
-

VIEWLOGIC

~XILINX® TUTORIALS

October, 1995

View logic
Tutorials

Viewlogic Tutorials - 0401414 01

PROcapture and PROsim
Tutorial

X-BLOX Tutorial

Xilinx ABEL Tutorial

XACT-Performance and
Timing Analyzer Tutorial

Printed in U.S.A.

Viewlogic Tutorials

~XILINX", XACT, XC2064, XC3090, XC4005, and XC-DS501 are registered trademarks of Xilinx. All XC-prefix
product designations, XACT-Floorplanner, XACT-Performance, XAPP, XAM, X-BLOX, X-BLOX plus, XChecker,
XDM, XDS, XEPLD, XPP, XSI, BITA, Configurable Logic Cell, CLC, Dual Block, FastCLK, HardWire, LCA, Logic
Cell, LogicProfessor, MicroVia, PLUSASM, SMARTswitch, UIM, VectorMaze, VersaBlock, VersaRing, and ZERO+
are trademarks of Xilinx. The Programmable Logic Company and The Programmable Gate Array Company are
service marks of Xilinx.

IBM is a registered trademark and PC/ AT, PC/XT, PS/2 and Micro Channel are trademarks of International Business
Machines Corporation. DASH, Data 1/0 and FutureNet are registered trademarks and ABEL, ABEL-HDL and ABEL
PLA are trademarks of Data 1/0 Corporation. SimuCad and Silos are registered trademarks and P-Silos and P/C
Silos are trademarks of SimuCad Corporation. Microsoft is a registered trademark and MS-DOS is a trademark of
Microsoft Corporation. Centronics is a registered trademark of Centronics Data Computer Corporation. PAL and
PALASM are registered trademarks of Advanced Micro Devices, Inc. UNIX is a trademark of AT&T Technologies,
Inc. CUPL, PROLINK, and MAKEPRG are trademarks of Logical Devices, Inc. Apollo and AEGIS are registered
trademarks of Hewlett-Packard Corporation. Mentor and IDEA are registered trademarks and NETED, Design
Architect, QuickSim, QuickSim II, and EXPAND are trademarks of Mentor Graphics, Inc. Sun is a registered
trademark of Sun Microsystems, Inc. SCHEMA II+ and SCHEMA Ill are trademarks of Omation Corporation. OrCAD
is a registered trademark of OrCAD Systems Corporation. Viewlogic, Viewsim, and Viewdraw are registered
trademarks of Viewlogic Systems, Inc. CASE Technology is a trademark of CASE Technology, a division of the
Teradyne Electronic Design Automation Group. DECstation is a trademark of Digital Equipment Corporation.
Synopsys is a registered trademark of Synopsys, Inc. Verilog is a registered trademark of Cadence Design Systems,
Inc.

Xilinx does not assume any liability arising out of the application or use of any product described or shown herein;
nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx
reserves the right to make changes, at any time, in order to improve reliability, function or design and to supply
the best product possible. Xilinx will not assume responsibility for the use of any circuitry described herein other
than circuitry entirely embodied in its products. Xilinx devices and products are protected under one or more of
the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155; 4,758,985;
4,820,937; 4,821,233; 4,835,418; 4,853,626; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135;
5,023,606; 5,028,821; 5,047 ,71 O; 5,068,603; 5, 140, 193; 5, 148,390; 5, 155,432; 5, 166,858; 5,224,056; 5,243,238;
5,245,277; 5,267, 187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704; 5,329, 174; 5,329, 181;
5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357, 153;
5,360,747; 5,361,229; 5,362,999; 5,365, 125; 5,367,207; 5,386, 154; 5,394, 104; 5,399,924; 5,399,925; 5,410, 189;
5,410,194; 5,414,377; RE 34,363, RE 34,444, and RE 34,808. Other U.S. and foreign patents pending. Xilinx, Inc.
does not represent that devices shown or products described herein are free from patent infringement or from any
other third party right. Xilinx assumes no obligation to correct any errors contained herein or to advise any user of
this text of any correction if such be made. Xilinx will not assume any liability for the accuracy or correctness of
any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

Xilinx Development System

Preface

About This Manual
This manual is a series of tutorials illustrating how to use the PRO
Series PROcapture, PROsim, and PROwave programs. It also shows
you how to use these programs with X-BLOX, Xilinx ABEL,
XACT~Performance, and the Timing Analyzer.

Before using this manual, you should be familiar with the operations
that are common to all of Xilinx's software tools: how to bring up the
system, select a tool for use, specify operations, and manage design
data. These topics are covered in the Development System Reference
Guide.

Other publications that you can consult for related information are
the Viewlogic Interface Guide, the Xilinx ABEL User Guide, the
X-BLOX Reference/User Guide, the Design Manager/Flow Engine
Reference/User Guide, the Timing Analyzer Reference/User Guide, and the
PRO Series manuals from Viewlogic.

Manual Contents
This manual covers the following topics.

• Chapter 1, "PROcapture and PROsim Tutorial," guides you
through a typical design procedure from schematic entry to
completion of a functioning device using Viewlogic's PROcapture
schematic editor. It steps through both a functional simulation
and a timing simulation using Viewlogic's PROsim and PROwave
programs. It also describes how use the Xilinx Design Manager to
implement the design.

Viewlogic Tutorials - 0401414 01

Viewlogic Tutorials

ii

• Chapter 2, "X-BLOX Tutorial," shows you how to incorporate
X-BLOX modules into your FPGA design. X-BLOX is an
advanced library and a synthesis tool that allows you to shorten
design entry time, increase design speed, and use a device more
efficiently.

• Chapter 3, "Xilinx ABEL Tutorial," shows you how to incorporate
Xilinx ABEL modules into your FPGA design. Xilinx ABEL
enables you to define logic in terms of text-based Boolean
equations, truth tables, and state machine descriptions using the
ABEL Hardware Description Language (HDL).

• Chapter 4, "XACT-Performance and Timing Analyzer Tutorial,"
shows you how to use XACT-Performance and the Timing
Analyzer on an FPGA design in the Viewlogic environment.
XACT-Performance consists of a set of library primitives that
allow timing requirements to be placed on a schematic. The
implementation tools use this timing information during
mapping, placing, and routing of the design. The Timing Analyzer
is a Windows-based tool that performs a static timing analysis of a
routed FPGA design.

Xilinx Development System

Conventions

The following conventions are used in this manual's syntactical
statements.

Courier font
regular

Courier font
bold

italic font

[l

{ }

Viewlogic Tutorials - 0401414 01

System messages or program files appear
in regular Courier font.

Literal commands that you must enter in
syntax statements are in bold Courier font.

Variables that you replace in syntax
statements are in italic font.

Square brackets denote optional items or
parameters. However, in bus specifications,
such as bus [7:0], they are required.

Braces enclose a list of items from which
you must choose one or more.

A vertical ellipsis indicates material that has.
been omitted.

A horizontal ellipsis indicates that the
preceding can be repeated one or more
times.

A vertical bar separates items in a list of
choices.

This symbol denotes a carriage return.

iii

Viewlogic Tutorials

iv Xilinx Development System

Contents

Chapter 1 PROcapture and PROsim Tutorial
Introduction . 1-1

Devices . 1-1
Length ... '.................... 1-1
Design Description .. 1-2

Getting Started... 1-3
Required Software.. 1-3
Before Beginning the Tutorial 1-4
Installing the PRO Series Tutorial. .. 1-5
Starting Xilinx PROflow 1-6
Defining the Cale Project 1-8

Creating the Cale Project... 1-8
Obtaining Design Status .. 1-12
Selecting the CALC.1 Schematic 1-13

Navigating in PROcapture 1-17
Mouse Buttons.. 1-17
Function Keys... 1-17
Starting PROcapture ... 1-18
Changing the PROcapture Window Colors 1-20
Moving Around the Screen 1-22

Panning 1-23
Zooming... 1-23
Making Icons of Schematics and Symbols 1-27

PROcapture Command Summary.. 1-28
Creating Symbols ... 1-31

Creating the ANDBLK2 Symbol .. 1-31
Changing the Size of the Symbol 1-34
Creating a Symbol Box.. 1-34
Adding Pins 1-36
Adding Pin Labels .. 1-37
Adding Pin Attributes... 1-39
Using the Add Object Attribute Command......................... 1-40
Editing Pin Attributes 1-41
Adding Other PINTYPE Attributes 1-44

Viewlogic Tutorials - 0401414 01 v

Viewlogic Tutorials

vi

Changing Attribute Size... 1-45
Controlling Attribute Visibility 1-4 7
Adding Symbol Text... .. 1-48
Changing Symbol Text Size .. 1-50
Moving Text and Objects ... 1-50
Saving the ANDBLK2 Symbol ... 1-52

Creating the ORBLK2 Symbol 1-53
Viewing Symbols Simultaneously 1-55
Closing Symbol Windows ... 1-57

Creating Schematics . 1-59
Opening a Schematic Sheet . 1-59
Adding Components ... 1-61
Copying Components 1-65
Moving Components . 1-68
Adding Nets 1-69
Adding Buses.. 1-72
Adding Labels 1-7 4
Saving the Schematic... 1-77
Creating the ORBLK2 Schematic . 1-78
Changing AND2 Components to OR2 Components 1-82
Saving the ORBLK2 Schematic . 1-86

Completing the ALU Schematic . 1-87
Making the CALC.1 Schematic Visible 1-87
Pushing into the ALU Symbol's Schematic 1-89
Placing the ANDBLK2 and ORBLK2 Symbols 1-90
Placing the FD4CE Component .. 1-94
Adding Nets, Buses, and Labels... 1-96

Adding Symbol Labels .. 1-97
Saving the ALU.1 Schematic .. 1-99
Viewing the OSC_3K or OSC_7K Schematic 1-100
Exchanging Components.. 1-103

Controlling Layout from the Schematic.. 1-104
Adding the LOC Attribute.. 1-105
Adding Flags to Nets... 1-108
Adding the FAST and SLOW Attributes 1-111
Using IOB Flip-Flops ... 1-114

Functional Simulation... 1-116
Creating the Simulation Network .. 1-116
Adding Signals and Vectors to the Waveform 1-120

Adding Signals to the Waveform 1-120
Adding Vectors to the Waveform 1-121

Xilinx Development System

Contents

Defining the Design Inputs_ .. 1-123
Defining a Clock .. 1-123
Defining Input Values .. 1-124
Simulating the Design Inputs... 1-125

Invoking PROwave ... 1-127
Changing the Display Radix 1-129

Simulating the Cale Design ... 1-131
Loading 1111 to the ALU Register 1-132
Changing the Radices for PROcapture Display 1-134
Pushing 1111 to the ST ACK Register 1-136
Viewing the Waveforms... 1-138

Re-Creating Previous Simulation.. 1-140
Implementing the Cale Design ... 1-140

Invoking the Design Manager... 1-140
Creating the Cale Implementation Project and Its
Initial Translation... 1-142
Implementing the FPGA Design ... 1-152

Setting General FPGA Options 1-154
Setting Advanced FPGA Options 1-157
Invoking the Flow Engine .. 1-161

Implementing the EPLD Design .. 1-165
Setting Advanced EPLD Options 1-166
Invoking the Flow Engine .. 1-169

Timing Simulation 1-173
Creating the Simulation Network File 1-173
Invoking PROwave ... 1-177
Comparing the Functional and Timing Simulation Files 1-179

Zooming the Waveform Files... 1-182
Obtaining a Transition Time 1-187
In the Calc.wfm File ... 1-188
In the Calct. wfm File.. 1-189
Obtaining a Delta Time.. 1-190

Downloading an FPGA Design .. 1-191
Using a Demonstration Board ... 1-192
Connecting the Cable for Download....................................... 1-192

FPGA Demonstration Board.. 1-194
XC3000A Demonstration Board 1-194

Downloading the Bitstream 1-195
Testing the Design .. 1-196

Viewlogic Tutorials vii

Viewlogic Tutorials

Chapter 2 X-BLOX Tutorial
Before Beginning the Tutorial. .. 2-1

Required Software .. 2-1
Preparing the Design . 2-2

Modifying the Design .. 2-3
Adding X-BLOX Modules to CALC ... 2-3
Viewing the ALU_BLOX Schematic .. 2-3
Completing the ALU_BLOX Schematic 2-5

Understanding X-BLOX Buses ... 2-5
Using BUS_DEF Symbols .. 2-6
Completing the Bus Definition ... 2-7
Saving Your Changes ... 2-9

X-BLOX Symbol Library ... 2-9
X-BLOX Symbol Examples ... 2-9
X-BLOX Schematics ... 2-10

Functional Simulation ... 2-11
Creating the Simulation Schematic ... 2-11
Examining XSimMake Output ... 2-13
Performing a Functional Simulation .. 2-15

Implementing the Cale Design ... 2-18
Translating the Netlist ... 2-18
Examining XMake Netlist Translation Output 2-18
Creating a Routed Design ... 2-19
Examining the Flow Engine History File 2-20

Timing Simulation ... 2-22
Creating the Simulation Network .. 2-22
Examining XSimMake Output.. ... 2-22
Performing a Timing Simulation .. 2-23

Verifying CALC on the Demonstration Board 2-23
Further Reading ... 2-23

Chapter 3 Xilinx ABEL Tutorial
Before Beginning the Tutorial. .. 3-1

Required Software .. 3-1
Preparing the Design .. 3-2

Viewing Stat_abl.abl. .. 3-3
Simulating Within Xilinx ABEL. ... 3-9
Compiling ST AT _ABL.ABL . 3-10
Including STAT_ABL in the CALC Design 3-10

Creating a Symbol for ST AT _ABL . 3-11

viii Xilinx Development System

Contents

Viewing the ST AT _ABL Symbol 3-14
Viewing the STAT_ABL Schematic 3-14
Verifying the Symbol Type ... 3-15
Verifying the Symbol Attributes ... 3-16

Functional Simulation... 3-17
Creating the Simulation Schematic ... 3-18
Examining XSimMake Output... 3-19
Performing a Functional Simulation .. 3-21

Implementing the CALC Design ... 3-22
Translating the Netlist 3-22
Examining XMake Netlist Translation Output 3-23
Creating a Routed Design 3-24
Examining the Flow Engine History File 3-25

Timing Simulation 3-26
Creating the Simulation Netlist 3-26
Examining XSimMake Output... .. 3-27
Performing a Timing Simulation .. 3-27

Verifying CALC on the Demonstration Board 3-28
Further Reading ... 3-28

Chapter 4 XACT-Performance and Timing Analyzer Tutorial
Before Beginning the Tutorial .. 4-2

Required Software.. 4-2
Preparing the Design 4-2

Understanding XACT-Performance ... 4-3
Grouping Symbols with TNM Attributes 4-4

TN Ms on Logic Primitives .. 4-4
TN Ms on Higher-Level Macro Symbols 4-4
TNMs on Nets to Tag Flip-Flops .. 4-5

Grouping Symbols by Predefined Groups 4-5
Simplifying Symbol Grouping .. 4-5
Combining Groups with the TIMEGRP Symbol 4-6

Joining Two or More Groups into One 4-6
Using the EXCEPT Statement... .. 4-6
Triggering on RISING or FALLING Clock Edges 4-7
Forming Groups by Output Net Name 4-7

Attaching Timing Specifications with the TIMESPEC Symbol 4-8
Deciding When to Use XACT-Performance 4"9
Setting Default Timing Requirements .. 4-10

Adding a TNM Attribute .. 4-10
Entering Default Timing Specifications 4-11

Viewlogic Tutorials ix

Viewlogic Tutorials

Adding Timing Constraints to Specific Paths 4-14
Defining TNM Groups ... 4-14

Defining the INFFS Group ... 4-14
Defining the STACKER Group (XC4000 Family Only) 4-15
Defining the STACKER Group (XC3000A Only) 4-16
Defining the ALUFF Group .. 4-17
Defining the CTLFF Group .. 4-17
Defining the STFF Group ... 4-18

Grouping Using TIMEGRP .. 4-18
Specifying TIMESPEC Constraints ... 4-20
Making a Final Check ... 4-21

Implementing the Cale Design ... 4-23
Translating the Netlist ... 4-24
Examining Translation Output... .. 4-24
Creating a Routed Design ... 4-25
Examining the Implementation Output.. 4-26

Using the Timing Analyzer ... 4-27
Analyzing the Cale Design . 4-29

Invoking the Timing Analyzer .. 4-29
Disabling False Paths ... 4-29
Resetting Path Filters .. 4-31
Displaying Current Settings .. 4-32
Generating a Performance Summary Report 4-32
Generating a Performance to TimeSpecs Report 4-33
Generating a Detailed Path Report ... 4-39

Reporting by Path Type ... 4-40
Reporting by Sources and Destinations 4-42

Using the Console Window... 4-44
Creating Macros .. 4-44

Further Reading ... 4-45

x Xilinx Development System

View logic
Tutorials

Viewlogic Tutorials - 0401414 01

PROcapture and PROsim
Tutorial

Printed in U.S.A.

Viewlogic Tutorials

Xilinx Development System

Chapter 1

PROcapture and PROsim Tutorial

This tutorial guides you through a typical field-programmable gate
array (FPGA) and erasable programmable logic device (EPLD)
design procedure from schematic entry to completion of a
functioning device. It uses PRO Series, View logic's Windows-based
toolset for design entry and simulation on personal computers (PCs).
The tutorial uses a design called Cale, a 4-bit processor with a stack.
In the first part of the tutorial, you use PROcapture, the PRO Series
schematic entry tool, to create the schematics and symbols for the
Cale design. Next, you use PROsim, the PRO Series simulator, to
perform a functional simulation on it. In the third step, you use the
Xilinx Design Manager to implement the design. Finally, you verify
the design in PROsim using worst-case delays.

To install the tutorial, see the "Getting Started" section in this chapter.

Introduction
This section provides you with some basic information about the
tutorial: the devices to which it applies, approximately how long it
will take to complete, and a description of the Cale design.

Devices
The procedures described in this tutorial apply to both FPGAs and
EPLDs; differences are noted where applicable. Although the tutorial
describes how to create both FPGA and EPLD designs, all figures
illustrate the FPGA version of Cale except where noted.

Length
Performed without interruption, the tutorial takes approximately five
or six hours to complete. If you need to stop the tutorial at any time,

Viewlogic Tutorials - 0401414 01 1-1

Viewlogic Tutorials

be sure to save the work that you have done by selecting the File ___..
Save command. Then exit PRO Series either by selecting File ___..
Exit from the menu or by typing quit.J at the command line.

Design Description

1-2

The processor in the Cale design performs functions between an
internal register and either the top of the stack or data input from
external switches. The results of the various operations are stored in
the register and displayed in hexadecimal on a 7-segment display.
The top value in the stack is displayed in binary on bar LEDs.

The design consists of nine basic functional blocks:

• ALU

The arithmetic functions of the processor are performed in this
block.

• CONTROL

The opcodes are decoded into control lines for the stack and ALU
in this module.

• STACK

The stack is a four-nibble storage device implemented with flip
flops in the device-independent design.

• OSC_3K, OSC_7K

These modules are used in XC3000A and XC7000 designs,
respectively. OSC_3K generates a clock signal using the RC
oscillator circuit on the FPGA (XC3000A/XC4000) and XC3000A
demonstration boards. OSC_7K is the equivalent oscillator block
forEPLDs.

• DEBOUNCE

This circuit debounces the Execute switch, providing a one-shot
output.

• SW7

The switch connections for opcode and data input are
implemented within this module.

Xilinx Development System

PROcapture and PROsim Tutorial

• 7SEGDEC

This block decodes the output of the ALU for display on the
7-segment decoder.

• 7SEG_TRU

This module implements the connections to the 7-segment display
on the XC3000A demonstration board.

• LED_TRU

The value at the top of the stack is displayed in binary on the LED
bank of the XC3000A demonstration board.

• 7SEG_INV

This module implements the connections to the 7-segment display
on the FPGA demonstration board.

• LED_INV

The value at the top of the stack is displayed in binary on the LED
bank of the FPGA demonstration board.

Getting Started
This section describes how to configure your PC to use the PRO
Series tutorial, install the tutorial, start Xilinx PROflow, and set up the
directories and initialization files for the Cale project.

Required Software

Viewlogic Tutorials

This tutorial assumes that you are using the following versions of the
development software:

• PRO Series release 6.0 or later

• Xilinx/Viewlogic Interface and Libraries: WIR2XNF V6.0.x and
XNF2WIR V6.0.x or later

• XACTstep Development Software: DS-502 V6.0.x or later for
FPGAs; DS-550 V6.0.x for EPLDs on PCs; DS-550 V5.2.x for EPLDs
on workstations

Note: The instructions in this tutorial are written for the PRO Series
user, and the PRO Series environment is shown in the figures of this
document. However, you can use the Xilinx interface programs with

1-3

Viewlogic Tutorials

any current Viewlogic software, including Powerview V5.x or
Workview PLUS V5.x. Workview 4.l.3a is also supported but does
not run under the Windows environment.

Before Beginning the Tutorial

1-4

Before beginning the tutorial, you must set up your PC to use the
Viewlogic and XACTstep Development System software.

1. Verify that your system is properly configured. Consult the
Getting Started & Installation Guide for instructions on setting up
your machine to run the software.

2. Install one of the following sets of software. Each of these options
includes View logic PRO Series, the Xilinx/Viewlogic Interface and
Libraries, and an XACTstep Development System.

• Base (DS-VLS-BAS-PCl), Standard (DS-VLS-STD-PCl), or
Extended (DS-VLS-EXT-PCl) Stand-Alone (/S) Package
Solutions for Viewlogic

or

• Viewlogic PROcapture Schematic Editor, Interface, and
Libraries (DS-390); and/ or PROsim Simulator (DS-290); and
XACTstep Development System (DS-502) for FPGAs, and/ or
XACTstep Development System (DS-550) for EPLDs

or

• Viewlogic PRO Series V6.0 or later

and

Viewlogic Interface and Libraries (DS-391) and XACTstep
Development System (DS-502) for FPGAs and/ or XACTstep
Development System (DS-550) for EPLDs; or Base
(DS-VL-BAS-PCl) or Standard (DS-VL-STD-PCl) Interface
Package Solution for Viewlogic

3. Verify that the following variables are set in your autoexec.bat file.
It is assumed that you have loaded the software noted in the
previous step to the c: \proser and c: \xact directories on your PC.
If the software has been installed in different areas, modify the
following Set statements accordingly. See the Getting Started &
Installation Guide for additional information on system setup.

Xilinx Development System

PROcapture and PROsim Tutorial

• The PATH variable sets the overall executable search path. It
must include the directories where the PRO Series and
XACTstep Development System software have been installed.
Use this syntax:

PATH=other _paths; c: \XACT; c: \PROSER; other _paths

Note: The PATH variable cannot include any previous version of
either the XACTstep or Viewlogic software. Be sure to remove all
paths to older software.

• The XACT variable is used by the XACTstep and PRO Series
software to locate data files. It must include the directory
where the XACTstep Development System resides and the
directory that contains the \unified directory, where the
Unified Libraries reside. Use the following syntax:

SET XACT=C:\XACT;C:\PROSER

Note: As with the PATH variable, you can set multiple paths using a
semicolon(;) between the paths. In the syntax just given, the
XACTstep software is located in c:\xact, and the \unified directory is
located inc: \proser. Because both paths are needed, they have been
concatenated into a single path using a semicolon.

• The WDIR variable sets the data file search path for the PRO
Series software. It must include a directory to which you can
write. Use this syntax:

SET WDIR=C:\PROSER\STANDARD

• The SYSPLT variable sets the PRO Series plotting directory.
Use this syntax:

SET SYSPLT=C:\PROSER\STANDARD

Installing the PRO Series Tutorial

Viewlogic Tutorials

The tutorial files are optionally installed when you install the Xilinx
PRO Series software. This tutorial can be used with either XC3000A
or XC7000 designs. If you have already installed the software but are
not sure whether you specified the tutorial installation, check for the
\calc3ka directory for XC3000A designs or the \calc7k directory for
XC7000 designs under the c: \proser\ tutorial\ vwlogic \procalc
directory. The \calc3ka directory contains the tutorial files needed to
perform the tutorial for XC3000A designs, and the \calc7k directory

1-5

Viewlogic Tutorials

contains the files needed to perform the tutorial for XC7000 designs.
It is recommended that you copy these files into another directory
before performing the tutorial to preserve the original files.

For XC3000A designs, use the Windows File Manager to copy the
\calc3ka directory to another directory such as c:\user\calc. For
XC7000 designs, copy the \calc7k directory to this other directory.

Note: The rest of the tutorial refers to the c:\user\calc directory as
the design directory.

Starting Xilinx PROflow

1-6

This tutorial uses Xilinx PROflow to implement the Cale design. On
the basis of information such as the design type, part type, family,
and the schematic components used, PROflow determines which
options are available and which programs it must run to process the
design correctly. Every tool and process step is executed by or
invoked from PROflow. In addition to managing the processing of
your design, PROflow also seamlessly integrates all the tools needed
to enter, implement, simulate, and download your design.

PROflow even handles design maintenance. When you initially select
the tutorial design within PROflow, it creates a Viewlogic design
project and defines the associated libraries.

1. To open Xilinx PROflow, double-click on the Xilinx PROflow icon,
shown in Figure 1-1, in the Program Manager XACTstep program
group.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

•
Figure 1-1 Xilinx PROflow Icon

Selecting the Xilinx PROflow icon for the first time brings up a
warning message, shown in Figure 1-2, stating that there is no
project defined.

- Project Verification

• No project defined in PROJECT.LST.
Invoking Project Manager ...

Figure 1-2 Project Verification Warning Message

2. Click on OK.

The message box closes, and the PRO Series Project Manager
appears, as shown in Figure 1-3. The next section describes how to
use it to create the Cale project.

1-7

Viewlogic Tutorials

Figure 1-3 PRO Series Project Manager

Defining the Cale Project

1-8

The Viewlogic tools use the concept of projects to keep track of
designs. A project is a working directory that contains the sub
directories and data files for a given design. Projects can even contain
several designs of the same type, for example, a single project
containing several XC3000A designs; however, it is recommended
that each project contain only one design. The project containing the
design actively being processed is known as the current project.

The definition of the Cale project involves three steps: creating a
project in the c:\user\calc directory, generating the needed program
initialization files and profiles, and selecting the CALC.1 schematic as
the top-level schematic used when processing.

Creating the Cale Project

The PRO Series Project Manager allows you to select, create, and
remove projects. You must add the tutorial directory c:\user\calc to
the Project List box and then select it.

1. Click on Create in the PRO Series Project Manager.

The Create Project dialog box appears, as shown in Figure 1-4.

Xilinx Development System

Viewlogic Tutorials

L:J sch
L:J soln_Jka.
L:J sym
uwir

PROcapture and PROsim Tutorial

Figure 1-4 Create Project Dialog Box

2. Select the c: \user\calc tutorial directory by double-clicking in the
Directory list box until the field is correctly updated, as illustrated
in Figure 1-4.

3. Click on OK.

The Create Project dialog box closes, and the PRO Series Project
Manager opens showing the c:\user\calc directory in the Project
List box. Figure 1-5 displays the updated Project Manager.

1-9

Viewlogic Tutorials

1-10

Figure 1-5 Updated PRO Series Project Manager

Now that you have created an entry for the tutorial directory, all
that remains to do is to select it as the current project.

4. Click on Select, or double-click on the project name.

When you select c:\user\calc, the PRO Series Project Manager
automatically creates the necessary initialization files.

5. To close the PRO Series Project Manager, click on Exit.

When you close the PRO Series Project Manager, the Select Family
dialog box appears, as shown in Figure 1-6.

Figure 1-6 Select Family Dialog Box

6. Select XC3 O O OA if you are performing the FPGA tutorial or
XC7000 if you are performing the EPLD tutorial.

Xilinx Development System

PROcapture and PROsim Tutorial

7. Click on OK.

Xilinx PROflow comes up, as shown in Figure 1-7 .

.Eile System .!::!.elp

Viewlogic Tutorials

Design Entr]I'

Functional
Simulation

Xilinx
Implementation

Timing
Simulation

Program
Download

Figure 1-7 Xilinx PROflow Window

Waveform
Analvsis

Waveform
Analvsis

To guide you through processing your design, PROflow only allows
you to enter stages in the design flow if the files that are needed for
that step are present. For instance, if you were to click on the Xilinx
Implementation icon, you would receive the message shown in
Figure 1-8.

1-11

Viewlogic Tutorials

1-12

0 Please select design using ProCapture Button

Figure 1-8 Xilinx Implementation Warning Message

Because the design to be processed has not been specified, PROflow
does not allow you to enter the Xilinx Implementation section.

Obtaining Design Status

To see PROflow's initial design status, follow these steps.

1. Select the File _. Status command.

This command displays the Status dialog box, shown in
Figure 1-9, which displays the currently known information about
the design. As you enter and process the Cale design, additional
information appears in the remaining fields.

Figure 1-9 Status Dialog Box

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

2. Click on OK.

The Status dialog box closes.

Selecting the CALC.1 Schematic

In the previous sections, you defined the Cale project and created the
necessary initialization files. Now you must select the Cale design's
top-level schematic, CALC.l, as the current design.

1. In PROflow, click on the Design Entry icon, shown in Figure 1-10.

Figure 1-10 Design Entry Icon

The Design Entry dialog box now appears, as shown in
Figure 1-11.

1-13

Viewlogic Tutorials

1-14

7SEG_INV_l
7SEG_TRU_l
7SEGDEc_1
ALU_l

Figure 1-11 Design Entry Dialog Box

The project displayed at the top of the dialog box is c:\user\calc.
The List Files of Type field displays the default filter, *. l.

Viewlogic allows a schematic to contain multiple sheets. The
sheets are saved to the project directory's sch directory, where
each sheet is a separate file. The extension of the file is the actual
sheet number. If Cale's top-level schematic had two sheets, the sch
directory would contain a CALC.1 and a CALC.2 file. The current
string in the List Files of Type field in the Design Entry dialog box
restricts the display to only the first sheet of each schematic. If you
wanted to see all the second sheets, you could change the List
Files of Type field to *.2. To see all sheets, you could enter*.* in the
List Files of Type field.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

Note: The default of the Design Type field is Schematic. You can also
process VHDL designs if the PROsynthesis package is installed or
XABEL designs if the XABEL package is installed. The Cale tutorial
focuses on processing straight schematic designs.

There are two ways to select the top-level schematic, CALC.1: you
can either type the name directly in the Design Name field, or
click on the file in the design list box.

2. Click on the CALC.1 file in the design list box.

The CALC.1 file now appears in the Design Name field.

3. Click in the Start PROcapture check box to deselect it, as shown in
Figure 1-12.

7SEG_INV.1
7SEG_TRU.1
7SEGDEC.1
ALU.1

Figure 1-12 Disabling the Start PROcapture Check Box

1-15

Viewlogic Tutorials

1-16

Clicking on the Start PROcapture check box determines whether
or not PROcapture is invoked when you click on the OK button.
By default, Start PROcapture is selected. For now, you only want
to select the design, so you must deselect the Start PROcapture
check box.

4. Click on OK.

Because Start PROcapture is disabled, selecting OK closes the
Design Entry dialog box and reactivates PROflow.

5. Select the File --+Status command to display the Status dialog
box, shown in Figure 1-13.

Figure 1-13 Status Dialog Box

Now the File field contains the selected design, CALC. l.

6. Click on OK to close the Status dialog box.

Xilinx Development System

PROcapture and PROsim Tutorial

Navigating in PROcapture
In creating a design, you typically use hierarchical levels to divide the
design into more manageable sections. The top-level schematic for
the Cale tutorial, CALC.1, has already been created for you. In this
tutorial, you will add schematic information to the lower levels using
the Viewlogic PROcapture program to create all schematics and
symbols for a design. This section describes how to access
PROcapture, adjust the colors of the PROcapture window, and move
around the screen.

Mouse Buttons
Mouse buttons perform the following functions in PRO Series:

• The left mouse button selects objects.

• The right mouse button cancels the current command mode. In
addition, you use it to select multiple items; select the first item
with the left mouse button and subsequent items with the right
mouse button.

Function Keys

Viewlogic Tutorials

The function keys in PRO Series are labeled Fl, F2, F3, and so forth on
your keyboard. They are assigned the functions shown in Figure 1-14.

1-17

Viewlogic Tutorials

NIA

N/A

View Entire Schematic

Place Object in Center of Screen _ _J

Zoom In I
Zoom Out --

Zoom a Region -

X6042 Access Menus

Figure 1-14 Default Function Keys

Starting PROcapture

1-18

To open the CALC.1 schematic in PROcapture, follow these steps.

l. In PROflow, click on the Design Entry icon, shown in Figure 1-15.

Figure 1-15 Design Entry Icon

2. As demonstrated in Figure 1-16, click in the box next to the Start
PROcapture field.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

Figure 1-16 Selecting the Start PROcapture Check Box

3. Click on OK.

1-19

Viewlogic Tutorials

Because you enabled Start PROcapture, clicking on OK closes the
Design Entry dialog box and invokes PROcapture on the selected
CALC.1 schematic, as shown in Figure 1-17.

Figure 1-17 CALC.1 Schematic in PROcapture Window

Changing the PROcapture Window Colors

1-20

You can change the PROcapture color settings so that viewing a
schematic will be easier. If the background of your schematic is white
and you want to change the color palette, proceed with the steps in
this section; otherwise, skip to the next section.

1. To change the color palette, select Change --t PROcapture
Colors.

The PROcolor Manager dialog box appears, as shown in
Figure 1-18.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

- PROcolor Manager

To Modify a color select an object and then choose a color from the Palette

Graphic Objects Schematic Objects

Nets/Buses. Labels.

Components • Pins •

Attributes •

Arcs. Lines • lPml
Boxes. Text.

Circles. ,_

Miscellaneous

• PROsim.
Sheet Border Values

PROw'!ve. Selection.

Sylllem Colors

Window D
Background

Window Text
and Grid

Annotation Layer

Color Palette

ommmmmmmmmmmmmmo ,,__...
Figure 1-18 PROcolor Manager Dialog Box

2. Click on Classic Defaults.

This setting changes the color configuration for the various
objects. The window background, window text, and grid toggle
from white to black and vice versa.

3. Click on OK to close the PROcolor Manager dialog box and
reactivate PROcapture.

An information dialog box comes up to inform you that the
changes to the color palette will not take effect until you close all
schematics and symbols.

4. Select File ---+ Close to close the CALC.1 schematic.

5. Select File ---+ Open to re-open the CALC.1 schematic.

The schematic should resemble the one shown in Figure 1-19. The
colors onscreen are now changed.

1-21

Viewlogic Tutorials

Figure 1-19 CALC.1 Schematic in PROcapture Window

Moving Around the Screen

1-22

PROcapture works like any other Windows program; it allows you to
view and work in several different designs. The concept of working
in several documents at once is known as the Multiple Document
Interface, or MDL MDI enables you to bring up multiple schematic
windows and arrange them in the workspace in any fashion.

You can also zoom and pan around a schematic in PROcapture.
Zooming allows you to view an entire schematic or focus on a
particular section. You can select the zoom commands from the View
menu, from the toolbar, or by pressing the designated function key.

You can also make icons of schematics when the schematics are not
needed. Making an icon of a schematic does not close the schematic;
it merely turns the window into an icon. Later, when you need the
schematic, you can double-dick on the icon to re-display it.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

Table 1-1 at the end of this chapter summarizes the PRO Series
functions, toolbar icons, menu commands, command line shortcuts,
and function keys used in the rest of the tutorial.

Panning

You can familiarize yourself with the CALC.1 schematic by panning
around the window. Panning is the process of obtaining a panoramic
view of the screen by using one point as the center of the view.

To pan across the screen, first move the cursor to the location that will
become the center of the new view, then press the F6 function key.
This step centers the edit area around the location of the cursor but
does not move the cursor. Repeat moving the cursor and pressing F6
to move around the screen.

Zooming

Zooming magnifies or shrinks the view onscreen. You can either view
the entire schematic or focus on one portion of it. All of the zoom
commands are dynamic, which means you can use them while you
are in the middle of another command.

• Click on the up arrow, shown in Figure 1-20, in the upper right
corner of the CALC.1 schematic window to fill the entire
workspace with the CALC.1 schematic window. Figure 1-21
shows the expanded window.

Up arrow on the
schematic window

Figure 1-20 Up Arrow on the CALC.1 Schematic Window

1-23

Viewlogic Tutorials

1-24

Figure 1-21 Expanded Schematic Window

Notice that when the window is enlarged to fill the work space,
the schematic does not fill the entire area of the new schematic
window.

• To view the entire sheet - that is, to expand the schematic to fill
the entire window - select the View -t Full command.

Keyboard Shortcut: You can execute the View -t Full command by
pressing the F4 function key.

Toolbar Shortcut: You can execute the View -t Full command by
clicking on the Full toolbar icon, shown in Figure 1-22.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

Figure 1-22 Full Toolbar Icon

• To zoom in, or magnify the view of the design, select the View ___..
In command.

Keyboard Shortcut: You can execute the View ___.. In command by
pressing the F7 function key.

Toolbar Shortcut: You can execute the View___.. In command by
dicking on the In toolbar icon, shown in Figure 1-23.

Figure 1-23 In Toolbar Icon

• To zoom out, or shrink the view of the design, select the View ___..
Out command.

Keyboard Shortcut: You can execute the View ___.. Out command by
pressing the FS function key.

Toolbar Shortcut: You can execute the View ___.. Out command by
dicking on the Out toolbar icon, shown in Figure 1-24.

Figure 1-24 Out Toolbar Icon

• To zoom a particular region, select the View ___.. Region
command. Define the area to be zoomed by pressing and holding
the left mouse button in the upper left corner of the area and the
left mouse button in the lower right corner. Release the left mouse
button.

1-25

Viewlogic Tutorials

1-26

Keyboard Shortcut: You can execute the View ---t Region command
by pressing the F9 function key. You define the upper left corner
when you select the command and the lower right corner when
you press the left mouse button.

Practice these functions by magnifying the ALU block in the center of
the screen, as shown in Figure 1-25.

1. To place the ALU block in the center of the screen, point the mouse
at the middle of the ALU block and press the F6 function key.

2. Use the View ---t In and View ---t Out commands to magnify
the ALU block until it fills the schematic. You can also use the
View ---t Region command.

Figure 1-25 Zoomed ALU Block

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

Making Icons of Schematics and Symbols

Use the following procedure to make an icon of the CALC.1
schematic window.

1. When the schematic window occupies the entire screen, the name
of the schematic is shown in the PROcapture title bar. You can
reduce the size of the CALC.1 schematic by pressing the up/
down arrow button to the right of the Help menu.

2. Make an icon of the CALC.1 schematic window by pressing the
down arrow button in the upper right of the CALC.1 schematic
window. Figure 1-26 illustrates the resulting icon.

To re-open the CALC.1 schematic window, you can double-click
on the icon; however, for this part of the tutorial, leave the
CALC.1 schematic window as an icon.

Figure 1-26 CALC.1 Icon

1-27

Viewlogic Tutorials

PROcapture Command Summary

Description

Obtain context
sensitive help

Cancel current
command

View entire
schematic

Zoom in

Zoom out

Zoom region

Place object in
center of screen

Refresh screen

Push into
schematic view

1-28

The following table summarizes the commands used in this chapter
and in the rest of the tutorial.

Table 1-1 PROcapture Commands

Toolbar Icon Menu Command

Help-+ Help

None

View-+ Full

View-+ In

View-+ Out

None View -+ Region

None None

None View -+ Refresh

View -+ Push Into
Schematic

Function
Key

None

None

F4

F7

F8

F9

F6

F5

None

Command
Line Entry

help.J

Esc key

full.J

in.J

out.J

zoom.J

None

refresh.J

psc.J

Xilinx Development System

Description

Push into
symbol view

Pop out of
schematic or
symbol

Open a file

Save a file

Save a file as

Close the active
window

Adda box

Add a symbol
pin

Add a label

Change an
attribute

Viewlogic Tutorials

Toolbar Icon

None

None

PROcapture and PROsim Tutorial

Menu Command
Function Command

Key Line Entry

View ___. Push Into None psy.J
Symbol

View___. Pop None pop.J

File ___. Open None sym.J for
symbols
sch.J for
schematics

File ___. Save None wri.J

File___. Save As None writeto.J

File ___. Close None wcl.J

Add___. Box None box.J

Add___. Pin None pin.J

Add ___. Object Label None la.J

Change ___. Object None at.J
Attributes ___. Dialog

1-29

Viewlogic Tutorials

Description

Add text

Adda
component

Add anet

Adda bus

Make attributes
invisible

Make attributes
visible

Select
components

Move an object

Copy selected
objects to the
buffer

1-30

Toolbar Icon

None

None

None

Menu Command

Add ___. Text

Add ___. Component

Add___. Net

Add___. Bus

Change ___. Object
Attributes___. Visibility
___. All Attrs Off

Change ___. Object
Attributes___. Visibility
___. All Attrs On

Edit___. Select

Edit-Move

Edit-Copy

Function
Key

None

None

None

None

None

None

None

None

None

Command
Line Entry

text.J

com.J

ne.J

bu.J

ain.J

avi.J

sco.J

m.J

bcop.J

Xilinx Development System

Description

Paste objects
from the buffer

Copy selected
components

Change the
selected
components

Toolbar Icon

None

PROcapture and PROsim Tutorial

Menu Command

Edit --+ Paste

None

Change--+ Compo
nent

Function
Key

None

None

None

Command
Line Entry

bpa.J

cop.J

cc.J

Creating Symbols
To create a hierarchical module, you must create a symbol, which is a
graphic representation of the schematic block. In the ALU block,
three symbols are missing. You can find one symbol, FD4CE, in the
Unified Libraries supplied by Xilinx. You must create the ANDBLK2
and ORBLK2 symbols yourself using the instructions in this section.

Creating the ANDBLK2 Symbol

Viewlogic Tutorials

To create the ANDBLK2 symbol, follow these steps.

1. To open a new symbol window, select the File --+ Open
command, which displays the File Open dialog box.

Keyboard Shortcut: You can execute the File --+ Open command for
a symbol by typing sym.J on the PROcapture command line, as in
the following example:

sym andblk2.J

Toolbar Shortcut: You can execute the File --+ Open command by
clicking on the Open toolbar icon, shown in Figure 1-27.

1-31

Viewlogic Tutorials

1-32

Figure 1-27 Open Toolbar Icon

2. In the Design Name field, type ANDBLK2 .1.

3. Select the Symbol setting in the Type field, as shown in
Figure 1-28. The default setting is Schematic.

IJI File Open

Design Name

IANDBLK2.1

C:\USER\CAl..C
(xc3000) C:\proser\unified\XCJ
(xblox) C:\proser\unified\XBLO
(builtin) C:\proser\unified\BUIL
(xbuiltin) C: \proser\unified\XB U

TJ1pe

0 Schematic

® SJ1mbol

Designs

7SEG INV.1
7SEG-TRU.1
7SEGDEC.1
ALU.1
CONTROL.1
DEBOUNCE.1
LED INV.1
LED-TRU.1

Figure 1-28 Selecting the Symbol Setting

4. Click on OK.

The File Open dialog box closes and the new symbol window
opens, displayed in Figure 1-29.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

Figure 1-29 Symbol Window

The ANDBLK2 symbol contains a box called a block sheet. It defines
the perimeter of the symbol but does not show up on the screen when
the symbol is placed in a design schematic. Only the elements that
you add to the symbol are visible.

The initial size of the ANDBLK2 symbol, shown as the area defined
by the block sheet, is 1 inch by 1 inch, or 100 x 100 grid units. For
most symbols, it is necessary to enlarge or reduce this default size.

1-33

Viewlogic Tutorials

1-34

Changing the Size of the Symbol

To change the size of the symbol, follow these instructions.

1. Select the Change ---. Sheet Size ---. z-WXB command.

Keyboard Shortcut: You can execute the Change ---. Sheet Size ---.
Z-WxH command by typing zsi width height.Jon the PROcapture
command line.

PROcapture prompts you first for the new block width at the
PROcapture command line.

2. At the Block width [100] prompt, type 150.J.

Now PROcapture prompts you for the new block height.

3. Atthe Block height [100] prompt, type 120.J.

When you change the size of a symbol, the change is reflected in the
text at the top of the symbol window. When you change the
ANDBLK2 symbol, the text changes to the following:

ANDBLK2.l(SYM) Z-1.5"xl.2" G:lO

The text tells you that the window is for a symbol called ANDBLK2.l,
which has the dimensions of 1.5 inches by 1.2 inches. The G:lO
notation indicates that the grid spacing is every tenth of an inch. You
can change the grid spacing to any desired value, but 10 works well
with the Unified Libraries because the pins on the various
components are spaced by multiples of 10.

Creating a Symbol Box

Most symbols have a visible frame or bounding box to which its pins
are attached. You can create this box.

1. Select the Add ___.. Box command.

The pointer changes to a crosshair.

Keyboard Shortcut: You can execute the Add ---. Box command by
typing box.J on the PROcapture command line.

Toolbar Shortcut: You can execute the Add---. Box command by
clicking on the Box toolbar icon, shown in Figure 1-30.

Xilinx Development System

'1l
SCHEMATIC:CALC.1

Viewlogic Tutorials

PROcapture and PROsim Tutorial

Figure 1-30 Box Toolbar Icon

2. Point the crosshair at the spot where you want to place the upper
left comer of the box.

3. Holding down the left mouse button, drag the mouse to the spot
where you want to place the lower right comer of the box.

4. Release the left mouse button.

Once the second point of the box is defined, the box is added to
the symbol, as indicated in Figure 1-31.

Figure 1-31 Creating a Symbol Box

1-35

Viewlogic Tutorials

1-36

When you create a box, the status line gives the dimensions of the
box. The Box toolbar icon remains selected after the box has been
defined because PROcapture remains in Add Box mode. You can
add multiple boxes in succession without having to re-invoke the
Add ___. Box command.

5. To exit Add Box mode, press the Escape key, click the right mouse
button, or click on the Clear toolbar icon, shown in Figure 1-32.

Figure 1-32 Clear Toolbar Icon

Adding Pins

Once the symbol body is defined, the next step is to add pins to the
symbol.

1. Select the Add ___. Pin command.

The pointer changes to a crosshair.

Keyboard Shortcut: You can execute the Add ___. Pin command by
typing pin.J on the PROcapture command line.

Toolbar Shortcut: You can execute the Add ___. Pin command by
clicking on the Pin toolbar icon, shown in Figure 1-33.

Figure 1-33 Pin Toolbar Icon

2. On the symbol body, point the crosshair at the spot where you
want the pin to start.

3. Holding down the left mouse button, drag the mouse to the spot
on the block sheet boundary where you want the pin to end.

4. Release the left mouse button.

Xilinx Development System

t)
SCHEMATIC:CALC.1

Viewlogic Tutorials

PROcapture and PROsim Tutorial

5. Repeat steps 2 through 4 to add the remaining two ANDBLK2
pins, as shown in Figure 1-34.

Note: You must begin the pin at the symbol body.

Figure 1-34 Adding Pins to ANDBLK2

When a pin is created, the status line gives the dimensions of the
pin. The Pin toolbar icon remains depressed after the pin has been
defined because PROcapture remains in Add Pin mode. You can
add multiple pins in succession without having to re-invoke the
Add --+ Pin command.

6. To exit Add Pin mode, press the Escape key, click the right mouse
button, or click on the Clear toolbar icon.

Adding Pin Labels

Now you are ready to add labels to the pins on the symbol. These
labels must exactly match the labels used for the same signals in the

1-37

Viewlogic Tutorials

1-38

corresponding schematic. For example, if there is a pin labeled
"clock" on the symbol, there must be a net labeled "clock" in the
symbol's schematic.

1. Using the left mouse button, select the upper left pin.

The pin color now changes.

2. Select the Add ---+ Object Label command to bring up the Add
Label dialog box.

Mouse Shortcut: You can execute the Add ---+ Object Label
command by double-clicking on the pin or component that is to be
labeled.

Keyboard Shortcut: You can execute the Add ---+ Object Label
command by typing la.J on the PROcapture command line once
you select the desired pin.

3. Enter A [3 : O] in the Text field of the dialog box, as illustrated in
Figure 1-35.

- Add Label

Text l._A_l3_:0_J ________________ __.!

Size [!!] IW - -

Figure 1-35 Add Label Dialog Box

4. Click on OK.

Selecting OK closes the Add Label dialog box and displays a PRO
Series query box asking if the label should be expanded. This
query box is only displayed when the label that you have entered
has a width, for example, [3:0]. Because the label that has been
entered will be connected to a bus in the symbol's schematic, it
should not be expanded into individual nets.

Xilinx Development System

$
SCHEMATICCALCl

Viewlogic Tutorials

PROcapture and PROsim Tutorial

5. Click on No.

The query box closes, and the symbol window is reactivated. An
outline of the labet or bounding box, appears on the screen next
to the pointer.

6. Point the mouse so that the label outline is in its desired location
next to the upper left pin.

7. Click the left mouse button to place the label.

8. Repeat steps 1 through 7 to add labels to pins B[3:0] and 0[3:0L as
shown in Figure 1-36.

Figure 1-36 Adding Pin Labels

Adding Pin Attributes

The next step in creating a symbol is to attach the PINTYPE attribute
to each pin, giving the pins directionality. The most common values
for the PINTYPE attribute are IN, OUT, and Bl. PINTYPE attributes

1-39

Viewlogic Tutorials

1-40

were required in the older versions of the Viewlogic tools but are now
optional except when there is no schematic for a symbol. (See the
"Merging Non-Schematic-Based Modules" section of the "Design
and Simulation Techniques" chapter of the Viewlogic Interface Guide
for a discussion of this special case.)

Later in this tutorial, you will create an ANDBLK2 schematic, so the
ANDBLK2 symbol does not require PINTYPE attributes. However,
the tutorial now shows you how to assign PINTYPE attributes to the
pins for cases in which you have no schematic for a symbol; it also
offers you an opportunity to learn some useful Viewlogic commands.

Using the Add Object Attribute Command

One way to add an attribute is to use the Add -. Object Attribute
command.

1. Using the left mouse button, select the upper left pin.

Selecting the pin changes its color and displays the label's
bounding box.

2. Select the Add -. Object Attribute command.

Keyboard Shortcut: You can execute the Add -. Object Attribute
command by typing at.J on the PROcapture command line.

3. Atthe Attribute Text String: prompt, type PINTYPE=IN.J.

When you enter the attribute, an outline of the attribute, or
bounding box, appears on the screen next to the pointer.

4. Point the mouse so that the attribute outline is in its desired
location next to the upper left pin.

5. Click the left mouse button to place the attribute, as shown in
Figure 1-37.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

Figure 1-37 Adding Attributes

Editing Pin Attributes

Editing pin attributes is another way to add an attribute.

1. Click the left mouse button on the lower left pin to select it.

2. Select the Change ___. Object Attributes ___. Dialog
command.

Keyboard Shortcut: You can execute the Change ___.Object
Attributes___. Dialog command by typing cat.Jon the
PROcapture command line.

Toolbar Shortcut: You can execute the Change ___. Object Attributes
___. Dialog command by clicking on the Attribute toolbar icon,
shown in Figure 1-38.

1-41

Viewlogic Tutorials

1-42

Figure 1-38 Attribute Toolbar Icon

Mouse Shortcut: You can execute the Change ---+ Object Attributes
---+ Dialog command by double-clicking on a labeled pin, net, or
component.

The Edit Attributes dialog box appears, as illustrated in
Figure 1-39. It is shown for a pin with no attributes attached.

- Edit Attributes

Attribute List for Symbol Pin

Name Value

Figure 1-39 Edit Attributes Dialog Box

3. Click on Add.

Selecting Add displays an empty Edit Attribute dialog box.

4. In the Name field, type PINTYPE.

5. In the Value field, type IN.

The completed Edit Attribute dialog box is shown in Figure 1-40.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

Edit Attribute

Name \~P_IN_T_Y_P_E _______ __.

Value \~IN _________ ~

Figure 1-40 Edit Attribute Dialog Box

6. Click on OK.

Selecting OK closes the Edit Attribute dialog box and updates the
Edit Attributes dialog box, shown in Figure 1-41.

Edit Attributes

Attribute List for Symbol Pin

Nome

PINTYPE

Value

IN

Figure 1-41 Updated Edit Attributes Dialog Box

7. Click on OK.

The Edit Attributes dialog box closes, and the ANDBLK2 symbol
window is reactivated with the attribute added to the pin. Figure
1-42 illustrates this window.

1-43

Viewlogic Tutorials

• SCHEMATICCALC1

1-44

Notice that the attribute is also placed when the ANDBLK2
symbol is reactivated .

Figure 1-42 ANDLBK2 Symbol Window with PINTYPE=IN
Attribute

Adding Other PINTYPE Attributes

Either by using the Add ---t Object Attribute command or by editing
the pin attributes, as described in the previous two sections, add a
PINTYPE=OUT attribute to the 0[3:0] pin. Figure 1-43 shows the
desired results.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

Figure 1-43 ANDLBK2 Symbol Window with PINTYPE=OUT
Attribute

Changing Attribute Size

Adding the PINTYPE attributes has better defined the ANDBLK2
symbol, but in the process the symbol has become cluttered. To clean
up the symbol, you can reduce the font size of the PINTYPE
attributes.

1. Using the left mouse button, select the upper left pin's PINTYPE
attribute.

The attribute's bounding box is displayed.

2. Using the right mouse button, select the remaining two PINTYPE
attributes.

The right mouse button allows you to select multiple objects.

1-45

Viewlogic Tutorials

• SCHEMATIC:CALC.1

1-46

3. At the PROcapture command line, type size 5.J. Alternatively,
you can select Change ~ Text from the menu and change the
text size to 5.

Figure 1-44 displays the reduced attribute text size .

Figure 1-44 Reduced Attribute Text Size

Note: The Size command affects all selected text. Any text created
after the Size command is used also reflects the change.

You can, however, change PROcapture's text size variable back to 10.

1. Press the Esc key.

PROcapture now returns the prompt to its default state.

2. Click the left mouse button on an empty area outside of the
symbol body.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

Clicking the left mouse button on an empty area deselects any
selected objects.

3. Type size 10.J.

When you specify the Size 10 command with nothing selected in the
symbol window, a message in the status bar confirms the change by
indicating that nothing was selected.

Controlling Attribute Visibility

You can also make attributes invisible if you want to further improve
the appearance of the symbol. Rendering the attributes invisible is for
cosmetic reasons only; the attributes still affect the symbol.

1. Select the Change ___.. Object Attributes ---.visibility___..
All Attrs Off command.

Keyboard Shortcut: You can execute the Change ___.. Object
Attributes ___.. Visibility ___.. All Attrs Off command by typing ain.J
on the PROcapture command line.

Keyboard Shortcut: You can execute the Change ___.. Object
Attributes ---. Visibility ___.. All Attrs On command by typing avi.J
on the PROcapture command line.

2. AttheAttribute Text String [*J:prompt,press.J.

Pressing .J selects the default wildcard value, which turns all the
symbol attributes invisible, as shown in Figure 1-45.

3. To redraw the screen, press FS or select View ___.. Refresh.

1-47

Viewlogic Tutorials

• SCHEMATIC:CALC.1

1-48

Figure 1-45 Invisible Attributes

Adding Symbol Text

When a symbol is placed on a schematic, it may be difficult to
distinguish it from another symbol. To distinguish one symbol from
another, you can add text such as the symbol name to the symbol
definition. Text is purely visual.

1. Select the Add ---. Text command to bring up the Add Text
dialog box.

Keyboard Shortcut: You can execute the Add ---. Text command by
typing text.J on the PROcapture command line.

Toolbar Shortcut: You can execute the Add ---. Text command by
clicking on the Text toolbar icon, shown in Figure 1-46.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

Figure 1-46 Text Toolbar Icon

2. In the Text field, type ANDBLK2, as illustrated in Figure 1-47.

Add Text

Texl IANDBLK2

Size ~

Figure 1-47 Add Text Dialog Box

3. Click on OK.

Selecting OK closes the Add Text dialog box and reactivates the
symbol window. A bounding box is displayed next to the pointer.

4. Move the mouse so that the text bounding box is in the desired
position; in this case, place it on top of the symbol box.

5. Click the left mouse button to place the text string. The results are
depicted in Figure 1-48.

If you make a mistake while typing the text, or want to change the
text after you have placed it on the symbol, double-dick on the
added text. The Change Text dialog box comes up so that you can
edit the text.

1-49

Viewlogic Tutorials

• SCHEMATICCALC1

1-50

Figure 1-48 Symbol Text

Changing Symbol Text Size

Depending on the size of the schematic sheet, the text that you have
added to the symbol may not be visible at full zoom when the symbol
is later placed in a schematic. It may be necessary to change the text
size.

l. Double-dick on the ANDBLK2 text and change the size to 15.

2. Click on OK to close the Change Text dialog box.

Moving Text and Objects

Changing the size of the text causes it to be misaligned with the top of
the symbol body. Like any other object, text can easily be moved. To
reposition the text so that it is centered at the top of the symbol body,
follow this procedure.

Xilinx Development System

$
SCHEMATIC:CALC1

Viewlogic Tutorials

PROcapture and PROsim Tutorial

1. Using the left mouse button, select the text.

When the text is selected, its bounding box is displayed.

2. Position the mouse inside the bounding box.

3. While holding the left mouse button down, drag the text to its
new location. Figure 1-49 shows the repositioned text.

Figure 1-49 Repositioned Text

You can also move objects by selecting the objects to be moved, then
using the Edit ___.. Move command to move them to their desired
location.

Mouse Shortcut: You can execute the Edit ___.. Move command by
selecting the component to be moved and dragging it to the new
location.

Keyboard Shortcut: You can execute the Edit___.. Move command by
typing move.J on the PROcapture command line.

1-51

Viewlogic Tutorials

1-52

Toolbar Shortcut: You can execute the Edit~ Move command by
clicking on the Move toolbar icon, shown in Figure 1-50.

Figure 1-50 Move Toolbar Icon

Saving the ANDBLK2 Symbol

The ANDBLK2 symbol is now complete, and you can save it to the
project directory's sym directory.

l. Select the File ~ Save command.

Keyboard Shortcut: You can execute the File ~ Save command by
typing wri.J on the PROcapture command line.

This command generates a report, which is displayed in a PRO
Series information dialog box. Figure 1-51 shows this report.

SYMBOL NAME: ANDBLK2.1
BLOCK lYPE: COMPOSITE

UNATTACHED ATTRIBUTES:

PIN INFORMATION:

Pin Label: A[3:0]
Attribute PINlYPE=IN

Pin Label: B[3:0]
Attribute PINlYPE=IN

Pin Label: 0[3:0]
Attribute PINlYPE=OUT

Figure 1-51 PRO Series Report in Information Dialog Box

Xilinx Development System

PROcapture and PROsim Tutorial

2. To view the entire report, use the down arrow at the bottom of the
scroll bar. Make sure that the information displayed is the same as
that shown in Figure 1-51. If your output is not the same, correct
the symbol to eliminate the differences and then save the symbol
as noted earlier.

The report shows the name of the primary symbol, ANDBLK2.
This name not only includes the given name of the symbol,
"ANDBLK2," but also the name of the library in which the
symbol resides. Because the library was created from scratch, it
resides in the first writable library in the viewdraw.ini file. The
ANDBLK2 symbol here is part of the primary, or project,
directory, c: \ user\calc.

3. Click on OK.

Selecting OK closes the information dialog box and reactivates the
ANDBLK2 symbol window.

Creating the ORBLK2 Symbol

Viewlogic Tutorials

The next step is to create the symbol for ORBLK2. Since ORBLK2 is
similar to ANDBLK2, use the ANDBLK2 symbol as the starting point
in creating the ORBLK2 symbol. Only a change to the text is needed.

1. Double-dick on the ANDBLK2 text in the ANDBLK2. l symbol
window.

2. In the Change Text dialog box, change the text in the Text field to
ORBLK2.

3. Click on OK.

4. Move the text so that it is centered above the symbol body.

5. Select the File ---+ Save As command.

Keyboard Shortcut: You can execute the File ---+ Save As command
by typing writeto.J on the PROcapture command line.

Toolbar Shortcut: You can execute the File ---+ Save As command by
clicking on the Save As toolbar icon, shown in Figure 1-52.

1-53

Viewlogic Tutorials

1-54

Figure 1-52 Save As Toolbar Icon

The File ___. Save As command displays the File Save As dialog
box, displayed in Figure 1-53.

- File Save As ..

IC: \USER\CALC

Design Name

IANDBLK2.1

Figure 1-53 File Save As Dialog Box

All that you need to change is the name of the symbol. The library
to which the symbol is written is still the primary library.

6. Change the name in the Design Name field to ORBLK2 .1, as
shown in Figure 1-54.

- File Save As ..

I C:\USER\CALC

Design Name

loRBLK2.1

Figure 1-54 Changing the Design Name

Xilinx Development System

$
SCHEMATIC:U\LC1

PROcapture and PROsim Tutorial

7. Click on OK to close the File Save As dialog box and save the
design to the desired name.

Figure 1-55 displays the resulting ORBLK.2 symbol.

The name in the title bar is now ORBLK.2.1 instead of ANDBLK.2.1.
The File___.. Save As command changes the window to the current file
name so that any further edits only affect the new symbol.

Figure 1-55 ORBLK2 Symbol

Note: You can also create the ORBLK2 symbol by typing writeto
orblk2 . 1.J on the PROcapture command line.

Viewing Symbols Simultaneously

Viewlogic Tutorials

Using the MDI (Multiple Document Interface) feature, you can view
the two new symbols side by side.

1-55

Viewlogic Tutorials

1-56

1. Click on File ---. Open to open the ANDBLK2.1 symbol.

2. Select the Window ---. Tile command.

The two symbols are now displayed side by side.

3. In each of the symbol windows, zoom to full view by clicking on
the Full toolbar icon or selecting View --t Full.

Figure 1-56 shows the two symbol windows side by side.

Figure 1-56 Tiled ANDBLK2 and ORBLK2 Symbol Windows

Xilinx Development System

PROcapture and PROsim Tutorial

Closing Symbol Windows

Viewlogic Tutorials

You can either make the ANDBLK2 and ORBLK2 symbol windows
into icons like the CALC.1 schematic window, or close them. Because
the symbols do not require further edits, close them with the
following procedure.

1. Click on the ANDBLK2.1 symbol window's title bar to activate
the window.

2. Select the File ---. Close command.

Keyboard Shortcut: You can execute the File ---. Close command by
typing wcl.J on the PROcapture command line.

Toolbar Shortcut: You can execute the File ---. Close command by
clicking on the Close toolbar icon, shown in Figure 1-57.

Figure 1-57 Close Toolbar Icon

The ANDBLK2 symbol window closes. The ORBLK2 window
remains onscreen as in Figure 1-58.

1-57

Viewlogic Tutorials

1-58

Figure 1-58 Closing the ANDBLK2 Symbol Window

When the ANDBLK2 symbol window is closed, the ORBLK2
symbol window is activated.

3. To close the ORBLK2 symbol window, click on the Close toolbar
icon.

The ORBLK2 symbol window now closes. Your screen should
resemble the one in Figure 1-59.

Xilinx Development System

PROcapture and PROsim Tutorial

Figure 1-59 Closing the ORBLK2 Symbol Window

Creating Schematics
You have created symbols for ANDBLK2 and ORBLK2. The next step
is to create schematics for these blocks using the instructions in this
section. You can then reference the schematics in a higher-level
schematic by instantiating and placing the symbols.

Opening a Schematic Sheet

Viewlogic Tutorials

To create the ANDBLK2 schematic, you must first open a new
schematic sheet.

1. Open a new schematic window by clicking on File -. Open.

The File Open dialog box appears.

Keyboard Shortcut: You can execute the File -. Open command for
a schematic by typing sch.J on the PROcapture command line.

1-59

Viewlogic Tutorials

1-60

2. In the Design Name field, type ANDBLK2. 1, as shown in
Figure 1-60.

Ill File Open

Design Name

IANDBLK2.1

Libraries

C:\USER\CALC
(xc3000) C: \proser\unified\XCJ
(xblox) C:\proser\unified\XBLO
(buillin) C: \proser\unified\B UIL
(xbuillin) C: \proser\unified\XB U

Type

@ Schemalic

0 Symbol 1--

Designs

7SEG INV.1
7SEG-TRU.1
7SEGDEC.1
ALU.1
CALC.1
CONTROL.1
DEBOUNCE.1
LED INV.1

Figure 1-60 Specifying the Design Name

3. Click on OK.

The schematic window shown in Figure 1-61 now opens.

Note: You can also create the ANDBLK2 schematic by typing sch
andblk2. 1.J on the PROcapture command line.

Xilinx Development System

PROcapture and PROsim Tutorial

Figure 1-61 ANDBLK2.1 Schematic Window

The file name and type followed by its size in inches and the grid
spacing is displayed at the top of the opened window:

ANDBLK2.l(SCH) B-17"xll" G:lO

4. Click on the up arrow in the upper right corner of the schematic
window.

The schematic window expands to fill the work space.

5. Select the View -+ Full command to expand the schematic to fit
the window.

Adding Components

Viewlogic Tutorials

Now that you have a blank schematic window, you are ready to start
adding components.

1-61

Viewlogic Tutorials

1-62

1. To add an AND2 component to the ANDBLK2 schematic window,
select the Add ___. Component command.

Mouse Shortcut: You can execute the Add___. Component command
by double-clicking the left mouse button in an unused area of the
schematic.

Keyboard Shortcut: You can execute the Add ___. Component
command by typing com.J on the PROcapture command line.

Toolbar Shortcut: You can execute the Add___. Component
command by clicking on the Add toolbar icon, shown in
Figure 1-62.

Figure 1-62 Add Component Toolbar Icon

The Add ___. Component command brings up the Add Component
dialog box, shown in Figure 1-63.

(xc3000) C:\proser\unified\XC3
(xblox) C:\proser\unified\XBLO
(buillin) C: \proser\unified\B U IL
(xbuiltin) C:\proser\unified\XBU

75EG TRU.1
75EGDEC.1
ALU.1
CONTROL.1
DEBOUNCE.1
LED INV.1
LED-TRU.1

Figure 1-63 Add Component Dialog Box

When you initially bring up the Add Component dialog box,
PROcapture displays the first component in the selected library in

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

the Component Name field. You will add a two-input AND gate
or AND2. You can find the AND2 component in either the XC3000
or XC7000 library. When you change the selected library in the
Libraries list box, the available components of that library are
displayed in the Components list box.

2. To view the available components in the XC3000 or XC7000
library, select the desired library in the Libraries list box.

The Components list box in the dialog box is now updated, as
indicated in Figure 1-64.

- Add Component

Component Name

IACC16.1

Libraries

C:\USER\CALC
llr.lillf!l!llfll I I " IlD 11111!1

(xblox) C:\proser\unified\XBLO~
(builtin) C:\proser\unified\BUILl
(xbuillin) C:\proser\unified\XBU

Components

ACC4.1
ACC8.1
ACLK.1
ADD16.1
ADD4.1
ADDB.1
ADSU16.1

Figure 1-64 Updated Components List

3. Using the down arrow in the scroll bar, scroll down until the
AND2.1 component is displayed.

4. Select the AND2 • 1 component.

The component is now highlighted, and the Component Name
field is updated, as shown in Figure 1-65.

1-63

Viewlogic Tutorials

1-64

Component Name

Lib1a1ies

C:\USER\CALC
I~ fil• - m•:Ofli

(xblox) C: \p1ose1\unified\XB LID
(builtin) C:\p1ose1\unified\BUIL
(xbuiltin) C:\p1ose1\unified\XBU

,._..

Components

ADSU16.1
ADSU4.1
ADSUR1
/llllJl'..-1
AN02B1.1
AND2B2.1
AND3.1
AN03BU

Figure 1-65 Updated Component Name

5. Click on OK.

The Add Component dialog box closes and the ANDBLK2.1
schematic window is reactivated. An outline of the component
being added appears at the end of the pointer.

Note: You can also add a component like the AND2.1 component by
typing com comp _name...J on the PROcapture command line.

6. To place the AND2 component, as shown in Figure 1-66, click the
left mouse button on the desired location in the schematic
window.

Xilinx Development System

PROcapture and PROsim Tutorial

Figure 1-66 Placing the AND2 Component

Copying Components

Viewlogic Tutorials

Now that there is an AND2 component placed on the schematic, you
can use the Copy command to instantiate additional AND2
components.

1. To copy the AND2 component, zoom in to the area surrounding
AND2.

If the AND2 component does not have a box surrounding it, as
shown in Figure 1-67, select it by clicking the left mouse button.

1-65

Viewlogic Tutorials

1-66

Figure 1-67 Outlined AND2 Component

2. Select the Copy toolbar icon, shown in Figure 1-68.

Figure 1-68 Copy Toolbar Icon

Keyboard Shortcut: You can execute the Copy command by typing
cop.J on the PROcapture command line.

Selecting the Copy toolbar icon changes the pointer to a crosshair
and enters Copy mode, which is reflected in the PROcapture
command line. If the pointer does not change to a crosshair, you
have not selected the item to copy.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

3. While holding down the left mouse button in the schematic
window, drag the mouse to the desired location of the new AND2
component.

4. Release the left mouse button to place the copied AND2
component, as Figure 1-69 illustrates.

Figure 1-69 Copying AND2 Component

Instantiate the remaining two AND2 components by using either the
Add or Copy commands to create the schematic shown in
Figure 1-70.

1-67

Viewlogic Tutorials

Figure 1-70 Instantiated AND2 Components

Moving Components

1-68

If you make a mistake while placing a component, you can easily
move the component to a new location.

1. Select the component to be moved.

2. After selecting the first component, use the right mouse button to
select any additional components to be moved.

3. Select the Edit --t Move command.

Mouse Shortcut: You can execute the Edit --t Move command by
selecting the component to be moved and dragging it to the new
location.

Keyboard Shortcut: You can execute the Edit --t Move command by
typing m.J on the PROcapture command line.

Xilinx Development System

PROcapture and PROsim Tutorial

Toolbar Shortcut: You can execute the Edit ___.. Move command by
clicking on the Move toolbar icon, shown in Figure 1-71.

Figure 1-71 Move Toolbar Icon

Selecting the Edit ___.. Move command changes the pointer to a
crosshair and enters Move mode, which is reflected in the
PROcapture command line.

4. While holding the left mouse button down, drag the selected
component to its new location.

Adding Nets

Viewlogic Tutorials

Nets and buses establish connectivity between pins on the same
hierarchical level of a design. However, it is not always necessary to
physically connect nets on the schematic. If two dangling nets or
buses within a single schematic are labeled with the same name, they
are considered electrically connected. Labeling unconnected nets
with the same name is sometimes a useful technique that can make
schematics easier to read, especially when dealing with clocks.
However, you must keep track of all signal names and make sure
they match exactly.

Use the following procedure to add a net.

1. Select the Add ---. Net command.

Keyboard Shortcut: You can execute the Add ___.. Net command by
typing ne.J on the PROcapture command line.

Toolbar Shortcut: You can execute the Add___.. Net command by
clicking on the Net toolbar icon, shown in Figure 1-72.

Figure 1-72 Net Toolbar Icon

1-69

Viewlogic Tutorials

1-70

Selecting Add___.. Net changes the pointer to a crosshair and enters
Add Net mode, which is reflected in the PROcapture command
line.

2. Point the crosshair at the top left pin on the first AND2
component.

3. Click the left mouse button on the pin.

4. Move the mouse to the desired end point of the net and click the
left mouse button.

5. Click the right mouse button to complete the net, as shown in
Figure 1-73.

Figure 1-73 Dangling Net

The net created here is a dangling net. You can also add nets to
connect components. Often when you use a net to connect two
components, the net must change direction, or pivot, to reach its
destination. To create a pivot point when adding a net, click the left

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

mouse button. The net continues from that location to either the next
pivot point or the destination.

Using the left mouse button to begin the net and add pivot points,
experiment by adding various nets. End each net at the last pivot
point by clicking the right mouse button on open space to create a
dangling net. Connect nets to other pins or nets by clicking the left
mouse button on the desired location. For example, add the
appropriate nets to create the schematic shown in Figure 1-74.

Figure 1-74 Completed Net

After you have familiarized yourself with the various mouse and
toolbar commands used to add nets, delete all the nets from the
schematic, leaving only the AND2 components. Delete the nets by
selecting them and pressing the Delete key or typing del.J on the
command line.

1-71

Viewlogic Tutorials

Adding Buses

1-72

Sometimes it is convenient to draw a set of signals as a bus rather
than as several separate wires. It is not necessary to connect a bus
physically with the nets that make up the bus. There are several
schematics in the Cale design that simply place a short bus segment
on the schematic and label it, so that a bus pin can be used on the
symbol.

To add a bus, follow these steps.

1. Select the Add ---+ Bus command.

Keyboard Shortcut: You can execute the Add ---+ Bus command by
typing bu.J on the PROcapture command line.

Toolbar Shortcut: You can execute the Add ---+ Bus command by
clicking on the Bus toolbar icon, as shown in Figure 1-75.

Figure 1-75 Bus Toolbar Icon

Selecting Add ---+ Bus changes the pointer to a crosshair and enters
Add Bus mode. The mode is reflected in the PROcapture
command line.

2. Point the crosshair at the lower left corner of the schematic.

3. Click the left mouse button to begin the bus.

4. To add the final pivot point, move the mouse to the right, click the
left mouse button, move the mouse up, and click the left mouse
button.

5. Click the right mouse button to complete the bus, which is shown
in Figure 1-76.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

Figure 1-76 Completed Bus

6. Add the remaining buses and finish off the connections by
connecting the AND2 components to the buses using nets, as
shown in Figure 1-77.

1-73

Viewlogic Tutorials

Figure 1-77 AND2 Components Connected to Buses

Adding Labels

1-74

The next step is to add labels to the nets and buses. Labeling is the
process of identifying a net or a component by assigning a text string
to it. It is strongly recommended that you label all nets on the
schematic to make debugging and simulation easier.

1. Using the left mouse button, select the upper net attached to the
upper AND2 component.

2. Select the Add __. Object Label command.

Mouse Shortcut: You can execute the Add __. Object Label
command by double-clicking on the net to which you want to add
the label.

Keyboard Shortcut: You can execute the Add __. Object Label
command by typing la.J on the PROcapture command line.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

The Add Label dialog box appears.

3. Type AO in the Text field of the dialog box, as indicated in
Figure 1-78.

1{;i Add Label

Size m

Figure 1-78 Text in the Add Label Dialog Box

4. Click on OK.

The Add Label dialog box doses, and the ANDBLK2 schematic
window is reactivated. An outline of the label, or bounding box,
appears on the screen next to the pointer.

5. Point the mouse so that the label outline is in its desired location
above the upper net.

6. Click the left mouse button to place the label. Figure 1-79 shows
the labeled net.

1-75

Viewlogic Tutorials

1-76

Figure 1-79 Labeled Net

7. If you mislabel a net or bus, you do not have to delete the label. To
change the label, select it and choose Change --+ Text, or
double-dick on the text to bring up the Change Text dialog box.

All buses and nets going into a bus must be labeled. Some examples
of legal bus names are given following.

BUS LABEL

Q[0:7]
Q[7:0]
Q[7:0], SET, CLK
A[7:0], B[7:0]
DATA[0:7:2]

DATA[O:F /H]

DESCRIPTION

8-bit bus, signals QO (MSB) through Q7 (LSB)
8-bit bus, signals Q7 (MSB) through QO (LSB)
10-bit bus, signals Q7 through QO, SET and CLK
16-bit bus, signals A7 through AO, B7 through BO
4-bit bus, signals DATAO, DATA2, DATA4, and
DATA6
16-bit bus, specified in hexadecimal (you can
also specify a bus in binary, octal, or decimal)

Xilinx Development System

PROcapture and PROsim Tutorial

Complete the ANDBLK2 schematic by adding labels to the remaining
buses and nets, as shown in Figure 1-80. You can add labels to buses
and nets by double-clicking on them.

Figure 1-80 Completed ANDBLK2 Schematic

Note: Do not confuse the letter "O" with the number zero (O). You
can see the contrast between these two characters in the 00 net name
label in Figure 1-80.

Saving the Schematic

Viewlogic Tutorials

The ANDBLK2.1 schematic is now complete and must be be saved.

To save the schematic, select the File ___.. Save command.

Selecting File___.. Save checks the schematic for any errors and then
saves the schematic. If the following message is not displayed in the
status window and a dialog box appears, correct the schematic
accordingly and re-save when finished.

1-77

Viewlogic Tutorials

0 error(s) and 0 warning(s) in project
primary:ANDBLK2.l

Creating the ORBLK2 Schematic

1-78

The ORBLK2.1 schematic is very similar to the ANDBLK2.1
schematic. Rather than create it by adding components and drawing
nets, you can copy the ANDBLK2.1 schematic into the copy buffer
and then paste it into the new ORBLK2.1 schematic window.

l. Select the File ___.. Open command to open a new schematic with
the name ORBLK2. l.

The new ORBLK2 window opens on top of the ANDBLK2
window, as Figure 1-81 demonstrates.

Figure 1-81 Copying ANDBLK2 Schematic to ORBLK2

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

2. Select the Window ---.. Tile command.

This command displays the open windows side by side in the
workspace, as shown in Figure 1-82.

Figure 1-82 Tiled Schematic Windows

3. Click on the title bar of the ANDBLK2.1 schematic window to set
it as the current window.

4. Point the mouse above and to the left of all the components, nets,
and buses in the ANDBLK2.1 schematic.

5. Holding down the left mouse button, drag the mouse below and
to the right of all the components, nets, and buses in the
ANDBLK2.1 schematic.

6. Release the left mouse button to select any component, net, or bus
in the area of the drag. Figure 1-83 displays the selected
components.

1-79

Viewlogic Tutorials

1-80

Figure 1-83 Selecting Components, Nets, and Buses

7. Select the Edit ___.. Copy command.

Keyboard Shortcut: You can execute the Edit ___.. Copy command by
typing bcop.J on the PROcapture command line.

Toolbar Shortcut: You can execute the Edit___.. Copy command by
clicking on the Edit Copy toolbar icon, shown in Figure 1-84.

Figure 1-84 Edit Copy Toolbar Icon

8. Click on the title bar of the ORBLK2.1 schematic window to set it
as the current window.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

9. Select the Edit ___.. Paste command.

Keyboard Shortcut: You can execute the Edit___.. Paste command by
typing bpa.J on the PROcapture command line.

Toolbar Shortcut: You can execute the Edit ___.. Paste command by
clicking on the Paste toolbar icon, shown in Figure 1-85.

Figure 1-85 Paste Toolbar Icon

Selecting Edit ___.. Paste displays a bounding box of the
components, nets, and buses that are being pasted on the screen
next to the pointer.

10. Point the mouse to position the bounding box.

11. Click the left mouse button to place the components, nets, and
buses. Figure 1-86 shows the copied components.

12. To inspect the two schematics, select each and zoom in to the area
where the components have been placed.

1-81

Viewlogic Tutorials

Figure 1-86 Copying Components, Nets, and Buses

Changing AND2 Components to OR2 Components

1-82

All that remains to be done is to change the AND2 components to
OR2 components.

1. Make sure that the ORBLK2 window is highlighted, and select the
Edit _. Select _. Component command.

Keyboard Shortcut: You can execute the Edit _. Select command by
typing sco.J on the PROcapture command line. Here is an
example:

sco and2.J

The Select Component dialog box appears, as indicated in
Figure 1-87. It displays all the components in the active schematic.
By default, xc3000:AND2.1 is selected in the Component List field.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

SELECT COMPONENT

Component List 1::iil1:;!~!ill~\!f:1Zi1ii:!!i111

1 111::~-~§~:!111'1

Figure 1-87 Select Component Dialog Box

2. Click on OK.

The Select Component dialog box closes, and the ORBLK2.1
schematic is reactivated with all the AND2.1 components selected,
as you can see in Figure 1-88.

Figure 1-88 Reactivated ORBLK2.1 Schematic

1-83

Viewlogic Tutorials

1-84

3. Select the Change ___.. Component command.

Keyboard Shortcut: You can execute the Change ___.. Component
command by typing cc.J on the PROcapture command line. Here
is an example:

cc or2.J

The Change ___.. Component command brings up the Change
Component dialog box.

4. Select the XC3000 library for an FPGA design, as shown in
Figure 1-89, or the XC7000 library for an EPLD design.

- Change Component

Component Name

IAND2_1

Lib1a1ies

C:\USER\CALC
1r.r.11:i!I!I11m: - ;~-..:~111a

(xblox) C:\pmse1\unified\XBLIDi
(builtin) C:\pmse1\unified\BUIL
(xbuiltin) C:\proser\unified\XBU

,
Components

Figure 1-89 Change Component Dialog Box

5. Using the down arrow in the scroll bar, scroll down until the
OR2.1 component is displayed.

6. Select the OR2 • 1 component.

The component is highlighted, and the Component Name field is
updated, as indicated in Figure 1-90.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

- Change Component

Component Name

IOR2.1

Libraries

C:\USER\CALC
I Em!i!I!D 111 fill rID 1 •1
(xblox) C:\proser\unified\XBLO>
(buillin) C:\proser\unified\BUIL ~
(xbuillin) C:\proser\unified\XBU

Components

OFDT16.1
OFDT4.1
OFDT8.1
OPAD.1
OPAD16.1
OPAD4.1
OPADB.1
IDfl' .. I

Figure 1-90 Updated Component Name

7. Click on OK.

Selecting OK closes the Change Component dialog box and re
activates the updated ORBLK2.1 schematic, as shown in
Figure 1-91.

1-85

Viewlogic Tutorials

Figure 1-91 Completed ORBLK2.1 Schematic

Saving the ORBLK2 Schematic

1-86

With the AND2 components changed to OR2 components, you can
now save the ORBLK2.l schematic.

1. Select File _. Save, which checks the schematic for any errors
and then saves the schematic.

If the following message is not displayed in the status window
and a dialog box appears, correct the schematic accordingly and
re-save when finished:

0 error(s) and 0 warning(s) in project
primary:ORBLK2.1

2. Close the ANDBLK2.1 and ORBLK2.l schematic windows.

Xilinx Development System

PROcapture and PROsim Tutorial

Completing the ALU Schematic
So far you have created the ANDBLK2 and ORBLK2 symbols as well
as their underlying schematics. The next step is to instantiate these
user-created symbols in the schematic for the ALU block along with
the Xilinx-created macro FD4CE to complete the ALU. This section
explains this procedure.

Making the CALC.1 Schematic Visible

Viewlogic Tutorials

First, you must make the CALC.1 schematic visible.

1. Double-dick on the SCHEMATIC:CALC.1 icon, shown in Figure
1-92.

SCH E t·.·1.6.T IC: CtiLC.1

Figure 1-92 SCHEMATIC:CALC.1 Icon

The CALC.1 schematic is now displayed.

2. If the CALC.1 schematic does not fill the workspace, click on the
up arrow in the upper right comer, as illustrated in Figure 1-93.
The CALC.1 schematic now fills the entire workspace.

Up arrow on the
schematic window

Figure 1-93 Up Arrow on the Schematic Window

3. Press the F4 key to zoom to full view. Your screen should look like
the one pictured in Figure 1-94.

1-87

Viewlogic Tutorials

1-88

Figure 1-94 Full CALC.1 Schematic

The ALU block that must be completed appears in the top middle of
the CALC.1 schematic. There are two ways that you can bring up the
the ALU.l schematic for editing.

• You can open the ALU.l schematic as a separate window using
the File ___.. Open command.

• You can "push into" the ALU symbol on the CALC.1 schematic.
Pushing into a symbol's schematic pushes the schematic into the
active window's "stack." The next section gives instructions on
this procedure.

Each window in the workspace actually displays the schematic or
symbol on the top of its display stack. The CALC. 1 (SCH) text at the
top of the schematic indicates the schematic's place in the stack.

Xilinx Development System

PROcapture and PROsim Tutorial

Pushing into the ALU Symbol's Schematic

Viewlogic Tutorials

To push into the ALU symbol's underlying schematic, follow this
procedure.

1. Select the ALU symbol with the left mouse button.

A bounding box appears around the symbol when it is selected.

2. Select the View ___. Push Into Schematic command.

Keyboard Shortcut: You can execute the View ___. Push Into
Schematic command by typing psc.J on the PROcapture
command line.

Toolbar Shortcut: You can execute the View ___. Push Into Schematic
command by clicking on the Push Into Schematic toolbar icon,
shown in Figure 1-95.

Figure 1-95 Push Into Schematic Toolbar Icon

The View ---. Push Into Schematic command pushes the ALU
schematic onto the top of the active window's display stack and
displays the ALU.1 schematic, shown in Figure 1-96.

1-89

Viewlogic Tutorials

Figure 1-96 ALU.1 Schematic

The text at the top of the schematic window now shows that ALU.1
(SCH) is currently on the top of the display stack with CALC.1 (SCH)
after it.

In addition, the name of the PROcapture window has now changed
from PROcapture - [SCHEMATIC: CALC. 1] to PROcapture -

[SCHEMATIC: ALU. 1] . This change tells you which schematic you
are currently editing.

Placing the ANDBLK2 and ORBLK2 Symbols

1-90

Now that the ALU.l schematic is open and can be edited, you are
ready to place the ANDBLK2 and ORBLK2 symbols on the schematic.
Place them exactly as you did the AND2 gate from the Xilinx XC3000
library when you created the ANDBLK2.l schematic.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

1. Use the F9 function key to zoom into the empty area near the
center of the schematic.

2. Select the Add ___. Component command.

The Add Component dialog box appears, as shown in Figure 1-97.

~~ Add Component

Component Name

IOR2.1

Libraries

C:\USER\CALC
H'7llllliIITIJ •I I I ·fi.'11 !ID

(xblox) C:\proser\unified\XBLO:>
(builtin) C:\proser\unified\BUIL
(xbuiltin) C: \proser\unified\XB U

Components

OFDT16-1
OFDT4.1
OFDTB.1
OPAD.1
OPAD16.1
OPAD4.1
OPADB.1
I •

- -
Figure 1-97 Add Component Dialog Box

3. Select the c: \USER\ CALC entry in the Libraries list box.

The Components list box displays the components available in the
primary library, as Figure 1-98 shows.

1-91

Viewlogic Tutorials

1-92

--";, Add Component

Component Name

I 7SEG_INV.1

Libraries

C \USER\CALC
[xcJOOO) C:\proser\unified\XCJ
[xblox) C:\proser\unified\XBLO
[builtin) C:\proser\unified\BUIL
[xbuiltin) C:\proser\unified\XBU

Components

7SEG TRU.1
7SEGDEC.1
ALU.1
CONTROL.1
DEBOUNCE.1
LED_INV.1
LED TRU.1

-
Figure 1-98 Selecting the Library

4. Select the ANDBLR2 • 1 component in the Components list box.

5. Click on OR.

The Add Component dialog box closes and the ALU.l schematic
window is reactivated. An outline of the component being added
appears at the end of the pointer.

Note: You can also add the ANDBLK2 component by typing com;p
andblk2 . 1.J on the PROcapture command line.

6. To place the ANDBLK2 component, as shown in Figure 1-99, click
the left mouse button on the desired location in the schematic
window.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

Figure 1-99 Placing the ANDBLK2 Component

7. Double-dick the left mouse button in an unused area of the
schematic to bring up the Add Component dialog box to add the
ORBLK2 symbol. Place it as shown in Figure 1-100.

1-93

Viewlogic Tutorials

Figure 1-100 Placing the ORBLK2 Component

Placing the FD4CE Component

1-94

The other component missing from the ALU.l schematic is the
FD4CE component, a set of four flip-flops with clock enable, from the
Xilinx XC3000 component library. This component can also be found
in the XC4000 and XC7000 libraries so that retargeting is as simple as
changing the alias of the component on the schematic.

Follow this procedure to add the FD4CE component to the ALU.l
schematic.

1. Use the F4 function key to zoom to full view and then use the F9
function key to zoom into the open area in the upper right comer
of the ALU.l schematic.

2. Double-click in an open area with the left mouse button.

The Add Component dialog box comes up.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

3. Select the FD4CE.l component after selecting the XC3000 or
XC7000 library in the Libraries list box.

4. Click on OK.

Selecting OK closes the Add Component dialog box and re
activates the ALU.1 schematic window. An outline of the
component being added appears at the end of the pointer.

Note: You can also add the FD4CE.l component by typing comp

fd4ce. 1.J on the PROcapture command line.

5. To place the FD4CE.l component, as shown in Figure 1-101, click
the left mouse button on the desired location in the schematic
window.

Figure 1-101 Placing the FD4CE Component

1-95

Viewlogic Tutorials

Adding Nets, Buses, and Labels

1-96

All the missing components have now been added to the ALU.1
schematic. The next step is to add the missing nets, buses, and labels.

1. Add the necessary nets, buses, and labels to complete the
connections for the FD4CE component, as shown in Figure 1-102.

Inputs to the FD4CE component are MUX[3:0], CE, CLK, and RST.

Outputs of the FD4CE component are Q[3:0].

Figure 1-102 Completed FD4CE Connections

2. Add the necessary nets, buses, and labels to complete the
connections for the ANDBLK2 and ORBLK2 components, as
shown in Figure 1-103.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

Figure 1-103 Completed ANDBLK2 and ORBLK2 Connections

Adding Symbol Labels

Using the left mouse button, select the ANDBLK2 symbol.

Notice the text in the lower left comer of the ALU.l schematic
window, as shown in Figure 1-100: ALU\ $1I34 7. This is the label or
instance name of the currently selected ANDBLK2 symbol. Labels or
instance names follow this format:

block_label \ block_label \default _label

In the case of the ALU\$11347 label, "ALU" is the instance name of
the hierarchy that contains the ANDBLK2 symbol; this hierarchy
only has one level. The "$11347" notation is the default instance name
given to the instantiated ANDBLK2 symbol itself. The instance name
for your ANDBLK2 symbol may be slightly different.

1-97

Viewlogic Tutorials

1-98

It is a good idea to define the instance name of each symbol placed on
a schematic to make debugging your design easier. Error and
warning messages often refer to component labels, and the labels also
appear in the simulation netlists. Placing a label on ANDBLK2
replaces this default name with the label string. The name currently
on the symbol is just text and is ignored by the software.

In the ALU.1 schematic, there are already labels on the MUXBLK2,
XORBLK2, and MUXBLKS blocks. You can choose not to label the
blocks that are library components and just treat them as black boxes.

1. Using the left mouse button, select the ANDBLK2 symbol.

2. Select the Add ___. Object Label command.

3. Enter ANDBLK2 in the Text field of the Add Label dialog box.

4. Click on OK.

5. Point the mouse to the desired location and click the left mouse
button to place the label.

6. Repeat steps 1 through 5 to add an ORBLK2 label to the ORBLK2
symbol.

Figure 1-104 illustrates the labeled ANDBLK2 and ORBLK2 blocks.

Xilinx Development System

PROcapture and PROsim Tutorial

Figure 1-104 Labeled ANDBLKL2 and ORBLK2 Blocks

Saving the ALU.1 Schematic

Viewlogic Tutorials

Use the File ___. Save command to save the ALU.1 schematic.

The ALU.l schematic is now complete. You can explore the various
components by using the View ___. Push Into Schematic and View ___.
Pop commands.

Keyboard Shortcut: You can execute the View ___. Pop command by
typing pop.J on the PROcapture command line.

Toolbar Shortcut: You can execute the View ___. Pop command by
clicking on the Pop Schematic toolbar icon, shown in Figure 1-105.

1-99

Viewlogic Tutorials

Figure 1-105 Pop Schematic Toolbar Icon

Once you have become familiar with the ALU.1 schematic and its
components, pop out of the ALU.land return to the CALC.1
schematic, shown in Figure 1-106.

Figure 1-106 CALC.1 Schematic

Viewing the OSC_3K or OSC_7K Schematic

1-100

The FPGA and XC3000A demonstration boards have a built-in RC
circuit for clock generation for the XC3000 family devices. The
OSC_3K block contains an oscillator that connects to that circuit. The
frequency of the output varies from device to device because of

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

process differences, so it is not suitable for many applications, but it is
adequate for clocking a human interface. The EPLD (XC7000) version
of the CALC design has an equivalent oscillator block called
OSC_7K.

To view the OSC_3K or OSC_7K schematic, push into the OSC_3K or
OSC_7K symbol, respectively, in the lower left corner of the CALC.1
schematic.

Figure 1-107 displays the OSC_3K schematic.

Figure 1-107 OSC_3K Schematic

1-101

Viewlogic Tutorials

1-102

Figure 1-108 represents the OSC_7K schematic.

Figure 1-108 OSC_7K Schematic

The output of the oscillator circuit in OSC_3K or OSC_7K is routed
through a global clock buffer before being passed to the rest of the
device. There are several reasons for using the global buffers. The
global clock buffers drive dedicated routing resources that can reach
any clock pin in the device with minimal delay and very low skew. In
addition, using the dedicated clock nets frees up programmable
interconnect for use by other signals in the design.

Xilinx Development System

PROcapture and PROsiin Tutorial

In the OSC_3K schematic, the GCLK symbol at the right is the Xilinx
primitive for the XC3000 primary global clock buffer. The equivalent
primitive for the alternate clock buffer is named ACLK. The ACLK
buffer is used in this design to drive the divide-down circuit on the
clock, although it is not really necessary.

In the OSC_7K schematic, the BUFG symbol at the right is the Xilinx
primitive for the XC7000 global clock buffer. The signal is routed
through an I/ 0 pad before being passed to the global clock buffer so
that the clock signal is visible during timing simulation. This step is
necessary because the EPLD fitter eliminates many internal signals
during logic optimization.

In general, you should use at least one clock buffer (GCLK or ACLK)
in every clocked XC2000 or XC3000 design. Use GCLK for the
highest-priority clock net, that is, the largest fanout or fastest clock
net, and ACLK for the second-highest-priority clock. For clocked
XC7000 designs, you should use at least one BUFG clock buffer.

Select the view ---.. Pop command to return to the CALC.1
schematic.

Exchanging Components

Viewlogic Tutorials

The FPGA demonstration board is designed so that a Low signal on
an output turns on the display element. Therefore, the blocks
controlling the displays, 7SEG_INV and LED_INY, both contain
inverters before each output buffer. The CALC.1 schematic is set up
for this configuration as the default.

The XC3000A demonstration board is designed in such a way that
the display elements are turned on when the applied signal is High.
In addition, two pin connections are reversed on this board, LDC and
HOC. The inverters must be removed and the pin locations reversed
if you plan to download to an XC3000A demonstration board. This
board has only a single FPGA socket, and the socket contains an
XC3000 family part in a PC68 package.

If your target board is the XC3000A demonstration board, use the
following steps to exchange components. If you are targeting an
EPLD, skip to step 3.

1. Using the left mouse button, select the 7SEG_INV symbol.

2. At the PROcapture command line, type cc 7SEG_TRU.

1-103

Viewlogic Tutorials

3. Using the left mouse button, select the LED_INV symbol.

4. At the PROcapture command line, type cc LED_TRU.

Figure 1-109 shows the swapping of these components.

Figure 1-109 Swapped Components

Controlling Layout from the Schematic

1-104

You can use attributes in the schematics to control the placement and
routing of your FPGA design or the fitting of your EPLD design.
Some attributes control the speed of the inputs and outputs, and
others control the actual placement of the pins in the design.

The following procedures add the needed attributes to the Cale
design with the first attributes defining the pin placement of the
I/Os. It is highly recommended that you let the automatic placing
and routing programs, PPR and APR for FPGAs, or the automatic
fitting program for EPLDs, define the pinout. Locking the I/Os can

Xilinx Development System

PROcapture and PROsim Tutorial

prevent the programs from placing and routing, or fitting, the design
completely or can reduce design performance.

However, I/O pin numbers are assigned to the tutorial schematics so
that the Cale design functions in the Xilinx demonstration boards.
Because the design is fairly simple, these pin assignments do not
adversely affect the ability of the software to place and route the
design completely. The attribute used to lock down an I/O pin to a
particular pad on the device is the LOC attribute.

Adding the LOC Attribute
The following procedure adds a LOC attribute to the EXC_P signal.

1. Using the left mouse button, double-click on the IPAD symbol
connected to EXC_P.

Double-clicking on the IPAD symbol displays the Edit Attributes
dialog box, shown in Figure 1-110.

- Edit Attributes

Attribute List for Component xc3000:1PAD

Name

EXT
LEVEL
LIBVER

Viewlogic Tutorials

Sym Val

IPAD
XILINX
2.0.0

Comp Val

Figure 1-110 Edit Attributes Dialog Box

1-105

Viewlogic Tutorials

1-106

The attributes list box already contains the EXT, LEVEL, and
LIBVER attributes assigned their default values. These attributes
have been added by Xilinx and cannot be removed.

2. Click on Add.

This command brings up the Edit Attribute dialog box, shown in
Figure 1-111.

Figure 1-111 Edit Attribute Dialog Box

3. In the Name field, type LOC.

4. In the Comp Val field, type Pll for either the XC3000A version or
the XC7000 version.

5. Click on OK.

Selecting OK closes the Edit Attribute dialog box and updates the
Edit Attributes dialog box, as Figure 1-112 illustrates.

The value of the added LOC attribute is in the Comp Val column,
because the attribute was added to the actual IPAD instance on the
schematic, not to the symbol in the library. The three initial
attributes are defined on the symbol in the library and appear on
every instantiation of the IPAD, whereas the LOC attribute that
was just added only appears on the explicitly selected IPAD.

Xilinx Development System

PROcapture and PROsim Tutorial

lii:l Edit Attributes

Attribute List for Component xc3000:1PAD

Name

EXT
LEVEL
LIBVER
LOC

Viewlogic Tutorials

Sym Val

IPAD
XILINX
2.0.0

Comp Val

Pll

Figure 1-112 Updated Edit Attributes Dialog Box

6. Click on OK.

The Edit Attributes dialog box now closes. In the updated CALC.1
schematic window, the LOC=Pll attribute is placed under the
selected IPAD component, as shown in Figure 1-113.

1-107

Viewlogic Tutorials

Figure 1-113 CALC.1 Schematic with LOC Attribute

Valid pin locations vary depending on the package. PLCC package
pins are designated with a P followed by the pin number, such as Pl7.
Pin grid array (PGA) package pins use alphanumeric designations
such as Al2. The Programmable Logic Data Book lists the pinouts of each
device for each package that Xilinx supplies.

Adding Flags to Nets

1-108

Suppose that you want to make sure that a net in your FPGA design
is not absorbed into a CLB. You can attach an "Explicit" or "External"
(X) flag to the net. A flag is merely an attribute with a name but no
value.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

Note: The X flag is not valid for EPLD designs. However, EPLD
designs can use F and H flags to map logic to Fast Function Blocks (F)
or High-Density Function Blocks (H). If you are using the XC7000
version of Cale, you can follow this part of the tutorial and apply the
F flag instead of the X flag.

Use the following procedure to add the X flag to the A net feeding the
7SEG_INV or 7SEG_TRU component.

1. Using the left mouse button, select the net.

The net's color changes, and the label's bounding box is
displayed, as shown in Figure 1-114.

Figure 1-114 Selected Net

2. At the PROcapture command line, type cat.J.

The Edit Attributes dialog box appears.

3. In the Edit Attributes dialog box, click on Add.

1-109

Viewlogic Tutorials

1-110

The Edit Attribute dialog box appears.

4. In the Name field, type x for FPGAs, as shown in Figure 1-115, or
FforEPLDs.

-;- Edit Attribute

Figure 1-115 Adding the X Flag

5. Click on OK.

Selecting OK closes the Edit Attribute dialog box and updates the
Edit Attributes dialog box, which now displays the X flag, as
Figure 1-116 indicates.

"--!'' Edit Attributes

Attribute List for Net A

Name

x

Value

Figure 1-116 Updated Edit Attributes Dialog Box

Xilinx Development System

PROcapture and PROsim Tutorial

6. Click on OK.

The Edit Attributes dialog box closes, and the CALC.1 schematic
window is updated. The X flag is placed on the schematic next to the
label, as shown in Figure 1-117.

Note: The X flag will be the same size as the last text added.

Figure 1-117 Placing the X Flag

There are several other net attributes. For a description of available
attributes, along with a discussion of when to use them and, more
importantly, when not to use them, see the /1 Attributes, Constraints,
and Carry Logic" chapter of the Libraries Guide.

Adding the FAST and SLOW Attributes

Viewlogic Tutorials

It is easy to over-constrain a design. Some constraints in a schematic
may prevent the software from doing the best possible job. First try to

1-111

Viewlogic Tutorials

1-112

route a design with no constraints at all, then go back and add
constraints only if necessary. Some attributes do not constrain the
design but merely allow you to control how the FPGA is used in the
final design. Two such attributes are the FAST and SLOW attributes
used to control the transition time of device output pins.

The FAST and SLOW attributes modify the output slew rate. They are
applied to the OPAD or output buffer. The default slew rate is SLOW.
Pads programmed as "fast" have different timing specifications from
"slow," or slew-rate-limited, pads and draw more current.

Note: The FAST and SLOW attributes apply to the XC73144 EPLD
device, but not to any other EPLD devices. Because the XC7000
version of the Cale design targets an XC73108 device, this section is
not applicable to EPLDs.

To add the FAST attribute to the OFL_P pad in the 7SEG_INV or
7SEG_TRU schematic in the Cale design, follow these instructions.

1. Using View ___... Push Into Schematic, push into the
7SEG_INV or 7SEG_TRU component.

2. Using the left mouse button, double-click on the OPAD
component attached to the net labeled "OFL_P."

3. In the Edit Attributes dialog box, click on Add.

4. In the Name field of the Edit Attribute dialog box, type FAST, as
shown in Figure 1-118.

~: Edit Attribute

SymVa!

Comp Val

Figure 1-118 Adding the FAST Attribute

Xilinx Development System

PROcapture and PROsim Tutorial

5. Click on OK.

The Edit Attribute dialog box closes, and the updated Edit
Attributes dialog box appears, as Figure 1-119 shows.

- Edit Attributes

Attribute List for Component xc3000:0PAD

Name

EXT
LEVEL
LIBVER
LOC
FAST

Viewlogic Tutorials

Sym Val Comp Val

OPAD
XILINX
2.0.0

P30

Figure 1-119 Updated Edit Attributes Dialog Box

6. Click on OK.

The Edit Attributes dialog box closes, and the current schematic is
updated. The FAST attribute is placed on the schematic next to the
OPAD, and you can move it to clean up the schematic, as pictured
in Figure 1-120.

1-113

Viewlogic Tutorials

Figure 1-120 Placing the FAST Attribute

7. Save the changes made to the schematic by selecting the File ---t

Save command.

8. Using the View ---t Pop command, return to the CALC.1
schematic.

See The Programmable Logic Data Book for timing specifications for the
various types of pads.

Using IOB Flip-Flops

1-114

The Xilinx XC3000, XC4000, and XC4000A devices have two registers
in each IOB (1/0 block). Each pad has an associated input register
and output register. You can configure an input register as a flip-flop
or as a latch. Output registers can only be flip-flops but can optionally
have a tristate control on their output. You can access these 1/0
registers by using special library components called IFD, ILD, OFD,

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

and OFDT. The XC7000 devices have a flip-flop or latch at each input,
accessible through an IFD, ILD, or IFDXl component. For more
information on these elements, consult the Xilinx Libraries Guide.

Using the IOB registers frees up internal resources, which can help
when designs are large in proportion to the device size or, in the case
of some FPGA designs, are difficult to route. The SW7 component's
underlying schematic uses the input flip-flops to store the data from
the switches. You can push into the SW7 schematic to view where
and how these special components are used.

1. Using the View ---.. Push Into Schematic command, push
into the SW7 component's underlying schematic. This schematic
appears in Figure 1-121.

Figure 1-121 SW7 Schematic

1-115

Viewlogic Tutorials

2. Using the View ---. Pop command, return to the CALC.1
schematic.

3. Save the changes made to the CALC.1 schematic.

Functional Simulation

1-116

Now that the Cale design is complete, you can functionally verify it
by simulating it in PROsim. PROflow controls the flow of the tools to
prepare the simulation network for the design and invokes PROsim.
You can also invoke PROwave, the Viewlogic waveform viewer, from
PROflow to view the simulation signals in a waveform format while
simulating.

Creating the Simulation Network
The first step in the functional simulation process is to create the
simulation network, cale.vsm, which is loaded into PROsim to
simulate the Cale design.

1. If you previously closed PROcapture, re-invoke it by clicking on
the PROflow Design Entry icon and then clicking on OK.

2. Return to PROflow by making an icon of PROcapture and
selecting PROflow with the left mouse button.

3. Click on the PROflow Functional Simulation PROsim icon, shown
in Figure 1-122:

Figure 1-122 PROsim Icon

The Functional Simulation dialog box appears, pictured in
Figure 1-123.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

Figure 1-123 Functional Simulation Dialog Box

Notice that the Execute Power On Reset option is selected. When
PROflow invokes the simulator, it executes the commands
necessary to simulate the startup sequence when the global reset
is released. The global reset signal used for XC2000, XC3000, and
XC3000A devices is GR. A similar net, GSR, is used for the XC4000
family. The XC7000 family uses the PRLD global net as the power
on-reset signal.

The Command File and the Design Contains XBLOX, RAM, ROM
or XABEL Module options are not selected. Command files are
discussed at the end of this chapter. The latter option is only used
if the design being processed contains X-BLOX, RAM, ROM, or
Xilinx ABEL modules. If the design uses any of these special
components, PROflow runs the XSimMake program to create the
simulation network. For straight schematic designs such as Cale,
PROflow runs the VSM program instead to create the simulation
network. For more information on how to use XSimMake, see the
"Functional Simulation" chapter of the Viewlogic Interface Guide.

4. Click on OK.

Because the Execute Netlister option is set, PROflow now runs the
VSM program to create the calc.vsm simulation network. When
VSM completes, PROflow invokes Notepad, a Windows program
that lets you view and edit files, to display the VSM log file. A
partial log file is shown following.

1-117

Viewlogic Tutorials

1-118

Completed file calc.vsm

1792 module(s), 1660 net(s), 2024 net
equivalence(s)

0 error(s) and 0 warning(s) in file calc.vsm

5. Verify that no errors or warnings were generated.

If VSM did not complete successfully, bring up PROcapture and
correct the schematic that generated the error or warning message,
then re-invoke VSM using the PROsim icon in PROflow as you
did previously.

6. Select the File ~ Exit command to close Notepad.

Once you close Notepad, PROflow invokes PROsim and loads the
calc.vsm simulation network. Figure 1-124 displays the processing
messages that appear on the screen while the simulation network is
being loaded and PROflow is simulating the startup sequence.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

Figure 1-124 Reading in the Simulation Network File

After PROsim processes the net name equivalents, it forces the global
reset net Low for 100 ns and then forces it High. This operation is
required for simulation; it simulates the device's startup sequence
when the device resets its registers to zero. The device on the board
always resets. If these steps are not performed, the simulation output
is not correct; all flip-flop outputs remain in an indeterminate state,
even though valid inputs and clocks are applied. PROflow directs
PROsim to perform these steps automatically when the Execute
Power On Reset option is set in the Functional Simulation dialog box.

1-119

Viewlogic Tutorials

Adding Signals and Vectors to the Waveform

1-120

Now that you have loaded the simulation netlist into PROsim, you
can specify the signals to be displayed in PROwave and define the
design's initial inputs.

Following is the list of signals to add to the display list contained in
the calc.wfm file:

CLK (FPGAs only)
OSC_7K\XCLK (EPLDs only)
EXC_P
SW7\SW[6:0]_P
ALU[3:0]
STACK[3:0] (FPGAs only)
LED\LED[3:0]_P (EPLDs only)

The system clock
The system clock
The execute signal
The opcode switches
The ALU flip-flop outputs
The top of the stack
The top of the stack

Note: Because the XEPLD optimization software eliminates many
internal signals, the XC7000 version of this simulation uses the
LED _P vector, or bus, instead of the STACK vector.

Adding Signals to the Waveform

To add the CLK or OSC_7K\XCLK and EXC_P signals to the
waveform, follow these steps.

1. At the PROsim> prompt, type s_wave.J.

PROsim prompts for the PROwave data stream file name, giving
the default name of calc.wfm.

2. Press .J to accept the default name.

3. At the Node (s) /Vector (s) >prompt, type elk exc__p.J for
FPGAs or osc_7k\xclk exc__p.J for EPLDs.

Once you have entered the signals to be added, PROsim displays the
issued command, wave CALC. wfm elk exc__p for FPGAs, as
showninFigurel-125,orwave CALC.wfm osc_7k\xclk exc_p
for EPLDs.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

Figure 1-125 Adding the CLK and EXC_P Signals to the
Waveform

Adding Vectors to the Waveform

The remaining signals are best defined as buses in the waveform
display. To do so, you can create vectors representing the signals of
the buses to be grouped together in the waveform display.

Follow this procedure to create vectors for SW7\SW[6:0]_P,
ALU[3:0], and STACK[3:0] (for FPGAs) or LED\LED[3:0]_P (for
EPLDs).

1-121

Viewlogic Tutorials

1-122

1. At the PROsim> prompt, type vector SW SW7\SW[6: 0] _P.J.

PROsim displays the command in the command log display
window.

2. Repeat step 1 to create the ALU and STACK vectors, as shown in
Figure 1-126.

Instead of creating a STACK vector for EPLDs, create the LED_P
vector by typing vector LED_P led\led [3: 0] _p.J.

Figure 1-126 Adding the SW, ALU, and STACK Vectors to the
Waveform

Xilinx Development System

PROcapture and PROsim Tutorial

3. To add SW, ALU, and STACK to the FPGA waveform, type
s_wave calc. wfm SW ALU STACK.J. To add SW, ALU, and
LED_P to the EPLD waveform, type s_wave calc. wfm SW ALU
LED_P.J.

Defining the Design Inputs

Viewlogic Tutorials

After you define the signals to be viewed in PROwave, you must set
up the design inputs and give them values to simulate. You can
define two types of stimuli: clocks and,design inputs. Most clocks can
be set up using the periodic waveform command clock.

Defining a Clock

To define the clock as a periodic waveform, follow these steps.

1. At the PROsirn> prompt, type clock elk 0 1.J for FPGAs or
clock osc_7k\xclk 0 1.J for EPLDs.

This step tells the simulator to give the clock net, CLK or XCLK, a
50% duty cycle with a starting value of 0.

2. At the PROsirn> prompt, type step.J.

PROsim returns the default step size value of 100 ns. The step size
is the length in nanoseconds of one step of the clock definition.
Therefore, the period of the CLK is 200 ns. For example, if you
defined a new clock by typing the following, it would have a 50%
duty cycle with a period of 400 ns:

clock newclk 0 0 1 1.J

3. To change the step size, type step SOns.J.

4. To verify that the change has been made, type step.J.

This sequence of steps is reflected in Figure 1-127.

1-123

Viewlogic Tutorials

1-124

Figure 1-127 Defining the Clock Step Size

Defining Input Values

Now that CLK or XCLK has been defined as a periodic waveform,
you can set the EXC_P and SW signals to their initial values.

1. To set the EXC_P signal initially High, type h EXC_P.J at the
PROsim> prompt.

2. To set the opcode vector SW initially to the NOP instruction, type
assign SW 1111111.J at the PROsim> prompt.

You can use the Assign command to force values to each signal of
a bus (vector).

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

3. Re-display PROcapture by making an icon of PROsim and
double-clicking on the PROcapture icon.

Now that PROsim is running, values are annotated to the CALC.1
schematic, as shown in Figure 1-128. All the flip-flop outputs and
signals derived exclusively from flip-flop outputs have known values
because the global reset line was asserted and simulated. The X
values appear because the assignments of the user inputs and the
clock have only been defined but not yet simulated.

Figure 1-128 CALC.1 Schematic Annotated with Startup Values

Simulating the Design Inputs

The next step is to simulate the defined user inputs.

1. Return to PROsim and type sim 100ns.J.

PROsim responds with the time at which the simulation stopped,
as Figure 1-129 indicates.

1-125

Viewlogic Tutorials

1-126

Figure 1-129 Initial Values Simulated

2. Activate PROcapture by making an icon of PROsim and double-
clicking on the PROcapture icon.

Now all the signals in the design display known values, as shown in
Figure 1-130. The values displayed in boxes are those forced by the
assignment commands entered in PROsim.

Xilinx Development System

PROcapture and PROsim Tutorial

Figure 1-130 CALC.1 Schematic Annotated with Initial Values

Invoking PROwave

Viewlogic Tutorials

You can view any of the known nets in the design while simulating
by simply looking at the design schematics. Viewing the schematics
can be very helpful when simulating, but another way to view a large
number of signals is to open a waveform window in PROwave.

1. Activate PROflow by making an icon of PROcapture and selecting
PROflow with the left mouse button.

2. Click on the Functional Simulation PROwave icon, shown in
Figure 1-131.

1-127

Viewlogic Tutorials

1-128

Figure 1-131 PROwave Icon

Selecting the PROwave icon displays PROwave and brings up the
Open dialog box, shown in Figure 1-132.

calc.wfm

c:\user\calc

~c:\
~user
lltcalc
~sch
~ soln_Jka
~ S}lm

~ wir

List Files of IJpe: Driyes:

'-lw_f_m_F_il_es_(_"-_w_fm_l __ __..ll_ j liiiiil c: craigsler

Figure 1-132 Open Dialog Box

II

3. In the File Name list box, select the calc. wfm waveform display
file.

4. Click on OK.

The Open dialog box closes, and the calc.wfm waveform display
file opens, as pictured in Figure 1-133.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

Figure 1-133 Calc.wfm Waveform Display File and Initial Values

Changing the Display Radix

The default display radix for the grouped signals is hexadecimal. You
may want to change the display radix to an alternative base.

Follow this procedure to change the display radix of the ALU and SW
groups.

1-129

Viewlogic Tutorials

1-130

1. Point the mouse at the ALU group text in the list of signals on the
left side of the waveform window and select it by clicking the left
mouse button.

2. Select the Waveform ___.. Set Radix ___.. Decimal Radix
command to change the ALU vector display to decimal.

3. Deselect the ALU group by clicking the left mouse button on the
ALU group text.

4. Select the SW group by clicking the left mouse button on the SW
group text.

5. Select the binary radix toolbar icon, shown in Figure 1-134, to set
the SW group's display radix to binary.

Figure 1-134 Binary Radix Toolbar Icon

In Figure 1-135, the SW group's display radix is set to binary, the ALU
group's display radix is set to decimal, and the STACK group's
display radix is set to hexadecimal.

Xilinx Development System

PROcapture and PROsim Tutorial

Figure 1-135 Binary, Decimal, and Hexadecimal Radices

Simulating the Cale Design

Viewlogic Tutorials

With the desired signals added to the waveform display and set to
the appropriate radix, you can now simulate the Cale design to verify
its functionality. To this end, you will use PROsim to simulate two
functions, loading the ALU register and pushing the STACK register.

The Cale design consists of a 4-bit processor with a stack. Inputs are a
7-bit bus, SW7\SW[6:0]_P, which defines the opcode and data, and
an Execute switch, EXC_P. Whenever EXC_P toggles High to Low
and then Low to High, the processor reads the opcode and data and
executes the defined command.

1-131

Viewlogic Tutorials

2 3 4

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1-132

The ALU performs functions between an internal register and either
the top of the stack or data read in from the external switches.
Outputs include ALU[3:0], the current contents of the internal
register, and STACK[3:0], the top value of the stack.

Table 1-2 shows the valid opcodes and their functions.

Table 1-2 Processor Operations

5 l 6 7 8 Operation

DATA Add between switches and register

DATA AND between switches and register

DATA OR between switches and register

DATA XOR between switches and register

DATA Subtract switch value from register

x x x x Clear register

DATA Load register

0 0 0 x Add between stack and register

0 0 1 x AND between stack and register

0 1 0 x OR between stack and register

0 1 1 x XOR between stack and register

1 0 0 x Subtract stack value from register

1 0 1 x Push register value to stack

1 1 0 x Pop stack value to register

1 1 1 x NOP

Loading 1111 to the ALU Register

Follow these instructions to load 1111 to the ALU register.

1. Activate PROsim by making an icon of PROwave and double
clicking on the PROsim icon.

2. At the PROsim> prompt, type assign sw 1101111.J.

This step sets the switches to perform the load register operation
100 with the value 1111.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

3. To bring EXC_P Low, type 1 exc_p.J.

4. To simulate for two clock cycles, type cycle 2.J.

The assignments made in steps 2 and 3 are now applied to the
simulation network, which is simulated for a total time of two
clock cycles, or 200 ns. This simulation loads the opcode into
Cale's internal logic.

5. To bring EXC_P High, type h exc_p.J.

6. To simulate for three clock cycles, type cycle 3.J.

Figure 1-136 reflects the commands that you have just entered.

Figure 1-136 Loading the ALU Register

1-133

Viewlogic Tutorials

1-134

7. Activate PROwave by making an icon of PROsim and double
clicking on the PROwave icon.

Notice that the ALU group's radix has reverted back to
hexadecimal.

8. Re-set the ALU radix to decimal, as shown in Figure 1-137.

Figure 1-137 Calc.wfm Waveform Display and Simulated Load
Operation

Changing the Radices for PROcapture Display

You can also change the radix of the SW[6:0] bus and the ALU vector
displayed in PROcapture by setting the radix in PROsim so that it is
written to the calc.wfm waveform display file.

1. Activate PROsim by making an icon of the PROwave window and
double-clicking on the PROsim icon.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

2. To set the radix of the SW bus in the calc.wfm file to binary, type
radix binary SW.J at the PROsim> prompt.

3. To set the radix of the ALU group in the calc.wfm file to decimal,
type radix decimal ALU.J at the PROs im> prompt.

These two commands should be reflected on your screen, as in
Figure 1-138.

Figure 1-138 Changing SW and ALU Radices

1-135

Viewlogic Tutorials

1-136

4. Activate PROcapture by making an icon of the PROsim window
and double-clicking on the PROcapture icon.

As Figure 1-139 indicates, the display radices in PROcapture have
been changed for the SW[6:0] bus and the ALU vector.

Figure 1-139 Changed SW and ALU Display Radices in
PROcapture

Pushing 1111 to the STACK Register

To load the ALU value 1111 to the STACK register, follow these steps.

1. Activate PROsim by making an icon of the PROcapture window
and double-clicking on the PROsim icon.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

2. At the PROsim> prompt, type assign sw 1111011.J.

This step sets the switches to perform the push register operation
111101. (According to Table 1-2, the last digit is a don't-care.)

3. To bring EXC_P Low, type 1 exc_p.J.

4. To simulate for two clock cycles, type cycle 2.J.

The assignments made in steps 2 and 3 are now applied to the
simulation network, which is simulated for the total time of two
clock cycles, or 200 ns. This simulation loads the opcode into
Cale's internal logic.

5. To bring EXC_P High, type h exc_p.J.

6. To simulate for four clock cycles, type cycle 4.J.

Note: A push operation takes an extra state in the state machine, so it
needs an extra clock cycle to execute.

Figure 1-140 reflects the commands that you have just entered.

1-137

Viewlogic Tutorials

1-138

Figure 1-140 Pushing the Register Value to the STACK

Viewing the Waveforms

You have simulated two processor commands, which is enough to
show some interesting waveforms.

Activate PROwave by making an icon of the PROsim window and
double-clicking on the PROwave icon, changing the radices if you
wish. Figure 1-141 displays the waveforms resulting from the
commands executed so far.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

Figure 1-141 Calc.wfm Waveform Display and the Simulated
Load and Push Operations

You can further verify the Cale design by using the other processor
opcodes and viewing the values in both the waveform viewer and
the schematic. If you wish to experiment with the other operations,
use the File ___.. Save command to save the current waveforms to the
calc.see file. The calc.see file will be used later in the tutorial to
perform timing simulation comparisons.

1-139

Viewlogic Tutorials

Re-Creating Previous Simulation
During simulation, PROsim creates a log file that contains a history of
every command issued in that session, as well as the PROsim status
of the commands. You can edit this log file and save it to a command
file that you can then use to re-create the previous simulation.

1. Once you have finished simulating, close PROsim.

2. Invoke Notepad and open the file in c:\user\cale\viewsim.log.

3. Save the file to a filename.cmd file.

Implementing the Cale Design

1-140

With the Cale design functionally verified, it is time to implement the
design. Clicking on the Xilinx Implementation icon opens the Xilinx
Design Manager, which implements Cale. It creates the files needed
to simulate timing and to download.

Invoking the Design Manager
You can invoke the Design Manager from PROflow or from the
Program Manager XACTstep program group.

1. Click on the Xilinx Implementation icon in PROflow, shown in
Figure 1-142.

Figure 1-142 Xilinx Implementation Icon

The Design Manager window appears, as shown in Figure 1-143.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

Design Manager

Figure 1-143 Design Manager Window

On the top of the window is the title bar, which identifies the tool as
the Design Manager. Beneath the title bar is the menu bar on which
the pull-down menus appear. The full set of available menus does not
appear until you load an implementation project into the Design
Manager. The toolbar, which is located below the menu bar, displays
icons that perform the same functions as the most commonly used
menu commands. The Project View section of the window contains a
graphical representation of the versions and revisions of the design.
Finally, the status bar at the bottom of the window displays the
family, part number, version number, and revision number of your
design when a project is loaded.

1-141

Viewlogic Tutorials

1-142

Creating the Cale Implementation Project and Its
Initial Translation

Before you can begin implementing the design, you must create the
Xilinx project, which is a different process from creating the
Viewlogic project. The Xilinx project directories contain version and
revision information for multiple runs of your design through the
Xilinx implementation tools.

Follow these steps to create the Cale implementation project.

1. Select the File___.. New Project command.

The New Project dialog box appears, as shown in Figure 1-144.

Figure 1-144 New Project Dialog Box

2. To specify the CALC.1 top-level schematic file as the input design,
click on Browse.

The Open dialog box appears, as shown in Figure 1-145.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

Figure 1-145 Open Dialog Box

3. Using the Directories list box, select the user\calc\sch directory,
and select the CALC.1 schematic file, as Figure 1-146
demonstrates.

Figure 1-146 Schematic File Selected in Open Dialog Box

4. Click on OK.

The Open dialog box now closes, and the New Project dialog box
is updated with the selected file, as illustrated in Figure 1-147.

1-143

Viewlogic Tutorials

1-144

Figure 1-147 Updated New Project Dialog Box

The Work Directory field now displays the default value of
c: \user \calc. It reflects the name of the directory in which the
Design Manager places the project directory. The project directory,
by default xproject, is where the version and revision data is
stored.

5. In the Target Family field, select the family in which the device
will be implemented, either XC3000, as shown in Figure 1-148, or
XC7000, as shown in Figure 1-149.

Figure 1-148 Selecting the XC3000 Family

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

Figure 1-149 Selecting the XC7000 Family

You can partition a multi-chip XC7000 design with the Design
Manager. Because the Cale design is targeted for the 73108-7PC84
part, select the Single Chip Design option. For more
information on partitioning EPLD designs, see the Design
Manager/Flow Engine Reference/User Guide.

6. Click on Translate.

The Translate Options dialog box appears, as shown in
Figure 1-150.

Figure 1-150 Translate Options Dialog Box

In this dialog box, you can name the design version being
translated and specify the design part type. The Design Version

1-145

Viewlogic Tutorials

1-146

field displays the version number of the design. For the first
translation, Vl.O appears by default. With subsequent translations
of the same design, the version number automatically increments.
For information on the Preserve Floorplan option, see the Design
Manager/Flow Engine Reference/User Guide.

7. To specify the Cale part type, deselect the Read Part From
Design check box.

The Select Part button and the Part field are now activated. You
can specify the part type by typing it in the Part field or by clicking
on the Select Part button.

Figure 1-151 Activated Part Fields on Translate Options Dialog
Box

8. Click on Select Part.

This button displays the Part Selector dialog box. This dialog box
resembles the illustration in Figure 1-152 for the XC3000 family, or
the one in Figure 1-153 for the XC7000 family.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

iS··.•.'.I .~ Part Selector

FamilY; I .~!&OW ..•
beviee: I ;:il)2(). i liJ <

. Package:. I eJIJQP . 'j:if
!ij)e~ L-:H!lri~: • ~···ii

Figure 1-152 Part Selector Dialog Box for XC3000 Family

Figure 1-153 Part Selector Dialog Box for XC7000 Family

In the Part Selector dialog box, the Device field reflects only the
parts for the family selected in the Family field. Similarly, the
Package field displays only those packages suitable for the device
selected. The Speed field displays only those speed grades
appropriate for the part and package selected.

9. Using the Part Selector pull-down list boxes, select the
3020APC68-7 part for the XC3000A family, as shown in
Figure 1-154, or the 73108-7PC84 part for the XC7000 family, as
shown in Figure 1-155.

1-147

Viewlogic Tutorials

1-148

Figure 1-154 Selecting an XC3000A Part

Figure 1-155 Selecting an XC7300 Part

10. Click on OK to accept the Part Selector dialog box.

The Translate Options dialog box is now updated with the
selected parts. Figure 1-156 and Figure 1-157 display this dialog
box for the XC3000A and the XC7000 families, respectively.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

Figure 1-156 Translate Options Dialog Box with XC3000A Part

Figure 1-157 Translate Options Dialog Box with XC7000 Part

11. To translate the design, click on OK in the Translate Options dialog
box.

The Translate status window opens, as shown in Figure 1-158.
This window displays the processing of the design so that you can
monitor the progress of the translation.

1-149

Viewlogic Tutorials

1-150

Reacl file xnt\fd4ce.xnf

Rea cl file xnf\anclblk2. xnf

Reacl file xnf\muxblk5.xnf

Net list written to file calc. xff

XMAKE: 'calc.xff' has been made.

Figure 1-158 Translate Status Window

The Design Manager uses XMake for FPGAs and XEMake for
EPLDs to translate the input design to a flattened file. These
programs first translate the input design files to XNF files, then
merge the XNF files into one flattened XNF file called design.xff.
When they successfully complete the translation, the Design
Manager displays the message box shown in Figure 1-159.

Figure 1-159 Design Manager Translation Message Box

This message box allows you to review the results of the
translation, which are placed in a log file. Clicking on Review Log
displays the log file in a text editor.

12. Click on OK.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

The message box closes, and the Design Manager is updated with
the new Cale implementation project. Figure 1-160 shows how the
Design Manager is updated for an FPGA design, and Figure 1-161
shows how it is updated for an EPLD design.

Figure 1-160 FPGA Design in Updated Design Manager Window

1-151

Viewlogic Tutorials

Figure 1-161 EPLD Design in Updated Design Manager Window

In the Project View section of the window, the new project contains a
single version with an implementation revision. The status of the
revision is "Translated." The Tools section of the window contains the
icons of the Xilinx tools available for the new project. The menu bar is
also updated to show all the available menus. If you are performing
the FPGA tutorial, proceed with the next section. If you are
performing the EPLD tutorial, skip to the "Implementing the EPLD
Design" section later in this chapter.

Implementing the FPGA Design

1-152

The design is now translated and ready to be implemented. The
Design Manager uses the Flow Engine to implement a design. For
FPGA designs, the Flow Engine creates a configuration bitstream,
design.bit, as well as timing simulation data. It automatically exports
this data to the Viewlogic project directory for use by PROflow.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

1. To set the implementation options and invoke the Flow Engine,
select Design~ Implement in the Design Manager, as shown in
Figure 1-162.

Qesign Iools
Iranslate ...
lmplement. ..
fxport ...

New De~ice ...

New Revision .. .
!;_opy Revision .. .
Browse Revision ...

Bena me ...

Figure 1-162 Selecting the Implement Command

The Design Implementation dialog box opens, as indicated in
Figure 1-163.

In this dialog box, you can select control files, create option
templates, and specify optional targets. In the Constraints File field,
you can select any constraints file. The Guide Design field displays
only the revisions containing guide data. For more information on
control files, see the Design Manager/Flow Engine Reference/User Guide.

1-153

Viewlogic Tutorials

1-154

Figure 1-163 Design Implementation Dialog Box

Setting General FPGA Options

The general FPGA options are all the options on the Design
Implementation dialog box except for those in the Program Option
Templates field.

1. To select the constraints file, click on Browse.

The Open dialog box displays, as shown in Figure 1-164.

Xilinx Development System

Viewlogic Tutorials

127 c:\
127 user
~calc

L:J sch
LJ SJlm
L:J wir
L:l xnf

Figure 1-164 Open Dialog Box

PROcapture and PROsim Tutorial

The Open dialog box is initially displayed with the *.est file filter,
so only constraints files are listed in the File Name list box.

2. Select the constraints file appropriate for the demonstration board
that you will be using to test the implemented design, as noted in
the example in Figure 1-165.

Note: Use the fpga3ka.cst constraints file if you are targeting the
dual-device demonstration board. You can use the sing3ka.cst
constraints file if you are targeting the single-device demonstration
board.

1-155

Viewlogic Tutorials

1-156

Figure 1-165 Selecting the Constraints File

3. Click on OK.

As shown in Figure 1-166, the Design Implementation dialog box
is now updated with the selected constraints file.

Figure 1-166 Updated Design Implementation Dialog Box

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

4. To produce timing simulation data, select the Produce Timing
Simulation Data check box, as Figure 1-167 demonstrates.

Figure 1-167 Selecting the Target

At this point, you are ready to run the Flow Engine to create the
configuration and timing simulation data. The options in the
Program Option Templates part of the Design Implementation dialog
box, discussed in the next section, allow you to control how this data
is produced.

Setting Advanced FPGA Options

The advanced options are found in the Program Option Templates
section of the Design Implementation dialog box.

1. Click on the Edit Template button in the Implementation field.

The Implementation Template dialog box appears, as shown in
Figure 1-168.

1-157

Viewlogic Tutorials

1-158

Figure 1-168 Implementation Template Dialog Box

The Implementation Template is divided into three tabs, each
allowing you to specify implementation options.

• The Implementation tab specifies placement and routing effort.
It also lets you decide if XACT-Performance should be used.

• The Optimization tab controls the types of optimization
applied to the design during implementation.

• The Guide/Resource tab determines which resources will be
used when you use a previous implementation to guide a
design.

For more information on these options, consult the Design
Manager/Flow Engine Reference/User Guide.

2. While holding the left mouse button down on the routing slide
bar, set the routing effort to 1, as shown in Figure 1-169.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

Figure 1-169 Setting the Routing Effort

3. Select the optimization tab by clicking the left mouse button on
the title.

The Optimization tab is displayed in the Implementation
Template dialog box, as shown in Figure 1-170.

1-159

Viewlogic Tutorials

1-160

Figure 1-170 Optimization Tab of the Implementation Template

4. To specify that the design be implemented in the fewest number of
CLBs, select the Pack Design check box, as Figure 1-171
indicates.

Figure 1-171 Selecting the Pack Design Option

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

5. Set any other options, if desired.

6. Click on OK to close the Implementation Template dialog box.

All the options on the Design Implementation dialog box should
now be set. Figure 1-172 displays the resulting dialog box.

Figure 1-172 Design Implementation Dialog Box with All Options
Set

Invoking the Flow Engine

Now that all the options are set, you can invoke the Flow Engine.

1. Click on Run in the Design Implementation dialog box.

This command closes the dialog box and opens the Flow Engine,
which handles the processing of the design from optimization to
the generation of the bitstream. As each step is completed, the
Flow Engine window is updated with the processing status. The
first step is the optimization step, which is performed by the
XNFPrep program. The Flow Engine window shown in
Figure 1-173 displays the optimization step.

1-161

Viewlogic Tutorials

1-162

Figure 1-173 Flow Engine Window During Optimization Step

Once optimization is completed, the Flow Engine places and
routes the design. The place and route stage creates the layout and
routes the interconnect. Finally, the Flow Engine creates back
annotated timing data and generates a bitstream. The completion
of these processes produces the data necessary for PROflow to
create a timing simulation network and to download the design.

Figure 1-174 shows the Flow Engine as it completes processing.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

Figure 1-174 Flow Engine Window on Completion of Processing

When you click on the Run button in the Design Implementation
dialog box, the Report Browser is also displayed. During
processing, the Report Browser is updated with reports as they
are created. Figure 1-175 illustrates the Report Browser once
processing is complete.

To view any of the reports, double-click on the appropriate icon in
the Report Browser.

1-163

Viewlogic Tutorials

Figure 1-175 Report Browser

2. Close the Flow Engine and the Report Browser.

The Design Manager is updated, as shown in Figure 1-176.

Figure 1-176 Updated Design Manager Window

1-164 Xilinx Development System

PROcapture and PROsim Tutorial

Implementing the EPLD Design

Viewlogic Tutorials

As with FPGAs, the Design Manager uses the Flow Engine to
implement an EPLD design. For EPLD designs, the Flow Engine
creates configuration data, design.prg, as well as timing simulation
data. It automatically exports this data to the Viewlogic project
directory for use by PROflow.

1. To set the implementation options and invoke the Flow Engine,
select Design~ Implement in the Design Manager, as shown in
Figure 1-177.

New De~ice ...

New Revision .. .
.C.opy Revision .. .
Browse Revision ...

Rename .. ,

Figure 1-177 Selecting the Implement Command

The Design Implementation dialog box opens, as indicated in
Figure 1-178.

1-165

Viewlogic Tutorials

1-166

Figure 1-178 Design Implementation Dialog Box

In this dialog box, you can select control files, create option templates,
and specify optional targets. In the Constraints File field, you can
select any constraints file. The Guide Design field displays only the
revisions containing guide data. For more information on control
files, see the Design Manager/Flow Engine Reference/User Guide. By
default, all the optional targets are selected.

Setting Advanced EPLD Options

The advanced options are found in the Program Option Templates
section of the dialog box.

1. Click on the Edit Template button in the Implementation field.

The Implementation Template dialog box appears, as shown in
Figure 1-179.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

Figure 1-179 Implementation Template Dialog Box

The Implementation Template is divided into three tabs, each
allowing you to specify implementation options.

• The Fitting tab allows you to use XACT-Performance, ignore
pin assignments, and specify that unused 1/0 pads be driven.

• The Optimization tab controls the types of optimization
applied to the design during implementation.

• The Resource tab determines which resources will be applied
when you use a previous implementation to guide a design.

For more information on these options, consult the Design
Manager/Flow Engine Reference/User Guide.

2. Select the optimization tab by clicking the left mouse button on
the title.

The Optimization tab is displayed in the Implementation
Template dialog box, as indicated in Figure 1-180.

1-167

Viewlogic Tutorials

1-168

Figure 1-180 Optimization Tab of the Implementation Template

3. To use the fast clock capability of the EPLD device, set the Fast
Clock option to On, as Figure 1-181 demonstrates.

Figure 1-181 Setting the Fast Clock Option to On

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

4. Click on OK to close the Implementation Template dialog box.

All the options on the Design Implementation dialog box should
now be set. Figure 1-182 displays the resulting dialog box.

Figure 1-182 Design Implementation Dialog Box with All Options
Set

Invoking the Flow Engine

Now that all the options are set, you can invoke the Flow Engine.

1. Click on Run in the Design Implementation dialog box.

This command closes the dialog box and opens the Flow Engine,
which handles the processing of the design from optimization to
the generation of the program data. As each step is completed, the
Flow Engine window is updated with the processing status. The
first step is the optimization step, which is performed by the
XNFPrep program. The Flow Engine window shown in
Figure 1-183 displays the optimization step.

1-169

Viewlogic Tutorials

1-170

Figure 1-183 Flow Engine Window During Optimization Step

Once optimization is completed, the Flow Engine fits the design.
Finally, the Flow Engine creates back-annotated timing data and
program data. The completion of these processes produces the
data necessary for PROflow to create a simulate timing network.

Figure 1-184 shows the Flow Engine as it completes processing.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

Figure 1-184 Flow Engine Window on Completion of Processing

When you click on the Run button in the Design Implementation
dialog box, the Report Browser is also displayed. During
processing, the Report Browser is updated with reports as they
are created. Figure 1-185 illustrates the Report Browser once
processing is complete.

To view any of the reports, double-click on the appropriate icon in
the Report Browser.

1-171

Viewlogic Tutorials

Figure 1-185 Report Browser

2. Close the Flow Engine and the Report Browser.

The Design Manager is updated, as shown in Figure 1-186.

Figure 1-186 Updated Design Manager Window

1-172 Xilinx Development System

PROcapture and PROsim Tutorial

Timing Simulation
With the FPGA design placed and routed, or the EPLD design fitted,
the next step is to verify the timing by using PROsim. PROflow
automates this task so that all you need is a timing simulation
network to represent the routed FPGA or fitted EPLD.

Creating the Simulation Network File

Viewlogic Tutorials

The first step in the timing simulation process is to create the
simulation network, calc.vsm, which is loaded into PROsim to
simulate the Cale design.

1. Click on the Timing Simulation PROsim icon, shown in
Figure 1-187. It is located below the Xilinx Implementation icon.

Figure 1-187 Timing Simulation PROsim Icon

The Timing Simulation dialog box appears, as shown in
Figure 1-188.

Figure 1-188 Timing Simulation Dialog Box

1-173

Viewlogic Tutorials

1-174

The Execute Power On Reset option is set by default. A timing
simulation command file has already been prepared for you. It
issues exactly the same commands as those for functional
simulation.

2. Click on the empty Command File check box.

The Command File field is now activated, as indicated in
Figure 1-189, so that you can type in the name of the command
file. The Browse button is also activated.

Figure 1-189 Selecting the Command File

3. Click on Browse.

This option brings up the Command Files dialog box, shown in
Figure 1-190.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

L:J sch
L:J soln_3ka.
L:J sym
uwir

Figure 1-190 Command Files Dialog Box

4. Select the calc3kat. cmd file for FPGAs or the calc7kt. cmd
file for EPLDs.

5. Click on OK.

The Command Files dialog box closes, and the Timing Simulation
dialog box is updated, as pictured in Figure 1-191.

1-175

Viewlogic Tutorials

1-176

Figure 1-191 Updated Timing Simulation Dialog Box

Note: To view the PROsim commands, open the command file using
Notepad or any text editor.

6. Click on OK.

PROflow closes the Timing Simulation dialog box and prepares
the timing simulation network, calc.vsm. When it is done, the
calc.log file is displayed in Notepad. If the file is too large to be
displayed in Notepad, you can use an alternate text editor.

Note: For EPLDs, the xsimmake.out file is displayed in Notepad.

7. Verify that no errors were issued during the processing.

8. Select the File ---. ~xit option to close Notepad.

Once you close Notepad, PROflow invokes PROsim on the calc.vsm
simulation network file, asserts the global reset, and runs the
calc3kat.cmd or calc7kt.cmd file. The calc3kat.cmd or calc7kt.cmd file
sets up the vectors, initializes all the inputs, and simulates the load
and push operations as you did manually in the functional
simulation section. Figure 1-192 displays PROsim's response to the
commands issued by the command file.

Xilinx Development System

PROcapture and PROsim Tutorial

Figure 1-192 PROsim and Simulated Command File

Invoking PROwave

Viewlogic Tutorials

To verify the simulation, you can use PROwave to view the signal
waveforms.

1. To invoke PROwave, activate PROflow by making an icon of
PROsim and selecting PROflow with the left mouse button.

2. Click on the Timing Simulation PROwave icon, shown in
Figure 1-193.

1-177

Viewlogic Tutorials

1-178

Figure 1-193 Timing Simulation PROwave Icon

The Open dialog box appears, as shown in Figure 1-194 .

l!Em
calc.wfm
calct.wfm

.!!irectmies:

c:\user\calc

~c:\
~user
li)calc
~sch
~ soln_3ka
~sym
~ wir

List Files of Jype: Driyes:

~I w_fm_F_ile_s_("_._w_fm_J __ ~ll_' ,, I !iii c: craigster

Figure 1-194 Open Dialog Box

D B.ead Only

Ill

There are two waveform files in the current project so you can
compare the functional and timing waveforms. The first,
calc.wfm, was created during functional simulation. The second,
calct.wfm, was created by the calc3kat.cmd or calc7kt.cmd
command file.

3. In the File Name list box, select the cal ct. wfm waveform display
file.

4. Click on OK.

The Open dialog box closes, and the calct.wfm waveform display
file opens, as illustrated in Figure 1-195.

Xilinx Development System

PROcapture and PROsim Tutorial

Figure 1-195 Calct.wfm (Timing Simulation) Waveform Display
File

Comparing the Functional and Timing Simulation
Files

Viewlogic Tutorials

The timing simulation waveform in calct.wfm should look almost
identical to the functional simulation waveform in calc.wfm. To
verify it, open calc.wfm.

1. Select the File ___.. Open ___.. PROsim command.

The Open dialog box appears, as shown in Figure 1-196.

1-179

Viewlogic Tutorials

1-180

- Open

File Harne:

11'.:ml
calc.wfm
calct.wfm

ll_irectories:

c:\user\calc

~c:\
~user
IJ.calc
tll! sch
tlll soln_3ka
tll! sym
tllJ wir

List Files of Jype: Driyes:

._I w_f_m_F_il_es....:[_·-_w_fm....:} __ __..ll_ I liiiil c: craigster

Figure 1-196 Open Dialog Box

II

2. In the File Name list box, select the calc. wfm waveform display
file to open the original functional simulation file. If you saved the
file as calc.see in order to experiment with different operations
during functional simulation, enter see Files {*.see) in the
List Files of Type list box, and select calc . see.

Note: The tutorial illustrations reflect the calc.wfm file, not the
calc.see file.

3. Click on OK.

The Open dialog box closes, and the calc.wfm waveform display
file opens, as illustrated in Figure 1-197.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

Figure 1-197 Calc.wfm (Functional Simulation) Waveform
Display File

4. Select the Window --. Tile command, which arranges the
windows side by side, as Figure 1-198 demonstrates.

1-181

Viewlogic Tutorials

1-182

Figure 1-198 Tiled Waveforms

Zooming the Waveform Files

At the present zoom level, it is extremely difficult to distinguish any
differences between the two waveforms. Zooming in and changing
the grid spacing of the values makes the inspection of the two
waveforms much easier.

Zoom into the calct.wfm ALU transition from 0 to Fusing the
following procedure.

1. Select the calct.wfm waveform window by clicking the left mouse
button on the calct.wfm title bar.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

2. Point the mouse at the 400-ns hash mark at the bottom of the
calct.wfm waveform.

3. Press the F9 function key to begin the View ---t Region command.

The region that will become the new display area is denoted by
the red fill area, shown as a colored area over the 500-ns hash
mark in Figure 1-199.

Figure 1-199 Calct.wfm Display Region

4. Point the mouse at the 500-ns hash mark.

5. Click the left mouse button to zoom into the defined region.
Figure 1-200 displays this zoomed region.

1-183

Viewlogic Tutorials

1-184

Figure 1-200 Zoomed Region in Calct.wfm Display

6. To change the hash mark spacing, select the View --t Grid --..
Space command.

PROwave prompts for the horizontal step spacing at the
PROwave command line, as indicated in Figure 1-201.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

Figure 1-201 Horizontal Step Prompt

7. AttheHorizontal step [100] prompt,typelS.J.

Specifying 15 for the horizontal step changes the interval of the
hash marks to 15 ns, as Figure 1-202 illustrates.

1-185

Viewlogic Tutorials

1-186

Figure 1-202 Changed Step Interval in Calct.wfm Display

8. Activate the calc.wfm waveform and zoom in to the same region,
specifying the same hash mark spacing, as shown in Figure 1-203.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

Figure 1-203 Changed Step Interval in Calc.wfm Display

Obtaining a Transition Time

It is now obvious that the two waveforms are different. Calc.wfm, the
functional simulation file, shows the ALU transition just after 450 ns;
calct.wfm, the timing simulation file, shows the transition slightly
before 460 ns. To obtain an exact time for each of the transitions, place
the crosshair at each of the transitions.

Note: The specific transition times mentioned here are for FPGAs,
although the results for EPLDs are similar.

Your design may be different because of differences in placing and
routing.

1-187

Viewlogic Tutorials

1-188

In the Calc.wfm File

To find out the exact transition time of the ALU vector from 0 to Fin
the calc.wfm waveform, follow these steps.

1. Point the mouse at the vertical line in the middle of the ALU
transition from 0 to F.

2. Double-dick the left mouse button.

This step places the crosshair at the transition, as shown in
Figure 1-204.

Figure 1-204 ALU Transition in Calc.wfm Display

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

PROwave also displays the time at which the transition was made in
the PROwave status line. For this particular transition, PROwave
reported that the transition was made at 450.1 ns and that the delta
time (DT) from the last crosshair location was 350.1 ns.

In the Calct.wfm File

To find out the exact transition time of the ALU vector from 0 to Fin
the calct.wfm waveform, use this procedure:

1. Activate the calct.wfm waveform by clicking the left mouse
button on the title bar.

2. Point the mouse at the vertical line in the middle of the ALU
transition from 0 to F.

3. Double-dick the left mouse button.

This step places the crosshair at the transition, as shown in
Figure 1-205.

1-189

Viewlogic Tutorials

1-190

Figure 1-205 ALU Transition in Calct.wfm Display

For this particular transition, PROwave reported that the transition
was made at 457.1 ns and that the delta time (DT) from the last cursor
location was 377.1 ns.

Obtaining a Delta Time

You can obtain a delta time between the transition of two signals by
double-clicking on the first transition, then double-clicking on the
second transition. The delta time is reported in the PROsim status bar
located above the PROsim command line.

To find out the delta time from the rising edge of CLK or
OSC_7K\XCLK to the transition of the ALU vector, double-click the

Xilinx Development System

PROcapture and PROsim Tutorial

left mouse button on the rising edge of the CLK or OSC_7K\XCLK
signal. For this route, PROwave reported 7.1 ns, as you can see in
Figure 1-206.

Figure 1-206 Delta Time in Calct.wfm Display

Further compare the two waveforms by zooming in and out and
double-clicking on the various transitions.

Downloading an FPGA Design

Viewlogic Tutorials

Now that you have completed your FPGA design, you are ready to
download it to a demonstration board.

1-191

Viewlogic Tutorials

1-192

The following section uses the XACT 5.2 DOS-based programs to
generate and download the bitstream. To learn about this process in
the XACTstep V6.0 tools, refer to the "CALC Tutorial Update" chapter
of the Hardware Debugger Reference/User Guide.

Using a Demonstration Board
There are three Xilinx demonstration boards in common use. The
board that you have depends on what software you purchased and
when you bought it. Because the FPGA tutorial targets an XC3020A
device, you can download the design only to the first of the following
two boards.

• The FPGA demonstration board includes both an XC3000A family
socket and an XC4000 family socket. You will use the XC3000A
socket.

• The XC3000A demonstration board includes a single XC3000A
socket.

• The XC4000 demonstration board includes a single XC4000 socket.

To load the configuration bitstream to the demonstration board, you
need one of Xilinx's hardware cables. Xilinx makes two different
hardware cables, the XChecker cable and the Download cable. Either
cable works with any of the Xilinx demonstration boards.

Connecting the Cable for Download
Before initiating the physical downloading of the design to the FPGA
on a Xilinx demonstration board, the board must be correctly
connected to your PC.

There are several control and power pins that must be connected
between the board and the cable. The bundles of leads supplied with
the cables are labeled to make connecting the board to the cable a
simple process. Additionally, a pair of power and ground pins must
be connected to a regulated 5-volt power supply to deliver power to
the board and cable.

Connect one end of the cable to your demonstration board, as shown
in Table 1-3. For the FPGA demonstration board, use the leftmost
column of pins, which is missing the pin in the third position.

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

Table 1-3 Cable Connections for XC3000A and FPGA
Demonstration Boards

XC3000 Board Cable Label FPGA Board Cable Label

Jl-1 Vee Jl-1 Vee

Jl-2 Gnd Jl-3 Gnd

Jl-3 No Connection Jl-5 No Connection

Jl-4 CCLK Jl-7 CCLK

Jl-5 DIP Jl-9 DIP
f-- ---

Jl-6 DIN Jl-11 DIN

The other end of the cable must be plugged into the back of your
machine. Attach the Download cable to a parallel port or the
XChecker cable to a serial port.

The "FPGA Demonstration Board" chapter of the Xilinx Hardware and
Peripherals Guide discuss in detail the various demonstration boards
and how to connect them. Please refer to this manual for instructions,
if necessary, then carefully verify the following.

• Verify that the hardware cable is correctly connected to both your
system and the demonstration board.

• Verify that the power supply is connected to the demonstration
board and is turned on. The power connections for the supported
demonstration boards are shown in Table 1-4.

Table 1-4 Demonstration Board Power Connections

XC3000 Board FPGA Board

J3-1 + 5 volts J9-1 +5 volts

J3-2 Gnd J9-2 Gnd

1-193

Viewlogic Tutorials

1-194

FPGA Demonstration Board

Make sure the FPGA demonstration board is set up for slave mode
configuration. The configuration mode for the XC3000 family part is
controlled by the SWl bank of switches. The switches should be set as
shown in Table 1-5.

Table 1-5 FPGA Board Switch Positions for XC3000

Switch Label Setting

SWl -1 (left) INP Don't-Care

SWl-2 MPE Off

SWl-3 SPE Off

SWl-4 MO On

SWl-5 Ml On

SWl-6 M2 On

SWl-7 MCLK Off

SWl -8 (right) COUT Off

XC3000A Demonstration Board

If you have an XC3000A demonstration board that has been modified
for use with a serial PROM, be sure it is not configured for use with
an XC1736A or XC1765 Serial Configuration PROM. (If you have the
demonstration board as shipped with Xilinx products, there is no
serial PROM socket on the board.) Such a modified board contains a
four-position DIP switch with a power switch and three switches
controlling the programming mode. If this DIP switch is present,
make sure that the switches are set for slave mode download. A serial
PROM can be present on the board if this DIP switch is installed and
set correctly.

Xilinx Development System

PROcapture and PROsim Tutorial

Downloading the Bitstream

Viewlogic Tutorials

Once the cable is connected to your PC, you are ready to download
the bitstream.

1. Access MS-DOS by double-clicking on the MS-DOS program icon,
shown in Figure 1-207, in the Program Manager XACTstep
program group.

Figure 1-207 MS-DOS Program Icon

2. Change the directory to c:\user\calc.

3. To create a BIT file for downloading, run the MakeBits program by
typing the following:

makebits -sl calc

4. Set all the input switches High.

This setting selects the No-Op command; SW3 switches High on
the FPGA board, and SW1 switches to "1" on the XC3000 board.

Note: The XChecker software is used with either hardware cable.

5. Invoke XChecker from the system prompt. Type the following:

xchecker -port portname calc.J

Here is an example:

xchecker -port com2 calc.J

1-195

Viewlogic Tutorials

Valid port names on a PC are coml or com2, which must be in
lower case.

Once you have used XChecker and set the correct port, that infor
mation is saved in a file called xchecker.pro in your design direc
tory; you do not have to specify it each time.

6. Press the .J key.

If the FPGA is successfully programmed, the following message
appears:

DONE signal went high.

If the Done signal does not go High, check the connections between
the cable and the demonstration board, power the board off and on,
and repeat steps 5 and 6.

Testing the Design

1-196

As described in the "Introduction" chapter at the beginning of this
tutorial, the Cale design is essentially a 4-bit processor with a stack, in
other words, a calculator that uses reverse polish notation. There are
three types of inputs that you must supply: an opcode, data, and an
Execute command.

Each demonstration board has a row of eight rocker switches that
provide input to the design (SW3 on the FPGA board or SWl on the
XC3000 board). The leftmost switch, labeled 1, is the Execute
command, which is activated by toggling the switch twice. The next
three switches (labeled 2-4) select the opcode. Opcode encoding is
shown in the "Processor Operations" table in the "Functional
Simulation" section of this manual. Use the rightmost four switches
(labeled 5-8) to input data. When the extended instruction set is
selected with opcode 111, these switches provide additional bits of
opcode. Exercise caution when setting the switches because they may
yield unintended results.

Note: The rocker switches on the XC3000A demonstration board are
On when down, Off when up. Use the 0 and 1 labels on the board as
your guide.

To perform an operation, simply set the data on the rightmost
"nibble." "On" is a one; "Off" is a zero. Look up the correct opcode
for the operation that you want to perform and set the three opcode

Xilinx Development System

Viewlogic Tutorials

PROcapture and PROsim Tutorial

switches to the correct value. Then toggle the leftmost Execute switch
twice. If the switch is already On, switch it Off, wait a moment, and
then return it to the On position.

The contents of the ALU register are displayed in hexadecimal on the
7-segment display. The top value in the stack is displayed in binary
on the bank of LEDs.

1. Verify that the initial contents of both ALU and stack are all zeros.
The decimal display says "O," and the LED bar is all Off.

Now put a 1 on the data switches and load the switch value to the
ALU register. The op code is 110.

2. Set the seven rightmost switches to 110-0001.

3. Toggle the leftmost switch to execute the command.

The decimal display shows the contents of the ALU register,
which is now "1." The stack is still empty.

Add 13 to the ALU register. The opcode is 000.

4. Set the seven rightmost switches to 000-1101.

5. Toggle the leftmost switch twice to execute the command.

The decimal display shows the contents of the ALU register,
which is now "E." The stack is still empty.

Push the register value onto the stack. The opcode is 111, which is
the extended opcode. The data must be set to 101x, where the x is
a don't-care.

6. Set the seven rightmost switches to 111-1011.

7. Toggle the leftmost switch twice to execute the command.

The decimal display still shows "E." The stack value is also "E," so
the LED bar shows 1110 in the right-hand nibble.

Perform an XOR operation between the switch value and the reg
ister. The opcode is 011. Set the data to all ones.

8. Set the seven rightmost switches to 011-1111.

9. Toggle the leftmost switch twice to execute the command.

The decimal display changes to "1." The stack value on the LED
display is still "E," 1110.

1-197

Viewlogic Tutorials

1-198

Pop the value from the stack. The opcode is 111, which is the
extended opcode. The data must be set to llOx, where the xis a
don't-care.

10. Set the seven rightmost switches to 111-1101.

11. Toggle the leftmost switch twice to execute the command.

The decimal display changes to "E." The stack value returns to
"O."

Clear the ALU register. The opcode is 101. The data is ignored.

12. Set the seven rightmost switches to 101-1101.

13. Toggle the leftmost switch twice to execute the command.

The decimal display changes to "O." The stack value remains at
"O."

14. Try any other commands that you wish.

Xilinx Development System

View logic
Tutorials

Viewlogic Tutorials - 0401414 01

X-BLOX Tutorial

Printed in U.S.A.

Viewlogic Tutorials

Xilinx Development System

Chapter 2

X-BLOX Tutorial

X-BLOX consists of an advanced library and a synthesis tool that
allow you to take advantage of the built-in expert knowledge and the
special features of Xilinx XC3000A/L, XC3100A, XC4000, and
XC5200 FPGAs. X-BLOX cannot be used on XC3000 designs. By using
X-BLOX, you can significantly shorten design entry time, increase
design speed, and use the device more efficiently.

This chapter gives a practical example using X-BLOX within the
Viewlogic PRO Series design environment. It is not intended to fully
explain all of the functionality found within X-BLOX. Please refer to
the "Further Reading" section at the end of this tutorial for a list of
sources from which to obtain more information.

Before Beginning the Tutorial
This section of the tutorial assumes that you are already familiar with
the material in the "PROcapture and PROsim Tutorial" chapter of
this manual. If not, please review that chapter before continuing.

Required Software
You should have access to the following software:

• Viewlogic PROcapture, the Viewlogic schematic entry tool

• Viewlogic PROsim, the Viewlogic simulation tool

• XACT Core Implementation Tools, version 6.0 or later

• X-BLOX (DS-380), which is included in the Standard (DS-VLS
STD-PC1) and Extended (DS-VSL-EXT-PC1) packages. The Base
package does not include X-BLOX, but you can purchase it
separately.

Viewlogic Tutorials - 0401414 01 2-1

Viewlogic Tutorials

You should have at least temporary access to all of the software just
listed using the temporary licensing available on the programmable
key, provided that the temporary licensing has not already been
exhausted.

Preparing the Design

2-2

This tutorial uses the completed Cale design, which you can create
either by completing the PROcapture tutorial or by copying a
completed design from one of the solutions directories.

Note: All of the screen outputs refer to the processing of the XC3000A
solutions design on a PC. Other parts or platforms have different
outputs.

A full solution for the PROcapture tutorial is supplied in the solution
directory located under the directory where the PROseries software
was installed:

... \tutorial\ vwlogic\procak\cak3ka \soln_3ka

1. Using the Windows File Manager, copy the contents of this
directory to the directory where you will be performing the
X-BLOX tutorial.

2. Invoke Xilinx PROflow and select the Design Entry icon.

3. Select the Project Manager button.

4. Press the Create button.

5. Double-dick on the directory that you made in step 1 in the Create
Project dialog box.

6. Verify that the directory is shown in the Directory text box, and
press OK.

The PROjman Create dialog box appears.

7. Select No to re-initialize the viewdraw.ini file.

Note: This step assumes that the default viewdraw.ini file found in
... \proser\standard is configured correctly for PRO Series
installation.

8. Click on Exit in the PRO Series Project Manager.

9. In the Select Family dialog box, select XC3000A and click on OK.

Xilinx Development System

X-BLOX Tutorial

10. After exiting from the Select Family box, select the CALC. l design
in the Design Entry dialog box, and select OK to open the
schematic.

Modifying the Design
In the Cale design, the ALU block performs many bus-oriented
arithmetic logic functions and is ideally suited for implementation
using X-BLOX. For more information on the function of the Cale
design, refer to the discussion in the "Design Description" section of
the "PROcapture and PROsim Tutorial" chapter.

Adding X-BLOX Modules to CALC
In this section, you will insert an X-BLOX-based replacement for the
ALU instance on the CALC schematic. The replacement block is
called ALU_BLOX, which is functionally equivalent to ALU, except
that ALU_BLOX is implemented using X-BLOX components.

Replace the existing ALU block with the X-BLOX version.

1. Select the ALU instance on the CALC schematic.

2. From the Change menu, select Component and then
ALU_BLOX. l.

This procedure replaces the original ALU block with ALU_BLOX.
The change is reflected by the appearance of the ALU _BLOX name at
the top of the symbol.

Viewing the ALU_BLOX Schematic

Viewlogic Tutorials

Now view the schematic for ALU_BLOX by pushing into the
ALU_BLOX symbol.

1. Select the ALU _BLOX instance on the CALC schematic, if it is not
already selected.

2. Select View -. Push Into Schematic. The schematic for
ALU_BLOX appears.

A schematic similar to that in Figure 2-1 appears.

2-3

N
I

>h

~ g:
H

tJ
~ a
1
~ ,..,.

~
[

"Tl ca·
c:
al
I\)
I
l>
r
e:
I
CIJ
r-
0
><
CJ)
(")
:::J"
CD
3 a
(;"

STACK[3:0]

SW DAT A[3:0]

CTL[3:0]

CTL[1:0]

BUS IFO STACK_BLX

BUS_IF04 SW_BLX

BUS_IF02

BUS_DEF

ENCODING=UBIN
BOUNDS=1:0

CTL3

XBLOX_BUS

CTL_BLX

DATA_REG

Q_BLX

ADD_SUB

BUS_DEF
ENCODlNG=UBlN
BOUNDS=3:{J

XBLOX_BUS

DATA

A XORBUS2

=~XOR
INVMASK=

ORBUS2
A c=::: o OR

INVMASK=

ANDBUS2
A ~AND

INVMASK=

ADD_SUB

l
FUNG -OVFL

C_OUT

MUX Q_BLX BUS_IF04 Q[3:0]
----- D_IN Q_OUT~---.. -.::;~=:]l;1]IJ11 _____ _

ASYNC_CTRL

RST SYNC CTRL

CE CLK ~N
CLK CLO;K

ASYNC_VAL=
SYNC_VAL=O

MUXO

CTL2

CTL_BLX

ADSU

OFLOW

I
FDCE

ENOV "'=f---;;
AND483

~E

- RST CLR

MUXBUS2

MUX

OFL

<:::::
~-

~
r;·

~ ,..,.
0
"!
;:i•
Ci)

X-BLOX Tutorial

Completing the ALU_BLOX Schematic
The schematic on your screen is missing some key X-BLOX elements
that you will add by performing the commands in this section.

Complete the ALU_BLOX schematic using Figure 2-1 and the
following steps as a guide.

1. Select Add -. Component.

2. In the Add Component dialog box, select the (xblox) entry in
the Libraries section. In the Components section of the dialog box,
scroll down until you can select the DATA_REG. 1 symbol, then
press OK.

Keyboard Shortcut: You can add the DATA_ REG component by
typing comp data_reg.J on the PROcapture command line.

3. Place the DATA_REG symbol and connect the MUX and Q_BLX
buses, and the RST, CE, and CLK nets, as shown in Figure 2-1. Be
sure to label the buses and nets as shown.

4. Using the same procedure as that in steps 1, 2, and 3, add the X
BLOX BUS_IF04 component to the right of DATA_ REG, as shown
in the figure.

5. Add a BUS_DEF symbol above and between DATA_REG and
BUS_IF04, as shown in the figure.

6. Attach the Q_BLX bus to BUS_DEF with a bus segment.

7. Attach a dangling bus segment to the BUS_IF04 pin B[3:0], and
label it Q[3:0].

At this point, the ALU_BLOX schematic appears very similar to the
schematic in Figure 2-1. X-BLOX attributes must still be added to
complete the schematic.

Understanding X-BLOX Buses

Viewlogic Tutorials

In Figure 2-1, the rectangular BUS_IF02 and BUS_IF04 boxes
connecting buses, mostly on the left side of the sheet, are bus
interfaces. They interface X-BLOX buses with standard PROcapture
buses. An X-BLOX bus is not the same as a bus normally used in
PROcapture. The width of an X-BLOX bus is not defined by the name
attached to the bus. In fact, X-BLOX buses must never be given

2-5

Viewlogic Tutorials

indexed names such as OUT[7:0], because the bus pins on X-BLOX
symbols do not have indexed names. For example, the input pin of
DATA_REG on the ALU_BLOX schematic has the unindexed name
D _IN. All X-BLOX symbols have unindexed bus pins so that the same
symbol can be used in any design, regardless of the width of the
buses in the design. If an indexed bus is attached to one of these
unindexed bus pins, PROcapture flags the bus as an error. Therefore,
BUS_IF symbols are needed as interfaces between X-BLOX buses and
normal Viewlogic buses.

The specific BUS_IF symbol required depends upon the width of the
bus being interfaced. In the ALU _BLOX schematic, for example, the
Viewlogic bus STACK[3:0] is four bits wide and thus is interfaced to
an X-BLOX bus using a BUS_IF04, as shown in Figure 2-2. CTL[l:O], a
2-bit bus, is interfaced using a BUS_IF02. Only X-BLOX buses should
be connected to X-BLOX symbol bus pins. No interface is necessary
for individual nets that connect to X-BLOX symbols, such as CTL2
and CTL3 on the two MUXBUS2 symbols.

X-Blox

Bus

Figure 2-2 Interfacing a Four-Bit Bus to X-BLOX

Using BUS_DEF Symbols

2-6

Where are the X-BLOX bus widths defined? Attached to two buses in
the schematic are BUS_DEFs, or bus definition symbols. By adding
attributes to these symbols, you can define the properties of the entire
data path attached to the BUS_DEF, not just those of the bus to which
the BUS_DEF is directly connected. That is why the ALU_BLOX
schematic requires only two BUS_DEF elements: one for the 4-bit
data path through the ALU, and one for the 2-bit control signal path.

Xilinx Development System

X-BLOX Tutorial

The BOUNDS attribute is placed on a BUS_DEF to define the width
of the bus attached to the BUS_DEF. In this case, the data path has a
width of four bits, giving "3:0" for the value of BOUNDS.

The ENCODING attribute specifies the type of data being
propagated on the data path. The possible choices are UBIN
(unsigned binary), BIT (same as UBIN), TWO_COMP (twos
complement), or ONE_ HOT (one-of-n). The choice of ENCODING
value affects the functionality of every symbol on the data path. The
ADD_SUB block in the ALU_BLOX schematic, for example, is
implemented as an unsigned binary adder I subtracter. If you
designated a data type of TWO_ COMP, the macro would be
implemented as a twos-complement adder I subtracter, with a
different implementation of the OFL output.

Only some ENCODING types are appropriate for a given data path.
For example, it does not make sense to give the ADD _SUB data path
ONE_HOT, or one-of-n, encoding. On the other hand, on the control
path for the multiplexer, the other BUS_DEF in the schematic,
ONE_HOT encoding would be suitable. If the control lines attached
to the multiplexer are encoded as ONE_ HOT, you must define
ENCODING accordingly. In that case, the choice of ENCODING
completely alters the implementation of the multiplexer.

Completing the Bus Definition

Viewlogic Tutorials

The definition of the ALU data path has not yet been set. Add the
following properties to the BUS_DEF symbol attached to the bus
named Q_BLX on the bottom of the sheet. Figure 2-3 gives an
example of a BUS_DEF symbol.

2-7

Viewlogic Tutorials

2-8

B LJ 5 _ D E F

E N C 0 0 I N G = U B I N
B 0 U N 0 5 = 1 0

X B L 0 X _ B U S

I
Figure 2-3 Example of a BUS_DEF symbol

1. Select the BUS_DEF connected to the Q_BLX bus on the lower
portion of the page.

2. Select Change ---+ Object Attributes ---+ Dialog.

The Edit Attributes dialog box appears.

3. By selecting an attribute and pressing the Edit button, add the
following Comp Value values to the BOUNDS and ENCODING
attributes, as shown in Table 2-1.

Table 2-1 BUS_DEF Attributes

Attribute Name Symbol Value Comp Value

BOUNDS 3:0

ENCODING UBIN

There are also two other attributes on the symbol: DEF=BLOX and
LIBVER. The DEF=BLOX attribute defines this symbol as an
X-BLOX symbol, and the LIBVER attribute identifies which
version of the library part is in use. These two attributes cannot be
changed.

4. Click on OK within the dialog box.

Xilinx Development System

X-BLOX Tutorial

Saving Your Changes
Save all of the design changes you have made before continuing with
the tutorial.

1. Select File ___. Save to save your changes to the ALU_BLOX
schematic.

2. Pop back to the CALC schematic by selecting View ___. Pop.

3. Select File ___. Save to save the CALC schematic.

X-BLOX Symbol Library
The X-BLOX library contains elements that simplify the design
process by providing bus-oriented versions of logic, register, and
multiplexing functions. By placing different attributes on X-BLOX
symbols, you can customize them for a specific application. Also, the
X-BLOX software implements macros differently depending on
which pins are used on the symbol. This flexibility allows a wide
range of different functions to be implemented using the small set of
parts found in the X-BLOX library.

X-BLOX Symbol Examples

Viewlogic Tutorials

The following examples show how attributes and pin usage affect the
implementation of the X-BLOX macros in ALU _BLOX. You may wish
to refer to the X-BLOX Reference/User Guide during this discussion.

• DATA_REG

DATA_REG in this design has two attributes that you can set to
alter its implementation, SYNC_ VAL and ASYNC_ VAL. These
attributes define the value that is loaded in the data register when
it is synchronously or asynchronously reset using the
SYNC_CTRL and ASYNC_CTRL pins, respectively. In this
example, the data register must reset to zero in either case, so both
values are undefined and thus default to zero. The SYNC_CTRL
pin is connected, specifying a synchronous reset register.

• ADD_SUB

The ADD _SUB component used in ALU _BLOX is implemented as
an adder I subtracter, because the ADD_ SUB pin is connected.
Since the C_IN pin is unconnected, the block defaults to the

2-9

Viewlogic Tutorials

proper values for normal adding and subtracting. The
implementation of the ADD_SUB macro is greatly affected by the
definition of its data path and the pins connected to it.

• ANDBUS2, ORBUS2, XORBUS2, MUXBUSx

The other X-BLOX symbols on the schematic are implemented the
same way as those used in the original ALU design. Their
considerable advantage, however, is that you do not need to create
any special schematic and symbol for them, greatly reducing the
time necessary to enter the design. The MUXBUSx symbols are
affected by the ENCODING value of their attached buses.

The bused logic symbols, such as ANDBUS2 and ORBUS2, have
one very useful attribute that affects their implementation, the
INVMASK attribute. By changing INVMASK, you can invert the
inputs to the symbol. For example, to invert input bit zero on the
upper bus connection to the ANDBUS, select the ANDBUS and set
the value for the INVMASK attribute to 2#0001#. The "1" in the
string represents the inversion of bit zero, and the "2" indicates
that the INVMASK value is specified in binary, with the total
number of bits on the bus equal to four. All of the INVMASKs in
ALU_BLOX are undefined and therefore all default to a value of
zero, indicating no bit inversions.

X-BLOX Schematics

2-10

X-BLOX macros have a unique ability to adapt to any bus width and
to be implemented differently, depending on data path encoding and
pin usage, so no single schematic can be used to represent the
functionality of an X-BLOX macro. To illustrate this characteristic of
X-BLOX symbols, perform the following steps.

1. Push back into the ALU_BLOX schematic.

2. Select the DATA_REG instance on the ALU_BLOX schematic.

3. View its underlying schematic by pushing into the symbol.

Xilinx Development System

X-BLOX Tutorial

The schematic for this macro is completely blank. The same is true for
all X-BLOX macros; when you first create a design using X-BLOX, no
information is available even to simulate the design functionally. The
schematic page underneath each X-BLOX macro is "filled in" by the
X-BLOX synthesis program, which is run by the XSimMake program.
XSimMake is invoked by PROflow automatically when you select the
Functional Simulation PROsim icon.

Functional Simulation
The XSimMake program, which you can invoke from PROflow by
selecting the Functional Simulation PROsim icon, allows you to
easily simulate designs containing X-BLOX components. It coordi
nates the program execution flow necessary for functional or timing
simulation. For more detailed information on XSimMake, refer to the
"Functional Simulation" chapter of the Viewlogic Interface Guide.

Creating the Simulation Schematic

Viewlogic Tutorials

From PROflow, use XSimMake to generate a schematic that you can
functionally simulate.

1. Minimize the PROcapture window and return to PROflow.

2. Select the Functional Simulation PROsim icon.

The Functional Simulation dialog box appears.

3. Select the Design Contains XBLOX, RAM, ROM or XABEL
Module check box.

4. Click on Select Part.

5. In the Package Selection dialog box, select the 3020APC68-7 part.

6. Select OK.

7. Select OK.

2-11

Viewlogic Tutorials

PROflow now invokes XSimMake. It always produces a new
schematic with the same name as the original, with an "s" added to
the beginning of the original name. This simulation schematic is
placed within a directory beneath the project directory. The directory
is given the same name as the simulation design. For the Cale design,
XSimMake creates a new directory in the project directory called
scale, and the new directory contains an sch directory with the new
SCALC simulation schematic.

Note: On DOS/Windows 3.x-based machines, because of the renam
ing of the simulation schematic, you should not give schematics
names that are longer than seven characters. If a design with an eight
character name is given as input to XSimMake, it cannot append the
"s" to the beginning of the name and produces an error.

In addition, XSimMake inserts the simulation directory into the view
draw.ini file so that you can access both the original and simulation
schematics from the project directory. For CALC, the following line is
added to viewdraw.ini:

DIR [w] .\sCALC (sCALC)

Note: If XSimMake returns errors, check the xsimmake.out, cale.prp,
and cale.blx files for details. A completed version of ALU_BLOX is
included in each of the solutions directories, with the name
BLOXSOLN. If problems cannot be resolved, replace the ALU _BLOX
module with BLOXSOLN on the CALC schematic, save, and try
again.

XSimMake also modifies the simulation schematic so that it is
suitable for use in simulation. The names of all unindexed X-BLOX
bus pins and buses are changed so that they are indexed. XSimMake
notifies you of name changes by changing the color of the modified
text to purple. In addition, the name of any symbol whose schematic
has been modified also appears in purple text.

Text similar to the following appears as XSimMake processes the
design.

Note: XSimMake flows vary depending on the design. The flow used
by XSimMake for your design may be slightly different from the flow
shown in this tutorial.

XSIMMAKE COMMAND deleting directory scale

XSIMMAKE COMMAND creating directory scale

2-12 Xilinx Development System

X-BLOX Tutorial

XSIMMAKE COMMAND creating directory scalc\sch

XSIMMAKE COMMAND creating directory scalc\sym

XSIMMAKE COMMAND creating directory scalc\wir

XSIMMAKE COMMAND creating directory scalc\savexnf

XSIMMAKE COMMAND creating directory scalc\xbloxxnf

XSIMMAKE COMMAND creating directory scalc\otherxnf

XSIMMAKE COMMAND check.exe -p calc

XSIMMAKE COMMAND wir2xnf.exe -b -v -od scalc\otherxnf
calc.xnf -p 3020APC68-7

XSIMMAKE COMMAND : xnfmerge.exe -y -d scalc\otherxnf -q
scalc\otherxnf\calc.xnf scalc\otherxnf\calc.xff

calc

XSIMMAKE COMMAND : xfind.exe scalc\otherxnf\calc.xff calc.xfw
calc.xgs

READING XFW FILE calc.xfw

XSIMMAKE COMMAND xnfmerge.exe -z -d scalc\otherxnf -d xnf -
d . scalc\otherxnf\calc.xnf scalc\otherxnf\calc.xff

XSIMMAKE COMMAND : xnfprep.exe scalc\otherxnf\calc.xff
scalc\otherxnf\calc.xtg report= calc.prx ignore_timespec=all

XSIMMAKE COMMAND : xblox.exe scalc\otherxnf\calc.xtg sim=xnf
simdir=scalc\xbloxxnf sim_rerun=true blxfile= calc.blx

XSIMMAKE COMMAND : xfind.exe -o scalc\xbloxxnf\calc.xgs
calc.xfw

XSIMMAKE COMMAND xnf2wir.exe -b -o calc.xfw

XSIMMAKE COMMAND xdraw.exe -i calc -o scale -a scale
calc.xgs scalc\xbloxxnf\calc.xgs

XSIMMAKE COMMAND check.exe -p scale

XSIMMAKE COMMAND vsm scale

0 Errors and 0 Warnings occurred during processing.

Examining XSimMake Output
An explanation of the XSimMake functional flow output follows.

XSIMMAKE COMMAND deleting directory scale

XSIMMAKE COMMAND creating directory scale

Viewlogic Tutorials 2-13

Viewlogic Tutorials

2-14

XSIMMAKE COMMAND creating directory scalc\sch

XSIMMAKE COMMAND creating directory scalc\sym

XSIMMAKE COMMAND creating directory scalc\wir

XSIMMAKE COMMAND creating directory scalc\savexnf

XSIMMAKE COMMAND creating directory scalc\xbloxxnf

XSIMMAKE COMMAND creating directory scalc\otherxnf

First, XSimMake deletes any existing simulation schematic, then
creates the directory structure for the new one.

XSIMMAKE COMMAND : check -p calc

XSimMake then runs the Viewlogic Check program to ensure that the
WIR files for the design are up to date.

XSIMMAKE COMMAND : wir2xnf.exe -b -v -od scalc\otherxnf calc
calc.xnf -p 3020APC68-7

Next, XSimMake runs WIR2XNF to convert the Viewlogic WIR files
to standard Xilinx netlist format (XNF) files.

XSIMMAKE COMMAND : xnfmerge.exe -y -d scalc\otherxnf -q
scalc\otherxnf\calc.xnf scalc\otherxnf\calc.xff

XSimMake runs XNFMerge to merge the XNF files created by
WIR2XNF into a single netlist.

XSIMMAKE COMMAND : xfind scalc\otherxnf\calc.xnf calc.xfw
calc.xgs

XFind reads the XNF file to determine what types of symbols the
netlist contains. In this case, it discovers X-BLOX symbols and
modifies program execution accordingly by generating a file called
calc.xfw.

READING XFW FILE calc.xfw

XSIMMAKE COMMAND xnfmerge.exe -z -d scalc\otherxnf -d xnf -
d . scalc\otherxnf\calc.xnf scalc\otherxnf\calc.xff

XSIMMAKE COMMAND : xnfprep.exe scalc\otherxnf\calc.xff
scalc\otherxnf\calc.xtg report= calc.prx ignore_timespec=all

XSimMake reads the calc.xfw file produced by XFind. The calc.xfw
file instructs XSimMake to run XNFMerge and XNFPrep in order to
prepare the netlist for use as input to X-BLOX. XNFMerge flattens the
hierarchical netlists into a single flattened XFF file, while XNFPrep
verifies that the XFF file is correct.

Xilinx Development System

X-BLOX Tutorial

XSIMMAKE COMMAND : xblox.exe scalc\otherxnf\calc.xtg sim=xnf
simdir=scalc\xbloxxnf sim_rerun=true blxfile= calc.blx

X-BLOX is run with the special simulation option sim=xnf, which
causes it to produce XNF files for each X-BLOX symbol on the
schematic.

XSIMMAKE COMMAND : xfind.exe -o scalc\xbloxxnf\calc.xgs
calc.xfw

XSimMake runs XFind once again on the output of X-BLOX to
determine which files must have simulation models built for them.
This information is written into the calc.xfw file.

XSIMMAKE COMMAND : xnf2wir.exe -b -o calc.xfw

XSimMake uses the information in the calc.xfw file produced by
XFind in the previous step to run XNF2WIR on the appropriate files.
It produces WIR files for all of the XNF files generated by X-BLOX,
creating simulation models for all of the X-BLOX components in the
schematic.

XSIMMAKE COMMAND : xdraw.exe -i calc -o scale -a scale
calc.xgs scalc\xbloxxnf\calc.xgs

Using information found in the calc.xgs file produced by X-BLOX,
XDraw generates a new schematic called SCALC in the scale
directory.

XSIMMAKE COMMAND : check.exe -p scale

XSimMake then runs the Viewlogic Check program to verify the
validity of the WIR models produced by XNF2WIR.

XSIMMAKE COMMAND : vsm scale

Finally, XSimMake runs VSM to generate a simulation file from the
WIR models for use in PROsim.

Performing a Functional Simulation
After XSimMake completes, PROflow invokes Notepad to display
the XSimMake log file for review. Once you close Notepad, PROflow
invokes PROsim on the scalc.vsm simulation network. A simulation
command (CMD) file can now be executed on the design.

1. Select Simulate --t Command File. At the File name>
prompt at the bottom of the PROsim window, enter
calc3kaf. cmd.

Viewlogic Tutorials 2-15

Viewlogic Tutorials

2-16

2. After the command file has executed, enter the following
command at the PROsim> prompt:

wave scalc.wfm sw alu stack

3. Invoke PROwave by pressing the PROwave icon in the Functional
Simulation area of the PROflow window. Select scale. wfm as the
file to open.

The output of this simulation run is identical to the output of the
functional simulation run on the original non-X-BLOX Cale design.
For a more detailed inspection of the results of this simulation, refer
to the discussion found in the "Functional Simulation" chapter of the
Viewlogic Interface Guide.

If you wish, you can open the SCALC schematic in PROcapture to
view the changes that the XSimMake program has made to the
original design.

1. If PROcapture is not already running, invoke it from PROflow.

The original CALC schematic is displayed.

2. Press File ___. Open and select the SCALC.1 sheet.

The name of the ALU_BLOX symbol appears in purple. If
anything underneath a symbol is modified, its name appears in
purple. Since ALU_BLOX contains X-BLOX symbols, it had to be
redrawn even though the symbol itself was not changed.

3. Push into the ALU_BLOX schematic.

The X-BLOX symbols have been replaced with equivalents that
can be simulated, meaning that all X-BLOX buses and bus pins
were modified so that they now have specific widths. In
Figure 2-4, for example, note the difference between the
DATA_REG found in the original ALU_BLOX in the CALC
schematic and the one from ALU_BLOX in the SCALC schematic.
The D_IN pin has become D_IN[3:0], and the Q__OUT pin has
become Q__OUT[3:0].

Note: The new pin names may be somewhat difficult to read because
they tend to overlap on the symbols when they are given indices.

Since these symbols were redrawn, their names appear in purple.
In addition, the pin and bus names associated with the X-BLOX
symbols were changed, so they also appear in purple.

Xilinx Development System

X-BLOX Tutorial

BUS_DEF

(ENCODING=UBIN

BOUNDS=3:0

XBLOX_BUS

DATA_REG

MUX O_BLX BUS_IF04 0(3:0]

RST
II-

CE
II-

CLK
II-

D_IN O_OUT

- ASYNC_CTRL

SYNC_CTRL

CLK_EN

CLOCK

ASYNC_VAL=
SYNC_VAL=O

DATA_REG

xj_ B[3:0]

BUS_DEF

(ENCODING=UBIN

BOUNDS=3:0

XBLOX_BUS[3:0]

MUX[3:0]
O_OUT[3:0] O_BLX[3:0] BUS_IF04 0[3:0]

II-

II-

Viewlogic Tutorials

-
RST

CE

CLK

D_IN[3:0]

ASYNC_CTRL

SYNC_CTRL

CLK_EN

CLOCK

ASYNC_VAL=

SYNC_VAL=O

Xj_ B[3:0]

Figure 2-4 Original (Top) vs. XSimMake-Generated Schematic

Note: If the X-BLOX symbols do not appear to have been modified,
make certain that you have opened the SCALC simulation schematic
and not the CALC schematic. Go back and inspect the xsimmake.out,
calc.prp, and calc.blx files for errors. Correct any errors found and re
execute XSimMake from PROflow. Check that all attributes, nets, and
buses that were added to ALU _BLOX were spelled correctly. If the
problem still cannot be resolved, replace ALU_BLOX with
BLOXSOLN on the CALC schematic, and rerun XSimMake.

2-17

Viewlogic Tutorials

Implementing the Cale Design
The implementation of designs containing X-BLOX components is
similar to that of other designs. You can use PROflow's Xilinx
Implementation icon to invoke the Xilinx Design Manager, from
which you can control the design's implementation in a Xilinx FPGA.

For detailed information on the Xilinx Design Manager, refer to the
Design Manager/Flow Engine Reference/User Guide.

Translating the Netlist
Run the Xilinx Design Manager to generate files for device
programming.

1. From PROflow, select the Xilinx Implementation icon to start the
Xilinx Design Manager.

2. In the Xilinx Design Manager, select File--+ New Project.

3. Using the Browse button, change to the WIR directory in the
tutorial directory and select the CALC.1 sheet.

4. Press OK.

5. Change the target family to XC3000.

6. Press the Translate button.

7. In the Translate Options window, press the OK button.

The Design Manager runs the XMake program, which converts the
PROcapture schematic into an XFF netlist.

Examining XMake Netlist Translation Output
XMake produces a screen output similar to the following.

XMAKE: Generating makefile 'calc.mak' ...

XMAKE: Profile used is 'xdm.pro'.

XMAKE: Execute command 'wir2xnf -B -OD xnf calc calc.xnf'.

XMAKE: Set the part type to '3020APC68-7' from
'xnf\calc.xnf'.

XMAKE: Running with the following XMAKE options:

>>> XDELAY is run always with '-D' and '-W' options by

2-18 Xilinx Development System

X-BLOX Tutorial

XMAKE.

XMAKE: Makefile saved in 'calc.mak'.

XMAKE: Making 'calc.xff' ...

XMAKE: Execute command 'xnfmerge -A -D xnf -D . -P 3020APC68-
7 xnf\calc.xnf calc.xff'.

XMAKE: 'calc.xff' has been made.

An explanation of the output follows.

XMAKE: Generating makefile 'calc.mak' ...

XMAKE: Profile used is 'xdm.pro'.

XMAKE: Execute command 'wir2xnf -B -OD xnf calc calc.xnf'.

XMake runs WIR2XNF to convert the Viewlogic WIR file netlists to
Xilinx XNF files.

XMAKE: Set the part type to '3020APC68-7' from
'xnf\calc.xnf'.

XMAKE: Running with the following XMAKE options:

>>> XDELAY is run always with '-D' and '-W' options by
XMAKE.

XMAKE: Makefile saved in 'calc.mak'.

XMake always creates a file with a .mak extension that contains a list
of the commands used to process the design.

XMAKE: Making 'calc.xff' ...

XMAKE: Execute command 'xnfmerge -A -D xnf -D . -P 3020APC68-
7 xnf\calc.xnf calc.xff'.

XMAKE: 'calc.xff' has been made.

Next, XMake runs XNFMerge to flatten the hierarchical XNF files into
a single netlist, which is written out as an XFF file.

Creating a Routed Design

Viewlogic Tutorials

Use the Xilinx Design Manager to implement the converted netlist in
the target device.

1. Select Design ---. Implement.

2. In the XC3000A Design Implementation dialog box, confirm that
the Produce Configuration Data check box is selected.

2-19

Viewlogic Tutorials

3. Select the Produce Timing Simulation Data check box.
(The timing data will be used in a later part of the tutorial.)

4. Press Run.

The Xilinx Flow Engine, invoked by the Design Manager, optimizes,
maps, places, and routes the design, and creates a bitstream file that
can be downloaded to the part. The resulting Flow Engine history
file, program.his, is shown following.

xnfprep design=calc.xff outfile=calc.xtg savesig=false
partType=3020APC68-7 ignore_timespec=none xblox_prep=true
split_report=true

xblox calc.xtg calc.xg parttype=3020APC68-7 archopt=false
mergeio=false reg_rlocs=false

xnfprep design=calc.xg outfile=calc.xtf savesig=false
ignore_timespec=none split_report=true

xnfmap calc.xtf calc.map

ppr design=calc placer_effort=2 router_effort=2
ignore_timespec=none path_timing=true route_thru_bufg=ok
route_thru_blks=ok guide_blks=all lock_routing=whole_sigs
split_report=true

xdelay -d -w calc.lca

lca2xnf -g calc.lca calc.xnf

xnfba calc.xg calc.xnf

makebits -1 -mbo=calc.mbo calc.lca

Examining the Flow Engine History File

2-20

An explanation of the history file follows.

xnfprep design=calc.xff outfile=calc.xtg savesig=false
partType=3020APC68-7 ignore_timespec=none xblox_prep=true
split_report=true

The Flow Engine runs XNFPrep to verify that the flattened XFF file is
correct. It creates a report that is stored in the calc.prp file. The output
of XNFPrep is specified as calc.xtg.

xblox calc.xtg calc.xg parttype=3020APC68-7 archopt=false
mergeio=false reg_rlocs=false

The Flow Engine runs X-BLOX to synthesize the X-BLOX symbols in
the design into standard logic.

Xilinx Development System

Viewlogic Tutorials

X-BLOX Tutorial

xnfprep design=calc.xg outfile=calc.xtf savesig=false
ignore_timespec=none split_report=true

It runs XNFPrep once again to verify that the logic produced by
X-BLOX is correct. In this case, the output file name is specified as
calc.xtf.

xnfmap calc.xtf calc.map

XNFMAP partitions the logic found in the calc.xtf file into sections
that will fit within XC3000A CLBs. For XC4000 designs, this step is
handled by PPR.

ppr design=calc placer_ef f ort=2 router_ef f ort=2
ignore_timespec=none path_timing=true route_thru_bufg=ok
route_thru_blks=ok guide_blks=all lock_routing=whole_sigs
split_report=true

The Flow Engine then runs PPR to place the partitioned logic and
route the interconnections. The output is a Logic Cell Array (LCA)
file, which is a description of the design as it will actually be
configured on the chip. For XC3000 designs, this step is performed by
APR.

xdelay -d -w calc.lca

XDelay writes delay information into the LCA file.

lca2xnf -g calc.lca calc.xnf

LCA2XNF converts the LCA file, which contains the delay
information, back to an XNF file.

xnfba calc.xg calc.xnf

When logic is optimized by the place and route tools, although
functionally equivalent, it may not exactly reflect the logic as seen on
the schematic. XNFBA reads the XNF file produced by LCA2XNF
and the XG file produced by X-BLOX, and attempts to rewrite the
netlist so that it looks like the logic described on the schematic.
However, it still reflects the timing information found in the back
annotated netlist.

makebits -1 -mbo=calc.mbo calc.lca

Since you selected the Produce Configuration Data check box, the
Flow Engine runs the MakeBits program to create a bitstream that
can be downloaded to the part.

2-21

Viewlogic Tutorials

Timing Simulation

2-22

You have already performed many of the steps necessary for timing
simulation. The schematic created in functional simulation is
referenced in timing simulation as well, so it is not necessary to
generate a new schematic. The calc.xnf file created in the previous
design implementation section contains the timing information for
the design. All that is necessary is to back-annotate the timing
information found in the XNF file to PROsim. The XSimMake utility,
which is invoked from PROflow, performs this task.

Creating the Simulation Network
Run XSimMake from PROflow to generate a network that can be
used for timing simulation.

1. Select the Timing Simulation PROsim icon.

2. In the Timing Simulation dialog box, make sure that the Execute
Power On Reset and Execute Netlister option boxes are
checked, and press OK.

As XSimMake runs, text similar to the following appears in the
window.

XSIMMAKE COMMAND check -p scale
XSIMMAKE COMMAND vsm scale
XSIMMAKE COMMAND xnf2wir -b xnfba wir\xnfba
XSIMMAKE COMMAND vsm xnfba
XSIMMAKE COMMAND vsmupd -b scale xnfba -x xnfba.xnf -o
scale

Examining XSimMake Output
The steps just performed generate simulation VSM files from the
simulation schematic and from the back-annotated netlist. Similar to
the function performed by XNFBA, these two files are then read by
VSMUPD, which tries to make the back-annotated simulation file
resemble the simulation schematic as closely as possible. This step
ensures that as many as possible of the net and instance names from
the original schematic are usable during timing simulation.

Xilinx Development System

X-BLOX Tutorial

Performing a Timing Simulation
After XSimMake completes, PROflow invokes Notepad to display
the XSimMake log file for review. Once you close Notepad, PROflow
invokes PROsim on the scalc.vsm simulation network, which now
contains timing information. You can submit a simulation command
(CMD) file to be executed on the design.

1. Select Simulate --. Command File.

2. At the File name> prompt at the bottom of the PROsim
window, enter calc3kat. cmd.

3. After the command file has executed, invoke PROwave by
pressing the PROwave icon in the Timing Simulation area of the
PROflow window.

4. Select cal ct • wfm as the file to open.

The output of this simulation run is nearly identical to the output of
the timing simulation run on the original non-X-BLOX Cale design. It
differs slightly, because different place and route iterations produce
different timing. For a more detailed inspection of the results of this
simulation, refer to the "Timing Simulation" chapter of the Viewlogic
Interface Guide.

Verifying CALC on the Demonstration Board
At this point, a BIT file has been created that can be downloaded to
the appropriate demonstration board to verify the validity of the
design. If you are unfamiliar with this process, please refer to the
"Downloading an FPGA Design" section of the "PROcapture and
PROsim Tutorial" chapter for more information.

Further Reading

Viewlogic Tutorials

Before beginning an X-BLOX design, you should read the
descriptions of the X-BLOX macros found in the X-BLOX Reference/
User Guide in order to understand the abilities and limitations of each
macro. You should also review the section on the X-BLOX program
itself, found in the same manual.

2-23

Viewlogic Tutorials

2-24 Xilinx Development System

View logic
Tutorials

Viewlogic Tutorials- 0401414 01

Xilinx ABEL Tutorial

Printed in U.S.A.

Viewlogic Tutorials

Xilinx Development System

Chapter 3

Xilinx ABEL Tutorial

The Xilinx ABEL software package enables you to define logic in
terms of text-based Boolean equations, truth tables, and state
machine descriptions using the ABEL Hardware Description
Language (HDL). You can then include these logic blocks as part of a
larger design, allowing the same design to contain logic defined by
both graphical and text-based entry.

This chapter gives a practical example using Xilinx ABEL within the
Viewlogic PRO Series design environment. It is not intended to fully
explain all of the functionality found within Xilinx ABEL. Please refer
to the "Further Reading" section at the end of this tutorial for a list of
sources from which to obtain more information.

Before Beginning the Tutorial
This section of the tutorial assumes that you are already familiar with
the material in the "PROcapture and PROsim Tutorial" chapter of
this manual. If not, please review that chapter before continuing.

Required Software
You should have access to the following software:

• Viewlogic PROcapture, the Viewlogic schematic entry tool

• Viewlogic PROsim, the Viewlogic simulation tool

• XACT Core Implementation Tools, version 6.0 or later

• Xilinx ABEL (DS-371), which is included in the Standard (DS
VLS-STD-PCl) and Extended (DS-VSL-EXT-PCl) packages. The
Base package does not include Xilinx ABEL, but you can purchase
it separately.

Viewlogic Tutorials - 0401414 01 3-1

Viewlogic Tutorials

You should have at least temporary access to all of the software just
listed using the temporary licensing available on the programmable
key, provided that the temporary licensing has not already been
exhausted.

Preparing the Design

3-2

This tutorial uses the completed Cale design, which you can create
either by completing the PROcapture tutorial or by copying a
completed design from one of the solutions directories.

Note: All of the screen outputs refer to the processing of the XC3000A
solutions design on a PC. Other parts or platforms have different
outputs.

A full solution for the PROcapture tutorial is supplied in the solution
directory located under the directory where the PROseries software
was installed:

... \tutorial\ vwlogic\procalc\calc3ka \soln_3ka

1. Using the Windows File Manager, copy the contents of this
directory to the directory where you will be performing the
Xilinx ABEL tutorial.

2. Invoke Xilinx PROflow and select the Design Entry icon.

3. Select the Project Manager button.

4. Press the Create button.

5. Double-click on the directory that you made in step 1 in the Create
Project dialog box.

6. Verify that the directory is shown in the Directory text box, and
press OK.

The PROjman Create dialog box appears.

7. Select No to re-initialize the viewdraw.ini file.

Note: This step assumes that the default viewdraw.ini file found in
... \proser \standard is configured correctly for PRO Series
installation.

8. Click on Exit in the PRO Series Project Manager.

9. In the Select Family dialog box, select XC3000A and click on OK.

Xilinx Development System

Xilinx ABEL Tutorial

10. After exiting from the Select Family box, select the CALC. 1 design
in the Design Entry dialog box, and select OK to open the
schematic.

Viewing Stat_abl.abl

Viewlogic Tutorials

A Xilinx ABEL-based block called STAT_ABL is created in this
section to replace the STATMACH state machine that resides within
the CONTROL block on the CALC schematic. The Xilinx ABEL code
for STAT_ABL is functionally identical to the schematic for STAT
MACH, so this substitution in no way alters the function of the
CALC design.

Note: For more information on the function of the Cale design, refer
to the discussion in the "Design Description" section of the "PROcap
ture and PROsim Tutorial" chapter.

Stat_abl.abl is the name of the Xilinx ABEL ABEL-HDL (ABL) file
from which a logic description for the STAT_ABL block is generated.

Enter the Xilinx ABEL environment and view the stat_abl.abl source
code.

1. From PROflow, select the Design Entry icon.

2. In the Design Entry dialog box, select the X-ABEL button.

The STAT-ABL.ABL design is automatically selected.

3. Press the OK button.

The file displayed in Figure 3-1 appears in the text window of Xilinx
ABEL.

module stat_abl

title 'State machine for Cale design'
"This state machine has 3 states which control the functions
"of the ALU and the stack. The states are as follows:

SPUSH increment stack pointer
SWE -- write value into stack
SOTHER -- do neither (initial state)

"This is a one-hot state machine, which means that only
"one of the states is active at any given time. This method
"is particularly suited for use with Xilinx ABEL and Xilinx
"FPGAs, which are rich in flip-flop resources.
"This file also generates control signals from equations.
"For an equivalent schematic, see statmach.1.

3-3

Viewlogic Tutorials

3-4

declarations
"inputs

"clock

"outputs

OPS, OP4, OP3, OP2, OPl, OPO, EXC pin;

CLK pin;

CTL3, CTL2, CTLl, CTLO pin;
UP_DN, WE, RST, ADD_SUB, CE_ALU, CE_ADDRpin;

"state diagram declarations and assignments
XABELSM state_register istype'reg_d';
SPUSH, SWE, SOTHER state;

"vector definitions
OP [OP5,0P4,0P3,0P2,0P1,0PO];
HOP [OP5,0P4,0P3];
CTL [CTL3,CTL2,CTL1,CTL0];

"declare internal nodes
SEL_OP, OP_CTL2, OP_CTLl, OP_CTLO node;

"node declarations for simulation only, can't use state names
"in simulation vectors

PUSH, OTHER node;

"define clock & don't-care values for test vectors
C, X = .C., .X.;

Xilinx property 'initialstate SOTHER';

equations
XABELSM.CLK
RST
ADD_SUB
SEL_OP
CE_ALU
CE_ADDR
OP_CTL2
OP_CTLl
OP_CTLO
CTL3
CTL2
CTLl
CTLO
UP_DN
PUSH
WE

OTHER

CLK;
(HOP == Ab101) & EXC;
!OP_CTL2;
(HOP == Ablll);
! (SEL_OP & OP2 & OPO) & SOTHER & EXC;
! (OP2 & OPl & OPO) & SEL_OP & EXC;
(OP5 & !SEL_OP) # (OP2 & SEL_OP);
(OP4 & !SEL_OP) # (OPl & SEL_OP);
(OP3 & !SEL_OP) # (OPO & SEL_OP);
SEL_OP;
OP_CTL2 & OP_CTLl;
OP_CTLl & !OP_CTL2;
!OP_CTL2 & OP_CTLO;
OP2 & !OPl & OPO & SEL_OP & EXC;
SPUSH;
SWE;
SOTHER;

"always optimize out don't-cares
@DC SET

state_diagrarn XABELSM

Xilinx Development System

Viewlogic Tutorials

state SPUSH: goto
state SWE: goto
state SOTHER: if

else

test_ vectors

Xilinx ABEL Tutorial

SWE;
SOTHER;

(UP_DN) then SPUSH
SOTHER;

"begin in initial state, each line is one clock cycle

([CLK EXCOP]->[PUSH,WE,OTHER,ADD_SUB,RST,CE_ALU,CE_ADD, R
CTL])

"quick check to test the state machine
[c, 0, x]->[0, 0, 1, x, x,

c, 1, Ah3F]->[0, 0, l, x, x,
c, 0, x]->[0, 0, 1,
c, 1, Ah3D]->[1, 0, 0,
c, 0, x]->[0, 1, 0,
c, 0, x]->[0, 0, 1,

c, 1, Ah38]->[0, 0, 1,

x,
x,
x,
x,
x,

"test the control logic, EXC low
c, 0, Aho]->[0, 0, 1, 1,

c, 0, Ah8]->[0, 0, 1, 1,

c, 0, AhlO]->[0, 0, 1,

c, 0, Ahl8]->[0, 0, l,

c, 0, Ah20]->[0, 0, 1,

c, 0, Ah28]->[0, 0, l,
C, 0, Ah30]->[0, 0, 1,

"extended instruction set
c, 0, Ah38]->[0, 0, 1,

c, 0, Ah39]->[0, 0, 1,

c' 0' Ah3A] -> [0' 0' l,
c, 0, Ah3B]->[0, 0, 1,

c, 0, Ah3C]->[0, 0, 1,

c, 0, Ah3D]->[0, 0, l,
c, 0, Ah3E]->[0, 0, 1,

c, 0, Ah3F]->[0, 0, 1,

1,

1,

0'
0'
0'

1,

1,

l,

1,

0'

0'

0'
0'

"test the control logic,
[C, l, Aho]->[0, 0,
[Co 1, Ah8] -> [0, 0,
[c, 1, AhlO]->[0, 0,

EXC high
1, l,

1, 1,

1, 1,

C, 1, Ahl8]->[0, 0,
C, l, Ah20]->[0, 0,

1, l,

1, 0'
C, 1, Ah28]->[0, 0, 1,
c, 1, Ah30]->[0, 0, 1,

"extended instruction set
C, 1, Ah38]->[0, 0, 1,
C, l, Ah39]->[0, 0, 1,
c, 1, Ah3A]->[0, 0, 1,

0,

0'

1,
l,
1,

X,
x,
x,
x,
x,

0,

0'

0'

0'

0'
0'
0'

0'
0'
0,

0'
0'

0'
0'
0'

0,
0,
0,

0'
0,

1,

0,

0,

0'
0,

X,
x,
x,
x,
x,
x,
x,

0,
0,

0'
0,

0'
0'
0,

0'
0'
0'
0'

0'
0'
0'
0'

1,

1,

1,
1,

1,

1,

1,

1,

1,
1,

x,
x,
X,
x,
x,
X,
x,

0'
0'
0,

0'
0'
0,

0'

0,
0,
0,

0'

0'
0'

0'
0,

0'
0,

0,
0,

0'
0'

0'

1,
1,

1,

x l;
x l;
x l;
x l;
x l;
x l;
x l;

Aho l ;
Ahl] ;
Ah2] ;
Ah3] ;
Aho l;
Aho] ;
Ah4 l;

Ah8];
Ah9] ;
AhA l;
AhB l;
Ah8] ;
Ah8 l;
AhC l;
AhC];

Aho] ;
Ahl] ;
Ah2] ;
Ah3 l;
Aho] ;
Aho] ;
Ah4 l;

Ah8];
Ah9];
AhA l;

3-5

Viewlogic Tutorials

3-6

c, 1, Ah3B]->[0, 0, 1, 1, 0' 1, 1, AhB l;
c, 1, Ah3C]->[0, 0, 1, 0, 0, 1, 1, Ah8 l;
c, l, Ah3D]->[1, 0, 0' 0' 0' 0' 1, Ah8 l;

"insert two clocks to return to initial state
c, 0, Ah3D]-> [0' 1, 0' 0, 0, 0' 0' Ah8 l;
c, 0' Ah3D]->[0, 0, 1, 0, 0, 0, 0' Ah8 l;
c, 1, Ah3E]->[0' 0' 1, 0' 0' 1, 1, AhC l;
c, l, Ah3F]->[0' 0' l, 0, 0, 0, 0, AhC l;

end stat abl -

Figure 3-1 Stat_abl.abl File

A breakdown of the contents of the Xilinx ABEL ABEL-HDL file
follows.

module stat_abl

The Module statement specifies the beginning of the Xilinx ABEL
module.

title 'State machine for Cale design'

The Title statement, while not necessary, is added as a header for the
intermediate files created by Xilinx ABEL.

"This state machine has 3 states which control the functions
"of the ALU and the stack. The states are as follows:

SPUSH increment stack pointer
SWE write value into stack
SOTHER do neither (initial state)

"This is a one-hot state machine, which means that only
"one of the states is active at any given time. This method
"is particularly suited for use with Xilinx ABEL and Xilinx
"FPGAs, which are rich in flip-flop resources.
"This file also generates control signals from equations.
"For an equivalent schematic, see statmach.1.

Any text preceded by double quotation marks, as in the example just
given, is interpreted as comment text.

declarations
11 inputs

"clock

"outputs

OP5, OP4, OP3, OP2, OPl, OPO, EXC pin;

CLK pin;

CTL3, CTL2, CTLl, CTLO pin;
UP_DN, WE, RST, ADD_SUB, CE_ALU, CE_ADDR pin;

Xilinx Development System

Viewlogic Tutorials

Xilinx ABEL Tutorial

The Pin statements in the declaration define the pinout of the Xilinx
ABEL module. Pins must be either inputs or outputs; bidirectional
pins are not allowed.

"state diagram declarations and assignments
XABELSM state_register istype 'reg_d';
SPUSH, SWE, SOTHER state;

The State_register keyword declares a symbolic state machine. The
State keyword declares states that appear in a symbolic state
machine. Istype 'reg_d' declares that the state machine will be imple
mented using D flip-flops. State_register must be used in conjunction
with State.

"vector definitions
OP [OP5,0P4,0P3,0P2,0P1,0P0);
HOP= [OP5,0P4,0P3);
CTL = [CTL3,CTL2,CTL1,CTLO];

Vector definitions define bus vectors within Xilinx ABEL; these
vectors can be used during simulation in the Xilinx ABEL environ
ment.

"declare internal nodes
SEL_OP, OP_CTL2, OP_CTLl, OP_CTLO node;

These nodes are declared for use as variables in intermediate
equations.

"node declarations for simulation only, can't use state names
"in simulation vectors

PUSH, OTHER node;

The Xilinx ABEL simulator does not allow the use of symbolic state
names - that is, state names used in the definition of a state machine
- in test vectors, so these two /1 dummy" nodes were created. They
mirror SPUSH and SOTHER for use in the simulation test vectors
found at the end of the file.

"define clock & don't-care values for test vectors
c, x = .c.' .x.;

This definition allows the default clock and don't-care syntax (.C. and
.X.) to be replaced by a simpler one without periods (C and X) so that
the simulation vectors are easier to read.

3-7

Viewlogic Tutorials

3-8

Xilinx property 'initialstate SOTHER';

The Xilinx Property Initialstate statement defines the initial power-up
state of the state machine as the SOTHER state. This state and others
are defined in a later section of the file.

equations

XABELSM.CLK= CLK;
RST (HOP == AblOl) & EXC;
ADD_SUB
SEL_OP
CE_ALU
CE_ADDR
OP_CTL2
OP_CTLl
OP_CTLO
CTL3
CTL2
CTLl
CTLO
UP_DN
PUSH
WE
OTHER

!OP_CTL2;
(HOP == Ablll);
! (SEL_OP & OP2 & OPO) & SOTHER & EXC;
! (OP2 & OPl & OPO) & SEL_OP & EXC;
(OP5 & !SEL_OP) # (OP2 & SEL_OP);
(OP4 & !SEL_OP) # (OPl & SEL_OP);
(OP3 & !SEL_OP) # (OPO & SEL_OP);
SEL_OP;
OP_CTL2 & OP_CTLl;
OP_CTLl & !OP_CTL2;
!OP_CTL2 & OP_CTLO;
OP2 & !OPl & OPO & SEL_OP & EXC
SPUSH;
SWE;
SOTHER;

The Equations statement defines the internal logic of the module.
Each equation is synthesized into combinatorial logic.

"always optimize out don't-cares
@DC SET

The @DCSET statement instructs Xilinx ABEL to optimize don't-cares
in the same way that Kamaugh maps are used to minimize a logic
function.

state_diagram XABELSM
state SPUSH: goto
state SWE: goto
state SOTHER: if

else

SWE;
SOTHER;

(UP_DN) then SPUSH
SOTHER;

The State_diagram statement defines under what circumstances state
transitions occur. In this case, the SPUSH state is always followed by
SWE, SWE is always followed by SOTHER, and SOTHER is followed
by SPUSH if the UP _DN signal is High. Otherwise, the state machine
remains in the SOTHER state.

Xilinx Development System

Xilinx ABEL Tutorial

test_ vectors

Test_ vectors specifies the beginning of a section containing test
vectors. The test vectors define sets of inputs and expected outputs.

"begin in initial state, each line is one clock cycle

([CLK EXC OP] ->[PUSH WE OTHER ADD_SUB RST CE_ALU CE_ADD RCTL])

This line defines the set of inputs as the CLK, EXC, and OP vectors.
Output names are then specified, for which expected values are
specified in the following lines.

"quick check to test the state machine
[e, 0, x]->[0, 0, 1, x, X, X, X, x];

[e, 1, Ah3F]->[0, 0, l, x, x, x, x, x l;
[e, 0, x]->[0, 0, l, x, x, x, X, x l;
[e, 1, "h3D]->[1, 0, 0, x. x, x, x, x l;
[e, 0, x]->[0, 1, 0. x, x, x, x, x l;

"insert two clocks to return to initial state
e, 0, Ah3D]->[0, 1, 0, 0, 0, 0, 0, "h8 l;
e, 0, Ah3D]->[0, 0. 1, 0, 0, 0, 0, "h8 l;
e, 1, Ah3E]->[0, 0. 1, 0, 0, 1, 1, Ahe l;
e, 1, Ah3F]->[0, 0. 1, 0, 0, 0, 0, Ahe l;

Simulation begins with the state machine in the initial power-up
state. Each successive line steps forward by one clock cycle. The input
values to the left of the arrow are applied to the current state; the
resulting outputs are displayed to the right of the arrow. The "Ah"
before some values tells the simulator that the vectors are specified in
hexadecimal.

end stat_abl

The End statement specifies the end of the Xilinx ABEL module.

Simulating Within Xilinx ABEL

Viewlogic Tutorials

The Xilinx ABEL simulator now verifies the STAT_ABL design, using
the test vectors just described as input.

1. Hold down the Alt key and type c to select the Compile menu.

2. Select Simulate Equations.

Xilinx ABEL prepares the test vectors for simulation, then simulates
them. It reports that 39 of 39 test vectors simulated correctly. This

3-9

Viewlogic Tutorials

result means that as each of the test vector inputs was executed, the
output of the state machine corresponded exactly to the expected
values entered in the test vectors.

Note: If errors occur, you may have inadvertently modified the Xilinx
ABEL source code. Recopy stat_abl.abl from the appropriate solu
tions directory and try again.

Compiling STAT_ABL.ABL
The Xilinx ABEL ABEL-HDL file could be compiled within Xilinx
ABEL using the Compile ---+Xilinx FPGA Netlist command.
Instead, perform this step from the command line using a program
called ABL2XNF. ABL2XNF performs three functions: compilation of
the ABEL file, generation of an XSF file that is used to create a
Viewlogic symbol for the Xilinx ABEL design, and generation of an
XAS simulation netlist file.

1. Exit the Xilinx ABEL application.

2. Access DOS from Windows.

3. From the design directory, execute ABL2XNF by using the
following syntax:

ABL2XNF STAT_ABL.ABL

ABL2XNF compiles the ABL file into an XNF netlist.

Note: If errors occur, be sure your path and XACT environment
variable are set correctly. If errors persist, re-copy the stat_abl.abl file
from the installation area.

Including STAT _ABL in the CALC Design

3-10

You are ready to create a symbol for the Xilinx ABEL block and place
it in your schematic.

Xilinx Development System

Xilinx ABEL Tutorial

Creating a Symbol for STAT _ABL

Viewlogic Tutorials

You must create a special symbol so that you can include the Xilinx
ABEL module on the CONTROL schematic. The SymWin (SymGen
for Windows) program automates the creation of symbols for Xilinx
ABEL modules. It uses as input an XSF file created by ABL2XNF. The
XSF file contains the pinout for the symbol. Sym Win uses this file to
generate an appropriate symbol.

1. Invoke the Symbol Generation Utility by clicking on the Symbol
Generation Utility icon in the Program Manager XACTstep
program group. (The program name is symwin.exe.)

The Symbol Generator dialog box appears, as shown in Figure 3-2.

Symbol Generator L .. ·

Figure 3-2 Symbol Generator Dialog Box

2. Using the Browse button, go to the design directory, select the
STAT_ABL.xsf file, and press OK.

3. Make sure that Viewlogic is selected in the Generate Symbol of
Type field.

4. Press the OK button.

3-11

Viewlogic Tutorials

3-12

After Sym Win finishes creating the symbol, a report is displayed
in the SymGen Results window.

5. After viewing the report, press any key to close the SymGen
Results window.

Sym Win creates a View logic symbol file called stat_abl.1 and places it
in the sym directory. The symbol is shown in Figure 3-3.

STAT_ABL
OP5 CTL3
OP4 CTLZ
OP3 CTL1
OPZ CTLO
OP1 UP_DN

OPO WE
EXC RST
CLK ADD_SUB

CE_ALU
CE_ADDR

L BVER-Z.O. 0
D ---~4"!-1-+-------'
FILE-STAf_ABL

Figure 3-3 STAT _ABL Symbol

Adding STAT _ABL to the CONTROL
Schematic

Now that you have generated the symbol and the XNF file for
STAT_ABL, substitute the symbol for the schematic-based STAT
MACH state machine.

1. From PROflow, select the Design Entry icon.

2. In the Design Entry dialog box, click on Schematic Design
Type.

3. From the file list, select CALC. 1.

Xilinx Development System

Viewlogic Tutorials

Xilinx ABEL Tutorial

4. Press OK to open the schematic.

Note: If the text layers are not visible in PROcapture, select the
Change ____.. PROcapture Colors option from the PROcapture
menus, and select the Classic Defaults button. You will have
to close and then re-open the schematic for the new color scheme
to take effect.

5. Select the CONTROL instance on the CALC schematic.

6. Select View ____.. Push Into Schematic.

The schematic for CONTROL is displayed.

7. Select the STATMACH instance on the CONTROL schematic.

8. Select Change____.. Component.

9. Select STAT_ABL.1 from the Components browse window of the
Change Component dialog box.

This procedure replaces the original STATMACH block with the
functionally equivalent Xilinx ABEL module called STAT_ABL.
This change is reflected by the appearance of the name STAT _ABL
at the top of the symbol, as shown in Figure 3-4.

10. Select File ____.. Save to save the change.

3-13

Viewlogic Tutorials

DP[S•O] CTLD•O]

CTU
CTL3

CTL2
CTL2

CTL1 CTLi
CTLQ CTLO CBZCLED

UP_DN

NE ~E
EXC RH 115 T

,i,oo _su a UP _o N
a D_gue

CE-HU
UP

~DDll[l•O]
CE-HU

CE-a DR CE_AODll
Q. Q

YUL

CLK
~~D

£XILINX™ c.1c
l utar:L•l D. •:l.11n

T:l.tl• I CD NTRDL
H• f•r•nc• • Ca ntl"'al La11:lc

D•t• I .l.Ulillllt 2 :! , 1993 I.i.ppl:lamt:l.ar.1 liir-aup

l

Figure 3-4 CONTROL Schematic with STAT _ABL

Viewing the STAT _ABL Symbol

3-14

The STAT_ABL symbol is different from the other symbols in the
CALC schematic, because its logic is described in an XNF file gener
ated earlier using Xilinx ABEL instead of in a graphical representa
tion using parts from the Viewlogic libraries.

Viewing the STAT_ABL Schematic

View the schematic for STAT _ABL by pushing into the symbol.

The STAT_ABL symbol on the CONTROL schematic is already
selected.

1. Select View ___.. Push Into Schematic.

A blank schematic page appears. The logic description for the
STAT_ABL block is not defined inside PROcapture but by the

Xilinx Development System

Viewlogic Tutorials

Xilinx ABEL Tutorial

netlist in the stat_abl.xnf file, which was generated earlier from
the Xilinx ABEL code.

2. Select View ___. Pop to return to the CONTROL schematic.

Verifying the Symbol Type

Since the schematic does not contain the logic description, you must
pass two important pieces of information to the translation programs:
that the logic description does not exist on the underlying schematic
of STAT_ABL and that the logic description does exist in a file else
where.

In Viewlogic, there are two commonly used types of symbols:
composite symbols, which have underlying schematics, and module
symbols, which do not. You can change the symbol type by editing
the symbol and selecting Change ___. Block ___. Type. Both the
Viewlogic programs and the Xilinx translation programs recognize
that a symbol of type Module does not have an underlying sche
matic.

Check to be sure that the symbol generated by the SymGen macro is
of the proper type. (This step is not necessary when processing your
own designs. The steps in this section are included only to familarize
you with Xilinx ABEL symbols.)

The STAT_ABL symbol on the CONTROL schematic is already
selected.

1. Select the STAT_ABL symbol and choose Info ___. Object
Detail.

A window containing information about the object appears. One
line in the window reads as follows:

Block: STAT_ABL . (M)

(You may have to scroll down to see this line.)

The letter in parentheses after the name of the symbol is "M,"
which specifies that the symbol is of type Module.

2. Press the OK button to dismiss the window.

3-15

Viewlogic Tutorials

3-16

Verifying the Symbol Attributes

You must tell the Xilinx programs where to find the logic description
for a Module-type symbol by attaching the FILE attribute to the
symbol. The FILE attribute specifies the name of the ABL file
containing the logic description. Do not specify an extension when
including the file name on the symbol.

Additionally, XSimMake looks for an attribute that defines the
symbol as representing a Xilinx ABEL netlist, since the FILE attribute
can be used to designate an XNF file from any source. This attribute,
automatically added by SymGen, is DEF=XABEL.

Verify that the macro created by SymGen placed the appropriate FILE
and DEF attributes on the macro. (This step is not necessary when
processing your own designs. The steps in this section are included
only to familiarize you with Xilinx ABEL symbols.)

1. The STAT_ABL symbol on the CONTROL schematic sheet is
already selected.

2. Select View ___.. Push Into Symbol.

3. Without selecting anything on the symbol, choose Change ___..
Object Attributes ___.. Dialog.

A dialog box displaying the symbol attributes appears, as shown
in Figure 3-5.

4. Select Cancel to close the dialog box, and then exit PROcapture.

Xilinx Development System

Xilinx ABEL Tutorial

Edit Attributes

Attribute List for Symbol primary:STAT _ABL

Name Value

DEF
FILE
LIBVER

XABEL
STAT_ABL
2.0.0

Figure 3-5 File Attributes for STAT _ABL

Functional Simulation

Viewlogic Tutorials

As shown earlier, there is no schematic representation of the logic for
the STAT_ABL symbol. The logic is within an XNF file, which
PROsim cannot access, so you must partially translate the design to
merge the logic for STAT_ABL with the rest of the schematic to
enable the design to be simulated.

The XSimMake program, which you can invoke from PROflow by
selecting the Functional Simulation PROsim icon, allows you to
easily simulate designs containing Xilinx ABEL components. It coor
dinates the program execution flow necessary for functional or
timing simulation.

For more detailed information on XSimMake, refer to the "Manual
Translation" chapter of the Viewlogic Interface Guide.

Because of the presence of the Xilinx ABEL module in the design,
some design translation is necessary even for functional simulation.
Preparing a design containing a Xilinx ABEL block for functional

3-17

Viewlogic Tutorials

simulation simply requires the invocation of XSimMake from
PROflow.

Creating the Simulation Schematic

3-18

From PROflow, use XSimMake to generate a schematic that you can
functionally simulate.

1. Minimize the PROcapture window and return to PROflow.

2. Select the Functional Simulation PROsim icon.

The Functional Simulation dialog box appears.

3. Select the Design Contains XBLOX, RAM, ROM or XABEL
Module check box.

4. Click on Select Part.

5. In the Package Selection dialog box, select the 3020APC68-7 part.

6. Select OK.

7. Select OK.

PROflow now invokes XSimMake. It always produces a new
schematic with the same name as the original, with an "s" added to
the beginning of the original name. This simulation schematic is
placed within a directory beneath the project directory. The directory
is given the same name as the simulation design. For the Cale design,
XSimMake creates a new directory in the project directory called
scale, and the new directory contains an sch directory with the new
SCALC simulation schematic.

Note: On DOS/Windows 3.x-based machines, because of the renam
ing of the simulation schematic, you should not use schematic names
that are longer than seven characters. If a design with an eight-char
acter name is given as input to XSimMake, it cannot append the "s"
to the beginning of the name and produces an error.

In addition, XSimMake inserts the simulation directory into the view
draw.ini file so that you can access both the original and simulation
schematics from the project directory. For CALC, the following line is
added to the viewdraw.ini file:

DIR [w] .\sCALC (sCALC)

Xilinx Development System

Xilinx ABEL Tutorial

As XSimMake runs, text similar to the following appears in the
window.

Note: XSimMake flows vary depending on the design. The flow used
by XSimMake for your design may be slightly different from the flow
shown in this tutorial.

XSIMMAKE COMMAND deleting directory scale

XSIMMAKE COMMAND creating directory scale

XSIMMAKE COMMAND creating directory scalc\sch

XSIMMAKE COMMAND creating directory scalc\syrn

XSIMMAKE COMMAND creating directory scalc\wir

XSIMMAKE COMMAND creating directory scalc\savexnf

XSIMMAKE COMMAND creating directory scalc\xbloxxnf

XSIMMAKE COMMAND creating directory scalc\otherxnf

XSIMMAKE COMMAND check.exe -p CALC

XSIMMAKE COMMAND wir2xnf.exe -b -v -od sCALC\otherxnf CALC
CALC.xnf -p 3020APC68-7

XSIMMAKE COMMAND : xnfmerge.exe -y -d sCALC\otherxnf -q

sCALC\otherxnf\CALC.xnf sCALC\otherxnf\CALC.xff

XSIMMAKE COMMAND : xfind.exe sCALC\otherxnf\CALC.xff CALC.xfw
CALC.xgs

XSIMMAKE COMMAND : abl2xnf. exe stat_abl. abl output_directory=
sCALC\otherxnf parttype=3020APC68-7

XSIMMAKE COMMAND : xnf2wir.exe -b sCALC\otherxnf\stat_abl
sCALC\wir\stat_abl

XSIMMAKE COMMAND : xdraw.exe -i CALC -o sCALC -a sCALC
CALC.xgs

XSIMMAKE COMMAND check.exe -p sCALC

XSIMMAKE COMMAND vsm.exe sCALC

Examining XSimMake Output

Viewlogic Tutorials

An explanation of the XSimMake functional flow output follows.
While it is not necessary to know anything about how XSimMake
works, it sometimes gives useful perspective to have some idea of
how it prepares the design.

XSIMMAKE COMMAND : deleting directory scale

3-19

Viewlogic Tutorials

3-20

XSIMMAKE COMMAND creating directory scale

XSIMMAKE COMMAND creating directory scalc\sch

XSIMMAKE COMMAND creating directory scalc\sym

XSIMMAKE COMMAND creating directory scalc\wir

XSIMMAKE COMMAND creating directory scalc\savexnf

XSIMMAKE COMMAND creating directory scalc\xbloxxnf

XSIMMAKE COMMAND creating directory scalc\otherxnf

First, XSimMake deletes any existing simulation schematic, then
creates the directory structure for the new one.

XSIMMAKE COMMAND : check -p CALC

It runs the Viewlogic Check program to ensure that the Viewlogic
WIR files for the design are up to date.

XSIMMAKE COMMAND : wir2xnf.exe -b -v -od sCALC\otherxnf CALC
CALC.xnf -p 3020APC68-7

Next, XSimMake runs WIR2XNF to convert the Viewlogic WIR files
to standard Xilinx netlist format (XNF) files.

XSIMMAKE COMMAND : xnfmerge.exe -y -d sCALC\otherxnf -q
sCALC\otherxnf\CALC.xnf sCALC\otherxnf\CALC.xff

XSimMake runs XNFMerge to merge the XNF files created by
WIR2XNF into a single netlist.

XSIMMAKE COMMAND : xfind.exe sCALC\otherxnf\CALC.xff CALC.xfw
CALC.xgs

XFind reads the XNF file to determine what types of symbols the
netlist contains. In this case, it discovers the Xilinx ABEL symbol
STAT_ABL in the netlist and modifies program execution accord
ingly. In addition, XFind generates a file called calc.xgs, which
contains instructions on how to redraw the STAT_ABL symbol in the
simulation schematic so that it can be used in simulation.

The program flow is changed by XFind so that a schematic that can be
simulated is created from a schematic containing Xilinx ABEL
modules.

Xilinx Development System

Xilinx ABEL Tutorial

XSIMMAKE COMMAND : xnf2wir.exe -b sCALC\otherxnf\stat_abl
sCALC\wir\stat_abl

XSimMake runs XNF2WIR on the XNF file representation of
STAT_ABL to generate a simulation model for the STAT_ABL symbol
on the schematic.

XSIMMAKE COMMAND : xdraw.exe -i CALC -o sCALC -a sCALC
CALC.xgs

XSimMake then runs XDraw to generate the new simulation sche
matic, SCALC, using the information found in the calc.xgs file and
the original schematic. The STAT_ABL symbol type on the simulation
schematic is changed from Module to Composite. As noted earlier,
this change enables a simulation model to be placed underneath the
symbol. Otherwise, the schematic appears identical to the original in
all respects.

XSIMMAKE COMMAND : check.exe -p sCALC

XSimMake then runs the Viewlogic Check program to verify the
validity of the WIR model produced by XNF2WIR.

XSIMMAKE COMMAND : vsm.exe sCALC

Finally, XSimMake runs VSM to generate a simulation file from the
WIR models for use in PROsim.

Performing a Functional Simulation

Viewlogic Tutorials

After XSimMake completes, PROflow invokes Notepad to display
the XSimMake log file for review. Once you close Notepad, PROflow
invokes PROsim on the scalc.vsm simulation network. A simulation
command (CMD) file can now be executed on the design.

1. Select Simulate --. Command File.

2. At the File name> prompt at the bottom of the PROsim
window, enter calc3kaf. cmd.

3. After the command file has executed, enter the following
command at the PROsim> prompt:

wave scalc.wfm sw alu stack

4. Invoke PROwave by selecting the PROwave icon in the
Functional Simulation area of the PROflow window.

5. Select scale. wfm as the file to open.

3-21

Viewlogic Tutorials

The output of this simulation run is identical to the output of the
functional simulation run on the original Cale design before the addi
tion of the Xilinx ABEL module. All nodes and vectors on the SCALC
simulation schematic have values back-annotated to them.

A schematic was not generated for the logic underneath the
STAT_ABL symbol, only a simulation WIR file. Because there is no
schematic, although you can probe the logic for STAT_ABL in the
simulator, you cannot push into the STAT_ABL symbol to see back
annotated simulation values. This is not normally a problem,
however, since the logic within the Xilinx ABEL module has been
verified using the Xilinx ABEL simulator. Since you totally described
and verified its behavior within Xilinx ABEL, there should be no
reason to view points within the STAT_ABL symbol.

For a more detailed inspection of the results of this simulation, refer
to the discussion found in the "Functional Simulation" chapter of the
Viewlogic Interface Guide.

Implementing the CALC Design

3-22

The translation of designs containing Xilinx ABEL blocks is similar to
the translation of other designs. You can use PROflow's Xilinx
Implementation icon to invoke the Xilinx Design Manager. From
here, you will control the design's implementation in a Xilinx FPGA,
just as you use it for designs that do not contain Xilinx ABEL blocks.
When the translation programs find the FILE attribute on the
STAT_ABL symbol, the logic described in the stat_abl.xnf file, created
earlier using Xilinx ABEL, is simply merged with the top-level XNF
file created from CALC before mapping, placing, and routing is
performed.

For detailed information on the Xilinx Design Manager, refer to the
Design Manager/Flow Engine Reference/User Guide.

Translating the Netlist
Run the Xilinx Design Manager to generate files for device
programming.

1. From PROflow, press the Xilinx Implementation icon to start the
Xilinx Design Manager.

2. In the Xilinx Design Manager, select File ___.. New Project.

Xilinx Development System

Xilinx ABEL Tutorial

3. Using the Browse button, change to the WIR directory in the
tutorial directory and select the CALC .1 sheet.

4. Press OK.

5. Change the Target Family to XC3000.

6. Press the Translate button.

7. In the Translate Options window, press the OK button.

The Design Manager runs the XMake program, which converts the
PROcapture schematic into an XFF netlist.

Examining XMake Netlist Translation Output

Viewlogic Tutorials

XMake produces a screen output similar to the following.

XMAKE Version Beta-5.2.0b

XMAKE: Generating makefile 'calc.mak' ...

XMAKE: Profile used is 'xdm.pro'.

XMAKE: Execute command 'wir2xnf -B -OD xnf calc calc.xnf'.

XMAKE: Set the part type to '3020APC68-7' from
'xnf\calc.xnf'.

XMAKE: Running with the following XMAKE options:

XMAKE: Execute command 'abl2xnf stat_abl.abl
output_directory=xnf family=XC3000A parttype=3020APC68-7'.

>>> XDELAY is run always with '-D' and '-W' options by
XMAKE.

XMAKE: Makefile saved in 'calc.mak'.

XMAKE: Making 'calc.xff' ...

XMAKE: Execute command 'xnfmerge -A -D xnf -D . -P 3020APC68-
7 xnf\calc.xnf calc.xff'.

XMAKE: 'calc.xff' has been made.

An explanation of the output follows.

XMAKE: Generating makefile 'calc.mak' ...

XMAKE: Profile used is 'xdm.pro'.

XMAKE: Execute command 'wir2xnf -B -OD xnf calc calc.xnf'.

3-23

Viewlogic Tutorials

XMake runs WIR2XNF to convert the Viewlogic WIR file netlists to
Xilinx XNF files.

XMAKE: Set the part type to '3020APC68-7' from
'xnf\calc.xnf'.

XMAKE: Running with the following XMAKE options:

XMAKE: Execute command 'abl2xnf stat_abl.abl
output_directory=xnf family=XC3000A parttype=3020APC68-7'.

>>> XDELAY is run always with '-D' and '-W' options by
XMAKE.

XMAKE: Makefile saved in 'calc.mak'.

XMake always creates a file with a .mak extension that contains a list
of the commands used to process the design.

XMAKE: Making 'calc.xff' ...

XMAKE: Execute command 'xnfmerge -A -D xnf -D . -P 3020APC68-
7 xnf\calc.xnf calc.xff'.

XMAKE: 'calc.xff' has been made.

Next, XMake runs XNFMerge to flatten the hierarchical XNF files into
a single netlist, which is written out as an XFF file.

Creating a Routed Design

3-24

Use the Xilinx Design Manager to implement the converted netlist in
the target device.

1. Select Design _. Implement.

2. In the XC3000A Design Implementation dialog box, confirm that
the Produce Configuration Data check box is selected.

3. Select the Produce Timing Simulation Data check box.
(The timing data will be used in a later part of the tutorial)

4. Press Run.

The Xilinx Flow Engine, invoked by the Design Manager,
optimizes, maps, places, and routes the design, and creates a
bitstream file that can be downloaded to the part. The resulting
Flow Engine history file, program.his, is shown following.

xnfprep design=calc.xff outfile=calc.xtf savesig=false
parttype=3020APC68-7 ignore_timespec=none split_report=true

Xilinx Development System

Xilinx ABEL Tutorial

xnfmap calc.xtf calc.map

ppr design=calc placer_ef fort=2 router_ef fort=2
ignore_timespec=none path_timing=true route_thru_bufg=ok
route_thru_blks=ok guide_blks=all lock_routing=whole_sigs
split_report=true

xdelay -d -w calc.lca

lca2xnf -g calc.lca calc.xnf

xnfba calc.xff calc.xnf

xcopy c:\xabeltut\xproject\verl\revl\xnfba.xnf /y

makebits -1 -mbo=calc.mbo calc.lca

Examining the Flow Engine History File

Viewlogic Tutorials

An explanation of the history file follows.

xnfprep design=calc.xff outfile=calc.xtf savesig=false
parttype=3020APC68-7 ignore_timespec=none split_report=true

The Flow Engine runs XNFPrep to verify that the flattened XFF file is
correct. It creates a report that is stored in the calc.prp file. The output
of XNFPrep is specified as calc.xtf.

xnfmap calc.xtf calc.map

XNFMAP partitions the logic found in the calc.xtf file into sections
that will fit within XC3000A CLBs. For XC4000 designs, this step is
handled by PPR.

ppr design=calc placer_effort=2 router_effort=2
ignore_timespec=none path_timing=true route_thru_bufg=ok
route_thru_blks=ok guide_blks=all lock_routing=whole_sigs
split_report=true

The Flow Engine then runs PPR to place the partitioned logic and
route the interconnections. The output is a Logic Cell Array (LCA)
file, which is a description of the design as it will actually be
configured on the chip. For XC3000 designs, this step is performed by
APR.

xdelay -d -w calc.lca

XDelay writes delay information into the LCA file.

lca2xnf -g calc.lca calc.xnf

LCA2XNF converts the LCA file, which contains the delay
information, back to an XNF file.

3-25

Viewlogic Tutorials

xnfba calc.xff calc.xnf

When logic is optimized by the place and route tools, although
functionally equivalent, it may not exactly reflect the logic as seen on
the schematic. XNFBA reads the XNF file produced by LCA2XNF and
attempts to rewrite the netlist so that it looks like the logic described
on the schematic. However, it still reflects the timing information
found in the back-annotated netlist.

makebits -1 -mbo=calc.mbo calc.lca

Since the Produce Configuration Data check box was selected, the
Flow Engine runs the MakeBits program to create a bitstream that can
be downloaded to the part.

Timing Simulation

3-26

Preparing a design containing Xilinx ABEL-based components for
timing simulation is similar to the method used for functional simula
tion. XSimMake is used again, this time to create files suitable for use
in timing simulation. It uses timing information found in the calc.lca
file generated earlier by XMake to add delays to the simulation
netlist. Simulation values are back-annotated to the schematic created
in the functional simulation flow. The schematic looks identical to the
original, but the simulation results reflect the addition of actual delay
values.

Creating the Simulation Netlist
Run XSimMake from PROflow to generate a netlist that can be used
for timing simulation.

1. Select the Timing Simulation PROsim icon.

2. In the Timing Simulation dialog box, make sure that the Execute
Power On Reset and Execute Netlister option boxes are
checked, and press OK.

As XSimMake runs, text similar to the following appears in the
window.

Xilinx Development System

XSIMMAKE COMMAND check -p scale
XSIMMAKE COMMAND vsm scale

Xilinx ABEL Tutorial

XSIMMAKE COMMAND xnf2wir -b xnfba wir\xnfba
XSIMMAKE COMMAND vsm xnfba
XSIMMAKE COMMAND vsmupd -b scale xnfba -x xnfba.xnf -o
scale

Examining XSimMake Output
The steps just performed generate simulation VSM files from the
simulation schematic and from the back-annotated netlist. Similar to
the function performed by XNFBA, these two files are then read by
VSMUPD, which tries to make the back-annotated simulation file
resemble the simulation schematic as closely as possible. This step
ensures that as many as possible of the net and instance names from
the original schematic are usable during timing simulation.

Performing a Timing Simulation

Viewlogic Tutorials

After XSimMake completes, PROflow invokes Notepad to display
the XSimMake log file for review. Once you close Notepad, PROflow
invokes PROsim on the scalc.vsm simulation network, which now
contains timing information. You can submit a simulation command
(CMD) file to be executed on the design.

1. Select Simulate ___.. Command File.

2. At the File name> prompt at the bottom of the PROsim
window, enter calc3kat. cmd.

3. After the command file has executed, invoke PROwave by
pressing the PROwave icon in the Timing Simulation area of the
PROflow window.

4. Select cal ct. wfm as the file to open.

The output of this simulation run is similar to the output of the
timing simulation run on the original (non-Xilinx ABEL) Cale design.
It differs slightly, because different mapping, placing, and routing
runs produce different timing. For a more detailed inspection of the
results of this simulation, refer to the "Timing Simulation" chapter of
the Viewlogic Interface Guide.

3-27

Viewlogic Tutorials

Verifying CALC on the Demonstration Board
At this point, a BIT file has been created that can be downloaded to
the appropriate demonstration board to verify the validity of the
design. If you are unfamiliar with this process, please refer to the
"Downloading an FPGA Design" section of the "PROcapture and
PROsim Tutorial" chapter for more information.

Further Reading

3-28

This tutorial shows you the basic functions involved in including
Xilinx ABEL-based components in a PROcapture design. Before
attempting to build your own Xilinx ABEL design, please review the
Xilinx ABEL User Guide.

Xilinx Development System

View logic
Tutorials

Viewlogic Tutorials - 0401414 01

XACT-Performance and
Timing Analyzer Tutorial

Printed in U.S.A.

Viewlogic Tutorials

Xilinx Development System

Chapter 4

XACT-Performance and Timing Analyzer
Tutorial

The specification of exact timing requirements on schematics has
become a necessity as FPGAs have become larger and designs
consequently more complex. The term XACT-Performance refers to
the method used by the Xilinx software to describe these timing
requirements. XACT-Performance consists of a set of library
primitives that allow timing requirements to be placed on a
schematic, along with built-in functionality within the PPR program
that allows PPR to use this timing information during mapping,
placing, and routing of the design.

The Timing Analyzer is the companion tool that allows you to obtain
exact timing information about the routed design created by PPR.
When you use XACT-Performance, verify the path timing with the
Timing Analyzer program. To reduce run time, XACT-Performance
does not use the highest possible level of accuracy in computing
delays. The Timing Analyzer reports completely accurate worst-case
delays for all Xilinx FPGAs. Differences between the two reports are
minor, but when they occur, use the Timing Analyzer output as the
definitive source for timing information.

Note: Since APR does not interpret XACT-Performance
specifications, only XC3000A/L, XC3100A, XC4000, and XC5200
family designs can take advantage of the features described in this
tutorial. XACT-Performance does not function on XC3000, XC3100, or
XC2000 family designs.

Viewlogic Tutorials - 0401414 01 4-1

Viewlogic Tutorials

This tutorial gives a practical example using XACT-Performance and
the Timing Analyzer within the Viewlogic design environment. It is
not intended to fully explain all of the functionality found within
XACT-Performance or the Timing Analyzer. Please refer to the
"Further Reading" section at the end of this tutorial for a list of
sources from which to obtain more information.

Before Beginning the Tutorial

4-2

This section of the tutorial assumes that you are already familiar with
the material in the "PROcapture and PROsim Tutorial" chapter of this
manual. If not, please review that chapter before continuing.

Required Software
You should have at access to the following software:

• Viewlogic PROcapture, the Viewlogic schematic entry tool

• Xilinx Design Manager and the placing and routing tools that are
contained in the FPGA Core Tools Package

You should have at least temporary access to all of the software just
listed using the temporary licensing available on the programmable
key, provided that the temporary licensing has not already been
exhausted.

Preparing the Design
This section uses the completed Cale design, which you can create
either by completing the PROcapture tutorial or by copying a
completed design from one of the solutions directories.

Note: All of the screen outputs refer to the processing of the XC3000A
solutions design on a PC. Other parts or platforms have slightly
different outputs.

A full solution for the PROcapture tutorial is supplied in the solution
directory located under the directory where the PROseries software
was installed:

... \tutorial\ vwlogic \procalc \calc3ka \soln_3ka

Xilinx Development System

XACT-Performance and Timing Analyzer Tutorial

1. Using the Windows File Manager, copy the contents of this
directory to the directory where you will be performing the
XACT-Performance tutorial.

2. Invoke Xilinx PROflow and select the Design Entry icon.

3. Select the Project Manager button.

4. Press the Create button.

5. Double-dick on the directory that you made in step 1 in the Create
Project dialog box.

6. Verify that the directory is shown in the Directory text box, and
press OK.

The PROjman Create dialog box appears.

7. Select No to re-initialize the viewdraw.ini file.

8. Click on Exit in the PRO Series Project Manager.

9. In the Select Family dialog box, select XC3000A and click on OK.

10. After exiting from the Select Family box, select the CALC. 1 design
in the Design Entry dialog box, and select OK to open the
schematic.

Understanding XACT-Performance

Viewlogic Tutorials

When discussing the timing requirements of a design, it is simple to
describe a requirement in such terms as "this path must get from the
source to this load in a certain amount of time." XACT-Performance
uses a similar from:to type of syntax. Symbols are grouped, and these
groups are then used as starting points or ending points for timing
specification. Timing requirements are defined as the maximum
acceptable delays from the sources in one defined group, through
intermediate combinatorial logic and interconnect, to the associated
loads in another group.

The three steps for adding timing specifications to a schematic are as
follows:

1. Add TNM attributes to symbols on your schematic to group them.
This step is not necessary if you are using only predefined groups.

4-3

Viewlogic Tutorials

2. Add a TIMEGRP symbol and add attributes to the symbol. These
attributes can combine the groups defined in step 1 into
additional, more complex, groups. This step is optional.

3. Add a TIMESPEC symbol and add attributes to the symbol,
defining the timing requirements for the groups defined in steps 1
and2.

Grouping Symbols with TNM Attributes

4-4

The most basic and flexible way of defining these groups is through
the addition of TNM (Timing NaMe) attributes to symbols on a
schematic. By giving two or more symbols TNM attributes with
identical values, these symbols become part of the same group, which
you can reference in a from:to statement.

TNMs on Logic Primitives

TNMs are applicable to four types of primitives: flip-flops, latches,
RAMs, and I/ 0 pads. A group must not contain more than one
symbol type, with the exception of flip-flops and latches, which can
be included in the same group. TNMs on other primitives, such as OR
gates, are invalid.

The syntax of the TNM attribute is as follows:

TNM=identifier

where identifier is replaced with the name of the set. The name can be
any ASCII string using only the characters A-Z, a-z, _,and 0-9.

TNMs on Higher-Level Macro Symbols

You can also place TNM attributes on macro symbols containing one
or more of the logic primitives just discussed. The TNM attribute is
passed down through the hierarchy and placed on the logic
primitives below. If the macro contains primitives of more than one
type, you must specify the types of primitives inside the macro to
which the TNM attribute applies. For example, a macro may contain
RAMs and flip-flops. If you place a TNM on this macro, you must
specify it as applying to either the RAMs or the flip-flops.

The syntax for applying TNM attributes to macros is as follows. You
can specify one or more of the primitive types.

Xilinx Development System

XACT-Performance and Timing Analyzer Tutorial

TNM=FFS: identifier; RAMS : identifier; LATCHES : identifier;
PADS: identifier

In this case, each instance of identifier is replaced by a unique group
name, with the exception of FFS and LATCHES, which can be in the
same group if desired.

TNMs on Nets to Tag Flip-Flops

The TNM attribute can also be placed on a net, using the
TNM=identifier syntax. The software pushes the attribute forward
through combinatorial logic fed by the net and applies the TNM to
any flip-flops reached. This spreading of TNM specifications to load
pins is known as forward tracing.

For this purpose, if RAMs are encountered while tracing forward to
load pins, they are seen as transparent. Consequently, if a flip-flop is
sourced by the output of a RAM, and a TNM attribute is attached to
the write enable of the RAM, the flip-flop becomes part of the group,
not the RAM.

Grouping Symbols by Predefined Groups
In many cases, it makes sense to apply a timing requirement to all
associated symbols of a certain type. For example, a given flip-flop
output may have a clock-to-setup timing requirement that applies to
all other flip-flops driven by the flip-flop output.

To simplify the grouping procedure in such cases, Xilinx provides
four predefined groups: FFS (flip-flops), LATCHES, PADS (I/O
pads), and RAMS (XC4000 family RAM elements). Instead of placing
a TNM attribute on each symbol, you can reference the entire group
in a from:to statement by taking advantage of the predefined
keyword.

In the flip-flop example just discussed, you can use the from:to syntax
to specify that the timing requirement be applied from the source
flip-flop to the FFS predefined group.

Simplifying Symbol Grouping

Viewlogic Tutorials

The simplest way to group symbols is to use the basic syntax, TNM=
identifier, on primitives. The other methods are shortcuts that enable
you to quickly define groups that are related in some way, such as

4-5

Viewlogic Tutorials

instances within the same macro, flip-flops driven by a common clock
or clock enable, and so forth.

Combining Groups with the TIMEGRP Symbol

4-6

Once groups are defined with TNM attributes, it can be useful to
define new groups in terms of existing ones. You may wish to
combine two or more groups, define a group of all symbols not
already included in another group, or designate a group of flip-flops
triggered by a given clock edge. You can also use TIMEGRP to
designate a group by the output net names of the primitive symbols.

To create these new groups, add the TIMEGRP symbol to your
schematic, then add an attribute for each new group definition. The
name of the attribute is the new group name. The value of the
attribute is the group definition.

Each TIMEGRP symbol has room for eight group definitions. If you
need to define more than eight groups, add additional TIMEGRP
symbols to your schematic. You can place TIMEGRP symbols at any
level of the hierarchy.

Joining Two or More Groups into One

You can define a new group as the combination of two or more
existing groups using the following syntax:

newgroup=groupl :group2 [••• :groupnJ

Using the EXCEPT Statement

A group defined using TNM attributes may account for all but a few
of the flip-flops in a design. One way to apply timing specifications to
the rest of the flip-flops is to create a new group that consists of all
flip-flops not already in the first group. You can create the new group
by defining an attribute that contains an EXCEPT statement. Use the
following syntax:

newgroup=groupl : EXCEPT: group2

Groupl is replaced by one of the predefined groups (FFS, PADS,
RAMS, or LATCHES) or by the name of a user-defined group. Group2
is replaced by the name of a user-defined group.

Xilinx Development System

Viewlogic Tutorials

XACT-Performance and Timing Analyzer Tutorial

For example, in the situation just discussed, assume that the group
defined using TNMs is called FFGRPl, and the new group name is
FFGRP2. You can create the group of all flip-flops not in the FFGRPl
group by adding the following attribute to the TIMEGRP symbol.

FFGRP2=FFS:EXCEPT:FFGRP1

Triggering on RISING or FALLING Clock Edges

You can also use TIMEGRP symbol attributes to make subsets of flip
flops that are triggered by a certain clock edge. Use the following
syntax:

newgroup=RISING: group

newgroup=FALLING: group

The new group consists of all symbols within group that are clocked
by the specified clock edge.

Forming Groups by Output Net Name

You can define a new group as the set of all primitives with output
net names starting with a certain string. (BLKNMs or HBLKNMs are
used for PADS, if you added these attributes; otherwise, the full
hierarchical external net name is used, that is, the name of the net
joining the PAD to the I/O primitive.)

Specify the group of all blocks with output net names beginning
with name using the following syntax:

newgroup=class(name *)

Class is one of FFS, RAMS, LATCHES, or PADS. This designation
defines a new group called newgroup, which consists of all blocks in
the designated class with output net names starting with the string
name.

You can use the wildcard characters* and ? to represent any character
string and any single character, respectively.

Note: This wildcard capability must be used with caution. If your
design contains unrelated net names beginning with the same string,
they may be included in your time group and subsequently cause
errors in XNFMerge or XNFPrep. If you attempt to apply the
attribute to all blocks in a given schematic by specifying the instance

4-7

Viewlogic Tutorials

4-8

name of the symbol, but the outputs of some flip-flops are renamed at
a higher level of hierarchy, they will not be included in the group.

Attaching Timing Specifications with the TIMESPEC
Symbol

Once you have defined appropriate groups by attaching TNM
attributes to symbols and, optionally, by combining these groups
using a TIMEGRP symbol, the next step is to add the timing
specifications to the schematic. First, place a TIMESPEC symbol on
the schematic, then add the from:to timing requirements in the form
of View logic attributes. As with the TIMEGRP symbol, the
TIMESPEC symbol itself has no electrical functionality but serves as a
placeholder for XACT-Performance attributes.

Use the following syntax to add timing specification attributes to a
TIMESPEC symbol:

TSid=FROM: group: TO: group=time

All TIMESPEC attribute names must start with TS, followed by a
unique identifier (id in the example just given). The two group
references are replaced with the appropriate group names, as defined
by TNMs, TIMEGRP symbols, or predefined groups. Time specifies
the timing requirement, in microseconds (s), nanoseconds (ns),
kilohertz (kHz), or megahertz (MHz). If no units are specified, time is
assumed to be in nanoseconds.

For example, to specify that the pad-to-setup path delay between all
pads and all flip-flops should be no greater than 40 ns, add the
following attribute to the TIMESPEC symbol:

TS01=FROM:PADS:TO:FFS=40NS

Note: FROM:PADS:TO:FFS is not exactly equivalent to the pad-to
setup path delay, since the PADS group includes not just data pads
but also clock pads. Therefore, FROM:PADS:TO:FFS includes both
pad-to-setup and pad-to-clock specifications. If desired, you can use
the EXCEPT syntax to eliminate the pad-to-clock paths. For example,
to create a source group equivalent to the group referenced by the
pad-to-setup specification, use the TIMEGRP symbol to define a
group such as PADS:EXCEPT:pads_sourcing_clocks, where
pads_sourcing_clocks is another created group, which includes all of
the clock pads.

Xilinx Development System

XACT-Performance and Timing Analyzer Tutorial

Each TIMESPEC symbol has room for eight timing specification
attributes. If you need more than eight specifications, add additional
TIMESPEC symbols to your schematic. You can place TIMESPEC
symbols at any level of the hierarchy.

Deciding When to Use XACT-Performance

Viewlogic Tutorials

One approach to using XACT-Performance is to route your design
once without any timing constraints. PPR by default controls path
timing, using reasonable default values that it calculates on the basis
of your design. If the resulting LCA file meets your timing
requirements, your design is complete.

If not, the PPR log file, ppr.log, gives values that can be achieved for
FFS:TO:FFS, PADS:TO:FFS, and FFS:TO:PADS timing. Use these
values to help determine reasonable default timing requirements as
described in the following section, "Setting Default Timing
Requirements."

After this run, check the new log file. If PPR is unable to meet the
default timing for all paths, it reports the paths for which the default
is not met. If critical paths in your design are not fast enough to meet
your specifications, it is time to consider adding more specific
constraints, as described in the "Adding Timing Constraints to
Specific Paths" section.

Clearly, tightening the default specifications for the entire design is
unlikely to help PPR speed up the critical paths. Instead, consider a
tighter specification on the most critical paths, combined with a
looser specification for unimportant paths. You can even inform PPR
to ignore selected paths by using the IGNORE statement. To do this,
define an attribute attached to a TIMESPEC primitive using the
following syntax:

TSid=IGNORE

Id is a unique identifier. Attaching this TSid attribute to a net or load
pin causes PPR to ignore any paths that include the net or load pin.

You may want to skip the first step and start by setting reasonable
default timing requirements.

If XACT-Performance and PPR are unable to achieve the speed
needed for your application, you may have simply reached the limits
of the hardware and/ or software. You can increase the speed of the

4-9

Viewlogic Tutorials

hardware by using a part with a faster speed grade. The tutorial
designs, which are designed to work with Xilinx demonstration
boards, use the slowest available speed grades.

Consider speeding up your design by making changes to the logic to
use the Xilinx FPGA architectures to better advantage. For example,
try reducing the number of logic levels between flip-flops in critical
paths. Xilinx FPGA architectures are rich in flip-flops, so pipelining is
a good approach. Alternatively, you can often increase the speed of
your design by using the Floorplanner (planning the placement of
your logic to simplify the data flow) or using CLBMAPs, FMAPs,
HMAPs, or LOC constraints to lock down symbol locations. See the
Libraries Guide, the Development System Reference Guide, or the
Floorplanner Reference/User Guide for more information on how to
floorplan your design.

Setting Default Timing Requirements

4-10

In this tutorial, you add XACT-Performance symbols and attributes
to the Cale schematics but do not otherwise change the design. Many
of the TIMESPEC constraints used in the following tutorial are not
actually necessary for this or similar applications. They are used here
to illustrate different usages of XACT-Performance that you may find
useful in other designs.

Note: For more information on the Cale design, refer to the
"PROcapture and PROsim Tutorial" chapter.

Adding a TNM Attribute
First, use a TNM attribute to define a group of flip-flops. The group is
specifies the clock-to-pad default timing requirement.

1. Open PROcapture and load the CALC top-level schematic.

2. Select the main clock net, CLK, and then Change ---+ Object
Attributes---+ Dialog.

3. When the Edit Attributes dialog box appears, click on the Add
button.

4. Add a name and value, as shown in Figure 4-1, and select OK.

Xilinx Development System

XACT-Performance and Timing Analyzer Tutorial

Value ~I F_F_G_R_P _________ ~

Figure 4-1 Edit Attribute Dialog Box

You should see the name and value of the attribute you just added
in the Edit Attribute dialog box.

5. Select OK to save the change.

6. You may wish to select the attribute and use the Edit-. Move
command to move it below the net, where it is easier to read.

You have defined a set with the name FFGRP that consists of all flip
flops driven by the CLK clock net.

Note: Because there is only one clock in the Cale design, the FFGRP
set in this case is the same as the predefined set FFS, which includes
every flip-flop in the design. However, the set is defined to
demonstrate how to attach TNM attributes to clock signals, a very
common technique in XACT-Performance.

Entering Default Timing Specifications

Viewlogic Tutorials

Next, set the default timing specifications for the clock. For the
tutorial design, assume that the clock speed is 500 kHz. This clock
speed is quite slow, so the placing and routing software has no
problem meeting the timing requirements.

1. Select Add -. Component.

2. Place a TIMESPEC symbol on the CALC schematic in the open
area on the left.

3. Select the TIMESPEC symbol by clicking the left mouse button on
the bar labeled "TIMESPEC" across the top.

4-11

Viewlogic Tutorials

4. Select Change--+ Object Attributes--+ Dialog.

The Edit Attributes dialog box appears in the lower right corner of
the screen. The DEVICE, LEVEL, and LIBVER attributes are
predefined, and you cannot change them.

5. Click on the Add button on the Edit Attributes dialog box, and add
the following three attributes.

Attribute Name Comp Value

TSOl FROM:FFS:TO:FFS=500KHZ

TS02 FROM:PADS:TO:FFS=lMHZ

TS03 FROM:FFGRP:TO:PADS=lOOONS

Your Edit Attributes dialog box should now look like the
illustration in Figure 4-2.

Attr-ibute List for- Component xc3000:TIMESPEC

4-12

Name

DEVICE
LEVEL
LIBVER
TS01
TS02
TS03

SymVal

TIMESPEC
XILINX
2.0.0

Comp Val

FROM:FFS:TO:FFj
FROM:PADS:TO:~
FROM:FFGRP:TO

Figure 4-2 Edit Attributes Dialog Box

6. Select OK to save the changes.

7. Select File --+ Save to save your changes to the CALC
schematic.

Xilinx Development System

XACT-Performance and Timing Analyzer Tutorial

The new TSOl attribute specifies that all dock-to-setup paths must
have timing such that they can be driven by a 500-kHz clock.

Pad-to-setup and clock-to-pad path delays are typically half of the
dock-to-setup requirement. For the Cale design, they must be driven
by a 1-MHz clock. TS02 specifies that all pad-to-setup path delays
have timing such that they can be driven by a 1-MHz clock.

Making use of the FFGRP set, which in this case is equivalent to the
FPS set, TS03 specifies that the clock-to-pad timing for the design be a
maximum of 1000 ns. The two timing specifications of 1000 ns and 1
MHz are interchangeable. An equivalent specification for TS03 is
TS03=FROM:FFS:TO:PADS=1MHZ.

Figure 4-3 shows a portion of the CALC schematic with the TNM
attribute and the TIMESPEC symbol.

CALC.l(SCH) Z-11"x8" G:10

TIMESPEC CL K

~--------!WE

......... ----jADDA[1'0

IPAD EX C _ P

s w 7

s
05C_3K DEB OUNCE

IN

OUT EXC

CLK

CLK1---~C~L~K~-----t-------~
TNM=FFGAP

D5C_3K

Figure 4-3 CALC Schematic with Default Timing Constraints

Viewlogic Tutorials 4-13

Viewlogic Tutorials

Adding Timing Constraints to Specific Paths

4-14

In the previous section, you applied default timing specifications to
the Cale tutorial design. In simple applications, the specifications
described to this point in the tutorial usually supply enough
guidance to allow PPR to meet the timing requirements. However, in
this section, the tutorial continues with more specific path timing
constraints to illustrate the application of XACT-Performance to more
specific groups of paths in a design.

Defining TNM Groups
First, define the groups to be used as end points for timing
specification. You can use these groups to apply timing requirements
from one group to another or from one group to the same group.

Defining the INFFS Group

The INFFS group includes all input flip-flops from the SW7 macro.

1. Select the SW7 symbol from the top-level CALC schematic.

2. Select Change ---t Object Attributes ---t Dialog.

3. Select Add from the Edit Attributes dialog box.

The Edit Attribute dialog box appears.

4. Add the following attribute in the Edit Attribute dialog box,
shown in Figure 4-4.

Xilinx Development System

Viewlogic Tutorials

XACT-Performance and Timing Analyzer Tutorial

CompVal ~IF_F_S_:IN_F_F_S~~~~~~~~~

Figure 4-4 Edit Attribute Dialog Box

5. Select the OK button to save the new attribute.

6. In the Edit Attributes dialog box, select OK.

This attribute definition places the IFDs (IOB flip-flops) in the SW7
macro into a new timing group called INFFS. There are two types of
symbols in SW7: FFS and PADS. Therefore, the FFS keyword is
necessary to specify that the group contains all symbols of type FFS.
Since TNM=PADS:INFFS is specified, the group refers to the input
pads. If neither group is specified, XMake fails while running
XNFMerge (and issues a message explaining the error) since FFS and
PADS cannot be in the same group.

Defining the STACKER Group (XC4000 Family Only)

The Cale design for the XC4000 family contains a stack implemented
using on-chip RAM elements. In this section, these RAM elements are
included in a group called STACKER. If your design is an XC3000A
design, skip this section and continue with the next section,
"Defining the STACKER Group (XC3000A Only)."

1. Select the STACK_4K symbol from the top-level CALC schematic.

2. Select Change---. Object Attributes ---t Dialog.

3. Select Add from the Edit Attributes dialog box and add the
following data.

4-15

Viewlogic Tutorials

4-16

Attribute Name Comp Value

TNM RAMS:STACKER

4. Select the OK button to save the new attribute.

5. In the main Edit Attributes dialog box, select OK.

This attribute defines the new group named STACKER to contain all
RAM symbols in the STACK _4K macro.

Note: The RAMS predefined group could have been used instead of
defining STACKER since the STACK_4K schematic contains only
symbols of the RAMS type. However, this example shows how a
subset of the RAM primitives would be grouped in a more realistic
design.

Defining the STACKER Group (XC3000A Only)

The Cale design for the XC3000A implements the stack using flip
flops. In this section, these flip-flops are included in a group called
STACKER. If your design is an XC4000 family design, skip this
section and continue with the next section, "Defining the ALUFF
Group."

1. Select the STACK symbol from the top-level CALC schematic.

2. Select Change_. Object Attributes_. Dialog.

3. Select Add from the Edit Attributes dialog box and add the
following data.

Attribute Name Comp Value

TNM FFS:STACKER

4. Select the OK button to save the new attribute.

5. In the main Edit Attributes dialog box, select OK.

This attribute defines a new group named STACKER that contains all
flip-flops in the STACK macro.

Xilinx Development System

Viewlogic Tutorials

XACT-Performance and Timing Analyzer Tutorial

Note: The FFS predefined group is optional in defining STACKER
since the STACK macro contains only symbols of type FFS. This
example shows how only the FF primitives inside the macro should
be grouped in a more realistic design.

Defining the ALUFF Group

Follow these steps to define the ALUFF group.

1. Select the ALU symbol from the top-level CALC schematic.

2. Select Change-* Object Attributes-* Dialog.

3. Select Add from the Edit Attributes dialog box and add the
following data.

I Attribute Name I Comp Value

TNM ALUFF

4. Select the OK button to save the new attribute.

5. In the main Edit Attributes dialog box, select OK.

This attribute defines a new group named ALUFF that contains all
flip-flops in the ALU macro.

Defining the CTLFF Group

Next, define the CTLFF group using the following procedure.

1. Select the CONTROL symbol from the top-level CALC schematic.

2. Select Change-* Object Attributes-* Dialog.

3. Select Add from the Edit Attributes dialog box and add the
following data.

I Attribute Name I Comp Value

TNM CTLFF

4. Select the OK button to save the new attribute.

5. In the main Edit Attributes dialog box, select OK.

This attribute defines a new group named CTLFF that contains all
flip-flops in the CONTROL macro.

4-17

Viewlogic Tutorials

6. Select File ---+ Save to save your changes to the CALC
schematic.

Defining the STFF Group

Define the STFF group by following the steps in this section.

1. Verify that the CONTROL symbol is still selected.

2. Select View ---+ Push J:nto Schematic.

3. Select the STATE_4K symbol (XC4000 family designs) or the
STATMACH symbol (XC3000A designs).

4. Select Change---+ Object Attributes---+ Dialog.

5. Select Add from the Edit Attributes dialog box, and add the
following data.

j Attribute Name I Comp Value

TNM: STFF

6. Select the OK button to save the new attribute, and in the main
Edit Attributes dialog, select OK.

This attribute defines a new group named STFF that contains all flip
flops in the state machine. STFF is a subset of the CTLFF group. Even
though this TNM attribute is defined on a lower-level schematic, it is
perfectly valid to use it in the TIMESPEC symbol on a different level
of the hierarchy.

Note: The TNM attributes just discussed are all attached to macros,
which simplifies grouping. Alternatively, you can attach TNM
attributes to individual primitives, such as one or more individual
flip-flops. In this case, attach the TNM:=group_name attribute
individually to each flip-flop you want included in the group.

Grouping Using TIMEGRP

4-18

In addition to the TNM: groups, you can use the TIMEGRP primitive
symbol to define new groups in terms of existing sets or predefined
symbol types (FFS, RAMS, PADS, LATCHES).

Xilinx Development System

Viewlogic Tutorials

XACT-Performance and Timing Analyzer Tutorial

Use the TIMEGRP symbol to create additional groups. Because the
CALC schematic sheet is already crowded, place the TIMEGRP
symbol in the CONTROL schematic. TIMESPEC and TIMEGRP
symbols can be placed at any level in the hierarchy.

1. Select Add ___.. Component, and place a TIMEGRP symbol on the
CONTROL schematic in the open area at the lower left.

2. Select the TIMEGRP symbol by clicking the left mouse button on
the bar labeled "TIMEGRP" across the top.

3. Select Change___.. Object Attributes___.. Dialog.

4. Select Add from the Edit Attributes dialog box, and add the
following data.

Attribute Name Comp Value

LEDPADS PADS(LED*)

CTL_ALU_FF CTLFF:ALUFF

CTL_ADR_FF CTLFF:EXCEPT:STFF

5. Select the OK button to save the new attribute, and in the main
Edit Attributes dialog, select OK.

This procedure defines three new groups.

• The first new group, LEDPADS, represents all symbols of the
PADS type that begin with the "LED" character string. In this
case, the pad symbols themselves do not have assigned BLKNM
attributes, so XACT-Performance uses the full hierarchical names
from the attached nets. The pads in the LED block are named
LED /LEDO_P, LED /LEDl_P, and so forth.

• The second group, CTL_ALU_FF, combines all flip-flops in the
two TNM groups, CTLFF and ALUFF.

• The third group, CTL_ADR_FF, represents all symbols in the
CTLFF group except for those in the STFF group. Since CTLFF
includes all flip-flops in the CONTROL block, and STFF includes
all flip-flops in the state machine (STATE_4K or STATMACH),
CTL_ADR_FF represents all flip-flops in the CB2CLED macro
below CONTROL.

6. Select File ___.. Save to save your changes to the CONTROL
schematic.

4-19

Viewlogic Tutorials

4-20

7. Select View ___. Pop to return to the CALC schematic.

Figure 4-5 shows the CONTROL schematic for the XC3020A with the
TNM on STATMACH and the TIMEGRP symbol.

CONTROL.l(SCH)->CALC.l(SCH) Z-11"'x7.5'' 6:10----------------~

STATMACH
0 p [5 ' 0 l CTU3•0l

----uLfl!_J ", CTL3

EXC

'"

STA TKACH
TN K ~5 T FF

CT L 2
C TL 1
C TL O

WE
RST

ADD_SUB
CE_ ALU
CE_ AD DR

.L
Gi"o

CB2CLED
ADD RO
ADDRl

ADDR[l•Ol

I TIMEGRP mm:o;•mwhm
£XILINX" C11Jc

Tutar-i11J 01111ign

fl"'l'"""".::11• Can'l:r-al Lagiii

o .. t11• Augu"t: 23. l!l!l3 il,pplic:11loi1:1n" Sr1>up

Figure 4-5 CONTROL Schematic with TNM and TIMEGRP

Specifying TIMESPEC Constraints
After completing all group definitions, specify the timing constraints.
Use the defined groups defined by TNM and TIMEGRP attributes
and the predefined groups FFS, RAMS, PADS, and LATCHES as end
points of the timing paths.

1. Select the TIMESPEC symbol by clicking the left mouse button on
the bar labeled "TIMESPEC" across the top.

2. Select Change___. Object Attributes___. Dialog.

The three attributes that you already entered appear in the Edit
Attributes dialog box.

Xilinx Development System

XACT-Performance and Timing Analyzer Tutorial

3. Select Add from the Edit Attributes dialog box and add the
following data.

Attribute
Comp Value

Name

TS04 FROM:INFFS:TO:FFS=80NS
-

TS05 FROM:CTL_ADR_FF:TO:ALUFF=50

TS06 FROM:CTL_ALU_FF:TO:STACKER=30

TS07 FROM:STACKER:TO:LEDPADS=50

TS08 FROM:ALUFF:TO:PADS=45

4. Select Accept to save the new attributes.

5. Select File __. Save to save your changes to the CALC
schematic.

The constraints that you have specified are the following.

• The TS04 timing attribute specifies that the clock-to-setup timing
from the group of flip-flops named INFFS to all flip-flops (FFS) of
the design be no more than 80 ns.

• TS05 specifies the clock-to-setup timing from the TIMEGRP
CTL_ADR_FF to the group of flip-flops named ALUFF to be 50 ns.

• TS06 specifies the clock-to-setup timing from the TIMEGRP
CTL_ALU_FF to the TNM group STACKER to be 30 ns.

• TS07 specifies the maximum path delays from the time the
STACKER data becomes valid, plus any combinatorial delays, to
the TIMEGRP LEDPADS, to be 50 ns.

• TS08 specifies the clock-to-pad timing from the TNM group
ALUFF to all the pads in the design to be 45 ns.

Making a Final Check

Viewlogic Tutorials

Lastly, check to make sure that the TIMEGRP and TIMESPEC
symbols look like the ones in Figure 4-6 and Figure 4-7. The order of
the attributes is unimportant.

The completed CALC schematic is shown in Figure 4-8.

4-21

Viewlogic Tutorials

TIMEGRP

LEDPADS=PADS(LED*)

CTL_ALU _FF=CTLFF:ALUFF

CTL_ADR_FF=CTLFF:EXCEPT:STFF

Figure 4-6 Completed TIMEGRP Symbol

TIMESPEC

TS01=FROM:FFS:TO:FFS=500KHZ

TS02=FROM:PADS:TO:FFS=1MHZ

TS03=FROM:FFGRP:TO:PADS=1000NS

TS04=FROM:INFFS:TO:FFS=80NS

TS05=FROM:CTT ,_ADR_FF:TO:ALUFF=50

TS06=FROM:CTL_ALU_FF:TO:STACKER=30

TS07=FROM:STACKER:TO:LEDPADS=50

TS08=FROM:ALUFF:TO:PADS=45

Figure 4-7 Completed TIMESPEC Symbol

4-22 Xilinx Development System

XACT-Performance and Timing Analyzer Tutorial

CALC. 1 (SCH) 2-11 "xS" G: 10----------------------------

7~V
rcO~F =L _____ __, o FL

5TACK[l•O]
Sfi\CKl3•0l

CONTROL
5 w [6 ' 1 l

CTL[].Q]
DP 15 , 01 cru 3•011f-----------icru3• 01 DFLU 7 5[GD E c

l\DD_SIJB ADD 5UB l\OO_SUB

c E _ H U·r----=-C E~A~L~U __ _,CE
' A ' •·r----~"--1 '
c c c

._,._,._E x~c~--<·"'

...,,_C ~L ~K --1)CLK

A srr----~A 5~T'-c--~---I" r
ADDA[1 • D] ,--j>CLK

l\DDAl1•0l

fl"'flilr.~.,-LU_F_F-~

ALU[l•D]

D D D

E E E

F F F

CL K

5 TACK

' G '

5TACK[l•O]

~

79EG

LED_INV

/l.DDA[i10J T'FU""

IPllD ,,----E_X_C_P_1"-A70"'uF"'E IN 'l1m'FS•SHCKEA

SW7 IPAAT=3020APC6B-71

CL K
TtHl-FFGAP

5 w [6 ' 0 l
SIH B• 0 lf-m----

t:x IL IN x" C111c:

T u:lo IH ial o isn

fitl"'' CHC, KC3000fXC4000 O.,nci S.,11rd

A .. t .. r""""' C11lc:ul11f.1>r o.,.,.isn -- r .. ., L.,.,...,1

Oat"' Oc;tcb"r 8, 1893 !o.ppliC'atiC"n11 Grciup

Figure 4-8 CALC Schematic with TNMs and TIMESPEC Symbol

All desired XACT-Performance specifications have been entered on
the schematic. The next step is to implement the design using the
Design Manager and to verify the results in the calc.out and ppr.log
files.

Implementing the Cale Design

Viewlogic Tutorials

The translation of designs containing XACT-Performance attributes
is exactly the same as that of other designs. In fact, even if you do not
specify any XACT-Performance attributes, PPR by default controls
path timing. PPR assigns reasonable default values and attempts to
meet the self-imposed requirements.

If you apply XACT-Performance attributes to your schematics, PPR
detects these specifications and, wherever they apply, uses them
instead of calculating default values. In each phase of the
implementation process, which includes mapping, placing, and

4-23

Viewlogic Tutorials

4-24

routing, PPR takes the XACT-Performance attributes into account. If
it is unable to meet a given specification, it issues a warning to the
PPR log file, relaxes the requirement, and continues.

You can use PROflow's Xilinx Implementation icon to invoke the
Xilinx Design Manager, from which you can control the design's
implementation in a Xilinx FPGA. For detailed information on the
Xilinx Design Manager, refer to the Design Manager/Flow Engine
Reference/User Guide.

Translating the Netlist
Run the Xilinx Design Manager to generate files for device
programming.

1. From PROflow, press the Xilinx Implementation icon to start the
Xilinx Design Manager.

2. In the Xilinx Design Manager, select File -t New Project.

3. Using the Browse button, change to the WIR directory in the
tutorial directory and select the CALC.1 sheet.

4. Press OK.

5. Change the target family to XC3000.

6. Press the Translate button.

7. In the Translate Options window, press the OK button.

The Design Manager runs the XMake program, which converts the
PROcapture schematic into an XFF netlist.

Examining Translation Output
You can use the Report Browser tool to examine the reports produced
by the implementation process. To access the Report Browser, click on
Utilities -t Report Browser or use the Report Browser toolbar
icon, shown in Figure 4-9.

Figure 4-9 Report Browser Toolbar Icon

Xilinx Development System

XACT-Performance and Timing Analyzer Tutorial

If your XACT-Performance specifications have any syntax errors,
they are flagged by the optimization stage of the process, and the
errors are listed in the DRC report. If errors are detected, the
implementation process stops. The DRC report includes a list of all
errors and warnings issued during the timing checks.

Always check the DRC report after translation.

Creating a Routed Design

Viewlogic Tutorials

Use the Xilinx Design Manager to implement the converted netlist in
the target device.

1. Select Design ___. Implement.

2. In the XC3000A Design Implementation dialog box, confirm that
the Produce Configuration Data check box is selected.

3. Select the Produce Timing Simulation Data check box.
(The timing data will be used in a later part of the tutorial.)

4. Press Run.

The Xilinx Flow Engine, invoked by the Design Manager, optimizes,
maps, places, and routes the design, and creates a bitstream file that
can be downloaded to the part. The resulting Flow Engine history
file, program.his, is shown following.

xnfprep design=calc.xff outfile=calc.xtg savesig=false
partType=3020APC68-7 ignore_timespec=none xblox_prep=true
split_report=true

xblox calc.xtg calc.xg parttype=3020APC68-7 archopt=false
mergeio=false reg_rlocs=false

xnfprep design=calc.xg outfile=calc.xtf savesig=false
ignore_timespec=none split_report=true

xnfmap calc.xtf calc.map

ppr design=calc placer_effort=2 router_effort=2
ignore_timespec=none path_timing=true route_thru_bufg=ok
route_thru_blks=ok guide_blks=all lock_routing=whole_sigs
split_report=true

xdelay -d -w calc.lca

lca2xnf -g calc.lca calc.xnf

4-25

Viewlogic Tutorials

xnfba calc.xg calc.xnf

makebits -1 -mbo=calc.mbo calc.lca

Examining the Implementation Output

4-26

The implementation process generates a number of reports, such as
the Routing Report and the XACT-Performance report. Following is
an extract from a typical XACT-Performance report.

XACT-PERFORMANCE RESULTS FOR DESIGN CALC
From PPR Version Beta-5.2.0b

1995/07/25 18:35:04
Xilinx, Inc.

(c) Copyright 1995. All Rights Reserved.

XACT Performance Summary

Parttype Used : 3020APC68
Speed Grade : -7

End
Limi t Actual Points

(ns) * (ns) Missed Specification

45.0
50.0
30.0
50.0
80.0

1000.0
1000.0
2000.0

23.1
43.9
24.8
54.0
52.0
48.7
18.1
54.0

0/1
0/4
0/16
1/1
0/8
0/5
0/12
0/64

TS08=FROM:ALUFF:TO:PADS
TS07=FROM:STACKER:TO:LEDPADS
TS06=FROM:CTL_ALU_FF:TO:STACKER
TS05=FROM:CTL_ADR_FF:TO:ALUFF
TS04=FROM:INFFS:TO:FFS
TS03=FROM:FFGRP:TO:PADS
TS02=FROM:PADS:TO:FFS
TSOl=FROM:FFS:TO:FFS

(*) Note: the actual path delays computed by PPR indicate
that 1 of 8 timing specifications you provided was not met.
To confirm this result, please use the -FailedSpec and/or -
TSMaxpaths options of the Timing Analyzer -TimeSpec command,
accessible through the XDE or the Timing Analyzer program.

This summary reports that the TSOS timing specification does not
meet the deadline. It tells you which XACT-Performance specification
failed and gives the timing that XACT-Performance achieved for the
associated set of paths.

The timing reported depends on the target device. Additionally,
unless you specify identical input parameters, each place and route
run produces a slightly different result.

Xilinx Development System

XACT-Performance and Timing Analyzer Tutorial

Note: Once you have a routed design that meets your timing needs,
you can make changes to your design while retaining the timing
characteristics of the unmodified logic.

Both reports contain errors and warnings related to the paths in the
device and should be examined after every implementation run.
Examples of some of the common warnings that can be generated are
the following.

• Warning 6811 refers to the oscillator loop in the XC3000A design.
Since this loop is deliberate in the Cale design, you can safely
ignore this warning.

• Warning 7030 tells you how many paths are not controlled by
timing specifications and how many paths are controlled by more
than one timing specification.

• Warnings 10601 and 10609 inform you that there was a block
name duplication in the design, and a new name was assigned to
one of the blocks. Since you did not assign any block names
manually, these warnings are not a matter of concern.

• Warning 7028 is a reminder that PPR does not trace timing
through asynchronous Set/Reset control signals. Since the Timing
Analyzer traces these paths by default, you must disable this
tracing in the Timing Analyzer to compare PPR and Timing
Analyzer results. This procedure is discussed in the "Disabling
False Paths" section in the Timing Analyzer portion of this
tutorial.

• Warning 10604 occurs whenever PPR saves a new LCA file and
there is already an existing LCA file. Since PPR routes the design
more than once, these warnings occur in virtually every PPR run
and can safely be ignored.

Using the Timing Analyzer

Viewlogic Tutorials

The next step is to verify the timing of your routed design using the
Timing Analyzer.

The Timing Analyzer is a static timing analysis tool that reports the
worst-case timing delays of a routed FPGA design. It can generate the
following three timing reports.

4-27

Viewlogic Tutorials

4-28

• The Performance Summary report lists the worst-case timing
paths for each of four typical design path types: pad-to-setup,
clock-to-setup, clock-to-pad, and pad-to-pad. The clock-related
path types are reported for each clock in the design.

• The Performance To TimeSpecs report indicates which XACT
Performance constraints are met and reports all missed paths in
detail.

• The Detailed Path report displays detailed path timing
information according to the selected options. It offers insight on
which paths in the design are the most critical. This information
helps you determine where to make modifications to meet the
design timing requirements.

The Timing Analyzer also has options that control the information
generated in a report. A typical design can generate a large amount
timing data, and these filters manage this data. Many of them are
demonstrated in this tutorial.

• Path filters are commands that limit or control the type of
information presented in a report.

• Timing specification filters allow you to generate reports restricted
to those path delays that did not meet XACT-Performance timing
specifications, to ignore paths that have no timing specifications,
or to ignore the paths related to specific timing specifications.
These filters apply only when you generate a Performance to
Timespec report.

• Path Analysis filters limit the data to paths from certain sources,
certain destinations, or both. Also included is a filter for the path
type, which only affects the Performance Summary and Detailed
Path reports.

• Common filters is a collection of useful filters. They can filter on
the basis of the names of nets in paths, possible false paths, and
logic loops at defined points.

• Macro commands allow you to create and save a sequence of
commands for use at a future time.

For more information on the Timing Analyzer, refer to the Timing
Analyzer Reference/User Guide.

Xilinx Development System

XACT-Performance and Timing Analyzer Tutorial

Analyzing the Cale Design
This section analyzes the results of the XACT-Performance design
created earlier in this tutorial. The routed LCA file contains actual
timing delays as well as XACT-Performance specifications. The
Timing Analyzer analyzes this information and displays different
types of delay paths according to the options that you select.

This section demonstrates a typical Timing Analyzer analysis
command sequence.

Note: The sample Timing Analyzer output in this tutorial is from a
single Cale LCA file, targeted to the XC3020APC68-7 device. Your
results will vary.

Invoking the Timing Analyzer
Invoke the Timing Analyzer by following these steps.

1. Ensure that the placed and routed revision of the design is
currently highlighted in the Design Manager window.

2. Click on the Timing Analyzer icon in the Tools section, or select
the Tools ____. Timing Analyzer command.

Disabling False Paths

Viewlogic Tutorials

In the Cale design, there are a number of flip-flops with
asynchronous Reset signals. Normally you would not be concerned
with asynchronous reset paths when considering dock-to-setup
requirements, so you could ignore the paths through these
asynchronous inputs during timing analysis. By default, the Timing
Analyzer ignores these paths to match PPR's operation.

The categories of potential false path and default settings are
summarized in Table 4-1.

4-29

Viewlogic Tutorials

Table 4-1 False Paths

Paths Through ... Default Setting for Qualifying Elements

Data Input to CLB RAM All included in timing analysis

Write Enable of CLB RAM All included in timing analysis

Tristate to Output pin of BUFT All included in timing analysis

Input Pin to Output pin of BUFT All included in timing analysis

Output pin to Input pin of IOB All excluded in timing analysis

Tristate pin to Input pin of IOB All excluded in timing analysis

Set/Reset to Q pin of Flip-flop All excluded in timing analysis

You can change these default settings as follows.

4-30

1. From the Timing Analyzer menu, select Path Filters --+

Common Filters --+ Control Possible False Paths.

The Control Possible False Paths dialog box appears, as shown in
Figure 4-10.

Xilinx Development System

XACT-Performance and Timing Analyzer Tutorial

DDR1 (DC)
DD_SUB (GA)
LU/$11308/CO (HA]
LU/Sl 1308/Cl (HB)
LU/$11308/SUB_C2 (HC)
LU/DATA2 (GB)
LU/ENOV (FC)

CE ALU FB

Figure 4-10 Control Possible False Paths Dialog Box

2. In the Paths Through field, choose the path category that you
want to change.

In the Included Blocks and Excluded Blocks fields are the names
of the elements whose paths match the chosen category.

3. Move elements between the Included Blocks and Excluded blocks
fields, if desired, using the buttons in between the two lists.

4. When the selection process is complete, click on OK.

Resetting Path Filters

Viewlogic Tutorials

You may want to reset the path filters to their defaults to avoid the
effects previous modifications. To do this, select Path Filters ___.
Reset Path Filters.

4-31

Viewlogic Tutorials

4-32

Displaying Current Settings
Select the Analyze ---+ Show Settings command to display the
current settings for the Timing Analyzer. Figure 4-11 gives an
example of this command.

Report delays in descending order
ormal Report Format

Report all paths
Report all timespec paths
Do not report paths uncontrolled by time spec.
Speed -7

Figure 4-11 Show Settings Window

Generating a Performance Summary Report
You can perform a quick analysis to determine the worst-case timing
for the Cale design using the following procedure.

1. Select Analyze ---+ Performance Summary.

The report appears in a window.

2. To print the report to your default printer, select File -+ Print,
and click on OK.

3. To close the report, select File -+ Close Report.

For the XC3020APC68 design, the Timing Analyzer reports the same
combinatorial logic loop detected by PPR. Since this loop is
deliberately included to create an oscillator, you can ignore this
message.

A partial report file for the XC3020APC68-7 design is shown in Figure
4-12. The last line of the file shows that the design operates at
approximately 18.6MHz under worst-case conditions.

Xilinx Development System

XACT-Performance and Timing Analyzer Tutorial

The report lists the worst-case pad-to-pad, pad-to-setup, clock-to
pad, and dock-to-setup delays. It also provides an estimate of the
minimum clock period and maximum clock speed for the input
design.

Warning: Combinational logic loop(s) have been detected.
These may cause subtle design problems and may yield some
inaccurate path delays.
For a detailed enumeration of these loops, use the "DRC
Inform" command from within XDE/EditLCA.

Timing Analyzer Report File:

Design: c:\workarea\calc\xproject\ver2\revl\calc.lca (3020APC68-7)
Program: TIMING ANALYZER Beta-5.2.0b
Speedsfile: File 3020a.spd, Version 3000A.l, Revision 3020A.5

Timing Analyzer timing analysis options
From all.
To all.
Worst-case pad-to-pad path delay 37.0ns

Pad "OSC_3K/CQ" (P47) to Pad "OSC_3K/CQL" (P42.T)

Clock net "CLK" path delays:

(1 block level)

Pad to Setup 14.0ns (0 block levels)
(Includes an external input margin of O.Ons.)
Pad to Input FF Setup, Pad "SW7/SWO_P" (P24).
Target InFF drives output net "SWO"

Clock to Pad 48.6ns (2 block levels)
(Includes an external output margin of O.Ons.)
Clock to Q, net "ADDRO" to Pad "LED/LED3_P" (P32.0)

Clock to Setup (same edge} 54.0ns
Clock to Q, net "ADDRO" to FF Setup (D) at "OFL.D"
Target FFX drives output net "OFL"

Minimum Clock Period 54.0ns
Estimated Maximum Clock Speed : 18.6Mhz

(5 block levels)

Figure 4-12 Performance Summary for XC3020APC68-7 Design

Generating a Performance to TimeSpecs Report

Viewlogic Tutorials

Use the Analyze ---+Performance To TimeSpecs command to evaluate
the timing of your design with respect to the XACT-Performance
attributes that you added to your schematic.

The Report Paths Failing TimeSpec and Ignore TimeSpecs commands
on the TimeSpec Filters submenu of the Path Filters menu are

4-33

Viewlogic Tutorials

4-34

particularly useful for evaluating XACT-Performance results. Report
Paths Failing TimeSpec reports all path delays that do not meet
timing specifications, and Ignore TimeSpecs allows you to select
which XACT-Performance specifications you wish to be considered.

Note: Used without the Report Paths Failing TimeSpec option, the
Ignore TimeSpecs option allows you to create reports showing the
worst paths for each XACT-Performance specification.

To generate a sample Performance to TimeSpec report, use the
following procedure.

1. Click on the Path Filters ___. TimeSpec Filters ___.
Report Paths Failing TimeSpec command to specify that
you want to view only the failed timing specifications.

2. Select Analyze ___. Performance To TimeSpecs.

The Performance To TimeSpecs report is created in a window so
you can scroll through it.

3. To print the report to your default printer, select File ___. Print,
and click on OK.

4. To close the report, select File ___. Close Report.

Note: The Options ___. Report Options command specifies the
maximum number of paths to display for each failed timing
specification. If you do not specify this number, the report file lists the
delay of every path controlled by each XACT-Performance
specification in your design. The Tuning Analyzer may run out of
memory in this case; if not, it produces a very large output file.

As noted earlier, for the XC3020APC68 design, the Timing Analyzer
reports the same combinatorial logic loop detected by PPR. Since this
loop is deliberately included to create an oscillator, you can ignore
this message.

A portion of the Performance To TimeSpecs report for the
XC3020APC68-7 design is shown in Figure 4-13.

Warning: Combinational logic loop(s) have been detected.
These may cause subtle design problems, and may yield some
inaccurate path delays.
For a detailed enumeration of these loops,
use the "DRC -Inform" command from within XDE/EditLCA.

Timing Analyzer Report File:

Xilinx Development System

XACT-Performance and Timing Analyzer Tutorial

Design: c:\workarea\calc\xproject\ver2\revl\calc.lca (3020APC68-7)
Program: TIMING ANALYZER Beta-5.2.0b
Speedsfile: File 3020a.spd, Version 3000A.1, Revision 3020A.5

Timing Analyzer path report options:

Time Spec 'TSOl' from group 'FFS' to group 'FFS' is 2000.0ns.
TimeSpec 'TS02' from group 'PADS' to group 'FFS' is 1000.0ns.
TimeSpec 'TS03' from group 'FFGRP' to group 'PADS' is 1000.0ns.
TimeSpec 'TS04' from group 'INFFS' to group 'FFS' is 80.0ns.
Time Spec 'TS05' from group 'CTL_ADR_FF' to group 'ALUFF' is 50.0ns.
Time Spec 'TS06' from group 'CTL_ALU_FF' to group 'STACKER' is 30.0ns.
TimeSpec 'TS07' from group 'STACKER' to group 'LEDPADS' is 50.0ns.
TimeSpec 'TS08' from group 'ALUFF' to group 'PADS' is 45.0ns.

TimeGroup 'ALUFF' contains these Flip-Flop output nets:
OFL

TimeGroup 'CTL_ADR_FF' contains these Flip-Flop output nets:
ADDRO ADDRl

TimeGroup 'CTL_ALU_FF' contains these Flip-Flop output nets:
ADDRO ADDRl CONTROL/STATMACH/OTHER CONTROL/STATMACH/PUSH

(OTHER TIMEGROUP DEFINITIONS OMITTED)

TimeGroup 'STACKER' contains these Flip-Flop output nets:
STACK/AO STACK/A3 STACK/B2 STACK/Cl STACK/DO STACK/D3
STACK/Al STACK/BO STACK/B3 STACK/C2 STACK/Dl
STACK/A2 STACK/Bl STACK/CO STACK/C3 STACK/D2

OFL

Only paths that do not meet the selected TimeSpecs will be reported.
Output will be sorted by decreasing path delays.

TimeSpec 'TSOl' summary:
From TimeGroup 'FFS'
To TimeGroup 'FFS'

TimeSpec limit is
Worst path delay is

TimeSpec passes by

2000.0ns (Spec speed
53.9ns (Real speed

1946.lns

500.0KHz)
18.6MHz)

NOTE: This analysis does not include paths which start and end in the
same block (CLB or IOB) and use no external routing.

List of delay paths that fail the TimeSpec:
There are no paths that fail the TimeSpec.

TimeSpec 'TS02' summary:
From TimeGroup 'PADS'
To TimeGroup 'FFS'

WE

Viewlogic Tutorials 4-35

Viewlogic Tutorials

4-36

TimeSpec limit is
Worst path delay is

TimeSpec passes by

1000.0ns
18.4ns

981. 6ns

(Spec speed
(Real speed

l.OMHz)
54.3MHz)

NOTE: This analysis does not include paths which start and end in the
same block (CLB or IOB) and use no external routing.

List of delay paths that fail the TimeSpec:
There are no paths that fail the TimeSpec.

TimeSpec 'TS03' summary:
From TimeGroup 'FFGRP'
To TimeGroup 'PADS'

TimeSpec limit is
Worst path delay is

TimeSpec passes by

1000.0ns
48.6ns

951.4ns

(Spec speed
(Real speed

1. OMHz)
20.6MHz)

NOTE: This analysis does not include paths which start and end in the
same block (CLB or IOB) and use no external routing.

List of delay paths that fail the TimeSpec:
There are no paths that fail the TimeSpec.

TimeSpec 'TS04' summary:
From TimeGroup 'INFFS'
To TimeGroup 'FFS'

TimeSpec limit is
Worst path delay is

TimeSpec passes by

80.0ns (Spec speed
52.0ns (Real speed
28.0ns

12.5MHz)
19.2MHz)

NOTE: This analysis does not include paths which start and end in the
same block (CLB or IOB) and use no external routing.

List of delay paths that fail the TimeSpec:
There are no paths that fail the TimeSpec.

TimeSpec 'TS05' summary: *** TimeSpec FAILED! ***
From TimeGroup 'CTL_ADR_FF'
To TimeGroup 'ALUFF'

50.0ns
53.9ns

(Spec speed
(Real speed

TimeSpec limit is
Worst path delay is

*** TimeSpec FAILS by '3. 9ns ***

20.0MHz)
18.6MHz)

NOTE: This analysis does not include paths which start and end in the
same block (CLB or IOB) and use no external routing.

List of delay paths that fail the TimeSpec:

Xilinx Development System

XACT-Performance and Timing Analyzer Tutorial

Logical Path

Source clock net "CLK" (Rising edge)
From: Blk ADDRl CLOCK to DC.Y
Thru: Net ADDRO to EF.E
Thru: Blk STACK/$1I15/M01 to EF.X
Thru: Net STACK/$1I15/M01 to FE.B
Thru: Blk STACKO to FE.Y
Thru: Net STACKO to HA.D
Thru: Blk ALU/$1I308/CO to HA.X
Thru: Net ALU/$11308/CO to HB.B
Thru: Blk ALU/$11308/Cl to HB.X
Thru: Net ALU/$11308/Cl to HC.B
Thru: Blk ALU/$1l308/SUB_C2 to HC.Y
Thru: Net ALU/$1l308/SUB_C2 to GC.D

To: FF Setup (D)' Blk OFL

Target FFX drives output net "OFL"
Dest clock net : "CLK" (Rising edge)

Clock delay to Source clock pin : 2.6 ns
Clock delay to Dest clock pin : 2.6 ns
Clock net "CLK", delta clock delay [skew]

(OTHER FAILED PATHS OMITTED)

TimeSpec 'TS06' summary:
From TimeGroup 'CTL_ALU_FF'
To TimeGroup 'STACKER'

TimeSpec limit is
Worst path delay is

TimeSpec passes by

30.0ns (Spec speed
24.8ns (Real speed

5.2ns

0.0 ns

33.3MHz)
40.4MHz)

Delay

4.5ns
7.2ns
5.lns
2. 7ns
5.6ns
5.4ns
5.lns
0.6ns
5.6ns
1.4ns
5.lns
0.6ns
5.0ns

Cumulative

4.5ns)
ll.7ns)
16.8ns)
19.5ns)
25.lns)
30.5ns)
35.6ns)
36.2ns)
41. 8ns)
43.2ns)
48.3ns)
48. 9ns)
53.9ns)

NOTE: This analysis does not include paths which start and end in the
same block (CLB or lOB) and use no external routing.

List of delay paths that fail the TimeSpec:
There are no paths that fail the TimeSpec.

TimeSpec 'TS07' summary:
From TimeGroup 'STACKER'
To TimeGroup 'LEDPADS'

TimeSpec limit is
Worst path delay is

TimeSpec passes by

Viewlogic Tutorials

50.0ns (Spec speed
43.9ns (Real speed
6.lns

20.0MHz)
22.8MHz)

4-37

Viewlogic Tutorials

4-38

NOTE: This analysis does not include paths which start and end in the
same block {CLB or IOB) and use no external routing.

List of delay paths that fail the TimeSpec:
There are no paths that fail the TimeSpec.

TimeSpec 'TS08' summary:
From TimeGroup 'ALUFF'
To TimeGroup 'PADS'

TimeSpec limit is
Worst path delay is

TimeSpec passes by

45.0ns {Spec speed
23.lns {Real speed
21. 9ns

22.2MHz)
43.3MHz)

NOTE: This analysis does not include paths which start and end in the
same block {CLB or IOB) and use no external routing.

List of delay paths that fail the TimeSpec:
There are no paths that fail the TimeSpec.

Paths not used in TimeSpecs :
There are no paths in this section!

Figure 4-13 Performance to TimeSpecs Report for
XC3020APC68-7

The first section of the report lists all XACT-Performance
specifications applied to your design. If you do not specify any paths
that fall into a given default path type - FFS:TO:FFS, PADS:TO:FFS,
or FFS:TO:PADS-the default specification is set to "auto," which
means that PPR assigns some reasonable value as the timing
specification.

The report then lists the contents of each time group that you defined
using TNM attributes and TIMEGRP symbol attributes. This section
can be useful in verifying your time group definitions.

In Figure 4-13, the ALUFF time group contains the four ALU outputs
and the OFL flip-flop output. Therefore, the group contains all of the
flip-flops in the ALU and no other flip-flops, just as expected.

Xilinx Development System

XACT-Performance and Timing Analyzer Tutorial

The CTL_ADR_FF set was defined in the "Grouping Sets with
TIMEGRP" section. It is defined as CTLFF:EXCEPT:STFF and should
contain only the flip-flops in the CB2CLED macro below CONTROL.
The outputs of the CB2CLED macro are ADDRO and ADDRl, and
Figure 4-13 verifies that the CTL_ADR_FF set includes only these two
flip-flop outputs.

The worst path delay is then reported for each XACT-Performance
specification.

For TS05, which missed the target timing, the report includes a
detailed listing of the paths that failed. You can use this listing to
examine your critical paths and determine why each path is not
routable with the current timing requirement, then take steps to
correct the design.

For example, for the failed path shown in Figure 4-13, the longest
delay on the path is a 7.2-ns delay between the Y output of CLB DC
and the E input of CLB EF. (The block name of CLB DC is ADDRl,
since the block is named after the X output, but the signal you are
tracing is ADDRO.) Since these CLBs are some distance from each
other, the net delay is significant. Compare this net delay to the net
delay listed further down the path, between the Y output of HC and
the D input of CLB GC; the delay between these adjacent CLBs is
only 0.6 ns. You might be able to speed up this path by using
floorplanning techniques to place the logic within a smaller area.

A comparison of the Performance To TimeSpecs report in Figure 4-13
and the Performance Summary report in Figure 4-12 shows that the
PPR and the Timing Analyzer results vary by only a few tenths of
nanoseconds. When there is a discrepancy between the two, use the
Timing Analyzer results.

For example, the Performance To TimeSpecs report in Figure 4-14
shows a worst-case delay for TS05 paths of 53.9 ns. The Performance
Summary report in Figure 4-12 shows the worst path delay to be
54.0ns.

Generating a Detailed Path Report

Viewlogic Tutorials

You can create a Detailed Path report either by analyzing general
path types or analyzing designated paths from specific sources to
specific destinations.

4-39

Viewlogic Tutorials

4-40

Reporting by Path Type

To simplify the analysis of designs without XACT-Performance
specifications, you can restrict the Detailed Path report to certain path
types.

1. Select Path Filters --+ Path Analysis Filters --+
Select Path Types.

2. Select the desired path type, either Clock To Setup, Clock To Pad,
Pad To Setup, Pad To Pad, or Paths Ending at Clock Pin of Flip
flop.

3. Click on OK.

The number of paths reported depends on the value of the Maximum
Number of Paths value specified in the dialog box activated by the
Options ---t Report Options command.

Following is an example using the Clock To Setup path filter to report
the single slowest path between any two flip-flops clocked by the
same edge of the clock.

1. Select Options --+ Report Options and type 1 in the
Maximum Number of Paths box.

2. Select OK.

Note: If you do not set the Maximum Number of Paths option, the
report file lists delays for every path in your design. The Timing
Analyzer may run out of memory in this case; if not, it produces a
very large output file.

3. Select Path Filters ---t Reset Path Filters to clear all
previous settings.

4. Select Path Filters --+ Path Analysis Filters ---t

Select Path Types.

5. In the Select Path Types dialog box, deselect all the path types
except Clock to Setup.

6. Click on OK.

7. Select Analyze --+ Detailed Path Report.

Xilinx Development System

XACT-Performance and Timing Analyzer Tutorial

This command opens a report screen that allows you to scroll
through the report. A portion of this file, calcc2s.xrp, is shown in
Figure 4-14.

8. To send the report to the default printer, select File ___. Print
and click on OK.

9. To close the report, select File ___. Close Report.

The only paths reported are those between flip-flops, in other words,
the paths that fall into the dock-to-setup or FROM:FFS:TO:FFS
category. Since the Maximum Number of Paths option was set to 1,
only the worst-case dock-to-setup path is reported.

Output will be sorted by decreasing path delays.
Report file may include Clock To Setup paths.
A maximum of 1 path will be reported.

Paths not used in TimeSpecs :

Logical Path

Source clock net "CLK" (Rising edge)
From: Blk ADDRl CLOCK to DC.Y
Thru: Net ADDRO to EF.E
Thru: Blk STACK/$1115/MOl to EF.X
Thru: Net STACK/$1115/MOl to FE.B
Thru: Blk STACKO to FE.Y
Thru: Net STACKO to HA.D
Thru: Blk ALU/$11308/CO to HA.X
Thru: Net ALU/$11308/CO to HB.B
Thru: Blk ALU/$11308/Cl to HB.X
Thru: Net ALU/$11308/Cl to HC.B
Thru: Blk ALU/$11308/SUB_C2 to HC.Y
Thru: Net ALU/$11308/SUB_C2 to GC.D

To: FF Setup (D)' Blk OFL
Target FFX drives output net "OFL"
Dest clock net : "CLK" (Rising edge)

Clock delay to Source clock pin : 2.6
Clock delay to Dest clock pin : 2.6 ns

ns

Delay

4.5ns
7.2ns
5.lns
2.7ns
5.6ns
5.4ns
5.lns
0.6ns
5.6ns
1.4ns
5.lns
0.6ns
5.0ns

Clock net "CLK", delta clock delay [skew] : 0.0 ns

Cumulative

4.5ns)
11. 7ns)
16.8ns
19.5ns)
25. lns)
30.5ns)
35.6ns)
36.2ns)
41.8ns)
43.2ns)
48.3ns)
48.9ns)
53.9ns)

Figure 4-14 Clock To Setup Output for XC3020APC68-7 Design

Viewlogic Tutorials 4-41

Viewlogic Tutorials

4-42

Reporting by Sources and Destinations
To generate a report on a specific path, use the Select Sources and
Select Destinations filters. For instance, suppose you are concerned
about the path delay between Delayl and Delay2 in the DEBOUNCE
circuit of the Cale design. (These nets are the outputs of consecutive
flip-flops. The Timing Analyzer cannot report path delays that span
more than one flip-flop.)

Follow these steps to generate a detailed report of the delays on this
path.

1. Select Path Filters -+ Reset Path Filters to clear all
previous settings.

2. Select Path Filters-+ Path Analysis Filters -+

Select Sources.

The Select Sources dialog box appears. The Selected Sources list
box displays all sources by default.

3. Click on the Remove All(<<) button.

4. In the Available Sources list box, find the source flip-flop
DEBOUNCE/DELAYl by scrolling down the list. Alternatively,
you can type *DELAY* in the Filter for Available Sources box, and
click on Apply to reduce the selection of names in the Available
Sources box. If you make a mistake while typing in the Filter for
Available Sources field, click on the Clear button and try again.

5. Select the source called DEBOUNCE/DELAYl, and click on the
Add (>) button to transfer it to the Selected Sources list box.

6. Click on OK.

7. Select Path Filters-+ Path Analysis Filters -+
Select Destinations.

The Select Destinations dialog box appears. The Selected
Destinations list box displays all destinations by default.

8. Click on the Remove All(<<) button.

9. In the Available Destinations list box, find the destination flip-flop
DEBOUNCE/DELAY2 by scrolling down the list. Alternatively,
you can type *DELAY* in the Filter for Available Destinations list
box, and click on Apply to reduce the selection of names in the

Xilinx Development System

XACT-Performance and Timing Analyzer Tutorial

Available Destinations box. If you make a mistake while typing in
the Filter for Available Destinations field, click on the Clear
button and try again.

10. Select the destination called DEBOUNCE/DELAY2, and click on
the Add (>) button to transfer it to the Selected Destinations list
box.

11. Click on OK.

12. Select Analyze ---.. Detailed Path Report.

This command creates a report screen that allows you to scroll
through the report. A portion of this report is shown in
Figure 4-15.

13. To send the report to the default printer, select File ---.. Print
and click on OK.

14. To close the report, select File ---.. Close Report.

The report details a single path, the path between the Delayl flip-flop
and the Delay2 flip-flop, as shown in Figure 4-15. From the rising
clock edge on the Delayl flip-flop to the setup on the input pin of the
Delay2 flip-flop, there is a maximum delay of 9.7 ns under worst-case
conditions. There is no clock skew between the two flip-flops.

From FF "DEBOUNCE/DELAYl"
To FF "DEBOUNCE/DELAY2"
Output will be sorted by decreasing path delays.

Logical Path

Source clock net : "CLK" (Rising edge)
From: Blk BOUNCE/DELAY! CLOCK to CA.Y
Thru: Net DEBOUNCE/DELAY2 to DA.A

To: FF Setup (D), Blk DEBOUNCE/DELAY3
Target FFY drives output net "DEBOUNCE/DELAY3"
Dest clock net : "CLK" (Rising edge)

Clock delay to Source clock pin : 2.5 ns
Clock delay to Dest clock pin : 2.5 ns
Clock net "CLK", delta clock delay [skew] : 0.0 ns

Delay Cumulative

4.5ns
0.7ns
4.5ns

4.5ns)
5.2ns)
9.7ns)

Figure 4-15 Dpath.xrp File for an XC3020APC68-7 Design

Viewlogic Tutorials 4-43

Viewlogic Tutorials

4-44

The source and destination used in this example are both flip-flops. A
pull-down menu in the Select Sources and Select Destinations dialog
boxes allows you to specify sources and destinations using the names
of flip-flops, IOBs, clocks, nets, pins, and CLBs. Refer to the Timing
Analyzer Reference/User Guide for more details.

Using the Console Window
As you modify options and settings, the commands being executed
are logged in the Console window. You can see this window by
selecting View ---+ Console. An example of the Console window is
shown in Figure 4-16. You can also type in keyboard commands in
the Console window.

2>SelectFailingTimespec -TRUE
3>DefineEndpts -Fromall
4>IgnoreTimespec TS06

Figure 4-16 Console Window

Creating Macros
The File ---+ New Macro command opens a New Macro window
and displays a supplemental toolbar for macros. Using the Copy and
Paste toolbar icons, you can copy commands from the Console
window and paste them into the New Macro window. Once you
create a macro, you can run it by clicking on the Run icon on the
macro toolbar or by selecting File ---+ Run Macro.

Xilinx Development System

XACT-Performance and Timing Analyzer Tutorial

You can save macros with the File ---. Save Macro or File -t

Save As Macro commands.

You can load any existing macros with the File -t Ope:n Macro
command.

Further Reading

Viewlogic Tutorials

Before using XACT-Performance for your own designs, you should
read the "XACT-Performance Utility" section of the Xilinx
Reference Guide. You can find more information on the Timing
Analyzer in the Timing Analyzer Reference/User Guide.

4-45

Viewlogic Tutorials

4-46 Xilinx Development System

View logic
Tutorials

Viewlogic Tutorials - 0401414 01

Index

Printed in U.S.A.

Viewlogic Tutorials

Xilinx Development System

Index

Numerics
7SEG_INV block, 1-3
7SEG_TRU block, 1-3
7SEGDEC block, 1-3

A
ABEL Hardware Description Language,
3-1
ABEL-HDL file, 3-3, 3-6

compiling, 3-10
DCSET statement, 3-8
End statement, 3-9
Equations statement, 3-8
Istype statement, 3-7
Module statement, 3-6
Pin statement, 3-7
State statement, 3-7
State_diagram statement, 3-8
State_register statement, 3-7
Test_ vectors statement, 3-9
Title statement, 3-6
Xilinx Property Initialstate statement,
3-8

ABL2XNF, 3-10
ACLK symbol, 1-103
Add Component dialog box, 1-62, 1-64,
1-91, 1-93, 1-94
Add Label dialog box, 1-38, 1-98
Add Text dialog box, 1-48
Add toolbar icon, 1-62
ADD_SUB symbol, 2-9
ALUblock, 1-2, 1-26, 1-31, 1-87, 1-88,
1-132, 2-3
ALU vector, 1-120, 1-121, 1-122

Viewlogic Tutorials - 0401414 01

ANDBLK2 symbol, 1-31, 1-59, 1-87, 1-90,
1-97
ANDBUS2 symbol, 2-10
APR, 1-104, 4-1
Assign command, 1-124, 1-132, 1-137
Attribute toolbar icon, 1-41
attributes, 1-30

adding PINTYPE, 1-39
adding to nets, 1-29, 1-108
BLKNM, 4-7, 4-19
BOUNDS, 2-7
changing size, 1-45
changing visibility, 1-47
DEF, 2-8, 3-16
DEVICE, 4-12
ENCODING, 2-7
entering X-BLOX, 2-7
EXT, 1-106
FAST, 1-112
FILE, 3-16, 3-22
HBLKNM, 4-7
INVMASK, 2-10
LEVEL, 1-106, 4-12
LIBVER, 1-106, 2-8, 4-12
LOC, 1-105, 4-10
purpose, 1-104
SLOW, 1-112

autoexec.bat file, 1-4
Available Sources list box, 4-42

B
back-annotation, 2-21, 2-22, 3-22, 3-26,
3-27
binary radix toolbar icon, 1-130

Viewlogic Tutorials

BIT file, 1-195, 2-23, 3-28
bitstream, 1-192, 1-195, 2-21, 3-26
BLKNM attribute, 4-7, 4-19
block sheet, 1-33
Block Type command, 3-15
BLX file, 2-12, 2-17
BOUNDS attribute, 2-7
Box command, 1-29, 1-34, 1-36
Box toolbar icon, 1-34, 1-36
boxes, 1-29
BUFG symbol, 1-103
Bus command, 1-30, 1-72
bus definition symbols, 2-6
Bus toolbar icon, 1-72
BUS_DEF symbol, 2-6, 2-7
BUS_IF symbols, 2-6
buses, 1-30, 1-69, 1-120, 1-121

adding labels, 1-74

c

adding to schematic, 1-69, 1-72, 1-96
legalnames, 1-76
vectors, 3-7
X-BLOX, 2-5, 2-12, 2-16

Cale design, 1-2, 1-6, 1-8, 1-12, 2-2
CALC.1schematic,1-8, 1-13, 1-15, 1-17,
1-18, 1-21
calc.log file, 1-176
calc.see file, 1-139
calc.vsm file, 1-116, 1-173, 1-176
calc.wfm file, 1-120, 1-128, 1-178, 1-186,
1-187, 1-188
calct.wfm file, 1-187, 1-189
canceling current command, 1-28
Change Component dialog box, 1-84
Change Text dialog box, 1-49, 1-53, 1-76
Check program, 2-14, 2-15, 3-20, 3-21
Classic Defaults option, 1-21, 3-13
CLBMAPs, 4-10
CLK signal, 1-120, 1-123
clock, 3-7, 3-9, 4-6, 4-7, 4-8, 4-11, 4-13,
4-40, 4-43

ii

clock skew, 1-102
Clock To Pad option, 4-40
Clock To Setup option, 4-40
clock-to-pad path delay, 4-10, 4-13, 4-21,
4-33
clock-to-setup path delay, 4-5, 4-13, 4-21,
4-33
Close command, 1-21, 1-29, 1-57
Close Report command, 4-34, 4-41, 4-43
Close toolbar icon, 1-57, 1-58
command file, 1-140, 1-176

functional simulation, 1-117, 1-140,
2-15, 3-21
timing simulation, 1-174, 2-23, 3-27

Command File command, 2-15, 3-21, 3-27
Command File option, 1-117, 1-174
Command Files dialog box, 1-174, 1-175
common filters, 4-28
Compile Xilinx FPGA Netlist command,
3-10
Component command

Add menu, 1-30, 1-62, 1-91, 4-11, 4-19
Change menu, 1-31, 1-84, 2-3, 2-5, 3-13

Components list box, 1-63, 1-91, 1-92
Composite block type, 3-21
Console command, 4-44
Console window, 4-44
constraints file, 1-153, 1-155
Constraints File option, 1-153
CONTROL block, 1-2
Control Possible False Paths dialog box,
4-30
Copy command, 1-30, 1-65, 1-80
Copy toolbar icon, 1-66, 4-44
Create Project dialog box, 1-8, 1-9

D
D flip-flops, 3-7
dangling nets, 1-69, 1-70
DATA_REG symbol, 2-9
DCSET statement, 3-8
DEBOUNCEblock, 1-2

Xilinx Development System

DEF attribute, 2-8, 3-16
delta time, 1-190
Design Contains XBLOX, RAM, ROM or
XABEL Module option, 1-117, 2-11, 3-18
Design Entry dialog box, 1-13, 1-14, 2-3,
3-3, 3-12
Design Entry icon, 1-13, 1-18, 1-116, 2-2,
3-2, 3-3, 3-12, 4-3
design implementation

creating Xilinx project, 1-142, 2-18,
3-22, 4-24
implementing EPLD designs, 1-165
implementing FPGA designs, 1-152
invoking Design Manager, 1-140
translating the design, 1-145, 2-18, 3-22,
4-24
XACT-Performance designs, 4-23
X-BLOX designs, 2-18
Xilinx ABEL designs, 3-22

Design Implementation dialog box, 1-153,
1-154, 1-156, 1-161, 1-165, 1-169, 1-171,
3-24
Design Manager, 1-1

implementing design, 1-140, 2-18, 4-24,
4-25
invoking, 1-140, 2-18, 3-22, 4-24
invoking Flow Engine, 1-152, 2-20,
3-24, 4-25
invoking XMake or XEMake, 1-150,
2-18, 3-23, 4-24
placing project directory, 1-144
updating after fitting, 1-172
updating after implementation, 1-164
updating after translation, 1-151
updating for EPLD design, 1-151
window, 1-140, 1-141, 1-152

Design Name option, 1-15
Design Type option, 1-15
Detailed Path report, 4-28, 4-39
Detailed Path Report command, 4-40, 4-43
DEVICE attribute, 4-12

Viewlogic Tutorials

Index

Device option, 1-147
DIP switch, 1-194
down arrow, 1-27
Download cable, 1-192, 1-193

E
Edit Attribute dialog box, 1-42, 1-106,
1-110, 1-112, 4-11
Edit Attributes dialog box, 1-42, 1-43,
1-105, 1-106, 1-109, 1-112, 2-8, 4-10, 4-12,
4-15, 4-16, 4-17, 4-18, 4-19
Edit Paste command, 1-31
ENCODING attribute, 2-7
End statement, 3-9
EPLD fitter, 1-103
Equations statement, 3-8
EXC_P signal, 1-105, 1-120, 1-124, 1-131
EXCEPT statement, 4-6, 4-8
Excluded Blocks option, 4-31
Execute command, 1-2, 1-131, 1-196
Execute Netlister option, 1-117, 2-22, 3-26
Execute Power On Reset option, 1-117,
1-119, 1-174, 2-22, 3-26
Exit command, 1-2, 1-118
Explicit flag see X flag
EXT attribute, 1-106
External flag see X flag

F
F flag, 1-109
Family option, 1-147
FAST attribute, 1-112, 1-113
Fast Function Blocks, 1-109
FD4CE component, 1-87, 1-94
FFS set, 4-5, 4-6, 4-7, 4-11, 4-15, 4-17, 4-18,
4-20
FILE attribute, 3-16, 3-22
File Open dialog box, 1-31, 1-59
File Save As dialog box, 1-54
Filter for Available Destinations option,
4-43
Fitting tab, 1-167

iii

Viewlogic Tutorials

flags, 1-108
flip-flops

D, 3-7
grouping into FFS set, 4-5
grouping with EXCEPT statement, 4-6
grouping with TIMEGRP symbol at
tributes, 4-7
grouping with TNM attribute, 4-4, 4-5,
4-6
in macros, 4-4
IOB, 4-15
outputs, 4-38
path delay, 4-8, 4-29, 4-40, 4-42
reducing logic levels on critical paths,
4-10
stack, 4-16
state machine, 3-7, 4-18

floorplanning, 4-10
Flow Engine

creating a configuration bitstream,
1-162
creating timing simulation data, 1-162,
1-170
fitting design, 1-170
history file, 2-20, 3-24, 4-25
invoking, 1-161, 1-169, 2-20, 3-24, 4-25
optimizing design, 1-161, 1-169
placing and routing design, 1-162
purpose, 1-152, 1-165
running LCA2XNF, 2-21, 3-25
running MakeBits, 2-21, 3-26
running PPR, 2-21, 3-25
running X-BLOX, 2-20
running XDelay, 2-21, 3-25
running XNFMAP, 2-21, 3-25
running XNFPrep, 2-20, 3-25
window, 1-169

FMAPs, 4-10
forward tracing, 4-5
FPGA demonstration board, 1-2, 1-3,
1-100, 1-103, 1-192, 1-193, 1-194

iv

Full command, 1-24, 1-28, 1-56, 1-61
Full toolbar icon, 1-24, 1-56
functional simulation, 1-1

adding signals to waveform, 1-120
adding vectors to waveform, 1-121
changing display radix, 1-129
changing radices for PROcapture dis
play, 1-134
creating simulation network, 1-116,
1-117, 2-11, 3-18
defining clocks, 1-123
defining design inputs, 1-123
defining input values, 1-124
designs with X-BLOX modules, 2-11
designs with Xilinx ABEL modules,
3-17
invoking PROwave, 1-127
re-creating previous simulation, 1-140
simulating Cale design, 1-131
simulating design inputs, 1-125
viewing waveforms, 1-138

Functional Simulation dialog box, 1-116,
1-119, 2-11, 3-18
Functional Simulation PROsim icon, 1-116,
2-11, 3-17, 3-18
Functional Simulation PROwave icon,
1-127

G
GCLK symbol, 1-103
Generate Symbol of Type option, 3-11
global clock buffers, 1-102, 1-103
global reset, 1-117, 1-119, 1-125, 1-176
GR, 1-117
Grid command, 1-184
grid spacing, 1-61
GSR, 1-117
Guide Design option, 1-153
Guide/Resource tab, 1-158
guided design, 1-153

Xilinx Development System

H
HBLKNM attribute, 4-7
Help command, 1-28
High-Density Function Blocks, 1-109
HMAPs, 4-10

I
1/0 pads, 4-4, 4-5
IBVER attribute, 1-106
icons, 1-22, 1-27
IFD, 4-15
IFD component, 1-114
IFDXl component, 1-115
Ignore TimeSpecs command, 4-33, 4-34
ILD component, 1-114
Implement command, 1-153, 1-165, 2-19,
3-24, 4-25
Implementation icon, 1-140, 2-18, 3-22,
4-24
implementation see design implementation
Implementation tab, 1-158
Implementation Template dialog box,
1-157, 1-159, 1-166, 1-167
In command, 1-25, 1-26, 1-28
In toolbar icon, 1-25
Included Blocks option, 4-31
instance names, 1-97
INVMASK attribute, 2-10
IOBs

flip-flops, 1-114, 1-115, 4-15
latches, 4-5

IP AD symbol, 1-105
Istype keyword, 3-7

K
Kamaugh maps, 3-8

L
labels, 1-29

adding to schematic, 1-74, 1-96
format, 1-97
pin, 1-37

Viewlogic Tutorials

Index

latches, 4-4, 4-5
LATCHES set, 4-5, 4-6, 4-7, 4-18, 4-20
LCA file, 2-21, 3-25, 4-9, 4-27, 4-29
LCA2XNF, 2-21, 3-25
LED_INV block, 1-3
LED_p vector, 1-120, 1-121, 1-122
LED_TRU block, 1-3
LEVEL attribute, 1-106, 4-12
Libraries list box, 1-63, 1-91, 1-95
LIBVER attribute, 2-8, 4-12
List Files of Type option, 1-14
LOC constraint, 1-105, 4-10
log file, 1-140

M
macro symbols, 4-4
MAK file, 2-19, 3-24
MakeBits program, 1-195, 2-21, 3-26
Maximum Number of Paths option, 4-40,
4-41
MDI see Multiple Document Interface
Module block type, 3-15, 3-21
Module statement, 3-6
Move command, 1-30, 1-51, 1-68, 4-11
Move toolbar icon, 1-52, 1-69
MS-DOS, 1-195
Multiple Document Interface, 1-22, 1-55
MUXBUSx, 2-10

N
Net command, 1-30, 1-69
Net toolbar icon, 1-69
nets, 1-30

adding flags, 1-108
adding labels, 1-74
adding to schematic, 1-69, 1-96
dangling, 1-69, 1-70

New Macro command, 4-44
New Macro window, 4-44
New Project command, 1-142, 2-18, 3-22,
4-24
New Project dialog box, 1-142, 1-143

v

Viewlogic Tutorials

Notepad, 1-117, 1-118, 1-140, 1-176, 2-15,
2-23, 3-21, 3-27

0
Object Attribute command, 1-40, 1-44
Object Attributes command, 1-29, 1-30,
1-41, 1-47, 2-8, 3-16, 4-10, 4-12, 4-14, 4-16,
4-17, 4-18, 4-19, 4-20
Object Detail command, 3-15
Object Label command, 1-29, 1-38, 1-74,
1-98
OFD component, 1-114
OFDT component, 1-115
opcodes, 1-2, 1-120, 1-124, 1-132, 1-196
Open command, 1-21, 1-29, 1-31, 1-56,
1-59, 1-78, 1-88, 1-179, 2-16
Open dialog box, 1-128, 1-142, 1-154, 1-178
Open Macro command, 4-45
Open toolbar icon, 1-31
Optimization tab, 1-158, 1-159, 1-167
ORBLK symbol, 1-87
ORBLK2 symbol, 1-53, 1-90, 1-93, 1-98
ORBUS2 symbol, 2-10
OSC_3K block, 1-2, 1-100
OSC_7Kblock, 1-2, 1-101
OSC_7KXCLK signal, 1-120
oscillators, 1-100, 4-27
Out command, 1-25, 1-26, 1-28
Out toolbar icon, 1-25

p
Pack Design check box, 1-160
Package option, 1-147
Package Selection dialog box, 2-11, 3-18
Pad To Pad option, 4-40
Pad To Setup option, 4-40
PADS set, 4-5, 4-6, 4-7, 4-15, 4-18, 4-20
pad-to-clock path delay, 4-8
pad-to-pad path delay, 4-33
pad-to-setup path delay, 4-8, 4-13, 4-33
panning, 1-22, 1-23, 1-28
Part Selector dialog box, 1-146, 1-147, 1-148

Vl

Paste command, 1-81
Paste toolbar icon, 4-44
path analysis filters, 4-28
path filters, 4-28
PATHvariable, 1-5
Paths Ending at Clock Pin of Flip-flop op
tion, 4-40
Paths Through option, 4-31
Performance Summary command, 4-32
Performance Summary report, 4-28, 4-32
4-39 '
Performance To TimeSpecs command,
4-33, 4-34
Performance To TimeSpecs report, 4-28,
4-34, 4-39
Pin command, 1-29, 1-36
Pin grid array (PGA) package pins, 1-108
pin labels, 1-37
Pin statement, 3-7
Pin toolbar icon, 1-36, 1-37
pinout, 1-104, 3-11
PINTYPE attribute, 1-39
pipelining, 4-10
PLCC package pins, 1-108
Pop command, 1-29, 1-99, 1-103, 1-114,
1-116, 2-9, 3-15, 4-20
Pop Schematic toolbar icon, 1-99
Powerview, 1-4
PPR, 1-104, 4-1

default path timing, 4-9, 4-23, 4-38
detecting combinatorial logic loops,
4-32, 4-34
interaction with XACT-Performance,
4-9, 4-14
LCA file, 4-9, 4-27
log file, 4-9, 4-23, 4-24
running with Flow Engine, 2-21
running with XMake, 3-25

ppr.log file, 4-9, 4-23, 4-24
PRG file, i-165
primitives

Xilinx Development System

grouping symbols with TNM, 4-4, 4-5
macro, 4-4

Print command, 4-34, 4-41, 4-43
PRLD, 1-117
PRO Series

exiting, 1-2
function keys, 1-17
installing tutorial, 1-5
mouse button functions, 1-17
plotting directory, 1-5
programs, 1-1
required software, 1-3
search path variable, 1-5
tutorial devices, 1-1
tutorial length, 1-1

PRO Series dialog box, 1-52
PRO Series Project Manager, 1-7, 1-8, 1-9,
1-10, 2-2, 3-2, 4-3
PROcapture

adding buses, 1-30, 1-72, 1-96
adding components, 1-30, 1-61
adding FAST attribute, 1-111
adding flags to nets, 1-108
adding labels, 1-29, 1-74, 1-96, 1-97
adding LOC attributes, 1-105
adding nets, 1-30, 1-69, 1-96
adding pin labels, 1-37
adding pins, 1-36
adding PINTYPE attributes, 1-39
adding SLOW attributes, 1-111
adding symbol boxes, 1-29, 1-34
adding symbol pins, 1-29
adding symbol text, 1-48
adding text, 1-30
adding X-BLOX module, 2-3
adding Xilinx ABEL module, 3-3, 3-12
changing attribute size, 1-45
changing components, 1-82
changing display radices, 1-134
changing symbol size, 1-34
changing symbol text size, 1-50

Viewlogic Tutorials

Index

changing window colors, 1-20
closing windows, 1-29, 1-57
command summary, 1-28
controlling attribute visibility, 1-30,
1-47
controlling schematic visibility, 1-87
copying components, 1-30, 1-31, 1-65
copying schematics, 1-78
creating symbols, 1-31, 1-53
exchanging components, 1-103
help, 1-28
invoking, 1-18, 2-16
listing object descriptions, 3-15
making icons of schematics, 1-27
moving components, 1-30, 1-50, 1-68
opening schematics, 1-29, 1-59
panning, 1-22, 1-23, 1-28
pasting components, 1-31
placing FD4CE component, 1-94
placing symbols, 1-90
popping out of schematics, 1-29, 1-99
purpose, 1-1
pushing into schematics, 1-28, 1-89,
1-99, 1-101
pushing into symbols, 1-29, 1-88
refreshing screen, 1-28
saving schematics, 1-29, 1-52, 1-86, 1-99
selecting components, 1-30, 1-31, 1-82
verifying Xilinx ABEL symbol at
tributes, 3-16
verifying Xilinx ABEL symbol type,
3-15
viewing schematics, 1-28, 1-100, 3-14
viewing symbols simultaneously, 1-55
X-BLOX buses, 2-5, 2-6, 2-7
zooming, 1-22, 1-23, 1-28

PROcapture Colors command, 1-20, 3-13
PROcapture icon, 1-125, 1-126, 1-136
PROcolor Manager dialog box, 1-20, 1-21
Produce Configuration Data check box,
2-19, 2-21, 3-26, 4-25

vii

Viewlogic Tutorials

Produce Timing Simulation Data check
box, 1-157, 2-20, 3-24, 4-25
PROflow, 1-127

controlling design flow, 1-11
functional simulation, 1-116, 1-117
icon, 1-6
initial design status, 1-12
invoking Notepad, 1-117, 1-176, 2-15,
2-23, 3-21, 3-27
invoking PROcapture, 2-16
invoking PROsim, 1-118, 1-119, 1-176,
2-15, 3-21, 3-27
invoking PROwave, 1-116, 2-16, 2-23,
3-21, 3-27
invoking VSM, 1-117
invoking XSimMake, 1-117, 2-12, 3-18,
3-26
reactivating, 1-16, 1-116, 1-127, 1-177
simulating startup sequence, 1-118
starting, 1-6
timing simulation, 1-173, 1-176
window, 1-11

Program Option Templates option, 1-154,
1-157, 1-166
project definition, 1-8
project directory, 1-144
PROjman Create dialog box, 2-2, 3-2, 4-3
PROM, 1-194
PROsim

viii

adding signals to waveform, 1-120
adding vectors to waveform, 1-121,
1-122
changing radices for PROcapture dis
play, 1-134
creating log file, 1-140
defining clocks, 1-123
defining input values, 1-124
functional simulation, 1-118, 2-15, 3-21
invoking, 1-116, 1-118, 1-173, 1-176,
2-15, 2-23, 3-21, 3-27
processing calc.vsm file, 1-176

purpose, 1-1, 1-116
simulating Cale design, 1-131, 1-176
simulating design inputs, 1-125
timing simulation, 1-173, 2-23, 3-27

PROsim icon, 1-116, 1-134, 1-173, 2-11,
2-22, 3-17, 3-18, 3-26
PROsynthesis, 1-15
PROwave

changing display radix, 1-129
invoking, 1-127, 1-177, 2-16, 2-23, 3-21,
3-27
obtaining delta time, 1-190
obtaining transition time, 1-187
purpose, 1-116
specifying signals displayed, 1-120
viewing waveforms, 1-138, 1-177
zooming, 1-182

PROwave icon, 1-127, 1-134, 1-138, 1-177,
2-16, 3-21, 3-27
PRP file, 2-12, 2-17, 2-20, 3-25
Push Into Schematic command, 1-28, 1-89,
1-99, 1-112, 1-115, 2-3, 3-13, 3-14, 4-18
Push Into Symbol command, 1-29, 3-16
Push Schematic toolbar icon, 1-89

R
radices, 1-129, 1-134
RAM modules, 1-117
RAMs, 4-4, 4-5, 4-15, 4-16
RAMS set, 4-5, 4-6, 4-7, 4-16, 4-18, 4-20
Read Part From Design check box, 1-146
Refresh command, 1-28, 1-47
Region command, 1-25, 1-28, 1-183
Report Browser, 1-163, 1-171, 4-24
Report Browser command, 4-24
Report Browser toolbar icon, 4-24
Report Options command, 4-34, 4-40
Report Paths Failing TimeSpec command,
4-33, 4-34
Reset Path Filters command, 4-31, 4-40,
4-42
Resource tab, 1-167

Xilinx Development System

reverse polish notation, 1-196
Review Log option, 1-150
rocker switches, 1-196
ROM modules, 1-117
Routing Report, 4-26
Run Macro command, 4-44

s
Save As command, 1-29, 1-53, 1-55
Save As Macro command, 4-45
Save As toolbar icon, 1-53
Save command, 1-2, 1-29 1-52 1-77 1-86

' ' ' ' 1-99, 1-114, 1-139, 2-9, 3-13, 4-12, 4-18,
4-19, 4-21
Save Macro command, 4-45
schematics see PROcapture
Select command, 1-30
Select Component command, 1-82
Select Component dialog box, 1-82
Select Destinations command, 4-42
Select Destinations dialog box, 4-44
Select Family dialog box, 1-10, 2-2, 3-2, 4-3
Select Part option, 1-146
Select Path Types command, 4-40
Select Path Types dialog box, 4-40
Select Sources command, 4-42
Select Sources dialog box, 4-42, 4-44
Selected Sources list box, 4-42
Set Radix command, 1-130
Sheet Size command, 1-34
sheets, 1-14, 1-24, 1-33, 1-59
Show Settings command, 4-32
Simulate Equations command 3-9 . ' srmulationnetwork, 1-116, 1-117, 1-118,
1-173, 1-176, 2-15, 3-21, 3-27
Size command, 1-46
slew rate, 1-112
SLOW attribute, 1-112
STACK block, 1-2
STACK vector, 1-120, 1-121, 1-122
Start PROcapture check box, 1-15 1-16
1-18 ' '

Viewlogic Tutorials

STAT_ABL block, 3-3
State keyword, 3-7
State_diagram statement, 3-8
State_register statement, 3-7
Status command, 1-12, 1-16
Status dialog box, 1-12, 1-16
step size, 1-123
SW signal, 1-124
SW7block, 1-2
SW7SW_Pvector, 1-120, 1-121
Symbol Generation utilit, 3-11
Symbol Generation Utility icon, 3-11
Symbol Generator dialog box, 3-11
symbol windows, 1-32, 1-57
symbolic state machine, 3-7
symbols

adding pin labels, 1-37
adding pins, 1-29, 1-36
adding text, 1-48
block sheets, 1-33
BUS_DEF, 2-6, 2-7
BUS_IF, 2-6
changing size, 1-34
changing text size, 1-50
CLBMAP, 4-10
creating, 1-31, 1-53
creating boxes, 1-34
FMAP, 4-10
HMAP, 4-10
placing, 1-90
popping out of, 1-29
pushing into, 1-29
saving, 1-52
TIMEGRP, 4-4, 4-6, 4-18
TIMESPEC, 4-4, 4-8, 4-18, 4-20
viewing, 1-55

SymGen, 3-15, 3-16
SymGen Results window, 3-12
Sym Win, 3-11
SYSPLT variable, 1-5

Index

ix

Viewlogic Tutorials

T
Target Family option, 1-144
test vectors, 3-7, 3-9
Test_ vectors statement, 3-9
Text command, 1-30, 1-46, 1-48, 1-76
Text toolbar icon, 1-48
Tile command, 1-56, 1-79
TIMEGRP symbol, 4-4

clock edges, 4-7
combining sets, 4-6, 4-18
defining groups by output net names,
4-6, 4-7
defining sets by output net names, 4-7
EXCEPT statement, 4-6, 4-8
purpose, 4-6

TIMESPEC symbol, 4-4
purpose, 4-8
specifying timing constraints, 4-20
TNM attribute, 4-18

Timing Analyzer
Console window, 4-44
creating macros, 4-44
Detailed Path report, 4-28, 4-39
displaying current settings, 4-32
filters

common, 4-28

path, 4-28

path analysis, 4-28

resetting, 4-31

timing specification, 4-28
ignoring false paths, 4-29
invoking, 4-29
Performance Summary report, 4-28,
4-32, 4-39
Performance To TimeSpecs report,
4-28, 4-39
purpose, 4-1, 4-27
resetting filters, 4-31

Timing Analyzer command, 4-29
timing simulation

x

comparing to functional simulation,
1-179
creating simulation network, 1-117,
1-173, 2-22, 3-26
designs with X-BLOX modules, 2-22,
2-23, 3-26
designs with Xilinx ABEL components,
3-26
invoking PROwave, 1-177
obtaining delta time, 1-190
obtaining transition time, 1-187
simulating Cale design, 1-176
viewing waveforms, 1-177

Timing Simulation dialog box, 1-173,
1-175, 1-176, 3-26
Timing Simulation PROsim icon, 1-173,
2-22, 3-26
Timing Simulation PROwave icon, 1-177
timing specification filters, 4-28
Title statement, 3-6
TNM attribute

adding to schematic, 4-10
defining sets, 4-14
flip-flops, 4-4, 4-5
forward tracing, 4-5
grouping symbols by predefined sets,
4-5
1/0 pads, 4-4
latches, 4-4
macros,4-4, 4-18
nets, 4-5
primitives, 4-4, 4-18
purpose, 4-4
RAMs, 4-4, 4-5
syntax, 4-4

transition time, 1-187
Translate, 1-145
Translate option, 1-145
Translate Options dialog box, 1-145, 1-148

u
Unified Libraries, 1-5, 1-31, 1-34

Xilinx Development System

up arrow, 1-23, 1-27, 1-87

v
vectors, 3-7
VHDL designs, 1-15
viewdraw.ini file, 1-53, 2-12, 3-18
VSM file, 2-22, 3-27
VSM log file, 1-117
VSMprogram, 1-117, 2-15, 3-21
VSMUPD

generating simulation netlist, 2-22, 3-27

w
WDIR variable, 1-5
WIRfile

input to VSM, 3-21
input to WIR2XNF, 2-14, 2-19, 3-20,
3-24
output by Check program, 2-14, 3-20,
3-21
output by XNF2WIR, 2-15
simulation, 3-22

WIR2XNF, 1-3
running with XMake, 2-19, 3-24
runningwithXSimMake, 2-14, 3-20

Workview 4.l.3a, 1-4
Workview PLUS, 1-4

x
X flag, 1-108, 1-109, 1-111
XABEL, 1-15
XACT variable, 1-5, 3-10
XACT-Performance

adding timing constraints to specific
paths, 4-14
adding TNM attribute to schematic,
4-10
computing delays, 4-1
creating routed design with Flow En
gine, 4-25
defining sets with TNM attribute, 4-14
design implementation, 4-23
devices supported, 4-1

Viewlogic Tutorials

Index

entering default timing specifications,
4-11
grouping sets with TIMEGRP symbol,
4-18
interaction with PPR, 4-9
purpose, 4-1
setting default timing requirements,
4-10
specifying timing constraints with
TIMESPEC symbol, 4-20
syntax, 4-3
TIMEGRP symbol see TIMEGRP sym
bol
TIMESPEC symbol see TIMESPEC sym
bol
TNM attribute see TNM attribute

XACT-Performance report, 4-26
XACTstep Development System software,
1-4
XAS file, 3-10
X-BLOX

adding module to PROcapture sche
matic, 2-3
attributes, 2-6, 2-7
buses, 2-5, 2-6, 2-7, 2-12, 2-16
creating routed design with Flow En
gine, 2-20
design implementation, 2-18
examining XSimMake output, 2-13
functional simulation, 2-11, 2-15, 2-16
macros, 2-9, 2-10
schematics, 2-10
symbol library, 2-9
symbols, 2-16, 2-20

ADD_SUB, 2-9
ANDBUS2, 2-10
DATA_REG, 2-9
MUXBUSx, 2-10
ORBUS2, 2-10
XORBUX2, 2-10

xi

Viewlogic Tutorials

timing simulation, 2-22, 3-26
X-BLOX modules, 1-117
XC3000 demonstration board, 1-3, 1-196
XC3000A demonstration board, 1-2, 1-3,
1-100, 1-103, 1-192, 1-194
XC4000 demonstration board, 1-192
XChecker cable, 1-192, 1-193
XChecker program, 1-195
xchecker.pro file, 1-196
XCLK signal, 1-123
XDelay, 2-21, 3-25
XDraw, 2-15, 3-21
XEMake, 1-150
XEPLD optimization software, 1-120
XFF file, 2-14, 2-18, 2-19, 2-20, 3-24
XFind, 2-14, 3-20
XFW file, 2-14
XG file, 2-21
Xi-BLOX

creating routed design with Flow En
gine, 2-20

Xilinx ABEL

xii

ABEL-HDL file see ABEL-HDL file
ABL2XNF, 3-10
bus vectors, 3-7
compiling ABEL-HDL file, 3-10
creating routed design with Flow En
gine, 3-24
creating Viewlogic symbol, 3-11
design implementation, 3-22
examining XSimMake output, 3-19
functional simulation, 3-17, 3-18, 3-21
replacing block with Xilinx ABEL mod
ule in PROcapture, 3-12
simulator, 3-7, 3-9, 3-22
test vectors, 3-7, 3-9
timing simulation, 3-26
verifying symbol attributes in PROcap
ture, 3-16
verifying symbol type in PROcapture,
3-15

viewing schematic in PROcapture, 3-14
Xilinx ABEL modules, 1-117
Xilinx project, 1-142
Xilinx Property Initialstate statement, 3-8
XMake, 1-150

output, 2-18, 3-23
running WIR2XNF, 2-19, 3-24
running X-BLOX, 2-20
running XDelay, 2-21, 3-25
running XNFMerge, 2-19, 3-24, 4-15

XNF file
FILE attribute, 3-16, 3-22
input to XNF2WIR, 3-21
input to XNFMerge, 2-19, 3-24
merging, 2-19, 3-24
output by ABL2XNF, 3-10, 3-14, 3-17
output by LCA2XNF, 2-21, 3-25
output by WIR2XNF, 2-14, 2-19, 3-20,
3-24
output by X-BLOX, 2-15
output by XNFBA, 2-21, 3-26

XNF2WIR, 1-3
outputs, 2-15, 3-21
running with XSimMake, 2-15, 3-21

XNFBA, 2-21, 3-26
XNFMAP, 2-21, 3-25
XNFMerge

running with XMake, 2-19, 3-24, 4-15
running with XSimMake, 2-14
TIMEGRP errors, 4-7

XNFPrep, 2-14, 2-20, 3-25, 4-7
XORBUS2 symbol, 2-10
XSF file, 3-10, 3-11
XSimMake

creating functional simulation network,
1-117, 2-11, 3-17
creating simulation directories, 2-12,
3-18
creating timing simulation network,
2-22, 3-26
invoking, 2-12

Xilinx Development System

output, 2-13, 3-19
programs run automatically, 3-20
running Check program, 2-14, 2-15,
3-20, 3-21
running VSM, 2-15, 3-21
running VSMUPD, 2-22, 3-27
running WIR2XNF, 2-14, 3-20
running XDraw, 2-15, 3-21
running XFind, 2-14, 3-20
running XNF2WIR, 2-15, 3-21

Viewlogic Tutorials

Index

simulating designs with X-BLOX mod
ules, 2-11, 2-23
simulating designs with Xilinx ABEL
modules, 3-17, 3-27

xsimmake.out file, 1-176
XTF file, 2-21
XTG file, 2-20, 3-25

z
zooming, 1-22, 1-23, 1-28, 1-182

xiii

Viewlogic Tutorials

xiv Xilinx Development System

~XILINX®
The Programmable Logic Company'"

1111111111111 rn II
Printed in U.S.A. 0401414
