


~ZiKG 
August 1989 

Z8@Family 
Design Handbook 



, INTRODUCTION· 
,," " , 

Zilog.was~Qun~jrr1974. and Within its first year 
bl'C)Ugl)t tbmari<etlhe inOSt popular and best selling 
microprocessor in the world, the Z80 &-bit 
microprocessor. . . 

With the unp~leled success of the ZS() CPU, the 
name Zilog became synonomous with quality, design 
integrity, and complete company support elements that , 
remaill integral to Zilog today. 

Headquartered in Campbell, California, Zilog draws 
upon the services and skills of the most talented high 
technology minds in the industry. Zilog's Nampa, Idaho 
manufacturing facility, and assembly plant in the 
Philippines are the best of their size today. They provide 
Zilog customers with a tbtal solution, from engineering, 
to production, to worldwide on-time delivery of the 
growing family of Zilog microprocessor and peripheral 
products. 



ZS Family Design Handbook 

Table of Contents 

Z8 NMOS MCU Microcomputers 

Z8600 
Z8601/11 

Z860~/13 
Z8671 
Z8681 182 
Z8691 

MCU 2K 28-pin 
MCU 2K14K 

MCU Protopak 2K14K 
MCU with Basic/Debug Interpreter 
MCU ROMless 
MCU ROMless 

Z8 CMOS MCU Microcomputers 

Z86C08 
Z86COO/C10/C20 
Z86C11 
Z86C21/C12 
Z86E21 
Z86C27 
Z86C91 

MCU 2K 18-pin 
MCU 4K18K 28-pin 
MCU4K 
MCU8K 
MCU8KOTP 
Digital Television Controller 
MCU ROMless 

Z8 Application Notes and Technical Articles 

Memory Space and Register Organization App Note 
A Programmer's Guide to the Z8 MCU 
Z8 Subroutine Library . 

A Comparison of MCU Units 
Z86xx Interrupt Request Registers 
Z8 Family Framing 

Z8 MCU Technical Manual 

Super8 MCU Microcomputer 

Z8800/01 
Z8820 
Z8822 

MCU ROMless 
MCU8K 
MCU 8K Protopak 

SuperS Application Notes and Technical Articles 

Getting Started with the Zilog Super8 
Polled Asynchronous Serial Operation with the SuperS 
Using the Super8 Interrupt Driven Communications 
Using the SuperS Serial Port with DMA 
Generating Sine Waves with Super8 
Generating DTMF Tones with Super8 
A Simple Serial Parallel Converter Using the Super8 

Page 

13 
30 
50 
71 

89 
105 
117 
134 
134 
155 
179 

200 
202 
227 
277 
291 
292 

295 

431 
431 
431 

463 
467 
473 
479 
485 
491 
495 



Sup~r8 Technic~1 Manual 

Military Electrical Specifications 

Z8611 
Z8681 

MCU4K 
MCU ROMless 

- Packaging Information 

Ordering Information 

503 

637 
661 

673 

681 



~ Zirm Product Specification 

FEATURES 

• Complete microcomputer, 2K bytes of ROM, 128 bytes of 
RAM, and 22 I/O lines. 

• 144-byte register file, including 124 general-purpose 
registers, four I/O port registers, and 14 status and 
control registers. 

• Vectored, priority interrupts for I/O and counter/timers. 

• Two programmable 8-bit counter/timers, each with a 6-bit 
programmable prescaler. 

GENERAL DESCRIPTION 

The Z8600 microcomputer introduces a new level of 
sophistication to single-chip architecture. Compared to 
earlier single-chip microcomputers, the Z8600 offers: . 

• faster execution 

• more efficient use of memory 

• more sophisticated interrupt, input/output, and bit 
manipulation capabilities 

TIMING (_ RESET 
AND _ 

CONTROL OS 

{

- PO. 
..-. P01 

PORTO -- PO, 
...... P03 

, ........ P04 

PO. 

{

_P2' 

...... P22 

PORT 2 __ P2, 

....... P24 

....... P2s 

...... GND 

Z8600 
MCU 

Figure 1. Pin Functions 

CLOCK 

PORT 3 

PORT 1 

Z8600Z8® 
Microcomputer 

August 1989 

• Register Pointer so that short, fast instructions can 
access anyone of the nine working register groups. 

• On-chip oscillator that accepts crystal or external 
clock drive. 

.8MHz 

• Single + 5 power supply-all pins TIL-compatible. 

• Average instruction execution time of 2.2 J.ls, 
maximum 1.5 J.ls. . 

• easier system expansion 

Under program control, the MCU can be tailored to the 
needs of its user. It can be configured as a stand-alone 
microcomputer with 2K bytes of internal ROM. In all 
configurations, a large number of pins remain available for 
I/O. 

The MCU is offered in a 28 pin Dual-In-Line-Package (DIP) 
(Figu res 1 and 2). 

+5V P3, 

XTAL2 P3, 

XTAL1 P2. 

RESET P2. 

os P2, 

P3. P2, 

GNO P2, 

PO. P" 

PO, P" 

PO, P" 

PO, P" 

PO • P" 

PO • P12 . 

p'. P" 

Figure 2. Pin ASSignments 



PINQESdRlPTlbNS 

PS. Data Stibbe(output, active LoW).' Data Strobe is 
activated once fOr each memory transfer. 

POcrPOs,P1o-P17. P21-P2S. P310 P3s. P36./10 Port lines 
(bidirectional, TIL-compatible). These 22 110 lines are 
grouped in four ports that can be configured under program 
control for 110. 

ARCHITECTURE 

The MCU's architecture is characterized by a flexible 110 
scheme, an efficient register and address space structure, 
and a number of ancillary features that are helpful in many. 
applications. (Figure 3). 

Microcomputer applications demand powerful 110 
capabilities. The MCU fulfills this with 22 pins dedicated to 
input and output. These lines are grouped in four ports and 
are configurable under software control to provide timing, 
status signals, and parallel 110. 

I/O 
(BIT PIlOGRAMMABLE) 

RESET; Reset (input, active Low). RESET initializes the 
MCV. When RESET' is deactivated, program execution 
begins from internal program location OOOCH: 

XTAL1. XTAL2. Crysta/1, Crysta/2 (time-base input and 
output). These pins connect 'a parallel-resonant 8 MHz 
crystal to the on-chip dock oscillator and buffer. 

Two basic internal address spaces are available to support 
this wide range of configurations: program memory-and the 
register file. The 144-byte random-access register file is 
composed of 124 general-purpose registers, four 110 port 
registers, and 14 control and status registers. 

To unburden the program from coping with real-time 
problems such as countingltiming, two counter/timers with 
a large number of user-selectable modes are offered 
on-chip. 

1/0 1/0 
(BYTE PROGRAMMABLE) 

Figure 3. Functional Block Diagram 

2 



ADDRESS SPACES 

Program Memory. The 16-bit program counter addresses 
2K byt~s of program memory space as shown in Figure 4. 

The first 12 bytes of program memory are reserved for the 
interrupt vectors. These locations contain three 16-bit 
vectors that correspond to the three available interrupts. 

Register File. The 144-byte register file includes four I/O 
port registers (Ro-R3), 124 general-purpose registers 
(R4-R127) and 14 control and status registers (R241-R255)' 
These registers are assigned the address locations shown in 
Figure 5. 

2047 

Instructions can access registers directly Qr indirectly with 
an a-bit address field. The MCU also allows short 4-bit 
register addressing using the Register Pointer (one of the 
control registers). In the 4-bit mode, the register file is 
divided into nine working-register groups, each occupying 
16 contiguous locations (Figure 6). The Register Pointer 
addresses the starting location ofthe active working-register 
group. 

Stacks. An a-bit Stack Pointer (R255) is used for the internal 
stack that resides within the 124 general-purpose registers 
(R4-R127)' 

ON·CHIP 

LOCATION 

255 

254 

253 

252 

251 

250 

249 
, 248 

247 

248 

24S 

244 

243 

242 

241 

127 

,2 
1 

o 

LOCATION OF 
FIRST BYTE OF 
INSTRUCTION 

EXECUTED 
AFTER RESET 

INTERRUPT 
VECTOR 

(LOWER BYTE) 

INTERRUPT 
VECTOR 

(UPPER BYTE) 

STACK POINTER (BITS 7-0) 

RESERVED 

REGISTER POINTER 

PROGRAM CONTROL FLAGS 

INTERRUPT MASK REGISTER 

INTERRUPT REQUEST REGISTER 

INTERRUPT PRIORITY REGISTER 

PORTS 0-1 MODE 

PORT 3 MODE 

PORT 2 MODE 

TO PRESCALER 

TIMER/COUNTER 0 

T1 PRESCALER 

TIMER/COUNTER 1 

TIMER MODE 

NOT 
IMPLEMENTED 

GENERAL·PURPOSE 
REGISTERS 

PORTa 

PORT 2 

PORT 1 

PORTO 

Figure 5. Register File 

ROM 

~ ~------------
11 IRQ5 

10 IRQS 

8 IRQ4 

8 IR04 

7 RESERVED 

8 RESERVED 

5~ IRQ2 

4io" IR02 

3 RESERVED 

2 RESERVED 

1 RESERVED 

0 RESERVED 

Figure 4. Program Memory Map 

IDENTIFIERS 

SPL 

-_{ I 
I 

r7r8'5 r4 I 00 0 0 I 

THE UPPER NIBBLE OF THE REGISTER FILE AD 

253 
RP 

FLAGS 

IMR 

IRQ 

IPR 

P01M 

P3M 

P2M 

PREO 

TO 

PRE1 

T1 

-TMR 

DRESS 
IES >--- PROVIDED BY THE REGISTER POINTER SPECIF 

P3 

P2 

P1 

PO 

THE ACTIVE WORKING-REGISTER GROUP. 

--
--. 

--. 

--
f--.- SPECIFIED WORKING· .. REGISTER GROUP 

f---

1---

'--- f----"---UOPORTs-----

Figure 6. Register Pointer 

127 

15 

THE LOWER 
NIBBLE OF 
THE REGISTER 
FILE ADDRESS 
PROVIDED BY 
THE INSTRUCTION 
POINTS TO THE 
SPECIFIED 
REGISTER. 

3 



COUNTER/TIMERS 

The MCU contains two 8-bit programmable counter/timers 
(To and T1), each driven by its own 6-bit programmable 
prescaler. The T1 prescaler can be driven by internal or 
external clock sources; however, the To prescaler is driven 
by the internal clock only. 

The 6-bit prescalers can divide the input freqvency of the 
clock source by any number from 1 to 64. Each prescaler 
drives its counter, which decrements the value (1 to 256) that 
has been loaded into the counter. When the counter reaches 
the end of count, a timer interrupt request-IR04 (To) or 
IROs (T 1 )---,is generated. 

The counters can be started, stopped, restarted to continue, 
or restarted from the initial value. The counters can also be 
programmed to stop upon reaching zero (single-pass 

1/0 PORTS 

The MCU has 22 lines dedicated to input and output 
grouped in four ports. Under software control, the ports can 
be programmed to provide address outputs, timing, status 
signals, and parallel I/O. All ports have active pull-ups and 
pull-downs compatible with TTL loads. 

Port 0 can be programmed as an I/O port. 

Port 1 can be programmed as a byte I/O port. 

INTERRUPTS 

The MCU allows three different interrupts from three 
sources, the Port 3 line P31 and the two counter/timers. 
These interrupts are both maskable and prioritized. The 
Interrupt Mask register globally or individually enables or 
disables the three interrupt requests. When more than one 
interrupt is pending, priorities are resolved by a 
programmable priority encoder that is controlled by the 
Interrupt Priority register. 

All interrupts are vectored. When an interrupt request is 
granted, an interrupt machine cycle is entered. This disables 

CLOCK 

The on-chip oscillator has a high-gain parallel-resonant 
amplifier for connection to a crystal or to any suitable 
external clock source (XTAL 1 = Input, XTAL2. = Output). 

Crystal source is connected across XTAL 1 and XTAL2 using 
the recommended capacitors (C1 ~ 15 pI) from each pin to 
ground. The specifioations are as follows: 

4 

mode) or to automatically reload the initial value and 
continue counting (modulo-n continuous mode). The 
counters, but not the prescalers, can be read any time 
without disturbing their value or count mode. 

The clock source for T1 is user-definable and can be the 
internal microprocessor clock (4 MHz maximum) divided by 
four, or an external signal input via Port 3. The Timer Mode 
register configures the external timer input as an external 
clock (1 MHz maximum), a trigger input that can be 
retriggerable or non-retriggerable, or as a gate input for the 
internal clock. The counter/timers can be programmably 
cascaded by connecting the To output to the input of T1. 
Port 3 line P3fi also serves as a timer output (TOUT) through 
which To, T 1 or the internal clock can be output. 

Port 2 can be programmed independently as input or 
output and is always available for I/O operations. In addition, 
Port 2 can be configured to provide open-drain outputs. 

Port 3 can be configured as I/O or control lines. P31 is a 
general purpose input or can be used for an external 
interrupt request signal (IR02). P3s and P36 are general 
purpose outputs. P36 is also used for timer input (TIN) and 
output (TOUT) signals. 

all subsequent interrupts, saves the Program Counter and 
status flags, and branches to the program memory vector 
locations reserved for that interrupt. This memory location 
and the next byte contain the 16-bit address of the interrupt 
service routine for that particular interrupt request. 

Polled interrupt systems are also supported. To accom­
modate a polled structure, any or all of the interrupt inputs 
can be masked and the Interrupt Request register polled to 
determine which of the interrupt requests needs service. 

• AT cut, parallel resonant 

• Fundamental type, 8 MHz maximum 

• Series resistance, Rs ~ 100n 



INSTRUCTION SET NOTATION 

Addressing Modes. The following notation is used to 
describe the addressing modes and instruction operations 

. as shown in the instruction summary. 

IRR Indirect register pair or indirect working-register 
pair address 

Irr Indirect working-register pair only 
X Indexed address 
DA Direct address 
RA Relative address 
1M Immediate 
R Register or working-register address 
r Working-register address only 
IR Indirect-register or indirect working-register 

address 
Ir Indirect working-register address only 
RR Register pair or working register pair address 

Symbols. The following symbols are used in describing the 
instruction set. 

dst 
src 
cc 
@ 

Destination location or contents 
Source location or contents 
Condition code (see list) 
Indirect address prefix 

SP 
PC 
FLAGS 
RP 
IMR 

Stack pointer (control registers 254-255) 
Program counter 
Flag register (control register 252) 
Register pointer (control register 253) 
Interrupt mask register (control register 251) 

CONDITION CODES 

Value. Mnemonic 

1000 Always true 

0111 C Carry 

1111 NC No carry 

0110 Z Zero 

1110 NZ Not zero 

1101 PL Plus 

0101 MI Minus 

0100 OV Overflow 
1100 NOV No overflow 
0110 EO Equal 

1110 NE Not equal 

Assignment of a value is indicated by the symbol "+-': For 
example. 

dst +- dst + src 

indicates that the source data is added to the destination 
data and the r~sult is stored in the destination location. The 
notation "addr(n)" is used to refer to bit "n" of a given 
location. For example, 

dst(7) 

refers to bit 7 of the destination operand. 

Flags. Control Register R252 contains the following six 
flags: . 

C Carry flag 
Z Zero flag 
S Sign flag 
V Over'flow flag 
o Decimal-adjust flag 
H Half-carry flag 

Affected flags are indicated by: 

o Cleared to zero 
1 Set to one 
* Set or cleared according to operation 

Unaffected 
X Undefined 

Meaning. Flags Set 

C = 1 

C=O 

Z = 1 

Z=O 

S=O 

S = 1 

V=l 

V=O 

Z = 1 

Z=O 

1001 GE Greater than or equal (S XOR V) = 0 

0001 LT Less than (SXORV) = 1 

1010 GT Greater than [ZOR(SXORV)i = 0 

0010 LE Less than or equal [ZOR (SXORVjJ = 1 

1111 UGE Unsigned greater than or equal C =0 

0111 ULT Unsigned less than C = 1 

1011 UGT Unsigned greater than (C = 0 AND Z = 0) = 1 

0011 ULE Unsigned less than or equal (CORZ) = 1 

0000 Never true 

5 



INSTRUCTION FORMATS 

OPC MODE 
del/Ire OR It •• oldoUlre I 

OPC 

lOR I. 1 1 01 dll dst' 

OPC 
VALUE 

OPC MODE 
do. ore 

MODE OPC 
dst/src lreldst 

OR 11 1 1 01 ore 

do. I OPC 
VALUE 

I doUCC R~ OPC 

OPC J 

do. OPC 

CCF, DI, EI, IRET, NOP, 
RCF, RET, SCF 

INCr 

One-Byte Instructions 

CLR, CPL, DA, DEC, OPC MODE 
DECW, INC, INCW, POP, Ire OR ••• 0 PUSH, RL, RLC, RR, 
RRC, SRA, SWAP dol OR ••• 0 

JP, CALL (Indlract) 

OPe MODE 
do. OR 11 1 1 01 

SRP 
VALUE 

MOD OPC 
ore OR 1 1 1 0 

ADC, ADD, AND, 
cp, OR, SBC, SUB, do. OR 1 1 1 0 
TCM, TM,XOR 

MODE OPC 
LD, LOC, LDCI dstlsrc 

ADDRESS 

LD 
cc OPC 

DAu 
DAL 

LD 

rn , DAu 
DJNZ,JR DAL 

ADC, ADD, AND, CP, 

src LD, OR, SBC, SUB, 
TCM, TM,XOR 

do. 

ADC, ADD, AND, CP, 
do. LD, OR, SBC, SUB, 

TCM, TM, XOR 

LD 
Ire 
do. 

LD 

JP 

CALL 

1\No-Byte Instructions Three-Byte Instructions 

Figure 7. Instruction Formats 

INSTRUCTION SUMMARY 

AddrMode Opcode Flags Affected AddrMode Opcode Flags Affected 
Instruction Byte Instruction Byte 
and Operation dst src (Hex) C Z S V 0 H and Operation dst src (Hex) CZSVDH 

ADCdst,srQ (Note 1) 10 *' *' *' *' o *' CP dst,src (Note 1) AD, *' *' *' *,--
dst-dst + src + C dSt'- src 

ADDdst,src (Note 1) 00 *' *' *' *' o *' DAdst R 40 *' * *' x--
dst - dst + src dst-OAdst IR 41 

ANDdst,src (Note 1) 50 -**' 0-- DECdst R 00 -**'*--
dst - dst AND src dst-dst - 1 IR 01 

CALLdst OA 06 ------ ,DECWdst RR 80 -***,--
SP-SP - 2 IRR 04 dst-dst - 1 IR 81 
@SP - PC; PC - dst 

01 
CCF EF *----- IMR(7)-0 8F ----,--
C-NOTC 

DJNZr,dst RA rA ------
CLRdst R BO ------ r-r-1 r=O-F 
dst-O IR B1 if r #"0 

COMdst R 60 -**0--
PC-PC + dst 

dst-NOTdst IR 61 
Range: +127, -128 

6 



INSTRUCTION SUMMARY (Continued) 

Instruction 
and Operation 

Addr Mode Opcode Flags Affected 
Byte 

dst src (Hex) ICZSVDH 

EI 
IMR(7)-1 

9F 

INCdst 
dst-dst + 1 

rE -***-­
r = 0 - F 

INCWdst 
dst-dst + 1 

R 
IR 

RR 
IR 

20 
21 

IRET BF 
FLAGS - @SP; SP - SP + 1 
PC-@SP;SP-SP + 2; IMR(7)-1 

JPcc,dst 
ifcc is true 

PC-dst 

JRcc,dst 
ifcc is true, 

PC-PC + dst 
Range: + 127, -128 

LD dst,src 
dst-src 

OA 

IRR 

RA 

r 
R 

r 
X 
r­
Ir 
R 

1m 
R 

X 
r 
Ir 
r 
R 

R IR 
R 1M 
IR 1M 
IR R 

LDC dst,src r Irr 
dst-src Irr 

LDCI dst,src Ir Irr 
dst·- src Irr Ir 
r-r + 1; rr-rr + 1 

NOP 

ORdst,src (Note 1) 
dst - dst OR src 

POPdst R 
dst-@SP; IR 
SP-SP + 1 

PUSHsrc R 
SP -SP - 1; @SP":-src IR 

RCF 
C-O 

RET 
PC-@SP;SP-SP+ 2 

cD 
c=O-F 

30 

cB 
c=O-F 

rC 
r8 
r9 

r = 0 - F 
C7 
07 
E3 
F3 
E4 
E5 
E6 
E7 
F5 

C2 
02 

C3 
03 

FF 

40 

50 

70 
71 

CF 

AF 

* * * * * * 

0-----

Addr Mode Opcode 
Instruction 
and Operation dst 

RLdst c~ R 
~IR 

RLCdst~R 
c , , IR 

RR dst l[ri lciJ R 
c , , IR 

RRC dst l{ri:ciJ R 
c , 'IR 

src 

SBC dst,src (Note 1) 
dst-dst-src-C 

SCF 
C-1 

SRA dst LiiJ W R 
c , 'IR 

SRPsrc 
RP-src 

1m 

SUBdst,src 
dst - dst - src 

(Note 1) 

SWAPdst 5? R 
I'D'IIR 

TCM dst,src (Neite 1) 
(NOT dst) AND src 

TM dst,src 
dstANO src 

XORdst,src 
dst - dst XOR src 

(Note 1) 

(Note 1) 

Byte 
(Hex) 

90 
91 

10 
11 

EO 
E1 

CO 
C1 

3D 

OF 

DO 
01 

31 

20 

FO 
F1 

60 

70 

BO 

Flags Affected 

CZSVDH 

****--

* * .* * 

****--

****--

1-----

* * * 0 

X**X--

NOTE 1: These instructions have an identical set of addressing modes, 
which are encoded for brevity. The first opcode nibble is found in 
the instruction set table above. The second nibble is expfessed 
symbolically by a D in this table, and its value is found in the 
following table to the right of the applicable addressing mode 
pair. 

For example, the opcode of an ADC instruction using the 
addressing modes r (destination) and Ir (source) is 13. 

AddrMode 

dst src 

R 

R 

R 

IR 

Ir 

R 

IR 

1M 

1M 

Lower 
Opcode Nibble 

7 



REGISTERS (Continued) 

R248P01M 
PORT 0 AND 1 MODE REGISTER 

(F8H; Write Only) 

P04-PO, MODE ~ l~~ PO.-PO, MODE OUTPUT = 00 ~ L 00 '" OUTPUT 
INPUT", 01 01, '" INPUT 

RESERVED , S{A;~N~~~~C;~ON 

P10·P17 MODE 
00 '" BYTE OUTPUT 
01 ", BYTe INPUT 
11 '" HIGH·IMPEDANCE os 

R2491PR 
INTERRUPT PRIORITY REGISTER 

(F9H; Write Only) 

I~I~I~I~I~I~I~I~I 

~_,,:J II II. ['NTERRUPT GROUP PRIORITY RESERVED", 000 
452 = 001 

DON'T CARE 524 = 010 
542 = 011 
245 = 100 

DON'T CARE 425 = 101 
254 = 110 

DON'T CARE RESERVED = 111 

R250lRQ 
INTERRUPT REQUEST REGISTER 

(FAH; Read/Write) 

I~I~I~I~I~I~I~I~I 

RESERVED ==r- c= IRQ2 '" P311NPUT (02 = IROS) 
IRQ4 = T(I 
IRQ5 '" T1 

R2511MR 
INTERRUPT MASK REGISTER 

(FBH; Read/Write) 

I' c= 1 ENABLES IRQo·IR05 
(Do::: IROO) 

L-------RESERVED 

'---------1 ENABLES INTERRUPTS 

REGISTE'R 
POINTER 

R252 FLAGS 
FLAG REGISTER 
(FCH; Read/Write) 

lli!~~
1 LUS~RFLAGF1 

, ~USER flAG F2 

HALF CARRY FLAG 

. 

DECIMAL ADJUST flAG 

OVERFLOW FLAG 

SIGN FLAG 

ZERO .FLAG 

CARRY FLAG 

R253 RP 
REGISTER POINTER 

(FDH; Read/Write) 

R255SPL 
STACK POINTER 
(FFH; Read/Write) 

Figure 8. Control Registers (Continued) 

8 



OPCODEMAP 

~----6.5 6.5 6.5 6.5 10.5 
DEC DEC ADD ADD ADD 
R, IR, f1 f2 f1·lr2 R2·Rl 

6S 6.5 6S 6.S 10.S 
RLC RLC ADC ADC ADC 
R, IR, f1· r2 f1, lr2 R2,R, 

6S 6,S 6,S 6,S 10,S 
INC INC SUB SUB SUB 
R, IR, f1· f 2 f1, lr2 R2,R, 

80 6,1 6,5 6,5 10,5 
JP SRP SBC SBC SBC 

IRR, 1M rl J 2 f1, lr2 R2,R, 

8,S 8,S 6,S 6,S 10,S 
4 DA DA OR OR OR 

R, IR, f1,f2 f1, lr2 R2,R, 

1O,S 10,5 6,S 6,S 10,5 
POP POP AND AND AND 
R, IR, f1· f 2 f1, lr2 R2,R, 

6,S 6,S 6,5 6,5 10,5 
6 COM COM TCM TCM TCM 

R, IR, f1· r2 f1, lr2 R2·R, 

10112.1 12114,1 6,S 6,5 10,S 
PUSH PUSH TM TM TM 

i e. 
R2 IR2 f,J2 f1·lr2 R2,R, J! 

,Q 
,Q -----z 10,5 1O,S 

DeCW DECW 
RR, IR, 

:;; 
0. 
0. 
::> 

6.5 6,S 
RL RL 
R, IR, 

10,5 1O.S 6S 6.5 10.5 
A INCW INCW CP CP CP 

RR, IR, f1 J2 f,.lr2 R2,R, 

6,5 6,S 6,S 6,S 10,5 
B CLR CLR XOR XOR XOR 

R, IR, rl J 2 f1·lr2 R2,R , 

6,5 6.5 12,0 18,0 
C RRC RRC LDC LOCI 

R, IR, r,.lrr2 Ir1,lrr2 

6,5 6,5 12,0 18,0 20.0 
o SRA SRA LDC LOCI CALL" 

R, IR, f2, lrr1 Ir2,lrr1 IRR, 

6,S 6,5 6,5 10,5 
E RR RR LD LD 

R, IR, r" IR2 R2,R, 

85 8.5 6,S 
SWAP SWAP LD 

R, IR, Ir1·f2 

10 5 10.5 
ADD ADD 

IR2·R, R,.IM 

10.S 1O.S 
ADC ADC 

IR2,R, R,IM 

1O,S la,S 
SUB SUB 

IR2,R, R"IM 

10.5 1O,S 
SBC SBC 

IR2,R, R
"

IM 

10,S 1O,S 
OR OR 

IR2,R, R"IM 

10,5 10,5 
AND AND 

IR2,R, R"IM 

10,5 10,5 
TCM TCM 

IR2·R, R,.IM 

10,5 10.5 
TM TM 

IR2,R, 
f---

R
"

IM 

10,S 10,5 
CP CP 

IR2,R, R,IM 

1O.S 10 5 
XOR XOR 

IR2,R, R,.1M 

20,0 
CALL 

DA 

10,5 10 S 
LD LD 

IR2·R, R,.IM 

10,S 
LD 

R2·IR, 

Lower Nibble (Hex) 

7 

lOS 6.5 
ADD LD 

IR,.IM f1 R2 

1O.S 
ADC 

IR"IM 

lO.S 
SUB 

IR"IM 

la,S 
SBC 

IR"IM 

1O,S 
OR 

IR"IM 

1O,S 
AND 

IR"IM 

1O,S 
TCM 

IR"IM 

10,5 
TM 

IR"IM 

lOS 
CP 

IR"IM 

10,5 
XOR 

IR
"

IM 

10,5 
LD 

f, ,x.R2 

10,5 
LD 

'r2,x.R, 

1O,S 
LD 

IR"IM 

A B C o E F 
--- _.- _._-- -_.- --

121100-6S 12110 S 12110 Q 65 6S 
LD DJNZ JR LD JP INC 

f;?,R 1 f1 RA cc RA fllM cc DA r1 
c-----

f----~ 

r-----
I 
I 

H 
f----

I-------

r-----

r---s;--
01 

r-----
6.1 
'EI 

r-----
14 ° 
RET 

~I IRET 

r-----
6.5 
RCF 

~ 
SCF 

r-----
65 

CCF 

~ 
NOP 

'-... ----.... v ... ----""~ ...... ----.... v ... ----"".1 ...... -----.............. -----""~ "-v--"~ 

EXECUTION 
CYCLES 

UPPER 
OPCODE_A 

NIBBLE 

FIRST 
OPERAND 

LOWER 
OPCODE 
NllLE 

• 2-byte instruction, letch cycle appears as a 3-byte instruction 

3 

PIPELINE 
CYCLES 

MNEMONIC 

SECOND 
OPERAND 

Bytes per Instruction 

Legend: 
R = 8-bit address 
r = 4,blt address 
Rl or f1 = 05t address 
R2 or f2 = Src address 

Sequence: 
Opcode, First Operand, Second Operand 

NOTE' The blank areas are not defined 

9 



REGISTERS 

R241 TMR 
TIMER MODE REGISTER 

(F1 H; Read/Write) 

T,", MODES ~ llS~o = NO '"NCTION NOT USED = 00 ~ 1 :: LOAD To 

i~ g~i ~ ~~ 0:: DISABLE To COUNT 
INTERNAL CLO. CK OUT:: 11 1 '" ENABLE To COUNT 

T MODES 0 :: NO FUNCTION 
EXTERNAL CLOCK tNplOr :: 00 , 1 '" LOAD 11 

GATE INPUT:: 01 0 = DISABLE t, COUNT 

(NON.R1~~~g~:~::~~) = 10 1 = ENABLE T, COUNT 
TRIGGER INPUT = 11 

(RETRIGGERABLE) 

R242 T1 
COUNTER TIMER 1 REGISTER 

(F2H; Read/Write) 

1\ T, INITIAL VALUE (WHEN WRITTEN) 
'-'----(RANGE 1 256 DECIMAL 01 00 HEX) 

T, CURRENT VALUE (WHEN READ) 

R243 PRE1 
PRESCALER 1 REGISTER 

(F3H; Write Only) 

~LCOUNTMODE 
o ::: T, SINGlE·PASS 
1 "" T, MODULO·N 

CLOCK SOURCE) 
1 :::: T, INTERNAL 

. 0 = .T1 EXTERNAL TIMING INPUT 
(TIN) MODE 

PRESCALER MOOULO 
(RANGE: 1~64 DECIMAL 
01-00 HEX) 

R244 TO 
COUNTER/TIMER 0 REGISTER 

(F4H; Read/Write) 

To INITIAL VALUE (WHEN WRITTEN) 
'-----(RANGE: 1 256 DECIMAL 01 00 HEX) 

To CURRENT VALUE (WHEN READ) 

R245PREO 
PRESCALER 0 REGISTER 

(Ft/H; Write Only) 

~LCOUNTMODE 
o = To SIN. GLE·PASS 
1 '" To MODULO·N 

RESERVED 

PRESCALE'R MODULO 
(RANGE: 1-64 DECIMAL 
01-00 HEX) 

R246P2M 
PORT 2 MODE REGISTER 

(F6H; Write Only) 

R247P3M 
PORT 3 MODE REGISTER 

(F7H;Write Only) 

~~
I L o PORT 2 PULL UPS OPEN DRAIN L 1 PORT 2 PULL-UPS ACTIVE 

RESERVED 

RESERVED 

RESERVED 

o P31 '" INPUT (TIN) P36 '" OUTPUT (TOUT) 

RESERVED 

L-________ RESERVED 

Figure 8. Control Registers 

10 



AC CHARACTERISTICS 
Timing Table 

Number Symbol 

TpC 

? TrC.TIC 

3 TwC 

4 TwTinL 

5 TwTinH 

6 TpTin 

7 TrTin,TfTin 

B TwlL 

9 TwlH 

NOTES: 

Figure 9. Timing 

Parameter 

Input Clock Period 

Clock Input Rise and Fall Times 

Input Clock Width 

Timer I nput Low Width 

Timer Input High Width 

Timer InputPeriod 

Timer Input Rise and Fall Times 

Interrupt Request Input Low Time 

Interrupt Request Input High Time 

1. Clock timing references use3.8Vfor a logic "1" and 0.8Vfor a logic "0': 
2. Timing references use 2.0Vfor a logic "1" and 0.8V for a logic "0': 
3. Interrupt request via Port 3 (P31·P33)' 
• Units in nanoseconds (ns). 

Z8600 
Min Max 

125 1000 

25 

37 

100 

3TpC 

BTpC 

100 

100 

3TpC 

Notes' 

1 

2 

2 

2 

2 

2,3 

2.3 

11 



ABSOLUTE MAXIMUM RATINGS 

Voltages On all pins with respect 
toGND ......................... -O.3Vto +7.0V 

Operating Ambient 
Temperature ..... 

Storage Temperature .. 
. .. See Ordering Information 

.......... -65°C to + 150°C 

STANDARD TEST CONDITIONS 

The DC characte\risticslisted below apply for the following 
standard test conditions, unless otherwise noted. All 
voltages are referenced to GND. Positive current flows into 
the referenced pin. 

Standard conditions are: 

• +4.75V~ Vee~ +5.25V 

• GND =OV 

DC CHARACTERISTICS 

Symbol Parameter Min 

VeH Clock Input HighVoltage 3.8 

Vel Clock Input Low Voltage -0.3 

VIH Input High Voltage 2.0 

Vil Input low Voltage -0.3 

VRH Reset Input High Voltage 3.8 

VRl Reset I nput Low Voltage -0.3 

VOH Output High Voltage . 2.4 

VOL Output Low Voltage 

III Input Leakage -10 

'OH Output Drive Current 

IOl Output Leakage -10 

IIR Reset Input Current 

lee Vee Supply Current 

12 

Stresses greater than those listed-under Absolute Maximum Ratings may 
cause permanent damage to the device. This is a stress rating only; 
operation of the device at any condition above those indicated in the 
operational sections of these specifications is not implied. Exposure to 
absolute maximum rating conditions for extendep periods may affect 
device reliability. 

+5V 

2.1K 

Figure 10. Test Load 1 

Max Unit Condition 

Vee V Driven by External Clock Generator 

0.8 V Driven by External Clock Generator 

Vee V 

0.8 V 

Vee V 

0.8 V 

V IOH = -250,..A 

0.4 V IOl = +2.0 mA 

10 ,..A OV <> VIN <>+ 5.25V 

1.5 rnA VOH = +2.4V 
2.50 !LA VOH = +4'.OV 

10 ,..A OV <> VIN <> + 5.25V 

-50 ,..A Vee = + 5.25V, VRl = OV 

150 mA 



~ ZiIill Product Specification 

June 1987 

Features 

General 
Description 

Z860VZ8603 
Z861VZ8613 Z8® 

• Complete microcomputer, 2K (8601) or 4K 
(8611) bytes of ROM, 128 bytes of RAM, 32 
I/O lines, and up to 62K (8601) or 60K (8611) 
bytes addressable external space each for 
program and data memory. 

• 144-byte register file, including 124 general­
purpose registers, four I/O port registers, 
and 16 status and control registers. 

• Average instruction execution time of 1.5 /LS, 
maximum of 1 /LS. 

• Vectored, priority interrupts for I/O, 
counter/timers, and UART. 

The 28 microcomputer introduces a new level 
of sophistication to single-chip architecture. 
Compared to earlier single-chip micro­
computers, the 28 offers faster execution; more 
efficient use of memory;' more sophisticated 
interrupt, input/output and bit-manipulation 
capabilities; and easier system expansion. 

Under program control, the 28 can be tailored 
to the needs of its user. It can be configured as a 

PORTO 
(NIBBLE 

PROGRAMMABLE) 
1/0 OR Ae-A15 

PORT 1 
(BYTE 

PROGRAMMABLE) 
1/0 OR ADo-AD7 

PORT 2 
(BIT PRO· 
GRAMMABLE) , 
110 

PORT 3 
SERIAL AND 
PARALLEL 110 
AND CONTROL 

2'8601 Single-Chip MCU with 2K ROM 
28603 Prototyping Device with 2K EPROM Interface 
Z8611 Single-Chip MCU with 4K ROM 
Z86l3 Prototyping Device with 4K EPROM Interface 

• Full-duplex UART and two programmabla 
8-bit counter/timers, each with a 6-bit 
programmable prescaler. 

• Register Pointer so that short, fast instruc­
tions can access any of nine working register 
groups in I /LS. 

• On-chip oscillator which accepts crystal or 
external clock drive. 

• Single + 5 V power supply-all pins TTL 
compatible. 

• 12.5 MHz. 

stand-alone microcomputer with 2K or 4K bytes 
of internal ROM, a traditional microprocessor 
that manages up to 124K bytes of external 
memory, or a parallel-processing element in a 
system with other processors and peripheral 
controllers linked by the 2-BUS® bus. In all 
configurations, a large number of pins remain 
available for I/O. 

+5V P3, 

XTAL2 P3, 

XTAL1 P2, 

P'37 P2, 

P30 P2, 

FIESE'f P2, 

R/W P2, 

os P2, 

AS P2, 

P3, P20 

GND P3, 

P3, P3, 

po, P1, 

po, P1, 

-:'02 P1, 

po, P1, 

po, P1, 

PO, P1, 

po, P1, 

po, P1, 

Figure 2a. 40-pin Dual-In-Line Package (DIP). 
Pin ASSignments 

13 



Pin 
Description 

14 

AS. Address Strobe (output, active Low). 
Address Strobe is pulsed once at the begin­
ningofeach machine cycle. Addresses output 
via Port 1 for all external program or data 
memory transfers are valid at the trailing edge 
of AS. Under program control, AS can be 
placed in the r.igh-impedance state along with 
Ports 0 and 1, Data Strobe and Read/Write. 

OS. Data Strobe (output, active Low). Data 
Strobe is activated once for each external 
memory transfer. 

POO-P07' Plo-PI7. P2o-P27' P30-P37' I/O Port 
Lines (input/outputs, TTL-compatible). These 
32 lines are divided into four 8-bit I/O ports 
that can be configured under program control 
for I/ 0 or external memory interface. 

RESET. Reset (input, active Low). RESET ini­
tializes the 28. When RESET is deactivated, 

program execution begins from internal 
program location OOOCH. ' 

ROMless. (input, active LOW). This pin is only 
available on the 44 pin version of the Z8611, 
When connected to GND disables the internal 
ROM and forces the part to function as a Z8681 
ROM less Z8. When left unconnected or pulled 
high to V cc the part will function normally as a 
Z8611. 

R/W. Read/Write (output). R/W is Low when 
the Z8 is writing to external program or data ' 
memory. 

XTALl. XTAL2. Crystall, Crystal 2 (time-base 
input and output). These pins connect a parallel 
resonant 12.5 MHz crystal or an external single­
phase 12.5 MHz clock to the on-chip clock 
oscillator and buffer. 

'Y .... '::v~ 
~(j <1,,,. <I,,,,.¢,,, .¢'" ."4. <1,""(>' <1,'1-'41-" <I,'I-~ 

~ 7 

RIW 8 

DS 9 

AS 10 

P3. 11 

GND 12 

P3, 13 

PO. 1. 

PO, ,. 
PO, 16 

ROMless 17 

6 5 4 3 2 1 « ~ ~ 41 ~ 

Z8611 
MCU 

18 19 20 21 22 23 24 25 26 27 28 

qO~ qt::J~ qt::>~ <I.~'o q~'\ q"~ <l ...... q,1-q ... "bq .... ~ ~CJ 

39 NC 

38 P2, 

37 P2. 

36 P2, 

3. P2, 

3' P2. 

33 P3. 

32 P3, 

31 P17 

30 P1. 

29 P1. 

Figure 2b. 44-pin Chip Carrier. Pin Assignments 

2037-002 



Architecture Z8 architecture is characteri:;::ed by a flexible Three basic address spaces are available to 
support this wide range of configurations: 
program memory (internal and external), data 
memory (external) and the register file (inter­
nal). The 144-byte random-access register file 
is composed of 124 general-purpose regist~rs, 
four I/O port registers, and 16 control and 
status registers. 

2037-003 

I/O scheme, an efficient register and address 
space structure and a number of ancillary 
features that are helpful in many applications. 

. Microcomputer applications demand power­
ful I/O capabilities. The Z8 fulfills this with 32 
pins dedicated to input and output. These lines 
are grouped into four ports of eight lines each 
and are configurable under software control to 
provide timing, status Signals, serial or parallel 
I/O with or without handshake, and an address/ 
data bus for interfacing external memory. 

Because the multiplexed address/data bus is 
merged with the I/O-oriented ports, the Z8 can 
assume many different memory and I/O con­
figUrations. These configurations range from 
a self-contained microcomputer to a micropro­
cessor that can address 124K (Z8OOl) or 120K 
(Z86U) bytes of external memory. 

OUTPUT 

, To unburden the program from coping with 
real-time problems such as serial data com­
munidation and counting/timing, an asynchro­
nous receiver/transmitter (UART) and two 
counter/timers with a large number of userse­
lectable modes are offered on-chip. Hardware 
support for the UART is minimi:;::ed because one 
of the on-chip timers supplies the bit rate. 

XTAL Ai 

'} 2O.:S:O':'BIT 
ZlB11 

L. __ ~_.J 4098. a·BIT 

uo 
(BIT PROGRAMMABLE) 

ADDRESS OR UD 
(NIBBLE PROGRAMMABLE) 

ADDRESS/DATA OR UO 
(BYTE PROGRAMMABLE) 

~I~ .. 3. Functional Block Diagram 

15 



Address 
Spaces 

16 

Program Memory. The 16-bit program counter 
addresses 64K bytes of program memory space, 
Program memory can be located in two areas: 
one internal and the other external (Figure 4). 
The first 2048 (28601) or 4096 (28611) bytes 
consist of on-chip mask-programmed ROM. At. 
addresses ;2048 (28601) or 4096 (Z8611):and 
greater, the Z8 executes external program 
memory fetches. 

The first 12 bytes of prograin memory are' 
reserved for the interrupt vectors. These loca­
tions contain six 16-bit vectors that correspond 
to the six available interrupts. 

Data Memory. The Z8 can address 62K (28601) 
9r 60K (Z8611) bytes of external data memory 
beginning at location 2048 (28601) or 4096 
(28611) (Figure 5). External data memory may 

... , . 
2048 
2047 

location 01 
ftlllt~of 
instruction .....­
aftarraeet 

Intenupt -(Lower Byte) 

i2 
11 ,. 
• 
i 
7 

• • 

EXTERNAL 
ROM OR RAM 

ON·CHIP 
ROM 

~------------
IRQ5 

IRQ5 

IRQ< 

IRQ4 

IRQ3 

IRQ3 

IRQ2 

Intenupt -(Upper Byte) 

• 1>0"_ 
IRQ2 

.... , IHQ1 

• IH01 

IRQO 

• IRQO 

:Z8811 

Figure 4. Pr"gram Memory Map 

LOCATION ... ... ... ... 
261 ... ... ... 
247 ... 
'45 
24. 

'43 
.42 
241 ... 
127 

STACK POINTER BITS 7-0) 

STACK pOINTER (BITS 15-8) 

REGISTER POINTER 
PROGRAM CONTROL FLAGS 

INTERRUPT MASK REGISTER 

INTERRUPT REQUEST REGISTER 
INTERRUPT PRIORITY REGISTER 

PORTS 0-1 MODE 

PORTa MODE 

PORT 2 MODE 
TO PRESCALER 

TIMERICOUNTER 0 
T1 PRESCALER 

TtMERICOUNTER 1 

nMER MODE 

SERIAL UO 

NOT 
IMPLEMENTED 

GENERAL·PURPOSE 
REGISTERS 

PORT 3 

PORT 2 

PORT 1 
PORTO 

Fig .... 6. The Reglater FUe 

IDENTIFIERS 

SPL 

SPH 

RP 

FLAGS 

IMR 
IRQ 

IPR 
P01M 
P3M 

P3M 

PR .. 

TO 
PRE1 

Tl 

TMR 
SIO 

PO 
PO ., 
PO 

be included with or separated from the external 
program memory space. DM, an optional I/O 
function that can be programmed to appear on 
pin P34, is used to distinguish between data and 
program memory space. 

Register File. The 144-byte register file 
includes four I/O port registers (RO-R3), 124 
general-purpose registers (R4-RI27) and 16 
control and status registers (R240":R255). These 
registers are assigned the address loca1tions 
shown in Figure 6. ' 

Z8 instructions can access registers directly 
or indirectly with an 8-bit address field. The 28 
also allows short 4-bit register addressing using 
the Register Pointer (one of the control regis­
ters). In the 4-bit mode, the register file is 

EXTERNAL 
DATA 

MEMORY 

zaem=I---------I:Z8611 
NOT ADDRESSABLE 

, Figure 5. Data Memory Map 

--{ r,.r.ri r4 0000 I' 
~, 

... 
63 ... 

The upper nibble of the register tile addl'8S8 
>--- provided by the register pointer specllies 

the active wortdng.reglster woup. 

--
------

,.7 

The lower 
nibble of 

r--' SPECIFIED WORKING· 
REGISTER BROUP -I-

the register 
1118_ 
provided by 
the.lns1rUcllon 
points to the 
specllied 
register. ---- ,. -- -----.0 .. ;;,;;:;.----- : 

Figure 7. The Reglater P"lnt82 

2037·004, 005, 006, 007 



Serial 
Input/ 
Output 

Counter/ 
Timers 

20~7-009 

,divided into nine working-register groups, each 
occupying 16 continguous locations (Figure 6). 
The Register Pointer addresses the starting 
location of the active working-register group. 

Stacks. Either the internal register file or the 
external data memory can be used for the stack. 

Port 3 lines P30 and P3z can be programmed as 
serial I/O lines for full-duplex serial asynchro­
nous receiver/transmitter operation. The bit rate 
is controlled by CounterlTimer 0, at 12 MHz. 

The Z8 automatically adds a start bit and .two 
stop bits t6 transmitted data (Figure 8). Odd 
parity is also available as an option. Eight data 
bits are always transmitted, regardless of parity 

Trcmsmltted Data 
(No Parity) 

LSTAATBIT 

'------ElGHT DATA BITS 

TWO STOP BITS 

T1'CID8DIltted Data 
(With Parity) 

Isplspl p 1 .. 1.,1 •• 1 D,I .,I.,! D,I STI 

T 1 
LST"RTBIT 

'-----SEVEN DATA BITS 
L-_______ ODDPARITY 

TWO STOP BITS 

A 16-bit Stack Pointer (R254 and R255) is used for 
the external stack, which can reside anywhere in 
data memory between locations 2048 (8601) or 
4096 (8611) and 65535. An 8-bit Stack Pointer 
(R255) is used for the internal stack that resides 
within the 124 general-purpose'registers 
(R4-R127). 

selection. If parity is enabled, the eighth bit is 
the odd parity bit. An interrupt request (IRQ4) is 
generated on all transmitted characters. 

Received data must have a start bit, eight data 
bits and at least one stop b\t. If parity is on, bit 7 
of the received data is replaced-by a Piirity error 
flag. Received characters generate the IRQ3 
interrupt request. 

Received Data 
(No Parity) 

I~I~I .. I .. I .. I .. I .. I .. I .. ISTI 
LSTARTBIT 

'------eIGHT DATA BITS 

l---------ONESTOP BIT 

Received Data 
(With Parity) 

1~lpl .. I .. I .. I .. I .. I .. I .. ISTI 

,\1<---_ L--~ __ LSTARTBIT - SEVEN DATA BITS 

PARITY ERROR FLAG 
l---------ONESTOP BIT 

Figure 8. Serial Data Formate 

The Z8 contains two 8-bit programmable 
counter/timers (To and Tl), each driven by its 
own 6-bit programmable prescaler. The T 1 
prescaler can be driven by internal or external 
clock sources; however, the To prescaler is 
driven by the internal clock only. 

The 6-bit prescalers can divide the input fre­
quency of the clock source by any number from 
1 to 64. Each prescaler drives its counter, which 
decrements the value (l to 256) that has been 
loaded into the counter. When the counter 
reaches the end of count, a timer interrupt 
request-IRQ4 (to) or IRQ5 (Tl)-is generated. 

The counters can be started, stopped, 
restarted to continue, or restarted from the -
initial value. The counters can also be pro­
grammed to stop upon reaching zero (single-

pass mode) or to automatically reload the initial 
value and continue counting (modulo-n contin­
uous mode). The counters, but not the presca­
lers, can be read any time without disturbing 
their value or count mode. 

The clock source for T 1 is user-definable and 
can be the internal microprocessor clock 
divided by four, or an external signal input via 
Port 3. The Timer Mode register configures the 
external timer input as an external clock, a 
trigger input that can be retriggerable or non­
retriggerable, or as a gate input for the internal 
clock. The counter/timers can be programmably 
cascaded by connecting the To output to the 
input of T 1. Port 3 line P36 also serves as a timer 
outp~t (TOUT) through which To, Tl or the inter­
nal clock can be output. 

17 



110 Ports 

18 

The Z8 has 32 lines dedicated to input and 
output. These lines are grouped into four ports of, 
eight lines each and are configurable as input, 
output or address/data. Under software control, 
the ports can be programmed to provide address 

Port 1 can be programmed as a byte 1/0 port 
or as an addre~s/data port for interfacing 
external memory: When used as an 1/0 port, Port 
1 may be placed under handshake con-
tro!. In this configuration, Port 3 lines P33 and 
P34 are used as the handshake controls RDY I 
and DAV I (Ready and Data Available). 

Memory.1ocations greater than 2048 (28601) or 
4096 (Z86ll) are referenced through Port 1. To 
interface external memory, Port 1 must be 
programmed for the multiplexed AddresslData 

. mode. If more than 256 external locations are 
required, Port 0 must output the additional 
lines. 

Port 1 can be placed in the high-impedance 
state along with Port 0, AS, DS and RIW, 

Port 0 can be programmed as a nibble 1/0 
port, or as an address port for interfacing 
external memory .. When used as an 1/0 port, 
Port o may be placed under handshake con- , 
tro!. In this configuration, Port 3 lines P32 and 
P3s are used as the handshake controls DAVo 
and RDYo. Handshake signal assignment is 
dictated by the VO direction of the upper riibble 
.P04-P07· 

For external memory references, Port 0 can 
provide address bits As-All (lm'!er nibble) or 
As-AIS (lower and upper nibble) depending on 
the required address space. If the address range 
requires 12 bits or less, the upper nibble of Port 0 
can be programmed independently ps 1/0 while 

Port 2 bits can be programmed independently 
as input or output. The port is always available 
for 1/0 operations. In addition, Port 2 can be 
configured to provide open-drain outputs. 

Like Ports 0 and L Port 2 may also be 
placed under. handshake control. In this, con­
figuration, Port 3 lines P31 and P36 are used as 
the handshake controls lines DAV 2 and RDY 2. 
The handshake signal assignment for Port 3 lines 
P3j and P36 is dictated by the direction (input or 
output) assigned to bit 7 of Port 2. 

Port 3 lines can be configured as 1/0 or 
control lines. In either case, the direction of the 
eight lines is fixed as four input (P30-P33) and' 
four output (P34-P37)' For serial 1/0, lines P30 
and P~ are programmed as serial in and serial 
out respectively. 

Port 3 can also provide the follOWing con­
trol functions: handshake for Ports 0, 1 and 2 
(DAVand RDY); four e~ternal interrupt 
request signals (IRQo-IRQ3); ti,mer input and 
output signals (T~nd Tour) and Data 
Memoty Select (DM): 

outputs, timi.ng, status sig;nals, serial 1/0, and 
parallel VO with or without handshake. All ports 
have active pull-ups and pull-downs compatible 
with TTL loads. 

allowing the Z8 to share common resources in 
multiprocessor and DMA applications. Data 
transfers can be controlled by assigning P33 as a 
Bus Acknowledge input and P34 as a Bus 
Request output. 

Z8 
MCU 

PORT. 
(I/O OR ADo-AIl,) 

Figure sa. Port I 

the lower nibble is used for addressing. When 
Port 0 nibbles are defined as address bits, they 
can be set to the highimpedance state along with 
Port 1 and the control signals AS, DS and RIW. 

Z8 
MCU 

ZB 
MCU 

Figure 9b. Port 0 

PORT 2(110) 

} HWa~=~~ED~~NTROLS 
(pa, AND P3e) 

Figure Sc. Port 2 

PORTa 
I Z8 (110 OR CONTROL) 

MCU 

Figure 9d. Port 3 

2037·008 



Interrupts 

Clock 

The 28 allows six different interrupts from 
eight sources: the four Port 3 lines P30-P33, 
Serial In, Serial Out. and the two counter/timers. 
These interrupts are both maskable and 
prioritized. The Interrupt Mask register globally 
or individually enables or disables the six inter­
rupt requests. When more than one interrupt i~ 
pending, priorities are resolved by a pro- ' 
grammable priority encoder that is controlled by 
the InterruptPriority register. 

All 28 interrupts are vectored: When an inter­
rupt request is granted, an interrupt machine 

The on-chip oscillator has a high-gain, 
parallel-resonant amplifier for connection to a 
crystal or to any suitable external clock source 
(XTALl :, Input, XTAL2 = Output). 

The crystal source is connected across XTALl 
and XTAL2, using the recommended capacitors 

cycle is entered. This disables all subsequent 
interrupts, saves the Program Counter and status 
flags, and branches. to the program memory 
vector location reserved for that interrupt. This 
memory location and the next byte contain the 
16-bit address of the interrupt service routine for 
that particular interrupt request. 

Polled interrupt systems are also supported. To 
accommodate a polled structure, any or all of the 
interrupt inputs can be masked and the Interrupt 
Request register polled to determine which of the 
interrupt requests needs service. 

(Cj :$ 15 pF) from each pin to ground. The 
specifications for the crystal are as follows: 

• AT cut, parallel resonant 
• Fundamental type, 12.5 MHz maximum 
• Series resistance, Rs :$ 100 n 

19 



Z860S/IS 
Protopack 
Emulator 

Instruction 
Set 
Notation 

20 

The Z8 Protopack 'is used for prototype 
development and preproduction of mask­
programmed applications; The Protopack is a· 
ROMless version of the standard 28601 or Z8611 
housed in a pin-compatible 40-pin package 
(Figure 11). 

To provide pin compatibility and interchange­
ability with the standard maskprogrammed 
device, the Protopack carries piggy-back a 24-
pin socket for a direct interface to program 
memory (Figure 1). The 28603 24-pin socket is 
equipped with 11 ROM address lines, 8 ROM 
data lines and necessary control lines for inter-

. face to 2716 EPROM for the first 2K bytes of pro-
gram memory. The 28613 24-pin socket is . 

Figure n. The Z8 Microcomputer Protopack Emulator 

AddresSing Modes. The follOWing notation is used 
to describe the addressing modes and instruction 
operations as shown in the instruction summary. 

IRR 

Irr 
X 
DA 
RA 
1M 
R 

m 

Ii 
RR 

Indirect register pair or indirect working-register 
pair address \ 

Indirect working-register pair only 
Indexed address 
Direct address 
Relative address 
Immediate 
Register or working-register address 
Working-register address only 
Indirect-register or indirect working-register 
address 
Indirect working-register address only 
Register pair or working register pair address 

Symbols. The follOWing symbols are used in 
describing the instruction set. 
dst Destination location or contents 
src Source location or contents 
cc Condition code (see list) 
@ Indire.ct address prefix 
SP Stack pOinter (control registers 254-255) 
PC Program counter 

FLAGS Flag register (control register 252) 
RP Register pOinter (control register 253) 
IMR Interrupt mask register (control register 251) 

equipp'ed with 12 ROM address lines, 8 ROM 
data lines and necessary control lines lor inter­
face to 2732 EPROM for the first 4K bytes of ' 
program memory. 

Pin compatibility allows the usar to design the 
pc board for a final 40-pin maskprogrammed 
28, and, at the same time, allows the use of the 
Protopack to<build the prototype and pilot 
production units. When the final program is -
established, the user can then switch over to the 
40-pin mask-programmed Z8 for large volume 
production. The Protopack is also useful in 
small volumeapplica tions where masked ROM 
setup time, mask charges, etc., are prohibitive 
and program flexibility is desired. 

Compared to the conventional EPROM 
. versions of the Single-chip microcomputers, the 
Protopack approach offers two main 
advantages: 

• Ease of developing various programs during 
the prototyping stage. For instance, in appli­
cations where the same hardware configura­
tion is used with more than one program, the 
Protopack allows economical program 
storage in separate EPROMs (or PROMs), 
whereas the use of separate EPROM-based 
Single-chip microcomputers is more costly. 

• Elimination of long lead time in procuring 
'EPROM-based microcomputers. 

Assignment of a value is indicated by the symbol 
"-". For example, 

dst - dst + src 
indicates that the source data is added to the 
destination dala and the result is stored in the 
destination location. The notation "addr{n)" is used 
to refer to bit "n" of a given location. For example, 

dst (7) 
refers to bit 7 of the destination operand. 

Flags. Control Register R252 contains the following 
-six flags: 

c 
z 
S 
V 

Carry flag 
Zero flag 
Sign flag' 
Overflow flag 

D Decimal-adJust flag 
, H Half-carry flag 

Affected flags are indicated by: 

o Cle~red to zero 
I Set to one 
* Set or cleared according to operation 

Unaffected 
X Undefined 



Condition 
Codes 

Instruction 
Formats 

2037-013 

Value 

1000 
0111 
1111 
0110 
1 i 10 
1101 
0101 
0100 
1100 
0110 
1110 
1001 
0001 
1010 
0010 
1111 
0111 
1011 
0011 
0000 

ope MODE 
dstfsrc 

ope 
dol 

ope 
VALUE 

ope MODE 

dol 

MODE ope 
dstlsrc src/dst 

dstlsrc ope 
src/dst 

dol I ope 
VALUE 

I dst/CC R~ OPC 

Mnemonic 

C 
NC 
Z 

NZ 
PL 
MI 
OV 

NOV 
EQ 
NE 
GE 
LT 
GT 
LE 

UGE 
ULT 
UGT 
ULE 

OR h 11 Oldstlsrc I 

I OR 11 1 1 01 dol 

OR 11 1 1 01 

Always true 
Carry 
No carry 
Zero 
Not zero 
Plus 
Minus 
Overflow 
No overflow 
Equal 
Not equal 

Meaning 

Greater than or equal 
Less than 
Greater than 
Less than or equal 
Unsigned greater than or equal 
Unsigned less than 
Unsigned greater than 
Unsigned less than or equal 
Never true 

ope CCF, 01, EI, IRET, NOP, 
ReF, RET, SCF 

dot ope INC r 

One.Byte Instructions 

eLR, CPL, OA, DEC, ope MODE 
DECW, INC, INew, POP, 

dot 
PUSH, RL, RLe, RR, 
RRC, BRA. SWAP 

JP, CALL (Indirect) 

ope MODE 
dot 

VALUE 
SRP 

MODE ope 

d., 
ADC, ADD, AND, 
CP, OR, SBC, SUB, 
TCM, TM, XOR 

MODE OPe 
dstlsrc lD, lDE. WEI, 

lOC, lOCI 
ADDRESS 

LD ope 
DA, 
DA, 

LD 

ope 
DA, 

DJNZ, JR DA, 

Two-Byte Instructions 

Figure 12. Instruction Formats 

OR 
OR 

C = 1 
C = a 
Z = 1 
Z = a 
S = a 
S = 1 
V = 1 
V = a 
Z = 1 
Z = a 

Flag. Set 

(SXOR V) = a 
(S XOR V) = 1 
[Z OR (S XOR V)] = a 
[Z OR (S XOR V)] = 1 
C=O 
C = 1 
(C = a AND Z = 0) 
(C OR Z) = 1 

ADC, ADD, AND. CPo 
1 1 1 0 src ' LD, OR, sac, SUB, 

1 1 1 0 dot 
TeM, TM, XOR 

ADC, ADD, AND, CP, 
OR 11 1 1 01 dot LD, OR, sac, SUB, 

TeM, TM,XOR 

LD 
OR 1 1 1 0 
OR 1 1 1 0 dot 

LD 

JP 

CALL 

Tbree--Byte Instructions 

21 



Instruction ,Instruction Addr Mode Opcode Flags Allecled Instruction Addr Mode Opcode Flags Affecled 

Summary and Operation dsl 
Byle and Operation dsl 

Byte 
src (Hex) C Z S V D,H arc (Hex) CZSVDH 

ADC dst,sre (Note 1) 10 o • LDE clst,sre r Jrr 82 ------
dst-dst + sre +C dst - sre Irr 92 

ADD dst,sre (Note I) 00 ****0* LDEI dst,sre Ir Jrr 83 ------
dst - dst + sre dst - sre Irr Jr 93 

AND dst,sre (Note 1) 50 0 
r - r + 1; rr-rr+l 

dst - dst AND sre NOP FF ------

CALL dst DA D6 ------ OR dst,sre (Note I) 40 0 
SP-SP-2 IRR D4 dst - dst OR sre 
@SP - PC; PC - dst 

POP dst R 50 ------
CCF EF * - - - - - dst - @SP IR 51 
C - NOT C SP-SP+I 

CLR dst R BO' PUSH sre R 70 ------
dst - 0 IR Bl SP-SP-I; @SP- sre IR 71 

COM dst R 60 -**0-- RCF CF 0-----
dst - NOT dst IR 61 C,-O 

CP dst,sre (Note I) AD RET AF ------
dst - sre PC - @SP; SP - SP' + 2 

DA dst R 40 • X RL dst ~ R 90 
dst - DA dst IR 41 IR 91 

DEC dst R 00 -*.,**-- RLCdst~ ~ !O 
dst-dst-l IR 01 II 

DECW dst RR 80 -***-- RR dst 
L:rrJ lc:;}J I~ EO 

dst-dst-l IR 81 El 

DI 
RRCdst~ R CO , , • IR CI 

IMR (7) - 0 8F ------ SBC dst,sre (Note I) 3D • * I . 
DINZ r,dst RA rA ------

dst - dst-sre- C 

r - r - 1 r=O-F SCF DF 1 - - -
if r .. 0 C-I 

PC-PC + dst 
SRA dst ~YI~ Range: + 127, -128 DO '* '* '* 0 

DI 
EI 9F ------ SRP sre 1m 31 IMR (7) - I RP - sre 
INC dst rE - '* '* '* - - SUB dst,sre (Note I) 20 I . 
dst-dst+1 r=O-F dst - dst - sre 

R 20 
IR 21 SWAPdst~ R FO X . • X 

IR Fl 
INCW dst RR AD - '* '* '* - -
dst - dst + IR Al TCM dst,sre (Note I) 60 - . 

• 0 
IRET BF 

(NOT dst) AND sre 

FLAGS - @SP; SP - SP": I TM dst, sre (Note I) 70 - * * 0 
PC - @SP; SP - SF + 2; IMR (7) - I dst AND sre 

JP ee,dst DA cD ------ XOR dst,sre (Note I) BO - '* * 0 - -
if cc is true e=O-F dst - dst XOR sre 

PC - dst IRR 30 

JR ee,dst RA eB ------ Note I 

if cc is true, e=O-F 
These instructions have an identical set of addressing PC-PC+dst 

Range: + 127, -128 modes, which are encoded for brevity. The first opcode 
nibble is found in the instruction set table above. The 

LD dst,sre 1m rC ------ second nibble is expressed symbolically by a 0 in this 
dst - src r R r8 table, and its value is found in the following table to the 

R r9 right of the applicable addressing mode pair. 

r=O-F For example, to determine the opcode of a ADC 

r, X C7 instruction use the addressing modes r (destination) and 

X r D7 Ir (source). The result is 13. 

r Ir E3 
Ir r F3 
R R E4 Addr Mode Lower 
R IR E5 Opcode Nibble 
R 1m E6 dsl src 
IR 1m E7 
IR R F5 rn 

LDC,dst,sre r Irr C2 Ir ------ rn 
dst - arc Irr D2 R R rn 
LDCI dst,sre Ir Irr C3 ------ R IR [ID 
dst - sre Irr Ir D3 R 1M ~ 
r - r + 1; rr - rr + 1 

IR 1M rn 

22 8085-00~ , 



Registers R240 SIO 
Serial 110 Register 
(FOH; ReadlWrite) 

'----SERIAL DATA (Do ;. lSB) 

R241 TMR 
Timer Mode Register 

(FIH; Read/Write) 

NOT' USED", 00 ~ 1 ;;; LOAD To 

~~ g~~ : ~~ 0 = DISABLE To COUNT 

To"MODES ~ llli~o. NO FUNCTION 

INTERNAL CLOCK OUT", 11 1 = ENABLE To COUNT 

T MODES 0 = NO FUNCTION 
EXTERNAL CLOCK IN~OT = 00 1 = LOAD T, 

GATE INPUT::: 01 0 = DISABLE T, COUNT 

(NON'R~~~~g:~~::~~ ::: 10 ., = ENABLE 1, COUNT 

TRIGGER INPUT = 11 
(RETAIGGERABlE) 

R242 TI 
Counter Timer 1 Register 

(F2H; ReadlWrite) 

R243 PREI 
Prescaler 1 Register 

(F3H; Write Only) 

~LCOUNTMODE 
o • T, SINGLE·PASS 
t • T, MODULO·N 

CLOCK SOURCE 
1 ;;; T 1 INTERNAL 
o = T, EXTERNAL TIMING INPUT 

(TIN) MODE 

PRESCALER MODULO 
(RANGE: '~64 DECIMAL 
01-00 HEX) 

R244 TO 
Counter/Timer 0 Register 

(F4H; ReadlWrite) 

R245 PREO 
Prescaler 0 Register 

(F5H; Write Only) 

~LCOUNTMODE 
_ 0:: To SINGLE·PASS 

1 "" To MODULO·N 

RESERVED ~ 

PRESCALER MODULO 
(RANGE: 1-64 DECIMAL 
01-00 HEX) 

R246 P2M 
Port 2 Mode Register 

(F6H; Write Only) 

P2o-P27 110 DEFINITION 
'---- 0 DEFINES BIT A.S OUTPUT 

1 DEFINES BIT A.S INPUT 

R247 P3M 
Port 3 Mode Register 

(F7H; Write Only) 

8ELOPORT 'PULL·UPSOPEN DRAIN 
1 PORT 2 PULL-UPS ACTIVE 

RESERVED 

o P32 INPUT P35 ::: OUTPUT 
i P32 _ DAWJRDYO P35 '" RDYOfDAVO 

o 0 P33 INPUT P34 OUTPUT 

~ ~} P33 INPUT P34 = I)M 

1 1 P33 DAV1fRDY1 P34 :: RDY1fDAV1 

o P31 INPUT (TIN) P3& = OUTPUT (TOUT) 
1 P31 DAV2lRDY2 P3& = RDY2IDAV2 

L..-______ ~~~g : ~~~lLIN ~:~ ~ ~~~~~TOUT 

L..-_______ ~ ~:::~~ g~F 

Figure 13. Control Registers 

2037·014 23 



Registers 
(Continued) 

R248 POIM 
Port 0 and I Mode Regilt. 

(F8H; Write Only) 

OUTPUT ;;; 00 L 00;;; OUTPUT 
INPUT ;;; 01 01 ~ INPUT 

A12-All; "" IX ' , IX "" As-A" 

PD._PO, MODE:] ~~ PO.-PO, MODE 

EXTERNAl. MEMORY TIMING ' STACK SELECTION 
NORMAL == 0 0 .. EXTERNAL 

EXTENDED;;; 1 1 • INTERNAL 

P180P~1 :~~~UTPUT 
01 = BYTe INPUT 
10 - ADo-AD7 
11 .. HIGH-IMPEDANCE ADO-ADy. 

R2491PR 
Interrupt Priority Register 

(F9j,; Write Only) 

I~I~I~I~I~I~I~I~I 

AS, os. RtW, Aa-A11. A12~A15 
IF SELECTED 

".~.:J I I II j ~~.",~ ••• ~ RESERVED", 000 " 
IR03, IRQ5 PRIORITY (GROUP A) C > A > B '" 001 

o '" IRQ5 > IR03 A > B > C = 010 
1 = IRQ3> IRQ5 ,A>C>B=Dl1 

B>C>A=I00 
IROO, IRQ2 PRIORITY (GROUP B) C > B > A ;;; 101 

o = IR02 > IROO B > A > C :; 110 
1 '" IROO > IR02 RESERVED 0: 111 

IRQ1, IRQ4 PRIORITY (GROUP C) 
o '" IRQ1 > IRQ4 
1 '" IRQ4 > IRa1 

R2S0 mQ 
Interrupt Request Register 

(F AH; Read/Write) 

I~I~I~I~I~I~I~I~I 

RESERVED T C==-I~QO 
IRQ1 
IRQ2 
IRQ3 
IRQ4 
IRQS 

R25IIMR 
Interrupt Mask Regl.ter 

(FBH; Read/Write) 

I~I~I~I~I~I~I~I~I 

P32 INPUT (Do = IRQO) 
P331NPUT 
P311NPUT 
P30 INPUT, SERIAL INPUT 
To, SERIAL OUTPUT 
T, 

II c==- 1 ENABLES IRaO-IRQS 
(Do = IRaO) 

'------- RESERVED 

'--------1 ENABLES INTERRUPTS 

REOISTER 
POINTER 

Figure 13. Control Registers (Continued) 

24 

R2S2 FLAGS 
Flag Register 

(FCH; Read/Write) 

10,1·0.10,10.10,10, I 0,10.1 

LUSER FLAG F2 

HALf CARRY FLAG' 
. DECIMAL ADJUST FLAG U~~

I LUSER FLAG F1 

OVERFLOW,FLAG 

SIGN FLAG 

. - ZERO FLAG 

R253 RP 
Register Pointer 

(FDH; Read/Write) 

CARRY flAG 

LoON'TCARE 

R2S4 SPH 
Stack Pointer 

(FEH; Read/Write) 

R2SS SPL 
Stack Pointer 

(FFH; Read/Write) 

2037·014 



Opcode 
Map 

o 

2 

3 

• 
5 

" 6 .. e 
~ 7 
:!! :z: 
~ 

'" 8 
'" ::> 

9 

A 

B 

C 

D 

E 

F 

o 

6,5 
DEC 

R> 
6,5 

RLC 
R> 

6,5 
INC 

R> 
8,0 
IP 

IHR> 

8,5 
DA 
R> 

10,5 
POP 

R> 

6,5 
COM 

R'l 

10/12,1 
PUSH 

R2 

10,5 
OECW 

HR> 
6,5 
RL 
R> 

10,5 
INCW 

RR> 

6,5 
CLR 

R> 
6,5 

RRC 
R> 
6,5 

SRA 
R> 

6,5 
RR 
R> 

8,5 
SWAP 

R> 

6,5 
DEC 
IR> 

6,5 
RLC 
IR> 

6,5 
INC 
IR> 

6,1 
SRP 

1M 

8,5 
DA 
IR> 

10,5 
POP 
IR> 

6,5 
COM 

IR> 

12/14,1 
PUSH 

IR2 

10,5 
DECW 

IR> 

6,5 
RL 
IR> 

10,5 
!NCW 

JR> 

6,5 
CLR 
IR> 

6,5 
RRC 
JR> 
6,5 

SRA 
IR> 

6,5 
RR 
IR> 

8,5 'I SWAP 
IR> 

2 3 • 
6,5 6,5 10,5 

ADD ADD ADD 
Il,12 n,Ir2 H2,Hl 

6,5 6,5 10,5 
ADC ADC ADC 
11,12 Il,IrZ Hz,Hl 

6,5 6,5 10,5 
SUB SUB SUB 
II, [2 II, lr2 R2,R> 

6,5 6,5 10,5 
SBC SBC SBC 
ll,I2 Il/h2 R2,R> 

6,5 6,5 10,5 
OR OR OR 

II, 12 l1,It2 R2,R> 

6,5 6,5 10,5 
AND AND AND 
Il,12 Il,lIZ R2,R> 

6,5 6,5 10,5 
TCM TCM TCM 
II, I2 Il1hz R2,R> 

6,5 6,5 10,5 
TM TM TM 

11.12 n,Irz R2,R> 

12,0 18,0 
LDE LDE! 

n,Iuz III,IIlZ 

12,0 18,0 
LDE LDE! 

Irn 1r2,lrn 

6,5 6,5 10,5 
CP CP CP 

n,lz II,Iu R2,R> 

6,5 6,5 10,5 
XOR XOR XOR 
I1,I2 Il1 h Z R2,R> 

12,0 18,0 
LDC LDCI 

II, lrrz Irl,IrU 

12,0 IB,O 20,0 
LDC LDCI CALL* 

12,Irn lIZ, hIl IRR> 

6,5 10,5 
LO LD 

II, lr2 R2,R> 

6,5 
LD 

Irl,tz 

Lower Nibble (Hex) 

5 6 7 8 9 A B C D E F 

10,5 10,5 10,5 6,5 6,5 12/10,5 12/10,0 6,5 12/10,0 6,5 
ADD ADD ADD LD LD DJNZ JR LD JP INC 
IR2,R> R>,IM IR>,IM Il,H2 Iz,Rl n,RA ca,BA [1, 1M cc,DA n -10,5 10,5 10,5 
ADC ADC ADC 
JR2,R> R>,IM IR>,IM -
10,5 10,5 10,5 
SUB SUB SUB 

1R2,Rl R>,IM IR>,IM 

10,5 10,5 10,5 r---
SBC SBC SBC 

JR2,R> R>,IM IRl,!M 

10,5 10,5 10,5 r---
OR OR OR 

IR2,R> R>,IM IR>,IM r---
10,5 10,5 10,5 
AND AND AND 

IR2,R> R>,IM JRl,!M 

10,5 10,5 10,5 r---
TCM TCM TCM 

JR2,R> R>,IM IR>,IM r---
10,5 10,5 10,5 
TM TM TM 

JR2,R> Rl,!M IR>, 1M r---
6,1 
01 

!"-"-:-
6,1 
E! 

!"-"-:-
10,5 10,5 10,5 

14,0 
CP CP CP RET 

IR2,R> R>,IM JR>,IM 

10,5 10,5 10,5 r---
16,0 

XOR XOR XOR IRET 
JR2,R> R>,IM IR>,IM 

'-----
10,5 

6,5 
LD RCF 

II, x, Hz 

20,0 10,5 r---
6,5 

CALL LD SCF 
DA I2, X, HI 

10,5 10,5 10,5 r---
6,5 

LD LD LD CCF 
JR2,R> R>,IM IR>,IM 

r----
10,5 

6,0 
LD NOP R2,IRf 

.I .... .... .,; .... 
Bytes per V' 'V" '---------~~~--------~.,; ~ ~ 
Instruction 3 

Lower 
Opcode 
Nibble 

Execution • Pipeline 
Cycles • Cycles 

Upper 
Opcode-A Mnemonic 
Nibble 

First Second 
Operand Operand 

*2-byte instruction; fetch cycle appears as a 3-byte instruction 

8085-002 

2 

Legend: 
R = 8-Bit Address 
r = 4-Bit Address 
RI or II = Dst Address 
Rz or 12 = Src Address 

Sequence: 

3 

Opcode, First Operand, Second Operand 

Note: The blank areas are not defined. 

25 



Absolute 
Maximum 
Ratings 

DC 
Character-
istics 

26 

Voltages on all pins 
with respect to GND .......... -0.3 V to + 7.0 V 
Operating Ambient 
Temperature ........ See Ordering Information 

Storage Temperature ........ -65°C to + 150°C 

The DC characteristics listed below apply for 
the following standard test conditions, unless 
otherwise noted. All voltages are referenced to 
GND. Positive current flows into the reference 
pin. 

Standard conditions are: 

o +4.75 V ~ Vee ~ +5.25 V 

o GND = 0 V 

o O°C ~ TA ~ +70°C 

·Symbol Parameter Min Max 

VeH Clock Input High Voltage 3.8 Vee 

VeL Clock Input Low Voltage -0.3 0.8 

VIH Input High Voltage 2.0 Vee 

VIL Input Low Voltage -0.3 0.8 

VRH Reset Input High Voltage 3.8 Vee 

VRL Reset Input Low Voltage -0.3 0.8 

VOH Output High Voltage 2.4 

VOl Output Low Voltaoe 0.4 

IlL Input Leakage -10 10 

IoL Output Leakage -10 10 

IIR Reset Input Current -50 

lee Vee Supply Current 150 

Stresses greater than those listed under Absolute Maxi­
mum Ratings may cause permanent damage to the device. 
This is a stress rating only; operation of the device at any 
condition ab9ve those indicated in the operational sections 
of these specifications is not implied. Exposure to absolute 
maximum rating conditions for extended periods may affect 
device reliability. 

+5V 

2.1K 

Figure 14. Tesl Load 1 

Unit Condition 

V Driven by External Clock Generator 

V Driven by External Clock Generator 

V 

V 

V 

V 

V IoH = -250 /LA 

VIOL = +2.0 rnA 

/LA 0 Vs Vms +5.25 V 

p.A 0 Vs VIN s +5.25 V 

/LA Vee = +5.25 V, VRL = 0 V 

rnA 



AC Characteristics 

External I/O 
or Memory 
Read and 
Write Timing 

No. Symbol 

TdA(AS) 

2 TdAS(A) 

3 TdAS(DR) 

4 TwAS 

5 TdAz(DS) 

6-TwDSR 

7 TwDSW 

8 TdDSR(DR) 

9 ThDR(DS) 

10 TdDS(A) 

11 TdDS(AS) 

RlW 

PORT 0, 
6M 

PORT 1 

I----(Q))---+-I 

iii 
(READ) 

----------r_------il-------~Q)~---~I~----r_---

PORT 1 

iii 
(WRITE) 

00-07 OUT 

Figure 15. External I/O or Memory Read/Write 

8MHz 12.5 MHz 
Parameter Min Max Min Max 

Address Valid to AS t Delay 50 35 

AS t to Address Float Delay 60 45 

AS t to Read Data Required Valid 320 220 

AS Low Width 80 55 

Address Float to DS ~ 0 0 

DS (Read) Low Width 250 185 

DS (Write) Low Width 160 110 

DS ~ to Read Data Required Valid 200 130 

Read Data to DS t Hold Time 0 0 

DS t to Address Active Delay 80 45 

DS t to 'AS ~ belay 70 55 

12 - TdRIW(AS) -- R/W Valid to AS t Delay 50 30 

13 TdDS(RIW) DS t to R/W Not Valid 60 35 

14 TdDW(DSW) Write Data Valid to DS (Write) ~ Delay 50 35 

15 TdDS(DW) DS t to Write Data Not Valid Delay 80 45 

16 TdA(DR) Address Valid to Read Data Required Valid 410 255 

17 TdAS(DS)' AS t to DS ~ Delay 80 55 

NOTES: 
1. When using extended memory timing add 2 T pC. t Test Load 1. 

Notes*to 

2,3 

2,3 

1,2,3 

1,2,3 

1,2,3 

1,2,3 

1,2,3 

2,3 

2.3 

2,3 

2,3 

2,3 

2,3 

1,2,3 

2,3 

2. Timing numbers given are for minimum TpC. o All timing references use 2.0 V for a logic \II" and 0.8 V for a logic "0". 
$3. See clock cycle time dependent characteristics table. * All units in nanoseconds (ns). 

2194-011 
27 



AC Characteristics 

Additional 
Timing 
Table 

No. Symbol 

TpC 

2 'IrC,TIC 

3 TwC 

Parameter 

Input Clock Period 

Clock Input Rise And Fall Times 

Input Clock Width 

4 TwTinL Time Input Low Width 

Figure 16. Additional Timing 

8 MHz 12.5 MHz 
Min Max Min Max 

125 1000 80 1000 

25 15 

37 26 

100 70 

5-TwTinH --- Timer Input High Width ------~ 3TpC 3TpC 

6 TpTin Timer Input Period 

7 'IrTin, TfTin 

8a TwIL 

8b TwIL 

9 , 
NOTES: 

TwIH 

Timer Input Ris\'! And Fall Times 

Interrupt Reque~t Input Low Time 

Interrupt Request Input Low Time 

Interrupt Request Inp,ut High Time 

1. Clock timing references uses 3.8 V for a logic "1" and 0.8 V for 
a logic "0", 

2. Timing reference uses 2.0 V for a logic "1" and 0.8 V for 
a logic "0". 

8TpC 8TpC 

100 100 

100 70 

3TpC 3TpC 

3TpC 3TpC 

3. Interrupt request Via Port 3 (P31-P33)' 
4. Interrupt request vi. Port 3 (P30). 
• Units in nanoseconds (ns). 

Memory Port 
Timing Ao-A •• X'-' ______ -:--AD_DR_ESS_V_AL_'D ______ ~L" k= 

_----J ___ T-_-. ______ 0~~~~~j~.c ~ 
Do-D., DON'T CARE ~ DATA IN VALID 

No. Symbol 

2 

NOTES: 

TdA(DI) 

ThDI(A) 

I. Test Load 2. 

Parameter 

Address Valid to Data Input Delay 

Data In Hold time 

2. This is a Clock-eycle-Dependent parameter. For clock frequencies 
other than the maximum, use the following formula: !:} TpC - 95 

Figure 17. Memory Pori Timing 

Min Max 

320 

o 

"'Units are nanoseconds unless otherwise specified. 

Notes* 

1 

2 

2 

2 

2 

2,3 

2.4 

2,3 

Notes* 

1,2 

28 '2194-012 2037-019 



Handshake 
Timing 

No. Symbol 

.. ~~ ----------~~-'---~~~,. ~---------
<OUTPun ~ 

Figure lSa. Input Handshake 

DATA OUT ~. 
------~~-------~-----------------------------

lOU: _____ )_r~ _ ___"_5 --d===: 
jlNPUn ~ 

DATA OUT VALID 

Figure 18b. Output Handshake 

Parameter Min Max 

I TsDI(DAV) Data In Setup Time o 
160 

120 

2 ThDI(DAV) Data In Hold lime 

3 TwDAV Data AVlIllable Wiqth 

Notes· 

4 TdDAVIf(RDY) DAVJ. InputtoRDYJ. Delay 120 1.2 
5-TdDAVOf(RDY)-- DAV J. Output to RDY J. Pelay ------------0 ----------1.3 

6 TdDAVIr(RDY) DAV t Input to RDY t Delay 120 1.2 

7 TdDAVOr(RDY) DAVt OutputtoRDYt Delay 0 1.3 

8 TdDO(DAV) 
9 TdRDY(DAV) 

NOTES: 
I. Testl""d 1 
2. Input handshake 
3. Output htmdshake 

Data Out to DAV J. Delay 
Rdy J. Input to DAV t Delay 

t All timino referenCf:HI use 2.0 V for a logic "I" and 0.8 V for 
a logic '\0". 

Clock-
Cycle-Tlme- Number Symbol 
Dependent 
CharacterlstlCII TdA(AS) 

2 

3 

TdAS(A) 

TdAS(DR) 

• Units in nanoseconds (ns). 

Equatloa 

TpC-50 

TpC-40 
4TpC-IIO* 

4 TwAS TpC-30 

30 

o 140 

5--TwDSR-------------3TpC-65*-----------

7 

8 

10 

TwDSW 
TdDSR(DR) 

Td(DS)A 

2TpC-55* 

3TpC-120* 

TpC-40 

II TdDS(AS) TpC-30 
12-TdRfW(AS) -----------TpC-55 -----------

13 TdDS(RfW) TpC-50 

14 

15 

16 

17 

TdDW(DSW) 

TdDS(DW) 

TdA(DR) 

TdAS(DS) 

* Add 2TpC whcm u,lng extended memory tlmlnQ. 

TpC-50 

TpC-40 

5TpC-160· 

TpC-30 

29 



~ ZiIill Product Specification 

FEATURES 

• The Z8671 MCU is a complete microcomputer 
preprogrammed with a BASIClDebug interpreter. 
I nteraction between the interpreter and its user is 
provided through an on-board UART. 

• BASIC/Debug can directly address the Z8671's internal 
registers and all external memory. It provides quick 
examination and modification of any external memory 
location or I/O port. 

GENERAL DESCRIPTION 

The Z8671 Single-Chip Microcomputer (MCU) is one of a 
line of preprogrammed chips-in this case with a 
BASIC/Debug interpreter in ROM-offered by Zilog. As a 
member of the Z8 Family of microcomputers, it offers the 
same abundance of resources as the other Z8 
microcomputers. 

PORTO 
(NIBBLE 

PROGRAMMABLE) 
110 or An A,s 

30 

PORT 1 
1/0 OR ADo-AD: 

Figure 1. Pin Functions 

PORT 3 
SERIAL AND 
PARALLEL 110 
AND CONTROL 

Z8671 Z8® MCU 
with BASIC/Debug 
Interpreter 

June 1987 

• The BASIC/Debug interpreter can call machine 
language subroutines to increase execution speed. 

• The Z8671's auto start-up capability allows a program to 
be executed on power-up or Reset without operator 
intervention. 

• Single + 5V power supply-all I/O pins TTL-compatible. 

.8MHz 

Because the BASIClDebug interpreter is already part of the 
chip circuit, programming is made much easier. The Z8671 
MCU thus offers a combination of software and hardware 
that is ideal for many industrial control applications. The 
Z8671 MCU allows fast hardware tests and bit-by-bit 
examination and modification of memory location, I/O ports, 

+5V P3, 

XTAl2 P3, 

XTAL1 P2, 

P3, P2, 

P30 P2, 

RESE"I P2, 

R/Vi P2, 

os P2, 

AS P2, 

P3, P20 

GND P3, 

P3, P3, 

POo AD, 

PO, AD, 

PO, AD, 

PO, AD, 

PO, AD, 

PO, AD, 

PO, AD, 

PO, ADo 

Figure 2a. 40-pin Dual-In-Llne Package (DIP). 
Pin Assignments 



or registers. It also allows bit manipulation and logical 
operations. A self-contained line editor supports interactive 
debuggi:n€~~fMj1her speeding up program development. 

The BAS~ebug interpreter, a subset of Dartmouth 
BASIC, operates with three kinds of memory: on-chip 
registers and external ROM or RAM. The BASIC/Debug 
interpreter is located in the 2K bytes of on-chip ROM. 

Additional features ofthe 28671 MCU include the ability to 
call machine language subroutines to increase execution 
speed and the ability· to have a program execute on 
power-up or Reset, without operator intervention. 

Maximum memory addressing capabilities include 62K 
bytes of external program memory and 62K bytes of data 
memory with program storage beginning at location 800H. 
This provides up to 124K bytes of useable memory space. 
Very few 8-bit microcomputers can directly access this 
amount of memory. 

Each 28671 Microcomputer has 32 I/O lines, a 144-byte 
register file, an on-board UART, and two counter/timers. 

110 
(BIT PROGRAMMABLE) 

ADDRESS OR 110 
(NIBBLE PROGRAMMABLE) 

RESET 
R/W 

os 
AS 

P3s 

GND 

P3, 

PO. 

PO, 

PO, 

NC 

,,~ ", 
, +" q>" q>' -¢''t'-¢''t' x~ 4'" 

6 5 4 3 2 1 

7 ".' ~', fl:~:~9 
8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

Z8671 
MCU 

18 19 20 21 22 23 24 25 26 27 28 

~qa"'qO~~'O~'\<t .. Qq"""'q"''''q''''''J<l'''''''+v 

Figure 2b. 44-pln Chip Carrier, 
Pin Assignments 

ADDRESS/DATA OR 110· 
(BYTE PROGRAMMABLE) 

38 

37 

36 

35 

34 

33 

32 

31 

30 

29 

Figure 3. Functional Block Diagram 

NC 

P2, 

P2~ 
P2, 

P2, 

P2. 

P33 

P3, 

1:'17 

PI, 

PIs 

31 



ARCHITECTURE 

Z8671 architecture is characterized by" a flexible I/O 
scheme, an efficient register and address space structure, 
and a number of ancillary features that are helpful in many 
applications. 

Microcomputer applications demand powerful I/O 
capabilities. The Z8671 fulfills this with 32 pins dedicated to 
input and output. These lines are grouped into four ports of 
eight lines each and are configurable under software control 
to provide timing, status signals, serial or parallel I/O with or 
without handshake, and an address/data bus for interfacing 
external memory. 

Because the multiplexed address/data bus is merged with 
the I/O-oriented ports, the Z8671 can assume many 
different memory and· I/O configurations. These 
configurations range from a self-contained microcomputer 

PIN DESCRIPTION 

AS. Address Strobe (output, active Low). Address Strobe is 
pulsed once at the beginning of each machine cycle. 
Addresses output via Port 1 for all external program or data 
memory transfers are valid at the trailing edge of AS. Under 
program control, AS can be placed in the high-impedance 
state along with Ports 0 and 1, Data Strobe, and ReadIWrite. 

OS. Data Strobe (output, active Low). Data Strobe is 
activated once for each external memory transfer. 

POO·P07. P10·P17. P20·P27. P30·P37. I/O Port Lines 
(input/outputs, TIL-compatible). These 32 lines are .divided 
into four 8-bit I/O ports that can be configured under 

ADDRESS SPACES 

Program Memory. The Z8671's 16-bit program counter 
can address 64K bytes of program memory space. 
Program memory consists of 2K bytes of internal ROM and 
upt062K bytes of external ROM, EPROM, or RAM. The first 
12 bytes of program memory are reserved for interrupt 
vectors (Figure 4). These locations contain six 16-bit vectors 
that correspond to the six available interrupts. The 
BASIC/Debug interpreter is located in the 2K bytes of 
internal ROM. The interpreter begins at address ·12 and 
extends to 2047. 

32 

to a microprocessor that can address 124K bytes of external 
memory. 

Three basic address spaces are available to support this 
wide range of configurations: program memory (internal 
and external), data memory (external) and the register file 
(internal). The 144-byte random-access register file is 
composed of 124 general-purpose registers, four I/O port 
registers, and 16 control and status registers: 

To unburden the program from coping with real-time 
problems such as serial data communication and 
counting/timing, an asynchronous receiver/transmitter 
(UART) and two counter/timers with a large number of 
userselectable modes are offered on-chip. Hardware 
support for the UART is minimized because one of the 
on-chip timers supplies the bit rate. 

program control for I/O or external memory interface. 

RESET. Reset (input, active Low). RESET initializes the 
Z8671. W,hen RESET is deactivated, program execution 
begins from internal program location OOOCH. 

R/W. ReadlWrite (output). R/W is Low when the Z8671 is 
"Yriting to external program or data memory. 

XTAL1. XTAL2. Crys'tal 1, Crystal 2 (time-base input and 
output). These pins connect a parallel-resonant crystal (8 
MHz maximum) or an external single-phase clock (8 MHz 
maximum) to the on-chip clock oscillator and buffer. 

Location of 
first byte 01 
instruction 

5535 

2048 
2047 

EXTERNAL 
ROM OR RAM 

ON·CHIP 
ROM 

executed 
after reset ~ ~------------

Interrupt 
Vector 

(lower Byte) 

Interrupt 
Vector 

(Upper Byte) 

11 

10 

9 

a 
7 

6 

5" 
4\#," 

3 

2 

1 

0 

IRQS 

IRQS 

IRQ4 

IRQ4 

IRQ3 

IRQ3 

IRQ2 

IRQ2 

IRQ1 

IRQ1 

IRQO 

IROO 

} 
BASICI 
DEBUG 

Figure 4. Program Memory Map 



Data Memory. The 28671 can address up to 62K bytes of 
external data memory beginning at location 2048 (Figure 5). 
External data memory may be included with, or separated 
from, the external program memory space. OM, an optional 

. I/O function that can be programmed to appear on pin P34, 
is used to distinguish data and program memory space. 

Register File. The 144-byte register file may be accessed 
. by BASIC programs as memory locations 0-127 and 
240-255. The register file includes four I/O port registers 
(RO-R3), 124 general-purpose registers (R4-R127), and 16 
control and status registers (Figure 6). 

The BASIC/Debug Interpreter uses many of the general­
purpose registers as pointers, scratch workspace, and 
internal variables. Consequently, these registers cannot be 
used by a machine language subroutine or other user 
programs. On power-up/Reset, BASIClDebug searches for 
external RAM memory and checks for an auto start-up 
program. In a non-destructive method, memory is tested at 
relative location xxFDH. When BASIC/Debug discovers 
RAM in the system, it initializes the pointer registers to mark 
the boundaries between areas of memory that are assigned 
specific uses. The top page of RAM is allocated for the line 
buffer, variable storage, and the GOSl,lB stack. Figure 7a 

6553S 

EXTERNAL 
DATA 

MEMORY 

2048 
2047 

NOT ADDRESSABLE 

Figure 5. Data Memory Map 

illustrates the, contents of the general-purpose registers in 
the 28671 system wi\h external RAM. When BASIC/Debug 
tests memory and finds no RAM, it uses an internal stack 
and shares register space with the input line buffer and 
variables .. Figure 7b illustrates the contents of the 
general-purpose registers in the 28671 system without 
external RAM. 

Stacks. Either the internal 'register file or the external data 
memory can be used for the stack. A 16-bit Stack Pointer 
(R254 and-R255) is used for the external stack, which can 
reside, anywhere in' data memory between location 2048 
and 65535. An 8-bit Stack Pointer (R255) is used for the 
internal stack that resides within the 124 general-purpose 
registers (R4-R127). 

Register Addressing. 28671 instructions can directly or 
indirectly access registers with an 8-bit address field. The 
28671 also allows short 4-bit register addressing using the 
Register Pointer, which is one of the control registers. In the 
4-bit mode, the register file is divided into nine 
working-register groups, each group consisting of 16 
contiguous registers (Figure 8). The Register Pointer 
addresses the starting location of the active working-register 
group. 

LOCATION 

255 STACK POINTER (BITS 7-0) 

254 STACK POINTER (BITS 15-8) 

253 REGISTER POINTER 

252 PROGRAM CONTROL FLAGS 

261 INTERRUPT MASK REGISTER 

250 INTERRUPT REQUEST REGISTER 

249 INTERRUPT PRIORITY REGISTER 

246 PORTS 0-1 MODE 

247 PORT 3 MODE 

246 PORT 2 MODE 

245 TO PRESCALER 

244 TIMER/COUNTER 0 

243 TI PRESCALER 

242 TIMER/COUNTER 1 

241 TIMER MODE 

240 SERIAL UO 

NOT 
IMPLEMENTED 

IDENTIFIERS 

SPL 

SPH 

RP 

FLAGS 

IMR 

IRQ 

IPR 

POIM 

P3M 

P2M 

P~EO 

TO 

PREI 

TI 

TMR 

SIO 

Figure 6. Control and Status Registers 

33 



127 

104 
103 

86 
8 5 

64 
63 

34 

33 

32 

1 

30 

29 

28 
27 

24 
23 

22 
2 1 

20 
19 

18 
17 

16 
15 

14 
13 

12 
11 

10 
9 

SHARED BY EXPRESSION 
STACK AND LINE BUFFER 

GOSUB 
STACK 

SHARED BY GOSUB 
AND VARIABLES 

VARIABLES 

FREE, AVAILABLE 
FOR USR ROUTINES 

COUNTER 

' USED INTERNALLY 

SCRATCH 

~OINTER TO 
CONSTANT BLOCK 

USED INTERNALLY 

LINE NUMBER 

ARGUMENT FOR 
SUBROUTINE CALL 

ARGUMENT/RESULT FOR 
SUBROUTINE CALL 

SCRATCH 

POINTER TO NEXT 
CHARACTER 

POINTER TO LINE 
BUFFER 

POINTER TO GOSUB 

POINTER TO BASIC 
PROGRAM 

POINTER TO GOSUB 

FREE 

1/0 PORTS 

12 7 

4 
3 

4 
3 

32 

1 

0 

9 

8 
7 

24 
23 

22 
2 1 

20 
19 

18 
1 7 

16 
5 

14 
13 

12 
11 

10 
9 

EXPRESSION 
EVALUATION 

STACK 

FREE 

COUNTER 

USED INTERNALLY 

SCRATCH 

POINTER TO 
CONSTANT BLOCK 

USED INTERNALLY 

LINE NUMBER 

ARGUMENT FOR 
SUBROUTINE 

ARGUMENT/ROUTINE FOR 
SUBROUTINE CALL 

SCRATCH 

POINTER TO INPUT 
LINE BUFFER 

POINTER TO END OF 
LINE BUFFER 

POINTER TO STACK 
BOTTOM 

ADDRESS OF USER 
PROGRAM 

POINTER TO GOSUB 
STACK 

POINTER TO END 
OF PROGRAM 

1/0 PORTS 

Figure 7a. Gene(8I.Purpose R,egisters with External RAM Figure 7b. General·Purpose Registers without External RAM 

34 

--+-( 
255 

1-.....:....:....:.....:..._L-_:....:...:...-=----t 253 

.... ____ - __ ------..... 240 
THE UPPER NIBBLE OF THE REGISTER 
FILE ADDRESS PROVIDED BY THE 
REGISTER POINTER SPECIFIES THE 
ACTIVE WORKING REGISTER GROUP 

1 27 

--+-

--+- { 
--+- ( 

1 
--+-{ 
--+-{ 

--+- ( 

SPECIFIED WORKING-
~-REGISTER GROUP 

1 

f- - - -I/OPORTS-- - -- 3 
0 

Figure 8. The Register Pointer 

THE LOWER 
NIBBLE OF 
THE REGISTER 
FILE ADDRESS 
PROVIDED BY 
THE INSTRUCTION 
POINTS TO THE 
SPECIFIED 
REGISTER, 



PROGRAM EXECUTION 

Automatic Start-up. The Z8671 has an automatic start-up 
capability which allows a program stored in ROM to be 
executed without operator intervention. Automatic 
execution occurs on power-on or Reset when the program is 
stored at address 1020H. 

Execution Modes. The Z8671's BASIC/Debug Interpreter 
operates .in two execution modes: Run and Immediate. 

INTERACTIVE DEBUGGING 

Interactive debugging is accomplished with the self­
contained line 'editor which operates in the Immediate 
mode. In addition to changing program lines, the editor can 
correct an immediate command before it is executed. It also 
allows the correction aftyping and other errors as a program 
is entered. 

BASIC/Debug allows interruptions and changes during a 

COMMANDS 

BASIC/Debug recognizes 15 command keywords. For 
detailed instructions of command usage, refer to the 
BASIC/Debug Software Reference Manual (#03-3149-02). 

FO The GO command unconditionally branches 
to a machine language subroutine. This 
statement is similar to the USR function 
except that no value is returned by the 
assembly language routine. 

GOSUB GOSUB unconditionally branches to a 
subroutine at a line number specified by the 
user. 

GOTO GOTO unconditionally changes the se­
quence of program execution (branches to a 
line number). 

IF/THEN This command is used for conditional 
operations and branches. 

INPUTIIN These commands request information from 
the user with the prompt "?", then read the 
input values (which must be separated by 
commas) from the keyboard, and store them 
in the indicated variables. INPUT discards 
any values remaining in the buffer from 
previous IN, INPUT, or RUN statements, and 
requests new data from the operator. IN uses 

Programs are edited and interactively debugged in the 
Immediate mode. Some BASIC/Debug commands are 
used almost exclusively in this mode. The Run mode is 
entered from the Immediate mode by entering the 
command RUN. If there is a program in RAM, it is executed: 
The system returns to the Immediate mode when program 
execution is complete or interrupted by an error. 

program run to correct errors and ad,d new instructions 
without disturbing the sequential execution of the program. 
A program run is interrupted with the use of the escape key. 
The run is restarted with a GOTO command, followed by the 
appropriate line number, after the desired changes are 
entered. The same procedure is used to enter corrections 
after BASIC/Debug returns an error. 

LET 

LIST 

NEW 

PRINT 

REM 

RETURN 

RUN 

STOP 

any values left in the buffer first, theri requests 
new data. 

LET assigns the value of an expression to a 
variable or memory location. 

This command is used in the interactive mode 
to generate a listing of program lines stored in 
memory on the terminal device. 

The NEW command resets pointer R1 0-11 to 
the beginning of user memory, thereby 
marking the space as empty and ready to 
store a new program~ 

PRINT lists its arguments~ which may be text 
messages or numerical values, on the output 
terminal. 

This command is used to insert explanatory 
messages into the program. 

This command returns control to the line 
following a GOSUB statement. 

RUN initiates sequential execution of all 
instructions in the current program. 

STOP ends program execution and clears the 
GOSUB stack. 

35 



FUNCTIONS 

SASIClt)ebug supports two functions: AN D and USA. 

The AND function performs a logical AND. It can be used to 
mask, turn off, or isGiate bits. This function is used in the 
following format: 

AND (expression, expression) 

The two expressions are evaluated, and their bit patterns are 
ANDed together. If only one value is included in the 
parentheses, it is AN Ded with itself. A logical OR can also be 
performed by complementing the AND function. This. is 
accomplished by subtracting each expression from -1. For 
example, the function betow is equivalent to the OR of A 
andS. 

-1-AND(-1-A, -1-B) 

SERIAL INPUT/OUTPUT 

Port 3 Nnes P30 and P37 can be programmed as serial 110 
lines for fUll-duplex serial asynchronous receiver/transmitter. 
operatiort Thebit rate is controlled by Counter/Timer 0, with 
a maximum rate of 62.5K bits/second.· 

The Z8671 automatically adds a start bit and two stop bits to 
transmitted data (Figure 9). Odd parity is also available as an 
option. Eight data bits are always transmitted, regardless of 

LSTART BIT 

'------EIGHT !lATA BITS 

TWO STOP BITS 

TRANSMITTED DATA 
(No Parity) 

~pl~lpl~I~I~I~I~I~I~I~1 T I I '-------------LSTART BIT 
---,,---SEVEN DATA BITS 

ODD PARITY 

TWO STOP BITS 

TRANSMITTED DATA 
(With Parity) 

The USR function calls a machine language subroutine and 
returns a value. This is useful for applications in which a 
subroutine can be performed more. quickly and efficiently in 
machine language than in BASIC/Debug. 

The address of the first instruction of the subroutine is the 
first argument of the USR function. The address can be 
followed by one or two values to be processed 'by the 
subroutine. In the following example, BASICIDebug 
executes the subroutine located at address 2000 using 
values literal 256 and variable C. 

USR(%2000,256,C) 

The resulting value is stored in Registers 18-19. 

parity selection. If parity is enabled, the eighth data bit is 
used as the odd parity bit. An interrupt request (IRQ4) is 
generated on all transmitted characters .. 

Received data must have a start bit, eight data bits, and at 
least one stop bit. If parity is on, bit 7 of the received data is 
replaced by a parity error flag. Received characters 
generate the IRQ3 interrupt request. 

I~I~I~I~I~I~I~I~I~I~I 

I LSTART BIT 

'------EIGHT DATA BITS 

L... ---------ONE STOP BIT 

RECEIVED DATA 
(No Parity) 

I SP I P I 0,1 05 1 0.1 0,1 0,1 0, I Do I ST I 

I · <---I _LSTAilTBIT 
'------SEVEN DATA BITS 

PARITY ERROR FLAG 

'---------- ONE STOP BIT 

RECEIVED DATA 
(With Parity) 

Figure 9. Serial Data Formats 

36 



1/0 PORTS 

The 28671 has 32 lines dedicated to input and output. 
These lines are grouped into four ports of eight lines each 
and are configurable as input, output or address/data. 
Under software control, the ports can be programmed to 
provide address outputs, timing, status signals, serial I/O, 
and parallel I/O with or without handshake. All ports have 
active pull-ups and pull-downs compatible ~ith TIL loads. 

Port 1 can be programmed as a byte I/O port or as an 
address/data port for interfacing external memory. When 
used as an I/O port, Port 1 may be placed under handshake 
control. In this configuration, Port 3 lines P33 and P34 are 
used as the handshake controls RDY1 and DAV1 (Ready 
and Data Available). 

Memory locations greater than 2048 are referenced 
through Port 1. To interface external memory, Port 1 must be 
programmed for the multiplexed Address/Data mode. If 
more than 256 external locations are required, Port ° must 
output the additional lines. 

Port 1 can be placed in the high-impedance state along with 
Port 0, AS, DS and R/IN, allowing the 28671 to share 
common resources in multiprocessor and DMA 
applications. Data transfers can be controlled by assigning 
P33 as a Bus Acknowledge input and P34 as a Bus Request 
output. 

Port 0 can be programmed as a nibble I/O port, or as an 
address port for interfacing external memory. When used as 
an 1/0 port, Port ° may be placed under handshake control. 
In this configuration, Port 3 lines P32 and P35 are used as 
the handshake controls DAVO and RDYO. Handshake signal 
assignment is dictated by the I/O direction of the upper 
nibble P04-PO? 

Z8G71 
Mf;:U 

Z8G71 
MCU 

PORT 1 
(110 OR ADo-AD7) P1o-P17 

} 
HANDSHAKE CONTROLS 
DAV1 AND RDV1 
(P33 AND P34) 

Figure 10a. Port 1 

} 
pO.,PO, } PORT 0 

. POo'PO, (1/0 OR AS-A15 \ 

_ } HANDSHAKE CONTROLS 
DAVO AND RDVO 
(P32 AND P3s) 

Figure 10b. Port 0 

For external memory references, Port ° can provide address 
bits Aa-A11 (lower nibble) or As-A15 (lower and upper nibble) 
depending on the required address space. If the address 
range requires 12 bits or less, the upper nibble of Port ° can 
be programmed independently as I/O while the lower nibble 
is used for addressing. When Port ° nibbles are defined as 
address bits, they can be set to the high-impedance state 
along with Port 1 and the control signals AS, DS and R/W 

Port 2 bits can be programmed independently as input or 
output. The port is always available for I/O operations. In 
addition, Port 2 can be configured to provide open-drain 
outputs. 

Like Ports ° and 1, Port 2 may also be placed under 
handshake control. In this configuration, Port 3 lines P31 
and P36 are used as the handshake controls lines DAV2 and 
RDY2. The handshake signal assignment for Port 3 lines 
P31 and P36 is dictated by the direction (input or output) 
assigned to bit 7 of Port 2. 

Port 3 lines can be configured as I/O or control lines. In 
either case, the direction of the eight lines is fixed as four 
input (P3a-P33) and four output (P34-P3?). For serial 110, 
lines P3a and P3? are programmed as serial in and serial out 
respectively. 

Port 3 can also provide the following control functions: 
handshake for Ports 0, 1 and 2 (DAV and RDY); four external 
interrupt request signals (IROO-IR03); timer input and 
output signals (TIN and TOUT) and Data Memory Select 
(DM). 

Z8G71 
MCU 

Z8G71 
MCU 

....... P20 ---
PORT 2(110) 

P2, 

} 
HANDSHAKE CONTROLS 
DAV2 AND RDY2 
(P13ANDP36) 

Figure 10c. Port 2 

-- PORTa 
(110 OR CONTROL) 

Figure 10d. Port 3 

37 



COUNTER/TIMERS 

The Z8671 contains two 8-bit programmable counter/timers 
(TO and T1), each driven by its own 6-pit programmable 
prescaler. The T1 prescaler can be driven by internar or 
external clock sources; however, the TO prescaler is driven 
by the internal clock only .. 

The 6-bit prescalers can divide the input frequency of the 
clock source by any number from .1 to 64. Each prescaler 
drives its counter, which decrements the value (1 to 256) that 
has been loaded into the counter .. When the counter reaches 
the end of count, a timer interrupt reque~t-IRQ4 (To) or 
IRQS (T1)-is generated. 

The counters can be started, stopped, restarted to continue, 
or restarted from the initial value. The counters can also be 
programmed to stop upon reaching zero (single-pass 

INTERRUPTS 

The Z8671 allows six different interrupts from eight sources: 
the four Port 3 lines P30-P33, Serial In, Serial Out, and the 
two counter/timers. These interrupts are both maskable and 
prioritized. The Interrupt Mask register globally or 
individually enables or disables the six interrupt requests. 
When more than one interrupt is pending, priorities are 
resolved by a programmable priority encoder that is 
controlled by the Interrupt Priority register. 

All Z8671 interrupts are vectored; however, the internal 
UART operates in a polling fashion. To accommodate a 
polled structure, any or all of the interrupt inputs can be 
masked and the Interrupt Request register polled to 
determine which of the interrupt requests needs service. 

The BASIC/Debug Interpreter does not process interrupts. 
Interrupts are vectored through locations in internal ROM 
which point to addresses 1000-1011 H. To process 

38 

mode) or to automatically reload the initial value and 
continue counting (modulo-n continuous mode) .. The 
counters, but not the prescalers, can be read any time 
without disturbing their value or count mode. 

The clock source for T1 is user-definable; it can be either the 
internal microprocessor clock (4 MHz maximum) divided by 
four, or an external signal input via Port 3. The Timer Mode 
register configures the external timer input as an external 
clock, a trigger input that can be retriggerable or 
nonretriggerable, or as a gate input for the internal clock. 
The counter/timers can be programmably cascaded by 
connecting the TO output to the input of T1. Port 3 line P36 
also serves as a timer output (TOUT) through which TO, T1 or 
the internal clock can be output. 

interrupts, jump instructions can be entered to the interrupt 
handling routines at the appropriate addresses as shown in 
Table 1. 

Table 1. Interrupt Jump Instructions 

Hex 

Address 

1000-1002 

1003-1005 

1006-1008 

1009-1008 

10OC-100E 

100F-1011 

Contains Jump Instruction and . 
S.ubroutine Address for: 

IRQO 
IRQ1 

IRQ2 

IRQ3 
IRQ4 

IRQ5 



CLOCK 

The on-chip oscillator has a high-gain, parallel-resonant 
amplifier for connection to a crystal or to any suitable 
external clodk source (XTAL 1 = Input, XTAL2 = Output). 

The crystal source is connected across XTAL 1 and XTAL2, 
using the recommended capacitance (CL = 15 pf 
maximum) from each pin to ground. The specifications for 
the crystal are as follows: 

INSTRUCTION SET NOTATION 

Addressing Modes. The following notation is used -to 
describe the addressing modes and instruction operations 
as shown in the instruction summary. 

IRR Indirect register pair or indirect working-register 
pair address 

Irr Indirect working-register pair only 
X Indexed address 
DA Direct address 
RA Relative address 
1M Immediate 
R Register or working-register address 
r Working-register address only 
IR Indirect-register or indirect working-register 

address 
Ir Indirect working-register address only 
RR Register pair or working register pair address 

Symbols. The following symbols are used in describing the 
instruction set. 

dst Destination location or contents 
Sre 
cc 
@ 

SP 
PC 
FLAGS 
RP 
IMR 

Source location or contents 
Condition code (see list) 
Indirect address prefix 
Stack pointer (control registers 254-255) 
Program counter 
Flag register (control register 252) 
Register pointer (control register 253) 
Interrupt mask register (control register 251) 

• AT cut, parallel resonant 

• Fundamental type, 8 maximum 

• Series resistance, R ..; 100 Q 

• 8 MHz maximum 

Assignment of a value is indicated by the symbol "9': For 
example, 

dst +- dst + src 

indicates that the source data is added to the destination 
data and the result is stored in the destination location. The 
notation "addr(n)" is used to refer to bit "n" of a given 
location. For example, 

dst(7) 

refers to bit 7 of the destination operand. 

Flags. Control Register R252 contains the following six 
flags: 

C 
Z 
S 
V 
o 
H 

Carry flag 
Zero flag 
Sign flag 
Overflow flag 
Decimal-adjust flag 
Half-carry flag 

Affected flags are indicated by: 

o Cleared to zero 
1 Set to one 

Set or cleared according to operation 
Unaffected 

X Undefined 

39 



CONDITION CODES 

Vallie Mnemonic 

1.000 

0111 C 
1111 NC 
0110 Z 
1110 NZ 
1101 PL 
0101 MI 

,0100 OV 
1100 NOV 
0110 EQ 
1110 NE 
1001 GE 
0001 LT 
1010 GT 
0010 LE 
1111 UGE 
0111 UlT 
1011 UGT 
0011 ULE 
0000 

Meenlng 

Always true 
Carry 
No carry 
Zero 
Not zero 
Plus 
Minus 
Overflow 
No overflow 
Equal 
Not equal 
Greater than or equal 
Less than 
Greater than 
Less than or equal 
Unsigned greater than or equal 
Unsigned less than 
Unsigned greater than 
Unsigned less than or equal 
Never true 

C = 1 

,C = 0 

Z = 1 

'Z = 0 

8=0 
8 = 1 
V=1 
V=O 
Z = 1 
Z=O 

Flags Set 

(8 XOR V) = 0 
(8XORV) = 1 

[Z OR (8 XOR V)] = 0 
[ZOR (8XOR V)] = 1 

C=O 
C=1 
(C = OANDZ = 0) = 1 
(CORl) = 1 

INSTRUCTION FORMATS 

40 

OPC 

ds. ope 

CCF, DI, EI, IRET, NOP, 
RCF, RET, SCF 

INCr 

ONE·BYTE INSTRUCTION 

OPC MODE CLR, CPL, DA, DEC, 

dsVsrc OR 11 1 1 01 dstls .. 1 ~~~~' ~~~RL~~:R;OP, 

, 1f-:---'~7-:::~----l1 OR 11 1 1 01 dst 

OPC 
VALUE 

OPC MODE 

ds' sre 

MODE OPC 
dstlsrc arc/ds' _ 

ds"are ope 
. src/dst OR 11 1 1 01 src 

RRC, SRA, SWAP 

JP, CALL (Indirect) 

SRP 

ADC, ADD, AND, 
CP, OR, SBC, SUB, 
TCM, TM, XOR 

LD, LDE, LDEI, 
LDC, LDCI 

LD 

dst 1 OPC LD 
VALUE 

I dsVCC 1 OPC 
,RA 

DJNZ, JR 

1-_'==---1 OR h 1 1 01 ds1 

MODE OPC 

f-----':"':--I 6: ~ ~ ~ ~ :: 

cc OPC 
DAu 
DA, 

OPC 
DAu 
DA, 

ADC, ADD, AND, CP, 
LD, OR, SBC; SUB, 
TCM, TM, XOR 

ADC, ADD, AND, CP, 
LD, OR, SBC, SUB, 
TCM, TM, XOR 

LD 

LD 

JP 

CALL 

lWo-Byte Instruction THREE·BYTE INSTRUCTION 

Figure 11. Instruction formatS 

I .. 
III 

J 
c: 



INSTRUCTION SUMMARY 

Addr Mode Opcode Flags Affected 
Byte Instruction 

and Operation dst src (Hex) C Z S V 0 H 

ADCdst,src 
dst - dst + src + C 

ADD dst,src 

dst - dst + src 

(Note 1) 

(Note 1) 

AND dst.src (Note 1) 
dst - dst AND src 

CALLdst DA 
SP -SP - 2 IRR 

@SP - PC: PC - dst 

CCF 
C-NOTC 

CLR dst 
dst-O 

COMdst 
dst- NOTdst 

CP dst,src 
dst - src 

DAdst 
dst- OAdst 

DECdst 
dst -dst - 1 

DECWdst 
dst - dst - 1 

01 
IMR(7)-0 

DJNZ r,dst 
r-r - 1 
,f rif' 0 

PC - PC + dst 
Range + 127. -128 

EI 
IMR(7)-1 

INCdst 
dst - dst + 1 

INCWdst 
dst - dst + 1 

IRET 

R 
IR 

R 
IR 

(Note 1) 

R 
IR 

R 
IR 

RR 
IR 

RA 

R 
IR 

FLAGS - @SP; SP - SP + 1 

10 

00 

50 

06 
04 

EF 

BO 
B1 

60 
61 

AD 

40 
41 

00 
01 

80 
81 

8F 

rA 
r = 0 - F 

9F 

rE 
r = 0 - F 

20 
21 

AO 
A1 

BF 

PC -@SP; sp - SP + 2;IMR (7) - 1 

JP cC,dst 
If cc IS true 

PC -dst 

DA 

IRR 

cD 
c=O-F 

30 

*-----

* * * X 

-***--

* * * * * * 

Addr Mode Opcode Flags Affected 
Byte Instruction 

and Operation dst src (Hex) C Z S V 0 H 

JR cC,dst 
if cc IS true, 

PC -PC + dst 
Range: + 127, - 128 

LD dst,src 

dst - src 

RA 

R 

r 
X 
r 
Ir 
R 

1m 
R 

X 
r 
Ir 

R 
R IR 

LDC dst,src 
dst - src 

R 1M 
IR 1M 
IR R 

r Irr 
Irr 

LOCI dst,src Ir Irr 

dst - src Irr Ir 
r-r + 1;rr-rr + 1 

LDE dst,src r Irr 
dst - src Irr 

LDEI dst,src Ir Irr 

dst - src Irr Ir 
r - r + 1; rr - rr + 1 

NOP 

OR dst,src (Note 1) 
dst - dst OR src 

POPdst R 
dst-@SP; IR 
sp -SP + 1 

PUSHs~ R 
SP-SP - 1;@SP-src IR 

RCF 
C-O 

RET 
PC - @SP; SP - SP + 2 

RLdst 

RLCdst~R 
C 7 0 IR 

RI'! dst lilllciJ R 
C 7 0 IR 

cB 
C = 0 - F 

rC 
r8 
r9 

r = 0 - F 
C7 
07 
E3 
F3 
E4 
E5 
E6 
E7 
F5 

C2 
02 

C3 
03 

82 
92 

83 
93 

FF 

40 

50 
51 

70 
71 

CF 

AF 

90 
91 

10 
11 

EO 
E1 
I 

0-----

* * * * 

* * '* * 

41 



INSTRUCTION SUMMARY (Continued) 

Addr Mode Opcode Flags Affected 
Byte Instruction 

and Operation dst src (Hex) C Z S V 0 H 

RRCdst~IR 
~IR 

SBC dst,src (Note 1) 

dst - dst - src - C 

SCF 
C-1 

SRA dst L@] ~ I~ 

SRP src 1m 
RP -src 

SUB dst,src (Note 1) 
dst - dst - src 

SWAP dst 17 S 01 R 
IR 

TCM dst,src (Note 1) 
(NOT dst) AND src 

TM dst,src (Note 1) 
dstANO src 

42 

CO 
C1 

3D 

OF 

DO 
01 

31 

20 

FO 
F1 

60 

70 

1-----

***0--

* * * * 1 * 

X * * X 

-* * 0 

-**0--

AddrMode Opcode Flags Affected 
Instruction Byte 
and Operation dst src (Hex) C Z S V 0 H 

XORdst,src (Note 1) BO -** 0--
dst - dst XOR src 

NOTE: These instructions have an identical set of addressing modes, 
which are encoded for brevity. The first opcode nibble is found in 
the instruction set table above. The second nibble is expressed 
symbolically by a D In this table, and ItS value is found In the 
follOWing table to the left of the applicable addreSSing mode pair. 

For example, the opcode of an ADC instruction using the 
addressing modes r (destination) and Ir (source) is 13. 

AddrMode 
Lower 

dst src Opcode Nibble 

II] 
Ir [I] 

R R m 
R IR IIJ 
R 1M W 
IR 1M m 

N oa 
GI 
!oil ... 
I 
C"J 
CI 



REGISTERS R240SI0 
Serial I/O Register 

(FOH; Read/Write) 

L-___ SERIAL DATA (Do '" LSS) 

R241 TMR 
Time Mode Register 

(F1 H; Read/Wrrte) 

NOT useD:: 00 .-J 1 ::: LOAD To 

~o g~~ : ~~ 0 ;;; DISABL.E To COUNT 

To", MODES j lW~O = NO FUNCTION 

INTERNAL CLOcK OUT = 11 1 '" ENABLE To COUNT 

T MODES 0 :: NO FUNCTION 
EXTERNAL. CLOCK IN~OT = 00 1 = LOAD T 1 

GATE INPUT", 01 0 :: DISABLE 1, COUNT 
TRIGGER INPUT = 10 1 = ENABLE T COUNT 

(NQN.RETRIGGERABLEj 1 
TRIGGER INPUT = 11 

(RETRIGGERABLE) 

R242T1 
Counter Timer 1 Register 

(F2H; Read/Write) 

1, INITIAL. VALUE (WHEN WRITTEN) 
L----(RANGE 1-256 DECIMAL 01-00 HEX) 

1, CURRENT VALUE (WHEN READ) 

R243 PRE1 
Prescaler 1 Register 

(F3H; Write Only) 

~LCOUNTMODE 
1 .= T, MODULO·N 

, 0 "" T\ SINGLE·PASS 

CLOCK SOURCE 
1 = Tl INTERNAL 
o " T 1 EXTERNAL 

TIMING INPUT 
(Tn,.) MODE 

PRESCAL(:R MODULO 
. (RANGE: 1·64 DECIMAL 

01·00 HEX) 

R244 TO 
Counter/Timer 0 Register 

(F4H; Read/Write) 

To INITIAL VALUE (WHEN WRITTEN) 
L----(RANGE: 1-256 DECIMAL 01-00 HEX) 

To CURRENT VALUE (WHEN READ) 

R245 PREO 
Prescaler 0 Register 

(F5H; Write Only) 

~LCOUNTMODE 
o = To SINGlE·PASS 
1 = To MODUlO·N 

RESERVED (MUST BE 0) 

PRESCALER MODULO 
(RANGE: 1-64 DECIMAL 
01-00 HEX) 

R246P2M 
Port 2 Mode Register 

(F6H; Write Only) 

R247P3M 
Port 3 Mode Register 

(F7H; Write Only) 

[gELO PORT 2 PULL·UPS OPEN DRAIN 
1 PORT 2 PULL·UPS ACTIVE 

RESERVED (MUST BE 0) 

o P32 = INPUT P3s '" OUTPUT 
1 P32 == liAW/RDYO P3s = RDYO/IlAVO 

o 0 P33 = INPUT P34 = OUTPUT 

~ ri } P33 = INPUT P34 = OM 
11 RESERVED 

o P31 = INPUT (TIN) P3G = OUTPUT (TOUT) 
1 P31 '" DAV2IRDY2 P3G = RDY2I~ 

L _______ ~ ~~ ~ ~N~~lL IN :~~ ~ ~~~r,.ULTOUT 

L __ ~ _____ ~ ~:=:~~ g~F 

Figure 12. Control Registers 

43 



REGISTERS 
(Continued) 

R248P01M 
Port 0 Register 
(F8H; Write Only) 

po._po, MODE:] ~-r po,-po, MODE 
OUTPUT 1= 00 ~ L 00 = OUTPUT 

INPUT = 01 01 = INPUT 
A'2-A,S = 1X 1X = Aa-A11 

EXTERNAL , STACK SELECTION 
MEMORY TIMING 0 = EXTERNAL 

NORMAL = 0 1 = INTERNAL 
*EXTENOED = 1 

RESERVED (MUST BE 0) 

'ALWAYS EXTENDED TIMING AFTER REseT 

R2491PR 
Interrupt Priority Register 

(F9H; Write Only) 

I~I~I~I~I~I~I~I~I 

RESERVED:::: 000 
IRQ3, IROS PRIORITY (GROUP A) c > A > B = 001 

"_.,,:J I I III ...... '"-.~m 
o ;: IROS > IR03 A > B :> C :::: 010 
1 '" IRoa > IRQS A> C :> 8 = 011 

IROO, IRQ2 PRIORITY (Gf\OUP 8) g ~ ~ ~ : ~ ~~~ 
o :::: IRQ2 ::> IROO B > A ::> C = 110 
1 '" IROO ':> IRQ2 RESERVED = 111 

IRQ1, IRQ4 PRIORITY (GROUP C) 
o = IRQ1 ::> IRQ4 
1 :::: IRQ4 :> IRQ1 

R250 IRQ 
Interrupt Request Register 

(FAH; Read/Write) 

I~I~I~I~I~I~I~I~I 

RESERVED (MUST BE 0) T c= IROO 
IRQ1 
IRQ2 
IRQ3 
IRQ4 
IROS 

R2511MR 
Interrupt Mask Register 

(FBH; Read/Write) 

1~1~1~1~1~1~1~1~1 

P30liNPUT (Do "" IROO) 
P3J INPUT 
P311NPUT 
P30 INPUT, SERIAL INPUT 
To, SERIAL OUTPUT 
T, 

I' c= 1 ENABLES IROO-IAOS 
(Do;;; IRQO) 

'--------RESERVED (MUST BE 0) 

'--------1 ENABLES INTERRUPTS 

REGISTER 
POINTER 

Figure 12. Control Registers (Continued) 

44 

R252 FLAGS 
Flag Register 

(FCH; Read/Write) 

H~~
' LUSERFLAG" 
LUSER FLAG F2 

HALF C~RRY FLAG 

• 

DECIMAL-ADJUST FLAG 

OVERFLOW FLAG 

SIGN FLAG 

ZERO FLAG 

CARRY FLAG 

R253 RP 
Register Pointer 
(FDH; Read/Write) 

LOON'TCARE 

R254SPH 
Stack Pointer 

(FEH; Read/Write) 

. R255SPL 
Stack Pointer 

(FFH; Read/Write) 

I~I~I~I~I~I~I~I~I 

1'-___ :~~~~s~~~~;~R LOWER 

i 
to 
to 

~ « c 



OPCODEMAP 
Lower Nibble (Hex) 

1, 4 6 7 8 9 A B C D E F 

6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5 6,5 6,5 12/10,5 12/10,0 6,5 12/10,0 6,5 
o DEC DEC ADD ADD ADD ADD ADD ADD LD LD DJNZ JR LD JP INC 

R, IR, r1.r2 (1. lr2 R2,R, IR2,R, R"IM IR"IM r"R2 r2,R, r"RA cC,RA r"IM cC,DA rl 
-

6,5 ' 6,5 6,5 6,5 10,5 10,5 10,5 10,5 
RLC RLC ADC ADC ADC ADC ADC ADC 
R, IR, (1,r2 (1. lr2 R2,R, IR2,R, R"IM IR"IM 

6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5 r----
2 INC INC SUB SUB SUB SUB SUB SUB 

R, IR, r1/2 r1, lr2 R2,R, IR2,R, R"IM IR"IM 

8,0 6,1, 6,5, 6,5 10,5 10,5 10,5 10,5 r--
JP SRP' SBC SBC SBC SBC SBC SBC 

IRR, 1M r1.f2 r1, lr2 R2,R, IR2,R, R"IM IR"IM 

8,5 8,5 6,5 6,5 10,5 10,5 10,5 10,5 
r----

4 DA DA OR OR OR OR OR OR 
R, IR, rl.r2 r1, lr2 R2,R, IR2,R, R"IM JR"IM , 

~ 

10,5 10,5 6,5 6,5 10,5 10,5 10,5 10,5 
5 POP POP AND AND AND AND AND' AND 

R, IR, r1,r2 r1. lr2 R2,R, IR2,R, R"IM IR"IM 
-

6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5 
COM COM TCM TCM TCM TCM TCM, TCM 

R, IR, r1,r2 (1, lr2 R2,R, IR2,R, R"IM IR"IM 
6 

10/12,1 12/14,1 6,5 6,5 10,5 
-

10,5 10,5 10,5 
PUSH PUSH TM TM TM TM TM TM 

R2 IR2 r1,r2 (1, lr2 R2,R, IR2,R, R"IM IR"IM 

10,5 '0,5 12,0 18,0 ~ 
DECW DECW LDE LDEI DI 

RR, IR, rl, lrr2 Ir1,lrr2 

6,5 6,5 12,0 18,0 ~ 

i e. 7 

~ .. z 
& 8 ... 
:::> 

RL RL LDE LDEI EI 
R, IR, r2· lrr1 Ir2,lrrl 

10,5 10,5 6,5 6,5 10,5 10,5 10,5 10,5 r-----;w 
A INCW INCW CP CP CP CP CP CP RET 

RR, IR, r1.r2 rl, lr2 R2,R, IR2,R, R"IM IR"IM 
, 

6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5 r---w:o 
B CLR CLR XOR XOR XOR XOR XOR XOR IRET 

R, IR, r1· r2 r1, lr2 R2,R, IR2,Rh R"IM IR"IM 

6,5 6,5 12,0 18,0 10,5 ~ 
C RRC RRC LDC LDCI LD RCF 

R, IR, r1,lrr2 Irt,lrr2 rl,x,R2 

6,5 6,5 12,0 18,0 20,0 20,0 10,5 r----s:s 
D SRA SRA LDC LDCI CALL' CALL LD SCF 

R, IR, r2: lrr1 Ir2,lrr1 IRR, DA f2,X,Rl 

6,5 6,5 6,5 10,5 10,5 10,5 10,5 r----s:s 
E RR RR LD LD LD LD / LD CCF 

R, IR, r" IR2 R2,R, IR2,R, R"IM IR"IM 

85 8,5 6,5 '0,5 ~ 
F SWAP SWAP LD LD NOP 

R, IR, Ir1.r2 R2,IR, 

'-.... ----.... "',,----.... ' '-... ----... v,,----.... .1 '-... ------v-,,-----.... " ~"----v---" 
2 

EXECUTION 
CYCLES 

FIRST 
OPERAND 

• 2-byte instruction fetch cycle appears as a 3-byte instruction 

PIPELINE 
CYCLES 

MNEMONIC 

SECOND 
OPERAND 

Byte. per Instruction 

2 

Legend: 
R - 8·bit address 
r = 4-blt address 
Rt or'r1 ::: Dstaddress 
R2 or r2 "" Src a~dress 

Sequence: 

3 

Opcode, First Operand, Second Operand 

NOTE: The blank areas Bre not defined 

45 



ABSOLUTE MAXIMUM RATINGS 

Voltages on all pins with respect 
to GND ......................... - O.3V to + 7.0V 

Operating Ambient 
Temperature .............. See Ordering Information 

Storage Temperature .............. -65°Cto +150 oC 

STANDARD TEST CONDITIONS 

The DC characteristics listed below apply for the following 
standard test conditions, unless otherwise noted. All 
voltages are referenced to GND. Positive current flows into 
the referenced pin. 

Standard conditions are: 

• +4.75V~Vee~ +5.25V 

• GND = OV 

Stresses greater than those listed under Absolute Maximum Ratings may 
cause pe(manent damage to the device. This is a stress rating only; 
operation of the device at any condition above those indicated in the 
operational sections of these specifications is not implied. Exposure to 
absolute maximum rating conditions for extended periods may affect 
device reliability. 

The Ordering Information section lists package temperature 
ranges and product numbers. Package drawings are in the 
Package Information seCtipn. Refer to the Literature List for 
additional documentation. 

+5V 

2.1K 

'::' '::' 

Figure 13. Test Load 1 

DC CHARACTERISTICS 

Symbol Parameter 

VeH Clock Input High Voltage 

Vel Clock Input Low Voltage 

VIH Input High VOltage 

Vil Input Low Voltage 

VRH Reset Input High Voltage 

VRL Reset Input Low Voltage 

VOH Output High Voltage 

VOL Output Low Voltage 

III I nput Leakage 

IOl Output Leakage 

IIR Reset Input Current 

lee Vee Supply Current 

46 

Min Max 

3A Vee 

-0.3 0.8 

2.0 Vee 

-0.3 0.8 

3.8 Vee 

-0.3 U.8 

2.4 

0.4 

-10 10 

-10 10 

-SO 

180 

Unit, 

V 

V 

V 

V 

V 

V 

1/ 

V 

J-IA 

J-IA 

J-IA 

rnA 

Condition 

Driven by External Clock Generator 

Driven by External Clock Generator 

IOH = -2S0J-lA 

IOl = +2.0 rnA 

OV ~ VIN ~ + 5.25V 

OV ~ VIN ~ + 5.25V 

Vee = + S.2SV, VRl = OV 



RIW 

PORT 0, 
DM 

PORT 1 

Os 
(READ) 

PORT 1 

DS 
(WRITE) 

)( 
~ 

~ 

)j 
-0-

1----0--

--

16 
3 

AO"-A7 ~ 

-0- , 

. 
~I .. 

I----®----J' 
AO-A7 X 

I----®---I 

--®-I 

K= 
< Do-D,IN ) < .... 01-

0 • ~1\ 
CD "1 

-®-
00-07 OUT }( 

-®-I 
J y 

Figure 16. External 110 or Memory ReadlWrite 

AC CHARACTERISTICS 
External 110 or Memory Read/Write Timing 

No. Symbol Parameter 

TdA(AS) Address Valid to AS t Delay 

2 TdAS(A) AS t to Address Float Delay 

3 TdAS(DR) AS t to Read Data Required Valid 

4 TwAS AS Low Width 

5 TdAz(DS) Address Float to OS ~ 

Min 

35 

45 

55 

o 

Max 

220 

Notes*tO 

2.3 

2.3 

1.2.3 

1.2.3 

6-TwDSR OS (Read) Low Width --------------185-------1.2.3 

7 TwDSW OS (Write) Low Width 110 1.2.3 

8 TdDSR(DR) OS ~ to Read Data Required Valid 130 1.2.3 
9 ThDR(DS) Read Data to OS 1 Hold Time o 

10 TdDS(A) OS fto Address Active Delay 45 2.3 

11 TdDS(AS) OS t to AS ~ Delay 55 2.3 

12 - TdR!W(AS) -- RIWValid to AS t Delay --------------30------- 2.3 

13 TdDS(RIW) OS fto RIW Not Valid 35 2.3 

14 TdDW(DSW) Write Data Valid to OS (Write) ~ Delay 35 2.3 

15 TdDS(DW) OS t to' Write Data Not Valid Delay 45 2.3 
16 TdA(DR) Address Valid to Read Data Required Valid 

17 TdAS(DS) AS t to DS~ Delay 

255 

55 

1.2.3 

2.3 

NOTES: 
1. When using extended. memory timing add 2 TpC. 
2. Timing numbers given are for minimum TpC. 
3. See clock cycle time dependent characteristics table. 

t Test Load 1. 
o All timing references use 2.0 V fora logic "1" and O.S V for a-logic "OH, 
.. AU units in nanoseconds (ns). 

47 



Figure 17. Additional Timing 

AC CHARACTERISTICS 
Additional Timing 

No. Symbol 

TpC 

2 TrC,TfC 

3 TwC 

Parameter 

Input Clock Period 

Clock Input Rise And Fall Times 

Input Clock Width 

4 TwTinL Time Input Low Width 

MID 

80 

26 

70 
5-TwTinH ---Timer Input High Width ---------------- 3TpC 

6 TpTin Timer Input Period 

7 TrTin, TfTin Timer Input Rise And Fall Times 

Sa TwIL Interrupt Request Input Low Time 

8b TwIL 

9 TwIH 

Interrupt Request Input Low Time 

Interrupt Request Input High Time 

NOTES: . . 
1. Clock timing references uses 3.8 V for a logic "I".ond 0.8 V for 

a logic "0". . 
2. Timing referenoe uses 2.0 V for 0 logic "I" and 0.8 V for 

a logic "OH. 

8TpC 

70 
3TpC 

3TpC 

3. Interrupt request via Port 3 (P3I-P33l. 
4. Interrupt request via Port 3 (P30) . 
• Units in nanoseconds (ns). 

Max 

1000 
15 

100 

AD-.AfD 4;.... __________ AD_D_R_ES_S_V_A_LI_D _________ ~~ 
_---J __ ~j.-_. _____ 0 ___ ~jr----------------~T~~2-

DD-DT DgN'T CARE ~ DA!A IN VALID ~ 

Figure 18. Memory Port Timing 

AC CHARACTERISTICS 
Memory Port Timing 

No. Symbol 

TdA(Dl) 

2 ThDI(A) 

NOTES: 
1. Test Lood 2. 

Parameter 

Address Valid to Data Input Delay 

Data In Hold time 

2. This Is a Clock-Cycle-Dependant parameter. For clock frequencies 
other thml the maximum, use the follOWing formula: 5 TpC - 95 

48 

Min Max 

320 
o 

*Units are nanoseconds unless otherwise specified.. 

II a 
CI 

Notes· II .. 
I 
t 
C 

I 

2 

2 

2 

2 

2,3 

2.4 

2,3 

Notes· 

1,2 



DATA IN 

OAV 
(INPUT) 

ROY 
(OUTPUT) 

DATA OUT 

OAV 
(OUTPUT) 

ROY 
(INPUT) 

AC CHARACTERISTICS 
Handshake Timing 

No. Symbol Parameter 

(i) 

TsDI(DAV) Data In Setup Time 

2 ThD!(DAV) Data In Hold time 

DATA IN VALID x 

,'--------
Figure 18a.lnput Handshake 

DATA OUT VALID 

>------10)----1 

Figure 18b. Output Handshake 

Min 

3 TwDAV Data Available Width 

o 
160 

120 

Max Notes· 

4 T dDAVIf(RDY) DAV • Input to RDY • Delay 120 1,2 

5-TdDAVOf(RDY)-- DAV • Output to RDY • Delay------------O --------1,3 

6 T dDAVIr(RDY) I5XV iInput to RDY t Delay 120 1,2 

7 TdDAVOr(RDY) l)]W't Outputto RDY t Delay 0 1,3 

8 TdDO(DAV) Data Outto DAV • Delay 30 

9 TdRDY(DAV) Rdy. Input to I5XV t Delay 0 

NOTES: 
1. Test load 1 
2. Input handshake 
3. Output handshake 
t All timing references use 2.0 V for a logic "1" and 0.8 V for 

a logic "0". 

• Units in nanoseconds (ns). 

CLOCK CYCLE TIME-DEPENDENT CHARACTERISTICS 

Z8671-8 
Number Symbol Equation Number Symbol 

1 TdA(AS) TpC - 75 13 TdDS(R/W) 
2 TdAS(A) TpC- 55 14 TdDW(DSW) 
3 TdAS(DR) 4TpC - 140* 15 TdDS(DW) 
4 TwAS TpC - 45 16 TdA(DR) 
6 TwDSR 3TpC - 125* 17 TdAS(DS) 

7 TwDSW 2TpC - 90* 
8 TdDSR(DR) 3TpC - 175* 

10 Td(DS)A TpC - 55 
11 TdDS(AS) TpC - 55 
12 TdR/W(AS) TpC - 75 

* Add 2TpC when using extended memory timing 

140 

Z8671-8 
Equation 

TpC - 65 
TpC - 75 
TpC - 55 

5TpC - 215 * 
TpC - 45 

49 



~ ZiIm Product Specification 

FEATURES 

• Complete microcomputer, 24 I/O lines, and up to 64K 
bytes of addressable external space each for program 
and data memory. 

• 143-byte register file, including 124 general-purpose 
registers, 3 I/O port registers, and 16 status and control 
registers. 

• Vectored, priority interrupts for I/O, counter/timers, and 
UART 

• On-chip oscillator that accepts crystal or external clock 
drive. 

GENERAL DESCRIPTION 

The Z8681 and Z8682 are ROM less versions of the Z8 
single-chip microcomputer. The Z8682 is usually more cost 
effective. These products differ only slightly and can be 
used interchangeably with proper system design to provide 
maximum flexibility in meeting price and delivery needs. 

RESET +5V 

R/W GND 

Os XTAL1 

AS XTAL2 

POo P20 

PO, P2, 

po, P2, 
PORTO 

PO, P2, (NIBBLE 
PROGRAMMABLE) PO. P2. 

1/0 OR As-A15 
POs Z8681182 P2s 

PO. MCU P'4 

PO, P2, 

P'o P30 

P', P3, 

P', P3, 
PORT 1 P', P3, (BYTE 

PROGRAMMABLE) p'. P3. 
ADo-AD? 

P', P3, 

p'. P3. -- P', P3, 

Figure 1. Pin Functions 

50 

Z8681/82 Z8® 
ROMless MCU 

June 1987 

• Full-duplex UART and two programmable 8-bit 
counter/timers, each with a 6-bit programmable 
prescaler. 

• Register Pointer so that short, fast instructions can 
access anyone of the nine working-register groups .. 

• Single + 5V power supply-all I/O pins TTL compatible. 

• Z8681/82 available in 8 MHz. Z8681 also available 
in 12 and 16 MHz. 

The Z8681/82 offers all the outstanding features of the Z8 
family architecture except an on-chip program ROM. Use of 
external memory rather than a preprogrammed ROM 
enables this 2:8 microcomputer to be used in low volume 
applications or where code flexibility is required. 

;SV P3. 

XTAL2 P3, 

XTAL1 P2, 

P3, P2. 

P30 P2, 

RESET P2. 

R/W P2, 

os P2, 

AS P2, 

P3, P20 

GND P3, 

P3, P3. 

POo P', 

PO, P', 

po, P', 

po, p'. 
po. P', 

po, P', 

po, P', 

po, P'o 

Figure 2a. 40-pin Dual-In-Line Package (DIP). 
Pin Assignments 



The Z8681 182 can provide up to 16 output address lines, 
thus permitting an address space of up to 64K bytes of data 
or program memory. Eight address outputs (ADo-AD?) are 
provided by a multiplexed, 8-bit, AddresslData bus. The 
remaining 8 bits can be provided by the software 
configuration of Port 0 to output address bits As-A15' 

Available address space can be doubled (up to 128K bytes 
for the Z8681 and 124K bytes for the Z8682) by 
programming bit 4 of Port 3 (P34) to act as a data memory 
select output (OM). The two states of OM together with the 
16 address outputs can define separate data and memory 
address spaces of up to 64K/62Kbytes each. 

There are 143 bytes of RAM located on-chip and organized 
as a register file of 124 general-purpose registers, 16 control 
and status registers, and three 1/0 port registers. This 
register file can be divided into nine groups of 16 working 
registers each. Configuring the register file in this manner 
allows the use of short format instructions; in addition, any of 
the individual registers can be accessed directly. 

The pin functions and the pin assignments of the 
Z8681/82 40- and 44-pin packages are illustrated in 
Figures 1 and 2, respectively. 

• ... ,' :vI).. 

~v <{~~ q"J'\ + .... '11" .¢t:t" x~4. q"J'O <{':;' q'l-'\ <{I,.ro q'},VJ 

OUTPUT 

llllllll 
1/0 

REsn 7 

R/IN 8 

os • 
AS 10 

P3, 11 

GND 12 

P3, 13 

PO. " 
PO, 15 

PO, 16 

NC 17 

6 5 4 3 2 1 «43 42 41 40 

Z8681 
MCU 

18 19 20 21 22 23 24 25 26 27 28 

qf;;)":J qf;;)'iI< qO'" qt:}O qtfl. </,f;) <l"q ..... "" q"'n;, </,11< +v 

3. NC 

38 P2. 

37 P2, 

36 P2, 

35 P2, 

3. P2. 

33 P3, 

32 P3. 

31 P1, 

30 P1, 

2. P1, 

Figure 2b. 44-pin Chip Carrier, 
Pin ASSignments 

XTAL AS os R/W REID 

ADDRESS OR I/O ADDRESS/DATA OR I/O 
(BIT PROGRAMMABLE) (NIBBLE PROGRAMMABLE) (BYTE PROGRAMMABLE) 

'--------------~v--------------~' 
Z·BUS WHEN USED AS 

ADDRESS/DATA BUS 

Figure 3. Functional Block Diagram 

51 



ARCHITECTURE 

Z8681/82 architecture is characterized by a flexible 1/0 
scheme, an efficient register and address space structure 
and a number of ancillary features that are helpful in many 
applications. 

Microcomputer applications demand powerful 1/0 
capabilities. The Z8681 182 fulfills this with 24 pir)s available 
for input and output. These lines are' grouped into three 
ports of eight lines each and are configurable under 
software control to provide timing, status signals, seriai"or 
parallel 1/0 with or without handshake, and an Address bus 
for interfacing external memory. 

Three basic address spaces are available: program 

PIN DESCRIPTION 

AS. Address Strobe (output, active Low). Address Strobe is 
pulsed once at the beginning of each machine cycle. 
Addresses output via Port 1 for all external program or data 
memory transfers are valid at the trailing edge of AS. 

OS. Data Strobe (output, active Low). Data Strobe is 
activated once for each external memory transfer. 

POO·P07. P20·P27. P30·P37. I/O Port Lines (input/outputs, 
TTL-compatible). These 24 lines are divided into three 8-bit 
1/0 ports that can be configured under program control for 
1/0 or external memory interface (Figure 3). 

P1o·P17. Address/Data Port (bidirectional). Multiplexed 
address (Ao-A?) and data (Do-D?) lines used to interface with 

memory, data memory and the register file (internal). The 
143-byte random-access register file is composed of 124 
general-purpose registers, three 1/0 port registers, and 16 
control and status registers. 

To unburden the program from coping with real-time 
problems such as serial data communication and 
countingltiming, an asynchronous receiverltransmitter 
(UART) and two counterltimers with a large number of 
user-selectable modes are offered on-chip. Hardware 
support for the UART is minimized because" one of the 
on-chip timers supplies the bit rate. Figure 3 shows the 
Z8681 182 block diagram. 

program and data memory. 

RESET . Reset (input, active Low). RESET initializes the 
Z8681/82. After RESET the Z8681 is in the extended 
memory mode. When RESET. is deactivated, program 
execution begins from program location OOOCH for the 
Z8681 and 0812H for the Z8682. 

R/W. Read/Write (output). RIW is Low when the Z8681/82 is 
writing to external program or data memory. 

XTAL 1. XTAL2. Crystal 1, Crystal 2 (time-base input and 
output). These pins connect a parallel-resonant crystal to the 
on-chip clock oscillator and buffer. 

SUMMARY OF Z8681 AND Z8682 DIFFERENCES 

Feature Z8681 

Address of first instruction executed after Reset 12 

Addressable memory space 0-64K 

Address of interrupt vectors 0-11 

Reset input high voltage TTL levels * 
Port 0 configuration after Reset Input, float after reset. Can be 

programmed as Address bits. 

External memory timing start-up configurations Extended Timing 

Interrupt vectors 2 byte vectors point directly to service 
routines. 

I nterrupt response time 26 clocks 

* S.OV VIN max. 

52 

Z8682 

2066 

2K-64K 

2048-2065 

7.35-8.0V 

Output, configured as Address bit 

AS-A15· 

Norma) Timing 

2 byte vectors in internal ROM point to 3 
byte Jump instructions, which point to 
service routines. 

36 clocks 



" 

ADDRESS SPACES 

Program Memory". The Z8681/82 addresses 64K/62K 
bytes of external program memory space (Figure 4), 

For the Z8681 , the first 12 bytes of program memory are· 
reserved for the interrupt vectors, These locations contain 
six 16-bit vectors that correspond to the six available 
interrupts. Program execution begins at location OOOCH 
after a reset. 

The Z8682 has six 24-bit interrupt vectors beginning at 
address 0800H. The vectors consist of Jump Absolute 
instructions. After a reset, program execution begins at 
location 0812H for the Z8682. 

Data Memory'. The Z8681 /82 can address 64K/62K qytes 
of external data memory. External data memory may be 
included with or. separated from the external program 
memory space. OM, an optional I/O function that can be 
programmed to appear on pin P34, is used to distinguish 
between data and program memory space. 

Register File. The 143-byte register file includes three I/O 

Z8681 
5536 

PROGRAM 
MEMORY 

port registers (RO,R2, R3), 124 general-purpose registers 
(R4-R127) and 16 control and status registers (R240-R255). 
These registers are assigned the address locations shown in 
Figure 5. 

Z8681/82 instructions can access registers directly or 
indirectly with an 8-bit address field. This also allows short 
4-bit register addressing using the Register Pointer (one of 
the control registers). In the 4-bit mode, the register file is 
divided into nine working-register groups, each occupying 
16 contiguous locations (Figure 5). The Register Pointer 
addresses the starting location of the active working-register 
group (Figure 6). 

Stacks. Either the internal register file or the external data 
memory can be used for the stack. A 16-bit Stack Pointer 
(R254 and R255) is used for the external stack, which can 
reside anywhere in data memory. An 8-bit Stack Pointer 
(R255) is used for the internal stack that resides within the 
124 general-purpose registers (R4-R127). 

Z8682 

PROGRAM 
MEMORY 

r-----
~ 

~ IROS = 
~ IR04 = 
~ IR03 = 
~ IR02 = 
~ IR01 = 
~ IROO = 

NOT 
ADDRESSABLE 

6553 

/ 
{812H 
(811H 

.--

(800H 
2047 

LOCATION OF FIRST 
BYTE OF INSTRUCTION 
EXECUTED AFTER 
RESET (Z8682) 

) 2066 
) 2065 

3 BYTE INTERRUPT 
JUMP INSTRUCTIONS 

) 2048 

LOCATION OF FIRST 
BYTE OF INSTRUCTION 

EXECUTED AFTER 
RESET (Z8681) --1------

INTERRUPT 
VECTOR 

(LOWER BYTE) 

INTERRUPT 
VECTOR 

(UPPER BYTE) --

r--. 
f-

f-

f-

~ 
r-
I--

IR05 

IRQ4 

IR03 

IR02 

IR01 

IROO 

-
-
-
-
-

-

12 
11 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 
0 

2 BYTE 
.--INTERRUPT 

VECTORS 

Figure 4. Z8681 182 Program Memory Map 

'This feature differs in the Z8681 and Z8682. 

53 



DEC 

255 

254 

253 

252 

251 

250 

249 

248 

247 

246 

245 

244 

243 

242 

241 

240 

127 

STACK POINTER (BITS 7-0) 

STACK POINTER (BITS 15-8) 

REGISTER POINTER 

PROGRAM CONTROL FLAGS 

INTERRUPT MASK REGISTER 

INTERRUPT REQUEST REGISTER 

INTERRUPT PRIORITY REGISTER 

PORTS 0-1 MODE 

PORT 3 MODE 

PORT 2 MODE 

TO PRESCALER 

TIMER/COUNTER 0 

T1 PRESCALER 

TIMER/COUNTER 1 

TIMER MODE 

SERIAL I/O 

NOT 
IMPLEMENTED 

GENERAL·PURPOSE 
REGISTERS 

PORT 3 

PORT 2 

PORT 1 

PORT 0 

HEX 

FF 

FE 

FD 

FC 

FB 

FA 

F9 

F8 

F7 

F6 

F5 

F4 

F3 

F2 

F1 

FO 

7F 

04 

03 

02 

01 

00 

Figure 5. The Register File 

IDENTIFIERS 

SPL 

SPH 

RP 

FlAGS 

IMR 

IRQ 

IPR 

P01M 

P3M 

P2M 

PREO 

TO 

PRE1' 

T1 

TMR 

SIO 

P3 

P2 

P1 

PO 

SERIAL INPUT/OUTPUT 

Port 3 lines P30 and P37 can be programmed as serial I/O 
lines for full-duplex serial asynchronous receiver/transmitter 
operation. The bit rate is controlled by Counter/Timer O. 

The Z8681/82 automatically adds a start bit and two stop 
bits to transmitted data (Figure 7). Odd parity is also 
available as an option. Eight data bits are always 

LSTART BIT 

'------EIGHT DATA BITS 

TWO STOP BITS 

Transmitted Data 
(No Parity) 

I~I~I pl~I~I~I~I~I~I~lal T L _LSTARTBIT 
'------SEVEN DATA BITS 

ODD pARITY 

TWO STOP BITS 

Transmitted Data 
(With Parity) 

• 

r---Ti===C=:::;=====1 255 

--I I------'------i 253 
'-_________ .... 240 

THE UPPER NIBBLE OF THE REGISTER 
FILE ADDRESS PROVIDED BY THE 
REGISTER POINTER SPECIFIES THE 
ACTIVE WORKING-REGISTER GROUP. 

--I 
--I 
--I 
--( 

1 27 

1 
--( 

SPECIFIED WORKING· 
REGISTER GROUP -r-

THE LOWER 
NIBBLE OF 
THE REGISTER 
FILE ADDRESS 
PROVIDED BY 

--( 
--( 

1 

f--------------3 
I/O PORTS 0 

THE INSTRUCTION 
POINTS TO THE 
SPECIFIED 
REGISTER. 

Figure 6. The Register Pointer 

transmitted, regardless of parity selection. If parity is 
enabled, the eighth data bit is used as the odd parity bit. An 
interrupt request (IR04) is generated on all transmitted 
characters. 

Received data must have a start bit, eight data bits, and at 
least one stop bit. If parity is on, bit 7 of the received data is 
replaced by a parity error flag. Received characters 
generate the IR03 interrupt request. 

1~1~1~1~1~1~1~1~1~lal 

I LSTART BIT 

'------EIGHT pATA BITS 

L. ----------ONE STOP BIT 

Received Data 
(No Parity) 

1~lpl~I~I~I~I~I~I~lal 

II,--~~STARTBIT . '------SEVEN DATA BITS 

PARITY ERROR FlAG 

'-----------ONE STOP BIT 

Received Data 
(WIth Parity) 

Figure 7. Serial Data Formats 

54 



COUNTER/TIMERS 

The Z8681/82 contains two 8-bit programmable 
counter/timers (To and Tl), each driven by its own 6-bit 
programmable prescaler. The T 1 prescaler can be driven by 
internal or external clock sources; however, the To prescaler 
is driven by the internal clock only. 

The 6-bit prescalers can divide the input frequency of the 
clock source by any number from 1 to 64. Each prescaler 
drives its counter, which decrements the value (1 to 256) that 
has been loaded into the counter. When the counter reaches 
the end of count, a timer interrupt request-IR04 (To) or 
IR05 (Tl)-is generated. 

The counters can be started, stopped, restarted to continue, 
or restarted from the initial value. The counters can also be 
programmed to stop upon reaching zero (single-pass 

I/O PORTS 

The Z8681/82 has 24 lines available for input and output. 
These lines are grouped into three ports of eight lines each 
and are configurable as input, output or address. Under 
software control, the ports can be programmed to provide 

Port 1 is a dedicated Z-BUS compatible memory interface. 
The operations of Port 1 are supported by the Address 
Strobe (AS) and Data Strobe (OS) lines, and by the 
Read/Write (R/W) and Data Memory (OM) cpntrollines. The 
low-order program and data memory addresses (Ao-A7) are 
output through Port 1 (Figure 8) and are multiplexed with 
data in/out (00-07)' Instruction fetch and data memory 
read/write operations are done thJOugh this port. 

Port 1 cannot be used as a register nor can a handshake 
mode be used with this port. 

Both the Z8681 and Z8682 wake up with the 8 bits of Port 1 
configured as address outputs for external memory. If more 
than eight address lines are required with the Z8681 , 
additional lines can be obtained by programming Port 0 bits 
as address bits. The least-significant four bits of Port 0 can 

Port O· can be programmed as a nibble I/O port, or as an 
address port fo[ interfacing external memory (Figure 9). 
When used as an I/O port, Port 0 can be placed under 
handshake control. In this configuration, Port 3 lines P32 
and P35 are used as the handshake controls OAVo and 
ROYo. Handshake signal assignment is dictated by the I/O 
direction of the upper nibble P04-P07. 

For external memory references, Port 0 can provide address 
bits As-All (lower nibble) or As-A15 (lower and upper 
nibbles) depending on the required address space. If the 
address range requires 12 bits or less, the upper nibble of 
Port 0 can be programmed independently as I/O while the 
lower nibble is used for addressing. 

'/n the Z8681 *, Port 0 lines float after reset; their logic state is 
unknown until the execution of an initialization routine that 
configures Port O. 
'This feature differs in the ZS6S1 and ZS6S2. 

mode) or to automatically reload the initial value and 
continue counting (modulo-n continuous mode). The 
counters, but not the prescalers, can be read any time 
without disturbing their value or count mode. 

The clock source for T 1 is user-definable; it can be either the 
internal microprocessor clock divided by four, or an external 
signal input via Port 3. The Timer Mode register configures 
the external timer input as an external clock, a trigger input 
that can be retriggerable or nonretriggerable, or as a gate 
input for the internal clock. The counter/timers can be 
programmably cascaded by connecting the To output to the 
input of Tl. Port 3 line P36 also serves as a timer output 
(TOUT) through which To, Tl or the internal clock can be 
output. 

address outputs, timing, status signals, serial I/O, and 
parallel I/O with or without handshake. All ports have active 
pull-ups and pull-downs compatible with TTL loads. 

be configured to supply address bits As-All for 4K byte 
addressing or both nibbles of Port 0 can be configured to 
supply address bits As-A15 for 64K byte addressing. 

Z8881/82 
MCU 

PORT' 
(110 OR ADO-AD7 

TO EXTERNAL 
MEMORY 

Figure 8. Port 1 

Such an initialization routine must reside within the first 256 
bytes of executable code and must be pbysically mapped 
into memory by forcing the Port 0 address fines to a known 
state (Figure 10). The proper port initialization sequence is: 

1. Write initial address (As-A15) of initialization routine to 
Port 0 address lines. 

2. Configure Port 0 Mode register to output As-A15 (or 
As-All)' 

To permit the use of slow memory, an automatic wait mode of 
two oscillator clock cycles is configured for the bus timing of 
the Z8681 after each reset. The initialization routine could 
include reconfiguration to eliminate this extended timing 
mode. 

55 



The following example illustrates the manner in which an 
initialization routine can be mapped in a Z8681 system with 
4K of memory. 

Example. In Figure 10, the initialization routine is mapped to 
the first 256 bytes of program memory. Pull-down resistors 
maintain the address lines at a logic 0 level when these lines 
are floating. The leakage current caused by fanout must be 
taken into consideration when selecting the value of the 
pulldown resistors. The resistor value must be large enough 
to allow the Port 0 output driver to pull the line to a logic 1. 
Generally, pulldown resistors are incompatible with TIL 
loads. If Port 0 drives into TIL input loads (lLOw = 1.6 mA) 
the external resistors should be tied to. Vee and the 
initialization routine put in address space FFOOwFFFFH' 

In the Z8682 *, Port 0 lines are configured as address lines 
A8-A15 after a Reset. If one or both nibbles are needed for 

A 

I/O operation, they must be configured by writing to the Port 
o Mode register. The Z8682 is in the fast memory timing 
mode after Reset, so the initialization routine must be in fast 
memory. 

} 
P04-P07 } PORT 0 
POO-P03 (1/0 OR Aa-A'5 

_ } HANDSHAKE CONTROLS 
DAVo AND ROYo 
(P3, AND P3,J 

Figure 9. Port 0 

~ 
PORT1 ADo-AD7 

~ r 
AS, OS, RlW 

Z8681/82 
MCU 

112 PORT 0 { 

Figure 10. Port 0 Address Lines Tied to Logic 0 

Port 2 bits can be programmed independently as input or 
output (Figure 11). This port is always available for 1/0 
operations. In addition, Port 2 can be configured to provide 
open-drain outputs. 

Like Port 0, Port 2 may also be placed under handshake 
control. In this configuration, Port 3 lines P31 and P36 are 
used as the handshake controls lines OAV2 and ROY2. The 
handshake signal assignment for Port 3 lines P31 and P36 is 
dictated by the direction (input or output) assigned to bit 7 of 
Port 2. 

PROGRAM 
MEMORY 

(4K BYTES) 

P20 

PORT 2(1/0) 

P27 

_ } HANDSHAKE CONTROLS 
DAV, AND ROY, 
(P3, AND P3.) 

Figure 11. Port 2 

-
PORT 3 

Port 3 lines can be configured as 1/0 or control lines (Figure 
12). In either case, the direction of the eight lines is fixed as 
four input (P30-P33) and four output (P34-P37)' For serial 110, 
lines P30 and P37 are programmed as serial in and serial 
out, respectively. . 

Z8681182 (1/0 OR CONTROL) 

Port 3 can also provide the following control functions: 
handshake for Ports 0 and 2 (OAV and ROY); four external 
interrupt request signals (IROO-IR03); timer input and 
output signals (TIN and TOUT) and Data Memory Select 
(OM). 

'This feature differs in the Z8681 and Z8682. 

56 

MCU 

Figure 12. Port 3 



INTERRUPTS * 

The Z8681/82 allows six different interrupts from eight 
sources: the four Port 3 lines P30-P33, Serial In, Serial Out, 
and the two counter/timers. These interrupts are both 
maskable and prioritized. The Interrupt Mask register 
globally or individually enables or disables the six interrupt 
requests. When more than one interrupt is pending, 
priorities are resolved by a programmable priority encoder 
that is controlled by the Interrupt Priority register. 

All Z8681 and Z8682 interrupts are vectored through 
locations in program memory. When an interrupt request is 
granted, an interrupt machine cycle is entered. This disables 
all subsequent interrupts, saves the Program Counter and 
status flags, and accesses the program memory vector 
location reserved for that interrupt. In the Z8681 , this 
memory location and the next byte contain the 16-bit 
address of the interrupt service routine for that particular 
interrupt request. The Z8681 takes 63 crystal cycles to 
enter an interrupt subroutine. 

The Z8682 has a small internal ROM that contains six 2-byte 
interrupt vectors pointing to addresses 2048-2065, where 
3-byte jump absolute instructions are located (Figure 4 and 
Table 1). These jump instructions each contain a 1-byte 

. CLOCK 

The on-chip oscillator has a high-gain, parallel-resonant 
amplifier for connection to a crystal or to any suitable 
external clock source (XTAL 1 = Input, XTAL2 = Output). 

The crystal source is connected across XTAL 1 and 'XTAL2, 
using the recommended capacitance (CL = 15 pf 
maximum) from each pin to ground. The specifications for 
the crystal are as follows: 

Z86811Z8682 INTERCHANGEABILITY 

Although the Z8681 and 28682 have minor differences, a 
system can be designed for compatibility with both 
ROM less versions. To achieve int€lrchangeability, the design 
must take into account the special requirements of each 
device in the external interface, initialization, and memory 
mapping. 

7.35 TO 8.0 V ;1r---T\-----VRH 

\ 
. L----VRH 

VRL __ ---J . '. 3.8 V MIN 

~XT~L ....... XT~L ..... 
ClKS ClKS 
MAX MIN 

Figure 13. ~8682 RESET Pin Il)put Waveform 

·This feature differs in the Z8681 and Z8682. 

opcode and a 2-byte starting address for the interrupt 
service routine: 

Table 1. Z8682 Interrupt Processing 

Hex Contains Jump Instruction and 
Address Subroutine Address For 

80<F802 IROO 

803-805 IR01 

806-808 IR02 

809-80B IR03 

80C-80E IR04 

80F-811 IR05 

Polled interrupt systems are also supported. To 
accommodate a polled structure, any or all of the interrupt 
inputs can be masked and the Interrupt Request register 
polled to determine which of the interrupt requests needs 
service . 

• AT cut, parallel-resonant 

• Fundamental type 

• Series resistance, Rs ..; 100Q 

• For Z8682, 8 MHz maximum 

• For Z8681-12, 16 MHz maximum 

External Interface. The Z8682 requires a 7.5V positive 
logic level on the RESET pin for at least 6 clock periods 
immediately (ollowing reset, as shown in Figure 13. The 
Z8681 requires a 3.8V or higher positive logic level, but is 
compatible with the Z8682 RESET waveform. Figure 14 
shows a simple circuit for generating the 7.5V level. 

+V 

ZBBB1 
)---~----i RESET OR 

OPEN 
COllECTOR 

TTL GATE 

7.35 - 8.0 V ZBBB2 

Figure 14. RESET Circuit 

57 



Initialization. The Z8681 wakes up after reset with Port 0 
configured as an input, which means Port 0 lines are floating 
in a high·impedance state. Because of this pullup or 
pulldown, resistors must be attached to Port a lines to force 
them toa valid logic level until Port a is configured as an 
address port. , 
Port a initialization is discussed in the section on ports. An 
example of an initialization routine for Z8681/Z8682 
compatibility is shown in Table 2. Only the Z8681 need 
execute this program. 

Table 2. Initialization Routine 

Address Opcodes Instruction. Comments 

OOOC 

OOOF 

0012 

58 

E60000 

E6 F896 

LDPO#%OO 

LD P01 M #0/096 Configure Port 0 as 
As·A15. Eliminate 
extended memory 
timing. 

8D 0812 JP START Execute application 
ADDRESS program. 

85536 

2066 

2063 

2060 

2057 

2054 

2051 

2048 

2047 

21 

18 

·15 

12 

10 

8 

APPLICATION 
PROGRAM 

A.P. PROG START ADDRESS 

JP IROS 

JP IRQ4 

JP IR03 

JP IR02 

JPIR01 

JP IROO 

NOT USED 

JP %0812 

LD P01M #%96 

LD POH'lODO 

IROS 

IRQ4 

IR03 

IR02 

IR01 

IROO 

FFFFH 

812H 

BOOH 

7FFH 

15H 

Z8682 VECTORS 
JUMP INSTRU,CTIONS 

} ~~~Ll2ATlON 

28881 
VECTORS 

Figure 15. Z8681/82 logical Program M~mory Mapping 



Memory Mapping. The Z8681 and Z8682 lower memory 
boundaries are located at 0 and 2048, respectively. A single 
program ROM can be used with either product if the logical 
program memory map shoWn in Figure 15 is followed. The 
Z8681 vectors and initialization routine must be starting at 

17FF 

1015 
1014 

1000 
FFF 

812 
811 

800 
7FF 

15 
14 

APPLICATION 
PROGRAM 

NOT USED 

APPLICATION 
PROGRAM 

Z6682'VECTORS 

NOT USED 

Z8681 VECTORS 
AND INITIALIZATION 

LOGICAL 
MEMORY 

6K 

4K 

2K 

0 

address 0 and the Z8682 3-byte vectors Uump instructions) 
must be at address 2048 and higher. Addresses in the range 
21-2047 are not used. Figure 16 shows practical schemes 
for implementing this memory map using 4K and 2K ROMs. 

CHIP SELECT = (A12 + A11) . A13 . A4 

PHYSICAL 
MEMORY 

'A1s 
FFF 

812 
811 

800 
7FF 

15 
14 

a. Logical to Physical Memory Mapping for 4K ROM 

FFF 

835 
834 

820 
81F 

812 
811 

800 
7FF 

15 
14 

APPLICATION 
PROGRAM 

NOT USED 

APPLICATION 
PROGRAM 

Z8682 VECTORS 

NOT USED 

Z8681 VECTORS 
AND INITIALIZATION 

LOGICAL 
MEMORY 

L., 

f--

'------

r-

CHIP SELECT = ~ . A12 • A13 . A14 

A10 :::D-- As TO ROM 
As 

PHYSICAL 
MEMORY 

b. Logical to Physical Memory Mapping for 2K ROM 

'i\15 

7FF 

35 
34 

20 
IF 

12 
11 

Figure 16. Practical Schemes for Implementing Z8681 and Z8682 Compatible Memory Map 

59 



INSTRUCTION SET NOTATION 

Addressing M,odes. The following notation is used to 
describe the addressing modes and instruction operations 
as shown in the instruction summary. 

IRR Indirect register pair or indirect working-register 
pair address 

Irr Indirect working-register pair only 
X Indexe,d address 
DA Direct address 
RA Relative address 
1M Immediate 
R Register or working-register address 
r Working-register address only 
IR Indirect-register or indirect working-register 

address 
Ir Indirect working-register address only 
RR Register pair or working register pair address 

Symbols. The following symbols are used in describing the 
instruction set. ' 

dst 
src 
cc 
@ 

Destination location or contents 
Source location or contents 
Condition code (see list) 
Indirect address prefix 

SP 
PC 
FLAGS 
RP 
IMR 

Stack pointer (control registers 254-255) 
Program counter 
Flag register (control register 252) 
Register pointer (control register 253) . 
Interrupt mask register (control register 251) 

CONDITION CODES 

Value Mnemonic 

1000 Always true 

0111 C Carry 

1111 NC No carry 

0110 Z Zero 

1110 NZ Not zero 

1101 PL Plus 

0101 MI Minus 

0100 OV Overflow 

1100 NOV No overflow 

0110 EO Equal 

1110 NE Not equal 

Assignment of a value is indicated by the symbol "-~ For 
example. 

dst +- dst +- src 

indicates that 'the source data is added to the destination 
data and the result is stored in'the destination location, The 
notation "addr(n)" is used to refer to bit "n" of a given 
location. For example. 

dst (7) 

refers to bit 7 of the destination operand. 

Flags. Control Register R252 contains the following six 
flags: 

C Carry flag 
Z Zero flag 
S Sign flag 
'V Overflow flag 
D Decimal-adjust flag 
H Half-carry flag 

Affected flags are indicated by: 

o Cleared to zero 
1 Set to one 
* Set or cleared according to operation 

Unaffected 
X Undefined 

Meaning Flags Set 

C = 1 

C=O 

Z=1 

Z=O 

8=0 

8=1 

V=1 
V=O 
Z ='1 

Z = 0 

1001 GE Greater than or equal (8 XOR V) = 0 

0001 LT Less than (8 XOR V) = 1 

1010 GT Greater than [ZOR(8XORV)] = 0 
0010 LE Less than or equal [ZOR(8XORV)] = 1 

1111 UGE Unsigned greater than or equal C=O 

01,11 ULT Unsigned less than C=1 

1011 UGT UnSigned greater than (C = OANOZ= 0) = 1 

0011 ULE Unsigned less than or equal (CORl) = 1 

0000 Never true 

60 



INSTRUCTION FORMATS 'I -----:O=PC::----' 

dot OPC 

CCF, DI, £1, IRET, NOP, 
RCF, RET, SCF 

INCr 

One~Byte Instruction 

CLR, CPL, DA, DEC, 

L--===--......J OR 11 1 1 01 dsUsre 1 ~~~~'~~~Rt~?:itOP' 

OPC I 
f------'='-d.':;;t --:-lOR 11 1 1 01 dst 

OPC 
VALUE 

OPC MODE 
dst 

MODE OPC 
dstlsrc src/dst 

dst/src ope 
src/dsl OR 11 1 1 01 sre 

RRC, SRA, SWAP 

JP, CALL Ondlrect) 

SRP 

ADC, ADD, AND, 
CP, OR, SBC, SUB, 
TCM, TM, XOR 

LD, LDE, LDEI, 
LDC, LDCI 

LD 

dsl 1 OPC LD 
VALUE 

I dsliCC R~ OPC DJNZ, JR 

OPC MODE 

sr. OR 1 1 1 0 
dst OR 1 1 1 0 

OPC MODE 

dst OR 11 1 1 01 
VALUE 

MODE OPC 

sre OR 

dst OR 

MODE OPC 

dstfsrc 
ADDRESS 

ee OPC 
DAu 
DA, 

OPC 

ADC, ADD, AND, CP, 

sre LD, OR, SBC, SUB, 
TCM, TM, XOR 

d.t 

ADC, ADD, AND, CP, 

dst LD, OR, SBC, SUB, 
TCM, TM, XOR 

LD 

LD 

JP 

CALL 

Two-Byte Instruction Three-Byte Instruction 

Figure 17. Instruction Formats 

INSTRUCTION SUMMARY 

AddrMode Opcode Flags Affected AddrMode Opcode Flags Affected 
Instruction Byte Instruction Byte 
and Operation dst src (Hex) C Z S V o H and Operation dst src (Hex) C Z S V 0 H 

ADCdst,src (Note 1) 10 * * * * o * DECdst R 00 -** *--
dst - dst + src + C dst -dst - 1 IR 01 

ADD dst,src (Note 1) 00 * * * * o * DECWdst RR 80 -***--
dst - dst + src dst-dst - 1 IR 81 

ANDdst,src (Note 1) 50 -** 0 01 
dst - dst AND src IMR(7)-0 8F ------

CALLdst OA 06 ------ DJNZr,dst RA rA ------

SP-SP - 2 IRR 04 r-r - 1 r = 0 - F 
@SP - PC; PC - dst ifr';'O 

CCF EF 
PC -PC + dst 

*-----
Range: + 127, - 128 

C-NOTC 

CLRdst R BO 
EI 9F ---"---------
IMR(7)-1 

dst-O IR B1 
INCdst rE 

COMdst R 60 -**0-- -***--

dst-NOTdst IR 61 
dst-dst + 1 r = 0 - F 

R 20 
CP dst,src (Note 1) AD * * * * IR 21 
dst - src 

INCWdst RR AO -***--
DAdst R 40 ***x-- dst -dst + 1 IR A1 
dst-OAdst IR 41 

61 



, INSTRUCTION SUMMARY (Continued) 

Instruction 
and Operation 

Addr Mode Opcode Flags 'Affected 
Byte 

dst src (Hex) C Z S V 0 H 

IRET SF 
FLAGS - @SP; SP - SP + 1 
PC - @SP; SP +- SP + 2; IMR (7) - 1 

JPcc,dst 
if cc is true 

PC-dst 

JR cC,dst 
if cc is true, 

PC-PC + dst 
Range: + 127, -128 

LO dst,src 
dst-src 

LOCdst,src 
dst-src 

LOCI dst,src 
dst-src 
r-r+ 1;rr-rr+ 1 

LOEdst,src 
dst-src 

LOEI dst,src 
dst-src 
r-r+ 1;rr-rr+ l' 

NOP 

ORdst,src 
dst - dst OR src 

DA 

IRR 

RA 

r 
R 

r 
X 
r 
Ir 
R 
R 
R 
IR 
IR 

1m 
R 

X 
r. 
Ir 

R 
IR 
1M 
1M 
R 

r Irr 
Irr 

Ir Irr 
Irr, Ir 

r Irr 
Irr 

Ir Irr 
Irr Ir 

(Note 1) 

POPdst R 
dst-@SP; IR 
SP -SP + 1 

PUSH src 
SP - SP - 1; @SP - src 

RCF 
C-O 

RET 
PC-@SP;SP-SP + 2 

RLdst 

62 

R 
IR 

cD 
c = 0 - F 

30 

cS 
c = 0 - F 

rC 
r8 
r9 

r = 0 - F 
C7 
D7 
E3 
F3 
E4 
E5 
E6 
E7 
F5 

C2 
D2 

C3 
D3 

82 
92 

83 
93 

FF 

40 

50 
51 

70 
71 

CF 

AF 

90 
91 

* * * * * * 

0-----

* * * * 

Instruction 
and Operation 

Addr Mode Opcode Flags Affected 
Byte 

dst src (Hex) CZSVOH 

RLC dst L:@:ciJ R 
C 7 0 IR 

RRdst l@]~ R 
C 7. 0 IR 

RRCdst~R 
C 7 0 IR 

SBC dst,src (Note 1) 
dst -dst - src.,-C 

SCF 
C-1 

. SRAdst l@] @ R 
IR 

SRPsrc 
RP -src 

SUBdsl,src 
dst - dst - src 

1m 

(Note 1) 

SWAP dst 17 Z 01 R 
IR 

TCMdst,src 
(NOT dst) AND src 

TM dst,src 
dstANDsrc 

XORdst,src 
dst - dst XOR src 

(Note 1) 

(Note 1) 

(Note 1) 

10 
11 

EO 
E1 

CO 
C1 

3D 

DF 

DO 
D1 

31 

20 

FO 
F1 

60 

70 

BO 

* * * * 

* * * * 

1-----

NOTE: These instructions have an identical set of addressing modes, 
which 'are encoded for breVity. The first opcode nibble IS found In 

the instruction set table above. The second nibble is expressed 
symbolically by a D in this table, and its value is found in the 
following table to the left of the applicable addressing mode pair. 

For example, the opcode of an ADC instruction using the 
addressing modes r (destination) and Ir (source) is 13. 

AddrMode 

dst src 

R 

R 

R 

IR 

Ir 

R 

IR 

1M 

1M 

Lower 
Opcode Nibble 



REGISTERS R240SI0 
Serial 110 Register 

(FOH; Read/Write) 

I~I~I~I~I~I~I~I~I 

LI ____ SERIAL DATA (Do = LSB) 

R241 TMR 
Time Mode Register 

(F1 H; Read/Write) 

NOT useD'" 00 ~ 1 = LOAD To 

~o g~~ : ~~ 0 '" DISABLE To COUNT 

To" MODES ~ llli~o = NO FUNCTION 

INTERNAL CLOC~ OUT = 11 1 = ENABLE To COUNT 

T MODES 0 '" NO FUNCTION 
EXTERNAL CLOCt< IN~OT '" 00 1 = LOAD T 1 

GATE INPUT = 01 0 "" DISABLE T, COUNT 

(NON.R~~~~g~:~~:~~) = 10 1 "" ENABLE T, COUNT 
TRIGGER INPUT", 11 

(RETRIGGERABLE) 

R242T1 
Counter Timer 1 Register 

(F2H; Read/Write) 

R243 PRE1 
Prescaler 1 Register 

(F3H; Write Only) 

~LCOUNTMODE 
1 = T, MODULO·N 
o = T, SINGLE·PASS 

CLOCK SOURCE 
1 '" T, INTERNAL 
o = T, EXTERNAL 

TIMING INPUT 
(TIN) MODE 

PRESCALER MODULO 
(RANGE: 1-64 DECIMAL 
01-00 HEX) 

R244 TO 
Counter/Timer 0 Register 

(F4H; Read/Write) 

To INITIAL VALUE (WHEN WRITTEN) 
L-___ (RANGE: 1-256 DECIMAL 01-00 HEX) 

To CURRENT VALUE (WHEN READ) 

R245 PREO 
Prescaler 0 Register 

(F5H; Write Only) 

~LCOUNTMODE 
o = To SINGlE·PASS 
1 = To MODULO·N 

RESERVED (MUST BE 0) 

PRESCALER MODULO 
(RANGE: 1-64 DECIMAL 
01-00 HEX) 

R246P2M 
Port 2 Mode Register 

(F6H; Write Only) 

R247 P3M 
Port 3 Mode Register 

(F7H; Write Only) 

[g~
LO PORT 2 PULL·UPSOPEN DRAIN 

1 PORT 2 PULL UPS ACTIVE 

RESERVED (MUST BE 0) 

o P32 = INPUT P3s '" OUTPUT 
1 P32 = I5AVO/RDYO P35 = RDYOIriAVO 

00 P33 = INPUT P3. '" OUTPUT 

~ ri} P33 = INPUT P34 = rmI 
11 RESERVED 

o P31 = INPUT (T'N) P36 = OUTPUT (TOUT) 
1 P31 '" DAV2IRDY2 P% = RDY2IDAV2 

L-_______ ~ ;~~ ~ ~N~~lL IN :~~ ~ ~~~iAULTOUT 

L ________ ~ ~:=:i~ g~F 

Figure 18. Control Registers 

63 



REGISTERS 
(Continued) 

R248 P01M 
Port 0 Register 
(F8H: Write Only) 

PO •• PO,MODE:] ~~ PO,.PO,MODE OUTPUT '" 00 ~ L 00 "" OUTPUT 
INPUT"" 01 01 '" INPUT 

A12-A15 '" 1X 1X '" A.-All 

EXTERNAL STACK SELECTION 
MEMORY TIMING 0 '" EXTERNAL 

NORMAL '" 0 1 '" INTERNAL 
• EXTENDED = 1 

RESERVED (MUST BE 0) 

'ALWAYS EXTENDED TIMING AFTER RESET 

• R2491PR 
Interrupt Priority Register 

(F9H: Write Only) 

I~I~I~I~I~I~I~I~I 

RESERVED = 000 
IR03, IRQS PRIORITY (GROUP A) C ::> A > B = 001 •• _.::J I I III ~.~"'.-

o = IRQS > IRQ3 A ::> B > C = 010 
1 = IRQ3 > IRQS A> C > B '" 011 

IRao. IRQ2 PRIORITY (GROUP B) ~ ~ g ~ ~ ~ ~~ 
o = IRQ2 > IRao B ::> A > C = 110 
1 = IRao > IA02 RESERVED = 111 

IRQ1, IRQ4 PRIORITY (GROUP CJ 
o = IRQ1 > IRQ4 
1 = IRQ4 > IRQi 

R250lRQ 
Interrupt Request Register 

(FAH: Read/Write) 

I~I~I~I~I~I~I~I~I 

RESERVED (MUST BE O)T c= IROO 
IRQ1 
IRQ2 
IRQ3 
IRQ4 
IRQS 

R2511MR 
Interrupt Mask Register 

(FBH: Read/Write) 

P32 INPUT (Do '" IRoo) 
P33INPUT 
P311NPUT 
P30 INPUT, SERIAL INPUT 
To. SERIAL OUTPUT 
T, 

IIL ____ c= ___ 1 ENABLES IRQO-IRQ5 
. (Do = IROO) 

_ RESERVED (MUST BE 0) 

'--------1 ENABLES I~TERRUPTS 

REGISTER 
POINTER 

Figure 18. Control Registers (Continued) 

64 

R252 FLAGS 
Flag Register 

(FCH: Read/Write) 

H~ll§' LUSERFLAGF1 "-L USER FLAG F2 

HALF CARRY FLAG 

DECIMAL ADJUST FliAG 

OVERFLOW FLAG 

SIGN FLAG 

ZERO FLAG 

CARRY FLAG 

R253 RP 
Register Pointer 
(FDH: Read/Write) 

{gQJ LDON'TCARE 

R254SPH 
Stack Pointer 

(FEH: Read/Write) 

R255SPL 
Stack Pointer 

(FFH: Read/Write) 



Z8681182 OPCODE MAP 
Lower Nibble (Hex) 

o 2 3 4 5 7 8 9 A B C D E F 

6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5 6,5 6,5 12/10,5 12/10,0 6,5 12/10,0 6,5 
o DEC DEC ADD ADD ADD ADD ADD ADD LD LD DJNZ JR . LD JP INC 

A, lA, r1.r2 r1. Ir2 R2,R, IR2,R, A"IM lA, ,1M r"A2 r2,A, r"AA cC,AA r"IM cC,DA rl 
'---

6,5 6,5 6,5 6,5 'D,S 10,5 10,5 10,5 
RLC RLC ADC ADC ADC ADC ADC ADC 
A, lA, T1.r2 T1, lr2 A2,A, IA2,A, A"IM IA"IM 

6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5 
t--

2 INC INC SUB SUB SUB SUB SUB SUB 
A, lA, . T1,r2 r" lr2' A2,A, IR2,A, A"IM IA,.IM 

'----
8,0 6,1. 6,5 6,5 10,5 10,5 10,5 10,5 

3 JP SRP SBC SBC SBC SBC SBC SBC 
IAA, 1M r1,T2 T1, lr2 A2,A, IA2,A, A"IM IA"IM 

1 

8,5· 8,5 6,5 6,5 10,5 10,5 10,5 10,5 
.------,-

4 DA DA OR OR OR OR OR OR 
A, lA, T1,r2 T1. lr2 A2,A, IA2,A, A"IM IR"IM 

-
10,5 10,5 6,5 6,5 10,5 10,5 10,5 10,5 
POP POP AND AND AND AND AND AND 
A, lA, r1,r2 r1, lr2 A2,A, IA2,A, A"IM IA"IM 

-
6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5 

6 COM COM TCM TCM TCM TCM TCM TCM 
A, lA, T1,T2 T1, lr2 A2,A, IA2,A, A"IM lA, ,1M 

10112,1 12114,1 6,5 6,5 10,5 10,5 10,5 10,5 
-

PUSH PUSH TM TM TM TM TM TM 
A2 IA2 r1,r2 T1, lr2 A2,A, IA2,A, A"IM IA"IM 

i e. 7 
~ 
:9 -

10,5 10,5 12,0 18,0 6,1 
DECW DECW LDE LDEI DI 

AA, lA, T,. lrr2 Ir1,lrr2 

z 
Ii 8 
Q. 
Q. 
::> 

6,5 6,5 12,0 18,0 ---s.;-
9 RL RL LDE LDEI EI 

A, lA, T2,lrT, Ir2,lrT1 
-

10,5 10,5 6,5 6,5 10,5 10,5 10,5 10,5 14,0 
A INCW INCW CP CP CP CP CP CP RET 

AA, lA, T1. T2 T1. lr2 A2,A, IA2,R, . A"IM IR"IM 
-

6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5 16,0 
B CLR CLR XOR XOR XOR XOR XOR XOR IRET 

A, IR, r1,T2 T1, lr2 R2,R, IR2,R, R"IM IR"IM 

6,5 6,5 12,0 18,0 10,5 6:5 
C RRC RRC LDC LDCI LD RCF 

A, IR, T1,lrr2 Ir1,lrr2 T1. X,R2 

6,5 6,5 12,0 18,0 20,0 20,0 10,5 6:5 
D SRA SRA LDC LDCI CALL" CALL LD SCF 

R, IR, r2, lrT1 Ir2,lrT1 IRA, DA T2,x,R1 

6,5 6,5 6,5 10,5 10,5 10,5 10,5 
t--

6,5 
E RR RR LD LD LD LD LD CCF 

A, IR, r" IR2 R2,R, IR2,R, A"IM IR"IM 

8,5 8,5 6,5 10,5 
t--

6,0 
F SWAP SWAP LD LD NOP 

A, lA, Ir1,r2 A2.1R, 

-. ... ----..... v .. -----"# ...... ---_ ..... v .. ----~J ...... -----_'V_ .. -----~J~~ 
2 

EXECUTION 
CYCLES 

• 2-byte instruction. fetch cycle appears as a 3-byte Instruction 

3 

PIPELINE 
CYCLES 

MNEMONIC 

SECOND 
OPERAND 

Bytes per Instruction 

2 

Legend: 
R ~ 8·blt address 
r = 4·bit address 
R1 or r1 = Dstaddress 
R2 or r2 = Src address 

Sequence: 

3 

Opcode, First Operand, Second Operand 

NOTE: The blank areas are not defined. 

65 



ABSOWTE MAXIMUM RATINGS 

Voltages on all pins except RESET 
with respect to GND ............... - 0.3V to + 7.0V 

Operating Ambient 
Temperature .............. See Ordering Information 

Storage Temperature .............. - 65°C to + 150°C 
I 

STANDARD TEST CONDITIONS 

The DC characteristics listed below apply for the following 
standard test conditions, unless otherwise noted.' All 
voltages are referenced to GND. Positive current flows into 
the referenced pin. 

Standard conditions are as folrows: 

• +4.75V~Vee~ +5.25V 

• GND = OV 

• O°C ~TA ~ + 70°C for S (Standard temperature) 

• -40°C ~ TA ~ + 100°C for E (Extended temperature) 

DC'CHARACTERISTICS 

Symbol Parameter Min 

VeH Clock Input High Voltage 3.8 

Vel Clock Input Low Voltage -0.3 

VIH Input High Voltage. 2.0 

Vil Input Low Voltage -0.3 

VRH Reset Input High Voltage 3.8 

VRl Reset Input Low Voltage -0.3 

VOH Output High Voltage 2.4 

VOL Output Low Voltage 

IlL Input Leakage -10 

IOL Output Leakage -10 

IIR Reset Input Current 

ICC Vee Supply Current 

Stresses greater than those listed under Absolute Maximum Ratings may 
cause permanent damage to the device. This is a stress rating only; 
operation of the device at any condition above those indicated in the 
operational sections of these specifications is not implied. Exposure to 
absolute maximum rating conditions for extended periods may affect 
device reliability. 

+5V 

2.1K 

Figure 19. Test Load 1 

Max Unit Condition 

Vee V Driven by External Clock Generator 

0.8 V Driven by External Clock Generator 

Vee V 

0.8 V 

Vee V See Note 

0.8 V 

V IOH = - 250 !-iA 
0.4. V IOL = +2.0mA 

10 !-iA OV .. VIN" + 5.25V 

10 !-iA OV .. VIN" + S.2SV 

-so JAA Vee = + 5.2SV, VRL = OV 

150 rnA All outputs and 110 pins floating 

'The Reset line (pin 6) is used to place the Z8682 in external memory mode. This is accomplished as shown in Figure 13. . 

66 



R/iiii 

PORT 0, 
OM 

PORT 1 

Ds 
(READ) 

PORT 1 

Ds 
(WRITE) 

)( 
-®-

)( 

.~ 

!-cD-

1-0-

16 
3 

A,,-A, ~ 

-<D-

• 
~I. 

~~ 
A,,-A, X 

I--®---I 

--®--I 

)( 

00-0, IN } < -CDI~ 

CD • ~ 

CD • 
J 
-®-

OO-D7 OUT j( 
-®-I 

• CD .y 

Figure 20. External I/O or Memory Read/Write Timing 

AC CHARACTERISTICS 
External 1/0 or Memory Read and Write Timing 

Z8681h82 Z8681 Z8681 
8 M z 12 MHz 16 MHz 

NumberSymbol Parameter Min Max Min Max Min Max 

TdA(AS) Address Valid to AS iDelay 50 35 20 

2 TdAS(A) AS i to Address Float Delay 70 45 30 

3 TdAS(DR) AS i to Read Data Required Valid 360 220 180 

4 TwAS AS Low Width 80 55 35 

5 TdAz(DS) Address Float to DS ! 0 0 0 

6 TwDSR DS (Read) Low Width 250 185 135 

7 TwDSW DS (Write) Low Width 160 110 80 

8 TdDSR(DR) DS ! to Read Data Required Valid 200 130 75 

9 ThDR(DS) Read Data to DS i Hold Time 0 0 0 

10 TdDS(A) DS i to Address Active Delay 70 45 

11 TdDS(AS) DS i to AS !Delay 70 55 30 

12 TdRIW(AS) RIW Valid to AS i Delay 50 30 20 

13 TdDS(RIW) DS ito RIW Not Valid 60 35 30 

14 TdDW(DSW) Write Data Valid to DS (Write)! Delay 50 35 25 

15 TdDS(DW) . DS i to Write Data Not Valid Delay 60 35 30 

16 TdA(DR) Address Valid to Read Data Required Valid 410 255 200 
- -

17 TdAS(DS) AS i to DS ! Delay 80 55 40 

NOTES: 
1. When using extended memory timing add 2 TpC. • All units in nanos~conds (ns). 
2. Timing numbers given are for minimum TpC. t Test Load 1 

Notes 

2,3 

2,3 

1,2,3 

2,3 

1,2,3 

1,2,3 

1,2,3 

2,3 

2,3 

2,3 

2,3 

2,3 

2,3 

2,3 

1,2,3 

2,3 

3. See clock cycle time dependent characteristics table. o All timing references use 2.0Vfor a logic ··1" and O.BV for alogic "0': 
4. 16 MHz tim in, is preliminary and subject to chan,e. 

67 



CLOCK 

TIN 

IRON 

Figure 21. Additional Timing 

AC CHARACTERISTICS 
Additional Timing Table 

NumberSymbol Parameter 

TpC Input Clock Period 

2 TrC,TIC Clock Input Rise and Fall Times 

3 TwC Input Clock Width 

4 TwTinL Timer Input Low Width 

5 TwTinH Timer Input High Width 

6 TpTin Timer Input Period 

7 TrTin,Tmn Timer Input Rise and Fall Times 

SA TwlL Interrupt Re~uest Input Low Time 

S8 TwlL Interrupt Request Input Low Time 

9 TwlH Interrupt Request Input High Time 

NOTES: 
1. Clock timing references use 3.8V for a logic "1" and 0.8Vfor a logic "0': 
2. Timing references use 2.0V for a logic "1" and O.SV for a logic "0': 
3. Interrupt request via Port 3. 
4. Interrupt request via Port 3 (P31·P33) 
5. Interrupt request via Port 3 (P30) 
6. 16 MHz timine is Rrtiiminary and subject to chan, •. 
• Units in nanoseconds (ns). 

68 

Z8681/82 
8 MHz 

Min Max 

125 1000 

25 

37 

100 

3TpC 

STpC 

100 

100 

3TpC 

3TpC 

Z8681 Z8681 
12 MHz 16 MHz 

Min Max Min Max Notes 

S3 1000 62.5 1000 

15 10 

70 21 

70 50 2 

3TpC 3TpC 2 

STpC STpC 2 

100 100 2 

70 50 2,4 

3TpC 3TpC 2,5 

3TpC 3TpC 2,3 



DATA IN DATA IN VALID 

-----0~~~~~~------~--
~v------~~--~--~~---d~--------~---­

(INPUT) 

RDY 
(OUTPUT) 

Figure 22a. Input Handshake Timing 

DATADUT 

DAV 
(OUTPUT) 

DATA OUT VALID 

RDY------------------------~------\~~~+< 
(INPUT) 

Figure 22b. Output Handshake Timing 

AC CHARACTERISTICS 
Handshake Timing 

l1611~12 
I M z 

NumberSymbol Parameter Min Max 

TsDI(DAV) Data In Setup Time 0 

2 ThDI(DAV) Data In Hold Time 230 

3 TwDAV Data Available Width 175 

4 TdDAVIf(RDY) DAV .j. Input to ROY .j. Delay 175 

5 TdDAVOf(RDY) DAV .j. Output to ROY .j. Delay 0 

6 TdDAVlr(RDY) DAV i Input to ROY i Delay 175 

7 . TdDAVOr(RDY) DAV i Output to ROY i Delay 0 

8 TdDO(DAV) Data Out to DAV .j. Delay 50 

9 TdRDY(DAV) Rdy .j. Input to DAV i Delay 0 200 

NOTES: 
1. Test load 1 
2 I nput handshake 
3. Output handshake 
4. 16 MHz timl", Is pnllmlnary and subject to cha",o. 
t All timing references use 2.0Vfor a logic "1" and IY.BV for a logic "0': 
• Units in nanoseconds (ns). 

ll611 ll611 
12 MHz 16 MHz 

Min Max Min Max 

0 0 

160 145 

120 110 

. 120 115 

0 0 

120 115 

0 0 

30 30 

0 140 0 130 

Notes 

1.2 

1.3 

1.2 

1.3 

69 



CLOCK CYCLETIME-DEIlENDENT 
CHARACTERISTICS 

Z8681 182 Z8681J82 
8MHz 12MHz 

Number Symbol Equation Equation 

1 TdA(AS) TpC-75 TpC-50 

2 TdAS(A) TpC-55 . TpC-40 

3 TdAS(DR) 4TpC-140* 4TpC-110* 

4 TwAS TpC-45 TpC-30 

6 TwDSR 3TpC-125* 3TpC-65* 

7 TwDSW 2TpC-90* 2TpC-55* 

'8 TdDSR(DR) 3TpC-175 * 3TpC-120* 

10 Td(DS)A TpC-55 TpC-40 

11 TdDS(AS) TpC-55 TpC-30 

12 TdR/W(AS) TpC-75 TpC-55 

13 TdDS(RIW) TpC-65 TpC-50 

14 TdDW(DSW) TpC-75 TpC:50 

15 TdDS(DW) TpC-55 TpC-40 

16 TdA(DR) 5TpC-215* 5TpC-160* 

17 TdAS(DS) TpC-45 TpC-30 

* Add 2TpC when using extended memory timing 

70 



~ Zim Product Specification 

June 1987 

FEATURES 

• Complete microcomputer, 24 I/O lines, and up to 64K 
bytes of addressable external space each for program 
and data memory. 

• 143-byte register file, Including 124 general-purpose 
registers, 3 I/O port registers, and 16 status and control 
registers. 

• Vectored, priority interrupts for I/O, counter/timers, and 
UART. 

• On-Chip oscillator that accepts crystal or external clock 
drive. 

GENERAL DESCRIPTION 

The Z8691 is a ROM less version of the Z8 single-chip 
microcomputer. The Z8691 offers all the outstanding 
features of the Z8 family architecture except an on-chip 
program ROM. Use of external memory rather than a 

(- RESET 
TIMINO RIW 

AND 
CONTROL os 

AS XTAL2 

PO, P2, 

PO, P2, 

po, P2, 
PORTO 

PO, P2, (NIBBLE 
PROGRAMMABLE) PO, P2, 

110 OR Ae-A15 
PO, Z8891 P2, 

PO, MCU P2, 

PO, P2, 

Pl, P3, 

Pl, P3, 

Pl, Pa, 

PORT 1 Pl, P3, 
ADo-AD7 Pl, P3, 

Pl, P3, 

Pl, P30 

Pl, P3, 

Figure 1. Pin Functions 

Z8691Z8® 
ROMless Microcomputer 

• Full-duplex UART and two programmable 8-bit 
counter/timers, each with a 6-bit programmable 
prescaler. 

• Register Pointer so that short, fast instructions can 
access anyone of the nine working-register groups. 

• Single + 5V power supply-all I/O pins TTL compatible. 

• 8 MHzl12 MHz versions. 

preprogrammed ROM enables this Z8 microcomputer to be 
used in low volume applications or where code flexibility is 
required. 

+5V P3, 

XTAL2 P3, 

XTALl P2, 

P3, P2, 

P3, P2, 

= P2, 

RIW P2, 

os P2, 

AS' P2, 

P3, P2, 

GND P3, 

Pa, P3, 

PO, Pl, 

PO, Pl, 

PO, Pl, 

PO, Pl, 

PO, Pl, 

PO, Pl, 

PO, Pl, 

PO, Pl, 

Figure 2a. 40-pin Dual-In-Line Package (DIP), 
Pin ASSignments 

71 



The Z8691 can provide up to 16 output address lines, thus 
permitting an address space of up to 64K bytes of data or 
program memory .. Eight address outputs (ADo·AD7) are 
provided by a multiplexed, 8·bit, Address/Data bus. The 
remaining 8 bits can be provided by the software 
configuration of Port 0 to output address bits As·A15. 

Available address space can be doubled (up to 128K bytes) 
by programming bit 4 of Port 3 (P34) to act as a data memory 
select output (OM). The two states of OM together with the 
16 address outputs can define separate data and memory 
address spaces of up to 64K bytes each. 

There are 143 bytes of RAM located on·chip and organized 
as a register file of 124 general·purpose registers, 16 control 
and status registers, and three I/O port registers. This 
register file can be divided into nine groups of 16 working 
registers each. Configuring the register file in this manner 
allows the use of short format instructions; in addition, any of 
the individual registers can be accessed directly. 

The pin functions and the pin assignments of the Z8691 
40·pin and 44·pin packages are illustrated in Figures 1 and 2, 
respectively. 

6 5 4 3 2 1 «~~ 41 ~. 

72 

RESET 7 

R/W 8 

~ 9 

AS 10 

P3, 11 

GND 12 

P3, 13 

PO, 
" PO, 15 

PO, 16 

NC 17 

1/0 
(BIT PROGRAMMABLE) 

Z8691 
MCU 

18 19 20 21 22 23 24 25 26 27 28 

q~":J qf:>~ 4:::'~ q'\>'o qt:;'\ q .... a q ....... q .... ~ q .... ":J q .... "" ~v 

Figure 2b. 44·pin Chip Carrier, 
Pin Assignments 

ADDRESS OR 1/0 
(NIBBLE PROGRAMMABLE) 

39 NC 

38 P2, 

37 P2, 

36 P2, 

35 P2, 

3. P2, 

33 P3, 

32 P3, 

31 P~7 

30 P"a 
29 Pl, 

ADDRESSIDATA 

,--------------~v~----------~--,# 
Z·BUS WHEN USED AS 
ADDRESS/D~TA BUS 

Figure 3. Functional Block Diagram 



ARCHITECTURE 

Z8691 architecture is characterized by a flexible I/O 
scheme, an efficient register and address space structure 
and a number of ancillary features that are helpful in many 
applications. 

Microcomputer applications demand powerful I/O 
capabilities. The Z8691 fulfills this with 24 pins available for 
input and output. These lines are grouped into three ports of 
eight lines each and are configurable under software control 
to provide timing, status signals, serial or parallel I/O with or 
without handshake, and an Address bus for interfacing 
external memory. 

Three basic address spaces are available: program memory, 

PIN DESCRIPTION 

AS_ Address Strobe (output, active Low). Address Strobe is 
pulsed once at the beginning of each machine cycle. 
Addresses output via Port 1 for all external program or data 
memory transfers are valid at the trailing edge of AS. 

OS- Data Strobe (output, active Low). Data Strobe is 
activated once for each external memory transfer. 

P0o-P07. P20·P27. p30·par- //0 Port Unes (input/outputs, 
TTL-compatible). These 24 lines are divided into three 8-bit 
I/O ports that can be configured under program control for 
I/O or external memory interface (Figure 3). 

P10-P17- Address/Data Port (bidirectional). Multiplexed 

data memory and the register file (internal). The 143-byte 
random-access register file is composed of 124 
general-purpose registers, three I/O port registers, and 16 
control and status registers. 

To unburden the program from coping with real-time 
problems such as serial data communication and 
counting/timing, an asynchronous receiver/transmitter 
(UART) and two counter/timers with a large number of 
user-selectable modes are offered on-chip. Hardware 
support for the UART is minimized because one of the 
on-chip timers . supplies the bit rate. Figure 3 shows the 
Z8691 blook diagram. 

address (Ao-A7) and data (00-07) lines used to interface with 
program and data memory. 

RESET. Reset (input, active Low). RESET initializes the 
Z8691. After RESET the Z8691 is in the extended memory 
mode. When RESET is deactivated, program execution 
begins from program location OOOCH. 

R/W. Read/Write (output). R/iN is Low when the Z8691 
is writing to external program or data memory. 

XTAL 1. XTAL2. Crystal 1, Crystal 2 (time-base input and 
output). These pins connect a parallel-resonant crystal to the 
on:chip clock oscillator and buffer. 

73 



ADDRESS SPACES 

Program Memory. The Z8691 addresses 64K/62K bytes of 
external program memory space (Figure 4). 

The first 12 bytes of program memory are reserved for the 
interrupt vectors. These locations contain six 16-bit vectors 
that correspond to the six available interrupts. Program 
execution begins at location OOOCH after a reset. 

Data Memory. The Z8691 can address 64K bytes of external 
data memory. External data memory may be included with or 
separated from the external prbgram memory space. DM, 
an optional 110 function that can be programmed to appear 
on pin P34, is used to distinguish between data and program 
memory space. 

Register File. The 143-by1e register file includes three 1/0 
port registers (RO, R2, R3), 124 general-purpose registers 
(R4-R127) and 16 control and status registers (R240-R255). 
These registers are assigned the address locations shown in 
Figure 5, 

65 .535 

Z8691 instructions can access registers directly or indirectly 
with an 8-bit address field. This also allows short 4-bit 
register addressing using the Register Pointer (one of the 
control registers). In the 4-bit mode, the register file is divided 
into nine working-register .groups, each occupying 16 
contiguous locations (Figure 5). The Register Pointer 
addresses the starting location of the active working-register 
group (Figure 6). 

Stacks. Either the internal register file or the external data 
memory can be used for the stack. A 16-bit Stack Pointer 
(R254 and R255) is used for the external stack, which can 
reside anywhere in data memory. An 8-bit Stack Pointer 
(R255) is used for the internal stack that resides within the 
124 general-purpose registers (R4-R127). 

PROGRAM DATA 
MEMORY MEMORY 

LOCATION OF FIRST 
BYTE OF INSTRUCTION 

EXECUTED AFTER 
RESET 

-----

74 

INTERRUPT 
VECTOR 

(LOWER BYTE) 

INTERRUPT 
VECTOR 

(UPPER BYTE) 

ci ..... 

~~-
:-
7 -

......... 6 

!~ 
--3 f-2 

~f-

lAOS -
IRQ4 -
IRoa -
IRQ2 -
IRQ1 -
IROO -

Figure 4. Program Memory Map 



DEC 

255 

254 

253 

252 

251 

250 

249 

248 

247 

246 

245 

244 

243 

242 

241 

240 

127 

STACK POINTER (BITS 7-0) 

STACK POINTER (BITS 15-8) 

REGISTER POINTER 

PROGRAM CONTROL FLAGS 

INTERRUPT MASK REGISTER 

INTERRUPT REQUEST REGISTER 

INTERRUPT PRIORITY REGISTER 

PORTS 0-1 MODE 

PORT 3 MODE 

PORT 2 MODE 

TO PRESCAlER 

TIMER/COUNTER 0 

T1 PRESCAlER 

TIMER/COUNTER 1 

TIMER MODE 

SERIAL 1/0 

NOT 
IMPLEMENTED 

GENERAL-PURPOSE 
REGISTERS 

PORT 3 

PORT 2 

PORT 1 

PORT 0 

HEX 

FF 

FE 

FD 

FC 

FB 

FA 

F9 

F8 

F7 

F6 

FS 

F4 

F3 

F2 

F1 

FO 

7F 

04 

03 

02 

01 

00 

Figure 5. The Register File 

IDENTIFIERS 

SPL 

SPH 

RP 

FlAGS 

IMR 

IRQ 

IPR 

P01M 

P3M 

P2M 

PREO 

TO 

PRE1 

T1 

TMR 

510 

P3 

P2 

P1 

PO 

SERIAL INPUT/OUTPUT 

Port 3 lines P30 and P37 can be programmed as serial I/O 
lines for full·duplex serial asynchronous receiver /transmitter 
operation. The bit rate is controlled by Counter /Timer 0, with 
a maximum rate of 62.5K bits/second at 8 MHz or 93.75K 
bits / second at 12 M Hz on the Z8691. 

The Z8691 automatically adds a start bit and two stop bits to 
transmitted data (Figure 7). Odd parity is also available as an 
option. Eight data bits are always transmitted, regardless of 

Transmitted Data 
(No Parity) 

ISplspl P ID,ID5ID.103ID,1 D,IDolsTI 

T·L_LSTARTBIT 
'-------SEVEN DATA BITS 

000 PARITY 

TWO STOP BllS 

Transmitted Data 
(With Parity) 

- - [ t-1_7l_,,_,s,--,._,,--_o_o_o_o -II ::: 
THE UPPER NIBBLE OF THE REGISTER 
FILE ADDRESS PROVIDED BY THE 
REGISTER POINTER SPECIFIES THE 
ACTIVE WORKING-REGISTER GROUP. __ I 

I 
--I 
-~( 

--I 
SPECIFIED WORKING· 

1 27 

1 

1 __ I 
REGISTER GROUP -r 

THELQWER 
NIBBLE OF 
THE REGISTER 
FILE ADDRESS 
PROVIDED BY 

I 
--j 
--I 1 

t- - - -'IOPORTS - - - -- 3 
0 

THE INSTRUCTION 
POINTS TO THE 
SPECIFIED 
REGISTER. 

Figure 6. The Register Pointer 

parity selection. If parity is enabled, the eighth data bit is 
used as the odd parity bit. An interrupt request (IRQ4) is 
generated on all transmitted characters. 

Received data must have a start bit, eight data bits, and at 
least one stop bit. If parity is on, bit 7 of the received data is 
replaced by a parity error flag. Received characters 
generate the IRQ3 interrupt request. 

1·1~1~1~1~1~1~1~1~lnl 

LSTART BIT 

'------ EIGHT DATA BITS 

'----------- ONE STOP BIT 

Received Data 
(No Parity) 

I SP I P I D, I Ds r 0.1 D31 D, I D, I Do 1 ST I 

II,_~LSTARTBIT ~-----SEVEN DATA BITS 

PARITY ERROR FLAG 

L------------ONE STOP BIT 

Received Data 
(With Parity) 

Figure 7. Serial Data Formats 

75 



COUNTER/TIMERS 

The Z8691 contains two 8-bit programmable counter /timers 
(To and T1), each driven by its own 6-bit programmable 
prescaler. The T1 prescaler can be driven by internal or 
external clock sources; however, the To prescaler is driven 
by the internal clock only. 

The 6-bit prescalers can divide the input frequency of the 
clock source by any number from 1 to 64. Each prescaler 
drives its counter, which decrements the value (1 to 256) that 
has been loaded into the counter. When the counter reaches 
the end of count, a timer interrupt request-IRQ4 (To) or 
IRQ5 (T1)-is generated. 

The counters can be started, stopped, restarted to continue, 
or restarted from the initial value. The counters can also be 
programmed to stop upon reaching zero (single-pass mode) 

I/O PORTS 

The Z8691 has 24 lines available for input and output. These 
lines are grouped into three ports of eight lines each and are 
configurable as input, output or Ilddress. Under software 
control, the ports can be programmed to provide address 

Port 1 is a dedicated Z-BUS compatible memory interface. 
The operations of Port 1 are supported by the Address Strobe 
(AS) and Oata Strobe (OS) lines, and by the Read/Write 
(R/W) and Oata Memory (OM) control lines. The low-order 
program and data memory addresses (An-A?) are output 
through Port 1 (Figure 8) and are multiplexed with data in/out 
(00-07)' Instruction fetch and data memory read/write 
operations are done through this port. 

Port 1 cannot be used as a register nor can a handshake 
. mode be used with this port. 

The Z8691 wakes up with the 8 bits of Port 1 configured as 
address outputs for external memory. If more than eight 
address lines are required, additional lines can be obtained 
by programming Port 0 bits as address bits. The 

Port 0 can be programmed as a nibble I/O port, or as an 
address port for interfacing external memory (Figure 9). 
When used as an I/O port, Port 0 can be placed under 
handshake control. In this configuration, Port 3 lines P32 and 
P35 are used as the handshake controls OAVo and ROYo. 
Handshake signal assignment is dictated by the I/O 
direction of the upper nibble P04-P07. 

For external memory references, Port 0 can provide address 
bits As-A11 (lower nibble) or Aa-A15 (lower and upper nibbles) 
depending on the required address space. If the address 
range requires 12 bits or less, the upper nibble of Port 0 can 
be programmed independently as I/O while the lower nibble 
is used for addressing. 

Port 0 lines are configured as address lines As-A15 after a 
reset. If one or both nibbles are needed for I/O operation, 
they must be configured by writing to the Port 0 Mode 
register. 

76 

or to automatically reload the initial value and continue 
counting (modulo-n continuous mode). The counters, but not 
the prescalers, can be read any time without disturbing their 
value or count mode. 

The clock source for T1 is user-definable; it can be either the 
internal microprocessor clock divided by four, or an external 
signal input via Port 3. The Timer Mode register configures 
the external timer input as an external clock, a trigger input 
that can be retriggerable or nonretriggerable, or as a gate 
input for the internal clock. The counter/timers can be 
programmably cascaded by connecting the To output to the 
input OfT1. Port 3 line P36 also serves as a timer output (TOUT) 
through which To, T1 or the internal clock can be output. 

outputs, timing, status signals, serial I/O, and parallel I/O 
with or without handshake. All ports have active pull-ups and 
pull-downs compatible with TTL loads. . 

least-significant four bits of Port 0 can be configured to 
supply address bits As-A11 for 4K byte addressing or both 
nibbles of Port 0 can be configured to supply address bits 
As-A15 for 64K byte addressing. 

PORT 1 
ADO-ADT 

TO EXTERNAL 
MEMORY 

Figure 8_ Port 1 

To permit the use of slow memory, an automatic wait mode of 
two oscillator clock cycles is configured for the bus timing of 
the Z8691 after each reset. The initialization routine could 
include reconfiguration to eliminate this extended timing 
mode. 

) 
PD.-POT } PORT 0 
POO-P03 (liD OR A8-A'5 

_ \ HA,NDSHAKE CONTROLS 
f OAVo ANO ROYo 

(P3, AND P3,) . 

Figure 9. Port 0 



Port 2 bits can be programmed independently as input or 
output (Figure 10). This port is always available for I/O 
operations. In addition, Port 2 can be configured to provide 
open-drain outputs. 

Port 2 may also be placed under handshake control. In this 
configuration, Port 3 lines P31 and P3s are used as the 
handshake controls lines OAV2 and ROY 2. The handshake 
signal assignment for Port 3 lines P~ and P3s is dictated by 
the direction (input or output) assigned to bit 7 of Port 2. 

Port 3 lines can be configured as I/O or control lines (Figure 
11). In either case, the direction of the eight lines is fixed as 
four input (P30-P33) and four output (P34-P37)' For serial I/O, 
lines P30 and P37 are programmed as serial in and serial out, 
respectively. 

Port 3 can also provide the following control functions: 
handshake for Ports 0 and 2 (OAV and ROY); four external 
interrupt request signals (IROO-IR03); timer input and output 
signals (TIN and TOUT) and Data Memory Select (DM). 

INTERRUPTS 

The Z8691 allows six different interrupts from eight sources: 
the four Port 3 lines P30-P33, Serial In, Serial Out, and the two 
counter/timers. These interrupts are both maskable and 
prioritized. The Interrupt Mask register globally or 
individually enables or disables the six interrupt requests. 
When more than one interrupt is pending, priorities are 
resolved by a programmable priority encoder that is 
controlled by the Interrupt Priority register. 

All interrupts are vectored through locations in program 
memory. When an interrupt request is granted,.an interrupt 
machine cycle is entered. This disables all subsequent 

CLOCK 

The on-chip oscillator has a high-gain, parallel-resonant 
amplifier for. connection to a crystal or to any suitable 
external clock source (XTAL 1 = Input, XTAL2 = Output). 

. The crystal source is connected across XTAL 1 and XTAL2, 
using the recommended capacitance (CL =' 15 pf 
maximum) from each pin to ground. The specifications for 
the crystal are as follows: 

_]P20 

~' i ~J PORr 2(110) 

- P27 
_ \ HANDSHAKE CONTROLS 

1~~~~~~~Y2 

Figure 10. Port 2 

~ 1 PORT 3 

MCU 
Z8881 J (1/0 OR CONTROL) 

Figure 11. Port 3 

interrupts, saves the Program Counter and status flags, and 
accesses the program memory vector location reserved for 
that interrupt. This memory location and the next byte 
contain the 16-bit address of the interrupt service routine for 
that particular interrupt request. The Z8691 takes 63 
crystal cycles to enter an interrupt subroutine. 

Polled interrupt systems are also supported. To 
accommodate a polled structure, any or all of the interrupt 
inputs can be masked and the Interrupt Request register 
polled to determine which of the interrupt requests needs 
service. 

• AT cut, parallel-resonant 

• Fundamental type 

• Series resistance, Rs'" 100 Q 

• 8 or 12 MHz maximum 

77 



INSTRUCTION SET NOTATION 

Addressing Modes. The following notation is _used to 
describe the. addressing modes and instruction operations 
as shown in the instruction summary. 

IRR Indirect register pair or indirect working-register 
pair address 

Irr Indirect working-register pair only 
X Indexed address 
DA Direct address 
RA Relative address 
1M Immediate 
R Register or working-register address 
r Working-register address only 
IR I ndirect-register or indirect working-register 

address 
Ir Indirect working-register address only 
RR Register pair or working register pair address 

Symbols. The following symbols are used in describing the 
instruction set. 

dst 
sre 
ee 
@ 

Destination location or contents 
Source location or contents 
Condition code (see list) 
Indirect address prefix 

SP 
PC 
FLAGS 
RP 
IMR 

Stack pOinter (control registers 254-255) 
Program counter 
Flag register (control register 252) 
Register pointer (control register 253) 
Interrupt mask register (control register 251) 

CONDITION CODES 

Value Mnemonic 

1000 Always true 
0111 C Carry 
1111 NC No carry 
0110 Z Zero 
1110 NZ Not zero-
1101 PL Plus 
0101 MI Minus 
0100 OV Overflow 
1100 NOV No overflow 
0110 EQ Equal 
1110 NE Not equal 

Assignment of a value is indicated by the symbol "+-". For 
example, 

dst ... dst + src 

indicates that the source data is added to the destination 
data and the result is stored in the destination location. The 
notation "addr(n)" is used to refer to bit "n" of a given 
location. For example, 

dst (7) 

refers to bit 7 of the destination operand. 

Flags. Control Register R252 contains the following six 
flags: 

C Carry flag 
Z Zero flag 
S Sign flag 
V Overflow flag 
o Decimal-adjust flag 
H Half-carry flag 

Affected flags are indicated by: 

o Cleared to zero 
1 Set to one 
* Set or cleared according to operation 

Unaffected 
X Undefined 

Meaning Flags Set 

C = 1 
C=O 
Z=1 
Z=O 
8=0 
8 = 1 
V=1 
V=O 
Z = 1 
Z=O 

1001 GE Greater than or equal (8 XOR V) = a 
0001 LT Less than (8XORV) = 1 
1010 GT Greater than [ZOR(8XORV)) = O. 
0010 LE Less than or equal [Z OR (8 XOR V)j = 1 
1111 UGE Unsigned greater than or equal C=O 
0111 ULT Unsigned less than C=1 
1011 UGT Unsigned greater than (C = OANDZ = 0) = 1 
0011 ULE UnSigned less than or equal (CORZ) = 1 
0000 Never true 

78 



INSTRUCTION FORMATS 

OR 11 1 1 0 I dst/sre I 

OPC I OR 11 1 1 01 dst dst 

OPC 

VALUE 

OPC MODE 

dst 

dst/src OPC 

src/dst OR l' 1 1 01 sre I 

dst I OPC 

VALUE 

I dsl/CC R~ OPC 

OPC 

dsl OPC 

CCF, 01, EI, IRET, NOP, 
RCF, RET, SCF 

INCr 

Oae-Byte la.tructlon 

CLR, CPL, DA, DEC, OPC MODE 
DECW. INC, INew, POP, sre OR 1 1 1 0 PUSH, RL, RLC, RR, 
RRC, SRA, SWAP dst OR 1 1 1 0 

JP, CALL (Indirect) 

OPC MODE 

ds1 OR 11 1 1 01 

SRP 
VALUE 

MODE OPC 

sre OR 1 1 1 0 
ACe, ADD, AND, 

dst OR 1 1 1 0 CPt OR, SBC, SUB, 
TCM, TM, XOR 

MODE OPC 
LD, LDE, LDEI, 
LDC, LOCI 

LD 
OPC 

DAu 

DAL 

LD 

OPC 

DAu 

DJNZ, JR DAL 

ADC, ADD, AND, CP, 
LD, OR, SSC, SUS, 
reM, 1M, XOR 

dst 

ADC, ADD, AND, CP, 

dst LD, OR, SSC, SUS, 
TCM, TM, XOR 

LD 

sre 

dst 

LD 

JP 

CALL 

Two-Byte Instruction Three-Byte Instruction 

Figure 12. Instruction Formats 

INSTRUCTION SUMMARY 

AddrMode Opcode Flags Affected AddrMode Opcode Flags Affected 
Instruction Byte Instruction Byte 
and Operation dst src (Hex) C Z S V o H and Operation dst src (Hex) C Z S V 0 H 

ADCdst,src (Note 1) 10 * * * * 0 * DECdst R 00 -***--
dst ~ dst + src + C dst ~dst - 1 IR 01 

ADDdst,src (Note 1) DO * * * * 0 * DECWdst RR 80 -***--
dst - dst + src dst - dst - 1 IR 81 

ANDdst,src (Note 1) 50 -** o --- 01 
dst ~ dst AND src IMR(7)~O 8F ------

CALLdst DA D6 ------ DJNZ r,dst RA rA ------

SP ~SP - 2 IRR D4 r~r - 1 r ~ 0 - F 
@SP ~ PC; PC - dst Ifr*O 

CCF EF 
PC-PC + dst * -----

Range + 127, - 1 28 
C-NOTC 

EI 9F 
CLRdst R BO 

---------
------

IMR(7)~ 1 
dst~O IR B1 

INCdst rE 
COMdst R 60 0-- -***---** dst ~ dst + 1 r ~ 0 - F 
dst~ NOTdst IR 61 

R 20 
CP dst,src (Note 1) AD ****-- IR 21 
dst - src 

INCWdst RR AO -* **--
DAdst R 40 ***x-- dst -dst + 1 IR AI 

dst - DA dst IR 41 

79 



INSTRUCTION S.UMMA'RY (Continued) 

Instruction 
and OPeration 

Addr Mode Opcode Flags Affected 
Byte 

dst src (Hex) CZSVDH 

!RET BF 
FLAGS .... @sp; SP - SP + 1 
PC -@SP;SP-SP + 2; IMR(7)-1 

JP cc.dst 
ifcc is true 
'PC-dst 

jRcc,dst 
if cc is true. 

PC-PC + dst 
Range: + 127, -128 

LD dst,src 
dst-src 

DA 

IRR 

RA 

r 
R 

r 
X 
r 
Ir 
R, 

R 
R 
IR 
IR 

1m 
R 

X 
r 
Ir 
r 

.R 
IR 
1M 
1M 
R 

1.00 dst,sre r I rr 
dst-src Irr 

,LDcldst,src Ir Irr 
dst .... $rc Irr Ir 
'r;"'r,+ 1; rr-'rr + 1 

LPEds/,sre r Irr 
dst-src Irr 

LD£I dst,src Ir Irr 
dlrt ... src Irr Ir 
r;""r +1;'rr-rr + 1 

NOP 

ORdst,src (Note 1) 
dst - ds! OR src 

'POPdst R 
dst-@SP; IR 
SP-SP + 1 

PUSHsrc 
SP- SP - 1; @SP - src 

RCF 
C-O 

.RET 
PC..-@SP;8P-SP + 2 

RLast 

80 

R 
IR 

cD 
c = 0'- F 

30 

cB 
c=O-F 

rC 
r8 
r9 

r = 0 - F 
C7 
D7 
E3 
F3 
E4 
E5 
E6 
E7 
F5 

C2 
D2 

C3 
D3 

82 
92 

83 
93 

FF 

50 
51 

70 
71 

CF 

AF 

90 
91 

* * * * * * 

------, 

0--:----

* *.* *--

Instruction 
and Operation 

Addr Mode Opcode Flags Affected 
Byte 

dst src (Hex) C Z S V 0 H 

RLC dst c:m::::DJ R 
C 7 0 IR 

RR dst l@] lIi:::j}J R 
C 7 0 IR 

RRC dst c:m::::DJ R 
C 7 0 

. fR 

SBCdst,src 
dst-dst-src-C 

(Note 1) 

SCF 
C-1 

SRA dst l@] P R 
IR 

SRPsrc 
RP-src 

SUBdst,sre 
dst - dst - src 

1m 

(Note 1) 

S~AP dst 17 55 01 I~ 

TCMdst,src 
(NOT dst) AND src 

TMdst,src 
dstAND src 

XORdst,src 
dst - dst XOR src 

(Note 1) 

(Note 1) 

(Note 1) 

10 
11 

EO 
E1 

CO 
C1 

3D 

DF 

DO 
D1 

31 

20 

FO 
F1 

60 

70 

BO 

****--

* * ** 

* * * * 

1-----

***0--

NOTE: These Instructions have an identical set of addreSSing modes. 
which are encoded for breVity. The first opcode nibble is found in 
the instruction set table above. The second nibble is expressed 
. symbolically by a [~ In this table, and its value IS found In the 
following table to the left of the applicable addressing mode palf. 

For example. the opcode of an ADC instruction uSing the 
addressing modes r (destination) and Ir (source) is 13. 

AfldrMode 

dst src 

R 

R 

R 

IR 

Ir 

R 

IR 

1M 

1M 

Lower 
Opcode Nibble 



REGISTERS R240SI0 
Serial 110 Register 

(FOH; Read/Write) 

'----SERIAL DATA (Do '" LSB) 

R241 TMR 
Time Mode Register 

(F1 H; Read/Write) 

NOT USED"" 00 ~ 1 '" LOAD To 

~~ g~~ : ~~ 0 '" DISABLE To COUNT 

T",,, MODES ] ~~ •• NO FUNCTION 

INTERNAL CLOCK OUT .. 11 1 '" ENABLE To COUNT 

T MODES 0 '" NO FUNCTION 
EXTERNAL CLOCK IN~aT ;;; 00 1 '" LOAD T1 

GATE INPUT", 01 0 '" DISABLE 1, COUNT 

(NON'R~~k~g~:~~:~~ "" 10 1 '" ENABLE T1 COUNT 
TRIGGER INPUT '" 11 

(AETRIGGERABLE) 

R242 T1 
Counter Timer 1 Register 

(F2H; Read/Write) 

R243PREl 
Prescaler 1 Register 

(F3H; Write Only) 

I~I~I~I~I~I~I~I~I 

~LCOUNTMODE 
1 '" T 1 MODULO·N 

: 0 '" T1 SINGLE·PASS 

CLOCK SOURCE 
1 = T 1 INTERNAL 
o '" T, EXTERNAL 

TIMING INPUT 
(T'N) MODE 

PRESCALER MODULO 
(RANGE: 1-64 DECIMAL 
01-00 HEX) 

R244 TO 
Counter/Timer 0 Register 

(F4H; Read/Write) 

R245PREO 
Prescaler 0 Register 

(F5H; Write Only) 

TILCOUNTMODE 
o '" To SINGLE·PASS 
1 '" To MOOULO·N 

, RESERVED (MUST BE 0) 

PRESCALER MODULO 
(RANGE: 1-64 DECIMAL 
01-00 HEX) 

R246P2M 
Port 2 Mode Register 

(F6H; Write Only) 

R247P3M 
Port 3 Mode Register 

(F7H; Write Only) 

I ~. L. PORT '. PULl.U. PS.OPEN DRAIN 1 PORT 2 PULL·UPS ACTIVE 

RESERVED (MUST BE 0) 

o P32 = INPUT P35 '" OUTPUT c 

1 P32 = DAVOIRDYO P3s = RDYOIDAVO 

o 0 P33 = INPUT P3.t = OUTPUT 

~6} P33 = INPUT '1'34 = DfI1 
11 RESERVED 

L... ______ ~ ~:~ ~ ~VU;R~~~ ~: ~~~~~uTI 

'--------~ ;~ ~ ~~~~lIN :~ ~ ~;r,,~T O~T 
L... ________ ~ ~!~:~ g~F 

Figure 13. Control Registers 

81 



REGISTERS 
(Continued) 

R248 P01M 
Port 0 Mode Register 

(F8H: Write Only) 

PO,-PO, MODE~ ~-r Po,-PO, MODE OUTPUT", 00 ~ L 00:: OUTPUT 
INPUT ,= 01 01 = INPUT 

A12-AlS :: lX lX :: As-A" 

EXTERNAL STACK SELECTION 
MEMORY TIMING 0 "" EXTERNAL 

NORMAL' := 0 , = iNTERNAL 
-EXTENDED = 1 

, RESERveD (MUST BE 0) 

'ALWAYS EXTENDED TIMING AFTER RESET 

R2491PR 
Interrupt Priority Register 

(F9H: Write Only) 

I~[~[~[~[~[~[~[~I 

RESERVED := 000 ,,",",:J I I III m_"" ,~" .~m 
IRQ3, IAQS PRIORITY (GROUP A) . C > A > B :: 001 

o = IROS > IRC3 A > B > C = 010 
1 = lRQ3 > IROS . A > C > B =:: 011 

IROO, IR02 PRIORITY (GROUP BJ ~ ~ ~ ~ ~ ~ ~~~ 
o = IRQ2 > IROO B > A > C = 110 
1 '" IROO > IRQ2 RESERVED =:; 111 

IRQ1, IR04 PRIORITY (GROUP C) 
o = IRQ1 > IRQ4 
1 = IRQ4 > IRQ1 

R250lRQ 
Interrupt Request Register 

(FAH: Read/Write) 

I~[~I~[~[~[~[~[~I 

RESERVEO (MUST BE 0) T c= IROO 
IRQ1 
IRQ2 
IRC3 
IRQ4 
IRQS 

R2511MR 
Interrupt Mask Register 

(FBH: Read/Write) 

I~I~I~I~I~I~I~I~I 

P32 INPUT (Do = IROO) 
P331NPUT 
P31 INPUT 
P30 INPUT, SERIAL INPUT 
To. SERIAL OUTPUT 
T, 

II c= 1 ENABLES IRQO-IRQ5 
(Do = IROO) 

L--______ RESERVED (MUST BE 0) 

'----,------1 ENABLES INTERRUPTS 

REGISTER 
POINTER 

Figure 13. Control Registers (Continued) 

82 

R252 FLAGS 
Flag Register 

(FCH: Read/Write) 

H~~
' LUSERFLAGF1 

LUSER FLAG F2 

, HALF CARRY FLAG 

. 

DECIMAL ADJUST FLAG 

OVERFLOW FLAG 

SIGN FLAG 

ZERO FLAG 

CARRY FLAG 

R253 RP 
Register Pointer 
(FDH: Read/Write) 

R254SPH 
Stack Pointer 

(FEH: Read/Write) 

R255SPL 
Stack Pointer 

(FFH: Read/Write) 

I~I~I~I~I~I~I~I~I 

1'--___ ~~~~~S~~~~:~R LOWER 



OPCODEMAP 
Lower Nibble (Hex) 

o 4 A B C o E F 

6.5 6.5 6.5 6.5 10.5 10.5 10.5 10,5 6,5 6,5 12110,5 12110,0 6,5 12110.0 6.5 
DEC DEC ADD ADD ADD ADD ADD ADD LD LD DJNZ JR LD JP INC 
R, IR, r,.r2 r1. lr2 R2,R, IR2,R, R"IM IR"IM fl,R2 r2,R, fl,RA cC,RA f1,IM ccDA r1 

r----
6.5 6.5 6.5 6,5 10,5 10,5 10,5 10,5 

RLC RLC ADC ADC ADC ADC ADC ADC 
R, IR, r,.r2 f1, lr2 R2,R, IR2,R, R"IM IR"IM 

I-----
6,5 6,5 6,5 6,5 .1D,5 10,5 10,5 10,5 
INC INC SUB SUB SUB SUB SUB SUB 
R, IR, f,J2 f" lr2 H2,R, IR2,R, R"IM IR"IM r----
8,0 6,1 6,5 6,5 10,5 10,5 10,5 10.5 
JP SRP SBC SBC SBC SBC SBC SBC 

IRR, 1M r"f2 r1, lr2 R2,R, IR2,R, R"IM IR"IM 
I-----

8,5 8,5 6,5 6,5 10,5 10,5 10,5 10,5 
4 DA DA OR OR OR OR OR OR 

R, IR, f,.r2 f1, lr2 R2,R, IR2,R, R"IM IR"IM r----
10,5 10,5 6,5 6,5 10,5 10,5 10,5 10,5 
POP POP AND AND AND AND AND AND 
R, IR, '1,f2 f1, lr2 R2,R, IR2,R, R"IM IR"IM 

r----
6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5 

COM COM TCM TCM TCM TCM TCM TCM 
R, IR, f',(2 (1, lr2 R2,R, IR2,R, R"IM IR"IM 

12114,1 6,5 6,5 10,5 10,5 10,5 10,5 
I-----

10112,1 
PUSH PUSH TM TM TM TM TM TM 

R2 1R2 r,.r2 ".lr2 R2,R, IR2,R, R"IM IR"IM 

i 
e. 7 
~ r----

10,5 10,5 12,0 18,0 6.1 
.., 
z 

DECW DECW LDE LDEI 01 
RR, IR, f1, lrr2 Ir1,lrr2 

6,5 6,5 12,0 18,0 ~ 

-," a. a. 
:::l 

9 RL RL LDE LDEI EI 
R, IR, r2,lrf, Ir2,lrr, 

r----
10,5 10,5 6,5 6,5 10,5 10,5 10,5 10,5 14,0 

A INCW INCW CP CP CP CP' CP CP RET 
RR, IR, '1,f2 '1, lr2 R2,R, IR2,R, R"IM IR"IM 

6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5 ~ 
B CLR CLR XOR XOR XOR XOR XOR XOR IRET 

R, IR, ",(2 f1, lr2 R2,R, IR2,R, R"IM IR"IM r----
6,5 6,5 12,0 18,0 10,5 6,5 

C RRC RRC LDC LOCI LD RCF 
R, IR, f1, lrr2 Ir1,lrr2 fl,x,R2 

I-----
6,5 6,5 12,0 18,0 20,0 20,0 10,5 6,5 

0 SRA SRA LDC LOCI CALL" CALL LD SCF 
R, IR, f2,lrr, Ir2.lrr1 IRR, . DA r2,x,R 1 

6,5 6,5 6,5 10,5 10,5 10,5 10,5 ~ 
E RR RR LD LD LD LD LD CCF 

R, IR, r" IR2 R2,R, IR2·R, R"IM IR"IM 
r----

8.5 8,5 6,5 10,5 6.0 
F SWAP SWAP LD LD NOP 

R, IR, Ir,.f2 R2, IR , 

..... ----... v"'----... j ..... ----... v"'----.. j .. "'------v ... -----... j~'---v--' 

EXECUTION 
CYCLES 

FIRST 
OPERAND 

*2-byte instruction; fetch cycle appears as a 3-byte instructloo 

3 

PIPELINE 
CYCLES 

MNEMONIC 

SECOND 
OPERAND 

Bytes per Inslructlon 

Legend: 
R = 8-blt address 
r = 4-bit address 
R 1 or r 1 "" Dst address 
R2 or f2 "'" Src address 

Sequence: 

3 

Opcode, First Operand. Second Operand 

NOTE: The blank areas are not defined ~ 

83 



ABSOLUTE MAXIMUM RATINGS 

Voltages on all pins except RESET 
with respect to GND ............... - 0.3V to + 7.0V 

Operating Ambient 
Temperature ........... , ... See Ordering Information 

Storage Temperature .............. ..:. 65°C to + 150°C 

STANDARD TEST CONDITIONS 

The DC characteristics listed below apply for the following 
standard test conditions, unless otherwise noted. All 
voltages are referenced to GND. Positive current flows into 
the referenced pin. 

Standard conditions are as follows: 

• + 4.75V <; Vcc <; + 5.25V 

• GND == OV 

• O°C<; TA <; + 70°C for S (Standard temperature) 

• - 40°C <; TA <; + 100°C for E (Extended temperatu(e) 

DC CHARACTERISTICS 

Symbol Parameter Min 

VCH Clock Input High Voltage 3.8 

VCl Clock Input Low Voltage -0.3 

VIH Input High Voltage 2.0 

Vil Input Low Voltage -0.3 

VRH Reset Input High Voltage 3.8 

VRl Reset Input Low Voltage -0.3 

VOH Output High Voltage 2.4 

VOL Output Low Voltage 

III Input Leakage -10 

IOl Output Leakage -10 

IIR Reset Input Current 

Icc Vee Supply Current 

84 

Stresses greater than those listed under Absolute Maximum Ratings may 
cause permanent damage to the device. This is a stress rating only; 
operation of the device at any condition above those indicated in the 
operational sections of these specifications is not implied. Exposure to 
absolute maximum rating conditions for extended periods may affect 
device reliability. 

Max Unit 

Vcc V 

0.8 V 

Vcc V 

0.8 V 

Vee V 

0.8 V 

V 

0.4 V 

10 fAA 

10 fAA 
-50 fAA 

180 rnA 

+5V 

2.1K 

Figure 14. Test Load 1 

Condition 

Driven by External Clock Generator 

D riven by External Clock Generator 

IOH == - 250 fAA 
IOl == + 2.0 mA 

VIN == OV, 5.25V 

VIN == OV, 5.25V 

VCC == + 5.25V, VRl == OV 

All outputs and 1/0 pins floating 



PORTO, 
bM 

) 

) 
.-@-

16 

}( 
~I 

)! . 
I 

PORT 1 ) Ao-A, ~ < Do-o, IN j < 

iii 
(READ) 

PORT 1 

-<D-

1-0-

--<D-

• 
~I • 

I--®----i' 
Ao-A, )( 

I---®--I 

CD • 
CD 

Do-D, OUT 

DS 
(WRITE) 'J: 1 

Figure 15. ExtemalltO or Memory Read/Write Timing 

AC CHARACTERISTICS 
External 110 or Memory Read and Write TIming 

8MHz 
Number Symbol Parameter Min Max 

1 TdA(AS) Address Valid to N3 t Delay . 50 

2 TdN3(A) AS t to Address Float Delay 70 

3 TdN3(DR) AS t to Read Data Required Valid 360 

4 TwN3 N3 Low Width 80 

5 TdAz(DS) Address Float to OS ~ 0 

6 TwDSR DS (Read) Low Width 250 

7 TwDSW DS (Write) Low Width 160 

8 TdDSR(DR) DS ~ to Read Data Required Valid 200 

9 ThDR(DS) Read Data to DS t Hold Time 0 

'10 TdDS(A) rrn t to Address Active Delay 70 

11 TdDS(N3) OS tlo N3 We lay . 70 

12 TdRIW(N3) Rm Valid to AS t Delay 50 

13 TdDS(RIW) DS t to RIW Not Valid 60 

14 TdDW(DSW) Write Data Valid to DS (Write) ~ Delay 50 

15 TdDS(DW) DS t to Write Data Not Valid Delay 60 

16 TdA(DR) . Address Valid to Read Data Required Valid 410 

17 TdN3(DS) AS t to hs ~ Delay 80 

NOTES: 
i: When using extended memory timing add 2 TpC. • All un~s in nanoseconds (ns). 
2. TIming numbers given are for minimum TpC. tTest Load 1 

--01 ... 

~1\ 
.~ 

-®-
}( 

+®-I 

Y 

12MHz 
Min Max 

35 

45 

220 

55 

0 

185 

110 

130 

0 

45 

55 

30 

35 

35 

35 

255 

55 

. Notes·tO 

2,3 

2,3 

1,2,3 

2,3 

1,2,3 

1,2,3 

1,2,3 

2,3 

2,3 

2,3 

2,3 

2,3 

2,3 

1,2,3 

2,3 

3. See clock cycle time dependent characteristics table. o All timing references use 2.0V for a logic "1" and O.8V for a logic "0". 

85 



· Figure 16. Additional Timing 

AC CHARACTERISTICS 
Additional Timing Table 

Number Symbol Parameter 

1 TpC Input Clock Period 

2 TrC,TIC Clock Input Rise and Fall Times 

3 TwC Input Clock Width 

4 TwTinL Timer Input Low Width 

5 TwTinH Timer Input High Width 

6 TpTin Timer Input Period 

7 TrTin,TfTin Timer Input Rise and Fall Times 

8A TwlL Interrupt Request Input Low Time 

88 TwlL Interrupt Request Input Low Time 

9 TwlH In,terrupt Request Input High Time 

NOTES: 
1. Clock timing references use 3.BV for a logic "1" and O,BV for a logic "0". 
2. Timing references use 2.0V for a logic "1" and O.BV for a logic "0", 
3. Interrupt request via Port 3. 
4. Interrupt request via Port 3 (P31·P33) 
5. Interrupt request via Port 3 (P30) 
* Units in nanoseconds (ns). 

86 

8MHz 

Min 

125 

37 

100 

3TpC 

8TpC 

100 

3TpC 

3TpC 

12MHz 
Max· Min Max Notes' 

1000 83 1000 

25 15 

70 1 

70 2 

3TpC 2 

8TpC .2 

100 100 2 

70 2,4 

3TpC 2,5 

3TpC 2,3 



DATA IN DATA IN VALID 

DAV--------------------iJ+-__ --{r-____ ~r--------------------------
(INPUT) 

RDY 
(OUTPUT) 

DATA OUT 

DAV 
(OUTPUT) 

Figure 17a. Input Handshake Timing 

DATA OUT VALID 

RDY------------------------~~----~k~--~~ 
(INPUT) 

Figure 17b. Output Handshake Timing 

AC CHARACTERISTICS 
Handshake Timing 

Number Symbol 

TsDI(DAV) 

2 ThDI(DAV) 

3 TwDAV 

4 TdDAVIf(RDY) 

5 TdDAVOf(RDY) 

6 TdDAVlr(RDY) 

7 TdDAVOr(RDY) 

8 TdDO(DAV) 

9 TdRDY(DAV) 

NOTES: 
1. Test load 1 
2. Input handshake 
3. Output handshake 

Parameter 

Data In Setup Time 

Data In Hold Time 

Data Available Width 

DAV ~ Input to RDY ~ Delay 

DAV ~ Output to RDY ~ Delay 

DAV t Input to RDY t Delay 

DAV t Output to RDY t Delay 

Data Out to DAV ~ Delay 

Rdy ~ Input to DAV t Delay· 

tAli timin.g references use 2.0V for a 10gic"I" and O.BV for a logic "0". 
* Units in nanoseconds (ns). 

8MHz 
Min Max 

0 

230 

175 

175 

0 

175 

0 

50 

0 200 

12 MHz 
Min Max 

0 

160 

120 

120 

0 

120 

0 

30 

0 140 

Notest* 

1,2 

1,3 

1,2 

1,3 

87 



CLOCK CYCLE TIME~DEPENDENT 
CHARACTERISTICS 

8MHz 12MHz 
Number Symbol Equation Equation 

1 TdA(AS) TpC-75 TpC-50 

2 TdAS(A) TpC-55 TpC-40 

3 TdAS(DR) 4TpC-140* 4TpC-110* 

4 'TwAS TpC-45 TpC,30 

6 TwDSR 3TpC-125* 3TpC-65 * 

·7 liNDSW 2TpC-90* 2TpC-55 * 

8 TdDSR(DR) 3TpC-175* 3TpC-120* 

10 Td(DS)A TpC-55 TpC-40 

11 TdDS(AS) TpC-55 TpC-30 

12 TdRJW(AS) TpC-75 TpC-55 

13 TdDS(RIW) TpC-65 TpC-50 

14 TdDW(DSW) TpC-75 TpC-50 

15 TdDS(DW) TpC-55 TpC-40 

16 TdA(DR) 5TpC-215* 5TpC-160* 

17 TdAS(DS) .TpC-45 . TpC-30 

* Add 2TpC when using extended memory timing 

, 

88 



'A' . PRELIMINARY .., .. '" ZII..([; Product Specification 

April 1988 

FEATURES: 

• Complete microcomputer with 18-pin package, 14 
I/O lines, and 2K bytes of on-chip ROM. 

• 142-byte register file, including 124 general purpose 
8-bit registers, 3 I/O port registers, and 15 status 
and control registers. 

• Two programmable 8-bit counter/timers, each with a 
6-bit programmable prescaler. 

• On-chip osillator that accepts a crystal or external 
clock drive. 

• 2 Volt "BROWN OUT" protection. 

GENERAL DESCRIPTION: 

The Z86C08 is a 2K ROM version of the Z8 single-chip 
microcomputer housed in an 18-pin DIP. It offers all the 
outstanding features of the Z8 family architecture in a 
low cost plastic DIP for price and size sensitive designs. 

GND Vee 

XTALIN P20 

XTALOUT P21 

P31/Anl P22 

P32IAn2 P23 

P33IREF P24 

POO P25 

POl P26 

P02 P27 

Figure 1. Pin Functions 

Z86C08 CMOS Z8 
MICROCONTROLLER 

• Two analog comparators. 

• Register pointer so that short fast instructions 
access anyone of the eight working register groups 

• Internal power on reset. 

• Standby modes - HALT and STOP. 

• 8,12 MHz 

• CMOS process. 

Flexible 110 with low power (15mA max, 5mA HALT, 10ltA 
STOP) operation makes this an ideal micrcompuler for 
hand-held and consumer applications. It has Instruction 
compatibility with the entire Z8 family for easy software 
migration. 

P24 P23 18 

P25 P22 17 

3 P26 P21 16 

4 P27 P20 15 

5 Vee GND 14 

6 XTALOUT P02 13 

7 XTALIN POl 12 

8 P31/Ant POO 11 

9 P32IAn2 P33IREF 10 

Figure 2. Pin Assignments 

89 



PIN DESCRIPTION: 

POO-P02• 1/0 Port Lines (inputs/outputs, CMOS compat­

ible). The three lines of Port 0 are programmable as inputs 
or outputs on a group basis (Figure 3). 

P2u-P2.,. I/O Port Lines (inputs/outputs, CMOScompat­

ible). The eight lines of Port 2 are programmable as inputs 
or outputs on a line by line basis (Figure 3). 

P3,-P33 • Input Port Lines (inputs, CMOS compatible). 

The three lines of Port 3 are programmable as digital or 
analog comparator inputs on a group basis (Figure 3). 

XTAL IN, XTAL OUT. Crystal In, Crystal Out (time-base 
input and output). These pins connect a parallel-resonant 
crystal (12 MHz maximum) or an external single-phase 
clock (12 MHz maximum) to the on-chip clock oscillator 
and buffer. 

ADDRESS SPACES: 

Program Memory. The program counter addresses 2K 

bytes of program memory space as shown in Figure 4. 
The first 12 bytes of program .memory are reserved for the 
interrupt vectors. These locations contain six 16-bit vectors 
that correspond to the six available interrupts. 

Register File. The register file includes three VO port reg­

isters , 124 general purpose registers (R4 - R127), and 15 
control registers (R240 - R255). These 
registers are assigned the address locations shown in 
Figure 5. 

INPUT 

110 
(BIT PROGRAMMABL.E) 110 

ARCHITECTURE: 

Z86C08 architecture is characterized by a flexible I/O 
scheme, an efficient register and address space structure 
and a number of ancillary features that are helpful in many 
applications (Figure 3). 
Microcomputer applications demand powerful I/O capa­
bilities. The Z86C08 fuHills this with 14 pins dedicated to 
input and output. These lines are grouped into three I/O 
ports which are configura!>le under software control. 
Two basic address spaces are available: program memory 
and the intemal register file. The register file is composed 
of 124 general purpose 8-bit registers, three I/O port reg­
isters, and 15 control and status registers. 
To unburden the program from coping with real-time 
problems two counterltimers with a large number of user­
selectable modes are offered on-chip. 

Instructions can access registers directly or indirectly with 
an 8-bit address field. The Z86C08 also allows short 4-bit 
register addressing using the Register Pointer (one of the 
control registers). In the 4-bit mode, the register file is 
divided into eight working register groups, each occupying 
16 contiguous locations. The Register Pointer addresses 
the starting location of the active working-register group 
(Figure 6). 
STACKS. An 8-bit Stack Pointer (R255) is used for the 
internal stack that resides within the 124 general purpose 
registers (R4 - R127). 

XTAL 

Figure 3. Functional Block Diagram 

90 



COUNTERITIMERS: 

The Z86COS contains two 8-bit programmable counterl 
timers (TO and T1 ). each driven by its own 6-bit program­
mable prescaler. The T1 prescaler can be driven by 
intemal or extemal clock sources; however. the TO pres­
caler is driven by the intemal clock only. 
The 6-bit prescalers can tfivide the input frequency of the 
clock source by any number from 1 to 64. Each prescaler 
drives its counter. which decrement the value (1 to 256) that 
has been loaded into the counter. When th$ counter 
reaches the end of count. a timer intenupt request - IRQ4 
(TO) or IRQ5 (T1) - is generated. 
Th$ counters can be started. stopped. restarted to con­
tinue. or restarted from the initial value. The counters can 
also be programmed to stop upon reaching zero (single 
pass mode) or to automatically reload the initial value and 
continue counting (modulo-n continuous mode). The 
counters. but not the prescalers. can be read at any time 
withollt d'lSturbing their value or count mode. 
The clock source for T1 is user-definable and can be 
retriggerable or non-retriggerable. or a gate input for the 
intemal clock. ' 

LOCATION 

110 PORTS: 

The Z86C08 has 14 lines dedicated ,to input and output. 
These lines are grouped into three ports and are configur­
able as input or output. All ports have active pull-ups and 
pull-downs compatible with CMOS loads. 
Port 0 can be programmed on either inputs or outputs. The 
configuration is shown in Figure 7. 
Port 2 bits can be programmed independently as input or 
,output. In addition. Port 2 can be configured to provide 
open-drain outputs. The configuration is shown in Figure 8. 
Port 3 lines can be configyred as digital inputs. analog 
inputs. or control lines. In all cases. the direction of thase 
three lines is fixed as inputs. ' 
Port 3 can also provide the following control functions: 
fourextel11a1 intenupt request signals(IRQO. IRQ1. IRQ2 
and IRQ3) or timer input signal (TIN). The configuration of 
Port 3 is shown in Figure 9. . 

IDENTIFIERS 

25' STACK POINTER (BITS 7-0) ,PL 

253 

252 

'51 , .. , .. , .. 
247 , .. , .. , .. 

~r-------------~ , .. 
'" '" 

ONoCHIP 
LOCATION OF ROM 

AAST BYTE OF 

11 IRQ5 

INS:;~;J~~:~ ~ _____ .... ____ _ 

AFTER RESET 12 F-------:::::::------i 
10 IRQ5 

IRQ4 

IRQ4 

. INTERRUPT 'RQ3 
VECTOR 1RQ3 

(LOWER BYTE) 
IRQ2 

• IRQ2 

INT~:=/3 1001 
(UPPER BYTE) 

1RQ1 

IRQO 

IRQO 

Figure 4. Program Memory Map 

Figure 4. Program Memory Map 

RESERVED 

REGISTER POINTER 

PROORAM CONTROL FLAGS 

INTERRUPT MASK REGISTER 

INTERRUPT REQUEST REGISTER 

INTERRUPT PRIORITY REGISTER 

PORTS 0-1 MODE 

POAT 3 MODE 

PORT 2 MODE 

TO PRESCAlER 

TIMER/COUNTER 0 

T1 PAESCALER 

TIMER/COUNTER 1 

TIMER MODE" 

NOT 
IMPLEMENTED 

GENERAL·PURPO$E 
REGISTERS 

PORT 3 

PORT2 

..... RVED 

PORTO 

Figure 5. Register File 

RP 

FLAGS 

IMR 
IRQ 

IPR 

P01M 

P3M 

P'M 
PREO 

TO 

PRE1 

T' 
TMR 

P3 

P' 
P' 
PO 

0000 253 

THE UPPER NIBBLE OF THE REGISTER FILE ADDRESS 
PROVIDED BY THE REGISTER POINTER SPECIFIES 
THE ACTtVE WORKINQ.REGISTER GROUP. 

1 

1 

1 
SPECIFIED WORKING· .. REGISTER GROUP 

1 

1 
1 r----.OPORTS----

Figure 6. Register Pointer 

1 " 

, 
3 

THE LOWER 
NIBBLE OF 
THE REGISTER 
FILE ADDRESS 
PROVIDEDS'f 
THE INSTRUCTION 
POINTS TO THE 
SPECIFIED 
REGI.STER. 

Figure 5. Register File Figure 6. Register Pointer 

91 



INTERRUPTS: 

The Z86C08 allows six different interrupts from five 
sources: the three Port 3 lines P31 - P33, both. the rising 
and falling edge of P32 (AN2), the falling edge of P31 
(AN1)·and P32 (REF - Figure 9), and the two counter! 
timers. These interrupts are bQth maskable and priori­
tized. The Interrupt Mask Register globally or individually 
enables or disables the six interrupt requests. Whe'1 more . 
than one interrupt is pending, priorities are re~olved by a 
programmable priority encoder that is controlled by the 
Interrupt Priority register. 
All ZB6COB interrupts are vectored through locations in 
program memory. When an interrupt request is granted, 
an interrupt machine cycle is entered. This disables all 
subsequent interrupts, saves the Program Counter and 
status flags, and branches to the program memory vector 
location reserved for that interrupt. This memory location 
and the next byte contain the 16-bit address of the interrupt 
service routine for that particular interrupt request. 
Polled interiupt systems are also supported. To accom­
modate a polled structure, any or all of the interrupt inputs 
can be masked and the interrupt request register polled to 
determine which of the interrupt requests needs service. 
Interrupt sources and corresponding interrupts are shown 
in Table 2. ' 

STANDBY MODE: 

The ZB6COB has two standby modes which are entered by 
executing either: 

• STOP 

• HALT 

Figure 7. Z86COB Port 0 Configuration 

92 

The STOP instruction stops the internal clock and external 
crystal oscination; the HALT instruction stops the. internal 
clock but not crystal oscillation. . 
The STOP mode can be released by two methodS. The 

first method is a RESET of the de.vice by removing Vcc. The 
second method is if P27 is configured as an input line when 
the device executes the STOP instruction. A low input 
condition on P27 releases the STOP mode. Program exe­
cution under both conditions begins at location 
%OOOC(HEX). However, when P27 is used to release the 
STOP mode the 110 port mode registers are not reconfig­
uredto their default power-on conditions. This prevents any 
110, configured as output when the STOP instruction was 
executed, from glitching to an unknown state. ' 
The HALT mode is released by an interrupt on Port 3 input, 
a time-out in Timer 0 or Timer 1, or by a RESET of the 
device. To complete an instruction prior to entering standby 
mode,use the instructions: 

NOP 
HALT or STOP 
To use the P27 release approach with STOP mode, use the 
following instructions: 

OR P2,#%80 
NOP 
STOP 

RESET: 

Power-On Reset is in the Z86C08. The ZB6COB waits for 
10 to 25 rns + 18 crystal clocks (Figure 10) while power is 
on, and then jumps to the starting address %OOOC(HEX). 
The control Register reset value is listed in Table 1. 

. J ........ ", 
"'----<:'Of--,-------r-............. ..n~y ON PI? 

Figure B. ZB6COB Port 2 Configuration 



P3t DATA 

)-__ ~===:~~=L========;==l=J==:UT~ 

P:l3DATA 

L-______ ~~~--~----------~~=:L.~ 

~iI.l.2=~E!XECC1'ECTXOH 

ZRQ 3 = FWIJ:N(;; EDGE: DETtcTION 

Figure 9. Z86C08 Port 3 Configuration 

INT. OSC. XTAL OSC. 

CHIP RESET 

Figure 10. Internal Reset Configuration 

Table 1. Z86C08 Control Registers 
86C08 control registers: 

Addr. 'eg. 

F1 THR 

F2 T1 

F3 PREl 

F4 TO 

F5 PREO 

F6 • "" 
F7 • P'H 

F8 • P01M 

F9 IPR 

FA IRQ 

F8 IHR 

FC FLAGS 

FD RP 

FE SFH 

FF 'PL 

Reset condition 

00000000 

UUUUUUUU 

UUUUUUOO 

UUUUUUUU 

U U U U U U U 0 

11111111 

U U U U U U 0 0 

U U U 0 U U 0 1 

U U U U U U U U 

U U 0 0 0 0 0 0 

o U U U U U U U 

UUUUUUUU 

00000000 

U U U U U U U U 

U U U U U U U U 

Commments 

Inputs after 
Reset 

IRQ3 is 
used for 
pos. edge 
detection 

Not used, 
stack always 
internal 

* Not reset after a low on P27 to get out of stop mode 

Table 2. Interrupt Types, Sources, and Vectors 

Vector 
location Comments 
0,1 External + Edge Trig. 

External + Edge Trig. 
External Edge Trig. 

93 



WATCHDOG TIMER (WDT): 

The Watch Dog Timer (WOT) should be refreshed within 
15 ms. If not refreshed, then the Z86C08 resets itself. 

WDT: 5F(HEX). 

CLOCK: 

The 'In-chip oscillator has a high-gain, parallel-resonant 
amplifier for connection to a crystal, ceramic resonator, or 
to any suitable external clock source (XT AL IN = Input, 
XTAL OUT = Output). 

XTAL-IN 

The crystal source is connected across XT AL IN and XT AL 
OUT, using the recommended capacitors (CL = 15 pF) from 
each pin to ground. The specifications for the crystal are 
as follows: -

-AT cut, parallel resonant 

- Fundamental type, 12 MHz max 

- Series resistance, RS:100 ohm 

The oscillator configuration is shown in ~igure 11. 

1/2 DXVlDER 

XTi'L. CLOCK SYSTEM CI..OCK 

Figure 11 . Z86C08 Crystal Input Config. 

PORT 3 CQMPARATORS: 

The 86C08's port 3 inputs include two analog comparators 
for added interface flexibility. Interrupts are generated on 
either edge of comparator 2's output, or on the falling edge 
of comparator 1 's output. The block diagram is shown in 
Figure 9. , Comparator outputs may be used for interrupt 
generation, Port 3 data inputs, or Tin in the case of AN1 
(P31). Alternatively, the comparators may be disabled, 
freeing the reference input (P33) for use as IRQ1 and/or 
P33 input. 

94 

The dual comparator (common inverting terminal) fea­
tures a single power supply which discontinues power in 
stop mode. The common voltage range is 0-4V; the power 
supply and common mode rejection ratios are 90db and 
60db, respectively. See comparator specifications for de­
tails (Page 16). 
Typical applications for the on-board comparators include: 
zero crossing detection, analog-to-digital conversion, volt­
age scaling, and threshold detection. 



INSTRUCTION SET NOTATION 

Addressing Modes. The following notation is used to 
describe the addressing modes and instruction operations 
as shown in the instruction summary. 

IRR Indirect register pair or indirect working-register 
pair address 

Irr Indirect working-register pair only 
X Indexed address 
DA Direct address 
RA Relative address 
1M Immediate 
R Register or working-register address 
r Working-register address only 
IR Indirect-register or indirect working-register 

address . 
Ir Indirect working-register address only 
RR Register pair or working register pair address 

Symbols. The following symbols are used in describing the 
instruction set. 

dst 
src 
cc 
@ 

Destination location or contents 
Source location or contents 
Condition code (see list) 
Indirect address prefix 

SP 
PC 
FLAGS 
RP 
IMR 

Stack pointer (control registers 254-255) 
Program counter 
Flag register (control register 252) 
Register pointer (control register 253) 
Interrupt mask register (control register 251) 

CONDITION CODES 

Value Mnemonic 

1000 Always true 

0111 C Carry 
1111 NC No carry 

0110 Z Zero 

1110 .NZ Not zero 
1101 PL Plus 

0101 MI Minus 

0100 OV Overflow 

1100 NOV No overflow 

0110 EQ Equal 
1110 NE Not equal 

Assignment of a value is indicated by the symbol "+-': For 
example, 

dst +- dst + src 

indicates that the source data is added to the destination 
data and the result is stored in the destination location. The 
notation "addr(n)" is used to refer to bit "n" of ~ given 
location. For example, 

dst(7) 

refers to bit 7 of the destination operand. 

Flags. Control Register R252 contains the following six 
flags: 

C Carry flag 
Z Zero flag 
S Sign flag 
V Overflow flag 
o Decimal-adjust flag 
H Half-carry flag 

Affected flags are indicated by: 

o Cleared to zero 
1 Set to one 
* Set or cleared according to operation 

Unaffected 
X Undefined 

Meaning Flags Set 

C=1 

C=O 

Z = 1 

Z=O 

8=0 

8 = 1 

V = 1 

V=O 

Z = 1 

Z=O 
1001 GE Greater than or equal (8XORV) = 0 

0001 LT Less than (8XORV) = 1 
1010 GT Greater than [ZOR (8XOR V)] = 0 

0010 LE Less than or equa~ [ZOR (8XORV)j = 1 

1111 UGE Unsigned greater than or equal C=O 
0111 ULT Unsigned less than C = 1 
1011 UGT UnSigned greater than (C=OANDZ=O)=1 
0011 ULE UnSigned less than or equal (CORZ) = 1 

0000 Never true 

95 



INSTRUCTION FORMATS 

OPC 

ds. ope 

CCF, DI, EI, IRET, NOP, 
RCF, RET, SCF 

INCr 

One-Byte Instructions 

OPC MODE CLR, CPL, DA, DEC, 

dsYsrc OR 11 1 1 0 I dotlsrc I ~~~~' ~~~Rt~?~R."OP, 

r----'O":'d:-=~'--'-II OR 11 1 1 01 dsl 

OPC 
VALUE 

MODE OPC 
d.U.rc areldst 

dst/src ope 
srelds. OR 11 1 1 01 arc 

dsl I OPC 
VALUE 

I dstiCC R~ OPC 

RRC, SRA, SWAP 

JP, CALL ~ndirecI) 

SRP 

ADC, ADD, AND, 
CP, OR, SBC, SUB, 
TCM, TM, XOR 

LD, LDC, LDCI 

LD 

LD 

DJNZ, JR 

OPC MODE 

sre OR 1110 sre 
ds. OR 1 1 1 0 ds. ' 

OPC MODE, 
dst' OR 111101 dst 

VALUE 

MODE OPC 
OR 1 1 1 0 src 
OR 1 1 10 dot 

MODE OPC 

dst'src 
ADDRESS 

cc OPC 
DAu 

D" 

OPC 
DAu 
DAL 

ADC, ADD, AND, CP, 
LD, OR, SBC, SUB, 
TCM, TM, XOR 

AbC, ADD, AND, CP, 
LD, OR, SBC, SUB, 
TCM, TM, XOR 

LD 

LD 

JP 

CALL 

Two-Byte Instructions Three-Byte Instructions 

Figure 12, Instruction Formats 

INSTRUCTION SUMMARY 

AcIdrMode Opcode Flags Affected 'AcIdrMode Opcode Flags Affected 
I nstru,ction Byte Instruction Byte 
and Operat!on dst src (Hex) CZSVDH and Operation dst src (Hex) C Z S V D H 

ADCdst,src (Note 1) 10 * * * * o * DECdst R 00 -** *--
ds! - dst + src + C dst-dst - 1 IR 01 

ADDdst,src (Note 1) 00 * * * * o * DECWdst RR 80 -** *--
dst - ds! + src dst-dst - 1 IR 81 

ANDdst,src (Note 1) 50 -** 0 DI 
dst - ds! AND srt; IMR(7) -0 8F ------

CALLdst DA D6 ------ DJNZr,dst RA rA ------
SP-SP - 2 IRR D4 r-r-1 r=O-F 
@SP - PC; PC - dst if r" 0 

CCF EF 
PC-PC + dst 

*----- Range: + 127, -128 
C-NOTC 

EI 9F ------
CLR ds! R 80 ------ IMR(7)-1 
dst-O IR 81 

COMdst R 60 -**O~-
HALT 7F 

ds!-NOTdst IR 61 INCast rE - * * *, 
dst -dst + 1 r=O-F 

CPdst,src (Note 1) AD * * * *-- R 20 
,dst - src IR 21 

DAdst R 40 ***x-- INCWds! RR AO -***--
dst-DAdst IR 41 dst-dst + 1 IR A1 

96 



INSTRUCTION SUMMARY (Continued) 

Instruction 
and Operation 

Addr Mode Opcode Flags Affected 
Byte 

dst src (Hex) CZSVOH 

IRET BF 
FLAGS - @SP; SP - SP + 1 
PC-@SP;SP-SP + 2; IMR(7)-1 

JPcc,dst 
ifcc is true 

PC-dst 

JRcc,dst 
if cc is true, 

PC-PC + dst 
Range: + 127, -128 

LO dst,src 
, dst-src 

LOCdst,src 
dst-src 

OA 

IRR 

RA 

r 
R 

r 
X 
r 
Ir 
R 
R 
R 
IR 
IR 

r 
Irr 

1m 
R 

X 
r 
Ir 
r 
R 
IR 
1M 
1M 
R 

Irr 

LOCI dst,src Ir Irr 
dst - src Irr Ir 
r - r + 1; rr - rr + 1 

LOE dsl,src Irr 
dst-src Irr 

LOEI dst,src Ir Irr 
dst - src Irr It 
r-r + 1; rr-rr + 1 

NOP 

'ORdsl,src (Note 1) 
dst - dst OR src 

POPdst R 
dst-@SP; IR 
SP-SP + 1 

PUSHsrc 
SP - SP - 1; @SP - src 

RCF 
C-O 

RET 
PC - @SP; SP - SP + 2 

RL dst _ r::=:l R 
~IR 

RLC dst r=-~ R 
~IR 

R 
IR 

cO 
c=O-F 

30 

cB 
c=O-F 

rC 
r8 
r9 

r = 0 - F 
C7 
07 
E3 
F3 
E4 
E5 
E6 
E7 
F5 

C2 
02 

C3 
03 

82 
92 

, 83 

93 

FF 

40 

50 
51 

70 
71 

CF 

AF 

90 
9t 

10 
11 

* * ~ * * * 

0-----

* * * * -,-

****--

Instruction 
and Operation 

Addr M,ode Opcode Flags Affected 
Byte 

dst src (Hex) CZSVOH 

RR dst LEI LE::i)J R 
c 7 0 IR 

RRC dst r=--==:=l R 
~~IR 

SBCdsl,src (Note 1) 
dst ~dst -src-C 

SCF 
C-1 

SRAdstC0~R 
~IR 

SRPsrc 
RP-src 

STOP 

SUBdst,src 
dst - dst - src 

'1m 

(Notet) 

SWAP dst I' 52 R 
,,-.,~....:I:-...,..-"I'IIR 

TCMdst,src 
(NOT dst) AN'O src 

TMdst,src 
dstANOsrc 

WDT 

XORdst,src 
dst - dst XOR src 

(Note 1) 

(Note 1) 

(Note 1) 

EO 
E1 

CO 
G1 

3D 

OF 

00 
01 

31 

6F 

20 

FO 
F1 

60 

70 

* * * * 

****--

1-----

***0--

X * * X 

5F ------

BO - * * 0 --

NOTE, These instructions have an identical set of addressing modes, 
which are encoded for brevity, The first opcode nibble is found In 
the instruction set table above, The second nibble IS expressed 
symbolically by a 0 In this table, and ItS value is found In the 
following table to the left of the applicable addressing mode pair 

For example, the opcode of an ADC instruction using the 
addressing modes r (destination) and Ir (source) IS 13, 

AddrMode 

dst src 

R 

R 

R 

IR 

Ir 

R 

IR 

1M 

1M 

Lower 
Opcode Nibble 

97 



OPCODEMAP 
Lower Nibble (Hex) 

6 7 A B C o 

65 65 6.5 6.5 '05 '0.5 10.5 '0 5 65 6.5 '2110.5 '2110.0 65 '2110.0 '65 
DEC DEC ADD ADD ADD ADD ADD ADD LD LD DJNZ JR LD JP INC 
R, IR, (,.f2 r,.lr2 R2·R, IR2·R, R,.IM IR,IM f,.R2 f2· R , f, RA cc RA (,IM cc DA r' -
65 65 6.5 6.5 10.5 10.5 105 10.5 

RLC RLC ADC ADC ADC ADC ADC ADC 
R, IR, r,J2 f,.lr2 R2·R, IR2 R, R,IM IR,.IM 

-
65 6.5 6.5 65 10.5 10.5 10.5 105 
INC INC SUB SUB SUB SUB SUB SUB 
R, IR, "·'2 ".lr2 R2·R, IR2·R, R,.!M IR,.IM 

-
80 6.1 6.5 6.5 10.5 10.5 105 10.5 
JP SRP SBC SBC SBC SBC SBC SBC 

IRR, 1M (,.f2 r,. lr2 R2·R, 1R2·R, R,IM IR,.IM 
-

8.5 85 6.5 6.5 10.5 10.5 10.5 10.5 
DA DA DR DR DR DR DR DR 
R, IR, (,.f2 ".lf2 R2· R, IR2·Rr R,.IM IR,.IM 

10.5 10.5 6.5 6,5 10,5 10,5 10,5 10,5 
!-------

PDP POP AND AND AND AND AND AND '.0 
R, IR, r,.r2 f,. lr2 R2· R, IR2,R, R,.IM IR"IM 

WOT 

65 6.5 6,5 10,5 
I-----

6.5 10,5 10.5 10.5 6,0 

6 COM COM TCM TCM TCM TCM TCM TCM .-
R, IR, " r2 ".lr2 R2,R, 1R2·R, R,IM IR"IM .... .. e. 

I 
10112.1 12114.1 65 6.5 10.5 10,5 10.5 10,5 

t----
7,0 

PUSH PUSH TM TM TM TM TM TM HALT 

R2 IR2 r,J2 ", lr2 R2,R, IR2·R, R"IM IR"IM 

10.5 10,5 ~ ;;; 
a. a. 
::> 

DECW DECW 01 
RR, IR, 

65 6.5 
t----

6 , 
RL RL EI 
R, IR, 

10.5 10.5 6.5 6.5 10,5 10,5 10,5 10.5 f-;:;o 
A INCW INCW CP CP CP CP CP CP RET 

RR, IR, f'.[2 r, Ir2 R2·R , IR2 R, 8 1 1M IR,IM 

65 6.5 6,5 6,5 10,5 10,5 10.5 10,5 f--;6o 
B CLR CLR XOR XOR XOR XOR XOR XOR IRET 

R, IR, f'·'2 ".lr2 R2,R, IR2·R, R,IM IR,.IM 

65 6,5 12,0 18,0 10.5 ~ 
C RRC RRC LDC LOCI LD RCF 

R, IR, (, Irr2 Ir,,1rr2 r,.x R2 

6.5 6.5 12,0 18,0 20,0 20,0 10,5 '65 
o SRA SRA LDC LOCI CALL" CALL ,LD SCF 

R, IR, f2·lrr, Ir2,lrr, IRR, DA r2,>< R, 

6.5 6.5 6,5 10,5 10,5 10,5 10,5 '65 
E RR RR LD LD LD LD LD CCF 

R, IR, r,.IR2 R2,R, IR2,R, R,.IM IR"IM 

85 8,5 6,5 10,5 
t----

60 
F SWAP SWAP LD LD NDP 

R, IR, Ir,.r2 R2·IR, 

...... ----........... "'----.... ,1--... ----.......... "'-----',1 ...... -----..... v ... ------,1~"____'" 

98 

EXECUTION 
CYCLES 

FIRST 
OPERAND 

4 

• 2-byte Instrucllon. fetch cycle appears as a 3-byte Instruction 

PIPELINE 
CYCLES 

MNEMONIC 

SECOND 
OPERAND 

Bytes per Instruction 

Legend: 
R ;; B-bit address 
r ;; 4-bit address 
R1 or r 1 ;; Ost address 
R2 or '2 ::::: Src a8dress 

Sequence: 
Opcocte, First Operand, Second Operand 

NOTE: The blank areas are not defined. 



R241 TMR 
TIMER MODE REGISTER 

(F1 H: Read/Write) 

~ 1"" LOAD To 

X 0 = DISABLE To COUNT 
1 "" ENABLE To COUNT 

j lS~o = NO FUNCTION 

T MODES 0 = NO FUNCTION 
EXTERNAL CLOCK INplOr = 00 1 = LOAD T, 

GATE INPUT = 01 0 = DISABLE T I COUNT 
TRIGGER INPUT = 10 -1 = ENABLE T, COUNT 

(NON-RETRIGGERABLE) 
TRIGGER INPUT = 11 

(RETRIGGERABLE) 

R242 T1 
COUNTER TIMER1 REGISTER 

(F2H: Read/Write) 

I~I~I~I~I~I~I~I~I 

L ~ Tl INITIAL VALUE (WHEN WRITTEN) 
--(RANGE 1 256 DECIMAL 01 00 HEX) 

T, CURRENT VALUE (WHEN READ) 

R243 PRE1 
PRESCALER 1 REGISTER 

(F3H, Write Only) 

~LCOUNTMODE 
o = Tl SINGLE-PASS 
1 '" T 1 MQDULO·N 

CLOCK SOURCE 
1 " T 1 INTERNAL 
o '" T, EXTERNAL TIMING INPUT 

" (TIN) MODE 

• PRESCAlER MODULO 
(RANGE: 1-64 DECIMAL 
01-00 HEX) 

R244 TO 
COUNTER/TIMER 0 REGISTER 

(F4H, Read/Write) 

R245PREO 
PRESCALER 0 REGISTER 

(F5H: Write Only) 

~I COUNT MODE 
- 0 = To SINGLE PASS 

1 = To MOOULO·N • 

X 

PRESCALER MODULO . ,"'~'. ,~ ,",-

R246P2M 
PORT 2 MODE REGISTER 

(F6H, Write Only) 

R247P3M 
PORT 3 MODE REGISTER 

(F7H; Write Only) 

I~I~!~I~I~I~I~I,I 

01-00 HEX) 

I L ... ""~",,.",-.. · 1 PORT 2 PULL·UPS ACTive 

PORT 3 INTERRUPTS 
o DIGITAL 
1 ANALOG 

'------X 

To INITIAL VALUE (WHEN WRITTEN) 
L---___ (RANGE 1 256 DECIMAL 01 00 HEX} 

To CURRENT VALUE (WHEN READ) 

NOTE: All "don't care" bits return a "1" when read. 

Figure 16 Control Registers 

99 



100 

R248 P01M 
PORT 0 AND 1 MODE REGISTER 

(!'SH Wflte Only) 

I~I~I~I~I~I~I~I~I 

XTlSLPO&iiP~'~~T":uT 01 = INPUT 

X 

MUSTBEO 

R2491PR 
INTERRUPT PRIORITY REGISTER 

(F9H: Wflte Only) 

I~!~!~!~I~:~:~:~I 

.:J I I III"'~""··"'·~' RESERVED" 000 

IRQ, 3, IROS PR~O:IJ~d~~O:Q~), ~ ~ ~ ~ ~ ~ ~~~ 
1 " IRQ3 > IROS A> C > B '" 011 

B > C > A = 100 
IROO, IRQ2 PRIORITY (GROUP 8) C ;:> B > A '" 101 

o = IRQ2 > IROO B > A > C = 110 
_ 1 '" IROO > IRQ2 ' RESERVED" 111 

IRQ1, IRQ4 PRIORITY (GROUP C) 
o '" IRQ1 > iFlQ4 
1 = IFlQ4 > IR01 

R250 IRQ 
INTERRUPT REQUEST REGISTER 

(FAH, Read/Write) 

I~I~I~I~I~I~I~I~I 

RESERVED T L IRQO. P32INPUT 
IRQ! _ P33INPUT 
IRQ2 _ P31 INPUT 
IROO _ P32iNPUT 
IRQ4-TO' 
IRQ5_ T1 

R25l1MR 
INTERRUPT MASK REGISTER 

(FBH: Read/Wflte) 

ID,!D6iDSID4:D)!~101:~1 

R252 FLAGS 
FLAG REGISTER 
(FCH: Read/Write) 

I~I~I~I~I~I~I~I~I 

U~~
I LUSER FlAG F. 
L USER FLAG F2 

HALF CARRY flAG 

DECIMAL ADJUST FLAG 

OVERFLOW FLAG 

SIGN flAG 

ZERO FLAG 

CARRY FLAG 

REGISTER 
POINTER 

R253RP 
REGI'sTER POINTER 

(FDH: Read/Write) 

R255 SPL 
STACK POINTER 
(FFH: Read/Write) 

I~!~I~I~I~I~I~I~I 

"1 ____ ~~~~7S;~~~;~R LOWER 

I' c= 1 ENABLES IROO-IROS 
(Do = IROO) 

'-------RESERVED 

'-_______ 1 ENABLES INTERRUPTS 

Figure 16 Control Registers (Continued) 



ABSOLUTE MAXIMUM RATINGS 

Voltages on all pins with respect 
to GND ......................... - 0.3V to + 7.0V 

Orerating Ambient 
Temperature .. 

Storage Temperature. 
.See Ordering Information 
. .... - 65°C to + 150°C 

STANDARD TEST CONDITIONS 

The DC characteristics listed below apply for the following 
standard test conditions, unless otherwise noted. All 
voltages are referenced to GND. Positive current flows into 
the referenced pin (Figure 13). 

Standard conditions are as follows: 

• +4.5 V <_ Vee <_ +5.5 V 

• GND = OV 

Stresses greater than those listed under Absolute Maximum Ratings may 
cause permanent damage to the device. This is a stress rating only; 
operation' of the device at any condition above those Indicated In'the 
operational sections of these specifications is not Implied .. Exposure to 
absolute maximum rating conditions for extended periods may affect 
device reliability, 

+5V 

2.1K 

Figure 13. Test Load 1 

Z86C0808PSC DC CHARACTERISTICS v c;c = 3.0 to 5.5V OoC to 700 C 

Symbol Parameter 

Max Input Voltage 
VeH Clock Input High Voltage 
VeL Clock Input Low Voltage 
VIH Input High Voltage 
VIL Input Low Voltage 

VRH RESET Input High Voltage 
VRL RESET Input Low Voltage 
VOH Output High Voltage 
V 01.1 Output Low Voltage 
VOL2 Output Low Voltage 

IlL Input Leakage 
101. Output Leakage 
IIR RESET Input Current 
Icc Supply Current 
leel Standby Current 

lec2 Standby Current 

Note: 
1. Iccl 

Clock driven on XT AL 
Resonator or Crystal 

Typ. 
O.3mA 
3.0mA 

Min 

. 9Vee 

-0.3 
.7Vc;c 
-0.3 

.7V .. 
-0.3 

Vee-O.4 

-10 
-10 

Max. 
5.0.mA 
5.0mA 

Typ 

-10 

Max Unit Condition 

12.0 V liN 2S01JA . 
Vee +0.3 V Driven by external CG 

·1Vee V Driven by External CG 
Vee+0.3 V 

.2Vee V 

Vee+0.3 V 
.2Vc;c V 

V IOH = -2.0mA 
0.4 V IOL = +4.0mA 
0.8 V IOL = + 12mA, 3 pins max. 

10 uA VIN = OV, Vec 
10 uA VIN = OV, Vce 
-SO uA Vec = 4.S to S.SV, VRL = OV, P27 
15 rnA All Output & I/O pins float 
5 rnA HALT Model VI" = OV, Vee 

10 uA STOP Mode VI" = OV, Vee 

101 



Z86C0808PEC DC CHARACTERISTICS 

Symbol Parameter 

Max Input Voltage 
VCH Clock Input High Voltage 
VCl Clock Input Low Voltage 
VIH Input High' Voltage 
Vil Input Low Voltage 

VRH RESET Input High Voltage 
VRl RESET Input Low Voltage 
VOH Output High Voltage 
VOll Outpuf Low Voltage 
VOL2 Output Low Voltage 

III Input Leakage 
IOl Output Leakage 
IIR RESET Input Current 
Icc Supply Current 
Icc, Standby Current 
lec2 Standby Current 

Note: 
1. Iccl 

102 

Clock driven on XT AL 
Resonator or Crystal 

Typ. 
O.3mA 
3.0mA 

Min 

.9Vcc 
-0.3 

0.7Vcc 
-0.3 

.7V"" 
-0.3 

Vcc-0.4 

-10 
-10 

Max. 
5.0mA 
5.0mA 

Typ 

-10 

Max 

12.0 

Vcc +0.3 
.1Vcc 

Vcc +0.3 
.2Vcc 

Vee+0.3 
.2 V"" 

0.4 
0.8 

10 
10 
-50 
15 
5 

20 

Figure 14. Additional Timing 

Unit Condition 

V liN 250J.IA 
V Driven by external CG 
V Driven by External GG 
V 
V 

V 
V 
V IOH = -2.0mA 
V IOl = +4.0mA 
V IOL = +12mA, 3 pins max. 

uA VIN = OV, Vec 
uA VIN = OV, V cc' 
uA Vce = 4.5 to 5.5V, VRl = OV, P27 

rnA All Output & 110 pins float 
rnA HALT Mode' Vln=OV, Vee 
uA STOP Mode Vln ';' OV, Vee 



AC CHARACTERISTICS 

Number Symbol Parameter Min Max Notes 

1 TpC Input Clock Period 125 100,000 
2 
3 
4 
5 

6 
7 
SA 
9 

NOTES: 

TrC, TfC Clock Input Rise and Fall Times 
TwC Input Clock Width 
TwTinL Timer Input Low Width 
TwTinH Timer Input High Width 

TpTin Timer Input Period 
TrTin,TfTin Timer Input Rise and Fall Times 

TwlL Int. Resquest Input Low Time 
TwlH Int. Request Input High Time 

37 
100 
3TpC 

STpC 

100 
3TpC 

1. Clock timing references use Vee for a logic "1" and V ssfor logic "0". 
2. Timing references use V co for a logic "1" and V ss for a logic "0". 
3. Interupt request via P31- P33 . 
4. Interrupt request via P31-P33 

'Units in nanoseconds (ns) 

25 

100 

PRELIMINARY Z86C08 COMPARATOR SPECIFICATIONS 

CASE 1 CASE 2 CASE 3 CASE 4 

S 
·VDD=2.5V VDD=2.5V VDD=5.5V VDD=5.5V 
Temp=40Co Temp=85Co Temp=40Co Temp=85Co 

Parameters 
Offset -+50 (est) - +50 (est) -+50 (est) -+50 (est) 
Voltage (mv) 

Internal 15 (max) 15 (max) 1. (max) 1.0(max) 
Delay Time (us) -+300 -+300 -+300 -+300 
Overdrive (mv) 

lBi'S (rna) 0.1 (max) 0.1 (max) 1.0 (max 1.0 (max) 
Power (mw) 0.25 0.25 5.5 4.125 

Power Down Yes Yes Yes Yes 

1 
1 
2 
2 

2 
2 
2,4 
2,3 

CASE 5 
VDD=5.0V 

Temp=27Co 

-+25 (typ) 

O.l(typ) 
+300 -

0.2 (typ) 
1. 25 

Yes 

103 



ORDERING INFORMATION 

Z86C08 CMOS Microcontroller 
Z86C0808PSC 8MHz· 
Z86C0812PSC 12MHz 

Codes 
First letter is for package; second letter is for temperature. 

C = Ceramic DIP 
P = Plastic DIP 
L = Ceramic LCC 
V = Plastic PCC 

TEMPERATURE 
S = aoc to + 70°C 
E = -40°C to + 85°C 
M*= -55°C to +125°C 

Example: PS is a plastic DIP, OoC to + 70°C. 

PACKAGE DIMENSIONS 

R = Protopack 
T = Low Profile Protopack 
DIP = Dual-In-Line Package 
LCC = Leadless Chip Carrier 
PCC = Plastic Chip Carrier (Leaded) 

FLOW 
B = 883 Class B 
J = JAN 38510 Class B 

18-Pin Plastic Package 

NOTE: Package dimensions are glven,lIl Inches. To convert to millimeters, multiply by 25.4 

104 



,., ZOTrr"'t ADVANCED INFORMATION 

V.'-f IlJlJlj Product Specification 

FEATURES 

• Complete microcomputer, 2K (86COO), 4K (86Cl0), or 8K 
(86C20) bytes of ROM, 124 bytes of RAM (256 bytes - Z86C20), 
and 22 I/O lines. 

• 144-byte register file, including 124 (238 - Z86C20) general­
purpose registers, four I/O port registers, and 14 status and control 
registers. 

• Average instruction execution time of 1.5 us, 
maximum of 2.S us. 

• Vectored. priority interrupts for I/O and 
counter/timers. 

• Two programmable 'S-bit counter/timers. each with 
a' 6-bit programmable prescaler. 

GENERAL DESCRIPTION 

Z86Cl0/C20 microcomputer (Figures 1 and 2) introduces a· 
new level of sophistication to single-chip architecture. 
Compared to earlier single-chip microcomputers" the 

{

_P2' 

........ P22 
PORTZ ___ P2, 

.......... P24 

......... P2s 

....... GND 

ZS6COO 
MCU 

Z86Cl0 
MCU 

Z86C20 
MCU 

+5V ~ 

XTAL1 ~) 
CLOCK 

XTAL2 

PORT 3 

PORT 1 

Figure 1. Pin Functions 

Z86COO/C10/C20 CM OS 
Z8@MCU 

August 1989 

• Register Pointer so that short. fast instructions can 
access any of nine working-register groups in 1.0 
us. 

• On-chip oscillator which accepts crystal. external 
clock drive. Le. ceramic resonator. 

• Standby modes ~- Halt and Stop. 

• Single +5V power supply -- all pins TTL­
compatible .. 

• 8 and 12 MHz 

• CMOS process. 

Z86Cl0/C200ffers faster execution; more efficient use of 
memory; more sophisticated interrupt, input/output and 
bit-manipulation capabilities; and easier system expansion. 

+5V P3. 

XTAL2 P3, 

XTALl P2, 

RESET P2. 

os P2, 

P3, P2, 

GND P2, 

PO. P17 

PO, Pl. 

PO, Pl, 

PO, Pl • 

PO. Pl, 

PO, Pl, 

Pl. Pl, 

\ 
Figure 2. Pin Assignments 

105 



PIN DESCRIPTIONS 

os. Data Strobe (output, active Low). Data Strobe is 
activated once for each memory transfer. 

POo·POs. P10·P17. P21·P2S. P310 P3s. P36. 110 Port lines 
(bidirectional,' TTL-compatible). These 22 110 lines are 
grouped in four ports that can be configured under program 
control for 110. 

ARCHITECTURE 
The MCU's architecture is characterized by a flexible 110 
scheme, an efficient register and address space structure, 
and a number of ancillary features that are helpful in many 
applications. (Figure 3). 

Microcomputer applications demand powerful 1/0 
capabilities. The MCU fulfills this with 22 pins dedicated to 
input and output. These lines are grouped in four ports and 
are configurable under software control to provide timing, 
status signals, and parallel 110. 

OUTPUT 

110 
(BIT PROGRAMMABLE) 

I/O 

RESET. Reset (input, . active LoW). RESET initializes the 
MCU. When RESET is deactivated, program execution 
begins from internal program location OOOCH. 

XTAL 1. XTAL2. Crystal 1, Crystal 2 (time-base input and 
output). These pins connect a parallel-resonant 
crystal to the on-chip clock oscillator and buffer. 

Two basic internal address spaces are available to support 
this wide range of configurations: program memory and the 
register file. The 144-byte random-access register file is 
composed of 124 general-purpose registers, four 1/0 port 
registers, and 14 control and status registers. 

To unburden the program from coping with real-time 
. problems such as countingltiming, two counterltimers with 
a large number of user-selectable modes are offered 
on-chip. 

.... ;,;.;.;.~;,;.;.;. ... (8192 for C20) 

110 
(BYTE PROGRAMMABLE) 

Figure 3. Functional Block Diagram 

STANDBY MODE 
The Z86COO/C10/C20's standby modes are: 

• Stop 

• Halt 

The Stop instruction stops the internal clock and clock 
oscillation; the Halt instruction stops the internal clock but 
not clock oscillation. 

106 

A reset input releases the standby mode. 

To complete an instruction prior to entering standby mode, 
use the instructions: 

LD TMR, #00 
NCP 
STOP or HALT 



ADDRESS SPACES 

Program Memory. The 16-bit program counter addresses 
4K or ,8K bytes of program memory space as shown in 
Figure 4. 

The first 12 bytes of program memory are reserved for the 
interrupt vectors. These locations contain three 16-bit 
vectms that correspond to the three available interrupts. 

Register File. The 144-byte register file includes four 1/0 
port registers (Ro-R3), 124 general-purpose registers 
(R4-R127) and 15 control and status registers (R241-R2SS)' 
These registers are assigned the address locations shown in 
. Figure 5. 

4098 

Instructions can access registers directly or indirectly with. 
an a-bit address field. The MCU also allows short 4-bit 
register addressing using the Register Pointer (one of the 
control registers). In the 4-bit mode, the register file is 
divided into nine working-reg(ster groups, each occupying 
16 contiguous locations (Figure 6). The Register Pointer 
addresses the starting location of the active working-register 
group. 

Stacks. An a-bit Stack Pointer (R2SS) is used for the internal 
stack that resides within the 124 general-purpose registers 
(R4-R127)· 

ON·CHIP 

LOCATION 

255 

254 

253 

252 

251 

250 

249 

248 

247 

246 

245 

244 

243 

242 

241 

127 

LOCATION OF 
FIRST BYTE OF 
INSTRUCTION 

EXECUTED 
AFTER RESET 

INTERRUPT 
VECTOR 

(\.OWER ~TE) 

INTERRUPT 
VECTOR 

(UPPER BYTE) 

ST",CK POINTER (BITS 7-0) 

RESERVED 

REGISTER POINTER 

PROGRAM CONTROL FLAGS 

INTERRUPT MASK REGISTER 

INTERRUPT REQUEST REGISTER 

INTERRUPT PRIORITY REGISTER 

PORTS 0-1 MODE 

PORT 3 MODE 

PORT 2 MODE 

TO PRESCALER 

TIMER/COUNTER b 
Tl PRESCALER 

TIMER/COUNTER 1 

TIMER "!ODE 

NOT 
IMPLEMENTED 

GENERAL·PURPOSE 
A,EOISTERS 

PORT 3' 

PORT 2 

PORT 1 

PORTO 

Figure 5. Register File 

ROM 

~ t------------
11 IRQ5 

10 IRQ5 

9 IRQ4 

8 IRD4 

7 RESERVED 

8 RESERVED 

5)010.. IRQ2 

4"'" IRQ2 

3 RESERVED 

2 RESERVED 

1 RESERVED 

0 RESERVED 

Figure 4. Program Memory Map 

IDENTIFIERS 

SPL 

RP 

FLAGS 

IMR 

IRQ 

IPR 

P01M 

P3M 

P2M 

PRE6 

TO 

PREl 

T1 

TMR 

P3 

P2 

Pl 

PO 

--1 L-"':""':"''':'':''''....L.._;;'';;'';:''':'''...I 253 

THE UPPER NIBBLE OF THE REGISTER FILE ADDRESS 
PROVIDED BY THE REGISTER POINTER SPECIFIES 
THE ACTIVE WORKING-REGISTER GROUP. 

--
-+-
-+-{~----I 

-+-
-+-
--.. 

SPECIFIED WORKING· 
REGISTER GROUP 

-----------110 PORTS 

Figure 6. Register Pointer 

127 

THE LOWER 
NIBBLE OF 
THE REGISTER 
FILE ADDRESS 
PROVIDED BY 
THE INSTRUCTION 
POINTS TO THE 
SPECIFIED 
REGISTER. 

15 

107 



COUNTER/TIMERS 

The MCU contains two 8-bit programmable counter/timers 
(To and T1), each driven by its own 6-bit programmable 
prescaler, The T1 prescaler can be driven by internal or 
external clock sources; however, the To prescaler is driven 
by the internal clock only, 

The 6-bit prescalers can divide the input frequency of the 
clock source by any number from 1 to 64, Each prescaler 
drives its counter, which decrements thevalue (1 to 256) that 
has been loaded into the counter, When the counter reaches 
the end of count, a timer interrupt request-IRQ4 (To) or 
IRQ5 (T1)-is generated, 

The counters can be started, stopped, restarted to continue, 
or restarted from the initial value, The counters can also be 
programmed to stop upon reachin,Q zero (single-pass 

I/O PORTS 

The MCU has 22 lines dedicated to input and output 
grouped in four ports, Under software control, the ports can 
be programmed to provide address outputs, timing, status 
signals, and parallel I/O, All ports have active pull-ups and 
pull-downs compatible w~h TTL loads, 

Port 0 can be programmed as an I/O port, 

Port 1 can be programmed as a byte I/O port. 

INTERRUPTS 

The MCU allows three different interrupts from three 
sources, the Port 3 line P31 and the two counter/timers, 
These interrupts are both maskable and prioritized, The 
Interrupt Mask register globally or individually enables or 
disables the three interrupt requests, When more than one 
interrupt is pending, priorities are resolved by a 
programmable priority encoder that is controlled by the 
Interrupt Priority register, 

All interrupts are vectored, When an interrupt request is 
granted, an interrupt machine cycle is entered, This disables 

CLOCK 

The on-chip oscillator has a high-gain parallel-resonant 
amplifier for connection to a crystal or to any suitable 
external clock source (XTAL 1 ~ Input, XTAL2 = Output), 

Crystal source is connected across XTAL 1 and XTAL2 using 
the recommended capacitors (C1 ~ 15 pI) from each pin to 
ground, The specifications are as follows: 

108 

mode) or to automatically reload the initial value and 
continue counting (modulo-n continoous mode)" The 
counters, but not the prescalers, can be read any time 
without disturbing their value or count mode, 

The clock source for T 1 is user-definable and can be the 
internal microprocessor clock divided by 
four, or an external signal input via Port 3, The Timer Mode 
register configures the external timer input as an external 
clOck , a trigger input that can be 
retriggerable or non-retriggerable, or as a gate input for the 
internal clock, The counter/timers can be programmably 
cascaded by connecting the To output to the input of T 1, 
Port 3 line P36 also serves as a timer output (Tour) through 
which To, T 1 or the internal clock can be output. 

Port 2 can be programmed independently as input or 
output and is always available for I/O operations, I n addition, 
Port 2 can be configured to provide open-drain outputs, 

Port 3 can be configured as I/O or control lines, P31 is a 
general purpose input or can be used for an external 
interrupt request signal (IRQ2)' P35 and P36 are general 
purpose outputs, P36 is also used for timer input (TIN) and 
output (Tour) signals, 

all subsequent interrupts, saves the Program Counter and 
status flags, and branches to the program memory vector 
locations reserved for that interrupt. This memory location 
and the next byte contain the 16-bit address of the interrupt 
service routine for that particular interrupt request. 

Polled interrupt systems are also supported, To accom­
modate a polled structure, any or all of the interrupt inputs 
can be masked and the InterruplRequest register polled to 
determine which ,of the interrupt requests needs service, 

• AT cut, parallel resonant 

• Fundamental type, 16 MHz maximum_ 

• Series resistance, Rs ~ 100 n 



INSTRUCTION SET NOTATION 

Addressing Modes. The following notation is used to 
describe the addressing modes and instruction operations 
as shown in the instruction summary. 

IRR Indirect register pair or indirect working-register 
pair address 

Irr Indirect working-register pair only 
X Indexed address 
DA Direct address 
RA Relative address 
1M Immediate 
R Register or working-register address 
r Working-register address only 
IR Indirect-register or indirect working-register 

address 
Ir Indirect working-register address only 
RR Register pair or working register pair address 

Symbols. The following symbols are used in describing the 
instruction set. 

dst 
src 
cc 
@ 

Destination location or contents 
Source location or contents 
Condition code (see list) 
Indirect apdress prefix 

SP 
PC 
FLAGS 
RP 
IMR 

Stack pointer (control registers 254-255) 
Program counter 
Flag register (control register 252) 
Register pointer (control register 253) 
Interrupt mask register (control register 251) 

CONDITION CODES 

Value Mnemonic 

1000 Always true 

0111 C Carry 

1111 NC No carry 

0110 Z Zero 

1110 NZ Not zero 

1101 PL Plus 

0101 MI Minus 

0100 OV Overflow 

1100 NOV No overflow 

0110 EO Equal 

1110 NE Not equal 

Assignment of a value is indicated by the symbol "+-': For 
example, 

dst +- dst + src 

indicates that the source data is added to the destination 
data and the result is stored in the destination location. The 
notation "addr(n)" is used to refer to bit "n" of a given 
location. For example, 

dst (7) 

refers to bit 7 of the destination operand. 

Flags. Control Register R252 contains the following six 
flags: . 

C Carry flag 
Z Zero flag 
S Sign flag 
V Overflow flag 
D Decimal-adjust flag 
H Half-carry flag 

Affected flags are indicated by: 

o Cleared to zero 
1 Set to one 
* Set or cleared according to operation 

Unaffected 
X Undefined 

Meaning Flags Set 

C = 1 

C=O 

Z = 1 

Z=O 

8=0 

8 = 1 

V = 1 

V=O 

Z = 1 

Z=O 

1001 GE Greater than or equal (8 XOR V) = 0 

0001 LT Less than (8XORV) = 1 

1010 GT Greater than [Z OR (8 XORV)j = 0 

0010 LE Less than or equal [ZOR(8XORV)] = 1 

1111 UGE Unsigned greater than or equal C=O 

0111 ULT Unsigned less than C = 1 

1011 UGT Unsigned greaterthan (C = 0 AND Z = 0) = 1 

0011 ULE Unsigned less than or equal (CORZ) = 1 

0000 Never true 

109 



INSTRUCTION FORMATS 
OPC 

dst OPC 

CCF, 01, EI, IRET, NOP, 
RCF, RET, SCF 

INCt 

One-Byte Instructions 

CLR, CPL, DA, DEC, 

'---===----' OR " 1 1 0 I dsllsrc I ~~;~' ~~~Rt~~:itOP' 

OPC I f----'d~S.:::t ---lOR 11 1 1 01 dst 

OPC 
VALUE 

MODE OPC 
dstfsrc src/dst 

dstfsrc ope 
src/dst OR 11 1 1 01 8fC 

RRC, SRA, SWAP 

JP, CALL (Indirect) 

SRP 

ADC, ADD, AND, , 
CP, OR, SBC, SUB, 
TCM, TM, XOR 

LO, LDC, LOCI 

LD 

dst I OPC LD 
VALUE 

I dsliCC R~ OPC DJNZ, JR 

1---7-'---i OR 1 1 1 0 8fC 
'--_=_---' OR' 1 1 1 0 dst 

I--:-:=='=---i OR 11 1 1 0 I dst 
VALUE 

MODE OPC 
dst/src 

ADDRESS 

cc OPC 
DAu 
DAl 

OPC 
DAu 

DAl 

ADC, ADD, AND, CP, 
LD, OR, SBC, SUB, 
TCM, TM, XOR 

ADC, ADD, AND, CP, 
LD, OR, SBC, SUB, 
TCM, TM, XOR 

LD 

LD 

JP 

CALL 

Two-Byte Instructions Three-Byte Instructions 

Figure 7. Instruction Formats 

INSTRUCTION SUMMARY 

AddrMode Opcode Flags Affected AddrMode Opcode Flags Affected 
Instruction Byte Instruction Byte 
and Operation dst src (Hex) C Z S V 0 H and Operation dst src (Hex) C Z S V 0 H 

AOCdst,src (Note 1) 10 * * * * 0 * CP dst,src (Note 1) AD * * * * 
dst - dst + src + C dst - src 

AOOdst,src (Note 1) 00 * * * *' 0 * OAdst R 40 * * * X 
dst - dst + src dst-DAdst IR 41 

ANl;)dst,src (Note 1) 50 -**0-- OeCdst R 00 -***--
ds! - dst AND src dst-dst - 1 IR 01 

CALLdst DA D6 -----""-- OeCWdst RR 80 -***--
SP-SP - 2 IRR D4 dst-dst - 1 IR 81 ' 
@SP - PC; PC - dst 

01 
CCF EF *----- IMR(7)-0 8F ------
C-NOTC 

OJNZ r,dst RA rA ------

CLRdst R BO ------ r'- r - 1 r = 0 - F 
dst-O IR B1 ifr*O 

COMdst R 60 -**0--
PC -PC + dst 

dst- NOTdst IR 61 Range: + 127, -128 

110 



INSTRUCTION SUMMARY (Continued) 

Instruction 
and Operation 

EI 
IMR(7)-1 

HALT 

Addr Mode Opcode 
Byte 

dst src (Hex) 

9F 

7F 

Fla~s Affected 

CZSVOH 

INCdst rE - * * * --
dst -dst + 1 

INCWdst 
dst - dst + 1 

R 
IR 

RR 
IR 

r = 0 - F 
20 
21 

AO 
A1 

IRET BF 
FLAGS - @SP; SP - SP + 1 
PC - @SP; SP - SP + 2; IMR (7) - 1 

JPcc,dst 
ifcc is true 

PC-dst 

JRcc,dst 
if cc is true, 

PC-PC + dst 
Range: + 127, -128 

LOdst,src 
dst-src 

OA 

IRR 

RA 

r 
R 

r 
X 
r 
Ir 

R 
R 
R 
IR 
IR 

1m 
R 

X 
r 
Ir 

r 
R 
IR 
1M 
1M 
R 

LOCdst,src 
dst-src 

r Irr 

Irr 

LOCI dst,src Ir Irr 
dst - src Irr Ir 
r - r + 1; rr - rr + 1 

LOE dst,src r Irr 
dst - src Irr 

'LOEI dst,src Ir Irr 
dst - SfC Irf Ir 
r - r + 1; rr - rr + 1 

NOP 

ORdst,src (Note 1) 
dst - dst OR src 

POPdst R 
dst-@SP; IR 
SP-SP + 1 

PUSHsro R 
SP -SP - 1; @SP-src IR 

cD 
c=O-F 

30 

cB 
c = 0 - F 

rC 
r8 
r9 

r = 0 - F 
C7 
07 
E3 
F3 
E4 
E5 
E6 
E7 
F5 

C2 
02 

C3 
03 

82 
92 

83 
93 

FF 

40 

50 
51 

70 
71 

* * * * * * 

Instruction 
and Operation 

Addr Mode Opcode 
Byte 

dst src (Hex) 

RCF 
C-O 

RET 
PC +- @SP; SP +- SP + 2 

RL dst r;:'l r==l R 
L..:..J~IR 

RLC dst L::[i)::6J R 
c , .' IR 

RR dst LEi LciJ R 
c r 0 IR 

RRC dst I::'-=:==-l R 
.~IR 

SBCdst,src (Note 1) 
dst +- dst +- src - C 

SCF 
C +-1 

SRA dst LEl'':::;:;:=;J R I 

~IR 

SRPsrc 
RP -src 

STOP 

SUBdst,src 
dst - dst - src 

1m 

(Note 1) 

SWAPdst S R I, ., .IIR 

TCMdst,src 
(NOT dst) AND src 

TM dst,src 
dstANOsrc 

XORdst,src 
dst +- dst XOR src 

(Note 1) 

(Note 1) 

(Note 1) 

CF 

AF 

90 
91 

10 
11 

EO 
E1 

CO 
C1 

30 

OF 

DO 
01 

31 

6F 

20 

FO 
F1 

60 

70 

Bo 

Flags Affected 

CZSVOH 

0-----

****--

1-----

***0--

X * * X 

NOTE: These instructions have an identical set of addressing modes, 
which are encoded for brevity. The first opcode nibble IS found in 
the instruction set table above. The second nibble is expressed 
symbolically by a 0 in this table, and its value is found in the 
following table to the lett of the applicable addreSSing mode pal[ 

For example, the opcode of an ADC instruction using the 
addressing modes r (destination) and Ir (source) is 13. 

AddrMode 

dst src 

R 

R 

R 

IR 

Ir 

R 

IR 

1M 

1M 

Lower 
Opcode Nibble 

111 



REGISTERS 

R244 TO 
COUNTER/TIMER 0 REGISTER 

(F4H; Read/Write) 

R241 TMR 
TIMER MODE REGISTER 

(F1 H; ReadlWrite) 

NOT USED'" 00, 1 '" LOAD To 

~~ g~~ ~ ~~ 0 :: DISABLE To COUNT 
INTERflIAL CLOCK OUT 0::; 11 1 '" ENABLE To COUNT 

To INITIAL VALUE (WHEN WRITTEN) 
'-----(RANGE: 1-256 DECIMAL 01-00 HEX) 

To CURRENT VALUE (WHEN READ) 

R245PREO 
PRESCALER 0 REGISTER 

(F5H; Write Only) 

1 ". To MODULO·N 

RESERVED 

TO",MODESj ~~O'NOFUNCTION 
T MODES 0 = NO FUNCTION 

EXTERNAL CLOCK IN~UT = 00 1 '" LOAD T, 

TIl COUNT MODE 

... 

- 0 "" To SINGLE PASS 

112 

GATE INPUT", 01 0 '" DISABLE T1 COUNT 

(NON.R~~~~:~~~~:~~) '" 10 _ .- 1 :: ENABLE T 1 COUNT 

TRIGGER INPUT = 11 
(RETRIGGERABlE) 

R242 T1 
COUNTER TIMER 1 REGISTER 

(F2H; Read/Write) 

I~I~I~I~I~I~I~I~I 

L~ T, INITIAL VALUE (WHEN WRITTEN) 
---(RANGE 1-256 DECIMAL 01-00 HEX) 

T, CURRENT VALUE (WHEN READ) 

R243 PRE1 
PRESCALER 1 REGISTER 

(F3H; Write Only) TIL COUNT MODE 
0' = 1, SINGLE·PASS 

_ 1 = T I MODUlO·N 

CLOCK SOURCE 
1 = T I INTERNAL 

. 

0 '" 11 EXTERNAL TIMING INPUT 
(Til,) MODI: 

PRESCALER MODULO 
(RANGE: 1-64 DECIMAL 
01-00 HEX) 

R246P2M 

PRESCAL.ER MODULO 
(RANGE: 1-64 DECIMAL 
01-00 HEX) 

PORT 2 MODE REGISTER 
(F6H; Write Only) 

P20-P27 110 DEFINITION 
'----- 0 DEFINES BIT AS OUTPUT 

1 DEFINES BIT AS INPUT 

R247P3M 
PORT 3 MODE REGISTER 

(F7H; Write Only) 

I~I~I~I~I~I~I~I~I 

La PORT 2 PULL·UPS OPEN ,DRAIN 
1 PORT 2 PULL·UPS ACTIVe 

'--~----- RESERVED (must be 0) 

Figure 11. Control Registers 



REGISTERS (Continued) 

R248 P01M 
PORT 0 AND 1 MODE REGISTER 

(F8H: Write Only) 

po,_po, MODE~ ~-r Po.,-Po, MODE OUTPUT = 00 ~ L 00 '" OUTPUT 
INPUT:: 01 01 '" INPUT 

RESERVED :':~P~:~::E (mu51 be = I) 

00 '" BYTe OUTPUT 
01 '" BYTE INPUT 

~~ :} RESERVeD 

R2491PR 
INTERRUPT PRIORITY REGISTER 

(F9H: Write Only) 

lo,l~I~I~lo,lo,lo,l~1 

•• ~.:J I I 111"·"""·~"··~ RESERVED = 000 
tRQ3, lAOS PRIORITY (GROUP A) ',C > A > B == 001 

o = lAOS> IRQ3 A > B > C '" 010 
, = IRC3 > IRQS A> C> B = 011 

B> C > A = 100 
IROO, IRQ2 PRIORITY (GROUP 8) C > B > A = 101 

o = IRQ2 > IRaO B > A > C = 110 
1 = IRaO > IRQ2 RESERVED = 111 

IRQ1, IRQ4 PRIORITY (GROUP C) 
o = IRQl > IRQ4 
1 = IRQ4 > IRQ1 

R250 IRQ 
INTERRUPT REQUEST REGISTER 

(FAH: Read/Write) 

lo,lo,l~lo,lo,lo,lo,l~1 

RESERVED ::::r-II I IRQ2 = P31 Inpul 

IRQ4 = To 

IRQS = T, 

R2511MR 
INTERRUPT MASK REGISTER 

(FBH: Read/Write) 

lo,l~I~I~lo,lo,lo,l~1 

I. 1- c=-- 1 ENABLES IRaO_IROS 
(Do:: IRCO) 

'-------RESERVED 

'--_______ 1 ENABLES INTERRUPTS 

Figure 11. Control Registers (Continued) 

R252 FLAGS 
FLAG REGISTER 
(FCH: Read/Write) 

UllliHfU§' LUSERFLAGF1 
LUSER FLAG F2 

HALF CARRY FLAG 

- DECIMAL ADJUST FLAG 

OVERFLOW FLAG 

SIGN FLAG 

, ZERO FLAG . 

CARRY FLAG 

R253RP 
REGISTER POINTER 

(FDH: Read/Write) 

R255SPL 
STACK POINTER 
(FFH: Read/Write) 

113 



OPCODEMAP 
Lower Nibble (Hex) 

o 2 3 4 6 7 8 9 A B C o E F 

65 65 65 65 105 105 105 10.5 6.5 6.5 12/105 12/10.0 65 12/10 0 65 
o DEC DEC ADD ADD ADD ADD ADD ADD LD LD DJNZ JR LD JP INC 

R, IR, " f2 f, Ir2 R2·R, IR2·R, R,IM IR,.IM f,.R2 '2 Rt r, RA cc.'RA fllM ccDA rl 

10.5' 
r----

65 65 6.5 6.5 10.5 10.5 10.5 
RLC RLC ADC ADC ADC ADC ADC ADC 
R, IR, r1 '2 f1· lr2 R2·R, IR2·R, R,.IM IR,.IM 

10.5' 10.5 
r--

6.5 6.5 65 65 10.5 10.5 
2 INC INC SUB SUB SUB SUB SUB SUB 

R, iR, ".f2 r1: lr2 R2·R, IR2·R, R,IM IR,.IM 
f---'----: 80 61 6.5 6.5 10.5 10.5 10.5 10.5 

, JP SRP SBC SBC SBC SBC SBC SBC 
IRR, 1M ",r2 r,. lr2 R2· R, IR2·R, R,.IM IR,.IM 

85 8.5 6.? 6.5 10.5 10.5 10.5 
r---

10.5 
4 DA DA OR OR OR OR OR .OR 

R, IR, '1· f2 r,. lr2 R2·R, IR2·R, R,. IM IR,.IM 

10,5 . iO,5 10,5 
r--

10.5 10.5 6.5 6,5 10,5 
POP POP AND AND AND AND AND AND 
R, IR, r,.f2 f,.lr2 R2,R, IR2,R, R"IM IR"IM 

I----
6.5 65 6.5 6,5 10,5 10.5 10.5 10,5 6,0 

COM COM TCM TCM TCM TCM TCM TCM STOP 

R, IR, ',.r2 r,.lr2 R2·R, ' IR2,R, R"IM IR"IM 
I----

10112,1 12/14,1 6.5 6,5 10,5 10,5 10,5 10,5 7.0 
PUSH PUSH TM TM TM TM TM TM HALT 

i e 7 
R2 IR2 '1· r2 r1· lr2 R2,R, IR2·R, R,. IM IR,.IM 

10,5 10.5 f------e1 I 
DECW DECW 01 

RR, IR, 
I----

6.5 6.5 6.1 

~ 8 
lI: 
~ 

RL RL - 1 
EI 

R, IR, 

f----;4:o 10.5 10.5 6.5 6.5 10.5 10.5 10.5 10.5 

9 

A INCW INCW CP CP CP CP CP CP RET 
RR, IR, '1·'2 '1· lr2 R2,R, IR2·R, R,.IM IR,.IM 

6.5 6.5 6.5 6.5 10.5 10.5 10.5 10.5 ~ 
B CLR CLR XOR XOR XOR XOR XOR XOR IRET 

R, IR, ',.r2 f,.lr2 R2· R, IR2·R, R,.IM IR,.IM 

6.5 6,5 12.0 18.0 . 10.5 
I----

' 6.5 
C RRC RRC LDC LOCI LD RCF 

R, IR, r,. lrr2 Ir1.lrr2 'l.x R2 

~ 6.5 6.5 12.0 18.0 20.0 20,0 10,5 
0 SRA SRA LDC LOCI CALL" CALL LD SCF 

R, IR, r2· lrr , Ir2·lrr, IRR, DA r2· x.R, 
-

6.5 6.5 6.5 10.5 10.5 10,5 10.5 6.5 
E RR RR LD LD LD LD LD CCF 

R, IR, r,. IR2 R2,R, IR2·R, R,IM IR"IM 

8.5 8,5 6,5 10,5 6() 
F SWAP SWAP LD' LD NOP 

R, IR, Ir,.r2 R2· IR , 

...... ----.... v ... ------', ....... ----...;..'V ... -----", ....... ------v ... ------,,~~ 
2 

EXECUTION 
CYCLES 

FIRST 
OPERAND 

LOWER 
OPCODE 

Nlr 

-2-byte mstructlOn. fetch cycle appears as a 3·byte mstructlon 

114 

3 

PIPELINE 
CYCLES 

MNEMONIC 

SECOND 
OPERAND 

Bytes per Instruction 

2 

Legend: 
R ~ B·bit address 
r = 4·b~ address 
R,orr1 = Dstaddress 
R2 or r2 = Src address 

Sequence: 

3 

Opcode. Firsl Operand. Second Operand 

NOTE: The blank areas are not defined. 



ABSOLUTE MAXIMUM RATINGS 

Voltages on all pins with respect 
toGND ... ..... - 0.3V to + 7.0V 

Orerating Ambient 
Temperature .... See Ordering Information 

Storage Temperature .............. - 65°C to + 150°C 

STANDARD TEST CONDITIONS 

The DC characteristics listed below apply for the following 
standard test conditions, unless otherwise noted. All 
voltages are referenced to GND. Positive current flows into 
the referenced pi n. 

Standard conditions are as follows: 

• +4.5 ~ Vee ~ +5.5 

• GND = OV 

DC CHARACTERISTICS 

Symbol Parameter Min 

VCH Clock Input High Voltage 3.8 

VCl Clock I nput Low Voltage -0.3 

VIH Input High Voltage 2.0 

Vil Input Low Voltage -0.3 

VRH Reset Input High Voltage 3.8 

VRl Reset I nput Low Voltage -0.3 

VOH Output High Voltage 2.4 

VOH Output High Voltage Vee -100 mV 

VOL Output Low Voltage 

III Input Leakage -10 

IOl Output Leakage -10 

IIR Reset Input Current 

ICC Supply Current 

ICC1. Standby Current 

ICC2 Standby Current 

NOTE: 
Icc2 low power requires loading TMR (%F1) 
with any value prior to stop execution. 
Use sequence: . 

LD TMR, #%00. 
NOP 
STOP 

Typ 

5 

Stresses greater than those listed under Absolute Maxirn1Jm Ratings may 
cause permanent damage to the device. This is a stress rating only; 
operation of the device at any condition above those indicated in the 
operational sections of these specifications is not implied. Exposure to 
absolute maximum rating conditions for extended periods may affect 
device reliability. 

+5V 

2.1K 

Figure 12. Test Load 1 

Max Unit Condition 

VCC 

0.8 

V 

V 

Driven by External Clock Generator 

Driven by External Clock Generator 

VCC V 

0.8 V 

VCC V 

0.8 V 

V IOH = -250J.tA 

0.4 

10 

10 

-50 

50 

10 

V IOH = -100JiA 

IOl = +2.0mA 

OV'; VIN'; + 5.25V 

OV'; VIN'; + 5.25V 

VCC = + 5.25V, VRl = OV 

All outputs and I/O pins floating 

Halt Mode 

Stop Mode 

115 



AC CHARACTERISTICS 
Additional Timing Table 

Number Symbol 

TpC 

2 TrC,TlC 

3 TwC 

4 TwTinL 

5 TwlL 

NarES: 

Figure 14. Additional Timing 

Parameter 

Input Clock Period 

Clock Input Rise and Fall Times 

Input Clock Width 

Timer Input Low Width 

Interrur;>t Request Input Low Time 

1. Clock timing references use 3.8V for a logic "1" and 0.8V lor a logic "0': 
2. Timing references use 2.0V lor a logic "1" and 0.8Vlor a logic "0': 
3. Interrupt request via Port 3 . 
• ·Units in nanoseconds (ns). 

116 

Z86C10 
Min Max 

83 100,000 

70 
70 

70 

15 

Notes· 

2 

2,3 



~ Zilffi Product Specification 

FEATURES 

• Complete microcomputer, 4K bytes of ROM, 256 bytes of 
RAM, 32 I/O lines, and up to 60K bytes addressable 
external space each for program and data memory. 

• 256 -byte register file, including 236 general-purpose 
registers, four I/O port registers, and 16 status and 
. control registers. 

• Vectored, priority interrupts for I/O, counter/timers, and 
UART. 

• Full-duplex UART and two programmable 8-bit counter/ 
timers, each with a 6-bit programmable prescaler. 

GENER~L DESCRIPTION 

The Z86C11 microcomputer (Figures 1 and 2) introduces a 
new level of sophistication to single-chip architecture. 
Compared to earlier single-chip microcomputers, the 

PORTO 
(NIBBLE 

PROGRAMMABLE) 
lIO OR Aa-A15 

PORT 1 
(BYTE 

PROGRAMMABLl') 
1/0 OR ADo-AD7 

117 

Z86Cll CMOS 
Z8® 4K ROM MCU 

June 1987 

• Register Pointer so that short, fast instructions can 
,access any of 16 working-register groups in 1.5 lAs. 

• On-chip oscillator which accepts crystal or external clock 
drive. 

• Standby modes-Halt and Stop 

• Single <t- 5V power supply-all pins TTL-compatible. 

• 12Mt-Iz. 16MHz 

• CMOS process 

Z86C11 offers faster execution; more efficient use of 
memory; more sophisticated interrupt, input/output and 
bit-manipulation capabilities; and easier system expansion. 

+5V P3" 

XTAL2 P3, 
XTAL1 P2, 

P3, P2,; 

P30 P2, 

REm P2,; 

RIW P2, 

os P2, 

AS P2, 

P3, P20 
GND P3, 

P3, PI, 

po" P1, 

PO, P1, 

P1, 

PO, P1, 

PO, P1, 

PO, P1, 

PO, Pt, 

PO, P1, 

Figure 2. 40-pin Dual-In-Llne Package (DIP). Pin Assignments 



Under program control, the Z86C11 can be tailored to the 
needs of its user. It can be configured as a stand-alone 
microcomputer with 4k bytes of internal ROM, a traditional 
microprocessor that manages up to 120K bytes of external 

FIELD PROGRAMMABLE VERSION 

The Z86E11 is a pin compatible "one time 
programmable" version of the Z86C11. The Z86C11 
contains 4K bytes of EPROM memory in place of the 
4K bytes of masked ROM in the Z86C11. The 
Z86E 11 also contains a prowammable memory 

ARCHITECTURE 

Z86C11 architecture is cha~acterized by a flexible I/O 
scheme, an efficient register and address space structure 
and a number of ancillary features that are helpful in many 
applications. 

Microcomputer applications demand powerful I/O 
capabilities. The Z86C11 fulfills this with 32 pins dedicated 
to input and output. These lines are grouped into four ports 
of eight lines each and are configurable under software 
control to provide timing, status signals, serial or parallel I/O 
with or without handshake, and an address/data bus for 
interfacing external memory. 

Because the multiplexed address/data bus is merged with 
the I/O-oriented ports, the Z86C11 can assume many 
different memory and I/O configurations. These config­
urations range from a self-contained microcomputer to a 

memory, or a parallel-processing element in a system with 
other processors and peripheral controllers linked by the 
Z-BUS® bus. In all configurations, a large number of pins 
remain available for I/O. 

protect feature to provide program security by 
disabling all external accesses to the internal EPROM 
array. This is preliminary inform~tion, and is subject to 
change. 

microprocessor that can address 120K bytes of external 
memory (Figure 3). 

Three basic address spaces are available to support this 
wide range of configurations: program memory (internal 
and external), data memQry (external) and the register file 
(internal). The 256-byte random-access register file is 
composed of 236 general-purpose registers, four 110 port 
registers, and 16 control and status registers. 

To unburden the progrq.m from coping with real-time 
problems such as serial data communication and 
counting/timing, an asynchronous receiver/transmitter 
(UART) and two counter/timers with a large number of 
user-selectable modes are offered on-chip. Hardware 
support for the UART is minimized because one of the 
on-chip timers supplies the bit rate. 

110 
(BIT PROGRAMMABLE) 

ADDRESS OR 110 
(NIBBLE PROGRAMMABLE) 

ADDRESSIDATA OR 110 
(BYTE 'PROGRAMMABLE) 

Figure 3. Functi0ll,al Block Diagram 

118 



STANDBY MODE 

The Z86C11's standby modes are: 

• Stop 

• Halt 

POWER DOWN INSTRUCTIONS 

The Z86C91 has two instructions to reduce power 
cqn~umption during standby operation. HALT turns off the 
processor and UART while the counter/timers and external 
interrupts IROO, IR01, and IR02 remain active. 

When an interrupt occurs the processor resumes execution 
after servicing the interrupt. STOP turns off the clock to the 
entire Z86C91 and reduces the standby current to 10 

. PIN DESCRIPTION 

AS. Address Strobe (output, active Low). Address Strobe is 
pulsed once at the beginning of each machine cycle. 
Addresses output via Port 1 for all external program or data 
memory transfers are valid at the trailing edge of AS. Under 
program control, AS can be placed in the high-impedance 
state along' with Ports 0 and 1 , Data Strobe and ReadlWrite. 

OS. Data Strobe (output, active Low). Data Strobe is 
activated once for each external memory transfer. 

POO-P07• Plo-PI7• P20-P27• P3q-P3j. I/O Port 
Lines, (input/outputs, TTL-compatibleJ. These 32 lines 
are divided into four 8-bit I/O ports that can be 
configured under program control for I/O or external 

ADDRESS SPACE 

Program Memory. The 16·bit program counter addresses 
64K bytes of program memory space. Program memory 
can be located in two areas: one internal and the other 
external (Figure 4). The first 4096 bytes consist of on-chip 
mask-programmed ROM. At addresses 4096 and greater, 
the Z86C11 executes external program memory fetches. 

The first 12 bytes of program memory are reserved for the 
interrupt vectors. These locations contain six 16-bit vectors 
that correspond to the, six available interrupts. , 

Data Memory. The Z86C11 can address 60K bytes of 
external data memory beginning at location 4096 (Figure 5). 
External data memory may be included with or separated 
from the external program memory space. Dfiii, an optional 
I/O function that can be programmed to appear on pin P34, 
is used to distinguish between data and program memory 
space .. 

Register File. The 256-byte register file includes four I/O 
port registers (RO-R3), 236 general-purpose registers. 
(R4-R 239) and 16 control and status registers (R240-R255). 

The Stop instruction stops the internal clock and clock 
oscillation; the Halt instruction stops the internal clock but 

. not clock oscillation . 

A reset input releases the standby mode. 

microamps. The stop mode is terminated by reset, which 
causes the processor to restart the application program at 
address 12. 
To complete an instruction prior to entering standby 
mode, use the Instructions: 

memory interface (Figure 3). 

LD TMR, #00 
NOP 
STOP or HALT, 

RESET. Reset (input, active Low). RESET initializes the 
Z86C11. When RESET is deactivated, program execution 
begins from internal, program location OOOCH. 

RIW. Read/Write (output). Rm is Low when the Z86C11 is 
writing to external program or data memory. 

XTAL1. XTAL2. Crystal I, Crystal 2 (time-base 
input and output). These pins cormect a parallel-
resonant crystal (12 MHz maximum) or an external 
single-phase clock (12 MHz maximum) to the on-chip 
dock oscillator and buffer. 

These registers are assigned the address locations.shown in 
Figure 6. 

Z86Cll instructions can access registers directly or 
indirectly with an 8-bit address field. The Z86Cll also 
allows short 4-bit register addressing using the Register 
Pointer (one of· the control registers). In the 4-bit 
mode, the ,register file is divided illto 16 working register 
groups. each occupying 16 contiguous locations (Figure 
6). The Register Pointer addresses the starting location 
of the active working-register group (Figure 7). 

Note: Register Bank EO-EF can only be accessed through 
working register and indirect addressing modes. 

Stacks. Either the internal register file or the external data 
memory can be used for the stack. A 16-bit Stack Pointer 
(R254 and R255) is used for the external stack, which can 
reside anywhere in data memory between locations 4096 
and 65535. An B-bit Stack Pointer (R255) is used for the 
internal stack that resides within the 124 general-purpose 
registers (R4-R127). I 

119 



120 

LOCATION OF 
FIRST BYTE OF 
INSTRUCTION 

EXECUTED 
AFTER RESET 

INTERRUPT 
VECTOR 

(LOWER BYTE) 

INTERRUPT 
VECTOR 

(UPPER BYTE) 

5535 

EXTERNAL 
ROM OR RAM 

409. 
4095 

ON·CHIP 
ROM 

.;. ~------------
11 IROS 

10 IR05 

9 IR04 

8 lR04 

7 IR03 , IR03 

5 IR02 

4, IR02 

3 IR01 

2 IRQ1 

1 IROO 

0 IROO 

Figure 4. Program Memory Map 

LOCATION 

255 

254 

253 

252 

251 

250 

249 

248 

247 

24. 

245 

244 

243 

242 

241 

240 

239-

STACK POINTER (BITS 7-0) 

STACK POINTER (BITS 15-8) 

REGISTER POINTER 

PROGRAM CONTROL FLAGS 

INTERRUPT MASK REGISTER 

INTERRUPT REQUEST REGISTER 

INTERRUPT PRIORITY REGISTER 

PORTS 0-1 MODI; 

PORT 3 MODE 

PORT 2 MODE 

TO PRESCALER 

TIMER/COUNTER 0 

'T1 PRESCALER 

TIMER/COUNTER 1 

TIMER MODE 

SERIAL 110 

GENERAL·PURPOSE 
REGISTERS 

PORT 3 

PORT 2 

PORT 1 

PORT 0 

Figure 6. The Register File 

IDENTIFIERS 

SPL 

SPH 

RP 

FLAGS 

IMR 

IRQ 

IPR 

P01M 

P'M 

P2M 

PREO 

TO 

PRE1 

T1 

TMR 

SIO 

P' 
P2 

P1 

PO 

..... ..----------....., 

EXTERNAL 
DATA 

MEMORY 

~~~----------~------~ 

NOT ADDRESSABLE 

Figure 5. Data Memory Map 

1 __ F::3::::=;::::;::;::::::J255 

~ __ ~~~-L ________ ~2" 
~ ______________ ~240 

THE UPPER NIBBLE OF THE REGISTER FILE ADDRESS 
PROVIDED BY THE REGISTER POINTER SPECIFIES 
THE ACTIVE WORKING-REGISTER GROUP. 

--I 

--I 
--I 

1 
--1 
--1 
--I 

· · · 

SPECIFIED WORKING· 
REGISTER GROUP 

\ 

2 

-r-

3S 

THE LOWER 
NIBBLE OF 
THE REGISTER 
FILE ADDRESS 
PROVIDEDBV 
THE INSTRUCTION 
POINTS TO THE 
SPECIFIED 
REGISTER. 

I. 

----.,OPORTS----- 3 

Figure 7. The Register Pointer 



SERIAL INPUT/OUTPUT 

Port 3 lines P30 and P37 can be programmed as serial I/O 
lines for full-duplex serial asynchronous receiver/transmitter 
operation. The bit rate is controlled by Counter/Timer 0, with 
a maximum rate of 62.5K bits/second forB MHz. 

The ZB6C11 automatically adds a start bit and two stop bits 
to transmitted data (Figure B). Odd parity is also available as 
an option. Eight data bits are always transmitted, regardless 

TRANSMITTED DATA 
(No Parity) 

LSlAHTB'T T L-____ EIQHT D"TA BITS 

TRANSMITTED DATA 
(With Parity) 

TWO STOP BITS 

11, 
___ LstARTBIT 

'-----BEVEN DATA BITS 

ODD PARtly 

TWO STOP BITS 

of parity selection. If parity is enabled, the eighth bit is the 
odd parity bit. An interrupt request (IR04) is generated on all 
transmitted characters. 

Received data must halie a start bit, eight data bits and at 
least one stop bit. If parity is on, bit 7 of the received data is 
replaced by a parity error flag. Received characters 
generate the IR03 int,errupt request. 

RECEIVED DATA 
(No Parity) 

I~I~I~I~I~I~I~I~I~I~I 

LS'A"TB'T 
L-----EIGHT DATA BITS 

L--_-----ONESTOP BIT 

RECEIVED DATA 
(With Parity) 

1 ·1,-~LsTART.'T L----SEVEN DATA BITS 

PARITY ERROR FLAG 
L--------ONESTOP BIT 

Figure 8. Serial Data Formats 

COUNTER/TIMERS 

The ZB6C11 contains two B-bit programmable counter/ 
timers (To and T1), each driven by its own 6-bit 
programmable prescaler. The T 1 prescaler can be driven by 
internal or external clocksources; Qowever, the To prescaler 
is driven by the internal clock only. 

The 6-bit prescalers can divide the input frequency of the 
clock source by any number from 1 to 64. Each prescaler 
drives its counter, which decrements the value (1 to 256) that 
has been loaded into the counter. When the counter reaches -
the end of count, a timer interrupt request-IR04 (To) or 
IROs (T1)-is generated. 

The counters can be started, stopped, restarted to continue, 
or restarted from the initial value. The counters can also be 
programmed to stop upon reaching zero (single-pass 
mode) or to automatically reload the initial value and 

continu§l counting (modulo-n continuous mode). The' 
counters, but not the prescalers, can be read any time 
without disturbing their value or count mode. 

The clock source for T 1 is user-definable and can be 
the internal microprocessor clock divided by four, or an 
external signal inpl,lt via Port 3. The Timer Mode 
register configures the external timer input as an 
external clock (1 MHz maXimum), a trigger input that 
can be retriggerable or non-retriggerable, or as a gate 
input for the internal clock. The counter/timers can be 
programmably cascaded by connecting the TO output to 
the input of T l' Port ~ line P3& also serves as a 
timer output (TOUT) through which To, T:t: or the 
internal clock can be output. 

121 



110 PORTS 
I 

The Z86e1-1 has 32 lines de,dicated to input and output. 
These lines are grouped into four ports of eight lines each 
and are configurable as input, output or address/data. 
Under software control, the ports can be programmed to 
provide address outputs, timing, status signals, serial 1/0, 
and parallel 1/0 with or without handshake. All ports have 
active pull·ups and pull·downs compatible with TTL loads. 

Port 1 can be programmed as a byte 1/0 port or as an 
address/data port for interfacing external memory. When 
used as an 110 port, Port 1 may be placed under handshake 
control. In this configuration, Port 3 lines P33 and P34 are 

, used as the handshake controls ROY 1 and DAV 1 (Ready 
and Data Available). ' 

Memory locations greater than 4096 are referenced 
through Port 1. To interface external, memory: Port 1 must be 
programmed for the multiplexed Address/Data mode. If 
more than 256 external locations are required, Port ° must 
output the additional lines. 

Port 0 can be programmed as a nibble 110 port, or as an 
address port for interfacing extern'al memory. When used as 
an 1/0 port, Port ° may be placed under handshake control. 
In this configuration, Port 3 lines P32 and P35 are used as 
the handshake controls DAVo and RDYo. Handshake signal 
assignment is dictated by the 1/0 direction of the upper 
nibble P04·P07. 

For external memory references, Port Dcan provide address 
bits As·A11 (lower nibble) or As·A15 (lower and upper nibble) 
depending on the required address space. If the address 
range requires 12 bits or less, the upper nibble of Port ° can 
be programmed independently as 1/0 .while the lower nibble 

Port 2 bits can be programmed independently as input or 
output. This port is always available for 1/0 operations. In 
addition, Port 2 can be configured to provide open·drain 
outputs. 

Like Ports ° and 1, Port 2 may also be placed urider 
handshake control. In this configuration, Port 3 lines P31 
and P36 are used as thE1 handshake controls lines DAV2 and 
.ROY 2. The handshake signal assignment for Port 3 lines P31 
and P36 is dictated by the direction (input or output) assigned 
to bit 7 of,Port 2. ' 

Port 3 lines can be configured as 1/0 or control lines. In either 
case, the direction of the eight lines is fixed as four input 
(P30·P33) and four output (P34·P37). For serial 110, lines P30 
and P37 are programmed as serial in and serial out 
respectively. 

Port 3 can also provide the following control functions: 
handshake for Ports 0, 1 and 2 (DAV and ROY); four external 
interrupt request signals (IROo·IR03); timer input and outpu! 
signals (TIN and TOUT) and Data Memory Select-{DM). 

122 

Port 1 can be placed in the high·impedance state along with 
Port 0, AS, OS and R/W, allowing the Z86C11 to share 
common resources in multiprocessor· and DMA 
applications. Data transfers can be controlled by assigning 
P3i as a Bus Acknowledge input, and P34 as a Bus Request 
output. 

OOOT. 
(UO 0" ADo·Ao,) 

,Figure 9a. Port 1 

is used for addressing. When Port ° nibbles are defined as 
address bits, they can be set to the high·impedance state 
along with Port 1 and the control signals AS, OS and RIW. 

100M· 
(110 OR A,-An) 

Figure 9b. Port 0 

, } ~u:~t~ED~~NT"OLS 
I (P3,ANDP3e) 

Figure 9c. Port 2 

ZIICl1 
MCU 

100R. • (1/0 OR CONTROl) 

Figure 9d. Port 3 



INTERRUPTS 

The Z86C11 allows six different interrupts from eight sources: 
the four Port 3 lines P30-P33, Serial In, Serial Out, and the two 
counter/timers. These interrupts are both maskable and 
prioritized. The Interrupt Mask register globally or individually 
enables or disables the six interrupt requests. When more 
than one interrupt is pending, priorities are resolved by a 
programmable priority encoder that is controlled by the 
Interrupt Priority register. 

All Z86C11 interrupts are vectored. When an interrupt 
request is granted, an interrupt machine cycle is entered. This 
disables all subsequent interrupts, saves the Program 

CLOCK 

The on-chip oscillator has a high-gain, parallel-resonant 
amplifier for connection to a crystal or to any suitable external 
clock source (XTAL 1 = Input, XTAL2 = Output). 

The crystal source is connected across XTAL 1 and XTAL2, 
using the recommended capacitors (C1 .;; 15.p~ from each 

INSTRUCTION SET NOTATION 

Addressing Modes. The following notation is used to 
describe the addressing modes and instruction operations 
as shown in the instruction summary. 

IRR Indirect register pair or indirect working-register 
pair address 

Irr Indirect working-register pair only 
X Indexed address 
DA Direct address 
RA Relative address 
1M Immediate 
R Register or working-register address 
r Working-register address only 
IR Indirect-register or indirect working-register 

address 
Ir Indirect working-register address only 
RR Register pair or working register pair address 

Symbols. The following symbols are used in describing the 
instruction set. 

dst Destination location or contents 
src 
cc 
@ 

SP 
PC 
FLAGS 
RP 
IMR 

Source location or contents 
Condition code (see list) 
Indirect address prefix 
Stack pointer (control registers 254-255) 
Program counter 
Flag register (control register 252) 
Register pointer (control register 253) \ 
Interrupt 1')lask register (control register 251) 

Counter and status flags, and branches to the program 
memory vector location reserved for that interrupt. This 
memory location and the next byte contain the 16-bit address 
of the interrupt service routine for that particular interrIJpt 
request. . 

Polled interrupt systems are also supported. To 
accommodate a polled structure, any or all of the interrupt 
inputs can be masked and the Interrupt Request register 
polled to determine which of the interrupt requests needs 
service. 

pin to ground. The specifications for the crystal are as follows: 

• AT cut, parallel resonant 

• Fundamental type, 12 MHz maximum 

• Series resistance, Rs .;; 100 Q 

Assignment of a value is indicated by the symbol "+-': For 
example, 

dst +- dst + src 

indicates that the source data is added to the destination 
data and the result is stored in the destination location. The 
notation "addr(n)" is used to refer to bit "n" of a given 
location. For example, 

dst (7) 

refers to bit 7 of the destination operand. 

Flags. Control Register R252 contains the following six 
flags: 

C Carry flag 
Z Zero flag 
S Sign flag 
V Overflow flag 
D ' Decimal-adjust flag 
H Half-carry flag 

Affected flags are indicated by: 

o Cleared to zero 
1 Set to one 
* Set or cleared according to operation 

Unaffected 
X Undefined 

123 



CONDITION CODES 

Value Mnemonic 

1000 
0111 C 
1111 NC 
0110 Z 
1110 NZ 
1101 PL 
0101 MI 
0100 OV 
1100 NOV 
0110 EQ 
1110 NE 
1001' GE 
0001 LT 
1010 GT 
0010 LE 
111'1 UGE 
0111 ULT 
1011 UGT 
0011 ULE 
0000 

INSTRUCTION FORMATS' 
OPC 

Always true 
Carry 
No carry 
Zero 
Not zero 
Plus' 
Minus 
Overflow 
No overflow 
Equal 
Not equal 

Meaning 

Greater than or equal 
Less than 
Greater than 
Less than or equal 
Unsigned greater than or equal 
Unsigned less than 
Unsigned greater than 
Unsigned less than or equal 
Never true 

CCF, DI, EI, IRET, NOP, 
RCF, RET, SCF 

dol OPC INCr 

One-Byte Instructions 

OPC' MODE CLR, CPL, DA, DEC, OPC MODE 

ds"sre OR h 1 1 0 I dollore I ~~~:.' ~~~Rt~~:R."OP, 

OPC 

lOR h 11 01 dol dot 

OPC r VALUE 

OPC MODE 
dst Ire 

MODE OPC 
del/are src/dst 

dstlsrc ope 
oreldot OR 11 1 1 01 sre 

RRC, SRA, SWAP 

JP, CALL (Indlrec1) 

SRP 

ADC, ADD, AND, 
CP, OR, SBC, SUB, 
lCM, lM,XOR 

LD, LDE,1.DEI, 
LDC, LOCI 

LD 

dot 1 OPC LD 
VALUE 

I doliCC R~ OPC DJNZ, JR 

~P/HALl 

sre 
dOl 

OPC MODE 
dot 

\ VALUE 

MODE ope 
ore 
dot 

MODE OPC 
datllrc 

ADDRESS 

rn DAu 
D~ 

rn DAu 
DA, 

OR 
OR 

Flags Set 

C = 1 
C=O 
Z=1 
Z=O 
S=O 
S =,1 
V= 1 
V=O 
Z=l 
Z=O 
(SXORV) = 0 
(SXORV) = 1 
[ZOR {SXORV») = 0 
[Z OR (S XORV») = 1 
C=O 
C = 1 
(C = OANDZ = 0) = 1 
(CORZ) = 1 

ADC, ADD, AND, CP, 

1 1 1 0 sn: LD, OR, SBC, SUB, 

1 1 1 0 dSI 
lCM, TM,XOR 

ADC, ADD, AND, CP, 

OR b 1 1 01 dot LD, OR, SBC, SUB, 
lCM, lM,XOR 

LD 
OR 1 1 1 0 ore 
OR 1 1 1 0 dot 

LD 

JP 

CALL 

Two-Byte Instructions Three-Byte Instructions 

124 



INSTRUCTION SUMMARY 

AddrMode Op~ode Flags Affected AddrMode Opcode Flags Affected 
Instruction Byte Instruction Byte 
and Operation dst src (Hex) CZSVDH and Operation dst src (Hex) CZSVDH 

ADCdst,src (Note 1) 10 * * * * o * JPcc,dst OA cO ------
dst - dst + src + C ifccistrue c=O-F 

ADDdst,src (Note 1) 00 o * 
PC-dst IRR 30 

* * * * 
dst - dst + src JRcc,dst RA cB ------
ANDdst,src (Note 1) 50 0--

if cc is true, c=O-F 
-** PC-PC + dst dst..., dst ANO src 

Range: +127, -128 
_____ 1-

CALLdst OA 06 
SP-SP - 2 IRR 04 

LDdst,src 1m rC ------

@SP - PC; PC - dst 
dst-src r R r8 

R r9 
CCF EF *----- r =,0 - F 
C-NOTC r X C7 

CLRdst R BO 
X r 07 

-----"'-- Ir E3 
dst-O IR B1 

r 
II' r F3 

COMdst R 60 -** 0-- R R E4 
dst- NOTdst IR 61 R IR E5 

(Note 1) AD 
R 1M E6' 

CPdst,src * :It **-- IR 1M E7 
dst - src IR R F5 

DAdst R 40 * * * X-- LDCdst,src r Irr C2 ------
dst-OAdst IR 41 dst-src Irr 02 
DECdst R 00 -* **-- LOCI dst,src Ir Irr C3 ------
dst-dst - 1 IR 01 dst-src Irr Ir 03 

DECWdst RR 80 ,- * **-- r-r+ 1;rr-rr+ 1 
dst-dst - 1 IR 81 LDEdst,src r Irr 82 ------
01 dst- src Irr 92 
IMR(7)-0 8F ------ LDEI dst,src Ir Irr 83 ------
DJNZr,dst RA rA ------ dst-src Irr Ir 93 
r-r-1 r = 0 - F r-r+ 1;rr-rr+ 1 
ifr#O NOP FF ------

PC-PC + dst 
Range: +127, -128 ORdst,src (Note 1) 40 -**0--

EI 9F 
dst - dst OR src ------

IMR(7)-1 POPdst R 50 ------
dst-@SP; IR 51 

HALT 7F SP-SP + 1 
INCdst rE -*,**-- PUSHsrc R 70 ------
dst-dst + 1 r = 0 - F 

SP - SP - 1; @SP - src IR 71 
R 20 
lR 21 RCF CF 0-----

INCWdst RR AO 
C-O 

-** *--
dst-dst + 1 IR A1 RET AF ------
IRET BF 

PC - @SP; SP - SP + 2 
* * * * * * 

FLAGS -@SP; SP - SP + 1 RLdst~ R 90 ****--
PC-@SP;SP:'-SP + 2; IMR (7)-1 IR 91 

125 



INSTRUCTION SUMMARY (Continued)' 

Instruction 
and Operation 

Addr Mode Opcode . Flags Affected 
Byte 

dst src (Hex) CZSVDH 

'RLC dst LE:]:ciJ R 
c , • IR 

RR dst l£ri lciJ R 
c , • IR 

RRC dst LE:]:ciJ R 
c , • IR 

. SBC dst,src 
dst-dst-src -C 

(Note 1) 

SCF 
C-1 

SRA dstl£ri ~ R 
. c , , IR 

SRPsrc 
RP-src 

STOP 

1m 

SUBdst,src (Note 1) 
dst - dst - src 

SWAP dst I' ; _I_ : 'II~ 

TCMdst,src (Note 1) 
(NOT dst) AND src 

10 
11 

EO 
E1 

CO 
C1 

30 

DF 

DO 
D1 

31 

6F 

20 

FO 
Fl 

60 

****--,-

* * * * 

****--

1-----

* * * 0 

* * * * 1 * 

X * * X--

-** 0--

Instruction 
and Operation 

TMdst,src 
dstANDsrc 

XORdst,src 
dst - dst XOR src 

Addr Mode Opcode Flags Affected 
Byte 

dstsrc (Hex) CZSVDH 

(Note 1) 70 

(Note 1) so 

NOTE: These instructions have an identical set of addressing modes, 
which are encoded for brevity. The first opcode nibble is found in 
the instruction set table above. The second nibble is expressed 
symbolically by a 0 in this table, and its value is found in the 
following table to the left of the applicable addressing mode pair. 

For example, the opcode of an ADC instruction using the 
addressing modes r (destination) and Ir (source) is 13. 

AddrMode 

dst src 

Ir 

R R 

R IR 

R 1M 

IR 1M 

Lower 
Opcode Nibble 



REGISTERS 

R240SI0 
SERIAL I/O REGISTER 

(FOH; ReadlWrite) 

I~I~I~I~I~I~I~I~I 

LI----SERIALDATA(~ = LSB) 

R241 TMR 
TIMER MODE REGISTER 

(F1 H; Read/Write) 

ToJITMODES j ~~. = NO FUNCTION NOT USED _ 00 ~ 1 - lOADYD 

To OUT· 01 0 K DISABLE T COUNT 
T,OUT-=10 II 

INTERNAL CLOCK OUT .., 11 1 "" ENABLE To COUNT 

T MODES 0 = NO FUNCTION 
EXTERNAL CLOCK IN~nT ... 00 1 = LOAD T, 

GATE INPU'F = 01 0 .. DISABLE T 1 COUNT 
(NON-R~~~:::~::~~ .., 10 1 "" ENABLE T, COUNT 

TRIGGER INPUT - 11 
(RETRIGGERABLE) 

R242T1 
COUNTE.R TIMER 1 REGISTER 

(F2H; ReadlWrite) 

T, INITIAL VALUE (WHEN WRmeN) 
'----~RANGE 1-258 DECIMAL 01-00 HEX) 

T, CURRENT VALUE (WHEN READ) 

R243PRE1 
PRESCALER 1 REGISTER 

(F3H; Write Only) 

~LCOUNTMODE 
o = T, SlNGLE·PASS 

.- 1 "" T, MODULO-N 

, CLOCK SOURCE I 

1 = T, INTERNAL 
o = T, EXTERNAL TIMING INPUT 

(T.,.)MODE 

PRESCAlER MODULO 
(RANGE: 1-84 DECIMAL 
01·00 HEX) 

R244TO 
COUNTER/TIMER 0 REGISTER 

(F4H; Read/Write) 

R245PREO 
PRESCALER 0 REGISTER 

(F5H; Write Only) 

~LCOUNTMODE 
o = T G SINGLE·PASS 
1 '"' Til MODULO·N 

RESERVED 

PRESCALER MODULO 
(RANGE: 1-64 DEOIMAL 
01-00 HEX) 

R246P2M 
PORT 2 MODE REGISTER 

(F6H; Write Only) 

P20-P27 UO DEFINITION 
'---- 0 DEFINES BIT AS OUTPUT 

1 DEFINES BIT AS INPUT 

R247P3M· 
PORT 3 MODE REGISTER 

(F7H; Write Only) 

~E
L.PORT2PULL.UPSOPEN DRAIN 

1 PORT 2 PULL-UPS ACTIVE 

• RESERVED . 

, . 0 P32 = INPUT P35 = OUTPUT 
1 P32 = DlVOIRDYO P3S = RDYOIDAW 

o 0 P33 = INPUT P34 = OUTPUT 

~ ~}P33 '" INPUT P34 ;" DM 
1 1 P33 = Dm/RDY1 P34 = RDY1tDAVi 

. ~ ~:! ~ ~:~,g~~ ~: : ~~~~~UT) 
L-_______ ~~: ~ ~~~!LIN ;;~: ~~~~~TOUT 

L---------~.~~=l~ g~F 

Figure 11. Control Registers 

127 



REGISTERS (Continued) 

. R248P01M 
PORT 0 AND 1 MODE REGISTER 

. (F8H; Write.onlY) 

I~!~!~!~!~!~!~!~I 

'Sf:!] III L"f:~ 
prEANAL MEMORY TIMING STACK SELECTION 

NORMAL = 0 0 .. EXTERNAL 
EXTENDED. 1 1 • INTERNAL 

Piao'!., =EOUTPUT 
01 .. BYTE INPUT 
10 .. Aa.-ADr 
11 • HIGH·IMPEDANCE ADe·ADr. 

ii. iii. W. Ae-A1h A'I-A11 
If SELECTED 

R2491PR 
INTERRUPT PRIORITY REGISTER 

(F9H; Write Only) 

1~1~I .. t~I .. I .. I~I .. 1 

_:J "II' __ ~ RESERVED :c 000 
IRQI. IHOI PRIORITY (GROUP AJ C > A > 8 :: 001 

0=IROI>,R03 A>B>C=010 
1 = 1RQ3> IAQ6 . ~~g~:~ra: 

IROO. IRQ2 PRIORITY (GROUP 8) C :> B > A = 101 

~ : ::: ~ := . :~E~;E~: ~~~ 
IRQt, 1RQ4 PRIORITY (GROUP C) . 

'0 = tROt> tRot 
1 = IR04 > IAQ1 

R250lRQ 
INTERRUPT REQUEST REGISTER 

(FAH; ReadIWr~e) 

I~I~I .. I~I .. I~I~I .. I 
...... VED ~ C:=,oao - "".PUT (Do. 'ROO) 

tRQi • PIa INPUT 
.HOI • P31INPUT 
IR03 • PIa INPUT, SERIAL INPUT 
IRot .. To. SERIAL OUTPU'f 
lAOS. T1 

R2511MR 
INTERRUPT MASK REGISTER 

(FBH; ReadIWrije) 

I~!~! .. !~! .. !~!~! .. I 
.1 1 c:= 1 ENABLES IRQO-IRQ6 

, ... '0001 
'-------AESEAYEO . 

L..-______ 1 ENAI .. ESIHTERRUPTS 

REGISTER 
POINTER 

Figure 11. Control Registers (Continued) 

128 

R252 FLAGS 
FLAG REGISTER 
(F-CH; ReadIWrite) 

I~I~ID.ID.I .... I~I~I .. I 

H~U1§llliLUSEOFLAGFI' LUSER FLAG F2 

HALF CARRY FLAG 

~ DECIMAL ADJUST FLAG 

bVERFLOW FLAO 
, SIGN FLAO 

ZERO FLAG 

CARRY FLAG 

R253RP 
REGISTER POINTER 

(FDH; ReadIWrite) 

R254SPH 
STACK POINTER 
(FEH; Re~dIWrite) 

R255SPL 
STACK POINTER 
(FFH; Read/Write) 

IDa~I~I~I~I .. I~I .. 1 
IL ___ :~~~s~~~~~R LOWER 



OPCODEMAP 
I..ow8r Nibble (Hex) 

o 2 3 4 5 6 7 8 9 A B C' o E F 

6.5 6.5 6.5 6.5 . 10.5 10.5 10.5 10.5 6.5 6.5 12/10.5 12/10.0 6.5 12/10.0 65 
o DEC DEC ADO ADD ADO ADO ADD ADD LO LO OJNZ JR LD JP INC 

R, IR, '1·'2 '1· lr2 R2. R, IR2.R, R,.IM IR,.IM f1,R2 r2. R, r,.RA cc.RA r,.IM cc.DA r.1 
-

6.5 6.5 6.5 6.5 10.5 ,0.5 10.5 10.5 
RLC RLC AOC ADC AOC AOC AOC AOC 
R, IR, r1,'2 f1:lr2 R2.R, IR2.R, R,.IM IR,.IM -
6.5 6.5 6.5 6.5 10.5 10.5 10.5 10.5 
INC INC SUB SUB SUB SUB SUB SUB 
R, IR, '1·'2 ".lr2 R2. R, IR2.R, R,.IM IR,.IM 

f--
8.0 6.1 6.5 6.5 10.5 10.5 10.5 10.5 

3 JP SRP SBC SBC SBC SBC SBC SBC 
IRR, 1M r1. f2 r,. lr2 R2. R, IR2.R, R,.IM IR,.IM 

8.5 8.5 6.5 6.5 10.5 10.5 10.5 10.5 
r-------

4 DA DA OR OR OR OR OR OR 
R, IR, '1,f2 '1. lr2 R2. R, IR2.R, R,.IM Ifl,.IM 

,---
10.5 10.5 6.5 6.5 10.5 10.5 10.5 10.5 

5 pop pop AND . AND AND AND AND AND 
R, IR, r1,f2 r,. lr2 R2. R, IR2.R, R,.IM IR,.IM 

6.5 6.5 6.5 6.5 10.5 10.5 10.5 10.5 c-a.o 
COM COM TCM TCM TCM TCM TCM TCM STOP 

R, IR, r1·'2 ".lr2 R2. R, iR2.R, R,.IM IR,.IM 
I---

10112.1 12114.1 6.5 6.5 10.5 10.5 10.5 10.5 7.0 
PUSH PUSH 1M TM 1M TM TM TM HALT 

R2 IR2 '1,'2 '1.1r2 R2. R, IR2.R, R,.IM IRI·IM -
10.5 10.5 12.0 18.0 r---e:;-

DECW DECW LDE LDEI 01 
RR, IR, '1. lrf2 Ir1·lrr2 

6.5 6.5 12.0 18.0 r---e.;-

6 

i e 7 

1· 
9 RL RL LDE LDEI EI 

R, IR, f2, lrr1 Ir2.1rr, 
I---

10.5 10.5 6.5 6.5 10.5 10.5 10.5 10.5 14.0 
A INCW INew CP CP CP CP CP CP RET 

RR, IR, r1,f2 '1.1r2 R2. R, IR2.R, R,.IM. IR,.IM 

6.5 6.5 6.5 6.5 10.5 10.5 10.5 10.5 .. f--;s.o 
B CLA CLA XOA XOR XOR XOR XOR XOR IRET 

Rl IR, r1.r2 '1.lr2 R2.R, IR2.R, R,.IM IR,.IM 

6.5 6.5 12.0 18.0 10.5 r--s:s-
C ARC RRC LOC LOCI LD RCF 

R, IR, '1.1rr2 Ir1.lrf2 r1,x.~2 
f---

6.5 6.5 12.0 18.0 20.0 20.0 10.5 6.5 
o SAA SRA LOC LOCI CALL" CALL LD SCF 

R, IR, '2· lrr1 Ir2.lrr1 IRR, DA r2.x.R, 

6.5 6.5 6.5 10.5 10.5 10.5 10.5 r--s:s-
E RR RR LD LD LD LD LD CCF 

R, IR, r,. IR2 R2.R, IR2.R, R,.IM IR,.IM 
I---

8.5 8.5 6.5 10.5 6.0 
F SWAP SWAP LD LD NOP 

R, IR, Ir1,r2 R2· IR, 

....... ---_'V~----,; ....... ---_'V~----.I ........ -----..... 'V~-----... .I~'---v--
2 

EXECUTION 
ClCLES 

LOWER 
OPCODE 

NlBf 

*2·byte Instruction, fetch cycle appears as a 3-byte instruction 

3 

PIPELINE 
ClCLES 

MNEMONIC 

SECOND 
OPERAND 

Bytea per I .... ructlon 

2 

Legend: 
R = 8-bit address 
r = 4-bit address 
R, orr, - Dstaddres. 
R20rr2 - Src address 

Sequence: 

3 

Opcode. FirstOperand. Second Operand 

NOTE: The blenk areas are not Qefined. 



ABSOWTE MAXIMUM RATINGS 

Voltages on all pins with respect 
toGND ......................... -O.3Vto +7.0V 

Operating Ambient ' 
Temperature . ' .............. See Ordering Information 

Storage Temperature .............. -65°C to + 150°C 

STANDARD TEST CONDITIONS 

The DC characteristics listed below apply for the following 
standard test coTlditions,' unless otherwise noted. All 
voltages are referenced to GND. Positive'current flows into 
the referenced pin. . 

Standard conditions are as follows: 

• +4.5 ~ V.CC ~ + 5.5V 

• GND = OV 

• 0 C $ T A $ +7~, C for S (Standard temperature) 

• -40 C $ T A $+100 C for E (Extended temperature) 

DC CHARACTERISTICS 

Symbol Parameter Min 

VCH Clock Input High Voltage 3.8 

Vel Clock Input Low Voltage -0.3 

V,H Input High Voltage 2.0 

V,l Input Low Voltage -0.3 

VAH Reset Input High Voltage 3.8 

VAL Aeset 'I1Put Low Voltage -0.3 

VOH Output High Voltage 2.4 

VOH Outpl,lt High Voltage Vee -100mV 

Val . Output Low Voltage 

I,l Input Leakage -10 

IOl Output Leakage -10 

I'A Reset Input Current 

ICC Supply Current 

I~C1 Standby Current 

ICC2 Standby Curre~t 

lYP 

5 

Stresses-greater than ihose iisted under Absolute Maximum Ratings may 
cause permanent damage to' the device. This is a stress rating only; 
operation of the device at any cohd~ion above those indicated in the 
operational sections of these specifications is not implied. Exposure to 
absolute maximum rating conditions for extended periods may affect 
device reliabil~y. 

+5V 

2.1K 

Figure 12. Test Load 1 

Max Unit Condition 

VCC V Driven by External Clock Generator 

0.8 V Driven by External Clock Generator 

VCC V 

0.8 V 

VCC V 

0.8 V 

V IOH = -250,..A 

V IOH .. -100j.IA . 

0.4 / V IOl = +2.0mA 

10 JAA OV ~ V,N ~ + 5.25V 

10 JAA OV ~ V,N ~ + 5.25V 

-50 ,..A VCC = + 5.25V, VAL = OV 

30 mA All outputs and I/O pins floating, 12 MHz 

mA Halt Mode 

10 ,..A Stop Mode 

lee2 requires loading TMR (%F1) ,with any value prior to STOP execution. 

Use the sequence: '" 
LD TMR,#OO 
NOP 
STOP 

1~ 



PORT 1 

iii 
(WRITE) 

AC CHARACTERISTICS 

",,,,OUT 

Figure 13. External 110 or Memory Read/Write 

EXternal 110 or Memory Read and Write Timing 

12MHz 
"Number Symbol Parameter Min Max 

1 TdA(AS) Address Valid to AS t Delay 35 

2 TdAS(A) AS t to Address Float Delay 45 

3 TdAS(DR) AS t to Head Data Required Valid 220 

4 TwAS ASLDwWidth 55 

5 TdAz(DS) Address Float to OS l 0, 

6 TwDSR DS (Read) LDw Width 185 

7 TwDSW OS (Write) LDw Width 110 

8 TdDSR(DR) OS l to Read Data Required valid 130 

9 ThDR(DS) Read Data to iSS t Hold Time 0 

10 TdDS(A) iSS t to Address Active Delay 45 

11 TdDS(AS) C5S t to AS l Delay 55 

12 TdRIW(AS) RiW valid to AS + Delay 30 

13 TdDS(RIW) OS t to RIW Not.valid 35 

14 TdDW(DSW) Write Data valid to OS (Write) l Delay 35 

15 TdDS(DW) OS t to Write Data Not Valid Delay 35 

16 TdA(DR) Address valid to Read Data Required Valid 255 

17 TdAS(DS) AS t to OS ~ Delay 55 

NOTES: 
,. When using extended memory timing add 2 TpC. • All units in nanoseconds (ns): 
2, Timing numbers given are for minimum TpC. tlilst Load' 

16 MHz 
Min Max Notes*t-

20 2.3 

30 2.3 

180 1.2.3 

35 2.3 

0 

135 1.2.3 

80 1.2.3 

75 1.2.3 

0 
20 2.3 

20 2.3 

20 2.3 

20 2.3 

25 2.3 

20 2.3 

200 1.2.3 

40 2.3 

3, See clock cycle lime dependent characteristics table, • All timing references use 2.0V for a logic "'" and 0.8V for a logic, "0". 

131 



Figure 14. Additional Timing 

AC CHARACTE.RISTICS 
Additional Timing Table 

Number Symbol 

1 TpC 

2 TrC,TfC 

3 TwC 

4 TwTinL 

5 TwTinH 

6 TpTIn 

7 ltTin,Tmn 

8A lWlL 

88 TwlL 

9 TwlH 

NOTES: 

Parameter 

Input CloCk Period 

Clock Input Rise and Fall Times 

Input Clock Width 

Timer Input Low Width 

Timer Input High Width 

Timer Input Period 

Timer Input Rise and Fall TImes 

, Interrupt Request Input Low Time 

Interrupt Request Input Low Time 

Interrupt Request Input High Time 

" Clock timing references use 3,BV for a logic "," and O.BV for a logic "0", 
2. Timing references use 2.0V for a logic "," and O.BV for a logic "0", 
3. Interrupt request via Fort 3, . 
4. Interrupt request via Fort 3 (P3,·P33l. 
5. Interrupt request via Port 3 (P3o) . 
• Units in nanoseconds (ns). 

12MHz 
Min 

83 

70 

70 

3TpC 

8TpC 

70 

3TpC 

3TpC 

'-

16 MHz 
Max Min, Max 

1000 62.5 1000 
15 10 

21 
50 

3TpC 

8TpC 
100 100 

50 
3TpC 
3TpC 

DA~~~: ______ ~_' __ _"'~~ ... : ~ ~----
RDY 

(OUTPUT) 

Figure 15a. Input Handshake 

. DATA OUT ~ DATA OUT VALID 

-----~--------------------------------

IOU: ~~1~3<DE:::~:i-C==~I~, . 
"NPUn ~ 

Figure 15b. Output Handshake 

132 

Notes· 

1 

2 

2 

2 

2. 

2,4 

2,5 

2,3 



AC CHARACTERISTICS 
Handshake Timing 

Number Symbol 

1 TsDI(DAV) 

2 ThDI(DAV) 

3 TwDAV 

4 TdDAVlf(RDY) 

5 TdDAVOf(RDY) 

6 TdDAVlr(RDY) 

7 TdDAVOr(RDY) 

8 TdDO(DAV) 

9 TdRDY(DAV) 

NOTES: 
1. Test load 1 
2. Input handshake 
3. Output handshake 

Parameter 

Data In Setup Time 

Data In Hold Time 

Data Available Width 

DAV ~ Input to RDY ~ Delay 

DAV ~ Output to RDY • Delay 

DAV t Input to RDY t Delay 

DAV t Output to RDY t Delay 

Data Out to DAV ~ Delay 

RDY ~ Input to DAV t Delay 

t All timing references use 2.0V for a logic" 1 " and 0.8V for a logic "0" . 
• Units in nanoseconds (ns). 

12MHz, '16MHz 
Min 

0 

145 
110 

20 

0 

0 

Tpc 
0 

Max Notest" 

115 1,2 

115 

130 

1,3 

1,2 

. 1,3 

133 



'it.' Z-T/m ADVANCED INFORMATION 
V.'-f luJlj Product Specification 

FEATURES 

Z86C21/Z86E21 CMOS 
CMOS Z8® 8K ROM MCU 

June 1987 

• Complete microcomputer, 8K bytes of ROM, 256 bytes of 
RAM, 32 I/O lines, and up to 56K bytes addressable 
external space each for program and data memory, 

• Register Pointer so that short, fast instructions can 
access any of 16 working-register groups in.6 j.ts. 

• On-chip oscillator which accepts crystal or external clock 
• 256-byte register file, including 236 general-purpose 

registers, 4 I/O port registers, and 16 status and 
control registers. 

• Minimum instruction execution time of 0.6 j.ts, 
average of 1.0 j.ts. 

• Vectored, priority interrupts for I/O, counter/timers, and 
UART 

• Full-duplex UART and two programmable 8-bit counter/ 
timers, each with a 6-bit programm?ble prescaler. 

GENERAL DESCRIPTION 

The Z86C21 microcomputer (Figures 1 and 2) 
introduces a new level of sophistication to single­
chip architecture. Compared to earlier single-chip 
microcomputers, the Z86C21 offers faster execution; 

PORTO 
(NIBBLE 

PROGRAMMABLE) 
1/0 OR Ae-A'5 

PORT 1 
(BYTE 

PROGRAMMABLE) 
110 OR ADo-AD? 

+5V 

XTAL2 

XTAL1 

P3, 

P3, 

RESET 

R/W 

os 
AS 
P3, 

GND 

P3, 

PO, 

PO, 

PO, 

P03 

PO, 

PO, 

PO, 

PO, 

drive. 

• Standby modes-Halt and Stop 

• Single + 5V power supply-all pins TTL-compatible. 

• 12 and 16 MHz. 

• CMOS process 

• Z86E21 compatible field-programmable version 
same feature set. 

more efficient use of memory; more sophisticated 
interrupt, input/output and bit-manipulation 
capabilities; and easier system expansion. 

Pa. 

P3, 

P2, 

P2, 

P2, ....,. 
P2, R/W 

P23 os 
P2, .. 
P2, 

P3, 
GNO 

P20 P3, 
P33 PO. 

P3, PO, 

P', 
PO, 
NC 

P', 

P', 

P" 

P'3 

P', 

P', 

P', 

, 
• 
• 
'0 
n 

" 
" 
" 
" 
" 
" 

-$' q"J~ q~1. .¢'t-'v~""':f1< q~1o 4"''' (I.'\.'I. t{I-'O 4"" 
6 5 4 3. 2 1 44 43 42 41 40 

Z86C21 
Z86E21 

Meu 

18 19 20 21 22 23 24 25 26 27 28 

q'!;)"> of'" q()" q(;:,10 q'!;)"- 4'<::> q ...... <q ... "'q, ... ", f'" +'" 

Figura 2b. 44-pin Chip Carrier, 
Pin Assignments. 

39 

38 

37 

36 

35 

34 

33 

32 

31 

30 

29 

Figure 1. Pin Functions 
Figure 2. 40-pin Dual-In-Line 

Package (DIP), Pin ~signments 

134 

NC 

p" 
P" 
P2, 
P2, 
P2. 
P33 
P3. 

P" 
P" 
p" 



General Purpo.e Mlcr_nlroller 

Under program control, the Z86C21 can be tailored 
to the needs of its user. It can be configured as a 
stand-alone microcomputer with 8K bytes of 
internal ROM, a traditional microprocessor that 
manages up to 112K bytes of external memory, or 

Field PrOp.mm.ble V •• lon 

The Z86E21 is a pin compatible Onetime 
Programmable version of the Z86C21. The Z86E21 
contains 8K bytes of EPROM memory In place of the 

:8K bytes of masked ROM on the Z86C21. The 

ARCHITECTURE 

Z86C21 architecture is characterized by a flexible I/O 
scheme. an efficient register and address space structure 
and a number of ancillary features that are helpful in many 
applications. • 

Microcomputer applications demand powerful I/O 
capabilities. The Z86C21 fulfills this with 32 pins dedicated 
to. input and output. These lines are grouped into four ports 
of eight lines each and are configurable under software 
control to provide timing. status signals, serial or parallel I/O 
with or without handshake, and an address/data bus for 
interfacing external memory. . 

Because the multiplexed address/data bus is merged with 
the I/O-oriented ports, the Z86C21 can assume. many 
different memory and I/O configurations. These config­
urations range from a self-contained microcomputer to a 

OUTPUT 

a parallel-processing element in a system with other 
. processors and peripheral con~rollers linked by the 
Z-BUS bus. In all configurations, a large number. 
of pins remain available for I/O. 

Z86E21 also contains a programmable memory 
protect feature to provide program security by 
disabling all external accesses to the Internal EPROM 
array. 

microprocessor that can address 120K bytes of external 
memory (Figure 3). . 

Three basic address spaces are available to support this 
wide range of configurations: program memory (internal 
and external). data memory (external) and the register 
file (internal). The 256-byte random-access register 
file is composed of 236 general-purpose registers, 4 I/O 
port registers, and 16 control and status registers. 

To unbl.\rden the program from coping with real-time 
problems such as serial data communication and 
counting/timing, an asynchronous receiver/transmitter 
(UART) and two counter/timers with a large number of . 
user-selectable modes are offered on-chip. Hardware 
support for the UART is minimized because one of the 
on-chip timers supplies the bit rate. 

XTAL AS os R/W RESET 

~ 

I/O 
(BIT PROGRAMMABLE) 

ADDRESS OR I/O 
(NIBBLE PROGRAMMABLE) 

ADDRESS/DATA OR I/O 
(BYTE PROGRAMMABLE) 

Figure 3. Functional Block Diagram 

135 



STANDBY MODE 

The Z86C21's standby modes are: 

Ii Stop 

• Halt 

The Stop instruction stops the internal clock and clock 
oscillation; the Halt instruction stops the internal clock but 
not clock oscillation. 

PIN DESCRIPTION 

AS. Address Strobe (output, active Low). Address Strobe is 
pulsed once at the beginning of each machine cycle. 
Addresses output via Port 1 for all external program or data 
memory transfers are valid at the trailing edge of AS. Under 
program control, AS can be placed in the high-impedance 
state along with Ports 0 and 1, Data Strobe and ReadlWrite. 

OS. Data Strobe (output, active Low). Data Strobe is 
activated once for each external memory transfer. 

POO·P07. P10·P17. P20·P27. P30·P37' I/O Port Lines 
(input/outputs, TTL-compatible). These 32 lines are divided 
into four 8-bit I/O ports that can be configured under 
program control for I/O or external memory interface (Figure 3). 

ADDRESS SPACE 

Program Memory. The 16-bit program counter addresses 
64K bytes of program memory space. Program memory 
can be located in two areas: one internal and the other 
external (Figure 4). The first 8192 bytes consist of on-chip 
mask-programmed ROM. At addresses 8192 and greater, 
the Z86C21 executes external program memory fetches. 

The first 12 bytes of program memory are reserved for the 
interrupt vectors. These locations contain six 16-bit vectors 
that correspond to the six available interrupts. 

Data Memory. The Z86C21 can address 56K bytes of 
external data memory beginning at location 4096 (Figure 5). 
External data memory may be included with or separated 
from the external program memory space. OM, an optional 
I/O function that can be programmed to appear on pin P34, 
is used to distinguish between data and program memory 
space. 

Register File. The 256-byte register file includes 4 
I/O port registers (RO-R3), 236 general-purpose 
registers (R4-R239) and 16 control and status registers 
(R240-R255). 

136 

A reset input releases the standby mode. 

To complete an instruction prior to entering standby mode, 
use the instructions: 

NOP(FFH) + STOP(6FH) 
NOP(FFH) + HALT(7FH) 

RESET. Reset (input, active Low). RESET initializes the 
Z86C21 . When RESET is deactivated, program execution 
begins from internal program location OOOCH. 

R/W. ReadlWrite (output). RiW is Low when the Z86C21 is 
writing to external program or data memory. 

XTAL1, XTAL2. Crystal 1, Crystal 2 (time-base input 
and output). These pins connect a parallel-resonant 
crystal (12 or 20 MHz maximum) or an external single­
phase clock (12 or 20 MHz maximum) to the on-chip 
clock oscillator and buffer. 

These registers are assigned the address locations shown in 
Figure 6. 

Z86C21 instructions can access registers directly or 
indirectly with an 8-bit address field. The Z86C21 also 
allows short 4-bit register addressing using the Register 
Pointer (one of the control registers). In the 4-bit 
mode, the register file is divided into 16 working register 
groups, each occupying 16 contiguous locations (Figure 
6). The Register Pointer addresses the starting location 
of the active working-register group (Figure 7). Note: 
Register Bank EO-EF can only be accessed through 
working register and indirect addressing mode. 

Stacks. Either the internal register file or the external data 
memory can be used for the stack. A 16-bit Stack Pointer 
(R254 and R255) is used for the external stack, which can 
reside anywhere in data memory between locations 4096 
and 65535. An 8-bit Stack Pointer (R255) is used for the 
.internal stack that resides within the 124 general-purpose 
registers (R4-R127). 



5535 

• 8 
192 
191 

EXTERNAL 
ROM OR RAM 

ON·CHIP 
ROM LOCATION OF 

FIRST BYTE OF 
INSTRUCTION 

EXECUTED 
AFTER RESET ~ ,------------

INTERRUPT 
VECTOR 

(LOWER BYTE) 

INTERRUPT 
VECTOR 

(UPPER BYTE) 

11 

10 

9 

8 

7 

6 ..... 
4, 
3 

2 

1 

0 

IAQS 

IROS 

IRQ4 

IRQ4 

IR03 

IR03 

IRQ2 

IRQ2 

IR01 

IROt 

IROO 

IROO 

Figure 4. Program Memory Map 

LOCATION 

255 

254 

253 
252 

251 

250 
24a 

248 

247 

246 

24. 

244 

243 
242 

241 

240 

230 

STACK POINTER (BITS 7-0) 

STACK POINTER (SITS 15-8) 

REGISTER POINTER 

PROGRAM CONTROL FLAGS 

INTERRUPT MASK REGISTER 

INTERRUPT REQUEST REGISTER 

INTERRUPT PRIORITV REGISTER 

PORTS 0-1 MODE 

PORT 3 MODE 

PORT 2 MODE 

TO PRESCALER 

TIMER/COUNTER 0 

T1 PRESCAlER 

TIMER/COUNTER 1 

TIMER MODE 

SERIAL 110 

NOT 
IMPLEMENTED 

GENERAL·PURPOSE 
REGISTERS 

PORT 3 

PORT 2 

PORT t 

PQRT 0 

Figure 6. The Register File 

IDENTIFIERS 

SPl 

SPH 

RP 

FLAGS 

IMR 

IRQ 

IPR 

P01M 

.3M 

.2M 

PREO 

TO 

PRE1 

11 

TMR 

SIO 

P3 

P2 

P1 

PO 

65535 ,...-----------, 

eXTERNAL 
DATA 

MEMORY 

:::~I-----------I 

NOT ADDRESSABLE 

Figure 5. Data Memory Map 

I 255 
__ l-_r.:.,...:r.:.....:r,_r:..._L...-.::0 __ 0~0...:0~-I253 

.... _________ ...... 240 

THE UPPER NIBBLE OF THE REGISTER FilE ADDRESS 
PROVIDED BY THE REGISTER POINTER SPECIFIES 
THE ACTIVE WORKING·REGISTER GROUP. 

I 2'j0 

- - t-----------'-----I 

--I 
-~{ 

--I 
{ 

--I 
--I t----------I __ I 15 

----"OPOR1S----- 3 

THE LOWER 
NIBBLE OF 
THE REGISTER 
FILE ADDRESS 
PROVIDED BY 
THE INSTRUCTION 
POINTS TO THE 
SPECIFIED 
REGISTER. 

Figure 7. The Register Pointer 

137 



SERIAL INPUT/OUTPUT 

Port 3 lines P30 and P37 can be programmed as serial I/O 
lines for full-duplex serial asynchronous receiver/transmitter 
operation. The bit rate is controlled by Counter/Timer O. 

The Z86C21 automatically adds a start bit and two stop bits 
to transmitted data (Figure 8). Odd parity is also available as 
an option. Eight data bits are always transmitted, regardless 

TRANSMITTED DATA 
(No Parity) 

T LSTARTBIT 

'----__ EIGHT D~TA BITS 

TWO STOP BITS 

TRANSMITTED DATA 
(With Parity) 

T I LSTARTBIT 

" _______ SEVEN DATA BITS 

- 000 PARITY 

TWO STOP BITS 

of parity selection. If parity is enabled, the eighth bit is the 
odd parity bit. An interrupt request (IRQ4) is generated on all 
transmitted characters. 

Received data must have a start bit, eight data bits and at 
least one stop bit. If parity is on, bit 7 of the received data is 
replaced by a parity error flag. Received characters 
generate theJRQ3 interrupt request. 

RECEIVED DATA 
(No Parity) 

1~1~1~1~1~1~1~1~1~lsij 

I LSTART BIT 

'------EIGHT DATA BITS 

'---------ONE STOP BIT 

RECEIVED DATA 
(With Parity) 

1~lpl~I~I~I~I~I~I~I~1 

_I L_LSTARTBIT 
'-----SEVEN DATA BITS 

PARITY ERROR FLAG 

ONE STOP BIT 

Figure 8. Serial Data Formats 

COUNTER/TIMERS 

The Z86C21 contains two B-bit programmable counter/ 
timers (To and T1), each driven by its own 6-bit 
programmable prescaler. The T 1 prescaler can be driven by 
internal or external clock sources; however, the To prescaler 
is driven by the internal clock only. 

The 6-bit prescalers can divide the input frequency of the 
clock source by any number from 1 to 64. Each prescaler 
drives its counter, which decrements the value (1 to 256) that 
has been loaded into the counter. When the counter reaches 
the end of count, a timer interrupt request-IRQ4· (To) or 
IRQ5 (T1)-is generated. 

The counters can be started, stopped, restarted to continue, 
or restarted from the initial value. The counters can also be 
programmed to stop upon reaching zero (single-pass 
mode) or to automatically reload the initial value and 

138 

continue counting (modulo-n continuous mode). The 
counters, but not the prescalers, can be read any time 
without disturbing their value or count mode. 

The clock source for T 1 is user-definable and can be 
the internal microprocessor clock divided. by four, or an 
external signal input' via Port 3_ The Timer Mode 
register configures the external timer input as an 
external clock (1MHz maximum), a trigger input that 
can be retriggerable or non-retriggerable, or as a gate 
input for the internal clock. The counter/timers can be 
programmably cascaded by connecting the To output to 
the input of T 1. Port 3 line P3& also serves as a 
timer outPllt (ToUT) through which To, T 1 or the 
internal clock can be output. 



I/OPORT~ 

The .Z86C21 has 32 lines dedicated to input and output. 
These lines are grouped into four ports of eight lines each 
and are configurable as input, output or address/data. 
Under software control, the ports can be programmed to 
provide address outputs, timing, status signals, serial I/O, 
and parallel I/O with or without handshake. All ports have 
active pull-ups and pull-downs compatible with TTL loads. 

Port 1 can be programmed as a byte I/O port or as an 
address/data port for interfacing external mernory. When 
used as an I/O port, Port 1 may be placed under handshake 
control. In this configuration, Port 3 lines P33 and P34 are 
used as the handshake controls RDY1 and DAV1 (Ready 
and Data Available). 

Memory locatio'ns greater than 8192 are referenced 
through Port 1. To interface external memory, Port 1 must be 
programmed for the multiplexed Address/Data mode. If 
more than 256 external locations are required, Port 0 must 
output the additional lines. 

Port 0 can be programmed as a nibble I/O port, or as an 
address port for interfacing external memory. When used as 
an I/O port, Port 0 may be placed under handshake control. 
In this configuration, Port 3 lines P32 and P35 are used as 
the handshake controls DAVo and RDYo. Handshake signal 
assignment is dictated by the I/O direction of the upper 
nibble P04-P07. 

For external memory references, Port 0 can provide address 
bits As-A11 (lower nibble) or As-A15 (lower and upper nibble) 
depending on the required address space. If the address 
range requires 12 bits or less, the upper nibble of Port 0 can 
be programmed independently as I/O while the lower nibble 

Port 2 bits can be programmed independently as input or 
output. This port is always available for I/O operations. In 
addition, Port 2 can be configured to provide open-drain 
outputs. 

Like ·Ports 0 and 1, Port 2 may also be placed under 
handshake control. In this configuration, Port 3 lines P31 
and P36 are used as the handshake controls lines DAV2 and 
RDY 2. The handshake signal assignment for Port 3 lines P31 
and P36 is dictated by the direction (input or output) assigned 
to bit 7 of Port 2. 

Port 3 lines can be configured as I/O or control lines. In either 
case, the direction of the eight lines is fixed as four input 
(P30-P33) and four output (P34-P37)' For serial I/O, lines P30 
and' P37 are programmed as serial in and serial out 
respectively. 

Port 3 can also provide the following control functions: 
handshake for Ports 0, 1 and 2 (DAV and RDY); four external 
interrupt request signals (IROo-IR03); timer input and output 
signals (TIN and TOUT) and Data Memory Select (DM). 

Port 1 can be placed in the high-impedance state along with 
Port 0, AS, DS and RiW, allowing the Z86C21 to share 
common resources in multiprocessor and DMA 
applications. Data transfers can be controlled by assigning 
P33 as a Bus Acknowledge input, and P34 as a Bus Request 
output. 

PORT 1 
IUO OR ADo-AD,) 

Figure 9a. Port 1 

is used for addressing. When Port 0 nibbles are defined as 
address bits, they can be set to the high-impedance state 
along with Port 1 and the control signals AS, DS and RiW. 

Figure 9b. Port 0 

PORTa(lIO) 

} ~D:~~~ED~~NTROlS 
(P3, AND P3e) . 

Figure 9<:- Port 2 

PORT. 
(1/0 OR CONTROL) 

Figure 9d. Port 3 

13,9 



INTERRUPTS 

The Z86C21 allows six different interrupts from eight sources: 
the four Port 3 lines P30-P33, Serial In, Serial Out, and the two 
counter/timers. These interrupts are both maskable and 
prioritized. The Interrupt Mask register globally or individually 
enables or disables the six interrupt requests. When more 
than one interrupt is pending, priorities are resolved by a 
programmable priority encoder that is controlled by the 
Interrupt Priority register. 

All Z86C21 interrupts are vectored through locations in 
program memory. When an interrupt request is granted. 
an interrupt machine cycle is entered. This disables all 

CLOCK 

The on-chip oscillator has a high-gain, parallel-resonant 
amplifier for connection to a crystal or to any suitable external 
clock source (XTAL 1 = Input, XTAL2 = Output). 

The crystal source is connected across XTAL 1 and XTAL2, 
using the recommended capacitors (C1 ~ 15 p~ from eaclJ 

GENERAL DESCRIPTION 

The Z86C12 development device allows users to proto­
type a system with an actual hardware device and to 
develop the code. This code is eventually mask-pro­
grammed into the on-chip ROM for any of the 86Cxx 
devices (except the 86C91). Development devices are 
also useful in emulator appli-cations where the final sys­
tem configura-tion -- memory configuration, I/O, interr­
upt inputs, etc. -- are unknown. The Z86C 12 development 
device is identical to its equivalent Z86C21 microcomputer 
with the following exceptions: 

• No internal ROM is provided, so that code is 
developed in off-chip memory. Five "size" inputs configure 
the memory boundaries. 

Z86C12 PIN DESCRIPTION 

DO - 07 (Inputs, TTL compatible) Data bus. 
These 8 lines provide the input data bus to access 
external memory emulating on the on-chip ROM. 
During read cycles in the internal memory space the 
data on these lines is latched in just prior to the rise of 
the IMDS data strobe. 

AO - A15 (Outpus TTL compatible) Address 
bus. During T1 these lines output the current memory 
address. All addresses, whether internal or external, 
are output. 

IMAS (Output, TTL compatible) Memory 
Address Strobe. This line is active during every T1 
cycle. The rising edge of this signal may be used to 
latch the current memory address on the lines AD -
A 15. This line is always valid; it is not tri-stated when 
lAS is tri-stated. 

140 

subsequent interrupts. saves the Program Counter and 
status flags. and branches to the program memory 
vector location reserved for that interrupt. This memory 
location and the next byte contain the 16-bit address 
of the interrupt service routine· for that particular 
interrupt request. 

Polled interrupt systems are also supported. To 
accommodate a polled structure, any or all of the interrupt 
inputs can be masked and the Interrupt Request register 
polled to determine which of the interrupt requests needs 
service. 

pin to ground. The specifications for the crystal are as follows: 

• AT cut, parallel resonant 

• Fundamental type, 16 MHz maximum 

• Series resistance, Rs ~ 100 Q 

• The normally internal ROM address and data lines are 
buffered and brought out to external pins to interface with 
the external memory. 

• Control lines (/MAS and IMDS) are added to interface 
with external program memory. 

The Timing and Control, I/O ports, and clock pins on 
the Z86C12 are identical in function to those on the 
86C21. This section covers those pins that do not 
appear on the Z86C21 8K ROM device. The pin 
functions and pin assignments are shown on figure 
00. 

/MDS (Output, TTL compatible) Memory Data 
Strobe. This is a timing signal used to enable. the 
external memory to emulate the on-chip ROM. It is 
active only during accesses to the on-Chip ROM 
memory space, as selected by the configuration of the 
SIZEn pins. 

ISCLK (Output, TTL compatible) System 
Clock. This line is teh internal system clock. 

/SYNC (Output TTL, compatible) Sync signal. 
This signal indicates the last clock cycle of the currently 
executing instruction. 

/lACK (Output TTL, compatible) Interrupt 
Acknow-Iedge. This output, when low, indicates 
that the Z86C12 is an interrupt cycle. 



ISIZEO, ISIZE1, ISIZE2, ISIZE3, SIZE4 NOTE: 
(Inputs, TTL compatible). The ISIZEn lines The SIZE pins may be configured to make the 
control the emulation mode of the 86C12. Note that memory control signals (/MAS, IMOS, RIW, 
ISIZEO - ISIZE3 are active low, while SIZE4 is active lAS, and lOS) look like the Z86C91 ROMJess 
hig.h. The functions are defined as shown in figure 00. device, however. on power-up or reset ports 
The 86C12 should be in RESET when the state of o and 1 are configured as inputs, rather than 
these lines are changed. A15 - A8 and A07 - ADO, respectively. 

Table 1. Z86C12 Pin ASSignments 

NAME , NAME PIN NAME PIN NAME PIN 

lAS B2 AS J5 P07 J1 P36 A7 
IDS C4 A9 K4 P10 G8 P37 A5 
IMAS E1 DO H3 P11 . G9 R/W A1 
IMOS G3 01 K2 P12 G10 SCLK G2 
IRESET 83 D2 J3 P13 F8 SIZE4 F10 
ISIZEO .A3 03 K3 P14 010 VCC A4 

ISIZE1 C5 D4 H8 P15 C10 VCC1 86 
ISIZE2 A6 05 J10 P16 810 . VCC2 F9 

!SIZE3 C6 D6 H9 PH E9 VSS F3 
!SYNC F1 07 H10 P20 C9 VSS1 E2 

AO J9 lACK F2 P21 A10 . VSS2 H6 
A1 H7 NC J2 P22 89 ' VSS3 E8 

A10 J4 NC C3 P23 C8 Xtal1 B5 
A11 H4 NC 08 P24 A9 Xtal2 A2 
A12 K9 NC H2 P25 B8 

, 

A13 K7 NC K1 P26 ' A8 

A14 K5 POO C1 P27 C7 

A15 H5 P01 03 P30 B4 
A2 K10 P02 02 P31 87 

A3 J8 P03 01 P32 C2 

A4 J7 P04 E3 P33 09 

A5 K6 P05 G1 P34 E10 

A6 J6 P06 H1 P35 81 

A7 K8 

1 2 3 4 5 8 7 8 9 10 
Table 2. Memory Size Configuration A. • • • • • • • • • 

SIZE4 ISIZE3 ISIlE2 ISIlE1 ISllEO MEMORY 
B • 

c • . . . . . .-
0 1 1 1 1 ' ROMless D • 

0 1 1 1 0 2K ROM 
0 1 1 0 1 4K ROM 

E • 

0 1 0 1 1 8K ROM F 
,0 0 1 1 1 16K ROM 

1 1 1 1 1 32KROM' 
G • 

H • 

J • 

K • 

TOP VIEW 

141 



142 

TIMING 
AND 
CONTROL 

PORTO 
(NIBBLE 
PROGRAM­
MABLE) 110 
OR AB-A15 

PORT 1 
(BYTE PRO­
GRAMMABLE) 
110 OR 
ADO-AD7 

PROGRAM 
MEMORY 
DATA IN­
PUTS 

ROM SIZE 
INPUTS 

STATUS AND 
MEMORY CON­
TROL 

GROUND 

.. .. 

.. • .. 
.. 
• .. 
• 

.. .. .. .. .. .. 

IRESET +5V 
RIW GND 
IDS 

Xtal1 
POO Xtal2 
POl 
P02 P20 
P03 P21 
P04 P22 
P05 P23 
P06 P24 
P07 P25 

P26 
Pl0 P27 
Pll 
P12 P30 
P13 P31 
P14 P32 
P15 P33 
P16 P34 
P17 P35 

P36 
DO P37 
01 
02 AO 
03 Al 
04 A2 
05 A3 
06 A4 
07 AS 

A6 
ISIZEO A7 
ISIZEl A8 
ISIZE2 A9 
ISIZE3 Al0 
SIZE4 All 

A12 
/lACK A13 
IMAS A14 
IMDS A1S 
ISYNC 
SCLK VCC 

VCCl 
VSS VCC2 
VSSl 
VSS2 

Z86C12 

Z86C12 Pin Functions 

.. .. 
.. .. ... .. .. .. .. .. .. .. .. 
1 

.. .. .. 

• 
• • .. 
• • .. .. • 
.. 
• • .. 
• .. .. 
• • • • .. • .. .. .. 
• .. .. 
• 

CLOCK 

PORT 2 
(BIT PRO­
GRAMMABLE) 

PORT 3 
SERIAL AND 
PARALLEL 
110 CON­
TROL 

PROGRAM 
MEMORY 
ADDRESS 
OUTPUTS 

POWER 



INSTRUCTION SET NOTATION 

Addressing Modes. The following notation is used to 
describe the addressing modes and instruction operations 
as shown in the instruction summary. 

IRR. Indirect register pair or indirect working-register 
pair address 

Irr Indirect working-register pair only 
X Indexed address 
DA Direct address 
RA Relative address 

. 1M Immediate 
R Register or working-register address 
r Working-register address only 
IR Indirect-register or indirect working-register 

address 
Ir Indirect working-register address only 
RR Register pair or working register pair address 

Symbols. The following symbols are used in describing the 
instruction set. 

dst 
src 
cc 
@ 

Destination location or contents 
Source location or contents 
Condition code (see list) 
Indirect address prefix 

SP 
PC 
F!-AGS 
RP 
IMR 

Stack pointer (control registers 254·255) 
Program counter 
Flag register (control register 252) 
Register pointer (control register 253) 
Interrupt mask register (control register 251) 

CONDITION CODES 

Value Mnemonic 

~000 Always true 

0111 C Carry 

1111 NC No carry 
0110 Z Zero 

1110 NZ Not zero 

1101 PL Plus 

0101 MI Minus 

0100 OV Overflow 
1100 NOV No overflow 

0110 EQ Equal 

1110 NE Not equal 

Assignment of a value is indicated by the symbol "7'""': For 
example, 

dst +- dst + src 

indicates that the source data is added to the destination 
data and the result is stored in the destination location. The 
notation "addr(n)" is us~d to refer to bit "n" of a given 
location. For example, 

dst (7) 

refers to bit 7 of the destination operand. 

Flags. Control Register R252 contains the following six 
flags: 

C Carry flag 
Z Zero flag 
S Sign flag 
V Overflow flag 
o Decimal-adjust flag 
H Half-carry flag 

Affected flags are indicated by: 

o Cleared to zero 
1 Set to one 
* Set or cleared according to operation 

Unaffected 
X Undefined 

Meaning Flags Set 

C=1 

C = 0 

Z = 1 

Z=O 

8=0 

8 = 1 

V = 1 
V=O 

Z = 1 

Z=O 

1001 GE Greater than or equal (8 XOR V) = 0 

0001 LT Less than (SXORV) = 1 

1010 GT Greater than [ZOR(8XORV)] = 0 

0010 LE Less than or equal [ZOR(8XORV)j = 1 

1111 UGE Unsigned greater than or equal C=O 

0111 ULT Unsigned less than C = 1 

1011 UGT Unsigned greater than (C = 0 AND Z = 0) = 1 

0011 ULE Unsigned less than or equal (C OR Z) = 1. 
0000 Never true 

143 



INSTRUCTION FORMATS 
OPC "] 

dst ope 

CCF, 01, EI, IRET, NOP, 
ReF, RET, SCF 

INCr 

One-Byte Instructions 

OPC MODE CLR, CPL, DA, DEC, 
dstlsrc OR H 11 olds"src I DECW, INC, INCW, POP, 

PUSH, RL, RLC, RR, 
RRC, SRA, SWAP 

OPC I OR 11 1 1 01 

JP, CALL (Indlrecl) 
dsl dsl 

OPC SRP 
VALUE 

OPC MODE ADC, ADD, AND, 
dsl src CP, OR, SBC, SUB, 

TCM, TM, XOR 

MODE OPC LD, LDE, LDEI, 
dstlsrc srcJdst LDC, LDCI 

dst/src OPC LD 
srcJdst OR 11 1 1 01 src 

dsl I oPy LD 
VALUE 

I dsl/CC R~ OPC DJNZ, JR 

FFH 
STOP/HALT 

6FH I 7FH 

Two-Byte Instructions 

INSTRUCTION SUMMARY 

AddrMode Opcode . Flags Affected 
Instruction Byte 
and Operation dst sre (Hex) C Z S V 0 H 

ADC dst,src (Note 1) 10 * * * * o * 
dst - dst + src + C 

ADDdst,src (Note 1) 00 * * * .* 0 * 
dst - dst + src 

ANDdst,src (Note 1) 50 -** 0 
dst - dst ANO src 

CALLdst OA 06 ------
SP-SP - 2 IRR 04 
@SP - PC; PC'" dst 

CCF EF *-----
C-NOTC 

CLR dst R SO ------

. dst-O IR S1 

COMdst R .60 -**0--
dst-NOTdst IR 61 

CP dst,src (Note 1) AD ****--
dst - src 

144 

OPC MODE 

::~ 6: I-'-:....:..-:t--==-j 

I---= __ --l OR 111 1 0 I dst 

MODE OPC 

src OR I-'-'--'--:t--==-j 
dst OR I..!....:"":"''''---'''''--' 

cc OPC 
DAu 
DAL 

ADC, ADD, AND, CP, 
LD, OR, SBC, SUB, 
TCM, TM, XOR 

ADC, ADD, AND, CP, 
LD, OR, SSC, SUB, 
TCM, TM, XOR 

LD 

LD 

JP 

OPC , CAll 

DAu 
DAL 

Three-Byte Instructions 

AddrMode Opcode Flags Affected 
Instruction Byte 
and Operation dst sre (Hex) CZSVDH 

JP cC,dst OA cO ------

ifcc istrue c=O-F 
PC-dst IRR 30 

JRcc,dst RA cS ------
if cc is true, c=O-F 

PC-PC': dst 
Range: +127, -128 

LD dst,src r 1m rC ------

dst -src r R r8 
R r9 

r=O-F 
r X C7 
X r 07 
r Ir E3 
Ir F3 
R R E4 
R IR E5 
R 1M E6 
IR 1M E7 
IR R F5 



INSTRUCTION SUMMARY (Continued) 

Instruction 
and Operation 

Addr Mode Opcode Flags Affected 
Byte 

dst src (HeX) CZSVDH 

DAdst 
dst+-OAdst 

DECdst 
dst+- dst - 1 

DECWdst 
dst+-dst - 1 

'DI 
IMR(7)+-0 

DJNZr,dst 
r+-r - 1 
ifr+O 

PC+-PC + dst 
Range: +127, -128 

EI 
IMR(7)+-1 

HALT 

INCdst 
dst +- dst + 1 

INCWdst 
dst +-dst + 1 

IRET 

R 
IR 

R 
IR 

RR 
IR 

RA 

R 
IR 

RR 
IR 

FLAGS +- @SP; SP +- SP + 1 

40 
41 

00 
01 

80 
81 

8F 

rA 
r = 0 - F 

9F 

7F 

rE 
r=O-F 

20 
21 

AO 
A1 

BF 

PC +- @SP; SP +- SP + 2; IMR (7) +- 1 

RLC dst L:{"ri:ciJ R 
c , • IR 

RR dst L{ri LciJ R 
c , • IR 

RRCdst~R 
C 7 0 IR 

SBCdst,src (Note 1) 
dst +- dst .... src +- C . 

SCF 
C+-1 

SRAdst!;:::::;~R 
~~IR 

SRPsrc 
RP+-src 

STOP 

1m 

SUB dst,src 
dst +- dst +- src 

(Note 1) 

SWAPdst 5C R 
I, " .IIR 

TCMdst,src (Note 1) 
(NOT dst) ANO src 

10 
11 

EO 
E1 

CO 
C1 

3D 

OF 

00 
01 

31 

6F 

20 

FO 
F1 

60 

***X--

-***~-

-***--

-***--

* * * * * * 

* * * * 

* * * * 

1-----

***0--

X**X--

AddrMode Opcode Flags Affected 
Instruction Byte 
and Operation dst src (Hex) CZSVDH 

LDCdst,src r Irr C2 ------
dst .... src Irr 02 

LDCI dst,src Ir Irr C3 ------
dst .... src Irr Ir 03 
r-r + 1; rr+-rr + 1 

LDEdst,src r Irr 82 ------
dst-src lir 92 

LDEI dst,src Ir Irr 83 ------
dst +- src Irr Ir 93 
r+-r + 1; rr+-rr + 1 

NOP FF ------

ORdst,src (Note 1) 40 -,**0--
dst +- dst OR src 

POPdst R 50 ------
dst+-@SP; IR 51 
SP+-SP + 1 

PUSHsrc R 70 ------
SP +- SP - 1; @SP+-src IR 71 

RCF CF 0-----
C+-O 

RET AF ------
PC +- @SP; SP +- SP + 2 

RLdst~ R 90 ****--
IR 91 

TMdst,src (Note 1) 70 -** 0--
dstANOsrc 

XORdst,src (Note 1) BO -** 0--
dst +- dst XOR src 

NOTE: These instructions have an identical set of addressing modes, 
which are encoded for brevity. The first opcode nibble is found in 
the instruction set table above. The second nibble is expressed 
symbolically by a 0 in this table, and its value is found in the 
following table to the left of the applicable addressing mode pair. 

For example, the opcode of an ADC instruction using the 
addressing modes r (destination) and Ir (source) is 13. 

AddrMode 
Lower 

dst src Opcode Nibble 

0 
Ir []] 

R, R [iJ 
R IR @] 
R 1M @J 
IR 1M 0 

145 



REGISTERS 

R240SI0 
SERIAL 110 REGISTER 

(FOH; ReadlWrite) 

'---- SERIAL DATA (Do '" LSB) 

R241 TMR 
TIMER MODE REGISTER 

(F1H; Read/Write) 

To", MODES j llli~o • NO FUNCTION NOT USED"" 00 1 '" LOAD To 

~~ g~i : ~~ 0 '" DISABLE To COUNT 
INTERNAL CLOCK OUT == 11 1 '" ENABLE To COUNT 

T MODES 0 = NO FUNCTION 
EXTERNAL CLOCK INp'Dr ;= 00 ,1 "" LOAD T 1 

GATE INPUT", 01 0 = DISABLE T, COUNT 

(NON.R~~~~~~~~~:~~) '" 10 1 = ENABLE T, COUNT 
TRIGGER INPUT = 11 

(RETRIGGERABLE) 

R242 T1 
COUNTER TIMER 1 REGISTER 

(F2H; Read/Write) 

R243PREl 
PRESCALER 1 REGISTER 

(F3H; Write Only) 

~LCOUNTMODE 
o = Tl SINGLE·PASS 
1 = T, MODULO·N 

CLOCK SOURCE 
1 '" T, INTERNAL 
o '" Tl EXTERNAL TIMING INPUT 

(TIN) MODE 

PRESCALER MODULO 
(RANGE; 1-64 DECIMAL 
01-00 HEX) 

R244 TO 
COUNTER/TIMER 0 REGISTER 

(F4H; Rea~/Write) 

To INITIAL VALUE (WHEN WRITTEN) 
'----(RANGE: 1-256 DECIMAL 01-00 HEX) 

To CURRENT VALUE (WHEN READ) 

R245PREO 
PRESCALER 0 REGISTER 

(F5H; Write Only) 

~LCOUNTMODE 
o = To SINGLE·PASS 
1 '" To MODULO·N 

RESERVED 

PRESCAlER MODULO 
. (RANGE, 1-64 DECIMAL 

01-00 HEX) 

R246P2M 
PORT 2 MODE REGISTER 

(F6H; Write Only) 

R247P3M 
PORT 3 MODE REGISTER 

(F7H; Write Only) 

~~Lo PORT 2 PULL·UPS OPEN DRAIN 
1 PORT 2 PUlL·UPS ACTIVE 

RESERVED 

o P32 = INPUT P3S =- OUTPUT 
1 P32 = DAVOIRDYO P3S == RDYOIDAVO 

00 P33 = INPUT P34 = OUTPUT 

~ ~} P'33 = INPUT P34 = D"M 
1 1 P33 '" DAV1/RDY1 P34 = RDY11Dm 

L ______ ~ ~~~ ~ ~Jri6~~ :~~ ~ ~g~~~~~2UT) 

'-------~:~ ~ ~~~rlIN ~~~ ~ ~~~~~TOUT 
L ________ ~ ~:=:i~ g~F 

Figure 11. Control Registers 

146 



REGISTERS (Continued) 

'R248P01M 
PORT 0 AND 1 MODE REGISTER 

(F8H; Write Only) 

'~I~I~I~I~I~I~I~I 

:¥:yJ III L"r~ 
EXTERNAL MEMORY TIMING STACK SELECTION 

M"ORMAL .. 0 0 - EXTERNAL 
EXTENDED. 1 1 • INTERNAL 

P1&t!, :.:?~EOUTPUT 
. 01 - BYTE INPUT 

10 • ADa-AD7 
11 • HIQH.JMPEDANCE ADo-ADJ. 

ii, Oi, W, At-A11. A11-A15 
IF SELECTED 

R2491PR 
INTERRUPT PRIORITY REGISTER 

(F9H; Write Only) 

'~I~I~I~I~I~I~I~I 

__ :1 I 'II"---~ RESERVED = 000 
IA03, lAOS PRIORITY (GROUP A) C > A > B '" 001 

0=IR06>IRQ3 A>B>C=010 
1 = IR03 > IAQ5 A > C > B = 011 

8>C>A=1oo 
IRao. IRQ2 PRIORITY (GROUP B) C > B > A = 101 

o '" IA02 > IROO 8 > A > C = 110 
1 = IRoo > IRQ2 RESERVED = 111 

IR01, IRQ4 PRIORITY (GROUP C) 
o = IRQ1 > IRQ4 . 
1 = IRQ4 > IRQ1 

R250lRQ 
INTERRUPT REQUEST REGISTER 

(FAH; Read/Write) 

'~I~I~I~I~I~I~I~' 
RESERVED:::r- c:: 'ROO - ..,'NP;'! \00 • 'RQO) 

IRQ1 .. P3a INPUf 
IRQ2 - PI, INPUT 
IRa3 = P30 INPUT. SERIAL INPUl 
IRQ4 - To. SERIAL OUTPUT 
IRas =T1 

R2511MR 
INTERRUPT MASK REGISTER 

(FBH; Read/Write) 

'~I~I~I~I~I~I~I~I 

II c= 1 ENABLES IRaO-IRas 
(Do = IRaG) 

L--------RESERVED 

1-_______ 1 ENA~LES INTERRUPTS 

REGISTER 
POINTER 

Figure 11. Control Registers (Continued) 

R252 FLAGS 
FLAG REGISTER 
(FCH; Read/Write) 

H~l1§' LU" R FLAG F1 
LUSER FLAG F2 

HALF CARRY FLAO 

. . DECIMAL ADJUST FLAO 

OVERFLOW FLAG 

SION FLAO 

ZERO FLAG 

CARRY FLAG 

R253RP 
REGISTER POINTER 

(FDH; Read/Write) 

R254SPH 
STACK POINTER 
(FEH; Read/Write) 

R255SPL 
STACK POINTER 
(FFH; Read/Write) 

I~I~I~I~I~I~I~I~I 

1'--___ :~~~S~~:~~R LOWER 

147 



OPCODEMAP 
Lower Nibble (Hex) 

2 3 4 5 6 7 8 9 A B C D E F' 

65 65 6.5 6.5 10.5 105 10.5 10.5 6.5 6.5 12110.5 12110.0 6.5 12110.0 6.5 
o DEC DEC ADD ADD ADD ADD ADD ADD LD LD DJNZ JR LD JP INC 

R, IR, ',.r2 r,. lr2 R2· A, IR2·R, R,IM IR,.IM f1·R2 '2·R, " RA cc.RA ".1M ccDA ,1 
-

6.5 65 6.5 6.5 10.5 10,5 10,5 10,5 
RLC RLC ADC ADC ADC ADC ADC ADC . 
R, IR, "·'2 ". lr2 R2,R, IR2.R, R"IM IR"IM 

f------
6.5 6,5 6,5 6,5 10,5 10,5 10,5 10,5 
INC INC SUB SUB SUB SUB SUB SUB 
R, IR, f,.f2 f,.lf? R2,R, IA2,R, A,.IM IA,.IM 

-
8.0 6.1 6,5 6,5 10,5 10,5 10,5 10,5 

3 JP SRP SBC SBC SBC SBC SBC SBC 
IRR, ,1M "·(2 (,.lr2 R2,R, IR2,R, R"IM IR"IM 

f------
8,5 8,5 6,5 6,5 10,5 10,5 10,5 10,5 

4 DA DA OR OR OR OR OR OR 
R, IR, '1,(2 ".lr2 R2,R, IR2,R, R"IM IR"IM 

-
10,5 10,5 6,5 6,5 10,5 10,5 10,5 10,5 

5 POP POP AND AND AND AND AND AND 
R, IR, '1,(2 '1, lr2 R2,A, IR2,A, R,.IM IR"IM 

-
6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5 6,0 

6 COM COM TCM TCM TCM ,TCM TCM TCM STOP 
A, lA, f1,(2 (,. lr2 A2,R, IR2,A, A,.IM IR"IM 

-
10112,1 12114;1 6,5 6,5 10,5 10,5 10,5 10,5 7,0 
PUSH PUSH TM TM TM TM TM TM HALT 

A2 IA2 '1,(2 ' '1.lr2 R2,A, IR2,A, A,.IM IA,.IM 

10,5 10,5 12,0 18,0 , ~ 
DECW DECW LDE LDEI DI 

AA, lA, 
'" lrr2 

Ir"lrr2 

6,5 6,5 12,0 18,0 , ~ 
9 RL RL LDE LDEI EI 

A, IR, (2·lrr, 1'2,lrr, 

10,5 10,5 6,5 6,5 10,5 10,5 10,5 10,5 I '14:0 
A INCW INCW CP CP CP CP CP CP RET 

RR, IR, '1·r2 ". lr2 R2,R, IR2,R, R"IM IR"IM 

6,5 6,5 6,5 6,5 10,5 10,5 10,5 -'0,5 , 
r---

16,0 
B CLR CLR XOR XOR XOR XOR XOR XOR IRET 

R, IR, (,.r2 (,. lr2 A2,R, IR2,R, A"IM IR"IM 

6,5 6,5 12,0 18,0 10,5 .~ 
C RRC RRC LDC LDCI LD RCF 

R, IR, '1. lrr2 Ir"lrr2 r,.,x,R2 
r--

6,5 6,5 12,0 18,0 20,0 20,0 10,5 6,5 
D SRA SRA LDC LDCI CALL· CALL LD SCF 

R, IR, (2· lrr , 1'2,lrr, IRR, 'OA '2,x,R, 

6,5 6,5 6,5 10,5 10,5 10,5 10,5 
r--

6,5 
E RR RR LD LD LD' LD LD CCF 

R, IR, ",IR2 A2,R, IR2,R, A,.IM 'IR"IM 

8.5 8.5 6,5 10,5 ~ 
F . SWAP SWAP LD LD NOP 

R, IR, Ir,.r2 R2,IA, 

...... -----...v,.-----,; ...... -----...v,.----,.;, ...... ------v,.------,;~~ 
2 

EXECUTION 
CVCLES 

/. 

FIRST 
OPERAND 

LOWER 
OPCODE 
NllLE 

·2·byte Instruction: fetch cycle appears as a 3-byte Instruction 

148 

3 

PIPELINE 
CVCLES 

MNEMONtC 

SECOND 
OPERAND 

2 

Lagend: 
A = 8-bit address 
, = 4-bit address 
AI'orrl = Os! address 
R2 or'2 = 8fC address 

Sequence: 

3 

Opcode, First Operand, Second Operand 

NOTE: The blank areas a,e not defined, 



ABSOWTE MAXIMUM RATINGS 

Voltages on all pins with respect' 
toGND, ........................ -0.3Vto +7.0V 

Operating Ambient . 
Temperature .. : ........... See Ordering Information 

Storage Temperature .............. - 65°C to + 150°C 

STANDARD TEST CONDITIONS 

The DC characteristics listed below apply for the following 
standard test conditions, unless otherwise noted. All 
voltages are referenced to GND. Positive current flows into 
the referenced pin. 

Standard conditions are as follows: 

• +4.5!> Vee !> + 5.5V 

• GND = OV 

• {) . C ~ T A ~ +70 C for S (Standard temperature) 

DC CHARACTERISTICS 

Symbol Parameter Min 

VCH Clock Input High Voltage 3.8 

VCl Clock I nput Low Voltage -0.3 

VIH Input High Voltage 2.0 

Vil Input Low Voltage -0.3 

VRH Reset Input High Voltage 3.8 

VRl Reset I nput Low Voltage -0.3 

VOH Output High Voltage 2.4. 

VOH Output High Voltage Vee -100mV 

VOL Output Low Voltage 

III Input Leakage -10 

IOl Output Leakage -10 

IIR Reset Input Current 

ICC Supply Current 

ICC1 Standby Current 

ICC2 Standby Current 

1YP 

5 

Stresses greater than those listed under Absolute Maximum Ratings may 
cause permanent damage to the device. This is a stress rating only; 
operation of the device at any condition above those indicated in the 
operational sections of these specifications is not implied. Exposure to 
absolute maximum rating conditions for extended periods may affect 
device reliability. 

Max 

VCC 

0.8 

VCC 
. 

0.8 

VCC 

0.8 

0.4 

10 

10 

-50 

10 

+5V 

2.1K 

Figure 12. Test Load 1 

Unit 

V 

V 

V 

V 

V 

V 

V 

V 

V 

".A 
I'A 

I'A 

mA 

mA 

".A 

Condition 

Driven by External Clock Generator 

Driven by External Clock Generator 

IOH = - 250 I'A 

ICC = -100JIA 

IOl = +2.0 mA 

OV" VIN" + 5.25V 

OV" VIN" + 5.25V 

VCC = + 5.25V, VRl = OV 

All outputs and 1/0 pins floating, 12 MHz 

Halt Mode 

Stop Mode 

lee2 requires loading TMR (%F1) with any value prior to STOP execution. 

Use the sequence: 
LD TMR, #00 
NOP 
STOP 

149 



PORT 0, 
OM 

PORT 1 

Di 
(READ) 

PORT 1 

I-------{(!»----I 
______________ ~__i1--~----~0~--------1r---~---­

00-07 OUT 

Di ----------------~~--~I·--------{0~-----I~--------­
(WRITE) 

Figure 13. External 110 or Memory Read/Write 

AC CHARACTERISTICS 
External 1/0 or Memory Read and Write Timing 

12MHz 16MHz 20MHz 
Number. Symbol Parameter Min Max Min Max Min Max Units Noles 

1 TdA(AS) Address Valid to AS tOelay 35 25 20 ns 2,3,4 
2 TdAS(A) AS tlo Address Floal Delay 45 35 25 ns 2,3,4 
3 TdAS(DR) ASHo Read Data Req'd Valid 250 180 150 ns 1,2,3,4 
4 TwAS AS Low Width . 55 40 30 ns 2,3,4 
5 TdAZ(DS) Address Float to OS + 0 0 0 ns 

6 TwDSR OS (Read) Low Width 185 135 105 ns 1,2,3,4 
7 TwDSW OS (Write) Low Width 110 80 65 ns 1,2,3,4 
8 TdDSR(DR) DSHo Read Data Req'd Valid 130 79 55 ns 1,2,3,4 
9 ThDR(DS) Read Data to DStHoid Time 0 0 0 ns 2,3,4 
10 TdDS(A) OS tlo Address Active Delay 65 50 40 ns 2,3,4 

11 TdDS(AS) DStio AS+Delay 45 35 25 ns 2,3,4 
12 TdR!W(AS) RIW Valid to AStDelay 33 25 20 ns 2,3,4 
13 TdDS(RIW) OS tlo RIW Not Valid 50 35 25 ns 2,3,4 
14 TdDW(DSW) Write Data Valid to OS + (Write) Delay 35 25 20 ns 2,3,4 
15 TdDS(DW) DStio Write Data Not Valid Delay 55 35 25 ns 2,3,4 

16 TdA(DR) Address Valid to Read Data Req'd Valid 310 230 180 ns 1,2,3,4 
17 TdAS(DS) AS tlo OS + Delay 65 45 35 ns 2,3,4 
18 TdDI(DS) Data Input Setup to OS t 75 60 50 ns 1,2,3,4 

19 TdDM(AS) OM Valid to ASWeiay 50 30 20 ns 2,3,4 

Notes 
1. When using extended memory timing add 2TpC + Test Load 1 
2. Timing numbers given are for minimum TpC • All timing references use 2.0V for a 
3. See clock cycle dependent characteristics table logic "1" and 0.8V for a logic "0" 

4. 20 MHz timing is preliminary and subject to change 

150 



AC CHARACTERISTICS 
Additiomil Timing Table 

12MHz 16 MHz 20 MHz 
Number Symbol' Parameter Min Max Min Max Min Max Notes 

1 TpC Input Clock Period 83 1000 62.5 1000 50 1000 1 
2 TrC,TfC Clock Input Rise & Fall Times 15 10 10 1 
3 TwC Input Clock Width 37 21 15 1 
4 TwTinL Timer Input Low Width 75 75 75 2 

5 TwTinH Timer Input High Width 3TpC 3TpC 3TpC 2 

6 TpTin Timer Input Period 8TpC' 8TpC 8TpC 2 
7 TrTin,TfTin . Timer Input Rise and Fall Times 100 100 100 2' 

SA TwlL Interrupt Request Input Low Time 70 70 70 2,4 
88 TwlL Interrupt Request Input Low Time 3TpC 3TpC 3TpC 2,5 

9 TwlH Interrupt Request Input High Time 3TpC 3TpC 3TpC 2,3 

Notes: 

1. Clock timing references use 3.8 V for a logic "I" and 0.8 V for a logic "0" 
2. TIming references use 2.0 V for a logic "I" and 0.8 V for a logic "0" 
3. Interrupt references request via, Port 3 
4. Interrupt request via Port 3 (PS, - ps.) 
5. InterrupBequest via PSO 
6. 20 MHz timing Is preHmlnary and subject to change. 

Unfts in nanos&C?Onds (ns) 

DATAIN --v: DATAINVAUD V-SS - - - - - ~~A~A-;;;; - - - - - - ~ 
---f\......;..-------~SS - - - - - - - - - - - - - - -...:.. 

Ii.W _-k---'-J_r~ ~~ ~-__ -_-.J'-l L-5~~;)-IE:.-j-0...,,---
ROY -, I ,/ DAlAYED ROY J 

,,'----S'S--/ - - - - - .J' 

Figure 15a. Input Handshake Timing 

, 
DATAOUT ==><-------------------....155- - - - - - - - - -

DATA OUT VAUD NEXT DATA OUT VAUD 

---------------~55- - - - - - - - - -

Figure 15b. Output Handshake Timing 

151 



PIO P20 AO 
Pll P21 
PI2 P22 Eo-< 
PI3 P23 J:£l 
PI4 P24 ~ 

7 PI5 E-< P25 U 
J:£l. P26 0 PI6 ;;:s::: 06 

PI7 P27 if.) 
U 07 
0 A9 

-:t' 
POO if.) P30 CO 

AIO r'-POI ,..... P31 All C\2 
P02 C\2 P32 Al2 

7 P03 ~ P33 27 0 
P04 CO P34 PGM Eo-< 
P05 OJ P35 lK Ohm 20 
P06 N P36 es 

7 P07 P37 lK Ohm vee 
22 

OE VPP 
R/W 

GNO 

XTALI 
2 XTAL2 X 

lK Ohm 10K Ohm 

EXTERNAL O.OIUII POWER 
SUPPLY 
RECOMMENDED VOLTAGE: 12.5Vol\. 

Z86E21 Z8 OTP Programming Adapter 

Figure 14. Additional Timing 

152 



AC CHARACTERISTICS 
Handshake Timing 

12,16,20 MHz 
Number Symbol Parameter Min Max Notes (Data Direction) 

1 TsDI(DAV) Data In Setup Time 0 In 
2 ThDI(DAV) Data In Hold Tune 145 In 
3 TwDAV Data Available Width 110 In 
4 TdDAV(RDy) DAVHo RDYIDeiay 115 In 
5 ' TdDAV(RDY) DAVtto RDYtDelay 115 In 
6 TdRDY(DAV) RDYtto DAVIDelay 0 In 
7 TdDO(DAV) Data Out to DAV I Delay TpC Out 
8 TdPAVd(RDy) DAVUo RDYIDeiay 0 Out 
9 TdRDY(DAV) RDYUo DAVtDelay 115 Out 
10 TwRDY ROY Width 110 Out 
11 TdRDY(DAV) RDYtto DAV~DeI~ 115 Out 

CLOCK DEPENDENT AC CHARACTERISTICS 
External 110 or Memory Read and Write Timing 

Number 'Symbol Equation 

1 TdA(AS) 0.4TpC+0.32 
2 TdAS(A) 0.59TpC-3.25 
3 TdAS(DR) 2.83TpC+6.14 
4 TwAS 0.66TpC-1.65 
6 TwDSR 2.33TpC-10.56 
7 TwDSW 1.27TpC+ 1.67 
8 TdDSR(DR) 1.97TpC-42.5 
10 TdDS(A) 0.8TpC 
11 TdDS(AS) 0.59TpC-3.14 
12 TdRIW(AS) O.4TpC 
13 TdDS(RIW) 0.8TpC-15 
14 TdDW(DSW) 0.4TpC 
15 TdDS(DW) 0.88TpC-19 
16 TdA(DR) 4TpC-20 
17 TdAS(DS) 0.91TpC-10.7 
18 TsDI(DS) 0.8TpC-10 
19 TdDM(AS) 0.9TpC-26.3 

153 



154: 



~ZiIm 

MAY 1989 

FEATURES 

• CMOS technology operating over a 3 to 6 volt power 
supply range. 

• Complete single-chip microcomputer: 

8 bit Z8 core processor with 256 byte register file, 
Watch Dog Timer, Power On Reset, Brown-out 
protection, 43 I/O lines and 2 channel Counterl 
Timer. 

8K byte internal program ROM (Z86C27) or 64K 
byte external program/data memory interface 
(Z86C91). 

• On-Screen Display video controller: 

20 character by 6 row screen format 

12 by 15 pixel character cell 

GENERAL DESCRIPTION 

The Z86C27 and Z86C97 are .CMOS Application Specific 
Standard Product microcomputers that integrate special­
ized peripheral functions (normally provided by external 
components) for the control of color television relat,ed 
products. Utilizing Zilog's advanced Superintegration"" 
design methodology, these devices provide an ideal cost, 
performance and reliability solution for consume( and 
industrial television applications. 

PRELIMINARY PRODUCT SPECIFICATION 

Z86C27 DTC, 
Z86C97 DTC 
DIGITAL TELEVISION CONTROLLERS 

Mask programmable 128 character typeface with 
English, Korean, Chinese and Japanese ROM-less 
versions available. . 

Programmable color attributes including row 
character, row background/fringe, frame 
background, and bar graph color change. 

Programmable display position and character size 
control. 

• 13 Pulse Width Modulator outputs for digital to analog 
conversion - require a simple external RC low pass 
filter. 

12 volt open drain outputs 

14-,8- and 6-bit resolutions 

The devices have an 8 bit internal data path conlrolled by 
a Z8 microcontroller core with 256 bytes of register space. 
On-chip peripherals include a two channel Counter/Timer, 
an On-Screen Display video controller, .a 13 thannel 
Digital-la-Analog converter and comprehensive Input/Out­
put ports. The Z86C27 is the mask-ROM high volume 
production device embedded with a custom (customer 
supplied) program of up to 8 K bytes in size (Figure 1). The 
Z86C97 is the ROM-less version for prototyping and low 
volume production (Figure 2). 

155 



PIN CONFIGURATIONS 

PWM5 64 PWM6 PWM5 64 PWM6 
'PWM4 2 63 PWM7 PWM4 2 63 PWM7 
PWM3 3 62 PWM8 PWM3 3 62 PWM8 
PWM2 4 61 PWM9 PWM2 4 61 PWM9 
PWM1 5 60 PWM10 PWM1 5 60 PWM10 

P35 6 59 PWM11 P35 6 !?9 PWM11 
P36 7 58 PWM12 P36 7 58 PWM12 
P34 8. 57 PWM13 P34 8 57 PWM13 
P31 9 56 P27 P31 9 56 P27 
P30 10 55 P26 P30 10 55 P26 

XTAL1 54 P25 XTAL1 11 54 P25 
XTAl2 12 53 P24 XTAl2 12 53 P24 

RESET 13 52 P23 REsET 13 52 P23 
P60 14 51 Vas AS 14 51 Vas 
Vas 15 50 P22 Vas 15 50 P22 
P61 16 49 P21 Os 16 49 P21 
P62 17 48 Vee RIW 17 48 Vee 
Vee 18 47 P20 Vee 18 47 P20 
P63 19 46 P47 SCLK 19 46 P17 
P64 20 45 P46 PSG 20 45 P16 
P65 21 . 44 P45 P67 21 44 P15 

AFCIN 22 43 P44 AFCIN. 22 43 P14 
P50 42 P43 POO 23 42 P13 
P51 24 41 P42 P01 24 41 P12 
P52 25 40 P41 P02 25 40 P11 
P53 26 39 P40 P03 26 • 39 P10 
P54 27 38 VBLANK P04 27 38 VBLANK 
P55 28 37 VBLUE P05 28 37 VBLUE 
P56 29 36 VGREEN P06 29 36 VGREEN 
P57 30 35 VRED P07 30 35 VRED 

OSCIN 31 34 VSYNC OSCIN 31 34 VSYNC 
OSCOUT 32 33 HSYNC OSCOUT 32 33 HSYNC 

Figure 1, Z86C27 mask-ROM Plastic Dip Figure 2. Z86C97 ROM-less Plastic DIP 

156 



PIN IDENTIFICATION 

Z86C27 mask-ROM 

Pin Name Function 

1-5 PWM5-PWM, Pulse Width Mbdulator Output 
6,7,8 P35, P36 , P34 Port 3 Outputs 
9, 10 P3" P3a ' Port 3 Inputs 
11, 12 XTAL" XTA~ Microcontroller Crystal Oscillator 

13 RESET(Test1 ) System Reset (Test1) Input 
14 P60 Port 6 bit 0 Input 
15 Vss Power Supply Ground 
16, 17 P6" P62 Port 6 bits 1 and 2 Input 

18 Voo Power Supply Positive 
19-21 P6a-P65 Port 6 bits 3 thru 5 Input 
22 AFC1N AFC Analog Input' 
23-30 P50-P57 Port 5 bits 0-7, Output (LED) 

31,32 OSCIN,OSCour Video Dot Clock Oscillator 
33 HsyNC Horizontal Sync Input 
34 Vf!NNC Vertical Sync Input 
35' Vrm Video Red Output 

36 VGREEN Video Green Output 
37 VBL~ Video Blue Output 
38 V8UHt( Video Blank Output 
39-46 P4o-P47 Port 4 bits 0-7, Output 

47 P2cj Port 2 bit 0, I/O 
48 Voo Power Supply Positive 
49,50 P21'P~, Port 2 bits 1, and 2, I/O 
51 Vss' Power Supply Ground. 

52-56 P2a-P27 Port 2 bits 3 thru 7, I/O 
57-64 PWM,s-PWMs Pulse Width Modulator Output 

PIN FUNCTIONS 

AFCII. AFC Analog Voltage,(input). Input to two compara­
tors used for AFC voltage analog to digital cohversion. The 
comparator outputs are internally connected to P66-7 for 
the Z86C27. They are. external outputs for the Z86C97 
ROM-less part. 

AS. Address Strobe -ZB6C97( output). External addresses 
and R/W status are valid at the trailing edge of this strobe. 

OS. Data Strobe ~ Z86C97 (output). Read and write data 
transactions are controlled by this strobe. 

Z86C97 ROM-less 

Pin Name Function 

1-5 PWM5-PWM, Pulse Width Modulator Output 
6, 7, 8 P35, P36 , P34 Port 3 Outputs 
9, 10 P3" P30 Port 3 Inputs 
11, 12 XTAL" XTAt.; Microcontroller Crystal Oscillator 

13 RESET(Test1) ~ystem Reset (Test1) Input 
14 AS Address Strobe, Output 
15 ~ 

Power Supply Ground 
16 Data Strobe, Output 

17 R/W Read/Write, Output 
18 Voo Power Supply Positive 
19 SCI.K System Clock, Output 
20,21 P6s' P~ Internal AFC Comparator (Out) 

22 AFCIN AFC Analog Input 
23-30 POO-P07 Port 0 bits 0-7, Output (As-,5) 

31, 32 OSC1N, OSCour Video Dot Clock Oscillator 
33 

34 
35 
36 
37 

38 
39-46 
47 
48 

49,50 
51 . 
52-56 
57-64 

HSYNC 

VSY~ 
Vrm 
VGREEN 
VBWE 

V8UHt( 
P1 o-P17 
P20 

Voo 

Horizontal Sync Input 

Vertical Sync Input 
Video Red Output 
Video Green Output 
Video Blue Output 

Video Blank Output 
Port 1 bits 0-7, Output (AD()'7) 
Port 2 bit 0, I/O 
Power Supply Positive 

Port 2 bits 1 , and 2, I/O 
Power Supply Ground 
Port 2 bits 3 thru 7, I/O 
Pulse Width Modulator Output 

HSYNC• Horizontal Sync(input). HSYNC is an input pin supply- • 
ing an externally generated Horizontal Sync signal of either 
negative or positive polarity. 

OSCII' OSCour Video Oscillator (input/output). These 
pins connect to the ihternal video dot clock L-C oscillator 
circuit. 

POO·po7. High Address Bus - Z86C97 (output). The ROM­
less device uses this port to output the high order address 
(As-'6) during an external memory cycle. 

157 



P1 0·P1 7 • Multiplexed Address/Data Bus - ZB6C97. The 
ROM-less device uses this port to multiplex low order 
address (A0.7 during AS) and data (D0.7 during DS) for an 
extemal memory cycle. 

P20·P27. Port 2(inpuVoutput). This 8 bit general purpose 
port is bit programmable for either input or output. The 
output drivers (for bits defined as outputs) are globally 
programmable as either push-pull or open-drain. 

P30' Port 3 bit a (input): This input may be read directly. A 
negative edge event will be latched in IRQ3 to initiate an 
IRQ3 vectored interrupt if appropriately enabled. P30 going 
high will also initiate a STOP mode recovery if the device 
is stopped. 

P31• Port 3 bit 1 (input). This input may be read directly. A 
negative edge event will be latched in IRQ2 to initiate an 
IRQ2 vectored interrupt if appropriately enabled. It can 
also be programmed to serve as the TIN signal to Timer 1. 

P3 •• P3s' Port 3 bits 4 and 5 (outputs). These pins are 
general purpose output bits. 

P31 • Port 3 bit 6 (output). P36 may be used as a general 
purpose output bit or may be programmed to output T OI.JT 

(from Timer 1 or Timer 2) or SClJ(' 

P40·P47• Port 4 - Z86C27(output). Port 4 is an 8-bit output 
port. 

P50·P57• Port 5- Z86C27(output). Port 5 is an 8-bitoutput 
port with a higher current sink capability - suited for driving 
the cathodes of a multiplexed LED display. 

P6o·P6s' Port 6 - Z86C27 only(inpu!). port 6 is a 6-bit input 
port. Bits 6 and 7 are intemally connected to the outputs of 
the AFC comparators. 

P61• P67. AFC Comparator Outputs - Z86C97 only. These 
pins serve as outputs for the intemal comparators used in 
the AFCIN analog to digital converter. They may be con­
nected.to bits 6 and 7 of an extemal Port 6 emulation port 
if required. 

158 

PWM1 . 14bitPWM (output). PWM, is the output of a 14_bit 
resolution Pulse Width Modulator or may be programmed 
as a general purpose output. In either case, the output 
driver is a 12 volt open-drain. PWM 1 is typically used as the 
D to A converter for Voltage Synthesis Tuning systems. 

PWM2·PWM •. 6-bit PWM's(outputs). Pins PWM2-8 are out-' 
puts of 6-bit resolution Pulse Width Modulator circuits. 

PWMo·PWM13• 8-bit PWM's (outputs). Pins PWM9-'3 are 
outputs of 8-bit resolution Pulse Width Modulator Circuits or 
may be individually programmed as general purpose 
outputs. In either case, the output drivers are 12volt open­
drain. 

R/W. Read/Write Status - Z86C97 (output). A low level 
signifies an external memory write cycle. 

RESET. System Reset. A low level on RESET forces a cold 
restart of the device. 

VBLANK• Video Blank (output). Output of the Blank video 
signal. May be programmed for either polarity. 

V BLUE' Video Blue (Output). Output of the Blue video signal. 
May be programmed for either polarity. 

Vee. Vss. Power and Ground. Care must be taken to 
adequately bypass the supplied voltage at the device 
power pins. Two bypass capacitors of .1JlF each are reCom­
mended - one on each side of the device located as close 
as possible to the pins. 

VCREEN' Video Green (output). Output of the Green video 
signal. May be programmed for either polarity. 

V RED' Video Red (output). Output of the Red video signal. 
May be programmed for either polarity. 

V SYNC' Vertical Sync (input). VSYNC is an input pin supplying 
an externally generated Vertical Sync signal of either 
negative or positive polarity. 

XTAL1• XTAL2• Oscillator (input and output). These pins 
connect to the internal clock oscillator circuit. XT AL, may 
also be used as an external clock input. 



XTAL1 P27 
XTA12 8K Byte 

P26 
RESET 

Program ROM 
P25 

Port 2 P24 

zacPu P23 
Core P22 

P21 
P30 P20 
P31 
P34 
P35 PWMl 

PWMl P36 14 bit 
P40( Pl0) PWM2 
P41( Pll ) PWM3 
P42( P12) PWM2 PWM4 Port4 to P43( P13) (Port 1) PWM8 PWM5 
P44( P14) 6bH PWM6 
P45( P15) PWM7 
P46(P16 ) PWM8 
P47( P17) PWM9 
P50( POO) PWM9 PWM10 
P51( POl) to 

PWMll PWM13 P52( P02) Port 5 8bH PWM12 
P53( P03) (PortO) PWM13 
P54( P04) 
P55( P05) 
P56( POO) OSCIN 
P57(P~) OSCOlIT 
P60(AS) 

On Screen 
HSYNC 

P61( OS) VSYNC 
P62(RIW) Port 6 Display 

VRED 
P63(SCLK) (Control) 

VGREEN 
P64( P66) VBLUE 
P65( P67) VBLANK 

AFCIN 

Figure 3. Z86C27 (Z86C97) Block Diagram 

159 



INPUT/OUTPUT CIRCUITS 

Mapping Symbolic Pad Types 
to Pin Functions 

Pin Name Pad Type 

XT ALl' OSCIN 

XT AL2, OSCOllT 

RESET 8 

POO·P07 6 
P1 o·P1 7 4 
P2o·P27 5 
P30·P31 2 

P34·P36 3 
P40·P47 3 
P5o·P57 3 
P6o·P65 2 

P6 ·P6 3 
~U? R/IN, SCLK 3 
AFCIN 9 
PWM1·PWM13 7 

HSYNC, V SYNC 2 
VAED,Vall);' 3 
V GREEN' V BI.JH( 

IN 

Note 

High gain start, 
low gain run 
amplifier circuit 

Z86C97 only 
Z86C97 only 

Z86C27 only 
Z86C27 only 
Z86C27 only 

Z86C97 only 
Z86C97 only 

VDO 

Figure 4. Input only (Pad Type 1) 

160 

yeo 

IN 

Figure 5. Input only, Schmidt Triggered 
(Pad Type 2) 

YOO 

PAD 

OUT 

Figure 6. Output only (Pad Type 3) 

voo 

OEN 

IN 

Figure 7. Input/Output 3-state (Pad Type 4) 



VDD 
OD 

OEN 

OUT 

IN A 
~------~~------~ 

OEN 

OUT 

Figure 8. Input/Output, 3-state, Open Drain 
(Pad Type 5) 

VDD 

Figure 9. OUtput only, 3-state (Pad Type 6) 

VDO 
T I PAD ,I----N -e------t 

Figure 10. Output only, 12 volt Open Drain 
(Pad Type 7) 

VDD 

RESET 

Figure 11. Reset Input Circuit (Pad Type 8) 

VDD 

P67 

Figure 12. AFC Input Circuit (Pad Type 9) 

161 



ABSOLUTE MAXIMUM RATINGS 

Absolute Maximum Ratings 

Parameter@ TA=25"C Sym 

Power supply voltage Vee 
Input voltage VI 
Input voltage V~l) 
Output Voltage V 0(2) 

Output current high. 1 pin 100 
Output current high. all total 100 
Output current low. 1 pin IQ 
Output current low. 1 pin IQ(3) 

Output current low. all total IQ 
Operating temperature 
Storage temperature 
Power Djssipation 

Min Max 

-O.3V +7V 
-O.3V Vee +O.3V 
-O.3V Vee +O.3V 
-O.3V Vee +8V 

-1OmA 
-10OmA 
10mA 
20mA 

200mA 
-O"C + 7O"C 

-65"C + 15O"C 
2.2W 

(Ta=7O"C) 

STANDARD tEST CONDITIONS 

Characteristics listed below apply for standard test condi­
tions as noted. 

Variance of V S' RLL and RLH 

output Circuit Vs 

Standard CMOS output +5V 
Port 4 high current output +5V 
PWM 12 volt open drain output .+12V 

CAPACITANCE 

TA~25°C, Vcp=GND::OV, f=1.0MHz, 
Unmeasurea pins to GND. 

162 

Parameter 

Input capacitance 
Output capacitance 
1/0 capacitance 
AFCIN input capacitance 

Ru. 

1K 
.5K 
4K4 

Max 

10pF 
20pF 
25pF 
10pF 

RLH 

2K 
2K 

Comment: Exposing the device to stresses' above those 
listed in Absolute Maximum Ratings could cause perma­
nent damage. Exposure to absolute maximum rating 
conditions for extended periods of time.may effect device 
reliability. 

Note: 
(1) Port 2 open drain 
(2) PWM open drain outputs 
(3) Port 5 

VDD 

RLl 

RLH 

Figure 13. Standard Output Test Load 



DC CHARACTERISTICS 

TA=OOCto +70°C; Vcc=+4.5Vto +5.5V; Fosc=4inHz 

Parameter Sym Min Typ Max Conqition 

Input voltage low Vil 0 .2Vcc 
Input voltage high VIH .7Vcc Vee 
Reset input current -BOIJA VAL=OV 
Schmidt Hysteresis VIf( ·1Vcc 

Output current low IOL 0.7SmA 2mA TBD VOL=.4V 
10L(1) 3.2mA 4mA TBD . VOL =.4V 
10L(2) 1mA TBD VOL ';'·4V 

AFC Level 01 In V~l . 3Vcc 1.S . SVcc 
AFC Level 11 In VOl_II .5Vcc .7Vcc 
AFC Tracking VOl-VII .2Vcc .2Vcc 

Output current high IOH TBD -2mA TBD VOH=Vcc-·4V 
Min. supply voltage VioliN 2.SV 
Inp.leakage current lu -31JA 31JA 0, Vcc 
Tri-state leakage IOL -101JA 101JA 0, Vcc 
Supply current Icc 20mA 

Iccl 3mA 
1CC2 21JA lOIJA 

Note: 
(1) Port 5 I 

(2) PWM Open Drain 

163 



AC CHARACTERISTICS ( Z86C27 and Z86C97) 

T A::::O°C to 70°C; V cc=+4.5 V to +5.5V; F osc=4MHz, Units in nS 

No 8ym Parameter Min 

1 TpC Input clock period 250 
2 TrC,TfC Clock input rise and fall 
3 TwC Input clock width 70nS 
4 TwTinL Timer input low width 70nS 
5 TwTinH Timer input high width· 100 

6 TpTin Timer input period 8TpC 
7 TrTin,TfTin Timer input rise and fall - I 
8A TwlL Int req input low (P31) 70nS 
88 TwlL Int req input low (P30) 3TpC 
9 TwlH Int request input high 3TpC 

10 TdPOR Power On Reset delay 25mS 
11 TdLVIREll Low voltage detect to Internal R~SET condition 200nS 
12 TwF\ES Reset minimum width 5TpC 
13 TdHsOI HSYNC start to Vesc stop 2TpV 
14 TdHsOh HSYNC end to Vesc start 

Notes: 
1. Refer to DC Characteristics for details on switching lewis. 

AC TIMING DIAGRAM (Z86C27 and Z86C97) 

XTAL1 
IROn 

Figure 14. External Clock Figure 16. Interrupt Request 

lin 

I-----{B }-----4'""i 

Figure 15. Counter Timer 

164 

Max 

1000nS 
15nS 

100nS 

100mS 

3TpV 
1TpV 



Vee 

14-----jl0}--~~ 

Internal RESET 

External RESET _---II 
Figure 17. Power On Reset 

HSYNC 

OSC2 

Figure 18. On Screen Display 

165 



AC CHARACTERISTICS UNIQUE TO Z86C97 

TA=OoC to 70oC; VCC=+4.S Vto +S.SV; FOSC=4mHz 

No Sym Parameter Min Max 

1 TdIl(AS) Address valid to AS delay 35 
2 TdAS(AS) AS high to Address float delay 45 
3 TdAS(DR) AS high to Read Data required 220 
4 TWAS AS low width 55 
5 TdAZ(DS) Addr float to DS low 5 

6 TwDSR DS Read low width 185 
7 Twosw DS Write low width 110 
8 TdOSR(DR) DS low to Read Data req'd 130 
9 ThOR(DS) Read Data to DS high hold 5 
10 TdDS(A) DS high to Address active 55 

11 TdDS(AS) DS high to AS low delay 55 
12 TdR}W(AS) R/W valid to AS high delay 35 
13 TdDS(RJW) DS high to R/W not valid 55 
14 TdOW(DSW) Write Data valid to DS low 35 
15 TdDS(DW) DS high to Write Data not valid 55 

16 TdA(DR) Addre.sS valid to Read Data 330 
required valid 

17 TdAS(DS) AS high to DS-Iow delay 65 
18 TdO'(DS) Data Input setup to DS high 75 

Notes: 
1. When using extended memory timing, for parameters 3, 6,7,8,16 and 18 add 2TpC (500 nS@4.0MHz). 
2. Min and Max times are in nanoseconds unless otherwise noted. 

166 



TIMING DIAGRAM (Unique to Z86C97) 

SCLK 
XTAL1 

PORTO 
RJW 

PORT 1 

OS 
READ 

PORT 1 

OS 
WRITE 

,~ '1'1 _'4 

I I 

AO-A7 

.'F2 
_'4 'fS ., 
I I 

16 

DO-070ut 

Figure 19. Z86C97 External Memory Read/Write Timing 

167 



STANDARD CHARACTER SETS 

ENGLISH/KOREAN 

Figure 20. English/Korean 

168 

REGISTER SUMMARY 

Refer to the Z8 Technical Manual for standard Z8 register 
and port descriptions. Registers shown here are specific 
to the Z86C27/97. . 

Port Registers 

Port 4 FC30h 

17161s14131211101 

TTTTTTTT 
Output Control 
o Logic Level 0 
1 Logic Level 1 

Figure 21. Port 4 Output Register 

PortS FC31h 

17161s14131211101 

TTTTTTTT 
Output Control 
o Logic Level 0 
1 Logic Level 1 

Figure 22. Port 5 Output Register 

Port 6. Input 
o Logic Level 0 
1 Logic Level 1 

AFC Output 
00 GND thru V1 
01 V1 thru V2 
11 V2 thru Vee 

Figure 23.. Port 6 Input Register 

PWMRegisters 

%FC10 PWM MODE 

17161s14131211101 

TTTTTTTT 
876 S 4 3 2 1 

Mode Control 
OPWM 
1 Output Port 

Figure 24. PWM Mode Register 

%FC11 PWM OUT 

17161s14131211101 

TTTTTTTT 
876 S 4 3 2 1 

Output Control 
o Logic Level 0 

. 1 Logic Level 1 

Figure 25. PWM Port Output Register 



%FC12 PWM1 UPPER 

IxlxI5141s1211101 

1-1 --- PWM1 HI Byte 

Figure 26. PWM 1 High Value 

%FC1S PWM1 LOWER 

171s15141s1211101 

11.-.-____ PWM1 Lo Byte 

Figure 27. PWM t Low Value 

%FC14 PWM 2 VAL 

Ixlxl5141s1211101 

1 PWM2Value 

Figure 28. P'WM 2 Value 

%FC15 PWMS VAL 

I x lxl5141sf2111 0 1 

1 PWMSValue 

Figure 29. PWM 3 Value 

%FC1S PWM4 VAL 

Ixlxl5141s1211101 

1 PWM4Value. 

Figure 30. PWM 4 Value 

%FC17 PWM5VAL 

Ix lxl5141s12111 0 1 

1-1 --- PWM5 Value 

Figure 31. PWM 5 Value 

%FC18 PWMs VAL 

1 X I X 15 14 Is I 2 11 1 01 

11.-.-___ PWMS Value 

Figure 32. PWM 6 Value 

%FC19 PWM7VAL 

IxlxI5141s1211101 

1 PWM7Value 

Figure 33. PMW 7 Value 

%FC1A PWM8VAL 

Ixlxl5141s1211101 

1'----- PWM8 Value 

Figure 34. PWM 8 Value 

%FC1B PWM9 VAL 

171615141s1211101 

1-1 ---- PWM9 Value 

Figure 35. PWM 9 Value 

%FC1C PWM10VAL 

171615141s1211101 

1 PWM10 Value 

Figure 36. PWM 10 Value' 

%FC1D PWM11 VAL 

1 7 161 5 14 Is 12 11 1 0 1 
1-1 ____ PWM11Value 

Figure 37. PWM 11 Value 

%FC1E PWM12 VAL 

171615141s12111 0 1 

..... 1 ____ PWM12Value 

Figure 38; PWM 12 Value . 

%FC1F PWM1SVAL 

171615141s12111 0 1 

1 PWM1SValue 

Figure 39. PWM 13 Value Register 

169 



OSO Registers 

OSDC CNTRl FCOOh 

Ixlslsl4131211101 " ~r=-1 c=---_ Retrace Blanking 

- High Resolution set 
o low Res 
1 High Res 

Pixel Size 
OOx 1 01 x2 10 x3 
11 x4 

Sync Polarity 
o Positive 
1 Negative 

Figure 40. OSD cOntrol Register 

VERT POS FCOl h 

Ixlxlsl4131211101 
" 1-1 __ -

Vert Position Control 
x4HORlines 

Figure 41. OSD Venlcal Post ion Register 

HOS POS FC02h 

I X 1 xis 14 1 3 12 11 1 0 I 

170 

I ... " --"-- HOR Position Control 
x 4 DOT Clocks 

Figure 42. OSD Horizontal PosHlon Register 

Blue Background 
Green Background 
Red Background 
RGB Polarity 
0- Positive 
1 --Negative 

Fringe On-Off 
o -Off 
1 - On 

eackground On-Off 
0- Off 
1 - On 

Display On-Off 
0- Off 
1- On 

Figure 43. OSD Display Attribute Register 

ROW SPACE FC04h 

blslxl4131211101 
Inter Row Space 
Fade Direction 
0- Fade After 
1 - Fade Before 

IT" 1 

L..-________ Fade On-Off 

O-Off 
1 -On 

Figure 44. OSD Row Space Register 

FADE POS FCOSh 

Ixlslsl41al211101 
1..1 ---- Vertical Index 

Figure 45. OSD Fade Position Register 

BAR CNTnL FCOSh 

J7161sl~lx1211 101 

11 T ~ Row Address 
"Bar Color 

Blue 
Green 
Red 

Bar Color Enable 

Figure 46". OSD Bar Control Register 

BAR PeS FC07h 

Ixb,ls14131211101 
1 Bar Column Position 

Figure 47. OSD Bar Position Register 



ORDERING INFORMATION 

Part Number 

Z86C2708PSCRxxx 
Z86C2708PSCRxxx 
Z86C9708PSCR314 

Package 

64-Pin DIP 
64-Pin DIP 
64-Pin DIP 

ROM 

Custom mask-ROM 
Evaluation mask-ROM 
Korean/English Char Gen 

171 





~ZiIill 

May 1989 

FEATURES 

• Z86C9708PSC 8 MHz ROM-less device. 

• 27C64/27C256 EPROM ZIF socket. 

• Full Port 4, Port 5 and Port 6 functional emulation. 

• ICE support with third party analyzer-emulator available 
from Orion Instruments. 

DESCRIPTION 

The Z86C27EAB Emulation Adapter Board is specifically 
designed to assist in the development of software for 
Zilog's Z86C27 mask-ROM DiQital Television Controller. 

The board utilizes a Z86C97 ROM-less device that pro­
vides an address and data path (for access to external 
memory and I/O) and additional emulation signals. As the 
Z86C97 uses Port 4, Port 5 and Port 6 for the external inter­
face, the emulation board simulates true Z86C27 port 
functions with additional on-board logic (Figure 1). 

... 

~ 
... 

Z86C97 ZB6C27 
ROM-Less ;::iXTALJ ----"-P1P2 -

~~ ;:fL-Cl 
-y 

-
Common Port 4,5,6 

Signals Emulation 

Control Signals 

U1 

PRELIMINARY PRODUCT SPECIFICATION 

Z86C27EAB 
EMULATION ADAPTER BOARD 

• On-board CPU Crystal and Video L -C oscillator circl,Jits­
jumper selectable. 

• Z86C27 mask-ROM footprint or cable interface to target 
system. 

An EPROM socket is provided to allow validation of I 
customer ROM-code before submitting to Zilog for ge 
eration of the Z86C27 ROM mask. 

In-Circuit Emulation with real time trace capability is sup 
ported in conjunction with a "Unilab™" 8620 or 8420 ana­
lyzer-emulator available separately from Orion Instruments. 
Orion is located at: 702 Marstlall Street. Redwood City, CA 
94063 (Ph: 415/361-8883, FAX: 415/361-8970). 

ADO-7 ... 

AB/15 ~ 

~J 
... 

A AO-7 .... 

'I" -yo 

27C641 
27C256 

ZIF 
Socket 

-
~ 

--

P4 

To Orion 
"Analyzer" 
Connector 

P~ 

LOGIC To 
"Emulator" 
Connector 

~ 

....: 
U2 U3 

Figure 1. Z86C27EAB Block Diagram 

173 



PIN ASSIGNMENTS 

Target Z86C27 Interface Table 1. Z86C27 Interface - P1, P2 

The Z86C27 EAB can plug directly into the target socket or P1 Target Z86C2 P2 Target Z86C27 
may be connected via ribbon cable to the target if access SIGNAL PIN SIGNAL PIN 
is difficult. Connectors P1 and P2 are used for the ribbon 
cable interface or as test points (Table 1). The supplied 1 PWM5 1 1 PWM6 64 
Cable Adapter has a corresponding P1 and P2 - do not 2 PWM4 2 2 PWM7 63 
reverse the P1 and P2 assignments. 3 PWM3 3 3 PWM8 62 

4 PWM2 4 4 PWM9 61 
A ribbon cable connection will degrade signal integrity, so 5 PWM1 5 5 PWM10 60 
the length of cable should be kept as short as possible. The 
local crystal and L-C oscillator components mounted on 6 P351 6 6 PWM11 59 
the Emulation Adapter Board should always be used if a 7 P36 " 7 7 PWM12 58 
ribbon cable connection is selected. 8 P34 8 8 PWM13 57 

9 P31 9 9 P27 56 
Note that GND and VCC are both connected to the target 10 P30 10 10 P26 55 
interface. Powerthe EAB board locally if the target system 
can not supply sufficient current. 11 XTAL11 11 11 P25 54 

12 XTAL21 12 12 P24 53 
13 RESET 13 13 P23 52 

ORION Emulation Interface 14 P60 14 14,15 GND 51 
15,16 GND 15 16 P22 50 

Connectors P3 and P4 have signals allocated to allow a 
direct connection to the ORION analyzer/emulator (Table 17 P61 16 17 P21 49 
2). Connector P3 connects to the "Emulator" connector 18 P62 17 18,19 VCC 48 
and P4 to the "Analyzer" connector on the ORION. Use the 19,20 VCC 18 20 P20 47 
appropriate cables supplied by ORION. 21 P63 19 21 P47 46 

22 P64, 20 22 P46 45 

Miscellaneous Connectors/Jumpers/Test 23 P65 21 23 P45 44 
Points 24 AFCIN 22 24 P44 43 

25 P50 23 25 P43 42 
P5 connects to power and may be used for power supply 26 P51 24 26 P42 41 
connection if the target supply is not used. J1 and J2 allow 27 P52 25 27 .P41 40 
isolation of the target oscillator circuits. J3 provides test 
pOints for the address decodes of videoram and the 28 P53 26 28 P40 39 
simulated I/O ports (Table 3). 29 P54 27 29 VBLANK 38 

30 P55 28 30 VBLUE 37 
31 P56 29 31 VGREEN 36 
32 P57 30 32 VRED 35 

33 OSCIN2 31 33 VSYNC 34 
34 OSCOUF 32 34 HSYNC 33 

Notes: 
1. XTAL 1 and XTAL2 are connected to P1 via jumper biockJ2 pins 1-2 
and 3-4. Leave these jumpers open for local crystal operation. 
2. OSCIN and OSCOUT are connected toP1 via jumper block J1 pins 1-
2 and 3-4. Leave these jumpers open for local L-C operation. . 

174 



Table 2. ORION Interface - P3, P4 

EABP3 
Pin Sig 

1 A14 
2 A12 
3 A13 
4 A7 
5 A8 

6 A6 
7 A9 
8 A5 
9 All 
10 A4 

11 DS 
12 A3 
13.Al0 
14 A2 

Orion "Emul" 
Pin Sig 

1 A14E 
2 A12E 
3 A13E 
4 A7E 
5 A8E 

6 A6E 
7 A9E 
8 A5E 
9 AllE 
10 A4E 

15 ROMCS 

11 OE 
12 A3E 
13 AlOE 
14 A2E 
15 CE 

16 Al 
17 AO 
18 GND 
19 AD7 
20 AD6 

21 ADO 
22 AD5 
23 ADl 
24 AD4 
25 AD2 

26 AD3 
27 INTP67 
28 INTP66 
29 P34 
30-

31 -
32 -
33 -
34-

16 AlE 
17 AOE 
18 GND 
19 D7E 
20 D6E 

21 DOE 
22 D5E 
23 D1E 
24 D4E 
25 D2E 

26 D3E 
43 D15A 
44 D14A 
45 D8A 
46 D13A 

47 D9A 
48 D12A 
49 Dl0A 
50 DllA 

EABP4 
Pin Sig 

1 P27 
.2 P26 
3 P25 
4 P24 
5 P23 

6 P22 
7 P21 
8 . P20 

9 GND 
10 RESET 

11 -
12 GND 
13 -
14 R/W 
15 -

16 -
17 DS 
18 -
19 -
20-

21 A15 
22 -
23 P35 
24 P36 
25 P31 

26 P30 

·Orion "Anal" 
PinSig. 

1 M7 
2 M6 
3 M5 
4 M4 
5 M3 

6 M2 
7 Ml 
8 MO 
9 GND 
16 RES 

17 NMI 
18 GND 
19 K2 
20 C7 
21 K,l 

22 C6 
23 WR 
24 C5 
25 RD 
26 C4 

27 A15 
28 ALE 
NC­
NC­
NC-

NC-

Table 3. Misc. ConnectorslJumperslTest Points 

Pin Signal Comment 

P5-l GND Ground test point or supply 
P5-2 VCC VCC test point or supply 
Jl-l,2 OSCIN Open isolates OSCIN from target 
Jl-3,4 OSCOUT Open isolates OSCOUT from target 

J2-1,2 XTALl Open isolates XTAL 1 from target 
J2-3,4 XTAL2 Open isolates XTAL 1 from target 
J3-1 VRAM Test point for Videoram select signal 
J3-2 P6 Test point for port 6 select signal 

J3-3 P5 Test point for port 5 select signal 
J3-4 P4 Test point for port 4 select signal 

Unilab 8620/8420 Analyzer/Emulator Setup 

The standard Orion software is distributed to support 
either piggy-back or ROM-less versions of generic Z8 
microcontroller products, The system must be especially 
configured to support the Z86C27EAB development envi­
ronment 

1, Follow Orion instructions for installation and invocation 
of standard Orion Z8 distribution software, 

'2, Choose the extemal memory version of the l8, 

3, From the main menu, press "F8" to select TOOLKIT 
ROUTINES, 

4, Press "F8" again to select CHANGE DISPLA Y OR 
. LOG MODES, 

5, Set the window settings as shown: 

Disassembler 
Symbols 
Reset 
MiscCollJmn 
ContCollJmn 
Misc #Ba~e 
Paginate 
Color 
Log to File 
Printer 
Step-into 
Debug 

on 
off 
enabled 
on 
on 
binary 
on 
on (if color display) 
off 
off 
software 
active 

175 



6. Type "EM-SET" [RETURN]. This command is used 
for memory configuration. 

7. Enable memory 0-37FF in "EMSEGF." Press "END" 
key to save and exit. 

8. Type "INTbATA" [RETURN]. This command 
configures the stack to be intemal. 

9. Type "EXTAAM" [RETURN]. This command 
configures the RAM to be extemal. 

10. Type "PTA =DO" [RETURN]. This command sets the 
Orion Debug registers to DOh and D1 h of the Z8 register 
file. The user program must not use these registers. 

+ 
D 

64 

f ~ 
0 @] 

@] 

11. Type "2001 =OVERLAY" [RETURN]. Thiscommarid 
sets the Orion debug overlay area to start at address 
2001h. 

12. Type "8000 =READ" [RETURN]. This sets the 
extemal RAM pointer to address 8000h. 

13. Type "SAVE-SYS C27EAB" [RETURN]. This saves 
a new system called C27EAB. 

14. Type "BYE" [RETURN] to exit from the Orion 
environment. 

Now that the system is saved, to re-invoke the Orion 
software with the parameters that have been just set-up, 
type C27EAB. 

34 @] 

I P2 COPYRIGHT.ZILOG INC. 1988 
MADE IN U.S.A. 

@] Z86C27EM 

33 

C86C97 

I 
32 DD 

0 lliJ 
34 

P1 I c=J 
r===J @] 

Figure 2. Z86C27EAB Layout 

176 



ELECTRICAL CHARACTERISTICS 

Refer to seperate data sheets for individual AC and DC 
characteristics ofthe ZB6C970BPSC, ZB6C270BPSC, user 
EPROM and Aitera™EP1B10J EPLD. Particularconsidera­
tion should be given to characteristic differences between 
the ZB6C27 and the EAB board with respect to ports 4, 5 
and 6. 

Parameters listed in Table 4 are supplemental to the indi­
vidual device parameters or apply to the EAB as a whole. 

Table 4. Supplemental Parameters 

Parameter Sym Min Max Condition 

Power supply voltage Vcc 4.Bv 5.2v 
Power supply current Icc 100mA 
Input voltage low Vill 0 .Bv 
Input voltage high V1H' 2.0 VCC 

Output current high IOH 
, 

-4mA, VOH=2.4v 
Output current low IOL 

, 
4mA VOL=.45v 

Output current max IOHl 
, 

±~OmA 
Operating Temp 10"C 5O"C 

Notes: 
1. These parameters apply to Port 4, 5 and 6 and differ from the Z86C27 

implementation. 

ORDERING INFORMATION 

Part Number Comment 

ZB6C270BEAB Includes ZB6C970BPSC ROM-less 
device (Korean/English character 
generator ROM). 

177 



178 



~ ZiIm Product Specification 

January 1989 

FEATURES 

• Complete microcomputer, 24 I/O lines, and up to 64K 
bytes of addressable external space each for program 
and data memory. 

• 256-byte register file, including 236 general-purpose 
registers [S I/O port registers, and 16 status and control 
registers. 

• Vectored, priority interrupts for I/O, counter/timers, and 
UAR1 

• On-chip oscillator that accepts crystal or external clock 
drive. 

GENERAL DESCRIPTION 

The Z86C91 is a CMOS ROMless version of the Z8 single­
chip microcomputer. It offers all the outstanding features of 
the Z8 family architecture except an on-chip program 

PORTO 
(NIBBLE 

PROGRAMMABLEI 
1/0 OR Aa-A15 

PORT 1 
(BYTE 

PROGRAMMABLE) 
ADo-AD7 

Figure 1. Pin Functions 

PORT 2 
(BIT PRO· 
GRAMMABLE) 
I/O 

PORT 3 
SERIAL AND 
PARALLEL 110 
AND CONTROL 

Z86C91.CMOS 
BOMlep Z8®Mic..ompaler 

• Full-duplex UART and two programmable 8-bit 
counter/timers, each with a 6-bit programmable 
prescaler. 

• Register Pointer so that short, fast instructions can 
access anyone of the sixteen working-register groups. 

• Single + 5V power supply-aliI/a pins TIL compatible. 

• 12,16, and 20 MHz 

• CMOS process 

• Two Low-power Standby Modes 

ROM. Use of external memory rather than a prepro­
grammed ROM enables this Z8 microcomputer to be used 
in applications where code flexibility is required. 

+5V P3, 

XTAL2 P3, 

XTAL1 P2, 

P3, P2, 

P30 P2, 

RESET P2. 

R/W P2, 

os P2, 

AS P2, 

P3, P2, 

GND P3, 

P3, P3. 

po, Pl, 

po, Pl, 

po, Pl, 

po, Pl. 

po. Pl, 

po, Pl, 

po, Pl, 

po, Pl, 

, Figure 2a. 40-pin Dual-ln·Line Package (DIP), 
Pin AsSignments 

179 



The Z86091 can provide up to, 16 output address lines, thus 
permitting an address space of up to 64K bytes of data or 
program memory. Eight address outputs (ADo·AD7) are 
provided by a multiplexed, 8·bit, Address/Data bus. The 
remaining 8 bits can' be provided by the software 
configuration of POrt 0 to output address bits Aa,·A15' 

Available address space can be doubled (up to 128K bytes) 
by programmillgpit 4 of Port 3 (P34) to act as a data memoiy 
select 04tput (OM). The two states of OM together with the 
16 address outputs can define separate data and memory 
address spaces of up to 64K bytes each. 

+fJ ,p (f' .¢ .. ~~~ ,p <tI' 4l"<fo" <fo" 

RE!IET 7 

RJW 8 

Il!I 9 

li.S 10 

P3. 11 

GND 12, 

P3. 13 

Plio 14 

PO, 15 

po. 18 

NC 17 

~'5 4 3 2 1 «U ~ ~ ~ 

Z86C91 xxVSC 
MCU 

18 19 20 21 22 23 24 25 28 27 28 

~<f"~~~q~'q""<l'''q'''~<l''~ 

39 

38 

37 

36 

36 

34 

33 

32 

31 

30 

29 

NC 

P2, 

P2, 

P2. 

P2, 

P2. 

P3, 

P3, 

P17 

P1. 

P1. 

Figure 2b. 44-pln Leaded Chip Carrier, 
Pin ASSignments -

OUTPUT 

There are 256 bytes of RAM located on-chip and organized ' 
as a register file of 236 general-purpose registers, 16 control 
and status registers, and three 110 port registers. This 
register file can be divided into sixteen groups of 16 working 
registers each. Configuring the register file in this manner 
allows the use of short format instructions; in addition, any of 
the individual registers can be accessed directly. 

The, pin functions and the pin assignments of the Z86C91 
package are illustrated in Figures 1 and 2. 

RESET 
RIll 
DS 
AS 

ps. 

GND 
P3. 
PO. 
PO, 
PO. 

GND 

Z86C91XXFSC 
MCU 

Figure 2c. 44-pln Quad Flat Pack, 
PlnAsslgnments 

- iiS RIW RESET 

GND 

P2, 
P2, 
P2. 
P2, 
P2. 
P3, 
P3, 
P1 7 
P1. 
P1. 

uo 
(BIT PROGRAMMABLE) 

ADDRESS OR 110 
(NIBBLE PROGRAMMABLE) 

ADDRESS/DATA 

180 

,~ ____________ ~v~ ____________ ~J 

Z·BUS WHEN USED AS 
ADDRESS/DATA BUS 

Figure 3. Functional Block Diagram ' 



ARCHITECTURE 

Architecture is characterized by a flexible I/O scheme, an 
efficient register and address space structure and a number 
of ancillary features that are helpful in many applications. 

Microcomputer applications demand powerful I/O 
capabilities. The Z86C91 fulfills this with 24 pins available for 
input and output. These lines are grouped into three ports of 
eight lines each and are configurable under software control 
to provide timing, status signals, serialor parallel I/O with or 
without handshake, and an address bus for interfacing 
external memory. 

Three basic address spaces are available: program memory, 
data memory and the register file (internal). The 256-byte 

LOW POWER STANDBY MODES 

The Z86C91 has two instructions to reduce power 
consumption during standby operation. HALT turns off the 
processor and UART while the counter/timers and external 
interrupts IROO, IR01, and IR02 remain active. 

When an interrupt occurs the processor resumes execution 
after servicing the interrupt. STOP turns off the clock to the' 
entire Z86C91 and reduces, the standby current to 10 
microamps. The stop mode is terminated by reset, which 
causes the processor to restart the application program at 
adddress OOOCH. In order to enter STOP or HALT modes, 

PIN DESCRIPTION 

AS. Address Strobe (output, active Low). Address Strobe is 
pulsed once at the beginning of each machine cycle. 
Addresses output via Port 1 for all external prog ram or data 
memory transfers are valid at the trailing edge of AS. 

OS. Data Strobe (output, active low). Data Strobe is 
activated once for each extemal memory transfer. For a 
READ operation, data must be available prior to the trailing 
edge of OS. For WRITE operations, the falling edge of OS 
indicates that output data is valid. 

POo,P07, P20·P27, P30·P37' //0 Port Lines (input/outputs, 
TTL-compatible). These 24 lines are divided into three 8-bit 
I/O ports that can be configured under program control for 
I/O or external memory interface (Figure 3). . 

P1o·P17. Address/Data Port (bidirectional). Multiplexed 

ADDRESS SPACES 

Program Memory. The Z86C91 addresses 64K bytes of 
external program memory space (Figure 4). 

The first 12 bytes of program memory are reserved for the 
interrupt vectors. These locations contain six 16·bit vectors 
that correspond to the six available interrupts. Program 
execution begins at location OOOCH after a reset. 

Data Memory. The Z86C91 can address 64K bytes of 
external data memory .. External data memory may be 

random-access register file is composed of 236 
general-purpose registers, three I/O port registers, and 16 
control and status registers. 

To unburden the program from coping with real-time 
problems such as serial data communication and 
counting/timing, an asynchronous receiver/transmitter 
(UART) and two counter/timers with a large number of 
user,selectable modes are offered on-Chip. Hardware 
support for the UART is minimized because one of the 
on-chip timers supplies the bit rate. Figure 3 shows the block 
diagram. 

it is necessary to first flush the instruction pipeline to avoid 
suspending execution mid-instruction. To do this, the user 
must execute a NOP (opcode=OFFH) immediately before 
the appropriate sleep instruction, ie 

FF NOP ; clear the pipeline 
6F STOP ; enter STOP mode 

or 
FF NOP ; clear the pipeline 
7F HALT ; enter HALT mode 

address (Ao-A7) and data (00-07) lines used to interface with 
program and data memory. . 

RESET. Reset (input, active Low). RESET initializes the 
Z86C91. After RESET the MCU is in the extended memory 
mode. When RESET is deactivated, program execution 
begins from program location OOOCH. 

RtW.goes low for the duration of a WRITE operation to 
Program or Data memory. 

XT All, XT Al2. Crystal 1 , Crystal 2 (time-based input and 
output, respectively). These pins connect a parallel-reso­
nant crystal, lC circuit, or ceramic resonator to the on-chip 
oscilator and buffer. A single-ended TTL or CMOS clock is 
also valid at the XT All input. 

included with or separated from the external program 
memory space. OM, an optional I/O signal that can be 
programmed to appear on pin P34, is used to distinguish 
between data and program memory space. The state of the 
OM signal is controlled by the type instruction being exe­
cuted. An "lOC" opcode references PROGRAM (OM inac­
tive) memory, and an "lOE" instruction references DATA 
(OM active low) memory. 

181 



Register File. The 256-byte register file includes three 1/0 
port registers (PO, P2, P3), 236 general-purpose registers 

(R4-R239) and 16 control and status registers (R240-R255). 
These registers are assigned the address locations shown in 
Figure 5. 

Z86C91 instructions can access registers directly or 
indirectly with an 8-bit address field. This also allows short 
4-bit register addressing using the Register Pointer (one of 
the control registers). In the 4-bit mode, the register file is 
divided into sixteen working-register groups, each 
occupying 16 contiguous locations (Fig!Jre 5). The Register 
Pointer addresses the starting location of the active 
working-register group (Figure 6). 

Note: Register Bank EO-EF can only be accessed through 
working register and indirect addressing modes. 

Stacks. Either the internal register file or the external data 
memory can be used for the stack. A 16-bit Stack Pointer 
(R254 and R255) is used for the external stack, which can 
reside anywhere in data memory. An 8-bit Stack Pointer 
(R255) is used for the internal stack that resides within the 

. 236 general~purpose registers (R4-R239). For intemal 
stack, R256 may be used as a general-purpose register, 
however its contents will be impacted in the event of a stack 
overflow. 

182 

DECIMAL 

255 

254 

253 

252 

251 

250 

249 

246 

247 

246 

245 

244 

243 

242 

241 

240 

239 

STACK POINTER (BITS 7-0) 

STACK POINTER (BITS~'5-a) 
REGISTER POINTER 

PROGRAM CONTROL FLAGS 

INTERRUPT MASK REGISTER 

INTERRUPT REQUEST REGISTER 

INTERRUPT PRIORITY REGISTER 

PORTS 0-1 MODE 

PORT 3 MODE 

PORT 2 MODE 

TO PRESCALER 

TlMER/COUNTER 0 

T1 PRESCALER 

TlMER/COUNTER 1 

TIMER MODE 

SERIAL 1/0 

GENERAL·PURPOSE 
REGISTERS 

PORT 3 

PORT 2 

PORT 1 

PORT 0 

Figure 5. The Register File 

HEX 

FF 

FE 

FD 

FC 

FB 

FA 

F9 

Fa 

F7 

F6 

F5 

F4 

F3 

F2 

F1 

FO 

EF 

04 

O? 
02 

01 

00 

IDENTIFIERS 

SPL 

SPH 

RP 

FLAGS 

IMR 

IRO 

IPR 

P01M 

P3M 

P2M 

PREO 

TO 

PRE1 

T1 

TMR 

510 

P3 

P2 

P1 

PO 

65 ,535 

P~OGRAM 
MEMORY 

CATION OF FIRST 
BYTE OF INSTRUCTION 

EXECUTED AFTER 
RESET ~ 

1-------r--

INTERRUPT 
VECTOR 

(LOWER BYTE) 

INTERRUPT 
VECTOR 

(UPPER BYTE) 

~~t-
:t-
7 t-....... 6 

!~ 
--3 

~" 
2 

~t-

IRQ5 -
IRQ4 -
IRQ3 -
IRQ2 -
IRQ1 -
IROO -

DATA 
MEMORY 

Figure 4. Z86C91 Program Memory Map 

--h r7 ra rs f4 I o 0 0 0 

THE UPPER NIBBLE OF THE REGISTER 

?- ~li~I~~~:~~~:"~~VJg~gl=~~~~E 
ACTIVE WORKING-REGISTER GROUP. 

--{ , 

· · · · · · --
--
-" SPECIFIED WORKING· 

REGISTER GROUP 

----
--

I 
J 

.-

255 

253 

240 

239 

THE LOWER 
NIBBLE OF 
THE REGISTER 
FILE ADDRESS 
PROVIDED BY 
THE INSTRUCTION 
POINTS TO THE 
SPECIFIED 
REGISTER. 

1,5 

~- - -I/OPORTS - ----

Figure 6. The Register POinter 



SERIAL INPUT/OUTPUT 

Port 3 lines P3. and P37 can be programmed as .serialllO 
lines for full-duplex serial asynchronous receiver/transmit­
ter operation. The bit rate is controlled by CounterfTimer 0, 
with a maximum rate of 156.25K bits/second at 20 MHz. 

The Z86C91 automatically adds a start bit and two stop bits 
to transmitted data (Figure 7). Odd parity is also available as 
an option. Eight data bits are always transmitted, regardless 

LSTART BIT 

'------EIGHT DATA BITS 

TWO STOP BITS 

Transmitted Data 
(No Parity) 

Ispispi pi D,I D,I D,I D31 D21 D, I Dol STI 

11, 
__ LsTARTBIT 

'------SEVEN DATA BITS 

ODD PARtTY 

TWO STOP BITS 

Transmitted Data 
(With Parity) 

of parity selection. If parity is enabled, the eighth data bit is 
used as the odd parity bit. An interrupt request (IR04) is 
generated on all transmitted characters. 

Received .data must have a start bit, eight data bits, and at 
least one stop bit. If parity is on, bit 7 of the received data is 
replaced by a. parity error flag. Received characters 
generate the IR03 interrupt request. 

I~I~I~I~I~I~I~I~I~I~I 

LSTART BIT 

'------EIGHT DATA BITS 

'----------ONE STOP BIT 

Received Data 
(No Parity) 

I SP I P I D, I D, I 0,1 D31 D21 0, I Do I ST I 

II LSTART BIT 

'------SEVEN DATA BITS 
L--_____ PARITy ERROR FLAG 

L. ---------ONE STOP BIT 

Received Data 
(With Parity) 

Figure 7. Serial Data Formats 

COUNTERfTlMERS 

The Z86C91 contains two 8-bit programmable 
counter/timers (To and T1), each driven by its own 6-bit 
programmable prescaler. The T1 prescaler can be driven by 
internal or external clock sources; however, the To prescaler 
is driven by the internal clock only .. 

The 6-bit prescalers can divide the input frequency of the 
clock source by any number from 1 to 64. Each prescaler 
drives its counter, which decrements the value (1 to 256) that 
has been loaded into the coul)ter. When the counter reaches 
the end of count, a timer interrupt request-IR04 (To) or 
IR05 (T1)-is generated. 

The counters can be started, stopped, restarted to continue, 
or restarted from the initial value. The counters can also be 
programmed to stop upon reaching zero (single-pass mode) 

I/O PORTS 

The Z86C91 has 24 lines available for input and output. 
These lines are grouped into three ports of eight lines each 
and are configurable as input, oUtput or address. Under 
software control, the ports can be programmed to provide 

or to automatically reload the initial value and continue 
counting (modulo-n continuous mode). The counters, but not 
the prescalers, can be read any time without disturbing their 
value or count mode. 

The clock source for T 1 is user-definable; it can be either the 
intemal microprocessor clock divided by four, or an exter­
nal signal input via Port 3. The maximum frequency of the 
extemal Timer signal is the XT AL signal divided by 8. The 
Timer Mode register configures the external timer input as 
an external clock, a trigger input that can be retriggerable 
or nonretriggerable, or as a gate input for the internal clock. 
The counterltimers can be programmably cascaded by 
connecting the To output to the input of T1• Port 3 line P36 

also serves as a timer output (Tour) through which To' Tl or 
the internal clock can be output. 

address outputs, timing, status signals, serial 110, and 
parallel 1/0 with or without handshake. All ports have active 
pull-ups and pull-downs compatible with TIL loads. 

183 



Port 1 is a dedicated Z-SUS®compatible memory 
interface. Theoperations of Port 1 are supported by the 
Address Strobe (AS) and Data Strobe (OS) lines, and by 
the Read/Write (R/W) and Data Memory (OM) control 
lines. The low-order program and data memory addresses 
(Ao-A7) are output through Port 1 (Figure 8) and are 
multiplexed with data in/out (00.07). Instruction fetch a~d 
data memory read/write operations are done through this 
port. 

PORT 1 
(110 OR ADo·AD71 

TO EXTERNAL 
MEMORY 

Figure 8a. Port 1 

Port 0 can be programmed as a nibble 110 port, or as an 
address port for interfacing external memory (Figure 9). 
When used as an I/O port, Port 0 can be placed under 
handshake control. In this configuration, Port 3 lines P32 
and P35 are used as the handshake controls OAVo and 

. ROYo. Handshake signal assignment is dictated by the I/O 
direction of the upper nibble P04·P07. 

For external memory references, Port 0 can provide 
address bits As-A11 (lower nibble) or As·A15 (lower and 
upper nibbles) depending on the required address space. 
If the address range requires 12 bits or less, the upper 

184 

} 
P04-P07 } PORTO 
POO-P03 (110 OR A,·A,,) 

_ } HANDSHAKE CONTROLS 
DAVo AND RDYo 
(P3, AND P3~ 

Figure 9a. Port 0 

Port 1 cannot be used as a register nor can a handshake 
mode be used with this port. 

The Z86C91 wakes up with the 8 bits of Port 1 configured 
as address outputs for external memory. If more than eight 
address lines are required, additional lines can be 
obtained by programming Port 0 bits as address bits. The 
least-significant four bits of Port 0 can be configured to 
supply address bits As-A11 for 4K byte addressing or both 
nibbles of Port 0 can be configured to supply address bits 
As-A15 for 64K byte,addressing. 

OUT 

Figure 8b. Simplified Port 1 Output Configuration 

nibble of Port 0 can be programmed independently as 110 
while the lower nibble is used for addressing. 

Port 0 lines are configured as address lines As·A15 after a 
Reset. 'If one or both nibbles are needed for I/O operation, 
they must be configured by writing to the Port 0 Mode 
register. 

To permit the use of slow memory, an automatic wait mode 
of two oscillator clock cycles is configured for bus timing 
after each reset. The initialization routine could include 
reconfiguration to eliminate this extended timing mode. 

IN 

Auto LaICh 

Figure 9b. Simplified Port 0 I/O Configuration 



Pent 2 bits can be programmed independently as input or 
output (Figure 10), This port is always available for 1/0 
operations, In addition, Port 2 can be configured to 
provide open·drain outputs. 

Like Port 0, Pori 2 may also be placed under handshake 

P20 

PORT 2(1/0) 

P27 

\ HANDSHAKE CONTROLS 
J DAV2 AND ROY:2 

(P3, AND P3,) 

Figure 108. Port 2 

Port 3 lines can be configured as 1/0 or control lines 
(Figure 11). In either case, the direction of the eight lines is 
fixed as four input (P30·P33) and four output (P34·P37)' For 
serial 1/0, lines P30 and P37 are programmed as serial in 
and serial out, respectively. 

--
PORT 3 
(110 OR CONTROL) 

Figure 11 a. Port 3' 

INTERRUPTS 

The Z86C91 allows six different interrupts from eight 
sources: the four Port 3 lines P30·P33, Serial In, Serial Out, 
and the two counter/timers. These interrupts are both 
maskable and prioritized. The Interrupt Mask register 
globally or individually enables or disables the six interrupt 
requests. When more than one interrupt is pending, priorities 
are resolved by a programmable priority encoder that is 
controlled by the Interrupt Priority register. 

All interrupts are vectored through locations in program 
memory, When an interrupt request is granted, an interrupt 
machine cycle is entered. This disables all subsequent 
interrupts; saves the Program Couriter and status flags, and 
accesses the program memory vector location reserved for 
that interrupt. This memory location and the next byte 
contain the 16·bit address of the interrupt service routine for 
that particular interrupt request. Nested interrupts are 

control. In this configuration, Port 3 lines P31 and P36 are 
used as the handshake controls lines DAV 2 and RDY 2. 

The handshake signal assignment for Port 3 lines P31 and 
P36 is dictated by the direction (input or output) assigned 
to bit 7 of Port 2. 

IN 

Auto Latch 

Figure 10b. Simplified Port 2 110 Configuration 

Port 3 can also provide the following control functions: 
handshake for Ports 0 and 2 (DAV and RDY);four external 
interrupt request signals (IRQO·IRQ3); timer input and 
output signals (TIN and TOUT) and Data Memory Select 
(DM), 

Auto Latch 

~ [jr-__ ~~ __ -__ -__ -__ -___ -__ ~~ __ ~IN~) 

Figure 11b. Simplified Port 3 Input Configuration 

supported by enabling interrupts in the interrupt service 
routine. 

Polled interrupt systems are also supported. To 
accommodate a polled siructure, any or all of the interrupt 
inputs can be masked and the Interrupt Request register 
polled to determine which of the interrupt requests needs 
service. Software initiated interrupts are supported by 
setting the apppropriate bit in the Interrupt Request Regis­
ter (IRQ--register 250, OFAH). 

Internal interrupt requests are sampled on the falling edge 
of the last cycle of every instruction. Externally generated 
interrupt requests (input toPort 3) are delayed by a 5 TpC 
filter, so in order to be valid at an interrupt sample pOint. the 
interrupt request must be valid STpC before the falling edge 
of the last clock cycle of the currently executing instruction. 

185 



When the Z86C91 samples a valid interrupt request, the 
next 48 (external) clock cycles are used to prioritize the 
interrupt, and push the two PC bytes and the FLAGS 
register on the stack. The following 9 cycles are used to 
fetch the interrupt vector from extemal memory. The first 

CLOCK 

The on-chip oscillator has a high-gain, parallel resonant 
amplifier for connection to a crystal, ceramic resonator, or 
resonant LC circuit. A CMOS or TIL level clock oscillator 
is· also acceptable. Unlike its NMOS counterpart, the 
Z86C91 clock should be driven single-ended with the 
XT AL2 output left floatillg. 

A low level clock source (crystal, resonator, or parallel LC 
combination) should be connected across XTAL1 and 
XTAL2 with capacitor "legs" from each pin to ground. 
Table 1 shows recommended capacitor values for the 
oscillator circuit in figure 12. 

Oscillator CL(min) CL (max) 
Type 

Crystal 12pF 60pF 
Ceramic 12pF 60pF 
Resonator 
LC Circuit 33pF 47pF 

Table 1 Recommended capacitor values for 
various types of oscillator circuits. 

RESET 

To avoid asynchronous and noisy RESET problems, the 
Z86C91 is equipped with a RESET filter of four external 
clocks (4TpC). If the external RESET signal is less than 
4TpC in duration, no RESET will occur. 

On the fifth clock after the RESET is detected, an internal 
RST Signal is latched and held for. an internal register count 
of 18 external" clocks, or for the duratio!'! of the external 

186 

byte of the interrupt service routine is fetched beginning on 
the 58th TpC cycle following the intemal sample point, 
which corresponds to the 63rd TpC cycle following the 
extemal interrupt sample point. 

28 
... ____ 3~ XTAU 

2 XTAL2 

Figure 12. Z86C91 Oscillator Configuration 

CRYSTAL TYPE 

For a crystal clock. input, the Z8 requires the following 
specificatio"!s: 

• AT cut, parallel resonant 

• FundamentatType 

• Series resistance, R • .s. 1000 

• Capacitance Co.s. 30pF 

• Frequency 20M Hz maximum 

RESET, whichever is longer. During the RESET cycle, OS 
is held active low while AS cycles at a rate of TpC/2. 

Program execution begins at location OOOC 5-10 TpC 
. cycles after RST is released. 

For power-on RE$ET, the RESETtime must be held low for 
50mS, or until Vee is stable, whichever is longer. 



INSTRUCTION SET NOTATION 

Addressing Modes. The following notation is used to 
describe the addressing modes and instruction operations 
as shown in the instruction summary. 

IRR I ndirect register pair or indirect working-register 
pair address 

Irr Indirect working-register pair only 
X Indexed address 
DA Direct address 
RA Relative address 
1M Immediate 
R Register or working-register address 
r Working-register address only 
IR Indirect-register or indirect working-register 

address 
Ir Indirect working-register address only 
RR Register pair or working register pair address 

Symbols. The following symbols are used in describing the 
instruction set. 

dst Destination location or contents 
src 
cc 
@ 

Source location or contents 
Condition code (see list) 
Indirect address prefix 

SP 
PC 
FLAGS 
RP 
IMR 

Stack pointer (control registers 254-255) 
Program counter 
Flag register (control register 252) 
Register pointer (control register 253) 
Interrupt mask register (control register 251) 

CONDITION CODES 

Value Mnemonic 

1000 Always true 

0111 C Carry 

1111 NC No carry 

0110 Z Zero 

1110 NZ Not zero 

1101 PL Plus 

0101 MI Minus 

0100 OV Overflow 

1100 NOV No overflow 

0110 EQ Equal 

1110 NE Not equal 

Assignment of a vi,llue is indicated by the symbol "+-':For 
example, 

dst - dst + src 

indicates that the source data is added to the destination 
data and the result is stored in the destination location. The 
notation "addr(n)" is used to refer to bit "n" of a given 
location. For example, 

dst (7) 

refers to bit 7 of the destination operand. 

Flags. Control Register R252 contains the following six 
flags: . 

C Carry flag 
Z Zero flag 
S Sign flag 
V Overflow flag 
D Decimal-adjust flag 
H Half-carry flag 

Affected flags are indicated by: 

o Cleared to zero 
1 Set to' one 
* Set or cleared according to operation 

Unaffected 
X Undefined 

Meaning Flags Set 

C = 1 

C=O 

Z = 1 

Z=O 

S = 0 

S = 1 

V = 1 

V=O 

Z = 1 

Z=O 

1001 GE Greater than or equal (SXORV) = 0 

0001 LT Less than (SXORV) = 1 

1010 GT Greater than [Z OR (SXOR V)] = 0 

0010 LE Less than or equal [Z OR (S XOR V)] = 1 

1111 UGE Unsigned greater than or equal C=O 

0111 ULT Unsigned less than C = 1 

1011 UGT UnSigned greater than (C = 0 AND Z = 0) = 1 

0011 ULE. Unsigned less than or equal (CORZ) = 1. 

0000 Never true 

187 



OPC MODE 

dst/src OR It 1 1 01 dst/sre I 

OPC I OR 11 1 1 01 dst dst 

OPC 

VALUE 

ope MODE 

dst sre 

MODE OPC 

dstlsrc srcfdst 

dst/src OPC 
srcJdst OR l' 1 1 01 sre 

dst I OPC 

VALUE 

I dst/CC R~ OPC 

Opc 

dst OPG 

CCF, 01, EI, fRET, ~OP, 
RCF, RET, SCF 

INCr 

One-Byte Instructions 

CLR, CPL, DA, DEC, OPC MODE 
DECW, tNC, INCW, POP, sre 
PUSH, RL, RLC, RR, 
RRC, SRA, SWAP dst 

JP, CALL (Indirect) 

SRP 

MODE ope 
sre 

ADC, ADD, AND, 
dst CP, OR, S8C, SUB, 

TCM, TM, XOR 

LD, LDE, LDEI, 
MODE OPC 

LDC, LOCI 

LD 
ee OPC 

DAu 

DAL 

LD 

OPC 

DAu 

DJNZ, JR DAL 

STOP/HALT 

Two-Byte Instructions 

Figure 13_ Instruction Formats 

INSTRUCTION SUMMARY 

ADC, ADD, AND, CP, 

OR 1 1 1 0 sre LD, OR, SBC, SUB, 
TeM, TM,XOR 

OR 1 1 1 0 dsl 

ADC, ADD, AND, CP, 

OR 1,,101 dst LD, OR, SBC, SUB, 
TCM, TM, XOR 

LD 

OR 1 1 1 0 sre 

OR 1 1 1 0 dsl 

LD 

JP 

CALL 

Three-Byte Instructions 

AddrMode Opcode Flags Affected AddrMode Opcode Flags Affected 
Instruction Byte 
and Operation dst src (Hex) CZSVDH 

ADCdst,src (Note 1) 10 * * * * o * 
dst--dst + src + C 

ADDdst,src (Note 1) 00 * * * * o * 
dst ..... dst + src 

ANDdst,src (Note 1) 50 -* * 0--
dst +- dst AN 0 src 

CALLdst DA 06 ------
Sp .... Sp - 2 IRR 04 
@SP .... PC; PC .... dst 

CCF EF *-----
C .... NOTC 

CLRdst R BO ------
dst .... O IR B1 

COMdst R 60 -**0--
dst .... NOTdst IR 61 

CPdst,src (Note 1) AD * * * *--
dst - src 

DAdst R 40 * * * x--
dst .... OAdst IR 41 

188 

Instruction " 
and Operation 'dst 

DECdst R 
dst .... dst - 1 IR 

DECWdst RR 
dst .... dst - 1 IR 

01 
IMR (7) .... 0 

DJNZr,dst RA 
r .... r -1 
iir;/o,O 

PC"" PC + dst 
Range: +127, -128 

EI 
IMR(7) .... 1 

HALT 

INCdst 
dst .... dst + 1 

R 
IR 

INCWdst RR 
dst ..... dst + 1 IR 

src 
Byte 
(Hex) 

00 
01 

80 
81 

8F 

rA 
r=O-F 

9F 

7F 

CZSVDH 

-***--

~***--

rE - * * *--
r = 0 - F 

20 
21 



INSTRUCTION SUMMARY (Continued) 

Instruction 
and Operation 

Addr Mode Opcode Flags Affected 
Byte 

. dst sre (Hex) C Z S V D H 

IRET SF 
FLAGS .... @SP; SP .... SP + 1 
PC .... @Sp;Sp .... Sp + 2; IMR(7) .... 1 

JPcc,dst 
ifcc is true 

PC .... dst 

JR cC,dst 
if cc is true, 

PC"" PC + dst 
Range: +127, -128 

LDdst,src 
dst +-src 

LDCdst,src 
dst .... src 

LDCI dst,src 
dst .... src 
r+-r + 1; rr .... rr + 
1 

LDEdst,src 
dst .... src 

LDEI dst,src 
dst .... src 
r .... r + 1; rr+-rr + 1 

NOP 

ORdst,src 
dst .... dst OR src 

DA 

IRR 

RA 

r 
R 

r 
X 
r 
Ir 
R 
R 
R 
IR 
IR 

r 
Irr 

1m 
R 

X 
r 
Ir 
r 
R 
IR 
1M 
1M 
R 

Irr 

Ir Irr 
Irr Ir 

r Irr 
Irr 

Ir Irr 
Irr Ir 

(Note 1) 

POPdst R 
dst .... @SP; IR 
SP-SP + 1 

PUSHsrc 
Sp .... Sp - 1; @SP .... src 

RCF 
c .... O 

RET 
PC .... @SP; SP .... SP + 2 

RL dst 1:==1 R 
0~IR 

A 
IR 

cD 
c = 0 - F 

30 

cS 
c = 0 - F 

rC 
r8 
r9 

r = 0 - F 
C7 
D7 
E3 
F3 
E4 
E5 
E6 
E7 
F5 

C2 
D2 

C3 
D3 

82 
92 

83 
93 

FF 

40 

50 
51 

70 
71 

CF 

AF 

90 
91 

****** 

-**0--

O---~-

****--

Instruction 
and Operation 

Addr Mode Opcode Flags Affected 
Byte 

dst src (Hex) CZSVDH 

RLC dst r=-~ R 
~IR 

RR dst lriJ LciJ R 
c 7 0 IR 

RRCdstr=~R 
~IR 

SBCdst,src (Note 1) 
dst .... dst .... src +- C 

SCF 
C+-1 

SRAds1r=~R 
~~IR 

SRPsrc 
RP .... src 

STOP 

1m 

SUBdst,src 
dst .... dst .... src 

(Note 1) 

SWAPdst 6 R 
I, .----"- oliR 

TCM dst,src (Note 1) 
(NOT dst) AND src 

TMdst,src 
dstANDsrc 

XORdst,src 
dst .... dst XOR src 

(Note 1) 

(Note 1) 

10 
11 

EO 
El 

CO 
Cl 

3D 

DO 
Dl 

31 

6F 

20 

FO 
Fl 

60 

70 

SO 

****--

* * * * 

****--

1-----

***0--

X**X--

-**0--

-**0--

-**0--

NOTE: These instructions have an identical set of addressing modes, 
which are encoded for brevity. The first opcode nibble is found in 
the instruction set table above. The second nibble is expressed 
symbolically by a 0 in this table, and its value is found in the 
following table to the left of the applicable addressing mode pair. 

For example, the opcode of an ADC instruction using the 
addressing.modes r (destination) and Ir (source) is 13. 

AddrMode 

dst src 

R 

R 

R 

IR 

Ir 

R 

IR 

1M 

1M 

Lower 
Opcode Nibble 

189 



REGISTERS R240sI0 
Serial I/O Register 

(FOH Read/Write) 

'---- SERIAL OATA (00 "" LSB) 

R241 TMR 
Time Mode Register 

(F1 H; Read/Write) 

NOT USEO = 00 -.J 1 = LOAD To 

~~ g~i ~ ~~ 0 '" DISABLE To COUNT 

To" MODES j ~~o = NO FUNCTION 

INTERNAL CLOCK OUT", 11 1 '" ENABL!=O To COUNT 

EXTERNAL CLOCK IN~IOTM~DO~S ~ ~ ~gA~U~CTlON 
GATE INPUT = 01 0 = DISABLE TI COUNT 

(NON'R~~~~g~~~~~~~) "" 10 1 '" ENABLE T 1 COUNT 

TRIGGER INPUT", 11 
(RETRIGGERABLE) 

R242 T1 
Counter Timer 1 Register 

(F2H; Read/WrJte) -

R243 PRE1 
Prescaler 1 Register 

(F3H: Write Only) 

~LCOUNTMODE 
1 '" Tl MODUlO·N 

• 0 '" T 1 SINGLE·PASS 

CLOCK SOURCE 
1 TI INTERNAL 

, 0 11 EXTERNAL 
TIMING INPUT 
(TIN) MODE 

PRESCAlER MODULO 
(RANGE 1-64 DECIMAL 
01-00 HEX) 

R244 TO 
Counter/Timer 0 Register 

(F4H: Read/Write) 

R245 PREO 
Prescaler 0 Register 

(F5H; Write Only) 

~
LCOUNTMODE 

• 0 = To SINGLE·PASS 
1 = To MOOULO·N 

RESERVED (MUST BE 0) 

PRESCALER MODULO 
(RANGE: 1-64 DECIMAL 
01-00 HEX) 

R246 P2M 
Pori 2 Mode Register 

(F6H; Write Only) 

R247 P3M 
Port 3 Mode Register 

(F7H; Write Only) 

1001 Lo PORT 2 PULL-UPS OPEN DRAIN L' PORT.2 PULL·UPS ACTlVE 

RESERVED (MUST BE 0) 

o P3z = INPUT P3s " OUTPUT 
1 P32 = DAVO/RoVO P3s =- Royo/DAVO 

00 P33 = INPUT P34 = OUTPUT 

~1b}P33=INPUT P34=DM 

1 1 RESERVED 

o P3t = INPUr(T1N) P3s = OUTPUT (Tour) 
1 P3t = D~V2/RDY2 P3s -,- ROY2loAV2 

o P30 = INPUT P3r = OUTPUT 
1 P30 _- SERIAL IN P3r SERIAL OUT 

'---------~ ~:=:i~ g~F 

Figure 14. Control Registers 

190 



R248P01M 
Port 0 Mode Register 

(F8H; Write Only) 

I D, I 0.1 D. i D. ! D, I D, I 0, 100 I 

,.O'.PO' MODE:] ~-r POo·PO, MODE OUTPUT", 00 ~ L 00 '" OUTPUT 
INPUT", 01 ' 01 '" INPUT 

A'2~A" '" lX lX = Aa-A" 

EXTERNAL STACK SELECTION 
MEMORY TIMING 0 = EXTERNAL 
~ NORMAL", 0 1 = INTERNAL 

*EXTENDED = 1 

RESERVED (MUST BE 0) 

·ALWAYS EXTENDED TIMING AFTER RESET 

R2491PR 
Interrupt Priority Register 

(F9H; Write Only) 

I~I~I~I~I~I~I~I~I 

'""." J I I I [ j .,-" ..... ' ••• RESERVED :0 000 ' 
IRQ3, IROS PRIORITY (GROUP A) C ,> A > B = 001 

o = IROS :;. IRDJ A > B > C = 010 
1 =- IRQJ > IROS A > C > B = 011 

B > C > A = 100 
IROO, IRQ2 PRIORITY (GROUP 8) C > B > A = 101 

o IRQ2:> IRao , B > A > C = 110 
1 "- IROO > IRQ2 . RESERVED = 111 

IRQt, IRQ4 PRIORITY (GROUP C) 
o ~ IRQt > IRQ4 
, " IRQ4 > IRQt 

R250lRQ 
Interrupt Request Register 

(FAH; Read/Write) 

RESERVED (MUsl BE 0) T C='RQO 
IR01 
IRQ2 
IRaJ 
IRQ4 
IROS 

R2511MR 
Interrupt Mask Register 

(FBH; Read/Write) 

P32 INPUT .100 = IROO) 
P331NPUT 
P3tlNPUT 
P30 INPUT, SERIAL INPUT 
To, SERIAL OUTPUT 
T, 

Il ____ c= ___ 1 ENABLES IROo-tROS 
(00 = IROO) 

RESERVED (MUST BE 0) 

L-_______ 1 ENABLES INTERRUPTS 

REGISTER 
POINTER 

Figure14. Control Registers (Continued) 

R252 FLAGS 
Flag Register 

(FCH Read/Write) 

LUSER FLAG F2 

. HALF CARRY FlAG ~~~
I LUSERFLAGF1 

DECIMAL ADJUST FLAG 

OVERFLOW FlAG 

R253 RP 
Register Pointer 
(FDH; Read/Write) 

SIGN FLAG 

ZERO FLAG 

CARRY FLAG 

LDON'TCARE 

R254 SPH 
Stack Pointer 

(FEH; Read/Write) 

R255SPL 
Stack Pointer 

(FFH;,Read/Wrlte) 

191 



OPCODEMAP 
Lower Nibble (Hex) 

A B C o E F 

'6516-5 
-------

65 6.5 105 105 10.5 105 6.5 6.5 12110.5 12110.0 65 12110 0 65 
I DEC ' DEC ADD ADD ADD ADD ADD ADD LD LD DJNZ JR LD JP INC 

R, IR, (, f2 r1 Ir2 R2 R, IR2·R, R,IM IR,.IM f,.R2 f2· R , f, RA cc.RA filM cc DA rl 
~.----

65 65 6.5 6.5 10.5 10,5 10.5 10.5 
RLC RLC ADC ADC ADC ADC ADC ADC 
R, IR,1 (, ,(2 (,. lr2 R2·R, IR2,R, R,.IM IR"IM 

-~ 

65 65 6,5 6.5 10.5 10,5 10,5 10,5 
INC INC SUB SUB SUB SUB SUB SUB 
R, IR, f,.r2 (,. lr2 R2,R, IR2,R, R,.IM IR

"
IM 

-
8.0 6.1 6,5 6.5 10.5 10,5 10,5 10.5 
JP SRP SBC SBC SBC SBC SBC SBC 

IRR, 1M f'·(2 (,. lr2 R2·R, IR2,R, R,IM IR
"

IM 
-~~ 

8.5 8.5 6,5 6.5 10.5 10,5 10,5 10.5 
DA DA OR OR OR OR OR OR 
R, IR, (,J2 (, ,lf2 R2,R, IR2,R, R"IM IR,.IM 

-
10.5 10,5 6.5 6,5 10,5 10,5 10,5 10,5 
POP POP AND AND AND AND AND AND 
R, IR, f,J2 (,. lr2 R2,R, IR2,R, R,.IM IR"IM 

6.5 6.5 6.5 6,5 ' 10.5 10,5 10.5 10.5 6':0 
COM COM TCM TCM TCM TCM TCM TCM STOP 

R, IR, (',[2 f,. lr2 R2,R , IR2,R, R,.IM IR"IM 
-

10112.1 12114,1 6.5 6,5 10.5 10,5 10.5 10,5 7,0 
PUSH PUSH TM TM TM TM TM TM HALT 

R2 IR2 (',[2 (,. lf2 R2,R, IR2,R, R"IM IR,.IM 

10.5 10,5 12.0 18,0 61 
DECW DECW LDE LDEI 01 

RR, IR, (, ,lrr2 Ir,.lrr2 
-

6,5 6,5 12,0 18,0 61 
RL RL LDE LDEI EI 
R, IR, f2 In, Ir2·lrr, 

-
10,5 10.5 6.5 6,5 10.5 10,.5 10.5 10,5 14.0 

A INCW INCW CP CP CP CP CP CP RET 
RR, IR, f,.r2 f" lr2 R2,R, IR2·R, R,.IM IR"IM 

-
6.5 6,5 6.5 6,5 10.5 10,5 10.5 10.5 160 

B CLR CLR XOR XOR XOR XOR XOR XOR IRET 
R, IR, ('·(2 f,.lr2 R2·R, IR2·R, R,IM IR

"
IM 

-
6,5 6.5 12.0 18,0 10.5 65 

C , RRC RRC LDC LOCI LD RCF 
R, IR, (,. lrf2 Ir"lrr2 f,.x,R2 

6.5 65 12.0 18,0 20,0 20.0 10.5 ~ 
o SRA SRA LDC LOCI CALL" CALL LD SCF 

R, IR'I r2,lrr, Ir2,lrr, IRR, DA f2,X.R, 
-

6,5 6.5 6,5 10.5 10.5 10,5 10.5 65 
E RR RR LD LD LD LD LD CCF 

R, IR, r" IR2 R2·R, IR2,R, R,.IM IR"IM 

8,5 8.5 6.5 10,5 6D 
F SWAP SWAP LD LD NOP 

R, IR1 Ir,J2 R2,IR, 

...... ----.... v..-----# ...... ----.... v ... -----'-"# ...... -----.... v ... -----.... # ~"--v---" 

EXECUTION 
CYCLES 

FIRST 
OPERAND 

LOWER 
OPCODE 
NIB!LE 

4 

*2·byte Instruction, felch cycle appears as a 3-byte instruction 

192 

PIPELINE 
CYCLES 

MNEMONIC 

SECOND 
OPERAND 

Bytes per Instruction 

2 

Legend: 
R = 8-bit address 
r = 4-bit address 
R, or (, = Dst address 
R2 or (2 = Src address 

Sequence: 
Opcode, First Operand, Second Operand 

NOTE: The blank areas are not defmed. 



ABSOWTE MAXIMUM RATINGS 

Voltages on all pins with respect 
to GND , , ' , , , ' , , , , , , , , , , , ' , , , ' , ,- 0.3V to + 7.0V 

Operating Ambient 
Temperature .... , 

Storage Temperature. 
..... See Ordering Information 
. ...... , .-65°Cto +150°C 

STANDARD TEST CONDITIONS 
\ 

The DC characteristics listed below apply for the following 
standard test conditions, unless otherwise noted. All 
voltages are referenced to GND. Positive current flows into 
the referenced pin. 

Standard conditions are as follows: 

• + 4.5V ~ Vee ~ +S.5V 

• GND = OV 

• O°C" TA" + 7Q°C for S (Standard Temperature) 

DC CHARACTERISTICS 

Symbol Parameter Min Typ 

VCH Clock Input High VoHage 3.SV 
VOL Clock Input Low Voltage -0.3 
VIH Input High Voltage 2.0 
Vll Input Low Voltage -0.3 
VRH Reset Input Low Voltage 3.S 
VRl Reset Input Low Voltage -0.3 
VOH Output High Voltage 2.4 
VOH Output High Voltage Vcc-100mV 
Va. Output Low Voltage 
III Input Leakage -10 

'101. Output Leakage -10 
I'R Reset Input Current 
Icc Supply Current 
Icc, Halt Mode Current 5 
1002 Stop Mode Current 

Stresses greater than those listed under Absolute Maximum Ratings may 
cause permanent damage to the device This IS a stress rallng only. 
operation of the device at any condition above those Indicated In the 
operational sections of these speCIfications is not Implied Exposure to 
absolute maximum rating conditions for extended periods may affect 
device reliability, 

Max 

0.4 
10 
10 

-SO 

10 

Unit 

V 
V 

V 

V 
uA 
uA 
uA 
mA 
mA 
uA 

+5V 

. 2,'K 

Figure 12. Test Load 1 

Condition 

Driven by Extemal Clock Generator 
Driven by Extemal Clock Generator 

10H =-2mA 
IOH = -100uA 
101. = 5mA 
VIN =OV,Voc 
VIN = OV,Voc » 
4.SVs,'v ooSS.5V, V Rl =OV 
All outputs and 110 pins floating 
All inputs driven at rail 
All inputs driven at rail 

193 



PORT 0, 
DM 

PORT 1 

1----(0~----.... 1-- 18 

DS 
(READ) 

----~--~·--_r----~_i1.------~0~-------+1r_--~---­

PORT 1 OO-D7 OUT 

DS ---------------~----_i 1.---~0~---1 }--------
(WRITE) 

Figure 13. External 110 or Memory Read/Write 

AC CHARACTERISTICS 
Extemall/O or Memory read and Write Timing 

12MHz 16MHz 20M Hz 
Number Symbol Parameter Min Max Min Max Min Max 

1 TdA(AS) Address Valid to AS tDelay 35 25 20 
2 TdAS(A) AS tlo Address Float Delay 45 35 25 
3 TdAS(DR) AStlo Read Data Req'd Valid 250 180 150 
4 TwAS AS Low Width 55 40 30 
5 TdAZ(DS) Address Float to DS ~ 0 0 0 

6 TwDSR OS (Read) Low Width 185 135 105 
7 TwDSW DS (Write) Low Width 110 80 65 
8 TdDSR(DR) DSHo Read Data Req'd Valid 130 75 55 
9 ThDR(DS) Read Data to DStHoid Time 0 0 0 

. 10 TdDS(A) OS tlo Address Active Delay 65 50 40 

11 TdDS(AS) DS tlo ASmelay 45 35 25 
12 TdR/W(AS) RIW Valid to AStDelay 33 25 20 
13 TdDS(RIW) DStlo Rm Not Valid 50 35 25 
14 TdDW(DSW) Write Data Valid to DS~(Write) Delay 35 25 20 
15 TdDS(DW) DStio Write Data Not Valid Delay 55 35 25 

16 TdA(DR) Address Valid to Read Data Req'd Valid 310 230 180 
17 TdAS(DS) AStio DSmelay 65 45 35 
18 TdDl(DS) Data Input Setup to DS t 75 60 50 

19 TdDM(AS) DM Valid to ASmelay 50 30 20 

Notes 
1. When using extended memory timing add 2TpC + Test Load 1 
2. Timing numbers given are for minimum TpC • All timing references use 2.0V for a 
3. See clock cycle dependent characteristics table logic "I" and O.SV for a logic "0" 

4. 20 MHz timing Is preliminary and subject to change 

194 

. Units Notes 

ns 2,3,4 
ns 2,3,4 
ns 1,2,3,4 
ns 2,3,4 
ns 

ns 1,2,3,4 
ns 1,2,3,4 
ns 1,2,3,4 
ns 2,3,4 
ns 2,3,4 

ns 2,3,4 
ns 2,3,4 
ns 2,3,4 
ns 2,3,4 
ns 2,3,4 

ns 1,2,3,4 
ns 2,3,4 
ns 1,2,3,4 

ns 2,3,4 



CLOCK 

T,N 

IRQN~' ~ 
.~~. ~ ~ 

Figure 14. Additional Timing 

AC CHARACTERISTICS 
Additional Timing Table 

Number Symbol Parameter ' 

1 TpC Input Clock Period 
2 TrC,TfC Clock Input Rise & Fall Times 
3 TwC Input Clock Width 
4 TwTinL Timer Input Low Width 
5 TwTinH Timer Input High Width 

6 TpTin Timer Input Period 
7 TrTin,Tmn Timer Input Rise and Fall Times 
8A TwlL Interrupt Request Input Low Time 
88 TwlL Interrupt Request Input Low Time 
9 TwlH Interrupt Request Input High Time 

Noles: 

1. clOck timing references use 3.8 V for a logic "1" and 0.8 V for a logic ''0'' 
2. l1ming references use 2.0 V for a logic "1" and 0.8 V for a logic ''0'' 
3. Interrupt references request via Port 3 
4. Interrupt request via Port 3 (PS, - P3.) 
5. Interrupt request via PSO 
6. 20 MHz timing is pranmlnary and subject to change. 

Units in nanoseconds (ns) 

12MHz 
Min Max 

83 1000 
15 

37 
75 
3TpC 

8TpC 
100 
70 
3TpC 
3TpC 

16 MHz 20 MHz 
Min Max Min Max Notes 

62.5 1000 50 1000 1 
10 10 1 

21 15 1 
75 75 2 
3TpC 3TpC 2 

8TpC 8TpC 2 
100 100 2 
70 70 2,4 
3TpC 3TpC 2,5 
3TpC 3TpC 2,3 

195 



DATAIN -v DATA INVALID V-55 - - - - -N;;:~A~A-;:;;; - - - - - --

---./'-.~-------"'---55 - - - - - - - -- - - - - - - -

k-,-J b 2 >1 . 

5Aii ----~~=jn -~~~ ... ::- -- jL,--?>+E-I<_.j" 
RDY ---------_ 

'" ,/ DALAYED RDY / ,-, ---5'5--.../- - - - - --./ 

Figure 15a. Input Handshake Timing 

DATA OUT ==><--------------------55- - - - - - -- - -
DATA OUT VALID NEXT DATA OUT VALID 

-----------.....-----55- - - - - - - - - -

Figure 15b. Output Handshake Timing 

AC CHARACTERISTICS 
Handshake Timing 

12,16,20 MHz 
Number Symbol Parameter Min Max Notes (Data Direction) 

1 TsDI(DAV) Data In Setup Time 0 In 
2 ThDI(DAV) Data In Hold Time 145 In 
3 TwDAV Data Available Width 110 In 
4 TdDAV(RDY) DAV Ho RDY melay 115 In 
5 TdDAV(RDY) DAVUo RDYtDelay 115 In 
6 TdRDY(DAV) RDYtio DAWDelay 0 In 
7 TdDO(DAV) Data Out to DAV ~ Delay TpC Out 
8 T dDAVd(RDY) DAVHo RDymelay 0 Out 
9 TdRDY(DAV) RDYHo DAVfDeiay 115 Out 
10 TwRDY RDYWidth 110 Out 
11~ TdRDY(DAV) RDYfto DAVWelay 115 Out 

196 



CLOCK DEPENDENT AC CHARACTERISTICS 
ExtemalllO or Memory Read and Write Timing 

Number 

1 
2 
3 
4 
6 
7 
8 
(O 
11 
12 
13 
14 
15 
16 
17 
18 
19 

Symbol 

TdA(AS) 
TdAS(A) 
TdAS(DR) 
TwAS 
TwDSR 
TwDSW 

. TdDSR(DR) 
TdDS(A) 
TdDS(AS) 
TdRIW(AS) 
TdDS(RIW) 
TdDW(DSW) 
TdDS(DW) 
TdA(OR) 
TdAS(DS) 
TsDI(DS) 
TdDM(AS) 

Equation 

O.4TpC+O.32 
O.59TpC-3.25 
2.83TpC+6.14 
O.66TpC-1.65 
2.33TpC-10.56 
1.27TpC+ 1.67 
1.97TPC-42.5 
O.8TpC 
O.59TpC-3.14 
OATpC 
O.8TpC-15 
O.4TpC 
O.88TpC-19 
4TpC-20 
O.91TpC-10.7 
O.8TpC-10 
O.9TpC-26.3 

197 



188 



~ ZiIm Application Notes/Technical Articles 

AUGUST 1989 

Z8 Family 
Design Handbook 

199 



MEMJRY SPACE AND REGISTER 

ORGANIZATION 

M3mory Space 

The Z8 can address up to l26K bytes of 
program and data memory separately from the on 
chip registers. The l6-bi t program counter 
provides for 64K bytes of program memory, the 
first 2K bytes of which are internal to the Z8. 
The remaining 62K bytes of program meIOOry are 
located externally and can be implemented with 
RCf.!, EPRCf.!, or' RAM. 

The 62K bytes of data memory are also loc­
ated external to tne Z8 and begin with location 
2048. The two address spaces, program memory 
and data memory, are individual~ selected by 
the Data Memory Select output (I:M) which is 
available from 'Port 3. 

The Program Memory Map and the Data M3IOOry 
Map are shown in Figure 2. 

Program Memory Map Data Memory Map 

65535 • 5535 

EXTERNAL 
ROM OR RAM .... 

204' 
LOCATION OF FIRST ON-CHIP 

BYTE OF INSTRUCTION ~ ROM 
EXECUTED AFTER RESET 

EXTERNAL ------------

200 

DATA 12 MEMOAY 
IROS ,. IAQS 

• IRQ4 

• IRQ4 
INTERRUPT VECTOA 7 IH03 

CLOWER 8YTE) • IRQ3 

• r- IR02 
IR02 .... 

INTERRUPT VECTOR tR01 "47 
(UPPEA 8YTEj 

IRol 

IROO NOT ADDRESSABLE 

IROO 

Figure 2 Program Memory Map And Data Memory Map 

External meIOOry access is accomplished by 
the 28 through its I/O Ports. When less than 
256 bytes of external meIOOry are required, Port 
1 is programmed for the multiplexed address/data 
IOOde lAD0-AD7). In this configuratlon 8-bits of 
address and 8-bits of data are time multiplexed 
on the 8 1/0 lines for meIOOry transfers. Tne 
memory "nandshake" control lines are provided by 
the Address Strobe (AS'), Data Strobe (1lS), and 
the Read/Write (R/W) pins on the ZS. If program 
and data are included in the external meIOOry 
space, the Data Memory Select (m) function may 
be programmed into the Port 3 Mode register. 
When this is done, the 'IN signal is available on 

line 4 of the Port 3 (P34) to ,select between 
program and data meIOOry for external meIOOry oper­
ations. 

Port 0 is used to provide the additlonal 
address bits, for external memory beyond the 
first 256 locations up to a full l6-bits of 
external meIOOry address. It becomes ilTl!lediately 
obvious that the first 8-bits of external memory 
address from Port 1 must be latched externally 
to the Z8 so that program or data may be trans­
ferred over the same 8 lines during the external 
memory transaction machine cycle. The AS, m, 
and R/W control lines simplify the required 
interface logic. The tllning for external memory 
transactions is given in Figure 3. 

Reglsters 

The ZS'has 144 8-bit registers including 
four Port registers (RD-R3), 124 general purpose 
registers (R4-Rl27), and 16 control and status 
register (R240-R255). The 144 registers are all 
located in the same 8-bit address space to allow 
any Z8 instruction to operate on them. The 124 
general purpose registers can function as accum­
ulators, address pointers, or index registers • 
The registers are read wnen they are referenced 
as source registers, and written when they are 
referenced as destination registers. Registers 
may be addressed directly with an 8-bit address, 
or indirectly through another register with an 
8-bit address, or Wlth a 4-bit address and Reg­
ister Pointer. 

The entire Z8 register space may be divided 
into 16, contiguous Working Register Areas, each 
having 16 registers. A control register, called 
the Register Pointer, may be loaded with the 
most significant nibble of a 'Working Reglster 
Area address. The Register POlnter'provides for 
the selection of the WorKing Register Area, and 
allows registers within that area to be selected 
with a 4-bit address. 

The Z8 register organization is shown in 
Figure 4. 

Stacks 

The Z8 provides for stack operations 
through the use of a stack pointer, and the 
stack may be located ln the internal register' 
'space or in the external data meIOOry space. The 
"stack selectlon" bit (D2) in the Port 0-1 Mode 
control register selects an internal or external 
stack. When the stack is located internally, 
reglster 255 contains an 8-bit staCK pointer and 
register 254 is available as a general purpose 
register. If an external stack is USed, register 
255 or registers 254 and .255 may be used as the 
stack pointer depending on the anticipated 
"depth" of the stack. When registers 254 and 
255 are both used, the stack pointer is a full 
l6-bits wide. The CALL, IRET, RET, PUSH, and 



pop instructions are Z8 instructions which in­
clude implicit stack operations. 

I/O S1RUcruRE 

Parallel I/O 

The Z8 microcomputer has 32 lines of I/O 
arranged as four 8-bit ports. All of the I/O 
ports are TTL compatible and are configurable as 
input, output, input/output, or address/data. 
The handshake control lines for Ports 0, 1; and 
2 are bits from Port 3 that have been programmed 
through a Mode control register, except for AS, 
~, and R/Wwhich are availaole as separate Z8 
pins. The I/O ports are accessed as separate 
internal registers by the Z8. Ports 0 and 1 
share one Mode control register, and Ports 2 
and 3 each have a Mode control register for 
configuring the port. 

Port 0 can be programmed to be an I/O port 
or as an a4dress output port. M:>re specifically 
Port 0 can be configured to be an 8-bit I/O port 
or a 4-bit address output port (AS-All) for ' 
external memory and one 4-bit I/O port, or an 
8-bit address output port (AS-Al5) for external 
memry. 

Port 1 can be programmed as an I/O port 
(with or without handshake), or an address/data 
port (~-AD7) for interfacing with external 
memory. If Port 1 is programmed to be an add­
ress/data port, it cannot be accessed as a reg­
ister. 

Port 2 can be configured as individual 
input or output bits, and Port 3 can be program­
med to be parallel I/O bits, and/or serial I/O 
bits, and/or handshake control lines for the 
other ports. Figure 5 shows the port Mode 
registers. 

The off chip expansion capability using 
Ports 0 and 1 offers the added feature of being 
Z-Bus compatible. All Z-Bus compatible peri­
pheral chips that are available now, and will be 
available in the future, will interface directly 
W1 th the Z8 rultiplexed address/ data bus. 

Serial I/O 

As memtioned in the last section, Port 3 
can be PI'9grammed to be a serial I/O port with 
bits 0 and 7, the serial input and serial out­
~ut line~ respectively. The serial I/O capabil­
Ity proVldes for full duplex asynchronous serial 
data at rates up to 62.5K bits per second. The 
transmitted format is one start bit, eight data 
bits including odd parity lif parity is enab- -
led), and two stop bits. '!he received data 
format is one start bit, eight data bits and at 
least one stop bit. If parity is enabled, the 
eighth data bit received (bit 7) is replaced by 

a parity error flag which indicates a parity 
error if it is set to a ONE. 

Timer/Count~r TO is the baud rate generator 
and runs at It> times the serial data bit rate 
The receiver is double duffered and an inte~l 
interrupt (IRQ3) is generated when a Character 
i~ loaded ~to the :eceive buffer register. A 
dIfferent Internal Interrupt (IRq4) is generated 
when a character is transmitted. 

COUNI'ER/TIMERS 

The Z8 has two 8-bit programmable counter/ 
timers, each of which is driven by a program­
mable 6-bit prescaler. The TI pres caler can be 
driven by internal or externa clock sources, 
and the Tn prescaler is driven by the internal 
cloCk only. The two prescalers and the two 
counters are loaded through four control regis­
ters (see Figure 4) and when a counter/timer 
reaches the "end of count" a timer interrupt is 
generated (IRQ4 for TO' and IRQ5 for T ). The 
counter/timers can be programmed to sthp upon 
reaching the end of count, or to reload and 
continue counting. Since either counter (one at 
a time) can have its output available external 
to the Z8, and Counter/Timer Tl can have an 
external input, the two counters can oe cas­
caded. 

Port 3 can be programmed to provide timer 
outputs for external time base generation or 
trigger pulses. 

INl'ERRUPT S1RUcruRE 

The Z8 provides for six interrupts from 
eight different sources including four Port 3 
lines (P30-P33), serial in, serial out, and two 
counter/timers. These interrupts can be masked 
and prioritized using the Interrupt Mask Regis­
ter (register 251) and the Interrupt Priority 
Register (register 249). All interrupts can be 
<;lisabled with the master interrupt enable bit 
In the Interrupt Mask Hegister. 

Each of the six interrupts has a 16-bit 
interrupt vector that points to its interrupt 
service routine. These six 2-byte vectors are 
placed in the first twelve locations in the pro­
gram memory space (see Figure 2). 

When siDDJltaneous interrupts occur for 
~nabled interrupt sources, the Interrupt Prior­
Ity RegIster determines which interrupt is ser­
viced first. The priority is programmable in a 
way that 1s described by Figure 6. 

When an interrupt is recognized by the Z8, 
all other interrupts are disabled, the program 
counter and program control flags are saved, and 
the program counter is loaded with the corres­
ponding interrupt vector. Interrupts must be 
re-enabled by the user upon entenng the service 

201 



~ZiIm 

SECTION 

1 

202 

Introduction 
The 28 is the first microcomputer to offer 

both a highly integrated microcomputer on a 
single chip and a fully expandable micropro­
cessor for I/O-and memory-intensive applica­
tions. The 28 has two timer/counters, a UART, 
2K bytes internal ROM, !lnd a 144-byte inter­
nal register file including 124 bytes of RAM, 
32 bits of I/O, and 16 control and status reg­
isters. In addition, the 28 can address up to 
124K bytes of external program and data 
memory, which can provide full, memory­
mapped I/O capability. 

Acc~ssing Register Memory 
The 28 register space consists of four I/O 

ports, 16 control and status registers, and 124 
general-purpose registers. The general­
purpose registers are RAM areas typically used 
for accumulators, pointers, and stack area. 
This section describes these registers and how 
they are used. Bit manipulation and stack 
operations affecting the register space are 
discussed in Sections 4 and 5, respectively. 

2.1 Registers and Register Pairs. The 28 sup­
ports 8- bit registers and '16-bit register pairs. 
A register pair consists of an even-numbered 
register concatenated with the next higher 
numbered register (%00 and %01, %02 and 
%03, ... %7E and %7F, %FO and %Fl, ... 
%FE and %FF). A register pair must be 
addressed by reference to the even-numbered 
register. For example, 

%F1 and %F2 is not a valid register pair; 
%FO and %F1 is a valid register pair, 

addressed by reference to %FO. 

Register pairs may be incremented (INCW) 
and decremented (DECW) and are useful as 
pOinters for accessing program and external 
data memory. Section 3 discusses the use of 
register pairs for this purpose. 

A Programmer's Guide to 
the ZITI.! Microcomputer 

Application 
Note 
Doll Freund 

October 1980 

This application note describes the important 
features of the 28, with software examples that 
illustrate its power and ease of use. It is 
divided into sections by topic; the reader need 
not read each section sequentially, but may 
skip around to the sections of current interest. 

It is assumed that the reader is familiar with 
the 28 and its assembly language, as 
described in the following documents: 

• Z8 T~chnical Manual (03~3047-02) 
• Z8 PLZIASM Assembly Language Program­

ming Manual (03-3023-02) 

Any instruction which can reference or 
modify an 8-bit register can do so to any of the 
144 registers in the 28, regardless of the 
inherent nature of that register. Thus, I/O 

. ports, control, status, and general-purpose 
registers may all be accessed and manipulated 
without the need for 'special-purpose instruc­
tions. Similarly, instructions which reference 
or modify a 16-bit register pair can do so to 
any of the valid 72 register pairs. The only 
exceptions to this rule are: 

• The DJN2 (decrement and jump if non-zero) 
instruction may successfully operate on the 
g.eneral-purpose RAM registers (%04-%7F) 
only. 

• Six control registers are write-only registers 
and therefore, may be modified'only by 
such instructions as LOAD, POP, and 
CLEAR. Instructions such as OR and AND 
require that the current contents of the 
operand be readable and therefore will not 
function properly on the write-only 
registers. These registers are the following: 
the timer/counter prescalerregisters PRED 
and PREl, the port mode registers PDlM, 
P2M, and P3M, the interrupt priority 
register IPR. 



2. Accessing 
Register 
Memory 
(Continued) 

2.2 Register Pointer, Within the register 
addressing modes provided by the 28, a regis­
ter may be specified by its full 8- bit address 
(O-%7F, %FO-%FF) or by a short 4-bit 
address. In the latter case, the register is 
viewed as one of 16 working registers with-
in a working register group. Such a group 
must be aligned on a 16-byte boundary and is 
addressed by Register Pointer RP (%FD). As 
an example, assume the Register Pointer con­
tains %70, thus pointing to the working reg­
ister group from %70 to % 7F. The LD instruc­
tion may be used to initialize register %76 to 
an immediate value in one of two ways: 

LD %76,#1 !8-bit register address is given 
by instruction (3 byte instruc­
tion)! 

or 
LD R6,#1 ! 4-bit working register address 

is given by instruction; 4-bit 
working register group 
address is given by Register 
Pointer (2 byte instruction)! 

The address calc.ulation for the latter case 
is illustrated in Figure I. Notice that 4-bit 
working-register addressing offers code com­
pactness and fast execution compared to its 
8-bit counterpart. 

To modify the contents of the Register 
Pointer, the 28 provides the instruction 

SRP #value 

Execu tion of this instruction will load the 
upper four bits of the Register Pointer; the 
lower four bits are always set to zero. Although, 
a load instruction such as 

LD RP,#value 

could be used to perform the same function, 
SRP provides execution speed (six vs. ten 
cycles) and code space (two vs. three bytes) 
advantages over the LD instruction. The 
instruction 

SRP #%70 

is used to set the Register Pointer for the above 
example. 

(0000(0001( 

Figure I. Address Calculation Using the Register Pointer 

2.3 Context Switching. A typical function 
performed during an interrupt service routine 
is context switching. Context switching refers 
to the saving and subsequent restoring of the 
program counter, status, and registers of the 
interrupted task. During an interrupt machine 
cycle, the 28 automatically saves the Program 
Counter and status flags on the stack. It is the 
responsibility of the interrupt service routine to 
preserve the register space. The recommended 
means to this end is to allocate a specific por­
tion of the register file for use by the service 
routine. The service routine thus preserves the 
register sPilce of the interrupted task by avoid­
ing modification of registers not allocated as its 
own. The most efficient scheme with which to 
implement this function in the 28 is to allocate 
a working register group (or portion thereof)' to 
the interrupt service routine. In this way, the 
preservation of the interrupted task's registers 
is solely a malter of saving the Register Pointer 
on entry to the service routine, setting the 
Register Pointer to its own working register 
group, and restoring th~ Register Pointer prior 
to exiting the service routine. For example, 

assume such a register allocation scheme has 
been implemented in which the interrupt ser­
vice routine for IRQO may access only working 
register Group 4 (registers %40-%4F). The 
service routine for IRQO should be headed by 
the code sequence: 

PUSH RP Ipreserve Register Pointer of 
interrupted task! 

SRP #%40 laddress working register 
group 4! 

Before eXiting, the service routine should 
execute the instruction 

POP RP 

to restore the Register Pointer to its entry 
value. 

It should be noted that the technique 
described above need not be restricted to 
interrupt service routines. Such a technique 
might prove efficient for use by a subroutine 
requiring intermediate registers to produce its 
outputs. In this way, the calling task can 
assume that its environment is intact upon 
return from the subroutine. 

203 



2. Accessing 
Register 
Memory 
(Continued) 

204 

2.4 Addressing" Mode. The Z8 provides three 
addressing modes for accessing the register " 
space: Direct Register, Indirect Register, and 
"Indexed. 

2.4.1 Direct Register Addressing. This 
addressing mode is used when the target regis­
ter address is known at assembly time. Both" 
long (8-bit) register addressing and short 
(4-bit) working register addressing are sup­
ported in this mode. Most instructions sup­
porting this mode provide access to single 
8-bit.registers. For example: " 

LD %FE,#HI STACK 
!load register %FE "(SPH) with 
the upper 8-bits of the label 
STACK! 

AND O,MASKJEG 
!AND register 0 with register 
named MASKJEG! 

OR I,R5 lOR register I with working 
register 5! 

Increment word (INCW) and decrement 
word (DECW) are the only two Z8 instructions 
which access 16-bit operands. These instruc­
tions are illustrated below for the direct reg­
ister addressing mode. 

INCW RRO !increment working register 
pair RO, RI: 

DECW"%7E 

RI -- RI + 
RO -- RO + carry I 

!decrement working register 
pair %7E, %7F: 
%7F .... %7F -
%7E -- %7E - carry! 

Note that the instruction 

!NCW RR5 

will be flagged as an error by the assembl~r 
(RR5 not even-numbered). 

2.4.2 Indirect Register Addressing. In this 
addressing mode, the operand is pointed to by 
the register whose 8-bit register address or 
4-bit working register address is given by the 
instruction. This mode is used when the target 
register address is not known at assembly time 
and must be calculated during program execu­
tion. For example, assume registers %60-%7F 
contain a buIfer for output to the serial line via 
repetitive calls to procedure SERIAL_OUT. 
SERIAL_OUT expects working register 0 to 
hold the output character. The following 
instructions illustrate the use of the indirect 
addressing mode to accomplish this task: 

LD· Rl,#%20 
!working register I is the byte 
counter: output %20 bytes! 

LD R2,#%60" 

out_again: 

!working register 2 is the, buf­
fer pointer register! 

LD RQ,@R2 
!load into working register 0 
the byte pointed to by working 
register 2! ' 

INC R2 !increment pOinter! 
CALL SERIAL_OUT 

!output the pytel 
DJN2 RI,out _again 

!loop till done I 

Indirect addressing may also be used for 
accessing a 16-bit register pair via the INCW 
and DECW instructions. For example, 

!NCW @RO !increment the register pair 
whose address is contained in 
working register O! 

" DECW @%7F 
!decrement the register pair 
whose address is contained in 
register %7F! 

The contents of. registers RO and %7F should 
be even numbers for proper access; when 
referencing a register pair,· the least significant 
address bit is forced to the appropriate value 
by the 28. However, the register used to point 
to the register pair need not be an even­
numbered register. 

Since the indirect addressing mode permits 
calculation of a target address prior to the 
desired register access, this mode may be used 
to simulate other, more complex addressing 
modes. For example, the instruction 

SUB 4,BASE(R5) 

requires the indexed addressing mode which is 
not directly supported by the 28 SUBtract 
instruction. This instruction can be simulated 
as follows: 

LD R6,#BASE 
!working register 6 has the 
base address! 

ADD R6,R5 !calculate the target address! 
SUB 4,@R6 !now use indirect addreSSing to 

perform the actual subtract I 

Any available register or working register 
may be used in place of R6 in the 
above example. 

2.4.3 Indexed Addressing. The indexed 
addressipg mode is supported by the load 
instruction (LD) for the transference of bytes 
between a working register and another regis­
ter. The effective address of the latter register 
is given by the instruction which is offset by 
the contents of a deSignated working (index) 



2. Accessing 
Register 
Memory 
(Continued) 

SECTION 

3 

register.' This addressing mode provides 
efficient memory usage when addressing 
consecutive bytes in a block of register 
memory, such as a table or a buffer. The 
working register used as the index in 
the effective address calculation can 
serve the additional role of counter for 
control of a loop's duration. 

For example, assume an ASCII character 
buffer exists in register memory starting at 
address BUF for LENGTH bytes. In order 
to determine the logical length of the char­
acter string, the buffer should be scanned 
backward until the first nonoccurrence of a 
blank character. The following code 
sequence may be used to accomplish 
this task: 

LD RO,#LENGTH 

loop: 
LD 
CP 
JR 

! length of buffer! 
!starting at buffer end, look for 
1st non-blank! 

Rl ,BUF -l(RO) 
Rl,#' , 
ne,found 

!found non-blank! 
DJNZ RO,loop 

, ! look at next! 
alL_blanks: !length = O! 
found: 

5 instructions 
12 bytes 
1.5 p,s overhead 
10.5 p,s (average) per character tested 

At labels "all_blanks" and "found," RO 
contains the length of the character 
string. These labels may refer to the same 
location, but they are shown separately for 
an application where special processing is 
required for a string of zero length. To per­
form this task without indexed address-
ing would require a code sequence 
such as: 

Accessing Program and External Data 
Memory 

In a single instruction, the Z8 can transfer a 
byte between register memory and either pro­
gram or external data memory. Load' Constant 
(LDC) and Load Constant and Increment 
(LDCl) reference program memory; Load 
External (LDE) and Load External and Incre­
ment (LDEI) reference external data memory, 
These instructions require that a working 
register pair contain the address of the byte in 
either program or external data memory to be 
accessed by the instruction (indirect working 
register pair addressing mode). The register 
byte operand is specified by using the direct 
working register addreSSing mode in LDC and 

LD RL#BUF + LENGTH-l 
LD RO,#LENGTH 

!starting at buffer end, look for 
1st non-blank! 

loopl: 
CP 
JR 

@Rl,#, ' 
ne,foundl 

!found non-blank! 
DEC Rl !dec pOinter! 
DJNZ RO,loopl 

!are we done?! 
all_blanks 1 : !length = O! 
foundl: 

6 instructions 
13 bytes 
3 p,s overhead 
9.5 p,s (average) per character tested 

The latter method requires one more byte of 
program memory than the former, but is faster 
by four execution cycles (l p,s) per character 
tested, 

As an alternate example, assume a buffer 
exists as described above, but it is desired to 
scan this buffer forward for the first occur­
rence of an ASCII carriage return. The follow­
ing illustrates the code to do this: 

LD RO,# - LENGTH 
! starting at buffer star\, look for 
1st carriage return (= %OD)! 

next: 

cr: 

LD 
CP 
JR 
INC 
JR 

r 1 ,BUF + LENGTH(RO) 
Rl,#%OD 
eq,cr !found it! 
RO !update counterlindex! 
nz,next 

!tryagain! 

ADD RO,#LENGTH 
!RO has length to CR! 

7 instructions 
16 bytes 
1. 5 p,s overhead 
12 p,s (average) per character tested 

LDE or the indirect working register address­
ing mode, in LDCI and LDEI. In addition to 
performing the designated byte transler, LDCI 
and LDEI automatically increment both the 
indirect registers speCified by the instruction. 
These instructions are therefore efficient for 
performing block moves between register and 
either program or external data memory. Since 
the indirect addreSSing mode is used to specify 
the operand address within program or exter­
nal data memory, more complex addreSSing 
modes may be simulated as discussed earlier 
in Section 2.4.2. For example, the instruction 

LDC R3,BASE(R2) 

requires the indexed addressing mode, where 

205 



3. Accessing 
Program and 
External Data 
Memory 
(Continued) 

206 

BASE is the base address of a table in pr~gram 
memory and R2 contains the offset from table 
start to the desired table entry. The following 
code sequence simulates this instruction with 
the use of two additional registers (RO and Rl 
in this example). 

LD RO,#HI BASE 
LD Rl ,#LO BASE 

!RRO has table start address! 
ADD Rl,R2 
ADC RO,#O 

!RRO has table entry address! 
LDC R3,@RRO 

!R3 has the table entry! 

3.1 Configuring the Z8 for I/O Applications 
vs. Memory Intensive Applications. The ZS 
offers a high degree of flexibility in memory 
and 1/0 intensive applications. Thirty-two port 
bits are provided of which 16, 12, eight, or 
zero maybe configured as address bits to 
external memory. This allows for addressing of 
62K, 4K or 256 bytes of external memory, 
which can be expanded to 124K, SK, or 512 
bytes if the Data Memory Select output (DM) is 
used to distinguish between program and data 
memory accesses. The following instructions 
illustrate the code sequence required to con­
figure the ZS with 12 external addressing lines 
and to enable the D?ta Memory Select output. 

Z8ASM 2.0 
LOC OBJ CODE STMT SOURCE STATEMENT 

1 SCAN MODULE 
2 CONSTANT 

LD POIM,#%(2)0001001O 
!bit 3-4: enable ADo-AD7; 
bit 0-1: enable As-All! 

LD P3M,#%(2)OOOOI000 
!bit 3-4: enable DM! 

The two bytes following the mode selecJion of 
ports 0 and I should not reference external 
memory due to pipelining of instructions within 
the ZS. Note that the load instruction to P3M 
satisfies this requirement (providing that it 
resides within the internal 2K bytes of 
memory). 

3.2 LDC and LDE. To illustrate the use of the 
Load Constant (LDC) and Load External (LDE) 
instructions, assume there exists a hardware 
configuration with external memory and Data 
Memory Select enabled. The following module 
illustrates a program for tokenizing an ASCII 
input buffer. The program assumes there is a 
list of delimiters (space, comma, tab, etc.) in 
program memory at address DELIM for 
COUNT bytes (accessed via LDC) and that an 
ASCII input buffer exists in external data 
memory (accessed via LDE). The program 
scans the input buffer from the current location 
and returns the start address of the next token 
(i.e. the address of the first nondelimiter 
found) and the length of that token (number of 
characters from tok~n start to next delimiter). 

3 COUNT._ 6 

P 0000 20 3B 2C 
P 0003 2E OA 00 

P 0006 

P 0006 BO E2 

P 0008 82 30 
P OOOA AO EO 
P OOOC 06 002E' 
P OOOF FD 0015' 
P 0012 80 0018' 

p 0015 80 0008' 

4 GLOBAL 
5 $SECTION PROGRAM 
6 DELIM ARRAY [COUNT BYTE] 

7 
8 

[ • f ••• , , , , , , .' , %OA" %00 I 

9 scan PROCEDURE 
10 1***************************************************** 
11 Purpose To find the next token within an 
12 ASCII buffer. 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

Input 

Output 

RRO = address of current location 
within input buffer in external 

RR4 
RRO 

memory. 

address of start of next token 
address of new token's ending 
delimiter 

R2 length of token 
R3 = ending delimiter 
R6,R7,R8,R9 destroyed 

*****************************************************! 
ENTRY 

cl r 
DO 

R2 !init. length count,er! 

LDE R3,@RRO !ge~ byte from input buffer! 
incw RRO !increment pointer! 
call check Ilook for non-delimiter! 
IF C THEN 

EXIT 
FI 

00 

!found token start! 



P 0018 118 EO 
P 001A 58 El 

P 001C 2E 
p 001D 82 30 
P 001F D6 002E' 
P 0022 7D 0028' 
P 0025 8D 002D' 

P 0028 AO EO 
P 002A 8D 001C' 

P 002D AF 
P 002E 

P 002E 

P 002E 6C 00* 
P 0030 7C 00* 

P 0032 8C 06 

p 0034 C2 96 
P 0036 AO E6 
P 003&- A2 93 
P 003A 6B 03 
P 003C 8A F6 
P 003E DF 

P 003F AF 
P 00110 

o ERRORS 
ASSEMBLY COMPLETE 

27 instructions 
58 bytes 

36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 

ld R4, RO 
ld R5, Rl I RR4 = token .'l...tarting- addr I 

DO 
inc R2 line. length counter I 
LDE R3,@RRO Iget next input by tel 
call check Ilook for-delimiter! 
IF NC THEN 

- EXIT Ifound token endl 
FI 
incw RRO Ipoint to next by tel 

00 

ret 
END scan 

check PROCEDURE 
!*** •• ************************* ••• ******************** 
purpose = compare current character with 

delimiter table until table 
end or match found 

input DELIM = start address of table 
COUNT = length of that table 
R3 = byte to be scrutinized 

output Carry flag = 1 => input byte 
is not a delimiter (no match found) 

Carry flag = 0 => input byte 
is a delimiter (match found) 
R6 , R7 , R8 , R9 destroyed 

********************************************·*·******1 
ENTRY 

ld R6,IIHI DELIM-
ld R7,IILO DELIM IRR6 points to 

delimiter listl 
ld R8,IICOUNT IR8 = length of listl 

here: 
LDC R9,@RR6 Iget table entryl 
incw RR6 Ipoint to next entryl 
cp R9, R3 IR3 = delimiter?1 
jr eq,bye Iyes. carry = 01 
djnz R8,here Inext entryl 
scf Itable done. R3 

not a delimiter I 
bye': 

I'et 
END check 
END SCAN 

Execution time is a function of the number of Jeading delimiters 
before token stort (x) and the number of characters in the 
token (y): 123 p:; overhead + 59x p:; + l02y p:; 
(average) per /ok,m 

3.3 LDCI. A common function performed in is 
applications is the initialization of the register 
space. The most obvious approach to this func­
tion is the coding of a sequence of "load 

- register with immediate value" instructions 
(each occupying three program bytes for a 

register or two program bytes for a working 
register). This approach is also the most effi­
cient technique for initializing less than eight 
consecutive registers or 14 consecutive work­
ing registers. For a larger register block, the 

207 



3. Accessing LDCI instruction provides an economical 
Program and means of initializing consecutive register~ from 
External Data an initialization table in program memory. The 
,Memory following code excerpt illustrates this tech- ' 
(Continued) nique of initializing control registers %F2 

through %FF from a 14-byte array (INIT_tab) 
in program memory: 

SECTION 

4 

208 

SRP #%00 
IRP not %FO! 

LD R6,#HI INIT_tab 
LD R7,#LO INIT_tab 
LD R8,#%F2 

!lst reg to be initialized I 
LD R9,#14 

llength of register block! 
loop: 

LDCI @R8,@RR6 
!load a register from the 
init table! 

DJNZ R9,100p 

7 instructions 
14 bytes 

!continue till done! 

7.5 itS overhead " 
7.5 Its per register initialized 

Bit Manipulations 
Support of the test and modification of an 

individual bit or group of bits is required by 
most software applications suited to the Z8 
microcomputer. Initializing\ and modifying the 
Z8 control registers, polling interrupt requests, 
manipulating port bits for control of or com­
munication with attached devices, and manipu­
lation of software flags for internal control pur­
poses are all examples of the heavy use of bit 
manipulation functions. These examples illus­
trate the need for such functions in all areas of­
the Z8 register space. These functions are sup­
ported in the Z8 primarily by six instructions: 

• Test under liJask (TM) 

• Test Complement under Mask (TCM) 

• AND 

• OR 
• XOR 
• Complement (COM) 
These instructions may access any Z8 register, 
regardless of its inherent type (control, 1/0, or 
general purpose), with the exception of the six 
write-only control registers (PREO, PREI, 
palM, P2M, P3M, IPR) mentioned earlier in 
Section 2.1. Table 1 summarizes- the function 
performed on the destination byte by each of 
the above instructions. All of these instruc­
tions, with the exception of COM, require a 
mask operand. The "selected" bits referenced 
in Table 1 are those bits in the destination 
operand for which the corresponding mask bit 
is a logic I. 

3.4 LDEI. The LDEI instruction is useful for 
moving blocks of data between external and 
register memory since auto-increment is per­
tormed on'both indirect registers designated 
by the instruction. The following code excerpt 
illustrates a register buffer being saved at 
address %40 through %60 into external 
memory at address SAVE: 

LD RlO,#HI SAVE 
!external memory! 

LD Rll,#LO SAVE 
!address! 

LD R8,#%40 
I starting register I 

LD R9,#%21 

loop: 

lnumber of registers to save in 
external data memory I 

LDEI @RRlO,@R8 
lini t a register I 

DJNZ R9,loop 
luntil done! 

6 instructions 
12 bytes 
6 Its overhead 
7.5 ItS per register saved 

Opcode Use 

TM To test selected bits for loglc 0 

TCM To test selected bits for logic I 

AND To reset all but selected bits to logic 0 

OR To set selected bits to logic I 

XOR To complement selected bits 

COM To complement all bits 

Table I. Bit Manipulation Instruction Usage 

The instructions AND, OR, XOR, and COM 
have functions common to today's micro­
processors and therefore are not described in 
depth here. However, examples of the use of 
these instructions are laced throughout the 
remainder of this document, thus giving an 
integrated view of their uses in common func­
tions. Since they are unique to the 28, the 
functions of Test under Mask and Test Comple­
ment under Mask, are discussed in more detail 
next. 

4.1 Test under Mask (TM). The Test under 
Mask instruction is used to test selected bits for 
10gicO. The logical operation performed is 

destination AND source 

Neither source nor destination operand is 
modified; the FLAGS control register is the 
only register affected by this'instruction. The 
zero flag (2) is set if all selected bits are logic 
0; it is reset otherwise. Thus, if the selected 
destination bits are either all logic 1 or a com­
bination of Is and as, the zero flag would be 
cleared by this instruction. The sign flag (S) is 
either set or reset to reflect the result of the 



.4. Bit 
Manipu­
lations 
(Continued) 

SECTlOII 

5 

AND operation; the overflow flag (V) is always 
reset. All other flags are unaffected. Table 2 
illustrates the flag settings which result from 
the TM instruction on a variety of source and 
destination operand combinations .. Note that a 
given TM instruction will n~ver result in both 
the Z and S flags being set. 

4.2 Test Complement under Mask. The Test 
Complement under Mask instruction is used to 
test selected bits for logic 1. The logical opera­
tion performed is 

(NOT destination) AND source. 

Destination Sourc:e Flags 

(binary) (binary) Z S V 

l000lloo OllloooO 1 0 0 

01l11l00 011l0oo0 0 O' 0 

loooll00 11l100oo 0 0 

III Il 100 11l1ooo0 0 1 0 

00011000 10100001 1 0 0 

01000000 10100001 0 0 

Table 2. Effects of the TN Instruction 

Stack Operations 
The Z8 stack resides within an area of data 

memory (internal or external). The current 
address in the stack is contained in the stack 
pointer, which decrements as bytes are pushed 
onto the stack, and increments as bytes are 
popped from it. The stack pointer occupies two 
control register bytes (O/OFE and O/OFF) in the 
Z8 register space and may be manipulated like 
any other register. The stack is usefuf for 
subroutine calls, interrupt service-routines, 
and parameter passing and saving. Figure 2 
illustrates the downward growth of a stack as 
bytes are pushed onto it. 

5.1 Internal vs. External Stack. The location 
of the stack in data memory may be selected to 
be either internal register memory or external 
data memory. Bit 2 of control register POIM 
(O/OF8) controls this selection. Register pair 
SPH (O/OFEJ. SPL (O/OFF) serves as the stack 
pointer for an external stack. Register SPL is 
the stack pointer for an internal stack. In the 

xs._§ § x-1 SP_ R1 

x-. 
x-a 
x-4 

INITiAL 
STATE 

FOLLOWING 
PUSH R1 

., 
PC LOW 

sP_ PCHIGH 

FOLLOWING. 
CALL 

Figure 2. Growth of a Stack 

As in Test under Mask, the FLAGS control 
register is the only register affected by this 
operation. The zero flag (Z) is set if all selected 
destination bits are 1; it is reset otherwise. The 
sign flag (S) is set or reset to reflect the result 
of the AND operation; the overflow flag (V) is 
always reset. Table 3 illustrates the flag set­
tings which result from the TeM instruction on 
a variety of source and destination operand 
combinations. As with the TM instruction, a 
given TCM instruction will never result in both 
the Z and S flags being set. 

Destination Source Flags 

(binary) (binary) Z S V 

loo01l00 01 1l0oo0 0 0 0 

Oil Il 100 Oil 10000 0 0 

lOooll00 1l1l0oo0 0 0 0 

1111 1100 111looo0 1 0 0 

00011000 .10100001 0 0 

01000000 10100001 0 0 

Table 3. Effects of the TeM Instruction 

latter configuration, SPH is available for use as 
a data register. The following illustrates a code, 
sequence that initializes external stack opera­
tions: 

LD P01M,#%(2)OOOOOOOO 
!bit 2: select external stack! 

LD SPH,#HI STACK 
LD SPL,#LO STACK 

5.2 CALL. A subroutine call causes the cur­
rent Program Counter (the address of the byte 
following the CALL instruction) to be pushed 
onto the. stack. The Program Counter is loaded 
with the address specified by the CALL 
instruction. This address may be a direct 
address or an indirect register pair reference. 
For example, 

LABEL 1: CALL 0/04F98 
!direct addressing: PC is 
loaded with the hex value 
4F98; 
address LABEL 1 + 3 is pushed 
onto the stack! 

LABEL 2: CALL @RR4 
!indirect addressing: PC is 
loaded with the contents of 
working register pair R4, R5; 
address LABEL 2 + 2 is pushed 
onto the stack! . 

209 



5. Stack 
Operations 
(Continued) 

SECTION 

6 

210 

LABEL 3: CALL @%7E 
!indirect addressing: PC is 
loaded with the contents of 
register pair %7E, %7F; 
address LABEL 3 + 2 is pushed 
onto the stack! 

5.3 RET. The return (RET) instruction causes 
the top two bytes to be popped from the stack 
and loaded into the Program Counter. Typi­
cally, this is the last instruction of a subroutine 
and thus restores the PC to the address fallow­
ing the CALL to that subroutine. 

5.4 Interrupt Machine Cycle. During an inter­
rupt machine cycle, the PC followed by the 
status' flags is pushed onto the stack. (A more 
detailed discussion of interrupt processing is 
provided in Section 6.) 

5.5IRET. The interrupt return (IRET) instruc-, 
tion causes the top byte to be popped from the 
stack and loaded into the status flag register, 
FLAGS (%FC); the next two bytes are then 
popped and loaded into the Program Counter. 
In this way, status is restored and program ' 
execution cpntinues where it had left off when 
the interrupt was recognized. 

5.6 PUSH and POP. The PUSH and POP 
instructions allow the transfer of bytes between' 

Interrupts 
The Z8 recognizes six different interrupts 

from four internal and four external sources, 
including internal timer/counters, seriaI'I/O, 
and four Port 3 lines. Interrupts may be indi­
Vidually or globally enabled/disabled via Inter­
rupt Mask Register IMR (%FB) and may be 
prioritized for simultaneous interrupt resolution 
via Interrupt Priority Register IPR (%F9). 
When enabled, interrupt request processing 
automatically vectors to the designated service 
routine. When disabled, an interrupt request 
may be polled to determine when processing is 
needed. 

6.1 Interrupt Initialization. Before the 28 can 
recognize interrupts follOWing RESET, some 
initialization tasks must be performed. The ini­
tialization routine should configure the 28 
interrupt requests to be enabled/disabled, as 
required by the target application and 
assigned a priority (via IPR) for simultaneous 
enabled-interrupt resolution. An interrupt 
request is enabled if the corresponding bit in 
the IMR is set (= 1) and interrupts are , 
globally enabled (bit 7 of IMR = 1). An inter­
rupt request is disabled if th~ corresponding 
bit in the IMR is reset (= 0) or interrupts are 
globally disabled (bit 7 of IMR = 0). 

A RESET of the 28 causes the contents of the 
Interrupt Request Register IRQ (%FA) to be 
held to'zero until the execution of an EI 

the stack and register memory, thus providing 
program access to the stack for saving and 
restoring needed values and passing 
parameters to subroutines. 

Execution of a PUSH instruction causes the 
stack pointer to be decremented by I; the 
operand byte is then loaded into the location 
pointed to by the decremented stack pointer. 
ExsGUtion of a POP instruction causes the byte 
addressed by the stack pointer to be loaded 
into the operand byte; the stack pOinter is then 
incremented by 1. In both cases, the operand 
byte is designated by either a direct register 
address or an indirect 'register reference. For 
example: 

PUSH RI 

POP 5 

!direct address: push working 
register 1 onto the stack! 

!direct address: pop the top 
stack byte into register 5! 

PUSH @R4 !indirect address: pop the iop 
stack byte into the byte 
pointed to by working reg­
ister 4! 

PUSH @I7 !indirect address: push onto' 
the stack the byte pointed to 
by register I7! 

instruction. Interrupts that occur while the 28 
is in this initial state will not be recognized, 
since the corresponding IRQ bit, cannot be set. 
The EI instruction is specially decoded by the 
28 to enable the IRQ; simply setting bit 7 of 
IMR is therefore not sufficient to enable inter­
rupt processing following RESET, However, 
subsequent to this initial EI instruction, inter­
rupts may be globally enabled either by the 
instruction 

EI !enable interrupts! 

or by a register manipulation, instruction 
such as 

OR IMR,#%80 

To globally disable interrupts, execute the 
instruction 

DI !disable interrupts! 

This will cause bit 7 of IMR to be reset. 
Interrupts must be globally disabled prior to 

any modification of the IMR, IPR or enabled 
bits of the IRQ (those corresponding to 
enabled interrupt requests). unless it can be 
guaranteed that an enabled interrupt will not 
occur during the' processing of such instruc­
tions. Since interrupts represent the occur­
rence of events asynchronous to program exe­
cutiop, it is highly unlikely that such a 
guarantee can be made reliably. 



6. Interrupts 
( Continued) 

6.2 Vectored Interrupt Processing. Enabled 
interrupt requests are processed in an 
automatic vectored mode in which the inter­
rupt service routine address is retrieved from 
within the first 12 bytes of program memory. 
When an enabled interrupt request is 
recognized by the 28, the Program Counter is 
pushed onto the stack (low order 8 bits first, 
then high-order 8 bits) followed by the FLAGS 
register (#%FC). The corresponding interrupt 
request bit is reset in IRQ, interrupts are 
globally disabled (bit 7 of IMR is reset), and 
an indirect jump is taken on the word in loca­
tion 2x, 2x + I (x = interrupt request number, 
o:=; x:=; 5). For e~ample, if the bytes at 
addresses %0004 and %0005 contain %05 and 
%78 respectively, the interrupt machine cycle 
for IRQ2 will cause program execution to con­
tinue at address %0578. 

When interrupts are sampled, more than one 
interrupt may be pending. The Interrupt Prior­
ity Register (IPR) controls the selection of the 
pending interrupt with highest priority. While 
this interrupt is being serviced, a higher­
priority interrupt may occur. Such interrupts 

CONSTANT 

GLOBAL 
IRQ3_seryice PROCEDURE 
!service routine for IRQ3! 

may be allowed service within the current 
interrupt service routine (nested) or may be 
held until the current service routine is com­
plete (non-nested). 

To allow nested interrupt processing, inter­
rupts must be selectively enabled upon entry 
to an interrupt service routine. Typically, only 
higher-priority interrupts would be allowed to 
nest within the current interrupt service. To do 
this, an interrupt routine must "know" which 
interrupts have a higher priority than the cur­
rent interrupt request. Selection of such nest­
ing priorities is usually a reflection of the 
ptfori ties established in the I.nterru pt Priority 
Register (IPR). Given this data, the first 
instructions executed in the "service routine 
should be to save the current Interrupt Mask 
Register, mask off all interrupts of lower and 
equal priority, and globally enable interrupts 
(EI). For example, assume that service of inter· 
rupt requests 4 and 5 are nested within the ser­
vice of interrupt request 3. The follOWing illus­
trates the code required to enable IRQ4 
and IRQ5: 

%(2) 00110000 

ENTRY 

PUSH IMR !save Interrupt Mask Register! 
!interrupts were globally disabled during the interrupt 
machine cycle - no DI is needed prior to modification of IMR! 

AND 
EI 

IMR,#INT_MASL3 !disable all but IRQ4 & 5! 

! ... ! ! service interrupt! 
!interrupts are globally enabled now - must disable them prior to 
modification of IMR! 

DI 
POP IMR 
IRET 

END IRQ3_service 

Note that IRQ4 and IRQ5 are enabled by the 
above sequence only if their respective IMR 
bits = 1 on entry toJRQ3_service. 

The service routine for an interrupt whose 
processing is to be completed without interrup­
tion should not allow interrupts to be nested 
within it. Therefore, it need not modify the 
IMR, since interrupts are disabled automati­
cally during the interrupt machine cycle. 

The service routine for an enabled interrupt 
is typically concluded with an IRET instruc­
tion, which restores the FLAGS register and 
Program Counter from the top of the stack and 
globally enables interrupts. To return from an 
interrupt service routine without re-enabling 

!restore entry IMR! 

interrupts, the following code sequence could 
be used: 

POP FLAGS 
!FLAGS .. - @SP! 

RET !PC .. - @SP! 

This accomplishes all the functions of IRET, 
except that IMR is not gffected. 

6.3 Polled Interrupt Processing Disabled 
interrupt reQuests may be processed in a 
polled mode, in which the corresponding bits 
of the Interrupt Request Register (IRQ) are 
examined by the software: When an interrupt 
request bit is found to be a logic 1, the inter­
rupt should be processed by the appropriate 

211 



6. Interrupts 
(Continued) 

SECTION 

7 

212 

service routine. During such processing, the 
interrupt request bit in the IRQ must be 
cleared by the software in order for subsequent 
interrupts on that line to be distinguished from 
the current one. If more than one interrupt 
request is to be processed in a polled mod~, 
polling should occur in the order of estab-

1. 

!poll interrupt inputs here! 
TCM IRQ, #%(2)00010000 
JR NZ, TESTO 
CALL IRQ4_service 

TESTO: TCM IRQ, #%(2)00000001 
JR NZ, TEST! 
CALL IRQO_service 

TEST!: TCM IRQ, #%(2)00000010 
JR NZ, DONE 
CALL IRQ I_service 

DONE: !. .. ! 

IRQ4_service 
!. .. ! 
AND 
!. .. ! 
RET 

END IRQ4_service 

IRQO_service 
I. .. ! 
AND 
! ... ! 
RET 

END IRQO_service 

IRQ I_service 
I. .. ! 
AND 
I. .. ! 
RET 

END IRQ I_service 
1. .. ! 

PROCEDURE 

IRQ, #%(2)11101111 

PROCEDURE 

IRQ, #%(2)1l1l1ll0 

PROCEDURE 

IRQ, #%(2)1l11ll0l 

Timer/Counter Functions 
The Z8 provides two 8-bit timer/counters, To 
and TI , which are adaptable to a variety of 
application needs and thus allow the software 
(and external hardware) to be relieved of the 
bulk of such tasks. Included in the set of such 
uses are: 

• Interval delay timer 

• Maintenance of a time-of-day clock 

• Watch-dog timer 

• External event counting 

• Variable pulse train' output 

• Duration measurement of external event 

• A~matic delay following external event 
detection 

lished priorities. For example, assume that 
IRQO, IRQI, and IRQ4 a~e to be polled and 
that established priorities are, from high to 
low, IRQ4, IRQO, IRQI. An instruction 
sequence like the following should be used to 
poll and service the interrupts: 

ENTRY 

ENTRY 

ENTRY 

!IRQ4 need service?! 
!no! 
!yes! 
!IRQO need service?! 
!no! 
!yes! 
!IRQl need service?! 
!no! 
!yes! 

!c1ear IRQ4! 

! clear IRQO! 

!clear IRQ 1 ! 

Each timer/counter is driven by its own 6-bit 
prescaler, which is in turn driven by the inter­
nal Z8 clock divided by four. For TJ, the inter­
nal clock may be gated or triggered by an 
external event or may be replaced by an exter­
nal clock input. Each timet/counter may 
operate in either single-pass or continuous 
mode where, at end-of-count, either counting 
stops or the counter reloads and continues 
counting. The counter and pres caler registers 
may be altered indiVidually while the timer/ 
counter is running; {he software controls 
whether the new values are loaded immedi­
ately or when end-of-count (EOC) is reached. 

Although the timer/counter prescaler 
registers (PREO and PREI) are write-only, 
there is a technique by which the timer/ 



7. Timer/ 
Counter 
Functions 
(Continued) 

counters may ,simulate a readable prescaler. 
This capability is a requirement for high 
resolution measurement of an event's duration. 
The basic approach requires that one timer/ 
counter be initialized with the desired counter 
and prescaler values. The second timer/ 
counter is initialized with a counter equal to 
the prescaler of the first timer/counter and a 
prescaler of 1. The second timer/counter must 
be programmed for continuous mode. With 
both timer/counters driven by the internal 
clock and started and stopped simultaneously, 
they will run synchronous to one another; thus, 
the value read from the second counter will 
always be eqUivalent to the prescaler of 
the first. , , 
7.1 Time/Count Interval Calculation To 
determine the time interval 0) until EOC, the 
equation 

i=txpxv 

characterizes the relation between the 
prescaler (p). counter (v), and clock input 
period (t); t is given by 

1/(XTAlJ8) 

where XTAL is the Z8 input clock frequency; 
p is in the ,ange 1 - 64; v is in the range 
1 - 256. When programming the prescaler and 
counter registers, the maximum load value is 
truncated to six and eight bits, respectively, 
and is therefore programmed as zero. For an 
input clock frequency of 8 MHz, the prescaler 
and counter register values may be pro­
grammed to time an interval in the range 

l/Ls xlxlSi'SI/Lsx64 x 256 

, 1 /LS Sis 16.384 ms 

To determine the count (c) until EOC for TI 
with external clock input, the equation 

c = p x v 
characterizes the relation between the T I 
prescaler (p) and the TI counter (v). The 
divide-by-8 on the input frequency is bypassed 
in this mode. The count range is 

1 xIs c s 64 x 256 

1 s c s 16,384 

7.2 TOUT Modes. Port 3, bit 6 (P3s) may be 
configured as an output (Tour) which is 
dynamically controlled by one of the follOWing: 

• To 

• TI 

.. Internal clock 

When driven by To or TI, Tour is reset to a 
logic J when the corresonding load bit is set in 
timer control register TMR (%Fl) and toggles 
on EOC from the corresponding counter. 

When Tour is driven by the internal clock, 
that clock is directly output on P3s. 

While programmed as Tour, P3s is disabled 
from being modified by a wdte to port register 
%03; however, its current output may be 
examined by the Z8 software by a read to port 
register %03. 

7.3 TIN Modes. Port 3, bit .Wf31) may be con­
figured as an input (TIN) w9 is used in con­
junction with TI in one of four modes: 

• External clock input .. 
• Gate input for internal clOck 

• Nonretriggerrable input for internal clock 

• Retriggerable input for internal clqck 

For the latter two modes, it should be noted 
that the existence of a synchronizing circuit 
within the Z8 causes a delay of two te three 
internal clock periods following an external 
trigger before clocking of the counter actually 
begins. 

Each High-to-Low transition on TIN will 
generate interrupt request IRQ2, regardless of 
the selected TIN mode or the enabled/disabled 
state of h IRQ~ J7lust therefore be masked or 
enabled accordmg to the needs of the 
application .. 

The "external clock input" TIN mode sup­
ports the counting of external events, where an 
event is seen as a High-to-Low transition on 
TIN. Interrupt request IRQ5 is generated on 
the nth occurrence (single-pass mode) or on 
every nth occurrence (continuous mode) of 
that event. 

The "gate input for internal clock" TIN mode 
provides for duration measurement of an exter­
nal event. In this mode, the TI prescaler is 
driven by the Z8 internal clock, gated by a 
High level on TIN. In other words, Tl will 
count while TIN is High and stop counting 
while TIN is Low. Interrupt request IRQ2 is 
generated on the High-to-Low transition on 
TIN. Interrupt request IRQ5 is generated on TI 
EOC. This mode may be used when the width 
of a High-going pulse needs to be measured. 
In this mode, IRQ2 is typically the interrupt 
request of most importance, since it signals the 
end of the pulse being measured. If IRQ5' is 
generated prior to IRQ2'in this mode, the 
pulse width on TIN is too large for TI to 
measure in a single pass . 

The "nonretriggerable input" TIN 'mode pro­
vides for automatic delay timing following an 
external event. In this mode, TI is loaded and 
clocked by the Z8 internal clock following th~ 
first High-to-Lc;>w transition on TIN ,after TI is 
enabled. TIN tra,nsltions that occur after this 
point do not affect Tl. In singl~-pass mode, the 

~ 

213 



7. Timer/ 
Counter 

'Functions 
(Continued) 

214 

enable bit is reset on EOC; further TIN transi­
tio~s will not cause Tl to load and begin count­
ing until the software sets the enable bit again. 
In continuous.mode, EOC does not modify the 
enable bit, but the counter is reloaded and 
counting continues immediately; IRQ5 is 
generated every EOC until software resets the 
enable bit. This TIN mode may be \lsed, for 
example, to time the line feed delay following 
end of line detection on a printer or to delay 
data sampling for some length of time follow­
inga sample strobe. 

The "retriggerable input" TIN mode will load 
and clock Tl with the 28 internal clock on 
every occurrence of a High-to-Low transition 
on TIN. Tl will time-out and generate interrupt 
request IRQ5 when the programmed time 
interval (determined by Tl prescaler and load 
register values) has elapsed since the last 
High-to-Low transition on TIN. In single-pass 
mode, the enable bit is reset on EOC; further 
TIN transitions will not cause Tl to load and 
begin counting until the software sets the 
enable bit again. In continuous mode, EOC 
does not modify the enable bit, but the counter 
is reloaded and counting continues immedi-

Z8ASM 2.0 
LOC OBJ CODE STMT SOURCE STATEMENT 

TIMER 1 MODULE 
CONSTANT 

HOUR '.-
MINUTE . -
SECOND .-
HUND . -

ately; IRQ5 is generated at every EOC until 
the software resets the E\nable bit. This TIN 
mode may provide such functions as watch-dog 
timer (e.g., interrupt if conveyor belt stopped 
qr clock pulse missed), or keyboard time-out 
(e.g., interrupt if no input in x ms). 

7.4 Examples. Several possible uses of the 
timer/counters are given in the following four 
examples. 

7.4.1 Time of Day Clock. The following 
module illustrates the use of T j for 
maintenance of a time 01 day clock, which is 
kept in binary format in terms of hours, 
minutes, seconds, and hundredths of a second. 
It is desired that the clock be updated once 
every hundredth of a second; therefore, Tl is 
programmed in continuous mode to interrupt 
100 times a second. Although Tj is used for 

.this example, To is equally suited for the task. 
The procedure for initializing the timer 

(TOD_INIT), the interrupt service routine 
(TOD) which updates the clock, and the inter­
rupt vector for Tj end-of-courtt (IRQ_5) are 
illustrated below. XTAL = 7.3728 MHz is 
assumed. 

R12 
R13 
R14 
R15 

1 
2 
3 
4 
5 
6 
7 
8 
9 

$SECTION PROGRAM 

P 0000 OOOF' 

P OOOC 

P 0000 E6 F3 93 

P 0003 

P 0006 
P 0009 
P DOD A 
P 0000 
P OOOE 
P OOOF 

P OOOF 

P OOOF 

P 0011 
P 0013 
P 0014 
P 001'7 
P 0019 
P 001B 
r 001C 
P 001F 

E6 

46 
8F 
46 
9F 
AF 

70 

31 
FE 
A6 
EB 
BO 
EE 
A6 
EB 

F2 00 

F1 DC 

FB 20 

FD 

10 

EF 64 
13 
EF 

EE 3C 
OB 

GLOBAL 
IIR05 interrupt vector! 

10 $ABS 
11 IRO_5 ARRAY 
12 
13$REL 
14 TOD_INIT 

10 
[1 WORD] 

'" PROCEDURE 

. - [TOOl 

15 ENTRY 
16 LD, PRE1,U%(2)10010011 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

LD T1,110 

Ibit 2-7: prescaler = 36; 
bit 1: internal clock; 
bit 0: continuous model 

1(256) time-out = 
1/100 secondl 

OR TMR,UIOC !load, enable T11 

END 

TOO 
ENTRY 

01 
OR 
EI 
RET 
TOO_IN IT 

IMR,II%20 

PROCEDURE 

PUSH RP 
!Working register file %10 
the time of day clockl 

SRP 11%10 
INC HUND 
CP HUND,U100 

tenable T1 interruptI 

to %1F contains 

37 JR NE,TOD_EXIT 

!1 more .01 sec! 
Ifull second yet?! 
!jump if no! 

38 
39 
40 
41 

CLR HUND 
INC SECOND 
CP SECOND,U60 
JR NE,TOD_EXIT 

!1 more secondl 
Ifull minute yet?! 
!jump if no! 



7. Timer/ 
Counter 
Functions 
(Continued) 

P 0021 BO EE 42 CLR SECOND 
P 0023 DE 43 INC MINUTE 1 more minute! 
P 0024 A6 ED 3C 44 CP MINUTE ,1160 full hour yet? I 
P 0027 EB 03 45 JR NE,TOD_EXIT jump if no I 
P 0029 BO ED 46 CLR MINUTE 
P 002B CE 47 INC HOUR 

48 TOD_ EXIT: 
P 002C 50 FD 49 POP RP Irestore entry RPI 
P 002E BF 50 IRET 
P 0021' 51 END TOO 

52 END TIMER1 

o ERRORS 
ASSEMBLY COMPLETE 

TOD_INIT: TOD: 
7 instructions 
15 bytes 

17 instruction 
32 bytes 

16 p.s 19.5 p.s (average) including interrupt response time 

7.4.2 Variable Frequency, Variable Pulse 
Width Output. The following module 
illustrates one possible use of TOUT. Assume it 
is necessary to generate a pulse train with a 
10% duty cycle, where the output is repetitive­
ly high for 1.6 ms and then low for 14.4 ms. To 
do this, TOUT is controlled by end-of-count 
from T1. although To could alternately be 
chosen. This example makes use of the Z8 
feature that allows a timer's counter register to 
be modified without disturbing the count in 
progress. In continuous mode, the newva1ue is 
loaded when TI reaches EOC. TI is first 
loaded and enabled with values to generate 
the short interval. The counter register is then 
immediately modified with the value to 
generate the long interval; this value is loaded 
into the counter automatically on TI EOC. The 
prescaler selected value must be the same for 
both long and short intervals. Note that the 

z8ASM 2.0 
LOC OBJ CODE 

P 0000 0017' 

P OOOC 

P oboo E6 F3 03 

P 0003 E6 F7 00 
P 0006 E6 F2 19 
P 0009 8F 
P OOOA 46 FB 20 
P 0000 E6 F1 8c 

STMT SOURCE STATEMENT 

1 
2 
3 
4 
5 
6 
7 

TIMER2 

GLOBAL 
IIRQ5 

IRQ_5 

MODULE 
$SECTION 

interrupt 
$ABS 
ARRAY 

8 $REL 
9 PULSE_INIT 

10 ENTRY 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

LD 

LD 
LD 
D1 
OR 
LD 

initial loading of the T I counter register is 
followed by setting the TI load bit of timer con­
trol register TMR (%Fl); this action causes 

. TOUT to be reset, to a logic I output. Each 
subsequent modification of the T I counter 
register does not affect the current TOUT level, 
since the T I load bit is NOT altered by the 
software. The new value is loaded on EOC, 
and TOUT will toggle at that time. The TI inter­
rupt service routine should simply modify the 
TI counter register with the new value, alter­
nating between the long and short interval 
values. 

In the example which follows, bit 0 of 
register %04 is used as a software flag to indi­
cate which value was loaded last. This module 
illustrates the procedure for T I/ToUT initializa­
tion (PULSE_IN]T), the TI interrupt service 
routine (PULSE), and the interrupt vector for 
TI EOC (IRQ_5). XTAL = 8 MHz is assumed. 

PROGRAM 

vectorl 
10 
[1 WORD] : ::: [PULSE] 

PROCEDURE 

PRE1,H$(2)00000011 

P3M,II00 
T1,H25 

Ibit 2-7: prescaler = 64; 
bit 1: internal clock; 
bit 0: continuous model 

Ibit 5: let P36 be Toutl 
Ifor short interval I 

1MR,H$(2)00100000 lenable T1 interrupti 
TMR,#%(2)10001100 

Ibit 6-7: Tout controlled 

22 
23 
24 
25 
26 

bit 
bit 

!Set long interval counter, to 

by T1; 
3: enable T1; 
2: load T1 ! 
be loaded on T1 EOCI 

P 0010 E6 F2 E1 LD T1,H225 
!Clear alternating flag for PULSE! 

215 



7. Timer/ 
Counter 
FUDctions 
(Continued) 

216 

P 0013- BO 04 

P 0015 9F 
P 0016 AF 
P 0017 

P 0017 

P 0017 E6 F2 E1 
P OOlA B6 04 01 
P 001D 6B 03 
P'001F E6 F2 19 

P 0022 BF 
P 0023 

o ERRORS 
ASSEMBLY CO~PLETE 

PULSE_lNIT: 
10 instructions 
23 bytes 
23p$ 

27 
28' 
29 
30 ' 
31 END 
32 
33 
34 PULSE 
35 ENTRY 
36 
37 
38 

CLR $04 

EI 
RET . 
PULSE_IN IT 

PROCEDURE 

LD 
XOR 
JR 
LD 

T1,II225 
$04,111 
Z,PULSE_EXIT 
T1,II25 

1= 0 25 next; 
1 225 next 

Inew load value 1 
Iwhich value next?1 
Ishould be 2251 
Ishould be 251 39 

40 
41 

PULSE_EXIT: 

42 END 
43 END 

IRET 
PULSE 
TIMER2 

PULSE: 
5 instructions 
12 bytes 
25 p$ (average) including interrupt response time 

7.4.3 Cascaded Timer/Counters. For some 
applications it may be necessary to measure a 

. greater time interval than a sing'le timer/ 
counter can measure (16.384 ms). In this case, 
TIN and TOUT may be used to cascade To and 

TJ to lunction as a single unit. TOUT, prog'ram­
med to toggle on To end-ai-count, should be 
wired back to TIN, which is selected as the 
external clock input lor TJ. With To program­
med lor continuous mode, TOUT (and therefore 
TIN) goes through a High-to-Low transition 
(causing TI to count) on every other To EOC. 
Interrupt request IRQ5 is generated when the 
programmed time interval has elapsed. Inter­
rupt requests IRQ2 (generated on every TIN 
High-to-Low transition) and IRQ4 (generated 
on To EOC) are of no importance in this 
application and are therefore disabled. 

XTAL 

TO INTERRUPT LOOiIC (IRQ4) 

TO INTERRUPT LOGIC (IRQ6) 

Figure 3. Casc:adec:l Timer/Counte .. 

To determine the time interval (i) until EOC, 
the equation 

i = t x pO x vO x (2 x p I x v I - I) 

characterizes the relation between the To' 
prescaler (pO) and counter (vO), the TI 
prescaler (pI) and counter (vI), and the clock 
input period (t); t is defined in Section 7.1. 
Assuming XTAL = 8 MHz, the measurable 
time interval range is 

I p.s x I x I x (2 x 1-1) os; i os; 
. I p.s x 64 x 256 x (2 x 64 x 256 - I) 

I p.s os; i OS; 536.854528 s 

Figure 3 illustrates the interconnection 
between To and TI. The following module 
illustrates the procedure required to initialize 
the time~s for a 1.998 second delay interval: 



1. Timer/ 
Counter 
Functions 
(Continued) 

;'-

Z8ASM 2.0 
LOC OBJ CODE' 

P 0000 

P 0000 E6 F3 28 

P 0003 E6 F7 00 
P 0006 E6 F2 64 
P 0009 E6 F5 29 

P OOOC E6 F4 64 
P OOOF 8F 
P 0010 56 FB 2B 

P 0013 46 FB 20 
P 0016 9F 
P 0017 E6 Fl IIF 

P 001A AF 
P 001B 

o ERRORS 
ASSEMBLY COMPLETE 

11 instructions 
27 bytes 
26.S"" 

STMT SOURCE STATEMENT 

1 TIMER3 MODULE 
2 GLOBAL 
3 TIMER_16 
4 ENTRY 
5 LD 
6 
7 
8 
9 LD 

10 LD 
11 LD 
12 
13 
14 LD 
15 DI 
16 AND 
17 
18 OR 
19 EI 
20 LD 
21 
22 
23 
211 
25 
26 
27 
28 
29 RET 
30 END TIMER_16 
31 END TIMER3 

7.4.4 Clock Monitor. T 1 and TIN may be used 
to monitor a clock line (in a diskette drive, for 
example) and generate an interrupt request 
when a clock pulse is missed. To accomplish 
this, the clock line to be monitored is wired to' 
P31 (TIN)' TIN should be programmed as a 
retriggerable input to Tl, such that each fall­
ing edge on TIN will cause Tl to reload and 
continue counting. If Tl is programmed to 
time-out after an interval of one-and-a-half 
times the clock period being monitored, Tl 
will time-out and generate interrupt request 
IRQ5 only if a clock pulse is missed. 

Z8ASM 2.0 
LOC OBJ CODE STMT SOURCE STATEMENT 

1 TIMER4 MODULE 

PROCEDURE 

PRE1,#$(2)00101000 
Ibit 2-7: prescaler = 10; 
bit 1: external clock; 
bit 0: single-pass model 

P3M,II00 Ibit 5: let P36 be Toutl 
Tl,#100 ITI counter registerl 
PREO,#~(2)00101001 

Ibit 2-7: prescaler = 10; 
bit 0: continuous model 

TO,#100 !TO counter register! 

IMR,n%(2)00101011 Idisable IRQ2 (Tin); 
and IRQII (TO) I 

IMR,f%(2)00100000 !enable IRQ5 (Tl)I 

TMR,nS(2)01001111 
Ibit 6-7: Tout controlled 

by TO; 
bit 4-5: Tin mode is ext. 

clock input; 
bit 3 : enable Tl; 
bit 2: load Tl; 
bit 1: enable TO; 
bit 0: load TO I 

The follOWing module illustrates the pro­
cedure for initializing Tl and TIN 
(MONltOR--1NIT) to monitor a clock with a 
period of 2/Ls. XTAL = 8 MHz is assumed. 
Note that this example selects single-pass 
rather than continuous mode for TI. This is to 
prevent a continuous stream of IRQ5 interrupt 
requests in the event that the monitored clock 
fails completely. Rather, the interrupt service 
routine (CLK_ERR) is left with the choice of 
whether or not to re-enable the monitoring. 
Also shown is the TI interrupt vector (IRQ_5). 

2 $SECTION PROGRAM 
3 GLOBAL 
II IIRQ5 interrupt vectorl 
5 $ABS 10 

,p 0000 0015' 6' IRQ_5 ARRAY [1 WORDl .- [CLK_ERRl 
7 
8 $REL 

P OOOC 9 MONITOR_INIT PROCEDURE 
10 ENTRY 

P 0000 E6 F3 04 11 ..LD PRE1,#$(2)00000100 
12 Ibit 2-7: prescaler = 1; 
13 bit 1: external clock; 
14 bit 0: single-pass model 

P 0003 E6 F7 00 15 LD P3M,II00 Ibit 5: let P36 be Toutl 
P 0006 £6 F2 03 16 LD T1,II3 ITl load register, 

17 = 1.5 * 2 usec I 

217 



7. Timer/ 
Counter 
Functions 
(Continued) 

SECTION 

8 

218 

P 0009 8F 18 DI 
P OOOA 56 FB 3B 19 AND IMR,U%(2)00111011 !disable IRQ2 (Tin) ! 
P OOOD 46 FB 20 20 OR IMR,U%(2)00100000 I enable IRQ5 (Tl) ! 
P 0010 9F 21 EI 

22 
P 0011 E6 Fl 38 23 LD TMR,UI(2)0011,1000 

24 ! bit 4-5: Tin mode is 
25 retrig. input; 
26 bit 3: enable Tl ! 

P 0014 AF 27 RET 
P 0015 28 END MONITOR_INIT 

29 
30 

P 0015 31 CbK_ERR PROCEDU RE 
32 ENTRY 
33 ! ••• ! !handle the missed clock! 
34 
35 !if clock monitoring shQuld continu~ ••• ! 

0015 46 Fl 08 36 OR TMR,UI(2)00001000 
37 I bi t 3: enable Tl 

P 0018 BF 38 IRET 
P 0019 39 END CLK_ERR 

40 END TIMER4 

o ERRORS 
ASSEMBLY COMPLETE 

MONITOR_INIT: eLK_ERR: 
9 instructions 2 + instructiqns 
21 bytes 4 + bytes 
21.5 pH 18.5 + JJ.S including interrupt response time 

I/O Functions 
The 28 provides 32 110 lines mapped into 

registers 0-3 of the internal register file. Each 
nibble of port 0 is individually programmable 
as input, output, or address/data lines 
(Al5-Al2, All-As). Port 1 is programmable as 
a single entity to provide input, output, or 
address/data lines (AD7-ADo). The operating 
modes for the bits of Ports 0 and I are selected 
by control register POIM (%F8). Selection of 
I/O lines as address/dati! lines supports access 
to external program and data memory; this is 
discussed in Section 3. Each bit of Port 2 is 
individually programmable as an input or an 

Function Bit Signal 

P3) DAV2/RDY2 
P32 r:JAVO/RDYO 

Handshake P33 DAVlIRDYl 
P34 RDYIIDAVl 
P35 RDYO/DAVO 
P36 RDY2/i5A'V2 

r30 

IRQ3 
Interrupt P3) IRQ2 
Request P32 IRQO 

P33 IRQl 

Counter/ 1 P3) TIN 
Timer P36 TOUT 

Data Memory 
1 P34 Select DM 

Status Out 

Serial I/O 1 P30 Serial In 
P37 Serial Out 

Table 4. Port 3 Special Functions 

output bit. Port 2 bits programmed as outputs 
may also be programmed (via bit 0 of P3M) to 
all have active pull-ups or all be open-drain 
(active pull-ups inhibited). In Port 3, four bits 
(P30-P33) are fixed as inputs, and four bits 
(P34-P37) are fixed as outputs, but their func­
tions are programmable. Special functions pro­
vided by Port 3 bits are listed in Table 4. Use 
of the Data Memory select output is discussed 
in Section 3; uses of TIN and TOUT are dis- -
cussed in Section 7. 

8.1 Asynchronous Receiver/Transmitter 
Operation. Full-duplex, serial asynchronous 
receiver/transmitter operation is provided by 
the 28 via P37 (output) and P30 (input) in con­
junction with control register SIO (%FO), 
which is actually two registers: receiver buffer 
and transmitter' buffer. Counter/Timer To pro­
Vides the clock for control of the bit rate. 

The 28 always receives and transmits eight 
bits between start and stop bits. However, if 
parity is enabled, the eighth bit (D7) is 
replaced by the odd-parity bit when trans­
mitted and a parity-error flag (= I if error) 
when received. Table 5 illustrates the state of 
the parity bit/parity error flag during serial 
110 with parity enabled. 

Although the 28 directly supports either odd 
parity or no parity for serial 110 operation, 
even parity may also be provided with addi­
tional software support. To receive and 
transmit with even parity, the 28 should be 
configured for serial I/O with odd parity 
disabled. The 28 software must calculate parity 



8.1/0 
Functions 
(Continued) 

Character Loaded Transmitted To Received From Char~cter 
Into SIO Serial Line Serial Line Transferred To SIO Note· 

11000011 01000011 01000011 OlGOOOll no error 

11000011 01000011 01000111 11000111 error 

01111000 11111000 11111000 01111000 no error 

01111000 11111000 01111000 11111000 

Table 5. Serial 110 With Odd Parity • Left-most bit IS 07 

and modify the eighth bit prior to the load of a 
character into SIO and then modify a parity 
error flag following the load of a character 
from SIO. All other processing required for 
serial 110 (e.g. buffer management, error 
handling, etc.) is the same as that for odd 
parity operations. 

To configure the Z8 for Serial I/O, it is 
necessary to: 

• Enable P30 and P37 for serial I/O and select 
parity, 

• Set up To for the desired bit rate, 

• Configure IRQ3 and IRQ4 for polled or 
automatic interrupt mode, 

• Load and enable To. 

To enable P30 and P37 for serial I/O, bit 6 of 
P3M (R247) is set. To enable odd parity, bit 7 
of P3M is set; to disable it, the bit is reset. For 
example, the instruction 

LD P3M,#%40 

will enable serial I/O, but disable parity. The 
instruction 

LO P3M,#%CO 

will enable serial I/O, and enable odd parity. 
In the following discussions, bit rate refers to 

all transmitted bits, including start, stop, and 
parity (if enabled). The serial bit rate is given 
by the equation: 

bit rate = 
mput clock frequency 

(2 x 4 x TO prescaler x TO counter x 16) 

The final divide-by-16 is incurred for serial 
communications, since in this mode To runs at 
16 times the bit rate in order to synchronize 
the data stream. To configure the Z8 for a 
specific bit rate, appropriate values must first 
be selected for To prescaler and To counter by 
the above equation; these values are then pro­
grammed into registers To (%F4) and PREO 
(%F5) respectively. Note that PREO also con­
trols the continuous vs. single-pass mode for 
To; continuous mode should be selected for 
serial I/O. For example, given an input clock 
frequency of 7.3728 MHz and a selected bit 
rate of 9600 bits per second, the equation is 

satisfied by To counter 2 and prescaler = 3. 
The follOWing code sequence will configure the 
To counter and To prescaler registers: 

LO To,#2 !To counter = 2! 
LO PREO,#%(2)OOOOIIOI 

! bit 2-7: pres caler = 3; bit 0: 
continuous mode! 

Interrupt request 3 (IRQ3) is generated 
whenever a character is transferred into the 
receive buffer; interrupt request 4 (IRQ4) is 
generated whenever a character is transferred 
out of the transmit buffer. Before accepting 
such interr'upt requests', the Interrupt Mask, 
Request, and Priority Registers (IMR, IRQ, and 
IPR) must be programmed to configure the 
mode of interrupt response. The section on 
Interrupt Processing provides a discussion of 
interrupt configurations. 

To load and enable To, set bits 0 and I of 
the timer mode register (TMR) via an instruc­
tion such as 

OR TMR,#%03 

This will cause the To prescaler and counter 
registers (PREO and To) to be transferred. to the 
To prescaler and counter. In addition, To is 
enabled to count, and serial I/O operations 
will commence. 

Characters to be output to the serial line 
should be written to serial I/O register SIO 
(%FO). IRQ4 will be generated when all bits 
have been transferred out. 

Characters input from the serial line may be 
read from SIO. IRQ3 will be generated when a 
full character has been transferred into SIO. 

The follOWing module illustrates the receipt 
of a character and its immediate echo back to 
the serial line. It is assumed that the Z8 has 
been configured for serial I/O as described 
above, with IRQ3 (receive) enabled to interrupt, 
and IRQ4 (transmit) configured to be polled. 
The received character is stored in a Circular 
buffer in register memory from address %42 to 
%5F. Register %41 contains the address of 
the next available buffer position and should 
have been initialized by some earlier routine 
to #%42. 

219 



8. 1/0 
Functions 
(Continued) 

220 

z8ASM 2.0 
LOC OBJ CODE STMT SOURCE STATEMENT 

1 SERIAL_IO MODULE 
2 
3 
4 

CONSTANT 
next_addr 
start 

5 length ._ 

%41 
%42 
%1E 

6 
7 
8 

$SECTION PROGRAM 
GLOBAL 
!IRQ3 vector I 

9 $ABS 6 
P 0006 0000' 10 ARRAY [1 WORD) ._ [GET_CHARACTER) 

11 
12 

P 0000 13 
14 

$REL 
GET_CHARACTER 

o 
PROCEDURE ENTRY 

15 
16 
17 

ISerial 1/0 receive interrupt servicel 
!Echo received character and wait for 
echo completion I 

P 0000 E4 FO FO 18 ld SIO,SIO lechol 
19 
20 !save it in 

ld 
inc 
cp 

circular buffer! 
P 0003 F5 FO 41 21 @next_addr,SIO !save in bufferl 
P 0006 20 41 22 next_addr !point to next position I 
P 0008 A6 41 60 23 next_addr,#start+length 

24 !wrap-around yet?! 
P OOOB EB 03 25 jr ne,echo_wait Ino.! 
P OOOD E6 41 42 26 ld. next_addr,#start !yes. point to start! 

27 !now, wait for echo completel 

P 0010 66 FA 
P 0013" EB FB 

28 
10 29 

30 
31 

echo_wait: 
tcm 
jr 

IRQ, 11% 1 0 
nz,echo_wait 

!transmitted yet?1 
Inot yet! 

P 0015 56 FA EF 32 and IRQ,II%EF Iclear IRQ4! 
P 0018 BF 33 
P 0019 34 

35 
END 
END 

IRET 
GET_CHARACTER 
SERIAL_IO 

!return from interrupti 

o ERRORS 
ASSEMBLY COMPLETE 

10 instructions 
25 bytes 
35.5 p.s + 5.5 p.s for each additional pass through the echo_wait loop, 

including interrupt response time 

8.2 Automatic Bit Rate Detection. In a typical 
system, where serial communication is 
required (e.g. system with a terminal), the 
desired bit -rate is either user-selectable via a 
switch bank or nonvariable and "hard-coded" 
in the software. As an alternate method of bit­
rate detection, it is possible to automatically 
determine the bit rate of serial data received 
by measuring the length of a start bit. The 
advantage of this method is that it places no 
requirements on the hardware design for this 
function and provides a convenient (automatic) 
operator interface. 

In the technique described here, the serial 
channel of the 28 is initialized to expect a bit 
rate of 19,200 bits per second. The number of 
bits (n) received through Port pin P30 for each 
bit transmitted is expressed by 

n = 19,200/b 

where b = transmission bit rate. For example, 
if the transmission bit rate were 1200 bits per 
second, each incoming bit would appear to the 
receiving serial line as 19,200/1200 or 16 bits. 

The following example is capable of disting-

uishing between the bit rates shown in Table 6 
and assumes an input clock frequency of 
7.3728 MHz, a To prescaler of 3, and serian/O 
enabled with parity disabled. This example 
requires that a character with its low order 
bit = 1 (such as a carriage return) be sent to 
the serial channel. The start bit of this 
character can be measured by counting the 
number of zero bits collected before the low 
order 1 bit. The number of zero bits actually 
collected into data bits by the serial channel is 
less than n (as given in the above equation), 
due to the detection of start and stop bits. 
Figure 4 illustrates the collection (at 19,200 

fool 1>-----1 BIT TIME AT 1,200 BITS PER SECOND----+j .. j 

ST .. START BIT SP '" STOP BIT Dn = DATA BIT n 

EACH INTERVAL SHOWN = 1 BIT TIME 
AT 19,200 BITS PER SECOND 

Figure 4. Collection of a Start Bit Transmitted at 
at 19,200 BPS 



8. 110 
Functions 
(Continued) 

Number of Bits Received Number of 0 Bits Collected" 
Bit Rate Per Bit Transmitted as Data Bits TO Counter 

dec binary dec binary 

19200 I 0 00000000 I 00000001 
9600 2 I 00000001 2 00000010 
4800 4 3 00000011 4 00000100 
2400 8 7 00000111 8 00001000 
1200 16 13 00001101 16 00010000 
600 32 25 00011001 32 00100000 
300 64 49 00110001 64 01000000 
150 128 97 01100001 128 10000000 

Table 6. Inputs to the Automatic Bit Rate Detection "Algorithm 

bits per second) of a zero bit transmitted to the 
Z8 at 1,200 bits per second. Notice that only 13 
of the 16 zero bits received are collected as 
data bits. 

Once the number of zero bits in the start bit 
has been collected and counted, it remains to 
translate this count into the appropriate To 
counter value and program that value into To 
(%F4). The patterns shown in the two binary 
columns of Table 6 are utilized in the 
algorithm for this translation. 

As a final step, if incoming data is to com­
mence immediately, it is advisable to wait until 
the remainder of the current "elongated" 

Z8ASM 2.0 

character has been received, thus "flushing" 
the serial line. This can be accomplished 
either via a software loop, or by programming 
TI to generate an interrupt request after 
the appropriate amount of time has elapsed. 
Since a character is composed of eight bits 
plus a minimum of one stop bit following the 
start bit, the length of time to delay may be 
expressed as 

(9 x n)/b 

where nand b are as defined above. The 
following module illustrates a sample program 
for automatic bit rate detection. 

LOC OBJ CODE STMT SOURCE STATEMENT 

1 bit_rate MODULE 
2 EXTERNAL 
3 DELAY PROCEDURE 
4 GLOBAL 

P 0000 5 main PROCEDURE 
6 ENTRY 

P 0000 8F 7 di Idisable interrupts I 
P 0001 56 FB 77 8 and IMR,II%77 !IRQ3 polled model 
P 0004 56 FA F7 9 and IRQ,II%F7 I clear IRQ31 
P 0007 E6 F7 40 10 Id P3M,II%40 lenable serial 1/01 
P OOOA E6 F4 01 11 Id TO,111 
P 0000 E6 F5 00 12 Id PREO, II( 3 SHL 2)+1 Ibit rate = 19,200; 

13 continuous count mode! 
P 0010 BO EO 14 clr RO linit. zero byte counter! 
P 0012 E6 F1 03 15 Id TMR,113 Iload and enable TOI 

16 
17 Icollect input bytes by counting the number of null 
18 characters received. Stop when non-zero byte received I 
19 collect: 

P 0015 76 FA 08 20 TM IRQ, 11%08 ~character received?! 
P 0018 6B FB 21 jr z,collect Inot yet! 
P 001 A 18 Fa 22 Id R1,SIO !get the character! 
P 001C 56 FA F7 23 and IRQ,II%F7 !clear interrupt request! . P 001 F 1 E 24 inc R1 Icompare to a ••• 1 
P 0020 1 A. 05 25 djnz . R1 , bi tloop I ••• (in 3 bytes of code)! 
P 0022 06 EO 08 26 add RO , 118 lupdate count of a bitsl 
P 0025 8B EE 27 jr collect 

28 bitloop: ladd in zero bits from low 
29 end of 1st non-zero ~yte! 

P 0027 EO El 30 RR R1 
P 0029 7B 03 31 jr c,count_done 
P 002B OE 32 inc RO 
P 002C 8B F9 33 jr bitloop 

34 
35 IRO has number of zero bits collected I 
36 Itranslate RO to the appropriate TO counter value! 
37 count_done: IRa has count of zero bits I 

P 002E lC 07 38 Id R1,117 
P 0030 2C 80 39 Id R2,1I%80 I R2 will have TO counter value I 
P 0032 90 EO 40 RL RO 

41 
P 0034 90 EO 42 loop: RL RO 

221 



8. 110 
Functions 
(Continued) 

222 

P 0036 7B 04 43 jr c,done 
P 0038 EO E2 44 RR R2 
P 003A 1A F8 45 

46 
djnz r1,loop 

P -003C 29 F4 47 done: ld TO, R2 !load value for detected 
48 bit rate! 
49 !Delay long enough to clear serial line of bit stream! 

P 003E D6 0000* 50 call DELAY 
51 _!clear recei v e interrupt request! 

P 0041 56 FA F7 

P 0044 

o ERRORS 
ASSEMBLY COMPLETE 

30 instructions 
68 bytes 

52 and 
53 
54 END main 
55 END bi t_rate 

Execution time is variable based on transmission bit rote. 

8.3 Port Handshake. Each of Ports 0, I and 2 
may be programmed to function under input or 
output handshake control. Table 7 defines the 
port bits used for the handshaking and the 
mode bit settings required to select handshak­
ing. To input data under handshake control, 
the Z8 should read the input port when the 
DA V input goes Low (signifying that data is 
available from the attached device). To output 
data under handshake control, the Z8 should 
write the output port when the RDY input goes 
Low (signifying that. the previously output data 
has been accepted by the attached device). 
Interrupt requests IRQO, IRQI, and IRQ2 are 
generated by the falling edge of the handshake 
Signal input to the Z8 for Port 0, Port I, and 
Po~t 2 respectively. Port handshake operations 
may therefore be processed under interrupt 
control. 

Consider a system that requires communica­
tion of eight parallel bits of data under hand­
shake control from the 28 to a peripheral 
device and that Port 2 is selected as the output 
port. The following assembly code illustrates 
the proper sequence for initializing Port 2 for 
output handshake.' 

Input handshake lines 

Output handshake lines 

To select input handshake: 

To select output handshake: 

To enable handshake: 

Port 0 

iset bit 6 & reset bit 7 of 
POIM (program high 
nibble as input) , 

{
reset bits 6, 7 of POIM 
(progra,m high nibble as 
output) 

J set bit 5 of Port 3 (P3s); 
\setbit20fP3M , 

IRQ,II%F7 

CLR P2M !Port 2 mode register: all Port 
2 bits are outputs! 

OR %03,#%40 
!set DAV2: data not available! 

LD P3M,#%20 
!Port 3 mode register: enable 
Port 2 handshake! 

LD %02,DATA 
!output first data byte; DAV2 
will be cleared by the Z8 to 
indicate data available to 
the peripheral device! 

Note that following the initialization of the out­
put sequence, the software outputs the first 
data byte without regard to the state of the 
RDY2 input; the Z8 will automatically hold 
DA V2 High until the RDY2 input is High. The 
peripheral device should force the Z8 RDY2 
input line Low after it has latched the data in 
response to a Low on IJAV2. The Low on RDY2 
will cause the Z8 to automatically force DA V2 
High until the next byte is output. Subsequent 
bytes should be output in response to interrupt 
request lRQ2 (caused by the High-to-Low tran­
sition on RDY2) in either a polled or an 
enabled interrupt mode. 

Port 1 

P33 = TSJf:'J' 
P34 = RDY 

P33 = RDY 
P34 = lJAV 

set bit 3 & reset bit 4 of 
POIM (program byte as 
input) 

reset bits 3, 4 of POIM 
(program byte as output) 

set bit 4 6f Port 3 (P34); 
set bits 3,4 of P3M , 

Port 2 

P31 = lJAV 
P36 = RDY 

P31 = RDY 
P36 = "'f5A'V 

set bit 7 of P2M 
(program high bit as input) 

reset bit 7 of P2M 
(program high bit as output) 

set bit 6 of Port 3 (P36); 
set bit 5 of P3M 

Table 7. Port Handshake Selection 



SECTION 

9 
Arithmetic Routines 

This section gives examples of the arithmetic 
and rotate instructions for use in multiplica­
tion, division, conversion, and BCD arithmetic 
algorithms. 

9.1 Binary to Hex ASCII. The following 
module illustrates the use of the ADD and 
SWAP arithmetic instructions in the conversion 
of a l6-bit binary number to its hexadecimal 
ASCII representation. The 16-bit number is 
viewed as a string of four-nibbles and is pro-

BIT 0, • 3 Do 0, .3 
I I I I I 

REGISTER 00 01 

0, • 3 0, 0, .3 

RR4- I I I 

0, 

I 

Do 

I 

cessed one nibble at a time from left to right, 
beginning with the high-order nibble of the 
lower memory address. %30 is added to each 
nibble if it is in the range 0 to 9; otherwise 
%37 is added. In this way, %0 is converted to 
%30, % I to %31. ... %A to %41, ... %F to 
%46. Figure 5 illustrates the conversion of RRO 
(contents = %F2BE) to its hex ASCII 
eqUivalent; the destination buffer is pointed to 
by RR4. 

0, . , 0, 0, . , Do 

I I I I I 

Figure 5. Conversion of (RRO) to Hex ASCII 

Z8ASM 2.99 
LOC OBJ CODE 

P 0000 

P 0000 6C 04 
P 0002 FO EO 
P 0004 28 EO 
P 0006 56 E2 OF 

p 0009 06 E2 30 
P OOOC A6 E2 3A 
P OOOF 7B 03 
P 0011 06 E2 07 
P 0014 92 24 
P 0016 AO E4 

P 0018 A6 E6 03 
p 001B EB 02 
P 001D 08 E1 

P 001F 6A E1 
P 0021 AF 
P 0022 

o errors 
Assembly complete 

15 instructions 
34 bytes 
120.5 p.s (average) 

INTERNAL RELEASE 
STMT SOURCE STATEMENT 

MODULE 1 ARITH 
2 GLOBAL 
3 BINASC 
4 

PROCEDURE 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

!***************************************************** 
Purpose To convert a 16-bit binary 

number to Hex ASCII 

Input 

Output 

RRO 16-bit binary number. 
RR4 = pOinter to destination 

buffer in external memory. 

Resulting ASCII string (4 bytes) 
in destination buffer. 
RR4 incremented by 4 . 
RO,R2,R6 destroyed. " 

*****************************************************! 
ENTRY 

again: 
Id 
SWAP 
ld 
and 

R6,11%04 !nibble count! 
RO !look at next nibble! 
R2, RO 
R2,#%OF !isolate 4 bits! 

23 !convert to 
24 

ASCII : R2 + #%30 if RO in range 0 to 
else R2 + #137 (in range OA to OF) 

25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

skip: 

ADD 
cp 
jr 
ADD 
Ide 
incw 

cp 
jr 
ld 

same_byte: 

END 
END 

djnz 
ret 
BINASC 
ARITH 

R2,II%30 
R2,#13A 
ult, skip 
R2,1I%07 
@RR4,R2 
RR4 

R6,#%03 !time 
ne,same_byte 
RO, R1 

R6,again 

!save ASCII in buffer! 
!point to next 
buffer position! 

for second byte?! 
!no. ! 
!2nd byte! 

223 



9. Arithmetic 9.2 BCD Addition. The following module illus-
Routines ' trates the use of the add with tarry' (ADC) and 
(gc:>?tinued) decimal adjust (DA) instructions for the addi­

tion of two unsigned BCD strings of equal 
length. Within a BCD string, each nibble 
represents a decimal digit (0-9). Two such 
digits are packed per byte with the most 

significant digit in bits 7"':4. Bytes within a 
BCD string are arranged in memory with the 
most significant digits stored in the lowest 
memory location. Figure 6 illustrates the 
representation of 5970 in a 6-digit BCD string, 
starting in register %33. 

224 

BIT '" 1 
REGISTER 

Z8ASM 2.0 
LOC OBJ CODE 

P 0000 

P 0000 02 12 
P 0002 02 02 
P 0004 CF 

P 0005 00 E1 

P 0007 00 EO 

P 0009 E3 31 
P OOOB 13 30 
P OOOD 40 E3 
P OOOF F3 03 
P 0011 2A F2 

P 0013 AF 

P 0014 

o ERRORS 
ASSEMBLY COMPLETE 

'11 instructions 
20 bytes 

•• Do '" . . Do '" . . Do 

1 1 1 1 ·1 1 1 I .,. .. .,. .. .,. .. 
Figure 8. Unsigned BCD, Rep .... nlallon 

STMT SOURCE STATEMENT 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 . 
36 
37 
38 
39 
40 
41 
42 
43 

ARITH MODULE 
CONSTANT 

BCD_SRC • _ Rl 
BCD_DST : = RO 
BCD_LEN := R2 

GLOBAL . 
BCDADD PROCEDURE 
1***********************************.***************** 
Purpose = To add two packed BCD strings of 

equal length., 

Input 

dst <-- dst + src 

RD 
Rl 
R2 

pointer to dst BCD string. 
poiQter ~o src BCD string. 
byte count in BCD string 
(digit count = (R2)*2 ). 

Output BCD string pointed to by RO is 
the sum. 
Carry FLAG = 1 if overflow. 
RD , Rl as on entry. 
R2 = 0 

*****************************************************1 
ENTRY 

.add 
add 
rcf 

add_again: 
dec 

dec 

ld 
ADC' 
DA 
ld 
djnz 

ret 

END BCDADD 
END ARITH 

BCD_SRC,BCD_LEN Istart at least ••• I 
BCD_DST,BCD_LEN Isignificant digits! 

Icarry = O! 

BCD_SRe Ipoint to next two 
src digits! 

BCD_,DST '!point to next two 
dst digitsl 

R3,@BCD_SRC Iget src digitsl 
R3,@BCD_DST ladd dst digits I 
R3 Idecimal adjustl 
@BCD_DST,R3 Imove to dstl 
BCD_LEN,add_again Iloop for next 

digits I 
lall done I 

Execution time is a function of the number of bytes (n) in input BCD string: 
20 ps + 12.5 (n - 1) ps , 

/ 



9. Arithmetic: 
Routines 
(Continued) 

9.3 Multiply. The following module illustrates 
an efficient algorithm for the multiplication of 
two unsigned 8-bit values, resulting in a 16-bit 
product. The algorithm repetitively shifts the 
multiplicand right (using RRC)' with the low­
order bit being shifted out (into'the carry flag). 
If a one is shifted out, the multiplier is added 

Z8ASM 2.99 
LOC OBJ CODE 

INTERNAL RELEASE 
STMT SOURCE STATEMENT 

1 ARITH MODULE 
2 CONSTANT 
3 MULTIPLIER 
4 PRODUCT_LO 
5 PRODU CT_HI 
6 COUNT 
7 GLOBAL 

to the high-order byte of the partial product. 
As the high-order bits of the multiplicand are 
vacated by the shift, the resulting partial­
product bits are rotated in. Thus, the multipli­
cand and the low byte of the product occupy 
the same byte, which saves register space, 
code, and execution time. 

Rl 
R3 
R2 
RO 

P 0000 8 MULT PROCEDURE 
9 !*************~*************************************** 

10 Purpose To perform an 8-bit by 8-bit unsigned 
11 binary multiplication. 
12 

Input = 

Output = 

Rl = multiplier 
R3 = multiplicand 

RR2 = product 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

RO destroyed 
*****************************************************! 
ENTRY 

P 0000 OC 09 
P 0002 BO E2 
P 0004 CF 
P 0005 CO E2 
P 0007 CO E3 
P 0009 FB 02 
P OOOB 02 21 
P OOOD OA F6 
P OOOF AF 
P 0010 

o err"ors 
Assembly complete 

9 instructions 
16 bytes 
92.5 p.s (average) 

LOOP: 

NEXT: 

END 
END 

ld 
clr 
RCF 
RRC 
RRC 
jr 
ADD 
djnz 
ret 
MULT 
ARITH 

9.4 Divide. The following module illustrates 
an efficient algorithm for the division of a 
16-bit unsigned value by an 8-bit unsigned 
value, resulting in an 8-bit unsigned quotient. 
The algorithm repetitively shifts the dividend 
left (via RLC). If the high-order bit shifted out 
is a one or if the resulting high-order dividend 
byte is greater than or equal to the divisor, the 

COUNT, 119 
PRODUCT_HI 

PRODUCT_HI 
PRODUCT_LO 
NC,NEXT 

18 BITS + 11 
IINIT HIGH RESULT BYTEI 
!CARRY = O! 

PRODUCT_HI, MULTIPLIER 
COUNT, LOOP 

divisor is subtracted from the high byte of the 
dividend. As the low-order bits of the dividend 
are vacated by the shift left, the resulting 
partial-quotient bits are rotated in. Thus, the 
quotient and the low byte of the dividend 
occupy the same byte, which saves register 
space, code, and execution time. 

225 



9. Arithmetic 
Routines 
(Continued) 

SECTION 

10 

226 

Z8ASM 2.0 
LOC OBJ CODE 

P 0000 

P 0000 OC 

!' 0002 A2 
P 0004 BB 

P 0006 DF 
P 0007 AF 

08 

12 
02 

P 0008 10 E3 
P OOOA 10 E2 
P oooe 7B 04 
P OOOE A2 12 
P 0010 BE 03 
P 0012 22 21 
P 0014 DF 
P 0015 OA Fl 

P 0017 10 E3 

P 0019 AF 
P 001A 

o ERRORS 
ASSEMBLY COMPLETE 

15 instructions 
26 bytes 
124.5 pB (average) 

Conclusion 

STMT SOURCE STATEMENT 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 

ARITH MODULE 
CONSTANT 

COUNT RO 
DIVISOR Rl 
DIVIDEND_HI R2 
DIVIDEND_LO R3 

GLOBAL 
D+VIDE PROCEDURE 
1***************************************************** 
Purpose' To perform a 16-bit by 8-bit unsigned 

binary division. ' 

Input = Rl = 8-bit divisor 
RR2 16-bit dividend 

Output = R3 8-bit quotient 
R2 8-bit remainder 
Carry flag = 1 if overflow 

= 0 if no overflow 
*****************************************************! 
ENTRY . 

ld COUNT,118 ILOOP COUNTER! 

!CHECK IF RESULT WILL FIT IN 8 BITS! 
cp DIVISOR,DIVIDEND_HI 
jr UGT,LOOP !CARRY 

IWON'T FIT. OVERFLOW I 
o (FOR RLC)! 

11 

LOOP: 

subt: 

next: 

!ALL 

SCF ! CARRY 
ret 

!RESULT WILL FIT. GO AHEAD WITH DIVISION! 
RLC DIVIDEND_LO !DIVIDEND * 21 
RLC DIVIDEND_HI 
jr c,subt 
cp DIVISOR,DIVIDEND_HI 
jr UGT,next ICARRY = 01 
SUB DIVIDEND_HI,DIVISOR 
SCF ITO BE SHIFTED INTO RESULT! 
djnz COUNT,LOOP !no flags affected I 

DONE! 
RLC 

I CARRY 0: no overflow! 
ret 

END DIVIDE 
END ARITH 

This Application Note has focused on ways 
in which the 28 microcomputer can easily yet 
effectively solve various application problems. 
In particular, the many sample routines 

illustrated in this document should aid the 
reader in using the 28 to greater advantage. 
The major features of the 28 have been 
described so that the user can continue to 
expand and explore the 28's repertoire of uses. 



INTRmUCTIIIII 

This spplication note deacribes a preprogranmed 
Z8601 MCU that contains a bootstrap to external 
program memory and a collection of general-purpose 
subroutines. Routines in this application note 
can be implemented with a ZB Protopack and a 2716 
EPROM programmed with the bootstrap and subroutine 
librsry. 

In a system, the user's software resides in 
external memory beginning at hexidecimal address 
OBOO. This aoftware can use any of the 

· Z8@ SabroaliDe Library 

AppllcalioD 
Nol8 

April 1982 

subroutines in the library wherever appropriate 
for a given application. This applicstion example 
makes certain asaumptions about the environment; 
the reader should exercise caution when copying 
theae programs for other cases. 

Following· RESET, software within the subroutine 
librsry is executed to initislize the control 
registers (Table 1). The controi register 
selections csn be subsequently modified by the 
user's program (for example, to·use only 12 bits 
of Ports 0 and 1 for addresaing external memory). 
Following control register' initialization, an EX 

Table 1. Control Register Initialization 

Control R!9iater 
N.a Address Initial Value 

TMR F1H OOH 

P2M F6H FFH 

P3M F7H 10H 

P01M FBH 07H 

IRQ FAH OOH 

IMR FBH OOH 

RP FDH OOH 

SPL FFH 6SH 

Meaning 

TO and T1 disabled 

P20-P27 : inputs 

P2 pull-ups open drsin; 
P30-P33 inputs; 
P3S-P37 outputs; 
P34 OM 

P10-P17 ADO-AD,; 
POO-P07 AB-A1S; 
normal memory timing; 
internal stack 

no interrupt requests 

no interrupts· enabled 

working register file 
OOH-OFH 

1st byte of stsck is 
register 64H 

227 



instruction is executed to enable interrupt 
processing, and a jump instruction is executed to 
transfer control to .the user's program at location 
OS12H• The interrupt vectors for IRQO through 
IRQ5 are rerouted to locations OSOOH through 
080fH' respectively, in three-byte increments, 
allowing enough room for a jump instruction to the 
appropriate interrupt service routine. That is, 
IRQO is ,routed to location OSOOH' IRQ1 to 
0803H, IRQ2 to0806H' IRQ3 to OB09H' IRQ4 to 
080~, and IRQ5 to OBOfH' figure 1 illus­
trates the allocati.on of Z8memory as defined by 
this application note. 

The subro1Jtines' available to the user are refer­
enced by a jump. table beginning at location 
001BH. Entry to a subroutine is made via the jump 
table. The 32 subroutines provided in the library 
are grouped into six functional c lassi·fications. 
These classifications are described below, each 
with a brief overview of the functions provided by 
each category. Table 2 defines one set of entry 
addresses for each subroutine in the library. 

• 

• 

Binary Arithmetic. Multiplication and division 
of unsigned 8- and 16-bit quantities. 

BCD Arithmetic. Addition and subtraction of 
variable-precision floating-point BCD values. 

FF 

F. 
EF 

80 
7F 

7, 
7A 

,E 
6D 

,. 
'4 

REGISTER 
FFFF 

CONTROL 
REGISTERS 

UNIMPLEMENTED 

,. 

2. 

3. 

STACK -----------

• Conversion Algorithms. BCD to and from decilnal 
ASCII, binary to and from decimal ASCII, binary 
to and from hex ASCII. 

• Bit Manipulations. Packs selected bits into 
the low-order bih of a byte, and optionally 
uses the result as an index into a jump table. 

• Serial I/O. Inputs bytes under vectored inter­
rupt control, outputs bytes under polled inte­
rrupt control. Options provided include: 

• 

odd or even parity 
BREAK detection 
echo 
input editing (backspace, delete) 
auto line feed 

Timer/Counter: Maintains a time-of-day clock 
with a variable number of ticks per second, 
generates an interrupt after a specified delay, 
generates variable width, variable frequency 
pulse output. 

The listings in the "Canned Subroutine Library" 
provide a specification block prior to each sub­
routine, explain the subroutine's purpose, lists 
the input and output parameters, and gives pertin­
ent notes concerning the subroutines. The follow­
ing notes provide additional information on data 
formats and algorithms used by the subroutines. 

PROGRAM 

USER 
DEFINED 

START 

FFFF ...-_....:;EX;;.TE:.;R:.;.;N;.;;AL;.;D:.;.;A:.;.;TA;...._., 

USER 
DEFINED 

0812 
001 , 

INTERRUPT VECTORS 

228 

04 
03 

00 

USER 
DEFINED 

110 POATS 

REGISTERS USED BY SUBROUTINES: 

1. USED BV MOST ROUTINES 
2. USED BY SERIAL ROUTINES ONLY 
3. USED BY TlMEAfCOUNTER ROUTINES ONLY 

0 08. 
07F F 

0000 

(3 BYTElIRQx) 

INTERNAL 
SUBROUTINES 

0000 ..... _______ ....... 

Figure 1. -Rllness ZS- 5mroutine library tte.ory Usage Map 



1. Although the user is free to modify the condi­
tions selected in the Port 3 Mode register 
(P3M, F7H)' P3M is a write-only register. 
This subroutine library maintains an image of 
P3M in its register P3M __ save (7F H). If 
software outside of the subroutine package is 
to modify P3M, it should reference and modify 
P3M save prior to modification of P3M. For 
example, to select P32/P35 for handshake, the 
following instruction sequence could be used: 

OR 
LD 

P3M save, 1I04H 
P3M:-P3M_save 

2. For many of the subroutines in this library, 
the location of the operands (source/destina­
tion) is flexible between register memory, 
external memory (code/data), and the serial 
channel (if enabled). The description of each 
parameter in the specification blocks tells 
what the location options are. 

• The location designation "in reg/ext 
memory" implies that the subroutine allows 
the operand to exist in register or in 
external data memory. The address of such 
an operand is contained in the designat~d 
register pair. If the high byte of that 
pair is 0; the operand is in register 
memory at the address held in the low byte 
of the register pair. Otherwise, the 
operand is in external data memory 
(accessed via LDE). 

• The location designation "in reg/ext/ser 
memory" implies the same considerations as 
above with one enhancement: if both bytes 
Qf the register pair are 0, the operand 
exists in the serial channel. In this 
case, the register pair is not modified 
(updated). For example, rather than stor­
ing a destination ASCII string in memory, 
it might be desirable to output the string 
to the serial line. 

3. The BCD format supported by the following 
arithmetic and ,converSion routines allows rep­
resentation of signed variable-precision BCD 
numbers. A BCD number of 2n digits is repre­
sented in n+1 consecutive bytes, where the 
byte at the lowest memory address (byte 0) 
represents the sign and post-dedmal. digit 
count, and the bytes in the n higher memory 
locations (bytes 1 through n) represent· the 
magnitude of the BCD number. The address of 
byte 0 and the value n are passed to the sub­
routines in specified working registers. 

Digits are packed two per byte with the most­
significant digit in the high-order nibble of 
byte 1 and the least-significant digit in the 
low-order nibble oi byte n. Byte 0 is organ­
ized as two fields: 

Bit 7 represents sign: 
1 negative; 
o = positive. 

Bits 0-6 represent post-decimal digit count. 

For example: 

byte 0 05H positive, with five post':' 
decimal digits 

BOH negative, with no post-
decimal digits 

90H negative, with 16 post-
decimal digits 

4. The format of the decimal ASCII character 
string expected as input to the conversion 
routines "dascbcd" and "dascwrd" is defined 
as: 

( + 1 - ) ( <digit» [( <digit> ) 1 

in which 
( ) Parentheses mean that the enclosed 

times or can be omitted. 
[ 1 Bracketa denote that the enclosed 

element is optional. 

Table 3 illustrates how various input strings 
are interpreted by the conversion routines. 

5. The format of the decimal ASCII character 
string output from the conversion routine 
"bcddasc" operating on an input BCD string of 
2n digits is 

sign of character ( + 1 - ) 
2n-x pre-decimal digits 
1 decimal point if x does not equal 0 
x post-decimal digits 

6. The format of the decimal ASCII character 
string output from the conversion routine 
"wrddassc" is 

1 sign character (determined by bit 15 of 
input word) 

6 pre-decimal digits 
no decimal point 
no post-decimal digits 

229 



230 

Table Z. Subroutine Entry Points 

Address 

Binary Arithletic Routines 

001B divide 
001E div.16 
0021 multiply 
0024 mult 16 

BID Arithletic Routines 

0027 
002A 

bed add 
bcdsub 

COnversion Routines 

002D bcddasc 
0030 dascbcd 
0033 bcdwrd 
0036 wrdbcd 
0039 bythasc 
003C wrdhasc 
003F hascwrd 
0042 wrddasc 
0045 dascwrd 

Bit Manipulation Routines 

0048 
004B 

clb 
tmj 

Serial Routines 

004E ser init 
0051 ser_input 
0054 ser rlin 
0057 ser rabs 
005A ser break 
005D ser flush 
0060 ser wHn 
0063 ser wabs 
0066 ser_wbyt 
0069 ser disable 

Tiller/Counter Routines 

006C 
006F 
0072 
0075 
0078 

tod i 
tod 
delay 
pulse_i 
pulse 

Description 

16/8 unsigned binary division 
16/16 unsigned binary division 
8x8 unsigned binary multiplication 
16x16 unsigned binary multiplication 

BCD addition 
BCD subtraction 

BCD to decimal ASCII 
Decimal ASCII to BCD 
BCD to binary word 
Binary word to BCD 
Binary byte to .hexadecimal ASCII 
Binary word to hexadecimal ASCII 
Hexadecimal ASCII to binary word 
Binary word to decimal ASCII 
Decimal ASCII to binary word 

Collect bits in a byte 
Table jump under mask 

Initialize serial I/O 
IRQ3 (receive) service 
Read line 
Read absolute 
Transmit BREAK 
Flush (clear) input buffer 
Write line 
Write absolute 
Write byte 
Disable serial I/O 

Initialize for time-of-day clock 
Time-of-day IRQ service 
Initialize for delay interval 
Initialize for pulse output 
Pulse IRQ service 



7. Procedure name: ser ___ input 

The conclusion of the algorithm for BREAK 
detection 
'register 
currently 

requires the Ser ial Receive Shift 
to be cleared of the character 
being collected (if any). This 

requires a software wait loop of a 
one-character duration. The following 
explains the algorithm used (code lines 464 
through 472, Part II): 

1 character time 
(128xPREOxTO) sec 10 bit 

XTAL, bit x char 

1280xPREOxTO sec 
XTAL CFiii"r 

A software loop equal to one character time is 
needed: 

1 character time = __ 2_ ~ x n cycle 
XTAL cycle loop 

Solve for n: 

(1280 x PREO x TO) 
XTAL 

2n 
= XTAL 

2n 
= XTAL 

n 640 x PREO x TO 

sec 
loop 

rhe register pair SERhtime, SERltime was 
initialized during ser init to equal the 
product of the prescaler and the counter 
selected for the baud rate clock. That is, 

SERhtime, SERltime = PREO x TO 

The instruction sequence 

inlop: Id rSERtmpl, #53 (6 cycles) 

lpl: djnz rSERtmpl, lpl (12/10 cycles 
taken/not taken) 

executes in 

6 + (52 x 12) + 10 cycles 640 cycles 

8. BREAK detection on the serial input line 
requires that the receive interrupt service 
routine be entered within a half -a-bit time, 
since the routine reads the input line to 
detect a true (=1) or false (=0) stop bit. 
Since the interrupt request is generated 
halfway through reception of the stop bit, 
half-a-bit time remains in which to read the 
stop bit level. Interrupt priorities and 
interrupt nesting should be established 
appropriately to ensure this requirement. 

1/2 bit time 
(128 x PREO x TO) 

XTAL x 2 
sec 

Table J. Decwal ASCII Olaracter String Interpretation 

Result 
Input String Sign Pre-Decwal Post-Decillal Terainator 

Digits Digits 

+1234.567, + 12J4 567 

+---+. 789+ 789 + 

1234 •• + 1234 

4976- + 4976 

NOTE: The terminator can be any ASCII character that is not a valid ASCII string 
character. 

231 



Z8ASM 3.02 
LOC OBJ CODE 

232 

ROMLESS Z8 SUBROUTINE LIBRARY PART I 

STMT SOURCE STATEMENT 

1 
2 
3 PART I 
4 

MODULE 

5 
6 
7 
8 
9 

!'ROMLESS Z8' SUBROUTINE LIBRARY PART I 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

Initialize: a) Port 0 & Port 1 set up to address 
64K external memory; 

Note: 

b) internal stack belaw allocated 
RAM for subroutines; 

c) normal memory timing; 
d) IMR, IRQ, TMR, RP cleared; 
e) Port 2 inputs open-drain pull-ups; 
f) Data Memory select enabled; 
g) EI executed to 'unfreeze' IRQ; 
h) Jump to %0812. 

The user is free to modify 
conditions selected for a, 
via direct modification of 
Mode register (P01M, %F8). 

the initial 
b, and c above, 
the Port 0 & 1 

The user is free to modify the conditions 
selected in the Port 3 Mode register (P3M, %F7). 
However, please note that P3M is a write-only 
register. This subroutine library maintains 
an image of P3M in its register P3M save (%7F). 
If software outside of the subroutine package 
is to modify P3M, it should reference and modify 
P3M save, prior to modification of P3M. For 
example, to select P32/P35 for handshake, use 
an instruction sequence such as: 

OR 
LD 

P 3M save, U04 
P3M-;-P3M _ save 

This is important if the serial and/or timer/ 
counter subroutines are to be used, since these 
routines may modify P3M. 



44 IAccess to GLOBAL subroutines in this library should 
45 be made via a CALL to the corresponding entry in the 
46 jump table which begins at address SOOOF. The jump 
47 table should be referenoed rather than a CALL to the 
48 ,aotual entry point of the subroutine to avoid future 
49 oonfliot in the event suoh entry points ohange in 
50 potential future revisions. 
51 
52 Each GLOBAL subroutine in this listing is headed by a 
53 oomment blook specifying its PURPOSE and calling 
54 sequence (INPUT and OUTPUT parameters). For many of 
55 the subroutines in this library, the location of the 
56 operands (souroes/destinations) is quite flexible 
57 between register memory, external memory (oode/data), 
58 and the serial ohannel (if enabled). The desoription 
59 of each parameter speoifies what the looation ohoices 
60 are: 
61 
62 - The location designation 'in reg/ext memory" 
63 implies that the subroutine allows that the operand 
64 exist in either register or external data memory 
65 The address of suoh an operand is oontained 
66 ,in the designated register pair. If the high byte of 
67 that pair is zero~ the operand is in register memory 
68 at the address given by the low byte of the register 
69 pair. Otherwise, the operand is in external data 
70 memory (aooessed via LDE). 
71 
72 - The looation designation 
73 'in reg/ext/ser memory' impli~s the same 
74 oonsiderations as above with one enhancement: if both 
75 bytes of the reg. pair are zero, the operand exists 
76 in the serial ohannel. In this case, the register 
77 pair is not modified (updated). For example, rather 
78 than storing a destination ASCII string in memory, it 
79 might be desirable to output suoh to the serial line. 
80.! 

233 



234 

82 CONSTANT 
83 ! Register 
84 

Usag e! 

85 RAM START 
86 

· - ~7F 

87 P3M save 
88 TEM15 3 
89 TEMP-2 
90 TEMP-l 
91 TEMP-4 
92 -

: = 
· -
: = 
: = 
: = 

RAM START 
P3M-save-l 
TEM"Y 3-1 
TEMP-2-1 
TEMP:l-1 

93 !The following registers are modified/referenced 
94 by the Serial Routines ONLY. They are 
95 available as general registers to the user 
96 who does not intend to make use of the 
97 Serial Routines! 
98 
99 SER char 

SER-tmp2 
SER-tmp1 
SER-put 
SER-len 
SER-buf 
SER-imr 
SER-cfg 

:= TEMP 4-1 
._ SER Char-1 
._ SER-tmp2_1 
:= SER-tmpl-1 
:= SER-put-1 
._ SER-len-2, 
:= SER-buf-1 
:= SER-imr-1 

Configuration Data 
=1 => odd parity on 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 op 

! Serial 
bit 7 
bit 6 : =1 => even parity on 

6,7 = 11 => undefined) (bit 
bit 5 
bit 4 
bit 3 
bit 2 
bit 1 
bit 0 ,: 

119 ep 
120 ie 
121 al 
122 be 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 

eo 
SER get 
SER-flg 
! Serial 
bit7 
bit 6 
bit 5 
bit 4 
bit 3 
bit 2 
bit 1 
bit 0 
! 
sd 
pe 
bd 
bo 
bne 
bf 

143 RAM TMR 
144 
145 SERltime 

undefined 
undefined 
=1 => input editting on 
=1 => auto line feed enabled 
=1 => BREAK detection enabled 
=1 => input echo on 

· - ~80 

· - ~40 

· - %08 
· - %04 
· -, %02 
: = ~01 

· -· -Status Flags 

SER ofg-l 
SER:get-l 

=1 => serial IIO disabled 
undefined 
undefined 
=1 => parity error 
=1 => BREAK detected 
=1 => input buffer overflow 
=1 => input buffer not empty 
=1 => input buffer full 

· - %80 
:= :$10 
: = %08 
: = %04 
· - %02 
· - %,01 

: = RAM START-%10 

: = SER_flg-l 



146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 

SERhtime SERltime-1 

!The following registers are modified/referenced 
by the Timer/Counter Routines ONLY. They are 
available as general registers to the user 
who does not intend to make use of the . 
Timer/Cou~ter Routinesl 

TOD tic 
TOD-imr 
TOD-hr 
TOD-min 
TOD-sec 
TOD-tt 
PLS-1 
PLS-tmr 
PLS:2' 

RAM END 
STAl:K 

: = 
: = 

: :: 

: = 

RAM TMR-2 
TOD-tic-1 
TOD-imr-1 
TODnr-1 
TOD-min-1 
TOD-sec-1 
TOD-tt-1 
PLS-1-1 
PLS:::tmr-1 

PLS 2 
RAM-END 

IEquivalent working register equates 
for above register layoutl 

Iregister file ~70 - S7FI 
RAM STARTr . _ no 
rP3Msave 
rTEMP 3 
rTEMP-2 
rTEMP-1 
rrTEMP 1 
rTEMP lh 
rTEMP-1l 
rTEMP-4 
rSERcllar 
rSERtmp2 
rSERtmp1 
rrSERtmp 
rSERtmpl 
rSERtmph 
rSERput 
rSERlen 
rrSERbuf 
rSERbufh 
rSERbufl 
rSERimr 
rSERc fg 
rSERget 
rSERflg 

!register 
RAM TMRr 
rTOll"tic 
rTODimr 
rTODhr 
rTODmin 
rTODsec 
rTODtt 
rPLS 1 
rPLS't"mr 
rPLS_2 

: = 

: = 

: = 

: = 

: = 

: = 

: = 

file %60 -

: = 

: = 
: = 

R15 
R14 
R13 
R12 
RR12 
R12 
R13 
R11 
R10 
R9 
R8 
RR8 
R9 
R8 
R7 
R6 
RR4 
114 
R5 
R3 
R2 
R1 
RO 

%6F! 
%60 
R13 
R12 
R11 
R10 
R9 
R8 
R7 
R6 
R5 

I for SRP! 

.! for SRPI 

( 

235 



P 0000 0800 
P 0002 0803 
P 0004 0806 
P 0006 0809 
P 0008 oaoc 
P OOOA 080F 

236 

~. 
r. 

.. . . 

, 
210 EXTERNAL r 211 ser Inlt PROCEDURE 
212 ser-lnput PROCEDURE 
213 , ser"'"rlln PROCEDURE 
214 ser-rabs PROCEDURE 
215 ser-break PROCEDURE 
216 ser-flush PROCEDURE 
217 ser-wlin PROCEDURE, 
218 ser-wabs PROCEDURE 
219 ser-wbyt PROCEDURE 
220 ser-dlsable PROCEDURE 
221 ser-get PROCEDURE 
222 ser-output PROCEDURE 
223 tod-l PROCEDURE 
224 tQd- PROCEDURE 
225 delay PROCEDURE 
226 pulse_l PROCEDURE 
227 pulse PROCEDURE ' .. 
228 
229 
230 $SECTION PROGRAM 
231 GLOBAL 
232 
233 
234 IInterrupt vectorsl 
235 IRQ 0 ARRAY [ 1 word] = a0800] 
236 IRQ-1 ARRAY [ 1 word] = [S0803] 
237 IRQ-2 ARRAY [ 1 word] = [S0806] 
238 IRQ-3 ARRAY [1 word] = a0809] 
239 I.RQ-4 ARRAY [ 1 word] [S080C] 
240 IRQ::::5 ARRAY [ 1 word] = [S080F] 
241 
242 



21111 GLOBAL 
2115 
2116 IJump Tablel 

P OOOC 2117 ENTER PROCEDURE 
2118 ENTRY 

P OOOC 80 007B' 2119 JP INIT 
P OOOF 250 END ENTER 

251 
252 

P OOOF 28 113 29 253 copyright ARRAY [. BYTE] := '(C) 1980ZILOG' 
P 0012 31 39 38 
P 0015 30 5A 119 
P 0018 IIC IIF 117 

2511 
255 ISubroutine Entry Pointsl 

P 001B 256 JUMP PROCEDURE 
257 ENTRY 
258 
259 IBinary Arithmetic Routinesl 
260 

P 001B 80 0099' 261 JP divide 116/8 unsigned binary 
262 divisionl 

P 001E 80 00B7' 263 JP div_16 116/16 unsigned binary 
2611 divisionl 

P 0021 80 00E2' 265 JP mul tiply !8x8 unsigned binary 
266 multiplicationt 

P 00211 80 00F6' 267 JP mult_16 116x16 unsigned binary 
268 multiplication I 
269 
270 IBCD Arithmetic Routinesl 
271 

P 0027 80 011A' 272 JP bcdadd IBCD addition I 
273 

P 002A 80 0117' 2711 JP bcdsub I BCD subtraction I 
275 
276 I Conversion Rou'tinesl 
277 

P 0020 80 0205' 278 JP ·bcddasc IBCD to decimal ASCIII 
279 

P 0030 80 0363 ' 280 JP dascbcd I Decimal ASCII to BCDI 
2111 

P 0033 80 02811' 282 JP bcdwrd I BCD to binary wordl 
283 

p 0036 80 02CD' 2811 JP wrdbcd Ibinary word to BCDI 
285 

P 0039 80 025C' 286 JP 
287 

bythasc I Bin. byte to Hex ASCIII 

P 003C 80 0257' 288 JP wrdhasc IBin. word to hex ASCII I 
289 

P 003F 80 0319' 290 JP hascwrd I Hex ASCII to bin wordl 
291 

P 00112 80 03BE' 292 JP wrddasc IBin. word to dec ASCIII 
293 

P Oell5 80 03110' 2911 JP dascwrd Idec ASCII to bin wordl 
295 
296 IBit Manipulat10n Routines! 
297 

P 00118 80 OIlAl ' 298 JP clb Icollect bits in a by tel 
299 

P OOIlB 80 01lB9' 300 
301 

JP tjm ITable Jump Under Maskl 

302 ISerial Routinesl 
303 

P OOIlE 80 0000· 3011 JP ser init I initialize serial I/OI 

237 



305 
P 0051 8D 0000* 306 JP ser_input !IRQ3 (receive) service! 

307 
P 0054 8D 0000· 308 JP ser rlin tread line! 

309 
P 0057 8D 0000· 310 JP ser rabs tread absolute! 

311 
P 005A 8D 0000· 312 JP ser break ! transmit BREAK! 

313 
P 005D 8D 0000· 314 JP ser flush ! flush (clear) 

315 input bufferl 
P 0060 8D 0000· 316 JP ser wlin ! write liner 

317 
P 0063 8D 0000· 318 JP ser wabs !write absolute! 

319 
P 0066 8D 0000· 320 JP ser_wbyt !write byte! 

321 
P 0069 8D 0000· 322 JP ser disable ! disable serial, I/O! 

323 
324 I Timer/Counter Routines! 
325 

P 006C 8D 0000· 326 JP tod_i !init for time of dayl 
327 

P 006F ~D 0000· 328 JP tod !tod IRQ servicel 
329 

P 0072 8D 0000· 330 JP delay !ini1; for delay interval 
331 

P 0075 8D 0000· 332 JP pulse i linit for pulse outputl 
333 -

P 0078 8D 0000· 334 JP pulse !pulse IRQ service! 
335 

P 007B 336 END JUMP 

338 lIn it ia11 zat ion! 
? 007B 339 INIT PROCEDURE 

340 ENTRY 
341 

P 007B E6 F8 D7 342 LD P01M,#%(2)11010111 
343 !internal stack; 
344 ADO-A15; 
345 normal memory 
346 timing ! 

P 007E E6 7F 10 347 LD P3 M_ save,#%(2)00010000 
348 !P3M is write-only, 
349 so keep a copy in 
350 RAM for later 
351' reference ! 

P 0081 E4 7F F7 352 LD P3M, P3M save ! set up Port 3 
P 0084 E6 FF 65 353 LD Sl'L,IISTACK !stack pointer 
P 0087 BO F1 354 CLR TMR !reset timers! 
P 0089 E6 F6 FF 355 LD P2M,/I%FF ! all inputs I 
P D08C BO FA 356 CLR IRQ !reset into requests! 
P 008E BO FB 357 CLR IMR !disable interrupts I 
P 0090 BO FD 358 CLR RP Iregister pointer! 
P 0092 E6 70 80 359 LD SER_flg,U80 !serial disabledl 
P 0095 9F 360 EI ! globally enable 

361 interrupts I 
P 0096 8D 0812 362 JP %0812 

363 
P 0099 364 END INIT 

238 



Binary Arithmetic Routines 

397 CONSTANT 
398 div LEN R10 
399 DIVIsOR R11 
400 dividend HI R12 
401 dividend-LO = R13 
402 GLOBAL 

P 00~9 403 divide PROCEDURE 
404 I····················································· 405 Purpose To perform a· 16-bit by 8-bit unsigned 
406 binary division. 
407 
408 Input = R11 = 8-bit divisor 
409 RR12 16-bit dividend 
410 
411 Output = R13 = 8-bit quotient 
412 R12 = 8-bit remainder 
413 Carry flag = 1 if overflow 
414 = 0 if no overflow 
415 R11 unmodified 
416 ..................................................... , 
417 ENTRY 

P 0099 A9 7C 418 ld TEMP 1,div LEN !save caller's R101 
P 009B AC 08 419 ld div_rEN,#8- !LOOP COUNTER! 

420 
IF RESULT WILL FIT IN 8 BITS! 421 !CHECK 

P 0090 A2 BC 422 cp DIVISOR,dividend HI 
P 009F BB 02 423 jr UGT,LOOP TCARRY o (FOR RLC)I 

424 !overflow! 
P 00A1 OF 425 SCF !CARRY 11 
P OOA2 AF 426 ret 

427 
P 00A3 10 ED 428 LOOP: RLC dividend LO !DIVIDEND • 2! 
P 00A5 10 EC 429 RLC dividend: HI , 
P 00A7 7B 04 430 jr c,subt 
p 00A9 A2 BC 431 cp DIVISOR,dividend_HI 
P OOAB BB 03 432 jr UGT,next ICARRY = 01 
p OOAD 22 CB 433 subt: SUB dividend_HI,DIVISOR 
p OOAF DF 434 SCF !TO BE SHIFTED INTO RESULTI 
P OOBO AA F1 435 next: djnz div_LEN,LOOP Ino flags affected I 

436 
437 !ALL DONEI 

p 00B2 10 ED 438 RLC dividend LO 
439 !CARRY = 0: no over flow I 

P 00B4 A8 7C 440 ld div_LEN, TEMP_ Irestore caller's R101 
p 00B6 AF 441 ret 
P 00B7 442 END div ide 

239 



P 00B7 

P 00B7 79 
P 00B9 7C 
P OOBB CF 
P OOBC BO 
P OOBE BO 
P OOCO 10 
P 00C2 10 
P 00C4 10 
P 00C6 10 
P 00C8 7B 

. P OOCA A2 
P OOCC BB 
P OOCE 7B 
P 0000 A2 
P 0002 BB 
P 0004 22 
P 0006 32 
P 0008 OF 
P 0009 7A 
P OODB 10 
P 0000 10 
P OODF 78 
P 00E1 AF 
P 00E2 

P 00E2 

P OOE2 A9 
P 00E4 AC 
P 00E6 BO 
P 00E8 CF 
P 00E9 co 
P OOEB CO 
P ODED FB 
P OOEF 02 
P 00F1 AA 
P 00F3 A8 
P 00F5 AF 
P 00F6 

240 

7C 
10 

EA 
EB 
ED 
EC 
EB 
EA 
OA 
8A 
DB 
04 
9B 
05 
B9 
A8 

E5 
ED 
EC 
7C 

7C 
09 
EC 

EC 
ED 
02 
CB 
F6 
7C 

444 
445 
446 
447 
448 
449 
450 
451 
452 
453 
454 
455 
1156 
457 
458 
459 
460 
461 
462 
463 
464 
465 
466 
467 
468 
469 
470 
471 
472 
473 
474 
475 
476 
477 
478 
479 
480 
481 
482 
483 
484 
485 
486 
487 
488 
489 

491 
492 
493 
494 
495 
496 
497 
498 
499 
500 
501 
502 
503 
504 
505 
506 
507 
508 
509 
510 
511 
512 
513 
514 
515 
516 
517 
518 

CONSTANT 
d16 LEN R7 
dvsr hi R8 
dvsr-lo R9 
rem hi R10 
rem-lo R11 
quo! hi R 12 
quot-lo R13 

GLOBAL: 
div 16 PROCEDURE 
I**T************************************************** 
'purpose To perform a 16-bit by 16-bit unsigned 

Input = 

binary divIsion. 

RR8 = 16-bit divisor 
RR12 = 16-bit dividend 

Output = RR12 = 16-bit quotient 
RR10 = 16-bit remainder 
RR8 unmodified 

.*************.*********.***~*****.*** •••• **.********! 
ENTRY 

Id 
Id 
rcf 
clr 
clr 

dlp_16: rIc 
rIc 
rIc 
rIc. 
jr 
cp 
jr 
jr 
cp 
jr 

subt 16: sub 
sbc 
scf 

skp_16: djnz 
rIc 
rIc 
Id 
ret 

END div 16 

CONSTANT 
MULTIPLIER 
PRODUCT LO 
PRODUCT-HI 
mul LEN-

GLOBJrL 

TEMP 1,d16 LEN 
d16_LEN,111o 

rem hi 
rem-lo 
quo! 10 
quot-hi 
rem To 
rem-hi 
c ,sUbt 16 
dvsr hi,rem hi 
ugt,skp 16 -
ult,subt 16 
dvsr lo,rem 10 
ugt,skp 16-
rem lo,avsr 10 
rem::::hi, dvsr :::hi 

d16 LEN,dlp 16 
quoT: 10 -
quot-hi 
d16_L:EN,TEMP_1 

: = R11 
R13 
R12 
R10 

!save caller's R101 
ILOOP COUNTER I 
!carry = O! 

!no flags affected! 

multiply PROCEDURE 
1***************************************************** 
Purpose To perform an 8-bit by 8-bit 'unsigned 

binary multiplication. 

Input = R11 = multiplier 
R13 = multiplicand' 

Output = RR12 = product 
R11 unmodified 

*****************************************************! 
ENTRY 

LOOP1 : 

NEXT: 

ld 
Id 
clr 
RCF 
RRC 
RRC 
jr 
ADD 
djnz 
Id 

TEMP 1,muI LEN 
mul :[EN,119-
PRODUCT HI 

PRODUCT HI 
PRODUCT-LO 
NC,NEXT-

!save caller's R10! 
! 8 BITS! 
IINIT HIGH RESULT BYTE! 
ICARRY = O! 

PRODUCT HI,MULTIPLIER 
mul LEN-:-LOOP1 
mul::::LEN,TEMP_1 !restore caller's R10! 

519 
520 END 

ret 
multiply 



522 CONSTANT 
523 m16 LEN R7 
524 plier hi R8 
525 pl1er-lo R9 
526 prod oi R10 
527 prod:lo R11 
528 mult hi R12 
529 mult-1Q R13 
530 GLOBAL 

P 00F6 531 mult 16 PROCEDURE 
532 I···T ................................................. 
-533 Purpose To perform an 16-bit by 16-bit unsigned 
534 binary multiplication. 
535 
536 Input = RR8 = multiplier 
537 RR12 = multiplicand 
538 
539 Output = RQ10 = product (R10, R 11, R12, R13) 
540 RR8 unmod ified 
541 Zero FLAG = 0 if result> 16 bits 
542 = 1 if result fits in 16 
543 (unsigned) bits (RR12 = result) 
544 ·····················································1 545 ENTRY 

P 00F6 79 7C 546 Id TEMP 1,m16 LEN Isave caller's R7! 
P 00F8 7C 11 547 Id m16 tEN,/I11 116 BITSI 
P OOFA BO EA 548 clr prod hi 
P OOFC BO EB 549 clr prod:lo linit product! 
P OOH CF 550 rcf ICARRY = O! 
P OOFF CO EA 551 100p16: rrc prod_hi 
P 0101 CO EB 552 rrc prod 10 Ibit 0 to carry! 
P 0103 CO EC 553 rrc mUltni !multiPficand / 2! 
P 0105 CO ED 554 rrc mult-lo 
P 0107 FB Oil 555 jr nc,next16 
P 0109 02 B9 556 add prod lo,plier 10 
P 010B 12 A8 557 adc prodyi, plieryi 
P 010D 7A FO 558 next16: djnz m16 LEN,loop16 next bit! 
P 010F 78 7C 559 Id m16-LEN,TEMP 1 restore caller's R7! 
P 0111 A9 7C 560 Id TEMP 1, prod hi test product ..• 1 
P 0113 44 EB 7C 561 or TEMP:1, prod:lo ••• bits 31 - 161 
P 0116 AF 562 ret 
P 0117 563 END mult 16 -

241 



BCD Arithmetic Routines 

P 0117 

P 0117 B7 EE 80 

P 011A 

242 

593 IThe BCD format supported by the following arithmetic 
594 and conversion routines allows representation 
595 of signed magnitude variable precision BCD 
596 numbers. A BCD number of 2n digits is 
597 represented in n+1 consecutive bytes where 
598 the byte at the lowest memory address 
599 ('byte 0') represents the sign and post-
600 decimal digit count, and the bytes in the 
601 next n higher memory locations ('byte l' 
602 through 'byte n') represent the magnitude 
603 of the BCD number. The address of 'byte 0' 
604 and the value n are passed to the subroutines 
605 in specified working registers. Digits are 
606 packed two per byte with the most 
607 significant digit in the high order nibble 
608 of 'byte l' and the least significant digit 
609 in the low order nillble of 'byte n'. 'Byte 0' 
610 is organized as two fields: 
611 bit 7 represents sign: 
612 = 1 => negative 
613 ,= 0 => positive 
614 bit 6-0 represent post-decimal digit 
615 count 
616 For example: 
617 'byte 0'= %05 => positive, with 5 post-decimal digits 
61e %80 => negative, with no post-decimal digits 
619 %90 => negative, with 16 post-decimal digits 
620 

622 
623 
624 
625 
626 
627 
628 
629 
630 
631 
632 
633 
634 
635 
636 
637 
638 
639 
640 
641 
642 
643 
644 
645 
646 
647 
648 
649 
650 
651 

CONSTANT 
bcd LEN := R12 
bcd-SRC ._ R14 
bcd-DST ._ R15 

GLOB1iL 
bcdsub PROCEDURE 

I····················································· Purpose = To subtract two packed BCD strings of 
. equal length. 

Input = 

Output 

dst <-- dst - src 

R15 

R14 

R12 

address of destination BCD 
string (in register memory). 
address of source BCD 
string (in register memory). 
BCD digit count / 2 

Destination BCD string contains the 
difference. 
Source BCD string may be modified. 
R12, R14, R15 unmodified if no error 
R13 modified. 
Carry FLAG = 1 if underflow or format 

error • 
•• *** ••• ** •• ****.*** ••• ** •••••••••••••••• ** ••••• *****! 
ENTRY 

xor 

!fall into bcdaddl 
END bcdsub 

Icomplement sign of 
SUbtrahend! 



P 011A 

POll A E6 
P 011D D8 
P 011F C9 
P 0121 04 
P 0124 E5 
P 0127 56 
P 012A 24 
P 012D 7D 
P 0130 6B 
P 0132 70 
P 0134 C7 
P 013.7 76 
P 013A 50 
P 013C EB 
P 013E BO 
P 0140 D6 
P 0143 21 
P 0145 4D 
P 0148 00 
P 014A EB 
P 014C D8 
P 014E 00 
P 0150 EB 

P 0152 E3 
P 0154 56 
P 0157 E5 
P 015A 56 
P 015D A4 
P 0160 70 
P 0162 7B 
P 0164 BB 

P 0166 Dil 
P 0168 E9 
P 016A F9 
P 016C 20 
P 016E 20 
P 0170 E5 
P 0173 A5 

7E 02 
EE 
7B 
7B 7B 
ED 7D 
7D 7F 
7D 7B 
0203' 
lA 
EC 
CD 01 
EC FO 
EC 
OE 
7C 
0463 ' 
ED 
0203' 
7B 
E6 
EF 
7E 
CD 

DF 
ED 7F 
EE 7D 
7D 7F 
7D ED 
ED 
39 
18 

EC 
7C 
7B 
7C 
7B 
7C 7E 
7B 7E 

653 
654 
655 
656 
657 
658 
659 
660 
661 
662 
663 
664 
665 
666 
667 
668 
669 
670 
671 
672 
673 
674 
675 
676 
677 
678 
679 
680 
681 
682 
683 
684 
685 
686 
687 
688 
689 
690 
691 
692 
693 
694 
695 
696 
697 
698 
699 
700 
701 
702 
703 
704 
705 
706 
707 
708 
709 
710 
711 
712 
713 
714 
715 
716 

GLOBAL 
bcdadd PROCEDURE 

I··············*··**·**··*·····*·····~···*···*··**·*·· Purpose = To add two packed BCD strings of 

Input 

equal length. 
dst <-- dst + src 

R15 address of destination BCD 
string (in register memory). 

R14 address of source BCD 
string (in register memory). 

R12 = BCD digit ~ount / 2 

Output = Destination BCD string contains the sum. 
Source BCD string may be modified. 
R12, R14, R15 unmodified if no error 
R13 modified. . 
Carry FLAG = 1 if overflow or format 

error. 
·'*'·'*""""*·*"****'**'**""****·****'***'**'·*1 
ENTRY 
Idelete all leading pre-decimal zeroesl 

ba 2: 

ba 1: 

ld TEMP 3,#2 
ld R13,bcd SRC 
ld TEMP 4,Dcd LEN 
add TEMP-4,TEMP 4 
Id TEMP-2,@R13-
and TEMP-2,O%7F 
sub TEMP-4,TEMP 2 
jp ult,oa err -
jr z,ba 1-
push R12 -
Id R12,l (R13) 
tm R12,UFO 
pop R 12 
jr nz,ba 1 
clr TEMP T 
call rdl 
inc @R13 
jp ov,ba err 
dec TEMP 'If 
jr nz,ba 2 
Id R13,bcd DST 

!total digit count! 
!ge~ sign/post dec 01 
!isolate post dec 01 
Ipre-dec digit cntl 
I format error I 
!no pre-dec. digitsl 
! save! 
!leading byte! 
!test leading digiti 
!restore! 
!no more leading O'sl 

!rotate leftl 
!update post dec #1 
loops! 
! dec pre-dec III 
! loopl 

dec TEMP 3 - !SRC and DST done?1 
jr nz,b~ 3 !do DSTI 

Ileading zero deletion completel 
!insure DST is > or =·SRC; exchange if necessary I 

Id R13,@bcd DST 
and R13,O%7F- lisolate post dec #1 
Id TEMP 2,@bcd SRC 
and TEMP-2,O%7F- lisolate post dec #! 
cp R13,TEMP 2 
push R13 - Isavel 
jr ult,ba 4 IDST > SRCI 
jr ugt,ba-5 !DST < SRCI 

!decimal points in same position. 
must compare magnitudel 

Id R13,bcd LEN 
Id TEMP 1, ocd SRC 
Id TEMP-4,bcd-DST 

ba 6: inc TEMP-' -
inc TEMP-4 
Id TEMP-3,@TEMP 1 Iget SRC by tel 
cp TEMP=3,@TEMP=4 !compare DST by tel 

243 



P ,0176 BB 06 717 jr ugt,ba 5 !SHC > DSTI 
P .0178 7B 23 718 jr ult,ba-II ISRC < DSTI' 
P 017A DA FO 719 djnz H13,ba-6 !loopl 
P 017C 8B 1F 72.0 jr ba II - lOST> or = SHCI 

721 Iswap source and destination operands I 
P 017E 08 EC 722 ba_5: Id R13,bcd LEN ( 
P 018.0 DE 723 inc R13 - linclude flag/size by tel 
P 0181 tl2 ED 7211 add bcd SHC,H13 
P'0183 02 FO 725 add bcd-OST,H13 
P 0185 00 EE 726 ba_7: dec bcd-SHC 
P 0187 0.0 EF 727 dec bcd-OST 
P 0189 E5 EE 7C 728 ld TEMP t',@bcd SHC 
P 018C E5 EF 7B 729 ld TEMP-II,@bcdIlST 
P C18F F5 7B EE 730 ld @bcCSHC,TE'i4P II 
P 0192 ~5 7C, ,EF 731 ld @bcd-OST,TEMP-' lone byte swapped I 
P 0195 OA EE 732 djnz R13,lia 7 -
P 0197 D8 7D 733 ld R13,TERP_2 
P 0199 50 70 7311 pop TEMP 2 
P C19B 70 ED 735 push R13 -

736 lexchange completel 
P .0190 50 ED 737 ba II: pop R13 Irestorel 

738 IR13 = DST post decimal digit count 
739 TEMP 2 = SRC post decimal digit count 
711.0 R13 =< TEMP 2 -

P C19F 24 ED 7D 7111 sub - TEMP 2,R13 
P 01A2 CC 7D 7112 rrc TEMP-2 lalignment offset I 
P 01A4 FB .09 . 7113 jr nc,bi 8 Idigits word alignedl 

71111 Irotate out least significant SRC post decimal digiti 
P C1A6 08 EE 7115 ld R13,bcd_SRC 
P C1A8 01 ED 7116 dec @R13 Idec post dec digit #I 
P CtAA BC 7C 7117 clr TEMP 1 
P 01AC 06 0485' 748 call rdr 

749 Idetermine if addition or subtraction! 
P C1AF E5 EE 7B 75.0 ba_8: ld TEMP 4,@bcd SRC I sign of SHCI 
P C1B2 B5 EF 7B 7,51 xor tEMP-4,@bcdIlST I sign of OSTI 

752 !get starting addresf;es I -
P C1B5 D8 EC 753 ld R13,bcd LEN 
P 01B7 24 7D ED 754 sub R13,TEM1S 2 
P C1BA 6B 45 755 jr z,ba_'4 - Idone already I 
P 01BC 02 ED 756 add bcd SRC,R13 
P 01BE .02 FC 757 add bcd:OST,bcd_LEN 

758 Ireadylll 
P C1CC CF 759 rcf Icarry = 01 
P C1C1 E5 EF 7C 76.0 ba 11: ld TEMP 1,@bcd DST 
P C1C4 76 7B 8.0 761 tm TEMP-4, U8C- ladd or sub?1 
P 01C7 6B .05 762 jr z,ba-9 laddl 
P C1C9 35 EE 7C 763 sbc TEMP-',@bcd SRC 
P 01CC ~B 03 764 jr ba Hi -
P 01CE 15 EE 7C 765 ba 9: adc TERp 1,@bcd SRC 
P .0101 110 7C 766 ba-'0: da TEMP-' -, 
P 0103 F5 7C EF 767 ld @bcd-OST,TEMP 1 
P 0106 0.0 EF 768 dec bcd UST -
P 0108 0.0 EE 769 dec bcd-SRC 
P C10A OA E5 77.0 djnz R137ba 11 

771 Ipropagate carry thru ~EMP 2 byte!! of OSTI 
P 010C 08 70 772 ld R13,TEMP_2-
P 010E DE 773 inc R13 !may be zerol 
P C1DF OA 02 774 djnz R"3,ba_'2 
P 01E1 8B 09 775 jr ba 13 
P 01E3 '17 EF .0.0 776 ba 12: adc @bod OST,IC 
P 01E,6 41 EF 777 da @bcd-DST 
P 01E8 0.0 EF 778 dec bcd UST 
P 01EA DA F7 779 djnz R'3-;-ba_'2 

244 



780 Icarry propagate complete I 
P 01EC FB 13 781 ba 13: jr nc,ba 14 Idonel 

782 IRotate out least significant post decimal OST 
783 digit to make room for carry at high endl 

P 01EE E5 EF 7C 784 ld TEMP 1,@bcd OST 
P 01Fl 56 7C 7F 785 and TEMP-l,IIS7F-
P 01F4 60 0203' 786 jp z,ba-err Ino post de,c digitsl 
P '01F7 E6 7C 10 787 ld TEMP-l,1II10 
p 01FA 08 EF 788 ld , R13,Dcd OST 
P 01FC 06 0485' 789 call rdr -
P 01FF 01 EF 790 dec @bcd_OST Idec digit cntl 
P 0201 CF 791 ba 111: rcf 
P 0202 AF 792 ret 

793 
P 0203 OF 7911 ba err: scf 
P 02011 AF 795 ret 
P 0205 796 ENO bcdadd 

245 



CQnversion 

P 0205 

P 0205 E6 
P 0208 77 
P 020B EB 
P 0200 E6 
P 0210 E5 
P 0213 56 
P ,0216 02 
P 0218 70 
P 021A 24 
P 0210 50 
P 021F 7B 
P 0221 06 
P 0224 7B 
P 0226 A6 
P 0229 6B 
P 022B 76 
P 022E EB 
P 0230 DE 
P 0231 E5 
P 0234 FO 
P 0236 E4 
P 0239 56 
P 023C A6 
P 023F BB 
P 0241 06 
P 0244 06 
P 0247 00 
P 0249 6B 
P 024B CA 

'p 02411 E6 
P 0250 06 
P 0253 8B 
P 0255 OF 
P 0256 AF 
P 0257 

P 0257 

P 0257 06 
P 025A C8 

P 025C 

246 

Routines 
821 CONSTANT 
822 boa LEN 
823 boa-SRC 
824 GLOBAL 

: = 
:= 

R12 
R13 

825 bcddaso PROCEDURE 
826 I·····························~······················· 
827 Purpose = To oonvert a variable length BCD 
828 string to deoimal ASCII. ' 
829 
830 Input = 
831 
832 
833 
834 
835 
836 Output = 
837 
838 
839 
840 
841 

RR14 = address of destination ASCII 
'string (in reg/ext/ser memory). 

R 13 = address of souroe BCD _ 
string (in register memory). 

R12 = BCD digit ~ount / 2 

ASCII string in designated 
destination buffer. 
Carry FLAG = 1 if input format error 

or serial disabled, 
= 0 if no error. 

R12, R13, R14, R15 modified. 
Input BCD string ummodified. 842 

843 
844 ·····················································1 ENTRY 

7C 
ED 
03 

20 845 ld TEMP_1,1I'-' 
@boa SRC,U80 
nz,bed d1 
TEMP_1-;-1I'+' 
TEMP 3,@boa SRC 
TEMP-3,U7r 
boa LEN,boa LEN 

Iminus signl 
Isro negative?I 80 846 tm 

7C 2B 
ED 7E 
7E 7F 
CC 
EC 
7E EC 
7E 

847 jr 
848 ld 
849 bod d1: ld 
850 and 
851 add 
852 push 
853 sub 
854 pop 
855 jr 
856 oall 
857 jr 

boa-LEN -
boa-LEN, TEMP 3 
TEM~ 3 -
ult,bod d2 
put des~ 
o,bed d2 

I yesl -
I positive signl 

lisolate post dec ontl 
Itotal digit oountl 

Ipre-deo digit ent! 
Itotal digit oountl 
Iformat errorl 
Isign to dest.1 
Iserial errorl 

35 
03F4' 
30 
EC 00 858 op boa L'E:N,IIO 

z,bed d6 
lany pre-deo digits?1 
Ino. start with '.'1 
Ineed ne~t byte?1 
Inot yet. I 

22 
7E 01 
04 

ED 70 
70 
70 
7C 
7C 
14 

7C 
OF 
09 

7C 30 
03F4 ' 
7E 
OB 
DE 
7C 2E 
03F4' 
06 

025C' 
ED 

859 jr 
860 bod d4: tm TEMP j,lIl 

nz,bed d3 861 jr 
862 ino boa SRl:' !update pOinteI'I 
863 ld TEMP 2,@boa SRC Iget next by tel 
864 bod d3: swap TEMP-2 -

TEMP-l, TEMP 2 
TEMP-l,nOr 
TEMP-l,1I9 
ugt,bod d5 
TEMP 1,lJ30 
put aest 

865 - ld 
866 
867 
868 
869 
870 
871 
872 
873 

and 
op 
jr 
add 
oall 
dec 
jr 
djnz 

TEIfP 3 
z,bod ,d2 

lisolate digitI 
Iverify bodl 
Ino goodl 
loonvert to ASCIII 
Ito destinationl 
Idigit oountl 
I all donel 
Inext digitI 

874 bod_d6: 
875 
876 

ld 
oall 

boa LEN, bod d4 
TEIfP 1,11'. ,­
put dest 
bod-d4 

!time for deo. pt.1 
Ito destination I 
loontinuel 

877 
878 
879 
881 
882 
883 
884 
885 
886 
887 
888 
889 
890 
891 
892 
893 
894 
89'5 
896 

bod d5: 
bod-d2: 
END-

GLOBAL 

jr 
sof 
ret 
boddaso 

, I set error return I 

wrdhaso PROCEDURE 

I·····································.··············· Purpose = To oonvert a binary word to Hex ASCII. 

Input = RR12 = souroe binary word. 
RR14 = aadress of destination ASCII 

string (in reg/ext/ser memory). 

Note = All other details same as for bythaso. 

·······························.·····················1 ENTRY 
oall bythaso 
ld R12,R13 

!fall into bythasol 
ENDwrdhaso 

loonvert R121 



P'025C 

P 025C BO 7E 
P 025E E6· 7D 02 
P 0261 'FO EC 
P 0263 C9 7C 
P 0265 56 7C, OF 
P 0268 06 7C 30 
P ,026B A6 7C 3A 
P 026E 7B 09 
P 0270 DF 
p 0271 76 7E 01 
p 02711 EB OD 
P 0276 06 7C 07 
P 0279 D6 03FII' 

.p 027C 7B 05 
p 027E 00 7D 
p 0280 EB DF 
p 0282 CF 
p 0283 AF 
p 02811 

898 CONSTANT 
899 bna SRC 
900 GLOBAL 

: = R12 

901 bythasc PROCEDURE 

902 I····················································· 903 Purpose = To convert a 'binary byte to Hex ASCII. 
9011 
905 Input = 
906 
907 
908 
909 Output = 
910 
911 

RR111 = address of destination ASCII 
string (1n reg/ext/ser memory). 

R12 = Source binary byte. 

ASCII string in designated 
destination buffer. 
Carry = 1 if error (serial only). 
R111, R15 modified. 912 

913 
9111 
915 
916 
917 
918 
919 
920 
921 
922 
923 ' 
9211 
925 
926 

·····················································1 ENTRY 
clr 

bca go: ld 
bce-g01: SWAP 

- ld 
and 
ADD 

927 skip: 
928 

cp 
jr 
SCF 
TM 
JR 
ADD 
call 
jr' 
dec 
jr 
IICF 

929 
930 
931 
932 bca ex: ret 
933 END- bythasc 

MODE ! flag => binary to ASCIII 
TEMP 2,112 
bna ~RC 
TEM" 1,bna SRC 
TEMP-1,UOF 
TEMP-1,1I30 
TEMP-1,U3A 
ult,Skip 

MODE,'1 
NZ,bca ex 
TEMP 1-;U07 
put dest 
c,bea ex 
TEMP '2 
nz,bea_s01 

!look at next nibble I 

lisolate low nibble I 
Iconvert to ASCIII 
1>9?1 
Inol 
lin case errorl 
I input is BCD? I 
Iyes.' error:1 
linput hex. adjustl 
Iput byte in destl 
lerrorl 

!loop till donel 
Icarry = 0: no errorl 
'Idonel 

247 



P 02811 

P 02811 BO 
P 0286 BO 
P 0288 E5 
P 028B 56 
P 028E 02 
P 0290 211 
P 0293 7B 
P 0295 E5 
P 0298 E6 
P 029B EE 
P 029C E5 
P 029F A6 
P 02A2 6B 
P 02AII FO 
P 02A6 Ell 
P 02A9 06 
P 02AC 7B 
P 02AE 00 
P 02BO 00 
P 02B2 EB 
P 02BII 8B 
P 02B6 OF 
P 02B7 76 
P 02BA EB 
P 02BC 76 
P 02BF 6B 
P 02C1 60 
P 02C3 60 
P 02C5 06 
P 02C8 16 
P 02Ca CF 
P 02CC AF 
P 02CD 

248 

EC 
ED 
EE 7B 
7B 7F 
FF 
7B EF 
37 
EE 7B 
7E 02 

EE 70 
EF 00 
12 
70 
70 7C 
01l2C' 
1E 
EF 
7E 
EB 
E2 

EC 80 
10 
7B 80 
OA 
EC 
ED 
ED 01 
EC 00 

935 CONSTANT 
936 bcd adr 
937 bcd-cnt 
938 GLOBAL 

:: 
:= 

R111 
R15 

939 bcdwrd PROCEDURE 

9110 I····················································· 9111 Purpose = To convert a variable length BCD . 
9112 string to a signed binary word. Only 
9113 pre-decimal digits are converted. 
944 
9115 Input ={ 

9116 
947 
9118 
9119 Output 
950 
951 
952 

R111 

R15 

= address of source BCD 
string (in register memory). 
BCD digit count / 2 

RR12 = binary word 
Carry FLAG = 1,if input format error 

or dest overflow, 
= 0 if no error. 

R14,R15 modified. . 953 
9511 
955 ·····················································1 ENTRY 
956 ·clr 
957 clr 
958 ld 
959 and 
960 add 
961 sub 
962 jr 
963 ld 
9611 bcd_w3: ld 
965 inc 
966 ld 
967 bcd w1: cp 
968 jr 
969 swap 
970 ld 
971 call 
972 jr 
973 dec 
974 dec 
975 jr 
976 jr 
977 bcd wll: scf 
978 tm 
979 jr 
980 bcd_w5: tm 
981 jr 
982 com 
983 
9811 
985 
986 
987 
988 

com 
add 
adc 
rcf 
ret 
bcdwrd 

R12 
R13 
TEMP 1I,@bcd adr 
TEMP-II,/lf.7~ 
bcd cnt,bcd cnt 
bcd-cnt,TEM' II 
ult-;bcd w2 -
TEMP 4,lbcd adr 
TEMP-3,'2 -
bcd adr . 
TEMl' 2,@bcd adr 
bcd cnt,'O -
z,bcd wll 
TEMP~. 
TEMP-1, TEMP 2 
bcd liin -
c,bcd w2 

-bcd cot 
TEIfl! 3 
nz,bcd w1 
bcd_w3-

R12,U80 
nz,bcd w2 
TEMP 1I-;1I~80 
z,bca w6 
R12 -
R13 
R13,'1 
R12,'O 

linit destination I 

iget sign/post length I 
lisolate post Tengthl 
II bcd digitsT 
I' pre-dec digitsl 
I format errorl 
Iremember signl 
Idigits Per by tel 
I src addre.ssl 
Iget next src by tel 
Idigit count = O?! 
!conversion complete! 
Inext digitI . 

!accumulate in binary! 
loverflow or format err! 
lupdate digit count! 
!next byte?1 
Ino. same.1 
tnext by tel 
I in case! 
!result > 15 bits?1 
lover flow! 
Isource negative?! 
!no. done. I 

IRR12 two's complementl 
!carry = 01 



990 GLOBAL 
P 02CD 991 wrdbcd PROCEDURE 

992 I······································~·············· 
993 Purpose To convert a signed binary word 
9911 to a variable length BCD string. 
995 
996 Input. = R111 = address of destination BCD 
997 string (in register memory) 
998 RR12 = source binary word 
999 R15 = BCD digit count / 2 

1000 
1001 Output = BCD string in destination buffer 
1002 Carry FLAG = 1 if dest overflow 
1003 = 0 if no error. 
10011 R12,R13,R14,R15 mOdified. 
1005 ······························.······················1 1006 ENTRY 

P 02CD B1 EE 1007 clr @bcd adr linit sign/post dec cntl 
P 02CF 76 EC 80 1008 tm R12,n80 lis input word nega~ive? 
P 02D2 6B OD 1009 jr z,wrd bO 
P 02D4 117 EE 80 1010 or @bcd_iidr ,n80 Iset result negativel 
P 02D7 60 ED 1011 com R13 
P 02D9 60 EC 1012 com R12 
P 02DB 06 ED 01 1013 add R13,'1 
P 02DE 16 EC 00 1014 adc R12,'0 IRR12 two's complement I 
P 02E1 10 ED 1015 wrd bO: rlc R13 
P 02E3 10 EC 1016 rlc R12 Ibit 15 not magnitudel 
P 02E5 EE 1017 inc bcd adr lupdate dest pointerl 
P 02E6 E9 7C 1018 Id TEMY_1, bcd_adr 
P 02E8 F9 7D 1019 Id TEMP 2,bcd cnt Idest byte countl 
P 02EA 04 EF 7C 1020 add TEMP:l, bcd:cnt 
P 02ED 00 7C 1021 dec TEMP 1 1= bcd end addrl 
P 02EF B1 EE 1022 wrd bl: clr @bcd-adr linitialize destl 
P 02Fl EE 1023 inc bcd adr 
P 02F2 FA FB 10211 djnz bcd:cn~,,.,rd_b1 
P 02FII E6 7E OF 1025 Id TEMP 3,'15 Isource bit count I 
P 02F7 70 7E 1026 wrd_b3: push TEMP-3 
P 02F9 10 ED 1027 rlc R13 --
P 02FB 10 EC 1028 rlc R12 1bit 15 to carryl 
P 02FD E8 7C 1029 Id bcd adr, TEMP 1 Istart at endl 
P 02FF F8 7D 1030 Id bcd-cnt,TEMP-2 Idest byte countl 

1031 I (dest bcd, string) <-- (dest-bcd string' 2) + carryl 
P 0301 E5 EE 7E 1032 wrd b2: Id TEMP 3,@bcdadr 
P 0304 15 EE 7E 1033 adc TEMP-3,@bcd-adr I' 2 + carryl 
P 0307 110 7E 1034 da TEMP-3 -
P 0309 F5 7E EE 1035 Id @bcd-adr,TEMP 3 
P 030C 00 EE 1036 dec bcd adr - Inext two digits I 
P 030E FA Fl 1037 djnz bcd-cnt,wrd b2 Iloop for all digits I 
P 0310 50 7E 1038 pop TEM'!'" 3 - Irestore src bit cntl 
P 0312 7B 04 1039 jr c ,wrd ex !dest. overflowl 
P 0314 00 7E 1040 d-ec TEMP 1 
P 0316 EB DF 1041 jr nz,wrd_b3 Inextbitl 
P 0318 AF 1042 wrd ex: ret 
P 0319 1043 END- wrdbcd 

" 

249 



P 0319 

P 0319 BO 7E 
P 031B BO EC 
P 0310 BO EO 
P 031F 06 030A' 
P 0322 7B 28 
P 0324 06' 0400' 
P 0327 78 22 
P 0329 A6 7C 39 
P 032C 38 03 
P 032E 26 7C 37 

P 0331 FO EO 
P 0333 09 70 
P 0335 56 EO FO 
P 0338 56 7C OF 
P 0338 44 7C EO 
P 033E FO EC 
P 0340 56 EC FO 
P 0343' 56 70 OF 
P 0346 44 70 EC 
P 0349 88 04 
P 0348 CF 
P 034C AF 
P 0340 

, 

250 

1045 GLOBAL 
1046 hascwrd PROCEOURE 

,1047 I···················································.· 1048 Purpose = To oonvert a variable length Hex 
1049 ASCII string to binary. 
1050 ' 
1051 Input = RR14 = address of source ASCII 
1052 string (in reg/ext/ser memory). 
1053 
1054 Output = 
1055 
1056 
1057 
1058 
1059 
1060 
1061 
;062 

RR12 = binary word (any overflow 
high order digits are trunoated 
without error). 
Carry FLAG = 1 if input error , 

(serial only) 
(SER fIg indicates oause) 

=-0 if no error 
R14, R15 modified 

1063 Note = The ASCII input string prooessing is 
1064 terminated with the occurrence of a 
1065 non-hex ASCII oharaoter: 

1066 ·····················································1 1067 ENTRY 
1068 olr TEMP 3 
1069 clr R12 -
1070 olr R13 
1071 has_ol: oall get sro 
1072 jr o,hss ex1 
1073 oall ver aso 
1074 jr o,hss ex 
1075 cp TEMP 1,1139 
1076 jr ule,nas c2,' 
1077 sub TEMP 1,1137 
1078 !Shift left one nibbTel 
1079 IInsert·new nibble in ieast 
1080 has 02: swap R13 
1081 - ld' TEMP 2,ft13 
1082 and ,R13,nFO 
1083 and TEMP 1,nOF 
1084 or R13,TEMP 1 
1085 swap R12 -
1086 and R12,IIFO 
1087 and TEMP 2,IIOF 
1088 or R12,~EMP 2 
1089 jr has 01 ~ 
1090 has ex: rof 
1091 has-exl:ret 
1092 ENO- hasowrd 

linit outputl 
Iget inputl 
lerrorl 
Iverify hex ASCIII 
lend oonversionl 

signifioant nibble I 

Iloopl 
Ino error I 



P 034D 

P 034D CC 03 
P 034F DC 08 
P 0351 04 FD ED 
P 0354 D6 0363' 
P 0357 7B F3 
P 0359 EC 08 
P 035B 04 FD EE 
P 035E FC 03 
P 0360 8D 0284' 
P 0363 

1094 GLOBAL 
1095 dascwrd PROCEDURE 
1096 ! ••••••••• I ••••••••••••••••••••••••••••••••••••••••••• 
1097 Purpose To convert a variable length decimal 
1098 ASCII string to signed binary. 
1099 
1100 Input = 
1101 
1102 
1103 Output 
i 1 04 
1105 
1106 
1107 
1108 
1109 
1110 
1111 
1112 
1113 Note 
11111 
1115 
1116 
1117 
1118 
1119 

RR14 address of source ASCII 
string (in reg/ext/ser memory). 

RR12 = binary word 
R8,R9,R10,R11 holds the 
version of the result. 
Carry FLAG = 1 if input 

packed BCD 

error 

R14, 

(serial only) 
(SER flg indicates cause) 

- or dest overflow 
= 0 if no error 

R15 modified 

The ASCII input string processing is 
terminated with the occurrence of a 
non-decimal ASCII character. 
Decimal ASCII string may be no more 
than 6 digits in length, else Carry 
will be returned. 
Post decimal digits are not included 
in the binary result. 1120 

1121 
1122 
1123 
1124 

·····················································1 ENTRY 

1125 
1126 
1127 
1128 
1129 
1130 
1131 
1132 END 

ld 
ld 
add 
call 
jr 
ld 
add 
ld 
jp 
dascwrd 

R12,H3 
R13,II8 
R13,RP 
dascbcd 
c,has ex1 
R14,1I"S" 
R14,RP 
R15,II3 
bcdwrd 

16 digitsl 
I temp addr = I 
! R8 thru R 11 I 
!convert to bcd! 
terror! 

!convert to binary! 

251 



1134 CONSTANT 
1112 1135 dab LEN : = 

1136 dab-DST : = R13 
1137 GLOBAL 

P 0363 1138 dascbcd PROCEDURE 
1139 1·····*****·*··*·*·.· ............................. * ... 
1140 Purpose = To convert a variable length decimal 
1141 ASCII string to BCD. 
1142 
1143 Input = R13 = address of destination BCD 
1144 string (in register memory). 
1145 RR14 = address of source ASCII 
1146 string (in reg/ext/ser memory). 
1147 R12 = BCD digit count / 2 
1148 
1149 Output BCD string in designated destination 
1150 buffer (any overflow high order 
1151 digits are truncated without error). 
1152 Carry FLAG = 1 if input error 
1153 (serial only) 
1154 (SER_flg indicates cause) , 
1155 or overflow 
1156 
1157 

R14, R15 modified. 

1158 Note = The ASCII input string processing is 
1159 terminated with the occurrence of a 
1160 non-decimal ASCII character . 
1161 ••••••••••••••••••••••••••••••••••••••••••••••• * ••••• ! 
1162 EtlTRY 

P 0363 70 EC 1163 push dab LEN I save! 
P 0365 70 ED 1164 push dab-DST 
P 0367 B1 ED 1165 das_g1: clr ildaii" DST lini t. destination! 
P 0369 DE 1166 inc dab "UST 
P 036A CA FB 1167 djnz dab-LEN,das g1 
P 036C B1 ED 1168 clr ildao DST - !init.! 
P 036E 50 ED 1169 pop dab DST !restore! 
P 0370 50 EC 1170 pop dab-LEN 
P 0372 E6 7E 01 1171 ld TEMP 3,111 I for ver asci 
P 0375 BO 7B 1172 clr TEMP:::4 !bit o => digit seen; 

1173 bit 1 => dec pt seen; 
1174 bit 7 => overflow I 

P 0377 06 03DA' 1175 das_g2: call get src !get input byte! 
P 037A 7B 41 1176 jr c,dab ex1 !serial error! 
P 037C 56 7C 7F 1177 and TEMP 1, U7F !7-bit ASCII! 
P 037F 76 7B 03 1178 tm TEMP-4,U03 !check status! 
P 0382 EB OF 1179 jr nz,das g5 !sign char not valid I 
P 0384 A6 7C 2B 1180 cp TEMP 1-;-0 '+' !positive?! 
P 0387 6B EE 1181 jr z,das_g2 ryes. no affect! 
P 0389 A6 7C 20 1182 cp TEMP 1,11'-' !negative?! 
P 038C EB 07 1183 jr nz,das g4 !not sign char! 
P 038E B7 ED 80 1184 xor ildab_D"ST,U80. !complement sign! 
P 0391 8B E4 1185 jr das g2 !get next input! 
P 0393 5B OA 1186 das g5: jr mi,das g6 !dec pt has been seenl 
P 0395 A6 7C 2E 1187 das:::g4: cp TEMP 1-;-11'.' lis char dec pt?! 
P 0398 EB 05 1188 jr nz,das g6 !nope. ! 
P 039A 46 7B 03 1189 or TEMP 4-;-0~03 !dec pt and digit seen! 
P 0390 8B 08 1190 jr das_g2 !get next input! 
P 039F 06 0400' 1191 das_g6: call ver asc ! is bcd digit?! 
P 03A2 7B 16 1192 jr c,dab_ex lend conversion.! 
P 03A4 46 7B 01 1193 or TEMP 4,U01 !digit seen! 
P 03A7 06 0463' 1194 call rdl - !new digit to dest! 
P 03AA EB 09 1195 jr nz,das g7 !overflow! 
P 03AC 76 7B 02 1196 tm TEMP 4-;-n02 !post dec digit?! 
P 03AF 6B C6 1197 jr z,das_g2 Ino. get next input! 

252 



P o 3B 1 21 ED 
P 03B3 8B C2 
P 03B5 46 '7B 80 
P 03B8 8B BD 

P 03BA E4 7B FC 
p 03BD AF 
P 03BE 

P 03BE 

P 03BE 70 EE 
P 03CO 70 EF 
P 03C2 EC 08 
P 03C4 04 FD EE 
P 03C7 FC 03 
P 03C9 D6 02CD' 
P 03CC 50 EF 
P 03CE 50 EE 
P 03DO CC 03 
P 03D2 DC 08 
P 03D4 04 FD ED 
P 03D7 8D 0205' 
P 03DA 

1198 inc 
1199 jr 
1200 das_g7: or 
1201 jr 
1202 
1203 dab ex: ld 
1204 dab-ex1: ret 
1205 END- dascbcd 

GLOBAL 

@dab DST 
das g2 
TEMP 4,U80 
das_g2 

FLAGS,TEMP_4 

tinc post dec cntl 
Iget next input! 
I set overflowl 
Iget next inputt 

Icarry = 0 or 11 

1207 
1208 
1209 
1210 
1211 
1212 
1213 
1214 
1215 
121.6 
1217 
1218 
1219 
1220 
1221 
1222 
1223 
1224 
1225 
1226 
1227 
1228 
1229 
1230 
1231 
1232 
1233 
1234 
1235 

wrddasc PROCEDURE 

I··············································· .. ···· Purpose To convert a signed binary word to 

Input = 

decimal ASCII 

RR12 = source' binary word. 
RR14 = address of dest (in reg/ext/ser 

memory) • 

Output Decimal ASCII in dest buffer. 
R8,R9,R10,R11 holds the packed BCD 
version of the result. 
R 12, R 13, R 14, R 15 mod i fied • 

·····················································1 ENTRY 
push R14 
push R15 !save dest addr! 
ld R14,#8 
add R14,RP IR8,9,10 & 11 temp! 
ld R15,113 !temp byte length! 
call wrdbcd !convert input word! 
pop R15 
pop R14 !restore dest addr! 
ld R12,#3 !length of tempI 
ld R13,#8 
add R13,RP I addr of tempI 
jp bcddasc !convert to ASCII! 

END wrddasc 

253 



P 03DA 

P 03DA CF 
P 03DB EE 
P 03DC EA 
P 03DE FE 
P 03DF FA 
P 03El 80 
P 03E4 70 
P 03E6 82 
P 03E8 B9 
P 03EA 50. 
P 03EC AO 
P 03EE AF 
P 03EF E5 
P 03F2 FE 
P 03F3 AF 
P 03F4 

P 03F4 

P 03F4 EE 
P 03F5 EA 
P 03F7 FE 
P 03F8 FA 
P 03FA 80 
P 03FD 70 
P 03FF B8 
P 0401 92 
P 0403 50 
P 0405 AO 
P 0407 AF 
P 0408 F5 
P 040B FE 
P 040C AF 
P 0400 

254 

06 

OE 
0000* 
EB 
BE 
7C 
EB 
EE 

EF 7C 

06 

OE 
0000*' 
EB 
7C 
BE 
EB 
EE 

7C EF 

1237 GLOBAL Ifor PART II onlyl 
1238 get src PROCEDURE 
1239 !**T**************************.*********.* •••• *******. 
1240 Purpose';: To get' source byte from 
1241 reg/ext/ser memory int? TEMP_l. 
1242 

-1243 Output = 
1244 
1245 

Carry FLAG = 1 if error (serial) 
= 0 if .all ok 

TEMP 1 = source byte. ' 
1246 
1247 
1248 
1249 
1250 
1251 

RR 14-updated. 
****************************~************************! 
ENTRY 

rcf 
inc 
djnz 

1252 inc 
1253 djnz 
1254 jp 
1255 get_s1: push 
1256 Ide 
1257 Id 
1258 pop 
1259 incw 
1260 ret 
1261 get...;s2: Id 
1262 inc 
1263 ret 
1264 END get_src 

R14 
R14,get sl 
R15 -
R15,get s2 
ser get­
R11-
R11,@RR14 
TEMP 1,Rl1 
R11 -
RR14 

TEMP 1,@R15 
R15 -

!set good return code! 
Itest· R14 = 01 
!src in ext memory! 
Itest R15 = 01 
!src in reg memory! 
tsre in ser memory! 
!save user'sl 
Iget by tel 
!move to common I 
!restore user'sl 
I update src ptr I 

Iget by tel 
! update. src ptr I 

1265 
1266 
1267 
1268 
1269 
1270 
1271 
1272 
1273 
1274 

GLOBAL !for PART II only! 
put dest PROCEDURE 
I**T****************************'*****'******'******** 
·Purpose = To store destination byte from TEMP 1 

into reg/ext/ser memory -

Output = RR14. updated. 
*****************************************************1 
ENTRY 

1275 inc 
1276 djnz 
1277 inc 
1278 djnz 
1279 jp 
1280 put_s1: push 
1281 ld 
1282 Ide 
1283 pop 
1284 incw 
1285 ret 
1286 put_52: Id 
1287 inc 
1288 ret 
1289 END put_dest 

R14 
R14,put sl 
R15 -
R15,put s2 
ser output 
R11-
R11,TEMP 1 
@RR14,RlT 
R11 
RR14 

@R15,TEMP 
R15 -

!test 
!dest 
Itest 
!dest 
!dest 
Isave 

R14 = O! 
in ext memoryl 
R15 = 01 . 
in reg memory! 
in ser memoryl 
user's! 

!restore user'sl 



P 01100 

P 01100 56 
P 01110 A6 
P 0413 7B 
P 0415 A6 
P 01118 7B 
P OlllA 76 
P 01110 EB 
P OlllF 56 
P 01122 A6 
P 01125 7B 
P 01127 A6 

P 01l2A EF 
P 01l2B AF 
P 01l2C 

7C 
7C 
16 
7C 
10 
7E 
OB 
7C 
7C 
011 
7C 

1291 
1292 
1293 

-12911 
1295 
1296 
1297 
1298 
1299 
1300 
1301 
1302 
1303 
13011 
1305 
1306 
1307 

7F 1308 
30 1309 

1310 
3A 1311 

1312 
01 1313 

13111 
DF , 1315 
111 1316 

1317 
117 1318 

1319 
1320 
1321 
1322 

CONSTANT 
MODE 
char 

INTERNAL 

:= 
: = 

TEMP 3 
TEMP-l 

ver asc PROCEDURE 
I··T •••••••••••••••••••••••••••••••••••••••••••••• _ •••• 
Purpose To verify input character as valid 

hex or decimal ASCII. 

Input = TEMP 1 = 8-bit input 
TEMP:3 = 0 => test for hex, 

1 => test for decimal 

Output = Carry FLAG = 0 if no error 
1 if error. 

·····················································1 ENTRY 
and 
cp 
jr 
cp 
jr 
tm 
jr 
and 
cp 
jr 
cp 

ver ok: 
ver-erc: ccf 
ver-err: ret 
END- ver asc 

char,#~7F 17-bit ASCIII 
char,#'O' Irange start: '0'1 
ult,ver err Ino goodl 
char,#'~'+l Idec range end: '9'1 
ult,ver ok lall's welll 
MOOE,#l- Idec or hex?! 
nz,ver erc Ino good! 
char,#~NOT('a'-'A') linsure upper case! 
char,#'A' Icheck A-F range I 
ult,ver err Ino good! 
char,#'~'+l lend hex range! 

Icomplement carry I 

13211 INTERNAL 
P 01l2C 

P 01l2C 56 7,C OF 
P 01l2F A6 7C 09 
P 01132 BB 20 
P 011311 02 DO 
l' 0436 12 CC 
P 01138 7B 27 
P 01l3A 70 EC 
P 01l3C 70 ED 
P 01l3E 02 DO 
P 011110 12 CC 
P 01142 7B 19 
P 01144 02 DO 
P 011116 12 CC 
P 01148 7B13 
P OllilA 04 7C ED 
P 01140 16 EC 00 
P 01150 7B OB 
P 01152 50 7C 
P 011511 011 7C ED 
P 01157 50 7C 
P 01159 111 7C EC 
P 01l5C AF 

P 01150 50 7C 
P 01l5F 50 7C 
P 01161 OF 
P 01162 AF 
P 01163 

1325 bcd bin PROCEDURE 
1326 ! •• T •••••••••••••••••••••••••••••••••••••••••••••••••• 
1327 Purpose = To convert next bcd digit to binar'y. 
1328 
1329 Input = 
1330 
1331 
1332 
1333, 
13311 
1335 

Output = RR12 = RR12 • 10 + digit 

·····················································1 ENTRY 

1336 
1337 
1338 
1339 
13110 
1341 
13112 
13113 
131111 
13115 
1346 
13117 
13118 
13119 
1350 
1351 
1352 
1353 
13511 
1355 
1356 
1357 bcd b2: 
1358 
1359 bcd bl: 
1360 
1361 END 

and 
cp 
jr 
add 
adc 
jr 
push, 
push 
add 
adc 
jr 
add 
adc 
jr 
add 
adc 
jr 
pop 
add 
pop 
adc 
ret 

pop 
pop 
scf 
ret 
bcd bin 

TEMP 1,nOF 
TEMP-l ,#9 ' 
ugt,bcd bl 
R13,R13-
R12,R12 
c,bcd bl 
R12 -
R13 
R13,R13 
R12,R12 
c ,bcd b2 
R13, RT3 
R12,R12 
c,bcd b2 
R13, TEMP 
R12,#O -
c ,bcd b2" 
TEMP T 
R13,'l'EMP 1 
TEMP 1 -
R12,TEMP_1 

TEMP 1 
TEMP-1 

., !isolate digit! 
!verify validl 
lerrorl 

12xl 
!overflowl 

!lIxl 
loverflow! 

18x! 
!overflowl 

!8x + d I 
!overflowl 

110x + dl 

Irestore stackl 
terror! 

255 



1363 CONSTANT 
13611 s len : = R12 
1365 s-adr \ : = R13 
1366 INTERNAL 

P 01163 1367 rdl PROCEDURE 
1368 I.··· •• ·······.····.···~····it .................•....... 
1369 Rotate Digit Left 
1370 
1371 Input = R12 = BCD string length 
1372 R13 = BCD string address 
1373 TEMP_l bit 3-0 = new digit 
13711 
1375 Output BCD string rotated left one digit· 
1376 new digit inserted in units position. 
1377 TEMP 1 bit 3-0 = digit rotated out 
1378 - of high order digit position 
1379 bit 7-11 = 0 
1380 Zero FLAG = 1 if TEMP_l <>0 
1381 R12, R13 unmodified 
1382 ••••••••••••••••••••••••••••••••••••••••••••••••••••• ! 
1383 ENTRY 

P 01163 7.0 EC 13811 push s len" 
P 01165 02 DC 1385 add s-adr,s len laddress of units place I 
P 01167 Fl ED 1386 rdl 01: swap @s adr -
P 0469 E5 ED 7D 1387 Id TEMP 2,@s adr 
P 01l6C 57 ED Fa 1388 and @s aar, 0%1='0 !isolate digit! 
P 046F 56 7C OF 1389 and TEMP 1,nOF !isolate new digitI 
P 0472 115 ED 7C 1390 or TEMP-l,@s adr 
P 01175 F5 7C ED 1391 Id @s adr, TEMP 1 Isave new byte! 
P 0478 E4 7D 7C 1392 Id TEllP _ 1 , TEMP:2 
P 047B 00 ED 1393 dec s adr !back-up pointer! 
P 047D CA E8 1394 djnz s-len,rdl 01 !loop till donel 
P 047F 56 7C OF 1395 and Tt:M'P 1,UOF fold high order digitI 
P 0118.2 50 EC 1396 pop s len Irestore R12! 
P 0484 AF 1397 ret 
P 0485 1398 END rdl 

1400 INTERNAL 
P 0485 1401 rdr PROCEDURE 

1402 !** •••••• *** ••• **.*** •••• ** •••••••••••••••• **.**.* •••• 
1403 Rotate Digit Right 
1404 
1405 " Input = R12 = BCD string length 
1406 R13 = BCD string address 
1407 TEMP_l bit 7-11 = new digit 
1408 
1409 Output BCD string rotated right one digit; 
1410 new digit inserted in high order 
1411 position. 
1412 R 12 unmodified 
1413 R13 modified 
1414 ·····················································1 1415 ENTRY 

P 0485 70 EC 1416 push s len 
P 0487 DE 1417 rdr 01: inc s-adr 
P 0488 Fl ED 1418 swap @s adr ,. 
P 04SA E5 ED 7E 1419 Id TERp 3,@s'adr 
P 048D 57 ED OF 1420 and @s aar, O%OF !isolate digitI 
P 0490 56 7C FO 11121 and TEMP 1, UFO lisolate new digit! 
P 0493 45 ED 7C 1422 or TEMP-l,@s adr 
P 0496 F5 7C ED 1423 Id @s adr, TEMP 1 !save new byte! 
P 0499 E4 7E 7C 1424 Id TEil'P _1, TEMP:3, 
p 049C CA E9 11125 djnz s len,rdr 01 !loop till done! 
P 049E 50 EC 1426 pop s:len - !restore R12! 
P 04AO AF 1427 ret 
P 04Al 1428 END rdr 

256 



B1t Manipulation Routines 

P 04A 1 

P 04A1 E6 7C 08 
P 04A4 BO 7D 
P 04A6 90 EC 
P QUA8 90 ED 
P 04AA FB 06 
P 04AC EO EC 
P 04AE 90 EC 
P 04BO 10 7D 

P 04B2 00 7C 
P 04B4 EB FO 
P 04B6 C8 7D 
P 04B8 AF 
P 04B9 

1460 CONSTANT 
1461, tjm bits 
1462' tjm-mask 
1463 GLOBAL 

R12 
R13 

1464 c1b PROCEDURE 
1465 ! ••••••••••••••••••••••••••••••••••••••••••••••••••••• 
1466 Purpose = To collect selected bits in a byte 
1467 into adjacent bits in the low order 
1468 end of the byte. Upper bits in byte 
1469 are set to zero. 
1470 
1471 Input 
1472 
1473 
1474 
1475 Output 
1476 
1477 Note = 
1478 
1479 
1480 

R12 
R13 

input byte 
mask. Bit = 1 => corresponding 

input bit is selected. 

R12 = collected bits 

For example: 
Input: R 12 

R13 
~(2)01110110 
%(2)10000101 

1481 Output R12 ~(2)00000010 
1482 •••••••••••••••••••••••••••••••••••••••••••••• ** ••• **! 
1483 ENTRY 
1484 1d 
1485 
1486 next1: 
1487 

c1r 
rl 
r1 

1488 
1489 
1490 
1491 
1492 no 
1493 
14911 
1495 
1496 
1497 END 

jr 
rr 
r1 
r1c 

select: 
dec 
jr 
1d 
ret 
c1b 

TEMP 1,118' 
TEMP-2 
tjm bits 
tjm-mask 
nc ,no select 
tjm blts 
tjm-bits 
TEMlI" 2 

TEMP 1 
nz,next1 
R12,TEMP_2 

!bit countl 
!bits collected here! 
!bit 7 to bit O! 
!bit7 to carry! 
!don't use this bit! 

!bit 7 to 0 and carry! 
!co11ect source bit! 

!repeat! 

257 



P 04B9 

P 04B9 D6 04A1' 
P 04BC 02 CC 
P OUBE 16 EE 00 
P 04C1 02 FC 
P 04C3 16 EE 00 
P 04C6 C2 DE 
P 04C8 AO EE 
P 04CA C2 FE 
P 04CC E8 ED 

P 04CE 30 EE 

P 04DO 

d errors 
Assembly complete 

258 

1499 
1500 
1501 
1502 
1503 
1'504 
1505 
1506 
1507 
1508 
1509 
1510 
1511 
1512 
1513 
1514 
1515 
1516 
1517 
1518 
1519 
1520 
1521 
1522 
1523 
1524 
1525 
1526 
1527 
1528 
1529 
1530 
1531 
1532 
1533 
1534 
1535 
1536 

CONSTANT 
tjm tabh 
tjm-tabl 
tjm-tab = 

R14 
R15 
RR14 

GLOBAL 
tjm PROCEDURE 

1···············*··············***·*··**···*****·*···· Purpose = To take a jump to a routine address 
determined by the state of selected 
bits in a source byte. A bit 
is 'selected' by a one in the 
corresponding position of a mask. 
The 'selected' bits are packed into 
adjacent bits in the low order end of 
the byte. This value is then doubled, 
and used as an index into the jump 
table. 

Input RR14 = address of jump table in 
program memory. 

R12 = input data 
R13 = mask 

··············*······································1 ENTRY 
call clb I collect selected bits I 
add tjm bits,tjm bits Icollected bits • 21 
adc tjm-tabh,HO - lin case carry I 
add tjm-tabl,tjm bits 
adc tjm-tabh,HO - Itjm tab points to ••• 1 
ldc tjm-mask,@tjm tab 1.7.table entryl 
incw tjm -tab - , 
ldc tjm-tabl,@tjm tab Iget table entry ••. 1 
Id tjm:tabh,tjm_mask I .•. into tjm_tabl' 

jp Ibyel 

END tjm 
END PART I 



Z8ASM 3.02 
LOC OBJ CODE 

ROMLESS Z8 SUBROUTINE LIBRARY PART II 

STMT SOURCE STATEMENT 

1 
2 
3 PART_II MODULE 
4 
5 
6 !' ROMLESS 
7 I 
9 CONSTANT 

10 IRegister 
11 
12 RAM START 

P3M save 
TEMP 3 
TEMP-2 
TEMP-1 
TEMP-4 

Z8' 

Usage! 

SUBROUTINE LIBRARY PART II 

· - ~7F 

· - RAM START -· - P3M save-1 
: = TEM'P 3-1 
· - TEMP-2-1 
· - TEMP-1-1 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

IThe following registers are modified/referenced 
by the Serial Routines ONLY. They are 
available as general registers to the user 
who does not intend to make use of the 
Serial Routines! 

26 SER char .- TEMP 4-1 
27 SER-tmp2 ._ SER char-1 
28 SER-tmp1 
29 SER-put 
30 SER-len 
31 SER-buf 

._ SER-tmp2-1 

._ SER-tmp1-1 

._ SER-put-1 

._ SER-len-2 
32 SER-imr .- SER-buf~1 

._ SER-imr-1 
Configuration Data 
=1 => odd parity on 

: =1 => even parity on 

33 SER-cfg 
34 I Serial 
35 bit 7 
36 bit 6 
37 (bit 
38 bit 5 
39 bit 4 
40 bit 3 
41 bit 2 
42 bit 1 
43 bit 0 
44 I 

6,7 = .11 => undefined) 

45 op 
46 ep 
47 ie 
1\8 al 
49 be 
50 ec 
51 SER get 
52 SER-flg 
53 !Serial 
54 bit 7 
55 bit 6 
56 bit 5 
557 bit 43 

8 bit 
59 bit 2 
60 bit 1 
61 'bit 0 
62 ! 
63 sd 
64 pe 
65 bd 
66 bo 
67 bne 
68 bf 
69 

undefined 
undefined 
=1 => input editting on 
=1 => auto line feed enabled 
=1 => BREAK detection enabled 
=1 => input echo on 

: = ';80 
:= ';40 
.- ~08 
: = ~04 
. - ~02 

. - ~01 

· - SER cfg-1 
: = SER-get-1 -Status Flags 

=1 => serial I/O disabled 
undefined 
undefined 
=1 => parity error 
=1 => BREAK detected 
=1 => input buffer overflow 
=1 => input buffer not empty 
.1 => input buffer full 

~80 
~10 
~08 
~04 
$02 
~01 

259 



260 

70 RAM TMR 
71 
72 SERl time 
73 SERhtime 

:= 
: = 

SER flg-l 
SERltime-1 

711 
75 
76 
77 
78 
79 
80 

IThe following registers are modified/referenced 
by the Timer/Counter Routines ONLY. They are 
available as general registers to the user 
who does not intend to make use of the 
Timer/Counter Routinesl 

81 TOO tic 
82 TOD-imr 
83 TOD-hr 
811 TOD-min 
85 TOD-sec 
86 TOD-tt 
87 PLS""'1 
88 PLS-tmr 
89 PLS-2 
90 -
91 RAM END 
92 STA'eK 
93 

:= 
: = 

: = 
:= 
: =. 
: = 

:= 

: = 
: = 

RAM TMR-2 
TOD-Uc-1 
TOD-imr-1 
TODnr-l 
TOD-min-l 
TOD-sec-l 

'TOD-tt-l 
PLS-1-1 

I PLS::::tmr-l 

PLS 2 
RA~END 

911 IEquivalent working register equates 
95 for above register layoutl 
96 
97 Iregister file S70 - J7FI 
98 RAM_STARTr := S70 
99 

100 rP3Msave 
101 rTEMP 3 
102 rTEMP-2 
103 rTEMP-l 
1011 rrTEMP 1 
105 rTEMP lh 
106 rTEMP-n 
107 rTEMP-1I 
108 rSERcnar 
109 rSERtmp2' 
110 rSERtmp1 
111 rrSERtmp 
112 rSERtmpl 
113 r~ERtmph 
,1111 rSERput 
115 rSERlen 
116 rrSERbuf 
117 rSERbufh 
118 rSERbufl 
119 rSERimr 
120 rSERcfg 
121 rSERget 
122 rSERflg 
123 
1211 

: = 
: = 
: = 

: = 

:= 
: = 
: = 
:= 
: = 
:= 
:= 
:= 
:= 
:= 
:= 
:= 
: = 
: = 
: = 
:= 
:: 

125 Iregister file S60 
l26 RAM TMRr 
127 rTO'Dtic 
128 rTODimr 
129 rTODhr 
130 rTODmin 
131 rTODsec 
132 rTODtt 

, 133 rPLS 1 
1311 rPLStmr 
135 rPLS_2 

:= 
:= 
: = 
:= 
:= 
:= 
:= 
: = 
: = 
:= 

R15 
R111 
R13 
R12 
RR12 
R12 
R13 
Rl1 
Rl0 
R9 
R8 
RR8 
R9 
R8 
R7 
R6 
RRII 
HII 
R5 
R3 
R2 
Rl 
RO 

- S6F1 
, 160 

R13 
R12 
R 11 
R10 
R9 

'R8 
R7 
R6 
R5 

I for SRPI 

I for SRPI 



Serial Routines 

P 0000 

P 0000 EE 
P 0001 EA 04 
P 0003 EC 00' 
P 0005 FC 51' 
P 0007 BC 72 
P 0009 DC 05 
P OOOB C3 BE 
P 0000 DA FC 
P' OOOF 56 73 F7 

CONSTANT 
si PTR 
sCTMPl 
sCTMP2 

GLO'BAL 

= RR14 
R11 
R13 

164 
165 
166 
167 
168 
169 
170 
171 
172 

ser inlt PROCEDURE 
I··T ••••••••.•••••••••••••••••••••••••••••••••••••••••• 
serial initialize 

173 Purpose = 
174 
175 
176 
177 
178 Input 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 Output = 
193 
194 
195' Note' = 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 

To initialize the serial channel and , 
RAM flags for serial I/O. Serial 
input occurs under interrupt control. 
Serial output occurs in a ,polled mode. 

RR14 = address of parameter list in 
program memory (if R14 = 0, 
use defaults): 

byte = Serial Configuration Data 
(see definition of SER cfg) , 

byte = IMR ~ask for nestab1e 
interrupts 

word = address of c,ircu1ar input 
buffer (in reg/ext memory) 

byte Length of input buffer 
byte Baud rate counter value 
byte = Baud rate presca1er value 

(unshHted) 

Serial I/O operations initialized. 
R 11; R 12, R 13, R 14, R 15 modified. 

Defaults: 
Input echo on 
Input editting oh 
BREAK detection enabled 
No parity 
Au~o line feed on 
Input Buffer Address = SER char 
Input buffer length = 1 byte 
Baud Rate = 9600 (assuming 

XTAL = 7.3728 MHz) 

The instruction at ~0809 must result 
in a jump to the jump table entry for 
ser _input. 

If BREAK detection is disabled, and a 
BREAK occurs, it will be received as a 
continuous string of null characters. 

The parameter list is not referenced' 
following initialization. 215 

216 
217 
218 
219 

·····················································1 ENTRY 

220 
221 
222 si 1: 
223 
2~4 si 2: 
225 ' 
226 
227 

inc 
djnz 
1d 

,1d 
1d 
1d 
1dci 
djnz 
and 

R14 luse defaults?! 
R14,si 1 !no. given by ca11er.1 
R14,IHI ser def laddress of defau1t ••• 1 
R15,ILO ser-def I ••• parameter list. I 
si TMP1, IIsEli cfg 
si-TMP2,'5 - . 
@sT TMP1,@si PTR Iget initia1ization ••• 1 
si TMP2,si 2- I ••• parametersl 
SER_imr,'~F7 linsure no se1f-nestingl 

261 



P 0012 56 
P 0015 B8 
P 0017 56 
P 001A, 46 
P 0010 56 
P 0020 44 
P 0023'E4 

P 0026 BC 
P, 0028 C2 
P 002A C3 
P 002C C2 
P 002E 06 

, P 0031 C9 
P 0033 09, 
P003590 
P 0037 OF 
P 0038 10 
P 003A B9 

P 003C8F 

F1 FC 
72 
EB 80 
EB 40 
7F 3F 
EB 7F 
7F F7 

F4 
DE 
BE 
BE 
0000· 
6E 
6F 
EB 

EB 
F5 

P 0030 BO 71 
P 003F BO 77 
P 0041 BO 70 

P 0043 56 FA E7 
P 0046 56 FB EF 
P 0049 46 FB 08 
P 004C 9F 

P 0040 46 F1 03 
P 0050 AF 
P 0051 

P 0051 OF 00 
P 0053 007A 01 
P 0056 02 03 

262 

228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
\249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 

. 269 

270 
271 
272 
273 

11n1t1alize 
AND 
ld 
AND 
OR 
AND 
OR 
LD 

! 1nithlize 
ld 
ldo 
ld01 
ldo 
oall 
ld 
ld . 
rl 
sof 
rlo 
ld 

! 1n1t1alize 
01 
olr 
olr 
olr 

Port 3 Hode Reg1ster for ser1al 1/01 

TOI 

THR,H$FC !d1sable TO! 
s1 THP1, SER ofg !oonf1gurat1on data! 
s1-TMP1,#$80 lodd par1ty seleot! 
s1-TMP1,#$40 IP30/7 = S1n/Sout! 
P3R save,H$3F !mask off old sett1ngs! 
P3~save,s1 TMP1 !new seleot1onl 
P3H~P3M_savi Ito wr1te-only register!, 

s1 TMP1,IITo 
s1-tMP2,@s1 PTR Isave oounter! 
@sI TMP1,@sI PTR !1n1t oounter! 
s1 TMP1,@s1 ~TR !get presoalerl 
mult1ply - !TO x PREO! 
SERht1me,R12 !save for BREAK ••• I 
SERlt1me,R13 1 ••• deteot1on I 
s.1 TMP1 ! SHL 11 

s1 TMP1 
PRl:0,s1 TMP1 

!oontinuous mode! 
!\SHL 2! 

RAM flags and po1nters! 

SER get 
SER-put 
SER:flg 

!disable 1nterrupts! 
!input buffer ••• ! 
! ••. emptyl 
Ino errors! 

!1n1t1al1ze 1nterrupts! 

!gol 

AND IRQ,#$E7 
and IMR,#$EF 
or IMR,#$08 
.EI 

or 
ret' 

THR,n03 

END ser:...1n1t 

!olear IRQ3 & 4! 
!d1sable IRQ4 (xmt)1 
tenable IRQ3 (rov)! 

!load/enable TO! 

!Defaults for serial initialization I 

ser def RECORD [ofg_, imr_ 

buf 
len , otr_, pre_ 

BYTE 

WORD 
BYTE] 



P 0058 

P 0058 BO 

p 005A 70 
P 005C 70 
P 005E 70 
p 0060 D6 
P 0063 7B 
P 0065 76 
p 0068 6B 
P 006A 76 
P 006D 6B 

7E 

EE 
EF 
ED 
0170' 
118 
72 CO 
08 
7C 80 
03 

275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 
319 
320 
31)1 
322 
323 
3:14 
325 
326 
327 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
338 

CONSTANT 
rli len 

GLOBAL 
: = R13 

ser r1in PROCEDURE I··T ................................................. . 
read line 

Purpose = 

Input 

Output 

Note 

To return input from serial channel 
up to 'carriage return' character or 
maximum length requested or BREAK. 

RR14 = address of destination buffer 
(in reg/ext memory) 

R13 = maximum length 

Input characters is destination buffer. 
RR14 = unmodified 
R13 = length returned 
Carry Flag = 1 if any error, 

= 0 if n9 error. 
R12 indicates read status 

1. Return will be made to the calling 
program only after the requisite 
characters have been received from 
the serial line. 

2. If input editting is enabled, a 
'backspace' character will cause 
the previous character (if any) in the 
the destination buffer to be deleted; 
a 'delete' character will cause all 
previous characters (if any) in the 
destination buffer to be deleted. 

3. If parit~ (odd or even) is enabled, 
the parity error flag (R14) will be set 
if any character returned had a parity 
error. (Bit 7 of each character may 
then be examined if it is desirable to 
know which character(s) had the error). 

4. The status flags 'BREAK detected', 
'parity error', and 'input buffer 
overflow' will be returned 
as part of R12, but will be cleared in 
SER stat. 

5. The staus flags: 'input buffer full' 
and '.input buffer not empty' will be 
updated in SER stat. 

.............................. T······················I 
ENTRY 

clr 
ser read: 

- push 
push 
push 

rli_ 4: call 
jr 
tm 
jr 
tm 
jr 

TEMP_3 

R111 
R15 
rli len 
ser-get 
c ,rli 3 
SER c?g, flop 
z,rIi 1 
TEMP J,n80 
z,rlI_1 

!f1ag => read line! 

Isave original ••. 1 
!. .. dest. pointer! 
I ••• and length I 
Iget input character I 
lerrorl 

LOR ep Iparity enabled?! 
Inol 
!parity error?! 
Inol 

263 



P 006F 46 
P 0072 06 
P 0075 A6 
P 0078 EB 
P 007A 56 
P 007D 76 
P 0080 6B 

P 0082 A6 
P 0085 6B 
P 0087 A6 
P 008A EB 
P 008C 50 
P 008E 70 
P 0090 A4 
P 0093 6B 
P 0095 DE 
P 0096 26 
P 0099 EE 
P 009A EA 
P 009C 8B 
P 009E 36 
P OOA 1 8B 

P 00A3 00 
P 00A5 A6 
P 00A8 6B 
P OOAA DE 
P OOAB DA 
P OOAD 50 
P OOAF 24 
P 00B2 08 
P 00B4 C8 
P 00B6 56 

P 0'<lB9 CF 
P OOBA 76 
P OOBD 6B 
P OOBF OF 
P OOCO 50 
P 00C2 50 
P 00C4 AF 

P 00C5 50 
P ooq 50 
P 00C9 50 
P OOCB 8B 
P OOCD 

P OOCD 

P OOCD E6 
P 0000 8B 
P 00D2 

264 

70 10 
0000* 
7E 00 
31 
7C 7F 
72 08 
21 

7C 7F 
3E 
7C 08 
17 
7C 
7C 
ED 7C 
30 

EF 02 

02 
C2 
EE 00 
BD 

ED 
7C 00 
03 

B3 
7C 
ED 7C 
7C 
70 
70 E3 

EC 9C 
01 

EF 
EE 

ED 
EF 
EE 
8D 

7E 01 
88 

339 
340 rli 1: 
341 
342 
343 
344 
345 
346 linput 
347 
348 
349 ' 
350 
351 
352 
353 
354 
355 
356 
357 
358 
359 
360 rli _7: 
361 
362 
363 r11_9: 
364 
365 
366 
367 r11 2: 
368 rl(): 
369 
370 
371 
372 
373 
374 
375 
376 
377 
378 rli_5: 
379 
380 
381 
382 r11 6: 
383 
384 
385 
386 END 

::HHl liLUI:HIL 

or SER flg,Ope 
call put - dest 
cp TEMP 3,00 
jr nz,r1i 2 
and TEMP 1~U%7F 
tm SER ~fg,U~e 
jr z,rIi 9 

edittingl -
'cp TEMP 1,U%7F 
jr z,rl1 6 
cp TEMP 1,#%08 
jr nz,r1i 9 
pop TEMP 1-
push TEMP-1 
cp TEMP 1,rli len 
jr eq,rli 6 -
inc rIi len 
sub R15~112 
inc R 14 
djnz R14,rli_7 
jr rli 4 
sbc R 14~110 
jr rli 4 

!yes. set error flag! 
!store in buffer! 
Iread line,?! 
!no! 
!ignore parity bit! 
!input editting on?! 
I no.! ' 

!char = delete?! 
! yes! 
!char = backspace?! 
!no. continue! 
!get original length! 

!any characters?! 
!none! 
!undo last decrement! 
!backspace & previous! 
!reg or ext mem?! 
text! 
!reg! 

dec 
cp 
jr 
inc 
djnz 
pop 
sub 
Id 
Id 

rli len lin case crt 

and 

rcf 
tm 
jr 
scf 
pop 
pop 
ret 

pop 
pop 
pop 

TEMP 1,U%OD !carriage return?! 
z,rl1 3 lend input! 
r11 len '!rescore! 
rli len,rli 4 !loop for max length! 
TEM~ 1 - !original length! 
TEMP-1,rH len !II chars returned! 
rl i len, TEHp 1 ! tell caller! 
R12~SER fIg - !return read status! 
SER flg~#LNOT (pe LOR bd LOR bo) 

- ! reset for next time!, 
!good return code! 

R12,Upe LOR bd LOR bo LOR sd 
z,rli_5 !no error! 

R15 
R14 

rli len 
R15-
R14 

!set error return! 

!original buffer addr! 

jr ser read !start over! 
ser rlin 

389 ser rabs PROCEDURE 
390 
391 
392 

!***** •••• ******************************************** 
read absolute 

393 Purpose = 
394 

To return input from serial channel 
of maximum length requested. (Input 
is not terminated with the receipt of 
a 'carriage return'. BREAK will 
terminate read.) 

395 
396 
397 
398 
399 Note = All other details are as for 'ser rlin'. 
400 *************************************************T***. 
401 -ENTRY 
402 
403 
404 END 

ld TEMP 3,01 !flag => read absolute! 
jr ser read 
ser rabs 



P 0002 

,I' 

P 0002 E4 03 
P 0005 70 FB 
P 0007 54 73 
P DaDA 9F 
P OOOB 70 FO 
P 0000 31 70 
P OOOF A8· FO 
P OOE 1 76 E2 
P 00E4 6B 2F 
P 00E6 BO E9 
P 00E8 76 E2 
P OOEB 6B 02 
P OOEO 9C 80 
P OOEF A2 A9 
P 00F1 EB 22 
P 00F3 76 E8 
P 00F6 EB 10 

P OOF8 46 EO 
P OOFB 76 03 
P OOFE 6B FB 

P 0100 70 6E 
P 0102 70 6F 
P 0104 8C 35 
P 0106 8A FE 
P 0108 80 6E 

78 

FB 

02 

80 

01 

08 
01 

406 
407 
408 
409 
410 
411 
412 
413 
414 
415 
416 
417 
418 
419 
420 
421 
422 
423 
424 
425 
426 
427 
428 
429 
430 
431 
432 
433 
434 
435 
436 
437 
438 
439 
440 
441 
442 
443 
444 
445 
446 
447 
448 
449 
450 
451 
452 
453 
454 
455 
456 
457 
458 
459 
460 
461 
462 
463 
464 
465 
466 
467 
468 
469 

GLOBAL 
ser input PROCEDURE 
! ••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Interrupt service - Serial Input 

Purpose = 

Input = 

Output 

Note 

To service IRQ3 by inputting current 
character into next available position 
in circular buffer. 

None. 

New character inserted in buffer. 
SER stat, SER_put updated. 

1. If even parity enabled, the software 
replaces the eigth data bit with a 
parity error flag. 

2. If BREAK detection is enabled, and 
the received character is null, 
the serial input line is monitored to 
detect a potential BREAK condition. 
BREAK is defined as a zero start bit 
followed by 8 zero data bits and a 
zero stop bit. 

3. If 'buffer full' on entry, 'input 
buffer overflow' is flagged. 

4. If input echo is on, the character is 
.immediately sent to the output serial 
channel. 

5. IMR is modified to allow selected 
nested interrupts (see ser initIo 

••••••••••••••••••••••••••••••••••••••••••••••••••••• ! 
ENTRY 

ld 
push 
and 
ei 
push 
srp 
ld 
tm 
jr 
clr 
tm 
jr 
ld 

SER tmp1,1003 
imr­
imr,SER_imr 

rp 
IIRAM STARTr 
rSERchar,SIO 
r SERc fg ,llbe 
z,ser 30 
r SERtiiip2 
r SERc fg ,lIop 
z,ser 23 
rSERtiiip2, U80 

!read stop bit levell 
! save entry lmr I 
! allow nesting! 

!save user's! 

!capture inputl 
!break detect enabled?! 
!nope.1 

!odd parity enabled?! 
!no .1 

rSERchar,rSERtmp2 !8 received bits = O?! 
ne,ser 30 !no! 
rSERtmp1,'1 !test stop bit! 

jr nZ,ser 30 !not BREAK I 
lis BREAK. Wait for markingl 

or 
ser 24: tm 

jr 
!wait 1 char 

push 
push 

in loop: ld 
lpl: djnz 

decw 

rSERflg,lIbd !set BREAK flag! 
~03,1I1 !marking yet?1 
z,ser 24 !not yetI 

time to 1'lush receive shift register I 
SERhtime 
SERI time 
rSERtmp1,1I53 
rSERtmp1,lp1 
SERhtime 

! save PREO x TO! 

Idelay 640 cycles! 

265 



P 010A EB FS 470 jr nz ,in_loop !delay (128xl0xPREOxTO)1 
471 I ----------------1 
472 2. 

P 010C 50 6F 473 pop SERltime 
P 010E 50 6E 474 pop SERhtime !restore PREO x TO! 
P 0110 56 FA F7 475 and IRQ,IILNOT %08 !clear int reql 
P 0113 8B 49 476 jr ser_i5 !bye! 

477 
P 0115 76 EO 01 478 ser 30: tm rSERflg,lIbf ! bu(fer full?! 
p 0118 EB 4A 479 - jr nz,ser 11 I yes .overflowl 
P 011A 76 E2 01 4S0 tm rSERcfg, flec !echo on?! 
P 0110 6B OA 481 jr z,ser iO Ino'! 
P 011F A9 FO 4S2 ld SIO,r"SERchar lechol 
P 0121 66 FA 10 4113 ser i6: tcm IRQ,Ul0 ! poll I 
P 0124 EB FB 484 jr nz,ser i6 ! loopl 
P 0126 56 FA EF 485 and IRQ,IILNOT %10 !clear ir-q bit! 
P 0129 76 E2 40 486 ser iO: tm rSERcfg ,lIep I even parity? I 
p 012C 6B 14 487 - jr z,ser 22 !no parity! 

488 !calculat.e. parity error flagl 
P 012E 8C 07 489 ld rSERtmpl,1I7 
P 0130 BO E9 490 clr rSERtmp2 !count l' shere! 
P 0132 CO EA 491 ser 20: rrc rSERchar !bit to carry! 
P 0134 16 E9 00 492 ad'c rSERtmp2,1I0 lupdate l's countl 
P 0137 SA F9 493 djnz rSERtmpl ,ser _20 !loop till done! 
P 0139 56 E9 01 494 and rSERtmp2,lIl 11 's count even or odd?! 
P 013e B2 A9 495 xor rSERchar,rSERtmp2 
P 013E CO EA 496 rrc rSERchar !parity error flag .•• I 
P 0140 CO EA 497 rrc rSERchar I. .. to bit 7! 
P 0142 88 E4 498 ser_22: ld rSERtmph,rSERbufh 
P 0144 98 E5 499 ld rSERtmpl,rSERbufl 
P 0146 02 97 500 add r SERtmpl , r SERput Inext char address! 
P 0148 BE 501 inc rSERtmph !in external memory?1 
p 0149 SA lE 502 djnz rSERtmph,ser 12 lyes.1 
P 014B F3 9A 503 ld @rSERtmpl,rStRchar Istore char in buff 
P 0140 46 EO 02 504 ser i3: or rSERflg,flbne Ibuffer not emptyl 
P 0150 7E 505 - inc rSERput lupdate put ptr! 
P 0151 A2 76 506 cp rSERput,rSERlen !wrap-around?! 
P 0153 EB 02 507 jr ne,ser i4 !no! 
P 0155 BO E7 50S clr rSERput !set to start! 
P 0157 A2 71 509 ser i4: cp rSERput,rSERget-lif equal, then full ! 
p 0159 EB 03 510 jr ne,ser i5 
P o 15B 46, EO 01 511 or rSERflg,lIbf 
P 015E 50 FO 512 ser_i5: pop rp Irestore user's! 
P 0160 8F 513 di 
P 0161 50 FB 514 pop imr !restore entry imr! 
P 0163 BF 515 , iret 

516 
P 0164 46 EO 04 517 ser i 1 : or rSERflg ,flbo !buffer overflowl 
p 0167 8B F5 518 jr 

519 
ser_i5 

p 0169 16 E8 00 520 ser i2: adc r SE Rtmph ,110 
P 016C 92 A8 521 ide @rrSERtmp,rSERchar I store in bufl 
P 016E 8B DO 522 jr ser_i 3 
P 0170 523 END ser_input 

266 



525 GLOBAL I for PART II 
P 0170 526 ser get PROCEDURE 

527 ! •• T •••••••••••••••••••••••••••••••••••••••••••••••••• 

528 Purpose To return one serial input character. 
529 
530 Input = None. 
531 

Output = 532 Carry FLAG if BREAK detected or 
533 serial not enabled 
5311 or buffer overflow 
535 . = 0 otherwise 
536 TEMP 1 = character 
537 
538 Note = This routine will not return control 
539 until a character is available in the 
5110 input buffer or an error is detected. 
5111 ·····················*·*·····························1 5112 ENTRY 

P 0170 70 FD 5113 push rp Isave caller's rp! 
P 0172 31 70 51111 srp IIRAM STARTr !point to subr. RAM! 
P 01711 DF 5115 scf lin case error! 
P 0175 76 EO 8C 5116 ser _g1: tm rSERflg, #sd LOR bd LOR bo 

5117 !serial disabled or 
5118 BREAK detected or 
5119 buffer overflow?! 

P 0178 EB 211 550 jr nz,ser_g6 !yes.1 
P 017A 76 EO 02 551 tm rSERflg ,#bne I buffer not empty? I 
P 017D 6B F6 552 jr z,ser g1 lempty. waitl 
P 017F D8 E5 553 Id rTEMP-l1,rSERbufl 
P 0181 C8 Ell 5511 Id rTEMP:1h,rSERbufh 
P 0183 8F 555 di !prevent IRQ3 conflict! 
P 01811 02 Dl 556 add rTEMP 11 ,rSERget !next char address! 
P 0186 CE 557 inc rTEMP-lh !input buffer in .•. 1 
P 0187 CA 18 558 djnz rTEMP:lh,ser_g3 I ..• external memoryl 

559 ! ••. register memory! 
P 0189 E3 CD 560 Id rTEMP 1,@rTEMP 11 Iget chari 
P 018B 56 EO FE 561 ser_gll: and rSERfIg,#LNOT bf !buffer not full! 
P 018E lE 562 inc r SERget ! update get po'inter I 
P OlaF A2 16 563 cp rSERget, rSERlen !wrap-around?1 
P 0191 EB 02 5611 jr ne,ser_g2 !no. ! 
P 0193 BO El 565 clr rSERget !yes. set to startl 
P 0195 A2 17 566 ser_g2: cp rSERget,rSERput Ibuffer empty if get .•• 1 
P 0197 EB 03 567 jr ne,ser g5 I •.. and put =! 
P 0199 56 EQ FD 568 and rSERflg,ULNOT bne !buffer empty now! 
P 019C CF 569 ser_g5: rcf !set 'good return! 
P 019D 9F 570 ei Ire-enable interrupts! 
P 019E 50 FD 571 ser_g6: pop rp Irestore caller's rp! 
P 01AO AF 572 ret 

573 
P 01Al 16 EC 00 5711 ser_g3: adc rTEMP lh, 110 ! rrTEMPl has char addr! 
P 01AlI 82 CC 575 lde rTEMP:l,@rrTEMP_' !get Char! 
P 01A6 8B E3 576 jr ser _gll !clean up! 
P 01A8 577 END ser_get 

267 



P oU8 

P 01A8 BO 
P 01AA 80 
P 01AC EB 

P 01AE 80 
P 01Bl 

P 01Bl 

P 01Bl 8F 

P 01B2 BO 
P 01B4 BO 
P 01B6 56 
P 01B9 9F 
P 01BA AF 
P 01BB 

268 

FO 
EE 
FA 

0238', 

71 
77 
70 80 

579 
580 
581 
582 
583 
584 
585 
586 
587 
588, 

.589 
590 
591 
592 
593 
594 
595 
596 
597 
598 
599 
600 
601 
602 
603 
604 
605 
606 
607 
608 
609 
610 
611 
612 
613 

615 
616 
617 
618 
619 
620 
621 
622 
623 
624 
625 
626 
627 
628 
629 
630 
631 
632 
633 
634 
635 
636 
637 
638 
639 
640 

GLOBAL 
ser break PROCEDURE 
I··T •••••••••••••••••••••••••••••••••••••••••••••••••• 
break transmission 

Purpose = 

Input = 

Output = 

Note = 

'To transmit BREAK on the serial line. 

I RR14 = break length 

BREAK is defined as: 
serial out (P37) = 0 tor 

2 x 28 cycles/loop x RR14 loops 

XTAL 

RR14 should yield at least 1 bit time 
so that the last 'clr SIO' will 
have been preceded by at least 1 bit 
time of spacing. Therefore, RRi4 should 
be greater than or equal to 

4 x 16 x PREO x TO 

28 
................................ ··.··················1 
E.NTRY 
ser_b1: 

clr SIO 
decw RR14 
jr nz,ser bl 

!wait 'for last null to~e fully transmitted I 
jp ser 01 

END ser break -

GLOBAL 
ser flush PROCEDURE 
I··T •••••••••••••••••••••••••••••••••••••••••••••• ' •••• 
input flush 

Purpose = 

Input = 

Output = 

To flush (clear) the serial input 
buffer of characters. 

None 

Empty input buffer. 

Note = This routine might be useful to clear 
all past 1aput after a BREAK has been 
detected on the line. 

···.·······················~······,··················I ENTRY 
di Idisable interrupts I 

I(to avoid collision with 
serial input) t 

clr SER get Ibuffer start I 
clr SER-put 1= buffer endl 
and SER-flg,IS80 Iclear statusl 
ei - Ire-enable interrupts I 
ret 

END ser flush 



P 01BB 

P 01BB BO 

P 01BD DF 
P 01BE 76 
P 01C1 EB 
P 01C3 70 
P 01C5 D6 
P 01C8 D6 
P 01CB'7B 
P 01CD A6 
P 01DO EB 
P 01D2 56 
P 01D5 A6 
P 01DB EB 
P 01DA 00 
P 01DC 76 
P 01DF 6B 
P 01E1 E6 
P 01E4 D6 
P 01E7 8B 
P 01E9 DA 
P 01EB 50 
P 01ED 24 
P 01FO D8 
P,01F2 CF 
P 01F3 AF 
P 01F4 

7E 

70 80 
30 
ED 
0000· 
020B' 
1E 
7E 00 
17 
7C 7F 
7C OD 
OF 
ED 
72 04 
OA 
7C OA 
020B' 
02 
DA 
7C 
ED ' 7C 
7C 

642 CONSTANT 
6113 wli len 
6411 GLOBAL 

:= R13 

645 ser wlin . PROCEDURE 

646 I··y·················································· 647 write line 
648 
649 Purpose = 
650 
651 
652 
653 
654 Input = 
655 
656 
657 
658 Output = 
659 
660 
661 
662 
663 
664 Note = 
665 
666 

To output a character string to serial 
line, ending with either a 'carriage 
return' character or the maximum length 
specified. 

RR14 = address of source buffer 
(in reg/ext memory) 

R13 = length 

RR14 = updated 
Carry Flag = 1 if serial not enabled, 

= 0 if no error. 
R13 = 1 bytes output (not including 

auto line feed) 

If auto line feed is enabled, a 
line feed character will be output 
following each carriage return 
(ser wlin only). 667 

668 
669 
670 
671 

.................... T································I ENTRY 

672 write: 
673 
674 
675 
676 wli 4: 
677 
678 
679 
680 
681 
682 
683 
6811 
685 
686 
687 
688 
689 
690 wli 5: 
691 wlC2: 
692 
693 

clr 

scf 
tm 
jr 
push 
call 
call 
jr 
cp 
jr 
and 
cp 
jr 
dec 
tm 
jr 
ld 
call 
jr 
djnz 
pop 
sub 
ld 

694 rcf 
695 wli 1: ret 
696 END- ser wlin 

SER flg; IIsd 
nz,wli 1 
wli len 
get-src 
ser-output 
c ,wii 2 
TEI1P 1,10 
nz,wii 5 I 
TEMP 1;/lS7F 
TEMP-1, /lSOD 
nz,wI"i 5 
wli len 
SER-c fg , llal 
z,wli 2 
TEMP .,., /lSOA 
ser 'Output 
wli-2 
wli-len,wli 4 
TEMlf 1 -
TEMP-1,wli len 
wli_I"en,TElJP_1 

Iflag => write line! 

lin case errorl 
Iserial disabled?1 
Iyes. errorl 

Iwrite the character I 
Iserial disabled! 
!write line?! 
! no, absolute. I 
Imask off parityl 
lline done?1 
!yes.1 

lauto line feed?1 
Idisabled! 
!output line feed! 

Iloopl 
loriginal length I 

Ireturn output countl 
Ino errorl 

269 



P 01FII 

P 01FII E6 
P 01F7 8B 
P 01F9 
P 01F9 , 

P 01F9 C9 
P 01FB 06 
P 01FE 76 
P 0201 6B 
P 0203 A6 
P 0206 EB 
P 0208 E6 

P 020B 

270 

7E 
CII 

7C 

01 

020B' 
72 Oil 
3E 
EC 00 
39 
7C OA 

698 
699 
700 
701 
702 
703 
7011 
705 
706 
707 
708 
709 
710 
711 
712 
713 
715 
716 
717 
718 
719 
720 
721 
722 
723 
7211 
725 
726 
727 
728 
729 
730 
731 
732 
733 
734 
735 
736 
737 
738 

GLOBAL 
ser wabs PROCEDURE 
I •• T •••••••••••••••••••••••••••••••••••••••••.••••••••• 
write absolute 

Purpose = To output a oharaoter string to serial 
line for the length speoified. (Output 
is not terminated with the output of 
a 'oarriage return'). 

Note = All other details are as for 'ser wlin' • 
•••••••••••••••••••••• , ••••••••••••••••••••••••••• T ••• I 
ENTRY 

ld TE~P 3,#1 
jr write 

END ser_wabs 

ser wbyt PROCEDURE I··T ................................................. . 
write byte 

Purpose = To output a given ohar,aoter to the 
serial line. If the oharaoter is a 
oarriage r~turn and auto line feed 
is enabled, a line feed will be output 
as well. 

Input = R12 = oharaoter to output 

Note = ,Equivalent to ser wlin with length = 1. ................................. T···················I 
ENTRY 

Id TEMP 1,R12 
,oall ser output 
tm SER-ofg,lal 
jr z,ser 05 
op R12,#IOD 
jr nZ,ser 05 
Id TEMP 1~#SOA 

Ifall into ser outpu~! 
END ser_wbyt 

!output itl 
lauto line feed?1 
Inot enabled I 
lohar = oar. ret?1 
,Inopel 
loutput line feedl 



P 020B 

P 020B DF 
P 020C 76 
P 020F EB 
P 0211 76 
P 0214 6B 

'p 0216 70 
P 02111 E6 
P 0.21B BO 
P 021D CO 
P 021F 16 
P 0222 00 
P 0224 EB 
P 0226 56 
P 0229 56 
P 022C 44 
P 022F CO 
P 0231 CO 
P 0233 50 
P 0235 E4 
P 0238 66 
P 023B EB 
P 023D 56 
P 0240 CF 
P 0241 AF 
P 0242 

P 0242 

P 0242 8F 
r 0243 46 

r 0246 56 

r (1249 56 

I'024C 56 

I' 024F E4 
I' l'.'<;2 9F 
\' O.~'i 3 AF 
\' l'.''i4 

70 
30 
72 
1F 

7E 
7E 
7D 
7C 
7D 
7E 
F7 
7D 
7C 
7D 
7C 
7C 
7E 
7C 
FA 
FB 
FA 

70 

F1 

FB 

7F 

7F 

80 

40 

07 

00 

01 
FE 
7C 

FO 
10 

EF 

80 

FC 

E7 

BF 

F7 

GLOBAL I for PART II 
ser output PROCEDURE 

740 
741 
742 
743 
7411 
745 
746 
747 
748 
749 
750 
751 
752 
753 
7511 
755 
756 
757 
758 
759 

I··T •••••••••••••••••••••••••••••••••••••••••••••••••• 
Purpose = To output one oharacter to the serial 

line. 

Input = 

Output 

TEMP 1 = character 

Carry FLAG = 1 if serial disabled 
= 0 otherwise. 

Note 1. If even parity is enabled, the eigth 
data bit is modified prior to character 
output to SIO. 

2. IRQ4 is polled to wait for completion 
of character transmission before control 
returns to the calling program. 

·····.·· ..... · .. ·.··.································1 ENTRY 
760 scf 
761 tm SER flg,#sd 
762 jr nz,ser 05 
763 tm SER_cfg"ep 
7611 jr z ser 02 
765 Icalculate parity/ -
766 push TEMP 3 
767 ld TEMP-3,#7 
768 olr TEMP-2 
769 ser_04: rrc TEMP-1 
770 adc TEMP-2,HO 
771 dec TEMP-3 
772 jr nz,ser 04 
773 and TEMP 2~'01 
774 and TEMP-1,H~FE 
775 or TEMP-1,TEMP 2 
776 rrc TEM!'1 -
777 rrc TEMP-1 
778 pop TEMP-3 
779' ser 02: ld SIO,TEMP 1 
780 ser-01: tcm, IRQ,#~10-
781 jr nz,ser 01 
782 and IRQ,#~~F 
783 rcf 
784 ser 05: ret 
7.85 END- ser _output 

GLOBAL 
ser disable PROCEDURE 

lin case errorl 
Iserial disabled?1 
Iyes. errorl 
leven parity enabled?! 
!no. jus~ output I 

Icharacter bit to carryl 
Icount 1'sl 

Inext bitl 
11's count odd/evenl 

!parity bit in DOl 

Iparity bit in D7! 

!output character I 
!oheck IRQ41 
Iwait for completel 
Iclear IRQ4! 
I all okl 

787 
788 
789 
790 
791 
792 
793 
794 
795 
796 
797 
798 
799 
800 
801 
802 
803 
804 
805 
806 
807 
808 
809 
810 
811 

I····················································· d'isable 

Purpose = To disable serial 1/0 ~perations. 

None. Input = 

Output = Serial' 1/0 disabled. . 
••••••••••••••••••••••••••••••••••••••••••••••••••••• ! 
ENTRY 

di lavoid IRQ3 conflictl 
or SER flg,Hsd 

- Iset serial disabledl 
and TMR,#~FC 

Idisable TOI 
and IMR,'~E7 

Idisable IRQ3,41 
and P3M save,#~BF 

- IP30/7 normal ilo pins! 
ld P3M,P3M save 
ei -Ire-enable interrupts I 
ret 

END ser disable 

271 



Tiller/Counter Routines "-

P 0254 

P 0254 DC 
P 0256 C3 
P 0258 C3 
P 025A E6 
P 025D 8D 
P 0260 

~72 

6C 
DE 
DE 
7B 6C 
02B2' 

84,0 CONSTANT 
8111 TMP 
842 PTR 
843 PTRh 
844 GLOBAL 

: = 

:= 

R13 
RR14 
R14 

845 t~d i PROCEDURE 
846 I··T •••••••••••••••••••••••••••••••••••••••••••••••••• 
847 time of day initialize 
848 
849 Purpose = 
850 
851 
852 Input = 
853 
854 
855 
856 
857 
858 
859 
860 
861 
862 
863 
864 
865 
866 
867 Output = 
868 
869 
870 
871 
872 Note = 
873 
87,4 
875 
876 
877 
878 
879 
880 
881 
882 
883 
884 
885 
886 
887 
888 

To initialize TO or T1 to function as 
a time of day clock. 

RR14 = address'of parameter list in 
program memory: 

byte = IMR mask'for nestable 
interrupts 

byte = # of ciock ticks per second 
byte = counter # : = SF4 => TO 

= SF2 => T1 
byte = Counter value 
byte = Prescaler value (unshifted) 

TOD hr, TOD min, TOD sec, TOD tt 
inItialized to the starting time of 
hours, minutes, seconds, and ticks 
respeotively. 

Selected timer is loaded and 
enabled; corresponding interrupt 
is enabled. 
R13, R14, R15 mOdified. 

The cntt and prescaler values provided 
are- those values which will generate an 
interrupt (tick) the designated # of 
times per second. 

For example: 
for XTAL = 8 MHZ, ontr = 250 and 
prescaler = 40 yield a .01 sec interval; 
the-2nd byte of the parameter list 
should = 100 • ' 

For TO the instruotion at S080C or 
for T1 the instruction at S080F must 
result in'a jump'to the jump table entry 
for 'tod'. 

The parameter list is not referenced 
following initialization. 889 

890 
891 
892 
893 

····························~························I ENTRY' ' 

894 
895 
896 8n END 

ld 
ldci 
ldci 
ld 
jp 
tod_i 

TMP,ITOD imr 
@TMP,@PTlf 
@TMP,@PTR 
TEMP 4,ITOD imr 
pre_otr -

limr maskl 
Itic:ka/secondl 

Ictr & prescalerl 

\ 



899 GLOBAL 
P 026Q 900 tod PROCEDURE 

901 ! ••••••••••••••••••••••••••••••••••••••••••••••••••••• 
902 Interrupt service - time of day 
903 
904 Purpose = To update the time of day clock • 
905 ••••••••••••••••••••••••••••••••••••••••••••••••••••• ! 
906 ENTRY 

p 0260 70 FB 907 push imr 1 save entry" imrl 
p 0262 54 6C FB 908 and imr,TOD_imr lallow nested interrupts 
P 0265 9F 909 ei lenable interrupts! 
P 0266 70 FD 910 push rp !save rp! 
P 0268 31 60 911 srp IIRAM TMRr !point to our set! 
P 026A 8E 912 inc rTOD"f:t !ticks/second! 
P 026B A2 80 913 cp rTODtt,rTODtic !second complete?! 
P 026D EB 13 914 jr ne,tod ex !nope .1 
P 026F BO E8 915 clr rTODtt-
P 0271 9E 916 inc rTODsec !seconds! 
P 0272 A6 E9 3C 917 cp rTODsec,II60 !minute complete?! 
P 0275 EB OB 918 jr ne,tod ex !nope.! 
P 0277 BO E9 919 clr rTODsec 
P 0279 AE 920 inc rTODmin !minutes! 
P 027A A6 EA 3C 921 cp rTODmin,II60 ! hour complete? 1 
P 027D EB 03 922 jr ne,tod ex !nope .1 
P 027F BO EA 923 clr r TODm iii 
P 028"1 BE 924 inc rTODhr Ihours! 

925 
P 0282 50 FD 926 tod ex: pop rp !restore rpl 
P 0284 8F 927 di Idisable interrupts 1 
P 0285 50 FB 928 pop imr !restore entry imr! 
P 0287 BF 929 iret 
P 0288 930 END tod 

273 



P 0288 

P 0288 DC 
P 028A C3 
P 028C C3 
P 028E C3 
P 0290 80 
P 0292 80 
P 0294 56 
P 0297 56 
P 029A E4 
P 0290 E6 
P 02AO 80 
P 02A3 

P 02A3 

P 02A3 84 
P 02A6 84 
P 02A9 B4 

P 02AC F5 
P 02AF SF 
P 0280 

274 

65 
DE 
DE 
DE 
EE 
EE 
F 1 3F 
7F OF 
7F F7 
78 01 
0282 ' 

65 67 
67 65 
65 67 

67 66 

932 
933 
934 
935 
936 
937 
938 
939 
9110 
941 
942 
9113 
944 
945 
946 
947 
948 
949 
950 
951 
952 
953 
954 
955 
956 
957 
958 
959 
960 
961 
962 
963 
9611 
965 
966 
967 
968 
969 
970 
971 
972 
973 
974 
975 
976 
977 
978 
979 
980 
981 
982 
983 
984 
985 
986 
987 
988 
989 

GLOBAL 
pulse i PROCEDURE 
! •••• 1i" •••••• ~ ••••••••••••••••••••••••••• * ••••••••••••• 
Purpose = To initialize one of the timers 

ta geherate a variable frequency/ 
variable pulse width output. 

Input = 

Output 

Note 

RR14 = address of parameter list in 

byte 
byte 

byte 
byte 

program memory: 
cntr value for low interval 
counter H : = %F4 => TO 

= %F2 => T1 
cntr value for high interval 
prescaler (unshifted) 

Selected timer is loaded and 
enabled; corresponding interrupt 
is enabled. P36 is enabled as Tout. 
R13, R14, R15 modified. 

The parameter list is not referenced 
following initialization. . 

The value of Pres caler x Counter 
must be > 26 (=%lA) for proper 
operation. 

*** •• ****.** ••• ** •••• ** •• ***.*** ••••••• **** •• **.****.! 
ENTRY 

LD TMP,HPLS 2 
ldci @TMP,@PTR !low interval cntrl 
ldci @TMP,@PTR Itimer addr! 
ldci @TMP,@PTR ! high interval cntr! 
decw PTR 

~ decw PTR !back to flag! 
and TMR,1I%3F Iwill be modifying TMR! 
and P3M save, nDF IP36 = Tout! 
ld P3~P3M save 
ld TEMP 4,#%1 !flag for pre ctrl 
jp pre_ctr !set up timerT 

END pulse -

GLOBAL 
pulse PROCEDURE 

1···················································*· Purpose = To modify the counter load value 
to continue the pulse output generation. 

•••••• * ••••• * •••• * ••••••••••••••••••••••••••••••••••• ! 
ENTRY 
lexchange values! 

xor PLS 1,PLS 2 
xor PLS-2,PLS-l 
xor PLS-l,PLS-2 

!exchange completel- -
ld @PLS_tmr,PLS_l Iload new valuel 
iret 

END pulse 



P 02BO 

P 02BO BO 

P 02B2 

7B 

991 
992 
993 
994 
995 
996 
997 
998 
999 

1000 
1001 
1002 
1003 
1004 
1005 
1006 
1007 
1008 
1009 
1010 
lOll 
1012 
1013 
lQ14 
1015 
1016 
1017 
1018 
1019 
1020 
1021 
1022 
1023 
1024 

GLOBAL 
delay PROCEDURE 

I····················································· Purpose = To generate an interrupt after a 

Input = 

Output = 

Note 

designated amount of time. 

RR14 = address of parameter list in 
program memory: 

byte = counter , : = SF4 => TO 
- = SF2 => Tl 

byte = Counter value 
byte = Prescaler value and count mode 

(to be loaded as is into 
PREO or PRE1). 

Selected timer is loaded and 
enabled; corresponding interrupt 
is enabled. ' 
R13, R14, R15 modified. 

This routine will initialize the timer 
for single-pass or continuous mode 
as determined by bit 0 of byte 3 i,n 
the parameter list. 
The caller is responsible for provid­
ing the interrupt service routine. 

The parameter list is not referenced 
fqllowing initialization. 

·····················································1 ENTRY 
clr TEMP 4 

Ifall into pre ctrt -
END delay -

275 



P 02B2 

P 02B2 C2 
'P 02B4 AO 
P 02B6 E6 
P 02B9 E6 
P 02BC A6 
P 02BF 6B 
P 02C1 E6 
P 02C4 E6 
P 02C7 C3 

, P 02C9 C2 
P 02CB 'A6 
P 02CE 6B 
P 0200 OF 
P 0201 10 
P 0203 OF 
P 0204 10 
P 0206 A6 
P 0209 EB 
P 020B 60 
P 0200 54 
P 02EO 60 
P 02E2 56 
P 02E5 F3 
P 02E7 44 
P 02EA 8F 
P 02EB 44 
P 02EE 9F 
P 02EF AF 
P 02FO 

OE 
EE 
70 8C 
7E 20 
EO F2 
06 
70 43 
7E 10 
OE 
EE 
7B 00 
12 

EE 

EE, 
7B 6C 
OA 
7E 
7E 6C 
7E 
70 OF 
OE 
70 F1 

7E FB 

o errors 
Assembly complete 

276 

INTERNAL 1026 
1027 
1028 
1029 
1030 
1031 

pre ctr PROCEOURE . 
I··T •••••••••••••••••••••••••••••••••••••••••••••••••• 
'Purpose = To get counter and prescaler values 

from parameter list and modi·fy control 
registers appropriately. 

1032 
1033 Input 
1034 

= TEMP II = 0 => for 'delay' = 1 => f~r 'pulse' 
= TOO 1mI' => for 'tod' 1035 

1036 
1037 
1038 
1039 

••• · •••••••••••••••••••••••••• T ••••••••••••••••••••••• ! 
ENTRY 

1040 
1041 
10112 
1043 
1044 
1045 
10116 pre_1: 
1047 
1048 
1049 
1050 
1051 
1052 
1053 
1054 
1055 
1056 
1057 
·1058 
1059 pre 2: 
1060.pre:3: 
1061 
1062 
1063 
10611 
1065 

Idc 
incw 
Id 
Id 
cp 
jr 
Id 
Id 
Idci 
Idc 
cp 
jr 
scf 
rIc 
scf 
rIc 
cp 
jr 
com 
and 
com 
and 
Id 
or 
di 
or 
ei 
ret 

1066 ENO 
1067 ENO 

pre ctr 
PART_U-

TMP,@PTR 
PTR 
TEMP 2,U8C 
TEMP-3,U20 
TMP,lT1 
eq,pre 1 
TEMP 2~U1I3 
TEMP-3,U10 
@TMP~@PTR 
PTRh,@PTR 
TEMP 11,/10 
eq,pre_2 

PTRh 

PTRh 
TEMP 4,/JIT00 imr 
ne,pre 3 
TEMP 3-
TOO I'mr,TEMP 3 
TEMP 3 -
TEMP-2,nOF 
@TMP'";"PTRh 
TMR,TEMP_2 

imr,TEMP_3 

ITO or T1I 

! for TMRI 
I for IMRI 

li_s for T11 
I for TMRI 
! for IMRI 
linit counterl 
Iprescaler! 
Ishift prescaler?! 
Inol 
lin·ternal clock I 

Icontinuous model 

I for 'pulse' I 

linsure no self-nesting! 

!no Tout mode mod! 
!init prescaler! 
Unit tmr mode! 

tenable interrupt! 



~Zirm 

INTROOUCTlON 

The microcomputer industry has recently developed 
single-chip microcomputers that incorporate on one 
chip functions previously performed by periph­
erals. These microcomputer units (MCUs) are aimed 

A Comparison of 
Microcomputer Units 

Benchmark Report 

May 1981 

at marketa requlrlng a dedicated computer. This 
report describes and compares the most powerful 
MCUa in today'a market: the Zilog Z8611, the 
Intel 8051, and the Motorola MC6B01. Table 1 
lists facts that should be considered when com­
paring these MCUs. 

Table 1. Ill! Comparison 

, 
Zilog Intel Motorola 

FEATURES Z8611 B051 11:6801 

On-Chip ROM 4KxB 4Kx8 2KxB 

General-Purpose 
Regiaters 124 12B 12B 

Special-Function I 

Registers 
Status/Control 16 16 17 
I/O ports 4 4 4 

I/O 
Parallel lines 32 32 29 
Ports Four B-bit Four 8-bit Three B-bit,one 5-bit 
Handshake Hardware on None Hardware on 

three ports one port 

Interrupts 
Source B 5 7, 
External source 4 2 2 
Vector 6 5 7 
Priority 4B Programmable 2 Programmable Nonprogrammable 

orders orders 
Maskable 6 5 6 

External 
Memory 120K bytes 124K bytes 64K bytes 

Stack 
Stack pointer 16-Bit B-Bit 16-Bit 
Internal stack Ves, uses Ves Ves 

8-bits 
External stack Ves No Ves 

277 



fEATURES 

Counter/ 
Timers 

Counters 

Prescalers 

Addressing 
Modes 

Register 
Indirect Register 
Indexed 
Direct 
Relative 
Immediate 
Implied 

Index 
Registers 

Serial 
Communication 
Interface 

full duplex 
UARr 

Interrupts 
for transmit 
and receive 

Registers 
Double bu ffe r 

Serial Data Rate 
, 

Speed 
Instruct ion 

execut Lon average 

Longest 
instruct ion 

Clock frequency 

Power Down 
Mode 

Context 
Switching 

278 

Table 1. MCU COIII{larison 
(Continued) 

Zilog Intel 
ZB611 B051 

Two B-bH Two 16-bi t 
or two B-bit 

Two 6-bit No prescale 
wi th 16-bits; 

5-bit prescale 
with B-bits 

Yes Yes 
Ves Yes 
Yes Ves 
Yes Yes 
Yes Yes 
Yes Ves 
Yes Yes 

124, Any 1, Uses the 
general- accumu lator 
purpose for 8-bit 
register offset 

Ves Ves 

One for each One for both 

Receiver Receiver 
62.5K bls 187.5K b/s 

®B MHz ®12 MHz 
93.5K bls 
®12 MHz 

2.2 Usee 1.5 Usee 
1.5 Usee ®12 MHz 

4.25 Usee 4 Usee 
2.8 Usee ®12 MHz 

8 and 12 MHz 12 MHz 

Saves first Saves first 
124 registers 128 registers 

Saves PC Saves PC; 
and flaqs proqrammer 

must save all 
registers 

Motorola 
MC6B01 

One 16-bi t 

None 

No 
No 
Yes 
Yes 
Yes 
Yes 
Yes 

1, Uses 
16-bit index 
regi ster 

Ves 

One for both 

Transmi tter/Receiver 
62.5K b/s 

®4 MHz 

3.9 Usee 

10 Usee 

4 MHz 

Saves first 
64 registers 

Saves PC, PSW, 
accumulators, 
and Index 
register 



Table 1. IDl Cllllpariaon 
(Contiroed) 

fEATURES 
Zilog 
Z8611 

Developlllllnt 40-Pin 
Protopack (8613) 

64-Pin (8612) 
40-Pin ROM less 

(Z8681 ) 

[pro. 4K bytes (2732) 
2K bytes (2716) 

Availability Now 

ARCHITECTURAL OVERVIEW 

This section examines three chips: the on-chip 
functions and data areas manipulated by the Zilog, 
Intel and Motorola MCUs. The three chips have 
somewhat similar architectures. There are" how­
ever, fundamental differences in design criteri~. 
The 8051 and the MC6801 were deaigned to maintain 
compatabUity with older products, whereas the 
Z8611 design was free from such reatrictions and 
could experiment with new ideas. Because of this, 
the accumulator architectures of the MC6801 and 
the 8051 are not as flexible as that of the Z8611, 
which allows any register to be used as an accumu­
lator. 

Memory Spaces 

T'he Z8611 CPU manipulates data in four memory 
spaces: 

• 60K bytes of external data memory 
• 60K bytes of external program memory 
• 4K bytes of internal program memory (ROM) 
• 144-byte register file 

The'8051 CPU manipulates data in four memory 
spacea: 

.'64K bytes of external data memory 
• 60K bytes of external program memory 
• 4K bytes of internal program memory 
• 14B-byte register file 

The MC6801 manipulates data in three memory 
spaces: 

• 62K bytes, of external memory 
• 2K bytes of internal program memory 
• 149-byte regiater file 

On-Chip RDM. All three chips have internal ROM 
'for program memory. The Z8611 and the 8051 have 
4K bytes of internal ROM, and the MC6801 has 2K 
bytes. In some cases, external memory may be 

Intel Motorola 
80S1 MC6801 

40-Pin (8751) 40- Pin (68701) 

4K bytes 2K bytes 

TBA Now 

required with the MC6801 thatia not necessary 
with the Z8611 or the 8051. 

On Chip RAM. All three chips use internal RAM aa 
registers. These registers are divided into two 
categories: general-purpose registers and special 
function registers (SFRs). 

The 124 general-purpose registers in the ZB611 are 
divided into eight groups of 16 regiaters each. 
In the first group, the lowest four registera are 
ttle I/O port registers. The other registers are 
general purpose and can be accessed with an 8-bit 
address or a short 4-bit address. Using the 4-bit 
address saves bytes and execution time. Four-bit 
short addresses are discussed later. The general­
purpose registers can be used as accumulators, ad­
dress pointers, or Index registers. 

The 128 general-purpose registers in the B051 are 
grouped into two sets. The lower 32. bytes are 
allocated as four 8-register banks, and the upper 
registers are uaed for the stack or for general 
purpose. The registers cannot be used for index­
ing or as address pointers. 

The MC6801 also has a 128-byte, general-purpose 
register bank, which can be used as a stack or as 
address pointers, but not as Index registers. 

As pointed out in Table 1, any of the Z8611 
general-purpose registers can be used for index­
ing; the MC6801 and the 8051 cannot,use registers 
this way. The Z8611 can use any register as an 
accumulator; the MC6801 and the 8051 have fixed 
accumulators. The use of registers as memory 
pointers is very valuable, and only the Z8611 can 
use its registers in this,way. 

The number of ,general-purpose regiaters on each 
chip is comp~rable. However, because of its 
flexible design, the ZB611 clearly has a more 
powerful register architecture. 

279 



The Z8611 has 20 special flKlction registers used 
for status, control, and I/O. These registers 
include: 

• Two registers for a 16-bit Stack Pointer (SPH, 
SPL) 

• One regis-ter used as Register Pointer for 
working registers (RP) 

• One register for the status flags (FLAGS) 
• One re~ister for interrupt priority (IPR) 
• One register for interrupt mask (IMR) 
• One register for inte~rupt request (IRQ) 

-. Three-mode registers for the four ports-(P01M, 
P2M, P3M) 

• Serial communications port used like a 
register (510) 

• Two counter/timer registers (TO, T1) 
• One Timer Mode Register (TMR) 
• Two prescaler registers (PREO, PRE1l 
• Four I/O ports accessed as registers (PORTO, 

PORT1, PORT2, PORT3) 

The 8051 also lias 20 special function registers 
used for status, con~rol, and I/O. They include: 

• One register for the Stack Pointer (SP) 
• Two accumulators (A,8) 
• One register for the Program Status Word 

(PSW) 
• Two registers for pointing to data memory 

(DPH, DPL) 
• Four registers that serve as two 16-bit 

counter/timers (THO, TH1, TLO, TL1) 
• One mode register for the counterYtimers 

(TMOD) 
• One control register for the- counter/timers 

(TCON) 
• One register for interrupt enable (IEC) 
• One register for interrupt priority (IPC) 
• One register for serial communications buffer 

(SBUF) 

• One register for serial communications control 
(SCON) 

• Four registers used as the four I/O ports (PO, 
P1, P2, P3) 

The MC6801 has 21 special function registers used 
for status, control, snd I/O. These include: 

• One rsgister for RAM/EROM control 
• One serial receive register 
• One serial transmit regiater 
• One register for aerial control and- status 
• One serial rate and mode register 
• One register for status and control of port 3\ 
• One register for status and control of the 

timer -
• Two registers for the 16-bit timer 
• lwo'registers for 16-bit input capture used 

with timer 
• Two registsrs for 16-bit output compare used 

with timer ' 
• Four data direction registsrs associated with 

the four I/O ports 
• Four I/O ports 

280 

Ths special flKlction registers in the three chips 
seem comparable in number and function. However, 
upon clossr examination, the SFRs of the MC6801 
prove less sfficisnt than those of the Z8611. The 
MC6801 haSfivs registers associated with the I/O 
ports, whereas the Z8611'uses only three registers 
for the same funct ions. The MC6801 uses four 
registers to perform the serisl communication 
funct ion, whereas the Z8611 uses only one- register 
and part of another. 

The 8051 uses two registere for the accumulators; , 
the Z8611 is not limited by this restri~tion. The 
8051 also uses two registers for the serial com­
munication interface, whereas the Z8611 accom­
plishes the same job with one register. Anot_her 
two registers in the 8051 are used for data 
pointers; these are not necessary in the Z8611 
since any register can be used as an address 
pointer. 

The Z8611 uses registers more efficiently than 
_either the MC6801 or the 8051. The registera saved 
by this optimal design are used to perform the 
functions needed for enhanced interrupt handling 
and for register pointing with short addresses. 
The Z8611 also supplies the extra register re­
qui red for the external stack. These features are 
not available on the 8051 or the MC6801. 

External Me.ory. All three chips can access 
external memory. The Z8611 and, the 8051 can gen­
erate signals used for selecting either program or 
data memory. The Data Memory strobe (the signal 
used for selecting data or program memory) gives 
the Z8611 access to 120K bytes of external memory 
(60K bytes in both program and data memory). The 
8051 can use 124K bytes of external memory (64K 
bytes of external data memory and 60K bytes of 
external program memory). The MC6801 can access 
only 62K bytes of external memory and does not 
distinguish between program and data memory. Thus, 
the Z8611 and the 8051 are clearly able to access 
more external memory than the MC6801. -

On-Chip Peripheral Functions 

'In addition to the CPU and memory spaces, all 
chips provide an interrupt system and extensive' 
I/O facilities including I/O pins, parallel I/O 
ports, a bidirectional addres,s/ data bus, and a 
serial port for I/O expansion. ' 

Interrupts. The Z8611 acknowledges interrupts 
from eight sources, four are external from pins 
IRQO-IRQ3, and four are internal from serial-in, 
serisl-out, and the two counter/timers. All 
interrupts are maskable, and a wide variety of 
priorities are realized with the Interrupt Mask 
Register and the Interrupt Priority Registers (see 
Table 1). All Z8611 interrupts sre vectored, with 
six vectors, located in the on-chip ROM. The 
vectors are fixed locations, two bytes long, that 
contain the memory address of the service routine. 



The 8051 acknowledges interrupts from five 
sources: two external sources (from INTO and 
INT1) and three internal sources (one from each o( 
the internal counters and one from the serial I/O 
port). All interrupts can be disabled indi vidual­
ly or globally. Each of the five sources can be 
assigned one of two priorities: high or low. All 
8051 interrupts are vectored. There are five 
fixed locations in memory, each eight bytes long, 
allocated to servicing the interrupt. 

The MC6801 has one e,xternal interrupt, one non­
maskable interrupt, an internal interrupt request, 
and a software interrupt. The internal interrupts 
are caused by the serial I/O port, timer overflow, 
timer output compare, 'and timer input capture. 
The priority of each interrupt is preset and can­
not be changed. The external interrupt can be 
masked in the Condition Code register. The MC6801 
vectors the interrupts to seven fixed addresses in 
ROM where the 16-bi t address of the service 
routine is located. 

When an interrupt occurs in the 8051, only the 
Program Counter is saved; the user must save the 
flags, accumulator, and any registers that the 
interrupt service routine might affect. The 
MC6B01 saves the Program Counter, acumulators, 
Index register, and the PSW; the user must save 
all registers that the interrupt service routine 
might affect.' The ZB611 saves the Program Counter 
and the, Flags register. To save the'16 working 
registers, only the Register Pointer register need 
be pushed onto the stack and another set of work­
ing registers ia used for the service routine. 
For more detail on working registers and interrupt 
context switching, see the ZB Technical Manual 
(03-3047-02). 

With regard to interrupts, the ZB611 is clearly 
superior. The ZB611 requires only one command to 
save all the working registers, which greatly 
increases the efficiency of context switching. 

I/O Facilities. The ZB611 has 32 lines dedicated 
to I/O functions. These lines are grouped into 
four ports with eight lines per port. The ports 
can be configured individually under software 
cont~ol to provide input, output, multiplexed 
address/data lines, timing, and status. Input and 
output can be serial or parallel, with or without 
handshake. One port can be configured for serial 
transmission and four ports can be ,configured for 
parallel transmission. With parallel transmis­
sion, ports 0, 1, and 2 can transmit data with the 
handshake provided by port 3. 

The B051 also hss 32 I/O lines grouped together 
into four ports of eight lines each. The ports can 
be configured under program control for parallel 
or serial I/O. The ports can also be configured 
for multiplexed address/data lines, timing, and 
status. Handshake is provided by user software. 

The MC6B01 has 29 lines for I/O (three 8-bit ports' 
and one 5-bit port). One port has two lines for 

handshake. The ports provide all the signals 
needed to control input and output either serially 
or in parallel, with or without mu'ltiplexed 
address/data lines. They can be used to interface 
with external memory. 

The main differences in, I/O f.acilities are the 
number of 8-bit ports and the hardware handshake. 
The ZB611 and the B051 have four 8-bit ports, 
whereas the MC6B01 has three B-bit ports and an 
additional 5-bit port. The ZB611 has hardware 
handshake on three ports, the MC6B01 has hardware 
handshake on only one port, and the B051 has no 
hardware handshake. 

Counter/timers. The ZB611 has two B-bit counters, 
and two 6-bit programmable prescalers. One pre­
scaler can be driven internally or externally; the 
other pres caler is driven internally only. Both 
timers can interrupt the CPU when counting is 
,completed. The counters can operate in one of two 
modes: they can count down until interrupted, or 
they can count down, reload the initial, value, and 
start counting down again (continuously). The 
countars for the Z8611 can be used for measuring 
time intervals and pulse widths, generating vari­
able pulse widths, counting events, or generating 
periodic interrupts. 

The B051 has two 16-bit counter/timers for measur­
ing time intervals and pulse widths, generating 
pulse widths, counting events, and generating 
periodic interrupts. The counter/timers have 
several modes of operation. They can' be used as 
B-bit counters or timers with two 5-bit program­
mable prescalers. They, can also be used as 16-bit 
counter/timers. Finally, they can be set as 8-bit 
modulo-n counters with the reload value held in 
the high byte of the 16-bit register. An interrupt 
is generated when the counter/timer has completed 
counting. 

The MC6B01 has one 16-bit counter which can be 
used for pulse-width measurement and generation. 
The counter/timer actually consists of three 
16-bit registers and an 8-bit control/status reg­
iste'r. The timer has an input, capture register, 
an output compare register, and a frse-running 
counter. All three 16-bit registers can generate 
interrupts. 

Serial Communications Interface. The ZB611 has a 
programmable serial communication interface. The 
chip contains a UART for full-duplex, asynchron­
ous, serial receiver/ transmitter operation. The 
bit rate is controlled by counter/timer 0 and has 
a maximum bit rate of 93.500 b/s. An interrupt is 
generated when an assembled character is transfer­
rE1d to the receive buffer. The transmitted 
character generates a separate interrupt., The 
receive register is double-buffered. A hardware 

'parity generator and detector are optional. 

The B051 handles s~rial I/O using one of its 
parallel' ports. The B051 bit rate is controlled 

281 



by counter/timer 1 and has a maximum bit rate of 
187,500 b/s. The 8051 generates one interrupt for 
both transmission and lJeceipt. The receive reg­
ister is double-buffered. 

The MC6801 contains a full-duplex, asynchronous, 
serial communication interface. The bit rate is 
controlled by a rate register and by the MCU's 
clock or sri external clock. The maximum bit rate 
is 62,500 b/s. Both tha transmit and the receive 
registars are double-~uffered. Tha MC6801 gener­
atea only one interrupt for both transmit and 
receive operations. ,No hardware parity generation 
or detecti.;m is available, although it does have 
sutomatie detection of framing arrors and overrun 
conditions. 

,The 8051 and the MC6801 generate only one inter­
rupt for both transmit and receive, whereas the 
28611 haa a separate interrupt for each. The 
ability to generate aeparate intarrupts great ly 
anhances the usa of serial communications, since 
separate service routines are often required for 
transmitting and recaiving. 

Other differences between the 2861" MC6801, and 
the 8051 occur in the har!lware parity 'detector, 
the double-buffering of registars, framing error 
detectors and overrun conditions. The 8051 has a ' 
faster data rate than either the Z8611 or ,the 
MC6801. The MC6801 has the advantage of s hard­
ware framing error detector and automaticdetec­
tion of overrun conditions. The MC6801 also has 
both its transmit and raceive registers 
doub~e-buffered. The 28611 has a hardware parity 
detector. for detection o'f framing errors and 
overrun conditions, a aimple, low-overhead soft~ 
ware check is available that uses only two 
instructions. Sae Z8600 Software framing Error 
Detection Application' Brief (document '617.,1881-
0004). 

INSTRUCTION ARCHITECTURE 

The architectura of the Z8611 is designed specif­
ically for microcomputer applications. This fact 
is msnifest in the instruction composition. The 
arduous task of programming the MC6801 and the 
8051 starkly contrasts that of programming the 
Z861'. 

, Addressing Modes 

The Z8611 and the 8051 both hava six addrassing 
modes: Register, Indirect Register, Indexed, 
Direct, Relativa, and Immediate. , The MC6801 hea 
five ,addreesing modes: Accumulat6r, Indaxed, 
Direct, Relative, and Immediate. A quick compar­
ison of these addressing modes reveals the versa­
tility of the 28611 and the 8051. The addressing 
mOdes of ths MC6801 have several reetrictione, as 
shown in'Tabla 1., While the 8051 has all the 
addressing modes of the Z86", its use of them is 
restricted. The Z8611 allows many more combine-

282 

tions of addressing modes per instruction, 'because 
any of ita registara can be uSl;!d as an accumuia­
tor. for examp~e, the-instructions to clear, 
complement, rotata, and swap nibbles' are all 
accumulator orientad in the 8051 and operate on 
the accumulator only. These same commands in t!1a 
Z8611 can use any register and acc!!ss it either 
directly, with register addressing, or with in­
direct register addressing. 

Indexed Addreeeing. All three chips differ in 
their handling of indexing.' The Z8611 can use any 
register fpr indexing. The 8051 can use only tha 
accumulator as an Index regis tar in conjunction 
with the data pointer or tha Program Counter. The 
MC6801 has one 16-bit Index register. The address 

, 'located in 'the second byte of an instruction is 
added to the lower byte of the Index register. 
The carry is added to the upper byte for the com­
plete address. The MC6801 requires the index 
value to be an immediate value. 

The MC6801 has only one 16-bit Index register and 
an immediate 8-bit value from the second byte of 
the instruction. Hence, the Indexed mode of the 
MC6801 is much more restrictive than that of the 
Z861'. The 8051 must use the accumulator as its 
only Index register, loading the accumulator with 
the register address each tim,e a reference fa 
made. Then, using indexing, the data is moved 
into the accumulator, eradicating the previous 
index. This forces a stream of data through the 
accumulat,or and requirea a 'reload of tha indl!x 
before acceas can ba made again. The Z861,1 is 
clearly superior to both the MC6801 and the 8051 
in the flexibility of its indexed addressing mode. 

Short and Lang Addressing. Short addreSSing helps 
to optimiza memory space and execution speed. In 
sampls applications of ahort regiater addressing, 
an eight percant decrease in the ,number of bytes 
used was recorded. 

All three chips have short addressing modes, but 
the 28611 has short addressing for both external 
memory and registsrmemory. The 8051 has short 
addreesing for the lowest 32 registers 'only. 

The 28611 has two' di fferent modea for regiater 
,addreesing. The full-byte address can be used to 
pro'vide the address, or a 4-bit addresa can be 
used with the Register ~ointer. To use the work­
ing registera, the Regiater Pointer ill set for a' 
particular bank of 16 registers, and then one of 
ths 16 ragisters is addressed with four bits. 
Another feature for addreasing external memory is 
th!! uae of 'a 12-bit, address in place of a full 
16-bit address. To use the 12-bit address', one 
port sup\llies the eight multiplexed ad!lrass/data 
lines and another port s~pplies four bits for the 
address. The remaining four bits of the aecond 
port can be uaed for ,I/O. Thia feature allows 
access to a maximum of 10K bytes of memory. 



The 8051 uses short addresses by orgsnizing its 
lowest 32 registers into four banks. The bank 
select is located in a 2-bit field in the PSW, 
with three bits addressing the register in the 
bank. ' 

The MC6801 uses extended addressing for addressing 
external memory. With a special, nonmultiplexed 
expansion mode, 256 bytes of external memory can 
be accessed without the need for an ,external 
address latch. The MC6801 uses one 8-bit port for 
the address and another port for the data. 
Stacks 

The Z8611 snd the MC6801 provide for external 
stacks, which require a 16-bit Stack Pointer. 
Internal stacks use only an 8-bit Stack Pointer. 
The 8051 uses only a limited internal stack re­
quir ing an 8-bit Stack Pointer. Using an external 
stack saves the internal RAM registers for 
general-purpose uee. 

The stack structure of the Z8611 and the MC6801 is 
better thsn that of the 8051. In most applica­
tions, the 8051' is more flexible and easier to 
program than the MC6801. The !8611 is easier to 
use, than either the 8051 or the MC6801 because of 
its register flexibility and its numerous combina­
tions of addressing modes. The 8051 features a 
unique 4.u..n multiply and divide command. 'The 
Io1C6801 has a multiply, but it takes 10)(.s to per­
form it. 

In summary, the Z8611 has the most flexible 
addresaing modes, the most advanced indexing capa-, 
bilities, and superior space- and time-ssving 
abilities with respect to short addressing. 

DEVELOPMENT SUPPORT 

All three vendors provide development support for 
their products. This section discusses the dif­
ferent support features, including development 
chips, software, and modules. 

Chips 

Zilog offers an entire Jamily of microcomputer 
chips for product development and final product. 
The Z8611 is a single-chip microcomputer with 4K 
bytes ,of mask-programmed ROM. For development, two 
other chips are offered. The Z8612 is a 64-pin, 
development version with full interface to ex­
ternal memory. The Z8613 ie 'a prototype version 
that uses a functional, p'iggy-back, EPROM proto­
pak. The Z86H can use either a 4K EPROM (2732) 
or a 2K EPROM (2716). Zilog also offers a ROMless 
version in a 40-pin package that has all the fea­
turas of the Z8611 excapt on-board ROM (Z8681). 

Intel offers a similar line of development chips 

with its 8051 family. The 8031 has no internal 
ROM and the 8751 has 4K of internal EPROM., 

Motorola offers the MC6801, MC6803, MC6803NR, and 
MC68701. These are all similar except the MC68701 
has 2K bytes of EPROM and the MC6801 has 2K byt es 
of ROM. The MC6803 has no internal ROM and the 
MC6803NR has neither ROM nor RAM on board. 

The Z8613 ~nd the MC68701 are both available now, 
but the 8751 ie still unavailable (as of April 
1981). 

Software 

Development software includes aasemble rs, and 
conversion programs. All manufacturera offer some 
or all of these features. 

Since the MC6801 ie compatible with the 6800, 
there is no need for a new assembler. The Z8611 
and the 8051 both offer assemblers for their 
products. The Zilog PLZ/ASM assembler generates 
relocatable and absolute object code. PLZ/ASM 
also ,supports high-level control and data state­
ments, such as IF ••• THEN ••• ELSE. Intel offers an 
absolute mscroassembler, ASM51, with their 
product. They slso offer a program for converting 
8048 code to 8051 code. 

Modulee 

The Z8611 development module has two 64-pin 
development versions of the 40-pin, ROM-masked 
Z8611. Intel offers the EM-51 emulstion board, 
which'contains a modified 8051 and PROM or EPROM 
in place of memory. Motorola haa the MEX680~EVM 
evaluation board for program development. All 
three development boards are available now. 

ADDITIONAL FEATURES 

Additional features include Power Down mode, self­
testing, and family-compatibility. 

Power Down Mode 

All three microcomputers offer a Power Down mode. 
Ths Z8611 and the 8051 save all of their regis­
ters with'an auxilary power supply. The MC6801 
uses an auxiliary power supply to save only the 
first 64 bytes of its register file. 

The Z8611 uses one of the crystal input pins for 
the external power supply to power the registers 
in Power Down mode. Since the XTAL2 input must be 
used, an external clock generator ia necessary and 
ia input via XTAL1. The 8051 and the MC6801 both 
have an input reserved for this function. The 
MC6801 uses the Vcc standby pin, and the 8051 uses 
the Vpd pin. 

283 



Family Caapatibility 

Another strl!ngth of the Z8611 is its expsnsion 
bus, which is completely compatible with the Zilog 
Z-BUS TM. This means that all Z-BUS peripherals 
can be used directly with the Z8611. 

The MC6'801 is fully compatible with all MC6800 
family products. The 8051 is software compatible 
with the older 8048 series and sll others in that 
fsmily; 

BENCHMARKS 

The following benchmark tests were used in this 
report to compare the Z8611, 8051, and MC6801: 

• Generate CRC check for 16-bit word. 
• Search for a character in a block of memory. 
• Execute a computed GOTO - jump to one of eight 

locations depending on which of the eight bits 
is set. ' 

• Shift a 16-word five places to the right. 
• Move a 64-byte block of dsta from externsl 

memory to the register file. 
• Toggle a single bit on a port. 
.'Measure the' subroutine overhead time. 

These programs were selected betause of their 
importance in microcomputer applications. 'Algo­
rithms thst reflect a unique function or feature 
were excluded for the sake of comparison. Al­
though programs csn be optimized for s psrticular 
chip and for a pal,"ticular sttribute (code density 
or speed) these programs were not. 

The figures cited in this text, are taken directly 
from the vendor's documentation. Therefore, the 
cycles given below for the 14::6801 and the 8051 are 
in machine cycles and, the Z8611 figures are given' 
in clocl~ cycles. The Z8611 clock cycles should be 
divided by six to give the instruction time in 
microsecohds. The 8051 and 14::6801 machine cycle 
is 1.M.S, and the Z8611 clock cyc Ie is .166 Jf(.s at 
12 MHz. 

Because of the lack of avsilsbility of the MC6B01 
and,the 8051, the benchmark programs listed here 
have not ,yet been run. When these products are 
readily available, the' programs, will be run and 
later ,editions of this document will reflect any 
changes in the findings. 

284 

Program Listings 

CRC Generation 

80S1 Machine 
Cycles 

MOV INOEX, #8 1 
LOOP: MOY A, DATA 1 

XRL A" HCHECK 1 
RLC A 1 
MOY A, LCHECK 1 
XRL A, LPOLY 1 
RLC A 1 
MOY LCHECK, A 1 
MOY A,' HCHECK 1 
XRL A, 'HPOLY 1 
RLC A 1 
HOY HCHECK, A 1 
CLR C 1 
HOY A, DATA 1 
RLC A 1 

'HOY DATA, A 1 
DJNZ INDEX, LOOP 2 
RET 2 
N = 3+17X8 = 139 cycles 

11112 MHz = 139.&s 
Instructions = 18 
Bytes = 31 

MC6801 Machine 

#$08 
Cycles 

LDAA 2 
LOOP: STAA COUNT 3 

LDAA HCHECK 3 
EORA DATA 3 
ROLA 2 
LOAD ,POLY 4 
EORA HCHECK 3 
EORB LCHECK 3 
ROLB 2 
ROLA 2 
STAD LCHECK 4 
ASL DATA 6 
DEC COUNT 6 
BNE LOOP 4 
RTS 5 
N = 45X8+7 = 367 cycles_ 

1114 MHz = 367"", 
Instruct ions = 15 
Bytes = 28 

l8611 Clack 
Cycles 

LO INOEX, '#8 6 
LOOP: LD R6, DATA 6 

XOR R6, HCHECK 6 
RLC R6 6 
XOR LCHECK, LPOLY 6 
RLC LCHECK 6 
XOR HCHECK, HPOLY 6 
RLC' HCHECK 6 
RCF 6' 
RLC OATA 6 
DJNZ INOEX, LOOP 12 or 
RET 14 
N = 20+66X7+64 = 546 cycles 

11112 MHz = 91 Jf(.s 
Instructions = 12 
Bytes = 22 

Bytes 
2 
2 
2 
1 
2 
2 
1 
2 
2 
2 
1 
2 
1 
2 
1 
2 
3 
1 

Bytes 
2 
2 
2 
2 
1 
2 
2 
2 
1 
1 
2 
3 
3 
2 
1 

Bytes 
2 
2 
~ 
2 
2 
2 
2 
2 
1 
2 

10 2 
1 



Character Search Through Block of 40 Bytes Shift 16-Bit Word to Right 5-Bits 

8051 Machine 8051 Machine 
Cycles Bytes Cycles Bytes 

MOV INDEX, 1141 1 2 MOV INDEX 115 1 2 
MOV DPTR, IITABLE 2 3 LOOP: CLR C 

LOOP1: DJNZ INDEX, LOOP 2 2 2 MOV A, WORD + 1 2 
SJMP OUT 2 2 RRC A 

LOOP2: MOV A, INDEX 2 MOV WORD + 1, A 2 
MOVC A, @A+DPTR 2 MOV A, WORK 2 
CJNE A, CHARAC, LOOP1 2 3 RRC 'A 1 

OUT: MOV WORD, A 2 
N = 3+39X7+4 = 2BO cycles DJNZ INDEX, LOOP 2 2 

®12 MHz = 280.l4s N = 1+9X5 = 46 Cycles 
Instruct ions = 7 ®1 2 MHz = 46418 
Bytes = 15 Instructions = 9 

Bytes = 15 

~6801 Machine 
Cycles Bytes ~6801 Machine 

LDAB 11$40 2 2 Cycles Bytes 
LDAA IICHARAC 2 2 LDX 115 6 3 
LDX IITABLE 3 3 LDAD WORK 4 2 

LOOP: CMPA $0, X 4 2 LOOP: LSRD 3 
BEQ OUT 4 2 DEX 3 
INX 3 1 BNE LOOP 4 2 
DECB 2 STAD WORD 4 2 
BNE LOOP 4 2 N = 10X5+11 = 61 Cycles 

OUT: - ®II MHz = 61 Me 

Instructions = 6 
Bytes = 11 

N = 7+40X17 = 687 cycles 
®II MHz = 687 ..... s 
Instructions = 8 Z8611 Clock 
Bytes = 15 Cycles Bytes 

LD INDEX, 115 6 2 
Z8611 Clock LOOP: CCF 6 

Cycles Bytes RRC WORD + 1 6 2 
LD INDEX, 1140 6 2 RRC WORD 6 2 

LOOP: LD DATA, TABLE (INDEX) 10 3 DJNZ INDEX, LOOP 12 or 10 2 
CP DATA, CHARAC 6 2 N = 6+4X30+28 = 154 Cycles 
JR Z, OUT 12 or 10 2 ®12 MHz = 26.1(s 
DJNZ INDEX, LOOP 12 or 3D 2 Instructions = 5 

OUT: - Bytes = 9 

N = 6+38X40 = 1524 cycles 
@12 MHz = 254""s 
Instructions = 5 
Bytes = 11 

285 



Computed GOlO 

8051 Machine 
Cycles 

MOV INDEX, #40 1 
LOOP: MOV A, DATA 

RLC A 
JC OUT 2 

. MOV A, INDEX 1 
ADD A, #3 
MOV INDEX, A 
SJMP LOOP 2 

OUT: MOV DPTR, #TABLE 2 
MOV A, INDEX 
JMP ®A+DPTR 2 

TABLE: LCALL ADDR1 

MC6801 

LOOP: 

OUT: 

ZB611 

LOOP: 

286 

LCALL ADDRN 
N = 1+9X7+11 = 75 Cycles 

®12 MHz = 75JJ-.3 
Instructions = 12 
Bytes = 21 

2 

Machine 
Cycles 

LDAB #2 2 
LDX TABLE 3 
RORA 2 
BeS OUT 4 
ABX 3 
JMP LOOP 3 
LDX 0, X 5 
JMP 0, X 4 
N = 8X12+14 = 110 Cycles 

®4 MHz = 110..u..s 
Instruct ions = 8 
Bytes = 17 

Clock 
Cycles 

CLR INDEX 6 
INC INDEX 6 
RLC DATA 6 
JR NC, LOOP 12 or 
LD ADDR,TABLE 1, (INDEX) 10 
LD ADDR+1,TABLE 2, (INDEX) 10 
JP ®ADDR 12 
N = 6+24X7+54 = 228 Cycles 

®12 MHz = 3Bl4s 
Instructions = 7 
Bytes = 15 

Move 64-Byte Block 

8051 Machine 
Bytes Cycles Bytes 

2 MOV INDEX, #COUNT 1 2 
2 LOOP: MOV DPTR, #ADDR1 2 3 

MOVX A, OOPTR 2 
2 INC #ADDR1 1 
1 MOV ®ADDR2,A 
2 INC ADDR2 

DJNZ INDEX, LDOP 2 
2 N = 1+9X64 = 577 Cycles 
3 ®12 MHz = 577~s 

Instruct ions = 7 
Bytes = 10 

3 

MC6801 Machine 
Cycles Bytes 

LDAB ffCOUNT Z 2 
LOOP: LDX ADDR1 4 3 

LDAA 0, X 4 2 
INX 3 
STAA ADDR1 4 2 
LDX ADDR2 4 3 
STAA 0, X 4 2 

Bytes INX 3 1 
2 STX ADDRZ 4 2 
3 DECB 2 1 
1 BNE LOOP 4 2 
2 N = 64X36+Z = 2306 Cycles 

®4 MHz =23064s 
2 Instruct ions = 11 
3 Bytes = 21 
3 

ZB611 Clock 
Cycles Bytes 

LD INDEX, ffCOUNT 6 2 
LOOP: LDEI ®ADDR2, ®ADDR1 1B 2 

DJNZ INDEX, LOOP 12 or 10 2 
N = 6+63X30+2B = 1924 Cycles 

Bytes ®12 MHz = 321~s 
2 Instructions = 3 
1 Bytes = 6 
2 

10 2 
3 
3 

2 



8051 

MC6801 

Z8611 

Toggle a Port Bit 

XRL PO, #VV 
N = 2 Cycles 

®12 MHz = 2AS 
Instructions 
Bytes = 3 

LDAA PORTO 
EORA #VV 
STAA PORTO 
N = 8 Cycles 

®4 MHz = 8AS 
Instruct ions 
Bytes = 6 

XOR PORTO, flY V 
N = 10 Cycles 

3 

®12 MHz = 1.7 48 

Instructions = 1 
Byte = 2 

Machine 
Cycles 

2 

Machine 
Cycles 

3 
2 
3 

Clock 
Cycles 

10 

Bytes 
3 

Bytes 
2 

2 
2 

Bytes 
2 

Subroutine Call/Return Overhead 

8051 

LCALL SUBR 

SUBR: -

MC6801 

REf 
N = 4 Cycles 

®12 MHz = 4&s 
Instructions 2 
Bytes = 4 

JSR SUBR 

SUBR: -

Z8611 

RTS 
N = 14 Cycles 

®4 MHz = 144/.s 
Ins truct ions 2 
Bytes = 3 

CALL ®SUBR 

SUBR: -

Machine 
Cycles 

2 

2 

Machine 
Cycles 

9 

5 

Clock 
Cycles 

20 

RET 14 
N 34 Cycles 

Results 

®12 MHz = 5.7.4ts 
Instructions = 2 
Bytes = 3 

Bytes 
3 

Bytes 
2 

Bytes 
2 

Table 2 summarizes the results of this comparison. 
The relative performance column lists the speeds 
of the MC6B01 and 8051 divided by the ZB611 speeds 
(12 MHz). The overall performance averages the 
separate relative performances. The higher the 
number, the faster the Z8611 as compared to the 
MC6B01 and the B051. 

The relative performance figures show that the 
ZB611 runs 50 percent faster than the B051 and 250 
pe r cent faster than the MC6B01. Although speed is 
not necessarily the most important criterion for 
selecting a particular product, the Z8611 proves 
to be an undeniably superior product when speed is 
added to the advantages of programming ease, code 
density, and flexibility. 

287 



Table 2. Benchmark Program Results 

HC6801 8051 Z8 Z8 
Benchmark (4 MHz) (12 MHz) (8 MHz) (12 MHz) Relative Performance 
Test cycles time . cycles time cycles time cycles time HC6801 8051 

CRC 
Generation 367 367 139 139 546 137 546 91 4;03 1.53 

, 
Character 
Search 687 687 280 280 1524 382 1524 254 2.70 1.10 

Computed 
GOTO 110 110 75 75 228 57 228 38 2.89 1.97 

Shift Right 
5 Bits 61 61 46 46 154 38 154 26 2.35 1.78 

Move 
64-byte 
block 2306 2306 577 577 1924 481 1924 321 7.18 1.80 

Subroutine 
Overhead 14 14 4 4 34 8.5 34 5.7 2.46 0.70 

Toggle a 
Port Bit 8 8 2 2 10 2.5 10 1.7 4.71 1.18 

Overall 
Performance 3.76 1.44 

- -

Note: All times are given in microseconds. 

Table 3. Byte/Instruction/Time Comparison 

Bytes Instructions Time (microseconds) 
MC6801 8051 Z8611 1«:6801 8051 Z8611 1«:6801 8051 Z8611 

---
CRC Generation 28 31 22 15 18 12 367 139 91 

Character Search 15 15 11 8 7 5 687 280 254 

Shift Right 5 Bits, 11 15 9 6 9 5 61 46 26 

Computed GO TO 17 21 15 8 12 7 110 75 38 

Move 810ck 21 10 6 11 7 3 2306 ' 577 321 

Toggle Port Bit 6 3 2 3 1 1 8 2 1.7 

Subroutine Call 3 4 3 2 2 2 14 4 5.7 

288 



SUMMARY 

The hardware of the three chips compared is very 
similar. The ZB611, however, has several advan­
tages, the most important of which is its inter­
rupt structure. It is more advanced than the 
interrupt structures of both the B051 and the 
MC6B01. Other advantages of the ZB611 over either 
the MC6B01 or the B051 include I/O facilities .with 
parity detection and hardware handshake and a 
larger amount of internal ROM (the MC6B01 has only 
2K bytes). 

Substantial differences are apparent with regard 
to software architecture. The addressing modes of 

the ZB611 are more flexible than those of either 
the MC6B01 or the B051. The ZB611 can use byte­
saving addressing with working registers, and it 
has short external addresses for saving I/O lines. 
It can also provide for an external stack. The 
register architecture (as opposed to the accumu­
lator architecture) of the ZB~11 saves execution 
time and enhances programming speed by reducing 
the byte count. 

The ZB611 microcomputer stands out as the most 
powerful chip of the three, and concurrently, it 
is the easiest to program and configure. 

289 



290 



~ZiIill 

The Interrupt Request Register (IRQ, R250) 
stores requests from the six possible Inter­
rupt sources (IRQO_IRQ5) In the Z8600 series 
microcomputer. In addition to other func­
tions, a hardware reset to the Z8600 disables 
the IRQ register and resets Its request bits. 
Before the IRQ wi II register requests, It 
must first be enabled by executing an Enable 
Interrupts (EI) Instruction. Setting the 
Enable Interrupt bit In the Interrupt Mask 
Register (IMR, R251) Is not an equivalent 
operation for this purpose; to enable the 
IRQ, an EI Instruction Is required. The 
function of this EI Instruction Is distinct 
from Its task of globel Iy enabling the Inter­
rupt system. Even In a pol led system where 
IRQ bits are tested In software, it Is 
necessary to execute the EI. 

EI INSTRUCTION 

R 

RESET 

Z86XX Interrupt 
Request Register 

Application Brief 

October 1980 

The designer must ensure that unexpected and 
undesirable Interrupt requests will not occur 
after the EI is executed. One method of 
doing this is to reset 21.11 interrupt enable 
bits in the IMR for levels that are possible 
interrupt sources; the EI Instruction may 
then be safely executed. Once EI is exe­
cuted, the program may immediately execute a 
Disable Interrupts (01) instruction. The 
code necessary to perform these operations is 
as follows: 

RESET: LD IMR, #%XX ISET INTERRUPT MASK! 
EI IENABLE GLOBAL INTER­

RUPT, ENABLE IRQ! 

where XX has a ~ in 'each bit position cor­
responding to the interrupt level to be 
disabled. If al I IMR bits are to be reset, a 
CLR IMR instruction may be used. 

INTERRUPT REQUEST REG. 
(IRQ, R250) 

Z8600 

F1gure 1 - IRQ Reset Funct10nal Logic Diagram 

291 



Z8 Family Software 
Framing Error ,-Detection 

~ZiIm Application Brief 

The Zllog Z8600 UART mlcrocanputer Is a hlgh­
performance. single-chip device that Incor­
porates on-chip ROM. R~. parallel 1/0. 
serla I 1/0. and a baud rate generator. The 
UART is capable of full-duplex. asynchronous 
serial communication at nine standard 
software-selectable baud rates fran 110 to 
19.2K baud; other nonstandard rates can also 
be obtained under software control. Odd 
par i ty generat ion and checkl ng can a I so be 
selected. 

I I L~ I 2 

START 

3 

October 1980 

Three possible error conditions can occur 
during reception of serial data: framing 
error. parity error. and overrun error. A 
framing error condition occurs when a stop 
bit is not received at the proper, time 
(Figure 1). This can result fran noise in 
the data channel. causing erroneous detection 
of the prev lous start bit or I ack of detec­
tion of a properly transmitted stop bit. The 
Z8600 UART does not Incorporate hardware 
framing error detection but,does facilitate a 
simple. low-overhead software detection 
method. 

I M~B I 'I 
4 5 6 I I 

L_~ 

PARllY STOP 
BIT DATA BITS (8) (IF BIT 

ENABLED) 

Fig. 1 - Asynchronous Data FOI"IIIIIt 

In the middle of the stop bit time. the Z8600 
UART automatically posts a serial input 
I nterrupt request on IRQ3. The ser'ial Input 
can also be tested, by reading Port 3 bit 0 
(P30) as shown in Figure 2. Thus. within 
the Interrupt service routine or polling 
loop. it I,s only necessary to test P30 in 
order to identify a framing error. If P30 is 
Low when IRQ3 goes High. a framing error con-

ditlon exists and the following code Is used' 
to test this: 

1M P3. 1%01 
JR Z. FERR 

I TEST FOR P30 = 1 I 
I ELSE FRAMING ERROR I 

The execution time of this framing error test 
Is on I y 5.5 "(s at 8 MHz. In the worst case 
(19.2K baud). this would result in 1% over­
head. Only five program bytes are- required. 

SERiAL _ 
DATA IN P30 

Z8600 

Fig. 2 - Z8600 Serial Input ConnectIon 

Z8 Is a trademark of Zilog. Inc.'. 

292 



CONCLUSION While the Z8600 UART does not Incorporate 
hardware framing error detection, this 
feature can be Implemented In software with a 

Reprinted with permission of Synertek, Inc. 

maximum penalty of 1% at 19.2K baud using no 
additional hardware and only five bytes of 
program memory. 

293 



294 



~ ZiIm Technical Manual 

November 1984 

Z8® Microcomputer 

295 



Table Of Contents 

Chapter 1. Z8 family Overview I 
1.1 Introduction 301 
1.2 Features 301 

1.2.1 Instruction Set 301 
1.2.2 Architecture • 301 

1.3 Microcomputers (ZB601/11) 302 

1.4 Development Device (ZB612) 302 

1.5 Protopack Emulator (Z8603/13) 304 

1.6 BASIC/Debug Interpreter (ZB671) 304 

1.7 ROM less Microcomputer (ZB681/B2) 304 

1.B . Applications 304 

Chapter 2. Architectural Overview 2 
2.1 Introduction 306 
2.2 Address Spaces 306 
2.3 Register File • 307 

·2.3.1 Register Pointer 307 
2.3.2 Instruction Set 307 
2.3.3 Data Types 307 
2.3.4 Addressing Modes 307 

2.4 I/o Operations 307 

2.4.1 Timers. 307 
2.4.2 Interrupts 307 

2.5 Oscillator 308 
2.6 Protopack • 308 

Chapter 3. Address Spaces 3 
3.1 Introduction 309 
3.2 CPU Register File 309 

3.2.1 Error Conditions 310 

3.3 CPU Control and Peripheral R~gisters 311 
3.4 . CPU Program Memory 311 
3.5 CPU Data Memory 313 
3.6 CPU Stacks 313 

296 



Table Of Contenls (Continued) 

Chapter 4. Address Modes 

4.1 Introduction •••••••••• 
4.2 Register Addressing (R) • • • • • 
4.3 Indirect Register Addressing (IR) 
4.4 Indexed Addressing (X) 
4.5 Oirect Addressing (DA) 
4.6 Relative Addressing (RA) 
4.7 Immediate Data Addressing (1M) 

Chapter 5. Instruction Set 

5.1 Functional Summary,. 
,5.2 Processor Flags. 

5.2.1 Carry Flag (C) 
5.2.2 Zero Flag (Z) 
5.2.3 Sign Flag (S) 
5.2.4 Overflow Flag (V) 
5.2.5 Decimal-Adjust Flag (D) 
5.2.6 Half-Carry Flag (H) 

'5'.3 Condition Codes •••••• 
5.4 Notation and Binary Encoding 

'5.4.'1 Assembly Language Syntax 
5.4.2 Condition Codes and'Flag Settings 

5.5 Instruction Summary • • • • • • • • • 
5.6 Instruction Descriptions and Formats 

Chapter 6. Extemal Interface (Z8601. Z8611) 

6.1 Introduction ••••• , •••• 
'6.2 Pin Description •••••••• 
6.3 Configuring for External Memory 
6.4 External Stacks 
6.5 Data Memory • 
6.6 Bus Operation • 

6.6.1 Address Strobe (AS' 
'6.6.2 Data Strobe (OS) •• 

6.6.3 External Memory Operations 

6.7 Shared Bus •••• 
6.8 Extended Bus Timing 
6.9 Instructioh Timing 
6.10 Reset Conditions • 

4 
315 
315 
316 
316 
317 
317 
318 

5 
319 
320 

320 
320 
320 
321 
321 
321 

321 
321 

322 
322 

324 
325 

6 
369 
369 
370 
371 
371 
371 

• 372 
• 372 
·372 

.373 
• 374 
·375 
·378 

297 



Chapter 7. External Interface (Z8681, Z8682) 

7.1 Introduction 
7.2 Pin Descriptions 
7.3 Configuring Port 0 

7.3.1 Z8681 Initialization 
7.3.2 Z8682 Initialization 
7.3.3 Read/Write Operations 

7.4 External Stacks 
7.5 'Data Memory. 
7.6 Bus Operation • 

7.6.1 Address Strobe (AS) 
7.6.2 Data Strobe (OS) 

7.7 Extended Bus Timing. 
7.8 Instruction Timing 
7.9 Z8681 Reset Conditions 
7.10 Z8682 Reset Conditions 

Chapter 8. Reset IWId Clock 

8.1 Reset. • 
8.2 Clock •.• 
8.3 Test Mode. 

8.3.1 
8.3.2 

Interrupt Testing 
ROMless Operation 

Chapter 9. I/O Ports 

9.1 

9.2 

9.3 

298 

Introduction 

9.1.1 Mode Registers 
9.1.2 Input and Output Registers 

Port 0 

9.2.1 
9.2.2 

Port 1 

Read/Write Operations 
Handshake Operation 

9.3.1 Read/Write Operations 
9; 3. 2 Handshake Operation 

379 
379 
380 

380 
381 
382 

382 
382 
383 

383 
383 

383 . 
384 
~84 
384 

385 
386 
386 

386 
386 

388 

388 
388 

388 

390 
390 

391 

391 
391 

7 

8 

9 



Table Of Contents (Continued) 

9.4 Port 2 

9.4.1 Read/Write Operations 
9.4.2 Handshake Operation 

9.5 Port 3 

9.5.1 Read/Write Operations 
9.5.2 Special Functions 

9.6 Port Handshake 
9.7 I/O Port Reset Conditions 

Chapter 10. Interrupts 

10.1 Introduction 
10.2 Interrupt Sources 

10.2.1 External Interrupt Sources 
10.2~2 Internal Interrupt Sources 

'. 

10.3 Interrupt Request Register Logic and Timing 
10.4 Interrupt Initialization ••••• 

10.4.1 
10.4.2 
10.4.3 

Interrupt Priority Register Initialization 
Interrupt Mask Register Initialization 
Interrupt Request Register Initialization 

10.5 IRQ Software Interrupt Generation 
10.6 Vectored Processing • • • • • • • 

10.6.1 
10.6.2 

Vectored Interrupt Cycle Timing 
Nesting of Vectored Interrupts 

10.7 Polled Processing 

10.B Reset Conditions 

392 9 
392 
392 

393 

393 
394 

395 
396 

10 
399 
399 

399 
401 

401 
401 

402 
403 
403 

403 
404 

404 
404 

404 

405 

299 



cilaPter 11. Counter!TiErs 

11.1 Introduction 
11.2 Prescalers and Counter/Timers 
11.3 Counter/Timer Operation • 

11.3.'1 'Load and Enable Count Bits 
11.3.2 Prescaler Operations 

11.4 TOUT Modes. 
11.5 TIN Modes. 

11.5.1 External CIQck Input Mode 
11.5.2 Ga,ted Internal Clock Mode 
11.5.3 Triggered Input Mode 
11.5.4 Retriggerable Input'Mode 

11.6 Cascading Counter/Timers. 
11.7 Reset Conditions 

Chapter 12. Serial I/O 

12.1 Introduction 
12.2 Bit'Rate Generation 
12.3 Receiver Operation 

12.3.1 Receiver Shift Register 
12.3.2 Overwrites 
12.3.3 Framing Errors 
12.3.4 Parity 

12.4 Transmitter Operation 

12.4.1 Overwrites 
'12.4.2 Parity • 

12.5 Reset Conditions 

Appendix A. Pin Descriptions and Functions 

A.1 Developm,ent Device (Z8612) 
A.2 Protopack Emulator (Z8603/13) 

Appendix 8. Control Registers 

Appendix C. IIpcode Map •••• 

300 

, 

. 

. ,. 

406 
407 
408 

408 
408 

409 
410 

411 
411, 
413 
413 

413 
413 

415 
415 
417 

417 
418 
418 
418 

418 

419 
419 

420 

422 
422 

427 

430 

II 

12 



1.1 INTROOUCTII»I 

This chspter provides ~n overview of the architec­
ture and features of the Z8 Family of products, 
with particular emphasis on those features that 
,set this microcomputer apart from earlier micro­
computers. Detailed information about the archi­
tecture, addres~, spaces and modes, instruction 
set, external interfsce, timing, input/output 
operations, snd interrupts can be found in subse­
quent chapters of this manual. 

1.2 FEATURES 

The Z8 microcomputer introduces a new level of 
sophistication to single-chip architecture. Com­
pared to earlier single-chip microcomputers, the 
Z8 offers faster execution; more efficient use of­
memory; more sophisticated interrupt, input/output 
and bit-manipulation capabilities; and easier sys­
tem exp~nsion. 

Z8 products offer the standard on-chip functions 
of earlier microcomputers, including: 

• 2K or 4K bytes of ROM 
• 144 8-bit registers 
• 32 lines of programmable I/O 
• Clock oscillator 
• Arithmetic logic unit 
• Parallel and serial ports 

Beyond these basic features, the Z8 Family offers 
such advanced characteristics as: 

• Two counter/timers 
• Six vectored interrupts 
• UART for serial I/O communication 
• Stack functions 
• Power-down option 
• TTL compatibility 
• Optimizedoinstruction set 
• BASIC/Debug interpreter 

All members of the Z8 Famtly are variations of the 
basic Z8 microcomputer, the Z8601/11. The Z8 
Family includes a development device (Z8612), a 
ROMless device (Z8681/82), BASIC/Debug Interpreter 
(Z8671), a Protopack emulator (Z8603/13), as well 

Chapter 1 
18 Family Overview 

as the basic microcomputer. These products offer 
all the parts and development tools necessary for 
systems development (both hardwsre and software 
prototyping), field trials (pre-production) and 
full- production. For prototyping and preproduc­
tion, or where code flexibility is important, the 
ZB603/13 Protopack, 2K and 4K EPROM-based parts 
are the most appropriate. The ROM-based Z8601!11 
microcomputers are used in high-volume production 
applications after the software has been per­
fected. For ROM less applications, two versions of 
the Z8 microcomputer are available: the 40-pin 
Z8681/82 and the 64-pin Z8612. In addition, there 
is a military version of the Z8611 4K ROM device, 
available in both 40-pin ceramic and 44-pin lead­
less chip carrier packages. 

The ZB671 MCU is a complete microcomputer prepro­
grammed with a BASIC/Debug Interpreter. This 
device, operating with both external ROM or RAM 
and on-chip memory registers, is suitable for most 
industrial control applications, or whenever fast 
and efficient program development is necessary. 

The Z8 microcompute~ is well-suited for dedicated 
control -applications in real-tim~ mode. Since 
speed is a key consideration in such applications, 
the Z8 Family is available in both 8 and 12 MHz 
versions, supported by either of two development 
modules: the Development Module (OM) or the 
Z-SCAN 8. The Z-SCAN module provides (ICE) in­
circuit emulation capability. 

1.2.1 Instruction Set 

The Z8 instruction set, consisting of 43 basic 
instructions, is optimized for high-code density 
and reduced execution time. The 47 instruction 
types and six addressing modes--together with the 
ability to operate on bits, 4-bit words, BCD 
digits, 8-bit bytes, and 16-bit words--make for a 
code-efficient, flexible microcomputer. 

1.2.2 Architecture 

Z8 architecture offers more flexibility and p'er­
formance than previous A/B accumulator designs. 
All 12B general-purpose registers,' including 

3Q1 



dedicated I/O port registers, can be used as 
accumulators. This eliminates the bottleneck com­
monly ,found in A/B devices, particularly in high­
speed applications such as disk drives, printers 
and terminals. In addition, the registers can be 
used as address pOinters for indirect addressing, 
as index registers or for implementing an on-chip 
stack. Speed of execution and smooth programming 
are supported by 11 "working regist.er area"--short 
4-bit register addresses. 

The Z8 can be a stand-alone microcomputer with 
either 2K' bytes! (Z8601). or ilK bytes (Z8611) of 
internal ROM, a traditional microprocassor that 
can manage up to 124K by tea (Z8601) or 120K bytes 
(Z8611) of external memory, or a parallel proces­
sing element in a 'system with other processors and 
peripheral controllers linked by a Z-BUS. In all 
configurations, a large number of, device pins are 
available for I/O. Key features of the' Z8601/11 
microcomputer include: 

• ROM ZIC-byte (Z8601) or U-byte (Z8611) Progr_ 
MIIIIory. This ROM is mask-programmed during 
production with user..;provid~d programs. 

• 144-byte RAM Rag1ater rile. The internal 
register organization of the Z8 microcomputer 
centers around a 144-byte file composed of 124 
general-purpose registers, 16 status and 
control registers, and 4 I/O pOrt registers. 
Either an 8-bit or a 4-bit address mode can be 
used to access the register file. When the 
4-bit mode is used, the register file, is 
divided into 9 groups of 16 wrking registers 
each. A Register Pointer uses short-format 
instructions to quickly access anyone of the 
nine groups. Use of the 4-bit addreSSing mode 
decreases access time and improves throughput. 

s Progr-mle Cod1ter/TUers. Two 8-bit coun­
ter/timer circuits are provided, each driven by 
its own prescaler. Both the counter/timers and 
their prescaler circuits are programmable. 

• UART (~iYersal llaynchronoue Receiver' Tr.u.it­
tar). . A full-duplex' UART is provided' to 
control serial data communications.' One of the 
on-chip counter/timer circuits provides the 
required bit rate input' to enable the UART to 
operste at a maximum data transfer rate of 
,93.7SK bits per second at a crystal ,frequency 
of 12 MHz. 

302 

Table 1-1 lists' the, basic characteristics of th'e 
members of the ZB Family. ,As shown, the major 
differences between the products are in their 
physical packsging and the msnner in which address 
sp,ace is hsndled. An overall description for each 
ZB type is given in the following sections. 
Variations within each group are specified where 
applicable. 

• I/O lines/Ports. The ZB lllicrocomputer provides 
32 input/output lines, arranged as 4 8-bit 
ports. Under software control, the I/O ports 
(Ports 0, 1, 2, 3) can be programmed as input, 
output, or additional address lines. The I/o 
ports can also be programmed to provide timing, 
status signals, interrupt inputs and serial or 
parallel I/O (with or without handshake). 

• Vectored Interrupts. The ZB MPU permits the 
use of six different interrupts from any of 
eight different sources. four Port J, lines 
(PJO~33)' serial input pin (PJo), the serial 
output pin (PJ7) , and both coimter/timer 
circuits may be interrupt sources. All 
interrupts are vectored and are both maskable 
and prioritized. 

• Oacillator Circuit. An oscillator circuit that 
can be driven from an external clock or crystal 
is provided on the Z8 microcomputer. The 
oscillator will accept an input frequency of up 
to 12 MHz on the XTAL1 and XTAt2 pins provided. 

• Optional Poer-Doton reabRe. This option 
permits normal input power to be removed from 
the chip without affecting the contents of the 
register file. The power-down' function 
requires an external battery backup system. 

Pin functions and descriptions for the Z8601/11 
microcomputer can be'found in Chapter 6. 

1.4 DEVEUI'iENT DEVICE (Z8612) 

A development devica allows users to pr,ototype a 
system with an actual hardware device and to 
develop the code that is eventually, mask-pro­
grammed into the on-chip ROM of the ZB601 or ZB611 
microcomputer. Development devices are also use­
ful in ~ applications where production volume does 
not justify the expenae of a ROM system. The 
ZB612 development d~vice is identical t!J its 
equivalent microcomputer, the ZB611, with the fol­
lowing exceptions: 



• No internal ROM is provided, so that code is 
developed in an off-chip memory. 

• The normally internal ROM address and data 
lines are buffered and brought out to external 
pins to interface with the external memory. 

• Control lines are added to interface with 
external program memory. 

• The dev ice package is enlarged in order to 
accommodate the new control, address, and data 
lines. 

Pin functions and descriptions for the development 
device can be found in the Appendix. 

Table 1-1. Z8 fa.ily of Producta 

ROM 
Part Capacity Progr~le Dedicated PCB 

Pr\Jduct NtJRber (Bytes) I/O Pins I/O Pins footprint C_nts 

2K ROM Z860l 2K 32, 4 ports 8 Power, 40 Pin Masked ROM part, used 
Control primarily for high volume 

production. 

2K Protopack Z8603 0 32, 4 ports 8 Power, 40 Pin Piggyback part used where 
Control program flexibility is 
plus required (prototyping). 
24 EPROM 

4K ROM Z86ll 4K 32, 4 ports 8 Power, 40 Pin Masked ROM part, used 
Control primarily for high volume 

production. 

4K Develop- Z86l2 0 32, 4 ports 8 Power, 64 Pin ROM less part used primarily 
ment part Control in development systems. 

plus 24 
external 
memory 

4K Protopack Z8613 0 32, 4 ports 8 Power, 40 Pin Piggyback part used where 
Control program flexibility is 
plus required (prototyping). 
24 EPROM 

BASIC/ Z8671 2K 32, 4 ports 8 Power, 40 Pin BASIC/Debug part used in 
Debug Control low volume applications. 

ROM less Z8681/82 0 24, 3 ports 8 Power, 40 Pin Low cost ROMless production 
control part with reduced I/O. 
plus 8 Program memory is external. 
external 
memory 

303 



Z8 Family Overview 

1.5 PROTOPACK EMULATOR (Z860J/1J) 

The Protopack emulator devices, l8603 and l8613, 
are ROMless versions of their equivalent microcom­
puters (l8601 and l86l1, respectively). The emu­
lators differ from development devices in two 
ways: they use the same pinout as the microcom­
puters, and an external ROM or EPROM can be 
plugged into the top of the package. The emulator 
package allows for flexibility of application, 
since it can be used in either prototype or final 
pc boards, yet still allows for program develop­
ment. 

When the final program is developed, it can be 
mask-programmed into the l8601/11 which then 
replaces the emulator. The emulator is also use­
ful in small volume applications where the cost of 
mask-programming is prohibitive or where program 
flexibi·lit y is desired. 

Physical description for the Protopack emulator is 
found in the Appendix. 

1.6 BASIC/DEBUG INTERPRETER (Z8671) 

The l8671 MCU is a complete microcomputer prepro­
grammed with a 8ASIC/Oebug interpreter. . BASIC/ 
Debug can directly address the Z8671 , s, internal 
registers and all external memory. It can quickly 
examine and modify any external memory location or 
I/O port. and can call machine language subrou­
tines to increase execution speed. 

The l8671 MCU has a combination of software and 
hardware that is ideal for most industrial control 
applications. Along with the functions mentioned 
above, this microcomputer has a self-contained 
line editor for interact i ve debugging which fur­
ther speeds program development. In addition the 
BASIC/Debug Interpreter allows program execution 
on power-up or reset, without operator interven­
tion. 

Two kinds of memory exist in the l8671 device: 
on-chip registers and external ROM or RAM. The 
BASIC/Debug interpreter is located in the 2K bytes 
of on-chip ROM. Maximum addressing capability is 
62K bytes of external program memory and 62K bytes 
of data memory. In addition, 32 I/O lines, a 144-
byte register file, on-board UART and two coun­
ter/timers are provided. 

P in descriptions 
those for the 
(Chapter 6)'. 

304 

and functions are the same as 
l8601/11 basic microcomputer 

1.7 ROHlESS MICROCOMPUTER (Z8681/82) 

The l8681,and l8682 ROMless microcomputers provide 
virtually all of the functions of the standard l8 
microcomputer without the need to mask-program 
on-chip ROM. This microcomputer is similar to the 
l8601 version except that there is no on-chip 'pro­
gram memory. Unlike the ROMless development and 
Protopack devices the l8681/82 has no additional 
address or address control lines nor does it carry 
a plug-in piggyback memory module. Use of exter­
nal memory rather than internal ROM enables this 
l8 device to be used in low' volume applications or 
where code flexibility is required. The use of 
Ports 0 and 1 to interface external memory leaves 
16 to 24 lines for I/O. 

Since Port 1 is dedicated as an 8-bit multiplexed 
Address/Data bus, and Port 0 lines can be pro­
grammed as address bits, the resulting 16-bit 
addresses can directly address up to 64K bytes of 
memory for the l8681 and 62K bytes for the l8682. 
(The l8682 ,MCU cannot address the lower 2K bytes 
of memory). 

The address capabil ity of the l8681/82 can be 
doubled by programming output P34 of Port J as 
Data Memory (OM) select signal. The two states of 
this signal can be used with the 16-bit addresses 
to identify two separate external address spaces, 
thus increasing external address space to 128K 

. bytes for the l8681 and 124K bytes for the l8682. 

Pin functions and descriptions for the l8681/82 
microcomputer can be found in Chapter 7. 

1.8 APPLICATIONS 

l8 microcomputers are most often used in high-per­
formance, dedicated applications. Such special­
ized functions were previously accomplished wittl 
TTL logic, TTL logic plus a low-end MCU, or a 
microprocessor and peripherals. Some typical 
applications include.: 

• Disc drive controller 
• Printer cQntroller 
• Terminals 
• Modems 
• Industrial controllers 
• Key telephones 
• Telephone switching systems 
• Arcade games and intelligent home games 
• Process control 
• Intelligent instrumentation 
• Automotive mechanisms 



Following are brief descriptions for a few Z8 
applications. 

Printers. Input data (typically transmitted via a 
terminal or computer) can be sent to the Z8 on 
either a serial or parallel port. The ZB then 
transfers the data into the external·, RAM buffer 
via another parsllel port, where it can operate on 
the data before output to the printing mechanism. 

Z8 Family Overview 

Disk. Disk operations are read or write, with 
input received from either the disk or the compu­
ter. Data is tral'1sferred to the buffer memory a 
sector (128, 256, 512, 1024 bytes) at a time via 
the ZB, operated on as required, and subsequently 
output to the disk or computer. 

Te~l. Input is received from either the key­
board or a computer. The ZB device must maintain 
at least an input buffer and often the screen RAM. 

305 



~Zim 
2.1 INTIDllICTION 

The Z8 is a versatile single-chip microcomputer. 
Because its multiplexed address/data bus is merged 
with several I/O-oriented ports, the Z8 can func­
tion as either an I/O-intensive or a memory­
intensive microcomputer. One key advantage to 
this organization is that external memory can be 
addressed ,while maintaining many of the' I/O 
lines. 'Figure 2-1 shows the Z8 block diagram. 

2.2 IIIlORESS SPACES 

To provide for both I/O-intensive and memory­
intensive applications, the Z8 supports three 
basic addrea,s spaces: 

OUTPUT 

UART 

TIMERI 
COUNTERS 

(2) 

Vce GND 

1 1 

FLAGS 

'Chapter 2 
Architectural Overview 

• Program memory (internal and external) 
• Data memory (external) 
• Register file (internal) 

A maximum of 64K bytes of program memory are 
directly addressable. In the Z8601 and Z8611 
microcomputers, internal program memory consists 
of a mask-programmed ROM. The size of this' 
internal ROM is 2K bytes for the' Z8601 and 4K 
bytes for the Z8611. In one member of the Z8 
family, the Z8681, all of the program memory is 
externally addressable. 

Oat,a memory space is always external to the Z8 
microcomputer and is 62K bytes in size for the 
Z8601 and Z8682, and 60K and 64Kbytes in size 
respectively for the Z8611 and Z8681. 

XTAL AS 

REG. POINTER 

306 

INTERRUPT 
CONTROL 

II I 
I/O 

(BIT PROGRAMMABLE) 
ADDRESS OR I/O 

(NIBBLE PROGRAMMABLE) 

Figure 2-1. ze Block Diagr .. J 

ADDRESS/DATA OR I/O 
(BYTE PROGRAMMABLE) 



Architectural Overview 

2.3 REGISTER FILE 

The Z8's register-oriented architecture centers 
around an internal register file composed of 124 
general-purpose registers, 16 CPU and peripheral 
control registers, and 4 I/O port registers. All 
registers are eight bits. Any general-purpose 
register can be used as an accumulator, an address 
pointer, or an index, data, or stack register. 

2.3.1 Register Pointer 

A Register Pointer logically divides the register 
file into 9 working register groups of 16 regis-, 
ters each, which allows for fast context switching 
and shorter instruction formats. 

2.3.2 Instruction Set 

The Z8 CPU has an instruction set designed for the 
large register file. The instruction set provides 
a full complement of 8-bit arithmetic and logical 
operations. BCD operations are supported using a 
deCimal adjustment of binary values, and 16-bit 
quantities for addresses and counters can be 
incremented and decremented. Bit .manipulation and 
Rotate and Shift instructions complete the data 
manipulation capabilities of the Z8 system. No 
special I/O instructions are necessary since the 
I/O is mapped into the register file. 

2.3.3 Data Types 

The Z8 CPU supports operations on bits, BCD 
digits, bytes, and 2-byte words. 

Bits in the register file can be tested, set, 
cleared, and complemented. Bits within a byte are 
numbered from 0 to 7 with bit 0 being the least 
significant (right-most) bit (Figure 2-2). 

Figure 2-2. Bits in Register 

Manipulation of BCD digits packed two-to-a-byte is 
accomplished by a Decimal Adjust instruction and a 
Swap instruction. Decimal Adjust is used after a 
binary addition or subtraction on BCD digits. 

Logical, Shift, Rotate and Load instructions oper­
ate on bytes in the register file. Bytes in data 
memory are only affected by Load instructions. 

Sixteen-bit arithmetic instructions (Increment 
Word and Decrement Word) operate on words in the 
register file. 

2.3.4 Addressing Modes 

The addressing modes of the Z8 CPU are: 

• Register 
• Indirect Register 
• Immediate 
• Direct Address 
• Indexed (with a short 8-bit displacement) 
• Program Counter Relative 

Register, Indirect Register, and Immediate 
addressing modes are available for Load, Arith­
metic, Logical, Shift, Rotate, and Stack instruc­
tions. Conditional Jumps use both Direct Address 
and Program Counter Relative, while Jump and Call 
instructions use Direct Address and Indirect Reg­
ister addressing modes. 

2.4 I/O OPERATIONS 

The Z8 has 32 pins dedicated to input and output. 
These lines are grouped into four ports of eight 
lines each. Ports can be programmed as input, 
output, or ,bidirectional. Under software control, 
the ports provide timing, status signals, address 
outputs, and serial or parallel I/O with or with­
out handshake. Multiprocessor system configura­
tions are also supported. 

2.4.1 Tillers 

To unburden the program from real-time problems 
such as serial data communications and counting/ 
timing, the Z8 contains an on-chip universal asyn­
chronous receiver/transmitter (UART) and two coun­
ter/timers with a large number of user-selectable 
modes. One on-chip timer provides the bit rate 
input to the UART during communications. 

2.4.2 Interrupts 

I/O operations can be interrupt-driven or polled. 
The Z8 supports six vectored interrllpts that can 
be masked and prioritized. 

307 



2.5 OSCILLATOR 

The Z8 offers an on-chip oscillator and an 
option~l power-down mechanism that can be used to 
maintain the contents of the register file with a 
low-power battery. 

308 

2.6 PROTOPACK 

The Z8 Protopack allows the user to prototype 
system hardware and develop software that is 
eventually to be mask-programmed into the on-chip 
ROM of the 2K byte (Z8601) or the 4K byte (l8611) 

version of the lB. 



3.1 INTRODUCTION DEC 

255 

Three address spaces are available in the Z8 254 

microcomputer: 253 

252 

• The CPU Register File contains addresses for 251 

all general-purpose, peripheral, control, and 250 

I/O port registers. 249 

248 

.• The CPU Program Memory contains addresses for 247 

all memory locstions having executable code 246 

and/or data. 245 

244 

'. The CPU Data Memory contains addresses for all 243 

memory locations that hold data only. 242 

241 

These address spaces, are described in detail in 240 

the following sections. 

3.2 CPU REGISTER fILE 

The regiater file totals 256 consecutive bytes, of 
which 144 have been implemented. (Unused register 
space is. reserved for future expansion.) The reg­
i~ter file consists of 4 I/O ports (RO-R3), 124 
general-purpose register.s (R4-R127), 9 peripheral 
registers (R240-R248), and 7 control registers 
(R249-R255). Figure 3-1 ahowa the layout of the 
register file, including register names, loca­
tions, and identifiers. 

Registers can be accessed as either 8- or 16-bit 
registers using Direct, Indirect, or Indexed 
addressing. All 144 registers can be referenced 
or modified by any instruction that accesses an 
8-bit register, without the need for special 
instructions. Registers accessed as 16-bits are 
treated as ,even-odd register pairs (there are 72 
valid pairs). In this case, the data's MSB is 
stored in the' evelil-numbered register, while the 

. LSB goes into the next higher odd-numbered 
register (Figure 3-2), 

127 

4 

3 

2 

o 

Chapter 3 
Address Spaces 

HEX IDENTIFIERS 

'. 

STACK POINTER (BITS 7-0) 

STACK POINTER (BITS 15-8) 

REGISTER POINTER 

PROGRAM CONTROL FLAGS 

INTERRUPT MASK REGISTER 

INTERRUPT REQUEST REGISTER 

INTERRUPT PRIORITY REGISTER 

PORTS 0-1 MODE 

PORT 3 MODE 

PORT 2 MODE 

TO PRESCALER 

TIMER/COUNTER 0 

11 PRESCALER 

TIMER/COUNTER 1 

TIMER MODE 

SERIAL I/O 

NOT 
IMPLEMENTED 

GENERAL·PURPOSE 
REGISTERS 

PORT 3 

PORT 2 

PORT 1 

PORTO 

FF 

FE 

FD 

FC 

FB 

FA 

F9 

F8 

F7 

F6 

F5 

F4 

F3 

F2 

F1 

FO 

7F 

04 

03 

02 

01 

00 

figure l-1. Register file 

SPL 

SPH 

RP 

FLAGS 

IMR 

IRQ 

IPR 

P01M 

P3M 

P2M 

PREO 

TO 

PRE1 

11 

TMR 

SIO 

P3 

P2 

P1 

PO 

MSB LSB I n = EVEN ADDRESS 

Rn Rn+1 

Figure l-2. 16-Bit Register Addressing 

309 



Address Spaces 

By using logical instructions ,and a lIas,k, indivi­
dual bits within registers can' be accessed for bit 
set, bit clear, bit complement, or bit test opera­
tions. ror example, the instruction AND R, MASK 
performs a bit clear operation. 

When instructions are executed, registers sre read 
when defioed ss sources and written when defined 
es destinations. All general-purpose registers 
function as accumulators, address pointers, index 
registers, stack areas, or scratchpad memory. 

ze instructions can access 8-bit registers and 
register pairs (16-bit) using either 4-bit or 
a-bit address fields. With 4-bit addressing, the 
register file is logically divided into 9 groups 
of 16 working registers as shown in rigure 3-3. A 
Register Pointer (one of the control registers) 
contains the base address of the active working 
register group. 

When accessing one of the working registers, the 
4-bit address is concatenated with the upper four 
bits of the Register Pointer, thus forming an 
8-bit address. figure 3-4 illustrates this opera­
tion. Since working registers are typically 
specified by short format instructions, there are 
fewer bytes of code needed, which reduces execu­
tion time. In addition, when processing interrupts 
or changing tasks, the Register Pointer speeds 
context switching. A special Set Register Pointer 
(SRP) instruction sets the contents of the Regis-, 
ter Pointer. 

3.Z.1 Error Conditions 

Registers must be correctly used becsuse certain 
conditions produce inconsistent results and ,should 
be avoided: 

REGISTER R253 

I 0 

I 0 0 

R6 

' 1 

I 

e Regist~rs R243 end' R245-R249 are write-only 
registers. If an attempt is I18de to read these 
registera, Sff is returned (~ is a prefix that 
indicates hexadecimal notation). 

e When register R253 (Register Pointer) is read, 
all Os are returned in the least significant 
four bits. 

~-{ 
--{ 
--I 
--{ 

{ 

--{ 
--{ 

1 27 

.-t-

1 

The lower 
nibble of 
the register 
file address 
provided by 
the instruction 
pOints to the 
specified 
register. 

--{ t- - - -1/0 PORTS - - - -- 3 

0 

Hgure 3-3. Working Register Groups 

OPC 

o I o 'INSTRUCTION 
(INC R6) 

o , REGISTER ADDRESS (Rlla) 

-Figure 3-4. WorkiR.J Register Addr-iR.J 

310 



• When registers RO and R1 (Ports 0 and 1) are 
defined as address outputs, they will return 
1s in each address bit location when read. 

• Writing to bits which are defined as address 
output, timer output, serial output, or hand­
shake output will have no effect. 

• Instruction OJNZ uses a general register as a 
counter. Only registers R4-R127 can be used 
with this instruction. 

,., CPU CONTRII. lIN) PERIPtERAL REGISTERS 

The ZS control registers govern the operation of 
the CPU. Any inetruction that references the 
register file can access these control registers. 
Available control registers are: 

• Interrupt Priority register (IPR) 
• Interrupt Mask register (IMR) 
• Interrupt Request register (IRQ) 
• Program Control flags (FLAGS) 
• Register Pointer (RP) 
• Stack Pointer - high-byte (SPH) 
• Stack Pointer - low-byte (SPL) 

The ZS uses a 16-bit Program Counter (PC) to 
determine the sequence of current program instruc­
tions. The PC is not an addressable register. 

Penpheral registers are used to transfer data, 
configure the operating mode, and control the 
operation of the on-chip' peripherals. Any 
instruction. that references the register file can 
access peripheral registers. The peripheral regis­
ters are: 

• Serial I/O (510) 
• Timer Mode (TMR) 
• Timer/Counter 0 (TO) 
• TO Prescaler (PREO) 
• Timer/Counter 1 (T1) 
• T1 Prescaler (PRE1) 
• Port 0-1 Mode (P01M) 
• Port 2 Mode (P2M) 
• Port 3 Mode (P3M) 

In addition, the four port registers (PO-P3) are 
considered to be peripheral registers. 

The functions and applications of control and 
peripheral registers are described in subsequent 
sections of this manual. 

Address Spaces 

'.4 CPU PROGRAM IEIIIRY 

The ZS can accesa 64K by tea of program memory with 
the 16-bit Program Counter. In the ZS601, 'the 
lower 2K bytes of the program memory address space 
are internal ROM, while in the ZS611 the lower 4K 
bytes are internal ROM. In the ZS6S2 the lower 2K 
bytes are not accessible. 

To access program memory outside the on-board ROM 
space, Port 0 and Port 1 can be configured as a 
memory interface. For example, Port 1 as a multi­
plexed Address/Data 'port (AOO-A07) provides 
Address lines AO-A7 and Data lines 00-07' Port 0 
can be configured for an additional four or eight 
address lines (AS-A11 or AS-A15)' This memory 
interface is supported by the control lines AS 
(Address Strobe), OS (Data Strobe) and R!W 
(Read/Write) • 

In the ROMless Z86S1 version, Port 1 is automati­
cally a multiplexed Address/Data port. Port 0 
must be configured for additional address lines as 
needed. 

The. first 12 bytes of program memory are reserved 
for the interrupt vectors. Addresses 0~11 contain 
six 16-bit vectors that correspond to the six 
available interrupta. Figure 3-5 illustrates the 
order of 16-bit data stored in program memory. 

85 535 

EXTERNAL 
ROM OR RAM 

2048 
2047 

• ON·CHIP , ROM Locltlon 0 . ',rat byte of 
instruction 

executed 
Ifter 1'8881 i"ci ~------------

Interrupt 
Vector 

(Lower Byte) 

Interrupt 
Vector 

(Upper Byte) 

11 

10 

9 

8 

7 

6 

5 ~. 
4". 

3 

2 

0 

IRQ5 

IRQ5 

IRQ4 

IRQ4 

IRQ3 

IRQ3 

IRQ2 

IRQ2 

IRQ1 

IRQ1 

IRQO 

IRQO 

Figure 3-58. Z8601 Progr_ MI!IIory Map 

311 



65 535 

4096 

4095 

Location of 
first byte of 
Instruction 

EXTERNAL 
ROM OR RAM 

ON·CHIP 
ROM 

executed 
after reset ~ ~------------

Interrupt 
, Vector 

{Lower Byte} 

Interrupt 
Vector 

(Upper Byte) 

11 

10 

9 

8 

7 

6 

5 

4 

3 

2 

0 

IRQ5 

IRQ5 

IRQ4 

IRQ4 

IRQ3 

IRQ3 

~ IRQ2' 

", IRQ2 

IRQ1 

IRQ1 

IROO 

IRQO 

Figure l-5b. Z8611 Progr_ MIRIll"Y Map 

312 

6 

Location of 
first byte of 
Instruction 

executed 
after reset 

Interrupt 
Vector 

(Lower Byte) 

Interrupt 
Vector 

(Upper Byte) 

5535 

EXTERNAL 
ROM OR RAM 

'ci ~-..;..----------
11 IRQ5 

10 IRQ5 

9 IRQ4 

8 IRQ4 

7 IRQ3 

6 IRQ3 

5~ IRQ2 

4", IRQ2 

3 IRQ1 

2 IRQ1 

IRQO 

0 IRQO 

Figure l-5c. Z8681 Progr_ MeIaory Map 

LOCATION OF 
FIRST BYTE OF 

INSTRUCTION 
EXECUTED 

AFTER RESET 

65535 

~ 
2066 

2065 

2056 

2055 

2054 

2053 

2052 

2051 

2050 

2049 

2048 

2047 

EXTERNAL 
ROM OR RAM 

,,----------
IRQ5 

IRQ5 

JP 

IRQ4 

IRQ4 

JP 

IRQ3 

IRQ3 

JP 

IRQ2 

IRQ2 

JP 

IRQ1 

IRQ1 

JP 

IRQO 

IRQO 

JP 

NOT ADDRESSABLE 

Figure l-5d. Z8682 Progr. Manory Map 

When an' interrupt occurs, the address stored in 
the interrupt's vector location points to a ser­
vice routine. This routine assumes program con­
trol. 

The first 2K bytes of program memory are not 
addressable in the Z8682 ROMless version. 
Beginning st address 2048 the first 18 bytes 
contain interrupt vectors which are Jump' Direct 
instructions. When an interrupt occurs, the Z86BZ 
executes the corresponding Jump to interrupt. 

The first address available for a user program is 
location 12. This addreas is loaded into the 
Program Counter after a hardware reset. 

The first address available for a user program in 
the ZB6B2 is location 2066 (Hexadecimal 1.:B12). 
This address is loaded -into the Program Counter 
after a hardware reset. 



3.5 CPU DATA tEIIIRY 

Up to 64K bytes of external data memory can be 
accessed in the ZB microcomputer. As shown in 
Figure 3-6, the origin, and hence, the actual size 
of data memory is device-dependent. The origin of 
date memory ie the same as ths starting address of 
external program memory. 

Like external program memory, external data.memory 
Address/Data lines are prov ided by Port 1 for 
B-bit addresses, and by Ports 0 and 1 for 12-bit 
and 16-bit addresses. 

External data memory can be included with or sep­
arated from the external program memory addressing 
space. When data memory is .separated from program 
memory, the Data Memory output (OM) is used to 
select between data and program memories. 

85535 ... -----------,. 

EXTERNAL 
DATA 

MIIMORY 
(12K BYTES) 

~~----------------------i 
NOT ADDRESSABLE 

O~ ________________ ~ 

Figure 3-6&. Z8601 or Z8682 Data MMory Map 

Address Spaces 

85535 r------------, 

EXTERNAL 
DATA 

MEMORY 
(80KBYTES) 

~:t-----------------------i 
NOT ADDRESSABLE 

O~ ________________ ~ 

Figure J.-6b.. Z8611 Data tt.cn-y Map 

65535 _----------_ 

EXTERNAL 
DATA 

MEMORY 
'(84K byte.) 

O~ __________________ ~ 

F igure~. Z8681 Data MMory Map 

313 



Addr,ess Spaces 

J.6 CPU STACKS 

Stack operations can oc~ui 'in either the register 
file or data memory'. Under software control, 
Port 0 and 1 Mode register (R258) selects stack 
location. 

The re~ister pair R254 and R255 forms the 16-bit 
Stack Pointer (SP) which is used for all stack 
operations. The st~ck address is stored with the 
MSB in R254 and LSB in R255 (Figure J-7). 

314 

R255 

___ l_O_W_E_R_BY_T_E ___ 1 STACK POINTER lOW 

R254 

~ ___ U_P_P_E_R_B_YT_'_E __ ....II1 STACK POINTER HIGH 

Figure '-7. Stack Pointer 

• '. • 
PCl 

TOPOF~ PCH 
STACK 

STACK CONTENTS 
AFTER A CAll 
INSTRUCTION 

Figure J-8. 

The stack address is decremented prior to s Push 
operation and incremented after a Pop operation. 
The etack address always points to the data stored 
on the top-of-stack. The Z8 stack is a return 
stack for Call instructions and interrupts as'well 
as a data stack. During a Call instruction, the 
contents of the PC are saved on the atack. The PC 
is restored during a Return instruction. Inter­
rupts cause the contents of the PC and Flag regis­
ter to be saved on the stack. The IRET instruc­
tion restores them (Figure 3-8). 

When the Z8 is configured for an internal stack 
(i.e., using the register file), register R255 

, serves as the Stack ,pointer. The value in R254 is 
ignored and can be used as a general~purpose 
register. However, an overflow or underflow can 
occur when stack address is incremented or 
decremented during normal stack operations. 

TOP OF_ 
STACK 

Stack Operations 

• • • 
PCl 

PCH 

FLAGS 

STACK CONTENTS 
, AFTElIAN 

INTERRUPT 
CYCLE 



4.1 INTROOUCTIIIf 

The ZB microcomputer provides six addressing 
modes: 

• Register (R) 
• Indirect Register (IR) 
• Indexed (X) 
• Direct (D) 
• Relative (RA) 
• Immediate (1M) 

With the exception of immediate data 'and condition 
codes, all operands are expressed as register 
f.i)e, program memory, or data memory addresses. 
Registers are accessed using B-bit addresses in 
the range 0-127 and 240-255. 

Working registers are accessed using 4-bit 
addresses in the range 0-15. The address of the 
register being accessed is formed by the concate­
nation of the upper four bits in the Register 

8·BIT REGISTER 
FILE ADDRESS 

PROGRAM MEMORY 

Chapter 4 
Address Modes 

Pointer (R253) with the 4-bit working register 
address supplied- by the instruction. 

Registers can be used in pairs to designate 16-bit 
values or memory addresses. A register pair must 
be specified as an even-numbered address in the, 
range 0, 2, •••• , 14. 

Addressing modes are instruction-specific. 
Section 5.4 discusses each addressing made as it 
corresponds to psrticular instructions. 

In the fallowing definitions, the use of 
"register" also implies register pair, working 
register, or working register pair. 

4.2 REGISTER ADDRESSING (R) 

In the Register addressing made, the operand value 
is the contents of the specified register or 
register pair (Figures 4-1 and 4-2). 

REGISTER FILE 
• 

~ dst OPERAND -I 
POINTS TO ONE REGISTER 

OPCODE / ONE·OPERAND 
INSTRUCTION 

E)(!,MPLE 

4·BIT WORKING 
REGISTER 

TWO·OPERAND 
INSTRUCTION 

EXAMPLE 

\. 

L 

PROGRAM MEMORY 

dot I ore 

~ OPCODE 

IN REGISTER FILE 

./ 
VALUE USED IN 

INSTRUCTION EXECUTION 

Figure 4-1. Register Addressing 

REGISTER FILE 

RP 

POINTS TO THE 
OPERAND 

WORKING REGISTER 

Figure 4-2. Working-Register Addressing 

.. 

) 

/ 
POINTS TO 
ORIGIN OF 
WORKING 
REGISTER 
GROUP 

315 



Address Modes 

4.' Ir,oIRECf REGISTER AOORESSINi (IR) 

In the Indirect Register addressing mode, the con­
tents of the specified register is the addresa of 
the operand (Figures 4-3 and 4-4). 

Depending upon the instruction selected, the 
address points to a register, program memory, or 
an external data memory' location. 

When accessing program memory or external data 
memory, register pairs or working register pairs 
are used to hold the 16-bit addresses. 

8-BIT REGISTER 
FILE ADDRESS , PROGRAM MEMORY 

4.4 I_XED AOORESSINi 00 

The Indexed addressing mode is used only by the 
Load (LD) instruction. -An indexed address consists 
of a register address offset by the contents of a 
designated working register (the Index). This 
offset is added to the register address to obtain 
the address of the operand. Figure 4-5 illua-
trates this addresaing convention. ' 

REGISTER FILE 

ADDRESS '. ONE-OPERAND 
INSTRUCTION 

EXAMPLE 
" ... de' 

OPCODE 
# 

POINTS TO ONE REGISTER / IN REGISTER FILE 
/ 

, 
ADDRESS OF 

OPERAND USED 
BY INSTRUCTION 

# OPERAND 

/ 

VALUE USED IN 
INTRODUCTION 

EXEC TION U 

figure 4-3. Indirect Register Addressing to Register File 

Figure '4-4. -Indirect Register Addressing to Pro9rBII or Data Mallory 

316 



4.5 DIRECT !IOORESSIIIC (DA) 

The Direct addressing mode, as shown in Figure 
4-6, specifies the address of the next instruction 
to be executed. Only the Conditional Jump' (JP) 
and Call (CALL) instruct ions use this addressing 
mode. 

4.6 RELATIVE ADDRESSIIIC (RA) 

In the R~lative addressing mode, illustrated in 
Figure 4-7, the instruction specifies a 

PROGRAM MEMORY 

TWO·OPERAND 

Address Modes 

two's-complement signed displscement in the range 
of -128 to +127. This is added to the contents of 
the PC to obtain the address of the next 
instruction to be executed. The PC (prior to the 
add) consists of the address of the instruction 
following the Jump Relat ive (JR) or Decrement and 
Jump if Nonzero (DJNZ) instruction. JR and DJNZ 
are the only instructions that use this addressing 
mode. 

RP 

INSTRUCTION-~t:~~~~~~~ __ ~~NnSTI~~~::~~~~~~~::~ EXAMPLE 

POINTS TO 
ORIGIN OF 
WORKING 
REGISTER 
GROUP 

VALUE USED IN 
INSTRUCTION 

Figure 4-5. Indexed Addressing 

OPERAND 

PROGRAM MEMORY PROGRAM MEMORY 

~ 

~J LOWER ADDR BYTE 

UPPER AD DR BYTE 

OPCODE 

1 
PROGRAM MEMORY 
ADDRESS USED 

JR OR DJNZ 

NEXTOPCODE 

DISPLACEMENT 

OPCODE 

PROGRAM MEMORY 
'ADDRESS USED 

SIGNED 
DISPLACEMENT 
VALUE 

Figure 4-6. Dir~t Addressing Figure 4-7. Relative Addressing 

317 



4.7 IIIEDIATE DATA ADDRESSItii (1M) 

Immediate data is corisic;lered an "addressing mode" 
for the purposes of this discussion. It is the 
only addressing mode that does not indicate a reg­
iater or memory address as the source· operand; the 
operand value used by the instruction is the value 
supplied in the operand field itsel f. Because an 
immediate operand is part of the instruction, it 
is always located in the progrsm memory address 
space. 

318 

WORDlS) ..... -_ .. 
. THE OPERAND VALUE IS IN THE INSTRUCTION. 

figure 4-11. I-mate Data Addressing 



5.1 FUNCTIONAL ~y 

ZB instructions can be divided functionally into 
the following eight groups: 

• Load 
• Arithmetic 
• Logical 
• Program Control 
• Bit Manipulation 
• Block Transfer 
• Rotate and Shift 
• CPU Control 

The following summary shows the instructions 
belonging to each group and the number of operands 
required for each. The source operand is "src", 
"dst" is the destination operand, and "cc" is a 
condition code. 

Load Instructions 

Mnl!llOf1ic Operands Instruction 
CLR dst Clear 
LD dst,src Load 
LDC dst,src Load Constant 
LDE dst,src Load External 
POP dst Pop 
PUSH src Push 

Arithmetic Instructions 

MneIIOI1ic Operands Instruction 
ADC dst,src Add With Carry 
ADD dst,src Add 
CP dst,src Compare 
DA dst Decimal Adjust 
DEC dst Decrement 
DECW dst Decrement Word 
INC d~t Increment 
INCW dst Increment Word 
SBC dst,src Subtract With Carry 
SUB dst,src Subtract 

Chapter 5 
Instruction Set 

Logical Instructiona 

MrteIIOI1ic Operands Instruction 
AND dst,src Logical And 
COM dst Complement 
OR dst,src Logical Or 
XOR dst,src Logical Exclusive 

Program-Control Instructiona 

Mnemonic Operands Instruction 
CALL dst Call Procedure 
DJNZ r,dst Decrement and Jump 
I RET Interrupt Return 
JP cc,dst Jump 
JR cc,dst Jump Relative 
RET Return 

Bit-Hanipulation Instructions 

Mnemonic Operands Instruction 

Or 

NonO 

TCM dst,src Test Complement Under Mask 
TM dst,src Test Under Mask 
AND dst,src Bit Clear 
OR dst,sr'c Bit Set 
XOR dst,src Bit Complement 

Block-Transfer Instructions 

Mnemonic Operands Instruction 
LDCI dst,src Load Constant Auto-

increment 
LDEI dst,src Load External Auto-

increment 

Rotate and Shift Instructions 

Mnemonic Operands Instruction 
RL dst Rotate Left 
RLC dst Rotate Left Through Carry 
RR dst Rotate Right 
RRC dst Rotate Right Through Carry 
SRA dst Shift Right Arithmetic 
SWAP dst Swap Nibbles 

319 



Instruction Set 

CPU Control Instructions 

Mnetnonic Operand Instruction 
ccr Complement Carry Flag 
01 Disable Interrupts 
EI Enable Interrupts 
NOP No Operation 
RCF Reset Carry Flag 
SCF Set Carry Flag 
SRP src Set Register Pointer 

5.2 PROCESSOR flAGS 

The Flag register (R252) informs the user about 
the current status of the Z8. The flags and their 
bit positions in tt>e Flag register are shown in 
Figure 5-1. 

R252 FLAGS 
Flag Register 

(FCH; Read/Write) 

~I ~~::: :~:~:: 
LHALF CARRY FLAG 

DECIMAL ADJUST FLAG 

OVERFLOW FLAG 

'--------SIGN FLAG 

'----------ZERO FLAG 

L---------CARRY FLAG 

figure 5-1. flag Register 

The Z8 Flag register contains six bits of status 
information which are set or cleared by CPU opera­
tions. Four of the bits (C, V, Z and S) can be 
tested for use with conditional Jump instruc­
tions. Two flags (H, D) cannot be tested and are 
used for BCD arithmetic. 

The two remaining bits in the Flag register (F1, 
F2) are available to the user, but they must be 
set or cleared by instruction and are not usable 
with conditional Jumps. 

As with bits in the other control registers, Flag 
register bits can be set or reset by instructions; 
however, only those instructions that do not 
affect the flags as an outcome of the execution 
should be used (e.g., Load Immediate). 

320 

5.2.1 Carry flag (C) 

The Garry flag is set to 1 whenever the result of 
an arithmetic operation generates a carry out of 
or a borrow into the high order bit 7; otherwise, 
the Carry flag is cleared to O. 

Following Rotate and Shift instructions, the Carry 
flag contains the last value shifted out of the 
specified register. 

An instruct ion can set, reset, or complement the 
Carry flag. 

RETI changes the value of the Carry flag when the 
saved Flag register is restored. 

~ 

5.2.2 Zero flag (Z) 

For arithmetic and logical operations, the Zero 
flag is set to-1 if the result is zero; otherwise, 
the Zero flag is cleared. 

If the result of testing bits in a register is 0, 
the, Zero flag is set to 1; otherwise the flag is 
oleared. 

If the result of a Rotate or Shift operation is 0, 
the Zero flag is set to 1; otherwise, the flag is 
cleared. 

RET! changes the value of the Zero flag when the 
saved Flag register is restored. 

5.2.3 Sign flag (S) 

The Sign flag stores the value of the most signif­
icant b-it of a result following arithmetic, logi~ 
cal, Rotate, or Shift operations. 

When performing 'arithmetic operations .on signed 
numbers, binary two's complement notation is used 
to represent and process information. A positive 
number is identified by a 0 in the most signifi­
cant bit position, and therefore, the Sign flag is 
also O. 

A negative number is identified by a 1 in the most 
significant bit pOSition, and therefore, the Sign 
flag is alsb 1. 

RET! changes the value of the Zero flag when the 
saved Flag register is restored. 



5.2.4 Overflow flag (V) 

For signed arithmetic, Rotate, and Shift opera­
tions, the Overflow flag is seL to 1 when the 
result is greater than the maximum possible number 
( > 127) or less than the minimum possible number 
( < -128) that can be represented in two's comple­
ment form. The flag is set to 0 if no overflow 

Instruction Set 

encoded in a 4-bit field called the condition code 
(CC), which forms bits 4-7 of the conditional 
instructions. 

Section 5.4.2 lists the condition codes and the 
flag settings they represent. 

occurs. 5.4 NOTATION AND BINARV ENCODING 

Following logical operations, the Overflow flag is 
set to O. 

RET! changes the value of the Overflow flag when 
the saved Flag register is restored. 

5.2.5 Decu.al-Adjust flag (D) 

The Decimal-adjust 'flag is used for BCD arith­
metic. Since the algorithm for correcting BCD 
operations is different for addition and subtrac­
tion, this flag specifies what type of instruction 
was last executed so that the subsequent Decimal 
Adjust (DA) operation can function properly. Nor­
mally, the Oecimal-adjust flag cannot be used as a 
test condition. 

After a subtraction, the Decimal-adjust flag is 
set to 1; following an addition it is cleared to 
O. 

RET! changes the value of the Decimal-adjust flag 
when the saved Flag register is restored. 

5.2.6 Half-Carry flag (H) 

The, Hal f-carry flag is set to 1 whenever an, addi­
tion generates a carry out of bit 3 (Overflow), or 
a subtraction generates a borrow into bit 3. The 
Half-carry flag is used by the Decimal Adjust (DA) 
instruction to convert the binary result of a pre­
vious addition or subtraction into the correct 
decimal (BCD) result. As in the case of the 
Decimal-adjust flag, the user does not normally 
access this flag. 

RETI changes the value of the Half-carry flag when 
the saved Flag register is restored. 

5.3 CONDITION CODES 

Flags C, Z, S, and V control the operation of the 
"conditional" Jump instructions. Sixteen fre­
quently useful functions of the flag settings are 

In the detailed instruction descriptions that make 
up the rest of this chapter, operands and status 
flags are represented by a notational shorthand. 
Operands (condition codes and address modes) and 
their notations are as follows: 

Notation Address Mode Actual Operand/Range 

cc 

r 

R 

RR 

II' 

IR 

11'1' 

IRR 

Condit ion Code See condition code 
list below 

Working register Rn: where n 
only 

0-15 

Register or 
working register 

Register pair or 
working register 
pair 

reg: where reg repre­
sents a number in the 
range 0-127, 240-255 

Rn: where n = 0-15 

reg: where reg repre­
sents an even number 
in the range 0-126, 
240-254 

RRp: where p 0, 
2, ••• ,14 

Indirect working @ Rn: where n 0-15 
register only 

Indirect register @ reg: where reg 1'e-
or working 
register 

Indirect working 
register pair 
only 

Indirect register 
pair or working 
register pair 

presents a number in 
the range 0-127, 
240-255 

@ Rn: where n = 0-15 

@ RRp: where p = 0, 
2, ••• ,14 

@ reg: where reg re­
sents an even number' 
in the range 0-126, 
240-254 

@ RRp: where p 0, 
2, ••• ,14 

321 



Instruction Set 

Notation Address Mode Actual Operand/Range 

x Indexed 

DA Direct Address 

RA Relative Address 

1M Immediate 

reg'(Rn): where reg 
represent a number in 
the range 0-127, 
240-255 and n = 0-15 

addrs: where addrs 
represents a number 
in the range 0-65,535 

addrs: where addrs 
represents a number 
in the range +127, 
-12B which is an 
offset relative to 
the address of the 
next instruction 

Udata: where data is 
a number between 
o and 255 

Additional symbols used are: 

SyRlbol Meaning 
dst Destinat ion operand 
src Source operand 
@ Indirect address prefix 

SP Stack Pointer 
PC Program Counter 
FLAGS Flag register (R252) 
RP Register Pointer (R253) 
IMR Interrupt mask register (251) 
II Immediate operand prefix 

" " Hexadecimal number prefix 
OPC Opcode 

Assignment of a value is indicated by the symbol 
"(_". For example, 

dst <- dst + src 

indicates that the source data is added to the 
destination data and the result is stored in the 
destination location. The notation "addr(n)" is 
used to refer to bit "n" of a given location. For 
example, 

dst (7) 

refers to bit 7 of the destination operand. 

322 

5.4.1 Assembly language Syntax 

For proper instruction execution, ZB PLZ/ASM 
assembly language syntax requires th'lt "dst, src" 
be specified, in that order. The following 
instruction descriptions show the format of the 
object code produced by the assembler. This binary 
format should be followed by users who prefer 
manual program coding or who intend to implement 
their own assembler. 

Example: If the contents of registers %43 and %OB 
are added and the result stored in %43, the 
assembly syntax and resulting object cO,de are: 

ASM: 
OBJ: 

ADD %43, 1,OB 
04 DB 43 

(ADD dst, src) 
(OPC src, dst) 

In general, whenever an instruction format 
requires an B-bit register address, that address 
can speci fy any register location in the range 
0-127, 240-255 or a working register RO-R15. If, 
in the a,bove example, register 100B is a working 
register, the assembly syntax and resulting object 
code would be: 

ASM: ADD %43, RB 
OBJ: 04 EB 43 

(ADD dst src) 
(OPC src dst) 

For a more complete description of assembler syn­
tax refer to the ZB PLZ/ASM Assembly Language 
Manual (publication no. 03-3023-03) and ZSCAN B 
User's Tutorial (publication no. 03-B200-01). 

5.4.2 Condition Codes and flag Settings 

The condition codes and flag settings are sum­
marized in the following tables. Notation for, the 
flags and how they are affected are as follows: 

C Carry flag 0 Cleared to 0 
Z Zero flag Set to 1 
S Sign flag * Set or cleared 

according to 
V Overflow flag operation 
D Decimal-adjust flag Unaffected 
H Half-carry flag X Undefined 



Conditim Codes 

Binary "'-xlic Meaning flags Settings 

0000 F Always false 
1000 (blank) Always true 
0111 C Carry C 
1111 NC No carry C 0 
0110 Z Zero Z 
1110 NZ Not 0 Z = 0 
1101 PL Plus 5 0 
0101 MI Minus 5 1 
0100 OV Overflow V 1 
1100 NOV No overflow V 0 
0110 EQ Equal Z 1 
1110 NE Not equal Z = 0 
1001 GE Greater than or (5 XOR V) 0 

equal 
0001 LT Less than (5 XOR V) 1 
1010 . GT Greater Than (Z OR (5 XOR V»=O 
0010 LE Less than or equal (Z OR (5 XOR V»=1 
1111 UGE Unsigned greater than C 0 

or equal 
0111 ULT Unsigned less than C 
1011 UGT Unsigned greater than (C=O AND Z=O) 
0011 ULE Unsigned less than or (C OR Z) = 1 

equal 

323 



Instruction AddrMode Opcode Flags Aftected Instruction Addr Mode Opcode Flags Affected 
and Operation dst 

Byte and Operation dBt 
Byte 

arc (Hex) CZSVDH src (Hex) CZSVDH 

ADC dst,src (Note 1) 10 'It 'It 0 'It LDE dst,src r Irr 82 ------
dst - dst + src +'C dst - src Irr 92 

ADD dst,src (No!e I) 00 'It * 0 * LDEI dst,src Ir Irr 83 ------
dst - dst + src dst .- src Irr Ir 93 

r - r + 1; rr'- rr + 1 
AND ds!,src (Note I) 50 0--
dst - dst AND src NOP FF 

CALL dst DA D6 ------ OR dst,src (Note I) 40 'It 0 - -
SP-SP-2 IRR D4 dst - ds! OR src 
@SP - PC; PC - dst POP dst R 50 ------
CCF EF *----- dst - @SP IR 51 
C-NOTC SP-SP+I 

CLR dst R BO PUSH src R 70 

dst - 0 IR BI SP - SP-I; @SP- src IR 71 

COM dst R 60 RCF CF 0-----

dst - NOT dst IR 61 C-O 

CP dst,src (Note I) AD RET AF ------
dst - src PC - @SP; SP - SP + 2 

OA dst R 40 'It X - - RL dst 1!l..I:DJ R 90 * 'It * * __ 

ds! - DA dst IR 41 IR 91 

OEC dst R 00 - * • RLCdst~I~ 10 

dst-dst-I IR 01 
II 

OECW dst RR 80 
RR dst ~~ EO 

EI 
dst - dst-I IR 81 

01 8F RRCds!~I~ CO ------ CI 
IMR (7) - 0 

SBC ds!,src (Note 1) 30 * I * DINZ r,dst RA rA - - - - -.- dst-dst-src-C 
r - r - 1 r=O-F 

IICF ifn> 0 DF I - - -
PC-PC+dst C-I 

Range: + 127, -128 SRA dst ~I~ DO * * * 0 
EI 9F ------ DI 
IMR (7) - I SRP src 1m. 31 -,-----

INC dst rE _' 'It * * __ RP.- src 
dst-dst+1 r=O-F SUB dst,src (Note I) 20 'It 'It * * 1 * R 20 dst - dst - src 

IR 21 
SWAPdst ~ R FO X * * X - -

INCW dst RR AO - 'It 'It 'It __ 

IR FI 
dst - dst + IR Al 

TCM dst,src (Note I) 60 - * * 0 
IRET , BF ****** (NOT ds!) AND src 
FLAGS - @SP; SP - SP + 1 

TM dst,s'rc (Note I) PC - @SP; SP - SP + 2; IMR (7) - 1 70 - * * 0 
dst AND src 

If cc,dst DA cD ------
if cc is true c=O-F XOR dst,src (Note I) BO ,- * * 0 - -

PC - ds! IRR 30 dst - dst XOR src 

IR cc:dst RA cB ------ Nole 1 
if co is true I c=O-F These instructions have an' Identical set of addressmg PC-PC+dst 
Range: + 127, -128 modes, which are ,encoded for breVity. The hrst opcode 

nibble 15 found m the lDstructIon sel table above. The 
LD dst,src 1M rC ------ second mbble IS expressed symbolically by a L In thiS 
dst - src r R r8 table, and its value IS found In the followmg table to the 

R r9 left of the apphcable addressing mode pair. 
r=O-F For example, to determine the opcode of an ADC 

r X C7 instruction uSing the addressmg modes r (destmatlon) and 
X r D7 If (source) IS 13. ' 
r Ir E3 
Ir r F3 

Addr Mode R R E4 Lower 
R IR E5 dsl sre Opeode Nibble 
R 1M E6 
IR 1M E7 I 
IR R F5 

Ir d. 
LDC dst,src r Irr C2 ------ R R ~f 
dst - src Irr D2 

R IR ~ 
LDCI dst,src Ir Irr C3 ------

R 1M :I dst - src Irr Ir D3 
r-r+l;rr-rr,+l IR 1M :I. 

324 



5.6Z8 
Instruction 
Descriptions 
and Formats 

ADC dst,src 

Instruction For.at: 

I ope 

I ope 

r- ope 

Operatioo : 

Flags: 

Example: 

Note: 

ADC 
Add With Carry 

IIPC Address Mode 
Cycles (Hex) dIIt arc 

I I dst src I 6 12 r r 
13 r Ir 

I I src I I dst 10 14 R R 
15 R IR 

I I dst I I src 10 16 R 1M 
17 1R 1M 

dst <-- dst + src + c 

The source operand, along with the setting of the e flag, is added to the destination 
operand and the sum is stored in the destination. The contents of the source are not 
affected. Two's complement addition is performed. In multiple precision arithmetic, 
this instruction permits the carry from the addition of low-order operands to be 
carried into the addition of high-order operands. 

e: Set if there is a carry from the most-significant bit of the result; cleared 
otherwise 

Z: Set if the result is zero; cleared otherwise 
S: Set if the result is negative; cleared otherwise 
Y: Set if arithmetic overflow occurs, that is, if both operands are of the same sign 

and the result is of the opposite sign; cleared otherwise 
0: Always cleared 
H: Set if there is a carry from the most-significant bit of the low-order four bits 

of the result; cleared otherwise 

If the register named SUM contains %16, the e flag is set to 1, working register 10 
contains %20 (32 decimal), and register 32 contains %10, the statement 

ADe SUM,IIR10 

leaves the value %27 in Register SUM. 
cleared. 

The e, Z, s, V, 0, and H flags are all 

When used to specify a 4-bit working-register address, address modes R or IR use the 
format: 

E src/dst 

325 



ADD 
Add 

ADD dst,src 

Instruc:t:ion F oNat: 

ope 

ope 

ope 

Operation: 

Flags: 

[x8lllple: 

Note: 

326 

OPC Adcireaa Mode 
Cycles (H!tx) clat arc 

I I dst ' src I 6 02 r r 
03 r Ir 

I I src I I dst 10 04 R R 
05 R lR 

I I dst I I src 10 06 R 1M 
07 lR 1M 

dst <-- dst + src 

The source operand is added to the destinstion opersnd snd the sum is stored in the 
destination. The contents of the source are not affected. T~ols complement addition 
is performed. 

C: Set if there was a carry from the most-significant bit of the result; cleared 
otherwise 

Z: Set if the result is zero; cleared otherwise 
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign 

and the result is of the opposite sign; cleared otherwise 
S: Set if the result is negative; cleared otherwise 
H: Set if a carry from the low-order nibble occurs 
D: Always reset to 0 

If the register named SUM contains 1'044 and the register named AUGEND contains 1'011, 
the statement 

ADD SUM,AUGEND 

leaves the value 1'055 in register SUM and leaves all flags cleared. 

When used to ,specify a 4-bit working-register address, address modes R or IR use the 
format: 

E src/dst 



AN> dat,arc 

Instructian Fmwat: 

OPC 

ope 

ope 

Operatian: 

Flags: 

EXSlllple: 

Note: 

AND 
Logical 

II'C McirllSS Mode 
Cycles (Hex) dst arc 

I I dat arc I 6 52 r r 
53 r IR 

I I arc I I dat 10 54 R R 
55 R 1R 

I I . dst I I arc 10 56 R 1M 
57 IR 1M 

dat <-- dat AND arc 

The aource operand is logically ANDed with the. des,tination operand. The reault is 
atored in the destination. The AND operation results in a 1 bit being stored 
whenever the correaponding bits in the two operands are both 1s; otherwise a 0 bit is 
stored. The contents of the source bit are' not affected. 

e: Unaffected 
Z: Set if the result is zero; cleared otherwise 
Y: Always reset to 0 
S: Set if the result bit 7 ia set; cleared otherwise 
H: Unaffected 
D: Unaffected 

If the source operand is the immediste value %76 (01111011) and the register named 
TARGET contains %e3 (11000011), the statement 

AND TARGET, #%76 

leaves the value %43 (01000011) in register TARGET. 
cleared. 

The Z, V, and 5 flags are 

When used to specify a 4-bit working-register address, address modes R or IR use the 
format: 

E src/dst 

327 



CALL 
Call Procedure 

CAlL dst 

Instruction for.at: 
Cycles 

OPC 
(Hex) 

Address Mode 
dst 

~ _____ O_P_C ____ ~1 I~ ______________ ds_t ____________ ~ 20 06 OA 

~ _____ o_p_c ____ ~l ~I ______ d_s_t ____ ~ 20 04 IRR 

Operation: 

flags: 

Example: 

Note: 

328 

sp <-- sp - 2 
asp <-- PC 
PC <-- dst 

The current contents of the PC are pushed onto the top of the stack, The PC value 
is the address of the first instruction following the CALL instruction, The 
speci fied destinatil'n address is then loaded into the PC and points to the first 
instruction of a procedure, 

At the end of the procedure a 'RfTurn instruction can be used to return to the 
original program flow, RET pops the top of the stack back into the PC, 

No flags affected, 

If the contents of the PC are %1A47 and the contents of the SP (control registers 
254-5) are %3002, the statement 

CALL %3521 

causes the SP to be decremented to %3000, %1A4A (the address following the 
instruction) is stored in external data memory %3000-%3001, and the PC is loaded with 
~n521, The PC now points to the address of the first statement in the procedure to 
be executed. 

When used to specify a 4-bit working-register pair address, address mode IRR uses the 
format: 

E dst 



ccr 

Instrucl:ion r Orllllt: 

Opc 

Operation: 

Flags: 

EXlIIIIPle : 

C <-- NOT C 

CCF 
Complement Carry Flag 

Cyclea 

6 

OPe 
(Hex) 

Ef 

The C flag is complemented; if C 1, it is changed to C 0, and vice-versa. 

c: Complemented 
No other flags affected 

Tf the C flag contains a U, the statement 

CCf 

will change the 0 to 1. 

329 



CLR 
Clear 

CLR dst' 

Instruction F 01'1l8t: 
Cycles 

OPC 
(Hex) 

Addreaa Mode 
dst 

~ _____ O_P_C ______ ~1 I~ ______ d_s_t __ ~ __ ~ 6 60 
61 

R 
IR 

Operstion: 

flsgs: 

EX8llP1e: 

Note: 

330 

dst <-- 0 

The destination location is cleared to O. 

No flags affected. 

If working register 6 contains ~Ar, the statement 

ClR R6 

will leave the value 0 in that register 

When used to specify a 4-bit working-register address, address modes 'R or IR use the 
format: 

E dst 



COH dst 

Instruction ror.at: 
Cycles 

OPC 
(Hex) 

COM 
Complement 

Address Mode 
dst 

L-______ OP_C ______ ~I LI _______ ds_t ______ ~ 6 60 
61 

R 
IR 

Operation: 

Hags: 

EX8lllple: 

Note: 

dst <-- NOT dst 

The contents of the destination location are complemented (one's complement); all 1 
bits are changed to 0, and vice-versa. 

C: Unaffected 
Z: Set if the result is zero; cleared otherwise 
V: Always reset to 0 
5: Set if result bit 7 is set; cleared otherwise 
H: Unaffected 
0: Unaffected 

If working register '8 contains %24 (00100100), the statement 

COM R8 

leaves the value %DB (11011011) in that register. The Z and V flags are cleared and 
the S flag is set. 

When used to specify a 4-bit working-register address, address modes R or IR use the 
format: 

E dst 

331 



CP 
Compare 

CP dst,src 

Instruction F or.at: 

OPC 

OPC 

OPC 

Operation: 

Flags: 

Ex....,le: 

Note: 

332 

OPC Addresa Mode 
Cycles (lex) dat arc 

I I dst Brc I 6 A2 r r 
A3 r Ir 

I I src I I dst 10 A4 R R 
A5 R IR 

I I dst I I src 10 A6 R 1M 
A7 IR 1M 

dst - src 

The source operand is compared to (subtracted from) the destination operand, and the 
appropriate flags set accordingly. The contents of both operands are unaffected by 
the comparison. 

C: Cleared if there is a carry from the most significant bit of the result; set 
otherwise, indicating a "borrow'· 

Z: Set if the result is zero; cleared otherwise 
V: Set if arithmetic overflow occurs; cleared otherwise 
S: Set if the result is negative; cleared otherwise 
H: Unaffected 
0: Unaffected 

If the register named TEST contains %63, working register a contains %30 (48 
decimal), and register 48 contains %63, the statement 

CP TEST, liRa 

sets (only) the Z flag. If this statement is followed by "JP EQ, true_routine", the 
jump is taken. 

When used to specify a 4-bit working-register address, address modes R or IR use the 
format: 

E src/dst 



DA dst 

Instruction r_t: 

DA 
Decimal Adjust 

OPe 
(flllx) 

AdcIreu Mode' 
det 

~ _____ O_P_C ____ --J1 I~ ____ ,_d_s_t ____ ~ 
Cyel .. 

8 40 
41 

R 
IR 

op.ratian: 

Flags: 

dst <-- DA dst 

The destination operand is adjusted to form two 4-bit BCD digits following a binary 
addition or subtrsction operation on BCD encoded bytes. For addition (ADD, ADC), or 
aubtraction (SUB, SBC), the following table indicates the o,paration parformed: 

Bita 1t-7 Bita 0-, N..ber 
Carry Value Hnag Value Addad Cerry 

Instruction Before DA (Hex) Before DA (flllx) To Byte After DA 

0 0-9 0 0':9 00 0 
0 0-8 0 A-F' 06 0 

ADD 0 0-9 1 0-3 06 0 
ADC D A-F 0 0-9 60 1 

0 9-F b A-F 66 1 
0 A-F 1 0-3 66 1 
1 0-2 0 0-9 60 1 
1 0-2 0 A-F 66 1 
1 0-3 1 0-3 66 1 

SUB 0 0-9 0 0-9 00 0 
S8C 0 0-8 1 6-F FA 0 

1 7-F' 0 0-9 AD '. 1 
1 6-F' 1 6-F 9A 1 

If the destination operand is not the reault of a valid addition or aubtraction of 
BCD digits, the operation is undefined. 

C: Set if ,there is a carry from the most significant bit; cleared otherwise (see 
table above) 

Z Set if the result is 0; cleared otherwise' 
V Undefined 
5 Set if the result bit 7 is set; cleared otherwise 
H Umiffected 
o . Unaffected 

333 



Note: 

334 

If addition is performed I!Sing the BOO values 1,5 and 27, the result should' be 42. 
The sum is incorrect, 110wever, when the binary representations are added in the 
desti~ation location I!sing standard binary arithmetic. ' 

0001 0101 
+ 0010 0111' 
~ lll!lI' = "J~ 

The - DA ststement adj4sts this result eo thst the correct BCD representation is, 
obtsined. 

0011 1100 
+ 0000 0110 

lTflm l!!ml' = 42 

The C, Z, and 5 flags ~re clesred and V is undefined. 

When used to specify a ,4-b1t working-register address, address modes R or IR use the 
format: 

E dst 



DEC dat 

Instruction For.at: 
Cycle'a 

OPC 
(Hex) 

DEC 
Decrement 

Address Mode 
dat 

~ _____ O_P_C ____ ~11 ~ ______ d_s_t ____ ~ 6 00 
01 

R 
IR 

Operation: 

Flags: 

EX8llple: 

Note: 

dst <-- dst - 1 

The destination operand's contents are decremented by one. 

C: Unaffected 
Z: Set if the result is zero; cleared otherwise 
V: Set if arithmetic overflow occurred; clesred otherwise 
5: Set if the result is negative; cleared otherwise 
H: Unaffected 
0: Unaffected 

If working register 10 contains \'02A, the statement 

DEC R10 

leaves the value \'029 in that register. The Z, V, and S flags· are cleared. 

When used to specify a 4-bit working-register address, address modes R or IR use the 
format: 

E dst 

335 



DECW 
Decrement Word 

DECW dst 

IllBtructi ... r onat: 
Cycles 

OPC 
(Hex) 

Address Mode 
dat 

~ _____ O_P_C ____ ~1 I~ ______ d_s_t ____ ~ 10 80 
81 

RR 
IR 

Flags: 

EXIIIIIP1e: 

336 

Qst <-- dat - 1 

The contents of the destination location (which IIlJst be an even address) and the 
operand following that location are treated as a single 16-bit value which is 
decremented by' one. 

C: Unaffected 
Z: Set if the result is zero; cleared otherwise 
Y: Set if arithmetic overflow occurred; cleared otherwise 
S: Set if the result is negative; cleared otherwise 
H: Unaffected 
D: Unaffected 

If working register 0 contains %30 (48 decimal) and registers 48-49 contain the value 
%fAF3, the statement 

OECW IRO 

leaves the value %FAF2 in registers 48 and 49. The Z and V flags are cleared and S 
is set. 



OJ 

Instruction For.at: 

ope 

Operation: 

Flags: 

EX8lllple: 

IMR (7) <-- 0 

01 
Disable Interrupts 

OPC 
Cycles (Hex) 

6 SF 

Bit 7 of control register 251 (the Interrupt Mask Register) is reset tQ O. All 
interrupts are disabled, although they remain potentially enabled (i.e., the Global 
Interrupt Enable is cleared--not the individual interrupt level enables.) 

No flags affected 

If control register 251 contains %8A (10001010, that is, interrupts IRQ1 and IRQ3 are 
enabled), the statement 

01 

sets control register 251 to %OA and disables these interrupts. 

337 



DJNZ 
Decrement and Jump if Nonzero 

DJNZ r,dst 

Instruction Format: 
Cycles 

OPC 
(Hex) 

Address Mods 
dst 

~ __ r __ ~~_O_p_C __ ~11 ~ _______ ds_t ______ ~ 12 if jump taken 
10 if jump not taken 

rA RA 

Operation: 

Flags: 

Example: 

Note: 

338 

r=O to F 

r <-- r - 1 
If r ~ 0, PC <-- PC + dst 

The working register being used as a counter is decremented. If the contents of the 
register are not zero after decrementing,' the relative address is added to the 
Program Counter (PC) and control passes to the statement whose address is now in the 
PC. The range of the relative address is +127, -128, and the original value of the 
PC is the address of the instruction byte following the DJNZ statement. When the 
working register counter reaches zero, control falls through to the statement 
following DJNZ. 

No flags affected 

DJNZ is typically used to control a "loop" of instructions. In this example, 12 
bytes are moved from one buffer area in the register file to another. The steps 
involved are: 

o Load 12 into the counter (working register 6) 
o Set up the loop to perform the moves 
o End ,the loop with DJNZ 

LD R6, 1112 
LOOP: LD R9,OLDBUF (R6) 

LD NEWBUF (R6),R9 
DJNZ R6,LOOP 

! Load Counter! 
! Move one byte to! 
I New location! 
!Decrement and ! 
!Loop until counter O! 

The working register being used as a counter must be one of the registers 04-7f • 
Use of one of the I/O ports, control or peripheral registers will have undefined 
results. 



El 

Instruction r or.at: 

ope 

Operation: 

Flags: 

[,,, .. pIe: 

Cyclss 

6 

IMR (7) <-- 1 

EI 
Enable Interrupts 

"c 
(lIIIx) 

9f 

Bit 7 of control register 251 (the Interrupt Mask Register) is set 10 ,to 1. This 
allows any potentially enabled interrupts to become enabled. 

No flags affected 

If control register 251 contains ~OA (00001010, that is, interrupts IRQ1 and IRQ) 
potentially enabled), the statement 

EI 

sets control register 251 to %8A (10001010) and enables these interrupts. 

339 



INC 
Increment 

"INC dst 

Instruction Foraet: OPC Address Mode 
Cycles (Hex) dst 

dst OPC 6 rE r 
r=O to r 

L-~ ____ OP_C ______ ~II ~ _______ ds_t ______ ~ 6 20 R 
21 IR 

Operation: 

Hags: 

Exa...,le: 

Note: 

340 

dst <-- dst + 1 

The destination operand I s contents are incremented by one. 

C: Unaffected 
Z: Set if the result is zero; cleared otherwise 
V: Set if arithmetic overflow occurred; cleared otherwise 
S: Set if the result is negative; cleared otherwise 
H: Unaffected 
D: Unaffected 

If working register 10 contains %2A, the statement 

INC R10 

leaves the value %26 in that register. The Z, V, and S flags are cleared. 

When used to specify a 4-bit working~register address, address modes R or IR use the 
format: 

E det 



III:If dst 

Instruction fonat: 

INCW 
Increment Word 

OPe 
(lI8x) 

IIddreaa IIode 
det 

~ _____ O_p_c ____ ~1 ~I ______ d_s_t ____ ~ 
Cyel .. 

10 AD RR 
A1 IR 

Operation : 

Hags: 

EX8q)le: 

dst <-- dst + 1 

The contents of the destination (which must be sn even address) and the byte 
following that location are treated as a aingle 16-bit value which ia incremented by 
one. 

c: Unaffected 
Z: Set if the result is zero; cleared otherwise 
Y: Set if arithmetic overflow occurred; clesred otherwise 
5: Set if the result is negative; cleared otherwise 
H: Unaffected 
D: Unaffected 

If working-registsr pair 0-1 contains the value ~AF3, the statement 

INCW RRO 

lesves the value %FAF4 in working-register pair 0-1. The Z and V flaga are cleared 
and 5 is set. 

341 



IRET 
Intertupt Return 

IRET 

Instruction Forlllat: 

OPC 

Operetion: 

Flegs: 

344 

FLAGS <-- liSP 
SP <-- SP + 1 
PC <-- liSP 
SP <-- SP + 2 
IMR (7) <-- 1 

Cycles 

16 

OPC 
(Hex) 

BF 

This instruction is issued at the end of an interrupt service routine. It restores 
the Flag reqister (control register 252) and the PC. It also reensbles any 
interrupts that are potentially enabled. 

All flags are restored to original settings (before interrupt occurred). 



JP 
Jump 

JP cc,dst 

~ructian forab 
OPe Addreea Mode 

Conditionsl Cyclea (Hex) det 

~_c_c ____ ~_~ __ C __ ~1 I~ _________ d_s_t __________ ~ 12 if jump tsksn ccO OA 
10 if jump not tsksn 

Unconditionsl cc=o to r 

~ ___ O_PC ____ ~I I~ ___ d_st ____ ~ B JO IRR 

Operatian : 

flags: 

EXlIIIPle : 

Note: 

If cc is true, PC <-- dst 

A conditionsl jump transfers Progrsm Control to the destination address if the 
condition specified by "cc" is true; otherwise, the instruction following the JP 
instruction is executed. See Section 6.4 for s list of conditiOn codes. 

The unconditionsl jump simply replsces the contents of the Progrsm Co~nter with the 
contents of the specified register pair. 'Control then passes to the ststement 
eddressed by the PC, decremented by one. 

No flsgs sffected 

If the csrry flsg is set, the statement 

JP C,I!&1520 

replaces the contents of the Program Counter with "1520 and transfers control to that 
locati~n. Had the carry flag not been set, control would have fallen through to the 
ststement following the JP. 

When used to specify a 4-bit working-register pai'r address, addresa mode IRR uses the 
format: 

E dat 

343 



JR 
Jump Relative 

JR, cc,dst 

Instruction FOrMt: 
Cycles 

OPC 
(Hex) 

Address Mode 
dat 

RA ~_c_c __ ~~_O_p_C __ ~1 I~ _____ d_s_t ______ ~ 12 If jump taken ccB 
10 If jump not taken 

Operation: 

Flags: 

EXllllple: 

344 

cc=O to F 

If cc is true, PC <-- PC + dst 

If the condition specified by "cc" is true, the relative address is added to the 
PC and control passes to the statement whose address in now in the PC; otherwise, the 
instruction following the JR instruction is executed. (See Section 5.3 for a list of 
condition codes). The range of the relative address is +127, -12B, and the original 
value of the PC is taken to be the address of the first instruction byte following 
the JR statement. 

No flags affected 

If the result of the last arithmetic operation executed is negative, the following 
four statements (which occupy a total of seven bytes) are skipped with the statement 

JR MI,$+9 

If the result is not negative, execution continues with the statement following the 
JR. A short form of a jump to label LO is 

JR LO 

where LO must be within the allowed range. The condition code is "blank" in this 
case, and is assumed to be "always true." 



LD 
Load 

LD dBt,Brc 

Instruction For.at: OPe Addresa Mode 
Cycles (Hax) dat arc 

dst OPC Brc 6 rC r 1M 
6 rB r R 

arc OPC dat 6 r9 R* r 
r=O to f 

OPC dBt src 6 E3 r Ir 
6 f3 Ir r 

OPC Brc dat 10 E4 R R 
10 E5 R IR 

OPC dst I arc 10 E6 R 1M 
10 E1 IR 1M 

OPC Brc I dat 10 f5 IR R 

OPC dst x I Brc 10 C7 r X 

OPC src x I dst 10 07 X r 

*In this instance only a full B-bit register address can be used. 

Operation: 

Flags: 

EXlllllple: 

Note: 

dst <-- arc 

The contents of the lIource are loaded into the destination. The contents of the 
source are not affected. 

No flags affected 

If working register 0 contains %08 (11 decimal) and working register 10 contains %BJ, 
-the statement 

LO 240(RO) ,R10 

will load the value %83 into register 251 (240 + 11). Since thiB is the Interrupt 
Mask register, the Load statement haa the effect of enabling IRQO and IRQ1. The 
contents of working regillter 10 are unaffected by the load. 

When used to specify a 4-bit working-register address, address modes R Dr IR use the 
format: 

E src/det 

345 



LDC 
Load Constant 

LDC dst,src 

lnatructioR F tll'II8t: 

opc 

ope 

Operation: 

EX8lllPle: 

346 

I I dst I src 

I I src I dst 

dst <-- src 

Cycles 

12 

12 

OPe 
(Hex) 

C2 

02 

Address Mode 
clat ' arc 

r lrr 

Ir·r! r 

This instruction is used to losd a byte constant from program memory into a working 
register, or vice-versa. The addreas of the program memory location is specified by 
a working register pair. The contents of the aource are not affected. 

No flags affected 

I f the working-register pair 6-7 contains ~}0A2 and program-memory location ~30A2 
contains the value ~22, the statement 

. LOC R2, IRR6 

loads the value ~22 into working register 2. 
unchanged by the load. 

The value of location ~30A2 is 



LOCI dst,src 

Instruction ronal:: 

OPC 

OPC 

Operation: 

Flags: 

Ex8llple: 

LOCI 
Load Constant Autoincrement 

I I dst 

I I src 

dst <-- src 
r <-- r + 1 
rr <-- rr + 

Cycles 

src 18 

dst 18 

II'C Add1'tl8ll Mode 
(Hex) det 8rc 

C3 Ir Irr 

03 Irr Ir 

This instruction is used for block trsnsfers of dsts between program memory and the 
regiater file. The address of the program-memory location is spec! Hed by a 
working-register pair, and the address of the register-file location is apecified by 
a working register. The contents of the aource location are loaded into the 
destination locetion. Both addresses are then incremented automatically. The 
contents of the aource are not affected. 

No flags affected 

I f the working-register pair 6-7 contains !1130A2 and program-memory' locations !1130A2 
and !1130A3 contain !1122BC, and if working register R2 contains %20 (32 decimal), the 
statement 

LOCI aR2, aRR6 

loads the value !1122 int~ register 32. A second 

LOCI aR2, IIRR6 

loads the value %BC into ,register 33. 

347 



LDE 
Load External Data 

lDE dst,erc; 

Instruction For .. t: 
Cycles 

OPC 
(Hex) 

Address Mode 
dst src 

'-___ oP_c ___ -'� I dst arc 12 82 r Irr 

L-______ O_P_c ______ ~1 I src det 12 92 Irr r 

Operstion: 

Flags: 

EXIIIIP1e: 

348 

dst <-- src 

Th~s instruction is used to load a byte from external data memory into a working 
register or vice-versa. The addreas of the external datll-memory location is 
specified by a working-register pair. The contents of the source are not affected. 

No flags affected 

If the working-register pair 6-7 containa %404A and working register 2 contains %22, 
the statement 

LDE IRR6,R2 

loads the value %22 into external data-memory location %404A. 



LDEI dat,arc 

Instruction for.at: 

OPC 

OPC 

Oparstian: 

flags: 

EXllq)le: 

Note: 

LDEI 
Load External Data Autoincrement 

I I dat 

I I arc 

dat <-- arc 
r <-- r + 1 
rr <-- rr + 

Cycles 

src 18 ' 

dat 18 

OPe Addreu Mode 
(Hax) dat arc 

83 Ir Irr 

93 Irr Ir 

Thia instruction is uaed for block transfera of data between external data memory 
and the register file. The addreas of the external data-memory location is specified 
by a working-register pair, and the address of the register fUe location is 
specified by a working register. The contents of the source location are loaded into 
the destination location. Both addresses are then incremented automatically. The 
contents of the source are not affected. 

No flsgs sffected 

If the working-register pair 6-7 contains ~404A, working register 2 contains ~22 (34 
decimal), and registers 34-35 contsin ~BC3, the statement 

LOEl 8RR6,IR2 

loads the value ~B into external location ~04A. A eecond 

LDEI IRR6,IR2 

loads the value ~C3 into external location ~404B. 
When used to specify a 4-bit working-register pair address, address modes RR or IR 
uae the format: 

E dst 

349 



NOP 
No Operation 

Instruction f orat: 

o~c 

Operation: 

Flega: 

350 

Cycles 

6 

OPC, 
(Hex) 

FF 

No action is performed by this instruction. It is typicslly used for ti~ng delays. 

No flags affected 



DR det,arc 

lnetruction FoNat: 

ope 

ope 

ope 

Operation: 

Flags: 

EX8lllPle: 

Note: 

OR 
Logical Or 

OI'C Address Mode 
Cyelee (lIItx) dat ere 

I I det erc 6 42 r r 
6 43 r Ii-

I I erc I I det 10 44 R R 
10 45 R lR 

I I dst I I src 10 46 R 1M 
10 47 lR 1M 

dst <-- det OR src 

The source operand is logicslly ORed with the destination operand and the result is 
stored in the destination. The contents of the aource are not affected. The OR 
operation reaults in a one bit being atored whenever either of the correaponding bits 
in the two operands ia 1; otherwise a 0 bit ia stored. 

c: Unaffected 
Z: Set if result is zero; cleared otherwiae 
V: Always raset to 0 
5: Set if the result bit 7 is set; cleared otherwise 
H: Unaffected 
D: Unaffected 

If the source operand is the immediate value !.I7B (01111011) and the register named 
TARGET contains !.\C3 (11000011), the statement 

OR TARGET,ft7B 

leaves the value !.\FB (11'111011) in regieter TARGET. The Z and V flaga are cleared 
and S is set. 

When used to specify a 4-bit working-register address, address modes Rand IR use the 
format: 

E src/dst 

351 



POP 
~op 

PII' dst 

Instruction For8Bt: OPe 
(Hex) 

Address Mode 
dst 

~ ____ O_P_C ____ ~11 ~ ______ ds_t ____ ~ 
Cycles 

10 
10 

50 
51 

R 
IR 

OperatiOll : 

Flags: 

ExBIIIPle: 

Note: 

• 

352 

dst <-- asp 
sp <-..: SP + 1 

The contents of the location addressed by the 'SP are loaded, into the destination. 
The SP is then incremented automatically. 

No flags affected 

If the SP (control registers 254-255) containa' ~1000, external data-memory location 
~1000 contains ~55, and working register 6 contains ~22 (34 decimal)', the atatement 

POP aR6 

loads the value 1.155 into register 34. After the POP operation, the SP contains 
1111001. 

When uaed to specify a 4-bit working-register address, addreas modes R or IR use the 
format: 

E dst 



PUSH 
Push 

PUSH src 

Inatructian fDNBt.: OPC Addr_ MDcIe 
eyel. (IIIIX) ere 

~ _____ o_p_c ____ ~1 I~ ______ s_r_c ____ ~ 10 Internsl steck 70 R 
12 External atack 

Operatian: 

flaga: 

.Ex..,le: 

Note: 

SP <-- SP - 1 
asp <-- src 

12 
14 

Internal steck 
External atack 

71 IR 

The contents of the SP are decremented, then the contente of the source ere loaded 
into the location addressed by the decramented SP, thus adding a n~w element to the 
top of the steck. 

No flags affected 

If the SP contains ~1n01, the statement 

PUSH fLAGS 

stores the contents of the register nsmed fLAGS in location ~1000. After the PUSH 
operation, the SP contains ~1000. 

When used to specify a 4-bit working-register address, addresa modes R or IR use the 
format: 

E arc 

353 



ROP 
Reset Carry Flag 

Instruction r ol'llBt:: 
Cyclea 

ope 6 

Operation: C <-- 0 

The C flag is reset to 0, regardless of its previous vslue., 

nags: C: Reset to 0 
No other flegs affected 

354 

IJPC 
(Hax) 

cr 



RET 

Instruction For.at: 

OPC 

Operation: 

Flaga: 

EXllllple: 

PC <-- asp 
sp <-- SP + 2 

opt 
Cyel.. (Hex) 

14 AF 

RET 
Return 

This instruction is normally used to return to the previously e~ecuted procedure at 
the end of a procedure entered by a CALL instruction. The contents of the location 
addressed by the SP are popped into the PC. The next statement executed is that 
addressed by the new contents of the PC. 

No flags affected 

If the PC contains %3584, the SP contains %2000, external data-memory location %2000 
contains %18, and location %2001 contains %85, then the statement 

RET 

leaves the value %2002 in the SP and the PC contains %1885, the address of the next 
instruction. 

355 



RL 
Rotate Left 

~L dst 

Instruction Foraat: IIPC 
(Hex) 

Address Mode 
dst 

L-_____ o_p_c ____ -JI IL ______ d_a_t ____ ~ 
Cycles 

6 
6 

90 
91 

R 
IR 

Operation: 

Flags: 

EX8lllple: 

Note: 

356 

C <-- dst(7) 
dst(O) <-- dat(7) 
dst(n + 1) <-- daten) n = 0 - 6 

The contents of the destination operand are rotated left one- bit position. The 
initial value of bit 7 is roved to the bit 0 position and also replaces the carry 
flag. 

c: Set if the bit rotated from'the rost significant bit position was 1; i.e., bit 7 
was 1 

Z: Set if the result is zero; cleared otherwise. 
Y: Set if arithmetic overflow occurred; that is, if the sign of the destination 

changed during rotation; cleared otherwise. 
S: Set if the result bit 7 is set; cleared otherwise 
H: Unaffected 
D: Unaffected 

If the contents of the register named SHIFTER are %88 (10001000), the statement 

RL SHIFTER 

leaves the value %11 (00010001) in that register. The C flag and V flags are set to 
1 and the Z flag is cleared. 

When used to specify a 4-bit working-register address, address rodes R or IR use the 
format: 

E dst 



RLC dst 

Instruction For.at: 

RLC 
Rotate Left Through Carry 

Cycles 
ope 

(Hex) 
Address Mode 

det 

~ _____ O_P_C ____ ~1 I~ ______ d_s_t ____ ~ 6 
6 

10 
11 

R 
IR 

Operation: 

Flags: 

EX8llple: 

Note: 

dst (0) <-- c 
C <-- dst (7) 
dst(n + 1) <-- dst(n) n = 0 - 6 

The contents of the destination operand with the C flag are rotated left one bit 
position. The initial value of bit 7 replaces the C flag; the initial value of the C 
flag replaces bit O. 

C: Set if the bit rotated from the most significant bit position was 1; i.e., bit 7 
was 1 

Z: Set if the result is zero; cleared otherwise 
V: Set if arithmetic overflow occurs.' that is. if the sign of the destination 

changed during rotation; cleared otherwise 
S: Set if the result bit 7 is set; cleared otherwise 
H: Unaffected 
D: Unaffected 

If the C flag is reset (to 0) and the register named SHIFTER contains ~8F (10001111). 
the statement 

RLC SHIFTER 

sets the C flag and the V flag to 1 and SHIFTER contains ~1E (00011110). 

When used to specify a 4-bit working-register address. address modes R or IR use the 
format: 

E dst 

357 



FIR . 
Rotate Right 

RR dst 

InstruCtion fom&t: OPC 
(Hex) 

Addreaa Mode 
dat 

~~ ___ O_p_C ____ --J1 LI ______ d_s_t ____ --J 

Cycles 

6 
6 

EO 
E1 

R 
IR 

Operation: 

flags: 

EXlllllple: 

Note: 

358 

C <-- dsi(O) 
dst(7) <-- det(O) 
det(n) <-- dst(n + 1) n = 0 - 6 

The contents of the destination operand are rotat"d right one bit position. The 
initial value of bit 0 is moved to bit 7 and alao replaces the C flag. 

C: Set if the bit rotated from the least significant. bit position was 1; i.e., bit 0 
Willi 1 ' 

Z: Set if the result is zero; cleared otherwise 
V: Set if arithmetic overflow occurred, that is, if the sign of the destination 

, changed during rotation; cleared otherwise 
s: Set if the result bit 7 is set; cleared otherwise 
HI Unaffected 
D: Unaffected 

If the contents of working register 6 are %31 (00110001), the statement 

RR R6 

sets the C flag to 1 and leaves the value %98 (10011000) in working register 6. 
Since bit 7 now equals 1, the S flag and the V flag are also set. . 

When used to epecify a 4-bit working-register address, address modes R or IR use the 
format: 

I E dst 



RRC dst 

1natructillfl f OrllBt: ~ 

RRC 
Rotate Right Through Carry 

OPC 
(Hex) 

Addreas Mode 
dat 

~ _____ O_P_C ____ ~1 I~ _____ d_s_t ____ ~ 
Cycles 

6 
6 

CO 
C1 

R 
1R 

Operatillfl: 

flags: 

[xlllllple: 

Note: 

dst(7) <-- C 
C <-- dst(O) 
dst(n)" <-- dst(n + 1) n = 0 - 6 

The contents of the destination operand with the C flag are rotated right one bit 
position. The initial value of bit 0 replaces the C flag; the initial value of the 
C flag replaces bit 7. 

C: Set if the bit ro'tated from the least significant bit position was 1; i.e., bit 0 
was 1 

Z: Set if the result is zero; cleared otherwise 
Y: Set if arithmetic overflow occurred, that is, the sign of the destination changed 

during rotation; cleared otherwise 
s: Set if the result bit 7 is set; cleared otherwise 
H: Unaffected 
D: Unaffected 

If the contents of the register named SHIFTER are %DD (11011101) and the Carry flag 
is reset to 0, the statement 

RRC SHIFTER 

sets the C flag and the V flag and leaves the value %6E (01101110) in the register. 

When used to specify a 4-bit working-register address, address modes R or IR use the 
format: 

E dst 

359 



SBC 
Su~tract,With Carry 

SIIC dst, src 

Instruction for .. t: 

OPC 

OPC 

oPc 

Operation: 

flags: 

Example: 

Note: 

360 

OPC Address Mode 
Cycles (Hex) dst are 

6 32 r r 
6 33 r ' Ir I I dst src I 

10 34 R R 
10 35 R IR I I src I I dst 

arc 10 36 R 1M 
10 37 IR 1M I I dst I I 

dst <-- dst - src - C 

The aource operand, along with the setting of the C flag, is subtracted from the 
destination ,operand and the result is stored in the destination. The contents of the 
source are not affected. Subtraction ia performed by adding the two 'a complement of 
the source operand to the destination operand. In multiple precision arithmetic, 
this instruction permits the carry ("borrow") from the subtraction of low-order 
operands to be subtracted from the subtraction of high-order operands: 

C: Cleared if there is a carry from the most significant bit of the result; set 
otherwise, indicating a "borrow" 

Z: Set if the result is 0; cleared otherwise 
\I: Set if arithmetic overflow occurred, that is, if the operands were of opposite 

sign and the sign of the result is the same as the sign of the source; reset 
otherwise 

S: Set if the result is negative; cleared otherwise 
H: Cleared if there is a carry from the most significant bit of the low-order four 

bits of the result; set otherwise indicating a "borrow." 
0: Always set to 1 

If the register named MINUEND contains 1016, the Carry flag is set to 1, working 
register 10 contains 1020 (32 decimal), and register 32 contains 1005, ,the statement 

SSC MINUEND, IR10 

leaves the value %10 in reglster MINUEND. The C, Z, V, Sand H flags are cleared and 
D is set. 

When used to specify a 4-bit working-register address, address modes R or IR use the 
format: 

E src/dst 



SCf 

Instruction Format: 
Cycles 

OPC 6 

Operation: C <-- 1 

The C flag is aet to 1, regardless of its previous value. 

Flags: C: Set to 1 
No other flags affected 

SCF 
Set Carry Flag 

OPC 
(Hex) 

OF 

361 



SRA 
Shift Right Arithmetic 

SRA dst 

Instruction r orllllt: OPe 
(Hex) 

Address MDde 
dst 

~ ______ OP_C ______ ~11. ~ ______ d_s_t ______ ~ 
Cycles 

6 
6 

DO 
01 

R 
IR 

Operation: 

nags: 

Exa.ple: 

Note: 

362 

dst(7) <-- dst(7) 
C <-- dst(O) 
dst(n) <-- dat(n +'1) n = 0 - 6 

An arithmetic shift right one bit position is performed on the destinstion operand. 
Bit 0 replaces the C flag. Bit 7 (the Sign bit) is unchanged, and its value is al,so 
shifted into bit position 6. 

7 o 

C: Set if the bit shifted from the le~st significsnt bit position was 1; i.e., bit 0 
was 1 

Z: Set if the result is zero; cleared otherwise 
V: Always reset to 0 
S: Set ·if the result is negative; cleared otherwise 
H: Unaffected 
0: Unaffected 

If the register named SHIFTER contains ~BB (10111000), the statement 

SRA SHIFTER 

resets the C flag to 0 and leaves the value %DC (11011100) in register SHIFTER. The 
S flag is set to ,1. 

When used to specify a 4-bit working-register address, address modes R or IR use the 
format: 

E dat 



SRI' src 

Instruction for.at: 

SRP 
Set R~gister Pointer 

Cyclsa 
OPC 

(Hax) 
Addresa Mode 

arc 

~ ______ O_P_c ______ ~1 ~I _______ s_r_c ______ ~ 6 31 1M 

Operation: 

flags: 

EX9lllple: 

RP <-- src 

The specified value is loaded into bits 4-7 of the Register Pointer (RP) (control 
register 253). , Bits 0-3 of the RP are always set to O. The source dah (with bits 
0-3 forced to 0) is the starting address of a working-register group. The 
working-register group starting addresses are: 

Hex Decimal 

. %00 0 
%10 16 
%20 32 
%30 48 
%40 64 
%50 80 
%60 96 
~70 112 

%FO 240 (control and peripheral registers) 

Values in the range %80-EO are invalid. 

No flags affected 

Assume the RP currently addresses the control and peripheral register group and the 
program has just entered an interrupt service routine. The statement 

SRP #%70 

saves the contents of the control and peripheral registers by setting the RP to %70 
(01110000), or 112 decimal. Any reference to working registers in the interrupt 
routine will point to registers 112-127. 

363 



SUB 
Subtract 

SUB dst,src 

lnatrucUan fonat: 

I OPC 

I OPC 

I oPC 

Operation: 

flags: 

EXlIIIIPle: 

Note: 

364 

OPC Addret18 Mode 
Cycles (lIex) dst arc 

I I dat arc I 6 22 r r 
6 23 r Ir 

I I arc I I dat 10 24 R R 
10 25 R IR 

I I dat I I arc 10 26 R 1M 
10 27 IR 1M 

dst. <-- dst - arc 

The aource operand ia aubtracted from the destination operand and the result is 
atored in the destination. The content a of the source are not affected. Subtraction 
ia performed by adding the two's complement of the aource operand to the destination 
operand. 

C: Cleared if there is a carry from the most significant bit of the result; set 
otherwise, indicating a "borrow" 

Z: Set if the result is zero; cleared otherwise 
Y: Set if erithlllf'tic overflow occurred, that is, if the operands were of opposite 

aigns and the sign of the result is the same as the sign of the source operand; 
cleared otherwise 

S: Set if the result is negetive; cleared otherwise 
H: Cleared if there is a carry frqm the most significant bit of the low-order four 

bita of the result l. set otherwise indicating a "borrow." 
D: Always set to 1 

If the register named MINUEND contains ~29, the statement 

SUB MINUEND, #%11 

will leave the value ~18 in the register. The C, Z, V, Sand H flags are cleared and 
D is set. 

When used to specify a 4-bit working-register address, address modes R or IR use the 
format: 

E arc/dat 



SWAP dst 

Instruction fomat: 
Cycles 

SWAP 
Swap Nibbles 

OPt 
(Hex) 

Addreaa Mode 
d.t 

~ _____ O_P_C ______ ~II ~ _______ ds_t ______ ~ B 
B 

fO 
f1 

R 
IR 

Operation: 

flags: 

EXlIIIIPle : 

Note: 

dst(O - 3) <--> dst(4 - 7) 

The contents of the lower four bits and upper four bits of the destination opersnd 
are swapped. 

C: Undefined 
Z: Set if the result is zero; cleared otherwise 
V: Undefined 
S: Set if the result bit 7 is set; cleared otherwise 
H: Unaffected 
D: Unaffected 

Suppose the register named BCD _nperands contains %B3 (10110011). The statement 

SWAP BCD_Operands 

will leave the value %3B (00111011) in the register. The Z and S flags are cleared. 

When used to specify a 4-bit working-register address, address modes R or IR use the 
format: 

E dst 

365 



TeM 
Test Complement Under Mask 

TCM dst,src 

Instruction For.st. 

ope 

ope 

ope 

Operation. 

Flags: 

EXlIIIIPle : 

Note: 

366 

OPt Address Mode 
Cycles (Hex) dat arc 

6 62 r r 
6 63 r Ir I I det src I 

10 64 R R 
10 65 R IR I I erc I I dst 

src 10 66 R 1M 
10 67 IR 1M I I dst I I 

(NOT dst) AND src 

This instruction tests selected bits in the destination operand for a logical "1" 
value. The bits to be tested are specified by setting a 1~ bit in the corresponding 
position of the source operand (mask). The TeM statement complements the destination 
operand, which is then ANDed with the source mask. The Zero (Z) flag can then be 
checked to determine the result. When the TCM operation is complete, the destination 
location still contains its original value. 

C: Unaffected 
Z: Set if the result is zero; cleared otherwise 
V: Always reset to 0 
S: Set if the result~ bit 7 is set; cleared otherwise 
H: Unaffected 
0: Unaffected 

If the register named TESTER contains %F6 (11110110) and the register named MASK 
contains %06 (00000110), that is, bits 1 and 2 arB being tested for a 1 value, the 
statement 

TeM TESTER, MASK 

complements TESTER (to 00001001) and then do a logical AND with register MASK, 
resulting in %00. A subsequent test of the Z flag, 

JP Z,plabel 

causes a transfer of program control. At the end of this sequence, TESTER still 
contains %F6. 

When used to specify a 4-bit working-register address, address modes R or IR use the 
format: 

E src/dst 



TM dst,src 

Instruction f orllllt: 

I ope 

I ope 

I ope 

Operation: 

flags: 

EXBIIPle: 

Note: 

TM 
Test Under Mask 

OPe Address Mode 
Cycles (Hex) det arc 

I I dst src 6 72 r r 
6 73 r Ir 

I I arc I I dst 10 74 R R 
10 75 R IR 

I I dst I I src 10 76 R 1M 
10 77 IR 1M 

dst AND src 

This instruction tests selected bits in the destination operand for a logical "0" 
value. The bits to be tested are specified by setting a 1 bit in the corresponding 
position of the source operand (mask), which is ANOed with the destination operand. 
The Z flag can be checked to determine the result. When the TM operation is 
complete, the destination location still contains its original value. 

C: Unaffected 
Z: Set if the result is zero; cleared otherwise 
V: Always reset to 0 
S: Set if the result bit 7 is set; cleared otherwise 
H: Unaffected 
D: Unaffected 

If the register named TESTER contains %F6 (11110110) and the register named MASK 
contains %06 (00000110), that is, bits 1 snd 2 are being tested for a 0 value, the 
statement 

TM TESTER, MASK 

results. in the value %06 (00000110). A subsequent test for nonzero 

JP NZ, plabel 

causes a transfer of program control. At the end of this sequence, TESTER still 
contains %F6. The Z and S flags are cleared. 

When used to specify a 4-bit working-register address, address modes R or IR use the 
format: 

E src/dst 

367 



XOR 
Logical Exclusive OR 

XOR dst,src 

Instruction foraat: 

OPC 

OPC 

OPC 

Operation: 

flags: 

EXlllllple: 

Note: 

368 

OPC Address Mode 
Cycles (Hex) dat arc 

I I dst src 6 B2 r r 
6 B3 r Ir 

I I src I I dst 10 B4 R R 
10 B5 R lR 

I I dst I I src 10 B6 R 1M 
10 B7 lR 1M 

dst <-- dst XOR src 

The source operand is logically EXCLUSIVE ORed with the destination operand and the 
result stored in the destination. Tbe EXCLUSIVE OR operation results in a one bit 
being stored whenever the, corresponding bits in the operands a.re different; 
otherwise, a 0 bit is stored. 

C: Unaffected 
Z: Set if the result is zero; cleared otherwise 
V: Always reset to 0 
5: Set if the result bit 7 is set; cleared otherwise 
H: Unaffected 
0: Unaffected 

If the source operand is the immediate value %78 (011111011) and the register named 
TARGET contains %C3 (11000011), the statement 

OR TARGET, il%7B 

leaves the value %88 (10111000) in the register. 

When used to speci fy a 4-bit working-register address, address modes R or IR use the 
format: 

E src/dst 



6.1 INTROOUCTION 

The ROM versions of the Z8 microcomputer have 40 
external pins, of which 32 are programmable I/O 
pins. The remaining 8 pins are used for power and 
control. Up to 16 I/O pins can be configured as 
an external memory interface. This interface 
function is the subject of this chapter. The I/O 
mode of these pins is described in Chapter 9. 

6.2 PIN DESCRIPTIONS 

AS. Address Strobe (output, active Low, ~tate, 
pin 9). Address Strobe is pulsed Low once at the 
beginning of each machine cycle. The rising edge 
of AS indicates that addresses, Read/Write (R/W) , 
and Data Memory (OM) signals, are valid when out­
put for external program or data memory trans­
fers. Under program control, AS can be placed in 

RESET +5V 

RNi GND 

OS XTAL1 

AS XTAL2 

PO. P20 

PO, P2, 

PO, P2, 
PORTO PORT 2 
(NIBBLE PO, P2, (BIT PRO· 

Chapter 6 
Exteraal Interface 
(Za6GI, Za611) 

a high-impedance state along with Ports 0 and 1, 
Data Strobe (OS), and R/W. 

Ds~ Data Strobe (output, active 'Low, 3-atate, 
pin 8). Data Strobe provides the timing for data 
movement to or from Port 1 for each external 
memory transfer. During a Write cycle, data out 
is valid at the leading edge of OS. During a Read 
cycle, data in must be valid prior to the trailing 
edge of 55. 55 can be placed in a high-impedance 
state along with Ports 0 and 1, AS, and R/W. 

R/W. Read/Write. (output, l-state, pin 7) • 
Read/Write determines the direction of data trans­
fer for e~ternal memory transactions. R/W is Low 
when writing to external program or data memory, 
'and High for all other transactions. R/W can be 
placed in a high-impedance state along with Ports 
o and 1, AS, and 55. 

+5V P3. 

XTAL2 2 P3, 

XTAL1 3 P27 

P37 4 P2. 

P30 5 P2. 

!fErn 6 pa-
R/W 7 P2, 

DS 8 P2, 
PROGRAMMABLE) PO. P2. GRAMMABLE) 

I/O OR As-A,. 1/0 AS 9 P2, 
PO. Z8601111 P2. P3. 10 Z8601l11 P2. 
PO, MCU P20 MCU GND 11 P3, 
P07 P27 

P3, 12 P3. 
P1. P30 

PO. 13 P1 7 
P1, P3, 

PO, 14 P1, 
Pt, P3, PORT 3 

PO, 15 P1. PORT 1 (FOUR INPUT; 
(BYTE P1, P3, FOUR OUTPUT) PO, 16 P1. 

PROGRAMMABLE) P1. P3. SERIAL AND 
I/O OR ADo-AD? PARALLEL 1/0 PO. P1, 

P1. P3. AND CONTROL 
PO. 18 23 P1, 

P1. P30 
PO. 19 22 P1, 

P17 P37 
P07 21 P1. 

Figure 6-2. Z8601/11 Pin Assi~s 

369 



External Interface (lS601,ZS611) 

PIlo-P07 , P10-P1 7 , P2o-P27, PJO-P)7. I/O port 
lines (inputs/outputs, TTL-compatible; pins 
12-40). These 32 I/O lines are divided into. four 
S-bit I/O ports that can be configured under pro­
\lram control for I/O or external memory inter­
face. Individual lines ofa 'port are denoted by 
the second digit of the port number. For example, 
P30 refers to bit 0 of Port 3,. Ports 0 and 1 can 
be placed in a high-impedance state along with AS, 
f55, and R/W. 

RESET. Reset (inpUt, active Low, pin 6). RESET 
initializes the lB. When RESET is deactivated, 
program execution begins from internal program 
location roC. If held low, RESET acts as a regis­
ter file protect during power-down and power-up 
sequences. RESET also enables the ZS Test mode. 

XTAL1, XTAL2. Crystal 1, Crystal 2 (oscillator 
input and output, pins 3 and 2). These pins con­
nect a parallel-resonant crystal (12 MHz maximum) 

or 'an external source (12 MHz maximum) to the 
on-board clock oscillator and buffer. 

6.3 CONFIGURING FOR EXTERNAL MEMORY 

Sefore interfacing with external memory, the user 
must configure Ports 0 and 1 appropriately. The 

minimum bus configuration uses Port 1 as a multi­
plexed Address/Data port (ADO-AD7)' allowing 
access to 256 bytes of external memory. In this 
configuration, the eight lower order address bits 
(AO-A7) are multiplexed with the data (00-07). 

Port 0 can be programmed to provide four addi­

tional address lines (AS-A11)' which increases the 
externally addressable program memory to 4K 
bytes. Port 0 can also be programmed to provide 
eight additional address lines (AS-A15)' which 
increases the externally addressable memory to 62K 
bytes for the lS601 or 60K bytes for the ZB611. 
Refer to Chapter 3, Figures 3-5 and 3-6, for 
external memory maps. 

Ports 0 and 1 are configured for external memory 
operation by writing the appropriate bits in the 
Port 0-1 Mode register (Figure 6-3). 

For example, Port 1 can be defined as a multi­

plexed Address/Data port (ADO-AD7) by setting 04 
to 1 and 03 to O. The lower nibble of Port 0 can 
be defined as address lines AS-A"., by setting 01 
to 1. Similarly, setting 07 to 1 defines the upper 
nibble of Port 0 as address lines A12-A15. When­
ever Port 0 is configured to output address lines 
A12-A15' AS-A11 must also be selected as address 
lines. 

R248P01M 

370 

Port 0-1 Mode Register 
(% F8; Write Only) 

PO.-POr MODE I 
OUTPUT = 00 -.J 

INPUT = 01 
A'2-A'5 = 1X 

-r POo-PO, MODE L 00 = OUTPUT 
01 = INPUT 
1X = A"-A,, 

P1o-P1, MODE 
00 = BYTE OUTPUT 
01 = BYTE INPUT 
10 = ADo-AD, 
11 = HIGH·IMPEDANCE ADo-AD,. 

AS. OS. RiW. As-A". A,2-A,5 

Figure 6-3. Ports 0 and 1 External Ma.ory Operation 



Once Port 1 is configured as an Address/Data port, 
it can no longer be used as a register. Attempt­
ing to read Port 1 returns FF; writing has no 
effect. Similarly, if Port 0 is configured for 
address lines A8-A15 , it can no longer be used as 
a register. However, if only the lower nibble is 
defined as address lines A8-A11 , the upper nibble 
is still addressable as an I/O register. Reading 
Port 0 with ,only t'he lower nibble defined as 
address outputs returns XF, where X equals the 
data in bits D4-D7• Writing to Port 0 transfers 
data to the I/O,nibble only. 

An instruction to change the modes of Ports 0 or 1 
should not be immediately followed by an instruc­
tion that performs a stack operation, because this 
may cause indeterminate program flow. In addi­
tion, after setting the modes of Ports 0 and 1 for 
external memory, the next three bytes must be 
fetched from internal program,memory. 

6.. EXTERNAl STACKS 

Z8 architecture supports 
either the register file 

stack operations in 
or data memory. ' A 

stack's location is determined by bit D2 in the 
Port 0-1 Mode register. For example, if D2 is set 
to 1, the stack is in internal data memory 
(F igure 6-4). 

R248 P01M 
Port 0-1 Mode Register 

(% F8; Write Only) 

L STACK SELECTION 
o = EXTERNAL 
1 = INTERNAL 

Figure 6-.. Ports 0 and 1 Stack Selection 

The instruction used to change the stack selection 
bit should not be immediately followed by the 
instructions RET or IRET, because this will cause 
indeterminate program flow. 

External Interface (Z8601,Z8611) 

6.5 DATA MEMORY 

The two external memory spaces, data and program, 
can be addressed as a single memory space or as 
two separate spaces of equal size; i.e., 62K bytes 
each for the ZB601 and 60K bytes each for the 
Z8611. If the memory spaces are separated, 
program memory and 'data memory are logically 
selected by the Data Memory select output (OM). 
DM is available on Port 3, line 4 (P34) by setting 
bits D4 and D3 in the Port 3 Mode register to 10 
or 01 (Figure 6-5). OM is aHive Low during the 
execution of the LDE, LDEI instructions. OM is 
also active during the execution of CALL, POP, 
PUSH, RET and IRET instructions if the stack 
resides in external memory. 

R247 P3M 
Port 3 Mode Register 

(% F7; Write Only) 

o 0 P33 = INPUT 
o 1 P33 = INPUT 
1 0 P33 = INPUT 
1 1 P33 = OAV1/ROY1 

P3. = OUTPUT 
P3. = ijg 
P3. = OM 
P3. = ROY1/0AV1 

Figure 6-5. Data MeIIIory Operation 

6.6 BUS OPERATION 

The timing for typical data transfers between the 
Z8 and external memory is illustrated in Figure 
6-6. Machine cycles can vary from six to twelve 
clock periods depending on the operation being 
performed. The notations used to describe the 
basic timing periods of the Z8 are: machine cycles 
(Mn), timing states (Tn), and clock periods. All 
timing references are made with respect to the 
output signals AS and DS. The clock is shown for 
clarity only and does not have a specific timing 
,relationship with other signals. 

371 



External Interface ( Z8601 ,Z8611') 

r 
MACHINE CYCLE 

'I T1 T2 I T3 

CLOCK 

PO X A ... A15 x= 
P1 X Ao~A7 ) B C 

AS '---I '--
\ / 

RlW 7 ,C 

X L 
I· READ CYCLE 'I 

Figure 6-6&. External IllIJtruction Fetch, or "-n:y Read Cycle 

6.6.1 AcIdr_ Strobe (AS) 

All transactions start with AS driven Low and then 
raised High by the Z8. The rising edge of AS 
indicates that R/W, iiM, and the addresses output 
fr'om PortS 0 and 1 are ~alid. The addresses 
output via Port 1 remain valid only during MnT1 
and typically need to be latched using AS, whereas 
Port 0 address outputs remain stable throughout 
the machine ccycle • 

6.6.2 Data StrObe 

The Z8 uses 55 to time the actual data transfer. 
For Write operations (R/W = Low), a Low on OS 

'indicates that valid data is on the Port 1 AOO-A07 
lines. For Read operations, (R/W = High), the 
Address/Oata bus is placed in a high-impedance 
state before driving OS low so thatcthe C addressed 
device can put its data on the bus. The Z8 sam­
ples this data prior to raising OS High. 

372 

6.6.3 External MB.Dry Operations 

Whenever the Z8 is configured for external memory 
operation, the addresses of all internal program' 
memory references appear on the external bus. 
This should havecno effect on the external system 
since the bus control lines, 55 and R/W, remain in 
their inactive c High state. OS and R/W become 
active only during external memory references. 

cCAUTION 

00 not use LOC, LOCI, LOE or LOEI to 
write to, internal program memory. The 
execution of these instructions causes 
the Z8 to assume that an externalcwrite 
operation is being performed and tl:lis 
will sctivate control signals 55 and 
R/W. 



External Interface (ZB601,ZB611) 

I' 
MACHINE CYCLE 

Tl T2 T3 

CLOCK 

PO X As-Au X 
P1 X Ao-A7 X Do-D7 OUT X 

AS \..J '---
OS \ / 

R/W ~ r= 
OM X X 

I· WRITE CYCLE ·1 

figure 6-6b. External Meaory Write Cycle 

6.7 SHARED IlUS 

Port 1, along with AS, 55, R/W, and Port 0 nibbles 
configured as address lines, can be placed in a 
high-impedance state, allowing the ZB601 or the 
ZB611 to share common resources with other bus 
masters. This shared bus mode is under software 
control and is programmed by setting Port 0-1 Mode 
register bits D4 and D3 both to 1 (Figure 6-7). 

Data transfers can be controlled by assigning, 'for' 
example, P33 as a Bus Acknowledge input and P34 as 
a Bus Request output. Bus Request/Acknowledge 
control sequences must be software driven. 

R248 P01M 
Port 0-1 Mode Register 

(% F8; Write Only) 

Plo-Pl, MODE 
00 = BYTE OUTPUT 
01 = BYTE INPUT 
10 = ADo-AD, 
11 = HIGH·IMPEDANCE ADo-AD7. 

AS. OS. R/W. A8-All. A12-A15 

figure 6-7. Shared Bus Operatioo 

373 



External Interface (ZBIl01,ZB611). 

6.8 EXTENDED BUs TIMING 

The ZB601 and Z8611 can accommodate slow memory 
access times by automatically inserting an addi­
tional state time (Tx) into the bus cycle. This 
stretches the liS timing by two clock periods, 
though· internal memory accesS time is not 
affected. Timing is extended by setting ~it 05 in 
the Port 0-1 Mode register to 1 (F"igure 6-B). 

F"igures 6-9a and 6-9b illustrate extended memory 
Read and Write cycles. 

R248 P01M 
Port 0-1 Mode Register 

(% F8; Write Only) 

EXTERNAL MEMORY TIMINGJ 
NORMAL = 0 

"EXTENDED = 1 

·ALWAYS EXTENDED TIMING AFTER RESET EXCEPT Z8682 

F"igure 6-8. Ext~nded 8us TiMing 

I' 
MACHINE CYCLE 

' 1 
T1 T2 Tx T3 

CLOCK 

PO =x Aa-A15 x= 
P1 =x Ao-A7 ) ( 00-07 IN >---C 

AS~ '-
OS \ I 

R/W :J C 
OM =x x= 

I, READ CYCLE 'I 

figure 6-9a. Extended External Instruction fetch, or MeIIory Read Cycle 

374 



6.9 INSTRUCTION TIMING 

The high throughput of the ZB is, due, in part, to 
the uae of instruction, pipelining, in which the 
instruction fetch and execution cycles are over­
lapped. During the execution of an instruction, 
the opcode of the next inatruction is fetched. 
This is illustrated in Figure 6-10. 

Figures 6-11 and 6-12 show typical instruction 
cycle timing for instructions fetched' from exter­
nal memory. (It should be noted that all instruc-

External Inter face (ZB601 ,ZI!61J) 

tion fetch cycles have the same machine timing 
regardless of whether memory, is internal or' exter­
nal.) For those instructions that raquire execu­
tion time longer then that of the overlapped 
fetch, or instructions that reference program or 
data memory as part of their execution, the pipe 
must be flushed. In order to calculate the execu­
tion time of a program, the internal clock periods 
shown in the cycles column of the instruction for­
mats in Section 5.4 should be added together. The 
cycles are equal to 'one-half the crystal or input 
clock rate. 

I' TI 

~------------------~T--2 MACHINECYCLE-T-X--------------T3------'~1 

CLOCK 

PO =x 
P1 =x Ao-A7 X 
AS~ 

IlS \'------~ 
R/W \ 
OM =x 

I----------,.---WRITE CYCLE ------------1 . I' 

Figure 6-91». Extended External "-ary Write Cycle 

375 



~ 

INTERNAL 
CLOCK 

INSTRUCTION 
N 

INSTRUCTION 
N+1 

INSTRUCTION 
N+2 

'" x ..... 
'" ,., 
:::l ., .... 
.... 
:::l ..... 
'" ,., 
..... 
~ 
'" M, M2 M, M2 M, M2 'I ~ 

INSTRUCTION 
FETCH 1 

INSTRUCTION 
FETCH 2 

OPERAND 
FETCH(ES) ALU STORE 

EXECUTION CYCLE 

INSTRUCTION 
FETCH 1 

INSTRUCTION 
FETCH 2 

I.. EFFECTIVE -I" HIDDEN DELAY -I 
EXECUTION TIME U,NTIL COMPLETION 

I_ INSTRUCTION COMPLETION TIME - I 

figure 6-10. Instruction Pipelining 

OPERAND 
FETCH(ES) ALU STORE 

EXECUTION CYCLE 

INSTRUCTION 
FETCH 1 

INSTRUCTION 
FETCH 2 

'" ~ 
N 
CD 

~ 



~ 

M, M2 M, 

r- T, T2 L _Ts __ J T, T2 Ts T, T2 Ts 

CLOCK 

PO ___ .-J 

P1 X ,,<>-A7 ) ~ ,,<>A7 > ~ 
~ ~ 

AS '-./,---------..'-1 \....J 

OS I \ I \ I 
RIW I 

FETCH INSTRUCTION .j- FETCH 1ST BYTE OF NEXT INSTRUCTION -I 

Figure 6-11. Instrllction Cycle Tboing (One Byte Instructioos) 

M, M2 M,ORMs 
T, T2 u ,- T.-T,-T-r;-r==r;-C-r;-r--r,- I T. ul 

CLOCK 

PO =::x:: A.-A,. =::x A.-A,. X A.-A,. 

P1 X ,,<>A7 ) ~ ,,<>-A7 ). ~ ,,<>-A7 ) ~ 

AS 'L...J '-.I '--' 
OS \ I \ I \ I 

RlW I 

I- FETCH 1ST BYTE .1 FETCH 2ND BYTE -I· FETCH 3RD BYTE (3-BYTE INSTR.) 
FETCH 1 ST BYTE (1 or 2 BYTE INSTR.) 

Figure 6-12. Instruction Cycle TUing (Tw and Three Byte Instructions) 

'" x ... 
<II .., 
::J 
III .... 
..... 
::J ... 
<II ,., 
..... 
III 
(') 
III 

~ 

~ 
g 
~ 
~ 



External Interface (Z8601, Z8611) 

6.10 RESET CONDITIONS internal, extended timing is set' and OM is 
inactive. Figure 6-13 shows the binary values 
reset into P01M. After a hardware reset, Ports 0 and 1 are con­

figured as input ports, memory and stack are 

378· 

R248 P01M 
Port 0-1 Mode Register 

(% F8; Write Only) 

PO.-P07 MODE:] 
OUTPUT = 00 -.J 

INPUT = 01 
A12-A15 = ~X 

EXTERNALMEMORY TIMING 
NORMAL = 0 

"EXTENDED = 1 

[:

' POD-PO, MODE L 00 = OUTPUT 
01 = INPUT 
1X = A.-A" 

STACK SELECTION 
o = EXTERNAL 
1 = INTERNAL 

P1 o-P1 7 MODE 
00 = BYTE OUTPUT 
01 = BYTE INPUT 
10 = ADo-AD7 
11 = HIGH·IMPEDANCE ADo-AD7. 

AS. OS. R/VI. Ae-A11. A12-A15 

"ALWAYS EXTENDED TIMING AFTER RESET EXCEPT Z8682 

figure 6-13. Ports 0 and 1 Reset 



1 • 1 INTRIIlUCTION 

The ROM less versions of the ZB microcomputer have 
40 external pins, of which 24 are programmable I/O 
pins. Of the remaining 16 pins, B form an 
Address/Data bus and the others are used fop power 
and control. Up to B I/O pins can be programmed 
as additional address lines to be used for 
external memory interface. 

1.2 PIN DESCRIPTIONS 

AS. Address Strobe (output, .:tive Low, pin 9). 
Address Strobe is pulsed Low once at the beginning 
of each machine cycle. The rising edge of AS 
indicates that addresses, Read/Write (R!W), and 
Data Memory (OM) signals are valid when output for 
program or data memory transfers. 

REm +5V 

RiW GND 

OS XTALl 

AS XTAL2 

. POo P20 

PO, P2, 

PO. P2, 
PORTO PORT~ 
(NIBBLE PO. P2. (BIT PRO. 

PROGRAMMABLE) PO. P2. GRAMMABLE) 
1/0 OR A,-A" 1/0 

PO. Z8681/82 P2. 

PO. MCU P20 
PO, P2, 

Pl0 P30 

Pl, P3, 

Ph P3. PORT 3 
(FOUR INPUT; 

Chapter 7 
Externallnterfac:e. 
(Z8681, Z8682) 

Os. Data Strobe (output, active Low, pin B). 
Data Strobe provides the timing for data movement 
to or from Port 1 for each memory transfer. 
During a Write cycle, data out is v!!lid at the 
leading edge of OS. During a Read cycle, data in 
must be valid prior to the trailing edge of OS. 

R!W. Read/lfrite. (output, pin 1). Read/Write 
determines the direction of data transfer for 
memory transactions. R/W is Low when writing to 
program or data memory, and High for all other 
transactions. 

P01-P01' Address/Data Port (inputs/outputs, TTL­
cOIIIpatible, pins 13-20). Port 1 is permanently 
configured as a multiplexed Address/Data memory 
interface. The lower eight address lines (AO-A7) 
are multiple~ed with data (00-07)' 

+5V P3. 

XTAL2 2 P3, 

XTALl 3 P2, 

P3, 4 P2. 

P30 P2. 

ifEm 6 P2. 

RIW 7 P23 

DS 8 P2. 

AS 9 P2, 

P3. 10 Z8681182 31 P20 

GND 11 MCU 1'3. 

P3. 12 P3, 

POo 13 Pl, 

PO, 14 Pl. 

PO. 15 Pl. 
PORT 1 Pl. P3. FOUR OOTPun PO. 16 Pl, 
ADo-AD, P3. SERIAL AND 

PARALLFL 1/0 PO. 17 Pl. 
P3. AND CONTROL 

PO. 18 Pl. 
P3. 

PO. 19 22 Pl, 
P3, 

PO, 20 21 Pl0 

379 



E~ternal Interface (Z8681,Z8682) 

POir~, P2g...:pZ7' P30-P3-J. I/O Port Lines 
U,...i:s/ootjiuts, TR-c:oqJatible). These 24 I/O 
lines' are divided into 3 8-bit I/O ports that csn 
be configured under program control for I/O or 
memory interface. Individual lines of a port are 
denoteCl by the second digit of the port number. 
for example, P30 refers to bit 0 of Port 3. 

RESET. Reset (t,...t, active Low, pin 6). RESET 
initializes the. Z8681/82. When RESET is 
de,activated, program execution begins from 
external program location, %C for the Z8681 and 
location %812 for the Z8682. If held Low, RESET 
acts as a register file protect during power-down 
and power-up sequences. 

; 

XTAL 1, XTALZ. Crystal 1, Crystal Z (oscillator 
input and output, pins 3 and Z). These pins 
conn~ct a parallel resonant crystal or an external 
source to the on-board clock oscillator and buf­
fer. 

7.3 CONFIGURING PORT 0 

The minimum bus configuration uses Port 1 as a 
multip.lexed Address/Data port (AOO-AD7) allowing; 
access to 256 bytes of memory. In this configura-

A 

tion, the eight low order address bits (AO-A7) are 
multiplexed with the dal'a (00-07)' 

Port 0 can be programmed to provide either four 
additional address lines (A8-A11) which increases 
the addressable memory to 4K bytes, or eight 
additional ~ddress lines (Aa-A15) which increases 
the addressable memory to 64K bytes for the Z8681 
and 62K bytes for the Z8682. Refer to Chapter 3, 
figures 3-5 and 3-6, for the memory maps. ' 

In the Z8681 , Port 0 lines intended Tor use as 
address lines are 
inputs after a Reset. 

automatically configured as 
These lines therefore float 

and their logic state remains unknown until an 
initialization routine configures Port O. In the 
Z8682, Port 0 lines are configured as address 
lines A8-A15 following a Reset. 

7.3.1 Z8681 Initialization 

The initialization routine must reside within the 
first 256 bytes of executable code and must be 
physically mapped into memory by forcing the port 
o address lines to a known state~ Figures 7-3 and 
7-4 illustrate how a 4K byte memory space can be 
addressed. 

~ 

PORT1 / ADo-AD7 

\ 

380 

r 
AS, Os, RJW 

Z8681 
POo As 

PROGRAM 
MCU MEMORY 

1/2 PORT 0 { 

P01 As (4K BYTES) 

P02 A10 

P03 A11 

Vee 

The initialization routine is mapped in the top 256 bytes of program memory. Depending on the 
application, the interrupt vectors may need to be written in the first 12 byte locations of program 
memory by the initialization routine. 

Figure 7-3. Example Z8681AMe-ory Interface 



A 
'" PORT 1 K ADo-AD7 ) 

~ r 
AS,~,R/W 

POO 
18 

As ,. 1b 
PROGRAM 

Z8881 
PO" A9 

MEMORY 

28 (4K BYTES) 

112 PORT 0 ~ 2b 
P02 LS157 A'0 

38 

~ 3b 
, 

P03 
48 A" 

~ 4b 

~TROBE SELECT 
":;" 

R/W 
R Q 

S 

The Initialization routine is mapped in the first 256 bytes of program memory. Any memory write 
operation will cause the flip-flop to select Port 0 outputs as addresses. 

Figure 7-4. Example Z8681/Me.ory Interface 

Port 0 is programmed for memory operation by writ­
ing the appropriate bits in the Port 0-1 Mode reg­
ister (Figure 7-5). The proper' port initializa­
tion sequence is: 

• Load Port 0 with initial address value. 

• Configure Port 0-1 Mode register. 

• Fetch the next three bytes without changing the 
address in Port O. (This is necessary due to 
fnstruction pipelining.) 

R248 P01M 
Port 0-1 Mode Register 

(% F8; Write Only) 

I 0,\ 0.\ 
PO.-PO, MODE I 

OUTPUT = 00 ~ , 
INPUT = 01 

A'2-A15 = 1X 

--r PO,o-P03 MODE L 00 = OUTPUT 
01 = INPUT 
1X = As-A" 

Figure 7-5. Z8681 Port 0 Memory Operation 

The lower nibble of Port 0 can be defined as 
address lines AB-A11' by setting 01 to 1. 
Similarly, setting 07 to 1 defines the upper nib­

ble of Port 0 as address lines A12-A15. 

Whenever Port 0 is configured to output address 
lines A12-A15 , A8-A11 must also be selected as 
address lines. 

7.l.Z Z8682 Initialization 

The lB682 must be operated in Test mode only. 
Section 8.4 gives a complete description of the 
proper technique for entering Test mode. 

The user initialization routine must begin at 
location %812 ,and must reside in memory fast 
enough for normal memory timing. In the ZB682, 
the user is not protected from reconfiguring 
Port 1 by writing to R24B (P01M). Therefore 
whenever a write is made to P01M, the value 10 
(binary) must be written to bits 04 and 03. Any 
other value will cause complete loss of program 
control. 

381 



External Interface (Z8681,Z8682) 

The lower nibble of Port 0 can be defined as 
address lines A8-A11' by setting D1 to 1. Simi­
larly, setting D7 to 1 defines the upper nibble of 
Port 0 as address iines A12-A15' 

Whenever Port 0 is configured to output address 
lines A1TA15' A8~A11 must also by selected as 
address lines. 

7.3.3 Read/Write Operations 

If Port 0 is configured for address lines A7-A15' 
it can no longer be used as a register; however, 
if only the lower nibble of Port 0 is defined as 
address lines A8-A11' the upper nibble is' still 
addressable as an I/D' register. When only the 
lower nibble is defined as address outputs, read­
ing Port 0 returns XF, whe.re X equals the data in 
bits D4-D7' Writing to Port 0 transfers data to 
the I/O nibble only. 

The instruction used to change the mode of Port 0 
should not be immediately followed by an instruc­
tion that performs a stack operation, because this 
will cause indeterminate program flow. In addi­
tion, after setting the mode of Port 0 for memory, 
the. next 'three bytes must be fetched without 
changing the value of the upper byte of the Pro­
gram Counter (PC). 

7.4 EXTERNAL STACKS 

The Z8681/82 architecture supports stack opera­
tions in either the register file or data memory. 
A stack's location is determined by bit D2 in the 
Port 0-1 Mode register. For example, if D2 is set 
to 0, the stack is in external data memory 
(Figure 7-7). 

The instruction used to change the stack selection 
bit should not be immediately followed by the 
instructions RET or IRET, because this will cause 
indeterminate program flow. 

7.5 DATA MEMORY 

The two memory spaces, data and program, can be 
addressed as a single memory space or a~ two 
separate spaces of equal size; i.e. 64K bytes each 
for the Z8681 and 62K bytes each for the Z8682. 
If the memory spaces are separated, program memory 
and data memory are logically selected by Data 
Memory select output (OM). DM' is made available 
on Port 3, line 4 (P34) by setting bits D4 and D3 
in the Port 3 Mode register to 10 or 01 (Figure 
7-8). OM is active Low during the execution of 
the LDE, LDEI instructions. DM is also active Low 
during the execution of CALL, POP, PUSH, RET and 
IRET instructions if the stack resides in memory. 

R248 P01M 

382 

Port 0-1 Mode Register 
(% F8; Write Only) 

P04 -PO, MODE --,­
OUTPUT = 00 ~ 

INPUT = 01 
A,,-A15 = 1X 

-r POo-POa MODE L 00 = OUTPUT 
01 = INPUT 
1X = A.-A" 

L..... _____ P1o-P), MODE 
10 = ADo-AD, 

Figure 7-6. Z8682 Port 0 Memory Operation 



R248 P01M 
Port 0-1 Mode Register 

(% F8; Write Only) 

L STACK SELECTION 
o = EXTERNAL 
1 = INTERNAL 

figure 7-7. External Stack Operation 

R247 P3M 
Port 3 Mode Register 

(% F7; Write Only) 

o 0 P33 = INPUT 
o 1 P33 '= INPUT 
1 0 P33 = INPUT 
1 1 P33 = DAV1/RDYl 

P34 = OUTPUT 
P34 = OM 
P34 = OM 
P34 = RDY1/DAVl 

figure 7-8. Port J Data ..... ry Operation 

7.6 BUS OPERATION 

Typical data transfers between the Z8681/82 and 
memory are illustrated in Figure 6-6. Machine 
cycles can vary from six to twelve clock periods 
depending on the operation being performed. The 
notations used to describe the basic timing 
periods of the Z8681/82 are: machine cycles (Mn), 
timing states (Tn), and clock periods. All timing 
references are made with respect to the output 
signals AS and 55. The clock is shown for clarity 
only and does not have a specific timing relation­
ship with other signals. 

7.6.1 Address Strobe (AS) 

All transactions start with AS driven low and then 
raised High by the Z8681/82. The rising edge of 
AS indicates that R/W, OM (if used), and the 
addresses output from Ports 0 and 1 are valid. 
The addresses output via Port 1 remain valid only 
during MnT1 and typically need to be latched using 
AS, whereas Port 0 address outputs remain stable. 
throughout the machine cycle. 

7.6.2 Data Strobe (OS) 

The Z8681/82 uses 55 to time the actual data 
transfer. For Write operations (R/W = low), a low 
on 55 indicates that valid data is on the Port 1 
AOO-AD7 lines. For Read operations (R/W = High), 
the Address/Data bus is placed in a high-impedance 
st.ate before driving 05 low so that the addressed 
device can put its data on the bus. The Z8681/82 
samples this data prior to raising OS High. 

7.7 EXTENDED BUS TIMING 

The Z8681/82 accommodates slow memory access times 
by automatically inserting an additional software­
controlled state time (Tx). This stretches the OS 
timing by two clock periods. Timing is extended' 
by setting bit DS in the Port 0-1 Mode register to 
1 (Figure 7-9). 

Refer to Section 6.7 for other figures pertaining 
to extended bus timing. 

R248 P01M 
Port 0-1 Mode Register 

(% F8; Write Only) 

EXTERNAL MEMORY TIMINGJ 
NORMAL = 0 

* EXTENDED = 1 

"ALWAYS EXTENDED TIMING AFTER RESET EXCEPT Z8682 

Figure 7-9. Extended 8us Tilling 

383 



Externel Interface (ZB6B1,ZB6B2) 

7.8 INSTRUCTION·TIMING 

The high throughput of the ZB6B1/B2 is due, in 
part, to the use of instruction pipelining, in 
which the instruction fetch and execution cycles 
are overlapped. During the execution of the cur­
rent instruction the opcode of the next instruc­
tion is fetched as illustrated in Figure 6-10. 

Figures 6-11 and 6-12 show typical instruction 
cycle timing for instructions fetched from mem­
ory. For those instructions that require execu­
tion time longer than that 'of the overlapped 
fetch, or reference program or data memory as part 
of their execution, the pipe must be flushed. In 
order to calculate the execution time of a pro­
gram, the internal clock periods shown in the 
cycles column of the instruction fOrmats in Sec­
tion ~.6 should be added together. The cycles are 
equal to one-half the crystal or input clock' rate. 

7.9 Z8681 RESET ClJN)ITIONS 

A fter a hardware reset, Port 0 is configured as 
input port, extended timing is set to accommodate 
slow memory . access during the configuration 
routine, OM is inactive, and the stack ~esides in 
the register file. Figure 7-10 shows the binary 
values reset into P01M •. 

7.10 Z868Z RESET ClJN)ITIONS 

A fter a hardware reset, Port 0 is 'configured as 
sddress lines AB-A15' memory timing is normal, OM 
is insctive, and the stsck resides in the register 
file. Figure 7-11 shows the binary vslues reset 
into P01M. 

R248 P01M 

384 

Port 0-1 Mode Register 
(% F8; Write Only) 

PO._PO,MODE:] 
OUTPUT = 00 --.J 

INPUT = 01 
A,.-A,. = 1X 

EXTERNAL MEMORY TIMING 
NORMAL = 0 

'EXTENDED = 1 

c: POo-POa MODE , L 00 = OUTPUT 
. 01 = INPUT 

1X = As-A" ' 

STACK SELECTION 
0= EXTERNAL 
1 = INTERNAL 

'ALWAYS EXTENDED TIMING AFTER RESET EXCEPT Z8882 

.Figure 7-10. Z8681 Port 0 ... 1 Reset Conditions 

R248,P01M 
Port 0-1 Mode Register 

(% F8; Write Only) 

PO._PO,MODE:] OUTPUT .. 00 --.J 
INPUT .. 01 

. A12"A,5 .. 1X 

EXTER.NAL MEMORY TIMING 
NORMAL .. 0 . 

EXTENDED = 1 

I [ ~:.:\~~. 01 .. INPUT 
1X .. As-A" 

STACK SELECTION 
0= EXTERNAL 
1 .. INTERNAL 

P10-P1, MODE 
'------ 10 = ADo-AD, 

Figure 7-11~ Z868Z Port. 0 ... 1 Reset Conditions 



8.1 RESET 

This section describes ZB reset conditions, reset 
timing, and register initialization procedures. 

A system reset overrides all other operating con­
ditions and puts the ZB into a known state. To 
initialize the chip' s internal logic, the reset 
input must be held Low for at least 1 B clock 
periods. 

While RESET is Low, AS is output at the internal 

Chapter 8 
Reset and Clock 

clock rate (XTAL frequency divided by 2), 55 is 
forced Low and R!W remains High. (Zilog Z-BUS com­
patible peripherals use the ii!i and 55 coincident 
Low state as a peripheral reset function.) In 
addition, interrupts are disabled, Ports 0, 1, and 
2 are put in input mode, and %C is loaded into the 
Program Counter. 

The hardware Reset initializes the control and 
peripheral registers, as shown in Table B.1. 
Specific reset values are shown by 1s or Os, while 
bits whose states are unknown are indicated by the 

Table 8-1. Cootrol and Peripheral Register Reset Values 

Register 

%FO Serial I/O 
%F1 Timer Mode 

%F2 Counter/Timer 

%F3 f1 Prescaler 

%F4 Counter/Timer 0 
%F5 TO Prescaler 

%F6 Port 2 Mode 
%F7 Port 3 Mode 

%F8 Port 0-1 Mode 
Z8601/Z8611 

%FB Port 0-1 Mode 
ZB681 

%F8 Port 0-1 Mode 
Z8682 

%F9 Interrupt Priority 
%FA Interrupt Request 
%FB Interrupt Mask 
%FC Flags 
%FO Register Pointer 
%FE Stack Pointer 
%FF Stack Pointer 

I? D6 D5 D4 0, Dz Dl Do 

undefined 
0 0 0 0 0 0 0 0 

undefined 

u u u u u u 0 0 

undefined 
u u u u u u u 0 

0 0 0 0 0 0 u 0 

n 1 o o 

o o 

o 0 o o 

undefined 
u u 0 0 0 0 0 0 
0 u u u u u u u 
undefined 
undefined 
undefined 
undefined 

Counter/Timers stopped 

Single Pass count mode, 
external clock source 

Single Pass count mode 

All lines input 
Port 2 open-drain 
P30-P33 in~ut; P34-P37 output 

Ports 0 and 1 inputs; internal stack; 
extended external memory timing 

Port 0 inputs 
Port 1 Address/Data; internal stack; 
extended external memory timing 

Port 0 Address 
Port 1 Address/Data 
internal stack; normal external 
memory timing 

Reset all interrupt disabled 
Interrupts disabled 

Most significant byte 
Least significant byte 

385 



Reset and Clock 

letter u. Registers that are not predictable are 
listed as undefined. 

Program execution starts four clock cycles after 
RESET has returned High. The initial instruction 
fetch is from location %C. Figure 8-1 shows reset 
timing. 

After a reset, the first program executed should 
be a routine that init ia lizes the control regis­
ters to the required system configuration. The 
Interrupt Request register remains inactive until 
an EI instruction is executed. This guarantees 
that program execution can proceed free from 
interrupts. 

RESET is the input of a Schmitt trigger circuit. 
To form the internal reset line, the output' of the 
trigger is synchronized with the internal clock 
(xtal frequency divided by 2). The clock must 
therefore be running for RESET to function. For a 
power-up reset operation, the RESET input must be 
held Low for at least 50 ms after the power supply 
is within tolerance. This allows the on-board 
clock oscillator to stabilize. An internal 
pull-up combined with an external capacitor of 
1 eF provides enough time to properly reset the Z8 
(Figure 8-2). 

R/W 

Figure B-1. 

386 

8.2 CLOCK 

The Z8, derives its timing from on-board clock 
circuitry connected to pins XTAL1 and XTAL2. The 
clock circuitry consists of an oscillator, a 
divide-by-2 shaping circuit, and a clock buffer. 
Figure 8-3 illustrates the clock circuitry. The 
oscillator's input is XTAL1; its output is XTAL2. 
The clock can be driven by a crystal, a ceramic 
resonator, or an external clock source. 

Crystals and ceramic resonators should have the 
following characteristics to ensure proper oscil­
lator operation: 

Cut: AT (crystal only) 
'Mode: Parallel, Fundamental 
Capacitance 30 pF max 
Resistance: 100 ohms max 

Depending on operation frequency, the oscillator 
may require the addition of capacitors C1 and ct 
(shown in Figure 8-4). The range of recommended 
capacitance values is dependent on crystal speci­
fications but should not exceed 15 pF. The ratio 
of the values of C1 to C2 can be adjusted to shift 
the operating frequency of the circuit by approxi­
mately t.005%. 

Reset TiJling 

FIRST MACHINE CYCLE 

Tl 

I- FIRST INSTRUCTION FETCH 
I 



Reset and Clock 

+5V 

100 
KII 

XTXTAALL21 ~ OSC H,, ___ .. ~ ... 2 INTERNAL 
CLOCK 

BUFFER 

1K RESET 

Figure 11-2. Pmer;-Up Reset Circuit 

When an external frequency source" is used, it must 
drive both XTAL1 and XTAL2 inputs. This differen­
tial drive requirement arises from the loading on 
the oscillator ~utput (XTAL2) without the reactive 
feedback network of a crystal or resonator. A 
typical clock interface circuit is shown in Figure 
8-5. 

The capacitors shown represent the maximum para­
sitic loading when using a 74LS04 driver. The 
pull-up resistors can be eliminated by using a 
74HC04 driver. 

Figure 11-,. Z8 Clock Circuit 

Z8 

Figure 8-4. Crystal/teraaic Resonator OBC~llator 

CLOCK 
IN 

+5V +5V 

1.5k 1.5k 

74LS04 74LS04 

><>-... - ........ ::~-............ - XTAL2 

I CST~AY = 
15 pF MAX 

'------_ XTAL1 

I CSYRAY = 
15 pF MAX 

Figure 11-5. Extemal Clock Interface 

387 



9.1 INTRODucTION 

The Z8 has 32 lines dedicated to input and out­
put. These lines are grouped into four 8-bit 
ports and ar:e configurable as input, output, or 
address/data. Undel,' software control, the ports 
can be programmed to provide address/data, timing, 
status, serial, and parallel input/output with or 
without handshake. 

All ports have active pull-ups and pull-downs 
compatible with TTL loads. In addition, the 
pull-ups of Port 2 can, be' turned off for 
open-drain op~ration. 

9.1.1 Mode Registers 

Each port has an associated mode register which 
determines the port's functions and allows dynamic 
change in port functions during program execu­
tion. Ports and mode registers are maPped into 
the register file as shown in Figure 9-1. 

Because of their close association, ports and mode 
registers are treated like any other g,eneral-pur­
pose register. There are no special instructions 
for port manipulation; any instruction that 
addresses a register can address the ports. Data 
can be directly accessed in the port register, 
with no extra moves. 

DEC 

248 

247 

248 

4 

3 

2 

1 

o 

PORTS 0-1 MODE 

PORT 3 MODE 

PORT 2 MODE 

PORT 3 

PORT 2 

PORT 1 

PORTO 

HEX IDENTIFIERS 

Fa P01M 

F7 P3M 

Fe P2M 

04 

03 P3 

02 P2 

01 P1 

00 PO 

Figure 9-1. I/O Port and Port Mode Registers 

388 

Chapter 9 
1/0 'oris 
9.1.2 Input and Output Registers 

Each bit of Ports 0, 1, and 2 has an input regis­
ter, an output register, associated buffer, and 
control logic. Since there are separate input and 
output registers associated with 'each port, writ­
ing to bits defined aa inputs stores the data in 
the output, register. This data cannot be read as 
long as the bits are defined as inputs. However, 
if the bits are reconfigured as output, the data 
stored in the output register is reflected on the 
output pins and can then be read. This mechanism 
allows the user to initialize the outputs prior to 
driving their loads. 

,Since port inputs are asynchronous to the Z8' s 
internal clock, a Read operation could occur 
during an input transition., In this case, the 
logic level might be' uncertain--somewhere between 
a logic 1 and O. To eliminate this meta-stable, 
condition, the Z8 latches the input data two clock 
periods prior to the execution of the current 
instruction. The input register uses these two 
clock periods to stabilize to a I egitimate logic 
level before the instruction reads the data. 

9.2 ,PORT 0 

This section deals only with the I/O operation of 
Port O. Refer to Sections 6.2 and 7.2 for a 
description of the port's external memory inter­
face operation. 

Port 0 is a general I/O port. Bits within each 
nibb Ie can be independently programmed as inputs, 
outputs or address lines. Figure 9-2 shows a 
block diagram of Port O. This diagram also 
applies to Ports ,. and 2. 



INPUT REGISTER INPUT BUFFER 

A 1..1 1..1 
8 

~ 
8 

l\f ., 

~~~~-r--- E ~I--INTERNAL 
TIMING 

HANDSHAKE SELECTED 
HANDSHAKE 

8 
WRITE LOGIC 

PORT 

~ 

t.. t.. 
8 8 

--y r 

OUTPUT ENABLE_ 

INTERNAL BUS OUTPUT REGISTER OUTPUT BUFFER 

Figure 9-2. Ports 0, 1, a1d 2 Block Diagr .. 

~ 
<0 

8 

"" 
,... 

I 

8 

~ 

:> r 
PORT 110 
LINES 

DAy/RDY 

RDY/DAY 

..... 
'­o 
." 
o 
" .... 
'" 



9.2.1 Read/Write Operations 

In the nibble I/O mode, Port 0 is accessed as gen­
eral-purpose register PO (%00). The port is writ­
ten by specifying PO as an instruction's destina­
tion register. Writing the port causes data to be 
stored in the port's output register. 

The port is read by specifying PO as the source 
register of an instruction. When an Qutput nibble 
is read, data on the external pins is retu~ned. 

Under normal loading conditions this is equivalent 
to reading the output register. Reading a nibble 
defined as input also returns data on the external 
pins. However, input bits under handshake control 
return data latched into the input register via 
the input strobe. 

The Port 0-1 Mode register bits 0100 and 0706 are 
used to configure Port 0 nibbles (Figure 9-3). 
The lower nibble (POO-P0 3) can be defined as 
inputs by setting bits 01 to 0 and 00 to 1, or as 
outputs by setting both 01 and 00 to O. likewise, 
the upper nibble (P04-P07) can be defined as 
inputs by setting bits 07 to 0 and 06 to 1, or as 
outputs by setting both 06 and 07 to O. 

9.2.2 Handshake Operation 

When used as an I/O port, Port 0 can be placed 
under handshake control by programming the Port 3 
Mode register bit 02 to 1 (Figure 9-4). In this 
configuration, handshake control lines are OAVO 
(P3Z) and ROYO (P3s) when Port 0 is an input port, 
or ROYO (P32) and OAVO (P3S) when Port 0 is an 
output port. 

Handshake direction is determined by the configu­
ration (input or output) assigned 'to Port 0' s 
upper nibble, P04-P07. The lower nibble must have 
the same I/O configuration as the upper nibble to 
be under handshake control. Figure 9-5 illus­
trates the Port 0 upper and lower nibbles, and the 
associated handshake lines of Port 3. 

Handshake operation is discussed in detail in Sec­
tion 9.6. 

390 

R248 P01M 
Port 0-1 Mode Register 

(% F8; Write Only) 

I/o Ports 

PO.-P07 MODE ----r­
OUTPUT = 00 .-J 

INPUT = 01 

~ PO.-P03 MODE L 00 = OUTPUT 
01 = INPUT 
1X = As-A" A'2-A'5 '* 1X 

Figure 9-3. Port 0 I/O Operation 

R247 P3M-
Port 3 Mode Register 

(% F7; Write Only) 

L, '" . "'"' 1 P32 = DAVO/RDVO 
P3s = OUTPUT 
P3s = RDVO/DAVO 

Figure 9-4. Port 0 Handshake Operation 

} 
P04- P07 } PORT 0 ' 
POO-P03 (I/O OR AS-A15) 

_ } HANDSHAKE CONTROLS 
DAVo AND RDVo 
(P32 AND P3s) 

Figure 9-5. Port 0 



I/O Ports 

9.3 PORT 

This section deals only with the I/O operation of 
Port 1 and does not apply to the ZB6B1/B2 ROMless 
devices. Refer to Sections 6.2 and 7.2 for a 
description of the port's external memory inter­
face operation. 

Port 1 is a general-purpose I/O port that can be 
programmed as a byte I/O port with or without 
handshake, or as an address/data port for inter­
facing with external memory. Refer to Figure 9-2 
for a block diagram of Port 1. 

9.3.1 Read/Write Operations 

In byte input or byte output mode, the port is 
accessed as general-purpose regIster P1 (%01). 
The port is written by specifying P1 as an 
instruction's destination register. Writing the 
port causes data to be stored in the port's output 
register. 

The port is read by specifying P1 as the source 
register of an instruction. When an output is 
read, data on the external pins is returned. 
Under normal loading conditions, this is equiva­
lent to reading the output register. When Port 1 
is defined as an input, reading also returns data 
on the external pins. However, inputs under hand­
shake control return data latched into the input 
register via the input strobe. 

Using the Port 0-1 Mode register, Port 1 is con­
figured as an output port by setting bits D4 and 
D3 to Os, or as an input port by setting 04 to 0 
and OJ to 1 (Figure 9-6). 

R248 P01M 
Port 0-1 Mode Register 

(% F8; Write Only) 

P1 o-P1 7 MODE 
00 = BYTE OUTPUT 
01 = BYTE IN PUT 
10 = ADo-AD7 
11 = HIGH·IMPEDANCE ADo-AD7, 

AS, OS, RtW, As-A11o A12-A15 

Figure 9-6. Port 1 I/O Operation 

9.3.2 Handshake Operations 

When used as an I/O port, Port 1 can be placed 
under handshake control by programming the Port J 
Mode register bits 04 and 03 both to 1 (Figure 
9-7). In this configuration, handshake control 
lines are DAY1 (PJ3) and ROY1 (P34) when Port 1 is 
an input port, or ROY1 (PJ3) and DAV 1 (P34) when 
Port 1 is an output port. 

R247 P3M 
Port 3 Mode Register 

(% F7; Write Only) 

o 0 P33 = INPUT 
o 1 P33 = INPUT 
1 0 P33 = INPUT 

P34 = OUTPUT 
P34 = OM 
P34 = OM 

1 1 P33 = DAV1/RDY1 P34 = RDY1IDAV1 

Figure 9-7. Port 1 Handshake Operation 

Handshake direction is determined by the configu­
ration'(input or output) assigned to Port 1. For 
example, if Port 1 is an output port then hand­
shake is defined as output. Figure 9-B illu3-
trates the Port 1 lines and the associated hand­
shake lines of Port 3. 

Handshake operation is discussed in detail in Sec­
tion 9.6. 

PORT 1 
(110 OR ADo-AD7) P1o-P17 

} 
HANDSHAKE CONTROLS 
DAV1 AND RDY1 
(PSa AN 0 P3.l 

Figure 9-8. Port 1 

391 



9.4 PORT 2 

Port 2 is a general-purpose port. Each of its 
lines can be independently programmed as input or 
output via the Port 2 Mode register (Figure 9-9). 
A.bit set to a 1 in P2M configures the correspond­
ing bit in Port 2 as an iMput, while a bit set to 
o determines an output line. 

R246 P2M 
Port 2 Mode Register 

(%F6; Write Only) 

P20-P27 MODE 
L-____ 0 OUTPUT 

1 INPUT 

figure 9-9. Port 2 I/O Operation 

9.4.1 Read/Write Operations 

Port 2 is accessed as general-purpose register P2 
(%02). The port is written by specifying P2 as' an 
instruction's destination register. Writing the 
port causes data to be stored in the port's output 
register, and reflected externally on any bit con­
figured as an output. 

The port is read by specifying P2 as the source 
register ~f an instruction. When an output bit is 
read, data on the external pin is returned. Under 
normal loading conditions, this is equivalent to 
reading the output register. However, if a bit of 
Port 2 is defined as an open-drain output, the 
data returned is the value forced on the output 
pin by the external system. This may not· be the 
same as the data in the output register. 

Reading input bits of Port 2 also returns data on 
the external pins. However, inputs under hand­
shake control return data latched into the input 
register via the input strobe. 

392 

I/O Ports 

,9.4.2 Handshake Operation 

Port 2 can be placed under handshake control by 
programming the Port 3 Mode register (figure 
9-10). In this configuration, Port 3 lines P31 
and P36 are used as the handshake control lines 
DAV2 and RDY2 for input handshake, or RDY2 and 
OAV2 for output handshake. 

R247 P3M 
Port 3 Mode Register 

(% F7; Write Only) 

o P31 = INPUT (TIN) P36 = OUTPUT (TOUT) 
1 P31 = DAV2/RDY2 P36 = RDY2/DAV2 

figure 9-10. Port) Handshake Operation 

Handshake direction is determined by the configu­
ration (input or output) assigned to bit 7 of Port 
2. Only those bits with the same configuration as 
P27 will be under handshake control. figure 9-11 
illustrates Port 2's bit lines and the associated 
handshake lines of Port 3. 

P20 

PORT 2(1/0) 

P27 

} 
HANDSHAKE CONTROLS 
iiAV2 AN D RDY 2 
(1'31 AND P30l 

figure 9-11. Port 2 



Port 2 can also by configured to provide open­
drain outputs by programming Port 3 Mode register 
(P3M) bit DO to 0 (Figure 9-12). 

Regardless of the bit input/output configuration, 
Port 2 is always written and read as a byte-wide 
porh 

R247 P3M 
Port 3 Mode Register 

(% F7; Write Only) 

L 0 PORT 2 PULL·UPS OPEN DRAIN 
1 PORT 2 PULL·UPS ACTIVE 

Figure 9-12. Port 2 Open-DrBin Outputs 

INPUT INPUT 
REGISTER BUFFER 

A ~~~- A 
4 K 4 

... ... 

I ~ 

9.5 PORT 1 

Port 3 differs structurally from the other three 
ports. Port 3 lines are fixed as, four input 
(P30-P33) and four output (P34-P37) and do not 
have an input and output register for each bit. 
Instead, all the input lines have one input" regis­
ter, and output lines have an output register. 
Under software control, the lines can be con­
figured as input or output, special control lines 
for handshake, or as I/O lines for the on-board 
serial and timer facilities. figure 9-13' is a 
block diagram of Port 3. 

9.5.1 . Readl"rite Operations 

Port 3 is accessed aa general-purpose register PJ 
(%03). The port is written by specifying P3 as sn 
instruction's destination register. However, 

A 

... 
4 

PORT 
INPUT 
LINES 
(P3(J-P331 

TO INTERRUPT TIMER, HANDSHAKE LOGIC 

A 

... 

INTERNAL 
BUS 

WRITE 
PORT --r 

4 ) 
... 

4 

OUTPUT 
REGISTER 

I 

OR SERIAL 110 
... 

~~~- A 
OUTPUT 

'r-DATA 
RETURN 
BUFFER 

, 

4 

FROM TIMER, HANDSHAKE LOGIC 
OR SERIAL 1/0 

Figure 9-11. Port 1 Block Diagr_ 

OUTPUT 
BUFFER 

~ 
4 

... 

~ 

... 

PORT 
OUTPUT 
LINES 
(P34-P37) 

393 



I/O Ports 

Port 3 outputs,cannot be written if they ~re used 
for special functions., When writing to Port 3, 
data is stored in the output register. 

Table 9.1 Port 3 line functions 

The port is read by specifying P3 as the source 
register of an instruction. When reading from 
Port 3, the data ret~rned is both the data on the 
input pins and in the output register. 

9.5.2 Special functions 

Special functions for Port 3 are defined by pro­
gramming the Port 3 Mode register. By writing Os 
in 02-D6' lines P30-P37 ar configured in input/ 
output pairs (Figure 9-14). Table 9-1 shows 
available functions for Port 3. The special 
functions indicated in the table are discussed in 
detail in their corresponding sections in this 
manual. 

Port 3 input lines P30-P33 always function as 
interrupt requests regardless of the configuration 
specified in the Port 3 Mode register. Unwanted 
interrupts must be masked off as described in 
Chapter 10. 

R247 P3M 
Port 3 Mode Register 

(% F7; Write Only) 

I De I Dsl D41 D31 D.I 

function line 

Input P30-P33 
Output P34-P37 

Handshake P31 
tnputs P32 

P33 
Handshake P34 
Outputs P35 

P36 

Interrupt P30 
Requests P31 

P32 
P33 

Serial Input P30 
Output P37 

Counter/Timer P31 
P36 

Status P34 

L"~-,",", 1 P32 = DAiTO/RDYO 
P3 ... OUTPUT 
P35 = RDYO/DAiTO 

394 

o 0 P33 = INPUT 
L..... ____ ~ ~} P3a = INPUT 

1 1 P33 = DAV1/RDY1 

L ______ --,-_O P31 - INPUT (TIN) 
1 P31 = DAV2tRDY2 

, ° P30 = INP,uT L-________ 1 P30 .. SERIAL IN 

P3. ;= OUTPUT 

P34 = OM 
P34 = RDY1/liiW1 

PSa .. OUTP~UT) 
PSa .. RDY2t 2 

P37 = OUTPUT 
P37 = SERIAL OUT 

figure 9-14. Port 3 I/O Operation 

Signal 

Input 
Output 

OAV2/ RDY2 
DAVO/RDYO 
DAV1/ RDY1 
RDY1/15iiV1 
RDYO/DAVO 
RDY2/OJW2 

IRQ3 
IRQ2 
IRQO 
IRQ1 

51 
50 

Tin 
Tout 

DM 



9.6 PORr IfAN>SHAKE 

When Ports 0, 1, or 2 sre ,configured for hand­
shske 'operation, a pair of lines from Port. 3 is 
used for handshake controls for each port. The 
handshake controls a're interlocked to properly 
time· asynchronous data transfers between the ZB 
and its peripheral. One control line (DAVn) func­
tions as a strobe from the sander to indicate to 
the receiver that data ia available. The second 
control line (ROY n) acknowledges receipt of' the 
sender's data, ,and indicates when the receiver is 
ready to accept a~other data transfer. 

In the ,input mode, data is latched into the port's 
input register by the first DAV signal, and is 
protected from being overwritten if additional 
pulses occur on the DAV line. This overwrite pro­
tection is maintained until the port data is 
read. In the output mode, data written to the 
port is not protected and can be overwritten by 
the Z8 during the handshake sequence. To avoid 
losing data, the software must not overwrite the 
port until the corresponding interrupt request 
indicates that the external device has latched the 
data. 

The software can always read Port 3 output and 
input handshake lines, but cannot write to the 
output handshake lines. 

DAY 
(INPUT TO Z8) 

2 

RDY 
(OUTPUT FROM Z8) ---+--

DATA ON PORT 
(INPUT TO Z8) 

Following is the recommended setup sequence when 
configuring a port for handshake operation for 
the first time after a reset: 

• Load P01M or P2M to' configure the port for 
input/output. 

• Load P3 to set the Output Handshake bit to a 
logic 1. 

• Load PJM to select the Handshake mode for the 
port. 

Once a data transfer begins, the configuration of 
the handshake lines should not be changed until 
handshake is completed. 

Figures 9-15 and 9-16 show detailed operation 
for the handshake sequence. 

In applications requiring a strobed signal instead 
of the interlocked handshake, the ZB can satisfy 
this requirement as follows: 

• In the Strobed Input mode, data can be latched 
in the port input register using the DAV 
input. The data transfer rate must sllow 
enough time for the software to read the port 
before strobing in the next character. The ROY 
output is ignored. 

• In the Strobed Output mode, the ROY input 
should be tied to the OAV output. 

3 4 5 

Sla181. Port 3 Ready output is High. indicating that the Z8 is ready to accept data, 
Slale 2. The 1/0 device puts data on the port and then activates the rJlW Input. This causes 

the data to be latched into the port input register and generates an interrupt reo 
quest. 

Slale 3. The Z8 forces the Ready (ROY) output Low, signaling to the 1/0 device that the 
data has been latched, 

Slale 4. The 1/0 device returns the OAV line High In response to ROY going Low, 
Stale 5. The Z8 software must resPQnd to the interrupt request anQ read the contents of 

the port in order for the handshake sequence to be completSd, The ROY line goes 
High If and only If the port has not been read and rJlW Is High, This returns the in· 
terface to Its initial state, 

r!gure 9-15. Z8 Il1JUt Ha1dshaIce 

395 



2 3 4 5 

ROY 
(INPUT TO Z8) 

DAV 
(OUTPUT FROM Z8) 

DATA ON PORT 
VALID DATA (OUTPUT FROM Z8) 

State 1. RDY input is High indicating that the 1/0 device is ready ~o accept data. 
State 2. The Z8 writes to the port register to initiate a data transfer. Writing the port outputs 

new data and forces rJl&' Low .if and only if ROY is High. 
State 3. The 1/0 device forces ROY Low after latching the data. ROY Low causes an inter· 

rupt request to be generated. The Z8 can write new data in response to ROY going 
Low; however, the data is not output until State 5. 

State 4. The OAV output from the Z8 is driven High in response to ROY going Low. 
State 5. After OAV goes High, the 1/0 device is free to raise ROY High thus returning the in· 

terface to its initial state. 

Figure 9-16. Z8 Output Handshake 

I/O Ports 

Figures 9-17 and 9-18 illustrate the strobed 
handshake connections. 

9.7 I/O PORT RESET CONDITIONS 

396 

A 
P2o-P27 K ,. 
Z8 1/0 

DEVICE 

DAV 
P31 

Figure 9-17. I,...t Strobed Handshake 
using Port 2 

~ 
P2o-P27 

r 
Z8 1/0 

DAV DEVICE 
P3s 

~ P31 

Figure 9-18. Output Strobed Handshake 
using Port 2 

After a hardware reset, .mode registers P01M, P2M, 
and P3M are set as shown in Figures 9-19 - 9-22. 
Ports 0, 1 and 2 are configured for input opera­
tion o~ all bits, except Port 1 in the Z8681 and 
Ports 0 and 1 in the Z8682 as shown. 

The pull-ups of Port 2 are set for open-drain. If 
active pull-ups are desired for Port 3. outputs, 
remember to configure them using P3M (Figure 
9-22). 

All special I/O functions of Port 3 are inactive, 
with P30-P33 set as inputs and 'P34-P37 set as 
outpuls (Figure 9-23). 



I/O Ports 

R248 P01M 
Port 0-1 Mode Register 

(% F8; Write Only) 

PO.-P07 MODE:] 
OUTPUT = 00 ~ 

INPUT = 01 
A'2-A'5 = 1X 

EXTERNAL MEMORY TIMING . 
NORMAL = 0 

"EXTENDED = 1 

I [ "]o'!' ~~~ 01 = INPUT 
1X = As-A" 

STACK SELECTION 
o = EXTERNAL 
1 = INTERNAL 

P1 o-P17 MODE 
00 = BYTE OUTPUT 
01 = BYTE INPUT 
10 = ADo-AD7 
11 = HIGH·IMPEDANCE ADo-AD7, 

AS, OS, R/W, As-A", A'2-A'5 

'ALWAYS EXTENDED TIMING AFTER RESET EXCEPT Z8682 

Figure 9-19. Z8601/11 Port 0 and 1 Reset 

, R248 P01M 
Port 0-1 Mode Register 

(% F8; Write Only) 

PO.-P07 MODE:] 
OUTPUT = 00 ~ 

INPUT = 01 
A'2-A'5 = 1X 

EXTERNAL MEMORY TIMING 
NORMAL = 0 

"EXTENDED = 1 

~ POO-P03 MODE L 00 = OUTPUT 
01 = INPUT 
1X = As-A" 

STACK SELECTION 
o = EXTERNAL 
1 = INTERNAL 

'ALWAYS EXTENDED TIMING AFTER RESET EXCEPT Z8682 

Figure 9-20. Z8681 Ports 0 and 1 Reset 

R248 P01M 
Port 0-1 Mode Register 

(% F8; Write Only) 

PO.-P07 MODE:] 
OUTPUT = 00 ~ 

INPUT = 01 
A'2-A'5 = 1X 

EXTERNAL MEMORY TIMING 
NORMAL = 0 

EXTENDED = 1 

I [ ~~~~~' 
STACK SELECTION 

0= EXTERNAL 
1 = INTERNAL 

P1 o-P17 MODE L-____ 10 = ADo-AD7 

Figure 9-21. Z8682 Ports 0 and 1 Reset 

397 



398 

R246 P2M 
Port 2 Mode Register 

(% F6; Write Only) 

I 1 11 1111 11 11 1 1 11 I 
I P20-P27 MODE 
L. ----0 OUTPUT 

1 INPUT 

figure 9-22. Port 2 Reset 

R247 P3M 
Port 3 Mode Register 

(% F7; Write Only) 

1010101010101?lol 

II L, "' .. "", .• ", ."''''''' 1 PORT 2 PULL·UPS ACTIVE 

RESERVED 

o P32 = INPUT P3s = OUTPUT 

I/o Ports 

1 P32 = DAVO/RDYO P3s = RDYO/DAVO 

o 0 P33 = INPUT P34 = OUTPUT 

'------~ ~} P33 = INPUT P34 = DM 

1 1 P33 = DAV1/RDYl P34 = RDY1/DAV1 

'-_______ 0 P3l = INPUT (TIN) P36 = OUTPUT (TOUT) 
1 P3l = DAV2/RDY2 P36 = ROY2IDAV2 

o P3D = INPUT P37 = OUTPUT 
'---------- 1 P30 = SERIAL IN . P30 = SERIAL OUT 

L--_________ ~ ~~=:~~ g~F. 

figure 9-23. Port 3 Reset 



10.1 INTRODUCTION 

The 'l8 microcomputer allows six different inter­
rupt levels from eight sources: the four Port 3 
lines P30-P33 make up the external interrupt 
sources while serial in. serial out. 'and the two 
counter/timers make up the internal sources. 
These interrupts can be masked and their prior­
ities set by using the Interrupt Mask and the 
Interrupt Priority. registers. All six interrupts 
can be globally disabled by resetting the master 
Interrupt Enable bit 07 in the Interrupt Mask reg­
ister with a Disable Interrupt (Ol) instruction. 
Interrupts are globally enabled by setting 07 with 

'an Enable Interrupt (EI) instruction. 

There are three interrupt control registers: the 
Interrupt Request register (IRQ). the Interrupt 
Mask register (IMR). and the Interrupt Priority 
register (IPR). Figure 10-1 shows addresses and 
identifiers for the interrupt control registers. 
Figure 10-2 is a block diagram showing the 
Interrupt Mask and Interrupt Priority logic. 

The l8 family supports both vectored and polled 
interrupt handling. Details on vectored and 
polled interrupts can be found in Sections 10.6 
and 10.7. 

DEC ,-______ -. HEX IDENTIFIERS 

251 .... _IN_T_E_R_R_U_PT __ M_A_S_K-t FB IMR 

250 INTERRUPT REQUEST FA IRQ 

249 INTERRUPT PRIORITY F9 IPR 

Figure 10-1. Interrupt Control Registers 

Chapter 10 
Interrupts 

10.2 INTERRUPT SOURCES 

Table 10-1 presents the interrupt types. sources. 
and vectors available in the l8 family of 
processors. 

10.2.1 External Interrupt Sources 

External sources involve interrupts request lines 
IRQO-IRQ3' IRQO' IRQ1' and IRIlZ are always gen­
erated by a negative edge signal on the corre­
sponding Port 3 pin (P3Z. P33' P31 correspond to 
IRQO. IRQ1. and 1RQZ' respectively). Figure 10-3 
is a block diagram for interrupt sources IRQO. 

1RQ1' and IRIlZ' 

When the Port 3 pin (P31 • P3Z' or P33) goes low. 
the first flip-flop is set. The next t.wo flip­
flops synchronize the request to the internal 
clock and delay it by four external clock 
periods. The output of the last flip-flop (IRQO' 
1R1l1. or IRIl3) goes to the corresponding Interrupt 
Request register. 

INTERRUPT 
REQUEST 

IROO-IROs 

VECTOR SELECT 

Figure 10-2. Interrupt Block Diagra. 

399 



IRQ3 can be generated 'from an external source only 
if Serial In is not enabled; otherwise, its source 
is internal. The external request is generated by 

a negative edge signal on P30 as shown in Figure 
10-4. Again, the external request is synchronized 
and delayed before reaching IRQ. 

400 

I-_----IS 

R 

-fl_ 

o D o D 

CLOCK--~------~ 
(INTERNAL) 

o 

Fi~re 10-~. Interrupt Sources lIIIo-IRQ2 BlocIc Diagrllli 

P~ P3M& 

(lR03 
SERIAL IN) 

o D 

CLOCK __ ~---~ 

Ot-...... -+--1 

IR03 EXTERNAL SOURCE 

SERIAL RECEIVER 

IR03 
INTERNAL 
SOURCE 

Figure 10-4. Interrupt Source IRQ, BlocIc Diagr_ 

IROm 
m ,= 0,1,2 

IRQ3 



10.2.2 Intemal Interrupt Sources 

Internal sources involve interrupt requests 
IRQrIRQ5. If Serial In is enabled, IRQ3 gen­
erates an interrupt request whenever the receiver 
assembles a complete byte. Interrupt level IRQ4 
has two mutually exclusive sources, Counter/Timer 
o (TO) and the Serial Out transmitter. If Serial 
Out is enabled, an interrupt request is generated 
when the transmit buffer is empty. If TO is 
enabled, an interrupt request is generated at TO 
end-of-count. IRQ5 generates an interrupt request 
at Counter/Timer 1's (T1) end-of-count. 

F or more details on the internal interrupt 
sources, refer to the chapters describing serial 
I/O and the counter/timers. 

10.' INTERRUPT REQUEST (IRQ) REGISTER LOGIC AND 
TIMING 

Figure 10-5 shows the logic diagram for the 
Interrupt Request register. The leading edge of 
the request will set the first flip-flop, which 
will remain set until interrupt requests are 
sampled. 

R SAMPLE 
CLOCK 

Requests are sampled internally during the last 
cloc~ cycle before an opcode fetch (Figure 10-6). 
External requests are sampled two internal clocks 
earlier, due to the synchronizing flip-flops shown 
in Figures 10-3 and 10-4. 

At sample time the request is transferred to the 
second flip-flop in Figure 10-5, which drives the 
interrupt mask and priority logic. When an 
interrupt cycle occurs, this flip-flop will be 
reset only for the highest priority level that is 
enabled. 

The user has direct access to the second flip-flop 
by reading and writing the IRQ register. IRQ is 
read by specifying it as the source register of an 
instruction and written by specifying it as the 
destination register. 

10.4 INTERRUPT INITIALIZATION 

'After reset, all interrupts are disabled and must 
be initialized before vectored or polled interrupt 
processing can begin. The Interrupt Priority reg­
ister (IPR), Interrupt Mask register (IMR) and 
Interrupt Request register (IRQ) must be initial­
ized, in that order, to start the, interrupt 
process. However, IPR need not be initialized for 
polled processing. 

Q 

R 

TO MASK 
AND 
PRIORITY 
LOGIC 

FROM PRIORITY 
LOGIC 

Figure 10-5. IRQ Register Logic 

Figure 10-6. Interrupt Request Tilling 

401 



Interrupts 

10.4.1 Interrupt Priority Register (IPR) 
Initialization 

1RQ3 (SI/P30 ) and IRQ5 (T 1)' another group 
contains IRQO (P32) and IRQ2 (P31)' and the third 
group contains IRQ1 (P33) and IRQ4 (SO/TO). 

IPR (Figure 10-7) is a write-only register that 
sets priorities for the ,!ix levels of vectored 
interrupts in order to resolve simultaneous 
interrupt requests. (There are 48 sequence 
possibilities for interrupts.) The six interrupt 
levels IRQO-IRQ5 are divided into three 'groups of 
two interrupt requests each. One group contains 

Priorities can be set both within and between 
groups as shown in Table 10-2. Bits °1 , °2 , and 
05 define the priority of the individual members 
within the three groups. Bits 00' 03. and 04 are 
encoded to define six priority orders between the 
three groups. Bits 06 and 07 are not used. 

402 

R2491PR 
Interrupt Priority Register 

(% F9; Write Only) 

/ 05 / 04 / 03 / O2 / 0, / Do I 

IRQ3, IRQ5 PRIORITY (GROUP AI ~ 
o = IRQ5 > IRQ3 
1 = IRQ3 > IRQ5 

IRQO, IRQ2 PRIORITY (GROUP B) 
o = IRQ2 > IRQO --------' 
1 = IRQO > IRQ2 

IRQ1, IRQ4 PRIORITY (GROUP C) 
o = IRQ1 > IRQ4 ---------' 
1 = tRQ4 > IRQ1 

INTERRUPT GROUP PRIORITY 
RESERVED = 000 
C>A>B=001 
A> B > C = 010 
A> C> B = 011 
B> C > A = 100 
C> B > A = 101 
B > A >C = 110 
RESERVED = 111 

Figure 10-7. Interrupt Priority Register 

Table 10-2. Interr~ Priority 

Croup Priority 
Highest --> lowest 

NOT USED 

CAB 
ABC 
A C B 
B C A 
C B A 
B A C 

NOT USED 



Interrupts 

SPANO STACK 
BEFORE INTERRUPT 

TOP OF STACK 
"I~--~s-p----~~~--------~ SP 

SP AND STACK 
AFTER INTERRUPT 

~----------~ ~----P~C~U----~ ~ PCl 

FLAGS 

Figure 10-10. Effect of Interrupt on Stack 

64K .... ------..... 

12~------------~ 

Z8 PROGRAM MEMORY 

INTERRUPT 
SERVICE 
ROUTINE 

VECTOR SELECTED BY 
PRIORITY LOGIC 

Figure 10-11. Interrupt Vectoring 

10.6 VECTORED PROCESSING 

Each Z8 interrupt level has its own vector. When 
an interrupt occurs, control passes to the service 
routine pointed to by the interrupt's location in 
program memory. The sequence of events for vec­
toredinterrupts is as follows: 

,. PUSH PC ,lower byte on stack 
• PUSH PC upper byte on stack 
• PUSH FLAGS on stack 
• Fetch upper byte of vector 
• Fetch lower byte of vector 
• Branch to service routine spec'i fied by vector 

Figures 10-10 and 10-11 show the vectored 
interrupt operation. 

10.6.1 Vectored Interrupt Cycle TiBing 

Interrupt cycle timing for all Z8 devices except 
the Z8681 is diagrammed in Figure 10-12. Timing 
for the Z8681 ROMless device is different and is 
shown in Figure 10-13. 

10.6.2 Nesting of Vectored Interrupts 

Nesting of vectored interrupts allows higher 
priority requests to interrupt a lower priority' 
request. To initiate vectored interrupt nesting, 
do the folloWing during the interrupt service 
routine: 

• Push the old IMR on the stack. 
• Load IMR, with a new mask to disable lower 

priority interrupts. 

• Execute EI instruction. 
• Proceed with interrup~ processing. 
'. After processing is complete, execute 01 

instruction. 

• Restore the IMR to its original value by 
returning the previous mask from the stack. 

• Execute IRET. 

Depending on the application, some simplification 
of the above procedure may be possible. 

10.7 POLLm PROCESSING 

Polled interrupt processing. is supported by 
masking off the IRQ levels to be polled. This is 
accompUshed by clearing the corresponding bit in 
the IMR to O. 

403 



To initiate polled processing, check the bits of 
interest in the IRQ using the Test Under Mask (TM) 
instroction. If the bit is set, call or branch to 
the' service routine. The service routine services 
the request, resets its Request bit in the IRQ, 
and branches or returns back to the main program. 
An example of a polling routine is as follows: 

TM IRQ ,HMASK 
JR Z NEXT 
CALL SERVICE 

NEXT: 

SERVICE: 

! Test for request 
!If no request go to NEXT 
!If request is there 
!then service 'it 

!Process Request 

AND IRQ,HMASK_ !Clear Request bit 
RET ! Return to next 

In this example, if IRQ2 is being polled, MASK 
will be 1~200DD01DO (in binary) and MASK_ will be 
%211111011. 

404 

10.8 REsET ClNHTIONS, 

During a reset, all bits in IPR are undefined. 

In IMR, bit D7 is 0 and bits DO-05 are undefined. 
Bit 06 is not implemented, though reading this bit 
returns O. 

IRQ bits 00-05 are held at 0 until an EI ,instruc­
tion is executed. Bits D6 and D7 are not imple­
mented, but reading these bits returns O. 



~ 
U1 

INTERNAL 
CLOCK 

Os 

ADo-AD7 OUT 

ADO-AD7 IN 

INTERNAL 
CLOCK 

Os 

AlW 

I_M1_I-M2_I_M3_I_STACKPUSH_I-STACKPUSH-I_STACKPUSH_I~7_I-Mt_I-M2-

.- r···· 1 1---., LJ 1!2-----I ~ L ___ 
~~FOR EXTERNAL EXECUT~ON ONLY----- '"--FOR STACK EXTERNAL ONLY FOR EXTERNAL EXECUTION ONLY~ 

o I pC+11 0 I SP-1 I pel I SP-21 pCu SP-31 FLAGS I FLAGS) I VEer I 0 
_ OPCOOE (DISCARDED) FIRST INSTRUCTION OF INTERRUPT -0' 

. SERVICE ROUTINE 

'-______________________ .... I-FOR STACK EXTERNAL ONLY 

figure 10-12. ROM Z8 Interrupt Tbling (shrink parts) 

----!-_--Ms-I_STACK PUSH_14---STACK PUSH_I_STACK pusH_l--vEc~~TRc~,GH_l-- VEciT~;~ow_I_M1-f_M2-

ADo-AD7 OUT 0 B o 1 .P-1 1 PC, 1 .P-2 1 PC, 1 .P-3 1 FLAG. - 1 I:::> rI-
EVEN VECTOR ADDRESS ODD VE~DRES-;> 

I VEeT I O~ 
VECT+1 

ADo-AD7 IN O-OPCODE (DISCARDED) ,VECT" , vECT,1 0-.... 
-FIRST INSTRUCTION OF INTERRUPT SERVICE ROUTINE----' 

AlW '-____________________ .. J.-FOR STACK EXTERNAL ONLY 

figure 10-13. Z8681 ROMless Z8 Interrupt Tiung 



11.1 INTRODUCTION 

The Z8 provides two 8-bit counter/timers, 'TO and 
r i' each driven by its own 6-bit prescaler, PREO 
and PRE1• Both counter/timers are independent of 
the processor instruction sequence, which relieves 
software from time-critical operations such as 
interval timing or event counting. 

Chapter 11 
Counter/Timers 

Each counter/timer operates in either Single-Pass 
or Continuous mode. At the end-of-count, counting 
either stops or the initial value is reloaded and 
counting continues. Under software control, new 
values are loaded immediately or when the end-of­
count is reached. Software also controls counting 
mode, how a counter/timer is started or stopped, 
and its u'je of I/O lines. Both the counter and 
prescaler registers can be altered while the 
counter/timer is running. 

INTERNAL DATA BUS ,-----------, r------------~-----

INTERNAL 
CLOCK 

EXTERNAL CLOCK 

CLOCK 
LOGIC 

+4 

INTERNAL CLOCK 
GATED CLOCK 

TRIGGERED CLOCK 

TIN P31 

406 

PREO 
INITIAL VALUE 

REGISTER 

6·BIT 
DOWN COUNTER 

6·BIT 
DOWN COUNTER 

PRE1 
INITIAL VALUE 

REGISTER 

TO 
INITIAL VALUE 

REGISTER 

8·BIT 
DOWN COUNTER 

8·BIT 
DOWN COUNTER 

11 
INITIAL VALUE 

REGISTER 

Figure 11-1. COunter/Tiaer Block Diagr .. 

TO 
CURRENT VALUE 

REGISTER 

11 
CURRENT VALUE 

REGISTER 

IRQ4 

SERIAL 1/0 
CLOCK 

TOUT' 
P36 

IRQ5 



Counter/Timers 

Counter/timers 0 and 1 are driven by a timer clock 
generated by dividing the internal clock by four. 
The divide-by-four stage, the 6-bit prescaler, and 
the 8-bit counter/timer form a synchronous 16-bit 
divide chain. Counter/timer 1 can also be driven 
by an external input (TIN) via Port 3 line P31• 
Port 3 line P36 can serve as a timer output 
(T OUT) through which TO' T l' or the internal 
clock can be output. The timer output will toggle 
at the end-of-count. Figure 11-1 is a block 
diagram of the counter/timers. 

The counter/timer, prescaler, and associated mode 
registers are mapped into the register file as 
shown in Figure 11-2. This allows the software to 
treat the counter/timers as general-purpose 
registers, and eliminates the need for special 
instructions. 

11.2 PRESCAlERS AND COUNTER/rIMERS 

The prescalers, PREO (%F5) and PRE1 (%F3), each 
consist of an 8-bit register and a 6-bit 
down-counter as shown in Figure 11-1. The 
prescaler registers are write-only registers. 
Reading the prescalers returns the value %FF. 
Figures 11-3 and 11-4 show the prescaler 
registers • 

. The six most significant bits (D2-D7) of PREO or 
PRE1 hold the prescalers count modulo, a value 
from 1 to 64 decimal. The prescaler registers 
also contain control bits that speci fy TO and T 1 
counting modes. These bits also indicate whether 
the clock source for T 1 is internal or external. 
These control bits will be discussed in detail 
throughout this chapter. 

The counter/timers, TO' (%F4) and T1 (%F2), each 
consist of an a-bit down-counter, a write-only 

DEC 

247 

245 

244 

243 

242 

~41 

PORT 3 MODE 

TO PRESCALER 

TIMER/COUNTER 0 

T1 PRESCALER 

TIMER/COUNTER 1 

TIMER MODE 

HEX IDENTIFIERS 

F7 P3M 

F5 PREO 

F4 TO 

F3 PRE1 

F2 11 

F1 TMR 

regist.er which holds the initial count value, and 
a read-only register which holds the current count 
value (Figure 11-1). The initial value can range 
from 1 to 256 decimal (%01,%02, •• ,%00). Figure 
11-5 illustrates the counter/ti~er registers. 

R245 PREO 
Prescaler 0 Register 

(% F5; Write Only) 

~COUNTMODE 
o = To SINGLE·PASS 
1 = To MODULO·N 

RESERVED (MUST BE 0) 

PRESCALER MODULO 
'--------(RANGE: 1-64 DECIMAL 

1}1-00 HEX) 

Figure 11-3. Prescaler o Register 

R243 PRE1 
Prescaler 1 Register 

(% F3; Write Only) 

CCOUNTMODE 
1 = T, MODULO·N 
o = T, SINGLE·PASS 

CLOCK SOURCE 
1 = T, INTERNAL 
o = T, EXTERNAL(TIN) 

PRESCALER MODULO 
'------- (RANGE: 1-64 DECIMAL 

01-00 HEX) 

Figure 11-4. Prescaler 1 Register 

R242 T1 
Counter/Timer 1 Register 

(% F2; Read/Write) 
R244 TO 

Counter/Timer 0 Register 
(% F4; Read/Write) 

I~I~I~I~I~I~I~I~I 

L INITIAL VALUE WHEN WRITTEN -
(RANGE 1·256 DECIMAL, 01-()0 HEX) 
CURRENT VALUE WHEN READ 

407 



11.J CQlNTER/TII£R OPERATION 

Under software control, counter/timers are started 
and stopped via the Timer Mode register (%F1) bits 
°0-03 (Figure 11-6). Each counter/timer is asso­
ciated with a Load bit and an Enable Count bit. 

11.J.1 Load and Enable Count Bits 

Setting the Load bit (DO to 1 for TO and 02 to 1 
for T 1) transfers the initial value in the pre­
scaler and the counter/timer r~gisters into their 
respective down-counters. The next internal clock 
resets bits 00 and 02 to 0, readying the Load bit 
for the next load operation. The initial values 
may be loaded into the down-counters at any time. 
I f the counter/timer is running, it continues to 
do so and starts the count over with the initial 
value. Therefore, the Load bit actually functions 
as a software re-trigger. 

The counter/timers remain at rest as long as the 
Enable Count bits 01 and OJ are both O. To enable 
counting, the Enable Count bit (01 for TO and 03 
for T 1) must be set to 1. Counting actually 
starts when the Enable Count bit is written by an 
instruction. The first decrement occurs four 
internal clock periods after the Enable Count bit 
has been set. 

The Load and Enable Count bits can be set at the 
same time. For example, using the instruction OR 
TMR #%03 sets both DO and 01 of n.fR to 1. This 
loads the initial values of PREO and TO into their 
respective counters and starts the count after the 
M2 f2 machine state after the operand is fetched 
(Figure 11-7). 

11.J.2 Prescaler Operations 

During counting, the programmed clock source 
drives the prescaler 6-bit counter. The counter 
is counted down from the value specified by bits 
02-07 of the corresponding prescaler register, 
PREO or PRE1 (Figure 11-8). When the prescaler 
counter reaches its end-of-count, the initial 
value is reloaded and counting continues. The 
prescaler never actually reaches O. For example, 
if the prescaler is set to di~ide by 3, the ~ount 
sequence is: 

3-2-1-3-2-1-3-2 •••• 

Each time the prescaler reaches its end-of-count a 
carry is generated, which allows the counter/timer 
to decrement by one on the next timer clock 
inpuL When the counter/timer and the prescaler 

408 

both reach their end-of-count, an interrupt 
~equest is generated -- IRQ4 for f 0 and 1RQ5 for 
T l' Depending on the counting mode selected, the 
counter/timer will either come to r,est with its 
value at %00 (Single-Pass mode) or the initial 
value will be automatically reloaded and counting 
will continue (Continuous mode). 

R241 TMR' 
Timer Mode Register 

(% F1; Read/Write) 

~L ° = NO FUNCTION 
1 = LOAD To 

o = DISABLE To COUNT 
1 = ENABLE To COUNT 

o = NO FUNCTION 
1 = LOADT, 

L-____ O = DISABLE T, COUNT 
1 = ENABLE T, COUNT 

Figure 11-6. Timer Mode Register 

M3 

TMR IS WRITTEN 
COUNTER/TIMERS 

ARE LOADED 

1ST DECREMENT 
OCCURS FOUR 

CLOCKS LATER 

figure 11-7. Starting The Count 

R243 PRE1' 
Prescaler 1 Register 

(% F3; Write Only) 
R245 PREO 

Prescaler 0 Register 
(% F5; Write Only) 

LCOUNT MODE 
1 = T, MODULO·N 
o = T, SINGLE·PASS 

Figure 11-8. Counting Modes 



Counter/Timers 

The counting modes are controlled by bit DO of 
PREO snd PRE1 ' with DO cleared to 0 for 
Single-pass counting mode or set to for 
Continuous mode. 

The counter/timers can be stopped at any time by 
setting the Enable Count bit to 0, and restarted 

"by setting it back to 1. The counter/timer will 
continue its count value at the time it was 
stopped. The current value in the counter/timer 
(TO or T1) can be read at any time without 
affecting the counting operation. 

New initial values can be written to the prescaler 
or the counter/timer registers at any time. These 
values will be transferred to their respective 
down-counters on the next load operation. If the 
counter/timer mode is Continuous, the next load 
occurs on the timer clock following an 
end-of-count. New initial values should be 
written before the desired load operation, since 
the prescalers always effectively operate in 
Continuous count mode. 

The time inter vel (i) until end-of-count, is given 
by the equstion 

i:txpxv 

in which t is 8 divided by XTAL frequency, p is 
the presc"aler value (1 - 64), and v is the 
counter/timer value (1 - 256). It should be 
apparent that the prescaler and counter/timer are 
true divide-by-n counters. 

11.4 TOUT MODES 

The Timer .Mode register TMR (IIIF1) (Figure 11-10) 
is used in conjunction with the Port 3 Mode 

register P3M (IIIF7) (Figure 11-9) to configure P36 
for TOUT operation. In order for TOUT to 
function, P36 must be defined as an.output line by 
setting P3M bit 05 to O. Output is controlled by 
one of the counter/timers (TO .or T1) or the 
internal clock. 

The counter/timer to be output is selected by TMR 
bits 07 and 06• TO is selected to drive the· 
T OUT line by setting 07 to ° and 06 to 1. 
Likewise, T1 is selected by setting 07 and b6 to 1 
and ° respectively. The counter/timer TOUT mode 
is turned off by setting TMR bits 07 and 06 both 
to 0, freeing P36 to be a data output line. 

TOUT is initialized to a logic 1 whenever the 
TMR Load bit (DO for TO or .02 for r 1) is set to 1. 

R247 P3M 
Port 3 Mode Register 

(% F7; Write Only) 

o P31 = INPUT (TIN) P38 = OUTPUT (Tour> 
1 P31 = DlV2IRDY2 P38 = RDY2IDlW2 

Figure 11-9. 
Port :5 Mode Register TOOT Operation 

R241 TMR 
Timer Mode Register 

(% F1; ReadIWrite) 

TOUT MODES I 
TOUT OFF = 00 

To OUT = 01 
Tl OUT = 10 

INTERNAL CLOCK OUT = 11 
Lo = NO FUNCTION 

1 = LOAD To 

o = NO FUNCTION 
1 = LOAD T, 

Figure 11-10. Tiller ~ Register TOOT Operation 

409 



Counter/Timers 

IR04 
(TO END-Of-COUNT) 

IROS ~TMR 
(T1 END-Of-COUNT) D7-D6 = 10 

Figure 11-11. Counter/Tillers Output Via TOUT 

INTERNAL 
CLOCK 

..... +.2_;-.... --<)"""-.. ___ & TOUT 

TMR D6 --r-'\.....J 
TMRD7~ 

Figure 11-12. Internal Clock Output Via TOUT 

At end-oF-count, the interrupt request line (IRQ4 
or IRQ5)' clocks a toggle flip-flop. The output 
of this flip-flop drives the TOUT line, P36• In 
all cases, when the selected counter/timer reaches 
its end-oF-count, TOUT toggles to its opposite 
state (F igure 11-11) • If, For example, the 
counter/timer is in Continuous counting mode, 
TOUT will have a 50% duty cycle output. This 
duty cycle can easily be controlled by varying the 
initial values aFter each end-oF-count. 

The internal. clock can be selected as output 
instead of TO or T1 by setting TMR bits D7 and D6 
both to 1. The internal clock (XTAL Frequency/2) 
is then direct~y output on P36 (Figure 11-12). 

While programmed as TOUT' P36 cannot be modified 
by a write to port register P3. However, the ZB 
soFtware can examine P36 's current output by 
reading the port register. 

11.5 TINIDlES 

The Timer Mode register TMR (%F1) (Figure 11-13) 
is used in conjunction with the Prescaler register 
PRE1 (%F3) (Figure 11-14) to configure P31 as 
TIN" T IN is used in conjunction with T 1 in 
one of Four modes: 

• External clock input 
• Gated internal clock 
• Triggered internal clQck 
• Retriggerable internal clock 

410 

R241 TMR 
Timer Mode Register 

(% F1; Read/Write) 

T'N MODES 
EXTERNAL CLOCK INPUT = 00 

GATE INPUT = 01 
TRIGGER INPUT = 10 

(NON-RETRIGGERABLE) 
TRIGGER INPUT = 11 

(RETRIGGERABLE) 

figure 11-13. Tiller Mode Register TIN Operation 

R243 PRE1 
Prescaler 1 Register 

(% F3; Write Only) 

I D,I 

L CLOCK SOURCE 
1 = T, INTERNAL 
o = T, EXTERNAL (T,N) 

figure 11-14. Prescaler 1 TIN Operation 



Counter/Timers 

The counter/timer clock source must be configured 
for externsl by setting PRE1 bit 02 to 0. The 
Timer Mode register bits 05 snd 04 csn then be 
used to select the desired TIN operation. 

For T 1 to start counting ss a result of s TIN 
input, the Enable Count bit 03 in TMR must be set 
to 1. When using TIN as an external clock or a 
gate input, the initial values must be loaded into 
the down-counters by setting the Load bit 02 in 
TMR to a 1 before counting begins. In the 

,descriptions of TIN that follow, it is assumed 
that, the programmer has performed these opera­
tions. Initial, values are automatically loaded 
in Trigger and Retrigger'modes so software loading 
.is unnecessary. 

It is suggested that P31 be configured as an input 
line by setting P3M bit 05 to 0 although T IN is 
still functional if P31 is configured as a hand­
shake input. 

'Each High-to-Low transition on TIN' generates 
interrupt request IRQ2' regardless of the selected 
T IN mode or the enabled/disabled state of T l' 
IRQ2 must therefore be masked or enabled according 
to the needs of the application. 

TIN 
CLOCK - P31 -

INTERNAL 
CLOCK 

D 

A 

t 

D 

A 

t 

11.5.1 External Clock Input Mode 

The TIN External Clock Input mode (TMR bits 05 
and 04 both set to 0) supports, counting of 
external events, where an event is considered to 
be a High-to-Low transition on TIN (Figure 
11-15). occurrence (Single-Pess mode) Of on every 
nth occurrence (Continuous mode) of that event. 

11.5.2 Gated Internal Clock Mode 

The TIN Gated Internal Clock mode (TMR bits D5 
and D4 set to 0 and 1 respectively) measures the 
duration of an external event. In this mode, the 
T1 prescaler is driven by the internal timer 
clock, gated by a High 'level on TIN (Figure 
11-16). T1 counts While TIN is High snd stops 
counting while T IN is Low. Interrupt request 
IRQ2 is generated on the High-to-Low transition of 
TIN' signaling the end of the gate input. 
Interrupt request IRQ5 is generated if T1 reaches 
its end-of-count. 

PRe1 T1 r-- IRQ5 

IRQ2 

Figure 11-15. External Clock Input Mode 

PRE1 T1 ~ IRQ5 

IRQ2 

Figure 11-16. Gated Clock Input Mode 

411 



~ 
I\) 

T,N 
TRIGGER -I P31 D 

SL 

OSC PREO 

INTERNAL 
CLOCK 

EDGE 
TRIGGER 
r----l 

1 

TMR 

Figure 11-17. Triggered Clock Mode 

TO P3s 

Figure 11-18. Cascaded Counter/TWers 

IRQ5 

IRQ2 

PRE1 T1 IRQ5 

b' 
c: :l_ .. 
en .., 
"'­..... 
.... -
3 
en .., 
Ul 



Counter/Timers 

11.5.3 Triggered Input Mode 

The TIN Triggered Input mode (TMR bits 05 and 
04 set to 1 and 0 respectively) causes T1 to start 
counting as the result of an external event 
(Figure 11-17). T1 is then loaded and clocked by 
the internal timer clock following the first High­
to-Low transition on the T IN input. Subsequent 
T IN transitions do not affect T l' In the Sin­
gle-Pass mode, the Enable bit is reset whenever T1 
reljches its end-of-count. Further TIN transi­
tions will have no effect on T 1 until software 
sets the Enable Count bit again. In Continuous 
mode, once T1 is triggered 
until software resets the 
Interrupt request IRQ5 is 
reaches its end-of-count. 

counting continues 
Enable Count bit. 
generated when T1 

11.5.. Retriggerable Input Mode 

The TIN Retriggerable Input mode (TMR bits 05 
and 04 both set to 1) causes T1 to load and start 
counting on every occurrence of a High-to-Low 
transition on TIN (Figure 11-17). Interrupt 
request IRQ5 will be generated if the programmed 
time interval (determined by T1 prescaler and 
counter/timer register initial values) has elapsed 
since the last High-to-L9W transition on TIN' 
In Single,..Pass mode, the end-of-count resets the 
Enable Count bit. Subsequent TIN transitions 
will not cause T1 to load an~ start counting until 
software sets the Enable Count bit again. In Con­
tinuous mode, counting continues once T1 is trig­
gered until software resets the Enable Count bit. 
When 'enabled, each High-to-Low TIN transition 
causes T1 to reload and restart counting. Inter­
rupt request IRQ5 is generated on every end-of­
count. 

11.6 CASCADING COUNTER/TIMERS 

For some applications, it may be necessary to mea­
sure a time interval greater than a single coun­
ter/timer can measure. In this case, TIN and 
T OUT can be used to cascade TO and T 1 as a sin­
gle unit (Figure 11-1B). TO should be configured 
to operate in Continuous mode and to drive 
TOUT' TIN should be configured as an external 
clock input to T 1 and wired back to TOUT' On 
every other TO end-of-count, TOUT undergoes a 
High-to-Low transition which causes T 1 to count. 
T1 can operate in either Single-Pass or Continuous 

mode. Each time T l' s end-of-count is reached, 
interrupt request IRQ5 is generated. Interrupt 
requests IRQZ (TIN High-to-Low transitions) and 

IRQ4 (TO end-of-count) are also generated but are 
most likely of no importance in this configuration 
and should be disabled. 

11.7 RESET CONDITIONS 

After a hardware reset, the counter/timers are 
disabled and the contents of both the counter/ 
timer registers and the prescaler modulos are 
undefined. However, the counting modes are 
configured for Single-Pass and T l' s clock source 
is set for external. TIN is set for External 
C lock mode, and the TOUT mode is off. Figures 
11-19 through 11-22 show the binary reset values 
of the Prescaler, Counter/Timer, and Timer Mode 
registers. 

R24211 
Counter/Timer 1 Register 

(% F2; Read/Write) 
R244 TO 

Counter/Timer 0 Register 
(% F4; Read/Write) 

L INITIAL VALUE WHEN WRITTEN 
(RANGE 1·256 DECIMAL, 01·00 HEX) 
CURRENT VALUE WHEN READ 

figUre 11-19. Counter/Tiller Reset 

R243 PRE1 
Prescaler 1 Register 

(% F3; Write Only) 

l COUNTMODE 
. 1 = T, MODULO·N 

o = T, SINGLE.P.ASS 

CLOCK SOURCE 
1 = T, INTERNAL 
o = T, EXTERNAL (TIN) 

PRESCALER MODULO 
'--------(RANGE: 1-64 DECIMAL 

01~00 HEX) 

Figure 11-20. Preacaler 1 Register Reset 

413 



414 

R245 PREO 
Prescaler 0 Register 

(% F5; Write Only) 

1?1?1?1?1?1?1?lol 

l C~~Nio ~~~ELE.PASS 
1 = To MODULO·N 

RESERVED 

PRESCALER MODULO 
'-------(RANGE: 1-64 DECIMAL 

01-00 HEX) 

Figure 11-21. ' Prescaler 0 Reset 

R241 TMR 
Timer Mode Register 

(% F1; Read/Write) 

I 0 1 0 10 I 0 I 0 I 0 I 0 I 0 I 
TOUT MODES I 

TOUT OFF = 00 
To OUT = 01 

1 = LOAD To ~L 0 = NO FUNCTION 

T, OUT = 10 
INTERNAL CLOCK OUT = 11 

. EXTERNAL CLOCK IN~OTM~D~S 
GATE INPUT = 01 

TRIGGER INPUT = 10 
(NON·RETRIGGERABLE) 

TRIGGER INPUT = 11 
(RETRIGGERABLE) 

o = DISABLE To COUNT 
1 = ENABLE To COUNT 

o = NO FUNCTION 
1 = LOAD T, 

'--___ 0 = DISABLE T, COUNT 
1 = ENABLE T, COUNT 

Figure 11-22. T~r Mode Register R,eset 

Counter/Timers 



12.1 INTRODUCTION 

The Z8 microcomputer contains an on-board 
full-duplex receiver/transmitter for asynchronous 
data communications. The receiver/transmitter 
consists of a Serial I/O register SIO (%F1) and 
its associated control logic (Figure 12-1). The 
SIO is actually two registers--the receiver buffer 
and the transmitter buffer--which are used in 
conjunction with counter/timer TO and Port 3 I/O 
lines P30 (input) and P37 (output). Counter/timer 
r 0 provides the clock input For control of the 
data r'ates. 

Configuration of the ser ial I/O is controlled by 
the Port 3 Mode register, P3M. The Z8 always 
transmits B bits between the start and stop bits; 
that is, 8 data bits or 7 data bits and 1 parity 
bit. Odd parity generation and detection is 
supported. 

The Serial I/O register and its associated Mode' 
Control registers are mapped into the register 
file as shOwn in Figure 12-2. This organization 

Chapter 12 
Serial 1/0 

allows the software to access the serial I/O as 
general-purpose registers, eliminating the need 
for special iAstructions. 

12.2 BIT RATE GENERATION 

When Port 3 Mode register bit 06 is, set to 1, the 
serial I/O .is enabled and TO automatically becomes 
the bit' rate generator (Figure 12-3). TO'S end­
of-count signal no longer generates interrupt 
request IRQ4; instead, the signal is used as the 
input to the divide-by-16 counters (one each for 
the receiver and the transmitter) which clock the 
dat a stream. 

The divide chain that generates the bit rate is 
shown'in Figure 12-4. The bit rate is given by 
the following equation: 

bit rate = XTAL frequency/(2 x 4 x p x t x 16) 

where p and t are the initial values in the 
Prescaler and Counter/Timer registers, 
respectively. 

f INTERNAL DATA BUS 

READ%F~n 

RECEIVER 
BUFFER 

1'1 
RECEIVER .- SERIAL f-r- SHIFT IN REGISTER 

P30 , 
START 49 BIT CHECK DETECT 

+ START rI CLOCK 
CONTROL +6 

SERIAL 
110 CLOCK 
(FROM TO) 

t STOP 

TRANSFER 

WRITE %FO 

~ 7-

TRANSMITTER 

I- CHAR SHIFT DETECT r REGISTER 

t SHIFT 
SHIFT CLOCK 

CLOCK RESET 

+16 

Figure 12-1. Serial I/O Block Diagr_ 

STOP I 
BIT 

DETECT I IRQ4 

MARK 

I-L.::lD- SERIAL t-OUT .-

PARITY 
GEN 

IRQ3 

415 



· Serial I/O 

The final divide-by-16 is required since TO runs 
at 16 times the bit rate in order to synchronize 
on the incoming data. 

To configure the Z8 for a specific bit rate, 
appropriate values as determined by the above 
equation must be loaded into registers PREO (%~5) 

and TO (%F4). PREO also controls the counting 
mode for TO and should therefore be set to the 
Continuous mode (Do set to 1). 

For example, given an input clock frequency 
(fXTAL) of 11.9808 MHz and a selected bit rate of 
1200 bits per second, the equation is sati~fied by 
p=39 and t=2. Counter/timer TO should be set to 
%02. With TO in Continuous mode, the value of 
PREO becomes %90 CFigure 12-5). 

Table 12-1 lists ·several commonly used bit rates 
and the values of fXTAL, p, and t required to 
derive them. This list is presented for conven­
ience and is not intended to be exhaustive. 

The bit rate generator is started by setting the 
Timer Mode register TMR (%F1) bits Dl and DO both 
to 1 (Figure 12-6). This transfers the contents 
of the Prescaler· and Counter /T imer registers to 
their corresponding down-counters. In addition, 
counting is enabled so that serial I/O operations 
begin. 

DEC 

247 

245 

244 

240 

PORT 3 MODE 

TO PRESCALER 

TIMER/COUNTERO 

SERIAL I/O 

HEX IDENTIFIERS 

F7 P3M 

F5 PREO 

F4 TO 

FO 510 

Figure 12-2. Serial I/O Register Map 

R247 P3M 
Port 3 Mode Register 

(% F7; Write Only) 

L, ..... "'" 
1 P30 = SERIAL IN 

P37 = OUTPUT 
P37 = SERIAL OUT 

Figure 12-3. Port 3 Mode Register 
and Bit Rate Generation 

fXTAL ~r::L--r::-L.-r:-L--r:-LI:l-.- ~~TE 
~~~CLOCK 

PREO TO 

Figure 12-4. Bit Rate Divide Chain 

Table 12-1. Bit Rste 

7,3728 7,9872 9,8304 11,0592 11,6736 11,9808 12,2880 
Bit 
Rate p t P t P t P t P t P t P t 

19200 3 1 -- -- 4 1 -- -- -- -- -- -- 5 1 
9600 3 2 -, -- 4 2 9 1 -- -- -- -- 5 2 

4800 3 4 13 1 4 4 9 2 19 1 -- -- 5 4 
2400 3 B 13 2 4 1\ ~ 4 19 2 39 1 5 8 
1200 3 16 13 4 4 16 9 8 19 4 39 2 5 16 
600 3 32 13 8 4 32 9 16 19 8 39 4 .5 32 
300 3 64 13 16 4 64 9 32 19 16 39 8 5 64 
150 3 128 13 32 4 128 9 64 19 32 39 16 5 128 
110 3 175 3 189 4 175 5 157 4 207 17 50 8 109 

416 



R245 PREO 
Prescaler 0 Register 

(% F5; Write Only) 

1110101111111 111 

LCOUNT MODE 
o = To SINGLE·PASS 
1 = To MODULO·N 

1..-______ PRESCALER MODULO 

0=64 

rigure 12-5. Prescaler 0 Register 
and Bit Rate Generation 

R241 TMR 
Timer Mode Register 

(% F1; Read/Write) 

~ 0 = NO FUNCTION 
1 = LOAD To 

o = DISABLE To COUNT 
l' = ENABLE To COUNT 

rigure 12-6. Timer Mode Register 
and Bit Rate Generation 

(RI 
RCVR 
DATA 

SHIFT ___ "", 
CLOCK 

Serial I/O 

12.3 RECEIVER OPERATION 

The receiver consists of a, receiver buffer (SID 
[%rO]), a serial-in, parallel-out Shift register, 
parity checking, and data synchronizing logic. 
The receiver block diagram is shown as part ,of 
Figure 12~1. 

12.3.1 Receiver Shift Register 

After a hardware reset or after a character has 
been received, the Receiver Shift register is 
initialized to all 1a and the shift clock is 
stopped. Serial data, input through Port 3 pin 
P30, is synchronized to the internal clock by two 
D-type flip flops before being input to the Shift 
register and the start bit detection circuitry. 

The start bit detection circuitry monitors the 
incoming data stream, looking for a start bit (a 
High-to-Low input transition). When a start bit 
is detected, the shift clock logic is enabled. 
The TO input is divided by 16 and, when the count 
equals B, the divider outputs a shift clock. This 
clock, shifts the start bit into the Receiver Shift 
register at the center of the bit time. Before 
the shift actually occurs, the input is rechecked 
to ensure that the start bit is valid. If the 
detected start bit is false, the receiver is reset 
and the process of looking for a start bit is 
repeated. If the start bit is valid, the data is 
shifted into the Shift register every sixteen 
counts until a full character is assembled (Figure 
12-7) • 

RCVR ___________________________________ ~ ____ __ 

IRQ3 I I I 

rigure 12-7. Receiver Tillling 

SHIFT REGISTER CONTENTS 
TRANSFERRED TO RECEIVER 

BUFFER AND IRQ3 IS 
GENERATED 

417 



Serial I/O 

A fter a full character has been assembled in the 
Shift register, the data is transferred to the 
receiver's buffer, 510 (%FO), and interrupt 
request IRQ3 is generated. The shift clock is 
stopped and the Shift register reset to all 1 s. 
The start bit detection circuitry begins monitor­
ing the data input for the next start bit. This 
cycle allows the receiver to synchronize on the 
center of the bit time for each incoming charac­
ter. 

12.3.2 Overwrites 

Although the receiver is buffered, it is not pro­
tected from being overwritten, so the software 
must read the SID register within one character 
time after the interrupt request. The Z8 does not 
have a flag to indicate this overrun condition. 
If polling is used, the IRQ3 bit in the Interrupt 
Request register must be reset by software. 

12.3.3· Fraaing Errors 

Framing error detection is not supported by the 
receiver hardware, but by responding to the inter­
rupt request within one character bit time, the 
software can test for a stop bit at P30' Port 3 
bits are always readable, which facilitates break 
detection. For .example, if a null character is 
received, testing P30 results in a 0 being read. 

Received Data 
(No Parity) 

12.3.4 Parity 

The data format supported by the receiver must 
have a start bit, eight data bits, and at least 
one stop bit. If parity is on, bit 07 of the data 
received will be replaced by a Parity Error flag. 
A parity error sets 07 to 1; otherwise, 07 is set 
to O. Figure 12-8 shows these data formats. 

The Z8 hardware supports odd parity only, which is 
enabled by setting Port 3 Mode register bit 07 to 
1 (Figure 12-9). If even parity is required, the 
Parity mode should be disabled (i.e. P3M 07 set to 
0), and software must calculate the received 
data's parity. 

12.4 TRANSMITTER OPERATION 

The transmitter consists of a transmitter buffer 
(SID (%FO», a parity generator, and as,sociated 
control logic. The transmitter block diagram is 
shown as part of Figure 12-1. 

A fter a hardware reset or a fter a character has 
been transmitted, the transmitter is forced to a 
marking state (output .always High) until a charac­
ter is loaded into the transmitter buffer, SID 
(%FO). The transmitter is loaded by specifying 
the 510 as the destination register of any 
instruction. 

I~I~I~I~I~I~I~I~I~I~I 

418 

Received Data 
(With Parity) 

I LSTART BIT 

'--------EIGHT DATA BITS. 

'-. -------------ONE STOP BIT 

1~lpl~I~I~I~I~I~I~I~1 

II LSTART BIT' 

'-------SEVEN DATA BITS 

'-------------PARITY ERROR FLAG 

'-------------ONE STOP BIT 

Figure 12-8. Receiver Data Foraats 



R247 P3M 
Port 3 Mode Register 

(% F7; Write Only) 

o pARITY OFF 
1 PARITY ON 

Figure 12-9. Parity and Part' Mode Register 

TO's output drives a divide-by-16 counter which in 
turn generates a ahift clock every 16 counts •. 
This counter is reset when the tranamitter buffer 
is written by an instruction. This 'reset 
synchronizes the shift clock to the software, The 
.transmitter then outputs one bit per shift clock, 
through Port J pin PJ7, until a start bit, the 
character written to the buffer, and two stop bits 
have been transmitted. ~fter the second stop bit 
has been transmitted, the' output is agsin forced 
to a marking state. Interrupt request IRQ4 is 

TransmItted Data 
iNo Parity) 

TransmItted Data 
(With ParIty) 

T 

12.4.1 Overwrites 

The user is not protected from overwriting the 
transmitter, so it is up to the software to 
respond to IRQ4 appropriately. If polling is 
used, the IRQ4 bit in the Interrupt Request regis­
ter must be reset. 

12.4.2 Parity 

The data format supported by the transmitter has a 
start bit, eight data bits, and at least two stop 
bits. If parity is on, bit D7 of the data trans­
mitted will be replaced by an odd parity bit. 
Figure 12-10 shows the transmitter data formats. 

Parity is enabled by setting Port J Mode register 
bit D7 to 1. If even padty is required, the 
parity mode should be disabled (i.e. P3M 07 set to 
iJ), and software must modify the data to include 
even parity. .' . 

Since the transmitter can be overwritten, the user 
is able to generate a break signal. This is done 
by writing null characters to the transmitter buf­
fer (510, %FO) at a rate which does not allow the 
stop bits to be output. Each time the 510 is 
loaded, the di v ide-by-16 counter is re-synchro­
nized and a new start bit is' output followed by 
data. 

LSTARTBIT 

L-------EIGHT DATA BITS 

TWO STOP BITS 

Isplsplpl~I~I~I~I~I~I~I~1 

T I 1~_LsTARTBIT 
-- SEVEN DATA BITS 

ODD PARITY 

TWO STOP BITS 

Figure 12-10. Tranallitter ~ata Far_s 

419 



Serial I/O 

12.5 RESET CONDITIONS 

After a hardware reset, the Serial I/O register 
contents are undefined, and serial mode and parity 
Bre disabled. Figures 12-11 and 12-1,2 ~how the 
binary reset values of the Serial I/O register and 
its associated mode register PJM. 

R240 SIO 
Serial 1/0 Register 
(% FO; ReadIWrite) 

bl?I?I?I?I?I?ld 

I'------SERIAL DATA (Do = LSB) 

420 

Figure 12-11. Serial I/O Register Reeet 

R247 P3M 
Port 3 Mode Register 

(% F78; Write Only) 

1010101010101 101 

~o PORT 2 PULL·UPS OPEN DRAIN 
1 PORT 2 PULL·UPS ACTIVE 

o P32 = INPUT P3S = OUTPUT 
1 P32 = DAViilRDYO P3S = RDYO/DAVO 

o 0 P33 = INPUT P34 = OUTPUT 

'------~ ~ } P33 = INPUT P34 = DM 
1 1 P33 = DAlR/RDYl P34 = RDYl/DAVl 

'--_______ 0 P3l = INPUT (T,N) P36 = OUTPUT (TOUT) 
- 1 P3l = DAV2JRDY2 P36 = RDY2JDAV2 

'--~------- ~ ~~g ~ ~N~~rLIN ~~~ ~ ~~~r,.ULT OUT 

'--_________ ~ ~!=:~~ g~F 

Figure 12-12. Port, Register Reeet 



A . 

421 



422 



This appendix co~taina pin information and physi­
cal descr iptions for the Z8 development device 
(Z8612) and Protopack emu~ator (Z8603/13). Pin 
descriptions for the Z8601/11 snd Z8681/82 micro­
computers can be found in Chapters 6 and 7, 
respectively. 

A.1 DEYEUPMENT DEVICE (Z8612) 

The pin mnemonics and descriptions presented for 
the Z8 microcomputers (Chapter 6) slso spply to 
the development device. Additionsl pin descrip­
tions srs ss .follows: 

Ap-A11 • Progr_ Me.ory Address (outputs). These 
lines are used to sccess the first 4K bytes of the 
externsl program memory. 

00-07. Progr_ Data (inputs). Data from the 
external program. memory is input through these 
pins. 

lACK. Interrupt Acknowledge (output, active 
High). lACK is driven High in response to sn 
interrupt during the interrupt mschine cycle. 

11)5. 

lOll). 
Progr_ Me.ory Data Strobe (output, active 

t4)S is Low during sn instruction fetch 

Appendix .I. 
Pin Descriptions 
and Functions 

cycle when the first 4K bytes of program memory 
are being accessed. 

SClK. Syst_ Clock (output). SCLK is the inter­
nal clock output through a buffer. The clock rate 
is equal to one-half the crystal frequency. 

SYNC. Instruction Sync (output, active lOll). 
Thia strobe output is forced Low during the inter­
nal clock period preceding an opcode fetch. 

A.2 PROTOPACK EMUlATOR (Z8603/13) 

80th the Z8603 and Z8613 devices use a 40-pin 
package that also hag a .24-pin "piggy-back" soc-. 
keto An EPROM or ROM can be installed on the back 
of the emulator's standard 40-pin package via the 
socket (Figure A-3). A single +5 V dc power source 
is requi~ed. Figure A-4 illustrates the pinout for 
the socket carried piggyback. The socket is 
designed to accept a 2716 EPROM for the Z8603 and 
a.2732 EPROM for the Z8613 device. 

Pin mnemonics and descriptions. are the same as 
those for the Z8601/11 microcomputer (Chapter 6). 
Descriptions ,ror the additional (24-pin socket) 
memory interface lines are the same as those given 
for the development devices above. 

423 



Pin Descriptions-and Functinns 

424 

TIMIN, { 
AND 

CONTROL. 

PORTO 
(NIBBLE 

PROGRAMMABLE) 
1/0 OR Aa-AIS 

PORT 1 
(BYTE 

PROGRAMMABLE) 
1/0 OR ADo-AD7 

PROGRAM 
. MEMORY 

DATA 
INPUTS 

INTERRUPT ACKNOWLEDGE 

MEMORY DATA STROBE 

INSTRUCTION SYNC 

SYSTEM CLOCK 

P10 

P11 

P12 

P13 

P14 

P1s 

P1& 

P17 

Do 

01 

D2 

D3 

D4 

Ds 

D& 

D7 

lACK 

MDS 
SYNC 

SCLK 

Z8812 

+5V 

GND 

XTAL1 

All 

Figure A-1. Z8612 Pin Functions 

} CLOCK 

PORT 2 
(BIT PROGRAMMABLE) 

PORT 3 
SERIAL AND PARALLEL • 
1/0 CONTROL 

PROGRAM MEMORY 
ADDRESS OUTPUTS 



Vee 84 P38 

XTAL2 2 63 P3, 

XTAL1 3 82 P27 

P37 4 81 P2i1 

P3g 5 80 P2s 

RESET 8' 59 P2.4 

RJW 7 58 P23 

D1 8 57 P2z 

AS 9 56 P2, 

P3S 10 55 P20 

P3z 11 54 P33 

POo 12 53 P3. 

PO, 13 52 P17 

POz 14 51 P18 

P03 15 
Z8812 

'50 P1s 

PO. 16 49 P1. 

GNO 17 48 P13 

POs 18 47 P1z 

PO. 19 46 P1, 

P07 20 45 P10 

lACK 21 44 07 

SYNC 22 43 08 

SCLK 23 42 Os 

MOS 24 41 04 

00 25 40 Ao 
0, 26 39 A, 

Oz 27 38 AZ 

03 28 37 A3 

A" 29 A4 

30 As 

As 31 As 
As 32 A7 

425 



B 

7 .. 1",. 
Zilog 

426 



Appendix B 
Conlrol Begislen 

Registers 8240 SIO 
Serial 1/0 Register 
(FOH; Read/Write) 

I~I~I~I~I~I~I~I~I 

L-I __ SERIAL DATA (0, _ Lsa) 

82U TMR 
Timer Mode Register 

(FIH; Read/Write) 

I~I~I~I~I~I~I~I~I 

NOT USI:O '" 00 ~ 1 '" LOAD To 

~~ g~~ ~ ~~ 0 = DISABLE To COUNT 

T.", MODES j llli~o - NO FUNCTION 

INTERNAL CLOCK OUT", 11 1 = ENABLE To COUNT 

T MODES 0 = NO FUNCTION 
EXTERNAL CLOCK IN~aT .. 00 1 = LOAD T 1 

GATE INPUT ... 01 0 = DISABLE T1 COUNT 

(NON.R~~~:~:~~:~~) = 10 1 = ENABLE T, COUNT 

TRIGGER INPUT = 11 
(RETRIBGERABLE) 

R242 TI 
Counter Timer 1 Register 

(F2H; Read/Write) 

, I T, INITIAL VALUE (WHEN WRITTEN) 
I...----(RANGE 1-256 DECIMAL 01-00 HEX) 

T, CURRENT VALUE (WHEN READ) 

R243 PREI 
Prescaler 1 Register 

(F3H; Write Only) 

I~I~I~I~I~I~I~I~I 

~LCOUNTMODE 
o = T, SINGlE·PASS 
1 = T 1 MODULO·N 

CLOCK SOURCE 
1 = T1 INTERNAL 
o == T, EXTERNAL TIMING INPUT 

- (TIN) MODE 

PRESCALER MODULO 
. (RANGE: 1-64 DECIMAL 

01-00 HEX) 

R244 TO 
CounterlTlmer 0 Register 

(F4H; Read/Write) 

To INITIAL VALUE (WHEN WRlnEN) 
'-----(RANGE: 1-256 DECIMAL 01-00 HEX) 

To CURRENT VALUE (WHEN READ) 

R245PREO 
Preacaler 0 Register 

(F5H; Write Only) 

I~I~I~I~I~!~I~!~I 

~LCOUNTMODE 
o '" To SINGLE·PASS 
1 '" To MODULO·N 

RESERVED 

PRES CALER MODULO 
(RANGE: 1-64 DECIMAL 
01-00 HEX) 

R246 P2M 
Port 2 Mode Register 
(F~; Write Only) 

I~I~I~I~I~I~I~I~I 

R247 P3M 
Port 3 Mode Register 

(F7H; Write Only) 

I~I~I~I~I~I~I~I~I 

1 PORT 2 PULL·UPS ACTIVE 

RESERVED E~O PORT; PULL·UPSOPEN DRAIN 

o P32 " INPUT P3S ". OUTPUT 
1 P32 = aAVOIRDYO P35 '" RDYQJDlVli 

o 0 P33 = INPUT P34 = OUTPUT 

~ ~ jP33'= INPUT P34 =! D1i 
1 1 P33 = DAV1fRDY1 P34 = RDY11DAY1 

L-______ ~ ~~~ ~ ~;~~~~ =: : ~~~~~VfUT) 
I...-------~~~ ~ ~N~~lLIN ~:~ ~ ~~~~ULTOUT 

L-______ ~-~ ~:=:j~ g~F 

427 



Control Registers 

Registers 
(Continued) 

R248 POIM 
Port 0 and I Mode Register 

(F8H; Write Only) 

428 

po,-po, MODE:] '~~ po,-po, MODE 
OUTPUT;; 00 ~ , L 00 '" OUTPUT 

INPUT", 01 01 "" INPUT 
A12-A'5 = 1X ' ~x '" Aa-A11 

EXTERNAL MEMORY TIMING " STACK SEL.ECTION 
NORMAL = 0 0 = EXTERNAL 

EXTENDED '" 1 1 '" INTERNAL 

P1 0·P1r MODE 
" 00 = BYTE OUTPUT 

01 = BYTE INPUT 
10 = ADo·ACr , 
11 "" HIGH.IMPEDANCE ADo-ACT, 

AS, OS, RM, Aa-A11. A12-A15 
IF SELECTED 

R249lPR 
Interrupt Priority Register 

(F~; Write Only) 

I~I~I~I~I~I~I~I~I 

"." •• :J I I III ,~""""-...... " RESERVED '" 000 
IRQ3, IRQS PRIORITY (GROUP A) C > A > B '" 001 

O:::IAQ5>IRQ3 A>B>C=010 
, 1 = IR03 > IRQS A> C > B = 011 

B > C > A ::: 100 
IROO, IRQ2 PRIORITY (GROUP B) c > B > A '" 101 

o '" IRQ2 > IROO B > A > C '" 110 
1 = IROO > IR02 RESERVEO = 111 

IR01, IR04 PRIORITY (GROUP C) "-
o = IRQ1 > IR04 
1 '" IR04 > IR01 

R250 IRQ 
Interrupt Request Register 

(FAH; ReacI/Write) 

I~I~I~I~I~I~I~I~I 

RESERVED T c== IROO 
IR01 
IR02 
IRQ3 
IRQ< 
lAOS 

R251 1MB 
Interrupt Mask Register 

(FBH; ReacI/Write) 

I~I~I~I~I~I~I~I~I 

P3:! INPUT (Do "" IROO) 
P3:3INPUT 
P311NPUT 
P30 INPUT, SERIAL INPUT 
To. SERIAL OUTPUT 
T, 

"II c== 1 ENABLES IROO·IROS (Do = IROO) 

'-------RESERVED 

'----------1 ENABLES INTERRUPTS 

REGISTER 
POINTER 

R252 FLAGS 
Flag Register 

(FCH; ReacI/Write) 

I~I~I~I~I~I~I~I~I 

H~~
' LUSER FLAG F1 ' 

LUSER FLAG F2 

HALF CARRY FLAG 

'

DECIMAL A,DJUST FLAG 

OVERFLOW FLAG 

SIGN FLAG 

ZERO FLAG 

CARRY FLAG 

R253 RP 
Register Point9r 

, (FDH; Read/Write) 

{::~ LDON'TCARE 

R254 SPH 
Stack Pointer 

(FEH; ReacI/Write) 

I~I~I~I~I~I~I~I~I 

R255 SPL 
Stack POinter 

(FFH; ReacI/Write) 

I~I~I~I~I~J~I~I~I 

IL ____ ~~~~~s~~~~:~R LOWER 



c 

429 



Opcode 
Map 

o 

" 6 
G e 
~ 
:9 
:z: 
Ii 
'" '" ::> 

9 

A 

B 

C 

D 

E 

F 

Bytes per 
Instruction 

o 2 

6,5 6,5 6,5 
DEC DEC ADD 

R: IR: I1,12 

6,5 6,5 6,5 
RLC RLC ADC 

R: IR: [1,[2 

6,5 6,5 6,5 
INC INC SUB 
R: IR: [1,l2 

8,0 6,1 6,5 

IP SRP SBC 
IRR: 1M [1,I2 

8,5 8,5 6,5 
DA DA OR 
R: IRi II, [2 

10,5 10,5 6,5 
pOP POP AND 
R: IR: II, [2 

6,5 6,5 6,5 
COM COM TCM 

R: IR: [I, [2 

10112, I 12114, I 6,5 
PUSH PUSH TM 

R2 IR2 n,I2 

10,5 10,5 12,0 
DECW DECW LDE 

RR: IR: Il,Iuz 

6,5 6,5 12,0 
RL RL LDE 
R: IR: I2, hII 

10,5 10,5 6,5 
[NCW [NCW CP 

RR: IR: II, [2 

6,5 6,5 6,5 
CLR CLR XOR 
R: IR: [1,[2 

6,5 6,5 12,0 
RRC RRC LDC 
R: IR: Il,Irrz 

6,5 6,5 12,0 

SRA SRA LDC 
R: lR: [2, lrn 

6,5 6,5 
RR RR 
R: IR: 

8,5 8,5 
SWAP SWAP 

R: IR: 

" 'V 

Execution 
Cycles 

Upper 
Opcode- A 
Nibble 

First 
Operand 

Lower Nibble (Hex) 

6,5 10,5 10,5 10,5 10,5 6,5 

ADD ADD ADD ADD ADD LD 
Il,112 H2,Hl lR2,R: R:,IM IR:,IM Il,H2 

6,5 10,5 10,5 10,5 10,5 
ADC ADC ADC ADC ADC 
fl,IrZ H2,Bl IR2,R: R:,IM IR:,IM 

6,5 10,5 10,5 10,5 10,5 
SUB SUB SUB SUB SUB 
Il,112 H2,Hl lR2,R: R:,IM IR:,IM 

6,5 10,5 10,5 10,5 10,5 
SBC SBC SBC SBC SBC 
rl,lrz Hz,Bl IRz,Hl R:,IM IR:,IM 

6,5 10,5 I(),5 10,5 10,5 

OR OR OR OR OR 
[I,IIZ H2,Hl IR2,R: R:,IM IR:,IM 

6,5 10,5 10,5 10,5 10,5 
AND AND AND AND AND 
II, lIZ H2,Hl IR2,R: R:,IM IR:,IM 

6,5 10,5 10,5 10,5 10,5 
TCM TCM TCM TCM TCM 
[1, IrZ Hz,Hl IHz,Hl R:,IM IR:,IM 

6,5 10,5 10,5 10,5 10,5 
TM TM TM TM TM 

r},Ir2 H2,BI IH2,Hl R:,IM IR:,IM 

18,0 

LDEI 
Ifl,Irrz 

18,0 
LDEI 

lrz,lni 

6,5 10,5 10,5 10,5 10,5 
CP CP CP CP CP 

II/In R2,Rl IH2,Hl R:,IM lR:,IM 

6,5 10,5 10,5 10,5 10,5 
XOR XOR XOR XOR XOR 
Il,112 Hz,Hl IR2,R: R:,IM IR:,IM 

18,0 10,5 
LDCI LD 

hI,Irrz II, X, Rz 

18,0 20,0 20,0 10,5 
LDCI CALL" CALL LD 

hz, lIn IRRI DA [2, x, Rl 

6,5 10,5 10,5 10,5 10,5 
LD LD LD LD LD 

Il,Iu Hz,Hl IHz,HI R:,IM IR:,IM 

6,5 10,5 
LD LD 

lIl,[2 H2,IRI 

.; ..... 
V" 

"I ..... 

Lower 
Opcode 
Nibble 

t Pipeline 
4 Cycles 

Mnemonic 

Second 
Operand 

*2-byte instruction; fetch cycle appears as a 3-byte instruction 

430 

A B 

6,5 12110,5 12110,0 

LD DINZ IR 
I2,Bl n,RA cc,BA 

Legend: 
R = 8-Bit Address 
r = 4~ Bit Address 
Rl or [1 = Dst Address 
Rz or [2 = Src Address 

Sequence: 

C D E 

6,5 12110,0 6,5 
LD IP INC 

Il,IM cc,DA fl 

3. 

Opcode, First Operand, Second Operand 

Note: The blank areas are not defined. 

F 

-

-

-

-

-

-

-

-
6, I 
DI 

-
6, I 
EI 

-
14,0 
RET 

-
16,0 
IRET 

-
6,5 

RCF 
-

6,5 
SCF 

-
6,5 

CCF 
-

6,0 
NOP 



~ ZiIm Product Specification 

August 1988 

FEATURES 

• Improved Z8~ instruction set includes multiply and 
divide instructions, Boolean and BCD operations. 

• Additional instructions support threaded-code 
languages, such as "Forth." 

• 325 byte registers, including 272 general-purpose 
registers, and 53 mode and control registers. 

• Addressing of up to 128K bytes of memory. 

• Two register pointers allow use of short and fast 
instructions to access register groups within 600 nsec. 

• Direct Memory Access controller (DMA). 

• Two 16-bit counter/timers. 

GENERAL DESCRIPTION 

The Zilog SuperB single-chip MCU can be used for 
development and production. It can be used as 110- or 
memory-intensive computers, or configured to address 
external memory while still supporting many 110 lines. 

NC 

Vee 

ROMI.55 

"" P1, ... 
P2, 

Vee 
GND 

Vee 
XTAL2 

XTAL1 

P" 

P4s 

P4s 

P47 

NC 

9 8 7 6 5 4 3 2 1 ~ 67 ~ ~ ~ ~ ~ 61 ,. 6. 

11 5. 

12 58 

13 57 

14 56 

15 55 

16 54 

17 53 

18 SUPER8 52 ,. 51 

2. 5. 

21 4. 

22 48 

23 47 

24 .6 

25 45 

26 44 

~~~~~~~~~~~~~~~/~ 

Figura 18_ Pin AsSignments - 68-pin PLCC 

NC 

Ne 

Vee 
po, 

po, 

p", 

P3, 

AS 

OS 

P4s 

P., 

GND 

GND 

P., 

P4, 

R/W 

NC 

Super8™ MCV ROMless, 
ROM, and Protot,ping Device 
with EPROM Interface 

Z8800,Z8801,Z8820,Z8822 

• Up to 32 bit-programmable and 8 byte-programmable I/O 
lines, with 2 handshake channels. 

• Interrupt structure supports: 
o 27 interrupt sources 
o 16 interrupt vectors (2 reserved for future versions) 
o 8 interrupt levels 
o Servicing in 600 nsec. (1 level only) 

• Full-duplex UARTwith special features. 

• On-Chip oscillator. 

• 20 MHz clock. 

• 8K byte ROM for Z8820 

The Super8 features a full-duplex universal asynchronous 
receiver /transmitter (UART) with on-Chip baud rate 
generator, two programmable counter/timers, a direct 
memory access (DMA) controller, and an on-Chip oscillator. 

The Super8 is also available as a 48-pin and 68-pin ROMless 
microcomputer with four byte-wide 110 ports plus a 
byte-wide address/data bus. Additional address bits can be 
configured, up to a totalo! 16. 

~ ~ ~ ~ f ~ f ~ ~ f f 

P16 0 vee 

P17 P06 

P24 P07 

P25 P34 

vee Z8801 P3S 

GND AS 

XTAl.2 os 
XTALI GND 

P47 RIW 

P22 

'" '" ~ ~ S! ~ 
0 

~ ~ 
... .. 

~ ~ ~ ~ ~ 

431 



P" PO, 

P" PO, 

P" PO, 

P" PO, 

P" PO. 

p'. PO. 

P" PO. 

P'7 P07 

P2. P3. 

P2S P3s 

+SV AS 
XTAL2 os 
XTAL1 P4. 

P4. P4, 

P4. GNO 

P4. P4, 

P47 P4, 

P2, RiW 

P3, RESET 

P3, P3. 

P2, P37 

P2, P27 

P2, P2, 

P3, P3. 

Figure 1b. Pin Assignments - 48·pin DIP 

+5 +5 

A12 +5 

A7 A13 

A. A, 

As A, 

A4 Al1 

A, DE 
A, AlO 

A, CE 
A, 07 

0, O. 

0, Os 

0, D. 
GNO D, 

Figure 3. Pin Assignments-28-Pin Piggyback Socket 

Protopack 

This part functions as an emulator for the basic 
microcomputer. It uses the same package and pin-out as 
the basic microcomputer but also has a 2S-pin "piggy back" 
socket on the top into which a ROM or EPROM can be 
installed. The socket is designed to accept a type 2764 
EPROM. 

This package permits the protopack to be used in prototype 
and final PC boards while still permitting user program 

432 

SUPERB 

Figure 2. Pin Functions 

Ao..-

DATA 

PROTOPACK 
EPROM ADDRESS 
SOCKET 

Figure 4. Pin Functions-28-Pin Piggyback Socket 

development. When a final program is developed, it can be 
mask-programmed into the production microcomputer 
device, directly replacing the emulator. The protopack part 
is also useful in situations where the cost of mask­
programming is prohibitive or where program flexibility is· 
desired. 



.. 
I/O 

ADDRESS/DATA OR I/O 
(BYTE PROGRAMMABLE) 

ADDRESS 

DATA 

(BIT PROGRAMMABLE) 
OR CONTROL ~--------~ .. ~--------~ 

Z-BUS WHEN USED'AS 
ADDRESS/DATA BUS 

Figure 5. Functional Block Diagram 

ARCHITECTURE 

The Super8 architecture includes 325 byte-wide internal 
registers. 272 of these are available for general purpose 
use; the remaining 53 provide control and mode functions. 

The instruction set is specially designed to deal with this 
large register set. It includes a full complement of 8-bit 
arithmetic and logical operations, including multiply and 
divide instructions and provisions for BCD operations. 
Addresses and counters can be incremented and 

. decremented as 16-bit quantities. Rotate, shift, and bit 
manipulation instructions are provided. Three new 
instructions support threaded-code languages. 

PIN DESCRIPTIONS 

The Super8 connects to external devices via the following 
TIL-compatible pins: 

AS. Address Strobe (output, active Low). AS is pulsed 
Low once at the beginning of each machine cycle. The 
rising edge indicates that addresses Riw and OM, when 
used, are valid. 

OS.Data Strobe (output, active Low). OS provides timing 
for data movement between the address/data bus and 
external memory. During write cycles, data output is valid at· 
the leading edge of OS. During read cycles, data input 
must be valid prior to the trailing edge of OS. 

The UART is a full-function mUltipurpose asynchronous 
serial channel with many premium features. 

The 16-bit counters can operate independently or be 
cascaded to perform 32-bit counting and timing operations. 
The DMA controller handles transfers to and frolT) the 
register file or memory. DMA can use the UART or one of two 
ports with handshake capability. 

The architecture appears in the block diagram (Figure 5) . 

POO·P07. P1o·P17. P20·P27. P30·P37. p40·P47' Port 110 
Lines (inpuUoutput). These 40 lines are divided into five 8-bit 
I/O ports that can be configured under program control for 
I/O or external memory interface. 

In the ROM less devices, Port.1 is dedicated as a 
multiplexed address/data port, and Port 0 pins can be 
assigned as additional address lines; Port 0 non-address 
pins may be ass'igned as I/O. In the ROM and protopack, 
Port 1 can be assigned as input or output, and Port 0 can be 
assigned as input or output on a bit by bit basis. 

433 



Ports 2 and 3 can be assigned on a bit-for-bit basis as 
general I/O or interrupt lines. They can also be used as 
special-purpose I/O lines to support the UART, 
counter/timers, or handshake channels. 

Port 4 is used for general I/O. 

During reset, all port pins are configured as inputs (high 
impedance) except for Port 1 and Port 0 in the ROM less 
devices. In these, Port 1 is configured as a multiplexed 
address/data bus, and Port 0 pins POO-P04 are configured 
as address out, while pins POS-P07 are configured as inputs. 

it is deactivated, the SuperB begins processing at address 
0020H· 

ROMless. (input, active High). This input controls the 
operation mode of a 6B-pin SuperB. When connected to Vee, 
the part will function as a ROM less ZBBOO. When connected 
to GND, the part will function as a ZBB20 ROM part. 

R/W. ReadNVrite (output). R/W determines the direction of 
data transfer for external memory transactions. It is Low 
when writing to program memory or data memory, and High 
for everything else. 

\ 

RESET. Reset (input, active Low). Reset initializes and starts 
the SuperB. When it is activated, it halts all processing; when' 

'XTAL 1, XTAL2. (Crystal oscillator input.) These pins 
connect a parallel resonant crystal or an external clock 
source to the on-board clock oscillator and buffer. 

REGISTERS 

The SuperB contains a 256-byte internal register space. 
However, by using the upper 64 bytes of the register space 
more than once, a total of 325 registers are available. 

Registers from 00 to BF are used only once. They can be 
accessed by any register command. Register addresses CO 
to FF contain two separate sets of 64 registers. One set, 
called control registers, can only be accessed'by register 
direct commands. The other set can only be addressed by 
register indirect, indexed, st.ack, and DMA commands. 

SET ONE 

I 
I--r-

CONT:g~~:~I~TERS .. 
i-r-

(REGISTER ADDRESSING ONLY) 

I-

SYSTEM REGISTERS, 
STACK, FLAGS, PORTS, ETC. 

(REGISTER ADDRESSI~G ONLY) 

WORKING REGISTERS 
(WORKING REGISTER 
ADDRESSING ONLY) 

The uppermost 32 register direct registers (EO to FF) are 
further divided into two banks (0 and 1), selected by the 
Bank Select bit in the Flag register. When a Register Direct 
command accesses a register between EO and FF, it looks at 
the Bank Select bit in the Flag register to select one of the 
banks. . 

The register space is shown in Figure 6. 

SET TWO 
FFH .... -------., 

BANK1 

BANKO 

DATA REGISTERS 
(INDIRECT REGISTER, INDEXED, 

STACK OR DMA 
ACCESS ONlY) 

COH~ _______ ~ 

BFH r--------.., 
256 
BYTES 

DATA REGISTERS 192 
(ALL ADDRESSING MODES) BYTES 

OOH~ _______ ~ 

Figure 6. SuperS Registers 

434 



Working Register Window 

Control registers R214 and R215 are the register pointers, 
RPO and RP1. They each define a moveable, 8-register 
section of the register space. The registers within these 
spaces are called working registers. 

Working registers can be accessed using short 4-bit 
addresses. The process, shown in section a of Figure 4, 
works as follows: 

• The high-order bit of the 4-bit address selects one of the 
two register pointers (0 selects RPO; 1 selects RP1). 

• The five high-order bits in the register pointer select an 
8-register (contiguous) slice of the register space. 

• The three low-order bits of the 4-bit address select one of 
the eight registers in the slice. 

I I I I I I I I 
SELECTS 
RPO ORRP1 

ADDRESS QPCODE 

I APO (A214) 

APl (A21S) 

,.-----A-----,,~ 

I I I I I I I I I 

REGISTER POINTER PROVIDES 
5 HIGH-ORDER BITS 

4·81T ADDRESS PROVIDES 3 LOW-ORDER BITS 

TOGETHER THEY CREATE 
8-BIT REGISTER ADDRESS 

a. 4-Bit Addressing 

The net effect is to concatenate the five bits from the register 
pointer to the three bits from the address to form an 8-bit 
address. As long as the address in the register pointer 
remains unchanged, the three bits from the address will 
always point to an address within the same eight registers. 

The register pointers can be moved by changing the five 
high bits in control registers R214 for RPO and R215 for RP1. 

The working registers can also be accessed by using full 
8-bit addressing. When an 8-bit logical address in the range 
192 to 207 (CO to CF) is specified, the lower nibble is used 
similarly to the 4-bit addressing described above. This is 
shown in section b of Figure 7. 

I I I I I I I I 
I APO (A214) 

RP1 (R21S) 

SELECTS 
RPODRRP1 

REGISTER POINTER PROVIDES 
5 HIGH-ORDER BITS 

ADDRESS 

~ 

T-"~."' 
----'---~ 

I I I I 
8-BIT PHYSICAL ADDRESS 

b. a-Bit Addressing 

Figure 7. Working Register Window 

435 



Since any direct access to logical addresses 192 to 207 
involves the register pointers, the physical registers 192 to 
207 can be accessed only when selected by a register 
pointer. After a reset, RPO points to R192 and RP1 points to 
R200. 

Register List 

Table 1 lists the SuperB registers. For more details, see 
Figure B. 

Table 1. Super-B Registers 

Address 
Decimal Hexadecimal 

General-Purpose Registers 
000-192. OO-BF 

192·207 CO·CF 
192-255 CO-FF 

Mode and Control Registers 
208 DO 
209 01 
210 02 
211 03 
212 04 
213 05 
214 06 
215 07 
216 08 

'217 09 
218 DA 
219 DB 
220 DC 
221 DO 
222 DE 
224 EO BankO 

Bank 1 
225 E1 BankO 

~ank 1 
226 E2 BankO 

Bank 1 
227 E3 BankO 

Bank 1 
228 E4 BankO 

Bank 1 
229 E5 BankO 

Bank 1 
235 EB BankO 
236 EC BankO 
237 ED BankO 
239 EF BankO 
240 FO BankO 

Bank 1 
241 F1 BankO 

Bank 1 
244 F4 BankO 
245 F5 BankO 
246 F6 BankO 
247 F7 BankO 
248 F8 BankO 

Bank 1 

436 

Mnemonic 

PO 
P1 
P2 

P3 
P4 
FLAGS 

RPO 
RP1 
SPH 
SPl 
IPH 

IPl 
IRQ 
IMR 
SYM 

COCT 

COM 
C1CT 
C1M 
COCH 
CTCH 

COCl 
CTCl 

C1CH 

cnCH 
C1Cl 

cnCl 
UTC 
URC 

UIE 
UIO 
POM 
DCH 
PM 

DCl 
HOC 

H1C 
P4D 

P40D 

P2AM 
UBGH 

Function 

General purpose (all address modes) 

Working register (direct only) 
General purpose (indirect only) 

Port 0 1/0 bits 
Port 1 (1/0 only) 
Port 2 

Port 3 
Port 4 

System Flags Register 
Register Pointer 0 

Register Pointer 1 
Stack Pointer High By1e 
Stack Pointer low Byte 

Instruction Pointer High Byte 

Instruction Pointer low Byte 
Interrupt Request 
Interrupt Mask Register 
System Mode 

CTR 0 Control 

CTRO Mode 
CTR 1 Control 

CTR 1 Mode 
CTR 0 Capture Register, bits 8-15 
CTR 0 Timer Constant, bits 8-15 

CTR 0 Capture Register, bits 0-7 
CTR 0 Time Constant, bits 0-7 
CTR 1 Capture Register, bits 8-15 

CTR 1 Time Constant, bits 8-15 
CTR 1 Capture Register, bits 0-7 
CTR 1 Time Constant, bits 0-7 
UART Transmit Control 

UART Receive Control 
UART Interrupt Enable 

UARTData 
PortO Mode 
DMA Count. bits 8-15 

Port Mode Register 
DMA Count, bits 0-7 

Handshake Channel 0 Control 
Handshake Channel 1 Control 
Port 4 Direction 
Port 4 Open Drain 

Port 2/3 A Mode 

UART Baud Rate Generator, bits 8-15 



Table 1 . Super-a Registers (Conti nued) 

Address 
Decimal Hexadecimal 

Mode and Control Registers (Continued) 
249 F9 Bank 0 

Bank 1 

250 FA BankO 

Bank 1 
251 FB BankO 

Bank 1 
252 FC BankO 

253 FD BankO 
254 FE BankO 

Bank 1 

255 FF BankO 
Bank 1 

MODE AND CONTROL REGISTERS 

R213 (05) FLAGS 
SYSTEM FLAGS REGISTER 

Mnemonic 

P2BM 

UBGL 
P2CM 
UMA 
P2DM 

UMB 
P2AIP 

P2BIP 
EMT 
WUMCH 

IPR 
WUMSK 

CARRY FLAGgJJ~ ZEROFLAG~ 
SIGN FLAG 

OVERFLOW FLAG 

llli' L BANK ADDRESS 

. 
L FAST INTERRUPT STATUS 

HALF· CARRY FLAG 

DECIMAL ADJUST 

R214 (06) RPo 
REGISTER POINTER 0 

(RP3-RP7)~ 

R215 (07) AP1 
REGISTER POINTER 1 

LNorUSED 

I 071 061 05 I 041 031 021 0, I Do I 

R216 (08) SPH 
STACK POINTER 

LNorUSED 

L....----HIGH BYTE (SP8·SP15) 

R217 (09) SPL 
STACK POINTER 

L.... ____ lOW BYTE (SPO-SP7) 

Function 

Port 2/3 B Mode 
UART Baud Rate Generator. bits o· 7 
Port 2/3 C Mode 

UART Mode A 
Port 2/3 D Mode 
UARTModeB 

Port 2/3 A Interrupt Pending 
Port 2/3 B Interrupt Pending 
External Memory Timing 
Wakeup Match Register 
Interrupt Priority Register 

Wakeup Mask Register 

R218 (DA) IPH 
INSTRUCTION POINTER HIGH 

L....----HIGH BYTE (IP8·IP15) 

R219 (DB) IPL 
INSTRUCTION POINTER LOW 

107 1 061 051 041 0,1 02 I 0, I 00 I 
L....----LOW BYTE (IPO·IP7) 

R220 (DC) IRQ 
INTERRUPT REQUEST (READ ONLY) 

I~I~I~I~I~I~J~I~I 

LEVEL 7 J{W I Uhl~LLEVELO 
lEVEL 6 ~ LEVEL 1 

lEVEL 5 lEVEL 2 

LEVEL 4 LEVEL 3 

R221 (00) IMR 
INTERRUPT MASK 

1071 0 6 1 Os I 041 031 021 0, I Do I 

LEVEL7{W~ Uhl
l 

LLEVELO LEVEL6~ LLEVEL1 

lEVEL,S LEVEL 2 

LEVEL 4 lEVEL 3 

Figure 8. Mode and Control Registers 

437 



MODE AND CONTROL REGISTERS (Continued) 

438 

R222 (DE) SYM 
SYSTEM MODE 

I~I~I~I~I~I~I~I~I 

---r TIL 1 = GLOBAL INTERRUPT ENABLE 

NOT USED ~ 1 = FAST INTERRUPT ENABLE 

FAST INTERRUPT SELECT 

R224, BANK 0 (EO) COCT 
COUNTER 0 CONTROL 

000 LEVEL 0 
001 LEVEL 1 
010 LEVEL2 
011 LEVEL 3 
100 LEVEL 4 
101 LEVEL 5 
110 LEVEL 6 
111 LEVEL7 

o = SINGLE CYCLE JJ~ I I 

1 = CONTINUOUS ~ 

o = COUNT DOWN 
1 = COU~TUP 

1 = LOAD COUNTER 

1 = SOFTWARE TRIGGER 

~I L 1 = ENABLE COUNTER 

L READ 1 = END OF COUNT 
WRITE 1 = RESET END OF COUNT 

1 = ZERO COUNT INTERRUPT ENABLE 

1 = SOFTWARE CAPTURE 

R224 BANK 1 (EO) COM 
COUNTER 0 MODE 

INPUT PIN ASSIGNMENTS: 

07 06 05 04 P27 P2, I L ~:t:.="."' o 
o 
o 
o 
o 
o 
o 
o 

I/O 
I/O 
GATE 
GATE 
I/O 
TRIGGER 
GATE 
GATE/ 

110 
TRIGGER 
I/O 
TRIGGER 
CO INPUT 
CO INPUT 
CO INPUT 

TRIGGER Co INPUT 
CO OUTPUT I/O 
CO OUTPUT TRIGGER 
CO OUTPUT GATE 
CO OUTPUT GATE/TRIGGER 
CO OUTPUT CO INPUT 
~-UNDEFINED~­

-- UNDEFINED~-

- CASCADE COUNTEI'IS -

R225 BANK 0 (EI) CICT 
COUNTER 1 CONTROL 

EDGE OF P2Z 
10 = BI·VALUE MODE 
11 = CAPTURE ON BOTH 

EDGESOFP2, 

0= EXTERNAL 
UP/DOWN CONTROL P27 

1 = PROGRAMMED 
UP/DOWN CONTROL 

1 = ENABLE RETRIGGER 

o = SINGLE CYCLE J~ I 
1 = CONTINUOUS ~ 

o = COUNT DOWN 
1 = COUNT uP , 

1 = LOAD COUNTER 

~I L 1 = ENABLE COUNTER L READ 1 = END OF COUNT 
WRITE 1 = RESET END OF COUNT 

~ = ZERO COUNT INTERRUPT ENABLE 

1 = SOFTWARE CAPTURE 

1 = SOFTWARE TRIGGER 

Figure 8. Mode and Control Registers (Continued) 



MODE AND CONTROL REGISTERS (Continued) 

R225BANK1 (E1)C1M 
COUNTER 1 MODE 

I~I~I~I~I~I~I~I~I 
INPUT PIN ASSIGNMENTS: ~ 
07 08 Os 04 P37 P3. ----.J 
~0~0~0~0~1~/0~----~1I=0~------
o 0 0 1 1/0 TRIGGER 
0010GATE 110 
o 0 1 1 GATE TRIGGER 
o 1 0 0 110 CO INPUT 
o 1 0 1 TRIGGER co INPUT 
o 1 1 0 GATE CO INPUT 
0111GATEI 

R226 BANK 0 (E2) COCH 
COUNTER 0 CAPTURE 

TRIGGER CO INPUT 
CO OUTPUT 1/0 
co OUTPUT TRIGGER 
co OUTPUT GATE 
co OUTPUT GATEITRIGGER 
co OUTPUT COINPUT 
--UNOEFINED--
--UNDEFINED--
--UNDEFINED--

'----------- HIGH BYTE (COCa-Coc,15) 

R226 BANK 1 (E2) COTCH 
COUNTER 0 TIME CONSTANT 

'----------- HIGH BYTE (COTC,-COTC15) 

R227 BANK 0 (Ea) COCL 
COUNTER 0 CAPTURE 

I~I~I~I~I~I~I~I~I 

L CAPTURE MODE: L 00 = NO CAPTURE 
01 = CAPTURE ON RISING 

EDGEOFP37 . 
10 = B~VAWE MODE 
11 • CAPTURE ON BOTH 

EDGES OF P37 

0= EXTERNAL 
UP/DOWN CONTROL P37 

1 = PROGRAMMED 
UPIDOWN CONTROL 

1 = ENABLE RETRIGGER 

R229 BANK 0 (ES) C1 CL 
COUNTER 1 CAPTURE 

'------------ LOW BYTE (C1 Co-C1 C7) 

R229 BANK 1 (E5) C1 TCL 
COUNTER 1 TIME CONSTANT 

'------------ LOW BYTE (C1TCo-C1TC7) 

R235 BANK 0 (EB) UTC 
UART TRANSMIT CONTROL 

I~I~I~I~I~I~I~I~I 

'-1----- LOW BYTE (COCo-COC7) 

R227 BANK 1 (E3) COTCL 
COUNTER 0 TIME CONSTANT 

TRANSMITDATASELECT:1j J.. ~~L 1 = TRANSMITDMAENABLE o = OUTPUT P3, DATA 
1 = OUTPUT TRANSMIT DATA . 1 = TRANSMIT BUFFER EMPTY 

1 = SEND BREAK 1 = ZERO COUNT' 

STOP BITS: o • 1 STOP BIT 1 • TRANSMIT ENABLE 

I~I~I~I~I~I~I~I~I 

'-1----------- LOW BYTE (COTCo-COTC7) 

R228 BANK 0 (E4) C1CH 
COUNTER 1 CAPTURE 

R22808ANK 1 (E4) C1 TCH 
COUNTER 1 TIME CONSTANT 

1~1~1~1~1~I~t~I~1 

1'------------ HIGH BYTE (C1TC,-C1TC15) 

1 = 2 STOP BITS 

1 = WAKE-UP ENABLE -----------' 

R236 BANK 0 (EC) URI: 
UART RECEIVE CONT.RDL 

1 =WAKE_UPDETECT~~ 
1 = CONTROL CHARACTER DETECT =:..J 

1 = BREAK DETECT 

1 = FRAMING ERROR 

~- ~ 1 = RECEIVE CHARACTER 
AVAILABLE 

1 = RECEIVE ENABLE 

. 1 = PARITY ERROR 

1 .. OVERRUN ERROR 

Figure 8. Mode and Control Registers (Continued) 

439 



MODE AND CONTROL REGISTERS (Continued) 

R2378ANK 0 (ED) UIE 
UART INTERRUPT ENABLE 

1 m WAKE.OP INTERRUPTENABLE~ J I 
1 = CONTROL CHARACTER ~ 

INTERRUPT ENABLE 
, 1 • BREAK INTERRUPT ENABLE 

1 = RECEIVE ERROR INTERRUPT 
ENABLE 

R239 BANK 0 (EF) UIO 
UART TRANSMIT OATA (WRITE) 

UART RECEIVE OATA (READ) 

'------ OATA(Do = LSB) 

Ra'lO BANK 0 (FO) POM 
PORTO MODE 

I~I~I~I~I~I~I~I~I 

PD7MODE~~ ~I LPOOMODE Po.,MODE~ _ LP01MODE 

PO, MDDE' Po. MODE 

po. MODE po. MODE 

o = I/Oj 1 = ADDRESS 

R2'1O BANK 1 (FO) DCH 
DMACOUNT -

'------ HIGH BYTE (DC,·DC15) 

R241 BANK 0 (Fl) PM 
PORT MODE (WRITE ONLY) 

, NOTUSED~ llli~ PORTODIRECnON 0;; OUTPUT 
1 = INPUT 

PORT 1 MODE OPEN.DRAIN PORT 0 
00 OUTPUT 0 = PUSH·PULL 
01 INPUT " 1 .·OPEN·DRAIN 
IX ADDRESS/DATA OPEN I1RAIN PORT 1 
'. 0 = PUSH-PULL 

1 z OPEN·DRAIN 
ENABLE DM P35 
0= DISABLE 

R241 BANK 1 (Fl) DCL 
DMACOUNT 

I~I~I~I~I~I~I~I~I 

1 == ENABLE 

... 1 _____ LOW BYTE (DC .. DC7) 

~~L 1 = RECEIVE CHARACTER AVAILABLE 
INTERRUPT ENABLE 

1 = RECEIVE DMA ENABLE 

. ' 1 = TRANSMIT INTERRUPT ENABLE 

1 • ZERO COUNT INTERRUPT ENABLE 

R244 BANK 0 (F4) HOC 
HANDSHA~E 0 CONTROL (WRITE ONLY) 

I~I~I~I~I~I~I~I~I 

DESKEW COUNTER ---=-::J 
(RANGE 1·16) ~

' 1- .L 1 • HANDSHAKE ENABLE 

L PORTSELEC'f. . 
1 = PORT1:0 = PORT 4 

DMAENABLE: 
1 == ENABLED 
O. DISABLED 

MODE: 

R245 BANK 0 (F5) HIC 
HANDSHAKE 1 CONTROL (WRITE ONLY) 

1 = FULLY INTERLOCKED 
0= STROIlilD 

I~I~I~I~I~I~I~I~I 

DESKEW COUNTER ---=-::J 
(RANGE 1·16) II.L.--_. 

NOT USED 

R246 BANK 0 (F6) P4D 
PORT 4 DIRECTION 

MODE: 
1 = FULLY INTERLOCKED 
0= STROBED 

'------P4o-P47UO DIRECTION 
o = OUTPUll 1 = INPUT 

R247 BANK 0 (F7) P40D 
PORT 4 OPEN-ORAIN 

I~I~I~I~I~I~I~I~I 

LI-----~~~:;~-rt~N OPEN.DRAIN 

R248 BANK 0 (FB) P2AM 
PORT 2/3 A MODE (WRITE ONLY) 

00 INPUT 
01 INPUT, INTERRUPT ENABLED 
10 OUTPUT, PUSH·PULL 
11 OUTPUT, OPEN-DRAIN 

Figure 8. Mode and COntrol Registers (Continued) 

440 



MODE AND CONTROL REGISTERS (Continued) 

R248 BANK 1 (F8) UBGH 
UART BAUD-RATE GENERATOR 

I~I~I~I~I~I~I~I~I 

.... 1 -----HIGH BYTE (UBGe·uao,.) 

A248 BANK 0 (FB) P2BM 
PORT 213 B MODE (WRITE ONLY) 

I~I~I~I~I~I~I~I~I 

P33MODE=oJ I ~P22MODE 
P30 MODE . P23 MODE 

R250 BANK 0 (FAi P2CM 
PORT 213 C MODE (WRITE ONLY) 

00 INPUT 
01 INPUT,INTERRUPT ENABLED 
10 OUTPUT, PUSH-PULL 
11 OUTPUT,OPEN·DRAIN 

R250 BANK 1 (FA) UMA 
UARTMODEA 

00 I U 
01 INPUT, INTERRUPT ENABLED 
10 OUTPUT, PUSH-PULL 
11 OUTPUT, OPEN.D.RAIN 

Rr.41 BANK 1 (FI) UBOL 
UART BAUD-RATE GENERATOR 

CLOCKRATE:J D7~ 

0"0 =X1 o 1 _ X16 
1 0 =X32 
1 1 _ X64 

llli' L TRANSMIT~AKE.UPVAWE 
L RECEIVE WAKE·UP VAWE , 

1 _ EVEN PARITY 

1 _ PARITY ENABLE 

I~I~I~I~I~I~I~I~I BITS PER CHARACTER 
0504 

.... 1 _____ LOW BYTE (UBG .. UBGt) 

"""0""0 - 5 BITS 
o 1 =681TS 
1 0 _7BITS 
1 1 _BBITS 

R251 BANK 0 (FB) P20M 
PORT 213 0 MODE (WRITE ONLY) 

I~I~I~I~I~I~I~I~I 

P37 MODE =oJ I ,- L P2e MODE 

P3. MODE P27 MODE 

00 INPUT. 
01 INPUT. INTERRUPT ENABLED 
10 OUTPUT, PUSH-PULL 
11 OUTPUT, OPEN·DRAlN 

A251 BANK 1 (FB) UMB 
UARTMODEB 

CLOCK OUTPUT SELECT ~ 
0708 

"00 = P21 DATA 
o 1 _ SYSTEM CLOCK (XTAU2) 
1 0 _ BAUD-AATE GENERATOR 

OUTPUT 
1 1 • TRANSMIT DATA CLOCK 

E' L 1 - LODPBACKENABLE L 1 _ BAUD.RATE GENERATOR ENABLE 

BAUD·RATE GENERATOR SOURCE: 
o = P20 (EXTERNAL) 
1 = INTERNAL (XTAU4) 

TRANSMIT CLOCK INPUT SELECT: 
0-= P21 1 _ AUTO-ECHO 

RECEIVE CLOCK INPUT SELECT: __ -'"_...l 
0= P20 
1 _ BAUD-RATE GENERATOR 
. OUTPUT 

1 _ BAUD-AATE GENERATOR OUTPUT 

Figure 8. Mode and Control Registers (Continued) 

441 



MODE AND CONTROL REGISTERS (Continued) 

R252 BANK 0 (FC) P2AIP 
PORT 2/3 A INTERRUPT PENDING (READ ONLy) 

~71~1~1~1~1~1~1~1 

R253 BANK 0 (FD),P2 BIP 
PORT 2/3 B INTERRUPT PENDING (READ ONLY) 

, I~I~I~I~I~I~I,I~I 

R254 BANKO (FE) EMT 
EXTERNAL MEMORY TIMING REGISTER 

1",1 ~ I~t'r r~ :'!'~~ 
1 _ DATA MEMORY 

STACK SELEC'f. 
o _ REGISTER FILE 
1 • DATA MEMORY , 

DATA MEMORY AUTOMATIC WAITS 
00 _ NO WAITS 
01 = 1 WAIT 
10 _ 2 WAITS 
11 -3WAITS 

'------- PROGRAM MEMORY AUTOMATIC WAITS 
00 _ NO WAITS 
01 _ 1 WAIT 
10 - 2 WAITS 
11 _ 3 WAITS 

'--------- SLOW MEMORY TIMING 
0= DISABLED 
1 _ ENABLED 

'----------- EXTERNAL WAIT INPUT 
o - P3. IS NORMAL 110 
1 = P3. IS EXTERNAL WAIT INPUT 

R254 BANK 1 (FE) WUMCH 
WAKE·UP MATCH REGISTER 

I~I~I~I~I~I~I~I~I 

L.I ______ THIS BYTE, MINUS MASKED BITS, 
IS USED FOR WAKE·UP MATCH 

GROUP PRIORITY 

0704 D1 

"iiOO • UNDEFINED 
o 0 1 .B>C>A 
o 1 0 =A>B)lC 
o 1 1 _B>A>C 
1 0 0 =C>A>B 
1 0 1 =C>B>A 
1 1 0 =A>C>B 
1 1 1 • UNDEFINED 

I 

R255 BANK O,{FF) IPR 
INTERRUPT PRIORITY REGISTER 

J JL 
'----

GROUP A 
0.IRQO>IRQ1 
1:= IRQ1 >IRQO 

GROUPB 
o • IRQ2> (IRQ3,IRQ4) 
1 = (IRQ3,IRQ4) > IRQ2 

SUBGROUPB 
0.IRQ3>IRQ4 
1.IRQ4>IRQ3 

GROUPC 
o .IRQ5 >(IR08,IRQ7) 
1 = (IRQ6,IRQ7) > IRQ5 

SUBGRQUPC 
o = IRQ6 > IAQ7 
1 = IAQ7> IROe 

R255 BANK 1 (FF) WUMSK 
WAKE·UP MASK REGISTER 

'------ THESE BITS CORRESPOND TO BITS 
IN WAKE.UP MATCH REGISTER; Os 
MASK CORRESPONDING MATCH BITS 

Figure 8. Mode and Control Registers (Continued) 



1/0 PORTS 

The Super8 has 40 I/O lines arranged into five 8-bit ports. 
These lines are all TTL-compatible, and can be configured 
as inputs or outputs. Some can also be configured as 
address/data lines. 

Each port has an input register, an output register, and a 
register address. Data coming into the port is stored in the 
input register, and data to be written to a port is stored in the 
output register. Reading a port's register address returns the 
valqe in the input register; writing a port's register address 
loads the value in the output register. If the port is configured 
for an output, this value will appear on the external pins. 

When the CPU reads the bits configured as outputs, the 
data on the external pins is returned. Under normal output 
Iqading, this has the same effect as reading the output 
register, unless the bits are configured as open-drain 
outputs. 

The ports can be configured as shown in Table 2. 

Table 2. Port Configuration 

Port Configuration Choices 

a 

2and3 

Address outputs and/or general I/O 
Multiplexed address/data(or I/O, only for ROM 
and Proto pack) 
Control I/O for UART, handshake channels, and 
counter/timers; also general I/O and external 
interrupts 

4 General I/O 

Port 0 

Port 0 can be configured as an I/O port or an output for 
addressing external memory, or it can be divided and used as 
both. The bits configured as I/O can be either all outputs or all 
inputs; they cannot be mixed. If configured for outputs, they 
can be push-pull or open-drain type. 

Any bits configured for I/O can be accessed via R208. To write 
to the port, specify R208 as the destination (dst) of an 
instruction; to read the port, specify R208 as the source (src). 

Port 0 bits configured as I/O can be placed under handshake 
control of handshake channel 1 . 

Port 0 bits configured as address outputs cannot be accessed 
via the register. 

In ROM less devices, initially the four lower bits are configured 
as address eight through twelve: 

Port 1 

In the ROMless device, Port 1 is configured as a byte-wide 
address/data port. It provides a byte-wide multiplexed 
address/data path. Additional address lines can be added 
by configuring Port O. 

The ROM and Protopack Port 1 can be configured as above 
or as an I/O port; it can be a byte-wide input, open-drain 
output, or push-pull output. It can be placed under 
handshake control or handshake channel O. 

Ports 2 and 3 

Ports 2 and 3 provide external control inputs and outputs for 
the UART, handshake channels, and counter/timers. The 
pin assignments appear in Table 3. 

Bits not used for control I/O can be configured as 
general-purpose I/O lines and/or external interrupt inputs. 

Those bits configured for general I/O can be configured 
individually for input or output. Those configured for output 
can be individually configured for open-drain or push-pull 
output. 

All Port 2 and 3 input pins are Schmitt-triggered. 

The port address for Port 2 is R21 0, and for Port 3 is R211. 

Table 3. Pin Assignments for Ports 2 and 3 

Port 2 Port 3 
Bit Function Bit Function 

a UART receive clock a UART receive data 
UART transmit clock UART transmit data 

2 Reserved 2 Reserved 
3 Reserved 3 Reserved 
4 Handshake 0 input 4 Handshake 1 input/WAIT 
5 Handshake a output 5 Handshake 1 output/OM 
6 Counter a input 6 Counter 1 input 
7 Counter a I/O 7 Counter 1 I/O 

Port 4 

Port 4 can be configured as I/O only. Each bit ~an be 
configured individually as input or output, with either 
push-pull or open-drain outputs. All Port 4 inputs are 
Schmitt-triggered. 

Port 4 can be placed under handshake control of 
handshake channel O. Its register address is R212. 

443 



UART 

The UART is a full-duplex asynchronous' channel. It 
transmits and receives independently with 5 to a bits per 
character, has options for even or odd bit parity, and a 
wake-up feature. 

Data can be read into or out of the UART via R239, Bank O. 
This single address is able to serve a full-duplex channel 
because it contains two complete a-bit registers-one for 
the transmitter and the other for the receiver. 

Pins 

The UART uses the following Port 2 and 3 pins: 

Port/Pin 

2/0 
3/0 
2/1 
3/1 

Transmitter 

UART Function 

Receive Clock 
Receive Data 
Transmit Clock 
Transmit Data 

When the UART's register address is specified as the 
destination (dst) of an operation, the data is output on the 
UABT, which automatically adds the start bit, the 
programmed parity bit, and the programmed number of 
stop bits. It can also add a wake-up bit if that option is 
selected. 

Ifthe UART is programmed for a 5-,6-, or 7-bitcharacter, the 
extra bits in R239 are ignored. 

Serial data is transmitted at a rate equal to t, 1/16, 1/32 or 
1/64 of the transmitter clock rate, depending on the 
programmed data rate. All data is sent out on the falling 
edge of the clock input. 

When the UART has no data to send, it holds the output 
marking (High). It may be programmed with the Send Break 
command to hold the output Low (Spacing), which it 
continues until the command is cleared. 

444 

Receiver 

The UART begins receive operation when Receive Enable 
(URC, bit 0) is set High. After this, a Low on the receive input 
pin for longer than half a bit time is interpreted as a start bit. 
The UART samples the data on the input pin in the middle of 
each clock cycle until a complete byte is assembled. This is 
placed in the Receive Data register. 

If the 1 X clock mode is selected, external bit synchronization 
must be provided, and the input data is sampled on the 
rising edge of the clock. 

For character lengths of less than eight bits, the UART 
inserts ones into the unused bits, and, if parity is enabled, 
the parity bit is not stripped. The data bits, extra ones, and 
the parity bit are placed in the UART Data register (UIO). 

While the UART is assembling a byte in its input shift register, 
the CPU has time to service an interrupt and manipulate the 
data character in UIO. 

Once a complete character is assembled, the UART checks 
it and performs the following: 

• If it is an· ASCII control character, the UART sets the 
Control Character status bit. 

• It checks the wake-up settings and completes any 
indicated action. 

• If parity is enabled, the UART checks to see if the 
calculated parity matches the programmed parity bit. If 
they do not match, it sets the Parity Error bit in URC 
(R236 Bank 0), which remains set until reset by software. 

• It sets the Framing Error bit (URC, bit 4) ifthe character is 
assembled without any stop bits. This bit remains set until 
cleared by software. 

Overrun errors occur when characters are received faster 
than they are read. That is, when the UART has assembled a 
complete character before the CPU has read the current 
character, the UART sets the Overrun Error bit (URC, bit 3), 
and the character currently in the receive buffer is lost. 

The ove~run bit remains set until cleared by software. 



ADDRESS SPACE 

The Super8 can access 64K bytes of program memory and 
64K bytes of data memory. These spaces can be either 
combined or separate. If separate, they are controlled by the 
OM line (Port P3s), which selects data memory when Low 
and program memory when High. 

Figure 9 shows the system memory space. 

CPU Program Memory 

Program memory occupies addresses 0 to 64K. External 
program memory, if present, is accessed by configuring 
Ports 0 and 1 as a memory interfac~. 

The address/data lines are controlled by AS, OS and RiW. 
The first 32. program memory bytes are reserved for 
interrupt vectors; the lowest address available for user 
programs is 32 (decimal). This value is automatically loaded 
into the program counter after a hardware reset. 

ROM less 

Port 0 can be configured to provide from 0 to 8 additional 
address lines. Port 1 is always used as an 8-bit multiplexed 
address/data port. 

65535 r--------. 

THIS BOUNDARY ) 
MAY BE AT 0, OR 

EXTERNAL 
PROGRAM 
MEMORY 

ROM and Proto pack 

Port 1 is configured as multiplexed address/data or.as I/O. 
When Port 1 is configured as address/data, Port 0 lines can 
be used as additional address lines, up to address 15. 
External program memory is mapped above internal 
program memory; that is, external program memory can 
occupy any space beginning at the top of the internal ROM 
space up to the 64K (16-bit address) limit. 

CPU Data Memory 

The external CPU data memory space, if separated from 
program memory by the OM optional output, can be 
mapped anywhere from 0 to 64K (full 16-bit address space). 
Data memory uses the same address/data bus (Port 1) and 
additional addresses (chosen from Port 0) as program 
memory. Data memory is distinguished from program 
memory by the OM pin (P3s), and by the fact that data 
memory can begin at address OOOOH. This feature differs 
from theZ8. 

65535 r-------, 

EXTERNAL 
DATA 

MEMORY 

8192 DEPEN:~~~~Z~ 1----------1 } ON-CHIP 

ROM OR 

32 t--------I ~~~c:ACK 
INTERRUPT VECTORS 

PROGRAM MEMORY DATA MEMORY 

Figure 9. Program and Data Memory Address Spaces 

445 



INSTRUCTION SET 

The Super8 instruction set is designed to handle its large 
register set. The instruction set provides a full complement 
of 8-bit arithmetic and logical operations, including multiply 
and divide. It supports BCD operations using a decimal 
adjustment of binary values, and it supports incrementing 
and decrementing 16-bit quantities for addresses and 
counters. 

It provides extensive bit manipulation, and rotate and shift 
operations, and it requires no special I/O instructions-the 
I/O ports are mappeq into the register file. 

Instruction Pointer 

A special register called the Instruction Pointer (IP) provides 
hardware support for threaded-code languages. It consists 
of register-pair R218 and R219, and it contains memory 
addresses. The MSB is R218. 

Threaded-code languages deal with an imaginary 
higher-level machine within the existing hardware machine. 
The IP acts like the PC for that machine. The command 
NEXT passes control to orfrom the hardware machine to the 
imaginary machine, an0 the commands ENTER and EXIT 
are imaginary machine equivalents of (real machine) CALLS 
and RETURNS. 

If the commands NEXT, ENTER, and EXIT are not used, the 
IP can be used by the fast interrupt processing, as 
described in the Interrupts section. 

Flag Register 

The Flag register (FLAGS) contains eight bits that describe 
the current status of the Super8. Four of these can be tested 
and used with conditional jump instructions: two others are 
used for BCD· arithmetic. FLAGS also contains the Bank 
Address bit and the Fast Interrupt Status bit. 

The flag bits can be set and reset by instructions. 

CAUTION 

Do not specify FLAGS as the destination of an 
instructi'on that normally affects the flag bits or the 
result will be unspecified. 

446 

The following paragraphs describe each flag bit: 

Bank Address. This bit is used to select one of the register 
banks (0 or 1) between (decimal) addresses 224 and 255. It 
is cleared by the SBO instruction and set by the SB1 
instruction. 

Fast Interrupt Status. This bit is set during a fast interrupt 
cycle and reset during the IRET following interrupt servicing. 
When set, this bit inhibits all interrupts and causes the fast 
interrupt return to be executed when the IRET instruction is 
fetched. 

Half-Carry. This bit is set to 1 whenever an addition 
generates a carry out of bit 3, or when a subtraction borrows 
out of bit 4 .. This bit is used by the Decimal Adjust (DA) 
instruction to convert the binary result of a previous addition 
or subtraction into the correct decimal (BCD) result. This 
flag, and the Decimal Adjust flag, are not usually accessed 
by users. 

Decimal Adjust. This bit is used to specify what type of 
instruction wa~ executed last during BCD operations, so a 
subsequent Decimal Adjust oper9tion can funCtion 
correctly. This bit is not usually accessible to programmers, 
and cannot be used as a test condition. 

Overflow Flag. This flag is set to 1 when the result of a 
twos-complement operation was greater than 127 or less 
than -128. It is also cleared to 0 during logical operations. 

Sign Flag. Following arithmetic, logical, rotate, or shift 
operations, this bit identifies the state of the MSB of the 
result. A 0 indicates a positive number and a 1 indicates a 
negative number. 

Zero Flag. For arithmetic and logical operations, this flag is 
set to 1 if the result of the operation is zero. 

For operations that test bits ina register, the zero bit is set to 1 
if the result is zero. 

For rotate and shift operations, this bit is set to 1 if the result is 
zero. 

Carry Flag. This flag is setto 1 if the result from an arithmetic 
operation generates a carry out of, or a borrow into, bit 7. 

After rotate and shift operations, it contains the last value 
shifted out of the specified register. 

It can be set, cleared, or complemented by instructions. 



Condition Codes 

The flags C, Z, S, and V are used to control the operation of 
conditional jump instructions. 

The opcode of a conditional jump contains a 4-bit field 
called the condition code (cc). This specifies under which 
conditions it is to execute the jump. For example, a 
conditional jump with the condition code for "equal" after a 
compare operation only jumps if the two operands are 
equal. 

The condition codes and their meanings are given in 
Table 4. 

Addressing Modes 

All operands except for immediate data and condition 
codes are expressed as register addresses, program 
memory addresses, or data memory addresses. The 
addressing modes and their designations are: 

Register (R) 
Indirect Register (IR) 
Indexed (X) 
Direct (DA) 
Relative (RA) 
Immediate (1M) 
Indirect (IA) 

Table 4. Condition Codes and Meanings 

Binary Mnemonic Flags Meaning 

0000 F Always false 

1000 Always true 

0111 ' C C=1 Carry 

1111 ' NC C=O No carry 

0110' Z Z=1 Zero 

1110' NZ Z=O Not zero 

1101 PL 8=0 Plus 

0101 MI 8=1 Minus 

0100 OV V=1 Overflow 

1100 NOV V=O No overflow 

0110' EQ Z=1 Equal 

1110' NE Z=O Not equal 

1001 GE (8 XORV)=O Greater than or equal 

0001 LT (8 XORV)= 1 Less than 
1010 GT (Z OR (8 XORV))=O Greater than 

001'0 LE (Z OR (8XORV))= 1 Less than or equal 
1111 ' UGE C=O Unsigned greater than or equal 
0111' ULT C=1 Unsigned less than 

1011 UGT (C=OANDZ=0)=1 Unsigned greater than 

0011 ULE (CORZ)= 1 Unsigned less than or equal 

NOTE: Asterisks (') indicate condition codes that relate to two different mnemonics but test the same flags. For example, Z and EO are both True if the 
Zero flag is set, but after an ADD instruction, Z would probably be used, while after a CP instruction, EO WQuid probably be used. 

447 



Registers can be addressed by an 8-bit address in the range 
of 0 to 255. Working registers can also be addressed using 
4-bit addresses, where five bits contained in a register 
pointer (R218 or R219) are concatenated with three bits 
from the 4·bit address to form an 8-bit address. 

Registers can be used in pairs to generate 16-bit program or 
data memory addresses. 

Notation and Encoding 

The instruction set not~tions are described in Table 5. 

Functional Summary of Commands 

Figure 10 shows the formats followed by a quick reference 
guide to the commands. . 

Table 5. Instruction Set Notations 

Notation Meaning Notation Meaning 

cc Condition code (see Table 4) DA Direct address (between a and 65535) 

Working register (between a and 15) RA Relative address 

rb Bit of working register 1M Immediate 

rO Bit a of working register IML Immediate long 

R Register or worki ng register dst Destination operand 

RR Register pair or working register pair (Register pairs src Source operand 

always start on an even-number boundary) @ Indirect address prefix 

IA Indirect address SP Stack pointer 

Ir Indirect working register PC Program cou nter 

IR Indirect register or indirect working register IP Instruction pointer 

Irr Indirect working register pair FLAGS Flags register 

IRR Indirect register pair or indirect working register pair RP Register pointer 

X Indexed # Immediate operand prefix 

XS Indexed, short offset % Hexadecimal number prefix 

XL Indexed, long offset OPC Opcode 

One~Byte Instructions 

dst lope I INC 

Two-Byte Instructions 

ope d5t I tg~: tg~D,A;~'sc:c~~u~~~c~~~~~~g~' 
ope 5'C d5t I loe, lOCPD, LDCPI, LOE, LDEPD, LDEPI 

ope d5t I ~~~~lg~R~~~R~~~:AI~~LI~,C~;.pc6~r 

ope I PUSH, SRP, SRPO, SRP1 

ope d5t b 10 BITe, BITR 

ope d5t b /t BITS 

, lope d5t DJNZ 

lope d5t JR 

d5t lope LD 

",c lope d5t LD 

Figure 10. Instruction Formats 

448 



Three-Byte I structions 

OPC dsl 
ACC, ADD, AND, CP, LO, OR, PUSHUD, 
PUSHUI, SBC, SUB, TCM, TM, XOR 

OPC dsl ADC, ADD, AND, CP, DIV, LD, LOW, MULT, 
OR, POPUO, POPUI, SBC, SUB, TCM, TM, XOR 

OPC dsl I bioi BAND, BCP, BOR, BXOR, LOB 

OPC I bi'l dsl BAND, BOR, BT JRY, BXOR, LOB 

OPC I bioi dsl BTJRF 

OPC sre dsl RA CPIJE, CPIJNE 

OPC dsl I x sre lD, LDC, LOE 

OPC I x dsl LD, LDC, LDE 

OPC dsl CALL 

ee IOPCI dsl JP 

Four·Byte Instructions 

OPC dst Ix¢Oor1! sre sre LOC. LDE 
} FOR LOC, x = EVEN 

FOR LDE, x = ODD 
OPC src Ix*Oor1 dsl dsl LOC, LOE 

OPC dsl I 0000 sre sre LOC' 

OPC I 0000 dsl dsl LOC 

OPC dsl I 0001 sre LOE 

OPC dsl I 0001 dsl dsl LOE 

OPC dsl sre LOW 

Figure 10. Instruction Formats (Continued) 

INSTRUCTION SUMMARY 

AddrMode Opcode Flags Affected AddrMode Opcode Flags Affected 
Instruction Byte Instruction Byte 
and Operation dst src (Hex) CZSVDH and Operation dst src (Hex) CZSVDH 

ADCdst,src (Note 1) '10 * * *- o * BORdst, src rO rB 07 -*OU--
dst - dst + src + C dst - dst OR src Rb rO 

ADD dst,src (Note 1) 00 * * * * o * BTJRF RA rb 37 ------

dst - dst + src if src = 0, PC = PC+ dst 

AND dst,src (Note 1) 50 -** 0-- BTJRT RA rb 37 ------
dst - dst AND src ifsrc = '1, PC = PC + dst 

BAND dst,src rO Rb 67 -* 0 U-- BXORdsl, src rO Rb 27 -*OU--
dst - dst AND src Rb rO 67 dst - dst XOR src Rb rO 27 

BCP dst, src rO Rb 17 -* 0 U-- CALLdst DA F6 ------
dst - src SP-SP - 2 IRR F4 

BITCdst rb 57 -*OU~-
@SP-PC IA 04 

dst-NOldst 
PC -dst 

CCF EF 
BITRdst rb 77 

*-----------
C = NOTC 

dst-O 
CLI~dst R BO 

BITSdst rb 77 
------------

dst-O IR B1 
dst-1 

449 



INSTRUCTION SUMMARY (Continued) 

AddrMode Opcode Flags Affected AddrMode Opcode Flags Affected 
Instruction Byte Instruction Byte 
and Operation dst src (Hell) CZSVDH and Operation etst src (Hex) CZSVDH 

COMdst R 60 -** 0-- INCWdst RR AO - *.* * --, 
dst +- NOT dst IR 61 dst +-1 + dst IR A1 

CPdst,sre (Note 1) AD * * **-- IRET(Fast) BF Restored to 
dst - src PC-IP .before interrupt 

'CPIJE Ir C2 
FLAG +- FLAG' ------
FIS +-0 

if dst - sre ~ O,then 
PC+-PC + RA IRET (Normal) BF Restored to 
Ir+-Ir + 1 . FLAGS +- @SP; SP +- SP + 1 before interrupt 

CPIJNE Ir 02 ------
PC +- @SP; SP +- SP + 2; SMR (0) +- 1 

ifdst - sre ~ O,then JPee,dst OA ceO ------
PC+-PC + RA if ee is true, (ee~'Oto F) 
Ir+-Ir + 1 PC +-dst IRR 30 

DAdst R 40 * * *u-- JRee,dst RA eeB ------
dst+- OA dst IR 41 , if ec is true, (ee~OtoF) 

DECdst' R 00 
PC +-PC + d 

-* **--
dst+-dst - 1 IR 01 LDdst,sre 1M rC ------

DECWdst RR 80 
dst +- sre r R r8 

-* **-- R r9 
dst +- dst - 1 ' IR 81 (r~Oto F) 
01 8F ------ r IR ,C7 
SMR(O) +-0 IR r 07 

DIVdst, sre 
R R E4 
R IR E5 

dst + sre RR R 94 ****-- R 1M E6 
dst (U pper) +- RR IR 95 IR 1M 06 

Quotient IR R F5 
dst (Lower) +- RR 1M 96 x 87 

Remainder 
r 
x 97 

DJNZr,dst RA rA ------ LDBdst, sre rO Rb 47 ------
r+-r - 1 (r~Oto F) dst +- sre Rb rO 47 
ifr ~ 0 

PC +-PC + dst LDC/LDE. r Irr C3 -.---'--

EI 9F 
dst +- sre Irr 03 

------ E7 
SMR(0)+-1 

xs 
xs r F7 

ENTER 1F ------ r x1 A7 
SP +-SP - 2 x1 r B7 
@SP+-IP r OA A7 
IP+-PC OA B7 
PC +-@IP i 

LDCD/LDED dst, sre Irr E2 ------
IP,....IP + 2 dst +- sre 
EXIT 2F ------ rr+-rr - 1 
IP+-@SP 

LDEIILDCI dst, sre Irr E3 ------
SP+-SP + 2 dst +-src 
PC+-@IP 

rr+-rr + 1 
IP +-IP + 2 

INCdst rE 
LDCPD/LDEPD dst,sre 

-***-- rr+-rr - 1 Irr F2 
dst +- dst + 1 (r~OtoF) 

------

R 20 
dst +- src 

IR 21 

450 



INSTRUCTION SUMMARY (Continued) 

AddrMode Opcode Flags Affected AddrMode Opcode Flags Affected 
Instruction Byte Instruction Byte 
and Operation dst src (Hex) C Z S V 0 H and Operation dst src (Hex) CZSVDH 

LDCPI/LDEPI dst. src RLCdst R 10 ****--
rr-rr + 1 Irr F3 ------ dst(O) -C IR 11 
dst -src C -dst(7) 

LDWdst. src RR RR C4 ------ dst (N + 1) - dsl (N) 

dsl - src RR IR C5 
N = 0106 

RR IMM C6 RRdsl R EO ****--

MULT dst. src RR R 84 *0**--
C -dst(O) IR E1 

RR IR 85 
dsl (7) - dsl (0) 

RR 1M 86 dsl (N) - dst (N + 1) 
'N=0106 

OF NEXT ------
RRCdsl CO PC-@IP R ****--

IP-IP + 2 C -dst(O) IR C1 
dsl(7)-C 

NOP FF ------ dsl (N) - dsl (N + 1) 

OR dst.src (Nole1) 40 -**0--
N = 0106 

dsl - dsl OR src SBO 4F ------

POPdst R 50 
BANK-O ------

dsl-@SP; IR 51 SBl 5F ------
sp-sp + 1 BANK-1 

POPUD dsl. src R IR 92 ------ SBCdst.src (Note 1) 3D * * * * 1 * 
dsl - src dst - dsl .,. src - C 
IR-IR-1 

SCF DF 1-----
POPUI dsl. src R IR 93 ------ C-1 
dsl - src 

SRAdst R DO ***0--IR-IR + 1 
dsl (7) - dsl (7) IR D1 

PUSJi src R 70 ------ C-dsl(O) 
SP - sp - 1; @SP - src IR 71 dst (N) - dsl (N + 1) 

PUSHUD dst. src IR R 82 ------ N = qt06 

IR-IR - 1 SRPsrc 1M 31 ------
dst - src RPO-IM 

PUSHUI dst. src IR R 83 ------ RP1 -I~ + 8 

IR-IR+1 SRPO 1M 31 ------
dsl - src RPO-IM 

ReF CF 0---·-- SRP1 1M 31 ------
C-O RP1-IM 

RET AF ------ SUBdst.src (Nole1) 20 * * * .. 1 * 
PC- @SP; SP - SP + 2 dsl - ,dst - src 

RLdsl R 90 ****--
C-dsl(i') IR 91 
dsl (0) - dsl (7) 
dsl(N + 1) - dsl(N) 
N = Ot06 

451 



INSTRUCTION SUMMARY (Continued) 

AddrMode Opcode Flags Affected 
Instruction Byte 
and Operation dst src (Hex) C Z S V 0 H 

SWAPdst R FO -** U--

dst (0-3) - dst (4-7) IR F1 

TCMdst;src {Note 1) 60 -** 0 
(NOT dst) AND src 

TMdst,src (Note 1) 70 -**0--
dstANDsrc 

WFI 3F ------

XORdst,src (Note 1) SO -**0--
dst +- dst XOR S(C 

NOTE 1: These instructions have an identical set of addressing modes, 
which are encoded for brevity. The first opcode nibble identifies 
the command, and is found in the table above. The second 
nibble, represented by aD, defines the addressing mode as 
shown in Table 6 .. 

452 

Table 6. Second Nibble 

AddrMode 
Lower 

dst src Opcode Nibble 

(g] 
Ir [II 

R R III 
R IR IKI 
R 1M [§J 
For example, to use an opcode represented as xO with an "RR" 
addressing mode, use the opcode "x4." 

o = Cleared to Zero 
= Set to One 

= Unaffected 

* = Set or reset, depending on result of operation. 

U = Undefined 



SUPER-B OPCODE MAP 

o 3 

6 6 6 6 
o DEC DEC ADD ADD 

R, IR, '1.'2 'l, lr2 

6 6 6 6 
RLC RLC ADC ADC 
R, IR, '1,(2 '1, Ir2 

6 6 6 6 
2 INC INC SUB SUB 

R, IR, f1,r2 '1, lr2 

10, 
NOTE 6 6 

JP 
C 

SBC SBC 
IRR, 'l,r2 r,. lr2 

3 

6 6 6 6 
4 DA ,DA OR OR 

R, IR, 'l,f2 r,. lr2 

10 10 6 6 
5 POP POP AND AND 

R, IR, 'l,f2 r,. lr2 

---s- 6 6 6 
COM COM TCM TCM 

R, IR, '1,f2 r,. lr2 

10112 12114 6 6 
PUSH PUSH !M TM 

R2 IR2 '1,'2 ",lr2 

10 10 10 10 

i 6 

e 
.!! 7 :8 z .. 

DECW DECW PUSHUD PUSHUI 
RR, IR, IR,.R2 IR,.R2 I 8 

;:) 
6 6 10 10 

9 RL RL POPUD POPUI 
R, IR, IR2.R, IR2.R, 

10 10 6 6 
A INCW INCW CP CP 

RR, IR, '1.r2 '1, Ir2 

6 6 6 6 
B CLR CLR XOR' XOR 

R, IR, '1.r2 r,.1'2 

6 6 16118 12 
C RRC RRC CPIJE LDC' 

R, IR, Ir.r2. RA '1, lrf2 

6 6 16118 12 
D SRA SRA CPlJNE LDC' 

R, IR, Ir,.r2.RA '2, lrr1 

6 6 16 16 
E RR RR LDCD' LDCI' 

R, .IR, ",lrr2 r"lrr2 

8 8 16 16 
F SWAP SWAP LDCPD' LDCPI' 

R, IR, f2,lfr, '2,lrr, 

NOTE A NOTEB 

NOTED, 

Lower Nibble (Hex) , 
4 5 7 8 

10 10 10 10 6 
ADD ADD ADD BOR' LD 
R2.R, IR2.R, R,.IM rO-Rb r,.R2 

10 10 10 10 
ADC ADC ADC BCP 
R2.R, IR2.R, R,.IM r,.b.R2 

10 10 10 10 
SUB SUB SUB BXOR' 
R2.R, IR2.R, R,.IM rO-Rb 

10 10 10 NOTE sac SBC SBC 
A R2.R, IR2.R, R,.IM 

4P 10 10 10 
OR OR OR LDB' 

R2.R, IR2.R, R,.IM rO-Rb 

10 10 10 8 
AND AND AND BITC 
R2.R, IR2.R, R,.IM r,.b 

10 10 10 10 
TCM TCM TCM BAND' 
R2.R, IR2.R, R,.IM rO-Rb 

10 10 10· 
TM TM TM NOTE 

R2.R, IR2.R, R,.IM B 

24 24 24 10 
MULT MULT MULT LD 

R2. RR, IR2.RR, IM.RR, rl,x,f2 

28112 28/12 28/12 10 
DIY DIY DIY LD 

R2. RR, IR2.RR, IM.RR, r2,x,rl 

10 10 10 NOTE CP CP CP 
R2.R, IR2.R, 'R,.IM 0 

10 10 10 NOTE XOR XOR XOR 
R2.R, IR2.R, R,.IM E 

10 10 12 6 
LDW LDW LOW LD 

RR2.RR, IR2.RR, RR,.IML f1, lr2 

20 10 ,6 
CALL LD LD 

lA, IR,.IM Ir1,f2 

10 10 10 18 
LD LD LD LDC' 

R2.R, IR2.R, R,.IM f" lrr2,xs 

18 10 18 18 
CALL LD CALL LDC' 
IRR, R2. IR, DA, f2, lrrl,xs 

NOTEC 

NOTEE 

Figure 11. Opcode Map 

9 

6 
LD 

r2.R, 

A B C 

12/10 12/10 6 
DJNZ JR LD 
r,:RA cc.RA r,.IM 

Legend: 
r ~ 4-bit address 
R = 8-blt address 
b = bit number 
A1 or" = dst address 
R2 or '2 = src address 

Sequence: 

b E F 

12/10 6 14 
JP INC NEXT 

CC;DA r1 

~ 
ENTER 

~ 
EXIT 

~ 
WFI 

~ 
SBO 

rs--
SBI 

r---

r--

r---e 
DI 

r---e-
EI 

~ 
RET 

~ 
IRET 

r---e-
ReF 

r---
6 

SCF 

r---e-
.CCF 

rs--
NOP 

'Examplee: 
BOR rO-R2 

IS BOR r,.b.R2 
or BOR r2.b.R, 

LDCr"lrr2 
isLDCr"lrr2 =. program 
or lDE '"lrf2 = data 

Opcode. first. second. third operands 

NOTE. The blank areas are not defined. 

453 



INSTRUCTIONS 

Table 7. Super8 Instructions 

Mnemonic Operands Instruction Mnemonic Operands Instruction 

Load Instructions Program COr:ltrollnstructions 

CLR dst Clear BTJRT dst, src Bit test jump relative on True 

LD, dst, src Load BTJRF dst, src Bit test jump relative on False 

LDB dsi, src Load bit CALL dst Call procedure 

LDC dst, src Load program memory CPIJE dst, src Compare, increment and jump on 

LDE dst, src Load data memory equal 

LDCD dst, src Load program memory and CPIJNE dst, src Compare, increment and jump on 

decrement ,non-equal 

LDED dst, src Load data memory and DJNZ r,dst Decrement and jump on non-zero 

decrement ENTER Enter 

LDCI dst, src Load p~ogram memory and EXIT Exit 

increment IRET Return from interrupt 

LDEI dst, src Load data memory and increment JP cc, dst Jump on condition code 

LDCPD dst, src Load program memory with JP dst Jump unconditional 

pre-decrement JR cc, dst Jump relative on con'dition code 

LDEPD dst, src Load data memory with JR dst Jump relative unconditional 

pre-decrement NEXT Next 

LDCPI dst, src Load program memory with RET Return 

pre-increment WFI Wait for interrupt 

LDEPI dst, src Load data memory with Bit Manipulation Instructions 
pre-increment BAND dst, src BitAND 

LDW dst, src Load word BCP dst, src Bit compare 
POP dst Pop stack BITC dst Bit complement 
POPUD dst, src Pop user stack (decrement) BITR dst Bit reset 
POPUI dst, src Pop user stack (increment) BITS dst Bit set 
PUSH src Push stack BaR' dst, src BitaR ( 
PUSHUD dst, src Push user stack (decrement) BXOR pst, src Bit exclusive OR 
PUSHUI dst, src Push user stack (increment) TCM dst, src Test complement under mask 

TM dst, src Test under mask 

Arithmetic Instructions , 
Rotate and Shi" Instructions 

ADC dst, src Add with carry RL dst Rotate left 
ADD dst, src Add RLC dst Rotate left through carry 
CP dst, src Compare RR dst Rotate right 
DA dst Decimal adjust RRC dst Rotate right through carry 
DEC dst Decrement SRA dst Shift right arithmetic 
DECW dst Decrement word SWAP dst Swap nibbles 
DIV dst, src Divide 
INC dst Increment CPU Control Instructions 

INCW dst I ncrement word CCF Complement carry flag 

MULT dst, src Multiply DI Disable interrupts 

SBC dst, src Subtract with carry EI Enable interrupts 

SIJB dst, src Subtract Nap Do nothing 
RCF Reset carry flag 
SBO Set bank 0 

Logical Instructions SB1 Set bank 1 
AND dst, src LogiclllAND SCF Set carry flag 
COM dSt Complement SRP src Set register pointers I, 

OR dst, src Logical OR SRPO src Set register pOinter zero 
XOR dst, src Logical exclusive SRP1 src , Set register pOinter one 

454 



INTERRUPTS 

The 'SuperS interrupt structl,!re contains S levels of interrupt, 
16 vectors, and 27 sources. 

Interrupt priority is assigned by level, controlled by the 
Interrupt Priority register (IPR). Each level is masked (or 
enabled) according to the bits in the Interrupt Mask register 
(IMR), and the entire interrupt structure can be disabled by 

. clearing a bit in the System Mode regisfer (R222). 

The three major components of the interrupt structure are 
. sources, vectors, and levels. These are shown in Figure 10 
and discussed in the following paragraphs. 

Sources 

A source is anything that generates an interrupt. This can be 
internal or external to the SuperS MCU. Internal sources are 
hardwired to a particular vector and level, while external 
sources can be assigned to various external events. 
External interrupts are falling-edge triggered. 

Vectors 

The 16 vectors are divided unequally among the eight 
levels. For example, vector 12 belongs to level 2, while level 
3 contains vectors 0, 2, 4, and 6. 

The vector number is used to generate the address of a 
particular interrupt servicing routine; therefore all interrupts 
using the same vector must use the sanie interrupt handling 
routine. 

Levels 

Levels provide the top level of priority assignment. While the 
sources and vectors are hardwired within each level, the 
priorities of the levels can be changed by using the Interrupt 
Priority register (see Figure S for bit details). 

If more than one interrupt source is active, the source from 
the highest priority level will be serviced first. If both sources 
are from the same level, the source with the lowest vector will 
have priority. For example, if the UART Receive Data bit and 
UART Parity Error bit are both active, the UART Parity Error 
bit will be serviced first because it is vector 16, and UART 
receive data is vector 20. 

The levels are shown in Figure 12. 

INTERRUPT SOURCES 

Por
NG 

VECTORS ~ --1-
COUNTER 0 ZERO COUNT 112 IR02 
EXTERNAL INTERRUPT (P2,) 

I EXTERNAL INTERRUPT (P27) I 
I I 

COUNTER 1 ZERO COUNT I 114 IROS 
EXTERNAL INTERRUPT (P3,) 
EXTERNAL INTERRUPT (P37) I 

I 

~:~~~~:~I~~~~~~:~ ~P24) I 
I I 

I 128 IR04 

EXTERNAL INTERRUPT (P2s) I 
I 

~:~~~~:LKI~~~~~~:~ (~34) I 
I I 

I I 130 IRQ7 
I 

EXTERNAL INTERRUPT (P3s) 

RESERVED I 

RESERVED IR03 

EXTERNAL INTERRUPT (P3,) 

EXTERNAL INTERRUPT (P2,) 

EXTERNAL INTERRUPT (P2,) I ~O IROO 

EXTERNAL INTERRUPT (P3,) 

UART RECEIVE OVERRUN 
UART FRAMING ERROR 

16 

UART PARITY ERROR 
UART WAKEUP DETECT 18 
UART BREAK DETECT IR06 
UART CONTROL CHAR DETECT 

UART RECEIVE DATA 20 
EXTERNAL INTERRUPT (P3.) 

EXTERNAL INTERRUPT (P2.) 22 

UART ZERO COUNT 
24 EXTERNAL INTERRUPT (P21) ! 26 

IRQ1 
UART TRANSMIT DATA I 
EXTERNAL INTERRUPT (P3,) I 

! I 
I 

Figure 12. Interrupt Levels and Vectors 

455 



Enables 

Interrupts can be enabled or disabled as follows: 

• Interrupt enable/disable. The entire interrupt structure 
can be enabled or disabled by setting bit 0 in the System 
Mode register (R222). 

• Level enabJe. Each level can be enabled or disabled by 
setling the appropriate bit in the Interrupt Mask register 
(R221). 

• Level priority. The priority of each level can be controlled 
by the values in the Interrupt Priority register (R255, Bank 
0). 

• Source enable/disable. Each interrupt source can be 
enabled or disabled in the sources' Modeand Control 
register. 

Service Routines 

Before an interrupt request can be granted, a) interrupts 
must be enabled, b) the level must be enabled, c) it must be 
the highest priority interrupting level, d) it must be enabled at 
the interrupting source, and e) it must have the highest 
priority within the level. 

If all this occurs, an interrupt request is granted. 

The SuperB then enters an interrupt machine cycle that 
completes the following sequence: 

• It resets the Interrupt Enable bit to disable all subsequent 
interrupts. 

• It saves the Program Counter and status flags on the 
stack. 

• It branches to the address contained within the vector 
location for ihe interrupt. 

• It passes control to the interrupt servicing routine. 

When the interrupt servicing routine has serviced the 
Interrupt, it should issue an interrupt return (IRET) 
instruction. This restores the Program Counter and status 
flags and sets the Interrupt Enable bit in the System Mode 
register. 

Fast Interrupt Processing 

The SuperB provides a feature called fast interrupt 
processing, which completes the interrupt servicing in 6 
clock periods instead of the usual 2,2. 

456 

Two hardware registers support fast interrupts. The 
Instruction Pointer (IP) holds the starting address of the 
service routine, and saves the PC value when a fast interrupt 
occurs. A dedicated register, FLAG', saves the contents of 
the FLAGS register when a fast interrupt occurs. 

To use this feature, load the address of the service routine in 
the Instruction Pointer, load the level number into the Fast 
Interrupt Select field, and turn on the Fast Interrupt Enable 
bit in the System Mode register. 

When an interrupt occurs in the level selected for fast 
interrupt processing, the following occurs: 

• The contents of the Instruction Pointer and Program 
Counter are swapped. 

• The contents of the Flag register are copied into FLAG: 

• The Fast Interrupt Status Bit in FLAGS is set. 

• The interrupt is serviced. 

• When IRET is issued'after the interrupt service outline is 
completed, .the Instruction Pointer and Program Counter 
are swapped again. 

• The contents of FLAG' are copied back into the Flag 
register. 

• The Fast Interrupt Status bit in FLAGS is cleared. 

The interrupt servicing routine selected for fast processing 
should be written so that the location after the IRET 
instruction is the entry point the next time the (Same) routine 
is used. 

Level or Edge Triggered 

Because internal interrupt requests are levels and interrupt 
requests from the outside are (usually) edges, the hardware 
for external interrupts uses edge-triggered flip-flops to 
convert the edges to levels. 

The level-activated system requires that interrupt-serving 
software perform some action to remove the interrupting 
source. The action involved in serving the interrupt may 
remove the source, or the software may have to actually 
reset the flip-flops by writing to the corresponding Interrupt 
Pending register. 



STACK OPERATION 

The SuperB architecture supports stack operations in the 
register file or in data memory. Bit 1 in the external Memory 
Timing register (R254 bank 0) selects between the two. 

Register pair 216-217 forms the Stack Pointer used for all 
stack operations. R216 is the MSB and R217 is the LSB. 

The Stack Pointer always points to data stored on the top of 
the stack. The address is decremented prior to a PUSH and 
incremented after a POP. 

The stack is also used as a return stack for CALLs and 
interrupts. During a CALL, the contents of the PC are saved 
on the stack, to be restored later. Interrupts cause the 
contents of the PC and FLAGS to be saved on the stack, for 
recovery by IRET when the interrupt is finished. 

When the SuperB is configured for an internal stack (using 
the register file), R217 contains the Stack Pointer. R216 may 

COUNTER/TIMERS 

The SuperB has two identical independently programmable 
16-bit counter/timers that can be cascaded to produce a 
single 32-bit counter. They can be used to count. external 
events, or they can obtain their input internally. The internal 
input is obtained by dividing the crystal frequency by four. 

The counter/timers can be set to count up or down, by 
software or external events. They can be set for single or 
continuous cycle counting, and they can be set with a 
bi-value option, where two preset time constants alternate in 
loading the counter each time it reaches zero. This can be 
used to produce an output pulse train with a variable duty 
cycle. 

DMA 

The SuperB features an on-chip Direct Memory Access 
(DMA) channel to provide high bandwidth data 
transmission capabilities. The DMA channel can be used by 
the UART receiver, UART transmitter, or handshake channel 
O. Data can be transferred between the peripheral and 
contiguous locations in either the register file or external 

be used as a general-purpose register, but its contents will 
be changed if an overflow or underflow occurs as the result 
of incrementing or decrementing the stack address during 
normal stack operations. . 

User-Defined Stacks 

The SuperB provides for user-defined stacks in both the 
register file and program or data memory. These can be 
made to increment or decrement on a push by the choice of 
opcodes. For example, to implement a stack that grows 
from low addresses to high addresses in the register file, use 
PUSHUI and POPUD. For a stack that grows from high 
addresses to low addresses in data memory, use LDEI for 
pop and LDEPD for push. 

The counter/timers can also be programmed to capture the 
count value at an external event or generate an interrupt 
whenever the count reaches zero. They can be turned on 
and off in response to external events by using a gate and/or 
a trigger option. The gate option enables counts only when 
the gate line is Low; the trigger option turns on the counter 
after a transient High. The gate and trigger options used 
together cause the counter/timer to work in gate mode after 
initially being triggered. 

The control and status register bits for the counter/timers are 
shown in Figure 5. 

data memory. A 16-bit count register determines the 
number of transactions to be performed; an interrupt can be 
generated when the count is exhausted. DMA transfers to or 
from the register file require six CPU clock cycles; DMA 
transfers to or from external memory take ten CPU clock 
cycles, excluding wait states. 

457 



ABSOLUTE MAXIMUM RATINGS 

Voltage on all pins with respect 
to ground .... .... - O.3V to + 7.0V 

Ambient Operating 
Temperature 

Storage Temperature. 
.See Ordering Information 

. . . . . . . - 65°C to + 150°C 

STANDARD TEST CONDITIONS 

Figure 14 shows the setup for standard test conditions. All 
voltages are referenced to ground, and positive current 
flows into the reference pin. 

Standard conditions are; 

• +4.75V";; Vcc";; + 5.25V 

• GND = OV 

DC CHARACTERISTICS 

Symbol Parameter Min 

VCH Clock Input High Voltage 3.8 

VCl Clock Input Low Voltage -0.3 

VIH Input High Voltage 2.2 
Vil Input Low Voltage -03 

VRH Reset Input High Voltage 3.8 

VRl Reset Input Low Voltage -0.3 

VOH Output High Voltage 2.4 

VOL Output Low Voltage 

III Input Leakage -10 

IOl Output Leakage -10 

IIR Reset I nput Current 

ICC Vec Supply Current 

458 

Stresses greater than these may cause permanent damage to the device. 
This is a stress rating only; operation of the device under conditions more 
severe than those listed for operating conditions may cause permanent 
damage to the device. Exposure ·to absolute maximum ratings for 
extended periods may also cause permanent damage . 

Max Unit 

Vcc V 

0.8 V 

Vcc V 

0.8 V 

Vcc V 

0.8 V 

V 

0.4 V 

10 I-'A 
10 I-'A 

-50 I-'A 
320 mA 

+5V 

1K 

TEST LOAD (FOR ALL PINS) 

Standard Test Load 

Condition 

Driven by External Clock Generator 

Driven by External Clock Generator 

IOH = - 400 I-'A 
IOl = +4.0 mA 



INPUT HANDSHAKE TIMING 

DATAIN~~~ 
... " 24 0-6 

RDYOUT 

1'-----.1( 

Fully Interlocked Mode 

AC CHARACTERISTICS (20 MHz) 
Input Handshake 

Number symbol Parameter 

1 TsDI(DAV) Data In to Setup Time 

2 TdDAVlf(RDY) DAV -I Input to RDY -I Delay 

3 ThDI(RDY) Data In Hold Time from RDY-I 

4 TwDAV DiWlnWidth 

5 ThDI(DAV) Data In Hold Time from DAV-I 

6 TdDAV(RDY) DAV t I nput to RDY t Delay 

7 TdRDYf(DAV) RDY -I Output to DAV t Delay 

NOTES: 
1. Standard Test Load 

Min 

o 

o 
45 

130 

o 

Strobed Mode 

Max 

200 

100 

2. This time assumes user program reads data before DAV Input goes high. RDY will not go high before data is read. 
Himes given are in ns. 
'Times are preliminary and subject to change. 

Notes** 

2 

459 



OUTPUT HANDSHAKE TIMING 

DATAOUT.~,--___________ _ 

~b DATA OUT ~~-j-I~. -6----
DAVOUT 

RDYIN 

Fully Interlocked Mode 

AC CHARACTERISTICS (12 MHz, 20 MHz) 
Output Handshake 

Number Symbol Parameter 

TdDO(DAV) Data Out to DAV. Delay 

2 TdRDYr(DAV) RDY t Input to DAV. Delay 

3 TdDAVOf(RDY) DAV. Output to RDY • Delay 

4 TdRDYf(DAV) RDY. Input to DAV t Delay 

5 TdDAVOr(RDY) DAV t Output to RDY t Delay 

6 TwDAVO DAV Output Width 

NOTES: 
1. Standard Test Load 

DAVOUT 'l..Y 

Strobed Mode 

Min Max 

90 

0 110 

0 

0 110 

0 

150 

2. Time given is for zero value in Deskew Counter. For nonzero value of n where n = 1,2, ... 15 add 2 x n xTpC to the given time. 
Himes given are in ns. 
'Times are preliminary and subject to change. 

AC CHARACTERISTICS (12 MHz) 
Read/Write 

Number Symbol Parameter, 

1 TdA(AS) Address Valid to AS t Delay 

2 TdAS(A) AS t to Address Float Delay 

3 TdAS(DR) AS t to Read Data Required Valid 

4 TwAS AS Low Width 

5 TdA(DS) Address Float to DS • 

6a TwDS(Read) DS (Read) Low Width 

6b TwDS(Write) DS (Write) Low Width 

7 TdDS(DR) DS. to Read Data Required Valid 

8 ThDS(DR) Read Data to DS t Hold Time 

9 TdDS(A) DS t to Address Active Delay 

10 TdDS(AS) DS t to AS • Delay 

11 TdDO(DS) Write Data Valid to DS (Write). Delay 

12 TdAS(W) AS t to Wait Delay 

13 ThDS(W) DS t to Wait Hold Time 

14 TdRW(AS) R/WValid to AS t Delay 

NOTES: 
1. WAIT states add 167 ns to these times. 
2. Auto-wait states add 167 ns to this time. 
~ All times are in ns and are for 12 MHz input frequency . 
• Timings are preliminary and subject to change. 

460 

Normal Timing Extended Timing 
Min Max Min Max 

35 115 

65 150 

270 600 

65 150 

20 20 

225 470 

130 295 

180 420 

0 0 

50 135 

60 145 

35 115 

220 600 

0 0 

50 135 

Notes·:!: 

1,2 

1 

2 

2 



AC CHARACTERISTICS (20 MHz) 
Read/Write 

Normal Timing Extended Timing 
Number Symbol Parameter Min Max Min Max 

TdA(AS) Address Valid to AS t Delay 20 50 

2 TdAS(A) AS t to Address Float Delay 35 85 

3 TdAS(DR) AS t to Read Data Required Valid 150 335 

4 TwAS AS Low Width 35 85 

5 TdA(DS) Address Float to DS ~ a a 
6a TwDS(Read) DS (Read) Low Width 125 275 

6b TwDS(Write) DS (Write) Low Width 65 165 

7 TdDS(DR) DS ~ to Read Data Required Valid 80 225 
, 8 ThDS(DR) Read Data to DS t Hold Time a a 

9 TdDS(A) DS t to Address Active Delay 20 70 

10 TdDS(AS) DS t to AS ~ Delay 30 80 

11 TdDO(DS) Write Data Valid to DS (Write) ~ Delay 10 50 

12 TdAS(W) AS t to Wait Delay 90 335 2 

13 ThDS(W) DS t to Wait Hold Time a a 
14 TdRW(AS) R ,W Valid to AS t Delay 20 70 

NOTES: 
1. WAIT states add 100 ns to these times. 
2. Auto·wait states add 100 ns to this time. 
t All times are in ns and are for 20 MHz input frequency. 
* Timings are preliminary and subject to change. 

R/W 

PORT 0 Aa-A15, OM 

DM ____ -J'~------~~----------------------------------~------------------~ 

PORT 1 

1--------{12)--------!r---:J1. 

External Memory Read and Write Timing 

461 



ADDRESS OUT ,. Ao-A,. ' X 
---J~~I-.~-~_-_-_-_-_-_-~0~~~-~-_~-_-_-_-~1~----J ~-------

DATAIN======~==========================~r-.-D-O.D-1-'N~)(:=========== 

AC CHARACTERISTICS (20 MHz) 
EPROM Read Cycle 

Number Symbol Parameter 

EPROM Read Timing 

TdA(DR) Address Valid to Read Data Required 
Valid 

NOTES: 
1. WAIT states add 167 ns to these times. 
j:A1I times are in ns and are for 12 MHz input frequency. 
·Timings are preliminary and subject to change. 

462 

Min Max 

170 



~ ZiIill Application Note 

August 1987 

Any time an engineer switches to a new processor, he 
usually begins tl)e time consuming process of learning 
the quirks of the new part. This article is the first of a 
series of articles written to speed that transition time from 
any other processor to the Zilog Super8. 

Getting started is the most difficult part of switching to a 
strange new processor and development tools. Weeks 
can be spent just getting the first lines of initialization 
code written and successfully assembled. Testing the 
code becomes another problem. The soft, lre from this 
article series has been tested and it should be possible 
to copy most of the software directly to a user's applica­
tion. All of the software is available in machine readable 
form as noted at the end of the article. 

This first article demonstrates the proper initialization of 
the Zilog Super8 microcontroller. It sets up a Z8800 
ROM LESS for 64K bytes of external program memory, 
although most typical applications probably do not re­
quire more than maybe 4K or 8K bytes. Ports 2 and 3, 
which are bit mappable as inputs or outputs, are set into 
the output mode. Port 4,also bit mappable, is set into 
the input mode. A hardware schematic has been in­
cluded as an example. 

The hardware schematic shown defines a simple Super8 
implementation that was used to test the code in this 
series of articles. This example defines a simple evalua­
tion board that contains 32K bytes of programable 
EPROM, and up to 32K bytes of RAM. The design con­
tains a simple RS-232 interface that is used in future ar­
ticles of the series. The entire board, including the 
RS-232 interface, is powered from 5 volts. The RAM 
battery option allows the software to be downloaded into 
the RAM and saved if power fails. Additional logic on the 
design allows a user to protect the lower half of RAM 
with a simple jumper change. This prevents the proces­
sor from destroying executable code if it goes off into 
space on a power failure. 

Specifically, the ROM LESS SuperS is used as the core. 
The Super8 requires a latch to demultiplex the address 
from the data bus. A 74LS373 fits nicely here, requiring 
only an inverter to correct for the address strobe. The 
'LS373 with inverter is preferred here rather than a single 
'LS374 because the 'LS373 is a transparent latch and 

GETTING STARTED 
WITH THE ZILOG SUPERB 
by Charles M. Link, II 

will present the address earlier than the 'LS374. JU1 
selects the EPROM size, correcting for the IPGM pin on 
2764 and 27128 EPROMs. It is necessary to use pull 
down resistors on the upper 4 bits of the address bus be-

cause on reset, the ROMLESS Super8 defines only 12 
bits for address; the other 4 are set as inputs. Since LS­
TTL devices require more current to pull down the inputs, 
this pull down trick will only work for MOS and CMOS in­
puts, hence the requirement for the logic chips in this 
design to be HCr type devices. 

The remaining logic is required to select the EPROM or 
RAM. JU2 selects the half-RAM protect mode. JU3 is 
set to determine what size ram to protect. This circuit al­
lows the lower half of CMOS battery backed RAM to be 
read only, and removes chip select on any writes to that 
address space. Of course, that exact Circuitry and the' 
battery is optional, and might be replaced by a power 
threshold detector. On the other front, a Maxim MAX 
232 provides the RS-232 interface requiring only 5 volts. 

To make the software initialization more interesting, a 
few other typical initialization tasks are demonstrated. 
The entire block of registers (user ram) is cleared to 
zero, and one of the counter timer units is initialized,to 
provide a periodiC interrupt to form the heart of a real 
time clock function. 

The program shows the typical pseudo-op usage 
demonstrated. This article series uses a cross as­
sembler available from Zilog for either an IBM PC or a 
VAX operating under VMS. The program begins by 
defining the registers,used as general purpose storage. 
This is done so the user does not have to refer to register 
numbers,. but may refer to a name equated to the 
register. 

The first 32 bytes of every program (beginning at OOOOH) 
always contain the interrupt vectors for the different sour­
ces. USing the Zilog assembler, the. WORD pseudo-op 
defines a pair of by1es for each of the 16 sources. 
Program execution begins at location 0020H. Since 
copyright requirements usually require the notice as 
close to the beginning as possible, it becomes necessary 
to jump around an ASCII string. The .ASCII pseudo-op 
generate~ the necessary string for this notice. 

463 



The source code describes almost completely, without 
further explaination, the entire initialization. Once initial­
ized, the processor loops ina WAIT loop waiting on the 
periodic interrupt generated by the counterltimer. The 
counter timer interrupts 60 times per second, and the in­
terrupt bumps ram storage locations representing. 
seconds, minutes, and hours. Each time a location is 
bumped, an external port line is toggled so that those 
without emulators can see some activity with anoscillo­
scope. 

In the next artide of this series, we will take the same 
basic initialization routine and modify it to support the 
serial UART. That article will demonstrate polled serial 
communications using tile Zilog Super 8. 

[Editors note: The sofware for this series is available on 
an IBM PC diskette and is included with the Super 8 
Emulator package available from. Creative Technology 
Corporation, 5144 Peachtree Road, Suite 301, Atlanta, 
GA 30341. (404) ~55-8255. Any Zilog Field Application 
engineer should also be able to provide copies of the 
software on a user provided·diskette.) One point of notice, is the interrupt service routine for the 

timer. One must reset the end of count interrupt bit (the 
source of interrupt) before exiting the interrupt service 
routine. 

464 

.TITLE Sample zilog Super 8 Initialization 

;===============================-========7================== 
;= 
;= 
;= 
;= 
1= 
:= 

TITLE: 
DATE: 
PURPOSE: 

PROGRAMMER: 

INIT.S8 
JUNE 17, 1986 
TO DEMONSTRATE INITIALIZATION 
OF THE ZILOG SUPER 8 USING THE 
ZILOG ASMS8 ASSEMBLER 
CHARLES M. LINK, II 

:=========================================================== 

. PAGE 55 Iset maximum page size to 55 lines 
, 
:*********************************************************** 
;* * 
1* REGISTER EQUATE TABLE * 
:* * 
;*********************************************************** . 
period: 
second: 
minute: 
hours': 
I 

.equ 

.equ 

.equ 

.equ 

o 
1 
2 
3 

Iperiod timer 
Iseconds timer 
;minutes timer 
;hours timer 

: ****** *** ** * * .,** * * * * * ******* ** ** ** ** ** ** **** * * **** * * ** **** * 
;* * 
1* INTERRUPT VECTOR TABLE * 
;* * 
:*********************************************************** 

INTRO: 
INTR1: 
INTR2: 
INTR3: 
INTR4: 
INTR5: 
INTR6: 
INTR7: 
INTRa: 
INTR9: 
INTR10: 
INTRll: 
INTR12: 
INTR13: 
INTR14: 
INTR15: 
I 

• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 

INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
TIMERO 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 

Ithis area should always be defined 
las it reserves the lower 32 bytes 
Ifor the interrupt table. the name 
,of the subroutine for each particular 
;interrupt service would normally be 
;named here. 

; * ** ********* **** * *** ****** ******* ** * * * * * ** * * * * *.**** ** ** * *** 
i* * 
;* 
1* 

START OF PROGRAM EXECUTION * 
* ;*********************************************************** 



START: jr START1' ;program execution unconditionally 
;begins at this location after reset 
land power up. 

• ASCII 

START1: dl 

'REL 0 6/16/86' ;jump around optional ascii string 
;containing release info, copyright, etc. 
;begin I 

; 

sbO 
ld 

ld 
ld 
ld 
ld 

EMT,I/OOOOOOOOB 

PO,'OOH 
POM, #11111111B 
PM,'00110000B 
H1C"OOOOOOOOB 

;select register bank 0 
;external memory timing=no wait input, normal 
;memory timing, no wait states, stack internal, 
land DNA internal 
;address begins at OOOOh, set upper byte 
;select all lines as address 
;enable port 0 as upper 8 bits address 
;handshake not enabled port 0 

;port 1 is defined in romless part as address/data. it is not necessary 
;here to initialize that port 

, 

ld 
ld 
ld 
ld 
ld 
ld 

ld 
ld 
ld 

P2,1/00H 
P3,'00H 
P2AM,f10101010B 
P2BM,#10101010B 
P2CM" #10101010B 
P2DM,f10101010B 

P4"OOOOOOOOB 
P4D, 'l1l1l111B 
P40D,'OOOOOOOOB 

;port 2 outputs low 
;port 3 outputs low 
;p30,31,20,21 as output 
;p32,33,22,23 as output 
;p34,35,24,25 as output 
;p36,37,26,27 as output 

;clear port 4 register 
;set all bits of P4 as inputs 
;active push/pull [not necessary since all 
; bits are inputs 

;basic Super 8 I/O is initialized, now internal registers 

; 

ld 
ld 
ld 

RPO"OCOH 
RP1"OC8H 
SPL,'OFFH 

;set working register low to lower 8 bytes 
;set working Fegister high to upper 8 bytes 
;set stack pointer to start at top of set two 
;note here that only lower 8 bi,ts are used 
;for stack pointer. location OFFH is wasted 
las stack operation. SPH is general purpose 
; storage. 

;now clear the internal memory and stack area 

ZERO: 
ld 
clr 
dec 
jr 
clr 

SPH, #OFFH 
@SPH 
SPH 
nZ"ZERO 
@SPH 

;point to top of general purpose register 
;zero it 

;do it until register set is all cleared 
;zero last register 

;now everything except working registers is cleared 

;cpu and memory now initialized, set up timer for real time clock 

ld SYM,#OOOOOOOOB ;disable fast interrupt response 
ld IPR,'00000010B ;interrupt priority 

;IRQ2>IRQ3>IRQ4>IRQ5>IRQ6>IRQ7>IRQO>IRQ1 
ld IMR,'00000100B ;enable only, interrupt 2 
sb1 ;select bank 1 
ld COTCH"AHB(50000) ;high byte of time constant 
ld COTCL"ALB(50000) ;low byte of time constant 

;12,000,000 hertz / 4 / 50,000 = 60 hertz 
;12 Mhz is xtal freq, 4 is internal divider 

ld COM,#00000100B ;p27,37 is I/O, programmed up/down, no capture 
;timer mode is selected 

sbO ;select bank 0 
ld COCT,#10100101B ; continuous, count down, load counter, 

;zero count interrupt enable, enable counter 
; 
;timer is 'initialized, now lets enable interrupts and wait 

WAIT: 
ei 
nop 
nop 
nop 
nop 
jr 

;enable interrupts 

WAIT ;loop back 

465 



466 

nop 
nop 
nop 

TIMERO: inc 
cp 
jr 
xor 
clr 
inc 
cp 
jr 
xor 
clr 
inc 
cp 
jr 
xor 
clr 
inc 
cp 
jr 
clr 

NOROLL~ or 
naP 
nop 

INTRET: iret 

.END 

period 
period,#60 
ne,NOROLL 
P2,ilOOOOOOOlB 
period 
second 
second,#60 
ne,NOROLL 
P2,ilOOOOOOlOB 
second 
minute 
minute,#60 
ne,NOROLL 
P2,#OOOOOlOOB 
minute 
hours 
hours,#24 
ne,NOROLL 
hours 
COCT,#OOOOOOlOB 

;bump periodic counter (60 hertz) 
;one second yet? 
;no rollover 
;complement the second bit 
;start it- over again 
;bump the seconds timer 
;reached maximum 
;no rollover 
;complement the minute bit 
;start it over again 
;bump the minutes timer 
;reacheq maximum 
;no rollover 
;complement the hour bit 
;start it over again 
;bump the hours timer 
;reached maximum 
;no rollover 
;start it over again 
;reset end of count interrupt 

;and return from interrupt 



~ ZiIm Application Note 

August 1987 

The transition from one processor to another often invol­
ves many hours of trial-and-error software development 
to determine the quirks (manufacturers call it features) of 
the part. .once the real features are discovered, 
programming the processor to perform as described can 
be hazardous to one's health. This article, the second in 
a series of eight, attempts to introduce the Zilog Super8 
user to the serial communications port, and its initializa­
tion in a polled serial environment. 

The universal asynchronous receiverltransmitter (UART) 
on the Super8 is a fairly unique implementation among 
single Chip microcomputers in that it supports all of the 
functions generally available only on chip level UARTs. 
The UART is a close approximation of the Z80i DART 
device in one channel. It supports independent 
receiver/transmitter clocking, 5 to 8 bits per character, 
plus optional odd or even parity, and even an optional 
wake-up bit. The UART can serve full duplex com­
munications via polled, interrupt, or DMA modes of 
operation. Auto-echo and 'intemal loop back can be 
programmed as options. The most unique of the UART 
features is the character match and interrUpt option. 

The following article describes the initialization and use 
of the UART in a polled environment. This software has 
been tested and provides several routines that may be 
copied into a user's software, Although the demonstra­
tion software does not do much, it is fully functional as a 
stand-alone program, and may be "burned" into eprom 
as atesl. 

The basic software is almost the same general purpose 
initialization software from the first article in the series. 
Routines set-up counterltimer 0 for a real time clock op­
tion. Note, however, the change to configuration register 
P2AM, It is necessary to configure port 30 as input for 
receive data and p31 as output for transmit data. 

The UART initialization sequence begins by setting the 
functions in the UART MODE A register. Since the UMA 
register is in the alternate bank, the instruction SB1 must 
be executed to gain access to the following registers. 
The loaded data selects a X16 clock, 8 bits per charac­
ter, no parity, and no wake up values. Note that. the 
clock options are X1, X16, X32, and X64. For true 
asynchronous operation, a clock multiplier option of at 
least XJ6 is required. The X1 mode could be used for 
externally syncing the received data to the UART. The 
transmitter is not affected. 

POLtED ASYNCHRONOUS 
SERIAL OPERATION 
WITH THE ZILOG SUPERB 
by Charles M. Link, II 

Next, the baud rate generator must be loaded. The for­
mula for determining the baud rate is shown below: 

TIME CONSTANT = (XTAL FREQ / 8 / CLOCK MULT / 
DESIRED RATE)-1 

where TIME CONSTANT is a 16 bit value, XTAL FREQ 
is the crystal lfrequency in hertz, CLOCK MUL T is the 
clock rate loaded into UART MODE A register (as above 
X1, X16, X32, and X64), and DESIRED rate is the 
desired bit rate in bits per second. Note that the baud 
rate generator may be used as an additional counter, 
and may be loaded with any value permitting just about 
any crystal frequency to operate the Super8. 

The cross-assembler permitted a single 16-bit decimal 
number to be loaded into the UART BAUD RATE GEN­
ERATOR, high and low byte, without unnecessary figur­
ing using the high/low byte pseudo-op. 

The initialization sequence continues, with the UART 
MODE B register next. This example sends port 21 data 
to the port 21 pin. An option allows different clocks to be 
sent out from this pin. It could be used for clocking exter­
nal logic, or for diagnostic purposes to make sure the 
baud rate generator is running. Auto-echo is not 
selected in this application, as that is primarily what the 
example software does. The receive and transmit clock 
input is the baud rate generator and the generator source 
is the intemal clock; the crystal divided by four. Since 
the baud rate generator has been loaded, it is enabled, 
and the UART is set for normal operation (without loop­
back). Loopback operation permits transmitting and 
receiving data without any external logic in front of the 
Super8. 

The UART TRANSMIT CONTROL register is initialized 
next in the sequence. Select transmit data out on port 31 
and transmit enable. The stop bits are optional, and the 
DMA and WAKE-UP enables are for features discussed 
in future application articles. At this pOint, the transmitter 
is operational, and except for housekeeping, is usable. 
The housekeeping is in reference to selecting the bank 0 
by executing the SBO instruction. 

Since polled mode communications are desired, all of the 
UART interrupts are disabled by loading the UART IN­
TERRUPT ENABLE with all zeros. Lastly, the receiver 
must be enabled by setting bit 0 of the UART RECEIVE 
CONTROL register. 

467 



This program primarily sends a message to the console 
and then 'accepts input from the console and ectios it 
l,lpon re~iying a carriage return. It is necessary to delay 
sending (lata to the console after initialization because 
the transmit data line is in'the SPACE,state when idle. 
AHernately, ·add a pulFup resistor to the output, and While 
idle and before initialized, it would exibit the MARK state, 

The receive character routine "GETC" monitors the 
RECEIVE CHARACTER AVAILABLE bit of the UART 
RECEIVE CONTROL, register. 'When this bit is a "1", a 
new character has been received by the UART. 

The polled mode of UART 0l¥'ration is simple. Making 
the UART operate in an interrupt mode requires a few 
minor modifications, and DMA mode requires a few more 
modifications. Those modes are the subject of future ap­
plication articles in this series. 

The transmit character routine "SENDC" monitors the 
TRANSMIT BUFFER EMPTY bit of the UART TRANS­
MIT CONTROL register. When this bit is a "1", the trans­
mit buffer is ernpty and may be loaded with a new 
character for transmission. To transmit a character, load 
the character into the'UART data register (UIO) . 

468 

• TITLE Sample Ziloq Super 8 Serial Port Initialization 

;==~-=====-----===~============~--=~=-=-==========-=-
;= TITLE: UARTl.S = 
;= DATE: JULY 17, 1986 ' 
;m PURPOSE: TO DEMONSTRATE INITIALIZATION 
;,. AND USAGE OF SERIAL PORT IN 
;= POLLED MODE. 
;- ASSEMBLER: ZILOG ASMS8 ASSEMBLER 
;= PROGRAMMER: CHARLES M. LINK, II 
;a=== _____________ ============================~==== 

• PAGE 55 ;set maximum page size to 55 lines 
; ** ********************** * ****** * * **** * * * ** .*. ********** *,** * 
:* * 
;* GENERAL EQUATES * 
;* I * 

';*********************************************************** 

CR: 
LF: 

.equ 

.equ 
OdH 
OaH 

;carriage return 
;line feed 

; 
:*********************************************************** 
;* * 
;* REGISTER EQUATE TABLE * 
;* * 
;*********************************************************** 
, 
periOd: .equ' 0 ;period timer 
second: .equ 1 ;seponds timer 
minute: .equ 2 ;minutes timer 
hours: .equ 3 ;hours timer 
;working register equates 
MPTR: .equ RR8 ;message pointer for external memory 
; , 

;*********************************************************** 
;* * 

INTERRUPT VECTOR TABLE * 
;* * 
;***************************************~******************* 

INTRO: 
INTR1: 
INTR2: 
INTR3: 
INTR4: 
INTR5: 
INTR6: 
INTR7: 
INTR8: 
INTR9: 
INTRIO: 
INTRl1: 
INTR12: 

• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
_WORD 

INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
TIMERP 
INTRET 
INTRET 
INTRET 
INTRET 
IN,TRET 
INTRET 

this area should always be defined 
as it reserves the lower 32 bytes 
for the interrupt table. the name 
of the subroutine for each particular 
interrupt service would normally be 
named here. 



INTR13 
INTR14 
INTR15 

• WORD 
• WORD 
• WORD 

INTRET 
INTRET 
INTRET 

;*********************************************************** 
:* * 

START OF PROGRAM EXECUTION * 
:* * 
;*********************************************************** 

START: jr STARTl ;program execution unconditionally 
;begins at ~his location after reset 
land power up. 

• ASCII 'REL 0 7/17/86' 

START1: di 
sbO 
Id EMT,#OOOOOOOOB 

;jump around optional ascii string 
;containing release info, copyright, etc. 
; begin 
;select register bank 0 
;externa1 memory timing=no wait input, normal 
;memory timing, no wait states, stack internal, 
land DMA internal 

Id 
Id 
Id 
Id 

PO,#OOH 
POM, #11111111B 
PM, #00110000B 
H1C,#00000000B 

;address begins at OOOOh, set upper byte 
;select all lines as address 
;enable port 0 as upper·S bits address 
;handshake not enabled port 0 

;port 1 is defined in rom1ess part as address/data. it is not necessary 
;here to initialize that port 

, 

Id 
ld 
Id 

Id 
Id 
Id 

Id 
Id 
ld 

P2,#00H 
P3,#00H 
P2AM,#10001010B 

P2BM,i/l0101010B 
P2CM,i/10101010B 
P2DM, #10101010B 

P4,#00000000B 
P4D, # 11l11111B 
P40D,#00000000B 

;port 2 outputs low 
;port 3 outputs low 
;p31,20,2l as output,p30 input 
lit is necessary here to configure p30 as input 
;for the receive data, and p31 as output for 
;transmit data for UART 
;p32,33,22,23 as output 
;p34,35,24,25 as output 
;p36,37,26,27 as output 

;clear port 4 register 
;set all bits of P4 as inputs 
;active push/pull (not necessary since all 
; bits are inputs 

;basic Super S I/O is initialized, now internal registers 

; now 

ZERO: 

inow 

; cpu 

ld 
Id 
ld 

clear 

Id 
clr 
dec 
jr 
clr 

the 

everything 

and memory 

RPO,#OCOH 
RPl,#OCSH 
SPL,#OFFH 

internal memory 

SPH,#OFFH 
@SPH 
SPH 
nz,ZERO 
@SPH 

except working 

;set working register low to lower S bytes 
;set working register high to upper S bytes 
;set stack pointer to start at top of set two 
;note here that only lower 8 bits are used 
;for stack pointer. location OFFH is wasted 
las stack operation. SPH is general purpose 
; storage. 

and stack area 

;point to top of general purpose register 
;zero it 

;do it until register set is all cleared 
;zero last register 

registers is cleared 

now initialized, set up timer for real time clock 

Id SYM,#OOOOOOOOB ;disable fast interrupt response 
Id IPR,#00000010B ;interrupt priority 

;IRQ2>IRQ3>IRQ4>IRQ5>IRQ6>IRQ7>IRQO>IRQ1 
Id IMR,#OOOOOlOOB ;enable only interrupt 2 
sb1 ;select bank 1 
Id COTCH,#AHB(50000) ;high byte of time constant 
ld COTCL,#ALB(50000) ;low byte of time constant 

;12,000,000 hertz / 4 / 50,000 = 60 hertz 
;12 Mhz is xtal freg, 4 is internal divider 

Id COM,#00000100B ;p27,37 is I/O, programmed up/down, no capture 
;timer mode is selected 

469 



470 

sbO ;select bank 0 
ld COCT,#lOlOOlOlB ;continuous, count down, load counter, 

;zero count interrupt enable, enable counter 
, 
;timer is set, now lets initialize the UART for polled operation 

sb1 ;bank 1 
ld UMA,#01110000B 

;time constant = (12,000,000/4/16/9600/2)-1= 
;S.76 rounded to 9. 
;note that a 12 Mhz does not make a very 
;accurate baud rate source. error is large 

ld UBGH,#AHB(00009) ;high byte of time constant 
ld UBGL,#ALB(00009) ;low byte of time constant 
ld UMB,#0001ll10B ;p21=p21data,auto-echo is off, transmit and 

;receive clock is baud rate generator output, 
;baud rate generator input is system clock / 2, 
;baud rate generator is enabled, loopback 
lis disabled 

sbO ;select bank 0 
ld UTC,#10001000B ;select p31 as transmit data out, 1 stop bit 

land transmit enable 
ld UIE,#OOOOOOOOB ;disable all interrupts, no DMA 
ld URC,#00000010B ;enable receive 

;UART is initialized, enable interrupts for real time clock 

ei ;enable interrupts 
, 
;wait 1 full second for serial line to mark before sending anything 

WAIT: cp 
jr 

second, #1 
ne,WAIT 

;display the logon message 

LOGON: ldw 
call 

MPTR,j/MSG 
SENDM 

;wait 1 second 

; load the address' of MSG into word reg MPTR 
;send the message 

;logon message displayed, get response from console 
land move to upper register memory 

GET: Id 
Id 

GETN: call 
and 
call 
ld 
cp 
jr 
inc 
djnz 

, 

r1,j/SO 
r2, #SOH' 
GETC 
rO, #7fH 
SENDC 
@r2,rO 
rO,#CR 
eq,EcHO 
r2 
r1,GETN 

;maximum character count 
;point to first location in upper register bank 
;get input from console 
;remove upper parity bit 
;echo to console 
;move to upper internal ram in SuperS 
;was the received character a carriage return 
;if so, echo it to console 
;bump pointer 
;get next character if not done 

;if carriage return typed, or SO characters exceeded, echo message 

ECHO: ldw MPTR, #MSG1 
call SENDM 
Id r1,#SO 
Id r2,#SOH 

ECH01: Id rO,@r2 
call SENDC 
cp rO,#CR 
jr eq,LOGON 
inc r2 
djnz r1,ECH01 
jr LOGON 

, 
; sUbroutines 

;send message at MPTR until '$' 
SENDM: ldci rO,@MPTR 

call SENDC 
cp ro,#'$' 
jr ne,SENDM 
ret 

;load the address of MSG1 in word reg 
;send the message 
;maximum character count 
;first location of character buffer 
;get character from buffer 
;send the character to console 
icarriage return? 
;if so, end message display 
;bump pointer 
;display next character if not 

character found 
;get the character 
;otherwise send character 
;last character? 
land loop back to send next one 

done 

MPTR 



:send character 
SENDC: tm 

jr 
ld 
ret 

in rO 
UTC,#OOOOOOlOB, 
z,SENDC 
U10,rO 

:get a character from the uart, 
GETC: tm URC,#OOOOOOOlB 

jr z,GETC 
ld rO,U10 
ret 

transmit buffer empty yet 
if not, wait until it is 
load the character into the transmitter 

return in rO 
:character available 
:if not, wait until it is 
:get the character from the receiver 

;real time interrupt running in background 

T1MERO: 

NOROLL: 

1NTRET: 

MSG: 

MSGi: 

inc 
cp 
jr 
xor 
clr 
inc 
cp 
jr 
xor 
clr 
inc 
cp 
jr 
xor 
clr 
inc 
cp 
jr 
clr 
or 
nop 
nop 
iret 

• ASCII 
.ASCII 
• ASCII 

.END 

period :bump periodic counter (60 hertz) 
period, #60 lone second yet? 
ne,NOROLL ;no rollover 
P2,#00000001B ;complemerit the second bit 
period ;start it over again 
second ;bump the seconds timer 
second, #60 ;reached maximum 
ne,NOROLL ;no j:"ollover 
P2,#00000010B ;complement the minute bit 
second ;start it over again 
minute :bump the minutes timer 
minute, #60 ;reached maximum 
ne,NOROLL ;no rollover 
P2,#00000100B ;complement the hour bit 
minute ;start it over again' 
hours ;bump the hours timer 
hours, #24 ;reached maximum 
ne,NOROLL ;no rollover 
hours ;start it over again 
COCT,#OOOOOOlOB ;reset end of count 

land return from interrupt 

CR,LF,'Super8 Uart test program.',CR,LF 
'Enter up to one full line followed by return',CR,LF,'$' 
CR,LF,'Echoed back, your line was .•• ',CR,LF, '$' 

471 



472 



~ Zirm Application Note 

- August 19S7 

The power of the Super1J microcomputer lies in its on 
board peripherals. One of those peripherals is th~ full 
duplex UART. The UART can operate under program 
control in polled mode, or under interrupt control, and in 
a DMA mode. This article, the third in a se~ies, discus­
ses using the UART in a fully interrupt driven system. 
Since it is assumed that the reader has access to the 
eariler article discussing the UART and the polled mode 
of operation, this article will only discuss the differences. 

The Zilog SuperS contains an on board interrupt control­
ler that is tightly -linked to the other on-board peripherals. 
The UART, being on-board, can be operated in an inter­
rupt mode permitting very little execution overhead time 
while monitoring the UART for incomming characters and 
waiting for the UART to send outgoing characters. 

Operation of an interrupt driven system demands more 
software logic to control the interrupt. Although more 
software is present, less time is spent executing it, be­
cause most of the overhead is in the setup for interrupt 
transfers. Generally, interrupt driven serial VO overlaps 
some other process or processes, and therefore enhan­
ces total system speed and operation. -Interrupt driven 
1/0 has no advantages in a system that must wait on the 
serial port. In the example program, no real advantage 
has been gained by interrupt operation. The program 
displays a simple message to the console, and accepts 
input responses and echos them. For program 
simplicity, the main program waits on the interrupt to 
complete before starting the next phase of the program. 

In any interrupt -driven system, the central processor 
must know what to do when an interrupt occurs. The 
SuperS is no exeception. An interrupt vector table 
directs the processor to begin execution at certain ad­
dresses for particular interrupt inputs. The UART can be 
the source for up to five different interrupts and therefore 
up to five of the sixteen vectors can be designated for it. 
This sample program ignores errors and special condi­
tion interrupts, and therefore only two vectors_ are used; -
one for transmit buffer empty and one for receive charac­
ter available. These vectors are programmed into the 
vector table by setting interrupt vector 10 (zero 
reference) to the address for the receive data service 
routine, and setting interrupt vector 13 to the address for 
the transmit data service routine. 

USING THE ZILOG SUPERB 
IN INTERRUPT DRIVEN 
COMMUNICATIONS 
by Charles M. Link, II 

The setup of the SuperS is essentially the same as that 
of the serial port in a polled mode of operation. The 

proper priority for the interrupts are assigned arbitrarily. 
The real time clock as highest priority, the receive 
character available as second priority, and transmit 
character buffer empty as the lowest priority. Generally, 
the transmit interrupt should be the lowest in an 
asynchronous system because if it does not get serviced 
limmediately, no major problems occur. If the real time 
interrupt took more time in relationship to the time re­
quired to transmit a single character, then maybe the 
receive should be put higher. If the receiver is not ser­
viced, that character would be lost. 

Enabling the interrupts is a two stage process. First the 
mask in the INTERRUPT MASK REGISTER must be 
enabled for each level of the interrupts used. Next, it is 
necessary to enable the individual transmit and receive 
interrupts. In the example program, a character is 
loaded into the transmit buffer and then the interrupt is 
enabled by setting bit 2 in the UART INTERRUPT 
ENABLE (UlE) register. Each successive transmit inter­
rupt indicates an empty buffer, and the next character is 
loaded into the buffer. When the last character is loaded 
into the buffer, the transmit interrupt is disabled to 
prevent further interruptions by clearing bit 2 of the UJE 
register. 

The receiver interrupt is enabled to allow the processor 
• to accept incoming characters by setting bit 0 of the UIE 

register. Once set, any received character will cause the 
processor to transfer control to the "RXDATI" routine. In 
this example, the receive service routine reads, echos, 
and stores each received character until a carriage 
routine is received. The input is then repeated. 

The example program does not fully utilize the interrupt 
system, as it waits for each routine to complete before 
moving to the next. However, it does however work, and 
demonstrates interrupt service routines. Serial interrupt 
software is not complex, and could lead to very powerful 
user programs. With the addition of the on board DMA to 
automaticlly transfer characters, the SuperS can com­
plete many tasks that previously would require complex 
hardware and software. The next article in the series 
demonstrates using the DMA controller with the serial 
port. 

473 



474 

.TITLE Sample Zilog. super 8 Serial Interrupt Mode Operation 

;=====================================~===================== 

:= TITLE: UART2.S 
:= DATE: JULY 17, 1986 
;= PURPOSE: TO DEMONSTRATE INTERRUPT 
:= DRIVEN SERIAL PORT 
;= COMMUNICATIONS 
;= ASSEMBLER: , ZILOG ASMS8 ASSEMBLER 
;= PROGRAMMER: CHARLES M. LINK, II 
;=================================================~========= 

• PAGE 55 ;set maximum page size to 55 lines 
;***t************~****************************************** 
:* * 
;* GENERAL EQUATES * 
:* * 
:*********************************************************** 

CR: 
LF: 

.equ 

.equ 
OdH 
OaH 

;carriage return 
;line feed 

:*********************************************************** 
:* * 

REGISTER EQUATE TABLE * 
* ;*********************************************************** 

period: .'equ 0 ;period timer 
second: .equ 1 ;seconds timer 
minute: .equ 2 ;minutes timer 
hours: .equ 3 ;hours timer 
;working register equates 
MPTR: .equ RR8 ;message pointer for external memory 
, 
:*********************************************************** 
:* * 

INTERRUPT VECTOR TABLE * 
; * * 
:*********************************************************** 

INTRO:. 
INTR1: 
INTR2: 
INTR3: 
INTR4: 
INTR5: 
INTR6: 
INTR7: 
INTR8: 

.INTR9: 
INTR10: 
INTRll: 
INTR12: 
INTR13: 
INTR14: 
INTR15: 

• WORD 
• WORD 
• WORD 
. WORD 
• WORD 
• WORD 
'.WORD 
. WORD 
• WORD 
. WORD 
• WORD 
• WORD 
. WORD 
• WORD 
. WORD 
. WORD 

INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
TIMERO 
INTRET 
INTRET 
INTRET 
RXDATI 
INTRET 
INTRET 
TXDATI 
INTRET 
INTRET 

;this area should always be defined 
las it reserves the lower 32 bytes 
;for the interrupt table. the name 
;of the subroutine for each particular 
;interrupt service would normally be 
;named here. 

, 
:*********************************************************** 
:* * 
;* START OF PROGRAM EXECUTION * 

* :*********************************************************** 

START: jr 

• ASCII 

START1: di 
sbO 

START 1 ;program execution unconditionally 
; beg ins at this location after reset 
;and power up. 

'REL 0 7/17/86' ;jump around optional ascii string 
;containing release info, copyright, etc. 
;begin 
;select register bank 0 



, 

Id 

Id 
Id 
Id 
Id 

EMT,#OOOOOOOOB 

PO,I/OOH 
POM,I/11111111B 
PM,j00110000B 
H1C,#00000000B 

external memory timing=no wait input, normal 
memory" timing, no wait states, stack internal, 
and DNA internal 
address begins at OOOOh, set upper byte 
select all lines as address 
enable port 0 as upper S bits address 
handshake not enabled port 0 

port 1 is defined in romless part as address/data. it is not necessary 
here to initialize that port 

Id 
Id 
Id 

Id 
Id 
Id 

Id 
Id 
Id 

P2,/IOOH 
P3,#00H 
P2AM,#10001010B 

P2BM,#10101010B 
P2CM,#10101010B 
P2DM,#10101010B 

P4,#00000000B 
P4D, 'l1111111B 
P40D,#00000000B 

;port 2 outputs low 
;port 3 outputs low " 
;p31,20,21 as output,p30 input 
lit is necessary here to configure p30 as input 
;for the receive data, and p31 as output for 
;transmit data for UART 
;p32,33,22,23 as output 
;p34,35,24,25 as output 
;p36,37,26,27 as output 

;clear port 4 register 
;set all bits of P4 as inputs 
;active push/pull [not necessary since all 
; bits are inputs 

;basic super S I/O is initialized, now internal registers 

Id 
Id 
Id 

RPO,I/OCOH 
RP1,#OCSH 
SPL,'OFFH 

;set working register low to lower S bytes 
;set working register high to upper S bytes 
;set stack pointer to start at top of set two 
;note here that only lower 8 bits are used 
;for stack pointer. location OFFH is wasted 
las stack operation. SPH is general purpose 
; storage. 

;now clear the internal memory and stack area 

Id SPH,/IOFFH ;point to top of general purpose register 
ZERO: clr @SPH ;zero it 

dec SPH 
jr nz,ZERO ;do it until register set is all cleared 
clr @SPH ;zero last register 

;now everything "except working registers is cleared 

;cpu and memory now initialized, set up timer for real time clock 

Id SYM,#OOOOOOOOB ;disable fast interrupt response 
Id IPR,'00000010B ;interrupt priority 

;IRQ2>IRQ3>IRQ4>IRQ5>IRQ6>IRQ7>IRQO>IRQ1 
14 IMR,#01000110B tenable counter, rx and tx interrupts 
sb1 ;select bank 1 
Id COTCH,I/AHB(50000) thigh byte of time constant 
Id COTCL,#ALB(50000) ;low byte of time constant 

;12,000,000 hertz / 4 / 50,000 = 60 hertz 
;12 Mhz is xtal freq, 4 is internal divider 

Id COM,1/00000100B ;p27,37 is I/O, programmed up/down, no capture 
;timer mode is selected 

sbO ;select bank 0 
Id COCT,#10100101B ; continuous, count dOwn, load counter, 

;zero count interrup~enable, enable counter 

timer is set, now lets initialize the UART for polled operation 

sb1 
Id 

Id 
ld 
Id 

UMA,1/01110000B 

UBGH,#AHB(00009) 
UBGL,I/ ALB(00009) 
UMB,'0001111011 

;bank 1 

time constant (12,000,000/4/16/9600/2)-1-
S.76 rounded to 9. 
note that a 12 Mhz does not make a very 
accurate baud rate source. error is large 

thigh byte of time constant 
;low byte of time constant 

p21=p21data,auto-echo"is off, transmit and 
receive clo.ck is baud rate generator output, 
baud rate generator input is system clock / 2, 
baud rate generator is "enabled; loopback 
is disabled 

475 



476 

sbO 
ld 

ld 
ld 

UTC,#lOOOlOOOB 

UIE,'000000008 
URC,.OOOOOOlOB 

select bank 0 
select p31 as transmit data out, 1 stop bit 
and transmit enable 
no interrupts, no DMA 
enable receive 

IUART is initialized, enable interrupts for real time clock 

ei I enable. interrupts 
I 
:wait 1 full second of serial line mark before sending anything 

WAI~: cp 
jr 

second,'l 
ne,WAIT 

:display the logon m~ssage 

LOGON: ldw 
call 
call 

I 

MPTR,j/MSG 
SENDM 
TXWAT 

:wait 1 second 

:load the address of MSG into word reg MPTR 
Isend the message 
Iwait for transmitter to complete 

:logon message displayed, get response from console 
land move to upper register memory 

GET: ld 
ld 
di 
or' 
ei 

r1, jlSO 
r2,'SOH 

UIE,.000000018 

;maximum character count 
:point to first location in upper register bank 
:stop interrupts 
Ireceive character enable 

/now wait for input'to be completed 
GW: tm UIE,'OOOOOOOlB :wait for interrupt to be disabled 

jr nZ,GW . :if interrupt still enabled 

I 
:if carriage return typed, or SO characters exceeded, echo message 

ECHO: 

: 

ldw 
call 

MPTR,'MSG1 
SENDM 

:load the address of MSG1 in word reg MPTR 
:send the message 

:since messages are interrupt driven, we must wait for message to 
;complete before transmitting next message 

call 
ld 
ld 

ECH01: ld 
. call 
cp 
jr 
inc 
djnz 
jr 

, 
; sUbroutines 
, 
.Isend message 
SENDM: ldci 

call 
di 
or 
ei 
ret 

TXWAT 
/r1,lIsO 

r2"SOH 
rO,@r2 
SENDC 
rO,lICR 
eq,LOGON 
r2 
r1,ECH01 
LOGON 

at MPTR until '$' 
rO,@MPTR 
SENDC ' 

UIE,/l00000100B 

;send character in rO 
SENDC: tm UTc,II00000010B 

jr z,SENDC 
ld UIO,rO 
ret 

:wait on transmitter 
Imaximum character count 
Ifirst location of character buffer 
:get character from buffer 
Isend the character to console 
;carriage return? 
lif so, end message display 
;bump pointer . 
Idisplay next character if not done ~ 

character found 
;get the character 
;start UART transmitting 
;no interrupts 
tenable transmit interrupts 

;transmit buffer empty yet 
;if not, wait until it is 
;load the character into the transmitter 

:trans~it buffer available interrupt 
TXDATI: ldci rO,@MPTR 

ld UIo,rO 
cp ro,t'$' 
jr eq,LASTT 
iret 

LASTT: and 
iret 

; transmitter 
TXWAT: tm, 

jr 
ret 

UIE, /1111110118 

wait routine 
UIE,#00000100B 
nz,TXWAT 

;get next character to transmit 
; lO,ad the character in transmitter 
;last character 
;if last transmit character 

;disable transmit interrupts 
;ignore it if no character to transmit 

;wait until interrupts disabled 
;wait if bit set 



;receive character available interrupt 
RXDATI: ld rO,UIO 

and rO,#7fH 
call SENDC 
ld @r2,rO 
cp rO,IICR 
jr eq,LASTR 
inc r2 
djnz r1,RXR 

LASTR: and UIE,#11111110B 
RXR: iret 
, 

;get input from console 
;remove upper parity bit 
;echo to console 
;move to upper internal ram in SuperS 
;was the received character a carriage return 
;if so, disable interrupts 
;bump pointer 
;exit if not last 
;disable the receive interrupts 

;real time interrupt running in background 

TlMERO: 

NOROLL: 

INTRET: 

MBG: 

MSG1: 
.END 

inc 
cp 
jr 
xor 
clr 
inc 
cp 
jr 
xor 
clr 
inc 
cp 
jr 
xor 
clr 
inc 
cp 
jr 
c1r 
or 
nop 
nop 
iret 

• ASCII 
• ASCII 
• ASCII 

period ;bump periodic counter (60 hertz) 
period, #60 lone second yet? 
ne,NOROLL ;no rollover 
P2,1I00000001B ;complement the second bit 
period ;start it over again 
second ;bump the seconds timer 
second, #60 ;reached maximum 
ne,NOROLL ;no rollover 
.P2, #00000010B ;complement the minute bit 
second ;start it over again 
minute ;bump the minutes timer 
minute,j/60 ;reached maximum 
ne,NOROLL ;no rollover 
P2,'00000100B ;complement the hour bit 
minute ;start it over again 
hours ;bump the hours timer 
hours, #24 ;reached maximum 
ne,NOROLL ;no rollover 
hours ;start it over again 
COCT,#00000010B ;reset end of count 

land return from interrupt 

CR,LF,'Super8 Uart test program.',CR,LF 
'Enter up to one full line followed by return',CR,LF,'$' 
CR,LF,'Echoed back, your line was •.• ',CR,LF,'$' 



478 



~ ZiIill Application Note 

August 1987 

With the increasing integration available today, 
microprocessor manufacturers are incorporating new 
peripherals that typically were off board in previous 
products, and sometimes required a large amount of ex­
ternal logic to utilize. The direct memory access function 
is a good example. Zilog has incorporated a very power­
ful DMA in the new Super8 microcontroller. It has the 
capability of linking to several on board peripherals, in­
cluding the serial port, and can control data transfers to 
the different memory mediums. 

. The SuperS, with its on-board DMA can reduce proces­
sor overhead in data transfer tasks. It allows direct 
transfer of serial input characters to either intemal 
register memory (256 bytes) or extemal ram memory. 
For example, this transfer can be set to transfer a 
specific number of input characters, then interrupt the 
processor. Processor program service overhead is mini­
mal. Serial output characters can be transfered from ex­
ternal EPROM or ram memory, or the internal register 
memory. 

The required setup for the DMA transfers are much the 
same as that of interrupt or polled operation. This 
program example uses the DMA to interrupt upon ter­
mination of data transfers so that approopriate vectors 
and routines are required. Since the program links to the 
serial port, the DMA uses the serial port receive and 
transmit interrupt vectors 10'and 13, respectively. Upon 
completion of a receive DMA transfer, the service routine 
defined by the receive vector is executed. Upon comple­
tion of the transmit DMA transfer, service routine defined 
by the transmit vector is executed. 

USING THE SUPERS 
SERIAL PORT WITH DMA 
by Charles M. Link, II 

This sample uses the DMA mode to transmit a few lines 
of ASCII data to a console. The DMA requires a total 

byte count to properly transfer the data and terminate. 
Be careful to recognize that the ASCIL pseudo-op in the 
Zilog assembler, or many other assemblers,. is not an 
easy way to generate the byte count. Warning I The 
Zilog assembler generates a length for each subgroup, 
e.g., "MSG" generates a separate length for each group 
separated by commas, not one total length. 

Initially, the DMA transfers from EPROM. The address 
from which to transfer is CO and C1 as defined by the 
working register pOinters. It is necessary to set RPO to 
CO to access the register, and it is accessed as RO and 
R1 or RRO. The count for the transfer is taken from DMA 
COUNT HIGH and DMA COUNT LOW. For each trans­
fer, initialize the address and count values. Upon com­
pletion of the DMA transmit process, when the count 
goes to -1, a transmit interrupt is generated. The ex­
ample program disables transmit interrlJpts and DMA, 
and returns. The main line program was polling the inter­
rupt enable bit for completion. 

Next, the DMA is set up to transfer 25 characters into the 
internal register memory. One must select intemal 
memory in the EMT register by clearing bit O. The ad­
dress for transfer requires only one byte, so that working 
register 1 (R1), when RPO equals CO, is the address 
pOinter. The DMA count must also be loaded, in this 
case with 25. For demonstration purposes, the auto­
echo bit of the UART MODE B register is selected. This 
causes any characters received to be automatically 
looped back to the transmit port. Finally, the receive in­
terrupt and DMA enable bits (BITS 0 and 1) are set to 
enable and begin DMA operation. When 25 characters 
have been inpuJ to the Super8, a feceive interrupt will be 
generated, and control will be transfered to the "RXDATI" 
routine, where interrupts and DMA are disabled. 

The last routine in the example software sends another 
message from EPROM to the console and then sends 
the characters from the internal memory buffer that were 
previously entered. The prime consideration is to 
remember to select the source/destination memory in the 
EMT register. 

It is necessary to define the memory source/destination 
by·setting the appropriate state of bit 0 in the EXTERNAL 
MEMORY TIMING (EMT) register. Initially, the example 
program selects external memory as the source/destina­
tion. A special note: read the fine print in the technical 
manual. Many hours were spent debugging the DMA 
mode of operation, with the final realization that intemal 
rom does not qualify as external memory. Only that 
memory that would be selected if the /DM line was true 
would be a valid' source/destination. Since, this article 
uses the hardware defined from the first of the series, 
and uses a Z8800 with external EPROM, it will work per­
fectly. ROM and PIGGYBACK or prototype type parts 
will not work. Neither will emulators . In this DMA example, the code is simple for DMA opera­

...................... tion. It is important to note that this example does not 

479 



fully utilize the functionality of the DMA transfer. The ex­
ample purposely waits in a software loop while the DMA 
transfer occurs. This prevents the supporting code from 
becoming too complex to follow for an example. Normal 
operation might have the UART receiving characters 

under DMA controls and transmitting characters under 
interrupt control with processing occurring somewhere in 
the middle. 

480 

.TITLE Sample Zilog Super 8 Serial DMA Mode operation 

~=========================================================== 
:= TITLE: UART3.S 
;= DATE: JULY 17, 1986 
;= PURPOSE: TO DEMONSTRATE DMA 
;= DRIVEN SERIAL PORT 
j= COMMUNICATIONS 
;= ASSEMBLER: ZILOG ASMS8 ASSEMBLER 
:= PROGRAMMER: CHARLES M. LINK, II 
;==============~============================================ 

• PAGE 55 ;set maximum page size to 55 lines 
:*********************************************************** 
:* * 
;* 'GENERAL EQUATES * 
:* * 
:*********************************************************** 

CR: 
LF: 

.equ 

.equ 
OdH 
OaH 

;carriage return 
;line feed 

;*********************************************************** 

REGISTER EQUATE TABLE 
* 
* 
* 

:*********************************************************** 
, 
period: .equ 0 ;period timer 
second: .equ 1 ;seconds timer 
minute: .equ 2 ;minutes timer 
hours: .equ 3 ;hours timer 
;working register equates 
MPTR: .equ RRO ;message pointer for external memory 

;*********************************************************** 
:* * 
;* INTERRUPT VECTOR TABLE * 
;* * 
;*********************************************************** 

INTRO: 
INTR1: 
INTR2: 
INTR3: 
INTR4: 
INTR5: 
INTR6: 
INTR7: 
INTR8: 
INTR9: 
INTR10: 
INTRll: 
INTR12: 
INTR13: 
INTR14: 
INTR15: 

• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
. WORD 
. WORD 
• WORD 
. WORD 
• WORD 
• WORD 
• WORD 
. WORD 
• WORD 
. WORD 

INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
TIMERO 
INTRET 
INTRET 
INTRET 
RXDATI 
INTRET 
INTRET 
TXDATI 
INTRET 
INTRET 

;this area should always be defined 
las it reserves the lower 3.2 bytes 
;for the interrupt table. the name 
;of the subroutine for each particular 
;interrupt service would normally be 
;named here. 

;*********************************************************** 

START OF PROGRAM EXECUTION * 
* 
* 

;*********************************************************** 

START: jr STARTl ;program execution unconditionally 



• ASCII 

START1: di 
sbO 
ld 

ld 
ld 
ld 
ld 

, 

'REL 0 7/17/86' 

EMT,#OOOOOOOlB 

PO,#OOH 
POM,#11111111B 
PM, #00110000B 
H1C,#00000000B 

;begins at this location after reset 
;and power up. 
;jump around optional ascii string 
:containing release info, copyright, etc. 
:begin . 
:select register bank 0 
;external memory timing=no wait input, normal 
:memory timing, no wait states, stack internal, 
land DMA external 
:address begins at OOOOh, set upper byte 
:select all lines as address 
:enable port 0 as upper 8 bits address 
:handshake not enabled port 0 

:port 1 is defined in romless part as address/data. it is not necessary 
;here to initialize that port 

ld 
ld 
ld 

ld 
ld 
ld 

ld 
ld 
ld 

P2,#00H 
P3,#00H 
P2AM,#10001010B 

P2BM,#10101010B 
P2CM,#10101010B 
P2DM,#10101010B 

P4,#00000000B 
P4D, #11111111B 
P40D,#00000000B 

;port 2 outputs low 
:port 3 outputs low 
;p31,20,21 as output,p30 input 
lit is necessary here to configure p30 as input 
:for the receive data, and p31 as output for 
;transmit data for UART 
:p32,33,22,23 as output 
;p34,35,24,25 as output 
;p36,37,26,27 as output 

;clear port 4 register 
;set all bits of P4 as inputs 
;active push/pull [not necessary since all 
; bits are inputs 

;basic Super 8 I/O is initialized, now internal registers 

; now 

ZERO: 

ld 
ld 
ld 

clear 

ld 
clr 
dec 
jr 
clr 

the 

RPO,#OCOH 
RP1, #OC8H' 
SPL,#OFFH 

·internal memory 

SPH,#OFFH 
@SPH 
SPH 
nZ,ZERO 
@SPH 

;set working register low to lower 8 bytes 
;set working register high to upper 8 bytes 
;set stack pointer to start at top of set two 
;note here that only lower 8 bits are used 
;for stack pointer. location OFFH is wasted 
;as stack operation. SPH is general purpose 
;storage. 

and stack area 

;point to top of general purpose register 
;zero it 

;do it until register set is all cleared 
;zero last register 

;now everything except working registers is cleared 

;cpu and memory now initialized, set up timer for real time clock 

ld SYM,#OOOOOOOOB ;disable fast interrupt response 
ld IPR,#00000010B ;interrupt priority 

;IRQ2>IRQ3>IRQ4>IRQ5>IRQ6>IRQ7>IRQO>IRQ1 
ld IMR,#01000110B ;enable counter, rx and tx interrupts 
sb1 ;select bank I 
ld COTCH,#~HB(50000) ;high byte of time constant 
ld COTCL,#~LB(50000) ;low byte of time constant 

;12,000,000 hertz / 4 / 50,000 = 60 hertz 
;12 Mhz is xtal freq, 4 is internal divider 

Id COM,#00000100B ;p27,37 is I/O, programmed up/down, no capture 
;timer mode is selected 

sbO ;select bank 0 
ld COCT,#10100101B ; continuous , count down, load counter, 

;zero count interrupt enable, enable counter 

timer is set, now lets initialize the UART for polled operation 

sb1 ;bank 1 
ld UMA,#01110000B 

;time constant = (12,000,000/4/16/9600/2)-1= 
;8.76 rounded to 9. 
;note that a 12 Mhz does not make a very 
;accurate baud rate source. error is large 

481 



482 

ld UBGH,#~HB(00009) ;high byte of time constant 
ld UBGL,#~LB(00009) ;low byte of time constant 
ld UMB,#OOOllllOB ;p2l=p2ldata,auto-echo is off, transmit and 

;receive clock is baud rate generator output, 
;baud rate generator input is system clock / 2, 
;baud rate generator is enabled, loopback 
lis disabled 

sbO ;select bank 0 
ldUTC,#lOOOlOOOB ;select p3l as transmit data out, 1 stop bit 

land transmit enable 
ld UIE,#OOOOOOOOB ;no interrupts, no DMA 
ld URC,#OOOOOOlOB ;enable receive 

;UART is initialized, enable interrupts for real time clock 

ei ;enable interrupts 

;because uart was just enabled, allow data line to mark for at least 1 second 

WAIT: 

, 
cP 
jr 

second, #1 
ne,WAIT ;wait 1 second 

;display the logon message 

LOGON: ldw 
call 
call 

MPTR, #MSG 
SENDM 
TXWAT 

;load the address of MSG into word reg MPTR 
;send the message 
;wait for transmitter to complete 

;logon message displayed, get response from console 
land move to upper register memory 

GET: di ;no interrupts while setting up for DMA 
ldw MPTR,#0080H ;first character receive location 
and EMT, # 11111110B ;select register file for receiving character 
sb1 ;select bank one 
ld DCH,fO ;DMA count high byte 
ld DCL,#2S ;DMA count low byte 
or UMB,#00100000B ;auto echo enable 
sbO ;restore to bank zero 
or UIE,#OOOOOOl1B ;receive character DMA link, interrupt enable 
ei 
call RXWAT ;wait for receiver to complete receiving input 

, 
ireceive characters in buffer, restore Super8 non DMA state 

di ;no interrupts while cleaning up 
sb1 ;bank 1 
and UMB,#110111l1B ;disable auto echo 
sbO ; restore bank 0 
or EMT,#00000001B ;select data memory for DMA transfers 
ei 

;25 characters received via DMA, now display "ECHO" message 

ECHO: ldw 
call 
call 

MPTR, #MSG1 
SENDM 
TXWAT 

;load the address of MSGl in word reg MPTR 
;send the message 
;wait on transmitter 

message sent, now replay typed input 

. di 
ldw 
and 
sb1 
ld 
ld 
sbO 
or 
or 
ei 
call 
di 

MPTR, #0080H 
EMT, # 11111110B 

DCH,#O 
DCL,#2S 

UIE,#OOOOOlOOB 
UTC,#00000001B 

TXWAT 

;pointto beginning of buffer 
;select register bank for DMA transfer 
;select bank 1 
;DMA count high byte 
;DMA count low byte 
;select bank 0 \ 
;enable transmit interrupts 
;transmit DMA enable 
;enable interrupts 
;wait on transmitter 

or EMT,#OOOOOOOlB ;select external ,data memory for DMA transfer 
ei 

replay complete, loop 'back and do it again 

jr LOGON 



, 
; subroutines 

;send message 
SENDM: ldci 

dec 
di 
or 
sb1 
ld 
ld 
sbO 
or 
or 
ei 
ret 

;transmit DMA 
TXDATI: and 

and 
iret 

at MPTR for 
r7,@MPTR 
r7 

length in first byte 
;get the character 
;count actually should be n-1 for n bytes 
;no interrupts while setting up 

EMT,#00000001B ;select external data memory for DMA transfer 
;select bank 1 
;DMA count high byte is 0 DCH,#O 

DCL,r7 ;move the count DMA count low byte 
;select bank 0 

UIE,#00000100B ;enable transmit interrupts 
UTC,#00000001B ;transmit DMA enable 

complete 
UIE,#11111011B ;disable transmit interrupts 
UTC, #11111110B ,;disable transmit DMA 

;ignore it if no character to transmit 
; transmitter 
TXWAT: tm 

jr 
ret 

wait routine 
UIE,#00000100B 
nz,TXWAT 

;wait until interrupts disabled 
;wait if bit set 

;receive character available interrupt 
RXDATI: and UIE,J/11111100B ;disable the receive interrupts 

iret 
;receive wait 
RXWAT: tm 

jr 
ret 

routine 
UIE,J/00000001B 
nz,RXWAT 

;wait until interrupts disabled 
;wait if bit still set 

;real time interrupt running in background 

TIMERO: inc 
cp 
jr 
xor 
clr 
inc 
cp 
jr 
xor 
clr 
inc 
cp 
jr 
xor 
clr 
inc 
cp 
jr 
clr 

NOROLL: or 
nop 
nop 

INTRET: iret 

MSG: 

MSG1: 

• BYTE 
. ASCII 
• ASCII 
• BYTE 
. ASCII 

.END 

period 
period, #60 
ne,NOROLL 
P2,#00000001B 
period 
second 
second, #60 
ne,NOROLL 
P2,J/00000010B 
second 
minute 
minute,J/60 
ne,NOROLL 
P2,#00000100B 
minute 
hours 
hours,J/24 
ne,NOROLL 
hours 
COCT,J/00000010B 

56 

;bump periodic counter (60 hertz) 
;one second yet? 
;no rollover 
;complement the second bit 
;start it over again 
;bump the seconds timer 
;reached maximum 
;no rollover 
;complement the minute bit 
;start it over again 
;bump the minutes timer 
;reached maximum 
;no rollover 
;complement the hour bit 
;start it over again 
;bump the hours timer 
;reached maximum 
;no rollover 
; start' it over again 
;reset end of count 

;and return from interrupt 

CR,LF,'Super8 Uart DMA test program.',CR,LF 
'Enter 25 characters',CR,LF,'$' 
34 
CR,LF,'Echoed back, your line was ..• ',CR,LF,'$' 

483 



484 



~ ZiIill Application Note 

August 19S7 

Generally digital microprocessors are thought of as only 
being able to generate digital signals ... that is either on or 
off. With the simple addition of a digital-ta-analog con­
verter (DAC), more complex waveforms may be 
generated. Since the advent of the microprocessor and 
the DAC, many methods have been used by hardware 
and software designers to generate sine waves, indud­
ing some that involve precise instruction and clock cycle 
calculations. This example is different. 

The Zilog SuperS microcomputer is a single chip device 
requiring only a latch and EPROM to operate in its ROM­
LESS state. Leaving 24 I/O lines for user configuration, 
it is extremely easy to interface with peripherals, indud­
ing, in this case, the DAC- OS. The hardware in this ap­
plication example is essentially the same base hardware 
as the previous application articles. Since it is assumed 
that the reader has access to those articles, detailed ex­
plaination of the base will not be made here. Only the 
additions to the base will be explained. 

The base SuperS microprocessor has ports 2, 3 and 4 
available for user connection. For this example, the 
DAC-OS is connected to port 4 (P4). The DAC-OS .is tied, 
with the least significant bit tied to P40 and the most sig­
nificant bit tied to P47. The other connections to the 
DAC-OS are mostly out of the test circuit description 
shown in the data manuals associated with it. The DAC 
requires -12 volts for proper operation. The outpuffor 
this example is tied to a simple op- amp filter with a 
sharp roll off at about 3500 hertz. This type filter might 
be quite suitable for telecommunications applications, but 
may not be so good for many others. An oscilloscope 
displays the resultant waveform. 

The software to operate the SuperS is in the original in­
itialization software from eariler in this article series. In­
itialization is essentially the same. Port 4 must be set up 
as output, with active push-pull drivers. The main con­
sideration for this program is the software "sarrlple" rate. 
For this example, SOOO samples per second was chosen. 
Any other rate may be chosen, and the author has suc­
cessfully used values up to 16000 samples per second 
without timing problems. Higher base clock rates are 
possible with the recently introducecd 20 megahertz 
SuperS chips available: With the sample method used, 
the sample rate does not vary with the different sine 
wave frequencies generated. 

GENERATING SINE WAVES 
WITH THE ZILOG SUPER8 
by Charles M. Link, II 

The sample method requires a sine wave table stored in 
ROM or EPROM. This example uses 256 values, al-

though 64, 12S or more values are quite acceptable. 
The BASICA program that generated the sine table is in­
cluded for user modification. Once the values were 
generated, they were manually typed into the program. 
Using the Zilog macro assembler would have signigicant­
Iy slowed assembling. Note that the comments in the 
BASICA program imust be removed before the PC can 
execute. 

The values generated by the BASICA program are 
values ranging from 01 H to OFEH. Since the DAC repre­
sents OOH as zero volts and OFFH as 5 volts, this table 
will product sine outputs from almost zero to almost five 
volts. 

The principle of operation requires that a sixteen bit fre­
quency increment be maintained. This increment is 
generated by the simple formula 

FREQUENCY INCREMENT ~ (TABLESTEP'X 256 X FRE­
QUENCY) I SAMPLE 

where FREQUENCY INCREMENT is a sixteen bit value 
saved in an increment register, TABLESTEP is the num­
ber of values in the sine wave table, FREQUENCY is the 
desired frequency of generation in hertz, and SAMPLE is 
the number of samples per second. In the example 
program, this increment is stored in "FINCR". 

A current offset into the sine table is maintained in the 
register pair labeled "INCR". At each periodic interrupt, 
FINCR must be added to INCR and saved in INCR. This 
sixteen bit value remains the offset into the table. The 
upper byte of the offset is used to pOint to the value in 
the 256 byte sine table that is loaded into the DAC. In 
the sample program, the value loaded into the DAC is 
generated in the previous interrupt and saved until the 
first instruction of the next interrupt. This allows the inter­
rupt to perform some other varying length transactions, 
without introducing bit jitter into the sine wave. 

Changing the "FINCR" by program control causes dif­
ferent frequencies to be generated. In this case, the sine 
wave may be tumed off by disabling the counter 0 inter­
rupt. Depending upon the number of steps in the sine 

4S5 



, table and the sample, frequency. very accuratl;! sine fre-' 
quencies,may be gemiratEld. Calculate the actual error 
by using the folloWing'formula: 

With th~ addition of a' fiHer with shatp' cutoff just above 
the, highest de!!ired frequency, the SuperS serves q4ite 
well as a programmable sinE:! wave generator. In addition 
to sine waves, complex wavefor:m!! may be easily 
generated by the Super8 with the addition of the low-cost 
DAC. The next article in this series will describe how to 
generate some of these more complex waveforms. 

[ ABS ( REAL FREOI - INT~GER FREOI) I REAL FREOI 1 X 
100=% ERROR I 

where REAL FREQI, is the actual calculated frequency 
increment. INTEGER FREQI is the nearest rounded in­
tElger of the calculated frequency, increment, and the 
res\Jlt is the actu~1 per~nt error form the desired value . 

486 

• TITLE Super8 Example Sine Wave Generation 

; __ ---====--==-==aD-=========== __ ================== ___ =~== 
~= 

;­
i= 
;­
;z 
;= 
1''' 
;= 
;= 

TITLE: 
DATE: 
PURPOSE:! 

HARDWARE: 

ASSEMBLER: 
PROGRAMMER: 

• PAGE SS 

SINE.S 
JUNE i7, 1986 
TO DEMONST~TE USING SUPER8 
TO GENERATE HIGH QUALITY SINE 
WAVES. 
DAC-08 ON PORT 4 
SEE DIAGRAM 
ZILOG ASMS8 ASSEMBLER 
CHARLES M. LINK, II 

;set maximum page size to SS lines 
, 
;***************.****.**************~*********************** 
:* * 
;* REGISTER EQUATE TABLE * 
:* * 
;*********************************************************** 

INCR: 
INCRH: 
INCRL: 
FINCR: 
FINCRH: 
FINCRL: 
POINT: 
POINTH: 
POINTL: 
CVAL: 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

rrO 
rO 
r1 
rr2 
r2 
r3 
rr4 
r4 
rS 
r6 

;current increment in sine table 
;high byte of current increment value 
;low byte of ' current increment value 
;increment'in sine table for frequency 
:high byte of frequency increment value 
;low byte of frequency increment value 
:pointer into sine table 
;high byte of sine table pointer 
;low byte of sine table pointer 
;current value to output to DAC-08 

, 
;*********************************************************** :. - * 
;* GENERAL EQUATES * 
;* * 
;*********************************************************** 

XTAL: 
SAMPLE: 
CTVAL: 
TABSTP: 
FREQ: 
FREQI: 
~ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

12000000 ;crystal freq in. hertz 
8000 ;sample frequency in hertz 
XTAL/4/SAMPLE ;counter load value 
2S6 ;number of values in sine table 
69? ;desired sine wave frequency 
(TABSTP*2S6*FREQ)/SAMPLE 

:*********************************************************** 
:* * 
;* INTERRUPT VECTOR TABLE * 
:* * 
;*********************************************************** 

INTRO: 
INTR1: 
INTR2: 
INTR3: 
INTR4: 
INTRS: 
INTR6: 
INTR7: 

• WORD 
• WORD 
• WORD 
• WORD 
.WQRD 
• WORD 
• WORD 
• WORD 

INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
TlMERO 
INTRET 

this area should always be defined 
as it reserves the lower 32 bytes 
for the interrupt table. the name 
of the subroutine for each particular 
interrupt service would normallY,be 
named here. 



INTR8: 
INTR9: 
INTR10 
INTR11 
INTR12 
INTR13 
INTR14 
INTR15 

• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 

INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 

;~***.*****************************************.************ 
;* * 
1* START OF PROGRAM EXECUTION * 
;* * 
1*********************************************************** 

START: jr 

• ASCII 

START1: di 
sbO 
ld 

ld 
ld 
ld 
ld 

START1 

'REL 0 6/16/86' 

EMT,'OOOOOOOOB 

PO"OOH 
POM,I11111111B 
PM,,00110000B 
H1C,100000000B 

Iprogram execution unconditionally 
I~egins at this location after reset 
land power up. 
Ijump around optional ascii,string 
Icontaining release info, copyright, etc. 
Ibegin 
Iselect register bank' 0 
lexternal memory timing=no wait input, normal 
ImemOry timing, no wait states, stack internal, 
land DNA internal 
laddtess begins at OOOOh, set upper byte 
Iselect all lines as address 
lenable port 0 as upper 8 bits address 
Ihandshake not enabled port 0 

IPort 1 is defined in romless part as address/data. it is not necessary 
Ihere to initialize that port 

ld P2"OOH I port 2 outputs low 
ld P3,/IOOH IPort 3 outputs low 
ld P2AM,/I1010l010B Ip30,31,20,21 as output 
ld P2BM,#101010;J.OB Ip32,33,22,23 as output 
ld P2CM,110101010B Ip34,35,24,25 as output 
ld P2DM,/I10101010B Ip36,37,26,27 as output 

ld P4,,10000000B Iset midpoint for DAC inputs 
ld P4D,'00000000B Iset all bits of P4 as output 
ld P40D,/lOOOOOOOOB lactive push/pull 

, 
Ibasic Super 8 I/O is initialized, 'now internal registers 

ld 
ld 
ld 

RPO,'OCOH 
RP1,'OC8H 
SPL,'OFFH 

Iset working register low to lower 8 bytes 
Iset working register high to upper 8 bytes 
Iset stack pointer to start at top of set two 
Inote here that only lower 8 bits are used 
Ifor stack pointer. location OFFH is wasted 
las stack operation. SPH is general purpose 
I storage. 

Inow clear the internal memory and stack area 

ld SPH,'OFFH IPoint to top of general purpose register 
ZERO: clr @SPH Izero it 

dec Spa 
jr nz,ZERO Ido it until register set is all cleared 
clr @SPH ' Izero last register 

I 
Inow everything except working registers is cleared 
, 
(CPu and memory now initialized, set up timer for real time clock 

ld SYM,'OOOOOOOOB Idisable fast interrupt response 
ld IPR, '00000010B :interrupt priority, 

IIRQ2>IRQ3>IRQ4>IRQ5>IRQ6>IRQ7>IRQO>IRQ1 
ld IMR,'OOOOOlOOB lenable only interrupt 2 
sb1 Iselect bank 1 
ld COTCH"AHB(CTVAL) Ihigh byte of ti.- constant 
ld COTCL"ALB(CTVAL) Ilow byte of time constant 
ld COM,'OOOOOlOOB Ip27,37 is I/O, programmed up/down, no capture 

Itimer mode is selected 
sbO ,select bank 0 
ld COCT,#10100101B I continuous, count down, load counter, 

487 



488 

; 
;timer 

WAIT: 

I 

is initialized, now lets 
ldw INCR,U 
ldw' FINCR,'FREQI 
ldw POINT,'SINTAB 
ld CVAL,'080H 
ei 
nop 
nop 
nop 
nop 
jr WAIT 

Izero co~t interrupt enable, enable counter 

enable interrupts and wait 
Istart at the beqinninq of sine table 
iload frequency of increment 
IPointer points to sine table 
linitial value to Prevent qlitch'at start 
I enable interrupts ' 

Iloop back 

ITimer, interrupt. Occurs SAMPLE times per second 
;interrupt outputs value to DAC-08 and then determines value for next 
; interrupt. This assures no bit jitter. 

TlMERO: ld 
ref 
add 
adc 
ld 

p4,CVAL 

INCRL,FINCRL 
INCRH,FINCRH 
POINTL,INCRH 

;write new value to DAC-08 
;clear carry flaq 
;find next position in sine table 
;by addinq frequency offset to last position 
;set new pointer into sine table 
;upper byte ok since on boundary 

ldc 
or 

INTRET: iret 

CVAL,@POINT 
COCT,'00000010B 

;qet value from sine table 
;reset end of count interrupt 
; and return from interrupt ' 

; 
;*********************************************************** 
:* * 
;* SINE WAVE LOOKUP * 
;* * 
; ****.************** *** ** ******* *,*********************** **** 
;sine table for sine wave qeneration usinq DAC-08. Table based upon 
;case of waveform with minumum ~mplititude = O'volts and maximum 
;amplititude = 5 volts. DAC-08 input for 0 volts = OOR 
;5 volts - OFFH. Table qenerated usinq followinq BASICA proqram, 
;then typed into proqram. 

; 

; 

10 cIs 
20 PI-3.141593 
30 FOR 1=0 TO 255 
40 C=360/256 
50 D=C*I 
60 E=D*PI/180 
70 F-SIN(E) 
80 G-F*127 
90 H-128+G 
100 J=CINT(H) 
110 A$=HEX$(J) 
120 PRtNT A$ 
130 LPRINT A$ 
140 NEXT 
150 END 

;clear screen 
;define PI 
;256 total values 
;define basic interval value 
Ivalue from zero on sine wave 

;fiqure sine for interval from 0 
;sine ranqe should be from -127 to 127 
;make result from 0 to 255 
;round to nearest inteqer 
;convert to hex 
Ion screen 
Ion printer 
;do next 'inverval 

;*note-remove comments, BASlCA will not accept ; as comment delimiter 

SINTAB: .ORG 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 

0400H ;beqin sine table on even byte boundary 
080H,083H,086H,089H,08CH,090H,093H,096H,099H,09CH,09FH,OA2H 
OA5H,OA8H,OABH,OAEH,OB1H,OB3H,OB6H,OB9H,OBCH,OBFH,OC1H,OC4H 
OC7H,OC9H,OCCH,OCEH,OD1H,OD3H,OD5H,OD8H,ODAR,ODCH,ODEH,OEOH 
OE2H,OE4H,OE6H,OE8H,OEAR,OEBH,OEDH,OEFH,OFOH,OF1H;OF3H,OF4H 
OF5H,.OF6H, OF8H, OF9H, OFAR', OFAR, OFBH, OFCH, OFDH, OFDH, OFEH, OFEH 
OFEH, OFFH,'OFFH, OFFH, OFFH, OFFH, OFFH, OFFH, OFEH, OFEH, OFEH, OFDH 
OFDH, OFCH, OFBH, OFAiI, OFAR"OF9H, OF8H, OF6H, OF5H, OF4H, OF3H, OF1H 
OFOH,OEFH,OEDH,OEBH,OEAR,PE8H,OE6H,OE4H,OE2H,OEOH,ODEH,ODCH 
ODAH,OD8H,OD5H,OD3H,OD1H,OCEH,OCCH,OC9H,OC7H,OC4H,OC1H,0BFH 
OBCH,OB9H,OB6H,OB3H,OB1H,OAEH,OABH,OA8H,OA5H,OA2H,09FH,09CH 



• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 

• END 

099H,096H,093H,090H,08CH,089H,086H,083H,080H,07DH,07AH,077H 
074H,070H,06DH,06AH,067H,064H,061H,05EH,05BH,058H,055H,052H 
04FH,04DH,04AH,047H,044H,041H,03FH,03CH,039H,037H,034H,O32H 
02FH,02DH,02BH,028H,026H,024H,022H,020H,OlEH,OlCH,OlAH,018H 
016H,015H,013H,OllH,OlOH,OOFH,OODH,OOCH,OOBH,OOAH,008H,007H 
006H,006H,005H,004H,003H,003H,002H,002H,002H,OOlH,OOlH,OOlH 
OOlH,OOlH,OOlH,OOlH,002H,002H,002H,003H,003H,004H,005H,006H 
006H,007H,008H,OOAH,OOBH,OOCH,OODH,OOFH,OlOH,OllH,013H,O15H 
016H,018H,OlAH,OlCH,OlEH,020H,022H,024H,026H,028H,02BH,02DH 
02FH,032H,034H,037H,039H,03CH,03FH,041H,044H,047H,04AH,O4DH 
04FH,052H,055H,058H,05BH,05EH,061H,064H,067H,06AH,06DH,07OH 
074H,077H,07AH,07DH . 

~9 



490 



~ ZiIffi Application Note 

August 1987 

In the previous article, a sine wave generation example 
was . demonstrated. Sine waves are great, but, some­
times, more complex waveforms must be generated. 
One of the most widely used complex waveforms is the 
DTMF tone. The DTMF tone is used on millions of 
telephones under the AT&T registered name "TOUCH 
TONE". Generally, telecommunications designers pur­
chase one of the many DTMF encoder chips and hang it 
beside a microprocessor. This application article con­
tains an example of a DTMF generation scheme that 
produces nearly as pure and probably as accurate a tone 
as the external chip method. 

Generating sine waves requires some type of digital-to­
analog converter to interface to the microprocessor. For 
this application, a DAC-08 is used. This DAC-08 is tied 
to port 4 of the SuperS. Since it is assumed that the 
reader has access to the previous article, a detailed 
description of the hardware will be left to that article. 
Why not use the DTMF generator chip, when it might be 
just as inexpensive as the DAC- 08? The answer is that 
the DTMF generator chip requires an extemal crystal or 
clock, and it might not be convenient to pick a processor 
frequency that is a direct multiple of the one required by 
the generator. The second and more important reason is 
that· the DAC-08 can be used to generate other call 
progress tones such as ringback and busy, or any other 
complex waveform. . 

Since the previous article discussed the method for 
generating sine wave tones, this article will only discuss 
how to turn that into the DTMF tone. The DTMF tone is 
actually a combination of two tones, hence, the name 
DUAL TONE MULTI-FREQUENCY. The tones are ar­
ranged such that each row and each column has a cor­
responding single frequency tone assigned. An 
additional, normally unseen column, contains an eighth 
tone frequency. A simple diagram below shows the ar­
rangement. 

DTMF TONE ASSIGNMENT 

697 
770 
852 
941 

1209 
1 
4 
7 

1336 
2 
5 
8 
o 

1477 
3 
6 
9 
# 

1633 
A 
B 
C 
D 

GENERATING DTMF TONES 
WITH THE ZILOG SUPERB 
by Charles M. Link, II 

The method used to combine the two tones into one 
single complex waveform is simple: add the two in­
dividual tones together. Adding the tones together is 

usually what happens when analog circuitry produces the 
DTMF tone. In fact, most of the DTMF encoder chips 
usually add the tones together either internally or exter­
nally to produce the single waveform. 

Generating the two tones is no task for the Super8 
microcomputer. Just set up two current table offset 
values and two different frequency increments. At each 
periodic interrupt the 16 bit frequency increment is added 
to the current table offset producing a new current table 
offset. The upper byte of .each current table offset (one 
for the row frequency and one for the column) is used as 
a pointer into a 256 byte table. The sine values retrieved 
from the table are then added together and loaded into 
theDAC-OS. 

Since the DAC input of OOH corresponds to an output of 
o volts and the input of OFFH corresponds to an output of 
5 volts, adding two values that could possibly be OFFH 
presents a problem. Since two sines must add to no 
more 5 volts, the maximum for one Single sine value 
must be one half of 5 volts, or SOH. The sine table has 
been adjusted so that the 2.5 volt value is mid-range. 
The maximum or mimumum for the sine wave is plus or 
minus 1.25 volts. 

The interrupt service routine is almost exactly the same 
as the interrupt routine for the sine wave, except that two 
sine waves are calculated. The final values are added 
together and stored for the first instruction of the next in­
terrupt. In order to Change tones, or disable the tone 
generation, additional software logic could enable or dis­
able the interrupt, and modify the two values "CINCR", 
and "RINCR". . 

It is clear from the example, that ringback, busy, MF, and 
other signaling tones can be easily generated without ad­
ditional hardware. Increased sampling rates could be 
used to generate tones of much higher frequencies and 
accuracies. The accuracy, using the above method and 
sampling frequencies, is much less than one percent, to­
tally suitable for telecommunications needs. 

491 



492 

.TITLE Super8 Example ~F Genera~ion 

;= TITLE: DTMF.S 
;- DATE: JUNE 17, '1986 
;= PURPOSE: TO DEMONSTRATE USING SUPER8 
;- TO GENERATE HIGH QUALITY DTMF 
;= WAVES. 
:= HARDWARE: DAC-08 ON PORT 4 
;- SEE DIAGRAM 
i-- ASSEMBLER: ZILOG ASMS8 ASSEMBLER 
;= PROGRAMMER: CHARLES M. LINK, II 
;_=c======= _____________________ ============================ 

• PAGE 55 ;set,maxlmum paqe size to 55 lines 
; 
i***********************************************************. 

1;* * 
;* REGISTER EQUATE TABLE * 
:* * 
:***********************************************************, 
; 
;column tone equates 
CINCR: .equ rrO 
CINCRH: .equ rO 
CINCRL: .equ r1 
CFINCR: .equ rr2 
CFINCH: .equ r2 
CFINCL: .equ r3 
POINT: .equ rr4 
POINTH: .equ r4 
POINTL: .equ r5 
;row tone equates 
RINCR: .equ rr6 
RINCRH: .equ r6 
RINCRL:.equ r7 
RFINCR: .equ rr8 
RFINCH: • equ r8 
RFINCL:.equ r9 
CVAL: .equ r10 
RVAL: .equ rll 

;current increment in sine table 
;hiqh byte of current increment value 
;low byte of current increment value 
;increment in sine table for frequency 
;hiqh byte of frequency increment ,value 
;low byte of frequency increment value 
;pointer into sine table 
;hiqh byte of sine table pointer 
;low byte of sine table pointer 

;current increment in sine table 
;hiqh byte of current increment value 
;low byte of current increment value 
;increment in sine,table for frequency 
;hiqh byte of frequency increment value 
;low byte of frequency increment value 
;current value to output to DAC-08 
;current row value . 

; 
;*********************************************************** 
;* * 

GENERAL EQUATES * ;* • 
;*********************************************************** 

XTAL: .equ 12000000 ;crystal t:req in he'rtz 
SAMPLE: .equ 8000 ;sample frequency in hertz 
CTVAL: .equ XTAL/4/SAMPLE ;counter load value 
TABSTP: .equ 256 ;number of values in sine table 
CFREQ: .equ 1209 ;desired column frequency 
RFREQ: .equ 697 ;desired row frequency 
CFREQI: .equ (TABSTP*256*CFREQ)/SAMPLE 
RFREQI: .equ (TABSTP*256*RFREQ)/SAMPLE 
;note dtmf frequencies are 697,770,852,941,1209,1336,1477,1633 
; 
;.********************************************************** 
;* * 
;* INTERRUPT VECTOR TABLE * 
;*. , * 
;~*************************~******************************** 
; 
INTRO: 
INTR1: 
INTR2: 
INTR3: 
INTR4: 
INTR5: 
INTR6: 
INTR7: 
INTR8: 
INTR9: 
INTR1o.: 

• WORD 
• WORD 
• WORD 
• WORD , 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 

INTRET 
INTRET 
INTRET 
INTRET 
INTRET , 
INTRET 
TIMBRO 
INTRET 
INTRET 
JNTRET 
INTRET 

;this area should always be defined 
las it reserves the lower 32 bytes 
;for 'the interrupt table. the name 
;of the subroutine for each particular 
;interrupt service would normally be 
;named here. 



INTR11 : • WORD 
INTR12: .WORD 
INTR13: .WORD 
INTR14: .WORD 
INTRi5: .WORD 

INTRET 
INTRET 
INTRET 
INTRET 
INTRET 

i***************************************************** ****** 
i* * 
;* START OF PROGRAM EXECUTION * 
:* * 
i***************************************************** ****** 
START: jr START1 ;program execution unconditionally 

;begins at this location after reset 
land power up. 

• ASCII 'REL 0 6/16/86' 

START1: di 
sbO 
ld EMT,#OOOOOOOOB 

;jump around optional ascii string 
;containing release info, copyright, etc. 
;begin 
;select register bank 0 
;external memory timing=no wait input, normal 
;memory timing, no wait states, stack internal, 
land DMA internal 

l.d 
ld 
ld 
ld 

PO,/IOOH 
POM, #11111111B 
PM,#00110000B 
H1C,#00000000B 

;address begins at OOOOh, set upper byte 
;select all lines as ·address 
;enable port 0 as upper 8 bits address 
;handshake not enabled port 0 

;port 1 is defined in romless part as address/data. it is not necessary 
;here to initialize that port 

ld 
ld 
ld 
ld 
ld 
ld 

ld 
ld 
ld 

; 
;basic Super 8 

ld 
ld 
ld 

P2,#00H 
P3,#00H 
P2AM,#10101010B 
P2BM,#10101010B 
P2CM, #10101010B 
P2DM,#10101010B 

;port 2 outputs low 
;port 3 outputs low 
;p30,31,20,21 as output 
;p32,33,22,23 as output 
;p34,35,24,25 as output 
;p36,37,26,27 as output 

P4,#10000000B ;set midpoint for DAC inputs 
P4D,#0000DOOOB ;set all bits of P4 as output 
P40D,#00000000B ;active push/pull 

I/O is initialized, now internal registers 

RPO,/IOCOH 
RP1,#OC8H 
SPL,#OFFH 

;set working register low to lower 8 bytes 
;set working register high to upper 8 bytes 
;set stack pointer to start at top of set two 
;note here that only lower 8 bits are used 
;for stack pointer. location OFFH is wasted 
las stack operation. SPH is general .purpose 
;storage. 

;now clear the internal memory and stack area 

ld SPH, #OFFH ;point to top of general purpose register 
ZERO: clr @SPH izero it 

dec SPH 
jr nz,ZERO ;do it until register set is all cleared 
clr @SPH ;zero last register 

;now everything except working registers is cleared 

;cpu and memory now initialized, set up timer for real time clock 

ld SYM,#OOOOOOOOB ;disable fast interrupt response 
ld IPR, /l00000010B .; interrupt priority 

;IRQ2>IRQ3>IRQ4>IRQ5>IRQ6>IRQ7>IRQO>IRQ1 
ld IMR,#00000100B ;enable only interrupt 2 
sb1 ;select bank 1 
ld COTCH,/lAHB(CTVAL) ;high byte of time constant 
ld COTCL,/lALB(CTVAL) ;low byte of time constant 
ld COM,#00000100B ;p27,37 is I/O, programmed up/down, no capture 

;timer mode is selected 
sbO ;select bank 0 
ld COCT,#10100101B ; continuous , count down, load counter, 

;zero count interrupt enable, enable counter 

:timer is initialized, now- lets enable interrupts and wait 
Idw eINeR, #1 ;start column at beginning of sine table 
Idw RINCR, '1 ;start row at beginning of sine table 

493 



494 

this example loads the tones for digit 111 

user software would, of course have to manipulate these registers for 
proper tone control 

WAIT: 

Idw 
Idw 
Idw 
Id 
ei 
nop 
nop 
nop 
nop 
jr 

CFINCR, #CFREQI 
RFINCR, #RFREQI 
POINT, #SINTAB 
CVAL, #080H 

WAIT 

; load column frequency increment 
'load row frequency increment 
;pointer points to sine table 
; initial value to prevent glitch ,at star1 
; enable interrupts 

;loop back 

;Timer interrupt. Occurs SAMPLE times per second 
1 interrupt outputs value to OAC-08 and then determines value for next 
1 interrupt. This assures no bit jitter. 
; 
TlMERO: Id 

ref 
add 
ade 
Id 
Ido 
add 
ade 
Id 
Ide 
add 
or 

INTRET: iret 

p4,CVAL 

CINCRL, CFINCL 
CINCRH, CFINCH 
POINTL, CINCRH 
CVAL, @POINT 
RINCRL,RFINCL 
RINCRH,RFINCH 
'POINTL, RINCRH 
RVAL,@POINT 
<:VAL,RVAL 
COCT,#OOOOOOlOB 

:write new value to OAe-os 
;clear carry flag 
; find next position in sine table 
1by adding' frequency offset to last position 
;set 'new, painter into sine table 
;ge.t value from sine table 
:find next position in sine table 
;by adding frequencty offset to last position 
;set new pointer into sine table 
;get second value from sine table 
; f6rm. a complex fWaveform from two sine values 
; reset end of count interrupt 
; and return from interrupt 

; ••••••••• * •• * .**. * * *. * ••• *. * *.* ••••• ** * ••• *. * * * •.• * •••• **. * * ,* 
; * SINE WAVE LOOKUP * 
;. * 
; • * * ••• * ••• * * •• ** * * * * * *. * ••• * * * * ** ** * * * * **. * * * * * * *. * *. * * ** •• 

;sine table fQr DTMF' generation using DAC-08. Table based upon 
;case of waveform consisting of two sine waves summed to provide a single 
:coIPpl.ex waveform with minumum amplitltude = 0 volts and maximum 
:amp:J,.itittlde 3:11 5 volts. OAC-OS input for 0 vo:lts = OOH 
:5 volts = OFFH. 80th waves must total no more than OFFH, therefore 
;maximum for one wave must be 1/2' 5 volts or 080H. 
;Table generated using following BASICA program, 
;then typed into program. , 

10 CLS 
20 PI=3.141593 
30 FOR 1=0 TO 255 
40 C=360/256 
50 O';C*I 
60 E=0*PI/180 
79 F=SIN(E) 
80 G=F*63 
~O H-64+G 
100 J=CINT(H) 
110 A$=HEX$ (J) 
120 PRINT A$ 
130 LPRINT A$ 
140 NEXT 
150 END 

;clear screen 
;define PI 
; 2 56 total values 
;define basic interval value 
;value from zero on sine wave 

; figure sine for interval from 0 
; sine range should be from -63 to 63 
;make result from 0 to 127 
; round to nearest integer 
; convert to hex 
;on screen 
ion printer 
;do next inverval 

;*note':'"'remove comments, BASICA will not accept; as comment delimiter 

, 
SINTAB:, .ORG 

• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
. byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• END 

0400H ;begin sine table on even byte boundary 
040H, 042H, 043H, 045H, 046H, 048H, 049H, 048H, 04CH, 04EH, 04FH, 051H 
052H, OS4H, 055H, OS7H, 058H, OSAH, 058H, OSCH, 05EH, 05FH, 060H, 062H 
~63H, 064H, 066H, 067H, 068H, 069H, 06AH, 06BH, 060H, 06EH, 06FH, 070R 
071H, 072H, 073H, 074H, 074H,075H, 076H, 077H, 078R, 078~, 079H, 07AH 
07AR, 078H, 078H, 07CH, 07CH, 070H, 070H, 070H, 07EH, 07EH, 07EH, 07FH 

07FH, 07FH,07FH, 07FH,07FH,07FH,07FH,07FH,07FH,07FH,07EH ,07EH 
07EH,07DH,07DH,07DH,07CH,07CH,07BH,07BH,07AH,07AH,079H,O7SH 
07SH,077H,076H,075H,074H,074H,073H,072H,071H,070H,06FH,06EH 
06DH,06BH,06AH,069H,06SH,067H,066H,064H,063H,062H,060H,05FH 
05EH,05CH,05BH,05AH,05SH,057H,055H,054H,052H,051H,04FH,04EH 
04CH,04BH,049H,04SH,046H,045H,043H,042H,040H,03EH,03DH,03BH 
03AH,03SH,037H,035H,034H,032H,031H,02FH,02EH,02CH,02BH,029H 
02SH,026H,025H,024H,022H,021H,020H,OlEH,OlDH,OlCH,OlAH,019H 
OlSH,017H,016H,015H,013H,012H,OllH,OlOH,OOFH,OOEH,OODH,OOCH 
OOCH,OOBH,OOAH,009H,OOSH,OOSH,007H,006H,006H,005H,005H,004H 
004H,003H,003H,003H,002H,002H,002H,OOlH,OOlH,OOlH,OOlH,OOlH 
OOlH,OOlH,OOlH,OOlH,OOlH,OOlH,002H,002H,002H,003H,003H,003H 
004H,004H,005H,005H,006H,006H,007H,OOSH,OOSH,009H,OOAH,OOBH 
OOCH,OOCH,OODH,OOEH,OOFH,OlOH,OllH,012H,013H,015H,016H,017H 
OlSH,019H,OlAH,OlCH,OlDH,OlEH,020H,021H,022H,024H,025H,026H 
02SH,029H,02BH,02CH,02EH,02FH,031H,032H,034H,035H,037H,03SH 
03AH,03BH,03DH,03EH 



~ ZiIm Application Note 

August 1987 

A SIMPLE SERIAL TO 
PARALLEL CONVERTER 
USING THE ZILOG SUPERB 
by Charles M. Link, " 

The Zilog SuperS has many on-board peripherals that 
provide multiple user applications. Earlier articles have 
dernc:instrated simple application "stubs" or short test 
programs. This article and the next article demonstrate a 
useful application for the SuperS. Ahhough it 
underutilizes the SuperS's power, the simple serial to 
parallel converter in this application and the print buffer in 
the next application demonstrate the ease at whiCh 
applications are developed with the SuperS. 

Hardware for this application is fair1y simple. Port 4 is 
buffered and hooked to the data lines, as shown, to 
interface to a centronics type printer connector. The 
strobe from P25 provides the strobe (pin 1) to the printer. 
The acknowledge line from the printer is inverted and. 
tied to P24 of the SuperS. The busy signal from the 
printer is buffered and tied to P23 of the SuperS. The 

. design was tested on an Okidata printer and is not 
guaranteed to work on all printers. 

The Zilog SuperS has several features that enhance its 
use as a communication controller. The interrupt or DMA 
driven serial port are helpful, but the handshaking 
parallel Pt:'rts finish the job. In the serial to parallel 
converter, the 256 byte internal register memory is used 
as a small circular queue. 

Software is fair1y straightforward. The serial port is 
initialized just like it was in the application article on the 
interrupt driven serial port. Port 4 must be set-up as 
outputs with activj:l push-pull drivers. Port 2, bits 3 and 4, 
are set up as input with P24 set to enable interrupts. P25 
is set as output and handshake 0 is set in HOC to provide 
a strobe of 16 clock periods in length . 

• TITLE Sample Zi10g Super 8 Serial to Parallel Converter 

;-
;­
,;= 
;­
;­
; .. 
;­
;= 
;-
;= 
;= 

TITLE: 
DATE: 
PURPOSE: 

ASSEMBLER: 
PROGRAMMER: 

SElU'AR.S 
JULY 17, 1986 
TO DEMONSTRATE INTERRUPT 
DRIVEN SERIAL PORT IN A 
REALISTIC APPLICATION. 
THIS APPLICATION RECEIVES 
SIMPLE SERIAL DATA A SENDS IT 
OUT THE PARALLEL PORT TO A 
PRINTER. 
ZILOG ASMS8 ASSEMBLER 
CHARLES M. LINK, II 

J-================-----------=---==-======================== 

• PAGE 55 ;set maximum page size to 55 lines 
;******.~*********************************************~***** 
:* * 
;* 
;* ' 

GENERAL EQUATES * 
* ;***********************************************************, 

; 
CR: 
LF': 

.equ 

.equ 
OdH 
OaH 

;carriage return 
;line feed 

, 
;*********************************************************** 
;*' * 
;* REGISTER EQUATE TABLE * 
i* * 
;*********************************************************** 
; 
;working register equates 
INPNT: .equ R3 ;input character pointer 
OUTPNT: .equ R4 ;output character pointer 

495 



496 

MPTR: '.equ 
ACKB: .equ 

, ACKBIT: .equ 

RR6 
RS 
o 

me~sage pointer for external memory 
byte containing acknowledge bit 
bit set = no acknowledge yet 
bit clear = not. waiting on acknowledge 

;*********************.************************************* 
;* * 
; * INTERRUPT VECTOR ,TABLE * 
:* * 
;*********************************************************** 

INTRO: 
INTR1: 
INTR2: 
INTR3: 
INTR4: 
INTRS: 
INTR6: 
INTR7: 
INTR8: 
INTR9: 
INTR10: 
INTR11: 
INTR12: 
INTR13: 
INTR14: 
INTR1S: 

• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
.,WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
.,WORD 
• WORD 

INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET, 
INTRET 
INTRET 
INTRET 
INTRET 
RXDATI 
INTRET 
INTRET 
INTRET 
ACKSTB 
INTRET 

;this area should always be defined 
las it reserves the lower 32 bytes 
;for the interrupt table. 'the name 
;of the subroutine for each particular 
;interrupt service would normally be 
;named here. 

;receive data interrupt 

;acknowledge strobe interrupt 

, 
:*********************************************************** 
;* * 
;* START OF PROG~ EXECUTION * 
:* * 
;**********************.************************************ 

START: jr 

• ASCII 

START1: di 
sbO 
ld 

ld 
ld 
ld 
ld 

, 

START1 

'REL 0 7/17/86' 

EMT,/lOOOOOOOOB 

PO,iOOH 
POM, #11111111B 
PM,iOO110000B 
H1C,ilOOOOOOOOB 

;program execution unconditionally 
;begins at this location after reset 
land power up. 
;jump around optional ascii string 
;containing release info, copyright, etc. 
;begin 
;select register' bank 0 , 
;external memory timing=no wait input, normal 
;memory timing, no wait states, stack internal, 
land DMA internal 
;address begins at OOOOh, set upper byte 
;select all lines as address 
tenable port 0 as upper 8 bits address 
;handshake not enabled port 0 

;port 1 is defined in romless part as address/data. it is not necessary 
there to initialize that port 

ld 
ld 
ld 

ld 
ld 
ld 

ld 
ld 
ld 
ld 

" ;basic Super a 

ld 
ld 
ld 

P2,#00100000B 
P3,IIOOH 
P2AM,/110001010B 

P2BM,/Il0100010B 
P2CM,/IIOIOIOOIB 
P2DM,/IlOIOIOIOB 

P4,II00000000B 
P4D,iOOOOOOOOB 
P40D,iOOOOOOOOB 
HOC,#l1110001B 

;port 2 outputs low, except strobe bit 
;port 3 outputs low 
;p31,20,21 as output,p30 input 
lit is necessary here to configure p30 as input 
;for the receive data, and p31 as output for 
;transmit data for UART 
;p32,33,22 as output, 23 as input 
;p34,3S,2S as output, 24 as input, interrupt en 
;p36,37,26,27 as output 

;clear port 4 register 
;set all bits of P4 as outputs 
;active push/pull 
;handshake enable for port 4, 16 clock pulse 

I/O is initialized, now internal registers 

RPO,/IOCOH 
RP1,iOC8H 
SPL,/IOFFH 

;set working register low to lower a bytes 
;set working register high to upper a bY,tes 
;set stack pointer to start at top of set two 
;note here that only lower a,bits are used 
;for stack pointer. location OFFH is wasted 
las stack operation. SPH is general purpose 
; storage. ' 

;now clear the internal memory and stack ~rea 



ZERO: 
ld 
clr 
dec 
jr 
clr 

SPH,#OFFH 
@SpH 
SPH 
nz,ZERO 
@SPH 

;point to top of general purpose register 
;zero it 

;do it until register set is all cleared 
;zero last register 

now everything except working registers is cleared 

cpu and memory now initialized, set up timer for real time clock 

ld 
ld 

ld 

SYM,#OOOOOOOOB 
IPR,1/10111111B 

IMR,#OlOlOOOOB 

;disable fast interrupt response 
;interrupt priority 
;IRQ6>IRQ7>IRQ5>IRQ4>IRQ3>IRQ2>IRQ1>IRQO 
;rx interrupts, acknowledge strobe 

timer is set, now lets initialize the UART for polled operation 

sbl ;bank 1 
ld UMA,#01110000B 

;time constant = (12,000,000/4/16/9600/2)-1= 
;8.76 rounded to 9. 
;note that a 12 Mhz does not make a very 
;accurate baud rate source. error is large 

ld UBGH,#AHB(00009) ;high byte of time constant 
ld UBGL,#ALB(00009) ;low byte of time constant 
ld UMB,#00011110B ;p21=p21data,auto-echo is off, transmit and 

;receive clock is baud rate generator output, 
;baud rate generator input is system clock / 2, 
;baud rate generator is enabled, loopback 
lis disabled 

sbO ;select bank 0 
ld, UTC,#10001000B ;select p31 as transmit data out, 1 stop bit 

land transmit enable 
ld UIE,#OOOOOOOlB ;receive interrupts, no DMA 
ld URC,#00000010B ;enable receiver 

UART is initialized, reset' acknowledge bit and begin 

bitr 
ld 
ei 

WAIT: ldw 
call 
ld 
ld 

WAIT1: call 
jr 

SENDM: tm 
jr 
btjrt 

bits 
ldci 
ld 
nop 
nop 
nop 
cp 
jr 
ret 

SNDBUF: cp 
jr 
ret 

sell tm 
jr 
btjrt 

di 
bits 
ld 
tm 

ACKB,#ACKBIT ;reset acknowldege bit if set 
P2BIP,#00000001B ;reset interrupt input flip-flop 

MPTR,#MSG 
SENDM 
INPNT,#O 
OUTPNT,#O 
SNDBUF 
WAIT1 

;enable interrupts 
;point to message 
;send the message 
;set input pointer to register 0 
;set output 'pointer to register 0 
;send any characters in buffer 
;loop back 

P2,#00001000B ;printer busy 
nz,SENDM ;wait for printer unbusy 
SENDM,ACKB,#ACKBIT ;see if the acknowledge has occurred 

;from possible last byte 
ACKB,#ACKBIT ;set acknowledge bit before writing to output 
rO,@MPTR ;get the character 
P4,rO ;send to printer 

;allow 18 clocks for strobe' 

rO,t/'$' 
ne,SENDM 

INPNT,OUTPNT 
ne,SC1 

;last character? 
;loop back for next 

;compare inpointer to outpointer 
;send character if any to send, 
;otherwise return 

P2,#00001000B ;printer busy? 
nz,SC1 ;if so, wait until it is not busy 
SC1,ACKB,#ACKBIT ;see if acknowledge has occurred 

ACKB,#ACKBIT 
P4,@OUTPNT 
P2,#00000001B 

;from possible last byte 

;set acknowledge bit before writing to output 
;send the character 

497 



498 

HON: 

jr 
ld 
xor 
cp 
jr 
and 
nop 
inc 
ei 
ret 

z,HON 
rO,OUTPNT 
1;0,/I10000000B 
INPNT,rO 
ne,HON 
P2, #11111110B 

OUTPNT 

;if host is on 
;get the output pointer 
;add 128 to it 
;turn host back on when 128 bytes left in buf 
;otherwise keep sending 
;host back on 

;bump pointer 
;to make sure pointer not changed 

;send character 
SENDC: tm 

in rO 
UTC,'00000010B 
z,SENDC 
UIO,rO 

;transmit buffer empty yet 
;if not, wait until it is jr 

ld 
ret 

;load the character into the transmitter 

;receive character available interrupt 
RXDATI: ld rO,UIO ;get input from console 

;remove upper parity bit 
;echo to console 

and ro,#7fH 
call SENDC 
ld t\INPNT,rO 
inc INPNT 
cp INPNT,OUTPNT 
jr ne,RXIT . 

;save th~ character 
;bump input pointer 
;has the input made a complete loop? 

;receive character buffer full, stop sending device 

or 
INTRET: 
RXI'D-: iret 

ACKSTB: tm 
bitr 

ACKS1: tm 
jr 
ld 
iret 

P2,#00000001B 

P2,#00010000B 
ACKB,#ACKBIT 

;raise DTR to stop host sending 

;is line low or high now 
;reset acknowledge bit in regist~r 

P2,#00010000B ;test ack bit 
Z,ACKS1 ;wait h~re till end of strobe 
P2BIP,#00000001B ;reset p24 interrupt pending register 

;and return 

MSG: .ASCII CR,LF,'super8 serial/parallel test program.',CR,LF 
.ASCII 'Second line test data',CR,LF,'$' 

.END 

.TITLE Sample Zilog super 8 Serial to Parall~l Converter with XON/XOFF 

;=========================================================== 
;= 
;= 
;= 
;= 
;= 
;= 
;= 
;= 
;= 
;= 
;= 

;= 

TITLE: 
DATE: 
PURPOSE: 

ASSEMBLER: 
PROGRAMMER: 

SERPARl.S 
JULY 17, 1986 
TO DEMONSTRATE INTERRUPT 
DRIVEN SERIAL PORT IN A 
REALISTIC APPLICATION. 
THIS APPLICATION RECEIVES 
SIMPLE SERIAL DATA A SENDS IT 
OUT THE PARALLEL PORT TO A 
PRINTER. FLOW CONTROL IS BY 
XON/XOFF COMMANDS ON THE BACK 
CHANNEL TO THE HOST 
ZILOG ASMS8 ASSEMBLER 
CHARLES M. LINK, II 

;=========================================================== 

• PAGE 55 ;set maximum page size to 55.lines 
;*********************************************************** 
:* * 
;* GENERAL EQUATES * 
;* * 
;**~******************************************************** 

CR: 
LF: 

.equ 

.equ 
OdH 
OaH 

;carriage return 
;line feed 



XON: 
XOFF: 

.equ 

.equ 
11H 
13H 

:control-Q or DC1 
:control-S or DC3 

: 
:**********************************************-************ 
:* * 
;* REGISTER EQUATE TABLE * 
:* * 
:*********************************************************** 
: 
:working reqister equates , 
INJ;>NT: • equ R3 : input c;:haracter pointer 
OUTPNT: .equ R4 ;output character pointe,r 
MPTR: .equ RR6 :messaqe pointer for external memory 
ACKB: .equ R5 ;byte containinq acknowledqe bit 
ACKBIT': .equ 0 ;-bit set - no acknowledqe yet 

Ibit clear - not waitinq on acknowledqe 
XBIT: .equ 1 ;XOFF send to host 
; 
;****************************************************.****** 
;* * 
1* INTERRUPT VE~R TABLE * 
;* * 
;*********.***~**** •• ****~********************************** 

INTRO: 
INTRl: 
INTR2: 
INTR3: 
INTR4: 
INTR5: 
INTR6: 
INTR7: 
INTR8: 
INTR9: 
INTRIO: 

,INTR11: 
INTiu2: 
INTR13: 
INTR14: 
INTR15: 

• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WoRD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD-
• WORD 
• WORD 
• WORD 

INTR!T 
INTR!T 
INTRET 
INTR!T 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
RXDATI 
INTRET 
INTRET 
INTRET' 
ACKSTB 
INTR!T 

;this area should always be defined 
las it reserves the lower 32 bytes 
;for the interrupt table. the name 
;of the subroutine for each particular 
;interrupt service would normally be 
;named here. 

;receive data interrupt 

;acknowledqe strobe interrupt 

; , 
1*********************************************************** 
;* * 
1* START OF PROGRAM EXECUTION * 
1* * 
:*********************************************************** 

START: di 
jr 

• ASCII 

START1: sbO 
ld 

ld 
ld 
ld 
ld 

; 

START1 

_ 'REL 0 7/17/86' 

EMT,#OOOOOOOOB 

PO,#OOH 
POM, #11111111B 
PM,'OO110000B 
H1C,#OOOOOOOOB 

;for emulation if nothinq else 
;proqram execution unconditionally 
;beqins at this location after reset 
land power up. 
;jump around optional ascii strinq 
;containing release info, copyriqht, etc. 
;select reqister bank 0 
;external memory timinqano wait input, normal 
;memory timinq, no wait states, stack internal, 
land DNA internal 
:address beqins at OOOOh, set upper byte 
;select all lines as address 
;enable port 0 as upper 8 bits address 
;handshake not enabled port 0 

;port 1 is defined in romless part as address/data. it is not necessary 
;here to initialize that port 

ld P2,'OO100000B 
ld P3,'OOH 
ld P2AM,#loOOlOlOB 

ld P2BM,110100010B 
ld P2CM,l10101001B 
ld P2DM,110101010B 

ld P4,#OOOOOOOOB 
1d P4D,'OOOOOOOOB 

;port 2 outputs lOW, except strobe bit 
;port 3 outputs low 
;p31,20,21,8S output,p30 input , 
lit is necessary here to confiqure p30 as input 
;for the receive data, and p31 as output for 
;transmit data for UART 
:p32,33,22 as output, 23 as input 
;p34,35,25 as output, 24 as input, interrupt en 
;p36,37,26,27 as output 

;clear port 4 reqister 
;set all bits of P4 as outputs 

\ 

499 



500 

ld P400,#00000000B ;active push/pull 
ld HOC,#11110001B ;handshake enable for port 4, 16. clock pulse 

basic Super 8 I/O is initialized, now internal registers 

ld 
ld 
ld 

RPO,#OCOH 
RP1,lIOC8H 
SPL, lIOFFH 

;set working register low to lower 8 bytes 
;set working register high to upper 8 bytes 
;set stack pointer to start at top of set. two 
;note here that only lower 8 bits are used 
;for stack pointer. location OFFH is wasted 
las stack operation. SPH is general purpose 
;storage. 

;now clear the internal memory and stack area 

ld SPH,#OFFH ;point to top of general purpose register 
ZERO: c1r @SPH Izero it 

dec SPH 
jr nz,ZERO ;do it until register set is all cleared 
clr @SPH ;zero last register 

;now everything except working registers is cleared 

;cpu and memory now initialized, set up timer for real time clock 

; 

ld 
ld 

ld 

SYM,#OOOOOOOOB 
IPR, #10111111B 

IMR,#01010000B 

;disable fast interrupt response 
;interrupt priority 
;IRQ6>IRQ7>IRQS>IRQ4>IRQ3>IRQ2>IRQ1>IRQO 
;rx interrupts, acknowledge strobe 

;timer is set, now lets initialize the UART for polled operation 

sb1 
ld UMA, #01110000B 

;bank 1 

;time constant = (12,000,000/4/16/9600/2)-1= 
;8.76 rounded to 9. 
;note that a 12 Mhz does not make a very 
;accurate baud rate source. error is large 

ld UBGH, #"HB(00009) ;high byte of ti'me constant 
ld UBGL,#"~B(00009) ;low byte of time constant 
ld UMB,#00011110B ;p21=p21data,auto-echo is off, transmit and 

;receive clock is baud rate generator output, 
;baud rate generator input is system clock / 2, 
;baud rate generator is enabled, loopback 
lis disabled 

sbO ;select bank 0 
ld uTC,#10001000B ;select p31 as transmit data out, 1 stop bit 

land transmit enable 
ld UIE,#Q0000001B ;receive interrupts, no OMA 
ld URC,#00000010B ;enable receiver 

UART is initialized, reset acknowledge bit and begin 

bitr 
bitr 
ld 
ei 

WAIT: ldw 
call 
ld 
ld 

WAIT1: call 
jr 

SENOM: tm 
jr 
btjrt 

bits 
ldci 
ld 
nop 
nop 
nop 
cp 
jr 
ret 

ACKB,#ACKBIT ;reset acknowldege bit if set 
AC~B,#XBIT ;reset XON/XOFF bit 
P2BIP,#00000001B ;reset interrupt input flip-flop 

MPTR,#MSG 
SENOM 
INPNT,#O 
OUTPNT,#O 
SNOBUF 
WAIT1 

;enable interrupts 
;point to message 
;send the message 
;set input pointer to register 0 
;set output pointer to register 0 
;send any characters in buffer 
;loop back 

P2,#00001000B ;printer busy 
nZ,SENOM ;wait for printer unbusy 
SENOM,ACKB,'ACKBIT ;see if the acknowledge has 

ACKB, 'ACKBIT 
rO,@MPTR 
P4,rO 

rO,f'$' 
ne,SENOM 

;from possible last byte 
;set acknowledge bit before writing 
;get the character 
;send to printer 
;allow 18 clocks for strobe 

;last character? 
;loop back for next 

occurr~d 

to output 



, 
:timer is initialized, now lets enable interrupts and wait 

ldw CINCR,II1 . 
ldw RINCR,iIl 

:start column at beginning of sine table 
:start row at beginning of sine table 

;this example loads the tones for digit 'I' 
:user software would, of course have to manipulate these registers for 
:proper tone control 

WAIT: 

: 

ldw 
ldw 
ldw 
ld 
ei 
nop 
nop 
nop 
nop 
jr 

CFINCR,IICFREQI 
RFINCR,IIRFREQI 
POINT,IISINTAB 
CVAL,j/080H 

WAIT 

:load column frequency increment 
:load row frequency increment 
:pointer points to sine table 
:initial value to prevent glitch at start 
:enable interrupts 

:loop back 

:Timer interrupt. Occurs SAMPLE times per second 
:interrupt outputs value to DAC-08 and then determines value for next 
; interrupt. This assures no bit jitter. 

TlMERO: ld 
rcf 
add 
adc 
ld 
ldc 
add 
adc 
ld 
ldc 
add 
or 

INTRET: iret 

p4,CVAL 

CINCRL,CFINCL 
CINCRH,CFINCH 
POINTL,CINCRH 
CVAL., @POINT 
RINCRL,RFINCL 
RINCRH,RFINCH 
POINTL,RINCRH 
RVAL,@POINT 
CVAL,RVAL 
COCT,1I00000010B 

;write new value to DAC-08 
;clear carry flag 
;find next position in sine table 
:by adding frequency offset to last position 
;set new pointer into sine table 
;get value from sine table 
;find next position in sine table 
;by adding frequencty offset to last position 
;set new pointer into sine table 
;get second value from sine table 
;form a complex waveform from two sine values 
;reset end of count interrupt 
land return from interrupt 

, 
1*********************************************************** 
i* * 
;* SINE WAVE LOOKUP * 
i* * 
i***************************************************** ****** 
;sine table for DTMF generation using DAC-08. Table based upon 
:case of waveform consisting of two sine waves summed to provide a single 
:complex waveform with minumum amplititude = 0 volts and maximum 
;amplititude = 5 volts. DAC-08 input for 0 volts = OOH 
;5 volts = OFFH. Both waves must total no more than OFFH, therefore 
;maximum for one wave must be 1/2 5 volts or 080H. 
;Table generated using following BASlCA program, 
;then typed into program. 

10 CLS 
20 PI=3.141593 
30 FOR 1=0 TO 255 
40 C=360/256 
50 D=C*I 
60 E=D*PI/180 
70 F=SIN(E) 
80 G=F*63 
90 H=64+G 
100 J=CINT(H) 
110 A$=HEX$(J) 

·120 PRINT A$ 
130 LPRINT A$ 
140 NEXT 
150 END 

;clear screen 
idefine PI 
:256 total values 
;define basic interval value 
;value from zero on sine wave 

;figure sine f~r interval from 0 
;sine range should be from -63 to 63 
;make result from 0 to 127 
;round to nearest integer 
;convert to hex 
ion screen 
Ion printer 
;do next inverval 

;*note-remove comments, BASlCA will not accept ; as comment delimiter 

SINTAB: .ORG 
• byte 
. byte 
• byte 
• byte 
. byte 

0400H ;begin sine table on even byte boundary 
040H,042H,043H,045H,046H,048H,049H,04BH,04CH,04EH,04FH,051H 
052H,054H,055H,057H,058H,05AH,05BH,05CH,05EH,05FH,060H,062H 
063H,064H,066H,067H,068H,069H,06AH,06BH,06DH,06EH,06FH,070H 
071H,072H,073H,074H,074H,075H,076H,077H,078H,078H,079H,07AH 
07AH,07BH,07BH,07CH,07CH,07DH,07DH,07DH,07EH,07EH,07EH,07FH 

501 



502 

.. 
SNDBUF::, cP 

'jr 
INPNT,OUTPNT 
ne,SCl 

compare inpointer to outpointer 
send character if any to send 
otherwise return 

SC1: 
ret 
tm~ P2,#00001000B printer busy? 
jr nZ,SC1 if so, wait until it is not busy 
btjrt SC1,ACKB,#ACKBIT ;see if acknowledge has occurred 

di 
bits ACKB, #ACKBIT 
ld P4,@OUTPNT 
btjrf HON,ACKB,#XBIT 
ld rO,QUTPNT 
xor rO,#lOOOOOOOB 
cp INPNT,rO 
jr ne,HON 
ld rO,XON 
call SENDC 
bitr ACKB, #XBIT 

HON: nop 
inc OUTPNT 
ei 
ret 

; 
;send character in rO 
SENDC: tm UTC,#OOOOOOlOB 

jr z,SENDC 
ld UIO,rO 
ret 

;from possible last byte 

;set acknowledge bit before writing to output 
;send the Character 
;host is still sending 
;get the output pointer 
;add 128 to it 
;turn host back on when 128 bytes left in buf 
;otherwise keep sending 
';send XON to host to start it sending again 

;reset XOFF bit 

;bump pointer 
Ito make sure pointer not changed 

;transmit buffer empty yet 
;if not, wait until it is 
;load the character into the transmitter 

;receive character available interrupt 
RXDATI: ld rO,UIO 

and, rO, #7fH 
call SENDC 
ld @INPNT,rO 
inc INPNT 
ld rO,INPNT 
add rO,#5 
cp rO,OUTPNT 
jr ne,RXIT 

; 

;get input from console 
;remove upper parity bit 
;echo to 'console 
;save the character 
;bump input pointer 
;get the input pointer 
;allow 5 characters after XOFF 
;has the input made a complete loop? 

;receive character buffer full, stop sending device 

INTRET: 

ld 
call 
bits 

RXIT: iret 

ACKSTB:'tm 
bitr 

ACKS1: tm 
jr 
ld 
iret 

; 

rO,#XOFF 
SENDC 
ACKB,#XBIT 

P2,#00010000B 
ACKB,#ACKBIT 

;send XOFF to host 
;send it 
;set the XOFF bit 

lis line low or high now 
;reset acknowledge bit in register 

P2,#00010000B ;test ack bit 
z,ACKS1 ;wait here till end of strobe 
P2BIP,#OOOOOOOlB ;reset p24 interrupt pending register 

land return 

MSG: .ASCII CR,LF,'super8 serial/parallel test program.',CR,LF 
.ASCII 'Second line test data',CR,LF,'$' 

• END 



~ ZiIm Technical Manual 

Super8™ Microcomputer 

503 



Contents 

Olapter 1. Super8 Overview 1 
1.1 Introduction 508 
1.2 Features 508 
1.3 Basic Microcomputers 508 
1.4 Proto pack Microcomputers 508 
1.5 ROMless Microcomputers 508 

D"oapter 2. Architectural Overview 2 
2.1 Introduction 509 
2.2 Address Spaces 509 
2.3 Register File • 510 

2.3.1 Register Pointer 510 
2.3.2 Instruction Pointer 510 . 

2.4 Instruction Set • 510 

2.4.1 Addressing Modes 510 
2.4.2 Dsta Types 510 

2.5 I/O Operations 511 

2.5.1 Interrupts 511 
2.5.2 On-Chip Peripherals 511 

2.6 Oscillator . . 511 

Olapter J. Address Spaces 3 
3.1 Introduction . . . 512 
3.2 CPU Register File • • . . . 512 
3~3 System Registers and Mode and Control Registers 515 
3.4 Program and Data Memory • 515 
3.5 CPU and User Stacks 517 
3.6 Instruction Pointer (IP) 518 

D"oapter 4. Addressing ItJdes 4 
4.1 Introduction . . . . . . . 519 
4.2 Register Addressing (R) . . 519 
4.3 Indirect Register Addressing (IR) 521 
4.4 Indexed Addressing· (IA) 521 
4.'5 Direct Addressing CDA) 523 
4.6 Indirect Addressing (IA) 523 
4.7 Relative Addressing (RA) 523 
4.8 Immediate Addressing (1M) 524 

D"oapter 5. l;nstruction Set 5 
5.1 Functional Summary 525 
5.2 Processor Flags • . 525 

504 



Contents (Continued) 

5.3 Condition Codes • • • • • • • 
5.4 Notation and Binary Encoding 

5.4.1 Notational Shorthand 
5.4.2 flag Settings 

5.5 Instruction Descriptions and Formats 

Chapter 6. Interrupts 

6.1 Introduction 

6.1.1 Sources 
6.1.2 Vectors 
6.1.3 Levels. 
6.1.4 Enables 
6.1.5 The Interrupt Routine 

6.2 Fast Interrupt Processing • • 
6.3 Clearing the Interrupt Source 
6.4 Interrupt Control Registers • 

6.4.1 System Mode Register 
6.4.2 Interrupt Request Registe,r 
6.4.3 Interrupt Mask Register 
6.4.4 Interrupt Priority Register 
6.4.5 Fast Interrupt Status'Bit (FIS of Flags Register) 

6.5 Interrupts and the DMA Channel 

Chapter 7. Reset end Clock 

7.1 Reset 
7.2 Clock 
7.3 Test Mode 

Chapter 8. I/O Port,s 

B.1 Introduct ion 
B.2 General Structure, 
8.3 Port 0 
8.4 Port 1 
8.5 Ports 2 and 3 
B.6 Port 4 
B.7 Port Mode and Control Registers 

8.7.1 Port Mode Reg ister • • • 
8.7.2 Port 0 Mode Register •• 
B. 7.3 Por t 2/3 Mode Reg isters 

528 5 528 

530 
530 

532 

6 
586 

586 
586 
587 
589 
589 

590 
590 
590 

591 
591 
592 
592 
592 

592 

7 
593 
599 
599 

8 
600 

" 600 
600 
600 
601 
602 
602 

602 
603 
603 

505 



B.7 • 4 Port 2/3 Interrupt Pend ing Reg islers 
B.7.5 Port 4 Direction Register 
B.7.6 Port 4 Open-Drain Register 

B.B Handshaking Channels 

B.B.1 Pin Descriptions 
B.B.2 Handshake Control Registers 

Olapter 9. Counter/Tilllers 

9.1 Introduction 

9.1.1 Bi-Value Moda 
9.1.2 Capture 
9.1.3 Extarnal Gate and Trigger 

9.2 Counter/Timer tontrol and Mode Registers 

9.2.1 Counter/Timer Control Registers 
9.2.2 Counter/Timer- Mode Registers 
9.2.3 Time Constant Register 
9.2.4 Capture Register • • • • •• , . 

Olapter 10. UART 

10.1 Introduction 
10.2 Transmitter • 
10.3 Receiver 
10.4 Wake-Up Feature 
10.5 Auto-Echo/Loopback 
10.6 Polled Operation 
10.7 Baud-Rate Generator 
10.B UART Interface Pins 
10.9 UART Control/Mode and Status Registers 

10.9.1 UART Data Register (UIOT & UIOR) 
10.9.2 Wake-Up Match Register (WUMCH) • 
10.9.3 Wake-Up Mask Registar (WUMSK) 
10.9.4 UART Receive Control Register (URC) 
10.9.5 UART Interrupt Enable Register (UIE) 
10.9.6 UART Mode A Register (UMA) •• 
10.9.7 UART Transmit Control Register (UTC) • 
10.9.B UART Mode B Register (UMB) • '. 
10.9.9 UART Baud-Rate Generator Time Constant Register (UBG) 

Dlapter 11. DMA Olemal 

11.1 Introduction 
11.2 OMA Control Registers •• 
11.3 DMA and the UART Register 
11.4 DMA and the UART Transmitter 

506 

604 
604 
604 

604 

606 
606 

608 

609 
609 
609 

610 

610 
611 
613 
613 

614 
614 
614 
615 
617 
618 
618 
619 
619 

619 
619 
619 
619 
619 
621 
622 
623 
624 

625 
625 
626 
626 

8 

9 

10 

11 



Contents (Continued) 

1.1.5 OMA and Handshake Channel 0 • • • • • 

11.5.1 OMA·Write (Input Handshake 0) 
11.5.2 OMA Read (Output Handshake 0). 

11.5.2.1 Fully Interlocked Mode 
11.5.2.2 Strobed Mode ••••• 

Dlapter 12. External Interface 

12.1 Introduction ••••••• 
12.2 Pin Descriptions • • • • • 
12.3 Configuring for External Memory 
12.4 External Stacks 
12.5 Oata.Memory • 
12.6 Bus Operation • 

12.6.1 Address Strobe (AS) 
12.6.2 Oata Strobe (OS) •• 
12.6.3 External Memory Operations 

12.7 Extended Bus Timing ••••••• 

12.7.1 Software Pro·grammable Wait States 
12.7.2 Slow Memory Timing. 
12.7.3 Hardware Wait States 

12.B Instruction Timing 

Glossary . . . . 

626 11 
626 
627 

627 
627 

12 
628 
628 
629 
630 
630 .. 630 

631 
631 
631 

631 

631 
632 
632 

.. 632 

635 

507 



1.1 INTRODUCTION 

The Super8 family consists of basic microcom­
puters, protopack emulators, and ROMless microcom­
puters. The various family members differ in the 
amount of on-chip ROM and the physical packaging.' 

All of the Super8 family members offer a full­
duplex universal asynchronous receiver/transmitter 
(UART) with an on-chip baud-rate generator, two 
16-bit programmable counter/timers, a direct 
memory access (DMA) controller, and an on-chip 
osci Hator. 

1.2 FEATURES 

Super8 microprocessor features inc lude: 

• 325 byte-wide registers, including 272 general­
purpose registers and 53 mode and control 
registers 

• Full-duplex UART with special features 

• Up to 32 bit-programmable and B byte­
programmable I/O lines, with 2 handshake chan­
nels 

• Addressing of up to 128K byes of memory, 

• An interrupt structure that supports: 

• 27 interrupt sources 
• 16 interrupt vectors (2 reserved for f~ture 

versions) 
• 8 interrupt levels 
• Servicing in 6 CPU clock cycles 

• Two Register 'Pointers that allow use of short 
and fast instructions to access register groups 
within 600 ns. 

• An instruction set that includes multiply and 
divide instructions, Boolean and BCD operations 

• Additional instructions that support threaded­
code languages, such as Forth 

508 

Chapter 1 
SuperS Overview 

1.' BASIC MICROCOMPUTERS 

These parts are the core of the SuperB family of 
products. They have various amounts of mask­
programmable on-chip ROM, are suitable for high 
volume applications, and require a single +5 Vdc 
power supply. 

1.4 PROTOPACK MICROCOMPUTERS 

These parts function as emulators for the basic 
microcomputer versions. ,They use the same package 
and p:i.n-out as the basic microcomputer but a Iso 
have a 2B-pin "piggy back" socket on the top into 
which a ROM or EPROM can be installed, to replace 
the on-chip ROM of the basic microcomputer. 

This package permits th~ protopack to be used in 
prototype and final PC boards while sti 11 permit­
ting user program development. When a final 
program is developed, it can be mask-programmed 
into the pr'oduction microcomputer device, directly 
replacing the emulator. The protopack parts are 
also useful in situations where the cost of mask­
programming is prohibitive or where program flex­
ibility is desired. 

1.5 ROMlESS MICROCOMPUTERS 

The ROMless microcomputers are similar to the 
basic microcomputer parts, but have no internal 
ROM. Port 1 is dedicated' as an B-bit address/data 
bus and POO-P04 are dedicated address lines. Up to 
64K bytes of external memory can be addressed by 
configuring Port 0 as address bits. The address 
capability can be doubled to 12BK bytes by 
programming P35 of Port 3 as the Data Memory 
select signal TIR. The two states of this signal 
can be used with the 16-bit address bus to address 
two separate banks of external memory, each with 
up to 64K bytes. 



2.1 INTROOUCTIIW 

The SuperB is a versatile single-chip micro­
computer that can be programmed for many different 
memory and I/O configurations. This flexibility 
has been achieved by merging a multiplexed 
address/data bus with several I/O-oriented ports. 
This provides the user with large amounts of 
external memory while maintaining many I/O lines. 
Figure 2-1 shows the SuperB block diagram. 

2.2 ADDRESS SPACES 

To provide for both 1/0 
applications, the SuperB 
address spaces: 

and memory intensive 
supports three basic 

I/O 
(BIT PROGRAMMABLE) 

I/O 
(BIT PROGRAMMABLE) 

QRCONTROL 

Chapter 2 
Architectural Overview 

• Program memory (internal snd external) 
• Data memory (external) 
• Register file (internal) 

A maximum of 64K bytes of program memory is 
directly addressable. When present, internal 
program memory normally consists of mask­
programmed ROM. The data memory space is 64K 
bytes in si ze • 

The ease of interfacing with external memory is 
enhanced with options for programmable wait states 
and half-speed memory timing, as well as an 
optional external wait input. 

AOORESS OR I/O 
(BIT PROGRAMMABLE) 

XTAL AS os R/W RESET 

ADDRESS/DATA OR I/O 
(BYTE PROGRAMMABLE) 

Z-BUS WHEN USED AS 
ADDRESS/DATA BUS 

Figure 2·1. Functional Block Diagram 

509 



Architectural Overview 

2.3 REGISTER FILE 

The SuperB architecture centers around an internal 
register file composed of 325 registers. All 
registers are eight bits wide. 'Of, the 272 
general-purpose registers, 208 can be used as an 
accumulator, 'address pointer, index register, data 
~egister, or stsck register. The 64 remaining 
general-purpose registers are limited to Indirect 
or Indexed addressing mode functions such as 
stacks, data buffers, and look-up tables. Fifty­
three registers are dedicated to special control 
and status operations. 

2.3.1 Register Pointer 

The register file is logically divided into 32 
working register groups of B registers each when 
using 4-bit register addressing. Two groups may 
be active at anyone time and the two Register 
Pointers (RPO and RP1) contain the base addresses 
of these two working register groups. This allows 
fast context switching and shorter instruction 
formats. 

2.3.2 Instruction Pointer 

The SuperB hardware includes features that facili­
tate the implementation of threaded-code languages 
such as Forth. These include a special 16-bit 
register called the Instruction Pointer (IP) and 
three special CPU instructions called NEXT, ENTER, 
and EXIT. The IP can also be used to support the 
fast interrupt prQcessing mode. 

2.4' INSTRUCTION SET 

The CPU has an instruction set designed for its 
large register file. This includes a full comple-
ment of B-bit arithmetic 
including multiply and 
Decimal (BCD) operations 

and logical operations, 
divide. Binary-Coded 

are supported using a 
decimal adjustment of binary values. Incrementing 
and decrementing 16-bit quantities for addresses 
and counters are also supported. Extensive bit 
manipulation, including Rotate and Shift instruc­
tions, round out the data manipulation capabili­
ties of the SuperB. No special I/O instructions 
are necessary since I/O is mapped into the regis­
ter file. 

510 

2.4.1 Addressing Mldes 

The addressing modes of the SuperB Central 
Processing Unit (CPU) are: 

• Register (R) 
• Indirect Register (IR) 
• Indirect Address (IA) 
• Immediate (1M) 
• Direct Address (DA) 
• Indexed (X) 
• Relative Address (RA) 

Register, Indirect Register, and Immediate 
addressing modes are available for load, Arith­
metic, logical, Shift, Rotate, and Stack instruc­
tions •. Conditional jumps support both the Direct 
and Relative addressing modes, while Jump and Call 
instructions support the Direct, Indirect, and 
Indirect Register addressing modes. Only load 
instructions support Indexed sddressing. 

2.4.2 Data Types 

The SuperB CPU supports operations on bits, bytes, 
BCD digits, and 2-byte words. 

Bits in the register file can be set, cleared, 
complemented, and tested. Bits within a byte are 
numbered from 0 to 7; bit 0 is the least signifi­
cant (right-most) bit. 

Bytes in the register file can be operated on' by 
Arithmetic, logical, Shift and Rotate, and load 
instructions, Bytes in memory can be operated on 
only by load or stack instructions. 

Manipulation of BCD digits, packed two to a byte, 
is accomplished by a Decimal Adjust instruction 
and a Swap instruction. Decimal Adjust is used 
after either a binary addition or subtraction on 
BCD digits. 

Words in the register file can be loaded, incre­
mented, and decremented with the 16-bit load Word, 
Increment Word, and Decrement Word instructions. 



2.5 I/O OPERATIONS 

The SuperB has I/O lines grouped into five ports 
of eight lines each. Ports are configurable as 
input, output, or bidirectional. Under software 
control, the ports can provide timing, status 
signals, address outputs, and I/O ports with or 
without handshaking. Multiprocessor system 
configurations are also supported. 

2.5.1 Interrupts 

I/O operations can be interrupt-driven or polled. 
The SuperB supports 16 vectored interrupts on 
eight different levels from 27 interrupt sources. 
Each level can be masked and prioritized. 
Optiona I high-speed interrupt processing can be 
used on anyone of the levels for minimum latency. 

Architectural Overview 

2.5.2 On-Chip Peripherals 

To help cope with real-time problems such as 
counting/timing, the SuperB contains two counter/ 
timers with a large number of user selectable 
modes. It also contains an on-chip universal 
asynchronous receiver/transmitter (UARr) which has 
its own built-in baud-rate generator that can be 
used as a counter when not being used to generate 
baud rates. 

A DMA channel is provided that allows high-speed 
data transfers between on-chip peripherals and the 
register file or external memory. 

2.6 OSCILLATOR 

In addition to these features, the SuperB offers 
an on-chip oscillator requiring only an external 
crystal for operation. 

511 



3.1 INTRiDJcnllf 

The SuperB microprocessor supports the following 
address spaces: 

• CPU register file 
• Program memory 

'Ii Data memory 

3.2 CPU REGISTER FIlE 

Registers within the SuperB CPU I S internal regis­
ter file are identified with an 8-bit a"dress, 
yielding 256 possible register addresses. However, 
the upper 64 addresses are used more than once, ss 
describsd below. A total of 325 'registers is 
availsble', including 272 general-purpose registers 
and 53 special control and status registers. Two 
of these registers sre Register Pointers. 

FFH 

EO. 
DFH 

DOH 
CFH 

SET ONE 

I 
+r-

CONT:g~::~I~TERS ' -
r--i-

(REGISTER ADDRESSING ONLy) 

r--

SYSTEM REGISTERS: 
STACK, FLAGS, PORTS, ETC. 

(REGISTER ADDRESSING ONLy) 

WORKING REGISTERS 
(WORKING REGISTER 
ADDRESSING ONLY) 

Chapter 3 
Address Spaces 

A total of 325 registers is accessible with 192 
registers (OOH-SFH) accessible in all address­
ing modes. These csn be used SS accumulators, 
working registers, data buffers, internal stack, 
snd so Jorth. It is possible to set up s 256-byte 
data buffer and still hsve 16 registers remaining 
ss accumulstors and working registers. 

Figures 3-1 snd 3-2 show lsyouts 'of the register 
file sddress space. The upper 64 bytes of the 
address space (C~-FFH) contsin two sets of 
registers. The first set can be accessed ,only by 
the Register addressing mode; the second set can 
be accesaed by the Indirect Register and Indexed 
addressing modes, stack' operations, and DMA 
accesses. The registers in the second set sre 
usable as data buffers or as an internal atack 
area. 

SET TWO 
FFH r------..,.---, 

BANK1 

BANKO 

DATA REGISTERS 
(I"DIRECT REGIIITER, INDEXED, 

STACK OR DMA 
ACCESS ONLY) 

COH~ _______ ~ 

BFH r--------_ 256 
BYTES 

DATA REGISTERS 192 
(ALL ADDRESSING MODES) ~ BYTES 

OOH~ ________ ~ 

Figure 3·1. SuperB Registers 

512 



Address Spaces 

SPECIAL PURPOSE 
ADDRESS REGISTERS __ ,,, ___ ...... A'-___ -., GENERAL PURPOSE REGISTERS 

BANKO BANKl 

FF } - - - - - - - - CONTROL 
---- ---- REGISTERS 

EO ---- ----
OF~----i-----i 

t==,tc::=1 } SYSTEM 

g _ ; ; /= = = = =:JLS_--t!.'--_-----+-=-=-=-=-+------' 
07 RPl } REGISTER 
06 I RpO I POINTERS 

Each Register Pointer (RP) can Independently point to any of 32 
a-byte blocks of set one. The block selected by RPO Is accessed 
In address space CO-C7, while the block selected by RP1 Is 
accessed In address space C8-CF. Memory space from CO-CF 
can only be accessed if pointed to by the RPs. 

~-----------------07, 
00- - - ---- - - ---- -- - -'------' 

'"-------------~v,..--------------~ 
REGISTER ADDRESSING ONLY 

MODES 

'----.---'~ 

ADD:~kSING ! 
'"--_________ ~v,..-------------J 

MAY BE POINTED TO BY REGISTER POINTER INDIRECT REGISTER, 
INDEXED, 
STACK, OR 

DMAMODES 

Figure 3-2. Super8 Register File Address Spaces 

The first set consists of three subsets of regis­
ters. The bottom sixteen registers (COH-Cf H) 
are available for use as accumulators or working 
registers. The middle sixteen registers (OOH­
Of H) are used for system registers--Stack 
Pointer, flag register, I/O ports, and so forth. 
The upper 32 ,bytes (EOH-Ff H) consist of two 
banks of registers. Each bank is selected by a 
bit located in the Flag register called the Bank 
Address bit. These two banks, a total of 64 
bytes, are used for Mode and Control registers. 
Only 38 of these 64 bytes are currently used. The 
remaining 26 bytes are reserv.ed for future 
expansion. 

cant byte of data stored in the even-numbered 
register and the least significant byte stored in 
the next higher odd-numbered register (figure 
3-3). 

Registers can be accessed as either B- or 16-bit' 
registers using Register, Indirect Register, or 
Indexed addressing modes. for register addresses 
COH to FfH' the addressing mode used deter­
mines the actual register being accessed. 
Registers accessed as 16-bit registers, are treated 
as even-odd register pairs, with the most signifi-

MSB LSB I' n = EVEN ADDRESS 

Rn Rn+1 

Figure 3-3. l6·Bit Register Addressing 

With few exceptions, all instructions that refer­
ence or mOdify a register may do so to any of the 
325 B-bit registers or 176 16-bit register pairs, 
regardless of the particular register, as long as 
the proper addressing mode is used. The instruc­
tions operate on I/O ports, system registers, mode 
and control registers, and general-purpose regis­
ters without the need for special-purpose instruc­
tions. 

Usage and access are shown in Table 3-1. 

513 



Address Spaces 

Table 3-1. SuperB Register File 

Registers Usage kcess 

OO-BF General-purpose registers Registar, Indirect Register, or 
Indexed modes, via on-chip DMA 
operations, or as part of inter­
nal stack 

CO-FF Set Two General-purpose registers Indirect Regiater or Indexed 
modes, via on-chip DMA opera­
tions, or as part of internal 
stack 

CO-FF Set One Working registers only Register mode 

DO-OF Set One System registers Register mode 

EO-FF . Set One Mode and control ragistars Registar mode 

The instructions can access B-bit registers or 
16-bit register pairs using either 4-bit or·B-bit 
address fie Ids. When using 4-bit register 
addressing, the register file is logically divided 
into 32 groups of 8 working registers, as shown in 
Figure 3-4. All the registers in a working regis­
ter set have the same value for their five most­
significant address bits. The two Register 
Pointers (RPO and RP1) are system registers that 
contain the base addresse·s of two active working 
register groups. 

111111 xxxr---­
RPO 

100000 xxx~ 
RP1 

GROUP 32 

I 
I 
I 
I 
I 
I 
I 
I 
I 

GROUP 1 

Figure 3-4. Working Register Groups 

FF 
F8 
F7 
FO 

10 
F 
8 
7 
o 

Note that 4-bit register addressing (Figure 3-5) 
is a Register addressing mode so that the regis­
ters accessible by this mode include the mode and 
control registers, system registers, and working 
register groups. 

514 

RP1 (R21S) 

o 1 1 1 0 1001010001 

ope 

Figure 3-5. Working Register Addressing 

Working registers are typically specified by short 
format instructions; when a working register 
destination is used in the instruction, only four 
bits of address are needed to specify the regis­
ter; one) bit selects the appropriate Register 
Pointer and three bits provide the least-signifi­
cant bits of the register address. The 
five most-significant bits of the address come 
from the selected Register Pointer and together 
they form an B-bit address. Applications using 
working registers require fewer bytes and have a 
reduced execution time. 

The Register Pointer also speeds context SWitching 
when processing interrupts or changing tasks. A 
special Set Register Pointer (SRP) instruction is 
provided for setting the Register Pointer 
contents. 



Address Spacea 

RPO (R214) RPI (R215) 

01 1 01 ",'",O",O;;;,O;.;;.;,I;;"';" ___ ...Jrl~' ° ° ° I 
~ELECTS RPI , 

I _ R11 

1100"0111~ 
"' &oBIT ADDRESS 

-- -- FROM INSTRUCTioN 
SPECIFIES WORKINS 

REGISTER ADDRESSING L...---------l-----, 

REGISTER ADDRESS (R1B3) ""';";"';";;''';'''''L..;;.';''';'.l 

Figure 3-6. 8·Blt Working Register Addressing 

Not all instructions have 4-bit addresaing modes, 
but the active working registers can still be 
accessed using B-bit addressing without having to 
know the contents of the Register Pointers. 
Figure 3-6 ,shows bow this works. The 'upper four 
bits of the B-bit sddresa contain 1100 to specify 
working register addressing. Bit 3 selects Regis­
ter Pointer 0 or 1, which supplies the upper five' 
bits of the final address while the lower three 
b~ts come from bits 0-2 of the originsl B-bit 
address. 

Any address in the range COH-CFH (R192-R207) 
will invoke working register addressing. There­
fore the registers physical! y located at these 
addresses can only be accessed when selected by a 
Register Pointer (see Figure 3-2). 

After Reset"the regia tel' pointers will be set to 
RPO = COH and RP1 = CBH. 

,., SYSTEM REGISTERS AM> IIIlE AM> 
rnrno.. REGISTERS 

The system registers govern the operation of the 
CPU and can be accessed using any of the instruc­
tions that reference the register file using 
Register addressing mode. These registers csn be 
accessed as working registers. Table 3-2 shows 
the system registers. 

The SuperB uses a 16-bit Program Counter (PC) to 
control the sequence, of instructions in the 
currently executing program. The PC is not an 
addressable register. 

Mode and control registers sre used to transfer 
data, configure the mode of operation, and control 
the operation of the on-chip peripherala. These 
registers are accessed using Register addressing 
mode and are shown in Table 3-3. These regiaters 
can be accessed as working registers. The current 
"bank" is determined by bit DO in the Flag 
register (R213). 

J.1i PROGRAM AN) DATA lEtlJRy 

Program memory is memory that can hold code or 
data. Instruction code can be fetched from 
program memory, data can be read from program 
memory and, if external program memory is imple­
mented in RAM, data or code can be written to 
program memory. Memory addreaaes are 16 bits 
long, allowing s maximum of 64K bytes of program 

Table J-2. Syat_ ~ister8 

Daciul Haxadaciul 
Addraaa Addraaa Register tt.e ldantifier 

222 DE Syatem Mode SYM 
221 DD' Interrupt Maak'Registar IMR 
220 DC Interrupt Request Regiater IRQ 
219 DB Instruction Pointer (Bits 7-0) IPL 
21B DA Instruction Pointer (Bits 15-B) IPH 
217 D9 Stack Pointer (Bits 7-0) SPL 
216 \ D8 Stack Pointer (Bits 15-8) SPH 
215 D7 Register Pointer 1 RP1 
214 D6 Register Pointer 0 RPO 
213 D5 Program Control Flags FLAGS 
212 D4 Port 4 P4 
211 D3 Port 3 P3 
210 D2 Port 2 P2 
209 D1 Port 1 P1 
21lB DO Port 0 PO 

515 



Table 3-3. IbIe and Control Registers 

Dacmal ltexadecmal 
AdcIr8aa AdcIr.a 

Balle 0 Reg~ra 

255 
254 
253 
252 
251 
250 
249 
24B 
247 
246 
245 
244 
241 
240 
239 
237 
236 
235 
229 
228 
227 
226 
225 
224 

Balle 1 

255 
254 
251 
250 
249 
248 
241 
240 
229 
228 
227 
226 
225 
224 

FF 
FE 
ro 
FC 
FB 
FA 
F9 
F8 
F7 
F6 
F5 
F4 
F1 
FO 
EF 
ED 
EC 
EB 
E5 
E4 
E3 
E2 
E1 
EO 

Registera 

FF 
FE 
FB 
FA 
F9 
Fa 
F1 
FO 
E5 
E4 
E3 
E2 
E1 
EO 

Register NI.a 

Interrupt Priority 
'Externel Memory Timing 
Port 2/3BJInterrupt Pending 
Port 2/3A Interrupt Pending 
Port 2/30 Mode 
Port 2/JC Mode 
Port 2/3B Mode 
Port 2/3A Mode 
Port 4 Open-Drain 
Port 4 Direction 
Handshake 1 Control 
Handshake 0 Control 
Port Mode 
Port 0 Mode 
UART Data 
UART Interrupt Enable 
UART Receive' Control 
UART Transmit Control 
Counter 1 Capture 
Counter 1 Capture 
Counter 0 Capture 
Counter 0 Capture 
Counter 1 Control 
Counter 0 Control 

Wake-Up Mask 
Wake-Up Metch 
UART Mode B 
UART Mode A 

Low 
High 
Low 
High 

UART Baud-Rate Generator Low 
UART Baud-Rate Generator High 
DMA Count Low 
DMA Count High 
Counter 1 Time Constant Low 
Counter 1 Time Constant High 
Counter 0 Time Constant Low 
Counter 0 Time Constant High' 
Counter 1 Mode 
Counter 0 Mode 

Identifier 

IPR 
EMT 
P2BIP 
P2AIP 
P2DM 
P2CM 
P2BM 
P2AM 
P40D' 
P4D 
H1C 
HOC 
PM 
POM 
UIO 
UIE 
URC 
UTC 
C1CL 
C1CH 
COCL 
COCH 
C1CT 
COCT 

WUMSK 
WUMCH 
UMB 
UMA 
UBGL 
UBGH 
DeL 
DCH 
C1TCL 
CHCH 
COTCL 
COlCH 
C1M 
COM 

Address Spaces 
! 

bottom of 
, . 

memory. The program memory lS in the External data memory can be incorporated with or 
separated from the external program memory address 
space. To implement separate program and data 
memory address spaces ext~rnal to the SuperB, a 
port output pin (P35) must be defined, as t~ Data 
Memory select (mt) output. This output remains 
high when fetching instructions ,or accessing data 
in the program memory addreas space and goes low 
when accessing data in ,the data memory address 
space. Thus, this signal can be 'used to segregate 

on-chip ROM; the remaining program memory can be 
implemented external to the Sup~rB. 

Data memory is memory that can hold only data to 
be read or 'written, not instruction code; instruc­
tion fetches never reference data memory. Data 
memory is always implemented external to the 
SuperB. 

516 



Address Spaces 

6 •• 3. r--------., 

EXTERNAL 
PROGRAM 
MEMORY 

THIS BOUNDARY) 

DEP~~~~I~~ 1---------1) ON.CHIP 

32~_------~ ROM 
INTERRUPT VECTORS 

PROGRAM MEMORY 

6 •• 3 • .--------., 

EXTERNAL 
DATA 

MEMORY 

DATA MEMORY 

Figure 3-7. Program and Data Memory Address Spaces 

the program and data spaces external to the 
SuperB_ Separate forms of Load instructions are 
used to access the two memory address spaces: the 
LDC ,instruction and its derivatives access program 
memor y, and the LDE instruction and its der i v a­
tives access data memory. 

Program and data memory maps are illustrated in 
Figure 3-7. 

To access memory beyond the on-chip ROM, Ports 0 
and 1 must be configured as a memory interface. 
Port 1 can be configured as a multiplexed 

address/data bus (ADO-AD7)' thus providing address 

"lines AO-A7 and data lines DO-D7. Port 0 can be 
configured on an individual bit basis for up to 
eight additional address lines (AB-A15)' Both 
parts are supported by the control Hnes Address 
Strobe (m, Data Strobe (~, and Read/Write 
(Rf'iI) • 

In the ROM less 
configured as 
Port 0 bits 0-4 

AB-A12 at Reset, 
as either I/o or 

version, Port 1 is automatically 
a multiplexed address/data bus. 
will be configured as address bits 
but any Port 0 bit may be defined 
address as needed. 

For more details on external memory interface, see 
section 12.3. 

No matter which version of the SuperB is used, the 
first 32 bytes of program memory are reserved for 
the interrupt vectors. Thus the first address 
available for a user program is location 32. This 
address is automaticall y loaded into the Program 
Counter whenever a hardware Rese,t occurs. 

3.5 CPU AND USER STACKS 

The SuperB uses a stack for implementing 
subroutine calls and returns, interrupt process-

ing, and general dynamic storage (via the Push and 
Pop instructions). The SuperB prov ides hardware 
support for stack operations from either the 
register file or data memory. Stack location 
selection is under software control via the 
External Memory Timing register (R254, Bank 0). 

Register pair RR216 for\lls the 16-bit Stack 
Pointer, used for CPU stack operations. The 
address is stored with the most" 'significant byte 

'in R216 and least significant in R217 (Figure 
3-B) • 

R217 (09) SPL 

.... __ L_O_W_E_R_B_y_TE __ ..... 1 STACK POINTER LOW 

R216 (08) SPH 

.... ___ UP_P_E_R_B_YT_E __ .... I STACK POINTER HIGH 

Figure 3-8. Stack Pointer 

The Stack Pointer is decremented before a Push 
operation and incremented after a Pop operation. 
The stack address always points to the last data 
stored on the top-of-stack. 

The stack is used to hold the return address for 
CALL instructions and interrupts, as well as 
data. The contents of the Program Counter are 
saved on the stack during a CALL instruction and 
restored during a REf instruction. During inter­
rupts, the contents of the Program Counter and 
Flag register are saved on the stack. The IRE f 

instruction restores them (Figure 3-9). 

When the SuperB is configured to use an internal 
stack (the register filel', register R217 serves as 
til8 Stack Pointer and register R216 is a general­
purpose register. However, if an overflow or 
underflow condition occurs due to the incrementing 

517 



Address Spaces 

HIGH ADDRESS 

~Cl 
~OP OF --.... PCH 
STACK 

TOPOF-. 
STACK 

PCl 

PCH 

FLAGS 

STACK CONTENTS 
, AFTER A CAll 

INSTRUCTION LOW ADDRESS STACK CONTENTS 
AFTER A NORMAL 
INTERRUPT CYCLE 

Figure 3·9. Stack Operations 

Table 3-4. User Stack Operations s..&ary 

-- Stack location 
Register Progra. Oats 

Stack Type· Operation File Melmry MeIIory 

Ascending PUSH to stack PUSHUI LDCPI LDEPI 
POP from stack POPUD LDCD LDED 

Descending PUSH to stack PUSHUO LDCPD lDEPD 
POP from stack POPUI LDCI LDEI 

* Ascending stack goes from low to high addresses within memory or 
register file. Descending stack goes from high to low addresses 
within memory or register file. 

and decrementing of normal stack operations, the 
contents of register R216 are affected. 

The SuperB also pro v ides for user-defined stacks 
in both the register file and in program or data 
memory. These stacks can 'be made to increment or 
decrement on Push a,nd Pop. Table 3-4. summarizes 
the kinds of stacks and the instructions used. 

3.6 INSTRUCTION POINTER (IP) 

The SuperB provides hardware support for implemen­
tation of threaded-code languages such as Forth. 
An important part of that support is in the form 
of a special register called the Instruction 
pointer (IP) (Figure 3-10). The Instruction 
Pointer is made up of register pair RR21B, with 
R21B holding the most significant byte of a memory 
address and R219 the least significant byte. 

A ,threaded-code language may be co~sidered to have 
created a higher leve 1 imaginary machine wi thin 
the actual hardware machine. For comparison 
purposes, the IP is to the imaginary machine as 
the \ Program Counter is to the actual hardware 
machine. 

518 

R21S (OA) IPH 
INSTRUCTION POINTER HIGH 

I~I~I~I~I~I~I~I~I 

cl _____ HIGH BYTE (IPS,IP15) 

R2l9 (DB) IPl 
INSTRUCTION POINTER LOW 

I~I~I~I~I~I~I~I~I 

cl--___ lOW BYTE (IPO·IP7) 

Figure 3·10. Instruction Pointer 

The IP is used by three special instructions 
called NEXT, ENTER, and EXIT. The instruction 
NEXT passes control from the hardware machine to 
the imaginary machine, while ENTER and EXlT are 
the imaginary machine equivalents of subroutine 
CALLS and RETURNs in the hardware machine. 

The IP can 'also be used in the fast interrupt 
processing mode for 
(see section 6.2)., 

special interrupt handling 
I t can be used either for 

interrupt processing or imaginary machine process­
ing, but not for both ·at the same time. 



_.1 INTRODUCTION 

Instr~tions are stored ss lists of bytes in 
progrem memory thst sre fetched vis instruction 
fetches using the Progrem Counter. Instructions 
will indicste both the action to be performed snd 
the dsts to be operated on. The method used to 
determine the location of the data operand is 
csllsd the addressing mode. 

Operands specified in SuperB instructions are 
either condition codes, immediate dsta, or the 
deaignation of a register file, program memory, or 
data memory location. 

For the SuperB, there are seven explicit address­
ing modes (i.e. , addressing modes designated by 
the programmer): 

• Register (R) 
• Indirect Register (IR) 
• Indexed (X) 
• -Direct Address (OA) 
• Indirect Addres~ (IA) 
• Relative Address (RA) 
• Immediate (1M) 

Not all modes are available with each instruction 
(refer to the individual instruction descriptions 
in section 5.5). 

IIoBIT REGISTER 
FILE ADDRESS 

PROGRAM MEMORY 

-

Chapter 4 
Addressing Modes 

Accessing an individusl ragister requires apecify­
ing an B-bit address in the range 0-255 or a 
working register's 4-bit address. The most signi­
ficant bit of the 4-bit working register address 
selecta one of two Register Pointers: if this bit­
is 0, then R214 (RPO) is selected; if it is 1, 
then R215 (RP1) is selected. The address of the 
actual register being accessed is formed by the 
concatenation of the high order five bits of the 
value contained in the selected Register Pointer 
with the remaining three bit address supplied by 
the instruction. 

A register pair can be used to specify a 16-bit 
value or memory address. The Load Constant 
instruction and its derivatives (LOC, LOCO, LOCI, 
LOCPO, LOCPI) load data from progrsm memory; the 
Load External instruction and its derivatives 
(LDE, LOED, LOEI, LDEPO, LDEPl) load from progrem 
memory. See the instruction set in Chapter 5 for 
further details. 

_.2 REGISTER 1IOORESS1t<C (R) 

In the Register addressing mode, the operand value 
is 'the contents of. the specified register or 
register pair (Figures 4-1 and 4-2). , 

Registers COH-FFH (set one) can only be 
accessed with the Register addressing mode. 

REGISTER FILE 

J 
dst 

POINTS TO ONE REGISTER 
OPERAND i. J 

OPCODE / ONE·OPERAND 
INSTRUCTION 

EXAMPLE 

4-BIT WORKING 
REGISTER 

TWO·OPERAND 
INSTRUCTION 

EXAMPLE 

# III! REGISTER FILE 

./ 
VALUE USED IN 

INSTRUCTION EXECUTION 

Figure 4·1. Register AddreSSing 
REGISTER FILE 

MSB POINTS TO 
RPOORRPI 

RPOOR RPI 

PROGRAM MEMORY 

3LSBs 
OPERAND dBt sre 

POINT TO THE 
OPCODE WORKING REGISTER 

(10F8) 

Figure 4·2. Working Register Addressing 

o.j.. 

0 SELECTEDRP 
POINTS TO 
ORIGIN OF 
WORKING 
REGISTER 
GROUP 

519 



Addressing Modes 

520 

II-BIT REGISTER 
FILE ADDRESS 

PROGRAM MEMORY REGISTER FILE 

~~==~d~S~I~==:!t-PO~STOC~~~ni;---'~~:A~D~D~R~E~S!S==:!~ 
~:~~:J~~~~ OPCODE POI~~SR1~~~iRR~~~TER 

EXAMPLE ADDRESS OF 

4·BIT WORKING 
REGISTER ADDRESS 

OPERAND USED 

BYINSTRUCTION~' 
OPERAND 

VAWEUSEDIN 
INSTRUCTION-

EXECUTION 

Figure 4-3. Indirect Register Addressing to Register File 

PROGRAM MEMORY 

-,. dol sre 

OPCODE 

MSB POINTS TO 
RPOOR RPI r----

I 
I 
I 
I 
I 
I 

~~ 

-_L.2~B!.. 
POINT TO WORKIN 
REGISTER (I OF 8 

VAWE USED IN 
, INSTRUCTION 

G 
) 

I 

-:- ... 

REGISTER FILE 

RPOOR RPI 

-'"' \ 
ADDRESS kJ 

OPERAND 

SELECTEDRP 
POINTS TO 
ORIGIN'OF 
WORKING 
REGISTER 
GROUP 

Figure 4-4. Indirect Working Register Addressing to Register File 

EXAMPLEINSTRUCTION~I - -POiNTs"TO 
REFERENCES PROGRAM OPCODE REGISTER PAIR 

MEMORY 
-

VAWEUSEDIN 
INSTRUCTION ,;-

REGISTER FILE 

REGISTER 
PAIR .. 

PROGRAM MEMORY 

~ OPERAND 

~ 16-BIT 
ADDRESS 
POINTS TO 
PROGRAM 
MEMORY 

Figure 4-5. Indirect Register Addressing to Program Memory . 



Addressing Modes 

4.' INDIRECT REGISTER ADDRESSING (IR) 4.4 INDEXED IIOORESSING (X) 

In the Indirect Register addressing mode, the 
content of the specified register or register pair 
is the address of the operand (Figures 4-3, 4-4, 
4-5, and 4-6). Depending on the instruction used, 
the a~tual address may point to a register, 
program memory, or data memory. 

The Indexed addressing mode involves adding an 
offset to a base address during instruction execu­
tion to calculate the effective address of the 
operand. The Indexed IIddressing mode can be used 
to access registers or memory areas. 

Any general-purpose byte register can be used to 
indirectly address another register; any general­
purpose register pair can be used to indirectly 
address a memory location. 

General-purpose registers COH-FFH (set two) 
can be accessed onl y with the Indirect Register 
and Indexed addressing modes. 

For register accesses, an B-bit base address given 
in the ins'truction is added to an B-bit offset 
given in a working register (Figure 4-7). 
General-purpose registers COH-FFH (set two) 
can be accessed only with the Indirect Register 
and Indexed addressing modes. The LD instruction 
is the only instruction that allows Indexed 
addressing of the registers. 

4·BIT WORKING 
REGISTER ADDRESS 

EXAMPLE 
INSTRUCTION 

REFERENCES EITHER 
PROGRAM MEMORY 

OR DATA MEMORY 

" 
/ 

PROGRAM MEMORY 

dst sre 
OPCODE 

MSB POINTS TO 
RPOORRPl 

NEXT 2 BITS POINT 
TO WORKING REGISTER 

PAIR (1 OF4) 

LSBSELECTS 

REGISTER FILE 

RPOORRPl 

REGISTER 

PAIR 

PROGRAM MEMORY 
OR 

DATA MEMORY 

} 
} 

SELECTEDRP 
POINTS TO 
ORIGIN OF 
WORKING 
REGISTER 
GROUP 

16·BIT 
ADDRESS 
POINTS TO 
PROGRAM 
OR DATA 
MEMORY 

~ OPERAND 
VALUE USED IN /<t', '--''''-''==--; 

INSTRUCTION _ 

Figure 4·6. Indirect Working Register Addressing to Program or Data Memory 

MSBPOINTS 
RPOORRP 

r---
I 
I 
I 
I 
I 
I 

TO 
1 --

I ~~~~~g~F IN 
ON 

I 

PROGRAM MEMORY : GX : 
I-..,BA=S"'E":"A=DD:::R::E:::S=S........jr:~L~"" 

TWO-OPERAND dst/src x 
INST:~iJ~~~ -1-__ 0:.;P...:C:,:O,::D:;.E_........j P~::-'ET ~~: 

I-.....,----........j REGISTERS(l 

--EOF, 
ING 
OF 8) 

REGISTER FILE 

RPOQRRP1 

!-Jo.. OPERAND 

~ 

INDEX 

Figure 4·7. Indexed Addressing to Register File 

... 

\ 

V 

SELECTEDRP 
POINTS TO 
ORIGIN OF 
WORKING 
REGISTER 
GROUP 

521 



¥dressing Modes 

for memory accesses, the base eddresa is held in 
the working register pair designated in the 
instruction and an 8-bit or 16-bit offset given in 
the instruction is added ·to that base addresa 
(figures 4-8 and 4-9).' In the ahort offset 

,Indexed addresaing III?de, the 8-bit displacement is 
treated as a signed integer in the range -128 to 
+127. ORly the LOt and LOE instructions_ allow 
Indexed addressing of memory. 

,522' 

4-aiT WORKING 
REGISTER ADDRESS -

PROGRAM MEMORY 

OFFSET 
..... dot's,. x 

OPCODE 

MSBPOINTSTO , RPOOR RPl r---
I 
I 
I 

I 
I 
I 

I f-- .J NEXT 2 BITS 
~ IPiiiNTro-

WORKING 
I REGISTER 

I rt~~4) 
I 

Ls'sSELEC~ 

a BITS + 16 BITS 

~ , 

REGISTER FILE 

RPOORRPl 

REGISTER 
PAIR 

PROGRAM MEMORY 
OR 

DATA MEMORY 

OPERAND 

.. 1---0 

ro' 

I 

SE 
PO 

LECTEDRP 
INTSTO 
IGINOF 

ORKING 
GISTER 
OUP 

OR 
W 
RE 
GR 

16-BIT 
ADDRESS 
ADDED TO 
OFFSET 

.. -:::~S EUSED 
TRUCTION 

Figure 4-8. Indexed Addressing to Program or Data Memory with Short Offset 

4-BlT WORKING 
REGISTER AD~ESS -

PROGI!AM MEMORY 

OFFSET 
OFFSET 

r. dstlsrc x 
OPCODE 

MSB POINTS TO 
RPOORRPl r---
I 
I 

I 
I 

I 

I 

I 
~ .J NEXT 2 BITS - IPOiNTro-

WORKING 
I REGISTER 
I PAIR 

I 

LS's SELECTS-

16 BITS + 16 BITS 

~ 

REGISTER FILE 

RPOOR RPl 

REGISTER 
PAIR 

PROGRAM MEMORY 
OR 

DATA MEMORY 

OPERAND 

.Figure 4-9. Indexed Addressing to Program or Data Memory 

.. t--

I 

SE 
PO 

LECTEDRP 
INTSTO 
IGINOF 

ORKING 
OR 
W 
RE GISTER 

OUP GR 

la-BIT 
ADDRESS 
ADDEO TO 
OFFSET 

.. -:::~ EUSEO 
STRUCTION 



•• 5 DIRECT ADDRESSING (OA) 

In Direct addressing mode, as seen in Figures 4-10' 
and 4-11, the 16-bit memory address of the operand 
is given in the instruction. This mode is used by 
the Jump snd Call instructions to specify the 
16-bit destination that is loaded into the Program 
Counter to implement the Jump or Call. This mode 
ia also supported by the LDE and LDC instructions 
to apecify the aource or deatination memory 
address for a load between a register and a memory 
location. Memory loada with LDC and LDE can use 
the Direct or Indirect Register addressing modea. 

MEMORY 

datlsrc 

OPCODE 

MEMORY 
ADDRESS USED 

LSBSELECTS 
PROGRAM OR 
DATA MEMORY 
o = PROGRAM MEMORY 
1 • DATA MEMORY 

. Figure 4·10. Direct Addressing for Load Instructions 

PROGRAM MEMORY 

LOWER AODR BYTE 
UPPER ADOR BYTE 

OPCODE 

PROGRAM MEMORY 
ADDRESS USED 

Figure 4·11. Direct Addressing for Calland 
Jump Instructions ' 

•• 6 IN)lRECT ADDRESSING (IA) 

In the Indirect addressing mode (Figure 4-12), the 
instruction specifies a pair of memory locations 
found in t!1e lowest 256 bytes of program memory. 
The selected peir, in turn, contains the actual 
address of the next instruction to be executed. 

Since the Indirect addressing mode assll1les that 
the operand ia located in the lowest 256 bytes of 
memory, only an 8-bit addreaa is supplied in the 
instructionr . the upper bytes of the destinatiDn 
address are assumed to be aliOs. 

Addressing Modes 

Only the CALL instruction uses this addressing 
mode. 

PROGRAM MEMORY 

NEXT INSTRUCTION 

LSB MUST BE ZERO 

del ~ f---. 
OPCODE 

LOWER ADDR BYTE 
UPPER ADDR BYTE 1- ) 

PROGRAM MEMORY 
LOCATIONS 0-255 

Figure 4·12. Indirect Addresslllg 

•• 7 JUATIVE IIOORESSING (RA) 

In the Relative addressing mode (Figure 4-13), a 
twos-complement signed displacement in the range 
-128 to +127 is specified in the instruction and 
addad to the value containad in the Progrsm 
Counter. The result ia the address of the next 
instruction to be executed. Prior to the add, the 
Progrem Counter contains the addresa of the 
instruction following the current instruction. 

The Relative addressing mode is supported by 
several progrem c~ntrol type instructions: 8TJRF, 
BTJRT, DJNZ, CPIJE, CPIJNE, and JR. 

CURRENT 
INSTRUCTIDN 

PROGRAM MEMDRY 

NEXTOPCODE 

DISPLACEMENT 

PROGRAM MEMORY 
ADDRESS USED 

t-__ OP_C_O_D_E -..... ~\~~~:CEN!ENT 
1------; VALUE 

Figure 4·13. Relative Addressing 

523 



Addressing Modes 

4.8 IIHDIATE AOORESSING (IM) 

In the Immediate addressing mode (Figure 4-14), 
the operand value used in the instruction is the 
value supplied in the operand field Hsel f. The 
operand may be a byte or word in length, depending 
on the instruction. The Immediate addressing mode 
is useful for loading constant values into 
registers. 

524 

PROGRAM MEMORY 

OPERAND 

OPCODE 

THE OPERAND VALUE IS IN THE INSTRUCTION 

Figure 4·14. Immediate Addressing 



5.1 FtJ«:TIOIW.. SlIIWtY 

SuperB instr,uctions can be divided functionally 
into the following seven groups: 

• Load 
• Arithmetic 
• Logical 
• Program Control 
• Bit Manipulation 
• Rotate and Shift 
• CPU Control 

Table 5-1 shows the instructions belonging to each 
group and the number of operands required for 
each, where "src" is the source operand, "dst" is 
the destination operand, and "cc" is the condition 
code. 

With few exceptions, all instructions that refer­
ence a register may do so to any of the 325 B-bit 
registers ot 176 16-bit register pairs. Thus, the 
same instructions are used to operate on I/O 
ports, system registers, mode and control regis­
ters, and general-purpose registers. 

The exceptions to the above are as follo'ws: 

• The Decrement and Jump on Non-Zero (DJNZ) 
instruction's register operand must be a 
general-purpose byte register. 

• The following control registers are write-only 
registers: Port Mode, Port 2/3 A Mode, Port 2/3 
B Mode, Port 2/3 C Mode, Port 2/3 0 Mode, 
Handshake 0 Control, and Handshake 1 Control. 

• The Flags register (R213) cannot be the destin­
ation for an instruction that alters the flags 
as part of its operation. 

5.2 PROCESSOR FLAGS 

Flag register R213 supplies the status of the 
SuperB CPU at any time. The flags and their bit 
positions are' shown in Figure 5-1. 

ChapterS 
Instruction Set 

R213 (05) FLAGS 
SYSTEM FLAG REGISTER 

I~I~I~I~I~I~I~I~I 

CARRYFLAG~~ 
ZERO FLAG ---.J 
SIGN FLAG 

OVERFLOW FLAG 

Llli' L SANK AOORESS 

L FAST INTERRUPT STATUS 

HALF-CARRY FLAG 

DECIMAL ADJUST 

Figure 5-1. Flag Register 

This register contains eight bits of status infor­
mation that are set or cleared by CPU operations. 
Four of the bits (C, V, Z, and S) are testable for 
use with conditional Jump instructions. Two of 
the flags (H and D) are not testable and are used 
only for BCD arithmetic. All flags are restored to 
the pre-interrupt value by a return from 
interrupt. 

Bank Address Fl&g (BA). This bit selects which of 
the two groups ·of mode and control registers is 
active. 

Carry Flag (e). This flag is set to 1 whenever 
the result of an arithmetic operation generates a 
carry-out of or borrow into the high order bit 7. 
It is cleared to 0 whenever an operation does not 
generate a carry or borrow condition. This flag 
can be set, cleared, and complemented by the Set 
Carry Flag (SCF), Reset Carry Flag (RCF), and 
Complement Carry Flag (CCF) instructions. 

Decimal-Adjust Flag (D). The Decimal-Adjust flag 
is used for BCD ar ithmetic • I t is set to 1 
following a subtraction operation and cleared to 0 
following an addition operation. Since the 
algor i thms for correcting BCD addition and 
subtraction are different, this flag is used to 
speci fy the type of instruction last executed so 
that the subsequent Decimal Adjust (DA) operation 
can function properly. It is not normally used as 

. a test flag by the programmer. 

Fast Interrupt status Flag (FIS). This bit is set 
to 1 during a Fast Interrupt and cleared to 0 
during the Interrupt Return (IRET). 

525 



Instruction Set 

Table 5-1. Instruction Group. s~ary 

"'-tic Operands 

Load Instructions 

CLR dst 
LD dst ,arc 
LOB dst,src 
LDE dst,src 
LDC dst,src 
LDED dst ,src 
LOCO dat,src 
LDEI dst,src 
LOCI dst,arc 
LDEPD dst,src 
LDCPD dst,src 
LDEPI dst,src 
LDCPI dst,src 
LOW dat,src 
POP dst 
POPUD dst,arc 
POPUI dst,arc 
PUSH arc 
PUSHUD dst,src 
PUSHUI dst,arc 

Arit'-tic Instructions 

AOC dst ,src 
ADD dst,src 
CP dst,src 
DA dst 
DEC dst 
DECW dst 
DIV dst,src 
INC dst 
INCW dst 
MULT dst,src 
SBC dst,src 
,SUB dst,arc 

Logicel Instructions 

AND dst,src 
COM dst 
OR dst,src 
XOR dst,src 

PfOgr_ Control Instructions 

BTJRF dst ,ere 
BTJRT dst,src 
CALL det 
CPIJE det,src 

526 

Instruction 

Clear 
Load 
Load Bit 
Load Data Memory 
Load Program memory 
Load Data Memory and Decrement 
Load Program Memory and Decrement 
Load Data Memory and Increment 
Load Program Memory and, Increment 
Load Data Memory with Pre-Decrement 
Load Program Memory with Pre-Decrement 
Load Data memory with Pre-Increment 
Load Program' Memory with Pre-Increment 
Load Word 
Pop 
Pop User Stack (Decrementing) 
Pop User Stack (Incrementing) 
Puah 
Puah User Stack (Decrementing) 
Push User Stack (Incrementing) 

Add with Carry 
Add 
Compare 
Decimal Adjust 
Decrement 
Decrement Word 
Divide 
Increment 
Increment Word 
Multiply 
Subtract with Carry 
Subtract 

Logical AND 
Complement 
Logical OR 
Logical Exclusive OR 

Bit Test and Jump Relative on 
Bit Test and Jump Relative on 
Call Procedure 

False 
True 

Compare, Increment and Jump on Equal 



Table 5-1. Instruction Group ~ary (Continued) 

"-oni.: Operands Instruction 

Progr_ Control Instructions (Continued) 

CPIJNE 
DJNZ 
ENTER 
EXIT 
IRET 
JP 
JP 
JR 
JR 
NEXT 
RET 
WFI 

dst,src 
r,dst 

cc,dst 
dst 
cc,dst 
dst 

Bit Manipulation Instructions 

BAND dst ,src 
BCP dst,src 
BITC dst 
B1TR dst 
BITS ' dst 
BOR dat ,src 
BXOR dst,src 
TCM dst ,arc 
TM dst,src 

Rotate and Shift Ioatructioos 

RL dst 
RLC dst 
RR dst 
RRC dst 
SRA dst 
SWAP dst 

CPU Control Instructions 

CCf 
DI 
El 
NOP 
RCF 
SBO 
SB1 
SCF 
SRP src 
SRPO src 
SRP1 src 

Compare, Increment and Jump on Non-Equal 
Decrement Register and Jump on Non-Zero 
Enter 
Exit 
Interrupt Return 
Jump on Condition Code 
JUmp Unconditional 
Jump Relative on Condition Code 
Jump Relative Unconditional 
Next 
Return 
Wait for Interrupt 

Bit AND 
Bit Compare 
Bit Complement 
Bit Reset 
Bit Set 
Bit OR 
Bit XOR 
Test Complement Under Mask 
Test Under Mask 

Rotate Left 
Rotate Left through Carry 
Rotate Right 
Rotate Right through Carry 
Shift Right Arithmetic 
Swap Nibbles 

Complement Carry Flag 
Disable Interrupts 
Enable Interrupts 
No Operation 
Reset Carry Flag 
Set Bank 0 
Set Bank 1 
Set Carry Flag 
Set Register Pointers 
Set Register Pointer 0 
Set Register Pointer 1 

527 



Instruction Set 

Half-Carry flag (H). The Half-Carry flag is set 
to 1 whenever an addition generates a carry-out of 
bit 3 or subtraction generates a borrow into bit 
3. The Half-Carry flag is used by the Decimal 
Adjust (DA) instruction to convert the binary 
result of a previous addition or subtraction into 
the correct decimal (BCD) result. It is not 
normallY used as a test flag by the programmer. 

Overflow flag (V). This flag is set to 1 during 
arithmetic, rotate, or shift operations that 
result in a value greater than +127 or less than 
-126 (the maximum and minimum numbers that can be 
represented in twos-complement form); it is 
cleared to 0 whenever the result is a value within 
these ranges. This flag is also cleared to 0 
following logical operations. 

Sign nag (5). When performing arithmetic opera­
tions on signed numbers, binary twos-complement 
notation is used to represent and process informa­
tion. A positive number is identified by a 0 in 
the most significant bit position; when this 
oc,:,urs, the Sign flag is also cleared to O. A 
negative number is identified by a 1. in the most 
significant bit position and therefore the Sign 
flag would be set to 1. 

Binary "-x1ic 

F 

C 
NC 

Table 5-2. 

Meaning 

Always False 
Always True 
Carry 
No Carry 
Zero 
Not Zero 
Plus 
Minus 
Overflow 
No Overflow 
Equal 
Not Equal 

Zero Flag (Z). During arithmetic and logical 
operations, . the Zero flag is set to 1 if the 
result is zero and cleared to 0 if the resul t is 
non-zero. When testing bits in a register or when 
shifting or rotating, the Zero flag is set to 1 if 
the result is zero; if the result is not zero, the 
flag is cleared to O. 

5.3 CONDITION CODES 

Flags C, Z, 5, and V control the operation of the 
"conditional" Jump instructions. Sixteen 
frequently used combinations of flag settings 
are encoded in a 4-bit field called the condition 
code (cc), which forms a part of the conditional 
instructions (bits 4-7). 

The condition codes and the flag settings they 
represent are listed in Table 5-2 •. 

5.4 NlTATION AN> BINARY ENCOOING 

The following sections describe the symbols used 
for oper.ands and status flags, and the flag 
settings and their meanings. 

Condition Codes 

Flags Set 

C = 
C 0 
Z 
Z 0 
5 0 
5 
V 
V 0 

Z 1 
Z 0 

0000 
1000 
0111* 
1111* 
0110* 
1110* 
1101 
0101 
0100 
1100 
0110* 
1110* 
1001 
0001 
1010 
0010 
1111* 
0111* 
1011 
0011 

Z 
NZ 
PL 
MI 
OV 
NOV 
EQ 
NE 
GE 
LT 
GT 
LE 
UGE 
ULT 
UGT 
ULE 

Greater than or equal 
Less than 

(5 XOR V) = 0 
(5 XOR V) = 1 

528 

Greater than 
Less than or equal 
Unsigned greater than or equal 
Unsigned less than 
Unsigned greater than 
Unsigned less than or equal 

(Z OR (5 XOR V» 
(Z OR (5 XOR V» = 
C = 0 

o 

C = 1 
(C = 0 ANO Z = 0) = 
(C OR Z) = 1 

*lndicates condition codes that relate to two different mnemonics but test 
the same flags. For example, Z and EQ are both True if the Zero flag is 
set, but after an ADD instruction, Z would probably be used, while after a 
CP instruction, EQ would probably be usep. 



Instruction Set 

Tabla 5-3. Notation and Binary Encoding 

Notation 

cc 
r 
rb 
rO 
rr 
R 

Rb 

RR 

IA 

Ir 
IR 

Irr 
IRR 

x 

XS 

XL 

DA 

RA 

Meaning 

Cond ition code 
Working register only 
Bit b of working register 
Bit 0 of working register 
Working register pair 
Register or working register 

Bit b of register or working 
register 

Register pair or working 
register pair 

Indirect addreasing mode 

Indirect working register only 
Indirect register or working 

register 

Indirect working register only 
Indirect register pair or 

working register pair 

Indexed addressing mode 

Indexed (Short Offset) 
addressing mode 

Indexed (Long Offset) 
addressing mode 

Direct addressing mode 

Relative addressing mode 

1M Immediate addressing mode 
IML Immediate (Long) 

addressing mode 

Actual Operand/Range 

See condition code list (Table 5-2) 
Rn: where n = 0-15 
Rn Rb: where n = 0-15 and b = 0-7 
Rn: where n = 0-15 
RRp: where p = 0,2,4, ••• ,14 
Reg: where reg represents a number in the range 

0-255 
Rn: where n = 0-15 
Reg Rb: where reg represents a number in the 

range 0-255 and b = 0-7 
Rn #b: where n = 0~15 and b 0-7 
Reg: where reg reprsents an even number in the 

range 0-254 
RRp: where p = 0,2, ••• ,14 
# addrs: where addrs represents an even number 

in the range 0-254 
@Rn: where n = 0-15 
@reg: where reg represents a number in the range 

0-255 
®Hn: where n '= 0-15 
@RRp: where p = 0,2, ••• ,14 
@reg: where reg represents an even number in the 

range 0-254 
@RRp: where p = 0,2, ••• ,14 
reg (Rn): where reg represents a number in the 
, range 0-255 and n = 0-15 

addrs (RRp): where addrs represents a number in 
the range -128 to +127 and p = 0,2, ••• ,14 

addrs (RRp): where addrs'represents a number in 
the range 0-65,535 and p = 0,2, ••• ,14 

addrs: where addrs represents a number in the 
range 0-65,535 

addrs: where addrs represents a number in the 
range +127,-128 that is an offset relative to 
the address of the next instruction 

IIdata: where data is a number between 0 and 255 
#data: where data is a number between 0 and 

65,535 

529 



Instruction Set 

5.4.1 Notational Shorthand 

Operands and status flags are represented by a 
notational shorthand in the detailed instruction 
descriptions of section 5.5.2. The notation for 
operands (condition codes and addressing modes) 
and the actual operands they represent are shown 
in Table 5-3. 

Additional 5~ls Used: 

dst 
src 
@ 

SP 
PC 
IP 

FLAGS 
RPO 
RP1 
IMR 
fI 

OPC 

Meaning 

Destination operand 
Source operand 
Indirect Register address prefix 
Stack Pointer (R216 and R217) 
Program Counter 
Instruction Pointer (R218 and 
R219) 
Flag register (R213) 
Register Pointer 0 (R214) 
Register Pointer 1 (R215) 
Interrupt Mask register (R221) 
Immediate operand or Register 
address prefix 
Hexadecimal number prefix 
Opcode 

Assignment of a value is indicated by the symbol 
"<--"; for example, 

dst <-- dst + src 

530 

indicates that the source data is added to the 
destination data and the result is stored in the 
destination location. The notation "addr (n)" is 
used to refer to bit "n" of a given location. For 
example, 

dst (7) 

refers to bit 7 of the destination operand. 

5.4.2 flag Settings 

Notation for the flags is shown below. 

flag Meaning 

C Carry flag 
Z Zero flag 
S Sign flag 
V Overflow flag 
D Decimal-Adj ust flag 
H Half-Carry flag 
0 Cleared to 0 

Set to 1 

* Set or Cleared according to operation 
Unaffected 

X Undefined 

Figure 5-2 provides a quick reference guide to the 
cOl1l11ands. 



SUPER8 OPCODE MAP 

o 3 

6 6 6 6 
o DEC DEC ADD ADD 

A, IAI '1,r2 rl, lr2 

6 6 6 6 
RLC RLC ADC ADC 
A, lA, '1,(2 ", lr2 

6 6 6 6 
2 INC ItlC SUB SUB 

Rl lA, r1,f2 r" lr2 

10 NOTE 6 6 
JP 

C 
SBC SBC 

IRR, (1,r2 r1, lr2 

3 

6 6 6 6 
4 DA DA OR OR 

R, lA, '1,(2 r" lr2 

10 10 6 6 
5 POP POP AND AND 

R, lA, '1,r2 r" lr2 

6 6 6 6 
8 COM COM TCM TCM 

A, IR, ".'2 r" lr2 

10/12 12/14 6 6 
i e 

PUSH PUSH TM TM 
A2 IR2 r',(2 '1, Ir2 ~ 

7 

10 10 10 10 
DECW DECW PUSHUD PUSHUI 

AR, IR, IR"A2 IR"A2 

z 
~ ... 8 ... 

:::> 

6 6 10 10 
9 RL AL POPUD POPUI 

R, IR, IR2,A, IA2,A, 

10 ,0 6 6 
A INCW INCW CP CP 

AR, lA, '1,r2 '1, lr2 

6 6 6 6 
B CLR CLR XOR XOR, 

R, lA, '1,r2 '1, lr2 

6 6 16/18 12 
C RRC RRC CPIJE LDC· 

R, IR, Ir,r2,AA '1, Irr2 

6 6 16118 12 
D SRA SRA CPIJNE LDC· 

R, IR, Ir"r2,RA '2, lrr1 

6 6 16 16 
E RR RR LDCD· LDCI· 

R, IR, '1, lrr2 '1, lrr2 

8 8 16 16 
F SWAP SWAP LDCPD· LDCPI· 

R, IR, '2, lfr1 '2, lrr1 

NOTE A NOTEB 

NOTE;D 

Lower Nibble (Hex) 

4 5 8 7 8 9 

10 10 10 10 6 6 
ADD ADD ADD BOR· LD LD 
A2,A, IA2,A, A"IM ro-Ab r"A2 r2,A, 

10 10 10 10 
ADC ADC ADC BCP 
A2,A, IA2,A, A"IM r"b,A2 

10 10 10 10 
SUB SUB SUB BXOR· 
A2,R, IR2,R, R"IM rO-Rb 

10 10 ,10 NOTE SBC SBC SBC 
A A2,R, IA2,R, R"IM 

10 10 10 10 
OR OR OR LDB· 

A2,R, IA2,R, R"IM rO-Rb 

10 10 10 8 
AND AND AND BITC 
R2,Al IR2,A, A"IM r"b 

'0 10 10 10 
TCM TCM TCM BAND· 
R2,A, IR2,A, A"IM rO-Ab 

10 10 10 NOTE TM TM TM 
A2,R, IA2,Rl Rl,IM B 

24 24 24 10 
MULT MULT MULT LD 

A2,RA, IR2,AR, IM,RA, 'l,x,r2 

28112 28/12 28/12 10 
DIY DIY DIY LD 

A2,AR, IA2,AA, IM,AA, r2,x,rl 

10 10 10 NOTE CP CP CP 
R2,A, IR2,R, R"IM 

D 

10 10 10 NOTE XOR XOR XOR 
R2,R, IR2,R, R"IM 

E 

10 10 12 6' 
LDW LDW LDW LD 

AR2,RR, ,IR2,RR, AA"IML '1, lr2 

20 10 6 
CALL LD LD . 

lA, IR"IM Ir1,(2 

,0 10 10 18 
LD LD LD LDC· 

R2,R, IR2,R, A"IM rl, lrr2,xs 

18 10 18 18 
CALL LD CALL LDC· 
IRR, R2,IR, DA, f2. lrrl,xs 

NOTEC 

NOTEE 

Figure 5-2. SuperS Opcode Map 

A B C 

12/10 12110 6 
DJNZ JR LD 
r"AA cC,AA r"IM 

Legend: 
r - 4-bit address 
R = 8-bit address 
b = bit number 

, 

R, orr, = dst address 
R2 or '2 = src address 

Sequence: 

Instruction Set 

D E F 

12/10 6 14 
JP INC NEXT 

cc,DA rl 

~ 
ENTER 

~ 
EXIT 

r---e 
WFI 

I---
6 

SBO 

r---e 
SBI 

I---

I---

r---e 
DI 

r-e 
EI 

'14 
RET 

I---
16/6 
IRET 

r-e 
RCF 

r---e 
SCF 

r-e 
CCF 

r---e 
NOP 

• Examples: 
BORro-R2 

is BOR r"b,R2 
or BOR r2,b,R, 

LDCr"lrr2 
isLDCrl,lrr2 = program 
or LDE r, ,lrr2 = data 

Opcode, first, second, third operands 

NOTE: The blank areas are not defined. 

531 



5.5 
Instruction 
Descriptions 
and Formats 

ADC dst,src 

Operation: 

flags: 

Instruction 
format: 

[x8lllple: 

532 

Ace 
Add With Carry 

dst _- dst + src + c 

The source operand, along with the setting of the Carry flag, is added to the destination 
operand and the sum is stored in the destination. The contents of the source are u,naffect­
ed. Twos-complement addition is performed. In multiple precision arithmetic, this instruc­
tion permits the carry from the addition of low-order operands to be carried into the 
addition of high-order operands. 

C: Set if there is a carry from the most significant bit of the result; cleared otherwise. 
Z: Set if the result is 0; cleared otherwise. 
V: Set if arithmetic overflow occurs, that is, if both operands are of the sam- sinn and 

the result is of the opposite sign; cleared otherwise. 
S: Set if the result is negative; cleared otherwise. 
D, Always cleared 
H: ' Set if there is a carry from the most significant bit of the low-order four bits of the 

result; cleared otherwise. 

Opcode Addressing Mode 
Cycles (Hex) ~ !!E£ 

Opcode I I dst src 6 12 r r 
13 r Ir 

Opcode I I src I I dst 10 14 R R 
15* R IR 

Opcode I I dst I I src 10 16 R 1M 

*This format is used in the example. 

If the register named SUM contains %16, the Carry flag is set to 1, working register 10 
contains %20 (32 decimal), and register ,32 contains %10, the statement 

~DC SUM, ~R10 

leav,es the value %27 in register' SUM. 



AND dst ,src 

Operation: 

Flags: 

Instruction 
rorooat. 

[xlIlIple. 

AND 
Logical 

dst _- dsl AND src 

The source operand is logically ANDed with the destination operand. The result is stored in 
the destination. The AND operation results in a 1 bit being stored whenever the correspond­
ing bits in the two operands are both 1s; otherwise a 0 bit is stored. The contents of the 
source are unaffected. 

C: Unaffected 
II Set if the result is 0; cleared otherwise. 
V: Al ways cleared to O. 
S: Set if the result bit. 7 is set; cleared otherwise. 
H: Unaffect.ed 
0: Unaffected 

Opcode Addressing Mode 
Cycles (Hex) dst src 

Opcode I I dst src 6 52 r r 
53 r Ir 

Opcode I I src I I dst 10 54 R R 
55 R lR 

Opcode I 1 dst I I src 10 56* R 1M 

*This format is used in the example. 

If the source operand is the immediate value %7B (01111011) and the register named TARGET 
contains 1',(3 (11000011), the statement 

AND TARGET, R%7B 

leaves the value M3 (01000011) in register TARGET. 

533 



BAND 
Bit And 

BAND dst,src,b 
BAND dst,b,src 

Operation: 

Flags: 

Instruction 
forllat: 

Ex .... pIe: 

534 

dst(O) _- dst(O) AND src(b) 
or 

dst(b) .... - dst(b AND srdO) 

The specified bit of the source (or the destination) is logically ANDed with bit 0 of the 
destination (or source). The resultant bit is stored in the specified bit of· the 
destination. No other bits of the destination are affected. The source is unaffected. 

C: Unaffected 
Z: Set if the result is 0; cleared otherwise. 
V: Undefined 
S: 0 
H: Unaffected 
D: Unaffected 

,-_o_p_c_od_e_--,I Idstl .b loll c. __ s_rc __ -, 

,-_o_p_c_od_e_--,I I src I b 111 c.1 __ d_st __ -, 

Cycles 

10 

10 

Opcode 
(Hex) 

67* 

67 

Addressing Mode 
d.st src 

rO 

ro 

*This format is used in the example. 

If the register named BYTE contains %73 (01110011) and working register 3 contains %01, the 
statement 

BAND R3,BYTE,IJ7 . 

leaves the value ~mo in working register 3. 



BCP dst,src,b 

Operation: 

flags: 

Instruction 
forllBt: 

Example: 

BITC dst,b 

Operation: 

flags: 

Instruction 
forllBt: 

BCP 
Bit Compare 

dst(O) - src(b) 

The specified bit of the source is compared to (subtracted from) bit 0 of the destination. 
The Zero flag is set .if the bits are the same; otherwise it is cleared. The contents of 
both operands are unaffected by the com par ison. . 

C: Unaffected 
Z: Set if the two bits are the same; cleared otherwise. 
V: Undefined 
S: 0 
H: Unaffected 
D: Unaffected 

Opcode Idstl bioi I,---s_rc--, 

Cycles 

10 

Opcode 
(Hex) 

17 

Addressing Mode 
.!!& src 

rO 

If working register 3 contains %01 and register 64 U'40) contains %FF, the statement 

BCP R3,64,1I0 

sets the Zero flag bit in Flag register R213. 

BITC 
Bit Complement 

dst(b) ~- NOT dst(b) 

This instruct ion complements the specified bit within the destination without affecting any 
other bits in the destination. 

C: Unaffected 
Z: Set if the result is 0; cleared otherwise. 
V. Undefined 
S: 0 
H: Unaffected 
D: Unaffected 

Opcode 

If working register 3 contains %FF, the statement 

BITC R3,1I7 

leaves the value %7F in that register. 

Cycles 

8 

Opcode 
(Hex) 

57 

Addr"ssing Mode 
.!!& 

535 



BITR 
Bit Reset 

BITR dst,b 

Operation: 

Flags: 

Instruction 
for .... t: 

Ex .... pIe: 

BITS 
Bit Set 

BITS dst,b 

Operation: 

flags: 

Instruction 
for.at: 

(x_pIe: 

536 

dst(b) -+- 0 

This instruction clears the specified bit within the destination without affecting any other 
bits in the destination. 

No flags affected 

Opcode 

If working register 3 contains %80, the statement 

8ITR R3,1I7 

leaves the value %00 in that register. 

dst(b) _- 1 

Opcode 
(Hex) 

77 

Addressing Mode 
dst 

This instruction sets the specified bit within the destination without affecting any other 
bits in the destination. 

No flags affected 

,Opcode Addressing Mode 
Cycles (Hex) ~ 

Opcode 8 77 

If working register 3 contains %00, the statement 

BITS R3,1I7 

leaves the value ~~80 in t.hat register. 



BOR dst,src,b 
BOR dst,b,src 

{Jperation : 

flags: 

Instruction 
for1l8t: 

[x_pie: 

dst(O)_- dst(O) OR src(b) 
or 

dst(b) _- dst(b) OR src(O) 

BOR 
BitOR. 

The specified bit of the source (or the destination) is logically ORed with bit 0 of the 
destination (or the source). The resultant bit is stored in the specified bit of the 
destination. No other bits of the destination are affected. The source is unaffected. 

c: Unaffected 
Z: Set. if the result is 0; cleared otherwise. 
V: Undefined 
5: 0 
H: Unaffected 
D: Unaffected 

,-_o_p_c_o_de_--,I , dst 1 b 101 IL-__ s_rc __ -, 

,--Opc_od_e --,I I src , b I' 1 <--I _d_st----J 

10 

10 

Opcode 
(Hex) 

07 

07* 

Addressing Mode 
~ src 

ro 

ro 

*This format is used in the example. 

If register 32 (~~20) contains %Of and working register 3 contains %01, the statement 

BOR 32,lt7,R3 

leaves the value %Bf in register 32. 

537. 



BTJRF 
Bit Test a,nd Jump Relative on False 

BTJRf dst,src,b 

Operation: 

flags: 

Instruction 
format: 

Example: 

BTJRT 

If src(b) is a 0, PC _- PC + dst 

The specified bit within the source operand is tested. If it is a 0, the relative address 
is added to' the Program Counter and control passes to the statement whose address is now in 
the PC; otherwise the instruction' following the BTJRf instruction is executed. 

No flags affected 

L....._o_pc_o_d_e_...J1 1 src bi o i ... I __ d_s_t_-, 

I f working register 6 contains %7F, the statement 

8TJRF SKIP,R6,117 

16/18* 

Opcode 
(Hex) 

37 

Addressing Mode 
~ src 

RA 

* 18 if jump taken, 16 if not 

causes the Program Counter to jump to the memory location pointed to by SKIP. The memory 
location must be within the allowed'range of +127,-128. 

Bit Test and Jump Relative on True 

BTJRT dst,src,b 

Operation: 

flags: 

Inst ruction 
format: 

Ex .... ple: 

Note: 

538 

If src(b) is a 1, PC _- PC + dst 

The specified bit within the source operand is tested. If it is a 1, the relative address 
is added to the Program Counter and control passes to the statement whose address is now in 
the PC; otherwise the instruction following the BTJRT instruction is executed. 

No flags affected 

Opcode J 1 src I bill 1-1 _ds_t--" 

If working register 6 contains %80, the statement 

BTJRT $+8,R6,117 

causes the next five bytes in memory to be skipped. 

Cycles 

16/18* 

Opcode 
(Hex) 

37 

Addressing Mode 
dst src 

RA 

* 18 if jump taken, 16 if not 

The $ refers to the address of the first byte of the instruction current~y being executed. 



BXOR dst,src,b 
BXOR dst ,b,src 

Operation. 

Flags: 

Instruction 
for_t: 

[x8llple: 

dst(O) _- dst(O) XOR src(b) 
or 

dst(b) _- dst(b) XOR src(O) 

BXOR 
BitXOR 

The specified bit of the source (or the destination) is logically EXCLUSIVE ORed with bit 0 
of the destination (or source). The resultant bit is stored in the specified bit of the 
destination. No other bits of the destination are affected. The source is unaffected. 

C: Unaffected 
Z: Set if the result is 0; cleared otherwise. 
V: Undefined 
!i: 0 
H. Una ffected 
D: Unaffected 

,-_o_p_c_o_de_ ....... 1 I dst I 
L-_o_p_co_d_e_ ..... 1 I src I 

b 10 II '-_sr_c---, 

b. 1'1 IL--d_st---J 

Cycles 

10 

10 

Opcode 
(Hex) 

27* 

27 

Addressing Mode 

.!!!!. .!!!:£. 

rO 

ro 

*This format is used in the example. 

If working register 6 contains rofF and working register 7 contains roFO, the statement 

BXOR R6,R7,1I4 

leavell the value %FE in working register 6. 

539 



CALL 
Call Procedure 

CALL dst 

Operation: 

Flags: 

Instructioo 
fOl"llBt: 

Ex.-pl.es: 

540 

SP _- SP -
liSP _- PCl 
SP _- SP - 1 
liSP _- PCH 
PC _- dst 

The current contents of thE! Program Counter are pushed onto the top of the stack. The 
Program Counter value used is the address of the first instruction f9110wing the CALL 
instruction. The specified destinstion sddress is then loaded into the Program Counter and 
pOints.to the first instruction of a procedure. 

At the end of the procedure the Return (RET) instruction can be used to return to the 
original program flow. RET pops the top of ~he stack back into the Program Counter. 

No flags affected 

Opcode Addressing Mode 
Cycles (Hex) ~ 

Opcode I I dst 18 f6 OA 

Opcode I I dst 18 f4 IRR 

Opcode I I dst 20 04 IA 

(1 ) I f the contents of the Program Counter are %1 A47 end the contents of the Stack Pointer 
(control registers 216-217) are %3002, the statement 

CALL %3521 

causes the Stack Pointer to be decremented to %3000, %lA4A (the address following the 
instruction) to be stored in externsl data memory locations %3000 and %3001 (%4A in %30001, 
%lA in %3000), and the Program Counter to be loaded with %3521. The Program Counter now 
points to the address of the first statement in the procedure to be executed. 

; 

(2) If the contents of the Program Counter and Stack Pointer are the same as in El<ample 1, 
working register 6 contains %35, and working register 7 contains %21, the statement 

CAll IIRR6 

produces. the same result as Example 1 except that %49 is stored in external data memory 
location %3000. 

(3) I f the contents of the Program' Counter and Stack Pointer are the same _ as in Example 1, 
address %0040 contains %35, and address %0041 contains %21, the ~tatement 

CALL 11%40 

produces the same result as Example 2. 



ADD 
Add 

ADD dst, src 

Operation: 

Flags: 

Instruction 
forll8t: 

dst _- dst + src 

The source operand is added to the destination operand and the sum is stored in the 
destination. The contents of the source are unaff!,cted. Twos-complement addition is 
performed. 

C: Set if there was a carry from the most significant bit of the result; cleared otherwise. 
Z: Set if the result is 0; cleared otherwise. 
V: Set if arithmetic overflow occurred, that is, if both operands were of the same sign and 

the result is of the opposite sign; cleared otherwise. 
5: Set if the result is negative; cleared otherwise. 
H: Set if a carry from the low-order nibble occurred. 
D: Always cleared to O. 

Cycles 

Opcode I I dst src 6 , 

Opcode I I src I I dst 10 

Opcode I I dst I I src 10 

Opcade 
(Hex) 

02 
OJ 

04* 
05 

06 

*This format is used 

Addressing Mode 
dst !!:£ 

r 
r Ir 

R R 
R IR 

R 1M 

in the example. 

I f the register named SUM contains r.44 and the register named AUGENO contains %11, the 
statement 

AOD SUM, AUGEND 

leaves the value %55 in Register SUM. 

541 



CCf 

Operation: 

flags: 

Instruction 
format: 

Ex_pie: 

ClR dst 

Operation: 

flags: 

Instruction 
for_t: 

Example: 

542 

CCF 
Complement Carry Flag 

C _- NOT C 

The Carry flag is complemented; if C 1, it is changed t.o C 0, and vice-versa. 

C: Complemented 

No other flags affected 

Opcode 

If the Carry flag contains a 0, the st.atement 

CCF 

changes the 0 to 1. 

dst -+- 0 

The destination location is cleared to O. 

No flags affected 

...... _o_p_c_od_e_ ....... 1 I ...... __ d_st __ .. 

I f working register 6 conhins 1.AF, the statement 

ClR R6 

leaves the value 0 in that register. 

Opcode 
(Hex) 

EF 

Opcode 
(Hex) 

60* 
61 

CLR 
Clear 

Addressing Mode 
dst 

R 
IR 

*This format is used in the example. 



COM 
Complement 

COM dst 

Operation: 

Flags: 

Instruction 
For.at: 

Example: 

dst _- NOT dst 

The contents of the destination location are complemented (ones complement); all 1 bits are 
changed to 0, and vice-versa. 

c: Unaffected 
Z: Set if the result is 0; cleared otherwise. 
V: Always reset to 0 
5: Set if the result bit 7 is set; cleared otherwise. 
H: Unaffected 
D: Unaffected 

,--_o_pc_o_d_e_...J1 l,--_d_s_t_--, 
6 

Opcode 
(Hex) 

60* 
61 

Addressing Mode 
dst 

R 
IR 

*This format is used in the example. 

If working regist.er 8 cont.ains %24 (00100100), the statement 

COM R8 

leaves the value %DB (11011011) in that register. 

543 



CP dst,src 

Operation: 

flags: 

Instruction 
forllat: 

[xallpIe: 

544 

CP 
Compare 

dst - src 

The source operand is compared to (subtracted from) the dest ination operand, and the 
appropriate flags are set accordingly. The contents of both operands are unaffected by the 
comparison. 

C: Set if a "borrow" occurred (src > dst); cleared otherwise. 
Z: Set if the result is 0; cleared otherwise. 
Y: Set if arithmetic overflow occurred, cleared otherwise. 
S: Set if the result is negative; cleared otherwise. 
H: Unaffected 
D: Unaffected 

Cycles 

Opcode I I dst src 6 

Opcode I I src I I dst 10 

Opcode I I dst I I src 10 

Opcode Addressing Mode 
(Hex) !!!t !!.£ 

A2 r 
A3 Ir 

A4 R R' 
A5* R IR 

A6 R 1M 

*This format is used in the example. 

If the register named TEST contains %63, working register 0 contains %30 (48 decimal), and 
register 48 contains %63, the statement 

CP TEST, iRO 

sets (only) the Z flag. If this statement is followed by "JP EQ, true_routine," the jump 
will be taken. 



DA dst 

Operation: 

Instruction 

ADD 
ADC 

SUB 
SBC 

Flags: 

Instruction 
rorllBt: 

[x ... pIe: 

DA 
Decimal Adjust 

dst -+- DA dst 

The destination operand is adjusted to form two 4-bit BCD digits following an addition or 
subtraction operation. For addition (ADD, AOC) or subtraction (SUB, SBC), the following 
table indicates the operation performed: 

Carry Bits 4-7 H Flag Bits ~J Number Added Carry 
Befor~ OA Value (Hex) Before DA Value (Hex) To Byte After DA 

0 0-9 0 0-9 00 0 
a 0-8 0 A-F 06 a 
a 0-9 1 0-3 06 0 
a A-F a 0-9 60 1 
a 9-F a A-F 66 1 
a A-F 1 0-3 66 1 
1 0-2 0 0-9 60 1 
1 0-2 a A-F 66 1 
1 0-3 0-3 66 

a 0-9 a 0-9 00 = -00 a 
a 0-8 1 6-F FA = -06 0 
1 7-F 0 0-9 AO = -60 1 
1 6-F 1 6-F 9A = -66 1 

The operation is undefined if the destination operand was not the result of a valid addition 
or subtract ion of BCO digits. 

C: Set if there was a carry from the most significant bit; cleared otherwise (see table 
above) • 

Z: Set if the result is 0; cleared otherwise. 
V: Undefined 
5: Set if the 
H: Unaffected 
0: Unaffected 

result bit 7 is set; cleared otherwise. 

Opcode 
(Hex) 

Addressing Hode 
dst 

~_o_pc_o_d_e __ ~1 ~I ____ ds_t __ ~ 6 40* 
41 

R 
IR 

*This format is used in the example. 

If working register RO contains %15 and working register Rl contains %27, the statements 

ADD Rl, RO 
DAB Rl 

leave %42 in wor,king register Rl. 

If addition is performed using the BCD values 15 and 27, the result should be 42. The sum 
is incorrect, however, when the binary representations are added in the destination location 
using standard binary arithmetic. 

0001 0101 
+ 0010 0111 

0011 1100 = %3C 

The DA statement adjusts this result so that the correct BCD representation is obtained. 

0011 1100 
+ 0000 0110 

0100 0010 42 

545 



CPIJE 
Compare Increment and Jump on Equal 

CPIJE dst,src,RA 

Operation: 

flags: 

Instruction 
rorl1l8t: 

Ex .... ple: 

CPIJNE 

If dst - src = zero, PC ~- PC + RA 
Ir ~- Ir + 1 

The source operand is compared to (subt racted from) the destination operand. I f the result 
is 0, the relative address is added to the Program Counter and control passes to the 
statement whose address is now in the Program Counter; otherwise the instruction following 
the CPIJE instruction is executed. In either case the source pointer is incremented by one 
before the next instruction. 

No flags affected 

Ope ode 

Cycles 

16/18* 

Opcode 
(Hex) 

C2 

Addressing Hode 
dst src 

Ir 

* 18 if jump taken, 16 if not 

If working register 3 contains %AA, working register 5 contains %10, and register ~~10 
contains %AA, the statement 

CPIJE R3,!lR5, $ 

puts the value ~~11 in working register 5 and then executes the same instruction again. 

Compare Increment and Jump on Non Equal 

CPIJNE dst,src,RA 

Operation: 

flags: 

Instruction 
rOrl1l8t: 

Ex .... ple: 

Note: 

546 

If dst - src ~ zero, PC ~- PC + RA 
Ir ~- Ir + 1 

The source operand is compared to (subtracted from) the destination operand. l,f the result 
is not 0, the relative address is added to the Program Counter and control passes to the 
statement whose address is now in the Program Counter; otherwise the instruction following 
the CPIJNE instruction is executed. In either case, the. source pOinter is incremented by 
one before the next instruction. 

No flags affected 

~_o_p_c_od_e __ ~1 I src dst II '-__ RA_-, 

Opcode 
(Hex) 

D2 

Addressing Hode 
dst !!!£ 

Ir 

* 18 if jump taken, 16 if not 

If working ·register 3 contains %AA, working register 5 contains %10, and register %10 
contains %AA, the statement 

CPIJNE R3,!lR5, $ 

puts the value %11 in working register 5 and then executes the next instruction following 
this instruction. 

The $ refers to the address of the first byte·of the instruction currently being executed. 



DEC 
Decrement 

DEC' dst 

Operation: 

flags: 

Instruction 
ror.at: 

Example: 

dst _- dst - 1 

" The content.s of the destinat ion operand are decremented by one. 

C: Unaffected 
Z: Set if the result is 0; cleared otherwise. 
V: Set if arithmetic overflow occurred; cleared otherwise. 
S: Set if result is negative; cleared otherwise. 
H: Unaffected 
0: Unaffected 

L-_o_pc_o_d_e_...J1 1,-_d_S_t._,_...J 

Opcode 
(Hele) 

00" 
01 

Addressing Mode 
~ 

R 
IR 

"This format is used in the example. 

I f working register 10 contains %2A, the st.atement 

DEC R10 

leaves the value %29 in that register. 

547 



OECW dst 

Operation: 

'Flags: 

Instruction 
forllat: 

EX8llple: 

01 

Operation: 

Flags: 

Instruction 
forllat: 

Example: 

548 

OECW 
Decrement Word 

dst _- dst - 1 

The cant ents of the dest inat ion locat ion (which must be an even address) and the operand 
following that location are treated as a single 16-bit value which is decremented by one. 

C: Unaffected 
Z,: Set if the result is 0; cleared otherwise. 
V: Set if arithmetic overflow occurred; cleared otherwise. 
S: Set if the result is negative; cleared otherwise. 
H: Unaffected 
0: Unaffected 

Cycles 

Opcode I I dst 10 

Opcode Addressing Mode 
(Hex) dst 

( 

80 RR 
81* lR 

*This format is used in the example. 

If working register 0 contains %30 (48 decimal) and regist.ers 48-49 contain the value ?~FAF3, 
the statement 

DECW !lRO 

leaves the value ?~FAF2 in registers 48 and 49. 

01 
Disable Interrupts 

SMR (0) _- 0 

BIt 0 of control register 222 (the System Mode register) is cleared to O. All interrupts 
are disabled; they can still set their respective interrupt status latches, but the CPU will 
not directly service them. 

No flags affected 

Opcode 6 

Opcode 
(Hex) 

8F 

If control register 222 contains ?OO1, that is, interrupts are enabled, the statement 

Dl 

sets control register 222 to %00, disabling all interrupts. 



Divide (Unsigned) 

DIV dst,src 

Operation: 

flags: 

Instruction 
Format: 

Ex .... ple: 

dst';' src 
dst (UPPER) ~- REMAINDER 
dst CLOWER) _- QUOTIENT 

The destination operand (16 bits) is divided by the source operand (8 bits). The quotient 
(8 bits) is stored in the lower half of the destination. The remainder (8 bits) is stored 
in the upper half of the destination. When the quotient is ~28, the numbers stored in the 
upper and lower halves of the destination for quotient and remainder are incorrect. Both 
operands are treated as unsigned integers. 

c: Set if V is set and quotient is between 28 and 29 - 1; cleared otherwise. 
Z: Set if divisor or quotient = 0; cleared otherwise. 
V: Set if quotient is ~ 28 or divisor = 0; cleared otherwise. 
5: Set if M5B of quotient = 1; cleared otherwise. 
H: Unaffected 
D: Unaffected 

Opcode Addressing Hade 

Opcode I I '"Src I I dst 

Cycles (Hex) !!!!!. !!:£ 

28/12* 94** RR R 
28/12· 95 RR IR 
28/12* 96 RR 1M 

* 12 if divide by zero is attempted 
** This format is used in the example 

If working register pair 6-7 (dividend) contains ~~10 in register 6 and %03 in register 7, 
and working register 4 (divisor) conta-ins ~~40, the statement 

DIV RR6,R4 

leaves the value 1~40 in working register 7 (quotient) and the value ~~03 in working register 
6 (remainder). 

549 



DJNl r,dst 

Operation: ' 

flags: 

lnstructioo 
Forat: 

EXlaple: 

Note: 

550 

, ,DJN~ 
Decrement and Jump if Nonzero 

r _- r -1 
If r 'I 0, PC _- PC + dst 

The working register being used as a counter is decremented. I f the contents of the 
register are not 0 after decrementing, the, relati ve address is added to the Progr~m Count.er 
and control passes to the statement whose address is now in the Program Counter. The range 
of the relative address is +127 to -12B, and the original value of,the Program Counter is 
taken to be the address of the instruction byte following tlie DJNZ .statement. When the 
working regi~ter counter reaches zero, control falls through to the statement following the 
DJNZ statement. 

No flags affected 

Cycles 

r 10pcodei dst 12 if jump taken 

10 if jump not taken 

DJNZ is typically used to' control a "loop" of instructions. 
moved from one buffer area in the register file to another. 

o Load 12 into the 'counter (working register 6) 
o Set up the loop to per form the moves 
o End the loop with OJNZ 

LD R6,1I12 
LOOP: LO R9,OLDBUf (R6) 

LD NEWBUf (R6),R9 
OJNZ R6,LOOP 

!Load Counter! 
!Move one byte to! 
! New locatio!)! 
!Decrement and ! 
!Loop until counter.: O! 

Opcode 
(Hex) 

rA 
r : 0 to r 

Addreslling Mode 
~ 

RA 

In this example, 12 bytes are 
The steps involved are: 

The working register being used as'a counter must be one of the registers DO-Cf. Using one 
of the I/O ports, control or peripheral registers will have undefined results. 



EI 
Enable Interrupts 

EI 

Operation: 

flags: 

Instruction 
For_t: 

Example: 

ENTER 
Enter 

ENTER 

Operation: 

flags: 

Instruction 
Format: 

I 

SMR (0) _- 1 

Bit 0 of control register 220 (the System Mode register) is set to 1. This allows any 
interrupts to be serviced when they occur (assuming they have highest priority) or, if their 
respecti ve interrupt status latch was prev lousl y enab led by its interrupt, then its 
interrupt can also be serviced. 

No flags affected 

Opcode 6 

Opcode 
(Hex) 

9F 

If control register 222 contains ~mo, (i.e., interrupts are disabled), the statement 

EI 

sets control register 222 to %01, enabling all interrupts. 

SP -+- SP - 2 
~P -- IP 
IP -- PC 
PC -- ~IP 
IP -- IP + 

This instruction is useful for the implementation of threaded-code languages. The contents 
of the Instruction Pointer are pushed onto the stack. The value in the Program Counter is 
then transferred to the Instruct ion Pointer. The program memory word pointed to by the 
Instruction Pointer is loaded lnto the Program Counter. The Instruction Pointer is then 
incremented by two. 

No flags affected 

Opcode 20 

Opcode 
(Hex) 

1F 

551 



ENTER 
E'1ter (Continued) 

Before 
EXllllple: 

~--------~-----~. After 

Address.-__ ..,' Data 

IP 100501 o ENTER 
41 Addr H 
42 Addr L 
43 Addr H 

IF 

01} 

Address r---'" Data 

IP~043 40 ENTER 
41 Addr H 

10 42 Addr L 

PC 100401 
~ 43 Addr H 

(::I::::I~"o R,we,,,, (~ 
_,J,L Memory Memory 

o IPH 00 
-----___ -+-_21 IPL 50 

22 Data 
Address Data 

EXIT 

Operation: 

Flags: 

Instruction 
Forll8t: 

552 

Stack 

IP -+- ~SP 
SP -+- SP + 
PC _- lIP 
IP _- IP .;. 

Stack 

EXIT 
Exit 

This instruction i.s useful for the implementation of threaded-code languages. The stack is 
POPed and lhe Instruction Pointer is loaded. The program memory word pointed to by the 
Instruction Pointer is loaded into the Program Counter. The Instruction Pointer is then 
incremented by two. 

No flags affected 

Opcode 

Opcode 
(Hex) 

2F 



EXIT 
Exit (Continued) 

Example: 

IP \ 0050 

PC \ 0140 

Before 

Address ,-__ -,Data 

1~50 PCL old 60} 
51 PCH 00 

After 

Address ,-__ ...,Data 

IP\ 0(J5Z I ~6(J Main 

pcl 006(J I~ 

~ 
(J:}J old ~O} 

21 IPL 50 

Memory 

140 EXIT 2F 

(Io.~" I ,-,> 
22 Data 

Address Stack Data Address Stack Data 

Note: 

INC 
Increment 

. INC dst 

(Jperation: 

Flags: 

Instruction 
For ... t: 

Example: 

The examples for ENTER, EXIT, and NEXT illustrate how these instructions could actually be 
used together in a program. 

dst _- dst + 1 

The contents of the destinat ion operand are incremented by one. 

C: Unaffected 
Z: Set if the result is 0; cleared otherwise. 
V: Set if arithmetic overflow occurred; cleared otherwise. 
S: Set if the result is negative; cleared otherwise. 
H: Unaffected 
0: Unaffected 

Cycles 

dst10PcodeI 6 

L-_(J_p_co_d_e_~11 ~ ____ d_s_t __ ~ 6 

Opcode Addressing Mode 
(Hex) dst 

rE* 
r = 0 to F 

20 R 
21 IR 

*This format is used in the example. 

I f working register 1(J contains ~'2A, the statement 

INC R10 

leaves the value ~'2B in that register. 

553 



INCW dst 

Operation: 

Flags: 

Instruction 
format: 

554 

INCW 
Increment Word 

dst _- dst + 1 

The contents of the dest inat ion (which must be an even address) and the byte following that 
locatio\, are treated as a single, 16-bit value which is incremented by one. 

c: Unaffected 
i: Set if the result is 0; cleared otherwise. 
V: Set if arithmetic overflow occurred; cleared otherwise. 
S: Set if the result is negative; cleared otherwise. 
H: Unaffected 
0: Unaffected 

'-_o-'pc_o_d_e_ .... 1 I, ___ d_s_t_--, 10 

Opcode 
(Hex) 

AO* 
A1 

Addressing Mode 
dst 

RR 
IR 

*This format is used in the example. 

If working register pair 0-1 contains the value %FAF3, the statement 

INCW RRO 

leaves the value 1.FAF4 in working register pair 0-1. 



IRET 
Interrupt Return 

Operation: 

flags: 

Instruction 
format: 

Example: 

Note: 

IRET (Nor ... l) 

Flags _- liSP 
SP _- SP + 1 
PC _- ti!SP 
SP _- SP + 2 
SYM(O) _- 1 

lRET (fast) 

PC __ IP 

Flag _- Flag' 
FIS _- 0 

This instruction is issued at the end of an interrupt service routine. It restores the Flag 
register and the Program Counter. It also reenables global interrupts. 

Normal IRET is executed only if the fast Interrupt Status bit (r-rS, bit 1 of the Flags 
register R213) is cleared. Fast IRET is execut'!'d if FrS is set, indicating that a fast 
interrupt is being serviced. 

All flags are restored to original settings (before interrupt occurred). 

Opcode 
IRET (Nor ... l) Cycles (Hex) 

Opcode 16 SF 

Opcode 
IRET (fast) Cycles ~ 

Opcode 6* SF 

*This format is used in the example. 

In the figure below, the Instruction Pointer is initially loaded with %100 in the main 
program before interrupts are enabled. When an interrupt occurs, the Program Counter and 
Instruction Pointer 'are swapped. This causes the Program Counter to jump to address %100 
and the Instruction Pointer to keep the return address. The last instruction in t.he service 
routine normally is a Jump to IRET at address %ff. This causes the Instruct ion Pointer to 
be loaded with ~~100 "again", and the Program Counter to jump back to the main, program. Now 
the next interrupt can occur and the Instruction Pointer is still correct at %100. 

0 

Ff IRET 

100 
Interrupt 
Service 
Routine 

JP~~ to FF 

FFFF 

for the fast Interrupt example above, if the last instruction 
care must be taken with the order of the last two instructions. 
be immediatel y preceded by a clear of interrupt status (such 
Pending register). 

is not a Jump to IRET, then 
The instruction IRET cannot 

as a reset of the Interrupt 

555 



JP cc ,dst 
JP dst 

Operation: 

Flags: 

Instruction 
ForMat: 

Conditional 

Unconditional 

[xBllple: 

556 

JP 
Jump 

If cc is true, PC _- dsl 

The conditional Jump transfers program control to the destination address if the condition 
specified by "cc" is true; otherwise, the instructiqn following the JP instruction is 
executed., See section 5.3 for a list of condition codes. 

The unconditional Jump simply replaces the contents of the Program Counter with the 'contents 
of the specified register pair. Control then passes to the statement addressed by the 
Program Counter. 

No flags affected 

cc I Opcode I dst 

~_o_p_co_d_e __ ~1 ~I ____ d_s_t __ ~ 

I f the Carry flag is set to 1, the statement 

JP C,%1520 

Cycles 

10/12* 

10 

Opcode 
(Hex) 

cco** 

Addressing Mode 
dst 

DA 
cc = 0 to F 

30 IRR 

*12 if jump taken, 10 if not 
**This format is used in the example. 

replaces the contents of the Program Counter with %1520 and transfers control to that 
location. Had the Carry flag not been set, control would have fallen through to the 
statement following the JP. 



JR 
Jump Relative 

JR cc ,dst 

Operation: 

flags: 

Instruction 
rorat: 

Ex .... ple: 

Note: 

If cc is true, PC _- PC + dst. 

If the condition specified by "cc" is true, the relative address is added to the Pragram 
Counter and control passes to the statement whose address is now in the Program Counter; 
otherwise, the instruction following the JR instruction is executed. (See section S.' for a 
list of condition codes.) The range of the relative address is +127, -128, and the original 
value of the Program Count.er is taken to be the address of the first instruct ion byte 
following the JR statement. 

No flags affected 

cc 10Pcodei dst 

Cycles 

10/12* 

Opcode 
(Hex) 

Addreasing Mode 
.!!!l 

ccB RA 
cc = 0 to r 

* 12 if jump taken, 10 if not 

If the result of the last arithmetic operation executed is negative, then the four following 
statements (which occupy a total of seven bytes) are skipped with the statement 

JR MI, $+9 

If the result is not negative, execution continues with the statement following the JR. A 
short form of a jump to label LO is 

JR LO 

where LO must be within t.he allowed range. The condition code is "blank" in this case, and 
JR has the effect of an unconditional JP instruction. 

The $ refers to the addreslI of the first byte of the instrucUon currently being executed. 

557 



LD dst ,src 

Operation: 

flags: 

Instruction 
forlll8t: 

[x_pIe: 

558 

LO 
Load 

dst _- src 

The contents of the source are loaded into the destinat ion. The contents of the source are 
unaffected. 

No flags affected 

Opcode Addressing Mode 
Cycles (Hex) ~ !!!£ 

dstlOPcodel I src I 6 rC 1M 
6 r8 r R 

srclOPcodel I dst I 6 r9 R 
r=O to F 

Opcode I I dst I src I 6 C7 r Ir 
6 07 Ir 

Opcode I I src I I dst 10 E4 R R 
10 E5 R IR 

I Opcode I dst I I src 10 E6 R 1M 
10 06 IR 1M 

Opcode I I src I I dst 10 F5 IR R 

Opcode I I dst src I I x' 10 87 x(r) 

Opcode I I src dst I I x 10 97* x( r) 

*This format is used in the example. 

If working register 0 contains %08, ('11 decimal) and working ,register 10 contains 1.83, the 
statement 

LO 240(RO) ,R10 

loads the value 1.83 into register 251 (240 +11). The contents of working register 10 are 
unaffected by the load. 



LOB 
Load Bit 

LD8 dst,src,b 
LOO dst,b,src 

Operation: 

Flags: 

Inst ruet ion 
format: 

[x8lllple: 

dst(O) -+- src(b) 
or 

dst(b) _- src(O) 

The specified bit of the source is loaded into bit 0 of the destination, or bit 0 of the 
source is loaded into the specified bit of the destination. No other bits of the 
destination are affected. The source is unaffected. 

No flags affected 

Opcode Addressing Mode 
Cycles (Hex) ~ !!:.£ 

Opcode I I dst b 
1°1 I src 10 47 rO Rb 

Opcode I I src b 
111 I dst 10 47 Rb ro 

If working register 3 contains ~mo and working register 5 contains %FF t the statement 

lOB R3,R5,H7 

leaves the value %01 in working register 3. 

559 



LDE/LDe 
Load Memory 

lIlE/lOC dst, src 

Operation: dst _- src 

flags: 

This instruct ion is used t.o load a byte from program or data memory into a working register 
or vice-versa. The contents of the source are unaffected. 

No flags affected 

Instruction 
format: Opcode 

(Hel<) 
Addressing Mode 
!!!!!. src 

[l<ample: 

Note: 

560 

,-_o_p_c_od_e_-,II dst src 1 

Cycles 

12 

Opcode 

Opcode 

Opcode 

Opcode 

1 src dst I 

1 dst src II '--_xs ---II 

I src dst II '--_xs---,I 

I dst I src* II '--_X--=\o...-....JIIl--X--,-l H'-----i 

I src I dst * 1 I xl L I 1'--_X--'-lH'----I 

,-_op_c_o_de_....J1 1 dst 00001 1 DA L I'--__ D_A_H_....J 

,--_o_pc_o_d_e_....J1 I src 00001 I DA L 1..1 ~_D_A_H,,-~ 

,--_o_pc_o_d_e_....J1 1 dst 0001 1 1 DA LI L. __ D_A-:..;H_ ...... 

,-_o_p_co_d_e_....J1 I src 0001 1 1 DA L L.I __ D_A_H_-, 

12 

18 

18 

20 

20 

20 

20 

20 

20 

C3 Irr 

D3** Irr r 

E7 r xs (rr) 

F7 xs( rr) 

A7 xl( rr) 

87 xHrr) 

A7 

87 DA 

DA \ Program 
Memory 

A7 

B7 DA 

DA 1 Data 
Memory 

*The src or (rr) cannot use register pair 0-1. 
**Thisformat'is used in the example. 

If the working register pair 6-7 contains %4041\ and working register 2 contains %22, the 
statement 

LDE @RR6,R2 

will load the value %22 into data memory location %404A. 

LDE refers to data memory. 
LDC refers to program memory. 

The assembler makes Irr or rr even for program memory and odd for data memory. In .t.he 
example above, the assembler produces this code: D3 27. 



LDED/LDCD 
Load Memory and Decrement 

lDED/LDCD dst, src 

Operation: dst ~- src 
rr ~- rr -1 

Flags: 

Instruction 
rorll8t: 

[x_pIe: 

Note: 

This instruction is used for user stacks or block transfers of data from program or data 
memory to the register file. The address of the memory location is specified by a working 
register pair. The contents of the source location are loaded into the destination 
location. The memory address is then decremented. The contents of the source are 
unaffected. 

No flags affected 

,-_o_p_c_o_de_.....J11 dst src 

Cycles 

16 

Opcode 
(Hex) 

E2 

Addressing Mode 
dst !!:£ 

Irr 

I f working register pair 6-7 contains %30A3 and data memory locat ions %30A2 and ~;30A3 
contain %22BC, the statement 

LDED R2, IfIRR6 

loads the value %BC into working register 2 and the value %30A2 into working register pair 
6-7. A second statement 

LDED R2, IfIRR6 

loads the value %22 into working register 2 and the value %30A1 into working register pair 
6-7. 

LDED refers to data memory. 
LOCO refers to program memory. 

The assembler makes Irr even for program memory and odd for data memory. In the example 
above, the assembler produces this code: E2 27. 

This instruction is the equivalent of a POPUD with the stack in memory rather than in the 
register file. 

561 



LDElIlDCI 
Load Memory and Increment 

LOCI/LOCI dst, src 

Operation: 

Flags: 

Instruction 
ForMat: 

EXaMple: 

Note: 

562 

dst src 
rr .... - rr + 

This instruction is used for user stacks or block transfers of data from program or data 
memory to the register file. The address of the memory location is specified by a working 
register pair. The contents of the source location are loaded into the destination 
location. The memory address is then incremented 8ljtomatically. The contents of the source 
are unaffected. 

No flags affected 

I' Ope ode I I dst src 16 

Opcode 
(Hex) 

E3 

Addressing Mode 
~ .!!!£. 

Irr 

If working register pair 6-7 contains %301\2 and program memory locations %30A2 and 1030A3 
contain 1'22BC, the statement 

LOCI R2,~RR6 

loads the value %22 into working register 2, and working register pair 6-7 is incremented 
to %30A3. A second 

LDCI R2,~RR6 

loads the value roBe into register 2, and working register pair 6-7 is incremented to %30A4. 

LOEI refers to data memory. 
LOCI refers to program memory. 

The assembler makes Irr even for program memory and odd for data memory. In the example 
above, the assembler produces this code: E3 26. 

This instruction is the equivalent of a POPUI with the stack in memory rather than the 
register file. 



LDEPD/LDCPD 
Load Memory with Pre-Decrement 

LDEPO/LDCPO dst, src 

Operation: rr _- rr -
dst _- src 

Hags: 

Instruction 
For .... t: 

[x8lllple: 

Note: 

This instruction is used for block transfers of data to program or data memory from the 
register file. The address of the memory locat ion is specified by a working register pair 
and is first decremented. The contents of the source location are loaded into the 
destination location. The contents of the source are unaffected. 

No flags affected 

,--_o~p_c_od_e_-,I I src I dst I 

Cycles 

16 

Opcode 
(Hex) 

F2 

Addressing Mode 
dst .!!!:£. 

Irr 

If working register pair 6-7 contains %4048 and working register 2 contains %22 (34 
decimal), the statement 

LDEPD IlRR6,R2 

loads the value %22 into 'data memory location %404A and the value %404A into working 
register pair 6-7. 

LDEPD refers to data memory. 
LOCPD refers to program memory. 

The assembler makes Irr even for program memory and odd for data memory. 

This instruction is the equivalent of a PUSHUD with the stack in memory rather than the 
register file. 

563 



1, • :' 

flags I 

Instruction, 
FONati 

Note I 

dllt,src 

rr .. - rr + 
dst +- src 

LDEPI/LDCPI 
Load Memory with Pre-Increment 

This instruction is used for block transfers of data to program or data memory from the 
regiatar file. The address of the memory location is specified by a working register pair 
and. is· first, incremented. The contents of the source location are loaded into the 
destination -iocation. Tha contents of the source are unaffected. 

No flags affected 

\ 

Addressing Mode' 

~ .!!!£ 

l-_o_pc_o_d_e_...J1 I src dst 16 Irr 

If working register pair 6-7 contains %404A and working register 2 contains %22 04 
decimal), the statement 

LOEPI 'IIRR6,R2 

loads the value %22 into external data memory location %4048 and the value %4048' into 
working register p,at.r 6-7. 

LOEPI refers to data memory. 
LDCP I refers to program memory. 

The assembler makes Irr even for program memory and odd for data memory. 

This instruction is the equivslent of a PUSHUI with the stack in memory rather than the 
regi~ter file. 



LOW 
Load Word 

LOW dst,src 

Operation: 

Flags: 

Instruction 
for_to 

Ex_pIe: 

MULl 

dst _- src 

The contents 'of the source (a word) are loaded into the destination. The contents of the 
source are unaffected. 

No flags affected 

Opcode Addressing Mode 
Cycles (Hex) ~ .!.l:£ 

Opcode I I src I I dst 10 C4 RR RR 
10 C5 RR IR 

Opcode I I dst I I src I 12 C6* RR 1ML 

*This format is used in the example. 

If the source operand is the immediate value %5AA5, the statement 

LDW RR6,1I%5AA5 

leaves, the value %5A in working register 6 and the value %A5 in working register 7. 

Multiply (Unsigned) 

MIl.. T dst , src 

Operation: 

Flags: 

Instruction 
format: 

Example: 

dst _- dst x src 

The 8-bit dest ination operand (even register of the register pair) is multiplied by the 
source operand (8 bits) and the product (16 bit.s) is stored in the register pair specified 
by the destination address. Both operands are treated as unsigned integers. 

C: Set if result is > 255; cleared otherwise. 
Z: Set if the result is 0; cleared otherwise. 
Y: Cleared 
S: Set if MSB of the result is a 1; cleared otherwise. 
H: Unaffected 
D: Unaffected 

Cycles 

,--_o_pc_o_d_e_-,I 1 .... _-,s_r_c_.....J1 1 .... __ d_s_t_.....J 24 
24 
24 

Opcode 
(Hex) 

84* 
85 
86 

Addressing Mode 

~ !!£. 

RR R 
RR 1R 
RR 1M 

*This format is used in the example. 

If working register 6 contains %40 (64 decimal) and working register 4. contains %42 (66 
decimal), the statement 

MULT RR6, R4 

leaves the value %10 in working register 6 and ~~80 in working register 7 (%1080 is 4224 
decimal) • 

565 



r£XT 

Operation: 

Flags: 

Instruction 
Forll8t: 

Example: 

NEXT 
Next 

PC _- !UP 
IP _- IP + 2 

This instruction is useful. for t.he implementation of threaded-code languages. The program 
memory word pointed to by, the Instruction Point.er is loaded into the Program Counter. The 
Instruction Pointer is then incremented by two. 

No flags affected 

,-_o_p_c_o_de_--,I 

Before 

Address r-__ .,Data 

01 } 
30 

14 

After 

Opcode 
(Hex) 

OF 

Address r----, Oat a 

~
43AddrH 
44 Addr L 
45 Addr H 

IP 0043 

43 Addr H 
44 Addr L 

'~45AddrH 

IP~ 

Note': 

566 

PC~ 

\...120 NEXT 

~~ 
130 Routine 

Memory Memory 

The examples for ENTER, EXIT, and NEXT illustrate how they could actually be used together 
in a program. 



NOP 
No Operation 

Operation: 

Flags: 

Instruction 
Forllllt: 

OR 
Logical OR 

OR dst,src 

Operation: 

Flags: 

Instruction 
For .... t: 

[x_pIe: 

No action is performed by this instruction. It is typically used for liming delays. 

No flags affected 

Opcode 

dst ~- dst OR src 

Cycles 

6 

Opcode 
(Hex) 

FF 

T?e source operand is logically ORed with the destination operand and the result is stored 
in the destination. The contents of the source are unaffected. The OR operation results in 
a 1 bit being stored whenever either of the corresponding bits in the two operands is 1 j 
otherwise a 0 bit is stored. 

C: Unaffected 
Z: Set if the result is OJ cleared otherwise. 
V: Always cleared to 0 
5: Set if the result bit 7 is set; cleared otherwise. 
H: Unaffected 
D: Unaffected 

Opcode Addressing Mode 
Cycles (Hex) dst !!£ 

Opcode I I dst src I 6 42 r 
6 43 r Ir 

Opcode I I src I I dst 10 44 R R 
10 45 R IR 

Opcode I I dst I I src 10 46* R 1M 

*This format is used in the example. 

If the source operand is the immediate value %78 (01111011) and the register named TARGET 
contains roc3 (11000011), the statement 

OR TARGE T, 11',.78 

leaves the value r.FB (11111011) in register TARGET. 

567 



pop dst 

Operation: 

Flags: 

Instruction 
for_t: 

Example: 

POPIJ) dst, src 

Operation: 

Flags: 

Instruction 
forlDat: 

Example: 

568 

POP 
Pop 

dst IilSP 
SP _- SP + 

The contents of the location addressed by the Stack Pointer are loaded into the 
destination. The Slack Pointer is then incremented by' one. 

No flags affected 

~_o_pc_o_d~e __ ~I' L ____ ds_t __ ~ 10 
10 

Opcode 
(Hex) 

50 
51 * 

Addressing Hode 
dst 

R 
IR 

*This format is used in the example. 

If the Stack Pointer (control registers 216-217) contains %1000, external data memory 
location %1000 contains %55, and working register 6 contains %22 (34 decimal), the statement 

POP IilR6 

loads the value %55 into register 34. A fter the POP operation, the Stack Pointer contains 
%1001. 

dst _- src 
IR _- IR -

POPUD 
POp User Stack (Decrementing) 

This instruction is used for user-defined stacks in the register file. The contents of the 
register file location addressed by the user Stack Pointer are loaded into the destination. 
The user Stack Pointer is then decremented. 

No flags affected 

Opcode I I src I I dsl 

Cycles 

10 

Opcode 
(Hex) 

92 

Addressing Hode 
dst src 

R IR 

If the user Stack Pointer (register %42, for example) contains ~'80 and register ~'80 contains 
5A, the statement 

POPUD R2,1il%42 

loads the value %5A into working register 2. 
Pointer contains %7F. 

After the PDP operation, the user Stack 



POPUI 
Pop User Stack (Incrementing) 

POPUI dst,src 

Operation: 

naga: 

InstructiQrl 
ForEt: 

[xa.ple: 

PUSH 
Push 

PUSH src 

'Operation: 

flags: 

Instruction 
Forllllt: 

[x8llple: 

dst .- src 
IR .- IR + 1 

This instruction is used'for user-defined stacks in the register file. The contents of the 
negister file location addressed by the user Stack Pointer are loaded into the destination. 
The user Stack Pointer is then incremented. 

No flags affected 

Opcode I I src I I dst 

Cycles 

10 

Opcode 
...!!!!!L 

93 

Addreaaing Mode 

!!!t !!£ 
R IR 

If the user Stack Pointer (register %42, for example) contains ~BO and register ~O contains 
~5A, ,the statement 

POPUI R2,Ml42 

loads the value ~5A ~nto working register 2. After the POP operation, the user Stack 
Pointer contains r,B1. 

SP _- SP - 1 
asp +- src 

The contents of the Stack PO'inter are decremented, then the contents of 'the source are 
loaded into the locat ion addressed by the decremented Stack Pointer, thus adding a new 
element to the top of the stack. 

No flags affected 

Opcode Addreaaing Mode 
Cycles (Hex) !!!;. 

Opcode I I src 10 Internal stack 70* R 
12 External stack 
12 Internal stack 71 IR 
14 External stack 

*This format is used in the example. 

'If the Stack Pointer contains r,1001, the statement 

PUSH fLAGS 

stores the contents of the register named fLAGS in location ~1000. 
operation, the Stack Pointer contains ~1000. 

A fter the PUSH 

5S9 



PUSHOO dst,src 

OperatiOn: 

Flags: 

InstJ:uction 
Forllat: 

,Ex_pIe: 

IR _- IR:- 1 ' 
dst _- src 

PUSHUD 
Push User Stack (Decrementing) 

This instruction is used for user-defined stacks in the register file. The user Stack 
Pointer is decremented, then the' contents of the 'source are loaded into ,the register file 
locat ion a,ddressed by the decremented user Stack P,?inter. 

No flags affected 

,-_o_pc_o_de_-,II I-__ d_s_t_-,I I-I __ s_rc_, _",1- 10 

Opcode 
(Hex) 

82 

If the user Stack Pointe,r (%42, for example) contains %81, the statement 

PUSHlJO i%42,R2 

Addresaing Mode 
dst !!:£ 

IR R 

stores the contents of working register 2 in location %80. After the PUSH operation, the 
user Stack Pointer 'contains %80. 

PUSHUI 
Push User Stack (Incrementing) 

Push User Stack (Iocr_hting) 

PUSHUI dst , src 

OpersUoOl 

Flags: 

Instruction 
ForMt: 

Exa.ple: 

570 

IR .. - IR + 1 
dst 1'""- src 

This instruction is used for user-defined stacks in 'the register file 0 The user Stack 
Pointer is incremented, then the contents of the source are loaded into the register file 
location addressed by the incremented user Stack Pointer. 

No flags affected 

,--_o_pc_o_d_e_....J11 I-__ '_ds_t_--,II,--_s_r_c_--, 

,Cycles 

10 

Opcode 
(Hex) 

83 

If the user Stack Pointer (%42, for example) contains %81, the statement 

PUSHUI i%42,R2 

Addressing Mode 

~ !!:£ 

IR RI 

stores the contents of working register 2 in location %82: After the PUSH operation, the 
user Stack Pointer contains %82. 



ReF 
Reset Carry Flag 

Ref 

Operation, 

Flags, 

Instr.uct ion 
format, 

RET 
Return 

RET 

Operation, 

Flags: 

Instruction 
format, 

Example, 

C _- 0 

The Carry flag is cleared to 0, regardless of its previous value. 

C, Cleared 'to 0 

No other flags affected 

Opcode 

PC _- rasp 
SP _- SP + 2 

Opcode 
(Hex) 

Cf 

This instruction is normally used to return to the previously executing procedure at the end 
of a procedure entered by a CALL instruction. The.contents of the location addressed by the 
Stack Pointer are popped into the Program Count en The next statement executed is' that 
addressed by the new contents of the Program Counter 

No flags affected 

Opcode 

Cycles 

14 

Opcode 
(Hex) 

AF 

If the Program Counter contains %35B4, the Stack Pointer contains %2000, external 
data memory location %2000 contains %18, and location %2001 contains ~'B5, then the statement 

RET 

leaves the value ?2002 in the Stack Pointer and %18B5, the address of the next instruction, 
in the Program Counter. 

571 



Rl dst 

Operation: 

flags: 

lnat ruction 
Format: 

Example: 

572 

RL 
Rotate Left 

C 4-- dst (7) 
dst (0) 4-- dst (7) 
dst (n + 1) 4-- dst (n) n = 0 - 6 

The contents of the destination operand are rotated left one bit position. The initial 
value of bit 7 is moved to the bit 0 position and also replaces the Carry flag. 

c: Set if the bit rotated from the most significant bit posit ion was 1, i. e., bit 7 was 1. 
l: Set if the result is 0; cleared otherwise. 
V: Set if arithmetic overflow occurred; cleated otherwise. 
S: Set if the result bit 7 is set; cleared otherwise. 
H: Unaffected 
D: Unaffected 

~_o_Pc_o_.d_e __ ~1 ~I ___ d_s_t __ ~ 6 
6 

Opcode 
(Hex) 

90" 
91 

Addressing Hode 

!!.!!!. 
R 
IR 

"This format is used in the example. 

If the contents of the register named SHIFTER are %88 (10001000), the statement 

RL SHIFTER 

leaves the value ~~11 (00010001) in that register and the Carry and OverflQw flags are set to 
1. 



RLC 
Rotate Left Through Carry 

RlC dst 

Operation: 

flags: 

Instruction 
romat: 

Ex .... ple: 

dst (0) _- c 
C _- dst (7) 
dst (n + 1) _- dst (n) n = 0 - 6 

The contents of the destination operand with the Carry flag are rotated left one bit 
position. The initial value of bit 7 replaces the Carry flag; the initial value of the 
Carry flag replaces bit O. 

~_7 _p 
C: Set if the bit rotated from the most significant bit posit ion was 1, i.e., bit 7 was 1. 
Z: Set if the result is 0; cleared otherwise. 
V: Set if arithmetic overflow occurred, that is, if the sign of the destinat ion changed 

during rotation; cleared otherwise. 
5: Set if the result bit 7 is set; cleared otherwise. 
H: Unaffected 
0: Unaffected 

Opcode 
(Hex) 

Addressing Hode 

~_o_pc_o_d_e __ ~1 ~I ____ ds_t __ ~ 6 
6 

10* 
11 

~ 

R 
IR 

*This format is used in the example. 

If the 'Carry flag is cleared to 0 and the register named SHIFTER contains %8F (10001111), 
the statement 

RLC SHIFTER 

sets the Carry and Overflow flags to 1 and leaves the value %lE (00011110) in SHIFTER. 

573 



RR d,st 

Operation: 

flags I 

Inst ruction 
fortlat: 

EXSllple: 

574 

RR 
Rotate Right 

C _- dst (0) • 
dst (7) _- dst (0) 
dst (n) _- dst (n + 1) n = 0 - 6 

The contents of the destinetion operand are rotated right one bit position. The initial 
value of bit 0 is moved to bit 7 and also replaces the Carry flag. 

I 
C: Set if the bit rotated from the least significant bit position was 1, i.e., bit 0 was 1. 
Z: Set if the result is 0; cleared otherwise. 
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed 

during rotation; cleared otherwise. 
S: Set if the result bit 7 is set; cleared otherwise. 
H: Unaffected 
0: Unaffected' 

,--_o_p_co_d_e_ .... 1 I ..... _d_s_t_--' 

Cycles 

6 
6 

Opcode 
(Hex) 

EO*' 
E1 

Addressing Mode 
.!!& 

R 
IR 

*This format is used in the example. 

If the contents of register 6 are 1.131 (00110001), the statement 

RR R6 

sets the Carry flag to 1 and leave the value %98 (10011000) in working ,register 6. Since 
bit 7 now equals 1, the Sign and Overflow flags are a1'so set to 1. 



RRC 
Rotate Right Through Carry 

RRC dst 

Operation: . 

flags: 

Instruction 
rorllat: 

EXlMlple: 

dst (7) _- C 
C _- dst (0) 
dst (n) _- dst (n + 1) n = 0 - 6 

The content.s of the destination operand and the Carry flag are rotated right one bit 
position. The initial value of bit 0 replaces the Carry flag; the initial value of the 
Carry flag replaces bit 7. 

C: Set if the bit rotated from t.he least significant bit position was 1, i.e., bit 0 was 1. 
Z: Set if the result is 0; cleared otherwise. 
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed 

during rotation; cleared otherwise. . 
S: Set if the result bit 7 is set; cleared otherwis'1' 
H: Unaffected 
0: Unaffected 

<-_o_p_c_od_e_--,I I<-__ d_st __ ... 

Cycles 

6 
6 

Opcode 
(Hex) 

CO* 
C1 

Addressing Mode 
dst 

R 
IR 

*This format is used in the example. 

If the contents of the register named SHIFTER are %DO (11011101), and the Carry flag is 
cleared to 0, the statement 

RRC SHIFTER 

sets the Carry and Overflow flags to 1 and leaves the value %6E (01101110) in the register. 

575 



S80 

Operation: 

Flags: 

Instruction 
Format: 

581 

Operation: 

Flags: 

Instruction 
For_t: 

576 

SBO 
Set BankO 

BANK _- 0 

This instruction causes the Bank Address flag (bit 0) of Flag register 213 td be cleared to 
O. 

No flags affected 

Opcode 6 

BANK _- 1 

Opcode 
(Hex) 

4F 

SB1 
Set Bank 1 

This instruct ion causes the Bank Address flag (bit 0) of Flag register 213 to be set to 1. 

No flags aFFected 

Opcode 6 

Opcode 
(Hex) 

5F 



SBC 
Subtract With Carry 

soc dst,src 

Operation: 

Flags: 

Inst ruction 
format: 

dst _- dst - src - C 

The source operand, along with the setting of the Carry flag, is subtracted from the 
destination operand and the result is stored in the destination. The contents of the source 
are unaffected. Subtraction is performed by adding the twos complement of the source 
operand to the destination operand. In multiple precision arithmetic, this instruction 
permits the carry ("borrow") from the subtraction of low-order operands to be subtracted 
from the subtraction of high-order operands. 

C: Set if a borrow occurred (src > dst); cleared otherwise. 
2: Set if the result is 0; cleared otherwise. , 
Y: Set if arithmetic overflow occured, that is, if the operands were of opposite sign and 

the sign of the result is the same as the sign of the source; cleared otherwise. 
S: Set if the result is neg at i ve; cleared otherwise. 
H: Cleared if there is a carry from the most significant bit of the low-order four bits of 

the result; set otherwise, indicating a "borrow. II 
0: Al ways set to 1. 

Opcode Addressing Hode 
Cycles (Hex) dat arc 

Opcode I I dst src I 6 32 r 
6 33* Ir 

Ope ode I I src I I dst 10 34 R R 
10 35 R IR 

Opcode I I dst I I src 10 36 R 1M 

"This format is used in the example. 

If the register named MINUEND contains %16, the Carry flag is set to 1, working register 10 
contains %20 (32 decimal), and register 32 contains %05, the statement 

sac MINUEND, ~R10 

leaves the value ~~10 in register MINUEND. 

577 



SCf 

Operation: 

flags: 

Instruction 
format: 

SRA dst 

Operation: 

flags: 

Instruction 
format: 

Example: 

578 

C .. - 1 

The Carry flag is set to 1, regardless of its previous value. 

c: Set to 1 

No other flags affected 

Opcode 

dst (7) .. - dst (7) 
C _- dst (0) 
dst (n) _- dst (n' + 1) n = 0 - 6 

Opcode 
(Hex) 

Df 

SCF 
Set Carry Flag 

SRA 
Shift Right Arithmetic 

An arithmetic shift right one bit position is performed on the destination operand. Bit 0 
replaces the Carry flag. Bit 7 (the sign bit) is unchanged, and its value is also shifted 
inlo bit posit ion 6. 

6 

o ~ ddJl 
C: Set if the bit shi fted from the least significant bit posi t ion was 1, i. e., bit 0 was 1. 
Z: Set if the result is 0; cleared otherwise. 
V: Always cleared to 0 
S: Set if the result is negat i ve; cleared otherwise. 
H: Unaffected 
0: Unaffected 

~_o_p_co_d_e __ ~11 ~ ____ d_s_t __ ~ 6 
6 

Opcode 
(Hex) 

DO* 
D1 

Addressing Hode 
~ 

R 
IR 

*This format is used in the example. 

If the register named SHIfTER contains %B8 (10111000), the statement 

SRA SHIFTER 

clears the Carry flag to 0 and leaves the value %DC (11011100) in, the register SHIfTER. The 
Sign' flag is set to 1. 



SRP/SRPO/SRP1 
Set Register Pointer 

SRP /SRPO/SRP1 

Operation: 

Flags: 

Instruction 
Forllat: 

Examples: 

src 

If src (1) = 1 and src (0) = 0 then: RPO (3-7) 4-- src (3-7) 

If src (1) = 0 and src (0) then: RP1 (3-7) - src (3-7) 

If src (1) = 0 and src (0) 0 then: RPO (4-7) 4-- src (4-7), 
RPO (3) 4-- 0 
RP1 (4-7) 4-- src (4-7), 
RP1 (3) .. - 1 

The source data bits 1 and 0 determine if one or both of the Register Pointers is to be 
written. Bits 3-7 of the selected Register Pointer are written unless both Register 
Pointers are selected. Then bit 3 of RPO is forced to a 0 and bit 3 of RP1 is forced to a 
1. 

No flags affected 

~_o_p_c_od_e __ -JI ~I ____ s_r_c __ ~ 

Opcode 
(Hex) 

31 

Addressing Mode 

!!:£ 

1M 

(1) The statement 

(2) 

(3) 

SRPO 1/%50 

sets Register Pointer 0 (control register 214) to %50. 
The assembler produces this code: 31 52. 

The statement 

SRP1 #%68 

sets Register Pointer 1 (control register 215) to %68. 
The assembler produces this code: 31 69. 

The statement 

SRP 11%40 

sets Register Pointer 0 to %40 and Register Pointer 1 to %48. 
The assembler produces this code: 31 40. 

579 



SUB dst,src 

Operation: 

flags: 

Instruction 
ForllBt: 

Example: 

580 

SUB 
Subtract 

dst ~- dst - src 

The source operand is subtracted from the destination operand and the result is stored in 
the destination. The contents of the source are unaffected. Subtraction is performed by 
adding the twos complement of the source operand to the destination operand. 

c: Set if a "bor row" occurred; cleared otherwise. 
Z: Set if the result is 0; cleared otherwise. 
V: Set if arithmetic overflow occured, that is, if the operands were of opposite signs and 

the sign of the result is the same as the sign of the source operand; cleared otherwise. 
S: ,Set if the result is negative; cleared otherwise. 
H: Cleared if there is a carry from the most significant bit of the low-order four bits of 

the result; set otherwise indicating a "borrow." 
0: Always set to 1. 

Opcode Addressing Mode 
Cycles (Hex) dst !!:£ 

Opcode I I dst src I 6 22 r 
6 23 Ir 

Opcode I I src I I dst 10 24 R R 
10 25 R IR 

Opcode I I dst I I src 10 26" R 1M 

"This format is used in the example. 

If the register named MINUEND contains %29, the statement 

SUB MINUEND,. /1%11 

leaves the value %1 B in the register. 



SWAP 
Swap Nibbles 

liWAP dst 

Operation: 

Flags: 

Instruction 
format: 

Ex.pIe: 

dst (0 - 3) __ dst (4 - 7) 

The contents of the lower four bits and upper four bits of the destination operand are 
swapped. 

7 

c: Undefined 
Z: Set if the result is OJ 
V: Undefined 
s: Set if the result bit 7 
H: Unaffected 
D: Unaffected 

,-_o_p_co_d_e_ ..... 1 .... I __ ds_t_--, 

4 3 

cleared 

is set; 

o 

otherwise. 

cleared otherwise. 

Opcode 
(Hex) 

Addressing Hode 
dst 

8 FO* R 
8 F1 IR 

*This format is used in the example. 

If the register named BCO_Operands contains %B3 (10110011), then the statement 

SWAP BOC_Operands 

leaves the value %3B (00111011) in the register. 

581 



TCM dst,src 

Operation: 

Flags: 

Instruction 
For .... t: 

Example: 

582 

reM 
Test Complement Under Mask 

(NOT dst) AND src 

This instruction tests selected bits in the destinat ion operand for a logical "1" value. 
The bits to be tested are specified by setting a 1 bit in -the corresponding position of the 
source operand (mask). The TCM statement complements the destination operand, which is then 
ANDed with the source mask. The Zero (Z) flag can then be checked to determine the result. 
The destinat ion and source operands are unaffected. 

C. Unaffected 
Z. Set if the result is 0; cleared otherwise. 
Y. Always cleared to o. 
5. Set if the result bit 7 is set; cleared otherwise. 
H. Unaffected 
D. Unaffected 

Opcode Addressing Mode 
Cycles (Hex) !!!t !!:£ 

Opcode I I dst src I 6 62* r 
6 63 r Ir 

Opcode I I src I I dst 10 64 R R 
10 65 R IR 

Opcode I I dst I I src 10 66 R 1M 

*This format is used in the example. 

If the register named TESTER contains %F6 (11110110) and the register named MASK contains 
%06 (00000110), that is, bits 1 and 2 are being tested for a 1 value, then the statement 

TCM TESTER, MASK 

complements TESTER (to 00001001) and then does a logical AND with register MASK, resulting 
in %00. A subsequent test of the Z flag 

JP Z, label 

causes a transfer of program control. At the end of this sequence, TESTER still contains 
%F6. 



TM 
Test Under Mask 

TN dst,src 

Operation: 

Flags: 

Instruction 
Format: 

Ex ... ple: 

dst AND src 

This instruction tests selected bits in the destination operand for a logical "0" value. 
The bits to be tested are specified by setting a 1 bit in the corresponding position of the 
source operand (mask), which is ANDed with the destination operand. The Zero (Z) flag can 
then be checked to determine the result. The destination and source operands are 
unaffected. 

C: Unaffected 
Z: Set if the result is OJ cleared otherwise. 
V: Always reset to O. 
s: Set if the result bit 7 is set; cleared otherwise. 
H: Unaffected 
0: Unaffected 

Opcode Addressing Hode 
Cycles (Hex) dst src 

Opcode I I dst src I 6 72* r r 
6 73 r Ir 

Opcode I I src I I dst 10 74 R R 
10 75 R IR 

Opcode I I dst I I src 10 76 R 1M 

*This format is used in the example. 

If the register named TESTER contains %F6 (11110110) and the register named MASK contains 
%06 (00000110), that is, bits 1 and 2 are being tested for a 0 value, then the statement 

TM TESTER, MASK 

results in the value %06 (00000110). A subsequent test for nonzero 

JP NZ, label 

causes a transfer of program control. At the end of this sequence, TESTER still contains 
~~F6. 

583 



wn 
Operati'OIl: 

Flags: 

Instruction 
J;ormal: 

Example: 

584 

WFI 
Wait For Interrupt 

The CPU is effectively halted until an interrupt occurs, except that DMA transfers still 
take place in the halt state. Either a fast interrupt or normal interrupt can take the CPU 
out of the halt state. 

No flags affected 

Opcode 

Main Program 

EI (Enable Global Interrupt) 
\If I (Wait for Interrupt) t (next instruction) 

-'n~erruPt occurs 

Interrupt Serv ice Rout ine 

Clear Interrupt flag 
IRET 

Done with service routine 

Cycles 

6n 

Opcode 
(Hex) 

3f 

n = 1,2,3, ••• 



XOR 
Logical Exclusive OR 

XOR dst,src 

Operation: 

Flags: 

Instruct ion 
rorllat: 

EXaRlpIe: 

dst _-' dst XOR src 

Tne source operand is logically EXCLUSIVE ORed with the destination operand and the result 
is stored in the destination. The EXCLUSIVE OR operation results in a 1 bit being stored' 
whenever the corresponding bits in the operands are different; otherwise, a 0 bit is stored. 

c: Unaffected 
Z: Set if the result is 0; cleared otherwise. 
Y: Always reset to O. 
S: Set if the result bit 7 is set; cleared otherwise. 
H: Unaffected 
D: Unaffected 

Opcode Addressing Mode 
Cycles (Hex) ~ ~ 

Opcode I I dst src I 6 82· r 
6 83 Ir 

Opcode I I src I I dst 10 84 R R 
10 8'5 R IR 

Opcode I I dst I I src 10 86* R 1M 

*This format is used in the example. 

If the source is the immediate value %78 (01111011) and the register named TARGET contains 
%C3 (11000011), the statement 

XOR TARGET, 11%78 

leaves the value %88 (10111000) in the register. 

585 



6.1 INTRODUCTION 

The interrupt structure of the SuperB consists of 
27 different interrupt sources, 16 vectors, and B 
levels (Figure 6-1). Two of the vectors are 
reserved for future members of the SuperB family. 

Interrupt priority is assigned by level, which is 
controlled' by the Interrupt Priority register 
(IPR). Each level is masked (or enabled) accord­
ing to the bits in the Interrupt Mask register 
(IMR), and the entire interrupt structure can be 
disabled by clearing bit 0 in the System Mode 
register (R222). The three major components of 
the interrupt structure are sources, vectors, and 
levels. 

INTERRUPT SOURCES 

COUNTER 0 ZERO COUNT 
EXTERNAL INTERRUPT (P2,) 
EXTERNAL INTERRUPT (P2,) 

COUNTER 1 ZERO COUNT 
EXTERNAL INTERRUPT (P36) 
EXTERNAtlNTERRUPT (P37) 

~:~ft~:tl~~~:~~~i ~P24) I 
EXTERNAL INTERRUPT (P2,) 

~:~~~;~K,~~~:~~~i ~34) } 
EXTERNAL INTERRUPT (P3,) 

RESERVED 

RESERVED 

EXTERNAL INTERRUPT (P32) 

EXTERNAL INTERRUPT (P2,) 

EXTERNAL INTERRUPT (P2,) 

EXTERNAL INTERRUPT (P33) 

UART RECEIVE OVERRUN 
lfART FRAMING ERROR 
UAAT PARITY ERROR 
UART WAKEUP DETECT 

, UART BREAK DETECT 
UART CONTROL CHAR DETECT 

Chapter 6 
Interrupts 

A source is anything that generates an interrupt. 
This can be internal or external to the SuperB. 
Internal sources are hardwired toa particular vector 
and level, while external sources can be assigned to 
various external events. External interrupts are 
falling edge triggered. 

6.1.2 Vectors 

The vector number is used to generate the address 
of a particular interrupt serv1c1ng routine; 
therefore all interrupts using the same vector 
must use the same interrupt handling routine. 

POLLING VECTORS LEVELS -I' --:-12- ~2 
. : I 

1 I 
il 114 tlROS 

I I 

IRQ3 

I 

IROO 

1 18 
IR06 

1 
I 

UAAT RECEIVE DATA 
EXTERNAL INTERRUPT (P30) =:::::j:=:::Jt-------{ 20 

122 

586 

EXTERNAL INTERRUPT (P20) 

UART ZERO COUNT 
EXTERNAL INTERRUPT (P2d 
UAAT TRANSMIT DATA 
EXTERNAL INTERRUPT (P3d 

I 
I 
I 2' ! 26 

Figure 6·1. Interrupt Structure 

IRQ1 
I 



Interrupts 

When more than one vector shares an interrupt 
level, the priorities of the vectors on that level 
are fixed. Figure 6-1 lists the vectors within a 
level in the order of decreasing priority (i.e., 
the top vector in each level has the highest 
priority). For example, for IRQ6, vector 16 
slways has priority over vectors 1B, 20, and 22. 

6.1.3 Levels 

While the sources and vectors are hardwired within, 
each level, the priorities of the levels can be 
changed by using the Interrupt Priority register 
(R255, Bank O) (Figure 6-2). 

Although it does not cover all possible combina­
tions, the Interrupt Priority register does 
provide the capability of assigning 192 different 
combinations of priority among the interrupt 
levels. For example, an IPR with the contents 
01101011 would have the following priority order 

. (Figure 6-3): 

If more than one interrupt source is active, the 
source from the highest priority level is serviced 
first. If both sources are from the same lev·e I, 
the source with the lowest vector number has 
priority. For example, if the UART Receive Data 
bit and UART Parity Error bit are both active, the 
UART Parity Error is serviced first because it is 
vector 16 and the UART Receive Data bit is vector 
20. 

R255 BANK 0 (FF) IPA 
INTERRUPT PRIORITY REGISTER 

IAQO IAQ1 IAQ2 IAQ3 

GROUP PRIORITY 

07 0 401 

UNDEFINED 
B>C>A 
A>B>C 
B>A>C 
C>A>B 
C>B>A 
A>C>B 
UNOEFINED 

I I I L 
-----:--

GAOUPA 
o = IROO > IRQ1 
1 = IRQ1 > IRao 

GROUPS 
o = IAQ2 > (IAQ3,IAQ") 
1 = (IAQ3,IAQ") > IAQ2 

SUBGAOUPB 
o = IA03 > IRQ4 
1 = IRQ4 > IAQ3 

GAOUPC 
o = IAQS > (IAQ6,IAQ7) 
1 = (IAQ6,IAQ7) > IAQS 

SUBGAOUPC 
o = IROS > IRQ7 
1 = IRQ7> IR06 

Figure 6-2. Interrupt Priority Register 

B22 C22 

IAQ" IAQS lAOS IAQ? 

EXAMPLE: An IPR with the contents 011 01 011 would have 
the following priority order: 

HIGHEST IRQ2 } 
IRQ4 
IRQ3 

GROUPS 

IRQ? } 

I~I~I~I~I~I~I~I~I 
IRQ6 
IRQ5 

GROUpe 

I ~. 
A1>A2 

IRQ1 } 000 UNDEFINED . 1 
A2>A1 

001 B>C>A 0 81>82 LOWEST IRQO 
010 A>8>C 1 82>81 
011 B>A>C 0 821>822 
100 C>A>B 1 822>821 , 
101 C>B>A 
110 A>C>B 0 C1>C2 
111 UNOEFINED 1 C2>C1 

0 C21>C22 

GROUPA 

1 C22>c21 

Figure 6-3. Interrupt Priority Tree 

587 



When an interrupt occurs, the software is auto­
matically vectored to one of 16 possible service 
routines. If more than one active source shares 
that vector, the software must poll the individual 
sources connected with that vector to find the 
interrupting source or sources. Each interrupt 
source has its own Interrupt Enable bit located in 
the mode and control registers of the I/O section 

Interrupts 

associated with the source. The software has 
complete control over which sources are a,llowed to 
cause interrupts. If only one source associated 
with a particular vector is enabled, then when an 
interrupt occurs that uses that vector, no polling 
is required and the software is automatically 
vectored to the appropriate service routine. 

Table 6~1. SuperB Vector Address Table 

Vectors 
(DecDal tt-ory Address) levels Interrupt SourceS 

30,31 IRQ7 P34 External Interrupt or HS1 / 
P35 External Interrupt 

28,29 IRQ4 P24 External Interrupt or HSO / 
P25 External Interrupt 

26,27 IRQ1 UART Transmit Data / 
P31 External Interrupt 

24,25 IRQ1 UART Zero Count / 
P21 External Interrupt 

22,23 IRQ6 P20 External Interrupt 

20,21 IRQ6 UART Receive Data / 
P30 External Interrupt. 

18,19 IRQ6 'UART Break / Control Character / 
Wake-Up 

16,17 IRQ6 UART Overrun / Framing / 
Parity 

14,15 IRQ5 Counter 1 Zero Count / 
P36 External Interrupt / 
P37 External Interrupt 

12,13 IRQ2 Counter 0 Zero Count / 
P26 External Interrupt / 
P27 External Interrupt 

10,11 IRQO P33 External Interrupt 

8,9 IRQO P23 External Interrupt 

6,7 IRQ3 P22 External Interrupt 

4,5 IRQ3 P32 External Interrupt 

2,3 IRQ3 Reserved 

0,1 IRQ3 Reserved 

588 



Interrupts 

6.1.4 Enables 

Interrupts can be ensbled or disabled as follows: 

• Interrupt enable/disable. The entire interrupt 
structure can be enabled or disabled by setting 
bit 0 in the System Mode register (R222). 

• level enable. Each level can be enabled or 
disabled by setting the sppropriate bit in the 
Interrupt Mssk register (R221). 

• level priority. The priority of each level csn 
be controlled by the values in the Interrupt 
Priority register (R255, Bank 0). 

• Source enable/disable. Each interrupt source 
can be ensbled or disabled in the source's Mode 
and Control register. 

6.1.5 The Interrupt Routine 

Interrupts are sampled st the end of each instruc­
tion., -Before an interrupt request can be granted 
s) interrupts must be enabled, b) the level must 
be enabled snd must be the highest priority inter­
rupting level, and c) the interrupt request must 
be enabled st the interrupting source and must 
have the highest priority within the level. 

If all this occurs, an interrupt request is 
grsnted. 

EI 

HWRESETOR 
POWER-UP RESET 

S QI-_--' ........ 

R 

IN~~~~~ -------' 

IPR=%FF 
INTERRUPT PRIORITY 

REGISTER 

SYM=%OE 

The SuperB then enters an interrupt mechine cycle 
thst completes the-following sequence: 

• Resets the Interrupt Enable bit to dissble all 
subsequent interrupts 

• Ssves the Program Counter and ststus flags on 
the stack 

• Branches to the address contained within the 
vector location fo~ the interrupt 

• Passes control to the interrupt servicing 
routine 

Interrupts can be re-enabled by the interrupt 
handling routine (EI instruction), - which allows 
interrupt nesting. First, however, the contents 
of the Interrupt Mask reg~ster should be saved and 
a new mask loaded which disables the present level 
being serviced and all lower levels. 

When the interrupt handling routine is finished, 
it should issue an Interrupt Return (IREn 
instruction. This instruction restores the_ 
Program Counter and status flags from the stack 
and sets the Global Interrupt Enable bit. If 
nesting was used, the interrupt handling routine 
should first execute s Disable Interrupt (01) 
instruction and restore the saved mask before 
executing the IRET instruction. Figure 6-4 
illuatratea the interrupt cycle process that 
occurs when sn interrupt requsst occurs. 

P2AIP= %FC 
P2SIP=%FD 

SYSTEM MOOE 

1------ :C~NG 

VEC10R 
INTERRUPT 
CYCLE 

Figure 6·4. Interrupt Cycle ProceSs 

589 



6.2 FAST INTERRlPT PftQCES5It«l 

The SuperB provides a feature' called fast inter­
rupt processing, which completes the interrupt 
servicing in 6 elock periods instead of the usual 
22. 

Anyone of the eight interrupt levele can be 
programmed to use this feature by loading the fast 
interrupt select field of the'System,Mode register 
(R222) with the le,vel number and !letting the fast 
Interrupt Enable bit. 

Two hsrdwsre registers sllPport fsst interrupts. 
The Instruction Pointer (IP) holds the starting 
address of the service routine and ssves the 
Program COllnter (PC) value when a fast interrupt 
occurs. A dedicated register, flag', saves the 
contents of the flag register when a fast inter­
rupt occurs. 

To use this feature, softwsre must first set the 
Instruction Pointer to the starting location of 
the interrupt service routine during initialha­
tion and before interrupts are enabled for the 
first time. Then the level number is loaded into 
the fast Interrupt Select field and the fast 
Interrupt Enable bit in the System Mode register 
is turned on. 

When an interrupt occurs in the level selected for 
fast interrupt processi~g, the following occurs: 

• The contents of the Instruction Pointer and the 
Program Counter are swapped. 

• The contents of the flag regieter are copied 
into flag'. 

• The Fast I~terrupt Statua bit in the flag 

Interrupts 

interrupt routine. While fast interrupt process­
ing is snabled, normal interrupt processing still 
functions for the unselected levels. 

The SuperB eupports both polled and interrupt­
driven systems or a combination of both. To 
accommodate a. polled structure or a partially 
polled structure, sny or all of the interrupt 
levels can be masked and the individual bits of 
the IRQ register polled. 

6.3 ClEARIt«l THE INTERRIJ>T SOURCE 

Internally, the interrupt requests are represented 
as levels.' This level-sctivated aystem requires 
that the software that services an interrupt'muat 
perform some action that removes the interrupting 
source before re-enabling that interrupt. 

For, ,external interrupt inputs on the Port 2 &nil 3 
pins, edge-triggered "interrupt pending" flip­
flopa are used to convert an edge-triggered input 
to a level-activated ·interrupt. Thus, the service 
routine must reset the interrupt pending flip-flop 
to clear the interrupt request by writing to the 
Port 2/3 Interrupt Pending register. 

For receive character available interrupts from 
the UART receiver, emptying the Receive Data 
register (UlOR) will automatically clear 
the interrupt source. for receiver interrupts due 
to a receive error, detection of a control charac­
ter, or detection of the wake-up condition, reset­
ting the appropriate statua bit in the Receive 
Control register (URC) will clear the interrupt 
aource. For interrupts from the UART transmitter, 
filling the Transmit Data register (UlOT) will 
automatically clear the interrupt source. 

register ie set. For end-of-count interrupts from the counter/ 
timers, resetting the Reset/End of COllnt Status, 

• The interrupt is serviced. bit (01) in the Counter Control register' will 
clear the interrupt source. 

• When IRET is issued after the interrupt service 
routil]e 'is completed, the Instruction Pointer 
and the Program Counter are swapped again. 

• The contente of flag' are copied back into the 
Flag register. ' 

• The Fast Interrupt Status bit' in the nag 
register is cleared. 

After the Interrupt Return (IRET) of a fast 
interrupt, the Instruction Pointer (IP) will point 
to the next byte fo1l9wing the .. ..IRET • Before using 
the fast interrupt again, the IP ehould be re­
initialized to point, to the beginning of the 

590 

for interrupts from the on-chip DMA channel, load­
ing a non-zero value into the DMA Count register 
will clear the interrupt source. 

6.4 INTERRII'T CONTROl. REGISTERS 

The interrupt hardware is controlled by fields in 
the System Mode register (R222), the ~nterrupt 
Request. register IRQ (R220), the Interrupt Mssk 
register IMR (R221) , the Interrupt Priority 

. register IPR (R255, Bank 0), and the fast Inter­
rupt Status bit (fIS) of the Flags register 
(R21l). 



Interrupts 

6.4.1 Systa. Mbde Register 

The System Mode register (R222) controls the mode 
of operation of the interrupt hardware. The 
format of the System Mode register is shown in 
Figure 6-5. 

The fields in this register pertaining to the 
interrupt hardware are: 

Global Interrupt Enable (DO)' When this bit is 
set to 1, interrupts are enabled. When this bit 
is cleared to 0, all interrupts are disabled 
regardless Qf the state of individual interrupt 
enable or mask bits. This bit is automatically 
cleared during an interrupt machine cycle and can 
also be cleared by the DI instruction. It can be 
set by using an El or IRET instruction. A hard­
ware reset clears this bit. 

rast Interrupt Enable (01)' When this bit is a 1, 
the fast interrupt processing feature is enabled 
for the selected interrupt' level. When this bit is 
a 0, fast interrupt processing is disabled. When 
fast interrupt processing is used, the Interrupt 
Mask Register bit for the selected level must also 
be set. 

Fast Interrupt Select (0z-D4). The value of this 
3-bit field se lects the interrupt level for fast 
interrupt processing. All other levels still 
operate in the normal interrupt mode. 

(Bit 7 relates to external memory and not to 
interrupts. For more details on bit 7, see 
section 12.3.) 

R222 (OE) SYM 
SYSTEM MODE 

I~I~I~I~I~I~I~I~I 

1 = 3-STATE MEMORY ~ TIl L 1 = GLOBALINTERRUPT ENABLE 
INTERFACE 

NOT USED 1 = FAST INTERRUPT ENABLE 

FAST INTERRUPT SELECT 

000 LEVELO 
001 LEVEL 1 
010 LEVEL 2 
011 LEVEL 3 
100 LEVEL4 
101 LEVEL 5 
110 LEVELS 
", LEVEL7 

Figure 6-5_ System Mode Register 

6.4.2 Interrupt Request Register 

The Interrupt Request (IRQ) register (R220) 
indicates which interrupt levels have pending 
interrupts. It takes a snapshot once for each 
instruction near the end of execution. Each bit in 
the register corresponds to one interrupt level. 
Software can use the IRQ for polling those levels 
that are not using hardware interrupts and have 
been masked off by theiMR. Even when polling, 
the software is responsible for removing the 
interrupting source when serv icing that source. 

Writing to the IRQ has no effect. The interrupt 
request must be renewed at the source, such as the 
UART or a port. 

External interrupts are disabled by a reset and 
must be enabled via execution of an El instruction 
before bits i~ the Port 2/3 Interrupt Pending 
registers can be set and external hardware inter­
rupts can occur. 

The format of the Interrupt Request register is 
shown in Figure 6-6. 

R220 (DC) IRQ 
INTERRUPT REQUEST (READ ONLY) 

I~I~I~I~I~I~I~I~I 

LEVEL 1JJ~ ~I L LEVEL~ 
LEVEL 6 =-.J L LEVEL 1 

LEVEL 5 LEVEL 2 

LEVEL 4 LEVEL 3 

Figure 6-6. Interrupt Request Register 

591 



6.4.' Interrupt Mask Register 

The Interrupt Mask (lMR) register (R221) is used 
to mask individual interrupt levels, thus prevent­
ing interrupts at that level. A 1· enables inter­
rupts at that level, a 0 disables them. 
Interrupts should be globally disabled before 
writing to this register. 

The format of the Interrupt Mask register is shown 
in Figure 6-7. 

R221 (~O) IMR 
INTERRUPT MASK 

LEVEL7gjjJ I ~. I LLEVELO 

LEVEL6~ L LEVEL 1 

LEVEL 5 LEVEL 2 

LEVEL 4 LEVEL 3 

Figure 6-7. Interrupt Mask Register 

6.4.4 Interrupt Priority Register 

The Interrupt Priority (IPR) register (R255, Bank 
0) defines the priority order of the interrupt 
levels. The coding of this register is defined in 
Figure 6-2. Interrupts should be globally dis­
abled before writing to this register. 

592 

Interrupts 

6.4.5 Fast Interrupt status Bit (ns of nags 
Register) 

This is a status bit; when it is set to 1, it 
indicates that a fast interrupt. has occurred. 
This bit determines what type of action is taken 
during an lRET. If it is a 1, then an IRET causes 
a swap between the Program Counter and the 
Instruction Pointer, and the Flags' register to be 
written into the Flag register. If it is a 0, 
then IRET causes a normal interrupt return. A 
hardware reset clears this bit to O. 

The format of the Flags register is shown in 
Figure 5-1, Chapter 5. 

6.5 INTERRlJ>TS At«) THE DNA CHANNEl 

When the DMA channel is enabled to work with a 
handshake-driven I/O port or the UART, the inter­
rupt request from the specific device. is replaced 
by sn interrupt request from the DMA channel when 
the specified number of transfers has been com­
pleted (see Figure 6-8). 

OMA 
ENABLE -I==;:=t:~[)----- DMA REQUEST 

END OFCO~~~ - .... ----1...../ 

TO IRQ 
REGISTER 

Figure 6-8. Interrupts and the DMA 



7.1 RESET 

A system reset, activated by a low level on the 
~ input, overrides all other operating condi­
tiona and puta the SuperB into a known atate. The 
~ input ia internally synchronized with the 
internal clock of the SuperB to form the internal 
reset line. For a power-up reset operation when 
using the on-chip oscillator, the ~ input must 
be held low for at least 50 milliseconds after the 
power supply is within tolerance to allow the on­
chip clock oscillator to stabilize. If an exter­
nal clock oscillator is used or power has been 
applied long enough for the on-chip oscillator to 
stabilize, then the ~ input must be held low 
for at least 1B c lock periods to cause a systsm 
reset. 

Whils ~ is active low, the 1m' output is forced 
low while ~ pulses low once every fou~ clock 
cycles and R/W remains high. Z-BUS-compatible 
peripherals use the ~ and Im'coincident low state 
as a periphersl reset function. 

Chapter 7 
Reset and Clock 

Resets also result in the following: 

• Interrupts are disabled (the Global Interrupt 
Enable bit is cleared and the Interrupt Request 
regiater ia disabled) 

• Ports 2, 3, and 4 are placed in input mode 

• In parts with on-chip ROM, Ports 0 and 1 are 
placed in input mode; in ROM leas parts, Port 1 
is configured as an address/dsta bus to exter­
nal memory while Port 0 bits 0-4 are configured 
as address bits B-12 and bits 5-7 are in input 
mode 

• The on-chip peripherals are all disabled 

• The Program Counter is loaded with 0020H 

Table. 7-1 shows the reset values of the control 
and peripheral registers. Specific reset values 
are shown by 1 s or Os, while an x indicates bits 
whose ststes sre not defined and t ind:rcates not 
used. 

593 



Reset and Clock 

594 

Table 7-1. Control and Peripheral Register Reset Yall88 

Register rae 
"'-ie. DaciRl. Hall 

General Registers 

Program Control Flags 
FLAlOS. R213, D5 

Ragister Pointer 0 
RPO, R214, D6 

Ragiater Pointer 
RP1, R215, D7 

Stack Pointer 
SP, R216-7, DB-D9 

Inatruction Pointer 
IP, R21B-9. DA,DB 

Interrupt Request 
IRQ, R220,DC 

Interrupt Mask 
IMR, R221, DO 

Syatem Mode 
SYM. R222, DE 

External Memory Timing 
EMT. R254, 'FE 
(Bank 0) 

Interrupt Priority 
IPR,' R255, FF 
(Bank 0) 

Port Register. 

Port 0 
PO, R20B, DO 

Port 1 
P1, R209, D1 

x x x x x x 0 0 

1 00, 0 0 0 0 

1 100 1 000 

x x x x x x x x 

x x x x x x x x 

o '0 0 0 0 0 D 0 

x x x x x x x x 

Ott x x x 0 0 

01111100 

x x x x x x x x 

x x x x x x x x 

x x x x x x x x 

Bank 0, no faat interrupta 

Working register CO 

Working register CB 

Interrupts disablsd 

Disable interrupta 
disable'3-state 

3 wait states for Program 
and Data, Slow memory , 

Key 1 = Reset value of 1 
0= Reset value 'of 0 

x = bite whose states are not defined 
t = not used 



Reset snd Clock 

Table 7-1. Control and Peripheral Register Reset Values (Continued) 

Register 

Port Registers (Continued) 

Port 2 
P2, R210, D2 

Port 3 
P3, R211, 03 

Port 4 
P4, R212, 04 

Handshake 0 Control 
HOC, R244, F4 

Handshake 1 Control 
H1C, R245, F5' 

Port 4 Direction 
P4D, R246, F6 

Port 4 Open-Drain 
P40D, R247, n. 

1 1 1 

xxxxxxxx 

xxxxxOxO 

x x x x x x x 0 

1 1 1 1 

o 0 0 0 0 0 0 0 

Port 2/3 Mode 00000000 
P2AM, R248-251, F8,F9,FA,FB 
(Bank 0) 

Port 2/3 Interrupt 0 0 0 0 0 0 0 0 
Pending 

P2AIP, R252-3, FC,FD 

Port 0 Mode 0 0 0 0 0 0 0 0 
POM, R240, FO 0 0 0 1 1 1 1 
(Bank 0) 

Port Mode. t t 0 0 0 0 
PM, R241, F1 
(Bank 0) t t 0 0 0 0 

output register = 1 
Value will not be 
observable until ports 
are configured as output 

output register = 1 
Value will not be 
observable until ports 
are configured as output 

Disable handshake 
Ports 1 and 4, disable CHA, 
(write only) 

Dieable handshake 
Port 0 (write only) 

Inputs 

Push-pull 

Inputs (write only) 
(P2AM, P2BM, P2CM, P2DM) 

(Write only) software 
reset (P2AIP, P2BIP) 

With ROM: input/output 
ROMless: 1 = Address 

With ROM: Port 0/1 inPlits 
(writa only) 
ROMless: Port 0/1 outputs 

Kay: = Reset value of 1 
o = Reset value 0 f 0 

x = bits whose states are not defined 
t = not used 

595 



Reset and Clock 

596 

Teble 7-1. Control IPI Peripheral Regieter Reset Vallm8 (Continued) 

UIIRT IPI OM Regiatera 

UART Transmit Control 
UTC, R235, EB 

UART Receive Control 
URC, R236, EC 

UART Interru~t Enable 
UIE, R237, ED 

UART Dsta 
UIO, R239, EF 

o 0 0·0 0 0 1 0 

o 0 0 0'0 0 0 0 

000 0 0 0 0 0 

X x. x x x x x x 

UART Baud-Rate Generator x x x x x x x x 
UBG, R24B-9, FB,F9 
(Bank 1) 

UART Mode A xxxxxxxx 
UMA, R250, FA 
(Bank 1) 

UART Mode B 
UMB, R251, FB 
(Ban~ 1) 

Wake-Up Hetch 
WUHCH, R254, FE 
(Bank 1) 

Wake-Up Maak 
WUHSK, R255,. FF 
(Bank 1) 

DHA Count 
DC, R240-1, FO,F1 
(Bank 1) 

Co....ter Regietera 

Counter 0 Control 
COCT, R224, EO 
(Bank 0) 

o 0 0 0 0 0 0 0 

x x x x x x x x 

x x x x x x x x 

x x x x x x x x 

x x 0 0 0 0 0 0 

Diaable tranamitter, 
transmit buffer empty, 

Disable raceiver 
No character received 

Diaable interrupts 

Disable baud-rate generator 

Disable counter 0, 
interrupte, software 
capture 

Key: 1 = Reset value of 1 
0'= Raset value of 0 

x = bits whose statee are not defined 
t = not used 



Table'7-1. Control and Peripheral Register Reset 'Values (Continued) 

Register 

Counter Registera (Continued) 

Counter 1 Control 
C1CT, R225, E1 
(Bank 0) 

Counter 0 Capture 
COC, R226-7, E2,E3 
(Bank 0) 

Counter 1 Cspture 
C1C, R22B-9, E4,E5 
(Bank 0) 

Counter 0 Mode 
COM, R224, EO 
(Bank 1) 

Counter 1 Mode 
C1M, R225, E1 
(sank 1) 

x X 0 0 0 0 0 0 

X X X X X X X X 

x x x x x x x x 

o 0 0 0 x x x x 

0, 0 0 0 x x x x 

Counter 0 Time Constant x x x 'x x x x x 
COTC, R226-7, E2,E3 
(Bank 1) 

Counter 1 Time Constant x x x x x x x x 
C1TC, R22B-9, E4,E5 
(Bank 1) 

c-nta 

Dissble counter 1, 
interrupts, software 
cspture 

Port 2 1/0 

Port 3 1/0 

Key: 1, Resat value of 1 
o Reset value of 0 

x = bits whose states are not defined 
t not used 

Reset and Clock 

597 



Reset and Clock 

Eight clock cycles after ~ has returned high, 
the SuperB starts program execution. The initial 
instruction fetch ie from locetion 0020H• The 
first program segment executed is typically a 

routine to initialize the control regietere to the 
required system configuration. Figures 7-1 and 7-2 
show the reset timing. 

I • I 2 I 3 I 4 I 5 I 6 I 7 ~T1-+-T2-+-T3~' ... ~T8-+-T9~ 
XTAL1 

RESET~ i i 
I I 

V i I I i 
AS I \ 1/ I 

I I 

~DDRESS 
I I I 
I I 0020 I 
I I I 

DS if 1 \ 
DATA 

Figure 7·1. Reset Timing for ROMless Devices 

XTAL1 

AS 

• ADDRESS 

I, i 
I I 

! )1 -------;--' 
I I 
I I 
I I 

DS _______ ..... 1/'-__ 1 
• DATA 

·Inlemal signals except for protopacks 

i 
I 
I 

\..Y 

'l..n..rLrL.r1r 

f/ 

;(F 

i 
I 

\ 

V 
OPe 

V,------\ 

Figure 7·2. Reset Timing for ROM and Protopack Devices 

598 



7.2 a.OCK 

The SuperB derives its timing from on-board clock 
circuitry connected to pins XTAL1 and XTAL2. The 
clock circuitry consists of an oscillator, a 
divide-by-two shaping circuit, and a clock 
buffer. Figure 7-3 illustrates the clock 
circuitry. 

The oscillator's inputs are XTAL1 and XTAL2, which 
can be driven by a crystal, a ceramic resonator, 
or an external clock source. The divide-by-two 
circuit can also be driven directly from a TTL 
level on the XTAL1 pin. 

XTAL1 
+2 

XTAL2 

BUFFER 

INTERNAL 
CLOCK 

Figure 7-3. Super8 Clock Circuit 

Crystals and ceramic resonators would be connected 
across XTAL1 and XTAL2 and should have the follow­
ing characteristics to ensure proper osci lIator 
operation: 

Cut: 
tt:lde: 
output Frequency: 
Resistance : 
Capacitance: 

AT (crystal only) 
Parallel, fundamental 
1 MHz-12 MHz 
100 ohms maximum 
30 pf maximum 

When an external frequency source is used, onl y 
the XT AL1 input' needs to be dr i ven • Any TTL­
compatible driver can be u!3ed for this function. 
The XTAL2 input can be left floating. 

Reset and Clock 



8.1 INTRODUCTION 

The SuperS has 40 line~ dedicated to input and 
output. These are grouped into five ports 0 f 
eight lines each. All the lines can be configured 
as inputs or outputs; some can be configured as 
address/data lines.~All ports have TTL-compatible 
input and output characteristics and can drive two 
standard TTL loads. 

8.2 GENERAL STROCTURE 

In general, each bit of the five ports has an 
associated input register, output register, and 
buffer and control logic. When the CPU writes to 
a port, it causes data to be stored in the output 
register. Those bits of that port configured as 
outputs enable the output buffer, and the output 
register contents are present on the external 
pin. If those bits configured as outputs are read 
by the CPU, the data present on the external pin 
is returned. Under normal output loading, this is 
the equivalent of reading the output register. 
However, if a bit of the port is configllred as an 
open-drain output, the data returned may not be 
the value contained in the output register; rather 
it is the value forced on the input pins by the 
external system. 

When a bit .of any port is defined as an input, 
reading that bit causes data present on the exter­
nal pin to be returned. Ports that are under 
handshake control are an exception. Reading a 
handshake-driven input bit returns the data last 
latched into the input register by the input­
strobe. 

Bits configured as inputs can be written to by the 
CPU, but in this case, the data is stored in the 
output register and cannot be read back because 
the output buffer is disabled. However, if the 
input bits are reconfigured as output bits, the 
data stored in the output register is then 
reflected on the output pins. This mechanism 
allows· the user to initialize outputs prior to 
driving their loads. 

600 

ChapterS 
110 Ports 

8.3 PORT 0 

Port 0 (R20S) can be configured as I/O or as an 
address output port for addressing external memory 
on a bit basis. Those bits selected as I/O can be 
configured as all inputs or all outputs. When 
configured as ·outputs, the option exists to select 
open-drain outputs. The open-drain option does 
not appl y to those bits configured as address 
lines. 

Accesses to Port 0 are made by reading and writing 

to register R20S (DOH in set one). When a Port 
o bit is configured as an address output, it 
cannot be accessed as a register (writes have no 
effect, reads return the state of the external 
pin). When used as an I/O port, Port 0 may be 
placed under handshake control by using the facil­
ities of Handshake Channel 1 (see section S.S). 

The following control registers are associated 
with configuring Port 0: 

• Port Mode register (RZll1, Bank 0). Controls 
direction of I/O lines and selection of open­
drain or push-pull outputs. 

• Port 0 Mode register (R21lO, Bank 0). Config­
ures each bit as I/O or address bit. 

• Handshake 1 Control register (R2115, Bank 0). 
Controls enabling and configuration of hand­
shake signals. 

8.11 PURr 1 

Port 1 (R209) can be configured as an address/data 
port for interfacing exterr\al memory or as a byte 
I/O port. The configuration is set using the Port 
Mode register (R241, Bank 0). (ror a description 
of Port 1 as part of the external memory inter­
face, see section 12.3.) When configured as a 
byte output port, there is an option to se lect 
open-drain outputs on the entire port. In the 
ROMless parts, Port 1 is always an address/data 
bus and cannot be programmably configured. 



I/O Ports 

When configured as an input or output port, 
accesses are made to Port 1 via reads or writes to 
register R209 (01 H in set one). When Port 1 is 
configured as a multiplexed address/data port, it 
cannot be accessed as a register; writes have no 
effect and reads return an FF H' When used as an 
I/O port, Port 1 can be placed under handshake 
control by using the facilities of Handshake 
Channel 0 (see section B.B). 

The following control registers are associated 
with configuring Port 1: 

• Port Mode register (R2111. Bank 0). Controls 
Port 1 configuration (input port, output port, 
or address/data bus) and selection of open­
drain or push-pull outputs. 

• Handshake 0 Control register (R2I111. B ... k 0). 
Controls the enabling and configuration of the 
handshake signals. 

8.5 PORTS 2 AND , 

Ports 2 and 3 (R210 and,R211) are used to provide 
the external control inputs and output.s for the 
UART, the handshake channels, and the counter/ 
timers. The relationship between port pins' and 
their control function is shown in Table B-1. 
When Port 2 and 3 bits are not used for control 
inputs and outputs, they are available for use as 
general-purpose I/O lines and/or external inter­
rupt inputs. Each bit is individually configured 
as to its function. 

When Ports 2 and 3 are used as general-purpose I/O 
lines, the direction of each bit can be configured 
individually. Each bit selected as an output can 
also be configured individually as an open-drain 
or push-pull output. All inputs of Ports 2 and 3 
are Schmidt-triggered. 

The following control registers are associated 
with configuring Ports 2 and 3: 

• Port 2/J A Mode register (R2118. B ... k 0). 
Controls the configuration of bits 0 and 1 
(input, input with interrupt enabled, push-pull 
input, open-drain output). 

• Port 2/3 B Mode register (R2119. B ... k 0). 
Controls configuration of bits 2 and 3. 

• Port 2/3 C Mode register (R250. B ... k 0). 
Controls configuration of bits 4 and 5. 

• Port 2/3 D Mode register (R251. B ... k 0). 
Controls configuration of bits 6 and 7. 

~ 

The various control functions are enabled in the 
control register for the associated device (Hand­
shake Control register, Counter Mode register, 
etc.) • When using Port 2 and 3 pins as control 

signals, the Port 2/3 Mode registers must still be 
programmed to specify which bits are inputs and 
which bits are outputs. 

Each bit of Ports 2 and 3 can be used as an exter­
nal interrupt input. Each bit used as an external 
interrupt input must be configured as an input, 
but may still be used as an external control input 
or as a general-purpose input" line. Each external 
interrupt bit has an edge-triggered "interrupt~ 

pending" flip-flop that captures the external 
int.errupt requests. Software can read and reset 
the edge-triggered flip-flops without affecting 
the normal I/O operation of the bit. Each external 
interrupt has its own interrupt enable control 
that determines if that bit is allowed to cause an 
interrupt. The edge-triggered flip-flops still 
capture edges when the interrupt enable 'control is 
disabled. Port 2 is accessed as general register 
R210, Port 3 as general register R211. 

Table 8-1. Ports 2 and J Control Functions 

-Port2- Port 3 -
Bit Function Bit Function 

0 UART Receive Clock 0 UART Receive Data 
UART Transmit Clock 1 UART Transmit Data 

2 Reserved 2 Reserved 
3 Reserved 3 Reserved 
4 Handshake o InpLlt 4 Handshake 1 Inputll'lliIT 
5 Handshake 0 Output 5 Handshake 1 Outputlmi 
6 Counter 0 Input 6 Counter 1 Input 
7 Counte r 0 I/O 7 Counter 1 110 

601 



Two pegisters are direcUy al!lsociated with the 
interrupt flip-flops: 

• Port 2/3 A Interrupt: Pending register (R252, 
a...k 0). Controls interrupt flip-flops for 
bits 0, 1, 2 and 3 of Ports 2 and 3. 

• Port 2/J 0 Interrupt: Pending register (R25J, 
a...k 0). Controls interrupt' flip-flops for 
bits 4, 5, 6, and 7 of Ports 2 and 3. 

These registers can be used, to poll the external 
interrupts and to reset the interrupt pending bits 
(the flip-flops). Reading these reQisters returns 
the state ,of the interrupt pending flip-flop. 
When writing to these registers, writing a 1 to a 
bit position clears that flip~flop and writing a 0 
to a bit position has no effect. 

The Interrupt Mask register (R221) and Port 2/3 
Mode registers' determine . which interrupts are 
enabled. 

0.6 PORT 0\ 

Port 4 (R212) is always an I/O port whose direc­
tion csn be configured on a bit-by-bit basis. 
Each bit configured as an output can be configured 
individually as an oP,Bn-drain or push-pull output. 

Port 4 I/O lines are accessed via reads and writes 
to regiater R212 (O~ in set one). 

Port 4 can be placed under handshake control by 
using the facilities of Handshake Chann!!l 0 (see 
section 8.8). 

The following control registers are associated 
with configuring POft 4: 

• Port 0\ Directioo register (R20\6, Oink 0). 
Controls direction of each bit of Port 4. 

• Port 0\ Open-Drain register (R20\7, a...k 0). 
'Selects open-drain or push-pull for each Port 4 
output. 

• Handahalce 0 Control register (R2 .. , Oink 0). 
Controls the enabling and configuration of the 
handshake signals. 

602 

I/O Ports 

, 0.7 PORT IDlE AfI) alUROl. REGISTERS 

The port/l are configured and c,ontrolled by the 
following set' of registers: 

• Port Mode 
• Port 0 Mode 
• Port 2/3 A Mode, 
• Port 2/3 B Mode 
• Port 2/3 C Mode 
• Port,2/3 0 Mode 
., Port 2/3 A Interrupt Pending 
• Port 2/} B Interrupt Pending 
• Port 4 Direction 
• Port 4 Open-Drain 

0.7.1 'Port Mode Register 

The Port Mode register provides some additional 
mode control for Ports 0 and 1. The fields in 
this register are (figure 8-1): 

R241 BANK 0 (F1) PM 
PORT MODE (WRITE ONLY) 

- N!lTUSED~ 
PORT 1 MODE 

00 OUTPUT 
01 INPUT 
1X ADDRESS/DATA 

llli. ~ 
PORTO DIRECTION 
0= OU1PUT 
1 = INPUT 

OPEN·DRAIN PORT 0 
o = PUSH·PULL 
1 = OPEN·DRAIN 

OPEN DRAIN PORT 1 
o = PUSH-PULL 
1 = OPEN·DRAIN 

ENABLE DM P3, 
0= DISABLE 
1 = ENABLE 

Figure 8·1. Port Mode Register 

Port 0 Directioo (Do). If this bit iB a 1, all 
bits of Port 0 configured as I/O will be inputs. 
If this bit is a 0, then the I/o lines will be 
outputs. A hardwsre reset forces this bit to a 1. 

Open-Drain Port 0 (D1). If this bit is a 1, all 
bits of Port 0 configured as outputs will be 
open-drain outputs; if 0, they will be push-pull 
outputs. This bit has no effect on those bits not 
configured as outputs. A hardware reset forces 
this bit to a o. 

Open-Drain Port 1, (Dt). If Port 1 is configured 
as an output port and thia bit is s'1, then all of 
the port'will be open-drain outputs. If this bit 
is a 0, they will be pueh-pull outputs. This bit 
hss no effect if Port 1 is not _ configured as an 
output port or A/OO- 7• A hardware reaet forces 
this bit to Ii O. 



1/0 Ports 

Enable 1R (0,). If this bit is a 1, Port 35 is 
configured as Oata Memory output line (1m). A 
hardware reset forces this bit to· a O. 

Port 1 Mode (04-05)' This field selects the 
configuration of Port 1 as an output port, input 
port, or address/data port as part of the externsl 
memory interface. The coding for this field is as 
follows: 

Field 

00 
01 
1X 

Flnctioo 

Output port 
Input port 
Address/data 

A hardware reset forces this field to the 01 
(input port) state. The ROMless part has this 
field forced to 1X. 

8.7.2 Port 0 Mode Register 

The Port 0 Mode register programs each bit of Port 
o as an address output (part of an external memory 
interface) or as an I/O bit (figure B-2). When a 
bit of this register is a 1, the correaponding bit 
of Port 0 is defined as an address output. When a 
0, the corresponding bit of Port 0 is defined as 
an I/O bit. For ROM less parts, 'I hardware reset 
forces this register to all 1 s for pins POO-P04 
and Os for pins P05-P07; for parts with on-chip 
ROM, a hardware reset forces all pins to O. 

R240 BANK 0 (FO) POM 
PORT 0 MODE 

1~1~1~1~1~1~1~1~1 

:::~ I I I [g::: 
POSMODE~ ~P02MODE 
P04 MODE poi MODE 

o = 1/0; 1 = ADDRESS 

Figure 8-2. Port 0 Mode Register 

8.7.' Port 2/3 Mode Registers 

The Port 2/3 A Mode, Port 2/3 B Mode, Port 2/3 C 
Mode, and Port 2/3 D Mode registers control the 
modes of Ports 2 and 3 (Figures B-3, B-4, B-5, and 
8-6). A separate 2-bit field for each of the bits 

of Ports 2 and 3 configures the bit as input or 
output. The field a1ao controls whether the bit 
is enabled as an external interrupt source and 
selects the output as open-drain or push-pull. 
The field is coded as follows: 

Field 

00 
01 
10 
11 

Ftn:tioo 

Input 
Input and interrupt enabled 
Output, push-pull drivera 
Output, open-drain 

A hardware reset forces all bits of the four 
registers to the 0 state. 

R248 BANK 0 (F8) P2AM 
PORT 2/3 A MODE (WRITE ONLY) 

00 INPUT 
01 INPUT, INTERRUPT ENABLED 
10 OUTPUT, PUSH-PULL 
11 OUTPUT, OPEN-DRAIN 

Figure 8-3. Port 2/3 A Mode Register 

R249 BANK 0 (F9) P2BM 
PORT 2/3 B MODE (WRITE ONLY) 

00 INPUT 
01 INPUT, INTERRUPT ENABLED 
10 OUTPUT, PUSH·PULL 
11 OUTPUT, OPEN-DRAIN 

Figure 8-4. Port 2/3 B Mode Register 

R250 BANK 0 (FA) P2CM 
PORT 2/3 C MODE (WRITE ONLY) 

00 INPUT 
01 INPUT, INTERRUPT ENABLED 
10 OUTPUT, PUSH-PULL 
11 OUTPUT, OPEN·DRAIN 

Figure 8-5. Port 2/3 C Mode Register 

603 



R251 BANK 0 (FB) P20M 
PORT 2/3 0 MO.DE (WRITE ONLY) 

00 INPUT 
01 INPUT, INTERRUPT ENABLED 
10 OUTPUT, PUSH.PULL 
11 OUTPUT, OPEN·ORAIN 

Figure 8-6, Port 2/3 0 Mode Register 

8.7.4 Port 2/3 Interrupt Pending Registers 

The. Port 2/3 A Interrupt Pending and Port 2/3 B 
Interrupt Pending registers represent the software 
interface to the negative edge-triggered flip-flops associated 
with extemal interrupt inputs. Each bit of these registers 
corresponds to an interrupt generated by an extemal source. 
When one of these registers is read, the value of each bit 
represents the state of the corresponding interrupt. When 
one of these registers is written tO,a 1 in a bit position causes 
the corresponding edge-triggered flip-flop to be reset to 0; a 
o causes no action. 

The software interfaces with these registers to 
poll the interrupts and also to reset pending 
interrupts as they are processed. The relation­
ship between theae registers and the corresponding 
externally generated interrupts is shown in 
Figures 8-7 and 8-8. A hardware reset forces all 
interrupt edge-triggered flip-flops to the 0 
state. 

604 

R252 BANK 0 (Fe) P2AJP 
PORT 213 A INTERRUPT PENDING 

Figure 8-7. Port 2/3 A Interrupt Pending Register 

R253 BANK 0 (FO) P2 BIP 
PORT 2/3 B INTERRUPT PENDING 

P3J~ I. ~I L24 P3.~' ~P25 
P27' P34 

P26 P3s 

Figure 8-8. Port 2/3 B Interrupt Pending Register 

1/0 Ports 

8.7.5 Port 4 Direction Register 

The Port 4 Direction register defines the I/O 
direction of Port 4 on a bit basis (Figure 8-9). 
If s bit in this register is s 1, the correspond­
ing bit of Port 4 is configured as an input line. 
If the bit is a 0, the corresponding bit of Port 4 
is configured as an output line. A hardware reset 
forces this register to the all 1s state. 

R246 SANK 0 (FB) P40 
PORT 4 DIRECTION 

1~1~1~1~1~1~1~1~1 

L.I _____ P40·P47 1/0 DIRECTION 
o = OUTPUT; 1 = INPUT 

Figure 8-9. Port 4 Direction Register 

8.7.6 Port 4 Open-Drain Register 

The Port 4 Open-Drain register defines the output 
driver type for Port 4 (Figure 8-10). If a bit of 
Port 4 has been configured as an output and the 
corresponding bit in the Port 4 Open-Drain 
register is a 1, then the Port 4 bit will have an 
open-drain output driver; if it is a 0, then the 
Port 4 bit will have a push-pull output driver. 
If the bit of Port 4 has been configured as an 
input, then the corresponding bit in the Port 4 
Open-Drain register has no effect. A hardware 
reset forces this register to the alIOs state. 

R247 SANK 0 (F7) P400 
PORT 4 OPEN·DRAIN 

I~I~I~I~I~I~I~I~I 

L.1-----~"::ti~~~;~L~;Rt~ OPEN.DRAIN 

Figure 8-10. Port 4 Open-Drain Register 

8.8 HAN>5ltAKING CtWNl.S 

The Super8 has two handshaking channels. Channel 
"0" is associated with Ports 1 or 4; Channel "1" 
is associated with Port O. They are identical in 
function except Channel 0 also has DMA capability. 

There are two basic modes of operation. The first 
is the "fully interlocked" or two-wire mode. In 
this mode, there is an incoming control wire and 
an outgoing control wire. Each transition on H 

control wire must be ans.wered by a transition Oil 

the other control wire before the first can make 
another transition. Thus both the sender and 
receiver control the data transmission rate. 
Figures 8-11 and 8-12 illustrate the operation of 
the "fully interlocked handshake." 



I/O Ports 

DAV 
('NPUT TO SUPERB) 

(OUTPUT FROM SUP~~~---+-", 

DATA ON PORT 
(INPUT TO SUPERB) 

State 1. Ready output IS high Indicating that the SuperB is ready to accept data 
State 2. The I/O device puts data on the port and then activates the DAV input This causes the 

data to be latched into the port Input register and generates an Interrupt or DMA request 
State 3. The SuperB forces the Ready (ROY) output low, Signaling to the 1/0 device that the data 

has been latched 
State 4. The 110 device returns the DAV line high In response to ROY gOing low. 
State 5. The SuperB DMA or Interrupt software must respond to the service request and read the con­

tents althe port In order for the handshake sequence to be completed. The ROY line goes high 
if, and only if, the port has been read and DAV is high. This returns the interface to its Initial state 

Figure 8-11. Super81nput Handshake-Fully Interlocked Mode 

ROY 
(INPUT TO SUPERB) 

DAV 
(OUTPUT FROM SUPERB) 

oATAONPOAT 
(OUTPUT FROM SUPERB) 

SET-UP 

VALID DATA 

State 1. ROY Input is high Indicating that the 1/0 device IS ready to accept data 
State 2. The SuperB writes to the port register to initiate a data transfer. Writing the port outputs 

new data and forces OAV low If, and only II, ROY IS high and set-up time IS done 
State 3. The 1/0 device forces ROY low after latching the data. ROY low causes an interrupt or OMA 

request to be generated. The SuperB can write new data In response to ROY going low. 
State 4. The OAV output Irom the SuperB IS driven high In response to ROY gOing low. 
State 5. After OAV goes high, the I/O device IS free to raise ROY high thus returning the Interface 

to Its Initial state 

Figure 8-12. Super8 Output Handshake-Fully Interlocked Mode 

The second mode is the "strobed" or single-wire 
mode. In this mode there is a single control wire 
and it is generated by the sender. Figures 8-13 
and 8-14 illustrate· the operation of "strobed" 
handshaking. 

Each channel has a 4-bit counter, called the 
Deskew Counter, that is used to count processor 
clocks. In the "strobed" mode, this counter is 
used to generate the set-up time and strobe width 
for the output handshake. In the "full y inter-

DAV I I 
('NPUT TO SUPERB) 1\---STROBE_, 

SET·UP "-1-1 1--- HOLD -I 
DATA ON PORT --V V 

(INPUT TO SUPER8) --..I\: VALID DATA .f!\,, ____ _ 
I I 

Figure 8-13. Super81nput Handshake-Strobed Mode 

605 



I/O Ports 

, r-~STROBE 
DAV 

(OUTPUTFROMSUPER8) ------,/U--------
I-f-SET.UP 

DATA ON PORT --v-
(OUTPUT FROM SUPER8) ----'\ ______ ~_A_L_ID_D_A~_'A _____ _ 

THE SET·UP AND STROBE MINIMUM TIMES ARE DETERMINED 
BY THE VAWE IN THE DESKEW COUNTER. 

Figure 8-14. Super8 Output Handsha.ke-Strobed Mode 

locked" mode, the counter generates the set-up 
time. This set-up time is the delay between 
outputting valid data at the port and activating 
the Data Available handahake signal. The Deskew 
Counter can be loaded with a value from 1 to 16 
that represents the minimum number of CPU clock 
cycles in the data set-up and strobe times. 

The direction of data trsnsfer during handshake is 
determined by the selected direction of bit 0 of 
the parallel port associated with the handshake 
channel. This also controls the DMA direction 
when used. 

8.8.1 Pin Descriptions 

The handshake channels each use two pins of Ports 
2 and 3 (bits 4 and 5) for interfacing with the 
external world: 

Handshake Channel 0 Input P24 
Handshake Channel 0 Output P25 

Handshake Channel 1 Input P34· 
Handshake Channel 1 Output P35 

The individual Port 2 and 3 pins should be con­
figured for the appropriate I/O direction as 

!leeded by the handshake function. Note that the 
open-drain options of Ports 2 and 3 can be applied 
to the handshake outputs. Note also that Port 2 
and 3 pins used by the handshake channels as 
inputs can still be used as external interrupt 
pins to drive the handshake service routines. 

Handshake Input. This input provides the l5lW 
signal for input handshaking or the RDY signal for 
output handshaking. 

Handshake output. This output providlls the RDY 
signal for input handshaking or the l5lW signal for 
output handshaking. 

8.8.2 Handshake Control Registers 

Each handshake channel is controlled by an B-bit 
control register (Figures B-15 and B-16). Hand­
shake 0 Control register (R244) and Handshake 1 
Control register (R245) include the controls for 
enabling handshakes, selecting the associated port 
(Channel 0 only), selecting the handshake type, 
enabling OMA capability (Channel 0 only), and 
initializing the Deskew Counter. 
these registers are: 

The fields in 

R244 SANK 0 (F4) HOC 
HANOSHAKE 0 CONTROL (WRITE ONLY) 

606 

I~I~I~I~I~I~I~I~I 

DESKEW COUNTER ~ 
(RANGE 1-16) ~

I L 1 = HANDSHAKE ENABLE 

L PORT SELECT: 
1 = PORT1;O = PORT 4 

DMAENABLE: 
1 = ENABLED 
0= DISABLED 

MODE: 
1 = FULLY INTERLOCKED 
0= STROBED 

Figure 8-15. Handshake.O Control Register 



I/O Ports 

R245 BANKO (F5) H1C 
HANDSHAKE 1 CONTROL (WRITE ONLY) 

I~I~I~I~I~I~I~I~I 

DESKEW COUNTER ~ 
(RANGE 1·16) 

I I L,""_",",~~ 
NOJUSED 

MODE: 
1 = FULLY INTERLOCKED 
0= STROBED 

Figure 8-16. Handshake 1 Control Register 

Handshake Enable (Do). When this bit is set to 1, 
the handshake function is enabled. 

Port Select (Channel 0 only)(01) _ This bit 
selects which port is controlled by Handshake 
Channel O. When it is set to 1, Port 1. is 
se lected and when it is cleared to 0, Port 4 is 
selected. 

~ Enable (Channel 0 only)(Dz). When this bit is 
set to 1, the OMA function is enabled for Hand­
shake Channel O. When it is cleared to 0, the DMA 
function is not used by the handshake channel and 
may be used by the UART. 

Mode (OJ). When this bit is set to 1, the "fully 
inter locked" mode is enabled. When it is cleared 
to 0, the "strobed" mode is enabled. 

Deskew Counter (04-DJ). This 4-bit field is used 
to select a count value from 1 to 16 (0000-1111). 
This value is the number of processor clocks used 
to generate the set-up and strobe when using the 
"strobed" mode, or the set-up when using the 
"fully-interlocked" mode. 

607 



9.1 INTRmOCTION 

The SuperB has two identical 16-bit counter/timers 
that can be programmed independently: They can be 
cascaded to produce a counter }2 bits in length 
and can operate from internal inputs (as timers) 
or external inputs (counters). When used as 
timers, the internal input is the internal CPU 
clock divided by two, which is the XTAL divided by 
four. Figure 9-1 shows the counter/timer block 
diagram. 

o 
A 
T 
A 

B 
U 
S 

CPU 
CLOCK 

Chapter 9 
Counter/Timers 
The counter/timers can count up or down. The 
dire~tion can be controlled on, the fly by either 
software or an external event. 

The counter/timers have the option of single cycle 
or continuous counting capability. In the single 
cycle mode, the counters count to zero ( up or 
down) from the preset time-constant value and then 
stop. In the continuous mode, counting is 
continuous and each time the counter reaches zero, 
it is reloaded with the preset time-constant value 
from the Time Constant register (or the Capture 
register in bi-value mode). 

Figure 9-1. Counter/Timer Block Diagram 

608 



Counter/Timers 

9.1.1 Bi-Yalue Mode 

Another option allows either a single or dual 
(bi-value) preset time constant value. In 
bi-value mode, both the Time Constant register and 
Capture register are used to supply load values to 
the counter/ timer. The two registers alternate 
in loading the counter/timer each time the 
counter/timer makes a transition between a count 

of 0 and a count of FFFF H when counting down, or 
between a count of FFFfH and 0 when counting up 
(assuming continuous mode operation), or when a 
trigger causes the counter/timer to be reloaded. 
This can be used to produce an output pulse train 
with a variable duty cycle. The bi-value feature 
is not available when the capture feature is 
e~abled and vice versa. Upon enabling a 
counter/timer in bi-value mode from a previously 
disabled condition, the initial load of the 
counter/timer is'from the Time Constant register. 

9.1.2 Capture 

Another feature, called "capture on external 
event," takes a snapshot of the counter when a 
specific event occurs. The external event can be 
simulated by software. When "captured," the 
current value in the counter is loaded into a 
special register that can subsequently be 
read via software. The capture feature is needed 
to look at counters on the fly, especially 
cascaded counters. 

The external event can be either the r ising edge 
of the counter/timer I/O line (P27 for C/TO, P37 
for C/T1) or both edges. On the rising edge, the 
current count value is loaded into the Capture 
register. If capture on both edges is enabled, the 
current count value is loaded into the Time 
Constant register on the falling edge, overwriting 
the initial load value for that counter. 

The capture feature is not available when the 
bi-value counting feature is being used and, vice 
versa. 

If interrupts are enabled, the interrupt request 
ia generated on the transition from a count of 0 
to a count of ffFF H or from a count of fffF H 
to a count of 0, and/or on an external event. If 
configured for an external output, the output pin 
toggles at this aame count change. 

9.1.3 External Gate and Trigger 

The counter/timers have an external gate capabil­
ity. When this feature is selected, an external 
input line (GATE) is monitored. The counting or 
timing operation ia performed only when this line 
is low. The gate facility is illustrated in 
Figure 9-2. 

GATE INPUT a....-;. _____ Il ... __ .... 
COUNTER OR 
TIMER INPUT 

TRIGGER INPUT 

Figure 9-2. Gate Facility 

COUNTER OR n ,----, r1 
TIMER INPUT .. ____ ..... ' ' .. _.,... ...... 1 L---
A COUNT OCCURS HERE, 

GATE/TRIGGER 
INPUT 

Figure 9-3. Trigger Operation 

COUNTER OR TIMER INPUT 

Figure 9-4. GatelTrigger Function 

609 



An ex ternal input can be used as a tr igger input 
to a counter/timer. When this feature is selected, 
an external line ia monitored. A software trigger 
is alsa present in a control register. The 
trigger input to the Counter/Timer is an OR of the 
software and hardware triggers. Prior to a low­
to-high transition on the trigger, the Counter is 
disabled. After the low-to-high transition on the 
trigger, counting is enabled. Retriggerable or 
non-retriggerable'mode can be selected. 

Clearing the Counter Enable bit in the Control 
register also resets the triggered condition; a 
new trigger must be received after the Counter 
Enable bit is set again before counting will 
resume. The trigger operation is illustrated in 
Figure 9-3. 

One input line (GATE/TRIGGER) can be used for both 
the gating and the triggering functions. An 
initial low·to-high transition on this line acts 
as a trigger and subsequent low signals on this 
line function as gate signals (Figure 9-4). 

9.2 COUNTER/TIMER CONTROL AND MOO[ REGISTERS 

Each counter/timer has an 8-bit Mode register, an 
8-bit Control register, a 16-bit Time Constant 
register, and a 16-bit Capture register. 

Counter/Timers 

The Mode and Control registers determine the 
counter/timer operations. The Mode register 
selects the configuration of the counter/timers 
and is generally loaded only at initialization 
time, while the Control register handles those 
features that are likel y to be dynamicall y 
changed. 

The Time ,Constant register contains the initiali­
zation value for the counter/timer and also holds 
the counter value saved on the falling edge of 
P27/P3,7 when capture on both edges is enabled. 

The Capture register holds the counter value saved 
when using the "capture on external event" func­
tion. When capture on both edges is enabled, it 
holds the value saved on the rising edge of 
P27 /P37' It also holds a second initialization 
value when using the bi-value counting feature. 

9.2.1 Counter/Timer Control Registers 

The fields in these registers, as shown in Figures 
9-5 and 9-6, are: 

R224, BANK 0 (EO) COCT 
COUNTER 0 CONTROL 

61b 

o = SINGLECYCLE~~ 1 = CONTINUOUS ~ 

o = COUNT DOWN 
1 = COUNT UP 

1 = LOAD COUNTER 

1 = SOFTWARE TRIGGER 

~I L" = ENABLE COUNTER L READ 1 = END OF COUNT 
WRITE 1 == RESET END OF COUNT 

1 = ZEROCOUNTINTERRUPT ENABLE 

1 = SOFTWARE CAPTURE 

Figure 9-5. Counter 0 Control Register 

R225 BANK 0 {E1)C1CT 
COUNTER 1 CONTROL 

o = SINGLECYCLE~~ 1 = CONTINUOUS 

o = COUNT DOWN 
1 = COUNT UP 

1 = LOAD COUNTER 

1 = SOFTWARE TRIGGER 

~I L 1= ENABLE COUNTER L READ 1 = END OF COUNT 
WRITE 1 = RESET END OF COUNT 

1 = ZERO COUNT INTERRUPT ENABLE 

1 = SOFTWARE CAPTURE 

Figure 9-6, Counter 1 Control Register 



Counter/Timers 

Enable Counter (Do). When this bit is set to 1, 
the counter/timer is enabled; operation begins on 
the rising edge of the first processor clock 
period following the setting of this bit from a 
previously cleared value. Writing a 1 in this 
field when the previous value was 1 has no effect 
on the operation of the counter/timer. When this 
bit is cleared to 0, the counter/timer performs no 
operation during the next (and subsequent) 
processor clock periods. A hardware reset forces 

this bit to O. Both counters are clocked by the rising edge of 
the incoming signal on P26 or P36 after the counter is 
enabled. The maximum frequency of the extemal clock 
signal applied to P36 (P26) equals the maximum Xtal fre­
quency divided by 4. The maximum quaranteed Xtal fre­
quency for the SuperS is 20 MHz, which implies a maximum 
counter frequency of 5 MHz. 

Reset/End of Count Stetus (01)' This bit is set 
to 1 each time the counter reaches O. Writing a 1 
to this bit resets it, while writing a 0 has no 
effect. 

Zero Count Interrupt Enable (Dz). When this bit 
is set to 1, the counter/timer generates an inter­
rupt request when it counts to O. A hardware reset 
forces this bit to O. 

Software Capture (0,). 
the current counter 
capture register. 
cleared following the 

When this bit is set to 1, 
value is loaded into the 

This bit is automatically 
capture. 

Software Trigger (04)' This bit is effectively 
"ORed" with the external using-edge trigger input 
and can be used by the soft.ware to force a trigger 
signal. This bit produces a trigger signal 
regardless of the setting of the Input Pin Assign­
ment field of the Mode register. This bit is 
automatically cleared following the trigger. 

Load Counter (05)' The contents of the Time, 
Constant register are transferred 'to the Counter 
prescaler one clock period after t.his bit is set. 

This operation alone does not start the Counter. 
This bit is automatically cleared following the 
load. 

Count ~1bcnIn (06)' 
direction if internal 
in the Mode register. 

This bit determines the count 
up/down control is specified 
A 1 indicates up, a 0 down. 

Continuous/Single Cycle (D71. When this bit is set to 1 
the counter is reloaded with the time-constant value when the 
counter reaches the end of the terminal count. The terminal 
count for down counting is 0000, while the one for up counting 
is FFFF. When this bit is cleared to 0, no reloading occurs. 

9.2.2 Counter/Ti~r Mode Registers 

The fields in these registers, as shown in Figure 
9-7 and 9-8, are: 

Capture Mode (0" Do). This 2-bit held selects 
the capture or bi-value count mode. A value of 01 
enables capture on the rising edge of the 1/0 pin, 
a value of 11 enables capture on both edges of the 
I/O pin, a value of 10 enaples the bi~value count 
mode and disables capture, and a value of 00 
disables both capture and bi-value load. 

Progr'~Extemel IJp/OooIn Control (Dz) • A 1 
enables programme'd up/down control and a 0 enables 
external up/down control. If external up/down is 
enabled, a 0 on P27/P37 indicates down and a 1 
indicates up. 

Enable Retrigger (0,). When this bit is set to 1, 
the time-constant value is automatically loaded 
into the Counter/Timer register when a trigger 

R224 BANK 1 (EO) COM 
COUNTER 0 MOOE 

INPUT PIN ASSIGNMENTS: ~ 
07 06 05 04 P27 P26 -----1 
~O~O~O~O~II~O~---'~II~O~-----
o 0 0 1 110 TRIGGER 
0010GATE 1/0 
o 0 1 GATE TRIGGER 
o 1 0 110 CO INPUT 
o 1 0 TRIGGER CO INPUT 
o 1 1 GATE CO INPUT 
o 1 1 GATE! 

TRIGGER CO INPUT 
CO OUTPUT I/O 
CO OUTPUT TRIGGER 
CO OUTPUT GATE 
CO OUTPUT GATEITRIGGER 
CO OUTPUT CO INPUT 
--,- UNDEFINED--
--UNDEFINED--
- CASCADE COUNTERS -

I L !i:'lr;,!,,:: """ EOGE OF P2, 
10 = BI·VAWE LOAD 
11 = CAPTURE ON BOTH 

EDGES OF P27 

0= EXTERNAL 
UP/DOWN CONTROL P27 

1 = PROGRAMMEO 
UP/DOWN CONTROL 

1 = ENABLE RETRIGGER 

Figure 9-7. Counter 0 Mode Register 

611 



R225 BANK 1 (E1) C1M 
COUNTER 1 MODE 

Counter/Timers 

I~I~I~I~I~I~I~I~I 
INPUT PIN ASSIGNMENTS, 

o 0 0 0 110 
o 0 0 1 110 
D010GATE 
0011GATE 
o 1 0 0 I/O 
o 1 0 1 TRIGGER 
01l0GATE 
0111GATEI 

P3, 

1/0 
TRIGGER 
1/0 
TRII1GER 
C11NPUT 
C11NPUT 
C11NPUT 

=::J I L~:~~::~,~ 
EDGE OF P37 

10 = BI-VAWE MODE 
11 = CAPTURE ON BOTH 

EDGES OF P3, 

0= EXTERNAL 

TRIGGER C1 INPUT 
C10UTPUT 110 
C1 OUTPUT TRIGGER 
C1 OUTPUT· GATE 
C1 OUTPUT GATE/TRIGGER 
C10UTPUT C11NPUT 
--UNDEFINED--
--UNDEFINED--
--UNDEFINED--

UPIDOWN CONTROL P37 
1 = PROGRAMMED 

UPIDOWN CONTROL 

1 = ENABLE RETRIGGER 

"':igure 9·8. Counter 1 Mode Register 

input is re'ceived while the counter/timer is 
counting (Counter/Timer not equal to 0). When 
this bit is cleared to 0, no reloading occurs. 

Input Pin Assigllllellts (04-1)7). This 4-bit field 
specifies the functionality of the port lines 
associated with the co·unter/timer. It also deter­
mines whether the counter/timer will monitor an 
external input (counting operation) or use the 
scaled internal processor clock (timing opera­
tion). The four bits in the field select the 
following options: enable output (EO), external 
signal or internal clock (C/T), enable gate facil­
ity (G), and enable triggering facility (T). The 

selected options determine the functions asso­
ciated with each external line of the counter/ 
timer as illustrated in Table 9-1. A hardware 
reset forces these four pins to O. 

If 1111 is coded in this field in the Counter 0 
Mode register, then the two counter/timers are 
linked together as a 32-bit'counter with Counter 0 
as the low-order 16 bits and Counter 1 as the 
high-order 16 bits. Counter 1 selects the mode 
and control options for the 32-bit counter and 
external accesses are made through the lines 
associated with Counter 1 (P36 and P37)' 

Table 9-1. IPAField Encoding in Counter MOde Registers 

612 

IPA Field Pin Functionality --
EO CIT C T Counter/Tiaer I/O 

OJ °6 °5 °4 (P27 or P37)*' 

0 0 0 0 I/O 
0 0 0 1 I/O 
0 0 0 Gate 
0 0 Gate 
0 0 0 I/O 
0 0 Trigger 
0 1 0 Gate' 
0 ' 1 Gate/trigger 

0 0 0 Output 
0 0 1 Output 
0 0 Output 
0 1 Output 

0 0 Output 
0- Undefined 

0 Undefined 
Undefined 

* Counter/timer 0 - P27 ~nd P26 
Counter/timer - P37 and P36 

Counter/Ti.er Input 
(P26 or P36)* 

I/O' 
Trigger 
I/O 
Trigger 
Input 
Input 
Input 
Input 
I/O 
Trigger 
Gate 
Gate/trigger 
Input 
Undefined 
Undefined 
Undefined 

Notea 

Timer 
Timer 
Tinier 
Timer 
Counter 
Counter 
Counter 
Counter 
Timer 
Timer 
Timer 
Timer 
Counter 
Reserved 
Reserved 
Reserved for Counter 1, 
Cascade for Counter 0 



Counter/Timers 

The counter/timer I/O line (P27 for C/TO, P37 for 
C/T1) is also used ss the external capture input 
if the capture feature is enabled, and the up/down 
control input (O=down, 1=up) if external up/down 
control is enabled. 

9.2.3 T~ ConatIm: Register 

This 16-bit regiater psir holds the value that is 
automatically loaded into the counter/timer 1) 
when the counter/timer is enabled, 2) in contin­
uous mode, when the count resches zero, or 3) in 
re-trigger mode, when the trigger is ssserted. If 
capture on both edges is enabled, then this regis­
ter captures the contents of the counter on the 
falling edge of the I/O pin. 

The formst of the Time Constant register is 
illustrated in Figure 9-9. 

R226 BANK 1 (E2) COTCH 
COUNTER 0 TIME CONSTANT 

1~1~1~1~I~l~I~I~1 

IL _____ HIGH SYTE (COTC,-COTC15) 

R227 BANK 1 (E3) COTCl 
COUNTER 0 TIME CONSTANT 

I~I~I~I~I~I~I~I~I 

LI _____ lOW BVTE (COTCo-COTC7) 

R228 BANK 1 (E4) C1TCH 
COUNTER 1 TIME CONSTANT 

I~I~I~I~I~I~I~I~I 

LI _____ HIGH SYTE (C1TC,-C1TC15) 

R229 BANK 1 (ES) C1 TCl 
COUNTER 1 TIME CONSTANT 

I~I~I~I~I~I~I~I~I 

LI_~ ___ lOWSYTE(C1TCo-C1TC7) 

Figure 9-9. Time Constant Register Format 

9.2.4 capture Register 

This 16-bit register pair is uaed to hold the 
counter value saved when uaing the "capture on 
external event" function. This register will 
capture at the rising edge of the I/O pin or when 
software capture is asserted. When the bi-value 
mode of operation is enabled, this register is 
used as a second Time Constant register and the 
counter is alternately loaded from each. 

The format of the Capture Register is shown in 
Figure 9-10. 

R226 BANK 0 (E2) COCH 
COUNTER 0 CAPTURE 

I~I~I~I~I~I~I~I~I 

..1----- HIGHBVTE(COC,-COC'5) 

R227 BANK 0 (E3) COCl 
COUNTER 0 CAPTURE 

I~I~I~I~I~I~I~I~I 

1'------ LOW BYTE (COCo-COC7) 

R228 BANK 0 (E4) C1CH 
COUNTER 1 CAPTURE 

R229 BANK 0 (ES) C1 Cl 
COUNTER 1 CAPTURE 

I~I~I~I~I~I~I~I~I 

LI _____ LOW BYTE (C1Co-C1C7) 

Figure 9-10_ Capture Register Format 

613 



10.1 INTRODUCTION 

The universal asynchronous receiver/transmitter 
(UART) is a full-duplex asynchronous channel. 
Transmission and reception can be accomplished 
independently with 5 to 8 data bits per character, 
'plus optional even or odd parity, and an optional 
wake-up bit. 

Data can be read into or out of the UART via 
R239. This single address is able to serve a 
full-duplex channel because it contains two com­
plete 8-bit registers--one for the transmitter and 
the other for the receiver. 

10.2 TRANSMITTER 

When the UART' s register address is specified as 
the destination (dst) of an operation, the data is 
output on the UART. The UART automatically adds 
the start bit, the progranvned parity bit (odd, 
even, or no parity), and the programmed number of 
atop bits to the data character to be trans­
mitted. The transmitter can also add a Wake-Up 
bit (optional) between the parity bit (or the last 
bit in the character if parity is disabled) and 
the first stop bit, as shown in Figure 10-1. When 
the character is five, six, or seven bits long, 
the unused bits in the Transmit Data register 
(UIO) are automatically ignored by the UART. 

Serial data is shifted from the transmitter at a 
rate equal to 1, 1/16th, 1/32nd, or 1/64th of the 
clock rate supplied to the transmitter clock input 
(as determined by the clock-rate field in,the UMA 
register). Serial data is shifted out on the 
falling edge of the transmitter clock. 

MARKING LINE PARITY 

DATA 

* NOTES: 1. Parity, wake.-Up, and second stop bit are optional 
2. Data can be anywhere from 5 to 8 bits 

Chapter 10 
UART 
The Transmit Data output (P31) line is held mark­
ing (high) when the transmitter has no data to 
send. If the Send' Break (SE~BRK) bit of the UART 
Transmit Control (UTC) register is set to 1, the 
Data Output line will be held spacing (low) until 
it is cleared. 

10.3 RECEIVER 

An asynchronous receive operation begins when the 
Receive Enable bit (REN8) in the UART Receive 
Control register (URC) is set. A low (spacing) 
condition on the Receive Data line (P30) indicates 
a ,.tart bit. If this low persists for at least 
one-half of a bit time, the start bit is assumed 
to be valid and the data input is then sampled at 
the middle of each bit time until the entire 
character, is assembled and placed in the Receive 
Data (UIOR) register. This method of detecting a 
start bit improves error rejection when noise 
spikes exist on an otherwise marking line. 

If Xl clock mode is selected, bit synchronization 
must be accomplished externally, and the received 
data is sampled on the rising edge of the clock 
input. 

A received character can be read from the 8-bit 
Receive Data register (UlOR). The receiver 
inserts ls into the unused bits when a character 
length of other than eight bits is used. -If 
parity is enabled, the parity bit is not stripped 
from the assembled character for character lengths 
less than eight bits; i.e., for lengths less than 
eight bits, the receiver assembles a character for 
the required number of data bits, plus a parity 
bit, wake-up bit, and ls for any unused bits, and 
places it in the UART Data register (UlO). 

PARITY 

DATA 

Figure 10-1. Async~ronous Transmission Data Format 

614 



UART 

Since the receiver is buffered by one B-bit 
register in addition to the Receive Data register, 
the CPU has enough time to serv ice an interrupt 
and to accept the data character assembled by the 
UART. The receiver also has a buffer that stores 
error flags for each data character in the receive 
buffer. These error flags are loaded at the same 
time as the data character. 

'After a character is received, it is checked for 
the following conditions: 

• If the received character is an ASCII control 
character, it sets the Control Character Detect 
(ceo) bit in the UART Receive Control CURC) 
register. (An ASCII control character is any 
character that has bits 5 and 6 cleared to 0.) 
It can also cause an interrupt if the Control 
Character Interrupt Enable (CCIE) bit in the 
UART Interrupt Enable (UIE) register is set to 
1. Once this bit is set, it remains set until 
cleared by software. 

• The wake-up settings are checked and any 
indicated action is completed. In wake-up 
mode, the CPU can be selectively interrupted on 
a match condition that includes all of the 
eight bits in the received character and a 
Wake-Up bit. The Wake-Up bit match and charac­
ter match can be enabled simultaneously or 
individually. Each bit in this character match 
can also be masked individually. (For more 
discussion of this feature, see section 10.4.) 
Once this bit is set, it remains set until 
cleared by software. 

RECEIVER rr 
~~~~t: ~.------------

VALUE 

RECEIVED 
WAKE-UP 

BIT 

• If parity is enabled, the P~rity Error bit 
(PERR) in the UART Receive Control (URC) regis­
ter is set to 1 whenever the parity bit of the 
character does not match the programmed 
par i t y. Once this bit is set, it remains set 
until cleared by software. 

• The Framing Error bit (FERR) in the URC regis­
ter is set to 1 if the character is assembled 
without any stop bits (i.e., a low level is 
detected for a stop bit) and it is set with the 
character on which it occurs. It stays latched 
until cleared by software. 

• If the CPU fails to read a data character when 
more than one character has been received, the 
Receive Overrun Error bit (OVERR) in the URC is 
set to 1. When this occurs, the new character 
assembled replaces the previous character in 
the Receive Data register. With this arrange­
ment, only the overwriting character is flagged 
with the Receive Overrun Error. Like the 
Parity Error bit, this bit can be cleared only 
by software command from the CPU. 

10.. MAKE-UP FEATURE 

The SuperB offers a powerful scheme to configure 
the UART receiver to interrupt only on certain 
special match conditions. Figure 10-2 shows the 
logic diagram for the scheme. 

Figure 10-2. Logic Diagram for Wake-Up Feature 

615 



The pattern match logic can be used with or with­
out the Wake-Up bit. The Wake-Up Match register 
and Wake-Up Mask register determine the character 
or characters that will generate a pattern match 
when detected at the receiver. If the Wake-Up bit 
is enabled, the pattern match occurs if the 
Wake-Up bit in the received character matches a 
pre-determined value, and the received character 
matches the value(s) specified in the Wake-Up 
Match and Wake-Up Mask registers. I f the Wake-Up 
bit is disabled, the pattern match depends only on 
the character's value. 

The Receive Data (UIOR) register is the receive 
buffer that is loaded if a new character is 
received and the previous character has been read 
by the CPU. The Wake-Up Match (WUMCH) register 
contains the match value. The Wake-Up Mask (WUMSK) 
register is used to mask out any selected bit 

Case 1: IlUENB = 1 (Wake-Up bit is enabled) 

UART 

positions in the WUMCH register. The Wake-Up 
Enable (WUENB) bit in the UART Transmit Control 
(UTC) register is enabled only if a match for the 
Wake-Up bit is also desired. If this is disabled, 
the scheme can still be used to look for a charac­
ter match. The Receive Wake-Up Vaiue (RWUVAL) bit 
in UART Mode A (UMA) register is the expected 
value of the Wake-Up bit; the Received Wake-Up bit 
(RWUIN) is the Wake-Up bit value received by the 
receiver. 

The following cases show how the Wake-Up Detect 
(WUD) bit in the UART Receive Control (URC) regis­
ter can be set by' a match condition. However, the 
CPU is interrupted only if the Wake-Up Interrupt 
Enable (WUIE) bit in the UART Interrupt Enable 
(UIE) register is set to 1. 

a) If Wake-Up bit match and WUMCH match (all 8 bits) is desired: 

Set WUMSK = 1111 1111 (%FF) 
WUMCH = (desired match value) 

If WUMCH (bits 7-0) = UIO (bits 7-0) and 
RWUVAL = RWUIN 

Then Wake-Up Detect (WUD) flag is set. 

b) If Wake-Up bit match and WUMCH match (selected bit, i.e., bits 
5, 4, 1, 0) is desired: 

Set WUMSK = 0011 0011 (%33) 
WUMCH = XX __ XX __ (desired match bits 5, 4, 1, 0) 

If WUMCH (bits 5, 4, 1, 0) = UIO (bits 5, 4, 1, 0) and 
RWUVAL = RWUIN 

Then Wake-Up Detect (WUD) flag is set. 

c) If only a Wake-Up bit match is desired: 

Set WUMSK = 0000 0000 (%00) 
WUMCH = XXXX XXXX (don't care) 

If RWUVAL = RWUIN 
\ 

Then Wake-Up Detect (WUD) flag is set. 

616 



UART 

Case 2: 1IIlEN8 = 0 (Wake-Up bit is ignored) 

a) If a match is desired for WUMCH (all B bita): 

Set WUMSK = 1111 1111 (%ff) 
WUMCH = (deaired match value) 

If WUMCH (bits 7-0) = UIO (bits 7-0) 

Then Wake-Up Detect (WUD) flag is set. 

b) If a match is desired on WUMCH (selected bits only, i.e., bits 4, 3, 2): 

Set WUMSK 
WUMCH 

0001 1100 (%1C) 
XXX ____ XX (desired match bits 4, '3, 2) 

If WUMCH (bits 4, 3, 2) = UIO (bits 4, 3, 2) 

Then Wake-Up Detect (WUD) flag is s~t. 

c) If a match is always desired: 

Set WUMSK = 0000 0000 (%00) 
WUMCH XXX X XXXX (don't care) 

If this charecter ia received, the Wake-Up Detect (WUD) flag is alway a 
set. However, this will be ignored if the Wake-Up Interrupt Enable 
(WUIE) bit in the UART Interrupt Enable (urE) register is disabled. 

,10.5 AUTO-ECIIJ/UJOPBACK register must be set to 1 for this mode to work 
correctly. 

As shown in figure 10-3, the UART can be configur­
ed to automatically transmit any data coming in at 
the Receive Data input pin (P30) RXO. This auto­
echo mode of operation is enabled by setting the 
Auto-Echo (AE) bit in the UART Mode B (UMB) regis­
ter to 1. In addition, the Transmit Data Select 
(TXOTSEL) bit in the UART Transmit Control (UTC) 

Similarly, the UART can be set in the local loop­
back mode by setting the Loopback Enable (LBENB) 
bit in the UMB register to 1. In loopback mode, 
the output of the trsnsmitter is automatically 
routed to the receiver. 

r RECEIVE DATA IN (RxIN) 
RECEIVE DATA (RxD) 

P30 ..... ------------'---'-------..... ---~.--''-----.. I RECEIVER I 
LDDPBACK 

AUTOOEC::J 
ENABLE ~ (UMB] 

LOOPBACK 

TRANSMIT 
DATA SELECT B (UTC] 

(TxDTSEL = 1) 

RxD-RxIN 
Th:DATO-RxIN 

RxD-RxIN 
TxDATO - RxlN 

TxDATO_TxD 
TxDATO-TxD 

RxD-TxD 
RxD ------- TxD 

Figure 10-3. Auto-Echo/Loopback 

617 



In auto-echo mode, the transmitter can still be 
enabled; however, the transmitter data goes 
nowhere unless loopback is also enabled. 

10.6 POLLED OPERATION 

In a polled environment, the Receive Character 
Available (RCA) bit in the URC register must be 
monitored ao the CPU can decide when to read a 
character. This bit is automatically cleared when 
the urOR is read. 

To prevent ,overwriting data in polled operations, 
the transmit buffer status must be checked befone 
writing to the trensmit buffer (UrOT). The 
Transmit Buffer Empty (TBE) bit in the UTC is set 
to 1 after completing the sending of a chsracter. 

10.7 BAW-RATE GENERATOR 

The UART has its own on-chip programmable baud­
rate generator implemented as a 16-bit down­
counter. The transmitter can receive its clocking 
signal 'from an external source (P21) or the baud­
rate generator (BRG); the receiver clock can come 
from an external source (P20) or the on-Chip 
baud-rate generator. 

If P21 is not used as a Transmit Clock input, it 
can be uaed to output the transmit clock, the CPU 
clock, the output of the baud-rate generator, or 
as an I/O line. 

• p,. r--...... ------------, 

UART 

The baud-rate, generator consists of two 8-bit Time 
Constant registers, a 16-bit downcounter, and a 
flip-flop on the counter's output that produces a 
square wave. 

On startup, the flip-flop is set to a high state, 
the value in the Time Constant registers is loaded 
into the Counter, and the Counter starts counting 
down. The output of the baud-rate generator 
toggles on reaching zero, the value in the Time 
Constant registers ia again loaded into the 
Counter, and the process is repeated. The time 
constant can be changed at any' time, but the new 
value does not take effect until the next load of 
the Counter. 

As shown in Figure 10-4, the output of the baud­
rate generator can be used as the receive clock, 
the transmit clock, or both. The transmitter and 
receiver can handle data, at a rate of 1, 1/16th, 
1/32nd, or 1/64th of the clock rate supplied to 
the receive and transmit clock inputs. 

If P21 (Port 2, Bit 1) is not used as transmit 
clock input, it may be used as an output. A 
multiplexer (MUX) prov ided at P21 can be used to 
output various clocks or'P21 data; bits 6 and 7 of 
the UMB register determine the function of P2 when 
it is used as an output. 

RECEIVE CLOCK SELECT 
(UMB) 

TRANSMIT CLOCK SELECT 
(UMB) 

TRANSMITTER 
CLOCK 

~ CLOCK OUTPUT SELECT (UMB) 

Figure 10-4, Baud-Rate Generator 

618 



UART 

10.8 UART INTERFACE PINS 

The UART uses up to four Port 2 and 3 pins for 
interfacing with the external world. These are: 

Receive Clock 
Receive Data 
Transmit Clock 
Tran!jl1lit Data 

10.9 UART CONTROL/MODE AND STATUS REGISTERS 

The following sections and figures describe the 
UART Control/Mode and Status registers. 

10.9.1 UART Data Register (UIOT & UIOR) 
• 

Writing to this register automatically writes the 
data in the Transmit Data register (UrOT); a read 
from this register gets the data from the UART 
Receive Data register (UrOR). The format of this 
register is shown in Figure 10-5. 

R239 BANK 0 (EF) UIO 
UART TRANSMIT DATA (WRITE) 

UART RECEIVE DATA (READ) 

L-_____ DATA (Do = LSB) 

Figure 10-5. UART Data Register 

10.9.4 UART Receive Control Register (URC) 

The fields in this register (Figure 10-8) are: 

RCA. Receive Character Available (DO)' This is a 
status bit that is set to a 1 when data is avail­
able in the receive buffer (UIOR). When the CPU 
reads the receive buffer, it automatically clears 

10.9.2 Wake-Up Match Register (WUMCH) 

Any character up to eight bits can be written into 
this register. The receiver detects a match 
between the received character and this charac­
ter. The format of this register is shown in 
Figure 10-6. 

R25' BANK 1 (FE) WUMCH 
WAKE-UP MATCH REGISTER 

'------- THIS BYTE, MINUS MASKED BITS, 
IS USED FOR WAKE~UP MATCH 

Figure 10-6. Wake-Up Match Register 

10.9.3 Walce-Up Mask Register (WIJ4SI() 

Any bit in the WUMCH register can be masked by 
writing a 0 into the corresponding bit in this 
register. The format of this register is shown in 
Figure 10~7. 

R255 BANK 1 (FF) WUMSK 
WAKE-UP MASK REGISTER 

I~I~I~I~I~I~I~I~I 

IL-_____ THESE BITS CORRESPOND TO BITS 
IN WAKE-UP MATCH REGISTER; Os 
MASK CORRESPONDING MATCH BITS 

Figure 10-7. Wake-Up Mask Register 

this bit to O. A write to this bit position has 
no effect. A hardware reset forces this bit to O. 

RENB. Receive Enable (01)' When this bit is set 
to 1, the receive operation begins. This bit 
should be set only after all other receive para­
meters are established and the receiver is com­
pletely initialized. This bit is cleared to a 0 by 
a hardware reset, which disables the receiver. 

R236 BANK 0 (EC) URC 
UART RECEIVE CONTROL 

1 = WAKE_UPDETECT~gjj 
1 = C~NTROL CHARACTER DETECT ~ 

1 = BREAK DETECT 

1 = FRAMING ERROR 

III L"~"","AA~"_ L 1 = RECEIVE ENABLE 

1 = PARITY ERROR 

- 1 = OVERRUN ERROR 

Figure 10-8. UART Receive Control Register 

619 



, PERR. Parity Error (Dt). This is a status bit: 
When parity is enabled, this bit is set to 1 and 
buffered with the character whose parity does not 
match the programmed parity (even/odd). This bit 
is latched so that once an error occurs, it 
remains set until it is cleared to 0 by writing a 
1 to this bit position. A hardware reset forces 
this bit to O. 

OVERR. Overrun Error: (OJ), This status bit indi­
cates that the receive buffer has not been read 
and another character has been received. Only the 
character that has been written over is flagged 
with this error; once set, this bit remains set 
until cleared to 0 by writing a 1 to this bit 
position. A hardware reset forces this bit to O. 

FERR. Fraaing Error (04)' This is a status bit. 
If a framing error occurs (no stop bit where 
expected), this bit is set for the receive charac­
ter in which the framing error occurred. This bit 
remains set until cleared to 0 by writing a 1 to 
this bit position. A hardware reset forces this 
bit to O. 

IlRKD. Break Detect (05)' This is a status bit 
that is set at the beginning and the end of a 
break sequence in the receive data stream. It 
stays set to 1 until cleared to 0 by writing a 1 

UART 

to this bit position. A hardware reset forces this 
bit 'to O. See note in section 10.9.5 for _ more 
information. 

ceo. Control Character Detect (06)' This status 
bit is set any time an ASCII control character is 
received in the receive data stream. It stays set 
until cleared to 0 by writing a 1 to this bit 
position. (An ASCII control character is any 
character that has bits 5 and 6 set to 0.) A hard­
ware reset forces this bit to O. 

WUD. Wake-Up Detact (07)' This status bit is set 
any time a valid wake-up condition is detected at 
the receiver. It stays set until cleared to 0 by 
writing a1 to this bit position. The wake-up 
condition can be satisfied in many possible ways 
by the Wake-Up bit, Wake-Up Match register, and 
Wake-Up Mask register. See the Wake-Up Feature 
section (section 10.4) for a more detailed explan­
ation. A hardware reset forces this bit to O. 

10.9.5 UftRT Interrupt Enable Register (UIE) 

This register' contains the individual status and 
data interrupt enables (Figure 10-9). The fields 
in this register are: 

R237 BANK 0 (ED) UIE 
UART INTERRUPT ENABLE 

1 = WAKE-UP INTERRUPT ENABLE J~. I 
1 = CONTROL CHARACTER ~ 

INTERRUPT ENABLE 
1 = BREAK INTERRUPT ENABLE 

1 = RECEIVE ERROR INTERRUPT 
ENJ;\BLE 

III Lh"_,""~~"~U~ , ,INTERRUPT ENABLE 
1 = RECEIVE OMA ENABLE 

1 = TRANSMIT INTERRUPT ENABLE 

1 = ZERO COUNT INTERRUPT ENABLE 

Figure 10-9. UART Interrupt Enable Register 

RCAIE. Receive Character Available Interrupt 
Enable (Do>. I f this bit is set to 1. then a 
Receive Character Available status in the URC 
register will cause an interrupt request. In a 
DMA receive operation, if this bit is set to 1, 
then an interrupt request wi 11 be issued onl y if 
an End-of-Process (EOP) of the DMA counter is also 
set. If it is not set, a Receive Character 
Available status causes no interrupt. A hardware 
reset forces this bit to O. 

RIlMAENB. Receive IJ4A Enabie (0,). When this bit 
is set to 1, the DMA function is enabled for the 
UART receiver. Whenever a Receive Character 
Available signal in the URC register is true, a 
DMA request wi 11 be made. When the DMA channe I 
gains control of the bus, it will transfer the 

620 

received data to the register file or the external 
memory. A hardware reset forces this bit to O. 

TIE. Transmit Interrupt Enable (Dt). If this bit 
is set to " then a Transmit Buffer Empty signal 
ill the UTe register wi 11 cause an interrupt 
request. In a DMA 'transmit operation, if this bit 
is set to 1, then an interrupt request will be 
issued only if an End-of-Process (EOP) of the DMA 
counter is also set. If it is not set, a Transmit 
Buffer Empty signal causes no interrupt. A 
hardware reset forces this bit to O. 

ZCIE. Zero Count Interrupt Enable (OJ)' I f this 
bit is set to 1, a baud-rate generator Zero Count 
status in the UTC register will cause an interrupt 
request. A hardware reset forces this bit to O. 



UART 

REIE. R_ive Error Interrupt Enable (D.). If 
this bit is set to 1, any receive error condition 
will cause an interrupt request. Possible receive 
error conditions include parity error, overrun 
error, and framing error. A hardware reset forces 
this bit to O. 

BRKIE. Break Interrupt Enable (D5)' If this bit 
is set to 1, a transition in either direction on" 
the break signal will cause sn interrupt request. 
A hardware reaet forces this bit to O. 

Note: A break siqnal is a sequence of Oao
• When 

all the required bits, parity bit, wake-up 
bit, and stop bits are Oa, the receiver 
immediately recognizes a break condition (not 
a framinq error) and causes Break Detect 
(BRKD) to be aet and an interrupt request. At 
the end of the break Signal, a zero character 
is loaded into the Raceive Data regiater 
(UIOR) and Break Detect (BRKD) is set again, 
alonq with another interrupt request. 

CCIE. Control Dlaracter Interrupt Enable (D6)' If 
this bit is set -to 1, then an ASCII Control 
Character Detect signal in the URC register will 
cause an interrupt. A hardwa're r~set forcea this 
bit to O. 

lIUIE. Walce-Up Interrupt Enable (OJ). If this bit 
is set to 1, then any of the wake-up conditions 
that set the Wake-Up Detect bit (WUD) in the URC 
register will cause an interrupt request. A hard­
ware reset forces this bit to O. 

10.9.6 IlART ibis A Register (IlIA) 

This register controls the configurations of the 
receiver/transmitter that are not likely to change 
on a dynamic basis. The fields in this register 
(Figure 10-10) are: 

R250 BANK 1 (FA) UMA 
UART MODE A 

C~KR~E:r o-,D, 
OO=X1 
o 1 = X16 
1 0 =X32 
1 1 = X64 

BITS PER CHARACTER 

D5 D4 

00 =SBITS 
o 1 .. 6BITS 
1 0 = 7 BITS " 
1 1 =8BJTS 

Llli' L TRANSMIT WAKE-UP VAWE 

L RECEIVE WAKE-UP VAWE 

1 = EVEN PARITY 

1 = PARITY ENABLE 

Figure 10-100 UART Mode A Register 

NUVAl. Tr..-it Wake-Up Value (DO)' I f the 
wake-up mode is enabled, then the value in this 
bit position is transmitted along with the charac­
ter at the appropriate time by the transmitter. 

RWUVAl. ~ive WaIce-Up Value (01)' If the wake­
up mode is enabled, then the receiver expects a 
wake-up bit after the parity bit in the incoming 
data stream and the value is compared with this 
bit value. For further explanation of how this is 
used, see the Wake-Up Feature section (Section 
10.4) •. 

EVNPAR. Even Parity (Dz). This bit determines the 
type of parity used by both the receiver and the 

transmitter. If this bit is set to 0, odd parity 
is uaed; if this bit is set to 1, then even parity 
is used. If the Parity Enable (PARENB) bit in this 
register is not enabled, then this bi t has no 
effect. 

PARENB. Parity Enable (0,). When this bit is set 
to 1, an additional bit position beyond those 
speci fled in the bi ts/ character control is added 
to the transmitted data and' is expected in the 
received data. Jhe received parity bit is trans­
ferred to the CPU as a part of the data unless" 
eight bits per character are used. If this bit is 
set to 0, the parity feature is disabled. 

621 



BPC1. B!'CO. Bits Per Character, (D5. D4)' This 
, fie ld determines the number of bits per character 

for both the, transmit and the receive sections. 
The character bits are' right-justified with the 
least significant bit transmitted or received 
first. The field is coded as shown in Table 
10-1. 

Table 10-1. Dlllracter Size F;ield £ncoding 

o 0 
ri 

o 

Ct!aracter Size in Bits 

5 
6 

7 
B 

UART 

eft1. CRO. Clock Rate (Iry.' D,). This field 
specifies the multiplier between the clock and the 

, data rates. Table 10-2 shows how this field is 
coded. 

Table 10-2. Clock Rete Field £ncoding 

~ ~ Ibte Deacl'iption 

0 0 1 x Clock rate = 1 x data rate 
0 16 x Clock rate = 16 x data rate 
1 0 32 x Clock rate = 32 x data rste 

64 x Clock rate = 64 x data rate 

R235 BANK 0 (EB) UTC 
UART TRANSMIT CONTROL 

TRANSMIT DATA SELECT: j I o = OUTPUT P3, DATA 
1 = OUTPUT TRANSMIT DATA 

1 = SEND BREAK 

SlOP BITS: 
0= 1 STOP BIT 

1 = 2 STOP BITS 

1 = WAKE·UP ENABLE -----' 

~I L 1 = TRANSMIT DMA ENABLE 

" L 1 = TRANSMIT BUFFER EMPTY 

1 = ZERO COUNT 

, 1 = TRANSMIT ENABLE 

Figure 10-11. UART Thmsmit Control Register 

10.9.7 UART lrana.it Control Register (UTC) 

This register contains the status and command bits 
needed to control the trsnsmit section of the 

• UART. The fields in this register (figure 10-11) 
srel 

1DI4AEte. lr~t IlM Enable (00). When this bit 
is set to 1, it ensbles the DMA function for the 
UART transmit section. If this bit is set and the 
Transmit Buffer Empty signal becomes true, then a 
DHA request is made. When the DHA channel gains 
con.trol of the bus, it transfers bytes from the 
sxternal memory' or the register file to the UART 
transmit section. A hardware reset forces this 
bit to O. 

TIE. lrana.it Buffer ~ty (D1)' This status bit 
is set to 1 whenever the transmit buffer is 
empty. It is cleared to 0 when a data byte is 
written in the transmit buffer. A hardware reset 
forces this bit to 1. 

ZC. Zero Count (Dz). This status bit ia set to 1 
and latched when the Counter in the baud-rate 
generator reachea the count of O. This bit can be 
cleared to 0 by writing a '1 to this bit poaition. 
A hardware reset forces this bit to O. 

622 

TENB. lr_it Enable (D,>. Dsta is not 
transmitted until this bit is set to 1. When 
cleared, to 0, the Transmit Data pin continuously 
outputa 1 s unless Auto-Echo mode is selected. 
This bit should be cleared only after the desired 
transmission of data in the buffer is completed. 
A hardware reset forces this bit to O. 

IIIENB. waJce-lJp Enable (D4>' 1 f this bit ia set to 
1, wake-up mode is enabled for both the transmit­
ter and the receiver. The transmitter adds a bit 
beyond those apecified by the bita/character and 
the parity. This added bit has the value apecified 
in the Transmit Wake-Up Value (TWUVAL) in the 'UMA 
regiater. The, receiver expects a Wake-Up bit 
value in the incoming data stream after the par~ty 
bit and comparee this value with that specified in 
the Received Wake-Up Value (RWUVAL) bit in the UMA 
regiater. The resuUing action depends' on the 
configuration of the Wake-Up feature. A more 
complete description is given in the Wake-Up 
feature section (sectio~ 10.4). A hardware reset 
forces this bit to O. 

SlPBlS. ~top Bits (D5)' This bit determines the 
'number of stop bits added to each character, trans­
mitted from the UART transmit aection. If this bit 
is aD, then one stop bit is added. I f this bit, 



UART 

is a 1, then two' stop bits are sdded." The 
receiver always checks for at least one stop bit. 
A hardware reset forces this bit to O. 

SENBRK. 'Send Break (06)' When set to 1, this bit 
forces the transmit aection to continuously output 
Os, beginning with the following transmit clock, 
regardless of any data being transmitted at the 
time. This bit functions whether or not the 
transmitter is enabled. When this bit is cleared 
to 0, the transmit section continues to send the 
contents of the Transmit Data register. A hard­
ware reset forces this bit to O. 

TXDTSEL. Tr __ it Data Select (07)' This bit has 
an effeet only if port pin P31 is confiqured as an 

output. If this bit is set to 1, the serial data 
coming out of the transmit section is reflected on 
the P31 pin. I f this bit is set to 0, then P31 
acts as a normal port and P31 data is reflected on 
t~e P31 pin. A hardware reset forces this bit to 
O. 

10.9.8 UART Mode B Register (!MI) 

This register (Figure 10-12) contains the neces­
sary status and command bits for the baud-rate 
generator, transmit clock select, auto-echo and 
loopback enable. The fields are as follows: 

R251 BANK 1 (FB) UMB 
UART MODE B 

CLOCK OUTPUT SELECT ==r-
0706 

o 0 = P21 DATA 
o 1 = SYSTEM CLOCK (XTAL/2) 
1 0 = BAUD· RATE GENERATOR 

OUTPUT 
1 1 = TRANSMIT DATA CLOCK 

1 = AUTO-ECHO 

RECEIVE CLOCK INPUT SELECT: ------' 
0= P20 
1 = BAUD-RATE GENERATOR 

OUTPUT 

E' L 1 = LOOPBACKENABLE 

L 1 = BAUD-RATE GENERATOR ENABLE 

BAUD-RATE GENERATOR SOURCE: 
o = P20 (EXTERNAL) 
1 = INTERNAL (XTALl4) 

TRANSMIT CLOCK INPUT SELECT: 
0= P21 
1 = BAUD-RATE GENERATOR OUTPUT 

Figure 10-12_ UART Mode B Register 

LBENB. Loopback Enable (00)' Setting this bit to 
1 selects the local loopback mode of operation. In 
this mode, the data output from the transmit 
section is also routed back to the receive 
section. For meaningful results, the frequency of 
the transmit and receive clocks must be the same. 
A hardware reset forces this bit to O. 

BRGENB. Baud-Rate Generator Enable (01)' This bit 
controls the operation of the baud-rate genera­
tor. The Counter in the baud-rate generator is 
enabled for counting when this bit is set to 1 and 
disabled for counting when this bit is set to O. 
A hardware reset forces this bit to o. 

oItcsRc. Baud-Rate Generator Source (Dz). This bit 
selects the source of the clock for the baud-rate 
generator. If this bit is set to 0, the baud-rate 
generator clock comes from the receive c lock pin 
(P20). If this bit is set to 1, the clock for the 
baud-rate generator is the CPU clock divided by 
two (XTAL clock divided by four). A hardware reset 
forces this bit to O. 

TCIS. Tr __ it Clock Input sele~t (0,). This bit 
selects the source for the transmit section clock 
input. If TCIS is cleared to 0, the source is the 
transmit, clock pin (P21). If it is set to 1, then 
the source is the baud-rate generator output. A 
hardware reset forces this bit to O. 

ReIS. Receive Clock Input Select (04)' This bit 
selects the source for the receive section clock 
input. If this bit is cleared ,to 0, the source is 
the receive clock pin (P20). If it is set to 1, 
then the source is the baud-rate generator out­
put. A hardware reset forces this bit to O. 

At. Auto-Echo (05). Auto-echo mode of operation 
is enabled by setting this bit to 1. In this 
mode, the data coming in on the receive data pin 
is reflected out on the transmit data pin. The 
receive section still listens to the receive data 
input; however, the data from the transmit section 
goes nowhere. See section 10.6 for a more detail­
ed description of this function. A hardware reset 
forces this bit to O. 

623 



UART 

COS1. coso. Cloc:lc OutjM.lt Select (0,4),). ,This 
field determines the source that drives the 
transmit clock pin if P21 is configured as an 

output. A hardware reset forces thia field to 
00. Table 10-3 shows the coding of this field. 

Table 10-3. Tr.....tt Clock Source Field £ncoding 

o 0 
o 1 
1 0 

P21 Data 
Syatem clock (XTAL frequency divided by 2) 
Baud-rate generator output 
Transmit data rate 

10.9.9 lIART Baud-Rate Generator Tille Conatri value does not take effect until tlie next time 
constant is loaded into the downcounter. Register (IIIG) 

This register contains the high and low bytes 
(Figure 10-13) for the 16-bit time constant, used 
to generate the desired baud rate. The time 
constant can be changed at any' time, but the new 

The formula for determining the appropriate time 
constant for a given baud rate is shown below, 
with the desired rate in bits per second and the 
baud-rate clock period in a~conds. 

time constant: _______ ----------__ -1 

624 

(2 x baud rate x n x BRG input clock period) 
where n:l,16,32,or 64 x the clock rate selected in UMA register R250 

R24B BANK 1 (FB) UBGH 
UART BAUQ.RATE GENERATOR 

I~I~I~I~I~I~I~I~I 

IL--____ HIGH BYTE (USG .. USG,s) 

R249 BANK 1 (F9) UBGL 
UART BAUQ.RATE GENERATOR 

I~I~I~I~I~I~I~I~I 

,-I _____ LOW BYTE (UllGo-UBG7) 

Figure 10-13. UART Baud-Rate Generator Time Constant Register 

P~ ~--~~--------~ 

(~O} PORT 2 DATA -(OI) SYSTEM CLOCK 

(10) 

RECEIVE CLOCK SELECT 
(UMB) 

(.1) 

(+1) 

TRANSMIT CLOCK SELECT 
(UMB) 

FigUre 10-14, Baud-Rate Generator 

RECEIVER 
CLOCK 

TRANSMITTER 
CLOCK 



11.1 INTRmU:TION 

The SuperB has an on-chip Direct Memory Access 
(DMA) channel to provide high bandwidth data 
transmission capabilities that can be used by the 
UART receive or transmit section or by Handshake 
Channel O. 

The DMA channel can transfer data between the 
peripheral device and contiguous locations in 
either the register file or external data memory. 

UART Receiver ------> Register file or 
data memory 

UART Transmitter <------ Register file or 
data memory 

Handshake Channel 0 <------ Register file or 
data memory 

Handshake Channel 0 ------> Register file or 
data memory 

Prior to enabling the DMA channel, the starting 
register address for the block to be transferred 
must be present in register C1H or the starting 
memory address must be present in register COH 
(high byte) and C1 H (low byte). Registers COH 
and C1 H themselves can only be accessed as part 
of the working register group. The address is 
auto-incremented after each DMA-controlled 
transfer. 

R254 (BANKO) EMT 
EXTERNAL MEMORY TIMING REGISTER 

I~I~I~I~I~I~I~I~I 

Chapter 11 
DMAChannel 

The OMA Count registers (R240 and R241 , Bank' 1) 
hold the 16-bit count that determines the number 
of transactions the OMA channel is to perform. The 
count loaded should be n-1 to perform n byte 
transfers. An interrupt can be generated when the 
c~unt is exhausted. 

OMA transfers to or from the register file take 
six CPU clock cycles; DMA transfers to or from 
memory take ten CPU clock cycles, excluding wait 
states. 

11.2 DNA CONTROL REGISTERS 

The control bits that link the DMA channel to the 
UART or an I/o port are the Transmit OMA Enable 
(T~MAENB) bit in the UART Transmit Control (UTC) 
register for the transmitter, the Receive DMA 
Enable (ROMAENB) bit in the UART Interrupt Enable 
(UIE) regiater for the receiver, ,and the OMA 
Enable bit (02) in the Handshake 0 Control regis­
ter for the I/O ports. Only one of these three 
enable bits should be .set at' a given time. If 
Handshake Channel 0 is linked to the OMA channel, 
the data transfer direction is determined by the 
direcqon of the handshake. 

A bit in the External Memory Timing register, 
called OMA INT/EXT, controls whether DMA transfers 
access the register file or external data memory. 
When this bit is cleared to 0, transfers are tot 
from the register file. When this bit is set to 
1, transfers are to/from external data memory. 
See figure 11-1. 

L DMA INT/EXT 

R240 (BANK1) DCH 
DMA COUNT HIGH 

R241 (BANK1) DCl 
DMA C6UNT LOW 

1 = EXTERNAL MEMORY 
o = REGISTER FILE 

R192 (CO) RPO = CO 
DMA ADDRESS HIGH 

R193 (Cl) RPO = CO 
OMA ADDRESS lOW 

Figure 11·1. DMA Control Registers 

625 



DMA Channel 

11.3 DMA AN> THE UART RECEIVER 

The Receive DMA Enable bit (RDMAENB) in the UIE 
register (RU7) of the UART is first set to 1 to 
link the DMA to the UART receiver. 

Data received at the UART receiver is handled by 
the DMA as soon as the Receive Character Available 
(RCA) status bit of the URC register (R236) of the 
UART is set to 1. The DMA reads data from the 
U10 register of the, UART and then clears the RCA 
bit to prepare the UART receiver to receive new 
data. The data is then atored at the location 
whose address is contained in the DMA address reg­
ister (RRl92). The DMA count at RR240, Bank 1, is 
decreased' by 1 and the DMA address register is in­
creased by 1. When the DMA count is negative, an 
interrupt request (IRQ6, vector address 20, 21) is 
generated at the UART Receive section if the 
Receive Character Available Interrupt Enable bit 
of the UIE register of the UARr (R237) is set to 
1. 

The UART continues to receive new data and the DMA 
responds to t,he RCA bit as described above until 
an interrupt is generated due to a negative DMA 
count. 

11.4 DMA AN> IHE UART TRANSMITTER 

First, the Transmit DMA Enable (TDMAENB) bit of 
the UTC register (R235) of the UART is enabled to 
link the DMA to the UART transmitter. 

626 

Upon transmit, the Transmit Buffer Empty status 
bit (TBE) in the UTC register (R2,35) of the UART 
is set to 1. The DMA then transfers the data at 
the location whose address is contained in the DMA 
address register (RR192) to the UIO register 
(R239) of the UART. 

The TBE bit is then cleared to O. The DMA count 
at RR240, Bank 1, is decreased by 1 and the DMA 
address register is increased by 1. When the DMA 
count is negative, the DMA issues an End-of­
Process (EOP) signal to the UART. The UART grants 
an interrupt request (IRQ1, vector address 26, 27) 
to the SuperB if the Transmit Interrupt Enable 
(TIE) bit of the OlE register (R237) of the UART 
is set to 1. 

The UART transmitter continues its operation with 
the new data in the U10 register and the DMA re­
sponds to the TBE bit as described above until an 
interrupt is generated due to a negative DMA 
count. 

11.5 DMA AN> HAN>SHAKE CHANNEL D 

The DMA can be configured with Handshake Channel 0 
to transfer data from register fi Ie or data memory 
to 1/0 devices or vice versa through Port 1 or 
Port 4. Handshake Channe 1 0 can be in either 
full y inter locked mode or strobed mode as con­
trolled by the Handshake 0 Control register 
(R244). The direction of OMA transfer is' deter­
mined by the handshake direction, which is the 
direction of the chosen port. 

11.5.1 DMA WRITE (INPUT HAN>SHAK[ CHANNEl,D) 

The I/O device transfers data to register fHe or 
data memory through Handshake Channe 1 0 and the 
OMA channe 1. 



The Handshake Channel 0 Enable and DMA Enable bits 
of the Handshake 0 Control (HOC) register (R244) 
should be first set to 1. When the I/O device 
puts data on the port specified in the HOC regis­
ter and activates ~ to go from high to low as in 
figures B-11 and B-13, the DMA transfers data on 
the port to the specified address in the DMA 
address register (RR192). The DMA count at RR240, 
Bank 1, is decreaaed by 1 and the DMA address reg­
ister is increased by 1. When the DMA count is 
negative, the DMA issues an End-of-Process (EOP) 
signa I to Handshake Channe I O. Hendshake Channe I 
o grants an interrupt request (IRQ4) to the 
SuperB. The handshake output at pin 25 is the 
same as described in figures B-11 and B-13 and the 
DMA is waiting for the I/O device to put data on 
the port and activate the ~ signal again. 

11.5.2 IlMA READ (OUTPUT HAt«>SHAKE ClWN:L 0) 

Data is transferred from register file or data 
memory to the I/O device through the DMA chenne I 
and Handshake Channel D. 

The Handshake Channe I 0 Enable and DMA Enable bits 
of the Handshake 0 Control (HOC) register (R244) 
should be first set to 1. The handshake direction 
should be set by choosing the direction of the 
port specified in the HOC reg,ister. 

The DMA sequence should always begin by writing 
the first byte of data to the port to start the 
DMA. This is an importa~t process, otherwise the 
DMA is not activated when Handshake Channel 0 is 
not yet activated. The DMA starting address in 
the DMA address register (RR192) should now be set 
at the second byte of the data block. The I/O de­
vice should then read that fi rst byte of data and 
store it away as in figures B-12 and B-14. The 
DMA is then activated. 

DMA Channel 

11.5.2.1 FILLY INTERLOCKED MOO[ 

At State 3 of figure B-12, the DMA reads the data 
at the address specified in the DMA address regis­
ter (RRl92) and transfers it to the port. The DMA 
count at RR24D, Bank 1, is decreased by 1 and the 
DMA address register is increased by 1. When the 
DMA count is negati ve, the DMA issues an End-o f­
Process (EOP) signal to Handshake Channel O. 
Handshake Channel 0 then grants an interrupt re­
quest (IRQ4) to the SuperB. 

The DMA and handshake process continues as in 
figure B-12 until an interrupt is caused by a 
negative DMA count. 

11.5.2.2 STROOED IDlE 

After the first writing of the first byte of data 
to the port as in figure B-14, the DMA is activat­
ed at ,the end of strobe time. The DMA reads the 
data at the address spec} fied in the DMA address 
register (RRl92) and transfers it to the port. 
The DMA count at RR240, Bank 1, is decreased by 1 
and the DMA address register is increased by 1. 
When the DMA count is negative, the DMA issues an 
End-of-Process (EOP) signal to Handshake Channel 
O. Handshake Channe,! 0 then grants an interrupt 
request (IRQ4) to the SuperB. 

The handshake operation continues as in figure 
B-14 and the DMA transfers new data to the port 
only at the end of strobe time. The DMA stops 
when an interrupt is activated by a negative DMA 
count. 

DMA --r==;:=tS[)----- DMA ENABLE REQUEST 

ENDOFCO~~; - ..... ----L-' 

TO IRQ 
REGISTER 

Figure 11-2. Interrupts and the DMA 

627 



. 12.1 INTRODUCTION 

The 4B-pin SuperB has 40 programmabla I/O pina, 
aome of which are configurable as an external 
memory interface. A description of the pina and 
their functions follows (see Figure 1~-1). 

12.2 PIN DESCRIPTIONS 

E. Address Strobe (output, active low~ l-atste). 
1m' is pulaed low once at the beginning of each 
machine cycle. For external memory accesses, the 
rising edge of 1m' indicates that addresses, RIW', 
and DR signals are valid. Under program control, 
1m' can be placed in a high impedance state along 
with Ports 0 and 1, tm', R/i, and 1m if uaed. 

M. Dats Strobe (output, active low, l-atate). 
~. provides timing for data movement to or from 
Port 1 for each external memory transfer. During a 

SUPERS 

Chapter 12 
External Interface 

write cycle, data out is valid at the leading edge 
of tm'; during a read cycle, data in ia valid prior 
to tha trailing edge of~. ~ can be placed in a 
high-impedance state along with Ports 0 and 1, 
~, R/W; and m:r if used. 

R/V. Read/Write (output, l-atate). R/i deter­
mines the direction of data transfer for external 
memory transactions. R/i is low during write 
operations and high duririg all other operations. 
R/i can be placed in a high-impedance state along 
with Ports 0 and 1, ~, ~, and m:r if used. 

POo-P07, P1o-P17, PZg-PZ7. PJo-¥lJ. ~.7· I/O 
Port . Linea (inputs/outputs. Tn-~patible). 
These I/o lines provide five B-bit I/O ports that 
can be configured under program control for I/O or 
external memory interfacing. Ports a and 1 can be 
placed in a high:"impedance state under program 
control, along with ~, D'S", R/W, and 1m if uaed. 

PO. 

po, 
PO. 

PO, 

po, 
po, 
PO. 

Po. 
P3, 

P3, 

AS 
os 
P4. 

P4, 

VSS 

P" 

P" 
RNi 
RESET 

P3. 

P37 

P27 

P2. 

P3. 

Figure 12-1: Pin Functions lind Assignments 

628 



External Interface 

llr!:n". Reset (input, active low). ~ is used 
to initialize the SuperB. When ~ is 
deactivated, program execution ,begins from prQgram 
address 0020H• ~ is also used to enable the 
SuperB test mode. 

XTAl1, XTAl2. Crystsl (oacillator input/output). 
XJAL 1 and XTAL2 are used to connect a parallel 
resonant crystal or external c lock source to the 
on-board clock oscillator and buffer. 

12.3 CONFIGURING FOR EXTERNAl MEMORY 

Before external memory can be referenced in a 
ROM-based part, Ports 0 and 1 must be properly 
configured. The minimum bus configuration uses 
Port 1 as a multiplexed_ address/data bus (ADO-AD7) 
with access to 256 bytes of external memory. In 
this configuration, the eight lower order address 
bits (AO-A7) are multiplexed with the eight data 
bits (DO-D7). 

Additional address lines can be output on the Port 
o pins, where bit 0 of that port corresponds to 
AB, bit 1 to A9' and so on. The pins of Port 0 
can be defined as memory address lines or I/O 
lines on a bit-by-bit basis, via programming of 
the port 0 Mode register (R240, Bank 0). This 
ensures the efficient use of the I/O pins, allow­
ing the SuperB to address various sizes of 
external memory using no more pins than neces­
sary. Port 0 pins not configured for address 
lines can be used as I/O lines. 

Configuring Port 1 for external memory is accom­
plished by writing the appropriate bits in the 
Port Mode register, R241 in Bank 0 (Figure 12-2). 

R241 BANKO (F1)PM 
PORT MOOE REGISTER 

I~I~I~I~I~I~I~I~I 
--c PORT 1 MODE 

00 = OUTPUT 
01 = INPUT 
1X ='ADo-AD7 

Figure 12-2. Configuring Port 1 for External Memory 

R240 BANKO (FO) POM 
PORT 0 MODE REGISTER 

'-------- PORT 0 MODE 

o DEFINES BIT AS I/O 
1 DEFINES BIT AS ADDRESS 

Figure 12-3. Configuring Port 0 for External Memory 

Configuring Port 0 for external memory is accom­
plished in a similar manner, using Port 0 Mode 
Registe~, R240 in Bank 0 (Figure 12-3). 

Once Port 1 is configured as an address/data port, 
it is no longer usable as a general-purpose 1/0 
port. Attempting to read Port 1 returns "FFH"; 
writing has no effect. Similarly, if Port 0 is 
configured for address lines AB-A15' it is no 
longer usable as a general-purpose I/O port; how­
ever, if not all of the bits are defined as 
address lines, the remalnlng bits are sti 11 
accessible as an I/O port. Reading Port 0 will 
return the port data in those positions defined as 
I/O. The positions defined as address will return 
the value on the external pins which, under normal 
loading, will be the address. 

After- setting the modes of Ports 0 and 1 for 
external memory, the next three bytes must be 
fetched from internal memory. 

An external memory interface may be 3-stated under 
program control by setting bit 7 of the System 

.Mode register, R222 (Figure 12-4). 

R222 (DE) SYM 
SYSTEM MODE REGISTER 

I~I~I~I~I~I~I~I~I 
T ... __________ 3.STATE EXTERNAL MEMORY INTERFACE 

Figure 12-4. 3-State External Memory Interface 

When this bit is set to 1, the external memory 
interface, including AS, OS, R/Wand iiM, is 3·stated. 
A hardware reset forces th i s bi t to a O. The externa I 
memory interface can but should not be tri -stated in 
the ROMless parts. 

In SuperB parts with on-chip ROM, a hardware reset 
configures, Ports 0 and 1 as if;1put ports and 
instruction execution begins at location 0020H, 
which is within the on-chip ROM. 

In the ROM less parts, a hardware reset configures 
Port 0 pins POO-P04 as address out and pins 
P05-P07 as inputs; Port 1 is configured as an 
address/data port, allowing access to B Kbytes of 
memory. If externa 1 memory greater than B Kbytes 
is desired, additional address lines must be 
configured in Port O. Since Port 0 lines are 
initially configured as inputs, they will float 
and their logic state will be unknown until an 
initialization routine is executed that configures 
Port O. This initialization routine must reside 
within the first 8 Kbytes of executable code and 
must be physically mapped into memory by 
externally forcing the Port 0 address lines to a 
known state. 

629 



12.4 EXTERNAL STACKS 

The SuperB architecture supports stack operations· 
in.either the register file or in data memory. A 
stack's location is determined by setting bit 1 in 
the External Memory riming register, R254, Bank 0 
(Figure 12-5). 

R2S' eANKO (FE) EMT 
EXTERNAL MEMORY TIMING 

1~1~1~1~1~1~I~j~1 

~ STACKSELECTION 

o = REGISTER FILE 
1 = DATA ME,MORV 

Figure 12-5. External Memory Timing 

The instruction used to change the stack se lection 
bit should not be immediately followed by an 
instruction that uses the atack, since this will 
cause indeterminate program flow. Interrupts 
should be disabled when changing Jhe stack 
se lection bit. 

12.6 BUS OPERATION 

Typical data transfers between the SuperB and 
external memory are illustrated in Figures 12-7 
and 12-B. Machine cycles can vary from six to 
twelve external clock periods depending on the 
operation being performed. The notations used to 
describe the basic timing periods of the SuperB 

External Interface 

12.5 DATA MEMORY 

The two external memory spaces, data and program, 
can be addressed as a single memory space or as 
two separate spaces. If the memory spaces are 
separated, program memory and data memory are 
logically selected by the Data Memory select out­
put (15R). 15R is made available on Port 3, line 5 
(P35 )by setting bit 03 in the Port Mode register 
to 1 (Figure 12-6). 

R241 BANKO (F1) PM 
PORT MODE REGISTER 

I~I~I~I~I~I~I~I~I 
T o = P3s MODE OETERMINED BY PORT 2/3 

C MODE REGISTER 
1 = P3s = OM OUTPUT 

Figure 12-6. Data Memory 

are machine cycles (Mn), timing states (Tn), and 
clock periods. All timing references are made 
with respect to the output signals ~ and~. The 
clock is shown for clarity only and does not have 
specific timing relationships with other signals; 
the clock signal shown is the external clock, 
which has twice the frequency of the internal CPU 
clock. 

1-1"----T-1----MACHI:
2
E CYCLE----T-3--... ·~11 

630 

EXTERNAL 
CLOCK 

PO 

PI 

R/W 

X A.-A15 x:= 
X Ao~A70UT > B----C 
'---I '--

\ I 

I L 

X x:= 
I- READ CYCLE ~I 

Figure 12-7. External Instruction Fetch or Memory Read Cycle 



External Interface 

~I-----T-'---- MACHIN:. CYCLE -----T.---I", 

EXTERNAL 
CLOCK 

PO X Aa-A15 x::= 
Pl X Ao-A7 IN X 00-07 OUT x::= 

AS '---J "-
os \ I 

R/W ~ C 
OM X x::= 

I- WRITE CYCLE -I 

Figure 12-8. External Memory Write Cycle 

12.6.1 Address Strobe ~ 

All transactions start with Address Strobe ('lim 
being driven low and then raised high by the 
SuperB. The rising edge of AS" indicates that 
Read/Write ~(R/W), Data Memory (~), and the 
addresses output from Ports 0 and 1 are valid. 
The addresses output via Port 1 typically need to 
be latched during AS", whereas Port 0 address 
outputs, if used, remain stable throughout the 
machine cycle. 

12.6.2 Data Strobe (U!;) 

The SuperB uses Data Strobe (15m to time the 
actual data transfer. For write operations (R~ = 
low), a low on n"S" indicates that valid data is on 
the Port 1 ADO-AD7 lines. For read operations 
(R/W = high), the address/data bus is placed in a 
high-impedance state before driving ~ low so that 
the addressed device can put its data on the bus. 
The SuperB samples this data prior to raising ~ 
high. 

12.6.3 External MeIIory Operations 

Whenever the SuperB is configured for external 
memory operations, the addresses of all internal 

program memory references appear on the external 
bus. This should have no effect on the external 
system since the bus control line ~ remains in 
its inactive high state. ~ becomes active only 
during external memory references. 

12.7 EXTENDED BUS TIMING 

The SuperB can accommodate slow memory access and 
cycle times by three different methods that give 
the user much flexibility in the types of memory 
available. 

12.7.1 Software Progr ... able Wait States 

The SuperB can stretch the Data Strobe (15m timing 
automatically, by adding one, two, or three 
internal clock periods. This is under program 
control and applies only to external memory 
cycles. Internal memory cycles still operate at 
the maximum rate. The software· has independent 
control over stretched Data Strobe for external 
memory (i.e., the software can set up one timing 
for program memory and a different timing for data 
Illemory). Thus, program and data memory may be 
made up of different kinds of hardware chips, each 
requiring its own timing. 

631 



12.7.2 Slow Memory Ti.ing 

Another feature of the, SuperS that is useful in 
interfacing with slow memories is the Slow Memory 
Timing option. When this option is enabled, the 
normal external memory timing is slowed by a 
factor of two (bus clock = CPU clock divided by 
two) • All memory times for set-up, duration, 
hold, and access times are essentially doubled. 
This feature can also be used with the programmed 
automatic wait states described above. Programmed 
wait states can still be used to stretch the Data 
Strobe time by one, two, or three internal clock 
times (not two, four, or six) when Slow Memory 
Timing is enabled. 

12.7.3 Hardware Wait States 

Still another SuperS feature is an optional exter­
nal mT input using port pin P34. The mT input 
function can be used with either or both of the 
above two features. Thus the Data Strobe width 
will have a minimum value determined by the number 
of programmed wait states selected and/or by Slow 
Memory Tim~ng. The mT input provides the means 
to stretch it even further. The mT input is 
sampled each internal clock time and, if held low, 
can stretch the Data Strobe by adding one internal 
clock period to the Data Strobe time for an 
indefinite period of time. 

INTERNAL 
CLOCK 

External Interface 

All of the extended bus timing features are 
programmed by writing the appropriate bits in the 
External Memory Timing register (Figure 12-9). 

R254 BANKO (FE) EMT 
EXTERNAL MEMORY TIMING REGISTER 

I~I~I~I~I~I~I~I~I L DATA MEMORY AUTOMATIC WAITS 
00 = NO WAITS 
01 = 1 WAIT 
10 = 2 WAITS 
11 = 3 WAITS 

PROGRAM MEMORY AUTOMATIC WAITS 
00 = NO WAITS 
01 = 1 WAIT 
10 = 2 WAITS 
11 = 3 WAITS 

'---------- SLOW MEMORY TIMING 
0= DISABLED 
1 = ENABLED 

'----------- EXTERNAL WAIT INPUT 
o = P34 IS NORMAL 110 
1 = P34 IS EXTERNAL WAIT INPUT 

Figure 12-9. External Memory Timing Register 

12.8 INSTRUCTIONTIMING 

The high throughput of the SuperS is due, in part, 
to the use of instruction pipelining, where the 
instruction fetch and execution cycles are over­
lapped. During the execution of the current 
instruction, the opcode of the next instruction is 
fetched, as illustrated in Figure 12-10. 

INSTRUCTION 
N 

INSTRUCTION 
FETCH 1 

INSTRUCTiON 
FETCH 2 

OPERAND .1' 
FETCH(ES) ALU STORE 

EXECUTION CYCLE 

INSTRUCTION 
N+1 

INSTRUCTION 
N+' 

632 

INSTRUCTION 
FETCH 1 

INSTRUCTION 
FETCH 2 

I • EFFECTIVE ----... 1.,---- HIDDEN DELAY -I 
EXECUTION TIME UNTIL COMPLETION 

I.,----------INSTRUCTION COMPLETION TIME----------•• I 

Figure 12-10. Instruction Pipelining 

OPERAND 
FETCH(ES) ALU STORE 

EXECUTION CYCLE 

INSTRUCTION 
FETCH 1 

INSTRUCTION 
FETCH 2 



External Interface 

figures 12-11 through 12-14 show typical instruc­
tion cycle timing for instructions fetched from 
external memory. All instruction .fetch cycles 
have the same machine timfng regardless of whether 
the memory is internal or eX,ternal except When' 
external memory timing is extended. In order to 
calculate the execution time of a program, the 

• T, T, T, T, 

CLOCK 

internal clock periods shown in the cycles column 
of the instruction formats in the Instruction Set 
(Chapter 5) should be added. Pipeline cycles are 
transparent to the user and should be ignored. 
Each cycle represents two cycles of the crystal or 
input clock. 

M, 

T, T, T, T, T, 

PO ____ ....J 1.... ____ Aa...:...-A..;;,:::,, ____ -..J 1.... __________ -..,;.A;:,,-.... A.::15:...... _________ _ 

Pi XC:A~o~A~,~~-----~::A~o~A~,~»-------------:......----~ ____ ....J IN IN 

\'---~/ 
\~ ______________________ -J/ 

RIW ___ --II 

i-FETCH INSTRUCTION --\---'-----FETCH 1ST BYTE OF NEXT INSTRUCTION------l 

Figure 12·11. lYpicallnstruction Cycle Timing (One Byte Instruction) 

M, M, M, 

T, T, T, T, T, T, T, T, ' T, 

CLOCK 

PO X As A15 As A15 X Aa A15 

P1 x::::!iL) s--< An A, > s---< Ao A7 ) G:9-
AS \........J \........J \........J 
os \ I \ I \ r 

RIW I 
\---FETCH 1ST BYTE ;...' ---1---- FETCH 2ND BYTE---+-FETCH 1ST BYTE OF NEXT INSTRUCTION 

Figure 12·12. Typical Instruction Cycle Timing (Two Byte Instruction) 

633 



External Interface 

M, M, 

~ ______ ~~ ______ ~~ ____ -J~ ____ ~~~ __ ~~ ________ ~~ ______ ___ 

\.....J \.. 

'''''' ______ --'1 ''---------'1 ''-------~I 
RIW ______ -J1 

I-'--FETCH 1ST BYTE ----I-----FETCH 2ND BYTE---i-----FETCH 3AO BYTE ------I 

Figure 12"-13. 1Yplcallnstructlon Cycle Timing (Three Byte Instruction) 

M, M, 

~ ______ ~~ ______ ~~ ____ --'~ ______ ~~ ____ -J~ ______ ~~ ____ --J~ ______ ~~ ____ __ 

''-------~I '''''' ______ --11 ''-~_--'I ''-__ ~I 
RlW ____ ---J1 

\-FETcfi 1ST BYTE ----I---FETCH 2ND ByTE---!----FETCH SAD BYTE ---i-o---FETCH 4TH BYTE ~ 

Figufe'12-14. 1Yplcallnstruction Cycle Timing (Four Byte InStruction) 

634 



addressing~: The way in which the location of 
an operand is specified. There are seven address­
ing modes: Register, Indirect Register, Indexed, 
Direct Address, Indirect Address, Relative 
Address, and Immediate. 

auto-echo~: In this UART mode, the data 
coming in on the Receive Data pin is reflected out 
on the Transmit Data pin. The receive section 
still listens to the receive data input; however, 
the data from the transmit section goes nowhere. 

~ addresa: The address ·used, along with an 
index and/or displacement value, to calculate the 
effective address of an operand. The base address 
is locsted in a general-purpose register, the 
Program Counter, or the instruction. 

baud-rate generator: The UART has its own on-chip 
programmable baud-rate generator that consists of 
two B-bi t Time Constant registers that hold the 
time constant value, a 16-bit Timer/Counter that 
counts down, and a flip-flop at the output 
producing a square wave. 

bi-value.ode: A SuperB counter/timer operating 
mode wherein the Time Constant and Capture 
registers alternate in loading the counter. 

byte: A data item containing B contiguous bits. 
A byte is the basic data unit for addressing 
memory and peripherals. 

capture: A "capture on external event" feature of 
the SuperB that takes a snapshot 0 f the count.er 
when a certain event occurs. 

data _Dry: A memory address space that can hold 
only dat.a to be read or written, not instruction 
code; data memory is always external to the 
SuperB. 

Deskew Coooter: A 4-bit counter in each hand­
shaking channel that is used to count processor 
clocks between the time that valid data is avail­
able at the port and the handshake signal indi­
cates that data is available. 

Direct Addresa (OA) addressing 1IIOde: In this 
mode, the effective address is contained in the 
instruction. 

Glossary 

Direct ..... ry Acceaa (OMA): An on-chip channel 
that provides high-speed transfers of dsta direct­
ly between memory and peripheral devices. 

exception: A condition or event that alters the 
usual flow of instruction processing. The SuperB 
CPU supports two types of exception: reset and 
interrupts. 

extended bUB ti.ing: The SuperB has the capabil­
ity of stretching the Data Strobe timing by 1, 2, 
or 3 internal clock periods during external memory 
accesses. The software can set up one timing for 
program memory and a different timing for data 
memory. 

fast interrupt processing: Fast interrupt 
processing completes the interrupt servicing in 6 
clock periods instead of the usual 2.2. 

flag regiater: This register is used to supply 
the status of the SuperB CPU at any time. 

Flag': A dedicated register that saves the 
contents of the Flag register when a fast inter­
rupt occurs. 

general-purpoae registers: The 325 registers that 
can' be used as accumulators, address pointers, 
index registers, 'data registers, or stack regis­
ters. 

handshaking channels: The SuperB has two identi­
cal handshaking channels ,which operate in two 
modes--"fully interlocked" or two-wire mode, 'and 
"strobed" or single-wire mode. 

Im.ediate (1M) addressing.ode: In this mode, the 
operand is contained in the instruction. 

Indexed (X) addressing~: In this mode, the 
contents of an index register are added to the 
contents of a specified working register or work­
ing register pair, which holds the index value 
desired. 

Indirect Address CIA) addressing.ode: In this 
mode, the instruction specifies a pair of memory 
locations and this se lected pair, in turn, con­
tains the actusl address of the instruction to be 
executed. 

635 



Glossary 

Indirect Register (IR) addr_ing.ooe: In this 
'mode, the contents of the specified register or 
register pair is the address of the operand. 

Instruction Pointer: A 16-bit register that acts 
as Program Counter for a threaded-code language, 
such as Forth, or can be used in the fast inter­
rupt processing mode for special interrupt 
handling. 

interrupt: An asynchronous ex~eption generated by 
a peripheral device that needs attention. The 
interrupt structure of the SuperB contains 27 dif­
ferent interrupt sources, 16 vectors, and B 
levels. 

interrupt level: Interrupt levels provide the top 
level of priority assignment and can be changed by 
programming the Interrupt Priority register. 

Interrupt Priority register (IPR): This register 
assigns 192 different combinations of priority 
when more than one interrupt level is pending. 

interrupt source: An interrupt source is anything 
that generates an interrupt, internal or external' 
to the SuperB. 

interrupt vector: The vector number is used to 
generate the address of a particular interrupt 
servicing routine. 

locsl loopback.ode: In this mode, the data out­
put from the transmit section of the UART is also 
routed back to the receive section. 

pipelining: Instruction pipelining is a computer 
design technique in which the instruction fetch 
and execution cycles are overlapped. Thus, during 
the execution of the current instruction, the 
opcode of the next instruction is fetched, result­
ing in high throughput. 

Prograa Counter (pc): The 16-bit Program Counter 
controls the sequence of instructions in the 
currently executing program and is not an address­
able register. 

progr.. .aaory: A memory address space that can 
hold code or data; program memory can be internal 
or external to the SuperB. 

read access: The type of memory access used by 
the CPU for fetching data operands and instruc­
tions. 

636 

Register (R) addressing mode: In this mode, the 
operand value is the contents of the specified 
register or register pair. 

register file: One of the three types of address 
spaces supported by the SuperB CPU. Register file 
address space is an internal register file compos­
ed of 325 B-bit wide registers that are logically 
div ided into 32 working register groups of ,eight 
registers each. 

Register Pointer (RP): The two register pointers 
are system registers that contain the base address 
of the two active working register groups of the 
register file. 

Relative Addr_ (RA) addressing.ada: In this 
mode, the displacement in the instruction is added 
to the contents of the Program Counter to obtain 
the effective address. 

reset: A CPU operating state or exception that 
results when a reset request is signaled on the 
~ line. A reset initializes the Program 
Status registers. 

Slow "-n-y tilling: An optional feature of the 
SuperB in which normal external memory timing is 
slowed by a factor of two. 

Stack Pointer (SP): A 16-bit register pair indi­
cating the top (lowest address) of the processor 
stack and used by the Call instruction and 
interrupts to hold the return address. 

systa. registers: System registers govern the 
operation of the CPU and may be accessed using any 
of the instructions that reference the register 
file using the Direct addressing mode. 

lkIiverssl Asynchronous Receiver/Tr..-itter 
(UART): . A full duplex asynchronous channe 1 that 
transmits and receives independently with 5 to B 
bits per character, options for even or odd 
par it y, and an opt ional wake-up feat~e. 

wake-up feature: A feature of the ,UART wherein 
pattern match logic detects a pre-specified data 
pattern at the receiver; the pattern can include 
both the received character and a special wake-up 
bit. 

write access: The type of memory access used by 
the CPU for storing data operands. 



~Jt.' Z"/m PRELIMINARY INFORMATION V..... luJlj Product Specification 

June 1987 

Features 

General 
Description 

Z8®Z8611 MeV 
Military Electrical Specification 

• Complete microcomputer, 2K (8601) or 4K 
(8611) bytes of ROM, 128 bytes of RAM, 32 
I/O lines, and up to 62K (8601) or 60K (8611) 
bytes addressable external space each for 
program and data memory. 

• 144-byte register file, including 124 general-
purpose registers, four I/O port registers, 
and 16 status and control registers. 

• Average instruction execution time of 1.5 /lB, 
maximum of l/ls. 

• Vectored, priority interrupts for I/O, 
counter/timers, and UART. 

The Z8 microcomputer introduces a new level 
of sophistication to Single-chip architecture. 
Compared loearlier single-chip micro­
computers, the Z8 offers faster execution; more 
efficient use of memory; more sophisticated 
interrupt, input/output and bit-manipulation 
capabilities; and easier system expansion. 

Under program control, the Z8 can be tailored 
to the needs of its user. It can be configured as a 

PORTO 
(NIBBLE 

PROGRAMMABLE) 
1/0 OR AS-A!s 

PORT f 
(BYTE 

PROGRAMMABLE) 
110 OR ADo-AD7 

Figure 1. Pin Functions 

PORT 2 
(BIT PRO· 
GRAMMABLE) 
110 

PORT 3 
SERIAL AND 
PARALLEL 110 
AND CONTROL 

28603 Prototyping Device with 2K EPROM Interface 

• Full-duplex UART and two programmable 
8-bit counter/timers, each with a 6-bit 
programmable prescaler. 

• Register Pointer so that short, fast instruc-
lions can access any of nine working register 
groups in I /lS. 

• On-chip oscillator which accepts crystal or 
-external clock drive. 

• Single + 5 V power supply-all pins TTL 
compatible. 

• 12.5 MHz. 

stand-alone microcomputer \\lith 4K bytes 
of internal ROM, a traditional microprocessor 
that manages up to 124K bytes of external 
memory, or a parallel-processing element in a 
system with other processors and peripheral 
controllers linked by the Z-BUS@bus. In all 
configurations, a large number of pins remain 
available for I/O. 

+Sy P:Ie 

XTAL2 P3, 

XTAL1 P2, 

P3, P2e 
P30 P2, 

RElET P2. 

R/iN P2. 
OS P2, 

II! P2, 

P3, P2" 

GND P3, 

P3, P3. 

Po. P1, 
po, P1. 

Po, P1, 

po, P1. 

po, P1. 

PO, P1, 

po. P1, 

PO, P1. 

Figure 2a. 40-pin Dual-In-Line Package (DIP). 
Pin Assignments 

637 



Pin 
Description 

638 

AS. Address Strobe (output, active Low). 
Address Strobe is pulsed once at the begin­
ning of each machine cycle. Addresses output 
via Port 1 for all external program or data 
memory translers are valid at the trailing edge 
of AS. Under program control. AS can be 
placed in the high-impedance state along with 
Ports 0 and I, Data Strobe and Read/Write. 

DS. Data Strobe (output, active Low). Data 
Strobe is activated once lor each external 
memory transfer. 

POo-PD,. PIa-PI7' P2o-Pz.,. P30-P3,. lIO Port 
Lines (input/outputs, TTL-compatible). These 
32 lines are divided into four 8-bit I/O ports 
that can be configured under program control 
for I/O or external memory interface. 

RESET. Reset (input, active Low). RESET ini­
tializes the 28. When RESET is deactivated, 

program execution begins from internal 
program location OOOCH. 

ROMIess. (input, active LOW). This pin is only 
available on the 44 pin versions of the 28611. 
When connected to GND disables the 
internal ROM and forces the part to function as a 
28681 ROMless 28. When left unconnected or 
pulled high to Vee the part will function 
normally as a 28611. 

R/W. Read/Write (output). R/W is Low when· 
the 28 is writing to external program or data 
memory. 

XTALl. XTAL2. Crysta11, Crystal 2 (time-base 
input and output). These pins connect a paralleL 
resonant 12.5 MHz crystal or an external single­
phase 12.5 MHz clock to the on-chip clock 
oscillator and buffer. 



Architecture Z8 architecture is characterized by a flexible Three basic address spaces-are available to 
support this wide range of configurations: 
program memory (Internal and external), data 
memory (external) and the register file (inter­
nal). The 144-byte random-access register file 
is composed of 124 general-purpose registers, 
four I/O port registers, and 16 control and 
status registers • 

2037·003 

I/O scheme, an efficient register and address 
space structure and a number of ancillary 
features that are helpful In many applications. 

Microcomputer applications demand power­
ful I/O capabilities. The Z8 fulfills this with 32 
pins dedicated to input.and output. These lines 
are grouped into four ports of eight lines each 

. and are configurable under software control to 
provide timing, status Signals, serial or parallel 
I/O with or without handshake, and an address! 
data bus for interfacing external memory. 

Because the multiplexed address/data bus is 
merged with the I/O-oriented ports, the Z8 can 
assume many different memory and I/O con­
figurations. These configurations range from 
a self-contained microcomputer to a micropro­
cessor that can address 124K (Z8601) or 120K 
(Z8611) bytes of external memory. 

OUTPUT 

. To unburden the prOgram from coping with 
real-time problems such as serial data com­
munication and counting/timing, an asynchro­
nous receiver/transmitter (UART) and two 
counter/timers with a large number of userse­
lectable modes are offered on-chip. Hardware 
support for the UART is minimized because one 
of the on-chip timers supplies the bit rate. 

} 
2048~BIT 

ZB811 
L.._~_-I 40lIl ... BIT 

110 
(BIT PROGRAMMABLEI 

ADDRESS OR 110 
(NIBBLE PROGRAMMABLEI 

ADDRESSIDATA OR 110 
(BYTE PROGRAMMABLE) 

Figure S. F1IIICtIoDa1 Block DIagram 

639 



Address 
Spaces 

640 

Program Memory. The 16-bit program counter 
addresses 64K bytes of program memory space. 
Program memory can be located in two areps: 
one internal and the other external (Figure 4). 
The first 4096 (Z8611) bytes consist of on-chip 
mask-programmed ROM. At addresses 
4096 (Z8611) and great~r, the Z8 executes 
external program memory fetches. 
• The first 12 bytes of program memory are 
reserved for the interrupt vectors. These loca­
tions contain six 16-bit vectors that correspond 
to the six available interrupts. 

Data Memory. The Z8 can address 60K (Z8611) 
bytes of external data memory beginning at 
location 4096 (Z8611) (Figure 5). External data 
memory may be inchided with or separated 

as 53' 

ZlI811 .... 409. 

Location of 
first byte of 
instruction 

executed 
after reset 

Intenupt 
Vector 

(Lo_Byte) 

Int8rTUpt 
Vector 

(Uppeo-Byte) 

;, 
11 ,. 
• 
8 , 

.... 8 

• • /, 
2 

• 

EXTERNAL 
FlOM OR RAil 

ON·CHIP 
OOM 

t:----------~--
lAOS 

fRQS 

1004 

IAQ4 

IR03 

IRQ3 

IA02 

IR02 

IRQ1 

IR01 

1000 

1000 

Figure', Program Memory Map 

LOCATION 

255 

2S4 

253 

252 

251 

250 

2<0 

2<0 

24' 
248 

248 

24. 
24' 
242 

241 

240 

12' 

STACK POINTER (BITS 7-0) 

~TACK POINTER (BITS 15-8) 

REGISTER POINTER 

PROGRAM CONTROL FLAGS 

INTERRUPT MASK REGISTER 

INTERRUPT REQUEST REGISTER 

INTERRUPT PRIORITY REOISTER 

PORTS 0-1 MODE 

PORT 3 MODE 

PORT 2 MODE 

TO PRESCALER 

TIMERICOUNTER 0 

T1 PRESCALER 

TIMER/COUNTER 1 

TIMER MODE 

SERIAL UO 

NOT 
IMPLEMENTED 

GENERAL·PURPOSE 
REGISTERS 

PORT 3 

PORT 2 

PORT 1 

PORTO 

Figure 8. The Reglat .. File 

IDENTIFIERS 

SPL 

SPH 

OP 

FLAGS 

1M" 
loa 
IP" 
P01M 

P'M 
P2M 

P"eo 
T. 
PRE1 

T1 

TMO 

SIO 

P3 

P2 

Pl 

PO 

from the external program memory space. 
DM, an optional I/O function that can be 
programmed to appear on pin P34, is used to 
distinguish between data and ' 
program memory space. 

Register File. The 144-byte register file 
includes four I/O port registers (RO-R3), 124 
general-purpose registers (R4-RI27) and 16 
control and status registers (R240-R255). These 
registers are assigned the address locations 
shown in Figure 6. 

Z8 instructions can access registers directly 
or indirectly with an 8-bit address field. The Z8 
also allows short 4-bit register addressing using 
the Register Pointer (one of the control regis­
ters). In the 4-bit mode, the register file is 

EXTERNAL 
DATA 

MEMORY 

1----------1 :ZB811 
NOT ADDRESSABLE 

Figure 5. Data Memory Map 

... 
--( '7"'5'. 0000 ,253 

240 

The upper nibble 01 the register file ac:tdrna r--- provided by the regl8'er pointer specl'''' 
the active wortdng·reglster group. 

--
--
----
r-

------

127 

SPECIFIED WORKINQ. --REGISTER GROUP 

I. 
r---,/o,ooTi----- ~ 

Figure 7. The Regillter Pomter 

__ 
nibble of 
thentgister 
file address 
provldad by -
the instruction 
points to the 
specified 
regist .... 



Serial 
Input/ 
Output 

Counter/ 
Timers 

divided into nine working-register groups, each 
occupying 16 continguous locations (Figure 6). 
The Register Pointer addresses the starting 
location of the active working-register group 
(Figure 7). 
Stacks. Either the internal register file or the 
external data memory can be used for the stack. 

Port 3 lines P30 and P37can be programmed as 
serial 110 lines for full-duplex serial asynchro­
nous receiver/transmitter operation. The bit rate 
is controlled by Counter/Timer 0, at 12 MHz. 

The Z8 automatically adds a start bit and two 
stop bits to transmitted data (Figure 8). Odd 
parity is also available as an option. Eight data 
bits are always transmitted, regardless of parity 

TralUlmitted Data 
(No Parity) 

T LSTART BIT 

'------EIGHT DATA BITS 

TWO STOP BITS 

TralUlmitted Data 
(With Parity) 

T I LSTART BIT 

L 
_______ SEVEN DATA BITS 

. 000 PARITY 

TWO STOP BITS 

A 16-bit Stack Pointer (R254 and R255) is used for 
the external stack, which can reside anywhere in 
data memory between location~ 2048 (8601) or 
4096 (86ll) and 65535. An 8-bit Stack Pointer 
(R255) is used for the internal stack that resides 
within the 124 general-purpose registers 
(R4-RI27). 

selection. If parity is enabled, the eighth bit is 
the odd parity bit. An interrupt request (IRQ4) is 
generated on all transmitted characters. 

Received data must have a start bit, eight data 
bits and at least one stop bit. If parity is on, bit 7 
of the received data is replaced by a parity error 
flag. Received characters generate the IRQ3 
interrupt request. 

Recel"ed Data 
(No Parity) 

1~1~1~1~1~1~1~:~!~lsij 

L sTARy BIT 

L-----EIGHT DATA BITS 

'----------ONE STOP BIT 

Recel'l'ed Data 
(With Parity) 

II LSlART BIT 

'-----SEVEN DATA BITS 

'---------~~~I';~=:~TR FLAG 

Figure 8. Serial Data Formats 

The Z8 contains two 8-bit programmable 
counter/timers (To and TI), each driven by its 
own 6-bit programmable prescaler. The TI 
prescaler can be driven by internal or external 
clock sources; however, the To prescaler is 
driven by the internal clock only. 

The 6-bit prescalers can divide the input fre­
quency of the clock source by any number from 
1 to 64. Each prescaler drives its counter, which 
decrements the value (l to 256) that has been 
loaded into the counter. When the counter 
reaches the end of count, a timer interrupt 
request-IRQ4 (to) or IRQs (TI)-is generated. 

The counters can be started, stopped, 
restarted to continue, or restarted from the 
initial value. The counters can also be pro­
grammed to stop upon reaching zero (single-

pass mode) or to automatically reload the initial 
value and continue counting (modulo-n contin­
uous mode). The counters, but not the presca­
lers, can be read any time without disturbing 
their value or count mode. 

The clock source for T I is user-definable and 
can be -the internal microprocessor clock 
divided by four, or an external signal input via 
Port 3. The Timer Mode register configures the 
external timer input as an external clock, a 
trigger input that can be retriggerable or non­
retrigg;'rable, or as a gate input for the internal 
clock. The counter/timers can be programmably 
cascaded by connecting the To output to the 
input of T I. Port 3 line P36 also serves as a timer 
output (TOUT) through which To, TI or the inter­
nal clock can be output. 

/ 

641 



1/0 Ports 

642 

The Z8 has 32 lines dedicated to input and 
output. These lines are grouped into four ports of 
eight lines each and are configurable as input, 
output or address/data. Under software control, 
the ports can be programmed to provide address 

Port 1 can be programmed as a byte I/O port 
or as an address/data port for interfacing 
external memory. When used as an I/O port, Port 
1 may be placed under handshake con-
trol. In this configuration, Port 3 lines P33 and 
P34 are used as the handshake controls RDY 1 
and DAVj (Ready and Data Available). 

Memory locations greater than 2048 (Z8601) or 
4096 (Z8611) are referenced through Port 1. To 
interface external memory, Port 1 must be 
programmed for the multiplexed Address/Data 
mode. If more than 256 external locations are 
required, Port ° must output the additional 
lines. 

Port 1 can be placed in the high-impedance 
state along with Port 0, AS, DS and RIW, 

Portil can be programmed as a nibble I/O 
port, or as an address port for interfacing 
external memory. When used as an I/O port, 
Port ° may be placed under handshake con­
trol. In this configuration, Port 3 lines P32 and 
P35 are used as the handshake controls DAVo 
and RDYo. Handshake signal assignment is 
dictated by the I/O direction of the upper nibble 
P04-P07· 

For external memory references, Port ° can 
provide address bits As-All (lower nibble) or 
As-Aj5 {lower and upper nibble) depending on 
the required address space. If the address range 
requires 12 bits or less, the upper nibble of Port ° 
can be programmed independently as I/O while 

Port 2 bits can be programmed independently 
as input or output. The port is always available 
for I/O operations. In addition, Port 2 can be 
configured to provideopen-drain outputs. 

Like Ports ° and 1, Port 2 may also be 
placed under handshake control. In this con­
figuration, Port 3 lines P3j and P36 are used as 
the handshake controls lines DAV 2 and RDY 2. 
The handshake signal assignment for Port 3 lines 
P3j and P36 is. dictated by the direction (input or 
output) assigned to bit 7 of Port 2. 

Port :I lines can be configured as I/O or 
control lines. In either case, the direction of the 
eight lines is fixed as four input (P30-P33) and 
four output (P34-P37)' For serial I/O, lines P30 
and P37 are programmed as serial in and serial 
out respectively. 

Port 3 can also provide the following con­
trol functions: handshake for Ports 0, 1 and 2 
(DAVand RDY); four external interrupt 
request signals (IRQO-IRQ3); timer input and 
outpuhignals (T~nd Tour) and Data 
Memory Select (DM). 

outputs, timing, status signals, serial I/O, and 
parallel I/O with or without handshake. All ports 
have active pull-ups and pull-downs compatible 
with TTL loads. 

allowing the Z8 to share common resources in 
multiprocessor and DMA applications. Data 
transfers can be controlled by assigning P33 as a 
Bus Acknowledge input and P34 as a Bus 
Request output. 

Z8611 

Meu 

....... 
(UO OR ADo-AD,) 

Figure k. Port 1 

the lower nibble is used for addressing. When 
Port ° nibbles are defined as address bits, they 
can be set to the highimpedance state along with 
Port 1 and the control signals AS, DS and RIW. 

Z8611 

Meu 

Z8611 

Meu 

I ... .,.· (110 OR A.-A,s) 

Figure 9b. Port 0 

PORT 2(1/0) 

l HANDSHAKE CONTROLS 
0Ai.i2 AND RDYz 
(P3, AND P3e) 

Figure 9c:. Port 2 

PORTa 
(110 OR CONTROL) 

Figure 9d. Port 3 



Interrupts 

Clock 

The 28 allows six different interrupts from 
eight sources: the four Port 3 lines P30-P33, 
Serial In,- Serial Out, and the two counter/timers. 
These interrupts are both maskable and 
prioritized. The Interrupt Mask register globally 
or individually enables or disables the six inter­
rupt requests. When more than one interrupt is 
pending, priorities are resolved by a pro­
grammable priority encoder that is controlled by 
the Interrupt Priority register. 

All 28 interrupts are vectored. When an inter­
rupt request is granted, an interrupt machine 

The on-chip oscillator has a high-gain, 
parallel-resonant amplifier for connection to a 
crystal or to any suitable external clock source 
(XTALI = Input, XTAL2 = Output). 

The crystal source is connected across XTALI 
and XTAL2, using the recommended capaCitors 

cycle is entered. This disables all subsequent 
interrupts, saves the Program Counter and status 
flags, and branches to the program memory 
vector location reserved for that interrupt. This 
memory location and the next byte contain the 
16-bit address of the interrupt service routine for 
that particular interrupt request. 

Polled interrupt systems are also supported. To 
accommodate a polled structure, any or all of the 
interrupt inputs can be masked and the Interrupt 
Request register polled to determine which of the 
interrupt requests needs service. 

(Cl:S 15pF) from each pin to ground. The 
specifications for the crystal are as follows: 

• AT cut, parallel resonant 
• Fundamental type, 12.5 MHz maximum 
• Series resistance, Rs :S 100 n 

643 



Instruction 
Set 
Notation 

644 

Addressing Modes. The following notation is used 
to describe the addressing modes and instruction 
operations as shown in the instruction summary. 

IRR 

Irr 
X 

.DA 
RA 
1M 
R 

IR 

I. 
RR 

Indirect register pair or indirect working-register 
pair address 
Indirect working-register pair only 
Indexed address 
Direct address 
Relative address 
Immediate 

Register or working-register address 
Working-register address only 
Indirect-register or indirect working-register 
address 
Indirect working-register address only 
Register pair or worki'ng register pair address 

Symbols. The folloWing symbols are used in 
describing the instruction set. 
dst Destination location or contents 
src Source location or contents 
cc Condition code (see list) 
@ Indirect address prefix 
SP Stack pointer (control registers 254-255) 
PC Program counter 

FLAGS Flag register (control register 252) 
RP Register pointer (control register 253) 
IMR Interrupt mask register (control register 251) 

Assignment of a value is indicated by the symbol 
"_". For example, 

dst - dst + src 
indicates that the source data is added to the 
destination data and the result is stored in the 
destination location. The notation "addr(n)" is used 
to refer to bit "n" of a given location. For example, 

dst (7) 
refers to bit 7 of the destination operand. 

Flags. Control Register R252 contains the folloWing 
six flags: 

c 
z 
S 
V 

Carry flag 
Zero flag 
Sign flag 
Overflow flag 

D DeCimal-adjust flag 
H Half-carry flag 

Affected flags are indicated by: 

o Cleared t'o zero 
Set t6 one 

* Set or cleared according to operation 
Unaffected 

X Undefined 



Condition 
Codes 

Instruction 
Formats 

Value 

1000 
0111 
1111 
0110 
1110 
1101 
0101 
0100 
1100 
0110 
1110 
1001 
0001 
1010 
0010 
1111 
0111 
1011 
0011 
0000 

ope MODE 
detllre 

ope 
dot 

OPC 

VALUE 

ope MODE 

dot 

MODE ope 
dsUsrc .relda' 

dlt1Src ope 
Ireld.' 

dot I ope 
VALUE 

I dsUCC R~ ope 

M ... moDic 

C 
NC 
Z 

NZ 
PL 
MI 
OV 

NOV 
-EQ 

NE 
GE 
LT 
GT 
LE 

UGE 
ULT 
UGT 
ULE 

OR It 1 1 01 dSt/SfC I 

lOR b 1 101 dot 

OA It 1 1 01 

Always true 
Carry 
No carry 
Zero 
Not zero' 
Plus 
Minus 
Overflow 
No overflow 
Equal 
Not equal 
Greater than or equal 
Less than 
Greater than 
Less than or equal 
Unsigned greater than or equal 
Unsigned less than 
Unsigned greater than 
Unsigned less than or equal 
Never true 

ope CCF, 01, EI,IRET, NOP, 
RCF, RET, SCF 

dot ope INCr 

eLA, CPl, DA. DEC, OPC MODE 
DEeW. INC, tNCW, POP, ". PUSH, AL, ALe, RR, 
RAC, SFlA, SWAP dot 

JP, CALL (Indirect) 

ope MODE 
d., 

.RP 
VALUE 

MODE ope 

ADC, ADD, AND, 
CPt OR, SBC, SUB, dot 
reM, TM, XOR 

MODE ope 
LD, LOE, LOEI, 

dstlsrc lOC, LOCI 
ADDRESS 

L. ope 
OA, 
OA, 

LO 

ope 
OA, 

DJNZ,JA OA, 

Tw .... Byte __ 

Figure 12. Instruction Formats 

OR 
OR 

C = I 
C = 0 
Z = I 
Z = 0 
5 = 0 
5 = I 
V = I 
V = 0 
Z = I 
Z = 0 

Flags Set 

(5 XOR V) = 0 
(5 XOR V) = I 
[Z OR (5 XOR V)) = 0 
[Z OR (5 XOR V)] = I 
C = 0 
C = I 
(C = 0 AND Z = 0) 
(C OR Z) = I 

ADC, ADD, AND, CPo 
1 1 1 0 ". LO, OR, sac, SUI, 

reM, TM, XOR 
1 1 10 d. 

ADC, ADD, AND, CP, 
OR 11 1 101 dot LO, OR, SIC. SUB. 

TeM, TM. XOR 

L. 
OR 1 1 10 

OR 1 1 1 0 dot 

L. 

JP 

CALL 

'l'brM-Byte __ 

645 



IDlltrucUon Iutnu:tloD Addr~ Opc:ode Flallll MectecI Iastructlooa AddrMoU 0pc04e Flallll~ 
SUQUDary cmd Operatloa cbil ~. aad Operatloa cbIt ,(r.) CZSVDB - ( ex) CZSVDH -ADO dat,src (Nole I) ID *·*~O* LDE dat,arc • I •• 82 ------

dat-dat+ arc +C dsl - src Irr 92 

ADD dat,arc (N",- I) 00 •• * • 0 .. LDEI dat,arc I. Irr 83 ------
dil - dat + s>:o dat - src Irr I. 93 

MD dat,src (~ote I) 50 • 0 - -
.-.+I;rr-rr+l 

dsl .- dsl AND arc NOP FF ------
CALL'dat DA ~ ------ OR dat,arc (Note I) 40 -*·0--
SP-SP-2 IRR dat - datORarc 
@SP - PC; PC - dat 

POPdat R 50 ------
CCF EF *----- dal- @SP IR 51 
C - NOTC SP-SP+l 

ctR dot R SO ------ PUSH erc R 70 ------
dsl - 0 IR Bl SP-SP-l; @SP-src IR 71 

COMdat R 60 • 0 - - RCF CF 0-----
dat - NOT dat IR 61 C-O 

CP dat,arc (Nole 1) AD RET AF ------
dsl - arc PC-@SP; SP-SP + 2 

DA dat R 40 .. • .. X - - RL dat ~~ 90 
dat - OA dat IR 41 91 

DEC dat R 00 - ... -- RLC dat Lm-E:::!J.l R 10 
dal-dsl-I IR 01 c , • IR 11 

DECW dat 'IlR 80 -*.*-- RR dat 1;mLc:!J-l~ EO ... 
dat-dal-l IR 81 El 

RRC dat cm:::E:]J R CO 
DI c , • IR CI 
IMR (7) - 0 8F ------ SIC dat,erc (Note 1) 3D • 1 • 
DJNZ .,dsl RA .A ------ 4sl- det-src-C 

r -. - 1 .=O-F SCF OF 1 - - - - -
1fT ¢ 0 C-l 

PC-PC+dat 
SRA dat Lm~~ DO .... ·0 - -Range: + 127, -128 

01 
EI 9F ------ , 

SRP src 1m 31 ------IMR(7) - I RP - ere 
DlC dsl .E -***-- SUI dst,src (Note 1) 20 •• 1 . 
dat-dat+l • =O-F dot - dsl- src 

R 20 
IR 21 SWAPdat~ R FO X * .. X - -

, IR FI 
!MCW dat RR AO -.*.--
det-dsl+l IR Al TCM dat,arc (Note 1) 60 -**0--
!RET BF ****** 

(NOT datI AND arc 

FLAGS - @SP; SP - SP + I TN dsl,arc (Note 1) 70 -**0--
PC-@SP; SP-SP+2; IMR(7)-1 del AND arc 

po cc,dat DA cD ------ ZOR del,arc (Note I) BO -**0--
If cc Is true c=O-F dat - dat XOR src 

PC - det IRR 30 

JR cc,dsl RA cB ------ Note I 
if cc Is lrue, c=O-F, 

These instructlons have an identical set of addressinq PC-PC + dst 
Range: t 127, -!28 modes, which are encoded for brevity. The firs! opcode 

nibble is found in the instruction tel table above. The 
LD dat,arc 1m rC ------ second nibble is expressed symbolically by a 0 In this 
dst-src • R r8 teble, and ita value is found in the follOWing table to the 

R 19 right of the applicable addresaing mode pair. 
r=O-F For example, to determine the opcode of a ADC 

• X C7 Instruction use the addressing modea r (aestinatlon) and 

X r 07 Ir (source). The result Is 13. 

• Ir E3 
If r F3 
R R E4 Adclr Mode Low_ 
R IR E5 0pc0cIe Nlbbl. 
R 1m E6 cbIt IIl'C 

IR 1m E7 
tal ,IR R F5 

toe, del,arc i Irr C2 ------ Ir [!) 

dal - ere In 02 R R !II 
LOCI dat,src If Ifr C3 ------ R IR rn 
dat - arc Irr If D3 Ii 1M 00-
• -. + 1; rr - rr + 1 

IR, 1M III 

646 



Registen R240 SIO 
Ser1a11/0 Reglater 
(F~; Read/Write) 

'----SERIAL DATA lDo • LSI) 

8241 TMR 
Tl_ Mode Reglater 

(FIH; Read/Write) 

NOT USED. 00 ~ 1 • LOADTo 
TO OUT'" 01 0 • DISAILE T COUNT 
T,OUT -10 0 

T"",MDDES j llli~.' NO FUNCT'ON 

INTERNAL CLOCK OUT • 11 1 ... ENABLE To COUNT 

T MODES 0 .. NO FUNCTION 
EXTERNAL CLOCK IN~DT .. 00 1 ... LOAD T, 

GATE INPUT. 01 0 .. DISABLE T, COUNT 

(NON'A~~~:i:~=:~~ • 10 1 .. ENABLE T 1 COUNT 
TRIGGER INPUT ... 11 

(AETAIGQEAA8LE) 

R242 Tl 
Cowater Timer 1 Reglater 

(F~; Read/Wrlte) 

R243 PREl 
Presc:aler 1 Reglater 
(F~; Write Only) 

~LCDUNTMDDE 
o ... T, SINGLE.PASS 

, 1 ... T, MODULO.N 

CLOCK SOUIIIICE 
1 '" T,INTERNAL 
o = !J EXTERNAL TIMING INPUT 

(T.,.)MODE 

PRESCALE" MODULO 
(RANGE: '~14 DECIMAL 
01~OO HEX) 

R244 TO 
Cowater/Tlmer 0 Reglater 

(F4}{; Read/Write) 

'----:J~:~~ =~~~.:~:~:-r.:~ 
T.CURAENTVAlUE(WHEN RDDt 

R245 PREO 
PrHc:aler 0 Reglater 

(F5}{; Write Only) 

I~D'I"ID'ID'ID'ID'ID~' I Dl'l COUNTIIDDE 

o • To SINGLE·PASS 
1 ... To MODULo-N 

RESERVED 

"'EseALER MODULO 
(RANGE: 1-84 DECIMAL 
01·00 HEX) 

HI. PaM 
Port 2 Mode Reglilter 
(F~; Write Only) 

Hl47P3M 
Pan 3 Mode Reglater 

(F7H; Write Only) 

[SELDPORT.PULL.UPSciP.N.....iN 
1 PORT 2 PULL·UPS ACTIVE 

RESERVED 
o P32 = INPUT pas = OUTPUT 
1 P32 = aIV&RDYo PIS = RDYcwaAVt 

00 P33:: INPUT P34 :: OUTPUT 

~~} P33 '" INPUT PM = mil 
11 P33 = tiX'RIRDY1 P34 = ROV1'aAVt 

~ =~ : ~fo~ :: : ~~~:,utsWr) 
'---------~=: :':l.. ... ::: ~~~TOUT 

L-________ ~;~~g~ 

Figure 13. Control Registers 

647 



Registers 
(Continued) 

R248 POIM 
Port 0 and I Mode Regllt_ 

(F8H; Write Only) 

10,10.10, I 0.1 0,1 0,1 0, i'D, I 

OUTPUT = 00 L 00 .. OUTPUT 
INPUT .. 01 01 = INPUT 

A'2·A15 '" 1X 1X .. "a-A1I 

po,_po, MODE:] E-r PO,-PO, MODE 

EXTERNAL MEMORY TIMING . STACI( SELECTION 
NORMAL .. 0 0 = EXTERNAL 

EXTENDED a 1 1 '" INTERNAL 

P18O'11 :y~~EOUTPUT 
01 = BYTE INPUT 
10'" ADo-AD, 
11 "" HIGH·IMPEDANCE ADo-ADT. 

AS, OS, RIW, Ae-Au. A12-A15 
IF SELECTED 

R2491PR 
Interrupt Priority Regllter 

(F%; Write Only) 

107 105 i Os i 04 i 0 3 ]02 1..0, iDol 

.••.• :] I I III"~'-"'-RESERVED '" 000 
tRQ3, IRQS PRIORITY (GROUP AI C > A :> 8 = 001 

o '" IRQS :> IRQ3 . A :> B :> C = 010 
1 '" IR03 :> IRQS A:> C > B = 011 

B:> C :> A = 100 
IRaO, IRQ2 PRIORITY (GROUP B) C :> B :> A = 101 

o '" IRQ2 :> IROO B:> A :> C '" 110 
1 '" IROO ::> IRQ2 RESERVED"" 111 

IRQ1, IRQ4 PRIORITY (GROUP C) 
o "" IRQ1 ::> IRQ4 
1 "" IRQ4 > IR01 

R250 IRQ 
Interrupt Request Register 

(FAH; Read/Write) 

10,10,10, io.lo,ID,1 0, !0,1 
RESERVED T L:: IRoo = P32 INPUT (00 a: IROO) 

IRQ1 "" P33 INPUT 
IRQ2 "" P31 INPUT 
lA03 = P30 INPUT, SERIAL INPUT 
IR04 = To, SERIAL OUTPUT 
IROS • T1 

R251 IMR 
Interrupt Mask Register 

(FBH; Read/Write) 

Il ____ L:: ___ ' ENABLES IROO-IRQS 
(Do'" IRoo) 

RESERVED 

'-_______ 1 ENABLES INTERRUPTS 

REGISTER 
POINTER 

Figure 13. Control Registers (Continued) 

648 

R252 FLAGS 
Flag Reglst_ 

(FCH; Read/Write) 

~~~
I LUSERFLAG·" 

LUSER FLAG F2 

HALF CARRY FLAG 

DEcrMAL ADJUST FLAG 

OVERFLOW FLAG 

SIGN FLAG 

ZERO FLAG 

CARRY FLAG 

R253 RP 
Register Polnt_ 
(F~; Read/Write) 

LOON'TeARE 

R254 SPH 
Stack Pointer 

(FEH; Read/Write) 

R255 SPL 
Stack Pointer 

(FFH; ReadiWrite) 



Opcode 
Map 

o 

2 

3 

, 
5 

'iC 8 

~ 
• 
~ 7 

II: 

! 8 

9 

J!. 

B 

C 

0 

E 

F 

Byt .. per 
lnstructloa 

Low .. Nibble (Hex) 

o 2 3 5 8 7 8 9 J!. B C D E 

6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5 6,5 6,5 12/10,5 12/10,0 6,5 12110,0 6,5 , 
DEC DEC ADD ADD ADD ADD ADD ADD LD LD OJNZ JR LD JP INC 

HI IRI tl, fa fl. 112 Rz,R] IR.,HI HI,IM IRI,IM r1,Rz la,R1 1l,RA cc,RA f1,IM cc,DA II 

6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5 
mc RLC ADC ADC ADC ADC ADC ADC 

HI IRI f], f2 1],lt2 Rz,R. IR.,HI HI, 1M IRI,IM 

6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5 
INC INC SUI SUI SUI SUB SUI SUI 

HI IRI tl. f2 fl, Ira H.,HI IR.,HI HI,IM IRI,IM 

8,0 6, I 6,5 6,5 10,5 10,5 10,5 10,5 
JP SRP SIC SIC SIC SIC SIC SIC 

IRHI 1M t1, rJ 11,Ir2 H.,HI IR.,HI HI,IM IRI,IM 

8,5 8,5 6,5 6,5 10,5 10,5 10,5 10,5 
OJ!. OJ!. OR OR OR OR OR OR 
HI IRI tl,12 11,Irz H.,HI IR., HI HI,IM IRI,IM 

10,5 10,5 6,5 6,5 10,5 10,5 10,5 10,5 
POP POP AND AND AND AND AND AND 
HI IRI n,la 1],lu H.,HI IR.,HI HI,IM IRI,IM 

6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5 
COM COM TCM TCM reM TCM TeM TCM 

HI IRI n, fa 11,IrZ H.,HI IR.,HI HI,IM IRI,IM 

10112, I 12/14, I 6,5 6,5 10,5 10,5 10,5 10,5 
PUSH PUSH TN TN TN TN TN TN 

H. IR. 11, fa fl,Irz H.,HI IRz,R] HI, 1M IRI,IM 

10,5 10,5 12,0 18,0 
OECW OECW LDE LDEI 

HHI IRI II/Ina Ir1,IrU 

6,5 6,5 12,0 18,0 
RL RL LDE LDEI 
HI IRI lIn Ira, lUI 

10,5 10,5 6,5 6,5 10,5 10,5 10,5 10,5 
INCW INCW CP CP CP CP CP CP 

RHI IRI n,12 1),lr2 H.,HI IR.,HI HI,IM IRI,IM 

6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5 
CLR CLR XOR XOR XOR XOR XOR XOR 
HI IRI ll.U 11,Irz H.,HI IR.,HI H.I,IM IRI,IM 

6,5 6,5 12,0 18,0 10,5 
MC MC LDC LDCI LD 

HI IRI t.,lrra Ill. lIn tl, Z, R2 

6,5 6,5 12,0 18,0 20,0 20,0 10,5 
SRA SRA LDC LDCI CALL· CALL LD 

HI IRI la. un Irz,. Ill] IRRI DA la, x, HI 

6,5 6,5 6,5 10,5 10,5 10,5 10,5 
M M LD LD LD LD LD 
HI IRI rt,lrz Bz,Rl IR.,HI HI,IM IRI,IM 

8,5 8,5 6,5 10,5 
SWAP SWAP LD LD 

HI IRI I'l. fa H.,IRI 

~~------~~'-------'; ~~------~~'-------'~ ,'---------~~,----------,; ~ 
2 

. Low .. 
Opcocle 
Nibble 

Executioa • PlpeliDe 

3 2 

Legead. 
H = 8-BII Address 
r = 4-BII Addre .. 

3 

Upper CYCI"~0~5 Cycl .. 

Opcocle _ J!. CP MDeIllODlc 
HI or" = Os! Ad_ 
H. or rz = Src Addreu 

Nibble H., HI 
Sequeac:e. 

Firat S-d Opcode, First Ope .... nd, Second Operand 

Operanc\ Operanc\ 
Note. The blank areas are not defined. 

*2·byte instruction; fetch cycle appears as a 3·byte instruction 

F 

;--

-
e---

r---

-

-

-
'----

6, I 
DI 

-
6, I 
EI 

r--
14,0 
RET 

r---
16,0 
!BET 

-
6,5 

RCF -
6,5 
SCF 

-
6,5 

CCF 
-

6,0 
NOP 

649 



Absolute 
Maximum 
Ratings 

Standard 
Test 
Conditions 

DC 
Character-
istics 

650 

Voltages on all pins 
with respect to GND .......... -O.3Vto +7.0V 
Operating Ambient 
Temperature ........ See Ordering Information 

Storage Temperature ........ '-65°C to + 150°C 

The DC characteristics listed below apply for 
the following standard test conditions, unless ' 
otherwise noted. All voltages are referenced to 
GND. Positive current flows into the reference 
pin. 

Standard conditions are: 

o +4.75 V S Vee S +5.25 V 

o GND = 0 V 

o O°C S TA S +70°C 

Symbol Parameter Min Max 

VeH Clock Input High Voltage 3.8 Vee 

VeL Cl09k Input Low Voltage -0.3 0.8 

VIH Input High Voltage 2.0 Vee 

VIL Input Low Voltage -0.3 0.8 

VRH Reset Input High Voltage 3.8 Vee 

VRL Rese! Input Low Voltage -0.3 0.8 

VOH Output High Voltage 2.4 

VOL Output Low Voltage 0.4 

IlL Input Leakage -10 10 

IoL Output Leakage -10 10 

IlR Reset Input Current -50 

Ice Vee Supply Current 150 

Stresses greater than those listed under Absolute Maxi· 
mum Ratings may ca.use permanent damage to the device. 
This is d stress rating only; operation of the device at any 
condition above those indicated. in the operational sections 
of these specifications is not implied. Exposure to absolute 
maximum rating conditions for extended periods may a.ffect 
device reliability. 

+5V 

2.1K 

Figure 14. Test Load I 

UDl! ConditlOD 

V Driven by External Clock Generator 

V Driven by External Clock Gene'rator 

V 

V 

V 

V 

V IoH = -250,.A , 

V IoL = +2.0 rnA 

I'A 0 V05. VIN 05. +5.25 V 

I'A 0 V05. VIN 05. +5.25 V 

I'A Vee = +5,25 V, VRL = 0 V 

rnA 



AC Characteristics 

External 1/0 
or Memory 
Read and 
Write Timing 

00-0, OUT 

Figure IS. Exteraal 1/0 or Memory Read/Write 

No. Symbol Parameter 

TdA(AS) Address Valid to AS t Delay 

2 TdAS(A) AS t to Address Float Delay 

3 TdAS(DR) 1m t to Read Data Required Valid 

4 TwAS 1m Low Width 

5 TdAz(DS) Address Float to i5S ~ 
6-TwDSR i5S (Read) Low Width 

7 TwDSW i5S (Write) Low Width 

8 TdDSR(DR) DS ~ to Read Data Required Valid 

9 ThDR(DS) Read Data to DS t Hold Time 

to TdDS(A) DS t to Address Active Delay 

11 TdDS(AS) i5S t to 1m ~ Delay 

12 - TdRlW(AS) -- RiW Valid to 1m t Delay 

13 TdDS(RIW) i5S t to RiW Not Valid 

14 TdDW(DSW) Write Data Valid to DS (Write) ~ Delay 

15 TdDS(DW) i5S t to Write Data Not Valid Delay 

MI~ Max Notes*to 

35 

45 

55 

0 

185 

110 

0 

45 

55 

30 

35 

35 

45 

220 

2,3 

2,3 

1,2,3 

1,2,3 

-------1,2,3 

130 

1,2,3 

1,2,3 

2,3 

2.3 

-------2,3 

16 TdA(DR) Address Valid to Read Data Required Valid 255 

2,3 

2,3 

2,3 

1,2,3 

2,3 17 TdAS(DS) 1m t to DS ~ Delay 

NOTES: 
1. When using extended memory timing add 2 T pC. 
2. Timing numbers given are for minimum TpC. 
3. See clock cycle time dependent cha.racteristics t~ble. 

55 

t Test Load 1. 
o All timing references use 2.0 V for d logic "I" and 0.8 V for a logic "0", 
• All units innanoaeconds (ns). 

651 



AC Characteristics 

Additional 
Timing 
Table 

No. Symbol 

1 TpC 

2 TrC,TIC 

3 TwC 

CLOCK 

TON 

IRQ .. 

Figure 16. Additional Timing 

Parameter Min Max Not .. * 

Input Clock Period 80 1000 

Clock Input Rise And Fall Times 15 

Input Clock Width 26 1 

4 TwTinL Time Input Low Width 70 2 

5 - TwTinH --,- Timer Input High Width ---------------- 3TpC --------- 2 

6 TpTin Timer Input Period 8TpC 2 

7 TrTin" TITin Timer Input Rise And Fall Times 

8a TwIL Interrupt Request Input Low Time 

8b TwIL Interrupt Request Input Low Time 

9 1'wIH Interrupt Request Input High Time 

NOTES: 
1. Clock timing references uses 3.8 V fora logic "1" emd 0.8 V for 

a logic "0". 
2. Timing reference uses 2.0 V for a logic "}" and O.S V for 

a logic "0" . ' 

70 

3TpC 

3TpC 

3, Interrupt request via Port 3 (P31-P33)' 
. 4. Interrupt request via Port 3 (P30)' 

* Units in nanoseconds (ns). 

100 

Memory Port 
Timing 

:: _~ ___ :~·:~DON~::~-'T:~CAJIl=:~=<_0~o~;-~~:::~=_-~:X:,-A-DO-"ESS--VA-U-D---D-A-TA-O-N-VA-L-OD---~ts= 

No. Symbol 

2 

NOTES: 

TdA(DI) 

ThDI(A) 

L Test Load 2. 

Parameter 

Address Valid to Data Input Delay' 

Data In Hold time 

2. This is a Clock-Cycle· Dependent parameter. For clock frequencies 
other than the maximum, use the following formula: 5 TpC - 95 

652 

Figure 17. Me;"ory Port Timing 

Min Max 

320 

o 

·Units are nanoseconds unless otherwise specified. 

2 

2,3 

2,4 

2,3 

Not .. * 

1,2 



Handshake 
Timing 

No. Symbol 

.. ;:: ----------_~_'_--,~~----------
'OUTPUll ~ 

Flgurel8a.lDputH~ 

DATADUT ~' 
------.-~-----------------------------------

iiAV ) s= 
jOUTPUTj ---------------J::==3jE==:£i=~ 

RDY 0 CI;-~ 
jlNPUn 

DATA OUT VALID 

Figure lib. Outputllcmd8hake 

Parameter MID Max 

1 TsDI(DAV) Data In Setup Time o 
160 
120 

2 ThDI(DAV) Data In Hold time 

3 TwDAV Data Available Width 

Not .... 

4 TdDAVIf(RDY) i5l\V ~ Input to RDY ~ Delay 120 1,2 
S--TdDAVOf(R'DY)--i5l\V ~ Output to RDY ~ Delay------------0 --------1,3 

6 TdDAVIr(RDY) T5AV t Input to RDy'f Delay 120 1,2 

7 TdDAVOr(RDY) i5AV t Output to RDY t Delay 0 1,3 

8 TdDO(DAV) Data Out to DAV ~ Delay 30 
9 TdRDY(DAV) Rdy ~ Input to r5AV t Delay' 0 

NOTES: 
J. Test load 1 
2. Input handshake 
3. Output handshake 
t All timing references use 2.0 V for a logic "I Hand O.S V for 

.loqic·O", 

Clock-
, Cycle-Time- Number Symbol 
Dependent 

1 TdA(AS) Characteristics 
2 TdAS(A) 

3 TdAS(DR) 

* Units in nanoseconds (ns). 

Equation 

TpC-SO 

TpC-4O 
4TpC-110* 

140 

4 TwAS TpC-30 
S--TwDSR-------------3TpC-6S*------------

7 TwDSW 2TpC-SS* 
8 TdDSR(DR) 3TpC-120* 

10 Td(DS)A TpC-4O 
11 TdDS(AS) TpC-30 
12-TdRIW(AS) ------------TpC-SS---------:.---

13 TdDS(RIW) 

14 TdDW(DSW) 

IS TdDS(DW) 

16 TdA(DR) 

17 TdAS(DS) 

• Add 2TpC when using extended memory timing. 

TpC-50 
TpC-50 

TpC-4O 

STpC-I60* 

TpC-30 

653 



MIL·STD·883 MILITARY PROCESSED PRODUCT 

• Mil-Std-883 establishes uniform methods and proce­
dures for testing microelectronic devices to insure the 
electrical, mechanical, and environmental integrity and 
reliability that is require~ for military applications. 

• Mil-Std-883 Class 8 is. the industry standard product 
assurance level for military ground and aircrafl 
applicati,on. 

• The total reliability of a system depends upon tests that 
are designed to stress specific quality and reliability 
concerns that affect microelectronic products. 

• The following tables detail the i 00% screening and elec­
trical tests, sample. electrical tests, and Qualificationl 
Quality Conformance testing required. 

Zllog Military Product Flow 

ENVIRONMENTAL SCREENING 
• STABILIZATION BAKE 
• TEMPERATURE CYCLE 
• CENTRIFUGE· 

654 



Table I 
MIL·STD·883 Class B Screening Requirements 

Method 5004 

MiI·Std·883 
Test Method Test Condition Requirement 

Internal Visual 

Stabilization Bake 

Temperature Cycle 

Constant Acceleration (Centrifuge) 

Initial Electrical Tests 

Burn-In 

Interim Electrical Tests 

PDA Calculation 

Final Electrical Tests 

Fine Leak 
Gross Leak 

Quality Conformance Inspection (QCI) 
Group A Each Inspection Lot 
Group B Every Week 
Group C Periodically (Note 3) 
Group D Periodically (Note 3) 

External Visual 

QA-Ship 

NOTES; 

2010 Condition B 

1008 Condition C 

1010 Condition C 

2001 Condition E or D(Note 1), Y1 Axis Only 

1015 

1014 
1014 

5005 
5005. 
5005 
'5005 

2009 

,Zilog Military Electrical Specification 
Static/DC Tc = + 25°C 

Condition D(Note2), 160 hours, 
TA = + 125°C 

Zilog Military Electrical Specification 
Static/DC Tc = + 25°C 

PDA = 5% 

Zilog Military Electrical Specification 
Static/DC Tc = + 125°C, - 55°C 
Functional, Switching/AC Tc = + 25°C 

Condition A2 
ConditionC 

(See Table II) 
(See Table III) 
(See Table IV) 
(See Table V) 

1. Applies to larger packages which have an inner seal or cavity perimeter of two inches or more in total length or have a package 
mass of .. 5 grams. 

2. In process of fully implementing of Cond~ion D Burn-In Circu~. Contact factory for copy of specific burn-in circu~ available. 
3. Performed periodically as required by Mil-Std-883, paragraph 1.2.1 b(17). 

1000Al 

1000Al 

100% 

100% 

100% 

1000Al 

100% 

100% 

100% 

1000Al 
1000Al 

Sample 
Sample 
Sample 
Sample 

1000Al 

100% 

'655 



Table" Group A 
Sample Electrical Tests 

MIL-STD-883 Method 5005 

LTPD 
Subgroup Tests Temperature (T c) Max Accept =; 2 

Subgroup 1 Static/DC +25°C 2 

Subgroup 2 StaticlDC + 125°C 3 

Subgroup 3 Static/DC -55°C 5 

Subgroup 7 Functional +25°C 2 

Subgroup 8 Functional -55°C and + 125°C 5 

Subgroup 9 Switching/AC +25°C 2 

Subgroup 10 Switching/AC + 125°C 3 

Subgroup 11 Switching/AC -55°C 5 

NOTES: 
• The specific parameters to be included for tests in each subgroup shall be as specified in the applicable detail electrical specification. Where no 

parameters have been identified in a particular subgroup or test within a subgroup, no Group A testing is required for that subgroup or test. 
• A single sample may be used for all subgroup testing. Where required size exceeds the lot size, 100% inspection shall be allowed. 
• Group A testing by subgroup or within subgroups may be performed in any sequence unless otherwise specified. 

656 



Table III Group B 
Sample Test Performed Every Week to 

Test Construction and Insure Integrity of Assembly Process. 
MIL-STD-SS3 Method 5005 

Subgroup 

S'i..bgroup1 
Physical Dimensions 

Subgroup 2 
Resistance to Solvents 

Subgroup 3 
Solderability 

Subgroup 4 
Internal Visual and Mechanical 

SubgroupS 
Bond Strength 

Subgroup 6(Note3) 

Internal Water Vapor Content 

Subgroup 7(Note 4) 

Seal 
7a) Fine Leak 
7b) Gross Leak 

Subgroup S(Note 5) 

Electrostatic Discharge Sensitivity 

NarES: 

MII-Std-SS3 
Method 

2016 

2015 

2003 

2014 

2011 

1018 

101.4 

3015 

1. Number of leads inspected selected from a minimum of 3 devices. 
2. Number of bond pullaselected from a minimum of 4 devices. 
3. Test applicable only If the package contains a dessicant. 

'ntst Condition 

Solder Temperature 
+245°C ± 5°C 

C 

1000 ppm. 
maximum at + 100°C 

7a) A2 
7b) C 

Zilog Military Electrical 
Specification 

Static/DC Tc = + 25°C 
A = 20-2000V 
B = >2000V 

Zilog Military Electrical 
Specification 

Static/DC Tc = +25°C 

Quantity or 
LTPD/Max Accept 

2/0 

4/0 

15(Note 1) 

1/0 

15(Note2) 

3/0 or 5/1 

5 

15/0 

4. Test not required if etther 100% or sampl.e seal test is performed between final electrical tests and external visual during Class B screening. 
S. Test required for initial qualification and product redesign. 

657 



Table IV Group C 
Sample Test Performed Periodically to Verify Integrity of the Die. 

Subgroup 

Subgroup 1 
Steady State Operating Life 

End Point Electrical Tests 

Subgroup 2 
Temperature Cycle 

Constant Acceleration (Centrifuge) 

Seal 
2a) Fine Leak 
2b) Gross Leak . 

Visual Examination 

End Point Electrical Tests 

NOTE: 

MIL-S'rD-883 Method 5005 

Mil-Std-883 
Method 

1005 

1010 

2001 

1014 

10100r1011 

Test Condition 

Condition o(Note 1), 1000 hours at 
+ 125°C 

Zilog Military Electrical Specification 
Tc = +25°C, + 125°C, -55°C' 

Condition C 

Condition E or o(Note 2), Y 1 Axis Only 

'2a) Condition A2 
2b) Condition C 

Zilog Military Electrical Specification 
Tc = +25°C, +125°C, -55°C 

1. In process of fully implementing Condition D Burn-In Circuits. Contact factory for copy of specific burn-in circuit available. 

Quantity or 
LTPD/Max Accept 

5 

15 

2. Applies to larger packages which have an Inner seal or cavity perimeter of two inches or more in total length or have a package 
mass of ;'5 grams. . 

658 



Table V Group 0 
Sample Test Performed Periodically to Insure Integrity of the Package. 

MIL-STD-883 Method 5005 

Subgroup 

Subgroup 1 
Physical Dimensions 

Subgroup 2 
Lead tntegrity 

Subgroup 3 
Thermal Shock 

Temperature Cycling 

Moisture Resistance 

Seal 
3a) Fine Leak 
3b) Gross Leak 

Visual Examination 

End Point Electrical Tests 

Subgroup 4 
Mechanical Shock 

Vibration Variable Frequency 

Constant Acceleration (Centrifuge) 

Seal 
4a) Fine Leak 
4b) Gross Leak 

Visual Examination 

End Point Electrical Tests 

SubgroupS 
Salt Atmosphere 

Seal 
Sa) Fine Leak 
5b) Gross Leak 

Visual Examination 

Subgroup 6 
I nternal Water Vapor Content 

Subgroup 7(Note 3) 

Adhesion of Lead Finish 

Subgroup 8(Note 5) 
Lid Torque 

NOTES: 

Mil-Std-883 
Method 

2016 

2004 

1011 

1010 

1004 

1014 

1004 or 1010 

2002 

2007 

2001 

1014 

10100r1011 

1009 

1014 

1009 

1018 

2025 

2024 

1. Lead Integrity Condition 0 for leadless chip carriers. 
2. Applies to larger packages which have an inner seal or cavity 

perimeterof two inches or more in total length or have a package 
mass of ;'5 grams. 

Test Condition 

Condition 82 or D(Note 1) 

Condition 8 minimum, 
15 cycles minimum 

Condition C, 100 cycles minimum 

3a) Condition A2 
3b) Condition C 

Zilog Military Electrical Specification 
Tc = +25°C, + 125°C, -55°C 

Condition 8 minimum 

Condition A minimum 

Condition E or D(Note2), Y1 Axis Only 

4a) Condition A2 
4b) Condition C 

Zilog Military Electrical Specification 
. Tc = +25°C, + 125°C, -55°C 

Condition A minimum 

Sa) Condition A2 
5b) Condition C 

5,000 ppm. maximum water 
content at + 100°C 

3. Not applicable to leadless chip carriers. 
4. LTPD based on number of leads. 
5. Not applicable for solder se~1 packages. 

Quantity or 
LTPD/Max Accept 

15 

15 

15 

15 

15 

3/0 or 5/1 

15(Note4) 

5/0 

659 



660 



~ ZiIill Product Specification 

FEATURES 

• Complete microcomputer, 24 I/O lines, and up to 64K 
bytes of addressable external space each for program 
and data memory. 

• 143-byte register file, including 124 general-purpose 
registers, three I/O port registers, and 16 status and 
control registers. 

• Vectored, priority interrupts for I/O, counter/timers, and 
UART. 

• On-chip oscillator that accepts crystal or external clock 
'drive, 

GENERAL DESCRIPTION 

The 28681 is the ROM less version of the 28 single-chip 
microcomputer. The 28681 offers all the outstanding 
features of the,28 family architecture except an on-chip 
program ROM. Use of external memory rather than a 
preprogrammed ROM enables this 28 microcomputer to be 
used in low volume applications or where code flexibility is 
required. 

The 28681 can provide up to 16 output address lines, thus 
permitting an address space of up to 64K bytes of data or 
program memory. Eight address outputs (ADo-AD7) are 
provided by a multiplexed, 8-bit, Address/Data bus. The 
remaining 8 bits can be provided by the software 
configuration of Port 0 to output address bits Aa-A15. 

Z8® Z8681 Military 
BOMless Microcomputer 

June 1987 

• Full-duplex UART and two programmable 8-bit 
counter/timers, each with a 6-bit programmable 
prescaler. 

• Register Pointer so that short, fast instructions can 
access anyone of the nine working-register groups. 

• Single + 5V power supply-all I/O pins TIL-compatible. 

• Available in 8 MHz. 

Available address space can be doubled (up to 128K bytes) 
by programming bit 4 of Port 3 (P34) to act as a data memory 
select output (OM). The two states of OM together with the 
16 address outputs can define, separate ,data and memory 
address spaces of up to 64Kbytes each. 

There are 143 bytes of RAM located on-chip and organized 
as a register file of 124 general-purpose registers, 16 control 
and status registers, and three I/O port registers. This 
register file can be divided into nine groups of 16 working 
registers each. Configuring the register file in this manner 
allows the use of short format instruction~; in addition, any of 
the individual registers can be accessed directly. 

,661 



ABSOWTI: MAXIMUM RATINGS 
Guaranteed by characterization/design 

Voltages on all pins except RESET 
with respecttoGND . " ........ ; ... -0.3Vto + 7.0V 

Operating Case Temperature ........ - 55°C to + 125°C 
Storage Temperature Range ........ - 65°C to + 150°C 
Absolute Maximum Power Dissipation ............ 1.7 W 

STANDARD TEST CONDITIONS 

The DC characteristics listed below apply for the following 
standard test conditions, unless otherwise noted. All 
voltages are referenced to GND (OV). Positive current flows 
into the referenced pin. 

Military Operating Temperature Range (Te) 
- 55°C to + 125°C 

Standard Military Test Condition 
+4.5';;; Vcc';;; +5.5V 

DC CHARACTERISTICS 

Symbol Parameter 

VCH Clock Input High Voltage 

VCl Clock Input Low Voltage 

VIH Input High Voltage 

Vil Input Low Voltage 

VRH Reset Input High Voltage 

VRl Reset Input Low Voltage 

VOH Output High Voltage 

Val Output Low Voltage 

III Input Leakage 

IOl Output Leakage 

IIR Reset Input Current 

Icc Vce Supply Current 

CAPACITANCE 

Min 

3.Sa 

-O.3b 

2.0a 

-O.3b 

3.Sa 

-O.3b 

2.4a 

-10a 

-10a 

Symbol Parameter 

CMAX Maximum Capacitance 

TA = 25°C, f = 1 MHz. 

Parameter Test Status: 

a Tested 
b Guaranteed 
, Guaranteed by Characterization/Design 

662 

Stresses greater than those listed under Absolute Maximum Ratings may 
cause permanent damage to the device. This is a stress rating only; 
operation of the device at any condition above those indicated in the 
operational sections of these specifications is not implied. Exposure to 
absolute maximum: rating conditions for extended periods may affect 
device relia~ility. 

+5V 

2.1K 

Test Load 

Max Unit Condition 

Vccb V Driven by External Clock Generator 

o.sa V Driven by External Clock Generator 

Vccb V 

o.sa V 

Vceb V 

o.sa V 

V IOH = -2S01lA 

O.4a V IOl = +2.0mA 

10a ~ VIN '" OV, S.SV 

10a ~ VIN = OV, S.SV 

-soa ~ Vcc = MAX, VRl = OV 

230a mA All outputs and I/O pins floating 

Max Unit 

1Sc pf 



PORTO, 
DM 

PORT 1 

DS 
(READ) 

PORT 1 

DS 
(WRITE) 

)( 
f--®+ 

)( 

)! 
kD+ 

1-0--

16 
3 

",,-A, ) 

H>-

~I .. 
~ 

",,-A, X 
I--®--I 

~ 

Do-D, IN 

-+-

8 

CD ~y 

Do-D, OUT 

7 _I 

Y 

Figure 1. External 110 or Memory ReadlWrite Timing 

AC CHARACTERISTICS 
External 110 or Memory Read and Write Timing 

Z8681 
8 MHz 

Number Symbol Parameter Min 

1 TdA(AS) Address Valid to AS t Delay 50a 

2 TdAS(A) AS t to Addr~ss Float Delay 70a 

3 TdAS(DR) AS t to Read Data Required Valid 

4 TwAS AS Low Width Boa 

5 TdAz(DS) Address Float to DS • Ob 

6 TwDSR DS (Read) Low Width 250a 

7 TwDSW DS (Write) Low Width 160a 

B TdDSR(DR) ~ • to Read Data Required Valid 

9 ThDR(DS) Read Data to DS t Hold Time oa 

10 TdDS(A) DS t to Address Active Delay 70a 

11 TdDS(AS) ~ t to AS • Delay 70a 

12 TdRIW(AS) RfW Valid to AS t Delay 50a 

13 TdDS(R/W) DS t to RfW Not Valid 60a 

14 TdDW(DSW) Write Data Valid to DS (Write) • Delay 50a 

15 TdDS(DW) ~ t to Write Data Not Valid Delay 60a 

16 TdA(DR) Address Valid to Read Data Required Valid 

17 TdAS(DS) AStto~. Delay Boa 

NOTES; 
1. When using extended memory timing add 2 TpC. Parameter Test Status: 

TIming numbers given are for minimum TpC. a Tested 
". See clock cycle time dependent characteristics table. b Guaranteed 

K 
-@-I 

)( 

} < 
@-
~1\ 

--®-
}( 

-®-I 

Max 

420a 

200a 

410a 

• All unrts in nanoseconds (ns). c Guaranteed by Characterization/Design 

o All timing references use 2.0V for a logic "1" and O.BV fora logic "0': 

Notes' • 

2,3 

2,3 

1,2,3 

2,3 

1,2,3 

1,2,3 

1,2,3 

2,3 

2,3 

2,3 

2,3 

2,3 

2,3 

1,2,3 

2,3 

663 



Figure 2. Additional Timing 

AC CHARACTERISTICS 
Additional Timing Table 

Number Symbol 

1 TpC 

2 TrC,TfC 

3 T'::C 

4 TwTinL 

5 TwTinH 

6 TpTin 

7 TrTin,TfTin 

8A TwlL 

88 TwlL 

9 TwlH 

NOTES: 

Parameter 

Input Clock Period 

Clock Input Rise and Fall Times 

!r:p!..!t C!0ck Width 

Timer Input Low Width 

Timer Input High Width 

Timer Input Period 

Timer Input Rise and Fall Times 

Interrupt Request Input Low Time 

Interrupt Request Input Low Time 

Interrupt Request Input High Time 

1. Clock timing references use 3.8Vfor a logic "1" and D.8V for a logic "D". 
2. Timing references use 2.DVfor a logic "1" and D.8V for a logic "D': 
3. Interrupt request via Port 3. 

Parameter Test Siatus: 

a Tested 
b Guaranteed 
c Guaranteed by Characterization/Design 

664 

Z8681 
8MHz 

Min 

125a 

37b 

100b 

3TpCb 

8TpCb 

100b 

3TpCb 

3TpCb 

4. Interrupt request via Port 3 (P31-P33) 
5. Interrupt request via Port 3 (P30) 
• Units in nanoseconds (ns). 

Max 

1000a 

25b 

100b 

Notes· 

1 

2 

2 

2 

2 

2,3,4 

2,3,5 

2,3 



DATA IN DATA IN VALID 

----~~~~~~~~--------
DAY--------------------~~----~ ~----~~-------------------------

(INPUTj 

RDY 
(OUTPUT) 

DATA OUT 

DAY 
(OUTPUT) 

RDY 
(INPUT) 

AC CHARACTERISTICS 
Handshake Timing 

Number Symbol 

1 TsDI(DAV) 

2 ThDI(DAV) 

3 TwDAV 

4 TdDAVlf(RDY) 

S TdDAVOf(RDy) 

6 TdDAVlr(RDY) 

7 TdDAVOr(RDY) 

8 TdDO(DAV) 

9 TdRDY(DAV) 

NOTES: 
1. Inpu1 handshake 
2. Output handshake 

Figure 3a. Input Handshake Timing 

DATA OUT VALID 

Figure 3b. Output Handshake Timing 

Parameter Min 

Data In Setup Time oa 

Data In Hold Time 230a 

Data Available Width 17Sa 

f5iW ,Input to RDY, Delay 

f5iW, Output to RDY , Delay oa 

DAV t Input to RDY t Delay 

f5iW t Output to RDY t Delay oa 

Data Out to DAV , Delay soa 

Rdy ,Input to DAV t Delay Ob 

t All timing references use 2.DVlor a logic "1" and D.BVlor a logic "0': 
• Units in nanoseconds (ns). 

Parameter Test Status: 

a Tested 
b Guaranteed 
c Guaranteed by Characterization/Design 

\ 
Z8681 

Max 

17Sa 

17Sa 

200a 

Notesf* 

1 

2 

2 

665 



PIN DESCRIPTION 

AS. Address Strobe (output, active Low). Address Strobe is 
pulsed once at the beginning of each machine cycle. 
A.ddresses output via Port 1 for all external program or data 
memory transfers are valid at the trailing edge of AS. 

OS. Data Strobe (output, active Low). Data Strobe is 
activated once for each external memory transfer. 

POO·P07. P20·P27. P30·P37' I/O Port Lines (input/outputs, 
TIL-compatible). These 24 lines are divided into three 8-bit 
I/O ports that can be configured under program control for 
I/O or external memory interface. 

P1o·P17' Address/Data Port (bidirectional). Multiplexed 
address (Ao-A?) and data (Do-D?) lines used to interface with 
program and data memory. 

PACKAGE PINOUTS 

TIMINGf~ REm +SV 

R/W GND AND 
CONTROL l os XTAL1 

AS XTAL2 

( PO, P2" 

PO, P2, 

PO, P2, 
PORT 0 I P23 (NIBBLE P03 

PROGRAMMABLE, PO. P2. 
110 OR Ab-A'5 

PO, Z8681 P25 

PO. MCU P2. 

PO, P2, 

P3, 

P3, 

P3, 
PORT 1 

P33 (BYTE 

'~M_"'·I 
P3. 

AOr,-AD, 
P3, 

P3, 

P37 

Figure 4. Pin Functions 

666 

RESET. Reset (input, active Low). RESET initializes the 
Z8681. After RESET the Z8681 is in the extended memory 
mode. When RESET is deactivated, program execu­
tion begins from program location OOOCH. 

RIW. ReadNVrite (output). Rm is Low when the Z8681 is 
writing to external program or data memory. 

XTAL 1. XTAL2. Crystal 1, Crystal 2 (time-base input and 
output). These pins connect a parallel-resonant crystal to the 
on-chip clock oScillator and buffer. 

+SV P3. 

XTAL2 P3, 

XTAL1 P2, 

P3, P2, 

P3, P2, 

RESET P2. 

Rfy/ P23 

os P2, 

AS P2, 

P2, 

P33 

P3, P3. 

PO, Pl, 

po, Pl, 

po, Pl, 

P03 Pl, 

po. Pl, 

po, Pl, 

po, Pl, 

Po, Pl, 

Figure 5. 40-pin Dual·ln-Line Package (DIP). 
Pin AsSignments 



MIL-STD-883 MILITARY PROCESSED PRODUCT 

• Mil-Std-883 establishes uniform methods and proce­
dures for testing microelectronic devices to insure the 
electrical, mechanical, and environmental integrity and 
reliability that is required for mnitary applications. 

• Mil-Std-883 Class B is the industry standard product 
assurance level for military ground and aircraft 
application. 

• The total reliability of a system depends upon tests that 
are designed to stress specific quality and reliability 
concerns that affect microelectrqnic products. 

• The follOWing tables detail the 100% screening and elec­
trical tests, . sample electrical tests, and Qualificationl 
Quality Conformance testing required. 

Zllog Military PrOduct Flow . 
ENVIRONMENTAL SCREENING 
• STABILIZATION BAKE 
• TEMPERATURE CYCLE 
• CENTRIFUGE 

667· 



Table I 
MIL·STD·883 Class B Screening Requirements 

Method 5004 

Test , 

Internal Visual 

Stabilization Bake 

Temperature Cycle 

Constant Acceleration (Centrifuge) 

Initial Electrical Tests 

Burn-In 

Interim Electri<;:al Tests 

PDA Calculation 

Final Electrical Tests 

f'lne Leak 
Gross Leak 

Quality Conformance Inspection (QCI) 
Group A Each Inspection Lot 
Group B Every Week 
Group C Periodically (Note 3) 
Group D' Periodically (Note 3) 

External Visual 

QA-Ship 

NOTES: 

MiI·Std·883 
Method Test Condition 

2010 Condition B 

1008 Condition C 

1010 Condition C 

2001 Condition E or D(Npte 1), Yl Axis Only 

1015 

lU14 
1014 

5005 
5005 
5005 
5005 

2009 

Zilog Military Electrical Specification 
Static/DCTc = +25°C 

Condition D(Note 2), 160 hours, 
TA = + 125°C 

Zilog Military Electrical Specification 
StaticlDC Tc = + 25°C 

PDA = 5% 

Zildg Military Electrical Specification 
StatiC/DCTc = +125°C, -55°C 
Functional, Switching/AC Tc = + 25°C 

Condition B 
ConditionC 

(See Table II) 
(See Table III) 
(See Table IV) 
(See Table V) 

Requirement 

100% 

100% 

100% 

100% 

100% 

100% 

100% 

100% 

100% 

100% 
100% 

Sample 
Sample 
Sample 
Sample 

100% 

100% 

1. Applies to larger packages which have an inner seal or cavrty perimeter of two inches or more in total length or have a package 
mass of ~5 grams. . 

2. In process of fully implementing of Condition 0 Burn-In Circuits. Contact factory for copy of specific burn-in circuit available. 
3. Performed periodically as required by Mil-Std-883, paragraph 1.2.1 b(17). 

668 



Table II Group A 
Sample Electrical Tests 

MIL-STD-883 Method 5005 

LTPD 
Subgroup Tests Temperature (T c) Max Accept = 2 

Subgroup 1 StaticlDC +25°C 2 

Subgroup 2 Static/DC +125°C 3 

Subgroup 3 Static/DC -55°C 5 

Subgroup 7 Functional +2SoC 2 

Subgroup 8 Functional -55°C and +125°C 5 

Subgroup 9 Switching/AC +25°C 2 

Subgroup 10 Switching/AC + 125°C 3 

Subgroup 11 Switching/AC -55°C 5 

NOTES: 
• The specific parameters to be included for tests in each subgroup shall be as specified in the applicable detail electrical specification. Where no 

parameters have been identified in a particular subgroup or test within a subgroup, no Group A testing is required for that subgroup or test. 
• A single sample may be used for all subgroup testing. Where required size exceeds the lot size, 100% inspection shall be allowed. 
• Group A testing by subgroup or ,within subgroups may be performed in any sequence unless otherwise specified. 

669 



Table III Group B 
Sample ~st,Peiform.d Every Week to 

Test Construction and In.ure Integrity of Auembly Process. 
MIL-STD-883 Method 5005 

Subgroup, 

SubsjrOup1 , 
Physical birrieAsions 

$ubgi'Oup2 
Resistance to Solvents . 

$ubgroup3 
Solderability 

SubgrOup 4 
Internal Visual and Mechanical 

SubgroupS 
Bond Strength 

Su~group 6(Note 3) 

Internal Water Vapor Content 

Subgroup t(Note 4) 
Seal -

7a) Fine Leak 
7b) GroSs Leak 

Subgroup s(Note 5) 

Electrostatic Discharge Sensitivity 

NOTES: 

MII:-Std-883 
MethOd 

2016 

2015 

2003 

2014 

2011 

1018 

1014 

3015 

1. Number of lea~s inspected selected from a minimum of 3 devices. 
2. Number oi bond pulls selected from a minimum of 4 devices. 

Test Condition 

Solder Temperature 
+245°C ± 5°C 

C 

1000 ppm. 
'maximum at + 100°C 

7a) B 
7b) C 

Zilog Military Electrical 
Specification 

Static/DCTc = +25°C 
A = 20·2000V 
B = >200QV 

Zilog Military Electrical 
Specification 

Static/DCTc = +25°C 

3. lest applicable only if,the package contains a dessicant. . 

Quantity or 
, LTPD/Max Accept 

2/0 

4/0 

J5(Note1) 

1/0 

15(Note2) 

3/0 or 5/1 

5 

15/0 

4. lest not required if efher 100% or sample seal test is performed between final electrical tests and external visual during Class B screening. 
5. lest required for ihitial qualification and product redesign. . ' 

670 



Table IV Group C 
Sample Test Performed Periodically to Verify Integrity of the Ole. 

MIL-STO-883 Method 5005 

MII-Std-883 Quantity or 
Subgroup Method Test Condition LTPO/Max Accept 

Subgroup 1 
Steady State Operating Life 

End Point Electrical Tests 

Subgroup 2 
Temperature Cycle 

Constant Acceleration (Centrifuge) 

Seal 
2a) Fine Leak 
2b) Gross Leak 

Visual Examination 

End Point Electrical Tests 

NOTE: 

1005 Condition D(Note 1), 1000 hours at 
+125QC 

Zilog Military Electrical Specification 
Tc = +25°C, +125°C, -55°C· 

1010 ConditionC 

2001 Condition E or D(Note 2), Y 1 Axis Only 

1014 
2a) . Condition B 
2b) Condition C 

1010 or 1011 

Zilog Military Electrical Specification 
Tc = +25°C, + 125°C, -55°C 

1. In process of fully implementing Condition D Burn·ln Circuits. Contact factory for copy of specific burn·in Circuit available. 
2. Applies to larger packages which have an inner seal or cavity perimeter of two inches or more in total length or have a package 

mass of ;'5 grams. 

5 

15 

671 



Table V Group 0 
Sample Test Performed Periodically to In,ure Integrity of the Package. 

, MIL-STD-883 Method 5005 

Mil-Std-883 
Subgroup Method Test Condition 

Subgroup 1 
Physical Dimensions 2016 

Subgroup 2 
Condition 82 or D(Note 1) Lead Integrity 2004 

Subg..oup3 
Thermal Shock 1011 Condition 8 minimum, 

15 cycles minimum 

Temperature Cycling 1010 Condition C, 100 cycles minimum 

Moisture Resistance 1004 

Seal 1014 
3a) Fine Leak 3a) Condition B 
3b) Gross Leak 3b) Condition C 

Visual Examination 1004 or 1010 

End Point Electrical Tests Zilog Military Electrical Specification 
Tc = +25°C, + 125,oC, ":'55°C 

Subgroup 4 
Mechanical Shock 2002 Condition 8 minimum 

Vibration Variable Frequency 2007 Condition A minimum 

Constant Acceleration (Centrifuge) 2001 Condition E or D(Note 2), Y1 Axis Only 

Seal 1014 
4a) Fine Leak 4a) Condition B 
4b) Gross Leak 4b) Condition C 

Visual Examihation 1010 or 1011 

End Point EI~trical Tests Zilog Military Electrical Specification 
Tc = +25°C, +125°C, -55°C 

Subgroup 5 
S.alt Atmosphere 1009 Condition A minimum 

Seal 1014 
5a) Fine Leak 5a) Condition B 
5b) Gross Leak 5b) Condition C 

Visual Examination 1009 

Subgroup 6 
Internal Water. Vapor Content 1018 5,000 ppm. maximum water 

content at + 100°C, 

Subgroup 7(Note 3) 

Adhesion of Lead Finish 2025 

Subgroup 8(Note 5) 

Lid Torque 2024 

NOTES: 
1, Lead Integrity Condition D for leadless chip carriers, , 3, Not applicable to leadless chip carriers. 
2, Applies to larger packages which have an inner seal or cavity 4. LTPD based on number of leads, 

perimeter of two inches or more in total length or have a package 5. Not applicable for solder seal packages, 
mass of ~5 grams, 

672 

Quantity or ' 
LTPD/Max Accept 

15 

15 

15 

15 

15 

3/0 or 511 

15(Note4) 

5/0 



PACKAGE INFORMATION 

18 

18·Pln Ceramic Package 

~~J.E:::::::I 
0.025 ~0920~' 0.300 G.ii3ii MAX 

1-0.320- -I O.oes~ ~ --11-0.040 0.130 

B .001 TT-~Ji~: 
, 0.325 +~ ~ ,tT 
1_ + 025 _I _ 0.050 I+-- .-+114- 0.100--l ~125 
r--:015 --, .. .015 I m II TVP I I MIN 

18·Pin Plastic Package 

NOTE: Package dimensions are given I~ inches. To convert to millimeter •• multiply by 25.4 

? 

673 



PACKAGE INFORMATION (Continued) 

~=~=~ . H==II=~ tt II I 0.010 -.- . TV' _ 
1---..... ---1 ..... ~ 1.-......... --I 1.-:;,": --11.-::= 

:t." IItN 10TH ENDa TYP "' ..... ..... 

=~::::::::::::: I . " 

674 



PACKAGING INFORMATION 

40 21 

T 
0.510 

I~~~r=n=rr=n::::n=;=;=:;::;~;=;=;=l 
20 

r..--m----1� 1------~':-----+l·I.,. 
~~----~I ~-------------------------------+r---------~=r-+O.02O 
+::~~ J 'MIN 

I---:::~----l 

4O-pID Plastic: DIP 

.!e!~~4O~-U-LLLLLLLLL~~U-LLLLLL~~~-U-U-LLLL21L, 
0.550 

~~~~~~~~~~~ 
20 

,. ~??~'------·I 

0230 0.056 I 

Tb~ 
o",ffi f.--~~fH~~~S ~ I.-:;~ ~L:~! 

0.040 
::t.02O 

4O-pID Cerd1p Package 

NOTE: Package dimensions are given in inches. To convert to millimeters, multiply by 25.4. 

675 



PACKAGE INFORMATION (Continued) 

0.1.. t'I J 0.300 ! O'r 
0.987 t f .1. 

10rT or / 
IDENTIA CA~:~~;/' 

SOCKET A 
,IDENT! FlCATION 

CERAMICLlD\ 

0.10 
EPOXY/GLASS\ 1---+----, 

PINSTAND-OFF/ I U"--~FILE 
4PL SOCKET '1- 0.200 -0.300-1 

-0.300 -0.400 

• • • • • • • • • • • • • • • • • • • 
-000000000000 

1-· 
• • • • • • • • • • • •••• ~ . . oooooooooo( 

~O.100)( 11 = 1.100 . 0.520~ t--0.3~~ 

1.690 
I . 
I 0.100)( 19 = 1.900 . 2.311 

4O-p1D Low Profile Protopack 

676 

..140 

j 



PIN 1 0 
IDENTIFICATION ,,45 x 0.45 MAX 

45· x 0.045 MAX", " 

0.026.l~' .tt!::~~"" ~0'650 1 
NOMINALT ! I 

~====~~ •• lI"~ 
45· x 0.010 MAX../ 

3 PLACES I 
H ~ 0.023 ± .003 
~ - 0.105 ± .005 
_ O.174±.OO5 

44-pinPCC 

.-------~4~°:J[JE:J[J[:J[Jc:J[J[:J[Jc:J[~~~==========~~21~ 1 -r-r4-D D D D D D D D D D D D 

~~;D D D F 
20 

Ll~DDDDDUDDDDD 
IDENTIFICA~:~~ ~ .1 2.020 MAX 

SOCKET A/ ~ '1_0.050±.020 

• 1.220 MAX 'I 
L--,-___ --,--' 

0.010 
.......... -::!::.002 

TYP 

I_OR~9~~1 

-t-~_0'530SQ' I ~~~ 
~~~ MAX ~ 

U I 
O.040J 1- , -l 

±.020 . 

~I 1-+0.050±.015 BOTH ENDS _11_~·0~t3 ' 1 ~5 
_ 1--0.100 ± .010 TYP TYP ........ _0.040 + .007 TYP MIN 

, 1.900 -.002 
• REF • 

4O-pin Protopaclc 

677 



PACKAGING INFORMATION (Continued) 

0.062 
RADIUS 

48 25 

15" I~~:~~=J 0.180 
4 PLACEStil r- MAX 

" .. m."M.mr ~ 4 .tt~' 
1~00·.665100-~:~~~ '1- oI] I 11~0'060 

MIN. 0.060 TYP. 0.040 

48-Pin Dual-in-Line Package (DIP), 
Plastic 

@ @ @ @ @ @ @ @ @ @ @ @ @ 

©©©©©©©©©©©©© 

1.083+-l-t--t-

@@@@@@@@@@@@@ 

©©©©©©©©©©©©~ 
" , 
H-----o.1oox1h1.3oo----o-j 

~+_--------1.no--------~ 

1----------~0.1OOx23=2.300----------_I 

~------------2.470------------___I 

0.155 

~~L~ ~IT qf[if 
'------<I.,-.Ir--, i'~' , WoRLE T-mmrrrrml mmr~ u~~~1 0.064 

-10.200 0.300 J I~~::::TAND-OFF --/,i-0.018DIA ' 0.126 0.197 
-0.300 ~O.400~ 4PL TYp. 0.040 

678 

48-Pin Low Profile 

Protopack (T) 

NOTE: Package dimensions are given in inches. To convert to millimeters, mUltiply by 25.4, 



PACKAGE INFORMATION (Continued) . 

23 

~ 

44 

'-________ (.1151 ~.012)· ________ --' 

14 :t.3 

(.394 :!: .012) 
10 0.3 

(.1151 :!: .012) 
14 .3 

(.039:t .004) 
1 t .1 

(.002 iii .010) + 
"j.25 ~ + (.083 t.OO4) 

=+?=====:=' d_U::U:U:U:U::U:U_~--,+,------,-+_2., t·1 

(ot) t -I ~ 
.15 .......... 

44·Pln Quad Flat Pack (QFP) 

(.039 :t .008) 
1 t 2 

NOTE: QFP pad<age dimensions •• In mllimatara 
Un .. with ( ) .re In Inches. 

679 



680 



ORDERING INFORMATION 

za MCU, 2K ROM, 8 MHz 
28-plnDIP 

Z0860008PSCRXX 
Z0860008PECRXX 

zaMCU 
4O-pinDIP 44-plnPee 

2KROM 

4O-pln Protopak 

2KXROM 

Z0860112PSCRXXX Z0860112VSCRXXX Z0860312TSF 
Z0860112DSERXXX 
Z0860112PECRXXX 
Z0860112DEERXXX 

4KROM 4KXROM 

Z0861112PSCRXXX Z0861112VSCRXXX Z0861312TSF 
Z0861112PECRXXX 
Z0861112DSERXXX 

Z8 MCU with BASICiDebug Interpreter, 8 MHz 
4O-pln DIP 

Z0867108PSCROO2 
Z0867108PECROO2 

za6B1 ROMlass MCU 
4O-pln DIP 4 .... pln Pee 

8 MHz 
Z086810SPSC 
Z0868108DSE 
Z0868108PEC 
Z0868108DEE 

12MHz 
Z0868112PEC 
Z0868112PSC 
Z0868112DSE 
Z0868112DEE 

16 MHz 
Z0868116PSC 

Z0868108VSC 

Z0868112VSC 
Z0868112VEC 

Z0868116VSC 

Low Cost ROMlass MCU, 8 MHz 
Z0868208PSC 
Z0868408PSC 

low P_ar ROMlea. MCU, 8 MHz 
4O-pln DIP 44-pin Pee 

Z0869108PSC Z086910avSC 

za ROMless MCU, 12 MHz 
4O-pln DIP 44-pln Pee 

Z0869112PSC 
Z0869112PEC 

Z0869112VSC 

'za ROMln. MCU, 16 MHz 
4O-pln DIP 44-pln POe 

Z0869116PSC Z0869116VSC 

Z8 MCU, 4K ROM, 
12 MHz 
4o-pinDIP 

Z8 MCU, 4K ROM, 
16 MHz 
4o-pln DIP 

Z86C1112PECRXXX Z86C1118PSCRXXX 

44-plnPLCC 44-plnPLCC 

Z86C1112VECRXXX Z86C1118VSCRXXX 

za MCU, 8K ROM 
4O-pln DIP 

Z86C2112PECRXXX 
Z86C2116PSCRXXX 
Z86C2112CEARXXX 

za MCU, 8K PROM 
4o-pln DIP 44-pln PLCC 

Z86E2112PEC Z86C2112VECRXXX 
Z86E2116PSC Z86C2118VSCRXXX 
Z86E2112CEA 

44-plnPLCC 

Z86E2112VEC 
Z86E2116VSC 

ZB6C271Z86C97 DTC 

64-Pln DIP 

Z86C2708PSCRxxx 

Z86C2708PSCRxxx 

Z86C9708PSCR314 

Z8 ROMlesa MCU 
4o-pln DIP 4 .... pln POe 

Z86C9112PEC Z86C9112VEC 
Z86C9116PSC Z86C9116VSC 

za 4K ROM MCU, 12 MHz 

Z0861112CMBRXXX 

Z8 ROMleBs MCU, 8 MHz 
4o-pln DIP 

Z08681 DSCMB 

za MCU, 4K ROM, 12 MHz 
28-pinDIP 

Z86Cl012PSC 

2:8 MCU, 8K ROM,12 MHz 
28-pln DIP 

Z86C2012PSC 

681 



Codes 

PACKAGE 
Preferred 
D=Cerdip 
P = Plastic 
V = Plastic Chip Carrier 

, Longer Lead Time 
C=Ceramic 
F .. Plastic Quad Flat Pack 
G = Ceramic PGA (Pin Grid Array) 
L = Ceramic LCC 
Q = Ceramic Quad-in-Une 
R = Protopack 
T = Low Profile Protopack 

TEMPERATURE 
Preferred 
S = O°C to +70°C 

Longer Lead Time 
E = -40°C to +85°C 
M = -55°C to + 125°C 

ENVIRONMENTAL 
Preferred 
C = Plastic Standard 
E = Hermetic Standard 
F = Protopack Standard 

Longer Lead Time 
A = Hermetic Stressed 
B = 833 Class B Military 
D = Plastic Stressed 
J = JAN 38510 Military 

Example: 
Z0869112PSC is a 12 MHz 8691 (ROMless Z8) in a plastc DIP, 00 C to +700 C, Standard 
Flow. 
Z 08691 12 P S C RXXX 

11,-----I _L 

682 

ROM Mask Number 
Environmental Flow 
Temperature 
Package 
Speed 
ProduQt Number 
Zilog Prefix 




