
Z8 Microcomputer

Technical Manual

April 1983

./

c·

Z8 Microcomputer
Technical Manual

n_

Copyright 1983 by Zilog, Inc. All rights reserved. No part of
this publication may be reproduced without the written
permission of Zilog, Inc.
The information in this publication is subject to change
without notice.

Table Of Conlents

Chapter 1. ZB Family Overview

1.1 Introduction
1.2 Fe~tures

1 .2. 1 I nstruction Set
1.2.2 Architecture •••

1.3 Microcomputers (Z8601/11) ••

1.4 Development Device (Z8612)

1.5 Protopack Emulator (Z8603/13)

1.6 BASIC/Debug Interpreter (Z8671) •

1.7 ROMless Microcomputer (Z8681/82)

1.8 Applications

Chapter 2. Architectural Overview

2.1 Introduction
2.2 Address Spaces
2.3 Register File ••

2.3.1 Register Pointer.
2.3.2 Instruction Set
2.3.3 Data Types ••••
2.3.4 Addressing Modes.

2.4 I/O Operations

2.4.1 Timers ••
2.4.2 Interrupts

2.5 Oscillator
2.6 Protopack.

Chapter 3. Address Spaces

3.1 Introduction
3.2 CPU Register File •

3.3
3.4
3.5
3.6

3.2.1 Error Conditions

CPU Control and Peripheral Registers
CPU Program Memory
CPU Data Memory •
CPU Stacks

• 1-1
• 1-1

• 1-1
1-1

1-3

• 1-3

• 1-4

• 1-4

• 1-4

•••• 1-4

• 2-1
• 2-1

••• 2-2

• 2-2
• 2-2
• 2-2
• 2-2

• 2-2

• • 2-2
• 2-2

••• 2-3
• 2-3

3-1
3-1

3-2

3-3
3-3
3-5
3-6

1

2

3

iii

Table Of Contents (Continued)

Chapter 4. Address Hodes

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Introduction • • • • • • • •
Register Addressing (R) • • • • • •
Indirect Register Addressing (IR) •
Indexed Addressing (X)
Direct Addressing (DA)
Relative Addressing (RA)
Immediate Data Addressing (1M)

Chapter 5. Instruction Set

5.1
5.2

5.3
5.4

Functional Summary
Processor Flags ••

5.2.1 Carry Flag (C) •
5.2.2 Zero Flag (Z)
5.2.3 Sign Flag (S)
5.2.4 Over flow Flag (V)

5.2.5 Decimal-Adjust Flag
5.2.6 Hal f-Carry F lag (H)

Condition Codes • •

(D)

Notation and Binary Encoding

5.4.1 Assembly Language Syntax •••••
5.4.2 Condition Codes and Flag Settings

5.5 Instruction Summary ••••••
5.6 Instruction Descriptions and Formats

Chapter 6. External Interface (Z8601, Z8611)

6.1
6.2
6.3
6.4
6.5
6.6

Introduction
Pin Description ••••••••
Configuring for External Memory
External Stacks •
Data Memory •
Bus Operation • •

6.6.1 Address Strobe (AS)
6.6.2 Data Strobe (DS) ••

6.6.3 External Memory Operations.

6.7 Shared Bus •••••
6.8 Extended Bus Timing •
6.9 Instruction Timing
6.10 Reset Conditions

iv

• • 4-1
• • 4-1
• • 4-2

• 4-2
• 4-3

• • 4-3
• • 4-4

• • 5-1
• 5-2

• • 5-2
• • 5-2
• • 5-2

• 5-3
••• 5-3

• • 5-3

• 5-3
• • 5-3

• 5-4
• 5-4

• • 5-6
• 5-7

• 6-1
•••• 6-1
••• 6-2

• • 6-3
• 6-3

• • 6-3

• 6-4
• 6-/~

• • 6-4

• •• 6-5
• 6-6
• 6-7
• 6-10

4

5

6

Chapter 7. External Interface (Z8681, Z8682)

7.1 Introduction
7.2 Pin Descriptions
7.3 Configuring Port 0

7.3.1 Z8681 Initialization ••
7.3.2 Z8682 Initialization.
7.3.3 Read/Write Operations

7.4 External Stacks
7.5 Data Memory ••
7.6 Bus Operation.

7.7
7.8
7.9
7.10

7.6.1 Address Strobe (AS)
7.6.2 Data Strobe (OS)

Extended Bus Timing
Instruction Timing
Z8681 Reset Conditions
Z8682 Reset Conditions

Chapter 8. Reset and Clock

8.1 Reset •••••••••
8.2 Clock ••••••••••••••••
8.3 Power-down Operation
8.4 Test Mode •••• " •

8.4.1
8.4.2

Interrupt Testing
ROMless Operation

Chapter 9. I/O Ports

9.1

9.2

9.3

Introduction

9.1.1 Mode Registers ••••••
9.1.2 Input and Output Registers.

Port 0

9.2.1 Read/Write Operations
9.2.2 Handshake Operation

Port 1

9.3.1 Read/Write Operations
9.3.2 Handshake Operation

• 7-1
• • 7-1

• 7-2

• 7-2
• 7-3
• 7-4

•.•• 7-4
• 7-4
• 7-5

• 7-5
• 7-5

7-5
7-6
7-6
7-6

• • 8-1
• • 8-2

• 8-3
• 8-4

• • 8-5
• 8-5

9-1

• 9-1
• • 9-1

9-1

• 9-3
• 9-3

9-4

• 9-4
• • 9-4

7

8

v

Table Of Contents (Continued)

9.4

9.5

Port 2

9.4.1 Read/Write Operations
9.4.2 Handshake Operation

Port 3

9.5.1
9.5.2

Read/Write Operations
Special Functions

9.6 Port Handshake •••••
9.7 I/O Port Reset Conditions.

Chapter 10. Interrupts

10.1 Introduction
10.2 Interrupt Sources •

10.2.1 External Interrupt Sources
10.2.2 Internal Interrupt Sources

10.3 Interrupt Request Register Logic and Timing •
10.4 Interrupt Initialization •••••

10.4.1
10.4.2
10.4.3

Interrupt Priority Register Initialization
Interrupt Mask Register Initialization
Interrupt Request Register Initialization •

10.5 IRQ Software Interrupt Generation • •
10.6 Vectored Processing •••••••

10.7

10.8

vi

10.6.1
10.6.2

Vectored Interrupt Cycle Timing
Nesting of Vectored Interrupts

Polled Processing

Reset Conditions

9-5

• 9-5
9-5

9-6

9-6
9-7

9-8
9-10

10-1
10-1

10-1
10-3

10-3
10-3

10-4
10-5
10-5

10-5
10-6

10-7
10-7

10-7

10-7

9

10

Chapter 11. Counter /T imers

11.1 Introduction
11.2 Prescalers and Counter/Timers ••
11.3 Counter/Timer Operation

11.3.1 Load and Enable Count Bits
11.3.2 Prescaler Operations

11.4 TOUT Modes •••
11.5 TIN Modes.

11.5.1 External Clock Input Mode.
11.5.2 Gated Internal Clock Mode.
11.5.3 Triggered Input Mode
11.5.4 Retriggerable Input Mode

11.6 Cascading Counter/Timers.
11.7 Reset Conditions

Chapter 12. Serial I/O

12.1 Introduction
12.2 Bit Rate Generation
12.3 Receiver Operation.

12.4

12.5

12.3.1 Receiver Shift Register.
12.3.2 Overwrites
12.3.3 Framing Errors
12.3.4 Parity

Transmitter Operation •

12.4.1 Overwrites
12.4.2 Parity

Reset Conditions

Appendix A. Pin Descriptions and functions

A.1 Development Device (Z8612)
A.2 Protopack Emulator (Z8603/13)

Appendix B. Control Registers

Appendix C. Opcode Hap • • • •

11-1
• 11-2

11-3

11-3
11-3

• 11-4
• 11-5

11-6
11-6
11-8

• 11-8

• 11-8
•• 11-8

••• 12-1
• 12-1
• 12-3

12-3
• 12-4
• 12-4
• 12-4

12-4

• 12-5
• 12-5

12-6

• A-1
• A-1

B-1

C-1

11

12

vii

Table Of Contents (Continued)

List of Illustrations

Figure 2-1 Z8 Block Diagram
Figure 2-2 Bits in Register •

Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5a
Figure 3-5b
Figure 3-5c
Figure 3-5d
Figure 3-6a
Figure 3-6b
Figure 3-6c
Figure 3-7
Figure 3-8

Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8

Figure 5-1

Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6a
Figure 6-6b
Figure 6-7
Figure 6-8
Figure 6-9a
Figure 6-9b
Figure 6-10
Figure 6-11
Figure 6-12
Figure 6-13

Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4

viii

Register File • • • • • •
16-Bit Register Addressing •
Working Register Groups
Working Register Addressing
Z8601 Program Memory Map
Z8611 Program Memory Map
Z8681 Program Memory Map •
Z8682 Program Memory Map
Z8601 or Z8682 Data Memory Map •
Z8611 Data Memory Map
Z8681 Data Memory Map
Stack Pointer
Stack Operations • •

Register Addressing
Working-Register Addressing
Indirect Register Addressing to Register File
Indirect Register Addressing to Program or Data Memory
Indexed Addressing •
Direct Addressing
Relative Addressing
Immediate Data Addressing

Flag Register

Z8601/11 Pin Functions •••••••••
Z8601/11 Pin Assignments ••••••••
Ports 0 and 1 External Memory Operation
Ports 0 and 1 Stack Selection • • • • •
Data Memory Operation
External Instruction Fetch, or Memory Read Cycle •
External Memory Write Cycle
Shared Bus Operation • • • • • •
Extended Bus Timing • • • • • • ••••
Extended External Instruction Fetch, or Memory Read Cycle
Extended External Memory Write Cycle
Instruction Pipe lining • • • • • • • • • • • •
Instruction Cycle Timing (One Byte Instructions) •
Instruction Cycle Timing (Two and Three Byte Instructions
Ports 0 and 1 Reset

Z8681/82 Pin Functions • • • • •
Z8681/82 Pin Assignments • • •
Example Z8681/Memory Interface •
Example Z8681/Memory Interface •

• 2-1
• • 2-2

• • 3-1
• •• 3-1
• •• 3-2

• • 3-2
• 3-3

• • 3-4
• • 3-4

3-4
• • 3-5

• 3-5
• • 3-5

• •• 3-6
3-6

• • 4-1
• • 4-1
• • 4-2
• • 4-2

4-3
• • 4-3
• • 4-3

• • • 4-4

5-2

6-1
• • 6-1

• 6-2
6-3

• 6-3
• • • • 6-4

6-5
• 6-5

6-6
• • 6-6
• • 6-7
• • 6-8

• 6-9
• • 6-9

• 6-10

7-1
• • 7-1
• • 7-2

7-3

'",-,

Figure 7-5
Figure 7-6
Figure 7-7
Figure 7-8
Figure 7-9
Figure 7-10
Figure 7-11

Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 8-6
Figure 8-7
Figure 8-8

Figure 9-1
Figure 9-2
Figure 9-3
Figure 9-4
Figure 9-5
Figure 9-6
Figure 9-7
Figure 9-8
Figure 9-9
Figure 9-10
Figure 9-11
Figure 9-12
Figure 9-13
Figure 9-14
Figure 9-15
Figure 9-16
Figure 9-17
Figure 9-18
Figure 9-19
Figure 9-20
Figure 9-21
Figure 9-22
Figure 9-23

Figure 10-1
Figure 10-2
Figure 10-3
Figure 10-4
Figure 10-5
Figure 10-6
Figure 10-7
Figure 10-8
Figure 10-9

Z8681 Port 0 Memory Operation
Z8682 Port 0 Memory Operation
External Stack Operation • • •
Port 3 Data Memory Operation • •

• 7-3
• 7-4
• 7-5

• • 7-5
Extended Bus Timing • • • • • • • 7-5
Z8681 Port 0 and 1 Reset Conditions • • • • • • • • • • • • • • •• 7-6
Z8682 Ports 0 and 1 Reset Conditions •••••••••••••••• 7-6

Reset Timing
Power-Up Reset Circuit
Z8 Clock Circuit
Crystal/Ceramic Resonator Oscillator
External Clock Interface
Battery-Backed Register Supply
Normal and Test Mode Flow
Voltage Waveform for Test Mode

I/O Port and Port Mode Registers
Ports 0, 1, and 2 Block Diagram
Port 0 I/O Operation • • • •
Port 0 Handshake Operation •
Port 0 • • • • • • • • • • •
Port 1 I/o Operation • • • •
Port
Port

Handshake Operation •

Port 2 I/O Operation • • •
Port 3 Handshake Operation •
Port 2 • • • • • • • • • • •
Port 2 Open-Drain Outputs
Port 3 Block Diagram
Port 3 I/O Operation •
Z8 Input Handshake • •

• 8-2
• 8-3
• 8-3
• 8-3
• 8-3
• 8-4

• • 8-4
••••• 8-5

• • 9-1
9-2

• • 9-3
• 9-3
• 9-3
• 9-4

• • 9-4
• ••••• 9-4

• • 9-5
• 9-5

• • 9-5
• 9-6
• 9-6
• 9-7
• 9-8

Z8 Output Handshake • • • • • • • • • • • • • 9-9
Input Strobed Handshake using Port 2 • • • • • • • • • • • • 9-9
Output Strobed Handshake using Port 2 • 9-9
Z8601/11 Ports 0 and 1 Reset. • • • • • • 9-10
Z8681 Ports 0 and 1 Reset • • • • • • • 9-10
Z8682 Ports 0 and 1 Reset •• 9-10
Port 2 Reset. • • • • • • • • • • • • • 9-11
Port 3 Reset. • • • • • • • • • 9-11

Interrupt Control Registers ••••• • •
Interrupt Block Diagram • • • • • • • •
Interrupt Sources IRQO-IRQ2 Block Diagram
Interrupt Source IRQ3 Block Diagram
IRQ Register Logic • • • • • • • • • • •
Interrupt Request Timing. • • • • ••••••
Interrupt Priority Register •••••
Interrupt Mask Register •••••
Interrupt Request Register • •

• 10-1
• 10-1
• 10-2

•• 10-2
• 10-3
• 10-3
• 10-4
• 10-5
• 10-5

ix

Table Of Contents (Continued)

Figure 10-10 Effect of Interrupt on Stack ••••••
Figure 10-11 Interrupt Vectoring •••••••••
Figure 10-12 ROM Z8 Interrupt Timing (shrink parts) •
Figure 10-13 Z8681 ROMless Z8 Interrupt Timing

Figure 11-1
Figure 11-2

Counter/Timer Block Diagram
Counter/Timer Register Map.

Figure 11-3 Prescaler 0 Register.
Figure 11-4 Prescaler 1 Register.
Figure 11-5 Counter/Timers 0 and Registers.
Figure 11-6 Timer Mode Register
Figure 11-7 Starting the Count.
Figure 11-8 Counting Modes. • • • • ••••••
Figure 11-9 Port 3 Mode Register TOUT Operation
Figure 11-10 Timer Mode Register TOUT Operation ••
Figure 11-11 Counter/Timers Output Via TOUT ••••••••••••
Figure 11-12 Internal Clock Output Via TOUT ••
Figure 11-13 Timer Mode Register TIN Operation •••••
Figure 11-14 Prescaler 1 TIN Operation
Figure 11-15 External Clock Input Mode
Figure 11-16 Gated Clock Input Mode.
Figure 11-17 Triggered Clock Mode •••••••••
Figure '11-18 Cascaded Counter/Timers
Figure 11-19 Counter/Timer Reset
Figure 11-20 Prescaler 1 Register Reset.
Figure 11-21 Prescaler 0 Reset
Figure 11-22 Timer Mode Register Reset

Figure 12-1
Figure 12-2
Figure 12-3
Figure 12-4
Figure 12-5
Figure 12-6
Figure 12-7

Serial I/O Block Diagram
Serial I/O Register Map
Port 3 Mode Register and
Bit Rate Divide Chain

Bit Rate Generation

Prescaler 0 Register and Bit Rate Generation
Timer Mode Register and Bit Rate Generation
Receiver Timing

Figure 12-8 Receiver Data Formats •••••
Figure 12-9 Parity and Port 3 Mode Register
Figure 12-10 Transmitter Data Formats •
Figure 12-11 Serial I/O Register Reset
Figure 12-12 Port 3 Register Reset

Figure A-1
Figure A-2
Figure A-3
Figure A-4

Figure B-1

Figure C-1

x

Z8612 Pin Functions
Z8612 Pin Assignments
Protopack Emulator • •
Protopack EPROM Socket

Control Registers

Opcode Map • • • •

• •••• 10-6
10-6

• • 10-8
• • 10-8

• 11-1
11-2

• 11-2
• 11-2

• •••• 11-2
• •• 11-3

• 11-3
• • 11-3
• • 11-4

• •• 11-4
• •••• 11-5

• • 11-5
• • 11-5

• •• 11-5
• • 11-6
• • 11-6

• 11-7
• • 11-7
• • 11-8

• 11-8
• •••• 11-9
• •••• 11-10

12-1
• 12-2
• 12-2

• •• 12-1
• 12-3

• •••• 12-3
••••••• 12-3

• • 12-4
• ••••• 12-5

• •••• 12-5
• • 12-6

12-6

• • A-2
• • A-3
• • A-3

• A-3

B-1

C-1

List of Tables

Table 1-1

Table 5-1

Table 8-1

Table 9-1

Table 10-1
Table 10-2

Table 12-1

Z8 Family of Products

Condition Codes • • •

Control and Peripheral Register Reset Values

Port 3 Line Functions • •

Interrupt Types, Sources, and Vectors
Interrupt Priority • • • • •

Bit Rate

1-2

5-5

8-1

9-7

• 10-2
• 10-4

12-2

xi

1.1 INTRODUCTION

This chapter provides an overview of the architec­
ture and features of the ZS Family of products,
with particular emphasis on those features that
set this microcomputer apart from earlier micro­
computers. Detailed information about the archi-
tecture, address spaces and modes,
set, external interface, timing,

instruction
input/output

operations, and interrupts can be found in subse­
quent chapters of this manual.

1.2 FEATURES

The ZS microcomputer introduces a new level of
sophistication to single-chip architecture. Com­
pared to earlier single-chip microcomputers, the
ZS offers faster execution; more efficient use of
memory; more sophisticated interrupt, input/output
and bit-manipulation capabilities; and easier sys­
tem expansion.

ZS products offer the standard on-chip functions
of earlier microcomputers, including:

• 2K or 4K bytes of ROM

• 144 S-bit registers

• 32 lines of programmable I/O

• Clock oscillator

• Arithmetic logic unit

• Parallel and serial ports

Beyond these basic features, the ZS Family offers
such advanced characteristics as:

• Two counter/timers
• Six vectored interrupts
• UART for serial I/O communication
• Stack functions
• Power-down option
• TTL compatibility
• Optimized instruction set
• BASIC/Debug interpreter

All members of the ZS Family are variations of the
basic ZS microcomputer, the ZS601/11. The ZS
Family includes a development device (ZS612), a
RoMless device (ZS6S1/S2), BASIC/Debug Interpreter
(ZS671), a Protopack emulator (ZS603/D), as well

Chapter 1
Z8 Family Overview

as the basic microcomputer. These products offer
all the parts and development tools necessary for
systems development (both hardware and software
prototyping), field trials (pre-production) and
full production. For prototyping and preproduc­
tion, or where code flexibility is important, the
ZS603/13 Protopack, 2K and 4K EPROM-based parts
are the most appropriate. The ROM-based ZS601/11
microcomputers are used in high-volume production
applications after the software has been per­
fected. For RoMless applications, two versions of
the ZS microcomputer are available: the 4o-pin
ZS6S1/S2 and the 64-pin ZS612. In addition, there
is a military version of the ZS611 4K ROM device,
available in both 4o-pin ceramic and 44-pin lead­
less chip carrier packages.

The ZS671 MCU is a complete microcomputer prepro­
grammed with a BASIC/Debug Interpreter. This
device, operating with both external ROM or RAM
and on-chip memory registers, is suitable for most
industrial control applications, or whenever fast
and efficient program development is necessary.

The ZS microcomputer is well-suited for dedicated
control applications in real-t ime mode. Since
speed is a key consideration in such applications,
the ZS Family is available in both Sand 12 MHz
versions,
modules:
Z-SCAN S.

supported by either of two development
the Development Module (BM) or the

The Z-SCAN module provides (ICE) in-
circuit emulation capability.

1.2.1 Instruction Set

The ZS instruction set, consisting of 43 basic
instructions, is optimized for high-code density
and reduced execution time. The 47 instruction
types and six addressing modes--together with the
ability to operate on bits, 4-bit words, BCD
digits, S-bit bytes, and 16-bit words--make for a
code-efficient, flexible microcomputer.

1.2.2 Architecture

ZS architecture offers more flexibility and per­
formance than previous A/B accumulator designs.
All 12S general-purpose registers, including

1-1

Z8 Family Overview

dedicated I/O port registers, can be used as
accumulators. This eliminates the bottleneck com­
monly found in A/B devices, particularly in high­
speed applications such as disk drives, printers
and terminals. In addition, the registers can be
used as address pointers for indirect addressing,
as index registers or for implementing an on-chip
stack. Speed of execution and smooth programming
are supported by a "working register area"--short
4-bit register addresses.

Table 1-1 lists the basic characteristics of the
members of the Z8 Family. As shown, the major
differences between the products are in their
physical packaging and the manner in which address
space is handled. An overall description for each
Z8 type is given in the following sections.
Variations within each group are specified where
applicable.

Table 1-1. ZB Family of Products

ROM
Part Capacity Progr~able Dedicated PCB

Product Ntnber (Bytes) I/O Pins I/O Pins Footprint Conments

2K ROM Z8601 2K 32, 4 ports 8 Power, 40 Pin Masked ROM part, used
Control primarily for high volume

production.

2K Protopack Z8603 0 32, 4 ports 8 Power, 40 Pin Piggyback part used where
Control program flexibility is
plus required (prototyping).
24 EPROM

4K ROM Z8611 4K 32, 4 ports 8 Power, 40 Pin Masked ROM part, used
Control primarily for high volume

production.

4K Develop- Z8612 0 32, 4 ports 8 Power, 64 Pin ROMless part used primarily
ment part Control in development systems.

plus 24
external
memory

4K Protopack Z8613 0 32, 4 ports 8 Power, 40 Pin Piggyback part used where
Control program flexibility is
plus required (prototyping).
24 EPROM

BASIC/ Z8671 2K 32, 4 ports 8 Power, 40 Pin BASIC/Debug part used in
Debug Control low volume applications.

ROMless Z8681/82 0 24, 3 ports 8 Power, 40 Pin Low cost ROMless production
Control part with reduced I/O.
plus 8 Program memory is external.
external
memory

1-2

1.J MICROCOMPUTERS (Z8601/Z8611)

The Z8 can be a stand-alone microcomputer with
either 2K bytes (ZB601) or 4K bytes (Z8611) of
internal ROM, a traditional microprocessor that
can manage up to 124K bytes (ZB601) or 120K bytes
(ZB611) of external memory, Or a parallel proces­
sing element in a system with other processors and
peripheral controllers linked by a Z-BUS. In all
configurations, a large number of device pins are
available for I/O. Key features of the Z8601/11
microcomputer include:

• ROM 2K-byte (Z8601) or 4K-byte (Z8611) Program
Memory. This ROM is mask-programmed during
production with user-provided programs.

•

•

•

144-byte RAM Register File. The internal
register organization of the ZB microcomputer
centers around a 144-byte file composed of 124
general-purpose registers, 16 status and
control registers, and 4 I/O port registers.
Either an B-bit or a 4-bit address mode can be
used to access the register file. When the
4-bit mode is used, the register file is
divided into 9 groups of 16 working registers
each. A Register Pointer uses short-format
instructions to quickly access anyone of the
nine groups. Use of the 4-bit addressing mode
decreases access time and improves throughput.

Programmable Counter/Timers. Two 8-bit coun­
ter/timer circuits are provided, each driven by
its own prescaler. Both the counter/timers and
their prescaler circuits are programmable.

UART (Universal Asynchronous Receiver Transmit­
ter). A full-duplex UART is provided to
control serial data communications. One of the
on-chip counter/timer circuits provides the
required bit rate input to enable the UART to
operate at a maximum data transfer rate of
93.75K bits per second at a crystal frequency
of 12 MHz.

• I/O Lines/Ports. The ZB microcomputer provides
32 input/output lines, arranged as 4 8-bit
ports. Under software control, the I/O ports
(Ports 0, 1, 2, 3) can be programmed as input,
output, or additional address lines. The I/O
ports can also be programmed to provide timing,
status signals, interrupt inputs and serial or
parallel I/O (with or without handshake).

I-V I UIII.&.., \J",,",,~ y, ..

• Vectored Interrupts. The ZB MPU permits the
use of six di fferent interrupts from any of
eight different sources. Four Port 3 lines
(P30-P33), serial input pin (P30), the serial
output pin (P37) and both counter/timer
circuits may be interrupt sources. All
interrupts are vectored and are both maskable
and prioritized.

• Oscillator Circuit. An oscillator circuit that
can be driven from an external clock or crystal
is provided on the Z8 microcomputer. The
oscillator will accept an input frequency of up
to 12 MHz on the two input pins provided.

• Optional Power-Down Feature. This option
permits normal input power to be removed from
the chip without affecting the contents of the
register file. The power-down funct ion
requires an external battery backup system.

Pin functions and descriptions for the ZB601/11
microcomputer can be found in Chapter 6.

1.4 DEVELOPMENT DEVICE (Z8612)

A development device allows users to prototype a
system with an actual hardware device and to
develop the code that is eventually mask-pro­
grammed into the on-chip ROM of the Z8601 or Z8611
microcomputer. Development devices are also use­
ful in applications where production volume does
not justify the expense of a ROM system. The
ZB612 development device is identical to its
equivalent microcomputer, the Z8611, with the fol­
lowing exceptions:

• No internal ROM is provided, so that code is
developed in an off-chip memory.

• The normally internal ROM address and data
lines are buffered and brought out to external
pins to interface with the external memory.

• Control lines are added to interface with
external program memory.

• The device package is enlarged in order to
accommodate the new control, address, and data
lines.

Pin functions and descriptions for the development
device can be found in the Appendix.

1-J

LO tam~ly uverv~ew

1.5 PROTOPACK EMULATOR (18603/13)

The Protopack emulator devices, Z8603 and Z8613,
are ROMless versions of their equivalent microcom­
puters (Z8601 and Z8611, respectively). The emu­
lators differ from development devices in two
ways: they use the same pinout as the microcom­
puters, and an external ROM or EPROM can be
plugged into the top of the package. The emulator
package allows for flexibility of application,
since it can be used in either prototype or final
pc boards, yet still allows for program develop­
ment.

When the final program is developed, it can be
mask-programmed into the Z8601/11 which then
replaces the emulator. The emulator is also use­
ful in small volume applications where the cost of
mask-programming is prohibitive or where program
flexibility is desired.

Physical description for the Protopack emulator is
found in the Appendix.

1.6 BASIC/DEBUG INTERPRETER (18671)

The Z8671 MCU is a complete microcomputer prepro­
grammed with a BASIC/Debug interpreter. BASIC/
Debug can directly address the Z8671 , s internal
registers and all external memory. It can quickly
examine and modify any external memory location or
I/O port, and can call machine language subrou­
tines to increase execution speed.

The Z8671 MCU has a combination of software and
hardware that is ideal for most industrial control
applications. Along with the functions mentioned
above, this microcomputer has a self-contained
line editor for interactive debugging which fur­
ther speeds program development. In addition the
BASIC/Debug Interpreter allows program execution
on power-up or reset, without operator interven­
tion.

Two kinds of memory exist in the Z8671 device:
on-chip registers and external ROM or RAM. The
BASIC/Debug interpreter is located in the 2K bytes
of on-chip ROM. Maximum addressing capability is
62K bytes of external program memory and 62K bytes
of data memory. In addition, 32 I/O lines, a 144-
byte register file, on-board UART and two coun­
ter/timers are provided.

Pin descr iptions and fund ions are t he same as
those for the Z8601/11 basic microcomputer
(Chapter 6).

1-4

1.7 ROHlESS MICROCOMPUTER (18681/82)

The Z8681 and Z8682 ROM less microcomputers provide
virtually all of the functions of the standard Z8
microcomputer without the need to mask-program
on-chip ROM. This microcomputer is similar to the
Z8601 version except that there is no on-chip pro­
gram memory. Unlike the RoMless development and
Protopack devices the Z8681/82 has no additional
address or address control lines nor does it carry
a plug-in piggyback memory module. Use of exter­
nal memory rather than internal ROM enables this
Z8 device to be used in low volume applications or
where code flexibility is required. The use of
Ports 0 and 1 to interface external memory leaves
16 to 24 lines for I/O.

Since Port 1 is dedicated as an 8-bit multiplexed
Address/Data bus, and Port 0 lines can be pro­
grammed as address bits, the resulting 16-bit
addresses can directly address up to 64K bytes of
memory for the Z8681 and 62K bytes for the Z8682.
(The Z8682 MCU cannot address the lower 2K bytes
of memory).

The address capabil it Y of the Z8681/82 can be
doubled by programming output P34 of Port 3 as
Data Memory (OM) select signal. The two states of
this signal can be used with the 16-bit addresses
to identify two separate external address spaces,
thus increasing ext ernal address space to 128K
bytes for the Z8681 and 124K bytes for the Z8682.

Pin functions and descriptions for the Z8681/82
microcomputer can be found in Chapter 7.

1.8 APPLICATIONS

Z8 microcomputers are most often used in high-per­
formance, dedicated applicat ions. Such special­
ized functions were previously accomplished with
TTL logic, TTL logic plus a low-end MCU, or a
microprocessor and peripherals. Some typical
applications include:

• Disc drive controller
• Printer controller
• Terminals
• Modems
• Industrial controllers
• Key telephones
• Telephone switching systems
• Arcade games and intelligent home games
• Process control
• Intelligent instrumentation
• Automotive mechanisms

"- -

Following are brief descript ions for a few Z8
applications.

Printers. Input data (typically transmitted via a
terminal or computer) can be sent to the Z8 on
either a serial or parallel port. The Z8 then
transfers the data into the external RAM buffer
via another parallel port, where it can operate on
the data before output to the printing mechanism.

I alll~~y VV~.L V.&o,-,"

Disk. Disk operations are read or write, with
input received from either the disk or the compu­
ter. Data is transferred to the buffer memory a
sector (128, 256, 512, 1024 bytes) at a time via
the Z8, operated on as required, and subsequently
output to the disk or computer.

Terminal. Input is received from either the key­
board or a computer. The Z8 device must maintain
at least an input buffer and often the screen RAM.

1-5

2.1 INTRODUCTION

The Z8 is a versatile single-chip microcomputer.
Because its multiplexed address/data bus is merged
with several I/O-oriented ports, the Z8 can func­
tion as either an I/O-intensive or a memory­
intensive microcomputer. One key advantage to
this organization is that external memory can be
addressed while maintaining many of the I/O
lines. Figure 2-1 shows the Z8 block diagram.

2.2 ADDRESS SPACES

To provide for both I/O-intensive and memory­
intensive applications, the Z8 supports three
basic address spaces:

OUTPUT INPUT Vee GND

Chapter 2
Architectural Overview

• Program memory (internal and external)
• Data memory (external)
• Register file (internal)

A maximum of 64K bytes of program memory are
directly addressable. In the Z8601 and Z8611
microcomputers, internal program memory consists
of a mask-programmed ROM. The size of this
internal ROM is 2K bytes for the Z8601 and 4K
bytes for the Z8611. In one member of the Z8
family, the Z8681, all of the program memory is
externally addressable.

Data memory space is always external to the Z8
microcomputer and is 62K bytes in size for the
Z8601 and Z8682, and 60K and 64K bytes in size
respectively for the Z8611 and Z8681.

~/L---!_! _,~-----.,
UART

TIMERI
COUNTERS

(2)

INTERRUPT
CONTROL

PORT 2

!ttttl!!
1/0

(BIT PROGRAMMABLE)

r-=I
~

REG. POINTER

ADDRESS OR 1/0
(NIBBLE PROGRAMMABLE)

Figure 2-1. Z8 Block Diagram

ADDRESSIDATA OR 1/0
(BYTE PROGRAMMABLE)

2037 -003 2-1

Architectural Overview

2.3 REGISTER FILE

The Z8's register-oriented architecture centers
around an internal register file composed of 124
general-purpose registers, 16 CPU and peripheral
control registers, and 4 I/O port registers. All
registers are eight bits. Any general-purpose
register can be used as an accumulator, an address
pointer, or an index, data, or stack register.

2.3.1 Register Pointer

A Register Pointer logically divides the register
file into 9 working register groups of 16 regis­
ters each, which allows for fast context switching
and shorter instruction formats.

2.3.2 Instruction Set

The Z8 CPU has an instruction set designed for the
large register file. The instruction set provides
a full complement of 8-bit arithmetic and logical
operations. BCD operations are supported using a
decimal adjustment 0 f binary values, and 16-bi t
quantities for addresses and counters can be
incremented and decremented. Bit manipUlation and
Rotate and Shift instructions complete the data
manipulation capabilities of the Z8 system. No
special I/O instructions are necessary since the
I/O is mapped into the register file.

2.3.3 Data Types

The Z8 CPU supports operations on bits, BCD
digits, bytes, and 2-byte words.

Bits in the register file can be tested, set,
cleared, and complemented. Bits within a byte are
numbered from 0 to 7 with bit 0 being the least
significant (right-most) bit (Figure 2~2).

Figure 2-2. Bits in Register

Manipulation of BCD digits packed two-to-a-byte is
accomplished by a Decimal Adjust instruction and a
Swap instruction. Decimal Adjust is used after a
binary addition or subtraction on BCD digits.

2-2

Logical, Shift, Rotate and Load instructions oper­
ate on bytes in the register file. Bytes in data
memory are only affected by Load instructions.

Sixteen-bit arithmetic instructions (Increment
Word and Decrement Word) operate on words in the
register file.

2.3.4 Addressing Hodes

The addressing modes of the Z8 CPU are:

• Register
• Indirect Register
• Immediate
• Direct Address
• Indexed (with a short 8-bit displacement)
• Program Counter Relative

Register, Indirect Register, and Immediate
addressing modes are available for Load, Ar ith­
metic, Logical, Shift, Rotate, and Stack instruc­
tions. Conditional Jumps use both Direct Address
and Program Counter Relative, while Jump and Call
instructions use Direct Address and Indirect Reg­
ister addressing modes.

2.4 I/O OPERATIONS

The Z8 has 32 pins dedicated to input and output.
These lines are grouped into four ports of eight
lines each. Ports can be programmed as input,
output, or bidirectional. Under software control,
the ports provide timing, status signals, address
outputs, and serial or parallel I/O with or with­
out handshake. Multiprocessor system configura­
tions are also supported.

2.4.1 Timers

To unburden the program from real-time problems
such as serial data communications and counting/
timing, the Z8 contains an on-chip universal asyn­
chronous receiver/transmitter (UART) and two coun­
ter/timers with a large number of user-selectable
modes. One on-chip timer provides the bit rate
input to the UART during communications.

2.4.2 Interrupts

I/O operations can be interrupt-driven or polled.
The ZB supports six vectored interrupts that can
be masked and prioritized.

3047-072

2.5 OSCILLATOR

The l8 offers an on-chip oscillator and an
optional power-down mechanism that can be used to
maintain the contents of the register file with a
low-power battery.

Architectural Overview

2.6 PROTOPACK

The lB Protopack allows the user to prototype
system hardware and develop software that is
eventually to be mask-programmed into the on-chip
ROM of the 2K byte (lB601) or the 4K byte (lB611)
version of the lB.

2-3

Chapter 3
Address Spaces

3.1 INTRODUCTION DEC

255

Three address spaces are available in the Z8 254

microcomputer: 253

252

• The CPU Register rile contains addresses for 251

all general-purpose, peripheral, control, and 250

I/O port registers. 249

248

• The CPU Program Memory contains addresses for 247

all memory locations having executable code 246

and/or data. 245

244

• The CPU Data Memory contains addresses for all 243

memory locations that hold data only. 242

These address spaces are described in detail in
the following sections.

3.2 CPU REGISTER rILE

The register file totals 256 consecutive bytes, of
which 144 have been implemented. (Unused register
space is reserved for future expansion.) The reg­
ister file consists of 4 I/O ports (RO-R3), 124
general-purpose registers (R4-R127), 9 peripheral
registers (R240-R248), and 7 control registers
(R249-R255). Figure 3-1 shows the layout of the
register file, including register names, loca­
tions, and identifiers.

241

240

127

4

2

STACK POINTER (BITS 7-0)

STACK POINTER (BITS 15-8)

REGISTER POINTER

PROGRAM CONTROL FlAGS

INTERRUPT MASK REGISTER

INTERRUPT REOUEST REGISTER

INTERRUPT PRIORITY REGISTER

PORTS 0-1 MODE

PORT 3 MODE

PORT 2 MODE

TO PRESCALER

TIMER/COUNTER 0

T1 PRESCALER

TIMER/COUNTER 1

TIMER MODE

SERIAL I/O

NOT
IMPLEMENTED

GENERAL·PURPOSE
REGISTERS

PORT 3

PORT 2

PORT 1

PORT 0

HEX

FF

FE

FD

FC

FB

FA

F9

F8

F7

F6

F5

F4

F3

F2

F1

FO

7F

04

03

02

01

00

Figure 3-1. Register rile

L.._M_S_B_ _L_S_B_.I1 n = EVEN ADDRESS

Rn Rn+1

IDENTIFIERS

SPL

SPH

RP

FLAGS

IMR

IRO

IPR

P01M

P3M

P2M

PREO

TO

PRE1

T1

TMR

SIO

P3

P2

P1

PO

Registers can be accessed as either 8- or 16-bit
registers using Direct, Indirect, or Indexed
addressing. All 144 registers can be referenced
or modified by any instruction that accesses an
8-bit register, without the need for special
instructions. Registers accessed as 16-bits are
treated as even-odd register pairs (there are 72
valid pairs). In this case, the data I s MSB is
stored in the even-numbered register, while the
LSB goes into the next higher odd-numbered
register (Figure 3-2). Figure 3-2. 16-Bit Register Addressing

2037-006, 3047-047 3-1

Address Spaces

By using logical instructions and a mask, indivi­
dual bits within registers can be accessed for bit
set, bit clear, bit complement, or bit test opera­
tions. For example, the instruction AND R, MASK
performs a bit clear operation.

When instructions are executed, registers are read
when defined as sources and written when defined
as destinations. All general-purpose registers
function as accumulators, address pointers, index
registers, stack areas, or scratchpad memory.

Z8 instruct ions can access 8-bit registers and
register pairs (16-bit) using either 4-bit or
8-bit address fields. With 4~bit addressing, the
register file is logically divided into 9 groups
of 16 working registers as shown in Figure 3-3. A
Register Pointer (one of the control registers)
contains the base address of the act i ve working
register group.

When accessing one of the working registers, the
4-bit address is concatenated with the upper four
bits of the Register Pointer, thus forming an
8-bit address. Figure 3-4 illustrates this opera­
tion. Since working registers are typically
specified by short format instructions, there are
fewer bytes of code needed, which reduces execu­
tion time. In addition, when processing interrupts
or changing tasks, the Register Pointer speeds
context switching. A special Set Register Pointer
(SRP) instruction sets the contents of the Regis­
ter Pointer.

3.2.1 Error Conditions

Registers must be correctly used because certain
conditions produce inconsistent results and should
be avoided:

REGISTER R253

0

0 0

R6

I

• Registers
registers.

R243 and R245-R249 are write-only
If an attempt is made to read these

registers, %FF is returned (% is a prefix that
indicates hexadecimal notation).

• When register R253 (Register Pointer) is read,
all as are returned in the least significant
four bits.

-~I

-~I
-~

-~

-~I
I

-~I
-~I
-~l

r-----+-----------------,255
o 0 0 0 253

~--------~----------~

~----------------------~240

1 27

The lower
nibble of

~>-

the register
file address
provided by
the instruction
points to the
specified
register.

1

~------------3

1/0 PORTS
0

Figure 3-3. Working Register Croups

OPC

0 ,1 o I INSTRUCTION
(INC R6)

o I REGISTER ADDRESS (R118)

Figure 3-4. Working Register Addressing

3-2 3047·034, 3047·048

'-

• When registers RO and R1 (Ports 0 and 1) are
defined as address outputs, they will return
1s in each address bit location when read.

• Writing to bits which are defined as address
output, timer output, serial output, or hand­
shake output will have no effect.

• Instruction DJNZ uses a general register as a
counter. Only registers R4-R127 can be used
with this instruction.

3.3 CPU CONTROL AND PERIPHERAL REGISTERS

The ZS control registers govern the operation of
the CPU. Any instruction that references the
register file can access these control registers.
Available control registers are:

• Interrupt Priority register (IPR)

• Interrupt Mask register (IMR)

• Interrupt Request register (IRQ)

• Program Control flags (FLAGS)

• Register Pointer (RP)

• Stack Pointer high-byte (SPH)

• Stack Pointer - low-byte (SPL)

The ZS uses a 16-bit Program Counter (PC) to
determine the sequence of current program instruc­
tions. The PC is not an addressable register.

Peripheral registers are used to transfer data,
configure the operating mode, and control the
operat ion of the on-chip peripherals. Any
instruction that references the register file can
access peripheral registers. The peripheral regis­
ters are:

• Serial I/O (510)

• Timer Mode (TMR)

• Timer/Counter 0 (TO)

• TO Prescaler (PREO)

• Timer/Counter 1 (T1)

• T1 Prescaler (PRE1)

• Port 0-1 Mode (P01M)

• Port 2 Mode (P2M)

• Port 3 Mode (P3H)

In addition, the four port
considered to be peripheral

regist ers (PO-P3) are
registers.

The functions and applications of control and
peripheral registers are described in subsequent
sections of this manual.

Address Spaces

3.4 CPU PROGRAM MEMORY

The ZS can access 64K bytes of program memory with
the 16-bit Program Counter. In the ZS601, the
lower 2K bytes of the program memory address space
are internal ROM, while in the ZS611 the lower 4K
bytes are internal ROM. In the ZS6S2 the lower 2K
bytes are not accessible.

To access program memory outside the on-board ROM
space, Port 0 and Port 1 can be configured as a
memory interface. For example, Port 1 as a multi­
plexed Address/Data port (ADO-AD7) provides
Address lines AO-A7 and Data lines DO-D7. Port 0
can be configured for an additional four or eight
address lines (AS-A11 or AS-A15). This memory
interface is supported by the control lines AS
(Address Strobe), 55 (Data Strobe) and R/W
(Read/Write).

In the ROMless Z8681 version, Port 1 is automati­
cally a multiplexed Address/Data port. Port 0
must be configured for additional address lines as
needed.

The first 12 bytes of program memory are reserved
for the interrupt vectors. Addresses 0-11 contain
six 16-bit vectors that correspond to the six
available interrupts. Figure 3-5 illustrates the
order of 16-bit data stored in program memory.

6

Location of
first byte of
instruction

executed
after reset

Interrupt
Vector

(Lower Byte)

Interrupt
Vector

(Upper Byte)

5535

EXTERNAL
ROM OR RAM

2048
2047

ON·CHIP
ROM

"'--~------------12

11 IR05

10 IR05

9 IR04

8 IR04

7 IR03

6 IR03

5~ IR02

4~ IR02

3 IR01

2 IR01

IROO

0 IROO

Figure 3-5a. Z8601 Program Memory Map

2037·004 3-3

Address Spaces

6

Location 01
!lrst byte 01
Instruction

executed
alter reset

Interrupt
Vector

(Lower Byte)

Interrupt
Vector

(Upper Byte)

5535

4096

4095

~
11

10

9

8

7

6

5

4

3

2

0

EXTERNAL
ROM OR RAM

ON·CHIP
ROM

~------------

IR05

IR05

IR04

IR04

IR03

IR03

" IR02

~ IR02

IR01

IR01

IROO

IROO

Figure 3-5b. Z8611 Program Memory Map

6

Location 01
lirst byte 01
Instruction

executed
alter reset

Interrupt
Vector

(Lower Byte)

Interrupt
Vector

(Upper Byte)

5535

EXTERNAL
ROM OR RAM

~ ~------------
11 IR05

10 IR05

9 IR04

8 IR04

7 IR03

6 IR03

5" IR02

4~ IR02

3 IR01

2 IR01

IROO

0 IROO

Figure 3-5c. Z8681 Program Memory Map

LOCATION OF
FIRST BYTE OF

INSTRUCTION
EXECUTED

AFTER RESET

65535

~
2066

2065

2056

2055

2054

2053

2052

2051

2050

2049

2048

2047

EXTERNAL
ROM OR RAM

~----------

IR05

IR05

JP

IR04

IR04

JP

IR03

IR03

JP

IR02

IR02

JP

IR01

IR01

JP

IROO

IROO

JP

NOT ADDRESSABLE

Figure 3-5d. Z8682 Program Memory Map

When an interrupt occurs, the address stored in
the interrupt I s vector location points to a ser­
vice routine. This routine assumes program con­
trol.

The first 2K bytes of program memory are not
addressable in the Z8682 ROMless version.
Beginning at address 2048 the first 18 bytes
contain interrupt vectors which are Jump Direct
instructions. When an interrupt occurs, the Z8682
executes the corresponding Jump to interrupt.

The first address available for a user program is
location 12. This address is loaded into the
Program Counter after a hardware reset.

The first address available for a user program in
the Z8682 is location 2066 (Hexadecimal ~o812).

This address is loaded into the Program Counter
after a hardware reset.

3-4 2038-004, 3047-073, 3047-035

3.5 CPU DATA MEMORY

Up to 64K bytes of external data memory can be
accessed in the ZB microcomputer. As shown in
Figure 3-6, the origin, and hence, the actual size
of data memory is device-dependent. The origin of
data memory is the same as the starting address of
external program memory.

Like external program memory, external data memory
Address/Data lines are provided by Port 1 for
B-bit addresses, and by Ports 0 and 1 for 12-bit
and 16-bit addresses.

External data memory can be included with or sep­
arated from the external program memory addressing
space. When data memory is separated from program
memory, the Data Memory output (OM) is used to
select between data and program memories.

65535 -------------

EXTERNAL
DATA

MEMORY
(62K BYTES)

~g:~~----------------------~

NOT ADDRESSABLE

o~ ______________________ ~

figure 3-6a. 18601 or 18682 Data Memory Map

Address Spaces

65535 ,...-----------....

EXTERNAL
DATA

MEMORY
(6DK BYTES)

:~~~~------------------------~

NOT ADDRESSABLE

o~ _________________ ~

Figure 3-6b. 18611 Data Memory Map

65535 -----------.....

EXTERNAL
DATA

MEMORY
(64K bytes)

o~ ____________________ ~

Figure 3-6c. 18681 Data Memory Map

2037-005, 2038-005 3-5

Address Spaces

3.6 CPU STACKS

Stack operations can occur in either the register
file or data memory. Under software control,
Port a and 1 Mode register (R258) selects stack
location.

The register pair R254 and R255 forms the 16-bit
Stack Pointer (SP) which is used for all stack
operations. The stack address is stored with the
MSB in R254 and LSB in R255 (Figure 3-7).

3-6

R255

lOWER BYTE STACK POINTER lOW

R254

.... ___ U_P_P_E_R_BY_T_E ___ ... I STACK POINTER HIGH

Figure 3-7. Stack Pointer

• • •
PCl

TOP OF ----+- PCH
STACK

STACK CONTENTS
AFTER A CAll
INSTRUCTION

Figure 3-B.

The stack address is decremented prior to a Push
operation and incremented after a Pop operation.
The stack address always points to the data stored
on the top-of-stack. The Z8 stack is a return
stack for Call instructions and interrupts as well
as a data stack. During a Call instruction, the
contents of the PC are saved on the stack. The PC
is restored during a Return instruction. Inter­
rupts cause the contents of the PC and Flag regis­
ter to be saved on the stack. The IRET instruc­
tion restores them (Figure 3-8).

When the Z8 is configured for an internal stack
(i.e., using the register file), register R255
serves as the Stack Pointer. The value in R254 is
ignored and can be used as a general-purpose
register. However, an overflow or underflow can
occur when stack address is incremented or
decremented during normal stack operations.

TOP OF---.
STACK

Stack Operations

• • 0

PCl

PCH

FLAGS

STACK CONTENTS
AFTER AN

INTERRUPT
CYCLE

3047-049,3047-074

\,--

4.1 INTRODUCTION

The Z8 microcomputer provides six addressing
modes:

• Register (R)

• Indirect Register (IR)

• Indexed (X)

• Direct (D)

• Relative (RA)

• Immediate (It1)

With the exception of immediate data and condition
codes, all operands are expressed as register
file, program memory, or dat a memory addresses.
Registers are accessed using 8-bit addresses in
the range 0-127 and 240-255.

Working registers are accessed using 4-bit
addresses in the range 0-15. The address of the
register being accessed is formed by the concate­
nation of the upper four bits in the Register

8·BIT REGISTER
FILE ADDRESS

PROGRAM MEMORY

Chapter 4
Address Modes

Pointer (R253) with the 4-bit working register
address supplied by the instruction.

Registers can be used in pairs to designate 16-bit
values or memory addresses. A register pair must
be speci fied as an even-numbered address in the
range 0, 2, •••• , 14.

Addressing modes are instruction-specific.
Section 5.4 discusses each addressing mode as it
corresponds to particular instructions.

In the following definitions,
"register" also implies register
register, or working register pair.

4.2 REGISTER ADDRESSING (R)

the use of
pair, working

In the Register addressing mode, the operand value
is the contents of the specified register or
register pair (Figures 4-1 and 4-2).

REGISTER FILE

P' dst OPERAND L
POINTS TO ONE REGISTER

OPCODE / ONE·OPERAND
INSTRUCTION

EXAMPLE

4·BIT WORKING
REGISTER

TWO·OPERAND
INSTRUCTION

EXAMPLE

,

'"

,

~

V

PROGRAM MEMORY

, dst I src

.i OPCODE
/

IN REGISTER FILE

VALUE USED IN
INSTRUCTION EXECUTION

Figure 4-1. Register Addressing

/

REGISTER FILE

RP

OPERAND
POINTS TO THE

WORKING REGISTER

Figure 4-2. Working-Register Addressing

.. ~

)

/
POINTS TO
ORIGIN OF
WORKING
REGISTER
GROUP

3047-056,3047-057 4-1

Address Modes

4.3 INDIRECT REGISTER ADDRESSING (IR) 4.4 INDEXED ADDRESSING (X)

In the Indirect Register addressing mode, the con­
tents of the specified register is the address of
the operand (Figures 4-3 and 4-4).

Depending upon the instruction selected, the
address points to a register, program memory, or
an external data memory location.

The Indexed addressing mode is used only by the
Load (LD) instruction. An indexed address consists
of a register address offset by the contents of a
designated working register (the Index). This
offset is added to the register address to obtain
the address of the operand. Figure 4-5 illus­
trates this addressing convention.

When accessing program memory or external data
memory, register pairs or working register pairs
are used to hold the 16-bit addresses.

8·BIT REGISTER
FILE ADDRESS

PROGRAM MEMORY REGISTER FILE

't~====~d~s~t====~~-;~~~)Q~~~~~~~t:;~~~~~==~ ONE.OPERAND OPCODE POINTS TO ONE REGISTER
INSTRUCTION IN REGISTER FILE

EXAMPLE ADDRESS OF
OPERAND USED

BY INSTRUCTION

VALUE USED IN
INTRODUCTION

EXECUTION

OPERAND

Figure 4-3. Indirect Register Addressing to Register File

4·BIT WORKING
REGISTER ADDRESS

INSTRUCTION EXAMPLE
REFERENCES EITHER

PROGRAM MEMORY

src

PROGRAM MEMORY A--~~";;;';;~-~
OR DATA MEMORY

POINTS TO WORKING
REGISTER PAIR

(EVEN ADDRESS)

REGISTER FILE

RP

REGISTER

PAIR

PROGRAM MEMORY
OR

DATA MEMORY

Figure 4-4. Indirect Register Addressing to Program or Data Memory

POINTS TO
ORIGIN OF
WORKING
REGISTER
GROUP

16·BIT
ADDRESS
POINTS TO
PROGRAM
OR DATA
MEMORY

4-2 3047·075, 3047·076

4.5 DIRECT ADDRESSING (DA)

The Direct addressing mode, as shown in Figure
4-6, specifies the address of the next instruction
to be executed. Only the Conditional Jump (JP)
and Call (CALL) instruct ions use this addressing
mode.

4.6 RELATIVE ADDRESSING (RA)

In the Relative addressing mode, illustrated in
Figure 4-7, the instruction specifies a

PROGRAM MEMORY

TWO·OPERAND

Address Modes

two's-complement signed displacement in the range
of -128 to +127. This is added to the contents of
the PC to obtain the address of the next
instruction to be executed. The PC (prior to the
add) consists of the address of the instruction
following the Jump Relative (JR) or Decrement and
Jump if Nonzero (DJNZ) instruction. JR and DJNZ
are the only instructions that use this addressing
mode.

RP

INSTRUCTION-~t:~~~r=~!:::r----IPIDIN~TO~~OF------~'~~:2E§~====~ EXAMPLE

POINTS TO
ORIGIN OF
WORKING
REGISTER
GROUP

VALUE USED IN
INSTRUCTION

OPERAND

Figure 4-5. Indexed Addressing

PROGRAM MEMORY

LOWER ADDR BYTE

UPPER ADDR BYTE

OPCODE

PROGRAM MEMORY
ADDRESS USED

figure 4-6. Direct Addressing

3047-058, 3047-059, 3047-077

PROGRAM MEMORY

~
NEXT OPCODE

DISPLACEMENT

JROR DJNZ-.. OPCODE
~------------------~

PROGRAM MEMORY
ADDRESS USED

SIGNED
DISPLACEMENT
VALUE

Figure 4-7. Relative Addressing

4-3

Address Modes

4.7 IMMEDIATE DATA ADDRESSING (1M)

Immediate data is considered an "addressing mode"
for the purposes of this discussion. It is the
only addressing mode that does not indicate a reg­
ister or memory address as the source operand; the
operand value used by the instruction is the value
supplied in the operand field itself. Because an
immediate operand is part of the instruction, it
.is always located in the program memory address
space.

4-4

INSTRUCTION

WORD(S)

THE OPERAND VALUE IS IN THE INSTRUCTION.

Figure 4-8. Immediate Data Addressing

2010-015

5.1 FUNCTIONAl SUHHARY

ZS instructions can be divided functionally into
the following eight groups:

• Load

• Arithmetic

• Logical

• Program Control

• Bit Manipulation

• Block Transfer

• Rotate and Shift

• CPU Control

The following summary shows the instructions
belonging to each group and the number of operands
required for each. The source operand is "src",
"dst" is the destination operand, and "cc" is a
condition code.

load Instructions

Mnemonic Operands Instruction
CLR dst Clear
LD dst,src Load
LDC dst,src Load Constant
LDE dst,src Load External
POP dst Pop
PUSH src Push

Arithmetic Instructions

Mnemonic Operands Instruction
ADC dst,src Add With Carry
ADD dst,src Add
CP dst,src Compare
DA dst Decimal Adjust
DEC dst Decrement
DECW dst Decrement Word
INC dst Increment
INCW dst Increment Word
SBC dst,src Subtract With Carry
SUB dst,src Subtract

Chapter 5
Instruction Set

Logical Instructions

Mnemonic Operands
AND dst,src
COM dst
OR dst,src

Instruction
Logical And
Complement
Logical Or

XOR dst,src Logical Exclusive Or

Program-Control Instructions

Mnemonic Operands Instruction
CALL dst Call Procedure
DJNZ r,dst Decrement and Jump NonO
IRET I nt errupt Return
JP cc,dst Jump
JR cc,dst Jump Relative
RET Return

Bit-Manipulation Instructions

Mnemonic Operands Instruction
TCM dst,src Test Complement Under Mask
TM dst,src Test Under Mask
AND dst,src Bit Clear
OR dst,src Bit Set
XOR dst,src Bit Complement

Block-Transfer Instructions

Mnemonic Operands Instruction
LDCI dst,src Load Constant Auto-

increment
LDE! dst,src Load External Auto-

increment

Rotate and Shift Instructions

Mnemonic Operands Instruction
RL dst Rotate Left
RLC dst Rotate Left Through Carry
RR dst Rotate Right
RRC dst Rotate Right Through Carry
SRA dst Shift Right Arithmetic
SWAP dst Swap Nibbles

5-1

Instruction Set

CPU Control Instructions

Mnemonic Operand Instruction
CCF Complement Carry Flag
01 Disable Interrupts
EI Enable Interrupts
Nap No Operation
ReF Reset Carry Flag
SCF Set Carry Flag
SRP src Set Register Pointer

5.2 PROCESSOR FLAGS

The Flag register (R252) informs the user about
the current status of the ZS. The flags and their
bit positions in the Flag register are shown in
Figure 5-1.

R252 FLAGS
Flag Register

(FCH; Read/Write)

~~
LUSER FLAG F1

LUSER FLAG F2

HALF CARRY FLAG

DECIMAL ADJUST FLAG

OVERFLOW FLAG

'--------SIGN FLAG

L..----------ZERO FLAG

'--------------CARRYFLAG

Figure 5-1. Flag Register

The ZS Flag register contains six bits of status
information which are set or cleared by CPU opera­
tions. Four of the bits (C, V, Z and 5) can be
tested for use with conditional Jump instruc­
tions. Two flags (H, D) cannot be tested and ~re
used for BCD arithmetic.

The two remaining bits in the Flag register (F1,
F2) are available to the user, but they must be
set or cleared by instruction and are not usable
with conditional Jumps.

As with bits in the other control registers, Flag
register bits can be set or reset by instructions;
however, only those instructions that do not
affect the flags as an outcome of the execution
should be used (e.g., Load Immediate).

5-2

5.2.1 Carry Flag (C)

The Carry flag is set to 1 whenever the result of
an arithmet ic operation generates a carry out of
or a borrow into the high order bit 7; otherwise,
the Carry flag is cleared to O.

Following Rotate and Shift instructions, the Carry
flag contains the last value shifted out of the
specified register.

An instruction can set, reset, or complement the
Carry flag.

RETI changes the value of the Carry flag when the
saved Flag register is restored.

5.2.2 Zero Flag (Z)

For arithmetic and logical operations, the Zero
flag is set to 1 if the result is zero; otherwise,
the Zero flag is cleared.

If the result of testing bits in a register is 0,
the Zero flag is set to 1; otherwise the flag is
cleared.

If the result of a Rotate or Shift operation is 0,
the Zero flag is set to 1; otherwise, the flag is
cleared.

RET! changes the value of the Zero flag when the
saved Flag register is restored.

5.2.J Sign Flag (S)

The Sign flag stores the value of the most signif­
icant bit of a result following arithmetic, logi­
cal, Rotate, or Shift operations.

When performing arithmetic operations on signed
numbers, binary two's complement notation is used
to represent and process information. A positive
number is identified by a a in the most signifi­
cant bit position, and therefore, the Sign flag is
also O.

A negative number is identified by a 1 in the most
significant bit position, and therefore, the Sign
flag is also 1.

RETl changes the value of the Zero flag when the
saved Flag register is restored.

3047-072

5.2.4 Overflow flag (V)

For signed arithmetic, Rotate, and Shift opera­
tions, the Overflow flag is set to 1 when the
result is greater than the maximum possible number
() 127) or less than the minimum possible number
(< -128) that can be represented in two's comple­
ment form. The flag is set to 0 if no overflow

Instruction Set

encoded in a 4-bit field called the condition code
(CC), which forms bits 4-7 of the conditional
instructions.

Section 5.4.2 lists the condition codes and the
flag settings they represent.

occurs. 5.4 NOTATION AND BINARY ENCODING

Following logical operations, the Overflow flag is
set to O.

REf I changes the value of the Overflow flag when
the saved Flag register is restored.

5.2.5 Decimal-Adjust flag (D)

The Decimal-adjust flag is used for BCD arith­
metic. Since the algorithm for correcting BCD
operations is different for addition and subtrac­
tion, this flag specifies what type of instruction
was last executed so that the subsequent Decimal
Adjust (DA) operation can function properly. Nor­
mally, the Decimal-adjust flag cannot be used as a
test condition.

A fter a subtraction, the Decimai-adjust flag is
set to 1; following an addition it is cleared to
O.

RETI changes the value of the Decimal-adjust flag
when the saved Flag register is restored.

5.2.6 Half-Carry flag (H)

The Half-carry flag is set to 1 whenever an addi­
tion generates a carry out of bit 3 (Overflow), or
a subtraction generates a borrow into bit 3. The
Half-carry flag is used by the Decimal Adjust (DA)
instruction to convert the binary result of a pre­
vious addition or subtraction into the correct
decimal (BCD) result. As in the case of the
Decimal-adjust flag, the user does not normally
access this flag.

RET! changes the value of the Half-carry flag when
the saved Flag register is restored.

5.l CONDITION CODES

Flags C, Z, S, and V control the operation of the
"condit ional" Jump instructions. Sixteen fre­
quently useful functions of the flag settings are

In the detailed instruction descriptions that make
up the rest of this chapter, operands and status
flags are represented by a notational shorthand.
Operands (condition codes and address modes) and
their notations are as follows:

Notation Address Hode

cc

r

R

RR

Ir

IR

Irr

IRR

Condit ion Code

Working register
only

Register or
working register

Register pair or
working register
pair

Indirect working
register only

Indirect register
or working
register

Indirect working
register pair
only

Indirect register
pair or working
register pair

Actual Operand/Range

See condition code
list below

Rn: where n 0-15

reg: where reg repre­
sents a number in the
range 0-127, 240-255

Rn: where n = 0-15

reg: where reg repre­
sents an even number
in the range 0-126,
240-254

RRp: where p
2, ••• ,14

0,

® Rn: where n 0-15

® reg: where reg re­
presents a number in
the range 0-127,
240-255

® Rn: where n = 0-15

® RRp: where p = 0,
2, ••• ,14

® reg: where reg re­
sents an even number
in the range 0-126,
240-254

® RRp: where p 0,
2, ••• ,14

5-3

Instruction Set

Notation Address Mode Actual Operand/Range

x Indexed

DA Direct Address

RA Relative Address

1M Immediate

reg (Rn): where reg
represent a number in
the range 0-127,
240-255 and n = 0-15

addrs: where addrs
represents a number
in the range 0-65,535

addrs: where addrs
represents a number
in the range +127,
-128 which is an
offset relative to
the address of the
next instruction

Udata: where data is
a number between
o and 255

Additional symbols used are:

S)'II001 Meaning
dst Destination operand
src Source operand
® Indirect address prefix

SP Stack Pointer
PC Program Counter
FLAGS Flag register (R252)
RP Register Pointer (R253)
IMR Interrupt mask register (251)
U Immediate operand prefix

01 Hexadecimal number prefix ,.
OPC Opcode

Assignment of a value is indicated by the symbol
"<-". For example,

dst <- dst + src

indicates that the source data is added to the
destination data and the result is stored in the
destination location. The notation "addr(n)" is
used to refer to bit "n" of a given location. For
example,

dst (7)

refers to bit 7 of the destination operand.

5-4

5.4.1 Assembly language Syntax

For proper instruction execution, Z8 PLZ/ASM
assembly language syntax requires that "dst, src"
be specified, in that order. The following
instruction descriptions show the format of the
object code produced by the assembler. This binary
format should be followed by users who prefer
manual program coding or who intend to implement
their own assembler.

Example: If the contents of registers %43 and %08
are added and the result stored in %43, the
assembly syntax and resulting object code are:

ASM:
08J:

ADD %43, ~OO8

04 08 43
(ADD dst, src)
(OPC src, dst)

In general, whenever an instruction format
requires an 8-bit register address, that address
can speci fy any register location in the range
0-127, 240-255 or a working register RO-R15. If,
in the above example, register ~.08 is a working
register, the assembly syntax and resulting object
code would be:

ASM: ADD %43, R8
OBJ: 04 E8 43

(ADD dst src)
(OPC src dst)

For a more complete description of assembler syn­
tax refer to the ze PLZ/ASM Assembly Language
Manual (publication no. 03-3023-03) and ZSCAN 8
User's Tutorial (publication no. 03-8200-01).

5.4.2 Condition Codes and flag Settings

The condition codes and flag settings are sum­
marized in the following tables. Notation for the
flags and how they are affected are as follows:

C Carry flag 0 Cleared to 0
Z Zero flag 1 Set to 1
S Sign flag * Set or cleared

according to
V Overflow flag operation
0 Decimal-adjust flag Unaffected
H Hal f-carry flag X Undefined

Instruction Set

Condition Codes

Binary Mnemonic Meaning Flags Settings

0000 F Always false
"- 1000 (blank) Always true

0111 C Carry C
1111 NC No carry C 0
0110 Z Zero Z 1
1110 NZ Not 0 Z 0
1101 PL Plus S 0
0101 MI Minus S
0100 OV Overflow V
1100 NOV No overflow V = 0
0110 EQ Equal Z = 1
1110 NE Not equal Z = 0
1001 GE Greater than or (S XOR V) 0

equal
0001 LT Less than (S XOR V) 1
1010 GT Greater Than (Z OR (S XOR V))=O
0010 LE Less than or equal (Z OR (S XOR V))=1
1111 UGE Unsigned greater than C 0

or equal
0111 ULT Unsigned less than C
1011 UGT Unsigned greater than (C=O AND Z=O)
0011 ULE Unsigned less than or (C OR Z) = 1

equal

5-5

Instruction Set

5.5 INSTRUCTION SUMMARY

Instruction Addr Mode Opcode Flags Affected Instruction Addr Mode Opcode Flags Affected
and Operation dst

Byte and Operation dst
Byte

src (Hex) CZSVDH src (Hex) CZSVDH

ACC dst,src (Note 'I) 10 * 0 * LDE dst,src r Irr 82 ------

dst - dst + src +'C dst - src Irr 92

ADD dst,src (Note 1) 00 * * * * 0 * LDEI dst,src Ir Irr 83 ------
dst - dst + src dst - src Irr Ir 93

r - r + I; rr - rr + 1
AND dst,src (Note 1) 50 0--
dst - dst AND src NOP FF

CALL dst DA D6 ------ OR dst,src (Note 1) 40 - . * 0
SP - SP - 2 IRR D4 dst - dst OR src
@SP - PC; PC - dst POP dst R 50 ------

CCF EF *----- dst - @SP IR 51

C - NOTC SP - SP + I

CLR dst R BO ------ PUSH src R 70

dst - 0 IR BI SP - SP -1; @SP- src IR 71

COM dst R 60 -**0-- RCF CF o -
dst - NOT dst IR 61 C-O

CP dst,src (Note 1) AD
RET AF ------

dst - src PC - @ SP; SP - SP + 2

DA dst R 40 * X - - RL dst 0.IE::3J R 90

dst - DA dst IR 41 IR 91

DEC dst R 00 RLCdst[~ I~ 10

dst - dst - I IR 01
11

DECW dst RR 80
RR dst

lE]lc:=:3--l/it
EO
EI

dst - dst - I IR 81

DI 8F
IMR (7) - 0

RRCdst~I~ CO
------ CI

SBC dst,src (Note I) 3D · • I
.

DJNZ r,dst RA rA - - - - -.- dst - dst - src - C
r - r - I r=O-F
if r :1= 0 SCF DF I - - -

PC - PC + dst C-l
Range: + 127, -128 SRA dst lE]~I~ DO . · * 0
EI 9F ------ Dl
IMR(7) - I SRP src 1m 31
INC dst rE - * * • - - RP - src
dst - dst + 1 r=O-F SUB dst,src (Note I) 20 . · * * I *

R 20 dst - dst - src
IR 21

SWAP dst ~ R FO X · • X - -
INCW dst RR AO - * * • - - IR FI
dst - dst + IR Al

TCM dst,src (Note I) 60 - · • 0 - -
IRET BF . * * • * • (NOT dst) AND src
FLAGS - @SP; SP - SP + I

TM dst,src (Note I) 70 • 0 - -PC - @ SP; SP - SP + 2; IMR (7) -I - · dst AND src
JP cC,dst DA cD ------
if cc is true c=O-F XOR dst,src (Note I) ED - · • 0 - -

PC - dst IRR 30 dst - dst XOR src

JR cc,dst RA cB ------ Note 1
if cc is true, c=O-F

These instructions have an identical set of addressing PC - PC + dst
Range: + 127, -128 modes, which are encoded for brevity, The first opcode

nibble is found in the instruction set table above, The
LD dst,src 1M rC ------ second nibble is expressed symbolIcally by a L: in this
dst - src r R r8 table, and its value is found in the following table to the

R r9 "left of the applicable addressing mode pair.
r=O-F For example, to determine the opcode of an"ADC

r X C7 instructIOn using the addressing modes r (destinatIon) and
X r D7 Ir (source) is 13"
r Ir E3
Ir r F3

Addr Mode R R E4 Lower
R IR E5 dst src Opcode Nibble
R 1M E6
IR 1M E7 .l"
IR R F5

Ir ~
LDC dst,src r Irr C2 ------ R R ~
dst - src Irr D2

R IR ~
LDCI dst,src Ir Irr C3 ------

R 1M :I dst - src Irr Ir D3
r - r + I; rr - rr + I IR 1M :I.

5-6 8085-003

5.6 Z8
Instruction
Descriptions
and Formats

"'-- ADC dst,src

Instruction ro~t:

OPC

OPC

OPC

Operation:

flags~

EXBq)le:

Note:

ADC
Add With Carry

OPe Address Mode
Cycles (Hex) dot arc

I I dst src I 6 12 r r
13 r Ir

I I src I I dst 10 14 R R
15 R IR

I I dst I I src 10 16 R 1M
17 IR 1M

dst <-- dst + src + c

The source operand, along with the setting of the C flag, is added to the destination
operand and the sum is stored in the destination. The contents of the source are not
affected. Two's complement addition is performed. In multiple precision arithmetic,
this instruction permits the carry from the addition of low-order operands to be
carried into the addition of high-order operands.

C: Set if there is a carry from the most-significant bit of the result; cleared
otherwise

Z: Set if the result is zero; cleared otherwise
5: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign

and the result is of the opposite sign; cleared otherwise
0: Always cleared
H: Set if there is a carry from the most-significant bit of the low-order four bits

of the result; cleared otherwise

If the register named SUM contains ~16, the C flag is set to 1, working register 10
contains %20 (32 decimal), and register 32 contains ~10, the statement

AOC SUM,BR10

leaves the value ~27 in Register SUM.
cleared.

The C, Z, S, V, 0, and H flags are all

When used to specify a 4-bit working-register address, address modes R or IR use the
format:

E src/dst

5-7

ADD
Add

ADO dst,src

Instruction For.at:

ope

ope

ope

Operation:

Flags:

Example:

Note:

5-8

OPC Address Mode
Cycles (Hex) dst arc

I I dst src I 6 02 r r
03 r Ir

I I src I I dst 10 04 R R
05 R IR

I I dst I I src 10 06 R 1M
07 IR 1M

dst <-- dst + src

The source operand is added to the destination operand and the sum is stored in the
destination. The contents of the source are not affected. Two's complement addition
is performed.

C: Set if there was a carry from the most-signi ficant bit of the result; cleared
otherwise

Z: Set if the result is zero; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign

and the result is of the opposite sign; cleared otherwise
S: Set if the result is negative; cleared otherwise
H: Set if a carry from the low-order nibble occurs
0: Always reset to 0

If the register named SUM contains %44 and the register named AUGEND contains %11,
the statement

ADD SUM,AUGEND

leaves the value %55 in register SUM and leaves all flags cleared.

When used to specify a 4-bit working-register address, address modes R or IR use the
format:

E src/dst

AN> dst,src

Instruction For.at:

OPC

OPC

OPC

Operation:

Flags:

'.

Example:

Note:

AND
Logical

OPC Address Mode
Cycles (Hex) dst src

I I dst src I 6 52 r r
53 r IR

I I src I I dst 10 54 R R
55 R IR

I I dst I I src 10 56 R 1M
57 IR 1M

dst <-- dst AND src

The source operand is logically ANDed with the destination operand. The result is
stored in the destination. The AND operation results in a 1 bit being stored
whenever the corresponding bits in the two operands are both 1s; otherwise a 0 bit is
stored. The contents of the source bit are not affected.

C: Unaffected
Z: Set if the result is zero; cleared otherwise
V: Always reset to 0
S: Set if the result bit 7 is set; cleared otherwise
H: Unaffected
0: Unaffected

If the source operand is the immediate value %78 (01111011) and the register named
TARGET contains %C3 (11000011), the statement

AND TARGET, 11%78

leaves the value %43 (01000011) in register TARGET.
cleared.

The Z, V, and S flags are

When used to specify a 4-bit working-register address, address modes R or IR use the
format:

E src/dst

5-9

CALL
Call Procedure

CAll dst

Instruction Format:
Cycles

OPC
(Hex)

Address Mode
dst

~ ______ OP_C ______ ~I ~I _______________ d_s_t ______________ ~ 20 06 OA

~ ______ O_P_C ______ ~1 ~I _______ ds_t ______ ~ 20 04 IRR

Operation:

Flags:

Example:

Note:

5-10

SP <-- SP - 2
QSP <-- PC
PC <-- dst

The current contents of the PC are pushed onto the top of the stack. The PC value
is the address of the first instruction following the CALL instruction. The
specified destination address is then loaded into the PC and points to the first
instruction of a procedure.

At the end of the procedure a R£Turn instruction can be used to return to the
original program flow. RET pops the top of the stack back into the PC.

No flags affected.

If the contents of the PC are %1A47 and the contents of the SP (control registers
254-5) are %3002, the statement

CALL %3521

causes the SP to be decremented to %3000, %1A4A (the address following the
instruction) is stored in external data memory %3000-%3001, and the PC is loaded with
%3521. The PC now points to the address of the first statement in the procedure to
be executed.

When used to specify a 4-bit working-register pair address, address mode IRR uses the
format:

E dst

CCf

Instruction format:

OPC

Operation:

Flags:

Exmnple:

C <-- NOT C

CCF
Complement Carry Flag

Cycles

6

OPC
(Hex)

EF

The C flag is complemented; if C 1, it is changed to C 0, and vice-versa.

C: Complemented
No other flags affected

Tf the C flag contains a 0, the statement

CCF

will change the 0 to 1.

5-11

CLR
Clear

ClR dst

Instruction Format:
Cycles

OPC
(Hex)

Address Mode
dst

~ ______ OP_C ______ ~I ~I _______ ds_t ______ ~ 6 BO
B1

R
IR

Operation:

Flags:

Exmnple:

Note:

5-12

dst <-- 0

The destination location is cleared to O.

No flags affected.

If working register 6 contains %AF, the statement

CLR R6

will leave the value 0 in that register

When used to specify a 4-hit working-register address, address modes R or IR use the
format:

E dst

COM dst

Instruction for.at:
Cycles

ope
(Hex)

COM
Complement

Address Hade
dst

~ ______ o_P_C ______ ~1 I~ ______ d_s_t ______ -J
6 60

61
R
IR

Operation:

Flags:

EX8lllple:

Note:

dst <-- NOT dst

The contents of the destination location are complemented (one's complement); all 1
bits are changed to 0, and vice-versa.

C: Unaffected
Z: Set if the result is zero; cleared otherwise
V: Always reset to 0
5: Set if result bit 7 is set; cleared otherwise
H: Unaffected
D: Unaffected

If working register B contains %24 (00100100), the statement

COM RB

leaves the value %DB (11011011) in that register. The Z and V flags are cleared and
the S flag is set.

When used to specify a 4-bit working-register address, address modes R or IR use the
format:

E dst

5-13

CP
Compare

CP dst,src

Instruction Foraat:

OPC

OPC

OPC

Operation:

Flags:

Example:

Note:

5-14

OPC Address Mode
Cycles (Hex) dst arc

6 A2 r r
A3 r Ir I I dst src

dst 10 A4 R R
AS R IR I I src I I

10 A6 R 1M
A7 IR 1M I I dst I I src

dst - src

The source operand is compared to (subtracted from) the destination operand, and the
appropriate flags set accordingly. The contents of both operands are unaffected by
the comparison.

C: Cleared if there is a carry from the most significant bit of the result; set
otherwise, indicating a "borrow"

Z: Set if the result is zero; cleared otherwise
V: Set if arithmetic overflow occurs; cleared otherwise
5: Set if the result is negative; cleared otherwise
H: Unaffected
D: Unaffected

If the register named TEST contains %63, working register 0 contains %30 (48
decimal), and register 48 contains %63, the statement

CP TEST, ~RO

sets (only) the Z flag. If this statement is followed by "JP EQ, true_routine", the
jump is taken.

When used to specify a 4-bit working-register address, address modes R or IR use the
format:

E src/dst

DA dst

Instruction format:
Cycles

DA
Decimal Adjust

OPC
(Hex)

Address Mode
dst

~ ______ OP_C ______ ~I I~ _______ d_s_t ______ ~ 8 40
41

R
IR

Operation:

Flags:

dst <-- DA dst

The destination operand is adjusted to form two 4-bit BCD digits following a binary
addition or subtraction operation on BCD encoded bytes. For addition (ADD, ADC), or
subtraction (SUB, SBC), the following table indicates the operation performed:

Bits 4-7 Bits 0-3 N&..ber
Carry Value H Flag Value Added Carry

Instruction Before DA (Hex) Before DA (Hex) To Byte After DA

0 0-9 0 0-9 00 0
0 0-8 0 A-F 06 0

ADD 0 0-9 1 0-3 06 0
ADC 0 A-F 0 0-9 60 1

0 9-F 0 A-F 66 1
0 A-F 1 0-3 66 1
1 0-2 0 0-9 60 1
1 0-2 0 A-F 66 1
1 0-3 1 0-3 66 1

SUB 0 0-9 0 0-9 00 0
SBC 0 0-8 1 6-F FA 0

1 7-F 0 0-9 AO 1
1 6-F 1 6-F 9A 1

If the destination operand is not the result of a valid addition or subtraction of
BCD digits, the operation is undefined.

C: Set if there is a carry from the most significant bit; cleared otherwise (see
table above)

Z Set if the result is 0; cleared otherwise
V Undefined
5 Set if the result bit 7 is set; cleared otherwise
H Unaffected
D Unaffected

5-15

EX8lllple:

Note:

5-16

If addition is performed using the BCD values 15 and 27, the result should be 42.
The sum is incorrect, however, when the binary representations are added in the
destination location using standard binary arithmetic.

0001 0101
+ 0010 0111

0Ul1 T11iU' = % 3 C

The DA statement adjusts this result so that the correct BCD representation is
obtained.

0011 1100
+ 0000 0110

'll'llm" mrro 42

The C, Z, and 5 flags are cleared and V is undefined.

When used to specify a 4-bit working-register address, address modes R or IR use the
format:

E dst

DEC dst

Instruction roraat:
Cycles

OPC
(Hex)

DEC
Decrement

Address Mode
dst

~ ______ O_PC ______ ~II ~ _______ d_s_t ______ ~ 6 00
01

R
IR

Operation:

Hags:

EX8llllple:

Note:

dst <-- dst - 1

The destination operand's contents are decremented by one.

c: Unaffected
Z: Set if the result is zero; cleared otherwise
V: Set if arithmetic overflow occurred; cleared otherwise
5: Set if the result is negative; cleared otherwise
H: Unaffected
D: Unaffected

If working register 10 contains ~2A, the statement

DEC R10

leaves the value %29 in that register. The Z, V, and S flags are cleared.

When used to specify a 4-bit working-register address, address modes R or IR use the
format:

E dst

5-17

DECW
Decrement Word

DECW dst

Instruction For.at:
Cycles

OPC
(Hex)

Address Mode
dst

~ ______ OP_C ______ ~I I~ _______ d_st ______ ~ 10 80
81

RR
IR

Operation:

Flags:

EXBq)le:

Note:

5-18

dst <-- dst - 1

The contents of the destination location (which rust be an even address) and the
operand following that location are treated as a single 16-bit value which is
decremented by one.

C: Unaffected
Z: Set if the result is zero; cleared otherwise
V: Set if arithmetic overflow occurred; cleared otherwise
5: Set if the result is negative; cleared otherwise
H: Unaffected
D: Unaffected

If working register 0 contains %30 (48 decimal) and registers 48-49 contain the value
%FAF3, the statement

DECW aRO

leaves the value %FAF2 in· registers 48 and 49. The Z and V flags are cleared and S
is set.

When used to specify a 4-bit working-register pair address, address modes RR or IR
use the format:

E dst

DI

Instruction for.at:

OPC

Operation:

flags:

EX8lllple:

IMR (7) <-- 0

01
Disable Interrupts

OPC
Cycles (Hex)

6 8F

Bit 7 of control register 251 (the Interrupt Mask Register) is reset to O. All
interrupts are disabled, although they remain potentially enabled (i.e., the Global
Interrupt Enable is cleared--not the individual interrupt level enables.)

No flags affected

If control register 251 contains %8A (10001010, that is, interrupts IRQ1 and IRQ3 are
enabled), the statement

DI

sets control register 251 to %OA and disables these interrupts.

5-19

DJNZ
Decrement and Jump if Nonzero

DJNZ r,dst

Instruction format:
Cycles

OPC
(Hex)

Address Mode
dst

~ ___ r __ ~ ___ o_p_C __ ~1 I~ _____ d_s_t ______ ~ 12 if jump taken
10 if jump not taken

rA RA

Operation:

flags:

Exaq>le:

Note:

5-20

r=O to r

r <-- r - 1
If r ~ 0, PC <-- PC + dst

The working register being used as a counter is decremented. If the contents of the
register are not zero after decrementing, the relative address is added to the
Program Counter (PC) and control passes to the statement whose address is now in the
PC. The range of the relative address is +127, -128, and the original value of the
PC is the address of the instruction byte following the DJNZ statement. When the
working register counter reaches zero, control falls through to the statement
following DJNZ.

No flags affected

DJNZ is typically used to control a "loop" of instructions. In this example, 12
bytes are moved from one buffer area in the register file to another. The steps
involved are:

o Load 12 into the counter (working register 6)
o Set up the loop to perform the moves
o End the loop with DJNZ

LD R6, 1112
LOOP: LD R9,OLDBUr (R6)

LD NEWBUr (R6),R9
DJNZ R6,LOOP

!Load Counter!
!Move one byte to!
!New location!
!Decrement and !
!Loop until counter O!

The working register being used as a counter must be one of the registers 04-7F.
Use of one of the I/O ports, control or peripheral registers will have undefined
results.

El

Instruction forant:

ope

Operation:

Flags:

Example:

Cycles

6

IMR (7) <-- 1

EI
Enable Interrupts

ope
(Hex)

9F

Bit 7 of control register 251 (the Interrupt Mask Register) is set 10 to 1. This
allows any potentially enabled interrupts to become enabled.

No flaqs affected

If control register 251 contains %OA (00001010, that is, interrupts IRQ1 and IRQ3
potentially enabled), the statement

EI

sets control register 251 to %8A (10001010) and enables these interrupts.

5-21

INC
Increment

INC dst

Instruction Format: ope Address Hade
Cycles (Hex) dst

dst OPC 6 rE r
r=O to r

L-______ O_P_C ______ ~I ~I _______ ds_t ______ ~ 6 20 R
21 IR

Operation:

Flags:

EXaq>le:

Note:

5-22

dst <-- dst + 1

The destination operand's contents are incremented by one.

C: Unaffected
Z: Set if the result is zero; cleared otherwise
V: Set if arithmetic overflow occurred; cleared otherwise
S: Set if the result is negative; cleared otherwise
H: Unaffected
0: Unaffected

If working register 10 contains %2A, the statement

INC R10

leaves the value %28 in that register. The Z, V, and S flags are cleared.

When used to specify a 4-bit working-register address, address modes R or IR use the
format:

E dst

'--- ltll' dst

Instruction format:

OPC

Operation:

flags:

Example:

Note:

INCW
Increment Word

OPC Address Hade
Cycles (Hex) dst

I I dst 10 AD RR
A1 IR

dst <-- dst +

The contents of the destination (which must be an even address) and the byte
following that location are treated as a single 16-bit value which is incremented by
one.

C: Unaffected
Z: Set if the result is zero; cleared otherwise
V: Set if arithmetic overflow occurred; cleared otherwise
S: Set if the result is negative; cleared otherwise
H: Unaffected
0: Unaffected

If working-register pair 0-1 contains the value %FAF3, the statement

INCW RRO

leaves the value %FAF4 in working-register pair 0-1. The Z and V flags are cleared
and S is set.

When used to specify a 4-bit working-register pair address, address modes RR or IR
use the format:

E dst

5-23

IRET
Interrupt Return

IRET

Instruction Format:

OPC

Operation:

Flags:

5-24

FLAGS <-- asp
sp <-- SP + 1
PC <-- asp
SP <-- SP + 2
IMR (7) <-- 1

Cycles

16

ope
(Hex)

SF

This instruction is issued at the end of an interrupt service routine. It restores
the Flag reqister (control register 252) and the PC. It also reenables any
interrupts that are potentially enabled.

All flags are restored to original settings (before interrupt occurred).

JP
Jump

JP cc,dst

Instruction For.at:
OPC Address Mode

Conditional Cycles (Hex) dst

~ __ c_c __ ~ ___ O_p_C __ ~11 ~ ___________ d_s_t __________ ~ 12 if jump taken ccO OA
10 if jump not taken

Unconditional cc=O to F

~ ______ OP_C ______ ~II ~ _______ d_s_t ______ ~ 8 30 IRR

Operation:

Flags:

Example:

Note:

If cc is true, PC <-- dst

A conditional jump transfers Program Control to the destination address if the
condi tion specified by "cc" is true; otherwise, the instruction following the JP
instruction is executed. See Section 6.4 for a list of condition codes.

The unconditional jump simply replsces the contents of the Program Counter with the
contents of the specified register pair. Control then passes to the statement
addressed by the PC, decremented by one.

No flags affected

If the carry flag is set, the statement

JP C,%1520

replaces the contents of the Program Counter with %1520 and transfers control to that
location. Had the carry flag not been set, control would have fallen through to the
statement following the JP.

When used to specify a 4-bit working-register pair address, address mode IRR uses the
format:

E dst

5-25

JR
Jump Relative

JR cc,dst

Instruction Foraat:
Cycles

OPC
(Hex)

Address Mode
dot

~ __ cc ____ ~ __ O_p_C __ ~1 I~ ______ d_s_t ______ ~ 12 If jump taken ccB
10 If jump not taken

RA

Operation:

Flags:

Example:

5-26

cc=O to F

If cc is true, PC <-- PC + dst

If the condition specified by "cc" is true, the relative address is added to the
PC and control passes to the statement whose address in now in the PC; otherwise, the
instruction following the JR instruction is executed. (See Section 5.3 for a list of
condition codes). The range of the relative address is +127, -128, and the original
value of the PC is taken to be the address of the first instruction byte following
the JR statement.

No flags affected

If the result of the last arithmetic operation executed is negative, the following
four statements (which occupy a total of seven bytes) are skipped with the statement

JR MI,$+9

If the result is not negative, execution continues with the statement following the
JR. A short form of a jump to label LO is

JR LO

where LO must be within the allowed range. The condition code is "blank" in this
case, and is assumed to be "always true."

'--

LD
Load

LD dst,src

Instruction Fonaat: OPC Address Mode
Cycles (Hex) dat arc

dst OPC src 6 rC r 1M
6 rB r R

arc OPC dst 6 r9 R* r
r=O to F

OPC dst src 6 E3 r Ir
6 F3 Ir r

OPC src dst 10 E4 R R
10 E5 R IR

OPC dst arc 10 E6 R 1M
10 E7 IR 1M

OPC src dst 10 F5 IR R

OPC dst x src 10 C7 r X

OPC src x dst 10 07 X r

*In this instance only a full B-bit register address can be used.

Operation:

Flags:

Example:

Note:

dst <-- src

The contents of the source are loaded into the destination.
source are not affected.

No flags affected

The contents of the

If working register 0 contains %OB (11 decimal) and working register 10 contains %83,
the statement

LO 240(RO),R10

will load the value %83 into register 251 (240 + 11). Since this is the Interrupt
Mask register, the Load statement has the effect of enabling IRQO and IRQ1. The
contents of working register 10 are unaffected by the load.

When used to specify a 4-bit working-register address, address modes R or IR use the
format:

E src/dst

5-27

LDC
Load Constant

LOC dst,src

Instruction For.at:
Cycles

OPC
(Hex)

Address Mode
dst src

~ ______ O_P_C ______ ~1 I~ __ d_st __ ~ ___ s_r_c __ ~ 12 C2 r Irr

~ ______ o_p_c ______ ~11 ~ ___ s_r_c __ ~ ___ d_s_t __ -J
12 D2 Irr r

Operation:

Flags:

Exmnple:

5-28

dst <-- src

This instruction is used to load a byte constant from program memory into a working
register, or vice-versa. The address of the program memory location is specified by
a working register pair. The contents of the source are not affected.

No flags affected

I f the working-register pair 6-7 contains ~30A2 and program-memory location ~30A2
contains the value ~22, the statement

LDC R2, ~RR6

loads the value %22 into working reqister 2.
unchanged by the load.

The value of location %30A2 is

LOCI dst,src
"-

Instruction foraat:

OPC

OPC

Operation:

flags:

Example:

LOCI
Load Constant Autoincrement

I I dst

I I arc

dst <-- src
r <-- r + 1
rr <-- rr +

Cycles

src 18

dst 18

OPC Address Mode
(Hex) dst orc

C3 Ir Irr

03 Irr Ir

This instruction is used for block transfers of data between program memory and the
register file. The address of the program-memory location is specified by a
working-register pair, and the address of the register-file location is specified by
a working register. The contents of the source location are loaded into the
destination location. Both addresses are then incremented automatically. The
contents of the source are not affected.

No flags affected

If the working-register pair 6-7 contains %30A2 and proqram-memory locations %30A2
and %30A3 contain %22BC, and if working register R2 contains %20 (32 decimal), the
statement

LDCI ~R2, ~RR6

loads the value %22 into register 32. A second

LOCI "R2, ~RR6

loads the value %BC into register 33.

5-29

LDE
Load External Data

lDE dst,src

Instruction Format:
Cycles

OPC
(Hex)

Address Mode
dst src

~ _______ O_P_C ______ -JI I~ ___ d_s_t __ -L ___ s_r_c __ ~ 12 82 r Irr

~ _______ O_P_C _____ -JI L.1 ___ s_r_c __ -L ___ d_s_t __ -, 12 92 Irr r

Operation:

Flags:

EXBlRple:

5-30

dst <-- src

This instruction is used to load a byte from external data memory into a working
register or vice-versa. The address of the external data-memory location is
specified by a working-register pair. The contents of the source are not affected.

No flags affected

If the working-register pair 6-7 contains %404A and working register 2 contains %22,
the statement

LDE ORR6,R2

loads the value %22 into external data-memory location %404A.

LDEI dst,src
"'-

Instruction for.at:

OPC

OPC

Operation:

flags:

Example:

LDEI
Load External Data Autoincrement

I I dst

I I src

dst <-- src
r <-- r + 1
rr <-- rr +

Cycles

src 1B

dst 1B

OPC Address Mode
(Hex) dst orc

B3 Ir Irr

93 Irt Ir

This instruction is used for block transfers of data between external data memory
and the register file. The address of the external data-memory location is specified
by a working-register pair, and the address of the register file location is
specified by a working register. The contents of the source location are loaded into
the destination location. Both addresses are then incremented automatically. The
contents of the source are not affected.

No flags affected

If the working-register pair 6-7 contains %404A, working register 2 contains %22 (34
decimal), and registers 34-35 contain %ABC3, the statement

lDEI ORR6,9R2

loads the value %AB into external location %404A. A second

lDEI BRR6,BR2

loads the value %C3 into external location %404B.

5-31

NOP
No Operation

NlF

Instruction format:

ope

Operation:

flags:

5-32

Cycles

6

OPC
(Hex)

FF

No action is performed by this instruction. It is typically used for timing delays.

No flags affected

OR dst,src

Instruction foraat:

OPC

OPC

OPC

Operation:

flags:

Example:

Note:

OR
Logical Or

OPC Address Mode
Cycles (Hex) dst src

I I dst src 6 42 r r
6 43 r Ir

I I src I I dst 10 44 R R
10 45 R IR

I I dst I I src 10 46 R 1M
10 47 IR 1M

dst <-- dst OR src

The source operand is logically ORed with the destination operand and the result is
stored in the destination. The contents of the source are not affected. The OR
operation results in a one bit being stored whenever either of the corresponding bits
in the two operands is 1; otherwise a 0 bit is stored.

C: Unaffected
Z: Set if result is zero; cleared otherwise
V: Always reset to 0
S: Set if the result bit 7 is set; cleared otherwise
H: Unaffected
0: Unaffected

If the source operand is the immediate value %7B (01111011) and the register named
TARGET contains %C3 (11000011), the statement

OR TARGET,I%7B

leaves the value %FB (11111011) in register TARGET. The Z and V flags are cleared
and S is set.

When used to specify a 4-bit working-register address, address modes Rand IR use the
format:

E src/dst

5-33

POP
Pop

PlP dst

Instruction for.at:
Cycles

OPC
(Hex)

Address Mode
dst

~ ______ op_c ______ ~11 ~ _______ ds_t ______ ~ 10
10

50
51

R
IR

Operation:

Hags:

Example:

Note:

5-34

dst <-- asp
sp <-- SP + 1

The contents of the location addressed by the SP are loaded into the destination.
The SP is then incremented automatically.

No flags affected

If the SP {control registers 254-255} contains ~1000, external data-memory location
%1000 contains ~55, and working register 6 contains ~22 {34 decimal}, the statement

POP aR6

loads the value ~55 into register 34. After the POP operation, the SP contains
~1001.

When used to specify a 4-bit working-register address, address modes R or IR use the
format:

E dst

PUSH
Push

PUSH src

Instruction For.at: OPC Address Mode
Cycles (Hex) IIrc

~ ______ o_P_c ______ ~1 I~ _______ s_rc ______ ~ 10 Internal stack 70 R
12 External stack

Operation:

Flags:

EX8lllple:

Note:

SP <-- SP - 1
asp <-- src

12
14

Internsl
Externsl

stack 71 IR
stack

The contents of the SP are decremented, then the contents of the source are loaded
into the location addressed by the decremented SP, thus adding a new element to the
top of the stack.

No flags affected

If the SP contains ~1n01, the statement

PUSH FLAGS

stores the contents of the register named FLAGS in location ~1000. After the PUSH
operation, the SP contains %1000.

When used to specify a 4-bit working-register address, address modes R or IR use the
format:

E src

5-35

ReF
Reset Carry Flag

ReF

Instruction For.at:
Cycles

ope 6

Operation: e <-- 0

The e flag is reset to 0, regardless of ita previous value.

Flags: c: Reset to 0
No other flags affected

5-36

OPC
(Hex)

eF

RET

Instruction foraat:

OPC

Operation:

flags:

EXBllple:

PC <-- asp
sp <-- SP + 2

ope
Cycles (Hex)

14 AF

RET
Return

This instruction is normally used to return to the previously executed procedure at
the end of a procedure entered by a CALL instruction. The contents of the location
addressed by the SP are popped into the PC. The next statement executed is that
addressed by the new contents of the PC.

No flags affected

If the PC contains ~35B4, the SP contains ~2000, external data-memory location %2000
contains ~18, and location ~2001 contains %B5, then the statement

RET

leaves the value %2002 in the SP and the PC contains ~18B5, the address of the next
instruction.

5-37

RL
Rotate Left

Rl dst

Instruction format:
Cycles

OPC
(Hex)

Address Mode
det

~ ______ O_PC ______ ~11 ~ _______ ds_t ______ ~ 6
6

90
91

R
IR

Operation:

flags:

Example:

Note:

5-38

C <-- dst(7)
dst(O) <-- dst(7)
dst(n + 1) <-- dst(n) n = 0 - 6

The contents of the destination operand are rotated left one bit position. The
initial value of bit 7 is rooved to the bit 0 position and also replaces the carry
flag.

C: Set if the bit rotated from the roost significant bit position was 1; i.e., bit 7
was 1

Z: Set if the result is zero; cleared otherwise.
V: Set if arithmetic overflow occurred; that is, if the sign of the destination

changed during rotation; cleared otherwise.
5: Set if the result bit 7 is set; cleared otherwise
H: Unaffected
0: Unaffected

If the contents of the register named SHIFTER are %88 (10001000), the statement

RL SHIFTER

leaves the value %11 (00010001) in that register. The C flag and V flags are set to
1 and the Z flag is cleared.

When used to specify a 4-bit working-register address, address roodes R or IR use the
format:

E dst

,--- RlC dst

Instruction For.at:

RLC
Rotate Left Through Carry

Cycles
OPC

(Hex)
Address Mode

dst

~ ______ O_P_C ______ ~I ~I _______ d_s_t ______ ~ 6
6

10
11

R
IR

Operation:

Flags:

Example:

Note:

dst (0) <-- C
C <-- dst (7)
dst(n + 1) <-- dst(n) n = 0 - 6

The contents of the destination operand with the C flag are rotated left one bit
position. The initial value of bit 7 replaces the C flag; the initial value of the C
flag replaces bit O.

C: Set if the bit rotated from the most significant bit position was 1; i.e., bit 7
was 1

Z: Set if the result is zero; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the sign of the destination

changed during rotation; cleared otherwise
5: Set if the result bit 7 is set; cleared otherwise
H: Unaffected
0: Unaffected

If the C flag is reset (to 0) and the register named SHIFTER contains ~8F (10001111),
the statement

RLC SHIFTER

sets the C flag and the V flag to 1 and SHIFTER contains ~1E (00011110).

When used to specify a 4-bit working-register address, address modes R or IR use the
format:

E dst

5-39

RR
Rotate Right

RR dst

Instruction for.at:
Cycles

OPC
(Hex)

Address Mode
dst

~ ______ O_P_C ______ ~1 I~ ______ d_s_t ______ ~ 6
6

EO
E1

R
IR

Operation:

Flags:

Example:

Note:

5-40

C <-- dst(O)
dst(7) <-- dst(O)
dst(n) <-- dst(n + 1) n = 0 - 6

The contents of the destination operand are rotated right one bit position. The
initial value of bit 0 is moved to bit 7 and also replaces the C flag.

C: Set if the bit rotated from the least significant bit position was 1 ; Le., bit 0
was 1

Z: Set if the result is zero; cleared otherwise
V: Set if arithmetic overflow occurred, that is, if the sign of the destination

changed during rotation; cleared otherwise
5: Set if the result bit 7 is set; cleared otherwise
H: Unaffected
0: Unaffected

If the contents of working register 6 are %31 (00110001), the statement

RR R6

sets the C flag to 1 and leaves the value %98 (10011000) in working register 6.
Since bit 7 now equals 1, the S flag and the V flag are also set.

When used to specify a 4-bit working-register address, address modes R or IR use the
format:

E dst

RRC dst

Instruction For.at:

RRC
Rotate Right Through Carry

Cycles
OPC

(Hex)
Address Mode

dst

~ ______ OP_C ______ ~11 ~ _______ d_s_t ______ ~ 6
6

CO
C1

R
IR

Operation:

Hsgs:

Example:

Note:

dst(7) <-- C
C <-- dst(O)
dst(n) <-- dst(n + 1) n = 0 - 6

The contents of the destination operand with the C flag are rotated right one bit
position. The initial value of bit 0 replaces the C flag; the initial value of the
C flag replaces bit 7.

C: Set if the bit rotated from the least significant bit position was 1; i.e., bit 0
was 1

Z: Set if the result is zero; cleared otherwise
V: Set if arithmetic overflow occurred, that is, the sign of the destination changed

during rotation; cleared otherwise
S: Set if the result bit 7 is set; cleared otherwise
H: Unaffected
0: Unaffected

If the contents of the register named SHIFTER are %DO (11011101) and the Carry flag
is reset to 0, the statement

RRC SHIFTER

sets the C flag and the V flag and leaves the value %6E (01101110) in the register.

When used to specify a 4-bit working-register address, address modes R or IR use the
format:

E dst

5-41

SBC
Subtract With Carry

sse dst,src

Instruction f Drat:

OPC

OPC

oPC

Operation:

flags:

[xanple:

Note:

5-42

OPC Address Mode
Cycles (Hex) dst src

6 32 r r
6 33 r Ir I I dst src I

10 34 R R
10 35 R IR I I src I I dst

src 10 36 R 1M
10 37 IR 1M I I dst I I

dst <-- dst - src - C

The source operand, along with the setting of the C flag, is subtracted from the
destination operand and the result is stored in the destination. The contents of the
source are not affected. Subtraction is performed by adding the two's complement of
the source operand to the destination operand. In multiple precision arithmetic,
this instruction permits the carry ("borrow") from the subtraction of low-order
operands to be subtracted from the subtraction of high-order operands.

C: Cleared if there is a carry from the most significant bit of the result; set
otherwise, indicating a "borrow"

Z: Set if the result is 0; cleared otherwise
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite

sign and the sign of the result is the same as the sign of the source; reset
otherwise

S: Set if the result is negative; cleared otherwise
H: Cleared if there is a carry from the most significant bit of the low-order four

bits of the result; set otherwise indicating a "borrow."
0: Always set to 1

If the register named MINUEND contains %16, the Carry flag is set to 1, working
register 10 contains %20 (32 decimal), and register 32 contains %05, the statement

SSC MINUEND, ~R10

leaves the value %10 in register MINUEND. The C, Z, V, Sand H flags are cleared and
D is set.

When used to specify a 4-bit working-register address, address modes R or IR use the
format:

E src/dst

SCf

Instruction format:
Cycles

ope 6

Operation: e <-- 1

The e flag is set to 1, regardless of its previous value.

flags: c: Set to 1
No other flags affected

SCF
Set Carry Flag

OPC
(Hex)

DF

5-43

SRA
Shift Right Arithmetic

SRA dat

Instruction r ormat:
Cycles

OPC
(Hex)

Address Mode
dot

~ ______ OP_C ______ ~I I~ _______ ds_t ______ ~ 6
6

DO
01

R
IR

Operation:

Flags:

EX&qlle:

Note:

5-44

dst(7) <-- dst(7)
C <-- dst(O)
dst(n) <-- dst(n + 1) n = 0 - 6

An arithmetic shift right one bit position ia performed on the destination operand.
Bit 0 replaces the C flag. Bit 7 (the Sign bit) is unchanged, and its value is also
shifted into bit position 6.

7 o

c: Set if the bit shifted from the least significant bit position was 1; i.e., bit 0
was 1

Z: Set if the result is zero; cleared otherwise
V: Always reset to 0
5: Set if the result is negative; cleared otherwise
H: Unaffected
0: Unaffected

If the register named SHIFTER contains ~BB (10111000), the statement

SRA SHIFTER

resets the C flag to 0 and leaves the value %DC (11011100) in register SHIFTER. The
S flag is set to 1.

When used to specify a 4-bit working-register address, address modes R or IR use the
format:

E dst

SRP src

Instruction for.at:

SRP
Set Register Pointer

Cycles
OPC

(Hex)
Address Mode

arc

~ _______ oP_c ______ ~1 I~ ______ s_r_c ______ ~ 6 31 1M

Operation:

flags:

EXanlple:

RP <-- src

The specified value is loaded into bits 4-7 of the Register Pointer (RP) (control
register 253). Bits 0-3 of the RP are always set to O. The source data (with bits
0-3 forced to 0) is the starting address of a working-register group. The
working-register group starting addresses are:

Hex Decimal

%00 0
%10 16
%20 32
%30 48
%40 64
%50 80
%60 96
%70 112

%FO 240 (control and peripheral registers)

Values in the range %80-EO are invalid.

No flags affected

Assume the RP currently addresses the control and peripheral register group and the
program has just entered an interrupt service routine. The statement

SRP 11%70

saves the contents of the control and peripheral registers by setting the RP to %70
(01110000), or 112 decimaL Any reference to working registers in the interrupt
routine will point to registers 112-127.

5-45

SUB
Subtract

SUB dst,src

Instruction Foraat:

OPC

OPC

OPC

Operation:

Flags:

EXBlllple:

Note:

5-46

OPC Address Mode
Cycles (Hex) dat arc

I I dst Brc I 6 22 r r
6 23 r Ir

I I src I I dst 10 24 R R
10 25 R IR

I I dst I I arc 10 26 R 1M
10 27 IR 1M

dst <-- dst - arc

The source operand is subtracted from the destination operand and the result is
stored in the destination. The contents of the source are not affected. Subtraction
ia performed by adding the two's complement of the source operand to the destination
operand.

C: Cleared if there is a carry from the most significant bit of the result; set
otherwise, indicating a "borrow"

Z: Set if the result is zero; cleared otherwise
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite

signs and the sign of the result is the same as the sign of the source operand;
cleared otherwise

S: Set if the result is negative; cleared otherwise
H: Cleared if there is a carry from the most significant bit of the low-order four

bits of the result; set otherwise indicating a "borrow."
D: Always set to 1

If the register named MINUEND contains %29, the statement

SUB MINUEND, 1%11

will leave the value %18 in the register. The C, Z, V, Sand H flags are cleared and
D is set.

When used to specify a 4-bit working-register address, address modes R or IR use the
format:

E src/dst

", SWAP dst

Instruction For.at:

OPC

Operation:

Flags:

Exmaple:

Note:

SWAP
Swap Nibbles

OPC Address Mode
Cycles (Hex) dst

I I dst B ro R
B F1 IR

dst(O - 3) <--> dst(4 - 7)

The contents of the lower four bits and upper four bits of the destination operand
are swapped.

C: Undefined
Z: Set if the result is zero; cleared otherwise
V: Undefined
S: Set if the result bit 7 is set; cleared otherwise
H: Unaffected
0: Unaffected

Suppose the register named BCD_nperands contains ~B3 (10110011). The statement

SWAP BCD_Operands

will leave the value %38 (00111011) in the register. The Z and S flags are cleared.

When used to specify a 4-bit working-register address, address modes R or IR use the
format:

E dst

5-47

TeM
Test Complement Under Mask

TCH dst,src

Instruction Fo~at:

ope

ope

ope

Operation:

Flags:

EX8lllple:

Note:

5-48

OPC Address Mode
Cycles (Hex) dBt src

6 62 r r
6 63 r lr I I dst src I

10 64 R R
10 65 R lR I I src I I dst

src 10 66 R 1M
10 67 lR 1M I I dst I I

(NOT dst) AND src

This instruction tests selected bits in the destination operand for a logical "1"
value. The bits to be tested are specified by setting a 1 bit in the corresponding
position of the source operand (mask). The TeM statement complements the destination
operand, which is then ANDed with the source mask. The Zero (Z) flag can then be
checked to determine the result. When the TeM operation is complete, the destination
location still contains its original value.

C: Unaffected
Z: Set if the result is zero; cleared otherwise
V: Always reset to 0
S: Set if the result bit 7 is set; cleared otherwise
H: Unaffected
0: Unaffected

If the register named TESTER contains ~F6 (11110110) and the register named MASK
contains ~06 (00000110), that is, bits 1 and 2 are being tested for a 1 value, the
statement

TeM TESTER, MASK

complements TESTER (to 00001001) and then do a logical AND with register MASK,
resulting in ~OO. A subsequent test of the Z flag,

JP Z,plabel

causes a transfer of program control. At the end of this sequence, TESTER still
contains ~F6.

When used to specify a 4-bit working-register address, address modes R or IR use the
format:

E src/dst

",- TM dst,src

Instruction for.at:

ope

ope

ope

Operation:

flags:

Example:

Note:

TM
Test Under Mask

OPC Address Hade
Cycles (Hex) dst src

I I dst arc 6 72 r r
6 73 r Ir

I I src I I dst 10 74 R R
10 75 R IR

I I dst I I arc 10 76 R 1M
10 77 IR 1M

dst AND src

This instruction tests selected bits in the destination operand for a logical "0"
value. The bits to be tested are specified by setting a 1 bit in the corresponding
position of the source operand (mask), which is ANDed with the destination operand.
The Z flag can be checked to determine the result. When the TM operation is
complete, the destination location still contains its original value.

c: Unaffected
Z: Set if the result is zero; cleared otherwise
V: Always reset to 0
S: Set if the result bit 7 is set; cleared otherwise
H: Unaffected
D: Unaffected

If the register named TESTER contains %F6 (11110110) and the register named MASK
contains %06 (00000110), that is, bits 1 and 2 are being tested for a 0 value, the
statement

TM TESTER, MASK

results in the value %06 (00000110). A subsequent test for nonzero

JP NZ, plabe 1

causes a transfer of program control. At the end of this sequence, TESTER still
contains %F6. The Z and S flags are cleared.

When used to specify a 4-bit working-register address, address modes R or IR use the
format:

E src/dst

5-49

XOR
Logical Exclusive OR

XOR dst,src

Instruction fOI'llat:

OPC

OPC

OPC

Operation:

Flags:

EXBlllple:

Note:

5-50

OPC Address Mode
Cycles (Hex) dat arc

6 B2 r r
6 B3 r Ir I I dst arc

dst 10 B4 R R
10 85 R IR I I src I I
10 86 R 1M
10 B7 IR 1M I I dst I I src

dst <-- dst XOR src

The source operand is logically EXCLUSIVE ORed with the destination operand and the
result stored in the destination. The EXCLUSIVE OR operation results in a one bit
being stored whenever the corresponding bits in the operands are different;
otherwise, a 0 bit is stored.

c: Unaffected
Z: Set if the result is zero; cleared otherwise
V: Always reset to 0
S: Set if the result bit 7 is set; cleared otherwise
H: Unaffected
0: Unaffected

If the source operand is the immediate value %78 (011111011) and the register named
TARGET contains %C3 (11000011), the statement

OR TARGET, 11%7B

leaves the value %BB (10111000) in the register.

When used to specify a 4-bit working-register address, address modes R or IR use the
format:

E src/dst

6.1 INTRODUCTION

The ROM versions of the ZS microcomputer have 40
external pins, of which 32 are programmable I/O
pins. The remaining S pins are used for power and
control. Up to 16 I/O pins can be configured as
an external memory interface. This interface
function is the subject of this chapter. The I/O
mode of these pins is described in Chapter 9.

6.2 PIN DESCRIPTIONS

AS. Address Strobe (output, active low, 3-state,
pin 9). Address Strobe is pulsed Low once at the
beginning of each machine cycle. The rising edge
of AS indicates that addresses, Read/Write (R/W),
and Data Memory (OM) signals, are valid when out­
put for external program or data memory trans­
fers. Under program control, AS can be placed in

RESET +5V

R/W GND

OS XTAL1

AS XTAL2

POo P20

POI P21

P02 P22
PORTO

P23
PORT 2

(NIBBLE P03 (BIT PRO·

Chapter 6
External Interface
(Z8601, Z8611)

a high-impedance state along with Ports 0 and 1,
Data Strobe (55), and R/W.

DS. Data Strobe (output, active low, 3-state,
pin 8). Data Strobe provides the timing for data
movement to or from Port 1 for each external
memory transfer. During a Write cycle, data out
is valid at the leading edge of OS. During a Read
cycle, data in must be valid prior to the trailing
edge of OS. 55 can be placed in a high-impedance
state along with Ports 0 and 1, AS, and R/W.

R/W. Read/Write. (output, 3-state, pin 7).
Read/Write determines the direction of data trans­
fer for external memory transactions. R/W is Low
when writing to external program or data memory,
and High for all other transactions. R/W can be
placed in a high-impedance state along with Ports
o and 1, AS, and OS.

+5V 40 P36

XTAL2 2 39 P31

XTAL1 3 38 P27

P37 4 37 P26

P30 5 36 P2s

RESET 6 35 P24

R/W 7 34 P23

OS 8 33 P22 PROGRAMMABLE) P04 P24
GRAMMABLE)

AS 9 32 P21

P3s 10 28601/11 31 P20

GND 11 MCU 30 P33

P32 12 29 P34

POo 13 28 P1 7

POI 14 27 P1 6

P02 15 26 P1 s

P03 16 25 P1 4

P04 17 24 P1 3

POs 18 23 P1 2

POe 19 22 P1 1

P07 20 21 P1 0

1/0 OR Ae-A'5 1/0
POs 28601111 P2s

POe MCU P2e

P07 P27

P10 P30

P1 1 P31

P1 2
P32 PORT 3

PORT 1
P1 3 P33

(FOUR INPUT;
(BYTE FOUR OUTPUT)

PROGRAMMABLE) P1 4 P34 SERIAL AND
1/0 OR ADo-AD7 PARALLEL 1/0

P1 s P3s AND CONTROL

P1 e P3e

P1 7 P37

Figure 6-1. Z8601/11 Pin Functions Figure 6-2. Z8601/11 Pin Assignments

3047 -031, 2037-002 6-1

External Interface (ZS601,ZS611)

POO-P07, P1 0- P17' P20- P27, P30-P37. I/O port
lines (inputs/outputs, TTL-compatible, pins
12-40). These 32 I/O lines are divided into four
S-bit I/O ports that can be configured under pro­
gram control for I/O or external memory inter­
face. Individual lines of a port are denoted by
the second digit of the port number. For example,
P30 refers to bit 0 of Port 3. Ports 0 and 1 can
be placed in a high-impedance state along with AS,
DS, and R/W.

RESET. Reset (input, active Low, pin 6). RESET
initializes the ZS. When RESET is deaet. i vated,
program execution begins from internal program
location %C. If held Low, RESET acts as a regis­
ter file protect during power-down and power-up
sequences. RESEr also enables the ZS Test mode.

X TAL 1, XTAL2. Crystal 1, Crystal 2 (oscillator
I input and output, pins 3 and 2). These pins con­

nect a parallel-resonant crystal (12 MHz maximum)
or an external source (12 MHz maximum) to the
on-board clock oscillator and buffer.

6.3 CONfIGURING fOR EXTERNAL MEMORY

Before interfacing with external memory, the user
must configure Ports 0 and 1 appropriately. The

minimum bus configuration uses Port 1 as a multi­
plexed Address/Data port (ADO-AD7) , allowing
access to 256 bytes of external memory. In this
configuration, the eight lower order address bits
(AO-A7) are multiplexed with the data (DO-D7).

Port 0 can be programmed to provide four addi­
tional address lines (AS-A11)' which increases the
externally addressable program memory to 4K
bytes. Port 0 can also be programmed to provide
eight additional address lines (AS-A15)' which
increases the externally addressable memory to 62K
bytes for the ZS601 or 60K bytes for the ZS611.
Refer to Chapter 3, Figures 3-5 and 3-6, for
external memory maps.

Ports 0 and 1 are configured for external memory
operation by writing the appropriate bits in the
Port 0-1 Mode register (Figure 6-3).

F or example, Port 1 can be defined as a mult i­
plexed Address/Data port (ADO-AD7) by setting D4
to 1 and D3 to O. The lower nibble of Port 0 can
be defined as address lines AS-A11' by setting D1
to 1. Similarly, setting D7 to 1 defines the upper
nibble of Port 0 as address lines A12-A15. When­
ever Port 0 is configured to output address lines
A12-A15' AS-A11 must also be selected as address
lines.

R248 P01M
Port 0-1 Mode Register

(% F8; Write Only)

P04-P07 MODE I'
OUTPUT = 00 ~

INPUT = 01
A12-A15 = 1X

--r- POO-P03 MODE L 00 = OUTPUT
01 = INPUT
1X = As-All

P1 0-P1 7 MODE
00 = BYTE OUTPUT
01 = BYTE INPUT
10 = ADo-AD7
11 = HIGH·IMPEDANCE ADo-AD1,

AS, Os, RtW, As-A11, A12-A15

figure 6-3. Ports 0 and 1 External Memory Operation

6-2 3047-001

Once Port 1 is configured as an Address/Data port,
it can no longer be used as a register. Attempt­
ing to read Port 1 returns FF; writing has no
effect. Similarly, if Port 0 is configured for
address lines AS-A15 , it can no longer be used as
a register. However, if only the lower nibble is
defined as address lines AS-A11' the upper nibble
is still addressable as an I/O register. Reading
Port 0 with only the lower nibble defined as
address outputs returns XF, where X equals the
data in bits 04-D7. Writing to Port 0 transfers
data to the I/O nibble only.

An instruction to change the modes of Ports 0 or 1
should not be immediately followed by an instruc­
tion that performs a stack operation, because this
may cause indeterminate program flow. In addi­
tion, after setting the modes of Ports 0 and 1 for
external memory, the next three bytes must be
fetched from internal program memory.

6.4 EXTERNAL STACKS

ZS architectUre supports stack operations in
either the register file or data memory. A
stack I s location is determined by bit 02 in the
Port 0-1 Mode register. For example, if D2 is set
to 1, the stack is in internal data memory
(Figure 6-4).

R248 P01M
Port 0-1 Mode Register

(% F8; Write Only)

L STACK SELECTION
o = EXTERNAL
1 = INTERNAL

Figure 6-4. Ports 0 and 1 Stack Selection

The instruction used to change the stack selection
bit should not be immediately followed by the
instructions RET or IRET, because this will cause
indeterminate program flow.

3047-002. 3047-003

External Interface (ZS601,ZS611)

6.5 DATA I£tI1RY

The two external memory spaces, data and program,
can be addressed as a single memory space or as
two separate spaces of equal size; i.e., 62K bytes
each for theZS601 and 60K bytes each for the
ZS611. If the memory spaces are separated,
program memor.y and data memory are logically
se lected by the Oata Memory select output (DM).
DM is available on Port 3, line 4 (P34) by setting
bits 04 and D3 in the Port 3 Mode register to 10
or 01 (Figure 6-5). 'D'M is active Low during the
execution of the LDE, LDEI instructions. OM is
also active dur ing the execution a f CALL, POP,
PUSH, RET and IRET instructions if the stack
resides in external memory.

R247 P3M
Port 3 Mode Register

(% F7; Write Only)

o 0 P33 = INPUT
o 1 P33 = INPUT
1 0 P33 = INPUT
1 1 P33 = OAV1/ROY1

P34 = OUTPUT
P34 = D"M
P34 = OM
P34 = ROY1/DAV1

Figure 6-5. Data Memory Operation

6.6 BUS OPERATION

The timing for typical data transfers between the
ZS and external memory is illustrated in Figure
6-6. Machine cycles can vary from six to twelve
clock periods depending on the operation being
performed. The notations used to describe the
basic timing periods of the ZS are: machine cycles
(Mn), timing states (Tn), and clock periods. All
timing references are made with respect to the
output signals AS and DS. The clock is shown for
clarity only and does not have a specific timing
relationship with other signals.

6-3

External Interface (ZB601,ZB611)

1··---T-1 ----MACHI;2
E

CYCLE-

1

-·----T-3---'1

CLOCK

PO ·X As-A15 X
P1 X Ao-A7) (00-07 IN) C

'-----I '----
\ I

R/W 7 C
X X
I- READ CYCLE . I

Figure 6-6a. External Instruction Fetch, or Memory Read Cycle

6.6.1 Address Strobe (AS)

All transactions start with AS driven Low and then
raised High by the ZB. The rising edge of AS
indicates that R/W, DM, an9 the addresses output
from Ports a and 1 are valid. The addresses
output via Port 1 remain valid only during MnT1
and typically need to be latched using AS, whereas
Port a address outputs remain stable throughout
the machine cycle.

6.6.2 Data Strobe

The ZB uses 55 to time the actual data transfer.
For Write operations (R/W = Low), a Low on DS
indicates that valid data is on the Port 1 ADO-AD7
lines. For Read operations, (R/W = High), the
Address/Data bus is placed in a high-impedance
state before driving DS L6~ so that the addressed
device can put its data on the bus. The ZB sam­
ples this data prior to raising DS High.

6-4

6.6.3 External Memory Operations

Whenever the ZB is configured for external memory
operation, the addresses of all internal program
memory references appear on the external bus.
This should have no effect on the external system
since the bus control lines, 55 and R/W, remain in
their iriactive High state. DS and R/W become
active only during external memory references.

CAUTION

Do not use LDC, LDCI, LDE or LDEI to
wr ite to internal program memory. The
execution of these instructions causes
the ZB to assume that an external write
operation is being performed and this
will activate control signals 55 and
R/W.

3047·087

External Interface (Z8601,Z8611)

1--------MACHINE CYCLE --------1

CLOCK

PO X As-A15 X
P1 X Ao-A7 X Do-D7 OUT X

LJ '---
\ I

R/W \ /
________ ~x~ ____________________ ~x~ __

'""I ,a---------WRITE CYCLE --------1' I

Figure 6-6b. External Memory Write Cycle

6.7 SHARED BUS

Port 1, along with AS, DS, R/W, and Port 0 nibbles
configured as address lines, can be placed in a
high-impedance state, allowing the Z8601 or the
Z8611 to share common resources with other bus
masters. This shared bus mode is under software
control and is programmed by setting Port 0-1 Mode
register bits D4 and D3 both to 1 (Figure 6-7).

Data transfers can be controlled by assigning, for
example, P3 3 as a Bus Acknowledge input and P34 as
a Bus Request output. Bus Request/Acknowledge
control sequences must be software driven.

R248 P01M
Port 0-1 Mode Register

(% F8; Write Only)

P1 0-P1 7 MODE
00 = BYTE OUTPUT
01 = BYTE INPUT
10 = ADo-AD7
11 = HIGH-IMPEDANCE ADo-AD7.

AS. OS. R/W. As-All. A12-A15

Figure 6-7. Shared Bus Operation

3047-088, 3047-004 6-5

External Interface (Z8601,Z8611)

6.8 EXTENDED BUS TIMING

The Z8601 and Z8611 can accommodate slow memory
access times by automatically inserting an addi­
tional state time (Tx) into the bus cycle. This
stretches the DS timing by two clock periods,
though internal memory access time is not
affected. Timing is extended by setting bit DS in
the Port 0-1 Mode register to 1 (Figure 6-8).

Figures 6-9a and 6-9b illustrate extended memory
Read and Write cycles.

R248 P01M
Port 0-1 Mode Register

(% F8; Write Only)

EXTERNAL MEMORY TlMINGJ
NORMAL = 0

*EXTENDED = 1

"ALWAYS EXTENDED TIMING AFTER RESET EXCEPT Z8682

Figure 6-8. Extended Bus Timing

I------------

r

-, MACHINE CYCLE-

r

-

x

r

-

3

---t, I
r1

CLOCK

PO As-A15 ~ =x -------"--
P1 =x Ao-A7) ----------------c(00-07 IN >--C

AS \-----.I
OS \ ~---------------------_I

R/W ~
OM =x _______ ~x=

I ~---------------------REAOCYCLE---------------------~II

Figure 6-9a. Extended External Instruction Fetch, or Memory Read Cycle

6-6 3047-005,3047-047

6.9 INSTRUCTION TIMING

The high throughput of the Z8 is due, in part, to
the use of instruct ion pipe lining, in which the
instruction fet.ch and execution cycles are over­
lapped. During the execution of an instruction
the opcode of the next instruction is fet.ched.
This is illustrated in Figure 6-10.

Figures 6-11 and 6-12 show typical instruction
cycle timing for instructions fetched from exter­
nal memory. (It should be noted that all instruc-

External Interface (Z8601,Z8611)

tion fetch cycles have the same machine timing
regardless of whether memory is internal or exter­
nal.) For those instructions that require execu­
tion time longer then that of the overlapped
fetch, or instructions that reference program or
data memory as part of their execut.ion, the pipe
must be flushed. In order to calculate the execu­
tion time of a program, the internal clock periods
shown in the cycles column of the instruction for­
mats in Section 5.4 should be added together. The
cycles are equal to one-half the crystal or input
clock rate.

I------------MACHINE CYCLE ------------1

T1 Tx

CLOCK

PO ~
P1 ~ Ao-A7 X 0 0-07 OUT

AS ~
OS \~-----I

R/W \
OM ~

J------------WRITE CYCLE------------I'

figure 6-9b. Extended External Memory Write Cycle

3047-048 6-7

'" I
CD

w

~
6
.I>­
<0

INTERNAL
CLOCK

INSTRUCTION
N

INSTRUCTION
N+1

INSTRUCTION
N+2

M1 M2 M1 M2 M1 --;;---~

OPERAND
INSTRUCTION INSTRUCTION FETCH(ES) ALU STORE

FETCH 1 FETCH 2

- EXECUTION CYCLE II

OPERAND
INSTRUCTION INSTRUCTION FETCH(ES) ALU STORE

FETCH 1 FETCH 2

• EXECUTION CYCLE II

INSTRUCTION INSTRUCTION
FETCH 1 FETCH 2

EFFECTIVE _I - HIDDEN DELAY -I
EXECUTION TIME UNTIL COMPLETION

I_ INSTRUCTION COMPLETION TIME -I

Figure 6-10. Instruction Pipelining

...,
X
rT
Cl) ..,
:::J
OJ
~

......
:::J
rT
Cl) ..,
-...
OJ o
Cl)

N
CD

'" ~
N
CD

~

w
~
-..J

5;
P
w
a
~
6
~

0\
I
\0

I

Ml M2 Ml

, _ _, Tl T2 T3 Tl r- T2 -r;- Tl T2 -T3

CLOCK

PO X Aa-A15 X Aa-A15 x==
P1 X Ao A7 } ~ Ao-A7 > ~

IN IN

AS '---1,---------,.'---1 '---f"
os 1_ \ r---~ /

R/W __ ---J1

I· FETCH INSTRUCTION 'I' FETCH 1ST BYTE OF NEXT INSTRUCTION I I

Figure 6-11. Instruction Cycle Timing (One Byte Instructions)

Ml M2 Ml OR M3 ,- =r -T1-1-----:r; T3 I - Tl T2 T3 ~ ,-- T2 r T3

CLOCK

PO ______ X· Aa-A15 X Aa-A15 X Aa-A15

P1 X Ao A7) s---< Ao-A7) ~ Ao-A7) ~

AS ~ . --- ~---- - --'---./

OS \ / \ / \ I
R/W /

FETCH 3RD BYTE (3·BYTE INSTR.) I· FETCH 1ST BYTE ,I' FETCH 2ND BYTE I· FETCH 1ST BYTE (1 or 2 BYTE INSTR.)

figure 6-12. Instruction Cycle Tiaing (Two and Three Byte Instructions)

r'1
X
rT
ct> ...,
:::l
OJ
......
:::l
rT
(1) ...,,
OJ
o
(1)

N
CD
0\

~
N
CD

~

External Interface (Z8601,Z8611)

6.10 RESET CONDITIONS

After a hardware reset, Ports 0 and 1 are con­
figured as input ports, memory and stack are

internal, extended timing is set and OM is
inactive. Figure 6-13 shows the binary values
reset into P01M.

6-10

R248 P01M
Port 0-1 Mode Register

(% F8; Write Only)

P04-P07 MODE~
OUTPUT = 00 ~

INPUT = 01
A12-A15 = 1X

EXTERNAL MEMORY TIMING
NORMAL = 0

*EXTENDED = 1

I [P08oP~, ~U~~~T
01 = INPUT
1X = As-All

STACK SELECTION
o = EXTERNAL
1 = INTERNAL

P1 o-P1 7 MODE
00 = BYTE OUTPUT
01 = BYTE INPUT
10 = ADo-AD7
11 = HIGH·IMPEDANCE ADo-AD7,

AS, Os, RNi, As-All, A12-A15

"ALWAYS EXTENDED TIMING AFTER RESET EXCEPT Z8682

figure 6-13. Ports 0 and 1 Reset

3047·006

7.1 INTRODUCTION

The ROM less versions of the ZB microcomputer have
40 external pins, of which 24 are programmable I/O
pins. Of the remaining 16 pins, 8 form an
Address/Data bus and the others are used for power
and control. Up to 8 I/O pins can be programmed
as additional address lines to be used for
external memory interface.

7.2 PIN DESCRIPTIONS

AS. Address Strobe (output, active low, pin 9).
Address Strobe is pulsed Low once at the beginning
of each machine cycle. The rising edge of AS
indicates that addresses, Read/Write (R/W), and
Data Memory (OM) signals are valid when output for
program or data memory transfers.

iiEffi +5V

R/W GND

os XTAL1

AS XTAL2

POO P20

PO, P2,

P02 P22
PORTO PORT 2
(NIBBLE P03 P23 (BIT PRO·

PROGRAMMABLE) P04
P24

GRAMMABLE)
1/0 OR As-A'5 1/0

POS Z8681182 P2s

POa MCU P2a

P07 P27

P1 0 P30

P1, P3,

P1 2
P32 PORT 3

(FOUR INPUT;

Chapter 7
External Interface
(Z8681, Z8682)

Os. Data Strobe (output, active low, pin 8).
Data Strobe provides the timing for data movement
to or from Port 1 for each memory transfer.
During a Write cycle, data out is valid at the
leading edge of 55. During a Read cycle, data in
must be valid prior to the trailing edge of 55.

R/i. Read/Write. (output, pin 7). Read/Write
determines the direction of data transfer for
memory transactions. R/W is Low when writing to
program or data memory, and High for all other
transactions.

P01-P07. Address/Data Port (inputs/outputs, TTl­
compatible, pins 13-20). Port 1 is permanently
configured as a multiplexed Address/Data memory
interface. The lower eight address lines (AO-A7)
are multiplexed with data (00-07).

+5V P3s

XTAL2 2 39 P3,

XTAL1 3 38 P27

P37 4 37 P2s

P30 P2S

RESET 6 35 P24

R/W 7 34 P23

DS 8 33 P22

AS 32 P2,

P3s 10 Z8681182 31 P20

GND 11 MCU 30 P33

P32 12 29 P34

POo 13 28 P1 7

PO, 14 27 P1 s

P02 15 26 P1 s
PORT 1 P1 3 P33 FOUR OUTPUT) P03 16 25 P1 4
ADo-AD7 P1 4 P34 SERIAL AND

PARALLEL 1/0 P04 17 24 P1 3
P1 s P3s AND CONTROL

POs 18 23 P1 2
P1 a P3a

POs 19 22 P1,
P1 7 P37 P07 20 21 P1 0

Figure 7-1. Z8681/82 Pin Functions Figure 7-2. Z86B1/82 Pin Assignments

3047·052,2037-002 7-1

~xternal Interface lZB6Bl,ZB6B2)

PDo-P07' P2o-P27, P30-P37. I/O Port lines
(inputs/outputs, TTL-compatible). These 24 I/O
lines are divided into 3 8-bit I/O ports that can
be configured under program cont rol for I/O or
memory interface. Individual lines of a port are
denoted by the second digit of the port number.
For example, P30 refers to bit 0 of Port 3.

RESET. Reset (input, active low, pin 6). RESET

initializes the Z8681/82. When RESET is
deactivated, program execution begins from
external program location %C for the Z8681 and
location %812 for the Z8682. If held Low, RESET
acts as a register file protect during power-down
and power-up sequences.

XTAl1, XTAl2. Crystal 1, Crystal 2 (oscillator
input and output, pins 3 and 2). These pins
connect a parallel resonant crystal or an external
source to the on-board clock osci llator and buf­
fer.

7.3 CONFIGURING PORT 0

The minimum bus configuration uses Port 1 as a
multiplexed Address/Data port (ADO-AD7) allowing
access to 256 bytes of memory. In this configura-

tion, the eight low order address bits (AO-A7) are
multiplexed with the data (DO-D7).

Port 0 can be programmed to provide either four
additional address lines (A8-A11) which increases
the addressable memory to 4K bytes, or eight
additional address lines (A8-A15) which increases
the addressable memory to 64K bytes for the Z8681
and 62K bytes for the Z8682. Refer to Chapter 3,
Figures 3-5 and 3-6, for the memory maps.

In the Z8681 , Port 0 lines intended for use as
address lines are automatically configured as
inputs after a Reset. These lines therefore float
and their logic state remains unknown until an
initialization routine configures Port O. In the
Z8682, Port 0 lines are configured as address
lines A8-A15 following a Reset.

7.3.1 lB6B1 Initialization

The initialization routine must reside within the
first 256 bytes of executable code and must be
physically mapped into memory by forcing the port
o address lines to a known state. Figures 7-3 and
7-4 illustrate how a 4K byte memory space can be
addressed.

PORn < ADo-ADT > As, OS, RlW

Z8681
POo As

PROGRAM
MCU MEMORY

112 PORT o{
POl Ag (4K BYTES)

P02 Al0

P03 An

<C

Vee

The initialization routine is mapped in the top 256 bytes of program memory. Depending on the
application, the interrupt vectors may need to be written in the first 12 byte locations of program
memory by the initialization routine.

Figure 7-3. Example lB6B1/He.ary Interface

7-2 2194·006

~x~ernal lnLerlHce \LOOUI,LUOI I,

A ~

PORT 1 K ADo-AD7)
'4 r

AS,DS,RtW
""""'I

POo
1a

As

---... 1b
PROGRAM

Z8881 MEMORY
P01

2a
Ag

(4K BYTES)

112 PORT 0 < ~ 2b
P02 LS157 A10

3a

~ 3b
P03

4a
A11

"-

~ 4b

~TROBE SELECT

-==

R/W _ R a

S

The initialization routine is mapped in the first 256 bytes of program memory. Any memory write
operation will cause the flip-flop to select Port 0 outputs as addresses.

Figure 7-4. Example Z8681/Hemory Interface

Port 0 is programmed for memory operation by writ­
ing the appropriate bits in the Port 0-1 Mode reg­
ister (Figure 7-5). The proper port initializa­
tion sequence is:

• Load Port 0 with initial address value.

• Configure Port 0-1 Mode register.

• Fetch the next three bytes without changing the
address in Port O. (This is necessary due to
instruction pipelining.)

R248 P01M
Port 0-1 Mode Register

(% F8; Write Only)

P04-P01 MODEI
OUTPUT = 00

-r- POa-P03 MODE L 00 = OUTPUT
01 = INPUT
1X = As-All

INPUT = 01
A12-A15 = 1X

Figure 7-5. Z8681 Port 0 Memory Operation

The lower nibble of Port 0 can be defined as
address lines A8-A11' by setting D1 to 1.
Similarly, setting D7 to 1 defines the upper nib­
ble of Port 0 as address lines A12-A15.

Whenever Port 0 is configured to output address
lines A12-A15 , A8-A11 must also be selected as
address lines.

7.3.2 Z8682 Initialization

The Z8682 must be operated in Test mode only.
Section 8.4 gives a complete description of the
proper technique for entering Test mode.

The user initialization routine must begin at
location %812 and must reside in memory fast
enough for normal memory timing. In the Z8682,
the user is not protected from reconfiguring
Port 1 by writing to R248 (P01M). Therefore
whenever a write is made to P01M, the value 10
(binary) must be written to bits D4 and D3. Any
other value will cause complete loss of program
control.

3047-060,3047-007 7-3

~xcernai Incerrace \LObOI,LObO£)

The lower nibble of Port 0 can be defined as
address lines A8-A11 , by setting D1 to 1. Simi­
larly, setting D7 to 1 defines the upper nibble of
Port 0 as address lines A12-A15.

Whenever Port 0 is configured to output address
lines A12-A15 , A8-A11 must also by selected as
address lines.

7.3.3 Read/Write Operations

If Port 0 is configured for address lines A7-A15'
it can no longer be used as a register; however,
if only the lower nibble of Port 0 is defined as
address lines A8-A11' the upper nibble is still
addressable as an I/O register. When only the
lower nibble is defined as address outputs, read­
ing Port 0 returns XF, where X equals the data in
bits D4-D7. Writing to Port 0 transfers data to
the I/O nibble only.

The instruction used to change the mode of Port 0
should not be immediately followed by an instruc­
tion that performs a stack operation, because this
will cause indeterminate program flow. In addi­
tion, after setting the mode of Port 0 for memory,
the next three bytes must be fetched without
changing the value of the upper byte of the Pro­
gram Counter (PC).

7.4 EXTERNAL STACKS

The l8681/82 architecture supports stack opera­
tions in either the register file or data memory.
A stack's location is determined by bit D2 in the
Port 0-1 Mode register. For example, if D2 is set
to 0, the stack is in external data memory
(Figure 7-7).

The instruction used to change the stack selection
bit should not be immediately followed by the
instructions RET or IRET, because this will cause
indeterminate program flow.

7.5 DATA MEMORY

The two memory spaces, data and program, can be
addressed as a single memory space or as two
separate spaces of equal size; i.e. 64K bytes each
for the l8681 and 62K bytes each for the l8682.

If the memory spaces are separated, program memory
and data memory are logically selected by Data
Memory select output (DM). DM is made available
on Port 3, line 4 (P34) by setting bits D4 and D3
in the Port 3 Mode register to 10 or 01 (Figure
7-8). OM is active Low during the execution of
the LDE, LDEI instructions. DM is also active Low
during the execution of CALL, POP, PUSH, RET and
IRET instructions if the stack resides in memory.

R248 P01M
Port 0-1 Mode Register

(% F8; Write Only)

P04 -P07 MODE ~
OUTPUT = 00 ~

INPUT = 01
A12-A15 = 1X

-r POO-P03 MODE L 00 = OUTPUT
01 = INPUT
1X = As-A11

L..-_____ P1 o-P1 7 MODE
10 = ADo-AD7

Figure 7-6. Z8682 Port 0 Memory Operation

7-4 3047-001

R248 P01M
Port 0-1 Mode Register

(% F8; Write Only)

L STACK SELECTION
o = EXTERNAL
1 = INTERNAL

figure 1-1. External Stack Operation

R247 P3M
Port 3 Mode Register

(% F7; Write Only)

o 0 P33 = INPUT
o 1 P33 = INPUT
1 0 P33 = INPUT
1 1 P33 = DAVlIRDY1

P34 = OUTPUT
P34 = OM
P34 = OM
P34 = RDYlIDAV1

figure 1-8. Port 3 Data Memory Operation

1.6 BUS OPERATION

Typical data transfers between the Z8681/82 and
memory are illustrated in Figure 6-6. Machine
cyc les can vary from six to twelve c lock periods
depending on the operation being performed. The
notations used to describe the basic timing
periods of the Z8681/82 are: machine cycles (Mn),
timing states (Tn), and clock periods. All timing
references are made with respect to the output
signals AS and 55. The clock is shown for clarity
only and does not have a specific timing relation­
ship with other signals.

3047-002,3047-003,3047-005

External Interface (Z8681,Z8682)

1.6.1 Address Strobe (AS)

All transactions start with AS driven Low and then
raised High by the Z8681/82. The rising edge of
AS indicates that R/W, OM (if used), and the
addresses output from Ports 0 and 1 are valid.
The addresses output via Port 1 remain valid only
during MnT1 and typically need to be latched using
AS, whereas Port 0 address outputs remain stable
throughout the machine cycle.

1.6.2 Data Strobe (OS)

The Z8681/82 uses 55 to time the actual data
transjer. For Write operations (R/i = Low), a Low
on 55 indicates that valid data is on the Port 1
ADO-AD7 lines. For Read operations (R/W = High),
the Address/Data bus is placed in a high-impedance
state before driving 55 Low so that the addressed
device can put its data on the bus. The Z8681/82
samples this data prior to raising 55 High.

1.1 EXTENDED BUS TIMING

The Z8681/82 accommodates slow memory access times
by automatically inserting an additional software­
controlled state time (Tx). This stretches the 55
timing by two clock periods. Timing is extended
by setting bit D5 in the Port 0-1 Mode register to
1 (Figure 7-9).

Refer to Section 6.7 for other figures pertaining
to extended bus timing.

R248 P01M
Port 0-1 Mode Register

(% F8; Write Only)

EXTERNAL MEMORY TIMINGJ
NORMAL = 0

"EXTENDED = 1

·ALWAYS EXTENDED TIMING AFTER RESET EXCEPT Z8682

Figure 1-9. Extended Bus Timing

7-5

External Interface (Z8681,Z8682)

7.8 INSTRUCTION TIMING

The high throughput of the Z8681/82 is due, in
part, to the use of instruction pipelining, in
which the instruction fetch and execution cycles
are overlapped. During the execution of the cur­
rent instruction the opcode of the next instruc­
tion is fetched as illustrated in Figure 6-10.

Figures 6-11 and 6-12 show typical instruction
cycle timing for instructions fetched from mem­
ory. For those instructions that require execu­
tion time longer than that of the overlapped
fetch, or reference program or data memory as part
of their execution, the pipe must be flushed. In
order to calculate the execution time of a pro­
gram, the internal clock periods shown in the
cycles column of the instruction formats in Sec­
tion 5.6 should be added together. The cycles are
equal to one-half the crystal or input clock rate.

7.9 Z8681 RESET CONDITIONS

After a hardware reset, Port 0 is configured as
input port, extended timing is set to accommodate
slow memory access during the configuration
routine, DM is inactive, and the stack resides in
the register file. Figure 7-10 shows the binary
values reset into P01M.

7.10 Z8682 RESET CONDITIONS

A fter a hardware reset, Port 0 is configured as
address lines A8-A1S' memory timing is normal, DM
is inactive, and the stack resides in the register
file. Figure 7-11 shows the binary values reset
into P01M.

R248 P01M
Port 0-1 Mode Register

(% F8; Write Only)

POC-P07 MODE:]
OUTPUT = 00

INPUT = 01
A12-A15 = 1X -

EXTERNAL MEMORY TIMING
NORMAL = 0

·EXTENDED = 1

c: POO-P03 MODE L 00 = OUTPUT
01 = INPUT
1X = As-All

STACK SELECTION
o = EXTERNAL
1 = INTERNAL

"ALWAYS EXTENDED TIMING AFTER RESET EXCEPT Z8682

figure 7-10. Z8681 Port 0 and 1 Reset Conditions

R248 P01M
Port 0-1 Mode Register

(% F8; Write Only)

POC-P07 MODE:]
OUTPUT = 00

INPUT = 01
A12-A15 = 1X

EXTERNAL MEMORY TIMING
NORMAL = 0

I [P"8o~' ~J'T~~T
01 = INPUT
1X = As-All

STACK SELECTION
o = EXTERNAL

EXTENDED = 1 1 = INTERNAL

P1 o-P1 7 MODE
'------- 10 = ADo-AD7

figure 7-11. Z8682 Ports 0 and 1 Reset Conditions

7-6 3047-008,3047-054

B.1 RESET

This section describes ZB reset conditions, reset
timing, and register initialization procedures.

A system reset overrides all other operating con­
ditions and puts the ZB into a known state. To
initialize the chip's internal logic, the reset
input must be held Low for at least 1 B clock
periods.

While RESET is Low, AS is output at the internal

Chapter 8
Reset and Clock

clock rate (XTAL frequency divided by 2), OS is
forced Low and R/W remains High. (Zilog Z-BUS com­
patible peripherals use the AS and 55 coincident
Low state as a peripheral reset function.) In
addition, interrupts are disabled, Ports 0, 1, and
2 are put in input mode, and %C is loaded into the
Program Counter.

The hardware Reset initializes the control and
peripheral registers, as shown in Table B.1.
Specific reset values are shown by 1s or as, while
bits whose states are unknown are indicated by the

Table B-1. Control and Peripheral Register Reset Values

Register

%FO Serial I/O
%F1 Timer Mode

%F2 Counter/Timer

%F3 f1 Prescaler

%F4 Counter/Timer a
%F5 TO Prescaler

%F6 Port 2 Mode
%F7 Port 3 Mode

%F8 Port 0-1 Mode
ZB601/ZB611

%FB Port 0-1 Mode
ZB6B1

%F8 Port 0-1 Mode
Z8682

%F9 Interrupt Priority
%FA Interrupt Request
%FB Interrupt Mask
%FC Flags
%FD Register Pointer
%FE Stack Pointer
%FF Stack Pointer

DJ 06 05 04 DJ 02 D1 Do

undefined
0 0 a 0 0 0 a 0

undefined

u u u u u u a 0

undefined
u u u u u u u 0

a 0 0 a a a u a

a 1 a 0

a a a

0 0 a 0

undefined
u u a 0 0 0 a a
a u u u u u u u
undefined
undefined
undefined
undefined

COIIIIIents

Counter/Timers stopped

Single Pass count mode,
external clock source

Single Pass count mode

All lines input
Port 2 open-drain
P30-P33 input; P34-P37 output

Ports a and 1 inputs; internal stack;
extended external memory timing

Port 0 inputs
Port 1 Address/Data; internal stack;
extended external memory timing

Port 0 Address
Port 1 Address/Data
internal stack; normal external
memory timing

Reset all interrupt disabled
Interrupts disabled

Most significant byte
Least significant byte

8-1

Reset and Clock

letter u. Registers that are not predictable are
listed as undefined.

Program execution starts four clock cycles after
RESET has returned High. The initial instruction
fetch is from location %C. Figure B-1 shows reset
timing.

After a reset, the first program executed should
be a routine that initializes the control regis­
ters to the required system configuration. The
Interrupt Request register remains inactive until
an EI instruction is executed. This guarantees
that program execution can proceed free from
interrupts.

RESET is the input of a Schmitt trigger circuit.
To form the internal reset line, the output of the
trigger is synchronized with the internal clock
(xtal frequency divided by 2). The clock must
therefore be running for RESET to function. For a
power-up reset operation, the RESET input must be
held Low for at least 50 ms after the power supply
is within tolerance. This allows the on-board
clock oscillator to stabilize. An internal
pull-up combined with an external capacitor of
1 eF provides enough time to properly reset the Z8
(Figure 8-2).

R/W

Figure B-1.

8-2

B.2 CLOCK

The Z8 derives its timing from on-board clock
circuitry connected to pins XTAL1 and XTAL2. The
clock circuitry consists of an oscillator, a
divide-by-2 shaping circuit, and a clock buffer.
Figure 8-3 illustrates the clock circuitry. The
oscillator's input is XTAL1; its output is XTAL2.
The clock can be driven by a crystal, a ceramic
resonator, or an external clock source.

Crystals and ceramic resonators should have the
following characteristics to ensure proper oscil­
lator operation:

Cut: AT (crystal only)
Mode: Parallel, Fundamental
Output Frequency: 1 MHz - 12 MHz
Resistance: 100 ohms max

Depending on operation frequency, the oscillator
may require the addition of capacitors C1 and C2
(shown in Figure 8-4). The range of recommended
capacitance values is dependent on crystal speci­
fications but should not exceed 15 pF. The ratio
of the values of C1 to C2 can be adjusted to shift
the operating frequency of the circuit by approxi­
mately ±.005%.

Reset Tilling

FIRST MACHINE CYCLE

I
I- FIRST INSTRUCTION FETCH
I

3047-053

1K

+5V

100
KO

Figure 8-2. Power-Up Reset Circuit

When an external frequency source is used, it must
drive both XTAL1 and XTAL2 inputs. This differen­
tial drive requirement arises from the loading on
the oscillator output (XTAL2) without the reactive
feedback network of a crystal or resonator. A
typical clock interface circuit is shown in Figure
8-5.

The capacitors shown represent the maximum para­
sitic loading when using a 74LS04 driver. The
pull-up resistors can be eliminated by using a
74HC04 driver.

8.3 POWER-OOWN OPERATION

The Z8 has a power-down option which can be used
to maintain the contents of the register file with
a low-power battery. The circuitry has its XTAL2
output replaced by 8 power supply input (VMM).
VMM powers the general-purpose registers %04 -
%7F as well as a portion of the reset logic that
protects the register file. When VMM is main­
tained at 3 to 5 V, this power-down option pre­
serves the contents of the general-purpose regis­
ters whenever VCC is removed. During normal
operation, VMM provides +5 V along with VCC.

The following sequence is necessary to preserve
data:

• Power failure must be externally detected early
enough for a software routine to store the
required data that is not already in the regis­
ter file. An interrupt is typically used for
this purpose.

• RESET must be held Low after data is saved and
during the removal of VCC. RESET is a write
protect input to the register file.

3047·062.3047·078,3047·079,3047·089

Reset and Clock

::~ ~ .. _o_s_c_ ... H .. __ +_2_ .. ~~L'ci'~~AL
Figure B-3. ZB Clock Circuit

Z8

Figure 8-4. Crystal/Ceramic Resonator Oscillator

CLOCK
IN

+5V +5V

1.5k 1.5k

74LS04 74LS04

><:>--..... - ~~-+--e- XTAL2

I
CST RAY =
15 pF MAX

L...-_____ +_ XTAL1

I
CST RAY =
15 pF MAX

Figure 8-5. External Clock Interface

• RESET must be held Low during the power-up
sequence. Again, RESET is a write protect
input to the register file.

As Vec powers down, on-board circuitry
associated with RESET automatically protects the
general-purpose registers. The circuit shown in
Figure 8-2 satisfies the power-up requirement of
holding RESET Low to protect the register file
data.

8-3

Reset and Clock

Figure 8-6 shows the recommended circuit configu­
ration for a battery-backed supply system.

Since XTAL2 is replaced by VMM , an external
clock generator must be used to input the Z8 clock
via the XTAL1 input.

+ 5 V -------+----1 Vee

TRICKLE

CHARGE~---J~--~r

-=- 3.6 V I NICAD

Z8

Figure 8-6. Battery-Backed Register Supply

ACCESS NORMAL
ROM AT OOCH

8.4 TEST foIDE

Test mode is a special mode of operation that
facilitates testing of Z8 devices containing
on-board ROM (Z8601 and Z8611). Test mode must
also be used to reset the Z8682. When Test mode is
invoked, an additional on-board ROM is mapped into
the first 64 locations of program memory. Figure
8-7 shows the difference between Normal and Test
modes of operation.

Test mode is entered by driving the RESET input to
a voltage level of VCC + 2.5 V after a normal
Reset cycle (Figure 8-8): This voltage is
absolutely essential for proper opera~ion.

After entering Test mode, instructions are fetched
from the internal test ROM. Port 1 is configured
for Address/Data operation, followed by a JUMP to
external memory location %812 for the Z8601 and
Z8682, or %1012 for the Z8611. Once in external
memory, diagnostic routines, invoked via the

ACCESS TEST
ROM AT OOCH

ON·CHIP
PROGRAM

ROM

%3F .. --------+---------~--------.. %3F

%OC USER
ROM

TEST
ROM

%OC

%00 %00

Figure 8-7. Normal and Test Hade Flow

8-4 2037-010,3047-080

Address/Data bus, verify the Z8' s functionality.
Since Port 1 is used only in Address/Data mode in
this process, additional routines in the test ROM
verify Port 1's I/O and Handshake modes.

Programs run with Test mode active can use the LDE
instruction to access contents of the test ROM.
The LDC instruction accesses the normal program
ROM.

The Z8 stays in the Test mode until a normal reset
occurs.

8.4.1 Interrupt Testing

To test the interrupt structure, the first twelve
locations of test ROM contain interrupt vectors.
Interrupt vectors in the Z8601 and Z8682 point to
external memory locations %800, %803, %806, %809,

Vee +2.5V------

RESET PIN

VRL-----rI
4

~ XTAl---+­
ClKS
MAX

Reset and Clock

%80C, and %80F; interrupt vectors in the Z8611
point to external memory locations %1000, %1003,
~Q1006, %1008. %100C, and %100F. These interrupt
vectors allow the external program to have a 2- or
3-byte JUMP instruction to each interrupt service
routine.

Programs that are run with Test mode active can
use the LDE instruction for accessing the contents
of the Test ROM. The LDC instruction can be used
for accessing the program ROM as normal.

8.4.2 ROHless Operation

ROMless operation of the Z8601 or Z8611 can be
achieved by always entering T est mode after a
reset. Execution begins at %812 or %1012, respec­
tively. (The Z8682 is a modified Z8601 sold as a
ROMless part.)

6
.-XTAl ClKS-.

MIN

Note the maximum ramp for application of
+ 7.5 VDC to RESET pin. After a minimum of
6 XTAl ClK cycles, the RESET voltage can be
relaxed to VRH.

Figure 8-8. Voltage Waveform for Test Mode

2242-002 8-5

9.1 INTRODUCTION

The Z8 has 32 lines dedicated to input and out­
put. These lines are grouped into four 8-bit
ports and are configurable as input, output, or
address/data. Under software control, the ports
can be programmed to provide address/data, timing,
status, serial, and parallel input/output with or
without handshake.

All ports have active pull-ups and pull-downs
compatible with TTL loads. In addition, the
pull-ups of Port 2 can be turned off for
open-drain operation.

9.1.1 Mode Registers

Each port has an associated mode register which
determines the port's functions and allows dynamic
change in port functions during program execu­
tion. Ports and mode registers are mapped into
the register file as shown in Figure 9-1.

Because of their close association, ports and mode
registers are treated like any other general-pur­
pose register. There are no special instructions
for port manipulation; any instruction that
addresses a register can address the ports. Data
can be directly accessed in the port register,
with no extra moves.

DEC

248

247

246

4

3

2

o

PORTS 0-1 MODE

PORT 3 MODE

PORT 2 MODE

PORT 3

PORT 2

PORT 1

PORTO

HEX IDENTIFIERS

Fa P01M

F7 P3M

F6 P2M

04

03 P3

02 P2

01 P1

00 PO

Figure 9-1. I/O Port and Port Mode Registers

Chapter 9
1/0 Ports

9.1.2 Input and Output Registers

Each bit of Ports 0, 1, and 2 has an input regis­
ter, an output register, associated buffer, and
control logic. Since there are separate input and
output registers associated with each port, writ­
ing to bits defined as inputs stores the data in
the output register. This data cannot be read as
long as the bits are defined as inputs. However,
if the bits are reconfigured as output, the data
stored in the output register is reflected on the
output pins and can then be read. This mechanism
allows the user to initialize the outputs prior to
driving their loads.

Since port inputs are asynchronous to the Z8' s
internal clock, a Read operation could occur
during an input transition. In this case, the
logic level might be uncertain--somewhere between
a logic 1 and O. To eliminate this met a-stab Ie
condition, the Z8 latches the input data two clock
periods prior to the execution of the current
instruction. The input register uses these two
clock periods to stabilize to a legitimate logic
level before the instruction reads the data.

9.2 PORT 0

This section deals only with the I/O operation of
Port O. Refer to Sections 6.2 and 7.2 for a
description of the port's external memory inter­
face operation.

Port 0 is a general I/O port. Bits within each
nibble can be independently programmed as inputs,
outputs or address lines. Figure 9-2 shows a
block diagram of Port O. This diagram also
applies to Ports 1 and 2.

3047-063 9-1

'" I
N

A

~

8

INTERNAL BUS

8

8

INPUT REGISTER INPUT BUFFER

A A
K 8 K
'{ ..

Ecf--READ_r+-
PORT INTERNAL

TIMING

HANDSHAKE SELECTED
HANDSHAKE

WRITE
LOGIC

PORT

~

~ ~
\ 8

,
.J -y Y

OUTPUT ENABLE ----.

OUTPUT REGISTER OUTPUT BUFFER

figure 9-2. Ports 0, 1, and 2 Block Diagra.

~
8

./";::... -y

I -

8

PORT 1/0
LINES

DAV/RDY

RDY/DAV

......
........
o
-0
o
"1
r1"
til

9.2.1 Read/Write Operations

In the nibble I/O mode, Port 0 is accessed as gen­
eral-purpose register PO (%00). The port is writ­
ten by specifying PO as an instruction's destina­
tion register. Writing the port causes data to be
stored in the port's output register.

The port is read by speci fy ing PO as the source
register of an instruction. When an output nibble
is read, data on the external pins is returned.
Under normal loading conditions this is equivalent
to reading the output register. Reading a nibble
defined as input also returns data on the external
pins. However, input bits under handshake control
return data latched into the input register via
the input strobe.

The Port 0-1 Mode register bits 0100 and 0706 are
used to configure Port 0 nibbles (Figure 9-3).
The lower nibble (Poo-P03) can be defined as
inputs by setting bits 01 to 0 and DO to 1, or as
outputs by setting both D1 and DO to O. Likewise,
the upper nibble (P04-P07) can be defined as
inputs by setting bits 07 to 0 and 06 to 1, or as
outputs by.setting both D6 and 07 to O.

9.2.2 Handshake Operation

When used as an I/O port, Port 0 can be placed
under handshake control by programming the Port 3
Mode register bit 02 to 1 (Figure 9-4). In this
configuration, handshake control lines are DAVo
(P32) and ROYo (P35) when Port 0 is an input port,
or ROY o (P32) and DAVO (P3 5) when Port 0 is an
output port.

Handshake direction is determined by the configu­
ration (input or output) assigned to Port 0' s
upper nibble, P04-P07~ The lower nibble must have
the same I/O configuration as the upper nibble to
be under handshake control. Figure 9-5 illus­
trates the Port 0 upper and lower nibbles, and the
associated handshake lines of Port 3.

Handshake operation is discussed in detail in Sec­
tion 9.6.

3047-007, 3047-009, 2037-008

I/O Ports

R248 P01M
Port 0-1 Mode Register

(% F8; Write Only)

P04 -P07 MODE ~
OUTPUT = 00 ~

INPUT = 01
A1rA15 = 1X

-r POO-P03 MODE L 00 = OUTPUT
01 = INPUT
1X = As-All

Figure 9-3. Port 0 I/O Operation

R247 P3M
Port 3 Mode Register

(% F7; Write Only)

L 0 P32 = ,NPUT
1 P32 = DAVO/RDYO

P3s = OUTPUT
P3s = RDYO/DAVO

Figure 9-4. Port 0 Handshake Operation

}

P04- P07 } PORT 0
POO-P03 (I/O OR AS-A15)

.....- } HANDSHAKE CONTROLS
DAVo AND RDYo
(P32 AND P3s)

Figure 9-5. Port 0

9-3

I/O Ports

9.' PORT 1

This section deals only with the I/O operation of
Port 1 and does not apply to the Z8681/82 ROMless
devices. Refer to Sections 6.2 and 7.2 for a
description of the port's external memory inter­
face operation.

Port 1 is a general-purpose I/O port that can be
programmed as a byte I/O port with or without
handshake, or as an address/data port for inter­
facing with external memory. Refer to Figure 9-2
for a block diagram of Port 1.

9.'.1 Read/Write Operations

In byte input or byte output mode, the port is
accessed as general-purpose register P1 (%01).
The port is written by specifying P1 as an
instruction's destination register. Writing the
port causes data to be stored in the port's output
register.

The port is read by specifying P1 as the source
register of an instruction. When an output is
read, data on the external pins is returned.
Under normal loading conditions, this is equiva­
lent to reading the output register. When Port 1
is defined as an input, reading also returns data
on the external pins. However, inputs under hand­
shake control return data latched into the input
register via the input strobe.

Using the Port 0-1 Mode register, Port 1 is con­
figured as an output port by setting bits 04 and
0 3 to Os, or as an input port by setting 04 to 0
and 03 to 1 (Figure 9-6).

R248 P01M
Port 0-1 Mode Register

(% F8; Write Only)

9-4

P1 o-P1 7 MODE
00 = BYTE OUTPUT
01 = BYTE INPUT
10 = ADo-AD7
11 = HIGH·IMPEDANCE ADo-AD7,

AS, Os, RtW, Aa-A11. A12-A15

figure 9-6. Port 1 I/O Operation

9.'.2 Handshake Operations

When used as an I/O port, Port 1 can be placed
under handshake control by programming the Port 3

Mode register bits 04 and 03 both to 1 (Figure
9-7). In this configuration, handshake control
lines are OAV1 (P33) and RDY1 (P34) when Port 1 is
an input port, or ROY1 (P3 3) and OAV1 (P34) when
Port 1 is an output port.

R247 P3M
Port 3 Mode Register

(% F7; Write Only)

o 0 P33 = INPUT
o 1 P33 = INPUT
1 0 P33 = INPUT
1 1 P33 = DAVi/RDY1

P34 = OUTPUT
P34 = OM
P34 = OM
P34 = RDY1/DAV1

Figure 9-7. Port 1 Handshake Operation

Handshake direction is determined by the configu­
ration (input or output) assigned to Port 1. For
example, if Port 1 is an output port then hand­
shake is defined as output. Figure 9-8 illus­
trates the Port 1 lines and the associated hand­
shake lines of Port 3.

Handshake operation is discussed in detail in Sec­
tion 9.6.

PORT 1
(1/0 OR ADo-AD7) P1o-P17

}
HANDSHAKE CONTROLS
DAV1 AND RDY1
(P33 AND P3~

Figure 9-8. Port 1

3047-004,3047-003,2037-008

9.4 PORT 2

Port 2 is a general-purpose port. Each of its
lines can be independently programmed as input or
output via the Port 2 Mode register (Figure 9-9).
A bit set to a 1 in P2M configures the correspond­
ing bit in Port 2 as an input, while a bit set to
o determines an output line.

R246 P2M
Port 2 Mode Register

(% F6; Write Only)

P2o-P27 MODE
'------ 0 OUTPUT

1 INPUT

figure 9-9. Port 2 I/O Operation

9.4.1 Read/Write Operations

Port 2 is accessed as general-purpose register P2
(%02). The port is written by specifying P2 as an
instruction's destination register. Writing the
port causes data to be stored in the port's output
register, and reflected externally on any bit con­
figured as an output.

The port is read by specifying P2 as the source
register of an instruction. When an output bit is
read, data on the external pin is returned. Under
normal loading conditions, this is equivalent to
reading the output register. However, if a bit of
Port 2 is defined as an open-drain output, the
data returned is the value forced on the output
pin by the external system. This may not be the
same as the data in the output register.

Reading input bits of Port 2 also returns data on
the external pins. However, inputs under hand­
shake control return data latched into the input
register via the input strobe.

I/O Ports

9.4.2 Handshake Operation

Port 2 can be placed under handshake control by
programming the Port 3 Mode register (Figure
9-10). In this configuration, Port 3 lines P31
and P36 are used as the handshake control lines
DAV2 and RDY2 for input handshake, or RDY2 and
DAV2 for output handshake.

R247 P3M
Port 3 Mode Register

(% F7; Write Only)

o P3l = INPUT (TIN) P3s = OUTPUT (TOUT)
1 P3l = DAV2JRDY2 P3s = RDY2JDAV2

Figure 9-10. Port J Handshake Operation

Handshake direction is determined by the configu­
ration (input or output) assigned to bit 7 of Port
2. Only those bits with the same configuration as
P27 will be under handshake control. Figure 9-11
illustrates Port 2's bit lines and the associated
handshake lines of Port 3.

P20

PORT 2(1/0)

P27

}

HANDSHAKE CONTROLS
DAV2 AND RDY2
(P31 AND P3s)

figure 9-11. Port 2

2037-014,3047-010,2037-008 9-5

I/O Ports

Port 2 can also by configured to provide open­
drain outputs by programming Port 3 Mode register
(P3M) bit 00 to 0 (Figure 9-12).

Regardless of the bit input/output configuration,
Port 2 is always written and read as a byte-wide
port.

R247 P3M
Port 3 Mode Register

(% F7; Write Only)

L 0 PORT 2 PULL-UPS OPEN DRAIN
1 PORT 2 PULL-UPS ACTIVE

Figure 9-12. Port 2 Open-Drain Outputs

INPUT INPUT
REGISTER BUFFER

READ --.

A PORT A

K 4 K 4

... '4

I ~

9.5 PORT 3

Port 3 di ffers structurally from the other three
ports. Port 3 lines are fixed as four input
(P30-P33) and four output (P34-P37) and do not
have an input and output register for each bit.
Instead, all the input lines have one input regis­
ter, and output lines have an output register.
Under software control, the lines can be con­
figured as input or output, special control lines
for handshake, or as I/O lines for the on-board
serial and timer facilities. Figure 9-13 is a
block diagram of Port 3.

9.5.1 Read/Write Operations

Port 3 is accessed as general-purpose register P3
(%03). The port is written by specifying P3 as an
instruction's destination register.

A

~ 4

'4

However,

PORT
INPUT
LINES
(P30-P33)

TO INTERRUPT TIMER, HANDSHAKE LOGIC

A
(

...

INTERNAL
BUS

9-6

4

OUTPUT
REGISTER

WRITE --.
PORT ~

4)
Y

~I

OR SERIAL I/O
r

READ --.

A PORT

OUTPUT

~ DATA
RETURN
BUFFER

4 ~
Y

FROM TIMER, HANDSHAKE LOGIC
OR SERIAL 1/0

Figure 9-13. Port J Block Diagram

OUTPUT
BUFFER

4
~

r

PORT
OUTPUT
LINES
(P34-P37)

3047-011, 3047-091

I/O Ports

Port 3 outputs cannot be written if they are used
for special functions. When writing to Port 3,
data is stored in the output register.

Table 9.1 Port J line Functions

Function line Signal

The port is read by specifying P3 as the source
register of an instruction. When reading from
Port 3, the data returned is both the data on the
input pins and in the output register.

Input
Output

P30-P33 Input
P34-P37 Output

9.5.2 Special Functions

Special functions for Port 3 are defined by pro­
gramming the Port 3 Mode register. By writing Os
in D2-D6' lines P30-P37 ar configured in input/
output pairs (Figure 9-14). Table 9-1 shows
available functions for Port 3. The special
functions indicated in the table are discussed in
detail in their corresponding sections in this
manual.

Port 3 input lines P30-P33 always function as
interrupt requests regardless of the configuration
specified in the Port 3 Mode register. Unwanted
interrupts must be masked off as described in
Chapter 10.

R247 P3M
Port 3 Mode Register

(% F7; Write Only)

Handshake
Inputs

Handshake
Outputs

Interrupt
Requests

Serial Input
Output

Counter/Timer

Status

L ='NPUT P3s = OUTPUT
P3s = RDYO/DAVO

3047-012

1 P32 = DAVO/RDYO

o 0 P33 = INPUT
L-____ ~ ~}P33 = INPUT

1 1 P33 = DAV1/RDY1
L-_______ O P31 = INPUT (TIN)

1 P31 = DAV2IRDY2

OP30 = INPUT L-________ 1 P30 = SERIAL IN

P34 = OUTPUT

P34 = DM
P34 = RDY1/DAV1

P36 = OUTPUT (TOUT)
P36 = RDY2IDAV2

P3T = OUTPUT
P3T = SERIAL OUT

Figure 9-14. Port J I/O Operation

DAV2/RDY2
DAVO/RDYO
DAV1/RDY1
RDY1/DAV1
RDYO/DAVO
RDY2/0AV2

51
SO

9-7

I/O Ports

9.6 PORT HANDSHAKE

When Ports 0, 1, or 2 are configured for hand­
shake operation, a pair of lines from Port 3 is
used for handshake controls for each port. The
handshake controls are interlocked to properly
time asynchronous data transfers between t.he Z8
and its peripheral. One control line (DAVn) func­
tions as a strobe from the sender to indicate to
the receiver that data is available. The second
control line (RDYn) acknowledges receipt of the
sender's data, and indicates when the receiver is
ready to accept another data transfer.

In the input mode, data is latched into the port's
input register by the first DAV signal, and is
protected from being overwritten if additional
pulses occur on the DAV line. This overwrite pro­
tection is maintained until the port data is
read. In the output mode, data written to the
port is not protected and can be overwritten by
the Z8 during the handshake sequence. To avoid
losing data, the software must not overwrite the
port until the corresponding interrupt request
indicates that the external device has latched the
data.

The software can always read Port 3 output and
input handshake lines, but cannot write to the
output handshake lines.

DAV
(INPUT TO Z8)

2

RDY
(OUTPUT FROM Z8) ---+-.,.

DATA ON PORT
(INPUT TO Z8)

Following is the recommended setup sequence when
configuring a port for handshake operation for
the first time after a reset:

• Load P01 M or P2M to configure the port for
input/output.

• Load P3 to set the Output Handshake bit to a
logic 1.

• Load P3M to se lect the Handshake mode for the
port.

Once a data transfer begins, the configuration of
the handshake lines should not be changed until
handshake is completed.

Figures 9-15 and 9-16 show detailed operation
for the handshake sequence.

In applications requiring a strobed signal instead
of the interlocked handshake, the Z8 can satisfy
this requirement as follows:

• In the Strobed Input mode, data can be latched
in the port input register using the DAV
input. The data transfer rate must allow
enough time for the software to read the port
before strobing in the next character. The RDY
output is ignored.

• In the Strobed Output mode, the RDY input
should be tied to the DAV output.

3 4

State 1. Port 3 Ready output is High, indicating that the Z8 is ready to accept data.
State 2. The 1/0 device puts data on the port and then activates the r:5AV input. This causes

the data to be latched into the port input register and generates an interrupt re­
quest.

State 3. The Z8 forces the Ready (ROY) output Low, signaling to the 1/0 device that the
data has been latched.

State 4. The 1/0 device returns the OAV line High in response to ROY going Low.
State 5. The Z8 software must respond to the interrupt request and read the contents of

the port in order for the handshake sequence to be completed. The RDY line goes
High if and only if the port has not been read and DAIJ is High. This returns the in­
terface to its initial state.

Figure 9-15. Z8 Input Handshake

9-8 3047-092

2 3 4 5

ROY
(INPUT TO Z8)

DAV
(OUTPUT FROM Z8)

DATA ON PORT
VALID DATA (OUTPUT FROM Z8)

State 1. RDY input is High indicating that the I/O device is ready to accept data.
State 2. The Z8 writes to the port register to initiate a data transfer. Writing the port outputs

new data and forces r5AV Low if and only if RDY is High.
State 3. The 1/0 device forces RDY Low after latching the data. RDY Low causes an inter·

rupt request to be generated. The Z8 can write new data in response to RDY going
Low; however, the data is not output until State 5.

State 4. The DAV output from the Z8 is driven High in response to RDY going Low.
State 5. After DAV goes High, the 1/0 device is free to raise RDY High thus returning the in·

terface to its initial state.

Figure 9-16. zn Output Handshake

l/U Ports

Figures 9-17 and 9-18 illustrate the strobed
handshake connections.

9.7 I/O PORT RESET CONDITIONS

A
P2o-P27 K

'I

Z8 I/O
DEVICE

DAV
P31

Figure 9-17. Input Strobed Handshake
using Port 2

~
P2o-P27)

r
Z8 1/0

DAV DEVICE
P3s

ROY 1
P31

Figure 9-1B. Output Strobed Handshake
using Port 2

3047·093, 3047·08t, 3047·063

After a hardware reset, mode registers P01M, P2M,
and P3M are set as shown in Figures 9-19 - 9-22.
Ports 0, 1 and 2 are configured for input opera­
tion on all bits, except Port 1 in the Z8681 and
Ports 0 and 1 in the Z8682 as shown.

The pull-ups of Port 2 are set for open-drain. If
active pull-ups are desired for Port 3 outputs,
remember to configure them using P3M (Figure
9-22).

All special I/O functions of Port 3 are inactive,
with P30-P33 set as inputs and P34-P37 set as
outputs (Figure 9-23).

9-9

I/O Ports

9-10

R248 P01M
Port 0-1 Mode Register

(% F8; Write Only)

P04-P07 MODE:]
OUTPUT = 00 -.-J

INPUT = 01
A12-A15 = 1X

EXTERNAL MEMORY TIMING
NORMAL = 0

*EXTENDED = 1

I [P08oP~, ~u"T~~T
01 = INPUT
1X = As-All

. ST~:KESX;LEERCJ~~N
1 = INTERNAL

P1 o-P1 7 MODE
00 = BYTE OUTPUT
01 = BYTE INPUT
10 = ADo-AD7
11 = HIGH·IMPEDANCE ADo-AD7,

AS, OS, R/iii, As-All, A12-A15

·ALWAYS EXTENDED TIMING AFTER RESET EXCEPT Z8682

Figure 9-19. Z8601/11 Port 0 and 1 Reset

R248 P01M
Port 0-1 Mode Register

(% F8; Write Only)

P04-P07 MODE:]
OUTPUT = 00 -.-J

INPUT = 01
A12-A15 = 1X

EXTERNAL MEMORY TIMING
NORMAL = 0

*EXTENDED = 1

c: POO-P03 MODE L 00 = OUTPUT
01 = INPUT
1X = As-All

STACK SELECTION
o = EXTERNAL
1 = INTERNAL

·ALWAYS EXTENDED TIMING AFTER RESET EXCEPT Z8682

Figure 9-20. Z8681 Ports 0 and 1 Reset

R248 P01M
Port 0-1 Mode Register

(% F8; Write Only)

P04 -P07 MODE:]
OUTPUT = 00 -.-J

INPUT = 01
A12-A15 = 1X

EXTERNAL MEMORY TIMING
NORMAL = 0

EXTENDED = 1

I [""8oP~, ~u"T~~T
01 = INPUT
1X = As-All

STACK SELECTION
o = EXTERNAL
1 = INTERNAL

P1 o-P1 7 MODE L-____ 10 = ADo-AD7

Figure 9-21. Z8682 Ports 0 and 1 Reset

3047·006,3047-008,3047-054

3047-013,3047-014

I/O Ports

R246 P2M
Port 2 Mode Register

(% F6; Write Only)

/1/1/1/1/1/1/1/11

I P2o-P27 MODE '------0 OUTPUT
1 INPUT

Figure 9-22. Port 2 Reset

R247 P3M
Port 3 Mode Register

(% F7; Write Only)

/0/01010101011101

I' Lo PORT 2 PULL·UPS OPEN DRAIN
1 PORT 2 PULL-UPS ACTIVE

RESERVED

o P32 = INPUT P3s = OUTPUT
1 P32 = DAVO/RDYO P3s = RDYO/DAVO

o 0 P33 = INPUT P34 = OUTPUT

'------~ ~} P33 = INPUT P34 = DM
1 1 P33 = DAVlIRDY1 P34 = RDY1/DAV1

'---_______ 0 P31 = INPUT (TIN) P36 = OUTPUT (ToUT)
1 P31 = DAV2/RDY2 P3G = RDY2IDAV2

o P30 = INPUT P37 = OUTPUT
'-----------1 P30 = SERIAL IN P30 = SERIAL OUT

'--_________ ~ ~~~:~~ g~F

Figure 9-23. Port J Reset

9-11

10.1 INTRODUCTION

The 'l8 microcomputer allows six different inter­
rupt levels from eight sources: the four Port 3
lines P30-P33 make up the external interrupt
sources while serial in, serial out, and the two
counter/timers make up the internal sources.
These interrupts can be masked and their prior­
ities set by using the Interrupt Mask and the
Interrupt Priority registers. All six interrupts
can be globally disabled by resetting the master
Interrupt Enable bit D7 in the Interrupt Mask reg­
ister with a Disable Interrupt (D1) instruction.
Interrupts are globally enabled by setting D7 with
an Enable Interrupt (EI) instruction.

There are three interrupt control registers: the
Interrupt Request register (IRQ), the Interrupt
Mask. register (IMR), and the Interrupt Priority
register (IPR). Figure 10-1 shows addresses and
identifiers for the interrupt control registers.
Figure 10-2 is a block diagram showing the
Interrupt Mask and Interrupt Priority logic.

The l8 family supports both vectored and polled
interrupt handling. Details on vectored and
polled interrupts can be found in Sections 10.6
and 10.7.

DEC HEX IDENTIFIERS ..------....
251 INTERRUPT MASK FB IMR

250 INTERRUPT REQUEST FA IRQ

249 INTERRUPT PRIORITY F9 IPR

Figure 10-1. Interrupt Control Registers

Chapter 10
Interrupts

10.2 INTERRUPT SOURCES

Table 10-1 presents the interrupt types, sources,
and vectors available in the l8 family of
processors.

10.2.1 External Interrupt Sources

External sources involve interrupts request lines
IRQO-IRQ3' IRQO' IRQ1' and IRQ2 are always gen­
erated by a negative edge signal on the corre­
sponding Port 3 pin (P3Z' P33' P31 correspond to
IRQO' IRQ1, and 1RQZ' respectively). Figure 10-3
is a block diagram for interrupt sources IRQO'
IRQ1' and IRQ2'

When the Port 3 pin (P31, P32, or P33) goes low,
the first flip-flop is set. The next two flip­
flops synchronize the request to the internal
clock and delay it by four external clock
periods. The output of the last flip-flop (IRQO'
IRQ1' or IRQ3) goes to the corresponding Interrupt
Request register.

INTERRUPT
REQUEST

GLOBAL
INTERRUPT

ENABLE

IRQo-IRQS

VECTOR SELECT

Figure 10-2. Interrupt Block Diagraa

6

3047-036.3047-037 10-1

Interrupts

Table 10-1.
Interrupt Types, Sources, and Vectors

Vector
NIIIe Source Location C~ents

IRQO DAVO, IRQO 0,1 External (P32)' , Edge Triggered

IRQ1 DAV1' IRQ1 2,3 External (P33)' , Edge Triggered

IRQZ DAV2' IRQZ' TIN 4,5 External (P31)' , Edge Triggered

IRQ3 6,7 External (P30)' , Edge Triggered
IRQ3

Serial In 6,7 Internal

TO 8,9 Internal
IRQ4

Serial Out 8,9 Internal

IRQ5 T1 10,11 Internal

IRQ3 can be generated from an external source only
if Serial In is not enabled; otherwise, its source
is internal. The ext,ernal request is generated by

a negative edge signal on P30 as shown in Figure
10-4. Again, the external request is synchronized
and delayed before reaching IRQ.

t----1~----I S o o o o

..I1_
R

CLOCK--~------~

(INTERNAL)

Figure 10-'. Interrupt Sources IRQO-IRQ2 Block Diagrall

P30 P3M6

(IR03
SERIAL IN)

o

CLOCK--+------~

o 1-..... --+---1

IR03 EXTERNAL SOURCE

SERIAL RECEIVER 1--_

IR03
INTERNAL
SOURCE

Figure 10-4. Interrupt Source IRQ, Block Diagram

IROm

m = 0,1,2

IR03

10-2 3047·038.3047·039

10.2.2 Internal Interrupt Sources

Internal
IRQ3-IRQ5·

sources involve interrupt requests
If Serial In is enabled, IRQ3 gen-

erates an interrupt request whenever the receiver
assembles a complete byte. Interrupt level IRQ4
has two mutually exclusive sources, Counter/Timer
o (TO) and the Serial Out transmitter. If Serial
Out is enabled, an interrupt request is generated
when the transmit buffer is empty. If TO is
enabled, an interrupt request is generated at TO
end-of-count. IRQ5 generates an interrupt request
at Counter/Timer 1's (T1) end-of-count.

For more details on the internal interrupt
sources, refer to the chapters describing serial
I/O and the counter/timers.

10.J INTERRUPT REQUEST (IRQ) REGISTER lOGIC AND
TIMING

Figure 10-5 shows the logic diagram for the
Interrupt Request register. The leading edge of
the request will set the first flip-flop, which
will remain set until interrupt requests are
sampled.

IROo-IROs Q

SAMPLE
CLOCK

Interrupts

Requests are sampled internally during the last
clock cycle before an opcode fetch (Figure 10-6).
External requests are sampled two internal clocks
earlier, due to the synchronizing flip-flops shown
in Figures 10-3 and 10-4.

At sample time the request is transferred to the
second flip-flop in Figure 10-5, which drives the
interrupt mask and priority logic. When an
interrupt cycle occurs, this flip-flop will be
reset only for the highest priority level that is
enabled.

The user has direct access to the second flip-flop
by reading and writing the IRQ register. IRQ is
read by specifying it as the source register of an
instruction and written by specifying it as the
destination register.

10.4 INTERRUPT INITIALIZATION

After reset, all interrupts are disabled and must
be initialized before vectored or polled interrupt
processing can begin. The Interrupt Priority reg­
ister (IPR), Interrupt Mask register (IMR) and
Interrupt Request register (IRQ) must be initial­
ized, in that order, to start the interrupt
process. However, IPR need not be initialized for
polled processing.

S

R

Q

TO MASK
AND
PRIORITY
LOGIC

FROM PRIORITY
LOGIC

Figure 10-5. IRQ Register logic

L..... ______ EXTERNAL INTERRUPT

REQUESTS SAMPLED

Figure 10-6. Interrupt Request T:iJning

3047-040, 3047-041 10-3

Interrupts

10.4.1 Interrupt Priority Register (IPR)
Initialization

IPR (Figure 10-7) is a write-only register that
sets priorities for the six levels of vectored
interrupts in order to resolve simultaneous
interrupt requests. (There are 48 sequence
possibilities for interrupts.) The six interrupt
levels IRQO-IRQ5 are divided into three groups of
two interrupt requests each. One group contains

IRQ3 (SI!P30) and IRQ5 (T 1)' another group
contains IRQO (P32) and IRQ2 (P31), and the third
group contains IRQ1 (P33) and IRQ4 (SO/TO).

Priorities can be set both within and between
groups as shown in Table 10-2. Bits 01 , 02' and
05 define the priority of the individual members
within the three groups. Bits DO' 03' and 04 are
encoded to define six priority orders between the
three groups. Bits 06 and 07 are not used.

R2491PR
Interrupt Priority Register

(% F9; Write Only)

Group

C

B

A

10-4

IRQ3, IRQ5 PRIORITY (GROUP Aj ~
o = IRCS > IRC3
1 = IRC3 > IRCS

IRCO, IRC2 PRIORITY (GROUP B)
o = IRC2 > IRCO -------..
1 = IRCO > IRC2

IRC1, IRC4 PRIORITY (GROUP C)
o = IRC1 > IRC4 --------..1
1 = IRC4 > IRC1

INTERRUPT GROUP PRIORITY
RESERVED = 000
C > A > B 001
A> B > C 010
A> C > B 011
B > C > A 100
C> B > A 101
B>A>C 110
RESERVED 111

Figure 10-7. Interrupt Priority Register

Table 10-2. Interrupt Priority

Bit Priority
Highest

Bit Pattern
Lowest

Group Priority
Highest --> Lowest

°1=0 IRQ1 IRQ4 °4
1 IRQ4 IRQ1

0

°2=0 IRQ2 IRQO 0
1 IRQO IRQZ 0

0

°s=O IRQS IRQ3
1 IRQ3 IRQS

O2 DO

0 0
0

0
1

0 0
0 1

0

NOT USED
CAB
ABC
A C B
B C A
C B A
B A C

NOT USED

3047-094

10.4.2 Interrupt Mask Register (IHR)
Initialization

IMR (Figure 10-8) individually or globally enables
or disables the six interrupt requests. When bits
DO-OS are set to 1, the corresponding interrupt
requests are enabled. 07 is the master enable and
must be set before any of the individual interrupt
requests can be recognized. Resetting 07 globally
disables all of the interrupt requests. 07 is set
and reset by the EI and 01 instructions. It is
automatically reset during an interrupt machine
cycle and set following the execution of an
Interrupt Return (IRET) instruction.

NOTE
07 must be reset by the 01 instruction
before the contents of the Interrupt
Mask register or the Interrupt Priority
register are changed except:

• Immediately after a hardware .reset,
or

• Immediately after executing an inter­
rupt cycle and before IMR7 has been
set by any instruction.

10.4.3 Interrupt Request (IRQ) Register
Initialization

IRQ (Figure 10-9) is a read/write register that
stores the interrupt requests for both vectored
and polled interrupts. When an interrupt is made
on any of the six levels, the corresponding bit
position in the register is set to 1. Bits DO-OS
are assigned to interrupt requests IRQO-IRQ5'
respectively.

R251 IMR
Interrupt Mask Register

(% FB; Read/Write)

1 ENABLES IROO

1 ENABLES IR01

1 ENABLES IR02

1 ENABLES IR03

1 ENABLES IR04

1 ENABLES IR05

1 ENABLES INTERRUPTS

Figure 10-8. Interrupt Mask Register

3047-095, 3047-064

Interrupts

IRQ is held in a Reset state until an EI instruc­
tion is executed. For polled processing, IRQ must
still be initialized by an EI instruction, but IMR
should first be cleared to 0 to individually
inhibit a 11 interrupt requests while interrupts
are globally enabled:

CLR IMR
EI
01

10.5 IRQ SOFTWARE INTERRUPT GENERATION

IRQ can be used to generate software interrupts by
specifying IRQ as the destination of any instruc­
tion referencing the register file. These Soft­
ware Interrupts (SWI) are controlled in the same
manner as hardware-generated requests, i.e., the
IPR and the IMR control the priority and enabling
of each SWI level.

To generate an SWI, the desired request bit in the
IRQ is set as follows:

OR IRQ,ItIRQLVL

where the immediate data, IRQLVL, has a 1 in the
bit position corresponding to the level of the SWI
desired. For example, if an SWI on level 5 is
desired, IRQLVL would have a 1 in the bit 5 posi­
tion:

OR IRQ,#%200100000

where the immediate data is preceded by %2 to
indicate a binary constant. With this instruc­
tion, if the interrupt system is globally enabled,
level 5 is enabled, and there are no higher prior­
ity pending requests, control is transferred to
the service routine pointed to by the level 5
vector.

R250 IRQ
Interrupt Request Register

(% FA; Read/Write)

~
I L'ROO

~IR01
IR02

IR03

~------------IR04

L----------------IR05

Figure 10-9. Interrupt Request Register

10-5

Interrupts

SP AND STACK
BEFORE INTERRUPT

~ ______ SP ______ ~~
TOP OF STACK

SP

SP AND STACK
AFTER INTERRUPT

~
PCl

~ ------------. ~U
FLAGS

figure 10-10. Effect of Interrupt on Stack

64K --------

o~------------~ Z8 PROGRAM MEMORY

INTERRUPT
SERVICE
ROUTINE

VECTOR SELECTED BY
PRIORITY LOGIC

Figure 10-11. Interrupt Vectoring

10.6 VECTORED PROCESSING

Each Z8 interrupt level has its own vector. When
an interrupt occurs, control passes to the service
routine pointed to by the interrupt's location in
program memory. The sequence of events for vec­
tored interrupts is as follows:

• PUSH PC lower byte on stack
• PUSH PC upper byte on stack
• PUSH FLAGS on st8~k
• Fetch upper byte of vector
• Fetch lower byte of vector
• Branch to service routine specified by vector

Figures 10-10 and 10-11 show the vectored
interrupt operation.

10-6

10.6.1 Vectored Interrupt Cycle Tiaing

Interrupt cycle timing for all Z8 devices except
the Z8681 is diagrammed in Figure 10-12. Timing
for the Z8681 ROMless device is different and is
shown in Figure 10-13.

10.6.2 Nesting of Vectored Interrupts

Nesting of vectored interrupts allows higher
priority requests to interrupt a lower priority
request. To initiate vectored interrupt nesting,
do the following during the interrupt service
routine:

• Push the old IMR on the stack.
• Load IMR with a new mask to disable lower

priority interrupts.
• Execute EI instruction.
• Proceed with interrupt processing.
• A fter processing is complete, execute 01

instruction.
• Restore the IMR to its original value by

returning the previous mask from the stack.
• Execute IRET.

Depending on the application, some simplification
of the above procedure may be possible.

10.7 P(LlED PROCESSItt;

Polled interrupt processing is supported by
masking off ~he IRQ levels to be polled. This is
accomplished by clearing the corresponding bit in
the IMR to O.

3047·043,3047·044

To initiate polled processing, check the bits of
interest in the IRQ using the Test Under Mask (1M)
instruction. If the bit is set, call or branch to
the service routine. The service routine services
the request, resets its Request bit in the IRQ,
and branches or returns back to the main program.
An example of a polling routine is as follows:

TM IRQ,IIMASK
JR Z NEXT
CALL SERVICE

NEXT:

!Test for request
!If no request go to NEXT
!If request is there
!then service it

SERVICE: ! Process Request

AND IRQ,IIMASK_ !Clear Request bit
RET !Return to next

In this example, if IRQ2 is being polled, MASK
will be ~~200000100 (in binary) and MASK_ will be
%211111011.

Interrupts

10.8 RESET CONDITIONS

During a reset, all bits in IPR are undefined.

In IMR, bit 07 is 0 and bits DO-OS are undefined.
Bit 06 is not implemented, though reading this bit
returns O.

IRQ bits DO-OS are held at 0 until an EI instruc­
tion is eX,ecuted. Bits D6 and D7 are not imple­
mented, but reading these bits returns O.

10-7

......
o
I

CJ)

w o
!j
6
~

51'
w
o
!j
6
~
0>

INTERNAL
CLOCK

_1-___ M2_!-M3_I_STACKPUSH_!-STACK PUSH_I_STACK PUSH_I-U7_!-M,_I_M2_

ulU u u u u u u u ur--
iii

ADo-AD7 OUT

ADO-AD7IN

INTERNAL
CLOCK

iii

RlW

ADo-AD7 OUT ~

ADO-AD7IN

RlW

GJ I sP-=1) PCl ! SP-2 ! PCu ! SP-3! FLAGS ! FL!GSJ I VECT I CJ
- OPCODE (DISCARDE!l) FIRST INSTRUCTION OF INTERRUPT_~

SERVICE ROUTINE L-J

..... ______________________ !-FOR STACK EXTERNAL ONLY

Figure 10-12. ROM Z8 Interrupt T~ing (shrink parts)

----+l-_--M3_!-STACK PUSH_I_STACK PUSH_I_STACK PUSH-I-VE6'ii;~IGH_1-vE6TEJ;~ow-I-M,-l_M2-

~ I VECT I CJ~
VECT+l

r?-1)--PC-l -, SP-2 r:==!Cu ~[. FLAGS=:r=J::> r-1-
EVEN VECTOR ADDRESS ODD VE~DRES~

[3

CJ-OPCODE (DISCARDED) I VECT.I I VECTd CJ------
FIRST INSTRUCTION OF INTERRUPT SERVICE ROUTlNE---'

..... ____________________ I-FOR STACK EXTERNAL ONLY

figure 10-13. Z8681 ROHless Z8 Interrupt TDing

.....
::J
rT
CD .., ..,
C
"C
rT
en

11.1 INTRODUCTION

The Z8 provides two 8-bit counter/timers, TO and
f1' each driven by its own 6-bit prescaler, PREO
and PRE1• Both counter/timers are independent of
the processor instruction sequence, which relieves
software from time-critical operations such as
interval timing or event counting.

WRr
E JJ

OSC PREO
INITIAL VALUE

~
REGISTER

~ -;.2

-;.4 r---. 6·BIT
DOWN COUNTER

INTERNAL
CLOCK

EXTERNAL CLOCK

CLOCK
LOGIC

L.-::J)- 6·BIT

\
+4 DOWN COUNTER -

INTERNAL CLOCK II GATED CLOCK
TRIGGERED CLOCK

PRE1
INITIAL VALUE

REGISTER

TIN P31

WJTE II

Chapter 11
Counter/Timers

Each counter/timer operates in either Single-Pass
or Continuous mode. At the end-of-count, counting
either stops or the initial value is reloaded and
counting continues. Under software control, new
values are loaded immediately or when the end-of­
count is reached. Software also controls counting
mode, how a counter/timer is started or stopped,
and its use of I/O lines. Both the counter and
prescaler registers can be altered while the
counter/timer is running.

INTERNAL DATA BUS

WRr
E ~~

TO
INITIAL VALUE

REGISTER

~
~

8·BIT
DOWN COUNTER

~
8·BIT

DOWN COUNTER

II
T1

INITIAL VALUE
REGISTER

WR~TE II
INTERNAL DATA BUS

REr
D II

TO
CURRENT VALUE

REGISTER

f~

+2

~~
T1

CURRENT VALUE
REGISTER

REtD JJ

IR 04

SE RIAL 1/0
OCK CL

To
P3

UT
6

IR 05

Figure 11-1. Counter/Timer Block Diagram

3047-060 11-1

Counter/Timers

Counter/timers 0 and 1 are driven by a timer clock
generated by dividing the internal clock by four.
The divide-by-four stage, the 6-bit prescaler, and
the 8-bit counter/timer form a synchronous 16-bit
divide chain. Counter/timer 1 can also be driven
by an external input (TIN) via Port 3 line P31•
Port 3 line P36 can serve as a timer output
(TOUT) through which TO' T1, or the internal
clock can be output. The timer output will toggle
at the end-of-count. Figure 11-1 is a block
diagram of the counter/timers.

The counter/timer, prescaler, and associated mode
registers are mapped into the register file as
shown in Figure 11-2. This allows the software to
treat the counter/timers as general-purpose
registers, and eliminates the need for special
instructions.

11.2 PRESCAlERS AND COUNTER/TIMERS

The prescalers, PREO (%F5) and PRE1 U~F3), each
consist of an 8-bit register and a 6-bit
down-counter as shown in Figure 11-1. The
prescaler registers are write-only registers.
Reading the prescalers returns the value %FF.
Figures 11-3 and 11-4 show the prescaler
registers.

The six most significant bits (02-07) of PREO or
PRE1 hold the prescalers count modulo, a value
from 1 to 64 decimal. The prescaler registers
also contain control bits that specify TO and T1
counting modes. These bits also indicate whether
the clock source for T 1 is internal or external.
These control bits will be discussed in detail
throughout this chapter.

The counter/timers, TO (%F4) and T1 (%F 2)' each
consist of an 8-bit down-counter, a write-only

11-2

DEC

247

245

244

243

242

241

PORT 3 MODE

TO PRESCALER

TIMER/COUNTER 0

T1 PRESCALER

TIMER/COUNTER 1

TIMER MODE

HEX IDENTIFIERS

F7 P3M

F5 PREO

F4 TO

F3 PRE1

F2 T1

F1 TMR

Figure 11-2. Counter/T iDler Register Hap

register which holds the initial count value, and
a read-only register which holds the current count
value (Figure 11-1). The initial value can range
from 1 to 256 decimal Um1,%02, •• ,%OO). Figure
11-5 illustrates the counter/timer registers.

R245 PREO
Prescaler 0 Register

(% F5; Write Only)

~
COUNTMODE
o = To SINGLE·PASS
1 = To MODULO·N

RESERVED (MUST BE 0)

PRESCALER MODULO
'--------(RANGE: 1-64 DECIMAL

01-00 HEX)

Figure 11-3. Prescaler 0 Register

R243 PRE1
Prescaler 1 Register

(% F3; Write Only)

~
COUNTMODE
1 = T1 MODULO·N
o = T1 SINGLE·PASS

CLOCK SOURCE
1 = T1 INTERNAL
o = T 1 EXTERNAL (TIN)

PRESCALER MODULO
'--------(RANGE: 1-64 DECIMAL

01-00 HEX)

Figure 11-4. Prescaler 1 Register

R242 T1
Counter/Timer 1 Register

(% F2; Read/Write)
R244 TO

CounterlTimer 0 Register
(% F4; Read/Write)

I 0 7 1 06 1 0 5 1 04 1 03 1 02 1 0 1 I Do I

L INITIAL VALUE WHEN WRITTEN
(RANGE 1·256 DECIMAL, 01'()0 HEX)
CURRENT VALUE WHEN READ

Figure 11-~. Counter/Timers 0 and 1 Registers

3047-082,3047-096,3047-097,3047-015

11.3 COUNTER/TIMER OPERATION

Under software control, counter/timers are started
and stopped via the Timer Mode register (%Fl) bits
DO-D3 (Figure 11-6). Each counter/timer is asso­
ciated with a Load bit and an Enable Count bit.

11.3.1 load and Enable Count Bits

Setting the Load bit (DO to 1 for TO and D2 to 1
for T 1) transfers the initial value in the pre­
scaler and the counter/timer registers into their
respective down-counters. The next internal clock
resets bits DO and D2 to 0, readying the Load bit
for the next load operation. The initial values
may be loaded into the down-counters at any time.
If the counter/timer is running, it continues to
do so and starts the count over with the initial
value. Therefore, the Load bit actually functions
as a software re-trigger.

The counter/timers remain at rest as long as the
Enable Count bits Dl and 03 are both O. To enable
counting, the Enable Count bit (01 for TO and D3
for T 1) must be set to 1. Counting actually
starts when the Enable Count bit is written by an
instruction. The first decrement occurs four
internal clock periods after the Enable Count bit
has been set.

The Load and Enable Count bits can be set at the
same time. For example, using the instruction OR
TMR /1%03 sets both DO and 01 of TMR to 1. This
loads the initial values of PREO and TO into their
respective counters and starts the count after the
M2T2 machine state after the operand is fetched
(Figure 11-7).

11.3.2 Prescaler Operations

During counting, the programmed clock source
drives the prescaler 6-bit counter. The counter
is counted down from the value specified by bits
D2-D7 of the corresponding prescaler register,
PREO or PRE 1 (Figure 11-8). When the prescaler
counter reaches its end-of-count, the initial
value is reloaded and counting continues. The
prescaler never actually reaches O. For example,
if the prescaler is set to divide by 3, the ~ount
sequence is:

3-2-1-3-2-1-3-2 ••••

Each time the prescaler reaches its end-of-count a
carry is generated, which allows the counter/timer
to decrement by one on the next timer clock
input. When the counter/timer and the prescaler

3047-016 3047-066. 3047-017

Counter/Timers

both reach their end-of-count, an interrupt
request is generated -- IRQ4 for TO and 1RQ5 for
T1• Depending on the counting mode selected, the
counter/timer will either come to rest with its
value at ~oOO (Single-Pass mode) or the initial
value will be automatically reloaded and counting
will continue (Continuous mode).

R241 TMR
Timer Mode Register

(% F1; Read/Write)

~
L 0 = NO FUNCTION

1 = LOAD To

o = DISABLE To COUNT
1 = ENABLE To COUNT

o = NO FUNCTION
1 = LOAD T1

'--____ 0 = DISABLE T1 COUNT
1 = ENABLE T1 COUNT

Figure 11-6. Timer Hode Register

M3

TMR IS WRITIEN
COUNTERITIMERS

ARE LOADED

1ST DECREMENT
OCCURS FOUR

CLOCKS LATER

Figure 11-7. Starting The Count

R243 PRE1
Prescaler 1 Register

(% F3; Write Only)

R245 PREO
Prescaler 0 Register

(% F5; Write Only)

LCOUNT MODE
1 = T1 MODULO·N
o = T1 SINGLE·PASS

Figure 11-8. Counting Hodes

11-3

Counter/Timers

The counting modes are controlled by bit 00 of
PREO and PRE1 , with 00 cleared to 0 for
Single-pass counting mode or set to 1 for
Continuous mode.

The counter/timers can be stopped at any time by
setting the Enable Count bit to 0, and restarted
by setting it back td 1. The counter/timer will
continue its count value at the time it was
stopped. The current value in the counter/timer
(TO or T1) can be read at any time without
affecting the counting operation.

New initial values can be written to the prescaler
or the counter/timer registers at any time. These
values will be transferred to their respective
down-counters on the next load operation. If the
counter/timer mode is Continuous, the next load
occurs on the timer clock following an
end-of-count. New initial values should be
written before the desired load operation, since
the prescalers always effectively operate in
Continuous count mode.

The time interval (i) until end-of-count, is given
by the equation

i:txpxv

in which t is 8 divided by XTAL frequency, p is
the prescaler value (1 - 64), and v is the
counter/timer value (1 - 256). It should be
apparent that the prescaler and counter/timer are
true divide-by-n counters.

11.4 TOUT MODES

The Timer Mode register TMR (%F1) (Figure 11-10)
is used in conjunction with the Port 3 Mode

register P3M (%F7) (Figure 11-9) to configure P36
for TOUT operation. In order for TOUT to
function, P36 must be defined as an output line by
setting P3M bit 05 to O. Output is controlled by
one of the counter/timers (TO or T1) or the
internal clock.

The counter/timer to be output is selected by TMR
bits 07 and 06. TO is selected to drive the
TOUT line by setting 07 to 0 and 06 to 1.
Likewise, T1 is selected by setting 07 and 06 to 1
and 0 respectively. The counter/timer TOUT mode
is turned off by setting TMR bits 07 and 06 both
to 0, freeing P36 to be a data output line.

T OUT is initialized to a logic 1 whenever the
TMR Load bit (00 for TO or 02 for f 1) is set to 1.

R247 P3M
Port 3 Mode Register

(% F7; Write Only)

o P3l = INPUT (TIN) P36 = OUTPUT (TOUT)
1 P3l = DAV2/RDY2 P36 = RDY2IDAV2

Figure 11-9.
Port J Mode Register TOUT Operation

R241 TMR
Timer Mode Register

(% F1; Read/Write)

TOUT MODES I
TOUT OFF = 00

To OUT = 01
Tl OUT = 10

INTERNAL CLOCK OUT = 11 L 0 = NO FUNCTION
1 = LOAD To

o = NO FUNCTION
1 = LOAD Tl

Figure 11-10. Timer Mode Register TOUT Operation

11-4 3047-010,3047-018

Counter/Timers

IRQ4 TMR
(TO ENO·OF·COUNT) -----, 07-06 = 01

,....-....

IRQS ~TMR
(T1 ENO·OF·COUNT) 07-06 = 10

figure 11-11. Counter/Timers Output Via TOUT

INTERNAL
CLOCK

Figure 11-12. Internal Clock Output Via TOUT

At end-of-count, the interrupt request line (IRQ4
or IRQ5)' clocks a toggle flip-flop. The output
of this flip-flop drives the TOUT line, P36• In
all cases, when the selected counter/timer reaches
its end-of-count, TOUT toggles to its opposite
state (Figure 11-11). If, for example, the
counter/timer is in Continuous counting mode,
T OUT will have a 50% duty cycle output. This
duty cycle can easily be controlled by varying the
initial values after each end-of-count.

The internal clock can be selected as output
instead of TO or T1 by setting TMR bits D7 and D6
both to 1. The internal clock (XTAL frequency/2)
is then direct~y output on P36 (Figure 11-12).

R241 TMR
Timer Mode Register

(% F1; Read/Write)

TIN MODES
EXTERNAL CLOCK INPUT = 00

GATE INPUT = 01
TRIGGER INPUT = 10

(NON·RETRIGGERABLE)
TRIGGER INPUT = 11

(RETRIGGERABLE)

While programmed as TOUT' P36 cannot be modified
by a wr ite to port register P3. However, the ZS
software can examine P36 's current output by
reading the port register.

Figure 11-13. Timer Mode Register TIN Operation

11.5 TIN tD>ES

The Timer Mode register TMR (%F1) (Figure 11-13)
is used in conjunction with the Prescaler register
PRE1 (%F3) (Figure 11-14) to configure P31 as
fIN. TIN is used in conjunction with T1 in
one of four modes:

• External clock input
• Gated internal clock
• Triggered internal clock
• Retriggerable internal clock

3047·083.3047·067.3047·019.3047·020

R243 PRE1
Prescaler 1 Register

(% F3; Write Only)

L CLOCK SOURCE
1 = T1 INTERNAL
o = T1 EXTERNAL (TIN)

Figure 11-14. Prescaler 1 TIN Operation

11-5

Counter/Timers

The counter/timer clock source must be configured
for external by setting PRE1 bit 02 to O. The
Timer Mode register bits Os and 04 can then be
used to select the desired TIN operation.

For T 1 to start counting as a result of a TIN
input, the Enable Count bit 03 in TMR must be set
to 1. When using T IN as an external clock or a
gate input, the initial values must be loaded into
the down-counters by setting the Load bit 02 in
TMR to a 1 before counting begins. In the
descr iptions of T IN that follow, it is assumed
that the programmer has performed these opera­
tions. Initial values are automatically loaded
in Trigger and Retrigger modes so software loading
is unnecessary.

It is suggested that P31 be configured as an input
line by setting P3M bit Os to 0 although TIN is
still functional if P31 is configured as a hand­
shake input.

Each High-to-Low transition on TIN generates
interrupt request IRQ2' regardless of the selected
T IN mode or the enabled/disabled state of T 1 •
IRQ2 must therefore be masked or enabled according
to the needs of the application.

T'N -1 P31 H D
CLOCK

.IU1... i INTERNAL
CLOCK

1
D

j

11.5.1 External Clock Input Hode

The T IN External Clock Input mode (TMR bits Os
and 04 both set to 0) supports counting of
external events, where an event is considered to
be a High-to-Low transition on TIN (Figure
11-1S). occurrence (Single-Pass mode) or on every
nth occurrence (Continuous mode) of that event.

11.5.2 Gated Internal Clock Hode

The TIN Gated Internal Clock mode (TMR bits Os
and 04 set to 0 and 1 respectively) measures the
duration of an external event. I n this mode, the
T1 prescaler is driven by the internal timer
clock, gated by a High level on TIN (Figure
11-16). T1 counts while TIN is High and stops
counting while T IN is Low. Interrupt request
IRQ2 is generated on the High-to-Low transition of
TIN' signaling the end of the gate input.
Interrupt request IRQS is generated if T1 reaches
its end-of-count.

TMR
D5-D4 = 00

1
1

·1
PRE1 T1

~
IROS

IR02

Figure 11-15. External Clock Input Hode

~~ ________ ~ INTERNAL
CLOCK

TMR
D5-D4 = 01

~P_R_E_1 _T_1_ .. ~ 'Ra,
-!-4

IR02

Figure 11-16. Gated Clock Input Mode

11-6 3047-085, 3047-086

w a
.j>.
-.I
6
~
w

~
6
<0
(Xl

~

I

TIN
TRIGGER ----.

..IL

OSC ~ -;.2

OSC -;.2

P3l 0 0

f--.+ -;.4 r-. PREO

INTERNAL
CLOCK

TMR
05 = 1

EDGE
-;.4

TRIGGER

1

TMR
05-04 = 11

Figure 11-17. Triggered Clock Mode

TO f--4~ ... 2 f--.+ P3s
TOUT TIN

Figure 11-18. Cascaded Counter/Ti.mers

PRE1 T1

P3l H PRE1

L.

IRCS

IRC2

T1 IRCS

n o
c:
::l
("T
II)
.........
-4
3
C'D
en

Counter/Timers

11.5.3 Triggered Input Mode

The TIN Triggered Input mode (TMR bits Os and
04 set to 1 and a respectively) causes T1 to start
counting as the result of an external event
(Figure 11-17). T1 is then loaded and clocked by
the internal timer clock following the first High­
to-Low transition on the T IN input. Subsequent
T IN transitions do not affect T 1. In the Sin­
gle-Pass mode, the Enable bit is reset whenever T1
reaches its end-of-count. Further T IN transi­
tions will have no effect on T 1 until software
sets the Enable Count bit again. In Continuous
mode, once T1 is triggered counting continues
until software resets the Enable Count bit.
Interrupt request IRQS is generated when T1
reaches its end-of-count.

11.5.4 Retriggerable Input Mode

The TIN Retriggerable Input mode (TMR bits Os
and 04 both set to 1) causes T1 to load and start
counting on every occurrence of a High-to-Low
transition on TIN (Figure 11-17). Interrupt
request IRQS will be generated if the programmed
time interval (determined by T1 prescaler and
counter/timer register initial values) has elapsed
since the last High-to-L9W transition on TIN.
In Single-Pass mode, the end-of-count resets the
Enable Count bit. Subsequent TIN transitions
will not cause T1 to load and start counting until
software sets the Enable Count bit again. In Con­
tinuous mode, counting continues once T1 is trig­
gered until software resets the Enable Count bit.
When enabled, each High-to-Low ,TIN transition
causes T1 to reload and restart counting. Inter­
rupt request IRQS is generated on every end-of­
count.

11.6 CASCADING COUNTER/TIMERS

For some applications, it may be necessary to mea­
sure a time interval greater than a single coun­
ter/timer can measure. In this case, T IN and
TOUT can be used to cascade TO and T1 as a sin­
gle unit (Figure 11-18). TO should be configured
to operate in Continuous mode and to drive
TOUT. TIN should be configured as an external
clock input to T 1 and wired back to TOUT. On
every other TO end-of-count, TOUT undergoes a
High-to-Low transition which causes T 1 to count.
T1 can operate in either Single-Pass or Continuous

mode. Each time T 1's end-of-count is reached,
interrupt request IRQS is generated. Interrupt
requests IRQ2 (TIN High-to-Low transitions) and

11-8

IRQ4 (TO end-of-count) are also generated but are
most likely of no importance in this configuration
and should be disabled.

11.7 RESET CONDITIONS

After a hardware reset, the counter/timers are
disabled and the contents of both the counter/
timer registers and the prescaler modulos are
undefined. However, the counting modes are
configured for Single-Pass and T l' s clock source
is set for external. T IN is set for External
Clock mode, and the TOUT mode is off. Figures
11-19 through 11-22 show the binary reset values
of the Prescaler, Counter/Timer, and Timer Mode
registers.

R242 T1
Counter/Timer 1 Register

(% F2; Read/Write)
R244 TO

Counter/Timer 0 Register
(% F4; Read/Write)

L INITIAL VALUE WHEN WRITTEN
(RANGE 1·256 DECIMAL, 01·00 HEX)
CURRENT VALUE WHEN READ

Figure 11-19. Counter/Timer Reset

R243 PRE1
Prescaler 1 Register

(% F3; Write Only)

~
COUNTMODE
1 = T1 MODULO·N
o = T1 SINGLE·PASS

CLOCK SOURCE
1 = T1 INTERNAL
o = T1 EXTERNAL (TIN)

PRESCALER MODULO
L....-------(RANGE: 1-64 DECIMAL

01-00 HEX)

Figure 11-20. Prescaler 1 Register Reset

3047 -021, 3047-022

3047-023. 3047-024

R245 PREO
Prescaler 0 Register

(% F5; Write Only)

~
COUNTMODE
o = To SINGLE·PASS
1 = To MODULO·N

RESERVED

PRESCALER MODULO
L-------(RANGE: 1-64 DECIMAL

01-00 HEX)

figure 11-21. Prescaler 0 Reset

R241 TMR
Timer Mode Register

(% F1; Read/Write)

10101010101010101

TOUT MODES I
TOUT OFF = 00

To OUT = 01 ~
L 0 = NO FUNCTION

1 = LOAD To

T1 OUT = 10
INTERNAL CLOCK OUT = 11

TIN MODES
EXTERNAL CLOCK INPUT = 00

GATE INPUT = 01
TRIGGER INPUT = 10

(NON·RETRIGGERABLE)
TRIGGER INPUT = 11

(RETRIGGERABLE)

o = DISABLE To COUNT
1 = ENABLE To COUNT

o = NO FUNCTION
1 = LOAD T1

'--___ 0 = DISABLE T1 COUNT
1 = ENABLE T1 COUNT

Figure 11-22. T~r Hode Register Reset

Counter/Timers

11-9

12.1 INTRODUCTION

The Z8 microcomputer contains an on-board
full-duplex receiver/transmitter for asynchronous
data communications. The receiver/transmitter
consists of a Serial I/O register 510 (%F1) and
its associated control logic (Figure 12-1). The
510 is actually two registers--the receiver buffer
and the transmitter buffer--which are used in
conjunction with counter/timer TO and Port 3 I/O
lines P30 (input) and P37 (output). Counter/timer
fO provides the clock input for control of the
data rates.

Configuration of the ser ial I/O is controlled by
the Port 3 Mode register, P3M. The Z8 always
transmits 8 bits between the start and stop bits;
that is, 8 data bits or 7 data bits and 1 parity
bit. Odd parity generation and detection is
supported.

The Serial I/O register and its associated Mode
Control registers are mapped into the register
file as shown in Figure 12-2. This organization

Chapter 12
Serial 1/0

allows the software to access the serial I/O as
general-purpose registers, eliminating the need
for special instructions.

12.2 BIT RATE GENERATION

When Port 3 Mode register bit D6 is set to 1, the
serial I/O is enabled and TO automatically becomes
the bit rate generator (Figure 12-3). TO'S end­
of-cou~t signal no longer generates interrupt
request IRQ4; instead, the signal is used as the
input to the divide-by-16 counters (one each for
the receiver and the transmitter) which clock the
data stream.

The divide chain that generates the bit rate is
shown in Figure 12-4. The bit rate is given by
the following equation:

bit rate = XTAL frequency/(2 x 4 x p x t x 16)

where p and t are the initial values in the
Prescaler and Counter/Timer registers,
respectively.

J INTERNAL DATA BUS J

P3

SERIAL
1/0 CLOCK
(FROM TO)

0-

-

READ%FO ~ 11
RECEIVER TRANSFER

BUFFER

WRITE %FO

11 ~

RECEIVER TRANSMITTER
SERIAL CHAR

IN
~~ SHIFT f---- DETECT f- SHIFT

REGISTER r REGISTER

~ t SHIFT
SHIFT CLOCK

CLOCK RESET
START

PARITY
BIT '"'- CHECK

+16
DETECT

~ START

CLOCK - ... 6 CONTROL

t STOP

Figure 12-1. Serial I/O Block Diagram

STOP
BIT IRa4

DETECT

MARK

1---
~D- SERIAL

OUT I- P37

PARITY
GEN

IRa3

3047-068 12-1

Serial I/O

The final divide-by-16 is required since TO runs
at 16 times the bit rate in order to synchronize
on the incoming data.

To configure the Z8 for a specific bit rate,
appropriate values as determined by the above
equation must be loaded into registers PREO (%F5)
and TO (%F4). PREO also controls the counting
mode for TO and should therefore be set to the
Continuous mode (Dl set to 1).

For example, given an input clock frequency
(fXTAL) of 11.9808 MHz and a selected bit rate of
1200 bits per second, the equation is satisfied by
p=39 and t=2. Counter/timer TO should be set to
%02. With TO in Continuous mode, the value of
PREO becomes %9D (Figure 12-5).

Table 12-1 lists several commonly used bit rates
and the values of fXTAL, p, and t required to
derive them. This list is presented for conven­
ience and is not intended to be exhaustive.

The bit rate generator is started by setting the
Timer Mode register TMR (%F1) bits Dl and DO both
to 1 (Figure 12-6). This transfers the contents
of the Prescaler and Counter/Timer registers to
their corresponding down-counters. In addition,
counting is enabled so that serial I/O operations
begin.

DEC

247

245

244

240

PORT 3 MODE

TO PRESCALER

TIMER/COU NTERO

SERIAL I/O

HEX IDENTIFIERS

F7 P3M

F5 PREO

F4 TO

FO SIO

Figure 12-2. Serial I/O Register Hap

R247 P3M
Port 3 Mode Register

(% F7; Write Only)

L. pa, = INPUT
1 P30 = SERIAL IN

P37 = OUTPUT
P37 = SERIAL OUT

Figure 12-3. Port 3 Hode Register
and Bit Rate Generation

fXTAL --O--r-:-L--r:-L--r:-LS::l-- =~TE
~~~U---~CLOCK 

PREO TO 

Figure 12-4. Bit Rate Divide Chain 

Table 12-1. Bit Rate 

7,3728 7,9872 9,8304 11,0592 11,6736 11,9808 12,2880 
Bit 
Rate p t P t P t P t P t P t P t 

19200 3 1 -- -- 4 1 -- -- -- -- -- -- 5 1 
9600 3 2 -- -- 4 2 9 1 -- -- -- -- 5 2 
4800 3 4 13 1 4 4 9 2 19 1 -- -- 5 4 
2400 3 8 13 2 4 8 9 4 19 2 39 1 5 8 
1200 3 16 13 4 4 16 9 8 19 4 39 2 5 16 
600 3 32 13 8 4 32 9 16 19 8 39 4 5 32 
300 3 64 13 16 4 64 9 32 19 16 39 8 5 64 
150 3 128 13 32 4 128 9 64 19 32 39 16 5 128 
110 3 175 3 189 4 175 5 157 4 207 17 50 8 109 

12-2 3047·069,3047·025,3047·027 



R245 PREO 
Prescaler 0 Register 

(% F5; Write Only) 

10101111111 111 

LCOUNT MODE 
o = To SINGLE-PASS 
1 = To MODULO-N 

1...-______ PRESCALER MODULO 

0=64 

Figure 12-5. Prescaler 0 Register 
and Bit Rate Generation 

R241 TMR 
Timer Mode Register 

(% F1; Read/Write) 

~ 0 = NO FUNCTION 
1 = LOAD To 

o = DISABLE To COUNT 
1 = ENABLE To COUNT 

Figure 12-6. Timer Hode Register 
and Bit Rate Generation 

(R) 
RCVR 
DATA 

START BIT 

I 
TRANSITION 

~ DETECTED 

SHIFT ___ .. 
CLOCK 

Serial I/O 

12.3 RECEIVER OPERATION 

The receiver consists of a receiver buffer (SID 
[%FO]), a serial-in, parallel-out Shift register, 
parity checking, and data synchronizing logic. 
The receiver block diagram is shown an part of 
Figure 12-1. 

12.3.1 Receiver Shift Register 

A fter a hardware reset or after a character has 
been received, the Receiver Shift register is 
initialized to all 1s and the shift clock is 
stopped. Serial data, input through Port 3 pin 
P30, is synchronized to the internal clock by two 
D-type flip flops before being input to the Shift 
register and the start bit detection circuitry. 

The ntart bit detection circuitry monitors the 
incoming data stream, looking for a start bit (a 
High-to-Low input transition). It/hen a ntart bit 
is detected, the shift clock logic is enabled. 
The TO input is divided by 16 and, when the count 
equals 8, the divider outputs a shift clock. This 
clock shifts the start bit into the Receiver Shift 
register at the center of the bit time. Before 
the shift actually occurs, the input is rechecked 
to ensure that the start bit is valid. I f the 
detected start bit is false, the receiver is reset 
and the procesn of looking for a start bit is 
repeated. If the start bit is valid, the data is 
shifted into the Shift register every sixteen 
counts until a full character is assembled (Figure 
12-7) • 

~ 8 TO COUNTS LATER SHIFTING STARTS 

RCVR ______________________________________________________ ~ 

f IRQ3 

Figure 12-7. Receiver Timing 

SHIFT REGISTER CONTENTS 
TRANSFERRED TO RECEIVER 

BUFFER AND IR03 IS 
GENERATED 

3047-070,3047-026,3047-071 12-3 



Serial I/O 

After a full character has been assembled in the 
Shift register, the data is transferred to the 
receiver's buffer, SID U~FO), and interrupt 
request IRQ3 is generated. The shift clock is 
stopped and the Shift register reset to all 1 s. 
The start bit detection circuitry begins monitor­
ing the data input for the next start bit. This 
cycle allows the receiver to synchronize on the 
center of the bit time for each incoming charac­
ter. 

12.3.2 Overwrites 

Although the receiver is buffered, it is not pro­
tected from being overwritten, so the software 
must read the SID register within one character 
time after the interrupt request. The Z8 does not 
have a flag to indicate this overrun condition. 
If polling is used, the IRQ3 bit in the Interrupt 
Request register must be reset by software. 

12.3.3 Framing Errors 

Framing error detection is not supported by the 
receiver hardware, but by responding to the inter­
rupt request within one character bit time, tho 
software can test for a stop bit at P30. Port 3 
bits are always readable, which facilitates break 
detection. For example, if a null character is 
received, testing P30 results in a 0 being read. 

Received Oata 
(No Parity) 

12.3.4 Parity 

The data format supported by the receiver must 
have a start bit, eight data bits, and at least 
one stop bit. If parity is on, bit 07 of the data 
received will be replaced by a Parity Error flag. 
A parity error sets 07 to 1; otherwise, D7 is set 
to O. Figure 12-8 shows these data formats. 

The Z8 hardware supports odd parity only, which is 
enabled by setting Port 3 Mode register bit D7 to 
1 (Figure 12-9). If even parity is required, the 
Parity mode should be disabled (i.e. P3M 07 set to 
0), and software must calculate the received 
data's parity. 

12.4 TRANSMITTER OPERATION 

The transmitter consists of a transmitter buffer 
(SID (%FO», a parity generator, and associated 
control logic. The transmitter block diagram is 
shown as part of Figure 12-1. 

After a hardware reset or after a character has 
been transmitted, the transmitter is forced to a 
marking state (output always High) until a charac­
ter is loaded into the transmitter buffer, SID 
(%FO). The transmitter is loaded by specifying 
the SID as the destination register of any 
instruction. 

I SP I 07 1 06 1 05 1 04 1 03 1 02 1 01 1 00 1 ST I 

Received Oata 
(With Parity) 

I 
LSTART BIT 

'--------EIGHT OATA BITS 

L... ------------ONE STOP BIT 

I SP 1 P 1 06 1 0 5 1 04 1 03 1 O2 \ 01 1 00 \ ST I 

II, 
__ LSTARTBIT 

'-------SEVEN OATA BITS 

PARITY ERROR FLAG 

L--------------ONE STOP BIT 

Figure 12-8. Receiver Data Formats 

12-4 2037·009 



R247 P3M 
Port 3 Mode Register 

(% F7; Write Only) 

o PARITY OFF 
1 PARITY ON 

Figure 12-9. Parity and Port J Hode Register 

TO's output drives a divide-by-16 counter which in 
turn generates a shift clock every 16 counts. 
This counter is reset when the transmitter buffer 
is written by an instruction. This reset 
synchronizes the shift clock to the software. The 
transmitter then outputs one bit per shift clock, 
through Port 3 pin P37 , until a start bit, the 
character written to the buffer, and two stop bits 
have been transmitted. After the second stop bit 
has been transmitted, the output is again forced 
to a marking state. Interrupt request IRQ4 is 

Transmitted Data 
(No Parity) 

Transmitted Data 
(With Parity) 

Serial I/O 

generated and this notifies the processor that the 
transmitter is ready to accept another character. 

12.4.1 Overwrites 

The user is not protected from overwr iting the 
transmitter, so it is up to the software to 
respond to IRQ4 appropriately. I f polling is 
used, the IRQ4 bit in the Interrupt Request regis­
ter must be reset. 

12.4.2 Parity 

The data format supported by the transmitter has a 
start bit, eight data bits, and at least two stop 
bits. If parity is on, bit D7 of the data trans­
mitted will be replaced by an odd parity bit. 
Figure 12-10 shows the transmitter data formats. 

Parity is enabled by setting Port 3 Mode register 
bit D7 to 1. If even parity is required, the 
parity mode should be disabled (i.e. P3M D7 set to 
0), and software must modify the data to include 
even parity. 

Since the transmitter can be overwritten, the user 
is able to generate a break signal. This is done 
by writing null characters to the transmitter buf­
fer (510, %FO) at a rate which does not allow the 
stop bits to be output. Each time the 510 is 
loaded, the divide-by-16 counter is re-synchro­
nized and a new start bit is output followed by 
data. 

L'START BIT 

'--------EIGHT DATA BITS 

TWO STOP BITS 

T I LSTART BIT 

L.. 

___________ SEVEN DATA BITS 
. ODD PARITY 

TWO STOP BITS 

Figure 12-10. Transmitter Data Formats 

3047-028,2037-009 12-5 



Serial I/O 

12.5 RESEr CONH T UWS 

A fter a hardware reset, the Serial I/O register 
contents are undefined, and Serial mode and parity 
are disabled. Figures 12-11 and 12-12 show the 
binary reset values of the Serial I/O register and 
its associated mode register P3M. 

R240 SID 
Serial 110 Register 
(% FO; Read/Write) 

1?1?1?1?1?!?I?ld 

1 .... _____ SERIAL DATA (Do = LSB) 

12-6 

Figure 12-11. Serial I/O Register Reset 

R247 P3M 
Port 3 Mode Register 

(% F78; Write Only) 

1010101010101 101 

L=0 PORT 2 PULL·UPS OPEN DRAIN 
1 PORT 2 PULL·UPS ACTIVE 

o P32 = INPUT P35 = OUTPUT 
1 P32 = DAVO/RDYO P35 = RDYO/DAVO 

o 0 P33 = INPUT P34 = OUTPUT 

1--____ ~ ~} P33 = INPUT P34 = OM 

1 1 P33 = DAV1/RDY1 P34 = RDY1IDAV1 

1--_______ 0 P31 = INPUT (TIN) P36 = OUTPUT (TOUT) 
1 P31 = DAV2/RDY2 P36 = RDY2/DAV2 

'---------- ~ ~~~ ~ kN:R~lL IN ~~~ ~ ~~~~~T OUT 

L..-__________ ~ ~!~:i~ g~F 

Figure 12-12. Port 3 Register Reset 

3047-029, 3047-030 



A 





This appendix contains pin information and physi­
cal descriptions for the Z8 development device 
(Z8612) and Protopack emulator (Z8603/13). Pin 
descriptions for the Z8601/11 and Z8681/82 micro­
computers can be found in Chapters 6 and 7, 
respectively. 

A.1 DEVELOPMENT DEVICE (Z8612) 

The pin mnemonics and descriptions presented for 
the Z8 microcomputers (Chapter 6) also apply to 
the development device. Additional pin descrip­
tions are as follows: 

AO-A11 • Program Memory Address (outputs). These 
lines are used to access the first 4K bytes of the 
external program memory. 

DO~. Program Data (inputs). Data from the 
external program memory is input through these 
pins. 

lACK. Interrupt Acknowledge (output, active 
High). lACK is driven High in response to an 
interrupt during the interrupt machine cycle. 

KlS. Program Memory Data Strobe (output, active 
Low). MDS is Low during an instruction fetch 

Appendix A 
Pin Descriptions 
and Functions 

cycle when the first 4K bytes of program memory 
are being accessed. 

SClK. System Clock (output). SCLK is the inter­
nal clock output through a buffer. The clock rate 
is equal to one-half the crystal frequency. 

SYNC. Instruction Sync (output, active Low). 
This strobe output is forced Low during the inter­
nal clock period preceding an opcode fetch. 

A.2 PROTOPACK EMULATOR (Z860J/1J) 

Both the Z8603 and Z8613 devices use a 40-pin 
package that also has a 24-pin "piggy-back" soc­
ket. An EPROM or ROM can be installed on the back 
of the emulator's standard 40-pin package via the 
socket (Figure A-3). A single +5 V dc power source 
is required. Figure A-4 illustrates the pinout for 
the socket carried piggyback. The socket is 
designed to accept a 2716 EPROM for the Z8603 and 
a 2732 EPROM for the Z8613 device. 

Pin mnemonics and descriptions. are the same as 
those for the Z8601/11 microcomputer (Chapter 6). 
Descriptions for the additional (24-pin socket) 
memory interface lines are the same as those given 
for the development devices above. 

A-1 



Pin Descriptions and Functions 

~ RESET +5V 

TIMING { R/W GND 
AND 

CONTROL OS 
AS XTAL1 

} CLOCK 
XTAL2 

POo ..... P01 P20 .... P02 P21 

PORTO .... P03 P22 
(NIBBLE 

P23 PROGRAMMABLE) .... P04 PORT 2 
1/0 OR Aa-A1s ..... POs P24 (BIT PROGRAMMABLE) ..... POs P2s .... P07 P2s 

P27 ..... P10 ..... P11 P30 

PORT 1 
..... P12 P31 

(BYTE P13 P32 
PROGRAMMABLE) P14 

Z8612 
P33 PORT 3 

1/0 OR ADo-AD7 SERIAL AND PARALLEL 
P1s P34 1/0 CONTROL 

P1s P3s 

P17 P3s 

P37 

~ Do 

--.-.. D1 

PROGRAM 
--... D2 A1 

MEMORY --... D3 

DATA --... 
INPUTS 

D4 

Ds 

Ds PROGRAM MEMORY 
D7 ADDRESS OUTPUTS 

INTERRUPT ACKNOWLEDGE lACK 

MEMORY DATA STROBE MDS Ag 

INSTRUCTION SYNC SYNC A10 

SYSTEM CLOCK SCLK A11 

Figure A-1. 18612 Pin Functions 

A-2 3047-055 



Pin Descriptions and Functions 

Vee 64 P36 

XTAL2 2 63 P31 

XTAL1 62 P27 

P37 4 61 P26 

P30 5 60 P2s 

RESET 6 59 P24 

Rm 7 58 P23 

OS 8 57 P22 

AS 9 56 P21 

P3s 10 55 P20 

P32 11 54 P33 

POo 12 53 P34 

POl 13 52 P17 

P02 14 51 P16 

P03 15 50 
Z8812 

P1s Figure A-J. Protopack Emulator 

P04 16 49 P14 

GNO 17 48 P13 

POs 18 47 Ph SOCKET FOR 2716 EPROM/2732 EPROM 

P06 19 46 P11 
21 

P07 20 45 P10 

lACK 21 44 07 

D D SYNC 22 43 06 

SCLK 23 42 05 

MOS 24 41 04 

Do 25 40 Ao 
20 

01 26 39 Al 

02 27 38 A2 

03 28 37 A3 figure A-4. Protopack EPROM Socket 
All 29 36 A4 

Al0 30 35 As 

Ag 31 34 A6 

As 32 33 A7 

Figure A-2. Z8612 Pin Assig~nts 

2037-032, 2037-012, 3047-033 A-3 





B 

-~., - ,.. -,. __ L 

7;1", ... 
Zilog 





Appendix B 
Control Registers 

Registers R240 SIO 
Serial 1/0 Register 
(FOH; Read/Write) 

I~I~I~I~I~I~I~I~I 

L-I __ SERIAL DATA (0, • LSB) 

R241 TMR 
Timer Mode Register 

(FIH; Read/Write) 

I~I~I~I~I~I~I~I~I 

NOT USED ~ 00 -.J 1 = LOAD T, 

~,g~~ : ~~ 0 = DISABLE T, COUNT 
INTERNAL CLoCK OUT. 11 1 = ENABLE T, COUNT 

TOUT MODES j ~~o = NO FUNCTION 

T MODES 0 = NO FUNCTION 
EXTERNAL CLOCK INP'OT • 00 1 = LOAD T, 

2037-014 

GATE INPUT = 01 0 = DISABLE T, COUNT 

(NON.R~~~~g~~~~:~~ z 10 1 = ENABLE T, COUNT 

TRIGGER INPUT = 11 
(RETRIGGERABLE) 

R242 TI 
Counter Timer I Register 

(F2H; Read/Write) 

T, INITIAL VALUE (WHEN WRITTEN) 
'-----(RANGE 1-256 DECIMAL 01-00 HEX) 

T, CURRENT VALUE (WHEN READ) 

R243 PREI 
Prescaler I Register 

(F3H; Write Only) 

I~I~I~I~I~I~I~I~I 

~L
COUNTMODE 
o = T, SINGLE·PASS 
1 = T, MODULO·N 

CLOCK SOURCE 
1 = T, INTERNAL 
o = T, EXTERNAL TIMING INPUT 

(T'N) MODE 

PRESCALER MODULO 
(RANGE: 1-64 DECIMAL 
01-00 HEX) 

R244 TO 
Counter/Timer 0 Register 

(F4H; Read/Write) 

T,INITIAL VALUE (WHEN WRITTEN) 
'-----(RANGE: 1-256 DECIMAL 01-00 HEX) 

T, CURRENT VALUE (WHEN READ) 

R245 PREO 
Prescaler 0 Register 

(F5H; Write Only) 

I~I~I~I~I~I~I~I~I 

~L
COUNTMODE 
o = To SINGLE·PASS 
1 = T, MODULO·N 

RESERVED 

PRESCALER MODULO 
(RANGE: 1-64 DECIMAL 
01-00 HEX) 

R246 P2M 
Port 2 Mode Register 

(F6H; Write Only) 

P2,-P2, 1/0 DEFINITION 
L-___ 0 DEFINES BIT AS OUTPUT 

1 DEFINES BIT AS INPUT 

R247 P3M 
Port 3 Mode Register 

(F7H; Write Only) 

I~I~I~I~I~I~I~I~I 

I PORT 2 PULL·UPS ACTIVE 

RESERVED 

o P32 = INPUT P35 = OUTPUT [g~
LO PORT 2 PULL·UPS OPEN DRAIN 

1 P32 = DAVOIRDYO P35 = RDYO/l!AVO 

o 0 P33 = INPUT P34 = OUTPUT 

~ ~ l P33 = INPUT P34 = DM 
11 P33 = DAVlIRDYI P34 = RDYlIDAVI 

o P31 = INPUT (T'N) P36 = OUTPUT (TOUT) 
1 P31 = DAV2IRDY2 P36 = RDY2IOI\V2 

L-______ ~ ~~~ ~ ~Ne':t~!L IN ~~~ ~ ~~~rA~TOUT 

L. ________ ~ ~:~:i~ g~F 

B-1 



Control Registers 

Registers 
(Continued) 

R248 POIM 
Port 0 and 1 Mode Register 

(F8H; Write Only) 

B-2 

PO.-PO, MODE:] ~-r pOo-po, MODE OUTPUT = 00 ~ L 00 = OUTPUT 
INPUT = 01 01 = INPUT 

A12-A15 = 1X 1X = A, -A'1 

EXTERNAL MEMORY TIMING STACK SELECTION 
NORMAL = 0 0 D EXTERNAL 

EXTENDED = 1 1 = INTERNAL 

Pl o-Pl, MODE 
00 = BYTE OUTPUT 
01 = BYTE IN PUT 
10 = ADo-AD, 
11 = HIGH·IMPEDANCE ADo-ADT, 

AS, OS, Rffl, Aa-All, A12-A'5 
IF SELECTED 

R2491PR 
Interrupt Priority Register 

(F9H; Write Only) 

I~I~I~I~I~I~I~I~I 

,~,,,,,:J ! I II' "","",,,,,",,,,,,m RESERVED = 000 
IRQ3, IRQS PRIORITY (GROUP A) C > A > B = 001 

o = IRQS > IRQ3 A > B > C = 010 
1 = IRQ3 > IRQS A > C > B = 011 

B > C > A = 100 
IRQO, IRQ2 PRIORITY (GROUP B) C > B > A = 101 

o = IRQ2 > IRQO B > A > C = 110 
1 = IRQO > IRQ2 RESERVED = 111 

IRQ1, IRQ4 PRIORITY (GROUP C) 
o = IRQl > IRQ4 
1 = IRQ4 > IRQl 

R250 IRQ 
Interrupt Request Register 

(FAH; Read/Write) 

I~I~I~I~I~I~I~I~I 

RESERVED T c= IRQO 
IRQl 
IRQ2 
IRQ3 
IRQ4 
IRQS 

R251lMR 
Interrupt Mask Register 

(FBH; Read/Write) 

10,1 0,1 Os 10.1 0,1 0,1 0, I Do I 

P3, INPUT (Do = IRQO) 
P331NPUT 
P3,INPUT 
P30 INPUT, SERIAL INPUT 
To, SERIAL OUTPUT 
T, 

I' 
c= 1 ENABLES IRQO-IRQS 

(Do = IRQO) 

'-------- RESERVED 

'---------1 ENABLES INTERRUPTS 

REGISTER 
POINTER 

R252 FLAGS 
Flag Register 

(FCH; Read/Write) 

LUSER FLAG F2 

HALF CARRY FLAG 

DECIMAL ADJUST FLAG 

OVERFLOW FLAG ~~~
I LUSER FLAG Fl 

R253 RP 
Register Pointer 

(FDH; Read/Write) 

SIGN FLAG 

ZERO FLAG 

CARRY FLAG 

C=DON'T CARE 

R254 SPH 
Stack Pointer 

(FEH; Read/Write) 

I 0,1 0.1 Os I 0.1 0,1 0,1 0, I Do I 

R255 SPL 
Stack Pointer 

(FFH; Read/Write) 

2037-014 



c 





Opcode 
Map 

o 

Ie 
CD e 
CD 

;Q 7 
:9 
:z; .. 

CD 
C. 
C. 

:;l 

A 

B 

C 

o 

E 

F 

Bytes per 
Instruction 

o 

6,5 6,5 6,5 
DEC DEC ADD 

RI IRI rl, r~ 

6,5 6,5 6,5 
RLC RLC ADC 

RI IRI II, (2 

6,5 6,5 6,5 
INC INC SUB 
RI IRI II, (2 

8,0 6,1 6,5 

JP SRP SBe 
IRRI 1M fl, (2 

8,5 8,5 6,5 
OA OA OR 
RI IRI II, (2 

10,5 10,5 6,5 
POP POP ANO 

RI IRI r I, r~ 

6,5 6,5 6,5 
COM COM TCM 

RI IRI II, (2 

10112,1 12/14,1 6,5 
PUSH PUSH TM 
R~ IR~ II, (2 

10,5 10,5 12,0 
OECW OECW LOE 

RRI IRI rl,lru 

6,5 6,5 12,0 
RL RL LOE 
RI IRI r~, Irfl 

10,5 la,S 6,5 
lNCW lNCW CP 

RRI IRI II, (2 

6,5 6,5 6,5 
CLR CLR XOR 
RI IRI II, (2 

6,5 6,5 12,0 
RRC RRC LOC 

RI IRI fl, Irr~ 

6,5 6,5 12,0 
SRA SRA LOC 

RI IRI r~,lrfl 

6,5 6,5 
RR RR 
RI IRI 

8,5 8,5 
SWAP SWAP 

RI IRI 

\" 
V' 

Execution 
Cycles 

Upper 
Opcode --... A 
Nibble 

First 
Operand 

Opcode Map 

Lower Nibble (Hex) 

7 A B C o E F 

6,5 10,5 10,5 10,5 10,5 6,5 6,5 12/10,5 12/10,0 6,5 12/10,0 6,5 
ADD ADD ADD ADD ADD LO LO 01NZ lR LO IP INC 
fl,lr~ R~,RI IR~,RI RI,IM IRI,IM fl, R~ ra, RI fl,RA cc,RA fl,IM cc,DA fl 
6,5 10,5 10,5 10,5 10,5 

f----

ADC ADC ADC ADC ADC 
rl, Ir~ R~,RI IR~,RI RI,IM IRI,IM 

6,5 10,5 10,5 10,5 10,5 
~ 

SUB SUB SUB SUB SUB 
fl,lr~ R~,RI IR~,RI Ri,lM IRI,IM 

f----
6,5 10,5 10,5 10,5 10,5 

SBC SBC SBC SBe SBe 
rl,lr~ R~,RI IR~, RI Ri,lM IRI,IM 

f----
6,5 10,5 10,5 la,S 10,5 
OR OR OR OR OR 

fl,lr~ R~,RI IR~,RI RI,IM IRI,IM 
'--

6,5 10,5 10,5 la,S 10,5 
ANO ANO ANO ANO ANO 
rl, Ir~ R~,RI IR~,RI RI,IM IRI,IM 

f----
6,5 10,5 10,5 10,5 10,5 

TCM TCM TCM TCM TCM 
rl,lr~ R~,RI IR~, RI RI,IM IRI,IM -6,5 10,5 10,5 la,S la,S 
TM TM TM TM TM 

rl,lr~ R~,RI IR~,RI RI,IM IRI,IM -
18,0 6,1 
LOEI 01 

Irl,lrr~ -
18, a 

6,1 
LOEI EI 

1r~,Irrl 
f----

6,5 la,S 10,5 10,5 10,5 
14,0 

CP CP CP CP CP RET 
ll,lra Ra,RI IRa,RI RI,IM IRI,lM -
6,5 10,5 10,5 la,S 10,5 16,0 

XOR XOR XOR XOR XOR IRET 
rl,lr~ R~,RI IRa, RI RI,IM IRI,IM -
18,0 10,5 6,5 
LOCI LO RCF 

Ifl,lrr~ fl, x, R~ -18,0 20,0 20,0 10,5 
6,5 

LOCI CALL· CALL LO SCF 
Ir~, Irfl IRRI DA r~, x, RI -

6,5 10,5 10,5 10,5 10,5 
6,5 

LO LO LO LO LO CCF rl,lra R~,RI IR~, RI RdM IRI,IM 
f----

6,5 10,5 
6,0 

LO LO NOP 
Ill, r~ Ra,lRI 

"-.; \" 
V' 

.I '---------~~~-----------'.; ~ ~ 

Lower 
Opcode 
Nibble 

• PipeUne 
Cycle. 

Mnemonic 

Second 
Operand 

Legend: 
H = a-Bit Address 
r = 4-Bit Address 
HI or fI = Dst Address 
Ha or r~ = Src Address 

Sequence: 
Opcode, Firs! Operand, Second Operand 

Note: The blank areas are no! defined. 

*2-byte instruction; fetch cycle appears as a 3-byte instruction 

8085-002 C-1 





I 

.-





-A-

Address/Data bus (see Bus operations) 
Addressing modes, 2:2ff, 3:1, 3:6 

Direct Addressing (DA), 2:2, 3:1, 4:1, 4:3 
Immediate Data addressing (1M), 2:2, 4:1, 4:4 
Indirect Register addressing (~), 2:2, 3:1, 

4: 1, 4:2 
Indexed addressing (X), 2:2, 3:1, 4:1, 4:2 
Register addressing (R), 2:2, 3:1, 4:1 
Relative addressing (RA), 2:2, 4:1, 4:3 

Address spaces, 2:1, 3:1ff 
Data memory, 2:1, 3:1, 3:5, 7:4 
Program memory, 2:1, 3:1, 3:3 

Address Strobe (AS) signal, 3:3, 6:1, 6:3, 6:4, 
7:1, 7:5, 8:1 

ZB601/11, 6:1, 6:3, 6:4 
ZB681/82, 7:1, 7:5 

Applications, Z8 Family, 1:4 
Assembly language syntax, 5:4 

-8-

BASIC/Debug interpreter (Z8671), 1:1, 1:2, 1:4 
8CD operations, 2:2 
Bit rate generation, 2:2, 12:1ff 
Bus operations, 6:3, 6:5, 7:5 
Bus timing, 6:6, 7:5 

-c-

Carry flag (C) (see Flags) 
Clock, 8:2ff 

Capacitors, 8:2 
Crystal frequency, 8:2 
Oscillator, 1:1, 1:3, 8:2 
VCC ' 8:3 
VHM , 8:3 

Condition codes, 5:3, 5:4, 5:5 
Control lines, 3:3 
Control registers, 3:3, B:1 
Counter/timers, 1:1, 1:3, 1:4, 2:2, 11:1ff 

Cascaded, 11:8 
Continuous mode, 11:1ff 
Enable Count bit, 11:3 
Load bit, 11:3 
Reset conditions, 11:9 

Index 

Counter/Timers (cont'd) 
Single-Pass mode, 8:1, 11:1ff 
TIN modes, 11:5ff 
TOUT modes, 11:4 

Counter/timer registers (T1, TO), 3:3, 11:1ff 
Crystal1, 2 (XTAL1, 2) sign~ls, 7:2, 8:2 

-0-

Data Available (DAV) signal, 9:8 
Data memory, 2:1, 3:1, 3:5, 7:4 
Data Memory (OM) signal, 1:4, 3:5, 6:1, 6:3, 6:10, 

7:4, 7:5 
Data Strobe (DS) signal, 3:3, 6:1, 6:3, 6:4, 7:1, 

7:5, 8: 1 
Z8601/11, 6:1, 6:3 
Z8681/82, 7:1, 7:5 

Data types, 1:1, 2:2 
Decimal-Adjust flag (D) (see Flags) 
Development device (l8612), 1:1, 1:2, 1:3, A:1 
Development Module (DM), 1:1 
Direct Address (DA) (see Addressing modes) 

-E-

Enable Count bit, 11:3 
EPROM, 2K and 4K, 1:2, 1:4 
Error conditions, 3:2, 12:4, 12:6 

Framing errors, 12:4 
Overwrites, 12:4, 12:6 
in register use, 3:2 

External interface operations, 6:1ff, 7:1ff 
Z8601/11, 6:1 ff 
Z8681, 7:1ff 
l8682, 7:1ff 

-F-

Flags, 5:2ff 
Carry (C), 5:2 
Decimal-Adjust (DA), 5:3 
Half-Carry (H), 5:3 
Overflow (V), 5:3 
Sign (S), 5:2 
Zero (l), 5:2 

Flag register, 5:1 

1-1 



lnaex 

-H-

Half-Carry flag (H) (see Flags) 
Handshake operations, 9:8ff 

-1-

Immediate Data addressing (1M) (see Addressing 
modes) 

Indexed addressing (X) (see Addressing modes) 
I ndirect Register addressing «(i!'R) (see Addressing 

Modes) 
Input/Output (I/O), 1:3, 2:2, 6:2, 7:1, 12:1ff 

Parallel, 1:3, 2:2 
Ports, 1:3,2:2,6:2,7:1, 9:1ff 
Serial, 1 :3, 2:2,12: 1ff 

Instruction pipelining, 6:7, 6:8, 7:6 
Instruction set, 1:1, 2:2, 5:1ff, C:1 
Instruction summary, 5:6 
Instruction timing, 6:7, 6:9, j:6 
Interrupts, 8:5, 10:1ff 

Polled, 2:2, 10:7 
Vectored, 1:1, 1:3, 2:2, 8:5, 10:6 

Interrupt Mask Register (IMR), 3:3, 10:1, 10:5, 
10:7 

Interrupt Priority Register (IPR), 3:3, 10:1, 
10:4, 10:7 

Interrupt Request Register (IRQ), 3:3, 8:2, 10:1, 
10:5, 10:7 

Interrupt Request signal (IRQ), 10:1ff 

-L-

Load bit, 11:3 

-M-

Memory, 1:1ff, 2:1, 3:1ff, 3:5 
Data, 2:1, 3:1, 3:5, 7:4 
Program, 2:1, 3:1, 3:3 
RAM, 1: 1, 1: 4 
ROM, 1:1, 1:2, 1:3, 3:3 

-0-

Opcode map, C:1 
Oscillator, clock, 1:3, 2:2 
Overflow flag (V) (see Flags) 

-p-

Parity, 12 :4, 12: 5 
Peripheral registers, 3:3 

1-2 
. - ~ 

Port 0,1:4, 6:3, 7:2, 7:4, 9:1ff 
External interface, 6:1ff, 7:1ff 
Handshake, 9:3 
Read/Write, 7:4, 9:3 

Port 0-1 Mode register (P01M), 3:3, 3:6, 6:2ff, 
7:3ff, 9:3ff 

Port 1, 1:4, 9:4 
Handshake, 9:4 
Read/Write, 9:4 

Port 2, 9:5 
Handshake, 9:5 
Read/Write, 9:5 

Port 2 Mode register (P2M), 3:3, 9:5 
Port 3, 9:6 

Handshake, 9:6 
Read/Write, 9:6 
Special functions, 9:7 

Port 3 Mode register (P3M), 3:3, 6:3, 7:5, 9:6, 
12:2, 12:5 

Power-down option, 1:1, 1:3, 2:2, 8:3 
Prescaler registers (PREO, PRE1), 1:3, 3:3, 

11 :3ff, 12:3 
Program Counter (PC), 3:3, 3:4, 3:6 
Program memory, 2:1, 3:1, 3:3 
Protopack Emulator (Z8603/13), 1:4,2:2, A:1 

-R-

RAM memory, 1:1, 1:4 
Read/Write (R/W) signal, 3:3, 6:1, 6:4, 7:1, 7:5, 

8:1 
Ready (ROY) signal, 9:8 
Receiver, 12:3 
Receiver Shift register, 12:3 
Register addressing (R) (see Addressing modes) 
Register file, 1:3, 1:4, 2:1, 2:2, 3:1-2 
Register pairs, 2:2, 4:1 
Register Pointer (RP), 1:3, 3:2, 4:1 
Registers, 3:3, 3:6, 6:1 ff, 7:1 ff, 9:3ff, 11 :3ff, 

12:5 
Control, 3:3, B:1 
Error conditions, 3:2 
Peripheral, 3:3 
Mode, 3:3, 3:6, 6:2ff, 7:3ff, 9:3ff, 11 :3, 12:5 

Relative addressing (RA) (see Addressing modes) 
Reset, 3:4, 6:2, 6:10, 7:2, 7:6, 8:1ff, 12:6 

Z8601/11, 6:2, 6:10 
Z8681, 7:2, 7:6 
Z8682, 7:2, 7:6, 8:4 

RESET signal, 6:2, 7:2, 8:1, 8:2, 8:3 
ROM (Read-Only Memory) 1:1, 1:2, 1:3, 3:3 
ROMless applications (see Z8681/82, Z8603/13) 



-5-

Serial I/O register (510), 3:3, 12:1ff, 12:6 
Sign flag (5) (see flags) 
Singlo-pass counting mode, 8:1, 11:lff 
Stack, 3:6, 6:3, 7:4 

External, 6:3, 7:4 
Internal, 3:6 

Stack Pointer (SP), 3:3, 3:6 

-T-

Test mode, 8:4ff 
for interrupts, 8:5 
and ROMless operation, 8:5 

Timers (see Counter/timers) 
Timer Mode register (TMR), 3:3, 11:3, 12:3 
TIN modes, 11:5ff 

External clock input, 11:6 
Gated internal clock, 11:6 
Retriggerable internal clock, 11:8 
Triggered internal clock, 11:8 

TOUT modes, 11:4 
Transmitter, 12:4 

-U-

UART (Universal Asynchronous Receiver/ 
Transmitter), 1:1, 1:3, 1:4, 2:2 

-x-

XTAL1, XTAL2 (Crystal 1, 2 signals), 6:2 

-z-

Zero flag (Z) (see Flags) 
Z8 Development Module (OM), 1:1, 1:2 
Z8 Emulator (Z-SCAN 8), 1:1, 1:2 
Z8601/11 Microcomputer, 1:1, 1:2, 1:3, 6:1ff 

Initialization, 6:2 
Pin functions and assignments, 6:1 

Z8603/13 Protopack, 1:1, 1:2, 1:4, 2:2, A:l 
Pin descriptions and functions, A:l 

Z8612 development device, 1:1, 1:2, 1:3, A:l 
Pin descriptions and functions, A:l 

Z8671 BASIC/Debug interpreter, 1:1, 1:2, 1:4 
Z8681 ROMless, 1:1, 1:2, 1:4, 3:3, 7:1ff 

Initialization, 7:2 
Pin functions and assignments, 7:1 

Z8682 ROMless, 1:1, 1:2, 1:4, 7:1ff 
Initialization, 7:3 
Pin functions and assignments, 7:1 

Index 

1-3 





Zilog 

Title of Publication: 

Document Number. 

READER COMMENTS 

Your comments concerning this publication are important to us. 
Please take the time to complete this questionnaire and return it to 
Zilog. 

Your Hardware Model and Memory Size: 

Describe your likes/dislikes concerning this document: 

Supporting Diagrams: 

EaseofUse: ____________________________________________________________ _ 

Your Name: ____________________________________________________________ _ 

Company and Address: ____________________________________________________ _ 

Your Position/Department: ________________________________________________ _ 

03-3047-03 



111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 35, CAMPBELL, CA. 

POSTAGE WILL BE PAID BY: 

Zilog 
1315 Dell Ave. 
Campbell, California 95008 
ATTENTION: Corporate Publications 

No Postage 
Necessary If 
Mailed In The 
United States 





Zilog Sales Offices and Technical Centers 

~e~t Midwest 
Sales & Technical Center Sales & Technical Center 
Zilog, Incorporated Zilog, Incorporated 
1315 Dell Avenue 951 North Plum Grove Road 
Campbell, CA 95008 Suite F 
Phone: (408) 370-8120 Schaumburg, IL 60195 
TWX: 910-338-7621 Phone: (312) 885-8080 

Sales & Technical Center 
TWX: 910-291-1064 

Zilog, Incorporated Sales & Technical Center 
18023 Sky Park Circle Zilog, Incorporated 
Suite J 28349 Chagrin Blvd. 
Irvine, CA 92714 Suite 109 
Phone: (714) 549-2891 Woodmere, OH 44122 
TWX: 910-595-2803 Phone: (216) 831-7040 

Sales & Technical Center 
FAX: 216-831-2957 

Zilog, Incorporated South 
15643 Sherman Way 
Suite 430 Sales & Technical Center 
Van Nuys, CA 91406 Zilog, Incorporated 
Phone: (213) 989-7485 4851 Keller Springs Road, 
TWX: 91 0-495-1765 Suite 211 

Dallas, TX 75248 
Sales & Technical Center Phone: (214) 931-9090 
Zilog, Incorporated TWX: 910-860-5850 
1750 112th Ave. N.E. 
Suite 0161 Zilog, Incorporated 
Bellevue, WA 98004 7113 Burnet Rd. 
Phone: (206) 454-5597 Suite 207 

Austin, TX 78757 
Phone: (512) 453-3216 

Zilog, Inc. 1315 Dell Ave., Campbell, California 95008 

03-3047-03 

East 
Sales & Technical Center 
Zilog, Incorporated 
Corporate Place 
99 South Bedford S1. 
Burlington, MA 01803 
Phone: (617) 273-4222 
TWX: 710-332-1726 

Sales & Technical Center 
Zilog, Incorporated 
240 Cedar Knolls Rd. 
Cedar Knolls, NJ 07927 
Phone: (201) 540-1671 

Technical Center 
Zilog, Incorporated 
3300 Buckeye Rd. 
Suite 401 
Atlanta, GA 30341 
Phone: (404) 451-8425 

Sales & Technical Center 
Zilog, Incorporated 
1442 U.S. Hwy 19 South 
Suite 135 
Clearwater, FL 33516 
Phone: (813) 535-5571 

Zilog, Incorporated 
613-B Pitt S1. 
Cornwall, Ontario 
Canada K6J 3R8 
Phone: (613) 938-1121 

United Kingdom 
Zilog (U.K.) Limited 
Zilog House 
43-53 Moorbridge Road 
Maidenhead 
Berkshire, SL6 8PL England 
Phone: 0628-39200 
Telex: 848609 

France 
Zilog, Incorporated 
Cedex 31 
92098 Paris La Defense 
France 
Phone: (1) 334-60-09 
TWX: 611445F 

West Germany 
Zilog GmbH 
Eschenstrasse 8 
0-8028 TAUFKIRCHEN 
Munich, West Germany 
Phone: 89-612-6046 . 
Telex: 529110 Zilog d. 

Japan 
Zilog, Japan K.K. 
Konparu Bldg. 5F 
2-8 Akasaka 4-Chome 
Minato-Ku, Tokyo 107 
Japan 
Phone: (81) (03) 587-0528 
Telex: 2422024 AlB: Zilog J 

Telephone (408)370-8000 TWX 910-338-7621 

Printed in USA 

,., 
( 

/ 


