
## Telephone Answering Device Controllers







# **Telephone Answering Device Controllers**

**Includes Specifications for the following parts:** 

Z89C65/C66
Z89C67/C68

## Databook



### Introduction

Superintegration<sup>™</sup> S Products Guide

- Z89C65, Z89C66 (ROMIess) Dual Processor T.A.M. Controller
- Z89C67, Z89C68 (ROMIess) Dual Processor Tapeless T.A.M. Controller
  - Support Products 3

Zilog's Literature Guide Ordering Information

### ТАО ДАТАВООК

### TABLE OF CONTENTS

| TITLE                                                                                                   | PAGE |
|---------------------------------------------------------------------------------------------------------|------|
|                                                                                                         | I-1  |
| ZILOG'S SUPERINTEGRATION <sup>™</sup> PRODUCTS GUIDE                                                    | S-1  |
| Z89C65, Z89C66 (ROMLESS) DUAL PROCESSOR T.A.M. CONTROLLER<br>PRELIMINARY PRODUCT SPECIFICATION          | 1-1  |
| Z89C67, Z89C68 (ROMLESS) DUAL PROCESSOR TAPELESS<br>T.A.M. CONTROLLER PRELIMINARY PRODUCT SPECIFICATION | 2-1  |
| SUPPORT PRODUCTS                                                                                        | 3-1  |
| ZILOG'S LITERATURE GUIDE ORDERING INFORMATION                                                           | L-1  |



#### INTRODUCTION

Zilog's Focus on Application Specific Products Helps You Maintain Your Technological Edge

Zilog's TAD products are suitable for a broad range of speech synthesis and compression applications, including answering and voice mail systems and cordless telephones. Whichever device you choose, you'll find a comprehensive feature set and easy-to-use development tools to speed your design time to production.

#### Z89C65, Z89C66 (ROMIess) Dual Processor T.A.M. Controller

The Z89C65/C66 combines the powerful Superintegration<sup>™</sup> of a Z8<sup>®</sup> microprocessor, A/D and D/A, and a Z89C00 Digital Signal Processor (DSP) into a single-chip design enhancing the capabilities of tape-based answering machines. The addition of the DSP allows sophisticated LPC speech/tone generation, DTMF decode/generation, VOX/CPS functions, while keeping the microprocessor free for system functions such as keyboard and LED/LCD control. Complete User Toolbox software eliminates the need to write DSP code, greatly reducing code complexity and time to market. The Z89C66 is the Z8 ROMless version of the Z89C65.

#### Z89C67, Z89C68 (ROMIess) Dual Processor Tapeless T.A.M. Controller

Like the Z89C65/C66, the Z89C67/C68 combines a Z8 microprocessor, Z89C00 DSP, dual codec interface, and ARAM interface in a single-chip design offering one of the most compact solutions for all-digital answering machines. Complete User Toolbox software eliminates the need to write DSP code, greatly reducing code complexity. The Z89C67/C68 supports selectable speech compression down to 7 Kbps. The Z89C68 is the Z8 ROMless version of the Z89C67.





Introduction

### Superintegration<sup>™</sup> Products Guide

Z89C65, Z89C66 (ROMIess) Dual Processor T.A.M. Controller

Z89C67, Z89C68 (ROMIess) Dual Processor Tapeless T.A.M. Controller

3

S

**Support Products** 

Zilog's Literature Guide Ordering Information



## 

## Superintegration<sup>11</sup> Products Guide

S

| Block<br>Diagram | ROMUARTCPU8611CPUCOUNTER/<br>TIMERSRAMP0P1P2P3                                                                                                | 4K ROM<br>CPU<br>WDT 236 RAM P1<br>P2 P3 P0                                                                                                                                                                                                                 | Z8         DSP           24K         4K           ROM         ROM           A/D         D/A           47 DIGITAL I/O                                                                                    | Z8 DSP<br>4K DSP ROM<br>A/D D/A<br>31 DIGITAL EXT.<br>I/O OUT                                                                                                                                                                  | Z8 DSP<br>24K ROM 6K ROM<br>RAM PORT CODEC INTF.<br>RAM<br>REFRESH PWM<br>43 DIGITAL I/O                                                                                                                                                        | Z8     DSP       6K DSP ROM       CODEC INTE:     PWM       RAM     RAM       REFRESH     PORT       27 DIGITAL I/0                                                                                                                                                  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Part #           | Z08600/Z08611                                                                                                                                 | Z86C30/E30<br>Z86C40/E40                                                                                                                                                                                                                                    | Z89C65                                                                                                                                                                                                  | Z89C66                                                                                                                                                                                                                         | Z89C67                                                                                                                                                                                                                                          | Z89C68                                                                                                                                                                                                                                                               |
| Description      | Z8* NMOS<br>(CCP**)<br>8600 = 2K ROM<br>8611 = 4K ROM                                                                                         | Z8® Consumer Controller<br>Processor (CCP")<br>with 4K ROM<br>C30 = 28-pin<br>C40 = 40-pin<br>E30/E40 = OTP version                                                                                                                                         | Telephone Answering<br>Controller with DSP<br>LPC voice synthesis<br>and DTMF detection                                                                                                                 | Telephone Answering<br>Controller with DSP LPC<br>voice synthesis and DTMF<br>detection and external<br>ROM/RAM interface                                                                                                      | Telephone Answering<br>Controller with digital<br>voice encode and decode<br>DTMF detection and full<br>memory control interface                                                                                                                | Telephone Answering<br>Controller with digital<br>voice encode and decode<br>DTMF detection and<br>external ROM/RAM<br>interface                                                                                                                                     |
| Process/Speed    | NMOS 8,12 MHz                                                                                                                                 | CMOS 12 MHz                                                                                                                                                                                                                                                 | CMOS 20 MHz                                                                                                                                                                                             | CMOS 20 MHz                                                                                                                                                                                                                    | CMOS 20 MHz                                                                                                                                                                                                                                     | CMOS 20 MHz                                                                                                                                                                                                                                                          |
| Features         | 2K/4K ROM<br>128 Bytes RAM<br>22/32 I/O lines<br>On-chip oscillator<br>2 Counter/Timers<br>6 vectored, priority<br>interrupts<br>UART (28611) | 4K ROM, 236 RAM<br>2 Standby Modes<br>2 Counter/Timers<br>ROM Protect<br>RAM Protect<br>4 Ports (86C40/E40)<br>3 Ports (86C30/E30)<br>Brown-Out Protection<br>2 Analog Comparators<br>Low EMI<br>Watch-Dog Timer<br>Auto Power-On Reset<br>Low Power option | Z8* Controller<br>24K ROM<br>16-bit DSP<br>4K Word ROM<br>8-bit A/D with AGC<br>DTMF macro available<br>LPC macro available<br>10-bit PWM D/A<br>Other DSP software<br>options available<br>47 I/O Pins | Z8* Controller<br>16-bit DSP<br>4K Word ROM<br>8-bit A/D with AGC<br>DTMF macro available<br>LPC macro available<br>10-bit PWM D/A<br>Other DSP software<br>options available<br>External ROM/RAM<br>capability<br>31 I/O Pins | Z8® Controller<br>24K ROM<br>16-bit DSP<br>6K Word ROM<br>DTMF macro available<br>LPC macro available<br>10-bit PWM D/A<br>Other DSP software<br>options available<br>ARAM/DRAM/ROM<br>Controller & Interface<br>Dual Codec Interface<br>43 I/O | 28° Controller<br>64K ROM (external)<br>16-bit DSP, 6K word ROM<br>DTMF macro available<br>LPC macro available<br>10-bit PWM D/A<br>Other DSP software<br>options available<br>ARAM/DRAM control/<br>interface<br>External ROM/RAM<br>Dual Codec Interface<br>27 I/O |
| Package          | 28-pin DIP<br>40-pin DIP<br>44-pin PLCC                                                                                                       | 28-pin DIP<br>40-pin DIP<br>44-pin PLCC, QFP                                                                                                                                                                                                                | 68-pin PLCC                                                                                                                                                                                             | 68-pin PLCC                                                                                                                                                                                                                    | 84-pin PLCC                                                                                                                                                                                                                                     | 84-pin PLCC                                                                                                                                                                                                                                                          |
| Application      | Low cost tape board<br>TAD                                                                                                                    | Window Control<br>Wiper Control<br>Sunroof Control<br>Security Systems<br>TAD                                                                                                                                                                               | Fully featured cassette<br>answering machines<br>with voice prompts<br>and DTMF signaling                                                                                                               | General-Purpose DSP<br>applications in TAD and<br>other high-performance<br>1-tape voice processors                                                                                                                            | Voice Processing,<br>DSP applications in<br>tapeless TAD and other<br>high-performance<br>1-tape voice processors                                                                                                                               | Voice Processing,<br>DSP applications in<br>tapeless TAD and other<br>high-performance 1-tape<br>voice processors                                                                                                                                                    |

| <sup>®</sup> 2iL | C5 Vic                                                                                                                                                                                                                                                                                                                                                        | leo Produc                                                                                                                                                                                                                                                                                                         | sts Si                                                                                                                                                                                                            | Superintegration <sup>®</sup> Products Guide                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                          |                                                                                                                                                                                                    |  |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                  |                                                                                                                                                                                                                                                                                                                                                               | TV Controller                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                   | IR Coi                                                                                                                                                                                                                                                                             | ntroller                                                                                                                                                                                                                                                                                                   | Cable TV                                                                                                                                                                                                                 |                                                                                                                                                                                                    |  |  |
| Block<br>Diagram | 8K ROM<br>4K CHAR ROM<br>Z8 CPU RAM<br>OSD<br>13 TIMER 5<br>PWM WDT PORTS                                                                                                                                                                                                                                                                                     | 6K ROM<br>3K CHAR ROM<br>Z8 CPU RAM<br>OSD<br>7 TIMER 3<br>PWM WDT PORTS                                                                                                                                                                                                                                           | CHAR ROM<br>COMMAND<br>INTERPRETER<br>ANALOG<br>SYNC/DATA<br>SLICER<br>CTRL                                                                                                                                       | 1K/6K ROM           Z8 CPU           WDT         124 RAM           P2         P3                                                                                                                                                                                                   | 2K/8K/16K ROM           Z8 CPU           WDT         128,256,<br>768 RAM           P0         P1         P2         P3                                                                                                                                                                                     | 4K ROM<br>CPU<br>WDT 236 RAM P1<br>P2 P3 P0                                                                                                                                                                              | 16K ROM         UART           CPU         236 RAM           P0         P1         P2           P3         P4         P5         P6                                                                |  |  |
| Part #           | Z86C27/127/97                                                                                                                                                                                                                                                                                                                                                 | Z86227                                                                                                                                                                                                                                                                                                             | Z86128                                                                                                                                                                                                            | Z86L06/L29                                                                                                                                                                                                                                                                         | <b>Z86L70/71/72</b><br>(Q193)                                                                                                                                                                                                                                                                              | Z86C40/E40                                                                                                                                                                                                               | Z86C61/62                                                                                                                                                                                          |  |  |
| Description      | Z8® Digital Television<br>Controller MCU with<br>logic functions needed<br>for Television Controller,<br>VCRs and Cable                                                                                                                                                                                                                                       | Standard DTC features<br>with reduced ROM,<br>RAM, PWM outputs<br>for greater economy                                                                                                                                                                                                                              | Line 21 Controller<br>(L21C <sup>**</sup> ) for<br>Closed Caption<br>Television                                                                                                                                   | 18-pin Z8® Consumer<br>Controller Processor<br>(CCP <sup>™</sup> ) low-voltage and<br>low-current battery<br>operation<br>1K-6K ROM                                                                                                                                                | Z8® (CCP") low-voltage<br>parts that have more<br>ROM, RAM and special<br>Counter/Timers for<br>automated output<br>drive capabilities                                                                                                                                                                     | Z8® Consumer Controller<br>Processor (CCP <sup>™</sup> )<br>with 4K ROM (C40)<br>E40 = OTP version                                                                                                                       | Z8® MCU with<br>Expanded I/O's<br>and 16K ROM                                                                                                                                                      |  |  |
| Process/Speed    | CMOS 4 MHz                                                                                                                                                                                                                                                                                                                                                    | CMOS 4 MHz                                                                                                                                                                                                                                                                                                         | CMOS 12 MHz                                                                                                                                                                                                       | Low Voltage CMOS 8 MHz Low Voltage CMOS 8 MHz                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                            | CMOS 12 MHz                                                                                                                                                                                                              | CMOS 16, 20 MHz                                                                                                                                                                                    |  |  |
| Features         | Z8/DTC Architecture<br>8K ROM, 256-byte RAM<br>160x7-bit video RAM<br>0n-Screen Display<br>(0SD) video controller<br>Programmable color, size,<br>position attributes<br>13 PWMs for D/A<br>conversion<br>128-character set<br>4Kx6-bit char. Gen. ROM<br>Watch-Dog Timer (WDT)<br>Brown-Out Protection<br>5 Ports/36 pins<br>2 Standby Modes<br>Low EMI Mode | Z8/DTC Architecture<br>6K ROM, 256-byte RAM<br>120x7-bit video RAM<br>OSD on board<br>Programmable color,<br>size, position attributes<br>7 PWMs<br>96-character set<br>3Kx6-bit character<br>generator ROM<br>Watch-Dog Timer (WDT)<br>Brown-Out Protection<br>3 Ports/20 pins<br>2 Standby Modes<br>Low EMI Mode | Conforms to FCC<br>Line 21 format<br>Parallel or serial modes<br>Stand-alone operation<br>On-board data sync<br>and slicer<br>On-board character<br>generator<br>- Color<br>- Blinking<br>- Italic<br>- Underline | Z8* Architecture<br>1K ROM & 6K ROM<br>Watch-Dog Timer<br>2 Analog Comparators<br>with output option<br>2 Standby Modes<br>2 Counter/Timers<br>Auto Power-On Reset<br>2 volt operation<br>RC OSC option<br>Low Noise option<br>Brown-Out Protection<br>High current drivers (2, 4) | 28* Architecture<br>2K/8K/16K ROM<br>Watch-Dog Timer<br>2 Analog Comparators<br>with output option<br>2 Standby Modes<br>2 Enhanced Counter/<br>Timers, Auto Pulse<br>Reception/Generation<br>Auto Power-On Reset<br>2 volt operation<br>RC OSC option<br>Brown-Out Protection<br>High current drivers (4) | 4K ROM, 236 RAM<br>2 Standby Modes<br>2 Counter/Timers<br>ROM Protect<br>RAM Protect<br>4 Ports<br>Brown-Out Protection<br>2 Analog Comparators<br>Low EMI<br>Watch-Dog Timer<br>Auto Power-On Reset<br>Low Power option | 16K ROM<br>Full duplex UART<br>2 Standby Modes<br>(STOP and HALT)<br>2 Counter/Timers<br>ROM Protect option<br>RAM Protect option<br>Pin compatible to<br>Z86C21<br>C61 = 4 Ports<br>C62 = 7 Ports |  |  |
| Package          | 64-pin DIP<br>52-pin active (127)                                                                                                                                                                                                                                                                                                                             | 40-pin DIP                                                                                                                                                                                                                                                                                                         | 18-pin DIP                                                                                                                                                                                                        | 18-pin DIP<br>18-pin SOIC                                                                                                                                                                                                                                                          | 20-pin DIP (L71),<br>18-pin DIP, SOIC (L70)<br>40,44-pin DIP, PLCC, QFP<br>(L72)                                                                                                                                                                                                                           | 40-pin DIP                                                                                                                                                                                                               | 40-pin DIP (C61)<br>44-pin PLCC,QFP (C61)<br>68-pin PLCC (C62)                                                                                                                                     |  |  |
| Application      | Low-end Television<br>Cable/Satellite Receiver                                                                                                                                                                                                                                                                                                                | Low-end Television<br>Cable/Satellite Receiver                                                                                                                                                                                                                                                                     | TVs, VCRs, Decoders                                                                                                                                                                                               | I.R. Controller<br>Portable battery<br>operations                                                                                                                                                                                                                                  | I.R. Controller<br>Portable battery<br>operations                                                                                                                                                                                                                                                          | Window Control<br>Wiper Control<br>Sunroof Control<br>Security Systems<br>TAD                                                                                                                                            | Cable Television<br>Remote Control<br>Security                                                                                                                                                     |  |  |

S-2

| <sup>®</sup> ZiL      | <b>C</b> Fax                                                                                                                                                                                                                                                                | (Modem                                                                                                                                                                                                                                          | Supe                                                                                                                                                                                        | erintegration <sup>®</sup> Products Guide                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                                                     |                                                                                                                                                  |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                       | Data Pump                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                 | e Chip                                                                                                                                                                                      | Controllers                                                                                                                                                                  |                                                                                                                                                       |                                                                                                                                                                                     |                                                                                                                                                  |  |
| Block<br>Diagram      | DSP<br>512 RAM 4K ROM<br>16-BIT MAC<br>DATA RAM<br>I/O I/O                                                                                                                                                                                                                  | Z8DSP24K4K WORDROMROM256 BYTES512 WORDRAMRAM8-Bit10-BitA/DD/A                                                                                                                                                                                   | Z8         DSP           4K WORD<br>ROM                                                                                                                                                     | PIO CGC<br>WDT<br>SIO CTC<br>Z80 CPU                                                                                                                                         | 24 I/O<br>ESCC 16550<br>(2 CH) MIMIC<br>S180                                                                                                          | ZB0<br>CPU<br>MMU OSC                                                                                                                                                               | ESCC                                                                                                                                             |  |
| Part #                | Z89C00                                                                                                                                                                                                                                                                      | Z89120                                                                                                                                                                                                                                          | Z89920                                                                                                                                                                                      | Z84C15                                                                                                                                                                       | Z80182                                                                                                                                                | Z80180                                                                                                                                                                              | Z85230                                                                                                                                           |  |
| Description           | 16-Bit Digital Signal<br>Processor                                                                                                                                                                                                                                          | Zilog Modem/Fax<br>Controller (ZMFC)                                                                                                                                                                                                            | Zilog Modem/Fax<br>Controller (ZMFC)                                                                                                                                                        | IPC/EIPC Controller                                                                                                                                                          | Zilog Intelligent<br>Peripheral (ZIP™)                                                                                                                | High-performance<br>Z80® CPU with<br>peripherals                                                                                                                                    | Enhanced Serial<br>Com. Controller                                                                                                               |  |
| Process/Speed         | CMOS 10, 15 MHz                                                                                                                                                                                                                                                             | CMOS 20 MHz                                                                                                                                                                                                                                     | CMOS 20 MHz                                                                                                                                                                                 | CMOS 6, 10,16 MHz                                                                                                                                                            | CMOS 16, 20 MHz                                                                                                                                       | 6, 8, 10, 16*, 20*<br>*Z8S180 only                                                                                                                                                  | CMOS 8, 10,16, 20 MHz                                                                                                                            |  |
| Features              | 16-bit Mac 75 ns<br>2 data RAMs<br>(256 words each)<br>4K word ROM<br>64Kx16 Ext. ROM<br>16-bit I/O Port<br>74 instructions<br>Most single cycle<br>Two conditional branch<br>inputs, two user outputs<br>Library of software<br>macros available<br>zero overhead pointers | Z8* controller<br>with 24 Kbyte ROM<br>16-bit DSP with<br>4K word ROM<br>8-bit A/D<br>10-bit D/A (PWM)<br>Library of software<br>macros available<br>47 I/O pins<br>Two comparators<br>Independent Z8* and<br>DSP Operations<br>Power-Down Mode | Z8 w/64K external memory<br>DSP w/4K word ROM<br>8-bit A/D<br>10-bit D/A<br>Library of macros<br>47 I/O pins<br>Two comparators<br>Independent Z8® and<br>DSP Operations<br>Power-Down Mode | Z80° CPU, SIO, CTC<br>WDT, CGC<br>The Z80 Family in<br>one device<br>Power-On Reset<br>Two chip selects<br>32-bit CRC<br>WSG<br>EV mode <sup>1</sup><br>3 and 5 Volt Version | Complete Static Version<br>of Z180 <sup>∞</sup> plus ESCC<br>(2 channels of Z85230)<br>16550 MIMIC<br>24 Parallel I/O<br>Emulation Modes <sup>1</sup> | Enhanced Z80* CPU<br>MMU 1 Mbyte<br>2 DMAs<br>2 UARTs<br>with BRGs<br>C/Serial I/O Port<br>Oscillator<br>Z8S180 includes;<br>Pwr dwn, Prgmble<br>EMI, divide-by-one<br>clock option | Full dual-channel<br>SCC plus deeper<br>FIFOs:<br>4 bytes on Tx<br>8 bytes on Rx<br>DPLL counter per<br>channel<br>Software compatible<br>to SCC |  |
| Package               | 68-pin PLCC<br>60-pin VQFP                                                                                                                                                                                                                                                  | 68-pin PLCC                                                                                                                                                                                                                                     | 68-pin PLCC                                                                                                                                                                                 | 100-pin QFP<br>100-pin VQFP                                                                                                                                                  | 100-pin QFP<br>100-pin VQFP                                                                                                                           | 64-pin DIP<br>68-pin PLCC<br>80-pin QFP                                                                                                                                             | 40-pin DIP<br>44-pin PLCC                                                                                                                        |  |
| Other<br>Applications | 16-bit<br>General-Purpose DSP<br>TMS 32010/20/25<br>applications                                                                                                                                                                                                            | Multimedia-Audio<br>Voicemail<br>Speech Storage and<br>Transmission<br>Modems<br>FAXes, Sonabouys                                                                                                                                               | Multimedia-Audio<br>Voicemail<br>Speech Storage and<br>Transmission<br>Modems<br>FAXes, Sonabouys                                                                                           | Intelligent peripheral<br>controllers<br>Modems                                                                                                                              | General-Purpose<br>Embedded Control<br>Modem, Fax,<br>Data Communications                                                                             | Embedded Control                                                                                                                                                                    | General-Purpose<br>datacom.<br>High performance<br>SCC software<br>compatible upgrade                                                            |  |

S-S

S

S-4

## 

## Superintegration<sup>11</sup> Products Guide

| Block<br>Diagram | UART<br>CPU OSC<br>256 RAM CLOCK<br>P0 P1 P2 P3                                    | 8K PROM UART<br>CPU<br>256 RAM<br>P0 P1 P2 P3                                                                                                                          | DSP<br>512 RAM 4K ROM<br>16-BIT MAC<br>DATA RAM<br>1/0 1/0                                                                                                                                                                                                                  | MULT DIV UART<br>CPU OSC<br>256 RAM CLOCK<br>P0 P1 P2 P3                                                                                                                | MULTDIVUARTCPUDSPDACPWMADCSPIP2P3A15-0                                                                                                                                                                                                                        | 88-BIT SRAM/<br>R-S DRAM<br>ECC CTRL<br>DISK MCU AT/DE<br>HOST<br>INTER-INTER-<br>FACE FACE                                                                                                                                                                                                          |
|------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Part #           | Z86C91/Z8691                                                                       | Z86E21                                                                                                                                                                 | Z89C00                                                                                                                                                                                                                                                                      | Z86C93                                                                                                                                                                  | Z86C95                                                                                                                                                                                                                                                        | Z86018                                                                                                                                                                                                                                                                                               |
| Description      | ROMIess Z8*                                                                        | Z8* 8K OTP                                                                                                                                                             | 16-Bit Digital Signal<br>Processor                                                                                                                                                                                                                                          | Enhanced Z8®                                                                                                                                                            | Enhanced Z8® with DSP                                                                                                                                                                                                                                         | Zilog Datapath Controller (ZDPC)                                                                                                                                                                                                                                                                     |
| Process/Speed    | CMOS 16 MHz (C91)<br>NMOS 12 MHz (91)                                              | CMOS 12, 16 MHz                                                                                                                                                        | CMOS 10, 15 MHz                                                                                                                                                                                                                                                             | CMOS 20, 25 MHz                                                                                                                                                         | CMOS 24 MHz                                                                                                                                                                                                                                                   | CMOS 40 MHz                                                                                                                                                                                                                                                                                          |
| Features         | Full duplex UART<br>2 Standby Modes<br>(STOP and HALT)<br>2x8 bit<br>Counter/Timer | 8K OTP ROM<br>256 Byte RAM<br>Full-duplex UART<br>2 Standby Modes<br>(STOP and HALT)<br>2 Counter/Timers<br>ROM Protect option<br>RAM Protect option<br>Low EMI option | 16-bit Mac 75 ns<br>2 data RAMs<br>(256 words each)<br>4K word ROM<br>64Kx16 Ext. ROM<br>16-bit I/O Port<br>74 instructions<br>Most single cycle<br>Two conditional branch<br>inputs, two user outputs<br>Library of software<br>macros available<br>zero overhead pointers | 16x16 Multiply 1.7 μs<br>32x16 Divide 2.0 μs<br>Full duplex UART<br>2 Standby Modes<br>(STOP and HALT)<br>3 16-bit Counter/Timers<br>Pin compatible to<br>286C91 (PDIP) | 8 channel<br>8-bit ADC, 8-bit DAC<br>16-bit Multiply/Divide<br>Full duplex UART<br>SPI (Serial Peripheral<br>Interface)<br>3 Standby Modes<br>(STOP/HALT/PAUSE)<br>Pulse Width Modulator<br>3x16-bit timer<br>16-bit DSP slave processor<br>83 ns Mult/Accum. | Full track read<br>Automatic data transfer (Point & Go®)<br>88-bit Reed Solomon ECC *on the fly*<br>Full AT/IDE bus interface<br>64 KB SRAM buffer<br>1 MB DRAM buffer<br>Split data field support<br>100-pin VOFP package<br>JTAG boundary scan option<br>Up to 8 KB buffer RAM<br>reserved for MCU |
| Package          | 40-pin DIP<br>44-pin PLCC<br>44-pin QFP                                            | 40-pin DIP<br>44-pin PLCC<br>44-pin QFP                                                                                                                                | 68-pin PLCC<br>60-pin VQFP                                                                                                                                                                                                                                                  | 40-pin DIP<br>44-pin PLCC<br>44-pin QFP<br>48-pin VQFP                                                                                                                  | 80-pin QFP<br>84-pin PLCC<br>100-pin VQFP                                                                                                                                                                                                                     | 100-pin VQFP<br>100-pin QFP                                                                                                                                                                                                                                                                          |
| Application      | Disk Drives<br>Modems<br>Tape Drives                                               | Software Debug<br>Z8® prototyping<br>Z8® production runs<br>Card Reader                                                                                                | Disk Drives<br>Tape Drives<br>Servo Control<br>Motor Control                                                                                                                                                                                                                | Disk Drives<br>Tape Drives<br>Modems                                                                                                                                    | Disk Drives<br>Tape Drives<br>Servo Control<br>Motor Control                                                                                                                                                                                                  | Hard Disk Drives                                                                                                                                                                                                                                                                                     |

## 

## Superintegration<sup>11</sup> Products Guide

| Block<br>Diagram                         | SCC                                                                                                                               | ESCC                                                                                                                                                                          | SCC<br>DMA DMA DMA<br>BIU                                                         | CGC           WDT           SIO           CTC           Z80 CPU                                                                                                              | CTC<br>SCC/2<br>16 I/O<br>2180                                                                                                                                                                               | 24 1/0<br>85230<br>ESCC<br>(2 CH)<br>S180                                      | USC                                                                                                                                                 | USC/2<br>TSA                                                                         | USC/2<br>DMA DMA                                                                                                                        |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Part #                                   | Z8030/Z80C30<br>Z8530/Z85C30                                                                                                      | Z85230/Z80230<br>Z85233*                                                                                                                                                      | Z16C35                                                                            | Z84C15                                                                                                                                                                       | Z80181                                                                                                                                                                                                       | Z80182                                                                         | Z16C30                                                                                                                                              | Z16C33                                                                               | Z16C32                                                                                                                                  |
| Description                              | Serial Com.<br>Controller                                                                                                         | Enhanced Serial<br>Com. Controller                                                                                                                                            | Integrated Serial<br>Com. Controller                                              | Intelligent Peripheral<br>Controller                                                                                                                                         | Smart Access<br>Controller                                                                                                                                                                                   | Zilog Intelligent<br>Peripheral                                                | Universal Serial<br>Controller                                                                                                                      | Mono-channel<br>Universal Serial<br>Controller                                       | Integrated Universal<br>Serial Controller                                                                                               |
| Process/<br>Speed/<br>Clock<br>Data Rate | NMOS: 4, 6, 8 MHZ<br>CMOS: 8,10<br>16 MHz<br>2, 2.5, 4 Mb/s                                                                       | CMOS: 10, 16<br>20 MHz<br>2.5, 4.0, 5.0 Mb/s                                                                                                                                  | CMOS: 10, 16 MHz<br>2.5, 4.0 Mb/s                                                 | CMOS 6, 10,16 MHz                                                                                                                                                            | 10, 12.5                                                                                                                                                                                                     | CMOS<br>16, 20 MHz                                                             | CMOS: 20 MHz<br>CPU Bus<br>10 Mb/s<br>20 Mb/s                                                                                                       | CMOS: 10 MHz<br>CPU Bus<br>10 Mb/s                                                   | CMOS:20 MHz<br>CPU Bus<br>16 Mb/s<br>20 Mb/s                                                                                            |
| Features                                 | Two independent<br>full-duplex<br>channels<br>Enhanced DMA<br>support:<br>10x19 status FIFO<br>14-bit byte counter<br>NRZ/NRZI/FM | Full dual-channel<br>SCC plus deeper<br>FIFOs:<br>4 bytes on Tx<br>8 bytes on Rx<br>DPLL counter per<br>channel<br>Software compatible<br>to SCC<br>*One channel of<br>Z85230 | Full dual-channel<br>SCC plus 4 DMA<br>controllers and<br>a bus interface<br>unit | Z80° CPU, SIO, CTC<br>WDT, CGC<br>The Z80 Family in<br>one device<br>Power-On Reset<br>Two chip selects<br>32-bit CRC<br>WSG<br>EV mode <sup>1</sup><br>3 and 5 Volt Version | Complete Z180"     Complete Static       plus SCC/2     version of Z180       CTC     plus ESCC       16 I/O lines     (2 channels of       B5230)     16550 MIMIC       24 Parallel I/O     Emulation Mode1 |                                                                                | Two dual-channel<br>32-byte receive &<br>transmit FIFOs<br>16-bit bus B/W:<br>18.2 Mb/s<br>2 BRGs per channel<br>Flexible 8/16-bit<br>bus interface | Single-channel<br>(half of USC") plus<br>Time Slot<br>Assigner functions<br>for ISDN | Single-channel<br>(half of USC)<br>plus two DMA<br>controllers<br>Array chained and<br>linked-list modes<br>with ring buffer<br>support |
| Package                                  | 40-pin DIP<br>44-pin CERDIP<br>44-pin PLCC                                                                                        | 40-pin DIP<br>44-pin PLCC<br>*44-pin QFP (85233)                                                                                                                              | 68-pin PLCC                                                                       | 100-pin QFP<br>100-pin VQFP                                                                                                                                                  | 100-pin QFP                                                                                                                                                                                                  | 100-pin QFP<br>100-pin VQFP                                                    | 68-pin PLCC                                                                                                                                         | 68-pin PLCC                                                                          | 68-pin PLCC                                                                                                                             |
| Application                              | General-Purpose<br>datacom.                                                                                                       | General-Purpose<br>datacom.<br>High performance<br>SCC software                                                                                                               | High performance<br>datacom.<br>SCC upgrades                                      | Intelligent peripheral<br>controllers<br>Moderns                                                                                                                             | Intelligent peripheral<br>controllers<br>Printers, Faxes,<br>Moderns, Terminals                                                                                                                              | General-Purpose<br>Embedded Control<br>Modem, Fax,<br>Data Communica-<br>tions | General-Purpose<br>high-end datacom.<br>Ethernet<br>HDLC<br>X.25<br>Frame Relay                                                                     | General-Purpose<br>high-end datacom.<br>Ethernet<br>HDLC<br>X.25<br>Frame Relay      | General-Purpose<br>high-end datacom.<br>Ethernet<br>HDLC<br>X.25<br>Frame Relay                                                         |

AppleTalk\* A Registered Trademark of Apple Computer, Inc.

S

9-S

Z80<sup>®</sup> Embedded Controllers

Superintegration<sup>11</sup> Products Guide

| Block<br>Diagram | 84C01 *<br>CPU<br>OSC<br>PWR. DOWN<br>2K BYTES<br>SRAM                                                                                                             | SIO<br>PIO<br>OSC PIA                                                            | CTC CGC<br>SIO WDT<br>Z80 CPU                                                                    | PIO CGC<br>WDT<br>SIO CTC<br>Z80 CPU                                                                                                                 | 40 I/O<br>CTC WDT<br>Z80 CPU                                                                        | 2 DMA<br>2 UART<br>2 C/T<br>C/Ser<br>MMU OSC                                                                                                                                       | 16-BIT<br>Z80<br>CPUOSC<br>4 DMAZ807-BUS<br>INTERFACEUARTMMU3 C/TCACHEWSG                                                                                                                      | CTC<br>16 I/O<br>(85C30/2)<br>Z180                                                | 24 I/O<br>85230<br>ESCC<br>(2 CH)<br>S180                                                                                                                   |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Part #           | Z84C50                                                                                                                                                             | Z84C90                                                                           | Z84013/C13                                                                                       | Z84015/C15                                                                                                                                           | Z84011/C11                                                                                          | Z80180/\$180                                                                                                                                                                       | Z80280                                                                                                                                                                                         | Z80181                                                                            | Z80182                                                                                                                                                      |
| Description      | Z80/84C01 with<br>2K SRAM                                                                                                                                          | Killer I/O<br>(3 Z80 peripherals)                                                | Intelligent Peripheral<br>Controller                                                             | Intelligent Peripheral<br>Controller                                                                                                                 | Parallel I/O<br>Controller                                                                          | High-performance<br>Z80® CPU with<br>peripherals                                                                                                                                   | 16-bit Z80° code<br>compatible CPU<br>with peripherals                                                                                                                                         | Smart Access<br>Controller                                                        | Zilog Intelligent<br>Peripheral                                                                                                                             |
| Speed MHz        | 10                                                                                                                                                                 | 8, 10, 12.5                                                                      | 6, 10                                                                                            | 6, 10, 16                                                                                                                                            | 6, 10                                                                                               | 6, 8, 10, 16*, 20*<br>*Z8S180 only                                                                                                                                                 | 10, 12                                                                                                                                                                                         | 10, 12.5                                                                          | 16, 20                                                                                                                                                      |
| Features         | Z80° CPU<br>Z Kbytes SRAM<br>WSG<br>Oscillator<br>Pin compatible<br>with Z84C00<br>DIP & PLCC<br>EV mode <sup>1</sup><br>*84C01 is available<br>as a separate part | SIO, PIO, CTC<br>plus 8 I/O lines                                                | Z80° CPU, SIO, CTC<br>WDT, CGC, WSG,<br>Power-On Reset<br>2 chip selects<br>EV mode <sup>1</sup> | Z80* CPU, SIO, CTC<br>WDT, CGC<br>The Z80 Family in<br>one device<br>Power-On Reset<br>Two chip selects<br>32-bit CRC<br>WSG<br>EV mode <sup>1</sup> | Z80® CPU, CTC,<br>WDT<br>40 I/O lines bit<br>programmable<br>Power-On Reset<br>EV mode <sup>1</sup> | Enhanced Z80 CPU<br>MMU 1 Mbyte<br>2 DMAs<br>2 UARTs<br>with BRGs<br>C/Serial I/O Port<br>Oscillator<br>Z85180 includes;<br>Pwr dwn, Prgmble<br>EMI, divide-by-one<br>clock option | 16-bit code com-<br>patible Z80° CPU<br>Three stage pipeline<br>MMU 16 Mbyte<br>CACHE 256 byte<br>Inst. & Data<br>Peripherals<br>4 DMAs, UART,<br>3 16-bit C/T,<br>WSG<br>Z80/Z-BUS° interface | Complete Z180<br>plus SCC/2<br>CTC<br>16 I/O lines<br>Emulation Mode <sup>1</sup> | Complete Static<br>Version<br>of Z180 <sup>™</sup> plus ESCC<br>(2 channels of<br>Z85230)<br>16550 MIMIC<br>24 Parallel I/0<br>Emulation Modes <sup>1</sup> |
| Package          | 40-pin DIP<br>44-pin PLCC<br>44-pin QFP                                                                                                                            | 84-pin PLCC                                                                      | 84-pin PLCC                                                                                      | 100-pin QFP<br>100-pin VQFP                                                                                                                          | 100-pin QFP                                                                                         | 64-pin DIP<br>68-pin PLCC<br>80-pin QFP                                                                                                                                            | 68-pin PLCC                                                                                                                                                                                    | 100-pin QFP                                                                       | 100-pin QFP<br>100-pin VQFP                                                                                                                                 |
| Application      | Embedded<br>Controllers                                                                                                                                            | General-purpose<br>peripheral that<br>can be used with<br>Z80 and other<br>CPU's | Intelligent datacom<br>controllers                                                               | Intelligent peripheral<br>controllers<br>Moderns                                                                                                     | Intelligent parallel-<br>I/O controllers<br>Industrial display<br>terminals                         | Embedded Control                                                                                                                                                                   | Embedded Control<br>Terminals<br>Printers                                                                                                                                                      | Intelligent peripheral<br>controllers<br>Printers, Faxes,<br>Moderns, Terminals   | General-Purpose<br>Embedded Control<br>Modem, Fax,<br>Data Communications                                                                                   |

1 Allows use of existing development systems.

| <pre>%</pre>      | Peripher                                                                                                                        | als Superir                                                                                                                                                       | Superintegration <sup>™</sup> Products Guide                                                                                                         |                                                                                |  |  |  |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|--|--|
|                   | Z8036<br>Z8536                                                                                                                  | Z32H00                                                                                                                                                            | Z5380<br>Z53C80                                                                                                                                      | Z85C80                                                                         |  |  |  |  |
| Description       | Counter/Timer & parallel I/O Unit<br>(CIO)                                                                                      | Hyperstone<br>Enhanced Fast Instruction<br>Set Computer (EFISC)<br>Embedded (RISC) Processor                                                                      | Small Computer System Interface<br>(SCSI)                                                                                                            | Serial Communication Controller<br>and Small Computer System<br>Interface      |  |  |  |  |
| Process/<br>Speed | NMOS 4,6 MHz                                                                                                                    | CMOS 25 MHz                                                                                                                                                       | CMOS<br>Z5380: 1.5 MB/s<br>Z53C80: 3.0 M8/s                                                                                                          | CMOS<br>SCC - 10, 16 MHz<br>SCSI - 3.0 MB/s                                    |  |  |  |  |
| Features          | Three 16-bit<br>Counter/Timers,<br>Three I/O ports<br>with bit catching,<br>pattern matching<br>interrupts and<br>handshake I/O | 32-bit MPU<br>4 Gbytes address space<br>19 global and 64 local<br>registers of 32 bits each<br>128 bytes instruction cache<br>1.2μ CMOS<br>42 mm <sup>2</sup> die | ANSI X3.131-1986<br>Direct SCSI bus interface<br>On-board 48 mÅ drivers<br>Normal or Block mode DMA transfers<br>Bus interface, target and initiator | Full dual-channel SCC plus<br>SCSI sharing databus and<br>read/write functions |  |  |  |  |
| Package           | 40-pin PDIP<br>44-pin PLCC                                                                                                      | 144-pin PGA<br>132-pin QFP                                                                                                                                        | Z5380: 40-pin DIP<br>44-pin PLCC<br>Z53C80: 48-pin DIP<br>44-pin PLCC                                                                                | 68-pin PLCC                                                                    |  |  |  |  |
| Application       | General-Purpose<br>Counter/Timers<br>and I/O system<br>designs                                                                  | Embedded<br>high-performance<br>industrial controller<br>Workstations                                                                                             | Bus host adapters,<br>formatters, host ports                                                                                                         | AppleTalk®<br>networking<br>SCSI disk drives                                   |  |  |  |  |

<sup>2</sup> Software and hardware compatible with discrete devices.

S





Introduction



Superintegration<sup>™</sup> Products Guide

Z89C65, Z89C66 (ROMIess) Dual Processor T.A.M. Controller

Z89C67, Z89C68 (ROMIess) Dual Processor Tapeless T.A.M. Controller



**Support Products** 









#### PRELIMINARY PRODUCT SPECIFICATION

### **Z89C65 Z89C66 (ROMLESS)** DUAL PROCESSOR T. A. M. CONTROLLER

#### **FEATURES**

- Z8<sup>®</sup> Microcontroller with 47 I/O Lines
- 24 Kbytes of Z8 Program ROM (Z89C65)
- 256 Bytes On-Chip Z8 RAM
- Watch-Dog Timer and Power-On Reset
- Low Power Stop Mode
- On-Chip Oscillator which Accepts a Crystal or External Clock Drive
- Two 8-Bit Z8 Counter Timers with 6-Bit Prescaler
- Global Power-Down Mode
- Low Power Consumption 200 mW (typical)
- Brown-Out Protection
- Two Comparators with Programmable Interrupt Priority
- Six Vectored, Priority Interrupts

- RAM and ROM Protect
- Clock Speed of 20.48 MHz
- 16-Bit Digital Signal Processor (DSP)
- 4K Word DSP Program ROM
- 512 Words On-Chip DSP RAM
- 8-Bit A/D Converter with up to 128 kHz Sample Rate
- 10-Bit PWM D/A Converter (4 kHz to 64 kHz)
- Two DSP Timers to Support Different A/D and D/A Sampling Rates
- Z8 and DSP Operation in Parallel
- IBM<sup>®</sup> PC-Based Development Tools
- Developer's Toolbox for T.A.M. Applications

#### **GENERAL DESCRIPTION**

The Z89C65/C66 is a fully integrated, dual processor controller designed for telephone answering machines. The I/O control processor is a Z8<sup>®</sup> with 24 Kbytes of program memory, two 8-bit counter timers, and up to 47 I/O pins. The DSP is a 16-bit processor with a 24-bit ALU and accumulator, 512 x 16 bits of RAM, single cycle instructions, and 4K word program ROM plus constants memory. The chip also contains a half-flash 8-bit A/D converter with up to 128 kHz sample rate and 10-bit PWM D/A converter. The sampling rates for the converters are programmable. The precision of the 8-bit A/D may be extended by resampling the data at a lower rate in software.

The Z8 and DSP processors are coupled by mailbox registers and an interrupt system. DSP or Z8 programs may be directed by events in each other's domain.

The Z89C66 is the ROMIess version of the Z89C65. The DSP is not ROMIess. The DSP's program memory is always the internal ROM

**GENERAL DESCRIPTION** (Continued)

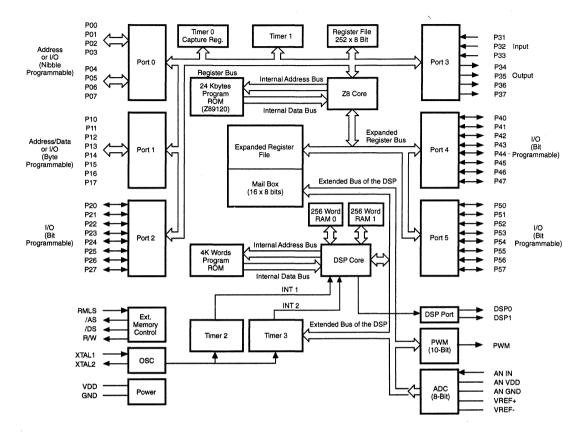



Figure 1. Functional Block Diagram

#### & Silæ

#### **Z8 Core Processor**

The Z8 is Zilog's 8-bit microcontroller core with an Expanded Register File to allow access to register-mapped peripheral and I/O circuits. The Z8 offers a flexible I/O scheme, an efficient register and address space structure, and a number of ancillary features. The Z8 also excels in many industrial uses, high-volume processing, peripheral controllers and advanced scientific applications.

For applications demanding powerful I/O capabilities, the Z89C65/C66 fulfills this with 47 pins dedicated to input and output. These lines are grouped into six ports. Each port is configurable under software control to provide timing, status signals and parallel I/O with or without handshake.

There are four basic memory resources for the Z8 that are available to support a wide range of configurations: Program Memory, Register File, Data Memory, and Expanded Register File. The Z8 core processor is characterized by an efficient register file that allows any of 256 on-board data and control registers to be the source and/or the destination of almost any instruction. Traditional microprocessor accumulator bottlenecks are eliminated.

The Register File is composed of 236 bytes of generalpurpose registers, four I/O port registers, and 15 control and status registers. The Expanded Register File consists of mailbox registers, WDT mode register, DSP Control register, Stop-Mode Recovery register, Port Configuration register, and the control and data registers for Port 4 and Port 5.

To unburden the software from supporting the real-time problems, such as counting/timing and data communication, the Z8 offers two on-chip counter/timers with a large number of user selectable modes.

Watch-Dog Timer and Stop-Mode Recovery features are software driven by setting specific bits in control registers.

STOP and HALT instructions support reduced power operation. The low power STOP mode allows parameter information to be stored in the register file if power fails. An external capacitor or battery retains power to the device.

#### **DSP Coprocessor**

The DSP coprocessor is a second generation, 16-bit two's complement CMOS Digital Signal Processor (DSP). Most instructions, including multiply and accumulate, are accomplished in a single clock cycle. The processor contains two on-chip data RAM blocks of 256 words, a 4K word program ROM, 24-bit ALU, 16 x 16 multipiler, 24-bit Accumulator, shifter, six-level stack, three vectored interrupts and two inputs for conditional program jumps. Each RAM block contains a set of four pointers which may be incremented or decremented automatically to affect hardware looping without software overhead. The data RAMs can be simultaneously addressed and loaded to the multiplier for a true single cycle scalar multiply.

Four external DSP registers are mapped into the expanded register file of the Z8. Communication between the Z8 and the DSP occurs through those common registers which form the mailbox registers.

The analog signal is generated by a 10-bit resolution Pulse Width Modulator. The PWM output is a digital signal with CMOS output levels. The output signal has a resolution of 1 in 1024 with a sampling rate of 16 kHz (XTAL = 20.48 MHz). The sampling rate can be changed under software control and can be set at 4, 10, 16, and 64 kHz. The dynamic range of the PWM is from 0 to 4V.

An 8-bit resolution half-flash A/D converter is provided. The conversion is conducted with a sampling frequency of 8, 16, 32, 64, or 128 kHz. (XTAL = 20.48 MHz) in order to provide oversampling. The input signal is 4V peak to peak. Scaling is normally $\pm$ 1.25V for the 2.5V peak to peak offset.

Two additional timers (Timer2 and Timer3) have been added to support different sampling rates for the A/D and D/A converters. These timers are free running counters that divide the crystal frequency.

#### Notes:

All Signals with a preceding front slash, "/", are active Low, e.g., B/W (WORD is active Low); /B/W (BYTE is active Low, only).

Power connections follow conventional descriptions below:

| Connection | Circuit         | Device          |
|------------|-----------------|-----------------|
| Power      | V <sub>cc</sub> | V <sub>DD</sub> |
| Ground     | GND             | V <sub>SS</sub> |

**PIN DESCRIPTION** (Continued)

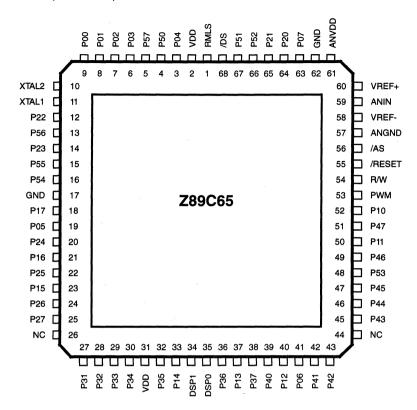



Figure 2. Z89C65 68-Pin Plastic Leaded Chip Carrier, Pin Assignments

| Table 1 | . Z89C65 68-Pir | Plastic Leaded Chip | Carrier, Pin Identification |
|---------|-----------------|---------------------|-----------------------------|
|---------|-----------------|---------------------|-----------------------------|

| Pin # | Symbol          | Function                 | Direction                             | Pir | n # | Symbol            | Function              | Direction    |
|-------|-----------------|--------------------------|---------------------------------------|-----|-----|-------------------|-----------------------|--------------|
| 1     | RMLS            | ROMIess                  | Control Input                         | 35  |     | DSP0              | DSP User Output 0     | Output       |
| 2     | V <sub>DD</sub> | Power Supply             |                                       | 36  |     | P36               | Port 3, Bit 7         | Output       |
| 3     | P04             | Port 0, Bit 4            | Input/Output                          | 37  |     | P13               | Port 1, Bit 3         | Input/Output |
| 4     | P50             | Port 5, Bit 0            | Input/Output                          | 38  |     | P37               | Port 3, Bit 7         | Output       |
| 5     | P57             | Port 5, Bit 7            | Input/Output                          | 39  | 1   | P40               | Port 4, Bit 0         | Input/Output |
| 6     | P03             | Port 0, Bit 3            | Input/Output                          | 40  |     | P12               | Port 1, Bit 2         | Input/Output |
| 7     | P02             | Port 0, Bit 2            | Input/Output                          | 41  |     | P06               | Port 0, Bit 6         | Input/Output |
| 8     | P01             | Port 0, Bit 1            | Input/Output                          | 42  |     | P41               | Port 4, Bit 1         | Input/Output |
| 9     | P00             | Port 0, Bit 0            | Input/Output                          | 43  |     | P42               | Port 4, Bit 2         | Input/Output |
| 10    | XTAL2           | Crystal Oscillator Clock | Output                                | 44  |     | NC                | Not Connected         |              |
| 11    | XTAL1           | Crystal Oscillator Clock | Input                                 | 45  |     | P43               | Port 4, Bit 3         | Input/Output |
| 12    | P22             | Port 2, Bit 2            | Input/Output                          | 46  |     | P44               | Port 4, Bit 4         | Input/Output |
| 13    | P56             | Port 5, Bit 6            | Input/Output                          | 47  |     | P45               | Port 4, Bit 5         | Input/Output |
| 14    | P23             | Port 2, Bit 3            | Input/Output                          | 48  |     | P53               | Port 5, Bit 3         | Input/Output |
| 15    | P55             | Port 5, Bit 5            | Input/Output                          | 49  |     | P46               | Port 4, Bit 6         | Input/Output |
| 16    | P54             | Port 5, Bit 4            | Input/Output                          | 50  |     | P11               | Port 1, Bit 1         | Input/Output |
| 17    | GND             | Ground                   | · · · · · · · · · · · · · · · · · · · | 51  |     | P47               | Port 4, Bit 7         | Input/Output |
| 18    | P17             | Port 1, Bit 7            | Input/Output                          | 52  |     | P10               | Port 1, Bit 0         | Input/Output |
| 19    | P05             | Port 0, Bit 5            | Input/Output                          | 53  |     | PWM               | Pulse Width Modulator | Output       |
| 20    | P24             | Port 2, Bit 4            | Input/Output                          | 54  |     | R/W               | Read/Write            | Output       |
| 21    | P16             | Port 1, Bit 6            | Input/Output                          | 55  |     | /RESET            | Reset                 | Input        |
| 22    | P25             | Port 2, Bit 5            | Input/Output                          | 56  |     | /AS               | Address Strobe        | Output       |
| 23    | P15             | Port 1, Bit 5            | Input/Output                          | 57  |     | ANGND             | Analog Ground         |              |
| 24    | P26             | Port 2, Bit 6            | Input/Output                          | 58  |     | $V_{REF-}$        | Analog Voltage Ref.   | Input        |
| 25    | P27             | Port 2, Bit 7            | Input/Output                          | 59  |     | AN                | Analog Input          | Input        |
| 26    | NC              | Not Connected            |                                       | 60  |     | V <sub>REF+</sub> | Analog Voltage Ref.   | Input        |
| 27    | P31             | Port 3, Bit 1            | Input                                 | 61  |     |                   | Analog Power Supply   |              |
| 28    | P32             | Port 3, Bit 2            | Input                                 | 62  |     | GND               | Ground                |              |
| 29    | P33             | Port 3, Bit 3            | Input                                 | 63  |     | P07               | Port 0, Bit 7         | Input/Output |
| 30    | P34             | Port 3, Bit 4            | Output                                | 64  |     | P20               | Port 2, Bit 0         | Input/Output |
| 31    | V <sub>DD</sub> | Power Supply             |                                       | 65  |     | P21               | Port 2, Bit 1         | Input/Output |
| 32    | P35             | Port 3, Bit 5            | Output                                | 66  |     | P52               | Port 5, Bit 2         | Input/Output |
| 33    | P14             | Port 1, Bit 4            | Input/Output                          | 67  |     | P51               | Port 5, Bit 1         | Input/Output |
| 34    | DSP1            | DSP User Output 1        | Output                                | 68  |     | /DS               | Data Strobe           | Output       |

**PIN DESCRIPTION** (Continued)

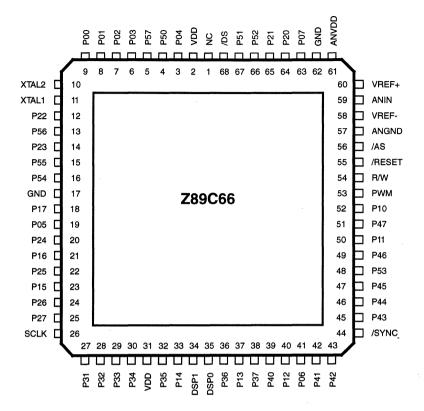



Figure 3. Z89C66 68-Pin Plastic Leaded Chip Carrier, Pin Assignments

| Pin # | Symbol          | Function                 | Direction    | Pin # | Symbol            | Function              | Direction    |
|-------|-----------------|--------------------------|--------------|-------|-------------------|-----------------------|--------------|
| 1     | NC              | Not Connected            |              | 35    | DSP0              | DSP User Output 0     | Output       |
| 2     | $V_{DD}$        | Power Supply             |              | 36    | P36               | Port 3, Bit 7         | Output       |
| 3     | P04             | Port 0, Bit 4            | Input/Output | 37    | P13               | Port 1, Bit 3         | Input/Output |
| 4     | P50             | Port 5, Bit 0            | Input/Output | 38    | P37               | Port 3, Bit 7         | Output       |
| 5     | P57             | Port 5, Bit 7            | Input/Output | 39    | P40               | Port 4, Bit 0         | Input/Output |
| 6     | P03             | Port 0, Bit 3            | Input/Output | 40    | P12               | Port 1, Bit 2         | Input/Output |
| 7     | P02             | Port 0, Bit 2            | Input/Output | 41    | P06               | Port 0, Bit 6         | Input/Output |
| 8     | P01             | Port 0, Bit 1            | Input/Output | 42    | P41               | Port 4, Bit 1         | Input/Output |
| 9     | P00             | Port 0, Bit 0            | Input/Output | 43    | P42               | Port 4, Bit 2         | Input/Output |
| 10    | XTAL2           | Crystal Oscillator Clock |              | 44    | /SYNC             | Synchronization Pin   | Output       |
| 11    | XTAL1           | Crystal Oscillator Clock |              | 45    | P43               | Port 4, Bit 3         | Input/Output |
| 12    | P22             | Port 2, Bit 2            | Input/Output | 46    | P44               | Port 4, Bit 4         | Input/Output |
| 13    | P56             | Port 5, Bit 6            | Input/Output | 47    | P45               | Port 4, Bit 5         | Input/Output |
| 14    | P23             | Port 2, Bit 3            | Input/Output | 48    | P53               | Port 5, Bit 3         | Input/Output |
| 15    | P55             | Port 5, Bit 5            | Input/Output | 49    | P46               | Port 4, Bit 6         | Input/Output |
| 16    | P54             | Port 5, Bit 4            | Input/Output | 50    | P11               | Port 1, Bit 1         | Input/Output |
| 17    | GND             | Ground                   |              | 51    | P47               | Port 4, Bit 7         | Input/Output |
| 18    | P17             | Port 1, Bit 7            | Input/Output | 52    | P10               | Port 1, Bit 0         | Input/Output |
| 19    | P05             | Port 0, Bit 5            | Input/Output | 53    | PWM               | Pulse Width Modulator | Output       |
| 20    | P24             | Port 2, Bit 4            | Input/Output | 54    | R/W               | Read/Write            | Output       |
| 21    | P16             | Port 1, Bit 6            | Input/Output | 55    | /RESET            | Reset                 | Input        |
| 22    | P25             | Port 2, Bit 5            | Input/Output | 56    | /AS               | Address Strobe        | Output       |
| 23    | P15             | Port 1, Bit 5            | Input/Output | 57    | ANGND             | Analog Ground         |              |
| 24    | P26             | Port 2, Bit 6            | Input/Output | 58    | $V_{REF-}$        | Analog Voltage Ref.   | Input        |
| 25    | P27             | Port 2, Bit 7            | Input/Output | 59    | AN                | Analog Input          | Input        |
| 26    | SCLK            | System Clock             | Output       | 60    | V <sub>REF+</sub> | Analog Voltage Ref.   | Input        |
| 27    | P31             | Port 3, Bit 1            | Input        | 61    |                   | Analog Power Supply   |              |
| 28    | P32             | Port 3, Bit 2            | Input        | 62    | GND               | Ground                |              |
| 29    | P33             | Port 3, Bit 3            | Input        | 63    | P07               | Port 0, Bit 7         | Input/Output |
| 30    | P34             | Port 3, Bit 4            | Output       | 64    | P20               | Port 2, Bit 0         | Input/Output |
| 31    | V <sub>DD</sub> | Power Supply             |              | 65    | P21               | Port 2, Bit 1         | Input/Output |
| 32    | P35             | Port 3, Bit 5            | Output       | 66    | P52               | Port 5, Bit 2         | Input/Output |
| 33    | P14             | Port 1, Bit 4            | Input/Output | 67    | P51               | Port 5, Bit 1         | Input/Output |
| 34    | DSP1            | DSP User Output 1        | Output       | 68    | /DS               | Data Strobe           | Output       |

#### Table 2. Z89C66 68-Pin Plastic Leaded Chip Carrier, Pin Identification

#### **PIN FUNCTIONS**

**/RESET** (input, active Low). Initializes the MCU. Reset is accomplished either through Power-On Reset (POR), Watch-Dog Timer reset, Stop-Mode Recovery, or external reset. During POR and WDT Reset, the internally generated reset is driving the reset pin Low for the POR time. Any devices driving the reset line must be open drain to avoid damage from a possible conflict during reset conditions. A /RESET will reset both the Z8 and the DSP.

#### For the Z8:

After the POR time, /RESET is a Schmitt-triggered input. To avoid asynchronous and noisy reset problems, the Z8 is equipped with a reset filter of four external clocks (4TpC). If the external reset signal is less than 4TpC in duration, no reset occurs. On the fifth clock after the reset is detected, an internal RST signal is latched and held for an internal register count of 18 external clocks, or for the duration of the external reset, whichever is longer. Program execution begins at location 000CH (Hexadecimal), 5-10 TpC cycles after the /RESET is released. The Z8 does not reset WDT, SMR, P2M, and P3M registers on a Stop-Mode Recovery operation.

#### For the DSP:

A low level on the /RESET pin generates an internal reset signal. The /RESET signal must be kept low for at least one clock cycle. The CPU will fetch a new Program Counter (PC) value from program memory address 0FFCH after the reset signal is released.

**RMLS** *ROMless* (input, active High). This pin, when connected to  $V_{DD}$ , disables the internal Z8 ROM. (Note that, when pulled Low to GND that part functions normally as the ROM version). The DSP can not be configured as ROMless. This pin is only available on the Z89C65.

**R//W** *Read/Write* (output, write Low). The R//W signal defines the signal flow when the Z8 is reading or writing to external program or data memory. The Z8 is reading when this pin is High and writing when this pin is Low.

**/AS** Address Strobe (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle. Address output is through Port 0/Port 1 for all external programs. Memory address transfers are valid at the trailing edge of /AS. Under program control, /AS is placed in the high-impedance state along with Ports 0 and 1, Data Strobe, and Read/Write.

**/DS** *Data Strobe* (output, active Low). Data Strobe is activated once for each external memory transfer. For read operations, data must be available prior to the trailing edge of /DS. For write operations, the falling edge of /DS indicates that output data is valid.

**XTAL1** *Crystal 1* (time-based input). This pin connects a parallel-resonant crystal, ceramic resonator, LC, RC network or an external single-phase clock to the on-chip oscillator input.

**XTAL2** *Crystal 2* (time-based output). This pin connects a parallel-resonant, crystal, ceramic resonant, or LC network to the on-chip oscillator output.

**DSP0** (output). DSP0 is a general purpose output pin connected to bit 6 of the Analog Control Register (DSP EXT4). This bit has no special significance and may be used to output data by writing to bit 6 of the ACR.

**DSP1** (output). DSP1 is a general purpose output pin connected to bit 7 of the Analog Control Register (DSP EXT4). This bit has no special significance and may be used to output data by writing to bit 7 of the ACR.

**SCLK** *System Clock* (output). SCLK outputs the system clock. This pin is available on the Z89C66.

**/SYNC** Synchronize (output). This signal indicates the last clock cycle of the current executing Z8 instruction. This pin is only available on the Z89C66.

**PWM** *Pulse Width Modulator* (output). The PWM is a 10-bit resolution D/A converter. This output is a digital signal with CMOS output levels.

**AN**<sub>IN</sub> (input). Analog input for the A/D converter.

**ANV**<sub>pp</sub>. Analog power supply for the A/D converter.

**AN<sub>GND</sub>** Analog ground for the A/D converter.

 $\boldsymbol{V}_{\text{REF+}}$  (input). Reference voltage (High) for the A/D converter.

**V**<sub>BFF</sub> (input). Reference voltage (Low) for the A/D converter.

V<sub>pp</sub>. Digital power supply for the Z89C65.

GND. Digital ground for the Z89C65.

**Port 0** (P07-P00). Port 0 is an 8-bit, bidirectional, CMOS compatible port. These eight I/O lines are configured under software control as a nibble I/O port, or as an address port for interfacing external memory. The input buffers are Schmitt-triggered and the output drivers are push-pull. Port 0 is placed under handshake control. In this configuration, Port 3, lines P32 and P35 are used as the handshake control /DAV0 and RDY0. Handshake signal direction is dictated by the I/O direction to Port 0 of the upper nibble P07-P04. The lower nibble must have the same direction as the upper nibble.

The Auto Latch on Port 0 puts valid CMOS levels on all CMOS inputs which are not externally driven. Whether this level is 0 or 1, cannot be determined. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer.

For external memory references, Port 0 provides address bits A11-A8 (lower nibble) or A15-A8 (lower and upper nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while the lower nibble is used for addressing. If one or both nibbles are needed for I/O operation, they are configured by writing to the Port 0 mode register.

In ROMless mode, after a hardware reset, Port 0 is configured as address lines A15-A8, and extended timing is set to accommodate slow memory access. The initialization routine can include reconfiguration to eliminate this extended timing mode. (In ROM mode, Port 0 is defined as input after reset.)

Port 0 is set in the high-impedance mode if selected as an address output state along with Port 1 and the control signals /AS, /DS and R//W (Figure 4).

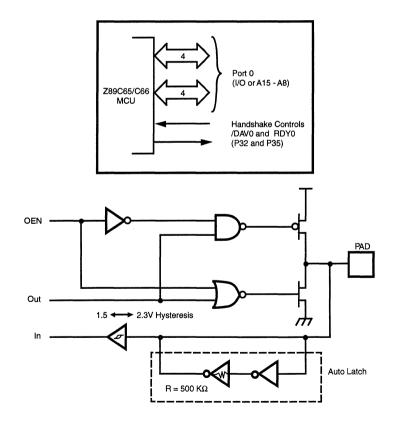



Figure 4. Port 0 Configuration

#### **PIN FUNCTIONS** (Continued)

**Port 1** (P17-P10). Port 1 is an 8-bit, bidirectional, CMOS compatible port (Figure 5). It has multiplexed Address (A7-A0) and Data (D7-D0) ports. These eight I/O lines are programmed as inputs or outputs, or can be configured under software control as an Address/Data port for interfacing external memory. The input buffers are Schmitt triggered and the output drivers are push-pull.

Port 1 may be placed under handshake control. In this configuration, Port 3, lines P33 and P34 are used as the handshake controls RDY1 and /DAV1 (Ready and Data

Available). Memory locations greater than 24575 (in ROM mode) are referenced through Port 1. To interface external memory, Port 1 must be programmed for the multiplexed Address/Data mode. If more than 256 external locations are required, Port 0 outputs the additional lines.

Port 1 can be placed in the high-impedance state along with Port 0, /AS, /DS and R//W, allowing the Z89C65/C66 to share common resources in multiprocessor and DMA applications.

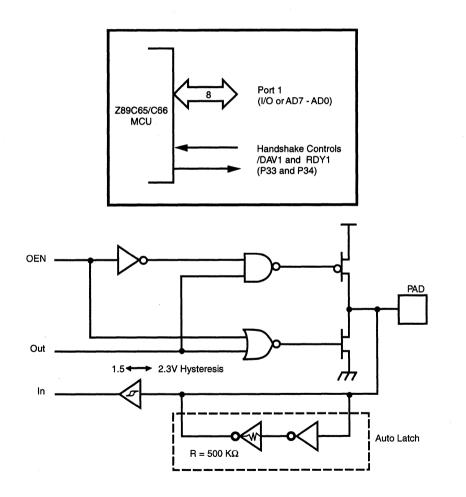



Figure 5. Port 1 Configuration

**Port 2** (P27-P20). Port 2 is an 8-bit, bidirectional, CMOS compatible I/O port. These eight I/O lines are configured under software control as an input or output, independently. Port 2 is always available for I/O operation. The input buffers are Schmitt triggered. Bits programmed as outputs may be globally programmed as either push-pull or open-drain.

Port 2 may be placed under handshake control. In this configuration, Port 3 lines P31 and P36 are used as the handshake controls lines /DAV2 and RDY2. The hand-

shake signal assignment for Port 3 lines P31 and P36 is dictated by the direction (input or output) assigned to bit 7, Port 2 (Figure 6).

The Auto Latch on Port 2 puts valid CMOS levels on all CMOS inputs which are not externally driven. Whether this level is 0 or 1, cannot be determined. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer.

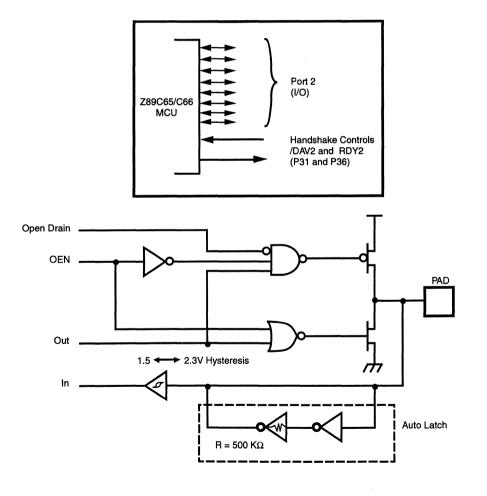



Figure 6. Port 2 Configuration

#### PIN FUNCTIONS (Continued)

**Port 3** (P37-P31). Port 3 is a 7-bit, CMOS compatible port with three fixed inputs (P33-P31) and four fixed outputs (P37-P34). It is configured under software control for input/ output, counter/timers, interrupt, and port handshakes. Pins P31, P32, and P33 are standard CMOS inputs; outputs are push-pull.

Two on-board comparators can process analog signals on P31 and P32 with reference to the voltage on P33. The analog function is enabled by programming the Port 3 Mode Register (bit 1). Port 3, pin 3 is a falling edge interrupt input. P31 and P32 are programmable as rising, falling or both edge-triggered interrupts (IRQ register bits 6 and 7). P33 is the comparator reference voltage input. Access to counter/timers 1 is through P31 (T<sub>IN</sub>) and P36 (T<sub>OUT</sub>). Hand-shake lines for Ports 0, 1, and 2 are available on P31 through P36.

Port 3 also provides the following control functions: hand-shake for Ports 0, 1, and 2 (/DAV and RDY); three external interrupt request signals (IRQ3-IRQ1); timer input and output signals ( $T_{IN}$  and  $T_{OUT}$ ); (Figure 7).

**Comparator Inputs.** Port 3, Pins P31 and P32 each have a comparator front end. The comparator reference voltage, Pin P33, is common to both comparators. In analog mode, the P31 and P32 are the positive inputs to the comparators and P33 is the reference voltage supplied to both comparators. In digital mode, pin P33 can be used as a P33 register input or IRQ1 source.

| Table 3. Port 3 Pin Assignments |     |                  |       |      |       |      |       |     |
|---------------------------------|-----|------------------|-------|------|-------|------|-------|-----|
| Pin                             | I/O | CTC1             | AN IN | Int. | P0 HS | P1HS | P2 HS | EXT |
| P31                             | IN  | T <sub>IN</sub>  | AN1   | IRQ2 |       |      | D/R   |     |
| P32                             | IN  |                  | AN2   | IRQ0 | D/R   |      |       |     |
| P33                             | IN  |                  | REF   | IRQ1 |       | D/R  |       |     |
| P34                             | OUT |                  |       |      |       | R/D  | -     | DM  |
| P35                             | OUT |                  |       |      | R/D   |      |       |     |
| P36                             | OUT | Τ <sub>ουτ</sub> |       |      |       |      | R/D   |     |
| P37                             | OUT | 001              |       |      |       |      |       |     |

#### Table 3. Port 3 Pin Assignments

#### Notes:

HS = Handshake Signals

D = DAV R = RDY

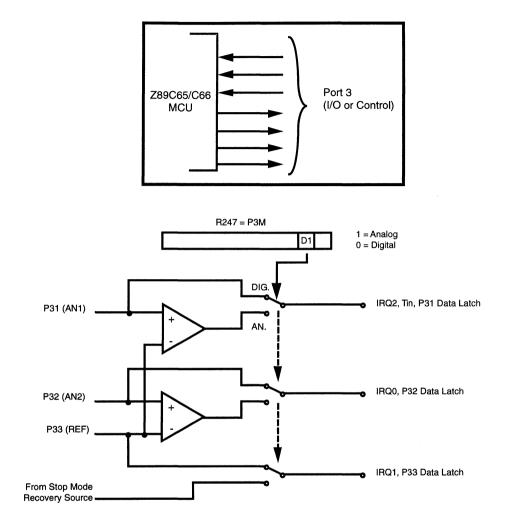



Figure 7. Port 3 Configuration

#### **PIN FUNCTIONS** (Continued)

**Port 4** (P47-P40). Port 4 is an 8-bit, bidirectional, CMOS compatible I/O port (Figure 8). These eight I/O lines are configured under software control as an input or output, independently. Port 4 is always available for I/O operation. The input buffers are Schmitt-triggered. Bits programmed as outputs may be globally programmed as either pushpull or open-drain.

Port 4 is a bit programmable general purpose I/O port. The control registers for Port 4 are mapped into the expanded register file (Bank F) of the Z8.

**Auto Latch.** The Auto Latch on Port 4 puts valid CMOS levels on all CMOS inputs which are not externally driven. Whether this level is 0 or 1, cannot be determined. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer.

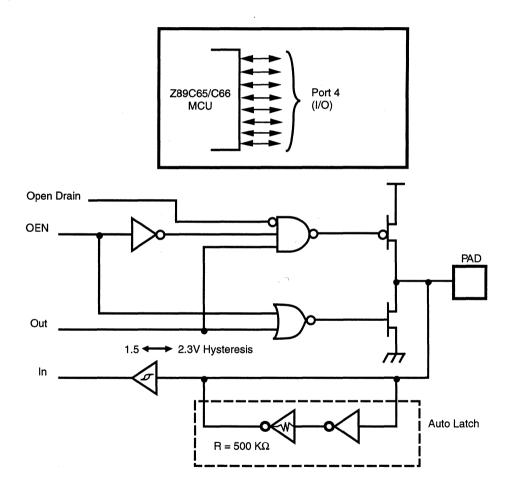



Figure 8. Port 4 Configuration

**Port 5** (P57-P50). Port 5 is an 8-bit, bidirectional, CMOS compatible I/O port (Figure 9). These eight I/O lines are configured under software control as an input or output, independently. Port 5 is always available for I/O operation. The input buffers are Schmitt-triggered. Bits programmed as outputs may be globally programmed as either pushpull or open-drain.

Port 5 is a bit programmable general purpose I/O port. The control registers for Port 5 are mapped into the expanded register file (Bank F) of the Z8.

**Auto Latch.** The Auto Latch on Port 5 puts valid CMOS levels on all CMOS inputs which are not externally driven. Whether this level is 0 or 1, cannot be determined. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer.




Figure 9. Port 5 Configuration

#### **Z8 FUNCTIONAL DESCRIPTION**

The Z8 CCP core incorporates special functions to enhance the Z8's application in industrial, scientific research and advanced technologies applications.

**Reset.** The device is reset in one of the following conditions:

- Power-On Reset
- Watch-Dog Timer
- Stop-Mode Recovery Source
- Brown-Out Recovery
- External Reset

**Program Memory.** The Z8 addresses up to 24 Kbytes of internal program memory and 40 Kbytes external memory (Figure 10). The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16-bit vectors which correspond to the five user interrupts and one DSP interrupt. Byte 12 to byte 24575 consists of on-chip mask-programmed ROM. At addresses 24576 and greater. The Z8 executes external program memory. In ROMless mode, the Z8 will execute external program memory beginning at byte 12 and continuing through byte 65535.

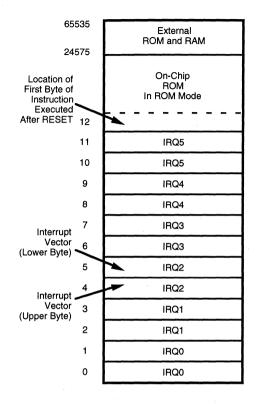



Figure 10. Program Memory Map

# & Sirae

**ROM Protect.** The 24 Kbyte of internal program memory for the Z8 is mask programmable. A ROM protect feature prevents "dumping" of the ROM contents of Program Memory by inhibiting execution of LDC, LDCI, LDE, and LDEI instructions. The ROM Protect option is mask-programmable, to be selected by the customer at the time when the ROM code is submitted.

**Data Memory** (/DM). In ROM mode, the Z8 can address up to 40 Kbytes of external data memory beginning at location 24576 (Figure 11). In ROMless mode, the Z8 can address the full 64 Kbytes of external data memory beginning at location 12. External data memory may be included with, or separated from, the external program memory space. /DM, an optional I/O function that can be programmed to appear on Port 34, is used to distinguish between data and program memory space (Table 3). The state of the /DM signal is controlled by the type of instruction being executed. An LDC opcode references PROGRAM (/DM inactive) memory, and an LDE instruction references data (/DM active Low) memory.

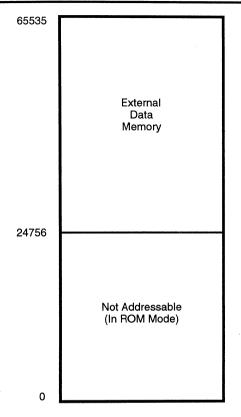
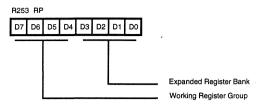




Figure 11. Data Memory Map

#### **Z8 FUNCTIONAL DESCRIPTION** (Continued)

**Register File.** The standard Z8° register file consists of four I/O port registers, 236 general-purpose registers, and 15 control and status registers (R3-R0, R239-R4, and R255-R241, respectively). The instructions access registers directly or indirectly through an 8-bit address field. This allows a short, 4-bit register address using the Register Pointer (Figure 12). In the 4-bit mode, the register file is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working register group (Figure 13).

**Note:** Register Group E (Registers E0-EF) is only accessed through a working register and indirect addressing modes.



Default setting after RESET = 00000000



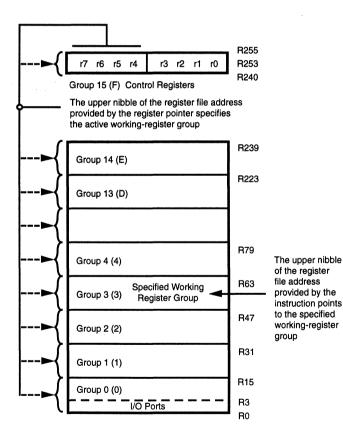



Figure 13. Register Pointer

**RAM Protect.** The upper portion of the Z8's RAM address spaces 80FH to EFH (excluding the control registers) are protected from reading and writing. The RAM Protect bit option is mask-programmable and is selected by the customer when the ROM code is submitted. After the mask option is selected, the user activates from the internal ROM code to turn off/on the RAM Protect by loading a bit D6 in the IMR register to either a 0 or a 1, respectively. A 1 in D6 indicates RAM Protect enabled.

**Stack.** The Z8's external data memory or the internal register file is used for the stack. The 16-bit Stack Pointer (R255-R254) is used for the external stack which can reside only from 24576 to 65535 in ROM mode or 0 to 65535 in ROMless mode. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 236 general-purpose registers (R239-R4). SPH can be used as a general-purpose register when using internal stack only.

**Expanded Register File.** The register file on the Z8 has been expanded to allow for additional system control registers, and for mapping of additional peripheral devices along with I/O ports into the register address area. The Z8 register address space has now been implemented as 16 banks of 16 registers groups per bank (Figure 14). These register banks are known as the ERF (Expanded Register File). Bits 7-4 of register RP (Register Pointer) select the working register group. Bits 3-0 of register RP select the expanded register bank (Figure 14).

The SMR register, WDT register, control and data registers for Port 4 and Port 5, and the DSP control register are located in Bank F of the Expanded Register File. Bank B of the Expanded Register File consists of the Mailbox Interface in which the Z8 and the DSP communicate. The rest of the Expanded Register is not physically implemented and is open for future expansion.

RESET CONDITION

## **Z8 FUNCTIONAL DESCRIPTION (Continued)**

#### Z8 STANDARD CONTROL REGISTERS

REGISTER BANK (0)

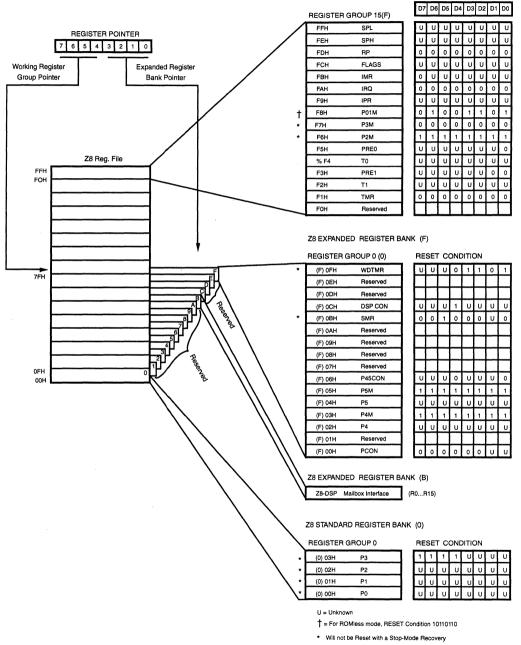



Figure 14. Expanded Register File Architecture

**Interrupts**. The Z8 has six different interrupts from six different sources. The interrupts are maskable and prioritized (Figure 15). The six sources are divided as follows; three sources are claimed by Port 3 lines P33-P31, two in

counter/timers, and one by the DSP (Table 4). The Interrupt Mask Register globally or individually enables or disables the six interrupt requests.

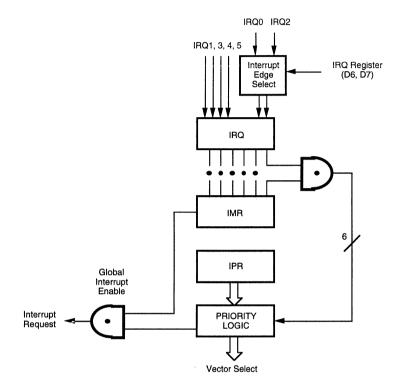



Figure 15. Interrupt Block Diagram

| Name | Source                            | Vector Location | Comments                                                 |
|------|-----------------------------------|-----------------|----------------------------------------------------------|
| IRQ0 | /DAV0, P32, AN2                   | 0, 1            | External (P32), Programmable Rise or Fall Edge Triggered |
| IRQ1 | /DAV1, P33                        | 2, 3            | External (P33), Fall Edge Triggered                      |
| IRQ2 | /DAV2, P31, T <sub>IN</sub> , AN2 | 4, 5            | External (P31), Programmable Rise or Fall Edge Triggered |
| IRQ3 | IRQ3                              | 6, 7            | Internal (DSP activated), Fall Edge Triggered            |
| IRQ4 | то                                | 8, 9            | Internal                                                 |
| IRQ5 | TI                                | 10, 11          | Internal                                                 |

Table 4. Interrupt Types, Sources, and Vectors

### **Z8 FUNCTIONAL DESCRIPTION** (Continued)

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority Register. An interrupt machine cycle is activated when an interrupt request is granted. This disables all subsequent interrupts, pushes the Program Counter and Status Flags to the stack, and then branches to the program memory vector location reserved for that interrupt.

All Z8 interrupts are vectored through locations in the program memory. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request. To accommodate polled interrupt systems, interrupt inputs are masked and the Interrupt Request Register is polled to determine which of the interrupt requests need service.

An interrupt resulting from AN1 is mapped into IRQ2, and an interrupt from AN2 is mapped into IRQ0. Interrupts IRQ2 and IRQ0 may be rising, falling or both edge triggered, and are programmable by the user. The software may poll to identify the state of the pin.

Programming bits for the Interrupt Edge Select is located in the IRQ Register (R250), bits D7 and D6. The configuration is shown in Table 5.

| IR | Q  | Interru | pt Edge |  |
|----|----|---------|---------|--|
| D7 | D6 | P31     | P32     |  |
| 0  | 0  | F       | F       |  |
| 0  | 1  | F       | R       |  |
| 1  | 0  | R       | F       |  |

R/F

R/F

Table 5, IRQ Register

1 -----Notes:

F = Falling Edge

R = Rising Edge

1

**Clock.** The Z89C65/C66 on-chip oscillator has a highgain, parallel-resonant amplifier for connection to a crystal, LC, ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2 = Output). The crystal should be AT cut, 20.48 MHz max., with a series resistance (RS) less than or equal to 100 Ohms. The system clock (SCLK) is one half the crystal frequency.

The crystal is connected across XTAL1 and XTAL2 using capacitors from each pin to ground.

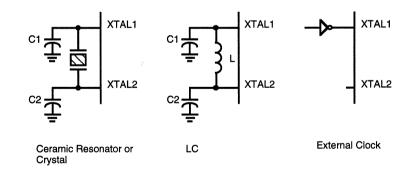



Figure 16. Oscillator Configuration

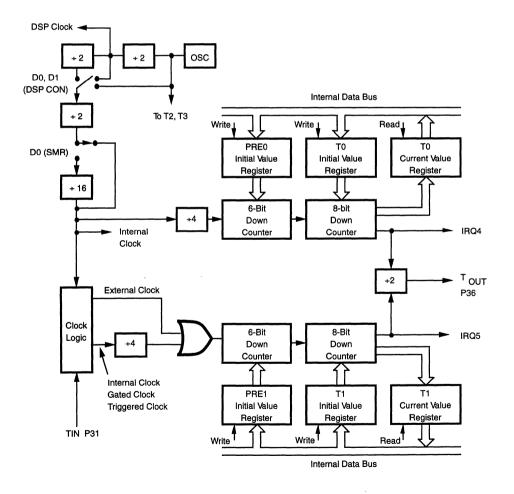
**Counter/Timers.** There are two 8-bit programmable counter/timers (T0-T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler is driven by internal or external clock sources; however, the T0 prescaler is driven by the internal clock only (Figure 17).

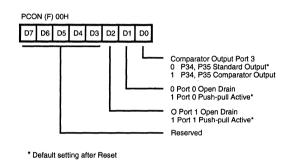
The 6-bit prescalers can divide the input frequency of the clock source by any integer number from 1 to 64. Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When the counter reaches the end of the count, a timer interrupt request, IRQ4 (T0) or IRQ5 (T1), is generated.

The counters can be programmed to start, stop, restart to continue, or restart from the initial value. The counters can

also be programmed to stop upon reaching zero (single pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode).

The counters, but not the prescalers, are read at any time without disturbing their value or count mode. The clock source for T1 is user-definable and is either the internal microprocessor clock divided by four, or an external signal input via Port 31. The Timer Mode register configures the external timer input (P31) as an external clock, a trigger input that can be retriggerable or non-retriggerable, or as a gate input for the internal clock. The counter/timers can be cascaded by connecting the T0 output to the input of T1.



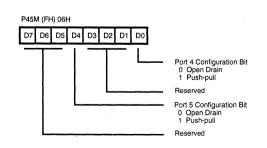


Figure 17. Counter/Timer Block Diagram

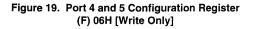
### **Z8 FUNCTIONAL DESCRIPTION** (Continued)

**Port Configuration Register** (PCON). The PCON register configures the port individually; comparator output on Port 3, and open drain on Port 0 and Port 1. The PCON register is located in the Expanded Register File at Bank F, location 00H (Figure 18).

**Comparator Output Port 3** (D0). Bit 0 controls the comparator use in Port 3. A 1 in this location brings the comparator outputs to P34 and P35, and a 0 releases the Port to its standard I/O configuration. **Port 0 Open Drain** (D1). Port 0 can be configured as an open drain by resetting this bit (D1 = 0) or configured as push-pull active by setting this bit (D1 = 1). The default value is 1.

**Port 1 Open Drain** (D2). Port 1 can be configured as an open drain by resetting this bit (D2 = 0) or configured as push-pull active by setting this bit (D2 = 1). The default value is 1.




**Port 4 and 5 Configuration Register** (P45CON). The P45CON register configures Port 4 and Port 5, individually, to open-drain or push-pull active. This register is located in the Expanded Register File at Bank F, location 06H (Figure 19).

**Port 4 Open-Drain** (D0). Port 4 can be configured as an open-drain by resetting this bit (D0 = 0) or configured as push-pull active by setting this bit (D0 = 1). The default value is 1.

**Port 5 Open-Drain** (D4). Port 5 can be configured as an open-drain by resetting this bit (D4 = 0) or configured as push-pull active by setting this bit (D4 = 1). The default value is 1.





Power-On Reset (POR). A timer circuit clocked by a dedicated on-board RC oscillator is used for the Power-On Reset (POR) timer function. The POR time allows V<sub>cc</sub> and the oscillator circuit to stabilize before instruction execution begins.

The POR timer circuit is a one-shot timer triggered by one of three conditions:

- 1. Power fail to Power OK status
- 2. Stop-Mode Recovery (if D5 of SMR=1).
- WDT timeout.

The POR time is a nominal 5 ms. Bit 5 of the Stop Mode Register determines whether the POR timer is bypassed after Stop-Mode Recovery (typical for external clock, RC/ LC oscillators).

HALT. HALT turns off the internal CPU clock, but not the XTAL oscillation. The counter/timers and external interrupts IRQ0, IRQ1, IRQ2, and IRQ3 remain active. The devices are recovered by interrupts, either externally or internally generated.

STOP. This instruction turns off the internal clock and external crystal oscillation. It reduces the standby current to 10 µA or less. The STOP mode is terminated by a reset only, either by WDT timeout, POR, SMR recovery or external reset. This causes the processor to restart the application program at address 000CH. In order to enter STOP (or HALT mode, it is necessary to first flush the instruction pipeline to avoid suspending execution in mid-instruction. To do this, the user must execute a NOP (opcode=FFH) immediately before the appropriate sleep instruction, i.e.:

| ••• | NOP<br>STOP | ; clear the pipeline<br>; enter STOP mode |
|-----|-------------|-------------------------------------------|
|     |             | or                                        |
| FF  | NOP         | ; clear the pipeline                      |
| 7F  | HALT        | ; enter HALT mode                         |

Stop-Mode Recovery Register (SMR). This register selects the clock divide value and determines the mode of Stop Mode Recovery (Figure 20). All bits are write only, except bit 7 which is read only. Bit 7 is a flag bit that is hardware set on the condition of Stop recovery and reset by a power-on cycle. Bit 6 controls whether a low level or a high level is required from the recovery source. Bit 5 controls the reset delay after recovery. Bits 2, 3, and 4, or the SMR register, specify the source of the Stop-Mode Recovery signal. Bits 0 and 1 determine the timeout period of the WDT. The SMR is located in Bank F of the Expanded Register Group at address 0BH.

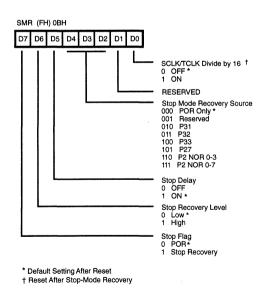
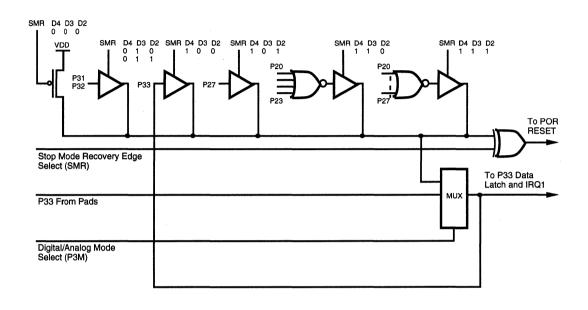




Figure 20. Stop-Mode Recovery Register (SMR)

**SCLK/TCLK divide-by-16 Select** (D0). D0 of the SMR controls a divide-by-16 prescaler of SCLK/TCLK. The purpose of this control is to selectively reduce device power consumption during normal processor execution (SCLK control) and/or HALT mode (where TCLK sources counter/timers and interrupt logic).

**Stop-Mode Recovery Source** (D4-D2). These three bits of the SMR specify the wake-up source of the Stop-Mode Recovery (Figure 21 and Table 6).





#### Table 6. Stop- Mode Recovery Source

| <br>D4 | SMF<br>D3 | R:432 | Operation<br>Description of Action |
|--------|-----------|-------|------------------------------------|
|        |           |       |                                    |
| 0      | 0         | 0     | POR and/or external reset recovery |
| 0      | 0         | 1     | Reserved                           |
| 0      | 1         | 0     | P31 transition                     |
| 0      | 1         | 1     | P32 transition                     |
| 1      | 0         | 0     | P33 transition                     |
| 1      | 0         | 1     | P27 transition                     |
| 1      | 1         | 0     | Logical NOR of P20 through P23     |
| 1      | 1         | 1     | Logical NOR of P20 through P27     |

Stop-Mode Recovery Delay Select (D5). This bit, if High, disables the 5 ms /RESET delay after Stop-Mode Recovery. The default configuration of this bit is one. If the "fast" wake up is selected, the Stop-Mode Recovery source is kept active for at least 5 TpC.

**Stop-Mode Recovery Edge Select** (D6). A 1 in this bit position indicates that a high level on any one of the recovery sources wakes the Z89C65 from STOP mode. A 0 indicates low level recovery. The default is 0 on POR (Figure 19).

**Cold or Warm Start** (D7). This bit is set by the device upon entering Stop Mode. It is active High, and is 0 (cold) on POR/WDT /RESET. This bit is read only. It is used to distinguish between cold or warm start.

# ⊗ Ziloos

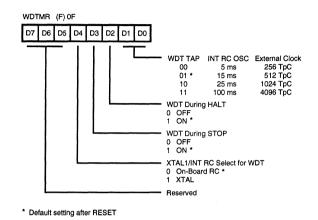
DSP Control Register (DSPCON). The DSPCON register controls various aspects of the Z8 and the DSP. It can configure the internal system clock (SCLK) or the Z8,

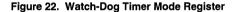
RESET, and HALT of the DSP, and control the interrupt interface between the Z8 and the DSP (Table 7).

|                        | Table 7. DSP Control Register         (F) 0CH [Read/Write] |        |                |                                                    |  |
|------------------------|------------------------------------------------------------|--------|----------------|----------------------------------------------------|--|
| Field<br>DSPCON (F)0CH | Position                                                   | Attrib | Value          | Label                                              |  |
| Z8_SCLK                | 76                                                         | R/W    | 00<br>01<br>1x | 2.5 MHz (OSC/8)<br>5 MHz (OSC/4)<br>10 MHZ (OSC/2) |  |
| DSP_Reset              | 5                                                          | R<br>W | 0              | Return "0"<br>No effect<br>Reset DSP               |  |
| DSP_Run                | 4                                                          | R/W    | 0<br>1         | Halt_DSP<br>Run_DSP                                |  |
| Reserved               | 32                                                         |        | XX             | –<br>Return "0"<br>No effect                       |  |
| IntFeedback            | 1-                                                         | R<br>W | 1<br>0         | FB_DSP_INT2<br>Set DSP_INT2<br>No effect           |  |
|                        | 0                                                          | R<br>W | 1              | FB_Z8_IRQ3<br>Clear IRQ3<br>No effect              |  |

**Z8 IRQ3** (D0). This bit, when read, indicates the status of Z8 IRQ3. Z8 IRQ3 is set by the DSP by writing to D9 of DSP External Register 4 (ICR). By writing a 1 to this bit, Z8 IRQ3 is Reset.

**DSP INT2** (D1). This bit is linked to DSP INT2. Writing a 1 to this bit sets DSP INT2. Reading this bit indicates the status of DSP INT2.


**DSP RUN** (D4). This bit defines the HALT mode of the DSP. If this bit is set to 0, then the DSP clock is turned off to minimize power consumption. After this bit is set to 1, then the DSP will continue code execution from where it was halted. After a hardware reset, this bit is reset to 1.


**DSP RESET** (D5). Setting this bit to 1 will reset the DSP. If the DSP was in HALT mode, this bit is automatically preset to 1. Writing a 0 has no effect.

**Z8 SLCK** (D8-D7). These bits define the SCLK frequency of the Z8. The oscillator can be either divided by 8, 4, or 2. After a reset, both of these are defaulted to 00.

#### **Z8 FUNCTIONAL DESCRIPTION** (Continued)

Watch-Dog Timer Mode Register (WDTMR). The WDT is a retriggerable one-shot timer that resets the Z8 if it reaches its terminal count. The WDT is initially enabled by executing the WDT instruction and refreshed on subsequent executions of the WDT instruction. The WDT circuit is driven by an on-board RC oscillator or external oscillator from the XTAL1 pin. The POR clock source is selected with bit 4 of the WDT register (Figure 22).





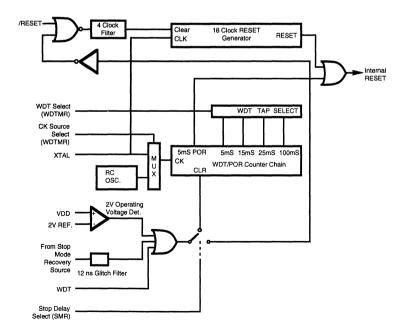



Figure 23. Resets and WDT

**WDT Time Select** (D0,D1). Selects the WDT time period. It is configured as shown in Table 8.

| D1 | D0 | Timeout of<br>Internal RC OSC | Timeout of<br>XTAL clock |
|----|----|-------------------------------|--------------------------|
| 0  | 0  | 5 ms min                      | 256 TpC                  |
| 0  | 1  | 15 ms min                     | 512 TpC                  |
| 1  | 0  | 25 ms min                     | 1024 TpC                 |
| 1  | 1  | 100 ms min                    | 4096 TpC                 |

#### **Table 8. WDT Time Select**

Notes:

TpC = XTAL clock cycle

The default on reset is 15 ms.

**WDT During Halt** (D2). This bit determines whether or not the WDT is active during HALT mode. A 1 indicates active during HALT. The default is 1.

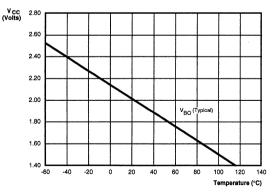
**WDT During Stop** (D3). This bit determines whether or not the WDT is active during STOP mode. Since XTAL clock is stopped during STOP mode, the on-board RC has to be selected as the clock source to the POR counter. A 1 indicates active during STOP. The default is 1.

**Clock Source for WDT** (D4). This bit determines which oscillator source is used to clock the internal POR and WDT counter chain. If the bit is a 1, the internal RC oscillator is bypassed and the POR and WDT clock source is driven from the external pin, XTAL1. The default configuration of this bit is 0 which selects the RC oscillator.

Brown-Out Protection. An on-board Voltage Comparator checks that  $V_{\rm cc}$  is at the required level to ensure correct

operation of the device. Reset is globally driven if  $V_{cc}$  is below the specified voltage (Brown-Out Voltage). The minimum operating voltage is varying with the temperature and operating frequency, while the brown-out voltage ( $V_{ec}$ ) varies with temperature only.

Devices running at lower frequencies have lower minimum operating voltages. A device's V<sub>BO</sub> is lower with increasing temperatures. A gray area exists at high temperature and high frequency modes of operation where the device is in an unknown state. The device jumps to an unknown address and will not reset itself until the V<sub>CC</sub> goes below the V<sub>BO</sub> value. Figure 24 shows the typical V<sub>BO</sub> versus Temperature curve.


The brown-out trip voltage ( $V_{BO}$ ) is less than 3.0V and above 1.4V under the following conditions.

Maximum (V<sub>BO</sub>) Conditions:

- Case 1:  $T_A = -40^{\circ}C$ , +105°C, Internal Clock Frequency equal to or less than 1 MHz
- Case 2:  $T_A = -40^{\circ}$ C, +85°C, Internal Clock Frequency equal to or less than 2 MHz

**Note:** The internal clock frequency is one-half the external clock frequency.

The device functions normally at or above 3.0V under all conditions. Below 3.0V, the device functions normally until the Brown-Out Protection trip point ( $V_{BO}$ ) is reached, for the temperatures and operating frequencies in cases 1 and 2, above. The device is guaranteed to function normally at supply voltages above the brown out trip point. The actual brown-out trip point is a function of temperature and process parameters (Figure 24).



\* Power-on Reset threshold for V<sub>CC</sub> and 4 MHz V<sub>RO</sub> overlap



#### DSP REGISTERS DESCRIPTION

**General.** The DSP is a high-performance second generation CMOS Digital Signal Processor with a modified Harvard-type architecture with separate program and data ports. The design has been optimized for processing power and saving silicon space.

**Registers.** The DSP has eight internal registers and seven external registers. The external registers are for the A/D and D/A converters, and the mailbox and interrupt interfac-

ing between DSP to the Z8. External registers are accessed in one machine cycle, the same as internal registers.

#### **DSP Registers**

There are 15 internal and extended 16-bit registers which are defined in Table 9.

| Register | Attribute  | Register Definition                     |
|----------|------------|-----------------------------------------|
| BUS      | Read       | Data-Bus                                |
| Х        | Read/Write | X Multiplier Input, 16-Bit              |
| Y        | Read/Write | Y Multiplier Input, 16-Bit              |
| А        | Read/Write | Accumulator, 24-Bit                     |
| SR       | Read/Write | Status Register                         |
| SP       | Read/Write | Stack Pointer                           |
| PC       | Read/Write | Program Counter                         |
| Р        | Read       | Output of MAC, 24 Bit                   |
| EXT0     | Read       | Z8 ERF Bank B, Register 00-01 (from Z8) |
|          | Write      | Z8 ERF Bank B, Register 08-09 (to Z8)   |
| EXT1     | Read       | Z8 ERF Bank B, Register 02-03 (from Z8) |
|          | Write      | Z8 ERF Bank B, Register 0A-0B (to Z8)   |
| EXT2     | Read       | Z8 ERF Bank B, Register 04-05 (from Z8) |
|          | Write      | Z8 ERF Bank B, Register 0C-0D (to Z8)   |
| EXT3     | Read       | Z8 ERF Bank B, Register 06-07 (from Z8) |
|          | Write      | Z8 ERF Bank B, Register 0E-0F (to Z8)   |
| EXT4     | Read/Write | DSP Interrupt Control Register          |
| EXT5     | Read       | A/D Converter                           |
|          | Write      | D/A Converter                           |
| EXT6     | Read/Write | Analog Control Register                 |

#### Table 9. DSP Registers

**EXT3-EXT0** (External Registers 3-0) are the MailBox Registers in which the DSP and the Z8 communicate. These four 16 bit registers correspond to the eight outgoing and eight incoming 8-bit registers in Bank B of the Z8's Expanded Register File.

**EXT4** (DSP Interrupt Control Register (ICR)) controls the interrupts in the DSP as well as the interrupts in common between the DSP and the Z8. It is accessible by the DSP only, except for the bit F and bit 9.

**EXT5** (D/A and A/D Data Register) is used by both D/A and A/D converters. The D/A converter will be loaded by writing to this register, while the A/D converter will be addressed by reading from this register. The Register EXT5 is accessible by the DSP only.

**EXT6** (Analog Control Register) controls the D/A and A/D converters. It is a read/write register accessible by the DSP only.

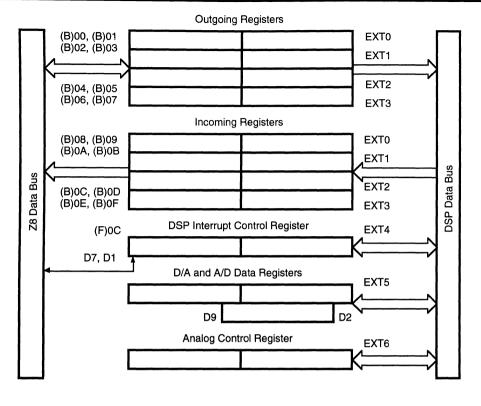



Figure 25. Z8-DSP Interface

## **DSP-Z8 MailBox**

To receive information from the DSP, the Z8 uses eight incoming registers which are mapped in the Z8 extended Register File (Bank B, 08 to 0F). The DSP treats these as four 16-bit registers that correspond to the eight incoming Z8 registers (Figure 25).

Both the outgoing registers and the incoming registers share the same DSP address (EXT3-EXT0).

The Z8 can supply the DSP with data through eight outgoing registers mapped into both the Z8 Expanded

Register File (Bank B, Registers 00 to 07) and the external register interface of the DSP. These registers are R/W and can be used as general purpose registers of the Z8. The DSP can only read information from these registers. Since the DSP uses a 16-bit data format and the Z8 an 8-bit data format, eight outgoing registers of the Z8 correspond to four DSP registers. The DSP can only read information from the outgoing registers.

**Note:** The Z8 can read and write to ERF Bank B R00-R07, Registers 08-0F are read only from the Z8.

<sup>⊗</sup> ZiLOG

.

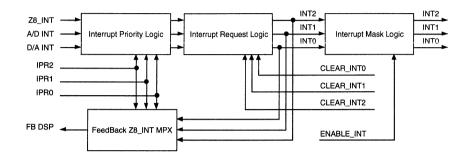
. . . .

· \_\_\_\_

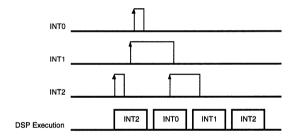
| Field              | Position | Attrib | Value | Label             |
|--------------------|----------|--------|-------|-------------------|
| Outgoing [0] (B)00 | 76543210 | R/W    | %NN   | (B)00/DSP_ext0_hi |
| Outgoing [1] (B)01 | 76543210 | R/W    | %NN   | (B)01/DSP_ext0_lo |
| Outgoing [2] (B)02 | 76543210 | R/W    | %NN   | (B)02/DSP_ext1_hi |
| Outgoing [3] (B)03 | 76543210 | R/W    | %NN   | (B)03/DSP_ext1_lo |
| Outgoing [4] (B)04 | 76543210 | R/W    | %NN   | (B)04/DSP_ext2_hi |
| Outgoing [5] (B)05 | 76543210 | R/W    | %NN   | (B)05/DSP_ext2_lo |
| Outgoing [6] (B)06 | 76543210 | R/W    | %NN   | (B)06/DSP_ext3_hi |
| Outgoing [7] (B)07 | 76543210 | R/W    | %NN   | (B)07/DSP_ext3_lo |

### Table 11. Z8 Incoming Registers (Write Only from DSP)

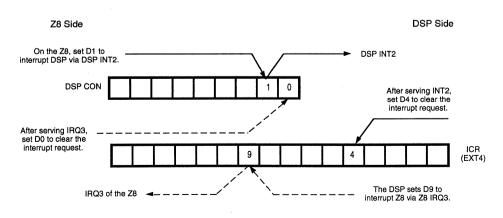
| Field              | Position | Attrib | Value | Label       |
|--------------------|----------|--------|-------|-------------|
| Incoming [8] (B)08 | 76543210 | R      | %NN   | DSP_ext0_hi |
|                    |          | W      |       | No Effect   |
| Incoming [9] (B)09 | 76543210 | R      | %NN   | DSP_ext0_lo |
|                    |          | W      |       | No Effect   |
| Incoming [a] (B)0A | 76543210 | R      | %NN   | DSP_ext1_hi |
|                    |          | W      |       | No Effect   |
| Incoming [b] (B)0B | 76543210 | R      | %NN   | DSP_ext1_lo |
|                    |          | W      |       | No Effect   |
| Incoming [c] (B)0C | 76543210 | R      | %NN   | DSP_ext2_hi |
|                    |          | W      |       | No Effect   |
| Incoming [d] (B)0D | 76543210 | R      | %NN   | DSP_ext2_lo |
|                    |          | W      |       | No Effect   |
| Incoming [e] (B)0E | 76543210 | R      | %NN   | DSP_ext3_hi |
|                    |          | W      |       | No Effect   |
| Incoming [f] (B)0F | 76543210 | R      | %NN   | DSP_ext3_lo |
|                    |          | W      |       | No Effect   |


#### Table 12. DSP Mailbox Registers

| Field    | Position         | Attrib | Value | Label        |  |
|----------|------------------|--------|-------|--------------|--|
| DSP_ext0 | fedcba9876543210 | R      | %NNNN | (B)00, (B)01 |  |
| Mail Box |                  | W      |       | (B)08, (B)09 |  |
| DSP_ext1 | fedcba9876543210 | R      | %NNNN | (B)02, (B)03 |  |
| Mail Box |                  | W      |       | (B)0A, (B)0B |  |
| DSP_ext2 | fedcba9876543210 | R      | %NNNN | (B)04, (B)05 |  |
| Mail Box |                  | W      |       | (B)OC, (B)OD |  |
| DSP_ext3 | fedcba9876543210 | R      | %NNNN | (B)06, (B)07 |  |
| Mail Box |                  | W      |       | (B)0E, (B)0F |  |


#### **DSP Interrupts**

The DSP processor has three interrupt sources (INT2, INT1, INT0) (Figure 25). These sources have different priority levels (Figure 26). The highest priority, the next lower and the lowest priority level are assigned to INT2, INT1 and INT0, respectively. The DSP does not allow


interrupt nesting (interrupting service routines that are currently being executed). When two interrupt requests occur simultaneously the DSP starts servicing the interrupt with the highest priority level. Figure 27 shows the interprocessor interrupts mechanism.













Silas

| Field        | Position | Attrib | Value  | Label         |
|--------------|----------|--------|--------|---------------|
| DSP IRQ2     | f        | R      | 1      | Set_IRQ2      |
|              |          |        | 0      | Reset IRQ2    |
|              | f        | W      | -      | No effect     |
| DSP_IRQ1     | -e       | R      | 1      | Set_IRQ1      |
| -            |          |        | 0      | Reset IRQ1    |
|              | -e       | W      |        | No effect     |
| DSP IRQ0     | d        | R      | 1      | Set_IRQ0      |
| -            |          |        | 0      | Reset_IRQ0    |
|              | d        | W      |        | No effect     |
| DSP_MaskINT2 | C        | R/W    | 1      | Enable_INT2   |
| -            |          |        | 0      | Disable_INT2  |
| DSP MaskINT1 | b        | R/W    | 1      | Enable_INT1   |
| -            |          |        | 0      | Disable_INT1  |
| DSP_MaskINT0 | a        | R/W    | 1      | Enable_INT0   |
| _            |          |        | 0      | Disable_INT0  |
| Z8_IRQ3      | 9        | R      |        | Return "0"    |
|              | 9        | W      | 1      | Set_Z8_IRQ3   |
|              |          |        | 0      | Reset_Z8_IRQ3 |
| DSPintEnable | 8        | R/W    | 1      | Enable        |
|              |          |        | 0      | Disable       |
| DSP_IPR2     | 7        | R/W    | Binary | IPR2          |
| DSP_IPR1     | 6        | R/W    | Binary | IPR1          |
| DSP_IPR0     |          | R/W    | Binary | IPRO          |
| Clear_IRQ2   | 4        | R      | •      | Return "0"    |
|              | 4        | W      | 1 .    | Clear_IRQ2    |
|              |          |        | 0      | Has_no_effect |
| Clear_IRQ1   | 3        | R      |        | Return "0"    |
|              | 3        | W      | 1      | Clear_IRQ1    |
|              |          |        | 0      | Has_no_effect |
| Clear_IRQ0   | 2        | R      |        | Return "0"    |
|              | 2        | W      | 1      | Clear_IRQ0    |
|              | <i>e</i> |        | 0      | Has_no_effect |
| Reserved     | 10       |        | 00     | Reserved      |

Table 13. EXT4 DSP Interrupt Control Register (ICR) Definition

Interrupt Control Register (ICR). The ICR is mapped into EXT4 of the DSP (Table 13). The bits are defined as follows.

**DSP\_IRQ2** (Z8 Interrupt). This bit can be read by both Z8 and DSP and can be set only by writing to the Z8 expanded Register File (Bank F, ROC, bit 0). This bit asserts IRQ2 of the DSP and can be cleared by writing to the Clear\_IRQ2 bit.

**DSP\_IRQ1** (A/D Interrupt). This bit can be read by the DSP only and is set when valid data is present at the A/D output register (conversion done). This bit asserts IRQ1 of the DSP and can be cleared by writing to the Clear\_IRQ1bit.

**DSP\_IRQ0** (D/A Interrupt). This bit can be read by DSP only and is set by Timer3. This bit assists IRQ0 of the DSP and can be cleared by writing to the Clear\_IRQ0 bit.

**DSP\_MaskIntX.** These bits can be accessed by the DSP only. Writing a 1 to these locations allows the INT to be serviced, while writing a 0 masks the corresponding INT off.

**Z8\_IRQ3.** This bit can be read from both Z8 and DSP and can be set by DSP only. Addressing this location accesses bit D3 of the Z8 IRQ register, hence this bit is not implemented in the ICR. During the interrupt service routine

1-34

## **DSP Interrupts** (Continued)

executed on the Z8 side, the User has to reset the Z8\_IRQ3 bit by writing a 1 to bit D0 of the DSPCON. The hardware of the Z89C65/C66 automatically resets Z8\_IRQ3 bit three instructions of the Z8 after 1 is written to its location in register bank 0F. This delay provides the timing synchronization between the Z8 and the DSP sides during interrupts. In summary, the interrupt service routine of the Z8 for IRQ3 should be finished by:

LD RP,#%0F OR r12,#%01 POP RP

IRET

**DSP Enable\_INT.** Writing a 1 to this location enables global interrupts of the DSP while writing 0 disables them. A system Reset globally disables all interrupts.

**DSP\_IPRX.** This three-bit group defines the Interrupt Selection logic according to Table 14.

**Clear\_IRQX**. These bits can be accessed by the DSP only. Writing a 1 to these locations rests the corresponding DSP\_IRQX bits to 0. Clear\_IRQX are virtual bits and are not implemented.

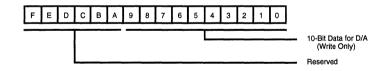
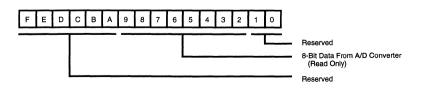

| DSP_IPR[2-0]<br>2 1 0 | Z8_INT is<br>switched to | A/D_INT is<br>switched to | D/A_INT is<br>switched to |
|-----------------------|--------------------------|---------------------------|---------------------------|
| 000                   | INT2                     | INT1                      | INTO                      |
| 001                   | INT1                     | INT2                      | INTO                      |
| 010                   | INT2                     | INTO                      | INT1                      |
| 011                   | INT1                     | INTO                      | INT2                      |
| 100                   | INTO                     | INT2                      | INT1                      |
| 101                   | INTO                     | INT1                      | INT2                      |
| 110                   | Reserved                 | Reserved                  | Reserved                  |
| 111                   | Reserved                 | Reserved                  | Reserved                  |

Table 14. DSP Interrupt Selection


## **DSP Analog Data Registers**

The D/A conversion is DSP driven by sending 10-bit data to the EXT5 of the DSP. The six remaining bits of EXT5 are not used (Figure 28).

A/D supplies 8-bit data to the DSP through the register EXT5 of the DSP. From the 16 bits of EXT5, only bits 2 through 9 are used by the A/D (Figure 29). Bits 0 and 1 are padded with zeroes.







#### Figure 29. EXT5 Register A/D Mode Definition

## Analog Control Register (ACR)

The Analog Control register is mapped to register EXT6 of the DSP (Table 15). This read/write register is accessible by the DSP only.

The 16-bit field of EXT6 defines modes of both the A/D and the D/A. The High Byte configures the D/A, while the Low Byte controls the A/D mode.

| Table 15. EXT6 Analog Control Register ( | ACR) |  |
|------------------------------------------|------|--|
|------------------------------------------|------|--|

| Field            | Position | Attrib | Value | Label                    |
|------------------|----------|--------|-------|--------------------------|
| MPX_DSP_INT0     | f        | R/W    | 1     | P26                      |
|                  |          |        | 0     | Timer3                   |
| Reserved         | -edcb    | R      |       | Return "0"               |
|                  |          | W      |       | No Effect                |
| D/A_SamplingRate | a98      | R/W    | 11x   | Reserved                 |
|                  |          |        | 101   | Reserved                 |
|                  |          |        | 100   | 64 kHz                   |
|                  |          |        | 010   | 16 kHz                   |
|                  |          |        | 011   | 10 kHz                   |
|                  |          |        | 001   | 4 kHz                    |
|                  |          |        | 000   | Reserved                 |
| DSP_port         | 76       | R/W    |       | User defined DSP Outputs |
| Enable A/D       | 5        | R/W    | 1     | A/D Enabled              |
|                  |          |        | 0     | A/D Disabled             |
| ConversionDone   | 4        | W      |       | No effect                |
|                  |          | R      | 1     | Done                     |
|                  |          |        | 0     | Not Done                 |
| StartConversion  | 3        | R/W    | 1     | Start                    |
|                  |          |        | 0     | Wait Timer               |
| A/D_SamplingRate | 210      | R/W    | 11x   | Reserved                 |
|                  |          |        | 101   | Reserved                 |
|                  |          |        | 100   | 128 kHz                  |
|                  |          |        | 010   | 64 kHz                   |
|                  |          |        | 011   | 32 kHz                   |
|                  |          |        | 001   | 16 kHz                   |
|                  |          |        | 000   | 8 kHz                    |

DSP IRQ0. Defines the source of DSP IRQ0 interrupt.

**D/A\_Sampling Rate**. This field defines the sampling rate of the D/A output. It changes the period to Timer3 interrupt and the maximum possible accuracy of the D/A (Table 16).

#### Table 16. D/A Data Accuracy

| D/A_Sampling Rate<br>D/A Accuracy | Samplin | g Rate  |
|-----------------------------------|---------|---------|
| 100                               | 64 kHz  | 8 Bits  |
| 010                               | 16 kHz  | 10 Bits |
| 011                               | 10 kHz  | 10 Bits |
| 001                               | 4 kHz   | 10 Bits |

**DSP0.** DSP0 is a general purpose output pin connected to Bit 6. This bit has no special significance and may be used to output data by writing to bit 6.

**DSP1.** DSP1 is a general purpose output pin connected to Bit 7. This bit has no special significance and may be used to output data by writing to bit 7.

**Enable A/D**. Writing a 0 to this location disables the A/D converter, a 1 will enable it. A hardware reset forces this bit to be 0.

### **DSP Timers**

Timer2 is a free running counter that divides the XTAL frequency (20.48 MHz) to support different sampling rates for the A/D converter. The sampling rate is defined by the Analog Control Register. Upon reaching the end of a count, the timer generates an interrupt request to the DSP.

**Conversion Done.** This read only flag indicates that the A/D conversion is complete. Upon reading EXT5 (A/D data), the Conversion Done flag is cleared.

**Start A/D Conversion**. Writing a 1 to this location immediately starts one conversion cycle. If this bit is reset to 0 the input data is converted upon successive Timer2 time-outs. A hardware reset forces this bit to be 1.

**A/D\_Sampling Rate.** This field defines the sampling rate of the A/D. It changes the period of Timer2 interrupt (Table 17).

Table 17. A/D Sampling Rate

| A/D_Sampling Rate | ADC Sampling Rate |
|-------------------|-------------------|
| 100               | 128 kHz           |
| 011               | 64 kHz            |
| 010               | 32 kHz            |
| 001               | 16 kHz            |
| 0 0 0             | 8 kHz             |

Analogous to Timer2, Timer3 generates the different sampling rates for the D/A converter. Timer3 also generates an interrupt request to the DSP upon reaching its final count value (Figure 30).

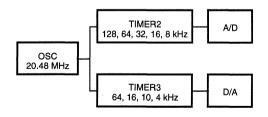



Figure 30. Timer2 and Timer3

## PULSE WIDTH MODULATOR (PWM)

The PWM supports four different sampling rates (4, 10, 16, and 64 kHz), according to the settings of Bit 8, 9, 10 of the ACR. The output of PWM can be assigned to logic 1 only during the active region (which is 4/5 of the output signal period). The output will be at logic 0 for the rest of the time. An exception occurs in 10 kHz PWM, where the active region covers the whole output signal period (Figure 31). The active region is divided into 1024 time slots. In each of these time slots, the output can be set to logic 1 or logic 0.

In order to increase the effective sampling rate, the PWM employs a special technique of distributing the "logic 1" period over the active region.

The 10-bit PWM data is divided into two parts: the upper 5 bits (High\_Val) and the lower 5 bits (Low\_Val). The 1024 time slots in the active region are divided into 32 equal

groups, with 32 time slots in each group. The first slot of each of the 32 groups represents Low\_Val, while High\_Val is represented by the remaining 31 time slots in each group.

For example, a value of %13a is loaded into PWM data register EXT 5:

%13a = 01 0011 1010B = 314 High\_Val = 01001B = 9 Low\_Val = 11010B = 26

26 out of 32 groups will then have their first slots set to logic 1. The remaining 1 slots in each group have 9 time slots set to logic 1.

For 10 kHz PWM, the effective output frequency is  $10K \times 32$ = 320 kHz. Figure 25 illustrates the waveform by using a 6-bit PWM data (3-bit High\_Val and 3-bit Low\_Val).

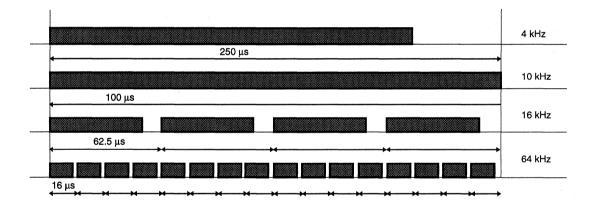



Figure 31. PWM Waveform (shaded area shows the active region)

|   |   |   |          | ۰.       |          |   |   |           |          |                    |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|---|---|---|----------|----------|----------|---|---|-----------|----------|--------------------|-------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| - |   |   |          | <br>     |          |   |   | 000 000   |          |                    |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 000   |
| - |   |   |          | <br>     |          |   |   | 000 001   |          |                    |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 001   |
| _ |   |   |          |          |          |   |   | 000 010   |          |                    |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 010   |
| L |   | 1 |          |          | 8        |   |   | 000 011   |          |                    |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 011   |
| _ |   |   |          |          |          | 1 |   | 000 100   |          |                    |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 100   |
| _ | 1 |   |          |          |          | 1 |   | 000 101   |          |                    |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 101   |
| _ |   | 1 |          |          |          |   |   | 000 110   |          |                    |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 110   |
| _ | 1 | 1 |          | <br>1    | 1        | 1 |   | 000 111   |          |                    |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 111   |
| _ |   | 8 |          |          |          | 1 | 8 | 001 000   |          |                    |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101 000   |
| _ | B | 8 |          |          |          |   | 8 | 001 001   |          |                    |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101 001   |
| - |   |   | _        | 1        |          |   | 1 | 001 010   |          |                    |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101 010   |
| _ |   |   | 1        |          |          |   |   | _ 001 011 |          |                    |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101 011   |
| _ |   |   |          |          |          |   |   | _ 001 100 | S        |                    |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101 100   |
| 1 |   |   | _        |          | _        |   |   | 001 101   |          |                    |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101 101   |
| _ |   |   | <u> </u> | <b>#</b> | <u> </u> |   | B | _ 001 110 |          |                    |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101 110   |
| _ |   |   |          |          |          |   |   | _ 001 111 |          |                    |             |       | 1880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 101 111   |
| _ |   |   |          |          |          |   |   | _ 010 000 |          |                    |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110 000   |
| _ |   |   |          |          |          |   |   | 010 001   |          |                    |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110 001   |
| _ |   |   |          |          |          |   |   | 010 010   |          |                    |             | 2333  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110 010   |
| _ |   |   |          |          |          |   |   | 010 011   |          |                    |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110 011   |
|   |   |   |          |          |          |   |   | _ 010 100 | s (1994) |                    |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110 100   |
| _ |   |   |          |          |          |   |   | _ 010 101 |          |                    |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110 101   |
|   |   |   |          |          |          |   |   | _ 010 110 |          |                    |             |       | (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (19900) (19900) (19900) (1990) (1990) (1990) (1990) (1990) (1990) (1990) | 110 110   |
| _ |   |   |          |          |          |   |   | _ 010 111 |          |                    |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 110 111 |
| - |   |   |          |          |          |   |   | _ 011 000 |          |                    | en          | 10000 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111 000   |
| 1 |   |   |          | <br>     |          |   |   | _ 011 001 |          | 38000313000        |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111 001   |
| _ |   |   |          |          |          |   |   | _ 011 010 |          |                    |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111 010   |
| 1 |   |   |          |          |          |   |   | _ 011 011 |          | ;<br>33033043.5×10 |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111 011   |
| 1 |   |   |          |          |          |   |   | _ 011 100 |          |                    |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 111 100 |
|   |   |   |          |          |          |   |   | _ 011 101 |          | i<br>Santo por     |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 111 101 |
|   |   |   |          |          |          |   |   | _ 011 110 |          |                    |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 111 110 |
| 1 |   |   |          |          |          |   |   | _ 011 111 |          |                    | ad (Harriss |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 111 111 |
|   |   |   |          |          |          |   |   |           | <br>     |                    |             |       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |

Figure 32. PWM Waveform of the Active Region (for a 6-bit PWM data)

1

### A/D CONVERTER (ADC)

#### **Analog To Digital Converter**

The A/D converter is an 8-bit half flash converter which uses two reference resistor ladders for its upper four bits (MSBs) and lower four bits (LSBs) conversion. Two reference voltage pins,  $V_{\text{REF+}}$  (High) and  $V_{\text{REF-}}$  (Low), are provided for external reference voltage supplies. During the sampling period, the converter is auto-zeroed before starting the conversion time depending on the external clock

frequency and the selection of the A/D sampling rate. The sampling rates are in the order of 8, 10, 16, 64, or 128 kHz (XTAL = 20.48 MHz) in order to provide oversampling. The rates are software controlled by the ACR (DSP External Register 6). Timer2 supports the ADC. The maximum conversion time is two microseconds.

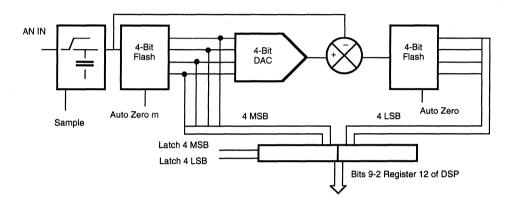



Figure 33. A/D Converter

Conversion begins by writing to the appropriate bit in the Analog Control Register (ACR). The start commands are implemented in such a way as to begin a conversion at any time. If a conversion is in progress and a new start command is received, then the conversion in progress is aborted and a new conversion initiated. This allows the programmed values to be changed without affecting a conversion in progress. The new values take effect only after a new start command is received. The ADC can be disabled (for low power) or enabled by an analog Control Register bit.

Though the ADC functions for a smaller input voltage and voltage reference, the noise and offsets remain constant over the specified electrical range. The errors of the converter will increase and the conversion time may also take slightly longer due to smaller input signals.

| لے             |        | 1            |            |         | 1         |                                               |
|----------------|--------|--------------|------------|---------|-----------|-----------------------------------------------|
|                |        |              |            |         |           |                                               |
| 2              |        |              |            |         |           |                                               |
|                |        |              |            |         |           |                                               |
|                | ┊╺┎╼╸╴ |              |            |         |           |                                               |
|                | ╶╘╼┰╶╴ |              |            |         |           |                                               |
|                |        |              |            |         |           |                                               |
|                |        |              |            |         |           |                                               |
|                |        |              |            |         |           |                                               |
|                |        |              |            |         |           |                                               |
|                |        |              |            | 1       |           |                                               |
| ۳ <b>۲</b>     |        | :::          |            |         |           |                                               |
|                |        |              |            |         |           |                                               |
| ≓ ⊑            |        |              |            |         |           |                                               |
| ₌┍┛╶           |        |              |            |         |           |                                               |
|                |        |              |            |         |           |                                               |
| <u> </u>       |        |              |            |         |           |                                               |
|                |        |              |            |         |           |                                               |
| -5             |        |              |            |         |           |                                               |
| - <b>ت</b> ] • |        |              |            |         |           |                                               |
| - <b>ا</b> ] ۳ |        |              |            |         |           |                                               |
| ⊸⊑⊒            |        |              |            |         |           |                                               |
| ~              |        |              |            |         |           |                                               |
|                |        |              |            |         |           | (zHI                                          |
| - [] -         |        |              |            |         |           | 20.48 M                                       |
|                | Ľ      |              |            |         |           | XTAL = 2                                      |
| <b>ا</b><br>ر- | I      | e<br>B       | l<br>Ħ     | l<br>E  | lië       | Notes:<br>1. SCLK = 10 MHz (XTAL = 20.48 MHz) |
| SCLK           | P32    | Input Sample | A/D Result | DSP INT | DSP Write | is:<br>CLK = 1(                               |
|                |        | idul         | ×          |         | -         | Note<br>1. St                                 |

Figure 34. ADC Timing Diagram

1

Figure 35 shows the input circuit of the ADC. When conversion starts, the analog input voltage from the input is connected to the MSB and LSB flash converter inputs as shown in the Input Impedance CKT diagram. Shunting 31 parallel internal resistances of the analog switches and simultaneously charging 31 parallel 1 pF capacitors is equivalent to a 400 Ohm input impedance in parallel with

a 31 pF capacitor. Other input stray capacitance adds about 10 pF to the input load. Input source resistances up to 2 kOhms can be used under normal operating conditions without any degradation of the input settling time. For larger input source resistance, longer conversion cycle times may be required to compensate the input settling time problem.  $V_{\text{BEE}}$  is set using the  $V_{\text{BEE}}$  pin.

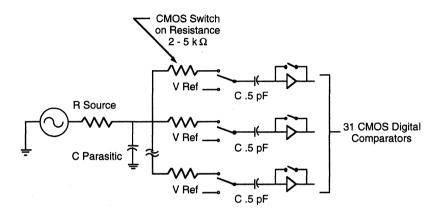
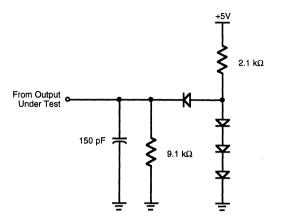



Figure 35. Input Impedance of ADC

#### **ABSOLUTE MAXIMUM RATINGS**

| Symbol                                                | Description                                             | Min          | Max                | Units       |
|-------------------------------------------------------|---------------------------------------------------------|--------------|--------------------|-------------|
| V <sub>CC</sub><br>T <sub>STG</sub><br>T <sub>A</sub> | Supply Voltage (*)<br>Storage Temp<br>Oper Ambient Temp | -0.3<br>-65° | +7.0<br>+150°<br>† | V<br>C<br>C |

#### Notes:


\* Voltage on all pins with respect to GND.

+ See Ordering Information.

Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability.

## STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Figure 36).





# CAPACITANCE

 $T_{A} = 25^{\circ}C$ ,  $V_{cc} = GND = 0V$ , f = 1.0 MHz, unmeasured pins to GND.

| Parameter          | Max   |
|--------------------|-------|
| Input capacitance  | 12 pF |
| Output capacitance | 12 pF |
| I/O capacitance    | 12 pF |

## DC ELECTRICAL CHARACTERISTICS

|                  |                   | V <sub>cc</sub> | T, = 0°C | $T_{A} = 0^{\circ}C$ to +70°C |        |       |
|------------------|-------------------|-----------------|----------|-------------------------------|--------|-------|
| Sym              | Parameter         | Note [1]        | Mîn      | Max                           | @ 25°C | Units |
| l <sub>cc</sub>  | Supply Current    | 5.0V            |          | 65                            | 40     | mA    |
| I <sub>CC1</sub> | Halt Mode Current | 5.0V            |          | 10                            | 6      | mA    |
| I <sub>CC2</sub> | Stop Mode Current | 5.0V            |          | 20                            | 6      | μA    |

Notes: [1] 5.0V ±0.5V.

# DC ELECTRICAL CHARACTERISTICS

|                  |                          | V <sub>cc</sub> | T <sub>A</sub> = 0<br>to +70° |                      | T <sub>A</sub> =<br>to +10 |                                        | Typical<br>at |       |                                                  |
|------------------|--------------------------|-----------------|-------------------------------|----------------------|----------------------------|----------------------------------------|---------------|-------|--------------------------------------------------|
| Sym              | Parameter                | Note [1]        | Min                           | Мах                  | Min                        | Max                                    | 25°C          | Units | Conditions                                       |
|                  | Max Input Voltage        | 3.3V            |                               | 7                    |                            | 7                                      |               | V     | I <sub>IN</sub> 250 uA                           |
|                  |                          | 5.0V            |                               | 7                    |                            | 7                                      |               | ۷     | I <mark>n</mark> 250 uA                          |
| V <sub>сн</sub>  | Clock Input High Voltage |                 | $0.7 V_{cc}$                  | V <sub>cc</sub> +0.3 | 0.7 V <sub>cc</sub>        | V <sub>cc</sub> +0.3                   | 1.3           | ۷     | Driven by External Clock Generator               |
|                  |                          | 5.0V            | 0.7 V <sub>cc</sub>           | V <sub>cc</sub> +0.3 | 0.7 V <sub>cc</sub>        | V <sub>cc</sub> +0.3                   | 2.5           | V     | Driven by External Clock Generator               |
|                  | Clock Input Low Voltage  | 3.3V            | GND-0.3                       | 0.2 V <sub>cc</sub>  | GND-0.3                    | 0.2 V <sub>cc</sub>                    | 0.7           | ٧     | Driven by External Clock Generator               |
|                  |                          | 5.0V            | GND0.3                        | $0.2 V_{cc}$         | GND-0.3                    |                                        | 1.5           | ۷     | Driven by External Clock Generator               |
| / <sub>IH</sub>  | Input High Voltage       | 3.3V            | 0.7 V <sub>cc</sub>           | V <sub>cc</sub> +0.3 | 0.7 V <sub>cc</sub>        | V <sub>cc</sub> +0.3                   | 1.3           | V     |                                                  |
|                  |                          | 5.0V            | 0.7 V <sub>cc</sub>           | V <sub>cc</sub> +0.3 | 0.7 V <sub>cc</sub>        | V <sub>cc</sub> +0.3                   | 2.5           | V     |                                                  |
| /                | Input Low Voltage        | 3.3V            | GND-0.3                       | 0.2 V <sub>cc</sub>  | GND-0.3                    | 0.2 V <sub>cc</sub>                    | 0.7           | ٧     |                                                  |
| 1L               |                          | 5.0V            | GND-0.3                       | 0.2 V <sub>cc</sub>  | GND-0.3                    | 0.2 V <sub>cc</sub>                    | 1.5           | ٧     |                                                  |
| /<br>ОН          | Output High Voltge       | 3.3V            | V <sub>cc</sub> -0.4          | 00                   | V <sub>cc</sub> -0.4       | 00                                     | 3.1           | ٧     | $I_{0H} = -2.0 \text{ mA}$                       |
| 011              |                          | 5.0V            | V <sub>cc</sub> –0.4          |                      | V <sub>cc</sub> -0.4       |                                        | 4.8           | V     | $I_{0H} = -2.0 \text{ mA}$                       |
| / <sub>0L1</sub> | Output Low Voltage       | 3.3V            |                               | 0.6                  |                            | 0.6                                    | 0.2           | ٧     | l <sub>oL</sub> = +4.0 mA                        |
| ULI              |                          | 5.0V            |                               | 0.4                  |                            | 0.4                                    | 0.1           | ٧     | $I_{ol} = +4.0 \text{ mA}$                       |
| 012              | Output Low Voltage       | 3.3V            |                               | 1.2                  |                            | 1.2                                    | 0.3           | ۷     | $I_{ot} = +6 \text{ mA}, 3 \text{ Pin Max}$      |
|                  |                          | 5.0V            |                               | 1.2                  |                            | 1.2                                    | 0.3           | ۷     | $I_{0L}^{2} = +12 \text{ mA}, 3 \text{ Pin Max}$ |
| /<br>RH          | Reset Input High Voltage | 3.3V            | 0.8 V <sub>cc</sub>           | V <sub>cc</sub>      | 0.8 V <sub>cc</sub>        | V <sub>cc</sub>                        | 1.5           | ٧     |                                                  |
|                  |                          | 5.0V            | 0.8 V <sub>cc</sub>           | V <sub>cc</sub>      | 0.8 V <sub>cc</sub>        | V <sub>cc</sub><br>0.2 V <sub>cc</sub> | 2.1           | ۷     |                                                  |
| /<br>RI          | Reset Input Low Voltage  | 3.3V            | GND-0.3                       | 0.2 V <sub>cc</sub>  | GND0.3                     | 0.2 V <sub>cc</sub>                    | 1.1           |       |                                                  |
|                  |                          | 5.0V            | GND-0.3                       | 0.2 V <sub>cc</sub>  | GND-0.3                    | 0.2 V <sub>cc</sub>                    | 1.7           |       |                                                  |
| OFFSET           | Comparator Input Offset  | 3.3V            |                               | 25                   |                            | 25                                     | 10            | mV    |                                                  |
|                  | Voltage                  | 5.0V            |                               | 25                   |                            | 25                                     | 10            | тV    |                                                  |
| IL               | Input Leakage            | 3.3V            | -1                            | 1                    | -1                         | 2                                      | <1            | μA    | $V_{IN} = OV, V_{CC}$                            |
|                  |                          | 5.0V            | -1                            | 1                    | -1                         | 2                                      | <1            | μA    | $V_{iN} = OV, V_{CC}$                            |
| )L               | Output Leakage           | 3.3V            | -1                            | 1                    | -1                         | 2                                      | <1            | μA    | $V_{iN} = OV, V_{CC}$                            |
|                  |                          | 5.0V            | -1                            | 1                    | -1                         | 2                                      | <1            | μA    | $V_{iN} = OV, V_{CC}$                            |
| R                | Reset Input Current      | 3.3V            |                               | -45                  |                            | -60                                    | -20           | μA    |                                                  |
|                  |                          | 5.0V            |                               | -55                  |                            | -70                                    | -30           | μA    |                                                  |

#### Note:

[1] 5.0V ±0.5V.

# **AC CHARACTERISTICS**

External I/O or Memory Read and Write Timing Diagram

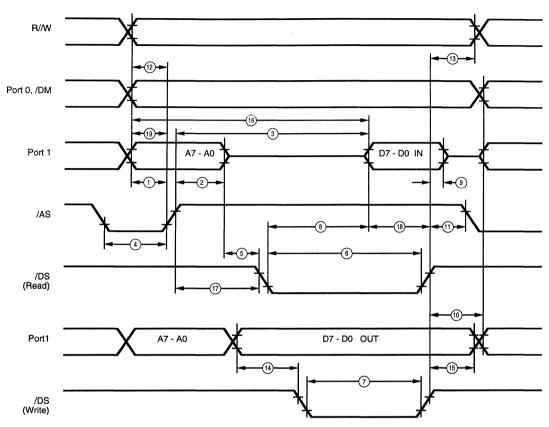



Figure 37. External I/O or Memory Read/Write Timing

# **AC CHARACTERISTICS**

External I/O or Memory Read and Write Timing Table

|    |           |                                            | V <sub>cc</sub> | T_=0°C t | o +70°C                                 |       |         |
|----|-----------|--------------------------------------------|-----------------|----------|-----------------------------------------|-------|---------|
| No | Symbol    | Parameter                                  | Note [4]        | Min      | Max                                     | Units | Notes   |
| 1  | TdA(AS)   | Address Valid to /AS Rise Delay            | 5.0V            | 25       |                                         | ns    | [2,3]   |
| 2  | TdAS(A)   | /AS Rise to Address Float Delay            | 5.0V            | 35       |                                         | ns    | [2,3]   |
| 3  | TdAS(DR)  | /AS Rise to Read Data Req'd Valid          | 5.0V            |          | 150                                     | ns    | [1,2,3] |
| 4  | TwAS      | /AS Low Width                              | 5.0V            | 35       |                                         | ns    | [2,3]   |
| 5  | TdAZ(DS)  | Address Float to /DS Fall                  | 5.0V            | .0       |                                         | ns    |         |
| 6  | TwDSR     | /DS (Read) Low Width                       | 5.0V            | 125      |                                         | ns    | [1,2,3] |
| 7  | TwDSW     | /DS (Write) Low Width                      | 5.0V            | 75       |                                         | ns    | [1,2,3] |
| 3  | TdDSR(DR) | /DS Fall to Read Data Req'd Valid          | 5.0V            |          | 90                                      | ns    | [1,2,3] |
| 9  | ThDR(DS)  | Read Data to /DS Rise Hold Time            | 5.0V            | 0        |                                         | ns    | [2,3]   |
| 10 | TdDS(A)   | /DS Rise to Address Active Delay           | 5.0V            | 40       |                                         | ns    | [2,3]   |
| 11 | TdDS(AS)  | /DS Rise to /AS Fall Delay                 | 5.0V            | 35       | *************************************** | ns    | [2,3]   |
| 12 | TdR/W(AS) | R//W Valid to /AS Rise Delay               | 5.0V            | 25       |                                         | ns    | [2,3]   |
| 13 | TdDS(R/W) | /DS Rise to R//W Not Valid                 | 5.0V            | 35       |                                         | ns    | [2,3]   |
| 14 | TdDW(DSW) | Write Data Valid to /DS Fall (Write) Delay | 5.0V            | 40       |                                         | ns    | [2,3]   |
| 15 | TdDS(DW)  | /DS Rise to Write Data Not Valid Delay     | 5.0V            | 25       |                                         | ns    | [2,3]   |
| 16 | TdA(DR)   | Address Valid to Read Data Req'd Valid     | 5.0V            |          | 180                                     | ns    | [1,2,3] |
| 17 | TdAS(DS)  | /AS Rise to /DS Fall Delay                 | 5.0V            | 48       |                                         | ns    | [2,3]   |
| 18 | TdDI(DS)  | Data Input Setup to /DS Rise               | 5.0V            | 50       |                                         | ns    | [1,2,3] |
| 19 | TdDM(AS)  | /DM Valid to /AS Fall Delay                | 5.0V            | 20       |                                         | ns    | [2,3]   |

#### Notes:

[1] When using extended memory timing add 2 TpC.

[2] Timing numbers given are for minimum TpC.

[3] See clock cycle dependent characteristics table.

[4] 5.0V ±0.5V.

Standard Test Load

All timing references use 0.9  $\rm V_{cc}$  for a logic 1 and 0.1  $\rm V_{cc}$  for a logic 0.

# AC ELECTRICAL CHARACTERISTICS Additional Timing Diagram

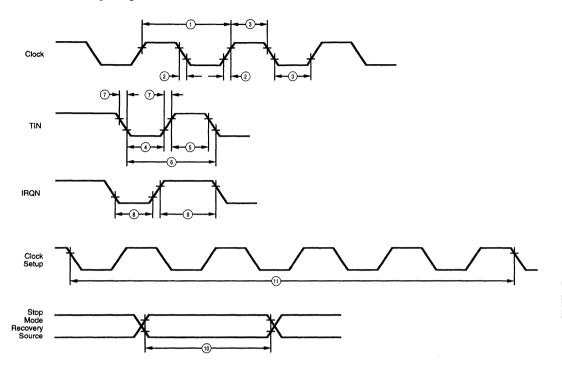
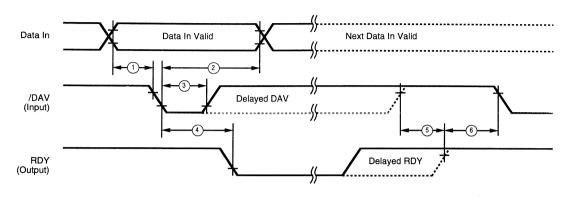
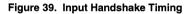
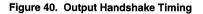



Figure 38. Additional Timing


# AC ELECTRICAL CHARACTERISTICS Additional Timing Table


|    |                 |                               | V <sub>cc</sub> | T_=0°C to    | o +70°C |          |                        |
|----|-----------------|-------------------------------|-----------------|--------------|---------|----------|------------------------|
| No | Symbol          | Parameter                     | Note [5]        | Ŵin          | Max     | Units    | Notes                  |
| 1  | ТрС             | Input Clock Period            | 5.0V            | 48.83        |         | ns       | [1]                    |
| 2  | TrC,TfC         | Clock Input Rise & Fall Times | 5.0V            |              | 6       | ns       | [1]                    |
| 3  | TwC             | Input Clock Width             | 5.0V            | 17           |         | ns       | [1]                    |
| 4  | TwTinL          | Timer Input Low Width         | 5.0V            | 70           |         | ns       |                        |
| 5  | TwTinH          | Timer Input High Width        | 5.0V            | 3TpC         |         | <u> </u> | [1]                    |
| 6  | TpTin           | Timer Input Period            | 5.0V            | 8TpC         |         |          | [1]                    |
| 7  | TrTin,<br>TfTin | Timer Input Rise & Fall Timer | 5.0V            |              | 100     |          | ns [1]                 |
| 8A | TwiL            | Int. Request Low Time         | 5.0V            | 70           |         | ns       | [1,2]                  |
| 8B | TwIL            | Int. Request Low Time         | 5.0V            | 3TpC         |         |          | [1]                    |
| 9  | TwlH            | Int. Request Input High Time  | 5.0V            | 3TpC         |         |          | [1]                    |
| 10 | Twsm            | Stop-Mode Recovery Width Spec | 5.0V            | 12           |         | ns       | [1]                    |
| 11 | Tost            | Oscillator Startup Time       | 5.0V            | 5TpC<br>5TpC |         |          | [3]                    |
| 12 | Twdt            | Watch-Dog Timer               | 5.0V            | 5            |         | ms       | $D_1 = 0, D_0 = 0$ [4] |
|    |                 |                               | 5.0V            | 15           |         | ms       | $D_1 - 0, D_0 = 1$ [4] |
|    |                 |                               | 5.0V            | 25           |         | ms       | $D_1 = 1, D_0 = 0$ [4] |
|    |                 |                               | 5.0V            | 100          |         | ms       | $D_1 = 1, D_0 = 1$ [4] |

Notes: [1] Timing Reference uses 0.9  $V_{cc}$  for a logic 1 and 0.1  $V_{cc}$  for a logic 0. [2] Interrupt request via Port 3 (P31-P33). [3] SMR-D5 = 0. [4] Reg. WDT. [5] 5.0V ±0.5V.


# **AC ELECTRICAL CHARACTERISTICS**

Handshake Timing Diagrams









1

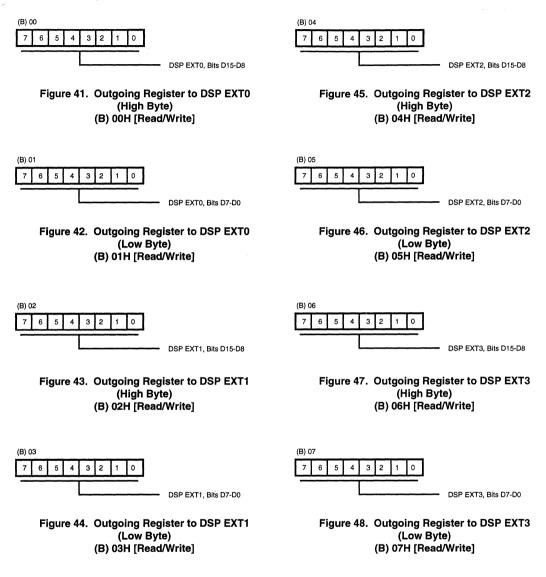
# AC ELECTRICAL CHARACTERISTICS Handshake Timing Table

| No | Symbol       | Parameter                  | V <sub>cc</sub><br>Note [1] | T <sub>≜</sub> =0°C1<br>Min | to 70°C<br>Max | Units | Data<br>Direction |
|----|--------------|----------------------------|-----------------------------|-----------------------------|----------------|-------|-------------------|
|    | Symbol       | Falallelei                 | Note [1]                    | IVIIII                      | IVIAX          | Units | Direction         |
| 1  | TsDI(DAV)    | Data In Setup Time         | 5.0V                        | 0                           |                | ns    | IN                |
| 2  | ThDI(DAV)    | Data In Hold Time          | 5.0V                        | 115                         |                | NS    | IN                |
| 3  | TwDAV        | Data Available Width       | 5.0V                        | 110                         |                | ns    | IN                |
| 4  | TdDAVI(RDY)  | DAV Fall to RDY Fall Delay | 5.0V                        |                             | 115            | ns    | IN                |
| 5  | TdDAVId(RDY) | DAV Rise to RDY Rise Delay | 5.0V                        |                             | 80             | ns    | IN                |
| 6  | TdD0(DAV)    | RDY Rise to DAV Fall Delay | 5.0V                        | 0                           |                | ns    | IN                |
| 7  | TcLDAV0(RDY) | Data Out to DAV Fall Delay | 5.0V                        | 25                          |                | ns    | OUT               |
| 3  | TcLDAV0(RDY) | DAV Fall to RDY Fall Delay | 5.0V                        | 0                           |                | ns    | OUT               |
| )  | TdRDY0(DAV)  | RDY Fall to DAV Rise Delay | 5.0V                        |                             | 115            | ns    | OUT               |
| 10 | TwRDY        | RDY Width                  | 5.0V                        | 80                          |                | ns    | OUT               |
| 11 | TdRDY0d(DAV) | RDY Rise to DAV Fall Delay | 5.0V                        |                             | 80             | ns    | OUT               |

Notes:

[1] 5.0V ±0.5V

# **ELECTRICAL CHARACTERISTICS**


A/D Electrical Characteristics  $T_A = 0^{\circ}C - 85^{\circ}C; V_{cc} = 5.0V \pm 0.5V$ 

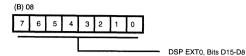
| Parameter                               | Minimum           | Maximum           | Typical                                  | Units |
|-----------------------------------------|-------------------|-------------------|------------------------------------------|-------|
| Resolution                              |                   |                   | 8                                        | bits  |
| Integral non-linearity                  |                   | 1                 | 0.5                                      | lsb   |
| Differential non-linearity              |                   | 0.5               |                                          | lsb   |
| Zero Error at 25C                       |                   | 50                |                                          | mV    |
| Power Dissipation                       |                   | 75                | 35                                       | mW    |
| Clock Frequency                         |                   | 20                |                                          | MHz   |
| Clock Pulse Width                       | 35                |                   |                                          | ns    |
| Input Voltage Range                     | AN <sub>GND</sub> | ANV <sub>cc</sub> |                                          | V     |
| Conversion Time                         |                   | 2                 |                                          | μs    |
| Input Capacitance on                    |                   | 60                |                                          | pF    |
| VA <sub>HI</sub> range damage           |                   | ANV <sub>cc</sub> |                                          | V     |
| VA <sub>LO</sub> range damage           | AN                |                   |                                          | V     |
| AN <sub>GND</sub>                       | V <sub>ss</sub>   | ANV <sub>cc</sub> | an a | V     |
| ANV <sub>cc</sub>                       |                   | V <sub>cc</sub>   |                                          | V     |
| III ana                                 | -10               | +10               |                                          | μA    |
| III VA <sub>HI</sub> , VA <sub>LO</sub> | TBD               | TBD               |                                          | μA    |

PRELIMINARY

## **Z8 EXPANDED REGISTER FILE REGISTERS**

## **Expanded Register Bank B**

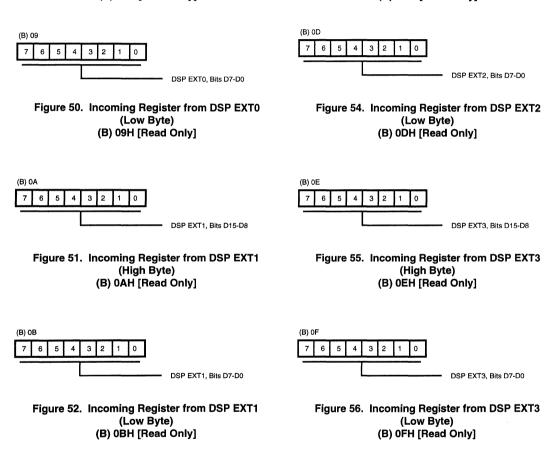



(B) 0C

# **Z8 EXPANDED REGISTER FILE REGISTERS** (Continued)

Figure 49. Incoming Register from DSP EXT0

(High Byte)


(B) 08H [Read Only]





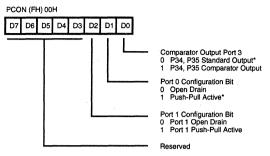
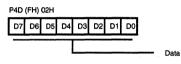
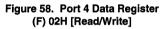
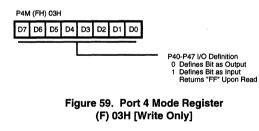

DSP EXT2, Bits D15-D8

Figure 53. Incoming Register from DSP EXT2 (High Byte) (B) 0CH [Read Only]




PRELIMINARY


## **Expanded Register Bank F**




\* Default Setting After Reset

#### Figure 57. Port Configuration Register (PCON) (F) 00H [Write Only]







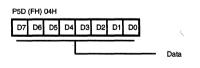
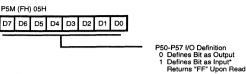
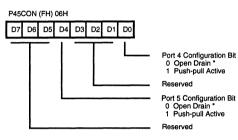
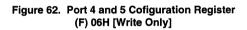
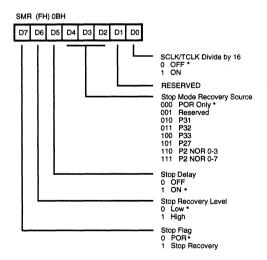
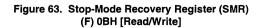





Figure 60. Port 5 Data Register (F) 04H [Read/Write]





\* Default setting after Reset

#### Figure 61. Port 5 Mode Register (F) 05H [Write Only]

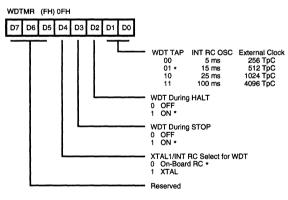



\* Default setting after Reset





\* Default Setting After Reset



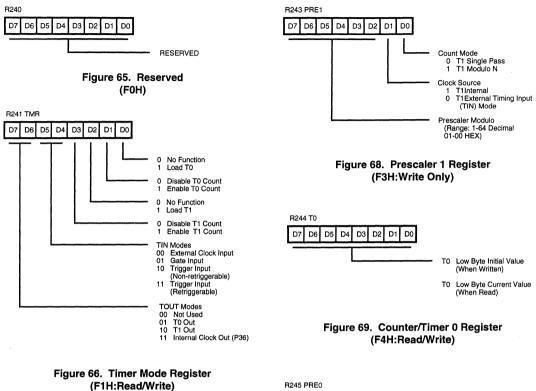

# & Silæ

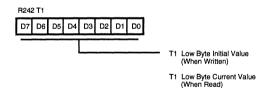
Table 18. DSP Control Register (F) 0CH [Read/Write]

# **Z8 EXPANDED REGISTER FILE REGISTERS** (Continued)

| Field<br>DSPCON (F)0CH | Position | Attrib | Value | Label           |
|------------------------|----------|--------|-------|-----------------|
| Z8_SCLK                | 76       | R/W    | 00    | 2.5 MHz (OSC/8) |
|                        |          |        | 01    | 5 MHz (OSC/4)   |
|                        |          |        | 1x    | 10 MHZ (OSC/2)  |
| DSP_Reset              | 5        | R      |       | Return "0"      |
|                        |          | W      | 0     | No effect       |
|                        |          |        | 1     | Reset DSP       |
| DSP_Run                | 4        | R/W    | 0     | Halt_DSP        |
|                        |          |        | 1     | Run_DSP         |
| Reserved               | 32       |        | xx    |                 |
|                        |          |        |       | Return "0"      |
|                        |          |        |       | No effect       |
| IntFeedback            | 1-       | R      |       | FB_DSP_INT2     |
|                        |          | W      | 1     | Set DSP_INT2    |
|                        |          |        | 0     | No effect       |
|                        | 0        | R      |       | FB_Z8_IRQ3      |
|                        |          | W      | 1     | Clear IRQ3      |
|                        |          |        | 0     | No effect       |




\* Default setting after RESET


#### Figure 64. Watch-Dog Timer Mode Register (F) 0FH [Read/Write]

1

PRELIMINARY

## **Z8 CONTROL REGISTERS**







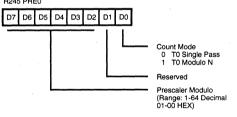
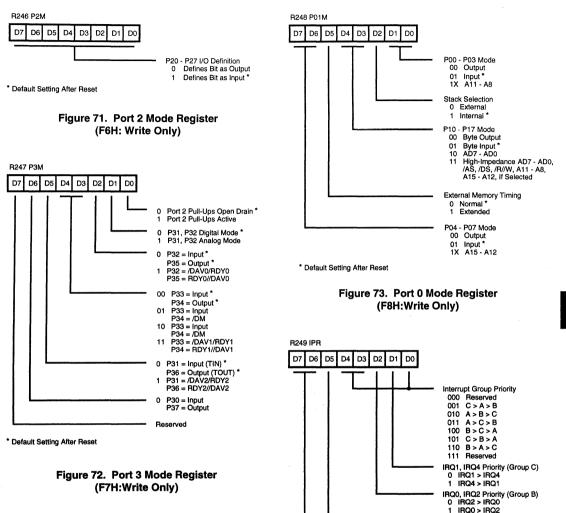
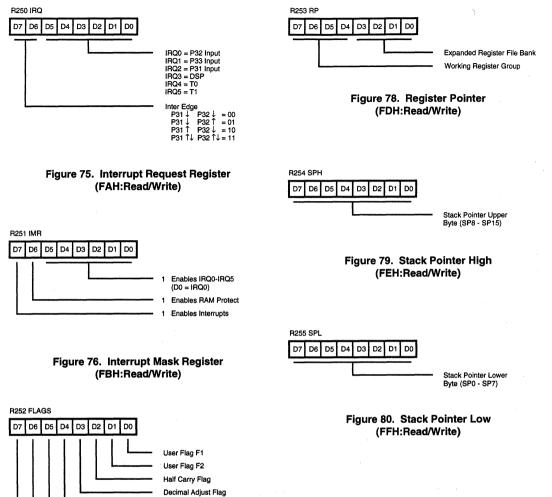




Figure 70. Prescaler 0 Register (F5H:Write Only)

# **Z8 CONTROL REGISTERS** (Continued)




IRQ3, IRQ5 Priority (Group A) 0 IRQ5 > IRQ3 1 IRQ3 > IRQ5 Reserved

Figure 74. Interrupt Priority Register (F9H:Write Only)

# ⊗ Ziloos

PRELIMINARY



Decimal Adjus
Overflow Flag
Sign Flag
Zero Flag
Carry Flag

Figure 77. Flag Register (FCH:Read/Write)

1-58

# **Z8 INSTRUCTION SET NOTATION**

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

| Symbol | Meaning                                        |
|--------|------------------------------------------------|
| IRR    | Indirect register pair or indirect working-    |
|        | register pair address                          |
| Irr    | Indirect working-register pair only            |
| Х      | Indexed address                                |
| DA     | Direct address                                 |
| RA     | Relative address                               |
| IM     | Immediate                                      |
| R      | Register or working-register address           |
| r      | Working-register address only                  |
| IR     | Indirect-register or indirect                  |
|        | working-register address                       |
| lr     | Indirect working-register address only         |
| RR     | Register pair or working register pair address |

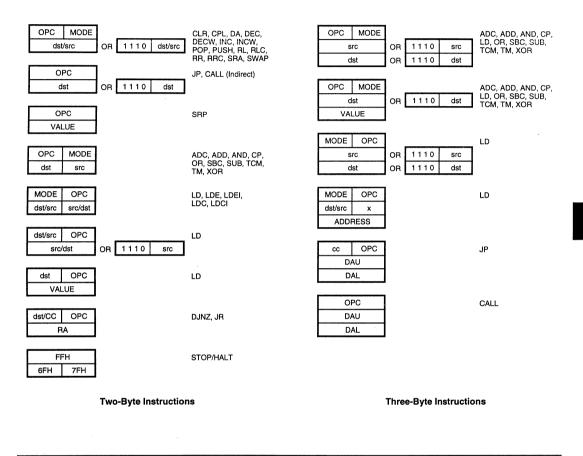
**Symbols**. The following symbols are used in describing the instruction set.

| Symbol | Meaning                              |
|--------|--------------------------------------|
| dst    | Destination location or contents     |
| src    | Source location or contents          |
| сс     | Condition code                       |
| @      | Indirect address prefix              |
| SP     | Stack Pointer                        |
| PC     | Program Counter                      |
| FLAGS  | Flag register (Control Register 252) |
| RP     | Register Pointer (R253)              |
| IMR    | Interrupt mask register (R251)       |

Flags. Control register (R252) contains the following six flags:

| Symbol       | Meaning                             |
|--------------|-------------------------------------|
| C            | Carry flag                          |
| Z            | Zero flag                           |
| S            | Sign flag                           |
| V            | Overflow flag                       |
| D            | Decimal-adjust flag                 |
| Н            | Half-carry flag                     |
| Affected fla | ags are indicated by:               |
| 0            | Clear to zero                       |
| 1            | Set to one                          |
| *            | Set to clear according to operation |
| -            | Unaffected                          |
| x            | Undefined                           |

# **CONDITION CODES**


| Value | Mnemonic | Mnemonic Meaning               |                       |  |  |
|-------|----------|--------------------------------|-----------------------|--|--|
| 1000  |          | Always True                    |                       |  |  |
| 0111  | С        | Carry                          | C = 1                 |  |  |
| 1111  | NC       | No Carry                       | C = 0                 |  |  |
| 0110  | Z        | Zero                           | Z = 1                 |  |  |
| 1110  | NZ       | Not Zero                       | Z = 0                 |  |  |
| 1101  | PL       | Plus                           | S = 0                 |  |  |
| 0101  | MI       | Minus                          | S = 1                 |  |  |
| 0100  | OV       | Overflow                       | V = 1                 |  |  |
| 1100  | NOV      | No Overflow                    | V = 0                 |  |  |
| 0110  | EQ       | Equal                          | Z = 1                 |  |  |
| 1110  | NE       | Not Equal                      | Z = 0                 |  |  |
| 1001  | GE       | Greater Than or Equal          | (S XOR V) = 0         |  |  |
| 0001  | LT       | Less than                      | (S XOR V) = 1         |  |  |
| 1010  | GT       | Greater Than                   | [Z OR (S XOR V)] = 0  |  |  |
| 0010  | LE       | Less Than or Equal             | [Z OR (S XOR V)] = 1  |  |  |
| 1111  | UGE      | Unsigned Greater Than or Equal | C = 0                 |  |  |
| 0111  | ULT      | Unsigned Less Than             | C = 1                 |  |  |
| 1011  | UGT      | Unsigned Greater Than          | (C = 0 AND Z = 0) = 1 |  |  |
| 0011  | ULE      | Unsigned Less Than or Equal    | (C  OR  Z) = 1        |  |  |
| 0000  |          | Never True                     |                       |  |  |

## **INSTRUCTION FORMATS**



CCF, DI, EI, IRET, NOP, RCF, RET, SCF

**One-Byte Instructions** 



# INSTRUCTION SUMMARY

**Note:** Assignment of a value is indicated by the symbol "  $\leftarrow$  ". For example:

dst ← dst + src

indicates that the source data is added to the destination data and the result is stored in the destination location. The

notation "addr (n)" is used to refer to bit (n) of a given operand location. For example:

dst (7)

refers to bit 7 of the destination operand.

# **INSTRUCTION SUMMARY** (Continued)

| and OperationdstsrcByreADC dst, src†1[]dst-dst + src +C1[]ADD dst, src†0[]dst-dst + src1AND dst, src†5[]dst-dst AND src1CALL dstDAD6SP-SP - 2IRRD4 $@SP \leftarrow PC$ ,PCPC \leftarrow dst1CCFEFCLR dstR80dst ← 0IR81COM dstR60dst ← 0IR61CP dst, src†A[]dst - Src1IRDA dstR40dst - dst - 1IR81DEC dstR00dst-dst - 1IR81DI8FIMR(7) ← 08FDJNZr, dstRArAPC ← PC + dstRange: +127,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (Hex) | С |     | ted |   | - |     | Instruction                        |        | de      | Opcode                |   | fec |   |   | _ |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---|-----|-----|---|---|-----|------------------------------------|--------|---------|-----------------------|---|-----|---|---|---|---|
| dst←dst + src +C<br>ADD dst, src † 0[]<br>dst←dst + src $\uparrow$ 0[]<br>dst←dst + src $\uparrow$ 5[]<br>dst←dst AND src $\uparrow$ 5[]<br>CALL dst DA D6<br>SP←SP - 2 IRR D4<br>@SP←PC,<br>PC←dst $\downarrow$ CCF EF<br>C←NOT C $\downarrow$ R B0<br>dst←0 IR B1<br>COM dst R 60<br>dst←0 IR B1<br>COM dst R 60<br>dst←NOT dst IR 61<br>CP dst, src † A[]<br>dst←DA dst IR 41<br>DEC dst R 00<br>dst←dst - 1 IR 01<br>DECW dst RR 80<br>dst←dst - 1 IR 81<br>DI SF<br>IMR(7)←0 $\downarrow$ RA rA<br>r←r - 1 r = 0<br>PC←PC + dst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |   | Z   | S   | ۷ | D | Н   | and Operation                      | dst    | src     | Byte (Hex)            | C | Z   | S | V | D | H |
| dst←dst + src<br>AND dst, src † 5[]<br>dst←dst AND src<br>CALL dst DA D6<br>SP←SP - 2 IRR D4<br>@SP←PC,<br>PC←dst<br>CCF EF<br>C←NOT C<br>CLR dst R B0<br>dst←0 IR B1<br>COM dst R 60<br>dst←0 IR B1<br>COM dst R 60<br>dst←NOT dst IR 61<br>CP dst, src † A[]<br>dst - src<br>DA dst R 40<br>dst←DA dst IR 41<br>DEC dst R 00<br>dst←dst - 1 IR 01<br>DECW dst RR 80<br>dst←dst - 1 IR 81<br>DI IR 81<br>DI IR 81<br>DI IR 81<br>DI IR 7<br>DI IR 7<br>COM CAST RA A<br>F←T - 1 IR 7<br>DI IR 7<br>COM CAST RA A<br>COM CA |       | * | *   | *   | * | 0 | *   | INC dst<br>dst←dst + 1             | r<br>R |         | rE<br>r = 0 - F<br>20 | - | *   | * | * | - | - |
| dst - dst AND src<br>CALL dst DA D6<br>SP - SP - 2 IRR D4<br>@SP - PC,<br>PC - dst<br>CCF EF<br>CCFNOT C<br>CLR dst R B0<br>dst - 0 IR B1<br>COM dst R 60<br>dst - NOT dst IR 61<br>CP dst, src † A[ ]<br>dst - src<br>DA dst R 40<br>dst - DA dst IR 41<br>DEC dst R 00<br>dst - dst - 1 IR 01<br>DECW dst RR 80<br>dst - dst - 1 IR 81<br>DI R 8F<br>IMR(7) - 0<br>DJNZr, dst RA rA<br>r = 0<br>PC - PC + dst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | * | *   | *   | * | 0 | *   |                                    | IR     |         | 21                    |   |     |   |   |   |   |
| dst-dst AND src<br>CALL dst DA D6<br>SP-SP - 2 IRR D4<br>@SP-PC,<br>PC-dst<br>CCF EF<br>CCFNOT C<br>CLR dst R B0<br>dst-0 IR B1<br>COM dst R 60<br>dst-NOT dst IR 61<br>CP dst, src † A[ ]<br>dst-NOT dst IR 41<br>DA dst R 40<br>dst-DA dst IR 41<br>DEC dst R 00<br>dst-DA dst IR 41<br>DEC dst R 00<br>dst-dst - 1 IR 01<br>DECW dst RR 80<br>dst-dst - 1 IR 81<br>DI 8F<br>IMR(7)-0<br>DJNZr, dst RA rA<br>r-r-1 r= 0<br>PC-PC + dst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |   |     |     |   |   |     | INCW dst                           | RR     |         | A0                    | - | *   | * | * | - | - |
| SP←SP - 2       IRR       D4         @SP←PC,       PC←dst         PC←dst       EF         CCF       EF         C←NOT C       IR         CLR dst       R       B0         dst←0       IR       B1         COM dst       R       60         dst←NOT dst       IR       61         CP dst, src       †       A[]         dst – Src       DA dst       R         DA dst       R       40         dst←DA dst       IR       41         DEC dst       R       00         dst←dst - 1       IR       81         DI       BF         IMR(7)←0       8F         DINZr, dst       RA       rA         PC←PC + dst       PC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | - | *   | *   | 0 | - | -   | dst←dst + 1                        | IR     |         | A1                    |   | ·   |   |   |   |   |
| SP←SP - 2       IRR       D4         @SP←PC,       PC←dst         PC←dst       EF         CCF       EF         C←NOT C       IR         CLR dst       R       B0         dst←0       IR       B1         COM dst       R       60         dst←NOT dst       IR       61         CP dst, src       †       A[]         dst – NOT dst       IR       41         DEC dst       R       00         dst←dst - 1       IR       01         DEC dst       R       00         dst←dst - 1       IR       81         DI       8F         IMR(7)←0       IR         DJJNZr, dst       RA       rA         r       r       r = 0         if r ≠ 0       PC←PC + dst       F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |   |     |     |   |   |     | <b>IRET</b><br>FLAGS <b>←@</b> SP; |        |         | BF                    | * | *   | * | * | * | * |
| $@SP \leftarrow PC$ ,<br>$PC \leftarrow dst$ $EF$ $CCF$ $EF$ $C \leftarrow NOT C$ $CLR dst$ $R$ $B0$<br>$dst \leftarrow 0$ $IR$ $B1$ $COM dst$ $R$ $60$ $dst \leftarrow 0$ $IR$ $B1$ $COM dst$ $R$ $60$ $dst \leftarrow NOT dst$ $IR$ $61$ $CP dst, src$ $\uparrow$ $A[$ ] $dst \leftarrow NOT dst$ $IR$ $41$ $DL dst$ $R$ $40$ $dst \leftarrow DA dst$ $IR$ $41$ $DEC dst$ $R$ $00$ $dst \leftarrow dst - 1$ $IR$ $81$ $DI$ $BF$ $IMR(7) \leftarrow 0$ $BF$ $DJNZr, dst$ $RA$ $rA$ $r \leftarrow r - 1$ $r = 0$ $PC \leftarrow PC + dst$ $F$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | - | -   | -   | - | - | -   | FLAGS←@SP;<br>SP←SP + 1            |        |         |                       |   |     |   |   |   |   |
| PC-dstEFCCFFEFCLR dstRB0dst-0IRB1COM dstR60dst-0IRG1CP dst, src†A[]dst-DA dstR40dst-DA dstIR41DEC dstR00dst-dst-1IR01DECW dstRR80dst-dst-1IR81DI8FIMR(7)-0IMRrAPC-PC + dstF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |   |     |     |   |   |     | PC←@SP;                            |        |         |                       |   |     |   |   |   |   |
| CCFEF $C \leftarrow NOT C$ EF $C \perp R dst$ R $B \uparrow$ B0 $dst \leftarrow 0$ IR $B \uparrow$ B1 $C OM dst$ R $dst \leftarrow NOT dst$ IR $B \uparrow$ G1 $C P dst, src$ $\uparrow$ $A f \downarrow$ Af $dst \leftarrow NOT dst$ IR $dst + src$ $r$ $DA dst$ R $dst \leftarrow DA dst$ IR $dst \leftarrow DA dst$ IR $dst \leftarrow dst - 1$ IR $DI C C dst$ RR $dst \leftarrow dst - 1$ IR $DI I C C D J D J D Z r, dst$ RA $r \leftarrow r - 1$ $r = 0$ $P \subset \leftarrow PC + dst$ $r \in T = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |   |     |     |   |   |     | SP←SP + 2;                         |        |         |                       |   |     |   |   |   |   |
| C \leftarrow NOT CCLR dstRB0dst $\leftarrow 0$ IRB1COM dstR60dst $\leftarrow NOT$ dstIR61CP dst, src†A[]dst - srcTDA dstR40dst - DA dstIR41DEC dstR00dst - dst - 1IR01DECW dstRR80dst - dst - 1IR81DI8FIMR(7) $\leftarrow 0$ RArAPC $\leftarrow$ PC + dstK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |   |     |     |   |   |     | IMR(7)←1                           |        |         |                       |   |     |   |   |   |   |
| CLR dstRB0dst $\leftarrow 0$ IRB1COM dstR60dst $\leftarrow$ NOT dstIR61CP dst, src†A[]dst - srcIR41DA dstR40dst $\leftarrow$ DA dstIR41DEC dstR00dst $\leftarrow$ dst - 1IR01DECW dstRR80dst $\leftarrow$ dst - 1IR81DI8FIMR(7) \leftarrow 0IMR(7) + 0PC \leftarrow PC + dstPC ← PC + dst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | * | -   | -   | - | - | -   |                                    |        |         |                       |   |     |   |   |   |   |
| dst<-0IRB1COM dstR60dst<-NOT dst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |   |     |     |   |   |     | JP cc, dst                         | DA     |         | cD                    | - | -   | - | - | - | - |
| dst<-0IRB1COM dstR60dst<-NOT dst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |   |     |     |   |   |     | if cc is true                      |        |         | c = 0 - F             |   |     |   |   |   |   |
| COM dstR60dst—NOT dstIR61CP dst, src†A[]dst - srcIR40dst—DA dstIR41DEC dstR00dst—dst - 1IR01DECW dstRR80dst—dst - 1IR81DI8FIMR(7)—0IMR(7)—0DJNZr, dstRArAr<= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | - | -   | -   | - | - | -   | PC←dst                             | IRR    |         | 30                    |   |     |   |   |   |   |
| dst (NOT dstIR61CP dst, src†A[]dst - srcIRDA dstRdst (DA dstIRDEC dstRdst(-dst - 1)IRDECW dstRRdst(-dst - 1)IRDISFIMR(7)(-0)IMR(7)(-0)DJNZr, dstRArrPC(-PC + dst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |   |     |     |   |   |     |                                    |        |         |                       |   |     |   |   |   |   |
| dst (NOT dstIR61CP dst, src†A[]dst - srcIRDA dstRdst (DA dstIRDEC dstRdst(-dst - 1)IRDECW dstRRdst(-dst - 1)IRDISFIMR(7)(-0)IMR(7)(-0)DJNZr, dstRArrPC(-PC + dst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |   |     | *   |   |   |     | JR cc, dst                         | RA     |         | cB<br>c = 0 - F       | - | -   | - | - | • | - |
| CP dst, src†A[]dst - srcIDA dstRdst-DA dstIRHHDEC dstR00dst-dst - 1JEC with the state of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | - | ጙ   | ጙ   | U | - | -   | if cc is true,<br>PC←PC + dst      |        |         | C = 0 - F             |   |     |   |   |   |   |
| dst - src<br>DA dst R 40<br>dst $\leftarrow$ DA dst IR 41<br>DEC dst R 00<br>dst $\leftarrow$ dst - 1 IR 01<br>DECW dst RR 80<br>dst $\leftarrow$ dst - 1 IR 81<br>DI 8F<br>IMR(7) $\leftarrow$ 0<br>DJNZr, dst RA rA<br>r $\leftarrow$ r - 1 r = 0<br>if r $\neq$ 0<br>PC $\leftarrow$ PC + dst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |   |     |     |   |   |     | Range: $+127$ ,                    |        |         |                       |   |     |   |   |   |   |
| dst - src<br>DA dst R 40<br>dst $\leftarrow$ DA dst IR 41<br>DEC dst R 00<br>dst $\leftarrow$ dst - 1 IR 01<br>DECW dst RR 80<br>dst $\leftarrow$ dst - 1 IR 81<br>DI 8F<br>IMR(7) $\leftarrow$ 0<br>DJNZr, dst RA rA<br>r $\leftarrow$ r - 1 r = 0<br>if r $\neq$ 0<br>PC $\leftarrow$ PC + dst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | * | *   | *   | * | - |     | -128                               |        |         |                       |   |     |   |   |   |   |
| dst<-DA dstIR41DEC dstR00dst<-dst - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | · | •   | •   | • |   |     |                                    |        |         |                       |   |     |   |   |   |   |
| dst<-DA dstIR41DEC dstR00dst<-dst - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |   |     |     |   |   |     | LD dst, src                        | r      | Im      | rC                    | - | -   | - | - | - | - |
| DEC dstR00dst-dst - 1IR01DECW dstRR80dst-dst - 1IR81DI8FIMR(7)-08FDJNZr, dstRArAr<-r - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | * | *   | *   | Х | - | -   | dst←src                            | r      | R       | r8                    |   |     |   |   |   |   |
| dst-dst - 1IR01DECWdstRR80dst-dst - 1IR81DI8FIMR(7)-08FDJNZr, dstRArAr < r - 1r = 0if $r \neq 0$ PC-PC + dst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |   |     |     |   |   |     |                                    | R      | r       | r9                    |   |     |   |   |   |   |
| dst-dst - 1IR01DECWdstRR80dst-dst - 1IR81DI8FIMR(7)-08FDJNZr, dstRArAr < r - 1r = 0if $r \neq 0$ PC-PC + dst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |   |     |     |   |   |     |                                    | _      | v       | r = 0 - F             |   |     |   |   |   |   |
| DECW dstRR80 $dst \leftarrow dst - 1$ IR81DI8FIMR(7) \leftarrow 08FDJNZr, dstRArAr \leftarrow r - 1r = 0if $r \neq 0$ PC ← PC + dst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | - | ×   | *   | * | - | -   |                                    | r<br>X | X<br>r  | C7<br>D7              |   |     |   |   |   |   |
| dst $\leftarrow$ dst - 1 IR 81<br>DI 8F<br>IMR(7) $\leftarrow$ 0<br>DJNZr, dst RA rA<br>r $\leftarrow$ r - 1 r = 0<br>if r $\neq$ 0<br>PC $\leftarrow$ PC + dst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |   |     |     |   |   |     |                                    | r      | ı<br>Ir | E3                    |   |     |   |   |   |   |
| dst $\leftarrow$ dst - 1 IR 81<br>DI 8F<br>IMR(7) $\leftarrow$ 0<br>DJNZr, dst RA rA<br>r $\leftarrow$ r - 1 r = 0<br>if r $\neq$ 0<br>PC $\leftarrow$ PC + dst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |   | *   | *   | * |   |     |                                    | lr     | r       | F3                    |   |     |   |   |   |   |
| DI8FIMR(7) \leftarrow 08FDJNZr, dstRArA $r \leftarrow r - 1$ $r = 0$ if $r \neq 0$ PC \leftarrow PC + dst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | - | -1- | -11 |   | - | -   |                                    | R      | R       | E4                    |   |     |   |   |   |   |
| $\begin{array}{c c} IMR(7) \leftarrow 0 \\ \hline \mathbf{DJNZ}r, \ \mathrm{dst} & RA & rA \\ r \leftarrow r - 1 & r = 0 \\ \mathrm{if} \ r \neq 0 \\ PC \leftarrow PC + \ \mathrm{dst} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |   |     |     |   |   |     |                                    | R      | IR      | E5                    |   |     |   |   |   |   |
| <b>DJNZ</b> r, dst RA rA<br>r $\leftarrow$ r - 1 r = 0<br>if r $\neq$ 0<br>PC $\leftarrow$ PC + dst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |   | -   | -   | - |   | -   |                                    | R      | IM      | E6                    |   |     |   |   |   |   |
| $r \leftarrow r - 1$ $r = 0$<br>if $r \neq 0$<br>$PC \leftarrow PC + dst$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |   |     |     |   |   |     |                                    | IR     | IM      | E7                    |   |     |   |   |   |   |
| $r \leftarrow r - 1$ $r = 0$<br>if $r \neq 0$<br>$PC \leftarrow PC + dst$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |   |     |     |   |   |     |                                    | IR     | R       | F5                    |   |     |   |   |   |   |
| if r ≠ 0<br>PC←PC + dst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | • | -   | -   | - | - | • ` |                                    |        |         |                       |   |     |   |   |   |   |
| PC←PC + dst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ۰F    |   |     |     |   |   |     | LDC dst, src                       | r      | Irr     | C2                    | - | -   | - | - | - | - |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |   |     |     |   |   |     |                                    |        |         |                       |   |     |   |   |   |   |
| Hange: + 127,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |   |     |     |   |   |     | LDCI dst, src                      | lr     | Irr     | C3                    | - | -   | - | - | - | - |
| -128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |   |     |     |   |   |     | dst←src<br>r←r +1;                 |        |         |                       |   |     |   |   |   |   |
| -120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |   |     |     |   |   |     | r←r + i;<br>rr←rr + 1              |        |         |                       |   |     |   |   |   |   |
| <b>EI</b> 9F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | - | -   | -   | - | - | -   |                                    |        |         |                       |   |     |   |   |   |   |
| IMR(7)←1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |   |     |     |   |   |     |                                    |        |         |                       |   |     |   |   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |   |     |     |   |   |     |                                    |        |         |                       |   |     |   |   |   |   |
| HALT 7F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | - | -   | -   | - | - | -   |                                    |        |         |                       |   |     |   |   |   |   |

# **INSTRUCTION SUMMARY** (Continued)

| Instruction<br>and Operation            | Mod     | lress<br>le<br>src | Opcode<br>Byte (Hex) | Af | ags<br>fec<br>Z | ted | v | D | н |
|-----------------------------------------|---------|--------------------|----------------------|----|-----------------|-----|---|---|---|
| NOP                                     |         |                    | FF                   | -  | -               | -   | - | - | - |
| <b>OR</b> dst, src<br>dst←dst OR src    | †       |                    | 4[]                  | -  | *               | *   | 0 | - | - |
| <b>POP</b> dst<br>dst←@SP;<br>SP←SP + 1 | R<br>IR |                    | 50<br>51             | -  | -               | -   | - | - | - |
| PUSH src<br>SP←SP - 1;<br>@SP←src       |         | R<br>IR            | 70<br>71             | -  | -               | -   | - | - | - |
| <b>RCF</b><br>C←0                       |         |                    | CF                   | 0  | -               | -   | - | - | - |
| <b>RET</b><br>PC←@SP;<br>SP←SP + 2      |         |                    | AF                   | -  | -               | -   | - | - | - |
| RL dst                                  | R<br>IR |                    | 90<br>91             | *  | *               | *   | * | - | - |
| RLC dst                                 | R<br>IR |                    | 10<br>11             | *  | *               | *   | * | - | - |
| RR dst                                  | R<br>IR |                    | E0<br>E1             | *  | *               | *   | * | - | - |
| RRC dst                                 | R<br>IR |                    | C0<br>C1             | *  | *               | *   | * | - | - |
| <b>SBC</b> dst, src<br>dst←dst←src←C    | †       |                    | 3[]                  | *  | *               | *   | * | 1 | * |
| <b>SCF</b><br>C←1                       |         |                    | DF                   | 1  | -               | -   | - | - | • |
| SRA dst                                 | R<br>IR |                    | D0<br>D1             | *  | *               | *   | 0 | - | - |
| <b>SRP</b> src<br>RP←src                |         | lm                 | 31                   | -  | -               | -   | - | - | - |

| Instruction                          | Address<br>Mode | Opcode     |   | ags<br>fec |   |   |   |   |
|--------------------------------------|-----------------|------------|---|------------|---|---|---|---|
| and Operation                        | dst src         | Byte (Hex) | С | Z          | S | ۷ | D | Н |
| STOP                                 |                 | 6F         | - | -          | - | - | - | - |
| SUB dst, src<br>dst←dst←src          | †               | 2[]        | * | *          | * | * | 1 | * |
| SWAP dst                             | R<br>IR         | F0<br>F1   | Х | *          | * | Х | - | - |
| TCM dst, src<br>(NOT dst)<br>AND src | †               | 6[]        | - | *          | * | 0 | - | - |
| TM dst, src<br>dst AND src           | †               | 7[]        | - | *          | * | 0 | - | - |
| XOR dst, src<br>dst←dst<br>XOR src   | †               | B[ ]       | - | *          | * | 0 | - | - |

† These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is expressed symbolically by a '[]' in this table, and its value is found in the following table to the left of the applicable addressing mode pair.

For example, the opcode of an ADC instruction using the addressing modes r (destination) and Ir (source) is 13.

| Addres<br>dst | ss Mode<br>src | Lower<br>Opcode Nibble |
|---------------|----------------|------------------------|
| r             | r              | [2]                    |
| r             | lr             | [3]                    |
| R             | R              | [4]                    |
| R             | IR             | [5]                    |
| R             | IM             | [6]                    |
| IR            | IM             | [7]                    |
|               |                |                        |

1

# ത

#### PRELIMINARY

# **OPCODE MAP**

# Lower Nibble (Hex)

|                    |   | 0                            | 1                             | 2                           | 3                            | 4                            | 5                             | 6                             | 7                             | 8<br>8              | 9<br>9              | А                | в                          | с            | D            | Е         | F                                     |
|--------------------|---|------------------------------|-------------------------------|-----------------------------|------------------------------|------------------------------|-------------------------------|-------------------------------|-------------------------------|---------------------|---------------------|------------------|----------------------------|--------------|--------------|-----------|---------------------------------------|
|                    |   | 6.5                          | 6.5                           | 6.5                         | 6.5                          | 10.5                         | 10.5                          | 10.5                          | 10.5                          | 6.5                 | 6.5                 | T12/10.5         |                            | 6.5          | 12.10.0      | 6.5       | · · · · · · · · · · · · · · · · · · · |
|                    | 0 | 0.5<br>DEC<br>R1             | DEC<br>IR1                    | 6.5<br>ADD<br>r1, r2        | ADD<br>r1, lr2               | ADD<br>R2, R1                | ADD<br>IR2, R1                | ADD<br>R1, IM                 | ADD<br>IR1, IM                | 6.5<br>LD<br>r1, R2 | 0.5<br>LD<br>r2, R1 | DJNZ             | <b>JR</b><br>cc, RA        | LD<br>r1, IM | JP<br>cc, DA | INC<br>r1 |                                       |
|                    | 1 | 6.5<br><b>RLC</b><br>R1      | 6.5<br><b>RLC</b><br>IR1      | 6.5<br><b>ADC</b><br>r1, r2 | 6.5<br>ADC<br>r1, lr2        | 10.5<br>ADC<br>R2, R1        | 10.5<br><b>ADC</b><br>IR2, R1 | 10.5<br><b>ADC</b><br>R1, IM  | 10.5<br>ADC<br>IR1, IM        |                     |                     |                  |                            |              |              |           |                                       |
|                    | 2 | 6.5<br>INC<br>R1             | 6.5<br>INC<br>IR1             | 6.5<br><b>SUB</b><br>r1, r2 | 6.5<br><b>SUB</b><br>r1, lr2 | 10.5<br><b>SUB</b><br>R2, R1 | 10.5<br><b>SUB</b><br>IR2, R1 | 10.5<br><b>SUB</b><br>R1, IM  | 10.5<br>SUB                   |                     |                     |                  |                            |              |              |           |                                       |
|                    | 3 | 8.0<br>JP                    | 6.1<br>SRP                    | 6.5<br>SBC                  | 6.5<br>SBC                   | 10.5<br>SBC                  | 10.5<br>SBC                   | 10.5<br>SBC                   | IR1, IM<br>10.5<br><b>SBC</b> |                     |                     |                  |                            |              |              |           |                                       |
|                    | 4 | IRR1<br>8.5<br>DA            | 8.5<br>DA                     | r1, r2<br>6.5<br><b>OR</b>  | r1, lr2<br>6.5<br><b>OR</b>  | R2, R1<br>10.5<br><b>OR</b>  | 1R2, R1<br>10.5<br><b>OR</b>  | R1, IM<br>10.5<br><b>OR</b>   | IR1, IM<br>10.5<br><b>OR</b>  |                     |                     |                  |                            |              |              |           |                                       |
|                    |   | R1                           | IR1                           | r1, r2                      | r1, lr2                      | R2, R1                       | IR2, R1                       | R1, IM                        | IR1, IM                       |                     |                     |                  |                            |              |              |           |                                       |
|                    | 5 | 10.5<br><b>POP</b><br>R1     | 10.5<br><b>POP</b><br>IR1     | 6.5<br><b>AND</b><br>r1, r2 | 6.5<br><b>AND</b><br>r1, lr2 | 10.5<br><b>AND</b><br>R2, R1 | 10.5<br><b>AND</b><br>IR2, R1 | 10.5<br><b>AND</b><br>R1, IM. | 10.5<br><b>AND</b><br>IR1, IM |                     |                     |                  |                            |              |              |           |                                       |
| Ŷ                  | 6 | 6.5<br><b>COM</b><br>R1      | 6.5<br><b>COM</b><br>IR1      | 6.5<br><b>TCM</b><br>r1, r2 | 6.5<br><b>TCM</b><br>r1, lr2 | 10.5<br><b>TCM</b><br>R2, R1 | 10.5<br><b>TCM</b><br>IR2, R1 | 10.5<br><b>TCM</b><br>R1, IM  | 10.5<br><b>TCM</b><br>IR1, IM |                     |                     |                  |                            |              |              |           | 6.0<br>STOP                           |
| Upper Nibble (Hex) | 7 | 10/12.1<br><b>PUSH</b><br>R2 | 12/14.1<br><b>PUSH</b><br>IR2 | 6.5<br><b>TM</b><br>r1, r2  | 6.5<br>TM<br>r1, lr2         | 10.5<br>TM<br>R2, R1         | 10.5<br><b>TM</b><br>IR2, R1  | 10.5<br><b>TM</b><br>R1, IM   | 10.5<br><b>TM</b><br>IR1, IM  |                     |                     |                  |                            |              |              |           | 7.0<br><b>HALT</b>                    |
| per Nib            | 8 | 10.5<br>DECW                 | 10.5<br>DECW                  | 12.0<br>LDE                 | 18.0<br>LDEI                 |                              |                               | ,                             | n ( i, nvi                    |                     |                     |                  |                            |              |              |           | 6.1<br>DI                             |
| ď                  |   | RR1<br>6.5                   | IR1<br>6.5                    | r1, lrr2<br>12.0            | Ir1, Irr2<br>18.0            |                              |                               |                               |                               |                     |                     |                  |                            |              |              |           | 6.1                                   |
|                    | 9 | RL<br>R1                     | RL<br>IR1                     | LDE<br>r2, irr1             | LDEI<br>Ir2, Irr1            | 10.5                         | 10 5                          | 10.5                          | 10.5                          |                     |                     |                  |                            |              |              |           | EI                                    |
|                    | A | 10.5<br>INCW<br>RR1          | 10.5<br>INCW<br>IR1           | 6.5<br><b>CP</b><br>r1, r2  | 6.5<br><b>CP</b><br>r1, lr2  | 10.5<br><b>CP</b><br>R2, R1  | 10.5<br><b>CP</b><br>IR2, R1  | 10.5<br><b>CP</b><br>R1, IM   | 10.5<br><b>CP</b><br>IR1, IM  |                     |                     |                  |                            |              |              |           | 14.0<br><b>RET</b>                    |
|                    | в | 6.5<br><b>CLR</b><br>R1      | 6.5<br><b>CLR</b><br>IR1      | 6.5<br><b>XOR</b><br>r1, r2 | 6.5<br><b>XOR</b><br>r1, lr2 | 10.5<br><b>XOR</b><br>R2, R1 | 10.5<br><b>XOR</b><br>IR2, R1 | 10.5<br><b>XOR</b><br>R1, IM  | 10.5<br><b>XOR</b><br>IR1, IM |                     |                     |                  |                            |              |              |           | 16.0<br>IRET                          |
|                    | с | 6.5<br><b>RRC</b><br>R1      | 6.5<br><b>RRC</b><br>IR1      | 12.0<br>LDC<br>r1, lrr2     | 18.0<br>LDCI<br>Ir1, Irr2    |                              |                               |                               | 10.5<br><b>LD</b><br>r1,x,R2  |                     |                     |                  |                            |              |              |           | 6.5<br>RCF                            |
|                    | D | 6.5<br>SRA<br>R1             | 6.5<br>SRA<br>IR1             | 12.0<br>LDC<br>r2, lrr1     | 18.0<br>LDCI<br>Ir2, Irr1    | 20.0<br>CALL*<br>IRR1        |                               | 20.0<br><b>CALL</b><br>DA     | 10.5<br><b>LD</b><br>r2,x,R1  |                     |                     |                  |                            |              |              |           | 6.5<br>SCF                            |
|                    | E | 6.5<br><b>RR</b><br>R1       | 6.5<br>RR<br>IR1              | 12, 111                     | 6.5<br>LD<br>r1, IR2         | 10.5<br>LD<br>R2, R1         | 10.5<br><b>LD</b><br>IR2, R1  | 10.5<br><b>LD</b><br>R1, IM   | 10.5<br>LD                    |                     |                     |                  |                            |              |              |           | 6.5<br>CCF                            |
|                    | F | 8.5<br>SWAP                  | 8.5<br>SWAP<br>IR1            |                             | 6.5<br>LD<br>Ir1, r2         | 112,111                      | 10.5<br>LD<br>R2, IR1         |                               | 1111, IVI                     |                     |                     |                  |                            |              |              |           | 6.0<br>NOP                            |
|                    |   | R1                           |                               |                             | 111,12                       |                              | n2, in i                      |                               |                               |                     |                     |                  |                            |              |              | _         |                                       |
|                    |   |                              | :                             | 2                           |                              |                              | :                             | 3<br>By                       | tes per                       | Instruc             | tion                | 2                |                            |              | 3            |           | 1                                     |
|                    |   |                              |                               |                             |                              |                              |                               |                               |                               |                     |                     |                  |                            |              |              |           |                                       |
|                    |   |                              |                               |                             |                              | ower                         |                               |                               |                               |                     |                     | Legen<br>R = 8-b | d:<br>bit addres           | SS           |              |           |                                       |
|                    |   |                              | E,                            | recution                    |                              | ibble                        | Pipel                         | ine                           |                               |                     |                     | r = 4-b          | it addres:                 | s            |              |           |                                       |
|                    |   |                              |                               | Cycles                      | <b>\</b>                     | 1                            |                               |                               |                               |                     |                     |                  | r 2 = Dst a<br>r 2 = Src a |              |              |           |                                       |
|                    |   |                              |                               |                             | <u>}</u>                     | 4                            | ·                             |                               |                               |                     |                     | -                |                            |              |              |           |                                       |

Sequence: Opcode, First Operand, Second Operand

Note: The blank are not defined.

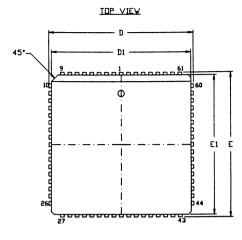
\* 2-byte instruction appears as a 3-byte instruction

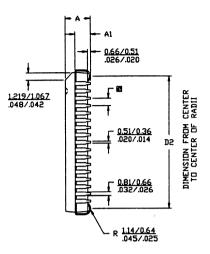
1-64

Upper Opcode Nibble

First

Operand


10.5 **CP** R<sub>1</sub>, R<sub>2</sub>


Mnemonic

Second

Operand

# **PACKAGE INFORMATION**





NOTES:

- 1. CONTROLLING DIMENSIONS + INCH 2. LEADS ARE COPLANAR WITHIN .004 IN. 3. DIMENSION + <u>MM</u> INCH

| SYMBOL | MILLIN | ETER  | INCH     |       |  |  |
|--------|--------|-------|----------|-------|--|--|
| SIMBUL | MIN    | MAX   | MIN      | MAX   |  |  |
| Α      | 4.32   | 4.57  | .170     | .180  |  |  |
| A1     | 2.67   | 2.92  | .105     | .115  |  |  |
| D/E    | 25.02  | 25.40 | .985     | 1.000 |  |  |
| D1/E1  | 24.13  | 24.33 | .950     | .958  |  |  |
| D2     | 22.86  | 23.62 | .900     | .930  |  |  |
| 8      | 1.27   | ТҮР   | .050 TYP |       |  |  |

#### 68-Lead Plastic Leaded Chip Carrier

1

# <sup>©</sup>ZiL05

# **ORDERING INFORMATION**

#### Z89C65

Z89C66

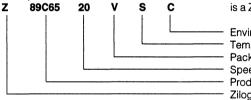
| 20 MHz      | 20 MHz      |
|-------------|-------------|
| 68-Pin PLCC | 68-Pin PLCC |
| Z89C6520VSC | Z89C6620VSC |

## Codes

**Speed** 20 = 20.48MHz

#### Package

V = Plastic Leaded Chip Carrier (PLCC)


#### Temperature

 $S = 0^{\circ}C$  to + 70°C

#### Environment

C = Plastic Standard

#### Example:



is a Z89C65, 20.48 MHz, PLCC, 0°C to +70°C, Plastic Standard Flow

Environmental Flow Temperature Package Speed Product Number Zilog Prefix



Introduction



Superintegration™ Products Guide



Z89C65, Z89C66 (ROMIess) Dual Processor T.A.M. Controller





**Support Products** 

Zilog's Literature Guide Ordering Information





# <sup>⊗</sup>ZiLŒ

PRELIMINARY PRODUCT SPECIFICATION

# **Z89C67 Z89C68 (ROMLESS)** DUAL PROCESSOR TAPELESS T. A. M. CONTROLLER

## **FEATURES**

- Z8<sup>®</sup> Microcontroller with 43 I/O Lines (27 I/O Lines for Z89C68)
- 24 Kbytes of Z8 Program ROM (Z89C67)
- 256 Bytes On-Chip Z8 RAM
- Watch-Dog Timer and Power-On Reset
- Low Power Stop Mode
- On-Chip Oscillator which Accepts a Crystal or External Clock Drive
- Two 8-Bit Z8 Counter/Timers with 6-Bit Prescaler
- Low Power Consumption 200 mW (typical)
- Brown-Out Protection
- Two Comparators with Programmable Interrupt Priority
- Six Vectored, Prioritized Z8 Interrupts
- RAM and ROM Protect

- Clock Speed of 20.48 MHz
- 16-Bit Digital Signal Processor (DSP)
- 6K Words DSP Program ROM
- 512 Words On-Chip DSP RAM
- 10-Bit PWM D/A Converter (4 kHz to 64 kHz)
- Two DSP Timers to Support Different Sampling Rates for Codecs and PWM
- Z8 and DSP Operation in Parallel
- Three Vectored, Prioritized DSP Interrupts
- IBM<sup>®</sup> PC-Based Development Tools
- Developer's Toolbox for Tapeless T.A.M. Applications
- Interface for Two Codecs with 8 kHz and 6.66 kHz Sampling Rate and 2.048 MHz Clock
- Built-in ARAM Interface. Direct Support of up to 48 Mbit ARAM with 4-Bit Wide Data Bus

## **GENERAL DESCRIPTION**

The Z89C67/C68 is a fully integrated, dual processor controller designed for tapeless telephone answering machines. The I/O control processor is a Z8<sup>®</sup> with 24 Kbytes of program memory, two 8-bit counter timers, and up to 43 I/O pins. The DSP is a 16-bit processor with a 24-bit ALU and accumulator, 512 x 16 bits of RAM, single cycle instructions, and 4K word program ROM plus constants memory. The chip also contains a 10-bit PWM D/A converter and interface for two Codecs. The sampling rates for the PWM and Codec interface are programmable.

The Z8 and DSP processors are coupled by mailbox registers and an interrupt system. DSP or Z8 programs may be directed by events in each other's domain.

The Z89C68 is the ROMIess version of the Z89C67. The DSP is not ROMIess. The DSP's program memory is always the internal ROM.

**GENERAL DESCRIPTION** (Continued)

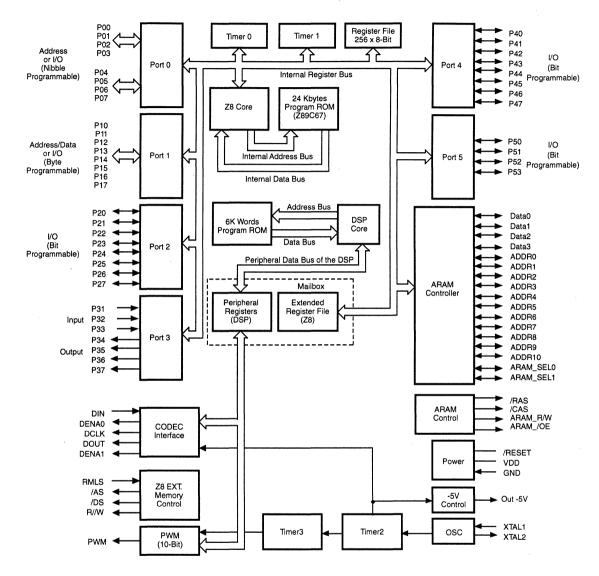



Figure 1. Functional Block Diagram

# <sup>®</sup>ZiL05

## **Z8 Core Processor**

The Z8 is Zilog's 8-bit microcontroller core with an Expanded Register File to allow access to register-mapped peripheral and I/O circuits. The Z8 offers a flexible I/O scheme, an efficient register and address space structure, and a number of ancillary features. The Z8 also excels in many industrial uses, high-volume processing, peripheral controllers and consumer applications.

For applications demanding powerful I/O capabilities, the Z89C67/68 has 43 pins dedicated to input and output. These lines are grouped into six ports. Each port is configurable under software control to provide timing, status signals and parallel I/O with or without handshake.

Four basic memory resources for the Z8 are available to support a wide range of configurations: Program Memory, Register File, Data Memory, and Expanded Register File. The Z8 core processor is characterized by an efficient register file that allows any of 256 on-board data and control registers to be the source and/or the destination of almost any instruction. Traditional microprocessor Accumulator bottlenecks are eliminated.

The Register File is composed of 236 bytes of generalpurpose registers, four I/O port registers, and 15 control and status registers. The Expanded Register File consists of mailbox registers, WDT mode register, DSP Control register, Stop-Mode Recovery register, Port Configuration register, and the control and data registers for Port 4 and Port 5.

To unburden the software from supporting real-time problems, such as counting/timing and data communication, the Z8 offers two on-chip counter/timers with a large number of user selectable modes.

Watch-Dog Timer and Stop-Mode Recovery features are software driven by setting specific bits in control registers.

STOP and HALT instructions support reduced power operation. The low power STOP mode allows parameter information to be stored in the register file if power fails. An external capacitor or battery retains power to the device.

## DSP Coprocessor

The DSP coprocessor is a second generation, 16-bit two's complement CMOS Digital Signal Processor (DSP). Four external DSP registers are mapped into the expanded register file of the Z8. Communication between the Z8 and the DSP occurs through those common registers which form the mailbox registers.

The analog signal is generated by a 10-bit resolution Pulse Width Modulator. The PWM output is a digital signal with CMOS output levels. The output signal has a resolution of 1 in 1024 with a sampling rate of 16 kHz (XTAL = 20.48 MHz). The sampling rate can be changed under software control and can be set at 4, 10, 16, and 64 kHz. The dynamic range of the PWM is from 0 to 4 Volts.

Two additional timers (Timer2 and Timer3) have been added to support different sampling rates for the Codec interface and Pulse Width Modulator. These timers are free-running counters that divide the crystal frequency.

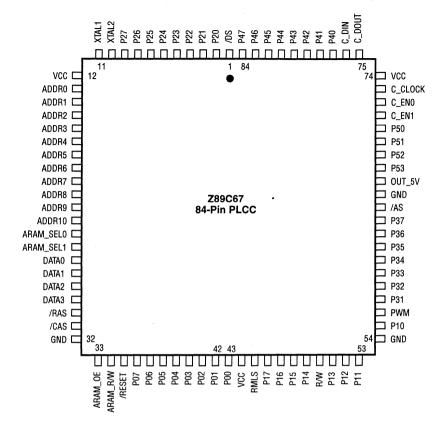
#### Notes:

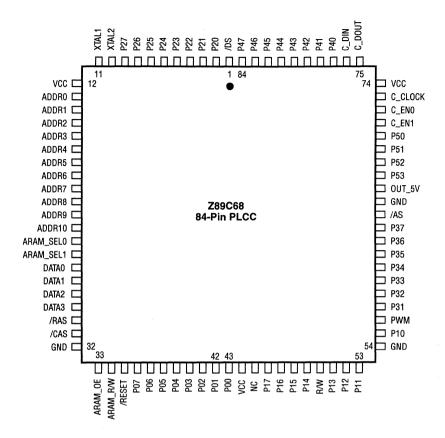
All Signals with a preceding front slash, "/", are active Low, e.g., B/W (WORD is active Low); /B/W (BYTE is active Low, only).

Power connections follow conventional descriptions below:

| Connection | Circuit         | Device          |  |  |
|------------|-----------------|-----------------|--|--|
| Power      | V <sub>cc</sub> | V <sub>DD</sub> |  |  |
| Ground     | GND             | V <sub>SS</sub> |  |  |

# PIN DESCRIPTION (Continued)





Figure 2. Z89C67 84-Pin Plastic Leaded Chip Carrier Pin Assignments

2ilas

| I/O Port<br>Functions              | Pin Number               | I/O          | Function                                                                                                                                                                             |  |  |  |
|------------------------------------|--------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| V <sub>ss</sub><br>V <sub>cc</sub> | 32, 54, 65<br>12, 44, 74 |              | Digital Ground<br>Digital VCC = +5 V                                                                                                                                                 |  |  |  |
| P07-P00                            | 43-36                    | Input/Output | P07-P00 (General purpose nibble programmable I/O port.)                                                                                                                              |  |  |  |
| P17-P10                            | 55, 53-51, 49-46         | Input/Output | P17-P10 (General purpose byte programmable I/O port.)                                                                                                                                |  |  |  |
| P27-P20                            | 2-9                      | Input/Output | P27-P20 (General purpose bit programmable I/O.)                                                                                                                                      |  |  |  |
| P37-P31                            | 57-63                    | Input/Output | P37-P31 (General purpose I/O port. Bits P33-P31 are inputs, while bits P37-P34 are outputs.)                                                                                         |  |  |  |
| P47-P40                            | 77-84                    | Input/Output | P47-P40 (General purpose bit programmable I/O.)                                                                                                                                      |  |  |  |
| P53-P50                            | 70-67                    | Input/Output | P53-P50 (General purpose bit programmable I/O.)                                                                                                                                      |  |  |  |
| C_DIN                              | 76                       | Input        | Data input from Codec.                                                                                                                                                               |  |  |  |
| C_DOUT                             | 75                       | Output       | Data output to Codec.                                                                                                                                                                |  |  |  |
| C_CLOCK                            | 73                       | Output       | Codec clock (2.048 MHz)                                                                                                                                                              |  |  |  |
| C_ENA0                             | 72                       | Output       | Codec0 enable (8 kHz)                                                                                                                                                                |  |  |  |
| C_ENA1                             | 71                       | Output       | Codec1 enable (8 kHz)                                                                                                                                                                |  |  |  |
| PWM                                | 56                       | Output       | Pulse Width Modulator output                                                                                                                                                         |  |  |  |
| DATAO                              | 26                       | Input/Output | Data 0 I/O of the ARAM Interface                                                                                                                                                     |  |  |  |
| DATA1                              | 27                       | Input/Output | Data 1 I/O of the ARAM Interface                                                                                                                                                     |  |  |  |
| DATA2                              | 28                       | Input/Output | Data 2 I/O of the ARAM Interface                                                                                                                                                     |  |  |  |
| DATA3                              | 29                       | Input/Output | Data 3 I/O of the ARAM Interface                                                                                                                                                     |  |  |  |
| ADDR0                              | 13                       | Output       | Address 0 line of the ARAM Interface                                                                                                                                                 |  |  |  |
| ADDR1                              | 14                       | Output       | Address 1 line of the ARAM Interface                                                                                                                                                 |  |  |  |
| ADDR2                              | 15                       | Output       | Address 2 line of the ARAM Interface                                                                                                                                                 |  |  |  |
| ADDR3                              | 16                       | Output       | Address 3 line of the ARAM Interface                                                                                                                                                 |  |  |  |
| ADDR4                              | 17                       | Output       | Address 4 line of the ARAM Interface                                                                                                                                                 |  |  |  |
| ADDR5                              | 18                       | Output       | Address 5 line of the ARAM Interface                                                                                                                                                 |  |  |  |
| ADDR6                              | 19                       | Output       | Address 6 line of the ARAM Interface                                                                                                                                                 |  |  |  |
| ADDR7                              | 20                       | Output       | Address 7 line of the ARAM Interface                                                                                                                                                 |  |  |  |
| ADDR8                              | 21                       | Output       | Address 8 line of the ARAM Interface                                                                                                                                                 |  |  |  |
| ADDR9                              | 22                       | Output       | Address 9 line of the ARAM Interface                                                                                                                                                 |  |  |  |
| ADDR10                             | 23                       | Output       | Address 10 line of the ARAM Interface for 4 Meg ARAMs. Select 2 output of ARAM Interface for 1 Meg ARAMs support. The latter mode is used to switch between different pages of ARAM. |  |  |  |
| ARAM_SEL0                          | 24                       | Output       | Select 0 output of ARAM Interface. Used to switch between different pages of ARAM.                                                                                                   |  |  |  |
| ARAM_SEL1                          | 25                       | Output       | Select 1 output of ARAM Interface. Used to switch between different pages of ARAM.                                                                                                   |  |  |  |
| /RAS                               | 30                       | Output       | Row Address Strobe of ARAM Interface.                                                                                                                                                |  |  |  |
| /CAS                               | 31                       | Output       | Column Address Strobe of ARAM Interface.                                                                                                                                             |  |  |  |
| ARAM_R/W                           | 34                       | Output       | Read/Write Strobe of ARAM Interface.                                                                                                                                                 |  |  |  |
| ARAM_/OE                           | 33                       | Output       | Output Enable Strobe of ARAM Interface.                                                                                                                                              |  |  |  |
| XTAL1                              | 11                       | Input        | 20.48 MHz crystal input                                                                                                                                                              |  |  |  |
| XTAL2                              | 10                       | Output       | 20.48 MHz crystal output                                                                                                                                                             |  |  |  |
| ROMLESS                            | 45                       | Input        | Z8 Romless mode input (P0 and P1 are switched to D/A mode if<br>this pin is connected to VCC). Internally this pin is tight to GND.                                                  |  |  |  |
| /Reset                             | 35                       | Input        | /RESET input                                                                                                                                                                         |  |  |  |
| R/W                                | 50                       | Output       | Z8 external memory interface R/W output                                                                                                                                              |  |  |  |
| /AS                                | 64                       | Output       | Z8 external memory interface /AS output                                                                                                                                              |  |  |  |
| /DS                                | 1                        | Output       | Z8 external memory interface /DS output                                                                                                                                              |  |  |  |
| OUT_5V                             | 66                       | Output       | -5V generator clock source                                                                                                                                                           |  |  |  |

# Table 1. Z89C67 84-Pin Plastic Leaded Chip Carrier, Pin Identification

# PIN DESCRIPTION (Continued)



#### Figure 3. Z89C68 84-Pin Plastic Leaded Chip Carrier Pin Assignments

2-6

| I/O Port        |                  |                 |                                                                                                                                                  |
|-----------------|------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Functions       | Pin Number       | I/O             | Function                                                                                                                                         |
| V <sub>ss</sub> | 32, 54, 65       |                 | Digital Ground                                                                                                                                   |
| V <sub>cc</sub> | 12, 44, 74       |                 | Digital VCC = $+5$ V                                                                                                                             |
| P07-P00         | 43-36            | Input/Output    | P07-P00 (General purpose nibble programmable I/O port.)                                                                                          |
| P17-P10         | 55, 53-51, 49-46 | Input/Output    | P17-P10 (General purpose byte programmable I/O port.)                                                                                            |
| P27-P20         | 2-9              | Input/Output    | P27-P20 (General purpose bit programmable I/O.)                                                                                                  |
| P37-P31         | 57-63            | Input/Output    | P37-P31 (General purpose I/O port. Bits P33-P31 are inputs, while bits P37-P34 are outputs.)                                                     |
| P47-P40         | 77-84            | Input/Output    | P47-P40 (General purpose bit programmable I/O.)                                                                                                  |
| P53-P50         | 70-67            | Input/Output    | P53-P50 (General purpose bit programmable I/O.)                                                                                                  |
| C_DIN           | 76               | Input           | Data input from Codec.                                                                                                                           |
| C_DOUT          | 75               | Output          | Data output to Codec.                                                                                                                            |
| C_CLOCK         | 73               | Output          | Codec clock (2.048 MHz)                                                                                                                          |
| C_ENA0          | 72               | Output          | Codec0 enable (8 kHz)                                                                                                                            |
| C_ENA1          | 71               | Output          | Codec1 enable (8 kHz)                                                                                                                            |
| PWM             | 56               | Output          | Pulse Width Modulator output                                                                                                                     |
| DATAO           | 26               | Input/Output    | Data 0 I/O of the ARAM Interface                                                                                                                 |
| DATA1           | 27               | Input/Output    | Data 1 I/O of the ARAM Interface                                                                                                                 |
| DATA2           | 28               | Input/Output    | Data 2 I/O of the ARAM Interface                                                                                                                 |
| DATA3           | 29               | Input/Output    | Data 3 I/O of the ARAM Interface                                                                                                                 |
| ADDR0           | 13               | Output          | Address 0 line of the ARAM Interface                                                                                                             |
| ADDR1           | 14               | Output          | Address 1 line of the ARAM Interface                                                                                                             |
| ADDR2           | 15               | Output          | Address 2 line of the ARAM Interface                                                                                                             |
| ADDR3           | 16               | Output          | Address 3 line of the ARAM Interface                                                                                                             |
| ADDR4           | 17               | Output          | Address 4 line of the ARAM Interface                                                                                                             |
| ADDR5           | 18               | Output          | Address 5 line of the ARAM Interface                                                                                                             |
| ADDR6           | 19               | Output          | Address 6 line of the ARAM Interface                                                                                                             |
| ADDR7           | 20               | Output          | Address 7 line of the ARAM Interface                                                                                                             |
| ADDR8           | 21               | Output          | Address 8 line of the ARAM Interface                                                                                                             |
| ADDR9           | 22               | Output          | Address 9 line of the ARAM Interface                                                                                                             |
| ADDR10          | 23               | Output          | Address 10 line of the ARAM Interface for 4 Meg ARAMs. Select 2 output of ARAM Interface for 1 Meg ARAMs support. The latter                     |
| ARAM_SEL0       | 24               | Output          | mode is used to switch between different pages of ARAM.<br>Select 0 output of ARAM Interface. Used to switch between<br>different pages of ARAM. |
| ARAM_SEL1       | 25               | Output          | Select 1 output of ARAM Interface. Used to switch between different pages of ARAM.                                                               |
| /RAS            | 30               | Output          | Row Address Strobe of ARAM Interface.                                                                                                            |
| /CAS            | 31               | Output          | Column Address Strobe of ARAM Interface.                                                                                                         |
| ARAM_R/W        | 34               | Output          | Read/Write Strobe of ARAM Interface.                                                                                                             |
| ARAM_/OE        | 33               | Output          | Output Enable Strobe of ARAM Interface.                                                                                                          |
| XTAL1<br>XTAL2  | 11<br>10         | Input<br>Output | 20.48 MHz crystal input<br>20.48 MHz crystal output                                                                                              |
| NC              | 45               | Not Connected   |                                                                                                                                                  |
| /Reset          | 35               | Input           | /RESET input                                                                                                                                     |
| R/W             | 50               | Output          | Z8 external memory interface R/W output                                                                                                          |
| /AS             | 64               | Output          | Z8 external memory interface /AS output                                                                                                          |
| /DS             | 1                | Output          | Z8 external memory interface /DS output                                                                                                          |
| OUT_5V          | 66               | Output          | –5V generator clock source                                                                                                                       |

## Table 2. Z89C68 84-Pin Plastic Leaded Chip Carrier, Pin Identification

# & Silæ

# **PIN FUNCTIONS**

**/RESET** (input, active Low). Initializes the MCU. Reset is accomplished either through Power-On Reset (POR), Watch-Dog Timer reset, Stop-Mode Recovery, or external reset. During POR and WDT Reset, the internally generated reset signal is driving the reset pin Low for the POR time. Any devices driving the reset line must be open-drain to avoid damage from a possible conflict during reset conditions. A /RESET will reset both the Z8 and the DSP.

#### For the Z8:

After the POR time, /RESET is a Schmitt-triggered input. To avoid asynchronous and noisy reset problems, the Z8 is equipped with a reset filter of four external clocks (4TpC). If the external reset signal is less than 4TpC in duration, no reset occurs. On the fifth clock after the /RESET is detected, an internal RST signal is latched and held for an internal register count of 18 external clocks, or for the duration of the external reset, whichever is longer. Program execution begins at location 000CH (Hexadecimal), 5-10 TpC cycles after /RESET is released. The Z8 does not reset WDT, SMR, P2M, and P3M registers on a Stop-Mode Recovery operation.

#### For the DSP:

A Low level on the /RESET pin generates an internal reset signal. The /RESET signal must be kept Low for at least one clock cycle. The CPU will fetch a new Program Counter (PC) value from program memory address 0FFCH after the /RESET signal is released.

**ROMIess** (input, active High). This pin, when pulled High, disables the internal Z8 ROM. (Note that, when pulled Low to GND that part functions normally as the ROM version). The DSP can not be configured as ROMIess. This pin is available only on the Z89C67.

**R//W** *Read/Write* (output, write Low). The R//W signal defines the signal flow when the Z8 is reading or writing to external program or data memory. The Z8 is reading when this pin is High and writing when this pin is Low.

**/AS** Address Strobe (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle. Address output is through Port 0/Port 1 for all external programs. Memory address transfers are valid at the trailing edge of /AS. Under program control, /AS is placed in the high-impedance state along with Ports 0 and 1, Data Strobe, and Read/Write.

**/DS** *Data Strobe* (output, active Low). Data Strobe is activated once for each external memory transfer. For read operations, data must be available prior to the trailing edge of /DS. For write operations, the falling edge of /DS indicates that output data is valid.

**XTAL1** *Crystal 1* (time-based input). This pin connects a parallel-resonant crystal, ceramic resonator, LC, RC network, or an external single-phase clock to the on-chip oscillator input.

**XTAL2** *Crystal 2* (time-based output). This pin connects a parallel-resonant, crystal, ceramic resonant, or LC network to the on-chip oscillator output.

**PWM** *Pulse Width Modulator* (Output). The PWM is a 10-bit resolution D/A converter. This output is a digital signal with CMOS output levels.

V<sub>cc</sub>. Digital power supply for the Z89C67/C68.

GND. Digital ground for the Z89C67/C68.

C\_DIN (Input). Data input from Codec.

C\_DOUT (Output). Data output to Codec.

 $\textbf{C\_CLOCK}$  (Output). 2.048 MHz data rate clock signal output to Codec.

C\_ENA0 (Output). Enable signal to Codec0

C\_ENA1 (Output). Enable signal to Codec1.

ARAM\_SEL0 (Output). Select0 of ARAM.

ARAM\_SEL1 (Output). Select1 of ARAM.

**Port 0** (P07-P00). Port 0 is an 8-bit, bidirectional, CMOS compatible port. These eight I/O lines are configured under software control as a nibble I/O port, or as an address port for interfacing external memory. The input buffers are Schmitt-triggered and the output drivers are push-pull. Port 0 is placed under handshake control. In this configuration, Port 3, lines P32 and P35 are used as the handshake control /DAV0 and RDY0. Handshake signal direction is dictated by the I/O direction to Port 0 of the upper nibble P07-P04. The lower nibble must have the same direction as the upper nibble.

The Auto Latch on Port 0 puts valid CMOS levels on all CMOS inputs which are not externally driven. Whether this level is 0 or 1 cannot be determined. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer.

For external memory references, Port 0 provides address bits A11-A8 (lower nibble) or A15-A8 (lower and upper nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while the lower nibble is used for addressing. If one or both nibbles are needed for I/O operation, they are configured by writing to the Port 0 mode register.

In ROMless mode, after a hardware reset, Port 0 is configured as address lines A15-A8, and extended timing is set to accommodate slow memory access. The initialization routine can include reconfiguration to eliminate this extended timing mode. (In ROM mode, Port 0 is defined as input after reset.)

Port 0 is set in the high-impedance mode if selected as an address output state along with Port 1 and the control signals /AS, /DS, and R//W (Figure 4).

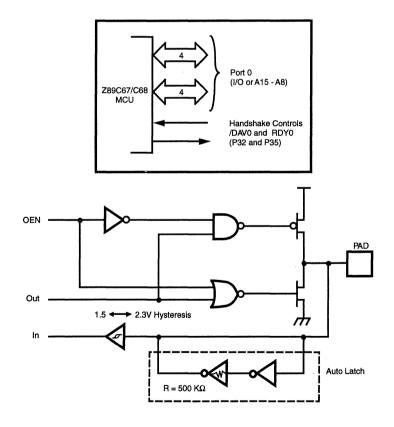



Figure 4. Port 0 Configuration

# PIN FUNCTIONS (Continued)

**Port 1** (P17-P10). Port 1 is an 8-bit, bidirectional, CMOS compatible port (Figure 5). It has multiplexed Address (A7-A0) and Data (D7-D0) ports. These eight I/O lines are programmed as inputs or outputs, or can be configured under software control as an Address/Data port for interfacing external memory. The input buffers are Schmitttriggered and the output drivers are push-pull.

Port 1 may be placed under handshake control. In this configuration, Port 3, lines P33 and P34 are used as the handshake controls RDY1 and /DAV1 (Ready and Data

Available). Memory locations greater than 24575 (in ROM mode) are referenced through Port 1. To interface external memory, Port 1 must be programmed for the multiplexed Address/Data mode. If more than 256 external locations are required, Port 0 outputs the additional lines.

Port 1 can be placed in the high-impedance state along with Port 0, /AS, /DS, and R//W, allowing the Z89C67/68 to share common resources in multiprocessor and DMA applications.

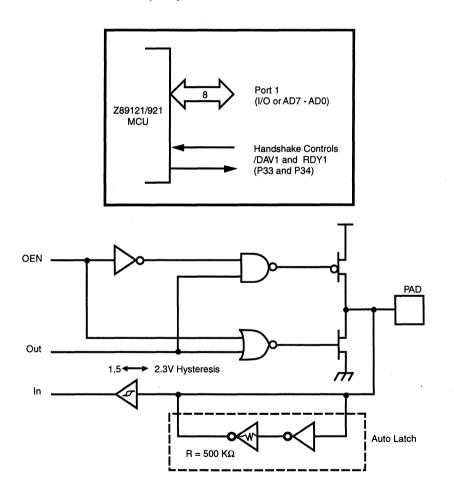



Figure 5. Port 1 Configuration

**Port 2** (P27-P20). Port 2 is an 8-bit, bidirectional, CMOS compatible I/O port. These eight I/O lines are configured under software control independently as inputs or outputs. Port 2 is always available for I/O operation. The input buffers are Schmitt-striggered. Bits programmed as outputs may be globally programmed as either push-pull or open-drain.

Port 2 may be placed under handshake control. In this configuration, Port 3 lines P31 and P36 are used as the handshake controls lines /DAV2 and RDY2. The hand-

shake signal assignment for Port 3 lines P31 and P36 is dictated by the direction (input or output) assigned to bit 7, Port 2 (Figure 6).

The Auto Latch on Port 2 puts valid CMOS levels on all CMOS inputs which are not externally driven. Whether this level is 0 or 1, cannot be determined. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer.

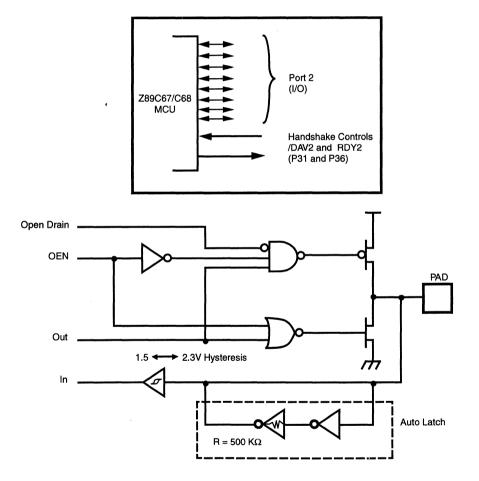


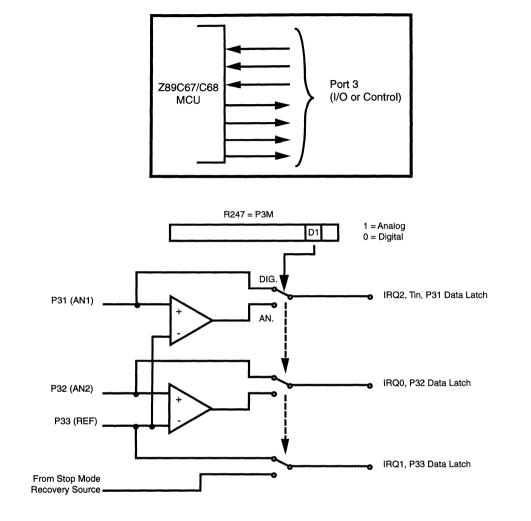

Figure 6. Port 2 Configuration

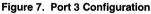
## **PIN FUNCTIONS** (Continued)

**Port 3** (P37-P31). Port 3 is a 7-bit, CMOS compatible port with three fixed inputs (P33-P31) and four fixed outputs (P37-P34). It is configured under software control for input/ output, counter/timers, interrupt, and port handshakes. Pins P31, P32, and P33 are standard CMOS inputs; outputs are push-pull.

Two on-board comparators can process analog signals on P31 and P32 with reference to the voltage on P33. The analog function is enabled by programming the Port 3 Mode Register (bit 1). Port 3, pin 3 is a falling edge interrupt input. P31 and P32 are programmable as rising, falling or both edge-triggered interrupts (IRQ register bits 6 and 7). P33 is the comparator reference voltage input. Access to counter/timer1 is made through P31 ( $T_{\rm IN}$ ) and P36 ( $T_{\rm our}$ ). Handshake lines for ports 0, 1, and 2 are available on P31 through P36.

Port 3 also provides the following control functions: handshake for Ports 0, 1, and 2 (/DAV and RDY); three external interrupt request signals (IRQ3-IRQ1); timer input and output signals ( $T_{IN}$  and  $T_{OUT}$ ); (Figure 7).


**Comparator Inputs.** Port 3, pins P31 and P32 all have a comparator front end. The comparator reference voltage, pin P33, is common to both comparators. In analog mode, P31 and P32 are the positive inputs to the comparators and P33 is the reference voltage supplied to both comparators. In digital mode, pin P33 can be used as a P33 register input or IRQ1 source.


| Pin | I/O | CTC1             | AN IN | int. | P0 HS | P1HS | P2 HS | EXT |
|-----|-----|------------------|-------|------|-------|------|-------|-----|
| P31 | IN  | T <sub>IN</sub>  | AN1   | IRQ2 |       |      | D/R   |     |
| P32 | IN  |                  | AN2   | IRQ0 | D/R   |      |       |     |
| P33 | IN  |                  | REF   | IRQ1 |       | D/R  |       |     |
| P34 | OUT |                  |       |      |       | R/D  |       | DM  |
| P35 | OUT |                  |       |      | R/D   |      |       |     |
| P36 | OUT | T <sub>OUT</sub> |       |      |       |      | R/D   |     |
| P37 | OUT | 001              |       |      |       |      |       |     |

Notes:

HS = Handshake Signals D = DAV

R = RDY



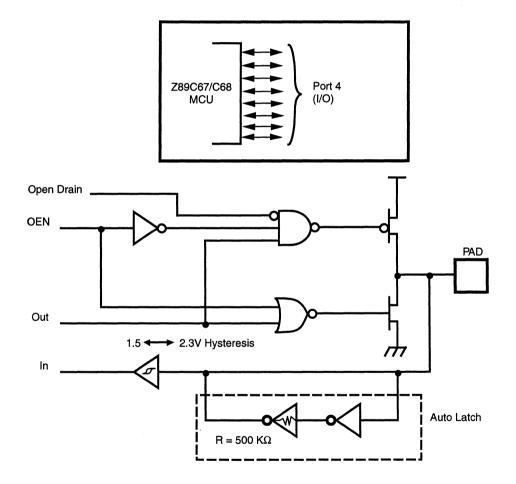
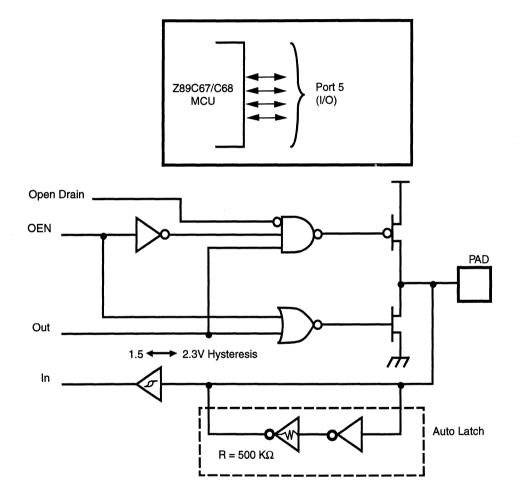


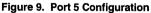
# PIN FUNCTIONS (Continued)

**Port 4** (P47-P40). Port 4 is an 8-bit, bidirectional, CMOS compatible I/O port (Figure 8). These eight I/O lines are configured under software control independently as inputs or outputs. Port 4 is always available for I/O operation. The input buffers are Schmitt-triggered. Bits programmed as outputs may be globally programmed as either pushpull or open-drain.

Port 4 is a bit programmable general purpose I/O port. The control registers for Port 4 are mapped into the expanded register file (Bank F) of the Z8.

**Auto Latch.** The Auto Latch on Port 4 puts valid CMOS levels on all CMOS inputs which are not externally driven. Whether this level is 0 or 1 cannot be determined. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer.



Figure 8. Port 4 Configuration

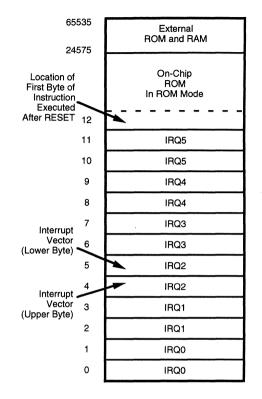
**Port 5** (P53-P50). Port 5 is an 4-bit, bidirectional, CMOS compatible I/O port (Figure 9). These four I/O lines are configured under software control independently as inputs or outputs. Port 5 is always available for I/O operation. The input buffers are Schmitt-triggered. Bits programmed as outputs may be globally programmed as either pushpull or open-drain.

Port 5 is a bit programmable general purpose I/O port. The control registers for Port 5 are mapped into the expanded register file (Bank F) of the Z8.

**Auto Latch.** The Auto Latch on Port 5 puts valid CMOS levels on all CMOS inputs which are not externally driven. Whether this level is 0 or 1 cannot be determined. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer.



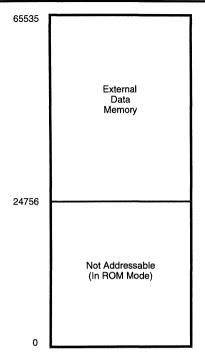



# **Z8 FUNCTIONAL DESCRIPTION**

The Z8 CCP core incorporates special functions to enhance the Z8's application in industrial, scientific research and advanced technologies applications.

**Reset.** The device is reset in one of the following conditions:

- Power-On Reset
- Watch-Dog Timer
- Stop-Mode Recovery Source
- Brown-Out Recovery
- External Reset

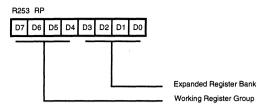

**Program Memory.** The Z8 addresses up to 24 Kbytes of internal program memory and 40 Kbytes external memory (Figure 10). The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16-bit vectors which correspond to the five user interrupts and one DSP interrupt. Byte 12 to byte 24575 consist of on-chip mask-programmed ROM. At addresses 24576 and greater, the Z8 executes external program memory. In ROMless mode, the Z8 will execute external program memory beginning at byte 12 and continuing through byte 65535.





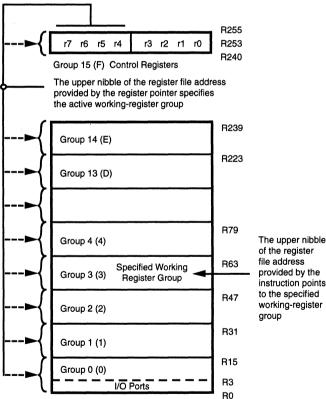
**ROM Protect.** The 24 Kbyte of internal program memory for the Z8 is mask programmable. A ROM protect feature prevents "dumping" of the ROM contents of Program Memory by inhibiting execution of LDC, LDCI, LDE, and LDEI instructions. The ROM Protect option is mask-programmable, to be selected by the customer at the time when the ROM code is submitted.

**Data Memory** (/D/M). In ROM mode, the Z8 can address up to 40 Kbytes of external data memory beginning at location 24576 (Figure 11). In ROMless mode, the Z8 can address the full 64 Kbytes of external data memory beginning at location 12. External data memory may be included with, or separated from, the external program memory space. /DM, an optional I/O function that can be programmed to appear on Port 34, is used to distinguish between data and program memory space (Table 3). The state of the /DM signal is controlled by the type of instruction being executed. An LDC opcode references PROGRAM (/DM inactive) memory, and an LDE instruction references data (/DM active Low) memory.






# **Z8 FUNCTIONAL DESCRIPTION** (Continued)


Register File. The standard Z8® register file consists of four I/O port registers, 236 general-purpose registers, and 15 control and status registers (R3-R0, R239-R4, and R255-R241, respectively). The instructions access registers directly or indirectly through an 8-bit address field. This allows a short, 4-bit register address using the Register Pointer (Figure 12). In the 4-bit mode, the register file is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working register group (Figure 13).

Notes: Register Group E (Registers EF-E0) is only accessed through a working register and indirect addressing modes.



Default setting after RESET = 00000000



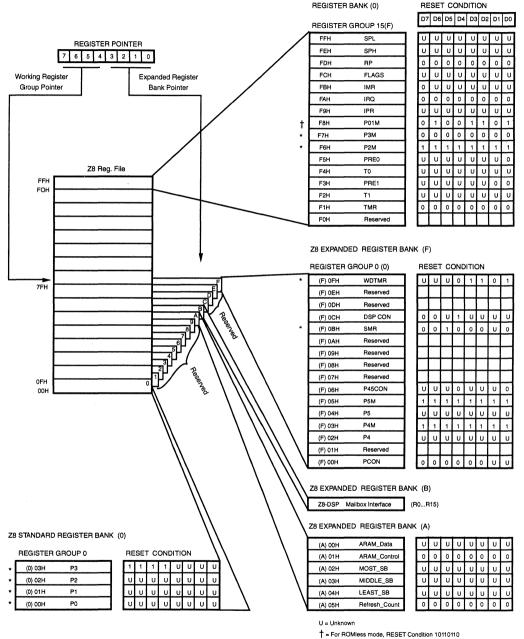


of the register file address provided by the instruction points to the specified working-register group

Figure 13. Register Pointer

**RAM Protect.** The upper portion of the Z8's RAM address spaces 90H to EFH (excluding the control registers) is protected from reading and writing. The RAM Protect bit option is mask-programmable and is selected by the customer when the ROM code is submitted. After the mask option is selected, the user activates the RAM Protect from the internal ROM code by loading a bit D6 in the IMR register to either a 0 (off) or a 1 (on). A 1 in D6 indicates RAM Protect enabled.

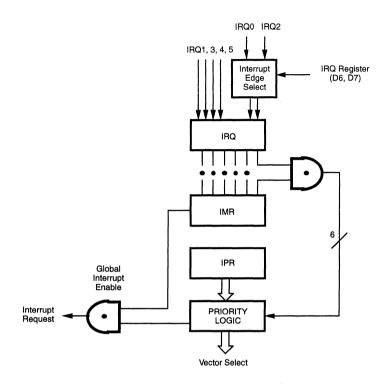
**Stack.** The Z8's external data memory or the internal register file is used for the stack. The 16-bit Stack Pointer (R255-R254) is used for the external stack which can reside only from 24576 to 65535 in ROM mode or 0 to 65535 in ROMless mode. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 236 general-purpose registers (R239-R4). SPH can be used as a general-purpose register when using internal stack only.

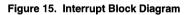

**Expanded Register File.** The register file on the Z8 has been expanded to allow for additional system control registers, and for mapping of additional peripheral devices, along with I/O ports, into the register address area. The Z8 register address space has now been implemented as 16 banks of 16 register groups per bank (Figure 14). These register banks are known as the ERF (Expanded Register File). Bits 7-4 of register RP (Register Pointer) select the working register group. Bits 3-0 of register RP select the Expanded Register bank (Figure 14).

The SMR register, WDT Register, control and data registers for Port 4 and Port 5, and the DSP control register are located in Bank F of the Expanded Register File. Bank B of the Expanded Register File consists of the Mailbox Interface in which the Z8 and the DSP communicate. The rest of the Expanded Register is not physically implemented and is open for future expansion.

# **Z8 FUNCTIONAL DESCRIPTION (Continued)**

#### **Z8 STANDARD CONTROL REGISTERS**


REGISTER BANK (0)




\* Will not be Reset with a Stop-Mode Recovery



Interrupts. The Z8 has six different interrupts from six different sources. The interrupts are maskable and prioritized (Figure 15). The six sources are divided as follows; three sources are claimed by Port 3 lines P33-P31, two by counter/timers, and one by the DSP (Table 4). The Interrupt Mask Register globally or individually enables or disables the six interrupt requests.





| Table 4. Interrupt Types, Sources, and Vectors |                             |                 |                                                          |  |  |
|------------------------------------------------|-----------------------------|-----------------|----------------------------------------------------------|--|--|
| Name                                           | Source                      | Vector Location | Comments                                                 |  |  |
| IRQ0                                           | /DAV0, P32                  | 0, 1            | External (P32), Programmable Rise or Fall Edge Triggered |  |  |
| IRQ1                                           | /DAV1, P33                  | 2, 3            | External (P33), Fall Edge Triggered                      |  |  |
| IRQ2                                           | /DAV2, P31, T <sub>IN</sub> | 4, 5            | External (P31), Programmable Rise or Fall Edge Triggered |  |  |
| IRQ3                                           | IRQ3                        | 6, 7            | Internal (DSP activated), Fall Edge Triggered            |  |  |
| IRQ4                                           | ТО                          | 8, 9            | Internal                                                 |  |  |
| IRQ5                                           | TI                          | 10, 11          | Internal                                                 |  |  |

#### Table 4 July must Truck Correct and Marken

### **Z8 FUNCTIONAL DESCRIPTION** (Continued)

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder controlled by the Interrupt Priority Register. An interrupt machine cycle is activated when an interrupt request is granted. This disables all subsequent interrupts, pushes the Program Counter and Status Flags to the stack, and then branches to the program memory vector location reserved for that interrupt.

All Z8 interrupts are vectored through locations in the program memory. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request. To accommodate polled interrupt systems, interrupt inputs are masked and the Interrupt Request Register is polled to determine which of the interrupt requests needs service.

An interrupt resulting from AN1 is mapped into IRQ2, and an interrupt from AN2 is mapped into IRQ0. Interrupts IRQ2 and IRQ0 may be rising, falling or both edge triggered, and are programmable by the user. The software may poll to identify the state of the pin.

Programming bits for the Interrupt Edge Select is located in the IRQ Register (R250), bits D7 and D6. The configuration is shown in Table 5.

| Table 5. Ind hegister |    |         |         |  |  |  |
|-----------------------|----|---------|---------|--|--|--|
| IR                    | Q  | Interru | pt Edge |  |  |  |
| D7                    | D6 | P31     | P32     |  |  |  |
| 0                     | 0  | F       | F       |  |  |  |
| 0                     | 1  | F       | R       |  |  |  |
| 1                     | 0  | R       | F       |  |  |  |
| 1                     | 1  | R/F     | R/F     |  |  |  |

Table 5 IPO Perinter

Notes:

F = Falling Edge

R = Rising Edge

**Clock.** The Z89C67/C68 on-chip oscillator has a highgain, parallel-resonant amplifier for connection to a crystal, LC, ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2 = Output). The crystal should be AT cut, 20.48 MHz maximum, with a series resistance (RS) less than or equal to 100 Ohms. The system clock (SCLK) is one half the crystal frequency.

The crystal is connected across XTAL1 and XTAL2 using capacitors from each pin to ground (Figure 16).

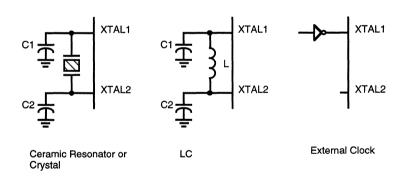



Figure 16. Oscillator Configuration

**Counter/Timers.**There are two 8-bit programmable counter/timers (T1-T0), each driven by its own 6-bit programmable prescaler. The T1 prescaler is driven by internal or external clock sources; however, the T0 prescaler is driven by the internal clock only (Figure 17).

The 6-bit prescalers can divide the input frequency of the clock source by any integer number from 1 to 64. Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When the counter reaches the end of the count, a timer interrupt request, IRQ4 (T0) or IRQ5 (T1), is generated.

The counters can be programmed to start, stop, restart to continue, or restart from the initial value. The counters can

also be programmed to stop upon reaching zero (single pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode).

The counters, but not the prescalers, are read at any time without disturbing their value or count mode. The clock source for T1 is user-definable and is either the internal microprocessor clock divided by four, or an external signal input via Port 31. The Timer Mode register configures the external timer input (P31) as an external clock, a trigger input that can be retriggerable or non-retriggerable, or as a gate input for the internal clock. The counter/timers can be cascaded by connecting the T0 output to the input of T1.

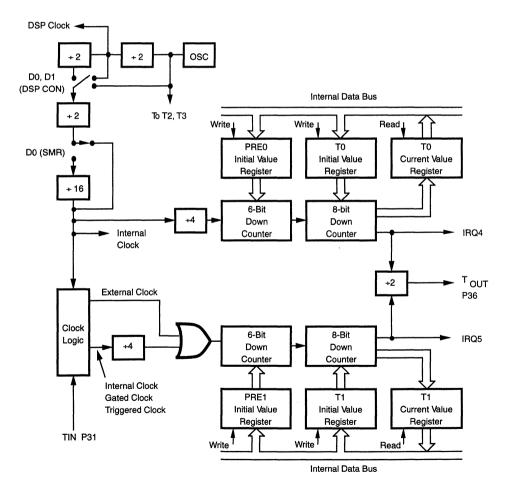



Figure 17. Counter/Timer Block Diagram

#### **Z8 FUNCTIONAL DESCRIPTION** (Continued)

**Register** (PCON). The PCON register configures each port individually; comparator output on Port 3, and opendrain on Port 0 and Port 1. The PCON register is located in the Expanded Register File at Bank F, location 00H (Table 6).

**Comparator Output Port 3** (DO). Bit 0 controls the comparator use in Port 3. A 1 in this location brings the comparator outputs to P34 and P35, and a 0 releases the Port to its standard I/O configuration. **Port 0 Open-Drain** (D1). Port 0 can be configured as an open-drain by resetting this bit (D1 = 0) or configured as push-pull active by setting this bit (D1 = 1). The default value is 1.

**Port 1 Open-Drain** (D2). Port 1 can be configured as an open-drain by resetting this bit (D2 = 0) or configured as push-pull active by setting this bit (D2 = 1). The default value is 1.

| Register<br>PCON (F)%00 | Position | Attrib | Value | Description                |  |
|-------------------------|----------|--------|-------|----------------------------|--|
|                         | 76543    |        |       | Reserved                   |  |
|                         | 2        | R      | 0     | Port 1 Open-Drain          |  |
|                         |          |        | 1     | Port 1 Push-Pull Active*   |  |
|                         | 1-       | R      | 0     | Port 0 Open-Drain          |  |
|                         |          |        | 1     | Port 0 Push-Pull Active*   |  |
|                         | 0        | R      | 0     | P34, P35 Standard Output*  |  |
|                         |          |        | 1     | P34, P35 Comparator Output |  |

#### Table 6. Port Configuration Register (PCON) (F) 00H

\* Default setting after Reset

**Port 4 and 5 Configuration Register** (P45CON). The P45CON register configures Port 4 and Port 5, individually, to open-drain or push-pull active. This register is located in the Expanded Register File at Bank F, location 06H (Table 7).

**Port 5 Open-Drain** (D4). Port 5 can be configured as an open-drain by resetting this bit (D4 = 0) or configured as push-pull active by setting this bit (D4 = 1). The default value is 1.

**Port 4 Open-Drain** (D0). Port 4 can be configured as an open-drain by resetting this bit (D0 = 0) or configured as push-pull active by setting this bit (D0 = 1). The default value is 1.

| Table 7. | Port 4 and 5 Configuration Register |  |
|----------|-------------------------------------|--|
|          | (F) 06H [Write Only]                |  |

| Register<br>P45CON (F)%06 | Position | Attrib | Value | Description              |    |  |
|---------------------------|----------|--------|-------|--------------------------|----|--|
|                           | 765-321- |        |       | Reserved                 |    |  |
|                           | 4        | W      | 0     | Port 5 Open-Drain        |    |  |
|                           |          |        | 1     | Port 5 Push-Pull Active* |    |  |
|                           | 0        | W      | 0     | Port 4 Open-Drain        |    |  |
|                           |          |        | 1     | Port 4 Push-Pull Active* | 21 |  |

\* Default setting after Reset

**Power-On Reset** (POR). A timer circuit clocked by a dedicated on-board RC oscillator is used for the Power-On Reset (POR) timer function. The POR time allows  $V_{cc}$  and the oscillator circuit to stabilize before instruction execution begins.

The POR timer circuit is a one-shot timer triggered by one of three conditions:

- 1. Power fail to Power OK status.
- 2. Stop-Mode Recovery (if D5 of SMR=1).
- 3. WDT timeout.

The POR time is a nominal 5 ms. Bit 5 of the STOP mode register determines whether the POR timer is bypassed after Stop-Mode Recovery (typical for external clock, RC/LC oscillators).

**HALT.** HALT turns off the internal CPU clock, but not the XTAL oscillation. The counter/timers and external interrupts IRQ0, IRQ1, IRQ2, and IRQ3 remain active. The devices are recovered by interrupts, either externally or internally generated.

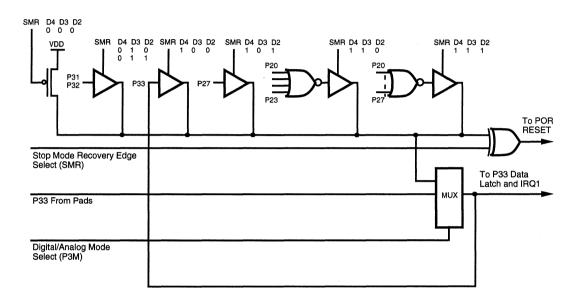
**STOP.** This instruction turns off the internal clock and external crystal oscillation. It reduces the standby current

to 10  $\mu$ A or less. The STOP mode is terminated by a reset only, either by WDT timeout, POR, SMR, or external reset. This causes the processor to restart the application program at address 000CH. In order to enter STOP (or HALT) mode, it is necessary to first flush the instruction pipeline to avoid suspending execution in mid-instruction. To do this, the user must execute a NOP (opcode=FFH) immediately before the appropriate sleep instruction, i.e.:

| FF | NOP  | ; clear the pipeline |
|----|------|----------------------|
| 6F | STOP | ; enter Stop mode    |
|    |      | or                   |
| FF | NOP  | ; clear the pipeline |
| 7F | HALT | ; enter Halt mode    |

**Stop-Mode Recovery Register** (SMR). This register selects the clock divide value and determines the mode of Stop-Mode Recovery (Table 8). All bits are write only except bit 7, which is read only. Bit 7 is a flag bit that is hardware set on the condition of STOP recovery and reset by a power-on cycle. Bit 6 controls whether a low level or a high level is required from the recovery source. Bit 5 controls the reset delay after recovery. Bits 2, 3, and 4, or the SMR register, specify the source of the Stop-Mode Recovery signal. Bits 0 and 1 determine the timeout period of the WDT. The SMR is located in Bank F of the Expanded Register group at address 0BH.

| Register<br>SMR (F)%0B | Position | Attrib | Value | Description                             |  |
|------------------------|----------|--------|-------|-----------------------------------------|--|
|                        |          |        |       |                                         |  |
|                        | 7        | R      | 0     | POR*                                    |  |
|                        |          |        | 1     | Stop Recovery                           |  |
|                        | -6       | W      | 0     | Low Stop Recovery Level*                |  |
|                        |          |        | 1     | High Stop Recovery Level                |  |
|                        | 5        | W      | 0     | Stop Delay On*                          |  |
|                        |          |        | 1     | Stop Delay Off                          |  |
|                        | 432      | W      |       | Stop Mode Recovery Source               |  |
|                        |          |        | 000   | POR Only*                               |  |
|                        |          |        | 001   | Reserved                                |  |
|                        |          |        | 010   | P31                                     |  |
|                        |          |        | 011   | P32                                     |  |
|                        |          |        | 100   | P33                                     |  |
|                        |          |        | 101   | P27                                     |  |
|                        |          |        | 110   | P2 NOR 0-3                              |  |
|                        |          |        | 111   | P2 NOR 0-7                              |  |
|                        | 1-       |        |       | Reserved                                |  |
|                        | 0        | W      | 0     | SCLK/TCLK Not Divide by 16 <sup>+</sup> |  |
|                        |          |        | 1     | SCLK/TCLK Divide by 16                  |  |


Table 8. Stop-Mode Recovery Register (SMR) (F) 0BH

\* Default setting after Reset

\* Reset after Stop-Mode Recovery

**SCLK/TCLK divide-by-16 Select** (D0). D0 of the SMR controls a divide-by-16 prescaler of SCLK/TCLK. The purpose of this control is to selectively reduce device power consumption during normal processor execution (SCLK control) and/or HALT mode (where TCLK sources counter/timers and interrupt logic).

**Stop-Mode Recovery Source** (D4-D2). These three bits of the SMR specify the wake-up source of the STOP recovery (Figure 18 and Table 9).





|                     | Table 9. Stop-Mode Recovery Source |   |                                    |  |  |  |  |
|---------------------|------------------------------------|---|------------------------------------|--|--|--|--|
| SMR:432<br>D4 D3 D2 |                                    |   | Operation<br>Description of Action |  |  |  |  |
| 0                   | 0                                  | 0 | POR and/or external reset recovery |  |  |  |  |
| 0                   | 0                                  | 1 | Reserved                           |  |  |  |  |
| 0                   | 1                                  | 0 | P31 transition                     |  |  |  |  |
| 0                   | 1                                  | 1 | P32 transition                     |  |  |  |  |
| 1                   | 0                                  | 0 | P33 transition                     |  |  |  |  |
| 1                   | 0                                  | 1 | P27 transition                     |  |  |  |  |
| 1                   | 1                                  | 0 | Logical NOR of P20 through P23     |  |  |  |  |

|   | 0 | Logical NON OF 20 through F23  |
|---|---|--------------------------------|
| 1 | 1 | Logical NOR of P20 through P27 |

**Stop-Mode Recovery Delay Select** (D5). This bit, if High, disables the 5 ms /RESET delay after Stop-Mode Recovery. The default configuration of this bit is one. If the "fast" wake up is selected, the Stop-Mode Recovery source is kept active for at least 5 TpC.

**Stop-Mode Recovery Edge Select** (D6). A 1 in this bit position indicates that a high level on any one of the recovery sources wakes the Z89C67/C68 from STOP mode. A 0 indicates low level recovery. The default is 0 on POR (Table 8).

**Cold or Warm Start** (D7). This bit is set by the device upon entering STOP mode. It is active High, and is 0 (cold) on POR/WDT /RESET. This bit is read only. It is used to distinguish between cold or warm start.

**DSP Control Register** (DSPCON). The DSPCON register controls various aspects of the Z8 and the DSP. It can configure the internal system clock (SCLK) or the Z8, /RESET, and HALT of the DSP, and control the interrupt interface between the Z8 and the DSP (Table 10).

I

1

& Silæ

| Field        |          |        |       |                 |  |
|--------------|----------|--------|-------|-----------------|--|
| WDTMR (F)%0F | Position | Attrib | Value | Label           |  |
| Z8_SCLK      | 76       | R/W    | 00    | 2.5 MHz (OSC/8) |  |
|              |          |        | 01    | 5 MHz (OSC/4)   |  |
|              |          |        | 1x    | 10 MHZ (OSC/2)  |  |
| DSP_Reset    | 5        | R      |       | Return "0"      |  |
|              |          | W      | 0     | No effect       |  |
|              |          |        | 1.    | Reset DSP       |  |
| DSP_Run      | 4        | R/W    | 0     | Halt_DSP        |  |
|              |          |        | 1     | Run_DSP         |  |
| Reserved     | 32       |        | XX    |                 |  |
|              |          |        |       | Return "0"      |  |
|              |          |        |       | No effect       |  |
| IntFeedback  | 1-       | R      |       | FB_DSP_INT2     |  |
|              |          | W      | 1     | Set DSP_INT2    |  |
|              |          |        | 0     | No effect       |  |
|              | 0        | R      |       | FB_Z8_IRQ3      |  |
|              |          | W      | 1     | Clear IRQ3      |  |
|              |          |        | 0     | No effect       |  |

#### Table 10. DSP Control Register (F) 0CH [Read/Write]

**Z8 IRQ3** (D0).This bit, which causes the Z8 interrupt, can be set by the DSP by writing bit 9 of ICR. Z8 has to set this bit after serving the IRQ3 interrupt. The DSP can poll the status of IRQ3 by reading ICR bit 9.

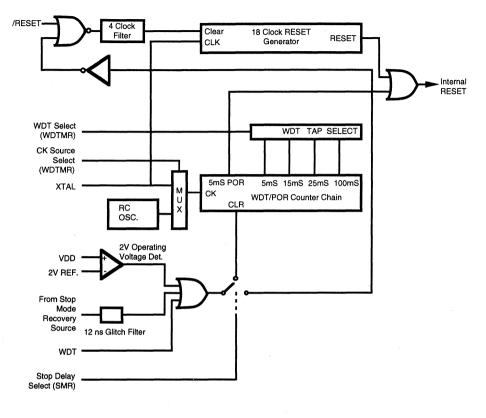
**DSP INT2** (D1). This bit is linked to DSP interrupt (INT2). It can be set by the Z8. After serving INT2, the DSP has to write a 1 to an appropriate bit in ICR (ext4) to clear the IRQ. Reading this bit reflects the status of INT2 of the DSP.

DSP RUN (D4). This bit defines the HALT mode of the DSP. "this bit is set to 0, then the DSP clock is turned off to motion. After this bit is set to 1, then ion from where it was

; bit is reset to 1.

**DSP RESET** (D5). Setting this bit to 1 will reset the DSP. If the DSP was in HALT mode, this bit is automatically preset to 1. Writing a 0 has no effect.

**Z8 SLCK** (D7-D6). These bits define the SCLK frequency of the Z8. The oscillator can be either divided by 8, 4, or 2. After a reset, both of these are defaulted to 00.


Watch-Dog Timer Mode Register (WDTMR). The WDT is a retriggerable one-shot timer that resets the Z8 if it reaches its terminal count. The WDT is initially enabled by executing the WDT instruction and refreshed on subsequent executions of the WDT instruction. The WDT circuit is driven by an on-board RC oscillator or external oscillator from the XTAL1 pin. The POR clock source is selected with bit 4 of the WDT register (Table 11).

| n       | Attrib | Value | Descript     | ion        |
|---------|--------|-------|--------------|------------|
|         |        |       | Reserved     |            |
|         | R/W    | 0     | On-Board RC  | C for WDT* |
|         |        | 1     | XTAL for WD  | Т          |
| j — — — | R/W    | 0     | WDT Off Dur  | ing STOP   |
|         |        | 1     | WDT On Dur   | ing STOP*  |
| -2      | R/W    | 0     | WDT Off Dur  | ing HALT   |
|         |        | 1     | WDT On Dur   | ing HALT*  |
| 10      | R/W    |       | Int RC Osc E | Ext. Clock |
|         |        | 00    | 5 ms 2       | 256 TpC    |
|         |        | 01    | 15 ms 5      | 512 TpC*   |
|         |        | 10    | 25 ms 1      | 1024 TpC   |
|         |        | 11    | 100 ms 🛛 4   | 1096 TpC   |
|         |        |       |              |            |

#### Table 11. Watch-Dog Timer Mode Register (F) 0F

2

#### **Z8 FUNCTIONAL DESCRIPTION (Continued)**





**WDT Time Select** (D0, D1). Selects the WDT time period. It is configured as shown in Table 6.

| Table 12 | . WDT | Time | Select |
|----------|-------|------|--------|
|----------|-------|------|--------|

| D1 | D0 | Timeout of<br>Internal RC OSC | Timeout of XTAL clock |
|----|----|-------------------------------|-----------------------|
| 0  | 0  | 5 ms min                      | 256 TpC               |
| 0  | 1  | 15 ms min                     | 512 TpC               |
| 1  | 0  | 25 ms min                     | 1024 TpC              |
| 1  | 1  | 100 ms min                    | 4096 TpC              |

Notes:

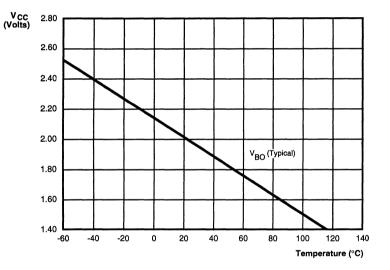
TpC = XTAL clock cycle. The default on reset is 15 ms. **WDT During HALT** (D2). This bit determines whether or not the WDT is active during HALT mode. A 1 indicates active during HALT. The default is 1.

**WDT During STOP** (D3). This bit determines whether or not the WDT is active during STOP mode. Since XTAL clock is stopped during STOP mode, the on-board RC has to be selected as the clock source to the POR counter. A 1 indicates active during STOP. The default is 1.

**Clock Source for WDT** (D4). This bit determines which oscillator source is used to clock the internal POR and WDT counter chain. If the bit is a 1, the internal RC oscillator is bypassed and the POR and WDT clock source is driven from the external pin, XTAL1. The default configuration of this bit is 0 which selects the RC oscillator.

**Brown-Out Protection.** An on-board voltage comparator checks that  $V_{cc}$  is at the required level to ensure correct operation of the device. Reset is globally driven if  $V_{cc}$  is below the specified voltage (Brown-Out Voltage). The minimum operating voltage is varying with the temperature and operating frequency, while the brown-out voltage ( $V_{so}$ ) varies with temperature only.

Devices running at lower frequencies have lower minimum operating voltages. A device's V<sub>BO</sub> is lower with increasing temperatures. A gray area exists at high temperature and high frequency modes of operation where the device is in an unknown state. The device jumps to an unknown address and will not reset itself until the V<sub>CC</sub> goes below the V<sub>BO</sub> value. Figure 20 shows the typical V<sub>BO</sub> vs Temperature curve.


The brown-out trip voltage ( $\rm V_{BO})$  is less than 3.0V and above 1.4V under, the following conditions.

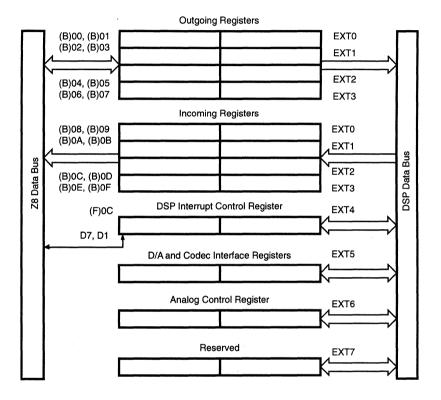
Maximum (V<sub>BO</sub>) Conditions:

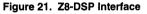
- **Case 1:**  $T_A = -40^{\circ}C$ , +105°C, Internal Clock Frequency equal to or less than 1 MHz
- Case 2:  $T_A = -40^{\circ}C$ , +85°C, Internal Clock Frequency equal to or less than 2 MHz

**Note:** The internal clock frequency is one-half the external clock frequency.

The device functions normally at or above 3.0V under all conditions. Below 3.0V, the device functions normally until the Brown-Out Protection trip point ( $V_{BO}$ ) is reached, for the temperatures and operating frequencies in cases 1 and 2, above. The device is guaranteed to function normally at supply voltages above the brown-out trip point. The actual brown-out trip point is a function of temperature and process parameters (Figure 20).




\* Power-on Reset threshold for V<sub>CC</sub> and 4 MHz V<sub>BO</sub> overlap


Figure 20. Typical Brown-Out Voltage vs Temperature

## DSP FUNCTIONAL DESCRIPTION

The DSP coprocessor is characterized by an efficient hardware architecture that allows fast arithmetic operations such as multiplication, addition, subtraction and multiply accumulate of two 16-bit operands. Most instructions are executed in one clock cycle.

Four DSP registers (EXT3-EXT0) are shared through a quasi dual port mapping with the expanded register file of the Z8. Communication between the Z8 and the DSP occurs through these mailbox registers and interprocessor interrupt mechanism.





#### **DSP-Z8 Mail Box**

To receive information from the DSP, the Z8 uses eight incoming registers which are mapped in the Z8 extended Register File (Bank B, 08 to 0F). The DSP treats these as four 16-bit registers that correspond to the eight incoming Z8 registers (Figure 21).

The Z8 can supply the DSP with data through eight outgoing registers mapped into both the Z8 Expanded Register File (Bank B, Registers 00 to 07) and the external register interface of the DSP. These registers are R/W and can be used as general purpose registers of the Z8. The

DSP can only read information from these registers. Since the DSP uses a 16-bit data format and the Z8 an 8-bit data format, eight outgoing registers of the Z8 correspond to four DSP registers. The DSP can only read information from the outgoing registers.

Both the outgoing registers and the incoming registers share the same DSP address (EXT3-EXT0).

**Note:** The Z8 can read and write to ERF Bank B R00-R07, Registers 08-0F are read only from the Z8.

Table 13. Z8 Outgoing Registers (Read Only from DSP)

| Field              | Position | Attrib | Value | Label             |  |
|--------------------|----------|--------|-------|-------------------|--|
| Outgoing [0] (B)00 | 76543210 | R/W    | %NN   | (B)00/DSP_ext0_hi |  |
| Outgoing [1] (B)01 | 76543210 | R/W    | %NN   | (B)01/DSP_ext0_lo |  |
| Outgoing [2] (B)02 | 76543210 | R/W    | %NN   | B)02/DSP_ext1_hi  |  |
| Outgoing [3] (B)03 | 76543210 | R/W    | %NN   | (B)03/DSP_ext1_lo |  |
| Outgoing [4] (B)04 | 76543210 | R/W    | %NN   | B)04/DSP_ext2_hi  |  |
| Outgoing [5] (B)05 | 76543210 | R/W    | %NN   | (B)05/DSP_ext2_lo |  |
| Outgoing [6] (B)06 | 76543210 | RW     | %NN   | (B)06/DSP_ext3_hi |  |
| Outgoing [7] (B)07 | 76543210 | R/W    | %NN   | (B)07/DSP_ext3_lo |  |

#### Table 14. Z8 Incoming Registers (Write Only from DSP)

| Field              | Position | Attrib | Value | Label       |
|--------------------|----------|--------|-------|-------------|
| Incoming [8] (B)08 | 76543210 | R      | %NN   | DSP_ext0_hi |
|                    |          | W      |       | No Effect   |
| Incoming [9] (B)09 | 76543210 | R      | %NN   | DSP_ext0_lo |
|                    |          | W      |       | No Effect   |
| Incoming [a] (B)0A | 76543210 | R      | %NN   | DSP_ext1_hi |
|                    |          | W      |       | No Effect   |
| Incoming [b] (B)0B | 76543210 | R      | %NN   | DSP_ext1_lo |
|                    |          | W      |       | No Effect   |
| Incoming [c] (B)0C | 76543210 | R      | %NN   | DSP_ext2_hi |
|                    |          | W      |       | No Effect   |
| Incoming [d] (B)0D | 76543210 | R      | %NN   | DSP_ext2_lo |
|                    |          | W      |       | No Effect   |
| Incoming [e] (B)0E | 76543210 | R      | %NN   | DSP_ext3_hi |
|                    |          | W      |       | No Effect   |
| Incoming [f] (B)0F | 76543210 | R      | %NN   | DSP_ext3_lo |
|                    |          | W      |       | No Effect   |

#### Table 15. DSP Incoming Registers

| Field    | Position         | Attrib | Value | Label        |  |
|----------|------------------|--------|-------|--------------|--|
| DSP_ext0 | fedcba9876543210 | R      | %NNNN | (B)00, (B)01 |  |
| Mail Box |                  | W      |       | (B)08, (B)09 |  |
| DSP ext1 | fedcba9876543210 | R      | %NNNN | (B)02, (B)03 |  |
| Mail Box |                  | W      |       | (B)0A, (B)0B |  |
| DSP_ext2 | fedcba9876543210 | R      | %NNNN | (B)04, (B)05 |  |
| Mail Box |                  | W      |       | (B)0C, (B)0D |  |
| DSP_ext3 | fedcba9876543210 | R      | %NNNN | (B)06, (B)07 |  |
| Mail Box |                  | W      |       | (B)0E, (B)0F |  |

#### DSP Interrupts

The DSP processor has three interrupt sources (INT2, INT1, INT0) (Figure 22). These sources have different priority levels (Figure 23). The highest priority, the next lower and the lowest priority level are assigned to INT2, INT1 and INT0, respectively. The DSP does not allow

interrupt nesting (interrupting service routines that are currently being executed). When two interrupt requests occur simultaneously the DSP starts servicing the interrupt with the highest priority level.

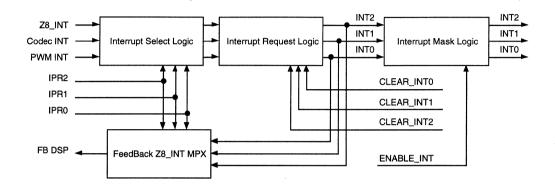



Figure 22. DSP Interrupts

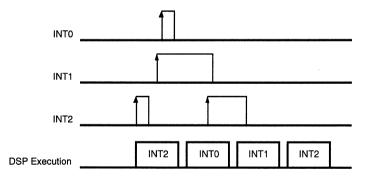



Figure 23. DSP Interrupt Priority Structure

2ilas

| Field        | Position | Attrib | Value  | Label          |
|--------------|----------|--------|--------|----------------|
| DSP_INT2     | f        | R      | 1      | INT2_is set    |
|              |          |        | 0      | INT2_is reset  |
|              | f        | W      | 1      | Clear_DSP_INT2 |
|              |          |        | 0      | Has_no_effect  |
| DSP_INT1     | -e       | R      | 1      | INT1_is set    |
|              |          |        | 0      | INT1_is reset  |
|              | -e       | W      | 1      | Clear_DSP_INT1 |
|              |          |        | 0      | Has_no_effect  |
| DSP_INT0     | d        | R      | 1      | INTO_is set    |
|              |          |        | 0      | INTO_is reset  |
|              | d        | W      | 1      | Clear_DSP_INT0 |
|              |          |        | 0      | Has_no_effect  |
| DSP_MaskINT2 | C        | R/W    | 1      | Enable_INT2    |
|              |          |        | 0      | Disable_INT2   |
| DSP_MaskINT1 | b        | R/W    | 1      | Enable_INT1    |
|              |          |        | 0      | Disable_INT1   |
| DSP_MaskINT0 | a        | R/W    | 1      | Enable_INT0    |
|              |          |        | 0      | Disable_INT0   |
| Z8_IRQ3      | 9        | R      | 1      | IRQ3_active    |
|              |          |        | 0      | IRQ3_inactive  |
|              | 9        | W      | 1      | Set_Z8_IRQ3    |
|              |          |        | 0      | Has_no_effect  |
| Enable_INT   | 8        | R/W    | 1      | Enable_INT     |
|              |          |        | 0      | Disable_INT    |
| DSP_INTSel2  | 7        | R/W    | Binary | INTSel2        |
| DSP_INTSel1  | 6        | R/W    | Binary | INTSel1        |
| DSP_INTSel0  | 5        | R/W    | Binary | INTSel0        |
| Reserved     | 43210    |        | XXXXX  | Reserved       |

Table 16. EXT4 DSP Interrupt Control Register (ICR) Definition

**Interrupt Control Register** (ICR). The ICR is mapped into EXT4 of the DSP (Figure 16). The bits are defined as follows.

**DSP\_IRQ2.** (Z8 Interrupt).This bit can be read by both Z8 and DSP and can be set only by writing to the Z8 expanded Register File (Bank F, ROC, bit 0). This bit asserts IRQ2 of the DSP and can be cleared by writing to the Clear\_IRQ2 bit.

**DSP\_IRQ1** (A/D Interrupt). This bit can be read by the DSP only and is set when valid data is present at the A/D output register (conversion done). This bit asserts IRQ1 of the DSP and can be cleared by writing to the Clear\_IRQ1bit. **DSP\_IRQ0** (D/A Interrupt). This bit can be read by DSP only and is set by Timer3. This bit assists IRQ0 of the DSP and can be cleared by writing to the Clear\_IRQ0 bit.

**DSP\_MaskIntX.** These bits can be accessed by the DSP only. Writing a 1 to these locations allows the INT to be serviced, while writing a 0 masks the corresponding INT off.

## DSP Interrupts (Continued)

**Z8\_IRQ3.** This bit can be read from both Z8 and DSP and can be set by DSP only. Addressing this location accesses bit D3 of the Z8 IRQ register; hence, this bit is not implemented in the ICR. During the interrupt service routine executed on the Z8 side, the user has to reset the Z8\_IRQ3 bit by writing a 1 to bit D0 of the DSPCON. Three Z8 instructions after this operation, the hardware of the Z89C67/C68 automatically resets Z8\_IRQ3. This delay provides the timing synchronization between the Z8 and the DSP sides during interrupts. In summary, the interrupt service routine of the Z8 for IRQ3 should be finished by:

| PUSH | RP       |
|------|----------|
| LD   | RP,#%0F  |
| OR   | r12,#%01 |
| POP  | RP       |
| IRET |          |

**DSP Enable\_INT.** Writing a 1 to this location enables global interrupts of the DSP while writing 0 disables them. A system reset globally disables all interrupts.

**DSP\_IPRX.** This 3-bit group defines the Interrupt Select logic according to Table 17.

**Clear\_IRQX.** These bits can be accessed by the DSP only. Writing a 1 to these locations rests the corresponding DSP\_IRQX bits to 0. Clear\_IRQX are virtual bits and are not implemented.

| DSP_IPR[2-0]<br>2 1 0 | Z8_INT is<br>switched to | Codec_INT is<br>switched to | D/A_INT is<br>switched to |
|-----------------------|--------------------------|-----------------------------|---------------------------|
| 000                   | INT2                     | INT1                        | INTO                      |
| 001                   | INT1                     | INT2                        | INTO                      |
| 010                   | INT2                     | INTO                        | INT1                      |
| 011                   | INT1                     | INTO                        | INT2                      |
| 100                   | INTO                     | INT2                        | INT1                      |
| 101                   | INTO                     | INT1                        | INT2                      |
| 110                   | Reserved                 | Reserved                    | Reserved                  |
| 111                   | Reserved                 | Reserved                    | Reserved                  |

#### Table 17. DSP Interrupt Selection

# PULSE WIDTH MODULATOR (PWM)

The PWM supports four different sampling rates (4, 10, 16, and 64 kHz), according to the settings of bit 8, 9, 10 of the ACR. The output of PWM can be assigned to logic 1 only during the active region (which is 4/5 of the output signal period). The output will be at logic 0 for the rest of the time. An exception occurs in 10 kHz PWM, where the active region covers the whole output signal period (Figure 24). The active region is divided into 1024 time slots. In each of these time slots, the output can be set to logic 1 or logic 0.

In order to increase the effective sampling rate, the PWM employs a special technique of distributing the "logic 1" period over the active region.

The 10-bit PWM data is divided into two parts: the upper five bits (High\_Val) and the lower five bits (Low\_Val). The 1024 time slots in the active region are divided into 32 equal groups, with 32 time slots in each group. The first slot

of each of the 32 groups represents Low\_Val, while High\_Val is represented by the remaining 31 time slots in each group.

For example, a value of %13a is loaded into PWM data register EXT 5:

%13a = 01 0011 1010B = 314 High\_Val = 01001B = 9 Low\_Val = 11010B = 26

26 out of 32 groups will then have their first slots set to logic 1. The remaining one slot in each group has nine time slots set to logic 1.

For 10 kHz PWM, the effective output frequency is  $10K \times 32$  = 320 kHz. Figure 25 illustrates the waveform by using a 6-bit PWM data (3-bit High\_Val and 3-bit Low\_Val).

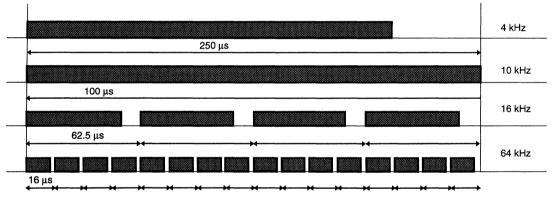
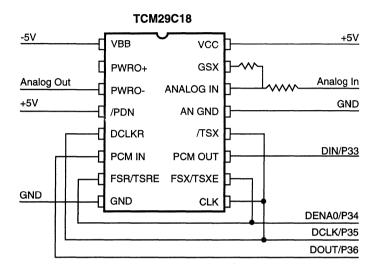



Figure 24. PWM Waveform (shaded area shows the active region)

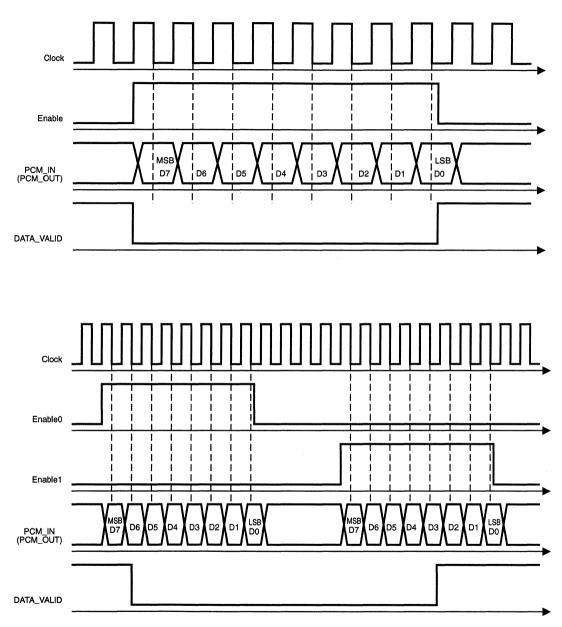

# PULSE WIDTH MODULATOR (PWM) (Continued)

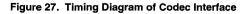
|     |          |   |   |   |          |    |   | 000 000 |   | 00 000  |
|-----|----------|---|---|---|----------|----|---|---------|---|---------|
|     |          |   |   |   |          |    |   | 000 001 |   | 00 001  |
|     |          |   |   |   | 8        |    |   | 000 010 |   | 00 010  |
|     | ja ja    |   |   |   |          |    |   | 000 011 |   | 00 011  |
| 1   |          |   |   |   |          |    |   | 000 100 |   | 00 100  |
|     |          | 8 |   | 8 |          |    |   | 000 101 |   | 00 101  |
|     |          |   |   |   |          |    |   | 000 110 |   | 00 110  |
|     |          | 8 | 3 |   |          |    |   | 000 111 |   | 00 111  |
|     | 1        | 3 | 8 |   |          | 8  | 8 | 001 000 |   | 01 000  |
|     | 1        | 1 |   |   | 1        | 8  |   | 001 001 |   | 01 001  |
|     | <u>I</u> | 1 | 1 | 1 |          |    |   | 001 010 |   | 01 010  |
| . I |          | 1 |   | 1 | Ē        |    |   | 001 011 |   | 01 011  |
|     | 1        |   |   |   | 1        |    |   | 001 100 |   | 01 100  |
|     |          |   |   |   |          |    |   | 001 101 |   | 01 101  |
|     |          |   | 1 |   | <u> </u> | ġ. | 8 | 001 110 |   | 01 110  |
|     |          | 1 |   | 围 | 園        | ġ  |   | 001 111 |   | 01 111  |
|     |          |   |   |   |          |    |   | 010 000 |   | 10 000  |
|     |          |   |   |   |          |    |   | 010 001 |   | 10 001  |
|     |          |   |   |   |          |    |   | 010 010 |   | 10 010  |
|     |          |   |   |   |          |    |   | 010 011 |   | 10 011  |
|     |          |   |   |   |          |    |   | 010 100 | 1 | 10 100  |
|     |          |   |   |   |          |    |   | 010 101 |   | 10 101  |
|     |          |   |   |   | <b>1</b> |    |   | 010 110 | 1 | 10 1 10 |
|     |          |   |   |   |          |    |   | 010 111 | 1 | 10 111  |
|     |          |   |   |   |          |    |   | 011 000 | 1 | 11 000  |
|     |          |   |   |   |          |    |   | 011 001 | 1 | 11 001  |
|     |          |   |   |   |          |    |   | 011 010 | 1 | 11 010  |
|     |          |   |   |   |          |    |   | 011 011 | 1 | 11 011  |
|     |          |   |   |   |          |    |   | 011 100 | 1 | 11 100  |
|     |          |   |   |   |          |    |   | 011 101 | 1 | 11 101  |
|     |          |   |   |   |          |    |   | 011 110 | 1 | 11 110  |
|     |          |   |   |   |          |    |   | 011 111 | 1 | 11 111  |

Figure 25. PWM Waveform of the Active Region (for a 6-bit PWM data)

## CODEC INTERFACE

Codec interface provides the user all the necessary signals to connect two independent codec chips. The supported sampling rate is 8K samples/sec at a data rate of 2.048 MHz, or 6.66K samples/sec at a 1.7066 MHz data rate. Figure 26 shows the connection of T2 (TCM29C18) and Motorola (MC145503) Codec to Z89C67. The timing diagram is shown on Figure 27.





MC145503

| GND        | VAG  | VDD | h      | +5V  |
|------------|------|-----|--------|------|
| Analog In  | RX0  | RDD |        | DOUT |
| GND        | +Tx  | RCE | ۲<br>۱ | DENA |
| T          | Txl  | RDC | ۲<br>۱ | DCLK |
| Analog Out | -Tx  | TDC |        |      |
| +5V        | Mu/A | TDD |        | DIN  |
| +5V        | /PDI | TDE | -<br>7 |      |
| -5V        | VSS  | VLS | י<br>] | GND  |

Figure 26. Connecting TCM29C18 and MC145503 to Z89C67/C68

# **CODEC INTERFACE** (Continued)





#### D/A (PWM) Converter/Codec interface Register -EXT5

External DSP register EXT5 is used by the D/A converter and an External Codec Interface. The accessibility of all these devices is driven by the Analog Control register (EXT6).

The D/A converter (10-bit PWM) will be loaded by writing to register EXT5 of the DSP.

Two different Codecs can be addressed by the Analog Control register (EXT6). The data loaded to Codec0 and Codec1 is defined by writing to the EXT5 register of the DSP, while reading from this register gives the data received from Codecs. Because the same logical register (EXT5) can be either the source or the destination for several physical devices (D/A and Codecs), the user must specify which one of all available devices to write (read) to (from). EXT5 bits 'e' and 'f' are used to distinguish between different devices upon writing data to D/A, Codec0 and Codec1, as shown below. Upon reading from EXT5, the DSP reads in sequence all active (enabled) devices according to the definition of the Select\_Sequence field (bits 'c' and 'd') in ACR (EXT6). The sequence of reading data can be reset by writing a 1 to the Reset\_Toggle field of EXT6.

Register EXT5 is accessible to the DSP only.

#### Digital to Analog Converter - EXT5 (when written)

The D/A conversion is DSP driven by sending 10-bit data to the external register EXT5 of the DSP. The six remaining bits of EXT5 are reserved, as shown in the following table.

Data will be loaded into the D/A latch during the clock cycle following the (Id EXT5, data) instruction.

|       | Table 18. EX15 (when written) |        |            |                                             |  |  |  |
|-------|-------------------------------|--------|------------|---------------------------------------------|--|--|--|
| Field | Position                      | Attrib | Value      | Label                                       |  |  |  |
| Data  | f<br>-edcba                   | W      | 0          | Should be "0"<br>Reserved                   |  |  |  |
|       | 98765<br>43210                | W<br>W | %NN<br>%NN | DataToPWM (High_Val)<br>DataToPWM (Low_Val) |  |  |  |

#### Table 18. EXT5 (when written)

#### Codec Interface Controller - EXT5 (when written)

The two Data registers of the External Codec interface are mapped into the external register EXT5 of the DSP. The eight remaining bits of EXT5 are reserved as shown in the

following table. Data will be loaded into the corresponding Data register (defined by field 'e') during the clock cycle following the (Id EXT5, data) instruction.

| Table 19. EXT5 (when written) |          |        |       |               |  |  |
|-------------------------------|----------|--------|-------|---------------|--|--|
| Field                         | Position | Attrib | Value | Label         |  |  |
| Data                          | f        | W      | 1     | Should be "1" |  |  |
|                               | -e       | W      | 0     | Codec0        |  |  |
|                               |          |        | 1     | Codec1        |  |  |
|                               | dcba98   |        |       | Reserved      |  |  |
|                               | 76543210 | W      | %NN   | DataToCodec   |  |  |

#### Codec Interface Controller - EXT5 (when read)

8-bit Data can be read from the Codec by the DSP through the external register, EXT5. Of the 16 bits of the EXT5, only

eight bits, 7 thru 0, return Data; the remaining bits are padded with zeros.

| Table 20. EXT5 (when read) |          |        |        |                             |  |  |  |
|----------------------------|----------|--------|--------|-----------------------------|--|--|--|
| Field                      | Position | Attrib | Value  | Label                       |  |  |  |
| Data                       | fedcba98 | R      | %NN    | Return "0"<br>DataFromCodec |  |  |  |
|                            |          |        | /01111 |                             |  |  |  |

#### **Analog Control Register (ACR)**

The Analog Control register is mapped to register EXT6 of the DSP (Table 21).

This read/write register is accessible by the DSP only.

.

| Field            | Position | Attrib | Value | Label                      |
|------------------|----------|--------|-------|----------------------------|
| MPX_DSP_INT0     | f        | R/W    | 1     | P26                        |
|                  |          |        | 0     | Timer3                     |
| Reset_Toggle     | -e       | R      |       | Return "O"                 |
|                  | -e       | W      | 1     | Reset Toggle               |
|                  |          |        | 0     | No Effect                  |
| Select_Sequence  | dc       | R/W    | XX    | Selects Codec0/Codec1 upon |
|                  |          |        |       | reading ext5               |
| Reserved         | b        | R      |       | Return "0"                 |
|                  |          | W      |       | No Effect                  |
| D/A_SamplingRate | a98      | R/W    | 11x   | Reserved                   |
|                  |          |        | 101   | Reserved                   |
|                  |          |        | 100   | 64 kHz                     |
|                  |          |        | 010   | 16 kHz                     |
|                  |          |        | 011   | 10 kHz                     |
|                  |          |        | 001   | 4 kHz                      |
|                  |          |        | 000   | Reserved                   |
| Div10/12         | 7        | R/W    | 1     | Divided by 10              |
|                  |          |        | 0     | Divided by 12              |
| Reserved         | 6        | R/W    |       | Should Be Set to "0"       |
| Reserved         | 543210   | R      | %DD   | Return "0"                 |
|                  |          | W      |       | No Effect                  |

#### Table 21. EXT6 Analog Control Register (ACR)

The 16-bit field of EXT6 defines modes of both the A/D and the D/A. The High byte configures the Codec.

**Select\_Sequence.** Defines the Codec0 and Codec1 enabling/disabling and the sequence of reading data from these devices starting from the reset condition.

DSP IRQO. Defines the source of DSP IRQO interrupt.

| Select Sequence |   | Codec ena | bled/disabled | Sequence of | of access |
|-----------------|---|-----------|---------------|-------------|-----------|
| d               | C | Codec0    | Codec1        | First       | Second    |
| 0               | 0 | Disable   | Disable       | N/A         | N/A       |
| 0               | 1 | Enable    | Disable       | Codec0      | N/A       |
| 1               | 0 | Enable    | Enable        | Codec0      | Codec1    |
| 1               | 1 | Disable   | Disable       | Reserved    | Reserved  |

A 1 should be written to bit 'e' in order to reset the sequence. Writing 1 to bit 'e' ensures the next data read from EXT5 is the data of Codec0.

**Div 10/12.** This bit defines the speed of the Codecs. If the bit is set to 1, the Codec clock frequency is set to 2.048 MHz, and the sampling rate is 8 kHz. If the bit is reset to 0, Codec clock frequency is set to 1.7066 MHz and the sampling rate to 6.66 kHz.

Note. Bit 6 of ACR should be set to 0.

**D/A\_Sampling Rate.** This field defines the sampling rate of the D/A output. It changes the period to Timer3 interrupt and the maximum possible accuracy of the D/A (Table 22).

Table 22. D/A Data Accuracy

| D/A_Sampling Rate<br>D/A Accuracy | Sampling Ra | ate     |
|-----------------------------------|-------------|---------|
| 100                               | 64 kHz      | 8 Bits  |
| 010                               | 16 kHz      | 10 Bits |
| 011                               | 10 kHz      | 10 Bits |
| 001                               | 4 kHz       | 10 Bits |

#### **DSP Timers**

Timer2 is a free-running counter that divides the XTAL frequency (20.48 MHz) to support different sampling rates for the A/D converter. The sampling rate is defined by the Analog Control Register. Upon reaching the end of a count, the timer generates an interrupt request to the DSP.

Analogous to Timer2, Timer3 generates the different sampling rates for the D/A converter. Timer3 also generates an interrupt request to the DSP upon reaching its final count value (Figure 28).

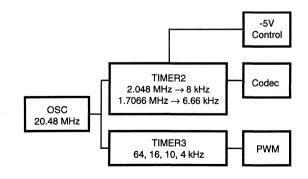



Figure 28. Timer2 and Timer3

#### Minus 5V DC Generation

Some Codecs require a  $\pm 5V$  power supply. The Z89C67/C68 provides a  $-5V_{out}$  output to drive an external pump circuit. A complete circuit diagram for the -5V generation is shown in Figure 29. The reference voltage of 2.5V is generated by a resistor divider R5, R6 on the P33 input of Z86C67/C68. This voltage is compared with the voltage of the voltage divider formed by R2, R4.

If the latter voltage rises above the reference voltage, the comparator (inside Z86C67/C68) will be switched and connect the internal 128 kHz output of Timer2 to the  $-5V_{out}$  output pin of Z89C67/C68. On the contrary, the  $-5V_{out}$  will be switched off if the voltage from voltage divider R2, R4 drops below the reference voltage. This regulates the voltage across C1 to be -5V.

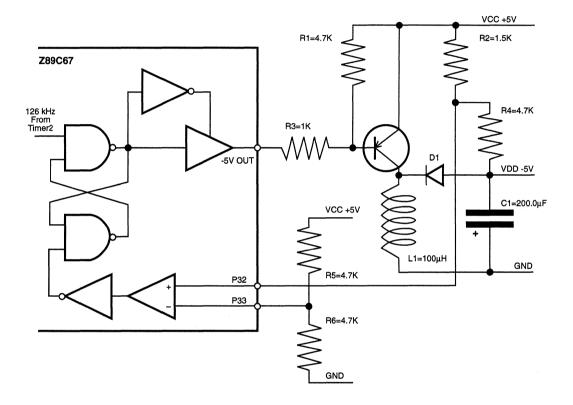



Figure 29. Circuit Diagram for -5V Generation

### **ARAM INTERFACE**

The ARAM interface controller accepts a wide variety of external ARAM configurations (up to 48 Mbits) with 4-bit wide data buses. It can be reconfigured from the software to support: 1 Mbit x 1, 4 Mbit x 1, 1 Mbit x 4, 4 Mbit x 4 ARAM.

ARAM interface registers are mapped to expanded register file (Bank 0A).

#### Table 23. Registers of ARAM Interface

| Field                                    | Position | Attrib | Value | Label    |
|------------------------------------------|----------|--------|-------|----------|
| Data (Register (A)00)                    | 76543210 | R/W    | %FF   | Data     |
| Control (Register (A)01)                 | 76543210 | R/W    | %FF   | See Text |
| Most Significant Byte (Register (A)02)   | 76543210 | R/W    | %FF   | Data     |
| Aiddle Significant Byte (Register (A)03) | 76543210 | R/W    | %FF   | Data     |
| east Significant Byte (Register (A)04)   | 76543210 | R/W    | %FF   | Data     |
| Refresh Count (Register (A)05)           | 76543210 | R/W    | %FF   | Data     |

Data Register. This register is used as a logical device for reading (writing) data from (to) the ARAM. After reading by the Z8 in Auto Increment mode, the logical ARAM address specified by register (AH)04H is increased by one and new ARAM data at this address will be read and stored into the data register. When data is written to this register, it will be stored into the last valid ARAM logical address. The hardware write-data-to-ARAM cycle is implemented as an early write cycle with Twcs > 40 ns. The user has to load a 23-bit address into the Least, Middle and Most Significant Byte Registers and then write the 8-bit data to the Data Register. The data will be automatically separated into higher nibble and lower nibble and stored into two subsequent locations in the ARAM (2\*Address for higher nibble and 2\*Address+1 for lower nibble). Writing data to the Data Register with the Auto Incremental Bit (bit 0) of the ARAM Control Register equal to 0 increases the address in the Least Significant ARAM register (AH)04H by 1.

**Most, Middle and Least Significant Byte Registers.** The 23-bit logical address of ARAM is stored in these three registers. Upon writing to these registers, the read cycle from ARAM is executed so that the new data is available in the data register.

**Refresh Count Register.** The /RAS-only refresh cycle is transparent to user and is supported by hardware logic. This register specifies how many rows of memory matrix, starting from the beginning of the ARAM (logical address 000000H), should be refreshed. The number of the rows in ARAM to be refreshed is defined by the value in Refresh Count Register plus one and then multiplied by eight.

## **ARAM INTERFACE** (Continued)

The basic timing diagram of ARAM interface are shown on Figure 30.

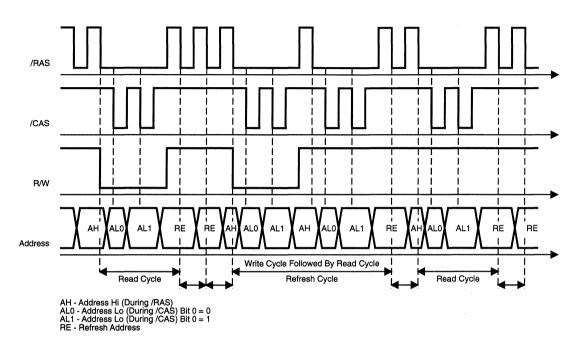



Figure 30. Timing Diagram for ARAM Interface

#### **ARAM Control Register**

The register defines ARAM access time, ARAM memory size, refresh operation etc. After Power-On Reset, the ARAM Control Register is set to %00, which defines 1Mbit

ARAM configuration with permanently active ARAM refreshing.

| Register       | Position | Attrib | Value | Description                                      |
|----------------|----------|--------|-------|--------------------------------------------------|
| Access_time    | 7        | R/W    | 0     | 400 ns                                           |
|                |          |        | 1     | 200 ns                                           |
| ARAM_size      | -6       | R/W    | 0     | 1 Mbit                                           |
|                |          |        | 1     | 4 Mbit                                           |
| Reserved       | 54       | R/W    | %DD   | number                                           |
|                |          |        |       | These two bits can be used as User defined flags |
| Refresh_start  | 32       | R/W    | 00    | Permanently                                      |
|                |          |        | 01    | Upon T0                                          |
|                |          |        | 10    | Upon TO                                          |
|                |          |        | 11    | Refresh off                                      |
| Refresh_clear  | 1-       | R      |       | Return "0"                                       |
|                |          | W      | 1     | Refresh clear                                    |
|                |          |        | 0     | No effect                                        |
| Auto_increment | 0        | R/W    | 0     | Increment ON                                     |
|                |          |        | 1     | Increment OFF                                    |

Table 24, ARAM Control Register

Access\_time. This bit defines the speed of ARAM Controller. The read/write cycle width can be changed to support slower ARAMs. When set to 1, the width of /CAS signal is set to 200 ns. Reset the Access\_time bit to 0 set the width of /CAS signal to 400 ns.

**ARAM** size. ARAM interface supports four different sizes

of ARAM: 1 Mbit x 1, 1 Mbit x 4, 4 Mbit x 1 and 4 Mbit x 4. These require either 11 or 10 bit address bus. For 1 Mbit x 1 or 1 Mbit x 4 ARAM, the ADDR10 is used to generate

select (/CAS) signal.

 Bit 6
 /CAS
 ARAM\_SEL1
 ARAM\_SEL0
 Addr10

 0
 1st /CAS
 3rd /CAS
 2nd /CAS
 Addr10

 1
 1st /CAS
 3rd /CAS
 2nd /CAS
 4th /CAS

Auto Increment. This bit specifies the Auto Increment of the LBS byte of the ARAM address. The Auto Increment function does not affect any flag of Z8.

## ARAM INTERFACE (Continued)

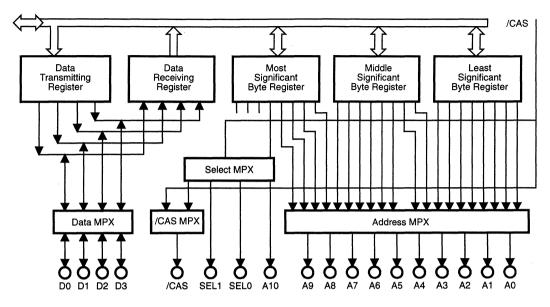
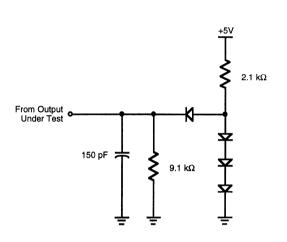



Figure 31. Block Diagram of the ARAM Interface

### **ABSOLUTE MAXIMUM RATINGS**

| Symbol           | Description        | Min  | Max   | Units |
|------------------|--------------------|------|-------|-------|
| V <sub>cc</sub>  | Supply Voltage (*) | -0.3 | +7.0  | V     |
| T <sub>STG</sub> | Storage Temp       | -65° | +150° | С     |
| TA               | Oper Ambient Temp  |      | †     | С     |


#### Notes:

\* Voltage on all pins with respect to GND.

† See Ordering Information.

#### STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Figure 32). Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability.





#### CAPACITANCE

 $T_{A} = 25^{\circ}C$ ,  $V_{CC} = GND = 0V$ , f = 1.0 MHz, unmeasured pins to GND.

| Parameter          | Max   |
|--------------------|-------|
| Input capacitance  | 12 pF |
| Output capacitance | 12 pF |
| I/O capacitance    | 12 pF |

#### **DC ELECTRICAL CHARACTERISTICS**

| _                | CC A              |          | $T_A = 0^{\circ}C$ to +70°C | Typical |      |  |
|------------------|-------------------|----------|-----------------------------|---------|------|--|
| Sym              | Parameter         | Note [1] | Min Max                     | @ 25°C  | Unit |  |
| I <sub>cc</sub>  | Supply Current    | 5.0V     | 65                          | 40      | mA   |  |
| I <sub>CC1</sub> | Halt Mode Current | 5.0V     | 10                          | 6       | mA   |  |
|                  | Stop Mode Current | 5.0V     | 20                          | 6       | μA   |  |

Notes: [1] 5.0V ± 0.5V.

# DC ELECTRICAL CHARACTERISTICS

|                  |                          | V <sub>cc</sub> | T <sub>A</sub> = 0<br>to +7   |                                        | T <sub>A</sub> =<br>to +1     | 05°C                                   | Typical |       |                                                      |
|------------------|--------------------------|-----------------|-------------------------------|----------------------------------------|-------------------------------|----------------------------------------|---------|-------|------------------------------------------------------|
| Sym              | Parameter                | Note [1]        | Min                           | Max                                    | Min                           | Max                                    | @ 25°C  | Units | Conditions                                           |
|                  | Max Input Voltage        | 3.3V            |                               | 7                                      |                               | 7                                      |         | ٧     | I <sub>IN</sub> 250 uA                               |
|                  |                          | 5.0V            |                               | 7                                      |                               | 7                                      |         | ٧     | l <sub>in</sub> 250 uA                               |
| V <sub>CH</sub>  | Clock Input High Voltage | 9.3V            | $0.7  \mathrm{V_{cc}}$        | V <sub>cc</sub> +0.3                   | $0.7 \ V_{cc}$                | V <sub>cc</sub> +0.3                   | 1.3     | ۷     | Driven by External Clock Generator                   |
|                  |                          | 5.0V            | $0.7 \ \mathrm{V_{cc}}$       | V <sub>cc</sub> +0.3                   | $0.7 \ \mathrm{V_{cc}}$       | V <sub>cc</sub> +0.3                   | 2.5     | ۷     | Driven by External Clock Generator                   |
| V <sub>CL</sub>  | Clock Input Low Voltage  | 3.3V            | GND-0.3                       | 0.2 V <sub>cc</sub>                    | GND-0.3                       | 0.2 V <sub>cc</sub>                    | 0.7     | ٧     | Driven by External Clock Generator                   |
|                  |                          | 5.0V            | GND0.3                        | 0.2 V <sub>cc</sub>                    | GND0.3                        | 0.2 V <sub>cc</sub>                    | 1.5     | ۷     | Driven by External Clock Generator                   |
| V <sub>IH</sub>  | Input High Voltage       | 3.3V            | 0.7 V <sub>cc</sub>           | V <sub>cc</sub> +0.3                   | 0.7 V <sub>cc</sub>           | V <sub>cc</sub> +0.3                   | 1.3     | ٧     |                                                      |
| . IH             |                          | 5.0V            | $0.7 V_{cc}^{cc}$             | V <sub>cc</sub> +0.3                   | 0.7 V <sub>cc</sub>           | V <sub>cc</sub> +0.3                   | 2.5     | V     |                                                      |
| V                | Input Low Voltage        | 3.3V            | GND-0.3                       | 0.2 V <sub>cc</sub>                    | GND-0.3                       | 0.2 V <sub>cc</sub>                    | 0.7     | ٧     |                                                      |
| IL.              |                          | 5.0V            | GND0.3                        | 0.2 V <sub>cc</sub>                    | GND-0.3                       | 0.2 V <sub>cc</sub>                    | 1.5     | ٧     |                                                      |
| V <sub>он</sub>  | Output High Voltge       | 3.3V            | V <sub>cc</sub> -0.4          | 00                                     | V <sub>cc</sub> -0.4          |                                        | 3.1     | ٧     | I <sub>он</sub> = —2.0 mA                            |
| 0.1              |                          | 5.0V            | V <sub>cc</sub> -0.4          |                                        | V <sub>cc</sub> -0.4          |                                        | 4.8     | ۷     | $l_{0H}^{0H} = -2.0 \text{ mA}$                      |
| V <sub>OL1</sub> | Output Low Voltage       | 3.3V            |                               | 0.6                                    |                               | 0.6                                    | 0.2     | ٧     | $I_{0L} = +4.0 \text{ mA}$                           |
|                  |                          | 5.0V            |                               | 0.4                                    |                               | 0.4                                    | 0.1     | V     | $I_{0L}^{0L} = +4.0 \text{ mA}$                      |
| V <sub>ol2</sub> | Output Low Voltage       | 3.3V            |                               | 1.2                                    |                               | 1.2                                    | 0.3     | V     | $I_{0L}^{0L} = +6 \text{ mA}, 3 \text{ Pin Max}$     |
|                  |                          | 5.0V            |                               | 1.2                                    |                               | 1.2                                    | 0.3     | ۷     | $I_{0L}^{0L} = +12 \text{ mA}, 3 \text{ Pin Max}$    |
| V <sub>RH</sub>  | Reset Input High Voltage |                 | .8 V <sub>cc</sub>            | V <sub>cc</sub>                        | .8 V <sub>cc</sub>            | V <sub>cc</sub>                        | 1.5     | V     |                                                      |
|                  |                          | 5.0V            | .8 V <sub>cc</sub><br>GND-0.3 | V <sub>cc</sub><br>0.2 V <sub>cc</sub> | .8 V <sub>cc</sub><br>GND-0.3 | V <sub>cc</sub><br>0.2 V <sub>cc</sub> | 2.1     | V     |                                                      |
| V <sub>ri</sub>  | Reset Input Low Voltage  | 3.3V            |                               | 0.2 V <sub>cc</sub>                    |                               | 0.2 V <sub>cc</sub>                    | 1.1     |       |                                                      |
|                  |                          | 5.0V            | GND-0.3                       | 0.2 V <sub>cc</sub>                    | GND0.3                        | 0.2 V <sub>cc</sub>                    | 1.7     |       |                                                      |
| VOFFSET          | Comparator Input Offset  | 3.3V            |                               | 25                                     |                               | 25                                     | 10      | mV    |                                                      |
|                  | vonage                   | 5.0V            |                               | 25                                     |                               | 25                                     | 10      | mV    |                                                      |
| l <sub>il</sub>  | Input Leakage            | 3.3V            | -1                            | 1                                      | -1                            | 2                                      | <1      | μA    | $V_{\rm IN} = OV, V_{\rm CC}$                        |
|                  |                          | 5.0V            | -1                            | 1                                      | -1                            | 2                                      | <1      | μA    | $V_{iN} = OV, V_{CC}$                                |
| I <sub>ol</sub>  | Output Leakage           | 3.3V            | -1                            | 1                                      | -1                            | 2                                      | <1      | μA    | $V_{IN} = OV, V_{CC}$                                |
|                  |                          | 5.0V            | -1                            | 1                                      | 1                             | 2                                      | <1      | μA    | $V_{\rm IN}^{\rm H} = \rm OV, \ V_{\rm CC}^{\rm CC}$ |
| l <sub>ir</sub>  | Reset Input Current      | 3.3V            |                               | -45                                    |                               | -60                                    | -20     | μA    |                                                      |
|                  |                          | 5.0V            |                               | -55                                    |                               | -70                                    | -30     | μA    |                                                      |

Notes:

[1] 5.0V ± 0.5V.

## **AC CHARACTERISTICS**

External I/O or Memory Read and Write Timing Diagram

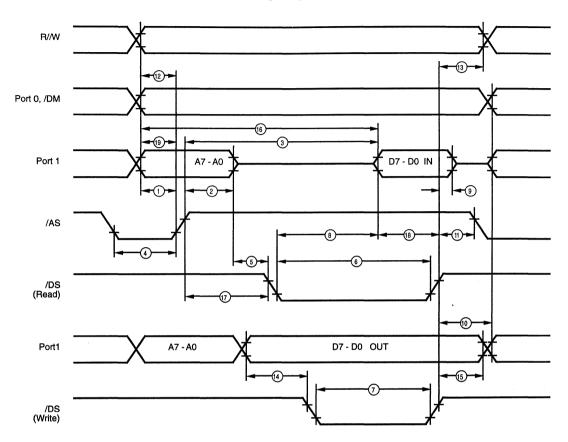



Figure 33. External I/O or Memory Read/Write Timing

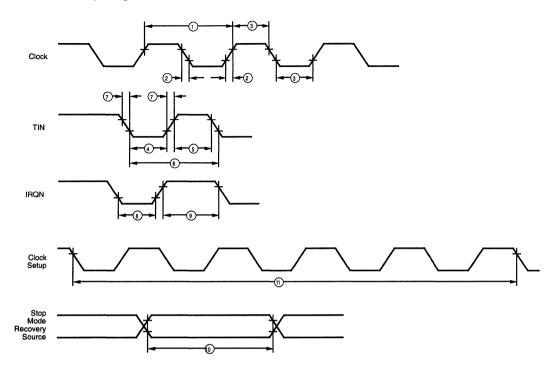
## **AC CHARACTERISTICS**

External I/O or Memory Read and Write Timing Table

|    |           | · · · · · · · · · · · · · · · · · · ·      | V <sub>cc</sub> | T_= 0°C 1 | to +70°C |       |         |
|----|-----------|--------------------------------------------|-----------------|-----------|----------|-------|---------|
| No | Symbol    | Parameter                                  | Note [4]        | Ŵin       | Max      | Units | Notes   |
| 1  | TdA(AS)   | Address Valid to /AS Rise Delay            | 5.0V            | 20        |          | ns    | [2,3]   |
| 2  | TdAS(A)   | /AS Rise to Address Float Delay            | 5.0V            | 25        |          | ns    | [2,3]   |
| 3  | TdAS(DR)  | /AS Rise to Read Data Req'd Valid          | 5.0V            |           | 150      | ns    | [1,2,3] |
| 4  | TwAS      | /AS Low Width                              | 5.0V            | 30        |          | ns    | [2,3]   |
| 5  | TdAZ(DS)  | Address Float to /DS Fall                  | 5.0V            | 0         |          | ns    |         |
| 5  | TwDSR     | /DS (Read) Low Width                       | 5.0V            | 105       |          | ns    | [1,2,3] |
| 7  | TwDSW     | /DS (Write) Low Width                      | 5.0V            | 65        |          | ns    | [1,2,3] |
| 3  | TdDSR(DR) | /DS Fall to Read Data Req'd Valid          | 5.0V            |           | 55       | ns    | [1,2,3] |
| 9  | ThDR(DS)  | Read Data to /DS Rise Hold Time            | 5.0V            | 0         |          | ns    | [2,3]   |
| 10 | TdDS(A)   | /DS Rise to Address Active Delay           | 5.0V            | 40        |          | ns    | [2,3]   |
| 11 | TdDS(AS)  | /DS Rise to /AS Fall Delay                 | 5.0V            | 25        |          | ns    | [2,3]   |
| 12 | TdR/W(AS) | R//W Valid to /AS Rise Delay               | 5.0V            | 20        |          | ns    | [2,3]   |
| 13 | TdDS(R/W) | /DS Rise to R//W Not Valid                 | 5.0V            | 25        |          | ns    | [2,3]   |
| 14 | TdDW(DSW) | Write Data Valid to /DS Fall (Write) Delay | 5.0V            | 20        |          | ns    | [2,3]   |
| 15 | TdDS(DW)  | /DS Rise to Write Data Not Valid Delay     | 5.0V            | 25        |          | ns    | [2,3]   |
| 16 | TdA(DR)   | Address Valid to Read Data Req'd Valid     | 5.0V            |           | 180      | ns    | [1,2,3] |
| 17 | TdAS(DS)  | /AS Rise to /DS Fall Delay                 | 5.0V            | 35        |          | ns    | [2,3]   |
| 18 | TdDI(DS)  | Data Input Setup to /DS Rise               | 5.0V            | 50        |          | ns    | [1,2,3] |
| 19 | TdDM(AS)  | /DM Valid to /AS Fall Delay                | 5.0V            | 20        |          | ns    | [2,3]   |

#### Notes:

[1] When using extended memory timing add 2 TpC.


[2] Timing numbers given are for minimum TpC.

[3] See clock cycle dependent characteristics table. [4]  $5.0 \text{ V} \pm 0.5 \text{ V}$ .

#### Standard Test Load

All timing references use 0.9  $\rm V_{cc}$  for a logic 1 and 0.1  $\rm V_{cc}$  for a logic0.

# AC ELECTRICAL CHARACTERISTICS Additional Timing Diagram

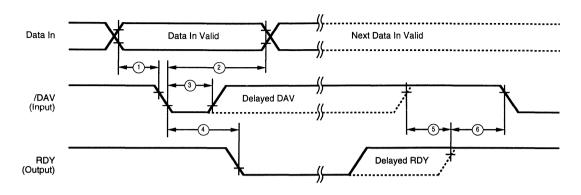




2

# AC ELECTRICAL CHARACTERISTICS Additional Timing Table

|    |                 |                               | V <sub>cc</sub> | T <sub>4</sub> = 0°C t | to +70°C |       |                    |
|----|-----------------|-------------------------------|-----------------|------------------------|----------|-------|--------------------|
| No | Symbol          | Parameter                     | Note [5]        | Ŵin                    | Max      | Units | Notes              |
| 1  | ТрС             | Input Clock Period            | 5.0V            | 48.83                  |          | ns    | [1]                |
| 2  | TrC,TfC         | Clock Input Rise & Fall Times | 5.0V            |                        | 6        | ns    | [1]                |
| 3  | TwC             | Input Clock Width             | 5.0V            | 16                     |          | ns    | [1]                |
| 4  | TwTinL          | Timer Input Low Width         | 5.0V            | 70                     |          | ns    |                    |
| 5  | TwTinH          | Timer Input High Width        | 5.0V            | 3TpC                   |          |       | [1]                |
| 6  | TpTin           | Timer Input Period            | 5.0V            | 8TpC                   |          |       | [1]                |
| 7  | TrTin,<br>TfTin | Timer Input Rise & Fall Timer | 5.0V            |                        | 100      |       | ns [1]             |
| 8A | TwiL            | Int. Request Low Time         | 5.0V            | 70                     |          | ns    | [1,2]              |
| 8B | TwiL            | Int. Request Low Time         | 5.0V            | 3TpC                   | <u> </u> |       | [1]                |
| 9  | TwlH            | Int. Request Input High Time  | 5.0V            | 3TpC                   |          |       | [1]                |
| 10 | Twsm            | Stop-Mode Recovery Width Spec | 5.0V            | 12<br>57pC             |          | ns    | [1]                |
| 11 | Tost            | Oscillator Startup Time       | 5.0V            | 5TpC<br>5TpC           |          |       | [3]                |
| 12 | Twdt            | Watch-Dog Timer               | 5.0V            | 5                      |          | ms    | D1 = 0, D0 = 0 [4] |
|    |                 |                               | 5.0V            | 15                     |          | ms    | D1 = 0, D0 = 1 [4] |
|    |                 |                               | 5.0V            | 25                     |          | ms    | D1 = 1, D0 = 0 [4] |
|    |                 |                               | 5.0V            | 100                    |          | ms    | D1 = 1, D0 = 1 [4] |


Notes:

[1] Timing Reference uses  $0.9 V_{cc}$  for a logic 1 and  $0.1 V_{cc}$  for a logic 0. [2] Interrupt request via Port 3 (P31-P33). [3] SMR-D5 = 0.

[4] Reg. WDT. [5] 5.0 V ±0.5 V.

### **AC ELECTRICAL CHARACTERISTICS**

Handshake Timing Diagrams





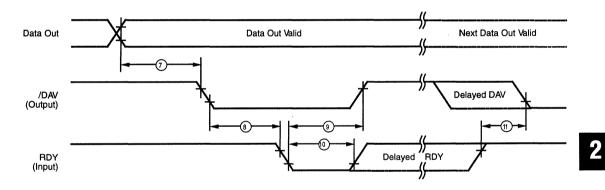



Figure 36. Output Handshake Timing

# AC ELECTRICAL CHARACTERISTICS Handshake Timing Table

|    |              |                            | V <sub>cc</sub> | T <sub>4</sub> = 0°C t | to +70°C |       | Data      |
|----|--------------|----------------------------|-----------------|------------------------|----------|-------|-----------|
| No | Symbol       | Parameter                  | Note [1]        | Ŵin                    | Max      | Units | Direction |
| 1  | TsDI(DAV)    | Data In Setup Time         | 5.0V            | 0                      |          | ns    | IN        |
| 2  | ThDI(DAV)    | Data In Hold Time          | 5.0V            | 115                    |          | ns    | IN        |
| 3  | TwDAV        | Data Available Width       | 5.0V            | 110                    |          | ns -  | IN        |
| 4  | TdDAVI(RDY)  | DAV Fall to RDY Fall Delay | 5.0V            |                        | 115      | ns    | IN        |
| 5  | TdDAVId(RDY) | DAV Rise to RDY Rise Delay | 5.0V            |                        | 80       | NS    | IN        |
| 6  | TdDO(DAV)    | RDY Rise to DAV Fall Delay | 5.0V            | 0                      |          | ns    | IN        |
| 7  | TcLDAV0(RDY) | Data Out to DAV Fall Delay | 5.0V            | 25                     |          | ns    | OUT       |
| 8  | TcLDAV0(RDY) | DAV Fall to RDY Fall Delay | 5.0V            | 0                      |          | ns    | OUT       |
| 9  | TdRDY0(DAV)  | RDY Fall to DAV Rise Delay | 5.0V            |                        | 115      | ns    | OUT       |
| 10 | TwRDY        | RDY Width                  | 5.0V            | 80                     |          | ns    | OUT       |
| 11 | TdRDY0d(DAV) | RDY Rise to DAV Fall Delay | 5.0V            |                        | 80       | ns    | OUT       |

Note:

[1] 5.0V ±0.5V

`

# **Z8 EXPANDED REGISTER FILE REGISTERS**

## **Expanded Register Bank B**

| Register                                           | Position | Attrib | Value | Description           |
|----------------------------------------------------|----------|--------|-------|-----------------------|
| Outgoing Reg.<br>to DSP EXT0<br>(High Byte) (B)%00 | 76543210 | R/W    |       | DSP EXT0, Bits D15-D8 |
| Outgoing Reg.<br>to DSP EXT0<br>(Low Byte) (B)%01  | 76543210 | R/W    |       | DSP EXT0, Bits D7-D0  |
| Outgoing Reg.<br>to DSP EXT1<br>(High Byte) (B)%02 | 76543210 | R/W    |       | DSP EXT1, Bits D15-D8 |
| Outgoing Reg.<br>to DSP EXT1<br>(Low Byte) (B)%03  | 76543210 | R/W    |       | DSP EXT1, Bits D7-D0  |
| Outgoing Reg.<br>to DSP EXT2<br>(High Byte) (B)%04 | 76543210 | R/W    |       | DSP EXT2, Bits D15-D8 |
| Outgoing Reg.<br>to DSP EXT2<br>(Low Byte) (B)%05  | 76543210 | R/W    |       | DSP EXT2, Bits D7-D0  |
| Outgoing Reg.<br>to DSP EXT3<br>(High Byte) (B)%06 | 76543210 | R/W    |       | DSP EXT3, Bits D15-D8 |
| Outgoing Reg.<br>to DSP EXT3<br>(Low Byte) (B)%07  | 76543210 | R/W    |       | DSP EXT3, Bits D7-D0  |

## **Z8 EXPANDED REGISTER FILE REGISTERS** (Continued)

| Register                                           | Position | Attrib | Value | Description           |
|----------------------------------------------------|----------|--------|-------|-----------------------|
| Incoming Reg.<br>to DSP EXT0<br>(High Byte) (B)%08 | 76543210 | R      |       | DSP EXT0, Bits D15-D8 |
| Incoming Reg.<br>to DSP EXT0<br>(Low Byte) (B)%09  | 76543210 | R      |       | DSP EXT0, Bits D7-D0  |
| Incoming Reg.<br>to DSP EXT1<br>(High Byte) (B)%0A | 76543210 | R      |       | DSP EXT1, Bits D15-D8 |
| Incoming Reg.<br>to DSP EXT1<br>(Low Byte) (B)%0B  | 76543210 | R      |       | DSP EXT1, Bits D7-D0  |
| Incoming Reg.<br>to DSP EXT2<br>(High Byte) (B)%0C | 76543210 | R      |       | DSP EXT2, Bits D15-D8 |
| Incoming Reg.<br>to DSP EXT2<br>(Low Byte) (B)%0D  | 76543210 | R      |       | DSP EXT2, Bits D7-D0  |
| Incoming Reg.<br>to DSP EXT3<br>(High Byte) (B)%0E | 76543210 | R      |       | DSP EXT3, Bits D15-D8 |
| Incoming Reg.<br>to DSP EXT3<br>(Low Byte) (B)%0F  | 76543210 | R      |       | DSP EXT3, Bits D7-D0  |

## Expanded Register Bank F

| Position | Attrib                                                                                                       | Value                                                                                                                                                                                                                                                                                                                         | Description                                          |
|----------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
|          |                                                                                                              |                                                                                                                                                                                                                                                                                                                               |                                                      |
| 76543    |                                                                                                              |                                                                                                                                                                                                                                                                                                                               | Reserved                                             |
| 2        | R                                                                                                            | 0                                                                                                                                                                                                                                                                                                                             | Port 1 Open-Drain                                    |
|          |                                                                                                              | 1                                                                                                                                                                                                                                                                                                                             | Port 1 Push-pull Active*                             |
| 1-       | R                                                                                                            | 0                                                                                                                                                                                                                                                                                                                             | Port 0 Open-Drain                                    |
|          |                                                                                                              | 1                                                                                                                                                                                                                                                                                                                             | Port 0 Push-pull Active*                             |
| 0        | R                                                                                                            | 0                                                                                                                                                                                                                                                                                                                             | P34, P35 Standard Output*                            |
|          |                                                                                                              | 1                                                                                                                                                                                                                                                                                                                             | P34, P35 Comparator Output                           |
|          |                                                                                                              |                                                                                                                                                                                                                                                                                                                               |                                                      |
| 76       | R/W                                                                                                          | 00                                                                                                                                                                                                                                                                                                                            | 2.5 MHz (OSC/8)                                      |
|          |                                                                                                              | 01                                                                                                                                                                                                                                                                                                                            | 5 MHz (OSC/4)                                        |
|          |                                                                                                              | 1x                                                                                                                                                                                                                                                                                                                            | 10 MHŻ (OSC/2)                                       |
| 5        | R                                                                                                            |                                                                                                                                                                                                                                                                                                                               | Return "O"                                           |
|          | W                                                                                                            | 0                                                                                                                                                                                                                                                                                                                             | No effect                                            |
|          |                                                                                                              | 1                                                                                                                                                                                                                                                                                                                             | Reset DSP                                            |
| 4        | R/W                                                                                                          |                                                                                                                                                                                                                                                                                                                               | Halt_DSP                                             |
|          |                                                                                                              |                                                                                                                                                                                                                                                                                                                               | Run_DSP                                              |
| 32       |                                                                                                              |                                                                                                                                                                                                                                                                                                                               |                                                      |
|          |                                                                                                              | 700                                                                                                                                                                                                                                                                                                                           | Return "0"                                           |
|          |                                                                                                              |                                                                                                                                                                                                                                                                                                                               | No effect                                            |
| 1-       | R                                                                                                            |                                                                                                                                                                                                                                                                                                                               | FB_DSP_INT2                                          |
| -        |                                                                                                              | 1                                                                                                                                                                                                                                                                                                                             | Set DSP_INT2                                         |
|          | ••                                                                                                           |                                                                                                                                                                                                                                                                                                                               | No effect                                            |
| 0        | R                                                                                                            | Ũ                                                                                                                                                                                                                                                                                                                             | FB_Z8_IRQ3                                           |
| 0        |                                                                                                              | 1                                                                                                                                                                                                                                                                                                                             | Clear IRQ3                                           |
|          |                                                                                                              | 0                                                                                                                                                                                                                                                                                                                             | No effect                                            |
| 76543210 | R/W                                                                                                          | %NN                                                                                                                                                                                                                                                                                                                           | Port 4 Data Register                                 |
| 76543210 | R                                                                                                            | %FF                                                                                                                                                                                                                                                                                                                           | Returns %FF                                          |
|          |                                                                                                              | W                                                                                                                                                                                                                                                                                                                             | 0 Defines P4X as Output                              |
|          |                                                                                                              |                                                                                                                                                                                                                                                                                                                               | 1 Defines P4X as Input                               |
| 76543210 | R/W                                                                                                          | %NN                                                                                                                                                                                                                                                                                                                           | Port 5 Data Register                                 |
| 76543210 | R                                                                                                            | %FF                                                                                                                                                                                                                                                                                                                           | Returns %FF                                          |
|          |                                                                                                              | W                                                                                                                                                                                                                                                                                                                             | 0 Defines P5X pin as Output                          |
|          |                                                                                                              |                                                                                                                                                                                                                                                                                                                               | 1 Defines P5X pin as Input                           |
|          |                                                                                                              |                                                                                                                                                                                                                                                                                                                               |                                                      |
| 765-321- |                                                                                                              |                                                                                                                                                                                                                                                                                                                               | Reserved                                             |
| 4        | W                                                                                                            | 0                                                                                                                                                                                                                                                                                                                             | Port 5 Open-Drain                                    |
|          |                                                                                                              | 1                                                                                                                                                                                                                                                                                                                             | Port 5 Push-pull Active*                             |
|          |                                                                                                              |                                                                                                                                                                                                                                                                                                                               |                                                      |
| 0        | W                                                                                                            | 0                                                                                                                                                                                                                                                                                                                             | Port 4 Open-Drain                                    |
|          | 76543<br>2<br>0<br>76<br>5<br>4<br>32<br>1-<br>0<br>76543210<br>76543210<br>76543210<br>76543210<br>76543210 | 76543       R        2       R        0       R         760       R/W        5       R          R/W          R/W          R          R          R          R          R         76543210       R         76543210       R         76543210       R         76543210       R         76543210       R         76543210       R | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

\* Default setting after Reset

### **Z8 EXPANDED REGISTER FILE REGISTERS** (Continued)

| Register     | Position | Attrib | Value | Description                             |
|--------------|----------|--------|-------|-----------------------------------------|
| SMR (F)%0B   |          |        |       |                                         |
|              | 7        | R      | 0     | POR*                                    |
|              |          |        | 1     | Stop Recovery                           |
|              | -6       | W      | 0     | Low Stop Recovery Level*                |
|              |          |        | 1     | High Stop Recovery Level                |
|              | 5        | W      | 0     | Stop Delay On*                          |
|              |          |        | 1     | Stop Delay Off                          |
|              | 432      | W      |       | Stop-Mode Recovery Source               |
|              |          |        | 000   | POR Only*                               |
|              |          |        | 001   | Reserved                                |
|              |          |        | 010   | P31                                     |
|              |          |        | 011   | P32                                     |
|              |          |        | 100   | P33                                     |
|              |          |        | 101   | P27                                     |
|              |          |        | 110   | P2 NOR 0-3                              |
|              |          |        | 111   | P2 NOR 0-7                              |
|              | 1-       |        |       | Reserved                                |
|              | 0        | W      | 0     | SCLK/TCLK Not Divide by 16 <sup>+</sup> |
|              |          |        | 1     | SCLK/TCLK Divide by 16                  |
| WDTMR (F)%0F |          |        |       |                                         |
|              | 765      |        |       | Reserved                                |
|              | 4        | R/W    | 0     | On-Board RC for WDT*                    |
|              |          |        | 1     | XTAL for WDT                            |
|              | 3        | R/W    | 0     | WDT Off During STOP                     |
|              |          |        | 1     | WDT On During STOP*                     |
|              | 2        | R/W    | 0     | WDT Off During HALT                     |
|              |          |        | 1     | WDT On During HALT*                     |
|              | 10       | R/W    |       | Int RC Osc Ext. Clock                   |
|              |          |        | 00    | 5 ms 256 TpC                            |
|              |          |        | 01*   | 15 ms 512 TpC                           |
|              |          |        | 10    | 25 ms 1024 TpC                          |
|              |          |        | 11    | 100 ms 4096 TpC                         |

\* Default setting after Reset
 † Reset after Stop Mode Recovery

## **Z8 CONTROL REGISTERS**

| Register<br>%F0 | Position<br>76543210 | Attrib   | Value | Description<br>Reserved           |  |  |  |  |  |  |  |
|-----------------|----------------------|----------|-------|-----------------------------------|--|--|--|--|--|--|--|
| TMR %F1         |                      |          |       | TOUT Modes                        |  |  |  |  |  |  |  |
|                 | 76                   | RW       | 00    | Not Used                          |  |  |  |  |  |  |  |
|                 |                      |          | 01    | T0 Out                            |  |  |  |  |  |  |  |
|                 |                      |          | 10    | T1 Out                            |  |  |  |  |  |  |  |
|                 |                      |          | 11    | Internal Clock Out P36            |  |  |  |  |  |  |  |
|                 |                      |          |       | TIN Modes                         |  |  |  |  |  |  |  |
|                 | 54                   | RW       | 00    | External Clock Input              |  |  |  |  |  |  |  |
|                 |                      |          | 01    | Gate Input                        |  |  |  |  |  |  |  |
|                 |                      |          | 10    | Trigger Input (Non-Retriggerable) |  |  |  |  |  |  |  |
|                 |                      |          | 11    | Trigger Input (Retriggerable)     |  |  |  |  |  |  |  |
|                 | 3                    | R/W      | 0     | Disable T1 Count                  |  |  |  |  |  |  |  |
|                 | 5                    |          | 1     | Enable T1 Count                   |  |  |  |  |  |  |  |
|                 | 2                    | R/W      | Ó     | No Effect                         |  |  |  |  |  |  |  |
|                 | 2                    | 1 1/ 1 1 | 1     | Load T1                           |  |  |  |  |  |  |  |
|                 | 1-                   | R/W      | ò     | Disable T0 Count                  |  |  |  |  |  |  |  |
|                 | 1-                   | 11/99    | 1     | Enable TO Count                   |  |  |  |  |  |  |  |
|                 | 0                    | R/W      | ò     | No Effect                         |  |  |  |  |  |  |  |
|                 | 0                    |          | 1     | Load TO                           |  |  |  |  |  |  |  |
|                 |                      |          | 1     | Load To                           |  |  |  |  |  |  |  |
| Γ1 %F2          | 76543210             | R        | %NN   | T1 Current Value                  |  |  |  |  |  |  |  |
|                 |                      | W        | %NN   | T1 Initial Value                  |  |  |  |  |  |  |  |
| PRE1 %F3        | 765432               | W        |       | Prescaler Modulo (1-64 Dec)       |  |  |  |  |  |  |  |
|                 | 1-                   |          |       | T1 Clock Source                   |  |  |  |  |  |  |  |
|                 |                      | W        | 0     | External Timing Input (TIN) Mode  |  |  |  |  |  |  |  |
|                 |                      |          | 1     | Internal Clock                    |  |  |  |  |  |  |  |
|                 | 0                    |          |       | T1 Count Mode                     |  |  |  |  |  |  |  |
|                 |                      | W        | 0     | Single Pass                       |  |  |  |  |  |  |  |
|                 |                      |          | 1     | Modulo N                          |  |  |  |  |  |  |  |
|                 | 76543210             | R        | %NN   | T0 Current Value                  |  |  |  |  |  |  |  |
| 10 %F4          | 76543210             | Ŵ        | %NN   | TO Initial Value                  |  |  |  |  |  |  |  |
|                 |                      |          |       |                                   |  |  |  |  |  |  |  |
| PHEU %F5        | 765432               | W        |       | Prescaler Modulo (1-64 Dec)       |  |  |  |  |  |  |  |
|                 | 1-                   |          |       | Reserved                          |  |  |  |  |  |  |  |
|                 | 0                    |          | •     | T0 Count Mode                     |  |  |  |  |  |  |  |
|                 |                      | W        | 0     | Single Pass                       |  |  |  |  |  |  |  |
|                 |                      |          | 1     | Modulo N                          |  |  |  |  |  |  |  |
| P2M %F6         | 76543210             | W        | 0     | Defines P2X pin as Output         |  |  |  |  |  |  |  |
|                 |                      |          | 1     | Defines P2X pin as Input          |  |  |  |  |  |  |  |

## **Z8 CONTROL REGISTERS** (Continued)

| Position | Attrib                                         | Value                                           | Description                                          |  |  |  |  |
|----------|------------------------------------------------|-------------------------------------------------|------------------------------------------------------|--|--|--|--|
|          |                                                |                                                 |                                                      |  |  |  |  |
| 7        |                                                |                                                 | Reserved                                             |  |  |  |  |
| -6       | W                                              | 0                                               | P30 = Input; P37 = Output                            |  |  |  |  |
| 5        | W                                              | 0                                               | P31 = Input (TIN); P36 = Output (TOUT)*              |  |  |  |  |
|          |                                                | 1                                               | P31 = /DAV2/RDY2; P36 = RDY2//DAV2                   |  |  |  |  |
| 43       | W                                              | 00                                              | P33 = Input; P34 = Output*                           |  |  |  |  |
|          |                                                | 01                                              | P33 = Input; P34 = /DM                               |  |  |  |  |
|          |                                                | 10                                              | P33 = Input; P34 = /DM                               |  |  |  |  |
|          |                                                | 11                                              | P33 = /DAV1/RDY1; P34 = RDY1//DAV1                   |  |  |  |  |
| 2        | W                                              | 0                                               | P32 = Input; P35 = Output*                           |  |  |  |  |
|          |                                                | 1                                               | P32 = /DAV0/RDY0; P35 = RDY0//DAV0                   |  |  |  |  |
| 1-       | W                                              | 0                                               | P31, P32 Digital Mode                                |  |  |  |  |
|          |                                                | 1                                               | P31, P32 Analog Mode                                 |  |  |  |  |
| 0        | R/W                                            | 0                                               | Port 2 Open-Drain*                                   |  |  |  |  |
|          | ·                                              | 1                                               | Port 2 Push-pull Active                              |  |  |  |  |
|          |                                                |                                                 | TOUT Modes                                           |  |  |  |  |
| 76       | W                                              |                                                 | P04-P07 Mode                                         |  |  |  |  |
|          |                                                | 00                                              | Output                                               |  |  |  |  |
|          |                                                | 01                                              | Input*                                               |  |  |  |  |
|          |                                                | 1x                                              | A15-A12                                              |  |  |  |  |
| 5        | W                                              |                                                 | External Memory Timing                               |  |  |  |  |
|          |                                                | 0                                               | Normal*                                              |  |  |  |  |
|          |                                                | 1                                               | Extended                                             |  |  |  |  |
| 43       | W                                              |                                                 | P10-P17 Mode                                         |  |  |  |  |
|          |                                                | 00                                              | Byte Output                                          |  |  |  |  |
|          |                                                | 01                                              | Byte Input*                                          |  |  |  |  |
|          |                                                | 10                                              | AD7-AD0                                              |  |  |  |  |
|          |                                                | 11                                              | High-Z Ad7-Ad0, /As, /DS/ R/W, A11-A8                |  |  |  |  |
|          |                                                |                                                 | A15-A12, If selected                                 |  |  |  |  |
| 2        | W                                              |                                                 | Stack Selection                                      |  |  |  |  |
|          |                                                | 0                                               | External                                             |  |  |  |  |
|          |                                                | 1                                               | Internal*                                            |  |  |  |  |
| 10       | W                                              |                                                 | P00-P03 Mode                                         |  |  |  |  |
| 10       | ••                                             | 00                                              | Output                                               |  |  |  |  |
|          |                                                |                                                 | Input*                                               |  |  |  |  |
|          |                                                |                                                 | A11-A8                                               |  |  |  |  |
|          | 7<br>-6<br>5<br>43<br>1-<br>0<br>76<br>5<br>43 | 7 W<br>5 W<br>43 W<br>W<br>W<br>W<br>W<br>W<br> | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |  |  |  |  |

| $\langle \! \! \rangle$ | Z | ഥ്ച |
|-------------------------|---|-----|
|-------------------------|---|-----|

| Register            | Position | Attrib | Value    | Description                                    |  |  |  |  |  |  |
|---------------------|----------|--------|----------|------------------------------------------------|--|--|--|--|--|--|
| IPR %F9             | 76       |        |          | Reserved                                       |  |  |  |  |  |  |
| IPR %F9 76<br>5<br> | 5        | W      |          | IRQ3, IRQ5 Priority (Group A)                  |  |  |  |  |  |  |
|                     |          |        | 0        | IRQ5 > IRQ3                                    |  |  |  |  |  |  |
|                     |          |        | 1        | IRQ3 > IRQ5                                    |  |  |  |  |  |  |
|                     | 1-       | W      |          | IRQ0, IRQ2 Priority (Group B)                  |  |  |  |  |  |  |
|                     |          |        | 0        | IRQ2 > IRQ0                                    |  |  |  |  |  |  |
|                     |          |        | 1        | IRQ0 > IRQ2                                    |  |  |  |  |  |  |
|                     | 2        | W      |          | IRQ1, IRQ4 Priority (Group C)                  |  |  |  |  |  |  |
|                     |          |        | 0        | IRQ1 > IRQ4                                    |  |  |  |  |  |  |
|                     |          |        | 1        | IRQ4 > IRQ1                                    |  |  |  |  |  |  |
|                     | 430      | W      |          | Interrupt Group Priority                       |  |  |  |  |  |  |
|                     | •        |        | 000      | Reserved                                       |  |  |  |  |  |  |
|                     |          |        | 001      | C>A>B                                          |  |  |  |  |  |  |
|                     |          |        | 010      | A>B>C                                          |  |  |  |  |  |  |
|                     |          |        | 011      | A>C>B                                          |  |  |  |  |  |  |
|                     |          |        | 100      | B>C>A                                          |  |  |  |  |  |  |
|                     |          |        | 101      | C>B>A                                          |  |  |  |  |  |  |
|                     |          |        | 110      | B>A>C                                          |  |  |  |  |  |  |
|                     |          |        | 111      | Reserved                                       |  |  |  |  |  |  |
|                     |          |        |          |                                                |  |  |  |  |  |  |
| IRQ %FA             | 76       | R/W    |          | Inter Edge (R = Rising edge; F = Falling edge) |  |  |  |  |  |  |
|                     |          |        | 00       | P31 = F; P32 = F                               |  |  |  |  |  |  |
|                     |          |        | 01       | P31 = F; P32 = R                               |  |  |  |  |  |  |
|                     |          |        | 10       | P31 = R; P32 = F                               |  |  |  |  |  |  |
|                     |          |        | 11       | P31 = RF; P32 = RF                             |  |  |  |  |  |  |
|                     | 543210   | R/W    |          | IRQ5 = T1                                      |  |  |  |  |  |  |
|                     |          |        |          | IRQ4 = TO                                      |  |  |  |  |  |  |
|                     |          |        |          | IRQ3 = DSP                                     |  |  |  |  |  |  |
|                     |          |        |          | IRQ2 = P31 Input                               |  |  |  |  |  |  |
|                     |          |        |          | IRQ1 = P33 Input                               |  |  |  |  |  |  |
|                     |          |        |          | IRQ0 = P32 Input                               |  |  |  |  |  |  |
| IMB %FB             | 7        | R/W    | 0        | Disables Interrupts                            |  |  |  |  |  |  |
|                     | ,        | .,     | 1        | Enables Interrupts                             |  |  |  |  |  |  |
|                     | -6       | RW     | 0<br>0   | Disables RAM Protect                           |  |  |  |  |  |  |
|                     | 0        |        | 1        | Enables RAM Protect                            |  |  |  |  |  |  |
|                     | 543210   | R/W    | Ó        | Disables IRQ5-IRQ0 (D0 = IRQ0)                 |  |  |  |  |  |  |
|                     | 545210   | .,,.,  | 1        | Enables IRQ5-IRQ0                              |  |  |  |  |  |  |
| Elage %EC           | 7        | R/W    |          | Carry Flag                                     |  |  |  |  |  |  |
| nays 7010           | -6       | R/W    |          | Zero Flag                                      |  |  |  |  |  |  |
|                     | -        | R/W    |          | Sign Flag                                      |  |  |  |  |  |  |
|                     | -        | R/W    |          | • •                                            |  |  |  |  |  |  |
|                     |          | R/W    |          | Overflow Flag                                  |  |  |  |  |  |  |
|                     |          |        |          | Decimal Adjust Flag                            |  |  |  |  |  |  |
|                     |          | R/W    |          | Half Carry Flag                                |  |  |  |  |  |  |
|                     |          | R/W    |          | User Flag F2                                   |  |  |  |  |  |  |
|                     | 0        | R/W    |          | User Flag F1                                   |  |  |  |  |  |  |
| RP %FD              | 7654     | R/W    | %N0      | Working Register Group                         |  |  |  |  |  |  |
|                     | 3210     | R/W    | %0N      | Expanded Register File Bank                    |  |  |  |  |  |  |
| SPH %FE             | 76543210 | R/W    | %NN      | Stack Pointer Upper Byte                       |  |  |  |  |  |  |
| SPL %FF             | 76543210 | R/W    | %NN      | Stack Pointer Lower Byte                       |  |  |  |  |  |  |
|                     | ,0545210 |        | /01 11 1 |                                                |  |  |  |  |  |  |

### **Z8 INSTRUCTION SET NOTATION**

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

| Symbol | Meaning                                        |
|--------|------------------------------------------------|
| IRR    | Indirect register pair or indirect working-    |
|        | register pair address                          |
| Irr    | Indirect working-register pair only            |
| Х      | Indexed address                                |
| DA     | Direct address                                 |
| RA     | Relative address                               |
| IM     | Immediate                                      |
| R      | Register or working-register address           |
| r      | Working-register address only                  |
| IR     | Indirect-register or indirect                  |
|        | working-register address                       |
| Ir     | Indirect working-register address only         |
| RR     | Register pair or working register pair address |

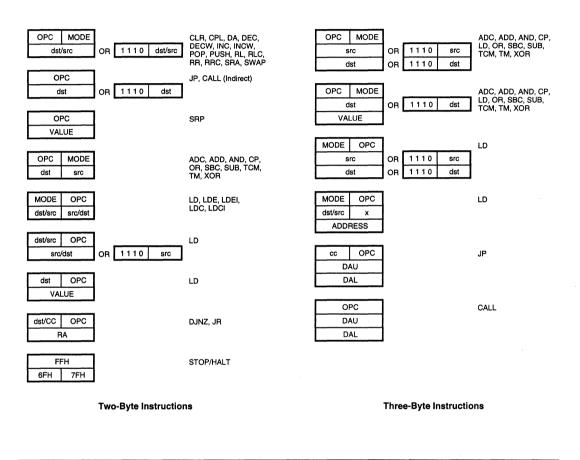
**Symbols.** The following symbols are used in describing the instruction set.

| Symbol | Meaning                              |  |  |  |  |  |  |  |
|--------|--------------------------------------|--|--|--|--|--|--|--|
| dst    | Destination location or contents     |  |  |  |  |  |  |  |
| src    | Source location or contents          |  |  |  |  |  |  |  |
| сс     | Condition code                       |  |  |  |  |  |  |  |
| @      | Indirect address prefix              |  |  |  |  |  |  |  |
| SP     | Stack Pointer                        |  |  |  |  |  |  |  |
| PC     | Program Counter                      |  |  |  |  |  |  |  |
| FLAGS  | Flag register (Control Register 252) |  |  |  |  |  |  |  |
| RP     | Register Pointer (R253)              |  |  |  |  |  |  |  |
| IMR    | Interrupt mask register (R251)       |  |  |  |  |  |  |  |

Flags. Control register (R252) contains the following six flags:

| Symbol        | Meaning                             |
|---------------|-------------------------------------|
| С             | Carry flag                          |
| Z Ì           | Zero flag                           |
| S             | Sign flag                           |
| V             | Overflow flag                       |
| D             | Decimal-adjust flag                 |
| Н             | Half-carry flag                     |
| Affected flag | gs are indicated by:                |
| 0             | Clear to zero                       |
| 1             | Set to one                          |
| *             | Set to clear according to operation |
| -             | Unaffected                          |
| х             | Undefined                           |

### **CONDITION CODES**


| Value | Mnemonic | Meaning                        | Flags Set             |
|-------|----------|--------------------------------|-----------------------|
| 1000  |          | Always True                    |                       |
| 0111  | С        | Carry                          | C = 1                 |
| 1111  | NC       | No Carry                       | C = 0                 |
| 0110  | Z        | Zero                           | Z = 1                 |
| 1110  | NZ       | Not Zero                       | Z = 0                 |
| 1101  | PL       | Plus                           | S = 0                 |
| 0101  | MI       | Minus                          | S = 1                 |
| 0100  | OV       | Overflow                       | V = 1                 |
| 1100  | NOV      | No Overflow                    | V = 0                 |
| 0110  | EQ       | Equal                          | Z = 1                 |
| 1110  | NE       | Not Equal                      | Z = 0                 |
| 1001  | GE       | Greater Than or Equal          | (S XOR V) = 0         |
| 0001  | LT       | Less than                      | (S XOR V) = 1         |
| 1010  | GT       | Greater Than                   | [Z OR (S XOR V)] = 0  |
| 0010  | LE       | Less Than or Equal             | [Z OR (S XOR V)] = 1  |
| 1111  | UGE      | Unsigned Greater Than or Equal | C = 0                 |
| 0111  | ULT      | Unsigned Less Than             | C = 1                 |
| 1011  | UGT      | Unsigned Greater Than          | (C = 0 AND Z = 0) = 1 |
| 0011  | ULE      | Unsigned Less Than or Equal    | (C OR Z) = 1          |
| 0000  |          | Never True                     |                       |

CCF, DI, EI, IRET, NOP, RCF, RET, SCF

#### INSTRUCTION FORMATS



**One-Byte Instructions** 



### INSTRUCTION SUMMARY

**Note:** Assignment of a value is indicated by the symbol "  $\leftarrow$  ". For example:

dst ← dst + src

indicates that the source data is added to the destination data and the result is stored in the destination location. The

notation "addr (n)" is used to refer to bit (n) of a given operand location. For example:

dst (7)

refers to bit 7 of the destination operand.

# **INSTRUCTION SUMMARY** (Continued)

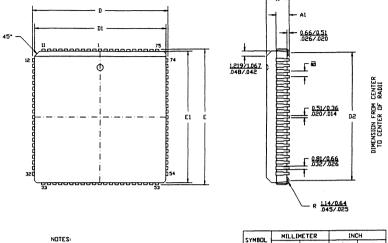
| Instruction<br>and Operation               | Address<br>Mode<br>dst src | Opcode<br>Byte (Hex) | A | ags<br>ffec<br>Z | ted |   | D | н | Instruction<br>and Operation                                 | Мо       | dress<br>de<br>src | Opcode<br>Byte (Hex)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Af |   | ted |   | D | н |
|--------------------------------------------|----------------------------|----------------------|---|------------------|-----|---|---|---|--------------------------------------------------------------|----------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|-----|---|---|---|
| <b>ADC</b> dst, src<br>dst←dst + src +C    | †                          | 1[]                  | * | *                | *   | * | 0 | * | <b>INC</b> dst<br>dst←dst + 1                                | r<br>R   |                    | rE<br>r = 0 - F<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -  | * | *   | * | - | - |
| ADD dst, src<br>dst←dst + src              | †                          | 0[]                  | * | *                | *   | * | 0 | * |                                                              | IR       |                    | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |   |     |   |   |   |
| AND dst, src                               | †                          | 5[]                  | - | *                | *   | 0 | - | - | <b>INCW</b> dst<br>dst←dst + 1                               | RR<br>IR |                    | A0<br>A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -  | * | *   | * | - | - |
| dst←dst AND src                            |                            |                      |   |                  |     |   |   |   | IRET                                                         |          |                    | BF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *  | * | *   | * | * | * |
| CALL dst<br>SP←SP - 2<br>@SP←PC,<br>PC←dst | DA<br>IRR                  | D6<br>D4             | - | -                | -   | - | - | - | FLAGS←@SP;<br>SP←SP + 1<br>PC←@SP;<br>SP←SP + 2;<br>IMR(7)←1 |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |   |     |   |   |   |
| CCF<br>C←NOT C                             |                            | EF                   | * | -                | -   | - | - | - | JP cc, dst                                                   | DA       |                    | cD<br>c = 0 - F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -  | - | -   | - | - | - |
| CLR dst<br>dst←0                           | R                          | B0<br>B1             | - | -                | -   | - | - | - | PC←dst                                                       | IRR      | 1                  | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |   |     |   |   |   |
|                                            |                            |                      |   |                  |     |   |   |   | JR cc, dst                                                   | RA       |                    | сВ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -  | - | -   | - | • | - |
| <b>COM</b> dst<br>dst←NOT dst              | R<br>IR                    | 60<br>61             | - | *                | *   | 0 | - | - | if cc is true,<br>PC←PC + dst<br>Range: +127,                |          |                    | c = 0 - F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |   |     |   |   |   |
| CP dst, src<br>dst - src                   | †                          | A[ ]                 | * | *                | *   | * | - | - | -128                                                         |          |                    | <b>2</b> Mar And State Stat |    |   |     |   |   |   |
|                                            |                            |                      |   |                  |     |   |   |   | <b>LD</b> dst, src<br>dst←src                                | r        | lm<br>P            | rC<br>r8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -  | - | -   | - | - | - |
| <b>DA</b> dst<br>dst←DA dst                | R<br>IR                    | 40<br>41             | * | *                | *   | х | - | - | usi <del>(</del> si c                                        | r<br>R   | R<br>r             | r9<br>r = 0 - F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |   |     |   |   |   |
| DEC dst                                    | R                          | 00                   | - | *                | *   | * | - | - |                                                              | r        | Х                  | C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |   |     |   |   |   |
| dst←dst - 1                                | IR                         | 01                   |   |                  |     |   |   |   |                                                              | Х        | r                  | D7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |   |     |   |   |   |
|                                            |                            |                      |   |                  |     |   |   |   |                                                              | r<br>Ir  | lr<br>r            | E3<br>F3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |   |     |   |   |   |
| DECW dst                                   | RR                         | 80                   | - | *                | *   | * | - | - |                                                              | R        | R                  | E4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |   |     |   |   |   |
| dst←dst - 1                                | IR                         | 81                   |   |                  |     |   |   |   |                                                              | R        | IR                 | E5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |   |     |   |   |   |
| DI                                         |                            | 8F                   |   | -                | -   | - | - | - |                                                              | R        | IM                 | E6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |   |     |   |   |   |
| IMR(7)←0                                   |                            |                      |   |                  |     |   |   |   |                                                              | IR<br>IR | IM<br>R            | E7<br>F5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |   |     |   |   |   |
| DJNZr, dst                                 | RA                         | rA                   | - | -                | -   | - | - | - |                                                              |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |   |     |   |   |   |
| r←r-1<br>ifr≠0                             |                            | r = 0 - F            |   |                  |     |   |   |   | LDC dst, src                                                 | r        | Irr                | C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -  | - | -   | - | - | - |
| PC←PC + dst<br>Range: +127,<br>-128        |                            |                      |   |                  |     |   |   |   | <b>LDCI</b> dst, src<br>dst←src<br>r←r +1;<br>rr←rr + 1      | lr       | Irr                | C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -  | - | -   | - | - | - |
| <b>EI</b><br>IMR(7)←1                      |                            | 9F                   | - | -                | -   | - | - | - |                                                              |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |   |     |   |   |   |
| HALT                                       |                            | 7F                   | - | -                | _   | - | - | - |                                                              |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |   |     |   |   |   |

### **INSTRUCTION SUMMARY** (Continued)

| Instruction<br>and Operation            | Mo      | dress<br>de<br>src | Opcode<br>Byte (Hex) | Af |   | ted |   | D | н | Instructi<br>and Ope                     |
|-----------------------------------------|---------|--------------------|----------------------|----|---|-----|---|---|---|------------------------------------------|
| NOP                                     |         |                    | FF                   | -  | - | -   | - | • | - | STOP                                     |
| <b>OR</b> dst, src<br>dst←dst OR src    | †       |                    | 4[]                  | -  | * | *   | 0 | - | - | <b>SUB</b> dst<br>dst←dst                |
| <b>POP</b> dst<br>dst←@SP;<br>SP←SP + 1 | R<br>IR |                    | 50<br>51             | -  | - | -   | - | - | - | SWAP d                                   |
| PUSH src<br>SP←SP - 1;<br>@SP←src       |         | R<br>IR            | 70<br>71             | -  | - | -   | - | - | - | <b>TCM</b> dst<br>(NOT dsi<br>AND src    |
| <b>RCF</b><br>C←0                       |         |                    | CF                   | 0  | - | -   | - | - | - | TM dst, s<br>dst AND                     |
| <b>RET</b><br>PC←@SP;<br>SP←SP + 2      |         |                    | AF                   | -  | - | -   | - | - | - | <b>XOR</b> dst<br>dst←dst<br>XOR src     |
| RL dst                                  | R<br>IR |                    | 90<br>91             | *  | * | *   | * | - | - | † These i<br>are encod                   |
| RLC dst                                 | R<br>IR |                    | 10<br>11             | *  | * | *   | * | - | - | set table a<br>in this tab<br>applicable |
| RR dst                                  | R<br>IR |                    | EO<br>E1             | *  | * | *   | * | - | - | For exam<br>modes r (                    |
| RRC dst                                 | R<br>IR |                    | C0<br>C1             | *  | * | *   | * | - | - | Addr<br>dst<br>r                         |
| <b>SBC</b> dst, src<br>dst←dst←src←C    | †       |                    | 3[]                  | *  | * | *   | * | 1 | * | r                                        |
| <b>SCF</b><br>C←1                       |         |                    | DF                   | 1  | - | -   | - | - | - | R                                        |
|                                         | R<br>IR |                    | D0<br>D1             | *  | * | *   | 0 | - | - | R                                        |
| SRP src<br>RP←src                       |         | lm                 | 31                   | -  | - | -   | - | - | - | IR                                       |

|                                           | Address         |                      | Fla | ags      |   |   |   |   |
|-------------------------------------------|-----------------|----------------------|-----|----------|---|---|---|---|
| Instruction<br>and Operation              | Mode<br>dst src | Opcode<br>Byte (Hex) |     | fec<br>Z |   | v | D | н |
| STOP                                      |                 | 6F                   | -   | -        | - | - | - | - |
| SUB dst, src<br>dst←dst←src               | +               | 2[]                  | *   | *        | * | * | 1 | * |
| <b>SWAP</b> dst                           | R<br>IR         | F0<br>F1             | Х   | *        | * | X | - | - |
| TCM dst, src<br>(NOT dst)<br>AND src      | †               | 6[]                  | -   | *        | * | 0 | - | - |
| TM dst, src<br>dst AND src                | †               | 7[]                  | -   | *        | * | 0 | - | - |
| <b>XOR</b> dst, src<br>dst←dst<br>XOR src | †               | B[ ]                 | -   | *        | * | 0 | - | - |

† These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is expressed symbolically by a '[]' in this table, and its value is found in the following table to the left of the applicable addressing mode pair.


For example, the opcode of an ADC instruction using the addressing modes r (destination) and Ir (source) is 13.

| -             |                |                        |
|---------------|----------------|------------------------|
| Addres<br>dst | ss Mode<br>src | Lower<br>Opcode Nibble |
| r             | r              | [2]                    |
| r             | lr             | [3]                    |
| R             | R              | [4]                    |
| R             | IR             | [5]                    |
| R             | IM             | [6]                    |
| IR            | IM             | [7]                    |
|               |                |                        |

### **OPCODE MAP**

|                    |   |                                                                |                           |                              |                             |                              |                              | L                            | ower Nil                     | bble (He            | ()                             |                                            |                                 |                                       |                     |                         |                  |                    |
|--------------------|---|----------------------------------------------------------------|---------------------------|------------------------------|-----------------------------|------------------------------|------------------------------|------------------------------|------------------------------|---------------------|--------------------------------|--------------------------------------------|---------------------------------|---------------------------------------|---------------------|-------------------------|------------------|--------------------|
|                    |   | 0                                                              | 1                         | 2                            | 3                           | 4                            | 5                            | 6                            | 7                            | 8                   | 9                              |                                            | A                               | В                                     | с                   | D                       | E                | F                  |
|                    | 0 | 6.5<br><b>DEC</b><br>R1                                        | 6.5<br>DEC<br>IR1         | 6.5<br>ADD<br>r1, r2         | 6.5<br>ADD<br>r1, lr2       | 10.5<br><b>ADD</b><br>R2, R1 | 10.5<br>ADD<br>IR2, R1       | 10.5<br>ADD<br>R1, IM        | 10.5<br>ADD<br>IR1, IM       | 6.5<br>LD<br>r1, R2 | 6.5<br>LD<br>r2, R             |                                            | 2/10.5<br><b>DJNZ</b><br>r1, RA | 12/10.0<br>JR<br>cc <u>,</u> RA       | 6.5<br>LD<br>r1, IM | 12.10.0<br>JP<br>cc, DA | 6.5<br>INC<br>r1 |                    |
|                    | 1 | 6.5<br><b>RLC</b><br>R1                                        | 6.5<br><b>RLC</b><br>IR1  | 6.5<br>ADC<br>r1, r2         | 6.5<br>ADC<br>r1, lr2       | 10.5<br><b>ADC</b><br>R2, R1 | 10.5<br>ADC<br>IR2, R1       | 10.5<br>ADC<br>R1, IM        | 10.5<br>ADC<br>IR1, IM       |                     |                                |                                            |                                 |                                       |                     |                         |                  |                    |
|                    | 2 | 6.5<br>INC<br>R1                                               | 6.5<br>INC                | 6.5<br>SUB<br>r1, r2         | 6.5<br>SUB<br>r1, lr2       | 10.5<br>SUB<br>R2, R1        | 10.5<br>SUB<br>IR2, R1       | 10.5<br><b>SUB</b><br>R1, IM | 10.5<br>SUB                  |                     |                                |                                            |                                 |                                       |                     |                         |                  |                    |
|                    | 3 | 8.0<br>JP                                                      | IR1<br>6.1<br>SRP         | 6.5<br>SBC                   | 6.5<br>SBC                  | 10.5<br>SBC                  | 10.5<br>SBC                  | 10.5<br>SBC                  | 1R1, IM<br>10.5<br>SBC       |                     |                                |                                            |                                 |                                       |                     |                         |                  |                    |
|                    | 4 | IRR1<br>8.5<br>DA                                              | IM<br>8.5<br>DA           | r1, r2<br>6.5<br><b>OR</b>   | r1, lr2<br>6.5<br><b>OR</b> | R2, R1<br>10.5<br><b>OR</b>  | IR2, R1<br>10.5<br><b>OR</b> | R1, IM<br>10.5<br><b>OR</b>  | IR1, IM<br>10.5<br>OR        |                     |                                |                                            |                                 |                                       |                     |                         |                  |                    |
|                    | 5 | R1<br>10.5<br><b>POP</b>                                       | IR1<br>10.5<br><b>POP</b> | r1, r2<br>6.5<br>AND         | r1, lr2<br>6.5<br>AND       | R2, R1<br>10.5<br>AND        | IR2, R1<br>10.5<br>AND       | R1, IM<br>10.5<br><b>AND</b> | IR1, IM<br>10.5<br>AND       |                     |                                |                                            |                                 |                                       |                     |                         |                  | 6.0<br>WDT         |
|                    | 6 | R1<br>6.5<br>COM                                               | IR1<br>6.5<br>COM         | r1, r2<br>6.5<br>TCM         | r1, lr2<br>6.5<br>TCM       | R2, R1<br>10.5<br>TCM        | IR2, R1<br>10.5<br>TCM       | R1, IM<br>10.5<br>TCM        | IR1, IM<br>10.5<br>TCM       |                     |                                |                                            |                                 |                                       |                     |                         |                  | 6.0<br>STOP        |
| e (Hex)            | 7 | R1<br>10/12.1<br><b>PUSH</b>                                   | IR1<br>12/14.1<br>PUSH    | r1, r2<br>6.5<br>TM          | r1, lr2<br>6.5<br>TM        | R2, R1<br>10.5<br>TM         | IR2, R1<br>10.5<br>TM        | R1, IM<br>10.5<br>TM         | IR1, IM<br>10.5<br><b>TM</b> |                     |                                |                                            |                                 |                                       |                     |                         |                  | 7.0<br>HALT        |
| Upper Nibble (Hex) | 8 | R2<br>10.5<br>DECW                                             | IR2<br>10.5<br>DECW       | r1, r2<br>12.0<br>LDE        | r1, lr2<br>18.0<br>LDEI     | R2, R1                       | IR2, R1                      | R1, IM                       | IR1, IM                      |                     |                                |                                            |                                 |                                       |                     |                         |                  | 6.1                |
|                    | 9 | RR1<br>6.5<br>RL                                               | IR1<br>6.5<br>RL          | r1, irr2<br>12.0<br>LDE      | ir1, irr2<br>18.0<br>LDEI   |                              |                              |                              |                              |                     |                                |                                            |                                 |                                       |                     |                         |                  | <b>DI</b><br>6.1   |
|                    | A | R1<br>10.5                                                     | IR1<br>10.5<br>INCW       | r2, Irr1<br>6.5<br>CP        | 6.5<br>CP                   | 10.5<br>CP                   | 10.5<br>CP                   | 10.5<br>CP                   | 10.5<br>CP                   |                     |                                |                                            |                                 |                                       |                     |                         |                  | EI<br>14.0         |
|                    |   | INCW<br>RR1<br>6.5                                             | IR1<br>6.5                | r1, r2<br>6.5                | r1, lr2<br>6.5              | R2, R1<br>10.5               | IR2, R1<br>10.5              | R1, IM<br>10.5               | IR1, IM<br>10.5              |                     |                                |                                            |                                 |                                       |                     |                         |                  | <b>RET</b><br>16.0 |
|                    | в | CLR<br>R1<br>6.5                                               | CLR<br>IR1<br>6.5         | <b>XOR</b><br>r1, r2<br>12.0 | XOR<br>r1, lr2<br>18.0      | <b>XOR</b><br>R2, R1         | XOR<br>IR2, R1               | XOR<br>R1, IM                | XOR<br>IR1, IM<br>10.5       |                     |                                |                                            |                                 |                                       |                     |                         |                  | <b>IRET</b><br>6.5 |
|                    | С | RRC<br>R1<br>6.5                                               | RRC<br>IR1<br>6.5         | LDC<br>r1, lrr2<br>12.0      | LDCI<br>Ir1, Irr2<br>18.0   | 20.0                         |                              | 20.0                         | LD<br>r1,x,R2<br>10.5        |                     |                                |                                            |                                 |                                       |                     |                         |                  | 8CF<br>6.5         |
|                    | D | SRA<br>R1<br>6.5                                               | SRA<br>IR1<br>6.5         | LDC<br>r2, Irr1              | LDCI<br>Ir2, Irr1<br>6.5    | CALL*<br>IRR1<br>10.5        | 10.5                         | CALL<br>DA<br>10.5           | LD<br>r2,x,R1<br>10.5        |                     |                                |                                            |                                 |                                       |                     |                         |                  | <b>SCF</b><br>6.5  |
|                    | E | RR<br>R1<br>8.5                                                | RR<br>IR1<br>8.5          |                              | LD<br>r1, IR2<br>6.5        | LD<br>R2, R1                 | LD<br>IR2, R1<br>10.5        | LD<br>R1, IM                 | LD<br>IR1, IM                |                     |                                |                                            |                                 |                                       |                     |                         |                  | 6.0                |
|                    | F | SWAP<br>R1                                                     | SWAP<br>IR1               |                              | LD<br>Ir1, r2               |                              | <b>LD</b><br>R2, IR1         |                              |                              | <b>.</b>            | V                              |                                            | ¥                               | <b>V</b>                              |                     |                         |                  | NOP                |
|                    |   | <u> </u>                                                       |                           |                              |                             |                              | 3                            |                              |                              |                     |                                |                                            | 2                               |                                       |                     | 3                       | _                | 1                  |
|                    |   |                                                                |                           |                              |                             |                              |                              | В                            | ytes per                     | Instructi           | on                             |                                            |                                 |                                       |                     |                         |                  |                    |
|                    |   | Lower<br>Opcode<br>Nibble<br>Cycles<br>4<br>Pipeline<br>Cycles |                           |                              |                             |                              |                              |                              |                              | R<br>r<br>R         | = 4-bit<br>1 or r <sub>2</sub> | address<br>address<br>= Dst ad<br>= Src ad |                                 |                                       |                     |                         |                  |                    |
|                    |   | Upper<br>Opcode A R1, R2, Mnemonic                             |                           |                              |                             |                              |                              |                              |                              |                     | 0<br>S                         | econd                                      | First Ope<br>Operand            |                                       |                     |                         |                  |                    |
|                    | • | Nibble<br>First<br>Operand<br>Operand                          |                           |                              |                             |                              |                              |                              |                              |                     |                                |                                            | 2-byte                          | ank areas<br>instructio<br>instructio | n appea             |                         |                  |                    |

## **PACKAGE INFORMATION**



I.CONTROLLING DIMENSIONS | INCH 2.LEADS ARE COPLANAR WITHIN .004 IN. 3. DIMENSION | <u>MM</u> INCH

| SYMBOL | MILLIN | ETER  | INCH     |       |  |  |
|--------|--------|-------|----------|-------|--|--|
| STHDUC | MIN    | MAX   | MIN      | MAX   |  |  |
| A      | 4.32   | 4.57  | .170     | .180  |  |  |
| Al     | 2.67   | 2.92  | .105     | .115  |  |  |
| D/E    | 30.10  | 30.35 | 1.185    | 1.195 |  |  |
| D1/E1  | 29.21  | 29.41 | 1.150    | 1.158 |  |  |
| DS     | 27.94  | 28.58 | 1.100    | 1.125 |  |  |
| B      | 1.27   | TYP   | .050 TYP |       |  |  |

#### 84-Pin PLCC Package Diagram

#### **ORDERING INFORMATION**

#### Z89C67 Z89C68

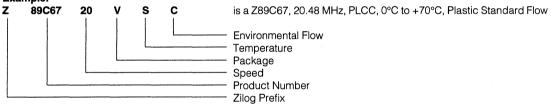
| 20 MHz      | 20 MHz      |
|-------------|-------------|
| 84-Pin PLCC | 84-Pin PLCC |
| Z89C6720VSC | Z89C6820VSC |

#### Codes

**Speed** 20 = 20.48MHz

#### Package

V = Plastic Leaded Chip Carrier (PLCC)


#### Temperature

 $S = 0^{\circ}C to + 70^{\circ}C$ 

#### Environment

C = Plastic Standard

#### Example:





Introduction



Superintegration<sup>™</sup> Products Guide



Z89C65, Z89C66 (ROMIess) Dual Processor T.A.M. Controller



Z89C67, Z89C68 (ROMIess) Dual Processor Tapeless T.A.M. Controller



log's Literature Guide



Zilog's Literature Guide Ordering Information



# <sup>®</sup> ZilŒ

# Z89C6500ZDB PRODUCT SPECIFICATION

# SUPPORTED DEVICES: Z89C65, Z89C66

# DESCRIPTION

The Z89C6500ZDB is a daughter board that provides emulation support for Zilog's Z89C65 and Z89C66 microcontrollers. This includes all the essential MCU timing and I/O circuitry which simplifies user emulation of the prototype hardware and/or software. The internal mask ROMs of Z89C65 and Z89C66 are emulated by external EPROMs on the board.

# SPECIFICATIONS

**Emulation Specification** 

Maximum Emulation Speed: 20.48 MHz

**Power Requirements** 

+5 Vdc @ 1.4A

#### KIT CONTENTS Z89C65 Emulation Daughter Board

Z86C5020GSE ICE Chip Clarkspur CD2400 Three EPM5128 EPLD Three EPM5192 EPLD 64K x 8 Static RAM Six HP-16500A Logic Analysis System Interface Connectors 80/80 Pin Target Connectors

#### Cables

12" 84-Pin PLCC Emulation Cable 15" Power Cable with Banana Plugs 48" Power Cable

#### **Documentation**

Z89C65 User's Manual Supplement Registration Card

### **ORDERING INFORMATION**

Part No: Z89C6500ZDB

Z89C6500ZEM

PRODUCT SPECIFICATION

# 

# SUPPORTED DEVICES: Z89C65, Z89C66

## DESCRIPTION

The Z89C6500ZEM is a member of Zilog's ICEBOX<sup>™</sup> product family of in-circuit emulators. The emulator provides emulation support for Zilog's Z89C65 and Z89C66 microcontrollers. This includes all essential MCU timing and I/O circuitry which simplifies user emulation of the prototype hardware and/or software.

Data entering and program debugging are performed by the monitor ROM and the Host Package which communicates via a RS-232C serial interface with a fixed 19200 baud rate. The user program can be downloaded directly from the host computer via the RS-232C connector and may then be executed using various debugging commands in the monitor. The ICEBOX can be connected to a serial port COM1 or COM2 of the host computer (IBM<sup>®</sup> XT, AT, 286, 386 or 486 compatible).

# **SPECIFICATIONS**

Emulation Specification Maximum Emulation Speed: 20.48 MHz

#### **Power Requirements**

+5 Vdc @ 1.4A

#### Dimensions

Width: 6.25 in. Length: 9.50 in. Height: 2.50 in.

#### **Serial Interface**

RS-232C @ 19200 baud

#### KIT CONTENTS Z89C65 Emulator Z8® Emulation Base Board

CMOS Z86C91120PSC 8K x 8 EPROM (Programmed with Debug Monitor) EPM5128 EPLD 32K x 8 Static RAM Three 64 x 4 Static RAM RS-232C Interface Reset Switch

#### **Z89C65 Emulation Daughter Board**

Z86C5020GSE ICE Chip Clarkspur CD2400 Three EPM5128 EPLD Three EPM5192 EPLD 64K x 8 Static RAM Six HP-16500A Logic Analysis System Interface Connectors 80/80 Pin Target Connectors

#### Cables

12" 68-Pin PLCC Emulation Cable 15" Power Cable with Banana Plugs 48" Power Cable 60" DP25 RS232C Cable

#### Software (IBM PC platform)

Z80<sup>®</sup>/Z80<sup>®</sup>/Z8000<sup>®</sup> Cross Assembler MOBJ Link/Loader Host Package Windows Host Interface (GUI)

#### Documentation

Z8 ICEBOX<sup>™</sup> User's Manual Z89C65 User's Manual Supplement Z8 Cross Assembler User's Guide MOBJ Link/Loader User's Guide Windows Host Interface (GUI) User's Guide Registration Card

### **ORDERING INFORMATION**

Part No: Z89C6500ZEM

# <sup>®</sup> ZilŒ

# Z89C6700ZDB PRODUCT SPECIFICATION

# SUPPORTED DEVICES: Z89C67, Z89C68

## DESCRIPTION

The Z89C6700ZBD is a daughter board that provides emulation support for Zilog's Z89C67 and Z89C68 microcontrollers. This includes all essential MCU timing and I/O circuitry which simplifies user emulation of the prototype hardware and/or software. The internal mask ROMs of Z89C67 and Z89C68 are emulated by external EPROMs on the daughter board.

# SPECIFICATIONS

**Emulation Specification** 

Maximum Emulation Speed: 20.48 MHz

Power Requirements

+5Vdc @ 1.4A

#### **KIT CONTENTS** 289C67 Emulation Daughter Board

Z86C5020GSE ICE Chip Z89C00 DSP ICE Chip Three EPM5128 EPLD Three EPM5192 EPLD 64K x 8 Static RAM Two 100-Pin HP-16500 Interface Board Connectors 80/80 Pin Target Connectors

#### Cables

12" 84-Pin PLCC Emulation Cable 15" Power Cable with Banana Plugs

#### Documentation

Z89C67 User's Manual Supplement Registration Card

### **ORDERING INFORMATION**

Part No: Z89C6700ZDB

# 

# Z89C6700ZEM PRODUCT SPECIFICATION

# SUPPORTED DEVICES: Z89C67, Z89C68

## DESCRIPTION

The Z89C6700ZEM is a member of Zilog's ICEBOX<sup>™</sup> product family of in circuit emulators. The emulator provides emulation support for Zilog's Z89C67 microcontroller. This includes all the essential MCU timing and I/O circuitry which simplifies user emulation of the prototype hardware and/or software.

Data entering and program debugging are performed by the monitor ROM and the Host Package which communicates via a RS-232C serial interface with a fixed 19200 baud rate. The user program can be downloaded directly from the host computer via the RS-232C connector and may then be executed using various debugging commands in the monitor. The ICEBOX can be connected to a serial port COM1 or COM2 of the host computer (IBM<sup>®</sup> XT, AT, 286, 386 or 486 compatible).

# SPECIFICATIONS

Emulation Specification Maximum Emulation Speed: 20.48 MHz

#### **Power Requirements**

+5Vdc @ 1.4A

#### Dimensions

Width: 6.25 in. Length: 9.50 in. Height: 2.50 in.

#### Serial Interface

RS-232 @ 19200 baud

#### KIT CONTENTS Z89C67 Emulator Z8® Emulation Base Board

CMOS Z86C91120PSC 8K x 8 EPROM (Programmed with Debug Monitor) EPM5128 EPLD 32K x 8 Static RAM Three 64 x 4 Static RAM RS-232C Interface Reset Switch

#### **Z89C67 Emulation Daughter Board**

Z86C5020GSE ICE Chip Z89C00 DSP ICE Chip Three EPM5128 EPLD Three EPM5192 EPLD 64K x 8 Static RAM Two 100-Pin HP-16500 Interface Board Connectors 80/80 Pin Target Connectors

#### Cables

12" 84-Pin PLCC Emulation Cable 15" Power Cable with Banana Plugs 60" DP25 RS-232C Cable

#### Software (IBM PC platform)

Z8®/Z80®/Z8000® Cross Assembler MOBJ Link/Loader Host Package Windows Host Interface (GUI)

#### Documentation

Z8 ICEBOX<sup>™</sup> User Manual Z89C67 User Manual Supplement Z8 Cross Assembler User's Guide MOBJ Link/Loader User Guide Windows Host Interface User's Guide (GUI) Registration Card

### **ORDERING INFORMATION**

Part No: Z89C6700ZEM



Introduction

Superintegration<sup>™</sup> Products Guide

Z89C65, Z89C66 (ROMIess) Dual Processor T.A.M. Controller

Z89C67, Z89C68 (ROMIess) Dual Processor Tapeless T.A.M. Controller

cts 3

**Support Products** 

Zilog's Literature Guide Ordering Information

# <sup>⊗</sup>ZiLŒ

# **LITERATURE GUIDE**

DC-8275-04

### Z8<sup>®</sup>/SUPER8<sup>™</sup> MICROCONTROLLER FAMILY

#### Databooks

Part No Unit Cost

5.00

#### Z8 Microcontrollers Databook (includes the following documents)

#### **Z8 CMOS Microcontrollers**

Z86C00/C10/C20 MCU OTP Product Specification Z86C06 Z8 CCP™ Preliminary Product Specification Z86C08 8-Bit MCU Product Specification Z86E08 Z8 OTP MCU Product Specification Z86C09/19 Z8 CCP Product Specification Z86E19 Z8 OTP MCU Advance Information Specification Z86C11 Z8 MCU Product Specification Z86C12 Z8 ICE Product Specification Z86C21 Z8 MCU Product Specification Z86E21/Z86E22 OTP Product Specification Z86C30 Z8 CCP Product Specification Z86E30 Z8 OTP CCP Product Specification Z86C40 Z8 CCP Product Specification Z86E40 Z8 OTP CCP Product Specification Z86C27/97 Z8 DTC™ Product Specification Z86127 Low-Cost Digital Television Controller Adv. Info. Spec. Z86C50 Z8 CCP ICE Advance Information Specification Z86C61 Z8 MCU Advance Information Specification 786C62 78 MCU Advance Information Specification Z86C89/C90 CMOS Z8 CCP Product Specification Z86C91 Z8 ROMIess MCU Product Specification Z86C93 Z8 ROMIess MCU Preliminary Product Specification Z86C94 Z8 ROMIess MCU Product Specification Z86C96 Z8 ROMIess MCU Advance Information Specification Z88C00 CMOS Super8 MCU Advance Information Specification

#### **Z8 NMOS Microcontrollers**

28600 Z8 MCU Product Specification 28601/03/11/13 Z8 MCU Product Specification 28602 8-Bit Keyboard Controller Preliminary Product Spec. 28604 8-Bit MCU Product Specification 28612 Z8 ICE Product Specification 28671 Z8 MCU With BASIC/Debug Interpreter Product Spec. 28681/82 Z8 MCU ROMIess Product Specification 28691 Z8 MCU ROMIess Product Specification 28600/01/20/22 Super8 ROMIess/ROM Product Specification

#### Peripheral Products

Z86128 Closed-Captioned Controller Adv. Info. Specification Z765A Floppy Disk Controller Product Specification Z5380 SCSI Product Specification Z53C80 SCSI Advance Information Specification

#### **Z8** Application Notes and Technical Articles

Zilog Family On-Chip Oscillator Design Z86E21 Z8 Low Cost Thermal Printer Z8 Applications for I/O Port Expansions Z86C09/19 Low Cost Z8 MCU Emulator Z8602 Controls A 101/102 PC/Keyboard The Z8 MCU Dual Analog Comparator The Z8 MCU In Telephone Answering Systems Z8 Subroutine Library A Comparison of MCU Units Z86xx Interrupt Request Registers Z8 Family Framing A Programmer's Guide to the Z8 MCU Memory Space and Register Organization

#### Super8 Application Notes and Technical Articles

Getting Started with the Zilog Super8 Polled Async Serial Operations with the Super8 Using the Super8 Interrupt Driven Communications Using the Super8 Serial Port with DMA Generating Sine Waves with Super8 Generating DTMF Tones with Super8 A Simple Serial Parallel Converter Using the Super8

#### Additional Information

Z8 Support Products Zilog Quality and Reliability Report Literature List Package Information Ordering Information

# 2ilas

# **LITERATURE GUIDE**

DC-2604-01

DC-2605-01 DC-2639-01 DC-2645-01

N/C

N/C N/C N/C

### **Z8®/SUPER8™ MICROCONTROLLER FAMILY** (Continued)

| Databooks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Part No                                                                                                                                                                                                                                    | Unit Cost                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Digital Signal Processor Databook (includes the following documents)<br>Z89C00 16-Bit Digital Signal Processor Preliminary Product Specification<br>Z89C00 DSP Application Note "Understanding Q15 Two's Complement Fractional Multiplication"<br>Z89120, Z89920 (ROMless) 16-Bit Mixed Signal Processor Preliminary Product Specification<br>Z89121, Z89921 (ROMless) 16-Bit Mixed Signal Processor Preliminary Product Specification<br>Z89320 16-Bit Digital Signal Processor Preliminary Product Specification<br>Z89321 16-Bit Digital Signal Processor Advance Information Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DC-8299-01                                                                                                                                                                                                                                 | 3.00                                                               |
| <b>Telephone Answering Device Databook</b> (includes the following documents)<br>Z89C65, Z89C66 (ROMIess) Dual Processor T.A.M. Controller Preliminary Product Specification<br>Z89C67, Z89C68 (ROMIess) Dual Processor Tapeless T.A.M. Controller Preliminary Product Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DC-8300-01                                                                                                                                                                                                                                 | 3.00                                                               |
| Infrared Remote (IR) Control Databook (includes the following documents)<br>Z86L06 Low Voltage CMOS Consumer Controller Processor Preliminary Product Specification<br>Z86L29 6K Infrared (IR) Remote (ZIRC <sup>™</sup> ) Controller Advance Information Specification<br>Z86L70/L71/L72, Z86E72 Zilog IR (ZIRC <sup>™</sup> ) CCP <sup>™</sup> Controller Family Preliminary Product Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DC-8301-01                                                                                                                                                                                                                                 | 3.00                                                               |
| Z8 Product Specifications, Technical Manuals and Users Guides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Part No                                                                                                                                                                                                                                    | Unit Cost                                                          |
| Z86E23 CMOS Z8 0TP Microcontroller Preliminary Product Specification       DC-2598-00       N/C         Z86E27 40-Pin Low-Cost Digital Television Controller Preliminary Product Specification       Z86227 40-Pin Low-Cost Digital Television Controller Preliminary Product Specification         Z86E27 40-Pin Low-Cost Digital Television Controller Preliminary Product Specification       Z8620162/96 CMOS Z8 Microcontroller Preliminary Product Specification         Z86E23 CMOS Z8 ROMIess Microcontroller Preliminary Product Specification       Z8620162/96 CMOS Z8 Microcontroller Preliminary Product Specification         Z86L70/71/72, Z86E72 Zilog IR (ZIRC <sup>™</sup> ) Controller Family Preliminary Product Specification       Z8600 CMOS Super8 ROMIess Microcontroller Preliminary Product Specification         Z8600 CMOS Z8 -Bit Microcontroller Preliminary Product Specification       Z8644 NMOS Z8 8-Bit Microcontroller Preliminary Product Specification         Z8614 NMOS Z8 8-Bit Microcontroller Preliminary Product Specification       Z86128 Closed-Captioned Controller Preliminary Product Specification         Z8617 PCMCIA Adaptor Chip Advance Information Specification       Z8017 PCMOS One-Time-Programmable Microcontrollers Addendum         Z8017 PCMOS One-Time-Programmable Microcontrollers Addendum       Z8018 Preliminary User's Manual         Z80018 Preliminary User's Manual       Ditigal TV Controller's Manual | DC-2561-01<br>DC-2574-00<br>DC-3002-00<br>DC-2587-00<br>DC-2587-00<br>DC-2551-00<br>DC-2551-00<br>DC-2576-00<br>DC-2576-00<br>DC-2570-01<br>DC-2643-0A<br>DC-2643-0A<br>DC-2614-AA<br>DC-8267-05<br>DC-8291-02<br>DC-8296-00<br>DC-8289-01 | N/C<br>N/C<br>N/C<br>N/C<br>N/C<br>N/C<br>N/C<br>N/C<br>N/C<br>N/C |
| Z8 Application Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Part No                                                                                                                                                                                                                                    | Unit Cost                                                          |
| The Z8 MCU In Telephone Answering Systems<br>Z8602 Controls A 101/102 PC/Keyboard<br>The Z8 MCU Dual Analog Comparator<br>Z86C09/19 Low Cost Z8 MCU Emulator<br>Z8 Applications for I/O Port Expansions<br>Z86E21 Z8 Low Cost Thermal Printer<br>Zilog Family On-Chip Oscillator Design<br>Using the Zilog Z86C06 SPI Bus<br>Interfacing LCDs to the Z8<br>X-10 Compatible Infrared (IR) Remote Control<br>Z86C17 In-Mouse Applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DC-2514-01<br>DC-2601-01<br>DC-2516-01<br>DC-2537-01<br>DC-2539-01<br>DC-2541-01<br>DC-2541-01<br>DC-2592-01<br>DC-2592-01<br>DC-2592-01<br>DC-2591-01<br>DC-3001-01                                                                       | N/C<br>N/C<br>N/C<br>N/C<br>N/C<br>N/C<br>N/C<br>N/C               |

Z86C40/E40 MCU Applications Evaluation Board Z86C940/E40 MCU Applications Evaluation Board Z86C98/C17 Controls A Scrolling LED Message Display Z86C95 Hard Disk Controller Flash EPROM Interface Timekeeping with Z8; DTMF Tone Generation; Serial Communication Using the CCP Software UART

# <sup>⊗</sup>ZiLŒ

# **LITERATURE GUIDE**

Part No

DC-2610-01

**Unit Cost** 

5.00

### Z80®/Z8000® CLASSIC FAMILY OF PRODUCTS

#### Z80®/Z180<sup>™</sup>/Z280®/Z8000® and Datacom Family

#### Volume I Databook

Microprocessors and Peripherals Discrete Z80® Family

> Z8400/C00 NMOS/CMOS Z80<sup>®</sup> CPU Product Specification Z8410/C10 NMOS/CMOS Z80 DMA Product Specification Z8420/C20 NMOS/CMOS Z80 PI0 Product Specification Z8430/C30 NMOS/CMOS Z80 CTC Product Specification Z8440/Z84C40 NMOS/CMOS Z80 SI0 Product Specification

#### Embedded Controllers

Z84C01 Z80 CPU with CGC Product Specification Z84C50 RAM80<sup>™</sup> Preliminary Product Specification Z8470 Z80 DART Product Specification Z84090 CMOS Z80 KI0<sup>™</sup> Product Specification Z84011/C11 PIO Parallel I/O Product Specification Z84013/015 Z84C13/C15 IPC/EIPC<sup>™</sup> Product Specification Z80181 Z80<sup>™</sup> Controller Product Specification Z80181 Z10<sup>™</sup> Controller Product Specification Z80<sup>™</sup> MPU Preliminary Product Specification

#### Serial Communications Controllers

Z8030/Z8530 Z-BUS® SCC Product Specification Z80C30/Z85C30 SCC Product Specification Z85230 ESCC<sup>™</sup> Product Specification Z16C35 ISCC<sup>™</sup> Product Specification Z5380 SCSI Product Specification Z53C80 SCSI Product Specification Z85C80 SCSI/SCC Product Specification Z16C30 USC<sup>™</sup> Product Specification Z16C33 MUSC<sup>™</sup> Product Specification Z16C30 DPLL<sup>™</sup> Product Specification

#### **Technical Articles**

Z80 Questions and Answers Z180 Questions and Answers SCC Questions and Answers ESCC Questions and Answers ISCC Questions and Answers

#### Additional Information

Superintegration Products Guide Support Product Summary Product Support Military Qualified Products Quality and Reliability Literature Guide Package Information Ordering Information

# **LITERATURE GUIDE**

# Z80%/Z8000% CLASSIC FAMILY OF PRODUCTS (Continued)

| Z80 <sup>®</sup> /Z180 <sup>™</sup> /Z280 <sup>®</sup> /Z8000 <sup>®</sup> and Datacom Family                                                                                                                                                                                                                                                                              |                                                                                                                                                                        | Part No                                                                                                | Unit Cost                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Volume II Databook<br>Microprocessors and Peripherals<br>Application Notes                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                        | DC-2622-01                                                                                             | 5.00                                                            |
| Z80° Family Interrupt Structure<br>Using the Z80° SIO with SDLC<br>Using the Z80° SIO In Asynchronous Communications<br>Binary Synchronous Communication Using the Z80° SIO<br>Serial Communication with the Z80A DART<br>Interfacing 8500 Peripherals to the Z80°<br>Serial Clock Generation Using the Z8536 CIO<br>Timing in an Interrupt-Based System with the Z80° CTC | Boost Your System Pe<br>Design a Serial Board<br>Using the Z16C30 US<br>Datacommunications<br>Integrating Serial Data<br>A Fast Z80® Embedde<br>Using the Zilog Datace | to Handle Multiple F<br>C Universal Serial C<br>IUSC/MUSC Time S<br>and SCSI Periphera<br>d Controller | Protocols<br>ontroller<br>lot Assigner<br>I Control on One Chip |
| A Z80-Based System Using the DMA with the SIO<br>Interfacing the Z8500 Peripherals to the 68000<br>Z180 <sup>™</sup> Break Detection<br>The Z180 <sup>™</sup> Interfaced with the SCC at 10 MHz<br>Technical Considerations When Implementing<br>LocalTalk Link Access Protocol                                                                                            | Questions and Answers<br>Z80 <sup>®</sup> Questions and A<br>Z180 <sup>™</sup> Questions and A<br>SCC Questions and A<br>ESCC Questions and A<br>ISCC Questions and A  | Answers<br>hswers<br>Answers                                                                           |                                                                 |
| Using the Z84C11/C13/C15 in Place of the Z84011/013/015<br>Using SCC with Z8000 in SDLC Protocol<br>SCC in Binary Synchronous Communications<br>On-Chip Oscillator Design                                                                                                                                                                                                  | Additional Information<br>Classic Family<br>Datacom Products                                                                                                           |                                                                                                        |                                                                 |

| Interfacing Z80® CPUs to the Z8500 Periphe | ral Family |
|--------------------------------------------|------------|
|--------------------------------------------|------------|

Literature Guide

| Z80/Z180/Z280 Product Specifications, Technical Manuals and Users Guides            | Part No    | Unit Cost |
|-------------------------------------------------------------------------------------|------------|-----------|
| Z80 CPU Central Processing Unit Technical Manual                                    | DC-0029-04 | 3.00      |
| Z80 Family Programmer's Reference Guide                                             | DC-0012-04 | 3.00      |
| Z80 DMA Direct Memory Access Technical Manual                                       | DC-2013-A0 | 3.00      |
| 280 PIO Parallel Input/Output Technical Manual                                      | DC-0008-03 | 3.00      |
| Z80 CTC Counter/Timer Circuit Technical Manual                                      | DC-0036-03 | 3.00      |
| Z80 SIO Serial I/O Technical Manual                                                 | DC-3033-01 | 3.00      |
| 280180 Z180 MPU Microprocessor Unit Technical Manual                                | DC-8276-03 | 3.00      |
| 2280 MPU Microprocessor Unit Technical Manual                                       | DC-8224-03 | 3.00      |
| 280181 Z181 ZIO <sup>™</sup> Zilog I/O Controller Preliminary Product Specification | DC-2519-03 | N/C       |
| 84C00 20 MHz Z80 CPU Central Processing Unit Preliminary Product Specification      | DC-2523-02 | N/C       |
| 284C50 Z80 RAM80 Z80 CPU/2K SRAM Preliminary Product Specification                  | DC-2498-01 | N/C       |
| 280180/Z8S180 Z180 Microprocessor Product Specification                             | DC-2609-02 | N/C       |
| Z80182 Zilog Intelligent Peripheral (ZIP™)                                          | DC-2616-02 | N/C       |
| Z380 Preliminary Product Specification                                              | DC-3003-01 | N/C       |

| Z80/Z180/Z280 Application Notes                                | Part No    | Unit Cost |
|----------------------------------------------------------------|------------|-----------|
| Z180/SCC™ Serial Communications Controller Interface at 10 MHz | DC-2521-02 | N/C       |
| Z80 Using the 84C11/C13/C15 in place of the 84011/013/015      | DC-2499-02 | N/C       |
| LocalTalk Link Access Protocol Using the Z80181                | DC-2589-01 | N/C       |
| A Fast Z80 Embedded Controller                                 | DC-2578-01 | N/C       |

# ⊗ Zilæ

# LITERATURE GUIDE

## **Z8000® MICROPROCESSOR FAMILY**

| Z8000 Product Specifications, Technical Manuals and Users Guides                                              | Part No     | Unit Cost |
|---------------------------------------------------------------------------------------------------------------|-------------|-----------|
| Z8000 CPU Central Processing Unit Technical Manual                                                            | DC-2010-06  | 3.00      |
| SCC Serial Communication Controller User's Manual                                                             | DC-8293-02  | 3.00      |
| Z8036 Z-CIO/Z8536 CIO Counter/Timer and Parallel Input/Output Technical Manual                                | DC-2091-02  | 3.00      |
| Z8038 Z8000 Z-FIO FIFO Input/Output Interface Technical Manual                                                | DC-2051-01  | 3.00      |
| Z8000 CPU Central Processing Unit Programmer's Pocket Guide                                                   | DC-0122-03  | 3.00      |
| Z5380 SCSI Small Computer System Interface Preliminary Product Specification                                  | DC-2477-01  | N/C       |
| Z85233 EMSCC Enhanced Mono Serial Communication Controller Preliminary Product Specification                  | DC-2590-00  | N/C       |
| Z85C80 SCSCI <sup>™</sup> Serial Communication and Small Computer Interface Preliminary Product Specification | DC-2534-02  | N/C       |
| Z16C30 CMOS USC <sup>™</sup> Universal Serial Controller Preliminary Product Specification                    | DC-2492-03  | N/C       |
| Z16C30 USC Universal Serial Controller Preliminary Technical Manual                                           | DC-8280-02  | 3.00      |
| Z16C33 CMOS USC/MUSC <sup>™</sup> Universal Serial Controller Technical Manual                                | DC-8285-01  | 3.00      |
| Z16C33 CMOS USC/MUSC Universal Serial Controller Addendum                                                     | DC-8285-01A | N/C       |
| Z16C32 IUSC <sup>™</sup> Integrated Universal Serial Controller Product Specification                         | DC-2600-00  | N/C       |
| Z16C32 IUSC Integrated Universal Serial Controller Product Specification Addendum                             | DC-2600-00A | N/C       |
| Z16C32 IUSC Integrated Universal Serial Controller Technical Manual                                           | DC-8292-03  | 3.00      |
| Z16C33 CMOS MUSC Mono-Universal Serial Controller Preliminary Product Specification                           | DC-2517-03  | N/C       |
| Z16C35 CMOS ISCC <sup>™</sup> Integrated Serial Communication Controller Product Specification                | DC-2515-03  | N/C       |
| 216C35 ISCC Integrated Serial Communication Controller Technical Manual                                       | DC-8286-01  | 3.00      |
| 216C35 ISCC Integrated Serial Communication Controller Addendum                                               | DC-8286-01A | N/C       |
| 253C80 Small Computer System Interface (SCSI) Product Specification                                           | DC-2575-01  | N/C       |
| Z80230 Z-BUS® ESCC Enhanced Serial Communication Controller Preliminary Product Specification                 | DC-2603-01  | N/C       |

| Z8000 Application Notes                                            | Part No    | Unit Cost |
|--------------------------------------------------------------------|------------|-----------|
| Z16C30 Using the USC in Military Applications                      | DC-2536-01 | N/C       |
| Datacom IUSC/MUSC Time Slot Assigner                               | DC-2497-02 | N/C       |
| Datacom Evaluation Board Using The Zilog Family With The 80186 CPU | DC-2560-03 | N/C       |
| Boost Your System Performance Using the Zilog ESCC Controller      | DC-2555-02 | N/C       |
| Z16C30 USC - Design a Serial Board for Multiple Protocols          | DC-2554-01 | N/C       |
| Integrating Serial Data and SCSI Peripheral Control on one Chip    | DC-2594-01 | N/C       |
| Using a SCSI Port for Generalized I/O                              | DC-2608-01 | N/C       |

# LITERATURE GUIDE

## MILITARY COMPONENTS FAMILY

| Military Specifications                                                                                | Part No    | Unit Cost |
|--------------------------------------------------------------------------------------------------------|------------|-----------|
| Z8681 ROMIess Microcomputer Military Product Specification                                             | DC-2392-02 | N/C       |
| Z8001/8002 Military Z8000 CPU Central Processing Unit Military Product Specification                   | DC-2342-03 | N/C       |
| Z8581 Military CGC Clock Generator and Controller Military Product Specification                       | DC-2346-01 | N/C       |
| Z8030 Military Z8000 Z-SCC Serial Communications Controller Military Product Specification             | DC-2388-02 | N/C       |
| 28530 Military SCC Serial Communications Controller Military Product Specification                     | DC-2397-02 | N/C       |
| Z8036 Military Z8000 Z-CIO Counter/Timer Controller and Parallel I/O Military Electrical Specification | DC-2389-01 | N/C       |
| Z8038/8538 Military FIO FIFO Input/Output Interface Unit Military Product Specification                | DC-2463-02 | N/C       |
| Z8536 Military CIO Counter/Timer Controller and Parallel I/O Military Electrical Specification         | DC-2396-01 | N/C       |
| 28400 Military Z80 CPU Central Processing Unit Military Electrical Specification                       | DC-2351-02 | N/C       |
| 28420 Military PIO Parallel Input/Output Controller Military Product Specification                     | DC-2384-02 | N/C       |
| Z8430 Military CTC Counter/Timer Circuit Military Electrical Specification                             | DC-2385-01 | N/C       |
| 28440/1/2/4 Z80 SIO Serial Input/Output Controller Military Product Specification                      | DC-2386-02 | N/C       |
| Z80C30/85C30 Military CMOS SCC Serial Communications Controller Military Product Specification         | DC-2478-02 | N/C       |
| 284C00 CMOS Z80 CPU Central Processing Unit Military Product Specification                             | DC-2441-02 | N/C       |
| 284C20 CMOS Z80 PIO Parallel Input/Output Military Product Specification                               | DC-2384-02 | N/C       |
| 284C30 CMOS Z80 CTC Counter/Timer Circuit Military Product Specification                               | DC-2481-01 | N/C       |
| 284C40/1/2/4 CMOS Z80 SIO Serial Input/Output Military Product Specification                           | DC-2482-01 | N/C       |
| 16C30 CMOS USC Universal Serial Controller Military Preliminary Product Specification                  | DC-2531-01 | N/C       |
| 280180 Z180 MPU Microprocessor Unit Military Product Specification                                     | DC-2538-01 | N/C       |
| 284C90 CMOS KIO Serial/Parallel/Counter Timer Preliminary Military Product Specification               | DC-2502-00 | N/C       |
| Z85230 ESCC Enhanced Serial Communication Controller Military Product Specification                    | DC-2595-00 | N/C       |

## **GENERAL LITERATURE**

| Catalogs, Handbooks and Users Guides                            | Part No    | Unit Cost |
|-----------------------------------------------------------------|------------|-----------|
| Superintegration Shortform Catalog 1992                         | DC-5472-10 | N/C       |
| Superintegration Products Guide                                 | DC-5499-06 | N/C       |
| ZIA™3.3-5.5V Matched Chip Set for AT Hard Disk Drives Datasheet | DC-5556-01 | N/C       |
| Zilog Hard Disk Controllers - Z86C93/C95 Datasheet              | DC-5560-01 | N/C       |
| Zilog Infrared (IR) Controllers - ZIRC <sup>™</sup> Datasheet   | DC-5558-01 | N/C       |
| Zilog Intelligent Peripheral Controller - ZIP™Z80182 Datasheet  | DC-5525-01 | N/C       |
| Zilog Digital Signal Processing - Z89320 Datasheet              | DC-5547-01 | N/C       |
| Zilog Datacommunications Brochure                               | DC-5519-00 | N/C       |
| Zilog Digital Signal Processing Brochure                        | DC-5536-01 | N/C       |
| Quality and Reliability Report                                  | DC-2475-10 | N/C       |
| The Handling and Storage of Surface Mount Devices User's Guide  | DC-5500-02 | N/C       |
| Support Products Summary                                        | DC-2545-03 | N/C       |
| Universal Object File Utilities User's Guide                    | DC-8236-04 | 3.00      |
| Zilog 1991 Annual Report                                        | DC-1991-AR | N/C       |
| Microcontroller Quick Reference Folder                          | DC-5508-01 | N/C       |

# 

# LITERATURE ORDER FORM

#### ORDERING INFORMATION

Phone: (408)370-8016 (408)370-8056

Fax:

Complete the attached literature order form. Be sure to enclose the proper payment or supply a purchase order. Please reference specific order requirements.

#### MINIMUM ORDER REQUIREMENTS

Orders under \$300.00 must be prepaid by check, money order or credit card. Canadian and foreign orders must be accompanied by a cashier's check in U.S. dollars, drawn on a correspondent U.S. bank only.

Orders over \$300.00 may be submitted with a Purchase Order.

### SHIPMENT

Orders will be shipped after your check is cashed or credit is checked via the most economical method. Please allow four weeks for delivery.

RETURNS ARE NOT ACCEPTED.

|                                                                       |     |    |                |   |   | Di       |               |       |             |             |    |
|-----------------------------------------------------------------------|-----|----|----------------|---|---|----------|---------------|-------|-------------|-------------|----|
|                                                                       |     |    |                |   |   | <br>     | LEASE PRINT ( |       |             |             |    |
| NAME                                                                  |     |    |                |   |   | PHONE (  | )             | -     |             |             |    |
| СС                                                                    | MPA | NY |                |   |   |          |               |       | Method of F | Payment (Cl | ·  |
|                                                                       |     |    |                |   |   |          |               |       |             |             |    |
| ADDRESS                                                               |     |    |                |   |   |          |               |       |             |             |    |
| CI                                                                    | ΓY  |    |                |   |   | STATE    |               | ZIP   | COUNTRY     |             |    |
| PART NUMBER                                                           |     |    | DOCUMENT TITLE |   |   | UNIT COS | ат оту.       | TOTAL |             |             |    |
|                                                                       | -   | F  |                | - | + |          |               |       | \$          |             | \$ |
|                                                                       | -   | -  |                | - | + |          |               |       | \$          |             | \$ |
|                                                                       | -   | F  |                | - | + |          |               |       | \$          |             | \$ |
|                                                                       | -   | -  |                | - | + |          |               |       | \$          |             | \$ |
|                                                                       | -   | -  |                | - | + |          |               |       | \$          |             | \$ |
|                                                                       | -   | -  |                | - | + |          |               |       | \$          |             | \$ |
|                                                                       | -   | -  |                | - | + |          |               |       | \$          |             | \$ |
|                                                                       | -   | -  |                | - | + |          |               |       | \$          |             | \$ |
|                                                                       | -   | -  |                | - | + |          |               |       | \$          |             | \$ |
|                                                                       | -   | -  |                | - | + |          |               |       | \$          |             | \$ |
|                                                                       | -   | -  |                | - | + |          |               |       | \$          |             | \$ |
|                                                                       | -   | -  |                | - | + |          |               |       | \$          |             | \$ |
|                                                                       | -   | -  |                | - | + |          |               |       | \$          |             | \$ |
|                                                                       | -   | -  |                | - | + |          |               |       | \$          |             | \$ |
| Mail To: Credit Card or Purchase Order # SUBTOTAL                     |     |    |                |   |   |          |               |       |             |             |    |
| Expiration Date ADD APPLICABLE SALES TAX (CA ONLY)                    |     |    |                |   |   |          |               |       |             |             |    |
| 210 E. HACIENDA AVE. M/S C1-0 Signature ADD 10% SHIPPING AND HANDLING |     |    |                |   |   |          |               |       |             |             |    |
| CAMPBELL, CA 95008-6600                                               |     |    |                |   |   |          | TOTAL         |       |             |             |    |

#### ZILOG DOMESTIC SALES OFFICES AND TECHNICAL CENTERS

| CALIFORNIA<br>Agoura<br>Campbell<br>Irvine | 408-370-8120 |
|--------------------------------------------|--------------|
| COLORADO<br>Boulder                        | 303-494-2905 |
| FLORIDA<br>Clearwater                      | 813-725-8400 |
| GEORGIA<br>Norcross                        | 404-448-9370 |
| ILLINOIS<br>Schaumburg                     | 708-517-8080 |
| MINNESOTA<br>Minneapolis                   | 612-944-0737 |
| NEW HAMPSHIRE<br>Nashua                    | 603-888-8590 |
| OHIO<br>Independence                       | 216-447-1480 |
| OREGON<br>Portland                         | 503-274-6250 |
| PENNSYLVANIA<br>Horsham                    | 215-784-0805 |
| TEXAS<br>Dallas                            | 214-987-9987 |

### **INTERNATIONAL SALES OFFICES**

| CANADA<br>Toronto             | 416-673-0634   |
|-------------------------------|----------------|
| CHINA<br>Shenzhen             |                |
| GERMANY<br>Munich<br>Sömmerda |                |
| JAPAN<br>Tokyo                | 81-3-3587-0528 |
| HONG KONG<br>Kowloon          |                |
| KOREA<br>Seoul                |                |
| SINGAPORE<br>Singapore        | 65-2357155     |
| TAIWAN<br>Taipei              | 886-2-741-3125 |
| UNITED KINGDOM<br>Maidenhead  |                |
|                               |                |

© 1993 by Zilog, Inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Zilog, Inc. The information in this document is subject to change without notice. Devices sold by Zilog, Inc. are covered by warranty and patent indemnification provisions appearing in Zilog, Inc. Terms and Conditions of Sale only. Zilog, Inc. makes no warranty, express, statutory, implied or by description, regarding the information set forth herein or regarding the freedom of the described devices from intellectual property infringement. Zilog, Inc. makes no warranty of merchantability or fitness for any purpose. Zilog, Inc. shall not be responsible for any errors that may appear in this document. Zilog, Inc. makes no commitment to update or keep current the information contained in this document.

Zilog, Inc. 210 East Hacienda Ave. Campbell, CA 95008-6600 Telephone (408) 370-8000 Telex 910-338-7621 FAX 408 370-8056 Zilog, Inc. 210 East Hacienda Ave. Campbell, CA 95008-6600 408-370-8000 FAX 408-370-8056