
CPLD Synthesis Design Guide Printed in U.S.A.

CPLD
Synthesis
Design Guide

Getting Started with
Synopsys for CPLDs

Designing with CPLDs

Compiling and Fitting a
CPLD Design

Simulating your Design

Library Component
Specifications

Attributes

Fitter Command and Option
Summary

CPLD Synthesis Design Guide

Xilinx Development System

The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

FPGA Architect, FPGA Foundry, NeoCAD, NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Timing Wizard, TRACE,
XACT, XILINX, XC2064, XC3090, XC4005, XC5210, and XC-DS501 are registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, A.K.A. Speed, Alliance Series, AllianceCORE, BITA, CLC, Configurable Logic
Cell, CORE Generator, CoreGenerator, CoreLINX, Dual Block, EZTag, FastCLK, FastCONNECT, FastFLASH,
FastMap, Foundation, HardWire, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroVia, PLUSASM,
PowerGuide, PowerMaze, QPro, RealPCI, RealPCI 64/66, SelectI/O, Select-RAM, Select-RAM+, Smartguide,
Smart-IP, SmartSearch, Smartspec, SMARTSwitch, Spartan, TrueMap, UIM, VectorMaze, VersaBlock,
VersaRing, Virtex, WebLINX, XABEL, XACTstep, XACTstep Advanced, XACTstep Foundry, XACT-Floorplanner,
XACT-Performance, XAM, XAPP, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, Xilinx Foundation
Series, XPP, XSI, and ZERO+ are trademarks of Xilinx, Inc. The Programmable Logic Company and The
Programmable Gate Array Company are service marks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under
one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155;
4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135;
5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704; 5,329,174; 5,329,181;
5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189;
5,410,194; 5,414,377; 5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181; 5,448,493; 5,450,021;
5,450,022; 5,453,706; 5,455,525; 5,466,117; 5,469,003; 5,475,253; 5,477,414; 5,481,206; 5,483,478; 5,486,707;
5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196; 5,498,979; 5,498,989; 5,499,192; 5,500,608;
5,500,609; 5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523; 5,506,878; 5,513,124; 5,517,135; 5,521,835;
5,521,837; 5,523,963; 5,523,971; 5,524,097; 5,526,322; 5,528,169; 5,528,176; 5,530,378; 5,530,384; 5,546,018;
5,550,839; 5,550,843; 5,552,722; 5,553,001; 5,559,751; 5,561,367; 5,561,629; 5,561,631; 5,563,527; 5,563,528;
5,563,529; 5,563,827; 5,565,792; 5,566,123; 5,570,051; 5,574,634; 5,574,655; 5,578,946; 5,581,198; 5,581,199;
5,581,738; 5,583,450; 5,583,452; 5,592,105; 5,594,367; 5,598,424; 5,600,263; 5,600,264; 5,600,271; 5,600,597;
5,608,342; 5,610,536; 5,610,790; 5,610,829; 5,612,633; 5,617,021; 5,617,041; 5,617,327; 5,617,573; 5,623,387;
5,627,480; 5,629,637; 5,629,886; 5,631,577; 5,631,583; 5,635,851; 5,636,368; 5,640,106; 5,642,058; 5,646,545;
5,646,547; 5,646,564; 5,646,903; 5,648,732; 5,648,913; 5,650,672; 5,650,946; 5,652,904; 5,654,631; 5,656,950;
5,657,290; 5,659,484; 5,661,660; 5,661,685; 5,670,896; 5,670,897; 5,672,966; 5,673,198; 5,675,262; 5,675,270;
5,675,589; 5,677,638; 5,682,107; 5,689,133; 5,689,516; 5,691,907; 5,691,912; 5,694,047; 5,694,056; 5,724,276;
5,694,399; 5,696,454; 5,701,091; 5,701,441; 5,703,759; 5,705,932; 5,705,938; 5,708,597; 5,712,579; 5,715,197;
5,717,340; 5,719,506; 5,719,507; 5,724,276; 5,726,484; 5,726,584; 5,734,866; 5,734,868; 5,737,234; 5,737,235;
5,737,631; 5,742,178; 5,742,531; 5,744,974; 5,744,979; 5,744,995; 5,748,942; 5,748,979; 5,752,006; 5,752,035;
5,754,459; 5,758,192; 5,760,603; 5,760,604; 5,760,607; 5,761,483; 5,764,076; 5,764,534; 5,764,564; 5,768,179;
5,770,951; 5,773,993; 5,778,439; 5,781,756; 5,784,313; 5,784,577; 5,786,240; 5,787,007; 5,789,938; 5,790,479;

R

CPLD Synthesis Design Guide

5,790,882; 5,795,068; 5,796,269; 5,798,656; 5,801,546; 5,801,547; 5,801,548; 5,811,985; 5,815,004; 5,815,016;
5,815,404; 5,815,405; 5,818,255; 5,818,730; 5,821,772; 5,821,774; 5,825,202; 5,825,662; 5,825,787; 5,828,230;
5,828,231; 5,828,236; 5,828,608; 5,831,448; 5,831,460; 5,831,845; 5,831,907; 5,835,402; 5,838,167; 5,838,901;
5,838,954; 5,841,296; 5,841,867; 5,844,422; 5,844,424; 5,844,829; 5,844,844; 5,847,577; 5,847,579; 5,847,580;
5,847,993; 5,852,323; Re. 34,363, Re. 34,444, and Re. 34,808. Other U.S. and foreign patents pending. Xilinx,
Inc. does not represent that devices shown or products described herein are free from patent infringement or from
any other third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to advise
any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability for the accuracy or
correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-1999 Xilinx, Inc. All Rights Reserved.

CPLD Synthesis Design Guide — 2.1i vii

About This Manual

This manual has been created to provide guidance in use of Synthesis
Design for XC9500, XC9500XL, and XC9500XV CPLDs in the work-
station environment. Practical examples in this manual apply to the
Synopsys compiler and simulator.

Additional Resources
For additional information, go to http://support.xilinx.com. Use the
search function at the top of the support.xilinx.com page or click links
that take you directly to online resources.

The following table provides information on tutorials and some of
the resources you can access using the support.xilinx.com advanced
Answers Search function.

Resource Description/URL

Tutorial Tutorials covering Xilinx design flows, from design entry to verifica-
tion and debugging
http://support.xilinx.com/support/techsup/tutorials/index.htm

Answers
Database

Current listing of solution records for the Xilinx software tools
Search this database using the search function at
http://support.xilinx.com/support/searchtd.htm

Application Notes Descriptions of device-specific design techniques and approaches
http://support.xilinx.com/apps/appsweb.htm

Data Book Pages from The Programmable Logic Data Book, which describe
device-specific information on Xilinx device characteristics,
including readback, boundary scan, configuration, length count,
and debugging
http://support.xilinx.com/partinfo/databook.htm

CPLD Synthesis Design Guide

viii Xilinx Development System

Manual Contents
This manual covers the following topics.

• “Getting Started with Synopsys for CPLDs” chapter. This
chapter shows you how to prepare your setup files and verify
your installation. It also provides a design walk-through as an
overview of the basic steps for implementing Xilinx XC9000
CPLD designs using Synopsys.

• “Designing with CPLDs” chapter. This chapter discusses how to
use design techniques, library cells and cpld command parame-
ters to get the best performance from Xilinx XC9000 CPLDs.

• “Compiling and Fitting a CPLD Design” chapter. This chapter
describes how to compile your design using the Synopsys Design
Compiler shell (DC Shell).

• “Simulating Your Design” chapter. The Xilinx CPLD Synopsys
Interface supports both functional and timing simulation of
VHDL designs using the VSS simulator. This chapter shows you
how to prepare designs for simulation and how to use a test
bench.

• “Library Component Specifications” appendix lists library
components used in CPLD designs.

• “Attributes” appendix lists attributes used in CPLD designs.

• “Fitter Command and Option Summary” appendix lists fitter
options entered from the Design Manager, and lists fitter options
entered on the cpld command line.

Xcell Journals Quarterly journals for Xilinx programmable logic users
http://support.xilinx.com/xcell/xcell.htm

Tech Tips Latest news, design tips, and patch information on the Xilinx design
environment
http://support.xilinx.com/support/techsup/journals/index.htm

Resource Description/URL

CPLD Synthesis Design Guide — 2.1i v

Conventions

This manual uses the following typographical and online document
conventions. An example illustrates each typographical convention.

Typographical
The following conventions are used for all documents.

• Courier font indicates messages, prompts, and program files
that the system displays.

speed grade: -100

• Courier bold indicates literal commands that you enter in a
syntactical statement. However, braces “{ }” in Courier bold are
not literal and square brackets “[]” in Courier bold are literal
only in the case of bus specifications, such as bus [7:0].

rpt_del_net=

Courier bold also indicates commands that you select from a
menu.

File → Open

• Italic font denotes the following items.

• Variables in a syntax statement for which you must supply
values

edif2ngd design_name

• References to other manuals

See the Development System Reference Guide for more informa-
tion.

CPLD Synthesis Design Guide

vi Xilinx Development System

• Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the
two nets are not connected.

• Square brackets “[]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

edif2ngd [option_name] design_name

• Braces “{ }” enclose a list of items from which you must choose
one or more.

lowpwr = {on|off }

• A vertical bar “|” separates items in a list of choices.

lowpwr = {on|off }

• A vertical ellipsis indicates repetitive material that has been
omitted.

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

• A horizontal ellipsis “. . .” indicates that an item can be repeated
one or more times.

allow block block_name loc1 loc2 ... locn;

Online Document
The following conventions are used for online documents.

• Red-underlined text indicates an interbook link, which is a cross-
reference to another book. Click the red-underlined text to open
the specified cross-reference.

• Blue-underlined text indicates an intrabook link, which is a cross-
reference within a book. Click the blue-underlined text to open
the specified cross-reference.

CPLD Synthesis Design Guide 1-1

Chapter 1

Getting Started with Synopsys for CPLDs

This chapter shows you how to prepare your Synopsys setup files
and verify your installation. It also provides a design walk-through
as an overview of the basic steps for implementing Xilinx XC9000/
XL/XV CPLD designs using Synopsys. This chapter contains the
following sections:

• “Workstation Environment”

• “Creating Synopsys Setup Files (Workstation)”

• “Analyzing the DesignWare and Simulation Libraries”

• “Verifying Your Installation (Workstation)”

• “Xilinx CPLD Design Flow”

• “Design Example”

The remaining chapters in this manual provide additional detailed
information on each step.

The design walk-through assumes that you have installed and config-
ured the Xilinx software and libraries. For installation instructions,
see the Release Document.

Workstation Environment
Before running any software, you must make sure that your worksta-
tion environment is set up properly. The following are required to
process Xilinx designs using the Synopsys interface:

1. Set the Xilinx environment variable to the Xilinx installation
directory:

setenv XILINX xilinx_path

CPLD Synthesis Design Guide

1-2 Xilinx Development System

2. Set the Synopsys environment variable to the Synopsys software
directory:

setenv SYNOPSYS synopsys_path

3. Add the following Xilinx executable directory to your path (in
addition to all executable directories required by Synopsys soft-
ware):

set path=(\

$XILINX/bin/ platform \

$path)

where platform is sol (for Solaris) or hp (for Hewlett-Packard).‘

Note: In UNIX and DC Shell commands shown in this book, where
text is too long to print on one line, the back-slash (\) character at the
end of a line is used to indicate a continuation line. In actual usage,
continuation line breaks are optional and may occur at any legal
point in the command line.

Creating Synopsys Setup Files (Workstation)
After you have installed the Xilinx software you must configure the
Synopsys Design Compiler and VSS simulator setup files to access
the XC9000 libraries. This section shows you how to configure the
setup files and verify that your setup is working properly.

The setup files are typically located in each design directory where
Xilinx CPLD designs are processed.

Note: You will find a sample setup file in $XILINX/synopsys/exam-
ples/template.synopsys_dc.setup_9k. You can copy this file to your
design directory and change the file name to .synopsys_dc.setup.

The Design Compiler Setup File
For XC9000 designs, your Design Compiler setup file
(.synopsys_dc.setup) must contain the following lines:

search path = { . \

Xilinx_path/synopsys/libraries/syn \
Synopsys_path/libraries/syn}

Getting Started with Synopsys for CPLDs

CPLD Synthesis Design Guide 1-3

link_library = {xc9000.db}
target_library = {xc9000.db}
symbol_library = {xc9000.sdb}
compile_fix_multiple_port_nets = true
bus_naming_style = "%s<%d>"
bus_dimension_seperator_style = "><"
bus_inference_style = "%s<%d>"
edifout_netlist_only = true

edifout_write_properties_list= {INIT LOC PWR_MODE}
edifout_power_and_ground_representation = cell
edifout_no_array = true

edifout_ground_name=GND

edifout_ground_pin_name=GROUND

edifout_power_name=VCC

edifout_power_pin_name=VCC

Where Xilinx_path is the actual directory path where your Xilinx soft-
ware is installed, and Synopsys_path is the actual path where your
Synopsys software is installed.

Note: You cannot use UNIX environment variables directly in the
.synopsys_dc.setup file, but you may use the dc_shell variables,
as shown in the template files.

The VSS Simulator Setup File
For XC9000 designs, your VSS Simulator setup file,
.synopsys_vss.setup , must contain the following lines:

SIMPRIM: $XILINX/synopsys/libraries/sim/lib/simprims
TIMEBASE = NS
TIME_RES_FACTOR = 0.1

Note: You may use either the $XILINX environment variable or the
actual path specification in the .synopsys_vss.setup file.

Analyzing the DesignWare and Simulation Libraries
The Xilinx Synopsys Interface (XSI) provides simulation libraries
supporting VSS. If you use VSS, you need to analyze the VHDL
simulation models after you install the Xilinx Synopsys Interface and
before you simulate your first Xilinx design. You must repeat these
steps each time you install an update to your Synopsys software.

CPLD Synthesis Design Guide

1-4 Xilinx Development System

To analyze the VSS model files for Xilinx simulation, change your
current directory to the simulation library source directory for the
Xilinx SIMPRIMS library and run the analyze.csh script as follows:

cd $XILINX/synopsys/libraries/sim/src/simprims
./analyze.csh

The previous command analyzes the encrypted models for the
SIMPRIMS library and places the output files into the $XILINX/
synopsys/libraries/sim/lib/simprims directory.

Note: The analyze.csh script attempts to create optimized models
by using your system’s C-compiler. If the vhdlan commands in the
script encounter any difficulty accessing a C-compiler on your
system, they will proceed by creating non-optimized models. The
script may produce numerous warnings about this, but should
complete successfully. The non-optimized models will produce the
same results, but simulation run-time is typically longer.

Verifying Your Installation (Workstation)
Before attempting to compile and fit a design, it is a good idea to
verify that you have access to the installed software. A simple verifi-
cation process is described below.

Verifying Synopsys Software Access
To verify that your system is correctly configured to access the
Synopsys software, enter the following UNIX commands:

which dc_shell
which vhdlan (if you are using the VSS simulator)

If you get a negative response for either command, (such as "no
vhdlan in ...") this means that either the Synopsys software is not
installed properly or that your system path is not set properly to
include the Synopsys software directories. Refer to the Synopsys
documentation for installation instructions.

Verifying Xilinx Software Access
To verify that your system is correctly configured to access the Xilinx-
supplied software, enter the following UNIX commands:

1. which cpld

Getting Started with Synopsys for CPLDs

CPLD Synthesis Design Guide 1-5

If cpld cannot be found, the Xilinx software is not installed or is
not in your path.

2. echo $XILINX

This variable should also point to the Xilinx directory found in
Step 1.

As a final verification that your Xilinx Synopsys interface is ready to
use, we have provided a complete design example for you to run,
which is described later in this chapter. To quickly verify Synopsys
compilation, copy the sample design as described in step 1 and run
scan.script as described in step 9.

Xilinx CPLD Design Flow
“Basic CPLD Design Flow” figure shows the basic design flow for
creating CPLD designs. Each step is described in the following design
example.

CPLD Synthesis Design Guide

1-6 Xilinx Development System

Figure 1-1 Basic CPLD Design Flow

Design Compiler
or

FPGA Compiler
(v3.4b)

.sedif

DC-shell Script.synopsys_dc.setup
or

Verilog HDL
Source Design

VHDL

.dc

DC2NCF

.ncf
(optional)

CPLD
.ucf

(optional)

.nga.tim .jed (XC9000).rpt .gyd

NGD2VER

.vhd .sdf .V

Verilog
Simulator

VHDL(VITAL)
Simulator

X8050

NGD2VHDL

Getting Started with Synopsys for CPLDs

CPLD Synthesis Design Guide 1-7

Design Example
The following design example is used to demonstrate the basic CPLD
design flow. This design implements a counter with variable start and
stop values which are loaded into registers from a data input bus.
When the START input is asserted, the start value is loaded into the
counter and the counter outputs are enabled. The counter outputs
increment on each clock cycle until the counter value matches the
stop value. The counter outputs are disabled on the next clock cycle.
The design can be implemented in a Xilinx XC95108-7PC84 device.

To help you understand the design, an equivalent schematic is shown
in the “Schematic Representation - SCAN Design” figure.

Figure 1-2 Schematic Representation - SCAN Design

Both a VHDL and a Verilog HDL version of this design are provided
with the software as an example.

The VHDL source file (scan.vhd) for the scan example design is
shown below.

CLR

IPAD

D[7:0]

L

CE

C

Q[7:0]

CEO

TC

D[7:0]

CE

C

Q[7:0]

CLR
C

QD

FDC

FD8CE CB8CLE

D[7:0]

CE

C

Q[7:0]

FD8PE

A[7:0]

B[7:0]

EQ

COMP8

C

QD

FDC

PRE

CLR

INV

IBUF

IBUF

IBUF

I[7:0]

IPAD

IPAD

IPAD

IPAD

OBUF

O[7:0]

OPAD

OBUFE8
E

C_OUT[7:0] OPAD8

DONE

COUNT[7:0]START_REG [7:0]DATA_IN[7:0]

WRITE_START

IPAD8 IBUF8

WRITE_END

CLOCK

CLEAR

START_REG

END_REG

END_REG [7:0]

COUNT

GND

AND2B1
OR2

IBUF

START

OE_REG

X8049

INV

CLR

IBUF

INIT=S

DONE_REG

CPLD Synthesis Design Guide

1-8 Xilinx Development System

-- Xilinx CPLD Synopsys VHDL Tutorial Design

-- File: scan.vhd

-- Target Device: XC9536-5PC44

-- Author: Xilinx Corporation

-- Copyright (C) Xilinx Corporation
1994

-- All rights reserved

-- Requirements: Xilinx XACT Version
M1

-- (Alliance core and Synopsys
interface)

-- Synopsys: Design Compiler or FPGA
Compiler

-- v3.4b or later

-- Standard library configuration --

Library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

entity scan is

 port (CLOCK, CLEAR, START, WRITE_START, WRITE_END
: in std_logic;

 DATA_IN : in std_logic_vector (7 downto 0);

 C_OUT : out std_logic_vector (7 downto 0);

 DONE : out std_logic);

end scan;

architecture behavioral of scan is

signal START_REG : std_logic_vector (7 downto 0);

signal END_REG : std_logic_vector (7 downto 0) :=
"11111111";

Getting Started with Synopsys for CPLDs

CPLD Synthesis Design Guide 1-9

signal COUNT : std_logic_vector (7 downto 0) :=
"00000000";

signal OE_REG, DONE_REG : std_logic := '0';

-- Initial states used by behavioral simulation only.

begin

-- Starting value register.

 process (CLOCK)

 begin

 if (CLOCK'event and CLOCK='1') then

 if (WRITE_START = '0') then

 START_REG <= DATA_IN;

 end if;

 end if;

 end process;

-- Ending value register with asynchronous preload.

 process (CLEAR, CLOCK)

 begin

 if (CLEAR = '1') then

 END_REG <= "11111111";

 elsif (CLOCK'event and CLOCK='1') then

 if (WRITE_END = '0') then

 END_REG <= DATA_IN;

 end if;

 end if;

 end process;

-- DONE flag and OE-control registers with
asynchronous clear.

 process (CLEAR, CLOCK)

 begin

CPLD Synthesis Design Guide

1-10 Xilinx Development System

 if (CLEAR = '1') then

 DONE_REG <= '0';

 OE_REG <= '0';

 elsif (CLOCK'event and CLOCK='1') then

-- Registered equality comparator:

 if (COUNT = END_REG) then

 DONE_REG <= '1';

 else

 DONE_REG <= '0';

 end if;

-- OE-control register:

 if (START = '1') then

 OE_REG <= '1';

 elsif (DONE_REG = '1') then

 OE_REG <= '0';

 end if;

 end if;

 end process;

-- Counter with asynchronous clear and parallel load.

 process (CLEAR, CLOCK)

 begin

 if (CLEAR = '1') then

 COUNT <= "00000000";

 elsif (CLOCK'event and CLOCK='1') then

 if (START = '1') then

 COUNT <= START_REG;

 elsif (OE_REG = '1') then

 COUNT <= COUNT + 1;

Getting Started with Synopsys for CPLDs

CPLD Synthesis Design Guide 1-11

 end if;

 end if;

 end process;

-- Three-state counter outputs.

 C_OUT <= COUNT when (OE_REG = '1')

 else "ZZZZZZZZ";

 DONE <= DONE_REG;

end behavioral;

Design Entry
Typically you will enter your design in Synopsys VHDL/HDL form
by using a text editor. However, all required source, setup, and test
bench files for this design example have already been entered for you.
The VHDL design files are contained in the $XILINX/synopsys/tuto-
rial/cpld/vhdl directory, and the Verilog HDL design files are in
$XILINX/synopsys/tutorial/cpld/verilog.

Step1 - Create a Design Directory

Create a local copy of the scan tutorial directory as follows:

• Change your current working directory to a local, writable loca-
tion in which you will place the scan working directory.

• Copy the entire VHDL or Verilog directory tree from the installed
tutorial area into your current directory, for example:

cp -r $XILINX/synopsys/tutorial/cpld/vhdl .

or

cp -r $XILINX/synopsys/tutorial/cpld/verilog .

• Change your current directory to the new working directory as
follows:

cd vhdl

or

cd verilog

CPLD Synthesis Design Guide

1-12 Xilinx Development System

If you need more information on design entry see the Synopsys
Design Compiler manuals.

Functional Simulation
Functional simulation verifies the logic of your design. This will save
you time by catching logic errors early in the development cycle. This
section describes the simulation flow for the VHDL System Simulator
(VSS). If you are not using VSS, skip this section and continue with
step 9.

You must analyze your source design file and test bench before simu-
lation.

Step 2 - Analyze Your Design

Analyze the scan design by entering the following Synopsys
command on the UNIX command line:

vhdlan scan.vhd

You will see the analyzer version number and a copyright notice. If
the analysis works properly you will be returned to the UNIX prompt
with no error messages displayed.

Step 3 - Analyze Your Test Bench

For this example a test bench is provided (scan_tb.vhd). At the end
of this file, a configuration named CFG_SCAN_TB is declared.

Analyze the test bench for scan by entering the following Synopsys
command on the UNIX command line:

vhdlan scan_tb.vhd

Again, you will see the analyzer version number and a copyright
notice. If the analysis works properly you will be returned to the
UNIX prompt with no error messages displayed.

The test bench for the scan design example (scan_tb.vhd) is shown
below:

-- Xilinx CPLD Synopsys VHDL Tutorial Design Test
Bench

-- File: scan_tb.vhd

Getting Started with Synopsys for CPLDs

CPLD Synthesis Design Guide 1-13

-- Target Device: XC9536-5PC44

-- Author: Xilinx Corporation

-- Copyright (C) Xilinx Corporation
1994

-- All rights reserved

-- Requirements: Xilinx XACT Version M1

-- (Alliance core and Synopsys
interface)

-- Synopsys: VSS simulator v3.4b-vital
or later

library IEEE;

use IEEE.std_logic_1164.all;

use STD.Textio.all;

entity scan_tb is

end scan_tb;

architecture test of scan_tb is

 constant tCW : time := 25 ns;

 component scan

 port (CLOCK, CLEAR, START, WRITE_START,
WRITE_END: in std_logic;

 DATA_IN: in std_logic_vector (7 downto 0);

 C_OUT: out std_logic_vector (7 downto 0);

 DONE: out std_logic);

 end component;

CPLD Synthesis Design Guide

1-14 Xilinx Development System

 signal CLOCK, CLEAR, START, WRITE_START, WRITE_END:
std_logic;

 signal DATA_IN: std_logic_vector (7 downto 0);

 signal C_OUT: std_logic_vector (7 downto 0);

 signal DONE: std_logic;

begin

 UUT: scan

port map (CLOCK, CLEAR, START, WRITE_START,
WRITE_END,

 DATA_IN, C_OUT, DONE);

DRIVER: process

begin

CLOCK <= '0';

CLEAR <= '1';

START <= '0';

WRITE_START <= '1';

WRITE_END <= '1';

DATA_IN <= "00000000";

wait for 200 ns;

CLEAR <= '0';

wait for tCW;

CLOCK <= '1';

wait for tCW;

CLOCK <= '0';

DATA_IN <= "01111101";

WRITE_START <= '0';

wait for tCW;

Getting Started with Synopsys for CPLDs

CPLD Synthesis Design Guide 1-15

CLOCK <= '1';

wait for tCW;

CLOCK <= '0';

DATA_IN <= "10000001";

WRITE_START <= '1';

WRITE_END <= '0';

wait for tCW;

CLOCK <= '1';

wait for tCW;

CLOCK <= '0';

DATA_IN <= "00000000";

WRITE_END <= '1';

START <= '1';

wait for tCW;

CLOCK <= '1';

wait for tCW;

for I in 1 to 6 loop

 CLOCK <= '0';

 START <= '0';

 wait for tCW;

 CLOCK <= '1';

 wait for tCW;

end loop;

CLOCK <= '0';

START <= '1';

wait for tCW;

CLOCK <= '1';

CPLD Synthesis Design Guide

1-16 Xilinx Development System

wait for tCW;

CLOCK <= '0';

START <= '0';

wait for tCW;

CLOCK <= '1';

wait for tCW;

CLOCK <= '0';

CLEAR <= '1';

wait for tCW;

CLOCK <= '1';

wait for tCW;

CLOCK <= '0';

CLEAR <= '0';

wait for tCW;

wait;

end process;

end test;

configuration CFG_SCAN_TB of scan_tb is
 for test

 end for;
end CFG_SCAN_TB;

Step 4 - Invoke the Simulator

Invoke the simulator by entering the following Synopsys command
on the UNIX command line:

vhdldbx &

You will see the following window for selecting the analyzed config-
urations:

Getting Started with Synopsys for CPLDs

CPLD Synthesis Design Guide 1-17

Figure 1-3 VHDLDBX Window

Step 5 - Select the Design

Select CFG_SCAN_TB from the menu. This brings up the Synopsys
VHDL Debugger window.

Step 6 - Trace Signals

Click in the lower section of the Synopsys VHDL Debugger window
and enter the following command:

trace *'signal

This command selects all signals at the test bench level for display
and brings up the Dynamic Waveform Viewer (Waves).

Step 7 - Run the Simulation

Click the RUN button in the Debugger window to run the simulation
waveform specified in the test bench. A trace display appears.

Step 8 - Return to UNIX

Return to the UNIX environment by selecting EXECUTE-QUIT from
the VHDL Debugger menu.

CPLD Synthesis Design Guide

1-18 Xilinx Development System

If you need more information on functional simulation see the "Simu-
lating Your Design" chapter.

Synthesizing Your Design (Compiling)
Synthesizing your design converts the VHDL or Verilog HDL source
text into a netlist that is composed of logic primitives. The netlist is in
a form that can be read by the Xilinx fitter.

Note: This design example demonstrates the compilation flow using
dc_shell commands. You could instead use the Synopsys Design
Analyzer GUI, but this is not shown in this book.

Step 9 - Enter the DC Shell Environment

Enter the Synopsys DC Shell environment by entering the following
Synopsys command on the UNIX command line:

dc_shell

You will see the DC Shell license information and command-line
prompt. Verify that the software version is v3.1 or newer.

Note: The commands required to compile the scan design example
are shown in the following steps 10 through 16. These commands are
also contained in compiler script files. The appropriate commands for
either the Design Compiler orthe FPGA Compiler are contained in
scan.script which you can run by entering the following Synopsys
command:

include scan.script

If you choose to use these compiler scripts, go to step 17 when compi-
lation is complete.

Unless otherwise specified, the commands in steps 10-16 are the same
for both FPGA Compiler and Design Compiler. Unless otherwise
specified, these commands are the same for either the VHDL or
Verilog HDL version of the scan design.

Step 10 - Analyze Your Source Design

Read and analyze your VHDL source design file by entering the
following Synopsys command:

analyze -format vhdl scan.vhd

Getting Started with Synopsys for CPLDs

CPLD Synthesis Design Guide 1-19

For Verilog HDL source design, enter the following command:

analyze -format verilog scan.v

The warning messages you may see during this step are normal. The
VHDL source file contains initial signal values that are used only for
functional simulation and these values are ignored during synthesis.
Actual register initial states are set using attributes as shown in step
13.

Step 11 - Elaborate Your Design

To build the design based on your analyzed VHDL file, entering the
following Synopsys command:

elaborate scan

This command displays each register and 3-state buffer encountered
in your design.

Step 12 - Synthesize Your Design

To synthesize an implementation of your design based on cells in the
XC9000 technology library enter the following Synopsys command:

compile -map_effort low

The mapping effort is set to LOW to save compilation time because
the synthesizer does not perform any speed or area optimization for
CPLD designs; optimization is performed by the CPLD fitter.

Step 13 - Specify Initial Register States

In this design we want the counter, the OE_REG and DONE flip-flop
to be initialized to zero. We also want the END_REG register to
initialize to all ones to prevent the comparator from detecting a false
DONE condition. The initial states of the remaining flip-flops are not
critical for this design.

By default, all registers in an XC9500 or XC9500XL devices are initial-
ized to zero when powered up, so we need not specify any dc_shell
directives for the counter, OE_REG or DONE. To specify the all-ones
initial state of the END_REG register, enter the following Synopsys
command:

set_attribute END_REG* init S -type string

CPLD Synthesis Design Guide

1-20 Xilinx Development System

Note: The init attribute may be attached to either the flip-flop cells
or their output nets in the design.

Step 14 - Specify Timing Constraints

We want to constrain clock period for this design to be no more than
12 ns. Enter the following Synopsys timing constraint:

create_clock CLOCK -period 12

Step 15 - Use a Global Clock Input Port

We want the CLOCK input for this design to be assigned to one of the
global clock input pins (GCLK) of the device. Normally, the CPLD
fitter would do this automatically whenever possible. To explicitly
assign a global clock, enter the following Synopsys shell command:

set_pad_type -exact BUFG CLOCK

Step 16 - Place I/O Buffer Cells

To place I/O buffer cells on all top-level ports in the design, enter the
following Synopsys commands:

set_port_is_pad "*"
insert_pads

Step 17 - Flatten the Design

Any hierarchy in the design must be flattened before attributes can be
written into the netlist. Enter the following Synopsys shell command
to flatten the design:

ungroup -all -flatten

Step 18 - Output the Netlist

The design database is now complete and ready to be output in
netlist form.

Write an EDIF-formatted netlist by entering the following Synopsys
command:

write -format edif -output scan.sedif

Getting Started with Synopsys for CPLDs

CPLD Synthesis Design Guide 1-21

Step 19 - Output Timing Constraints

The timing constraint entered in step 14 is written into a separate
DC_shell script file which is later read by the Xilinx implementation
software. Enter the following Synopsys shell command to write the
timing constraint file:

write_script > scan.dc

Step 20 - Exit DC Shell

Exit DC Shell by entering the following Synopsys command:

exit

You are returned to the UNIX prompt.

Step 21 -Translate Timing Constraints File

The DC_shell script file containing your timing constraints written in
Step 19 must be translated into a Xilinx constraint file, scan.ncf. At the
Unix prompt, enter the following command to run the translator:

dc2ncf scan.dc

If you need more information on compiling your design, see the
"Compiling Your Design" chapter.

The synthesizer creates a gate-level design with no physical device
information; the physical layout of the device is done in the fitter
step. No speed or area estimates are provided by the XC9000
synthesis library. Therefore do not attempt to create a timing report or
perform estimated timing simulation at this time.

Fitting Your Design
The CPLD fitter translates your logical design file (scan.sedif) into a
physical device layout, and performs all device-specific logic optimi-
zation.

Note: This design example demonstrates the fitter flow using cpld
command-line entry. You could instead use the Xilinx Design
Manager GUI to process your design. This is explained in chapters 2
and 3 of this guide.

CPLD Synthesis Design Guide

1-22 Xilinx Development System

Step 22 - Fit Your Design

To fit your design into an XC9000 device, enter the following on the
UNIX command line:

cpld scan

To fit the design into an XC9500XL device, enter the following
command:

cpld -p 9500xl scan

The fitter displays a series of progress messages and a resource
summary that shows how well your design fits into the target device.

When the fitter is finished, and assuming there are no errors, you
need only to examine the fitter report file, scan.rpt. If you wish, you
can also examine the static timing report file, scan.tim.

If you need more information on fitting, see the "Fitting Your Design"
chapter.

Timing Simulation
Timing simulation uses the actual device delays based on the phys-
ical layout of your design after fitting.

Step 23 - Prepare A Timing Simulation File

The cpld command produces a timing simulation database file
(scan.nga) each time the design is successfully implemented. To
translate the .nga file for simulation using VSS or other VITAL simu-
lator, enter the following command at the UNIX prompt:

ngd2vhdl -w scan scan_time

The ngd2vhdl command produces a VITAL-compliant structural
VHDL file (scan_time.vhd) and an SDF-formatted timing back-
annotation file (scan_time.sdf).

To translate the .nga file for simulation using a Verilog simulator,
enter the following command:

ngd2ver -w scan scan_time

The ngd2ver command produces a structural Verilog file
(scan_time.v) and an SDF-formatted timing book annotation file
(scan_time.sdf).

Getting Started with Synopsys for CPLDs

CPLD Synthesis Design Guide 1-23

Note: The remainder of this tutorial describes the procedure for
performing timing simulation using the VSS simulator. If you are not
using the VSS simulator, skip the remainder of this tutorial.

Step 24 - Analyze Your Implemented Design

Analyze the implemented design produced by the Xilinx ngd2vhdl
command by entering the following Synopsys command on the
UNIX command line:

vhdlan scan_time.vhd

You will see the analyzer version number and a copyright notice. If
the analysis works properly you will be returned to the UNIX prompt
with no error messages displayed.

Step 25 - Analyze Your Test Bench

Analyze the simulation test bench by entering the following
Synopsys command on the UNIX command line:

vhdlan scan_tb.vhd

Again, you will see the analyzer version number and a copyright
notice. If the analysis works properly you will be returned to the
UNIX prompt with no error messages displayed.

Step 26 - Invoke the VSS Simulator

Invoke the Synopsys VSS simulator by entering the following
Synopsys command on the UNIX command line:

vhdldbx -sdf_top \
 /SCAN_TB/UUT -sdf scan_time.sdf CFG_SCAN_TB &

This will open the simulator window. The -sdf parameter specifies
the timing back-annotation file produced by ngd2vhdl . The
-sdf_top parameter specifies the level in the test bench hierarchy at
which the back annotation information will be applied, which is the
"UUT" instance of the scan test bench.

Step 27 - Open the Waveform Viewer

Use the TRACE command to specify the same signals used during
functional simulation in step 6. Enter the following command on the
VHDL Debugger command line:

CPLD Synthesis Design Guide

1-24 Xilinx Development System

trace *'signal

This opens the Dynamic Waveform Viewer window.

Step 28 - Run the Simulation

Run the simulation by clicking the RUN button in the lower section
of the Synopsys VHDL Debugger window.

This will run the timing simulation test bench and display the simula-
tion trace of your design.

Step 29 - Return to UNIX

Return to the UNIX environment by selecting EXECUTE-QUIT from
the simulator menu.

If you need more information on timing simulation, see the “Simu-
lating Your Design" chapter.

CPLD Synthesis Design Guide — 2.1i 2-1

Chapter 2

Designing with CPLDs

This chapter discusses how to control various device features and get
the best performance from Xilinx XC9500, XC9500XL, and XC9500XV
CPLDs. You can control aspects of design implementation at these
points:

• in your VHDL or Verilog HDL source design

• using dc_shell commands or Design Analyzer commands

• using FPGA Express implementation options

• using cpld command-line parameters or the Xilinx Design
Manager templates

For more information on synthesis library cells, see the "Library
Component Specifications" appendix. For more information on
attributes, see the "Attributes" appendix. For more information on
CPLD commands, see chapter 3, Compiling and Fitting your Designs.

This chapter describes how you can control the aspects of design
implementation. It contains the following sections:

• “Target Device Selection”

• “Special I/O Ports”

• “Controlling Register Initial State”

• “Controlling Power Consumption”

• “Controlling Output Slew Rate”

• “Controlling the Pinout”

• “Controlling Logic Optimization”

• “Controlling Timing Paths”

• “XC9500 Local Feedback”

CPLD Synthesis Design Guide

2-2 Xilinx Development System

Target Device Selection
You must always select a target family, such as XC9500 or XC9500XL.
By default, the fitter will automatically select a device within that
family for you, choosing, in general, the smallest part that will satisfy
the needs and constraints of your design. Otherwise, you can select a
specific device, package, speed, or any valid combination.

Selecting a Part from the Design Manager
You can select the target device family and, optionally, a specific
device, package and speed from the Design Manager. To bring up the
Design Implementation Dialog Box select:

Design → Implement

Figure 2-1 Design Implementation Dialog Box

Click once on the Select button to get the Part Selector Dialog Box.

Figure 2-2 Part Selector

Designing with CPLDs

CPLD Synthesis Design Guide 2-3

The part selector allows you to select from CPLD families, devices,
packages and speed grades.

Family

This option allows you to select from a list of Xilinx families. Click
once on the down arrow adjacent to this option box to display avail-
able families. If you select the XC9500 family, the device, package and
speed boxes will all be set to All . Once you have selected a family
you can select a device from within that family, or you can leave any
or all of the remaining boxes set to All .

Device

This option allows you to select a specific CPLD device from the
family selected on line one. Click once on the down arrow adjacent to
this option box to list the devices for the Family selected above.
Once you have selected a device, only packages and speed grades
available for that device will appear in the Package and Speed
Grade option lines below.

If you are only interested in selecting the fastest device available,
leave this option on All and select the Speed Grade only.

Package

This line allows you to select from available packages. If you have
already selected a device, the option line will only display packages
that are available for that device.

Speed Grade

This option allows you to select from available speed grades. If you
have already select a device from the Device option box, only the
speed grades available for that device will be displayed when you
click on the down arrow. However, if speed is your primary consider-
ation, leave the Device option box on All and select your Speed
Grade only. If you select a speed grade and then try to select a device
which does not support that speed grade, the Speed Grade option
box will revert to All .

CPLD Synthesis Design Guide

2-4 Xilinx Development System

Command Line Device Selection
You can optionally specify a target device on the cpld command line
when you run the fitter. The format of the part-type parameter on the
cpld command line is:

cpld -p part_type design_name

where

-p part_type — specifies the target device type or set of devices
from which to choose (default is automatic device selection from
the XC9500 family); where part_type can be:

9500 = any XC9500 family device (auto selection)

9500xl = any XC9500XL family device (auto selection)

9500xv = any XC9500XV family device (auto selection)

“95ddd[xl][-ss][-pppp]” — where 95ddd is the device code
(such as 95108), ss is the speed grade, pppp is the package
code (such as PQ160), and an asterisk (*) can be used as a
wildcard string (quotes required around part_type when
asterisk is used).

You may specify either a unique device code, a range of eligible
devices or an entire CPLD family from which the fitter will automati-
cally choose. The fitter will, in general, automatically select the
smallest device and package that will fit the design, and the fastest
speed grade of the resulting device.

To specify a range of devices, you can use an asterisk (*) as a wildcard
character. You may also specify an enumerated list of devices, sepa-
rated by commas. If you use the asterisk character or an enumerated
list in the cpld command, you must enclose the parameter string in
quotes. If you use an asterisk in the part code field, your string must
begin with a "9" (for XC9500). If you want to select from the
XC9500XL family, the letters “XL” must appear in the part string; if
you want to select from the XC9500XV family, the letters “XV” must
appear in the part string; otherwise the fitter selects only from the
XC9500 family. If you use a comma-separated list, all devices must be
from the same CPLD family (either all XC9500, all XC9500XL, or all
XC9500XV, but not mixed). For example, the following are valid part-
type parameter specifications:

Designing with CPLDs

CPLD Synthesis Design Guide 2-5

cpld -p 95108-10-PC84 design1
cpld -p "95108-*-PC84" design1

cpld -p “95*XL-*-PX84” design1
cpld -p "95108-10-PC84,95108-7-PQ*" design1

If you leave the speed grade unspecified, the fitter will always choose
the fastest available speed grade for the selected device.

Refer to the Release Document for a list of CPLD device codes
supported by the current version of the fitter software.

Special I/O Ports
Ordinarily, you need only to declare ports in your top-level entity to
represent all the I/O pins on the CPLD device. The Synopsys
set_port_is_pad and insert_pads commands automatically infer
IBUF, OBUF, OBUFE and IOBUFE cells from XC9000 library to repre-
sent the I/O ports in the netlist.

The following sections describe special global control pins on CPLD
devices that can be used for register clocking, tristate control and
register set/reset, instead of ordinary IBUF inputs. Unless otherwise
specified, the fitter automatically allocates these special global pins, if
possible, when input ports in your design are used to perform these
control functions.

Clock Inputs
To use a device input as a clock source, you can simply refer to a top-
level input port as the clock condition in a process. For example:

entity xyz is
 port (CLOCK:in std_logic; ...
...
process (CLOCK)
 begin
 if (CLOCK'event and CLOCK='1') then
 ...

The fitter automatically uses one of the global clock pins (GCK for
XC9000) whenever possible.

For XC9000 devices, a global clock input signal may perform nega-
tive-edge clocking. For example:

CPLD Synthesis Design Guide

2-6 Xilinx Development System

process (CLOCK)
 begin
 if (CLOCK'event and CLOCK='0') then
 ...

The same clock input may even be used both as both positive-edged
and negative-edged to clock different processes on opposite edges of
the clock signal. Global clock inputs may also be used as ordinary
input signals to other logic elsewhere in the design.

If an input port signal passes through any logic function (other than
an inverter) before it is used as a clock by any flip-flop, the input will
not be routed to any flip-flops in the design using the global clock
path. Instead, that clock signal will be routed through the logic array.

There are a limited number of global clock pins on each CPLD device
(consult the device data sheet). If you need to explicitly control the
use of global clock pins, you can specify the set_pad_type
command in your dc_shell script with the parameter “-exact
BUFG,” and reference an input port of your design. For example:

set_pad_type -exact BUFG clock1

Note: The cell name BUFG must be upper case. The set_pad_type
command must be executed before the insert_pads command.

The global clock pins provide much shorter clock-to-output delays
than clocks routed through the logic array. Routing a clock through
the logic array also uses up one extra p-term for each flip-flop.

If you want to prevent the fitter from automatically using the global
clock pins, go to the Implementation Options template of the Design
Manager and remove the check mark from Use Global Clock(s)
as follows:

1. Design → Implement

2. Press the Options softkey.

3. Select Edit Template

4. Select the Basic tab.

5. Remove the check mark from Use Global Clock(s) .

Using command line you can also prevent the fitter from automati-
cally using the global clock pins. To do this, specify the "-nogck"
parameter on the cpld command line as follows:

Designing with CPLDs

CPLD Synthesis Design Guide 2-7

cpld -nogck design_name

If -nogck is specified, input ports used as clocks will pass through
the array. You can still use the set_pad_type command to explicitly
specify global clock inputs.

If you use an internal signal as a clock, it will be routed to the flip-
flops through the logic array.

Output Enable Signals
To use a device input to control tristate device outputs, you can
simply refer to a top-level input port signal as a tristate condition in
your design. For example:

entity xyz is
 port (ENABLE:in std_logic; ...
...
Q <= Q_VALUE when (ENABLE='1') else `Z';

The fitter automatically uses one of the global tristate control pins
(GTS for XC9000) whenever possible.

For XC9000 devices, a global tristate control input signal may
perform an active-low output-enable. For example:

Q <= Q_VALUE when (ENABLE='0') else `Z';

The same tristate control input may even be used both active-high
and active-low to enable alternate groups of device outputs. Global
tristate control inputs may also be used as ordinary input signals to
other logic elsewhere in the design.

If an input port signal passes through any logic function (other than
an inverter) before it is used as an output enable by any output port,
the input will not be routed to device output drivers in the design
using the global tristate control path. Instead, the output enable
signal will be routed through the logic array.

There are a limited number of global tristate control pins on each
CPLD device (consult the device data sheet). If you need to explicitly
control the use of global tristate control pins, you can specify the
set_pad_type command in your dc_shell script with the parameter
“-exact BUFGTS”, and reference an input port of your design. For
example:

set_pad_type -exact BUFGTS enable1

CPLD Synthesis Design Guide

2-8 Xilinx Development System

Note: The cell name BUFGTS must be upper case. The
set_pad_type command must be executed before the
insert_pads command.

The global tristate control pins provide much shorter input-to-
output-enable delays than tristate controls routed through the logic
array. Routing a tristate control signal through the logic array also
uses up one extra p-term for each output.

If you want to prevent the fitter from automatically using the global
tristate control pins, go to Implementation Options template of the
Design Manager and remove the check mark from Use Global
Output Enable .

1. Design → Implement

2. Press the Options softkey.

3. Select Edit Template

4. Select the Basic tab.

5. Remove the check mark from Use Global Output
Enable(s) .

Using the command line, if you want to prevent the fitter from auto-
matically using the global tristate control pins, specify the -nogts
parameter on the cpld command line as follows:

cpld -nogts design_name

If -nogts is specified, input ports used for tristate control will pass
through the array. You can still use the set_pad_type command to
explicitly specify global tristate control inputs.

If you use an internal signal as an output enable, it will be routed to
the outputs through the logic array.

Asynchronous Clear and Preset
To use a device input as an asynchronous clear or preset source, you
can simply refer to a top-level input port as the set or reset condition
in a clocked process. For example:

entity xyz is
 port (CLOCK, RESET : in std_logic; ...
...
process (CLOCK, RESET)

Designing with CPLDs

CPLD Synthesis Design Guide 2-9

 begin
 if (RESET='1') then Q <= `0';
 elsif (CLOCK'event and CLOCK='1') then

 ...

For XC9000 designs, the fitter automatically uses the global set/reset
pin (GSR) whenever possible. A global set/reset input signal may
also perform active-low clear or preset. For example:

process (CLOCK, PRESET)
 begin
 if (PRESET='0') then Q <= `1';
 elsif (CLOCK'event and CLOCK='1') then
 ...

A global set/reset inputs may also be used as an ordinary input
signal to other logic elsewhere in the design.

If an input port signal passes through any logic function (other than
an inverter) before it is used as an asynchronous clear or preset on
any flip-flop, the input will not be routed to any flip-flops in the
design using the global set/reset path. Instead, the clear/preset
signal will be routed through the logic array. Routing a clear or preset
through the logic array uses up one extra p-term for each flip-flop.

There is only one global set/reset pin on each XC9000 device. If you
need to explicitly control the use of the global set/reset pin, you can
specify the set_pad_type command in your dc_shell script with
the parameter “-exact BUFGSR ” and reference an input port of
your design. For example:

set_pad_type -exact BUFGSR reset1

Note: The cell name BUFGSR must be upper case. The
set_pad_type command must be executed before the
insert_pads command.

If you use an internal signal as a set or reset, it will always be routed
through the logic array.

Note: If a flip-flop has both a clear and preset condition and you
assert both the clear and preset concurrently, its Q-output is unpre-
dictable. This is because the fitter may arbitrarily invert the logic
stored in a flip-flop to achieve better logic optimization. Individual
clear and preset operations still produce the correct final logic state as
dictated by the user design. Functional simulation does not accu-
rately predict the ultimate behavior of the chip when clear and preset

CPLD Synthesis Design Guide

2-10 Xilinx Development System

are asserted concurrently. Timing simulation, however, is performed
after logic optimization and behaves exactly as the chip will when
programmed.

Clock Enable
If you express a synchronous clock-enable condition in a clocked
process, and FDCE_X or FDPE_X primitive will be inferred from the
XC9000 library. For example:

process (CLOCK)

 begin

 if (CLOCK’event and CLOCK=’1’) then

 if (CLOCK_EN=’1’) then Q<=D;

These FDCE_X or FDPE_X primitives are always expanded into an
ordinary D-type flip-flop with its Q-feedback multiplexed into its D-
input.

FDCE_X is an edge-triggered D-type flip-flop with asynchronous
clear and clock enable. The synthesizer uses this component for all
functions that require D-type registers with clock-enable, provided
no asysnchronous preset condition is specified. FDCE_X is not
intended to be instantiated into any design.

FDCE is also an edge-triggered D-type flip-flop primitive with clear
and clock enable. But, FDCE is never inferred. Users must explicitly
instantiate it or explicitly replace an FDCE_X cell that is inferred in
the design. For XC9500XL and XC9500XV devices, the FDCE uncon-
ditionally uses the clock-enable product-term of the macrocell to
implement the CE input. For XC9500 devices, FDCE is always
expanded into a simple D-type flip-flop with its Q-feedback multi-
plexed into its D-input, just like the FDCE_X cell.

FDPE_X is an edge-triggered D-type flip-flop with asynchronous
preset and clock enable. The synthesizer uses this component for all
functions that require D-type registers with preset and clock-enable.
FDPE_X is not intended to be instantiated into any design.

FDPE is also an edge-triggered D-type flip-flop primitive with preset
and clock enable. But, FDPE is never inferred. Users must explicitly
instantiate it or explicitly replace an FDPE_X cell that is inferred into
the design. For XC9500XL and XC9500XV devices, the FDPE uncon-
ditionally uses the clock-enable product-term of the macrocell to

Designing with CPLDs

CPLD Synthesis Design Guide 2-11

implement the CE input. For XC9500 devices, FDPE is always
expanded into a simple D-type flip-flop with its Q-feedback multi-
plexed into its D-input, just like the FDPE_X cell..

If you use FDCE or FDPE cells and target an XC9500XL or XC9500XV
device, you may find that the logic connected to the clock enable
input in some designs may not get optimized into the same macrocell
as the flip-flop. The XC9500XL or XC9500XV macrocell contains only
a single product-term to implement clock enable input logic. The
CPLD fitter does not attempt transform your clock enable input logic
onto the D-input of the flip-flop if it cannot be completely imple-
mented using the clock enable p-term. In general, only primary
inputs (device input pins or macrocell feedbacks), their complements
or positive-logic AND-gate functions of primary inputs or their
complements can be completely implemented using the p-term. If
you connect a more complex logic function to the clock enable input
of an FDCE or FDPE cell and it does not get completely implemented
on the clock enable p-term, your design may incur extra macrocell
resources and combinational macrocell feedback delays.

Controlling Register Initial State
All registers in a CPLD device are initialized when the device is
powered up. The initial state (preload value) of each register is
programmable.

Registers in XC9000 macrocells have both asynchronous clear and
asynchronous preset controls available. The initial power-on states of
CPLD macrocell registers can be selected regardless of whether the
register is asynchronously cleared of preset during operation.

Unless otherwise specified in your design, each register in an XC9000
device will initialize to the zero (reset) state at power-up.

Initial State Attribute
You can specify the preload states of selected register cells in your
design by setting the initial state attribute in dc_shell as follows:

set_attribute register_cell init state -type string

where:

• register_cell is the name (or set of names) of register cell(s) in your
design, or the names of register output nets.

CPLD Synthesis Design Guide

2-12 Xilinx Development System

• state is either R (reset to 0) or S (set to 1).

For example, to specify an initial state of "1" for the register named
QOUT_reg, enter the following:

set_attribute QOUT_reg init S -type string

The initial state attribute is ignored if it is applied to any cell in your
design that is not a flip-flop.

Controlling Power Consumption
The power consumption of each macrocell in an CPLD device is
programmable. The standard (default) setting consumes more power
and produces shorter propagation delay. The low-power setting
reduces power consumption for less speed-critical paths.

By default, all macrocells in the design will operate in standard
power mode. You can change the global power setting to use the low
power mode throughout the design by selecting Low on the Default
Power Setting in the Implementation Options template in
the Design Manager:

1. Design → Implement

2. Press the Options softkey.

3. Select Edit Template

4. Select the Basic tab.

5. Select the Low option adjacent to Macrocell Power Setting .

When you run the fitter your design will be implemented with the
low power setting.

To specify low power when using the Unix command line, use the
"lowpwr" parameter with the cpld command as follows:

cpld -lowpwr design_name

You can also instruct the fitter to automatically reduce the macrocell
power for paths that do not require standard power to meet timing
constraints. In the Design Manager, check Timing Driven . On the
Unix command line, specify the -autopwrslew parameter on the
cpld command line:

cpld -autopwrslew design_name

Designing with CPLDs

CPLD Synthesis Design Guide 2-13

Controlling Output Slew Rate
For XC9000 devices each output is programmable to operate either at
full speed or with limited slew rate. Limiting the slew rate reduces
output switching surges in the device. Slew rate control becomes
important when your design uses a large number of outputs or you
have transmission lines on your board which are sensitive to fast
edge rates.

By default, the CPLD fitter will apply a fast slew rate to all outputs. If
you want to limit the slew rate of a device output to decrease its
switching speed, use the “set_pad_type” command in dc_shell. Enter
the following in dc_shell:

set_pad_type -slewrate HIGH port_list

where port_list is a list of output ports that are to operate with slow
output slew rate.

If you need to explicitly set an output to use fast slew rate, enter the
following in dc_shell:

set_pad_type -slewrate NONE port_list

Note: The set_pad_type command must be executed before the
insert_pads command in dc_shell.

By default, the fitter uses Fast for slew rate for all output drivers. To
change the default to slow slew rate in the Design Manager:

1. Design → Implement

2. Press the Options softkey.

3. Select Edit Template

4. Select the Basic tab.

5. Place a check mark in Slow box adjacent to Default Output
Slew Rate.

To specify default slow slew-rate from the UNIX command line, use
the parameter -slowslew in the cpld command:

cpld -slowslew design_name

The fitter also has an option whereby it will automatically apply
Slow slew rate to each output unless that would cause any propaga-
tion delay to that pin to fail to meet a timing specification.

CPLD Synthesis Design Guide

2-14 Xilinx Development System

To enable slew-rate optimization in the Design Manager, go to the
Implementation Options template and check the Fast box on the
Default Output Slew Rate line.

To enable automatic slew rate control from the Unix command line,
use the parameter -autoslewpwr when executing the cpld
command.

cpld -autoslewpwr design_name

Controlling the Pinout
When you first run the fitter before your pinout is committed, the
software automatically selects pin locations for your I/O signals. Pin
locations are selected which will give you the greatest flexibility to
iterate your design without having to move any of the pins. Each
time the fitter successfully implements your design, it creates a guide
file (design_name.gyd), which contains all the resulting pinout infor-
mation. After you commit your pinout, subsequent design iterations
cause the guide file to be read by the fitter and your committed
pinout will be preserved.

We strongly recommend that you allow the software to automatically
generate your initial pinout. Attempting to select your own initial pin
preferences reduces the ability of the fitter to implement your design
successfully the first time. It further reduces the amount of logic
changes you could make after locking your pinout.

Pin Locking
If you have successfully fit a design into an CPLD device and you
build a prototype containing the device, you will probably want to
"lock" the pinout.

1. In the Design Manager, select an existing design revision that was
successfully run through the Fit step (typically, your most recent
revision).

2. Select Design →Lock Pins . The pinout saved in the selected
revision (stored in design_name.gyd) is translated into pin loca-
tion (LOC) constraints and written into a user constraint file
(design_name.ucf).

3. Select View Lock Pins Report in the dialog box to make sure
no pin assignment conflicts were found.

Designing with CPLDs

CPLD Synthesis Design Guide 2-15

4. When ready, run the fitter (Design → Implement). The
previous pinout information will be read from the UCF file and
used in the new design revision.

If you want to tell the fitter to directly read the guide file
(design_name.gyd) on the Unix command line, you should specify the
"pinlock" option with the cpld command as follows:

cpld -pinlock design_name

The -pinlock parameter tells the fitter to read and obey the pinout
from the guide file that was saved the last time the fitter completed.

The fitter will not move any of the pins contained in the guide file,
even if it prevents the design from successfully mapping.

Whenever you specify a guide file (pin locking), the fitter automati-
cally uses the same device and package as previously used, unless
you override it with a different specific device and/or package.

The pin locations stored in the guide file are specified based on the
top-level port names in your design. If you change the name of any of
your ports, the corresponding pin will no longer be constrained to the
location stored in the guide file.

When you iterate your design while your pins are locked, you are
free to delete existing ports and/or add new ports. The fitter will
automatically select the best locations for any new ports you add,
after placing all the existing ports constrained by the guide file.

Note: If you iterate your design and your pinout is not yet committed
(you haven't built a prototype containing the device), you should not
specify the pinlock option. Instead, allow the software to redefine the
pinout of your modified design. This will continue to give you the
greatest flexibility to iterate your design again after you commit your
pinout.

Pin Assignment
You can assign explicit locations for pins in your design using the
LOC attribute in dc_shell. Enter the following in dc_shell:

set_attribute port LOC pin_name -type string

where port is the name of the port being assigned.

For example, to place the "start" input port on pin 23:

CPLD Synthesis Design Guide

2-16 Xilinx Development System

set_attribute start LOC p23 -type string

For PC, PQ and VQ type packages, the pin_name takes the form "Pnn"
where nn is a number. For example, for the PC84 package, the valid
range for pin_name is P1 through P84. For grid array type packages
(PG and BG), the pin_name takes the form "rc", where r is the row
letter and c is the column number.

You can also specify pin locations interactively using the Constraints
Editor tool invoked from the Design Manager.

When your design contains LOC attributes, you should specify the
target device type in the Design Manager Part Selector menu or
using the cpld command's -p parameter (see Target Device Selection
in this Chapter). The LOC attributes are typically not compatible
when retargeting a design between different package types, device
types or device families.

The LOC attributes are unconditional in that the software will not
attempt to relocate a pin if it cannot achieve the specified assignment.
If you specify a set of LOC attributes that the fitter cannot satisfy, the
fitter will terminate with an error.

The LOC attributes override the pin assignments in the guide file if
you specify the pinlock option. This allows you to make explicit
changes to your committed pinout. If you override the guide file
using LOC attributes, the software will issue a warning.

If your objective is to preserve a previously created pinout, we recom-
mend you use the pinlock feature instead of creating a set of LOC
attributes with the existing pin locations. The guide file saved from
the previous design implementation contains additional information
to help the fitter to successfully fit your modified design.

If you used LOC attributes when compiling your netlist but you want
to temporarily allow the fitter automatically assign all I/O pins, place
a check in the Ignore Design Assignments box in the Basic tab of the
Implementation Options template:

1. Design → Implement

2. Press the Options softkey.

3. Select Edit Template

4. Select the Basic tab.

Designing with CPLDs

CPLD Synthesis Design Guide 2-17

5. Remove the check mark next to Use Design Location
Constraints .

To temporarily allow the fitter automatically assign all I/O pins when
using the Unix command line, you can specify the -ignoreloc
parameter on the cpld command:

cpld -ignoreloc design_name

The -ignoreloc option allows you to temporarily ignore all the
LOC attributes in your netlist. This is useful if you want to test how
your design fits a different target device without re-compiling your
design.

Prohibiting the Use of Device Pins
Prohibit I/O Locations allows you to reserve device pins for
later use, or simply prevent them from being used at all. For instance,
if you anticipate design changes in the future and want to set traces
on your printed circuit board now, you can use this feature to prevent
the fitter from using pins associated with those traces. Then, when
you decide to use the traces, you can use the LOC attribute to assign
those pins to new input/output buffers you place in your design.

In the Constraints Editor, Prohibit I/O Locations prevents all
selected I/O pins from being used by the design. This dialog can be
entered using a dialog box provided in the Ports tab.

Pin Assignment Precautions
You can apply the LOC attribute to as many ports in your design as
you like. However, each pin assignment further constrains the soft-
ware making it more difficult for the fitter to automatically allocate
logic and I/O resources for the remaining I/O signals in your design.

When you manually assign output and I/O pins, you force the soft-
ware to place associated logic functions into specific macrocells and
specific function blocks. If the associated logic does not exceed the
available function block resources (macrocells, product terms, and
FastCONNECT inputs), the logic is mapped into the macrocell and
the design will route in the FastCONNECT.

It is usually best to allow the fitter to automatically assign most or all
of the pins based on the most efficient placement of logic in the
device. The fitter automatically establishes a pinout which best

CPLD Synthesis Design Guide

2-18 Xilinx Development System

allows for future design iterations without pin relocation. Any
manual pin assignments you make in your design may not allow as
much tolerance for changes in the logic associated with those pins,
and in the logic physically mapped to nearby locations in the device.

If you are assigning pin locations to ports used as clocks, asynchro-
nous set/reset, or output enable in your design, you should assign
them to the GCK, GSR and GTS pins on the device if you want to take
advantage of these global resources. The fitter will still automatically
assign other clock, set/reset and output enable inputs to remaining
GCK, GSR and GTS pins if available.

Controlling Logic Optimization
When you create combinational logic functions, the software
attempts to collapse as much of the logic as possible into the smallest
number of CPLD macrocells. Combinational logic optimization
performed by the synthesis tool are generally not essential to the effi-
ciency or performance of the resulting CPLD implementation. The
CPLD fitter automatically performs all essential optimizations.

Any combinational logic function bounded between device I/O pins
and flip-flops is subject to complete or partial collapsing. Collapsing
the logic improves the speed of the logic path and can also reduce the
amount of logic resources (macrocells, p-terms and FastCONNECT
inputs) required to implement the function.

The process of collapsing logic into other logic functions is called
"logic optimization".

Multilevel Logic Optimization
Multilevel Logic Optimization seeks to simplify the total number of
logic expressions in a design, and then collapse the logic in order to
meet user objectives such as density, speed and timespecs. This opti-
mization targets CPLD architecture, making it possible to collapse to
the macrocell limits, reduce levels of logic, and minimize the total
number of pterms.

Multilevel Logic Optimization extracts combinational logic from
your design. Combinational logic includes:

• register-to-register logic

• path-to-register logic

Designing with CPLDs

CPLD Synthesis Design Guide 2-19

• register-to-path logic

• path-to-path logic

Multilevel Logic Optimization operates on combinational logic
according to the following rules:

1. If timespecs are set, the program will optimize for speed to meet
timespecs.

2. If timespecs are not set, the program will optimize either for
speed or density, depending on the user setting of Timing
Optimization .

a) If Timing Optimization is turned on, the combinational
logic will be mapped for speed.

b) If Timing Optimization is turned off, the combinational
logic will be mapped for density. The goal of optimization
will then be to reduce the total number of pterms.

3. Logic marked with the attribute NOREDUCE will not be extracted
or optimized.

Setting Multilevel Logic Optimization

Multilevel Logic Optimization can be set from the Advanced tab of
the Implementation Options template of the Design Manager as
follows:

1. Design → Implement

2. Press the Options softkey.

3. Select Edit Template

4. Select the Advanced tab.

5. Place a check in the Use Multilevel Logic Optimization
box.

Multilevel Logic Optimization will operate when you run the fitter.

If you wish to disable multilevel logic optimization when running a
design from the cpld command, use the option -nomlopt . If you do
not specify this option, the fitter automatically uses multilevel logic
optimization.

CPLD Synthesis Design Guide

2-20 Xilinx Development System

Collapsing Product Term Limit
When a larger combinational logic function consisting of several
levels of AND-OR logic is completely collapsed (flattened), the
number of product terms required to implement the function may
grow considerably. By default, the fitter limits the number of p-terms
used as a result of collapsing to 20 when using the Optimize Speed
template, or 90 when using the Optimize Density template. If the
collapsing of a logic level results in a logic function consisting of more
p-terms than the limit (after Boolean reduction), then the collapsing
of that logic level is not performed and the function will be imple-
mented using two or more levels of AND-OR logic.

Note: The fitter will not exceed the collapsing p-term limit even if a
timing constraint applied to a path cannot be met.

When the Timing Optimization option is off, as it is in the Optimize
Density template, the fitter only performs collapsing on a node if the
total number of p-terms used after collapsing would be less than the
total number of p-terms used by the combined functions before
collapsing.

The overall extent to which logic is collapsed throughout an XC9000
design can be controlled from the Advanced Optimization tab of
the Implementation Options template.

1. Design → Implement

2. Press the Options softkey.

3. Select Edit Template

4. Select the Advanced tab.

5. Place a value in the Collapsing Pterm Limit box, or use the
up and down arrows to raise or shrink the Pterm limit. The
allowable range is between 2 and 90.

To change the Pterm limit from Unix, use the "-pterms" parameter on
the cpld command line:

cpld -pterms nn design_name

where nn is the maximum allowable number of p-terms that can be
used to implement a logic function after collapsing. The allowable
range for the pterms parameter is between 2 and 90.

Designing with CPLDs

CPLD Synthesis Design Guide 2-21

If you find that the path delay of a larger, multi-level logic function in
an XC9000 design is not satisfactory, try increasing the pterms param-
eter to allow the larger functions to be flattened further. For example,
you may try increasing the p-term limit to 35 when rerunning the
fitter, as shown:

cpld -pterms 35 design1

The fitter report (design_name.rpt) indicates the number of p-terms
used for each logic function. You should see these numbers increase
as you raise the pterms limit, until the design is fully flattened. At the
same time, you'll see the internal combinational nodes eliminated
until none remain.

Preventing Collapsing of a Logic Node
Flattening typically increases the overall amount of p-term resources
required to implement the design. Some designs which fit the target
device initially may fail to fit if flattened too much. Other designs can
be flattened completely and still fit. If you cannot increase the cpld
pterms parameter enough to sufficiently flatten a critical path and
still fit the target device, you may try applying logic optimization
control at specific nodes in your design.

A special cell is provided in the XC9000 libraries, named KEEP, which
is used to apply a logic optimization constraint to any signal passed
through it. The KEEP cell has one input port named I and one output
port named O (letter O). By instantiating a KEEP cell and passing
through it a signal in the middle of a combinational logic function,
you can prevent that signal from being collapsed.That is, you prevent
the cell that drives the signal from being collapsed forward into any
of its fanouts. The KEEP cell is instantiated as follows:

label: KEEP port map (O => outgoing_signal , I =>
incoming_signal);

In the following example, a KEEP cell is used to prevent the logic for
an address decoder from being collapsed into the select input of a 16-
bit multiplexer:

component KEEP port (O: out std_logic, I : in std_logic);
end component;
...
DECODE1 <= `1' when (ADDR_BUS = ADDR_1) else `0';
DATA_BUS <= A_BUS(0 to 15) when (DECODE1_NEW='1') else B_BUS;
U1: KEEP port map (O=>DECODE1_NEW,I=>DECODE1);

CPLD Synthesis Design Guide

2-22 Xilinx Development System

By preventing logic optimization, the fitter will not attempt to dupli-
cate the logic of the address decoder in each bit of the multiplexer.

You can use KEEP to break logic chains in non-speed-critical paths
and prevent those functions from using too many p-terms. If you set
the pterms parameter too high and your design no longer fits, try
using KEEP to reduce the size of selected non-critical paths.

Controlling Timing Paths
There are two mechanisms that can improve the timing of your
design:

• Global Timing Optimization

• Timing Constraints

Optimization for Speed
By default, the fitter performs timing optimization on logic paths in
your design. Timing optimization will automatically shorten your
logic paths as much as it can. In general, timing optimization opti-
mizes logic and allocates the fastest available resources for the
longest paths in your design, assuming all paths are equally critical.
In some cases, the fitter trades off density for a speed advantage.

These default fitter option settings that favor optimization for speed
are included in a template named Optimize Speed . Timing Opti-
mization will be set ON for all CPLD families, and Use Local
Macrocell Feedback and Use Local I/O Pin Feedback will
be set to on for XC9500 devices. If you want to change to a template
containing fitter options that favor optimization for density, select the
Optimize Density template:

1. Design → Implement

2. Press the Options softkey.

3. Adjacent to the Edit Template button, click once on the
down arrow and select the Optimize Density implementa-
tion option. If you revert to optimizing for timing, set the
template for default or Optimize Speed .

To turn off timing optimization from Unix, specify the "-notiming"
parameter on the cpld command line as follows:

Designing with CPLDs

CPLD Synthesis Design Guide 2-23

cpld -notiming design_name

Disabling timing optimization will optimize for density and may
significantly reduce the processing time of the CPLD fitter.

Timing Constraints
The Synopsys Design Compiler (or FPGA Compiler) provides a set of
timing constraint commands that you can use to specify the timing
requirements of your Xilinx design. After compiling your design, the
Xilinx software reads both your design netlist and your dc_shell
timing constraint commands and performs timing optimization
according to your specifications. You can enter timing constraints in
the Design Analyzer, the dc_shell command line, or a dc_shell script
file. The Synopsys Compiler does not use your timing constraints to
optimize your logic or infer library cells during compilation of a
CPLD design. All timing optimization is performed by the CPLD
fitter after reading your dc_shell timing specifications.

The following path types can be controlled using timing constraints:

This section lists the Synopsys commands that you can use to create
timing specifications for your Xilinx CPLD designs.

Clock Period

You can use the dc_shell command create_clock to declare a
clock input port and place a period timing specification on the speci-

Pad-to-pad delay Input port to an output port

Register setup time Setup time of an input port to
the data pin of a flip-flop, with
respect to a clock

Register-to-register Propagation delay from the
output of a flip-flop to the data
pin of the same or different
flip-flop, including flip-flop
setup requirements, measured
from clock-edge to clock edge

Clock-to-output delay Propagation delay from the
clock of a flip-flop to an output
port

CPLD Synthesis Design Guide

2-24 Xilinx Development System

fied clock net. The register-to-register delays between all flip-flops on
the named clock will be constrained by the specified period.

The create_clock command creates a cycle time specification on
the specified clock signal as follows:

create_clock clock_port –period delay

where clock_port is the name of the clock input port and delay is
the clock cycle time in nanoseconds.

Note: The Synopsys max_period command is not supported by the
Xilinx fitter; use the create_clock command instead.

Point-to-Point Delays

The dc_shell command set_max_delay specifies delay
constraints for specific paths originating from input (or I/O) ports or
flip-flop cells and terminating at output (or I/O) ports or flip-flop
cells. The syntax of the set_max_delay command is:

set_max_delay delay –from source –to destination

For example, to specify the propagation delay from the CLEAR input
port to the DONE output port:

set_max_delay 20 -from CLEAR -to DONE

The following table describes the various source and destination
combinations you can use with the set_max_delay command.

Table 2-1 set_max_delay

Source Destination Affected Timing Path

input or I/O
port (except
clock)

output or I/O
port

pad-to-pad propagation delay

input or I/O
port (except
clock)

register cell register setup time from specified
port(s) with respect to flip-flop’s
clock pin. Note 1.

Designing with CPLDs

CPLD Synthesis Design Guide 2-25

Note 1. To specify input setup time with respect to a clock pad, refer to the Input Port Timing Constraint
section below.

Note 2. To specify clock-to-output delays beginning at the clock input pad, either use the set_max_delay
command specifying the clock port as the source, or refer to the Output Port Timing Constraint section
below.

If you use the set_max_delay command to specify a register setup
time constraint on an input port to a named register, then the delay
you specify in the command must be larger than the actual setup time
requirement you want to have between the data and clock pads of the
device. The amount you will need to add to your desired pin-to-pin
setup time is the delay of the clock path from clock pad to the flip-
flop.

To use the following command form to specify setup time:

set_max_delay delay -from input_port -to register

you should specify your delay value according to the following rela-
tionship:

delay = tSU + tGCK

where:

delay is the delay value specified in the set_max_delay command,

tSU is the desired setup time requirement on the data input pad with
respect to the clock input pad, and

register cell register cell register-to-register delay (cycle
time), regardless of each register’s
clock source (overrides create_clock
period constraint covering same
registers

register cell output or I/O
port

register clock-to-output delay from
flip-flop’s clock pin to output pad.
Note 2

clock input port output or I/O
port

register clock-to-output delay from
the specified clock input to specified
output port

clock input port register cell not used for CPLD designs

Table 2-1 set_max_delay

Source Destination Affected Timing Path

CPLD Synthesis Design Guide

2-26 Xilinx Development System

tGCK is the delay of the clock path from clock pad to the flip-flop's
clock pin.

For XC9500 devices, the tGCK delay parameter is listed in the device
data sheets.

Similarly, if you use the set_max_delay command to specify clock-
to-output delay from a named register to an output port, the delay
you specify in the command must be smaller than the actual pad-to-
pad delay you want to have on the device. The amount you will need
to deduct from your desired pin-to-pin delay is the delay of the clock
path from clock pad to the flip-flop.

To use the following command form to specify clock-to-output delay:

set_max_delay delay -from register -to output_port

you should specify your delay value according to the following rela-
tionship:

delay = tCO - tGCK

where:

delay is the delay value specified in the set_max_delay command,

tCO is the desired clock-to-output delay between the clock input pad
and the output pad, and

tGCK is the delay of the clock path from clock pad to the flip-flop's
clock pin.

Output Port Timing Constraint

The set_output_delay command establishes clock-to-output
delay specifications based on values specified in the create_clock
or set_max_delay constraints or creates tighter constraints for
named output ports as follows:

set_output_delay delay –clock clock output_port

When the named output ports are driven by registers covered by a
create_clock period constraint, the set_output_delay
constraint specifies how much time (delay) before the next clock edge
the named outputs need to become stable.

In this case, the set_output_delay constraint specifies the delay path
between the clock input pin of the CPLD device and the named
output pin(s) according to the following relationship:

Designing with CPLDs

CPLD Synthesis Design Guide 2-27

set_output_delay_value = create_clock_period_value -
cpld_clock_to_output_delay

where set_output_delay_value is the delay value specified in the
set_output_delay constraint, create_clock_period_value is the period
value specified in a previous create_clock constraint, and
cpld_clock_to_output_delay is the desired worst-case propagation delay
between the clock input pin and output pin(s) of the CPLD.

For example, the following pair of commands sets the register-to-
register delays between all flip-flops clocked by C1 to 20 ns and sets
the clock-to-output delay from C1 to output Q2 to 6 ns:

create_clock C1 -period 20

set_output_delay 14 -clock C1 Q2

This command also changes the values of pad-to-pad or clock-to-
output delay specifications created by the set_max_delay
command, by making the constraints tighter by the amount specified
by the delay value for the named outputs.

When using the set_output_delay constraint, the named clock
must be explicitly declared as a global clock input port by using the
dc_shell command

set_pad_type -exact BUFG clock

as described in the section Special I/O Ports earlier in this chapter.

Input Port Timing Constraint

The set_input_delay command establishes register setup time
specifications based on create_clock or set_max_delay
commands or creates tighter constraints on named input ports as
follows:

set_input_delay delay –clock clock input_port

When the named input ports feed into registers covered by a
create_clock period constraint, the set_input_delay
constraint specifies how much time (delay) after the previous clock
edge the named inputs are expected to become stable.

In this case, the set_input_delay constraint specifies the setup time
requirements between data input pin(s) and the clock input pin of the
CPLD device according to the following relationship:

CPLD Synthesis Design Guide

2-28 Xilinx Development System

set_input_delay_value = create_clock_period_value -
cpld_external_setup_time

where set_input_delay_value is the delay value specified in the
set_input_delay constraint, create_clock_period_value is the period
value specified in a previous create_clock constraint, and
cpld_external_setup_time is the desired worst case setup time between
the data input pin(s) and the clock input pin of the CPLD.

For example, the following pair of commands sets the register-to-
register delays between all flip-flops clocked by C1 to 20 ns and sets
the setup time requirements on input D2 with respect to the C1
device input pin to 8 ns:

create_clock C1 -period 20

set_input_delay 12 -clock C1 D2

This command also changes the values of pad-to-pad delay or
register setup time specifications created by the set_max_delay
command, by making the constraints tighter by the amount specified
by the delay value for the named inputs.

When using the set_input_delay constraint, the named clock
must be explicitly declared as a global clock input port by using the
dc_shell command

set_pad_type -exact BUFG clock

as described in the section Special I/O Ports earlier in this chapter.

Note: The dc_shell command set_false_path is not supported
for CPLD designs at this time.

You can also enter timing constraints interactively using the
Constraint Editor tool invoked from the Design Manager.

Disabling Timing Specifications

If you used timing constraints when compiling your design but want
to run the fitter without using your timing specifications, you can
temporarily ignore all timing specifications by removing the check
from the Use Timing Constraints option in the Implementa-
tion Options template.

1. Design → Implement

2. Press the Options softkey.

Designing with CPLDs

CPLD Synthesis Design Guide 2-29

3. Select Edit Template

4. Select the Basic tab.

5. Remove the check mark next to Use Timing Constraints .

If you want to do this on the Unix command line, use the -ignorets
parameter with the CPLD command as follows:

CPLD -ignorets design_name

Reducing Levels of Logic
The XC9500 architecture, like most CPLD devices, is organized as a
large, variable-sized combinational logic resource (the AND-array
and XOR gate) followed by a register. If you place combinational
logic before a register in your design, the fitter maps the logic and
register into the same macrocell. The output of the register is then
directly available at an output pin of the device. If, however, you
place logic between the output of a register and the device output
pin, a separate macrocell must used to perform the logic, decreasing
both the speed and density of your design. The following example
shows two functionally similar styles for designing a selectable
divide-by-2 or divide-by-4 counter. The first design style is inefficient
for CPLD architectures; the second example is more efficient.

-- Inefficient style for CPLDs:
process (CLOCK)
 begin
 if (CLOCK'event and CLOCK='1') then
 DIV2 <= not DIV2;
 DIV4 <= DIV4 xor DIV2;
 end if;
end process;
DIV_OUT <= DIV2 when (SEL4='0') else DIV4;

-- More efficient style for CPLDs:
process (CLOCK)
 begin
 if (CLOCK'event and CLOCK='1') then
 DIV2 <= not DIV2;
 if (SEL4='1') then
 DIV_OUT <= (DIV_OUT xor DIV2);
 else
 DIV_OUT <= not DIV_OUT;
 end if;

CPLD Synthesis Design Guide

2-30 Xilinx Development System

 end if;
end process;

XC9500 Local Feedback
XC9500 family devices (except XC9536) contain high-speed local
feedback paths interconnecting the macrocells within each function
block. Local feedback paths bypass the FastCONNECT array and
provide shorter propagation delays between macrocells. Using local
feedback requires that all logic sourcing and receiving local feedback
signals be mapped to the same function block locations within the
target device. When a timing constraint is applied to a path which
would require local feedback routing in order to meet the specified
constraint, the fitter will attempt to map the logic spanned by the
timespec into the same function block and use local feedback routing.

Setting a Node to a Specific Function Block
If the fitter does not find a way to map logic into the same function
block, you can explicitly map your logic to allow the fitter to use local
feedback routing. To explicitly map a logic node to a specific function
block, apply the LOC attribute to the signal (net) or cell as follows:

set_attribute signal_name loc FB nn -type string

where nn is a legal function block number for the target device.

Automatic Local Macrocell Feedback Optimization
This option, when enabled, will use local feedback routing whenever
a feedback node connects between macrocells that happen to get
mapped to the same function block. This is done in addition to using
local feedback to satisfy timespecs. The software will create clusters
of equations and attempt to place them in the same function block.
However, the software is allowed to break a cluster if it is impossible
to place it in one function block.

Local Macrocell Feedback optimization can be selected from the
Advanced tab of the Implementation Options template of the
Design Manager as follows:

1. Design → Implement

2. Press the Options softkey.

Designing with CPLDs

CPLD Synthesis Design Guide 2-31

3. Select Edit Template

4. Select the Advanced tab.

5. Place a check in the Use Local Macrocell Feedback box.

To specify local feedback using the cpld command, use the
command option -localfbk

cpld -localfbk design_name

XC9500 Local Pin Feedback
This option enables the software to use local I/O pin feedback when-
ever possible in an XC9500 design (except XC9536). Pin feedback
takes less time than the XC9500 FastCONNECT path. The software
uses the pin feedback path instead of the FastCONNECT path for
output pin signals that do not have tristate control or slow slew rate.
By default, this option is off.

Local Pin Feedback optimization can be selected from the Advanced
tab of the Implementation Options template of the Design
Manager as follows:

1. Design → Implement

2. Press the Options softkey.

3. Select Edit Template

4. Select the Advanced tab.

5. Place a check in the Use Local Pin Feedback box.

To specify pin feedback from the cpld command use the command
option -pinfbk .

cpld -pinfbk design_name

CPLD Synthesis Design Guide — 2.1i 3-1

Chapter 3

Compiling and Fitting a CPLD Design

The Synopsys interface supports both VHDL and Verilog HDL
design synthesis. Either the Synopsys FPGA Compiler or Design
Compiler can be used to compile CPLD designs; there are no differ-
ences between the two compilers with regard to the supported
features or implementation efficiency. In the following discussion, the
term "compiler" refers to either FPGA Compiler or Design Compiler.

This chapter describes how to compile your design using the
Synopsys Design Compiler shell (dc_shell). You can also use the
Synopsys graphical user interface, Design Analyzer, to process your
designs. This chapter also describes how to implement your design
using both the Xilinx Design Manager and the cpld command-line.
It contains the following sections:

• “Compiling a Synopsys CPLD Design”

• “Fitting Your Design”

• “Compiling Behavioral Modules for Schematics”

Before compiling you will need to develop your VHDL or Verilog
HDL source file (design_name.vhd or design_name.v). Usually it is a
good idea to perform a functional simulation of your source design
using VSS or some VHDL or Verilog compatible simulator before
trying to synthesize it. See the "Simulating Your Design" chapter for
information on functional simulation using VSS.

Compiling a Synopsys CPLD Design
This section describes the procedure for compiling a complete CPLD
design based on VHDL or HDL. If you are preparing a VHDL/HDL-
based module for inclusion in a schematic-based design, refer to the
section "Compiling Behavioral Modules for Schematics" later in this
chapter.

CPLD Synthesis Design Guide

3-2 Xilinx Development System

The Synopsys compiler synthesizes your source design and creates
an EDIF 2.0.0 netlist file composed of logic primitives that is used by
the Xilinx CPLD fitter to implement your design in a CPLD. All
compiler commands are executed from within the Synopsys dc_shell
environment.

Step 1 - Entering the dc_shell Environment
Enter the Synopsys dc_shell environment by entering the following
Synopsys command on the UNIX command line:

dc_shell

You will see the dc_shell prompt.

Step 2 - Analyzing the Design
To interpret your design and verify that it is free of errors, enter the
following Synopsys command for VHDL designs:

analyze -format vhdl design_name.vhd

or, for Verilog HDL designs:

analyze -format verilog design_name.v

For example, the command used inVHDL version of the scan
example in the "Getting Started with Xilinx CPLDs" chapter:

analyze -format vhdl scan.vhd

If your source file contains initial signal values (which are used only
for functional simulation) they will cause warnings that can be safely
ignored; these initial signal values are not used during synthesis.
Actual register initial states are set using attributes, as described in
Chapter 2.

If the analyze command finds errors, you will need to make the
necessary corrections to your source file and repeat the analyze
command before continuing with synthesis.

Step 3 - Elaborating the Design
To derive a logical design, based on your VHDL/HDL description,
enter the following Synopsys command:

elaborate entity_name

Compiling and Fitting a CPLD Design

CPLD Synthesis Design Guide 3-3

where entity_name is the name of your top-level entity in your design.

For example, the command used in the scan example in the "Getting
Started with Xilinx CPLDs" chapter:

elaborate scan

During this step, the compiler displays information about all registers
and 3-state buffers encountered in your design.

You are now ready to compile your design using the XC9000 target
library.

Step 4 - Compiling Your Design
When you compile your design, the Synopsys synthesizer uses the
components in the Xilinx XC9000 technology library to create an
actual logic implementation of your design. The library used during
compilation is defined by the dc_shell target_library variable, typi-
cally specified in your .synopsys_dc.setup file.

To synthesize your design based on target CPLD technology library,
enter the following Synopsys command:

compile [-map_effort low]

The mapping effort parameter is optional. However, it is recom-
mended that you set it to LOW to save compilation time. The synthe-
sizer does not perform any speed or area optimization for CPLD
designs; this optimization is performed after compilation by the
CPLD fitter.

Step 5 - Specifying Attributes
Attributes are used to control the physical implementation of your
design as described in Chapter 2. All attributes are optional. The
attributes that you may want to set at this time are:

• Register initial states

• Global buffer assignment

• Pin assignments

• Output slew rate

• Timing constraints

CPLD Synthesis Design Guide

3-4 Xilinx Development System

For example, the attributes used in the scan example in the "Getting
Started with Xilinx CPLDs" chapter:

set_attribute END_REG* init -type string S

See the "Attributes" appendix for complete details on all supported
attributes.

Step 6 - Defining CPLD I/O Signals
Now you must define which signals are connected to the physical I/
O pins of the CPLD.

Use the following command to identify all ports in your design for
which the synthesizer needs to infer an I/O buffer:

set_port_is_pad port_name

Do not use this command for any ports for which you instantiated I/
O buffer cells from the library.

Normally, you would automatically place I/O buffer cells on all top-
level ports in the design. Enter the following Synopsys command:

set_port_is_pad "*"

For the ports that were specified by set_port_is_pad , the
following command infers the appropriate I/O buffer cells into your
design:

insert_pads

Note: If you want to control output slew rate or explicitly assign
global buffers to input ports of your design, the dc_shell
set_pad_type command must be invoked before the
insert_pads command, as described in Special I/O Ports.

Step 7 - Flattening the Compiled Design
Before writing the netlist, you should flatten the hierarchy of your
design. Any attribute or timing constraints attached to objects in any
hierarchy levels below the top would be lost unless the design is flat-
tened. Enter the following command to flatten your design:

ungroup -all -flatten

Compiling and Fitting a CPLD Design

CPLD Synthesis Design Guide 3-5

Step 8- Writing the Netlist
Write your synthesized design file in EDIF netlist format by entering
the following Synopsys command:

write -format edif -hierarchy -output design_name.sedif

where:

• -format edif specifies the EDIF file format.

• -hierarchy specifies that all levels of the design hierarchy are
to be written.

• -output design_name.sedif specifies your output file name,
which should be the same as your source file name, with the
extension .sedif .

For example, the command used in the scan example in the "Getting
Started with Xilinx CPLDs" chapter:

write -format edif -hierarchy -output scan.sedif

Step 9 - Writing Out Timing Constraints
If you specified any timing constraints for your design (in dc_shell),
you must write them to a dc_shell script file so they can be read by
the Xilinx software. Enter the write_script command and redirect
its output to a file as follows:

write_script > design_name .dc

Note: Your design must be flattened using the ungroup -all -flatten
command before writing the script file.

This is the end of the required processing in dc_shell. Before exiting
you may wish to save the design database in Synopsys db format by
executing the write command. You can exit dc_shell by entering the
following Synopsys command:

exit

Step 10 - Translate Timing Constraints File
If you specified any timing constraints for your design and wrote a
dc_shell script file as in Step 9, you must translate the script file
into a Xilinx constraint file (.ncf) that can be read by the fitter. Enter
the dc2ncf command at the Unix prompt as follows:

CPLD Synthesis Design Guide

3-6 Xilinx Development System

dc2ncf design_name .dc

Note: None of the Synopsys timing or area analysis reports are useful
at this time because the CPLD technology libraries do not contain
timing or area estimation data. The Xilinx fitter provides a Static
Timing Report which shows the calculated worst case timing for each
logic path in your design.

You are now ready to begin the fitting process as described in the next
section.

Fitting Your Design

Using Design Manager Interface
You can start the Design Manager from the command line by entering
the following command:

dsgnmgr

Creating a New Project

After opening the Design Manager for the first time, you must create
a new project for your design.

A project includes all design versions, implementation revisions,
reports, and any other Xilinx data created while you work with a
design. The Design Manager graphically displays information about
these items in the project view. When you create a new project, you
specify a design to open and a directory for the project. You can create
as many projects as you want, but you can only work with one at a
time.

The following procedure explains how to create a new project by
importing a design.

1. Select File → New Project from the Design Manager menu.

The New Project dialog box appears, as shown in the“New
Project Dialog Box” figure.

Compiling and Fitting a CPLD Design

CPLD Synthesis Design Guide 3-7

Figure 3-1 New Project Dialog Box

2. Specify a design file to open using one of the following methods.

• In the Input Design field, type the name of a design file to
open.

• Click on the Input Design Browse button to the right of the
Input Design box. The Open dialog box appears. Select an
SEDIF file to open. Click on OK.

Note: The Design Manager automatically creates a subdirectory
named xproj and appends it to the work directory. The Design
Manager uses the xproj directory to store all the data files for the
project. By default, the design directory is used as the work directory;
however, you can change the default directory by typing a path in the
Work Directory field or by using Browse to select a directory.

3. In the New Project dialog box, click OK.

After your design has loaded, the Design Manager window
appears, configured for the loaded design.

To Implement a Design

The following procedure describes how to implement a design auto-
matically from the Design Manager.

1. Select Design → Implement from the Design Manager menu.

CPLD Synthesis Design Guide

3-8 Xilinx Development System

The Implement dialog box appears, as shown in the“Implement
Dialog Box” figure. The options in this dialog box are described
in the Design Manager/Flow Engine Reference/User Guide.

Figure 3-2 Implement Dialog Box

2. In the Implement dialog box, click on the Select button to the
right of the Part text field.

The Part Selector appears, as shown in the“Part Selector Dialog
Box” figure.

Figure 3-3 Part Selector Dialog Box

3. Select the family, device, package, and speed grade.

Compiling and Fitting a CPLD Design

CPLD Synthesis Design Guide 3-9

By default, the CPLD fitter automatically selects the device,
package and speed for you. You can select any specific device,
package or speed, or leave any of these boxes as “All.”

For a specific explanation of each option, see the Design Manager/
Flow Engine Reference/User Guide.

4. Click on OK to set the part type.

5. To set design implementation options, click on the Options
button in the Implement dialog box.

The Options dialog box appears, as shown in the“Options Dialog
Box” figure.

Figure 3-4 Options Dialog Box

6. Select desired options, such as templates to use and reports to
generate.

For a specific explanation of each option see the Design Manager/
Flow Engine Reference/User Guide. The “Implementation Options”
chapter discusses all implementation options for the XC9500 and
XC9500XL CPLD families, including Simulation Data Options.

7. Click on OK to set the options.

CPLD Synthesis Design Guide

3-10 Xilinx Development System

8. In the Implement dialog box, enter a version and revision name if
you want to change the default names.

9. Click on the Run button to implement the design.

The Flow Engine window appears. When processing is complete,
the Flow Engine closes and the Implementation Status dialog
box, shown in the“Implementation Status Dialog Box” figure,
appears.

Figure 3-5 Implementation Status Dialog Box

10. In the Implementation Status dialog box, click on Reports to
view the reports generated by the Flow Engine or click on View
Logfile to view the implementation logfile.

Note: At this point you can also perform timing simulation and
program the device. Timing simulation is described in the Interface
User Guide for your system. Device programming is described in the
JTAG Programmer Guide.

Using Unix Command Line
The cpld command is used to invoke the Xilinx CPLD fitter soft-
ware. CPLD uses the logical design produced by the Synopsys
compiler to create a physical layout for a target CPLD.

To invoke the fitter, enter the following Xilinx command on the UNIX
command line:

cpld [options] design_name

Invoking the cpld command with no parameters produces a listing
of all available command-line options.

Compiling and Fitting a CPLD Design

CPLD Synthesis Design Guide 3-11

The design_name is the name of the netlist file produced by the
Synopsys compiler, without path qualifiers, and either with or
without the extension, .sedif .

If design_name is specified without extension, the cpld command
automatically searches for and reads the netlist with file extension
.sedif as produced by Synopsys FPGA Compiler and Design
Compiler. The cpld command also accepts files with extensions
.edif , .edn , .xnf , .sxnf and .pld . If you happen to have any files
with the same name as your design and with one of these other exten-
sions, you should remove them from your design directory before
running the cpld command to prevent the wrong file from being
read inadvertently.

If you do not specify any optional parameters, the fitter automatically
selects a device from the XC9500 family which fits your design (if
possible).

The cpld command performs the following functions:

• Reads the netlist file (design_name.sedif) produced by the
Synopsys compiler.

• If you specified timing constraints for your design and saved
them in a dc_shell script file (design_name.dc), the cpld fitter
automatically reads the .dc file, translating it first into a Xilinx
netlist constraint file (design_name.ncf).

• Minimizes and collapses the combinational logic of your design
so that it requires the least number of macrocell and product term
resources.

• Partitions and maps your design to fit within the architecture of
the CPLD, optionally selecting the target device.

• Creates a device programming file (design_name.jed).

• Creates a fitter report (design_name.rpt) that shows you informa-
tion such as the type and quantity of device resources used, and
the resulting pinout.

• Creates a Static Timing Report (design_name.tim) that shows the
calculated worst-case timing for all signal paths in your design.

• Creates a guide file (design_name.gyd) that is used to lock signal
names to device pins, allowing you to keep the device pinouts
during subsequent design iterations.

CPLD Synthesis Design Guide

3-12 Xilinx Development System

• Creates a timing simulation database file (design_name.nga) that
can be translated into structural VHDL (for the Synopsys VSS or
other VITAL-compliant simulator) or structural Verilog.

Whenever the cpld command is invoked, it copies any existing fitter
report file (.rpt), timing report file (.tim), guide file (.gyd), and
programming file (.jed) to a subdirectory named "backup.".

CPLD Command Parameters
The [options] field of the cpld command represents an optional list of
one or more command-line parameters. The following are the cpld
command-line parameters that apply to Synopsys design entry:

• -autopwrslew — reduces macrocell power mode after meeting
timing specifications.

• -autoslewpwr — reduces slew rate and then power mode to
meet timing specifications.

• -detail — produces a detailed path timing report
(design_name.tmd) in addition to the default summary report
(design_name.tim).

• -grounds — creates programmable ground pins on unused I/O
ports.

• -ignoreloc — temporarily ignores all LOC attributes in the
design, allowing the fitter to assign the locations of all I/O pins.

• -ignorets — temporarily ignores all timing specifications in
the design_name.ncf or UCF file.

• inputs <n> — sets collapsing input limit per macrocell func-
tion (default is 36 input signals).

• -localfbk — uses local feedback to improve timing when
possible (XC9500 only, except XC9536). Default is to use local
feedback only when needed to meet timespecs.

• -loweffort — specifies low fitting effort.

• -lowpwr — set the default power mode to low for all macrocells
in the design (default is standard power).

• -nodt — disables automatic transformation between D-type and
T-type macrocell registers.

Compiling and Fitting a CPLD Design

CPLD Synthesis Design Guide 3-13

• -nogck — disables global clock optimization.

• -nogsr — disables global set/reset optimization.

• -nogts — disables global output-enable (GTS) optimization.

• -nomlopt — disables multi-level logic optimization.

• -nota — bypasses the timing analyzer so that no summary static
timing report (design_name.tim) is generated.

• -notsim — prevents generation of timing simulation database
file (design_name.nga).

• -notiming — inhibits the default global timing optimization
performed by the fitter; only paths with timing specifications are
optimized to improve timing.

• -nouim — disables formation of “wire-and” functions in the
FastCONNECT structure of XC9500 devices.

• -noxor — disables factorization and transformation between
pure sum-of-products logic and logic using macrocell XOR-gate.

• -p part_type — specifies the target CPLD device type or set of
devices from which to choose (default is automatic device selec-
tion from the XC9500 family); where part_type can be:

• 9500 = any XC9500 family device (auto selection)

• 9500xl = any XC9500XL family device (auto selection)

• “95ddd[xl][-ss][-pppp]” — where 95ddd is the device code
(such as 95108), ss is the speed grade, pppp is the package
code (such as PQ160), and an asterisk (*) can be used as a
wildcard string (quotes required around part_type when
asterisk is used). You must include the device code suffix “xl”
to select any devices from the XC9500XL family. For example,
“95*xl-*-pc*” selects any XC9500XL device in a pc-type
package.

• -pinfbk — uses pin feedback to improve timing when possible.

• -pinlock — uses the guide file (design_name.gyd) from the last
successful invocation of the fitter to reproduce the same pin loca-
tions (default is automatic pin assignment).

• -pterms nn — sets the limit to nn for the number of product
terms allowed as a result of collapsing (default=20).

CPLD Synthesis Design Guide

3-14 Xilinx Development System

Note: If you have complex combinational logic in your design, such
as state machines, comparators, etc., you may need to specify the -
pterms option with a limit higher than 20 to achieve higher perfor-
mance results. Refer to the Controlling Logic Optimization section in
Chapter 2 for information.

• -s signature — specifies the user signature string to be
programmed into the device for identification purposes, where
signature is a string of 1-4 alphanumeric characters (default is the
design name truncated to 4 characters).

• -slowslew — sets the default output slew-rate to slow (default
is normally fast).

• -ucf file_name— reads user constraints from file_name.ucf file
(by default, the fitter reads design_name.ucf if it exists).

• -xactfit — Use this option only if you have a design imple-
mented in XACT v6 and cannot get the same pinout using the
current software. If this is not used, advanced fitting is used as
default.

Compiling Behavioral Modules for Schematics
If you are developing a schematic-based design using some other
schematic entry tool (such as Viewlogic or Mentor), you can include
module symbols in your schematic that are functionally defined
using Synopsys VHDL or Verilog HDL. These are called "behavioral
modules".

This section describes how to prepare a synthesis-based behavioral
module using Synopsys FPGA Compiler or Design Compiler. Behav-
ioral modules are represented by custom symbols in the schematic
design. In general, the names of the pins on your behavioral module
symbol should match the names of the top-level entity ports in your
Synopsys source file. Refer to the Schematic Design Guide for informa-
tion on how to include the behavioral module symbol in your sche-
matic design.

The procedure for compiling a behavioral module is similar to the
procedure for compiling a complete CPLD design, as described
earlier in this chapter. For behavioral modules, however, you do not
specify device I/O pads; you would therefore omit the
set_port_is_pad and insert_pads commands. Also, many of

Compiling and Fitting a CPLD Design

CPLD Synthesis Design Guide 3-15

the dc_shell attributes, such as LOC, are not applicable to behavioral
modules.

Behavioral modules are compiled and written as EDIF netlists by
performing the following steps:

Step 1 - Entering the dc_shell Environment
Enter the Synopsys dc_shell environment by entering the following
Synopsys command on the UNIX command line:

dc_shell

You will see the dc_shell prompt.

Step 2 - Analyzing the Module
To interpret your synthesis module and verify that it is free of errors,
enter the following Synopsys command for VHDL modules:

analyze -format vhdl module_name.vhd

or, for Verilog HDL modules:

analyze -format verilog module_name.v

If your source file contains initial signal values (which are used only
for functional simulation) they will cause warnings that can be safely
ignored; these initial signal values are not used during synthesis.
Actual register initial states are set using attributes, as described in
Chapter 2.

If the analyze command finds errors, you will need to make the
necessary corrections to your source file and repeat the analyze
command before continuing with synthesis.

Step 3 - Elaborating the Module
To derive a logical design, based on your VHDL/HDL description,
enter the following Synopsys command:

elaborate entity_name

where entity_name is the name of your top-level entity in your
module.

During this step, the compiler displays information about all registers
and 3-state buffers encountered in your module.

CPLD Synthesis Design Guide

3-16 Xilinx Development System

You are now ready to compile your module using the XC9000
synthesis.

Step 4 - Compiling Your Module
When you compile your module, the Synopsys synthesizer uses the
components in the Xilinx XC9000 technology library to create an
actual implementation of your module. The library used during
compilation is defined by the dc_shell target_library variable, typically
specified in your .synopsys_dc.setup file.

To synthesize your module based on target CPLD technology library,
enter the following Synopsys command:

compile [-map_effort low]

The mapping effort parameter is optional. However, it is recom-
mended that you set it to LOW to save compilation time. The synthe-
sizer does not perform any speed or area optimization for CPLD
designs; this optimization is performed after compilation by the
CPLD fitter.

Step 5 - Specifying Attributes
The only attribute that you may set for behavioral modules is:
Register initial states

For example:

set_attribute Q_REG init -type string S

If you set any attributes on design objects in any hierarchy levels
below the top level, you must flatten the design so that your
attributes get written to the EDIF netlist. Enter the following
command to flatten your deign:

ungroup -all -flatten

Step 6 - Writing the Netlist
Write your synthesized module file in EDIF netlist format by entering
the following Synopsys command:

write -format edif -hierarchy -output
module_name .sedif

where:

Compiling and Fitting a CPLD Design

CPLD Synthesis Design Guide 3-17

• -format edif specifies the EDIF file format.

• -hierarchy specifies that all levels of the module hierarchy are
to be written.

• -output module_name.sedif specifies your output file name,
which should be the same as your source file name, with the
extension .sedif.

The EDIF file produced by the Compiler will be read when the fitter
finds the behavioral module symbol in your schematic design.

CPLD Synthesis Design Guide 4-1

Chapter 4

Simulating your Design

This software supports both functional and timing simulation of
VHDL designs using the VSS simulator. This package also supports
functional and timing simulation of Verilog designs. This chapter
shows you how to prepare designs for simulation and how to use a
test bench. It contains the folling sections:

• “Recommended CPLD Simulation Strategy”

• “Controlling the Initial States of Registers”

• “Creating a Test Bench File”

• “Functional Simulation Using VSS”

Recommended CPLD Simulation Strategy
Because of the flexibility of the simulation environment, there are
many ways in which you can verify your design. The following steps,
which are explained in subsequent sections, show you one recom-
mended flow for CPLD simulation.

1. Specify the initial states of your registers. If you use attributes to
control the initial states of the registers in your actual design
implementation, you should also re-specify those initial states in
your source VHDL design file for functional simulation.

2. Create a test bench file. By following the guidelines described in
this chapter, the same test bench can be used for both functional
and timing simulation without modification.

3. Perform functional simulation. This allows you to debug the
logic in your source design before implementing a CPLD.

4. Implement the design in a CPLD. This provides the necessary
physical resource information necessary for timing simulation.

CPLD Synthesis Design Guide

4-2 Xilinx Development System

5. Prepare the timing model. The ngd2vhdl command or Simula-
tion Output options in the Design Manager prepare the VITAL
(the ngd2ver command prepares a Verilog HDL timing model)
timing model of your design for simulation.

6. Perform timing simulation. By re-using the functional simulation
test bench file, you can easily compare results and prevent errors
that can be caused by accidental differences between separate test
bench files.

All of these preparation and simulation steps are demonstrated in the
design example shown in the "Getting Started with Xilinx CPLDs"
chapter.

Controlling the Initial States of Registers
This section shows you how to declare the initial states of registers in
your design for simulation. If your design does not depend on the
initial states of any registers, then you can skip this section and go to
the next section, "Creating a Test Bench File".

The actual initial states of your registers are determined by the initial
state attributes specified in DC Shell during compilation. By default,
all registers initialize to zero in CPLD designs.

The timing simulation model produced by the Xilinx software reflects
the actual register initial states that are implemented in the device.

Simulating Power On Initialization
All registers in Xilinx CPLDs are initialized when power is applied.
You must perform the necessary steps to initialize the registers in
your design at beginning of timing simulation for consistent simula-
tion results.

The following sections show you how to set up your design to
perform register initialization for both functional and timing simula-
tion.

Preparing for Timing Simulation

When you generate your timing simulation model, ngd2vhdl or
Simulation Output Options on the Design Manager automatically
create a new signal in the model that you can stimulate in your test
bench at the beginning of the simulation waveform to simulate

Simulating your Design

CPLD Synthesis Design Guide 4-3

power-on. For CPLD designs an internal net named PRLD is
normally created. If you want to make the XC9000 PRLD signal acces-
sible to a VHDL test bench, you can specify the ngd2vhdl -gp
option to create a port named PRLD.

When simulating, you must first pulse PRLD high, prior to exercising
the logic, to get all the registers into their initial states. If you used
the ngd2vhdl -gp option to create a PRLD port for your XC9000
design simulation, you must list PRLD in the port list of the CPLD in
your test bench.

The PRLD signal is used for timing simulation only; it is not used for
functional simulation and it cannot be used in your design. However,
if you include it in your functional simulation test bench, that test
bench can also be used later for timing simulation without modifica-
tion.

If you include the PRLD signal in your test bench file for functional
and timing simulation, you must also include PRLD in your port
declarations in your source design file as follows:

port (... PRLD : in std_logic ...);

PRLD is not used anywhere else in your design. It will be ignored
during synthesis; you will get warnings about the unconnected port
during the Compile and Insert_pads operations. The Xilinx fitter
software will also discard the unconnected port during implementa-
tion.

If the behavior of your CPLD design does not depend on the power-
up state of any register, you do not need to use the ndg2vhdl -gp
option and you do not need to pulse the PRLD net during simulation.

Preparing for Functional Simulation

Simulate register initialization by defining, in your VHDL source
design file, the initial values for registered signals. Use signal declara-
tions such as the following:

port signal_name: port_direction signal_type := initial_value;
signal signal_name: signal_type := initial_value;
variable signal_name: signal_type := initial_value;

For example:

CPLD Synthesis Design Guide

4-4 Xilinx Development System

port Nreg5: out std_logic := '0';
signal Qreg6: std_logic := '1';
variable Qreg: std_logic_vector := "00000001";

These initial values are used only for functional simulation; they are
not used during synthesis and the compiler will give you a warning
that these values are being ignored. Also, these initial values are not
used by the Xilinx software for device implementation because the
initial values from these declarations are not written into the netlist.

You are now ready to create a test bench file.

Creating a Test Bench File
This section shows you how to create a test bench file that can be used
for both functional and timing simulation. The example test bench
presented here consists of a VHDL file containing one instance of a
CPLD design being tested and a procedure that applies simulation
input waveforms to the CPLD.

Initializing Registers
If you are using the -gp option, prepare your test bench to pulse the
appropriate initialization port.

In the test bench, include the PRLD input port in the CPLD compo-
nent declaration and in its instance port map as shown in the
following section. At the beginning of the simulation sequence, apply
an active-high pulse to the PRLD port to initialize the registers
during timing simulation. The pulse is ignored during functional
simulation because the PRLD signal is not used anywhere in the
source design. For functional simulation, all registers are initialized
before the first simulation cycle (at time zero) by the initial values
declared in your source design file.

If you are simulating a CPLD design using Verilog, pulse the internal
PRLD net high at the beginning of simulation to initialize your regis-
ters.

Configuration Declaration
For any design or test bench you wish to simulate using VSS, you
must declare a configuration which identifies the specific architecture
you are applying to a design. When you invoke the VSS simulator,

Simulating your Design

CPLD Synthesis Design Guide 4-5

you must select the name of a configuration that has been previously
analyzed.

The following example shows a typical configuration declaration in a
VHDL test bench file for a CPLD design for which the ngd2vhdl -
gp option has been enabled. If the test bench is always used to simu-
late the design source file, the design does not need its own configu-
ration declaration.

entity scan_tb is
end scan_tb; --test bench has no ports--

architecture test of scan_tb is
 component scan
 port (CLOCK, CLEAR, ... --same as in scan.vhd--
 PRLD : in std_logic);
 end component;
 signal CLOCK, CLEAR, ...PRLD; --same as ports of scan.vhd--
begin
 UUT: scan port map (CLOCK, CLEAR, ... PRLD);--connect local signals
 to ports--
 driver: process begin
 PRLD <= '1';CLEAR <='0';... --assert initial values on all
 inp ports--
 wait for 25ns; --wait, --
 PRLD <= '0';... --release PRLD before applying
 other input transitions--
 wait; --after all inputs, suspend process--

end process;

end test;

configuration CFG_SCAN_TB of scan_tb is
 for test

 end for;
end CFG_SCAN_TB;

After you have created a test bench file, you are ready to begin using
a VSS simulator (such as vhdldbx) for functional simulation.

Functional Simulation Using VSS
Functional simulation is used to debug your logic before fitting your
design into a CPLD. The Xilinx CPLD Synopsys Interface fully
supports functional simulation using the Synopsys VSS simulator,
including all instantiated cells from the XC9000 library.

CPLD Synthesis Design Guide

4-6 Xilinx Development System

To prepare a test bench configuration for simulation, you must
analyze each of the design and test bench source files in the proper
bottom-up sequence.

The following procedure uses the stand-alone VHDL Analyzer
(vhdlan) and the VHDL Debugger Simulator (vhdldbx).

1. Analyze your source CPLD design file. Enter the following UNIX
command:

vhdlan design_name.vhd

For example:

vhdlan scan.vhd

2. Analyze the test bench file. Enter the following UNIX command:

vhdlan test_bench_name.vhd

For example:

vhdlan scan_tb.vhd

3. Invoke the Synopsys VSS Simulator. Enter the following UNIX
command to invoke the VHDL debugger:

vhdldbx

You are then prompted for a configuration name. Select the name of
the configuration declared in the test_bench_name.vhd file. For
example, for the scan design, select the following:

CFG_SCAN_TB

The vhdldbx selector window appears.

After you click OK, the vhdldbx user interface window appears.

To run your simulation, typically you first declare the signals you
want to display in a trace window. For example, to display all signals
appearing on the CPLD pins, you can enter the following vhdldbx
command:

trace *'signal.

To run all the simulation vectors in your test bench, select the RUN
command. A trace window will be displayed.

Simulating your Design

CPLD Synthesis Design Guide 4-7

After functional simulation is successful, you are ready to implement
your design and create the physical layout information required for
timing simulation.

Design Implementation
After you have debugged your design using functional simulation,
you can compile it using synthesis and implement it in a CPLD using
the Xilinx fitter. Design implementation is a prerequisite for
performing timing simulation.

You can use DC Shell or you can use the Synopsys graphic interface
(Design Analyzer) to create the EDIF netlist file required by the Xilinx
fitter. This gate-level netlist file consists of cells from the XC9000
library but does not contain timing information. The Xilinx fitter
processes the netlist file and places the logical design into the phys-
ical architecture of a target CPLD.

After the design is implemented by the Xilinx fitter, the actual target
device timing information is available for timing simulation.

The following steps show you an overview of the CPLD implementa-
tion procedure.

1. Analyze the source design file. This must be repeated in the
synthesis environment (DC Shell); the results of vhdlan cannot be
used for synthesis.

2. Compile the design, targeting the XC9000 library, and create a
netlist.

3. Run the Xilinx fitter, using the cpld command or the Design
Manager to process the netlist.

Usually, simulation is not repeated until after fitting when all actual
timing results have been applied.

Examine the appropriate fitter report files to verify that the fitter
completed successfully. You may wish to target a smaller device or
add more functions to your design if there are remaining unused
resources.

After design implementation, you are ready to prepare the timing
model for timing simulation.

CPLD Synthesis Design Guide

4-8 Xilinx Development System

Preparing the Timing Simulation Model

From Command Line

The ngd2vhdl command translates the timing simulation database
file (design_name.nga) produced by the cpld command into the
required VHDL simulation output file(s).

If you prefer to create a PRLD input port and control it using your
testbench, create your timing simulation model as follows:

ngd2vhdl design_name -w -gp design_name_time

If you prefer to use the automatic ROC cell to pulse the PRLD net,
create your timing simulation model as follows:

ngd2vhdl design_name -w design_name_time

Invoking the ngd2vhdl command with no parameters produces a
listing of all available command-line options.

The design_name is the name of the design as specified when running
the cpld command, without path qualifiers and without extension.

The ngd2vhdl command produces a structural VHDL file
(design_name_time.vhd) and an SDF-formatted timing back-annota-
tion file (design_name_time.sdf), for use with the Synopsys VSS simu-
lator or other VITAL-compatible simulator. A procedure for using the
VSS simulator is described below.

Similarly, the ngd2ver command produces a structural Verilog HDL
file (design_name_time.v) and an SDF-formatted timing back-annota-
tion file (design_name_time.sdf).

The -gp option forces ngd2vhdl or ngd2ver to add a PRLD input
port to the output VHDL or Verilog HDL file for CPLD designs. This
allows the PRLD initialization signal to be stimulated as a top-level
port by your test bench.

Note: When the fitter processes your design, some of your original
nodes may be removed or replaced due to logic optimization. Such
nodes cannot be viewed or stimulated during timing simulation. All
of the device I/O port signals and register output signals are always
maintained.

Simulating your Design

CPLD Synthesis Design Guide 4-9

From Design Manager

1. Open the Options dialog box using one of the following methods.

• If you haven‘t yet performed design implementation, from
the Design Manager menu, select Design → Implement .
Click on the Options button in the Implement dialog box.

• If you have already completed implementation, select the
revision, then go to the Flow Engine by selecting Tools →
Flow Engine . From the Flow Engine menu, select Setup
→ Options .

The Options dialog box appears.

2. In the Options dialog box, select the Produce Timing Simu-
lation Data check box then select the Edit Template
softkey.

The Implementation Options template appears.

3. Select the Interface tab on the Implementation Options
template.

4. Select VHDL or Verilog as the output format.

5. Click OK.

When you implement the design, the Flow Engine produces
timing simulation data files. Each time the data is produced, it is
automatically exported to your design directory.

You can now use these files to simulate the design with a supported
third party simulation tool.

Timing Simulation Using VSS
If you prepared your test bench as described earlier you can use the
same test bench for timing simulation as used for functional simula-
tion. By using the same test bench you can easily verify that the func-
tionality of the device after mapping matches the functionality of
your source design. You also eliminate any risk of errors from acci-
dental differences between separate test bench files.

1. Analyze the timing simulation model produced by ngd2vhdl :

vhdlan design_name_time.vhd

For example:

CPLD Synthesis Design Guide

4-10 Xilinx Development System

vhdlan scan_time.vhd

2. Analyze the test bench file name as used for functional simula-
tion. Enter the following UNIX command:

vhdlan test_bench_name.vhd

For example:

vhdlan scan_tb.vhd

The simulation data base now contains the test bench design
which interfaces to the chip through your source design entity
read in step 1 but it contains the timing model architecture read
in step 2.

3. Invoke the Synopsys VSS Simulator. Enter the following UNIX
command:

vhdldbx

You are then prompted for the configuration named in the
test_bench_name.vhd file. For example, for the scan design, select
the following:

CFG_SCAN_TB

Before clicking "OK" you must specify the timing backannotation
file information in the Arguments box.

All back-annotated timing in the .sdf file is applied to various
instances within the design_name_time.vhd file. However, if you are
simulating with a test bench, you must specify (to the simulator) the
CPLD design instance to which you want to apply the back-anno-
tated timing. It can then find all the referenced instances.

If you are using vhdldbx you need to specify two parameters:

• The sdf_top instance in the test bench configuration to which the
back-annotated timing is applied:

-sdf_top chip_instance_name

For example:

-sdf_top /scan_tb/UUT

All back-annotated timing parameters in the .sdf file are
applied relative to the chip instance.

• The file name of the .sdf backannotation timing file:

Simulating your Design

CPLD Synthesis Design Guide 4-11

-sdf design_name_time.sdf

For example:

-sdf scan_time.sdf

You can specify these parameters either in the dialog box which
appears after invoking vhdldbx , or on the UNIX command line as
you invoke vhdldbx .

The command line invocation format is:

vhdldbx -sdf_top chip_instance_name -sdf \
design_name_time.sdf configuration_name

For the scan design example, you should enter the following:

vhdldbx -sdf_top /scan_tb/UUT \

-sdf scan_time.sdf CFG_SCAN_TB

Note: If you use the -tb option of the ngd2vhdl command to create
a testbench template file (.tvhd), all the instance names in the .sdf
timing back-annotation file will be prefixed with “UUT/”. In this
case, you would omit the instance name “/UUT” from your
vhdldbx -sdf_top parameter. For example, if you prepared the
scan design using the command:

ngd2vhdl -w -tb scan scan_time

then you would invoke the VSS simulator using the command:

vhdldbx -sdf_top /scan_tb -sdf scan_time.sdf \
CFG_SCAN_TB

Now you can run the same simulation vectors for timing simulation
as you ran for functional simulation. However, in timing simulation,
the registers are set to their initial states in response to the active-high
pulse on PRLD.

CPLD Synthesis Design Guide A-1

Appendix A

Library Component Specifications

This appendix describes each of the components (cells) in the Xilinx
XC00 synthesis library.

Component
Name

Component Description Inferable

AND2-AND8 AND Gates X

BUF Buffer

BUFE Tristate buffer (not available in XC9500XL or
XC9500XV designs)

X

BUFGSR Global set/reset input buffer

BUFGTS Global tristate control input buffer (uses clock-
enable p-term in XC9500XL and XC9500XV)

BUFG Global clock (FastCLK) input buffer

FDCE D-Type Flip-Flop with Clear and Clock Enable

FDCE_X D-Type Flip-Flop with Clear and Clock Enable X

FDCP D-Type Flip-Flop with Asynchronous Clear and
Preset

X

FDPE D-Type Flip-Flop with Preset and Clock Enable
(uses clock-enable p-term in XC9500XL and
XC9500XV)

FDPE_X D-Type Flip-Flop with Preset and Clock Enable X

IBUF Input Buffer X

INV Inverter X

IOBUFE Bi-Directional I/O Buffer X

IOBUFE_F Bidirectional I/O Buffer--fast slew rate X

IOBUFE_S Bidirectional I/O Buffer--slow slew rate X

CPLD Synthesis Design Guide

A-2 Xilinx Development System

AND2 — AND8
AND2 through AND8 are AND gates with 2 to 8 inputs.

Inferencing
The synthesizer uses these components when creating functions that
require AND gates.

Component Instantiation
U1: AND2 port map (O=>out,I1=>in2,I0=>in1);

BUF
BUF is a non-inverting buffer.

Inferencing
The synthesizer does not use this component by
inference.

Component Instantiation
U1: BUF port map (O=>out_port, I=>in_port);

LD D-Type Latch X

OBUF Output Buffer X

OBUF_F Output Buffer--fast slew rate X

OBUF_S Output Buffer--slow slew rate X

OBUFE Tristate Output Buffer X

OBUFE_F Tristate Output Buffer--fast slew rate X

OBUFE_S Tristate Output Buffer--slow slew rate X

OR2-OR8 OR Gates X

XOR2-XOR8 XOR Gates X

Component
Name

Component Description Inferable

Library Component Specifications

CPLD Synthesis Design Guide A-3

BUFE
BUFE is a non-inverting tristate buffer, with active-high enable. BUFE
must not appear in XC9500XL or XC9500XV designs.

Inferencing
The synthesizer uses these components when creating functions that
require tristate buffers that drive internal signals.

Component Instantiation
U1: BUFE port map (O=>ts_out, I=>inp, E=>enable);

BUFG
BUFG is an input buffer used to drive the Global clock signal (GCK).

BUFG signals may be used for active-high or active-low (inverted)
clocking, and for any other logic functions in the design.

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: BUFG port map (O=>global_clk, I=>in_port);

BUFGSR
BUFGSR is an input buffer used to drive the Global set/reset signal.
BUFGSR signals can drive the CLR or PRE input of any flip-flop
components, and any other logic functions in the design.

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: BUFGSR port map (O=>global_sr, I=>in_port);

CPLD Synthesis Design Guide

A-4 Xilinx Development System

BUFGTS
BUFGTS is a an input buffer used to drive the global tristate control
signal (GTS). BUFGTS may be used either active-high or active-low
(inverted) to drive the E input of OBUFE and IOBUFE type compo-
nents, and any other logic functions in the design.

Inferencing
The synthesizer does not use this component by inference.

Component Instantiation
U1: BUFGTS port map (O=>global_oe, I=>in_port);

FDCE, FDCE_X
FDCE and FDCE_X are edge-triggered D-type flip-flops with clear
and clock enable.

Inferencing
The synthesizer uses the FDCE_X component for all flip-flop func-
tions requiring clock-enable, but not requiring asynchronous preset.
The synthesizer does not use the FDCE component by inference.

Component Instantiation
U1: FDCE port map (Q=>out, D=>data, C=>clock,
CLR=>async_clr, CE=>clk_enable);

FDCP
FDCP is an edge-triggered D-type flip-flop with preset and clear.

Inferencing
The synthesizer uses this component for all functions that require D-
type registers, but not clock-enable.

Library Component Specifications

CPLD Synthesis Design Guide A-5

Component Instantiation
U1: FDCP port map (Q=>out, D=>data, C=>clock,
CLR=>async_clr, PRE=>async_set);

FDPE, FDPE_X
FDPE and FDPE_X are edge-triggered D-type flip-flops with preset
and enable.

Inferencing
The synthesizer uses the FDPE_X component for all flip-flop func-
tions requiring clock-enable and asynchronous preset. The synthe-
sizer does not use the FDPE component by inference.

Component Instantiation
U1: FDPE port map (Q=>out, D=>data, C=>clock,
PRE=>async_preset, CE=>clk_enable);

IBUF
IBUF is an input buffer.

Inferencing
The synthesizer uses these components to receive inputs from device
pins.

Component Instantiation
U1: IBUF port map (O=>received_signal,

I=>in_port);

INV
INV is an inverter.

Inferencing
The synthesizer uses this component for signal inversion.

CPLD Synthesis Design Guide

A-6 Xilinx Development System

Component Instantiation
U1: INV port map (O=>not_in1, I=>in1);

IOBUFE, IOBUFE_F, IOBUFE_S
IOBUFE is a non-inverting tristate I/O buffer with active-high
enable. Output slew rate is controlled by CPLD fitter options (default
is fast).

IOBUFE_F is an I/O buffer with fast output slew rate.

IOBUFE_S is an I/O buffer with slow output slew rate.

Inferencing
The synthesizer uses these components to transfer signals to and
from bidirectional device I/O pins.

Component Instantiation
U1: IOBUFE port map (O=>received_signal,

IO=>inout_port, I=>driving_signal,
E=>output_enable);

LD
LD is a D-type latch.

Inferencing
The synthesizer uses LD for all transparent latches. This component
can be used by inference.

Component Instantiation
U1: LD port map (Q=>out, D=>data,

G=>latch_enable);

OBUF, OBUF_F, OBUF_S
OBUF is an output buffer. Output slew rate is controlled by CPLD
fitter options (default is fast).

OBUF_F is an output buffer with fast output slew rate.

Library Component Specifications

CPLD Synthesis Design Guide A-7

OBUF_S is an output buffer with slow output slew rate.

Inferencing
The synthesizer uses this component when creating external outputs
to device pins.

Component Instantiation
U1: OBUF port map (O=>out_port,

I=>driving_signal);

OBUFE, OBUFE_F, OBUFE_S
OBUFE is a tristate output buffer with active-high enable. Output
slew rate is controlled by CPLD fitter options (default is fast).

OBUFE_F is a tristate output buffer with fast output slew rate.

OBUFE_S is a tristate output buffer with slow output slew rate.

Inferencing
The synthesizer uses this component when creating tristate external
outputs which connect to device pins.

Component Instantiation
U1: OBUFE port map (O=>out_port,

I=>driving_signal, E=enable);

OR2 — OR8
OR2 through OR8 are OR gates with 2 to 8 inputs.

Inferencing
The synthesizer uses these components when creating functions that
require OR gates.

Component Instantiation
U1: OR2 port map (O=>out, I1=>in2, I0=>in1);

CPLD Synthesis Design Guide

A-8 Xilinx Development System

XOR2 — XOR8
XOR2 through XOR8 are XOR gates with 2 to 8 inputs.

Inferencing
The synthesizer uses these components when creating functions that
require XOR gates.

Component Instantiation
U1: XOR2 port map (O=>out, I1=>in2, I0=>in1);

CPLD Synthesis Design Guide B-1

Appendix B

Attributes

Attributes are used to control how the software uses the architecture
specific features of CPLDs. See the device data sheets for more infor-
mation about these device features.

This appendix contains the following sections:

• “Instantiated Attributes”

• “Synopsys Attributes”

• “Timing Constraints”

Instantiated Attributes
Instantiated attributes are applied by instantiating the following
components in your design and connecting them to the affected
signal.

KEEP
This attribute inhibits the software from optimizing the logic that
drives the signal passing through the KEEP cell.

To specify that a signal is to remain as a macrocell output, use:

U1: KEEP port map (O=>outgoing_signal,
I=> incoming_signal);

Synopsys Attributes
The following attributes can be specified in the Synopsys dc_shell for
Xilinx CPLD designs. See the Synopsys Design Compiler manual for
more information on using the set_attribute and
set_pad_type commands.

CPLD Synthesis Design Guide

B-2 Xilinx Development System

Global Input Ports
The dc_shell set_pad_type command with parameter -exact
explicitly controls allocation of global input buffers. The format is:

set_pad_type -exact buffer_type port_name

where buffer_type is one of BUFG, BUFGTS, or BUFGSR.

The dc_shell set_pad_type command with parameter -exact
BUFG is used to explicitly control the use of global clock pins, and
reference an input port of your design. For example:

set_pad_type -exact BUFG clock1

If you need to explicitly control the use of global 3-state control pins,
you can specify the set_pad_type command in your dc_shell script
with the parameter -exact BUFGTS , and reference an input port of
your design. For example:

set_pad_type -exact BUFGTS enable1

If you need to explicitly control the use of the global set/reset pin,
you can specify the set_pad_type command in your dc_shell script
with the parameter -exact BUFGSR and reference an input port of
your design. For example:

set_pad_type -exact BUFGSR reset1

Note: The cell names BUFG, BUFGTS, and BUFGSR must be upper
case.

Note: The set_pad_type command must be invoked before the
insert_pads command.

As an alternative, you can use a UCF file to apply the BUFG property
to an ordinary input port after synthesis. The UCF file syntax is:

NETport_name BUFG=buffer_type;

where buffer_type is one of CLK(for BUFG), OE(for BUFGTS), or SR(for
BUFGSR).

Output Slew Rate
The set_pad_type -slewrate command controls the output
buffer slew rate.

The format is:

Attributes

CPLD Synthesis Design Guide B-3

set_pad_type -slewrate slew_value port_list

where slew_value is either HIGH (for slow slew rate) or NONE (for fast
slew rate), and port_list is either one or more output port names or the
keyword all_outputs ().

• HIGH - Slows the output signal transition time and thus reduces
internal switching noise, and edge rates.

• NONE - Maintains fast output signal transition time (default).

By default, the slew rate of all the output buffers (OBUF, OBUFE and
IOBUFE) is controlled by the fitter options (default fast). However, in
order to reduce possible noise problems, it is recommended that you
use the fast transition default only for those output signals that
require maximum speed.

To set all outputs to slow slew rate, use the following command:

set_pad_type -slewrate HIGH all_outputs ()

After you have globally changed all outputs to the HIGH option (for
slow signal transition) you can set any individual output for fast
signal transition by using the following command:

set_pad_type -slewrate NONE port_name

Note: The set_pad_type command must be invoked before the
insert_pads command.

As an alternative, you can use a UCF file to apply the FAST or SLOW
property to an ordinary output port where no slewrate was set using
the set_pad_type command during synthesis. The UCF file syntax
is:

NETport_name FAST;

or

NETport_name SLOW;

Pin Assignment
The LOC attribute is used to specify the pins on which to place output
signals.

The format is:

set_attribute port_name LOC pin_number -type string

CPLD Synthesis Design Guide

B-4 Xilinx Development System

where:

• port_name = The name of the top-level design port.

The format of pin_number is:

• Pnn for PC and PQ and VQ packages, where nn is the pin
number.

• rc for PG and BG packages, where rc are the row letter and
column number.

For example, for PC and PQ packages:

set_attribute RDY LOC p23 -type string

For example, for PG and BG packages:

set_attribute RDY LOC K13 -type string

Note: The pin assignment attribute overrides previously saved
pinouts when running cpld with the -pinlock option.

UCF/NCF File

NET port_name LOC=pin_number ;

for instance,

NET ABC LOC=P12;

Function Block and Macrocell Assignment
The LOC attribute can also be used to specify the function block or
macrocell number into which a node is to be mapped. Function block
assignment may be useful to take advantage of the high-speed local
feedback paths of XC9500 devices.The syntax is:

set_attribute node_name loc FB nn -type string

or

set_attribute node_name loc FB nn_mm -type string

where node_name is the name of the signal net appearing at the output
of a CPLD macrocell (or the cell driving that signal), nn is a legal
function block number for the target device, and mm is a legal macro-
cell number within the function block.

Attributes

CPLD Synthesis Design Guide B-5

UCF/NCF File

NET node_name LOC=FBnn[mm];

Register Initial State
The init attribute is used to specify the initial (power up) state of
registers in your design.

The syntax is:

set_attribute register_name init state -type string

where:

• register_name is the name of a register cell in your design or the
name of its output net

• state is either S (set) or R (reset)

For example:

set_attribute “QOUT<2>_reg” init S -type string

UCF/NCF File

NET net_name INIT= state;

or

INST inst_name INIT= state;

Macrocell Power Mode
The pwr_mode attribute can be used to select the power consumption
(standard or low-power) of specific macrocells in the design. The
syntax is:

set_attribute node_name pwr_mode mode -type string

where node_name is the name of a signal (net) appearing at the output
of a CPLD macrocell (or the cell that drives the signal), and mode is
either std (standard) or low .

Note: If the logic driving the named signal is collapsed by the fitter,
the pwr_mode attribute will be ignored.

UCF/NCF File

NETnode_name PWR_MODE= mode;

CPLD Synthesis Design Guide

B-6 Xilinx Development System

Timing Constraints
The following dc_shell timing constraints are available:

• create_clock

• set_max_delay

• set_output_delay

• set_input_delay

create_clock
You can use the following command to declare a clock input port and
place a timing specification on the specified clock net. The register-to-
register delays between all flip-flops on the named clock will be
constrained by the specified period.

The create_clock command creates a cycle time specification on
the specified clock signal as follows:

create_clock clock_port –period delay

where clock_port is the name of the clock input port and delay is
the clock cycle time in nanoseconds.

Note: The Synopsys max_period command is not supported by the
Xilinx fitter; use the create_clock command instead.

UCF/NCF File

NETclock_port TNM=clock_port;

TIMESPEC TSid=PERIOD:clock_port:delay;

set_max_delay
The set_max_delay command specifies delay constraints for
specific paths originating from input (or I/O) ports or flip-flop cells
and terminating at output (or I/O) ports or flip-flop cells. The syntax
of the set_max_delay command is:

set_max_delay delay –from source –to destination

For example, to specify the propagation delay from the CLEAR input
port to the DONE output port:

Attributes

CPLD Synthesis Design Guide B-7

set_max_delay 20 -from CLEAR -to DONE

UCF/NCF File

TIMESPEC TSid=FROM:source:TO: destination: delay;

set_output_delay
The set_output_delay command establishes clock-to-output
delay specifications based on values specified in the create_clock
or set_max_delay constraints or creates tighter constraints for
named output ports as follows:

set_output_delay delay –clock clock output_port

When the named output ports are driven by registers covered by a
create_clock period constraint, the set_output_delay
constraint specifies how much time (delay) before the next clock edge
the named outputs need to become stable.

Table 4-1 set_max_delay

Source Destination Affected Timing Path

input or I/O
port (except
clock)

output or I/O
port

pad-to-pad propagation delay

input or I/O
port (except
clock)

register cell register setup time from specified
port(s) with respect to flip-flop’s
clock pin.

register cell register cell register-to-register delay (cycle
time), regardless of each register’s
clock source (overrides create_clock
period constraint covering same
registers

register cell output or I/O
port

register clock-to-output delay from
flip-flop’s clock pin to output pad.

clock input port output or I/O
port

register clock-to-output delay from
the specified clock input to speci-
fied output port

clock input port register cell not used for CPLD designs

CPLD Synthesis Design Guide

B-8 Xilinx Development System

In this case, the set_output_delay constraint specifies the delay
path between the clock input pin of the CPLD device and the named
output pin(s) according to the following relationship:

set_output_delay_value = create_clock_period_value -
cpld_clock_to_output_delay

where set_output_delay_value is the delay value specified in the
set_output_delay constraint, create_clock_period_value is the period
value specified in a previous create_clock constraint, and
cpld_clock_to_output_delay is the desired worst-case propagation delay
between the clock input pin and output pin(s) of the CPLD.

This command also changes the values of pad-to-pad or clock-to-
output delay specifications created by the set_max_delay
command, by making the constraints tighter by the amount specified
by the delay value for the named outputs.

Note: When using the set_output_delay constraint, the named
clock must be explicitly declared as a global clock input port by using
the set_pad_type -exact BUFG command.

UCF/NCF File

NEToutput_port OFFSET=OUT:delay:BEFORE: clock;

set_input_delay
The set_input_delay command establishes register setup time
specifications based on create_clock or set_max_delay
commands or creates tighter constraints on named input ports as
follows:

set_input_delay delay –clock clock input_port

When the named input ports feed into registers covered by a
create_clock period constraint, the set_input_delay
constraint specifies how much time (delay) after the previous clock
edge the named inputs are expected to become stable.

In this case, the set_input_delay constraint specifies the setup time
requirements between data input pin(s) and the clock input pin of the
CPLD device according to the following relationship:

set_input_delay_value = create_clock_period_value -
cpld_external_setup_time

Attributes

CPLD Synthesis Design Guide B-9

where set_input_delay_value is the delay value specified in the
set_input_delay constraint, create_clock_period_value is the period
value specified in a previous create_clock constraint, and
cpld_external_setup_time is the desired worst case setup time between
the data input pin(s) and the clock input pin of the CPLD.

This command also changes the values of pad-to-pad delay or
register setup time specifications created by the set_max_delay
command, by making the constraints tighter by the amount specified
by the delay value for the named inputs.

When using the set_input_delay constraint, the named clock
must be explicitly declared as a global clock input port by using the
set_pad_type -exact BUFG command as described in the
section Special I/O Ports in chaper 2.

UCF/NCF File

NETinput_port OFFSET=IN: delay:AFTER: clock;

CPLD Synthesis Design Guide C-11

Appendix C

Fitter Command and Option Summary

This appendix describes how to invoke the CPLD fitter, and the
commands used to prepare functional and timing simulation models.
All of the available fitter options are described. This appendix
contains the following sections:

• “Design Manager”

• “CPLD Command”

Design Manager
The Design Manager invokes the Flow Engine (fitter) and option
templates to control the fitting of your design.

Invoking the Fitter
1. From the Design Manager select the file you want to process.

File → Open Project

Select a file from the template’s list or use the Browse key to
search your directories for the file you want to process. If the file
is listed on the template, highlight the file and click once on
Open.

2. Go to the Flow Engine and select options:

Tools → Flow Engine

Setup → Options

3. The Design Implementation Option menu appears. Select:

CPLD Synthesis Design Guide

C-12 Xilinx Development System

Edit Template

4. Then select from the five tabs all the options you want to use and
press OK.

5. To run the fitter, click once on the run key found in the Flow
Engine.

Fitter Options
This section describes fitter parameters that can be entered from the
Design Manager.

The Implementation Options menu contains five tabs of options for
the fitter. The following summarizes fitter options:

• Basic → Default Output Slew Rate — sets default
output slew-rate to FAST or SLOW (default is FAST).

• Basic → Macrocell Power Setting — Sets default power
mode for all macrocells in the design to standard or low-power
(default is Std power).

• Basic → Create Programmable Ground Pins — creates
additional ground pins on unused I/Os (default is OFF).

• Basic → Use Design Location Constraints — if this is
not checked, the program temporarily ignores all LOC attributes
in the design, allowing the fitter to assign the locations of all I/O
pins (default is ON).

• Basic → Use Timing Constraints — turn this selection
off if you want to temporarily ignore all timing specification
attributes in the design (default is ON).

• Basic → Use Global Clock(s) — Select this option to
automatically use global clocks (GCK) for ordinary input signals
used as clocks. The global clock may allow you to meet your
timing constraints more easily. By default, this option is ON.

• Basic → Use Global Output Enable(s) — Select this
option to automatically use global output enable (GTS) for ordi-
nary input signals used as output enable constraints. Global
output enable may allow you to meet your timing constraints
more easily. By default, this option is ON.

Fitter Command and Option Summary

CPLD Synthesis Design Guide C-13

• Basic → Use Global Set/Reset — Select this option to
automatically use global set/reset (GSR) for ordinary input
signals used as asynchronous clear or preset. By default, this
option is ON.

• Advanced → Collapsing Input Limit — The maximum
number of function block inputs allowed as a result of logic
collapsing. Default is 36.

• Advanced → Collapsing Pterm Limit — The maximum
number of product terms allowed as a result of collapsing
(default=20 on Optimize Speed template; 90 on Optimize
Density template).

• Advanced → Use Multilevel Logic Optimization —
Spends additional time transforming the logic in your design to
new logical structures that achieve better performance and
density (default=ON).

• Advanced → Use Timing Optimization — enables the
global timing optimization performed by the fitter; if this option
is not selected, only paths with T-specs specified in the design are
optimized to improve timing (default is ON in Optimize Speed
template, OFF in Optimize Density template).

• Advanced → Enable D to T-Type Transform Optimi-
zation — if this box is checked (default), the fitter transforms
between D-type and T-type registers.

• Advanced → Use Advanced Fitting — Select this option
to enable an advanced fitting strategy that favors placing signals
with common inputs in the same function block. This usually
allows you to pack more logic into the same device. Disable this
option if the software has trouble fitting a design that used to fit
with an older version of software (by default, this option is ON).

• Advanced → Use Local Macrocell Feedback — enables
the software to use local feedback in XC9500 devices (except
XC9536) whenever possible. The local feedback path takes less
time than the global feedback path. Using local feedback can
speed up your design but can make it difficult to keep the same
timing after a design change (default is OFF).

• Advanced → Use Local Pin Feedback — enables the soft-
ware to use local I/O pin feedback in XC9500 devices whenever
possible. The software uses the pin feedback path instead of the

CPLD Synthesis Design Guide

C-14 Xilinx Development System

FastCONNECT path for output pin signals that do not have 3-
state control or slow slew rate (by default, this option is OFF).

• Interface → Macro Search Path — Use this option to
add the specified search path to the list of directories to search
when resolving instantiated Macros. Specify a macro search path
or click Browse to look for a path to add as a macro search path.
To specify multiple search paths, type in each directory name
separated by a colon (:). A semicolon is automatically appended
when you use the Browse button to select multiple search paths.

• Timing Reports → Produce Post Layout Timing
Report — generates static timing report.

• Timing Reports → Timing Report Format — Select
Summary to generate a report that contains summary informa-
tion and design statistics. Select Detailed to generate a report
that lists delay information for all nets and paths.

• Programming → Signature/User Code — Enter a unique
text string in this field to identify the signature data. You can
enter a string of up to four alphanumeric characters. The device
programmer can read the signature, and the person running the
device programmer can verify that the correct configuration data
file is loaded. Use the JTAG Programmer to identify the configu-
ration data signature (usercode) of a programmed XC9500
device.

CPLD Command
The cpld command invokes the CPLD design implementation soft-
ware (the fitter). The command is run in a UNIX command window.
Your current working directory must be set to the project directory
which contains your design source netlist files before invoking cpld .

Invoking the Fitter
The format of the cpld command is:

cpld [options] design_name

Invoking the cpld command with no parameters produces a listing
of all available command-line options.

Fitter Command and Option Summary

CPLD Synthesis Design Guide C-15

The design_name is the name of the top-level design netlist file,
without path qualifiers, and either with or without extension. If
design_name is specified without extension, the cpld command
searches for source files in the following order:

1. Synopsys Design Compiler or FPGA Compiler netlist
(design_name.sxnf)

2. Xilinx PLUSASM equation file (design_name.pld)

3. XNF netlist (design_name.xnf)

4. Synopsys Design/FPGA Compiler EDIF netlist
(design_name.sedif)

5. EDIF netlist (design_name.edn, design_name.edf or
design_name.edif)

6. Xilinx NGO (unexpanded) database file (design_name.ngo)

7. Xilinx NGD (expanded) database file (design_name.ngd)

Fitter Options
The [options] field of the cpld command represents an optional list of
one or more command-line parameters. Invoking the cpld
command with just the design name and no option parameters runs
the fitter with all default conditions, including automatic device
selection.

The following are the cpld command-line parameters that apply to
synthesis design entry:

• -autoslewpwr — reduces slew rate before reducing power
mode if t-specs still met.

• -autopwrslew — reduces power mode and/or slew rate if
timespecs can still be met.

• -detail — produces a detailed path timing report
(design_name.tim) in addition to the default summary report.

• -grounds — creates programmable ground pins on unused I/
Os.

• -ignoreloc — temporarily ignores all LOC attributes in the
schematic, allowing the fitter to assign the locations of all I/O
pins.

CPLD Synthesis Design Guide

C-16 Xilinx Development System

• -ignorets — temporarily ignores all timing specification
attributes in the schematic.

• -inputs <n> — maximum number of function block inputs
allowed as a result of logic collapsing. Default is 36.

• -localfbk — uses local feedback. Enables the software to use
local feedback whenever possible. The local feedback path takes
less time than the global feedback path. Using local feedback can
speed up your design but can make it difficult to keep the same
timing after a design change. XC9500 only.

• -loweffort — low fitting effort, to save processing time.

• -lowpwr — uses the low-power mode by default for all macro-
cells in the design (default is normally standard power).

• -nodt — disables transformation between D-type and T-type
registers.

• -nogck — disables global clock optimization.

• -nogsr — disables global set/reset optimization

• -nogts — disables global output-enable (GTS) optimization.

• -nomlopt — disables multi-level logic optimization.

• -nota — do not generate a summary static timing report.

• -notiming — inhibits the default global timing optimization
performed by the fitter; only paths with T-specs specified in the
schematic are optimized to improve timing.

• -notsim — disables generation of timing simulation file (.nga).

• -nouim — disables implementation of AND functions in FAST-
connect. XC9500 only.

• -noxor — disables transformation of sum-of-product XOR logic
into macrocell XOR gates.

• -p part_type — specifies the target device type or set of devices
from which to choose (default is automatic device selection from
the XC9500 family); where part_type can be:

• 9500 = any XC9500 family device (auto selection)

• 9500xl = any XC9500XL family device (auto selection)

• 9500XV = any XC9500XV family device (auto selection)

Fitter Command and Option Summary

CPLD Synthesis Design Guide C-17

• “95ddd[xl][-ss][-pppp]” — where 95ddd is the device code
(such as 95108), ss is the speed grade, pppp is the package
code (such as PQ160), and an asterisk (*) can be used as a
wildcard string (quotes required around part_type when
asterisk is used).

• -pinfbk — uses pin feedback. Enables pin feedback whenever
possible. The software uses the pin feedback path instead of the
FastCONNECT path for output pin signals that do not have 3-
state control or slow slew rate. XC9500 only.

• -pinlock — uses the guide file (design_name.gyd) from the last
successful invocation of the fitter to reproduce the same pin loca-
tions (default is automatic pin assignment).

• -pterms nn — the maximum number of product terms allowed
as a result of collapsing (default=20).

• -s signature — specifies the user signature string (up to 4 alpha-
numeric characters) to be programmed into the device for identi-
fication purposes (default is the design name).

• -slowslew — applies slow output slew-rate as default (default
is fast).

•-ucf — reads user constraints from filename.ucf. By default,
design_name.ucf is read if it exists.

• -xactfit — Use this option only if you have a design imple-
mented in XACT v6 and cannot get the same pinout using the
current software. The default is advanced fitting.

	Title Page
	Trademarks
	About This Manual
	Conventions

	Getting Started with Synopsys for CPLDs
	Workstation Environment
	Creating Synopsys Setup Files (Workstation)
	Analyzing the DesignWare and Simulation Libraries
	Verifying Your Installation (Workstation)
	Xilinx CPLD Design Flow
	Design Example

	Designing with CPLDs
	Target Device Selection
	Special I/O Ports
	Controlling Register Initial State
	Controlling Power Consumption
	Controlling Output Slew Rate
	Controlling the Pinout
	Controlling Logic Optimization
	Controlling Timing Paths
	Reducing Levels of Logic
	XC9500 Local Feedback

	Compiling and Fitting a CPLD Design
	Compiling a Synopsys CPLD Design
	Fitting Your Design
	CPLD Command Parameters
	Compiling Behavioral Modules for Schematics

	Simulating your Design
	Recommended CPLD Simulation Strategy
	Controlling the Initial States of Registers
	Creating a Test Bench File
	Functional Simulation Using VSS
	Design Implementation
	Preparing the Timing Simulation Model

	Timing Simulation Using VSS

	Library Component Specifications
	Attributes
	Fitter Command and Option Summary

