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About this Manual

This manual provides a general overview of designing Field
Programmable Gate Arrays (FPGAs) with Hardware Description
Languages (HDLs). It includes design hints for the novice HDL user,
as well as for the experienced user who is designing FPGAs for the
first time.

The design examples in this manual were created with Verilog and
VHSIC Hardware Description Language (VHDL); compiled with
various synthesis tools; and targeted for XC4000, Spartan, and
XC5200 devices. Xilinx equally endorses both Verilog and VHDL.
VHDL may be more difficult to learn than Verilog and usually
requires more explanation.

This manual does not address certain topics that are important when
creating HDL designs, such as the design environment; verification
techniques; constraining in the synthesis tool; test considerations;
and system verification. Refer to your synthesis tool’s reference
manuals and design methodology notes for additional information.

Before using this manual, you should be familiar with the operations
that are common to all Xilinx software tools. These operations are
covered in the Quick Start Guide.

Additional Resources

For additional information, go to http://support.xilinx.com. The
following table lists some of the resources you can access from this
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page. You can also directly access some of these resources using the
provided URLSs.

Resource Description/URL

Tutorial Tutorials covering Xilinx design flows, from design entry to verification
and debugging
http://support.xilinx.com/support/techsup/tutorials/index.htm

Answers Current listing of solution records for the Xilinx software tools

Database Search this database using the search function at
http://support.xilinx.com/support/searchtd.htm

Application Descriptions of device-specific design techniques and approaches

Notes http://www.support.xilinx.com/apps/appsweb.htm

Data Book Pages from The Programmable Logic Data Book, which describe device-

specific information on Xilinx device characteristics, including read-
back, boundary scan, configuration, length count, and debugging
http://www.support.xilinx.com/partinfo/databook.htm

Xcell Journals

Quarterly journals for Xilinx programmable logic users
http://www.support.xilinx.com/xcell/xcell.ntm

Tech Tips

Latest news, design tips, and patch information on the Xilinx design
environment
http://www.support.xilinx.com/support/techsup/journals/index.htm

Manual Contents

Vi

= Chapter 1, “Getting Started,” provides a general overview of
designing Field Programmable Gate Arrays (FPGAs) with HDLs.
This chapter also includes installation requirements and instruc-
tions.

= Chapter 2, “HDL Coding Hints,” includes HDL coding hints and
design examples to help you develop an efficient coding style.

= Chapter 3, “Understanding High-Density Design Flow,” provides
synthesis and Xilinx implementation techniques to increase
design performance and utilization.

= Chapter 4, “Designing FPGAs with HDL,” includes coding tech-
niques to help you improve synthesis results.

= Chapter 5, “Simulating Your Design,” describes simulation
methods for verifying the function and timing of your designs.
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= Appendix A, “Accelerate FPGA Macros with One-Hot

Approach,” reprints an article describing one-hot encoding in
detail.

= Appendix B, “Report Files,” includes area and timing report files
from various synthesis vendors.
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Conventions

This manual uses the following typographical and online document
conventions. An example illustrates each typographical convention.

Typographical
The following conventions are used for all documents.

e Couri er font indicates messages, prompts, and program files
that the system displays.

speed grade: -100

e Couri er bol d indicates literal commands that you enter in a
syntactical statement. However, braces “{ }” in Courier bold are
not literal and square brackets “[ ]” in Courier bold are literal
only in the case of bus specifications, such as bus [7:0].

rpt_del net=

Couri er bol d also indicates commands that you select from a
menu.

File - Open
= [talic font denotes the following items.

= Variables in a syntax statement for which you must supply
values

edi f 2ngd design_name
= References to other manuals

See the Development System Reference Guide for more informa-
tion.
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= Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the
two nets are not connected.

Square brackets “[ ]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

edi f 2ngd [option_name] design_name

Braces “{ }”” enclose a list of items from which you must choose
one or more.

| owpwr ={on]of f}
A vertical bar “|” separates items in a list of choices.
| owpwr ={on]of f}

A vertical ellipsis indicates repetitive material that has been
omitted.

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’

A horizontal ellipsis “. . .” indicates that an item can be repeated
one or more times.

al I owbl ock block_name locl loc2 . . . locn;

Online Document

The following conventions are used for online documents.

Red-underlined text indicates an interbook link, which is a cross-
reference to another book. Click the red-underlined text to open
the specified cross-reference.

Blue-underlined text indicates an intrabook link, which is a cross-
reference within a book. Click the blue-underlined text to open
the specified cross-reference.
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Chapter 1

Getting Started

This chapter provides a general overview of designing Field
Programmable Gate Arrays (FPGASs) with HDLs and also includes
installation requirements and instructions. It includes the following.

* “Introduction”

= “Advantages of Using HDLs to Design FPGAs”

= “Designing FPGAs with HDLs”

= “Installing Design Examples and Tactical Software”

= “Technical Support”

Introduction

Hardware Description Languages (HDLs) are used to describe the
behavior and structure of system and circuit designs. This chapter
includes a general overview of designing FPGAs with HDLs. System
requirements and installation instructions are also provided.

To learn more about designing FPGAs with HDLs, Xilinx recom-
mends that you enroll in the appropriate training classes offered by
Xilinx and by the vendors of synthesis software. An understanding of
FPGA architecture allows you to create HDL code that effectively
uses FPGA system features.

Before you start to create your FPGA designs, refer to the current
version of the Quick Start Guide for Xilinx Alliance Series for a
description of the design flow; installation information; and general
information on the Xilinx tools.

For the latest information on Xilinx parts and software, visit the
Xilinx Web site at http://www.xilinx.com. On the Xilinx home page,
click on Service and Support, and use the Customer Service and
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Support page to get answers to your technical questions. You can also
use the File Download option to download the latest software
patches, tutorials, design files, and documentation.

Advantages of Using HDLs to Design FPGAs

Using HDLs to design high-density FPGAs is advantageous for the
following reasons.

1-2

Top-Down Approach for Large Projects—HDLs are used to
create complex designs. The top-down approach to system
design supported by HDLs is advantageous for large projects
that require many designers working together. After the overall
design plan is determined, designers can work independently on
separate sections of the code.

Functional Simulation Early in the Design Flow—You can
verify the functionality of your design early in the design flow by
simulating the HDL description. Testing your design decisions
before the design is implemented at the RTL or gate level allows
you to make any necessary changes early in the design process.

Synthesis of HDL Code to Gates—You can synthesize your
hardware description to a design implemented with gates. This
step decreases design time by eliminating the traditional
gate-level bottleneck. Synthesis to gates also reduces the number
of errors that can occur during a manual translation of a hard-
ware description to a schematic design. Additionally, you can
apply the techniques used by the synthesis tool (such as machine
encoding styles or automatic 170 insertion) during the optimiza-
tion of your design to the original HDL code, resulting in greater
efficiency.

Early Testing of Various Design Implementations—HDLs allow
you to test different implementations of your design early in the
design flow. You can then use the synthesis tool to perform the
logic synthesis and optimization into gates. Additionally, Xilinx
FPGAs allow you to implement your design at your computer.
Since the synthesis time is short, you have more time to explore
different architectural possibilities at the Register Transfer Level
(RTL). You can reprogram Xilinx FPGAs to test several imple-
mentations of your design.

Xilinx Development System
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Designing FPGAs with HDLs

If you are more familiar with schematic design entry, you may find it
difficult at first to create HDL designs. You must make the transition
from graphical concepts, such as block diagrams, state machines,
flow diagrams, and truth tables, to abstract representations of design
components. You can ease this transition by not losing sight of your
overall design plan as you code in HDL. To effectively use an HDL,
you must understand the syntax of the language; the synthesis and
simulator software; the architecture of your target device; and the
implementation tools. This section gives you some design hints to
help you create FPGAs with HDLs.

Using Verilog

Verilog® is popular for synthesis designs because it is less verbose
than traditional VHDL, and it is standardized as IEEE-STD-1364-95.
It was not originally intended as an input to synthesis, and many
Verilog constructs are not supported by synthesis software. The
Verilog examples in this manual were tested and synthesized with
current, commonly-used FPGA synthesis software. The coding strate-
gies presented in the remaining chapters of this manual can help you
create HDL descriptions that can be synthesized.

Using VHDL

VHSIC Hardware Description Language (VHDL) is a hardware
description language for designing Integrated Circuits (ICs). It was
not originally intended as an input to synthesis, and many VHDL
constructs are not supported by synthesis software. However, the
high level of abstraction of VHDL makes it easy to describe the
system-level components and test benches that are not synthesized.
In addition, the various synthesis tools use different subsets of the
VHDL language. The examples in this manual will work with most
commonly used FPGA synthesis software. The coding strategies
presented in the remaining chapters of this manual can help you
create HDL descriptions that can be synthesized.

Comparing ASICs and FPGAs

Methods used to design ASICs do not always apply to FPGA designs.
ASICs have more gate and routing resources than FPGAs. Because
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1-4

ASICs have a large number of available resources, you can easily
create inefficient code that results in a large number of gates. When
designing FPGASs, you must create efficient code.

Using Synthesis Tools

Most of the commonly-used FPGA synthesis tools have special opti-
mization algorithms for Xilinx FPGAs. Constraints and compiling
options perform differently depending on the target device. There are
some commands and constraints that do not apply to FPGAs and, if
used, may adversely impact your results. You should understand
how your synthesis tool processes designs before creating FPGA
designs. Most synthesis vendors include information in their
manuals specifically for Xilinx FPGAs.

Using FPGA System Features

You can improve device performance and area utilization by creating
HDL code that uses FPGA system features, such as global reset, wide
1/0 decoders, and memory. FPGA system features are described in
this manual.

Designing Hierarchy

Current HDL design methods are specifically written for ASIC
designs. You can use some of these ASIC design methods when
designing FPGASs; however, certain techniques may unnecessarily
increase the number of gates or CLB levels.

Design hierarchy is important in the implementation of an FPGA and
also during incremental or interactive changes. Some synthesizers
maintain the hierarchical boundaries unless you group modules
together. Modules should have registered outputs so their boundaries
are not an impediment to optimization. Otherwise, modules should
be as large as possible within the limitations of your synthesis tool.
The “5,000 gates per module” rule is no longer valid, and can inter-
fere with optimization. Check with your synthesis vendor for the
current recommendations for preferred module size. As a last resort,
use the grouping commands of your synthesizer, if available. The size
and content of the modules influence synthesis results and design
implementation. This manual describes how to create effective design
hierarchy.
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Specifying Speed Requirements

To meet timing requirements, you should understand how to set
timing constraints in both the synthesis and placement/routing tools.

Installing Design Examples and Tactical Software

The information in this manual supplements information in your
synthesis and HDL simulator manuals. Before you start designing
Xilinx FPGAs, read the Xilinx-specific information in your HDL
manuals. Also, read and follow the instructions in the latest version
of the Quick Start Guide for Xilinx Alliance Series, as well as the current
version of the Alliance Series Install and Release Document.

This manual includes numerous HDL design examples created with
VHDL and Verilog. VHDL is more comprehensive than Verilog, and
you many need to spend more time learning how to apply VHDL
constructs to synthesis.

Software Requirements

To synthesize, simulate, and implement the design examples in this
manual, you should have the current versions of your synthesis and
simulation software, as well as the Alliance Series 2.1 or later version
of the Xilinx Development System installed on your system.

Memory Requirements

The values provided in the following table are for typical designs,
and include loading the operating system. Additional memory may
be required for certain “boundary-case” or unusual designs, as well
as for the concurrent operation of other applications (for example,
synthesis or HDL simulation). Xilinx recommends compiling
XC4000EX/ XL designs on the Ultra Sparc, HP715, or equivalent
workstations. Although 64 MB of RAM and 64 MB of swap space are
required to compile XC4000EX designs, Xilinx recommends that you
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use 128 MB of RAM and 128 MB of swap space for more efficient
processing of your XC4000EX designs.

Table 1-1 Memory Requirements for Workstations and PCs

Xilinx Device RAM Swap Space
XC3000A/L 64 MB 64 MB — 128 MB
XC3100A/L
XC4000E/L

XC4028EX through XC4036EX
XC4002XL through XC4028XL
XCS (Spartan)

XC5200

XC9500 (small devices)

XC4036XL through XC4062XL 128MB 128 MB - 256 MB
XC9500 (large devices)

XC4085XL 256 MB | 256 MB - 512 MB
XC40125XV

Disk Space Requirements

Before you install the programs and files, verify that your system
meets the requirements listed in the following table for the applicable
options. The disk space requirements listed are approximations and
may not exactly match the actual numbers. To significantly reduce
the amount of disk space needed, install only the components and
documentation that you will actually use. In the following table, the
Data column represents files that are common to all three workstation
platforms. For example, for a Solaris machine, you need ~ 110 (12
plus 98) MB of disk space.

Note: Refer to the Alliance Series Install and Release Document for more
information on disk space requirements.

Table 1-2 Disk Space Requirements

Software Component Data Sol HP
Xilinx Core Technology ~12 MB ~98 MB ~108 MB
Xilinx Device Data Files ~195 MB ~26 MB ~26 MB
(All devices)?

1-6
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Table 1-2 Disk Space Requirements

Software Component Data Sol HP
Documentation: ~30 MB total
Online Help ~10 MB ~10 MB
Documentation Browser ~17 MB
Xilinx Tutorial Files ~1 MB
Xilinx Userware ~4 MB

a. The memory requirements specified are for the installation of all Xilinx devices. You can significantly
reduce the amount of disk space required by installing only the files for the devices you want to target.

Xilinx Internet Site

To download the programs and files from the Xilinx Internet Site, you
must meet the disk requirements listed in the following table.

Table 1-3 Internet Files

Directory/Location Description Compressed File Dlrseiczteory
M1 _VHDL _source? |All VHDL source code ml_vhdl_src.tar.Z 271 KB
only (no scripts, compila- | (size: 60 KB)

tion, or implementation or
files) m1_vhdl_src.zip
(size: 68 KB)
M1_Verilog_source? | All Verilog source code m1_verilog_src.tar.Z 256 KB
only (no scripts, compila- | (size: 57 KB)
tion, or implementation or
files) m1_verilog_src.zip
(size: 64 KB)
M1_HDL _source? | All VHDL and Verilog m1_hdl_src.tar.Z 497 KB
source code only (no (size: 110 KB)
scripts, compilation, or or
implementation files) m1_hdl_src.zip
(size: 129 KB)

a. These files are located at ftp://ftp.xilinx.com/pub/applications/3rdparty

Retrieving Tactical Software and Design Examples

You can retrieve the HDL design examples from the Xilinx Internet
Site. If you need assistance retrieving the files, use the information

Synthesis and Simulation Design Guide
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listed in the “Technical Support” section of this chapter to contact the
Xilinx Hotline.

You must install the retrieved files on the same system as the Xilinx
software and the synthesis and simulation tools. However, do not
install the files into the directory with the current release of the soft-
ware since they may get overwritten during the installation of the
next version of the software.

From Xilinx Internet FTP Site

You can retrieve the programs and files from the Xilinx Internet FTP
(File Transfer Protocol) site. Alternatively, if you are not familiar with
FTP, you can retrieve the files by going to the Xilinx Web site (http://
www.xilinx.com), clicking on Service and Support, and using the File
Download option. To access the Xilinx FTP Site, you must either have
an internet-capable FTP utility available on your machine or a Web
browser that has FTP. To use FTP, your machine must be connected to
the Internet and you must have permission to use FTP on remote
sites. If you need more information on this procedure, contact your
system administrator.

To retrieve the programs and files from the Xilinx FTP site, use the
following procedure.

1. Go to the directory on your local machine where you want to
download the files, as follows.

cd directory
2. Invoke the FTP utility or your Web browser that provides FTP.
3. Connect to the Xilinx FTP site, ftp.xilinx.com as follows.
ftp>open ftp.xilinx.com
or
Enter the following URL.
ftp://ftp.xilinx.com

4. Log into a guest account if the FTP utility or Web browser does
not perform this automatically. This account gives you download
privileges.

Name (machi ne: user-nane): anonynous
Guest | ogin ok, send your conplete e-mail
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address as the password.
Passwor d: your_email_address

5. Go to the following directory.
ftp>cd pub/applications/3rdparty
6. If you are using an FTP utility, make sure you are in binary mode.
ftp>bin
7. Retrieve the appropriate design files as follows.
ft p>get design_files.tar. zZ
or
ft p>get design_files. zi p
or

Select the appropriate file and select a destination directory on
your local machine.

8. Extract the files as described in the next section.

Extracting the Files

You must install the retrieved files on the same system as the current
release of the Xilinx software and the synthesis and simulation tools.
However, do not install the files in the directory with the current soft-
ware because they may get overwritten during the installation of the
next version of the software. The files are stored in the UNIX "™ stan-
dard tar and compress form, as well as in the PC™ standard zip form.
To extract the files, use one of the following procedures.

Note: If the following procedures do not work on your system,
consult your system administrator for help on extracting the files.
Extracting .tar.Z File in UNIX
1. Go to the directory where you downloaded the files.

cd downloaded_files
2. Uncompress the files.

unconpr ess design. tar. Z

3. Extract the files.
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Extracting .zip File in UNIX
1.

Extracting .zip File in MS-DOS
1.

tar xvf design. t ar

Go to the directory where you downloaded the files.

cd downloaded_files
Uncompress the files.

unzi p design. zi p

Go to the directory where you downloaded the files:

cd downloaded files

Uncompress the files:

pkunzip —d  design.zip

Directory Tree Structure

After you have completed the installation, you should have the

following directory tree structure.

1-10

5k_preset
/ VHDL
/ Veril og
/[ Async_RAM as_| at ch
/ VHDL
/ Veril og
/Barrel _SR
/ VHDL
/ Barr el
/Barrel _Og
/Veril og
/ Barrel
/Barrel _Og
/ Bi dir_Logi BLOX
/ VHDL
/ Veril og
[Bidir_infer
/ VHDL
/ Veril og
/Bidir_instantiate
/ VHDL
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/ Veril og
/ Bnd_scan_4k
/ VHDL
/Veril og
/ Bnd_scan_5k
/ VHDL
/ Veril og
/[ Case vs_if
/ VHDL
/ Case_ex
/1f_ex
/ Veril og
/ Case_ex
/1f _ex
/ Cl ock_enabl e
/ VHDL
/Veril og
/ d ock_mux
/ VHDL
/ Veril og
/ Const ant s
/ VHDL
/Veril og
/ Par amet er1
/ Par amet er 2
/D latch
/ VHDL
/Veril og
/D _register
/ VHDL
/ Veril og
| FF_exanpl e
/ VHDL
/Veril og
/ GR 5K
/ VHDL
/[ Active_ | ow GR
/ No_GR
/ Use_GR
/Veril og
[ Active_l ow_GR
/ No_GR
/ Use GR
/ GSR
/ VHDL
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/ Active_ | ow GSR
/ No_GSR
/ Use_GSR
/Veril og
/ Active_l ow_GSR
/ No_GSR
/ Use_GSR
| Gat e_cl ock
/ VHDL
/ Gat e_cl ock
/ Gat e_cl ock2
/ Veril og
/ Gat e_cl ock
/ Gate_cl ock2
/1 O_Decoder
/ VHDL
/Veril og
/ Logi BLOX_DP_RAM
/ VHDL
/ Veril og
/ Logi BLOX_SR
/ VHDL
/Veril og
/ Mux_vs 3state
/ VHDL
/ Mux_gat e
/ Mux_gat el6
/ Mux_t buf
/ Mux_t buf 16
/ Veril og
/ Mux_gat e
/ Mux_gat e16
/ Mux_t buf
/ Mux_t buf 16
/ Nested_i f
/ VHDL
/1f _case
/ Nested if
/Veril og
/1f_case
/ Nested_if
[/ OMUX_exanpl e
/ VHDL
/ Veril og
/IRAM prinmitive

1-12

Xilinx Development System



Getting Started

/ VHDL
/ Veril og
/ ROM_RTL
/ VHDL
/Veril og
/ Res_shari ng
/ VHDL
/ Res_no_share
/ Res_sharing
/Veril og
/ Res_no_share
/ Res_shari ng
/ Set _and_Reset
/ VHDL
/Veril og
/ Si g_vs_Var
/ VHDL
/ Xor _Si g
/ Xor _Var
/ St at e_Machi ne
/ VHDL
/ Bi nary
/ Enum
/ One_Hot
/ Veril og
/ Bi nary
/ Enum
/ One_Hot
/ Unbonded_1 O
/ VHDL
/ Veril og

Technical Support

You can contact Xilinx for additional information and assistance in
the following ways.

Xilinx World Wide Web Site

Enter http://www.xilinx.com. Click on the Service and Support
option on the Xilinx Home Page. Use the Customer Service and
Support page to get answers to your technical questions. You can use
the Answers Search option to search the Answers database, file
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download area, application notes, XCELL journals, data sheets, and

expert journals.

Technical and Applications Support Hotlines

The telephone hotlines give you direct access to Xilinx Application
Engineers worldwide. You can also e-mail or fax your technical ques-

tions to the same locations.

Table 1-4 Technical Support

Location

Telephone

Electronic Mail

Facsimile (Fax)

North America

1-800-255-7778

hotline@xilinx.com

1-408-879-4442

Japan 81-3-3297-9163 jhotline@xilinx.com |81-3-3297-0067
France 33-1-3463-0100 frhelp@xilinx.com | 33-1-3463-0959
Germany 49-89-9915-4930 dlhelp@xilinx.com |49-89-904-4748

United Kingdom

44-1932-820821

ukhelp@xilinx.com

44-1932-828522

Corporate Switchboard

1-408-559-7778

Note: When e-mailing or faxing inquiries, provide your complete
name, company nhame, and phone number. Also, provide a complete
problem description including your design entry software and design

stage.

Xilinx FTP Site

ftp://ftp.xilinx.com

The FTP site provides online access to automated tutorials, design
examples, online documents, utilities, and published patches.

XDOCS E-mail Server

1-14

xdocs@xilinx.com

Include the word “help” in the subject header. This e-mail service
provides access to the Customer Service and Support page from the
Xilinx World Wide Web Site. On the Xilinx home page, click on
Service and Support, and use the Customer Service and Support page
to get answers to your technical questions.
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Chapter 2

HDL Coding Hints

This chapter contains HDL coding hints and design examples to help
you develop an efficient coding style. It includes the following topics.

= “Comparing Synthesis and Simulation Results”
= “Selecting HDL Formatting Styles”
= “Using Schematic Design Hints with HDL Designs”

HDLs contain many complex constructs that are difficult to under-
stand at first. Also, the methods and examples included in HDL
manuals do not always apply to the design of FPGAs. If you
currently use HDLs to design ASICs, your established coding style
may unnecessarily increase the number of gates or CLB levels in
FPGA designs.

HDL synthesis tools implement logic based on the coding style of
your design. To learn how to efficiently code with HDLs, you can
attend training classes, read reference and methodology notes, and
refer to synthesis guidelines and templates available from Xilinx and
the synthesis vendors. When coding your designs, remember that
HDLs are mainly hardware description languages. You should try to
find a balance between the quality of the end hardware results and
the speed of simulation.

The coding hints and examples included in this chapter are not
intended to teach you every aspect of VHDL or Verilog, but they
should help you develop an efficient coding style.

Comparing Synthesis and Simulation Results

VHDL and Verilog are hardware description and simulation
languages that were not originally intended as input to synthesis.
Therefore, many hardware description and simulation constructs are
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not supported by synthesis tools. In addition, the various synthesis
tools use different subsets of VHDL and Verilog. VHDL and Verilog
semantics are well defined for design simulation. The synthesis tools
must adhere to these semantics to ensure that designs simulate the
same way before and after synthesis. Follow the guidelines presented
below to create code that simulates the same way before and after
synthesis.

Omit the Wait for XX ns Statement

Do not use the Wait for XX ns statement in your code. XX specifies the
number of nanoseconds that must pass before a condition is
executed. This statement does not synthesize to a component. In
designs that include this statement, the functionality of the simulated
design does not match the functionality of the synthesized design.
VHDL and Verilog examples of the Wait for XX ns statement are as
follows.

- VHDL

wait for XX ns;
= Verilog

#XX;

Omit the ...After XX ns or Delay Statement

Do not use the ...After XX ns statement in your VHDL code or the
Delay assignment in your Verilog code. Examples of these statements
are as follows.

- VHDL

(Q <=0 after XX ns)
= Verilog

assi gn #XX Q=0;

XX specifies the number of nanoseconds that must pass before a
condition is executed. This statement is usually ignored by the
synthesis tool. In this case, the functionality of the simulated design
does not match the functionality of the synthesized design.
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Use Case and If-Else Statements

You can use If-Else statements, Case statements, or other conditional
code to create state machines or other conditional logic. These state-
ments implement the functions differently, however, the simulated
designs are identical. The If-Else statement generally specifies
priority-encoded logic and the Case statement generally specifies
balanced behavior. The If-Else statement can, in some cases, result in
a slower circuit overall. These statements vary with the synthesis
tool. Refer to the “Comparing If Statement and Case Statement”
section of this chapter for more information.

Order and Group Arithmetic Functions

The ordering and grouping of arithmetic functions can influence
design performance. For example, the following two VHDL state-
ments are not necessarily equivalent.

ADD <= Al + A2 + A3 + A4;
ADD <= (Al + A2) + (A3 + Ad4);

For Verilog, the following two statements are not necessarily equiva-
lent.

ADD
ADD

Al + A2 + A3 + Ad;
(AL + A2) + (A3 + Ad);

The first statement cascades three adders in series. The second state-
ment creates two adders in parallel: Al + A2 and A3 + A4. In the
second statement, the two additions are evaluated in parallel and the
results are combined with a third adder. RTL simulation results are
the same for both statements, however, the second statement results
in a faster circuit after synthesis (depending on the bit width of the
input signals).

Although the second statement generally results in a faster circuit, in
some cases, you may want to use the first statement. For example, if
the A4 signal reaches the adder later than the other signals, the first
statement produces a faster implementation because the cascaded
structure creates fewer logic levels for A4. This structure allows A4 to
catch up to the other signals. In this case, Al is the fastest signal
followed by A2 and A3; A4 is the slowest signal.
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Most synthesis tools can balance or restructure the arithmetic oper-
ator tree if timing constraints require it. However, Xilinx recommends
that you code your design for your selected structure.

Omit Initial Values

Do not assign signals and variables initial values because initial
values are ignored by most synthesis tools. The functionality of the
simulated design may not match the functionality of the synthesized
design.

For example, do not use initialization statements like the following
VHDL and Verilog statements.

- VHDL

vari abl e SUM | NTEGER: =0;
= Verilog

wire SUM=1"b0;

Selecting HDL Formatting Styles

2-4

Because HDL designs are often created by design teams, Xilinx
recommends that you agree on a style for your code at the beginning
of your project. An established coding style allows you to read and
understand code written by your fellow team members. Also, ineffi-
cient coding styles can adversely impact synthesis and simulation,
which can result in slow circuits. Additionally, because portions of
existing HDL designs are often used in new designs, you should
follow coding standards that are understood by the majority of HDL
designers. This section of the manual provides a list of suggested
coding styles that you should establish before you begin your
designs.

Selecting a Capitalization Style

Select a capitalization style for your code. Xilinx recommends using a
consistent style (lower or upper case) for entity or module names in
FPGA designs.

Verilog

For Verilog, the following style is recommended.
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= Use lower case letters for the following.
= Module names
= Verilog language keywords
= Use upper case letters for the following.
e Labels
= Reg, wire, instance, and instantiated cell names

Note: Cell names must be upper case to use the UniSim simulation
library and certain synthesis libraries. Check with your synthesis
vendor.

VHDL

Note: VHDL is case-insensitive.

For VHDL, use lower case for all language constructs from the IEEE-
STD 1076. Any inputs defined by you should be upper case. For
example, use upper case for the names of signals, instances, compo-
nents, architectures, processes, entities, variables, configurations,
libraries, functions, packages, data types, and sub-types. For the
names of standard or vendor packages, the style used by the vendor
or uppercase letters are used, as shown for IEEE in the following
example:

l'ibrary |EEE;
use | EEE. std_|l ogic_1164. al | ;
signal SIG UNSIGNED (5 downto 0);

Using Xilinx Naming Conventions

Use the Xilinx naming conventions listed in this section for naming
signals, variables, and instances that are translated into nets, buses,
and symbols.

Note: Most synthesis tools convert illegal characters to legal ones.

= User-defined names can contain A-Z, a-z,$, ,—, <,and >. A“/”
is also valid, however, it is not recommended because it is used as
a hierarchy separator

< Names must contain at least one non-numeric character

= Names cannot be more than 256 characters long
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The following FPGA resource names are reserved and should not be
used to name nets or components.

= Components (Comps), Configurable Logic Blocks (CLBs), Input/
Output Blocks (IOBs), basic elements (bels), clock buffers
(BUFGS), tristate buffers (BUFTSs), oscillators (OSC), CCLK, DP,
GND, VCC, and RST

= CLB names such as AA, AB, and R1C2

= Primitive names such as TD0, BSCAN, M0, M1, M2, or STARTUP
= Do not use pin names such as P1 and A4 for component names

= Do not use pad names such as PAD1 for component names

Refer to the language reference manual for Verilog or VHDL for
language-specific naming restrictions. Xilinx does not recommend
using escape sequences for illegal characters. Also, if you plan on
importing schematics into your design, use the most restrictive char-
acter set.

Matching File Names to Entity and Module Names

The VHDL or Verilog source code file name should match the desig-
nated name of the entity (VHDL) or module (Verilog) specified in
your design file. This is less confusing and generally makes it easier
to create a script file for the compilation of your design. Xilinx also
recommends that if your design contains more than one entity or
module, each should be contained in a separate file with the appro-
priate file name. It is also a good idea to use the same name as your
top-level design file for your synthesis script file with either a .do,
.scr, .script, or the appropriate default script file extension for your
synthesis tool.

Naming ldentifiers, Types, and Packages

You can use long (256 characters maximum) identifier names with
underscores and embedded punctuation in your code. Use mean-
ingful names for signals and variables, such as
CONTROL_REGISTER. Use meaningful names when defining
VHDL types and packages as shown in the following examples.

type LOCATION.TYPE is ...;
package STRING IO PKG is
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Using Labels

Use labels to group logic. Label all processes, functions, and proce-
dures as shown in the following examples. Labeling makes it easier to
debug your code.

- VHDL
ASYNC _FF: process (CLK, RST)

= Verilog
al ways @ (posedge CLK or posedge RST)
begi n: ASYNC_FF

Labeling Flow Control Constructs

You can use optional labels on flow control constructs to make the
code structure more obvious, as shown in the following VHDL and
Verilog examples. However, you should note that these labels are not
translated to gate or register names in your implemented design.
Flow control constructs can slow down simulations in some Verilog
simulators.

e VHDL Example
-- D _REG STER VHD
-- May 1997
-- Changing Latch into a D Register

library | EEE;
use | EEE. std |l ogic_1164.all;

entity d_register is
port (CLK, DATA: in STD LOG G,
Q out STD LCA O);
end d_register;

architecture BEHAV of d_register is

begin
My_D Reg: process (CLK, DATA)
begin
if (CLK event and CLK="1") then
Q <= DATA
end if;
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end process; --End My_D Reg
end BEHAYV;

= Verilog Example

/* Changing Latch into a D Register
* D REG STER. V
* May 1997 */

nmodul e d_register (CLK, DATA, Q;

i nput CLK;
i nput DATA;
out put Q

reg Q

al ways @ (posedge CLK)
begin: My_D Reg

Q <= DATA
end

endnodul e

Using Variables for Constants (VHDL Only)

Do not use variables for constants in your code. Define constant
numeric values in your code as constants and use them by name. This
coding convention allows you to easily determine if several occur-
rences of the same literal value have the same meaning. In some
simulators, using constants allows greater optimization. In the
following code example, the OPCODE values are declared as
constants, and the constant names refer to their function. This
method produces readable code that may be easier to modify.

Using Constants to Specify OPCODE Functions
(VHDL)

constant ZERO : STD_LOGIC_VECTOR (1 downto 0):="00";
constant A_AND_B: STD_LOGIC_VECTOR (1 downto 0):=“01";
constant A_OR_B : STD_LOGIC_VECTOR (1 downto 0):="10";
constant ONE : STD_LOGIC_VECTOR (1 downto 0):=11";

process (OPCODE, A, B)
begin

2-8 Xilinx Development System



HDL Coding Hints

i f (OPCODE = A AND B)then OP_QUT <= A and B;
elsif (OPCODE = A OR B) then OP_QUT <= A or B;
elsif (OPCODE = ONE) then OP_OUT <= ‘1’;
else OP_OUT <=0}
end if;
end process;

Using Parameters for Constants (Verilog Only)

You can specify a constant value in Verilog using the parameter special
data type, as shown in the following examples. The first example
includes a definition of OPCODE constants as shown in the previous
VHDL example. The second example shows how to use a parameter
statement to define module bus widths.

Using Parameters to Specify OPCODE Functions
(Verilog)

parameter ZERO = 2'b00;
parameter A_AND_B = 2'b01;
parameter A_OR_B = 2’b10;
parameter ONE = 2'b11;

always @ (OPCODE or A or B)

begin
if (OPCODE=='ZERO) OP_OUT=1b0;
else if(OPCODE=="A_AND_B) OP_OUT=A&B;
else if(OPCODE=="A_OR_B) OP_OUT=A|B;
else OP_OUT=1'b1;

end

Using Parameters to Specify Bus Size (Verilog)
parameter BUS_SIZE = 8;

output ['BUS_SIZE-1:0] OUT;
input ['[BUS_SIZE-1:0] X,Y;

Using Named and Positional Association

Use positional association in function and procedure calls, and in
port lists only when you assign all items in the list. Use named associ-
ation when you assign only some of the items in the list. Also, Xilinx
suggests that you use named association to prevent incorrect connec-

Synthesis and Simulation Design Guide 2-9



Synthesis and Simulation Design Guide

2-10

tions for the ports of instantiated components. Do not combine posi-
tional and named association in the same statement as illustrated in
the following examples.

 VHDL

Incorrect

CLK 1: BUFGS port map (1 =>CLOCK_I N, CLOCK_QUT);

Correct

CLK 1: BUFGS port map (1 =>CLOCK_I N, O=>CLOCK_QUT) ;
= Verilog

Incorrect

BUFGS CLK 1 (.1 (CLOCK_IN), CLOCK OUT);

Correct

BUFGS CLK 1 (.1 (CLOCK_IN), .Q(CLOCK OUT));

Managing Your Design

As part of your coding specifications, you should include rules for
naming, organizing, and distributing your files. In VHDL designs,
use explicit configurations to control the selection of components and
architectures that you want to compile, simulate, or synthesize. In
some synthesis tools, configuration information is ignored. In this
case, you only need to compile the architecture that you want to
synthesize.

Creating Readable Code

Use the recommendations in this section to create code that is easy to
read.

Indenting Your Code

Indent blocks of code to align related statements. You should define
the number of spaces for each indentation level and specify whether
the Begin statement is placed on a line by itself. In the examples in
this manual, each level of indentation is four spaces and the Begin
statement is on a separate line that is not indented from the previous
line of code. The examples below illustrate the indentation style used
in this manual.
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VHDL Example

-- D_LATCH. VHD
-- May 1997

l'ibrary | EEE;
use | EEE. std |l ogic_1164.all;

entity d_latch is
port (GATE, DATA: in STD LOG G
Q out STD LCA O);
end d_Il atch;

architecture BEHAV of d latch is

begin
LATCH process (GATE, DATA)

begin

if (GATE = '1') then

Q <= DATA;

end if;

end process; -- end LATCH
end BEHAV;

Verilog Example

/* Transparent Hi gh Latch
* D LATCH. V
* May 1997 */

nmodul e d_| atch (GATE, DATA, Q;

i nput GATE;
i nput DATA;
out put Q
reg Q
al ways @ ( GATE or DATA)
begi n: LATCH
if (GATE == 1’ bl)
Q <= DATA;

end // End Latch

endnodul e
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Using Empty Lines

Use empty lines to separate top-level constructs, designs, architec-
tures, configurations, processes, subprograms, and packages.

Using Spaces

Use spaces to make your code easier to read. You can omit or use
spaces between signal names as shown in the following examples.

VHDL Example

process (RST, CLOCK, LOAD, CE)
process (RST, CLOCK, LOAD, CE)

Verilog Example

nodul e test (A B, O
nmodul e test (A B, O

Use a space after colons as shown in the following examples.

VHDL Example

signal QOUT: STD LOd C VECTOR (3 downto 0);
CLK 1: BUFGS port map (I =>CLOCK_I N, O=>CLOCK_QUT) ;

Verilog Example
begi n: CPU_DATA

Breaking Long Lines of Code

Break long lines of code at an appropriate point, such as at a comma,
a colon, or a parenthesis to make your code easier to read, as illus-
trated in the following code fragments.

VHDL Example

Ul: |oad_reg port map
(1 NX=>A, LOAD=>LD, CLK=>SCLK, QUTX=>B) ;

Verilog Example

| oad_reg Ul
(. INX(A), .LOAD(LD), .CLK(SCLK), .QUTX(B));
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Adding Comments

Add comments to your code to improve readability, reduce debug-
ging time, and make it easier to maintain your code.

< VHDL Example

-- Read Counter (16-bit)
-- Updated 1-25-98 to add C ock Enabl e, John Doe
-- Updated 1-28-98 to add Term nal Count, Joe Cool

process (RST, CLOCK, CE)
begin

= Verilog Example

/1l Read Counter (16-bit)
/1 Updated 1-25-98 to add O ock Enabl e, John Doe
/1 Updated 1-28-98 to add Term nal Count, Joe Cool

al ways @ (posedge RST or posedge CLOCK)
begin

Using Std_logic Data Type (VHDL only)

The Std_logic (IEEE 1164) type is recommended for hardware
descriptions for the following reasons.

= It has nine different values that represent most of the states found
in digital circuits.

= Automatically initialized to an unknown value. This automatic
initialization is important for HDL designs because it forces you
to initialize your design to a known state, which is similar to
what is required in a schematic design. Do not override this
feature by initializing signals and variables to a known value
when they are declared because the result may be a gate-level
circuit that cannot be initialized to a known value.

= Easy to perform a board-level simulation. For example, if you use
an integer type for ports for one circuit and standard logic for
ports for another circuit, your design can be synthesized;
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however, you will need to perform time-consuming type conver-
sions for a board-level simulation.

The back-annotated netlist from Xilinx implementation is in
Std_logic. If you do not use Std_logic type to drive your top-level
entity in the testbench, you cannot reuse your functional testbench
for timing simulation. Some synthesis tools can create a wrapper for
type conversion between the two top-level entities; however, this is
not recommended by Xilinx.

Declaring Ports

Xilinx recommends that you use the Std_logic package for all entity
port declarations. This package makes it easier to integrate the
synthesized netlist back into the design hierarchy without requiring
conversion functions for the ports. A VHDL example using the
Std_logic package for port declarations is shown below.

Entity alu is
port( A: in STD LOd C VECTOR(3 downto 0);
B: in STD LOE C VECTOR(3 downto 0);
CLK : in STD LOGQ C
C : out STD LOG C VECTOR(3 downto 0) );
end al u;

Since the downto convention for vectors is supported in a back-anno-
tated netlist, the RTL and synthesized netlists should use the same
convention if you are using the same test bench. This is necessary
because of the loss of directionality when your design is synthesized
to an EDIF or XNF netlist.

Minimizing the Use of Ports Declared as Buffers

Do not use buffers when a signal is used internally and as an output
port. In the following VHDL example, signal C is used internally and
as an output port.

Entity alu is
port( A: in STD LOG C VECTOR(3 downto 0);
B: in STD LOGA C_VECTOR(3 downto 0);
CLK : in STD LOG G;
C: buffer STD LOG C VECTOR(3 downto 0) );
end al u;

architecture BEHAVIORAL of alu is
begin
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process begin
if (CLK event and CLK="1") then
C <= UNSI GNED(A) + UNSI GNED(B) + UNSI GNED( C) ;
end if;
end process;
end BEHAVI ORAL;

Because signal C is used both internally and as an output port, every
level of hierarchy in your design that connects to port C must be
declared as a buffer. However, buffer types are not commonly used in
VHDL designs because they can cause problems during synthesis. To
reduce the amount of buffer coding in hierarchical designs, you can
insert a dummy signal and declare port C as an output, as shown in
the following VHDL example.

Entity alu is
port( A: in STD LOd C VECTOR(3 downto 0);
B: in STD LOA C_VECTOR(3 downto 0);
CLK : in STD LOGQ C
C: out STD LOG C VECTOR(3 downto 0));

end al u;
architecture BEHAVIORAL of alu is
-- dumy si gnal
signal CINT : STD LOG C_VECTOR(3 downto 0);
begin
C <= C_INT;

process begin
if (CLK event and CLK="1") then
C_INT < =UNSI GNED(A) + UNSI GNED(B) +
UNSI GNED( C_I NT) ;

end if;
end process;
end BEHAVI ORAL;

Comparing Signals and Variables (VHDL only)

You can use signals and variables in your designs. Signals are similar
to hardware and are not updated until the end of a process. Variables
are immediately updated and, as a result, can effect the functioning of
your design. Xilinx recommends using signals for hardware descrip-
tions; however, variables allow quick simulation.

Synthesis and Simulation Design Guide 2-15



Synthesis and Simulation Design Guide

The following VHDL examples show a synthesized design that uses
signals and variables, respectively. These examples are shown imple-
mented with gates in the “Gate implementation of XOR_SIG” figure
and the “Gate Implementation of XOR_VAR?” figure.

Note: If you assign several values to a signal in one process, only the
final value is used. When you assign a value to a variable, the assign-
ment takes place immediately. A variable maintains its value until
you specify a new value.

Using Signals (VHDL)

-- XOR_SI G VHD

-- My 1997

Li brary | EEE;

use | EEE. std_| ogic_1164. al | ;

entity xor_sig is
port (A B, C in STD LCOGAC
X, Y: out STD LCA O);
end xor_sig;

architecture SI G ARCH of xor_sig is
signal D. STD _LQOd C

begin
SI G process (A B, Q
begin
D<= A -- ignored !!
X <= C xor D
D <= B; -- overrides !!

Y <= C xor D
end process;
end S| G ARCH;

—

A
C IBUF
OBUF X
XOR2
B IBUF
OBUF Y
X8542

Figure 2-1 Gate implementation of XOR_SIG
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Using Variables (VHDL)

== XOR_VAR VHD
-- May 1997

Li brary | EEE;
use | EEE. std |l ogic_1164.all;
use | EEE. std_| ogi c_unsi gned. al | ;

entity xor_var is
port (A, B, C in STD LQGE G
X, VY out STD LOG Q) ;
end xor _var;

architecture VAR _ARCH of xor_var is
begin

VAR process (A B, O
variable D. STD LCd C;

begin
D:=A
X <= C xor D
D := B;

Y <= C xor D
end process;

end VAR _ARCH;
c [:IBUF
H ™S~
[ '|> /D L-OBUF DX
A IBUF XOR2
o> o—T
B M Bur XOR2
X8543

Figure 2-2 Gate Implementation of XOR_VAR

Using Schematic Design Hints with HDL Designs

This section describes how to apply schematic entry design strategies

to HDL designs.

Synthesis and Simulation Design Guide

2-17



Synthesis and Simulation Design Guide

Barrel Shifter Design

The schematic version of the barrel shifter design is included in the
“Multiplexers and Barrel Shifters in XC3000/XC3100” application
note (XAPP 026.001) available on the Xilinx web site at http://
www.xilinx.com. In this example, two levels of multiplexers are used
to increase the speed of a 16-bit barrel shifter. This design is for
XC3000 and XC3100 device families; however, it can also be used for
other Xilinx devices.

The following VHDL and Verilog examples show a 16-bit barrel
shifter implemented using sixteen 16-to-1 multiplexers, one for each
output. A 16-to-1 multiplexer is a 20-input function with 16 data
inputs and four select inputs. When targeting an FPGA device based
on 4-input lookup tables (such as XC4000 and XC3000 family of
devices), a 20-input function requires at least five logic blocks. There-
fore, the minimum design size is 80 (16 x 5) logic blocks.

16-bit Barrel Shifter (VHDL)

-- VHDL Model for a 16-bit Barrel Shifter --

-- barrel _org.vhd --
- trrrrrrvrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr oo

-- TH' S EXAMPLE | S FOR COVPARI SON ONLY --
-- My 1997 --
-- USE barrel.vhd --

l'ibrary | EEE;
use | EEE. std |l ogic_1164.all;
use |EEE. std_logic_arith.all;

entity barrel _org is
port (S:in STD _LOGE C_VECTOR (3 downto 0);
A P:in STD LOGE C_VECTOR (15 downto 0);
B_P: out STD LOGE C_VECTOR (15 downto 0));
end barrel _org;

architecture RTL of barrel _org is

begin
SHI FT: process (S, A P)
begin

case Sis
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when “0000” =>
B_P<=A_P;

when “0001” =>
B_P(14 downto 0) <= A_P(15 downto 1);
B_P(15) <= A_P(0);

when “0010" =>
B_P(13 downto 0) <= A_P(15 downto 2);
B_P(15 downto 14) <= A_P(1 downto 0);

when “0011" =>
B_P(12 downto 0) <= A_P(15 downto 3);
B_P(15 downto 13) <= A_P(2 downto 0);

when “0100" =>
B_P(11 downto 0) <= A_P(15 downto 4);
B_P(15 downto 12) <= A_P(3 downto 0);

when “0101" =>
B_P(10 downto 0) <= A_P(15 downto 5);
B_P(15 downto 11) <= A_P(4 downto 0);

when “0110" =>
B_P(9 downto 0) <=A_P(15 downto 6);
B_P(15 downto 10) <= A_P(5 downto 0);

when “0111" =>
B_P(8 downto 0) <= A_P(15 downto 7);
B_P(15 downto 9) <= A_P(6 downto 0);

when “1000" =>
B_P(7 downto 0) <= A_P(15 downto 8);
B_P(15 downto 8) <= A_P(7 downto 0);

when “1001" =>
B_P(6 downto 0) <= A_P(15 downto 9);
B_P(15 downto 7) <= A_P(8 downto 0);

when “1010" =>
B_P(5 downto 0) <= A_P(15 downto 10);
B_P(15 downto 6) <= A_P(9 downto 0);

when “1011" =>
B_P(4 downto 0) <= A_P(15 downto 11);
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B P(15 downto 5) <= A P(10 downto 0);

when “1100" =>
B_P(3 downto 0) <= A_P(15 downto 12);
B_P(15 downto 4) <= A_P(11 downto 0);

when “1101" =>
B_P(2 downto 0) <= A_P(15 downto 13);
B_P(15 downto 3) <= A_P(12 downto 0);

when “1110" =>
B_P(1 downto 0) <= A_P(15 downto 14);
B_P(15 downto 2) <= A_P(13 downto 0);

when “1111" =>
B_P(0) <= A_P(15);
B_P(15 downto 1) <= A_P(14 downto 0);

when others =>
B P<=AP;
end case;
end process; -- End SHIFT

end RTL;

16-bit Barrel Shifter (Verilog)
I

// BARREL_ORG.V Version 1.0 I
/I Xilinx HDL Synthesis Design Guide 1
/I Unoptimized model for a 16-bit Barrel Shifter //
/I THIS EXAMPLE IS FOR COMPARISON ONLY )
/l Use BARREL.V 1
/[ January 1998 1

T T
module barrel_org (S, A_P, B_P);
input [3:0] S;
input [15:0] A_P;
output [15:0] B_P;
reg [15:0] B_P;

always @ (A_P or S)
begin
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case (9S)
4’ b0000 : // shift by 0O
begin
B P <= AP
end

4’pb0001 : // Shift by 1
begin
B_P[ 15] <= A P[O];
B P[14:0] <= A P[15:1];
end

4’ b0010 : // sShift by 2
begin
B P[15:14] <= A P[1:0];
B P[13:0] <= A P[15:2];
end

4’ b0011 : // shift by 3
begin
B P[15:13] <= A P[2:0];
B P[12: 0] <= A P[15:3];
end

4’ b0100 : // sShift by 4
begin
B P[15:12] <= A P[3:0];
B P[11: 0] <= A P[15:4];
end

4’p0101 : // sShift by 5
begin
B_P[15:11] <= A P[4:0];
B_P[10: 0] <= A P[15:5];
end

4’ b0110 : // shift by 6
begin
B_P[15:10] <= A P[5:0];
B _P[9:0] <= A P[15:6];
end

4’ pb0111 : // Shift by 7

begin
B P[15:9] <= A P[6:0];
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B P[8:0]
end

"b1000 : //

begin
B_P[ 15: 8]
B P[7:0]
end

"bloo1 : //

begin
B_P[15: 7]
B _P[6: 0]
end

"blo10 : //

begin
B_P[ 15: 6]
B P[5:0]
end

"b1011 : //

begin
B_P[ 15: 5]
B _P[4: 0]
end

"b1100 : //

begin
B_P[ 15: 4]
B P[3:0]
end

"b1101 : //

begin
B_P[ 15: 3]
B P[2:0]
end

"b1110 : //

begin
B_P[ 15: 2]
B P[1:0]
end

"bl111 : //

<= A P[15:7];
Shift by 8

<= AP[7:0];

<= A P[15:8];
Shift by 9

<= A P[8:0];

<= A P[15:9];
Shift by 10

<= A P[9:0];

<= A P[15:10];

Shift by 11
<= A P[10:0];
<= A P[15:11];
Shift by 12
<= A P[11:0];
<= A P[15:12];
sShift by 13

<= A P[12:0];

<= A P[15:13];

Shift by 14

<= A P[13:0];

<= A P[15: 14];

Shift by 15

Xilinx Development System



HDL Coding Hints

begin
B_P[15: 1]
B_P[ O]
end

def aul t
B P
endcase
end

endnodul e

<= A P[14:0];
<= A P[15];

<= A P;

The following modified VHDL and Verilog designs use two levels of
multiplexers and are twice as fast as the previous designs. These
designs are implemented using 32 4-to—-1 multiplexers arranged in
two levels of sixteen. The first level rotates the input data by 0, 1, 2, or
3 bits and the second level rotates the data by 0, 4, 8, or 12 bits. Since
you can build a 4-to-1 multiplexer with a single CLB, the minimum
size of this version of the design is 32 (32 x 1) CLBs.

16-bit Barrel Shifter with Two Levels of Multiplexers

(VHDL)

-- BARREL. VHD

-- Based on XAPP 26 (see http://ww. xilinx.com
-- 16-bit barrel shifter (shift right)

-- May 1997

l'ibrary | EEE;
use | EEE. std_l ogic_1164. al | ;
use |EEE. std_logic_arith.all;

entity barrel is
port (S: in STD_ LOGE C_VECTOR(3 downto 0);

A P:

in STD_LOE C_VECTOR(15 downto 0);

B P: out STD LOG C VECTOR(15 downto 0));
end barrel;

architecture RTL of barrel is

si gnal
si gnal

begin

SEL1, SEL2: STD LOG C_VECTOR(1 downto 0);
C STD_LOAd C_VECTOR(15 downto 0);

FI RST_LVL: process (A _P, SEL1)
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begin
case SEL1 is
when “00” => -- Shift by 0
C<=A_P;

when “01” => -- Shift by 1
C(15) <= A_P(0);
C(14 downto 0) <= A_P(15 downto 1);

when “10” => -- Shift by 2
C(15 downto 14) <= A_P(1 downto 0);
C(13 downto 0) <= A_P(15 downto 2);

when “11” => -- Shift by 3
C(15 downto 13) <= A_P(2 downto 0);
C(12 downto 0) <= A_P(15 downto 3);

when others =>
C<=AP;
end case;
end process; --End FIRST_LVL

SECND_LVL: process (C, SEL2)
begin
case SEL2 is
when “00” => --Shift by 0
B P<= C;

when “01” => --Shift by 4
B_P(15 downto 12) <= C(3 downto 0);
B_P(11 downto 0) <= C(15 downto 4);

when “10” => --Shift by 8
B_P(7 downto 0) <= C(15 downto 8);
B_P(15 downto 8) <= C(7 downto 0);

when “11” => --Shift by 12
B_P(3 downto 0) <= C(15 downto 12);
B_P(15 downto 4) <= C(11 downto 0);

when others =>
B P<=C;
end case;
end process; -- End SECOND_LVL
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SEL1 <= S(1 downto 0);
SEL2 <= S(3 downto 2);

end rtl;

16-bit Barrel Shifter with Two Levels of Multiplexers

(Verilog)
/*****************************************
* BARREL. V *
* XAPP 26 http://ww. Xxi | inx.com *
* 16-bit barrel shifter [shift right] *
* May 1997 *

*****************************************/

nmodul e barrel (S, AP, B P);
input [3:0] S

i nput [15:0] A P;

out put [15:0] B_P;

reg [15:0] B_P;

wire [1:0] SEL1, SEL2;
reg [15:0] C

assign SEL1
assign SEL2

S[1:0];
S[3:2];

always @ (A _P or SEL1)
begin
case (SEL1)
2'b00 : // Shift by O
begin
C<= AP
end

2'b01 : // Shift by 1
begin
C[15] <= A P[0];
C 14:0] <= A P[15:1];
end

2'b10 : // Shift by 2
begin
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C 15:14] <= A P[1:0];
[ 13:0] <= A P[15:2];
end

2'b11 : // Shift by 3
begin
C[15:13] <= A P[2:0];
C 12:0] <= A P[15:3];
end

defaul t
C<= AP
endcase
end

always @ (C or SEL2)
begin
case (SEL2)
2'b00 : // Shift by O
begin
BP<= (G
end

2°b01 : // shift by 4
begin
B P[15:12] <= ( 3:0];
B P[11: 0] <= (15:4];
end

2'b10 : // shift by 8
begin
B P[7:0] <= (15:8];
B P[15:8] <= (J7:0];
end

2'bl1 : // shift by 12
begin
B P[3:0] <= (J15:12];
B P[15:4] <= (11:0];
end

def aul t
B P <=(
endcase
end

2-26 Xilinx Development System



HDL Coding Hints

endnodul e

When these two designs are implemented in an XC4005E-2 device
with a popular synthesis tool, there is a 64% improvement in the gate
count (88 occupied CLBs reduced to 32 occupied CLBSs) in the
barrel.vhd design as compared to the barrel_org.vhd design. Addi-
tionally, there is a 19% improvement in speed from 35.58 ns (5 logic
levels) to 28.85 ns (4 logic levels).

Implementing Latches and Registers

Synthesizers infer latches from incomplete conditional expressions,
such as an If statement without an Else clause. This can be problem-
atic for FPGA designs because not all FPGA devices have latches
available in the CLBs. In addition, you may think that a register is
created, and the synthesis tool actually created a latch. The
XC4000EX/ XL and XC5200 FPGAs do have registers that can be
configured to act as latches. For these devices, synthesizers infer a
dedicated latch from incomplete conditional expressions. XC4000E,
XC3100A, XC3000A, and Spartan devices do not have latches in their
CLBs. For these devices, latches described in RTL code are imple-
mented with gates in the CLB function generators. For XC4000E or
Spartan devices, if the latch is directly connected to an input port, it is
implemented in an IOB as a dedicated input latch. For example, the D
latch described in the following VHDL and Verilog designs is imple-
mented with one function generator as shown in the “D Latch Imple-
mented with Gates” figure.

D Latch Inference

= VHDL Example

-- D_LATCH. VHD
-- May 1997

l'ibrary |EEE;
use | EEE. std_| ogic_1164. al | ;

entity d_latch is
port (GATE, DATA: in STD LOG G
Q out STD LCA Q);
end d_| atch;
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architecture BEHAV of d latch is

begin
LATCH process (GATE, DATA)
begin
if (GATE = '1') then
Q <= DATA;
end if;
end process; -- end LATCH
end BEHAV,

= Verilog Example

/* Transparent Hi gh Latch
* D LATCH. V
* May 1997 */

nodul e d_l atch (GATE, DATA, Q;
i nput GATE;

i nput DATA;
out put Q

reg Q

al ways @ ( GATE or DATA)
begin
if (GATE == 1’ bl)
Q <= DATA;
end // End Latch

endnodul e

D Latch

DATA

GATE

AND2

X4975

Figure 2-3 D Latch Implemented with Gates
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In this example, a combinatorial loop results in a hold-time require-
ment on DATA with respect to GATE. Since most synthesis tools do
not process hold-time requirements because of the uncertainty of
routing delays, Xilinx does not recommend implementing latches
with combinatorial feedback loops. A recommended method for
implementing latches is described in this section.

To eliminate this possible problem, use D registers instead of latches.
For example, to convert the D latch to a D register, use an Else state-
ment or modify the code to resemble the following example.

Converting a D Latch to a D Register

< VHDL Example
-- D _REG STER VHD
-- May 1997
-- Changing Latch into a D Register

library |EEE;
use | EEE. std |l ogic_1164. all;

entity d_register is
port (CLK, DATA: in STD LOG G,
Q out STD LCA O);
end d_register;

architecture BEHAV of d_register is

begin
MY_D REG process (CLK, DATA)
begin
if (CLK event and CLK="1") then
Q <= DATA;
end if;
end process; --End MY_D REG
end BEHAYV;

= Verilog Example

/* Changing Latch into a D Register
* D REG STER. V
* May 1997 * |

nmodul e d_register (CLK, DATA, Q;

Synthesis and Simulation Design Guide 2-29



Synthesis and Simulation Design Guide

2-30

i nput CLK;
i nput DATA;
out put Q

reg Q

al ways @ (posedge CLK)
begin: My_D Reg

Q <= DATA

end

endnodul e

With some synthesis tools you can determine the number of latches
that are implemented in your design. Check the manuals that came
with your software for information on determining the number of
latches in your design.

You should convert all If statements without corresponding Else
statements and without a clock edge to registers. Use the recom-
mended register coding styles in the synthesis tool documentation to
complete this conversion.

In XC4000E devices, you can implement a D latch by instantiating a
RAM 16x1 primitive, as illustrated in the following figure.

RAM 16X1
pEB——1p ob——HWQ
A0
Al
A2
A3
G WE

GND

X6220

Figure 2-4 D Latch Implemented by Instantiating a RAM

In all other cases (such as latches with reset/set or enable), use a D
flip-flop instead of a latch. This rule also applies to JK and SR
flip-flops.
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The following table provides a comparison of area and speed for a D
latch implemented with gates, a 16x1 RAM primitive, and a D

flip-flop.
Table 2-1 D Latch Implementation Comparison
spartan, |y 1000/ XC4000 Al
XC4000ECLB All Spartan .
Comparison Latch XLIXV, and XC4000 E/EX/X.L IXv Fam|l_|es
Implemented XC5200CLB Input Latch Instantiated D Flip
i Latch RAM Latch Flop
with Gates
Advantages |RTL HDL RTL HDL RTL HDL No hold time | No hold
infers latch infers latch, |infers latch, |or combina- |time or
no hold times | no hold torial loops, |combina-
times (if not | best for torial loop.
specifying | XC4000E FPGAsare
NODELAY, |when latch |register
saves CLB needed in abundant.
resources) CLB
Disadvantages | Feedback loop | Notavailable | Not avail- Must be Requires
results in hold |in XC4000E |ablein instantiated, |change in
time require- |or Spartan XC5200, uses logic code to
ment, not input to resources convert
suggested latch must latch to
directly register
connect to
port
Area? 1 Function 1CLB 110B 1 Function 1CLB
Generator Register/ Register/ Generator Register/
Latch Latch Latch

a. Area is the number of function generators and registers required. XC4000 and Spartan CLBs have two
function generators and two registers; XC5200 CLBs have four function generators and four register/

latches.

Resource Sharing

Resource sharing is an optimization technique that uses a single func-
tional block (such as an adder or comparator) to implement several
operators in the HDL code. Use resource sharing to improve design
performance by reducing the gate count and the routing congestion.
If you do not use resource sharing, each HDL operation is built with
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separate circuitry. However, you may want to disable resource
sharing for speed critical paths in your design.

The following operators can be shared either with instances of the
same operator or with an operator on the same line.

*
+—
>>=< <=

For example, a + operator can be shared with instances of other +
operators or with — operators. A * operator can be shared only with
other * operators.

You can implement arithmetic functions (+, —, magnitude compara-
tors) with gates or with your synthesis tool’s module library. The
library functions use modules that take advantage of the carry logic
in XC4000 family, XC5200 family, and Spartan family CLBs. Carry
logic and its dedicated routing increase the speed of arithmetic func-
tions that are larger than 4-bits. To increase speed, use the module
library if your design contains arithmetic functions that are larger
than 4-bits or if your design contains only one arithmetic function.
Resource sharing of the module library automatically occurs in most
synthesis tools if the arithmetic functions are in the same process.

Resource sharing adds additional logic levels to multiplex the inputs
to implement more than one function. Therefore, you may not want
to use it for arithmetic functions that are part of your design’s time
critical path.

Since resource sharing allows you to reduce the number of design
resources, the device area required for your design is also decreased.
The area that is used for a shared resource depends on the type and
bit width of the shared operation. You should create a shared
resource to accommodate the largest bit width and to perform all
operations.

If you use resource sharing in your designs, you may want to use
multiplexers to transfer values from different sources to a common
resource input. In designs that have shared operations with the same
output target, the number of multiplexers is reduced as illustrated in
the following VHDL and Verilog examples. The HDL example is
shown implemented with gates in the “Implementation of Resource
Sharing” figure.

= VHDL Example
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-- RES_SHARI NG. VHD
-- May 1997

l'ibrary | EEE;

use | EEE. std |l ogic_1164.all;

use | EEE. std_| ogi c_unsi gned. al | ;
use |EEE. std_logic_arith.all;

entity res_sharing is
port (Al,Bl1,C1,D1: in STD LOd C_VECTOR (7 downto 0);
COND_1: in STD LOG G
Z1: out STD LOG C VECTOR (7 downto 0));
end res_shari ng;

architecture BEHAV of res_sharing is
begin
P1: process (Al,B1, Cl, D1, COND_1)
begin
if (COND_1="1") then
Z1 <= Al + B1;
el se
Z1 <= Cl + D1;
end if;
end process; -- end P1

end BEHAYV;
= Verilog Example

/* Resource Sharing Exanple
* RES_SHARI NG V
* May 1997 * |

nmodul e res_sharing (A1, Bl, Cl, D1, COND 1, Z1);
i nput COND_1;

input [7:0] Al, Bl, C1, Di;
output [7:0] Z1;

reg [7:0] Z1;
always @Al or Bl or Cl1 or DL or COND_1)
begin
if (COND_1)
Z1 <= Al + B1;
el se
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Z1 <= Cl1 + D1;
end

endnodul e
If you disable resource sharing or if you code the design with the
adders in separate processes, the design is implemented using two
separate modules as shown in the “Implementation without

Resource Sharing” figure.
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Figure 2-5 Implementation of Resource Sharing
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Implementation without Resource Sharing
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Some synthesis tools generate modules from special Xilinx module
generation algorithms. Generally, this module generation is used for
operators such as adders, subtracters, incrementers, decrementers,
and comparators. The following table provides a comparison of the
number of CLBs used and the delay for the VHDL and Verilog
designs with and without resource sharing.

Table 2-2 Resource Sharing/No Resource Sharing Comparison
for XC4005EPC84-2

Resource No Resource
Resource No Resource . )
. . . : Sharing Sharing
: Sharing with | Sharing with . e . s
Comparison L . without Xilinx | without Xilinx
Xilinx Module | Xilinx Module
. ; Module Module
Generation Generation . .
Generation Generation
F/G Functions 24 24 19 28
H Function 0 0 11 8
Generators
Fast Carry Logic |5 10 0 0
CLBs
Longest Delay 27.878 ns 23.761 ns 47.010 ns 33.386 ns
Advantages/ Potential for Potential for No carry logic | No carry logic
Disadvantages area reduction |decreased crit- |increases path |increases CLB
ical path delay |delays count

Note: Refer to the appropriate reference manual for more informa-
tion on resource sharing.

Gate Reduction

Synthesis and Simulation Design Guide

Use the generated module components to reduce the number of gates
in your designs. The module generation algorithms use Xilinx carry
logic to reduce function generator logic and improve routing and
speed performance. Further gate reduction can occur with synthesis
tools that recognize the use of constants with the modules.
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Preset Pin or Clear Pin

Xilinx FPGAs consist of CLBs that contain function generators and
flip-flops. The XC4000 family and Spartan family flip-flops have a
dedicated clock enable pin and either a clear (asynchronous reset) pin
or a preset (asynchronous set) pin. All synchronous preset or clear
functions can be implemented with combinatorial logic in the func-
tion generators.

The XC3000 family and XC5200 family FPGAs have an asynchronous
reset pin on the CLB registers. An asynchronous preset can be
inferred, but is built by connecting one inverter to the D input and
connecting a second inverter to the Q output of a register. In this case,
an asynchronous preset is created when the asynchronous reset is
activated. This may require additional logic and increase delays. If
possible, the inverters are merged with existing logic connected to the
register input or output.

You can configure FPGA CLB registers to have either a preset pin or a
clear pin. You cannot configure the CLB register for both pins. You
must modify any process that requires both pins to use only one pin
or you must use three registers and a mux to implement the process.
If a register is described with an asynchronous set and reset, your
synthesis tool may issue an error message similar to the following
during the compilation of your design.

Warning: Target library contains no replacenent for
register ‘Q_reg’ (**FFGEN**) . (TRANS-4)

Warning: Cell ‘Q_reg’ (**FFGEN**) not translated.

(TRANS-1)

During the implementation of the synthesized netlist, NGDBuild
issues the following error message.

ERROR:basnu — logical block “Q_reg” of type “_FFGEN_"
is unexpanded.

An XC4000 CLB is shown in the following figure.
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The following VHDL and Verilog designs show how to describe a
register with a clock enable and either an asynchronous preset or a
clear.

Register Inference

VHDL Example

-- FF_EXAMPLE. VHD
-- May 1997
-- Exanple of Inplenmenting Registers

library |EEE;
use | EEE. std_| ogic_1164. al | ;
use | EEE. std_| ogi c_unsi gned. al | ;

entity ff_exanple is
port ( RESET, CLOCK, ENABLE: in STD LOQ C

DIN in STD LOG C VECTOR (7 downto 0);

Synthesis and Simulation Design Guide
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A Q QUT: out STD LOGE C VECTOR (7 downto 0);
B Q QUT: out STD LOG C VECTOR (7 downto 0);
C Q. UT: out STD LOG C VECTOR (7 downto 0);
D Q QUT: out STD LOd C_VECTOR (7 downto 0));

end ff_exanpl e;

architecture BEHAV of ff_exanple is
begin

-- Dflip-flop
FF: process (CLOCK)
begin
if (CLOCK event and CLOCK="1') then
A Q QUT <= D IN,
end if;
end process; -- End FF

-- Flip-flop with asynchronous reset
FF_ASYNC RESET: process (RESET, CLOCK)
begin
if (RESET = '1') then

B_Q_OUT <= “00000000";
elsif (CLOCK'event and CLOCK='1") then

B_Q _OUT <=D_IN;
end if;

end process; -- End FF_ASYNC_RESET

-- Flip-flop with asynchronous set
FF_ASYNC_SET: process (RESET, CLOCK)
begin
if (RESET ='1") then
C _Q OUT<="11111111";
elsif (CLOCK'event and CLOCK ='1") then
C_Q_OUT<=D_IN;
end if;
end process; -- End FF_ASYNC_SET

-- Flip-flop with asynchronous reset and clock
enable
FF_CLOCK_ENABLE: process (ENABLE, RESET, CLOCK)
begin
if (RESET ='1") then
D_Q_OUT <= “00000000";
elsif (CLOCK'event and CLOCK="1") then
if (ENABLE="1") then
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end

D QQUT <= D IN
end if;
end if;

end process; -- End FF_CLOCK ENABLE

BEHAV;

= Verilog Example

/* Exampl e of |nplenenting Registers
* FF_EXAMPLE. V
* May 1997 */

nodul e ff_exanpl e (RESET, CLOCK, ENABLE, D_IN,

A_QQUT, B_.QOUT, C_ QOaQUT, b QaUmn;

i nput RESET, CLOCK, ENABLE;

i nput [7:0] DN

out put [7: 0] A_Q.QUT;
out put [7: 0] B_Q.QUT;
out put [7: 0] C_Q. aJrT;
out put [7: 0] D_Q.QJrT;
reg [7: 0] A_Q.QUT;
reg [7: 0] B_Q.QUT;
reg [7: 0] C_Q.QUT;
reg [7: 0] D_Q.QJr;

/1l Dflip-flop
al ways @ posedge CLOCK)
begin

A QQUT <= D IN
end

/1 Flip-flop with asynchronous reset
al ways @ posedge RESET or posedge CLOCK)

begin
i f (RESET)
B Q QUT <= 8 b00000000;
el se
B QQUT <= DIN,
end

/1 Flip-flop with asynchronous set
al ways @ posedge RESET or posedge CLOCK)
begin
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i f (RESET)
C Q OUT <= 8'b11111111;
el se
C QaUr <= DIN,
end

/1 Flip-flop with asynchronous reset & cl ock enabl e
al ways @ posedge RESET or posedge CLOCK)

begin
i f (RESET)
D Q QUT <= 8’ b00000000;
el se if (ENABLE)
D QQUT <= D IN
end
endnodul e

Using Clock Enable Pin Instead of Gated Clocks

Use the CLB clock enable pin instead of gated clocks in your designs.
Gated clocks can introduce glitches, increased clock delay, clock skew,
and other undesirable effects. The first two examples in this section
(VHDL and Verilog) illustrate a design that uses a gated clock. The
“Implementation of Gated Clock™ figure shows this design imple-
mented with gates. Following these examples are VHDL and Verilog
designs that show how you can modify the gated clock design to use
the clock enable pin of the CLB. The “Implementation of Clock
Enable” figure shows this design implemented with gates.

< VHDL Example

-- GATE_CLOCK. VHD Version 1.1 --
-- Illustrates clock buffer control --
-- Better inplementation is to use --
-- clock enable rather than gated cl ock --
-- May 1997 --

library |EEE;
use | EEE. std_| ogic_1164. al | ;
use | EEE. std_| ogi c_unsi gned. al | ;

entity gate_clock is

port (INL, | N2, DATA CLK, LOAD: in STD LOG G
QUT1: out STD LOA O);
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end gat e_cl ock;

architecture BEHAVI ORAL of gate_ clock is
signal GATECLK: STD LG4 C;

begin

GATECLK <= (IN1 and IN2 and CLK);

GATE_PR: process (GATECLK, DATA, LOAD)
begin
if (GATECLK event and GATECLK='1') then
if (LOAD="1") then
QUT1 <= DATA;
end if;
end if;
end process; --End GATE_PR

end BEHAVI ORAL;
= Verilog Example
FEEEEPEEE bbb rrrrrnr

/1 GATE_CLOCK.V Version 1.1 /1
/1 Gated C ock Exanple I
/1 Better inplenentation to use clock /1
/1 enabl es than gating the clock I
/1 NMay 1997 I

FEETEEEE i rd

nodul e gate_clock(1 N1, I N2, DATA, CLK, LOAD, QUT1)

i nput INL ;
i nput IN2 ;
i nput DATA ;
i nput CLK ;
i nput LOAD ;
out put autl
reg QuT1 ;

Wi re GATECLK ;
assign GATECLK = (INL & IN2 & CLK);

al ways @ posedge GATECLK)
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begin
if (LOAD == 1’ bl)
QUT1 = DATA,
end
endnodul e

DATA | DFF
L -
LOAD D—l— D Q ouTL
CE

INL [ —
[ \ GATECLK
IN2 | ] Cc
CLK [ >
AND3

X8628

Figure 2-8 Implementation of Gated Clock
e VHDL Example

-- CLOCK_ENABLE. VHD
-- May 1997

l'ibrary | EEE;
use | EEE. std_| ogic_1164. al | ;
use | EEE. std_| ogi c_unsi gned. al | ;

entity clock_enable is
port (I NL, I N2, DATA CLOCK, LOAD: in STD LQOG G,
DOUT: out STD LOA C);
end cl ock_enabl e;

architecture BEHAV of clock_enable is
signal ENABLE: STD LO4 G;
begin

ENABLE <= I N1 and | N2 and LQAD,

EN PR process (ENABLE, DATA, CLOCK)
begin
if (CLOCK event and CLOCK="1') then
if (ENABLE="1') then
DOUT <= DATA;
end if;
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DATA
IN1
IN2

LOAD

CLOCK

end if;
end process; -- End EN_PR
end BEHAV,

Verilog Example

/* dock enabl e exanple

* CLOCK_ENABLE. V

* May 1997 */
nodul e cl ock_enabl e (I N1, | N2, DATA, CLK, LQAD, DQUT);
i nput INL, |N2, DATA;

i nput CLK, LOAD;

out put DOUT,;

wi re ENABLE;
reg DOUT;

assign ENABLE = IN1 & IN2 & LOAD;

al ways @ posedge CLK)

begin
i f ( ENABLE)
DOUT <= DATA;
end
endnodul e

DFF
D of——1" oumt
ENABLE
CE
AND3

¢

X4976

Figure 2-9 Implementation of Clock Enable

Using If Statements

The VHDL syntax for If statements is as follows:

Synthesis and Simulation

if condition then
sequence_of _st at enent s;
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{elsif condition then
sequence_of _statenents;}
el se
sequence_of _statenents;
end if;

The Verilog syntax for If statements is as follows:

if (condition)
begi n
sequence of statenents;
end
{else if (condition)
begin
sequence of statenents;
end}
el se
begin
sequence of statenents;
end

Use If statements to execute a sequence of statements based on the
value of a condition. The If statement checks each condition in order
until the first true condition is found and then executes the state-
ments associated with that condition. After a true condition is found
and the statements associated with that condition are executed, the
rest of the If statement is ignored. If none of the conditions are true,
and an Else clause is present, the statements associated with the Else
are executed. If none of the conditions are true, and an Else clause is
not present, none of the statements are executed.

If the conditions are not completely specified (as shown below), a
latch is inferred to hold the value of the target signal.

< VHDL Example

if (L ="1") then
Q<=D;
end if;

= Verilog Example

if (L==1'b1)
Q=D;
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To avoid a latch inference, specify all conditions, as shown here.
e VHDL Example

if (L ="1") then
Q<=D;
else
Q<=05
end if;
= Verilog Example

if (L==1"b1)
Q=D;
else

Q=0;

Using Case Statements

The VHDL syntax for Case statements is as follows.

case expression is
when choices =>
{sequence_of_statements;}
{when choices =>
{sequence_of_statements;}}
when others =>
{sequence_of_statements;}
end case;

The Verilog syntax for Case statements is as follows.

case (expression)
choices: statement;
{choices: statement;}
default: statement;
endcase

Use Case statements to execute one of several sequences of state-
ments, depending on the value of the expression. When the Case
statement is executed, the given expression is compared to each
choice until a match is found. The statements associated with the
matching choice are executed. The statements associated with the
Others (VHDL) or Default (\Verilog) clause are executed when the
given expression does not match any of the choices. The Others or
Default clause is optional, however, if you do not use it, you must
include all possible values for expression. For clarity and for
synthesis, each Choices statement must have a unique value for the

Synthesis and Simulation Design Guide 2-47



Synthesis and Simulation Design Guide

expression. If possible, put the most likely Cases first to improve
simulation speed.

Using Nested If Statements

Improper use of the Nested If statement can result in an increase in
area and longer delays in your designs. Each If keyword specifies
priority-encoded logic. To avoid long path delays, do not use
extremely long Nested If constructs as shown in the following
VHDL/Verilog examples. These designs are shown implemented in
gates in the “Implementation of Nested If” figure. Following these
examples are VHDL and Verilog designs that use the Case construct
with the Nested If to more effectively describe the same function. The
Case construct reduces the delay by approximately 3 ns (using an
XC4005E-2 part). The implementation of this design is shown in the
“Implementation of If-Case” figure.

Inefficient Use of Nested If Statement

< VHDL Example

-- NESTED | F. VHD
-- May 1997

Li brary | EEE;

use | EEE. STD LOG C 1164. al | ;

use | EEE. STD LOd C _UNSI GNED. al | ;
use | EEE. STD LOGJ C ARITH. al | ;

entity nested_if is

port (ADDR_A: in std_logic_vector (1 downto 0); -- ADDRESS Code
ADDR_B: in std_|logic_vector (1 downto 0); -- ADDRESS Code
ADDR_C: in std_|logic_vector (1 downto 0); -- ADDRESS Code
ADDR_D: in std_|logic_vector (1 downto 0); -- ADDRESS Code
RESET: in std_| ogic;
CLK : in std_|ogic;
DEC Q out std_logic_vector (5 downto 0)); -- Decode QUTPUT

end nested_if;

architecture xilinx of nested if is
begin

---------------- NESTED | F PROCESS --------------

NESTED_| F: process (CLK)
begin
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if (CLK event and CLK = ’'1") then
if (RESET = '0’) then
if (ADDR_A = “00") then
DEC_Q(5 downto 4) <= ADDR_D;
DEC_Q(3 downto 2) <=“01";
DEC_Q(1 downto 0) <= “00";
if (ADDR_B = “01") then
DEC_Q(3 downto 2) <= unsigned(ADDR_A) + '1";
DEC_Q(1 downto 0) <= unsigned(ADDR_B) + '1";
if ADDR_C ="“10") then
DEC_Q(5 downto 4) <= unsigned(ADDR_D) + '1";
if (ADDR_D = “11") then
DEC_Q(5 downto 4) <= “00";
end if;
else
DEC_Q(5 downto 4) <= ADDR_D;
end if;
end if;
else
DEC_Q(5 downto 4) <= ADDR_D;
DEC_Q(3 downto 2) <= ADDR_A;
DEC_Q(1 downto 0) <= unsigned(ADDR_B) + '1";
end if;
else
DEC_Q <= “000000";
end if;
end if;
end process;
end xilinx;

= Verilog Example
FEETEEEEEErrr bbby

/'l NESTED_I|F.V 11
/1 Nested If vs. Case Design Example //
/1 August 1997 I

R
modul e nested_if (ADDR A, ADDR B, ADDR C, ADDR D, RESET, CLK, DEC Q;

input [1:0] ADDRA ;
input [1:0] ADDR B ;
input [1:0] ADDRC;
input [1:0] ADDRD ;

i nput RESET, CLK ;
output [5:0] DECQ;
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reg [5:0] DECQ;

/!l Nested |f Process //
al ways @ (posedge CLK)
begin
if (RESET == 1’ bl)
begin

if (ADDR_A == 2’ b00)
begin
DEC (J 5: 4] <= ADDR_D;
DEC ( 3:2] <= 2’ b01;
DEC ( 1: 0] <= 2’ b0O0;
if (ADDR B == 2’ b01)
begin
DEC (J 3:2] <= ADDR A + 1’ b1,
DEC J 1: 0] <= ADDR B + 1’ b1,
if (ADDR_C == 2’ b10)
begin
DEC J 5:4] <= ADDR D + 1’ bil;
if (ADDR_D == 2’ bll)
DEC @ 5:4] <= 2’ b00;
end
el se
DEC J 5: 4] <= ADDR_D;
end
end
el se
DEC ( 5: 4] <= ADDR_D;
DEC ( 3:2] <= ADDR_A;
DEC J 1: 0] <= ADDR B + 1’ b1,
end
el se
DEC_Q <= 6’ b000000;
end

endnodul e
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ADDR_D<1 5> —
,‘>\BUF
‘W& OFD_S s> DEC_0<5:8>
AoDR_B<t s E>DJ:4%4[>‘“¥,
ADDR_c<1: 85>
XOR2 :ZN;::i Rl S
5’37:‘:: [ INV
NAND2 :ZN%::?* Ml B
RESET[> % |
cLk> {méﬁ x8504
Figure 2-10 Implementation of Nested If
Nested If Example Modified to Use If-Case
Note: In the following example, the hyphens (“don’t cares”) used for
bits in the Case statement may evaluate incorrectly to false for some
synthesis tools.
< VHDL Example
-- | F_CASE. VHD
-- May 1997
Li brary | EEE;

use | EEE. STD_LOGI C 1164. al | ;
use | EEE. STD_LOG C_UNSI GNED. al | ;
use | EEE. STD LOG C AR TH. al | ;

entity if_case is

port (ADDR_A: in std_|logic_vector (1 downto 0); -- ADDRESS Code
ADDR_B: in std_|logic_vector (1 downto 0); -- ADDRESS Code
ADDR_C: in std_|logic_vector (1 downto 0); -- ADDRESS Code
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ADDR_D: in std_|logic_vector (1 downto 0); -- ADDRESS Code
RESET: in std_| ogic;

CLK : in std_|ogic;

DEC Q out std_logic_vector (5 downto 0)); -- Decode QUTPUT

end if_case;

architecture xilinx of if _case is
signal ADDR ALL : std_l ogic_vector (7 downto 0);
begin

----concatenate all address lines -----------------------
ADDR_ALL <= (ADDR A & ADDR B & ADDR C & ADDR D) ;

-------- Use 'case’ instead of '"nested_if’ for efficient gate netlist------
| F_CASE: process (CLK)

if (CLK event and CLK = "1') then
if (RESET = '0’) then
case ADDR ALL is
when “00011011" =>
DEC_Q(5 downto 4) <= “00";
DEC_Q(3 downto 2) <= unsigned(ADDR_A) + '1";
DEC_Q(1 downto 0) <= unsigned(ADDR_B) + '1";
when “000110--" =>
DEC_Q(5 downto 4) <= unsigned(ADDR_D) + '1;
DEC_Q(3 downto 2) <= unsigned(ADDR_A) + '1';
DEC_Q(1 downto 0) <= unsigned(ADDR_B) + '1";
when “0001----" =>
DEC_Q(5 downto 4) <= ADDR_D;
DEC_Q(3 downto 2) <= unsigned(ADDR_A) + '1";
DEC_Q(1 downto 0) <= unsigned(ADDR_B) + '1";
when “00------ y=>
DEC_Q(5 downto 4) <= ADDR_D;
DEC_Q(3 downto 2) <="“01";
DEC_Q(1 downto 0) <=“007;
when others  =>
DEC_Q(5 downto 4) <= ADDR_D;
DEC_Q(3 downto 2) <= ADDR_A;
DEC_Q(1 downto 0) <= unsigned(ADDR_B) + '1";
end case;
else
DEC_Q <= “000000";
end if;
end if;
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end process;

end xilinx;

= Verilog Example

TEEELEEErrr bbb r b rrrrrirrry

/'l 1 F_CASE. V
/1l Nested If vs. Case Design Exanple //
/1 August 1997
FIETEELEL i rrrrn

11

11

nmodul e i f_case (ADDR A, ADDR B, ADDR C, ADDR D, RESET, CLK, DEC Q;

i nput [1:
i nput [ 1:
i nput [ 1:
i nput [ 1:
i nput

out put [5:
wire [7:
reg [5:

0]
0]
0]
0]

0]

0]
0]

ADDR A ;
ADDR B ;
ADDR C ;
ADDR D ;
RESET, CLK ;
DEC Q ;

ADDR ALL ;
DEC Q ;

/!l Concatenate all address lines //
assi gn ADDR ALL = {ADDR A, ADDR B, ADDR C, ADDR D}

/1l Use ’'case’

instead of 'nested_if’' for efficient gate netlist //

al ways @ (posedge CLK)

begin

if (RESET == 1’ bl)
begin

casex (ADDR_ALL)

8’ b00011011: begin
DEC ( 5:4] <= 2’ b0O0;
DEC  3:2] <= ADDR A
DEC J 1: 0] <= ADDR B
end

8’ b000110xx: begin
DEC J5:4] <= ADDR D + 1’ b1,
DEC J 3:2] <= ADDR A + 1'Dbil;
DEC J 1: 0] <= ADDR B + 1’ b1,
end

8’ b0001xxxx: begin
DEC  5: 4] <= ADDR_D;
DEC d 3:2] <= ADDR A + 1’ bl;
DEC  1: 0] <= ADDR B ;

+ +
R
o
=

+

+
=
o

=
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8’ bOOXXXXXX:

defaul t:

endcase
end
el se
DEC_Q <= 6’ b000000;
end

endnodul e

2-54

end
begin

DEC { 5:
DEC { 3:
DEC ( 1:

end
begi n

DEC J 5:
DEC { 3:
DEC ( 1:

end

4]
2]
0]

4]
2]
0]

<= ADDR D
<= 2'h01;
<= 2’ b0O0;

<= ADDR D;
<= ADDR A
<= ADDR B + 1’ bl;
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Figure 2-11 Implementation of If-Case

Comparing If Statement and Case Statement

The If statement generally produces priority-encoded logic and the
Case statement generally creates balanced logic. An If statement can
contain a set of different expressions while a Case statement is evalu-
ated against a common controlling expression. In general, use the
Case statement for complex decoding and use the If statement for
speed critical paths.

Most current synthesis tools can determine if the if-elsif conditions
are mutually exclusive, and will not create extra logic to build the
priority tree.
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The following examples use an If construct in a 4-to-1 multiplexer
design. The “If_Ex Implementation” figure shows the implementa-
tion of these designs.

4—to-1 Multiplexer Design with If Construct

VHDL Example

-- | F_EX. VHD
-- May 1997

l'ibrary | EEE;
use | EEE. std |l ogic_1164.all;
use | EEE. std_| ogi c_unsi gned. al | ;

entity if_ex is
port (SEL: in STD_LOG C VECTOR(1 downto 0);
AB,CD in STD LOG G
MUX_QUT: out STD LOG C);

end if_ex;

architecture BEHAV of if _ex is
begin

| F_PRO process (SEL, A B,C D
begin
if (SEL="00") then MUX_OUT <= A;
elsif (SEL="01") then MUX_OUT <= B;
elsif (SEL="10") then MUX_OUT <= C;
elsif (SEL="11") then MUX_OUT <= D;
else MUX_OUT <='0";
end if;
end process; --END IF_PRO

end BEHAV;

Verilog Example

Il 1F_EX.V I
/1 Exanple of a If statenent showing a /1
/1 mux created using priority encoded logic //
/1 HDL Synthesis Design Guide for FPGAs /1
/1 Novenber 1997 /1

FELEEEEEEEErrrrrr i r bbb n b rrrrry

nmodule if_ex (A B, C D, SEL, MJX QUT);
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i nput A, B, C D
input [1:0] SEL;
out put MUX_QUT;
reg MUX_QUT;
always @(A or B or Cor D or SEL)
begin
if (SEL == 2’ b00)
MUX_QUT = A;
else if (SEL == 2'b01)
MUX_QUT = B;
else if (SEL == 2’ b10)
MUX_QUT = G
else if (SEL == 2’ bll)
MJUX_QUT = D
el se
MUX_QUT = 0;
end
endnodul e
IBUF
A D [ L o —'OBUHF > MUX_OUT
SEL<1:0> [ =g - U5 F
SEL<1> U L
B [ > '|>
IBUF
. IBUF L owe

IBUF

o >—I > |

LOGIC_0

Figure 2-12

If_Ex Implementation

X8544

Synthesis and Simulation Design Guide

The following VHDL and Verilog examples use a Case construct for
the same multiplexer. The “Case_Ex Implementation” figure shows
the implementation of these designs. In these examples, the Case
implementation requires only one XC4000 CLB while the If construct
requires two CLBs in some synthesis tools. In this case, design the
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multiplexer using the Case construct because fewer resources are
used and the delay path is shorter.

4—to-1 Multiplexer Design with Case Construct
< VHDL Example

-- CASE_EX. VHD
-~ May 1997

l'ibrary | EEE;
use | EEE. std |l ogic_1164.all;
use | EEE. std_| ogi c_unsi gned. al | ;

entity case_ex is
port (SEL: in STD_LOG C VECTOR(1 downto 0);
A B,CD in STD LOG G
MUX_QUT: out STD LOG C);
end case_ex;

architecture BEHAV of case ex is
begin

CASE_PRO process (SEL, A B, C D)
begin
case SEL is
when “00” =>MUX_OUT <= A;
when “01” => MUX_OUT <= B;
when “10”" => MUX_OUT <= C;
when “11” => MUX_OUT <= D;
when others=> MUX_OUT <="'0";
end case;
end process; --End CASE_PRO

end BEHAV;
= Verilog Example

FEEEEEEEErrrrrrrrrrrrrr b r bbby
/'l CASE_EX. V /11
/1 Exanple of a Case statenent showing //
/1 A mux created using parallel |ogic I
/1 HDL Synthesis Design Guide for FPGAs //
/1 November 1997 I
TEEEEEEEE bbb rrry

nodul e case_ex (A, B, C, D, SEL, MJX _QUT);
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i nput A B C D
i nput [1:0] SEL;
out put MUX_QUT,;
reg MUX_QOUT;
always @(A or B or Cor D or SEL)
begin
case (SEL)
2’ b0O0:
MUX_QUT = A
2’ b0O1:
MUX_QUT = B;
2’ b10:
MUX_QUT = C;
2' bll:
MUX_QUT = D
defaul t:
MUX_QUT = O;
endcase
end
endnodul e
One CLB
SEL [1:0] IBUF E E
SEL [0] i :
' IBUF E vzt E
> ;
ogic_0 : :
o> I'B\UF E u42_g 77 u4z_h 4|§ OE5>—|UF >MUX_OUT
logic_0 : 1 i
E u'a\uF E
: SEL [1] v 1

-------------------------- ' X8545

Figure 2-13 Case_Ex Implementation
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Chapter 3

Understanding High-Density Design Flow

This chapter describes the steps in a typical HDL design flow.
Although these steps may vary with each design, the information in
this chapter is a good starting point for any design. If necessary, refer
to the current version of the Quick Start Guide for the Xilinx Alliance
Series to familiarize yourself with the Xilinx and interface tools. This
chapter includes the following sections.

Design Flow

“Design Flow”

“Entering your Design and Selecting Hierarchy”

“Functional Simulation of your Design”

“Synthesizing and Optimizing your Design”

“Setting Timing Constraints”

“Evaluating Design Size and Performance”

“Evaluating your Design for Coding Style and System Features”
“Placing and Routing Your Design”

“Timing Simulation of Your Design”

“Downloading to the Device and In-system Debugging”

“Creating a PROM File for Stand-Alone Operation”

An overview of the design flow steps is shown in the following
figure.
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Figure 3-1 Design Flow Overview
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Entering your Design and Selecting Hierarchy

The first step in implementing your design is creating the HDL code
based on your design criteria.

Design Entry Recommendations

The following recommendations can help you create effective
designs.

Use RTL Code

By using register transfer level (RTL) code and avoiding (when
possible) instantiating specific components, you can create designs
with the following characteristics.

Note: In certain cases, instantiating optimized modules, such as Logi-
BLOX modules, is beneficial with RTL.

Readable code
Faster and simpler simulation
Portable code for migration to different device families

Reuse of code in future designs

Carefully Select Design Hierarchy

Selecting the correct design hierarchy is advantageous for the
following reasons.

Improves simulation and synthesis results
Modular designs are easier to debug and modify

Allows parallel engineering (a team of engineers can work on
different parts of the design at the same time)

Improves the placement and routing of your design by reducing
routing congestion and improving timing

Allows for easier code reuse in the current design, as well as in
future designs

Synthesis and Simulation Design Guide 3-3



Synthesis and Simulation Design Guide

Functional Simulation of your Design

Use functional or RTL simulation to verify the syntax and function-
ality of your design. Use the following recommendations when simu-
lating your design.

= Typically with larger hierarchical HDL designs, you should
perform separate simulations on each module before testing your
entire design. This makes it easier to debug your code.

= Once each module functions as expected, create a test bench to
verify that your entire design functions as planned. You can use
the test bench again for the final timing simulation to confirm
that your design functions as expected under worst-case delay
conditions.

Synthesizing and Optimizing your Design

34

This section includes recommendations for compiling your designs to
improve your results and decrease the run time.

Note: Refer to your synthesis tool documentation for more informa-
tion on compilation options and suggestions.

Creating an Initialization File

Before you can compile your design, you must create an initialization
file to specify compiler defaults, and to point to the applicable imple-
mentation libraries. Refer to your synthesis tool documentation for
information on creating this file.

Creating a Compile Run Script

The next step is to create a compile run script for iterative design
compilations, and to use as a reference for the steps in the synthesis
process. Many commonly-used synthesis tools have this capability. If
you are a new user, you may want to use the graphical user interface
to compile your design instead of using a run script. However, the
iterative design compilation process can be tedious with the graph-
ical interface. A run script can speed up the design process.
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Compiling Your Design

Use the recommendations in this section to successfully compile your
design.

Modifying your Design

You may need to modify your code to successfully compile your
design because certain design constructs that are effective for simula-
tion may not be as effective for synthesis. The synthesis syntax and
code set may differ slightly from the simulator syntax and code set.

Compiling Large Designs

Older versions of synthesis tools required incremental design compi-
lations to decrease run times. Some or all levels of hierarchy were
compiled with separate compile commands and saved as output or
database files. The output netlist or compiled database file for each
module was read during synthesis of the top level code. This method
is not necessary with new synthesis tools, which can handle large
designs from the top down. The 5,000 gates per module rule of thumb
no longer applies with the new synthesis tools. Refer to your
synthesis tool documentation for details.

Saving Compiled Design as XNF or EDIF

After your design is successfully compiled, save it as an XNF or EDIF
file for input to the Xilinx software.

Setting Timing Constraints

You can define timing specifications for your design in the User
Constraints File (UCF). The UCF gives you tight control of the overall
specifications by giving you access to more types of constraints; the
ability to define precise timing paths; and the ability to prioritize
signal constraints. Furthermore, you can group signals together to
simplify timing specifications. Some synthesis tools translate certain
synthesis constraints to Xilinx implementation constraints. The trans-
lated constraints are placed in a special TIMESPEC component. For
more information on timing specifications in the UCF file, refer to the
Quick Start Guide for Xilinx Alliance Series, the Libraries Guide, and the
Answers Database on the Xilinx Web site (http://www.xilinx.com).
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Naming and Grouping Signals Together

You can name and group signals with TNMs (Timing Names) or with
TIMEGRPs (Time groups). TNMs and TIMEGRPs are placed on these
start and end points: ports, registers, latches, or synchronous RAMs.
The new specification, TPSYNC, allows you to define an asynchro-
nous node for a timing specification.

TNMs

Timing Names are used to identify a port, register, latch, RAM, or
groups of these components for timing specifications. TNMs are spec-
ified from a UCF with the following syntax.

I NST Instance_Name TNM=TNM_Name;

Instance_Name is the name given to the port, register, latch, or RAM
in your design. The instance names for any port or instantiated
component are provided by you in your HDL code. Inferred flip-
flops and latch names can usually be determined from the log files.
TNM_NAME is the arbitrary name you give the timing group.

You can include several of these statements in the UCF file with a
common TNM_NAME to group elements for a timing specification
as follows.

NET DATA TNM=I NPUT_PORTS;
NET SELECT TNMEI NPUT_PORTS;

The above example takes two ports, DATA and SELECT, and gives
them the common timing name INPUT_PORTS.

TIMEGRPs

Time Groups are another method for specifying a group of compo-
nents for timing specifications.

Time groups use existing TNMs or TIMEGRPs to create new groups
or to define new groups based on the output net that the group
sources. There are several methods to create TIMEGRPSs in the UCF
file, as follows.

TI MEGRP TIMEGRP_Name=TNML: TNMZ;
Tl MEGRP TIMEGRP_Name=TNMB: EXCEPT: TNMV4;

The Xilinx software recognizes the following global timing names.
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e FFS— All flip-flops in your design

= PADS — All external ports in your design

e RAMS — All synchronous RAMSs in your design
e LATCHES — All latches in your design

The following time group specifies the group name, FAST_FFS,
which consists of all flip-flops in your design except for the ones with
the TNM or TIMEGRP SLOW _FFS attribute.

TI MEGRP FAST_FFS=FFS: EXCEPT: SLOW _FFS;

TPSYNC Specification

In the latest version of the Xilinx software, you can define any node
as a source or destination for a timing specification with the TPSYNC
keyword. In synthesis designs, it is usually difficult to identify the net
names for asynchronous paths of inferred logic. These net names can
change from compile to compile, so it is not recommended to use this
specification with inferred logic. However, with instantiated logic,
the declared SIGNAL or WIRE name usually remains intact in the
netlist and does not change from compile to compile. Some synthesis
tools can preserve the signal/net name defined in the RTL through
the optimization process. Check with your synthesis vendor for this
capability. The UCF syntax is as follows.

NET Net_Name TPSYNC=TPSYNC_Name;

In the following NET statement, the TPSYNC is attached to the
output net of a 3-state buffer, BUS3STATE. If a TPSYNC is attached to
a net, then the source of the net is considered to be the endpoint (in
this case, the 3-state buffer itself). The subsequent TIMESPEC state-
ment can use the TPSYNC name just as it uses a TNM name.

NET BUS3STATE TPSYNC=bus3;

TI MESPEC
TSNewSpc3=FROM PAD( ENABLE_BUS) : TO:. bus3: 20ns;

Specifying Timing Constraints

After your design signals are specified with TNMs, TIMEGRPs, or
global timing names, you can place a specification on the design
paths. There are a few methods for specifying these timing paths and
different specifications have different priorities.
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Note: Current versions of the Xilinx implementation tools have
improved methods for entering timing constraints. Refer to the Xilinx
documentation for your version of the place and route tools for the
latest constraints commands and styles.

Period Constraint

The Period constraint specifies a clock period or clock speed on a net
or clock port. The Xilinx tools attempt to meet all Pad to Setup
requirements, as well as all Clock to Setup delays for registers
clocked by the specified clock net. This is equivalent to a create clock
type of command in a synthesis tool script. Following are the two
methods for specifying a period constraint.

NET Clock_Name PERIOD = Clock_Period ;
or
NET Clock_Name TNM=TNM_Name;
Tl MESPEC TIMESPEC_Name = PERI OD:TNM_Name:Clock_Period

The following example specifies that the CLOCK port has a period of
50ns. All input paths to flip-flops clocked with this port are desig-
nated to operate at 50ns.

NET CLOCK PERI OD = 50;

FROM:TO Style Constraint

Specific paths can be specified with a FROM:TO style timing specifi-
cation. These constraints are specified using global timing names,
TNMs, TIMEGRPs, or TPSYNCs to connect the source and destina-
tion of the timing path, as well as the desired maximum delay of the
path. An equivalent synthesis tool command is a set max delay type
of command. A UCF example follows.

TI MESPEC TIMESPEC_Name =
FROMSource_Name:TO Desination_Name:Delay_Value ;

TIMESEPC_Name is specified with the TS identifier followed by a
number, such as TS01.
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The following example specifies a new timespec with the identifier
TS01 so that all paths that are sourced by a port and end at a register
grouped with the name DATA_FLOPS have a delay less than 30ns.

TI MESPEC TS01 = FROM PADS: TO DATA_FLOPS: 30;

Offset Constraint

Note: The OFFSET constraint must be used with the clock PERIOD
constraint.

The OFFSET constraint can be applied to ports defined in your code.
It defines the delay of a signal relative to a clock, and is only valid for
registered data paths. The OFFSET constraint specifies the signal
delay external to the chip, allowing the implementation tools to auto-
matically adjust relevant internal delays (CLK buffer and distribution
delays) to accommodate the external delay specified with this
constraint. This constraint is equivalent to the set input delay and set
output delay type of commands in your synthesis tool.

NET Port Name OFFSET = {IN | OUT} Time { BEFORE |
AFTER} Clock_Name ;

IN | OUT specifies that the offset is calculated with respect to an
input IOB or an output I0B.

For a bidirectional 10B, the IN | OUT syntax lets you specify the flow
of data (input or output) on the IOB. BEFORE | AFTER indicates
whether data is to arrive (input) or leave (output) the device before or
after the clock input.

The following example specifies that the data on the output port,
DATA_OUT, arrive on the output pin 20ns after the edge of the clock
signal, CLOCK, arrives.

NET DATA_OUT OFFSET = OUT 20 AFTER CLOCK;

Ignoring Timing Paths

When a timespec is issued for a path that is not timing-critical, you
can specify to ignore this path for one or all timing specifications. A
TIG (Timing IGnore) can be specified on these particular nets. The
synthesis tool equivalent is the Set False Path command. The UCF
syntax is as follows.

NET Signal_Name Tl G=TIMESPEC_Name ;
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To ignore all timing constraints for a signal:
NET Signal_Name Tl G

To ignore an entire timing constraint:
Tl G=TIMESPEC_Name;

In the following example, the SLOW_PATH net is set to ignore the
timing constraint with the name TS01.

NET SLOW PATH Tl G=TS01,

Controlling Signal Skew

You can control the maximum allowed skew in your designs. The
maximum skew (MAXSKEW) is the difference between the longest
and shortest driver-to-load connection delays for a given net. The
maximum and minimum delays are determined using worst case
maximum delay values for each path. While this specification cannot
guarantee that this maximum skew value is achieved in the actual
device, it allows the software to minimize the amount of skew on the
specified signal. This specification is useful for high-fanout nets when
all available global buffers have been used for other critical signals.
An example of the UCF syntax for this specification follows.

NET Signal_Name MAXSKEWESkew_Value ;

The following example specifies that the CLOCK_ENABLE signal
should not have a skew value greater than 4ns.

NET CLOCK_ENABLE MAXSKEWF4,

Timing Constraint Priority

Timing constraints can be assigned priorities when paths are over-
lapped by multiple timing constraints. Priorities can be directly spec-
ified to a timing constraint as follows.

TI MESPEC TIMESPEC_Name = FROMGroupl TO Group2
Delay_Value PRI ORI TY Priority_Level;
The lower the priority_level, the higher the precedence.

The following example sets a timespec where the source is a time
group labeled THESE_FFS and the destination is labeled
THOSE_FFS, with a delay value of 25ns and a priority level of 2.
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TI MESPEC TS04=FROM THESE_FFS: TO. THOSE_FFS: 25
PRICRITY 2;

However, timing constraints have an inherent precedence that is
based on the type of constraint and the site description provided to
the tools. If two constraints are of the same priority and cover the
same path, then the last constraint in the constraint file overrides any
other constraints that overlap.

Inherent timing constraint priority is shown in the following table.

Note: You cannot assign a priority to override inherent timing
constraint priority. You can set priorities for different timing within
the same constraint type.

Table 3-1 Precedence of Constraints

Across Constraint Sources

Highest |Physical Constraint File (PCF)
Priority

User Constraint File (UCF)

Lowest Input Netlist / Netlist Constraint File (NCF)
Priority

Within Constraint Sources

Highest | TIG (Timing Ignore)
Priority

FROM:USER1:THRU:USER_T:TO:USER2 Specification
(USER1 and USER2 are user-defined groups)

FROM:USER1:THRU:USER_T:TO:FFS Specification or
FROM:FFS:THRU:USER_T:TO:USER?2 Specification
(FFS is any pre-defined group)

FROM:FFS:THRU:USER_T:TO:FFS Specification
FROM:USERL:TO:USER2 Specification

FROM:USERL:TO:FFS Specification or
FROM:FFS:TO:USER2 Specification

FROM:FFS:TO:FFS specification
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Table 3-1 Precedence of Constraints

Period specification

Lowest “Allpaths” type constraints
Priority

Evaluating Design Size and Performance

3-12

Your design should meet the following requirements.
= Design must function at the specified speed
= Design must fit in the targeted device

After your design is compiled, you can determine preliminary device
utilization and performance with your synthesis tool’s reporting
options. After your design is mapped by the Xilinx tools, you can
determine the actual device utilization. At this point in the design
flow, you should verify that your chosen device is large enough to
incorporate any future changes or additions, and that your design
will perform as specified.

Using your Synthesis Tool to Estimate Device
Utilization and Performance

Use your synthesis tool’s area and timing reporting options to esti-
mate device utilization and performance. After compiling, use the
report area command to obtain a report of device resource utilization.
Some synthesis tools provide area reports automatically. Refer to
your synthesis tool documentation for correct command syntax.

Note: See the “Report Files” appendix for sample report files from
various synthesis vendors.

This report lists the compiled cells in your design, as well as informa-
tion on how your design is mapped in the FPGA. These reports are
generally accurate for the XC4000 and Spartan family because the
synthesis tool creates the logic from your code and maps your design
into the FPGA. However, these reports are different for the various
synthesis tools. Some reports specify the minimum number of CLBs
required, while other reports specify the “unpacked” number of
CLBs to make an allowance for routing. For an accurate comparison,
you should compare reports from the Xilinx place and route tool after
implementation. Also, any instantiated components, such as Logi-
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BLOX modules, EDIF files, XNF files, or other components that your
synthesis tool does not recognize during compilation are not
included in the report file. If you include these components in your
design, you must include the logic area used by these components
when estimating design size. Also, sections of your design may get
trimmed during the mapping process, and may result in a smaller
design.

Using the Timing Report Command

Use your synthesis tool’s timing report command to obtain a report
with estimated data path delays. Refer to your synthesis vendor’s
documentation for command syntax.

Note: See the “Report Files” appendix for sample report files from
various synthesis vendors.

This report is based on the logic level delays from the cell libraries
and estimated wire-load models for your design. This report is an
estimate of how close you are to your timing goals; however, it is not
the actual timing for your design. An accurate report of your design’s
timing is only available after your design is placed and routed. This
timing report does not include information on any instantiated
components, such as LogiBLOX modules, EDIF files, XNF files, or
other components that are not recognized by your synthesis tool
during compilation.

Determining Actual Device Utilization and Pre-routed
Performance
To determine if your design fits the specified device, you must map it
with the Xilinx Map program. The generated report file
design_name.mrp contains the implemented device utilization infor-

mation. You can run the Map program from the Design Manager or
from the command line.

Using the Designh Manager to Map Your Design

Use the following steps to map your design using the Design
Manager.

Note: For more information on using the Design Manager, see the
Design Manager/Flow Engine Reference/User Guide.
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1. To start the Design Manager, enter the following command.
xil'inx
2. To create a new project, select the XNF or EDIF file generated by

your synthesis tool as your input file fromthe Fi | e — New
Pr oj ect menu command.

3. To start design implementation, click the Implement toolbar
button or select Desi gn — | npl ement .

The Implement dialog box appears.

4. If necessary, select a part in the dialog box.

5. Select the Options button in the Implement dialog box.
The Options dialog box appears.

6. Select the Produce Logic Level Timing Report option.

This option creates a timing report prior to place and route, but
after map, as described in the following five steps.

7. Select the Edit Template button next to the Implementation drop-
down list.

The Implementation Template dialog box appears.
8. Select the Timing tab.
9. Select the Produce Logic Level Timing Report radio button.
10. Select the type of report you want to create.

The default is Report Paths in Timing Constraints.

11. Use the Implementation Template dialog box tabs (Optimize &
Map, Place & Route, or Interface) to select any other options
applicable to your design. Select K to exit the Implementation
Template dialog box.

Note: Xilinx recommends using the default Map options for your
designs. Also, do not use the guided map option with your synthe-
sized designs.

12. Select Run in the Implement dialog box to begin implementing
your design.
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13.

14,

15.

16.

17.

18.

When the Flow Engine is displayed, stop the processing of your
design after mapping by selecting Set up —» St op After or by
selecting the Set Target toolbar button.

The Stop After dialog box appears.
Select Map and select OK.

After the Flow Engine is finished mapping your design, select
Uilities -~ Report Browser toview the map report.
Double-click the report icon that you want to view. The map
report includes a Design Summary section that contains the
device utilization information.

View the Logic Level Timing Report with the Report Browser.
This report shows the performance of your design based on logic
levels and best-case routing delays.

At this point, you may want to start the Timing Analyzer from
the Design Manager to create a more specific report of design
paths.

Use the Logic Level Timing Report and any reports generated
with the Timing Analyzer or the Map program to evaluate how
close you are to your performance and utilization goals. Use
these reports to decide whether to proceed to the place and route
phase of implementation, or to go back and modify your design
or implementation options to attain your performance goals. You
should have some slack in routing delays to allow the place and
route tools to successfully complete your design. Use the verbose
option in the Timing Analyzer to see block-by-block delay. The
timing report of a mapped design (before place and route) shows
block delays, as well as estimated routing delays.

Using the Command Line to Map Your Design

1.

Translate your design as follows.

ngdbui | d - p target_device design_name. xnf
Map your design as follows.

map design_name. ngd

Use a text editor to view the Device Summary section of the
design_name.mrp map report. This section contains the device
utilization information.
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4. Runatiming analysis of the logic level delays from your mapped
design as follows.

trce [options] design_name. ngd

Note: For available options, enter only the trce command at the
command line without any arguments.

Use the Trace reports to evaluate how close you are to your
performance goals. Use the report to decide whether to proceed
to the place and route phase of implementation, or to go back and
modify your design or implementation options to attain your
performance goals. You should have some slack in routing delays
to allow the place and route tools to successfully complete your
design.

The following is the Device Summary section of a Map report.

Desi gn Sumary

Nurmber of errors: 0
Nunber of war ni ngs: 3
Nurmber of CLBs: 39 out of 100 39%
CLB Flip Flops: 32
4 input LUTs: 66
3 input LUTs: 5
Nurmber of bonded | OBs: 30 out of 61 49%
| OB Fl ops: 0
| OB Lat ches: 0
Nurmber of secondary CLKs: 1 out of 4 25%
Nurber of oscillators: 1
Nurmber of STARTUPs: 1
Nurmber of READCLKs: 1
Nurmber of READBACKS: 1
Nunber of MDO pads: 1
Nurmber of MD1 pads: 1
Total equival ent gate count for design: 1538
Addi tional JTAG gate count for | OBs: 1536

The following is a sample Logic Level Timing Report.

Xilinx TRACE, Version M.4.12
Copyright (c) 1995-1997 Xilinx, Inc. Al rights reserved.

Design file: map. ncd
Physical constraint file: deno_board. pcf
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Devi ce, speed: xc4003e, -2 (x1_0.86 PRELI M NARY)
Report |evel: sunmary report

Timng constraint: NET "FAST_CLOCK' PERIOD = 15.200 nS  HI GH 50.000 % ;
1 itemanal yzed, 0 timng errors detected.
M ni mum period is 5. 585ns.

Tim ng constraint: NET "control _| ogic/SLONCLOCK" PERIOD = 121.600 nS
HI GH 50. 000 % ;

677 itenms anal yzed, O timng errors detected.

M ni mum period is 17.295ns.

Al constraints were net.

Ti m ng sunmary:

Timng errors: 0O Score: 0
Constraints cover 811 paths, 0 nets, and 232 connections (73.2% cover age)

Design statistics:
M ni mum period: 17.295ns (Maxi nrum frequency: 57.820M1z)

Anal ysi s conpl eted Tue Jan 27 12:07:59 1998

Evaluating your Design for Coding Style and
System Features

At this point, if you are not satisfied with your design performance,
you can re-evaluate your code and make any necessary improve-
ments. Modifying your code and selecting different compiler options
can dramatically improve device utilization and speed.
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Tips for Improving Design Performance

This section includes ways of improving design performance by
modifying your code and by incorporating FPGA system features.
Most of these techniques are described in more detail in this manual.
Modifying Your Code

You can improve design performance with the following design
modifications.

= Reduce levels of logic to improve timing

= Redefine hierarchical boundaries to help the compiler optimize
design logic

= Pipeline

= Logic replication

= Use of LogiBLOX or Coregen modules
= Resource sharing

= Restructure logic

Using FPGA System Features

After correcting any coding style problems, use any of the following
FPGA system features in your design to improve resource utilization
and to enhance the speed of critical paths.

Note: Each device family has a unique set of system features. Review
the current version of the The Programmable Logic Data Book for the
system features available for the device you are targeting.

= Use global set/reset and global tri-state nets to reduce routing
congestion and improve design performance

= Useclock enables

= Place the highest fanout signals on the global buffers

< Modify large multiplexers to use tri-state buffers

= Use one-hot encoding for large or complex state machines
= Use I/0 registers when applicable

= Use I/0 decoders when applicable
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= Use I/0 multiplexers when applicable

Using Xilinx-specific Features of Your Synthesis Tool

Most synthesis tools have special options for the Xilinx-specific
features listed in the previous section. Refer to your synthesis tool
documentation for help on using Xilinx-specific features.

Placing and Routing Your Design

Note: For more information on placing and routing your design, refer
to the Development System Reference Guide.

The overall goal when placing and routing your design is fast imple-
mentation and high-quality results. However, depending on the situ-
ation and your design, you may not always accomplish this goal, as
described in the following examples.

= Earlier in the design cycle, run time is generally more important
than the quality of results, and later in the design cycle, the
converse is usually true.

= During the day, you may want the tools to quickly process your
design while you are waiting for the results. However, you may
be less concerned with a quick run time, and more concerned
about the quality of results when you run your designs for an
extended period of time (during the night or weekend).

= If the targeted device is highly utilized, the routing may become
congested, and your design may be difficult to route. In this case,
the placer and router may take longer to meet your timing
requirements.

< |If design constraints are rigorous, it may take longer to correctly
place and route your design, and meet the specified timing.

Decreasing Implementation Time

The options you select for the placement and routing of your design
directly influence the run time. Generally, these options decrease the
run time at the expense of the best placement and routing for a given
device. Select your options based on your required design perfor-
mance.
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Note: If you are using the command line, the appropriate command
line option is provided in the following procedure.

Use the following steps to decrease implementation time in the
Design Manager.

1. SelectDesi gn - | npl enent
The Implement dialog box appears.

2. Select the Options button in the Implement dialog box.
The Options dialog box appears.

3. Select the Edit Template button next to the Implementation drop-
down list in the Program Options Templates field. The Imple-
mentation Template dialog box appears.

4. Select the Place & Route tab.
5. Set options in this dialog box as follows.
e Place & Route Effort Level

Generally, you can reduce placement times by selecting a less
CPU-intensive algorithm for placement. You can set the
placement level from 1 (fastest run time) to 5 (best results)
with the default equal to 2. Use the -I switch at the command
line to perform the same function.

Note: In some cases, poor placement with a lower placement level
setting can result in longer route times.

< Router Options

You can limit router iterations to reduce routing times.
However, this may prevent your design from meeting timing
requirements, or your design may not completely route.
From the command line, you can control router passes with
the —i switch.

= Use Timing Constraints During Place and Route

You can improve run times by not specifying some or all
timing constraints. This is useful at the beginning of the
design cycle during the initial evaluation of the placed and
routed circuit. To disable timing constraints in the Design
Manager, deselect the Use Timing Constraints During Place
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and Route button. To disable timing constraints at the
command line, use the —x switch with PAR.

Select OK to exit the Implementation Template dialog box.
Select any applicable options in the Options dialog box.
Select OK.

© ®©® N o

Select Run in the Implement dialog box to begin implementing
your design.

Improving Implementation Results

Conversely, you can select options that increase the run time, but
produce a better design. These options generally produce a faster
design at the cost of a longer run time. These options are useful when
you run your designs for an extended period of time (overnight or
over the weekend).

Multi-Pass Place and Route Option

Use this option to place and route your design with several different
cost tables (seeds) to find the best possible placement for your design.
This optimal placement results in shorter routing delays and faster
designs. This option works well when the router passes are limited
(with the —i option). After an optimal cost table is selected, use the re-
entrant routing feature to finish the routing of your design. You may
select this option from the Design menu in the Design Manager, or
specify this option at the command line with the —n switch.

Turns Engine Option (UNIX only)

This option is a Unix-only feature that works with the Multi-Pass
Place and Route option to allow parallel processing of placement and
routing on several Unix machines. The only limitation to how many
cost tables are concurrently tested is the number of workstations you
have available. To use this option in the Design Manger, specify a
node list when selecting the Multi-Pass Place and Route option. To
use this feature at the command line, use the —-m switch to specify a
node list, and the —n switch to specify the number of place and route
iterations.

Note: For more information on the turns engine option, refer to the
Xilinx Development System Reference Guide.
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Re-entrant Routing Option

Use the re-entrant routing option to further route an already routed
design. The router reroutes some connections to improve the timing
or to finish routing unrouted nets. You must specify a placed and
routed design (.ncd) file for the implementation tools. This option is
best used when router iterations are initially limited, or when your
design timing goals are close to being achieved.

From the Design Manager

To initiate a re-entrant route from the Design Manager interface,
follow these steps.

1. From the Design Manager, select the placed and routed design
revision for the re-entrant option.

2. Select Tool s —» Fl ow Engi ne to start the Flow Engine from the
Design Manager.

3. From the Flow Engine menu, select Set up — Re- ent r ant
Rout e.

4. Inthe Advanced dialog box that is displayed, select the Allow
Re-entrant Routing option.

5. Select the appropriate options in the Re-entrant Route Options
field.

6. Select OK.

7. The Place and Route icon in the Flow Engine is replaced with the
Re-entrant Route icon. If this step is completed, use the Step Back
button until the Re-entrant Route icon no longer indicates
completed.

8. Select Run to complete the re-entrant routing.

From the Command Line

To initiate a re-entrant route from the command line, you can run
PAR with the -k and —p options, as well as any other options you
want to use for the routing process. You must either specify a unique
name for the post re-entrant routed design (.ncd) file or use the -w
switch to overwrite the previous design file, as shown in the
following examples.

par -k —p other_options design_name.ncd new_name.ncd
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par -k —p —w other_options design_name.ncd design.ncd

Cost-Based Clean-up Option

This option specifies clean-up passes after routing is completed to
substitute more appropriate routing options available from the initial
routing process. For example, if several local routing resources are
used to transverse the chip and a longline is available, the longline is
substituted in the clean-up pass. The default value of cost-based
cleanup passes is 1. To change the default value, use the Template
Manager in the Design Manager, or the —c switch at the command
line.

Delay-Based Clean-up Option

This option specifies clean-up passes after routing is completed to
substitute more appropriate routing options to reduce delays. The
default number of passes for delay-based clean-up is 0. You can
change the default in the Design Manager in the Implementation
Options window, or at the command line with the —d switch.

Guide Option (not recommended)

This option is generally not recommended for synthesis-based
designs. Re-synthesizing modules can cause the signal and instance
names in the resulting netlist to be significantly different from those
in earlier synthesis runs. This can occur even if the source level code
(Verilog or VHDL) contains only a small change. Because the guide
process is dependent on the names of signals and comps, synthesis
designs often result in a low match rate during the guiding process.
Generally, this option does not improve implementation results.

Timing Simulation of Your Design

Note: Refer to the “Simulating Your Design” chapter for more infor-
mation on design simulation.

Timing simulation is important in verifying the operation of your
circuit after the worst-case placed and routed delays are calculated
for your design. In many cases, you can use the same test bench that
you used for functional simulation to perform a more accurate simu-
lation with less effort. You can compare the results from the two
simulations to verify that your design is performing as initially speci-
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fied. The Xilinx tools create a VHDL or Verilog simulation netlist of
your placed and routed design, and provide libraries that work with
many common HDL simulators.

Downloading to the Device and In-system

Debugging

After you have verified the functionality and timing of your placed
and routed design, you can create a design data file to download for
in-system verification. The design data or bitstream (.bit) file is
created from the placed and routed .ncd file. In the Design Manager,
use the Configuration step in the Flow Engine to create this file. From
the command line, run BitGen on your placed and routed .ncd file to
create the .bit file as follows.

bi t gen [options] design. ncd

Use the .bit file with the XChecker cable and the Hardware Debugger
to download the data to your device. You can run the Hardware
Debugger from the Design Manager, or from the command line as
follows.

hwdebugr design. bi t

The Hardware Debugger allows you to download the data to the
FPGA using your computer’s serial port. The Hardware Debugger
can also synchronously or asynchronously probe external or internal
nodes in the FPGA. Waveforms can be created from this data and
correlated to the simulation data for true in-system verification of
your design.

Creating a PROM File for Stand-Alone Operation

3-24

After verifying that the FPGA works in the circuit, you can create a
PROM file from the .bit file to program a PROM or other data storage
device. You can then use this file to program the FPGA in-circuit
during normal operation.

Use the Prom File Formatter to create the PROM file, or from the
command line use PROMGen. You can run the Prom File Formatter
from the Design Manager, or from the command line as follows.

pronfntr design. bit
Run PROMGen from the command line by typing the following.
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prongen [options] design. bit

Note: For more information on using these programs, refer to the
Xilinx Development System Reference Guide.
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Chapter 4

Designing FPGAs with HDL

This chapter includes coding techniques to help you improve
synthesis results. It includes the following sections.

Introduction

“Introduction”

“Using Global Low-skew Clock Buffers”
“Using Dedicated Global Set/Reset Resource”
“Encoding State Machines”

“Using Dedicated 1/0 Decoders”
“Instantiating LogiBLOX Modules”
“Implementing Memory”

“Implementing Boundary Scan (JTAG 1149.1)”
“Implementing Logic with 10Bs”
“Implementing Multiplexers with Tristate Buffers”
“Using Pipelining”

“Design Hierarchy”

Xilinx FPGAs provide the benefits of custom CMOS VLSI and allow
you to avoid the initial cost, time delay, and risk of conventional
masked gate array devices. In addition to the logic in the CLBs and
I0Bs, the XC4000 family, XC5200 family, and Spartan family FPGAs
contain system-oriented features such as the following.

Global low-skew clock or signal distribution network
Wide edge decoders (XC4000 family only)
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e On-chip RAM and ROM (XC4000 family and Spartan)
= |EEE 1149.1 — compatible boundary scan logic support

= Flexible I/0 with Adjustable Slew-rate Control and Pull-up/
Pull-down Resistors

e 12-mA sink current per output and 24-mA sink per output pair
« Dedicated high-speed carry-propagation circuit

You can use these device characteristics to improve resource utiliza-
tion and enhance the speed of critical paths in your HDL designs. The
examples in this chapter are provided to help you incorporate these
system features into your HDL designs.

Using Global Low-skew Clock Buffers

4-2

For designs with global signals, use global clock buffers to take
advantage of the low-skew, high-drive capabilities of the dedicated
global buffer tree of the target device. When you use the Insert Pads
or equivalent command, your synthesis tool automatically inserts a
BUFG generic clock buffer whenever an input signal drives a clock
signal. The Xilinx implementation software automatically selects the
clock buffer that is appropriate for your specified design architecture.
If you want to use a specific global buffer, you must instantiate it.
Many synthesis tools automatically insert 1/0 pins and clock buffers.
Also, some synthesis tools limit 1/0 and global buffers. Refer to your
synthesis tool documentation for detailed information.

You can instantiate an architecture-specific buffer if you understand
the architecture and want to specify how the resources should be
used. Each XC4000E/L and Spartan device contains four primary and
four secondary global buffers that share the same routing resources.
XC4000EX/XLA/XL/XV devices have sixteen global buffers; each
buffer has its own routing resources. XC5200 devices have four dedi-
cated global buffers in each corner of the device.

XC4000 EX/XLA/XL/XV devices have two different types of global
buffer, Global Low-Skew Buffers (BUFGLS) and Global Early Buffers
(BUFGE). Global Low-Skew Buffers are standard global buffers that
should be used for most internal clocking or high fanout signals that
must drive a large portion of the device. There are eight BUFGLS
buffers available, two in each corner of the device. The Global Early
Buffers are designed to provide faster clock access, but CLB access is
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limited to one quadrant of the device. 1/0 access is also limited. Simi-
larly, there are eight BUFGES, two in each corner of the device.

Because Global Early and Global Low-Skew Buffers share a single
pad, a single IPAD can drive a BUFGE, BUFGLS, or both in parallel.
The parallel configuration is especially useful for clocking the fast
capture latches of the device. Since the Global Early and Global Low-
Skew Buffers share a common input, they cannot be driven by two
different signals.

You can use the following criteria to help select the appropriate
global buffer for a given design path.

= The simplest option is to use a Global Low-Skew Buffer.

= Ifyou want a faster clock path, use a BUFG. Initially, the software
will try to use a Global Low-Skew Buffer. If timing requirements
are not met, a BUFGE is automatically used if possible.

= Ifasingle quadrant of the chip is sufficient for the clocked logic,
and timing requires a faster clock than the Global Low-Skew
Buffer, use a Global Early Buffer.

Note: For more information on using the XC4000 EX/XLA/XL/XV
device family global buffers, refer to the online version of The
Programmable Logic Data Book or the Xilinx web site at http://
www.xilinx.com.

For XC4000E/L and Spartan devices, you can use secondary global
buffers (BUFGS) to buffer high-fanout, low-skew signals that are
sourced from inside the FPGA. To access the secondary global clock
buffer for an internal signal, instantiate the BUFGS cell. You can use
primary global buffers (BUFGP) to distribute signals applied to the
FPGA from an external source. Internal signals can be globally
distributed with a primary global buffer, however, the signals must
be driven by an external pin.

Some synthesis tools limit 1/0 or BUFG resources. For example,
BUFG does not synthesize to more than eight instances depending on
the selected device architecture. However, some tools do not use all
your available resources. Compiling modules separately may also
result in resource over-utilization. Check with your synthesis vendor.

XC4000E/L and Spartan devices have four primary (BUFGP) and
four secondary (BUFGS) global clock buffers that share four global
routing lines, as shown in the following figure.
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SGCK1 SGCK4
H—-‘ BUFGS BUFGS ?
PGCK1 |'> <‘,
BUFGP BUFGP PGCK4
BUFGS
BUFGP
scck2 BUFGS BUFGP pGCK3
N 1
| N
BUFGP BUFGS
PGCK2 SGCK3

X4987

Figure 4-1 Global Buffer Routing Resources (XC4000E,
Spartan)

These global routing resources are only available for the eight global
buffers. The eight global nets run horizontally across the middle of
the device and can be connected to one of the four vertical longlines
that distribute signals to the CLBs in a column. Because of this
arrangement only four of the eight global signals are available to the
CLBs in a column. These routing resources are “free” resources
because they are outside of the normal routing channels. Use these
resources whenever possible. You may want to use the secondary
buffers first because they have more flexible routing capabilities.

You should use the global buffer routing resources primarily for high-
fanout clocks that require low skew, however, you can use them to
drive certain CLB pins, as shown in the following figure. In addition,
you can use these routing resources to drive high-fanout clock
enables, clear lines, and the clock pins (K) of CLBs and 10Bs.

In the following figure, the C pins drive the input to the H function
generator, Direct Data-in, Preset, Clear, or Clock Enable pins. The F
and G pins are the inputs to the F and G function generators, respec-
tively.
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X5520
Figure 4-2 Global Longlines Resource CLB Connections

If your design does not contain four high-fanout clocks, use these
routing resources for signals with the next highest fanout. To reduce
routing congestion, use the global buffers to route high-fanout
signals. These high-fanout signals include clock enables and reset
signals (not global reset signals). Use global buffer routing resources
to reduce routing congestion; enable routing of an otherwise
unroutable design; and ensure that routing resources are available for
critical nets.

Xilinx recommends that you assign up to four secondary global clock
buffers to the four signals in your design with the highest fanout
(such as clock nets, clock enables, and reset signals). Clock signals
that require low skew have priority over low-fanout non-clock
signals. You can source the signals with an input buffer or a gate
internal to the design. Generate internally sourced clock signals with
a register to avoid unwanted glitches. The synthesis tool can insert
global clock buffers or you can instantiate them in your HDL code.

Note: Use Global Set/Reset resources when applicable. Refer to the
“Using Dedicated Global Set/Reset Resource” section in this chapter
for more information.
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Inserting Clock Buffers

Many synthesis tools automatically insert a secondary global clock
buffer on all input ports that drive a register’s clock pin or a gated
clock signal. Refer to your synthesis tool documentation for informa-
tion on disabling the automatic insertion of clock buffers, and how to
specify which ports have clock buffers.

Instantiating Global Clock Buffers

You can instantiate global buffers in your code as described in this
section.

Instantiating Buffers Driven from a Port

You can instantiate global buffers and connect them to high-fanout
ports in your code rather than inferring them from a synthesis tool
script. If you do instantiate global buffers, verify that the Pad param-
eter is not specified for the buffer.

Instantiating Buffers Driven from Internal Logic

Some synthesis tools require you to instantiate a global buffer in your
code to use the dedicated routing resource if a high-fanout signal is
sourced from internal flip-flops or logic (such as a clock divider or
multiplexed clock), or if a clock is driven from the internal oscillator
or non-dedicated 1/0 pin. The following VHDL and Verilog exam-
ples instantiate a BUFGS for an internal multiplexed clock circuit. A
Set Dont Touch or equivalent attribute is added to the instantiated
component to prevent further optimization by the synthesizer.
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= VHDL Example

-- CLOCK _MJUX. VHD Version 1.1 --
-- This is an exanple of an instantiation of --
-- global buffer (BUFGS) froman internally --
-- driven signal, a nultiplexed clock. --
-- March 1998 --

l'ibrary | EEE;
use | EEE. std |l ogic_1164.all;

entity clock_nux is

port (DATA, SEL: in STD LOGA G
SLOW CLOCK, FAST CLOCK: in STD LOGE G
DOUT: out STD LOG O);

end cl ock_nux;
architecture XILINX of clock rmux is

signal CLOCK: STD LOG G,
signal CLOCK GBUF: STD LO4 G;

component BUFGS
port (I: in STD LOG G
O out STD LCA Q) ;
end conponent;

begin

Cl ock_MJX: process (SEL, FAST_CLOCK, SLOW CLOCK)

begin

if (SEL = '1') then

CLOCK <= FAST_CLCCK;
el se
CLOCK <= SLOW CLCCK;

end if;

end process;

GBUF_FOR_MUX_CLOCK: BUFGS
port map (I => CLOCK,
O => CLOCK_GBUF) ;

Dat a_Pat h: process (CLOCK_GBUF)
begin
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if (CLOCK_GBUF event and CLOCK GBUF='1') then
DOUT <= DATA;
end if;
end process;

end Xl LI NX;
Verilog Example

THEETELEEEr i r i rrrrirrri
/[l CLOCK MJUX.V Version 1.1 /1
/1 This is an exanple of an instantiation of //
/1 global buffer (BUFGS) froman internally //
/1 driven signal, a nmultipled clock. I
/1 March 1998 /1
LIELEEDE i rrrrrng

nodul e cl ock_rmux (DATA, SEL, SLOW CLOCK, FAST_CLOCK,
DOUT) ;

i nput DATA, SEL;
i nput SLOW CLOCK, FAST_CLOCK;
out put DQOUT,;

reg CLOCK;
wire CLOCK_GBUF;
reg DOUT;

al ways @ (SEL or FAST_CLOCK or SLOW CLCOCK)
begin
if (SEL == 1’ bl)
CLOCK <= FAST_CLOCK;
el se
CLOCK <= SLOW CLOCK;
end

BUFGS GBUF_FOR MUX_CLOCK (. O( CLOCK_GBUF),

.1 (CLOCK) ) ;
al ways @ (posedge CLOCK_GBUF)
DOUT = DATA;
endnodul e
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Using Dedicated Global Set/Reset Resource

XC4000 and Spartan devices have a dedicated Global Set/Reset
(GSR) net that you can use to initialize all CLBs and 10Bs. When the
GSR is asserted, every flip-flop in the FPGA is simultaneously preset
or cleared. You can access the GSR net from the GSR pin on the
STARTUP block or the GSRIN pin of the STARTBUF (VHDL).

Since the GSR net has dedicated routing resources that connect to the
Preset or Clear pin of the flip-flops, you do not need to use general
purpose routing or global buffer resources to connect to these pins. If
your design has a Preset or Clear signal that affects every flip-flop in
your design, use the GSR net to increase design performance and
reduce routing congestion.

The XC5200 family has a dedicated Global Reset (GR) net that resets
all device registers. As in the XC4000 and Spartan devices, the
STARTUP or STARTBUF (VHDL) block must be instantiated in your
code in order to access this resource. The XC3000A devices also have
dedicated Global Reset (GR) that is connected to a dedicated device
pin (see device pinout). Since this resource is always active, you do
not need to do anything to activate this feature.

For XC4000, Spartan, and XC5200 devices, the Global Set/Reset (GSR
or GR) signal is, by default, set to active high (globally resets device
when logic equals 1). If you are using an older version of a synthesis
tool, for an active low reset, instantiate an inverter in your code to
invert the global reset signal. The inverter is absorbed by the
STARTUP block and does not use any device resources (function
generators). For older versions of synthesis tools, although the
inverted signal may be behaviorally described in your code, Xilinx
recommends instantiating the inverter to prevent the mapping of the
inverter into a CLB function generator, and subsequent delays to the
reset signal and unnecessary use of device resources. Also make sure
you put a Don’t Touch attribute on the instantiated inverter before
compiling your design. If you do not add this attribute, the inverter
may get mapped into a CLB function generator. Most new synthesis
tools automatically insert the STARTUP block and the previous steps
are not required.

Note: For more information on simulating the Global Set/Reset, see
the “Simulating Your Design” chapter.
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Startup State

Note: See the “Simulating Your Design” chapter for more informa-
tion on STARTUP and STARTBUF.

The GSR pin on the STARTUP block or the GSRIN pin on the
STARTBUF block drives the GSR net and connects to each flip-flop’s
Preset and Clear pin. When you connect a signal from a pad to the
STARTUP block’s GSR pin, the GSR net is activated. Because the GSR
net is built into the silicon it does not appear in the pre-routed netlist
file. When the GSR signal is asserted High (the default), all flip-flops
and latches are set to the state they were in at the end of configura-
tion. When you simulate the routed design, the gate simulator trans-
lation program correctly models the GSR function.

Note: For the XC3000 family and the XC5200 family, all flip-flops and
latches are reset to zero after configuration.

Preset vs. Clear (XC4000, Spartan)

The XC4000 family flip-flops are configured as either preset (asyn-
chronous set) or clear (asynchronous reset). Automatic assertion of
the GSR net presets or clears each flip-flop. You can assert the GSR
pin at any time to produce this global effect. You can also preset or
clear individual flip-flops with the flip-flop’s dedicated Preset or
Clear pin. When a Preset or Clear pin on a flip-flop is connected to an
active signal, the state of that signal controls the startup state of the
flip-flop. For example, if you connect an active signal to the Preset
pin, the flip-flop starts up in the preset state. If you do not connect the
Clear or Preset pin, the default startup state is a clear state. To change
the default to preset, assign an INIT=S attribute to the flip-flop.

1/0 flip-flops and latches do not have individual Preset or Clear pins.
The default value of these flip-flops and latches is clear. To change the
default value to preset, assign an INIT=S attribute.

Refer to your synthesis tool documentation for information on
changing the initial state of registers that do not use the Preset or
Clear pins.

Increasing Performance with the GSR/GR Net

Many designs contain a net that initializes most of the flip-flops in the
design. If this signal can initialize all the flip-flops, you can use the
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GSR/GR net. You should always include a net that initializes your
design to a known state.

To ensure that your HDL simulation results at the RTL level match
the synthesis results, write your code so that every flip-flop and latch
is preset or cleared when the GSR signal is asserted. The synthesis
tool cannot infer the GSR/GR net from HDL code. To utilize the GSR
net, you must instantiate the STARTUP or STARTBUF block (VHDL),
as shown in the “No_GSR Implemented with Gates” figure.

Design Example without Dedicated GSR/GR
Resource

In the following VHDL and Verilog designs, the RESET signal initial-
izes all the registers in the design; however, it does not use the dedi-
cated global resources. The RESET signal is routed using regular
routing resources. These designs include two 4-bit counters. One
counter counts up and is reset to all zeros on assertion of RESET and
the other counter counts down and is reset to all ones on assertion of
RESET. The “No_GSR Implemented with Gates” figure shows the
No_GSR design implemented with gates.

< No GSR VHDL Example

-- NO_GSR Exanpl e
-- The signal RESET initializes all registers
-- May 1997

l'ibrary |EEE;
use | EEE. std_l ogic_1164. al | ;
use | EEE. std_l ogi c_unsi gned. al |

entity no_gsr is
port (CLOCK: in STD LOG G
RESET: in STD _LOd G
UPCNT: out STD LOd C VECTOR (3 downto 0);
DNCNT: out STD LOd C_VECTOR (3 downto 0));
end no_gsr;

architecture SI MPLE of no_gsr is

signal UP_CNT: STD LOG C VECTOR (3 downto 0);
signal DN_CNT: STD LOG C_VECTOR (3 downto 0);

begin
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UP_COUNTER: process (CLOCK, RESET)
begin
if (RESET = '1') then
UP_CNT <= "0000";
el sif (CLOCK event and CLOCK = '1') then
UP_CNT <= UP_CNT + 1;
end if;
end process;

DN_COUNTER: process (CLOCK, RESET)
begin
if (RESET = '1') then
DN CNT <= "1111";
el sif (CLOCK event and CLOCK = '1') then
DN_CNT <= DN _CNT - 1;
end if;
end process;

UPCNT <= UP_CNT;
DNCNT <= DN_CNT;

end S| MPLE;

No GR VHDL Example

-- NO_GR VHD Exanpl e

-- The signal RESET initializes all registers

-- Wthout the use of the dedicated d obal Reset
-- routing

-- Decenber 1997

l'ibrary | EEE;
use | EEE. std_l ogic_1164. al | ;
use | EEE. std_| ogi c_unsi gned. al | ;

entity no_gr is
port (CLOCK: in STD LOG C;
RESET: in STD _LOd G
UPCNT: out STD LOd C VECTOR (3 downto 0);
DNCNT: out STD LOd C VECTOR (3 downto 0));
end no_gr;

architecture XILINX of no_gr is

signal UP_CNT: STD LOG C VECTOR (3 downto 0);
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signal DN _CNT: STD LOG C VECTOR (3 downto 0);

begin
UP_COUNTER: process (CLOCK, RESET)
begin
if (RESET = '1') then
UP_CNT <= "0000";
el sif (CLOCK event and CLOCK = '1') then
UP_CNT <= UP_CNT + 1;
end if;
end process;

DN_COUNTER: process (CLOCK, RESET)
begin
if (RESET = '1') then
DN_CNT <= "1111";
el sif (CLOCK event and CLOCK = '1') then
DN CNT <= DN CNT - 1;
end if;
end process;

UPCNT <= UP_CNT;
DNCNT <= DN_CNT;

end Xl LI NX;

< No GSR Verilog Example

/* NO_GSR Exanpl e
* The signal RESET initializes all registers
* Decenber 1997 */

nmodul e no_gsr ( CLOCK, RESET, UPCNT, DNCNT);

i nput CLOCK, RESET;
out put [3:0] UPCNT;
out put [3:0] DNCNT;

reg [3:0] UPCNT;
reg [3: 0] DNCNT;

al ways @ (posedge CLOCK or posedge RESET) begin
i f (RESET) begin
UPCNT 4’ b0000;
DNCNT 4' bl111;
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end el se begin
UPCNT = UPCNT + 1’ bl;
DNCNT = DNCNT - 1' bl;
end
end
endnodul e

< No GR Verilog Example

/* NO GR V Exanpl e
* The signal RESET initializes all registers
* Aug 1997 */

nmodul e no_gr ( CLOCK, RESET, UPCNT, DNCNT);

i nput CLOCK, RESET;
out put [3:0] UPCNT;
out put [3: 0] DNCNT;

reg [3:0] UPCNT
reg [3: 0] DNCNT;

al ways @ (posedge CLOCK or posedge RESET) begin
i f (RESET) begin
UPCNT = 4’ b0000;
DNCNT = 4’ b1111;
end el se begin

UPCNT = UPCNT + 1' bl
DNCNT = DNCNT - 1'bl
end
end
endnodul e
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Design Example with Dedicated GSR/GR Resource

To reduce routing congestion and improve the overall performance of
the reset net in the No_GSR and No_GR designs, use the dedicated
GSR or GR net instead of the general purpose routing. Instantiate the
STARTUP, STARTBUF, ROC, or TOC block in your design and use the
GSR or GR pin on the STARTUP block (or the GSRIN pin on the
STARTBUF block) to access the global reset net. This is not necessary
with many synthesis tools. If you fully define the behavior of the GSR
or GR net, the tool infers a STARTUP block. The modified designs
(Use_GSR and Use_GR) are included at the end of this section. The
Use_GSR design implemented with gates is shown in the
“Active_Low_GSR Implemented with Gates” figure.

In XC4000 and Spartan designs, on assertion of the GSR net, flip-flops
return to a clear (or Low) state by default. You can override this
default by describing an asynchronous preset in your code, or by
adding the INIT="1" or equivalent attribute to the flip-flop
(described later in this section).

In XC5200 family designs, the GR resets all flip-flops in the device to
a logic zero. If a flip-flop is described as asynchronous preset to a
logic 1, the synthesis tool automatically infers a flip-flop with a
synchronous preset, and the Xilinx software puts an inverter on the
input and output of the device to simulate a preset.

The Use_GSR and Use_GR designs explicitly state that the down-
counter resets to all ones, therefore, asserting the reset net causes this
counter to reset to a default of all zeros. You can use one of the
following two methods to prevent this reset to zeros.

= Remove the comment characters from the last few lines of code in
the Use_GSR or Use_GR design. These lines of code correctly
describe the behavior of the design (in response to the assertion
of reset). However, when you synthesize the design, the Preset
pins on the flip-flops that form the down-counter are used and
the Clear pins on the flip-flops that form the up-counter are used.
Using these pins defeats the purpose of using the GSR or GR net.

= Attach the INIT =“1” or equivalent attribute to the down-counter
flip-flops.

The synthesizer may do this if necessary depending on your
code’s initialization state when the reset is applied. Refer to your
synthesis tool documentation for more information on assigning
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attributes. This command allows you to override the default clear
(or Low) state when your code does not specify a preset condi-
tion. However, because attributes are assigned outside the HDL
code, the code no longer accurately represents the behavior of the
design.

Xilinx recommends removing the comment characters from the last
few lines of the Use_GSR or Use_GR code when you perform an RTL
simulation and attaching the INIT=S attribute to the relevant flip-
flops when you synthesize the design.

The STARTUP or STARTBUF block must not be optimized during the
synthesis process. Add the appropriate attribute to prevent optimiza-
tion before compiling your design.

e Use GSR VHDL Example (XC4000 family)

-- USE_GSR VHD Exanpl e

-- The signal RESET is connected to the
-- GSRIN pin of the STARTBUF bl ock

-- May 1997

l'ibrary | EEE;

l'ibrary UNI SI M

use | EEE. std_| ogic_1164. al | ;

use | EEE. std_l ogi c_unsi gned. al | ;
use UNISIMall;

entity use_gsr is
port ( CLOCK: in STD LGOE G
RESET: in STD LOd C;
UPCNT: out STD LOd C_VECTOR (3 downto 0);
DNCNT: out STD LOd C_VECTOR (3 downto 0));
end use_gsr;

architecture Xl LINX of use_gsr is

conmponent STARTBUF
port (GSRIN. in STD LOGQ O);
GSROQUT: out STD LOG O);
end conponent;

signal RESET_INT: STD LCG C;

signal UP_CNT: STD LOG C VECTOR (3 downto 0);
signal DN_CNT: STD LOG C_VECTOR (3 downto 0);
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begin

Ul: STARTBUF port map(GSRI N=>RESET,
GSROUT=>RESET_| NT) ;

UP_COUNTER: process(CLOCK, RESET_I NT)
begin
if (RESET_INT = '1') then
UP_CNT <= "0000";

el sif CLOCK event and CLOCK = '1') then
UP_CNT <= UP_CNT - 1;
end if;
end process;
DN_COUNTER: ( CLOCK, RESET_I NT)
begin
if (RESET_INT = "'1") then
DN CNT <= "1111";
el sif CLOCK event and CLOCK = '1') then

DN CNT <= DN CNT - 1;
end if;
end process;

UPCNT <= UP_CNT;
DNCNT <= DN_CNT;

end Xl LI NX;

e Use GR VHDL Example

-- USE GR VHD Version 1.0 --
-- Xilinx HDL Synthesis Design Cuide --
-- The signal RESET initializes all registers --
-- Using the gl obal reset resources since --
-- STARTBUF bl ock was added --
-- Decenber 1997 --

l'ibrary | EEE;

library UNI SI M

use | EEE. std |l ogic_1164.all;

use | EEE. std_| ogi c_unsi gned. al | ;
use UNISIM al | ;

4-18 Xilinx Development System



Designing FPGAs with HDL

entity use_gr is
port ( CLOCK: in STD LOG G
RESET: in STD LOG C
UPCNT: out STD LOd C_VECTOR (3 downto 0);
DNCNT: out STD LOd C VECTOR (3 downto 0));
end use_gr;

architecture XILINX of use_gr is

conmponent STARTBUF
port (GSRIN. in STD LOd G
GSRQUT: out STD LCGE C);

end conponent;

signal RESET_INT: STD LCd C;

signal UP_CNT: STD LOd C_VECTOR (3 downto 0);
signal DN_CNT: STD LCE C_VECTOR (3 downto 0);
begin

Ul: STARTBUF port nap(GSRI N=>RESET,
GSROUT=>RESET_| NT) ;

UP_COUNTER: process(CLOCK, RESET_I NT)
begin
if (RESET_INT = "'1") then
UP_CNT <= "0000";
elsif (CLOCK event and CLOCK = '1') then
UP_CNT <= UP_CNT + 1;
end if;
end process;

DN_COUNTER: process(CLOCK, RESET_I NT)
begin
if (RESET_INT = '1") then
DN CNT <= "1111";
el sif (CLOCK event and CLOCK = '1') then
DN_CNT <= DN _CNT - 1;
end if;
end process;

UPCNT <= UP_CNT;
DNCNT <= DN_CNT;
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end Xl LI NX;

Use GSR Verilog Example

TEEEEEEErEr bbb bbb rnri
/1l USE_GSR V Version 1.0 I
/1 The signal RESET initializes all registers [/
/1 Using the global reset resources (STARTUP) [/
/| Decenber 1997 /1
FIETEELEE i i

nodul e use_gsr ( CLOCK, RESET, UPCNT, DNCNT);

i nput CLOCK, RESET;
out put [3:0] UPCNT;
out put [3:0] DNCNT;

reg [3:0] UPCNT,;
reg [3:0] DNCNT;

STARTUP UL (. GSR(RESET));

al ways @ (posedge CLOCK or posedge RESET) begin
i f (RESET) begin
UPCNT = 4’ b0000;
DNCNT = 4’ b1111;
end el se begin

UPCNT = UPCNT + 1’ bl;
DNCNT = DNCNT - 1' bl;
end
end
endnodul e

Use GR Verilog Example
FEEEEEEE bbb bbb rrrrng

/1 USE_GR V Version 1.0 I
/1l The signal RESET initializes all registers //
/1 Using the gl obal reset resources since I
/1 STARTUP bl ock instantiation was added /1
/| Decenber 1997 I

(PP i rrrrrr

nodul e use_gr ( CLOCK, RESET, UPCNT, DNCNT);
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i nput CLOCK, RESET;
out put [3:0] UPCNT;
out put [3: 0] DNCNT;

reg [3:0] UPCNT
reg [3: 0] DNCNT;

STARTUP Ul (.GR(RESET));

al ways @ (posedge CLOCK or posedge RESET) begin
i f (RESET) begin
UPCNT = 4’ b0000;
DNCNT = 4’ b1111;
end el se begin

UPCNT = UPCNT + 1' bl;
DNCNT = DNCNT - 1' bl;
end
end
endnodul e
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Figure 4-4 Active_Low_GSR Implemented with Gates
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Design Example with Active Low GSR/GR Signal

The Active_Low_GSR design is identical to the Use_GSR design
except an INV is instantiated and connected between the RESET port
and the STARTUP block. Also, a Set Don’t Touch (or equivalent)
attribute is added to the synthesis tool script for both the INV and
STARTUP, or STARTBUF (VHDL) symbols. By instantiating the
inverter, the global set/reset signal is now active low (logic level 0
resets all FPGA flip-flops). The inverter is absorbed into the
STARTUP block in the device and no CLB resources are used to invert
the signal. This is not necessary with many synthesis tools. If all regis-
ters and latches are described in the RTL code as reset or set, then a
GSR or GR is inferred. Some tools also give you the option to select
any signal as the GSR or GR net. This allows you to correct problems
if the RTL code does not completely describe the GSR/GR behavior.
However, the RTL code will not match the place and route behavior
because not all registers are described as set or reset with the GSR/
GR signal. Some tools provide a report of the inferred registers that
are missing the GSR/GR behavior, and allow you to change the RTL
behavior. VHDL and Verilog Active_Low_GSR designs are shown
following.

= Active Low GSR VHDL Example

-- ACTI VE_LOW GSR VHD Version 1.0 --
-- The signal RESET is inverted before being --
-- connected to the GSRIN pin of the STARTBUF --
-- The inverter will be absorbed by the STARTBUF --
-- Septenber 1997 --

l'ibrary | EEE;

l'ibrary UNI SI M

use | EEE. std |l ogic_1164.all;

use | EEE. std_l ogi c_unsi gned. al | ;
use UNISIMall;

entity active_low gsr is
port ( CLOCK: in STD LOG G
RESET: in STD_LOG C
UPCNT: out STD LOd C_VECTOR (3 downto 0);
DNCNT: out STD LOd C_VECTOR (3 downto 0));
end active_l ow _gsr;
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architecture XILINX of active_low gsr is

component | NV
port (I: in STD LOGEC
O out STD LCA O);

end conponent;

component STARTBUF
port (GSRIN. in STD LCQ C;
GSROQUT: out STD LO4Q O);
end conponent;

si gnal RESET_NOT: STD LCOA G

si gnal RESET_NOT_I NT: STD LOd G

si gnal UP_CNT: STD LOGE C_VECTOR (3 downto 0);
si gnal DN_CNT: STD _LOGE C_VECTOR (3 downto 0);
begin

UL: INV port map(l => RESET, O => RESET_NOT);

U2: STARTBUF port map( GSRI N=>RESET_NOT,
GSROUT=>RESET_NOT_I NT) ;

UP_COUNTER: process(CLOCK, RESET_NOT_I NT)
begin
if (RESET_NOT_INT = '1") then
UP_CNT <= "0000";
el sif (CLOCK event and CLOCK = '1') then
UP_CNT <= UP_CNT + 1;
end if;
end process;

DN_COUNTER: process(CLOCK, RESET_NOT_I NT)
begin
if (RESET_NOT_INT = '1') then
DN CNT <= "1111";
el sif (CLOCK event and CLOCK = '1') then
DN_CNT <= DN _CNT - 1;
end if;
end process;

UPCNT <= UP_CNT;
DNCNT <= DN_CNT;
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end Xl LI NX;

= Active Low GSR Verilog Example

IR NNy
/1 ACTIVE_LOWGSR V Version 1.0 /1
/1l The signal RESET is inverted before being /1
/1 connected to the GSR pin of the STARTUP bl oc I
/1 The inverter will be absorbed by STARTUP in ML //
/1 Septenber 1997 I

TEEEEEEEE bbby

nodul e active_l|ow _gsr ( CLOCK, RESET, UPCNT, DNCNT);
i nput CLOCK, RESET;
out put [3:0] UPCNT;
out put [3:0] DNCNT;
wre RESET_NOT;
reg [3:0] UPCNT;
reg [3:0] DNCNT;
INV Ul (. Q(RESET_NOT), .I(RESET));
STARTUP U2 (. GSR(RESET_NOT));

al ways @ (posedge CLOCK or posedge RESET_NOT)

begi n
i f (RESET_NQT)
begin
UPCNT = 4’ b0000;
DNCNT = 4’ b1111;
end
el se
begin
UPCNT = UPCNT + 1' b1l;
DNCNT = DNCNT - 1'bil;
end
end
endnodul e
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Encoding State Machines

4-26

The traditional methods used to generate state machine logic resultin
highly-encoded states. State machines with highly-encoded state
variables typically have a minimum number of flip-flops and wide
combinatorial functions. These characteristics are acceptable for PAL
and gate array architectures. However, because FPGAs have many
flip-flops and narrow function generators, highly-encoded state vari-
ables can result in inefficient implementation in terms of speed and
density.

One-hot encoding allows you to create state machine implementa-
tions that are more efficient for FPGA architectures. You can create
state machines with one flip-flop per state and decreased width of
combinatorial logic. One-hot encoding is usually the preferred
method for large FPGA-based state machine implementation. For
small state machines (fewer than 8 states), binary encoding may be
more efficient. To improve design performance, you can divide large
(greater than 32 states) state machines into several small state
machines and use the appropriate encoding style for each.

Three design examples are provided in this section to illustrate the
three coding methods (binary, enumerated type, and one-hot) you
can use to create state machines. All three examples contain the same
Case statement. To conserve space, the complete Case statement is
only included in the binary encoded state machine example; refer to
this example when reviewing the enumerated type and one-hot
examples.

Some synthesis tools allow you to add an attribute, such as
type_encoding_style, to your VHDL code to set the encoding style.
This is a synthesis vendor attribute (not a Xilinx attribute). Refer to
your synthesis tool documentation for information on attribute-
driven state machine synthesis.

Note: The bold text in each of the three examples indicates the
portion of the code that varies depending on the method used to
encode the state machine.

Using Binary Encoding

The state machine bubble diagram in the following figure shows the
operation of a seven-state machine that reacts to inputs A through E
as well as previous-state conditions. The binary encoded method of
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coding this state machine is shown in the VHDL and Verilog exam-
ples that follow. These design examples show you how to take a
design that has been previously encoded (for example, binary
encoded) and synthesize it to the appropriate decoding logic and
registers. These designs use three flip-flops to implement seven

states.
E
D State3 State7
Contig Contig
&
E
State4 \ A:B-C State6

Multi, Contig Contig,Single

X6102

Figure 4-5 State Machine Bubble Diagram

Binary Encoded State Machine VHDL Example

-- BINARY. VHD Version 1.0 --
-- Exanple of a binary encoded state machi ne --
-- May 1997 --
Li brary | EEE;

use | EEE. std |l ogic_1164.all;

use | EEE. std_| ogi c_unsi gned. al | ;

entity binary is
port (CLOCK, RESET : in STD LOG G
A B, C D E in BOOLEAN,
SI NGLE, MULTI, CONTIG out STD LOG O);
end bi nary;
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architecture BEHV of binary is

type STATE TYPE is (S1, S2, S3, S4, S5, S6, S7);

attribute ENUM ENCODING STRI NG

attribute ENUM ENCODI NG of STATE TYPE:type is "001 010 011 100 101 110
111";

signal CS, NS: STATE_TYPE;
begin

SYNC_PROC: process (CLOCK, RESET)
begin
if (RESET="1") then
CS <= S1;
el sif (CLOCK event and CLOCK = '1') then
CS <= NS;
end if;
end process; --End REG PROC

COMB_PROC: process (CS, A B, C D E

begin
case CSis
when S1 =>
MULTI <='0;
CONTI G <= "0’ ;
SINGLE <= '0';
if (Aand not B and C) then
NS <= S2;
elsif (A and B and not C) then
NS <= $4;
el se
NS <= S1;
end if;
when S2 =>
MULTI <="'1";
CONTI G <= "0’ ;
SINGLE <= '0’;
if (not D) then
NS <= S3;
el se
NS <= $4;
end if;
when S3 =>
MULTI <="'0";
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CONTIG <= "1";
SINGLE <= "0’ ;
if (Aor D then

NS <= $4;
el se
NS <= S3;
end if;
when S4 =>
MULTI <="'1";
CONTIG <= "1";
SINGLE <= '0";
if (Aand B and not C) then
NS <= S5;
el se
NS <= $4;
end if;
when S5 =>

MULTI <= "'1";
CONTI G <= "0’
SINGLE <= "0’ ;

NS <= S6;
when S6 =>
MULTI <='0";

CONTIG <= "1";
SINGLE <= "1";
if (not E) then
NS <= S7;
el se
NS <= S6;
end if;
when S7 =>
MULTI <= '0;
CONTIG <= "1";
SINGLE <= '0";
if (E) then
NS <= S1;
el se
NS <= S7;
end if;
end case;
end process; -- End COVB_PRCC

end BEHV;
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Binary Encoded State Machine Verilog Example

FEEETEEEEE b i rnd

/1 BINARY.V Version 1.0 I
/1 Exanple of a binary encoded state machi ne /1
/1 NMay 1997 11

FEEEEEEEEE i irnd

nodul e binary (CLOCK, RESET, A B, C D E,
SINGLE, MULTI, CONTIGQ;

i nput CLOCK, RESET;
i nput A B C D E

out put SI NGLE, MULTI, CONTIG
reg SINGLE, MULTI, CONTIG

/1 Declare the synmbolic names for states

paraneter [2:0]

S1 = 3 b001,
S2 = 3 pb010,
S3 = 3 b011,
S$4 = 3’ b100,
S5 = 3’ b101,
S6 = 3" bl10,
S7 = 3 blll,

/1l Declare current state and next state variabl es

reg [2:0] Cs;
reg [2:0] NS;

/'l state_vector CS

al ways @ (posedge CLOCK or posedge RESET)

begin
if (RESET == 1’ bl)
Cs = Si;
el se
CS = NS;
end

always @(CS or A or Bor Cor

begin

case (CS)
S1o
begin

4-30
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MULTI = 1’ bO;
CONTI G = 1’ bO;
SINGLE = 1’ b0;
if (A& ~B && O
NS = S2;
else if (A & & B && ~C)
NS = S4;
el se
NS = S1;
end
S2 .
begin
MULTI = 1'bil;
CONTI G = 1’ bO;
SINGLE = 1’ b0;
if ('D
NS = S3
el se
NS = S4;
end
S3 .
begin
MULTI = 1' bO;
CONTIG = 1' b1;
SINGLE = 1’ bO;
if (A|l D
NS = S4;
el se
= 83;
end
57/
begin
MULTI = 1'bl;
CONTIG = 1' b1l;
SINGLE = 1’ b0;
if (A& B & ~C
NS = S5;
el se
NS = S4;
end
S5
begin
MULTI = 1’ bil;
CONTI G = 1’ bO;
SINGLE = 1’ b0;
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NS = S6;
end
S6
begin
MULTI = 1' bO;
CONTIG = 1' b1;
SINGLE = 1’ b1;
if (1B
NS = S7
el se
NS = S6
end
S7
begin
MULTI = 1' bO;
CONTIG = 1' b1;
SINGLE = 1’ b0;
if (B
NS = S1;
el se
NS = S7
end
endcase
end
endnodul e

Using Enumerated Type Encoding

The recommended encoding style for state machines depends on
which synthesis tool you are using. Some synthesis tools encode
better than others depending on the device architecture and the size
of the decode logic. You can explicitly declare state vectors or you can
allow your synthesis tool to determine the vectors. Xilinx recom-
mends that you use enumerated type encoding to specify the states
and use the Finite State Machine (FSM) extraction commands to
extract and encode the state machine as well as to perform state mini-
mization and optimization algorithms. The enumerated type method
of encoding the seven-state machine is shown in the following VHDL
and Verilog examples. The encoding style is not defined in the code,
but can be specified later with the FSM extraction commands. Alter-
natively, you can allow your compiler to select the encoding style that
results in the lowest gate count when the design is synthesized. Some

4-32 Xilinx Development System



Designing FPGAs with HDL

synthesis tools automatically find finite state machines and compile
without the need for specification.

Note: Refer to the previous VHDL and Verilog Binary Encoded State
Machine examples for the complete Case statement portion of the
code.

Enumerated Type Encoded State Machine VHDL
Example

Li brary | EEE;
use | EEE. std |l ogic_1164.all;
entity enumis
port (CLOCK, RESET : in STD LOG G,
A B, C, D E in BOOLEAN,
SI NGLE, MJULTI, CONTIG out STD LOG Q);
end enum

architecture BEHV of enumis
type STATE TYPE is (S1, S2, S3, S4, S5, S6, S7);

signal CS, NS: STATE_TYPE;

begin

SYNC_PROC: process (CLOCK, RESET)

begin
if (RESET="1") then

CS <= S1;

elsif (CLOCK event and CLOCK = '1') then
CS <= NS;
end if;

end process; --End SYNC_PROC

COMB_PROC: process (CS, A B, C D E
begin
case CSis
when S1 =>
MULTI <='0";
CONTI G <= "0’ ;
SINGLE <= '0";
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Enumerated Type Encoded State Machine Verilog
Example

RNy
/1 ENUM YV Version 1.0 I
/1 Exanpl e of an enunerated encoded state machine //
/1 May 1997 ¥
NNy

nodul e enum (CLOCK, RESET, A, B, C, D, E,
SI NGLE, MULTI, CONTIGQ;

i nput CLOCK, RESET;
input A B, C D E
out put SINGLE, MULTI, CONTIG

reg SINGLE, MJULTI, CONTIG

/1 Declare the symbolic names for states
parameter [2:0]
S1 = 3’ b000,
3’ b001,
3’ b010,
3’ b011,
3’ b100,
3’ bl01,
3’ bl110;

RERRABY

/] Declare current state and next state variabl es
reg [2:0] CS;

reg [2:0] NS;

/] state vector CS

al ways @ (posedge CLOCK or posedge RESET)

begin
if (RESET == 1’ bl)
CS = Si;
el se
CS = NS;
end

always @(CS or Aor Bor Cor Dor Dor E)
begin
case (CS)
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S1

begin

MULTI = 1' bO;

CONTI G = 1’ bO;

SINGLE = 1' b0;

if (A& ~B && C
NS = S2;

else if (A & & B && ~C)
NS = $4;

el se
NS = S1;

end

Using One-Hot Encoding

One-hot encoding allows you to create state machine implementa-
tions that are more efficient for FPGA architectures. One-hot
encoding is usually the preferred method for large FPGA-based state
machine implementation.

The following examples show a one-hot encoded state machine. Use
this method to control the state vector specification or when you
want to specify the names of the state registers. These examples use
one flip-flop for each of the seven states. If you are using FPGA
Express, use enumerated type, and avoid using the “when others”
construct in the VHDL case statement. This construct can result in a
very large state machine.

Note: Refer to the previous VHDL and Verilog Binary Encoded State
Machine examples for the complete Case statement portion of the
code. See the “Accelerate FPGA Macros with One-Hot Approach”
appendix for a detailed description of one-hot encoding and its appli-
cations.
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One-hot Encoded State Machine VHDL Example

Li brary | EEE;
use | EEE. std_| ogic_1164. al | ;
use | EEE. std_| ogi c_unsi gned. al | ;

entity one_hot is
port (CLOCK, RESET : in STD LOG G
A B, C, D E in BOOLEAN,
SI NGLE, MJULTI, CONTIG out STD LOG O);
end one_hot;

architecture BEHV of one_hot is

type STATE TYPE is (S1, S2, S3, S4, S5, S6, S7);

attri bute ENUM ENCODI NG STRI NG

attribute ENUM ENCODI NG of STATE TYPE: type is "0000001 0000010 0000100
0001000 0010000 0100000 1000000 *;

signal CS, NS: STATE_TYPE;

begin

SYNC_PROC: process (CLOCK, RESET)

begin
if (RESET="1") then

CS <= 81,

el sif (CLOCK event and CLOCK = '1') then
CS <= NS;
end if;

end process; --End SYNC_PROC

COMB_PROC: process (CS, A B, C, D EFE
begin
case CSis
when S1 =>
MULTI <="'0";
CONTI G <= "0’;
SINGLE <= '0’;
if (Aand not B and C) then

NS <= S2;

elsif (A and B and not C) then
NS <= $4;

el se
NS <= S1;
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end if;

One-hot Encoded State Machine Verilog Example
PILITILTLILTIE LTI LI ]

/1 ONE_HOT.V Version 1.0 /1
/'l Exanpl e of a one-hot encoded state nmachine I
/1 Xilinx HDL Synthesis Design Guide for FPGAs [/
/] May 1997 I

FELEEEEEEE e rrr i rrr i b n b r i rrrry

nodul e one_hot (CLOCK, RESET, A B, C D, E
SI NGLE, MULTI, CONTIGQ;

i nput CLOCK, RESET;

i nput A B, C D E

out put SINGLE, MJULTI, CONTIG
reg SINGLE, MILTI, CONTIG

/1 Declare the symbolic names for states
par ameter [6: 0]

S1 = 7' b0000001,
S2 = 7' 0000010,
S3 = 7' 0000100,
S4 = 7' b0001000,
S5 = 7' b0010000,
S6 = 7' b0100000,
S7 = 7' b1000000;

/] Declare current state and next state variabl es
reg [2:0] Cs;

reg [2: 0] NS;

/'l state_vector CS

al ways @ (posedge CLOCK or posedge RESET)

begin
if (RESET == 1’ bl)
CS = S1;
el se
CS = NS;
end
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always @(CS or Aor Bor Cor Dor Dor E)

begin
case (CS)
S1o
begin
MULTI = 1’ bO;
CONTI G = 1’ bO;
SI NGLE = 1’ bO;
if (A& ~B && O
NS = S2;
else if (A & B && ~C)
NS = $S4;
el se
NS = S1;
end

Summary of Encoding Styles

In the three previous examples, the state machine’s possible states are
defined by an enumeration type. Use the following syntax to define
an enumeration type.

t ype type_namei s (enumeration_literal {, enumeration_literal} );

After you have defined an enumeration type, declare the signal repre-
senting the states as the enumeration type as follows.

type STATE TYPE is (S1, S2, S3, S4, S5, S6, S7);
signal CS, NS: STATE TYPE;

The state machine described in the three previous examples has
seven states. The possible values of the signals CS (Current_State)
and NS (Next_State) are S1, S2, ..., S6, S7.

To select an encoding style for a state machine, specify the state
vectors. Alternatively, you can specify the encoding style when the
state machine is compiled. Xilinx recommends that you specify an
encoding style. If you do not specify a style, your compiler selects a
style that minimizes the gate count. For the state machine shown in
the three previous examples, the compiler selected the binary
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encoded style: S1=000", S2="001", S3="010", S4="011", S5="100",
$6="101", and S7="110".

You can use the FSM extraction tool to change the encoding style of a
state machine. For example, use this tool to convert a binary-encoded
state machine to a one-hot encoded state machine.

Note: Refer to your synthesis tool documentation for instructions on
how to extract the state machine and change the encoding style.

Comparing Synthesis Results for Encoding Styles

The following table summarizes the synthesis results from the
different methods used to encode the state machine in the three
previous VHDL and Verilog state machine examples. The results are
for an XC4005EPC84-2 device

Note: The Timing Analyzer was used to obtain the timing results in
this table.

Table 4-1 State Machine Encoding Styles Comparison
(XC4005E-2)

Comparison One-Hot Binary (OElr(lel-J::)t)
Occupied CLBs 6 9 6
CLB Flip-flops 6 3 7
PadToSetup 9.4 ns (3%) 13.4 ns (4) 9.6 ns (3)
ClockToPad 15.1 ns (3) 15.1 ns (3) 14.9 ns (3)
ClockToSetup 13.0 ns (4) 13.9ns (4) 10.1 ns (3)

a. The number in parentheses represents the CLB block level delay.

The binary-encoded state machine has the longest ClockToSetup
delay. Generally, the FSM extraction tool provides the best results
because the compiler reduces any redundant states and optimizes the

state machine after the extraction.
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Initializing the State Machine

When creating a state machine, especially when you use one-hot
encoding, add the following lines of code to your design to ensure
that the FPGA is initialized to a Set state.

e VHDL Example

SYNC_PROC: process (CLOCK, RESET)
begin
if (RESET="1") then
CS<=s1;

= Verilog Example

al vays @ (posedge CLOCK or posedge RESET)
begin
if (RESET == 1'b 1)
CS =81,

Alternatively, you can assign an INIT=S attribute to the initial state
register to specify the initial state. Refer to your synthesis tool docu-
mentation for information on assigning this attribute.

In the Binary Encode State Machine example, the RESET signal forces
the S1 flip-flop to be preset (initialized to 1) while the other flip-flops
are cleared (initialized to 0).

Using Dedicated 1/0O Decoders

4-40

The periphery of XC4000 family devices has four wide decoder
circuits at each edge. The inputs to each decoder are any of the IOB
signals on that edge plus one local interconnect per CLB row or
column. Each decoder generates a High output (using a pull-up
resistor) when the AND condition of the selected inputs or their
complements is true. The decoder outputs drive CLB inputs so they
can be combined with other logic or can be routed directly to the chip
outputs.

To implement XC4000 family edge decoders in HDL, you must
instantiate edge decoder primitives. The primitive names you can use
vary with the synthesis tool you are using. For example, you can
instantiate DECODE1_IO, DECODEL_INT, DECODE4, DECODES,
and DECODEL16. These primitives are implemented using the dedi-
cated 1/0 edge decoders. The XC4000 family wide decoder outputs
are effectively open-drain and require a pull-up resistor to take the
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output High when the specified pattern is detected on the decoder
inputs. To attach the pull-up resistor to the output signal, you must
instantiate a PULLUP component.

The following VHDL example shows how to use the 1/0 edge
decoders by instantiating decode primitives. Each decoder outputis a
function of ADR (IOB inputs) and CLB_INT (local interconnects). The
AND function of each DECODE output and Chip Select (CS) serves
as the source of a flip-flop Clock Enable pin. The four edge decoders
in this design are placed on the same device edge. The “Schematic
Block Representation of 1/0 Decoder” figure shows the schematic
block diagram representation of this 1/0 decoder design.

Using Dedicated I/0O Decoders VHDL Example

- - Edge Decoder

--An XC4A000 LCA has special decoder circuits at each edge. These decoders
--are open-drained wired- AND gates. When one or nore of the inputs (I) are
--Low output (O is Low Wen all of the inputs are High, the output is
--H gh. Apull-up resistor must be connected to the output node to achi eve
--a true logic Hi gh.

Li brary | EEE;
use | EEE. STD LOG C _1164. al | ;
use | EEE. STD _LOG C _UNSI GNED. al | ;

entity io_decoder is
port (ADR in std_logic_vector (4 dowto 0);
CS: in std_|l ogic;
DATA: in std_l ogic_vector (3 downto 0);
CLOCK: in std_Il ogic;
QQUT: out std_logic_vector (3 downto 0));
end i o_decoder;

architecture STRUCTURE of io_decoder is

COVPONENT DECODE1_| O
PORT ( I: IN std_logic;
O OUT std_logic );
END COMPONENT;

COVPONENT DECODE1_| NT
PORT ( I: IN std_|ogic;
O QUT std_logic );
END COVPONENT;
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COVPONENT DECODE4

PORT ( A3, A2, Al, AO: IN std_logic;

O QUT std_logic );

END COMPONENT;
COVPONENT PULLUP

PORT ( G QUT std_logic );
END COMPONENT;
---- Internal Signal Declarations ----------------------
signal DECODE, CLKEN, CLB_INT: std_logic_vector (3 downto 0);
signal ADR INV, CLB INV: std_logic_vector (3 downto 0);
begin

ADR_INV <= not ADR (3 downto 0);
CLB_INV <= not CLB_I NT;

----- Instantiation of Edge Decoder: CQutput "DECODE(O)" ---------------
AO: DECODE4 port map (ADR(3), ADR(2), ADR(1l), ADR _|INV(0), DECODE(O0));

Al: DECODE1_I O port nmap (ADR(4), DECODE(0));

A2: DECODE1_I NT port map (CLB_INV(0), DECODE(O0));
A3: DECCDE1_I NT port map (CLB_INT(1), DECODE(O0));
A4: DECODE1_I NT port map (CLB_INT(2), DECODE(0));
A5: DECCODE1_I NT port map (CLB_INT(3), DECODE(O0));
A6: PULLUP port nmap (DECODE(O0));

----- Instantiation of Edge Decoder: Qutput "DECODE(1)" ---------------
BO: DECODE4 port nmap (ADR(3), ADR(2), ADR_INV(1), ADR(0), DECODE(1));

Bl: DECODE1 | O port map (ADR(4), DECODE(1));

B2: DECODEL1_|I NT port map (CLB_I NT(0), DECODE(1));
B3: DECODEL1_|I NT port map (CLB_INV(1l), DECODE(1));
B4: DECODEL1_| NT port map (CLB_INT(2), DECODE(1));

B5: DECODEL_|I NT port map (CLB_I NT(3), DECODE(1));
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B6: PULLUP port map (DECODE(1));

----- Instantiation of Edge Decoder: CQutput "DECODE(2)" -----
: DECODE4 port map (ADR(3), ADR INV(2), ADR(1), ADR(0),

DECODEL | O port map (ADR(4), DECODE(2));

DECODEL_|I NT port map (CLB_I NT(0), DECODE(2));

DECODEL1_|I NT port map (CLB_I NvV(2), DECODE(2));

Q0:
C1
2
C3: DECODEL1_INT port nmap (CLB_INT(1), DECCDE(2));
(0]
C5: DECODEL1_INT port nmap (CLB_INT(3), DECCDE(2));
c6

PULLUP port map (DECODE(2));

----- Instantiation of Edge Decoder: Cutput "DECODE(3)" -----
D0: DECODE4 port map (ADR_INV(3), ADR(2), ADR(1), ADR(O0),

D1: DECODELl | O port map (ADR(4), DECODE(3));
DECODEL1_|I NT port map (CLB_I NT(0), DECODE(3));

DECODEL1_| NT port map (CLB_I NT(1), DECODE(3));

D2
D3
D4: DECODEL_|I NT port map (CLB_INT(2), DECODE(3));
D5: DECODEL1_| NT port map (CLB_I NV(3), DECODE(3));
D6

PULLUP port map (DECODE(3));

CLKEN(0) <= CS and DECODE(O0);
CLKEN(1) <= CS and DECODE(1);
CLKEN(2) <= CS and DECODE(2);
CLKEN(3) <= CS and DECODE(3);

-------- Internal 4-bit counter --------------
process (CLOCK)
begin
if (CLOCK event and CLOCK="1") then
CLB_INT <= CLB_INT + 1,

Synthesis and Simulation Design Guide

DECODE( 2) ) ;

DECCODE( 3) ) ;
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end if;
end process;

_______ "QOUT(0)" Data Register Enabled

process (CLOCK)
begin

if (CLOCK event and CLOCK="1")

if (CLKEN(O) = '1') then
QQUT(0) <= DATA(O);
end if;
end if;
end process;

....... "QOQUT(1)" Data Register Enabl ed

process (CLOCK)
begin

if (CLOCK event and CLOCK='1")

if (CLKEN(1) = '1') then
QOUT(1) <= DATA(1)
end if;
end if;
end process;

....... "QOUT(2)" Data Register Enabl ed

process (CLOCK)
begin

if (CLOCK event and CLOCK='1")

if (CLKEN(2) = '1') then
QOUT(2) <= DATA(2);
end if;
end if;
end process;

_______ "QOUT(3)" Data Register Enabled

process (CLOCK)
begin

if (CLOCK event and CLOCK="1")

if (CLKEN(3) = '1") then
QQUT(3) <= DATA(3);
end if;
end if;
end process;

end STRUCTURE

4-44
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by "CLKEN(2)"-----

t hen
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Figure 4-6 Schematic Block Representation of I/O Decoder

X8338

Note: In the previous figure, the pull-up resistors are inside the
Decoder blocks.

Instantiating LogiBLOX Modules

Note: Refer to the LogiBLOX Guide for detailed instructions on using
LogiBLOX.

Most synthesis tools can infer arithmetic modules from VHDL or
Verilog code for these operators: +, —, <, <=, >, >=, =, +1, -1. These
adders, subtracters, comparators, incrementers, and decrementers
use FPGA dedicated device resources, such as carry logic, to improve
the speed and area of designs. For bus widths greater than four,
library modules are generally faster unless multiple instances of the
same function are compiled together. For more information on the
module libraries, refer to your synthesis tool documentation.

If you want to use a module that is not in the module libraries, you
can use LogiBLOX to create components that can be instantiated in
your code. This is useful for large memory arrays if your synthesis
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tool does not infer memory. However, Xilinx recommends properly
constraining the synthesis and using the Xilinx-specific module
generation capabilities of your tool. A simulation model is also
created so that RTL simulation can be performed before your design
is compiled.

You can create an instance of an externally defined macro, including a
user-defined macro or a Xilinx macro (such as an 170 or flip-flop), by
instantiating what some synthesis tool vendors refer to as a “black
box in your HDL code. These black boxes are Verilog empty module
descriptions or VHDL component declarations.

Some synthesis tools allow instantiation of higher order Xilinx
macros, such as counters and adders from the Unified library. Other
synthesis tools provide Xilinx macro libraries that pre-define the
Xilinx macros. Without this expansion, macros are not understood by
the implementation tools. However, Xilinx does not recommend
using these macros. The preferred method is the synthesis tool
module expansion, or if you require more control, you can instantiate
a LogiBLOX module. If necessary, use these macro libraries only with
older schematic-based designs. However, even in these cases, sche-
matic-based netlists are required to expand the macros, which makes
the macro library redundant. LogiBLOX modules should also be
unnecessary because the synthesis tool should provide equivalent
performance. If you find a design in which this is not true, you can
use LogiBLOX modules, and contact Xilinx and your synthesis
vendor for a solution.

LogiBLOX is a graphical tool that allows you to select from several
arithmetic, logic, 1/0, sequential, and data storage modules for inclu-
sion in your HDL design. Use LogiBLOX to instantiate the modules
listed in the following table.

Table 4-2 LogiBLOX Modules

Module

Description

Arithmetic

Accumulator

Adds data to or subtracts it from the current value stored in
the accumulator register

Adder/Subtracter Adds or subtracts two data inputs and a carry input
Comparator Compares the magnitude or equality of two values

Counter Generates a sequence of count values
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Table 4-2 LogiBLOX Modules

Module Description

Logic

Constant Forces a constant value onto a bus

Decoder Routes input data to 1-of-n lines on the output port

Multiplexer Type 1, Type 2 - Routes input data on 1-of-n lines to the
output port

Simple Gates Type 1, Type 2, Type 3 - Implements the AND, INVERT,
NAND, NOR, OR, XNOR, and XOR logic functions

Tristate Creates a tri-stated internal data bus

I/O

Bi-directional Input/
Output

Connects internal and external pin signals

Pad Simulates an input/output pad

Sequential

Clock Divider Generates a period that is a multiple of the clock input
period

Counter Generates a sequence of count values

Shift Register

Shifts the input data to the left or right

Storage

Data Register

Captures the input data on active clock transitions

Memory: ROM, RAM,
SYNC_RAM, DP_RAM

Stores information and makes it readable

Using LogiBLOX in HDL Designs

1.

Before using LogiBLOX, verify the following.

Xilinx software is correctly installed

Environment variables are set correctly

Your display environment variable is set to your machine’s

display

Synthesis and Simulation Design Guide
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To run LogiBLOX, enter the following command.
| bgui

The LogiBLOX Setup Window appears after the LogiBLOX
module generator is loaded. This window allows you to name
and customize the module you want to create.

Select the Vendor tab in the Setup Window. Select your synthesis
tool in the Vendor Name field to specify the correct bus notation
for connecting your module.

Select the Project Directory tab. Enter the directory location of
your project in the LogiBLOX Project Directory field.

Select the Device Family tab. Select the target device for your
design in the Device Family field.

Select the Options tab and select the applicable options for your
design as follows.

e Simulation Netlist

This option allows you to create simulation netlists of the
selected LogiBLOX module in different formats. You can

choose one or more of the outputs listed in the following

table.

Table 4-3 Simulation Netlist Options

Option Description

Behavioral VHDL netlist Generates a simulation netlist in

behavioral VHDL; output file has a
.vhd extension.

Gate level EDIF netlist Generates a simulation netlist in EDIF

format; output file has an .edn exten-
sion.

Structural Verilog netlist Generates a simulation netlist in struc-

tural Verilog; output file has a .v exten-
sion.
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= Component Declaration

This option creates instantiation templates in different
formats that can be copied into your design. You can select
none, one, or both of the following options.

Table 4-4 Component Declaration Options

Option Description

VHDL template Generates a LogiBLOX VHDL compo-
nent declaration/instantiation
template that is copied into your
VHDL design when a LogiBLOX
module is instantiated. The output file
has a .vhi extension.

Verilog template Generates a LogiBLOX Verilog module
definition/instantiation template that
is copied into your Verilog design
when a LogiBLOX module is instanti-
ated. The output file has a .vei exten-
sion.

< Implementation Netlist

Select NGC File to generate an implementation netlist in
Xilinx NGD binary format. You must select this option when
instantiating LogiBLOX symbols in an HDL design. The
output file has an .ngc extension and can be used as input to
NGDBuild.

e LogiBLOX DRC

Select the Stop Process on Warning option to stop module
processing if any warning messages are encountered during
the design process.

For example, if you have a Verilog design, and you are simulating
with Verilog-XL, select Structural Verilog netlist, Verilog
template, NGC File, and Stop Process on Warning. For a VHDL
design and simulating with VSS, select Behavioral VHDL, VHDL
template, NGC File, and Stop Process on Warning.

Select OK.

4. Enter a name in the Module Name field in the Module Selector
Window.
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Select a base module type from the Module Type field.
Select a bus width from the Bus Width field.

Customize your module by selecting pins and specifying
attributes.

After you have completed module specification, select OK.

This initiates the generation of a component instantiation decla-
ration, a behavioral model, and an implementation netlist.

Copy the module declaration/instantiation into your design. The
template file created by LogiBLOX is module_name.vhi (VHDL) or
module_name.vei (Verilog), and is saved in the project directory as
specified in the LogiBLOX setup.

Complete the signal connections of the instantiated module to the
rest of your design.

Note: For more information on simulation, refer to the “Simulating
Your Design” chapter.

7.

Create an implementation script. Add the appropriate attribute
to the instantiated LogiBLOX module to prevent synthesis of this
module. Compile your design.

Also, if you have a Verilog design, use a remove design type of
command to make the LogiBLOX netlist unavailable before
writing the .xnf or .edif netlist.

Note: If you do not use a remove design type of command, the netlist
file may be empty. If this occurs, the Xilinx software will trim this
module/component and all connected logic. Refer to your synthesis
tool documentation for the correct command and syntax.

8.

Compile your design and create a .xnf or .edif file. You can safely
ignore the following type of warning messages.

Warning: Can't find the design in the library WORK.
(LBR-1)
Warning: Unable to resolve reference LogiBLOX_name in

design_name. (LINK-5)

Warning: Design design_name has 1unresolved references.
For more detailed information, use the “link” command.
(UID-341)
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9. Implement your design with the Xilinx tools. Verify that the .ngc
file created by LogiBLOX is in the same project directory as the
netlist.

You may get the following warnings during the NGDBuild and
mapping steps. These messages are issued if the Xilinx software
can not locate the corresponding .ngc file created by LogiBLOX.

War ni ng: basnu - 1 ogical block LogiBLOX_ instance_name of
type LogiBLOX name i s unexpanded. Logi cal Design DRC
conplete with 1 warning(s).

If you get this message, you will get the following message
during mapping.

ERROR basnu - | ogical bl ock LogiBLOX instance_name of
type LogiBLOX name i s unexpanded. Errors detected in
general drc.

If you get these messages, first verify that the .ngc file created by
LogiBLOX is in the project directory. If the file is there, verify that
the module is properly instantiated in the code.

10. To simulate your post-layout design, convert your design to a
timing netlist and use the back-annotation flow applicable to
your synthesis tool.

Note: For more information on simulation, refer to the “Simulating
Your Design” chapter.

Instantiating a LogiBLOX “Black Box” Component

The VHDL example in this section shows how to instantiate a Logi-
BLOX “black box” component.

VHDL Example

entity top is
port (clk, rst, en, data: in bit; qg: out bit);
end top;

architecture structural of top is
-- Declare the black _box as a boolean attribute
attribute bl ack_box: bool ean;
-- Declare the black_box_pad_pin as a string attribute
attribute black_box_pad_pin: string;
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begi

end

-- Inthis example, AZMO is a user macro that | created
-- in a schematic editor, and
-- that | want to directly instantiate in ny VHDL design
-- as a black box. Create a conponent decl aration.
component 4d ZMO

port(Q out bit; Db C, CLR in bit);
end conponent;
-- Set the black _box attribute on AZMDOto be "true".
attribute black_box of G ZMO conponent is true;

-- In this exanple, MYBUF is a user I/O nmacro that | created
-- in a schematic editor, and
-- that | want to directly instantiate in ny VHDL design
-- as a black box. Create a conponent decl aration.
component MYBUF
port (O out bit; I: in bit);
end conponent;
-- Set the bl ack_box_pad_pin attribute on MYBUF to
-- the pin that interfaces with the external world, "I"
attribute black_box_pad_pin of MYBUF: conponent is "I";

signal data_core: bit;

n
-- Instantiate an MYBUF. Here we connect

-- data to | and data _core to QO

data_pad: MYBUF port nap (O => data_core, | => data);

-- Instantiate a G ZMO. Here we connect g to Q

-- data core to D, clk to C, and rst to CLR

ny_gizmo: A ZMO port map (Q => g, D => data_core,
C=>clk, CLR => rst);

structural;

Implementing Memory

4-52

XC4000E/EX/XL/XLA and Spartan FPGAs provide distributed on-
chip RAM or ROM. CLB function generators can be configured as
ROM (ROM16X1, ROM32X1); level-sensitive RAM (RAM16X1, RAM
32X1); edge-triggered, single-port (RAM16X1S, RAM32X1S); or dual-
port (RAM16x1D) RAM. Level sensitive RAMs are not available for
the Spartan family. The edge-triggered capability simplifies system
timing and provides better performance for RAM-based designs. This
distributed RAM can be used for status registers, index registers,
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counter storage, constant coefficient multipliers, distributed shift
registers, LIFO stacks, latching, or any data storage operation. The
dual-port RAM simplifies FIFO designs.

Note: For more information on XC4000 family RAM, refer to the
Xilinx Web site (http://support.xilinx.com) or the current release of
The Programmable Logic Data Book.

Implementing XC4000 and Spartan ROMs
ROMs can be implemented as follows.
= Use RTL descriptions of ROMs
= Instantiate 16x1 and 32x1 ROM primitives
e Use LogiBLOX to implement any other ROM size
VHDL and Verilog examples of an RTL description of a ROM follow.

RTL Description of a ROM VHDL Example

-- Behavioral 16x4 ROM Exanpl e
-- romrtl.vhd

l'ibrary | EEE;
use | EEE. std_|l ogic_1164. al | ;

entity romrtl is
port (ADDR: in |INTEGER range 0 to 15;
DATA: out STD _LOG C_VECTOR (3 downto 0));
end romrtl;

architecture XILINX of romrtl is

subtype ROM WORD is STD _LOG C_VECTOR (3 downto 0);
type ROM TABLE is array (0 to 15) of ROM WORD;
constant ROM ROM TABLE : = ROM TABLE' (

ROM WORD' (" 0000"),

ROM WORD' (" 0001"),

ROM WORD' (" 0010"),

ROM WORD' (" 0100"),

ROM WORD' ("1000"),

ROM WORD' ("1100"),

ROM WORD' ("1010"),
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ROM WORD' ("
ROM WORD' ("
ROM_WORD' ("
ROM_WORD' ("
ROM_WORD' ("
ROM WORD' ("
ROM WORD' ("
ROM WORD' ("
ROM_WORD' ("

begin

1001"),
1001"),
1010"),
1100"),
1001"),
1001"),
1101"),
1011"),
1111"));

DATA <= ROM ADDR);  --

end Xl LI NX;

Read fromthe ROM

RTL Description of a ROM Verilog Example

/*
* ROM RTL.V
* Behavi or al
*/

Exanpl e of 16x4 ROM

nmodul e romrtl (ADDR, DATA) ;
i nput [3:0] ADDR ;
out put [3:0] DATA ;

reg [3:0] DATA ;

/1 A nmenory is inplenented
/1 using a case statement

al ways @ ADDR)
begin
case (ADDR)

4’ b0000 :

4’ b0001 :
4’ b0010 :
4’ b0011 :
4’ b0100 :
4’ b0101 :
4’ b0110 :
4’ b0111 :
4’ b1000 :
4’ b1001 :
4’ b1010 :
4’ b1011 :

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

4’ b0000 ;
4’ b0001 ;
4’ b0010 ;
4’ b0100 ;
4’ b1000 ;
4’ b1000 ;
4’ b1100 ;
4’ b1010 ;
4’ b1001 ;
4’ b1001 ;
4’ b1010 ;
4’ b1100 ;
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4’ b1100 : DATA = 4’ bl001 ;
4’ pb1101 : DATA = 4’ bl001 ;
4’1110 : DATA = 4'bl101 ;
4’ bl1111 : DATA = 4'bli11l1l ;
endcase
end
endnodul e

When using an RTL description of a ROM, the synthesis tool creates
ROMs from random logic gates that are implemented using function
generators.

Another method for implementing ROMs is instantiating the 16x1 or
32x1 ROM primitives. To define the ROM value, use the Set Attribute
or equivalent command to set the INIT property on the ROM compo-
nent.

Note: Refer to your synthesis tool documentation for the correct
syntax.

This type of command writes the ROM contents to the netlist file so
the Xilinx tools can initialize the ROM. The INIT value should be
specified in hexadecimal values. See the VHDL and Verilog RAM
examples in the following section for examples of this property using
a RAM primitive.

Implementing XC4000 Family RAMs

Do not use RTL descriptions of RAMs in your code because they do
not compile efficiently and can cause combinatorial loops. The excep-
tion to this is if your synthesis tool can infer memory. In this case, you
must follow a strict coding style. Refer to your vendor’s documenta-
tion for more information.

You can implement RAMs as follows.

= Instantiate 16x1 and 32x1 RAM primitives (RAM16X1,
RAM32X1, RAM16X1S, RAM32X1S, RAM16X1D)

e Use LogiBLOX to implement any other RAM size

= Some synthesis tools can infer RAMSs from your code
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When implementing RAM in XC4000 and Spartan designs, Xilinx
recommends using the synchronous write, edge-triggered RAM
(RAM16X1S, RAM32X1S, or RAM16X1D) instead of the asynchro-
nous-write RAM (RAM16X1 or RAM32X1) to simplify write timing
and increase RAM performance.

Examples of an instantiation of edge-triggered RAM primitives are
provided in the following VHDL and Verilog designs. As with ROMs,
initial RAM values can be specified from the command line. The INIT
property value is specified in hexadecimal values. Refer to your
synthesis tool documentation for the correct command and syntax.

An ExemplarTM example of a RAM inference (ram.vhd) is also
included in this section. Check with your synthesis tool vendor for
the availability of this feature.

Instantiating RAM VHDL Example

-- RAM PRI M TI VE. VHD --
-- Exanple of instantiating 4 --
-- 16x1 synchronous RAMs --
-- HDL Synthesis Design GQuide for FPGAs --
-- May 1997 --

l'ibrary | EEE;
use | EEE. std_|l ogic_1164. al | ;

entity ramprimtive is

port ( DATA IN, ADDR : in STD LOG C VECTOR(3 downto 0);
WE, CLOCK : in STD_LOG G,
DATA_QUT : out STD LOG C VECTOR(3 downto 0));

end ramprinitive;

architecture STRUCTURAL_RAM of ramprimtive is

conmponent RAML6X1S
port (D, A3, A2, Al, A0, W, WCOLK : in STD LOG G
O: out STD LOGE Q);
end conponent;

4-56 Xilinx Development System



Designing FPGAs with HDL

begin
RAMD : RAML6XLS port
RAML : RAML6X1S port
RAMZ : RAML6X1S port
RAMB : RAML6X1S port

end STRUCTURAL_RAM

map (O => DATA _QUT(0),

A3 => ADDR(3), A2
Al => ADDR(1), A0
VE => WE, WCLK =>
map (O => DATA QUT(1),
A3 => ADDR(3), A2
Al => ADDR(1), A0
VE => WE, WCLK =>
map (O => DATA OUT(2),
A3 => ADDR(3), A2
Al => ADDR(1), A0

VE => WE, WCLK =>

map (O => DATA OUT(3),

A3 => ADDR(3), A2
Al => ADDR(1), A0
VE => WE, WCLK =>

D => DATA I N(0),
=> ADDR( 2),

=> ADDR(0),
CLOCK) ;

D => DATA IN(1),
=> ADDR( 2),

=> ADDR(0),
CLOCK) ;

D => DATA IN(2),
=> ADDR( 2),

=> ADDR(0),
CLOCK) ;

D => DATA I N(3),
=> ADDR(2),

=> ADDR(0),
CLOCK) ;

Instantiating RAM Verilog Example

FEEEEEEEE i rr

/1 RAM PRI M TI VE. V
/1 Exampl e of

/1l August 1997

instantiating 4
/1 16x1 Synchronous RAMs
/1 HDL Synthesis Design CGuide for

11
1
11
FPGAs //
11

PELEEEEEEEEr i r b r bbb rrry

nmodul e ramprimtive (DATA IN, ADDR, WE, CLOCK, DATA QUT);

input [3:0] DATA_IN, ADDR

i nput VE, CLOCK;

out put [3:0] DATA OUT;

RAML6X1S RAMD (. OQ( DATA_QUT[0]), .D(DATA_INO]), .A3(ADDR 3]),
.A2( ADDR[ 2] ), .Al1(ADDR{1]), .AO0(ADDR 0]),

VE(VE), . WCLK(CLOCK) ) ;
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RAML6X1S RAML (.O(DATA OUT[1]), .D(DATA IN[1]), .A3(ADDR[3]),

. A2( ADDR[ 2] ), .A1(ADDR[1]), .AO(ADDR 0]),
VE(VE), . WCLK(CLOCK) ) ;

RAML6X1S RAMR (. O(DATA OUT[2]), .D(DATA IN2]), .A3(ADDR[3]),

. A2(ADDR[ 2]), .AL(ADDR[1]), .AO(ADDR0]),
. VE(VE), . WCLK(CLOCK)) ;

RAML6X1S RAMB (. O(DATA OQUT[3]), .D(DATA IN3]), .A3(ADDR[3]),

. A2( ADDR[ 2] ), .AL1(ADDR[1]), .AO(ADDR[0]),
CVE(VE), . WCLK(CLOCK) ) ;

endnodul e

Inferring RAM VHDL Example

library ieee;

use ieee.std_logic_1164.all;
library exenplar;

use exenpl ar. exenpl ar_1164. al | ;
library exenplar;

use exenpl ar. exenpl ar. al | ;

package my_pkg is
type MEMWORD is array (6 downto 0) of elbit_vector (1 downto 0);
end ny_pkg;
=20
library exenpl ar;
use exenpl ar. exenpl ar. al | ;
use work. my_pkg. all;

entity memis

port (dio : inout elbit_vector (1 downto 0);=20
mene, we, inclk, outclk : in bit;
addr : integer range 6 downto O;
ro :oout bit);

attribute clock_node : bool ean;
attribute clock_node of inclk : signal is TRUE
attribute clock_node of outclk : signal is TRUE

=20
end nmem

architecture behav of nemis
signal mem: MEM WORD;
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signal d_int : elbit_vector (1 downto 0);
begin

process (inclKk)
begin
if (inclk’event and inclk =3D ' 1') then
if (menme =3D’'1 and we =3D '1') then
nmenm(addr) <=3D di o;
end if;
end if;
end process;
process (outcl k)
begin
if (outclk’event and outclk =3D '1') then
d_int <=3D nem (addr);
end if;
end process;
dio <=3D d_int when (neme =3D ' 1" and we =3D '0’) else "ZZ";
end behav;

Using LogiBLOX to Implement Memory

If you must instantiate memory, use LogiBLOX to create a memory
module larger than 32X1 (16X1 for Dual Port). Implementing
memory with LogiBLOX is similar to implementing any module with
LogiBLOX except for defining the Memory initialization file. Use the
following steps to create a memory module.

Note: Refer to the “Using LogiBLOX in HDL Designs” section for
more information on using LogiBLOX.

1. Before using LogiBLOX, verify the following.
= Xilinx software is correctly installed
= Environment variables are set correctly

= Your display environment variable is set to your machine’s
display

2. Torun LogiBLOX, enter the following command.
| bgui

The LogiBLOX Setup Window appears after the LogiBLOX
module generator is loaded. This window allows you to name
and customize the module you want to create.
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3.

Select the Vendor tab in the Setup Window. Select your synthesis
tool in the Vendor Name field to specify the correct bus notation
for connecting your module.

Select the Project Directory tab. Enter the directory location of
your project in the LogiBLOX Project Directory field.

Select the Device Family tab. Select the target device for your
design in the Device Family field.

Select the Options tab and select the applicable options for your
design.

Select OK.

Enter a name in the Module Name field in the Module Selector
Window.

Select the Memories module type from the Module Type field to
specify that you are creating a memory module.

Select a width (any value from 1 to 64 bits) for the memory from
the Data Bus Width field.

In the Details field, select the type of memory you are creating
(ROM, RAM, SYNC_RAM, or DP_RAM).

Enter a value in the Memory Depth field for your memory
module.

Note: Xilinx recommends (this is not a requirement) that you select a
memory depth value that is a multiple of 16 because this is the
memory size of one lookup table.

5.

If you want the memory module initialized to all zeros on power
up, you do not need to create a memory file (Mem File).
However, if you want the contents of the memory initialized to a
value other than zero, you must create and edit a memory file.
Enter a memory file name in the Mem File field and click on the
Edit button. Continue with the following steps.

Note: Some memory modules can only be initialized to zero. Refer to
the Xilinx Programmable Logic Data Book for more information.

a) A memory template file in a text editor is displayed. This file
does not contain valid data, and must be edited before you
can use it. The data values specified in the memory file Data
Section define the contents of the memory. Data values are
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specified sequentially, beginning with the lowest address in
the memory, as defined.

b) Specify the address of a data value. The default radix of the
data values is 16. If more than one radix definition is listed in
the memory file header section, the last definition is the radix
used in the Data Section.

The following definition defines a 16-word memory with the
contents 6, 4,5,5,2,7,5,3,5,5,5,5,5,5, 5, 5, starting at
address 0. Note that the contents of locations 2, 3, 6, and 8
through 15 are defined via the default definition. Two
starting addresses, 4 and 7, are given.

depth 16
default 5
data 6, 4,
4: 2, 7,
7. 3
c) After you have finished specifying the data for the memory
module, save the file and exit the editor.

6. Click the OK button. Selecting OK generates a component
instantiation declaration, a behavioral model, and an implemen-
tation netlist.

7. Copy the HDL module declaration/instantiation into your HDL
design. The template file created by LogiBLOX is
module_name.vhi for VHDL and module_name.vei for Verilog, and
is saved in the project directory as specified in the LogiBLOX
setup.

8. Complete the signal connections of the instantiated LogiBLOX
memory module to the rest of your HDL design, and complete
initial design coding.

9. Perform a behavioral simulation on your design. For more infor-
mation on behavioral simulation, refer to the “Simulating Your
Design” chapter.

10. Create an implementation script. Add a Set Don’t Touch or equiv-
alent attribute to the instantiated LogiBLOX memory module,
and compile your design.

Also, if you have a Verilog design, use a remove design type of
command before writing the .xnf or .edif netlist.
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Note: If you do not use this type of command, the netlist file may be
empty. If this occurs, the Xilinx software will trim this module/
component and all connected logic. Refer to your synthesis tool docu-
mentation for the correct syntax.

11.

12.

13.

Compile your design and create a .xnf or .edif file. You can safely
ignore the following type of warning messages.

Warning: Can't find the design in the library WORK.
(LBR-1)
Warning: Unable to resolve reference LogiBLOX_name in

design_name. (LINK-5)

Warning: Design design_name has 1unresolved references.
For more detailed information, use the “link” command.
(UID-341)

Implement your design with the Xilinx tools. Verify that the .ngc
file created by LogiBLOX is in the same project directory as the
netlist.

You may get the following warnings during the NGDBuild and
mapping steps. These messages are issued if the Xilinx software
can not locate the corresponding .ngc file created by LogiBLOX.

Warning: basnu - logical block LogiBLOX _instance_name of
type LogiBLOX name is unexpanded. Logical Design DRC
complete with 1 warning(s).

If you get this message, you will get the following message
during mapping.

ERROR:basnu - logical block LogiBLOX_instance_name of
type LogiBLOX_name is unexpanded. Errors detected in
general drc.

If you get these messages, first verify that the .ngc file created by
LogiBLOX is in the project directory. If the file is there, verify that
the module is properly instantiated in the code.

To simulate your post-layout design, convert your design to a
timing netlist and use the back-annotation flow applicable to
your synthesis tool.

Note: For more information on simulation, refer to the “Simulating
Your Design” chapter.
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Implementing Boundary Scan (JTAG 1149.1)

Note: Refer to the Development System Reference Guide for a detailed
description of the XC4000/XC5200 boundary scan capabilities.

XC4000, Spartan, and XC5200 FPGAs contain boundary scan facilities
that are compatible with IEEE Standard 1149.1. Xilinx devices
support external (170 and interconnect) testing and have limited
support for internal self-test.

You can access the built-in boundary scan logic between power-up
and the start of configuration. Optionally, the built-in logic is avail-
able after configuration if you specify boundary scan in your design.
During configuration, a reduced boundary scan capability (sample/
preload and bypass instructions) is available.

In a configured FPGA device, the boundary scan logic is enabled or
disabled by a specific set of bits in the configuration bitstream. To
access the boundary scan logic after configuration in HDL designs,
you must instantiate the boundary scan symbol, BSCAN, and the
boundary scan I/0 pins, TDI, TMS, TCK, and TDO.

The XC5200 BSCAN symbol contains three additional pins: RESET,
UPDATE, and SHIFT, which are not available for XC4000 and
Spartan. These pins represent the decoding of the corresponding state
of the boundary scan internal state machine. If this function is not
used, you can leave these pins unconnected in your HDL design.

Instantiating the Boundary Scan Symbol

To incorporate the boundary scan capability in a configured FPGA
using synthesis tools, you must manually instantiate boundary scan
library primitives at the source code level. These primitives include
TDI, TMS, TCK, TDO, and BSCAN. The following VHDL and Verilog
examples show how to instantiate the boundary scan symbol,
BSCAN, into your HDL code. Note that the boundary scan I/0 pins
are not declared as ports in the HDL code. The schematic for this
design is shown in the “Bnd_scan Schematic” figure.

You must assign a Set Don’t Touch or equivalent attribute to the net
connected to the TDO pad before using the Insert Pads (or equiva-
lent) and compile commands. Otherwise, the TDO pad is removed by
the compiler. In addition, you do not need IBUFs or OBUFs for the
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TDI, TMS, TCK, and TDO pads. These special pads connect directly
to the Xilinx boundary scan module.

Boundary Scan VHDL Example

l'ibrary |EEE;
use | EEE. std_| ogic_1164. al | ;
use | EEE. std_| ogi c_unsi gned. al | ;

entity bnd_scan is
port (TDI_P, TM5_ P, TCK P : in STD LOG G,

LOAD P, CE P, CLOCK P, RESET_P: in
STD _LOA G
DATA P: in STD_LOd C VECTOR(3 downto 0);
TDO P: out STD LOG C
COUT_P: out STD LOG C VECTOR(3 downto 0));

end bnd_scan;

architecture XlILINX of bnd_scan is

component BSCAN
port (TDI, TMS, TCK out STD LOG C
TDO in STD LOG O);
end conponent;

conmponent TDI
port (l: out STD LOd C);
end conponent;

component TNMS
port (l: out STD _LOdA C);
end conponent;

component TCK
port (l: out STD_LOA C);
end conponent;

component TDO
port (G out STD LOd C);
end conponent;

conponent count 4
port (LOAD, CE, CLOCK, RST: in STD LOd C
DATA: in STD LOG C_VECTOR (3 downto 0);
COUT: out STD LOEd C_VECTOR (3 downto 0));
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end conponent;

-- Defining signals to connect BSCAN to Pins --
signal TCK_ NET : STD LCd C;
signal TDI _NET : STD LCd C;
signal TMS_NET : STD LCQ C;
signal TDO NET : STD LCA C;

begin

Ul: BSCAN port map (TDO => TDO_NET,
TDI => TDI _NET,
TVMB => TMS_NET,
TCK => TCK_NET) ;

U2: TDI port map (I =>TDI _NET);

U3: TCK port map (I =>TCK_NET);

U4: TMS port map (I =>TMS_NET);

Us: TDO port map (O =>TDO_NET);

U6: count4 port map (LOAD => LQOAD P,
CE => CE_P,
CLOCK => CLOCK_P,
RST => RESET_P,
DATA => DATA P,
Cour => COUT_P);

end Xl LI NX;

Boundary Scan Verilog Example
PIVILTTIIE LTI LTI LTI LTIl

/| BND_SCAN. V I
/1 Example of instantiating the BSCAN symbol in /1
/1 activating the Boundary Scan circuitry I
/1l Count4 is an instantiated .v file of a counter [/
/'l Septenber 1997 /1

NN NN NN

nmodul e bnd_scan (LOAD P, CLOCK P, CE_P, RESET_P,
DATA_P, CQUT_P);

i nput LOAD P, CLOCK P, CE_P, RESET P;

Synthesis and Simulation Design Guide 4-65



Synthesis and Simulation Design Guide

input [3:0] DATA_P;
out put [3:0] COUT_P;

wire TDI _NET, TMB_NET, TCK_NE, TDO NET;

BSCAN Ul (. TDO(TDO NET), .TDI(TDI _NET), .TMS(TMB_NET), .TCK(TCK_NET));
TDI U2 (.1(TDI_NET));

TCK U3 (.1 (TCK_NET));

TV W4 (.1(TMB_NET));

TDO U5 (. Q(TDO NET));

count4 U6 (.LOAD(LOAD P), .CLOCK(CLOCK P), .CE(CE_P),
. RST(RESET_P), .DATA(DATA P), .COUT(COUT P));

endnodul e

IBUF
CEP[ > I'>
BFt'JE_F |—
CLOCK_P [ »
0 | count4
DATA_P<3:0> | > >
COUT_P<3:0>
IBUF _— -
LOAD P[> '|>
IBUF
RESET P [ > >
™[ O>— —<_1T1Dp0
—m
BSCAN | _g
—m
- =
logic_0 \v4
logic_0 Y;
™S [ DO——
X8341
TCK [D>—

Figure 4-7 Bnd_scan Schematic

4-66 Xilinx Development System



Designing FPGAs with HDL

Implementing Logic with IOBs

You can move logic that is normally implemented with CLBs to 10Bs.
By moving logic from CLBs to I0Bs, additional logic can be imple-
mented in the available CLBs. Using I0Bs also improves design
performance by increasing the number of available routing resources.

The XC4000 and Spartan devices have different IOB functions. The
following sections provide a general description of the IOB function
in XC4000E/EX/XLA/XL/XV and Spartan devices. A description of
how to manually implement additional 1/0 features is also provided.

XC4000E/EX/XLA/XL/XV and Spartan IOBs

You can configure XC4000E/EX/XLA/XL/XV and Spartan IOBs as
input, output, or bidirectional signals. You can also specify pull-up or
pull-down resistors, independent of the pin usage.

These various buffer and 1/0 structures can be inferred from
commands executed in a script or in your synthesis tool. The Set Port
Is Pad (or equivalent) command in conjunction with the Insert Pads
(or equivalent) command creates the appropriate buffer structure
according to the direction of the specified port in the HDL code. You
can add attributes to these commands to further control pull-up, pull-
down, and clock buffer insertion, as well as slew-rate control. Some
tools operate on 1/0s by selecting a chip level (inserts 1/0) or module
level (no 1/0) synthesis. Also, you can add synthesis tool attributes,
such as BUFFER_SIG, to ports in your VHDL code to control inser-
tion of 1/0s.

Inputs

The buffered input signal that drives the data input of a storage
element can be configured as either a flip-flop or a latch. Addition-
ally, the buffered signal can be used in conjunction with the input
flip-flop or latch, or without the register.

To avoid external hold-time requirements, 10B input flip-flops and
latches have a delay block between the external pin and the D input.
You can remove this default delay by instantiating a flip-flop or latch
with a NODELAY attribute. The NODELAY attribute decreases the
setup-time requirement and introduces a small hold time.
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If an 10B or register is instantiated in your HDL code, you may not be
able to use the Set Port Is Pad (or equivalent) command on that port.
Doing so may automatically infer a buffer on that port and create an
invalid double-buffer structure. This varies with the tool you are
using. Check with your synthesis vendor to see if partial instantiation
interferes with automatic 1/0 insertion or the use of IOB registers.

Registers that connect to an input or output pad and require a Direct
Clear or Preset pin are not implemented by the synthesis tool in the
IOB. The VHDL emulation of GSR or GR on these registers prevents
them from being pulled into the IOB. The VHDL emulation of GSR/
GR through direct clear or preset pins is described in the “Simulating
Your Design” chapter. If GSR/GR behavior is not completely
described, automatic inferencing of GSR/GR does not occur. In this
case, instantiate STARTBUF in VHDL, and fully describe the GSR/
GR behavior except for registers that you want in the I0OB. In VHDL,
these registers do not initialize pre-route, but do indicate X’s until the
first data is registered. However, they do initialize properly during
back-annotation. Verilog models initialize properly and do not inter-
fere with the automatic use of 1OB registers instead of CLB registers.

Outputs

The output signal that drives the programmable tristate output buffer
can be a registered or a direct output. The register is a positive-edge
triggered flip-flop and the clock polarity can be inverted inside the
I0B. (Xilinx software automatically optimizes any inverters into the
IOB.) The XC4000 and Spartan output buffers can sink 12 mA. Two
adjacent outputs can be inter-connected externally to sink up to
24mA.

Note: Most FPGA synthesis tools can optimize flip-flops attached to
output pads into the I0B. However, some of these tools cannot opti-

mize flip-flops into an 10B configured as a bidirectional pad. Refer to
your synthesis tool documentation for more information.

Slew Rate

Refer to your synthesis tool documentation for information on
configuring 1/0’s, including how to control slew rate.
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Pull-ups and Pull-downs

XC4000 and Spartan devices have programmable pull-up and pull-
down resistors available in the 1/0 regardless of whether it is config-
ured as an input, output, or bi-directional 1/0. By default, all unused
IOBs are configured as an input with a pull-up resistor. The value of
the pull-ups and pull-downs vary depending on operating conditions
and device process variances but should be approximately 50 K
Ohms to 100 K Ohms. If a more precise value is required, use an
external resistor. Refer to your synthesis tool documentation for
information on how to specify internal pull-up or pull-down 1/0
resistors.

XC4000EX/XLA/XL/XV Output Multiplexer/2-Input
Function Generator

A function added to XC4000EX/XLA/XL/XV families is a two input
multiplexer connected to the IOB output allowing the output clock to
select either the output data or the 10B clock enable as the output
pad. This allows you to share output pins between two signals, effec-
tively doubling the number of device outputs without requiring a
larger device or package. Additionally, this multiplexer can be config-
ured as a two-input function generator allowing you to implement
any 2-input logic function in the 10B thus freeing up additional logic
resources in the device and allowing for very fast pin-to-pin data
paths.

To use the output multiplexer (OMUX), you must instantiate it in
your code. See the following VHDL and Verilog examples. Instantia-
tion of the other types of two-input output primitives (such as
OAND?2, OOR2, and OXOR?2) are similar to these examples.

Note: Since the OMUX uses the I0OB output clock and clock enable
routing structures, the output flip-flop (OFD) can not be used within
the same IOB. The input flip-flop (IFD) can be used if the clock enable
is not used.

= Output Multiplexer VHDL Example

- - OMUX_EXAMPLE. VHD --
-- Exanple of OMUX instantiation --
-- For an XC4000EX/ XL/ XV devi ce --
-- HDL Synthesis Design Quide for FPGAs --
-- August 1997 --
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library | EEE;
use | EEE. std |l ogic_1164.all;

entity onux_exanple is

port (DATA_IN in STD LOd C VECTOR (1 downto 0);
SEL: in STD LOd C,
DATA QUT: out STD LOA C);

end omux_exanpl e;
architecture Xl LINX of onux_exanple is

component OMUX2
port (DO, D1, SO : in STD LOGEC

O: out STD LOGE Q) ;

end conponent;

begin

DUEL_QUT: OMJUX2 port nmap (O=>DATA QOUT,
DO=>DATA | N(0), D1=>DATA IN(1), SO=>SEL);

end Xl LI NX;
Output Multiplexer Verilog Example

FEEEEEEEEr bbby
/'l OMUX_EXAMPLE. V /11
/1 Exanpl e of instantiating an OMJX2 /1
/1 in an XCA000EX/ XL | OB 11
/1 HDL Synthesis Design Guide for FPGAs //
/1 August 1997 I
TEEEEEEEEr i r b rrrry

nodul e omux_exanpl e (DATA_IN, SEL, DATA _QUT)
input [1:0] DATA_IN ;

i nput SEL ;

out put DATA_QUT ;

OMUX2 DUEL_QUT (. O( DATA_QUT), .DO(DATA_INO0]),
.DL(DATA IN[1]), .SO(SEL));
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endnodul e

XC5200 10Bs

XC5200 10Bs consist of an input buffer and an output buffer that can
be configured as an input, output, or bi-directional 1/0. The structure
of the XC5200 is similar to the XC4000 10B except the XC5200 does
not contain a register/latch. The XC5200 IOB has a programmable
pull-up or pull-down resistor, and two slew rate control modes (Fast
and Slow) to minimize bus transients. The input buffer can be
globally configured to TTL or CMOS levels, and the output buffer can
sink or source 8.0 mA.

170 buffer structures (as with the XC4000 IOBs) can be inferred from
your synthesis tool script with the Set Port Is Pad (or equivalent)
command in conjunction with the Insert Pads (or equivalent)
command. Controlling pull-up and pull-down insertion and slew
rate control are performed as previously described for the XC4000
10B.

The XC5200 IOB also contains a delay element so that an input signal
that is directly registered or latched can have a guaranteed zero hold
time at the expense of a longer setup time. You can disable this
(equivalent to NODELAY in XC4000) by instantiating an IBUF_F
buffer for that input port. This only needs to be done for ports that
connect directly to the D input of a register in which a hold time can
be tolerated.

Bi-directional 1/O

You can create bi-directional 1/0 with one or a combination of the
following methods.

= Behaviorally describe the 170 path
= Structurally instantiate appropriate IOB primitives
= Create the 1/0 using LogiBLOX

Xilinx FPGA 10Bs consist of a direct input path into the FPGA
through an input buffer (IBUF) and an output path to the FPGA pad
through a tri-stated buffer (OBUFT). The input path can be registered
or latched; the output path can be registered. If you instantiate or
behaviorally describe the 1/0, you must describe this bi-directional
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path in two steps. First, describe an input path from the declared
INOUT portto a logic function or register. Second, describe an output
path from an internal signal or function in your code to a tri-stated
output with a tri-state control signal that can be mapped to an
OBUFT.

You should always describe the 1/0 path at the top level of your
code. If the 1/0 path is described in a lower level module, your
synthesis tool may incorrectly create the 1/0 structure.
Inferring Bi-directional I/O

This section includes VHDL and Verilog examples that show how to
infer a bi-directional 1/0. In these examples, the input path is latched
by a CLB latch that is gated by the active high READ_WRITE signal.

The output consists of two latched outputs with an AND and OR,
and connected to a described tri-state buffer. The active low
READ_WRITE signal enables the tri-state gate.

= Inferring a Bi-directional Pin VHDL Example

-- BI D R_I NFER VHD --
-- Exanmple of inferring a Bi-directional pin --
--  August 1997 --

Li brary | EEE;

use | EEE. STD LOd C 1164. al | ;

use | EEE. STD LOd C _UNSI GNED. al | ;
entity bidir_infer is

port (DATA : inout STD LOQd C VECTOR(1 downto 0);
READ WRITE : in STD LCGAE O) ;

end bidir_infer;

architecture XILINX of bidir_infer is
signal LATCH QUT : STD LOG C VECTOR(1 downto 0);
begin

process( READ WRI TE, DATA)
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begin

if (READVWRITE = '1') then
LATCH OUT <= DATA;
end if;

end process;

process( READ WRI TE, LATCH_QUT)
begin

if (READWRITE = '0’) then
DATA(0) <= LATCH QUT(0) and LATCH QUT(1);
DATA(1) <= LATCH QUT(0) or LATCH QUT(1);
el se
DATA(OQ) <="'2Z";
DATA(1) <="'2Z;
end if;

end process;

end Xl LI NX;
= Inferring a Bi-directional Pin Verilog Example

NNy
/1 BIDIR_INFER V Version 1.1 11
/1 This is an exanple of an inference of a bi-directional signal. //
/1 Note: Logic description of port should always be on top-level [/
/1 code when using Synopsys Conpiler and veril og. I
/1 March 1998 I
NN NN NNy

nmodul e bidir_infer (DATA, READ WRI TE);

i nput READ WRI TE ;
i nout [1:0] DATA ;

reg [1: 0] LATCH OUT ;

al ways @ (READ WRI TE or DATA)
begin
if (READ_WRITE == 1’ bl)
LATCH OUT <= DATA;
end
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assi gn DATA[ 0]
assi gn DATA[ 1]

endnodul e

READ WRI TE ? 1'bZ : (LATCH QUT[0] & LATCH QUT[1]);
READ WRI TE ? 1'bZ : (LATCH OUT[0] | LATCH OQUT[1]):

Instantiating Bi-directional 1/0

Instantiating the bi-directional 1/0 gives you more control over the
implementation of the circuit; however, as a result, your code is more
architecture-specific and usually more verbose. The VHDL and
Verilog examples in this section are identical to the examples in the
“Inferring Bi-directional 1/0” section; however, since there is more
control over the implementation, an input latch is specified rather
than the CLB latch inferred in the previous examples. The following
examples are a more efficient implementation of the same circuit.

When instantiating I/0 primitives, do not specify the Set Port Is Pad
(or equivalent) command on the instantiated ports to prevent the I/0
buffers from being inferred by your synthesis tool. This precaution
also prevents the creation of an illegal structure.

= Instantiation of a Bi-directional Pin VHDL Example

-- BI DI R_I NSTANTI ATE. VHD --
-- Exanple of an instantiation --
-- of a Bi-directional pin --

--  August 1997

Li brary | EEE;
use | EEE. STD_LOd
use | EEE. STD LCd

C 1164.all;
C_UNSI GNED. al | ;

entity bidir_instantiate is

port (DATA :

i nout STD LOJd C VECTOR(1 downto 0);

READ WRI TE : in STD LOGI ) ;

end bidir_instantiate;

architecture Xl LI

NX of bidir_instantiate is

signal LATCH OQUT : STD LOG C VECTOR(1 downto 0);
signal DATA OQUT : STD LOG C VECTOR(1 downto 0);

signal GATE :
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component LD 1
port (D, G: in STD LOd C
Q . out STD LOG Q) ;
end conponent;

component OBUFT_S
port (I, T: in STD LOGQ C
O: out STD LOGE O);
end conponent;

begin

DATA OUT(0) <= LATCH OUT(0) and LATCH OUT(1);
DATA QUT(1) <= LATCH QUT(0) or LATCH QUT(1);

GATE <= not READ WRI TE;

I NPUT_PATH O : ILD 1
port map (D => DATA(O0), G => GATE,
Q => LATCH QUT(0));

I NPUT_PATH 1 : ILD 1
port map (D => DATA(1l), G => GATE,
Q => LATCH QUT(1));

OUPUT_PATH 0 : OBUFT_S
port map (I => DATA QUT(0), T => READ WRI TE,
O => DATA(0));

OUPUT PATH 1 : OBUFT_S
port map (I => DATA QUT(1), T => READ WRI TE,
O => DATA(1));
end Xl LI NX;
= Instantiation of a Bi-directional Pin Verilog Example

NN NNy

/1 Bl DI R_| NSTANTI ATE. V I
/1 This is an exanple of an instantiation //
/1 of a bi-directional port. /1

/1 August 1997 I

[HEEEEEEE b rrrrrd

nmodul e bidir_instantiate (DATA, READ WRI TE);
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i nput
inout [1:0]

reg [1:0]
wire [1:0]
wire

READ WRI TE ;
DATA ;

LATCH_OUT ;
DATA OUT ;
GATE ;

assi gn GATE = ~READ VRl TE;

assi gn DATA _QUT[ 0]
assi gn DATA QUT[ 1]

LATCH OUT[ 0] & LATCH OUT[1];
LATCH OUT[ 0] | LATCH OUT[1];

[/ 1/Oprimtive instantiation

ILD 1 | NPUT_PATH O (. Q LATCH OUT[0]), .D(DATA[0]), .G GATE));

ILD 1 I NPUT_PATH 1 (.Q LATCH QUT[1]), .D(DATA[1]), .G GATE));

OBUFT_S OUPUT_PATH 0 (. O(DATA[0]), .l (DATA QUT[0]), .T(READ WRI TE));

OBUFT_S OUPUT_PATH 1 (.OQ(DATA[1]), .l (DATA OUT[1]), .T(READ WR TE));

endnodul e
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Using LogiBLOX to Create Bi-directional 1/0

You can use LogiBLOX to create 1/0 structures in an FPGA. Logi-
BLOX gives you the same control as instantiating 1/0 primitives, and
is usually less verbose. LogiBLOX is especially useful for bused 1/0
ports.

Note: Refer to the “Using LogiBLOX in HDL Designs” section
section, for details on creating, instantiating, and compiling Logi-
BLOX modules.

Do not use the Set Port Is Pad (or equivalent) command on Logi-
BLOX-created ports. Also, when designing with Verilog, you must
issue a Remove Design or equivalent command before writing out
the .xnf files from your synthesis tool.

The following VHDL and Verilog examples show how to instantiate
bi-directional 1/0 created with LogiBLOX. These examples produce
the same results as the examples in the “Instantiating Bi-directional
170 section.
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= Using LogiBLOX to Create a Bi-directional Port VHDL Example

-- BID R LOd BLOX. VHD --
--  Exanpl e of using Logi BLOX --
-- to create a Bi-directional port --
--  August 1997 --

-- Logi BLOX BIDI Mydule "bidir_io_fromlb"
-- Created by Logi BLOX version M. 3.7

-- on Mon Sep 8 13:14:02 1997

-- Attributes

-- MODTYPE = BI DI

-- BUS WDTH = 2

-- IN_TYPE = LATCH

-- QUT_TYPE = TR

Li brary | EEE;
use | EEE. STD LOG C 1164. al | ;
use | EEE. STD LOG C UNSI GNED. al | ;

entity bidir_logiblox is

port (DATA : inout STD LOGd C VECTOR(1 downto 0);

READ WRITE : in STD LCGAE O) ;
end bidir_I ogi bl ox;
architecture XILINX of bidir_logiblox is

signal LATCH QUT : STD LOG C VECTOR(1 downto 0);
signal DATA OQUT : STD LOG C VECTOR(1 downto 0);

conponent bidir_io_fromlb
PORT( O I'N STD_LOJd C_VECTOR(1 DOMNTO 0);
CE: I'N STD LOG G,
| GATE: IN STD_LOG G
1 Q QUT  STD LOd C VECTOR(1 DOANTO 0);
P: I NOUT STD LOG C VECTOR(1 DOMTO 0));
end conponent;
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begin

DATA OUT(0) <= LATCH OUT(0) and LATCH OUT(1):
DATA OUT(1) <= LATCH OUT(0) or LATCH OUT(1);

-- Conponent Instantiation

Bl DI R_ BUSSED PORT : bidir_io_fromlb
port map (O => DATA OUT, OE => READ WRI TE,
| GATE => READ WRI TE, | Q => LATCH OUT, P => DATA);
end Xl LI NX;
= Using LogiBLOX to Create a Bi-directional Port Verilog Example

NNy

/1 BIDIR _LOA BLOX. V I

/1 This is an exanple of using Logi BLOX [/
/!l to create a bi-directional port. /1
/1 August 1997 /1

PELELEEEEErrrrrrrrrrr bbb bbby

/1 Logi BLOX BIDI Mdule "bidir_io_fromlb"
/1l Created by Logi BLOX version M. 3.7

I on Mon Sep 8 17:10:15 1997

[l Attributes

I MODTYPE = BI DI

/1 BUS W DTH = 2

/1 IN_TYPE = LATCH
/1 OUT_TYPE = TRI
A

nmodul e bi dir_| ogi bl ox (DATA, READ WRI TE);

i nput READ WRI TE ;
i nout [1:0] DATA ;

reg [1: 0] LATCH QUT ;
wire [1:0] DATA QUT ;

assi gn DATA _QUT[ 0]
assi gn DATA _QUT[ 1]

LATCH OQUT[ 0] & LATCH OUT[1];
LATCH OUT[ 0] | LATCH OUT[1];
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/1 Logi BLOX instantiation

bidir_io fromlb BID R BUSSED PORT
( . O(DATA_QUT), .OE(READ WRI TE), .P(DATA),
.1 (LATCH QUT), .| GATE(READ VR TE));

endnodul e

nmodul e bidir_io_fromlb (O Cg P, 1Q |GATE);
input [1:0] O
i nput CE
i nput | GATE
inout [1:0] P
output [1:0] 1Q
endnodul e

Specifying Pad Locations

Although Xilinx recommends allowing the software to select pin
locations to ensure the best possible pin placement in terms of design
timing and routing resources, sometimes you must define the pad
locations prior to placement and routing. You can assign pad loca-
tions either from your synthesis tool’s script prior to writing out the
netlist file, or from a User Constraints File (UCF). Use one or the other
method, but not both. Refer to your synthesis tool documentation for
the correct syntax for configuring your 1/0 with the PLOC property.
Also, refer to The Programmable Logic Data Book or the Xilinx Web site
(http://support.xilinx.com) for the pad locations for your device and
package.

Moving Registers into the I0B
Note: XC5200 devices do not have input and output flip-flops.

IOBs contain an input register or latch and an output register. IOB
inputs can be register or latch inputs as well as direct inputs to the
device array. Registers without a direct reset or set function can be
moved into I0Bs. Moving registers or latches into IOBs may reduce
the number of CLBs used and decreases the routing congestion. In
addition, moving input registers and latches into the 10B reduces the
external setup time, as shown in the following figure.
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Input Register

BEFORE AFTER
10B CLB 10B
IBUF FDE IFD
—° <o e e
IN_SIG IN_SIG
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Routing Delay

Output Register

BEFORE AFTER
CLB 10B 10B
FDE OFD_F
OBUF_F
— D= P
\ oUT_SIG OUT_SIG
—rc . Routing —r°
Routing Delay Delay
(No additional
setup time)

X4974

Figure 4-8 Moving Registers into the IOB

Although moving output registers into the IOB may increase the
internal setup time, it may reduce the clock-to-output delay, as shown
in this figure. Most FPGA synthesis tools automatically move regis-
ters into 10Bs if the Preset, Clear, and Clock Enable pins are not used.

Use —pr Option with Map

Use the —pr (pack registers) option when running MAP. The —pr{i | o
| b} (input | output | both) option specifies to the MAP program to
move registers into 10Bs under the following circumstances.

1. The input of the register must be connected to an input port, or
the Q pin must be connected to an output port. For the
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XC4000EX/XL/XV this applies to non-1/0 latches, as well as
flip-flops.

2. 10Bs must have input or output flip-flops. XC5200 devices do not
have I0B flip-flops.

3. The flip-flop does not use an asynchronous set or reset signal.

4. In XC4000, Spartan, and XC3000 devices, a flop/latch is not
added to an IOB if it has a BLKNM or LOC conflict with the 1OB.

5. In XC4000 or Spartan devices, a flop/latch is not added to an
IOB if its control signals (clock or clock enable) are not compat-
ible with those already defined in the IOB. This occurs when a
flip-flop (latch) is already in the 10B with different clock or clock
enable signals, or when the XC4000EX/XL/XV output MUX is
used in the same 10B.

6. In XC4000EX/XV devices, if a constant 0 or 1 is driven on the
IOPAD, a flip-flop/latch with a CE is not added to the input side
of the 10B.

Using Unbonded I0Bs (XC4000E/EX/XLA/XL/XV and
Spartan Only)

In some package/device pairs, not all pads are bonded to a package
pin. You can use these unbonded 10Bs and the flip-flops inside them
in your design by instantiating them in the HDL code. You can imple-
ment shift registers with these unbonded I0Bs. The VHDL and
Verilog examples in this section show how to instantiate unbonded
I0B flip-flops in a 4-bit shift register in an XC4000 device.

Note: The synthesis tool compilers cannot infer unbonded primi-
tives. Refer to your synthesis tool documentation for a list of library
primitives that can be used for instantiations.

4-bit Shift Register Using Unbonded I/O VHDL
Example

-- UNBONDED_ | O VHD Version 1.0 --
-- XC4000 LCA has unbonded | OBs whi ch have --
-- storage elenments that can be used to build --
-- shift registers. --
-- Belowis a 4-bit Shift Register using --
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-- Unbonded I1OB Flip Flops --
-- Xilinx HDL Synt hesis Design Guide for FPGAs --
-- May 1997 --

Li brary | EEE;
use | EEE. std_|l ogic_1164. all;
use | EEE. std_| ogi c_unsi gned. al | ;

entity unbonded_io is
port (A B: in STD LOd C
CLK: in STD LOG G
Q QUT: out STD LCGE O);
end unbonded i o;

architecture Xl LINX of unbonded_io is

conponent IFD U -- Unbonded Input FF with | Nl T=Reset
port (Q out std_logic;
D, C in std_logic);
end conponent;

conponent | FDI _U -- Unbonded I nput FF with | Nl T=Set
port (Q out std_logic;
Db C in std_logic);
end conponent;

conponent OFD U -- Unbonded Qutput FF with | Nl T=Reset
port (Q out std_logic;
D, C in std_logic);
end conponent;

conponent OFDI _U -- Unbonded Qutput FF with | N T=Set
port (Q out std_logic;
D, C in std_logic);
end conponent;

--- Internal Signal Declarations -----
signal U Q: STD LOG C VECTOR (3 downto 0);
signal UD: STD LOGE G

begin

UD <= A and B;
Q aUT <= U QO0);
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U3: OFD_.U port map (Q => U Q3),
D => U_D,
C => CLK);
U2: IFDI_U port map (Q => U Q 2),
D =>UQ3)),
C => CLK);
Ul: OFDI _U port map (Q => U Q 1),
D= UQ?2),
C => CLK);
Ww: IFD U port map (Q => U QO0),
D=>UQ1),
C => CLK);
end Xl LI NX;
4-bit Shift Register Using Unbonded 1/O Verilog
Example
FEETEPET bbb rrriirrrrr
/1 UNBONDED. V /1
/1 XC4000 family has unbonded |1 OBs which have /1
/1 storage elenents that can be used to build I
/1 functions lie shift registers. /1
// Belowis a 4-bit Shift Register using Unbonded //
/1 10B Flip Flops I
/1 HDL Synthesis Design Guide for FPGAs /1
/1 NMay 1997 /1

TIEEEETEE il rriririrrl
nmodul e unbonded_io (A B, CLK, Q QUT);

i nput A B, CLK;
out put Q_CUT;

wire[3:0] UQ
wre U b

assign UD = A &
= U_

B;
assign Q QUT qol;

OFD_U W (. QquU_d3]), .DUD, .ACAK));
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endnodul e

IFD_U W2 (.Qud2]), .(UuqQ3]), . .ACAK));
OFDI_U Ul (.Qu_d1]), .D(UQ2]), .QCLK));
IFD U W (.QU_QO0]), .D(UuQ1]), .C(CLK));

Implementing Multiplexers with Tristate Buffers

4-84

A 4-to-1 multiplexer is efficiently implemented in a single XC4000 or
Spartan family CLB. The six input signals (four inputs, two select
lines) use the F, G, and H function generators. Multiplexers that are
larger than 4-to-1 exceed the capacity of one CLB. For example, a 16-
to-1 multiplexer requires five CLBs and has two logic levels. These
additional CLBs increase area and delay. Xilinx recommends that you
use internal tristate buffers (BUFTs) to implement large multiplexers.

Large multiplexers built with BUFTs have the following advantages.
= Can vary in width with only minimal impact on area and delay

= Can have as many inputs as there are tristate buffers per hori-
zontal longline in the target device

= Have one-hot encoded selector inputs

This last point is illustrated in the following VHDL and Verilog
designs of a 5-to-1 multiplexer built with gates. Typically, the gate
version of this multiplexer has binary encoded selector inputs and
requires three select inputs (SEL<2:0>). The schematic representation
of this design is shown in the “5-to-1 MUX Implemented with Gates”
figure.

Some synthesis tools include commands that allow you to switch
between multiplexers with gates or with tristates. Check with your
synthesis vendor for more information.

The VHDL and Verilog designs provided at the end of this section
show a 5-to-1 multiplexer built with tristate buffers. The tristate
buffer version of this multiplexer has one-hot encoded selector inputs
and requires five select inputs (SEL<4:0>). The schematic representa-
tion of these designs is shown in the “5-to-1 MUX Implemented with
BUFTs” figure.
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Mux Implemented with Gates VHDL Example

-- MUX_GATE. VHD
-- 5-to-1 Mux Inplenented in Gates
-- My 1997

l'ibrary | EEE;
use | EEE. std_| ogic_1164. al | ;
use |EEE. std_logic_arith.all;

entity nmux_gate is
port (SEL: in STD_LOd C VECTOR (2 downto 0);
A B,CDE in STD LOGJC
SIG out STD LOQE O);
end nmux_gate;

architecture RTL of nux_gate is

begin
SEL_PROCESS: process (SEL, A B,C D, E)
begin
case SEL is
when "000" => SIG <= A
when "001" => SIG <= B;
when "010" => SIG <= C
when "011" => SIG <= D;
when others => SIG <= E;
end case;
end process SEL_PROCESS;
end RTL;

Mux Implemented with Gates Verilog Example

/* MUX_GATE. V
* May 1997 */

nodul e nux_gate (A B, C D E, SEL, SIG;

i nput A B, C D, E
i nput [2:0] SEL;
output SIG

reg SIG

always @(A or B or Cor D or SEL)

case (SEL)
3’ b000:
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SI G=A;
3’ b001:
S| G=B;
3’ b010:
SI G=C,
3’ b011:
SI G=D;
3’ b100:
S| G=E;
default: Sl G=A;
endcase

endnodul e

SIG

moo >

SEL<0>
SEL<1>
SEL<2>

X6229

Figure 4-9 5-to-1 MUX Implemented with Gates

Mux Implemented with BUFTs VHDL Example

-- MJUX_TBUF. VHD
-- 5-to-1 Mux Inplenmented in 3-State Buffers
-- May 1997

l'ibrary |EEE;
use | EEE. std_l ogic_1164. all;
use |EEE. std_logic_arith.all;

entity mux_tbuf is
port (SEL: in STD _LOd C_VECTOR (4 downto 0);
A B,CDE in STD LOGJC
SIG out STD LOGE O);
end nmux_t buf;

architecture RTL of nux_tbuf is
begin

SIG <= A when (SEL(0)="0") else 'Z;
SIG <= B when (SEL(1)="0") else 'Z;
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SIG <= C when (SEL(2)="0") else 'Z;
SIG <= D when (SEL(3)="0") else 'Z;
SIG <= E when (SEL(4)="0") else 'Z;

end RTL;

Mux Implemented with BUFTs Verilog Example

/* MUX_TBUF. V
* May 1997 */

nodul e mux_tbuf (A B,C D E, SEL, SIG;

i nput A B, C D, E
i nput [4:0] SEL;

output SIG
reg SIG
al ways @ (SEL or A)
begin
i f (SEL[0]==1"b0)
SI G=A;
el se
S| G=1' bz;
end

al ways @ (SEL or B)
begin
i f (SEL[1] ==1" b0)
SI G=B;
el se
SI G=1’ bz;
end

al ways @ (SEL or C
begin
if (SEL[2]==1" b0)
Sl G=C,
el se
SI G=1' bz;
end

al ways @ (SEL or D)

begin
i f (SEL[3]==1"b0)
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SI G=D;
el se

SI G=1' bz;
end

al ways @ (SEL or E)
begin
i f (SEL[4]==1"b0)
S| G=E;
el se
S| G=1' bz;
end

endnodul e

SEL<0>

A
SEL<1>
B
SEL<2> SIG

C

SEL<3>

D

SEL<4>

LYY

E

X6228

Figure 4-10 5-to-1 MUX Implemented with BUFTs
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A comparison of timing and area for a 5-to-1 multiplexer built with
gates and tristate buffers in an XC4005EPC84-2 device is provided in
the following table. When the multiplexer is implemented with
tristate buffers, no CLBs are used and the delay is smaller.

Table 4-5 Timing/Area for 5-to-1 MUX (XC4005EPC84-2)

Timing/Area Using BUFTs Using Gates
Timing 15.31 ns (1 block level) 17.56 ns (2 block levels)
Area 0 CLBs, 5 BUFTs 3 CLBs

Using Pipelining

You can use pipelining to dramatically improve device performance.
Pipelining increases performance by restructuring long data paths
with several levels of logic and breaking it up over multiple clock
cycles. This method allows a faster clock cycle and, as a result, an
increased data throughput at the expense of added data latency.
Because the Xilinx FPGA devices are register-rich, this is usually an
advantageous structure for FPGA designs because the pipeline is
created at no cost in terms of device resources. Because data is now
on a multi-cycle path, special considerations must be used for the rest
of your design to account for the added path latency. You must also
be careful when defining timing specifications for these paths.

Some synthesis tools have limited capability for constraining multi-
cycle paths, or translate these constraints to Xilinx implementation
constraints. Check your synthesis tool documentation for information
on multi-cycle paths. If your tool cannot translate the constraint but
can synthesize to a multi-cycle path, you can add the constraint to the
UCF file.

Before Pipelining

In the following example, the clock speed is limited by the clock-to
out-time of the source flip-flop; the logic delay through four levels of
logic; the routing associated with the four function generators; and
the setup time of the destination register.
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—>
— | Generator — | Generator — | Generator — | Generator
—>

Function Function Function Function D Qf—

Slow_Clock X8339

Figure 4-11 Before Pipelining

After Pipelining

This is an example of the same data path in the previous example
after pipelining. Because the flip-flop is contained in the same CLB as
the function generator, the clock speed is limited by the clock-to-out
time of the source flip-flop; the logic delay through one level of logic;
one routing delay; and the setup time of the destination register. In
this example, the system clock runs much faster than in the previous
example.

T

Function
Generator

—> —> —>

D Q [—>| Function |—>{D Q |—>{ Function |—>{D Q —>{ Function —>D Q>
—»{Generator —»{Generator —>»|Generator
—> —> —>

1 | | |

Fast_Clock X8340

Figure 4-12 After Pipelining

Design Hierarchy

4-90

HDL designs can either be synthesized as a flat module or as many
small modules. Each methodology has its advantages and disadvan-
tages, but as higher density FPGAs are created, the advantages of
hierarchical designs outweigh any disadvantages.

Advantages to building hierarchical designs are as follows.
= Easier and faster verification/simulation

= Allows several engineers to work on one design at the same time
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= Speeds up design compilation

= Reduces design time by allowing design module re-use for this
and future designs.

= Allows you to produce designs that are easier to understand
= Allows you to efficiently manage the design flow
Disadvantages to building hierarchical designs are as follows.

= Design mapping into the FPGA may not be as optimal across
hierarchical boundaries; this can cause lesser device utilization
and decreased design performance

= Design file revision control becomes more difficult
= Designs become more verbose

Most of the disadvantages listed above can be overcome with careful
design consideration when choosing the design hierarchy.

Using Synthesis Tools with Hierarchical Designs

By effectively partitioning your designs, you can significantly reduce
compile time and improve synthesis results. Here are some recom-
mendations for partitioning your designs.

Restrict Shared Resources to Same Hierarchy Level

Resources that can be shared should be on the same level of hier-
archy. If these resources are not on the same level of hierarchy, the
synthesis tool cannot determine if these resources should be shared.

Compile Multiple Instances Together

You may want to compile multiple occurrences of the same instance
together to reduce the gate count. However, to increase design speed,
do not compile a module in a critical path with other instances.

Restrict Related Combinatorial Logic to Same Hierarchy Level

Keep related combinatorial logic in the same hierarchical level to
allow the synthesis tool to optimize an entire critical path in a single
operation. Boolean optimization does not operate across hierarchical
boundaries. Therefore, if a critical path is partitioned across bound-
aries, logic optimization is restricted. In addition, constraining
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modules is difficult if combinatorial logic is not restricted to the same
level of hierarchy.

Separate Speed Critical Paths from Non-critical Paths

To achieve satisfactory synthesis results, locate design modules with
different functions at different levels of the hierarchy. Design speed is
the first priority of optimization algorithms. To achieve a design that
efficiently utilizes device area, remove timing constraints from design
modules.

Restrict Combinatorial Logic that Drives a Register to Same
Hierarchy Level

To reduce the number of CLBs used, restrict combinatorial logic that
drives a register to the same hierarchical block.

Restrict Module Size

Restrict module size to 100 - 200 CLBs. This range varies based on
your computer configuration; the time required to complete each
optimization run; if the design is worked on by a design team; and
the target FPGA routing resources. Although smaller blocks give you
more control, you may not always obtain the most efficient design.
For the final compilation of your design, you may want to compile
fully from the top down. Check with your synthesis vendor for
guidelines.
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Register All Outputs

Arrange your design hierarchy so that registers drive the module
output in each hierarchical block. Registering outputs makes your
design easier to constrain because you only need to constrain the
clock period and the ClockToSetup of the previous module. If you
have multiple combinatorial blocks at different levels of the hier-
archy, you must manually calculate the delay for each module. Also,
registering the outputs of your design hierarchy can eliminate any
possible problems with logic optimization across hierarchical bound-
aries.

Restrict One Clock to Each Module or to Entire
Design

By restricting one clock to each module, you only need to describe the
relationship between the clock at the top level of the design hierarchy
and each module clock. By restricting one clock to the entire design,
you only need to describe the clock at the top level of the design hier-
archy.

Note: See your synthesis tool documentation for more information
on optimizing logic across hierarchical boundaries and compiling
hierarchical designs.
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Chapter 5

Simulating Your Design

This chapter describes simulation methods for verifying the func-
tional timing of your designs. It includes the following sections.

Introduction

“Introduction”

“Functional Simulation”

“Timing Simulation”

“Using VHDL/ Verilog Libraries and Models”

“Simulating Global Signals”

“Adapting Schematic Global Signal Methodology for VHDL”

“Setting VHDL Global Set/Reset Emulation in Functional Simu-
lation”

“Using Oscillators (VHDL)”
“Compiling Verilog Libraries”
“Setting Verilog Global Set/Reset”

“Setting Verilog Global Tristate (XC4000, Spartan, and XC5200
Outputs Only)”

Xilinx supports functional and timing simulation of HDL designs at
the following three points in the HDL design flow as shown in the
following figure.

Register Transfer Level (RTL) simulation which may include the
following.

= Instantiated UniSim library components
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= LogiBLOX modules
< LogiCORE models

= Gate-level UniSim library components

or

= Gate-level pre-route SimPrim library components

following.
« SimPrim library components

« Standard Delay Format (SDF) file

HDL RTL
Simulation

Testbench
Stimulus

Synthesis

LogiBLOX
Modules

Post-Synthesis Gate-Level
Functional Simulation

Xilinx
Implementation

HDL Timing
Simulation

SIMPRIM
Library
X8345

Figure 5-1 Three Simulation Points for HDL Designs

The three primary simulation points can be expanded to allow for
t