
CPLD Schematic Design Guide — 2.1i Printed in U.S.A.

CPLD
Schematic
Design Guide

Getting Started with
Schematic Design

Design Entry Techniques

Controlling Design
Implementation

Design Applications

Attributes

CPLD Library Selection
Guide

Fitter Command and Option
Summary

Simulation Summary

CPLD Schematic Design Guide

Xilinx Development System

The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

FPGA Architect, FPGA Foundry, NeoCAD, NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Timing Wizard, TRACE,
XACT, XILINX, XC2064, XC3090, XC4005, XC5210, and XC-DS501 are registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, A.K.A. Speed, Alliance Series, AllianceCORE, BITA, CLC, Configurable Logic
Cell, CORE Generator, CoreGenerator, CoreLINX, Dual Block, EZTag, FastCLK, FastCONNECT, FastFLASH,
FastMap, Foundation, HardWire, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroVia, PLUSASM,
PowerGuide, PowerMaze, QPro, RealPCI, RealPCI 64/66, SelectI/O, Select-RAM, Select-RAM+, Smartguide,
Smart-IP, SmartSearch, Smartspec, SMARTSwitch, Spartan, TrueMap, UIM, VectorMaze, VersaBlock,
VersaRing, Virtex, WebLINX, XABEL, XACTstep, XACTstep Advanced, XACTstep Foundry, XACT-Floorplanner,
XACT-Performance, XAM, XAPP, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, Xilinx Foundation
Series, XPP, XSI, and ZERO+ are trademarks of Xilinx, Inc. The Programmable Logic Company and The
Programmable Gate Array Company are service marks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under
one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155;
4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135;
5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704; 5,329,174; 5,329,181;
5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189;
5,410,194; 5,414,377; 5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181; 5,448,493; 5,450,021;
5,450,022; 5,453,706; 5,455,525; 5,466,117; 5,469,003; 5,475,253; 5,477,414; 5,481,206; 5,483,478; 5,486,707;
5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196; 5,498,979; 5,498,989; 5,499,192; 5,500,608;
5,500,609; 5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523; 5,506,878; 5,513,124; 5,517,135; 5,521,835;
5,521,837; 5,523,963; 5,523,971; 5,524,097; 5,526,322; 5,528,169; 5,528,176; 5,530,378; 5,530,384; 5,546,018;
5,550,839; 5,550,843; 5,552,722; 5,553,001; 5,559,751; 5,561,367; 5,561,629; 5,561,631; 5,563,527; 5,563,528;
5,563,529; 5,563,827; 5,565,792; 5,566,123; 5,570,051; 5,574,634; 5,574,655; 5,578,946; 5,581,198; 5,581,199;
5,581,738; 5,583,450; 5,583,452; 5,592,105; 5,594,367; 5,598,424; 5,600,263; 5,600,264; 5,600,271; 5,600,597;
5,608,342; 5,610,536; 5,610,790; 5,610,829; 5,612,633; 5,617,021; 5,617,041; 5,617,327; 5,617,573; 5,623,387;
5,627,480; 5,629,637; 5,629,886; 5,631,577; 5,631,583; 5,635,851; 5,636,368; 5,640,106; 5,642,058; 5,646,545;
5,646,547; 5,646,564; 5,646,903; 5,648,732; 5,648,913; 5,650,672; 5,650,946; 5,652,904; 5,654,631; 5,656,950;
5,657,290; 5,659,484; 5,661,660; 5,661,685; 5,670,896; 5,670,897; 5,672,966; 5,673,198; 5,675,262; 5,675,270;
5,675,589; 5,677,638; 5,682,107; 5,689,133; 5,689,516; 5,691,907; 5,691,912; 5,694,047; 5,694,056; 5,724,276;
5,694,399; 5,696,454; 5,701,091; 5,701,441; 5,703,759; 5,705,932; 5,705,938; 5,708,597; 5,712,579; 5,715,197;
5,717,340; 5,719,506; 5,719,507; 5,724,276; 5,726,484; 5,726,584; 5,734,866; 5,734,868; 5,737,234; 5,737,235;
5,737,631; 5,742,178; 5,742,531; 5,744,974; 5,744,979; 5,744,995; 5,748,942; 5,748,979; 5,752,006; 5,752,035;
5,754,459; 5,758,192; 5,760,603; 5,760,604; 5,760,607; 5,761,483; 5,764,076; 5,764,534; 5,764,564; 5,768,179;
5,770,951; 5,773,993; 5,778,439; 5,781,756; 5,784,313; 5,784,577; 5,786,240; 5,787,007; 5,789,938; 5,790,479;

R

CPLD Schematic Design Guide

5,790,882; 5,795,068; 5,796,269; 5,798,656; 5,801,546; 5,801,547; 5,801,548; 5,811,985; 5,815,004; 5,815,016;
5,815,404; 5,815,405; 5,818,255; 5,818,730; 5,821,772; 5,821,774; 5,825,202; 5,825,662; 5,825,787; 5,828,230;
5,828,231; 5,828,236; 5,828,608; 5,831,448; 5,831,460; 5,831,845; 5,831,907; 5,835,402; 5,838,167; 5,838,901;
5,838,954; 5,841,296; 5,841,867; 5,844,422; 5,844,424; 5,844,829; 5,844,844; 5,847,577; 5,847,579; 5,847,580;
5,847,993; 5,852,323; Re. 34,363, Re. 34,444, and Re. 34,808. Other U.S. and foreign patents pending. Xilinx,
Inc. does not represent that devices shown or products described herein are free from patent infringement or from
any other third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to advise
any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability for the accuracy or
correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-1999 Xilinx, Inc. All Rights Reserved.

CPLD Schematic Design Guide — 2.1i v

About This Manual

This CPLD Schematic Design Guide provides information on using the
CPLD fitter and supported CAE interfaces to create designs for Xilinx
CPLD devices. It focuses on schematic design techniques, including
making the best use of library components in schematics. For more
detailed information about using CPLD with CAE tool interfaces,
refer to the following:

Libraries Guide

For related information about CPLD design entry, refer also to the
following:

CPLD Synthesis Design Guide

Additional Resources
For additional information, go to http://support.xilinx.com. Use the
search function at the top of the support.xilinx.com page or click links
that take you directly to online resources.

The following table provides information on tutorials and some of
the resources you can access using the support.xilinx.com advanced
Answers Search function.

Resource Description/URL

Tutorial Tutorials covering Xilinx design flows, from design entry to verifica-
tion and debugging
http://support.xilinx.com/support/techsup/tutorials/index.htm

Answers
Database

Current listing of solution records for the Xilinx software tools
Search this database using the search function at
http://support.xilinx.com/support/searchtd.htm

CPLD Schematic Design Guide

vi Xilinx Development System

Manual Contents
This manual covers the following topics:

• Chapter 1, “Getting Started with Schematic Design” chapter,
presents an overview of schematic design for CPLD devices,
including a simple example design.

• Chapter 2, “Design Entry Techniques” chapter, describes the
fundamental techniques for expressing logic in a schematic
design for a CPLD device.

• Chapter 3, “Controlling Design Implementation” chapter,
discusses techniques for controlling how various parts of your
design are implemented into a CPLD device.

• Chapter 4, “Design Applications” chapter, describes useful tech-
niques for expressing efficient CPLD designs.

• Appendix A, “Attributes” lists and describes CPLD schematic
attributes, which allow access to CPLD architectural features.

• Appendix B, “CPLD Library Selection Guide” lists all the
symbols that may be used in CPLD schematic designs.

• Appendix C, “Fitter Command and Option Summary” summa-
rizes implementation options of the Design Manager, and lists
parameters for the the cpld command.

Application Notes Descriptions of device-specific design techniques and approaches
http://support.xilinx.com/apps/appsweb.htm

Data Book Pages from The Programmable Logic Data Book, which describe
device-specific information on Xilinx device characteristics,
including readback, boundary scan, configuration, length count,
and debugging
http://support.xilinx.com/partinfo/databook.htm

Xcell Journals Quarterly journals for Xilinx programmable logic users
http://support.xilinx.com/xcell/xcell.htm

Tech Tips Latest news, design tips, and patch information on the Xilinx design
environment
http://support.xilinx.com/support/techsup/journals/index.htm

Resource Description/URL

CPLD Schematic Design Guide vii

• Appendix D, “Simulation Summary” shows how to sumulate
from the Design Manager and command line.

CPLD Schematic Design Guide — 2.1i vii

Conventions

This manual uses the following typographical and online document
conventions. An example illustrates each typographical convention.

Typographical
The following conventions are used for all documents.

• Courier font indicates messages, prompts, and program files
that the system displays.

speed grade: -100

• Courier bold indicates literal commands that you enter in a
syntactical statement. However, braces “{ }” in Courier bold are
not literal and square brackets “[]” in Courier bold are literal
only in the case of bus specifications, such as bus [7:0].

rpt_del_net=

Courier bold also indicates commands that you select from a
menu.

File → Open

• Italic font denotes the following items.

• Variables in a syntax statement for which you must supply
values

edif2ngd design_name

• References to other manuals

See the Development System Reference Guide for more informa-
tion.

CPLD Schematic Design Guide

viii Xilinx Development System

• Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the
two nets are not connected.

• Square brackets “[]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

edif2ngd [option_name] design_name

• Braces “{ }” enclose a list of items from which you must choose
one or more.

lowpwr = {on|off }

• A vertical bar “|” separates items in a list of choices.

lowpwr = {on|off }

• A vertical ellipsis indicates repetitive material that has been
omitted.

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

• A horizontal ellipsis “. . .” indicates that an item can be repeated
one or more times.

allow block block_name loc1 loc2 ... locn;

Online Document
The following conventions are used for online documents.

• Red-underlined text indicates an interbook link, which is a cross-
reference to another book. Click the red-underlined text to open
the specified cross-reference.

• Blue-underlined text indicates an intrabook link, which is a cross-
reference within a book. Click the blue-underlined text to open
the specified cross-reference.

CPLD Schematic Design Guide 1-1

Chapter 1

Getting Started with Schematic Design

This chapter will help you quickly understand how to develop a
schematic-based CPLD design using the Xilinx design implementa-
tion software (fitter). A brief schematic design example is included,
illustrating device-independent schematic design entry and simula-
tion processes. This section in this chapter include:

• “Overview of Schematic Design Methods”

• “Design Flow Summary”

• “Schematic Design Flow Example”

Overview of Schematic Design Methods
A schematic design defines the functionality of a logic circuit using
one or more schematic files, each of which contains components from
a Xilinx-supplied library, such as gates, flip-flops and building-block
functions similar to 74xx TTL devices. Schematics can also contain
"custom" symbols for which you define the functionality using
behavioral modules (similar to PAL devices). Behavioral modules are
discussed fully in the “Design Entry Techniques” chapter. The
following figure summarizes the design flow.

CPLD Schematic Design Guide

1-2 Xilinx Development System

Figure 1-1 Basic Schematic Design Flow

Currently, the Viewlogic, Mentor and Cadence software packages are
directly supported by the Xilinx CPLD library and interface for CPLD
design entry and simulation. Xilinx also provides the Foundation
development system. Other compatible interfaces and CPLD libraries
may be available from their manufacturers.

Design Flow Summary
The Design Manager/Flow Engine takes EDIF netlist, XNF or PLD
files from your design tool and fits them onto Xilinx devices. You can
select a specific device or let the Design Manager select a device for
you, based on the most economical solution that will satisfy the func-
tional and timing parameters of the design.

CPLD
Fitter

Programming File
Schematic File

HDL Synthesis

00001000100011000
10001000010001001
01001001001100010
00110011000100010
10010000100111000
00100010100010010
00100100010010010

ABEL Equation File

Simulation File

Reports

equations
[q1, q0, abort] =
[q1, q0, abort] =
state _diagram
state a

Entity scan is
 port (clock, clear,
 Data_in:
 Done: out
 MRESET:
end scan

X4834

Getting Started with Schematic Design

CPLD Schematic Design Guide 1-3

Generated Reports
By default the fitter produces the following significant output files:

• Fitting report (design_name.rpt) — lists summary and detailed
information about the logic and I/O pin resources used by the
design, including the pinout, error and warning messages, and
Boolean equations representing the implemented logic.

• Static timing report (design_name.tim) — shows a summary
report of worst-case timing for all paths in the design; optionally
includes a complete listing of all delays on each individual path
in the design.

• Guide file (design_name.gyd) — contains all resulting pinout
information required to reproduce the current pinout if the
“pinfreeze” option is specified during the next invocation of the
cpld command for the same design name. (The Guide file is
written only upon successful completion of the fitter.)

• Programming file (design_name.jed for XC9000) — is a JEDEC-
formatted (9k) programming file to be down-loaded into the cpld
device.

• Timing simulation database (design_name.nga) — a binary data-
base representing the implemented logic of the design, including
all delays, consisting of Xilinx simulation model primitives
(simprims).

The Design Manager contains a Report Browser for examining
selected reports. If you have already run the fitter, the Report Browser
contains the Fitting Report and the Translation Report, and, if you
have selected timing simulation options, it also contains simulation
reports. To access the Report Browser from the Design Manager:

Utilities → Report Browser

After the Report Browser displays, to read any of the reports simply
double-click the appropriate report icon.

Timing Simulation
The Design Manager optionally produces timing simulation data
when you implement your design, and produces either an EDIF,
VHDL or Verilog HDL formatted netlist for your simulator..

CPLD Schematic Design Guide

1-4 Xilinx Development System

Schematic Design Flow Example
This section runs through the entire schematic design process, from
creating a design to programming and simulating the design. The
following device-independent design, a 4-bit Johnson counter, is used
as an example:

Figure 1-2 Example 4-Bit Johnson Counter Design

Simulation results for this design are shown in the “Example View-
logic Functional Simulation Results” figure.

The design entry and simulation steps are summarized for Viewlogic
and Mentor software. Other supported schematic design software

Q

CLR

DQ3B FDCE

C

CE
OBUF

INV

IBUF

IBUF

IBUF

Q0
OPAD

X4863

Q

CLR

D FDCE

C

CE
OBUF

Q1
OPAD

Q

CLR

D FDCE

C

CE
OBUF

Q2
OPAD

IPAD

Q

CLR

D FDCE

C

CECE

IPAD
C

IPAD
CLR

OBUF

Q3
OPAD

Getting Started with Schematic Design

CPLD Schematic Design Guide 1-5

has similar procedures; refer to the appropriate Xilinx interface guide,
if applicable, or the manufacturer's documentation.

Figure 1-3 Example Viewlogic Functional Simulation Results

Configuring the Design Entry Tool
Many design entry tools have a project management facility that you
can use to create a working directory for your design and to select the
vendor component libraries to use in your design.

Workview Office Project Manager

1. Call up the Viewlogic Project Manager by selecting the Project
Manager icon in the Workview Office icon group. Create a new
project named jcount .

File → New

2. Select a directory and name the new project jcount .

3. Call up the libraries you need to create your design.

Project → Libraries...

4. The Library Search Order dialog box displays. Use this tool to
add the XC9000 library, plus the builtin and simprims
libraries.

5. Use the Browse key to select directories and the Add key to add
libraries. For example, browse to installation_path/viewlog/
data /xc9000 (for XC9500 target devices) where
installation_path is the root directory where the Xilinx software
package was installed. Then click Add and the xc9000 libraries

CLK

CE

CLR

Q

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700900

C\H

1

1

0

0 1 3 7 F E C C0 1 3 0 13

X8057

CPLD Schematic Design Guide

1-6 Xilinx Development System

will be added to the list. When you have all the libraries you need
for the project, click OK.

Viewlogic On Workstations

1. To create a working directory for your design in Viewlogic's
Powerview, use the Project → Create command.

2. Configure the design entry tool to access the Xilinx CPLD compo-
nent library for schematics you develop in the project you just
created. In Powerview, use the Project → Search Order
command to open a dialog window listing the configured
libraries. On the first available library line, enter the directory
path where the CPLD Viewlogic library is installed on your
system. For example, enter installation_path/viewlog/data /
xc9000 (for XC9500 target devices), where installation_path is the
root directory where the Xilinx software package was installed.
Under the "Library" column, enter XC9000, which is also known
as the library alias. Under the Type column, select Megafile
(compressed read-only format).

3. If you are not using the Viewlogic project manager, you can make
a copy of the viewdraw.ini file in your project directory (copied
from the Viewlogic standard directory) and add one of the
following lines to the end of the file:

DIR [m] installation_path/viewlog/data/xc9000 (xc9000)

where installation_path is the root directory where the Xilinx soft-
ware package was installed.

4. If you plan to simulate using Viewsim, you also need to include
the Xilinx “simprims” and Viewlogic "builtin" library in the
Search Order window or the viewdraw.ini file.

DIR [m] installation_path/viewlog/data/simprims (simprims)

DIR [m] installation_path/viewlog/data/builtin (builtin)

Mentor

1. Call up the Mentor Design Manager as follows:

pld_dmgr

2. Select the Tools icon. Then go to Tools program group and
select pld_da (Design Architect).

Getting Started with Schematic Design

CPLD Schematic Design Guide 1-7

Drawing the Design
1. Invoke the schematic drawing tool and draw the design.

• If you are using Workview Office or Powerview, invoke the
ViewDraw tool.

• If you are using Mentor Graphics you would invoke pld_da
(Design Architect).

2. If you prefer to use the completed schematic shown in “Example
4-bit Johnson Counter” figure as a sample design, copy the jcount
schematic file from the examples directory of the Xilinx software.

• For Viewlogic, copy all files and subdirectories under the
installation_path\viewlog\tutorial\jcount directory into
your local directory (the schematic file is jcount.1 under the
sch subdirectory).

• For Mentor select the Find Comp icon in the Design Archi-
tect and browse to installation_path\mentor\tutorial\jcount,
then select jcount.

When drawing a schematic representing a CPLD device, or any
sub-sheet in a CPLD design, you should not use any symbols
from any other library than the Xilinx XC9000 library. For
example, be careful not to use symbols from the Viewlogic builtin
library. You may, however, create your own custom symbols
representing sub-sheets (hierarchical schematics) or behavioral
modules, as described in the “Design Entry Techniques” chapter.

It is important that you label the nets that represent device input/
output pins in your design. These are the nets connecting
between IPAD and IBUF symbols, and between OBUF and OPAD
symbols. These names appear in the fitter reports as your pin
names and are used as your top-level signal names during timing
simulation, after design implementation.

3. Save your schematic when finished. The Viewdraw Write
command performs schematic rule checking and writes a "wire-
list" file in the wir directory (wir/jcount.1).

Performing Functional Simulation (Optional)
Xilinx schematic capture libraries contain simulation models
allowing you to perform functional simulation directly from your

CPLD Schematic Design Guide

1-8 Xilinx Development System

schematic. In most libraries, models for all registered symbols contain
a global signal named PRLD which, when pulsed high, initializes all
the flip-flops inside the symbol’s model. Remember to pulse the
PRLD signal high and drive all your top-level input signals (pins) to
valid logic levels before running your simulation vectors.

Viewlogic

If you are using Viewlogic, Xilinx provides a Viewsim command file
for the jcount design that can be found in installation_path/viewlog/
tutorial/jcount/jcount.cmd. The JCOUNT design is simulated using
the following Viewsim commands:

vector Q Q[3:0]
wave jcount.wfm CLK CE CLR Q
clock c 1 0
step 50ns
h prld
h CE
l CLR
cycle
l prld
cycle 5
l CE
cycle 2
h CE
cycle 5
h CLR
cycle 2
l CLR
cycle 3

The wave command automatically invokes a ViewTrace window
which displays the input and output simulation waveforms graphi-
cally.

Mentor

You can functionally simulate XNF or EDIF based designs by using
pld_xnf2sim or pld_edif2sim to convert the designs to a Mentor
simulation model. The EDIF design must be Xilinx compatible and
expressed in Unified Library components.

Performing functional simulation on a pure schematic design consists
of creating a viewpoint in pld_dve from the schematic that you

Getting Started with Schematic Design

CPLD Schematic Design Guide 1-9

created in Design Architect and using pld_quicksim to simulate
the design. For more information see the Mentor Graphics Interface
Guide.

Implementing the Design
Before implementing the design, your schematic must first be trans-
lated into an EDIF 2.0.0 formatted netlist.When netlisting, make sure
the netlist hierarchy stops at the Xilinx library primitives and does
not expand into any functional simulation models that may exist
beneath the Xilinx primitive symbols.

Creating an EDIF Netlist

From Viewlogic Workview Office:

1. Go to the ViewDraw tool and select:

Tools → Export EDIF

2. The EDIF Interfaces Dialog Box appears. Select the EDIF
Netlist Writer tab and Browse to the jcount.1 schematic.
Enter xilinx in the level field.

3. To create the .edn file click once on Apply .

For Viewlogic Powerview:

1. Invoke the edifneto command

2. Specify “XILINX” as the “level” attribute (“-l xilinx ” option
on the edifneto command line).

From Mentor you must convert to EDIF with the pld_men2edif
utility before implementing the design with the Design Manager.

To convert your design to EDIF, follow these steps.

1. In the Mentor Design Manager, double-click the left mouse
button on the pld_men2edif icon.

The dialog box labeled “Mentor to EDIF Netlist appears.

2. In the Component Name field, enter the component name, or
click Navigator to browse a list of design names.

3. In the From Viewpoint field, you can enter the viewpoint name if
you do not want to use the default viewpoint. Alternatively, in
step 2 you can select a viewpoint under the component.

CPLD Schematic Design Guide

1-10 Xilinx Development System

4. Select the appropriate architecture for your design in the PLD
Technology field.

5. Select the appropriate Bus Dimension Separator Style.

This is important if you are merging components from other
design-entry tools into a single design. Choosing a bus-index
delimiter lets you insure that the bus-index delimiters that
pld_men2edif writes out are consistent with those of any other
design-entry tools with which you are interfacing. Mentor EDIF
uses parentheses. Synopsys EDIF uses angle brackets.

6. Click OK.

Pld_men2edif now produces an EDIF file that you can submit to
the Xilinx Design Manager. The output name is
component_name.edif.

Implementing from Design Manager

1. Start the Xilinx Design Manager. From the Windows Program
Manager click the Design Manager icon. If you are using the
UNIX command line enter the following command.

dsgnmgr

2. From the Design Manager, create a new project and select
jcount.edn as its input.

File → New Project

3. The New Project dialog box appears. Select Browse for Input
Design and find jcount.edn , then click OK. The project should
appear in the Design Manager.

4. Implement the design.

Design → Implement

The Implement dialog box appears. This box allows you to
select a specific Xilinx device to implement your design.

5. Click once on Select and select for XC9500, XC9500XL or
XC9500XV Family; leave Device, Package and Speed Grade set to
AUTO.

6. Click OK when you have finished.

7. Click Run to implement the design.

Getting Started with Schematic Design

CPLD Schematic Design Guide 1-11

Examining the Reports
Examine the reports to verify that the design was implemented as
you expected. The following report files (plain text) are automatically
produced by the fitter. If you are using a Design Manager you may
select a report from the report browser as follows:

Utilities → Report Browser

or select the report browser icon. The following reports are most
useful for schematic designs:

Figure 1-4 Report Browser

• Fitter Report (jcount.rpt)- The fitter report shows the device
resources used by the design, how the external nets in your
design were mapped to the device pins, and the physical alloca-
tion of all device resources.

• Timing Report (jcount.tim) - A timing summary report shows the
calculated worst-case timing for the logic paths in your design.

Performing Timing Simulation
To perform timing simulation you must extract a new EDIF netlist
from the implemented design. To avoid overwriting, you may want
to specify and output filename different than your design entry
netlist.

The Design Manager optionally produces timing simulation data
when you implement your design.

1. To produce timing data go to the options menu:

Design → Implement

2. The Implementation menu will appear. Click once on the
Options key to get the Options dialog box.

CPLD Schematic Design Guide

1-12 Xilinx Development System

3. Select Produce Timing Simulation Data.

4. Go to the Interface template and select EDIF as the simulation
netlist format. When the fitter runs it generates the appropriate
data. If you have already run the fitter, go back to the Flow
Engine ; a Timing block will appear in the flow.

5. Press the forward arrow to resume the program from the Fit
block.

Workview Office and Powerview

In most cases, you can use the same command file you used during
functional simulation to perform the timing simulation. You may
need to make minor adjustments to the command file used to func-
tionally simulate the design before it can be used to perform a timing
simulation.

The typical procedure for performing a timing simulation is as
follows.

1. Import the EDIF file with timing information produced by the
fitter to create a wire-list file.

2. Create the timing simulation network (VSM file).

3. Start ViewSim.

4. Load the VSM file into ViewSim.

5. Simulate the device’s startup sequence.

6. Execute the command file used during functional simulation. For
the JCOUNT sample design, a Viewsim command file can be
found in installation_path/viewlog/tutorial/jcount/jcount.cmd

7. VewTrace is automatically opened in response to the WAVE
command. View the waveforms produced by the simulation.

8. Repeat steps 5 and 6 as necessary to verify the timing informa-
tion.

See the Viewlogic Interface Guide for detailed information on each of
the above steps.

Getting Started with Schematic Design

CPLD Schematic Design Guide 1-13

Mentor

During design implementation, the Xilinx Design Manager can
produce an EDIF (EDN) file. For EDIF files, the process of timing
simulation consists of converting the EDIF netlist to a Mentor EDDM
model, creating a component and a viewpoint, and simulating the
design with pld_quicksim .

1. Double-click the left mouse button on the pld_edif2tim icon in
the Mentor Design Manager Tools window.

The dialog box labeled EDIF to Mentor Eddm Sing Object
appears.

2. Enter the name of the EDN file in the EDIF Input File field, or
click Navigator to browse the available files.

The component created from the EDN file is put into a design
library called my_design_lib. If you have already implemented
your design at least once, this directory already exists. If you
don’t wish to copy over it, move it to another directory before
proceding.

3. Click OK.

4. Invoke DVE, by double-clicking the left mouse button on the
pld_dve icon in the Mentor Design Manager Tools window.

The Pld_dve Dialog Box appears.

5. Enter the top-level component name created by pld_edif2tim
in the my_design_lib directory.

6. Use the Navigate button to navigate all the way down to the
“default” viewpoint and select the viewpoint.

7. Select the Simulation Button.

8. Select the appropriate technology from the PLD Technology box.

9. Click OK.

You can now submit the design to pld_quicksim for timing simula-
tion.

1. To invoke pld_quicksim , double-click the left mouse button on
the pld_quicksim icon in the Design Manger Tools window.

CPLD Schematic Design Guide

1-14 Xilinx Development System

The pld_quicksim dialog box appears. For more detailed infor-
mation on the dialog box options, refer to the Mentor Graphics
documentation.

2. In the Design field, enter the name of the top-level design created
by pld_edif2tim .

3. In the Select Desired Mode field, select Cross-Probing .

Normally, you select cross-probing for back-end EDDM designs
but not for front-end designs. You can only cross-probe back-end
designs that contain either pure schematic or schematics that
contain EDDM hierarchical models. You cannot cross-probe
designs written in HDL or that contain HDL models.

Warning: In order for cross-probing to work, other sessions of Design
Viewpoint Editor and QuickSim must be closed. Otherwise, the inter-
process communication gets confused. This includes another user’s
session invoked by rlogin from another workstation.

4. Set the timing modes as desired.

5. Click OK.

Pld_quicksim now simulates the design. The QuickSim graph-
ical user interface appears. If you selected cross-probing, DVE is
invoked as well.

6. In DVE, open the viewpoint of the front-end schematic design,
that is, the viewpoint submitted to pld_men2edif .

7. Open the sheet of the design, and select signals that you wish to
trace.

These signals are automatically added to the QuickSim trace
window. If you have a file that sets up your trace window and
stimulus, use that instead. Any signals selected in the trace
window will select the same on the schematic on which they
reside in the DVE window. If such sheets have not been opened
in DVE yet, you must open them to see the selections.

Device Programming
The fitter automatically creates a JEDEC programming file, jcount.jed,
whenever a design is successfully implemented. Once you are satis-
fied with the results of the fitter (reports and timing simulation), you

Getting Started with Schematic Design

CPLD Schematic Design Guide 1-15

can download the programming file to the device using the tech-
niques described in the JTAG Programmer Guide.

CPLD Schematic Design Guide 2-1

Chapter 2

Design Entry Techniques

This chapter discusses the fundamental techniques for expressing
logic in a schematic design for CPLDs. It concentrates mainly on the
symbols you place in your schematic and how you interconnect
them. It also explains how to retarget an existing schematic for an
FPGA design to a CPLD. This chapter includes the following sections:

• “Library Symbols”

• “Input/Output Buffers”

• “LogiBlox Modules”

• “Behavioral Modules”

• “Hierarchical Design”

• “Retargeting a Design From a Different Family”

Library Symbols
The Xilinx XC9000 library contains all component symbols used by
the Xilinx XC9500, XC9500XL, and XC9500XV device families. While
most symbols of the library are common to all families, there are
some symbols which are specific to CPLDs.

Physically, each major Xilinx device family (for example, 3000, 4000,
9000) has its own schematic library, implemented for each of the
supported schematic entry tools. For each tool, there is a library direc-
tory for the XC9000 device family, which supports XC9500,
XC9500XL, and XC9500XV devices. When a library component is
supported by multiple device families, its symbol appears in each of
the corresponding library directories.

When a component of the same name appears in multiple family
libraries, it has the same functionality and graphic symbol body, and

CPLD Schematic Design Guide

2-2 Xilinx Development System

similarly named pins. However, the component's implementation,
including whether the symbol is a primitive or macro (with under-
lying schematic), may vary between families. Maintaining consistent
functionality and "footprint" facilitates retargeting existing schematic
designs between Xilinx device families. The Libraries Guide shows the
applicability of each library symbol to each of the Xilinx device fami-
lies.

When drawing a schematic representing a CPLD device, or any sub-
sheet in a CPLD design, you should not use any symbols from any
other library than the one for your target device family. For example,
be careful not to use symbols that belong to a CAE tool's simulation
modelling library.

Specific Components
To make your design device-independent, use only the symbols
common to all Xilinx device families in which you are interested. The
design implementation software automatically maps the symbols in
your design onto the chosen target device. Creating a device-inde-
pendent design allows you to easily test your design with different
Xilinx devices.

For example, if you want to create a schematic which can be migrated
to different Xilinx device families without modification, you should
use the generic IBUF symbol instead of device-specific input buffers
(like BUFGSR) and allow the fitter to automatically allocate global
set/reset resources.

Primitives, Macros and User-Generated Symbols
The following types of symbols can appear in your schematic:

• Library primitives

• Library macros

• User macros (including hierarchical sheet symbols)

• Behavioral modules

• LogiBLOX modules

The library contains the first two types of components: primitives
and library macros. Primitives are those symbols recognized directly
by the implementation software such as pads, gates, flip-flops and

Design Entry Techniques

CPLD Schematic Design Guide 2-3

buffers. Library macros are symbols functionally defined by macro
schematics contained in the library. Macro schematics contain primi-
tives and sometimes other macros. Library macros have pre-defined
functionality, but often their implementation is subject to the optimi-
zations performed by the fitter software. Macros are always
expanded into the netlist during schematic-to-netlist translation
before the netlist is read by the fitter. EDIF netlists may either be in
hierarchical or flattened form; this has no impact on the fitter’s
performance.

User macros are custom symbols generated by the user which are
functionally defined by user-generated macro schematics. User
macro symbols and schematics can be stored in your project directory
or in a user library directory that you create. User macro schematics
can consist of any mixture of the four types of symbols listed previ-
ously.

You can create user macros to represent frequently used logic func-
tions and instantiate them in one or more designs. It is often conve-
nient to copy a Xilinx CPLD library macro symbol and schematic to
your project directory as a template, then rename the symbol and
schematic, and modify the symbol pins and schematic to suit your
needs. You should not, however, modify any of the Xilinx CPLD
library macros themselves or store new user macros in the Xilinx
CPLD library directory.

You can add hierarchical structure to a large design by partitioning
your logic into multiple schematic sheets. You then create user
symbols to represent the schematic sub-sheets in the same manner as
you would create user macro symbols. Your schematic partitioning
has no effect on the implementation or optimization of your design
by the fitter.

Behavioral modules are user-generated custom symbols functionally
defined by some logic description other than a schematic. Typically,
logic descriptions defining behavioral modules are expressed in
Boolean equations or HDL, and processed by a PLD compiler (like
XABEL) or a synthesis tool prior to running the fitter. Behavioral
modules are discussed later in this chapter.

LogiBLOX modules are high-level, customizable library macros that
are available for some schematic entry tools. LogiBLOX modules are
described later in this chapter.

CPLD Schematic Design Guide

2-4 Xilinx Development System

Power and Ground Signals
Unused inputs on symbols should not be left unconnected. You
should never assume a default value for any unconnected symbol
input except basic logic gates such as AND or OR, or asynchronous
clear (CLR) or preset (PRE) inputs on flip-flops and other registered
macros. Unconnected AND-gate, OR-gate, CLR and PRE inputs are
simply discarded, as if the component had fewer inputs.

If a control input to a library macro is left unconnected, the resulting
behavior may be different than what you would expect. In some
cases, the resulting behavior may be different than if the input were
tied either High or Low. If you leave a macro input unconnected, the
fitter is usually able to detect it and issue a warning. Timing simula-
tion after fitting will exhibit the actual resulting behavior.

Unused inputs should be tied to a constant High or Low logic level in
the schematic. Use the VCC or GND symbol from the library to
source a constant logic High or Low value.

Input/Output Buffers
This section discusses techniques for specifying device I/O pins
using both general-purpose and special-purpose input/output buffer
symbols.

Inputs, Outputs, and Bidirectionals
To represent an ordinary device input, use an IPAD connected to one
IBUF symbol. The IBUF can then connect to any number of on-chip
logic symbols. An I/O pin of the CPLD device will be allocated to
receive the input, and its output driver will be permanently disabled.

To represent an ordinary device output, use an OBUF that is driven
by exactly one on-chip logic source. Connect the output of the OBUF
to an OPAD symbol. To specify a tristate device output, use an
OBUFE or OBUFT instead of the OBUF, and connect its enable/
disable input to any on-chip logic source. An I/O pin will be allo-
cated to drive the signal, either always active (if OBUF) or controlled
by your enable/disable signal, and the input received by the device
pin will be ignored.

Design Entry Techniques

CPLD Schematic Design Guide 2-5

To represent a bidirectional device I/O, use an OBUFE or OBUFT
whose output is connected to both an IOPAD symbol and to the input
of an IBUF, as shown in the “Bidirectional I/O Pin” figure.

Figure 2-1 Bidirectional I/O Pin

It is important that you label the nets that represent device input/
output pins in your design. These are the nets connecting between
IPAD and IBUF symbols, and between OBUF and OPAD symbols.
These names appear in the fitter reports as your pin names and are
used as signal names during simulation.

Note: Do not use the reserved names “GND,” “VCC,” "PRLD" or
"MRESET" as labels for any nets or component instances in your
design.

Clock Inputs
To use a device input as a clock source, you can simply connect an
IBUF to the clock input of one or more flip-flops in your design. The
fitter automatically uses one of the global clock pins (GCK) of the
CPLD whenever possible.

A clock input signal may pass through an inverter to perform nega-
tive-edge clocking and the fitter can still use a global clock pin to
implement it. The same global clock input may even be used both
inverted and non-inverted to clock different flip-flops on opposite
edges of the clock signal, as shown in “Input CLK1 can be Optimized
onto a Global Clock Pin (GCK)” figure. Global clock inputs may also
be used as ordinary input signals to other logic elsewhere in the
design.

X4601

IBUF OBUFEIO3
IOPAD

• • •
• • •

• • •

• • •

ƒ

CPLD Schematic Design Guide

2-6 Xilinx Development System

Figure 2-2 Input CLK1 can be Optimized onto a Global Clock
Pin (GCK)

If a device input passes through any logic function (other than an
inverter) before it is used as a clock by any flip-flop, the input cannot
be routed using the global clock path. Instead, the clock signal will be
routed through the logic array for all flip-flops clocked by such a
device input.

There are a limited number of global clock pins on each CPLD device
(consult the device data sheet). If you need to explicitly control the
use of global clock pins, you can use the BUFG symbol in place of an
IBUF. You could alternatively apply the BUFG=CLK attribute to an
IBUF symbol or the pad net.

The global clock pins provide much shorter clock-to-output delays
than clocks routed through the logic array. Routing a clock through
the logic array also uses up one extra p-term for each flip-flop.

You can prevent the fitter from automatically mapping IBUF symbols
to the global clock pins.

1. On the Design Manager graphical interface, go to the Flow
Engine and select Setup → Options

2. The Design Implementation Option menu appears. Select Edit
Template

IBUF

D

D

Q

Q

f

IPAD
CLK1

X8058

Design Entry Techniques

CPLD Schematic Design Guide 2-7

3. Then select Basic Options

4. Place a check on the Off box adjacent to Use Global Clocks .

If global clock optimization is disabled, IBUF inputs used as clocks
always pass through the logic array. You can still use BUFG symbols
or the BUFG=CLK attribute to explicitly specify global clock inputs.

Output Enable Signals
To use a device input to control tristate device outputs, you can
simply connect an IBUF to the enable/disable input of one or more
OBUFE or OBUFT symbols in your design. The fitter automatically
uses one of the global tristate control pins (GTS) of the CPLD when-
ever possible.

A global tristate control input signal may pass through an inverter or
control the disable input (T) of an OBUFT symbol to perform an
active-low output-enable. The same tristate control input may even
be used both inverted and non-inverted to enable alternate groups of
device outputs, as shown in the “Input OE2 can be Optimized onto a
Global Tristate Control Pin (GTS)” figure. Global tristate control
inputs may also be used as ordinary input signals to other logic else-
where in the design.

CPLD Schematic Design Guide

2-8 Xilinx Development System

Figure 2-3 Input OE2 can be Optimized onto a Global Tristate
Control Pin (GTS)

If a device input passes through any logic function (other than an
inverter) before it is used as a tristate control by any output, the input
cannot be routed using the global tristate control path. Instead, the
output enable signal is routed through the logic array, for all device
outputs controlled by such an input.

There are a limited number of global tristate control pins on each
XC9500 device (consult the device data sheet). If you need to explic-
itly control the use of global tristate control pins, you can use the
BUFGTS symbol. You can alternatively apply the attribute BUFG=OE
to an IBUF symbol or the pad net.

The global tristate control pins provide much shorter input-to-
output-enable delays than tristate controls routed through the logic
array. Routing a tristate control signal through the logic array also
uses up one extra p-term for each output.

f

IPAD
IBUF

OE2

X8059

INV

OBUFE

OBUFT

OBUFE

OPAD

OPAD

OPAD

Design Entry Techniques

CPLD Schematic Design Guide 2-9

You can prevent the fitter from automatically using the global tristate
control pins.

1. In the Design Manager, go to the Flow Engine and select Setup
→ Options

2. The Design Implementation Option menu appears. Select Edit
Template

3. Then select Basic Options

4. Disable the box adjacent to Use Global Output Enables .

If global output enable optimization is disabled, IBUF inputs used for
tristate control always pass through the logic array. You can still use
BUFGTS symbols or the BUFG=OE attribute to explicitly specify
global tristate control inputs.

Asynchronous Clear and Preset
To use a device input as an asynchronous clear or preset source, you
can simply connect an IBUF to the CLR or PRE input of one or more
flip-flops in your design. The fitter automatically uses the global set/
reset pin (GSR) of the CPLD whenever possible. A global set/reset
input signal may pass through an inverter to perform active-low clear
or preset. A global set/reset inputs may also be used as an ordinary
input signal to other logic elsewhere in the design.

If a device input passes through any logic function other than an
inverter before it is used as an asynchronous clear or preset by any
flip-flop, the input cannot be routed using the global set/reset path.
Instead, the clear or preset signal will be routed through the logic
array for all flip-flops controlled by such an input. Routing a clear or
preset through the logic array uses up one extra p-term for each flip-
flop.

There is only one global set/reset pin on each XC9500 device. If you
need to explicitly control the use of the global set/reset pin, you can
use the BUFGSR symbol in place of an IBUF. You can alternatively
apply the attribute BUFG=SR to an IBUF symbol or the pad net.

You can prevent the fitter from using the global set/reset pin. In the
Design Manager, disable the Use Global Set/Reset option in
the Basic Options template of the Flow Engine.

CPLD Schematic Design Guide

2-10 Xilinx Development System

Note: If a flip-flop has both a clear and preset input and you assert
both the clear and preset concurrently, its Q-output is unpredictable.
This is because the fitter may arbitrarily invert the logic stored in a
flip-flop to achieve better logic optimization. Individual clear and
preset operations still produce the correct final logic state as dictated
by the user design. Functional simulation does not accurately predict
the ultimate behavior of the chip when clear and preset are asserted
concurrently. Timing simulation, however, is performed after logic
optimization and behaves exactly as the chip will when programmed.

Clock Enable
When targeting an XC9500 device, any FDCE or FDPE primitives in
your design will be expanded into an ordinary D-type flip-flop with
its Q-feedback multiplexed into its D-input. This implementation will
be similar to the way the FDCPE macro is expanded in the XC9000
schematic library.

When targeting an XC9500XL device, logic connected to the clock
enable (CE) input of FDCE and FDPE primitives in your design will
be unconditionally implemented using the clock enable p-term of the
XC9500XL macrocell. Only the FDCE and FDPE primitives use the
clock enable p-term.

If you use FDCE or FDPE components and target an XC9500XL
device, you may find that the logic connected to the clock enable
input on some components may not get optimized into the same
macrocell as the flip-flop. The XC9500XL macrocell contains only a
single product-term to implement clock enable input logic. The CPLD
fitter does not attempt to transform your clock enable input logic
onto the D-input of the flip-flop if it cannot be completely imple-
mented using the clock enable p-term. In general, only primary
inputs (device input pins or macrocell feedbacks), their complements
or positive-logic AND-gate functions of primary inputs or their
complements can be completely implemented using the p-term. If
you connect a more complex logic function to the clock enable input
of an FDCE or FDPE component and it does not get completely
implemented on the clock enable p-term, your design may incur
extra macrocell resources and combinatorial macrocell feedback
delays.

If you have an existing CPLD schematic containing FDCE or FDPE
components and you do not want the logic connected to the CE input

Design Entry Techniques

CPLD Schematic Design Guide 2-11

of the components to be implemented using the clock enable p-term
in the XC9500XL macrocell, you can simply replace FDCE or FDPE
components in your schematic with FDCPE components from the
XC9000 library. The FDCPE component is a macro which always gets
expanded into a simple D-type flip-flop with its Q-feedback multi-
plexed into its D-input; the clock enable p-term is not used. After
substitution, the unconnected PRE or CLR input to the FDCPE is
automatically trimmed away by the CPLD fitter.

Tristate Multiplexing
XC9500 CPLD devices can emulate tristate bussing between on-chip
signal sources by gating the macrocell feedback to the FastCON-
NECT structure. (Macrocell feedback signals are never physically in a
high-impedance state.) Multiple feedbacks emulating tristate signals
can be wire-ANDed in the FastCONNECT to emulate bussing and
tristate multiplexing. When an on-chip tristate signal is "disabled",
the macrocell feedback is forced High so that it does not affect the
wire-AND. The signal on the wire-AND will therefore follow the
logic value of the "enabled" feedback.

To represent tristate multiplexing (bussing) in the schematic, tie
together the outputs of multiple tristate buffer symbols, like BUFE
and BUFT, as in the “Correct On-Chip Tristate Multiplexing” figure.
You cannot, however, connect such tied signals directly to an output
buffer; instead you must pass a tied signal through a logic symbol,
like BUF, before driving an output port.

Note: XC9500XL does not support internal tristate bussing. Never
use BUFE or BUFT components in an XC9500XL design. On-chip
tristate bussing is supported by some of the FPGA device families.

CPLD Schematic Design Guide

2-12 Xilinx Development System

Figure 2-4 Correct On-Chip Tristate Multiplexing

If your design calls for tristate bussing of multiple signals driven off-
chip, it may be better to output each signal source on its own tristate
output pin and tie the pins together off-chip, as shown in the “Correct
Off-Chip Tristate Multiplexing of CPLD Outputs” figure. You cannot
connect more than one signal source to the same OBUF or OPAD, as
shown in the “Incorrect Tristate Multiplexing of CPLD Outputs”
figure.

Note: XC9500XL and XC9500XV devices do not support internal
tristate bussing. Never use BUFE or BUFT components in an
XC9500XL or XC9500XV design. On-chip tristate bussing is
supported by some of the FPGA device families.

X4596

BUF OBUF

BUFE

E

OUTPUT2
OPAD

ƒ
ƒ

BUFE

E

ƒ

PIN 20

Q.TRST=SELECT

PL22V10

Design Entry Techniques

CPLD Schematic Design Guide 2-13

Figure 2-5 Correct Off-Chip Tristate Multiplexing of CPLD
Outputs

Figure 2-6 Incorrect Tristate Multiplexing of CPLD Outputs

X4605

OBUFE

E

OUTPUT2A
OPAD

OBUFE

E

OUTPUT2B

Tie pins

together on board

OPAD

CORRECT

ƒ

ƒ

X4604

OBUF

BUFE

E

OUTPUT2
OPAD

ƒ

BUFE

E

ƒ

INCORRECT

CPLD Schematic Design Guide

2-14 Xilinx Development System

LogiBlox Modules
LogiBLOX is a graphical interactive tool for creating high-level
modules, such as counters, shift registers, and multiplexers. Logi-
BLOX includes both a library of generic modules and a set of tools for
customizing them. For detailed information see the LogiBLOX User
Guide.

The modules you create with LogiBLOX can be used in designs
generated with schematic editors from Aldec, Viewlogic, Mentor
Graphics, and Cadence.

Use LogiBLOX modules whenever you need a customized version of
a standard function. In contrast, a standard ready-made counter has a
previously defined set of functions. If you want to use a counter with
specific capabilities, you need to have available a library of different
counters, one of which contains the functions you need. However,
with a LogiBLOX counter, you start with a generic template and tailor
its functionality to your needs.

You can use LogiBLOX to design your modules. The Module Selector
is a graphical user interface. Use it to tailor modules to your require-
ments. This is the most common way to design modules in Logi-
BLOX.

Program Inputs and Outputs
The Module Selector is the LogiBLOX graphical user interface that
you use to create a LogiBLOX module. Specifying a LogiBLOX
module consists of a) selecting or deselecting optional pins on the
symbol, and b) specifying various module attributes. The result is a
module customized for a specific function.

After you complete the module specification, LogiBLOX uses its
symbol generator, model generator, and netlist generator to create the
following three outputs and store them in the current project direc-
tory:

• A schematic symbol for inclusion on the schematic

The symbol generator creates a symbol definition file that your
third-party interface converts into a schematic symbol.

• A behavioral VHDL simulation model

Design Entry Techniques

CPLD Schematic Design Guide 2-15

The model generator creates a behavioral VHDL simulation
model for the LogiBLOX module.

The behavioral model permits the design to be simulated imme-
diately in those environments that support mixed schematic and
behavioral simulation.

• Verilog and EDIF gate-level netlists, produced as an alternative
simulation medium

The netlist generator creates a gate-level netlist for the LogiBLOX
module that is converted to the third-party’s simulation format.
These netlists permit immediate simulation of the design in gate-
level simulation environments.

Schematic Design Flow
To use the program in a schematic-based environment, follow these
steps:

1. Invoke the Module Selector from within your design entry tool.

2. Configure your project directory using the LogiBLOX Setup
window.

3. Select a base module type (for example, Counter, Memory, or
Shift-register)

4. Customize the module by selecting pins and specifying
attributes.

5. After completely specifying a module, click on the OK button.
Selecting OK initiates the generation of a schematic symbol and a
simulation model for the selected module.

6. Place the module on your schematic.

7. Connect the LogiBLOX module to the other components on your
schematic using ordinary nets, buses, or both.

8. Functionally simulate your design at any time.

9. Implement your design with the Xilinx implementation tools.

10. To simulate your design post-layout, convert your design to a
timing netlist and use the back-annotation flow appropriate to
your CAE tools.

CPLD Schematic Design Guide

2-16 Xilinx Development System

Changing a Schematic Module
To change a module that you have already placed on your schematic,
select the module and invoke the Module Selector. The Module
Selector displays the settings of the module that you want to edit.

Behavioral Modules
Behavioral modules are user-generated symbols functionally defined
by some logic description other than a schematic, typically Boolean
equations or HDL. Some reasons why you may want to use behav-
ioral modules in your schematic are:

• You may want to re-use existing design solutions that are
expressed in Boolean equation or HDL form.

• It is often easier to express combinatorial logic functions and state
machines using Boolean equations or HDL than using sche-
matics.

The Xilinx CPLD fitter also accepts entirely behavioral designs which
use no schematics. Similar to behavioral modules for schematic
designs, behavioral designs are expressed using Boolean equations or
HDL and compiled using a PLD compiler (like XABEL) or a logic
synthesis tool. Unlike behavioral modules, behavioral designs
contain all the device I/O port information in its behavioral descrip-
tion.

This manual describes only schematic-based designs and the behav-
ioral modules which may be contained in them. The procedures for
creating behavioral modules in CPLD schematics is essentially the
same as for all other Xilinx device families.

Compiling Behavioral Logic
The equation or HDL files defining behavioral modules must be
compiled before they can be used by the fitter. There are a variety of
PLD compilers and synthesis tools that support design entry for
CPLD devices.

Behavioral compilers which are compatible with the CPLD fitter
translate their logic descriptions into EDIF or XNF formatted netlists.

Note: Previous versions of the CPLD fitter used the PLUSASM equa-
tion language as an interchange language in place of XNF or EDIF for

Design Entry Techniques

CPLD Schematic Design Guide 2-17

some behavioral compilers, such as XABEL. PLUSASM is still recog-
nized and processed by this version of the fitter for the sake of
existing behavioral modules based on that interface. However, future
versions of the software will not support PLUSASM and it should not
be used when creating any new behavioral modules.

If the behavioral compiler tool supports the development of
completely behavioral designs, make sure you select the appropriate
mode of operation or compilation flow for producing logic modules,
not stand-alone designs. The netlist produced by the compiler must
not contain device I/O pin information. If any of the terminal nodes
(inputs or outputs) of your behavioral module are to be connected to
CPLD device pins, you must use IBUF and OBUF symbols in your
schematic.

Note: If you are using a synthesis tool to prepare a behavioral
module, make sure you target the appropriate CPLD technology
library.

Your compiled behavioral module file is normally stored in your
project directory. You can also copy it to a user library directory if you
want to use it for more than one project.

Behavioral Module Symbols in Schematics
Using a behavioral module in a schematic design involves creating a
symbol to represent your logic, placing the symbol into your sche-
matic and applying necessary attributes to identify the logic-defining
file.

1. Use the symbol editing facility of your schematic entry tool to
create a symbol representing your behavioral logic. Generally, the
name of your symbol will be the name of the behavioral module,
although this is not mandatory.

Place a pin on your symbol for each terminal node (input or
output port) in your behavioral design that needs to be connected
to other logic or I/O ports in your schematic. "Buried" nodes that
connect only between logic functions within the behavioral
module do not require pins on your symbol.

Some tools have commands or utilities that automatically
generate symbols based on the terminal nodes defined in your
behavioral module.

CPLD Schematic Design Guide

2-18 Xilinx Development System

2. Some schematic entry tools distinguish between two types of
symbols: primitive symbols (sometimes called "module") and
hierarchical symbols (sometimes called "composite") that link to
schematics beneath them. When creating a symbol to represent a
behavioral module, create it as a primitive symbol.

When your symbol is complete, store it in your project directory
or in a user library directory if you want to use the symbol in
more than one project.

3. Instantiate the new symbol one or more times in your design
schematic and connected it to other logic and I/O buffers as
needed. As with library symbols, unused input pins on your
behavioral module symbol should be tied to VCC or GND.

4. Add an attribute to each instance of a behavioral module symbol
in your schematic to identify the compiled behavioral logic file.
The format of the attribute is

FILE =filename

where filename is the name of the file produced by the behavioral
compiler, either with or without extension. If the compiled file is
stored in a different directory (such as a user library), include the
complete directory path qualification in the FILE attribute.

Behavioral Module Example for Viewlogic
This simple example shows you how to develop a behavioral module
defined by an ABEL-language equation file and represented by a
custom symbol in a Viewlogic schematic.

1. Create the following ABEL file named regxor.abl.

MODULE regxor
TITLE `Registered XOR gate'
IO pin;
I1 pin;
CLK pin;
Q pin istype `reg';
EQUATIONS
Q := IO $ I1;
Q.C = CLK;
end

2. Compile the file to create an EDIF netlist file named regxor.edn.

Design Entry Techniques

CPLD Schematic Design Guide 2-19

3. In Viewdraw, open a symbol window and create a new symbol
named regxor as shown in the “The REGXOR Symbol” figure.
The symbol has three input pins and one output pin corre-
sponding to the pins defined in the ABEL equation file.

Figure 2-7 The REGXOR Symbol

4. Make sure the symbol is defined as a primitive. For example, if
you are using WorkView Office, use the Change → Symbol
Type → Module command to indicate that there is no under-
lying schematic for the symbol. Then save the symbol in your
project directory.

5. Instantiate the symbol in your schematic and connect its input
and output pins to logic and/or I/O buffers in your design.

6. Select the regxor component in your schematic and add the
attribute FILE=regxor .

Hierarchical Design
You can create custom symbols with schematics under them and
place these symbols in your top-level or lower-level schematics to
create a hierarchical design. This can make your design more
modular and easier to understand.

Custom symbols with schematics under them are termed user macros,
as opposed to behavioral modules, which are custom symbols with
equations or HDL under them.

The procedure for creating a symbol with an underlying schematic is
the same for CPLD and FPGA families:

1. Create a lower-level schematic using CPLD library symbols or
other custom symbols. To make a device-independent macro, use

X4864

REGXOR

CLK

I1

I0 Q

CPLD Schematic Design Guide

2-20 Xilinx Development System

only device-independent symbols common to multiple families.
If required by your CAE tool, identify the terminal nodes of the
macro schematic sheet.

2. Create a symbol for the schematic. The names of pins on your
symbol should match the names of the terminal nodes in the
underlying schematic.

3. Make sure the symbol is defined as a hierarchical symbol (some-
times called "composite") as required by your CAE tool.

Custom Macro Example for Viewlogic
This next example shows you how to create a custom macro symbol
with an underlying schematic. The steps for Viewlogic users are
shown:

1. Create the schematic using common symbols from the CPLD
library. For this example, we create a schematic named regxor,
which should look something like this:

Figure 2-8 The REGXOR Schematic

2. Create a symbol, also named regxor, with pin names that match
the inputs and outputs of the schematic.

X4839

DI0
XOR2

I1

CLK

FD

C

Q

Design Entry Techniques

CPLD Schematic Design Guide 2-21

Figure 2-9 The REGXOR Symbol

3. Use the Change → Symbol Type → Composite command to
change the symbol's block type to composite.

Retargeting a Design From a Different Family
When retargeting an existing schematic designed from a different
Xilinx device family, there are three aspects of design compatibility
which must be considered:

• The symbols in the schematic must be supported by the new
target CPLD library.

• Any attributes used in the design must be supported by the
CPLD fitter; otherwise, non-applicable attributes should be
removed.

• Any behavioral modules used in the design may need to be
recompiled using a CPLD technology library (if applicable).

Schematic Conversion Procedure
When you retarget a design from a different Xilinx device family, you
may need to perform a conversion procedure to replace the symbols
in your existing schematic with symbols from the CPLD library,
depending on your design entry tool. Because of the Xilinx Unified
Library, such conversions are automatic and produce functionally
equivalent results with little or no manual changes required. The
conversion is typically performed so that the macro symbols in your
design schematic link to the underlying macro schematics in the
CPLD family's library rather than any other device library. Also,
some primitive symbols being translated from another device library

X4864

REGXOR

CLK

I1

I0 Q

CPLD Schematic Design Guide

2-22 Xilinx Development System

may be implemented as macro symbols in the new library, and vise-
versa.

Before you convert your schematics to use a CPLD library, you
should remove any symbols that do not exist in the new library, typi-
cally replacing them with similar symbols from the new library. After
you convert your schematic, any unsupported symbols may no
longer be visible in your schematic, and this may make it more diffi-
cult to determine the appropriate replacement logic.

Note: If you are converting an FPGA design containing RAM, ROM,
or other elements that do not have CPLD equivalents, you cannot
retarget your design unless you redesign those portions.

Using Workview Office

In this example, we are converting a schematic originally imple-
mented using the XC3000 library into a schematic targeting the
XC9000 library.

1. Make sure the Project Manager contains the XC9000 libraries. If
they do not use Project → Libraries to add them. For
example, browse to installation_path/viewlog/data /xc9000
where installation_path is the root directory where the Xilinx soft-
ware package was installed. Then click on Add and the XC9000
libraries will be added to the list.

2. Close all Workview Office tools except the Toolbar.

3. Open an MS-DOS session and change the current directory to the
project directory.

4. Run the ALTRAN command with the following syntax:

altran -l library old_alias=new_alias

For example, to change a project from the XC3000 family to the
XC9500:

altran -l primary xc3000=xc9000

Altran will change the library aliases in all of the schematic sheets
within the specified library directory. Altran will also modify the
alias of the targeted library within the Viewdraw.ini file.

5. After running ALTRAN, open the Workview Office Project
Manager. Note that the last library has the XC9000 alias but still

Design Entry Techniques

CPLD Schematic Design Guide 2-23

has the path to the XC3000 library. Select Project →Libraries
to modify the Library Search Order.

6. Select the modified library. In the Path field, change the path so it
points to the XC9000 library directory. Click Change .

7. Select this library again. Click the Move Up button until it is
below the primary library and any user-created libraries. Click
OK.

8. Save the changes in the Project Manager.

Note: When writing the EDIF file from ViewDraw for subsequent
implementation in an existing Xilinx project, you must keep the same
design.edn filename and project directory.

In the Design Manager window, select Design → New
Version . This brings up the New Version dialog box, shown in
the "New Version Dialog Box" figure. The version name incre-
ments by default.

Change the name of this version, if desired, and add any
comments for this version. Click OK to create this new version.

Using Viewlogic Powerview on Workstations

In this example, we are converting a Viewlogic schematic originally
implemented using the XC3000 library into a schematic targeting the
XC9000 library.

1. Copy your existing schematic file(s) from the project directory
used for the other device family (XC3000) into the project direc-
tory you want to use for the new target library (XC9000). For
example:

cp proj7000/sch/design1.1 proj9000/sch

2. Use the Viewlogic project management facility (or edit the view-
draw.ini file) in your XC9000 project directory to list both the new
library (XC9000) and the other family's library (XC3000) in the
Search Order. For example, if you are converting an XC3000
design to XC9000, your viewdraw.ini file would contain the
following two lines:

DIR [r] installation_path /viewlog/data/xc9000
(xc9000)

CPLD Schematic Design Guide

2-24 Xilinx Development System

DIR [r] installation_path /viewlog/data/xc3000
(xc3000)

3. Go to a system command window that is properly configured to
run Viewlogic software. (The $path should include Viewlogic
software and the $WDIR variable should be properly set.) Your
current working directory should be your project directory
containing the designs to be converted.

4. Invoke the Viewlogic altran utility to automatically replace all
symbols in your design from the old library (XC3000) with corre-
sponding symbols from the new library (XC9000), as follows:

altran -p design_name old_library=new_library

where old_library is the library alias of the device family from
which you are converting and new_library is the alias of your new
target library. For example:

altran -p design1 xc3000=xc9000

Processing a Design After Conversion

After converting a schematic from a different device family, perform
the following steps, as applicable:

1. Remove all attributes except INIT, FAST, SLOW, KEEP, BUFG,
FILE, NOREDUCE and timing specifications. Change the values
of PART, LOC, and PROHIBIT attributes as needed, or remove
them.

2. In the Design Manager, create a new Xilinx project for the
converted schematic design.

a) From the Design Manager click the File menu and select
New Project .

b) Enter a new project name to use for XC9000 implementation.

c) From the Target Family select XC9500.

d) Before processing the design, open the Implementation
Options menus and select the options available for the new
device family.

3. When you perform either functional or timing simulation,
remember to pulse the PRLD signal High then Low. FPGA fami-
lies may use a GSR or GR signal for initialization.

Design Entry Techniques

CPLD Schematic Design Guide 2-25

4. If you wish to perform timing simulation, you may have to
change the internal nodes you drive and monitor. The CPLD
fitter optimizes the logic differently than FPGAs, which makes
many of the internal nodes in the design inaccessible. However,
all external signals are always visible.

Attribute Compatibility
The only schematic attributes common to FPGA devices and CPLD
devices are:

• INIT=R|S

• Timing specifications for TIMESPEC and TIMEGRP symbols,
including TNM, PERIOD and OFFSET.

• FAST and SLOW (output slew-rate control)

• FILE=filename for behavioral modules

• KEEP and COLLAPSE

The PART, LOC and PROHIBIT attributes are also used in a similar
way by other families, but you must change their values when you
change devices.

Any attributes contained in the converted design which are not
supported by the target CPLD family should be removed from the
schematic before netlisting.

Converting Behavioral Modules
If your design contains behavioral modules, you may need to
perform some of these additional steps before running the fitter:

1. If your behavioral module contains state machine logic, you may
need to change the encoding style of the state machines. You
generally do not have to rewrite the logic, just the state assign-
ment. For FPGAs, which are rich in registers, one-hot encoding
using symbolic state representation is most efficient. For CPLDs,
which are rich in product terms, binary encoding (or other
encoding that minimizes state bits) is usually most efficient.
Conversion from one-hot encoding may be unnecessary for very
simple state machines.

2. If you are using a synthesis tool, recompile the behavioral
module specifying XC9000 as the target technology library.

CPLD Schematic Design Guide 3-1

Chapter 3

Controlling Design Implementation

This chapter discusses the techniques for controlling how various
parts of your design get implemented into a CPLD device. It concen-
trates mainly on the attributes you place in your schematic and the
options you select in the Design Manager.

This chapter contains the following sections:

• “Target Device Selection”

• “Controlling Preload Values”

• “Controlling Power Consumption”

• “Controlling Output Slew Rate”

• “Controlling the Pinout”

• “Controlling Logic Optimization”

• “Controlling Timing Paths”

Target Device Selection
By default, the fitter automatically selects a Xilinx device for you,
choosing, in general, the smallest part that satisfies the needs and
constraints of your design.

1. After you have opened a design, select New Device from the
Implementation menu; the device selection menu appears, as
shown in the “Device Selection Menu” figure.

CPLD Schematic Design Guide

3-2 Xilinx Development System

Figure 3-1 Device Selection Menu

2. From this menu, select XC9500, XC9500XL, or XC9500XV as
the family. Then specify the target device parameters that you
want for your design. For example if you choose "All" for all
Filters fields the software is free to choose any device in the
selected family.

If you select All for any device Filters field the software tries to fit
your design within the range of possible devices you have selected by
using the following selection criteria:

• First, the software selects the smallest die.

• Second, the software selects the smallest package.

• Third, the software selects the fastest speed-grade device for the
selected device.

The software will continue to try fitting your design into one of the
possible range of selected devices until the first usable one is found or
until there are no more devices to try.

You can also specify a part number in your schematic. Place a
CONFIG symbol in your schematic and apply the following attribute
to it:

part= dddd-ss-pppp

When you open the Part Selector menu in the Design Manager, the
Family, Device Package and Speed will all be set to the values you
specified in your schematic. You can override these values using the
Part Selector menu. The value of the PART attribute in a schematic
must be a complete specific part value; you cannot use wildcards.

Controlling Design Implementation

CPLD Schematic Design Guide 3-3

Controlling Preload Values
The preload values used in the implementation of your design
depend on the INIT=R/S attribute. The INIT attribute specifies the
initialization value to be preloaded into a register upon power-up.
INIT=R specifies a preload value of 0 (reset) and INIT=S specifies a
preload value of 1 (set). This attribute can be applied to flip-flops or
any component containing a register. The initial state of all flip-flops
in an XC9000 design is zero unless otherwise specified by INIT=S.

The only differences expected between functional and timing simula-
tion involve the initial states of registers and latches. When you
perform functional simulation directly from your schematic, the
simulation models for each registered symbol have no knowledge of
any INIT attributes you may have attached to the symbol. Therefore,
functional simulation assumes that all preload values are zero.
Timing simulation uses the actual preload values implemented by the
fitter.

Controlling Power Consumption
The power consumption of each macrocell in a CPLD device is
programmable. The standard (default) setting consumes more power
and produces shorter propagation delay. The low-power setting
reduces power consumption for less speed-critical paths. By default,
all macrocells in the design will operate in standard power mode.

Changing Power Mode for a Specific Component
You can apply the PWR_MODE attribute to specific components in
the schematic. To specify that the macrocell(s) used to implement a
logic function are to operate in low-power mode, apply the following
attribute to the corresponding component or its output net in your
schematic:

PWR_MODE=LOW

To specify standard power mode for a function (in case the global
power was changed to low), apply the following attribute to a
component or its output net:

PWR_MODE=STD

The PWR_MODE attribute can be applied to any logic or flip-flop
component in the schematic, including a macro component that has

CPLD Schematic Design Guide

3-4 Xilinx Development System

multiple output signals. The PWR_MODE attribute affects all macro-
cells used to implement the selected component.

If a component such as a logic gate or inverter is collapsed into
another component, the PWR_MODE attribute is not carried forward
by the software. You may therefore need to apply the PWR_MODE
attribute to several components in a logic path to be sure that all
macrocells used to implement the path are set to low-power mode.

The PWR_MODE attribute has no effect on components that are not
implemented using macrocell logic, such as I/O buffers.

Changing Global Power Mode
To set all macrocells to the Low Power Mode throughout the design,
set Macrocell Power Setting to Low in the Basic menu of
the Implementation Options Template in the Design
Manager.

By setting the Power Mode to Low in the template, macrocells will
operate in low power mode except where you specify the
PWR_MODE=STD attributes in the design.

If you want the fitter to automatically select the power mode for indi-
vidual macrocells based on timing constraints you enter for your
design, set Macrocell Power Setting to Timing Driven .
Macrocells involved in timing-constrained paths will have their
power settings automatically switched to Low only if the low-power
propagation delay still allows the macrocell to satisfy all applicable
timing constraints. Macrocells that do not participate in timing-
constraint paths will operate in standard power mode (Std).
Applying the PWR_MODE attribute always overrides the Macro-
cell Power Setting .

Note: Low-power macrocells are slower than standard-power
outputs. If you have a mixture of low- and standard-power macro-
cells, pay close attention to simulation results or the timing report to
see how the power settings affect timing interactions.

Controlling Output Slew Rate
Each output of a CPLD device is programmable to operate either at
full speed or with limited slew rate. Limiting the slew rate reduces
output switching surges in the device. Slew rate control becomes

Controlling Design Implementation

CPLD Schematic Design Guide 3-5

important when your design uses a large number of outputs or you
have transmission lines on your board which are sensitive to fast
edge rates.

By default, all outputs in a CPLD design have fast (unlimited) slew
rate. You can change fitter options so that all outputs operate with
slow slew-rate or so that the fitter automatically selects slew-rate
based on timing constraints you enter for your design. To change
output slew rate control for all outputs from the Design Manager, go
to the Basic tab of the Implementation Options.

1. From the Design Manager, select Design → Implement .

2. Click Options in the Implement dialog box.

3. Select Edit Template

4. Select the tab labelled Basic .

5. You can instruct the fitter to automatically switch outputs to slow
slew rate by changing the Output Slew Rate option to Slow .

If you are in the Flow Engine, this procedure is as follows:

1. From the Flow Engine, select Setup → Options .

2. Select Edit Template .

3. Select the tab labelled Basic .

4. You can instruct the fitter to automatically switch outputs to slow
slew rate by changing the Output Slew Rate option to Slow .

By setting Output Slew Rate to Timing Driven , outputs
involved in timing-constrained paths will have their slew-rate auto-
matically set to Slow only if the slew-rate-limited output propagation
delay still allows the output to satisfy all applicable timing
constraints. Outputs that do not participate in timing-constrained
paths will operated in Fast slew-rate mode.

If you want to explicitly force an output to use slow slew rate, apply
the SLOW attribute to an OPAD or IOPAD symbol or the pad net.

SLOW

If you want a device output to use fast slew, use the FAST attribute.
Simply apply on an OPAD (or IOPAD) symbol or the pad net.

FAST

CPLD Schematic Design Guide

3-6 Xilinx Development System

Applying the FAST or SLOW attribute to an output pad always over-
rides the Output Slew Rate options in the fitter template.

Controlling the Pinout
When you first run the fitter before your pinout is committed, the
software automatically selects pin locations for your I/O signals. Pin
locations are selected which will give you the greatest flexibility to
iterate your design without having to move any of the pins. Each
time the fitter successfully implements your design, it creates a guide
file (design_name.gyd), which contains all the resulting pinout infor-
mation. After you commit your pinout, subsequent design iterations
cause the fitter to use the committed pinout saved in the guide file.

Xilinx strongly recommends that you allow the software to automati-
cally generate your initial pinout. Attempting to select your own
initial pin preferences reduces the ability of the fitter to implement
your design successfully the first time. It further reduces the amount
of logic changes you could make after freezing your pinout.

Pin Locking
If you have successfully fit a design into a CPLD device and you
build a prototype containing the device, you will probably want to
"lock" the pinout.

1. In the Design Manager, select an existing design revision that was
successfully run through the Fit step (typically, your most recent
revision).

2. Select Design → Lock Pins . The pinout saved in the selected
revision (stored in design_name.gyd) is translated into pin loca-
tion (LOC) constraints and written into a user constraint file
(design_name.ucf).

3. Select View Lock Pins Report in the dialog box to make sure
no pin assignment conflicts were found.

4. When ready, run the fitter (Design → Implement). The
previous pinout information will be read from the UCF file and
used in the new design revision.

Controlling Design Implementation

CPLD Schematic Design Guide 3-7

Guide Files

The pin locations stored in the guide file are specified based on the
pad net names in the schematic. The pad nets are the nets that
connect the IPADs to IBUFs and the OBUFs (or OBUFE or OBUFT) to
OPADs (or IOPADs). If you change the label on any of the pad nets in
your schematic, the pin will no longer be constrained to the location
stored in the guide file.

When you iterate your design while your pins are frozen, you are free
to delete existing pins and/or add new pins to your schematic. The
fitter automatically selects the best locations for any new pins you
add, after placing all the existing pins constrained by the guide file.

Note: If you iterate your design and your pinout is not yet committed
(you haven't built a prototype containing the device), you should not
lock your pinout yet. Instead, allow the software to redefine the
pinout of your modified design. This will continue to give you the
greatest flexibility to alter the logic in your design again after you
commit your pinout.

Pin Assignment
There are two ways to assign pins. You can use the location box in the
Ports Tab window of the Constraints Editor, or you can use the LOC
attribute.

Constraints Editor

The Ports Tab window of the Constraints Editor contains a Location
dialog box which will create a constraint which locks a user-defined
port to a specific device pin.

1. Open the Constraints Editor and go to the Ports Tab Window. To
do this, simply click the button labelled “Ports.”

2. In the Location column and in the row associated with the Port
Name, double-click the left mouse button. This opens the Loca-
tion dialog box.

3. In the Location text box, enter a pin identification name.

4. Click OK.

See the Constraints Editor Guide for more information.

CPLD Schematic Design Guide

3-8 Xilinx Development System

LOC Attribute

You can also assign explicit locations for pins in your design using
the LOC attribute in your schematic. To assign a pin location, apply
the following attribute to a pad symbol (IPAD, OPAD or IOPAD) or
pad net in your schematic:

LOC=pin_name

For PC and PQ type packages, the pin_name takes the form "Pnn"
where nn is a number. For example, for the PC84 package, the valid
range for pin_name is P1 through P84. For grid array type packages
(PG and BG), the pin_name takes the form "rc", where r is the row
letter and c is the column number.

The LOC attribute cannot be applied to multi-bit pad components
such as OPAD8. You must use individual pad symbols in your sche-
matic if you want to perform pin assignment.

Whenever your design contains any LOC attributes, you should
specify the target device type using the Design Manager or the sche-
matic PART attribute (see Target Device Selection in this Chapter).
LOC attributes are not always compatible when retargeting a design
between different package types, device types or device families.

LOC attributes are unconditional in that the software will not attempt
to relocate a pin if it cannot achieve the specified assignment. If you
specify a set of LOC attributes that the fitter cannot satisfy, the fitter
will terminate with an error.

Ignoring the LOC Attribute

If your schematic contains LOC attributes but you want to let the
fitter automatically assign all I/O pins, you can set the fitter to ignore
all LOC attributes. This allows you to temporarily ignore all the LOC
attributes in your schematic. This is useful if you want to test how
your design fits a different target device without removing all the
LOC attributes from your schematic.

1. Go to the Flow Engine and select Setup → Options

2. The Design Implementation Option menu appears. Select Edit
Template

3. Then select the tab Basic

Controlling Design Implementation

CPLD Schematic Design Guide 3-9

4. Remove the check in the box adjacent to Use Design Loca-
tion Constraints . Then click OK.

Function Block and Macrocell Assignment
You can explicitly assign internal nodes in your design to specific
function blocks or even specific macrocells of the target device. To
assign an internal node to a specific location, apply the following
attribute to a symbol or its output net:

LOC=FBnn [_ mm]

where nn is a valid function block number and mm (optional) is a
valid macrocell number for the target device.

Prohibiting the Use of Device Pins
The PROHIBIT attribute allows you to reserve device pins for later
use, or simply prevent them from being used at all. For instance, if
you anticipate design changes in the future and want to set traces on
your printed circuit board now, you can use PROHIBIT to prevent the
fitter from using pins associated with those traces. Then, when you
decide to use the traces, you can use the LOC attribute to assign those
pins to new input/output buffers you place in your design. To use
PROHIBIT, instantiate a CONFIG symbol and attach the PROHIBIT
attribute to it. The syntax is as follows:

PROHIBIT=Pnn [,P nn]...

where nn is the pin number for PC, PQ and VQ packages, and rc
(row,column) for BG or PG packages.

In the Constraints Editor, Prohibit I/O Locations prevents all
selected I/O pins from being used by the design. This dialog can be
entered using a dialog box provided in the Ports tab.

Pin Assignment Precautions
You can apply the LOC and PROHIBIT attributes to as many pad
symbols in your design as you like. However, each pin assignment
further constrains the software making it more difficult for the fitter
to automatically allocate logic and I/O resources for the remaining I/
O signals in your design.

CPLD Schematic Design Guide

3-10 Xilinx Development System

When you manually assign output and I/O pins, you force the soft-
ware to place associated logic functions into specific macrocells and
specific function blocks. If the associated logic does not exceed the
available function block resources (macrocells, product terms, and
FastCONNECT inputs), the logic is mapped into the macrocell and
the design will route in the FastCONNECT.

It is usually best to allow the fitter to automatically assign most or all
of the pins based on the most efficient placement of logic in the
device. The fitter automatically establishes a pinout which best
allows for future design iterations without pin relocation. Any
manual pin assignments you make in your design may not allow as
much tolerance for changes in the logic associated with those pins,
and in the logic physically mapped to nearby locations in the device.

If you are assigning pin locations to signals used as clocks, asynchro-
nous set/reset, or output enable in your design, you should assign
them to the GCK, GSR and GTS pins on the device if you want to take
advantage of these global resources. The fitter will still automatically
assign other clock, set/reset and output enable inputs to remaining
GCK, GSR and GTS pins if available.

Controlling Logic Optimization
When you build combinatorial logic functions using simple gates and
inverters, or when you use macros that contain gate-level logic paths,
the software attempts to collapse as much of the logic as possible into
the smallest number of CPLD macrocells. Any combinational logic
function bounded between device I/O pins and flip-flops is subject to
complete or partial collapsing. Collapsing the logic improves the
speed of the logic path and can also reduce the amount of logic
resources (macrocells, p-terms and FastCONNECT inputs) required
to implement the function.

The process of collapsing logic into other logic functions is called
"logic optimization".

Collapsing Product Term Limit
When a larger combinatorial logic function consisting of several
levels of AND-OR logic is completely collapsed (flattened), the
number of product terms required to implement the function may
grow considerably. By default, the fitter limits the number of p-terms

Controlling Design Implementation

CPLD Schematic Design Guide 3-11

used as a result of collapsing to 20. If the collapsing of a logic level
results in a logic function consisting of more than the p-term limit
(after Boolean reduction), then the collapsing of that logic level is not
performed and the function will be implemented using two or more
levels of AND-OR logic.

Controlling Pterm Limits in Design Manager

In Design Manager, controlling the Pterm limits is performed as
follows:

1. Go to the Flow Engine and select Setup → Options

2. The Design Implementation Option menu appears. Select Edit
Template

3. Then select the menu Advanced

4. Place a value in the box adjacent to Collapsing Pterm
Limit .

The allowable range for the p-terms parameter is between 5 and 90;
the default is 20.

If the Path Delay is Not Satisfactory

If you find that the path delay of a larger, multi-level logic function is
not satisfactory, try increasing the p-term limit parameter to allow the
larger functions to be flattened further. For example, you may try
increasing the p-term limit to 25, 30 or 35 when rerunning the fitter.

The fitter report (design_name.rpt) indicates the number of p-terms
used for each logic function. You should see these numbers increase
as you raise the pterms limit, until the design is fully flattened. At the
same time, you'll see the internal combinational nodes eliminated
until none remain.

Preventing Collapsing of a Logic Node
Flattening typically increases the overall amount of p-term resources
required to implement the design. Some designs which fit the target
device initially may fail to fit if flattened too much. Other designs can
be flattened completely and still fit. If you cannot increase the pterms
parameter enough to sufficiently flatten a critical path and still fit the
target device, you may try applying the logic optimization control
attribute KEEP to specific nodes in your design.

CPLD Schematic Design Guide

3-12 Xilinx Development System

Applying the following attribute to a logic symbol or net in the
middle of a logic function prevents collapsing of that logic node into
its fan-outs:

KEEP

You can use KEEP to break logic chains in non-speed-critical paths
and prevent those functions from collapsing and using too many p-
terms. If you set the p-term limit parameter too high and your design
no longer fits, try using KEEP to reduce the size of selected non-crit-
ical paths.

The KEEP attribute has no effect on any symbol that contains no
macrocell logic, such as an I/O buffer.

When the KEEP attribute is placed on a symbol, it inhibits logic opti-
mization on all macrocells used to implement the symbol. For
example, if you place KEEP on a macro symbol (like D2_4E), all
outputs and internal nodes of the decoder will be prevented from
collapsing. This is usually not desirable.

If you want to prevent collapsing on a specific output signal from a
macro symbol, you can place the KEEP attribute on the net itself.
When you place the KEEP attribute on a net, the fitter applies the
attribute only to the primitive symbol that drives that net.

Forcing Collapsing of a Logic Node
You can also force a logic symbol to collapse into all of its fanouts by
placing the following attribute on the symbol or its output net:

COLLAPSE

The collapse attribute affects all logic functions contained within a
symbol. If you want to force collapsing of a multi-symbol logic chain,
you may need to use multiple collapse attributes.

Multilevel Logic Optimization
Multilevel Logic Optimization seeks to simplify the total number of
logic expressions in a design, and then collapse the logic in order to
meet user objectives such as density, speed and timespecs. This opti-
mization targets CPLD architecture, making it possible to collapse to
the macrocell limits, reduce levels of logic, and minimize the total
number of pterms.

Controlling Design Implementation

CPLD Schematic Design Guide 3-13

Multilevel Logic Optimization extracts combinatorial logic from your
design. Combinatorial logic includes:

• register-to-register logic

• path-to-register logic

• register-to-path logic

• path-to-path logic

Multilevel Logic Optimization operates on combinatorial logic
according to the following rules:

1. If timespecs are set, the program will optimize for speed to meet
timespecs.

2. If timespecs are not set, the program will optimize either for
speed or density, depending on the user setting of Timing
Optimization .

a) If Timing Optimization is turned on, the combinational
logic will be mapped for speed.

b) If Timing Optimization is turned off, the combinational
logic will be mapped for density. The goal of optimization
will then be to reduce th total number ot pterms.

3. Logic marked with the attribute NOREDUCEwill not be extracted
or optimized.

Setting Multilevel Logic Optimization

Multilevel Logic Optimization can be set from the Advanced tab of
the Implementation Options template of the Design Manager as
follows:

1. Select Design → Implement

2. Press the Options softkey.

3. Select Edit Template

4. Select the Advanced tab.

5. Place a check in the Use Multilevel Logic Optimization
box (the default is On).

Multilevel Logic Optimization will operate when you run the fitter.

CPLD Schematic Design Guide

3-14 Xilinx Development System

Controlling Timing Paths
There are two mechanisms that can improve the timing of your
design:

• Global Timing Optimization

• Timing Constraints (Timespecs)

Timing Optimization
When you create a new project in the Design Manager, it is config-
ured by default to optimize primarily for speed rather than for
density. The Optimize Speed template containing all the recom-
mended fitter options to achieve best first-run speed is selected in the
Options menu. With the Optimize Speed template selected, the
fitter performs global timing optimization on logic paths in your
design. Timing optimization will shorten your critical paths as much
as it can. In general, timing optimization optimizes logic and allocates
the fastest available resources for the longest paths in your design,
assuming all paths are equally critical. In some cases, the fitter trades
off density for a speed advantage.

If you want to optimize for density instead of speed, select the Opti-
mize Density template in the Design Manager Options menu. In
the Optimize Density template, Timing Optimization is turned
off. If you are customizing your own template settings, you can
directly turn timing optimization off:

1. Go to the Flow Engine and select:

Setup → Options

2. The Design Implementation Option menu appears. Select:

Edit Template

3. Then select the tab:

Advanced

4. Lastly, place a check in the Off box adjacent to Use Timing
Optimization .

Controlling Design Implementation

CPLD Schematic Design Guide 3-15

Timing Specifications
This section describes the basic methods for entering timing specifica-
tions.

The software provides a set of timing constraint commands that you
can use to specify the timing requirements of your Xilinx design.
After compiling your design, the Xilinx software reads both your
design netlist and your timing constraint commands and performs
timing optimization according to your specifications.

The following path types can be controlled using timing specifica-
tions:

This section outlines the commands that you can use to create timing
specifications for your Xilinx CPLD designs.

Entering Timing Specifications using the Constraints
Editor

This following tells you how to create new timing constraints from
the Global tab window, and the Ports tab window of the Constraints
Editor.

Note: To start the Contraints Editor from the Design Manager, simply
click on the Contraints Editor Icon found on the right side of the
Design Manager graphical interface. See the Constraints Editor Guide
for more information.

Note: After a constraint is created, it appears syntactically in the Edit-
able Constraints list the same way it appears in the UCF.

Pad-to-pad delay Input port to an output port

Register setup time Input port to the data pin of a
flip-flop, including flip-flop
setup requirements

Register-to-register Clock pin of a flip-flop to the
data pin of the same or
different flip-flop, including
flip-flop setup requirements

Clock-to-output delay Clock pin of a flip-flop to an
output port

CPLD Schematic Design Guide

3-16 Xilinx Development System

From the Global Tab Window

The following global constraints are created from the Global tab
window of the Constraints Editor.

• “Clock Period”

• “Pad to Setup”

• “Clock to Pad”

• “Pad to Pad”

Clock Period

To create a new clock period constraint, open the Global tab window.
Follow the steps below.

1. In the Period column and in the row associated with the appro-
priate clock net name, double-click the left mouse button. This
opens the Clock Period dialog box.

Note: An alternate way to invoke the Clock Period dialog box: right
click in any row or column (except the heading), then click Period
from the pop-up window.

Note: By default, a timing specification name for the clock period is
displayed in the Time Spec text box. The name consists of the letters
"TS" and an identifier in the form of the clock net name; for example,
TS_CLK1. You may change the timing specification name as desired.
If the name you choose does not begin with "TS", the program will
prepend it to the name.

2. In the Clock Period field, you may signify an explicit period for a
clock or you may designate a period which is relative to a clock
period defined in another timing specification.

3. If you select Explicit, enter a value in the Time text box and select
a unit from the Units pull-down list. Select Start High or
Start Low for the initial clock pulse, enter a value in the Time
HIGH or Time LOW text box, and a value for time high or low
from the pull-down list. The default for Units is %, which is the
high or low percentage of the total.

4. If you select Relative to other Period Time Spec , select
the name of the time spec in the Reference Time Spec text box,

Controlling Design Implementation

CPLD Schematic Design Guide 3-17

select Multiply by or Divide by and a value in the Factor
text box.

5. Click OK.

Pad to Setup

Pad to Setup creates a constraint which allows you to specify the
timing relationship between an external clock and data at the pins of
a device. The Global tab window generates a dialog box from which
you can specify a pad to setup requirement for all inputs that are
clocked by the clock net identified by the user.

1. In the Pad to Setup column and in the row associated with the
appropriate clock net name, double-click the left mouse button.
This opens the Pad to Setup dialog box.

Note: An alternate way to invoke the Pad to Setup dialog box: right
click in any row or column (except the heading), then click Pad to
Setup from the pop-up window.

2. Enter a time requirement in the Time Requirement text box and
the desired unit from the pull-down list.

Note: The Relative to Clock Net field contains the name that you
selected in Step 1. You are not allowed to change this field.

3. Click OK.

Clock to Pad

This creates a constraint which allows you to specify the timing rela-
tionship between an external clock and data at the pins of a device.
The Global tab window generates a dialog box from which you can
specify a time requirement for a global clock.

1. In the Clock to Pad column and in the row associated with the
appropriate clock net name, double-click the left mouse button.
This opens the Clock to Pad dialog box.

Note: An alternate way to invoke the Clock to Pad dialog box: right
click in any row or column (except the heading), then click Clock
to Pad from the pop-up window.

2. Enter a time requirement in the Time Requirement text box and
the desired unit from the pull-down list.

CPLD Schematic Design Guide

3-18 Xilinx Development System

Note: The Relative to Clock Net field contains the name that you
selected in Step 1. You are not allowed to change this field.

3. Click OK.

Pad to Pad

1. Enter a time value in the Pad to Pad text box, then select the
desired unit from the Units pull-down list.

2. Click File → Save .

From the Ports Tab Window

The following constraints are created from the Ports tab window of
the Constraints Editor.

• “Pad to Setup”

• “Clock to Pad”

Pad to Setup

The Ports tab window generates a dialog box from which you can
specify a time requirement for individual ports relative to a selected
clock net.

1. In the Pad to Setup column and in the row associated with the
appropriate port name, double-click the left mouse button. This
opens the Pad to Setup dialog box.

Note: An alternate way to invoke the Pad to Setup dialog box: right
click in any row or column (except the heading), then click Pad to
Setup from the pop-up window.

2. Enter a time requirement in the Time Requirement text box and
the desired unit from the pull-down list.

3. Select the clock that clocks this input from the Relative to Clock
Net pull-down list.

4. Click OK.

Clock to Pad

The Ports tab window generates a dialog box from which you can
specify a time requirement for a port relative to a selected clock net.

Controlling Design Implementation

CPLD Schematic Design Guide 3-19

1. In the Clock to Pad column and in the row associated with the
appropriate port name, double-click the left mouse button. This
opens the Clock to Pad dialog box.

Note: An alternate way to invoke the Clock to Pad dialog box: right
click in any row or column (except the heading), then click Clock
to Pad from the pop-up window.

2. Enter a time requirement in the Time Requirement text box and
the desired unit from the pull-down list.

3. Select the clock that clocks this input from the Relative to Clock
Net pull-down list.

4. Click OK.

Slow/Fast Path Exceptions (FROM/THRU/TO)

This generates the FROM/THRU/TO dialog box, which allows you
to specify an explicit maximum delay between groups of elements
and through intermediate points.

This is particularly useful for defining pad-to-pad propagation delays
between specific device pins.

1. Click Specify in the Slow/Fast Path Exceptions (FROM/
THRU/TO) field. This opens the FROM/THRU/TO dialog box.

2. In the Time Spec text box enter a time specification name. The
name should be entered in the form TSid, where id is a unique
name. The name can consist of letters, numbers, or the under-
score character (_). If you do not enter TS, the software will auto-
matically place it before your id

3. Make a selection from the From Group and To Group pull-down
lists (All, All FFS, All PADS).

4. Enter a value for time in the Time text box and select the appro-
priate unit from the Units pull-down list.

• Click OK.

Entering Timing Specifications in a Schematic

The TIMESPEC schematic primitive, as illustrated in the “TIMESPEC
Primitive” figure, serves as a placeholder for timing specifications,
which are called TS attribute definitions. Every TS attribute must be

CPLD Schematic Design Guide

3-20 Xilinx Development System

defined in a TIMESPEC primitive. Every TS attribute begins with the
letters ‘‘TS” and ends with a unique identifier that can consist of
letters, numbers, or the underscore character (_).

Figure 3-2 TIMESPEC Primitive

A TS attribute defines the allowable delay for paths in your design.
The basic syntax for a TS attribute is:

TSidentifier=FROM:source_group:TO: dest_group: delay

where TSidentifier is a unique name for the TS attribute, source_group
and dest_group are groups of start points and end points, and delay
defines the maximum delay for the paths between the start points
and end points. The delay parameter defines the maximum delay for
the attribute. Nanoseconds are the default units for specifying delay
time in TS attributes. You can also specify delay using other units,
such as picoseconds or megahertz.

Note: Keywords, such as FROM, TO, and TS appear in the documen-
tation in upper case; however, you can enter them in the TIMESPEC
primitive in either upper or lower case. You cannot enter them in a
combination of lower and upper case.

The basic TS attribute is described in detail in the “Basic TIMESPEC
Syntax” section. More detailed forms of the attribute are also
described in that section.

X4332

TIMESPEC
TS01=FROM:FFS:TO:PADS=25

Controlling Design Implementation

CPLD Schematic Design Guide 3-21

Entering Timing Specifications in a Constraints File

You can enter timing specifications as constraints in a UCF file. When
you then run the fitter on your design, your timing specifications will
be added to the design database as part of the NGD file.

The basic syntax for a timing specification entered in a constraints file
is the TS attribute syntax described in the “Basic TIMESPEC Syntax”
section.

Specifying Groups in TS Attributes
 In a TS attribute, you specify the set of paths to be analyzed by
grouping start and end points in one of the following ways:

• You can refer to a predefined group by specifying one of the
corresponding keywords — FFS or PADS.

• You can create your own groups within a predefined group by
tagging pad or flip-flop symbols with TNM (timing name)
attributes.

• You can create groups that are combinations of existing groups
using TIMEGRP symbols.

• You can create groups by pattern matching on net names.

The following sections discuss each method in detail.

Using Predefined Groups

You can refer to a group of flip-flops or pads by using the corre-
sponding keywords.

Timing specification From-To statements enable you to define timing
specifications for paths between predefined groups. The following
examples are TS attributes attached to a TIMESPEC primitive or are
entered in the UCF. This method enables you to easily define default
timing specifications for the design, as illustrated by the following
examples:

Keyword Description

FFS Macrocell or IOB flip-flops, including those used to
implement transparent latch macros.

PADS Input/output pads

CPLD Schematic Design Guide

3-22 Xilinx Development System

TS01=FROM:FFS:TO:FFS:30
TS04=FROM:FFS:TO:PADS:55

A predefined group can also carry a name qualifier; the qualifier can
appear any place where the predefined group is used. This name
qualifier restricts the number of elements being referred to. The
syntax used is as follows:

predefined group (name_qualifier [: name_qualifier])

where name_qualifier is the full hierarchical name of the net that is
sourced by the primitive being identified.

The name qualifier can include wildcard characters (* to indicate any
number of characters or ? to indicate a single character) which allows
the specification of more than one net or allows you to shorten the
full hierarchical name to something that is easier to type.

Creating User-Defined Groups Using TNMs

A TNM (timing name) is an attribute that can be used to identify the
elements that make up a group of end-points (pads and flops) which
can then be used in a timing specification. A TNM is a flag that you
place directly on elements in your schematic to identify specific flops
and pads. All symbols tagged with the same TNM value are consid-
ered members of the same group. Place TNM attributes directly on
your schematic using the following syntax:

TNM=identifier

where identifier is a group name that consists of any combination of
letters, numbers, or underscores. Keep the TNM short for conve-
nience and clarity.

Warning: Do not use the reserved words FFS, LATCHES, PADS,
RAMS, RISING, FALLING, TRANSHI, TRANSLO, or EXCEPT, as
identifiers.

You can specify as many groups of end points as are necessary to
describe the performance requirements of your design. However, to
simplify the specification process and reduce the place-and-route
time, use as few groups as possible.

You can attach a TNM attribute to a macro symbol, in which case the
TNM is applied to all applicable primitives inside the macro.

Controlling Design Implementation

CPLD Schematic Design Guide 3-23

A predefined group can be used to qualify the application of a TNM
attribute using the following syntax:

TNM=predefined_group: identifier

where predefined_group is one of the groups, FFS or PADS, and identi-
fier is any valid group name. Paths defined by the TNM are traced
forward, through any number of gates or buffers, until they reach a
member of the specified predefined_group. That element is added to
the specified TNM group. This mechanism is called forward tracing.

A predefined group in a TNM statement can have a net name quali-
fier (for example, TMM=FFS:(FRED*):GRP_A), as described in the
“Creating Groups by Pattern Matching” section. In this example, the
TNM is forward traced until it finds all flops producing signals
matching the name FRED*; each such flop is then added to the group
name GRP_A.

You can use several methods for tagging groups of end points:
placing identifiers on nets, macro or primitive pins, primitives, or
macro symbols. Which method you choose depends on how the path
end points are related in your design. For each of these elements, you
can use the predefined group syntax described earlier in this section.

The following subsections discuss the different methods of placing
TNMs in your design. The same TNM attribute can be used as many
ways and as many times as necessary to get the TNM applied to all of
the elements in the desired group.

You can place TNM attributes in either of two places: in the schematic
as discussed in this section or in a constraints file (UCF or NCF). The
syntax for specifying TNMs in a UCF or NCF constraints file is
described in the “Attributes” appendix.

Placing TNMs on Nets

The TNM attribute can be placed on any net in the design. The
attribute indicates that the TNM value should be attached to all valid
elements fed by all paths that fan forward from the tagged net.
Forward tracing stops at any flip-flop or pad.

Note: A TNM placed on a net connected to the output of a flip-flop
does not apply to that flip-flop, but is instead forward-traced to
subsequent flops or pads.

CPLD Schematic Design Guide

3-24 Xilinx Development System

Placing TNMs on Macro or Primitive Pins

The TNM attribute can be placed on any macro or component pin in
the design if the design entry package allows placement of attributes
on macro or primitive pins. The attribute indicates that the TNM
value should be attached to all valid elements fed by all paths that fan
forward from the tagged pin. Forward tracing stops at any flip flop or
pad.

Placing TNMs on Primitive Symbols

You can group individual logic primitives explicitly by flagging each
symbol, as illustrated by the “TNM on Primitive Symbols” figure.

Figure 3-3 TNM on Primitive Symbols

In the “TNM on Primitive Symbols” figure, the flip-flops tagged with
the TNM form a group called “‘FLOPS.” The untagged flip-flop is not
part of the group.

Place only one TNM on each symbol, load pin, or macro load pin. If
you want to assign more than one identifier to the same symbol,
include all identifiers on the right side of the equal sign (=) separated
by a semicolon (;), as follows:

TNM=joe;fred

D

TNM=FLOPS

TNM=FLOPS

Q

D Q

D Q

LOGIC

LOGIC

X4679

Controlling Design Implementation

CPLD Schematic Design Guide 3-25

Placing TNMs on Macro Symbols

A TNM attribute attached to a macro symbol (either a library or user
macro) indicates that all applicable elements inside the macro (at all
levels of hierarchy below the tagged macro) are part of the named
group.

When a macro contains more than one symbol type and you want to
group only a single type, use the TNM identifier in conjunction with
one of the predefined groups: FFS or PADS, as indicated by the
following syntax examples:

TNM=FFS:identifier
TNM=PADS:identifier

If you want to place an identifier on more than one symbol type,
separate each symbol type and identifier with a semicolon (;) as illus-
trated by the following example:

TNM=FFS:FLOPS;PADS:OPADS

If multiple symbols of the same type are contained in the same hierar-
chical block, you can simply flag that hierarchical symbol, as illus-
trated by the “TNM on Macro Symbol” figure. In the figure, all flip-
flops included in the macro are tagged with the TNM ‘‘FLOPS.” By
tagging the macro symbol, you do not have to tag each underlying
symbol individually.

CPLD Schematic Design Guide

3-26 Xilinx Development System

Figure 3-4 TNM on Macro Symbol

Placing TNMs on Nets or Pins to Group Flip-Flops

You can easily group flip-flops by flagging a common input net, typi-
cally either a clock net or an enable net. If you attach a TNM to a net
or load pin, that TNM applies to all flip-flops that are reached
through the net or pin. That is, that path is traced forward, through
any number of gates or buffers, until it reaches a flip-flop. That
element is added to the specified TNM group.

Placing a TNM on a net is equivalent to placing that TNM attribute
on every load pin of the net. Use pin TNM attributes when you need
finer control.

EN
D Q

EN

D Q
I

O

DI DO

ADDRS

TNM=FFS:FLOPS;RAMS:MEM

WE

DI DO

ADDRS
WE

Q5
Q4
Q3
Q2
Q1
Q0
EN

POS
PH0
PH1
PH2
PH3
NEG

X4678

Controlling Design Implementation

CPLD Schematic Design Guide 3-27

The “TNM on Net Used to Group Flip-Flops” figure illustrates the
use of a TNM on a net that traces forward to create a group of flip-
flops. In the figure, the attribute TNM=FLOPS traces forward to the
first two flip-flops, which form a group called FLOPS. The bottom
flip-flop is not part of the group FLOPS

Figure 3-5 TNM on Net Used to Group Flip-Flops

The “TNM on Clock Pin Used to Group Flip-Flops” figure illustrates
placing a TNM on a clock net, which traces forward to all three flip-
flops and forms the group Q_FLOPS:

AND

FD Q

O

Pxx

X4677

FD Q

FD Q

Pxx

Pxx O

O

O

D1 D

C

D

C

D

C

IBUF
TNM=FLOPS

IBUF

GCLK

O

O

O CLK

XNOR

INV

INV

CLKNI

IPAD

IPAD

IPAD
I ICLKIN

I

I AIN0

BIN0

I

I

A0

B0

1

2

1

2

OBUF

OBUF

OBUF

I O
OPAD

OPAD

OPAD

I O

I O

BIT00

BIT01

BIT02

O

O

O

BIT0

BIT1

BIT2

D3

D2

Pxx

Pxx

Pxx

CPLD Schematic Design Guide

3-28 Xilinx Development System

Figure 3-6 TNM on Clock Pin Used to Group Flip-Flops

The TNM parameter on nets or pins is allowed to have a qualifier.

For example:

TNM=FFS:data

A qualified TNM is traced forward until it reaches the first flip-flop. If
that flip-flop matches the qualifier, the flip-flip is given that TNM
value. Whether or not there is a match, the TNM is not traced through
that flip-flop.

Creating New Groups from Existing Groups

In addition to naming groups using the TNM identifier, you can also
define groups in terms of other groups. You can create a group that is
a combination of existing groups by defining a TIMEGRP attribute as
follows:

newgroup=existing_grp1: existing_grp2 [: existing_grp3 . . .]

D Q

Q1

D Q

CLOCK

TNM=Q_FLOPS

D Q
D1

D3

D2 Q2

Q3

X4676

Controlling Design Implementation

CPLD Schematic Design Guide 3-29

where newgroup is a newly created group that consists of existing
groups created via TNMs, predefined groups, or other TIMEGRP
attributes.

Mentor Users — You must specify a leading equal sign (=) when
defining TIMEGRP attributes, for example, =newgroup. The
preceding equal sign lets Mentor know that this is a user-defined
attribute. Refer to the Mentor Graphics Interface/Tutorial Guide for more
information.

TIMEGRP attributes reside in the TIMEGRP primitive, as illustrated
in the “TIMEGRP Primitive” figure. Once you create a TIMEGRP
attribute definition within a TIMEGRP primitive, you can use it in the
TIMESPEC primitive. Each TIMEGRP primitive can hold up to eight
group definitions. Since your design might include more than eight
TIMEGRP attributes, you can use multiple TIMEGRP primitives.

Figure 3-7 TIMEGRP Primitive

You can place TIMEGRP attributes in either of two places: in the
TIMEGRP primitive on the schematic as discussed in this section or
in a constraints file (UCF or NCF). The syntax for specifying TNMs in
a UCF or NCF constraints file is described in the “Attributes”
appendix.

You can use TIMEGRP attributes to create groups using the following
methods:

• Combining multiple groups into one

• Creating groups by exclusion

X4330

TIMEGRP
some_ffs=flips:flops

CPLD Schematic Design Guide

3-30 Xilinx Development System

• Defining flip-flop subgroups by clock sense

The following subsections discuss each method in detail.

Combining Multiple Groups into One

You can define a group by combining other groups. The following
syntax example illustrates the simple combining of two groups:

big_group=small_group:medium_group

In this syntax example, small_group and medium_group are existing
groups defined using a TNM or TIMEGRP attribute. Within the
TIMEGRP primitive, TIMEGRP attributes can be listed in any order;
that is, you can create a TIMEGRP attribute that references another
TIMEGRP attribute that appears after the initial definition.

Warning: A circular definition, as shown below, causes an error
when you run your design through NGDBUILD.

many_ffs=ffs1:ffs2
ffs1=many_ffs:ffs3

Creating Groups by Exclusion

You can define a group that includes all elements of one group except
the elements that belong to another group, as illustrated by the
following syntax examples:

group1=group2:EXCEPT: group3

• group1 represents the group being defined. It will contain all of
the elements in group2 except those that are also in group3.

• group2 and group3 can be a valid TNM, predefined group, or
TIMEGRP attribute.

As illustrated by the following example, you can specify multiple
groups to include or exclude when creating the new group.

group1=group2: group3:EXCEPT: group4: group5

The example defines a group1 that includes the members of group2
and group3, except for those members that are part of group3 or
group4. All of the groups before the keyword EXCEPT are included,
and all of the groups after the keyword are excluded.

Controlling Design Implementation

CPLD Schematic Design Guide 3-31

Certain reserved words cannot be used as group names. These
reserved words are described in the “Creating User-Defined Groups
Using TNMs” section.

Defining Flip-Flop Subgroups by Clock Sense

You can create subgroups using the keywords RISING and FALLING
to group flip-flops triggered by rising and falling edges.

group1=RISING:ffs
group2=RISING: ffs_group
group3=FALLING:ffs
group4=FALLING: ffs_group

where group1 to group4 are new groups being defined. The ffs_group
must be a group that includes only flip-flops.

Note: Keywords, such as EXCEPT, RISING, and FALLING, appear in
the documentation in upper case; however, you can enter them in the
TIMESPEC primitive in either lower or upper case. You cannot enter
them in a combination of lower and upper case.

The following example defines a group of flip-flops that switch on the
falling edge of the clock.

falling_ffs=FALLING:ffs

Creating Groups by Pattern Matching

When creating groups, you can use wildcard characters to define
groups of symbols whose associated net names match a specific
pattern.

How to Use Wildcards to Specify Net Names

The wildcard characters, * and ?, enable you to select a group of
symbols whose output net names match a specific string or pattern.
The asterisk (*) represents any string of zero or more characters. The
question mark (?) indicates a single character.

For example, DATA* indicates any net name that begins with
“DATA,” such as DATA, DATA1, DATA22, DATABASE, and so on.
The string NUMBER? specifies any net names that begin with
‘‘NUMBER” and end with one single character, for example,
NUMBER1, NUMBERS but not NUMBER or NUMBER12.

CPLD Schematic Design Guide

3-32 Xilinx Development System

You can also specify more than one wildcard character. For example,
*AT? specifies any net names that begin with any series of characters
followed by ‘‘AT” and end with any one character such as BAT1,
CAT2, and THAT5. If you specify *AT??, you would match BAT11,
CAT26, and THAT50.

Pattern Matching Syntax

The syntax for creating a group using pattern matching is shown
below:

group=predefined_group(pattern)

where predefined_group can only be one of the following predefined
groups—FFS or PADS. The pattern is any string of characters used in
conjunction with one or more wildcard characters.

For flip-flops specify the output net name. For pads, specify the name
of the external net connected to the pad.

The following example illustrates creating a group that includes the
flip-flops that source nets whose names begin with $1I3/FRED.

group1=ffs($1I3/FRED*)

The following example illustrates a group that excludes certain flip-
flops whose output net names match the specified pattern:

this_group=ffs:EXCEPT:ffs(a*)

In this example, this_group includes all flip-flops except those whose
output net names begin with the letter ‘‘a.”

Additional Pattern Matching Details

In addition to using pattern matching when you create timing
groups, you can specify a predefined group qualified by a pattern any
place you specify a predefined group. The syntax below illustrates
how pattern matching can be used within a timing specification:

TSidentifier=FROM:predefined_group(pattern):TO: predefined_group
(pattern): delay

Instead of specifying just one pattern, you can also specify a list of
patterns separated by a colon (:) as illustrated below:

some_ffs=ffs(a*:b?:c*d)

The group some_ffs contains flip-flops whose output net names:

Controlling Design Implementation

CPLD Schematic Design Guide 3-33

• Start with the letter ‘‘a”

or

• Contain two characters; the first character is ‘‘b”

or

• Start with ‘‘c” and end with ‘‘d”

Basic TIMESPEC Syntax
Within the TIMESPEC primitive, you use the following syntax to
specify timing requirements between specific end points:

TSidentifier=FROM:source_group:TO: dest_group: delay

The From-To statements are TS attributes that reside in the
TIMESPEC primitive. The parameters source_group and dest_group must
be one of the following:

• predefined groups

• previously created TNM identifiers

• groups defined in TIMEGRP symbols

Predefined groups consist of FFS or PADS and are discussed in the
“Using Predefined Groups” section. TNMs are introduced in the
“Creating User-Defined Groups Using TNMs” section. TIMEGRP
symbols are introduced in the “Creating New Groups from Existing
Groups” section.

Note: Keywords, such as FROM, TO, and TS appear in the documen-
tation in upper case; however, you can enter them in the TIMESPEC
primitive in either upper or lower case. You cannot enter them in a
combination of lower and upper case.

The delay parameter defines the maximum delay for the attribute.
Nanoseconds are the default units for specifying delay time in TS
attributes. You can also specify delay using other units, such as pico-
seconds or megahertz. Refer to the “Specifying Time Delay in TS
Attributes” section later in this chapter for more information on time
delay.

The following examples illustrate the use of From-To TS attributes:

TS01=FROM:FFS:TO:FFS:30
TS_OTHER=FROM:PADS:TO:FFS:25

CPLD Schematic Design Guide

3-34 Xilinx Development System

You can place TS attributes containing From-To statements in either
of two places: in the TIMESPEC primitive on the schematic as
discussed in this chapter or in a constraints (UCF) file. See the
“Attributes” appendix for more information about specifying timing
requirements in a constraints file.

Specifying Time Delay in TS Attributes
Nanoseconds are the default units for specifying delay times in TS
attributes. However, after specifying the maximum delay or
minimum frequency numerically, you can enter the unit of measure
by specifying the following:

• PS for picoseconds, NS for nanoseconds, US for microseconds, or
MS for milliseconds

• MHZ for megahertz or KHZ for kilohertz

As an alternate way of specifying time delay, you can specify one
time delay in terms of another. This method is described in the next
section.

Specifying a TS Attribute Delay in Terms of Another

Instead of specifying a time or frequency in a TS attribute definition,
you can specify a multiple or division of another TS attribute. This is
useful in a system where all clocks are derived from a master clock; in
this situation, changing the timing specification for the master clock
changes the specification for all clocks in the system.

Use the syntax below to specify a TS attribute delay in terms of
another.

TSidentifier=specification: reference_TS_attribute[*|/] number

where number can be either a whole number or a decimal. The specifi-
cation can be any From-To statement as illustrated by the following
examples:

FROM:PADS:TO:PADS
FROM:group1:TO:group2
FROM:tnm_identifier:TO:FFS

Use “*” to represent multiplication and “/” to represent division. The
specification type of the reference TS attribute does not need to be the
same as the TS attribute being defined; however, it must not be speci-
fied in terms of AUTO or IGNORE.

Controlling Design Implementation

CPLD Schematic Design Guide 3-35

Setting TIMESPEC Priorities
There may be situations where two TIMESPECs at the same level of
priority conflict. In these cases you can define the priority of a
TIMESPEC using the following syntax:

normal_timespec_syntax : PRIORITY : integer

where normal_timespec_syntax is a legal TIMESPEC and integer repre-
sents the priority (the smaller the number, the higher the priority).
The number can be positive, negative, or zero, and the value only has
meaning when compared with other PRIORITY values.

See the “Controlling Timing Paths” for more details.

Defining a Clock Period
A clock period specification checks timing clocked by the net (all
paths that terminate at a register clocked by the specified net). The
period specification is attached to the clock net. The definition of a
clock period is unlike a FROM:TO style specification, because the
timing analysis tools will automatically take into account any inver-
sions of the clock net at register clock pins.

A PERIOD constraint on the clock net would generate a check for
delays on all paths that terminate at a pin that has a setup or hold
timing constraint relative to the clock net. This could include the data
paths DI to MC1.D, MC1.Q to MC2.D, as well as the paths D0 to
MC1.R and EN to MC2.EC (if the reset/enable were synchronous
with respect to the clock).

Simple Method

A simple method of defining a clock period is to attach the following
attribute directly to a net in the path that drives the register clock
pins:

PERIOD = period : { HIGH | LOW }: [high_or_low_time]

where period is the required clock period. The default units are nano-
seconds, but the timing number can be followed by ps, ns, us, or ms.
Units may be entered with or without a leading space, and are case-
insensitive. The high_or_low_time is the optional high or low time
depending on the HIGH|LOW keyword. If an actual time is specified,
it must be less than the period. If no high or low time is specified the

CPLD Schematic Design Guide

3-36 Xilinx Development System

default duty cycle is 50%. The default units for high_or_low_time is ns,
but the number can be followed by %, ps, us or ms.

The PERIOD constraint is forward traced in exactly the same way a
TNM would be and attaches itself to all of the flip flops that the
forward tracing reaches. There are no rules about not tracing through
certain elements. If a more complex form of tracing behavior is
required (for example, where gated clocks are used in the design),
you must place the PERIOD on a particular net, or use the preferred
method described next.

Preferred Method

The preferred method for defining a clock period allows more
complex derivative relationships to be defined as well as a simple
clock period. The following attribute is attached to a TIMESPEC
symbol in conjunction with a TNM attribute attached to the relevant
clock net.

TSidentifier=PERIOD: TNM_reference: period: {HIGH | LOW}:
[high_or_low_time]

where identifier is a reference identifier that has a unique name,
TNM_reference is the identifier name that is attached to a clock net (or
a net in the clock path) using a TNM attribute, and period is the
required clock period. The default units for period are nanoseconds,
but the number can be followed by ps, ns, us, or ms. Units may be
entered with or without a leading space, and are case-insensitive.
High_or_low_time is the optional high or low time depending on the
HIGH|LOW keyword. If an actual time is specified, it must be less than
the period. If no high or low time is specified the default duty cycle is
50%. The default units for high_or_low_time is ns, but the number can
be followed by %,, ps, ns, or mst.

Specifying Setup Time Using the OFFSET Constraint

To specify setup time using the OFFSET constraint, use the following
syntax:

NET input_pad OFFSET=IN: delay :BEFORE:clock_pad ;

OFFSET=IN: delay :BEFORE:clock_pad;

where delay is in nanoseconds.

Controlling Design Implementation

CPLD Schematic Design Guide 3-37

Specifying Clock-to-Output Delay Using the OFFSET
Constraint

To specify clock-to-output delay using the OFFSET constraint, use the
following syntax:

NET output_pad OFFSET=OUT:delay :AFTER: clock_pad ;

OFFSET=OUT:delay :AFTER: clock_pad ;

where delay is in nanoseconds.

Constraints Priority
In some cases, two timing specifications will cover the same path. For
cases where the two timing specifications are mutually exclusive, the
following constraint rules apply:

• Priority depends on the file in which the constraint appears. A
constraint in a file accessed later in the design flow replaces a
constraint in a file accessed earlier in the design flow. Priority is
as follows (first listed is the highest priority, last listed is the
lowest):

• Constraints in a Netlist Constraints File (NCF)

• Constraints in a User Constraints File (UCF)

• Attributes in a schematic

• If two timing specifications cover the same path, the priority is as
follows (first listed is the highest priority, last listed is the lowest):

• FROM:TO specifications

• PERIOD specifications

• FROM:TO statements have a priority order that depends on the
type of source and destination groups included in a statement.
The priority is as follows (first listed is the highest priority, last
listed is the lowest):

• Both the source group and the destination group are user-
defined groups

• Either the source group or the destination group is a
predefined group

CPLD Schematic Design Guide

3-38 Xilinx Development System

• Both the source group and the destination group are
predefined groups

If two constraints are in the same category, the user-defined priority
described in the“Setting TIMESPEC Priorities” section is used to
determine which constraint takes precedence.

Reducing Levels of Logic
The XC9000 architecture, like most CPLD devices, is organized as a
large, variable-sized combinational logic resource (the AND-array
and XOR gate) followed by a register. If you place combinational
logic before a register in your design, the fitter maps the logic and
register into the same macrocell. The output of the register is then
directly available at an output pin of the device. If, however, you
place logic between the output of a register and the device output
pin, a separate macrocell must used to perform the logic, decreasing
both the speed and density of your design. The “Reducing Levels of
Logic” figure shows two functionally similar designs, one that is effi-
cient for CPLD architectures and one that is inefficient.

Controlling Design Implementation

CPLD Schematic Design Guide 3-39

Figure 3-8 Reducing Levels of Logic

Controlling XC9500 Local Feedback Routing
By default, all internal nodes in an XC9500 design (those that remain
after collapsing) are routed via the FastCONNECT structure. There
are also higher-speed routing paths that feed back from each macro-
cell to the inputs of the same local function block. To use the local
feedback path for a particular node in your design, both the source
logic and the load logic on the node must be mapped to the same
function block. If you entered timespecs for your design, the fitter
will attempt to use local feedback where necessary to satisfy your
timespecs. When the feedback path between two macrocells is

OBUF

M2_1

XOR2

XOR2

IBUF

CLK

SEL

BUFG

D0
O

D1

S0

D QFD

CINV

D QFD

C

0
1

OPAD

IPAD

IPAD

INEFFICIENT
(3 Macrocells)

OBUF

IBUF
CLK

SEL

BUFG

X4861

D QFD

CINV

D QFD

C

M2_1
D0

O
D1

S0

0
1

OPAD

INV

IPAD

IPAD

EFFICIENT
(2 Macrocells)

CPLD Schematic Design Guide

3-40 Xilinx Development System

involved in a timing-constrained path, and if the timing constraints
cannot be met using FastCONNECT routing, the fitter will attempt to
map both macrocells to the same function block and use the local
feedback path.

If you want to explicitly control the use of local feedback routing, you
must:

• Constrain both the driving function and load function(s) to the
same function block using the LOC=FBnn attribute.

• Apply a timing specification to the path that would require the
local feedback path (so that the path cannot be satisfied using
FastCONNECT routing delays).

Hint: You can specify the value of 1 ns in your timespec to tell the
fitter to use local feedback, even though the fitter will warn you
that it cannot satisfy your timespecs.

As an alternative to applying a timing specification, you can turn on
the Use Local Macrocell Feedback option in the Design
Manager. But, that would allow the local feedback path to be used for
any other internal nodes in the design that run between two func-
tions that happen to get mapped to the same function block.

Note: Turning off the Use Local Macrocell Feedback option
does not prevent the fitter from automatically using the local feed-
back path when necessary to satisfy your timespecs.

Note: The XC9536 device does not have local feedback.

CPLD Schematic Design Guide 4-1

Chapter 4

Design Applications

This chapter describes some of the more useful techniques for
expressing efficient CPLD designs. These examples are suggestions
and guidelines only, and may not apply to your particular design.
This chapter contains the following sections:

• “Read-Back Registers”

• “Bidirectional Signals and Buses”

• “Multiplexing Tristate Signals”

• “Combinatorial Feedback Loops”

Read-Back Registers
The “Read-Back Register Example” figure shows a simple read-back
register. Data is written from the IOPAD to the register on the rising
edge of the clock if READ_ENABLE is inactive and WRITE_ENABLE
is active. Data is read from the IOPAD when READ_ENABLE is
active.

CPLD Schematic Design Guide

4-2 Xilinx Development System

Figure 4-1 Read-Back Register Example

Bidirectional Signals and Buses
The “Bidirectional Signals and Buses” figure, part A, shows how to
specify a bidirectional pin. Part B shows that you can have a bidirec-
tional signal passing through the chip. To make a bidirectional bus,
use bus components as shown in part C.

Q

X4849

D FDCE

C

CE

CLR

WRITE_ENABLE

CLOCK

READ_ENABLE GND

OBUFE

IOPAD

IBUF

Design Applications

CPLD Schematic Design Guide 4-3

Figure 4-2 Bidirectional Signals and Buses

Multiplexing Tristate Signals
Note: XC9500 devices can emulate tristate bussing using special
gates that disable the macrocell feedback path to the FastCONNECT
matrix. XC9500XL and XC9500XV devices do not support internal
tristate buffers. Do not use BUFE or BUFT components in XC9500XL
or XC9500XV designs.

Three methods of multiplexing tristate signals are shown in the
“Methods of Multiplexing Tristate Signals” figure. Which method
you choose depends on your application, resources, and speed
requirements, although method C, which uses a multiplexer, is
usually best for CPLD designs.

X4851

OBUFE

E
IBUF

A
LOGIC

IOPAD

OBUFE

E
IBUF

B

A

A BLOGIC
IOPAD

OBUFE

E

IBUF

IOPAD

OBUFE8 E

E

A_OUT[7:0]

A_IN[7:0]
A[7:0] B[7:0]

IBUF8

C
LOGIC

IOPAD8

IBUF8

B_IN[7:0]

B_OUT[7:0]

OBUFE8

IOPAD8

CPLD Schematic Design Guide

4-4 Xilinx Development System

Method A, shown in the “Methods of Multiplexing Tristate Signals”
figure, part A, uses tristate buffers instead of a multiplexer. The
advantage of method A over method C is that method A uses only
one Function Block input in the macrocell that sends the signal off-
chip. The disadvantage of method A is that macrocell feedback is not
available to any other on-chip functions because the internal feed-
backs are tristated; therefore counters will not work with Method A,
but will work with Method C.

Method B, shown in the “Methods of Multiplexing Tristate Signals”
figure, part B, requires that you tie the signals together off-chip. This
method results in a short clock-to-out delay and uses fewer macro-
cells than methods A and C. However, it uses more pins than method
A or C.

Method C, shown in the “Methods of Multiplexing Tristate Signals”
figure, part C, uses a multiplexer instead of tristate buffers. This
method results in a longer clock-to-out delay than method B. To
shorten the clock-to-output delay would require pipelining the
output of the multiplexer using a flip-flop and asserting the select
signals one clock cycle in advance. This method uses more macrocells
than method B, but uses fewer pins.

Design Applications

CPLD Schematic Design Guide 4-5

Figure 4-3 Methods of Multiplexing Tristate Signals

Combinatorial Feedback Loops
The simple expression of a D-type latch contains inherent logic
hazards which could result in unpredictable results when run
through the fitter.

QD FD

C

OBUF
or OBUFE

(Tied Together
Off-Chip)

BUFE

OPAD

OPAD

OPAD

X4848

QD FD

C
BUFE

QD FD

C OBUFE

QD FD

C

OPAD

OBUFE

OBUF
or OBUFE

M2_1

QD FD

C

QD FD

C

D0

D1

S0

O

A

B

C

BUF

CPLD Schematic Design Guide

4-6 Xilinx Development System

Figure 4-4 Simple Mux and Cross-Coupled-NAND Latches

A timing malfunction can occur if the logic is divided between two
separate macrocells by the fitter. The “Malfunction of Physical Imple-
mentation” figure illustrates what can happen.

Figure 4-5 Malfunction of Physical Implementation

If you implement the D-type latches with proper redundant logic, the
problem does not occur. The “D-type Latch Solutions” figure shows
two solutions for schematic implementation of D-type latches.

X6558

D

G

S

H

Q

Q

H

SD

G

Macrocell 1

Macrocell 2

S
Q

D
G

D

G

H

S

Q

Possible Resulting Waveforms

=1

broken loop

collapsed but
reverted

H

X8055

Design Applications

CPLD Schematic Design Guide 4-7

Figure 4-6 D-type Latch Solutions

When you create redundant logic in a schematic, remember to specify
the NOREDUCE attribute on the final output gate to prevent the soft-
ware's Boolean minimization routine from removing the redundant
logic

D

G

S

NOREDUCE

NOREDUCE

H
Q

Q

H
R

SD

G

R

X6556

CPLD Schematic Design Guide A-1

Appendix A

Attributes

Introduction
This appendix describes all of the attributes that you can place into
your schematic for an XC9500, XC9500XL or XC9500XV design. The
attributes supported are as follows:

• BUFG=CLK|OE|SR

• COLLAPSE

• FAST

• FILE=filename

• INIT= R | S

• KEEP

• LOC=pin_name |FBnn

• NOREDUCE

• PERIOD=timespec

• PROHIBIT=Pnn, Pnn ...

• PWR_MODE=LOW|STD

• PART=part_type

• SLOW

• TNM=time_group

• TSnn=time_spec

Except where noted, attributes can be applied to either component
instances or their output nets.

CPLD Schematic Design Guide

A-2 Xilinx Development System

Inputs to Global Nets — BUFG

Applicable Elements

Input buffers (IBUF)

Description

Maps the tagged input buffers to a global net.

BUFG=CLK applied to an IBUF is equivalent to using a BUFG
symbol. BUFG=OE applied to an IBUF is equivalent to using a
BUFGTS symbol. BUFG=SR applied to an IBUF is equivalent to using
a BUFGSR symbol.

Syntax

BUFG={CLK | OE | SR }

where CLK, OE, and SR indicate clock, output enable, or set/reset,
respectively.

Schematic

Attached to an IBUF instance or the input pad net connected to an
IBUF input.

UCF/NCF file

Assign to an IBUF instance or the input pad net connected to an IBUF
input. This statement maps the signal named “clk1” to a global clock
net.

NET clk1 BUFG=CLK ;

Collapsing a Node — COLLAPSE

Applicable Elements

Internal combinational logic nodes.

Description

Forces a node to be collapsed into all of its fanouts

Attributes

CPLD Schematic Design Guide A-3

Syntax

COLLAPSE

Schematic

Attached to a logic symbol or its output net.

UCF/NCF file

 This statement forces the logic driving net ABC to collapse into all its
fanouts.

NET ABC COLLAPSE ;

Target Device Selection — PART

Applicable Elements

The design

Description

You can place the global PART attribute in your schematic to select
the target device for your design. Refer to the Release Document for a
list of device names supported by the software.

Syntax

The format of the PART value is as follows:

PART=dddd-ss-pppp

dddd is the device number with optional “XC” prefix, for example
95108 or XC95108, 9536XL or XC9536XL

ss is the speed grade, for example 10

pppp is the package type and pin count, for example PC84

Note: You must specify a complete part value in the PART attribute;
you may not use wildcard symbols (*).

Schematic

Instantiate a CONFIG symbol and attach the PART attribute to it.

CPLD Schematic Design Guide

A-4 Xilinx Development System

Clock Cycle Time — PERIOD

Applicable Elements

Clock nets.

Description

A convenient way of defining a clock period for registers attached to
a particular clock net

Syntax

PERIOD=period [units]

where

period is the required clock period

units is an optional field to indicate the units for the clock period. The
default is nanoseconds, but the timing number can be followed by ps,
ns, us, or ms to indicate the intended units.

Schematic

Attached to a clock input pad net.

PERIOD=40

UCF/NCF file

This statement assigns a clock period of 40 ns to the input pad net
named ABC.

NET ABC PERIOD=40 ;

Constraints Editor

Period timing constraints can be entered in the global tab for each
input pad signal used as a clock.

Behavioral Modules — FILE

Applicable Elements

Custom behavioral module symbols.

Attributes

CPLD Schematic Design Guide A-5

Description

The FILE=file_name attribute on a custom symbol specifies the name
of the file containing the logical definition for that symbol when the
logic is expressed in behavioral form instead of an underlying sche-
matic. If the logic for your custom symbol is defined by an under-
lying schematic (i.e., a user macro), you do not need a FILE attribute.

Specify filename either with or without extension. The software will
search for acceptable netlist or equation (Plusasm) files. Specify the
directory path if necessary.

Syntax

FILE=[path]filename[.extension]

Where extension is one of .edn, .edf, .edif, .sedif, .xnd, and .pld.

Schematic

Attach to a custom behavioral module symbol.

Pin and Function Block Assignment — LOC

Applicable Elements

I/O pads or internal logic components.

Description

Use the LOC=pin_name attribute on a PAD symbol or the connected
pad net to assign the signal to a specific device pin. The PAD symbols
are IPAD, OPAD, IOPAD, and UPAD.

Use the LOC=FBnn [_mm] attribute on any internal logic symbol, its
output net, any output or I/O pad symbol or its connected pad net to
assign the logic function to a specific function block or macrocell in
the target device.

Syntax

The pin name is Pnn for PC, PQ or VQ packages; the nn is a pin
number. The pin name is rc (row, column) for BG or PG packages.
Examples are LOC=P24 and LOC=G2. For function block assignment,

CPLD Schematic Design Guide

A-6 Xilinx Development System

use LOC=FBnn on an internal logic component or its output net. To
assign a logic element to a specific macrocell, use LOC=FBnn_mm.

LOC=Pnn

LOC=rc

LOC=FBnn

LOC=FBnn_mm

Note: Pin assignment using the LOC attribute is not supported for
bus pads such as OPAD8.

Schematic

Attach LOC=Pnn|rc to a pad symbol or attached pad net. Attach
LOC=FBnn[_mm] to an internal symbol, its output net, an output pad
symbol or its attached pad net.

UCF/NCF File

NET ABC LOC=P12;

Contraints Editor

Location constraints for input and output pad signals can be entered
in the Ports tab.

Pin Reservation — PROHIBIT

Applicable Elements

Unused device pins.

Description

PROHIBIT allows you to reserve device pins for later use, or simply
to prevent them from being used at all. For instance, if you anticipate
design changes in the future and want to set traces on your printed
circuit board now, you can use PROHIBIT to prevent the fitter from
using pins associated with those traces. Then, when you decide to use
the traces, you can use the LOC attribute to assign those pins to new
input/output buffers you place in your design.

Attributes

CPLD Schematic Design Guide A-7

Syntax

The pin name is Pnn for PC, PQ or VQ packages; the nn is a pin
number. The pin name is rc (row, column) for BG or PG packages. The
PROHIBIT attribute can also accept a comma-separated list of pin
names. Examples are PROHIBIT=P24 and PROHIBIT=G2.

PROHIBIT=Pnn[Pnn]...

Note: The syntax PROHIBIT=Pnn:Pmm will not work since CPLD
has pin names like PA20. This prevents range definition.

Schematic

Instantiate a CONFIG symbol and attach the PROHIBIT attribute to
it.

UCF/NCF File

PROHIBIT=P12,P13,P14;

Constraints Editor

PROHIBIT constraints can be entered using a dialog box provided in
the Ports tab.

Power Setting — PWR_MODE

Applicable Elements

Internal logic components.

Description

By default, all macrocells operate in the standard power mode,
providing the fastest possible speed. You can change the default to
low-power using the Design Manager option. To set the power mode
on a specific logic function in your design, apply the PWR_MODE
attribute to the symbol or its output net.

Syntax

PWR_MODE=LOW|STD

CPLD Schematic Design Guide

A-8 Xilinx Development System

Schematic

Attached to an internal symbol or its output net.

UCF/NCF

INST ABC PWR_MODE=LOW;

Preserving a Node — KEEP

Applicable Elements

Internal combinational nodes.

Description

Use the logic optimization attributes to control collapsing at specific
points in your design. Logic optimization attributes are normally not
required to process designs.

The KEEP attribute inhibits collapsing of a logic function into any of
its fanouts.

Syntax

KEEP

Schematic

Attach to an internal symbol or its output net.

UCF/NCF

NET ABC KEEP;

Register Preload State — INIT

Applicable Elements

Registers and registered macros.

Description

The INIT attribute specifies the initialization value to be preloaded
into a register upon power-up. INIT=R specifies a preload value of 0

Attributes

CPLD Schematic Design Guide A-9

(Reset) and INIT=S specifies a preload value of 1 (Set). This attribute
can be applied to flip-flops or any component containing a register, or
their output nets.

Syntax

INIT=R|S

Schematic

Attach to a flip-flop or any component containing a register, or its
output net.

UCF

The following sets a preload value of 0 on element ABC..

INST ABC INIT=R;

Output Slew Rate — FAST, SLOW

Applicable Elements

Output and I/O pads.

Description

The FAST attribute can be placed on an output pad or I/O pad to
select the fast slew-rate operation of the CPLD output-pin driver.

The SLOW attribute selects the slew-rate limited control.

Syntax

FAST

or

SLOW

Schematic

Attached to an OPAD or IOPAD instance or the connected pad net.

CPLD Schematic Design Guide

A-10 Xilinx Development System

UCF/NCF file

This statement establishes a slow slew rate for an instantiation of
output signal ABC.

NET ABC SLOW ;

Constraint Editor

FAST and SLOW slew-rate can be selected for any output pad signals
in the Ports tab.

Minimization of Redundant Logic — NOREDUCE

Applicable Elements

Internal combinational nodes.

Description

The NOREDUCE attribute tells the fitter to disable Boolean logic
minimization for the attached component. You need to use the
NOREDUCE attribute if you want to specify redundant logic in a
portion of your design to avoid a potential race condition. The
NOREDUCE attribute also identifies the output node of a combina-
tional feedback loop. For example, you would use NOREDUCE on
the output gate when designing combinational feedback latches.

Syntax

NOREDUCE

Schematic

Attached to a logic symbol or its output net.

UCF/NCF file

To prevent boolean reduction at node ABC:

NET ABC NOREDUCE ;

Attributes

CPLD Schematic Design Guide A-11

Timing Specifications — TS identifier

Applicable Elements

Timing paths between I/O pads and flip-flops.

Description

The T-spec attribute definitions specify the maximum delay between
groups of components. They begin with the letters “TS” and a unique
identifier that can consist of letters, numbers, and the underscore
character (_). The value of the T-spec attribute consists of a FROM-TO
expression specifying the timing requirements between specific end
points.

Syntax

The full syntax is shown as follows:

TSidentifier=FROM:source_group:TO: dest_group:delay[units]

or

TSidr=PERIOD:clock_group: delay[units]

The parameters source_group and dest_group can be any of the
following:

• Predefined groups consisting of FFS or PADS which are
discussed in the “Using Predefined Groups” section.

• Previously created TNM identifiers which are introduced in the
“Creating Arbitrary Groups Using TNMs” section.

• Groups defined in TIMEGRP symbols which are introduced in
the “Creating New Groups from Existing Groups” section.

The parameter clock_group must be a TNM identifier placed on a
clock input pad.

The delay parameter defines the maximum delay for the attribute,
using nanoseconds as the default unit of measurement. The default
units are nanoseconds, but the timing number can be followed by ps,
ns, us, ms, GHz, MHz, or kHz to indicate the intended units.

CPLD Schematic Design Guide

A-12 Xilinx Development System

Schematic

Instantiate a TIMESPEC symbol and attach one or more T-spec
attributes to it.

UCF/NCF

TIMESPEC TSnn=time_spec;

Constraints Editor

Clock period timing constraints can be entered in the Global tab.
Input setup time and clock-to-output delay can be entered for specific
pads in the Ports tab, or for all pads related to a given clock in the
global tab. Combinational pad-to-pad delays can be entered in the
Advanced tab, or for all pad-to-pad paths in the Global tab.

Timing Group Name — TNM

Applicable Elements

I/O pads and flip-flops.

Description

The TNM attribute creates a timing group name for all pads or flip-
flops to which it applies. These timing group names can tehn be used
in timing constraints (T-specs) to define groups of timing path end-
points.

Syntax

TNM=group_name

Schematic

Attach to pad instances, pad nets or flip-flops. Can also attach to
internal nets; the software will forward-trace the TNM to all
connected flip-flops or output pads.

UCF/NCF

INST FLOP1 TNM=ABC;

Attributes

CPLD Schematic Design Guide A-13

Constraints Editor

Timing group names can be assigned to pad and flip-flop elements in
the Advanced tab.

Timing Group Definitions

Applicable Elements

I/O pads and flip-flops.

Description

Timing group definitions create new timing group names based on
combinations and/or filters of existing timing group names.

Syntax

group_name=group1 [:group2] ...

Schematic

Instantiate a TIMEGRP symbol and attach one or more timing group
definitions to it.

UCF/NCF

TIMEGRP group_name =...;

Constraints Editor

New timing groups can be created in the Advanced tab.

CPLD Schematic Design Guide B-1

Appendix B

CPLD Library Selection Guide

This appendix contains two tables listing CPLD components and
LogiBLOX modules respectively.

CPLD Schematic Design Guide

B-2 Xilinx Development System

Figure B-1 CPLD Schematic Components

XORs

XOR2

XOR3

XOR4

XOR5

XOR6

XOR7

XOR8

XOR9

XNORs*

XNOR2

XNOR3

XNOR5

XNOR6

XNOR8

XNOR4 XNOR7 XNOR9

SOP4B4

SOP4B3

SOP4B2B

SOP4B2A

SOP4B1

SOP4

SOP3B3

SOP3B2B

SOP3B2A

SOP3B1B

SOP3B1A

SOP3

Sum of Products*

AND2B1 AND3B1 AND4B1 AND5B1 AND7

AND2B2 AND3B2 AND4B2 AND5B2

AND3B3 AND4B3 AND5B3

AND4B4 AND5B4

AND5B5

AND2 AND3 AND4 AND5 AND6

AND8

AND9

ANDs*

NAND4B4 NAND5B4

NAND5B5

NAND2 NAND3 NAND4 NAND5 NAND6

NAND2B1 NAND3B1 NAND4B1 NAND5B1 NAND7

NAND8

NAND2B2 NAND3B2 NAND4B2 NAND5B2

NAND5B3NAND3B3 NAND4B3

NAND9

NANDs*

OR2

OR2B1

OR2B2

OR3

OR3B1

OR3B2

OR3B3

OR4

OR4B1

OR4B2

OR4B3

OR4B4

OR5

OR5B1

OR5B2

OR5B3

OR5B4

OR5B5

OR6

OR7

OR8

OR9

ORs*

NOR3B3 NOR4B3 NOR5B3 NOR8

NOR2 NOR3 NOR4 NOR5 NOR6

NOR2B1 NOR3B1 NOR4B1 NOR5B1

NOR7

NOR2B2 NOR3B2 NOR4B2 NOR5B2

NOR5B5

NOR9

NOR4B4 NOR5B4

NORs*

X8267

CPLD Library Selection Guide

CPLD Schematic Design Guide B-3

Table B-1 CPLD Components

Component Name Description/Features

Buffers and Inverters

BUF*, BUF4, BUF8,
BUF16

Non-inverting buffer

BUFE*, BUFE4, BUFE8,
BUFE16

Internal tristate buffer with active-high
enable. Not available on XC9500XL or
XC9500XV devices.

BUFG* Global clock input buffer

BUFGSR* Global asynchronous set/reset input
buffer

BUFGTS* Global tristate control input buffer

BUFT*, BUFT4, BUFT8,
BUFT16

Internal tristate buffer with active-low
enable. Not available on XC9500XL or
XC9500XV devices.

INV*, INV4, INV8,
INV16

Inverter

Flip-Flops

FD, FD4, FD8, FD16 D flip-flop

FDC D flip-flop with async. clear

FDCE*, FD4CE, FD8CE,
FD16CE

D flip-flop with clock enable, async. clear

FDCP* D flip-flop with async. preset, async.
clear

FDCPE D flip-flop with clock enable, async.
preset and clear

FDP D flip-flop with async. preset

FDPE* D flip-flop with clock enable, async.
preset

FDR D flip-flop with sync. reset

FDRE, FD4RE, FD8RE,
FD16RE

D flip-flop with clock enable, sync. reset

CPLD Schematic Design Guide

B-4 Xilinx Development System

FDRS D flip-flop with sync. reset, sync. set

FDRSE D flip-flop with clock enable, sync. reset
and set

FDS D flip-flop with sync. set

FDSE D flip-flop with clock enable, sync. set

FDSR D flip-flop with sync. set and reset

FDSRE D flip-flop with clock enable, sync. set
and reset

FJKC J-K flip-flop with async. clear

FJKCE J-K flip-flop with clock enable, async.
clear

FJKCP J-K flip-flop with async. clear and preset

FJKCPE J-K flip-flop with clock enable, async.
clear and preset

FJKP J-K flip-flop with async. preset

FJKPE J-K flip-flop with clock enable, async.
preset

FJKRSE J-K flip-flop with clock enable, sync. reset
and set

FJKSRE J-K flip-flop with clock enable, sync. set
and reset

FTC Toggle flip-flop with async. clear

FTCE Toggle flip-flop with clock enable, async.
clear

FTCLE Loadable toggle flip-flop with clock
enable, async. clear

FTCP* Toggle flip-flop with async. clear and
preset

FTCPE Toggle flip-flop with clock enable, async.
clear and preset

FTCPLE Loadable toggle flip-flop w/ clock
enable, async. clear & preset

Table B-1 CPLD Components

Component Name Description/Features

CPLD Library Selection Guide

CPLD Schematic Design Guide B-5

FTP Toggle flip-flop with async. preset

FTPE Toggle flip-flop with clock enable, async.
preset

FTPLE Loadable toggle flip-flop with clock
enable, async. preset

FTRSE Toggle flip-flop with clock enable, sync.
reset and set

FTRSLE Loadable toggle flip-flop with clock
enable, sync. reset and set

FTSRE Toggle flip-flop with clock enable, sync.
set and reset

FTSRLE Loadable toggle flip-flop with clock
enable, sync. set and reset

X74_174 6-bit data register with asynchronous
clear

X74_273 8-bit data register with asynchronous
clear

X74_377 8-bit data register with clock enable

Latches

LD, LD4, LD8, LD16 Transparent data latch

Shifters

BRLSHFT4 4-bit barrel shifter

BRLSHFT8 8-bit barrel shifter

SR4CE, SR8CE, SR16CE Shift register with clock enable, async.
clear

SR4CLE, SR8CLE,
SR16CLE

Loadable shift register with clock enable,
async. clear

SR4CLED, SR8CLED,
SR16CLED

Loadable left/right shift register with
clock enable, async. clear

SR4RE, SR8RE, SR16RE Shift register with clock enable, sync.
reset

Table B-1 CPLD Components

Component Name Description/Features

CPLD Schematic Design Guide

B-6 Xilinx Development System

SR4RLE, SR8RLE,
SR16RLE

Loadable shift register with clock enable,
sync. reset

SR4RLED, SR8RLED,
SR16RLED

Loadable left/right shift register with
clock enable, sync. reset

X74_164 8-bit serial-in parallel-out shift register
with async. clear

X74_165S 8-bit loadable serial/parallel-in parallel-
out shift register with clock enable

X74_194 4-bit loadable left/right serial/parallel-in
parallel-out shift register

X74_195 4-bit loadable serial/parallel-in parallel-
out shift register

Counters

CB2CE, CB4CE, CB8CE,
CB16CE

Cascadable binary counter with clock
enable, async. clear

CB2CLE, CB4CLE,
CB8CLE, CB16CLE

Laudable cascabel binary counter with
clock enable, async. clear

CB2CLED, CB4CLED,
CB8CLED, CB16CLED

Loadable up/down binary counter with
clock enable, async. clear

CB2RE, CB4RE, CB8RE,
CB16RE

Cascadable binary counter with clock
enable, sync. reset

CB2RLE, CB4RLE,
CB8RLE, CB16RLE

Loadable cascadable binary counter with
clock enable, sync. reset

CB2X1, CB4X1, CB8X1,
CB16X1

Loadable cascadable up/down binary
counter with async. clear

CB2X2, CB4X2, CB8X2,
CB16X2

Loadable cascadable up/down binary
counter with sync. reset

CD4CE 4-bit cascadable BCD counter with clock
enable, async. clear

CD4CLE 4-bit loadable cascadable BCD counter
with clock enable, async. clear

CD4RE 4-bit cascadable BCD counter with clock
enable, sync. reset

Table B-1 CPLD Components

Component Name Description/Features

CPLD Library Selection Guide

CPLD Schematic Design Guide B-7

CD4RLE 4-bit loadable cascadable BCD counter
with clock enable, sync. reset

CJ4CE, CJ5CE, CJ8CE Johnson counter with clock enable, async.
clear

CJ4RE, CJ5RE, CJ8RE Johnson counter with clock enable, sync.
reset

CR8CE, CR16CE Negative-edge binary ripple counter
with clock enable, async. clear

X74_160 4-bit loadable cascadable BCD counter
with parallel/trickle enables, async. clear

X74_161 4-bit loadable cascadable binary counter
with parallel/trickle enables, async. clear

X74_162 4-bit loadable cascadable BCD counter
with parallel/trickle enables, sync. reset

X74_163 4-bit loadable cascadable binary counter
with parallel/trickle enables, sync. reset

X74_168 4-bit loadable cascadable up/down BCD
counter with parallel/trickle enables

X74_390 4-bit BCD/bi-quinary ripple counter
with negative-edge clocks, async. clear

Multiplexers

M2_1 2-to-1 multiplexer

M2_1B1 2-to-1 multiplexer with D0 inverted

M2_1B2 2-to-1 multiplexer with D0 and D1
inverted

M2_1E 2-to-1 multiplexer with enable

M4_1E 4-to-1 multiplexer with enable

M8_1E 8-to-1 multiplexer with enable

M16_1E 16-to-1 multiplexer with enable

X74_150 16-to-1 inverting multiplexer with enable

X74_151 8-to-1 multiplexer with enable and
complementary outputs

Table B-1 CPLD Components

Component Name Description/Features

CPLD Schematic Design Guide

B-8 Xilinx Development System

X74_152 8-to-1 inverting multiplexer

X74_153 Dual 4-to-1 multiplexer with enables

X74_157 Quad 2-to-1 multiplexer with enable

X74_158 Quad 2-to-1 inverting multiplexer with
enable

X74_298 Quad 2-input multiplexers with storage,
negative-edge clock

X74_352 Dual 4-to-1 inverting multiplexer with
enables

Decoders

D2_4E 2- to 4-line decoder/demultiplexer with
enable

D3_8E 3- to 8-line decoder/demultiplexer with
enable

D4_16E 4- to 16-line decoder/demultiplexer with
enable

X74_42 4- to 10-line active-low BCD-to-decimal
decoder

X74_138 3- to 8-line active-low decoder/demulti-
plexer with enables

X74_139 2- to 4-line active-low decoder/demulti-
plexer with enable

X74_154 4- to 16-line active-low decoder/demulti-
plexer with enables

Encoders

X74_147 10- to 4-line active-low priority encoder

X74_148 8- to 3-line cascadable active-low priority
encoder

Comparators

COMP2, COMP4,
COMP8, COMP16

Identity comparator

Table B-1 CPLD Components

Component Name Description/Features

CPLD Library Selection Guide

CPLD Schematic Design Guide B-9

COMPM2, COMPM4,
COMPM8, COMPM16

Magnitude comparator

X74_L85 4-bit expandable magnitude comparator

X74_518 8-bit identity comparator with enable

X74_521 8-bit active-low identity comparator with
enable

Arithmetic Functions

ACC1, ACC4, ACC8,
ACC16

Loadable add/subtract accumulator

ADD1, ADD4, ADD8,
ADD16

Adder

ADSU1, ADSU4,
ADSU8, ADSU16

Adder/subtracter

X74_280 9-bit odd/even parity checker/generator

X74_283 4-bit full adder with carry-in and carry-
out

Input/Output Functions

IBUF*, IBUF4, IBUF8,
IBUF16

Input buffer

IOPAD*, IOPAD4,
IOPAD8, IOPAD16

Input/output pad

IPAD*, IPAD4, IPAD8,
IPAD16

Input pad

OBUF*, OBUF4, OBUF8,
OBUF16

Output buffer

OBUFE*, OBUFE4,
OBUFE8, OBUFE16

Tristate output buffer with active-high
enable

OBUFT*, OBUFT4,
OBUFT8, OBUFT16

Tristate output buffer with active-low
enable

OPAD*, OPAD4,
OPAD8, OPAD16

Output pad

Table B-1 CPLD Components

Component Name Description/Features

CPLD Schematic Design Guide

B-10 Xilinx Development System

* Primitive symbols (all others are macros)

Miscellaneous

GND* Ground-connection signal tag

VCC* VCC-connection signal tag

TIMEGRP* Timing specification group table

TIMESPEC* Timing requirement specification table

CONFIG* Used to carry PART and PROHIBIT
attributes

Table B-2 LogiBLOX Modules

Module Description

ACCUMULATOR Adds data to or subtracts it from the current
value stored in the accumulator register.

ADDER/
SUBTRACTER

Adds or subtracts two data inputs and a Carry
input.

CLOCK DIVIDER Generates a clock pulse whose period is a
multiple of the clock input period.

COMPARATOR Compares the magnitude or equality of two
values.

CONSTANT Forces a constant value onto a bus.

COUNTER Generates a sequence of count values.

DATA REGISTER Captures the input data on active Clock transi-
tions.

DECODER Routes input data to 1-of-n lines on the output
port

INPUT/OUTPUT Connects internal and external pin signals

MULTIPLEXER Type 1, Type 2 — Routes input data on 1-of-n
lines to the output port.

PAD Simulates an input/output pad.

SHIFT REGISTER Shifts the input data to the left or right.

Table B-1 CPLD Components

Component Name Description/Features

CPLD Library Selection Guide

CPLD Schematic Design Guide B-11

SIMPLE GATES Type 1, Type 2, Type 3 — Implements the AND,
INVERT, NAND, NOR, OR, XNOR, and XOR
logic functions.

TRISTATE
BUFFER

Creates a tri-stated internal data bus. Not avail-
able on XC9500XL or XC9500XV devices.

Table B-2 LogiBLOX Modules

Module Description

CPLD Schematic Design Guide C-1

Appendix C

Fitter Command and Option Summary

This appendix describes how to invoke the CPLD fitter, and the
commands used to prepare functional and timing simulation models.
All of the available fitter options are described. This chapter contains
the following sections:

• “Design Manager”

• “CPLD Command”

Design Manager
The Design Manager invokes the Flow Engine (fitter) and option
templates to control the fitting of your design.

Invoking the Fitter
1. From the Design Manager select the schematic file you want to

process.

File → Open Project

Select a file from the template’s list or use the Browse key to
search your directories for the file you want to process. If the file
is listed on the template, highlight the file and click once on
Open.

2. Select the target device. If your schematic contains a PART
attribute, the specified part appears in the Implement dialog
box. You can override any of the fields in the Part Selector
dialog. Otherwise, select either XC9500, XC9500XL, or XC9500XV
as the family. By default, package and speed are automatically

CPLD Schematic Design Guide

C-2 Xilinx Development System

selected by the fitter. You can select a specific device, package or
speed in any of the fields.

3. Open the Constraints Editor to enter timing and pad location
constraints (optional). Select Utilities → Constraints
Editor

4. Select options for design implementation. Select Design →
Implement

5. The Design Implementation Option menu appears. Select either
the Optimize Speed (default) or Optimize Density
template.

6. To adjust specific fitter options, select Edit Template . Then
select from the tabs all the options you want to use and press OK.
See Fitter Command Parameters later in this chapter.

7. To run the fitter, click once on the run key found in the Flow
Engine.

Fitter Options
This section describes fitter parameters that can be entered from the
Design Manager or when using the command line on a workstation.

The Implementation Options menu contains five tabs of options for
the fitter. The following summarizes fitter options:

• Basic → Default Output Slew Rate — sets default
output slew-rate to FAST or SLOW (default is FAST).

• Basic → Macrocell Power Setting — Sets default power
mode for all macrocells in the design to standard or low-power
(default is Std power).

• Basic → Create Programmable Ground Pins — creates
additional ground pins on unused I/Os (default is OFF).

• Basic → Use Design Location Constraints — if this is
not checked, the program temporarily ignores all LOC attributes
in the design, allowing the fitter to assign the locations of all I/O
pins (default is ON).

• Basic → Use Timing Constraints — turn this selection
off if you want to temporarily ignore all timing specification
attributes in the design (default is ON).

Fitter Command and Option Summary

CPLD Schematic Design Guide C-3

• Basic → Use Global Clock(s) — Select this option to
automatically use global clocks (GCK) for ordinary input signals
used as clocks. The global clock may allow you to meet your
timing constraints more easily. By default, this option is ON.

• Basic → Use Global Output Enable(s) — Select this
option to automatically use global output enable (GTS) for ordi-
nary input signals used as output enable constraints. Global
output enable may allow you to meet your timing constraints
more easily. By default, this option is ON.

• Basic → Use Global Set/Reset — Select this option to
automatically use global set/reset (GSR) for ordinary input
signals used as asynchronous clear or preset. By default, this
option is ON.

• Advanced → Collapsing Input Limit — The maximum
number of function block inputs allowed as a result of logic
collapsing. Default is 36.

• Advanced → Collapsing Pterm Limit — The maximum
number of product terms allowed as a result of collapsing
(default=20 on Optimize Speed template; 90 on Optimize
Density template).

• Advanced → Use Multilevel Logic Optimization —
Spends additional time transforming the logic in your design to
new logical structures that achieve better performance and
density (default=ON).

• Advanced → Use Timing Optimization — enables the
global timing optimization performed by the fitter; if this option
is not selected, only paths with T-specs specified in the design are
optimized to improve timing (default is ON in Optimize Speed
template, OFF in Optimize Density template).

• Advanced → Enable D to T-Type Transform Optimi-
zation — if this box is checked (default), the fitter transforms
between D-type and T-type registers.

• Advanced → Use Advanced Fitting — Select this option
to enable an advanced fitting strategy that favors placing signals
with common inputs in the same function block. This usually
allows you to pack more logic into the same device. Disable this
option if the software has trouble fitting a design that used to fit
with an older version of software (by default, this option is ON).

CPLD Schematic Design Guide

C-4 Xilinx Development System

This option applies to XC9500 devices only (no XC9500XL or
XC9500XV devices).

• Advanced → Use Local Macrocell Feedback — enables
the software to use local feedback in XC9500 devices (except
XC9536) whenever possible. The local feedback path takes less
time than the global feedback path. Using local feedback can
speed up your design but can make it difficult to keep the same
timing after a design change (default is OFF).

• Advanced → Use Local Pin Feedback — enables the soft-
ware to use local I/O pin feedback in XC9500 devices whenever
possible. The software uses the pin feedback path instead of the
FastCONNECT path for output pin signals that do not have 3-
state control or slow slew rate (by default, this option is OFF).

• Interface → Macro Search Path — Use this option to
add the specified search path to the list of directories to search
when resolving file references (that is, files specified in the sche-
matic with FILE-filename property). This option also supplies
paths for macros (design_name.nmc) or other directories
containing NGO files. Specify a macro search path or click
Browse to look for a path to add as a macro search path. To
specify multiple search paths, type in each directory name sepa-
rated by a colon (:). A semicolon is automatically appended when
you use the Browse button to select multiple search paths.

• Interface → Rules File — Use this option only to specify
a custom rule file used for translating netlist formats not
normally supported by the software.

• Interface → Create I/O Pads from Ports — Creates I/
O pads from ports. Select this option only if your netlist does not
contain either PAD symbols or top-level ports defining external
signals (you do not normally need to use this option). By default,
this option is OFF.

• Timing Reports → Produce Post Layout Timing
Report — generates static timing report.

• Timing Reports → Timing Report Format — Select
Summary to generate a report that contains summary informa-
tion and design statistics. Select Detailed to generate a report
that lists delay information for all nets and paths.

Fitter Command and Option Summary

CPLD Schematic Design Guide C-5

• Programming → Signature/User Code — Enter a unique
text string in this field to identify the signature data. You can
enter a string of up to four alphanumeric characters. The device
programmer can read the signature, and the person running the
device programmer can verify that the correct configuration data
file is loaded. Use the JTAG Programmer to identify the configu-
ration data signature (usercode) of a programmed XC9500
device.

• Programming → Jedec Test Vector File — Use this option
to select a test vector file (.tmv) produced by the XABEL compiler
to incorporate into the JEDEC programming file to a perform
functional test (INTEST).

CPLD Command
The cpld command invokes the CPLD design implementation soft-
ware (the fitter). The command is run in a UNIX command window
and is only supported on UNIX workstations. Your current working
directory must be set to the project directory which contains your
design source netlist files before invoking cpld.

Invoking the Fitter
The format of the cpld command is:

cpld [options] design_name

Invoking the cpld command with no parameters produces a listing
of all available command-line options.

The design_name is the name of the top-level design netlist file,
without path qualifiers, and either with or without extension.

Schematics must first be translated into either an EDIF-formatted
netlist (design_name.edif). XNF formatted netlists are also acceptable
from tools that do not have EDIF, but EDIF is preferred. Xilinx
strongly recommends that you generate new EDIF netlists from
existing schematics rather than trying to reuse existing XNF netlists.
Also, your netlists must be created using schematic capture libraries
provided by Xilinx or your CAE tool vendor for use with the current
version of Xilinx software.

If design_name is specified without extension, the cpld command
searches for source files in the following order:

CPLD Schematic Design Guide

C-6 Xilinx Development System

1. Synopsys Design Compiler or FPGA Compiler netlist
(design_name.sxnf)

2. Xilinx PLUSASM equation file (design_name.pld)

3. XNF netlist (design_name.xnf)

4. Synopsys Design/FPGA Compiler EDIF netlist
(design_name.sedif)

5. EDIF netlist (design_name.edn, design_name.edf or
design_name.edif)

6. Xilinx NGO (unexpanded) database file (design_name.ngo)

7. Xilinx NGD (expanded) database file (design_name.ngd)

Fitter Options
The [options] field of the cpld command represents an optional list of
one or more command-line parameters. Invoking the cpld
command with just the design name and no option parameters runs
the fitter with all default conditions, including automatic device
selection.

The following are the cpld command-line parameters that apply to
schematic design entry:

• -autoslewpwr — reduces slew rate before reducing power
mode if autopwrslew is enabled.

• -autopwrslew — reduces power mode and/or slew rate if
timespecs can still be met or if no timespecs apply.

• -detail — produces a detailed path timing report
(design_name.tim) instead of the default summary report.

• -grounds — creates programmable ground pins on unused I/
Os.

• -ignoreloc — temporarily ignores all LOC attributes in the
schematic, allowing the fitter to assign the locations of all I/O
pins.

• -ignorets — temporarily ignores all timing specification
attributes in the schematic.

• -inputs <n> — maximum number of function block inputs
allowed as a result of logic collapsing. Default is 36.

Fitter Command and Option Summary

CPLD Schematic Design Guide C-7

• -localfbk — uses local feedback. Enables the software to use
local feedback whenever possible. The local feedback path takes
less time than the global feedback path. Using local feedback can
speed up your design but can make it difficult to keep the same
timing after a design change. XC9500 only.

• -loweffort — low fitting effort, to save processing time.

• -lowpwr — uses the low-power mode by default for all macro-
cells in the design (default is normally standard power).

• -nodt — disables transformation between D-type and T-type
registers.

• -nogck — disables global clock optimization.

• -nogsr — disables global set/reset optimization

• -nogts — disables global output-enable (GTS) optimization.

• -nomlopt — disables multi-level logic optimization.

• -nota — do not generate a summary static timing report.

• -notiming — inhibits the default global timing optimization
performed by the fitter; only paths with T-specs specified in the
schematic are optimized to improve timing.

• -notsim — disables generation of timing simulation file (.nga).

• -nouim — disables implementation of AND functions in FAST-
connect. XC9500 only.

• -noxor — disables transformation of sum-of-product XOR logic
into macrocell XOR gates.

• -p part_type — specifies the target device type or set of devices
from which to choose (default is automatic device selection from
the XC9500 family); where part_type can be:

• 9500 = any XC9500 family device (auto selection)

• 9500xl = any XC9500XL family device (auto selection)

• 9500xv= any XC9500XV family device (auto selection)

• “95ddd[xl][-ss][-pppp]” — where 95ddd is the device code
(such as 95108), ss is the speed grade, pppp is the package
code (such as PQ160), and an asterisk (*) can be used as a

CPLD Schematic Design Guide

C-8 Xilinx Development System

wildcard string (quotes required around part_type when
asterisk is used).

• -pinfbk — uses pin feedback. Enables pin feedback whenever
possible. The software uses the pin feedback path instead of the
FastCONNECT path for output pin signals that do not have 3-
state control or slow slew rate. XC9500 only.

• -pinlock — uses the guide file (design_name.gyd) from the last
successful invocation of the fitter to reproduce the same pin loca-
tions (default is automatic pin assignment).

• -pterms nn — the maximum number of product terms allowed
as a result of collapsing (default=20).

• -s signature — specifies the user signature string (up to 4 alpha-
numeric characters) to be programmed into the device for identi-
fication purposes (default is the design name).

• -slowslew — applies slow output slew-rate as default (default
is fast).

• -ucf — reads user constraints from filename.ucf. By default,
design_name.ucf is read if it exists.

• -xactfit — Use this option only if you have a design imple-
mented in XACT v6 and cannot get the same pinout using the
current software. The default is advanced fitting.

CPLD Schematic Design Guide D-1

Appendix D

Simulation Summary

This appendix contains the following sections on simulation:

• “Timing Simulation”

• “Simulation from Design Manager”

• “Simulation on Workstation Command LIne”

• “Simulating Power-On Initialization”

Timing Simulation
The Design Manager/Flow Engine can produce timing simulation
data for use in a third party simulation tool.

This section describes how to prepare a simulation model file for
functional and timing simulation in the Design Manager and Work-
station command line environments.

Simulation from Design Manager
The Design Manager produces timing simulation data automatically
when you run the fitter. To produce timing simulation go to the
Setup Options template and check the box labelled Produce
Timing Simulation Data . A timing simulation netlist is automat-
ically generated when the Flow Engine runs.

CPLD Schematic Design Guide

D-2 Xilinx Development System

Figure D-1 Options

By default the simulation data is produced in EDIF format. Format is
set from the Implementation Options dialog box; if you want to
select another format, go to the Interface tab and click the down
arrow adjacent to Format, then select from the supported formats.

When you implement the design, the Flow Engine produces timing
simulation data files. Each time the data is produced, it is automati-
cally exported to your design directory.

You can now use these files to simulate the design with a supported
third party simulation tool.

Simulation on Workstation Command LIne
The commands ngd2vhdl and ngd2ver and ngd2edif give you
the ability to simulate vhdl, verilog, and edif designs on a worksta-
tion command line. See the Development System Reference Guide for
instructions on using these three programs.

Simulation Summary

CPLD Schematic Design Guide D-3

NGD2EDIF
The NGD2EDIF program produces an EDIF 2.0.0 netlist in terms of
the Xilinx primitive set, allowing you to simulate pre- and post-route
designs.

Syntax

To invoke the NGD2EDIF translation program from the UNIX or
DOS command line, enter the following:

ngd2edif [options] infile[.ngd|.nga] [outfile[.edn]]

where:

Options can be any number of the NGD2EDIF options listed in this
section. They do not need to be listed in any particular order. Sepa-
rate multiple options with spaces.

infile[.ngd|.nga] indicates the input file. If you enter a file name with
no extension, NGD2EDIF looks for a file with an .nga extension and
the name you specified. If you want to translate an NGD file, you
must enter the .ngd extension. Without the .ngd extension
NGD2EDIF does not use the NGD file as input, even if there is no
NGA file present.

outfile[.edn] is the name of NGD2EDIF’s output file if you want to
name it other than the root NGD design name. If you do not give an
extension, .edn is added.

If you are using the Viewlogic design entry tools, it is important that
the outfile name be different from the original design name, to avoid
conflict with the original WIR and EDIF files.

Options

• –a (Write All Properties)

The –a option causes NGD2EDIF to write all properties into the
output EDIF netlist. The default is to write only timing delay
properties and certain other properties that define the behavior of
the design logic. In most cases the –a option is not necessary;
your simulation vendor can tell you if it is required for the
vendor’s flow.

• –n (Generate Flattened Netlist)

CPLD Schematic Design Guide

D-4 Xilinx Development System

The –n option writes out a flattened netlist.

• –v (Vendor)

–v vendor

The –v option specifies the CAE vendor toolset that uses the
resulting EDIF file. Allowable entries are viewlog (for View-
logic) and mentor .

The –v option customizes the output EDIF file for the specified
vendor’s simulator.

• –w (Overwrite Output)

The –w option indicates to overwrite the output file.

NGD2VHDL
The NGD2VHDL program translates your design into a VITAL 95
IEEE compliant VHDL file containing a netlist description of the
design in terms of Xilinx simulation primitives. The VHDL file can be
used to perform a back-end simulation by a VHDL simulator.

Syntax

The following syntax translates your design to a VHDL file:

ngd2vhdl [options] infile.[ngd|.nga] [outfile[.vhd]]

where:

Options can be any number of the NGD2VHDL options listed in this
section. They do not need to be listed in any particular order. Sepa-
rate multiple options with spaces.

Infile [.ngd |.nga] is the input NGD or NGA file. If you enter a file
name with no extension, NGD2VHDL looks for a file with an .nga
extension and the name you specified. If you want to translate an
NGD file, you must enter the .ngd extension. Without the .ngd exten-
sion NGD2VHDL does not use the NGD file as input, even if there is
no NGA file present.

Outfile[.vhd] indicates the file to which the VHDL output of
NGD2VHDL is written. Default is infile.vhd (infile is the same root
name as the input file). The SDF file has the same root name as the
VHDL file.

Simulation Summary

CPLD Schematic Design Guide D-5

Options

• –gp (Bring Out Global Reset Net as Port)

The –gp option causes NGD2VHDL to bring out the global
power-on simulation signal (which is connected to all flip-flops
and latches in the physical design) as a port on the top-level
entity in the output VHDL file name PRLD.

If you do not specify the -gp option, the output.vhd file will
contain an ROC cell which automatically pulses the internal
PRLD net at the beginning of the simulation sequence.

• –tb (Generate Testbench File)

The –tb option writes out a testbench file. The file has a .tvhd
extension.

The default top-level instance name within the testbench file is
UUT. If you enter a –ti (Top Instance Name) option, the top-level
instance name is the name specified by the –ti option.

• –w (Overwrite Existing Files)

The –w option causes NGD2VHDL to overwrite the output files
if they already exist. By default (no –w specified) NGD2VHDL
does not overwrite existing files.

NGD2VER
The NGD2VER program translates your design into a Verilog HDL
file containing a netlist description of the design in terms of Xilinx
simulation primitives. The Verilog file can be used to perform a back-
end simulation by a Verilog simulator.

Syntax

The following syntax translates your design to a Verilog file:

ngd2ver [options] infile[.ngd|.nga] [outfile[.v]]

Options can be any number of the NGD2VER options listed in this
section. They do not need to be listed in any particular order. Sepa-
rate multiple options with spaces.

Infile [.ngd |.nga] is the input NGD or NGA file. If you enter a file
name with no extension, NGD2VER looks for a file with an .nga
extension and the name you specified. If you want to translate an

CPLD Schematic Design Guide

D-6 Xilinx Development System

NGD file, you must enter the .ngd extension. Without the .ngd exten-
sion NGD2VER does not use the NGD file as input, even if there is no
NGA file present.

Outfile[.v] indicates the file to which the Verilog output of NGD2VER
is written. Default is infile.v (infile is the same root name as the input
file). The SDF file has the same root name as the Verilog file.

Options

• –gp (Bring Out Global Reset Net as Port)

The –gp option causes NGD2VER to bring out the global power-
on simulation signal (which is connected to all flip-flops and
latches in the physical design) as a port on the top-level module
in the output Verilog file named PRLD.

• –tf (Generate Test Fixture File)

The –tf option generates a test fixture file. The file has a .tv exten-
sion, and it is a ready-to-use template test fixture Verilog file
based on the input NGD or NGA file.

If you are using a Cadence Verilog simulator, you can run the
simulator by entering

verilog design.tv design.v ,

using the output V and TV files from NGD2VER. You can then
add more design-specific stimuli to this file to fit your needs.

• –w (Overwrite Existing Files)

The –w option causes NGD2VER to overwrite the output files if
they already exist. By default (no –w specified) NGD2VER does
not overwrite existing files.

Simulating Power-On Initialization
The XC9000 component library for all tools directly supported by
Xilinx and most third-party tools contain functional simulation
models for all of the primitive symbols. Models for registered compo-
nents contain a global net named PRLD that will reset the registers to
zero when pulsed high at the beginning of functional simulation.

In the timing simulation netlists produced by the software, a net
named PRLD is added to the design to represent the device power-on

Simulation Summary

CPLD Schematic Design Guide D-7

condition. When this PRLD net is pulsed high, all registers in the
device are initialized to the states specified by INIT attributes in your
design.

To simulate the XC9000 device power-on condition, set the PRLD net
input to the High state at time zero. Set PRLD Low after any positive
time interval.

Registers are initialized instantaneously (zero delay from PRLD to
registers) and are held at the initial state as long as PRLD is High.
Registers are allowed to change state in response to user stimulus any
time after PRLD is set Low. Before setting PRLD Low, you should set
all essential device inputs to valid logic values to prevent registers
from lapsing back into the “unknown” state. You should hold your
device inputs at valid logic values long enough to propagate to all the
registers before returning PRLD low.

In EDIF simulation netlists, PRLD is a global internal signal. If you
are simulating based on an EDIF output file (.edn), you must drive
the PRLD signal low throughout the remainder of your simulation.
Otherwise the registers in the design will remain stuck in the
unknown state.

If you create a VHDL or Verilog HDL timing simulation netlist, it also
contains a PRLD net used to initialize all the registers in the design.
The PRLD net is driven by either a pullup resistor, for Verilog HDL
netlists, or by a Reset-on-Configuration (ROC) pulse generator for
VHDL netlists, unless you bring it out as a port by specifying the -gp
option on the ngd2vhdl or ngd2ver command line.

	Front Matter
	Trademarks
	About This Manual
	Conventions

	Getting Started with Schematic Design
	Overview of Schematic Design Methods
	Design Flow Summary
	Schematic Design Flow Example

	Design Entry Techniques
	Library Symbols
	Input/Output Buffers
	LogiBlox Modules
	Behavioral Modules
	Hierarchical Design
	Retargeting a Design From a Different Family

	Controlling Design Implementation
	Target Device Selection
	Controlling Preload Values
	Controlling Power Consumption
	Controlling Output Slew Rate
	Controlling the Pinout
	Controlling Logic Optimization
	Controlling Timing Paths

	Design Applications
	Read-Back Register
	Bidirectional Signals and Buses
	Multiplexing Tristate Signals
	Combinatorial Feedback Loops

	Attributes
	CPLD Library Selection Guide
	Fitter Command and Option Summary
	Simulation Summary

