr' e r 92 which are encoded for brevity. The first opcode nibble is found in
S! C . the instruction set table above. The second nibble is expressed
LDEI dst,src Ir Irr 83 . symbolically by a {~ in this table, and its value 1s found in the
dét < sre Irr Ir 93 following table to the left of the applicable addressing mode pair.
r=r+1mre—m+1 For example, the opcode of an ADC instruction using the
addressing modes r (destination) and Ir (source) is 13.
NOP FF, — === — =
OR dst,src (Note 1) 41T — % % 0 — - Addr Mode Lower
dst = dst OR src dst src Opcode Nibble
POP dst R 50 @ ————=——
‘dst « @SP; IR 51 r T ‘
SP<SP + 1. r Ir
PUSH src R 0 —————— R R 4]
SP-«<SP - .1; @SP < src IR 71 R R
RCF CF 0 —————
it " i [
IR M 7
RET AP
PC < @SP;SP<SP + 2
FLdst IRR 3(1) * *k *k k — —

R240 SI0
Serial /0 Register
(FOR; Read/Write)

oo meo o]
t SERIAL DATA (D, = LSB)

REGISTERS

R241 TMR
Time Mode Register
(F1H; Read/Write)

MODES

0 = NO FUNCTION
NoT U0 < 00 DT,

1 = LOAD T,

0 = DISABLE T, COUNT

1 = ENABLE T, COUNT
= NO FUNCTION

= LOADT,

= DISABLE T, COUNT

= ENABLE T, COUNT

INTERNAL CI.OCK OI" =11

DES [
1

EXTERNAL CLOCK lNPﬁT =00

GATE o

TRIGGER mvm .t 1

(NON.

TRIGGER mrm =11
(RET E)

R242 T1
Counter Timer 1 Register
(F2H; Read/Write)

“[o:]0] 0, o.] 0,0, [0, o]
I T2 INITIAL VALUE (WHEN WRITTEN)
(RANGE 1 256 DECIM, HEX)

T, CURRENT VALUE (WMEN READ) .

R243 PRE1
Prescaler 1 Register
(F3H; Write Only)

—
o
o
<

-2 on
0 Q o

INT MODE
T, MODULO-N
T, SINGLE-PASS

TIMING INPUT
(Tin) MODE

PRESCALER MODULO
(RANGE: 1-64 DECIMAL

R244 TO
Counter/Timer 0 Register
(F4H; Read/Write)

l T INITIAL VALUE (WHEN WRITTEN)
(RANGE: 1-256 DECIMAL 01-00 HEX)

T, CURRENT VALUE (WHEN READ)

R245 PREOQ
Prescaler 0 Register
(F5H; Write Only)

L COUNT MODE
0 = T SINGLE-PASS
1 = T, MODULO-N

RESERVED (MUST BE 0)

PRESCALER MODULO
(RANGE: 1-64 DECIMAL
01-00 HEX)

R246 P2M
Port 2 Mode Register
(F6H; Write Only)

| P2,-P2, /0 DEFINITION :
0 DEFINES BIT AS OUTPUT

1 DEFINES BIT AS INPUT

R247 P3M
Port 3 Mode Register
(F7H; Write Only)

CIEICAACACACAEY

0 PORT 2 PULL-UPS OPEN DRAIN
1 PORT 2 PULL- UPS ACTIVE
RESERVED (MUST BE D)

0 P3; = INPUT = ouTPUT .
1 P3; = DAVO/RDYO m ROYOIDAVD
00 P3; = INPUT P3y = OUTPUT
?“)}P%:lNPUT ‘P3g = DM
11 RESERVED

01-00 HEX) 0 P3; = INPUT (Tyy) P3g = OUTPUT (Toyr)
1 P3y - DAVZROY2 P3g = ROYZIDAVZ
0 P3p = INPUT P37 = QUTPUT
1 P3p = SERIALIN P37 = SERIAL OUT
0 PARITY OFF
1 PARITY ON
Figure 13. Control Registers ’

81

1

REGISTERS
(Continued)

R248 PO1M
Port 0 Mode Register
: (F8H; Write Only)

P0,-P0, MODE PO,-P0s MODE
OUTPUT = 00 00 = OUTPUT
INPUT = 01 01 = INPUT
Arg-Ags = 1X 1X = Ag-Ay
EXTERNAL STACK SELECTION
MEMORY TIMING 0 = EXTERNAL
NORMAL = 0 1 = INTERNAL
*EXTENDED = 1 .
RESERVED (MUST BE 0)

I’_l

*ALWAYS E;(TENDED TIMING AFTER RESET

R249 IPR
Interrupt Priority Register
(F9n; Write Only)

, oo oo [or o o, [o1]
RESERVED :l—
IRQ3, IRQS PR‘I)OE(I}’; {GROUP A)

Q5 > IRQ3
1 = IRQ3 > IRQ5

1RQO, IRQ2 PRIORITY (GROUP B)
0 = IRQ2 > IRQO
1 = IRQO > IRQ2

IRQ1, IRG4 PRIORITY (GROUP C)
0 = IRQ1 > IRQ4
1 = IRQ4 > IRQ1

R250 IRQ
Interrupt Request Register
(FAH; Read/Write)

'
[—

RESERVED (MUST BE 0)
IRQ1 = P33 INPUT
IRQ2 = P3y INPUT

1RQ3 = P3g INPUT, SERIAL INPUT
IRQ4 = To, SERIAL OUTPUT

IRQ5 = Ty

R251 IMR
- Interrupt Mask Register
(FBH; Read/Write)

[o:]0cJo: [ouJou o [oy oo]
1 ENABLES IRQ0-IRQS

(Do = IRQO)
(MUST BE 0)

|

1 ENABLES INTERRUPTS

INTERRUPT GROUP PRIORITY
RESERVED = 000

IRGO = P3; INPUT (Dp = IRQO}

REGISTER
POINTER

Figure 13. Control Registers (Continued)

R252 FLAGS
Flag Register
(FCH: Read/Write)

USER FLAG F1

USER FLAG F2

HALF CARRY FLAG
DECIMAL ADJUST FLAG
OVERFLOW FLAG

SIGN FLAG

ZERO FLAG

CARRY FLAG

[l
-

R253 RP
Register Pointer
(FDH; Read/Write)

S

s

|

DON'T CARE

R254 SPH
Stack Pointer
(FEH; Read/Write)

ICACACACACACADY
STACK POINTER UPPER

BYTE (SPy-SPss)

R255 SPL
Stack Pointer
(FFy; Read/Write)

ChphEEmk]
STACK POINTER LOWER

BYTE (SP,-SP;)

82

OPCODE MAP

Lower Nibble (Hex)
[} 1 2 3 4 5 6 7 8 9 A B [D E F
6.5 6.5 6.5 6.5 10,5 10.5 10,5 10,5 6.5 6.5 12/10,5 | 12/10,0 65 12/10.0 6.5
0 DEC DEC ADD ADD | ADD | ADD | ADD | ADD LD LD DJNZ JR Lo JP INC
Ry IRy rira | ridre | RaRy | IR2Ry | RyM | IR{M | 1Rz | 2Ry | r1RA | ccRA | r1IM | cc.DA 1
6.5 6.5 6.5 6,5 10.5 10,5 10,5 10.5
1 RLC RLC ADC ADC ADC ADC ADC ADC
Ry IRy rir2 | ridrz | RaRy | IR2Ry | RyM | IRqIM
6.5 6.5 6.5 6.5 10,5 10,5 10,5 10,5
2 INC INC suB sus suB suB sus sus
R4 IRy r.r2 ry.lro R2.Ry | IR2,Ry | RyIM | IR¢IM
8,0 6,1 6,5 6.5 105 10,5 105 105
3 JP SRP SBC SBC SBC SBC SBC SBC
IRR4 M rr2 | ridra | RaRy | IR2Ry | RyM | IRqIM
8.5 8.5 6.5 6.5 10,5 10,5 10,5 105 N
4 DA DA OR OR OR OR OR OR
Ry IRy rre | rure | RaRy | IRaRy | RyIM | IRyIM
10,5 10,5 6.5 6.5 10,5 10,5 10,5 105
5 POP POP AND AND AND AND AND AND
Ry IRy r.r ridr2 | Ra.Ry | IR2,Ry | RyIM | IRy, IM
6.5 6.5 6.5 6,5 10,5 10,5 10.5 10,5
6 COM | COM | TCM TCM TCM TCM TCM M
Ry 1Ry ri.rz ry.lrp R2.Ry | IR2,Ry | RyIM | IR¢,IM i
g 10121 | 12/14.1 6.5 6.5 10,5 10.5 10,5 10,5
s 7 PUSH | PUSH ™ ™ ™ ™ ™ ™
5 Ro IRy rr2 | rdre | RaRy | IRaRy | RyIM | IRyIM
H 10,5 10,5 12,0 18,0 6.1
‘8 8 |DECW | DECW | LDE | LDEI DI
g RR1 IRy rlrrp | gl
6.5 6.5 12,0 18,0 6.1
9 RL RL LDE LDEI El
Ry IRy rolriy | lrp,lrry
10,5 10,5 6.5 6,5 10,5 10,5 10.5 10,5 14.0
A INCW | INCW cpP cpP cP CP * cpP CcP RET
RR4 IRy rrs | ridra | RaRy | IR2Ry | RyIM | IRyIM
6.5 6.5 6.5 6,5 10,5 10,5 105 105 16.0
B CLR CLR XOR XOR XOR XOR XOR XOR IRET
Ry IRy rr2 | ordre | RaRy | IRoRy | RyIM | IRyIM
6.5 6,5 12,0 18,0 10,5 6.5
[RRC RRC LDC | LDCI LD RCF
Rq 1Ry rdrm | gl r1.x.Rp
6.5 6.5 12,0 18,0 20,0 200 10,5 6.5
D SRA SRA LDC | LDCI | CALL* CALL LD SCF
Ry IRy rplrry | drp.lrry IRR4 | DA r2. xRy
6.5 6.5 6,5 105 10,5 10,5 10,5 6.5
E RR RR LD LD LD LD LD CCF
Ry IRy r1JRa | Ra.Ry | IR2Ry | RIM | IRyIM
8.5 8.5 6.5 105 6.0
F SWAP | SWAP LD LD NOP
R | Ry Iri.r2 RoRy Y | Y| Y| Y |Y]|lVYlY
[\ — (. —
-~ - —_—— ~/ -_ \/\W_J
2 3 2 3 1
Bytes per Instruction
LOWER
OPCODE
NIBBLE
EXECUTION PIPELINE Legend:
CYCLES 4 CYCLES R = 8-bitaddress
r = 4-bitaddress
105 Rqorry = Dstaddress
UPPER Rporrp = Src address
OPCODE —3» A| CP <ef——MNEMONIC
NIBBLE RoR
2 Sequence:
Opcode, First Operand. Second Operand
FIRST SECOND
OPERAND OPERAND NOTE: The blank areas are not defined -

*2-byte instruction; fetch cycle appears as a 3-byte instruction

83

ABSOLUTE MAXIMUM RATINGS

Voltages on-all pins except RESET

with respecttoGND —0.3Vio +7.0V
Operating Ambient

Temperature.See Ordering Information
Storage Temperature P —65°Cto +150°C

Stresses greater than those listed under Absolute Maximum Ratings may
cause permanent damage to the device. This is a stress rating only;
operation of the device at any condition above those indicated in the
operational sections of these specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect
device reliability.

STANDARD TEST CONDITIONS

The DC characteristics listed below apply for the following
standard test conditions, unless otherwise noted. All
voltages are referenced to GND. Positive current flows into
the referenced pin.)

Standard conditions are as follows:

B +4.75V< Vo< +5.25V

m GND = 0V

B 0°C< Tp< +70°C for S (Standard temperature)

B —40°C< T < +100°C for E (Extended temperature)

FROM OUTPUT
UNDER TEST

Figure 14. Test Load 1

DC CHARACTERISTICS
Symbol - Parameter Min Max Unit Condition
VcH Clock Input High Voltage 3.8 Vee \ Driven by External Clock Generator
VoL Clock Input Low Voltage -0.3 0.8 Vv Driven by External Clock Generator
ViH Input High Voltage 2.0 Vee \'
ViL Input Low Voltage -03 0.8 v
VRH Reset Input High Voltage 3.8 Vee \'
VAL ‘Reset Input Low Voltage -03 08 v
VoH Output High Voltage 24 \ lon = —250 A
VoL Output Low Voltage 0.4 \' loL= +2.0mA
L Input Leakage -10 10 uA VinN = 0V, 5.25V
loL Output Leakage -10 10 HA ViN = 0V, 5.25V
T Reset Input Current -50 A Vce = +5.25V, VgL = OV
Icc Vee Supply Current 180 mA All outputs and 1/O pins floating

84

RIW X ' K
(2> <3
PORT 0,
X
(6) N
19
PORT 1 Ag-A7 } < Do-D7 IN
D> |—O— o=
As X / ® <@>T\
l—— <O @
DS
(READ) 4—-—-—-—(:)-—>\ /
PORT 1 X Ag-A7 X Do-D7 OUT
 —@— <@~
bs !) | f—
(WRITE) \ ~ y
Figure 15. External /O or Memory Read/Write Timing
AC CHARACTERISTICS
External I/0 or Memory Read and Write Timing
8 MHz 12 MHz
Number Symbol Parameter Min Max Min Max " Notes*t°
1 TdA(AS) Address Valid to AS t Delay . 50 35 2,3
2 TdAS(A) AS * to Address Float Delay 70 45 2,3
3 TdAS(DR) AS 1 to Read Data Required Valid 360 220 1,2,3
4 TWAS AS Low Width 80 55 2,3
5 TdAZ(DS) Address Float to DS ¢ 0 0
6 TwWDSR DS (Read) Low Width 250 185 1,2,3
7 TWDSW DS (Write) Low Width 160 110 1,2,3
8 TdDSR(DR) DS ¢ to Read Data Required Valid 200 130 1,2,3
9 ThDR(DS) Read Data to DS 1 Hold Time 0 0
10 TdDS(A) DS 1 to Address Active Delay 70 45 2,3
11 TdDS(AS) DSttoAS ¢ Delay - 70 55 2,3
12 TdR/W(AS) R/W Valid to AS * Delay 50 30 2,3
13 TdDS(R/W) DS t to R/W Not Valid 60 35 2,3
14 TdDW(DSW) Write Data Valid to DS (Write) | Delay 50 35 23
15 TdDS(DW) DS * to Write Data Not Valid Delay 60 35 2,3
16 TdA(DR) LAddréss Valid to Read Data Required Valid 410 255 1,2,3
17 TdAS(DS) AS tto DS ¥ Delay 80 55 23
NOTES: ’

1. When using extended memory timing add 2 TpC.
2. Timing numbers given are for minimum TpC.
3. See clock cycle time dependent characteristics table.

* All units in nanoseconds (ns).

1 Test Load 1

° All timing references use 2.0V for a logic “1” and 0.8V for a logic “0”.

85

IRQN

_Figure 16. Additional Timing

AC CHARACTERISTICS
Additional Timing Table

8 MHz) 12MHz
Number Symbol Parameter Min Max Min Max Notes*

1 TpC Input Clock Period 125 1000 83 1000 1
2. TCTC Clock Input Rise and Fall Times ' 25 15 1
3 ™C Input Clock Width 37 70 1
4 TwTinL Timer Input Low Width 100 70 2
5 TwTinH Timer Input High Width 3TpC 3TpC 2
6 TpTin Timer Input Period 8TpC 8TpC 2
7 TTin, TfTin Timer Input Rise and Fall Times 100 100 2

8A TwiL Interrupt Request Input Low Time 100 70 2,4

8B TwiL Interrupt Request Input Low Time 3TpC 3pr 2,5
9 TwiH Iqterrupt Request Input High Time 3TpC 3TpC 2,3

NOTES:

1. Clock timing references use 3.8V for a logic “1" and 0.8V for a logic “0".
2. Timing references use 2.0V for a logic “1” and 0.8V for a logic “0”.

3. Interrupt request via Port 3.
4. Interrupt request via Port 3 (P34-P33)
5. Interrupt request via Port 3 (P3p)

* Units in nanoseconds (ns).

86

DATA IN . X DATA IN VALID

X

O { @ !
DAV %;
(INPUT) 3
O ®
RDY /
(OUTPUT) \ 7
Figure 17a. Input Handshake Timing
DATA OUT x\ DATA OUT VALID
DAV
(OUTPUT) \
| (5) |)
) | o U
RDY 0 /S
(INPUT) \
Figure 17b. Output Handshake Timing
AC CHARACTERISTICS
Handshake Timing
Number ~ Symbol Parameter minS MHz min2MHz, Notest*
1 TsDI(DAV) Data In Setup Time 0 0
2 ThDI(DAV) : Data In Hold Time 230 160
3 TwDAV Data Available Width 175 120
4 TdDAVIf(RDY) DAV { Input to RDY ¥ Delay 175 120 1,2
5 TdDAVOf(RDY) DAV ¥ Output to RDY ¥ Delay 0 0 1,3
6 TdDAVIr(RDY) DAV * Input to RDY * Delay 175 120 1,2
7 TdDAVOr(RDY) DAV 1 Output to RDY # Delay 0 0 1,3
8 TdDO(DAV) Data Out to DAV { Delay 50 30 1
9 TARDY(DAV) Rdy | Input to DAV 1 Delay 0 200 0 140 1
NOTES:
1. Test load 1

2. Input handshake

3. Output handshake

1 All timing references use 2.0V for a logic “1" and 0.8V for a logic “0”.
* Units in nanoseconds (ns).

87

CLOCK CYCLE TIME-DEPENDENT

CHARACTERISTICS
8 MHz 12 MHz
Number Symbol Equation Equation /
1 TdAMS) TpC-75 TpC-50
2 TdASMA) TpC-55 TpC-40
3 TdAS(DR) 4TpC-140% 4TpC-110%*
4 TwAS TpC-45 TpC-30
6 TWDSR 3TpC-125% 3TpC-65%
7 TwDSW 2TpC-90* 2TpC-55*
8 TdDSRDR) 3TpC-175% 3TpC-120*
10 TdDSA TpC-55 TpC-40
11 TdDS(AS) TpC-55 TpC-30
12 TRW(AS) TPC-75 TpC-55
13 TdDSRW) TpC+65 TpC-50
14 TdDW(DSW) TpC-75 TpC-50
15 TdDS(DW) TpC-55 TpC-40
16 TdA(DR) 5TpC-215% 5TpC-160*
17 TdAS(DS) TpC-45 . Tpc-30

* Add 2TpC when using extended memory timing

PRELIMINARY

Product Specification

April 1988

Z86C08 CMOS Z8
MICROCONTROLLER

FEATURES:

® Complete microcomputer with 18-pin package, 14
I/O lines, and 2K bytes of on-chip ROM.

©® 142-byte register file, including 124 general purpose
8-bit registers, 3 I/O port registers, and 15 status
and control registers.

® Two programmable 8-bit counter/imers, each with a
6-bit programmable prescaler.

@ On-chip osillator that accepts a crystal or external
clock drive.

@ 2 Volt “BROWN OUT” protection.

® Two analog comparators.

@ Register pointer so that short fast instructions
access any one of the eight working register groups

@ Internal power on reset.
® Standby modes - HALT and STOP.
® 8, 12MHz

CMOS process.

GENERAL DESCRIPTION:

The Z86C08 is a 2K ROM version of the Z8 single-chip
microcomputer housed in an 18-pin DIP. It offers all the
outstanding features of the Z8 family architecture in a
low cost plastic DIP for price and size sensitive designs.

Flexible I/O with low power (15mA max, 5mA HALT, 10pA
STOP) operation makes this an ideal micrcomputer for
hand-held and consumer applications. It has Instruction
compatibility with the entire Z8 family for easy software
migration.

—»] GND vee fe—
—1 XTALIN P20 fe—>
<«——] XTALOUT P21 j«—>»
—| P31/An1 P22 f«—>»
—»] P32/An2 P23 [<—>
—] P33/REF P24 [+—>
<] POO P25 je—>
<«——>»| PO1 P26 [+—>
<] P02 P27 >

Figure 1. Pin Functions

I L P23 |)18
2{]p2s P22 [17
3[] P26 P21 []16
4[| P27 P20 | 115
§[] vee GND [14
GE XTALOUT P02 []13
7] XTALIN POt | |12
8 (| p31/ant Poo [11
9 [| P3z/An2 P33REF []10

Figure 2. Pin Assignments

89

" PIN DESCRIPTION: |

P0,-PO,. 1/O Port Lines (inputs/outputs, CMOS compat-
ible). The three lines of Port 0 are programmable as inputs
or outputs on a group basis (Figure 3).

P2,-P2, . 1/O Port Lines (inputs/outputs, CMOS compat-
ible). The eight lines of Port 2 are programmable as inputs
or outputs on a line by line basis (Figure 3).

P3,-P3,. Input Port Lines (inputs, CMOS compatible).
The three lines of Port 3 are programmable as digital or
analog comparator inputs on a group basis (Figure 3).
XTAL IN, XTAL OUT. Crystal In, Crystal Out (time-base
input and output). These pins connect a parallel-resonant
crystal (12 MHz maximum) or an external, single-phase
clock (12 MHz maximum) to the on-chip clock oscillator
and buffer.

’

ARCHITECTURE:

Z86C08 architecture is characterized by a flexible 1/O
scheme, an efficient register and address space structure
and anumber of ancillary features that are helpful in many
applications (Figure 3).

Microcomputer applications demand powerful /O capa-
bilities. The Z86C08 fulfills this with 14 pins dedicated to
input and output. These lines are grouped into three I/O
ports which are configurable under software control.
Two basic address spaces are available: program memory
and the internal register file. The register file is composed
of 124 general purpose 8-bit registers, three I/O port reg-
isters, and 15 control and status registers.

To unburden the program from coping with real-time
problems two counterftimers with a large number of user-
selectable modes are offered on-chip.

ADDRESS SPACES:

. Program Memory. The program counter addresses 2K
bytes of program memory space as shown in Figure 4.
The first 12 bytes of program memory are reserved for the
interrupt vectors. These locations contain six 16-bit vectors
that correspond to the six available interrupts .

Register File. The register file includes three VO port reg-
isters, 124 general purpose registers (R4 - R127), and 15
control registers (R240 - R255). These

registers are assigned the address locations shown in
Figure 5.

Instructions can access registers directly or indirectly with
an 8-bit address field. The Z86C08 also allows short 4-bit
register addressing using the Register Pointer (one of the
control registers). . In the 4-bit mode, the register file is
divided into eight working register groups, each occupying
16 contiguous locations. The Register Pointer addresses
the starting location of the active working-register group
(Figure 6).

STACKS. An 8-bit Stack Pointer (R255) is used for the
internal stack that resides within the 124 general purpose
registers (R4 - R127).

INPUT

i

PORT 3

Vcc GND

H

XTAL

it

MACHINE TIMING AND
INSTRUCTION CONTROL

COUNTER/
TIMERS
@

ALU

FLAGS

INTERRUPT

REGISTER
POINTER

| -

REGISTER FILE
124 x 8BIT

N

CONTROL
2 ANALOG
COMPARATORS

it

Y

15

PORT 2 PORT 0

il

o
(BIT PROGRAMMABLE)

Hi

1o

Figure 3. Functional Block Diagram

COUNTER/TIMERS:

The Z86C08 contains two 8-bit programmable counter/
* timers (TO and T1), each driven by its own 6-bit program-
mable prescaler. The T1 prescaler can be driven by
internal or external clock sources; however, the TO pres-
caler is driven by the internal clock only.

The 6-bit prescalers can divide the input frequency of the
clock source by any number from 1 to 64. Each prescaler
drivesits counter, which decrement the value (1 t0 256) that
has been loaded into the counter. When the counter
reaches the end of count, a timer interrupt request - IRQ4
(T0) or IRQ5 (T1) - is generated.

The counters can be started, stopped, restarted to con-
tinue, or restarted from the initial value. The counters can
also be programmed to stop upon reaching zero (single
pass mode) or to automatically reload the initial value and
continue counting (modulo-n continuous mode). The
counters, but not the prescalers, can be read at any time
without disturbing their value or count mode.

The clock source for T1 is user-definable and can be
retriggerable or non-retriggerable, or a gate input for the
internal clock.

I/O PORTS:

The Z86C08 has 14 lines dedicated to input and output.
These lines are grouped into three ports and are configur-
able as input or output. All ports have active pull-ups and
pull-downs compatible with CMOS loads.

Port 0 can be programmed on either inputs or outputs. The
configuration is shown in Figure 7.

Port 2 bits can be programmed independently as input or

output. In addition, Port 2 can be configured to provide

open-drain outputs. The configuration is shown in Figure 8.
Port 3 lines can be configured as digital inputs, analog
inputs, or control lines. In all cases, the direction of these
three lines is fixed as inputs.

Port 3 can also provide the following control functions:
four external interrupt request signals(IRQ0, IRQ1, IRQ2
and IRQ3) or timer input signal (TIN). The configuration of
Port 3 is shown in Figure 9. ’)

LOCATION

IDENTIFIERS

255

STACK POINTER (BITS 7-0)

SPL

254 RESERVED
253 REGISTER POINTER RP I l I mwrn | 0000]2
252 PROGRAM CONTROL FLAGS FLAGS
251 INTERRUPT MASK REGISTER MR € REGISTER FILE ADDRESS
THE UPPER NIBBLE OF T
250 | INTERRUPT REQUEST REGISTER | IRQ >—— PROVIDED BY THE REGISTER POINTER SPECIFIES
249 INTERRUPT PRIORITY REGISTER | 1PR THE ACTIVE WORKING-REGISTER GROUP.
248 PORTS 0-1 MODE POTM .
247 PORT 3 MODE Pam - l
246 PORT 2 MODE P2m]
245 TO PRESCALER PREO
244 TIMERICOUNTER 0 0 o l
2048 243 T1 PRESCALER PRE1]
ON-CHIP 22 ! m ’
LOCATION OF ROM 241 TIMER MODE' ™R L ’
FIRST BYTE OF l
INSTRUCTION
EXECUTED N————————————— NOT I
AFTERRESET 12[% IMPLEMENTED .
1" IRQ5 THE LOWER
NIBBLE OF
10 IRQ5 127 I THE REGISTER
SPECIFIED WORKING:- FILE AD -
N 1Rad — REGISTER GROUP Il E il
8 1RG4 INSTRUCTION
POINTS TO THE
7 RGS GENERAL-PURPOSE | SPECIFIED
VECTOR_6 AGe EGISTER L l REGISTER.
ER BYTE|
(OWERBYTE SR IRQ2
alr 1RQ2 A .
- — -
VECTOR 3 1ROt 3 PORT 3 P3 ‘
(UPPER BYTE)
we)2 ‘Ra1 2 PORT 2 P2 . | 15
1 1Roo 1 Pt e]
0 1RQO 0 PORT 0 PO I 1/0 PORTS 3

Figure 4. Program Memory Map

Figure 4. Program Memory Map

Figure 5. Register File

Figure 5. Register File

Figure 6. Register Pointer

Figure 6. Register Pointer

,9'1

INTERRUPTS:

The Z86C08 allows six different interrupts from five
sources: the three Port 3 lines P31 - P33, both the rising
and falling edge of P32 (AN2), the falling edge of P31
(AN1)-and P32 (REF - Figure 9), and the two counter/
timers. These interrupts are both maskable and priori-
tized. The Interrupt Mask Register globally or individually

enables or disables the six interrupt requests. When more -

than one interrupt is pending, prlorrlles are resolved by a
programmable priority encoder that is controlled by the
Interrupt Priority register.

All Z86C08 interrupts are vectored through locations in
program memory. When an interrupt request is granted,
an interrupt machine cycle is entered. This disables all
subsequent interrupts, saves the Program Counter and
status flags, and branches to the program memory vector
location reserved for that interrupt. This memory location
andthe nextbyte contain the 16-bit address of the interrupt
service routine for that particular interrupt request.
Polled interrupt systems are also supported. To accom-
modate a polled structure, any or all of the interrupt inputs
can be masked and the interrupt request register polled to
determine which of the interrupt requests needs service.
Interrupt sources and corresponding interrupts are shown
in Table 2.

The STOP instruction stops the internal clock and external
crystal oscillation; the HALT instruction stops the, mlernal
clock but not crystal oscillation.

The STOP mode can be released by two methods. The

firstmethodis aRESET of the device by removing Vce. The
second methodisif P27 is configured as an input line when
the device executes the STOP instruction. A low input
condition on P27 releases the STOP mode. Program exe-
cution under both conditions begins at location
%000C(HEX). However, when P27 is used to release the
STOP mode the I/O port mode registers are not reconfig-
uredto their default power-on conditions. This prevents any
I/0, configured as output when the STOP instruction was
executed, from glitching to an unknown state.
The HALT mode s released by an interrupt on Port 3 input,
a time-out in Timer 0 or Timer 1, or by a RESET of the
device. To complete aninstruction prior to entering standby
mode,use the instructions:

NOP
HALT or STOP .

Tousethe P27 release approach with STOP mode, use the
following instructions:

OR P2, #% 80

STANDBY MODE: NOP
STOP
The Z86C08 has two standby modes which are entered by ‘
executing either: . RESET:
® stoP ~ ,
Power-On Reset is in the Z86C08. The Z86C08 waits for
10 to 25 ms + 18 crystal clocks (Figure 10) while power is
on, and then jumps to the starting address %000C(HEX).
® HALT The control Register reset value is listed in Table 1.
OPEN DRAIN
L oo ; L:—[} Q
i)
U 0
= J e D—i
1.8 (=) 2.3v HYSTERESIS 1.6 <—> 2,3V HYSTERESIS ’]"’EI-
N N PULL P
\% ™ @ ' ONLY ON P27

HEAK LATCH
ZBBC28 PORT @ CONFIGURATION

Figure 7. Z86C08 Port 0 Configuration

e

HEAK LATCH -
= NO WEARK LATCH ON P27

Z8BCO8 PORT 2 CONFIGURATION

Figure 8. Z86C08 Port 2 Configuration

92

T

e=
R247 = PaM 1 =

PRD
P3LCANLY
E ANALOG
PRO
PaacANa)
B 1>

u_’— -

Figure 9. Z86C08 Port 3 Configuration

Table 1. Z86C08 Control Registers

86C08 control registers :

Addr | reg. Reset condition Commments
F1 TMR 00000000
F2 |T1 [RRRR RN
F3 | PRE1 UUUUUUODO
F4 |TO UUUUUUUU
F5 | PREO UUuUUUUUO
F6 * | P2u ’ 11111111 Inputs after
Reset
F7 *| P3M UUUUUUOO
F8 *| POIM UUUOUUOL
F9 | IPR UUUUUUUY
FA | IRQ . UU000000 ‘| IRQ3 is
used for
pos. edge
detection
FB | IMR OUUUUUUU
FC | FLAGS RARARR A
D | RP 00000000
FE SPH vuuuvuvuouy Not used,
stack always
FF | SPL vuuuuuyuuuy internal

* Not reset after a low on P27 to get out of stop mode

INT. 0SC. XTAL OSC.
]
POR {cold start) CHIP RESET
10 ms Delay Line A B F——
P2,7 (stop mode)

Figure 10. Internal Reset Configuration

Table 2. Interrupt Types, Sources, and Vectors

Vector
Source Name Location
AN2 (P3,) IRQ,

Comments
0,1 ‘External ¥ Edge Trig.
REF (P3,) IRQ, 2,3 External y Edge Trig.
AN1 (P3) IRQ 4,5 External y Edge Trig.

AN2(P3)) |F¢d 6,7 Exiernal A Edge Trig.

T0 1RQ, 8,9 Internal

T IRQ; 10,11 Internal

93

WATCH DOG TIMER (WDT):

The Watch Dog Timer (WDT) shduld be refreshed within
15 ms. If not refreshed, then the Z86C08 resets itself.

WDT: 5F(HEX).

CLOCK:

The on-chip oscillator has a high-gain, parallel-resonant
amplifier for connection to a crystal, ceramic resonator, or

to any suitable external clock source (XTAL IN = Input,

XTAL OUT = Output).

The crystal source is connected across XTAL INand XTAL
OUT, using the recommended capacitors (C, =15 pF) from
each pin to ground. The specifications for the crystal are
as follows: i

® AT cut, parallel resonant
® Fundamental type, 12 MHz max

® Series resistance, RS < 100 ohm

The oscillator configuration is shown in Figure 11.

XTALIN
™ SM Ohm 1/2 DIVIDER
XTALOUT ATAL CLOCK SYSTEM CLOCK
i
Figure 11 . Z86C08 Crystal Input Config.
PORT 3 COMPARATORS:

The 86C08's port 3 inputs include two analog comparators
for added interface flexibility. Interrupts are generated on
either edge of comparator 2's output, oron the falling edge
of comparator 1's output. The block diagram is shown in
Figure 9., Comparator outputs may be used for interrupt
generation, Port 3 data inputs, or Tin in the case of ANT
(P31). Alternatively, the comparators may be disabled,
freeing the reference input (P33) for use as IRQ1 and/or
P33 input. o

The dual comparator (common inverting terminal) fea-
tures a single power supply which discontinues power in
stop mode. The common voltage range is 0-4V; the power
supply and common mode rejection ratios are 90db and
60db, respectively. See comparator specifications for de-
tails (Page 16). .

Typical applications for the on-board comparators include:
zero crossing detection, analog-to-digital conversion, volt-
age scaling, and threshold detection.

94

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to
describe the addressing modes and instruction operations
as shown in the instruction summary.

)

Assignment of a value is indicated by the symbol “<". For
example, ‘

dst < dst + src

0000 Never true

IRR In;;r:gtd rrzglsster pair or indirect working-register indicates that the source data is added to the destination
Irr ﬁ] direct working-register pair only data gnd the result i; stored in the destina_tion location. .The
notation “addr(n)” is used to refer to bit “n” of a given
X Indexed address location. For example
DA Direct address ~ ‘ . '
RA Relative address dst (7)
:VI . :;';gizfle'?ﬁ working-register address refers to bit 7 of the destination operand.
r . Working-register address only Flags. Control Register R252 contains the following six
IR Indirect-register or indirect working-register flags:
address i
r Indirect working-register addressonly ¢ <z: g:rr ;yﬂgzg
RR Register pair or working register pair address P Sign flag
Symbols. The following symbols are used in describing the \' Overflow flag
instruction set. D Decimal-adjust flag
dst Destination location or contents H Halt-carry flag
src Source location or contents Affected flags are indicated by:
cc Condition code (see list)
@ Indirect e}ddress prefix . (1) gle??gegjnf zero
SP Stack pointer (control registers 254-255) . Set or cleared according to operation
PC Program counter _ _ Unaffected
FLAGS Flag register (coritrol register 252) Undefined '
" RP Register pointer (control register 253)
IMR Interrupt mask register (control register 251)
CONDITION CODES
Value Mnemonic Meaning Flags Set
1000 ‘ Always true -
0111 Cc Carry C=1
1111 NC No carry C=0
0110 Z Zero , Z=1
1110 Nz Not zero Z=0
1101 PL Plus S=0
0101 Ml Minus S=1
0100 oV Overflow V=1
1100 NOV. No overflow V=0
0110 . EQ Equal Z=1
1110 NE Not equal Z=0
1001 ' GE Greater than or équal (SXORV) =
. 0001 LT Less than (SXOR V) =1
1010 GT Greater than [ZOR(SXORV)] = 0
0010 LE Less than or equal [ZOR(SXOR V)] = 1
1111 UGE Unsigned greater than or equal C=0
0111 uLT Unsigned less than C=1
1011 UGT Unsigned greater than (C=0ANDZ=0) =1
0011 ULE Unsigned less than or equal (CORZ) =1

95

INSTRUCTION FORMATS

opC CCF, DI, EI, IRET, NOP,
RCF, RET, SCF
[ast | opc] INCr
One-Byte Instructions
[opc T moDE | CLR, CPL, DA, DEC, OPC_| MODE ADC, ADD, AND, CP,
dstistc or [11 o[dstisrc] DECH: MG, MG, POP, st or [1110] se | 0% 58G U8
RRC, SRA, SWAP dst orR[1110] dst
OPC - JP, CALL (Indirect)
| dst Jor[1 110 ast | opc | mooE | ADC, ADD, AND, CP,
dst- or [1of dst] 12,0% 55 SUB.
srP VALUE
MODE | oPC LD
src OR ﬁ 11 0‘ sch
-m ég%é?ggé"snﬁa_ dst OR{1110] dst
[sre | TCM, TM, XOR
[dstsre [srefdst | ADDRESS
'dstlsrcl oPC] Lo
[seiast_|or[1110] src] L DII\ OFC P
J
. Y
[ast [orc | Lo
oPC CALL
DA,
DINZ, JR DA,
Two-Byte Instructions Three-Byte Instructions
Figure 12. Instruction Formats
INSTRUCTION SUMMARY
Addr Mode Opcode Flags Affected Addr Mode Opcode Flags Affected
Instruction Byte ——m——— Instruction Byte ——m—
and Operation dst src (Hex)y CZ S VDH and Operation dst src (Hex) C ZSVDH
ADC dst,src (Note 1) 10 * % x x 0 * DEC dst R 00 — %k Kk — —
dst<dst + src + C dst < dst — 1 IR 01
ADD dst,src (Note 1) (o]m] * % % % 0 *» DECW dst RR 80 — % * *k — —
dst < dst + sre dst < dst - 1 IR 81
AND dst,src (Note 1) 50 — % % 0 — — DI
dst < dst AND src IMR (7)< 0 8F @ ——————
CALL dst DA D6 —-————— DJNZ r.dst RA [
SP<SP -2 IRR D4 rer—1 r=0-F
@SP < PC; PC < dst ifr#0
ccF BF v —— = F{aPnCt: 5(1:2; d—St1 28
C<NOTC ge: ¥ 1eh
- El F -
CLRdst R BO —————— IMR (7) < 1
dst<0 IR B1
HALT 7F
COM dst R 60 — % * 0 — — -
dst < NOT dst IR 61 INC dst r rE — % ok ok — —
dst<dst + 1 r=0-F
CP dst,src (Note 1) Al * k Kk k — — . R 20
dst — src IR 21
DA dst R 40w x * X —— |NcWast RR AD — % % % ——
dst < DAdst IR 41 dst < dst + 1 IR A1

96

INSTRUCTION SUMMARY (Continued)

Addr Mode Opcode Flags Affected

Addr Mode Opcode Flags Affected
Instruction Byte Instruction —— Byte —mF—
and Operation dst src (Hex) C ZSVDH and Operation dst src (Hex) C Z SVDH
IRET BF * ok * k Kk * RRdstR EO * ok * ok — —
FLAGS « @SP; SP <SP + 1 R E1
\ PC < @SP;SP <SP + 2;IMR(7) <1 RRC dst R co kR ok — —
JP cc,dst DA D - ; ;' IR 1
ifccis true c=0-F SBC dst,src (Note 1) 30 * ok ok ok 1R
PC «dst IRR 30 dst < dst<src«C
JR cc,dst RA . cB - —— SCF . . DF 1 o —
if cc is true, c=0-F C«1
PC < PC + dst -
Range: +127, — 128 SRA dst - R DO * % * 0 — —
l..m R D1
LD dst,src r Im tc ——————
" dst < src r R 8 SRP src Im 31 - — — —
R r 9 RP < src
r=0-F STOP 6F
r X c7
X r D7 SUB dst,src (Note 1) 20 * ok kx 1 x
r Ir E3 dst < dst < src
Ir r F3
SWAPdst _f 1 R FO X X ——
R R E4 s R o o
R IR E5
R M E6 TCM dst,src (Note 1) 60 — % % 0 — —
IR M E7 (NOT dst) AND src
IR_R Fs TM dst,src Note!) 70 — % % 0 — —
LDC dst,src r Irr c2 @ —————— dst AND src
dst<src . Irr r D2 ,
LDCl dst,src Il 3 —————— wot SF e
dst < src Irr Ir D3
rer+tir<rmr+1 XOR dst,src (Note 1) BO — % % 0 — —
dst < dst XOR src
LDE(_dSt,SrC Ir Ire gg ______ NOTE. These instructions have an identical set of addressing modes,
dst < src mor which are encoded for brevity. The first opcode nibble is found in
LDEI dst src Ir Irr ‘83— - — the instruction set table above. The second nibble is expressed
dst < src' e it a3 symbolically by a [J in this table, and its value is found in the
fer e+ following table to the left of the applicable addressing mode pair
! For example, the opcode of an ADC instruction using the
NOP FF = — - — - addressing modes r (destination) and Ir (source) 1s 13.
OR dst,src (Note 1) 40 — % % 0 — — Addr Mode
dst < dst OR src - Lowe|:
dst src Opcode Nibble
POP dst R 50 @ @@—— = ——— ,
dst < @SP; IR 51 r r
SP <SP + 1 : ' ; Ir
PUSH src R M0 @ ——————
R 4
SP<SP - 1,@SP<src IR 71 R
RCF CF 0————— R IR
c<o , , R IM (6]
RET) AF ——— — — — IR M
PC < @SP; SP <SP +
RL dst [——] R~ 90 * * Kk Kk — —
el § o1
RLC dst R 10 * k kK — —
IR 11

97

OPCODE MAP

Lower Nibble (Hex) .
[} 1 2 3 4 5 6 7 8 9 A B Cc o E F
65 65 6.5 6.5 105 10.5 10.5 105 65 ‘65 [12/105|12/100| 65 [12/100| 65
) DEC DEC ADD ADD ADD ADD ADD ADD Lo Lo -DINZ JR LD JP INC
Ry IRy .12 rydrp Ro.Ry | IR2.Ry | RyIM | IRy IM | ry.Rp .Ry | 1 RA | ccRA rim cc DA n
65 65 65 65 105 10.5 10.5 105
1 RLC RLC ADC ADC ADC ADC ADC.| ADC
Ry IR, rp | g | RaRy | IR2.Ry | RyIM | IRyIM
65 6.5 6.5 6.5 10.5 10.5 105 10.5
2 INC INC suB suB sus sus sus suB
Ry IR raz | ridrp | RaRy | IR2.Ry | RiIM | IRIM
80 6.1 65 6.5 105 10.5 105 105
3 JP SRP SBC SBC SBC SBC SBC SBC
IRR4 M rrp | otz | RaRy | IR2.Ry | RyIM | IRyIM
85 85 65 65 105 105 10.5 105
4 DA DA OR OR OR OR OR OR
Ry IRy rrp | rdre | RaRy [IR2.Ry | RiM | IRyIM
10.5 10.5 6.5 65 10.5 105 105 10.5 .
5 POP POP AND AND AND AND AND AND Wot
Ry IRy rrp | rdre | RoRy | IR2Ry | RiM | IRyIM
65 6.5 65 6.5 10.5 105 105 |. 105 6.0
6 | com | com | TCM | TCM | TCM | TCM | TCM | TCM stop
Ry IRy rrp | rdra | RaRy | IR2Ry | RIM | IRyIM
§ 1012.1 (121141 | . 65 6.5 10.5 105 10.5 10.5 7.0
e 7 PUSH | PUSH ™ ™ ™ ™ ™ ™ HALT
5 Ry IRy rrp | e | RaRy | IR2.Ry | RyIM | IRyIM
Z 105 | 105 61
§ 8 | DECW | DECW ol
s RRy IRy
65 6.5 61
9 RL RL El
Ry IRy
10.5 10.5 6.5 65 10.5 10.5 10.5 10.5 140
A INCW | INCW cp cpP cP cp cpP cP RET
RRy ‘| IRy rp | relg | RaRy | IRgRy | RyIM | IRy.IM
65 6.5 6.5 6.5 10.5 10.5 105 10.5 160
B CLR CLR XOR XOR XOR XOR XOR XOR IRET
Ry IRy rr2 | rdrz | RaRy | IR2Ry | RyIM | IRyIM
6.5 6.5 12.0 18.0 10.5 6.5
[RRC RRC LbC LbCI Lo RCF
Ry IRy rydrrp | drqderp r1.x Ry .
6.5 6.5 12.0 180 | 200 20.0 10.5 65
D SRA SRA LboC LDCI | CALL" CALL LD . SCF
R4 IRy rodrry | Iy IRRy DA r2.x Ry
65 65 6.5 105 105 105 10.5 65
E RR RR Lo L0 Lo Lo Lo CCF
Ry IRy r.R2 | R2Ry | IR2.Ry | RyIM | IRq.IM
85 85 6.5 10.5 60
F SWAP | SWAP LD Lo NOP
Ry IRy Iry.rz R2.IRy V \/ {V V V Y V
N N
- . ~ 7 \/\ -
3 2 3
Bytes per Instruction
LOWER
NIBBLE
EXECUTION PIPELINE Legend::
CYCLES CYCLES R = 8-bitaddress
r = 4-bit address
UPPER 10,5 Ryorry = Dstaddress |
OPCODE——> A| CP <——MNEMONIC Rporra = Src address
NIBBLE
RaP Sequence:
Opcode, First Operand, Second Operand
FIRST SECOND
OPERAND OPERAND

“2-byte mimctwon. fetch cycle appears as a 3-byte instruction

) NOTE: The blank areas are not defined.

98

R241 TMR
TIMER MODE REGISTER
(F1H; Read/Write)

«

T,y MODES
EXTERNAL CLOCK INPUT = 00
GATE INPUT = 01
TRIGGER INPUT = 10
(NON-RETRIGGERABLE)
TRIGGER INPUT = 11
(RETRIGGERABLE)

NO FUNCTION
LOAD T,
DISABLE T, COUNT
ENABLE T, COUNT
NO FUNCTION
0AD T,

DISABLE T, COUNT
ENABLE T, COUNT

—
“o -0 w0 =0

ownown

R242 T1
COUNTER TIMER'1 REGISTER
(F2H; Read/Write)

(2. Jos]os]o. s 0,0 [oo]
l T, INITIAL VALUE (WHEN WRITTEN)
(RANGE 1 256 DECIMAL 01 00 HEX)

Ty CURRENT VALUE (WHEN READ)

R243 PRE1
PRESCALER 1 REGISTER
(F3H, Write Only)

[2: [oa o, [ox o [os o o

LCOUNT MODE
0 = T, SINGLE-PASS
1 = T, MODULO-N

CLOCK SOURCE

1 = T, INTERNAL .
0 = T, EXTERNAL TIMING INPUT
. (Tiy) MODE

PRESCALER MODULO
l_-—-———(ﬂANGE: 1-64 DECIMAL
01-00 HEX)

R244T0

R245 PREO :
PRESCALER 0 REGISTER
(F5n; Write Only)

I COUNT MODE
'— 0 = Ty SINGLE PASS
1 = Ty MODULON ’

X.

PRESCALER MODULO
(RANGE: 1-64 DECIMAL
01-00 HEX)

R246 P2M
PORT 2 MODE REGISTER
(F6H, Write Only)

CICICACACA EAC Y

P2,-P2, 110 DEFINITION
0 DEFINES BIT AS QUTPUT

1 DEFINES BIT AS INPUT

R247 P3M
PORT 3 MODE REGISTER
(F71: Write Only)

CIENCAEACAEACECA

0 PORT 2 PULL-UPS OPEN DRAIN
1 PORT 2 PULL-UPS ACTIVE

PORT 3 INTERRUPTS
0 DIGITAL
1 ANALOG

X

COUNTER/TIMER 0 REGISTER

(F4p, Read/Write)

[o: [oosTe. o [o:] o, o]

T, INITIAL VALUE (WHEN WRITTEN)
(RANGE 1 256 DECIMAL 01 00 HEX)

To CURRENT VALUE (WHEN READ)

NOTE: All "don't care” bits return a "1" when read.

Figure 16 Control Registers

99

R248 PO1M
PORT 0 AND 1 MODE REGISTER
(£84: Write Only)

T
0y-PO; MODE
X 00 = OUTPUT

01 = INPUT

X

MUST BE 0

R249 IPR
INTERRUPT PRIORITY REGISTER
(F9H: Write Only)

0,10 D510, |0, D;. D, 0,

0 I ‘ 1 INTERRUPT GROUP PRIORITY
RESERVED = 000
1RQ3, IRQS PRIORITY (GROUP A) C>A>B =00l
0 = IRQS » IRQ3 &~ A>B>C=o010
1= 1RQ3 > IRQS A>C>B=oi
1RQC, IRQ2 PRIORITY (GROUP B) e28zai
0 = IRG2 > JRQQ —ere] B>A>C=- 110
) 1 = IRQO > IRQ2] - RESERVED - 111 _
IRQ1, IRG4 PRIORITY (GROUP C) .
0 = IRQT > IRQ4
1 = IRQ4 > IRQ1
- R250 IRQ
INTERRUPT REQUEST REGISTER
(FAH, Read/Write)
o, [0, o, Jo. [0, 0, o, [o,]
RESERVED 1RQO « P32 INPUT
IRQ1 = P33 INPUT
IRQ2 = P31 INPUT
IRQ3 = P32 INPUT
IRQ4 = TO
IRQ5 = T1
R251 IMR

INTERRUPT MASK REGISTER

(FBH: Read/Write)

0;1Dg 05,04 03,010, Dy

R252 FLAGS
_ FLAG REGISTER
(FC: Read/Write)

USER FLAG F1

USER FLAG F2

HALF CARRY FLAG
DECIMAL ADJUST FLAG
OVERFLOW FLAG

SIGN FLAG

ZERO FLAG

CARRY FLAG

=

R253 RP
REGISTER POINTER
(FDH; Read/Write)

o] I [B
REGISTER s
POINTER 5

R255 SPL
STACK POINTER
(FFH: Read/Write)

STACK POINTER LOWER
BYTE (SP,-SP7)

| 1 ENABLES IRQ0-IRQS

) (Do = IRQO)

1 ENABLES INTERRUPTS

Figure 16 Control Registers (Continued)

100

ABSOLUTE MAXIMUM RATINGS

Voltages on all pins with respect

toGND -0.3Vto +7.0V
Operating Ambient

Temperature See Ordering Information
Storage Temperature -65°Cto +150°C

Stresses greater than those listed under Absolute Maximum Ratings may
cause permanent damage to the device. This is a stress rating only;
operation® of the device at any condition above those indicated in"the
operational sections of these specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect
device reliability.

STANDARD TEST CONDITIONS

The DC characteristics listed below apply for the following
standard test conditions, unless otherwise noted. All
voltages are referenced to GND. Positive current flows into
the referenced pin (Figure 13).

Standard conditions are as follows:
m +45V< Vecc<_+55V

m GND = 0V

m 0°C<Tp< +70°C

21K

FROM OUTPUT
UNDER TEST

9.1
150 pFI Ke

Figure 13. Test Load 1

Z86C0808PSC DC CHARACTERISTICS V_=3.0t05.5V 0°C to 70°C

Symbol Parameter Min Typ Max Unit Condition
Max Input Voltage Ve 12.0 \ Iy 250pA

Veu Clock Input High Voltage Ve +0.3 v Driven by external CG
V.. Clock Input Low Voltage -0.3 1Vee \ Driven by External CG
V.. Input High Voltage VAN Vo +03 \"
‘A Input Low Voltage -0.3 2Vee \%
Vae BESET Input High Voltage .7V, Vee+0.3 v
Vo RESET Input Low Voltage -0.3 2V, v
Vo Output High Voltage V0.4 ! v Iy =-2.0mA
Vo Output Low Voltage 0.4 v lo, = +4.0mA
Vo, Output Low Voltage 0.8 \Y lo, =+12mA, 3 pins max.
I Input Leakage -10 10 uA V=0V, Vo,
lo. Output Leakage -10 10 uA Ve =0V, V.
la RESET Input Current -10 -50 uA Voo =4.51055V,V, =0V, P27
loc Supply Current 15 mA All Output & /O pins float
l.c, Standby Current 5 . mA HALT Mode® V, =0V, V
lec, Standby Qurrent 10 uA STOP Mode V, =0V, V,
Note:
1. lecl Typ. Max.

Clock driven on XTAL 0.3mA 5.0mA

Resonator or Crystal 3.0mA 5.0mA

101

Z86C0808PEC DC CHARACTERISTICS V,.=3.0t0 5.5V -40°C to +105°C

Symbol Parameter © Min Typ Max Unit Condition
Max Input Voltage 12.0 Vv Iy 250pA

Vg Clock Input High Voltage .9V¢ee V. +0.3 \Y Driven by external CG
Vo~ Clock Input Low Voltage -0.3. AVee v Driven by External CG
V., Input High Voltage 0.7Vcee - ‘ V. +03 Vv
V, Input Low Voltage -0.3 2Vee \
V., RESET Input High Voltage .7V Vic10.3 \
V.. RESET Input Low Voltage -0.3 2V \'
Vo Output High Voltage V0.4) \ loy = -2.0mA
V., Output Low Voltage 0.4 -V lo, = +4.0mA
Vo, Output Low Voltage 0.8 \Y lo, = +12mA, 3 pins max.
e Input Leakage -10 10 uA Vi =0V, V.
I, Output Leakage -10 10 uA Vi =0V, V,
I RESET Input Current -10 -50 uA Vi, =451 5.5V, V, =0V, P27
loc Supply Current 15 mA All Output & /O pins float
l,c, Standby Current 5 mA HALT Mode' V,_ =0V, V.
l.c, Standby Current 20 UA ° STOP Mode V, =0V, V,
Note:
1. lccl Typ. Max.

Clock driven on XTAL 0.3mA 5.0mA

Resonator or Crystal 3.0mA 5.0mA

Figure 14. Additional Timing

102

AC CHARACTERISTICS

Number Symbol Parameter Min Max Notes

1 TpC Input Clock Period 125 100,000 1

2 TrC, TIC Clock Input Rise and Fall Times 25 1

3 TwC Input Clock Width 37 1

4 TwTinL Timer Input Low Width 100 2.

5 TwTinH Timer Input High Width 3TpC 2

6 TpTin Timer Input Period 8TpC 2

7 TrTin, TfTin Timer Input Rise and Fall Times 100 2

8A TwilL Int. Resquest Input Low Time 100 2,4

9 TwiH Int. Request Input High Time 3TpC 2,3
NOTES
1. Clock timing references use V. for a logic “1” and V for logic “0".
2. Timing references use V., for alogic “1” and V for a logic “0".
3. Interupt request via P31- P33 ' '
4. Interrupt request via P31-P33
*Units in nanoseconds (ns)

PRELIMINARY Z86C08 COMPARATOR SPECIFICATIONS
CASE 1 CASE 2 CASE 3 CASE 4 CASE 5
Conditions "VDD=2.5V VDD=2.5V VDD=5. 5V VDD=5.5V | VDD=5.0V
Temp=40C° Temp=85C° | Temp=40C° Temp=85C° Temp=27C°

Parameters
Offset *50 (est) 50 (est) 50 (est)| _*50 (est) | _*25 (typ)
Voltage (mv)
Internal 15 (max) 15 (max) 1. (max) 1.0 (max) 0.1(typ)
Delay Time (us)] _*300 *300 300 *300 *300
Overdrive (mv)
I, (ma) 0.1 (max) 0.1 (max) 1.0 (max) 1.0 (max)| 0.2 (typ)
Power (mw) 0.25 0.25 5.5 4.125 1.25
Power Down Yes Yes Yes Yes Yes

ORDERING INFORMATION

Z86C08 CMOS Microcontroller
Z86C0808PSC 8MHz-
Z86C0812PSC 12MHZz

Codes .
First letter is for package; second letter is for temperature.

C = Ceramic DIP . R = Protopack
P = Plastic DIP T = Low Profile Protopack
L = Ceramic LCC DIP = Dual-In-Line Package
V = Plastic PCC : LCC = Leadless Chip Carrier
PCC = Plastic Chip Carrier (Leaded)
TEMPERATURE B FLOW .
S =0°Cto +70°C B =883ClassB
E = -40°Cto +85°C - J = JAN38510Class B

M*= -55°Cto +125°C

“Example: PSis a plastic DIP, 0°C to +70°C.

PACKAGE DIMENSIONS

NOTE:
0.031 RADIUS 18 - 10
NOTCH ALT. \ o T e T coun B e O e B s B e B e B e
. .100
0.300

'*0.320

0.009
odzs 1 00 I
- 0.050
"‘:;333"" -l 0.018

o

0.02!
0.0:

0.065—

Q

|

JLISS [S R Dy Sy Sy S g S g G gy S
1 0.920 9
MAX

e .y 0430
; 0.020
MIN
0.100— 0.125

Wi e

g

|
N

-
i
[

o

18-Pin Plastic Package

NOTE: Package dimensions are given in inches. To convert to milimeters, multiply by 25.4.

104

ADVANCED INFORMATION

Product Specification

Z86C00/C10/C20 CMOS
Z8®MCU

August 1989

FEATURES

m Complete microcomputer, 2K (86C00), 4K (86C10), or 8K W Register Pointer so that short, fast instructions can
(86C20) bytes of ROM, 124 bytes of RAM (256 bytes - Z86C20), access any of nine working—register groups in 1.0

and 22 |/O lines.

144-byte register file, including 124 (238 - Z86C20) general-
purpose registers, four /O port registers, and 14 status and control

us.

On-—chip oscillator which accepts crystal, external
clock drive, LC, ceramic resonator.

registers. .
B Standby modes —— Halt and Stop.
B Average instruction execution time of 1.5 us,
maximum of 2.8 us. B Single +5V power supply —— all pins TTL-
compatible. -

W Vectored, priority interrupts for 1/O and)
counter/timers. ® 8 and 12 MHz

® Two programmable 8-bit counter/timers, each with W CMOS process.

a 6—bit programmable prescaler.

GENERAL DESCRIPTION

Z86C10/C20 microcomputer (Figures 1 and 2) introducesa. Z86C10/C20 offers faster execution; more efficient use of
new level of sophistication to single-chip architecture. memory; more sophisticated interrupt, input/output and
Compared to earlier single-chip microcomputers, the bit-manipulation capabilities; and easier system expansion.

'""A“':g { —>| RESET +5V |- +svd 28 [T g
conTROL | <] s Xt fe—) ek xTaLz [2 27 [pa,
<> po, xTAL2 b—> xmaut [3 26 [pas

<>} Po, P3; |e— RESET L} 4 25 [z,

porro { <>{P%: Zz86C00 % [—> | PORT3 s s 286000 24 Qe
<—>| Po; MCU P3g —> p3s []6 786C10 23 [p2,

<=|Pos 786010 Plo[=>) ano [7 MCU 22 []p2,

<] Pos MCU P14 | poo] 8 786620 21 e,

<>lP21 786000 Pl2|e> po, [o MCU 20 [J P16

=Pz oy Pafem \ onrs Po;] 1t 19 []P1s

PORT2 { <»|P2; Pls o> Pos [] 11 18 [JP1s
<] P24 P15 |e> pPog [] 12 17 :]m,

<] P25 Pl | Pos] 13 16 []P12

<] GND P17 fa—> P!oE 14 15 gPh

\
Figure 1. Pin Functions Figure 2. Pin Assignments

105

PIN DESCRIPTIONS

DS. Data Strobe (output, -active Low). ‘Data Strobe is
activated once for each memory transfer. :

P0o-POs, P1o-P17, P24-P25, P34, P35, P3g. //O Port lines
(bidirectional,” TTL-compatible). These 22 I/O lines are
grouped infour ports that can be configured under program
control for I/O.

RESET. Reset (input, active Low). RESET initializes the
MCU. When RESET is. deactivated, program execution
begins from internal program location 000C.

XTAL1, XTAL2. Crystal 1, Crystal 2 (time-base input and
output). These pins connect a parallel-resonant
crystal to the on-chip clock oscillator and buffer.

ARCHITECTURE

The MCU'’s architecture is characterized by a flexible 1/O
scheme, an efficient register and address space structure,
and a number of ancillary features that are helpful in many
applications. (Figure 3).

Microcomputer applications demand powerful /O
capabilities. The MCU f{ulffills this with 22 pins dedicated to
input and output. These lines are grouped in four ports and
are configurable under software control to provide timing,
status signals, and parallel I/O.

OuTPUT

Two basic internal address spaces are available to support
this wide range of configurations: program memory and the
register file. The 144-byte random-access register file is
composed of 124 general-purpose registers, four /O port
registers, and 14 control and status registers.

To unburden the program from coping with real-time

“problems such as counting/timing, two counter/timers with

a large number of user- selectable modes are offered
on-chip.

INPUT Vcc GND XTAL T RESET
MACHINE TIMING AND
PORT 3 INSTRUCTION CONTROL
COUNTER/ —'—ﬁ I
TIMERS ALU
@ 11
PROGRAM
. FLAGS MEMORY
INTERRUPT 4096 x 8-BIT | (8192 for C20)
CONTROL REGISTER {}
POINTER] 7 |
REGISTER FILE —] PROGRAM
124 x 8-BIT —— COUNTER
PORT 2 PORT 0 PORT 1
10 o
(BIT PROGRAMMABLE) (BYTE PROGHAMMABLE)

Figure 3. Functional Block Diagram

STANDBY MODE
The Z86C00/C10/C20's standby modes are:

m Stop
| Halt

The Stop instruction stops the internal clock and clock
oscillation; the Halt instruction stops the internal clock but
not clock oscillation.

A reset input releases the standby mode.

To complete an instruction prior to entering standby mode,
use the instructions:

LD TMR, #00
NOP
STOP or HALT

106

ADDRESS SPACES

Program Memory. The 16-bit program counter addresses
4K or 8K bytes of program memory space as shown in
Figure 4.

The first 12 bytes of program memory are reserved for the
interrupt' vectors. These locations contain three 16-bit
vectors that correspond to the three available interrupts.

Register File. The 144-byte register file includes four 1/O
port registers (Ro-Rs), 124 general-purpose registers
(R4-R127) and 15 control and status registers (Ro41-Ross).
These registers are assigned the address locations shown in
“Figure 5.

Instructions can access registers directly or indirectly with
an 8-bit address field. The MCU also allows short 4-bit
register addressing using the Register Pointer (one of the
control registers). In the 4-bit mode, the register file is
divided into nine working-register groups, each occupying
16 contiguous locations (Figure 6). The Register Pointer
addresses the starting location of the active working-register
group.

Stacks. An 8-bit Stack Pointer (Rass) is used for the internal
stack that resides within the 124 general-purpose registers
(Ra-R127).

4095
ON-CHIP
LOCATION OF ROM
FIRST BYTE OF
INSTRUCTION
EXECUTED N\ — — — — — — — — — — — —
AFTERRESET 12[%\
1 IRQ5
10 IRQS5
9 IRQ4
8 IRQ4
INTERRUPT 7 RESERVED
oueare e
(AL N IRQ2 '
4 IRQ2
INTERRUPT ol a
VECTOR - 3 RESERVED
(UPPERBYTE) , RESERVED
1 RESERVED
0 RESERVED
Figure 4. Program Memory Map
LOCATION IDENTIFIERS
255 STACK POINTER (BITS 7-0) SPL
254 RESERVED L ! [wrwewr | o000 e
253 REGISTER POINTER RP
252 PROGRAM CONTROL FLAGS FLAGS
251 INTERRUPT MASK REGISTER IMR | THEUPPERNIBBLE OF THE REGISTER FleE ADDI;ESS
PROVIDED BY THE REGISTER POINTER SPECIFIE!
250 INTERRUPT REQUEST REGISTER IRQ e AOTIVE WORKING.REGISTER GROUP.
249 INTERRUPT PRIORITY REGISTER PR
248 PORTS 0-1 MODE POIM 127
247 PORT 3 MODE P3M -
246 PORT 2 MODE P2M
245 TO PRESCALER PREG
244 TIMERICOUNTER 0 T0 =
243 T1 PRESCALER PRE1
242 TIMER/COUNTER 1 T
241 TIMER MODE T™MR >
NOT .
IMPLEMENTED THE LOWER
. NIBBLE OF
THE REGISTER
127 . FILE ADDRESS
e Gl s
THE INSTRUCTION
POINTS TO THE
SPECIFIED
GENERAL-PURPOSE . REGISTER.
REGISTERS
L— >
4
3 PORT 3’ P3 15
2 PORT 2 P2
—_— e]
1 PORT 1 P1 110 PORTS 3
[} PORT 0 PO

Figure 5. Register File

Figure 6. Register Pointer

107

COUNTER/TIMERS

The MCU contains two 8-bit programmable counter/timers
(To and T4), each driven by its own 6-bit programmable
prescaler. The Ty prescaler can be driven by internal or
external clock sources; however, the T prescaler is driven
by the internal clock only.

The 6-bit prescalers can divide the input frequency of the
clock source by any number from 1 to 64. Each prescaler
drives its counter, which decrements the value (1 to 256) that
has been loaded into the counter. When the counter reaches
the end of count, a timer interrupt request—IRQy4 (Tg) or
IRQs (T1)—is generated. :

The counters can be started, stopped, restarted to continue,
or restarted from the initial value. The counters can also be

programmed to stop upon reaching zero (single-pass -

mode) or to automatically reload the initial value and
continue counting (modulo-n continlous mode). . The
counters, but not the prescalers, can be read any time
without disturbing their value or count mode.

The clock source for T4 is user-definable and can be the
internal microprocessor clock divided by
four, or an external signal input via Port 3. The Timer Mode
register configures the external timer input as an external
clock , a trigger input that can be
retriggerable or non-retriggerable, or as a gate input for the
internal clock. The counter/timers can be programmably
cascaded by connecting the Tg output to the input of Ty.
Port 3 line P3¢ also serves as a timer output (Toyr) through
which Ty, T4 or the internal clock can be output.

1/0 PORTS

The MCU has 22 lines dedicated to input and output
grouped in four ports. Under software control, the ports can

- be programmed to provide address outputs, timing, status
signals, and parallel I/0. All ports have active pull-ups and
pull-downs compatible with TTL loads.

Port 0 can be programmed as an I/O port.
Port 1 can be programmed as a byte I/O port.

Port 2 can be programmed independently as input or
output and is always available for I/O operations. In addition,
Port 2 can be configured to provide open-drain outputs.

Port 3 can be configured as I/O or control lines. P3¢ isa -
general purpose input or can be used for an external
interrupt request signal (IRQy). P35 and P3¢ are general
purpose outputs. P3g is also used for timer input (Tyn) and
output (ToyT) signals.

INTERRUPTS

The MCU allows three different interrupts from three
sources, the Port 3 line P3¢ and the two counter/timers.
These interrupts are both maskable and prioritized. The
Interrupt Mask register globally or individually enables or
disables the three interrupt requests. When more than one
interrupt is pending, priorities are resolved by a
programmable priority encoder that is controlled by the
Interrupt Priority register.

All interrupts are vectored. When an interrupt request is
granted, aninterrupt machine cycle is entered. This disables

all subsequent interrupts, saves the Program Counter and
status flags, and branches to the program memory vector
locations reserved for that interrupt. This memory location
and the next byte contain the 16-bit address of the interrupt-
service routine for that particular interrupt request.

Polled interrupt systems are also supported. To accom-
modate a polled strugture, any or all of the interrupt inputs
can be masked and the Interrupt Request register polled to
determine which of the interrupt requests needs service.

CLOCK

The on-chip oscillator has a high-gain parallel-resonant
amplifier for connection to a crystal or to any suitable
external clock source (XTAL1 = Input, XTAL2 = Output).

Crystal source is connected across XTAL1 and XTAL2 using
the recommended capacitors (C1 < 15 pf) from each pin to
ground. The specifications are as follows:

m AT cut, parallel resonant
® Fundamental type, 16 MHz maximum.

B Series resistance, Rs< 100 n

108

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to
describe the addressing modes and instruction operations
‘as shown in the instruction summary.

Assignment of a value is indicated by the symbol “<" For
example,

dst < dst + src

IRR g;di:rzgtdrrzg;ster pair or indirect working-register indicates that the source data is added to the destination
Irr Indirect working-register pair only data and the resul',(is stored in the destination location. The
notation “addr(n)” is used to refer to bit “n” of a given
X Indexed address location. For example
DA Direct address ’ '
RA Relative address dst(7)
2‘ :;r;rggtdelraﬁ working-register address refers to bit 7 of the destlnauon operand.
r Working-register address only Flags. Control Register R252 contains the followmg Six
IR Indirect-register or indirect working-register flags:
address
Ir Indi(ect wotking-register address only <z: gearrg;lgzg
RR Register pair or working register pair address s Sign flag
Symbols. The following symbols are used in describing the v Overflow flag
instruction set. D Decimal-adjust flag
dst Destination location or contents H Half-carry flag
src Source location or contents Affected flags are indicated by:
cc Condition code (see !ist) 0 Cleared to zero
@ Indirect address prefix
SP Stack pointer (control registers 254-255) 1 Settoone A .
* Set or cleared according to operation
PC Program counter _ Unaffected
FLAGS Flag register (control register 252) X Undefined
RP . Register pointer (control register 253)
IMR Interrupt mask register (control register 251)
CONDITION CODES
Value Mnemonic Meaning Flags Set
1000 Always true —
0111 Cc Carry C=1
1111 NC No carry C=0
0110 z . Zero Z=1
1110 NZ Not zero Z=0
1101 PL Plus S=0
0101 Mi Minus S=1
0100 oV Overflow V=1
1100 NOV No overflow V=0
" 0110 EQ Equal Z=1
1110 NE Not equal Z=0
1001 GE Greater than or equal (SXORV) =
0001 LT Less than (SXORV) =1
1010 GT Greater than [ZOR(SXORV)] =
0010 LE Less than or equal [ZOR(SXOR V)] = 1
1111 ' UGE Unsigned greater than or equal C=0
. 0111 uLt Unsigned less than C=1
1011 UGT Unsigned greater than (C=0ANDZ=0) =1
0011 ULE Unsigned less than or equal (CORZ) =1
0000 Never true —

109

INSTRUCTION FORMATS ‘
o S5 Bm e o

One-Byte Instructions

'

OPC_| MODE |) CLR, CPL, DA, DEC, OPC_| MODE ADC, ADD, AND, CP,
[__dstisrc | OR [1 1.1 0] dstisrc | g&g&’;{?ﬁ%ﬁt‘gﬁrop’ ’ src OR [1Ti10] src | 'fgh‘,)ﬁ'us,sx%nsua'
: RRC, SRA, SWAP dst OR[1110] dst | }
oPC ‘ JP, CALL (Indirect) '
| dst J or [1110[dst | opc | MODE ADC, ADD, AND, CP,
dst or [0] dst] 12 0% SBC SUB,
[orc] sk vaLUR o
MODE | opc . LD
[Core Twooe | A0c, ADD.AND, — o e
st |
e =
(oo [orc] / MODE | OPC LD
LD, LDC, LDCI dslf;) ’|‘ Es;
"[astsre | _opc] LD
[srcdst] or [i170] s | ce DIA ore s
U
DA,
[ast T opc] LD
[vae | opC CALL
DA,
[ra]
Two-Byte Instructions) Three-Byte Instructions
- Figure 7. Instruction Formats
INSTRUCTION SUMMARY
Addr Mode Opcode Flags Affected ' AddrMode Opcode Flags Affected
Instruction —— Byte ——m— Instruction —— Byte ——mF——
and Operation . dst src (Hexy C Z S VDH and Operation dst src (Hex) C Z S V D H
ADC dst,src (Note 1) 10 % % % % 0 % CP dst,src ~ (Note 1) A % % % % — —
dst < dst + src + C dst — src
ADD dst,src (Note 1) 00 % % % % 0 * DA dist R 40wk o® X ——
dst < dst + src : dst < DA dst IR T41)
AND dst,src (Note 1) 50 — % %0 —— DEC dst R 00 — % % % — —
dst < dst AND src dst < dst — 1 IR 01
CALL dst DA D6 = ————— = DECW dst RR ‘80 — % %k — —
SP<SP -2 - IRR D4 dst<dst - 1 IR 81
@SP < PC; PC < dst or
CCF . EF * — — — — — g IMR(7)<0 8F @ -
CNore DJNZ rdst RA Mmoo
CLR dst , R BO —————— r<r-1 r=0-F
dst<0 IR B1 ifr#0
COM dst R 60 —wwo0—— FPooPCLa
dst < NOT dst IR 61 - 9¢: :

110

INSTRUCTION SUMMARY (Continued)

AddrMode Opcode Flags Affected Addr Mode Opcode Flags Affected
Instruction Byte ——— Instruction Byte
and Operation dst src (Hex) C Z S VDH and Operation dst src (Hex) C Z S VDH
El 9F @ —————=— RCF CF 0—————
IMR(7) <1 C<+o0
HALT 7F RET AF - - — —
INC dst Ty E — %k ko — — PC@SPiSP—SP+2
dst<dst + 1 r=0-F RL dst [—] R 90 * k ok ok — —
R 20 ' IR 91
R 2 RLC dst R 10
S * ok k k — —
INCW dst AR A —wkw—— (g9 1
dst < dst + 1 - IR Al RR dot a o
S] * k Kk k — —
IRET BF * Kk K ok k k |R E1
FLAGS < @SP; SP <SP + 1 RRC dot A o
PC < @SP; SP <SP + 2;IMR(7) « 1 S Rk X —
@ & g G
JP c,dst DA & —————- SBC dst.src Note!) 30 % % %1%
if ccis true c=0-F dst< dst < src < C
PC < dst IRR 30
JRcc,dst RA B —————— g‘ff | OF 1==m
if ccistrue, c=0-F :
PC < PC + dst SRA dst R’ DO * % * 0 — —
Range: +127, - 128 IR D1
LD dst,src r Im c —————— SRP src Im 31 ——————
dst<src r R 8 RP < src
R r r9 .
r=0-F STOP 6F
r X C7 SUB dst,src (Note 1) 20 'EEERE;
X r D7 dst < dst < src
o B SWAPGst _f 1 R O X X — —
ror F3 gl o o B F *
R R E4] L
R IR ES TCM dst,src (Note 1) 60 — % * 0 — —
"R M E6 (NOT dst) AND src
IR M E7
R R F5 TM dst,src (Note 1) W — % % 0 ——
dst AND src
LDC dst,src r. c2 @ ————=—— -
dst < src Irr r D2 XOR dst,src (Note 1) BO — % % 0 — —
dst < dst XOR src
LDCl dst,src Ir Irr c3 @ —————— - - " -
dst < src I Ir D3 NOTE: These instructions have an identical set of addressing modes,

X which are encoded for trevity. The first opcode nibble is found in
rer+tmem+i the instruction set table above. The second nibble is expressed
LDE dst,src r Irr 8 symbplically by a O inthistable, aqd its value isfoynd inthe '
dst < src e ; 92 following table to the left of the applicable addressu.ng mode pair.

For example, the opcode of an ADC instruction using the

‘LDEI dst,src Ir Irr 83 - addressing modes r (destination) and Ir (source) is 13.
dst < src Irr Ir 93
rer+1;mem+1 Addr Mode Lower
NOP FF - — — — — _ dst src Opcode Nibble
OR dst,src (Note 1) 40 — % * 0 — — r r
dst < dst OR src
A r Ir
POP dst R 50 ———=—=—=—
dst— @SP; IR 51 R a
SP <SP + 1 R IR
PUSH src R 0 —————— R IM (6]

" SP<SP -1,@SP<src IR 71 R M

i

REGISTERS

R244TO
COUNTER/TIMER 0 REGISTER
(F4; Read/Write)

CICACACACACACAEY
T INITIAL VALUE (WHEN WRITTEN)
(RANGE: 1-256 DECIMAL 01-00 HEX)

To CURRENT VALUE (WHEN READ)

R241 TMR
TIMER MODE REGISTER
(F1 H; Read/Write)

3 MODES o = o Funcrion
Not Uafip'S 1=L0ADT
ool ?,‘J o - oisaste To COUNT
INTERNAL cLOCK ObT 5 11 1 = ENABLE Ts COUNT
. MODES 9 = No EUNCTION
EXTERNAL CLOCK INFUT = 06 1= LOADT
GATE INPUT = 01 0= DISABLE T, COUNT
TRIGGER INPUT = 10 1 = ENABLE T, COUNT
(NON-RETRIGGERABLE)
GER INPUT = 11
(RETRIGGERABLE)
R242 T1

COUNTER TIMER 1 REGISTER
(F2H; Read/Write)

(o[04 0, [ou [0, [0, 0, o]

Ty INITIAL VALUE (WHEN WRITTEN)
(RANGE 1-256 DECIMAL 01-00 HEX)

T, CURRENT VALUE (WHEN READ)

R243 PRE1
PRESCALER 1 REGISTER
(F3y; Write Only)

LCOUNT MODE
0°= T, SINGLE-PASS
1 = T; MODULO-N

CLOCK SOURCE
A
i) M

PRESCALER MODULO
(RANGE: 1-64 DECIMAL
01-00 HEX)

INTERNAL
0=T, EXTERZAL TIMING INPUT
0D

' R245 PREO
PRESCALER 0 REGISTER
(F5H; Write Only)

I COUNT MODE
— 0 = T, SINGLE PASS
1 = T, MODULO-N

RESERVED

PRESCALER MODULO
(RANGE: 1-64 DECIMAL
01-00 HEX)

R246 P2M
PORT 2 MODE REGISTER
(F6H; Write Only)

CACACACACICADACY e
P2, P2y 1/0 DEFINITION
0 DEFINES BIT AS OUTPUT

1 DEFINES BIT AS INPUT

R247 P3M
PORT 3 MODE REGISTER
(F7H; Wnite Only)

CICACACACADACACY

0 PORT 2 PULL-UPS OPEN DRAIN
1 PORT 2 PULL-UPS ACTIVE

RESERVED (must be 0)

Figure 11. Control Registers

112

REGISTERS (Continued)

R248 PO1M
PORT 0 AND 1 MODE REGISTER
k (F84; Write Only)

P0,-PO; MODE P0,-P0; MODE
OUTPUT = 00 00 = OUTPUT
INPUT = 01 01 = INPUT
RESERVED RESERVED (must be = 1)

P1,-P1; MODE
00 = BYTE OUTPUT
01 = BYTE INPUT

. 19 =} ReserveD

R249 IPR
INTERRUPT PRIORITY REGISTER
(F9H; Write Only)

RESERVED I INTERRUPT GROUP PRIORITY

RESERVED = 000

IRQ3, IRQS PRIORITY (GROUP &) . C>A>B = 001
0 = IRGS > IRQ3 &~ AZB>c-om

1= IRQ3 > 1RQS AZcoBZou

1RQ, IRQ2 PRIORITY (GROUP B) C3B>ALZ 01
0 = IRQ2 > IRQO B>A>C =110

1= IRQO > 1RQ2 REGERVED - 111

IRQ1, IRQ4 PRIORITY (GROUP C)
0 = IRQ1 > IRQ4
1 = IRQ4 > IRQ1

R250 IRQ
INTERRUPT REQUEST REGISTER
(FAR; Read/Write)

RESERVED j—

IRQ2 = P31 Input
IRQ4 = T,

-

IRQS = T,

R251 IMR
INTERRUPT MASK REGISTER
(FBH; Read/Write)

[o: [oe o TouJou oz Jou [0

ﬁ

1 ENABLES IRQ0-IRQS
(Do = IRQO)

1 ENABLES INTERRUPTS

R252 FLAGS
FLAG REGISTER
(FCH; Read/Write)

USER FLAG F1

USER FLAG F2

HALF CARRY FLAG
DECIMAL ADJUST FLAG
OVERFLOW FLAG

SIGN FLAG

ZERO FLAG

CARRY FLAG

I

R253 RP
REGISTER POINTER
(FDH; Read/Write)

L0]0s [0 [0, [os [o. o, [

]

7

REGISTER i
POINTER) rg

DON'T CARE

=

' R255 SPL
STACK POINTER
(FFH; Read/Write)

ACACACACACAEACY
STACK POINTER LOWER

BYTE (SP,-SP;)

|

Figure 11. Control Registers (Continued)

OPCODE MAP

Lower Nibble (Hex)
,
0 1 2 3 4 5 6 7 8 9 A B [D E F
. 65 65 65 65 105 105 |- 1056 10.5 6.5 6.5 12/105 | 12/10.0 65 12/100 65
0 DEC DEC ADD ADD ADD ADD ADD ADD LD LD DJUNZ JR LD JP INC
Ry IRy ryrp rylro Ro.Ry | IR2.Ry | RyIM | IRy.IM r1.R2 ro Ry ryRA | cc.RA 1M cc DA r
65 65 6.5 6.5 10.5° 10.5 105 |. 105
1 RLC RLC ADC ADC ADC ADC ADC ADC
Ry IR¢ rirp ry.drp Ro.R1 | IR2.Ry | RyIM | IRy.IM
6.5 6.5 65 | 65 10.5' 10.5 105 | 105
2 INC INC SUB | suB sus sus sus suB
R+ iRy rir2 | ridra | RoRy | IRaRy | RyIM | IR{IM
80 61 6.5 6.5 105 10.5 10.5 10.5
3 . JP SRP SBC SBC SBC SBC SBC SBC
IRRy M 12 | ridra | RoRy | IR2Ry | RiM | IR(IM
85 8.5 6.5 6.5 105 .| 105 10.5 105
4 DA DA OR OR OR OR OR OR
Ry | IRy rira | ridra | RoRy | IR2Ry | RiM | IRy IM
10.5 10.5 6.5 6.5 105-{ 105 10.5 10,5
5 POP POP AND AND | AND | AND | AND AND
Ry IRy rirp | ridra | RaRy | IR2Ry | RyM | IRIM
6.5 65 6.5 6.5 105 10.5 10.5 10.5 6.0
6 COM | cCOM | TCM TCM TCc™M ™" M ™M sToP
Ry IRy riro | ridrg | RoRy [IR2Ry | RyM | IRyIM
E 10/12.1 | 12/14.1 6.5 6.5 105 10,5 10.5 10.5 70
s 7 PUSH | PUSH ™ ™ ™ ™ ™ ™ HALT
3 Ry IRy riro | ridro | RoRy | IRaRy | RydM | IRyIM
z 105 | 105 61
(3 8 DECW | DECW DI
g RR4 IRy N
6.5 6.5 6.1
9 RL RL L . El
Ry Ry |
10.5 10.5 6.5 6.5 10.5 10.5 10.5 10.5 14°0
A] INCW | INCW cpP cpP cP cP cP cP RET
RR4 IRy 12 | ridra | RoRy | IRaRy | RyM | IRyIM
6.5 6.5 6.5 6.5 10.5 10.5 10.5 10.5 160
B CLR CLR XOR XOR XOR XOR XOR XOR IRET
Ry IRy riro | ridra | RoRy | IRa.Ry | ReyIM | IRyIM
6.5 6.5 12.0 18.0 . 105 ' 6.5
c RRC RRC LDC | LDCI LD RCF
Ry IRy rydrrg | drqldrrp r1.xRo
6.5 6.5 12.0 18.0 20.0 20.0 10,5 65
D SRA SRA LDC | LDCi | CALL* CALL LD ! SCF |
R1 IRy radrry | Irpdiry IRRy DA ra.x.Rq
6.5 6.5 6.5 10.5 105 10.5 105 6.5
E RR RR LD LD LD LD LD CCF
Ry IRy 1Ry | Ro.Ry | IRaRy | RyIM | IRy.IM
85 8.5 6.5 10.5 60
F SWAP | SWAP LD LD NOP
Ry Ry Iry.rp R2.IRy \J \ \J | \ \ \
N— [. — »
-~ -~ 4 \/\W—/
2 3 2 3 1
Bytes per Instruction
LOWER)
OPCODE
NIBBLE
~ EXECUTION PIPELINE Legend:
CYCLES 4 CYCLES R = 8-bitaddress
r = 4-bit address
UPPER - 10,5 Ry orry = Dstaddress
Ry or rp = Src address
OPCODE ——3» A| CP <ft——MNEMONIC
NIBBLE RoR .
21 Sequence:
* Opcode, First Operand, Second Operand
FIRST SECOND
OPERAND OPERAND NOTE: The blank areas are not defined.

*2-byte instruction. fetch cycle appears as a 3-byte instruction

114

ABSOLUTE MAXIMUM RATINGS

Voltages on all pins with respect

toGND -0.3Vto +7.0V
Operating Ambient

Temperature See Ordering Information
Storage Temperature —-65°Cto +150°C

Stresses greater than those listed under Absolute Maximlim Ratings may
cause permanent damage to the device. This is a stress rating only;
operation of the device at any condition above those indicated in the
operational sections of these specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect
device reliability.

STANDARD TEST CONDITIONS

The DC characteristics listed below apply for the following
standard test conditions, unless otherwise noted. All
voltages are referenced to GND. Positive current flows into
the referenced pin.

Standard conditions are as follows:
m +4.5<Vcc<+55

m GND =0V

B 0°C<Tp< +70°C

2.1K

FROM OUTPUT
UNDER TEST ™~

150 pF

Figure 12. Test Load 1

lcc2 low power requires loading TMR (%F1)
with any value prior to stop execution.
Use sequence:)

LD TMR, #%00.

NOP

STOP

DC CHARACTERISTICS
Symbol Parameter Min Typ Max Unit Condition
VcH Clock Input High Voltage 3.8 Vee \ Driven by External Clock Generator
VoL Clock Input Low Voltage -0.3 0.8 \ Driven by External Clock Generator
VIH Input High Voltage 2.0 Vee \
ViL Input Low Voltage -0.3 0.8 \
VRH Reset Input High Voltage 3.8 Vee Vv
" VaL Reset Input Low Voltage -0.3 08 v
VoH Output High Voltage 2.4 \% loH = —250 uA
VoH Output High Voltage Vge -100 mV v IoH = -100pA
VoL Output Low Voltage 0.4 \ loL = +2.0mA
i Input Leakage -10 10 WA OV VNS + 5.25V
loL Output Leakage -10 10 uA oV<VN<€ + 5.25V
IR Reset Input Current -50 uA Veec = +5.25V, VR = OV
lcc Supply Current 50 mA All outputs and I/O pins floating
lccy . Standby Current 5 mA Halt Mode
lcco Standby Current 10 uA Stop Mode
NOTE:

115

Figure 14. Additional Timing

AC CHARACTERISTICS
Additional Timing Table

Z86C10
Number Symbol Parameter Min Max Notes*
1 TpC Input Clock Period 83 100,000 1
2 TC,TfC Clock Input Rise and Fall Times 15 1
3 ™WwC Input Clock Width 70 1
4 - TwTinL Timer Input Low Width . 70 2
5 TwiL Interrupt Request Input Low Time 70 2,3

NOTES:

1. Clock timing references use 3.8V for a logic “1” and 0.8V for a logic “0”
2. Timing references use 2.0V for alogic “1” and 0.8V for a logic “0"

3. Interrupt request via Port 3. -

* Units in nanoseconds (ns).

116

Product Specification

June 1987

FEATURES

m Complete microcomputer, 4K bytes of ROM, 256 bytes of
RAM, 32 /O lines, and up to 60K bytes addressable
external space each for program and data memory.

B 256-byte register file, including 236 general-purpose
registers, four /O port registers, and 16 status and
'chtroI registers. ‘

m Vectored, priority interrupts for I/O, counter/timers, and
UART.

® Full-duplex UART and two programmab!é 8-bit counter/
timers, each with a 6-bit programmable prescaler.

m Register Pointer so that short, fast instructions can
.access any of 16 working-register groups in 1.5 ps.

m On-chip oscillator which accepts crystal or external clock
drive.

Standby modes—Halt and Stop

Single 4 5V power supply—all pins TTL-compatible.
12 MHz, 16 MHz

CMOS process

GENERAL DESCRIPTION

The Z86C11 microcomputer (Figures 1 and 2) introduces a
new level of sophistication to single-chip architecture.
Compared to earlier single-chip microcomputers, the

——»] RESET +5V fe—
7'“‘:3 <«— RIW GND je—
DS XTAL1
CONTROL | <«— D_s r——}cloc"
,\ «— AS XTAL2 p—>
~«—»] PO, P2) je—>
<] PO, P2, je—>
~<—>»} PO, . P2, je—> PORT 2
PORT O
(NIBBLE | <] P03 P2; f«—> | (BIT PRO-
PROGRAMMABLE)) . P <> | GRAMMABLE)
1/0 OR Ag-Ass PO, % 10
<> P0s zggc11 P25 fa—>
<—>‘ Pog MCU P2 le—p
<> PO; P2; jfe—>
<] P1, P3; fe—
<] P1, P3, j—
-] P1, P3, je——o
PORT 1 P3 PORT 3
(BYTE | <> Pl s f— SERIAL AND
PROGRAMMABLE) | PARALLEL !/t
IIOORADOVADy) Pl P34 > | anp ConTROL
. <] P15 P3; }—>
<] Plg P3 —a>
<>} P1; P3; —>

786C11 offers faster execution; more efficient use of
memory; more sophisticated interrupt, input/output- and
bit-manipulation capabilities; and easier system expansion.

+5v []1 ~ 40 [] p3,
xTaL2 [2 39 [] p3,
XTAL1 E 3 38 [] p2,
p3, [4 a7 [] p2,
P, [s 36 [p2,
RESET [6 35 (] p2,
RW [7 3] r2,
s [Je 3s[]r2,
&[] 32 [r2,
P3; [10 zeec11 31[] P2
GND [T 11 MU 5 393,
P3, [] 12 29 [7] s,
po, [] 13 . 28 [] Py,
PO, [14 7]
Po, [15 26 [P1g
Pos [16 25] Py,
po, [17 24 iy
pos [] 18 2a[]p,
Po; [19 22] Py,
o, [20 21 P,

Figure 2. 40-pin Dual-In-Line Package (DIP), Pin Assignments

117

Under program control, the Z86C11 can be tailored to the
needs of its user. It can be configured as a stand-alone
microcomputer with 4K bytes of internal ROM, a traditional
microprocessor that manages up to 120K bytes of external

memory, or a parallel-processing element in a system with
other processors and peripheral controllers linked by the
Z-BUS® bus. In all configurations, a large number of pins
remain available for I/O. |

FIELD PROGRAMMABLE VERSION

The Z86E11 is .a pin compatible "one time
programmable” version of the Z86C11. The Z86C11
contains 4K bytes of EPROM memory in place of the
4K bytes of masked ROM in the Z86C11. The
Z86E11 also contains a programmable memory

protect feature to provide program security by
disabling all external accesses to the internal EPROM
array. This is preliminary information, and is subject to
change.

ARCHITECTURE

Z86C11 architecture is characterized by a flexible 1/0
scheme, an efficient register and address space structure
and a number of ancillary features that are helpful in many
applications.

Microcomputer applications demand powerful /O
capabilities. The Z86C11 fulfills this with 32 pins dedicated
to input and output. These lines are grouped into four ports
of eight lines each and are configurable under software
control to provide timing, status signals, serial or parallel I/O
with or without handshake, and an address/data bus for
interfacing external memory.

Because the multiplexed address/data bus is merged with
the 1/O-oriented ports, the Z86C11 can assume many
different memory and /O configurations. These config-
urations range from a self-contained microcomputer to a

microprocessor that can address 120K bytes of external
memory (Figure 3).

Three basic address spaces are available to support this
wide range of configurations: program memory (internal
and external), data memory (external) and the register file
(internal). The 256-byte random-access register file is
composed of 236 general-purpose registers, four 1/0 port
registers, and 16 control and status registers. -

To unburden the program from coping with real-time
problems such as serial data communication and
counting/timing, an asynchronous receiver/transmitter
(UART) and two counter/timers with a large number of
user-selectable modes are offered on-chip. Hardware
support for the UART is minimized because one of the
on-chip timers supplies the bit rate.

OUTPUT INPUT Vcc GND XTAL AS DS R/W RESET
ttt L b ARENE
MACHINE TIMING AND
PORT3 INSTRUCTION CONTROL
UART < ALY — l
PROGRAM
FLAGS MEMORY
COUNTER/ 4096 x 8-BIT
TIMERS
@ REGISTER i}
POINTER :l
REGISTER FILE i PROGRAM
INTERRUPT' 256 x 8—BIT] COUNTER
CONTROL .
PORT 2 PORT 0 PORT 1

T

U
(BIT PROGRAMMABLE)

&02

ADDRESS OR 110
(NIBBLE PROGRAMMABLE)

" ADDRESS/DATA OR 10
(BYTE PROGRAMMABLE)

Figure 3. Functional Block Diagram

118

STANDBY MODE

_ The Z86C11's standby modes are:
m Stop
m Halt

The Stop instruction stops the internal clock and clock
oscillation; the Halt instruction stops the internal clock but

“not clock oscillation.

A reset input releases the standby mode.

POWER DOWN INSTRUCTIONS

The Z86C91 has two instructions to reduce power
consumption during standby operation. HALT turns off the
processor and UART while the counter/timers and external
interrupts IRQO, IRQ1, and IRQ2 remain active.

When an interrupt occurs the processor resumes execution
after servicing the interrupt. STOP turns off the clock to the
entire Z86C91 and reduces the standby current to 10

microamps. The stop mode is terminated by reset, which
causes the processor to restart the application program at
address 12. .
To complete an instruction prior to entering standby
mode, use the instructions:

LD TMR, #00

NOP .
STOP or HALT -

- PIN DESCRIPTION

AS. Addrress Strobe (output, active Low). Address Strobe is
pulsed once at the beginning of each machine cycle.
Addresses output via Port 1 for all external program or data
memory transfers are valid at the trailing edge of AS. Under
program control, AS can be placed in the high-impedance
state along with Ports 0 and 1, Data Strobe and Read/Write.

DS. Data Strobe (output, active Low). Data Strobe is
activated once for each external memory transfer.

P0y,—-PO,, P1,—-P1,, P2,—-P2,, P3,—P3.. [/O Port
Lines (input/outputs, TTL—compatible). These 32 lines
are divided into four 8-bit 1/O ports that can be
configured under program control for 1/O or external

memory interface (Figure 3).

RESET. Reset (input, active Low). RESET initializes the
Z86C11. When RESET is deactivated, program execution
begins from internal program location 000C.

R/W. Read/Write (output). R/W is Low when the Z86C11 is
writing to external program or data memory.

XTAL1, XTAL2. Crystal 1, Crystal 2 (time—base
input and output). These pins connect a parallel—
resonant crystal (12 MHz maximum) or an external
single—phase clock (12 MHz maximum) to the on—chip
clock oscillatér and buffer.

ADDRESS SPACE

Program Memory. The 16-bit program counter addresses
64K bytes of program memory space. Program memory
can be located in two areas: one internal and the other
external (Figure 4). The first 4096 bytes consist of on-chip
mask-programmed ROM. At addresses 4096 and greater,
the Z86C11 executes external program memory fetches.

The first 12 bytes of program memory are reserved for the
interrupt vectors. These locations contain six 16-bit vectors
that correspond to the six available interrupts.

Data Memory. The Z86C11 can address 60K bytes of ‘

external data memory beginning at location 4096 (Figure 5).
External data memory may be included with or separated
from the external program memory space. DM, an optional
110 function that can be programmed to appear on pin P34,
is used to distinguish between data and program memory
space. .

Register File. The 256-byte register file includes four I/O

port registers (R0O-R3), 236 ‘general-purpose registers.

(R4-R 239) and 16 control and status registers (R240-R255).

These registers are assigned the addreés locations shownin
Figure 6.

Z286C11 instructions can access registers directly or
indirectly with an 8—bit address field. The Z86C11 also
allows short 4—bit register addressing using the Register
Pointer (one of the control registers). In the 4-bit
mode, the register file is divided into 16 working register
groups, each occupying 16 contiguous locations (Figure
6). The Register Pointer addresses the starting location
of the active working—register group (Figure 7).

Note: Register Bank EO-EF can only be accessed through
working register and indirect addressing modes.

Stacks. Either the internal register file or the external data
memory can be used for the stack. A 16-bit Stack Pointer
(R254 and R255) is used for the external stack, which can
reside anywhere in data memory between locations 4096
and 65535. An 8-bit Stack Pointer (R255) is used for the
internal stack that resides within the 124 general-purpose
registers (R4-R127). !

119

65635 65635
EXTERNAL
ROM OR RAM
4096
4095
ON-CHIP
LOCATION OF ROM
FIRST BYTE OF
INSTRUCTION
EXECUTED' N} — — — - ——— EXTERNAL
AFTERRESET' 12 PA DATA
" IRQS MEMORY
10 1RG5
9 RQ4
8 RQ4
INTERRUPT 7 IRG3
VECTOR «_6 1RQ3
LOWERBYTE)
(N N IRQ2 ,
alr IRQ2 098
INTERRUPT
VECTOR 3| IRQ1 4095
(UPPERBYTE) ot
NOT ADDRESSABLE
1 1RGO
0 RGO .
Figure 4. Program Memory Map Figure 5. Data Memory Map
LOCATION IDENTIFIERS —
255 STACK POINTER (BITS 7-0) SPL — " T e :::
254 STACK POINTER (BITS 15-8) SPH m= UL
253 REGISTER POINTER RP 249
252 PROGRAM CONTROL FLAGS FLAGS THE UPPER NIBBLE OF THE REGISTER FILE ADDRESS
251 INTERRUPT MASK REGISTER IMR >—— PROVIDED BY THE REGISTER POINTER SPECIFIES
250 | INTERRUPT REQUEST REGISTER | IRQ THE ACTIVE WORKING-REGISTER GROUP.
249 | INTERRUPT PRIORITY REGISTER | IPR 239
248 PORTS 0-1 MODE POIM L
247 PORT 3 MODE Pam
246 PORT 2 MODE P2M .
25 T0 PRESCALER PREO . .
244 TIMERICOUNTER 0 0 * *
243 “T1 PRESCALER PRE1
242 TIMERICOUNTER 1 ™ -
241 TIMER MODE T™MR
240 SERIAL 110 sio
239- = THE LOWER
NIBBLE OF
THE "
- SPECIFIED WORKING- FILE ADDRES:
— <~} PROVIDED BY
REGISTER GROUP THE INSTRUCTION
POINTS TO THE
. SPECIFIED
_ REGISTER.
GENERAL-PURPOSE =
REGISTERS
.
4
3 PORT 3 P3 15
2 PORT 2 P2 T M bb———————— —.
1 PORT 1 P1 \I0 PORTS
) PORT 0 PO

Figure 6. The Register File

Figure 7. The Register Pointer

120

SERIAL INPUT/OUTPUT

Port 3 lines P3g and P3; can be programmed as serial /0
lines for full-duplex serial asynchronous receiver/transmitter
operation. The bit rate is controlled by Counter/Timer 0, with
amaximum rate of 62.5K bits/second for 8 MHz.

The Z86C11 automatically adds a start bit and two stop bits
to transmitted data (Figure 8). Odd parity is also available as
an option. Eight data bits are always transmitted, regardless

TRANSMITTED DATA
(No Parity)

[sp]sP[o, [ps[0s] 0.] 0s] D] 04 DlLsTJ

START BIT
EIGHT DATA BITS

TWO STOP BITS

TRANSMITTED DATA
(With Parity)

[se]se] r‘>|n‘|n,[o‘[ni| 0,[0,[0o[7]

l——szn'r BIT
SEVEN DATA BITS
— 0DD PARITY

TWO STOP BITS

of parity selection. If parity is enabled, the eighth bit is the
odd parity bit. Aninterrupt request (IRQg) is generated on aII
transmitted characters.

Received data must have a start bit, eight data bits and at
least one stop bit. If parity is on, bit 7 of the received data is
replaced by a parity error flag. Received characters
generate the IRQg interrupt request.

RECEIVED DATA
(No Parity)

" [*To.]0e]0a] 0] 5a] 3,0, [0l 57

l—STAHT BIT
EIGHT DATA BITS

ONE STOP BIT

RECEIVED DATA
(With Parity)

(se > Tos[os]o. [ouo: o1 [oo]sT]

. l—SYART BIT
SEVEN DATA BITS

PARITY ERROR FLAG
ONE STOP BIT

Figure 8. Serial Data Formats

COUNTER/TIMERS

The Z86C11 contains two 8-bit programmable counter/
timers (To and T4), each driven by its own 6-bit
programmable prescaler. The T4 prescaler can be driven by
internal or external clock sources; however, the Tg prescaler
is driven by the internal clock only.

The 6-bit prescalers can divide the input frequency of the
clock source by any number from 1 to 64. Each prescaler
drives its counter, which decrements the value (1 to 256) that
has been loaded into the counter. When the counter reaches
the end of count, a timer interrupt request—IRQq4 (Tg) or
IRQs (T+1)—is generated.

The counters can be started, stopped, restarted to continue,
or restarted from the initial value. The counters can also be
programmed to stop upon reaching zero (single-pass
mode) or to automatically reload the initial value and

continue counting (modulo-n continuous mode). The
counters, but not the prescalers, can be read any time
without disturbing their value or count mode.

The clock source for T, is user—definable and can be
the internal microprocessor clock divided by four, or an
external signal input via Port 3. The Timer Mode
register configures the external timer input as an
external clock (1 MHz maximum), a trigger input that
can be retriggerable or non—retriggerable, or as a gate
input for the internal clock. The counter/timers can be
programmably cascaded by connecting the Ty output to
the input of T,. Port 3 line P3¢ also serves as a
timer output (T,,y) through which T, T, or the
internal clock can be output.

121

- /O PORTS

The Z86CH1 has 32 lines dedicated to input and output.
These lines are grouped into four ports of eight lines each
and are configurable as input, output or address/data.
Under software control, the ports can be programmed to
provide address outputs, timing, status signals, serial I/O,
and parallel I/0O with or without handshake. All ports have
active pull-ups and pull-downs compatible with TTL loads.

Port 1 can be programmed as a byte 1/O port or as an
address/data port for interfacing external memory. When
used as an I/O port, Port 1 may be placed under handshake
control. In this configuration, Port 3 lines P33 and P34 are
used as the handshake controls RDYy and DAV4 (Ready
and Data Available).

Memory locations greater than 4096 are referenced
through Port 1. To interface external memory, Port 1 must be
programmed for the multiplexed Address/Data mode. If
more than 256 external locations are required, Port 0 must
output the additional lines.

Port 1 can be placed in the high-impedance state along with
Port 0, AS, DS and RIW, allowing the Z86C11 to share
common resources in multiprocessor -and DMA
applications. Data transfers can be controlled by assigning
P33 as a Bus Acknowledge input, and P3, as a Bus Request
output. -

PORT 1
(VO OR AD,-AD;)

) oo
1
(P3; AND P3) !

Z36C11
Mcu

,Figure 9a. Port 1

Port 0 can be programmed as a nibble I/O port, or as an
address port for interfacing external memory. When used as
an 1/0 port, Port 0 may be placed under handshake control.
In this configuration, Port 3 lines P3, and P35 are used as
the handshake controls DAV and RDY,. Handshake signal
assignment is dictated by the 1/0O direction of the upper
nibble P04~P07‘

For external memory references, Port O can provide address
bits Ag-A11 (lower nibble) or Ag-A15 (lower and upper nibble)
depending on the required address space. If the address
range requires 12 bits or less, the upper nibble of Port 0 can
be programmed independently as /0 while the lower nibble

is used for addressing. When Port 0 nibbles are defined as
address bits, they can be set to the high-impedance state
along with Port 1 and the control signals AS, DS and R/W.

: : PORT O
z86C11 <:I> (0 OR Ag-As)

Mcu

. HANDSHAKE CONTROLS
= } BAVo AND RDY,
(P3; AND P3g)

Figure 9b. Port 0

Port 2 bits can be programmed independently as input or
output. This port is always available for /O operations. In
addition, Port 2 can be configured to provide open-drain
outputs.

Like Ports 0 and 1, Port 2 may also be placed under
handshake control. In this configuration, Port 3 lines P3;
and P3¢ are used as the handshake controls lines DAV, and
RDY). The handshake signal assignment for Port 3 lines P34
and P3g is dictated by the direction (input or output) assigned
to bit 7 of, Port 2.

POI ()
286c11 AT 2010)

Mcu
" | HANDSHAKE CONTROLS

} DAV; AND RDY>
>/ (p3, AND P39

IR

Figure 9¢c. Port 2

Port 3 lines can be configured as I/O or control lines. In either
case, the direction of the eight lines is fixed as four input
(P3¢-P33) and four output (P34-P37). For serial I/O, lines P3y
and P37 are programmed as serial in and serial out
respectively.

Port 3 can also provide the following control functions:
handshake for Ports 0, 1 and 2 (DAV and RDY); four external
interrupt request signals (IRQq-IRQ3); timer input and output
signals (Tjy and Tout) and Data Memory Select-(DM).

PORT 3
Z86C11 (10 OR CONTROL)

Mcu

W

Figure 9d. Port 3

122

INTERRUPTS

The Z86C11 allows six different interrupts from eight sources:
the four Port 3 lines P3¢-P33, Serial In, Serial Out, and the two
counter/timers. These interrupts are both maskable and
prioritized. The Interrupt Mask register globally or individually
enables or disables the six interrupt requests. When more
than one interrupt is pending, priorities are resolved by a
programmable priority encoder that is controlled by the
Interrupt Priority register.

All Z86C11 interrupts are vectored. When an interrupt
request is granted, an interrupt machine cycle is entered. This
disables all subsequent interrupts, saves the Program

Counter and status flags, and branches to the program
memory vector location reserved for that interrupt. This
memory location and the next byte contain the 16-bit address
of the interrupt service routine for that partlcular mterrupt
request.

Polled interrupt systems are also supported. To
accommodate a polled structure, any or all of the interrupt
inputs can be masked and the Interrupt Request register
polled to determine which of the interrupt requests needs

service.)

CLOCK -

The on-chip oscillator has a high-gain, parallel-resonant
amplifier for connection to a crystal or to any suitable external
clock source (XTAL1 = Input, XTAL2 = Output).

The crystal source is connected across XTAL1 and XTAL2,
using the recommended capacitors (C4 < 15.pf) from each

pinto ground. The specifications for the crystal are as follows:
m AT cut, parallel resonant '
® Fundamental type, 12 MHz maximum

m Series resistance, Rg < 100 Q

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to
describe the addressing modes and instruction operations
as shown in the instruction summary.

IRR Indirect register pair or indirect working-register
pair address

Irr Indirect working-register pair only

X Indexed address

DA Direct address

RA Relative address

IM Immediate

R Register or working-register address

r Working-register address only

IR Indirect-register or indirect worklng reglster
address

Ir Indirect working-register address only

RR Register pair or working register pair address

Symbols. The following symbols are used in describing the
instruction set.

dst Destination location or contents

src Source location or contents

cc Condition code (see list)

@ Indirect address prefix

SP Stack pointer (control registers 254- 255)
PC Program counter

FLAGS Flag register (control register 252)

RP Register pointer (control register 253) ,

IMR Interrupt mask register (control register 251)

* = O

Assignment of a value is indicated by the symbol “<” For

example,
dst < dst + src

indicates that the source data is added to the destination
data and the result is stored in the destination location. The
notation “addr(n)” is used to refer to bit “n” of a given
location. For example,

dst (7)
refers to bit 7 of the destination operand.

Flags. Control Register R252 contains the followmg Six
flags:

Carry flag
Zero flag
Sign flag
Overflow flag
. Decimal-adjust flag
Half-carry flag

TO<ONO

Affected flags are indicated by:

Cleared to zero

Setto one

Set or cleared according to operation
Unaffected

Undefined

x|

123

CONDITION CODES

Value Mnemonic Meaning Flags Set
1000 Always true —
0111 C Carry C=1
1111 NC No carry C=0
0110 4 Zero Z=1
1110 NZ Not zero Z=0
1101 PL Plus S=0
0101 Mi Minus S=1
0100 ov Overflow V=1
1100 NOV No overflow V=0
0110 EQ Equal Z=1
1110 NE Not equal Z=0
1001 GE Greater than or equal (SXORV) =0
0001 LT Less than © (SXORV) =1
1010 GT Greater than [ZOR(SXORV) =0
0010 LE Less than or equal [ZOR(SXORV)] = 1
1111 UGE Unsigned greater than or equal C=0
0111 uLT Unsigned less than C=1
1011 UGT Unsigned greater than (C=0ANDZ=0)=1
0011 ULE Unsigned less than or equal (CORZ) =1
0000 ’ Never true =
INSTRUCTION FORMATS
[__oprc] gg: DL E E’Isg!FET NOP,
One-Byte Instructions
[Topc | mobE | CLR, CPL, DA, DEC, OPC_| MODE ADC, ADD, AND, CP,
I dst/src OR |1 1 1 0] dst/src gsgnw,;):cﬁltéc:lélﬁoh src OR |1 110} src #ghos;,msz%nsua.
RRC, SRA, SWAP dst OR |1 11 ol dst I o
I OPC I) JP, CALL (Indirect)
[dst Jor [1110] ast | orc_| MODE ADC, ADD, AND, CP,
dst or [T 0] dst] 12,0856 SUB,
o] sap YALE
[vawe |
MODE | opC LD
OR|1110] src
Cost T e | e T s
OPC LD
[Wwobe [oec | LD, LDE, LoE) e
[dstisrc | srordst LDC, LDCI "‘"A';)RES;‘
Idstls'c OPC l LD
[_sroigst | or [[110] src L #A opc w®
U
DA,
[ast [opc] LD
[__vale | opC CcALL
DAy
[dasucc | opc | DJINZ, JR DA,
—
Two-Byte Instructions Three-Byte Instructions

124

INSTRUCTION SUMMARY

Addr Mode Opcode Flags Affected Addr Mode Opcode Flags Affected
Instruction —— Byte —— Instruction ——— Byte ——mm
and Operation dst src (Hex) CZSVDH and Operation dst src (Hex) CZ SVDH
ADC dst,src (Note 1) 10 % % % %0 % JP cc,dst DA D -
dst<dst + src + C if ccistrue c=0-F
ADD dstsrc (Note!) OO % # % % O % PC - dst IRA 30
dst < dst + src JRcc,dst RA cB @ —-——————
AND dst,src (Note1) 50 — = % 0_— [recistue c=0-F
dst < dst AND src PC < PC + dst
_ Range: +127, — 128
CALL dst . DA [) J S .
SP<SP -2 IRR D4 '(;3 ?_Stsrscfc : 'f; rrg ——————
@SP < PC; PC < dst R ; 9
CCF EF *————— r=0-F
C<NOTC r X Cc7
-CLR dst R BO . >r(Irr Ié;
dst<0 IR B1 ¥ r F3
COM dst R 60 — % %* 0 — — R R E4
dst < NOT dst IR 61 R IR E5
R M E6”
gP dst,src (Note 1) AO * ko d ok — — R M E7
st - st R R F5
S At a oo *XTT ipcdssc r o C2 ———
S S dst < src Irr r D2
e | a ¥ TH**—— ipcidstso r 3 ——————
st ast - dst < src It lr D3
DECW dst RR 80 — %k ok — — r<r+1mrerm+1
dst<dst — 1 IR 8 LDE dst,src roodr 82 —— = — —
DI dst < src Irr r 92
MR (7) 0 8 —————- LDEI dst.src r Ir 8 ————_—
DJNZ r,dst RA A - — — — dst < src Irr Ir 93
r<r-1 r=0-F rer+ 1mremr+1
ifr#0
PC<PC + dst NoP FF ——————
Range: +127, —128 OR dst,src (Note 1) 40 — % » 0 — —
) o __ _ _ __ dst < dst OR src
IMR (7) < 1 POP dst R 50 @ @—— — — — —
dst < @SP; IR 51
HALT " SP<SP + 1
:j':?fjst +1 f r= r0E F TR PUSH sro i N —————-
"o P<SP - 1, @SP < 7
R 20 SP<S @SP<sc IR 1
R 21 RCF CF 0 ——— ——
C<o0
INCW dst RR A0 — %k ke — —
dst<dst + 1 IR Al RET AF - = — — —
IRET . BE % % % % % % PC < @SP;SP <SP + 2
FLAGS < @SP; SP <SP + 1 RL dst [——] R 90 ook — —
PC < @SP; SP <SP + 2; IMR (7) < 1 [<] IR 91

125

INSTRUCTION SUMMARY (Continued)

Instruction

Addr Mode Opcode Flags Affected

AddrMode Opcode Flags Affected

Byte Instruction Byte ——mm
and Operation dst src (Hex) CZSVDH and Operation dst src (Hex) C Z S VDH
?RLCdstm R 10 * k Kk X — — TM dst,src (Note 1) 70 — % % 0 ——

[~IR 11 dst AND src
RR dst p— R EO * ke ok k — — XOR dst,src (Note 1) BO — % % 0 ——
3 g TR o E1 dst < dst XOR src _
RRC dst m R co * ke % * — — NOTE: These instructions have an identical set of addressing modes,
[MR C1 which are encoded for brevity. The first opcode nibble is found in
the instruction set table above. The second nibble is expressed
" SBC dst,src (Note 1) 30 'EREERE] symbolically by a (J in this table, and its value is found in the
dst < dst < src < C following table to the left of the applicable addressing mode pair.
For example, the opcode of an ADC instruction using the
gCF1 DF 1 ————— addressing modes r (destination) and Ir (source) is 13.
SRAcs [——— R DO % % %0 — — Adcc Mode Lower
et e w IR D1 dst src Opcode Nibble
e R o
| 3
STOP oF ' '
R R
SUB dst,src (Note 1) 20 * % %k 1 %
dst < dst < src R IR
SWAPdst _f——1 R FOO X % % X —— R M (6]
[T] R F1
— . IR M
TCM dst,src (Note 1) 60 — % % 0 — —
(NOT dst) AND src

126

REGISTERS

R240 810
SERIAL 1/0 REGISTER
(FOH; Read/Write)

I —

SERIAL DATA (D, = LSB)

R241 TMR
TIMER MODE REGISTER
(F1H; Read/Write)

mmmmmmm

RIGGE! 1 = ENABLE T, COUNT
(NON'RETRl(iGERABLE)
TRIGGE!

(RETRIGGERABLE)

R242 T1
COUNTER TIMER 1 REGISTER
(F2H; Read/Write)

L

, R243 PRE1
PRESCALER 1 REGISTER
(F3H; Write Only)

Lcounr MODE
0 = T, SINGLE-PASS
- 1 = T, MODULO-N
* CLOCK SOURCE
1 =T, INT

it

PRESCALER MODULO
(RANGE: 1-64 DECIMAL
01-00 HEX)

MODES o < to FuNcTIoN
noT 1200 06 1=
pofrited] o - DisasLe To COUNT
INTERNAL OI.OCK our = n 1 = ENABLE Ty COUNT
ODES 0 = NO FUNCTION
EXTERNAL CLOCK mrﬂr =00 1=10ADT,
GATE INPUT = 01 0 = DISABLE T, COUNT

T4 INITIAL VALUE (WHEN WRITTEN)
(RANGE 1-256 DECIMAL 01-00 HEX)
T CURRENT VALUE (WHEN READ)

ERNAL
0= T EXYENNAL TIMING INPUT

R244 TO
COUNTER/TIMER 0 REGISTER
(F4n; Read/Write)

IR
To INITIAL VALUE (WHEN WRITTEN)
(RANGE: 1-256 DECIMAL 01-00 HEX)

To CURRENT VALUE (WHEN READ)

R245 PREO
PRESCALER 0 REGISTER
(F5H; Write Only)

Lcouur MODE
0 = T, SINGLE-PASS
1 = T, MODULON

RESERVED

PRESCALER MODULO
(RANGE: 1-64 DECIMAL
01-00 HEX)

R246 P2M
PORT 2 MODE REGISTER
(F6H; Write Only)

[0:]0e]0s [0,]05] 0, [0, [0
‘ [——————Pg"ﬁ:gwgsngilﬂtg’uﬁpm

1 DEFINES BIT AS INPUT

‘R247P3M
PORT 3 MODE REGISTER
(F7H; Write Only)

[©: [oe]o. oo, o, o, oo
i 0 PORT 2 PULL-UPS OPEN DRAIN
1 PORT 2 PULL-UPS ACTIVE

RESERVED -
_0 P32 = INPUT P35 = QUTPUT
1 P32 = DAVO/RDY0 P35 = RDYO/DAVO

INPUT P34 = OUTPUT

INPUT P34 = DM
= DAVA/RDY1 P34 = RDY/DAVi

wowon

0 P31 = INPUT (T, P36 = OUTPUT (Tg.")
1 P31 = DAV2/RDY2 P36 = RDY2Il

[} P37 =

153 2 SERIALIN P37 = SERIAL OUT
0 PARITY OFF

1PARITY ON .

Figure 11. Control Registers

127

REGISTERS (Continued)

PORT 0

R248 POIM
AND 1 MODE REGISTER
(F8H; Write Only)

PO,-PO; uoos
OUTPUT = 00

INPUT = 01
Ag-Ag = 1X

EXTERNAL MEMORY TmiNG
NORMAL =

EXTENDED = |

| -P0; MODE
N&’:’omw
01 = INPUT
1X = Ag-Ayy
STACK SELECTION
§ = TEARAL
P1; MODE
= BYTE OUTPUT
o1 = BYTE] mmn

10 = AD,

1= mm-uupsnmcs ADo-AD;,
AS, DS, RIW, Ag-At1, Arz-Ats

IF SELECTED

R249 IPR
INTERRUPT PRIORITY REGISTER

(F9H; Write Only)

RESERVED I INTERRUPT GROUP PRIORITY
RESERVED = 000
1RG3, IRGS PRIORITY (GROUP A) C>A>B =001
0 = IRQS > IRG3 — A>B>C=010
1= IRG3 > RS a>c>s-om
1RGO, IRG2 PRIORITY (GROUP B) C>BoAC 101
0 = IRG2 > 1RGO B>A>C =110
1 = IRQO > IRG2 RESERVED = 111
IRQ1, 1RG4 PRIORITY (GROUP C)
“0 = IRQ1 > IRQ4
= IRG4 > IRG1

R250

IRQ
INTERRUPT REQUEST REGISTER

. RESERVED

-/

(FAH; Read/Write)

IRQ1 = P33 INPUT
IRQ2 = P34 INP!

uT
1RQ3 = P39 INPUT, SERIAL INPUT

IRQ4 = To, SERIAL OUTPUT
IRQS = T

R251 IMR

INTERRUPT MASK REGISTER

(FBy; Read/Write)

_!: 1 ENABLES IRQ0-IRQS
(Do = IRQO)

1 ENABLES s

IRQO = P3; INPUT (Do = IRQO)

R252 FLAGS
FLAG REGISTER
(FCH; Read/Write)

CICACACACACAENCY

USER FLAG F1
USER FLAG F2
HALF CARRY FLAG
DECIMAL ADJUST FLAG
OVERFLOW FLAG
SIGN FLAG
ZERO FLAG
ARRY FLAG

l_r_;

R253 RP
REGISTER POINTER
(FDH; Read/Write)

i DON'T CARE

Ts.

[E
|

Ts;
Ts

R254 SPH
STACK POINTER
(FEH; Read/Write)

I

STACK POINTER UPPER
BYTE (SPs-SPy5)

R255 SPL
STACK POINTER
(FFH; Read/Write)

L

STACK POINTER LOWER
BYTE (SPy-SP;)

Figure 11. Control Registers (Continued)

128

OPCODE MAP

Lower Nibble (Hex)
0 1 2 3 4 5 6 7 8 9 A B [D E F
6.5 6.5 6.5 6.5 105 105 10,5 10,5 6.5 6.5 12/10.5 | 12/10.0 6,5 12/10.0 65
[} DEC DEC ADD ADD ADD ADD ADD ADD LD LD DJNZ JR LD JP INC
Ry IRy rr ridrz | RaRy | IR2Ry | RyIM [IRyIM | r1.Ro Ry r1.RA | cc.RA | rIM | ccDA r1
6.5 6.5 6.5 6.5 105 105 10,5 105
1 RLC RLC ADC ADC ADC ADC ADC ADC
Ry 1Ry rre ridre | Ra.Ry | IR2Ry | RyIM [IRyIM
6.5 6.5 6.5 6.5 105 10,5 10,5 10,5
2 INC INC sus suB SsuB SuB suB suB
Ry IR 12 | rdra | RoRy | IRaRy | RyIM | IRgIM
. 8.0 6.1 6.5 6.5 10,5 10,5 10,5 10,5
3 JP SRP SBC | SBC | SBC SBC SBC SBC
IRR; M | rure | ridr | RoRy | IR2Ry | RiM | IRyIM
85 85 6.5 6,5 10,5 10,5 10,5 10,5
4 DA DA OR OR OR OR OR OR
Ry IRy 12 | ridra | RaRy | IR2Ry | RiM | IRyIM
105 | 105 6.5 6.5 105 105 105 105
5 POP POP AND | AND AND AND AND AND
Ry IRy r.rp ry.lrp RoRy | IR2,Ry | RyM | IRyIM
6.5 6,5 6.5 6,5 105 10,5 10.5 105 6,0
6 coM COoM TCM TCM TCM | TCM TCM ™M ' STOP
Ry IRy r.rn ridrp | R2.Ry | IR2.Ry | RyM | IR¢IM
E 10121 [121141 6.5 6.5 105 10,5 10.5 10,5 7.0
e 7 PUSH | PUSH ™ ™ ™ ™ ™ ™ HALT
§ Rz IRy r.r rdrp | Ra.Ry | IR2.Ry | RyM | IRy IM -
z 105 | 105 | 120 | 180 6.1
2 3 DECW | DECW | LDE LOEI DI
g- RR4 IRy rydrrg | Irqdrp
65 | 65 12,0 18,0 6.1
9 RL RL LDE LDEI El
R4 1Ry ralrry | drp.lrry
10.5 10.5 6.5 6.5 105 10.5 10.5 10.5 14.0
A INCW | INCW CcP cpP cpP cP cP cP RET
RR4 IRy rro | ridrs | BaRy | IR2Ry | RiM. | IRyIM
) 65 65 6.5 65 10,5 105 | 105 | 105 - 16.0
B CLR CLR XOR XOR XOR XOR XOR XOR IRET
Ry IR¢ r.r ridra | Ra.Ry | IR2.Ry [RyIM | IRqIM
6.5 6.5 12,0 18,0 105 6.5
Cc RRC RRC LoC Loci Lo RCF
Ry IRy rydrrg | rqlrrp ry.x.Ro)
6.5 6.5 12,0 18,0 200 20.0 105 6.5
D | SRA SRA LDC LDCI | CALL* CALL Lo SCF
Ry IRy rpdrey | Iradrry IRR4 DA ro.x.Rq
6.5 6.5 6.5 10.5 105 10.5 10.5 6.5
E RR RR LD Lo LD LD LD CCF
Ry IRy 11JR2 | RoRy | IR2Ry | RyM | IRqIM
8.5 8.5 6,5 10,5 ‘ 6.0
F SWAP | SWAP LD LD) NOP
Ri | R Iri.r2 Ra.Ry Yy vyl lvylvivivly
. (.
~ —~— - e v/ ~ - ——
2 3 2 3
Bytes per Instruction
LOWER
OPCODE
NIBBLE
EXECUTION PIPELINE) Legend:
. CYCLES CYCLES R = 8-bit address
r = 4-bitaddress
UPPER 10,5 . R orry = Dstaddress
OPCODE ——3> A| CP <4——MNEMONIC Rgorrz = Sro address
NIBBLE RoR
21 Sequence:
. Opcode, First Operand, Second Operand
FIRST SECOND .
OPERAND OPERAND NOTE: The blank areas are not defined.

*2-byte instruction, fetch cycle appears as a 3-byte instruction

129

ABSOLUTE MAXIMUM RATINGS

Voltages on all pins with respect

to GND
Operating Am

Temperature
Storage Temperature

bient

Stresses-greater than those listed under Absolute Maximum Ratings may
cause permanent damage to the device. This is a stress rating only;
operation of the device at any condition above those indicated in the
operational sections of these specifications is not implied. Exposure to

absolute maximum rating conditions for extended periods may affect
device reliability.

STANDARD TEST CONDITIONS

~ The DC characteristics listed below apply for the following
standard test conditions, unless otherwise noted. All
voltages are referenced to GND. Positive ‘current flows into

the referenced pin.

Standard conditions are as follows:
m +4.5<Vcc <+ 5.5V

FROM OUTPUT
UNDER TEST

m GND =0V
W0 C<Tp <+470-C for S (Standard temperature) Figure 12. Test Load 1
m 40 C< TA <+100 C for E (Extended temperature)
DC CHARACTERISTICS
Symbol Parameter Min Typ Max Unit Condition
VcH Clock Input High Voltage 3.8 Vee \ Driven by External Clock Generator
VoL Clock Input Low Voltage -0.3 0.8 Y% Driven by External Clock Generator
ViH Input High Voltage ’ 20 Vee v
ViL Input Low Voltage -03 0.8 \Y
VRH Reset Input High Voltage 3.8 Vee \
VRL Reset Input Low Voltage -03 0.8 \%
VOH Output High Voltage 2.4 v loH = —250 A
VOH Output High Voltage Vee -100mVv \" IoH = -100pA
VoL ‘Output Low Voltage 04 - \ loL= +20mA
I Input Leakage -10 10 uA OV VNS + 56.25V
loL Output Leakage -10 10 A OV VNS + 5.25V
IR Reset Input Current _ -50 A Vee = +5.25V, VR = OV
lce Supply Current 30 mA Al outputs and I/O pins floating , 12 MHz
lccy Standby Current 5 mA Halt Mode
lccy Standby Current 10 A Stop Mode
lcc2 requires loading TMR (%F1) with any value prior to STOP execution.
Use the sequence: ‘
) LD TMR, #00
NOP
STOP

130

v K \
@ <@
PORT 0,
. -
PORT 1 Ag-A7 > Do-D7 IN }
(D> [«—D—>| > (D=
s _\1:5__3’ ®- LoN____
_ = ®
(aern') .
|G|
PORT 1 X "Ag-A7)I Dg-D7 OUT
O _ el
(WRI?E) & - y
Figure 13. External I/O or Memory Read/Write
AC CHARACTERISTICS
External /O or Memory Read and Write Timing
12 MHz 16 MHz
‘Number Symbol Parameter Min Max Min Max Notes*t°
1 TdAAS) Address Valid to AS t Delay 35 20 23
2 TdAS(A) AS * to Address Float Delay 45 30 23
3 TdAS(DR) AS t to.Read Data Required Valid 220 180 1,23
4 TWAS AS Low Width 55 35 23
5 TdAz(DS) Address Float to DS ¢ 0 0
6 TWDSR DS (Read) Low Width 185 135 1,23
7 TWDSW DS (Write) Low Width 110 80 123
8 TdDSR(DR) DS | to Read Data Required Valid 130 75 1,23
-9 ThDR(DS) Read Data to DS 1 Hold Time 0 0
10 TdDS(A) DS # to Address Active Delay 45 20 23
1 TdDS(AS) DS tto AS ¥ Delay 55 20 23
12 TdRIW(AS) R/W Valid to AS 1 Delay 30 20 23
13 TdDS(R/W) DS 4 to R/W Not Valid 35 20 23
14 TdDW(DSW) Write Data Valid to DS (Write) ¢ Delay 35 25 23
15 TdD.S(DW) DSt to Write Data Not Valid Delay 35 20 2,3
16 TdA(DR) Address Valid to Read Data Required Valid 285 200 123
17 TdAS(DS) AS tto DS ¥ Delay 55 40 23
NOTES:

1. When using extended memory timing add 2 TpC.
2. Timing numbers given are for minimum TpC. i
3. See clock cycle time dependent characteristics table.

* All units ih nanoseconds (ns).
1 TestLoad 1
° All timing references use 2.0V for a logic “1" and 0.8V for a logic,“0".

131

Figure 14. Additional Timing

AC CHARACTERISTICS
Additional Timing Table
12 MHz 16 MHz
Number Symbol Parameter Min Max Min Max Notes
1 TeC Input Clock Period 83 1000 625 1000 1
2 TC,TfC Clock Input Rise and Fall Times 15 10 1
3 ™wC Input Clock Width 70 21 1
4 TwTinL Timer Input Low Width .70 50 2
5 TwTinH Timer Input High Width 3TpC 3TpC 2
6 TpTin Timer Input Period 8TpC 8TpC 2
7 TTin, TfTin Timer Input Rise and Fall Times 100 100 2
8A TwiL Interrupt Request Input Low Time 70 50 . 24
8B TwiL Interrupt Request Input Low Time 3TpC 3TpC 25
9 TwiH Interrupt Request Input High Time 3TpC 3TpC 23
NOTES:
1. Clock timing references use 3.8V for a logic *1" and 0.8V for a logic “0”.
2. Timing references use 2.0V for a logic “1” and 0.8V for a logic “0".
3. Interrupt request via Port 3.
4. Interrupt request via Port 3 (P34-P33).
5. Interrupt request via Port 3 (P3p).
* Units in nanoseconds (ns).
DATA IN DATA IN VALID -
0 { -0~
] | ——'
O+ —©
(Ou%?lv’}) \
Figure 15a. Inpdt Handshake
DATA OUT)‘ DATA OUT VALID
—O—
(Oum &
) ® | O—
o2 | S0 1

Figure 15b. Output Handshake

132

AC CHARACTERISTICS
Handshake Timing

12MHz, 16 MHz

Notest*

Number Symbol Parameter Min Max
1 ~ TsDI(DAV) Data In Setup Time 0
2 ThDI{DAV) Data In Hold Time 145
3 TwDAV Data Available Width 110
4 TdDAVIf(RDY) DAV 4 Input to RDY ¥ Delay 20 115 1,2
5 TdDAVOf(RDY) DAV | Output to RDY 4 Delay 0 1,3
6 TdDAVIr(RDY) DAV t Input to RDY t Delay 115 1.2
7 TADAVOr(RDY) DAV t Output to RDY 4 Delay 0 : 1,3
8 TdDO(DAV) Data Out to DAV ¢ Delay Tpc 1
9 TdRDY(DAV) RDY + Input to DAV t Delay 0 130 1
NOTES:
1. Test load 1

2. Input handshake
3. Output handshake

1 All timing references use 2.0V for a logic “1" and 0.8V for a logic “0".

* Units in nanoseconds (ns).

133

ADVANCED INFORMATION

Product Specification

Z86C21/Z86E21 CMOS
CMOS 28® 8K ROM MCU

June 1987

FEATURES

m Complete microcomputer, 8K bytes of ROM, 256 bytes of B Register Pointer so that short, fast instructions can
RAM, 32 /O lines, and up to 56K bytes addressable access any of 16 working—register groups in .6 pus.

external space each for program and data memory. m On-chip oscillator which accepts crystal or external clock

W 256-byte register file, including 236 general-purpose drive.
registers, 4 /O port registers, and 16 status and

. Standby modes—Halt and Stop
control registers.

Single + 5V power supply—all pins TTL-compatible.
12 and 16 MHz.
CMQOS process

B Minimum instruction execution time of 0.6 pus,
average of 1.0 us.

m Vectored, priority interrupts for 1/O, counter/timers, and
UART.

Z86E21 compatible field—programmable version ——
® Full-duplex UART and two programmable 8-bit counter/ same feature set.
timers, each with a 6-bit programmable prescaler.

GENERAL DESCRIPTION .

The Z86C21 microcomputer (Figures 1 and 2) more efficient use of memory; more sophisticated
introduces a new level of sophistication to single— interrupt, input/output and bit—manipulation
chip architecture. Compared to earlier single—chip capabilities; and easier system expansion.

microcomputers, the Z86C21 offers faster execution;

N

——] RESET +5V fe— +sv [4[] p3
nminG | | i GND fe— xtaL2 [] 2 39 [] ps,
AND o xS
CoNTROL | «—] 55 XTALY cLock xTaLt [8 3 |1 P2 ST o
-~ AS XTAL2 P3 E 4 7 :I P2 /6 5 4 3 2 1 4443 42 41 40 \
<«—>»] PO, P2, ja—>) P3o C 5 3] P2s RESET |7] 39 | NC
<« Po, P2, F—» RESET [] 6 5[] p2, "W |8 38 | P2,
<—»]{ Po, P2, |e—> RW] 7 34 [] p2, Bs |o a7 | P2y
PORT 0 PORT 2 s & |0 Z86C21 36 | P2,
Po. P2 D 8 33[] r2,
(NIBBLE | <] PO, 3 [<—> | (BIT PRO- pas | 11 35 | p2,
Z86E21
PROGRAMMABLE) | o 1 po P2, |<—s» [GRAMMABLE) AS [Jo Z86C21 32[] P2,
/0 OR Ag-Ars « 286C21 "% Vo p3s [] 10 Z86E21 31[] r2, bl b [a4 | P20
P05 ZSGE21P25 MCU P3; |13 33]P3;
Po; MCU P2 o » GND [11 30 [] P3; Poo |14 32 | P3y
Po. P2, p3, [] 12 29[p3, POy |15 EIN Lt
-1 PO; [Po, |16 30 | P1g
«—»{ Pi, P3; je——ro PO, E 13 28 : P1; ne |17 20 | P15
[14 7 [Pt
4—»{ P1, P3 fe—o0 g 27 [P N\ 18 19 20 21 22 23 24 25 26 27 28/
-] P1, P3; je——ov~ PORT 3 PO, E 1;" 26 : Pls SO S RN MR ¢
PORT 1)
(BYTE | <= P15 P3; fe— | SeRiAL AND POy L 16 25 Py,
PROGRAMMABLE] PARALLEL 1/0 PO 17 4[] p)
10 OR ADo—A03 -] P1, P34 > | AND CONTROL ‘] P1e Figure 2b. 44-pin Chip Carrier,
<] P15 P35 |—> po; [18 s g P, Pin Assignments .
<—>‘ Plg P3; —> PO, E 19 221 P,
<> P1; P3; }—> PO, 20 21 pi,
Figure 2. 40-pin Dual-In-Line

Figure 1. Pin Functions Package (DIP), Pin Assignments

134

General Purpose Microcontroller

Under program control, the Z86C21 can be tailored
to the needs of its user. It can be configured as a
stand—alone microcomputer with 8K bytes of
internal ROM, a traditional microprocessor that
manages up to 112K bytes of external memory, or

a parallel—processing element in a system with other

'processors and peripheral controllers linked by the

Z—-BUS bus. In all configurations, a large number
of pins remain available for 1/0.

Field Programmable Version

The Z86E21 is a pin compatible Onetime
Programmable version of the Z86C21. The Z86E21
contains 8K bytes of EPROM memory in place of the
‘8K bytes of masked ROM on the Z86C21. The

Z86E21 also contains a programmable memory
protect feature to provide program security by
disabling all external accesses to the internal EPROM
array.

ARCHITECTURE

Z86C21 architecture is characterized by a flexible 1/0
scheme, an efficient register and address space structure
and a number of ancillary features that are helpful in many
applications.

Microcomputer applications demand powerful 1/O
capabilities. The Z86C21 fulfills this with 32 pins dedicated
to input and output. These lines are grouped into four ports
of eight lines each and are configurable under software
control to provide timing, status signals, serial or parallel I/0
with or without handshake, and an address/data bus for
interfacing external memory.

Because the multiplexed address/data bus is merged with
the I/O-oriented ports, the Z86C21 can assume many
different memory and I/O configurations. These config-
urations range from a self-contained microcomputer to a

microprocessor that can address 120K bytes of external
memory (Figure 3). '

Three basic address spaces are available to support this
wide range of configurations: program memory (internal
and external), data memory (external) and the register
file (internal). The 256—byte random-—access register
file is composed of 236 general—purpose registers, 4 1/O
port registers, and 16 control and status registers.

To unburden the program from coping with real-time
problems such as serial data communication and
counting/timing, an asynchronous receiver/transmitter
(UART) and two counter/timers with a large number of |
user-selectable modes are offered on-chip. Hardware
support for the UART is minimized because one of the
on-chip timers supplies the bit rate.

OUTPUT INPUT

tit Wi

Vcc GND

b

XTAL AS DS RIW RESET

et

MACHINE TIMING AND
PORT 3 INSTRUCTION CONTROL
UART (ALY — |
PROGRAM
FLAGS MEMORY
COUNTER/ 8192 x 8—BIT
TIMERS
(2 REGISTER {}
POINTER :I
REGISTER FILE PROGRAM
INTERRUPT <:—T-J _ COUNTER
PRl 256 x 8—BIT
PORT 2 PORT 0 PORT 1

i

U
(BIT PROGRAMMABLE)

(—
SO0

ADDRESS OR 1/0

(NIBBLE PROGRAMMABLE)

g

ADDRESS/DATA OR 1/0
(BYTE PROGRAMMABLE)

Figure 3. Functional Block Diagram

- 135

STANDBY MODE

The Z86C21’s standby modes are:
m Stop
m Halt

The Stop instruction stops the internal clock and clock
oscillation; the Halt instruction stops the internal clock but
not clock oscillation.

A reset input releases the standby mode.

To complete an instruction prior to entering standby mode,
use the instructions:

NOP(FF) + STOP(6F)
NOP(FFu) + HALT(7Fp)

PIN DESCRIPTION

AS. Address Strobe (output, active Low). Address Strobe is
pulsed once at the beginning of each machine cycle.
Addresses output via Port 1 for all external program or data
memory transfers are valid at the trailing edge of AS. Under
program control, AS can be placed in the high-impedance
state along with Ports 0 and 1, Data Strobe and Read/Write.

DS. Data Strobe (output, active Low). Data Strobe is
activated once for each external memory transfer.

P0¢-P07, P1og-P17, P2¢-P2;, P3¢-P37. //O Port Lines

(input/outputs, TTL-compatible). These 32 lines are divided
into four 8-bit I/O ports that can be configured under

RESET. Reset (input, active Low). RESET initializes the
Z286C21 . When RESET is deactivated, program execution
begins from internal program location 000C.

R/W. Read/Write (output). R/W is Low when the Z86C21 is
writing to external program or data memory.

XTAL1, XTAL2. Crystal 1, Crystal 2 (time—base input
and output). These pins connect a parallel—resonant
crystal (12 or 20 MHz maximum) or an external single—
phase clock (12 or 20 MHz maximum) to the on—chip
clock oscillator and buffer.

program control for I/O or external memory interface (Figure 3).

ADDRESS SPACE

Program Memory. The 16-bit program counter addresses
64K bytes of program memory space. Program memory
can be located in two areas: one internal and the other
external (Figure 4). The first 8192 bytes consist of on-chip
mask-programmed ROM. At addresses 8192 and greater,
the Z86C21 executes external program memory fetches.

The first 12 bytes of program memory are reserved for the
interrupt vectors. These locations contain six 16-bit vectors
that correspond to the six available interrupts.

Data Memory. The Z86C21 can address 56K bytes of
external data memory beginning at location 4096 (Figure 5).
External data memory may be included with or separated
from the external program memory space. DM, an optional
1/0 function that can be programmed to appear on pin P34,
is used to distinguish between data and program memory
space.

Register File. The 256—byte register file includes 4
1/0 port registers (RO—R3),
registers (R4—R239) and 16 control and status registers
(R240-R255).

236 general—purpose

These registers are assigned the address locations shown in
Figure 6.

Z86C21 instructions can access registers directly or
indirectly with an 8—bit address field. The Z86C21 also
allows short 4—bit register addressing using the Register
Pointer (one of the control registers). In the 4—bit
mode, the register file is divided into 16 working register
groups, each occupying 16 contiguous locations (Figure
6). The Register Pointer addresses the starting location
of the active working—register group (Figure 7). Note:
Register Bank EO—EF can only be accessed through
working register and indirect addressing mode.

Stacks. Either the internal register file or the external data
memory can be used for the stack. A 16-bit Stack Pointer
(R254 and R255) is used for the external stack, which can
reside anywhere in data memory between locations 4096
and 65535. An 8-bit Stack Pointer (R255) is used for the

“internal stack that resides within the 124 general purpose

reg|sters (R4-R127).

136

65535
EXTERNAL
ROM OR RAM
8192
8191
) ON-CHIP
LOCATION OF ROM
FIRST BYTE OF
INSTRUCTION
EXECUTED NJ-— ——— —— — —— — — -
AFTERRESET 12 [&
" IRQ5
10 IRQ5
9 1RQ4
8 RQ4
INTERRUPT 7 IRQ3
VECTOR «_6 RG3
LOWER BYTE)
_() \s N IRQ2
D) 1RQ2
T
VECTOR <3| IRQ1
(UPPERBYTE) roT
1 1RQ0
0 1RGO

Figure 4. Program Memory Map

85535
EXTERNAL
DATA
MEMORY
8192
8191
NOT ADDRESSABLE
0

Figure 5. Data Memory Map

LOCATION
255
254
253
252
251
250
249
248
247
246
245
244
243
242
24
240

239

© 4N v s

STACK POINTER (BITS 7-0)
STACK POINTER (BITS 15-8)
REGISTER POINTER
PROGRAM CONTROL FLAGS
INTERRUPT MASK REGISTER
INTERRUPT REQUEST REGISTER
INTERRUPT PRIORITY REGISTER
PORTS 0-1 MODE
PORT 3 MODE
PORT 2 MODE
T0 PRESCALER
TIMER/COUNTER 0
T1 PRESCALER
TIMER/COUNTER 1
TIMER MODE
SERIAL IO

NOT
IMPLEMENTED

GENERAL-PURPOSE
REGISTERS

PORT 3
PORT 2
PORT 1
PORT 0

Figure 6. The Register File

IDENTIFIERS
SPL
SPH
RP
FLAGS
IMR
IRQ
IPR
POIM
P3M
P2m
PREO
T0
PRE1
T
TMR
sio

P3
P2
P1
PO

——————
I 255
L Tfersfh | 0000 253
240
THE UPPER NIBBLE OF THE REGISTER FILE ADDRESS
>—— PROVIDED BY THE REGISTER POINTER SPECIFIES
THE ACTIVE WORKING-REGISTER GROUP.
239
L
- — -
- — -
= THE LOWER
NIBBLE OF
THE REGISTER
SPECIFIED WORKING- FILE ADDRESS
> REGISTER GROUP <&~ PROVIDED BY
THE INSTRUCTION
POINTS TO THE
SPECIFIED
L REGISTER.
- — >
15
—— L]
110 PORTS 3

Figure 7. The Register Pointer

137

SERIAL INPUT/OUTPUT

Port 3 lines P3g and P37 can be programmed as serial /0
lines for full-duplex serial asynchronous receiver/transmitter
operation. The bit rate is controlled by Counter/Timer 0.

The Z86C21 automatically adds a start bit and two stop bits
to transmitted data (Figure 8). Odd parity is also available as
an option. Eight data bits are always transmitted, regardless

TRANSMITTED DATA
(No Parity)

EEEbnbles e

I-—START BIT
EIGHT DATA BITS
TWO STOP BITS

TRANSMITTED DATA
(With Parity)

[sp]sP] P Joe [os[0a[0s] 0] 0, [0o[s7]

I—-START BIT

SEVEN DATA BITS
0DD PARITY
TWO STOP BITS

of parity selection. If parity is enabled, the eighth bit is the
odd parity bit. Aninterrupt request (IRQ4) is generated on alll
transmitted characters.

Received data must have a start bit, eight data bits and at
least one stop bit. If parity is on, bit 7 of the received data is
replaced by a parity error flag. Received characters
generate the IRQg interrupt request.

RECEIVED DATA
(No Parity)

[sp] ;[0 [0s] 0.] D3] 0.0, [0o] 5T]

l—START BIT
EIGHT DATA BITS
ONE STOP BIT

RECEIVED DATA
(With Parity)

[sp] P [os[0s|04[0s[0.]0s[D5 [sT]

l L—START BIT
SEVEN DATA BITS

PARITY ERROR FLAG
ONE STOP BIT

Figure 8. Serial Data Formats

COUNTER/TIMERS

The Z86C21 contains two 8-bit programmable counter/
timers (To and Tq), each driven by its own 6-bit
programmable prescaler. The T4 prescaler can be driven by
internal or external clock sources; however, the To prescaler
is driven by the internal clock only.

The 6-bit prescalers can divide the input frequency of the
clock source by any number from 1 to 64. Each prescaler
drives its counter, which decrements the value (1 to 256) that
has been loaded into the counter. When the counter reaches
the end of count, a timer interrupt request—IRQg (Tg) or
IRQs5 (T1)—is generated.

The counters can be started, stopped, restarted to continue,
or restarted from the initial value. The counters can also be
programmed to stop upon reaching zero (single-pass
mode) or to automatically reload the initial value and

continue counting (modulo-n continuous mode). The
counters, but not the prescalers, can be read any time
without disturbing their value or count mode.

The clock source for T, is user—definable and can be
the internal microprocessor clock divided by four, or an
external signal input ‘via Port 3. The Timer Mode
register configures the external timer input as an
external clock (1MHz maximum), a trigger input that

-can be retriggerable or non—retriggerable, or as a gate

input for the internal clock. The counter/timers can be
programmably cascaded by connecting the T, output to
the input of T, Port 3 line P3g also serves as a
timer output (TOUT) through which T, T, or the
internal clock can be output.

138

/0 PORTS

The .Z86C21 has 32 lines dedicated to input and output.
These lines are grouped into four ports of eight lines each

and are configurable as input, output or address/data. .

Under software control, the ports can be programmed to
provide address outputs, timing, status signals, serial I/O,
and parallel 1/0O with or without handshake. All ports have
active pull-ups and pull-downs compatible with TTL loads.

Port 1 can be programmed as a byte I/O port or as an
address/data port for interfacing external memory. When
used as an I/O port, Port 1 may be placed under handshake
control. In this configuration, Port 3 lines P33 and P34 are
used as the handshake controls RDY; and DAV4 (Ready
and Data Available).)

Memory locations greater than 8192 are referenced
through Port 1. To interface external memory, Port 1 must be
programmed for the multiplexed Address/Data mode. If
more than 256 external locations are required, Port 0 must
output the additional lines.

Port 1 can be placed in the high-impedance state along with
Port 0, AS, DS and RW, allowing the Z86C21 to share
common resources in multiprocessor and DMA
applications. Data transfers can be controlled by assigning
P33 as a Bus Acknowledge input, and P34 as a Bus Request
output.

PORT 1
(110 OR AD,-AD)

HANDSHAKE CONTROLS
=~ } bavs ano Rov;
(P3, AND P3,)

Z86C21
Mcu

Figure 9a. Port 1

Port 0 can be programmed as a nibble /O port, or as an
address port for intérfacing external memory. When used as
an I/O port, Port 0 may be placed under handshake control.
In this configuration, Port 3 lines P3, and P35 are used as
the handshake controls DAV and RDY,. Handshake signal
assignment is dictated by the 1/O direction of the upper
nibble P04-P0O7.

For external memory references, Port 0 can provide address
bits Ag-A11 (lower nibble) or Ag-A15 (lower and upper nibble)
depending on the required address space. If the address
range requires 12 bits or less, the upper nibble of Port 0 can
be programmed independently as I/O while the lower nibble

is used for addressing. When Port O nibbles are defined as
address bits, they can be set to the high-impedance state
along with Port 1 and the control signals AS, DS and R/W.

Port 2 bits can be programmed independently as input or .

output. This port is always available for I/O operations. In
addition, Port 2 can be configured to provide open-drain
outputs. .

Like -Ports 0 and 1, Port 2 may also be placed under
handshake control. In this configuration, Port 3 lines P34
and P3g are used as the handshake controls lines DAV, and
RDY;. The handshake signal assignment for Port 3 lines P34
and P3g is dictated by the direction (input or output) assigned
to bit 7 of Port 2.

@ PORT O
286C21 WOOR Ayhrg
Mcu
- HANDSHAKE CONTROLS
> DAV(AND RDY
} P3; nAND P3g) °
Figure 9b. Port 0
|-
|-
-
|-
l—> PORT 2(1/0)
Z86C21
MCU |«
|-
| «—— | HANDSHAKE CONTROLS
DAV, AND RDY:
> }(ps. 2Am:r P3g) z.

Figure Sc. Port 2

Port 3 lines can be configured as I/O or control lines. In either
case, the direction of the eight lines is fixed as four input
(P3¢-P33) and four output (P34-P37). For serial I/0, lines P3g
and P37 are programmed as serial in and serial out
respectively.

Port 3 can also provide the following control functions:
handshake for Ports 0, 1 and 2 (DAV and RDY); four external
interrupt request signals (IRQg-IRQ3); timer input and output

signals (Tn and Toyt) and Data Memory Select (DM).

it

O*O'N:’CONTROL)
—» (¢
zs6c21 >

—

MCuU

S

Figure 9d. Port 3

139

-

INTERRUPTS

The Z86C21 allows six different interrupts from eight sources:
the four Port 3 lines P3y-P33, Serial In, Serial Out, and the two
counter/timers. These interrupts are both maskable and
prioritized. The Interrupt Mask register globally or individually
enables or disables the six interrupt requests. When more
than one interrupt is pending, priorities are resolved by a
programmable priority encoder that is controlled by the
Interrupt Priority register.

All Z86C21 interrupts are vectored through locations in
program memory. When an interrupt request is granted,
an interrupt machine cycle is entered. This disables all

subsequent interrupts, saves the Program Counter and
status flags, and branches to the program memory
vector location reserved for that interrupt. This memory
location and the next byte contain the 16—bit address

of the interrupt service routine. for that particular
interrupt request. i
Polled .interrupt systems are also supported. To

accommodate a polled structure, any or all of the interrupt
inputs can be masked and the Interrupt Request register
polled to determine which of the interrupt requests needs
service.

CLOCK

The on-chip oscillator has a high-gain, parallel-resonant
amplifier for connection to a crystal or to any suitable external
clock source (XTAL1 = Input, XTAL2 = Output).

The crystal source is connected across XTAL1 and XTAL2,
using the recommended capacitors (C1 < 15 pf) from each

pinto ground. The specifications for the crystal are as follows:
m AT cut, parallel resonant
m Fundamental type, 16 MHz maximum

m Series resistance, Rg < 100 Q

GENERAL DESCRIPTION

The Z86C12 development device allows users to proto-
type a system with an actual hardware device and to
develop the code. This code is eventually mask-pro-
grammed into the on-chip ROM for any of the 86Cxx
devices (except the 86C91). Development devices are
also useful in emulator appli-cations where the final sys-
tem configura-tion -- memory configuration, I/O, interr- .
uptinputs, etc. -- are unknown.The Z86C12 development
deviceisidenticaltoits equivalent Z86C21microcomputer
with the following exceptions:

= No internal ROM is provided, so' that codeis
developedin off-chip memory. Five "size” inputs configure
the memory boundaries.

= The nomally internal ROMvaddress and data lines are
buffered and brought out to external pins to interface with
the external memory.

= Control lines (/MAS and /MDS) are added to interface
with external program memory.

The Timing and Control, I/O ports, and clock pins on
the Z86C12 are identical in function to those on the
86C21. This section covers those pins that do not
appear on the Z86C21 - 8K ROM device. The pin
functions and pin assignments are shown on figure
00.

Z86C12 PIN DESCRIPTION

DO - D7 (Inputs, TTL compatible) Data bus.
These 8 lines provide the input data bus to access
external memory emulating on the on-chip ROM.
During read cycles in the internal memory space the
data on these lines is latched in just prior to the rise of
the /MDS data strobe.

A0 - A15 (Outpus TTL compatible) Address

‘bus. During T1 these lines output the current memory

address. All addresses, whether internal or external,
. are output. ')

/MAS (Output, TTL compatible) Memory
Address Strobe. This line is active during every T1
cycle. The rising edge of this signal may be used to
latch the current memory address on the lines AO -
A15. This line is always valid; it is not tri-stated when
/AS is tri-stated.

/MDS (Output, TTL compatible) Memory Data
Strobe. This is a timing signal used to enable the -
external memory to emulate the on-chip ROM. It is
active only during accesses to the on-chip ROM
memory space, as selected by the configuration of the
SIZEn pins.

/SCLK (Output, TTL compatibie)
Clock. This line is teh internal system clock.

System

/SYNC (Output TTL, compatible) Sync signal.
This signal indicates the last clock cycle of the currently
executing instruction.

/IACK (Output TTL, compatible) Interrupt
Acknow-ledge. This output, when low, indicates
that the Z86C12 is an interrupt cycle.

140

/SIZEO, /SIZE1, /SIZE2, /SIZE3, SIZE4
(Inputs, TTL compatible). The /SIZEn lines
control the emulation mode of the 86C12. Note that
/SIZEO - /SIZE3 are active low, while SIZE4 is active
high. The functions are defined as shown in figure 00.
The 86C12 should be in RESET when the state of
these lines are changed.

NOTE: :
The SIZE pins may be configured to make the
memory control signals (/MAS, /MDS, R/W,
/AS, and /DS) look like the Z86C91 ROMIless
device, however on power-up or reset ports
0 and 1 are configured as inputs, rather than
A15 - A8 and AD7 - ADO, respectively.

Table 1. Z86C12 Pin Assignments

NAME . NAME PIN NAME PIN NAME PIN
IAS B2 A8 U5 P07 U1 P36 A7
DS ca A9 K4 PiI0 G8 P37 A5
IMAS E1 Do H3 P11 G9 RW Al
/MDS G3 D1 K2 P12 G10 SCLK G2
/RESET B3 D2 J3 P13 F8 SIZE4 F10
/SIZEG A3 D3 K3 P14 D10 vcC A4
/SIZE1 cs5 D4 H8 P15 C10 VCC1 Bé6
/SIZE2 A6 D5 J10 P16 B10 - VCC2 F9
/SIZE3 Cé6 D6 H9 P17 E9 VSS F3
ISYNC F1 D7 Hi0 P20 C9 VSS1 E2
A0 J9 IACK F2 P21 A10 . VSS2 H6
Al H7 , NC g2 P22 B9 'VSS3 ES8
A10 J4 NC C3 . P23 C8 Xtali B5
A1 H4 - NC D8 P24 A9 Xtal2 A2
A2 K9 NC H2 P25 B8 A

A13 K7 NC Ki P26 A8

A4 K5 Po0O C1 P27 - C7

A5 H5 PO1 D3 P30 B4

A2 K10 P02 D2 P31 B7

A3 Js P03 Dt P32 C2

Ad J7 P04 E3 P33 D9

A5 K6 P05 G1 P34 E10

A6 J6 P06 H1 P35 B1

A7 K8 ‘

Table 2. Memory Size Configuration

SIZE4| /SIZE3 | /SIZE2 | /SIZE1| /SIZEO | MEMORY

1 . ROMless
0 2K ROM
1 4K ROM
1 8K ROM
16K ROM
32K ROM -

- 0000 O
-

- k-
O o Y I T
-k -k O =

-

x « T g mm o o w >
L]
.
.
.
.
.

TOP VIEW

141

TIMING —

AND = -
CONTROL <—
]
-
PORT 0 <>

(NIBBLE e
PROGRAM- <>
MABLE) /0 <@—>»

OR A8-A15 >
P>

- >
PORT 1 P

(BYTE PRO- —>
GRAMMABLE) «——>»

/0 OR -]
ADO-AD7 -
-
-
——
——
PROGRAM ———
MEMORY E—
DATA IN- —_—
PUTS]
E—
——
—
ROM SIZE —_—
INPUTS —
—
—
<]
STATUS AND <€—
MEMORY CON- <¢————
TROL |
-
-
GROUND .
—_—

/RESET +5V
RW GND
/DS
Xtal1
P00 Xtal2
PO1
P02 P20
P03 P21
P04 P22
P05 P23
P06 P24
PO7 P25
P26
P10 P27
P11
P12 P30
P13 P31
P14 P32
P15 P33
P16 P34
P17 P35
P36
Do P37
D1 :
D2 A0
D3 Al
D4 A2
DS A3
D6 A4
D7 AS
A6
/SIZEO A7
ISIZE1 A8
/SIZE2 A9
ISIZE3 A10
SIZE4 ANl
A12
NACK A13
IMAS A14
/MDS A15
ISYNC
SCLK VCC |
. vCCt
VSss vcc2
VSS1
VSS2
286C12
Z86C12 Pin Functions

CLOCK

PORT 2
(BIT PRO-
GRAMMABLE)

PORT 3
SERIAL AND
PARALLEL
/0 CON-
TROL

PROGRAM
MEMORY
ADDRESS
OUTPUTS

POWER

142

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to
describe the addressing modes and instruction operations
as shown in the instruction summary.

Assignment of a value is indicated by the symbol “<”. For

example,
dst < dst + src

IRR |nacll:r:g:jrr:g§ter pair or indirect working-register i yicates that the source data is added to the destination
Irr ﬁ] direct working-register pair only data and the resulf is stored in the destination Inocation. The
X Indexed address notation “addr(n)” is used to refer to bit “n” of a given
DA Direct address location. For example, .
RA Relative address dst(7)
:;VI :;:egi:?;ra:)er working-register address refers to bit 7 of the destination operand.
r Working-register address only * Flags. Control Register R252 contains the followmg Six
IR Indirect-register or indirect working-register flags:
address
Ir Indi(ect wor_king-regi§ter address oply g g:rr;yﬂgzg
RR Register pair or working register pair address ‘ s Sign flag
Symbols. The following symbols are used in describing the v Overflow flag
instruction set. D Decimal-adjust flag
dst Destination location or contents H Half-carry flag
src Source location or contents Affected flags are indicated by:
cc Condition code (see !ist) 0 Cleared to z6ro
@ Indirect a}ddress prefix . 1 Set o one
SP Stack pointer (control registers 254-255) . s |
PC Program counter et or cleared aocordung to operation
FLAGS Flag register (control register 252) ; gggz:ﬁfg
RP Register pointer (control register 253)
IMR Interrupt mask register (control register 251)
CONDITION CODES
Value Mnemonic Meaning Flags Set
1000 Always true —
0111 c Carry C=1
1111 . NC No carry C=0
0110 Z Zero Z=1
1110 NZ Not zero Z=0
1101 PL - Plus S=0
0101) Ml Minus S=1
0100 ov Overflow V=1
1100 NOV No overflow V=0
0110 EQ Equal Z=1
1110 : NE Not equal Z=0
1001 GE Greater than or equal (SXORV) =0
0001 LT Lessthan “ (SXORV) =1
1010 GT Greater than [ZOR(SXORV)] =0
0010 LE Less than or equal [ZOR(SXORV)] = 1
1111 UGE Unsigned greater than or equal C=0
o111 uLT Unsigned less than C=1
1011 UGT Unsigned greater than (C=0ANDZ=0)=1
0011 ULE Unsigned less than or equal (CORZ) =1
0000 Never true —

143

INSTRUCTION FORMATS

oPC

CCF, DI, El, IRET, NOP,

RCF, RET, SCF

INCr

One—Byte Instructions

gé%ﬁﬁh’cofﬁg\%cb op OPC_| MODE ADC, ADD, AND, CP,
PUSH, RL, RLC, RR, sre OR[1110] s] #g,u?;,ms’g(%nsua,
RRC, SRA, SWAP dst OR[1110] dst |
JP, CALL (Indirect)
opPC_| MODE ADC, ADD, AND, CP,
dst or [1 0o] dst] LD,OR SBC,SUB,
ShP VALUE T
MODE | OPC : LD
src OR |1 11 0| SIc I
ég,cba?géé,"snﬁa, dst oR[1110] dst |
TCM, TM, XOR i
LD, LDE, LDEI, :‘°°E opc Lo
LDC, LDC! stisre | x
ADDRESS
Idsllsrc OPC ' Lo
[_sreidst | OR [1 110 src | cc] opc *
4 DA,
DA,
[ast | opc] LD
[vale | ohG el
DA
[asucc | opc | DJNZ, JR DAtLl
T
STOP/HALT
Two—Byte Instructions Three—Byte Instructions
INSTRUCTION SUMMARY
Addr Mode Opcode Flags Affected AddrMode Opcode Flags Affected
Instruction Byte —— Instruction Byte ——
and Operation dst src (Hex) CZSVDH and Operation dst src (Hex) C Z S VDH
ADC dist,src (Note 1) 10 % %% %0 % JPcodst DA D ——————
dst<dst + src + C if ccistrue c=0-F
ADD dst,src (Note 1) (o] m] * ke * %k 0 % PC—dst IRR 30
dst < dst + src JRcc,dst RA B -
AND dstsrc (Note) 50 — w % 0_ _ lcoistue c=0-F
dst + dst AND src PC < PC + ot
- Range: +127, —128
CALL dst DA D6 @ —————— B
SP—SP -2 IRR D4 LD dstsre e e
@SP < PC; PC <« dst R ‘ 9
CCF EF* #————— r=0-F
C<NOTC r X Cc7
CLRdst R B0 ———— —— >r< v E;
.dst< 0 IR B1 . Ir ; F3
COM dst - R 60 — % % 0 — — R R E4
dst < NOT dst IR 61 R IR ES5 ,
- R IM E6
CP dst,src (Note 1‘) AO * k Kk ok — — R M E7
dst — src R R F5

144

INSTRUCTION SUMMARY (Continued)

Addr Mode Opcode Flags Affected AddrMode Opcode Flags Affected
Instruction —— Byte —m Instruction Byte ——m
and Operation dst src (Hexy CZSVDH and Operation dst src (Hex) C Z S VDH
DA dst R 40 * % * X — — LDC dst,src r Irr c2 @ ——
dst < DA dst IR 41 dst < src Irr r D2
DEC dst R 00 -~ — % % %—— LDCldstsrc Irr C3 - —————
dst<dst - 1 IR 01 dst < src Irr Ir D3
DECW dst RR 80 ok koW — — rer+1;mr<r+1
dst<dst - 1 IR 81 LDE dst,src r lrr 82 @ —————
DI dst < src o r 92
IMR (7) <0 F - LDEI dst,src Ir e 83 ——————
DJNZ rdst RA m —_ _ ___ dst < src Irr Ir 93
rer+ 1mrermr+1
rer-1 r=0-F
ifr#0 NOP FF - = — — — —
PC < P! t
Range: +$2; d_s128 OR dst,src (Note 1) 40] — % * 0 — —
. ’ dst < dst OR src
=« |
IMR (7) < 1 F POP dst R 50 @@ — — — — — _
dst < @SP; IR 51
HALT 7F SP<SP + 1
INC dst r rE — % k Kk — — PUSH sic R 70 @ @—-—————
dst < dst + 1 r=0-F SP <SP - 1, @SP < src IR 71
' ['; g? RCF CF 0 —————
i C<+0
INCW dst RR A0 — - —
dst«—ds&; +1 IR Al e RET AF - - -
PC <~ @SP;SP <SP + 2
IRET BF EEEEE
- Lap < RL dst [——] R 90 * Kk Kk k — —
FLAGS — @SP; PSP + 1 mo o
PC <~ @SP; SP <SP + 2;IMR (7) < 1
RLCdstm R 10 * Kk kX — — TM dst,src (Note 1) 70 — % * 0 — —
IR 11 dst AND src -
RR dst H R EO - % % % * — — XOR dst,src (Note 1) BO. — % % 0 — —
] g) E1 dst < dst XOR src
RRC dst m R Co * k Kk kK — — NOTE: These instructions have an identical set of addressing modes,
IR C1 which are encoded for brevity. The first opcode nibble is found in
the instruction set table above. The second nibble is expressed
SBC dst,src (Note 1) 30 * k k k 1 * symbolically by a OJ in this table, and its value is found in the
dst - dst<src<C . following table to the left of the applicable addressing mode pair.
For example, the opcode of an ADC instruction using the
gCF DF 1= addressing modes r (destination) and Ir (source) is 13.
-1
SRA st [R DO % % %0 —— Addr Mode Lower
(57— R D1 dst src Opcode Nibble
SRP src Im [3 -] ;
RP < src
r Ir
STOP 6F
R. R
SUB dst,src (Note 1) 20 * % k x 1 *
dst < dst < src ‘ R IR
‘SWAP dist R FOO X % % X —— R ™ (6]
— 5 IR F1 R M
TCM dst,src (Note 1) (s]m] — % % 0 — —
(NOT dst) AND src

145

REGISTERS

R240 SI0

- SERIAL I/0 REGISTER

(FOH; Read/Write)

[0 [04]0sou]0s[0,] 0, [0o]

|

R241 TMR
TIMER MODE REGISTE
(F1H; Read/Write)

SERIAL DATA (D, = LSB)

[]

Tour MODES Lo NO FUNCTION
o u3ED = 00 1=L0ADT,
Pon s ‘,’; - 0 = DISABLE T, COUNT
INTERNAL CLOCK OUT = 11 1 = ENABLE T, COUNT
oes 0 = NO FUNCTION
EXTERNAL CLOCK mPUr » . 1=10ADT,
GATE INPUT = 0‘ 0 = DISABLE T, COUNT
A INPUT = 30 1 = ENABLE T, COUNT

TRIGGE
(NON-RETRIGGERABLE)

TRIGGER INPUT = 11
(RETRIGGERABLE)

| R242T1 ' .
COUNTER TIMER 1 REGISTER
(F2H; Read/Write)

[0, Jos]0, o, [0, 0,0 o]
I . T, INITIAL VALUE (WHEN WRITTEN)
(RANGE 1-256 DECIMAL 01-00 HEX)

T, CURRENT VALUE (WHEN READ)

R243 PRE1
PRESCALER 1 REGISTER
(F3H; Write Only)

L COUNT MODE
0 = T, SINGLE-PASS
1 =T, MODULO-N

CLOCK SOURCE

1= T, INTER|
0=T, EX’I‘ERNAL TIMING INPUT
(Tin) M

PRESCALER MODULO
(RANGE: 1-64 DECIMAL
01-00 HEX)

R244 TO
COUNTER/TIMER 0 REGISTER
(F4n; Reaq/Write)

l T, INITIAL VALUE (WHEN WRITTEN)
: (RANGE: 1-256 DECIMAL 01-00 HEX)

To CURRENT VALUE (WHEN READ)

R245 PREO
PRESCALER 0 REGISTER
(F5H; Write Only)

I_coum MODE
0 = T, SINGLE-PASS
1 = T, MODULO-N

RESERVED

PRESCALER MODULO
(RANGE: 1-64 DECIMAL
01-00 HEX)

R246 P2M
PORT 2 MODE REGISTER
(F64; Write Only)

[or]0s o To. o[o. [0 Too] ,
! P2,-P2, /0 DEFINITION
0 DEFINES BIT AS OUTPUT

1 DEFINES BIT AS INPUT

R247 P3M
PORT 3 MODE REGISTER
(F7H; Write Only)

CACACACACACACAES)
‘ |_0 PORT 2 PULL-UPS OPEN DRAIN
1 PORT 2 PULL-UPS ACTIVE

RESERVED
0ps2 - INPUT P35 = OUTPUT
P32 = DAVO/RDYO P35 = RDYOIDAVO

00 P33 = INPUT P34 = OUTPUT
‘,’;}Psa = INPUT P34 = DM .
11 P33 = DAVI/RDY1 P34 = RDY1/DAVA

0P31 = INPUT (T,) P36 = OUTPUT (Toyr)

1P31 = ﬁszmnvz P36 = RDY2IDAV2

0P30 = IN P37 = OUTPUT

$P30 C SERIALIN Po7 - SERIAL ouT

0 PARITY OFF '

1 PARITY ON

Figure 11. Control hegisters

146

REGISTERS (Continued)

‘R248 PO1M
PORT 0 AND 1 MODE REGISTER
(F8H; Write Only)

POy-PO; MODE

00 = OUTPUT

01 = INPUT

1X = Ag-Ay
STACK SELECTION

0=

1 = INTERNAL
P1,-P1; MODE

00 = BYTE OUTPUT

01 = BYTE INPUT

10 = AD,-AD,

11 = HIGH-IMPEDANCE ADg-AD7,
RS, DS, RIW, Ag-Aq1, Arz-Ats
IF SELECTED

P0,-P0; MODE
OUTPUT = 00
INPUT = 01
Ar-Ags = 1X
EXTERNAL MEMORY TIMING
NORMAL = 0
EXTENDED = 1

R249 IPR
INTERRUPT PRIORITY REGISTER
(F9n; Write Only)

BN
RESERVED j— ' l J INTERRUPT GROUP PRIORITY
RESERVED = 000
IRQ3, IRQ5 PRIORITY (GROUP A) l 2=

IRQS > IRQ3
l = IRQ3 > IRQS

IRQO, IRQ2 PRIORITY (GROUP B)
0 = IRQ2 > IRQO

DVOPPPO

1 = IRQO > IRQ2

IRQ1, IRQ4 PRIORlTV (GROUP C)
Q1 > IRQ4
1 = lﬁQ‘ > IRQ1

R250 IRQ
INTERRUPT REQUEST REGISTER
(FAH; Read/Write)

| SN A CY A CY
R —

RESERVED - IRQO = P3z INPUT (Do = IRQO)
IRQ1 = P33 INPUT

IRQ2 = P3; INPUT

IRQ3 = P3q INPUT, SERIAL INPUT
IRQ4 = To, SERIAL OUTPUT

IR

=T

R251 IMR
INTERRUPT MASK REGISTER
(FBy; Read/Write)

L | 1 ENABLES IRQ0-IRQ5
(Do = IRQO)

1 ENABLES TS

Figure 11. Control Registers (Continued)

REGISTER
POINTER

R252 FLAGS
FLAG REGISTER
(FCH; Read/Write)

USER FLAG F1

USER FLAG F2

HALF CARRY FLAG
-DECIMAL ADJUST FLAG
OVERFLOW FLAG

SIGN FLAG

ZERO FLAG

CARRY FLAG

e

R253 RP
REGISTER POINTER
(FDH; Read/Write)

|

Ta.

ﬁ

DON'T CARE

R254 SPH
STACK POINTER
(FEH; Read/Write)

CREkhMER
I

STACK POINTER UPPER
BYTE (SPg-SPys)

R255 SPL
STACK POINTER
(FFH; Read/Write)

[

STACK POINTER LOWER
BYTE (SPo-SP;)

147

OPCODE MAP

Lower Nibble (Hex)
0 1 2 3 4 5 6 7 8 9 A B c D . E F
65 65 6.5 6.5 10.5 105 10.5 10.5 6.5 6.5 12/10.5 | 12/10.0 6.5 12/10.0 6.5
0 DEC DEC ADD ADD ADD ADD ADD ADD LD LD DJNZ JR LD JP INC
Ry IRy .o ry.drp RoRy | IR2.Ry | RyIM | IRy.IM | r1.Rp r.Ry ry RA | cc.RA ri.M cc.DA n
6.5 ' 65 6.5 6.5 10.5 10.5 105 |. 105
1 RLC RLC ADC | ADC ADC ADC | ADC ADC -
Ry IRy r.re ry.lrp Ro.Ry | IR2Ry | RyIM | IRy.IM
6.5 6.5 6.5 6.5 10,5 10.5 10,5 10,5
2 INC INC sus sus sus suB sus suB
Ry IRy r1ro | ridro | RoRy | IR2Ry | RydM | IRyIM
8.0 6.1 6.5 6.5 10.5 10.5 10.5 10,5
3 JP SRP SBC SBC SBC SBC SBC SBC
IRRy |. M rr2 | ridre | RaRy | IR2Ry | RiM | IR1IM
85 85 6.5 6.5 10,5 10,5 105 10,5
4 DA DA OR OR OR OR OR OR
Ry R4 r.ro rq.lrp R2.Ry | IR2.Ry | RyIM | IRy IM
105 10.5 6.5 6.5 105 10,5 10,5 10,5
5 POP POP AND AND AND AND AND AND
Ry IRy r2 | rdre | RaRy [IRaRy | RiIM | IRyIM
6.5 6.5 6.5 6.5 10,5 10.5 10.5 10,5 6.0
6 COM | COM | TCM TCM TCM | TCM TCM TCM STOP
Ry IRy rir2 | ridra | RaRy | IRa.Ry | RedM | IRyIM
-
§ 10/12,1 | 12/141 6.5 6.5 10,5 10.5 105 10,5 7.0
b 7 PUSH | PUSH ™ ™ ™ ™ ™ ™ HALT
2 Ro IRo rao | rdra | RaRy | IR2Ry | RyIM | IRyIM
z 105 | 105 | 120 | 180 . 6.1
§ 8 | DECW | DECW | LDE LDEI DI
- RR4 IRy rydrrp | drqldrrp
6.5 6.5 12.0 18,0) 6.1
9 RL RL LDE LDEI El
Ry IRy roldrry | Irolrry
105 10.5 6.5 6.5 10.5 10,5 105 10,5 14.0
A INCW | INCW cP cP cpP CcP cP cP RET
RRq IRy rir2 | ridra | RoRy | IRRy | RyM | IRyIM
6.5 6.5 6.5 6.5 10,5 10,5 105 105 | 16.0
B CLR CLR XOR XOR XOR XOR XOR XOR IRET
Ry IRy r1r2 | ridra | RaRy | IR2Ry | RyM | IRyIM
6.5 6.5 12,0 18.0 105 6.5
c RRC RRC LDC LDCI LD RCF
Ry IRy ryldrrp | rqlrra r1.x.Rp
6.5 6.5 12,0 18,0 20,0 20,0 105 6.5
D SRA SRA LbC LDCI | CALL* CALL LD SCF
Ry IRy ra.drry | g lrrq IRR¢ ‘DA . x.Ry
6.5 6.5 6.5 10.5 10.5 10.5 10.5 6.5
E RR RR LD LD LD LD LD CCF
Ry IRy 11JR2 | Ra.Ry | IR2Ry | RiIM ['IRy.IM
85 85) 6.5 10,5 © 6.0
F | SWAP | SWAP LD LD NOP
Ry IRy Iry.r2 R2.IR1 \ \ Y "y Y Y Y
| ~ -
— AN v N——
2 3 2 3
Bytes per Instruction
LOWER
OPCODE
NIBBLE N
EXECUTION PIPELINE Legend:
CYCLES 4 ’ R = 8-bitaddress
A ' r = 4-bit address
UPPER 10,5 Ry orrq = Dstaddress
OPCODE——3 A| CP <——MNEMONIC Rz or r = Src address
NIBBLE RoR
2.1 Sequence:
Opcode, First Qperand, Second Operand
FIRST SECOND
OPERAND OPERAND NOTE: The blank areas are not defined.
*2-byte instruction; fetch cycle appears as a 3-byte instruction

148

ABSOLUTE MAXIMUM RATINGS

Voltages on all pins with respect‘

toGND —-0.3Vto +7.0V
Operating Ambient

Temperature See Ordering Information
Storage Temperature -65°Cto +150°C

Stresses greater than those listed under Absolute Maximum Ratings may
cause permanent damage to the device. This is a stress rating only;
operation' of the device at any condition above those indicated in the
operational sections of these specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect
device reliability.

STANDARD TEST CONDITIONS

The DC characteristics listed below apply for the following
standard test conditions, unless otherwise noted. All
voltages are referenced to GND. Positive current flows into
the referenced pin. ‘

Standard conditions are as follows:
m +45 < Vcec <+ 55V
m GND=0V .

B0 C<Tp <+70 C for S (Standard temperature)

+5V

21K

FROM OUTPUT
UNDER TEST

1sops:[

Figure 12. Test Load 1

DC CHARACTERISTICS
Symbol Parameter Min Typ Max Unit Condition
VeH Clock Input High Voltage 3.8 Vee \' Driven by External Clock Generator
VoL Clock Input Low Voltage -03 0.8 \% Driven by External Clock Generator
ViH Input High Voltage 2.0 Vee ° V
ViL Input Low Voltage -0.3 0.8 \
V&H Reset Input High Voltage 3.8 Vee %
VRL Reset Input Low Voltage -03 0.8 Vv
VoH Output High Voltage 24 \ loH = =250 pA
VOH Output High Voltage Vg -100mVv \ Icc = -100pA
VoL Output Low Voltage 0.4 " loL = +2.0mA
he Input Leakage -10 10 WA OV VN + 5.25V
oL Output Leakage -10 10 uA OV VNS + 5.25V
IR Reset Input Current -50 uA Vee = +5.25V, VR = OV
lcc Supply Current mA All outputs and I/O pins floating, 12 MHz
lccy Standby Current 5 mA Halt Mode
lccy Standby Current 10 uA Stop Mode

Icc?2 requires loading TMR (%F1) with any value prior to STOP execution.

Use the sequence:
LD TMR, #00
NOP
STOP

149

PORT

o

g

PORT 1

DS
(READ)

PORT 1

DS
(WRITE)

X X
@ paCas
X
X acar) e { worm |)
—\T__JV ® ‘@’T\._.__
~—®O— <] | ® .
’
J Ag-A7 Do-D7 OUT
o o N naCaa kI
N : s

Figure 13. External I/0 or Memory Read/Write

AC CHARACTERISTICS
External I/0 or Memory Read and Write Timing

12MHz 16MHz 20MHz

Number Symbol Parameter Min Max Min Max Min Max Units Notes
1 TdA(AS) Address Valid to AS tDelay 35 25 20 ns 2,34
2 TdAS(A) AStto Address Float Delay 45 35 25 ns 2,34
3 TdAS(DR) AStto Read Data Req'd Valid 250 180 150 ns 1,2,3,4
4 TwAS AS Low Width - 55 40 30 ns 2,34
5 TdAZ(DS) Address Float to DS 0 0 0 ns
6 TwDSR DS (Read) Low Width 185 - 135 105 ns 1,2,3,4
7 TwDSW DS (Write) Low Width 110 80 65 ns 1,2,3,4
8 TdDSR(DR) DStto Read Data Req'd Valid 130 75 55 ns 1,234
9 ThDR(DS) Read Data to DS tHold Time 0 0 0 ns 2,34
10 TdDS(A) DStto Address Active Delay 65 50 40 ns 2,34
11 TdDS(AS) DStto ASiDelay 45 35 25 ns 234
12 TdR/W(AS) R/W Valid to AStDelay 33 25 20 ns 2,34
13 TdDS(RW) DStto R/W Not Valid 50 35 25 ns 2,34
14 TdDW(DSW) Write Data Valid to DSi(Write) Delay 35 25 20 ns 2,34
15 TdDS(DW) DStto Write Data Not Valid Delay 55 35 25 ns 2,34
16 TdA(DR) Address Valid to Read Data Req'd Valid 310 230 . 180 ns 1,234
17 TdAS(DS) ASttoDSiDelay 65 45 35 ns 2,34
18 TdDI(DS) Data Input Setup to DSt 75 60 50 ns 1,234
19 TdDM(AS) DM Valid to AS{Delay 50 30 20 ns 2,34
Notes
+ Test Load 1

1. When using extended memory timing add 2TpC

2. Timing numbers given are for minimum TpC

3. See clock cycle dependent characteristics table

4. 20 MHz timing is preliminary and subject to change

° All timing references use 2.0V for a
logic “1” and 0.8V for a logic “0”

150

AC CHARACTERISTICS
Additional Timing Table

12 MHz 16 MHz 20 MHz

Number Symbol Parameter Min Max Min Max Min Max Notes

1 TpC Input Clock Period 83 1000 625 1000 50 1000 1

2 TrC,TfC Clock Input Rise & Fall Times 15 10 10 1

3 TwC Input Clock Width 37 21 . 15 1

4 TwTinL Timer Input Low Width 75 75 75 2

5 TwTinH Timer Input High Width 3TpC 3TpC 3TpC 2

6 TpTin Timer Input Period 8TpC: 8TpC 8TpC 2

7 TrTin, TfTin * Timer Input Rise and Fall Times 100 100 100 2

8A TwiL Interrupt Request Input Low Time 70 70 70 24
_8B TwiL Interrupt Request Input Low Time 3TpC 3TpC 3TpC 25

9 TwiH Interrupt Request Input High Time 3TpC ~ 3TpC 3TpC 2,3
Notes:

1. Clock timing references use 3.8 V for a logic “1” and 0.8 V for a logic “0”
2. Timing references use 2.0 V for a logic “1” and 0.8 V for a logic “0"
3. Interrupt references request via Port 3
4. Interrupt request via Port 3 (P3, - P3,)
5. Interrupt request via P30
6. 20 MHz timing is preliminary and subject to chang
Units in nanoseconds (ns)

4.
DATAIN X DATA IN VALID X . NEXT DATA IN VALID

I
TN\ ey

RDY
DALAYED RDY
N— 7
Figure 15a. Input Handshake Timing
DATA OUT , - — - — = — — —
x DATA OUT VALID : NEXT DATA OUT VALID

” N\ S ey I
N\ Za: o

Figure 15b. Output Handshake Timing

151

Do 21 31 .
P10 P2 | A0 . |11 DO/
FDL—22pyg Pz?fg ﬁm ol FEREY
. _Dg_zigig Egg 34 ua_v_:g E D2
D425 py P24 |82 I gj 16 D4
“D-L—&{Pls B¢ pas X A5 50, O 17 ps)
-D6_27p1g [- pag I 264106 O olie e
28 p17 5 p27 28 ‘ s L] S
o AT
40 _13pg U2 pgo 2la0 o
A1 lsg 23
___AZ__LS_}}:gé - ;g; 2 EPM . A Q2
— A3 16/p4g 3 pag3 |80__VEP A12 o
M 17 &= 129 27
P04 © P34 ==X greM E=
———42_18pos @ pas HIX 1K Ohm 20
———A6 _19p5s DN pge [MOX —— AN s
—A7 20 pgy P37 H-X 1K Ohm 22 vee
X2 R/W vee H—vee AW ol VPP
9
><—eCA_s GND GND
X}Cﬁ .))gALl 2 _l
rCRESET AL2 puy
-
1K Ohm 10K Ohm : _!_
0 EXTWE%NAL 0.01uf .
OWE
T°““’ Voir SUPPLY =
RECOMMENDED VOLTAGE: 12.5Volts

Z86E21 Z8 OTP Programming Adapter

CLOCK

Figure 14. Additional Timing

- 152

AC CHARACTERISTICS

Handshake Timing
: 12,16,20 MHz

Number Symbol Parameter Min Max Notes (Data Direction)
1 TsDI(DAV) Data In Setup Time 0 In
2 ThDI(DAV) Data In Hold Time 145 In
3 TwDAV Data Available Width 110 In

4 TdDAV(RDY) DAVito RDY {Delay 115 In

5 * TdDAV(RDY) DAV tto RDYtDelay 115 In

6 TdRDY(DAV) RDYtto DAViDelay 0 In
7 TdDO(DAV) Data Out to DAViDelay TpC Out
8 TdDAVJ(RDY) DAVito RDY{Delay 0 Out
9 TdRDY(DAV) RDYito DAV tDelay 115 Out
10 TwRDY RDY Width 110 Out
1" TdRDY(DAV) RDYtto DAVDelay 115 Out

CLOCK DEPENDENT AC CHARACTERISTICS
External I/O or Memory Read and Write Timing

Number ‘Symbol Equation

1 TdA(AS) 0.4TpC+0.32
2 TdAS(A) 0.59TpC-3.26
3 TdAS(DR) 2.83TpC+6.14
4 TwAS 0.66TpC-1.65
6 TwDSR 2.33TpC-10.56
7 TwDSW 1.27TpC+1.67
8 TdDSR(DR) 1.97TpC-42.5
10 TdDS(A) 0.8TpC :
" TdDS(AS) 0.59TpC-3.14
12 TdR/W(AS) 0.4TpC

13 TdDS(R/W) 0.8TpC-15

14 TdDW(DSW) 0.4TpC

15 TdDS(DW) 0.88TpC-19
16 TdA(DR) 4TpC-20

17 TdAS(DS) 0.91TpC-10.7
18 TsDI(DS) 0.8TpC-10

19 TdDM(AS) 0.9TpC-26.3

153

154

May 1989

PRELIMINARY PRODUCT SPECIFICATION

286C27 DTC,

286C97 DTC
DiGgITaL TELEVISION CONTROLLERS

FEATURES

m CMOS technology operating over a 3 to 6 volt power
supply range. s

® Complete single-chip microcomputer:

8 bit Z8 core processor with 256 byte register-file,
Watch Dog Timer, Power On Reset, Brown-out

protection, 43 1/O lines and 2 channel Counter/

Timer.
8K byte internal program ROM (Z86C27) or 64K
byte external program/data memory interface
(Z86C91).

m On-Screen Display video controller:

20 character by 6 row screen format

12 by 15 pixel character cell

Mask programmable 128 character typeface with
English, Korean, Chinese and Japanese ROM-less
versions available.

Programmable color attributes including row
character, row background/fringe, frame
background, and bar graph color change.

Programmable display position and character size
control.

B 13 Pulse Width Modulator outputs for digital to analog
conversion - require a simple external RC low pass
filter.

12 volt open drain outputs

14-, 8- and 6-bit resolutions

GENERAL DESCRIPTION

The Z86C27 and Z86C97 are CMOS Application Specific
Standard Product microcomputers that integrate special-
ized peripheral functions (normally provided by external
components) for the control of color television related
products. Utilizing Zilog's advanced Superintegration™
design methodology, these devices provide anideal cost,
performance and reliability solution for consumer and
industrial television applications.

The devices have an 8 bit internal data path controlled by
a Z8 microcontroller core with 256 bytes of register space. -
On-chip peripheralsinclude a two channel Counter/Timer,
an On-Screen Display video controller, a 13 ¢hannel
Digital-to-Analog converter and comprehensive Input/Out-
put ports. The Z86C27 is the mask-ROM high volume
production device embedded with a custom (customer
supplied) program of up to 8 K bytes in size (Figure 1). The
786C97 is the ROM-less version for prototyping and low
volume production (Figure 2).

155

PIN CONFIGURATIONS

PWM5
*PWM4
PWM3
PWM2
PWM1
P35
P36
P34
P31
P30
XTAL1
XTAL2
RESET
P60
Vss
P61
P62
Vee
P63
P64
P65
AFCIN
P50
P51
P52
P53
P54
P55
P56
P57
OSCIN

oscout

00000000000 000000000000000000000

-
-

W W wWNNNNDNNN N P O e T
R8BI NUBRRNBVBREBsaslasaardm

© 0NN DA WOWN =

B3R

61
60
59

57

55
54
53
52

SEBB2ABRESABBEY
I A I O O Oy

36
35

33

PWMé
PWM7
PWMS8
PWM9
PWM10
PWM11
PWM12
PWM13

P27

P26
P25
P24
P23
Vss
P22
P21
Vee
P20
P47
P46
P45
P44
P43
P42
P41
P40
VBLANK
VBLUE
VGREEN
VRED
VSYNC
HSYNC

Figure 1. Z86C27 mask-ROM Plastic Dip

PWM5
PWM4
PWM3
PWM2
PWM1
P35
P36
P34
P31
P30
XTAL1
XTAL2
RESET
AS
Vss
Ds
RW
Vee
SCLK
P66
P67

AFCIN,

P00
PO1
P02
P03
P04
P05
P06
P07
OSCIN

oscoutT

minlnininininininlsinlinEnEnEnEsEninEnEnEsinEnEnEnEnEnEnEnEnEnEn]

© O N A WD -

- -
- O

N N = = = ek o o ok
BRL8BBNBRIBREBssIiosanan

64
63
62
61
60
59

57

55
54
53
52

LELBEERBRESLIEE
D000 oo0 o000 o000 00000000000 g

36
35
34
33

PWMsé
PWM7
PWMs
PWM9
PWM10
PWM11
PWM12
PWM13
P27
P26
P25
P24
P23
Vss
P22
P21

Vee
P20 .
P17
P16
P15
P14
P13
P12

P11

P10
VBLANK
VBLUE
VGREEN
VRED
VSYNC
HSYNC

Figure 2. Z86C97 ROM:-less Plastic DIP

156

PIN IDENTIFICATION

Z86C97 ROM-less

Z86C27 mask-ROM
Pin Name Function Pin Name Function
-5 PWM-PWM, Pulse Width Modulator Output 1-5 PWM,-PWM, Pulse Width Modulator Output
6,7,8 P3, P3, P3, Port3Outputs 6,7,8 P3, P3,P3, Port3Outputs
9,10 P3,, P3, " Port 3 Inputs 9,10 P3, P3, Port 3 Inputs
Microcontroller Crystal Oscillator 11,12 XTAL,, XTAL, Microcontroller Crystal Oscillator

11,12 XTAL,, XTAL,

13 RESET(Test1) System Reset (Test1) Input

13 RESET(Test1) System Reset (Test1) Input

14 P6, Port 6 bit O Input 14 AS Address Strobe, Output
15 Ves Power Supply Ground 15 Ves Power Supply Ground
16, 17 P6,, P6, Port 6 bits 1 and 2 Input 16 DS Data Strobe, Output
18 Vv Power Supply Positive 17 R/W Read/Write, Output
19-21 P6,-P6; Port 6 bits 3 thru 5 Input 18 Vee Power Supply Positive
22 AFC,, AFC Analog Input’ 19 Seix System Clock, Output
23-30 P5,P5, Port 5 bits 0-7, Output (LED) 20,21 Pg, PG, Internal AFC Comparator (Out)
31,32 0SC,,08C,,,; Video Dot Clock Oscillator 22 AFC, AFC Analog Input
33 Hayne Horizontal Sync Input 23-30 PO,-PO, Port 0 bits 0-7, Output (Ag_,5)
34 Ve Vertical Sync Input 31,32 0OSC,, 0SC,,, Video Dot Clock Oscillator
35 Veen Video Red Output 33 e Horizontal Sync Input
36 Vareen Video Green Output 34 Vame Vertical Sync Input
37 Varue Video Blue Output 35 Vaeo Video Red Output
38 Vo Video Blank Output 36 Vreen Video Green Output
39-46 P4,P4, Port 4 bits 0-7, Output 37 Varee Video Blue Output
47 P2, Port 2 bit 0, I/O - 38 V, Video Blank Output
48 Vee Power Supply Positive + 39-46 P1,-P1, Port 1 bits 0-7, Output (AD,,)
49,50 P2,P2, Port 2 bits 1, and 2, /O 47 P2, Port 2 bit 0, /O
51 st Power Supply Ground 48 Vee Power Supply Positive
52-56 P2,P2, Port 2 bits 3 thru 7, I/O 49,50 P2, P2, Port 2 bits 1, and 2, I/O
57-64 PWM,,-PWM, Pulse Width Modulator Output 51 Vg Power Supply Ground

52-56 P2,-P2, Port 2 bits 3 thru 7, /O

57-64 PWM,,-PWM, Pulse Width Modulator Output
PIN FUNCTIONS

AFC,,. AFC Analog Voltage,‘(inputi. Input to two compara- \

tors used for AFC voltage analog to digital conversion. The
comparator outputs are internally connected to P&, for
the Z86C27. They are external outputs for the Z86C97
ROM-less part.

AS. Address Strobe - Z86C97 (output). External addresses
and R/W status are valid at the trailing edge of this strobe.

DS. Data Strobe - Z86C97 (output). Reéd and write data
transactions are controlled by this strobe.

Hgye Horizontal Sync (input). Hg, . is aninput pin supply-
ing an externally generated Horizontal Sync signal of either
negative or positive polarity.

0SC,,, OSC,,,- Video Oscillator (inputfoutput). These
pins connect to the internal video dot clock L-C oscillator
circuit. .

PO,-PO,. High Address Bus - Z86C97 (output). The ROM-
less device uses this port to output the high order address
(Ag_,5) during an external memory cycle.

157

P1,-P1,. Multiplexed Address/Data Bus - Z86C97. The
ROM-less device uses this port to multiplex low order
address (A, during AS) and data (D, , during DS) for an
external memory cycle.

P20-P27. Port 2 (input/output). This 8 bit general purpose
port is bit programmable for either input or output. The
output drivers (for bits defined as outputs) are globally
programmable as either push-pull or open-drain.

P3,. Port 3 bit O (input). This input may be read directly. A
negative edge event will be latched in IRQ, to initiate an
IRQ3 vectored interrupt if appropriately enabled. P3, going
high will also initiate a STOP mode recovery if the device
is stopped.

P3,. Port 3 bit 1 (input). This input may be read directly. A
negative edge event will be latched in IRQ, to initiate an
IRQ2 vectored interrupt if appropriately enabled. It can
also be programmed to serve as the T, signal to Timer 1.

P3,, P3,. Port 3 bits 4 and 5 (outputs). These pins are
general purpose output bits.

P3,. Port 3 bit 6 (output). P3; may be used as a general
purpose output bit or may be programmed tooutput Ty,
(from Timer 1 or Timer 2) or S, -

-P4,-PA4,. Port 4- Z86C27 (output). Port 4is an &bltoulput
porl)

P5,-PS5,. Port 5 - Z86C27 (output). Port 5 is an 8-bit output
port with a higher current sink capability - suited for driving
the cathodes of a multiplexed LED display.

P6,-P6,. Port 6- Z86C27 only(iﬁput). Port 6is a 6-bitinput
port. Bits 6 and 7 are internally connected to the outputs of
the AFC comparators.

P6,, P6,. AFC Comparator Outputs - Z86C97 only. These
pins serve as outputs for the internal comparators used in
the AFC, analog to digital converter. They may be con-

nected to bits 6 and 7 of an external Port 6 emulation port

if required.

PWM,. 74 bit PWM (output). PWM, is the output of a 14-bit
resolution Pulse Width Modulator or may be programmed
as a general purpose output. In either case, the output
driveris a 12 voltopen-drain. PWM1 is typically used as the
D to A converter for Voltage Synthesis Tuning systems.

PWM,-PWM,. 6-bit PWM's (outputs). Ping PWM,, are out-"
puts of 6-bit resolutron Pulse Width Modulator crrcurts

PWM,-PWM,,. 8-bit PWM’s (outputs). Pins PWM, . ar

" outputs of 8-bit resolution Pulse Width Modulator circuits or

may be individually programmed as general purpose

* outputs. In either case, the output drivers are 12 voltopen-

drain.

R/W. Read/Write Status - Z86C97 (output). A low level
signifies an external memory write cycle.

RESET. System Reset. A low level on RESET forces a cold
restart of the device.

VoL Video Blank (output). Output of the Blank video
signal. May be programmed for either polarity.

Vo Video Blue (Output) Output of the Blue video signal.
May be programmed for either polarity. ,

Vee, Vss. Power and Ground. Care must be taken to
adequately bypass the supplied voltage at the device
power pins. Two bypass capacitors of .1 ;.; each are recom-
mended - one on each side of the device located as close
as possible to the pins.

V areen: Vio'eb Green (output). Output of the Green video
signal. May be programmed for either polarity.

Ve Video Red (output). Output of the Red video signal.
May be programmed for either polarity.

Vewme: Vertical Sync (input). Vg, is aninput pin supplying
an externally generated Vertical Sync signal of either
negative or positive polarity.

XTAL,, XTAL,. Oscillator (input and output). These pins
connect to the internal clock oscillator circuit. XTAL, may
also be used as an external clock input.

158

XTAL1
XTAL2
RESET

P30
P31

P34

P35

P36
PAO(P10)
PA1(P11)
PA2(P12)
P43(P13)
PAA(P14)
PA5(P15)
P46(P16)
P47(P17)
P50(P00)
P51(PO1)
P52(P02)
P53(P03)
P54(P04)
P55(P05)
P56(P06)
P57(P07)
P60(AS)
P61(DS)
P62(RW)
P63(SCLK)
P64(P66)
P65(P67)
AFCIN

RESET . > p27
Oscillator o 3‘;‘;"‘;% e pog
WDT g N jt— P25
Counter —] Pot2 | P24
Timer 78 CPU - P23
Counter Core [P22
Timer P21
[~ P20 .
Port 3/ {}
interrupt {}
PWM 1
. B
T 14 bit PWM 1
PaMz | DWM3
Port4 l } {} 1o —= PWM4
(Port 1) PWMS [T PWM5
AB:15 ADO:7 = PWM7
— PWM 8
F— PWM9
PV’Q“ = PWM 10
PWM 13 F— PWM 11
Port5 8 bit [— PWM 12
(Pote) K —= PWM 13
<a—— OSCIN
L/ — OSCOUT
160 Byte On Screen HSYNC
Character RAM Disol ~=—— VSYNC
Port 6 Isplay
—— VRED
(Control)
— VGREEN
4K Byte = VBLUE
Character ROM —= veLank

Figure 3. Z86C27 (Z86C97) Block Diagram

159

INPUT/OUTPUT CIRCUITS

Mappmg Symbolic Pad Types
to Pin Functions

Pin Name " Pad Type Note
XTAL, OSC,, . 1
XTAL,, OSC, High gain start,
low gain run
amplifier circuit

RESET 8 :
PO,-PO, 6 Z86C97 only
P1 -P1 4 Z86C97 only
P2 P2 5
P3.-P3, 2
P3,-P3, 3
P4,-P4, 3 Z86C27 only
P5,-P5, 3 786C27 only
P6-P6 2 786C27 only
P6_-P6 3 Z86C97 only
AS DS RW,SCLK 3 Z86C97 only
AFC,, 9
PWM,-PWM,, 7
Hsmc- stnc 2

RED' " BLUE' 3

GREEN' VBLANK

Figure 4. Input only (Pad Type 1)

Figure 5. Input only, Schmidt Triggered
(Pad Type 2)

VDD

Figure 6. Output only (Pad Type 3)

VDD

Figure 7. Input/Output 3-state (Pad Type 4)

160

VDD .
oD E vDD

OEN

ouTt

Figure 8. Input/Output, 3-state, Open Drain
(Pad Type 5)

VDD Figure 11. Reset Input Circuit (Pad Type 8)

OEN i |
P vDD
’ PAD
STOP dlp

ouT O N
O—Q R

Figure 9. Output only, 3-state (Pad Type 6) O R VDD

20 Ohm PAD

VDD pes

ﬂ_DHN

Figure 12. AFC Input Circuit (Pad Type 9)

Figure 10. Output only, 12 volt Open Drain
(Pad Type 7)

161

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings

Comment: Exposing the device to stresses above those

Parameter @ T,=25°C Sym Min Max listed in Absolute Maximum Ratings could cause perma-
- nent damage. Exposure to absolute maximum rating
Power supply voltage Ve =~ -0.3V +7V conditions for extended periods of time.may effect device
Input voltage v, -0.3V Vg, +0.3V reliability. :
Input voltage Viy -0.3V V,, +0.3V .
Output Voltage Vor 0.3V V,, +8V Note:
- (1) Port 2 open drain
. . (2) PWM open drain outputs
Output current h!gh, 1 pin lon - -10mA (3) Port 5
Output current high, all total |, - -100mA
Output current low, 1 pin low - 10mA
Output current low, 1 pin lo) - 20mA
Output current low, all total 1, - 200mA
Operating temperature -0°C +70°C
Storage temperature -65°C +150°C
Power Dissipation - 2.2W
(Ta=70°C)
STANDARD TEST CONDITIONS
VDD
Characteristics listed below apply for standard test condi-
tions as noted.
RLL
Variance of V., R, and R,
Output Circuit Vg R, R, Drom Quiput
‘Standard CMOS output +5V 1K 2K
Port 4 high current output +5V 5K 2K 150 RLH
PWM 12 volt open drain output +12V 4K4 - I o
Figure 13. Standard Output Test Load
CAPACITANCE
TA=25°C, V. =GND=0V, f=1.0MHz, ‘
Unmeasured pins to GND.
Parameter Max
Input capacitance 10pF
. Output capacitance 20pF
1/0 capacitance 25pF
AFC,, input capacitance 10pF

162

DC CHARACTERISTICS

TA=0°C to +70°C; V,.=+4.5V to +5.5V; F . =4mHz

Parameter Sym Min Typ Max Condition

Input voltage low Vi 0 2NVgg

Input voltage high Vi Vg Vee

" Reset input current -80pA V=0V

Schmidt Hysteresis Vi AVee -

Output current low lo 0.75mA 2mA 8D Vo =4V
locy 3.2mA 4mA TBD Vg =4V
louz 1mA 8D V=4V

AFC Level 01 In Vooor Ve 1.5. SV

AFC Level 11 In Vora1 SV AT

AFC Tracking Vo'V 2N 2NV

Output current high lon TBD -2mA TBD Vor=Vec4V

Min. supply voltage Vi 2.5V

Inp.leakage current Iy -3pA 3pA 0, Ve

Tri-state leakage low -10pA 10pA 0, Ve

Supply current loc A 20mA
lect 3mA
loco 2uA 10pA

Note:
(1) Port5 ,
(2) PWM Open Drain

163

AC CHARACTERISTICS (Z86C27 and Z86C97)

TA=0°C to 70°C; V_.=+4.5 V to +5.5V; F . =4MHz, Units in nS

No Sym ‘ Parameter Min - Max

1 TpC " Input clock period ‘ 250 1000nS

2 mCTIC . Clock input rise and fall - 15nS

3 TwC Input clock width 70nS -

4 TwTinL : Timer input low width 70nS -

5 TwTinH . Timer input high width- 100 , -

6 TpTin Timer input period ’ 8TpC -

7 TrTin, TfTin Timer input rise and fall ' -y 100nS

8A TwiL Int req input low (P31) 70nS -

8B TwiL Int req input low (P30) o 3TpC -

9 TwiH Int request input high) 3TpC -

10 Tdpor Power On Reset delay 25mS 100m$S

" Td,vres Low voltage detect to Internal RESET condition 200nS

12 TWees Reset minimum width ‘ 5TpC - .

13 TdHsO! Hgyne Start to Vg stop 2TpV . 3Tpv |

14 TdHsOh Hgyne €Nd 10 Vi start 1TpV
Notes: ’

1. Refer to DC Characteristics for details on switching levels.

AC TIMING DIAGRAM (Z86C27 and Z86C97)

®
XTALA1
@
=@
Figure 14. External Clock Figure 16. Interrupt Request
Tin

Figure 15. Counter Timer

164

Vee

Internal RESET

External RESET

Figure 17. Power On Reset

HSYNC

0sc2

Figure 18. On Screeny Display

165

AC CHARACTERISTICS UNIQUE TO Z86C97
TA=00C to 700C; VCC=+4.5 Vto +5.5V; FOSC=4mHz

No Sym Parameter Min
1 Ty Address valid to AS delay 35
2 psias) AS high to Address float delay 45
3 Td,som) AS high to Read Data required -
4 Tw,g AS low width 55
5 Tdpzps) Addr float to DS low 5
6 TWpen DS Read low width 185
7 TWoew DS Write low width 110
8 Tdpsron) DS low to Read Data req'd -
9 Thorps) Read Data to DS high hold , 5
10 Tdpgim . DS high to Address active ' 55
1 Tst(,,S) DS high to AS low delay 55
12 Tdrwis) R/W valid to AS high delay 35
13 Tdosrm DS high to R/W not valid 55
14 Tdowosw Write Data valid to DS low 35
15 Apsow DS high to Write Data not valid 55
16 Tdpony Address valid to Read Data ‘ . -
required valid

17 Tdysps) AS high to DS low delay o 65
18 . Tdyips) Data Input setup to DS high 75

Notes: ’
1. When using exténded memory timing, for parameters 3, 6, 7, 8, 16 and 18 add 2TpC (500 nS @ 4.0 MHz).
2. Min and Max times are in nanoseconds unless otherwise noted.

166

TIMING DIAGRAM (Unique to Z86C97)

SCLK
XTAL1

PORT 0

PORT 1

PORT 1

WRITE

®

/

: ;ji
N\
AOQ-A7
|

Figure 19. Z86C97 External Memory Read/Write Timing

167

STANDARD CHARACTER SETS ~ REGISTER SUMMARY
ENGLISH/KOREAN ; Refer to the Z8 Technical Manual for standard Z8 register

. : - MSD and port descriptions. Registers shown here are specmc
tsp] 0 1 [2[383]4]5]6]7 tothe286027/97

OBDDEEEE | Port Registers
| ‘QEH@I@E | |P:T; [5]4]af2] :: C|3:h| | Output Control
= BIcEO BROIS TrTTTTIT b

5 W! ?F _3—] 3 figure 21. Pont 4'1: :::ut Register
o
5 I Dﬁ ' | | ogic Leve
| , [Figure 22. Port 5 Output Register
:Ilﬁ;ﬂjga IP:nIZ|5|4|3|2|::(i3:h| Port & Input
= = TTTTTTT S
--TRIBHXSE
It I g QE iﬂglg | Figure 23.. Port 6 Input R;;:e:h'." -
- - T2
s |- TR EnY =] PAMRogisters
°'." A || }E%Ej% CTeEEL[rTs] wooecoms
Dx -—“EE:"E TTTTTTTT 10m:‘utPort
S— 8 7 6 5 4 3 2 1
EJ 3: Hﬂﬁﬂﬁ Figure 24. PWM Mode Register
EEII__JD: D Dmﬂ %FC11 PWM OUT

[7]els|4[a[2]1]0o] outputcontrol

0 Logic Level 0
TTTTTTTT .1 Logic Level 1
8 7 6 5 4 3 2

Figure 20. English/Korean
Figure 25. PWM Port Output Register

168

%FC12 PWM1 UPPER
[xIx|s]s]3[2]1]0]

L pwmin Byte

Figure 26. PWM 1 High Value

%FC13 PWM1 LOWER
[7lefsfsa]a]2]1]0]
L PWM1 Lo Byte

Figure 27. PWM 1 Low Value

%FC14 PWM 2 VAL

[x{x]sf{a]afa]1]o]
l— PWM2 Value
Figure 28. P'WM 2 Value
%FC15 PWM3 VAL
[x[x]|s]afaf2]1]o]
l—————————— PWM3VaIu§

Figure 29. PWM 3 Value

%FC16 PWM4 VAL
[x[xjsfefaf2]1]o]

I——-————-—- PWM4 Value

Figure 30. PWM 4 Value

%FC17 PWM5 VAL
[x{x[s]a]al2f1]o]
I— PWMS Value
Figure 31. PWM 5 Value
%FC18 PWM6 VAL
[xIx]sfaaf2]1]o]
l—————— PWM®6 Value

Figure 32. PWM 6 Value

%FC19 PWM7 VAL
[xIx]s]afaf2]1]o]

L PwM7vale

Figure 33. PMW 7 Value

%FC1A PWMS VAL
[x[x[s]a]3]2{1]o]

:— PWMS Value

Figure 34. PWM 8 Value

%FC1B PWM9 VAL
[rlels|s]a]a]1]o]

L———— PWM9 Value

Figure 35. PWM 9 Value

%FC1C PWM10 VAL
L7lels[efal2]1]o]
L PwMIoVale

Figure 36. PWM 10 Value'

%FCID PWM11 VAL
[7]els]a]3]2]1]0]
L PWM11Value

Figure 37. PWM 11 Value

%FC1E PWM12VAL
L7fefs]efaf2]1]o]
I PWM12 Value

Figure 38. PWM 12 Value
%FC1F PWM13 VAL

[7lefs|4{s]2]1]o]
I———-——-—PWM13Value

Figure 39. PWM 13 Value Register

169

OSD Registers

0SDC CNTRL ‘ ~FCOOh
[x]efs5[4]af2]1]o]

. |) I— Retrace Blanking
— High Resolution Sel

0 low Res

1 High Res
Pixel Size

00 x1

01x2

10x3

11 x4
Sync Polarity

0 Positive

1 Negative

Figure 40. OSD Control Register
VERT POS FCoth
x[x [[+ sz i [o] |
L————-—— Vert Position Control

x 4 HOR Lines

Figure 41. OSD Vertical Postion Register

HOS POS FCO2h
[xx[s]a]a[2]1]0]

~ L HoRPpostion contr

x 4 DOT Clocks

Figure 42. OSD Horizontal Position Register

DISP ATTR FCO3h
[7le]s|x]ajz]1]o]

T
| T—— Blue Background
Green Background

Red Background
RGB Polarity

0 - Positive

1 ~Negative
Fringe On-Off

0 - Off

1-0On
Background On-Off

0.- Off

1-0On
Display On-Off

0 - Off

1-0On

Figure 43. OSD Display Attribute Register

ROWSPACE _____FCOdh
[7lefx]afs]2]1]o]

—'[——-— Inter Row Space

Fade Direction

0 - Fade After

1 - Fade Before
Fade On-Off

0 - Off

1-0n

Figure 44. OSD Row Space Register

FADE POS FCO5h

[xlefs]alafa]1]o]
I—————-—— Vertical Index

Figure 45. OSD Fade Position Register

BAR CNTRL ECO6h

Lrlelsafx]z]r]o]

_—[:——— 'Row Address
Bar Color
Blue

Green
Red
Bar Color Enable

Fiure 46. OSD Bar Control Register

BARPOS‘ FCO7h
[xIx|s]a]af2]1]o]
——E:_—— Bar Column Position

Figure 47. OSD Bar Position Register

170

ORDERING INFORMATION

Part Number Package

ROM

Z86C2708PSCRxxx 64-Pin DIP
786C2708PSCRxxx 64-Pin DIP
786C9708PSCR314 64-Pin DIP

Custom mask-ROM
Evaluation mask-ROM
Korean/English Char Gen

171

N ZiI3G

May 1989

PRELIMINARY PRODUCT SPECIFICATION

Z86C27EAB

EmuLAaTiON ADAPTER BOARD

FEATURES
B 786C9708PSC 8 MHz ROM-less device.

B 27C64/27C256 EPROM ZIF socket.

Full Port 4, Port 5 and Port 6 functional emulation.

ICE supportwith third party analyzer-emulator available
from Orion Instruments.

B On-board CPU Crystal and VideoL-C oscillator circuits-
jumper selectable.

B 786C27 mask-ROMfootprintor cable interface totarget
system.

DESCRIPTION

The Z86C27EAB Emulation Adapter Board is specifically
designed to assist in the development of software for
 Zilog's Z86C27 mask-ROM Digital Television Controller.

The board utilizes a Z86C97 ROM-less device that pro-
vides an address and data path (for access to external
memory and 1/0) and additional emulation signals. As the
Z86C97 uses Port 4, Port 5 and Port 6 for the external inter-
face, the emulation board simulates true Z86C27 port
functions with additional on-board logic (Figure 1).

An EPROM socket is brovided to allow validation of
customer ROM-code before submitting to Zilog for ge
eration of the Z86C27 ROM mask.

In-Circuit Emulation with real time trace capability is sup
ported in conjunction with a “Unilab™” 8620 or 8420 ana-
lyzer-emulator available separately from Orion Instruments.
Orionislocated at: 702 Marshall Street, Redwood City, CA
94063 (Ph: 415/361-8883, FAX: 415/361-8970). -

ADOQ-7 1 P4
< A8/15 4> To Orion
< > g "Analyzer”
27C64/ Connector
Z8SGOT 286C27 27C256 | |
ROM-Less) g ZIF —
XTAL P1 P2 _:> <%> Socket P3
L-C LOGIC To
< "Emulator”
Common Port 4,5,6 Connector
Signals | Emulation
Control Signals
Ui U2 U3

Figure 1. Z86C27EAB Block Diagram

173

PIN ASSIGNMENTS
Target Z86C27 Interface

The Z86C27 EAB can plug directly into the target socket or
may be connected via ribbon cable to the target if access
is difficult. Connectors P1 and P2 are used for the ribbon
cable interface or as test points (Table 1). The supplied
Cable Adapter has a corresponding P1 and P2 - do not
reverse the P1 and P2 assignments.

Aribbon cable connection will degrade signal integrity, so
the length of cable should be keptas short as possible. The
local crystal and L-C oscillator components mounted on
the Emulation Adapter Board should always be used if a
ribbon cable connection is selected.

Note that GND and VCC are both connected to the target
interface. Power the EAB board locally if the target system
can not supply sufficient current.

ORION Emulation lhterface

Connectors P3 and P4 have signals allocated to allow a
direct connection to the ORION analyzer/emulator (Table
2). Connector P3 connects to the “Emulator” connector
and P4 to the "Analyzer” connector on the ORION. Use the
appropriate cables supplied by ORION.

Miscellaneous Connectors/Jumpers/Test
Points :

P5 connects to power and may be used for power supply
connection if the target supply is not used. J1 and J2 allow
isolation of the target oscillator circuits. J3 provides test
points for the address decodes of videoram and the
simulated 1/O ports (Table 3). '

Table 1. Z86C27 Interface - P1, P2

P Target Z86C2 P2 Target Z86C27
SIGNAL PIN SIGNAL PIN
1 PWM5 1 1 PWM6 64
2 PWM4 2 2 PWM7 63
3 PWM3 3 3 PWM8 62
4 PWM2 4 4 PWM9 61
5 PWM1 5 5 PWM10 60
6 P35 { 6 6 PWM11 - 59
7 P36 * 7 7 PWM12 58
8 P34 8 8 PWM13 57
9 P31 9 9 P27 56
10 P30 10 10 P26 55
11 XTAL1! 1" 11 P25 54
12 XTAL2! 12 12 P24 53
13 RESET 13 13 P23 52
14 P60 14 14,15 GND 51
15,16 GND 15 16 P22 50
17 P61 16 17 P21 49
18 P62 17 18,19 VCC 48
19,20 VCC 18 20 P20 47
21 P63 19 21 P47 46
22 Pé4, 20 22 P46 45
23 P65 21 23 P45 44
24 AFCIN 22 24 P44 43
25 P50 23 25 P43 42
26 P51 24 26 P42 41
27 P52 25 27 P41 40
28 P53 26 28 P40 39
29 P54 27 29 VBLANK ' 38
30 P55 28 30 VBLUE 37
31 P56 29 31 VGREEN 36
32 P57 30 32 VRED 35
33 OSCINZ 31 33 VSYNC 34
34 0OSCOouUT? 32 34 HSYNC 33

Notes:

1. XTAL1 and XTAL2 are connected to P1 via jumper block J2 pins 1-2
and 3-4. Leave these jumpers open for local crystal operation.

2. OSCIN and OSCOUT are connected to P1 via jumper block J1 pins 1-
2 and 3-4. Leave these jumpers open for local L-C operation.

174

Table 2. ORION Interface - P3, P4 Table 3. Misc. Connectors/Jumpers/Test Points

EABP3 Orion “Emul” EAB P4 “Orion “Anal” Pin Signal Comment
Pin Sig Pin Sig Pin Sig Pin Sig .
‘ P5-1 GND Ground test point or supply
1 Al4 1 Al4E 1 P27 1 M7 P5-2 VCC VCC test point or supply
2 A12 2 AI2E 2 P2 2 Mé J1-1,2 OSCIN Open isolates OSCIN from target
3 A13 3 A13E 3 P25 3 M5 J1-3,4 OSCOUT Open isolates OSCOUT from target
4 A7 4 A7E 4 P24 4 M4 i
5 A8 5 A8E 5 P23 5 M3 J2-1,2 XTAL1 Open isolates XTAL1 from target
J2-3,4 XTAL2 Open isolates XTAL1 from target
6 A6 6 A6E 6 P22 - 6 M2 J3-1 VRAM Test point for Videoram select signal
7 A9 7 ASE 7 P21 7 M J3-2 P6 Test point for port 6 select signal
8 A5 8 A5E 8 P20 8 MO .
9 ANl 9 A1E 9 GND 9 GND J3-3 P5 Test point for port 5 select signal
10 A4 10 A4E 10 RESET 16 RES J3-4 P4 Test point for port 4 select signal
11 DS 11 OE 11 - 17 NMI
12 A3 12 A3E 12 GND 18 GND
13 .A10 13 ATOE 13 - 19 K2 Unilab 8620/8420 Analyzer/Emulator Setup
14 A2 14 A2E 14 R/W 20 C7
15 ROMCS 15 CE 15 - 21 K1 The standard Orion software is distributed to support
‘ . either piggy-back or ROM-less versions of generic Z8
16 Al 6 AE 16 - 22 C8 microconitroller products. The system must be especially
17 AO 17 AGE 17 DS 23 WR configured to support the Z86C27EAB development envi-
18 GND 18 GND 18 - 24 C5 ronment. .
19 AD7 19 D7E 19 - 25 RD :
2,0 ADB 20 DeE 20 - 26 C4 1. Foliow Orioninstructions for installation and invocation
of standard Orion Z8 distribution software.
21 ADO 21 DOE 21 At5 27 A15 ;
22 AD5 22 DSE 22 - 28 ALE 2. Choose the external memory version of the Z8.
23 AD1 23 D1E 23 P35 NC-
24 AD4 24 DaE 24 P36 NC- 3. From the main menu, press “F8" to select TOOLKIT
25 AD2 25 D2E 25 P31 NC- ROUTINES,
26 AD3 26 D3E 26 P30 NC- - 4. Press "F8" again to select CHANGE DISPLAY OR
27 INTP67 43 D15A 1LOG MODES.
28 INTP66 44 D14A .
29 P34 45 DBA ’ 5. Set the window settings as shown:
30 - 46 D13A ,
- Disassembler on
3t - 47 DoA Symbols off
32 - 48 D12A ‘ ' Reset enabled
33 - 49 D10A Misc Column on
3 - 50 DA : Cont Column on
- Misc # Base binary
Paginate on
Color on (if color display)
Log to File - off
Printer off
i Step-into software
Debug active |

175

6. Type "EM-SET” [RETURN]. This command is used 11. Type “2001 =OVERLAY" [RETURN]. Thiscommand

for memory configuration. sets the Orion debug overlay area to start at address

: 2001h.

7. Enable memory 0-37FF in “EMSEGF.” Press “END"))

key to save and exit. 12. Type “8000 =READ" [RETURN]. This sets the
external RAM pointer to address 8000h.

8. Type “INTDATA” [RETURN]. This command

configures the stack to be internal. - 13. Type “SAVE-SYS C27EAB” [RETURN]. This saves *

.) . a new system called C27EAB.

9. Type "EXTRAM" [RETURN]. This command)

configures the RAM to be external. 14. Type “BYE” [RETURN] to exit from the Orion
environment. i)

10. Type “PTR =DO0" [RETURN]. This command sets the

Orion DebugregisterstoDOhand D1hofthe Z8register Now that the system is saved, to re-invoke the Orion

file. The user program must not use these registers. software with the parameters that have been just set-up,
) type C27EAB.
_ 34
+ .
| | 3 | P2 i COPYRIGHT ZILOG INC. 1988
! 1 MADE IN U.SA.
Z86C27EM

64 33
4 ‘) C86C97

1 32
[] : 10

< ’ ‘34

L | L P1 1 —3 43

Figure 2. Z86C27EAB Layout

176

ELECTRICAL CHARACTERISTICS

Refer to seperate data sheets for individual AC and DC

characteristics of the Z86C9708PSC, Z86C2708PSC, user

EPROM and AlteraEP1810J EPLD. Particular considera-

tion should be given to characteristic differences between

the Z86C27 and the EAB board with respect to ports 4,5
~and 6.

Parameters listed in Table 4 are supplemental to the indi-
vidual device parameters or apply to the EAB as a whole.

Table 4. Supplemental Parameters

Parameter Sym Min Max Condition
Power supply voltage V., 4.8v 52v

Power supply current 1, - 100mA

Input voltage low v, 0 .8v

Input voltage high Vo' 20 VCC

Output current high lo' -4MA, - Vgy=2.4v
Output current low lo! 4MA - Vo =.45v
Output current max low' - +20mA
Operating Temp 10°C 50°C

Notes:

1. These parameters apply to Port 4, 5 and 6 and differ from the Z86C27
implementation. .

ORDERING INFORMATION

Part Number Comment °

Z86C2708EAB Includes Z86C9708PSC ROM-less
device (Korean/English character
generator ROM).

177

178

Product Specification

January 1989

Z86C91 CMOS

FEATURES

m Complete microcomputer, 24 1/O. lines, and up to 64K
bytes of addressable external space each for program
and data memoty.

B 256-byte register file, including 236 general-purpose
registers. 8 1/0 port registers, and 16 status and control
registers.

W Vectored, priority interrupts for /O, counter/timers, and
UART.

On-chip oscillator that accepts crystal or external clock
drive.

ROMless Z8® Microcomputer

B Full-duplex UART and two programmable 8-bit
counter/timers, each with a 6-bit programmable
prescaler.

B Register Pointer so that short, fast instructions can
access any one of the sixteen working-register groups.

Single + 5V power supply—all I/O pins TTL compatible.
12, 16, and 20 MHz

CMOS process

Two Low-power Standby Modes

GENERAL DESCRIPTION

The Z86C91 is a CMOS ROMless version of the Z8 single-
chip microcomputer. It offers all the outstanding features of
the Z8 family architecture except an on-chip program

—»1 RESET +5V je—
"'""":g ~— RW GND |e—o
CONTROL | «—] DS XTALY je—o
— CLOCK
-+ AS XTAL2 p—>
<] Po, P2, E::
<—»] Po, P2,
~<—»{ PO, P2, le—»
PORT O P PORT 2
o ('ulABBBLE ~—>»{ PO, 2; ja—> (BIT PRO-
PROGRAM LE) P GRAMMABLE)
10 OR Ag-Arg |] P% % <o
<] P0; 2gece1 P% [«
<> P0; MCU P% le—>
-] PO, P2; le—>
-] P1, P3) je——o
<] P1, P3, je—o
-] P1, P3; je—o
PORT 1 PORT 3
PROGRAMMXBBVLTE D I il PARALLEL
E) P1 P3, PARALLEL I/O
ADg-AD; ¢ ¢ AND CONTROL
>} Pi; P3s p—>
<] P1, P3; b
-«—»1 P1; P3; }—>

Figure 1. Pin Functions

ROM. Use of external memory rather than a prepro-
grammed ROM enables this Z8 microcomputer to be used
in applications where code flexibility is required.

+sv [1 40 [] P3,
xtaLz [2 39 [] ps,
xTaLt [3 38 [] p2,
Py, [4 37 [J P2
P3, [s 36 | p2;
RESET [6 35 [] r2,
rRW [7 3] p2,
os []s 33[] P2,
As[s 32 [] P2,
P3s [] 10 286C91 31 [7] P2,
e [gn MU 4 [] 3,
P3, E 12 20| p3,
po, [13 28] Py,
po, [14 27 gme
po, [] 15 26 [P15
Po, [] 16 2] P,
po, [] 17 24 [] P,
pPos [] 18 23] r1,
Pos [19 2] Py
po, [] 20 21 P,

* Figure 2a. 40-pin Dual-In-Line Package (DIP),
Pin Assignments

179

The Z86C91 can provide up to 16 output address lines, thus
permitting an address space of up to 64K bytes of data or
program memory. Eight address outputs (ADg-AD7) are
provided by a multiplexed, 8-bit, Address/Data bus. The
remaining 8 bits can be provided by the software
configuration of Port O to output address bits Ag-A1s.

Available address space can be doubled (up to 128K bytes)
by programming bit 4 of Port 3 (P34) to act as a data memory
select output (DM). The two states of DM together with the
16 address outputs can define separate data and memory
address spaces of up to 64K bytes each.

s
&S FED o P

/65 4 3 2 1 4443 42 41 40 '\
RESET |7 39 | NC
RW |8 38 | P24
Bs |9 a7 | p2;
as |10 . 36 | P2,
P3s | 11 : 35 | P2y
anD |12 286C91xxVSC 34 | P2o
P3, [13 Mcu 33 | P33
Poo | 14 32| Pa,
poy |15 3 fp1y
o, | 16 30 | P1g
Ne j17 29 | P15

bawaoztzzzsuzszsnzs/

Q§'5 Qg‘ o QQG Qg’\ Q‘Q Q"\ Q\‘ ‘\0

Figure 2b. 44-pin Leaded Chip Carner
Pin Assignments

There are 256 bytes of RAM located on-chip and organized

as a register file of 236 general-purpose registers, 16 control
and status registers, and three /O port registers. This
register file can be divided into sixteen groups of 16 working
registers each. Configuring the register file in this manner
allows the use of short format instructions; in addition, any of

the individual registers can be accessed directly.

The pin functions and the pin assignments of the Z86C91
package are illustrated in Figures 1 and 2.

2 g o Q o N~ o W
geLLssgess g
33 23
34 22
RESET (1T [TT1GND
AW] TP,
[o5] e TTP2,
As 1T} [CTT P2,
P3s T1] T P2,
GND 1T Z86C91XXFSC [T P2,
P3, T MCU TIP3,
LT e e | TIP3,
POy TT] TPt
PO2 77 [TTIP1e
aND T O e
44 12

358522
I'Lﬂ.n.ll.ﬂ.gﬁ.

Figure 2¢c. 44-pin Quad Flat Pack,
Pin Assignments

>

OUTPUT INPUT Vcc GND XTAL AS DS R/W RESET
MACHINE TIMING AND
PORT 3 <: ‘ INSTRUCTION CONTROL
UART < ALU
FLAGS
COUNTER/
TIMERS
REGISTER
POINTER :I
S
REGISTER FILE PROGRAM
INTERRUPT 256 x 8-BIT | CcounTEr
CONTROL
PORT 2 PORT 0 PORT 1
ADDRESS OR 1/0 ADDRESS/DATA

/10
(BIT PROGRAMMABLE)

(NIBBLE PROGRAMMABLE)

~""
Z-BUS WHEN USED AS
ADDRESS/DATA BUS

Figure 3. Functional Block Diagram -

180

ARCHITECTURE

Architecture is characterized by a flexible 1/0 scheme, an
efficient register and address space structure and a number
of ancillary features that are helpful in many applications.

Microcomputer applications demand powerful /O
capabilities. The Z86C91 fulfills this with 24 pins available for
input and output. These lines are grouped into three ports of
eight lines each and are configurable under software control
to provide timing, status signals, serial or parallel /O with or
without handshake, and an address bus for interfacing
external memory.

Three basic address spaces are available: program memory,
data memory and the register file (internal). The 256-byte

random-access register file is composed of 236
general-purpose registers, three 1/O port registers, and 16
control and status registers.

To unburden the program from -coping with real-time
problems such as serial data communication and
counting/timing, an asynchronous receiver/transmitter
(UART) and two counter/timers with a large number of
user-selectable modes are offered on-chip. Hardware
support for the UART is minimized because one of the
on-chip timers supplies the bit rate. Figure 3 shows the block
diagram.

LOW POWER STANDBY MODES

The Z86C91 has two instructions to reduce power
consumption during standby operation. HALT turns off the
processor and UART while the counter/timers and external
interrupts IRQQ, IRQ1, and IRQ2 remain active.

When an interrupt occurs the processor resumes execution
after servicing the interrupt. STOP turns off the clock to the
entire Z86C91 and reduces, the standby current to 10
~microamps. The stop mode is terminated by reset, which
causes the processor to restart the application program at
adddress 000CH. In order to enter STOP or HALT modes,

itis necessary to firstflush the instruction pipeline to avoid
suspending execution mid-instruction. To do this, the user
must execute a NOP (opcode=OFFH) immediately before
the appropriate sleep instruction, ie

FF NOP ; clear the pipeline

6F STOP ; enter STOP mode
or

FF NOP ; clear the pipeline

7F HALT ; enter HALT mode

PIN DESCRIPTION

AS. Address Strobe (output, active Low). Address Strobe is
" pulsed once at the beginning of each machine cycle.
Addresses output via Port 1 for all external program or data
memory transfers are valid at the trailing edge of AS.

DS. Data Strobe (output, active Low). Data Strobe is
activated once for each external memory transfer. For a
READ operation, data must be available prior to the trailing
edge of DS. For WRITE operations, the falling edge of DS
indicates that output data is valid.

PO0o-PO7, P2y-P2;, P3¢-P3;. I/O Port Lines (input/outputs,
TTL-compatible). These 24 lines are divided into three 8-bit
110 ports that can be configured under program control for
110 or external memory interface (Figure 3).

P1¢-P17. Address/Data Port (bidirectional). Multiplexed

. address (Ag-A7) and data (Do-Dy) lines used to interface with

program and data memory.

RESET. Reset (input, active Low). RESET initializes the
786C91. After RESET the MCU is in the extended memory
mode. When RESET is deactivated, program execution
begins from program location 000C.

R/W goes low for the duration of a WRITE operation to
Program or Data memory.

- XTAL1, XTAL2. Crystal 1, Crystal 2 (time-based inputand

output, respectively). These pins connect a parallel-reso-
nant crystal, LC circuit, or ceramic resonator to the on-chip
oscilator and buffer. A single-ended TTL or CMOS clockis
also valid at the XTAL1 input.

ADDRESS SPACES

Program Memory. The Z86C91 addresses 64K bytes of
external program memory space (Figure 4).

The first 12 bytes of program memory are reserved for the
interrupt vectors. These locations contain six 16-bit vectors
that correspond to the six available interrupts. Program
execution begins at location 000Cy after a reset.

Data Memory. The Z86C91 can address 64K bytes of
external data memory. External data memory may be

included with or separated from the external program
memory space. DM, an optional /O signal that can be
programmed to appear on pin P3,, is used to distinguish
between data and program memory space. The state of the
DM signal is controlled by the type instruction being exe-
cuted. An "LDC" opcode references PROGRAM (DM inac-
tive) memory, and an "LDE" instruction references DATA
(DM active low) memory.

181

Register File. The 256-byte register file includes three 1/0
port registers (P0, P2, P3), 236 general-purpose registers
(R4-R239) and 16 control and status registers (R240-R255).
These registers are assigned the address locations shown in
Figure 5.

Z86C91 instructions can access registers directly or
indirectly with an 8-bit address field. This also allows short
4-bit register addressing using the Register Pointer (one of
the control registers). In the 4-bit mode, the register file is
divided into sixteen working-register groups, each
occupying 16 contiguous locations (Figure 5). The Register
Pointer addresses the starting location of the active
working-register group (Figure 6).

Note: Register Bank EO-EF can only be accessed through
working register and indirect addressing modes.

Stacks. Either the internal register file or the external data
memory can be used for the stack. A 16-bit Stack Pointer
(R254 and R255) is used for the external stack, which can
reside anywhere in data memory. An 8-bit Stack Pointer
(R255) is used for the internal stack that resides within the

236 general-purpose registers (R4-R239). For intemal
stack, R256 may be used as a general-purpose register,
however its contents will be impactedin the event of astack
overflow. .

65,535

CATION OF FIRST
BYTE OF INSTRUCTION

EXECUTED AFTER ™

RESET

" INTERRUPT

INTERRUPT
VECTOR
(UPPER BYTE)

VECTOR
(LOWER BYTE) 6 .

5 E RQ2 —

- {

PROGRAM
MEMORY

12
"

[
of— mes —
L

9

8 IRQ4 —

T Ros —

— IRQ1 —

4
3
2
ol mao —

DATA
MEMORY

Figure 4. Z86C91 Program Memory Map

DECIMAL HEX

IDENTIFIERS
255 STACK POINTER (BITS 7-0) FF SPL
254 - _STACK POINTER (BITS 15-8) FE SPH
253 REGISTER POINTER FD RP
252 PROGRAM CONTROL FLAGS FC FLAGS
251 INTERRUPT MASK REGISTER F8 IMR
250 INTERRUPT REQUEST REGISTER FA IRQ
249 INTERRUPT PRIORITY REGISTER F9 IPR
248 PORTS 0-1 MODE F8 POIM
247 PORT 3 MODE F7 P3M
246 PORT 2 MODE F6 P2M
245 TO PRESCALER F5 PREO
244 TIMER/COUNTER 0 F4 To
243 T1 PRESCALER F3 PRE1
242 TIMER/COUNTER 1 F2 T -
241 TIMER MODE F1 TMR
240 ~__SERIAL IO Fo si0
239 EF
GENERAL-PURPOSE
REGISTERS

4 04

3 PORT 3 03 P3

2 PORT 2 02 P2

1 PORT 1 01 P1

0 PORT 0 00 PO’

Figure 5. The Register File

—
1 - 255
L 7l s s | 0000 253
240
. THE UPPER NIBBLE OF THE REGISTER
| FILE ADDRESS PROVIDED BY THE
REGISTER POINTER SPECIFIES THE
ACTIVE WORKING-REGISTER GROUP.
239
- —
\
. .
. .
. .
—->
> THE LOWER
NIBBLE OF
THE REGISTER
' ILE ADDRESS
el W g
THE INSTRUCTION
POINTS TO THE
SPECIFIED
L REGISTER.
——
15
—— —— e
110 PORTS g

Figure 6. The Register Pointer

182

SERIAL INPUT/OUTPUT

Port 3 lines P3, and P3, can be programmed as serial I/O
lines for full-duplex serial asynchronous receiver/transmit-
ter operation. The bit rate is controlled by Counter/Timer 0,
with a maximum rate of 156.25K bits/second at 20 MHz.

The Z86C91 automatically adds a start bit and two stop bits
to transmitted data (Figure 7). Odd parity is also available as
an option. Eight data bits are always transmitted, regardless

[se[spTo:[os o: o] 0:] 0. 0:[0o s7]

L—- START BIT

EIGHT DATA BITS
[selse]

TWO STOP BITS

Transmitted Data
(No Parity)

P 0[] D[03[D, [, [0, [57]

LSTART BIT

SEVEN DATA BITS
ODD PARITY
TWO STOP BITS

Transmitted Data
(With Parity)

of parity selection. If parity is enabled, the eighth data bit is
used as the odd parity bit. An interrupt request (|RQ4) is
generated on all transmitted characters.

Received data must have a start bit, eight data bits, and at
least one stop bit. If parity is on, bit 7 of the received data is
replaced by a parity error flag. Received characters
generate the IRQ3 interrupt request.

DN
I—START BIT

EIGHT DATA BITS
ONE STOP BIT

Received Data
(No Parity)

[sp] P]os]0s D405, 04] Do [sT]

|— START BIT

SEVEN DATA BITS
PARITY ERROR FLAG
ONE STOP BIT

Received Data
(With Parity)

Figure 7. Serial Data Formats

COUNTERITIMERS

The Z86C91 contains two 8-bit programmable
counterftimers (Tg and Ty), each driven by its own 6-bit
programmable prescaler. The T4 prescaler can be driven by
internal or external clock sources; however, the Tg prescaler
is driven by the internal clock only. '

The 6-bit prescalers can divide the input frequency of the
clock source by any number from 1 to 64. Each prescaler
drives its counter, which decrements the value (1 to 256) that
has been loaded into the counter. When the counter reaches
the end of count, a timer interrupt request—IRQ4 (Tg) or
IRQ5 (T1)—is generated.

The counters can be started, stopped, restarted to continue,
or restarted from the initial value. The counters can also be
programmed to stop upon reaching zero (single-pass mode)

or to automatically reload the initial value and continue
counting (modulo-n continuous mode). The counters, but not
the prescalers, can be read any time without disturbing their
value or count mode.

Theclock source for T, is user-definable; it can be either the
internal microprocessor clock divided by four, or an exter-
nal signal input via Port 3. The maximum frequency of the
external Timer signal is the XTAL signal divided by 8. The
Timer Mode register configures the external timer input as
an external clock, a trigger input that can be retriggerable
ornonretriggerable, or as agate input for the internal clock. -
The counterfimers can be programmably cascaded by
connecting the T, output to the input of T,. Port 3 line P3,
also serves as atimer output (T,,,) throughwhich T,, T, or
the internal clock can be output.

110 PORTS

The Z86C91 has 24 lines available for input and output.
These lines are grouped into three ports of eight lines each
and are configurable as input, output or address. Under
software control, the ports can be programmed to provide

address outputs, timing, status signals, serial I/O, and
parallel 1/O with or without handshake. All ports have active
pull-ups and pull-downs compatible with TTL loads.

183

Port 1 is a dedicated Z-BUS® compatible memory
interface. The operations of Port 1 arﬁupported by the
Address Strobe (A_§land Data Strobe (DS) lines, and by
the Read/Write (R/W) and Data Memory (DM) control
lines. The low-order program and data memory addresses
(Ag-A7) are output through Port 1 (Figure 8) and are
multiplexed with data in/out (Do-D7). Instruction fetch and
data memary read/write operations are done through this
port. .

PORT 1
(/0 OR ADg-AD7)

TO EXTERNAL

zseco1 MEMORY
Mcu

Figure 8a. Port 1

Port 1 cannot be used as a register nor can a handshake
mode be used with this port.

The Z86C91 wakes up with the 8 bits of Port 1 configured
as address outputs for external memory. If more than eight
address lines are required, additional lines can be
obtained by programming Port O bits as address bits. The
least-significant four bits of Port-0O can be configured to
supply address bits Ag-Aq4 for 4K byte addressing or both
nibbles of Port 0 can be configured to supply address bits
Ag-A1s for 64K byte addressing.

Figure 8b. Simplified Port 1 Output Configuration

Port 0 can be programmed as a nibble 1/O port, or as an
address port for interfacing external memory (Figure 9).

When used as an /O port, Port 0 can be placed under
" handshake control. In this configuration, Port 3 lines P3
~and P3s are used as the-handshake controls DAV and
RDY(. Handshake signal assignment is dictated by the I/O
direction of the upper nibble P04-P0;.

For external memory references, Port 0 can provide
address bits Ag-Aq1 (lower nibble) or Ag-Aqs (lower and
upper nibbles) depending on the required address space.
If the address range requires 12 bits or less, the upper

P04-PO7
P0g-P03

PORT O

28691 (1/0 OR Ag- A15)
MCU

1@

Vo AND RDYq

}H: DSHAKE CONTROLS
(P3; AND P35)

AH,

Figure 9a. Port 0

nibble of Port 0 can be programmed independéntly as /0
while the lower nibble is used for addressing.

Port O lines are configured as address lines Ag-Aq5 after a

" Reset. If one or both nibbles are needed for I/O operation, .

they must be configured by writing to the Port 0 Mode
register.

To permit the use of slow memory, an automatic wait mode
of two oscillator clock cycles is configured for bus timing
after each reset. The initialization routine could include
reconfiguration to eliminate this extended timing mode.

Vio
S|
PAD
—
our)
Pl . ?
< l__._.____.

Figure 9b. Simplified Port 0 IO Configuration

184

Port 2 bits can be programmed independently as input or
output (Figure 10). This port is always available for 1/O
operations. In addition, Port 2 can be configured to
provide open-drain outputs.

Like Port 0, Port 2 may also be placed under handshake

Z86co1
Mcu

P29
PORT 2(/0)

P27 _

HANDSHAKE CONTROLS
} DAV, AND RDY;
(P3, AND P3q)

RiREERRRE

Figure 10a. Port 2

control. In this configuration, Port 3 lines P3; and P3g are
used as the handshake controls lines DAV, and RDYj.
The handshake signal assignment for Port 3 lines P34 and
P3¢ is dictated by the direction (mput or output) assigned
to bit 7 of Port 2.

SPENDRAN Ve
S|
PAD
—{1
\out 1
/7
LN X N
N '_:: — —— — _l
ool
p ity

Figure 10b. Simplified Port 2 I/0 Configuration

Port 3 lines can be configured as I/O or control lines
(Figure 11). In either case, the direction of the eight lines is
fixed as four input (P3¢-P33) and four output (P34-P37). For
serial I/0, lines P3p and P37 are programmed as serial in
and serial out, respectively.

Z86C91

PORT 3
MCU (/O OR CONTROL)

W

Figure 11a. Port 3°

Port 3 can also provide the following control functions:
handshake for Ports 0 and 2 (DAV and RDYY); four external
interrupt request signals (IRQ0-IRQ3); timer input and
output signals (T)y and Toyt) and Data Memory Select
(DM).

PAD o ~

D IN

Figure 11b. Simplified Port 3 Input Configuration

INTERRUPTS

The Z86C91 allows six different interrupts from eight
sources: the four Port 3 lines P34-P33, Serial In, Serial Out,
and the two counter/timers. These interrupts are both
maskable and prioritized. The Interrupt Mask register
globally or individually enables or disables the six interrupt
requests. When more than one interrupt is pending, priorities
are resolved by a programmable priority encoder that is
controlled by the Interrupt Priority register.

All interrupts are vectored through locations in program
memory. When an interrupt request is granted, an interrupt
machine cycle is entered. This disables all subsequent
interrupts, saves the Program Counter and status flags, and
accesses the program memory vector location reserved for
that interrupt. This memory location and the next byte
contain the 16-bit address of the interrupt service routine for
that particular interrupt request. Nested interrupts are

supported by enabling interrupts in the interrupt service
routine.

Polled interrupt systems are also . supported. To
accommodaie a polled structure, any or all of the interrupt
inputs can be masked and the Interrupt Request register
polled to determine which of the interrupt requests needs
service. Software initiated interrupts are supported by
setting the apppropriate bit in the Interrupt Request Regis-
ter (IRQ--register 250, OFAH).

Intemal interrupt requests are sampled on the falling edge
of the last cycle of every instruction. Externally generated
interrupt requests (input to.Port 3) are delayed by a5 TpC
filter, soin order to be valid at an interrupt sample point, the
interruptrequest mustbe valid 5TpC before the fallingedge
of the last clock cycle of the currently executing instruction.

185

When the Z86C91 samples a valid interrupt request, the
next 48 (external) clock cycles are used to prioritize the
interrupt, and push the two PC bytes and the FLAGS
register on the stack. The following 9 cycles are used to
fetch the interrupt vector from external memory. The first

byte of the interrupt service routine is fetched beginning on
the 58th TpC cycle following the internal sample point,
which corresponds to the 63rd TpC cycle following the
external interrupt sample point.

CLOCK

The on-chip oscillator has a high-gain, parallel resonant
amplifier for connection to a crystal, ceramic resonator, or
resonant LC circuit. A CMOS or TTL level clock oscillator
is also acceptable. Unlike its NMOS counterpart, the
Z86C91 clock should be driven single-ended with the
XTAL2 output left floating.

A low level clock source (crystal, resonator, or parallel LC
combination) should be connected across XTAL1 and
XTAL2 with capacitor “legs” from each pin to ground.
Table 1 shows recommended capacitor values for the
oscillator circuit in figure 12.

Oscillator Cy (min) C, (max)
Type '

Crystal 12pF 60pF

Ceramic 12pF 60pF

Resonator

LC Circuit 33pF 47pF

Table 1 Recommended capacitor values for
various types of oscillator circuits.

28
XTAL

2} xTAL2

T T°
Figure 12. Z86C91 Oscillator Configuration

CRYSTAL TYPE

For a crystal clock input, the Z8 requires the followmg
specifications:

B AT cut, parallel resonant

| Fundamentai,Type

Series resistance, R, < 100Q

m Capacitance C, < 30pF

Frequency 20MHz maximum

RESET

To avoid asynchronous and noisy RESET problems, the
Z86C91 is equipped with a RESET filter of four external
clocks (4TpC). If the external RESET signal is less than
4TpC in duration, no RESET will occur.

On the fifth clock after the RESET is detected, an intérnal
RST signalis latched and held for an internal register count

of 18 external clocks, or for the duration of the external -

RESET, whichever is longer. During the RESET cycle, DS
is held active low while AS cycles at a rate of TpC/2.

Program execution begins at location 000C 5-10 TpC

.cycles after RST is released.

Forpower-on RESET, the RESET time must be heldlow for
50mS, or until Ve is stable, whichever is longer.

186

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to
describe the addressing modes and instruction operations
as shown in the instruction summary.

Assignment of a value is indicated by the symbol “<" For
example, .

dst < dst + src

IRR gﬁ'rrggtdizggter pair or indirect working-register indicates that the source dgta is adde_d tq the degtination
Irr Indirect working-register pair only data gnd the resul,:[is stored in the destlna_tlon I”ocatlon. T he
notation “addr(n)” is used to refer to bit “n” of a given
X Indexed address location. For example
DA Direct address ' '
RA Relative address dst (7)
IF:\A :errgigfelftoer working-fegister address refers to bit 7 of the destination operand.
r Working-register address only Flags. Control Register R252 contains the following six
IR Indirect-register or indirect working-register flags: '
address . ‘
Ir Indirect working-register address only g g::;yﬂgzg
RR Register pair or working register pair address s Sign flag
Symbols. The following symbols are used in describingthe 'V Overflow flag
instruction set. D Decimal-adjust flag
dst Destination location or contents H Half-carry flag
src Source location or contents Affected flags are indicated by:
cc Condition code (see list) 0 Cleared to zero
@ Indirect gddress prefix . 1 Settoone
- SP Stack pointer (control registers 254-255) . Set or cleared according to operation
PC Program counter _ Unaffected
FLAGS Flag register (control register 252) Undefined
RP Register pointer (control register 253) :
IMR Interrupt mask register (control register 251)
CONDITION CODES
Value Mnemonic Meaning Flags Set
1000) Always true —
o111 C Carry C=1
111 NC No carry C=0
0110 z Zero Z=1
1110 NZ Not zero Z=0
1101 PL Plus S=0
0101 M Minus S=1
0100 ov Overflow V=1
1100 NOV No overflow V=0
0110 EQ Equal Z=1
© 1110 NE Not equal Z=0 .
1001 GE Greater than or equal (SXORV) =0
0001 LT Less than (SXORV) =1
1010 GT Greater than [ZOR(SXORV)] = 0
0010 LE Less than or equal [ZOR(SXORV)] = 1
1111 - UGE Unsigned greater than or equal C=0
0111 ULT Unsigned less than C=1
1011 UGT Unsigned greater than (C=0ANDZ=0) =1
0011 ULE. Unsigned less than or equal (CORZ) =1
0000 Never true —)

187

oPC

CCF, DI, El, IRET, NOP,

RCF, RET, SCF

INCr

One-Byte Instructions

OPC ‘ MODE | CLR, CPL, DA, DEC, OPC l MODE . ADC, ADD, AND, CP,
[asusre | oR [11 1 0] dsusrc] BESH: WG, INCW, POP, stc or [1110] src] 42,08 SBC SUB,
_ RRC, SRA, SWAP dst OR [1110] dst e
(» OPC JP, CALL (Indirect)
[dst Jor [1110] dst | : oPC_| MODE ADC, ADD, AND, CP,
o] on [l e] BORSGH
SRP
—VALUE
MODE | opPC [| | LD
src OR [1110]| src
% ég'cbﬁf’géé’":d& dst orR[1110[dst |
TCM, TM, XOR
| orc LD
[wobe | opc] LD, LDE, LDEI, MODE
Costsre [areioet] LbC, LDCI d":;;’[m =
Idslls 3 | OPC I LD
l ;rcldsl Jor[1110] src | ce DIAUOPC o
DA,
[gst [oec | Lo
oPC CALL
] DA,
OPC DJNZ, JR DA,
STOP/HALT !
Two-Byte Instructions Three-Byte Instructions
Figure 13. Instruction Formats
INSTRUCTION SUMMARY
i AddrMode Opcode Flags Affected AddrMode Opcode Flags Affected
Instruction Byte ——m Instruction SN ByteK ——m
and Operation dst src (Hex) C Z SV DH and Operation dst src (Hex) C Z S VDH
ADC dst,src (Note 1) 10 * % %k x 0 % DEC dst R 00 — ok ——
- dst<+dst + src + C dst<dst — 1 IR 01
ADD dst,src (Note 1) oOd * % k% 0% DECW dst RR 80 — %k k——
dst «dst + src . dst < dst — 1 IR 81
AND dst,src (Note 1) 50 — % % 0 —— DI
dst < dst AND src IMR(7) <0 8F @ ——
CALL dst DA D6 ————— DJNZ rdst RA A ———
SP<SP -2 IRR D4 r<r-1 r=0-F
@SP < PC; PC < dst ifr#0
PC < PC + dst
CCF . EF *————— .
C<NOTG Range: +127, —128
CLRdst R B0 —————— MR (M) < 1 ¥ mmmm
dst< 0 IR B1
COM dst R 60 —x%0—— HAT e
dst < NOT dst IR 61 INC dst r E — %k ok ——
CP dst,src Notel) -~ AT # % % #—— CoStodst+d . = ‘
dst — src ' R 21
A At a oo ERXTT inewast RR A0 — ke ——
: dst <dst + 1 IR Al

188

INSTRUCTION SUMMARY (Continued)

: Addr Mode Opcode Flags Affected AddrMode Opcode Flags Affected
Instruction Byte —mm Instruction Byte ——
and Operation .dst src (Hex) C Z SV DH and Operation dst src (Hex) C Z SVDH
IRET BF % % % % % % RLCdst R 10 % % % ¢ ——
FLAGS « @SP; SP+ SP + 1 i 1
PC < @SP; SP+SP + 2;IMR(7)« 1

RRdst [— |R EO * k k ok ——
JP cc dst DA D ————— LR Et
ifccis true c=0-F
- RRC dst R Co * ok ok k——

PC < dst IRR 30 IR p
JR cc,dst RA B @ ——
ifccis true, c=0-F gB(f_djt,tsf e (Note 1) 30 * ok k k1 *

PC+PC + dst st st —sre]

Range: +127, —128 SCF ¥ 1 __—___
LD dst,src r Im t ————— C1
dst «src r R 8 SRA dst —R DO % % % 0 ——
- ey o1
r=0-F
) X c7 SRP src Im 31 —————
X r D7 RP <« src
r Ir E3 STOP 6F @ —————
Ir r F3
R R E4 SUB dst,src (Note 1) 20 * k k k1 *
R IR E5 dst < dst < src
R M E6 SWAPdst _f 1 R FO X % % X ——
R M E7 R F1
IR R F5
TCM dst,src (Note 1) 60 — % % 0 ——
LDC dst,src ro e 2 ———— (NOT dst) AND src
dst < src Irr r D2
TM dst,src (Note 1) 70 — % % 0 ——
LDCl dst,src Irrr C3 ——— dst AND src
dst < src Irr Ir D3 -
Fer+1rmerr+ XOR dst,src (Note 1) BO — % %0——
1 dst < dst XOR src
LDE dst sr ' | 8 NOTE: These instructions have an identical set of addressing modes,
st.sre i - which are encoded for brevity. The first opcode nibble is found in
dst < src Irrr 92 the instruction set table above. The second nibble is expressed
______ symbolically by a O in this table, and its value is found in the
:j';'f'_isrzsrc I'r'r 'I'r' gg following table to the left of the applicable addressing mode pair.
Fer+1rrerr+1 For example, the opcode of an ADC instruction using the
! addressing modes r (destination) and Ir (source) is 13.
NOP FF @ —— _
o Addr Mode Lower

R dst,src (Note 1) 40 — % % 0 ——
dst < dst OR src dst src Opcode Nibble
POP dst R 50 @ —————— r r
dst <« @SP; IR 51 .
SP<SP + 1 ' I

4

PUSH src R 70 —————— R R :
SP«<SP — 1;@SP<src IR 71 R IR
RCF CF 0————— R M (6]
c-o IR IM
RET AF ——
PC < @SP;SP <SP + 2
RL dst [——] R 90 * k k ok ——

IR 91 .

189

R240 SI10
Serial I/O Register
(FOH. Read/Write)

07 D[Ds Dy D3| Dz, Dy Dy
—_: SERIAL DATA (D, = LSB)

REGISTERS

'R241 TMR
Time Mode Register
(F1H; Read/Write)

EACACACAEACHEA

Tour MODES . Ln = NO FUNCTION
NoT USED = 00 1= LOAD T,
o 0 = DISABLE T, COUNT
INTERNAL CLOCK OUT = 11 1 = ENABLE T, COUNT
0 = NO FUNCTION
T,y MODES
EXTERNAL CLOCK INPUT = 00 1=1040T,
GATE INPUT = 01 0 = DISABLE T, COUNT
TRIGGER INPUT = 1 = ENABLE T, COUNT
(NON-RETRIGGERABLE)
RIGGER INPUT = 11
(RETRIGGERABLE)
R242 T1
Counter Timer 1 Register
. (F2H; Read/Wrijte)

‘ T, INITIAL VALUE (WHEN WRITTEN)
(RANGE 1 256 DECIMAL 01 00 HEX)

T, CURRENT VALUE (WHEN READ)

R243 PRE1
Prescaler 1 Register
(F3H: Write Only)

L COUNT MODE
1= T, MODULO-N
0 = T, SINGLE-PASS

CLOCK SOURCE
1 T, INTERNAL
0 T, EXTERNAL
TIMING INPUT
(Tin) MODE
PRESCALER MODULO

(RANGE 1-64 DECIMAL
01-00 HEX)

R244TO
Counter/Timer 0 Register
(F4H: Read/Write)

To INITIAL VALUE (WHEN WRITTEN)
(RANGE: 1-256 DECIMAL 01 00 HEX)

To CURRENT VALUE (WHEN READ)

R245 PREO
Prescaler 0 Register
(F5H; Write Only)

L COUNT MODE
. 0 = T, SINGLE-PASS
1 = To MODULO-N

RESERVED (MUST BE 0)

PRESCALER MODULO
(RANGE: 1-64 DECIMAL
01-00 HEX)

R246 P2M
Port 2 Mode Register
(F6H; Write Only)

CACACACACACADACY

P2,-P2; 110 DEFINITION
0 DEFINES BIT AS OUTPUT

1 DEFINES BIT AS INPUT

R247 P3M
Port 3 Mode Register
(F7H; Write Only)

0 PORT 2 PULL-UPS OPEN DRAIN
1 PORT.2 PULL-UPS ACTIVE

RESERVED (MUST BE 0)

0 P3; = INPUT P35 = OUTPUT

1 P3; = DAVO/RDY0 P35 = RDYO/DAVO
P33 = INPUT P3; = OUTPUT

} P33 = INPUT P34 = DM
RESERVED

0 P3; = INPUT'(T) P3g = OUTPUT (Toy)
1 P3; = DAV2/IRDY2 P3; - RDY2IDAVZ

0 P3p = INPUT P37 = OUTPUT

1 P3g = SERIALIN P37 - SERIAL OUT
0 PARITY OFF

1 PARITY ON

Figure 14. Control Registers

190

R248 POIM
Port 0 Mode Register
(F8H; Write Only)

’__{

P0,-P0; MODE P0,-P0; MODE
OUTPUT = 00 00 = OUTPUT
INPUT = 01 N 01 = INPUT
Aig-Arg = 1X 1X = Ag-Ayy
EXTERNAL STACK SELECTION
MEMORY TIMING 0 = EXTERNAL
- NORMAL = 0 1 = INTERNAL
*EXTENDED = 1 .
RESERVED (MUST BE 0)

*ALWAYS EXTENDED TIMING AFTER RESET

R249 IPR
Interrupt Priority Register
(FOH; Write Only)

[0c [0 [ou [0, [0 o, Jou
RESERVED j— |)
IRQ3, IRQS5 PRIORITY (GROUP A)
0 = IR

Qs > IRQ3 A>B5>C =010

1 = IRQ3 > IRQS A>C>B =0t

IRQO, IRQ2 PRIORITY (GROUP B) 4P
0 = IRQ2 > IRQO ‘B>A>C =110

1 - IRQO > IRQ2 - RESERVED = 111

IRQ1, IRQ4 PRIORITY (GROUP C)
0 = IRQ1 > IRQ4
1 = IRQ4 > IRQ1

R250 IRQ
Interrupt Request Register
(FAH; Read/Write)

-

RESERVED (MUST BE 0)
IRQ1 = P33 INPUT
IRQ2 = P3; INPUT

INTERRUPT GROUP PRIORITY ',J
RESERVED = 000 -
C>A>8 =001 REGISTER e

1RGO = P3, INPUT (Do = IRQOD)

R252 FLAGS
Flag Register
(FC: Read/Write)

o n oo o]

USER FLAG F1

USER FLAG F2

HALF CARRY FLAG
DECIMAL ADJUST FLAG
OVERFLOW FLAG

SIGN FLAG

ZERO FLAG

FLAG

-

R253 RP
Register Pointer
(FDn; Read/Write)

|

DON'T CARE

POINTER \ rg

'R254 SPH
Stack Pointer
(FER; Read/Write)

[010405004 [0, 0, [oo]
STACK POINTER UPPER

BYTE (SPy-SP,s)

IRQ3 = P3¢ INPUT, SERIAL INPUT

IRQ4 = To, SERIAL OUTPUT

IRQ5 = Ty

R251 IMR
N Interrupt Mask Register
(FBH; Read/Write)

BODBODE0

| 1 ENABLES IRQ0-IRQS

(Do = IRQO)

(MUST BE 0)

1 ENABLES

R255 SPL
Stack Pointer
(FFH;.Read/Write)

[0, [ocos[o. [0 [0a 0, Jou
STACK POINTER LOWER -

BYTE (SP,-SP;)

Figure14. Control Registers (Continued)

191

OPCODE MAP

Lower Nibble (Hex)
[1 2 3 4 5 6 7 8 9 A B (o] D E F
65 65 65 6.5 105 105 10.5 10.5 6.5 6.5 12/10.5 | 12/10.0 65 12/100 6.5
0 DEC DEC | ADD ADD ADD ADD ADD ADD LD LD DJINZ JR LD |. JP INC
Ry IRy ryrp rylrp RoRy | IR2.Ry | R{IM | IR{IM | ry.Rp Ry riRA | cc.RA ri.M cc DA rn
6.5 65 6.5 6.5 10.5 10.5 105 10.5
1 RLC RLC ADC ADC ADC ADC ADC ADC
Ry IRy .o ridrp | Ra.Ry | IR2.Ry | ReIM [IRy IM
65" 6.5 6.5 6.5 10,5 10.5 10,5 10,5
2 INC INC suB sus suB sus suB suB
Ry IRy irp | rdrs | RoRy | IRaRy | RydM | IRqIM
8.0 6.1 6.5 6.5 10,5 105 10.5 105 -
3 JP SRP SBC SBC SBC SBC SBC SBC
IRy M ri2 | ot | RaRy | IR2Ry | RiM | IRyIM
8.5 8.5 6.5 6.5 10,5 10,5 10,5 10,5
4 DA DA OR OR OR OR OR OR
Ry IRy 1o ridro | RaRy | IR2.Ry | RiM | IRy.IM
105 | 105 6.5 6.5 105 | 105 | 105 | 105
5 POP POP AND AND AND AND AND AND
Ry IRy rr2 | rdre | RaRy | IRaRy | RiM | IRyIM
6.5 6.5 6.5 6.5 -10.5 10.5 10.5 10,5 6,0
6 com com TCM TC™M TCM TCM ™™ TCM STOP
R1 IRy rq.rp rydrp Ro.Ry | IR2.Ry | RiIM | IRy IM
é 101121 | 12/141 6.5 6.5 10.5 10,5 10.5 10,5 70
e 7 PUSH | PUSH ™ ™ ™ ™ ™ ™ HALT
5 Ry IR 1.2 ridro | RoRy | IRo.Ry | RUM | IRyIM .
H 105 | 105 | 120 | 180 61
2 8 DECW | DECW | LDE LDEI DI
:& RR4 IRy rydrrp | gl
6.5 6.5 12.0 18.0 61
9 RL RL LDE LDEI El
Ry IRy rodrry | Irodrry]
105 10.5 6.5 6.5 10.5 10,5 10.5 10,5 14.0 -
A INCW | INCW CcP CcP cpP cpP cpP cpP RET
RRy IRy rrp | ordrs | RaRy | IRo.Ry | RyM | IRyIM
6.5 6.5 6.5 6.5 105 105 105 10,5 16.0
B CLR CLR XOR XOR XOR XOR XOR XOR IRET
Ry IRy 1o | rdro | RaRy | IRaRy | RyIM | IRyIM
6.5 6.5 12.0 18,0 10.5 65
C |.RRC RRC LDC LDCI LD RCF
R4 IRy ryldrrp | Irqlrrp r1.x.Ro
6.5 6.5 12.0 18,0 20,0 20.0 10.5 65
D SRA SRA LDC LDCI | CALL* CALL LD SCF
Ry IRy rodrry | Irplrry IRR¢ DA ro.x.Rq
6.5 6.5 6.5 10,5 10.5 105 10,5 65
E RR RR LD LD LD LD LD CCF
Ry IRy rJR2 | RoRy | IRaRy | RyIM | IRyIM
8.5 8.5 6.5 10.5 6.0
F SWAP | SWAP Lo LD NOP
R1 IRy Ir.r2 Ra.IRy / / Y \ \/ \ Y
\ N _ _
—~— — ~ — —_ N ——
L2 3 2 3 s
Bytes per Instruction
LOWER
OPCODE
NIBBLE
EXECUTION PIPELINE Legend:
. CYCLES 4 CYCLES R = 8-bitaddress
r = 4-bit address
UPPER 10,5 Ry orrq = Dstaddress
OPCODE ——3» A| CP <s¢——MNEMONIC Rporrp = Srcaddress
NIBBLE Ro.R
2 Sequence:
Opcode, First Operand, Second Operand
FIRST SECOND)
OPERAND OPERAND NOTE: The blank areas are not defined.

*2-byte instruction, fetch cycle appears as a 3-byte instruction

192

ABSOLUTE MAXIMUM RATINGS

Voltages on all pins with respect

toGND ... -0.3Vto +7.0V
Operating Ambient
Temperature See Ordering Information

Storage Temperature -65°Cto +150°C

Stresses greater than those listed under Absolute Maximum Ratings may
cause permanent damage to the device This i1s a stress rating only.
operation of the device at any condition above those indicated in the
operational sections of these specifications is not implied Exposure to
absolute maximum rating conditions for extended periods may affect
device reliability.

STANDARD TEST CONDITIONS

The DC chara\cteristlcs listed below apply for the following
standard test conditions, unless otherwise noted. All
voltages are referenced to GND. Positive current flows into
the referenced pin.

Standard conditions are as follows:
m + 45V <Vee <+55V

+5V
24K

FROM OUTPUT
UNDER TEST

9.1

150 pFI Ko

s GND =0V
B 0°C<Tp< +70°C for S (Standard Temperature) Figure 12. Test Load 1
DC CHARACTERISTICS
Symbol Parameter Min Typ Max Unit Condition
Veu Clock Input High Voltage 3.8V Veo Driven by External Clock Generator
Vo Clock Input Low Voltage -0.3 0.8 \ Driven by Extemnal Clock Generator
Vi Input High Voltage 2.0 Veo \Y ,
Vi Input Low Voltage -0.3 0.8
Vo Reset Input Low Voltage 3.8 Veo
Va Reset Input Low Voltage -0.3 0.8
Vou Output High Voltage 24 v loy = -2MA
Vou Output High Voltage Ve-100mV loy = -100uA
Vo Output Low Voltage 04 \' I, =5mA
I Input Leakage -10 10 uA Vi =0V,V,
oo Output Leakage -10 10 uA Vi=0V,V,
[Reset Input Current -80 uA 4.5V<V;<5.5V,V, =0V
loc _ Supply Current . mA All outputs and I/O pins floating
loey Halt Mode Current 5 mA All inputs driven at rail
loco Stop Mode Current 10 uA All inputs driven at rail

193

(-2

PORT

g

PORT 1

DS
(READ)

PORT 1

DS
(WRITE)

j ‘
@ ~@
Ao-A7 } < Do-D7 IN >
o o G-
_}__J/ o w—oN___
~—(O— O (%)
N /
7 Ag-A7 X Do-D7 OUT
—o— o~
| 3 | Jpreee
N Y

Figure 13. External I/0O or Memory Read/Write

AC CHARACTERISTICS
External /O or Memory read and Write Timing

12MHz 16MHz 20MHz

-Units Notes

Number Symbol Parameter Min Max Min Max Min Max
1 TdA(AS) Address Valid to AS tDelay 35 25 20 ns 2,34
2 TdAS(A) AS tto Address Float Delay 45 35 25 ns 2,34
3 TdAS(DR) AStto Read Data Req'd Valid 250 180 150 ns 1,2,34
4 TwAS AS Low Width 55 40 30 ns 2,34
5 TdAZ(DS) Address Float to DS+ 0 0 0 ns
6 TwDSR DS (Read) Low Width 185 135 105 ns 1,2,3,4
7 TwDSW DS (Write) Low Width 110 80 65 ns 1,2,3,4
8 TdDSR(DR) DSito Read Data Req'd Valid 130 75 55 ns 1,234
9 ThDR(DS) Read Data to DS tHold Time 0 0 0 ns 2,34
10 TdDS(A) DS tto Address Active Delay 65 50 40 ns 2,34
11 TdDS(AS) DStto ASiDelay 45 35 25 ns 234
12 TdR/W(AS) R/W Valid to AStDelay 33 25 20 ns 2,34
13 TdDS(R/W) DStto RAW Not Valid 50 . 35 25 ns 2,34
14 TdDW(DSW) Write Data Valid to DS {(Write) Delay 35 25 20 ns . 234
15 TdDS(DW) DStto Write Data Not Valid Delay 55 35 25 ns 2,34
16 TdA(DR) Address Valid to Read Data Req'd Valid 310 230 180 ns 1,2,34
17 TdAS(DS) ASttoDSiDelay 65 45 35 ns 2,34
18 TdDI(DS) Data Input Setup to DSt 75 60 50 ns 1234
19 TdDM(AS) DM Valid to AS{Delay 50 30 20 ns 2,34
Notes

1. When using extended memory timing add 2TpC

2. Timing numbers given are for minimum TpC

3. See clock cycle dependent characteristics table

4. 20 MHz timing is preliminary and subject to change

+ TestLoad 1
° All timing references use 2.0V for a
logic “1” and 0.8V for a logic “0”

194

| e

fee 7
Tin
H

T

CLOCK
- | -»|

Figure 14. Additional Timing

AC CHARACTERISTICS
Additional Timing Table
12 MHz 16 MHz 20 MHz

Number Symbol Parameter Min Max Min Max Min Max Notes
1 TpC Input Clock Period 83 1000 625 1000 50 1000 1
2 TrC,TfC Clock Input Rise & Fall Times 15 10 : 10 1
3 , TwC Input Clock Width 37 21 15 1
4 TwTinL Timer Input Low Width 75 75 75 2
5 TwTinH Timer Input High Width 3TpC 3TpC 3TpC 2
6 TpTin Timer Input Period 8TpC 8TpC 8TpC 2
7 TrTin, TfTin Timer Input Rise and Fall Times 100 100 100 2
8A TwiL Interrupt Request Input Low Time 70 70 70 24
8B TwiL Interrupt Request Input Low Time 3TpC 3TpC 3TpC 25
9 TwiH Interrupt Request Input High Time 3TpC 3TpC 3TpC 23

Notes:

1. Clock timing references use 3.8 V for a logic “1” and 0.8 V for a logic “0”
2. Timing references use 2.0 V for a logic “1" and 0.8 V for a logic “0"

3. Interrupt references request via Port 3

4. Interrupt request via Port 3 (P3, - P3,)

5. Interrupt request via P30

6. 20 MHz timing is preliminary and subject to change.

Units in nanoseconds (ns)

195

2. T
DATAIN >(DATA IN VALID X . NEXT DATA IN VALID

<C.

-1 s |
” —_@/_ T L L ‘J N

RDY

Figure 15a. Input Handshake Timing

DATA OUT)
X DATA OUT VALID NEXT DATA OUT VALID

" N A NEEEEAN
@/_ _ swvmmy

Figure 15b. Output Handshake Timing

AC CHARACTERISTICS
Handshake Timing
12,16,20 MHz

Number Symbol Parameter Min Max Notes (Data Direction)
1 TsDI(DAV) Data In Setup Time 0 In
2 ThDI(DAV) Data In Hold Time 145 In
3 TwDAV - Data Available Width 110 In
4 TdDAV(RDY) DAVito RDY {Delay 115 R]
5 TdDAV(RDY) - DAVtio RDYtDelay 115 In
6 TdRDY(DAV) RDYtto DAViDelay 0 In
7 TdDO(DAV) Data Out to DAV Delay TpC Out
8 TdDAVJ(RDY) DAVito RDY{Delay 0 Out
9 TdRDY(DAV) RDY+to DAV tDelay 115 Out
10 TwRDY RDY Width 110 Out
11° TdRDY(DAV) RDYtto DAV/{Delay 115 Out’

196

CLOCK DEPENDENT AC CHARACTERISTICS

External I/O or Memory Read and Write Timing

Number Symbol Equation

1 TAA(AS) 0.4TpC+0.32
2 TdAS(A) 0.59TpC-3.25
3 TdAS(DR) 2.83TpC+6.14
4 TWAS 0.66TpC-1.65
6 TwDSR 2.33TpC-10.56
7 TwDSW 1.27TpC+1.67
8 - TdDSR(DR) 1.97TpC-42.5
10 TdDS(A) 0.8TpC

" TdDS(AS) 0.59TpC-3.14
12 TAR/W(AS) 0.4TpC

13 TdDS(R/W) 0.8TpC-15

14 TdDW(DSW) 0.4TpC

15 TdDS(DW) 0.88TpC-19
16 TdA(DR) 4TpC-20

17 TAAS(DS) 0.91TpC-10.7
18 TsDI(DS) 0.8TpC-10

19 TdDM(AS) 0.9TpC-26.3

197

198

 AUGUST 1989

Application Notes/Technical Articles

Z8 Family
Design Handbook

199

MEMORY SPACE AND REGISTER
ORGANIZATION

Memory Space

The Z8 can address up to 126K bytes of
program and data memory separately from the on
chip registers. The 16-bit program counter
provides for 64K bytes of program memory, the
first 2K bytes of which are internal to the Z8.
The remaining 62K bytes of program memory are
located ‘externally and can be implemented with
ROM, EPROM, or RAM,

- The 62K bytes of data memory are also loc-
ated external to the Z8 and begin with location
2048. The two address spaces, program memory
and data memory, are individually selected by
-the Data Memory Select output (. which is
available from Port 3.

The Program Memory Map and the Data Memory
Map are shown in Figure 2.

Program Memory Map Data Memory Map

" 65535 65535
EXTERNAL
ROM OR RAM
2048
2047
LOCATION OF FIRST oN.CHIP
BYTE OF INSTRUCTION ROM
EXECUTED AFTER RESET
| EXTERNAL
_________ TERN
12 [MEMORY
" 1RQS
10 1RQs
9 1RG4
] 1RQ4
INTERRUPT VECTOR 7 1RQ3
(LOWER BYTE) s Ra3
s 1RO2
B RG2 2048
INTERRUPT VECTOR 3 RO Ll
(UPPER BYTE) 2 ot
: hos NOT ADDRESSABLE
) 1ROO o

Figure 2 Program Memory Map And Data Memory Map

External memory access is accomplished by
the Z8 through its I/O Ports. When less than
256 bytes of external memory are required, Port
1 is programmed for the multiplexed address/data
mode (ADP-AD7). In this configuration 8-bits of
address and 8-bits of data are time multiplexed
on the 8 I/0 lines for memory transfers. The
memory "handshake'* control lines are provided by
the Address Strobe (AS), Data Strobe (DS), and
the Read/Write (R/W) pins on tne Z8.
and data are included in the external memory
space, the Data Memory Select (IM) function may
be programmed into the Port 3 Mode register.
When this is done, the IM signal is available on

‘space or in the external data memory space.

If program

line 4 of the Port 3 (P34) to select between .
program and data memory for external memory oper-
ations. ' .

Port 0 is used to provide the additional
address bits for external memory beyond the
first 256 locations up to a full 16-bits of
external memory address. It becomes immediately -
obvious that the first 8-bits of external memory
address from Port 1 must be latched externally
to the Z8 so ‘that program or data may be trans-
ferred over the same 8 lines during the external
memory transaction machine cycle. The AS, IS,
and R/W control lines simplify the required
interface logic. The timing for external memo
transactions is given in Figure 3. '

Registers

The Z8 has 144 8-bit registers including
four Port registers (RO-R3), 124 general purpose
registers (R4-R127), and 16 control and status
register (R240-R255). The 144 registers are all
located in the same 8-bit address space to allow
any 28 instruction to operate on them. The 124
general purpose registers can function as accum-
ulators, address pointers, or index registers.
The registérs are read when they are referenced
as source registers, and written when they are
referenced as destination registers. Registers
may be addressed directly with an 8-bit address,
or indirectly through another register with an
8-bit address, or with a 4-bit ress and Reg-
ister Pointer.

The entire Z8 register space may be divided
into 16 contiguous Working Register Areas, each
having 16 registers. A control vegister, called
the Register Pointer, may be loaded with the
most significant nibblé of a Working Register
Area address. The Register Pointer provides for
the selection of the Working Register Area, and
allows registers within that area to be selected
with a 4-bit address.

The Z8 register organization is shown in
Figure 4.

Stacks

The Z8 provides for stack operations
through the use of a stack pointer, and the
stack may be located in the internal register"
The
"'stack selection" bit (D2) in the Port 0-1 Mode
control register selects an internal or external
stack. When the stack is located internally,
regilster 255 contains an 8-bit stack pointer and
register 254 is available as a general purpose
register. If an external stack is used, register
255 or registers 254 and 255 may be used as the
stack pointer depending on the anticipated
"depth" of the stack. When registers 254 and
255 are both used, the stack pointer is a full
16-bits wide. The CALL, IRET, RET, PUSH, and

200

POP instructions are Z8 instructions which in-
clude implicit stack operations.

1/0 STRUCTURE
Parallel I/0

The Z8 microcomputer has 32 lines of I/0
arranged as four 8-bit ports. All of the 1/0
ports are TTL compatible and are configurable as
input, output, input/output, or address/data.
The handshake control lines for Ports 0, 1; and
2 are bits from Port 3 that have been programmed
through a Mode control register, except for AS,
DS, and which are available as separate Z8
pins. The I/O ports are accessed as separate
internal registers by the Z8. Ports 0 and 1
share one Mode control register, and Ports 2
and 3 each have a Mode control register for
configuring the port.

Port 0 can be programmed to be an I/0 port
or as an address output port. More specifically
Port 0 can be configured to be an 8-bit I/0 port,
or a 4-bit address output port (A8-All) for
external memory and one 4-bit I/O port, or an
8-bit address output port (A8-A15) for external
memory.

Port 1 can be programmed as an I/0 port
(with or without handshake), or an address/data
port (ADf-AD7) for interfacing with external
memory. If Port 1 is programmed to be an add-
ress/data port, it cannot be accessed as a reg-
ister.

Port 2 can be configured as individual
input or output bits, and Port 3 can be program-
med to be parallel I/O bits, and/or serial 1/0
bits, and/or handshake control lines for the
other ports. Figure S shows the port Mode
registers.

The off chip expansion capability using
Ports 0 and 1 offers the added feature of being
Z-Bus compatible. All Z-Bus compatible peri-
pheral chips that are available now, and will be
available in the future, will interface directly
with the Z8 multiplexed address/data bus.

Serial I/0

As memtioned in the last section, Port 3
can be programmed to be a serial I/0 port with
bits 0 and 7, the serial input and serial out-
put lines respectively. The serial I/0O capabil-
ity provides for full duplex asynchronous serial
data at rates up to 62.5K bits per second. The
transmitted format is one start bit, eight data
bits including odd parity (if parity is enab- -
led), and two stop bits. The received data
format is one start bit, eight data bits and at
least one stop bit. If parity is enabled, the
eighth data bit received (bit 7) is replaced by

a parity error flag which indicates a parity
error if it is set to a ONE.

Timer/Counter T, is the baud rdte generator
and runs at 16 times the serial data bit rate.
The receiver is double duffered and an internal
interrupt (IRQ3) is generated when a character
is loaded into the receive buffer register. A
different internal interrupt (IRQ4) is generated
when a character is transmitted.

COUNTER/TIMERS

The Z8 has two 8-bit programmable counter/
timers, each of which is driven by a program-
mable 6-bit prescaler. The T, prescaler can be
driven by internal or extemal clock sources,
and the T, prescaler is driven by the internal
clock on19. The two prescalers and the two
counters are loaded through four control regis-
ters (see Figure 4) and when a counter/timer
reaches the "end of count" a timer interrupt is
generated (IRQ4 for TO’ and IRQS for T,). The
counter/timers can be programmed to stdp upon
reaching the end of count, or to reload and
continue counting. Since either counter (one at
a time) can have its output available external
to the Z8, and Counter/Timer Tj] can have an
external input, the two counters can be cas-
caded.

Port 3 can be programmed to provide timer
outputs for external time base generation or

' trigger pulses.

INTERRUPT STRUCTURE

The Z8 provides for six interrupts from
eight different sources including four Port 3
lines (P30-P33), serial in, serial out, and two
counter/timers. These interrupts can be masked
and prioritized using the Interrupt Mask Regis-
ter (register 251) and the Interrupt Priority
Register (register 249). All interrupts can be
disabled with the master interrupt enable bit
in the Interrupt Mask Register,

Each of the six interrupts has a 16-bit
interrupt vector that points to its interrupt
service routine. These six 2-byte vectors are
placed in the first twelve locations in the pro-
gram memory space (see Figure 2).

When simultaneous interrupts occur for
enabled interrupt sources, the Interrupt Prior-
ity Register determines which interrupt is ser-
viced first. The priority is programmable in a
way that 1s described by Figure 6.

When an interrupt is recognized by the Z8,
all other interrupts are disabled, the program
counter and program control flags are saved, and
the program counter is loaded with the corres-
ponding interrupt vector. Interrupts must be
re-enabled by the user upon entering the service

201

A Programmer’'s Guide to
the Z8™ Microcomputer

Application
Note

Doll Freund

October 1980

SECTION
1

Introduction

The Z8 is the first microcomputer to offer
both a highly integrated microcomputer on a
single chip and a fully expandable micropro-
cessor for [/O-and memory-intensive applica-
tions. The Z8 has two timer/counters, a UART,
2K bytes internal ROM, and a 144-byte inter-
nal register file including 124 bytes of RAM,
32 bits of I/O, and 16 control and status reg-
isters. In addition, the Z8 can address up to
124K bytes of external program and data
memory, which can provide full, memory-
mapped 1/O capability.

This application note describes the important
features of the Z8, with software examples that
illustrate its power and ease of use. It is
divided into sections by topic; the reader need
not read each section sequentially, but may
skip around to the sections of current interest.

It is assumed that the reader is familiar with
the Z8 and its assembly language, as
described in the following documents:

B 78 Téchnical Manual (03-3047-02)

B 78 PLZ/ASM Assembly Language Program-
ming Manual (03-3023-02)

Accessing Register Memory

The Z8 register space consists of four I/O
ports, 16 control and status registers, and 124
general-purpose registers. The general-
purpose registers are RAM areas typically used
for accumulators, pointers, and stack area.
This section describes these registers and how
they are used. Bit manipulation and stack '
operations affecting the register space are
discussed in Sections 4 and 5, respectively.

2.1 Registers and Register Pairs. The 78 sup-
ports 8-bit registers and 16-bit register pairs.
A register pair consists of an even-numbered
register concatenated with the next higher
numbered register (%00 and %01, %02 and
%03, ... %7E and %7F, %F0 and %F1, ...
%FE and %FF). A register pair must be
addressed by reference to the even-numbered
register. For example,

%F1 and %F2 is not a valid register pair;
%FO0 and %F1 is a valid register pair,
addressed by referénce to %FO.

" Register pairs may be incremented (INCW)
and decremented (DECW) and are useful as
pointers for accessing program and external
data memory. Section 3 discusses the use of
register pairs for this purpose.

Any instruction which can reference or
modify an 8-bit register can do so to any of the
144 registers in the Z8, regardless of the
inherent nature of that register. Thus, /O

"ports, control, status, and general-purpose

registers may all be accessed and manipulated
without the need for 'special-purpose instruc-
tions. Similarly, instructions which reference
or modify a 16-bit register pair can do so to
any of the valid 72 register pairs. The only
exceptions to this rule are:

B The DINZ (decrement and jump if non-zero)
instruction may successfully operate on the
general-purpose RAM registers (%04-%7F)
only.

W Six control registers are write-only registers
and therefore, may be modified only by
such instructions as LOAD, POP, and
CLEAR. Instructions such as OR and AND
require that the current contents of the
operand be readable and therefore will not
function properly on the write-only
registers. These registers are the following:
the timer/counter prescaler registers PREQ
and PREI, the port mode registers POIM,
P2M, and P3M, the interrupt priority
register IPR.

202

'

2. Accessing 2.2 Register Pointer, Within the register

Register
Memory
(Continued)

addressing modes provided by the Z8, a regis-
ter may be specified by its full 8-bit address
(0-%7F, %F0-%FF) or by a short 4-bit
address. In the latter case, the register is
viewed as one of 16 working registers with-

in a working register group. Such a group
must be aligned on a 16-byte boundary and is
addressed by Register Pointer RP (%FD). As
an example, assume the Register Pointer con-
tains %70, thus pointing to the working reg-
ister group from %70 to %7F. The LD instruc-
tion may be used to initialize register %76 to
an immediate value in one of two ways:

LD %76,#1 !8-bit register address is given
by instruction (3 byte instruc-
tion)!

or -
LD R6,#1 14-bit working register address
is given by instruction; 4-bit
working register group
address is given by Register
Pointer (2 byte instruction)!

e [o o)

The address calculation for the latter case
is illustrated in Figure 1. Notice that 4-bit
working-register addressing offers code com-
pactness and fast execution compared to its
8-bit counterpart.

To modify the contents of the Register -
Pointer, the Z8 provides the instruction

SRP #value

Execution of this instruction will load the
upper four bits of the Register Pointer; the
lower four bits are always set to zero. Although .
a load instruction such as

LD RP,#value

could be used to perform the same function,
SRP provides execution speed (six vs. ten
cycles) and code space (two vs. three bytes)
advantages over the LD instruction. The
instruction .

SRP #%70

is used to set the Register Pointer for the above
example.

INSTRUCTION
(LD R6,#1)

fo v 1 o1t 10 o}

fo o o ofo o o 1]

Jo 1+ 1 1o 1 1 o]

Figure 1. Address Calculation Using the Register Pointer

2.3 Context Switching. A typical function
performed during an interrupt service routine
is context switching. Context switching refers
to the saving and subsequent restoring of the
program counter, status, and registers of the
interrupted task. During an interrupt machine
cycle, the Z8 automatically saves the Program
Counter and status flags on the stack. It is the
responsibility of the interrupt service routine to
preserve the register space. The recommended
means to this end is to allocate a specific por-
tion of the register file for use by the service
routine. The service routine thus preserves the
register space of the interrupted task by avoid-
ing modification of registers not allocated as its
own. The most efficient scheme with which to
implement this function in the Z8 is to allocate
a working register group (or portion thereof) to
the interrupt service routine. In this way, the
preservation of the interrupted task’s registers
is solely a matter of saving the Register Pointer
on entry to the service routine, setting the
Register Pointer to its own working register
group, and restoring the Register Pointer prior
to exiting the service routine. For example,

assume such a register allocation scheme has
been implemented in which the interrupt ser-
vice routine for IRQO0 may access only working
register Group 4 (registers %40-%4F). The

-service routine for IRQO should be headed by

the code sequence:

PUSH RP Ipreserve Register Pointer of
interrupted task!
SRP #%40 laddress working register

group 4!

Before exiting, the service routine should
execute the instruction

POP RP

to restore the Register Pointer to its entry
value.)

It should be noted that the technique
described above need not be restricted to
interrupt service routines. Such a technique
might prove efficient for use by a subroutine
requiring intermediate registers to produce its
outputs. In this way, the calling task can
assume that its environment is intact upon
return from the subroutine.

203

2. Accessing 2.4 Addressing Mode. The Z8 provides three ’

Register
Memory
(Continued)

. addressing modes for accessing the register

space: Direct Register, Indirect Register, and
'Indexed.

2.4.1 Direct Register Addressing. This
addressing mode is used when the target regis-
ter address is known at assembly time. Both-
long (8-bit) register addressing and short
(4-bit) working register addressing are sup-
ported in this mode. Most instructions sup-
porting this mode provide access to single
8-bit reqgisters. For example:

LD %FE,#HI STACK
lload register %FE (SPH) with
the upper 8-bits of the label
STACK!

AND 0,MASK__REG

IAND register 0 with register

named MASK__REG!

IOR register 1 with working

reqgister 5!

OR 1,R8

Increment word (INCW) and decrement
word (DECW) are the only two Z8 instructions
which access 16-bit operands. These instruc-
tions are illustrated below for the direct reg-
ister addressing mode.

INCW RRO !increment working register
pair RO, RIl:
Rl <« Rl + 1
RO - RO + carry! -
DECW %7E
!decrement working register
pair %7E, %7F:
%7F < %7F - 1
%7E - %7E — carry!

~ Note that the instruction

INCW RRS

will be flagged as an error by the assembler
(RRS5 not even-numbered).

2.4.2 Indirect Register Addressing. In this
addressing mode, the operand is pointed to by
the register whose 8-bit register address or
4-bit working register address is given by the
instruction. This mode is used when the target
register address is not known at assembly time
and must be calculated during program execu-
tion. For example, assume registers %60-%7F
contain a buffer for output to the serial line via
repetitive calls to procedure SERIAL__OUT.
SERIAL__OUT expects working register 0 to
hold the output character. The following
instructions illustrate the use of the indirect
addressing mode to accomplish this task:

LD RI1,#%20

i Iworking register 1 is the byte

counter: output %20 bytes!

LD R2,#%60"
Iworking register 2 is the buf-
fer pointer register!

out__again:
LD RO,@R2 . .
lload into working register 0
the byte pointed to by working
reqgister 2!
INC R2 lincrement pointer!

CALL SERIAL__OUT
loutput the byte!
DINZ Rl,out __again
oop till done!

Indirect addressing may also be used for
accessing a 16-bit register pair via the INCW
and DECW instructions. For example,

INCW @ROQ lincrement the register pair
whose address is contained in
working register 0!
DECW @%7F
: Idecrement the register pair
whose address is contained in
register %7F! .

The contents of registers RO and %7F should
be even numbers for proper access; when
referencing a register pair, the least significant
address bit is forced to the appropriate value °
by the Z8. However, the register used to point
to the register pair need not be an even-
numbered register.

Since the indirect addressing mode permits
calculation of a target address prior to the
desired register access, this mode may be used
to simulate other, more complex addressing
modes. For example, the instruction

SUB 4,BASE(R5)

requires the indexed addressing mode which is
not directly supported by the Z8 SUBtract
instruction. This instruction can be simulated
as follows:

LD R6,#BASE
lworking register 6 has the
base address!

ADD R6,R5 !calculate the target address!

SUB 4,@R6 !now use indirect addressing to
perform the actual subtract!

Any available register or working register
may be used in place of R6 in the
above example.

2.4.3 Indexed Addressing. The indexed
addressing mode is supported by the load
instruction (LD) for the transference of bytes
between a working register and another regis-
ter. The effective address of the latter register
is given by the instruction which is offset by
the contents of a designated working (index)

204

2. Accessing

register. This addressing mode provides

LD Rl,#BUF+LENGTH-1

Register efficient memory usage when addressing LD RO,#LENGTH
Memory consecutive bytes in a block of register Istarting at buffer end, look for
(Continued) memory, such as a table or a buffer. The 1st non-blank!
working register used as the index in loopl: ‘
the effective address calculation can CP @Rl,#'
serve the additional role of counter for JR ne,foundl
control of a loop’s duration. : lfound non-blank!
For example, assume an ASCII character DEC Rl !dec pointer!
buffer exists in register memory starting at DINZ RO,loopl
address BUF for LENGTH bytes. In order lare we done?!
to determine the logical length of the char- all__blanksl: !length = 0!
acter string, the buffer should be scanned foundl:
backward until the first nonoccurrence of a 6 instructions
blank character. The following code 13 bytes
sequence may be used to accomplish 3 us overhead
this task: 9.5 us (average) per character tested
LD RO,#LENGTH The latter method requires one more byte of
!length of buffer! . program memory than the former, but is faster
Istarting at butfer end, look for by four execution cycles (1 us) per character
1st non-blank! tested.
loop: As an alternate example, assume a buffer
LD RI1,BUF-1(RO) exists as described above, but it is desired to
CP RL#' scan this buffer forward for the first occur-
JR ne,found rence of an ASCII carriage return. The follow-
lfound non-blank! ing illustrates the code to do this:
DINZ RQdeop @ sl LD RO,#-LENGTH
. : Istarting at buffer start, look for
all_blanks: llength = 0! 1st carriage return (= %0D)!
found: : .
next: - .
5 instructions LD rl,BUF+LENGTH(RO)
12 bytes CP RI,#%0D
1.5 ps overhead JR eg,cr lfound it!
10.5 ps (average) per character tested INC RO lupdate counter/index!
At labels “all__blanks” and “found,” RO JR nznext
contains the length of the character ltry again!
string. These labels may refer to the same cr:
location, but they are shown separately for ADD RO, #LENGTH
an application where special processing is !RO has length to CR!
required for a string of zero length. To per- 7 instructions
form this task without indexed address- 16 bytes
ing would require a code sequence 1.5 us overhead
such as: 12 us (average) per character tested
SECTION Accessing Program and External Data LDE or the indirect working register address-

3

Memory .

In a single instruction, the Z8 can transfer a
byte between register memory and either pro-
gram or external data memory. Load Constant
(LDC) and Load Constant and Increment
(LDCI) reference program memory; Load
External (LDE) and Load External and Incre-
ment (LDEI) reference external data memory.
These instructions require that a working
register pair contain the address of the byte in
either program or external data memory to be
accessed by the instruction (indirect working
register pair addressing mode). The register
byte operand is specified by using the direct
working register addressing mode in LDC and

ing mode_in LDCI and LDEI. In addition to
performing the designated byte transter, LDCI
and LDEI automatically increment both the
indirect registers specified by the instruction.
These instructions are therefore efficient for
performing block moves between register and
either program or external data memory. Since
the indirect addressing mode is used to specify
the operand address within program or exter-
nal data memory, more complex addressing
modes may be simulated as discussed earlier
in Section 2.4.2. For example, the instruction

LDC R3,BASE(R2)

requires the indexed addressing mode, where

205

3. Accessing
Program and
External Data
Memory
(Continued)

BASE is the base address of a table in program
memory and R2 contains the offset from table
start to the desired table entry. The following
code sequence simulates this instruction with
the use of two additional registers (RO and R1
in this example).

LD RO,#HI BASE
LD R1,#LO BASE

IRRO has table start address!
ADD RI,R2
ADC RO,#0 :

IRRO has table entry address!
LDC R3,@RR0O

IR3 has the table entry!

3.1 Configuring the Z8 for I/O Applications
vs. Memory Intensive Applications. The 78
offers a high degree of flexibility in memory
and IO intensive applications. Thirty-two port
bits are provided of which 16, 12, eight, or
zero may be configured as address bits to
external memory. This allows for addressing of
62K, 4K or 256 bytes of external memory,
which can be expanded to 124K, 8K, or 512
bytes if the Data Memory Select output (DM) is
used to distinguish between program and data
memory accesses. The following instructions
illustrate the code sequence required to con-
figure the Z8 with 12 external addressing lines
and to enable the Data Memory Select output.

LD POIM, #%(2)00010010
Ibit 3-4: enable ADy-ADy;
bit 0-1: enable Ag-Aj;!
LD P3M, #%(2)00001000)

Ibit 3-4: enable DM!
The two bytes following the mode selection of
ports 0 and 1 should not reference external
memory due to pipelining of instructions within
the Z8. Note that the load instruction to P3M
satisfies this requirement (providing that it
resides within the internal 2K bytes of
memory).

3.2 LDC and LDE. To illustrate the use of the

“Load Constant (LDC) and Load External (LDE)

instructions, assume there exists a hardware
configuration with external memory and Data
Memory Select enabled. The following module
illustrates a program for tokenizing an ASCII
input buffer. The program assumes there is a
list of delimiters (space, comma, tab, etc.) in
program memory at address DELIM for
COUNT bytes (accessed via LDC) and that an
ASCII input buffer exists in external data
memory (accessed via LDE). The program
scans the input buffer from the current location
and returns the start address of the next token
(i.e. the address of the first nondelimiter
found) and the length of that token (number of
characters from token start to next delimiter).

Z8ASM 2.0
Loc OBJ CODE STMT SOURCE STATEMENT
1 SCAN MODULE
2 CONSTANT
3 COUNT := 6
4 GLOBAL
5 $SECTION PROGRAM
P 0000 20 3B 2C 6 DELIM. ARRAY [COUNT BYTE] HE
P 0003 2E 0A OD
~) g [rov, v3r , 1, , ', , %0A, %0D]
P.0006 9 scan PROCEDURE
DO DRI RN NIRRT IR IIITNNNRNN
11 Purpose = To find the next token within an
12 ASCII buffer.
13 -
14 Input = RRO = address of current location
15 within input buffer in external
16 memory.
17
18 Output = RR4 = address of start of next token
19 RRO = address of new token's ending
20 delimiter
21 R2 = length of token
22 R3 = ending delimiter
23 R6,R7,R8,R9 destroyed
24
D5 FERERREREREREARER IR IR R AR R AR R R R R AR RRRRRRRRRRRRANH
. 26 ENTRY
P 0006 BO E2 2% clr R2 !1n1t. length counter!
2 DO N
P 0008 82 30 29 LDE R3,@RRO !get byte from input buffer!
P 000A A0 EO 30 incw RRO !increment pointer!
P 000C D6 O0O02E' 31 call check !look for non-delimiter!
P 000F FD 0015" 32 IF C THEN o
P 0012 8D 0018" 33 EXIT !found token start!
34 FI
P 0015 8D 0008 35 oD

206

P 0018 48 EO 37 1d R4, RO
P 001A 58 E1 38 1ld R5,R1 'RR4 = token starting addr!
39 Do)
P 001C 2E 40 inc R2 tinc. length counter!
P 001D 82 30 i1 LDE . R3,@RRO !get next input byte!
P 001F D6 O0O2E"' 42 call check flook for delimiter?
P 0022 7D 0028" 43 IF NC THEN
P 0025 8D 002D! 4y - EXIT !found token end!
. 45 FI
P 0028 A0 EO 46 incw RRO tpoint to next byte!
P 002A 8D o001C! Hg oD
. 4
P 002D AF 49 ret
P O002E 50 END scan
51
P 002E 52 check PROCEDURE
D3 IREEREREERR RN RN R RN RN R RN AN I RN RERRRRRANR
54 Purpose = compare current character with
55 delimiter table until table
56 end or match found
57
58 input = DELIM = start address of table
59 COUNT = length of that table
g? R3 = byte to be scrutinized
62 output = Carry flag = 1 => input byte
23 is not a delimiter (no match found)
65 Carry flag = 0 => input byte
66 is a delimiter (match found)
gg R6,RT,R8,R9 destroyed
6O FEEEREREEERARIRRERERLRAREERTRR AR ERIRRF AR IR AR ERRRRRRRH |
T0 ENTRY
P 002E 6C 00% 7 1d R6,#HI DELIM
P 0030 7C 00% 72 1d R7,#LO DELIM 'RR6 points to
73 delimiter list!
P 0032 8C 06 T4 1d R8, #COUNT IR8 = length of list!
75 here:
P 0034 C2 96 76 LDC R9,@RR6 lget table entry!
P 0036 A0 E6 77 inew RR6 fpoint to next entry!
P 0038 A2 93 78 cp R9,R3 !R3 = delimiter?!
P 003A 6B 03 79 jr eq,bye lyes. carry = 0!
P 003C 8A F6 80 djnz R8,here Inext entry!
P 003E DF 81 sef ftable done. R3
82) not a delimiter!
83 bye:
P 003F AF 84 ret
P 0040 85 END check
86 END SCAN

0 ERRORS
ASSEMBLY COMPLETE

27 instructions
58 bytes

Execution time is a function of the number of leading delimiters
before token start (x) and the number of characters in the

token (y): 123 ps overhead + 59x ps + 102y ps
(average) per token

3.3 LDCI. A common function performed in Z8
applications is the initialization of the register
space. The most obvious approach to this func-
tion is the coding of a sequence of “load

- register with immediate value”’ instructions
(each occupying three program bytes for a

register or two program bytes for a working
register). This approach is also the most effi-
cient technique for initializing less than eight
consecutive registers or 14 consecutive work-
ing registers. For a larger register block, the

207

3. Accessing LDCI instruction provides an economical
Program and means of initializing consecutive registers from
External Data an initialization table in program memory. The

‘Memory
(Continued)

following code excerpt illustrates this tech-
nique of initializing control registers %F2
through %FF from a 14-byte array (INIT__tab)
in program memory:

SRP #%00
IRP not %FO!
LD R6,#HI INIT__tab
LD R7,#LO INIT__tab
LD R8,#%F2
) I1st reqg to be initialized!
LD R9,#14
llength of register block!
loop:
LDCI @R8,@RR6
lload a register from the
init table!
DINZ R9,loop
lcontinue till done!
7 instructions
14 bytes
7.5 us overhead
7.5 us per register initialized

8.4 LDEI. The LDEI instruction is useful for
moving blocks of data between external and
register memory since auto-increment is per-
tormed on both indirect registers designated
by the instruction. The following code excerpt
illustrates a register buffer being saved at
address %40 through %60 into external
memory at address SAVE:

LD RI0,#HI SAVE
lexternal memory!
LD RI1l,#LO SAVE
laddress!
LD R8,#%40
Istarting register!
LD R9,#%21
Inumber of registers to save in
external data memory!
loop:
LDEl @RR10,@R8
_ linit a register!
DINZ R9,loop
‘ luntil done!
6 instructions
12 bytes :
6 us overhead o
7.5 us per register saved

SECTION
4

Bit Manipulations

Support of the test and modification of an
individual bit or group of bits is required by
most software applications suited to the Z8
microcomputer. Initializing,and modifying the
Z8 control registers, polling interrupt requests,
manipulating port bits for control of or com-
munication with attached devices, and manipu-
lation of software flags for internal control pur-

"poses are all examples of the heavy use of bit

manipulation functions. These examples illus-

trate the need for such functions in all areas of

the Z8 register space. These functions are sup-
ported in the Z8 primarily by six instructions:

B Test under Mask (TM)

B Test Complement under Mask (TCM)
m AND

m OR

m XOR

Complement (COM)

These instructions may access any Z8 register,
regardless of its inherent type (control, I/O, or
general purpose), with the exception of the six
write-only control registers (PREQ, PRE1,
POIM, P2M, P3M, IPR) mentioned earlier in
Section 2.1. Table 1 summarizes the function
performed on the destination byte by each of
the above instructions. All of these instruc-
tions, with the exception of COM, require a
mask operand. The “selected” bits referenced
in Table 1 are those bits in the destination
operand for which the corresponding mask bit
is a logic 1.) .

Opcode Use

™ To test selected bits for logic 0
TCM To test selected bits for logic 1
AND To reset all but selected bits to logic 0

OR To set selected bits to logic 1
XOR To complement selected bits
CQM To complement all bits

Table 1. Bit Manipulation Instruction Usage

The instructions AND, OR, XOR, and COM
have functions common to today’s micro-
processors and therefore are not described in
depth here. However, examples of the use of
these instructions are laced throughout the
remainder of this document, thus giving an
integrated view of their uses in common func-
tions. Since they are unique to the Z8, the
functions of Test under Mask and Test Comple-
ment under Mask, are discussed in more detail
next.

4.1 Test under Mask (TM); The Test under
Mask instruction is used to test selected bits for
logic 0. The logical operation performed is

. destination AND source

Neither source nor destination operand is
modified; the FLAGS control register is the
only register affected by this instruction. The
zero flag (Z) is set if all selected bits are logic
0; it is reset otherwise. Thus, if the selected
destination bits are either all logic 1 or a com-
bination of 1s and Os, the zero flag would be
cleared by this instruction. The sign flag (S) is
either set or reset to reflect the result of the

. 208

AND operation; the overflow flag (V) is always

5

The Z8 stack resides within an area of data
memory (internal or external). The current

_address in the stack is contained in the stack

pointer, which decrements as bytes are pushed
onto the stack, and increments as bytes are
popped from it. The stack pointer occupies two
control register bytes (%FE and %FF) in the
78 register space and may be manipulated like
any other register. The stack is useful for
subroutine calls, interrupt service routines,
and parameter passing and saving. Figure 2
illustrates the downward growth of a stack as
bytes are pushed onto it.

5.1 Internal vs. External Stack. The location
of the stack in data memory may be selected to
be either internal register memory or external
data memory. Bit 2 of control register POIM
(%F8) controls this selection. Register pair
SPH (%FE), SPL (%FF) serves as the stack
pointer for an external stack. Register SPL is
the stack pointer for an internal stack. In the

X SP—

x=1 SP —» R1 Rt
x-2 PC LOW
x-3 SP ~=} PC HIGH
x-4

INITIAL FOLLOWING

FOLLOWING
~ STATE PUSH R1 CALL

Figure 2. Growth of a Stack

4. Bit As in Test under Mask, the FLAGS control
Manipu- reset. All other flags are unaffected. Table 2 register is the only register affected by this
lations illustrates the flag settings which result from operation. The zero flag (Z) is set if all selected
(Continued) the TM instruction on a variety of source and destination bits are 1; it is reset otherwise. The
destination operand combinations. Note that a sign flag (S) is set or reset to reflect the result
given TM instruction will never result in both of the AND operation; the overflow flag (V) is
the Z and S flags being set. always reset. Table 3 illustrates the flag set-
4.2 Test Complement under Mask. The Test tings .which result from the TCM instruction on
Complement under Mask instruction is used to avar 1.ety _°f source :.and destma.tlon F’p’?rand
test selected bits for logic 1. The logical opera- cgmblnatloqs. As w.1th th? ™ ms'(ructlor.l, a
tion performed is given TCM instruction will never result in both
the Z and S flags being set.
! (NOT destination) AND source.
Destination Source Flags Destination Source Flags
(binary) (binary) Z SV (binary) (binary) Z S Vv
10001100 01110000 1 0 0 10001100 01110000 0 0 O
01111100 01110000 0 00 01111100 01110000 1 0 0
10001100 11110000 0 1 O 10001100 11110000 0O 0 O
11111100 11110000 o 1 0 11111100 11110000 1 0 O
00011000 10100001 1 0 0 00011000 10100001 0o 1 0
01000000 10100001 1 0 O 01000000 10100001 0o 1 0
Table 2. Effects of the TM Instruction Table 3. Effects of the TCM Instruction
SECTION Stack Operations ‘ latter configuration, SPH is available for use as

a data register. The following illustrates a code
sequence that initializes external stack opera-
tions:

LD POIM,#%(2)00000000

Ibit 2: select external stack!
LD SPH,#HI STACK
LD SPL,#LO STACK

5.2 CALL. A subroutine call causes the cur-
rent Program Counter (the address of the byte
following the CALL instruction) to be pushed
onto the stack. The Program Counter is loaded
with the address specified by the CALL
instruction. This address may be a direct
address or an indirect register pair reference.
For example,

LABEL 1: CALL %4F98
Idirect addressing: PC is
loaded with the hex value
4F98;
address LABEL 1 + 3 is pushed
onto the stack!

LABEL 2: CALL @RR4
lindirect addressing: PC is
loaded with the contents of
working register pair R4, R5;
address LABEL 2+ 2 is pushed
onto the stack!

209

5. Stack
Operations
(Continued)

LABEL 3: CALL @%7E
lindirect addressing: PC is
loaded with the contents of
register pair %7E, %7F;
address LABEL 3 + 2 is pushed
onto the stack!

5.3 RET. The return (RET) instruction causes
the top two bytes to be popped from the stack
and loaded into the Program Counter. Typi-
cally, this is the last instruction of a subroutine
and thus restores the PC to the address follow-
ing the CALL to that subroutine.

5.4 Interrupt Machine Cycle. During an inter-
rupt machine cycle, the PC followed by the
status'flags is pushed onto the stack. (A more
detailed discussion of interrupt processing is
provided in Section 6.)

5.5 IRET. The interrupt return (IRET) instruc-
tion causes the top byte to be popped from the
stack and loaded into the status flag register,
FLAGS (%FC); the next two bytes are then
popped and loaded into the Program Counter.
In this way, status is restored and program
execution continues where it had left off when
the interrupt was recognized.

5.6 PUSH and POP. The PUSH and POP

instructions allow the transfer of bytes between

the stack and register memory, thus providing
program access to the stack for saving and -
restoring needed values and passing
parameters to subroutines.

Execution of a PUSH instruction causes the
stack pointer to be decremented by 1; the
operand byte is then loaded into the location
pointed to by the decremented stack pointer.
Execution of a POP instruction causes the byte
addressed by the stack pointer to be loaded
into the operand byte; the stack pointer is then
incremented by 1. In both cases, the operand
byte is designated by either a direct register
address or an indirect register reference. For

example: .
PUSH Rl !direct address: push working
: register 1 onto the stack!

POP 5 !direct address: pop the top
stack byte into register 5!

PUSH @R4 !lindirect address: pop the top
stack byte into the byte
pointed to by working reg-
ister 4!

PUSH @17 lindirect address: push onto

the stack the byte pointed to
by register 17!

SECTION
6

v

Interrupts

The Z8 recognizes six different interrupts
from four internal and four external sources,
including internal timer/counters, serial I/O,
and four Port 3 lines. Interrupts may be indi-
vidually or globally enabled/disabled via Inter-
rupt Mask Register IMR (%FB) and may be
prioritized for simultaneous interrupt resolution
via Interrupt Priority Register IPR (%F9).
When enabled, interrupt request processing
automatically vectors to the designated service
routine. When disabled, an interrupt request
may be polled to determine when processing is
needed.

6.1 Interrupt Initialization. Before the Z8 can
recognize interrupts following RESET, some
initialization tasks must be performed. The ini-
tialization routine should configure the Z8
interrupt requests to be enabled/disabled, as
required by the target application and

“assigned a priority (via IPR) for simultaneous

enabled-interrupt resolution. An interrupt
request is enabled if the corresponding bit in
the IMR is set (= 1) and interrupts are B
globally enabled (bit 7 of IMR = 1). An inter-
rupt request is disabled if the corresponding
bit in the IMR is reset (= 0) or interrupts are
globally disabled (bit 7 of IMR = 0).

A RESET of the Z8 causes the contents of the
Interrupt Request Register IRQ (%FA) to be
held to-zero until the execution of an EI

instruction. Interrupts that occur while the Z8
is in this initial state will not be recognized,
since the corresponding IRQ bit cannot be set.
The EI instruction is specially decoded by the
78 to enable the IRQ; simply setting bit 7 of
IMR is therefore not sufficient to enable inter-
rupt processing following RESET. However,
subsequent to this initial EI instruction, inter-
rupts may be globally enabled either by the
instruction

El lenable interrupts!

or by a register manipulation. instruction
such as

OR IMR,#%80

To globally disable interrupts, execute the
instruction

DI ldisable interrupts!

This will cause bit 7 of IMR to be reset.

Interrupts must be globally disabled prior to
any modification of the IMR, IPR or enabled
bits of the IRQ (those corresponding to
enabled interrupt requests), unless it can be
guaranteed that an enabled interrupt will not
occur during the processing of such instruc-
tions. Since interrupts represent the occur-
rence of events asynchronous to program exe-
cution, it is highly unlikely that such a
guarantee can be made reliably.

210

6. Interrupts
(Continued)

6.2 Vectored Interrupt Processing. Enabled
interrupt requests are processed in an
automatic vectored mode in which the inter-
rupt service routine address is retrieved from
within the first 12 bytes of program memory.
When an enabled interrupt request is
recognized by the 78, the Program Counter is
pushed onto the stack (low order 8 bits first,
then high-order 8 bits) followed by the FLAGS
reqgister (#%0FC). The corresponding interrupt
request bit is reset in IRQ, interrupts are
globally disabled (bit 7 of IMR is reset), and
an indirect jump is taken on the word in loca-
tion 2x, 2x+ 1 (x = interrupt request number,
0=<x=<5). For example, if the bytes at
addresses %0004 and %0005 contain %05 and
%78 respectively, the interrupt machine cycle
for IRQ2 will cause program execution to con-
tinue at address %0578.

When interrupts are sampled, more than one
interrupt may be pending. The Interrupt Prior-
ity Register (IPR) controls the selection of the
pending interrupt with highest priority. While
this interrupt is being serviced, a higher-
priority interrupt may occur. Such interrupts

may be allowed service within the current
interrupt service routine (nested) or may be
held until the current service routine is com-
plete (non-nested).

To allow nested interrupt processing, inter-
rupts must be selectively enabled upon entry
to an interrupt service routine. Typically, only
higher-priority interrupts would be allowed to
nest within the current interrupt service. To do
this, an interrupt routine must “know” which
interrupts have a higher priority than the cur-
rent interrupt request. Selection of such nest-
ing priorities is usually a reflection of the
priorities established in the Interrupt Priority
Register (IPR). Given this data, the first.
instructions executed in the service routine
should be to save the current Interrupt Mask
Register, mask off all interrupts of lower and
equal priority, and globally enable interrupts
(EI). For example, assume that service of inter-
rupt requests 4 and 5 are nested within the ser-
vice of interrupt request 3. The following illus-
trates the code required to enable IRQ4
and IRQS5:

CONSTANT
INT_MASK_3 1=

GLOBAL

IRQ3__service

PROCEDURE
Iservice routine for IRQ3! '

%(2) 00110000
ENTRY

Isave Interrupt Mask Register!

linterrupts were globally disabled during the interrupt
machine cycle - no DI is needed prior to modification of IMR!

Idisable all but IRQ4 & 5!

linterrupts are globally enabled now — must disable them prior to

PUSH IMR

AND IMR,#INT_MASK_3

EI

1. Iservice interrupt!
modification of IMR!

DI

POP IMR

IRET

END IRQ3__service

Irestore entry IMR!

Note that IRQ4 and IRQS5 are enabled by the
above sequence only if their respective IMR
bits = 1 on entry to IRQ3__service.

The service routine for an interrupt whose
processing is to be completed without interrup-
tion should not allow interrupts to be nested
within it. Therefore, it need not modify the
IMR, since interrupts are disabled automati-
cally during the interrupt machine cycle.

The service routine for an enabled interrupt
is typically concluded with an IRET instruc-
tion, which restores the FLAGS register and
Program Counter from the top of the stack and
globally enables interrupts. To return from an
interrupt service routine without re-enabling

interrupts, the following code sequence could
be used:
POP FLAGS
IFLAGS < @SP!

RET IPC - @SP!

This accomplishes all the functions of IRET,
except that IMR is not affected.

6.3 Polled Interrupt Processing Disabled
interrupt reguests may be processed in a .
polled mode, in which the corresponding bits
of the Interrupt Request Register (IRQ) are
examined by the software. When an interrupt
request bit is found to be a logic 1, the inter-
rupt should be processed by the appropriate

211

6. Interrupts

service routine. During such processing, the

lished priorities. For example, assume that

(Continued) . interrupt request bit in the IRQ must be IRQO, IRQI, and IRQ4 are to be polled and
cleared by the software in order for subsequent that established priorities are, from high to.
interrupts on that line to be distinguished from low, IRQ4, IRQO, IRQI. An instruction
the current one. If more than one interrupt sequence like the following should be used to
request is to be processed in a polled mode, poll and service the interrupts:
polling should occur in the order of estab-

Lo

Ipoll interrupt inputs here! :
TCM IRQ, #%(2)00010000 ITRQ4 need service?!
JR NZ, TESTO Ino!
CALL IRQ4__service lyes!

TESTO: TCM IRQ, #%(2)00000001 ITRQO need service?!
JR NZ, TEST1 Ino!
CALL IRQO__service . lyes!

TEST1: TCM IRQ, #%(2)00000010 ITRQ1 need service?!
IR NZ, DONE : Ino!
CALL IRQI1__service lyes!

DONE: ..l

IRQ4__service. PROCEDURE ENTRY
[.
AND IRQ, #%(2)11101111 Iclear IRQ4!
[
RET

END IRQ4__service

IRQO__service PROCEDURE ENTRY
1.1
AND IRQ, #%(2)11111110 Iclear IRQO!
[
RET

END IRQO__service

IRQ1__service PROCEDURE ENTRY
..
AND IRQ, #%(2)11111101 Iclear IRQ1!
1.1
RET

END IRQI__service

..l

SECTION Timer/Counter Functions Each timer/counter is driven by its own 6-bit

7

The Z8 provides two 8-bit timer/counters, Tg
and T}, which are adaptable to a variety of
application needs and thus allow the software
(and external hardware) to be relieved of the
bulk of such tasks. Included in the set of such

uses are:

B Interval delay timer

W Maintenance of a time-of-day clock

B Watch-dog timer

W External event counting

W Variable pulse train' output

W Duration measurement of external event

W Audematic delay following external event

detection

prescaler, which is in turn driven by the inter-
nal Z8 clock divided by four. For Ty, the inter-
nal clock may be gated or triggered by an
external event or may be replaced by an exter-
nal clock input. Each timer/counter may
operate in either single-pass or continuous
mode where, at end-of-count, either counting
stops or the counter reloads and continues
counting. The counter and prescaler registers
may be altered individually while the timer/

" counter is running; the software controls

whether the new values are loaded immedi-
ately or when end-of-count (EOC) is reached.
Although the timer/counter prescaler
registers (PREO and PRE1) are write-only,
there is a technique by which the timer/

212

7. Timer/
Counter
Functions
(Continued)

counters may simulate a readable prescaler.
This capability is a requirement for high
resolution measurement of an event's duration.
The basic approach requires that one timer/
counter be initialized with the desired counter
and prescaler values. The second timer/
counter is initialized with a counter equal to
the prescaler of the first timer/counter and a
prescaler of 1. The second timer/counter must
be programmed for continuous mode. With
both timer/counters driven by the internal
clock and started and stopped simultaneously,
they will run synchronous to one another; thus,
the value read from the second counter will
always be equivalent to the prescaler of
the first. ,
7.1 Time/Count Interval Calculation To
determine the time interval (i) until EOC, the
equation
=tXpXxv

characterizes the relation between the
prescaler (p), counter (v), and clock input
period (1); t is given by

1/(XTAL/8)

where XTAL is the Z8 input clock frequency;
p is in the range 1 —-64; v is in the range
1-256. When programming the prescaler and
counter registers, the maximum load value is
truncated to six and eight bits, respectively,
and is therefore programmed as zero. For an
input clock frequency of 8 MHz, the prescaler
and counter register values may be pro-
grammed to time an interval in the range

lpus X1 x1=i=<lpus X 64 x 256
‘lus<i=<16.384ms
To determine the count (c) until EOC for T

with external clock input, the equation

=p XV

characterizes the relation between the T} .
prescaler (p) and the T} counter (v). The
divide-by-8 on the input frequency is bypassed
in this mode. The count range is

1 x1=<c=< 64 x 256

1 <c=< 16,384
7.2 Toyt Modes. Port 3, bit 6 (P3g) may be
configured as an output (Toyt) which is
dynamically controlled by one of the following:
BT ' :
BT
B Internal clock
When driven by Tg or Ty, Touyr is reset to a
logic 1 when the corresonding load bit is set in

timer control register TMR (%F1) and toggles
on EOC from the corresponding counter.

When Touyr is driven by the internal clock,
that clock is directly output on P3g.

While programmed as Toyt, P36 is dlsabled
from being modified by a write to port register
%03; however, its current output may be
examined by the Z8 software by a read to port
register %03.

7.3 Ty Modes. Port 3, bit 31) may be con-
figured as an input (Tiy) w is used in con-
junction with T} in one of four modes:

B External clock input .

B Gate input for internal clé;':k

B Nonretriggerrable inpuf for internal clock
B Retriggerable input for internal clock

For the latter two modes, it should be noted
that the existence of a synchronizing circuit
within the Z8 causes a delay of two to three
internal clock periods following an external
trigger before clocking of the counter actually
begins.

Each High-to-Low transition on Ty will
generate interrupt request IRQ2, regardless of
the selected Tjy mode or the enabled/disabled
state of T;. IRQ2 must therefore be masked or
enabled according to the needs of the
application.

The “external clock input” Ty mode sup-
ports the counting of external events, where an
event is seen as a High-to-Low transition on
Tin. Interrupt request IRQS is generated on
the nth occurrence (single-pass mode) or on
every nth occurrence (continuous mode) of
that event.

The “gate input for internal clock” Try mode
provides for duration measurement of an exter-
nal event. In this mode, the T prescaler is
driven by the Z8 internal clock, gated by a
High level on TiN. In other words, T will
count while Ty is High and stop counting
while Ty is Low. Interrupt request IRQ2 is
generated on the High-to-Low transition on
TiN. Interrupt request IRQS is generated on T
EOC. This mode may be used when the width
of a High-going pulse needs to be measured.
In this mode, IRQ?2 is typically the interrupt
request of most importance, since it signals the
end of the pulse being measured. If IRQS5 is
generated prior to IRQ2 in this mode, the
pulse width on Ty is too large for Tj to
measure in a single pass.

The “nonretriggerable input” Tiy 'mode pro-
vides for automatic delay timing following an
external event. In this mode, T; is loaded and
clocked by the Z8 internal clock following the
first High-to-Low transition on Tpy after T) is
enabled. Ty transitions that occur after this
point do not affect T}. In single-pass mode, the

213

7. Timer/

Counter
‘Functions

(Continued)

enable bit is reset on EOC; further Tyy transi-
tions will not cause T} to load and begin count-
ing until the software sets the enable bit again.
In continuous.mode, EOC does not modify the
enable bit, but the counter is reloaded and
counting continues immediately; IRQS5 is
generated every EOC until software resets the
enable bit. This Ty mode may be used, for
example, to time the line feed delay following
end of line detection on a printer or to delay
data sampling for some length of time fol]ow-
ing.a sample strobe.

The “retriggerable input” Ty mode will load -

and clock T) with the Z8 internal clock on
every occurrence of a High-to-Low transition
on Tiy. T) will time-out and generate interrupt
request IRQS5 when the programmed time
interval (determined by T| prescaler and load
register values) has elapsed since the last
High-to-Low transition on Tiy. In single-pass
mode, the enable bit is reset on EOC; further
TIN transitions will not cause T} to load and
begin counting until the software sets the
enable bit again. In continuous mode, EOC
does not modify the enable bit, but the counter

ately; IROS is generated at every EOC until
the software resets the enable bit. This Ty
mode may provide such functions as watch-dog
timer (e.g., interrupt if conveyor belt stopped
qr clock pulse missed), or keyboard time-out
(e.g., interrupt if no input in x ms).

7.4 Examples. Several possible uses of the
timer/counters are given in the followmg four
examples. :

7.4.1 Time of Day Clock. The following
module illustrates the use of T; for
maintenance of a time of day clock, which is
kept in binary format in terms of hours,
minutes, seconds, and hundredths of a second.
It is desired that the clock be updated once
every hundredth of a second; therefore, T) is
programmed in continuous mode to interrupt
100 times a second. Although T is used for
this example, Ty is equally suited for the task.
The procedure for initializing the timer
(TOD__INIT), the interrupt service routine
(TOD) which updates the clock, and the inter-
rupt vector for T} end-of-count (IRQ__5) are
illustrated below. XTAL = 7.3728 MHz is

is reloaded and counting continues immedi- assumed.

Z8ASM S 2.0
LocC OBJ CODE STMT SOURCE STATEMENT

1 TIMER1 MODULE

2 CONSTANT

3 HOUR HES R12

4 MINUTE := R13

5 SECOND := R14

6 HUND S

7 $SECTION PROGRAM

8 GLOBAL

9 !IRQ5 interrupt vector!

10 $ABS
P 0000 OOQF! 11 "IRQ_5 ARRAY [1 WORD] := [ToD]

12

13 ~ $REL)
P 000C 14 TOD_INIT “ PROCEDURE

15 ENTRY
P 0000 E6 F3 93 16 LD. PRE1,#%(2)10010011

17 A 'bit 2-7: prescaler = 36;

18 bit 1: internal clock;

19 bit 0: continuous mode!
P 0003 E6 F2 00 20 LD T1,#0 1(256) time-out =

21 1/100 second!
P 0006 46 F1 OC 22 OR TMR, #%0C !load, enable T1!
P 0009 8F 23 DI : .
P 000A 46 FB 20 24 OR IMR,#%20 l!enable T1 interrupt!
P 000D 9F 25 EI
P 000E' AF 26 RET
P 000F 2; END TOD_INIT

2 .
P 000F 29 TOD PROCEDURE

30 ENTRY
P 000F 70 FD 31 PUSH RP

32 !Working register file %10 to %1F contains

33 the time of day clock!
P 0011 31 10 34 SRP #%10
P 0013 FE 35 INC HUND !1 more .01 sec!
P 0014 A6 EF 64 36 cP HUND, #100 !full second yet?!
P 0017 EB 13 37 JR NE, TOD_EXIT tjump if no!
P 0019 BO EF 38 CLR HUND
P 001B EE) 39 INC SECOND !1 more second!
P 001C A6 EE 3C 40 cp SECOND, #60 !full minute yet?!
P 001F EB OB 41 JR NE, TOD_EXIT !jump if no!

214

7. Timer/
Counter
Functions
(Continued)

EE 42

P 0021 BO CLR SECOND
P 0023 DE 43 INC MINUTE !'1 more minute!
P 0024 A6 ED 3C 4y CP MINUTE, #60 {full hour yet?!
P 0027 EB 03 45 JR NE, TOD_EXIT tjump if no!
P 0029 BO ED 46 CLR MINUTE
P 002B CE 47 INC HOUR
48 TOD_EXIT:
P 002C 50 FD 49 POP RP frestore entry RP!
P 002E BF 50 IRET
P 002F 51 END TOD
52 END TIMER1
0 ERRORS |
ASSEMBLY COMPLETE
TOD__INIT: TOD:
7 instructions 17 instruction
15 bytes 32 bytes
16 ps 19.5 ps (average) including interrupt response time

7.4.2 Variable Frequency, Variable Pulse
Width Output. The following module
illustrates one possible use of Toyr. Assume it
is necessary to generate a pulse train with a
10% duty cycle, where the output is repetitive-
ly high for 1.6 ms and then low for 14.4 ms. To
do this, Toyrt is controlled by end-of-count
from T}, although Tg could alternately be
chosen. This example makes use of the Z8
feature that allows a timer’s counter register to
be modified without disturbing the count in
progress. In continuous mode, the new value is
loaded when T| reaches EOC. T is first
loaded and enabled with values to generate
the short interval. The counter register is then
immediately modified with the value to
generate the long interval; this value is loaded
into the counter automatically on T; EOC. The
prescaler selected value must be the same for
both long and short intervals. Note that the

initial loading of the T| counter register is
followed by setting the T} load bit of timer con-
trol register TMR (%F1); this action causes

" Touyr to be reset to a logic 1 output. Each
subsequent modification of the T} counter
register does not affect the current Toyrt level,
since the T load bit is NOT altered by the
software. The néw value is loaded on EOC,
and Toyt will toggle at that time. The T; inter-
rupt service routine should simply modify the
T} counter register with the new value, alter-
nating between the long and short interval
values.

In the example which follows, bit 0 of
register %04 is used as a software flag to indi-
cate which value was loaded last. This module
illustrates the procedure for T}/Touyr initializa-
tion (PULSE__INIT), the T) interrupt service
routine (PULSE), and the interrupt vector for
Ty EOC (IRQ__5). XTAL = 8 MHz is assumed.

Z8ASM 2.0
LOC OBJ CODE STMT SOURCE STATEMENT
1 TIMER2 MODULE
2
) 3 GLOBAL
4 !IRQ5 interrupt
.5 $ABS
P 0000 0017 6 IRQ_5 ARRAY
7
8 $REL
P 000C 9 PULSE_INIT
) ' 10 ENTRY
.P 0000 E6 F3 - 03 11 LD
12
13
1
P 0003 E6 FT7 00 15 LD
P 0006 E6 F2 19 16 LD
P 0009 8F 17 DI
P 000A 46 FB 20 18 OR
P 000D E6 F1 8C 19 LD
20
21
22
23

P 0010 E6 F2 E1 25

24 1Set long interval counter,
LD

$SECTION PROGRAM

vector!
10

[1 WORD] := tPULSE]

PROCEDURE

PRE1, #%(2)00000011
Ibit 2-T: prescaler = 64;
bit 1: internal clock;

bit 0: continuous mode!
P3M, #00 Ibit 5: let P36 be Tout!
T1,#25 Ifor short intervall
IMR, #%(2)00100000 !enable T1 interrupt!
TMR, #%(2) 10001100
Ibit 6-T: Tout controlled
by T1;

3
bit 3: enable T1;
bit 2: load T1 !
to be loaded on T1 EOC!
T1,#225 l

26 !Clear alternating flag for PULSE!

215

7. Timer/
Counter
Functions
(Continued)

%04

P 0013 BO 04 27 CLR 1= 0 : 25 next;
: 28 ’ =1 : 225 next !
P 0015 9F 29 EI .
P 0016 AF 30 RET .
P 0017 31 END PULSE_INIT
32
. 33 .
P 0017 34 PULSE PROCEDURE
35 ENTRY
P 0017 E6 F2 E1 . 36 LD T1,#225 Inew load value!
P 001A B6 04 01 37 XOR %04, #1 !which value next?!
P 001D 6B 03 38 JR Z,PULSE_EXIT Ishould be 225!
P'001F E6 F2 19 39 LD T1,#25 !should be 25!
< 40 PULSE_EXIT:
P 0022 BF 41 IRET
P 0023 42 END PULSE
43 END TIMER2
0 ERRORS
ASSEMBLY COMPLETE
PULSE__INIT: PULSE:
10 instructions 5 instructions
23 bytes 12 bytes
23 us 25 ps (average) including interrupt response time

7.4.3 Cascaded Timer/Counters. For some

T} to function as a single unit. TOuT, program-

applications it may be necessary to measure a

' greater time interval than a single timer/

counter can measure (16.384 ms). In this case,
Tin and ToyT may be used to cascade To and

med to toggle on Ty end-of-count, should be
wired back to Tin, which is selected as the
external clock input for Ty. With Tg program-
med for continuous mode, Toyt (and therefore

+

XTAL

TIN) goes through a High-to-Low transition
(causing T} to count) on every other To EOC.
Interrupt request IRQS is generated when the
programmed time interval has elapsed. Inter-
rupt requests IRQ2 (generated on every Ty
High-to-Low transition) and IRQ4 (generated
on Tg EOC) are of no importance in this
application and are therefore disabled.

To determine the time interval (i) until EOC,

6-BIT TO
PRESCALER

the equation

8-BIT TO

COUNTER

TOUT (P3g)

TIN (P31)

Figure 3. C

6-BIT T1
PRESCALER

8BITT1
COUNTER

i=t x p0 x vO x (2 X pl x vl-1)

characterizes the relation between the Ty
prescaler (p0) and counter (v0), the T,
prescaler (pl) and counter (v1), and the clock

" input period (1); t is defined in Section 7.1.
Assuming XTAL = 8 MHz, the measurable
time interval range is

lusx Ix1x@2x1-1)=<i=x
"lpus X 64 x 256 x (2 x 64 x 256 —1)
i = 536.854528 s

Figure 3 illustrates the interconnection
between Tg and T). The following module

illustrates the procedure required to initialize
the timers for a 1.998 second delay interval:

'r——h- TO INTERRUPT LOGIC (IRQ4)

lus <

TO INTERRUPT LOGIC (IRQS)

ded Timer/C

216

7. Timer/
Counter
Functions
(Continued)

Z8ASM 2.0 3
LocC OBJ CODE * STMT SOURCE STATEMENT
1 TIMER3 MODULE
2 GLOBAL
P 0000 3 TIMER_16
4 ENTRY
P 0000 E6 F3 28 5 LD
6
7
8
P 0003 E6 FT7 00 9 LD
P 0006 E6 F2 64 10 LD
P 0009 E6 F5 29 11 LD
: 12
13
P 000C E6 F4 64 14 LD
P 000F 8F 15 DI
P 0010 56 FB 2B 16 AND
. 17
P 0013 46 FB 20 18 OR
P 0016 9F 19 EI
P 0017 E6 F1 A4F 20 LD
21
22
23
24
25
26
27
28
P 001A AF 29 RET
P 001B 30 END TIMER_16
31 END TIMER3
0 ERRORS

ASSEMBLY COMPLETE

11 instructions

27 bytes
26.5 ps

PROCEDURE

PRE1,#%(2)00101000
!bit 2-7: prescaler = 10;
bit 1: external clock;

bit 0: single-pass mode!
P3M, #00 !bit 5: let P36 be Tout!
T1,#100 IT1 counter register!
PREO, #%(2)00101001

Ibit 2-T: prescaler = 10;

bit 0: continuous mode!
TO,#100 !TO counter register!

IMR, #%(2)00101011 !disable IRQ2 (Tin);
and IRQ4 (TO) !
IMR,#%(2)00100000 !enable IRQS5 (T1)!

TMR, #%(2)01001111
!bit 6-7: Tout controlled

by TO;

bit 4-5: Tin mode is ext.
clock input;

bit 3: enable T1;

bit 2: load T1;

bit 1: enable TO;

bit 0: load TO !

7.4.4 Clock Monitor. T; and Tiy may be used
to monitor a clock line (in a diskette drive, for
example) and generate an interrupt request
when a clock pulse is missed. To accomplish
this, the clock line to be monitored is wired to’
P3; (Tin)- Tin should be programmed as a
retriggerable input to T}, such that each fall-
ing edge on Ty will cause T) to reload and
continue counting. If T} is programmed to
time-out after an interval of one-and-a-half
times the clock period being monitored, T
will time-out and generate interrupt request
IRQS only if a clock pulse is missed.

The following module illustrates the pro-
cedure for initializing T} and Tin
(MONITOR__INIT) to monitor a clock with a
period of 2 us. XTAL = 8 MHz is assumed.
Note that this example selects single-pass
rather than continuous mode for Tj. This is to
prevent a continuous stream of IRQ5 interrupt
requests in the event that the monitored clock
fails completely. Rather, the interrupt service
routine (CLK __ERR) is left with the choice of
whether or not to re-enable the monitoring.
Also shown is the T interrupt vector (IRQ__5).

Z8ASM 2.0 ’
LocC OBJ CODE STMT SOURCE STATEMENT
1 TIMER4 MODULE
2 $SECTION PROGRAM
3 GLOBAL
4 'IRQ5 interrupt vector!
5 $ABS 10
P 0000 0015 6 IRQ_S5 ARRAY [1 WORD] := [CLK_ERR]
T
8 $REL
P 000C 9 MONITOR_INIT PROCEDURE
10 ENTRY
P 0000 E6 F3 04 11 -LD PRE1,#%(2)00000100
12 tbit 2-7: prescaler = 1;
13 bit 1: external clock;
14 bit 0: single-pass mode!
P 0003 E6 FT 00 15 LD P3M, #00 !bit 5: let P36 be Tout!
P 0006 E6 F2 03 16 LD T1,#3 !T1 load register,
17 = 1.5 ¥ 2 usec !

217

7. Timer/ P 0009 8F" 18 DI
Counter P 000A 56 FB 3B 19 AND IMR,#%(2)00111011 !disable IRQ2 (Tin)!
F . P 000D 46 FB 20 20 OR IMR,#%(2)00100000 !enable IRQ5 (T1)!
unctions P 0010 9F 21 EI
(Continued) . 22
: P 0011 E6 F1 38 23 LD TMR, #%(2)00111000
24 !bit 4-5: Tin mode is
25 retrig. input;
26 bit 3: enable T1 !
P 0014 AF 27 RET
P 0015 28 END MONITOR_INIT
29
30
P 0015 31 CLK_ERR PROCEDURE
32 ENTRY '
:;i’: oot thandle the missed clock!
35 !if clock monitoring should continue...!
P 0015 46 F1 08 36 OR TMR, #%(2)00001000
37 fbit 3: enable T1 !
P 0018 BF 38 IRET
P 0019 39 END CLK_ERR
40 END TIMER4
0 ERRORS
ASSEMBLY COMPLETE
MONITOR__INIT: CLK__ERR:
9 instructions 2 + instructions
21 bytes 4 + bytes
21.5 us 18.5 + us including interrupt response time
SECTION 1/0 Functions output bit. Port 2 bits programmed as outputs

The 78 provides 32 I/O lines mapped into
registers 0-3 of the internal register file. Each
nibble of port 0 is individually programmable
as input, output, or address/data lines
(A)s5-A)2, A)1-Ag). Port 1 is programmable as
a single entity to provide input, output, or
address/data lines (AD7-ADg). The operating
modes for the bits of Ports 0 and 1 are selected
by control register POIM (%F8). Selection of
I/O lines as address/data lines supports access
to external program and data memory; this is
discussed in Section 3. Each bit of Port 2 is
individually programmable as an input or an

Function Bit Signal
P3, DAV2/RDY2
P3, DAVO/RDYO
P33 DAVI1/RDY1
Handshak: —
andshake P3, RDY1/DAV]
P35 RDYO/DAVO
P3g RDY2/DAV2

P3, IRO3
P3, IRQ2
P3, IRQO
P3; IRQ!

Interrupt
Request

Timer 36 Tout

Data Memory
Select

Status Out
Serial /O

P3, ™M

P3y Serial In
P3; Serial Out

Counter/ { 3] Tin

Table 4. Port 3 Special Functions

may also be programmed (via bit 0 of P3M) to
all have active pull-ups or all be open-drain
(active pull-ups inhibited). In Port 3, four bits
(P3g-P33) are fixed as inputs, and four bits
(P34-P37) are fixed as outputs, but their func-
tions are programmable. Special functions pro-
‘vidéd by Port 3 bits are listed in Table 4. Use
of the Data Memory select output is discussed
in Section 3; uses of Try and TOUT are dis- ~
cussed in Section 7.

8.1 Asynchronous Receiver/Transmitter
Operation. Full-duplex, serial asynchronous
receiver/transmitter operation is provided by
the Z8 via P37 (output) and P3p (input) in con-
junction with control register SIO (%FO0),
which is actually two registers: receiver buffer
and transmitter buffer. Counter/Timer Tg pro-
vides the clock for control of the bit rate.

The Z8 always receives and transmits eight
bits between start and stop bits. However, if
parity is enabled, the eighth bit (D7) is
replaced by the odd-parity bit when trans-
mitted and a parity-error flag (= 1 if error)
when received. Table 5 illustrates the state of
the parity bit/parity error flag durmg serial
1/O with parity enabled. :

Although the Z8 directly supports either odd
parity or no parity for serial I/O operation,
even parity may also be provided with addi-
tional software support. To receive and
transmit with even parity, the Z8 should be
configured for serial I/O with odd parity
disabled. The Z8 software must calculate parity

218

8. 1I/0
Functions
(Continued)

Character Loaded Transmitted To Received From Character
Into SIO Serial Line Serial Line Transferred To SIO Note*
11000011 01000011 01000011 01000011 no error
11000011 01000011 01000111 11000111 error
01111000 11111000 11111000 01111000 no error
01111000 11111000 01111000 11111000 error

Table 5." Serial /0 With Odd Parity

and modify the eighth bit prior to the load of a
character into SIO and then modify a parity
error flag following the load of a character
from SIO. All other processing required for
serial I/O (e.g. bulfer management, error
handling, etc.) is the same as that for odd
parity operations.

To configure the Z8 for Serial I/O, it is
necessary to:

8 Enable P3y and P37 for serial I/O and select
parity,

B Set up Ty for the desired bit rate,

® Configure IRQ3 and IRQ4 for polled or
automatic interrupt mode,

B Load and enable Tp.

To enable P3p and P37 for serial I/O, bit 6 of
P3M (R247) is set. To enable odd parity, bit 7
of P3M is set; to disable it, the bit is reset. For
example, the instruction

LD P3M, #%40

will enable serial I/O, but disable parity. The
instruction

LD P3M, #%C0

will enable serial /O, and enable odd parity.

In the following discussions, bit rate refers to
all transmitted bits, including start, stop, and
parity (if enabled). The serial bit rate is given
by the equation:

mnput clock frequenc
bit rate = it a Y

(2x4xTq prescaler x Tg counter x 16)

The final divide-by-16 is incurred for serial
communications, since in this mode Tg runs at
16 times the bit rate in order to synchronize
the data stream. To configure the Z8 for a
specific bit rate, appropriate values must first
be selected for T prescaler and T counter by
the above equation; these values are then pro-
grammed into registers Tg (%F4) and PREO
(%F5) respectively. Note that PREQ also con-
trols the continuous vs. single-pass mode for
To; continuous mode should be selected for
serial I/O. For example, given an input clock
frequency of 7.3728 MHz and a selected bit
rate of 9600 bits per second, the equation is

* Left-most bit 1s D7

satisfied by T counter = 2 and prescaler = 3.
The following code sequence will configure the
To counter and Tg prescaler registers:

LD Tp,#2 ITg counter = 2!

LD PREOQ,#%(2)00001101)
Ibit 2-7: prescaler = 3; bit 0:
continuous mode!

Interrupt request 3 (IRQ3) is generated
whenever a character is transferred into the
receive buffer; interrupt request 4 (IRQ4) is
generated whenever a character is transferred
out of the transmit buffer. Before accepting
such interrupt requests, the Interrupt Mask,
Request, and Priority Registers (IMR, IRQ, and
IPR) must be programmed to configure the
mode of interrupt response. The section on
Interrupt Processing provides a discussion of
interrupt configurations.

To load and enable Ty, set bits 0 and 1 of
the timer mode register (TMR) via an instruc-
tion such as

OR TMR,#%03

This will cause the Tg prescaler and counter
registers (PREO and Tp) to be transferred to the
Tp prescaler and counter. In addition, Ty is
enabled to count, and serial I/O operations
will commence.

Characters to be output to the serial line
should be written to serial I/O register SIO
(%F0). IRQ4 will be generated when all bits
have been transferred out.

Characters input from the serial line may be
read from SIO. IRQ3 will be generated when a
full character has been transferred into SIO.

The following module illustrates the receipt
of a character and its immediate echo back to
the serial line. It is assumed that the Z8 has
been configured for serial I/O as described
above, with IRQ3 (receive) enabled to interrupt,
and IRQ4 (transmit) configured to be polled.
The received character is stored in a circular
buffer in register memory from address %42 to
%5F. Register %41 contains the address of
the next available buffer position and should
have been initialized by some earlier routine
to #%42.

219

8. I/0
Functions
(Continued)

Z8ASM 2.0
LoC 0OBJ CODE STMT SOURCE STATEMENT
1 SERIAL_IO
2 CONSTANT
3 next_addr
4 start
5 1length
6 $SECTION PROGRAM
7 GLOBAL
8 !IRQ3 vector!
9 ABS
P 0006 0000°' 10- IRQ_3 ARRAY [1
11
12 $REL
P 0000 13 GET_CHARACTER
’ 14
15 !Serial I/0 rece
16 !Echo received ¢
17 echo completion
P 0000 E4 FO FO 18 1d
19
20 !save it in cirec
P 0003 F5 FO 41 21 1d
P 0006 20 41 22 ine
P 0008 A6 41 60 23 ep
24
P 000B EB 03 25 jr
P 000D E6 41 42 26 1d.
27 !'now, wait for e
28 echo_wait:
P 0010 66 FA 10 29 tem
P 0013 EB FB 30 jr
31
P 0015 56 FA EF’ 32 and
P 0018 BF 33 IRET
P 0019 34 END GET_CHAR
35 END SERIAL_I
0 ERRORS

ASSEMBLY COMPLETE

10 instructions

25 bytes

35.5 us + 5.5 ps for each additional pass through the ech
including interrupt response time

MODULE

:= . %u1

= %42

= %1E
6

WORD] := [GET_CHARACTER]
0
PROCEDURE ENTRY

ive interrupt service!
haracter and wait for
!
SI0,SI0 fecho!
ular buffer!
@next_addr,SIO !save in buffer!
next_addr tpoint to next position!
next_addr, #start+length

lwrap-around yet?!
ne,echo_wait tno.!
next_addr,#start !yes. point to start!
cho complete!

IRQ, #%10 !transmitted yet?!

nz,echo_wait !not yet!
IRQ, #%EF fclear IRQU!
Ireturn from interrupt!
ACTER
o]

o__wait loop,

8.2 Automatic Bit Rate Detection. In a typical
system, where serial communication is
required (e.qg. system with a terminal), the
desired bit rate is either user-selectable via a
switch bank or nonvariable and “hard-coded”
in the software. As an alternate method of bit-
rate detection, it is possible to automatically
determine the bit rate of serial data received
by measuring the length of a start bit. The
advantage of this method is that it places no
requirements on the hardware design for this
function and provides a convenient (automatic)
operator interface. B

In the technique described here, the serial
channel of the Z8 is initialized to expect a bit
rate of 19,200 bits per second. The number of
bits (n) received through Port pin P30 for each
bit transmitted is expressed by

n = 19,200/b

where b = transmission bit rate. For example,

if the transmission bit rate were 1200 bits per

second, each incoming bit would appear to the

receiving serial line as 19,200/1200 or 16 bits.
The following example is capable of disting-

uishing between the bit rates shown in Table 6
and assumes an input clock frequency of
7.3728 MHz, a Tg prescaler of 3, and serial /O
enabled with parity disabled. This example
requires that a character with its low order

bit = 1 (such as a carriage return) be sent to
the serial channel. The start bit of this
character can be measured by counting the
number of zero bits collected before the low
order 1 bit. The number of zero bits actually
collected into data bits by the serial channel is
less than n (as given in the above equation),
due to the detection of start and stop bits.
Figure 4 illustrates the collection (at 19,200

. _1ﬂlﬂu@1¥1“1“1W1W1WI”I“IW|mJ”l“IN[—

! '4—1 BIT TIME AT 1,200 BITS PER SECOND——>|

ST = START BIT SP = STOP BIT Dn = DATABITn

EACH INTERVAL SHOWN = 1 BIT TIME
AT 19,200 BITS PER SECOND

Figure 4. Collection of a Start Bit Transmitted at
at 19,200 BPS

220

8. 1/0
Functions
(Continued)

Number of Bits Received

Number of 0 Bits Collected .

Bit Rate Per Bit Transmitted as Data Bits To Counter

dec binary dec binary

19200 1 0 00000000 1 00000001
9600 2 1 00000001 2 00000010
4800 4 3 00000011 4 00000100
2400 8 7 00000111 8 00001000
1200 16 13 00001101 16 00010000
600 32 25 00011001 32 00100000
300 64 49 00110001 64 01000000
150 128 97 01100001 128 10000000

Table 6. Inputs to the Automatic Bit Rate Detection Algorithm

- bits per second) of a zero bit transmitted to the

78 at 1,200 bits per second. Notice that only 13
of the 16 zero bits received are collected as
data bits.

Once the number of zero bits in the start bit
has been collected and counted, it remains to
translate this count into the appropriate Tg
counter value and program that value into Ty
(%F4). The patterns shown in the two binary
columns of Table 6 are utilized in the
algorithm for this translation.

As a final step, if incoming data is to com-
mence immediately, it is advisable to wait until
the remainder of the current “elongated”

character has been received, thus “flushing”
the serial line. This can be accomplished
either via a software loop, or by programming
T) to generate an interrupt request after

the appropriate amount of time has elapsed.
Since a character is composed of eight bits
plus a minimum of one stop bit following the
start bit, the length of time to delay may be
expressed as

(9 x n)/b
where n and b are as defined above. The

following module illustrates a sample program
for automatic bit rate detection.

Z8ASM 2.0
Loc OBJ CODE STMT SOURCE STATEMENT
1 bit_rate MODULE
2 EXTERNAL
3 DELAY PROCEDURE
4 GLOBAL
P 0000 5 main PROCEDURE
6 ENTRY
P 0000 8F 7 di f{disable interrupts!
P 0001 56 FB 77 8 and IMR,#%77 !IRQ3 polled mode!
P 0004 56 FA FT7T 9 and IRQ, #%F7 fclear IRQ3!
P 0007 E6 F7 40 10 1d P3M, #%40 lenable serial I/0!
P 000A E6 F4 01 11 1d TO, #1)
P 000D E6 F5 OD 12 1d PREO,#(3 SHL 2)+1 !bit rate = 19,200;
. 13 continuous count mode!
P 0010 BO EO 14 clr RO linit. zero byte counter!
P 0012 E6 F1 03 12 1d TMR, #3 !load and enable TO!
1

17 !collect input bytes by counting the number of null

18 characters received.

19 collect:

Stop when non-zero byte received!

IRQ, #%08 fcharacter received?!
z,collect !not yet!
R1,SI0 !get the character!
IRQ, #%F7 !clear interrupt request!
R1 fcompare to 0 ...!
*R1,bitloop !...(in 3 bytes of code)!
RO, #8 lupdate count of 0 bits!
collect
fadd in zero bits from low
end of 1st non-zero byte!
R1 '
c,count_done
RO
bitloop

35 1RO has number of zero bits collected! :
36 !translate RO to the appropriate TO counter value!

P 0015 76 FA 08 20 ™
P 0018 6B FB 21 jr
P 001A 18 FO 22 1d
P 001C 56 FA F7 23, and
"P 001F 1E 24 ine
P 0020 1A 05 25 djnz
P 0022 06 EO 08 26 add
P 0025 8B EE 27 jr
28 bitloop:
29
P 0027 EO E1 30 RR
P 0029 7B 03 31 jr
P 002B 0OE 32 ine
P 002C 8B F9 33 ir
34
37 count_done:
P 002E 1C 07 38 1d
P 0030 2C 80 39 1d
P 0032 90 EO 40 RL
41
P 0034 90 EO 42 loop: RL

IR0 has count of zero bits!
R1,#7
R2,#%80
RO

!R2 will have TO counter value!l

RO

221

8. I/0
Functions
(Continued)

To select output handshake:

¥3

available from the attached device). To output
data under handshake control, the Z8 should
write the output port when the RDY input goes
Low (signifying that the previously output data
has been accepted by the attached device).
Interrupt requests IRQO, IRQI, and IRQ2 are
generated by the falling edge of the handshake
signal input to the Z8 for Port 0, Port 1, and
Port 2 respectively. Port handshake operations
may therefore be processed under interrupt
control.

Consider a system that requires communica-
tion of eight parallel bits of data under hand-
shake control from the Z8 to a peripheral
device and that Port 2 is selected as the output
port. The following assembly code illustrates
the proper sequence for initializing Port 2 for

output handshake.’

P 0036 7B 04 | jr c,done
P 0038 EO E2 4y RR R2
P 003A 1A F8 42 djnz r1,loop
M .
P.003C 29 F4 47 done: 1d TO,R2 !load value for detected
48 bit rate!
. 49 1Delay long enough to clear serial line of bit stream!
P 003E D6 0000% 50 call DELAY
. 51 lclear receive interrupt request!
P 0041 56 FA F7 52 and IRQ, #%F7
. 53
P 0044 54 END main
55 END bit_rate
0 ERRORS
ASSEMBLY COMPLETE
30 instructions
68 bytes
Execution time is variable based on transmission bit rate.
8.3 Port Handshake. Each of Ports 0, 1 and 2 CLR P2M !Port 2 mode register: all Port:
‘may be programmed to function under input or 2 bits are outputs!
output handshake control. Table 7 defines the OR %03,#%40)
port bits used for the handshaking and the .. lset DAV2: data not available!
mode bit settings required to select handshak- LD P3M,#%20
ing. To input data under handshake control, |Port 3 mode register: enable
the Z8 should read the input port when the Port 2 handshake!
DAYV input goes Low (signifying that data is LD %02,DATA

loutput first data byte; DAV2

will be cleared by the Z8 to

indicate data available to

the peripheral device!
Note that following the initialization of the out-
put sequence, the software outputs the first
data byte without regard to the state of the
RDY2 input; the Z8 will automatically hold
DAV2 High until the RDY2 input is High. The
peripheral device should force the Z8 RDY2
input line Low after it has latched the data in
response to a Low on DAV2. The Low on RDY2
will cause the Z8 to automatically force DAV2
High until the next byte is output. Subsequent
bytes should be output in response to interrupt
request IRQ2 (caused by the High-to-Low tran-
sition on RDY2) in either a polled or an
enabled interrupt mode.

Port 0 Port 1 Port 2
. P3, = DAV P33 = DAV p3; = DAV
Input handshake lines P3s = RDY P3, = RDY P3¢ = RDY
s P3; = RDY P33 = RDY P3; = RDY
Output handshake lines P3; = DAV p3, = DAV P3 = DAV

To select input handshake: POIM (program high

nibble as input)

reset bits 6, 7 of POLM
(program high nibble as
output),

set bit 5 of Port 3 (P35),

set bit 2 of P3M

{set bit 6 & reset bit 7 of
To enable handshake: {

set bit 7 of P2M
(program high bit as input)

set bit 3 & reset bit 4 of
POIM (program byte as
input)

reset bits 3, 4 of POIM
(program byte as output)

reset bit 7 of P2M
(program high bit as output)

‘ set bit 6 of Port 3 (P3g);
set bit 5 of P3M

set bit 4 of Port 3 (P3y);
set bits 3, 4 of P3M .

Table 7. Port Handshake Selection

SECTION

9

Arithmetic Routines

This section gives examples of the arithmetic
and rotate instructions for use in multiplica-
tion, division, conversion, and BCD arithmetic
algorithms.

9.1 Binary to Hex ASCII. The following
module illustrates the use of the ADD and
SWAP arithmetic instructions in the conversion
of a 16-bit binary number to its hexadecimal
ASCII representation. The 16-bit number is
viewed as a string of four-nibbles and is pro-

cessed one nibble at a time from left to right,
beginning with the high-order nibble of the
lower memory address. %30 is added to each
nibble if it is in the range 0 to 9; otherwise
%37 is added. In this way, %0 is converted to
%30, %1 to %31, . . . %A to %41, . %F to
%46. Figure 5 illustrates the conversion of RR0O
(contents = %F2BE) to its hex ASCII
equivalent; the destination buffer is pointed to
by RR4.

BIT 07 4 3 Do D7 43 Do

¢ [=2 | [| ¢ 1]
REGISTER RO R1

Dy 43 Do D7 43 Do Dy 43 Do D7 4 3 Do
me— [7 T] [s T =] [« T = | [+« [s |

Figure 5. Conversion of (RR0) to Hex ASCII

Z8ASM 2.99 INTERNAL RELEASE
LocC OBJ CODE STMT SOURCE STATEMENT
1 ARITH MODULE
2 GLOBAL
P 0000 3 BINASC PROCEDURE
I DRRERERERERER R KRR KRN R RN IR RN RRR KRR AR RRRRR RN RX
5 Purpose = To convert a 16-bit binary
6 number to Hex ASCII
7
8 Input = RRO = 16-bit binary number.
9 RR4 = pointer to destination
10 buffer in external memory.
11
12 Output = Resulting ASCII string (4 bytes)
13 in destination buffer.
14 RRY4 incremented by 4 .,
15 RO, R2,R6 destroyed.
16 RERERRRREREXKRRXERERRR RN NN RR RN NRNNRN |
17 ENTRY
18 . .
P 0000 6C 04 19 1ld R6,#%04 !nibble count!
P 0002 FO EO 20 again: SWAP RO tlook at next nibble!
P 0004 28 EO 21 1d R2, RO
P 0006 56 E2 OF 2 and R2,#%0F !isolate 4 bits!
23 lconvert to ASCII : R2 + #%30 if RO in range 0 to 9
24 else R2 + #%37 (in range OA to OF)
25 1
P .0009 06 E2 30 26 ADD R2,#%30
P 000C A6 E2 3A 27 ep R2, #%3A
P O0OF 7B 03 28 jr ult,skip
P 0011 06 E2 07 29 ADD R2,#%07
P 0014 92 24 . 30 skip: lde @RR4, R2 !save ASCII in buffer!
P 0016 A0 E4 31 incw RRY !point to next
32 buffer position!
P 0018 A6 E6 03 33 cp R6,#%03 !time for second byte?!
P 001B EB 02 34 jr ne, same_byte 'no.!
P 001D 08 E1 35 1d RO, R1 !'2nd byte!
36 same_byte:
P 001F 64 E1 37 djnz R6,again
P 0021 AF 38 ret
P 0022 39 END BINASC
40 END ARITH
0 errors

Assembly complete

15 instructions
34 bytes
120.5 ps (average)

223

9. Arithmetic 9.2 BCD Addition. The following module illus-

Routines
(Continued)

trates the use of the add with carry (ADC) and
decimal adjust (DA) instructions for the addi-
tion of two unsigned BCD strings of equal
length. Within a BCD string, each nibble
represents a decimal digit (0-9). Two such
digits are packed per byte with the most

significant digit in bits 7-4. Bytes within a
BCD string are arranged in memory with the
most significant digits stored in the lowest
memory location. Figure 6 illustrates the
representation of 5970 in a 6-digit BCD string,
starting in register %33.

BIT D7 4 3 Do D7 43 Do D7 43 Do
Lo { o 1 s 1 ¢ -} L_7z 1 o]
REGISTER %33 %34 %35
Figure 6. U d BCD Rep i
Z8ASM 2.0)
Loc OBJ CODE STMT SOURCE STATEMENT
1 ARITH MODULE
2 CONSTANT
3 BCD_SRC := R1
4 BCD_DST := RO
5 BCD_LEN := R2
6 GLOBAL :
P 0000 7 BCDADD PROCEDURE \
S IHEEREERRRERRR R RN R R R R RRR R ARRRRRR AR AR AR RN RN R
9 Purpose = To add two packed BCD strings of
10 equal length.
1 dst <-- dst + srec /
12
13 Input = RO = pointer to dst BCD string.
14 R1 = pointer to src BCD string.
15 R2 = byte count in BCD string
16 (digit count = (R2)*2).
17
18 Output = BCD string pointed to by RO is
19 the sum.
20 Carry FLAG = 1 if overflow.
21 RO , R1 as on entry.
22 =
D3 KEREEAREERBRERRRRERRRRRER R RN R RN RRRRXRERRRRRRRER N |
24 ENTRY
25 .
P 0000 02 12 26 .add BCD_SRC,BCD_LEN !start at least... !
P 0002 02 02 27 add BCD_DST,BCD_LEN !significant digits!
P 0004 CF 28 ref fcarry = 0!
29 add_again: :
P 0005 00 E1 30 dec BCD_SRC !point to next two
31 src digits!
P 0007 00 EO 32 dec BCD_DST 1point to next two
33 dst digits!
P 0009 E3 31 34 1d R3,8BCD_SRC !get src digits!
P 000B 13 30 35 ADC* R3,@BCD_DST ladd dst digits!
P 000D 40 E3 36 DA R3 !decimal adjust!
P 000F F3 03 37 ’ 1d @BCD_DST,R3 move to dst!
P 0011 2A F2 38 djnz BCD_LEN,add_again !loop for next
39 digits!
P 0013 AF R 40 ret fall done!
41 '
P 0014 42 END BCDADD
43 END ARITH
0 ERRORS

ASSEMBLY COMPLETE

11 instructions
20 bytes

Execution time is a function of the number of bytes (n) in input BCD string:

20ps + 125(-1) ps

224

9. Arithmetic 9.3 Multiply. The following module illustrates
Routines an efficient algorithm for the multiplication of
(Continued) two unsigned 8-bit values, resulting in a 16-bit
) product. The algorithm repetitively shifts the
multiplicand right (using RRC), with the low-
order bit being shifted out (into'the carry flag).
If a one is shifted out, the multiplier is added

to the high-order byte of the partial product.
As the high-order bits of the multiplicand are
vacated by the shift, the resulting partial-
product bits are rotated in. Thus, the multipli-
cand and the low byte of the product occupy
the same byte, which saves reglster space,
code, and execution time.

Z8ASM 2.99 INTERNAL RELEASE
LocC OBJ CODE STMT SOURCE STATEMENT
1 ARITH MODULE
2 CONSTANT
3 MULTIPLIER
4 PRODUCT_LO
5 PRODUCT_HI
6 COUNT
7 GLOBAL
P 0000 8 MULT PROCEDUR
Q IRREERRERRERRNNR
10 Purpose =
11
12
13 1Input =
14
15
16 Output =
17
18 RERRRURERRRRERRR
19 ENTRY
P 0000 OC 09 20 1d
P 0002 BO E2 21 clr
P 0004 CF 22 RCF
P 0005 CO E2 23 LOOP: RRC
P 0007 CO E3 24 RRC
P 0009 FB 02 25 jr
P 000B 02 21 26 ADD
P 000D OA F6 27 NEXT: djnz
P 000F AF 28 ret
P 0010 29 END MULT
30 END ARITH
0 errors

Assembly complete

9 instructions
16 bytes
92.5 ps (average)

E
FRRERERRHRRERHRRRRERRRRRRRRRRRRRRRRRAR
To perform an 8-bit by 8-bit unsigned
binary multiplication.

R1
R3

RR2 product

RO destroyed
ERERERRRRRRRRRRRRRRRRRRRRRRRRRRR RN NN

multiplier
multiplicand

COUNT, #9
PRODUCT_HI

18 BITS + 1!

VINIT HIGH RESULT BYTE!
ICARRY = 0!

PRODUCT_HI

PRODUCT_LO

NC, NEXT

PRODUCT_HI, MULTIPLIER

COUNT,LOOP

9.4 Divide. The following module illustrates
an efficient algorithm for the division of a
16-bit unsigned value by an 8-bit unsigned
value, resulting in an 8-bit unsigned quotient.
The algorithm repetitively shifts the dividend
left (via RLC). If the high-order bit shifted out
is a one or if the resulting high-order dividend
byte is greater than or equal to the divisor, the

divisor is subtracted from the high byte of the
dividend. As the low-order bits of the dividend
are vacated by the shift left, the resulting
partial-quotient bits are rotated in. Thus, the
guotient and the low byte of the dividend
occupy the same byte, which saves register
space, code, and execution time.

225

9. Arithmetic ZB8ASM 2.0

Routines LocC OBJ CODE STMT SOURCE STATEMENT
(Continued) 1 ARITH MODULE
g ~ 2 CONSTANT
3 COUNT RO
4 DIVISOR R1
5 DIVIDEND_HI R2
6 DIVIDEND_LO R3
. 7 GLOBAL
P 0000 8 DIVIDE PROCEDURE
. Q IRERRERAARRRERRARRERR RN RN RN RN RRRRRRRXRRRRRRRRR
10 Purpose = To perform a 16-bit by 8-bit unsigned
11 binary division.
12
13 Input = R1 = 8-bit divisor
14 RR2 = 16-bit dividend
15
16 Output = R3 = 8-bit quotient
17 R2 = 8-bit remainder
18 Carry flag = t if overflow
19 = 0 if no overflow
D0 KERERERRREREAXABRXRERXRRRRRRRRRRARRRRRIARREERRERRRRNR |
21 ENTRY '
P 0000 OC 08 22 1d COUNT, #8 ILOOP COUNTER!
23)
24 ICHECK IF RESULT WILL FIT IN 8 BITS!
g 0002 A2 12 25 ep DIVISOR,DIVIDEND_HI
0004 BB 02 26 jr UGT,LOOP ICARRY = 0 (FOR RLC)!
27 'WON'T FIT. OVERFLOW!
P 0006 DF . 28 SCF {CARRY = 1!
P 0007 AF . 29 ret
30
. 31 LOOP: !RESULT WILL FIT. GO AHEAD WITH DIVISION!
P 0008 10 E3 32 RLC DIVIDEND_LO IDIVIDEND ¥* 21t
P 000A 10 E2 33 RLC DIVIDEND_HI
P 000C 7B 04 34 jr c,subt
P 000E A2 12 35 cp DIVISOR,DIVIDEND_HI
P 0010 BB 03 36 jr UGT, next ICARRY = 0!
P 0012 22 21 37 subt: SUB DIVIDEND_HI,DIVISOR
P 0014 DF 38 SCF !TO BE SHIFTED INTO RESULT!
P 0015 0A F1 39 next: djnz COUNT, LOOP Ino flags affected!
140 ,
41 1ALL DONE!
P 0017 10 E3 42 RLC DIVIDEND_LO
43 {CARRY = 0: no overflow!
P 0019 AF 4y ret :
P 001A 45 END DIVIDE
46 END ARITH
0 ERRORS

ASSEMBLY COMPLETE

15 instructions
26 bytes
124.5 ps (average)

SECTION Conclusion illustrated in this document should aid the

l o This Application Note has focused on ways reader in using the Z8 to greater advantage.
in which the Z8 microcomputer can easily yet The major features of the Z8 have been
effectively solve various application problems. described so that the user can continue to
In particular, the many sample routines expand and explore the Z8's repertoire of uses.

226

Z8°Subroutine Library

AYAEE

April 1982

INTRODUCTION

This application note describes a preprogrammed
78601 MCU that contains a bootstrap to external
program memory and a collection of general-purpose
subroutines. Routines in this application note
can be implemented with a Z8 Protopack and a 2716
EPROM programmed with the bootstrap and subroutine
library.

In a system, the user's software resides in
external memory beginning at hexidecimal address
0800. This software can use any of the

subroutines in the library wherever appropriate
for a given application. This application example
makes certain assumptions about the environment;
the reader should exercise caution when copying
these programs for other cases.

Following RESET, software within the subroutine
library is executed to initialize the control
registers (Table 1). The control register
selections can be subsequently modified by the
user's program (for example, to.use only 12 bits
of Ports 0 and 1 for addressing external memory).
Following control register' initialization, an EI

Table 1. Control Register Initialization

Control Register

Name Address Initial Value Meaning

TMR F1H - 0CH T0 and T1 disabled

P2M FéH FFH P23-P2; : inputs

, P3M . FTH 10H P2 pull-ups open drainj

P3g-P33 : inputs;
P3g-P37 : outputs;
P34 : DM

PO1M F8H D7H P1g-P17 ¢ ADg-ADy;
normal memory timing;
internal stack

IRQ FAH 00H no interrupt requests

IMR FBH 00H no interrupts enabled

RP FDH OCH working register file
00H-OFH

SPL FFH 65H 1st byte of stack is

register 64H

227

instruction is executed to enable interrupt
processing, and a jump instruction is executed to
transfer control to the user's program at location
0812y. The interrupt vectors for IRQy through
IRQs are rerouted to locations 0800y through
080F,, respectively, in three-byte increments,
allowing enough room for a- jump instruction to the
appropriate interrupt service routine. That is,
IRQg is routed to location 0800y, IRQq to
0803y, IRQ, to 0806y, IRQ3 to 0809y, IRQ, to
080Cy, and IRQ5 to 080Fy. Figure 1 illus-
trates the allocation of Z8 memory as defined by
this application note. ’

The subroutines available to the user are refer-
enced by a jump table beginning at location
001BH. Entry to a subroutine is made via the jump
table. The 32 subroutines provided in the library
are grouped into six functional classifications.
These classifications are described below, each
with a brief overview of the functions provided by
each category. Table 2 defines one set of entry
" addresses for each subroutine in the library.

e Binary Arithmetic: Multiplication and division
of unsigned 8- and 16-bit quantities.

e BCD Arithmetic: Addition and subtraction of
variable-precision floating-point BCD values.

REGISTER

PROGRAM

e Conversion Algorithms: BCD to and from decimal-
ASCII, binary to and from decimal ASCII, binary
to and from hex ASCII.

e Bit Manipulations: Packs selected bits into
the low-order bits of a byte, and optionally
uses the result as an index into a jump table.

e Serial 1/0: Inputs bytes under vectored inter-
rupt control, outputs bytes under polled inte-
rrupt control. Options provided include:

odd or even parity

BREAK detection

echo .

input editing (backspace, delete)
auto line feed

e Timer/Counter: Maintains a time-of-day clock
with a variable number of ticks per second,
generates an interrupt after a specified delay,
generates variable width, variable frequency
pulse output.

The listings in the "Canned Subroutine Library"
provide a specification block prior to each sub-
routine, explain the subroutine's purpose, lists
the input and output parameters, and gives pertin-
ent notes concerning the subroutines. The follow-
ing notes provide additional information on data
formats and algorithms used by the subroutines.

EXTERNAL DATA

FF FFFF FFFF
CONTROL
Fo REGISTERS
EF
UNIMPLEMENTED \
80
7F
1.
78 \
7A
2 USER USER
" DEFINED DEFINED
6E
6D
3
65
64
STACK
0812 START
11
o8 INTERRUPT VECTORS
USER (3 BYTE/IRQx)
DEFINED . 0800
! O7FF}
INTERNAL
0 SUBROUTINES
03 :
/O PORTS
0 0000 0000

REGISTERS USED BY SUBROUTINES:

1. USED BY MOST ROUTINES
2. USED BY SERIAL ROUTINES ONLY
3. USED BY TIMER/COUNTER ROUTINES ONLY

Figure 1. "ROMless 78" Subroutine Library Memory Usage Map

228

1.

‘e The location designation

Although the user is free to modify the condi-
tions selected in the Port 3 Mode register
(P3M, F7y), P3M is a write-only register.
This subroutine library maintains an image of
P3M in its register P3M__save (7Fy). If
software outside of the subroutine package is
to modify P3M, it should reference and modify
P3M__save prior to modification of P3M. For
example, to select P32/P35 for handshake, the
following instruction sequence could be used:

OR - P3M__save, #04H
LD P3M, P3M_save

For many of the subroutines in this library,
the location of the operands (source/destina-
tion) is flexible between register memory,
external memory (code/data), and the serial
channel (if enabled). The description of each
parameter in the specification blocks tells
what the location options are.

e The location designation "in reg/ext
memory" implies that the subroutine allows
the operand to exist in register or in
external data memory. The address of such
an operand is contained in the designated
register pair. If the high byte of that
pair is 0, the operand is in register
memory at the address held in the low byte
of the register pair. Otherwise, the
operand is in external data memory
(accessed via LDE).

"in reg/ext/ser
memory" implies the same considerations as
above with one enhancement: if both bytes
of the register pair are 0, the operand
exists in the serial channel. In this
case, the register pair is not modified
(updated). For example, rather than stor-
ing a destination ASCII string in memory,
it might be desirable to output the string
to the serial line.

The BCD format supported by the following
arithmetic and conversion routines allows rep-
resentation of signed variable-precision BCD
numbers. A BCD number of 2n digits is repre-
sented in n+1 consecutive bytes, where the
byte at the lowest memory address (byte 0)
represents the sign and post-decimal. digit
count, and the bytes in the n higher memory
locations (bytes 1 through n) represent the
magnitude of the BCD number. The address of
byte 0 and the value n are passed to the sub-
routines in specified working registers.

4.

6.

‘2n digits is

Digits are packed two per byte with the most-
significant digit in the high-order nibble of
byte 1 and the least-significant digit in the
low-order nibble of byte n. Byte 0 is organ-
ized as two fields: ’

Bit 7 represents sign:
1 = negative;

0 = positive.

Bits 0-6 represent post-decimal digit count.

_ For -example:

byte 0 = 05y = positive, with five post-
decimal digits

= 80y = negative, with no post-
decimal digits

= 90y = negative, with 16 post-

decimal digits

The format of the decimal ASCII character
string expected as input to the conversion
routines "dascbcd" and “dascwrd" is defined
as:

(+1-) (<digit>) [(<digit>)]

in which
() Parentheses mean that the enclosed
times or can be omitted.
[] Brackets denote that the
element is optional.

enclosed

Table 3 illustrates how various input strings
are interpreted by the conversion routines.

The format of the deciﬁal ASCII character

string output from the conversion routine
"beddasc" operating on an input BCD string of

.

1 sign of character (+ 1 -)

2n-x pre-decimal digits

1 decimal point if x does not equal O
x post-decimal digits

The format of the decimal ASCII character
string output from the conversion routine
"wrddassc" is

1 sign character (determined by bit 15 of
input word)

6 pre-decimal digits

no decimal point

no post-decimal digits

Table 2. Subroutine Entry Points

Address Name Description

Binary Arithmetic Routines

001B divide 16/8 unsigned binary division

001E div_16 16/16 unsigned binary division

0021 multiply) 8x8 unsigned binary multiplication
0024 mult_16) 16x16 unsigned binary multiplication

BCD Arithmetic Routines

0027 bedadd BCD addition
002A becdsub BCD subtraction

Conversion Routines

002D bcddasc BCD to decimal ASCII

0030 dascbed Decimal ASCII to BCD

0033 bcdwrd BCD to binary word

0036 wrdbed Binary word to BCD :

0039 bythasc Binary byte to hexadecimal ASCII
003C wrdhasc Binary word to hexadecimal ASCII
003F hascwrd Hexadecimal ASCII to binary word
0042 wrddasc Binary word to decimal ASCII
0045 dascwrd Decimal ASCII to binary word

Bit Manipulation Routines

0048 clb Collect bits in a byte
0048 tmj Table jump under mask

Serial Routines

004E ser_init Initialize serial I/0
0051 ser_input IRQ3 (receive) service
0054 ser_rlin Read line

0057 ser_rabs Read absolute

005A ser_break Transmit BREAK

005D ser flush Flush (clear) input buffer
0060 ser_wlin Write line

0063 ser_wabs Write absolute

0066 ser_wbyt Write byte

0069 ser_disable Disable serial I/0

Timer/Counter Routines

006C tod_i Initialize for time-of-day clock

006F tod ’ Time-of-day IRQ service

T 0072 delay Initialize for delay interval
0075) pulse i Initialize for pulse output
0078 pulse Pulse IRQ service

230

7. Procedure name: ser_ _input

The conclusion of the algorithm for BREAK,
detection requires the Serial Receive Shift
Tegister to be cleared of the character
currently being collected (if any). This
requires a software wait loop of a
one-character duration. The following
explains the algorithm used (code lines 464
through 472, Part II):

. (128xPREOXTO) sec bit
1 character time = ““YTKE’_ T X Shar

_ 1280xPREOXTO sec
b XTAL char

A software loop equal to one character time is
needed:

sec cycle

2
h ter time = mem— e
1 character time YTAL oyele X n Toop

_ 2n sec
“ XTAL Toop*

Solve for n:

(1280 x PREQ x T0) _ 2n

XTAL ~ XTAL

n = 640 x PRED x TO

The register pair SERhtime, SER1time was
initialized during ser init to equal the
product of the prescaler and the counter
selected for the baud rate clock. That is,

SERhtime, SER1time = PREO x TO
The instruction sequence
inlop: 1d rSERtmpl, #53 (6 cycles)

1pl: djnz rSERtmpl, 1pl (12/10 cycles
taken/not taken)

executes in

6 + (52 x 12) + 10 cycles = 640 cycles

BREAK detection on the serial input line
requires that the receive interrupt service
routine be entered within a half-a-bit time,
since the routine reads the input line to
detect a true (=1) or false (=0) stop bit.

. Since the interrupt request is generated

halfway through reception of the stop bit,
half-a-bit time remains in which to read the
stop bit level. Interrupt priorities and
interrupt nesting should be established
appropriately to ensure this requirement.

. . (128 x PREC x T0)
1/2 bit time = W sec

Table 3. Decimal ASCII Character String Interpretation

Result -
Input String Sign Pre-Decimal Post-Decimal Terminator
Digits Digits
+1234.567, + 1234 567 ,
+—et.789+ - 789 +
1234.. + 1234 .
4976- + 4976 -

NOTE: The terminator can be any ASCII character that is not a valid ASCII string

character.

231

ZRASM

“ LOC

ROMLESS Z8 SUBROUTINE LIBRARY PART I

3.0

5 .
OBJ CODE STMT SOURCE STATEMENT

PART_I

OOV EWN -

10

20 Note:

MODULE

! *ROMLESS 28° SUBROUTINE LIBRARY PART I

Initialize: a) Port 0 & Port 1 set up to address

64K external memory;
b) internal stack below allocated
RAM for subroutines;
c) normal memory timing; .
d) IMR, IRQ, TMR, RP cleared;
e) Port 2 inputs open-drain pull-ups;
f) Data Memory select enabled;
g) EI executed to 'unfreeze' IRQ;
h) Jump to %0812.

The user is free to modify the initial
conditions selected for a, b, and ¢ above,
via direct modification of the Port 0 & 1
Mode register (PO1M, %F8).

The user is free to modify the conditions .
selected in the Port 3 Mode register (P3M, %FT7).
However, please note that P3M is a write-only
register. This subroutine library maintains

an image of P3M in its register P3M _save (%7F).
If software outside of the subroutine package

is to modify P3M, it should reference and modify
P3M save, prior to modification of P3M. For
example, to select P32/P35 for handshake, use

an instruction sequence such as:

OR P3M_save, #304
LD P3M,P3M_save

This is important if the serial and/or timer/
counter subroutines are to be used, since these
routines may modify P3M.

232

tAccess to GLOBAL subroutines in this library should
be made via a CALL to the corresponding entry in the
jump table which begins at address %000F. The jump
table should be referenced rather than a CALL to the

-actual entry point of the subroutine to avoid future

conflict in the event such entry points change in
potential future revisions.

Each GLOBAL subroutine in this listing is headed by a
comment block specifying its PURPOSE and calling
sequence (INPUT and OUTPUT parameters). For many of
the subroutines in this library, the location of the
operands (sources/destinations) is quite flexible
between register memory, external memory (code/data),
and the serial channel (if enabled). The description
of each parameter specifies what the location choices
are:

- The location designation 'in reg/ext memory"'-

implies that the subroutine allows that the operand
exist in either register or external data memory

The address of such an operand is contained

-in the designated register pair. If the high byte of
that pair is zero, the operand is in register memory
at the address given by the low byte of the register
pair. Otherwise, the operand is in external data
memory (accessed via LDE).

- The location designation
'in reg/ext/ser memory' implies the same
considerations as above with one enhancement: if both
bytes of the reg. pair are zero, the operand exists
in the serial channel. In this case, the register
pair is not modified (updated). For example, rather
than storing a destination ASCII string in memory, it
might be desirable to output such to the serial line.

233

108
109

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

CONSTANT

tRegister Usage!

RAM_START HE 27F

P3M save RAM_START

TEMP_3 : P3M save-1

TEMP_2 HE TEMP_3-1

TEMP_1 t= TEMP_2-1

TEMP_4 HE TEMP_1-1

!The following registers are modified/referenced

by the Serial Routines ONLY. They are
available as general registers to the user
who does not intend to make use of the
Serial Routines!
SER_char = TEMP_4-1
SER tmp2 = SER_char-1
SER_tmp1 = SER”_tmp2-1
SER_put = SER_tmp1-1
SER len =z SER put-1
SER”buf = SER”len-2
SER_imr H] SER_buf-1
SER cfg iz SER imr-1
!Serial Configuration Data
bit 7 : =1 => odd parity on

bit 6 : =1 => even parity on
(bit 6,7 = 11 => undefined)

bit 5 : undefined

bit 4 : undefined

bit 3 : =1 => input editting on

bit 2 : =1 => auto line feed enabled
bit 1 : =1 => BREAK detection enabled
bit 0 : =1 => input echo on

]

op = %80

ep B %40

ie = %08

al = %04

be = %02

ec = %01

SER get i= SER_cfg-1
SER flg = SER_get-1

1SeFial Status Flags

bit7 : =1 => serial I/0 disabled

bit 6 : undefined ’ /

bit 5 : undefined

bit 4 : =1 => parity error

bit 3 : =1 => BREAK detected

bit 2 : =1 => input buffer overflow

bit 1 : =1 => input buffer not empty

bit 0 : =1 => input buffer full

!

sd iz %80

pe S %210

bd H %08

bo i= %04

bne iz %02

bf HOY %01

RAM_TMR HES RAM_START-%10
SER_flg-1

SERltime t=

234

146 SERhtime HEY SERltime-1

147

148 !The following registers are modified/referenced
149 by the Timer/Counter Routines ONLY. They are
150 available as general registers to the user

151 who does not intend to make use of the

152 Timer/Counter Routines!

153

154 TOD tic = RAM TMR-2
155 TOD imr = TOD tic-1
156 TOD hr i= TOD imr-1
157 TOD min B TOD:hr-1
158 TOD” sec H] TOD _min-1
159 TOD tt iz TOD_sec-1
160 PLS”1 = TOD tt-1
161 PLS tmr = PLS”1-1
162 PLST2* z PLS_tmr-1
163

164 RAM END HE PLS 2

165 STATK iz RAM_END

1

167 1Equivalent working register equates
168 for above register layout!

169

170 !register file %70 - %7F!
171 RAM_STARTr t= %70 t for SRP!
172

173 rP3Msave] R15
174 rTEMP_3 iz R1y
175 rTEMP_2 HE R13
176 rTEMP_1 iz R12
177 rrTEMP_1 = RR12
178 rTEMP_Th i= R12
179 rTEMP_ 11 = R13
180 rTEMP 4 = R11
181 rSERchar iz R10
182 rSERtmp2 H) R9
183 rSERtmp1 B R8
184 rrSERtmp iz RR8
185 rSERtmpl HES R9
186 rSERtmph HE RS
187 rSERput HE R7
188 rSERlen iz R6
189 rrSERbuf = RRY
190 rSERbufh iz R4
191 rSERbufl HE R5
192 rSERimr HE R3
193 rSERefg t= R2
194 rSERget iz R1
195 rSERflg i= RO
196

197

198 !register file %60 - %6F!

199 RAM TMRr t= %60 A for SRP!
200 rTODtic B R13
201 rTODimr = R12
202 rTODhr = R11
203 rTODmin = R10
204 rTODsec H R9
205 rTODtt R8
206 rPLS 1 R7
207 rPLSEmr R6
208 rPLS_2 RS

0000
0002
0004
0006
0008
000A

U0 U U U0

0800
0803
0806
0809
08ocC
080F

R

210
211
212
213
214
215
216
217

218

219
220
221
222
223
224
225
226
227
228
229
230
231

‘232

233
234
235
236
237
238
239
240
241
242

4
EXTERNAL
ser_init PROCEDURE
ser_input PROCEDURE
.ser_rlin "PROCEDURE
ser_rabs PROCEDURE
ser_break PROCEDURE
ser flush PROCEDURE
ser wlin PROCEDURE .
ser_wabs . PROCEDURE
ser wbyt PROCEDURE
ser_disable PROCEDURE
ser _get PROCEDURE
ser_output PROCEDURE
tod™i PROCEDURE
tod™ PROCEDURE
delay PROCEDURE
pulse i PROCEDURE
pulse™ PROCEDURE
$SECTION PROGRAM
GLOBAL
!Interrupt vectors!
IRQ_O ARRAY [1 word]
IRQ 1 ARRAY [1 word]
IRQ:Z ARRAY [1 word]
IRQ_3 ARRAY [1 word]
IRQ_ U ARRAY [1 word]
IRQ_S5 ARRAY [1 word]

e es se e
W N

[%0800]
[%0803]
208061
[%0809]
(%080C]
[%080F]

236

ha-Ja-

ha-Ba-a-Ra-

)

000C
000C
000F

000F
0012
0015
0018

001B

001B
001E
0021
0024

0027

P 002A

‘o w W W U

o O

002D
0030
0033
0036
0039

003C

003F
oou2
0045

ooug
004B

O04E

8D

8D
8D
8D

8D
8D

8D
8D
8D
8D
8D
8D
8D
8D
8D

&D
gD

8D

007B"

0099
00BT'
00E2"
00F6"'

011A"
0117

0205
0363
0284
02CD!’
025C!
0257
0319"
03BE'
034D"

OuA1Y

04B9!

0000%

24y
245
246
2u7
2u8
249
250

- 251

252
253

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286

- 287

288
289
290
291
292
293
294
295
296
297
298
299
300

301

302
303
304

GLOBAL

tJump Table!
ENTER PROCEDURE

ENTRY
JP INIT
END ENTER

copyright ARRAY [® BYTE] := '(C)1980ZILOG'

!Subroutine Entry Points!
JUMP PROCEDURE
ENTRY

!Binary Arithmetic Routines!

JP divide 116/8 unsigned binary
division!

JP div_16 116/16 unsigned binary

- division!

JP multiply 18x8 unsigned binary
multiplication!

JP mult_16 116x16 unsigned binary
multiplication!

!BCD Arithmetic Routines!
JP bedadd 1BCD addition!

JP bedsub !BCD subtraction!

tConversion Routines!

JP ‘beddase 1BCD to decimal ASCII!
JP dascbed tDecimal ASCII to BCD!
JP bedwrd 1BCD to binary word!

JP wrdbed tbinary word to BCD!

JP bythase : !Bin. byte to Hex ASCII!
JP wrdhasc fBin. word to hex ASCII!
P hascwrd tHex ASCII to bin word!
JP wrddase !Bin. word to dec ASCII!

‘ JP dascwrd tdec ASCII to bin word!
tBit Manipulation Routines! ,
JP clb fcollect bits in a byte!
JP éjm {Table Jump Under Mask!
!Serial Routines! ‘

JP ser_init tinitialize serial I/0!

237

P 0051
0054

o

0057
0054

o U

o

005D
0060
0063
0066
0069

v v W ©

006C
006F
0072
0075
0078

' v v W ‘U 'O

007B

? 007B

P 007B

P 00OTE

0081
0084
0087
0089
008C
008E
0090
0092
0095

0096
0099

o} o ‘U0 UV U U "U'U U

8D

&D
8D

8D
8D
eDn
&Dp
&D

8D
&D
8D
8D

‘8D

E6

0000#%
0000#%
0000#%
0000%
0000#*
0000%
0000#%
0000%*
0000#%

0000%
0000%
0000#*
0000%
0000%

F8 D7

7F 10

TF F7
FF 65

F6 FF

305

1IRQ3 (recéive) service!

'read line!
tfread absolute!
!transmit BREAK!
!flush (clear)
input buffer!
twrite line!
!write absolute!

!write byte!

tdisable serial I/0!

tinit for time of day!
'tod IRQ service!

tinit for delay interval
tinit for pulse output!

fpulse IRQ service!

tinternal stack;
ADO-A15;

normal memory
timing !

P3M_save, #%(2)00010000

!P3M is write-only,
so keep a copy in
RAM for later
reference !

!set up Port 3!

Istack pointer !

!reset timers!

fall inputs!

Ireset int. requests!

tdisable interrupts !

'register pointer!
tserial disabled!

tglobally enable
interrupts !

306 JP ser_input
307

308 JP ser_rlin
309 .
310 JP ser rabs
311 -

312 JP ser_break
313

314 JP ser_flush
315

316 JP ser_wlin
317

318 JP ser wabs
319 -

320 JP ser wbyt
321 -

322 JP ser_disable
323

324 !Timer/Counter Routines!
325

326 JP tod_i

327

328 JP tod

329 .

330 JP delay

331

332 JP pulse_i
333

334 JP pulse

335

336 END JUMP

338 !Initialization!

339 INIT PROCEDURE

340 ENTRY :

341

342 LD PO1M,#%(2)11010111
343

344

345

346

347 LD

348

349

350

351

352 LD P3M,P3M save
353 LD SPL, #STECK
354 CLR TMR

355 LD P2M, #%FF
356 CLR IRQ :
357 CLR IMR

358 CLR RP

359 LD SER_f1lg, #%80
360 EI

361 .

362 JP %0812

363

364 END INIT

238

Binary Arithmetic Routines

P

U o

o o

U '9v'vu 'u'Y o o+ B -]

wou U

0099

0099
009B

009D
009F

0041
00A2

00A3
00AS5
00A7
00A9
00AB
0CAD
00AF
00BO

00B2
00BY4

00B6
00B7

A9
AC

A2
BB

DF
AF

10
10
7B
A2
BB
22

AA

10

A8
AF

7C
08

BC
02

-ED

EC
oy
BC
CB

F1

ED
7C

397
398
399
100
401
402
403
404
405
406
407
408
409
410
411
412
413
u1l
415
416
u17
518
419
420
421
422
423
u2l
425
426
427
428
429
430
431
432
433

e

435
436
437
438
439
40
4y
42

CONSTANT

div_LEN iz R10
DIVISOR P R11
dividend HI := R12
dividend LO := R13
GLOBAL ~

divide PROCEDURE
PR RN RN RN RN RN R RN RN R RN RN RN RN RN R RN ENRNRNY
Purpose = To perform a 16-bit by 8-bit unsigned
binary division.

Input = R11 = 8-bit divisor
RR12 = 16-bit dividend

Output = R13 = 8-bit quotient
R12 = 8-bit remainder
Carry flag = 1 if overflow
= 0 if no overflow
. R11 unmodified
ERERRRRE R RN RN NN RN R R RN RN NN R RN RN RN RN RN RRRRRRRNRNRNN

ENTRY

1d TEMP_1,div_LEN !save caller's R10!
1d div_fEN,#S !LOOP COUNTER!
ICHECK IF RESULT WILL FIT IN 8 BITS!
cp DIVISOR,dividend HI
jr UGT,LOOP TCARRY = 0 (FOR RLC)!
toverflow!
SCF 1CARRY = 1!
ret :
LOOP: RLC dividend LO {DIVIDEND #* 2!
RLC dividend”HI
jr c,subt
cp DIVISOR,dividend_HI
jr UGT,next 1CARRY = 0!
subt: SUB dividend HI,DIVISOR
SCF - !t TO BE SHIFTED INTO RESULT!
next: djnz div_LEN,LOOP tno flags affected!

1ALL DONE!

RLC dividend LO
- 1CARRY = 0: no overflow!
1d div LEN,TEMP 1 1Irestore caller's R10!
. ret - . :
END divide

239

P 00B7

00B7
00B9
00BB
00BC
00BE
00CO
o0oc2
00C4
00C6
00C8
00CA
00CC
00CE
00D0
00D2
00D4
00D6
o0oD8
00D9
00DB
00DD
00DF
00E1
00E2

‘v *vv'Yvv'Y 'U'vU "U'U 'vv "Uv'U UV ‘U'U "U'U U'U U

P O0OE2

C0E2
00EY
00E6
00E8
00E9
00EB
O00ED
OOEF
00F1
00F3
00F5
00F6

U'v'y 'v'U ‘Y'Y ‘'U'U'U'"U 0

A9

BO
CF
co
co
FB
02
AA
A8
AF

yyy
115
4146
yy7
448
u49

- 450
451

452
453
451
455
456
457
458
159
460
461

“CONSTANT

d16_LEN

dvsr_hi

dvsr_1lo

rem hi

rem lo

quot_hi

quot 1o
GLOBAL
div_16 PROCEDUR
(R332 32222222227

Purpose =
Input =

Output =

462

L6y
465
466
467
468
469
470

a7

472
473
47h
475
476
u77
u78
479
480
481
482
483
u8ly
485
486
487
488
489

491
492
493
ugl
495
496
497
498
439
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518

519.

520

EREREERRRRARRNER
ENTRY
1d
1d
ref
clr
clr
dlp 16: rle
- rlc
rle
rlec.
jr
cp
jr
jr
cp
jr
subt 16: sub
~ sbe
scf
skp_16: djnz
rle
rlec
1d
ret
END div_16

‘CONSTANT
MULTIPLIER
PRODUCT_LO
_PRODUCT_HI
mul LEN
GLOBAL

multiply
!‘i!‘!&*l‘i*ili*

Purpose =
Input =

Output =

EERRRERERRRRNNEN
ENTRY -
1d
1d
clr
RCF
LOOP1: RRC
RRC
jr
ADD
NEXT: djnz
1d

ret
END multiply

R7
R8
R9
R10
R11
R12
R13

oo 0o ne
LU LI (I L L I T 1

o e

E

EEREEE R RN RN RN R E NN RRNRNRNRE NN
To perform a 16-bit by 16-bit unsigned
binary division.

RR8 = 16-bit divisor
RR12 = 16-bit dividend

RR12 = 16-bit quotient’
RR10 = 16-bit remainder

RR8 unmodified
ERERERRRERRRR R RRE R RN RRRRRRRRNRNNRN N

TEMP 1,d16 LEN !save caller's R10!
d16_TEN,#18 1LOOP COUNTER!
- tcarry = 0!

rem_hi

rem 1lo

quot_lo

quot hi

rem_To

rem hi

c,subt 16

dvsr hi, rem_hi
ugt,skp_16 ~
ult,subt_16
dvsr lo,rem_lo
ugt,skp 16

rem lo,dvsr _lo
rem_hl dvsr_hl

d16_LEN,dlp_16- !no flags affected!
quot_ 1

quot hi ’

d16_ IEN TEMP_1

R11
R13
R12
R10

PROCEDURE
EEREERRERERRRRNR RN A RN RN RN RN RRRRRR

To perform an 8-bit by 8-bit ‘unsigned
binary multiplication.

R11 = multiplier
R13 = multiplicand’

RR12 = product

R11 unmodified
*&ii****ii*ili***ll**!*l*liﬂ!!***i!&*!

TEMP 1,mul LEN !save caller's R10!

mul LEN,#9~ 18 BITS!

PRODUCT_HI 'INIT HIGH RESULT BYTE!.
1CARRY = 0!

PRODUCT HI

PRODUCT_LO

NC, NEXT

PRODUCT_HI,MULTIPLIER
mul_ LEN,LOOP1
mul_LEN,TEMP_1 Irestore caller's R10!

240

P

‘U'v9v 'v'v'v'Yv ‘U'yU ‘'U'U'UU ‘U 'U "U'U ‘U

00F6

00F6
00F8
OOFA
00FC
OOFE
O0O0FF
0101
0103
0105
0107
0109
010B

-010D

010F
0111
0113
0116
0117

CONSTANT
m16_LEN
plier_h
plier 1
prod_hi
prod_lo
mult hi
mult”lo

GLOBAL

i
[

R10
R11
R12
R13

mult 16 PROCEDURE
PR TR R R R R RN RN RN RN RN RN RN RN RN RN RRRR

Purpose

Input =

Output

To perform an 16-bit by 16-bit unsigned
binary multiplication.

RR8 = multiplier
RR12 = multiplicand

RQ10 = product (R10, R11, R12, R13)
RR8 unmodified
Zero FLAG = 0 if result > 16 bits
= 1 if result fits in 16
(unsigned) bits (RR12 = result)

(3222222 22 22 2 2222 222222222222 222222 22 22 222222]

ENTRY

loop16:

next16:

END

1d
1d
clr
clr
ref
rre
rre
rre
rre’
jr
add
ade
djnz
1d
1d
or
ret
mult_16

TEMP 1,m16 LEN !save caller's RT7!

m16 TEN,#17 116 BITS!

prod hi

prod_lo tinit product!
- 1CARRY = 0!

prod_hi

prod lo tbit 0 to carry!

mult”hi fmultiplicand / 2!

mult” lo

nc,next16

prod lo,plier lo

prod hi,plier hi

m16 LEN,loop16 !next bit!
m16”LEN,TEMP_1 !restore caller's RT!
TEMP 1,prod hi !test product...!
TEMP_1,prod_lo !...bits 31 - 16!

241

BCD Arithmetic Routines

P 0117

P 0117 BT EE

P 011A

80

593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620

622
623
624
625
626

651

1The BCD format suppoﬁted by the following arithmetic
and conversion routines allows representation
of signed magnitude variable precision BCD
numbers. A BCD number of 2n digits is
represented in n+1 consecutive bytes where
the byte at the lowest memory address
('byte 0') represents the sign and post-
decimal digit count, and the bytes in the
next n higher memory locations ('byte 1'
through 'byte n’) represent the magnitude
of the BCD number. The address of 'byte 0'
and the value n are passed to the subroutines
in specified working registers. Digits are
packed two per byte with the most
significant digit in the high order nibble
of 'byte 1' and the least significant digit
in the low order nibble of 'byte n'. 'Byte 0'
is organized as two fields:
bit 7 represents sign:
= 1 => negative
= 0 => positive
bit 6-0 represent post-decimal digit
count
For example:
'byte 0'= %05 => positive, with 5 post-decimal digits
%80 => negative, with no post-decimal digits
%90 => negative, with 16 post-decimal digits

CONSTANT

bed _LEN := R12
bed SRC := R14
bed DST := R15
GLOBAL

bcdsub PROCEDURE
PR R NN RN R RN R RN NN RN RN RN RN RN R RN NN RN RN R RN NN NN
Purpose = To subtract two packed BCD strings of
. equal length.
dst <-- dst - srec

Input = R15 = address of destination BCD
string (in register memory).
R14 = address of source BCD
string (in register memory).
R12 = BCD digit count / 2

Output = - Destination BCD string contains the
difference.
Source BCD string may be modified.
R12, R14, R15 unmodified if no error
R13 modified.
Carry FLAG = 1 if underflow or format

error.
AR ERE R R R RN R E RN RN RN R RN NN RN NRRR RN RN RN RN NNNN)
ENTRY
xor @bcd SRC,#%80 !complement sign of
- subtrahend!
tfall into becdadd!
END bedsub

242

P

v'v'v 'v'v 'vY 'Y'Y Y'Y Y'Y ‘v'U ‘U0 'U 'V 'U"U U U

U "U'YU U'U ‘UU U

‘U'o 'U'Y ‘U'U O

011A

011A
011D
011F
0121
0124
of27
0124
012D
0130
0132
0134
0137
0134
013cC
013E
0140
0143
0145
o148
0144
014C
014E
0150

0152
0154
0157
0154
015D
0160
0162

‘0164

0166
0168
016A
016C
016E
0170
0173

7F
7D
TF
ED

7E
7E

653
654

657
658
659
660
661

GLOBAL

bedadd PROCEDURE
655 IHEBEREEERERERRRRENRERBRNU RN RN RN RN NN AR R RN BN ERN NN NS

656 Purpose =

Input =

Output =

To add two packed BCD strings of
equal length.
dst <-- dst + sre

R15 = address of destination BCD
string (in register memory).
R14 = address of source BCD
string (in register memory).
R12 = BCD digit count / 2

Destination BCD string contains the sum.

Source BCD string may be modified.

R12, R14, R15 unmodified if no error

R13 modified.

Carry FLAG = 1 if overflow or format
error.

(22222 SRR R R 2R3 2 SR 22222222222 22222222222 22222222231

ENTRY

!delete all leading pre-decimal zeroes!

ba_3: 1d

ba_2: push

call
ine
Jp
dec
Jjr
ba 1: 1d
- dec

TEMP_3, #2

R13,bed SRC

TEMP_4,bed_LEN

TEMP 4,TEMP 4 ftotal digit count!
TEMP_2,8R13™ tget. sign/post dec #!
TEMP_ 2, #%47F fisolate post dec #!
TEMP™ Y4, TEMP 2 tpre-dec digit cnt!

ult,ba_err 1 format error!

z, ba 1~ Ino pre-dec. digits!
R12 !save!

R12,1(R13) tleading byte!
R12,#%F0 ttest leading digit!
R12 irestore!

nz,ba 1 fno more leading 0's!
TEMP_T

rdl frotate left!

8R13 tupdate post dec #!
ov,ba err foops!

TEMP_T tdec pre-dec #!
nz,ba_2 !loop!

R13,bcd_DST

TEMP_3 1SRC and DST done?!

nz,ba 3 tdo DST!

jr
!1eading zero delet1on complete!
tinsure DST is > or = SRC; exchange if necessary!

1d
and
1d
and
cp
push
jr

R13,@bcd DST

R13,#%7F tisolate post dec #!
TEMP_2,@bcd_SRC

TEMP 2,#%T7F tisolate post dec #!
R13, TEMP 2

R13 Isave!

ult,ba U IDST > SRC!

ugt,ba” 5 tDST < SRC!

‘ jr
tdecimal points in same position.
must compare magnitude!

1d

1d

1d

ba 6: ine
- ine
1d

cp

R13,bed LEN

TEMP_1,bed_SRC

TEMP 4,bcd DST

TEMP” 1

TEMP_ 4

TEMP_3,8TEMP_1 !get SRC byte!
TEMP_3,68TEMP_4 !compare DST byte!

243

0176
0178
017A
017C

017E
0180

‘0183
0185
0187
0189
018C
018F
0192
0195
0197
0199
019B

' TW'YUYYVYUY'UV'U'UUUU U'U UU

019D

019F
01A2
01AY4

01A6
01A8
01AA
01AC

01AF
01B2

01B5
01B7
01BA
01BC
01BE

01Co
01C1
01Cy
01C7
01C9
01CC
01CE
01D1
01D3
01D6
01D8
01DA

01DC
01DE
01DF
01E1
01E3
01E6
01E8
O1EA

‘vTvW'Yv'vV'YY 'U'VVU'UTV'UTUVUVUVY TVVTVUT UU ‘v'vv'v ‘U ‘U'y

0181

ED
7D
09

EE
ED

7C
EE

. EF

7D

ougs!

7B
7B

ED

7C
80

7C
7C
EF

00

jr
jr
djnz
Jjr

ugt,ba_5
ult,ba 4
R13,ba_6
ba U

1SRC > DST!
ISRC < DST! °
!loop!

IDST > or = SRC!

Iswap source and destination operands!

1d
inc
add
add
dec
dec
1d
1d
1d
1d
djnz
1d
pop
push
texchange comple
ba U4: pop

ba_5:

ba 7:

R13,bcd_LEN
R1 -

3
bed_SRC,R13
bed_DST,R13
bed _SRC
bed”DST
TEMP_1,@bed_SRC
TEMP_4,@bcd_DST
@bcd_SRC, TEMP_U4
€bcd DST, TEMP_1
R13,ba 7
R13,TEMP_2
TEMP 2
R13 ~
te!
R13

tinclude flag/size byte!

tone byte swapped!

frestore!

I1RT3 = DST post decimal digit count

TEMP_2 =

R13 =< TEMP 2
sub
rre

frotate
dec

clr
call

TEMP_2,R13
TEMP_2
ne,ba 8

R13,bed_SRC

6R13
TEMP_1
rdr

SRC post decimal digit count

talignment offset!
tdigits word aligned!

Jr =
out least significant SRC post decimal digit!
1d

tdec post dec digit #!

tdetermine if addition or subtraction!

1d

xor

!get starting ad
1d

ba_8:

sub
jr
add
add
fready!!!
ref
1d
tm
jr
sbe
jr
ade
da
1d
dec
dec
djnz
!propagate carry
1d

ba_11:

ba_9:
ba_10:

ine
djnz
jr
ade
da
dec
djnz

ba_12:

TEMP_U4,@bed SRC
TEMP™4,@bcd DST
dresses!
R13,bcd LEN
R13,TEMP_2
z,ba_14

bed SRC,R13
bcd_DST,bed_LEN

TEMP_1,8bcd_DST
TEMP U4, #%80
z,ba"9

TEMP 1,8bcd SRC
ba 10 -
TEMP_1,8bcd_SRC
TEMP_1 -
@bed DST,TEMP 1
bed_DST -
bed SRC

R137ba 11

1sign of SRC!
Isign of DST!

tdone already!

fcarry = 0!

tadd or sub?!
tadd!

thru TEMP_2 bytes of DST!

R13,TEMP_2
R13
R13,ba_12
ba_13

ébcd DST,#0
@8bed DST
bed_DST
R13,ba_12

!may be zero!

244

'U'vU ‘'Uu 'U'U Uu

v

01EC

01EE
01F1
01F4
01F7
01FA
01FC
01FF
0201
0202

0203
o204
0205

13

EF 7C
7C TF
0203*
7C 10
EF
ougs!

EF

tcarry propagate complete!
ba_13: jr nc,ba_14 tdone!
!Rotate out least significant post decimal DST
digit to make room for carry at high end!
1d TEMP_1,8bed_DST

and TEMP_1,#%7F

jp z,ba"err no post dec digits!

1d TEMP_1,#%10

1d . R13,bed_DST

call rdr

dec €bed_DST tdec digit cnt!
ba_14: ref

ret

ba_err: sef
ret
END becdadd

245

Conversion Routines

821
822
823
824
P 0205 ' 825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
8110
841
842
843
sul
P 0205 E6 7C 2D 845
P 0208 77 ED 80 8u6
P 020B EB 03 8u7
P 020D E6 7C 2B 848
P 0210 E5 ED 7E 849
P 0213 56 7E T7TF 850
P 0216 02 CC 851
P 0218 70 EC 852
P 021A 24 T7E EC 853
P 021D 50 7E 854
P 021F 7B 35 855
P 0221 D6 O3F4' 856
P 0224 7B 30 - 857
P 0226 A6 EC 00 858
P 0229 6B 22 859
P 022B 76 7E 01 860
P 022E EB 04 861
P 0230 DE 862
P 0231 E5 ED 7D 863
P 0234 FO 7D 86k
P 0236 E4 7D T7C 865
P 0239 56 7C OF 866
P 023C A6 7C 09 867
P 023F BB 14 868
P 0241 06 7C 30 869
P 0244 D6 O3F4’ 870
P 0247 00 7E 871
P 0249 6B 0B 872
P 024B CA DE 873
P 024D E6 7C 2E 874
P 0250 D6 O3F4' 875
P 0253 8B D6 876
P 0255 DF 877
P 0256 AF 878
P 0257 879
881
P 0257 882
883
884
885
886
887
888
889
890
891
892
P 0257 D6 025C' 893
P 0254 C8 ED 894
895
P 025C 896

CONSTANT

bea LEN HE R12
beca SRC iz R13
GLOBAL

beddasec PROCEDURE

TRRERERRRERRE RN NN RN RRRRRRRRRRRRR RN RN RERRERRRR RN RN

Purpose = To convert a variable length BCD
string to decimal ASCII.

RR14 = address of destination ASCII
‘string (in reg/ext/ser memory).
address of source BCD

string (in register memory).
BCD digit count / 2

Input =
R13 =
R12 =
Output = ASCII string in designated
destination buffer.
Carry FLAG = 1 if input format- error
or serial disabled,
= 0 if no error.
.R12, R13, R14, R15 modified.
Input BCD string ummodified.
ll’&li!!*l!!lli!liil!lﬁll!lﬂ‘_‘ll!lﬁi!!'lllﬁ!*l!!i*i*l!
ENTRY

1d TEMP_1,#'- iminus sign!
tm @bca_SRC,#%80 lsrc negative"
jr nz,bed_d1 tyes!
1d: TEMP_1,#'+" tpositive sign!
bed d1: 1d TEMP_3,@8bca_SRC .
- and TEMP™ 3, #%7F tisolate post dec cnt!
add bca LEN beca_LEN !total digit count!
push bea”LEN
sub bea LEN,TEMP ' 3 lpre-dec digit cntl!
pop TEMP 3 ltotal digit count!
jr ult,bed d2 ! format error!
i call put_desf !sign to dest.!
jr c,bed d2 !serial error!
cp beca LEN,#0 lany pre-dec digits?!
jr z,bed _dé 'no. start with '.'!
bed di: tm TEMP_3,#1 Ineed next byte?!
- jr nz,bcd d3 Inot yet.!
inec bca_SRT tupdate pointer!
1d TEMP 2,8bca SRC !get next byte!
bed_d3: swap TEMPT2 -
1d TEMP 1,TEMP 2
and TEMP_ 1, #%0F tisolate digit!
cp TEMP™ 1, #9 tverify bed!
jr ugt, Bed _d5 tno good!
add TEMP 1,#%30 tconvert to ASCII!
call put Jest 1to destination!
dec TEMP 3 tdigit count!
jr z,bed d2 tall done!
djnz bca LEN,bed_d4 !next digit!
bed d6: 1d TEMP_1,#'." ttime for dec. pt.!
- call put dest 1to destination!
jr bed”d4 tcontinue!
bed d5: sef ' Iset error return!
bed"d2: ret
END beddasc
GLOBAL

wrdhasc PROCEDURE
!*I&*i*&**Ii*Il*lti!!lﬁﬁlllil*!!&&&I*ll*!i&liii!&!*l*!

Purpose = To convert a binary word to Hex ASCII.
Input = RR12 = source binary word.
RR14 = address of destination ASCII
string (in reg/ext/ser memory).
Note = All other details same as for bythasc.

LI T I I e e e T I T i I AT T Y]
ENTRY

call bythasc fconvert R12}
1d R12,R13

tfall into bythasc!

END

wrdhasc

246

.

‘'Y Y'Y Y'Y 'v'uv YU 'u'v ‘U 'U‘u‘u 'O

025C

025C
025E

0261

0263
0265
0268
026B
026E
0270
0271
0274
0276
0279
027C
027E
0280
0282
0283
0284

TE

7D 02
EC

7C

7C . OF
7C 30
7C 3A
09

7E 01
oD

7C 07
03F4!
05

7D

DF

898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922

923 -

924
925
926
927
928
929
930
931
932
933

CONSTANT
bna SRC ‘=z R12
GLOBAL
bythasc PROCEDURE
PHRER R RN NN RN RN RN RN RN RN R RN RN NR RN R RN RN RN RN NN NN NN

Purpose = To convert a'binary byte to Hex ASCII.

Input = RR14 = address of destination ASCII
string (in reg/ext/ser memory).
R12 = Source binary byte.

Output = ASCII string in designated
destination buffer.

Carry = 1 if error (serial only).

R14, R15 modified.
!liillll‘!l!illl'!i‘!lill!lllllillllllllllil‘lllllill!
ENTRY

elr MODE 1flag => binary to ASCII!
bca go: 1d TEMP_2,#2
bea"gol1: SWAP bna SRC
1d

R 1look at next nibble!
TEMP_1,bna_SRC

and TEMP 1, #%0F tisolate low nibble!

ADD TEMP™ 1, #%30 tconvert to ASCII!

cp TEMP_1,#%34A 1>921

jr ult,skip Ino!

SCF . tin case error!

™ MODE, #1 tinput is BCD?!

JR NZ,bca ex lyes. error.!

ADD TEMP_13#%07 tinput hex. adjust!
skip: call put dest !put byte in dest!

jr c,bca ex terror!

dec TEMP 2 e

ir nz,bca_gol 1loop till done!

RCF fcarry = 0: no error!
bca ex: ret ‘tdone!
END™ bythase

247

P 0284

0284
0286
0288
0288
028E
0290
0293
0295
0298
0298
029C
029F
0242
0244
0246
0249
02AC
02AE
02B0
02B2
02B4
02B6
02B7
02BA
02BC
02BF
02C1
02C3
02C5
02C8
02CB
02cC
02CD

‘vyY9'v*v ‘'Y ‘vvY *v'v Y'Y Y'Y 'vv'v'v vy 'v'U UV "YU 'U'U U0 U 'U U

EC

ED

EE 7B
7B TF
FF

7B EF
37

EE 7B
TE 02
EE 7D
EF 00
12

7D

7D 7C
oyac*
1E

EF

TE

EB

E2

EC 80
10

7B 80
0A

EC

ED

ED 01
EC 00

CONSTANT

bed_adr t= R14
_bed cnt = R15
GLOBAL

bedwrd PROCEDURE

nii*!l|;§;:ni&|nl;|&:!|;;n;;;;u:::t;:n!::i::»nun;ni;;;
Purpose = To convert a variable length BCD
string to a signed binary word. Only
pre-decimal digits are converted.
Input = R14 = address of source BCD
string (in register memory).
R15 = BCD digit count / 2
Output = RR12 = binary word
' Carry FLAG = 1 if input format error
or dest overflow,
= 0 if no error.
R14,R15 modified.
R R RN RN R RN RN RN NN RN R NN RN RN RN NN RNRRNNY
ENTRY
.elr R12 tinit destination!
clr R13
1d TEMP_4,8bcd adr !get sign/post length!
and TEMP_ 4, #37F tisolate post_Tength!
add bcd_¢ent,bed cnt 1# bed digitsl
sub bed"ent,TEMP_4 1 # pre-dec digits!
jr ult,bed w2 ! format error!
1d TEMP 4 ,8bcd_adr !remember sign!
bed_w3: 1d TEMP™ 3, #2 tdigits per byte!
inc bed adr tsrc address!
1d TEMP 2, @bcd_adr !get next src byte!
bed_wi: cp bcd-cnt #0 — tdigit count = 07!
jr z,bcd wi fconversion complete!
swap TEMP 2 Inext digit!
1d TEMP™ 1, TEMP_2 ,
call bed Bin taccumulate in binary!
jr c bcd_wz toverflow or format err!
dec 'bcd ent tupdate digit count!
dec TEMP_3 tnext byte?!
jr nz,bcd w1 no. same.!
jr bed_w3 Inext byte!
bed wld: scf tin case!
- tm R12,#%80 fresult > 15 bits?!
jr nz,bed_w2 toverflow!
bed w5: tm TEMP 4, #%80 !source negative?!
- ir z,bed w6 - Ino. done.!
com R12 ~
com R13
add R13,#1
ade - R12,#0 1RR12 two's complement!
bed w6: ref fcarry = 0!
bed w2: ret :
END™ bedwrd

248

990 GLOBAL

P 02CD 991 wrdbed PROCEDURE
R 992 g!n:;;ni:ni;ni:;nn;a::»:;;uul||n:lrl;n;&;i;;&n;;n:snuu
993 Purpose = To convert a signed binary word
994 to a variable length BCD string.
995
996 Input = R14 = address of destination BCD !
997 string (in register memory)
998 RR12 = source binary word
999 R15 = BCD digit count / 2
1000
1001 Output = BCD string in destination buffer
1002 Carry FLAG = 1 if dest overflow
1003 . - =z 0 if no error.
1004 R12,R13,R14,R15 modified.
1005 #EEENEERERREERRRERRRRERRRE RN RN R NN NN RN RR RN NN R R RN RN RN
1006 ENTRY
P 02CD B1 EE 1007 clr ébed adr tinit sign/post dec cnt!
P 02CF 76 EC 80 1008 tm R12,¥%80 tis input word Tegative?
P 02D2 6B 0D 1009 jr z,wrd b0
P 02D4 47 EE 80 1010 or @bed adr,#%80 1set result negative!
P 02D7 60 ED 1011 com R13 ~
P 02D9 60 EC 1012 com R12
P 02DB 06 ED 01 1013 add R13,#1
P O2DE 16 EC 00 1014 ade R12,#0 1RR12 two's complement!
P 02E1 10 ED 1015 wrd_b0: rle R13
P 02E3 10 EC 1016 rle R12 tbit 15 not magnitude!
P 02E5 EE 1017 inc bed adr tupdate dest pointer!
P 02E6 E9 7C 1018 1d TEMP_1,bcd_adr
P 02E8 F9 7D 1019 1d TEMP 2,bed _cnt !dest byte count!
P 02EA O4 EF 7C 1020 add TEMP_1,bcd”ent
P 02ED 00 7C - 1021 dec TEMP 1 !z bed end addr!
P 02EF B1 EE 1022 wrd b1: clr 8bed adr tinitialize dest!
P 02F1 EE 1023 - ine bed adr
P 02F2 FA FB 1024 djnz bed”_cent,wrd_b1
P 02F4 E6 TE OF 1025 1d TEMP 3,#15 !source bit count!
P 02F7 70 7E 1026 wrd_b3: push TEMP_3
P 02F9 10 ED 1027 - rlec R13
P 02FB 10 EC 1028 rle R12 1bit 15 to carry!
P 02FD E8 T7C 1029 1d bed adr ,TEMP 1 !start at end!
P 02FF F8 7D 1030 1d bed ent, TEMP 2 !dest byte count!
1031 !(dest bed string) <-- (dest “bed string ¥ 2) + carry!
P 0301 E5 EE TE 1032 wrd_b2: 1d TEMP_3,@bed_adr
P 0304 15 EE T7E 1033 - ade TEMP_3,8bcd_adr !* 2 + carry!
P 0307 40 TE 1034 da TEMP”3
P 0309 F5 T7E EE 1035 14 @bcd_adr , TEMP 3
P 030C 00 EE 1036 dec bed adr Inext two digits!
P 030E FA F1 1037 djnz bed ent, wrd_b2 !loop for all digits!
P 0310 50 TE 1038 pop TEMP ' 3 tfrestore src bit cnt!
P 0312 7B O0u4 1039 jr c,wrd ex tdest. overflow!
P 0314 00 7E 1040 dec TEMP_‘!
P 0316 EB DF 1041 jr nz,wrd b3 tnext bit!
P 0318 AF 1042 wrd_ex: ret -
P 0319 1043 END wrdbed

249

P 0319

0319
031B
031D
031F
0322
0324
0327
0329
032C
032E

‘U "UU 'UU UV ‘U'U

0331
0333
0335
0338
033B
033E
0340

0346
0349
034B
o3u4cC
034D

¥'v'U 'UU ‘U 'U U U 'U'0 0"

0343

TE

EC

ED
03DA’
28
040D
22

7C 39
03

7C 37
ED

7D

ED FO
7C OF
7C ED
EC

EC FO
7D OF
7D EC
D4

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1061
1065
1066
1067
1068
1069
1070
1071
1072
1073
1071
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092

GLOBAL
hascwrd PROCEDURE .
PRER R RN RN RN R RN RN RN RN RN R RN RN R RN RN NN RN RN NN RN RN NN
Purpose = To convert a variable length Hex
ASCII string to binary.

Input = RR1Y4 = address of source ASCII
string (in reg/ext/ser memory).

Output = RR12 = binary word (any overflow
high order digits are truncated
without error).

Carry FLAG = 1 if input error
(serial only)
(SER_flg indicates cause)
= 0 if no error
R14, R15 modified

Note = The ASCII input string processing is
terminated with the occurrence of a
non-hex ASCII character.

R RN RN RN NN NN NN RN RN R RN RN NRRRRRRNNNN)

ENTRY

clr TEMP_3

clr R12

clr R13 tinit output!
has_c1: call get_src tget input!

jr c,has ex1 terror!

call ver asc tverify hex ASCII!

jr c,has ex tend conversion!

cp TEMP 1 y#%39

jr ule,ﬁés c2

sub TEMP 1,#%37 ,
1Shift left one nibbTe! ’

tInsert new nibble in least significant nibble!
has_c2: swap R13

1d TEMP_2,R13

and vR13,?$F0

and TEMP_1,#%0F

or R13,TEMP_1

swap R12

and R12,#%F0

and TEMP_2, #%0F

or R12,TEMP_2

jr has c1 floop!
has ex: ref - Ino error!
has"ex1:ret
END™ hascwrd

250

1094 GLOBAL

P 034D 1095 dascwrd PROCEDURE
1006 IHERRERREEERERRERRNRNNRNDRUNRBRRNB RN RN R RN NRANNNRR RN NN
1097 Purpose = To convert a variable length decimal
:838 ASCII string to signed binary.
9
1100 Input = RR1Y4 = address of source ASCII
1101 string (in reg/ext/ser memory).
1102 .
1103 Output = RR12 = binary word
1104 R8,R9,R10,R11 holds the packed BCD
1105 version of the result.
1106 Carry FLAG = 1 if input error
1107 (serial only)
1108 (SER_flg indicates cause)
1109 or dest overflow
1110 = 0 if no error
1M1 R14, R15 modified

2
3 Note = The ASCII input string processing is
y terminated with the occurrence of a

5 non-decimal ASCII character.

6 " Decimal ASCII string may be no more

7 than 6 digits in length, else Carry

8 will be returned.

9 Post decimal digits are not included

PRI NN

1120 in the binary result.
1127 SHEEEREREREER RN RN R RN RN RN RN R RN NN NN RN R R NN RN RN RN RN
1122 ENTRY
P 034D CC 03 1123 : 1d R12,#3 16 digits!
P O34F DC 08 1124 1d R13,#8 ttemp addr =!
P 0351 o4 FD ED' 1125 add R13, RP tR8 thru R11!
P 0354 D6 0363 1126 call dascbed tconvert to bed!
P 0357 7B F3 1127 jr c,has ex1 terror!
P 0359 EC 08 1128 1d R1U,#8
P 035B o4 FD EE 1129 add R14,RP
P 035E FC 03 1130 1d R15,#3) E
P 0360 8D 0284 1131 jp bedwrd tconvert to binary!
P 0363 1132 END dascwrd

251

P 0363

0363
0365
0367
0369
036A
036C
036E
0370
0372
0375

U 'U'0 "UU ‘U0 U'U U

0377
037A
037C
037F
0382
0384
0387
0389
038C
038E
0391
0393
0395
0398
039A
039D
039F
03A2
03AY4
03A7
03AA
03AC
03AF

'U'vv'U YU vV'U YU Y'Y 'U'U'U'U ‘U0 "UU "UU U

T 7TE 01

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
171
1172
1173
1174
1175
1176
177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197

CONSTANT
dab_LEN
dab_DST

GLOBAL

R12
R13

¢ =

N

dascbed PROCEDURE
PN RN RN NN RAN RN RN R RN RN RN RN NN NN RN RN RN NN NN RN RN NN

To convert a variable length decimal
ASCII string to BCD.

Purpose =

Input =

Output =

Note =

ENTRY

push
push
clr
inec
djnz
clr
pop
pop
1d
clr

das_g1:

call
jr
and
tm
jr
cp
jr

das_g2:

das_g5: jr
das_gl: cp

das_g6:

R13 = address of destination BCD
string (in register memory).

RR1Y4 =

address of source ASCII

string (in reg/ext/ser memory).

R12 =

BCD digit count / 2

BCD string in designated destination
buffer (any overflow high order
digits are truncated without error).

Carry FLAG =

1 if input error

(serial only).

(SER_flg indicates cause)

or overflow

R14, R15 modified.

The ASCII input string processing is
terminated with the occurrence of a

non-decimal ASCII character. .
hadaa it i A e I T T T T T T T T Y]

dab LEN
dab™DST

@dab DST
dab_DST

dab | LEN,das_g1
€dab_D sT

dab DST
dab”LEN

TEMP_ 3 #1
TEMP_

get src
c;dab ex1
TEMP 1, #%7F
TEMP” 4, #%03
nz,das_g5
TEMP AT
z,das 32
TEMP T,#-
nz,das gh

@dab_DST, #%80 _

das g2
mi,das_g6
TEMP_1,#'.?
nz,das_gé
TEMP_Y, #%03
das_g2

ver asc
c,dab _ex
TEMP T, #%01
rdl ~
nz,das_g7
TEMP_47#%02
z,das_g2

!save!

tinit. destination!

tinit.!
!restore!

tfor ver asc!

tbit 0 => digit seen;
‘bit 1 => dec pt seen;
bit 7 => overflow!
!get input byte!
!serial error!

!17-bit ASCII!

tcheck status! ,
!sign char not valid!
!positive?!

!yes. no affect!
Inegative?!

fnot sign char!
tcomplement sign!

!get next input!

tdec pt has been seen!
tis char dec pt?!
!nope.!

!dec pt and digit seen!
tget next input!

1is bed digit?!

tend conversion.!
tdigit seen!

!new digit to dest!
foverflow!

tpost dec digit?!

!no. get next input!

252

‘v'vvw "U'U Uy

*v'Y ‘U9 U0 U"Y "U0 UU U

03B1
03B3
03BS
03B8

03BA
03BD
03BE

03BE

03BE
03Co
03C2
03Cu
03C7
03€9
03CC
03CE
03D0
03D2
03D4
03D7
03DA

ED
c2

*7B 80

BD
7B FC

1198 °

1199
1200
1201
1202
1203
1204
1205

1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235

ine @dab_DST
jr das g2
das_g7: or TEMP_4, #%80
jr das_g2
dab ex: 1d FLAGS, TEMP_4
dab”ex1: ret -
END dascbed
GLOBAL
wrddasc PROCEDURE

tinec post dec cnt!
fget next input!
!set overflow!
fget next input!

fcarry = 0 or 1!

IRAZ 22222222 R 22222 22 2R R 22 222222222222 22222232282)

Purpose =
- Input = RR12 =
- RB‘N! =
Output =

To convert a signed binary word to
decimal ASCII

source binary word.
address of dest (in reg/ext/ser

Decimal ASCII in dest buffer.

R8,R9,R10,R11 holds the ‘packed BCD
version of the result.
R12, R13, R14, R15 modified.

AR RN RN R R RN R R RN RN RN NN RN RN R RN RNRN

ENTRY
push R1Y4
push R15
1d R14,4#8
add R14,RP
1d R15,#3
call wrdbed
pop R15
pop R14
ld | R12,#3
1d R13,#8
add R13,RP
jp beddase
END wrddasc

tsave dest addr!

!R8.9;10 & 11 temp!
!temp byte length!
tconvert input word!

frestore dest addr!
!length of temp!

faddr of temp!
fconvert to ASCII!

253

P 03DA

03DA
03DB
03DC

03DF
03E1
03EY
03E6
03ES8
03EA
03EC
03EE
03EF
03F2
03F3
03F4

YYvY'Y'Uv'Y'U ‘U'U 'UYU U'U ‘U'U U

P 03Fy4

03Fy
03F5
03F7
03F8
03FA
03FD
03FF

0403
0405
o407
0408
040B
040C
040D

U0 'U'U U'U U0 'U'U "UU 'UU U

03DE’

0401

06

OE
0000*

7C
BE

EE
7C EF

1237
1238
1239
1240
1241
1242

~1243

1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259

1260-

1261
1262
1263
1264

1265

1266
1267
1268
1269
1270

1271

1272
1273
1278
1275
1276
1277
1278
1279
1280
1281
1282
1283
1281
1285
1286
1287
1288
1289

GLOBAL N ! for PART II only!

get src PROCEDURE
TRETFRRRRE RN RN RN RN E RN RN RN RN R RN NRR RN NN R RN RN RN NN
Purpose = To get source byte from
reg/ext/ser memory into TEMP_1.
Output = Carry FLAG = 1 if error (serial)
= 0 if all ok
TEMP_1 = source byte. ‘
RR14 updated.
ERRRRERRR RN R AR R R R RNRREFRRRRR R RN NN RN RN RN NN RN NNN NN
ENTRY
ref !set good return code!
ine R14 test R14 = 0!
djnz R14,get_s1 tsrc in ext memory!
ine R15 ftest R15 = 0!
djnz R15,get_s2 Isrc in reg memory!
jp ser get tsrc in ser memory!
get _s1: push R11 !save user's!
- lde R11,8RR14 tget byte!
1d TEMP 1,R11 !move to common!
pop R11 !restore user's!
incw RR14 tfupdate srec ptr!
ret
get s2: 1d TEMP 1,8R15 Iget byte!
- inc R15 ~ tupdate src ptr!
" ret
END get_src
GLOBAL tfor PART II only!
put dest PROCEDURE
vxrvu:;n;;:*uluul::i*;:u;:&x;;u;;l&i*;iif:*ni:l;lii-:i
Purpose = . To store destination byte from TEMP 1
into reg/ext/ser memory
OQutput = RR14 updated.
**!*i*!lli!!Ili!iiiﬁl!!llﬁ!!llllil!lil*l*'!llllillli!|
ENTRY
ine R14 ftest R14 = 0!
djnz R14,put s1 tdest in ext memory!
ine R15 - ftest R15 = 0!
djnz R15,put_s2 tdest in reg memory!
jp ser output tdest in ser memory!
put s1: push . R11° !save user's!
- 1d R11,TEMP_1
lde eRR1u,R1T
pop R11 !restore user's!
incw RR14
ret
put s2: 1d @RrR15,TEMP_1
- inc R15
ret »
END put_ dest

254

P

‘Y0 U0 UV ‘U U ‘U0 U

v Ba-Jia -]

‘99 v'v'v'yU 'U'vU 'U'yU 'U'VU 'U'U *U'U UV U0 ‘O

U U0 U U

040D

040D
0410
o413
ou15
o418
041A
041D
OU1F
ou22
ou2s
0427

042A
ou42B
ou2c

os2C

ou2c
OU2F
0432
ou3y
0436
0438
ou3A
ou3c
043E
oulo
ouy2
ouly
ouL6
ouug
ouUA
ouuD
0450
0u52
0451
0u57
0u59
ou5C

o4sD
O45F
0461
0462
0463

7C
7C
16
7C
10

0B
7C
7C
oy
7C

TF
30

3A
01

DF
41

47

ED
00

ED
EC

1291
1292
1293

1294

1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314

1315

1316
1317
1318
1319
1320
1321
1322

1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
134y
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361

CONSTANT
MODE i= TEMP_3
char . t= TEMP 1
INTERNAL -
ver asc PROCEDURE

PR AT R R R R RN RN R RN NN NN R R RN R RN RN NN NN RN R RN RN RRRRN
Purpose = To verify input character as valid

hex or decimal ASCII.
Input = TEMP_1 = 8-bit input
TEMP 3 = 0 => test for hex,
- 1 => test for decimal
Output = Carry FLAG = 0 if no error

1 if error.
EREEE RN R RN R RN RN RN R RN R NN RN RN RN NN RN R RN RN RNNE)
ENTRY .
and char ,#%7F 17-bit ASCII!
cp char,#'0" frange start: '0'!
jr ult,ver err fno good!
cp char,#'9'+1 tdec range end: '9'!
jr ult,ver ok fall's well!
tm MODE, #1™ tdec or hex?!
jr nz,ver erc ino good!
and char,#LNOT('a'-'A') !insure upper case!
cp char,#'A?’ tcheck A-F range!
jr ult,ver err fno good!
cp char,#'F'+1 tend hex range!
ver_ok:
ver erc: ccf " tcomplement carry!
ver_err: ret
END™ ver_asc
INTERNAL
bed bin PROCEDURE
PR NT AR R R R R RN RN NN R RN R RN RN R RN RN RN R RN RR RN NN RN S
Purpose = To convert next bed digit to binary.
Input = TEMP_1 = digit
Output = RR12 = RR12 * 10 + digit
ERERERE RN NN RN RN RN RN NN RN RN R RN NN RN E RN RN NN NN RN RN NN
ENTRY
and TEMP 1, #%0F tisolate digit!
cp TEMP™1,#9 tverify valid!
jr ugt,bed b1 lerror!
add R13,R13™
ade R12,R12 12x!
jr c,bed_b1 toverflow!
push R12
push R13
add R13,R13
ade R12,R12 1ux!?
jr c,bed b2 toverflow!
add R13,RT3
ade R12,R12 18x!
jr c,bed_b2 toverflow!
add R13, TEMP_1
ade R12,#0 18x + d!
jr c,bed b2 toverflow!
pop TEMP_T ’
add R13,TEMP 1
pop TEMP_1 ~
- ade R12,TEMP 1 110x + d!
ret -
bed_b2: pop TEMP_1
pop TEMP 1 restore stack!
bed b1: sef - terror!
- ret
END bed_bin

255

1363 CONSTANT

1364 s len := R12
1365. s” adr ves R13
1366 INTERNAL

P 0463 1367 rdl PROCEDURE

1368 IHEREREERERRRR RN RN RN RN RN RR R
1369 Rotate Digit Left

1370
1371 Input = R12 = BCD string length
1372 R13 = BCD string address
1373 TEMP_1 bit 3-0 = new digit
1374 '
1375 Output = BCD string rotated left one digit;
1376 new digit inserted in units positlon.
1377 TEMP_1 bit 3-0 = digit rotated out
1378 of high order digit position
1379 bit 7-4 = 0
1380 Zero FLAG = 1 if TEMP_1 <> 0
1381 R12, R13 unmodified
1382 l!il!ilil!{&ll!!li!!l!‘lll&*!li!ll!lll!ﬁllllli!i!llll!
1383 ENTRY
P 0463 70 EC 1384 push s_len
P o465 02 DC 1385 add s adr s_len laddress of units place!
P 0u67 F1 ED 1386 rdl_01: swap €s_ad r
P 0469 E5 ED 7D 1387 1d TEMP_2,@s adr
P 046C 57 ED FO 1388 . and @s aHr,#iFO tisolate digit!
P OU6F 56 7C OF 1389 and TEMP 1, #%0F !isolate new digit!
P 0472 45 ED 7C 1390 or TEMP” 1,@5 adr
P o475 F5 7C ED 1391 1d €s adr ,TEMP 1 Isave new byte!
P ou78 E4 7D T7C 1392 1d TEWP_1,TEMP_2
P 047B 00 ED 1393 dec s adr tback-up pointer!
P 047D CA ES8 1394 djnz s len,rdl 01 floop till done!
P OUTF 56 7C OF 1395 and TEMP_1, #%0F told high order digit!
P 0482 50 EC 1396 pop s_len !restore R12!
P 0484 AF 1397 ret -
P 0485 1398 END rdl
1400 INTERNAL
P 0485 : 1401 rdr PROCEDURE
TUO02 I HERRERER R R R R RN R RN R RN RN RN RN R RN RN RN RN NN
1403 Rotate Digit Right
1404
1405 ~ Input = R12 = BCD string length
1406 . R13 = BCD string address
1407 TEMP 1 bit 7-U4 = new digit
1408 -
1409 Output = BCD string rotated right one digit;
1410 new digit inserted in high order
1411 position.
1412 R12 unmodified
1413 R13 modified
UL #EEEER R E R R R R RN R RN R RN R R RN R RN R U RN RR RN R NN RN
1415 ENTRY
P 0485 70 EC 1416 push s_len
P 0487 DE 1417 rdr_01: inc s_adr
P 0488 F1 ED 1418 swap @s adr
P O48A E5 ED TE 1419 1d TEMP 3,€s’ Tadr
P 048D 57 ED OF 1420 and €s_adr,#%0F tisolate digit!
P 0490 56 7C FO 1421 and TEMP 1, #%F0 tisolate new digit!
P 0493 45 ED 7C 1422 or TEMP”1,@s_adr
P 0496 F5 T7C ED 1423 1d @s adr,TEMP 1 !save new byte!
P 0499 E4 7E TC 1424 1d TEMP_1,TEMP_3
P 0u9C CA E9 1425 djnz s len, rdr 01 1loop till done!
P O49E 50 EC 1426 pop s_ 1en trestore R12!
P O4AQO AF 1427 ret
P OUA1 1428 END rdr

256

Bit Manipulation Routines

P

0 'UU U'u 0 *'U'U Uy "UU U

O4A1

OuA1
OuAlL
OUA6
OUAB
OLAA
OUAC
OLAE
04BO

ouB2
ouBY
04B6
0UB8
0U4B9

1460

161,

1462
1463
1461
1465
1466
1467
1468
1469
1470
1471
1472
1473
1471
175
176

1477

1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497

CONSTANT
tjm bits tz R12
tjm mask t= R13
GLOBAL
clb PROCEDURE
PRNE R R RN RN RN RN RN BB RN RN RN RN R R RN RN RN R RN RN
Purpose = To collect selected bits in a byte
into adjacent bits in the low order
end of the byte. Upper bits in byte
are set to zero.
Input = R12 = input byte
R13 = mask. Bit = 1 => corresponding
input bit is selected.
Output = R12 = collected bits
Note = For example:
Input : R12 = %(2)01110110
R13 = %(2)10000101
Output : R12 = %(2)00000010
ERE R EEERE RN NN R R R RN NN NN NN N RN R R R R RN RN NN NN RN R RN RN R RNN
ENTRY
1d TEMP_1,#8 1bit count!
clr TEMP_2 fbits collected here!
next1: rl tjm_bits tbit 7 to bit 0!
rl tjm_mask 'bit 7 to carry!
jr nc,no_select fdon't use this bit!
rr tjm_bIts
rl tjm bits) tbit 7 to 0 and carry!
rle TEMP_2 fcollect source bit!
no select:
- dec TEMP_1
jr nz,next1 frepeat!
1d R12,TEMP_2
ret
END clb

257

P 04B9

O4B9 D6 OH4AT'
04BC 02 CC
OUBE 16 EE 00
ouct1 02 FC
04C3 16 EE 00
04C6 C2 DE
o4C8 A0 EE
04CA C2 FE
04CC E8 ED

O4CE 30 EE

o o 'Y U0 ‘'U'U "U'U U

'04D0

0 errors
Assembly complete

1499 CONSTANT

1500 tjm_tabh t= R14

1501 tJm tabl 1= R15

1502 tjm tab . = RR14

1503 GLOBAL

1504 tjm PROCEDURE

1505 ;*;&;|;;u»*uinn;;;;;|;;*u:nu»;nnanuran:!:»*i;»;;nn;nx;
1506 Purpose = To take a jump to a routine address
1507 i determined by the state of selected
1508 bits in a source byte. ‘A bit

1509 is 'selected' by a one in the

1510 corresponding position of a mask.
1511 The 'selected' bits are packed into
1512 adjacent bits in the low order end of
1513 the byte. This value is then doubled,
1514 and used as an index into the Jump
1515 table.

1516 ’

1517 Input = RR1U4 = address of jump table in

1518 . . program memory.

1519 R12 = input data

1520 R13 = mask

1527 HHMERIEERERIERRERENIIRRRRRR RN RN RN RN NRR RN NN RN RN
1522 ENTRY

1523 call clb fcollect selected bits!
1524 add tjm bits,tjm bits !collected bits * 2!
1525 ade tJm t abh, #0 tin case carry!

1526 . add tjm_tabl,tjm bits

1527 ade tjm tabh, #0 !tjm_tab points to...!
1528 lde tjm mask,@tjm_tab 1.7.table entry!

1529 inew tJm tab

1530 lde tJm tabl,@tjm_tab lget table entry..J
}g%; 1d tjm tabh,tjm_| mask !...into tjm_tab!
1533 Jjp étjm tab tbye!

1534 -

1535 END

tim
1536 END PART_I

258

ROMLESS Z8 SUBROUTINE LIBRARY PART II

Z8ASM 3.02
Loc OBJ CODE STMT SOURCE STATEMENT
1
2
3 PART_II MODULE
i -
5
6 !'ROMLESS Z8' SUBROUTINE LIBRARY PART II
7!
9 CONSTANT

10 !Registe
11

r Usage!

12 RAM_START t= [543

13

14 P3M save HE RAM_START

15 TEMP 3 HE P3M save-1

16 TEMP_2 H TEMP_3-1

17 TEMP 1 H TEMP 2-1

18 TEMP_ 4 t= TEMP” 1-1

19 '

20 !The following registers are modified/referenced
21 by the Serial Routines ONLY. They are

22 available as general registers to the user

23 who does not intend to make use of the

24 Serial Routines!

25

26 SER_char 1= TEMP_U4-1
27 SER tmp2 H SER_Char-1
28 SER”tmp1 sz SER_tmp2-1
29 SER put H SER_tmp1-1
30 SER len 1= SER put-1
31 SER_buf = SER”len-2
32 SER”imr = SER buf=1
33 SER cfg i= SER imr-1
34 1Serial Configuration Data

35 bit 7 : =1 => odd parity on

36 bit 6 : =1 => even parity on

37 (bit 6,7 = 11 => undefined)

38 bit 5 : undefined

39 bit 4 : undefined

40 bit 3 : =1 => input editting on

41 bit 2 : =1 => auto line feed enabled
42 bit 1 : =1 => BREAK detection enabled
43 bit 0 : =1 => input echo on

uy 1

u5 op 1= %80

46 ep HE %40

47 ie H %08

48 al HE %04

49 be iz %02

50 ec HE %201

51 SER get HE SER_cfg-1
52 SER_flg iz SER_get-1
53 1Serial Status Flags .
54 bit 7 : =1 => serial I/O disabled
55 bit 6 : undefined

56 bit 5 : undefined

57 bit 4 : =1 => parity error

58 bit 3 : =1 => BREAK detected

59 bit 2 : =1 => input buffer overflow
60 bit 1 : =1 => input buffer not empty
61'bit 0 : =1 => input buffer full

62 !

63 sd iz %80

64 pe := 210

65 bd = %08

66 bo t= 704

67 bne i= %02

68 bf iz %01

69

259

135

RAM_ TMR HES RAM_START-%10

SERltime iz SER flg-1
SERhtime 1= SER1time-1

!The following registers are modified/referenced
by the Timer/Counter Routines ONLY. They are
available as general registers to the user
who does not intend to make use of the
Timer/Counter Routines!

TOD tic = RAM TMR-2

TOD imr t= TOD tic-1

TOD hr i= TOD imr-1

TOD min t= TOD hr-1

TOD sec t= TOD min-1

TOD tt = TOD sec-1
PLS”1 HE ‘"TOD tt-1

PLS tmr HE] PLS”1-1

PLS”2 iz + PLS_tmr-1
RAM_END t= PLS 2

STATK t= RAM_END

‘1Equivalent working register equates
for above register layout!

Iregister file %70 - %7F!

RAM_STARTr iz %70 ! for SRP!

rP3Msave i = R15

rTEMP_3 HEY R14

rTEMP™2 HEY R13

rTEMP” 1 HE R12

rrTEMP 1 tz RR12

rTEMP_Th iz R12

rTEMP_11 = R13

rTEMP 4 iz R11

rSERchar iz R10

rSERtmp2 i= R9

rSERtmp1 HEY R8

rrSERtmp iz RR8

rSERtmpl = R9

rSERtmph iz R8

rSERput i= RT

rSERlen t= R6

rrSERbuf i= RRY4

rSERbufh iz RY

rSERbufl iz R5

rSERimr iz R3

rSERefg HE R2

rSERget iz R1

rSERflg tz RO

Iregister file %60 - %6F!

RAM TMRr iz . %60 ! for SRP!

rTODtic HEY R13

rTODimr iz ~R12

rTODhr iz R11

rTODmin Tz R10

rTODsec H R9

rTODtt t= ‘R8

rPLS 1 iz R7

rPLStmr HE R6

rPLS_2 HE RS

260

Serial Routines

P

‘v 'v'U ‘U0 U0 U

0000

0000
0001
0003
0005
0007
0009
000B
000D

- 000F

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

195°

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

225 -

226
227

CONSTANT

si_PTR = RR14

siTTMP1 iz R11

3iTTMP2 2 R13
GLOBAL

ser_init PROCEDURE
!.I‘l!i&ii!lﬁ&lll‘ll!ll!!llIl.l‘ililll!ﬁ*!"'!!illi*ll

serial initialize

Purpose = To initialize the serial channel and
RAM flags for serial I/0. Serial
input occurs under interrupt control.
Serial output occurs in a polled mode.

Input = RR14 = address of parameter 1list in
program memory (if R14 = O,
use defaults):

1 byte = Serial Configuration Data
(see definition of SER cfg)
1 byte = IMR mask for nestable
interrupts
1 word = address of circular input
buffer (in reg/ext memory)
byte = Length of input buffer
1 byte = Baud rate counter value

-

1 byte Baud rate prescaler value
(unshifted) .
Output = Serial I/0 operations initialized.

R11, R12, R13, R14, R15 modified.

Note = Defaults:
Input echo on
Input editting on
BREAK detection enabled
No parity
Auto line feed on
Input Buffer Address = SER char
Input buffer length = 1 byte
Baud Rate = 9600 (assuming
XTAL = 7.3728 MHz)

The instruction at %0809 must result
in a jump to the jump table entry for
ser_input.

If BREAK detection is disabled, and a
BREAK occurs, it will be received as a
continuous string of null characters.

The parameter list is not referenced
following initialization.
BEEERENER RN RN R RN RN R R RN R RN RRR RN RN RN R RRRRRRRRRR)

ENTRY

ine R14 tuse defaults?!

djnz R14,si 1 fno. given by caller.!

1d R14,#HI ser def !address of default...!

1d R15,#L0O ser_def !... parameter list. !
si_1: 1d si_TMP1,#SER _cfg

1d si TMP2,#5 .
si_2: 1ldei esI_TMP1,8si_PTR !get initialization...!

djnz si_TMP2,si_2 1...parameters!
and SER_imr ,#%F7 tinsure no self-nesting!

261

0012
0015
0017
0014
001D
0020

U 00 U 'U ‘U0

0028
002A
002C
002E
0031
0033
0035
0037
0038
003A

'U'U "vU 'UYU 'UU U'Y U

003C
003D
003F
0041

U 'U'u v

o043
0046
0049
oouc

004D
0050
0051

‘U o v 0 UU o

0051
0053
0056

‘v uu

0023"

0026

OF 00
007A 01
02 03

FC
80
40
3F
TF
F7

E7
08

03

228 !initialize Port 3 Mode Register for serial I/0!

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
24y
245
2u6
247
2u8

249

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

1269

270
271
272
273

AND
1d
AND
OR
AND
OR
LD

tinitialize TO!
1d
lde
ldeci
lde
call

tinitialize RAM
DI
clr
clr
clr

tinitialize inte
AND
and
or
EI
tgo!
or
ret
END ser_init

tDefaults for se

ser_def RECORD

E;c+al4i

TMR, #%FC tdisable TO!
si_TMP1,SER_cfg !configuration data!
si_TMP1,#%80 todd parity select!

si TMP1,#%40 1P30/7 = Sin/Sout!

P3M save,#%3F !mask off old settings!
P3M save,si TMP1 !new selection!
P3M,P3M_save tto write-only register!

si TMP1,#TO

si_TMP2,8si PTR !save counter!
@si TMP1,8si PTR !init counter!
si_TMP1,8si_PTR !get prescaler!

multiply 1TO x PREO!
SERhtime,R12 tsave for BREAK...!
SERltime,R13 - !...detection !
si TMP1 . !SHL 1!

- fcontinuous mode!
si TMP1 USHL 2!

PREO,si_ TMP1

flags and pointers!

!disable interrupts!
SER _get !input buffer...!
SER put !...empty!
SER_flg tno errors!
rrupts!
IRQ, #%E7 fclear IRQ3 & 4!
IMR, #%EF tdisable IRQY4 (xmt)!
IMR, #%08 fenable IRQ3 (rev)!
TMR, #%03 !load/enable TO!

rial initialization!

[efg_, imr_ BYTE

j .
buf_ WORD
len_, ctr_, pre_ BYTE]

e+be, %00, SER_char, 1, %02, %03]

262

P

‘U'U 'v'Y 'U'uU "UV'U U o

0058

0058

0054
005C
005E
0060
0063

0065 -

0068
006A
006D

7E

EE
EF

0170°
48

72 €O
08

7C 80
03

CONSTANT
rli len
GLOBAL

ser rlin

HES R13

PROCEDURE

TRATF AR R RN R R RN RN R RN R RRB RN RN RRRR R RN RN RRRRRR RN RN R NN

read line

Purpose =

Input =

Output =

Note =

To return input from serial channel
up to 'carriage return' character or
maximum length requested or BREAK.

RR14 = address of destination buffer
(in reg/ext memory)
R13 = maximum length

Input characters is destination buffer.
RR1Y4 = unmodified
R13 = length returned
Carry Flag = 1 if any error,
= 0 if no error.
R12 indicates read status

1. Return will be made to the calling
program only after the requisite
characters have been received from
the serial line.

2. If input editting is enabled, a
'backspace' character will cause

the previous character (if any) in the
the destination buffer to be deleted;
a 'delete' character will cause all
previous characters (if any) in the
destination buffer to be deleted.

3. If parity (odd or even) is enabled,
the parity error flag (R14) will be set
if any character returned had a parity
error. (Bit 7 of each character may
then be examined if it is desirable to
know which character(s) had the error).

4, The status flags 'BREAK detected',
'parity error', and 'input buffer
overflow' will be returned

as part of R12, but will be cleared in
SER_stat.

5. The staus flags: 'input buffer full’
and 'input buffer not empty' will be
updated in SER stat.

EE I I SRR RSN AR R332 22222 222222222221 2]

ENTRY
clr

ser_read:
push
push
push

rli 4: call
Jjr
tm
jr
tm
jr

TEMP_3 1flag => read line!
‘R14 tsave original...!
R15 1...dest. pointer!
rli len !...and length!
ser:get 1get input character!
c,rli 3 terror!

SER cTg,#op LOR ep !parity enabled?!
z,rTi 1 Ino!

TEMP 7, #%80 tparity error?!

z,rli 1 tno!

263

006F
0072
0075
0078
007A
007D
0080

0082
0085
0087
0084
008C
008E
0090
0093
0095
0096
0099
0094
009C
009E
0041

00A3
00A5
00A8
00AA
00AB
00AD
00AF
00B2
00B4
00B6

00B9
00BA
00BD
00BF
00Co
00C2
00Cy

‘"'uuv'v'y vo 'U'U'U Uy 'U U 'U'U U ‘U UU'U'UUU *'UYU ‘U0 U0 "UU 'Uv'u U Uo

00C5
00C7
00C9
00CB
00CD

'UUU Uv

P 00CD

P 00CD E6 7E
P 00DO 8B 88

P 00D2

F
08

7C

02

00

oD

7C

E3

9C

01

339
300
341
312
343
34

345 jr
346 !input editting!

347
348
349¢
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
388
389
390
391
392
393
394
395

or
call
cp
jr
and
tm

rli_1{

SER_f1g,i#pe
put dest
TEMP_3,#0
nz,rTi_2
TEMP_ 1, #%7F
SER °fg,#ie
z,rTi 9

lyes. set error flag!
!store in buffer!
fread line?!

!no!

tignore parity bit!
!input editting on?!
'no.! -

fchar = delete?!
tyes!
tchar = backspace?!

. !no. continue!

!get original length!

tany characters?!
!none!

fundo last decrement!
!backspace & previous!
reg or ext mem?!
lext!

'reg!

!in case cr!
!carriage return?!
fend input!

1restore!

!loop for max length!
loriginal length!

!# chars returned!
ttell caller!

!return read status!

SER_f1g,#LNOT (pe LOR bd LOR bo)

!reset for next time!.
tgood return code! :

R12,#pe LOR bd LOR bo LOR sd

cp TEMP 1,#%7F
ir z,rli 6
cp TEMP_1,#%08
jr nz,rli 9
pop TEMP_1
push TEMP 1
cp TEMP_1,rli_len
jr eq,rIi_ 6 ~
inc rli len
sub R15,#2
ine R14
djnz R14,r1i 7
jr rli 4 ~
rli_7: sbe R14T#0
jr rli 4
rli 9: dec rli_len
cp TEMP_1,#%0D
jr z,rli 3
inc rli_len
rli 2: djnz rli len,rli U4
rli~3: pop TEMP 1 -
T sub TEMP_1,rli len
1d rli Ten,TEMP_1
1d R12,SER flg ~
and
rcf
tm
jr z,rli 5
sef -
rli_5: pop R15
pop R14
ret
rli_6: pop rli_len
pop R15
pop R14
jr ser read
END ser_rlin -
GLUBAL
ser rabs PROCEDURE

no error!
!set error return!

foriginal buffer addr!

!start over!

!**?i‘l*l!l*i’**!lll*il}l'!!!!*‘**i!**&l’*l*ii**ﬁ!*i!l

read absolute

To return input from serial channel

of maximum length requested.

(Input

is not terminated with the receipt of

All other details are as for

BREAK will

EREEERRRRERRR RN R R RN RN RN RN RN RRRRRRRRRRRRRRTRRR)

tflag => read absolute!

Purpose =
a 'carriage return'.
terminate read.)
Note =
ENTRY
1d TEMP_3,#1
jr ser_tread
END ser_rabs

264

'ser rlin'.

P

w9y 'YU'U'U YUY UD'U'U ‘U0 "U"UUU U

‘U U0 U

cob2

o0oD2
00D5
00D7
00DA
00DB
00DD
00DF
00E1
00EY4
00E6
00E8
00EB
00ED
00EF
00F1
00F3
00F6

‘00F8

O0FB
OOFE

0100
0102
0104
0106
0108

78
FB

02

80

01

08
01

406 GLOBAL

407 ser input PROCEDURE
408 l'&Tllilli!lllil!ll‘ﬁl‘lllllllli!lll!!!llllll!!il!llI!
409 Interrupt service - Serial Input
410
411 Purpose = To service IRQ3 by inputting current
412 character into next available position
413 in circular buffer.
41 '
415 1Input = None.
416
417 Output = New character inserted in buffer.
318 SER stat , SER put updated.
19 - -
420 Note = 1. If even parity enabled, the software
421 replaces the eigth data bit with a
422 parity error flag.
423
424 2. If BREAK detection is enabled, and
425 the received character is null, . -
426 the serial input line is monitored to
427 detect a potential BREAK condition.
428 BREAK is defined as a zero start bit
429 followed by 8 zero data bits and a
430 zero stop bit.
431
432 3. If 'buffer full' on entry, 'input
433 buffer overflow' is flagged.
u3y
435 4. If input echo is on, the character is
436 immediately sent to the output serial
437 channel.
438
439 5. IMR is modified to allow selected
440 nested interrupts (see ser_init).
BUT SRR R RN RN RN R R RN R RN R R RN R R RN R RN R RN R R RN AR RN RRNNR)
442 ENTRY
4u3 1d SER_tmp1,$03 fread stop bit level!
uyy push imr tsave entry imr!
4ys5 and imr ,SER imr tallow nesting!
4u6 ei -
4u7 push rp !save user‘'s!
4y8 srp #RAM_STARTr
4u9 1d rSERchar,SIO !capture input!
450 tm rSERcfg,#be tbreak detect enabled?!
451 jr z,ser 30 tnope.!
452 clr r SERtmp2
453 tm rSERefg, #op todd parity enabled?!
45y jr z,ser_23 fno.!
455 1d rSERtmp2, #380
456 ser 23: cp rSERchar,r SERtmp2 !8 received bits = 0?!
us7 - jr ne,ser 30 tno!
458 tm rSERtmp1, #1 ttest stop bit!
459 jr nz,ser 30 tnot BREAK!
460 !'is BREAK. Wait for marking! .
461 or rSERflg, #bd fset BREAK flag!
462 ser 24: tm %03, #1 tfmarking yet?!
463 - jr z,ser 24 fnot yet!
464 twait 1 char time to Tlush receive shift register!
465 push SERhtime
466 push SERltime !save PREO x TO!
467 in_loop: 1d rSERtmp1, #53
468 1p1: djnz rSERtmp1,1p1 tdelay 640 cycles!
469 decw SERhtime

265

P 010A

010C
010E
0110
0113

0115
0118
011A
011D
011F
0121
0124
0126
0129
012C

012E
0130
0132
0134
0137
0139
013C
013E
0140
0142
014y
0146
0148
0149
014B
014D
0150
0151
0153
0155
0157
0159
0158
015E
0160
0161
0163

0164
0167

"o v ‘v'v'vy'v'vv'vv'v "Y'vv'v'v'u Y'Y v'v ‘v ‘U 'U v ‘U ‘U ‘U U ‘U U0 U0 ‘'U'U U U ‘U 'O U U U

0169
016C
016E
0170

‘vo ‘v'o

EO
F5

E8
DD

F7

01
01

10

EF
40

00

01

02

01

04

00

470
471
472
473
47l
u7s

LU76

u77
478
479
480
481
482
483
Lgy
485
486
u87
488
489
490
491
492
493
49y
495
496
497
498
499
500
501
502
503
504

505 .

506
507
508
509
510
511
512
513
514

516
517

519
520
521
522
523

ser_30:

ser_i6:

ser_i0:

jr

pop
pop
and
jr

tm
jr
tm
jr
1d
tem
jr
and
tm

nz,in_loop

SERltime
SERhtime
IRQ,#LNOT %08
ser_i5

rSERflg,#bf
nz,ser_i1
rSERefg, #ec
z,ser 1i0
SI0,rSERchar
IRQ,#%10
nz,ser i6
IRQ, #LNOT %10
rSERefg,#ep
z,ser 22

Jr —
tcalculate parity error flag!

ser_20:

ser_22:

ser_i3:

ser_il:

ser_i5:

ser_i1:
ser_i2:

END

tdelay (128x10xPREOxTO)!
!

! 2. !

trestore PREO x TO!
tclear int regq!
tbye!

tbuffer full?!

tyes.overflow!

techo on?!

tnot

lecho!

!poll!

!loop!

fclear irg bit!
teven parity?!

tno parity!

1d rSERtmp1,#7
clr rSERtmp2 fcount 1's here!
rre r SERchar 1bit. to carry!
ade rSERtmp2, #0 tupdate 1's count!
djnz rSERtmp1,ser_20 !loop till done!
and rSERtmp2, #1 !1's count even or odd?!
xor rSERchar ,r SERtmp2
.rre rSERchar !parity error flag...!
rre rSERchar !...to bit 7!
1d rSERtmph,rSERbufh
1d rSERtmpl,rSERbufl
add rSERtmpl ,r SERput !next char address!
ine rSERtmph !in external memory?!
djnz rSERtmph,ser i2 !yes.!
1d @r SERtmpl ,rSERchar !store char in buf!
or rSERflg,itbne tbuffer not empty!
ine r SERput fupdate put ptr!
cp rSERput ,rSERlen !wrap-around?!
jr ne,ser iy tno!
clr rSERput tset to start!
cp rSERput,rSERget "!if equal, then full!
jr ne,ser i5
or rSERf1g, #bf
gqp rp frestore user's!
i
pop - imr frestore entry imr!
iret
or rSERflg,#bo tbuffer overflow!
jr ser_i5
ade rSERtmph, #0
lde @rrSERtmp,rSERchar !store in buf!
jr ser_i3
ser_input

266

525 GLOBAL {for PART I!

P 0170 526 ser get PROCEDURE
G527 IHATARRENRRRANE RN RN RN RN RN RN RN R AR RN RN R RN RN NN AR NN
528 Purpose = To return one serial input character.
529
530 Input = None.
531 .
532 Output = Carry FLAG = 1 if BREAK detected or
533 serial not enabled
534 ’ or buffer overflow
535 . = 0 otherwise
536 TEMP_1 = character
537
538 Note = This routine will not return control
539 until a character is available in the
540 input buffer or an error is detected.
S REEIII I I s e T Y I et]
N 542 ENTRY
P 0170 70 FD 543 push rp {save caller's rp!
P 0172 31 70 544 srp #RAM_STARTr fpoint to subr. RAM!
P 0174 DF 545 sef tin case error!
P 0175 76 EO 8C 546 ser g1: tm rSERflg,#sd LOR bd LOR bo
547 - tserial disabled or
548 BREAK detected or
549 buffer overflow?!
P 0178 EB 24 550 jr nz,ser_gb tyes.!
P 017A 76 EO 02 551 tm rSERflg,#bne tbuffer not empty?!
P 017D 6B F6 552 jr z,ser_g1 tempty. wait!
P 017F D8 ES5 553 1d rTEMP 11,rSERbufl
P 0181 C8 EH4 554 1d . r TEMP_ 1h,r SERbufh
P 0183 8F 555 di tprevent IRQ3 conflict!
P 0184 02 D1 556 add rTEMP_11,rSERget !next char address!’
P 0186 CE 557 ine rTEMP 1th !input buffer in...!
P 0187 CA 18 558 djnz rTEMP_1h,ser_g3 !...external memory!
559 - !...register memory!
P 0189 E3 CD 560 1d « rTEMP_1,8rTEMP_11 !get char!
P 018B 56 EO FE 561 ser gh: and rSERfTg,#LNOT bf !buffer not full!
P 018E 1E 562 - inc r SERget fupdate get pointer!
P 018F A2 16 563 . ep rSERget ,rSERlen !wrap-around?!
P 0191 EB 02 564 jr ne,ser_g?2 tno.!
P 0193 BO E1 565 clr rSERget fyes. set to start!
P 0195 A2 17 566 ser g2: cp rSERget,rSERput !buffer empty if get...!
P 0197 EB 03 567 - jr ne,ser g5 f...and put =!
P .0199 56 EO FD 568 and rSERf1g,#LNOT bne !buffer empty now!
P 019C CF 569 ser g5: ref 1set ‘good return!
P 019D 9F 570 - ei 're-enable interrupts!
P 019E 50 FD 571 ser_g6: pop - rp frestore caller's rp!
P 01A0 AF 572 ret -
573
P 01A1 16 EC 00 574 ser g3: ade r TEMP 1h,#0 trrTEMP 1 has char addr!
P 01A4 82 CC 575 - lde rTEMP_1,6rrTEMP_1 !get Char!
P 01A6 8B E3 576 jr ser gh : fclean up!
P 01A8 577 END ser_get -

267

P 01A8

01A8
01AA
01AC

01AE
01B1

W'y "vu'v

P 01B1

P 01B1

01B2
01B4
01B6
01B9
01BA
01BB

‘oUv Uy U'v

BO
EB
8D

8F

BO
BO
56

AF

FO
FA
0238",

71
77
70 80

579 GLOBAL

580
581
582
583
584
585
586
587
588
589
590
591

- 592
593 .

594
595

596

597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613

615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640

ser break PROCEDURE
PRRTERRRNNR RN RN RN RN NN RN RN R R RN RN RN RN NNR AR RN RN RN NN

break transmission

Purpose = "To transmit BREAK on the serial line.

Input = " RR14 = break length
Output = None.
Note = BREAK is defined as:
serial out (P37) = 0O for
2 x 28 cycles/loop x RR14 loops
) XTAL

RR14 should yield at least 1 bit time
so that the last 'clr SIO' will

have been preceded by at least 1 bit
time of spacing. Therefore, RR14 should
be greater than or equal to

4 x 16 x PREO x TO

3222 2RI S E RS2SRRSR SRS R22 22222 S22 2222222 2 22 222 2 22]

ENTRY
ser_b1:
clr SIO
decw RR1Y4
jr nz,ser bl
twait for last null to be fully transmitted!
jp ser 01
END ser_break
GLOBAL
ser flush PROCEDURE
!naT:;&:;*&:in;nni;ya!&*&:n&&iﬁ&::i*:ia1&;&::;;;:*1:*:

input flush

Purpose = To flush (clear) the serial input
buffer of characters.

Input = None

Output = Empty input buffer.

Note = This routine might be useful to clear

all past input after a BREAK has been
detected on the line.
I I e Y P T T I i it T g

ENTRY

di tdisable interrupts!
t(to avoid collision with
serial input)!

clr SER_get !buffer start!

clr SER_ | put != buffer end!

and SER”f1g, #%80 !clear status!

ei fre-enable interrupts!

ret

END ser_flush

268

P

‘“v'v'v'v'v Y'Y V'Y Y'Y 'U'YU 'Y 'U'UUD UV VU D la-J

01BB

01BB

01BD
01BE
01C1
01C3
01C5
01C8

01CB*

01CD
01D0
01D2
01D5
01D8
01DA
01DC
01DF
01E1
01EY
01E7
01E9
01EB
01ED
01F0

~01F2

01F3

01FY

CONSTANT

wli lenv

GLOBAL

ser wlin -
g:-I;:l::;;i:i-5:«i.n&;nuninn:;i::i;uln:;i;;nni:;nni:*

write 1i

Purpose

Input =

Output

Note =

ne

HES R13
PROCEDURE

To output a character string to serial
line, ending with either a 'carriage
- return' character or the maximum length

specified.
RR14 =

address of source buffer

(in reg/ext memory)

R13 = length

RR1Y4 =
Carry Flag =

updated
1 if serial not enabled,

=z 0 if no error.
R13 = # bytes output (not including

auto line feed)

If auto line feed is enabled, a
line feed character will be output
following each carriage return

(ser wlin only).

llll!!Il‘il}!lilll!li!illiiiilllIilllil’i**“!ll!i!*i!

ENTRY

write:

wli 4:

wli 5:
wli~2:

wlii 1:
END

ser wlln

TEMP_3

SER_flg,#sd
nz,wli 1
wli_len

get src

ser output
c,wli 2
TEMP_3,#0
nz,wli 5
TEMP_13#%7F
TEMP_1,#%0D
nz,wli_5
wli len
SER”cfg,#al
z,Wli 2
TEMP T,#%04
ser output
wli™, 2

wli len, wli 4
TEMP_1

TEMP 1,wli len
wli_Ten,TEWMP_1

tflag => write line!

tin case error!
tserial disabled?!
tyes. error!

twrite the character!
!serial disabled!
twrite line?!

fno, absolute.!

tmask off parity!
1line done?!

tyes.!

tauto line feed?!

tdisabled!
tfoutput line feed!

tloop!
toriginal length!

freturn output count!
!no error!

269

P 01FY4

P O1F4 E6 TE 01
P 01F7 8B C4

P 01F9

P 01F9

P 01F9 C9 7C

P 01FB D6 020B'
P O1FE 76 72 o4
P 0201 6B 3E

P 0203 A6 EC 0D
P 0206 EB 39

P 0208 E6 7C O0A
P 020B

698

700
701
702
703
704
705
706
707
708
709
710
711
712
713

715
716
717
718
719
720
721
722

724
725
726
727
728
729
730
731
732
733
734
735

737
738

GLOBAL
ser wabs PROCEDURE .
RN RN R RN RN R R RN R RN R R R RN R R RN RN NN R R RN R R RN RN NN NN RE RN

write absolute .

Purpose = To output a character string to serial
line for the length specified. (Output
is not terminated with the output of
a 'carriage return').

Note = All other details are as for 'ser wlin',
ERERRRERRR RN RN RN R RN NN NN NN NN RN RN NN RN RN NN RN RN RTRRR)

ENTRY

1d TEMP_3, #1
jr write

END ser_wabs

ser wbyt PROCEDURE

PR TR R R R R R R RN N R R R R RN NN R RN RN RN RN NN RN NN NN R RRR NN
write byte

Purpose = . To output a given character to the
serial line. If the character is a
carriage return and auto line feed
is enabled, a line feed will be output

as well.
Input = R12 = character to output
Note = Equivalent to ser wlin with length = 1.

i*l!li!ll*!llli!iillil!ll!l!!lilif!!!li‘!!lﬁilll!lill]
ENTRY

1d TEMP_1,R12
.call ser_output foutput it!
tm SER cfg,#al tauto line feed?!
jr z,ser 05 Inot enabled!
cp R12,#%0D tchar = car. ret?!
jr nz,ser 05 !nope!
1d TEMP 1, #%0A foutput line feed!
1fall into ser output!
END ser_wbyt

270

P

iaclia-)

P
N
N
N

020B

020B
020C
020F
0211
0214

0216
0218
021B
021D
021F
0222
0224
0226
0229

022C
022F
0231
0233
0235
0238
023B
023D
0240
0241
0242

0242

o2u2
0243

0246
02u9
024C
024F
0rs2

0263
ARLT

8F
46

56
56
56
EY4
AF

70
F1
FB
TF
7F

80
40

07
00

01
FE

7C

FO
10

EF

80
FC
E7
BF

FT .

811

GLOBAL ! for PART It

ser output PROCEDURE
PRNT R R RN NN N RN RN NN RN RN R RN RN RN R R AR RN RN RN RN RN RN NN
Purpose = To output one character to the serial
line.
Input = TEMP_1 = character
Output = Carry FLAG = 1 if serial disabled
) = 0 otherwise.
Note = 1. If even parity is enabled, the eigth

data bit is modified prior to character
output to SIO.

2. IRQY4 is polled to wait for completion
of character transmission before control
returns to the calling program.

EERNEER R R RN R RN RN RN RN R RN RN ENRRR RN R RN RN RN R RN NN NN)

ENTRY

scf tin case error!

tm SER_flg,i#sd tserial disabled?!

jr nz,ser_05 tyes. error!

tm SER_cfg, ffep teven parity enabled?!

jr z,ser o2 fno. just output!
tcalculate parityi -
push TEMP 3

1d TEMP™3,#7
clr TEMP 2

ser_0O4: rrec TEMP:1 fcharacter bit to carry!
ade TEMP 2,#0 fcount 1's!
dec TEMP3
jr nz,ser 04 Inext bit!
and TEMP 2,#01 11's count odd/even!
and TEMP_ 1, #4FE
or TEMP 1,TEMP 2 tparity bit in DO!
rre TEMP™1 -
rre TEMP”1 tparity bit in DT7!
pop TEMP 3

‘ser 02: 1ld SIO,TEMP 1 foutput character!

ser o1: tem. IRQ,#%10 tcheck IRQY!

- ir nz,ser o1l twait for complete!

and IRQ, #4EF tclear IRQY!
ref tall ok!

ser 05: ret

END™ ser_output

GLOBAL

ser disable PROCEDURE

PR TR R R RN R R RN R RN R RN RN R RN RN RN NN R RN RN RN RN RN RNNNS
disable .

Purpose = To disable serial I/O operations.
Input = None. i
Output = Serial I/0 disabled.

!il!!!&!l!illill!!ii!i!l!l!‘ll!!!!llllii‘!illlllll!!

ENTRY .
tavoid IRQ3 conflict!

or SER_f1g,#sd

!set serial disabled!
and TMR, #%FC

tdisable TO!
and IMR, #%E7

) tdisable IRQ3, 4!

and P3M_save, #3%BF

1P30/7 normal i/o pins!
1d P3M,P3M _save
ei . fre-enable interrupts!
ret

END ser_disable

271

Timer/Counter Routines

P 0254

0254
0256
0258
025A
025D
0260

ja-a-Ra-Ja- e lia-}

DC
C3
C3
E6
8D

6C

DE

DE

7B 6C
02B2'

840 CONSTANT

841 TMP t= R13

842 PTR = RR14
843 PTRh := R14

g4l GLOBAL

845 tod i PROCEDURE .
SUE IHRTARERERRRRRERRRRRRR RN R R RN R RN RN RN NN RN RN RN NN

847 time of day : initialize

848)

849 Purpose = To initialize TO or T1 to function as

850 a time of day clock.) .

851

852 Input = RR14 = address of parameter list in

853 program memory:

854 1 byte = IMR mask for nestable

855 interrupts

856 1 byte = # of clock ticks per second

857 1 byte = counter # : = §F4 => TO

858 = $F2 => T1

859 1 byte = Counter value

ggo 1 byte = Prescaler value (unshifted)
1 .

862 TOD_hr, TOD min, TOD_sec, TOD_tt

863 initialized to the starting time of

864 - hoéurs, minutes, seconds, and ticks

865 ’ respectively.

866

867 Output = Selected timer is loaded and

868 - enabled; corresponding interrupt

869 is enabled.

870 R13, R14, R15 modified.

871

872 Note = The cntr and prescaler values provided

873 are those values which will generate an

874 interrupt (tick) the designated # of

875 times per second.

876 :

877 For example: :

878 X for XTAL = 8 MHZ, c¢ntr = 250 and)

879 prescaler = 40 yield a .01 sec interval;

880 the 2nd byte of the parameter list

881 should = 100 .

882 -

883 . For TO the instruction at %080C or

884 for T1 the instruction at %080F must

885 result in a jump to the jump table entry

886 for 'tod’'.

287

888 The parameter list is not referenced

889 following initialization.

SO0 HEREREENABERRRNNEFRRRERRS R RN RER SRR R R RN RN RN R R RN RNR RN)
891 ENTRY '

892 1d TMP,#TOD imr

893 ldei @TMP,@PTR timr mask!

894 ldei @TMP,8PTR tticks/second!
895 1d TEMP_4, #TOD_imr

896 jp pre ctr fctr & prescaler!
897 END tod_i - .

272

fa-Ba-Ja- N lia-] v Y9Y "Y'V "YU "U"U UV 'U U "0 U U0 "0

0260

0260
0262
0265
0266
0268
026A
026B
026D
026F
0271
0272
0275
0277
0279
027A
027D
027F
0281

0282
0284
0285
0287
0288

FB
6C

FD
60

8D
13
E8
E9
E9
EA
03
EA
FD

FB

FB

3C

3C

899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922

924
925
926
927
928

930

GLOBAL

tod 'PROCEDURE
!".""“"*'*.l'.‘.'."'..‘..‘.’."l*“!l‘!ll“!‘."l

Interrupt service - time of day

Purpose = To update the time of day clock. .
L I T T S T Y I T L Y]

ENTRY

push imr tsave entry imr!
and imr ,TOD imr tallow nested interrupts
ei - lenable interrupts!
push rp tsave rp!
srp #RAM_TMRr tpoint to our set!
ine rTODEL tticks/second!
cp rTODtt,rTODtic !second complete?!
jr ne,tod ex !nope.!
elr rTODtt ™ \ .
inc rTODsec tseconds!
cp rTODsec,#60 fminute complete?!
. Jr ne,tod_ex tnope.!
clr rTODsec
ine rTODmin tminutes!
cp rTODmin, #60 thour complete?!
jr ne,tod ex tnope.!
clr rTODmin)
ine r TODhr thours!
tod_ex: pop rp ‘restore rp!

di tdisable interrupts!
pop imr
iret

END tod

trestore entry imr!

273

P 0288

0288
0284
028C
028E
0290
0292
0294
0297
0294
029D
0240
0243

‘WYv'YY'Y'u ‘U v Y'Y ‘U v

P 02A3

02A3
02A6
02A9

02AC
02AF
02B0

o Jia-la-) U "U'u

By
By

F5
BF

65

DE

DE

DE

EE

EE

F1 3F
7F DF
TF F7
7B 01
02B2'
65 67
67 65
65 67
67 66

932 GLOBAL

933 pulse i PROCEDURE
Q3L I EEEE TR RN E RN RN R RN R R RN RN R R RN RN NN RN RRRRRRNRERS

935 .Purpose =
936

939 * Input =

947 Output =

952 Note =

959 ENTRY

960 LD
961 ldeci
962 ldei
963 ldei
964 decw
965 - decw
966 and
967 and
968 1d
969 1d
970 Jp
971 END pulse_i

974 GLOBAL

To initialize one of the timers
to generate a variable frequency/
variable pulse width output.

RR14 = address of parameter list in
program memory: .
1 byte = cntr value for low interval

1 byte counter # : = %F4 => TO
= $F2 => T1
1 byte entr value for high interval

1 byte = prescaler (unshifted)

Selected timer is loaded and
enabled; corresponding interrupt

is enabled. P36 is enabled as Tout.
R13, R14, R15 modified.

The paiameter list is not referenced
following initialization. '

The value of .Prescaler x éounter
must be > 26 (=%1A) for proper
operation.

7
958 E22 3222222322222 2222222222222 22222222222 222 2 2R 22l M)

TMP, #PLS_2

@TMP,8PTR flow interval cntr!
6TMP,@PTR ttimer addr!

g¥gP,€PTR thigh interval cntr!
PTR tback to flag!

TMR, #%3F twill be modifying TMR!

P3M save,{#%DF 1P36 = Tout!
P3M,P3M_save

TEMP_U4,#%1 tflag for pre ctr!
pre_ctr !set up timerT

975 pulse PROCEDURE
076 1HREEREERREREREERERRRRRERRR NN R RN RN RRARNRRRRERRRRRRNN

977 Purpose =

To modify the counter load value .
to continue the pulse output generation.

980 iiﬁ*llﬁ*iiillll!!*li‘*ll!*l**i‘iill!‘li!lli‘liilll.!l!

982 l!exchange values! \

PLS_1,PLS_2
PLS_2,PLS_1
PLS1,PLST2

@PLS_tmr,PLS_1 !load new value!

978

979

981 ENTRY

983 xor

984 xor

985 xor

986 !exchange complete!™
987 1d

988 . iret

989 END pulse

274

991 GLOBAL

P 02BO 992 delay PROCEDURE
G03 (RN NENREEE R RN RN RN RN AR RN RN RN NN RN RN R R AR RN NN
994 Purpose = To -generate an interrupt after a
992 designated amount of time.
99
997 Input = RR14 = address of parameter list in

- 998 program memory:

999 1 byte = counter # : = %F4 => TO
1000 = $F2 => T1
1001 1 byte = Counter value
1002 1 byte = Prescaler value and count mode
1003 (to be loaded as is into
1004 PREO or PRE1). .
1005
1006 Output = Selected timer is loaded and
1007 enabled; corresponding interrupt
1008 is enabled.
1009 R13, R14, R15 modified.
1010
1011 Note = This routine will initialize the timer
1012 for single-pass or continuous mode
1013 as determined by bit 0 of byte 3 in
1014 the parameter list.
1015 The caller is responsible for provid-
1016 ing the interrupt service routine.
1017
1018 The parameter list is not referenced
1019 following initialization.
1020 #EBEEREEERRRBERRE R RN RN RR R RN R R RN RN RN RRRRRRRRRNNRR)
1021 ENTRY

P 02B0O BO 7B 1022 clr TEMP 4

B 1023 !fall into pre ctrt —

P 02B2 1024 END delay ~

275

P 02B2

02B2
02B4
02B€
02B9
02BC
02BF
02C1
02CH
02C7
02C9
02CB
02CE
02D0
02D1
02D3
02Dy
02D6
02D9
02DB
02DD
02E0
02E2
02ES5
02ET7
02EA
02EB
02EE
02EF
02F0

8C
20
F2
u3
10

00

6C
6C
OF

F1
FB

v YUY YT VT TV VYUV TYTUY VYUY VY VYUY

0 errors
Assembly complete

1026
1027

11028

1029

INTERNAL

pre ctr PROCEDURE
PRRT AR R RN RN RN R RN RN RN RN RN NN R RN RN R RN RN AR RRNN

‘Purpose =

1030

1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
0uy
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059

1060.

1061
1062
1063
1064
1065
1066 E
1067

Input =

To get counter
from parameter
registers appro
TEMP_U 0 =>
1 =>

" n

and prescaler values
1list and modify control
priately.

for
for
imr => for

'delay'
‘pulse’
'tod!

T
l.l’l!*!!*ii*i!*ll!*!i*il!**lf!‘**!ﬁ!!!i*'i**!lill*!*l

ENTRY
ldc
inew
1d
1d

pre_1:

pre_2:
pre”3:

ei

ret
END pre_ctr
END PART_. 11

TMP,@PTR

 PTR

TEMP_2, #%8C
TEMP_3,#%20
TMP,¥T1
eq,pre_1
TEMP 2, #%43
TEMP_3,#%10
@TMP,@PTR
PTRh,@8PTR
TEMP_4,#0
eq,pre_2

PTRh

PTRh

TEMP_4, #TOD_imr
ne,pre_3

TEMP 3
TOD_Imr,TEMP_3
TEMP 3
TEMP_ 2, #%40F
@TMP,PTRh

TMR, TEMP_2

imr ,TEMP_3

1TO or T1!

! for TMR!
tfor IMR!

tis for T1!

tfor TMR!

! for IMR!

tinit counter!
tprescaler!

I1shift prescaler?!
fno!

tinternal clock!

fcontinuous mode!

tfor 'pulse'!

tinsure no self-nesting!

tno Tout mode mod!
tinit prescaler!
tinit tmr mode!

tenable interrupt!

276

A Comparison of
Microcomputer Units

Benchmark Reporl :

May 1981

" INTRODUCTION

The microcomputer industry has recently developed
single-chip microcomputers that incorporate on one
chip functions previously performed by periph-

at markets requiring a dedicated computer. This
report describes and compares the most powerful
MCUs in today's market: the Zilog 78611, the
Intel 8051, and the Motorola MC6801. Table 1
lists facts that should be considered when com-

erals. These microcomputer units (MCUs) are aimed

paring these MCUs.

Iable 1. MCU Comparison

Zilog Intel Motorola

FEATURES 28611 8051 MC6801
On-Chip ROM 4Kx8 4Kx8 2Kx8
General-Purpose

Registers 124 128 128
Special-Function

Registers .
Status/Control 16 16 17
1/0 ports 4 4 4
1/0
Parallel lines 32 32 29
Ports Four 8-bit Four 8-bit Three 8-bit,one 5-bit
Handshake Hardware on None Hardware on

three ports one port
Interrupts
Source 8 5 7
External source 4 2 2
Vector [5 ’ 7
Priority 48 Programmable 2 Programmable Nonprogrammable
orders orders

Maskable 6 5 [
External

Memory 120K bytes 124K bytes 64K bytes
Stack .
Stack pointer 16-Bit 8-Bit 16-Bit
Internal stack Yes, uses Yes Yes

8-bits :

External stack Yes No Yes

277

fd:le 1. MCU Comparison

(Cont inued
Zilog Intel Motorola
FEATURES 28611 8051 MC6801
Counter/
Timers ’
Counters Two 8-bit Two 16-bit One 16-bit
; or two 8-bit
Prescalers ~Two 6-bit No prescale None
with 16-bits;
5-bit prescale
with 8-bits
Addressing
Modes
Register Yes Yes No
Indirect Register Yes Yes No
Indexed Yes Yes Yes
Direct Yes Yes Yes
Relative Yes Yes Yes
Immediate Yes Yes Yes
Implied Yes Yes Yes
Index
Registers 124, Any 1, Uses the 1, Uses
general- accumulator 16-bit index
purpose for 8-bit register
register of fset
Serial
Communication
Interface
Full duplex
UART Yes Yes Yes
Interrupts
for transmit
and receive One for each One for both One for both
Registers -
Double buffer Receiver Receiver Transmitter/Receiver
Serial Data Rate 62.5K b/s 187.5K b/s 62.5K b/s
; N @8 MHz @12 MHz @4 MHz
93.5K b/s
@12 MHz
Speed
Instruction -
execut ion average 2.2 Usec 1.5 Usec 3.9 Usec
1.5 Usec @12 MHz ’
Longest
instruction 4.25 Usec 4 Usec 10 Usec
2.8 Usec @12 MHz
Clock Frequency 8 and 12 Mz 12 MHz 4 MHz
Power Down Saves first Saves first Saves first
Mode 124 registers 128 registers 64 registers
Context Saves PC Saves PCj; Saves PC, PSW,
Switching and flags programmer accumulators,
must save all and Index
registers register

Table 1.

MCU Comgariaon

(Continued

Zilog Intel Motorola
FEATURES 28611 8051 MC6801
Development 40-Pin 40-Pin (3751) 40-Pin (68701)

' Protopack (8613)
64~Pin (8612)
40-Pin ROMless
(z8681)

Eprom 4K bytes (2732) 4 bytes 2 bytes

2K bytes (2716)
Availability Now TBA Now

ARCHITECTURAL OVERVIEW

This section examines three chips: the on-chip
functions and data areas manipulated by the Zilog,
Intel and Motorola MCUs. The three chips have
somewhat similar architectures. There are, how-
ever, fundamental differences in design criteria.
The 8051 and the MC6B01 were designed to maintain
compatability with older products, whereas the
28611 design was free from such restrictions and
could experiment with new ideas. Because of this,
the accumulator architectures of the MC6801 and
the 8051 are not as flexible as that of the 78611,
which allows any register to be used as an accumu-
lator. .

Memory Spaces

The 78611 CPU manipulates data in four memory
spaces:

® 60K bytes of external data memory

® 60K bytes of external program memory

® 4K bytes of internal program memory (ROM) .

® 144-byte register file
The 8051 CPU manipulates data in four memory.
spaces:

® 64K bytes of external data memory

® 60K bytes of external program memory
® 4K bytes of internal program memory
e 148-byte register file

The MC6801 manipulates data in three memory
spaces:

® 62K bytes of external -memory
e 2K bytes of internal program memory
® 149-byte register file

On-Chip ROM. All three chips have internal ROM
‘for program memory. The Z8611 and the 8051 have
4K bytes of internal ROM, and the MC6801 has 2K
bytes. In some cases, external memory may be

required with the MC6801 that 'is not necessary
with the 78611 or the 8051.

On Chip RAM, All three chips use internal RAM as
registers. These registers are divided into two
catagories: general-purpose registers and special

function registers (SFRs).

The 124 general-purpose registers in the 28611 are
divided into eight groups of 16 registers each.
In the first group, the lowest four registers are
the I/0 port registers. The other registers are
general purpose and can be accessed with an 8-bit
address or a short 4-bit address. Using the 4-bit
address saves bytes and execution time. Four-bit
short addresses are discussed later. The general-
purpose registers can be used as accumulators, ad-
dress pointers, or Index registers.

The 128 general-purpose registers in the 8051 are
grouped into two sets. The lower 32 bytes are
allocated as four 8-register banks, and the upper
registers are used for the stack or for general
purpose. The registers cannot be used for index-
ing or as address pointers.

The MC6801 also has a 128-byte, general-purpose
register bank, which can be used as a stack or as
address pointers, but not as Index registers.

As pointed out in Table 1, any of the 28611
general-purpose registers can be used for index-
ing; the MC6801 and the 8051 cannot use registers
this way. The Z8611 can use any register as an
accumulator; the MC6801 and the 8051 have fixed
accumulators. The use of registers as memory
pointers is very valuable, and only the Z8611 can
use its registers in this. way.

The number of general-purpose registers on each
chip is comparable. However, because of its
flexible design, the Z8611 clearly has a more
powerful register architecture.

279

The 28611 has 20 special function registers used
for status, control, and I/0. These registers
include:)

e Two registers for a 16-bit Stack Pointer (SPH,
SPL)

e One register used as Reglster P01nter for

working registers (RP)

One register for the status flags (FLAGS)

One register for interrupt priority (IPR)

One register for interrupt mask (IMR)

One register for interrupt request (IRQ)

Three mode registers for the Four ports (POIM,

P2M, P3M) .

Serial communications port used like a

register (SIO)

Two counter/timer registers (70, T1)

One Timer Mode Register (TMR)

Two prescaler registers (PREO, PRE1)

Four 1/0 ports accessed as registers (PORTO,

PORT1, PORT2, PORT3)

e o0

The 8051 also has 20 special function registers
used for status, control, and I/0. They include:

One register for the Stack Pointer (SP)

Two accumulators (A,B)

One register for the Program Status Word

(PSW)

Two registers for p01nt1ng to data memory

(DPH, DPL)

e Four registers that serve as two 16-bit
counter/timers (THO, TH1, TLO, TL1)

e One mode register for the counter/timers

(TMOD)

One control register for the counter/timers

(TCON)

" @ One register for interrupt enable (IEC)

One register for interrupt priority (IPC)

One register for serial communications buffer

(SBUF)

o One register for serial communications control
(SCON)

e Four registers used as the four I/O ports (PO,
P1, P2, P3) .

The MC6801 has 21‘special function registers used
for status, control, and 1/0. These include:

One register for RAM/EROM control

One serial receive register

One serial transmit register

One register for serial control and status
One serial rate and mode register

One register for status and control of the

timer

Two registers for the 16-bit timer

e Two registers for 16-bit input capture used
with timer

e Two registers for 16-bit dutput compare used

with timer

Four data direction registers associated with

the four 1/0 ports

Four 1/0 ports

One register for status and control of port 3

The special function registers in the three chips
seem comparable in number and function. However,
upon closer examination, the SFRs of the MC6801
prove less efficient than those of the Z8611. The
MC6801 has five registers associated with the 1/0
ports, whereas the Z8611 uses only three registers
for the same functions. The MC6801 uses four
registers to perform the serial communication
funct ion, whereas the Z8611 uses only one register
and part of another.

The 8051 uses two registers for the accumulators; -
the 78611 is not limited by this restriction. The

8051 also uses two registers for the serial com-

munication interface, whereas the Z8611 accom-

plishes the same job with one register. Another
two registers in the 8051 are used for data

pointers; these are not necessary in the 78611

since any register can be used as an address

pointer.

The Z8611 uses registers more efficiently than

_either the MC6801 or the 8051. The registers saved

by this optimal design are used to perform the
functions needed for enhanced interrupt handling
and for register pointing with short addresses.
The 28611 also supplies the extra register re-
quired for the external stack. These features are
not available on the 8051 or the MC6801.

External Memory. All three chips can access
external memory. The 78611 and the 8051 can gen-
erate signals used for selecting either program or
data memory. The Data Memory strobe (the signal
used for selecting data or program memory) gives
the 78611 access to 120K bytes of external memory
(60K bytes in both program and data memory). The
8051 can use 124K bytes of external memory (64K
bytes of external data memory and 60K bytes of
external program memory). The MC68B01 can access
only 62K bytes of external memory and does not
distinguish between program and data memory. Thus,
the 28611 and the 8051 are clearly able to access
more external memory than the MC6801.

On-Chip Peripheral Functions

In addition to the CPU and memory spaces, all
chips provide an interrupt system and extensive
1/0 facilities including I/0 pins, parallel 1/0
ports, a bidirectional address/ data bus, and a
serial port for I/0 expansion.

Interrupts. The 78611 acknowledges interrupts
from eight sources, four are external from pins
IRQg-IRQ3, and four are internal from serial-in,
serial-out, and the two counter/timers. Akl
interrupts are maskable, and a wide variety of
priorities are realized with the Interrupt Mask
Register and the Interrupt Priority Registers (see
Table 1). All 78611 interrupts are vectored, with
six vectors located in the on-chip ROM. The
vectors are fixed locations, two bytes long, that
contain the memory address of the service routine.

280

The 8051 acknowledges interrupts from five
sources: two external sources (from INTO and
INT1) and three internal sources (one from each of
the internal counters and one from the serial 1/0
port). All interrupts can be disabled individual-
ly or globally. Each of the five sources can be
assigned one of two priorities: high or low. All
8051 interrupts are vectored. There are five
fixed locations in memory, each eight bytes long,
allocated to servicing the interrupt.

The MC6801 has one external interrupt, one non-
maskable interrupt, an internal interrupt request,
and a software interrupt. The internal interrupts
are caused by the serial I/0 port, timer overflow,
timer output compare, and timer input capture.
The priority of each interrupt is preset and can-
not be changed. The external interrupt can be
masked in the Condition Code register. The MC6801
vectors the interrupts to seven fixed addresses in
ROM where the 16-bit address of the service
routine is located.

When an interrupt occurs in the 8051, only the
Program Counter is saved; the user must save the
flags, accumulator, and any registers that the
interrupt service routine might affect. The
MC6801 saves the Program Counter, acumulators,
Index register, and the PSW; the user must save
all registers that the interrupt service routine
might affect. The Z8611 saves the Program Counter

and the Flags register. To save the 16 working

registers, only the Register Pointer register need
be pushed onto the stack and another set of work-
ing registers is used for the service routine.
For more detail on working registers and interrupt
context switching, see the Z8 Technical Manual
(03-3047-02).

With regard to interrupts, the 78611 is clearly
superior. The 78611 requires only one command to
save all the working registers, which greatly
increases the efficiency of context switching.

1/0 Facilities, The 28611 has 32 lines dedicated
to I/0 functions. These lines are grouped into

four ports with eight lines per port. The ports

can be configured individually under software
control to provide input, output, multiplexed
address/data lines, timing, and status. Input and
output can be serial or parallel, with or without
handshake. One port can be configured for serial
transmission and four ports can be configured for
parallel transmission. With parallel transmis-
sion, ports 0, 1, and 2 can transmit data with the
handshake provided by port 3.

The 8051 also has 32 1/0 lines grouped together
into four ports of eight lines each. The ports can
be configured under program control for parallel
or serial 1/0. The ports can also be configured
for multiplexed addresys/d‘ata lines, timing, and
status. Handshake is provided by user software.

The MC6801 has 29 lines for 1/0 (three 8-bit ports‘

and one 5-bit port). One port has two lines for

handshake. The ports provide all the signals
needed to control input and output either serially
or in parallel, with or without multiplexed
address/data lines. They can be used to interface
with external memory.

The main differences in 1/0 facilities are the
number of 8-bit ports and the hardware handshake.
The Z8611 and the 8051 have four 8-bit ports,
whereas the MC6801 has three 8-bit ports and an
additional 5-bit port. The Z8611 has hardware
handshake on three ports, the MC6801 has hardware
handshake on only one port, and the 8051 has no
hardware handshake.

Counter/timers., The Z8611 has two 8-bit counters.
and two 6-bit programmable prescalers. One pre-
scaler can be driven internally or externally; the
other prescaler is driven internally only. Both
timers can interrupt the CPU when counting is

completed. The counters can operate in one of two

modes: they can count down until interrupted, or
they can count down, reload the initial. value, and
start counting down again (continuously). The
counters for the 78611 can be used for measuring
time intervals and pulse widths, generating vari-
able pulse widths, counting events, or generating
periodic interrupts.

The 8051 has two 16-bit counter/timers for measur-
ing time intervals and pulse widths, generating
pulse widths, counting events, and generating
periodic interrupts. The counter/timers have
several modes of operation. They can be used as
8-bit counters or timers with two 5-bit program-
mable prescalers. They can also be used as 16-bit
counter/timers. Finally, they can be set as 8-bit
modulo-n counters with the reload value held in
the high byte of the 16-bit register. An interrupt
is generated when the counter/timer has completed
counting.

The MC6801 has one 16-bit counter which can be
used for pulse-width measurement and generation.
The counter/timer actually consists of three
16-bit registers and an 8-bit control/status reg-
ister. The timer has an input capture register,
an output compare register, and a free-running
counter. All three 16-bit registers can generate
interrupts. '

Serial Communications Interface. The 78611 has a
programmable serial communication interface. The
chip contains a UART for full-duplex, asynchron-
ous, serial receiver/ transmitter operation. The
bit rate is controlled by counter/timer 0 and has
a maximum bit rate of 93.500 b/s. An interrupt is
generated when an assembled character is transfer-
red to the receive buffer. The transmitted
character generates a separate interrupt. The

receive register is double-buffered. A hardware

parity generator and detector are optional.

The 8051 handles serial 1/0 using one of its
parallel ports. The 8051 bit rate is controlled

281

by counter/timer 1 and has a maximum bit rate of
187,500 b/s. The 8051 generates one interrupt for
both transmission and receipt. The receive reg-
" ister is double-buffered.

The MC6801 contains a full-duplex, asynchronous,
serial communication interface. The bit rate is
controlled by a rate register and by the MCU's
clock or an external clock. The maximum bit rate
is 62,500 b/s. Both the transmit and the receive
registers are double-buffered. The MC6801 gener-
ates only one interrupt for both transmit and
receive operations. No hardware parity generation
or detection is available, although it does have
automatic detection of framing errors and overrun
conditions.

‘The 8051 and the MC6801 generate only one inter-
rupt for both transmit and receive, whereas the
28611 has a separate interrupt for each. The
ability to generate separate interrupts greatly
enhances the use of serial communications, since
separate service routines are often required for
transmitting and receiving.’

Other differences between the 78611, MC6801, and
the 8051 occur in the hardware parity detector,

the double-buffering of registers, framing error

detectors and overrun conditions. The 8051 has a
faster data rate than either the Z8611 or the
MC6801. The MC6801 has the advantage of a hard-
ware framing error detector and automatic detec-
tion of overrun conditions. The MC6801 also has
both its transmit and receive registers
double-buffered. The Z8611 has a hardware parity
detector. For detection of framing errors and
overrun conditions, a simple, low-overhead soft-
ware check is available that uses only two
instructions. See 728600 Software Framing Error
Detection Application Brief (document #617-1881-
0004).

INSTRUCTION ARCHITECTURE

The architecture of the 78611 is designed specif-
ically for microcomputer applications. This fact
is manifest in the instruction composition. The
arduous task of programming the MC6801 and the
8051 starkly contrasts that of programming the
78611.

- Addressing Modes

The 28611 and the 8051 both have six addressing
modes: Register, Indirect Register, Indexed,
Direct, Relative, and Immediate. The MC6801 has
five addressing modes: Accumulator, Indexed,
Direct, Relative, and Immediate. A quick compar-
ison of these addressing modes reveals the versa-
tility of the Z8611 and the 8051. The addressing
modes of the MC6801 have several restrictions, as
shown in Table 1.. While the 8051 has all the
addressing modes of the 78611, its use of them is
restricted. The Z8611 allows many more combina-

" before access can be made again.

tions of addressing modes per instruction, because
any of its registers can be used as an accumula-
tor. For example, the instructions to clear,
complement, rotate, and swap nibbles are all
accumulator oriented in the 8051 and operate on
the accumulator only. These same commands in the
28611 can use any register and access it either
directly, with register addressing, or with in-
direct register addressing.

Indexed Addressing. All three chips differ in
their handling of indexing. The Z8611 can use any
register for indexing. The 8051 can use only the
accumulator as an Index register in conjunction
with the data pointer or the Program Counter. The
MC6801 has one 16-bit Index register. The address

" located in ‘the second byte of an instruction is

added to the lower byte of the Index register.
The carry is added to the upper byte for the com-
plete address. The MC6801 requires the index
value to be an immediate value.)

The MC6801 has only one 16-bit Index register and
an immediate 8-bit value from the second byte of
the instruction. Hence, the Indexed mode of the
MC6801 is much more restrictive than that of the
Z8611. The 8051 must use the accumulator as its
only Index register, loading the accumulator with
the register address each time a reference is
made. Then, using indexing, the data is moved
into the accumulator, eradicating the previous
index. This forces a stream of data through the
accumulator and requires a reload of the index
The 78611 is
clearly superior to both the MC6801 and the 8051
in the flexibility of its indexed addressing mode.

Short and Long Addressing. Short addressing helps
to optimize memory space and execution speed. In
sample applications of short register addressing,
an eight percent decrease in the number of bytes
used was recorded.

All three chips have short addressing modes, but
the 78611 has short addressing for both external
memory and register memory. The 8051 has short
addressing for the lowest 32 registers only.

The Z8611 has two different modes for register

.addressing. The full-byte address can be used to

provide the address, or a 4-bit address can be
used with the Register Pointer. To use the work-
ing registers, the Register Pointer is set for a
particular bank of 16 registers, and then one of
the 16 registers is addressed with four bits.
Another feature for addressing external memory is
the use of a 12-bit address in place of a full
16-bit address. To use the 12-bit address, one
port supplies the eight multiplexed address/data
lines and another port supplies four bits for the
address. The remaining four bits of the second
port can be used for I/0. This feature allows
access to a maximum of 10K bytes of memory.

282

The 8051 uses short addresses by organizing its
lowest 32 registers into four banks. The bank
select is located in a 2-bit field in the PSW,
with three bits addressing the register in the
bank. .

The MC6801 uses extended addressing for addressing
external memory. With a special, nonmultiplexed
expansion mode, 256 bytes of external memory can
be accessed without the need for an external
address latch. The MC6801 uses one 8-bit port for
the address and another port for the data.

Stacks

The 28611 and the MC6801 provide for external
stacks, which require a 16-bit Stack Pointer.
Internal stacks use only an 8-bit Stack Pointer.
The 8051 uses only a limited internal stack re-
quiring an B8-bit Stack Pointer. Using an external
stack saves the internal RAM registers for
general-purpose use.

Summary

The stack structure of the 78611 and the MC6801 is
better than that of the 8051. In most applica-
tions, the 8051 is more flexible and easier to
program than the MC6801. The /28611 is easier to
use than either the 8051 or the MC6801 because of
its register flexibility and its numerous combina-
tions of addressing modes. The 8051 features a
unique 44n multiply and divide command. ‘The
MC6801 has a multiply, but it takes 104s to per-
form it.

In summary, the Z8611 has the most flexible
addressing modes, the most advanced indexing capa-
bilities, and superior space- and time-saving
abilities with respect to short addressing.

DEVELOPMENT SUPPORT

All three vendors provide development support for
their products. This section discusses the dif-
ferent support features, including development
chips, software, and modules.

Chips

Zilog offers an entire family of microcomputer
chips for product development and final product.
The 28611 is a single-chip microcomputer with 4K
bytes of mask-programmed ROM. For development, two
other chips are offered. The 78612 is a 64-pin,
development version with full interface to ex-
ternal memory. The Z8613 is a prototype version
that uses a functional, piggy-back, EPROM proto-
pak. The Z8613 can use either a 4K EPROM (2732)
or a 2K EPROM (2716). Zilog also offers a ROMless
version in a 40-pin package that has all the fea-
tures of the 78611 except on-board ROM (Z8681).

Intel offers a similar line of development chips

with its 8051 family. The 8031 has no internal
ROM and the 8751 has 4K of internal EPROM.

Motorola offers the MC6801, MC6803, MC6803NR, and
MC68701. These are all similar except the MC68701
has 2K bytes of EPROM and the MC6801 has 2K bytes
of ROM. The MC6803 has no internal ROM and the
MC6BO3NR has neither ROM nor RAM on board.

The 28613 and the MC68701 are both available now,
but the 8751 is still unavailable (as of April
1981).

Software

Development software includes assemblers, and
conversion programs. All manufacturers of fer some
or all of these features.

Since the MC6801 is compatible with the 6800,
there is no need for a new assembler. The 78611
and the 8051 both offer assemblers for their
products. The Zilog PLZ/ASM assembler generates
relocatable and absolute object code. PLZ/ASM
also .supports high-level control and data state-
ments, such as IF... THEN...ELSE. Intel offers an
absolute macroassembler, ASM51, with their
product. They also offer a program for converting
8048 code to 8051 code.

Modules

The 28611 development module has two 64-pin
development versions of the 40-pin, ROM-masked
28611. Intel offers the EM-51 emulation board,
which' contains a modified 8051 and PROM or EPROM
in place of memory. Motorola has the MEX6801EVM
evaluation board for program development. All
three development boards are available now.

ADDITIONAL FEATURES

Additional features include Power Down mode, self-
testing, and family-compatibility.

Power Down Mode

All three microcomputers offer a Power Down mode.
The 78611 and the 8051 save all of their regis-
ters with an auxilary power supply. The MC6801
uses an auxiliary power supply to save only the
first 64 bytes of its register file.

The 78611 uses one of the crystal input pins for
the external power supply to power the registers
in Power Down mode. Since the XTAL2 input must be
used, an external clock generator is necessary and
is input via XTAL1. The 8051 and the MC6801 both
have an input reserved for this function. The
MC6801 uses the V., standby pin, and the 8051 uses
the Vpd pin.

283

Family Compatibility

Another strength of the Z8611 is its expansion
bus, which is completely compatible with the Zilog
z-BUST™, This means that all Z-BUS peripherals
can be used directly with the 78611.

The MC6801 is fully compatible with all MC6800

family products. The 8051 is software compatible
with the older 8048 series and all others in that
family. .

BENCHMARKS

The following benchmark tests were used in this
report to compare the 78611, 8051, and MC6801:

o Generate CRC check for 16-bit word.

o Search for a character in a block of memory.

o Execute a computed GOTO -~ jump to one of eight

locations depending on which of the eight bits

is set.)

Shift a 16-word five places to the right.

e Move a 64-byte block of data from external
memory to the register file.

e Toggle a single bit on a port.

® ‘Measure the subroutine overhead time.

" These programs were selected because of their
importance in microcomputer applications. ‘Algo-
rithms that reflect a unique function or feature
were excluded for the sake of comparison. Al-
though programs can be optimized for a particular
chip and for a particular attribute (code density
or speed) these programs were not.

The figures cited in this text are taken directly
from the vendor's documentation. Therefore, the
cycles given below for the MC6801 and the 8051 are
in machine cycles and the Z8611 figures are given
in clock cycles. The Z8611 clock cycles should be
divided by six to give the instruction time in
~microseconds. The 8051 and MC6801 machine cycle
is 1Ms, and the Z8611 clock cycle is .166as at
12 MHz.

Because of the lack of availability of the MC6801
and the 8051, the benchmark programs listed here
have not yet been run. When these products are
readily available, the programs will be run and
later editions of this document will reflect any
changes in the findings. :

Program Listings

8051

LOOP:

MC6801

LOOP:

8611

LOOP :

CRC Generation

Machine
Cycles
MOV INDEX, #8 1
MOV A, DATA 1
XRL A, HCHECK 1
RLC A 1
MOV A, LCHECK 1
XRL A, LPOLY 1
RLC A 1
MOV LCHECK, A 1
MOV A, HCHECK 1
XRL A, 'HPOLY 1
RLC A 1
MOV~ HCHECK, A 1
CLR ~ C 1
MOV A, DATA 1
RLC A 1
‘MOV DATA, A 1
DINZ INDEX, LOOP 2
RET 2
N = 3+17X8 = 139 cycles
@12 MHz = 1394s
Instructions = 18
Bytes = 31
Machine
Cycles
LDAA #$08 2
STAA COUNT 3
LDAA HCHECK 3
EORA DATA 3
ROLA 2
LDAD .POLY 4
EORA HCHECK 3
EORB LCHECK 3
ROLB 2
ROLA 2
STAD LCHECK 4
ASL DATA 6
DEC COUNT 6
BNE LOOP 4
RTS 5
N = 45X8+7 = 367 cycles_
@4 MHz = 367 4s
Instructions = 15
Bytes = 28
Clock
Cycles
LD INDEX, +#8 6
LD~ Ré6, DATA 6
XOR Ré, HCHECK 6
RLC Ré6 . 6
XOR LCHECK, LPOLY 6
RLC LCHECK 6
XOR HCHECK, HPOLY -6
RLC™ HCHECK 6
RCF 6"
RLC DATA . 6
DINZ INDEX, LOOP 12 or 10
RET 14

N = 20+66X7+64 = 546 cycles
@12 MHz = 91 4s
Instructions = 12
Bytes = 22

Bytes

PDAAWN2N22GN2SNNN=2NNSNNN

Bytes
2

SN WUWUN Q=2NNN-2NNN

Bytes

SINN=2RNNNNRNNNN

284

\

Character Search Through Block of 40 Bytes

8051 Machine
Cycles Bytes
MOV INDEX, #41 1 2
MOV DPTR, #TABLE 2 3
LOOP1: DINZ INDEX, LOOP 2 2 2
i SIMP OUT 2 2
LOOP2: MOV A, INDEX 1 2
MOVC A, @+DPTR 2 1
CINE A, CHARAC, LOOP1 2 3
ouT:
N = 3+39X7+4 = 280 cycles
@12 MHz = 280as
Instructions = 7
Bytes = 15
MC6801 Machine .
Cycles Bytes
LDAB #$40 2 2
LDAA #/CHARAC 2 2
LDX #TABLE 3 3
LOOP: CMPA $0, X 4 2
BEQ OuT 4 2
INX 3 1
DECB 2 1
BNE LOOP 4 2
0uT: -
N = 7+40X17 = 687 cycles
@ MHz = 6874s
Instructions = 8
Bytes = 15
78611 Clock
Cycles Bytes
LD INDEX, #40 6 2
LOOP: LD DATA, TABLE (INDEX) 10 3
cP DATA, CHARAC 6 2
JR Z, oUT 12 or 10 2
DINZ INDEX, LOOP 12 or 10 2
ouT: -

N = 6+38X40 = 1524 cycles
@12 MHz = 2544s
Instructions = 5
Bytes = 11

8051

LOOP:

MC6801

LOOP:

28611

LOOP:

Shift 16-Bit Word to Right 5-Bits

Machine
Cycles
MOV INDEX #5 1
CLR C 1
MOV A, WORD + 1 1
RRC A 1
MOV WORD + 1, A 1
MOV A, WORK 1
RRC A 1
MOV WORD, A 1
DINZ INDEX, LOOP 2
N = 149X5 = &6 Cycles
@12 MHz = 46us
Instructions = 9
Bytes = 15
Machine
Cycles
LDX #5 [3
LDAD WORK 4
LSRD 3
DEX 3
BNE LOOP 4
STAD WORD 4
N = 10X5+11 = 61 Cycles
@4 MHz = 61 «s
Instructions = 6
Bytes = 11
Clock
Cycles
LD INDEX, #5 6
CCF 6
RRC WORD + 1 6
RRC WORD [
DINZ INDEX, LOOP 12 or 10

N = 6+4X30+28 = 154 Cycles
@12 MHz = 26 4s
Instructions = 5
Bytes = 9

© Bytes

2

N NS BNN 2N

Bytes
3

NN @ aNn

NNDNaN

285

8051

LOOP:

0uT:

TABLE:

MC6801

LOOP:

0ouT:

78611

LOOP:

Mov
MoV
RLC
Jc

. MoV
ADD
MoV
SIMP
Mov
MoV
JIMP
LCAL

LCAL
N =
@
In
Byl

LDAB
LDX
RORA
BCS
ABX
JMP
LDX
IMP
N=28
@4
Ins
Byt

CLR
INC
RLC
JR
LD
LD
Jp

Computed GOTO

Machine

Cycles Bytes

INDEX, #40 1
A, DATA
A
ouT
A, INDEX
A, #3
INDEX, A
LooP
DPTR, #TABLE
A, INDEX
@A+DPTR

L ADDR1

N a NN= @D N =

L. ADDRN 2
149X7+11 = 75 Cycles

2 MHz = 754s

structions = 12

tes = 21

Machine

Cycles Bytes

#2 2
TABLE

ouT

LooP

0, X

0, X)
X12+14 = 110 Cycles
MHz = 1104s
tructions = 8
es = 17

VN WWENW

Clock
Cycles
INDEX 6
INDEX . 6
DATA 6
NC, LOOP 12 or 10
ADDR,TABLE 1, (INDEX) 10
ADDR+1,TABLE 2, (INDEX) 10
@ADDR 12

N = 6+24X7+54 = 228 Cycles
@12 MHz = 38«s
Instructions = 7
Bytes = 15

2

2

W WN =N =W

Bytes

W= WN =N =N =N

2

N W W NN =

8051

MoV
LOOP: MOV
MOVX
INC
MoV
INC
DINZ

Move 64-Byte Block

INDEX, #COUNT
DPTR, #ADDR1
A, @PTR
#ADDR1
@ADDR2 ,A
ADDR2

INDEX, LOOP

N = 1+49X64 = S77 Cycles
@12 MHz = 5774s
Instructions = 7

Bytes = 10

MC6801

LDAB #COUNT
LOOP: LDX ADDR1

LDAA 0, X

INX

STAA ADDR1

LDX ADDR2

STAA 0, X

INX

STX ADDR2

DECB -

BNE LOOP

Machine
Cycles
1

2
2
1
1
1
2

Machine
Cycles
2

ENPFPNWFEFPE PP WA

N = 64X36+2 = 2306 Cycles
@4 MHz =2306 «s
Instructions = 11
Bytes = 21

8611

LD
LOOP: LDEI
DINZ

INDEX, #COUNT

@ADDR2, @ADDR1

INDEX, LOOP

Clock
Cycles
6
18

12 or 10

N = 6+63X30+28 = 1924 Cycles
@12 MHz = 3214s
Instructions = 3

- Bytes = 6

Bytes
2

PN W)

Bytes
2

N @O N 2aNWNa N W

Bytes
2
2
2

286

Toggle a Port Bit

8051 Machine
. Cycles
XRL PO, #YY 2
N = 2 Cycles

@12 MHz = 24s
Instructions = 1

Bytes = 3
MC6801 Machine
Cycles
LDAA PORTO 3
EORA #YY 2
STAA PORTO 3
N = 8 Cycles
@4 MHz = Bus
Instructions = 3
Bytes = 6
78611 Clock
Cycles
XOR PORTO, #YY 10
N = 10 Cycles o

@12 MHz = 1.7 «s
Instructions = 1
Byte = 2

Bytes

Bytes

Bytes

Subroutine Call/Return Overhead

8051 Machine

Cycles Bytes
LCALL SUBR 2 3
SUBR: -
RET 2 1
N = 4 Cycles
@12 MHz = 44&s
Instructions = 2
Bytes = 4
MC6801 Machine
Cycles Bytes
JSR SUBR 9 2
SUBR: -
RTS 5 1
N = 14 Cycles
@4 MHz = 144s
Instructions = 2
Bytes = 3
28611 ' Clock
Cycles Bytes
CALL @SUBR 20 2
SUBR: -
RET 14 1
N = 34 Cycles
@12 MHz = 5.7 Us
Instructions = 2
Bytes = 3
Results

Table 2 summarizes the results of this comparison.
The relative performance column lists the speeds
of the MC6801 and 8051 divided by the Z8611 speeds
(12 MHz). The overall performance averages the
separate relative performances. The higher the
number, the faster the Z8611 as compared to the
MC6801 and the 8051.

The relative performance figures show that the
28611 runs 50 percent faster than the 8051 and 250
percent faster than the MC6801. Although speed is
not necessarily the most important criterion for
selecting a particular product, the 78611 proves
to be an undeniably superior product when speed is
added to the advantages of programming ease, code
density, and flexibility.

287

Table 2. Benchmark Program Results

MC6801 8051 28 8
Benchmark (4 MHz) (12 MHz) (8 MHz) (12 MHz) Relative Performance
Test cycles time .cycles time cycles time cycles time MC6801 8051
CRC .
Generation 367 367 139 139 546 137 546 91 4.03 1.53
Character
Search 687 687 280 280 1524 382 1524 254 2.70 1.10
Computed
GOTO 110 110 75 75 228 57 228 38 2.89 1.97
Shift Right
5 Bits 61 61 46 46 154 38 154 26 2.35 1.78
Move
64-byte
block 2306 2306 577 577 1924 481 1924 321 7.18 1.80
Subroutine
Overhead 14 14 4 4 34 8.5 34 5.7 2.46 0.70
Toggle a
Port Bit 8 8 2 2 10 2.5 10 1.7 4.71 1.18
Overall

Performance . 3.76 1.44

Note: All times are given in microseconds.

Table 3. Byte/Instruction/Time Comparison
Bytes ‘ Instructions Time (microseconds)__
MC6801 | 8051 | Z8611 MC6801 8051 8611 MC6801 | 8051 | 78611 |
CRC Generation 28 31 22 15 18 12 367 139 91
Charactef Search 15 15 " 8 7 5 68"1 280 | 254
Shift Right 5 Bits, 1 15 9 6 9 5 61 46 26
Computed GOTO 17 21 15 8 12 7 110 75 38
Move Block 21 10 6 1" 7‘ 3 2306 - 577 321
Toggle Port Bit 6 3 2 3 1 1 8 2 | 1.7
Subroutine Call 3 4 3 2 2 2 14 4 | 5.7

288

SUMMARY

The hardware of the three chips compared is very
similar. The 78611, however, has several advan-
tages, the most important of which is its inter-
rupt structure. It is more advanced than the
interrupt structures of both the 8051 and the
MC6801. Other advantages of the Z8611 over either
the MC6801 or the 8051 include I/0 facilities with
parity detection and hardware handshake and a
larger amount of internal ROM (the MC6801 has only
2K bytes). .

Substantial differences are apparent with regard
to software architecture. The addressing modes of

the 78611 are more flexible than those of either
the MC6801 or the 8051. The 78611 can use byte-
saving addressing with working registers, and it
has short external addresses for saving 1/0 lines.
It can also provide for an external stack. The
register architecture (as opposed to the accumu-
lator architecture) of the 28611 saves execution
time and enhances programming speed by reducing
the byte count.

The 28611 microcomputer stands out as the most
powerful chip of the three, and concurrently, it
is the easiest to program and configure.

289

290

Z86XX Interrupt
Request Register

Application Brief

October 1980

The Interrupt Request Register (IRQ, R250)
stores requests from the six possible inter-
rupt sources (IRQO-IRos) in the Z8600 series
microcomputer. In addition to other func-
tions, a hardware reset to the Z8600 disables
the IRQ register and resets its request bits.
Before the IRQ will register requests, it
must first be enabled by executing an Enable
Interrupts (El) instruction. Setting the
Enable Interrupt bit in the Interrupt Mask
Register (IMR, R251) is not an equivalent
operation for this purpose; to enable the
IRQ, an El instruction is requirede The
function of this El instruction is distinct
from its task of globally enabling the inter-
rupt systems Even in a polled system where
IRQ bits are tested in software, it is
necessary to execute the El,

EI INSTRUCTION

.doing this

The designer must ensure that unexpected and
undesirable interrupt requests will not occur
after the E! is executeds One method of

is to reset all Interrupt enable
bits in the IMR for levels that are possible
interrupt sources; the El instruction may
then be safely executede Once El Is exe-
cuted, the program may immediately execute a
Disable Interrupts (D1) instruction. The
code necessary to perform these operations is
as follows:

RESET: LD IMR, ##XX ISET INTERRUPT MASK!
El IENABLE GLOBAL INTER=-
RUPT, ENABLE IRQ!

where XX has a @ in-each bit position cor=
responding to the interrupt level to be
disableds [If all IMR bits are to be reset, a
CLR IMR instruction may be used.

RESET

INTERRUPT REQUEST REG.
(IRQ, R250)

78600

RESET

Figure 1 = IRQ Reset Functional Logic Diagram

291

Z8 Family Software
Framing Error Detection

NZIOG

Application Brief

QOctober 1980

The Zilog Z8600 UART microcomputer is a high-

. performance, single-chip device that incor-

porates on-chip ROM, RAM, parallel 1/0,
serial 1/0, and a baud rate generator. The
UART is capable of full-duplex, asynchronous
serial communication at nine standard
software-selectable baud rates from 110 to
19.2K baud; other nonstandard rates can also
be obtained under software control. 0dd
parity generation and checking can also be
selected.

Three possible error conditions can occur
during reception of serial data: framing
error, parity error, and overrun error. A
framing error condition occurs when a stop
bit is not received at the proper time
(Figure 1). This can result from noise in
the data channel, causing erroneous detection
of the previous start bit or lack of detec-
tion of a properly transmitted stop bit. The
78600 UART does not incorporate hardware

_framing error detection but does facilitate a

simple, low-overhead software detection
method.

LsB MSB : __=
ol 1 l2{3]als]el7 L
START PARITY STOP
BIT DATA BITS (8) (F BIT
ENABLED)

Fige 1 - Asynchronous Data Format

In the middle of the stop bit time, the Z8600
UART automatically posts a serial input
interrupt request on IRQze The serial input
can also be tested. by reading Port 3 bit 0
(P}o) as shown in Figure 2, Thus, within
the interrupt service routine or polling
loop, it is only necessary to test P3q in
order to identify a framing error. If P34 is
Low when IRQ3 goes High, a framing error con-

SERIAL
DATA IN

dition exists and the following code is used’
to test this:

™ P3, #%01 ! TEST FOR P30 = 1!
JR Z, FERR ! ELSE FRAMING ERROR !

The execution time of this framing error test
is only 5,54s at 8 MHz, In the worst case
(19.2K baud), this would result in 1% over-

heads Only five program bytes are required,

P3q

28600

Fige 2 - 78600 Serial Input Connection

Z8 is a trademark of Zilog, Inc..

292

CONCLUSI1ON While the Z8600 UART does not incorporate
hardware framing error detection, this
feature can be implemented in software with a

Reprinted with permission of Synertek, Inc.

maximum penalty of 1% at 19.2K baud using no
additional hardware and only five bytes of
program memorye

293

204

Technical Manual

November 1984

Z8°® Microcomputer

295

Table Of Contents
|
Chapter 1. 78 Family Overview . . l

Introduction « o v v o 6 4 6 o 4t 4 e 4 s s e e s e s e e e e s e s e s o 301
FEatures .« ¢ o ¢ ¢ ¢ o ¢ ¢ ¢ ¢ ¢ o o o o o o s o o s o o o 6o o o o5 o« 301

- -
.
N -

‘InstructionSet..........................301

1.2.1
1.2.2 Architecture « « « ¢ ¢ ¢« ¢ ¢ ¢ ¢ ¢ 4t 0 e b et e e e e e e e . e« 301

1.3 Microcomputers (ZB601/11) & v o « « o o o o o o o o s o o o o «

o

e o . . . 302

1.4 DevelopméntDevice(ZBMZ) C e e e e e e e e e e e e e e e e e e e .. 802

1.5 Protopack- Emulator (Z8603/13) 304

.
.
.
.
.
.
.
.
.

1.6 BASIC/Debug Interpreter (Z8671) 304

.
.
.
.
.
.
.
.
.
.
.
.
.

1.7 ROMless Microcomputer (Z8681/82) 304

.
.
.
.
.
.
.
.
.

1.8 Applications .« ¢ ¢ ¢ o 4 ¢t v ¢ b b i i b et et e e e e e e e e e e .. 304

Chapter 2. Architectural Overview) 2

Introduction......‘..‘...’....................306
AdAresSs SPACES ¢ ¢ o « o o o o o o o o o o o o o s o s o s e s e o o o s o 306
Register File « v o ¢ o 4 ¢ o ¢ 6 6 o s ¢ o o o o o o o o o o o o o o o+« 307

SNNN
.
WN -

1 Register Pointer 307
2 Instruction Set . & ¢ & ¢ & ¢ 0 o v i b bt b i e et e e e e e e 307
3 Data Types v ¢ v v ¢ o 4 o b e b e e e s e s e e e s e e e e e s s . 307
4

Addressing Modes 307

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

2.4 I/0 0perationS o « o v o o o 4 o 4 o e et w b e e e e e e e e e e e ... 307
2.4.7 TiMETS o & ¢ o 4 ¢ o ¢ o o0 o 0 0 W e o o e e e o e s e e e e e e 307
2.4.2 Interrupts ¢« & ¢ v v 4 v i e 4 s 4 4 s 4 s e s e e e s e s s e e s . 307
OSCILIAEOT '« & o o o o o o o o o o o s o o o e e e e e e e e .. . 308
Protopack « « o o« o o ¢ ¢ ¢ o 4 o 6 e 4 e e 4 e e e e e e s e s e e . e . 308

NN
.
o v

Chapter 3. Address Spaces .) 3
3.1 Introduction « o ¢ ¢ ¢ o ¢t 0t 0 6 i i 4ttt e e e e e e e e s e e . . . 309
3.2 CPURegister File o o« o o v o o o 4 o o o o o o o s s o o s o o o o o o « » 300

3.2.1 Error Conditions « & & v ¢ v v v v 4 4 v it b s e e e s e e e ... 310

3 CPU Control and Peripheral Régisters T 1 B
4 .CPUProgram MEMOTY « o ¢ v ¢ o o o o o o o o o o o o o o s o o o o o o « o 311
5 CPUDAta MEMOTY « ¢ o o & o o o o o o o o o o s o o s o o o s o o o o o o« 313
6 CPUSLAcKS « ¢ o o o o o o o o o « o o ¢ s o s s s s o s s o s o s 0 00+ 313

.

Table Of Contents (Continued) }
a |
Chapter 4. Address Modes \) » 4

4.1 Introduction . ¢ ¢ o ¢ 4 o ¢ v 6 6 e i et e s s e e e e s e e e e e e e 315
4.2 Register Addressing (R) « v « v ¢« ¢ v ¢ v 4t 4 o i v vt e e v e e e 315
4.3 Indirect Register Addressing (IR) . « & ¢ % ¢ ¢ 4 ¢ ¢ ¢ ¢ ¢ o s o s o s« « 316
4.4 Indexed Addressing (X) o o o ¢ o o o o o o o s o s s o s o s s s s e s e 316
4.5 Direct Addressing (DA) & ¢ & ¢ o o ¢ 4 o0 o o o o o 0 o o s 0 s s e e e s 317
4.6 Relative Addressing (RA) & ¢ o ¢ 4 o o o o o o o o o o o ¢ o s o o o o o« 317
4.7 Immediate Data Addressing (IM) + ¢ & v ¢ v o o o ¢ o 6 s s o o s o o o o+ 318

Chapter 5. Instruction Set 5

5.1 Functional SUMMAaTy .« « « ¢ ¢ o o ¢ ¢ o ¢ ¢ o o o s o e s o o s o oo o« 310
5.2 Processor FlagS « o + o o 4 o o ¢ 4 o o s o s o o 6o 4 s e s e e e e e s .. 320
5.2.1 Carry F1ag (C) v v v o o 4 v o 4 o o o o o o o s o o o o o o o o o« 32
5.2,2 Zero Flag (Z) v v o v o o o o o o o o o o a'e o v o o o o o o o o« 320
5.2.3 Sign F1lag (S) v v v o 4 4 4 4 s s 4 6 s 6 0 s s s s s e e e e e o 320
5.2.4 Overflow Flag (V) « v v v v v 0 v v v v v ot o o v o v o o o oo« 32
5.2.5 Decimal-Adjust F1lag (D) '« v v o o ¢ o o o o s o o o o a0 o o s s « 321
5.2,6 Half-Carry Flag (H) « o ¢« ¢ v o o 4 o o s o s ¢ o s o o o o o o « 321

3 Condition Codes « « o o o o o o o o ¢ ¢ ¢ v o o o s o s o o 0o o s oo oo 321
.4 Notation and Binary Encoding « « « ¢« ¢ ¢ o ¢ o ¢ o 0 0 0 0 e e 0 0 e e .. 329

5.4.1 Assembly Language Syntax « ¢« « ¢« o ¢« ¢ ¢ o 4 o o o 0 o 0 e o 0 e o« 322
5.4.2 Condition Codes and Flag Settings . « ¢« ¢ ¢ ¢ ¢« v ¢ v ¢ o v ¢ o o o« 322
Instruction SUMMATY « ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o s o o o o s o s o s o o o 324

5.5
5.6 Instruction Descriptions and Formats . . . « « ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢« ¢ o o . . 325

Chapter 6. External Interface (Z8601, 78611) 6

6.1 Introduction « ¢« ¢ & o o ¢ o ot ¢ o 4 4 e e s e s e ee s e e e s s e o« 369
6.2 PinDescription « ¢ o o v o ¢ o i 4 4 o 4 e o s 4 s e s e e e e e s s e . s 369
6.3 Configuring for External Memory . . « ¢« ¢ v ¢ 4 ¢ ¢ ¢ ¢ e s ¢ o ¢ o o o « » 370
6.4 External Stacks « « ¢ ¢ ¢ 4 ¢ ¢ 4 0 0 0 4 W e e e s e e 0 0 0 e e e s e e 374
6.5 DataMemory « ¢« o ¢« ¢ ¢« o ¢ o ¢ 4 e o e s 4 b s s e e e e e e s e e e e s 371
6.6 Bus Operation « « o o ¢ ¢ ¢ o ¢ o ¢ s 0 o 0 6 s 0 0 e e s e e e e e e e o o 3T

6.6.1 Address Strobe (AS) . . . ¢ e et i e e e e e oL . 372
" 6.6.2 Data SLrobe (DS) v v 4 4 4 v ettt et e e e e e e e e e e e e . s 372
6.6.3 External Memory Operations . . « ¢« ¢ & ¢ ¢ ¢ ¢ ¢ v v ¢ v o ¢ o s o 372

6.7 Shared BUS . & & 4 o v o s ¢ 4 s s 0 s s e s s s s s e s s s e e e o . s 373
6.8 Extended Bus TimMing .« & & « ¢ o o o o ¢ o e o o o o o o o o o o o s o o « + 374
6.9 Instructioh Timing « « ¢ ¢ o 4.4 o ¢ o o s o o s o o s o s o o o s o o o « 375
6.10 Reset CONitionNS o o o o o o o o ¢ o ¢ o o o o o o o o s o o o o s s o o + 378

297

|
Chapter 7. External Interface (28681, Z8682) . ' 7

INtroduction & v o 4 v 4 4 4 s 4 e e 0 e s 4o 4 s s e s s e s s e s e s s 379
Pin Descriptions « o ¢« v o ¢ o v 4 ¢ o 6 4 4 o 6 o o e s e s e e 0 e e . 379
Configuring Port 0 . . . & v o v o v o o 0 o o o 0 v v o s o o oo oo« . 380

~N NN
.
W N =

7.3.1 78681 Initialization « o v ¢« ¢ ¢ ¢ 4 4 ¢ ¢ ¢ ¢ ¢« s s o o 4 o 0 s . . 380
7.3.2 78682 Initialization + « o o o o o o o o o 0 o o 0 0 4 0 e e s o . 381
7.3.3

Read/Write OperationS + o 4« o o o o o « o o o o o o o o o o o « o o 382

.

External SEacks « o« ¢« ¢ ¢ o o ¢ o ¢ o 4 o 4 4 4 4 s s s s e s s s s s s s . 382
‘Data MEBMOLY « o o ¢ v v o o o o o o o o o o o o o o o o s o s o o o o o « o+ 382
Bus Operation « o o ¢ & ¢ o 4 v v v e et 4 s 4 e e s s s s s e s e e . e s 383

~N NN
.
o B

1 Address Strobe (AS) . . 4 4 v v v v vt 4 e e e e 383
7.6.2 Data Strobe (DS) « & o' v v ¢ ot e 4 e e e 4 e 4 e e e s e e e ... 383

7.6.
6

7.7 Extended Bus Timing « « o ¢ ¢ o v ¢ ¢ ¢ o ¢ ¢« 4 o ¢ o 4 o o o s o 0 o o . . 383
7.8 Instruction TIMING « o o ¢ & o o o o o o o s o o o o o o o o o s o s o o « 384
7.9 78681 Reset CONditions « « v v v v o o o o o o o o s s o o o s s o o o o . 384
7.1 ZB682ResetConditions.......................'...384'

o

Chapter 8. Reset and Clock : . 8

e B L < - -1
B2 Clock oo @ v v e o v hh e e e e e e e e ee e e e e e s . 386

8.3 Test MOdE o v v ¢ o ¢ v o 6 4t b e e e s e e e e e s e e e e e e e e .. . 386

8.3.1 Interrupt Testing . . ¢« « o ¢ v ¢ ¢ 0 o 4 0 0 o]
8.3.2 ROMless Operation .« « o o ¢ o v ¢ 4 4 o o o ¢ o o s o s s s s s« . 386

Chapter 9. 1/0 Ports) 9
9.1 INELOQUCEION « o v o 4 o o o o o o o n e e e e e e s

1.1 ModeRegisters....’.......................388
.1.2 Input and Output Registers . . « ¢« « v ¢ &« o ¢ ¢ ¢ 4 o o o o « + « « 388

9.2 POPE D v v v v e e e e e e e e e e e e, . 388

1 Read/Write Operations « « « v o ¢ ¢ 4 o o o v o o o o o o o o o« » 390
.2.2 Handshake Operation . . ¢« ¢ ¢ ¢ ¢ ¢ o o o o 4 ¢ o o o o o s s o « « 300

L TR - AP 1o |

3.1 Read/Write Operations . « % ¢ v v ¢ o v v v v o s o o o o s s o+« 301
+3.2 Handshake Operation . « « o« ¢ v o o ¢ o o o o o o s s o o s o o« + 301

298

Table Of Contents (Continued)
|
94 POTt 2 o 0t v vt i e s s 302 9

9.4.1 Read/Write Operations « « v o v o o o o o o o o o o o s o o o o o o 392
9.4.2 Handshake Operation . « ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ e ¢ ¢ ¢ o o o o o s o o o 302

9.5 POTE 3 L e v o e h e e e e e e e e e s e e e e e e s e e s e e e e s e s 393

5.1 Read/Write Operations .« « o o« /e o o o o o o o o o o o s o o o o o » 393
5.2 Special Functions « ¢ ¢ ¢ 4 4 ¢ ¢ 4 4 e e 4 s e s s s s e s e . e . 304

9.
9

6 Port Handshake « ¢ o« ¢ ¢ ¢ 4 o ¢ o 4 o o o o o o o o o o o o o s o o o o+ 395
7 1/0 Port Reset Conditions o« o o o o « « o o o o o o o o o o o o o o o o « « 306

Chapter 10. Interrupts lo

10,17 Introduction « ¢ ¢ ¢ ¢ v v o o o b i i i it e e e e e e e e e e e s s . . 390
10.2 INterrupt SOUTCES « ¢ ¢ o ¢ o o o o ¢ o o o o o o s o o o o o o o o o o o + 300

10.2.1 External Interrupt Sources . .« ¢« « v ¢ ¢ ¢ v v ¢ o 4 v v 4 300
10.2.2 Internal Interrupt SOUICES .+ & & ¢« ¢ o ¢ o o o v o o o o o o o o « 401

10.3 Interrupt Request Register Logic and Timing « « &« ¢« ¢« « & + & e e e e e e o 401
10.4 Interrupt Initialization .« ¢« ¢ o v ¢ ¢ o 0 v o o v o o v v v o o o oo o o 401

10.4.1 Interrupt Priority Register Initialization 402
10.4.2 Interrupt Mask Register Initialization ¢ ¢+ ¢ o+ « « 403
10.4.3 Interrupt Request Register Initialization ¢« v ¢« « « « « 403

10.5 IRQ Software Interrupt Generation . . « v & ¢ ¢ ¢ ¢ o 6o o o s o o s « « « « 403
10.6 Vectored Processing « « o« « o ¢ ¢ ¢ o o o o o o o o o s s s o s s o o o « « 404

10.6.1 Vectored Interrupt Cycle Timing « « « ¢ o o o ¢ o o o o o s o & « « 404
10.6.2 Nesting of Vectored Interrupts « . « o ¢« o o ¢ 0 ¢ v v v v o o o . 404

10.7 Polled ProceSSing « « o« « o o o o o o o o o o o o o s s o o s s o o o o o « 404

10.8 Reset CONditions « o o o o o o o o o o o o o o o o o o s o o o v v oo d05

299

]
Chapter 11. Counter/Timers

1.1
1.2
1.3

11.4

Introduction .+ ¢ ¢ ¢ ¢ ¢ o ¢ ¢ ¢ o o
Prescalers and Counter/Timers
Counter/Timer Operation . . .« « . . .

11.3.1 Load and Enable Count Bits .

11.3.2 Prescaler Operations

TOUTMOdeS""°""“"'
TinModes o o o v v o 0 0 0 v v 0 0 s

11.5.1 External Clock Input Mode . .
11.5.2 Gated Internal Clock Mode . .
11.5.3 Triggered Input Mode
11.5.4 Retriggerable Input Mode . .

Cascading Counter/Timers. « « « « + &
Reset Conditions . . . « « ¢« & « « &

407
408

408
408

409
410

411

411

413
413

413
413

11

Chapter 12. Serial I/0

12.1
12.2
12.3

12.4

12.5

Introduction =« « ¢ o ¢ o ¢ ¢ o0 o @
Bit Rate Generation . . « « ¢« « ¢ o &
Receiver Operation . . « « ¢« « 4 o« &

12.3.1 Receiver Shift Register . . .
12.3.2 Overwrites . . « « « ¢« o o &
12.3.3 Framing Errors . . « « « . .
12.3.4 Parity o v v v v o v 0 0.

Transmitter Operation

12.4.1 Overwrites . . « v ¢ ¢ o & &

12.4.2 Parity .+ 4 4 0 v e e 00w

Reset Conditions « . .

415
415
417

417
418
418
418
418

419
419

420

Appendix A. Pin Descriptions and Functions

Al
A.2

Appendix B. Control Registers

Development Device (Z8612)
Protopack Emulator (Z8603/13)

Appendix C. Opcode Map

422
422

427

430

300

Chapter 1
Z8 Family Overview

1.1 INTRODUCTION

This chapter provides an overview of the architec-
ture and features of the Z8 Family of products,
with particular emphasis on those features that
set this microcomputer apart from earlier micro-
computers. Detailed information about the archi-
tecture, address spaces and modes, instruction
set, external interface, timing, input/output
operations, and interrupts can be found in subse-
quent chapters of this manual.

1.2 FEATURES

The Z8 microcomputer introduces a new level of
sophistication to single-chip architecture. Com-
pared to earlier single-chip microcomputers, the

78 offers faster execution; more efficient use of-

memory; more sophisticated interrupt, input/output
and bit-manipulation capabilities; and easier sys-
tem expansion.

Z8 products offer the standard on-chip functions
of earlier microcomputers, including:

2K or 4K bytes of ROM

144 8-bit registers

32 lines of programmable 1/0
Clock oscillator)
Arithmetic logic unit
Parallel and serial ports

Beyond these basic features, the 78 Family offers
such advanced characteristics as:

Two counter/timers

Six vectored interrupts

UART for serial I/0 communication
Stack functions

Power-down option

TTL compatibility
Optimizedeinstruction set
BASIC/Debug interpreter

All members of the Z8 Family are variations of the
basic Z8 microcomputer, the Z8601/11. The 78
Family includes a development device (Z8612), a
ROMless device (Z8681/82), BASIC/Debug Interpreter
(28671), a Protopack emulator (Z8603/13), as well

as the basic microcomputer. These products offer
all the parts and development tools necessary for
systems development (both hardware and software
prototyping), field trials (pre-production) and
full: production. For prototyping and preproduc-
tion, or where code flexibility is important, the
78603/13 Protopack, 2K and 4K EPROM-based parts
are the most appropriate. The ROM-based Z8601/11
microcomputers are used in high-volume production
applications after the software has been per-
fected. For ROMless applications, two versions of
the 78 microcomputer are available: the 40-pin
28681/82 and the 64-pin Z8612. In addition, there
is a military version of the 78611 4K ROM device,
available in both 40-pin ceramic and 44-pin lead-
less chip carrier packages.

The 28671 MCU is a complete microcomputer prepro-
’grammed with a BASIC/Debug Interpreter. This
device, operating with both external ROM or RAM .
and on-chip memory registers, is suitable for most
industrial control applications, or whenever fast
and efficient program development is necessary.

The 78 microcomputer is well-suited for dedicated
control . applications in real-time mode. Since
speed is a key consideration in such applications,
the Z8 Family is available in both 8 and 12 MHz
versions, supported by either of two development
modules: the Development Module (DM) or the
Z-SCAN 8. The Z-SCAN module provides (ICE) in-
circuit emulation capability. '

1.2.1 Instruction Set

The Z8 instruction set, consisting of 43 basic
instructions, is optimized for high-code density
and reduced execution time. The 47 instruction
types and six addressing modes--together with the
ability to operate on bits, 4-bit words, BCD
digits, 8-bit bytes, and 16-bit words--make for a
code-efficient, flexible microcomputer.

'

1.2.2 Architecture

28 architecture offers more flexibility and per-
formance than previous A/B accumulator designs.
All 128 general-purpose registers, - including

301

78 Family Overvie

dedicated I/0 port régisters, can be used as
accumulators. This eliminates the bottleneck com-
monly found in A/B‘devices, particularly in high-
speed applications such as disk drives, printers
and terminals. In addition, the registers can be
used as address pointers for indirect addressing,
as index registers or for implementing an on-chip
stack. Sbeed of execution and smooth programming
are supported by a "working register area"--short
4-bit register addresses.

- Table 1-1 lists the basic characteristics of the

members of the Z8 Family. As shown, the major
differences between the products are in their
physical packaging and the manner in which address
space is handled. An overall description for each
78 type is given in the following sections.
Variations within each group are specified where
applicable.

1.3 MICROCOMPUTERS (78601/78611)

The 28 can be a stand-alone microcomputer with
either 2K bytes (28601) or &K bytes (Z8611) of
internal ROM, a traditional microprocessor that
can manage up to 124K bytes (Z8601) or 120K bytes
(28611) of external memory, or a parallel proces-
sing element in a system with other processors and
peripheral controllers linked by a Z-BUS. In all
configurations, a large number of device pins are
available for 1/0. Key features of the Z8601/11
microcomputer include:

e ROM 2K-byte (Z8601) or &K-byte (Z8611) Program
Memory. This ROM is mask-programmed during
production with user-provided programs.

e 14a-byte RAM Register File. The internal
register organization of the Z8 microcomputer
centers around a 144-byte file composed of 124
general-purpose registers, 16 status and
control registers, and 4 1/0 port registers.
Either an B-bit or a 4-bit address mode can be
used to access the register file. When the
4-bit mode is used, the register file is
divided into 9 groups of 16 working registers
each. A Register Pointer uses short-format
instructions to quickly access any one of the
nine groups. Use of the 4-bit addressing mode
decreases access time and improves throughput.

& Prograsmable Counter/Timers. Two 8-bit coun-
ter/timer circuits are provided, each driven by
its own prescaler. Both the counter/timers and
their prescaler circuits are programmable.

e UART (Universal Asynchronous Receiver Transmit-
ter). ' A full-duplex UART is provided ' to
control serial data communications. One of the
on-chip counter/timer circuits provides the
required bit rate input to enable the UART to
operate at a maximum data transfer rate of
93.75K bits per second at a crystal frequency
of 12 MHz.

e 1/0 Lines/Ports. The Z8 microcomputer provides
32 input/output lines, arranged as 4 8-bit
ports. Under software control, the 1/0 ports
(Ports 0, 1, 2, 3) can be programmed as input,
output, or additional address lines. The 1/0
ports can also be programmed to provide timing,
status signals, interrupt inputs and serial or
parallel 1/0 (with or without handshake).

e Vectored Interrupts. The 28 MPU permits the
use of six different interrupts from any of
eight different sources. Four Port 3. lines
(P35-P33), serial input pin (P3g), the serial
output pin (P37) and both counter/timer
circuits may be interrupt sources. All
interrupts are vectored and are both maskable
and prioritized.

e Oscillator Circuit. An oscillator circuit that
can be driven from an external clock or crystal
is provided on the Z8 microcomputer. The
oscillator will accept an input frequency of up
to 12 MHz on the XTAL1 and XTAL2 pins provided.

e Optional Power-Down Feature. This option
permits normal input power to be removed from
the chip without affecting the contents of the
register file. The power-down * function
requires an external battery backup system.

Pin functions and descriptions for the 28601/11
microcomputer can be found in Chapter 6.

1.4 DEVELOPMENT DEVICE (Z8612)

A development device allows users to prototype a

system with an actual hardware device and to
develop the code that is eventually mask-pro-
grammed into the on-chip ROM of the 28601 or 28611
microcomputer. Development devices are also use-
ful in /applications where production volume does
not justify the expense of a ROM system. The
18612 development device is identical to its
equivalent microcomputer, the 78611, with the fol-
lowing exceptions:

302

e No internal ROM is provided, so that code is e The device package is enlarged in order to

developed in an off-chip memory.

accommodate the new control, address, and data
lines.

e The normally internal ROM address and data)
lines are buffered and brought out to external Pin functions and descriptions for the development
pins to interface with the external memory.

device can be found in the Appendix.

e Control lines are added to interface with

external program memory.

Table 1-1. 78 Family of Products
ROM
Part Capacity Programmable Dedicated pPcs
Product Number (Bytes) 1/0 Pins 1/0 Pins Footprint Comments

2K ROM 28601 2K 32, 4 ports 8 Power, 40 Pin Masked ROM part, used

Control primarily for high volume
production.

2K Protopack 78603 1] 32, 4 ports 8 Power, 40 Pin Piggyback part used where
Control program flexibility is
plus required (prototyping).’
24 EPROM

4K ROM 28611 4K 32, 4 ports 8 Power, 40 Pin Masked ROM part, used
Control primarily for high volume

production.

4K Develop- 78612 0 32, 4 ports 8 Power, 64 Pin ROMless part used primarily

ment part Control . in development systems.
plus 24
external
memory

4K Protopack 28613 0 32, 4 ports 8 Power, 40 Pin Piggyback part used where
Control ' program flexibility is
plus required (prototyping).
24 EPROM

BASIC/ 78671 2K 32, 4 ports 8 Power, 40 Pin BASIC/Debug part used in

Debug Control low volume applications.

ROMless 78681/82 0 24, 3 ports 8 Power, 40 Pin Low cost ROMless production
Control part with reduced 1/0.
plus 8 Program memory is external.
external
memory

303

Z8 Family Overview

1.5 PROTOPACK EMULATOR (Z8603/13)

The Protopack emulator devices, Z8603 and Z8613,
are ROMless versions of their equivalent microcom-
puters (Z8601 and 78611, respectively). The emu-
lators differ from development devices in “two
ways: = they use the same pinout as the microcom-
puters, and an external ROM or EPROM can be
plugged into the top of the package. The emulator
package allows for flexibility of application,
since it can be used in either prototype or final
pc boards, yet still allows for program develop-
ment.

When the final program is developed, it can be '

mask-programmed into the Z8601/11 which then
replaces the emulator. The emulator is also use-
ful in small volume applications where the cost of
mask-programming is prohibitive or where program
flexibility is desired.

Physical description’ for the Protopack emulator is
found in the Appendix.

1.6 BASIC/DEBUG INTERPRETER (Z8671)

The Z8671 MCU is a complete microcomputer prepro-
grammed with a BASIC/Debug interpreter. BASIC/
Debug can directly address the Z8671's. internal
registers and all external memory. It can quickly
examine and modify any external memory location or
1/0 port, and can call machine language subrou-
tines to increase execution speed.

The 78671 MCU has a combination of software and
hardware that is ideal for most industrial control
applications. Along with the functions mentioned
above, - this microcomputer has a self-contained
line editor for interactive debugging which fur-
ther speeds program development. In addition the
BASIC/Debug Interpreter allows program execution
on power-up or reset, without operator interven-
tion. : '

Two kinds of memory exist in the Z8671 device:
on-chip registers and external ROM or RAM. The
BASIC/Debug interpreter is located in the 2K bytes
of on-chip ROM. Maximum addressing capability is

62K bytes of external program memory and 62K bytes

of data memory. In addition, 32 I/0 lines, a 144-
byte register file, on-board UART and two coun-
ter/timers are provided.

Pin descriptions and functions are the same as
those for the Z8601/11 basic microcomputer
(Chapter 6).

1.7 ROMLESS MICROCOMPUTER (Z8681/82)

The 78681 and Z8682 ROMless microcomputers provide
virtually all of the functions of the standard 78
microcomputer without the need to mask-program
on-chip ROM. This microcomputer is similar to the
78601 version except that there is no on-chip pro-
gram memory. Unlike the ROMless development and
Protopack devices the Z8681/82 has no additional
address or address control lines nor does it carry
a plug-in piggyback memory module. Use of exter-
nal memory rather than internal ROM enables this
28 device to be used in low volume applications or
where code flexibility is required. The use of
Ports 0 and 1 to interface external memory leaves .
16 to 24 lines for 1/0.

Since Port 1 is dedicated as an 8-bit multiplexed
Address/Data bus, and Port 0 lines can be pro-
grammed as address bits, the resulting 16-bit
addresses can directly address up to 64K bytes of
memory for the 78681 and 62K bytes for the 78682.
(The 78682 MCU cannot address the lower 2K bytes
of memory)s

The address capability of the Z8681/82 can be
doubled by programming output P3, of Port 3 as
Data Memory (DM) select signal. The two states of
this signal can be used with the 16-bit addresses
to identify two separate external address spaces,
thus increasing external address space to 128K

. bytes for the 78681 and 124K bytes for the Z8682.

Pin functions and descriptions for the Z8681/82
microcomputer can be found in Chapter 7.

1.8 APPLICATIONS

Z8 microcomputers are most often used in high-per-
formance, dedicated applications. Such special-
ized functions were previously accomplished with
TTL logic, TTL logic plus a low-end MCU, or a
microprocessor and peripherals. Some typical
applications include:

Disc drive controller
Printer controller
Terminals

Modems

Industrial controllers

Key telephones

Telephone switching systems
Arcade games and intelligent home games
Process control ' ;.
Intelligent instrumentation
Automotive mechanisms

304

78 Family Overview

Following are brief descriptions for a few 8
applications.)

Printers. Input data (typically transmitted via a
terminal or computer) can be sent to the Z8 on
either a serial or parallel port. The 78 then
transfers the data into the external .RAM buffer
via another parallel port, where it can operate on
the data before output to the printing mechanism.

. Disk. Disk operations are read or write, with

input received from either the disk or the compu-
ter. Data is transferred to the buffer memory a
sector (128, 256, 512, 1024 bytes) at a time via
the 78, operated on as required, and subsequently
output to the disk or computer.

Terminal. Input is received from either the key-
board or a computer. The Z8 device must maintain
at least an input buffer and often the screen RAM.

- 305

N Zi13G

‘Chapter 2
-Architectural Overview

2.1 INTRODUCTION

The Z8 is a versatile single-chip microcomputer.
Because its multiplexed address/data bus is merged
with several I/0-oriented ports, the Z8 can func-
tion as either an I/0-intensive or a memory-
intensive microcomputer. One key advantage to
this organization is that external memory can be
addressed - while maintaining many of the ' 1/0
lines. 'Figure 2-1 shows the Z8 block diagram. ‘

2.2 ADDRESS SPACES

To provide for both I/0-intensive and memory-
intensive applications, the Z8 supports three
basic address spaces: '

e Program memory (internal and external)
Data memory (external)
Register file (internal)

A maximum of 64K bytes of program memory are
directly addressable. In the 78601 and 78611
microcomputers, internal program memory consists
of a mask-programmed ROM. The size of this
internal ROM is 2K bytes for the 78601 and 4K
bytes for the Z8611. In one member of the Z8
family, the Z8681, all of the program memory is
externally addressable.)

Data memory space is always external to the 78
microcomputer and is 62K bytes in size for the
78601 and 78682, and 60K and 64K bytes in size
respectively for the Z8611 and 78681.

OUTPUT INPUT | Vec GND XTAL AS DS RW RESET
MACHINE TIMING &
PORT 3 <__ N INSTRUCTION CONTROL
UART < ALU]
‘ FLAGS PROGRAM MEMORY
TIMER/ 2K/4K/8K X 8-BIT
COUNTERS ‘
@
REG. POINTER
REGISTER FILE PROGRAM
INTERRUPT 124/256 X 8-BIT COUNTER
CONTROL
PORT 2 PORT 0 < > PORT 1
o ADDRESS OR 1/0 ADDRESS/DATA OR 1/0
(BIT PROGRAMMABLE) (NIBBLE PROGRAMMABLE) (BYTE PROGRAMMABLE)

Figure 2-1. 178 Block Diagram

306

Architectural Overview

2.3 REGISTER FILE

The Z8's register-oriented architecture centers
around an internal ‘register file composed of 124
general-purpose registers, 16 CPU and peripheral
control registers, and 4 I/0 port registers. All
registers are eight bits. Any general-purpose
register can be used as an accumulator, an address
pointer, or an index, data, or stack register.

2.3.1 Register Pointer

A Register Pointer logically divides the register

file into 9 working register groups of 16 regis-.

ters each, which allows for fast context switching
and shorter instruction formats.

2.3.2 Instruction Set

The Z8 CPU has an instruction set designed for the
large register file. The instruction set provides
a full complement of 8-bit arithmetic and logical
operations. BCD operations are supported using a

" decimal adjustment of binary values, and 16-bit
quantities for addresses and' counters can be
incremented and decremented. Bit manipulation and
Rotate and Shift instructions complete the data
manipulation capabilities of the Z8 system. No
special 1/0 instructions are necessary since the
1/0 is mapped into the register file.

2.3.3 Data Types

The 28 CPU supports operations on bits, BCD’

digits, bytes, and 2-byte words.

Bits in the register file can be tested, set,
cleared, and complemented. Bits within a byte are
numbered from 0 to 7 with bit 0 being the least
significant (right-most) bit (Figure 2-2). -

02] 6 [0s [24 |05 [D:] D1 [0 |

Figure 2-2. Bits in Register

Manipulation of BCD digits packed two-to-a-byte is
accomplished by a Decimal Adjust instruction and a
Swap instruction. Decimal Adjust is used after a
binary addition or subtraction on BCD digits.

Logical, Shift, Rotate and Load instructions oper-
ate on bytes in the register file. Bytes in data
memory are only affected by Load instructions.

Sixteen-bit arithmetic instructions (Increment
Word and Decrement Word) operate on words in the
register file.

2.3.4 Addressing Modes
The addressing modes of the Z8 CPU are:

Register

Indirect Register

Immediate

Direct Address

Indexed (with a short 8-bit displacement)
Program Counter Relative

Register, Indirect Register, and Immediate
addressing modes are available for Load, Arith-
metic, Logical, Shift, Rotate, and Stack instruc-=
tions. Conditional Jumps use both Direct Address
and Program Counter Relative, while Jump and Call
instructions use Direct Address and Indirect Reg-

" ister addressing modes.

2.4 I/0 OPERATIONS

The Z8 has 32 pins dedicated to input and output.
These lines are grouped into four ports of eight
lines each. Ports can be programmed as input,
output, or bidirectional. Under software control,
the ports brovide timing, status signals, address
outputs, and serial or parallel I/0 with or with-
out handshake. Multiprocessor system configura-
tions are also supported.

2.4.1 Timers

To unburden the program from real-time problems
such as serial data communications and counting/
timing, the Z8 contains an on-chip universal asyn-
chronous receiver/transmitter (UART) and two coun-
ter/timers with a large number of user-selectable
modes. One on-chip timer provides the bit rate
input to the UART during communications.

2.4.2 Interrupts

1/0 operations can be interrupt-driven or polled.
The Z8 supports six vectored interrupts that can
be masked and prioritized.

307

2.5 OSCILLATOR

The 78 offers an on-chip oscillator and an
optionél power-down mechanism that can be used to
maintain the contents of the register file with a
low-power battery.

2.6 PROTOPACK

The Z8 Protopack allows the user to prototype
system hardware and develop software that is
eventually to be mask-programmed into the on-chip
ROM of the 2K byte (Z8601) or the 4K byte (Z8611)
version of the Z8.

308))

Chapter 3
Address Spaces

3.1 INTRODUCTION

Three address spaces are available in the Z8
microcomputer:

o The CPU Register File contains addresses for
all general-purpose, peripheral, control, and .
1/0 port registers.

‘e The CPU Program Memory contains addresses for
all memory locations having executable code
and/or data. -

"e The CPU Data Memory contains addresses for all
memory locations that hold data only.

These address spaces. are described in detéil in
the following sections.

3.2 CPU REGISTER FILE

The register file totals 256 consecutive bytes, of
which 144 have been implemented. (Unused register
space is. reserved for future expansion.) The reg-
ister file consists of 4 I/0 ports (RO-R3), 124
general-purpose registers (R4-R127), 9 peripheral
registers (R240-R248), and 7 control registers
(R249-R255). Figure 3-1 shows the layout of the
register file, including register names, loca-
tions, and identifiers.

Registers can be accessed as either 8- or 16-bit
registers wusing Direct, Indirect, or Indexed
addressing. All 144 registers can be referenced
or modified by any instruction that accesses an
8-bit register, without the need for special
instructions. Registers accessed as 16-bits are
treated as even-odd register pairs (there are 72
valid pairs). In this case, the data's MSB is
stored in ﬁhe‘eveq\-‘numbered register, while the
.LSB goes into the next higher odd-numbered
register (Figure 3-2).

DEC
255
254
253
252
251
250
249

244
243
242
241

127

O = N W &

STACK POINTER (BITS 7-0)

STACK POINTER (BITS 15-8)

REGISTER POINTER

PROGRAM CONTROL FLAGS

INTERRUPT MASK REGISTER

INTERRUPT REQUEST REGISTER

INTERRUPT PRIORITY REGISTER -

PORTS 0-1 MODE

PORT 3 MODE

PORT 2 MODE

TO0 PRESCALER

TIMER/COUNTER 0

T1 PRESCALER

TIMER/COUNTER 1

TIMER MODE

SERIAL I/0

NOT
IMPLEMENTED

GENERAL-PURPOSE
REGISTERS

PORT 3

PORT 2

PORT 1

PORT 0

Figure 3-1.

HEX

FF
FE
FD
FC
FB
FA
Fo
F8
F7
F6
F5
Fa
F3
F2
F1
Fo

7F

04
03
02
01
00

Register File

IDENTIFIERS
SPL
SPH
RP
FLAGS
IMR
IRQ
IPR
PO1M
P3M
P2M
PREO
T0
PRE1
T
TMR
sio

P3 ‘
P2

" Pt

PO

Rn Rn+1

n = EVEN ADDRESS

Figure 3-2. 16-Bit Register Addressing

309

Address Spaces

By using logical instructions and a mask, indivi-
dual bits within registers can be accessed for bit

set, bit clear, bit complement, or bit test opera-

tions. For example, the instruction AND R, MASK
performs a bit clear operation.

When instructions are executed, registérs are read
when defined as sources and written when defined
as destinations. All general-purpose registers
function as accumulators, address pointers, index
registers, stack areas, or scratchpad ‘memory.

28 instructions can access B8-bit registers and
register pairs (16-bit) using either 4-bit or
8-bit address fields. With 4-bit addressing, the
register file is logically divided into 9 groups
of 16 working registers as shown in Figure 3-3. A
Register Pointer (one of the control registers)
contains the base address of the active working
register group.

When accessing one of the working registers, the
4-bit address is concatenated with the upper four
bits of the Register Pointer, thus 'forming an
8-bit address. Figure 3-4 illustrates this opera-
tion. Since working registers are typically
specified by short format instructions, there are
fewer bytes of code needed, which reduces execu-
tion time. In addition, when processing interrupts
or changing tasks, the Register Pointer speeds
context switching. A special Set Register Pointer

(SRP) instruction sets the contents of the Regis-.

ter Pointer.

3.2.1 Error Conditions

Registers must be correctly used because certain
conditions produce inconsistent results and should
be avoided:

® Registers R243 and' R245-R249 are write-only
registers. If an attempt is made to read these
registers, %FF is returned (% is a prefix that
indicates hexadecimal notation).

e When register R253 (Register Pointer) is read,
all Os are returned in the least significant

four bits.
——
255
1
L — ntfsf | 0000 |]253
240
°
127
b
b —
- —
p~ —
The lower
nibble of
the register
. file address
— ' «~4— provided by
the instruction
poim‘s' to the
register.
= — |
_——
15
S .
110 PORTS _

Figure 3-3. Working Register Groups

reaisTERR2s3 [0 1 1 1fo o o of

OPC

IREEDIEE o]msThucnou

(INC R6)

[o + 1+ 1]o 1 1 o]recisTER ADDRESS (R118)

Figure 3-4. Working Register Addressing

310

Address Spaces

e When registers RO and R1 (Ports 0 and 1) are
defined as address outputs, they will return
1s in each address bit location when read.

e Writing to bits which are defined as address
output, timer output, serial output, or hand-
shake output will have no effect.

e Instruction DINZ uses a general register as a
counter. Only registers R4-R127 can be used
with this instruction.

3.3 CPU CONTROL AND PERIPHERAL REGISTERS

The Z8 control registers govern the operation of
the CPU. Any instruction that references the
register file can access these control registers.
Available control registers are:

Interrupt Priority register (IPR)
Interrupt Mask register (IMR)
Interrupt Request register (IRQ)
Program Control flags (FLAGS)
Register Pointer (RP)
Stack Pointer - high-byte (SPH)
Stack Pointer - low-byte (SPL)

The Z8 uses a 16-bit Program Counter (PC) to
determine the sequence of current program instruc-
tions. The PC is not an addressable register.

Peripheral registers are used to transfer data,
configure the operating mode, and control the
operation of the on-chip' peripherals. Any
instruction that references the register file can
access peripheral registers. The peripheral regis-
ters are:

Serial 1/0 (S10)
Timer Mode (TMR)
Timer/Counter 0 (T0)
T0 Prescaler (PREQ)
Timer/Counter 1 (T1)
T1 Prescaler (PRE1)
Port 0-1 Mode (PO1M)
Port 2 Mode (P2M)
Port 3 Mode (P3M)

In addition, the four port registers (P0-P3) are
considered to be peripheral registers.

The functions and applications of control and
peripheral registers are described in subsequent
sections of this manual.

3.4 CPU PROGRAM MEMORY

The Z8 can access 64K bytes of program memory with
the 16-bit Program Counter. In the Z8601, the
lower 2K bytes of the program memory address space
are internal ROM, while in the Z8611 the lower 4K
bytes are internal ROM. In the 78682 the lower 2K
bytes are not accessible. .

To access program memory outside the on-board ROM
space, Port 0 and Port 1 can be configured as a
memory interface. For example, Port 1 as a multi-
plexed Address/Data -port (ADy-AD7) provides
Address lines Ag-A7 and Data lines Dg-D7. Port O
can be configured for an additional four or eight
address lines (Ag-Aqq or Ag-Aqs). This memory
interface is supported by the control lines AS
(Address Strobe), DS (Data Strobe) and R/W
(Read/Write). :

In the ROMless Z8681 version, Port 1 is automati-
cally a multiplexed Address/Data port. Port O
must be configured for additional address lines as
needed.

The first 12 bytes of program memory are reserved
for the interrupt vectors. Addresses 0-11 contain
six 16-bit vectors that correspond to the six
available interrupts. Figure 3-5 illustrates the
order of 16-bit data stored in program memory.

65535
EXTERNAL
ROM OR RAM
2048
2047
" ON-CHIP
Location of ROM
. first byte of
instruction
executed (e o — e]
afterreset o
1 IRQS
10 IRQ5
9 IRQ4
8 IRQ4
7 IRQ3
Vector
(Lower Byto)\6 IRQ3
2 BN IRQ2
a4ty IRQ2
veclor/3 IRQ1
WpperByte) IRQ1
IRQO
1] IRQO

Figure 3-5a. 78601 Program Memory Map

311

65535

EXTERNAL
ROM OR RAM
4096
4095
ON-CHIP
Location of ROM
first byle_ of
Mexecates™~d- — — -
after reset 1o A
1 IRQ5
- 10 IRQ5
9 IRQ4
8 IRQ4
7 IRQ3
(LoweyeB‘;'t:;\G IRa3
5 IRQ2
4 IRQ2
Vector” 3 IRQ1
(Upper Byte) 2 IRQ1
IRQO -
0 IRQO
Figure 3-5b. 78611 Program Memory Map
65535
EXTERNAL
ROM OR RAM
Location of
first bqu of
=N E
after reset 4o
1 IRQ5
10 IRQ5
9 IRQ4
8 IRQ4
7 IRQ3
(Loweygcy'l:;\s IRQ3
5N IRQ2
4 IRQ2
Vecu':r/3 IRQ1
(Upper Byte) 2 RQ1
IRQO
0 IRQO
Figure 3-5c. 78681 Program Memory Map

\

LOCATION OF

FINSTRUGTION 5595
EXECUTED EXTERNAL
AFTER RESET _ ROM OR RAM
P S
2065 IRQ5
IRQ5
JP
IRQ4
IRQ4
JP
IRQ3
IRQ3
JP
2056 IRQ2
2055 IRQ2
2054 JP
2053 IRQ1
2052 IRQ1
2051 JP
2050] IRQO :
2049 IRQO
2048 JP
2047
NOT ADDRESSABLE

Figure 3-5d. 78682 Program Memory Map

When an interrupt occurs, the address stored in
the interrupt's vector location points to a ser-
vice routine. This routine assumes program con-
trol.

The first 2K bytes of program memory are not
addressable in the 78682 ROMless version.
Beginning at address 2048 the first 18 bytes
contain interrupt vectors which are Jump Direct
instructions. When an interrupt occurs, the 78682
executes the corresponding Jump to interrupt.

The first address available for a user program is
location 12. This address is loaded into the
Program Counter after a hardware reset.

The first address available for a user program in
the 78682 is location 2066 (Hexadecimal %812).
This address is loaded into the Program Counter
after a hardware reset.

312

Address Spaces

3.5 CPU DATA MEMORY

Up to 64K bytes of external data memory can be
accessed in the Z8 microcomputer. As shown in
Figure 3-6, the origin, and hence, the actual size
of data memory is device-dependent. The origin of
data memory is the same as the starting address of
external program memory.

Like external program memory, external data memory
Address/Data lines are provided by Port 1 for
8-bit addresses, and by Ports 0 and 1 for 12-bit
and 16-bit addresses. '

External data memory can be included with or sep-
arated from the external program memory addressing
space. When data memory is separated from program
memory, the Data Memory output (DM) is used to
select between data and program memories.

65635
EXTERNAL
DATA
MEMORY
(62K BYTES)
2048
2047
NOT ADDRESSABLE
0

Figure 3-6a. 78601 or 78682 Data Memory Map

65535

‘4096
4095

EXTERNAL
DATA
MEMORY
(60K BYTES)

NOT ADDRESSABLE

Figure 3-6b. 78611 Data Memory Map

65535

EXTERNAL
DATA
MEMORY
" (64K bytes)

Figure 3-6c. 78681 Data Memory Map

313

Address Spaces

3.6 CPU STACKS

Stack operations can occur in either the register
file or data memory. Under software control,
Port 0 and 1 Mode register (R258) selects stack
location.

The register pair R254 and R255 forms the 13-bit
Stack Pointer (SP) which is used for all stack
operations. The stack address is stored with the
MSB in R254 and LSB in R255 (Figure 3-7).

R255
| owersyre . | stack poinTeER Low
R254
| UPPER BYTE | stack poiNTER HiGH

Figure 3-7. Stack Pointer

The stack address is decremented prior to a Push
operation and incremented after a Pop operation.
The stack address always points to the data stored
on the top-of-stack. The Z8 stack is a return
stack for Call instructions and interrupts as well
as a data stack. During a Call instruction, the
contents of the PC are saved on the stack. The PC
is restored during a Return instruction. Inter-
rupts cause the contents of the PC and Flag regis-
ter to be saved on the stack. The IRET instruc-
tion restores them (Figure 3-8).

When vthe Z8 is configured for an internal stack
(i.e., using the register file), register R255

- serves as the Stack Pointer. The value in R254 is

ignored and can be used as a general-purpose
register. However, an overflow or underflow can
occur when stack address is incremented or
decremented during normal stack operations.

[]
[
1 °
PCL
TOP OF ——>- PCH
STACK

STACK CONTENTS
AFTER A CALL
INSTRUCTION

.
[
[
PCL
PCH
TOP OF —»-} FLAGS
STACK

STACK CONTENTS
! AFTER AN
INTERRUPT
CYCLE

Figure 3-8. Stack Operations

314

Chapter 4
Address Modes

4.1 INTRODUCTION

The 78 microcomputer
modes:

provides six addressing

Register (R)

Indirect Register (IR)
Indexed (X)

Direct (D)

Relative (RA)
Immediate (IM)

With the exception of immediate data'and condition
codes, all operands are expressed as register
file, program memory,
Registers are accessed using 8-bit addresses in
the range 0-127 and 240-255.

Working registers are accessed wusing 4-bit
addresses in the range 0-15. The address of the
register being accessed is formed by the concate-
nation of the upper four bits in the Register

or data memory addresses. -

Pointer (R253) with the 4-bit working reglster
address supplied by the instruction.

Registers can be used in pairs to designate 16-bit
values or memory addresses. A register pair must
be specified as an even-numbered address in the
range 0, 2,...., 14, \
Addressing modes are instruction-specific.
Section 5.4 discusses each addressing mode as it
corresponds to particular instructions.

In the following definitions, the
"register" also implies register pair,
register, or working register pair.

use of
working

4.2 REGISTER ADDRESSING (R) ‘ !

In the Register addressing mode, the operand value
is the contents of the specified register or
registér pair (Figures 4-1 and 4-2).

PROGRAM MEMORY

REGISTER FILE

8-BIT REGISTER e
FILE ADDRESS
dst OPERAND ¢
POINTS TO ONE REGISTER
ONE-OPERAND | OPCODE IN REGISTER FILE
INSTRUCTION ¥
EXAMPLE
VALUE USED IN
INSTRUCTION EXECUTION
Figure 4-1. Register Addressing
REGISTER FILE
RP -~
POINTS TO
PROGRAM MEMORY ORIGIN OF
4-BIT WORKING | WORKING
REGISTER REGISTER
- GROUP
OPERA
p dst | src POINTS TO THE ERAND
TWO-OPERAND | 4 _ OPCODE WORKING REGISTER
INSTRUCTION //
EXAMPLE :

Figure 4-2.

Working-Register Addressing

/ 315

Address Modes

4.3 INDIRECT REGISTER ADDRESSING (IR)

In the Indirect Register addressing‘mode, the con-
tents of the specified register is the address of
the operand (Figures 4-3 and 4-4).

Depending upon the instruction selected, the
address points to a register, program memory, or
an external data memory location.

When accessing program memory or external data
memory, register pairs or working register pairs
are used to hold the 16-bit addresses.

4.4 INDEXED ADDRESSING (X)

The Indexed addressing mode is used only by the
Load (LD) instruction. An indexed address consists
of a register address offset by the contents of a
designated working register (the Index). This
offset is added to the register address to obtain
the address of the operand. Figure 4-5 illus-
trates this addressing convention. ‘ :

PROGRAM MEMORY

REGISTER FILE

8-BIT REGISTER
FILE ADDRESS \
ONE-OPERAND s ot
INSTRUCTION OP(;ODE
EXAMPLE

POINTS TO ONE REGISTER
IN REGISTER FILE

ADDRESS OF

OPERAND USED
BY INSTRUCTION

VALUE USED IN
INTRODUCTION
EXECUTION

g ADDRESS ks

4 OPERAND

Figure 4-3. Indirect Register Addressing to Register File

Figure 4-4. Indirect Register Addressing to Program or Data Memory

316

Address Modes

4.5 DIRECT ADDRESSING (DA)

The Direct addressing mode, as shown in Figure
4-6, specifies the address of the next instruction
to be executed. Only the Conditional Jump- (JP)
and Call (CALL) instructions use this addressing
mode.

4.6 RELATIVE ADDRESSING (RA)

In the Rélative addressing modé, illustrated in
Figure 4-7, the instruction specifies a

two's-complement signed displacement in the range
of -128 to +127. This is added to the contents of
the PC to obtain the address of the next
instruction to be executed. The PC (prior to the
add) consists of the address of the instruction
following the Jump Relative (JR) or Decrement and
Jump if Nonzero (DINZ) instruction. JR and DJINZ
are the only instructions that use this addressing
mode.,

RP | B

PROGRAM MEMORY POINTS TO

ORIGIN OF

TWO-OPERAND WORKING
INSTRUCTION ADDRESS e REGISTER
EXAMPLE dstsre | _ x POINTS TO ONE OF 2L GROUP
OPCODE THE WORKING REGISTERS
' ADDRESS FFSET
VALUE VALUE
OPERAND

VALUE USED IN
INSTRUCTION

Figure 4-5. Indexed Addressing

i

PROGRAM MEMORY

' PROGRAM MEMORY
ADDRESS USED

LOWER ADDR BYTE
UPPER ADDR BYTE
OPCODE

Figure 4-6. Direct Addressing

PROGRAM MEMORY

PROGRAM MEMORY
"ADDRESS USED

CURRENT
NEXT OPCODE <= PC VALUE
DISPLACEMENT (oo oo |
JR OR DINZ ——»| OPCODE SIGNED
DISPLACEMENT
VALUE

Figure 4-7. Relative Addressing

317

4.7 IMMEDIATE DATA ADDRESSING (IM) INSTRUCTION

OPERATION

Immediate data is considered an "addressing mode"
for the purposes of this discussion. It is the WORD(S) | OPERAND
only addressing mode that does not indicate a reg-
ister or memory address as the source.operand; the
operand value used by the instruction is the value
supplied in the operand field itself. Because an Figure 4-8. Immediate Data Addressing
immediate operand is part of the instruction, it

is always located in the program memory address

space.

THE OPERAND VALUE IS IN THE INSTRUCTION.

318

Chapter 5
Instruction Set

5.1 FUNCTIONAL SUMMARY) . Logical Instructions
Z8 instructions can be divided functionally into Mnemonic Operands Instruction
the following eight groups: - AND dst,src Logical And

’ CoM dst Complement
e Load . OR dst,src Logical Or
e Arithmetic XOR dst,src Logical Exclusive Or
e Logical ‘
e Program Control
e Bit Manipulation Program-Control Instructions
e Block Transfer
e Rotate and Shift Mnemonic Operands ° Instruction
e CPU Control CALL dst - Call Procedure

DJINZ r,dst Decrement and Jump NonO

The following summary shows the instructions IRET Interrupt Return
belonging to each group and the number of operands JP cc,dst Jump
required for each. The source operand is "src", JR cc,dst Jump Relative
"dst" is the destination operand, and "cc" is a RET Return

condition code.

Bit-Manipulation Instructions
Load Instructions
Mnemonic Operands Instruction

Mnemonic = Operands Instruction TCM dst,src Test Complement Under Mask
CLR dst Clear ™ dst,src Test Under Mask
LD dst,src Load " AND dst,src Bit Clear
LDC dst,src Load Constant OR dst,src Bit Set
LDE dst,src Load External XOR dst,src Bit Complement
POP dst Pop
PUSH src Push

Block-Transfer Instructions

Arithmetic Instructions Mnemonic Operands Instruction
LDCI dst,src Load Constant Auto-
Mnemonic Operands Instruction increment

ADC dst,src Add With Carry LDEI dst,src Load External Auto-

ADD dst,src Add increment

cp dst,src Compare

DA dst Decimal Adjust

DEC dst Decrement Rotate and Shift Instructions

DECW dst Decrement Word

INC dst Increment Mnemonic Operands Instruction

INCW dst Increment Word RL dst Rotate Left

SBC dst,src Subtract With Carry RLC dst Rotate Left Through Carry

sSuB dst,src Subtract) RR dst Rotate Right
RRC dst Rotate Right Through Carry
SRA dst Shift Right Arithmetic
SWAP dst Swap Nibbles

319

Instruction Set

CPU Control Instructions

Mnemonic Operand Instruction
CCF Complement Carry Flag
DI Disable Interrupts
ElI Enable Interrupts
NOP No Operation
RCF " Reset Carry Flag
SCF Set Carry Flag
SRP src Set Register Pointer

© 5.2 PROCESSOR FLAGS

The Flag register (R252) informs the user about
the current status of the Z8. The flags and their
bit positions in the Flag register are shown in
Figure 5-1. ‘

R252 FLAGS
Flag Register
(FCH; Read/Write)

Ge o oo e o Tor]

l l—ussn FLAG F1
USER FLAG F2

HALF CARRY FLAG
DECIMAL ADJUST FLAG
OVERFLOW FLAG

SIGN FLAG

ZERO FLAG

CARRY FLAG

Figure 5-1. Flag Register

The Z8 Flag register contains six bits of status
information which are set or cleared by CPU opera-
tions. Four of the bits (C, V, Z and S) can be
tested for use with conditional Jump instruc-
tions. Two flags (H, D) cannot be tested and are
used for BCD arithmetic.

The two remaining bits in the Flag register (F1,
F2) are available to the user, but they must be
set or cleared by instruction and are not usable
with conditional Jumps.

As with bits in the other control registers, Flag
register bits can be set or reset by instructions;
however, only those instructions that do not
affect the flags as an outcome of the execution
should be used (e.g., Load Immediate).

5.2.1 Carry Flag (C)

The Carry flag is set to 1 whenever the result of
an arithmetic operation generates a carry out of
or a borrow into the high order bit 7; otherwise,
the Carry flag is cleared to O.

Following Rotate and Shift instructions, the Carry
flag contains the last value shifted out of the
specified register.

An instruction can set, reset, or complement the
Carry flag.

RETI changes the value of the Carry flag when the
saved Flag register is restored.

L 4
5.2.2 Zero Flag (Z)

For arithmetic and logical operations, the Zero
flag is set to 1 if the result is zero; otherwise,
the Zero flag is cleared. ‘

If the result of testing bits in a register is O,
the Zero flag is set to 1; otherwise the flag is
cleared.

If the result of a Rotate or Shift operation is O,
the Zero flag is set to 1; otherwise, the flag is
cleared.

RETI changes the value of the Zero flag when the
saved Flag register is restored.

-5.2.3 Sign Flag (S)

The Sign flag stores the value of the most signif-
icant bit of a result following arithmetic, logi-
cal, Rotate, or Shift operations.

When performing ‘arithmetic operations on signed
numbers, binary two's complement notation is used
to represent and process information. A positive
number is identified by a 0 in the most signifi-
cant bit position, and therefore, the Sign flag is
also O.

A negative number is identified by a 1 in the most
significant bit position, and therefore, the Sign
flag is alsb 1.

RETI changes the value of the Zero flag when the
saved Flag register is restored.

320

Instruction Set

5.2.4 Overflow Flag (V)

For signed arithmetic, Rotate, and Shift opera-
tions, the Overflow flag is set. to 1 when the
result is greater than the maximum possible number
(> 127) or less than the minimum possible number
(< -128) that can be represented in two's comple-
ment form. The flag is set to 0 if no overflow
occurs.

Following logical operations, the Overflow flag is
set to 0.

RETI changes the value of the Overflow flag when
the saved Flag register is restored.

5.2.5 Decimal-Adjust Flag (D)

The Decimal-adjust flag is used for BCD arith-
metic. Since the algorithm for correcting BCD
operations is different for addition and subtrac-
tion, this flag specifies what type of instruction
was last executed so that the subsequent Decimal
Adjust (DA) operation can function properly. Nor-
mally, the Decimal-adjust flag cannot be used as a
test condition.

After a subtraction, the Decimal-adjust flag is
set to 1; following an addition it is cleared to
0.

RETI changes the value of the Decimal-adjust flag
when the saved Flag register is restored.

5.2.6 Half-Carry Flag (H)

The Half-carry flag is set to 1 whenever an,addi-
tion generates a carry out of bit 3 (Overflow), or
a subtraction generates a borrow into bit 3. The
Half-carry flag is used by the Decimal Adjust (DA)
instruction to convert the binary result of a pre-
vious addition or subtraction into the correct
+ decimal (BCD) result. As in the case of the
Decimal-adjust flag, the user does not normally
access this flag.

RETI changes the value of the Half-carry flag when
the saved Flag register is restored.

5.3 CONDITION CODES

Flags C, Z, S, and V control the operation of the

"conditional”™ Jump instructions. Sixteen fre-
quently useful functions of the flag settings are

encoded in a 4-bit field called the condition code
(CC), which forms bits 4-7 of the conditional
instructions.

Section 5.4.2 lists the condition codes and the
flag settings they represent.

5.4 NOTATION AND BINARY ENCODING

In the detailed instruction descriptions that make
up the rest of this chapter, operands and status
flags are represented by a notational shorthand.
Operands (condition codes and address modes) and
their notations are as follows:

Notation Address Mode Actual Operand/Range

cc Condition Code See condition code
list below
r Working register Rn: where n = 0-15
only
R Register or reg: where reg repre-

sents a number in the
range 0-127, 240-255

working register

Rn: where n = 0-15

RR Register pair or reg: where reg repre-
working register sents an even number
pair in the range 0-126,
240-254

RRp: where p = 0,
2,000,414

Ir Indirect working

@ Rn: where n = 0-15
register only '

IR Indirect register @ reg: where reg re-
or working + presents a number in
register the range 0-127,

) 240-255
@ Rn: where n = 0-15

Irr Indirect working @ RRp: where p = 0O,
register pair 2,000,514
only

IRR Indirect register @ reg: where reg re-

sents an even number
in the range 0-126,
240-254

pair or working
register pair

@ RRp: where p = 0,
2y000,14

321

Instruction Set

Notation Address Mode Actual Operand/Range

X Indexed reg/(Rn): where reg
represent a number in
the range 0-127,
240-255 and n = 0-15
DA Direct Address addrs: where addrs
represents a number
in the range 0-65,535
RA Relative Address addrs: where addrs
represents a number
in the range +127,
-128 which is an
of fset relative to
the address of the
next instruction
M Immediate #data: where data is
a number between
0 and 255
Additional symbols used are:
Symbol Meaning
dst Destination operand
src Source operand
@ Indirect address prefix
SP Stack Pointer
PC Program Counter
FLAGS Flag register (R252)
RP ~ Register Pointer (R253)
IMR Interrupt mask register (251)
0 Immediate operand prefix
% Hexadecimal number prefix
opc Opcode

Assignment of a value is indicated by the symbol
"<-". For example,

dst <~ dst + src
indicates that the source data is added to the
destination data and the result is stored in the
destination location. The notation "addr(n)" is
used to refer to bit "n" of a given location. For
example,)
dst (7) -

refers to bit 7 of the destination operand.

© be specified, in that order.

‘ Example:

5.4.1 Assembly Language Syntax

For proper instruction execution, Z8 PLZ/ASM
assembly language syntax requires that "dst, src"
The following
instruction descriptions show the format of the
object code produced by the assembler. This binary
format should be followed by users who prefer
manual program coding or who intend to implement
their own assembler.

If the contents of registers %43 and %08
are added and the result stored. in %43, the
assembly syntax and resulting object code are:

ASM: ADD %43, %08
0BJ: 04 08 43

(ADD dst, src)
(OPC src, dst)

In general, whenever an instruction format
requires an 8-bit register address, that address
can specify any register location in the range
0-127, 240-255 or a working register RO-R15. 1If,
in the above example, register %08 is a working
register, the assembly syntax and resulting object
code would be:

(ADD dst src)
(OPC src dst)

ASM: ADD %43, R8
0BJ: 04 EB 43

For a more complete description of assembler syn-
tax refer to the Z8 PLZ/ASM Assembly Language
Manual (publication no. 03-3023-03) and ZSCAN 8
User's Tutorial (publication no. 03-8200-01).

5.4.2 Condition Codes and Flag Settings

The condition codes and flag isettings are sum-
marized in the following tables. Notation for the
flags and how they are affected are as follows:

C Carry flag ‘ 0 Cleared to 0

Z Zero flag 1 Set to1

S Sign flag * Set or cleared
v according to

vV Overflow flag operation

D Decimal-adjust flag - - Unaffected

H Half-carry flag X, Undefined

322

Condition Codes

Meaning Flags Settings

Binary Mnemonic

0000 F Always false -

1000 (blank) Always true -

01 c Carry C=1

"N NC No carry C=0

0110 z Zero Z=1

1110 NZ Not O Z=0

1101 PL Plus S=0

0101 MI Minus S=1

0100 ov Overflow V=1

1100 NOV No overflow v=20

0110 EQ Equal Z=1

1110 NE Not equal Z=0

1001 GE Greater than or (SXO0R V) =0

equal
0001 LT Less than (S XOR V) = 1
1010 .. GT Greater Than (Z OR (S XOR V))=0
0010 LE Less than or equal (Z OR (S XOR V))=1
1" UGE Unsigned greater than C = O
or equal

0111 ULt Unsigned less than cC=1 .

1011 UGT Unsigned greater than (C=0 AND Z=0) = 1
0011 ULE . Unsigned less than or (C OR Z) = 1

equal

323

Instruction _Addr Mode OP;‘:“' Flags Affected
e —
(Hex) CZSVDH

and Operation dst src

Instruction _Addr Mode Og'":do Flags Affected
Y Byte —————
and Operation dst src He) CzZSVDH

ADC dst,src (Note 1) 10 * ok x x O * LDE dst,src r Irr 82 - - - - -
dst — dst + src +'C dst — src Irr r 92
ADD dst,src (Note 1) (1]m) * k x % 0 % LDEI dst,src Ir Irr 83 - - - - -
dst — dst + src dst — src Ir Ir 93
—r+l;rerr+l
AND dst,src (Note) 50 -#++0-- - t0TF
dst — dst AND src NOP - FF - - - - - -
CALL dst DA D6 - - === - OR dst,src (Note 1) 40 _ %% Q- -
SP—SP-2 IRR D4 dst — dst OR src
@SP — PC; PC — dst sop dst o I% g? ______
CCF EF + - - - -~ st — @
C-NOTC ' SP— SP + 1
CLRdt R = B0 -—-=----- PUSH src R 70 - ===
dst —dgt 1‘; g? SP—SP-1; @SP-src IR 71
COM dt R 6 -++0-- BOF CF 0-----
dst — NOT dst IR 61 s
RET : AF - - - - - -
CP dst,src (Note 1) AO ok ok ok~ - X
dst - sre PC— @SP; SP-SP +
DA dst R 40 +wsx-- - BLdt or-—3R 0D -
dst — DA dst IR 41 - IR 9l
RLC dst R 10 ke o -
DEC dst R 00 -k k- = sm 11
dst — dst -1 IR 01
DECW dst ER 80 -—»xw-- BRdt [RT— R R
dst — dst- 1 IR 81
DI 8F - ——— - - HRCdstR Co *ok ok ok
IMR (7) - 0 —— i cl
S t, 1 * *
T R S M0 w o
-r- r=0- p
ifr#0 SCF DF 1 - - - - -
PC — PC + dst C~—1
Range: +127, -128
: SRA dst R DO “ ok rQ - -
EI 9F -——---=-- IR D1
IMR(7) -1 SRP src Im_ 31 ——----
INC dst r rE — ke ox - - RP — src -
dst — dst + 1 R roF SUB dst,src (Notel) 20« ++=+1 =
R 2 dst — dst - src
INCW dst RR A - eee-- SWARGto R oo xexo-
dst — dst + 1 IR Al ToM &
st,src (Note 1) 60 — x %0 - -
IRET ’ BF * ok ok ok ok * NOT dst) AND
FLAGS — @SP; SP - SP + 1 (NOT det) AND sro
PC—~ @SP; SP~SP + 2; IMR(7) ~1 ZME;&],Dsrc (Note 1) 70 — % %0 - —
t
JP cc,dst DA D - === s sre
if cc is true c=0-F XOR dst,src (Note 1) BO - +*+*0--
PC «~ dst IRR 30 . dst — dst XOR src
JR cc,dst RA B --=----
if cc is true, c=0-F Note 1 »))
PC —~ PC + dst These instructions have an'1dentical set of addressing
Range: +127, -128 modes, which are encoded for brevity. The first opcode
nibble 1s found 1n the instruction set table above. The
LD dst,src r M C ------ second nibble 1s expressed symbolically by a L. in this
dst — src r R .18 table, and its value 1s found 1n the following table to the
R r r9 left of the applicable addressing mode pair.
) r=0-F For example, to determine the opcode of an ADC
}r{ X (D:; nstruction using the addressing modes r (destination) and
r Ir (source) 1s 13.
r Ir E3
Ir r F3 R
R R E4 Addr Mode Lower
R IR E5 Opcode Nibble
R ™ 6 dst src
m R R fo 2
r Ir 3
LDC dst,src r Irr C2 -=-=---- ! R R T
dst — src Irr r D2 3 R =
5
LDCI dst,src o Ir I C3 - ----- -
dst —stc Ir Ir D3 R Oy
r—r+1; rr—rr+1 IR M a

324

5.6 Z8

Instruction : A D C

Descriptions

~and Formats ' , Add With Carry

ADC dst,src

Instruction Format: oPC Address Mode
Cycles (Hex) dst src
[oPC | | | src J [12 r T
13 T Ir
I oPC | | src] L dst I 10 14 R R
- 15 R IR
l oPC J | dst j | src I 10 16 R IM
17 IR M

Operation: ’ dst <-- dst + src + c

The source operand, along with the setting of the C flag, is added to the destination
operand and the sum is stored in the destination. The contents of the source are not
affected. Two's complement addition is performed. In multiple precision arithmetic,
this ' instruction permits the carry from the addition of low-order operands to be
carried into the addition of high-order operands.

Flags: . C: Set if there is a carry from the most-significant bit of the result; cleared

otherwise

Z: Set if the result is zero; cleared otherwise

S: Set if the result is negative; cleared otherwise

V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign
and the result is of the opposite sign; cleared otherwise

D: Always cleared

H: Set if there is a carry from the most-significant bit of the low-order four bits
of the result; cleared. otherwise

Example: If the register named SUM contains %16, the C flag is set to 1, working register 10

contains %20 (32 decimal), and register 32 contains %10, the statement
ADC SUM,@8R10
leaves the value %27 in Register SUM. The C, Z, S, V, D, and H flags are all
cleared. (
Note: When used to specify a 4-bit working-register address, address modes R or IR use the
format:

‘ [E | src/dst |

325

ADD
Add | | | z

ADD dst,src
Instruction Format: \ oPC Address Mode
Cycles (Hex) dst src
| oPC |, [dst l - sre] 6 02 r r
- 03 r Ir
| oPC I | src I l dst —l 10 04 R R
. J 05 R IR
I oPC I | dst I l src | 10 06 R IM
07 IR M
Operation: dst <-- dst + src
The source operand is added to the destination operand and the sum is stored in the
destination. The contents of the source are not affected. Two's complement addition
is performed. ' '
Flags: C: Set if there was a carry from the most-significant bit of the result; cleared
otherwise
Z: Set if the result is zero; cleared otherwise
V: Set if arithmetic overflow occurs, that 'is, if both operands are of the same 51gn
and the result is of the opposite sign; cleared otherwise
S: Set if the result is negative; cleared otherwise
H: Set if a carry from the low-order nibble occurs
D: Always reset to O
Example: If the register named SUM contains %44 and the register named AUGEND contains %11,
the statement .
ADD SUM,AUGEND
leaves the value %55 in register SUM and leaves all flags cleared.
Note: " When used to specify a 4-bit working-register éddress, address modes R or IR use the

format:

r E lsrc/dstJ

' 326

AND

Logical
AND dst,src ‘
Instruction Format: oPC Address Mode
Cycles (Hex) dst src
| opC | r dst l src J 6 52 r r
53 r IR
' oPC | | src l | dst J 10 54 R R
55 R IR
r opC | | *dst | r src | 0 - 56 R ™
57 IR IM

Operation:

Flags:

Example:

Note:

dst <-- dst AND src

The source operand is logically ANDed with the destination operand. The result is
stored in the destination. The AND operation results in a 1 bit being stored
whenever the corresponding bits in the two operands are both 1s; otherwise a 0 bit is
stored. The contents of the source bit are not affected.

C: Unaffected
¢ Set if the result is zero; cleared otherwise
: Always reset to 0
: Set if the result bit 7 is set; cleared otherwise
¢ Unaffected :
D: Unaffected

If the source operand is the immediate value %7B (01111011) and the register named
TARGET contains %C3 (11000011), the statement

AND TARGET, #%78

leaves the value %43 (01000011) in register TARGET. The Z, V, and S flags are
cleared. -

When used to specify a 4-bit working-register address, address modes R or IR use the
format: .

I E | src/dst ‘

327

CALL

Call Procedure

CALL dst

Instruction Format:

dst

r opC] I dst
) L

l oPC

Operation: SP <-- SP - 2
@asP <-- PC
PC <-- dst

Cycles
20

20

- oPC
(H