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About this Manual

This manual provides a general overview of designing Field 
Programmable Gate Arrays (FPGAs) with Hardware Description 
Languages (HDLs). It includes design hints for the novice HDL user, 
as well as for the experienced user who is designing FPGAs for the 
first time. 

The design examples in this manual were created with Verilog and 
VHSIC Hardware Description Language (VHDL); compiled with 
various synthesis tools; and targeted for XC4000, Spartan, and 
XC5200 devices. Xilinx equally endorses both Verilog and VHDL. 
VHDL may be more difficult to learn than Verilog and usually 
requires more explanation.

This manual does not address certain topics that are important when 
creating HDL designs, such as the design environment; verification 
techniques; constraining in the synthesis tool; test considerations; 
and system verification. Refer to your synthesis tool’s reference 
manuals and design methodology notes for additional information.

Before using this manual, you should be familiar with the operations 
that are common to all Xilinx software tools. These operations are 
covered in the Quick Start Guide. 

Additional Resources
For additional information, go to http://support.xilinx.com. The 
following table lists some of the resources you can access from this 
Synthesis and Simulation Design Guide — 2.1i v
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page. You can also directly access some of these resources using the 
provided URLs. 

Manual Contents
• Chapter 1, “Getting Started,” provides a general overview of 

designing Field Programmable Gate Arrays (FPGAs) with HDLs. 
This chapter also includes installation requirements and instruc-
tions.

• Chapter 2, “HDL Coding Hints,” includes HDL coding hints and 
design examples to help you develop an efficient coding style. 

• Chapter 3, “Understanding High-Density Design Flow,” provides 
synthesis and Xilinx implementation techniques to increase 
design performance and utilization.

• Chapter 4, “Designing FPGAs with HDL,” includes coding tech-
niques to help you improve synthesis results.

• Chapter 5, “Simulating Your Design,” describes simulation 
methods for verifying the function and timing of your designs.

Resource Description/URL

Tutorial Tutorials covering Xilinx design flows, from design entry to verification 
and debugging
http://support.xilinx.com/support/techsup/tutorials/index.htm

Answers
Database

Current listing of solution records for the Xilinx software tools
Search this database using the search function at 
http://support.xilinx.com/support/searchtd.htm

Application 
Notes

Descriptions of device-specific design techniques and approaches
http://www.support.xilinx.com/apps/appsweb.htm

Data Book Pages from The Programmable Logic Data Book, which describe device-
specific information on Xilinx device characteristics, including read-
back, boundary scan, configuration, length count, and debugging
http://www.support.xilinx.com/partinfo/databook.htm

Xcell Journals Quarterly journals for Xilinx programmable logic users
http://www.support.xilinx.com/xcell/xcell.htm

Tech Tips Latest news, design tips, and patch information on the Xilinx design 
environment
http://www.support.xilinx.com/support/techsup/journals/index.htm
vi Xilinx Development System



• Appendix A, “Accelerate FPGA Macros with One-Hot 
Approach,” reprints an article describing one-hot encoding in 
detail.

• Appendix B, “Report Files,” includes area and timing report files 
from various synthesis vendors.
Synthesis and Simulation Design Guide vii
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Conventions

This manual uses the following typographical and online document 
conventions. An example illustrates each typographical convention.

Typographical
The following conventions are used for all documents.

• Courier font indicates messages, prompts, and program files 
that the system displays.

speed grade: -100

• Courier bold indicates literal commands that you enter in a 
syntactical statement. However, braces “{ }” in Courier bold are 
not literal and square brackets “[ ]” in Courier bold are literal 
only in the case of bus specifications, such as bus [7:0].

rpt_del_net=

Courier bold also indicates commands that you select from a 
menu.

File → Open

• Italic font denotes the following items.

• Variables in a syntax statement for which you must supply 
values

edif2ngd design_name

• References to other manuals

See the Development System Reference Guide for more informa-
tion.
Synthesis and Simulation Design Guide — 2.1i ix
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• Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the 
two nets are not connected.

• Square brackets “[ ]” indicate an optional entry or parameter. 
However, in bus specifications, such as bus [7:0], they are 
required.

edif2ngd [option_name] design_name

• Braces “{ }” enclose a list of items from which you must choose 
one or more.

lowpwr ={on|off}

• A vertical bar “|” separates items in a list of choices.

lowpwr ={on|off}

• A vertical ellipsis indicates repetitive material that has been 
omitted.

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

• A horizontal ellipsis “. . .” indicates that an item can be repeated 
one or more times.

allow block block_name loc1 loc2 ... locn;

Online Document
The following conventions are used for online documents.

• Red-underlined text indicates an interbook link, which is a cross-
reference to another book. Click the red-underlined text to open 
the specified cross-reference.

• Blue-underlined text indicates an intrabook link, which is a cross-
reference within a book. Click the blue-underlined text to open 
the specified cross-reference.
x Xilinx Development System
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Chapter 1

Getting Started

This chapter provides a general overview of designing Field 
Programmable Gate Arrays (FPGAs) with HDLs and also includes 
installation requirements and instructions. It includes the following.

• “Introduction”

• “Advantages of Using HDLs to Design FPGAs”

• “Designing FPGAs with HDLs”

• “Installing Design Examples and Tactical Software”

• “Technical Support”

Introduction
Hardware Description Languages (HDLs) are used to describe the 
behavior and structure of system and circuit designs. This chapter 
includes a general overview of designing FPGAs with HDLs. System 
requirements and installation instructions are also provided.

To learn more about designing FPGAs with HDLs, Xilinx recom-
mends that you enroll in the appropriate training classes offered by 
Xilinx and by the vendors of synthesis software. An understanding of 
FPGA architecture allows you to create HDL code that effectively 
uses FPGA system features. 

Before you start to create your FPGA designs, refer to the current 
version of the Quick Start Guide for Xilinx Alliance Series for a 
description of the design flow; installation information; and general 
information on the Xilinx tools.

For the latest information on Xilinx parts and software, visit the 
Xilinx Web site at http://www.xilinx.com. On the Xilinx home page, 
click on Service and Support, and use the Customer Service and 
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Support page to get answers to your technical questions. You can also 
use the File Download option to download the latest software 
patches, tutorials, design files, and documentation.

Advantages of Using HDLs to Design FPGAs
Using HDLs to design high-density FPGAs is advantageous for the 
following reasons.

• Top-Down Approach for Large Projects—HDLs are used to 
create complex designs. The top-down approach to system 
design supported by HDLs is advantageous for large projects 
that require many designers working together. After the overall 
design plan is determined, designers can work independently on 
separate sections of the code.

• Functional Simulation Early in the Design Flow—You can 
verify the functionality of your design early in the design flow by 
simulating the HDL description. Testing your design decisions 
before the design is implemented at the RTL or gate level allows 
you to make any necessary changes early in the design process.

• Synthesis of HDL Code to Gates—You can synthesize your 
hardware description to a design implemented with gates. This 
step decreases design time by eliminating the traditional 
gate-level bottleneck. Synthesis to gates also reduces the number 
of errors that can occur during a manual translation of a hard-
ware description to a schematic design. Additionally, you can 
apply the techniques used by the synthesis tool (such as machine 
encoding styles or automatic I/O insertion) during the optimiza-
tion of your design to the original HDL code, resulting in greater 
efficiency.

• Early Testing of Various Design Implementations—HDLs allow 
you to test different implementations of your design early in the 
design flow. You can then use the synthesis tool to perform the 
logic synthesis and optimization into gates. Additionally, Xilinx 
FPGAs allow you to implement your design at your computer. 
Since the synthesis time is short, you have more time to explore 
different architectural possibilities at the Register Transfer Level 
(RTL). You can reprogram Xilinx FPGAs to test several imple-
mentations of your design.
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Designing FPGAs with HDLs
If you are more familiar with schematic design entry, you may find it 
difficult at first to create HDL designs. You must make the transition 
from graphical concepts, such as block diagrams, state machines, 
flow diagrams, and truth tables, to abstract representations of design 
components. You can ease this transition by not losing sight of your 
overall design plan as you code in HDL. To effectively use an HDL, 
you must understand the syntax of the language; the synthesis and 
simulator software; the architecture of your target device; and the 
implementation tools. This section gives you some design hints to 
help you create FPGAs with HDLs.

Using Verilog
Verilog® is popular for synthesis designs because it is less verbose 
than traditional VHDL, and it is standardized as IEEE-STD-1364-95. 
It was not originally intended as an input to synthesis, and many 
Verilog constructs are not supported by synthesis software. The 
Verilog examples in this manual were tested and synthesized with 
current, commonly-used FPGA synthesis software. The coding strate-
gies presented in the remaining chapters of this manual can help you 
create HDL descriptions that can be synthesized.

Using VHDL
VHSIC Hardware Description Language (VHDL) is a hardware 
description language for designing Integrated Circuits (ICs). It was 
not originally intended as an input to synthesis, and many VHDL 
constructs are not supported by synthesis software. However, the 
high level of abstraction of VHDL makes it easy to describe the 
system-level components and test benches that are not synthesized. 
In addition, the various synthesis tools use different subsets of the 
VHDL language. The examples in this manual will work with most 
commonly used FPGA synthesis software. The coding strategies 
presented in the remaining chapters of this manual can help you 
create HDL descriptions that can be synthesized.

Comparing ASICs and FPGAs
Methods used to design ASICs do not always apply to FPGA designs. 
ASICs have more gate and routing resources than FPGAs. Because 
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ASICs have a large number of available resources, you can easily 
create inefficient code that results in a large number of gates. When 
designing FPGAs, you must create efficient code.

Using Synthesis Tools
Most of the commonly-used FPGA synthesis tools have special opti-
mization algorithms for Xilinx FPGAs. Constraints and compiling 
options perform differently depending on the target device. There are 
some commands and constraints that do not apply to FPGAs and, if 
used, may adversely impact your results. You should understand 
how your synthesis tool processes designs before creating FPGA 
designs. Most synthesis vendors include information in their 
manuals specifically for Xilinx FPGAs.

Using FPGA System Features
You can improve device performance and area utilization by creating 
HDL code that uses FPGA system features, such as global reset, wide 
I/O decoders, and memory. FPGA system features are described in 
this manual.

Designing Hierarchy
Current HDL design methods are specifically written for ASIC 
designs. You can use some of these ASIC design methods when 
designing FPGAs; however, certain techniques may unnecessarily 
increase the number of gates or CLB levels.

Design hierarchy is important in the implementation of an FPGA and 
also during incremental or interactive changes. Some synthesizers 
maintain the hierarchical boundaries unless you group modules 
together. Modules should have registered outputs so their boundaries 
are not an impediment to optimization. Otherwise, modules should 
be as large as possible within the limitations of your synthesis tool. 
The “5,000 gates per module” rule is no longer valid, and can inter-
fere with optimization. Check with your synthesis vendor for the 
current recommendations for preferred module size. As a last resort, 
use the grouping commands of your synthesizer, if available. The size 
and content of the modules influence synthesis results and design 
implementation. This manual describes how to create effective design 
hierarchy.
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Specifying Speed Requirements
To meet timing requirements, you should understand how to set 
timing constraints in both the synthesis and placement/routing tools. 

Installing Design Examples and Tactical Software
The information in this manual supplements information in your 
synthesis and HDL simulator manuals. Before you start designing 
Xilinx FPGAs, read the Xilinx-specific information in your HDL 
manuals. Also, read and follow the instructions in the latest version 
of the Quick Start Guide for Xilinx Alliance Series, as well as the current 
version of the Alliance Series Install and Release Document.

This manual includes numerous HDL design examples created with 
VHDL and Verilog. VHDL is more comprehensive than Verilog, and 
you many need to spend more time learning how to apply VHDL 
constructs to synthesis.

Software Requirements
To synthesize, simulate, and implement the design examples in this 
manual, you should have the current versions of your synthesis and 
simulation software, as well as the Alliance Series 2.1 or later version 
of the Xilinx Development System installed on your system.

Memory Requirements

The values provided in the following table are for typical designs, 
and include loading the operating system. Additional memory may 
be required for certain “boundary-case” or unusual designs, as well 
as for the concurrent operation of other applications (for example, 
synthesis or HDL simulation). Xilinx recommends compiling 
XC4000EX/ XL designs on the Ultra Sparc, HP715, or equivalent 
workstations. Although 64 MB of RAM and 64 MB of swap space are 
required to compile XC4000EX designs, Xilinx recommends that you 
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use 128 MB of RAM and 128 MB of swap space for more efficient 
processing of your XC4000EX designs.

Disk Space Requirements
Before you install the programs and files, verify that your system 
meets the requirements listed in the following table for the applicable 
options. The disk space requirements listed are approximations and 
may not exactly match the actual numbers. To significantly reduce 
the amount of disk space needed, install only the components and 
documentation that you will actually use. In the following table, the 
Data column represents files that are common to all three workstation 
platforms. For example, for a Solaris machine, you need ~ 110 (12 
plus 98) MB of disk space.

Note: Refer to the Alliance Series Install and Release Document for more 
information on disk space requirements.

Table 1-1 Memory Requirements for Workstations and PCs

Xilinx Device RAM Swap Space

XC3000A/L
XC3100A/L
XC4000E/L
XC4028EX through XC4036EX
XC4002XL through XC4028XL
XCS (Spartan)
XC5200
XC9500 (small devices)

64 MB 64 MB – 128 MB

XC4036XL through XC4062XL
XC9500 (large devices)

128 MB 128 MB – 256 MB

XC4085XL
XC40125XV

256 MB 256 MB – 512 MB

Table 1-2 Disk Space Requirements

Software Component Data Sol HP

Xilinx Core Technology ~12 MB ~98 MB ~108 MB

Xilinx Device Data Files
(All devices)a

~195 MB ~26 MB ~26 MB
1-6 Xilinx Development System



Getting Started
Xilinx Internet Site

To download the programs and files from the Xilinx Internet Site, you 
must meet the disk requirements listed in the following table.

Retrieving Tactical Software and Design Examples
You can retrieve the HDL design examples from the Xilinx Internet 
Site. If you need assistance retrieving the files, use the information 

Documentation:
Online Help
Documentation Browser
Xilinx Tutorial Files
Xilinx Userware

~30 MB total

~17 MB
~1 MB
~4 MB

~10 MB ~10 MB

a. The memory requirements specified are for the installation of all Xilinx devices. You can significantly
reduce the amount of disk space required by installing only the files for the devices you want to target.

Table 1-3 Internet Files 

Directory/Location Description Compressed File
Directory 

Size

M1_VHDL_sourcea All VHDL source code 
only (no scripts, compila-
tion, or implementation 
files)

m1_vhdl_src.tar.Z
(size: 60 KB) 
or
m1_vhdl_src.zip
(size: 68 KB)

271 KB

M1_Verilog_sourcea All Verilog source code 
only (no scripts, compila-
tion, or implementation 
files)

m1_verilog_src.tar.Z 
(size: 57 KB)
or
m1_verilog_src.zip
(size: 64 KB)

256 KB

M1_HDL_sourcea All VHDL and Verilog 
source code only (no 
scripts, compilation, or 
implementation files)

m1_hdl_src.tar.Z
(size: 110 KB)
or
m1_hdl_src.zip
(size: 129 KB)

497 KB

a. These files are located at ftp://ftp.xilinx.com/pub/applications/3rdparty

Table 1-2 Disk Space Requirements

Software Component Data Sol HP
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listed in the “Technical Support” section of this chapter to contact the 
Xilinx Hotline.

You must install the retrieved files on the same system as the Xilinx 
software and the synthesis and simulation tools. However, do not 
install the files into the directory with the current release of the soft-
ware since they may get overwritten during the installation of the 
next version of the software. 

From Xilinx Internet FTP Site

You can retrieve the programs and files from the Xilinx Internet FTP 
(File Transfer Protocol) site. Alternatively, if you are not familiar with 
FTP, you can retrieve the files by going to the Xilinx Web site (http://
www.xilinx.com), clicking on Service and Support, and using the File 
Download option. To access the Xilinx FTP Site, you must either have 
an internet-capable FTP utility available on your machine or a Web 
browser that has FTP. To use FTP, your machine must be connected to 
the Internet and you must have permission to use FTP on remote 
sites. If you need more information on this procedure, contact your 
system administrator.

To retrieve the programs and files from the Xilinx FTP site, use the 
following procedure.

1. Go to the directory on your local machine where you want to 
download the files, as follows.

cd directory

2. Invoke the FTP utility or your Web browser that provides FTP.

3. Connect to the Xilinx FTP site, ftp.xilinx.com as follows.

ftp> open ftp.xilinx.com

or

Enter the following URL.

ftp://ftp.xilinx.com

4. Log into a guest account if the FTP utility or Web browser does 
not perform this automatically. This account gives you download 
privileges.

Name (machine:user-name): anonymous
Guest login ok, send your complete e-mail 
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address as the password.
Password: your_email_address

5. Go to the following directory.

ftp> cd pub/applications/3rdparty

6. If you are using an FTP utility, make sure you are in binary mode.

ftp> bin

7. Retrieve the appropriate design files as follows.

ftp> get design_files.tar.Z

or

ftp> get design_files.zip

or

Select the appropriate file and select a destination directory on 
your local machine.

8. Extract the files as described in the next section.

Extracting the Files
You must install the retrieved files on the same system as the current 
release of the Xilinx software and the synthesis and simulation tools. 
However, do not install the files in the directory with the current soft-
ware because they may get overwritten during the installation of the
next version of the software. The files are stored in the UNIX™ stan-
dard tar and compress form, as well as in the PC™ standard zip form. 
To extract the files, use one of the following procedures.

Note: If the following procedures do not work on your system, 
consult your system administrator for help on extracting the files.

Extracting .tar.Z File in UNIX

1. Go to the directory where you downloaded the files.

cd downloaded_files

2. Uncompress the files.

uncompress design.tar.Z

3. Extract the files.
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tar xvf design.tar

Extracting .zip File in UNIX

1. Go to the directory where you downloaded the files.

cd downloaded_files

2. Uncompress the files.

unzip design.zip

Extracting .zip File in MS-DOS

1. Go to the directory where you downloaded the files:

cd downloaded_files

2. Uncompress the files:

pkunzip –d design.zip

Directory Tree Structure
After you have completed the installation, you should have the 
following directory tree structure.

5k_preset
    /VHDL
    /Verilog
/Async_RAM_as_latch
    /VHDL
    /Verilog
/Barrel_SR
    /VHDL
        /Barrel
        /Barrel_Org
    /Verilog
        /Barrel
        /Barrel_Org
/Bidir_LogiBLOX
    /VHDL
    /Verilog
/Bidir_infer
    /VHDL
    /Verilog
/Bidir_instantiate
    /VHDL
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    /Verilog
/Bnd_scan_4k
    /VHDL
    /Verilog
/Bnd_scan_5k
    /VHDL
    /Verilog
/Case_vs_if
    /VHDL
        /Case_ex
        /If_ex
    /Verilog
        /Case_ex
        /If_ex
/Clock_enable
    /VHDL
    /Verilog
/Clock_mux
    /VHDL
    /Verilog
/Constants
    /VHDL
    /Verilog
        /Parameter1
        /Parameter2
/D_latch
    /VHDL
    /Verilog
/D_register
    /VHDL
    /Verilog
/FF_example
    /VHDL
    /Verilog
/GR_5K
    /VHDL
        /Active_low_GR
        /No_GR
        /Use_GR
    /Verilog
        /Active_low_GR
        /No_GR
        /Use_GR
/GSR
    /VHDL
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        /Active_low_GSR
        /No_GSR
        /Use_GSR
    /Verilog
        /Active_low_GSR
        /No_GSR
        /Use_GSR
/Gate_clock
    /VHDL
        /Gate_clock
        /Gate_clock2
    /Verilog
        /Gate_clock
        /Gate_clock2
/IO_Decoder
    /VHDL
    /Verilog
/LogiBLOX_DP_RAM
    /VHDL
    /Verilog
/LogiBLOX_SR
    /VHDL
    /Verilog
/Mux_vs_3state
    /VHDL
        /Mux_gate
        /Mux_gate16
        /Mux_tbuf
        /Mux_tbuf16
    /Verilog
        /Mux_gate
        /Mux_gate16
        /Mux_tbuf
        /Mux_tbuf16
/Nested_if
    /VHDL
        /If_case
        /Nested_if
    /Verilog
        /If_case
        /Nested_if
/OMUX_example
    /VHDL
    /Verilog
/RAM_primitive
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    /VHDL
    /Verilog
/ROM_RTL
    /VHDL
    /Verilog
/Res_sharing
    /VHDL
        /Res_no_share
        /Res_sharing
    /Verilog
        /Res_no_share
        /Res_sharing
/Set_and_Reset
    /VHDL
    /Verilog
/Sig_vs_Var
    /VHDL
        /Xor_Sig
        /Xor_Var
/State_Machine
    /VHDL
        /Binary
        /Enum
        /One_Hot
    /Verilog
        /Binary
        /Enum
        /One_Hot
/Unbonded_IO
    /VHDL
    /Verilog

Technical Support
You can contact Xilinx for additional information and assistance in 
the following ways.

Xilinx World Wide Web Site
Enter http://www.xilinx.com. Click on the Service and Support 
option on the Xilinx Home Page. Use the Customer Service and 
Support page to get answers to your technical questions. You can use 
the Answers Search option to search the Answers database, file 
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download area, application notes, XCELL journals, data sheets, and 
expert journals.

Technical and Applications Support Hotlines
The telephone hotlines give you direct access to Xilinx Application 
Engineers worldwide. You can also e-mail or fax your technical ques-
tions to the same locations.

Note: When e-mailing or faxing inquiries, provide your complete 
name, company name, and phone number. Also, provide a complete 
problem description including your design entry software and design 
stage.

Xilinx FTP Site
ftp://ftp.xilinx.com

The FTP site provides online access to automated tutorials, design 
examples, online documents, utilities, and published patches.

XDOCS E-mail Server
xdocs@xilinx.com

Include the word “help” in the subject header. This e-mail service 
provides access to the Customer Service and Support page from the 
Xilinx World Wide Web Site. On the Xilinx home page, click on 
Service and Support, and use the Customer Service and Support page 
to get answers to your technical questions.

Table 1-4 Technical Support

Location Telephone Electronic Mail Facsimile (Fax)

North America 1-800-255-7778 hotline@xilinx.com 1-408-879-4442

Japan 81-3-3297-9163 jhotline@xilinx.com 81-3-3297-0067

France 33-1-3463-0100 frhelp@xilinx.com 33-1-3463-0959

Germany 49-89-9915-4930 dlhelp@xilinx.com 49-89-904-4748

United Kingdom 44-1932-820821 ukhelp@xilinx.com 44-1932-828522

Corporate Switchboard 1-408-559-7778
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Chapter 2

HDL Coding Hints

This chapter contains HDL coding hints and design examples to help 
you develop an efficient coding style. It includes the following topics.

• “Comparing Synthesis and Simulation Results”

• “Selecting HDL Formatting Styles”

• “Using Schematic Design Hints with HDL Designs”

HDLs contain many complex constructs that are difficult to under-
stand at first. Also, the methods and examples included in HDL 
manuals do not always apply to the design of FPGAs. If you 
currently use HDLs to design ASICs, your established coding style 
may unnecessarily increase the number of gates or CLB levels in 
FPGA designs. 

HDL synthesis tools implement logic based on the coding style of 
your design. To learn how to efficiently code with HDLs, you can 
attend training classes, read reference and methodology notes, and 
refer to synthesis guidelines and templates available from Xilinx and 
the synthesis vendors. When coding your designs, remember that 
HDLs are mainly hardware description languages. You should try to 
find a balance between the quality of the end hardware results and 
the speed of simulation.

The coding hints and examples included in this chapter are not 
intended to teach you every aspect of VHDL or Verilog, but they 
should help you develop an efficient coding style.

Comparing Synthesis and Simulation Results
VHDL and Verilog are hardware description and simulation 
languages that were not originally intended as input to synthesis. 
Therefore, many hardware description and simulation constructs are 
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not supported by synthesis tools. In addition, the various synthesis 
tools use different subsets of VHDL and Verilog. VHDL and Verilog 
semantics are well defined for design simulation. The synthesis tools 
must adhere to these semantics to ensure that designs simulate the 
same way before and after synthesis. Follow the guidelines presented 
below to create code that simulates the same way before and after 
synthesis.

Omit the Wait for XX ns Statement
Do not use the Wait for XX ns statement in your code. XX specifies the 
number of nanoseconds that must pass before a condition is 
executed. This statement does not synthesize to a component. In 
designs that include this statement, the functionality of the simulated 
design does not match the functionality of the synthesized design. 
VHDL and Verilog examples of the Wait for XX ns statement are as 
follows.

• VHDL

wait for XX ns;

• Verilog

#XX;

Omit the ...After XX ns or Delay Statement
Do not use the ...After XX ns statement in your VHDL code or the 
Delay assignment in your Verilog code. Examples of these statements 
are as follows.

• VHDL

(Q <=0 after XX ns)

• Verilog

assign #XX Q=0;

XX specifies the number of nanoseconds that must pass before a 
condition is executed. This statement is usually ignored by the 
synthesis tool. In this case, the functionality of the simulated design 
does not match the functionality of the synthesized design.
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Use Case and If-Else Statements
You can use If-Else statements, Case statements, or other conditional 
code to create state machines or other conditional logic. These state-
ments implement the functions differently, however, the simulated 
designs are identical. The If-Else statement generally specifies 
priority-encoded logic and the Case statement generally specifies 
balanced behavior. The If-Else statement can, in some cases, result in 
a slower circuit overall. These statements vary with the synthesis 
tool. Refer to the “Comparing If Statement and Case Statement” 
section of this chapter for more information. 

Order and Group Arithmetic Functions
The ordering and grouping of arithmetic functions can influence 
design performance. For example, the following two VHDL state-
ments are not necessarily equivalent.

ADD <= A1 + A2 + A3 + A4;
ADD <= (A1 + A2) + (A3 + A4);

For Verilog, the following two statements are not necessarily equiva-
lent.

ADD = A1 + A2 + A3 + A4;
ADD = (A1 + A2) + (A3 + A4);

The first statement cascades three adders in series. The second state-
ment creates two adders in parallel: A1 + A2 and A3 + A4. In the 
second statement, the two additions are evaluated in parallel and the 
results are combined with a third adder. RTL simulation results are 
the same for both statements, however, the second statement results 
in a faster circuit after synthesis (depending on the bit width of the 
input signals).

Although the second statement generally results in a faster circuit, in 
some cases, you may want to use the first statement. For example, if 
the A4 signal reaches the adder later than the other signals, the first 
statement produces a faster implementation because the cascaded 
structure creates fewer logic levels for A4. This structure allows A4 to 
catch up to the other signals. In this case, A1 is the fastest signal 
followed by A2 and A3; A4 is the slowest signal.
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Most synthesis tools can balance or restructure the arithmetic oper-
ator tree if timing constraints require it. However, Xilinx recommends 
that you code your design for your selected structure.

Omit Initial Values
Do not assign signals and variables initial values because initial 
values are ignored by most synthesis tools. The functionality of the 
simulated design may not match the functionality of the synthesized 
design.

For example, do not use initialization statements like the following 
VHDL and Verilog statements.

• VHDL

variable SUM:INTEGER:=0;

• Verilog

wire SUM=1’b0;

Selecting HDL Formatting Styles
Because HDL designs are often created by design teams, Xilinx 
recommends that you agree on a style for your code at the beginning 
of your project. An established coding style allows you to read and 
understand code written by your fellow team members. Also, ineffi-
cient coding styles can adversely impact synthesis and simulation, 
which can result in slow circuits. Additionally, because portions of 
existing HDL designs are often used in new designs, you should 
follow coding standards that are understood by the majority of HDL 
designers. This section of the manual provides a list of suggested 
coding styles that you should establish before you begin your 
designs. 

Selecting a Capitalization Style
Select a capitalization style for your code. Xilinx recommends using a 
consistent style (lower or upper case) for entity or module names in 
FPGA designs. 

Verilog

For Verilog, the following style is recommended. 
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• Use lower case letters for the following.

• Module names

• Verilog language keywords

• Use upper case letters for the following.

• Labels

• Reg, wire, instance, and instantiated cell names

Note: Cell names must be upper case to use the UniSim simulation 
library and certain synthesis libraries. Check with your synthesis 
vendor.

VHDL

Note: VHDL is case-insensitive.

For VHDL, use lower case for all language constructs from the IEEE-
STD 1076. Any inputs defined by you should be upper case. For 
example, use upper case for the names of signals, instances, compo-
nents, architectures, processes, entities, variables, configurations, 
libraries, functions, packages, data types, and sub-types. For the 
names of standard or vendor packages, the style used by the vendor 
or uppercase letters are used, as shown for IEEE in the following 
example: 

library IEEE;
use IEEE.std_logic_1164.all;
signal SIG: UNSIGNED (5 downto 0);

Using Xilinx Naming Conventions
Use the Xilinx naming conventions listed in this section for naming 
signals, variables, and instances that are translated into nets, buses, 
and symbols. 

Note: Most synthesis tools convert illegal characters to legal ones.

• User-defined names can contain A–Z, a–z, $, _, –, <, and >. A “/” 
is also valid, however, it is not recommended because it is used as 
a hierarchy separator

• Names must contain at least one non-numeric character

• Names cannot be more than 256 characters long
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The following FPGA resource names are reserved and should not be 
used to name nets or components.

• Components (Comps), Configurable Logic Blocks (CLBs), Input/
Output Blocks (IOBs), basic elements (bels), clock buffers 
(BUFGs), tristate buffers (BUFTs), oscillators (OSC), CCLK, DP, 
GND, VCC, and RST

• CLB names such as AA, AB, and R1C2

• Primitive names such as TD0, BSCAN, M0, M1, M2, or STARTUP

• Do not use pin names such as P1 and A4 for component names

• Do not use pad names such as PAD1 for component names

Refer to the language reference manual for Verilog or VHDL for 
language-specific naming restrictions. Xilinx does not recommend 
using escape sequences for illegal characters. Also, if you plan on 
importing schematics into your design, use the most restrictive char-
acter set.

Matching File Names to Entity and Module Names
The VHDL or Verilog source code file name should match the desig-
nated name of the entity (VHDL) or module (Verilog) specified in 
your design file. This is less confusing and generally makes it easier 
to create a script file for the compilation of your design. Xilinx also 
recommends that if your design contains more than one entity or 
module, each should be contained in a separate file with the appro-
priate file name. It is also a good idea to use the same name as your 
top-level design file for your synthesis script file with either a .do, 
.scr, .script, or the appropriate default script file extension for your 
synthesis tool.

Naming Identifiers, Types, and Packages
You can use long (256 characters maximum) identifier names with 
underscores and embedded punctuation in your code. Use mean-
ingful names for signals and variables, such as 
CONTROL_REGISTER. Use meaningful names when defining 
VHDL types and packages as shown in the following examples.

type LOCATION_TYPE is ...;
package STRING_IO_PKG is
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Using Labels
Use labels to group logic. Label all processes, functions, and proce-
dures as shown in the following examples. Labeling makes it easier to 
debug your code.

• VHDL

ASYNC_FF: process (CLK,RST)

• Verilog

always @ (posedge CLK or posedge RST)

begin: ASYNC_FF

Labeling Flow Control Constructs

You can use optional labels on flow control constructs to make the 
code structure more obvious, as shown in the following VHDL and 
Verilog examples. However, you should note that these labels are not 
translated to gate or register names in your implemented design. 
Flow control constructs can slow down simulations in some Verilog 
simulators.

• VHDL Example

-- D_REGISTER.VHD
-- May 1997

-- Changing Latch into a D-Register 

library IEEE;
use IEEE.std_logic_1164.all;

entity d_register is
    port (CLK, DATA: in STD_LOGIC;
          Q: out STD_LOGIC);
end d_register;

architecture BEHAV of d_register is
begin
My_D_Reg: process (CLK, DATA)
    begin
        if (CLK’event and CLK=’1’) then
            Q <= DATA;
        end if;
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    end process; --End My_D_Reg
end BEHAV;

• Verilog Example

/* Changing Latch into a D-Register 
 * D_REGISTER.V
 * May 1997                                   */

module d_register (CLK, DATA, Q);

input CLK;
input DATA;
output Q;

reg Q;

    always @ (posedge CLK)
    begin: My_D_Reg
              Q <= DATA;
    end 

endmodule

Using Variables for Constants (VHDL Only)
Do not use variables for constants in your code. Define constant 
numeric values in your code as constants and use them by name. This 
coding convention allows you to easily determine if several occur-
rences of the same literal value have the same meaning. In some 
simulators, using constants allows greater optimization. In the 
following code example, the OPCODE values are declared as 
constants, and the constant names refer to their function. This 
method produces readable code that may be easier to modify.

Using Constants to Specify OPCODE Functions 
(VHDL)

constant ZERO   : STD_LOGIC_VECTOR (1 downto 0):=“00”;
constant A_AND_B: STD_LOGIC_VECTOR (1 downto 0):=“01”;
constant A_OR_B : STD_LOGIC_VECTOR (1 downto 0):=“10”;
constant ONE    : STD_LOGIC_VECTOR (1 downto 0):=“11”;

process (OPCODE, A, B)
begin
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  if    (OPCODE = A_AND_B)then OP_OUT <= A and B;
  elsif (OPCODE = A_OR_B) then OP_OUT <= A or B;
  elsif    (OPCODE = ONE) then OP_OUT <= ‘1’;
  else                         OP_OUT <= ‘0’;
  end if;
end process;

Using Parameters for Constants (Verilog Only)
You can specify a constant value in Verilog using the parameter special 
data type, as shown in the following examples. The first example 
includes a definition of OPCODE constants as shown in the previous 
VHDL example. The second example shows how to use a parameter 
statement to define module bus widths.

Using Parameters to Specify OPCODE Functions 
(Verilog)

parameter ZERO = 2’b00;
parameter A_AND_B = 2’b01;
parameter A_OR_B = 2’b10;
parameter ONE = 2’b11;

always @ (OPCODE or A or B)
begin
  if     (OPCODE==‘ZERO)    OP_OUT=1’b0;
  else if(OPCODE==‘A_AND_B) OP_OUT=A&B;
  else if(OPCODE==‘A_OR_B)  OP_OUT=A|B;
  else                     OP_OUT=1’b1;
end

Using Parameters to Specify Bus Size (Verilog)

parameter BUS_SIZE = 8;

output [‘BUS_SIZE-1:0] OUT;
input [‘BUS_SIZE-1:0] X,Y;

 Using Named and Positional Association 
Use positional association in function and procedure calls, and in 
port lists only when you assign all items in the list. Use named associ-
ation when you assign only some of the items in the list. Also, Xilinx 
suggests that you use named association to prevent incorrect connec-
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tions for the ports of instantiated components. Do not combine posi-
tional and named association in the same statement as illustrated in 
the following examples.

• VHDL

Incorrect

CLK_1: BUFGS port map (I=>CLOCK_IN,CLOCK_OUT);

Correct

CLK_1: BUFGS port map (I=>CLOCK_IN,O=>CLOCK_OUT);

• Verilog

Incorrect

BUFGS CLK_1 (.I(CLOCK_IN), CLOCK_OUT);

Correct

BUFGS CLK_1 (.I(CLOCK_IN), .O(CLOCK_OUT));

Managing Your Design
As part of your coding specifications, you should include rules for 
naming, organizing, and distributing your files. In VHDL designs, 
use explicit configurations to control the selection of components and 
architectures that you want to compile, simulate, or synthesize. In 
some synthesis tools, configuration information is ignored. In this 
case, you only need to compile the architecture that you want to 
synthesize.

Creating Readable Code
Use the recommendations in this section to create code that is easy to 
read.

Indenting Your Code

Indent blocks of code to align related statements. You should define 
the number of spaces for each indentation level and specify whether 
the Begin statement is placed on a line by itself. In the examples in 
this manual, each level of indentation is four spaces and the Begin 
statement is on a separate line that is not indented from the previous 
line of code. The examples below illustrate the indentation style used 
in this manual.
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• VHDL Example

-- D_LATCH.VHD
-- May 1997

library IEEE;
use IEEE.std_logic_1164.all;

entity d_latch is
    port (GATE, DATA: in STD_LOGIC;
          Q: out STD_LOGIC);
end d_latch;

architecture BEHAV of d_latch is
begin
LATCH: process (GATE, DATA)
    begin
    if (GATE = ’1’) then
        Q <= DATA;
    end if;
    end process; -- end LATCH

end BEHAV;

• Verilog Example

/* Transparent High Latch
 * D_LATCH.V
 * May 1997                                   */

module d_latch (GATE, DATA, Q);

input GATE;
input DATA;
output Q;

reg Q;

    always @ (GATE or DATA)
    begin: LATCH
        if (GATE == 1’b1) 
            Q <= DATA;
    end  // End Latch

endmodule
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Using Empty Lines

Use empty lines to separate top-level constructs, designs, architec-
tures, configurations, processes, subprograms, and packages.

Using Spaces

Use spaces to make your code easier to read. You can omit or use 
spaces between signal names as shown in the following examples.

• VHDL Example

process (RST,CLOCK,LOAD,CE)
process (RST, CLOCK, LOAD, CE)

• Verilog Example

module test (A,B,C)
module test (A, B, C)

Use a space after colons as shown in the following examples.

• VHDL Example

signal QOUT: STD_LOGIC_VECTOR (3 downto 0);
CLK_1: BUFGS port map (I=>CLOCK_IN,O=>CLOCK_OUT);

• Verilog Example

begin: CPU_DATA

Breaking Long Lines of Code

Break long lines of code at an appropriate point, such as at a comma, 
a colon, or a parenthesis to make your code easier to read, as illus-
trated in the following code fragments.

• VHDL Example

U1: load_reg port map
(INX=>A,LOAD=>LD,CLK=>SCLK,OUTX=>B);

• Verilog Example

load_reg U1
   (.INX(A), .LOAD(LD), .CLK(SCLK), .OUTX(B));
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Adding Comments

Add comments to your code to improve readability, reduce debug-
ging time, and make it easier to maintain your code.

• VHDL Example

-- Read Counter (16-bit)
-- Updated 1-25-98 to add Clock Enable, John Doe
-- Updated 1-28-98 to add Terminal Count, Joe Cool

process (RST, CLOCK, CE)
begin
.
.
.

• Verilog Example

// Read Counter (16-bit)
// Updated 1-25-98 to add Clock Enable, John Doe
// Updated 1-28-98 to add Terminal Count, Joe Cool

always @ (posedge RST or posedge CLOCK)
begin
.
.
.

Using Std_logic Data Type (VHDL only)
The Std_logic (IEEE 1164) type is recommended for hardware 
descriptions for the following reasons.

• It has nine different values that represent most of the states found 
in digital circuits.

• Automatically initialized to an unknown value. This automatic 
initialization is important for HDL designs because it forces you 
to initialize your design to a known state, which is similar to 
what is required in a schematic design. Do not override this 
feature by initializing signals and variables to a known value 
when they are declared because the result may be a gate-level 
circuit that cannot be initialized to a known value.

• Easy to perform a board-level simulation. For example, if you use 
an integer type for ports for one circuit and standard logic for 
ports for another circuit, your design can be synthesized; 
Synthesis and Simulation Design Guide 2-13



Synthesis and Simulation Design Guide
however, you will need to perform time-consuming type conver-
sions for a board-level simulation.

The back-annotated netlist from Xilinx implementation is in 
Std_logic. If you do not use Std_logic type to drive your top-level 
entity in the testbench, you cannot reuse your functional testbench 
for timing simulation. Some synthesis tools can create a wrapper for 
type conversion between the two top-level entities; however, this is 
not recommended by Xilinx.

Declaring Ports

Xilinx recommends that you use the Std_logic package for all entity 
port declarations. This package makes it easier to integrate the 
synthesized netlist back into the design hierarchy without requiring 
conversion functions for the ports. A VHDL example using the 
Std_logic package for port declarations is shown below.

Entity alu is
   port( A : in STD_LOGIC_VECTOR(3 downto 0);
         B : in STD_LOGIC_VECTOR(3 downto 0);
         CLK : in STD_LOGIC;
         C : out STD_LOGIC_VECTOR(3 downto 0) );
end alu;

Since the downto convention for vectors is supported in a back-anno-
tated netlist, the RTL and synthesized netlists should use the same 
convention if you are using the same test bench. This is necessary 
because of the loss of directionality when your design is synthesized 
to an EDIF or XNF netlist.

Minimizing the Use of Ports Declared as Buffers

Do not use buffers when a signal is used internally and as an output 
port. In the following VHDL example, signal C is used internally and 
as an output port.

Entity alu is
   port( A : in STD_LOGIC_VECTOR(3 downto 0);
         B : in STD_LOGIC_VECTOR(3 downto 0);
         CLK : in STD_LOGIC;
         C : buffer STD_LOGIC_VECTOR(3 downto 0) );
end alu;

architecture BEHAVIORAL of alu is
begin
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   process begin
      if (CLK’event and CLK=’1’) then
         C <= UNSIGNED(A) + UNSIGNED(B) + UNSIGNED(C);
      end if;
   end process;
end BEHAVIORAL;

Because signal C is used both internally and as an output port, every 
level of hierarchy in your design that connects to port C must be 
declared as a buffer. However, buffer types are not commonly used in 
VHDL designs because they can cause problems during synthesis. To 
reduce the amount of buffer coding in hierarchical designs, you can 
insert a dummy signal and declare port C as an output, as shown in 
the following VHDL example. 

Entity alu is
   port( A : in STD_LOGIC_VECTOR(3 downto 0);
         B : in STD_LOGIC_VECTOR(3 downto 0);
         CLK : in STD_LOGIC;
         C : out STD_LOGIC_VECTOR(3 downto 0));
   end alu;

architecture BEHAVIORAL of alu is
-- dummy signal
signal C_INT : STD_LOGIC_VECTOR(3 downto 0);
begin
   C <= C_INT;
   process begin
      if (CLK’event and CLK=’1’) then
      C_INT < =UNSIGNED(A) + UNSIGNED(B) + 
         UNSIGNED(C_INT);

      end if;
   end process;
end BEHAVIORAL;

Comparing Signals and Variables (VHDL only)
You can use signals and variables in your designs. Signals are similar 
to hardware and are not updated until the end of a process. Variables 
are immediately updated and, as a result, can effect the functioning of 
your design. Xilinx recommends using signals for hardware descrip-
tions; however, variables allow quick simulation. 
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The following VHDL examples show a synthesized design that uses 
signals and variables, respectively. These examples are shown imple-
mented with gates in the “Gate implementation of XOR_SIG” figure 
and the “Gate Implementation of XOR_VAR” figure.

Note: If you assign several values to a signal in one process, only the 
final value is used. When you assign a value to a variable, the assign-
ment takes place immediately. A variable maintains its value until 
you specify a new value.

Using Signals (VHDL)

-- XOR_SIG.VHD
-- May 1997
Library IEEE;
use IEEE.std_logic_1164.all;

entity xor_sig is
    port (A, B, C: in  STD_LOGIC;
          X, Y: out STD_LOGIC);
end xor_sig;

architecture SIG_ARCH of xor_sig is
    signal D: STD_LOGIC;
begin
    SIG:process (A,B,C)
    begin
        D <= A; -- ignored !!
        X <= C xor D;
        D <= B; -- overrides !!
        Y <= C xor D;
    end process;
end SIG_ARCH;

Figure 2-1 Gate implementation of XOR_SIG
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Using Variables (VHDL)

-- XOR_VAR.VHD
-- May 1997

Library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity xor_var is
    port (A, B, C: in  STD_LOGIC;
          X, Y:    out STD_LOGIC);
end xor_var;

architecture VAR_ARCH of xor_var is
begin

    VAR:process (A,B,C)
        variable D: STD_LOGIC;
    begin
        D := A;
        X <= C xor D;
        D := B; 
        Y <= C xor D;
    end process;
end VAR_ARCH;

Figure 2-2 Gate Implementation of XOR_VAR

Using Schematic Design Hints with HDL Designs
This section describes how to apply schematic entry design strategies 
to HDL designs. 
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Barrel Shifter Design
The schematic version of the barrel shifter design is included in the 
“Multiplexers and Barrel Shifters in XC3000/XC3100” application 
note (XAPP 026.001) available on the Xilinx web site at http://
www.xilinx.com. In this example, two levels of multiplexers are used 
to increase the speed of a 16–bit barrel shifter. This design is for 
XC3000 and XC3100 device families; however, it can also be used for 
other Xilinx devices.

The following VHDL and Verilog examples show a 16-bit barrel 
shifter implemented using sixteen 16–to–1 multiplexers, one for each 
output. A 16–to–1 multiplexer is a 20-input function with 16 data 
inputs and four select inputs. When targeting an FPGA device based 
on 4-input lookup tables (such as XC4000 and XC3000 family of 
devices), a 20-input function requires at least five logic blocks. There-
fore, the minimum design size is 80 (16 x 5) logic blocks.

16-bit Barrel Shifter (VHDL)

--------------------------------------------------
-- VHDL Model for a 16-bit Barrel Shifter       --
-- barrel_org.vhd                               --
-- !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! --
-- THIS EXAMPLE IS FOR COMPARISON ONLY          --
-- May 1997                                     --
-- USE barrel.vhd                               --
--------------------------------------------------

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity barrel_org is
   port (S:in    STD_LOGIC_VECTOR (3 downto 0);
         A_P:in    STD_LOGIC_VECTOR (15 downto 0);
         B_P:out   STD_LOGIC_VECTOR (15 downto 0));
end barrel_org;

architecture RTL of barrel_org is

begin 
    SHIFT: process (S, A_P)
    begin
        case S is
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            when “0000” => 
               B_P <= A_P;

            when “0001” =>
               B_P(14 downto 0)  <= A_P(15 downto 1);
               B_P(15) <= A_P(0);

            when “0010” =>
               B_P(13 downto 0)  <= A_P(15 downto 2);
               B_P(15 downto 14) <= A_P(1 downto 0);

            when “0011” =>
               B_P(12 downto 0)  <= A_P(15 downto 3);
               B_P(15 downto 13) <= A_P(2 downto 0);

            when “0100” =>
               B_P(11 downto 0)  <= A_P(15 downto 4);
               B_P(15 downto 12) <= A_P(3 downto 0);

            when “0101” =>
               B_P(10 downto 0)  <= A_P(15 downto 5);
               B_P(15 downto 11) <= A_P(4 downto 0);

            when “0110” =>
               B_P(9 downto 0)   <= A_P(15 downto 6);
               B_P(15 downto 10) <= A_P(5 downto 0);

            when “0111” =>
               B_P(8 downto 0)   <= A_P(15 downto 7);
               B_P(15 downto 9)  <= A_P(6 downto 0);

            when “1000” =>
               B_P(7 downto 0)   <= A_P(15 downto 8);
               B_P(15 downto 8)  <= A_P(7 downto 0);

            when “1001” =>
               B_P(6 downto 0)  <= A_P(15 downto 9);
               B_P(15 downto 7) <= A_P(8 downto 0);

            when “1010” =>
               B_P(5 downto 0)  <= A_P(15 downto 10);
               B_P(15 downto 6) <= A_P(9 downto 0);

            when “1011” =>
               B_P(4 downto 0)  <= A_P(15 downto 11);
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               B_P(15 downto 5) <= A_P(10 downto 0);

            when “1100” =>
               B_P(3 downto 0)  <= A_P(15 downto 12);
               B_P(15 downto 4) <= A_P(11 downto 0);

            when “1101” =>
              B_P(2 downto 0)  <= A_P(15 downto 13);
              B_P(15 downto 3) <= A_P(12 downto 0);

           when “1110” =>
              B_P(1 downto 0)  <= A_P(15 downto 14);
              B_P(15 downto 2) <= A_P(13 downto 0);

           when “1111” =>
              B_P(0) <= A_P(15);
              B_P(15 downto 1) <= A_P(14 downto 0);

           when others =>
              B_P <= A_P;
           end case;
    end process; -- End SHIFT   

end RTL;

16-bit Barrel Shifter (Verilog)

       ///////////////////////////////////////////////////
      // BARREL_ORG.V Version 1.0                       //
     // Xilinx HDL Synthesis Design Guide              //
    // Unoptimized model for a 16-bit Barrel Shifter  //
   // THIS EXAMPLE IS FOR COMPARISON ONLY            //
  // Use BARREL.V                                   //
 // January 1998                                   //
///////////////////////////////////////////////////

module barrel_org (S, A_P, B_P);
 
    input  [3:0]  S;
    input  [15:0] A_P;
    output [15:0] B_P;

    reg    [15:0] B_P;

    always @ (A_P or S)
        begin
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        case (S) 
             4’b0000 : // Shift by 0 
               begin
               B_P <= A_P;
               end

             4’b0001 : // Shift by 1
               begin
               B_P[15]   <= A_P[0];
               B_P[14:0] <= A_P[15:1];
               end

             4’b0010 : // Shift by 2
               begin
               B_P[15:14] <= A_P[1:0];
               B_P[13:0]  <= A_P[15:2];
               end
             
             4’b0011 : // Shift by 3
               begin
               B_P[15:13] <= A_P[2:0];
               B_P[12:0]  <= A_P[15:3];
               end

             4’b0100 : // Shift by 4
                begin
                B_P[15:12] <= A_P[3:0];
                B_P[11:0]  <= A_P[15:4];
                end
 
             4’b0101 : // Shift by 5
                begin
                B_P[15:11] <= A_P[4:0];
                B_P[10:0]  <= A_P[15:5];
                end
 
             4’b0110 : // Shift by 6
                begin
                B_P[15:10] <= A_P[5:0];
                B_P[9:0]   <= A_P[15:6];
                end
 
             4’b0111 : // Shift by 7
                begin
                B_P[15:9]  <= A_P[6:0];
Synthesis and Simulation Design Guide 2-21



Synthesis and Simulation Design Guide
                B_P[8:0]   <= A_P[15:7];
                end
             4’b1000 : // Shift by 8
                begin
                B_P[15:8]  <= A_P[7:0];
                B_P[7:0]   <= A_P[15:8];
                end
 
             4’b1001 : // Shift by 9
                begin
                B_P[15:7]  <= A_P[8:0];
                B_P[6:0]   <= A_P[15:9];
                end
 
             4’b1010 : // Shift by 10
                begin
                B_P[15:6]  <= A_P[9:0];
                B_P[5:0]   <= A_P[15:10];
                end
 
             4’b1011 : // Shift by 11
                begin
                B_P[15:5] <= A_P[10:0];
                B_P[4:0]  <= A_P[15:11];
                end

             4’b1100 : // Shift by 12
                begin
                B_P[15:4] <= A_P[11:0];
                B_P[3:0]  <= A_P[15:12];
                end
 
             4’b1101 : // Shift by 13
                begin
                B_P[15:3]  <= A_P[12:0];
                B_P[2:0]   <= A_P[15:13];
                end
 
             4’b1110 : // Shift by 14
                begin
                B_P[15:2]  <= A_P[13:0];
                B_P[1:0]   <= A_P[15:14];
                end
 
             4’b1111 : // Shift by 15
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                begin
                B_P[15:1]  <= A_P[14:0];
                B_P[0]     <= A_P[15];
                end

             default :
                B_P        <= A_P;
        endcase
    end 

endmodule

The following modified VHDL and Verilog designs use two levels of 
multiplexers and are twice as fast as the previous designs. These 
designs are implemented using 32 4–to–1 multiplexers arranged in 
two levels of sixteen. The first level rotates the input data by 0, 1, 2, or 
3 bits and the second level rotates the data by 0, 4, 8, or 12 bits. Since 
you can build a 4–to–1 multiplexer with a single CLB, the minimum 
size of this version of the design is 32 (32 x 1) CLBs.

16-bit Barrel Shifter with Two Levels of Multiplexers 
(VHDL)

-- BARREL.VHD
-- Based on XAPP 26 (see http://www.xilinx.com)
-- 16-bit barrel shifter (shift right)
-- May 1997                        

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity barrel is
port (S:   in STD_LOGIC_VECTOR(3 downto 0);
A_P: in STD_LOGIC_VECTOR(15 downto 0);
B_P: out STD_LOGIC_VECTOR(15 downto 0));
end barrel;

architecture RTL of barrel is

signal SEL1,SEL2: STD_LOGIC_VECTOR(1 downto 0);
signal C:         STD_LOGIC_VECTOR(15 downto 0);

begin
    FIRST_LVL: process (A_P, SEL1)
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    begin
        case SEL1 is
            when “00” => -- Shift by 0 
               C <= A_P;

            when “01” => -- Shift by 1
               C(15) <= A_P(0);
               C(14 downto 0) <= A_P(15 downto 1);

            when “10” => -- Shift by 2
               C(15 downto 14) <= A_P(1 downto 0);
               C(13 downto 0) <= A_P(15 downto 2);

            when “11” => -- Shift by 3
               C(15 downto 13) <= A_P(2 downto 0);
               C(12 downto 0) <= A_P(15 downto 3);

            when others =>
               C <= A_P;
        end case;
    end process; --End FIRST_LVL

SECND_LVL: process (C, SEL2)
    begin
        case SEL2 is 
           when “00” => --Shift by 0
               B_P <=  C;
     
           when “01” => --Shift by 4
               B_P(15 downto 12) <= C(3 downto 0);
               B_P(11 downto 0)  <= C(15 downto 4);

           when “10” => --Shift by 8 
               B_P(7 downto 0)   <= C(15 downto 8);
               B_P(15 downto 8)  <= C(7 downto 0);

           when “11” => --Shift by 12 
              B_P(3 downto 0)   <= C(15 downto 12);
              B_P(15 downto 4)  <= C(11 downto 0);

           when others =>
               B_P <= C;
        end case;
    end process; -- End SECOND_LVL
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    SEL1 <= S(1 downto 0);
    SEL2 <= S(3 downto 2);

end rtl;

16-bit Barrel Shifter with Two Levels of Multiplexers 
(Verilog)

/*****************************************
 * BARREL.V                              *
 * XAPP 26   http://www.xilinx.com       *
 * 16-bit barrel shifter [shift right]   *
 * May 1997                              *
 *****************************************/

module barrel (S, A_P, B_P);

input [3:0] S;
input [15:0] A_P;
output [15:0] B_P;
 
reg [15:0] B_P;

wire [1:0] SEL1, SEL2;
reg [15:0] C; 

assign SEL1 = S[1:0];
assign SEL2 = S[3:2];

    always @ (A_P or SEL1)
           begin
        case (SEL1) 
             2’b00 : // Shift by 0 
                        begin
                        C <= A_P;
                        end

             2’b01 : // Shift by 1
                        begin
                        C[15] <= A_P[0];
                        C[14:0] <= A_P[15:1];
                        end

             2’b10 : // Shift by 2
                        begin
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                        C[15:14] <= A_P[1:0];
                        C[13:0] <= A_P[15:2];
                        end
             
             2’b11 : // Shift by 3
                        begin
                        C[15:13] <= A_P[2:0];
                        C[12:0] <= A_P[15:3];
                        end

           default :
                        C <= A_P;
        endcase
    end 

    always @ (C or SEL2)
    begin
        case (SEL2) 
            2’b00 : // Shift by 0
                       begin
                       B_P <=  C;
                       end
     
            2’b01 : // Shift by 4
                       begin
                       B_P[15:12] <= C[3:0];
                       B_P[11:0]  <= C[15:4];
                       end

            2’b10 : // Shift by 8 
                       begin
                       B_P[7:0] <= C[15:8];
                       B_P[15:8] <= C[7:0];
                       end

            2’b11 : // Shift by 12 
                       begin
                       B_P[3:0] <= C[15:12];
                       B_P[15:4] <= C[11:0];
                       end

          default :
                       B_P <= C;
        endcase
    end 
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endmodule

When these two designs are implemented in an XC4005E-2 device 
with a popular synthesis tool, there is a 64% improvement in the gate 
count (88 occupied CLBs reduced to 32 occupied CLBs) in the 
barrel.vhd design as compared to the barrel_org.vhd design. Addi-
tionally, there is a 19% improvement in speed from 35.58 ns (5 logic 
levels) to 28.85 ns (4 logic levels).

Implementing Latches and Registers
Synthesizers infer latches from incomplete conditional expressions, 
such as an If statement without an Else clause. This can be problem-
atic for FPGA designs because not all FPGA devices have latches 
available in the CLBs. In addition, you may think that a register is 
created, and the synthesis tool actually created a latch. The 
XC4000EX/XL and XC5200 FPGAs do have registers that can be 
configured to act as latches. For these devices, synthesizers infer a 
dedicated latch from incomplete conditional expressions. XC4000E, 
XC3100A, XC3000A, and Spartan devices do not have latches in their 
CLBs. For these devices, latches described in RTL code are imple-
mented with gates in the CLB function generators. For XC4000E or 
Spartan devices, if the latch is directly connected to an input port, it is 
implemented in an IOB as a dedicated input latch. For example, the D 
latch described in the following VHDL and Verilog designs is imple-
mented with one function generator as shown in the “D Latch Imple-
mented with Gates” figure.

D Latch Inference

• VHDL Example

-- D_LATCH.VHD
-- May 1997

library IEEE;
use IEEE.std_logic_1164.all;

entity d_latch is
    port (GATE, DATA: in STD_LOGIC;
  Q: out STD_LOGIC);
end d_latch;
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architecture BEHAV of d_latch is
begin
LATCH: process (GATE, DATA)
    begin
    if (GATE = ’1’) then
      Q <= DATA;
    end if;
end process; -- end LATCH

end BEHAV;

• Verilog Example

/* Transparent High Latch
 * D_LATCH.V
 * May 1997                                   */

module d_latch (GATE, DATA, Q);

input GATE;
input DATA;
output Q;

reg Q;

    always @ (GATE or DATA)
    begin
           if (GATE == 1’b1) 
              Q <= DATA;
    end  // End Latch

endmodule

Figure 2-3 D Latch Implemented with Gates
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In this example, a combinatorial loop results in a hold-time require-
ment on DATA with respect to GATE. Since most synthesis tools do 
not process hold-time requirements because of the uncertainty of 
routing delays, Xilinx does not recommend implementing latches 
with combinatorial feedback loops. A recommended method for 
implementing latches is described in this section. 

To eliminate this possible problem, use D registers instead of latches. 
For example, to convert the D latch to a D register, use an Else state-
ment or modify the code to resemble the following example.

Converting a D Latch to a D Register

• VHDL Example

-- D_REGISTER.VHD
-- May 1997

-- Changing Latch into a D-Register 

library IEEE;
use IEEE.std_logic_1164.all;

entity d_register is
    port (CLK, DATA: in STD_LOGIC;
          Q: out STD_LOGIC);
end d_register;

architecture BEHAV of d_register is
begin
MY_D_REG: process (CLK, DATA)
    begin
    if (CLK’event and CLK=’1’) then
       Q <= DATA;
    end if;
    end process; --End MY_D_REG
end BEHAV;

• Verilog Example

/* Changing Latch into a D-Register 
 * D_REGISTER.V
 * May 1997                           */

module d_register (CLK, DATA, Q);
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input CLK;
input DATA;
output Q;

reg Q;

    always @ (posedge CLK)
    begin: My_D_Reg
     Q <= DATA;
    end 

endmodule

With some synthesis tools you can determine the number of latches 
that are implemented in your design. Check the manuals that came 
with your software for information on determining the number of 
latches in your design.

You should convert all If statements without corresponding Else 
statements and without a clock edge to registers. Use the recom-
mended register coding styles in the synthesis tool documentation to 
complete this conversion. 

In XC4000E devices, you can implement a D latch by instantiating a 
RAM 16x1 primitive, as illustrated in the following figure.

Figure 2-4 D Latch Implemented by Instantiating a RAM

In all other cases (such as latches with reset/set or enable), use a D 
flip-flop instead of a latch. This rule also applies to JK and SR 
flip-flops.
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The following table provides a comparison of area and speed for a D 
latch implemented with gates, a 16x1 RAM primitive, and a D 
flip-flop.

Resource Sharing
Resource sharing is an optimization technique that uses a single func-
tional block (such as an adder or comparator) to implement several 
operators in the HDL code. Use resource sharing to improve design 
performance by reducing the gate count and the routing congestion. 
If you do not use resource sharing, each HDL operation is built with 

Table 2-1 D Latch Implementation Comparison

Comparison

Spartan,
XC4000E CLB 

Latch 
Implemented 
with Gates

XC4000EX/
XL/XV, 

XC5200 CLB 
Latch

All Spartan 
and XC4000 
Input Latch

XC4000
E/EX/XL/XV 
Instantiated 
RAM Latch

All
Families 

D Flip 
Flop

Advantages RTL HDL 
infers latch

RTL HDL 
infers latch, 
no hold times

RTL HDL 
infers latch, 
no hold 
times (if not 
specifying 
NODELAY, 
saves CLB 
resources)

No hold time 
or combina-
torial loops, 
best for 
XC4000E 
when latch 
needed in 
CLB

No hold 
time or 
combina-
torial loop. 
FPGAs are 
register 
abundant.

Disadvantages Feedback loop 
results in hold 
time require-
ment, not 
suggested

 Not available 
in XC4000E 
or Spartan

Not avail-
able in 
XC5200, 
input to 
latch must 
directly 
connect to 
port

Must be 
instantiated, 
uses logic 
resources

Requires 
change in 
code to 
convert 
latch to 
register

Areaa 1 Function 
Generator

1 CLB 
Register/
Latch

1 IOB 
Register/
Latch

1 Function 
Generator

1 CLB 
Register/
Latch

a. Area is the number of function generators and registers required. XC4000 and Spartan CLBs have two
function generators and two registers; XC5200 CLBs have four function generators and four register/
latches.
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separate circuitry. However, you may want to disable resource 
sharing for speed critical paths in your design.

The following operators can be shared either with instances of the 
same operator or with an operator on the same line.

*
+ –
> >= < <=

For example, a + operator can be shared with instances of other + 
operators or with – operators. A * operator can be shared only with 
other * operators.

You can implement arithmetic functions (+, –, magnitude compara-
tors) with gates or with your synthesis tool’s module library. The 
library functions use modules that take advantage of the carry logic 
in XC4000 family, XC5200 family, and Spartan family CLBs. Carry 
logic and its dedicated routing increase the speed of arithmetic func-
tions that are larger than 4-bits. To increase speed, use the module 
library if your design contains arithmetic functions that are larger 
than 4-bits or if your design contains only one arithmetic function. 
Resource sharing of the module library automatically occurs in most 
synthesis tools if the arithmetic functions are in the same process.

Resource sharing adds additional logic levels to multiplex the inputs 
to implement more than one function. Therefore, you may not want 
to use it for arithmetic functions that are part of your design’s time 
critical path. 

Since resource sharing allows you to reduce the number of design 
resources, the device area required for your design is also decreased. 
The area that is used for a shared resource depends on the type and 
bit width of the shared operation. You should create a shared 
resource to accommodate the largest bit width and to perform all 
operations.

If you use resource sharing in your designs, you may want to use 
multiplexers to transfer values from different sources to a common 
resource input. In designs that have shared operations with the same 
output target, the number of multiplexers is reduced as illustrated in 
the following VHDL and Verilog examples. The HDL example is 
shown implemented with gates in the “Implementation of Resource 
Sharing” figure.

• VHDL Example
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-- RES_SHARING.VHD
-- May 1997

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;

entity res_sharing is
    port (A1,B1,C1,D1: in STD_LOGIC_VECTOR (7 downto 0);
          COND_1: in STD_LOGIC;
          Z1: out STD_LOGIC_VECTOR (7 downto 0));
end res_sharing;

architecture BEHAV of res_sharing is
begin
P1: process (A1,B1,C1,D1,COND_1)   
    begin
       if (COND_1=’1’) then
           Z1 <= A1 + B1;
       else
           Z1 <= C1 + D1;
       end if;
    end process; -- end P1

end BEHAV;

• Verilog Example

/* Resource Sharing Example
 * RES_SHARING.V
 * May 1997                                   */

module res_sharing (A1, B1, C1, D1, COND_1, Z1);

input       COND_1;
input  [7:0] A1, B1, C1, D1;
output [7:0] Z1;

reg [7:0] Z1;

    always @(A1 or B1 or C1 or D1 or COND_1)   
    begin
           if (COND_1)
               Z1 <= A1 + B1;
           else
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              Z1 <= C1 + D1;
    end 

endmodule

If you disable resource sharing or if you code the design with the 
adders in separate processes, the design is implemented using two 
separate modules as shown in the “Implementation without 
Resource Sharing” figure. 
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Figure 2-5 Implementation of Resource Sharing
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Figure 2-6 Implementation without Resource Sharing
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Some synthesis tools generate modules from special Xilinx module 
generation algorithms. Generally, this module generation is used for 
operators such as adders, subtracters, incrementers, decrementers, 
and comparators. The following table provides a comparison of the 
number of CLBs used and the delay for the VHDL and Verilog 
designs with and without resource sharing. 

Note: Refer to the appropriate reference manual for more informa-
tion on resource sharing.

Gate Reduction
Use the generated module components to reduce the number of gates 
in your designs. The module generation algorithms use Xilinx carry 
logic to reduce function generator logic and improve routing and 
speed performance. Further gate reduction can occur with synthesis 
tools that recognize the use of constants with the modules.

Table 2-2 Resource Sharing/No Resource Sharing Comparison 
for XC4005EPC84-2

Comparison

Resource 
Sharing with 
Xilinx Module 

Generation

No Resource 
Sharing with 
Xilinx Module 

Generation

Resource 
Sharing 

without Xilinx 
Module 

Generation

No Resource 
Sharing 

without Xilinx 
Module 

Generation

F/G Functions 24 24 19 28

H Function 
Generators

0 0 11 8

Fast Carry Logic 
CLBs

5 10 0 0

Longest Delay 27.878 ns 23.761 ns 47.010 ns 33.386 ns

Advantages/
Disadvantages

Potential for 
area reduction

Potential for 
decreased crit-
ical path delay

No carry logic 
increases path 
delays

No carry logic 
increases CLB 
count
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Preset Pin or Clear Pin
Xilinx FPGAs consist of CLBs that contain function generators and 
flip-flops. The XC4000 family and Spartan family flip-flops have a 
dedicated clock enable pin and either a clear (asynchronous reset) pin 
or a preset (asynchronous set) pin. All synchronous preset or clear 
functions can be implemented with combinatorial logic in the func-
tion generators. 

The XC3000 family and XC5200 family FPGAs have an asynchronous 
reset pin on the CLB registers. An asynchronous preset can be 
inferred, but is built by connecting one inverter to the D input and 
connecting a second inverter to the Q output of a register. In this case, 
an asynchronous preset is created when the asynchronous reset is 
activated. This may require additional logic and increase delays. If 
possible, the inverters are merged with existing logic connected to the 
register input or output.

You can configure FPGA CLB registers to have either a preset pin or a 
clear pin. You cannot configure the CLB register for both pins. You 
must modify any process that requires both pins to use only one pin 
or you must use three registers and a mux to implement the process. 
If a register is described with an asynchronous set and reset, your 
synthesis tool may issue an error message similar to the following 
during the compilation of your design.

Warning: Target library contains no replacement for 
register ‘Q_reg’ (**FFGEN**) . (TRANS-4)
Warning: Cell ‘Q_reg’ (**FFGEN**) not translated. 
(TRANS-1)

During the implementation of the synthesized netlist, NGDBuild 
issues the following error message.

ERROR:basnu – logical block “Q_reg” of type “_FFGEN_” 
is unexpanded.

An XC4000 CLB is shown in the following figure.
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Figure 2-7 XC4000 Configurable Logic Block
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• VHDL Example

-- FF_EXAMPLE.VHD
-- May 1997
-- Example of Implementing Registers

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity ff_example is
   port ( RESET, CLOCK, ENABLE: in STD_LOGIC;
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          A_Q_OUT: out STD_LOGIC_VECTOR (7 downto 0);
          B_Q_OUT: out STD_LOGIC_VECTOR (7 downto 0);
          C_Q_OUT: out STD_LOGIC_VECTOR (7 downto 0);
          D_Q_OUT: out STD_LOGIC_VECTOR (7 downto 0));
end ff_example;

architecture BEHAV of ff_example is
begin

    -- D flip-flop
    FF: process (CLOCK)
    begin
        if (CLOCK’event and CLOCK=’1’) then
            A_Q_OUT <= D_IN;
        end if;
    end process; -- End FF

    -- Flip-flop with asynchronous reset
    FF_ASYNC_RESET: process (RESET, CLOCK)
    begin 
        if (RESET = ’1’) then
            B_Q_OUT <= “00000000”;
        elsif (CLOCK'event and CLOCK='1') then
            B_Q_OUT <= D_IN;
        end if;
    end process; -- End FF_ASYNC_RESET

    -- Flip-flop with asynchronous set
    FF_ASYNC_SET: process (RESET, CLOCK) 
    begin
        if (RESET = '1') then
            C_Q_OUT <= “11111111”;
        elsif (CLOCK'event and CLOCK = '1') then
            C_Q_OUT <= D_IN;
        end if;
    end process; -- End FF_ASYNC_SET

    -- Flip-flop with asynchronous reset and clock 
       enable
    FF_CLOCK_ENABLE: process (ENABLE, RESET, CLOCK)
    begin
        if (RESET = '1') then
           D_Q_OUT <= “00000000”;
        elsif (CLOCK'event and CLOCK='1') then
           if (ENABLE='1') then
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               D_Q_OUT <= D_IN;
           end if;
       end if;
   end process; -- End FF_CLOCK_ENABLE

end BEHAV;

• Verilog Example

/* Example of Implementing Registers
 * FF_EXAMPLE.V
 * May 1997                                   */

module ff_example (RESET, CLOCK, ENABLE, D_IN, 
                  A_Q_OUT, B_Q_OUT, C_Q_OUT, D_Q_OUT);

input RESET, CLOCK, ENABLE;
input       [7:0] D_IN;
output      [7:0] A_Q_OUT;
output      [7:0] B_Q_OUT;
output      [7:0] C_Q_OUT;
output      [7:0] D_Q_OUT;

reg         [7:0] A_Q_OUT;
reg         [7:0] B_Q_OUT;
reg         [7:0] C_Q_OUT;
reg         [7:0] D_Q_OUT;

    // D flip-flop
    always @(posedge CLOCK)
    begin
        A_Q_OUT <= D_IN;
    end 

    // Flip-flop with asynchronous reset
    always @(posedge RESET or posedge CLOCK)
    begin 
        if (RESET)
            B_Q_OUT <= 8’b00000000;
            else
               B_Q_OUT <= D_IN;
    end

    // Flip-flop with asynchronous set
    always @(posedge RESET or posedge CLOCK) 
    begin
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        if (RESET)
            C_Q_OUT <= 8’b11111111;
            else
                C_Q_OUT <= D_IN;
    end 

    //Flip-flop with asynchronous reset & clock enable
    always @(posedge RESET or posedge CLOCK)
    begin
            if (RESET)
                 D_Q_OUT <= 8’b00000000;
            else if (ENABLE) 
                 D_Q_OUT <= D_IN;
    end 

endmodule

Using Clock Enable Pin Instead of Gated Clocks

Use the CLB clock enable pin instead of gated clocks in your designs. 
Gated clocks can introduce glitches, increased clock delay, clock skew, 
and other undesirable effects. The first two examples in this section 
(VHDL and Verilog) illustrate a design that uses a gated clock. The 
“Implementation of Gated Clock” figure shows this design imple-
mented with gates. Following these examples are VHDL and Verilog 
designs that show how you can modify the gated clock design to use 
the clock enable pin of the CLB. The “Implementation of Clock 
Enable” figure shows this design implemented with gates.

• VHDL Example

------------------------------------------
-- GATE_CLOCK.VHD Version 1.1           --
-- Illustrates clock buffer control --
-- Better implementation is to use --
-- clock enable rather than gated clock --
-- May 1997 --
------------------------------------------

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity gate_clock is
    port (IN1,IN2,DATA,CLK,LOAD: in STD_LOGIC;
          OUT1: out STD_LOGIC);
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end gate_clock;

architecture BEHAVIORAL of gate_clock is

signal GATECLK: STD_LOGIC;

begin

GATECLK <= (IN1 and IN2 and CLK);

    GATE_PR: process (GATECLK,DATA,LOAD) 
    begin
        if (GATECLK’event and GATECLK=’1’) then
            if (LOAD=’1’) then
                OUT1 <= DATA;
            end if;
        end if;
    end process; --End GATE_PR

end BEHAVIORAL;

• Verilog Example

       ////////////////////////////////////////
      // GATE_CLOCK.V Version 1.1             //
     // Gated Clock Example                  //
    // Better implementation to use clock   //
   // enables than gating the clock        //
  // May 1997                             //
 //////////////////////////////////////////

module gate_clock(IN1, IN2, DATA, CLK, LOAD, OUT1) ;
input       IN1 ;
input       IN2 ;
input       DATA ;
input       CLK ;
input       LOAD ;
output      OUT1 ;

reg         OUT1 ;

wire GATECLK ;

assign GATECLK = (IN1 & IN2 & CLK);

always @(posedge GATECLK)
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begin
   if (LOAD == 1’b1)
      OUT1 = DATA;
end

endmodule

 

Figure 2-8 Implementation of Gated Clock

• VHDL Example

-- CLOCK_ENABLE.VHD
-- May 1997

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity clock_enable is
    port (IN1,IN2,DATA,CLOCK,LOAD: in STD_LOGIC;
          DOUT: out STD_LOGIC);
end clock_enable;

architecture BEHAV of clock_enable is
signal ENABLE: STD_LOGIC;
begin

    ENABLE <= IN1 and IN2 and LOAD;

    EN_PR: process (ENABLE,DATA,CLOCK)
    begin
        if (CLOCK’event and CLOCK=’1’) then
            if (ENABLE=’1’) then
                DOUT <= DATA;
            end if;
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        end if;
    end process; -- End EN_PR

end BEHAV;

• Verilog Example

/* Clock enable example
 * CLOCK_ENABLE.V
 * May 1997                                    */

module clock_enable (IN1, IN2, DATA, CLK, LOAD, DOUT);

input IN1, IN2, DATA;
input CLK, LOAD;
output DOUT;

wire ENABLE;
reg DOUT;

assign ENABLE = IN1 & IN2 & LOAD;

    always @(posedge CLK)
    begin
             if (ENABLE) 
                 DOUT <= DATA;
    end 

endmodule

Figure 2-9 Implementation of Clock Enable

Using If Statements
The VHDL syntax for If statements is as follows:

if condition then
      sequence_of_statements;
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{elsif condition then
      sequence_of_statements;}
else
      sequence_of_statements;
end if;

The Verilog syntax for If statements is as follows:

if (condition)
   begin
        sequence of statements;
   end
{else if (condition)
   begin
        sequence of statements;
   end}
else
   begin
        sequence of statements;
   end

Use If statements to execute a sequence of statements based on the 
value of a condition. The If statement checks each condition in order 
until the first true condition is found and then executes the state-
ments associated with that condition. After a true condition is found 
and the statements associated with that condition are executed, the 
rest of the If statement is ignored. If none of the conditions are true, 
and an Else clause is present, the statements associated with the Else 
are executed. If none of the conditions are true, and an Else clause is 
not present, none of the statements are executed.

If the conditions are not completely specified (as shown below), a 
latch is inferred to hold the value of the target signal. 

• VHDL Example

if (L = ‘1’) then
      Q <= D;
end if;

• Verilog Example

if (L==1’b1)
      Q=D;
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To avoid a latch inference, specify all conditions, as shown here.

• VHDL Example

if (L = ‘1’) then
      Q <= D;
else
      Q <= ‘0’;
end if;

• Verilog Example

if (L==1’b1)
     Q=D;
else
     Q=0;

Using Case Statements
The VHDL syntax for Case statements is as follows.

case expression is
      when choices => 
            {sequence_of_statements;}
      {when choices => 
            {sequence_of_statements;}}
      when others => 
            {sequence_of_statements;}
end case;

The Verilog syntax for Case statements is as follows.

case (expression)
   choices:   statement;
   {choices:  statement;}
   default:   statement;
endcase

Use Case statements to execute one of several sequences of state-
ments, depending on the value of the expression. When the Case 
statement is executed, the given expression is compared to each 
choice until a match is found. The statements associated with the 
matching choice are executed. The statements associated with the 
Others (VHDL) or Default (Verilog) clause are executed when the 
given expression does not match any of the choices. The Others or 
Default clause is optional, however, if you do not use it, you must 
include all possible values for expression. For clarity and for 
synthesis, each Choices statement must have a unique value for the 
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expression. If possible, put the most likely Cases first to improve 
simulation speed.

Using Nested If Statements
Improper use of the Nested If statement can result in an increase in 
area and longer delays in your designs. Each If keyword specifies 
priority-encoded logic. To avoid long path delays, do not use 
extremely long Nested If constructs as shown in the following 
VHDL/Verilog examples. These designs are shown implemented in 
gates in the “Implementation of Nested If” figure. Following these 
examples are VHDL and Verilog designs that use the Case construct 
with the Nested If to more effectively describe the same function. The 
Case construct reduces the delay by approximately 3 ns (using an 
XC4005E-2 part). The implementation of this design is shown in the 
“Implementation of If-Case” figure. 

Inefficient Use of Nested If Statement

• VHDL Example

-- NESTED_IF.VHD
-- May 1997

Library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
use IEEE.STD_LOGIC_ARITH.all;

entity nested_if is
    port (ADDR_A:   in std_logic_vector (1 downto 0); -- ADDRESS Code
           ADDR_B:   in std_logic_vector (1 downto 0); -- ADDRESS Code
           ADDR_C:   in std_logic_vector (1 downto 0); -- ADDRESS Code
           ADDR_D:   in std_logic_vector (1 downto 0); -- ADDRESS Code
           RESET:    in std_logic;
           CLK :     in std_logic;
           DEC_Q:   out std_logic_vector (5 downto 0)); -- Decode OUTPUT
end nested_if;
 
architecture xilinx of nested_if is
begin

---------------- NESTED_IF PROCESS --------------
     NESTED_IF: process (CLK)
     begin 
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         if (CLK’event and CLK = ’1’) then
             if (RESET = ’0’) then
                 if (ADDR_A = “00”) then
                     DEC_Q(5 downto 4) <= ADDR_D;
                     DEC_Q(3 downto 2) <= “01”;
                     DEC_Q(1 downto 0) <= “00”;
                     if (ADDR_B = “01”) then
                         DEC_Q(3 downto 2) <= unsigned(ADDR_A) + '1';
                         DEC_Q(1 downto 0) <= unsigned(ADDR_B) + '1';
                         if (ADDR_C = “10”) then
                             DEC_Q(5 downto 4) <= unsigned(ADDR_D) + '1';
                             if (ADDR_D = “11”) then
                                 DEC_Q(5 downto 4) <= “00”;
                             end if;
                         else
                             DEC_Q(5 downto 4) <= ADDR_D;
                         end if;
                     end if;
                else
                    DEC_Q(5 downto 4)  <= ADDR_D;
                    DEC_Q(3 downto 2)  <= ADDR_A;
                    DEC_Q(1 downto 0)  <= unsigned(ADDR_B) + '1';
                end if;
            else
                DEC_Q <= “000000”;
            end if;       
        end if;
    end process;
end xilinx;

• Verilog Example

    ////////////////////////////////////////
   // NESTED_IF.V                        //
  // Nested If vs. Case Design Example  //
 // August 1997                        //
////////////////////////////////////////

module nested_if (ADDR_A, ADDR_B, ADDR_C, ADDR_D, RESET, CLK, DEC_Q);

    input  [1:0]  ADDR_A ;
    input  [1:0]  ADDR_B ;
    input  [1:0]  ADDR_C ;
    input  [1:0]  ADDR_D ;
    input         RESET, CLK ;
    output [5:0]  DEC_Q ;
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    reg    [5:0]  DEC_Q ;

    //  Nested If Process  //
    always @ (posedge CLK)
        begin
        if (RESET == 1’b1)
            begin

            if (ADDR_A == 2’b00)
                begin
                DEC_Q[5:4] <= ADDR_D;
                DEC_Q[3:2] <= 2’b01;
                DEC_Q[1:0] <= 2’b00;
                if (ADDR_B == 2’b01)
                    begin
                    DEC_Q[3:2] <= ADDR_A + 1’b1;
                    DEC_Q[1:0] <= ADDR_B + 1’b1;
                    if (ADDR_C == 2’b10)
                        begin
                        DEC_Q[5:4] <= ADDR_D + 1’b1;
                        if (ADDR_D == 2’b11)
                            DEC_Q[5:4] <= 2’b00;
                        end
                    else
                        DEC_Q[5:4] <= ADDR_D;
                    end
                end
            else
                DEC_Q[5:4] <= ADDR_D;
                DEC_Q[3:2] <= ADDR_A;
                DEC_Q[1:0] <= ADDR_B + 1’b1;
            end
        else
            DEC_Q <= 6’b000000;
        end

endmodule
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Figure 2-10 Implementation of Nested If 

Nested If Example Modified to Use If-Case

Note: In the following example, the hyphens (“don’t cares”) used for 
bits in the Case statement may evaluate incorrectly to false for some 
synthesis tools.

• VHDL Example

-- IF_CASE.VHD
-- May 1997

Library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
use IEEE.STD_LOGIC_ARITH.all;

entity if_case is
     port (ADDR_A:   in std_logic_vector (1 downto 0); -- ADDRESS Code
           ADDR_B:   in std_logic_vector (1 downto 0); -- ADDRESS Code
           ADDR_C:   in std_logic_vector (1 downto 0); -- ADDRESS Code
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           ADDR_D:   in std_logic_vector (1 downto 0); -- ADDRESS Code
           RESET:    in std_logic;
           CLK :     in std_logic;
           DEC_Q:   out std_logic_vector (5 downto 0)); -- Decode OUTPUT
end if_case;
 
architecture xilinx of if_case is
signal ADDR_ALL : std_logic_vector (7 downto 0);
begin

----concatenate all address lines -----------------------
ADDR_ALL <= (ADDR_A & ADDR_B & ADDR_C & ADDR_D) ;

--------Use ’case’ instead of ’nested_if’ for efficient gate netlist------
    IF_CASE: process (CLK)
    begin 
        if (CLK’event and CLK = ’1’) then
            if (RESET = ’0’) then
                case ADDR_ALL is
                    when “00011011” => 
                        DEC_Q(5 downto 4) <= “00”; 
                        DEC_Q(3 downto 2) <= unsigned(ADDR_A) + '1';
                        DEC_Q(1 downto 0) <= unsigned(ADDR_B) + '1';
                    when “000110--” =>
                        DEC_Q(5 downto 4) <= unsigned(ADDR_D) + '1';
                        DEC_Q(3 downto 2) <= unsigned(ADDR_A) + '1';
                        DEC_Q(1 downto 0) <= unsigned(ADDR_B) + '1';
                    when “0001----” =>
                        DEC_Q(5 downto 4) <= ADDR_D;
                        DEC_Q(3 downto 2) <= unsigned(ADDR_A) + '1';
                        DEC_Q(1 downto 0) <= unsigned(ADDR_B) + '1';
                    when “00------” =>
                        DEC_Q(5 downto 4) <= ADDR_D;
                        DEC_Q(3 downto 2) <= “01”;
                        DEC_Q(1 downto 0) <= “00”;
                    when others     =>
                        DEC_Q(5 downto 4) <= ADDR_D;
                        DEC_Q(3 downto 2) <= ADDR_A;
                        DEC_Q(1 downto 0) <= unsigned(ADDR_B) + '1';
                end case;
            else
                DEC_Q <= “000000”;
            end if;
        end if;
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    end process;
end xilinx;

• Verilog Example

    ////////////////////////////////////////
   // IF_CASE.V                          //
  // Nested If vs. Case Design Example  //
 // August 1997                        //
////////////////////////////////////////

module if_case (ADDR_A, ADDR_B, ADDR_C, ADDR_D, RESET, CLK, DEC_Q);

    input  [1:0]  ADDR_A ;
    input  [1:0]  ADDR_B ;
    input  [1:0]  ADDR_C ;
    input  [1:0]  ADDR_D ;
    input         RESET, CLK ;
    output [5:0]  DEC_Q ;

    wire   [7:0]  ADDR_ALL ;
    reg    [5:0]  DEC_Q ;

    // Concatenate all address lines //
    assign ADDR_ALL = {ADDR_A, ADDR_B, ADDR_C, ADDR_D} ;

    // Use ’case’ instead of ’nested_if’ for efficient gate netlist //
    always @ (posedge CLK)
        begin
        if (RESET == 1’b1)
            begin
                casex (ADDR_ALL)
                    8’b00011011: begin
                                 DEC_Q[5:4] <= 2’b00;  
                                 DEC_Q[3:2] <= ADDR_A + 1;
                                 DEC_Q[1:0] <= ADDR_B + 1’b1;
                                 end
                    8’b000110xx: begin
                                 DEC_Q[5:4] <= ADDR_D + 1’b1;
                                 DEC_Q[3:2] <= ADDR_A + 1’b1;
                                 DEC_Q[1:0] <= ADDR_B + 1’b1;
                                 end
                    8’b0001xxxx: begin
                                 DEC_Q[5:4] <= ADDR_D;
                                 DEC_Q[3:2] <= ADDR_A + 1’b1;
                                 DEC_Q[1:0] <= ADDR_B + 1’b1;
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                                 end
                    8’b00xxxxxx: begin
                                 DEC_Q[5:4] <= ADDR_D;
                                 DEC_Q[3:2] <= 2’b01;
                                 DEC_Q[1:0] <= 2’b00;
                                 end
                    default:     begin
                                 DEC_Q[5:4] <= ADDR_D;
                                 DEC_Q[3:2] <= ADDR_A;
                                 DEC_Q[1:0] <= ADDR_B + 1’b1;
                                 end
                endcase
            end
        else
            DEC_Q <= 6’b000000;
        end

endmodule
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Figure 2-11 Implementation of If-Case 

Comparing If Statement and Case Statement
The If statement generally produces priority-encoded logic and the 
Case statement generally creates balanced logic. An If statement can 
contain a set of different expressions while a Case statement is evalu-
ated against a common controlling expression. In general, use the 
Case statement for complex decoding and use the If statement for 
speed critical paths. 

Most current synthesis tools can determine if the if-elsif conditions 
are mutually exclusive, and will not create extra logic to build the 
priority tree.
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The following examples use an If construct in a 4–to–1 multiplexer 
design. The “If_Ex Implementation” figure shows the implementa-
tion of these designs. 

4–to–1 Multiplexer Design with If Construct

• VHDL Example

-- IF_EX.VHD
-- May 1997

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity if_ex is
    port (SEL: in STD_LOGIC_VECTOR(1 downto 0);
    A,B,C,D: in STD_LOGIC;
    MUX_OUT: out STD_LOGIC);
end if_ex;

architecture BEHAV of if_ex is
begin

    IF_PRO: process (SEL,A,B,C,D) 
    begin
        if    (SEL=”00”) then MUX_OUT <= A;
        elsif (SEL=”01”) then MUX_OUT <= B;
        elsif (SEL=”10”) then MUX_OUT <= C;
        elsif (SEL=”11”) then MUX_OUT <= D;
        else                  MUX_OUT <= '0';
    end if;
end process; --END IF_PRO

end BEHAV;

• Verilog Example

     // IF_EX.V                                  //
    // Example of a If statement showing a      //
   // mux created using priority encoded logic //
  // HDL Synthesis Design Guide for FPGAs     //
 // November 1997                            //
//////////////////////////////////////////////

module if_ex (A, B, C, D, SEL, MUX_OUT);
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    input        A, B, C, D;
    input  [1:0] SEL;
    output       MUX_OUT;

    reg          MUX_OUT;

    always @ (A or B or C or D or SEL)
    begin
       if (SEL == 2’b00)
          MUX_OUT = A;
       else if (SEL == 2’b01)
          MUX_OUT = B;
       else if (SEL == 2’b10)
          MUX_OUT = C;
       else if (SEL == 2’b11)
          MUX_OUT = D;
       else
          MUX_OUT = 0;
    end

endmodule

Figure 2-12 If_Ex Implementation 

The following VHDL and Verilog examples use a Case construct for 
the same multiplexer. The “Case_Ex Implementation” figure shows 
the implementation of these designs. In these examples, the Case 
implementation requires only one XC4000 CLB while the If construct 
requires two CLBs in some synthesis tools. In this case, design the 
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multiplexer using the Case construct because fewer resources are 
used and the delay path is shorter.

4–to–1 Multiplexer Design with Case Construct

• VHDL Example

-- CASE_EX.VHD
-- May 1997

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity case_ex is
    port (SEL: in STD_LOGIC_VECTOR(1 downto 0);
          A,B,C,D: in STD_LOGIC;
          MUX_OUT: out STD_LOGIC);
end case_ex;

architecture BEHAV of case_ex is
begin

    CASE_PRO: process (SEL,A,B,C,D) 
    begin
        case SEL is
            when “00” =>MUX_OUT <= A;
            when “01” =>  MUX_OUT <= B;
            when “10” =>  MUX_OUT <= C;
            when “11” =>  MUX_OUT <= D;
            when others=>  MUX_OUT <= '0';
        end case;
    end process; --End CASE_PRO

end BEHAV;

• Verilog Example

      //////////////////////////////////////////
     // CASE_EX.V                            //
    // Example of a Case statement showing  //
   // A mux created using parallel logic   //
  // HDL Synthesis Design Guide for FPGAs //
 // November 1997                        //
//////////////////////////////////////////

module case_ex (A, B, C, D, SEL, MUX_OUT);
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input        A, B, C, D;
input  [1:0] SEL;
output       MUX_OUT;

reg          MUX_OUT;

    always @ (A or B or C or D or SEL) 
    begin
    case (SEL)
        2’b00: 
            MUX_OUT = A;
        2’b01: 
            MUX_OUT = B;
        2’b10: 
            MUX_OUT = C;
        2’b11: 
            MUX_OUT = D;
            default: 
            MUX_OUT = 0;
     endcase
     end

endmodule

Figure 2-13 Case_Ex Implementation
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Chapter 3

Understanding High-Density Design Flow

This chapter describes the steps in a typical HDL design flow. 
Although these steps may vary with each design, the information in 
this chapter is a good starting point for any design. If necessary, refer 
to the current version of the Quick Start Guide for the Xilinx Alliance 
Series to familiarize yourself with the Xilinx and interface tools. This 
chapter includes the following sections.

• “Design Flow”

• “Entering your Design and Selecting Hierarchy”

• “Functional Simulation of your Design”

• “Synthesizing and Optimizing your Design”

• “Setting Timing Constraints”

• “Evaluating Design Size and Performance”

• “Evaluating your Design for Coding Style and System Features”

• “Placing and Routing Your Design”

• “Timing Simulation of Your Design”

• “Downloading to the Device and In-system Debugging”

• “Creating a PROM File for Stand-Alone Operation”

Design Flow
An overview of the design flow steps is shown in the following 
figure.
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Figure 3-1 Design Flow Overview
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Entering your Design and Selecting Hierarchy
The first step in implementing your design is creating the HDL code 
based on your design criteria.

Design Entry Recommendations
The following recommendations can help you create effective 
designs.

Use RTL Code

By using register transfer level (RTL) code and avoiding (when 
possible) instantiating specific components, you can create designs 
with the following characteristics.

Note: In certain cases, instantiating optimized modules, such as Logi-
BLOX modules, is beneficial with RTL.

• Readable code

• Faster and simpler simulation

• Portable code for migration to different device families

• Reuse of code in future designs 

Carefully Select Design Hierarchy

Selecting the correct design hierarchy is advantageous for the 
following reasons.

• Improves simulation and synthesis results

• Modular designs are easier to debug and modify

• Allows parallel engineering (a team of engineers can work on 
different parts of the design at the same time)

• Improves the placement and routing of your design by reducing 
routing congestion and improving timing

• Allows for easier code reuse in the current design, as well as in 
future designs
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Functional Simulation of your Design
Use functional or RTL simulation to verify the syntax and function-
ality of your design. Use the following recommendations when simu-
lating your design.

• Typically with larger hierarchical HDL designs, you should 
perform separate simulations on each module before testing your 
entire design. This makes it easier to debug your code.

• Once each module functions as expected, create a test bench to 
verify that your entire design functions as planned. You can use 
the test bench again for the final timing simulation to confirm 
that your design functions as expected under worst-case delay 
conditions.

Synthesizing and Optimizing your Design
This section includes recommendations for compiling your designs to 
improve your results and decrease the run time.

Note: Refer to your synthesis tool documentation for more informa-
tion on compilation options and suggestions.

Creating an Initialization File
Before you can compile your design, you must create an initialization 
file to specify compiler defaults, and to point to the applicable imple-
mentation libraries. Refer to your synthesis tool documentation for 
information on creating this file.

Creating a Compile Run Script
The next step is to create a compile run script for iterative design 
compilations, and to use as a reference for the steps in the synthesis 
process. Many commonly-used synthesis tools have this capability. If 
you are a new user, you may want to use the graphical user interface 
to compile your design instead of using a run script. However, the 
iterative design compilation process can be tedious with the graph-
ical interface. A run script can speed up the design process.
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Compiling Your Design
Use the recommendations in this section to successfully compile your 
design.

Modifying your Design

You may need to modify your code to successfully compile your 
design because certain design constructs that are effective for simula-
tion may not be as effective for synthesis. The synthesis syntax and 
code set may differ slightly from the simulator syntax and code set. 

Compiling Large Designs

Older versions of synthesis tools required incremental design compi-
lations to decrease run times. Some or all levels of hierarchy were 
compiled with separate compile commands and saved as output or 
database files. The output netlist or compiled database file for each 
module was read during synthesis of the top level code. This method 
is not necessary with new synthesis tools, which can handle large 
designs from the top down. The 5,000 gates per module rule of thumb 
no longer applies with the new synthesis tools. Refer to your 
synthesis tool documentation for details.

Saving Compiled Design as XNF or EDIF

After your design is successfully compiled, save it as an XNF or EDIF 
file for input to the Xilinx software. 

Setting Timing Constraints
You can define timing specifications for your design in the User 
Constraints File (UCF). The UCF gives you tight control of the overall 
specifications by giving you access to more types of constraints; the 
ability to define precise timing paths; and the ability to prioritize 
signal constraints. Furthermore, you can group signals together to 
simplify timing specifications. Some synthesis tools translate certain 
synthesis constraints to Xilinx implementation constraints. The trans-
lated constraints are placed in a special TIMESPEC component. For 
more information on timing specifications in the UCF file, refer to the 
Quick Start Guide for Xilinx Alliance Series, the Libraries Guide, and the 
Answers Database on the Xilinx Web site (http://www.xilinx.com).
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Naming and Grouping Signals Together
You can name and group signals with TNMs (Timing Names) or with 
TIMEGRPs (Time groups). TNMs and TIMEGRPs are placed on these 
start and end points: ports, registers, latches, or synchronous RAMs. 
The new specification, TPSYNC, allows you to define an asynchro-
nous node for a timing specification.

TNMs

Timing Names are used to identify a port, register, latch, RAM, or 
groups of these components for timing specifications. TNMs are spec-
ified from a UCF with the following syntax.

INST Instance_Name TNM=TNM_Name;

Instance_Name is the name given to the port, register, latch, or RAM 
in your design. The instance names for any port or instantiated 
component are provided by you in your HDL code. Inferred flip-
flops and latch names can usually be determined from the log files. 
TNM_NAME is the arbitrary name you give the timing group. 

You can include several of these statements in the UCF file with a 
common TNM_NAME to group elements for a timing specification 
as follows.

NET DATA TNM=INPUT_PORTS;

NET SELECT TNM=INPUT_PORTS;

The above example takes two ports, DATA and SELECT, and gives 
them the common timing name INPUT_PORTS.

TIMEGRPs

Time Groups are another method for specifying a group of compo-
nents for timing specifications.

Time groups use existing TNMs or TIMEGRPs to create new groups 
or to define new groups based on the output net that the group 
sources. There are several methods to create TIMEGRPs in the UCF 
file, as follows.

TIMEGRP TIMEGRP_Name=TNM1:TNM2;

TIMEGRP TIMEGRP_Name=TNM3:EXCEPT:TNM4;

The Xilinx software recognizes the following global timing names.
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• FFS — All flip-flops in your design

• PADS — All external ports in your design

• RAMS — All synchronous RAMs in your design

• LATCHES — All latches in your design

The following time group specifies the group name, FAST_FFS, 
which consists of all flip-flops in your design except for the ones with 
the TNM or TIMEGRP SLOW_FFS attribute. 

TIMEGRP FAST_FFS=FFS:EXCEPT:SLOW_FFS;

TPSYNC Specification

In the latest version of the Xilinx software, you can define any node 
as a source or destination for a timing specification with the TPSYNC 
keyword. In synthesis designs, it is usually difficult to identify the net 
names for asynchronous paths of inferred logic. These net names can 
change from compile to compile, so it is not recommended to use this 
specification with inferred logic. However, with instantiated logic, 
the declared SIGNAL or WIRE name usually remains intact in the 
netlist and does not change from compile to compile. Some synthesis 
tools can preserve the signal/net name defined in the RTL through 
the optimization process. Check with your synthesis vendor for this 
capability. The UCF syntax is as follows.

NET Net_Name TPSYNC=TPSYNC_Name;

In the following NET statement, the TPSYNC is attached to the 
output net of a 3-state buffer, BUS3STATE. If a TPSYNC is attached to 
a net, then the source of the net is considered to be the endpoint (in 
this case, the 3-state buffer itself). The subsequent TIMESPEC state-
ment can use the TPSYNC name just as it uses a TNM name.

NET BUS3STATE TPSYNC=bus3;

TIMESPEC 
TSNewSpc3=FROM:PAD(ENABLE_BUS):TO:bus3:20ns;

Specifying Timing Constraints
After your design signals are specified with TNMs, TIMEGRPs, or 
global timing names, you can place a specification on the design 
paths. There are a few methods for specifying these timing paths and 
different specifications have different priorities.
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Note: Current versions of the Xilinx implementation tools have 
improved methods for entering timing constraints. Refer to the Xilinx 
documentation for your version of the place and route tools for the 
latest constraints commands and styles.

Period Constraint
The Period constraint specifies a clock period or clock speed on a net 
or clock port. The Xilinx tools attempt to meet all Pad to Setup 
requirements, as well as all Clock to Setup delays for registers 
clocked by the specified clock net. This is equivalent to a create clock 
type of command in a synthesis tool script. Following are the two 
methods for specifying a period constraint.

NET Clock_Name PERIOD = Clock_Period ;

or

NET Clock_Name TNM=TNM_Name;

TIMESPEC TIMESPEC_Name = PERIOD:TNM_Name:Clock_Period 
; 

The following example specifies that the CLOCK port has a period of 
50ns. All input paths to flip-flops clocked with this port are desig-
nated to operate at 50ns.

NET CLOCK PERIOD = 50;

FROM:TO Style Constraint
Specific paths can be specified with a FROM:TO style timing specifi-
cation. These constraints are specified using global timing names, 
TNMs, TIMEGRPs, or TPSYNCs to connect the source and destina-
tion of the timing path, as well as the desired maximum delay of the 
path. An equivalent synthesis tool command is a set max delay type 
of command. A UCF example follows.

TIMESPEC TIMESPEC_Name = 

FROM:Source_Name:TO:Desination_Name:Delay_Value ;

TIMESEPC_Name is specified with the TS identifier followed by a 
number, such as TS01.
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The following example specifies a new timespec with the identifier 
TS01 so that all paths that are sourced by a port and end at a register 
grouped with the name DATA_FLOPS have a delay less than 30ns.

TIMESPEC TS01 = FROM:PADS:TO:DATA_FLOPS:30;

Offset Constraint
Note: The OFFSET constraint must be used with the clock PERIOD 
constraint. 

The OFFSET constraint can be applied to ports defined in your code. 
It defines the delay of a signal relative to a clock, and is only valid for 
registered data paths. The OFFSET constraint specifies the signal 
delay external to the chip, allowing the implementation tools to auto-
matically adjust relevant internal delays (CLK buffer and distribution 
delays) to accommodate the external delay specified with this 
constraint. This constraint is equivalent to the set input delay and set 
output delay type of commands in your synthesis tool.

NET Port_Name OFFSET = {IN | OUT} Time {BEFORE | 
AFTER} Clock_Name ;

IN | OUT specifies that the offset is calculated with respect to an 
input IOB or an output IOB. 

For a bidirectional IOB, the IN | OUT syntax lets you specify the flow 
of data (input or output) on the IOB. BEFORE | AFTER indicates 
whether data is to arrive (input) or leave (output) the device before or 
after the clock input.

The following example specifies that the data on the output port, 
DATA_OUT, arrive on the output pin 20ns after the edge of the clock 
signal, CLOCK, arrives.

NET DATA_OUT OFFSET = OUT 20 AFTER CLOCK;

Ignoring Timing Paths
When a timespec is issued for a path that is not timing-critical, you 
can specify to ignore this path for one or all timing specifications. A 
TIG (Timing IGnore) can be specified on these particular nets. The 
synthesis tool equivalent is the Set False Path command. The UCF 
syntax is as follows. 

NET Signal_Name TIG=TIMESPEC_Name ;
Synthesis and Simulation Design Guide 3-9



Synthesis and Simulation Design Guide
To ignore all timing constraints for a signal:

NET Signal_Name TIG;

To ignore an entire timing constraint:

TIG=TIMESPEC_Name;

In the following example, the SLOW_PATH net is set to ignore the 
timing constraint with the name TS01.

NET SLOW_PATH TIG=TS01;

Controlling Signal Skew
You can control the maximum allowed skew in your designs. The 
maximum skew (MAXSKEW) is the difference between the longest 
and shortest driver-to-load connection delays for a given net. The 
maximum and minimum delays are determined using worst case 
maximum delay values for each path. While this specification cannot 
guarantee that this maximum skew value is achieved in the actual 
device, it allows the software to minimize the amount of skew on the 
specified signal. This specification is useful for high-fanout nets when 
all available global buffers have been used for other critical signals. 
An example of the UCF syntax for this specification follows.

NET Signal_Name MAXSKEW=Skew_Value ;

The following example specifies that the CLOCK_ENABLE signal 
should not have a skew value greater than 4ns.

NET CLOCK_ENABLE MAXSKEW=4;

Timing Constraint Priority
Timing constraints can be assigned priorities when paths are over-
lapped by multiple timing constraints. Priorities can be directly spec-
ified to a timing constraint as follows.

TIMESPEC TIMESPEC_Name = FROM Group1 TO Group2  

Delay_Value PRIORITY Priority_Level;

The lower the priority_level, the higher the precedence.

The following example sets a timespec where the source is a time 
group labeled THESE_FFS and the destination is labeled 
THOSE_FFS, with a delay value of 25ns and a priority level of 2.
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TIMESPEC TS04=FROM:THESE_FFS:TO:THOSE_FFS:25 
PRIORITY 2;

However, timing constraints have an inherent precedence that is 
based on the type of constraint and the site description provided to 
the tools. If two constraints are of the same priority and cover the 
same path, then the last constraint in the constraint file overrides any 
other constraints that overlap.

Inherent timing constraint priority is shown in the following table.

Note: You cannot assign a priority to override inherent timing 
constraint priority. You can set priorities for different timing within 
the same constraint type.

Table 3-1 Precedence of Constraints

Across Constraint Sources

Highest
Priority

Physical Constraint File (PCF)

User Constraint File (UCF)

Lowest
Priority

Input Netlist / Netlist Constraint File (NCF)

Within Constraint Sources

Highest
Priority

TIG (Timing Ignore)

FROM:USER1:THRU:USER_T:TO:USER2 Specification
(USER1 and USER2 are user-defined groups)

FROM:USER1:THRU:USER_T:TO:FFS Specification or
FROM:FFS:THRU:USER_T:TO:USER2 Specification
(FFS is any pre-defined group)

FROM:FFS:THRU:USER_T:TO:FFS Specification

FROM:USER1:TO:USER2 Specification

FROM:USER1:TO:FFS Specification or
FROM:FFS:TO:USER2 Specification

FROM:FFS:TO:FFS specification
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Evaluating Design Size and Performance
Your design should meet the following requirements.

• Design must function at the specified speed

• Design must fit in the targeted device

After your design is compiled, you can determine preliminary device 
utilization and performance with your synthesis tool’s reporting 
options. After your design is mapped by the Xilinx tools, you can 
determine the actual device utilization. At this point in the design 
flow, you should verify that your chosen device is large enough to 
incorporate any future changes or additions, and that your design 
will perform as specified. 

Using your Synthesis Tool to Estimate Device 
Utilization and Performance

Use your synthesis tool’s area and timing reporting options to esti-
mate device utilization and performance. After compiling, use the 
report area command to obtain a report of device resource utilization. 
Some synthesis tools provide area reports automatically. Refer to 
your synthesis tool documentation for correct command syntax.

Note: See the “Report Files” appendix for sample report files from 
various synthesis vendors.

This report lists the compiled cells in your design, as well as informa-
tion on how your design is mapped in the FPGA. These reports are 
generally accurate for the XC4000 and Spartan family because the 
synthesis tool creates the logic from your code and maps your design 
into the FPGA. However, these reports are different for the various 
synthesis tools. Some reports specify the minimum number of CLBs 
required, while other reports specify the “unpacked” number of 
CLBs to make an allowance for routing. For an accurate comparison, 
you should compare reports from the Xilinx place and route tool after 
implementation. Also, any instantiated components, such as Logi-

Period specification

Lowest
Priority

“Allpaths” type constraints

Table 3-1 Precedence of Constraints
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BLOX modules, EDIF files, XNF files, or other components that your 
synthesis tool does not recognize during compilation are not 
included in the report file. If you include these components in your 
design, you must include the logic area used by these components 
when estimating design size. Also, sections of your design may get 
trimmed during the mapping process, and may result in a smaller 
design.

Using the Timing Report Command

Use your synthesis tool’s timing report command to obtain a report 
with estimated data path delays. Refer to your synthesis vendor’s 
documentation for command syntax.

Note: See the “Report Files” appendix for sample report files from 
various synthesis vendors.

This report is based on the logic level delays from the cell libraries 
and estimated wire-load models for your design. This report is an 
estimate of how close you are to your timing goals; however, it is not 
the actual timing for your design. An accurate report of your design’s 
timing is only available after your design is placed and routed. This 
timing report does not include information on any instantiated 
components, such as LogiBLOX modules, EDIF files, XNF files, or 
other components that are not recognized by your synthesis tool 
during compilation.

Determining Actual Device Utilization and Pre-routed 
Performance 

To determine if your design fits the specified device, you must map it 
with the Xilinx Map program. The generated report file 
design_name.mrp contains the implemented device utilization infor-
mation. You can run the Map program from the Design Manager or 
from the command line.

Using the Design Manager to Map Your Design

Use the following steps to map your design using the Design 
Manager.

Note: For more information on using the Design Manager, see the 
Design Manager/Flow Engine Reference/User Guide.
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1. To start the Design Manager, enter the following command.

xilinx

2. To create a new project, select the XNF or EDIF file generated by 
your synthesis tool as your input file from the File → New 
Project menu command.

3. To start design implementation, click the Implement toolbar 
button or select Design → Implement.

The Implement dialog box appears.

4. If necessary, select a part in the dialog box.

5. Select the Options button in the Implement dialog box.

The Options dialog box appears. 

6. Select the Produce Logic Level Timing Report option. 

This option creates a timing report prior to place and route, but 
after map, as described in the following five steps.

7. Select the Edit Template button next to the Implementation drop-
down list.

The Implementation Template dialog box appears.

8. Select the Timing tab. 

9. Select the Produce Logic Level Timing Report radio button.

10. Select the type of report you want to create. 

The default is Report Paths in Timing Constraints. 

11. Use the Implementation Template dialog box tabs (Optimize & 
Map, Place & Route, or Interface) to select any other options 
applicable to your design. Select OK to exit the Implementation 
Template dialog box.

Note: Xilinx recommends using the default Map options for your 
designs. Also, do not use the guided map option with your synthe-
sized designs.

12. Select Run in the Implement dialog box to begin implementing 
your design. 
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13. When the Flow Engine is displayed, stop the processing of your 
design after mapping by selecting Setup → Stop After or by 
selecting the Set Target toolbar button.

The Stop After dialog box appears.

14. Select Map and select OK.

15. After the Flow Engine is finished mapping your design, select 
Utilities → Report Browser to view the map report. 
Double-click the report icon that you want to view. The map 
report includes a Design Summary section that contains the 
device utilization information.

16. View the Logic Level Timing Report with the Report Browser. 
This report shows the performance of your design based on logic 
levels and best-case routing delays.

17. At this point, you may want to start the Timing Analyzer from 
the Design Manager to create a more specific report of design 
paths.

18. Use the Logic Level Timing Report and any reports generated 
with the Timing Analyzer or the Map program to evaluate how 
close you are to your performance and utilization goals. Use 
these reports to decide whether to proceed to the place and route 
phase of implementation, or to go back and modify your design 
or implementation options to attain your performance goals. You 
should have some slack in routing delays to allow the place and 
route tools to successfully complete your design. Use the verbose 
option in the Timing Analyzer to see block-by-block delay. The 
timing report of a mapped design (before place and route) shows 
block delays, as well as estimated routing delays.

Using the Command Line to Map Your Design

1. Translate your design as follows.

ngdbuild -p target_device design_name.xnf

2. Map your design as follows.

map design_name.ngd

3. Use a text editor to view the Device Summary section of the 
design_name.mrp map report. This section contains the device 
utilization information.
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4. Run a timing analysis of the logic level delays from your mapped 
design as follows.

trce [options] design_name.ngd

Note: For available options, enter only the trce command at the 
command line without any arguments.

Use the Trace reports to evaluate how close you are to your 
performance goals. Use the report to decide whether to proceed 
to the place and route phase of implementation, or to go back and 
modify your design or implementation options to attain your 
performance goals. You should have some slack in routing delays 
to allow the place and route tools to successfully complete your 
design.

The following is the Device Summary section of a Map report.

Design Summary
--------------
   Number of errors:        0
   Number of warnings:      3
   Number of CLBs:             39 out of   100   39%
      CLB Flip Flops:      32
      4 input LUTs:        66
      3 input LUTs:         5
   Number of bonded IOBs:      30 out of    61   49%
      IOB Flops:            0
      IOB Latches:          0
   Number of secondary CLKs:    1 out of     4   25%
   Number of oscillators:       1
   Number of STARTUPs:          1
   Number of READCLKs:          1
   Number of READBACKs:         1
   Number of MD0 pads:          1
   Number of MD1 pads:          1
Total equivalent gate count for design: 1538
Additional JTAG gate count for IOBs:    1536

The following is a sample Logic Level Timing Report.

-------------------------------------------------------------------------
Xilinx TRACE, Version M1.4.12
Copyright (c) 1995-1997 Xilinx, Inc.  All rights reserved.

Design file:              map.ncd
Physical constraint file: demo_board.pcf
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Device,speed:             xc4003e,-2 (x1_0.86  PRELIMINARY)
Report level:             summary report
-------------------------------------------------------------------------

=========================================================================
Timing constraint: NET "FAST_CLOCK" PERIOD =  15.200 nS   HIGH 50.000 % ;
 1 item analyzed, 0 timing errors detected.
 Minimum period is   5.585ns.
-------------------------------------------------------------------------

=========================================================================
Timing constraint: NET "control_logic/SLOW_CLOCK" PERIOD =  121.600 nS   
HIGH 50.000 % ;
 677 items analyzed, 0 timing errors detected.
 Minimum period is  17.295ns.
-------------------------------------------------------------------------

All constraints were met.

Timing summary:
---------------

Timing errors: 0  Score: 0

Constraints cover 811 paths, 0 nets, and 232 connections (73.2% coverage)

Design statistics:
   Minimum period:  17.295ns (Maximum frequency:  57.820MHz)

Analysis completed Tue Jan 27 12:07:59 1998
-------------------------------------------------------------------------

Evaluating your Design for Coding Style and 
System Features

At this point, if you are not satisfied with your design performance, 
you can re-evaluate your code and make any necessary improve-
ments. Modifying your code and selecting different compiler options 
can dramatically improve device utilization and speed.
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Tips for Improving Design Performance
This section includes ways of improving design performance by 
modifying your code and by incorporating FPGA system features. 
Most of these techniques are described in more detail in this manual.

Modifying Your Code

You can improve design performance with the following design 
modifications.

• Reduce levels of logic to improve timing

• Redefine hierarchical boundaries to help the compiler optimize 
design logic

• Pipeline

• Logic replication

• Use of LogiBLOX or Coregen modules

• Resource sharing

• Restructure logic

Using FPGA System Features

After correcting any coding style problems, use any of the following 
FPGA system features in your design to improve resource utilization 
and to enhance the speed of critical paths. 

Note: Each device family has a unique set of system features. Review 
the current version of the The Programmable Logic Data Book for the 
system features available for the device you are targeting.

• Use global set/reset and global tri-state nets to reduce routing 
congestion and improve design performance

• Use clock enables

• Place the highest fanout signals on the global buffers

• Modify large multiplexers to use tri-state buffers

• Use one-hot encoding for large or complex state machines

• Use I/O registers when applicable

• Use I/O decoders when applicable
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• Use I/O multiplexers when applicable

Using Xilinx-specific Features of Your Synthesis Tool

Most synthesis tools have special options for the Xilinx-specific 
features listed in the previous section. Refer to your synthesis tool 
documentation for help on using Xilinx-specific features.

Placing and Routing Your Design
Note: For more information on placing and routing your design, refer 
to the Development System Reference Guide.

The overall goal when placing and routing your design is fast imple-
mentation and high-quality results. However, depending on the situ-
ation and your design, you may not always accomplish this goal, as 
described in the following examples.

• Earlier in the design cycle, run time is generally more important 
than the quality of results, and later in the design cycle, the 
converse is usually true.

• During the day, you may want the tools to quickly process your 
design while you are waiting for the results. However, you may 
be less concerned with a quick run time, and more concerned 
about the quality of results when you run your designs for an 
extended period of time (during the night or weekend).

• If the targeted device is highly utilized, the routing may become 
congested, and your design may be difficult to route. In this case, 
the placer and router may take longer to meet your timing 
requirements.

• If design constraints are rigorous, it may take longer to correctly 
place and route your design, and meet the specified timing. 

Decreasing Implementation Time
The options you select for the placement and routing of your design 
directly influence the run time. Generally, these options decrease the 
run time at the expense of the best placement and routing for a given 
device. Select your options based on your required design perfor-
mance.
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Note: If you are using the command line, the appropriate command 
line option is provided in the following procedure.

Use the following steps to decrease implementation time in the 
Design Manager.

1. Select Design → Implement

The Implement dialog box appears.

2. Select the Options button in the Implement dialog box.

The Options dialog box appears. 

3. Select the Edit Template button next to the Implementation drop-
down list in the Program Options Templates field. The Imple-
mentation Template dialog box appears.

4. Select the Place & Route tab.

5. Set options in this dialog box as follows.

• Place & Route Effort Level

Generally, you can reduce placement times by selecting a less 
CPU-intensive algorithm for placement. You can set the 
placement level from 1 (fastest run time) to 5 (best results) 
with the default equal to 2. Use the –l switch at the command 
line to perform the same function. 

Note: In some cases, poor placement with a lower placement level 
setting can result in longer route times.

• Router Options

You can limit router iterations to reduce routing times. 
However, this may prevent your design from meeting timing 
requirements, or your design may not completely route. 
From the command line, you can control router passes with 
the –i switch.

• Use Timing Constraints During Place and Route

You can improve run times by not specifying some or all 
timing constraints. This is useful at the beginning of the 
design cycle during the initial evaluation of the placed and 
routed circuit. To disable timing constraints in the Design 
Manager, deselect the Use Timing Constraints During Place 
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and Route button. To disable timing constraints at the 
command line, use the –x switch with PAR.

6. Select OK to exit the Implementation Template dialog box.

7. Select any applicable options in the Options dialog box.

8. Select OK.

9. Select Run in the Implement dialog box to begin implementing 
your design. 

Improving Implementation Results
Conversely, you can select options that increase the run time, but 
produce a better design. These options generally produce a faster 
design at the cost of a longer run time. These options are useful when 
you run your designs for an extended period of time (overnight or 
over the weekend).

Multi-Pass Place and Route Option

Use this option to place and route your design with several different 
cost tables (seeds) to find the best possible placement for your design. 
This optimal placement results in shorter routing delays and faster 
designs. This option works well when the router passes are limited 
(with the –i option). After an optimal cost table is selected, use the re-
entrant routing feature to finish the routing of your design. You may 
select this option from the Design menu in the Design Manager, or 
specify this option at the command line with the –n switch.

Turns Engine Option (UNIX only)

This option is a Unix-only feature that works with the Multi-Pass 
Place and Route option to allow parallel processing of placement and 
routing on several Unix machines. The only limitation to how many 
cost tables are concurrently tested is the number of workstations you 
have available. To use this option in the Design Manger, specify a 
node list when selecting the Multi-Pass Place and Route option. To 
use this feature at the command line, use the –m switch to specify a 
node list, and the –n switch to specify the number of place and route 
iterations.

Note: For more information on the turns engine option, refer to the 
Xilinx Development System Reference Guide.
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Re-entrant Routing Option

Use the re-entrant routing option to further route an already routed 
design. The router reroutes some connections to improve the timing 
or to finish routing unrouted nets. You must specify a placed and 
routed design (.ncd) file for the implementation tools. This option is 
best used when router iterations are initially limited, or when your 
design timing goals are close to being achieved.

From the Design Manager

To initiate a re-entrant route from the Design Manager interface, 
follow these steps.

1. From the Design Manager, select the placed and routed design 
revision for the re-entrant option.

2. Select Tools → Flow Engine to start the Flow Engine from the 
Design Manager.

3. From the Flow Engine menu, select Setup → Re-entrant 
Route.

4. In the Advanced dialog box that is displayed, select the Allow 
Re-entrant Routing option.

5. Select the appropriate options in the Re-entrant Route Options 
field.

6. Select OK.

7. The Place and Route icon in the Flow Engine is replaced with the 
Re-entrant Route icon. If this step is completed, use the Step Back 
button until the Re-entrant Route icon no longer indicates 
completed.

8. Select Run to complete the re-entrant routing.

From the Command Line

To initiate a re-entrant route from the command line, you can run 
PAR with the –k and –p options, as well as any other options you 
want to use for the routing process. You must either specify a unique 
name for the post re-entrant routed design (.ncd) file or use the –w 
switch to overwrite the previous design file, as shown in the 
following examples.

par –k –p other_options design_name.ncd new_name.ncd
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par –k –p –w other_options design_name.ncd design.ncd

Cost-Based Clean-up Option

This option specifies clean-up passes after routing is completed to 
substitute more appropriate routing options available from the initial 
routing process. For example, if several local routing resources are 
used to transverse the chip and a longline is available, the longline is 
substituted in the clean-up pass. The default value of cost-based 
cleanup passes is 1. To change the default value, use the Template 
Manager in the Design Manager, or the –c switch at the command 
line. 

Delay-Based Clean-up Option

This option specifies clean-up passes after routing is completed to 
substitute more appropriate routing options to reduce delays. The 
default number of passes for delay-based clean-up is 0. You can 
change the default in the Design Manager in the Implementation 
Options window, or at the command line with the –d switch. 

Guide Option (not recommended)

This option is generally not recommended for synthesis-based 
designs. Re-synthesizing modules can cause the signal and instance 
names in the resulting netlist to be significantly different from those 
in earlier synthesis runs. This can occur even if the source level code 
(Verilog or VHDL) contains only a small change. Because the guide 
process is dependent on the names of signals and comps, synthesis 
designs often result in a low match rate during the guiding process. 
Generally, this option does not improve implementation results.

Timing Simulation of Your Design
Note: Refer to the “Simulating Your Design” chapter for more infor-
mation on design simulation.

Timing simulation is important in verifying the operation of your 
circuit after the worst-case placed and routed delays are calculated 
for your design. In many cases, you can use the same test bench that 
you used for functional simulation to perform a more accurate simu-
lation with less effort. You can compare the results from the two 
simulations to verify that your design is performing as initially speci-
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fied. The Xilinx tools create a VHDL or Verilog simulation netlist of 
your placed and routed design, and provide libraries that work with 
many common HDL simulators.

Downloading to the Device and In-system 
Debugging

After you have verified the functionality and timing of your placed 
and routed design, you can create a design data file to download for 
in-system verification. The design data or bitstream (.bit) file is 
created from the placed and routed .ncd file. In the Design Manager, 
use the Configuration step in the Flow Engine to create this file. From 
the command line, run BitGen on your placed and routed .ncd file to 
create the .bit file as follows.

bitgen [options] design.ncd

Use the .bit file with the XChecker cable and the Hardware Debugger 
to download the data to your device. You can run the Hardware 
Debugger from the Design Manager, or from the command line as 
follows.

hwdebugr design.bit

The Hardware Debugger allows you to download the data to the 
FPGA using your computer’s serial port. The Hardware Debugger 
can also synchronously or asynchronously probe external or internal 
nodes in the FPGA. Waveforms can be created from this data and 
correlated to the simulation data for true in-system verification of 
your design.

Creating a PROM File for Stand-Alone Operation
After verifying that the FPGA works in the circuit, you can create a 
PROM file from the .bit file to program a PROM or other data storage 
device. You can then use this file to program the FPGA in-circuit 
during normal operation.

Use the Prom File Formatter to create the PROM file, or from the 
command line use PROMGen. You can run the Prom File Formatter 
from the Design Manager, or from the command line as follows.

promfmtr design.bit

Run PROMGen from the command line by typing the following.
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promgen [options] design.bit

Note: For more information on using these programs, refer to the 
Xilinx Development System Reference Guide.
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Chapter 4

Designing FPGAs with HDL

This chapter includes coding techniques to help you improve 
synthesis results. It includes the following sections.

• “Introduction”

• “Using Global Low-skew Clock Buffers”

• “Using Dedicated Global Set/Reset Resource”

• “Encoding State Machines”

• “Using Dedicated I/O Decoders”

• “Instantiating LogiBLOX Modules”

• “Implementing Memory”

• “Implementing Boundary Scan (JTAG 1149.1)”

• “Implementing Logic with IOBs”

• “Implementing Multiplexers with Tristate Buffers”

• “Using Pipelining”

• “Design Hierarchy”

Introduction
Xilinx FPGAs provide the benefits of custom CMOS VLSI and allow 
you to avoid the initial cost, time delay, and risk of conventional 
masked gate array devices. In addition to the logic in the CLBs and 
IOBs, the XC4000 family, XC5200 family, and Spartan family FPGAs 
contain system-oriented features such as the following.

• Global low-skew clock or signal distribution network

• Wide edge decoders (XC4000 family only)
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• On-chip RAM and ROM (XC4000 family and Spartan)

• IEEE 1149.1 — compatible boundary scan logic support

• Flexible I/O with Adjustable Slew-rate Control and Pull-up/
Pull-down Resistors

• 12-mA sink current per output and 24-mA sink per output pair

• Dedicated high-speed carry-propagation circuit

You can use these device characteristics to improve resource utiliza-
tion and enhance the speed of critical paths in your HDL designs. The 
examples in this chapter are provided to help you incorporate these 
system features into your HDL designs. 

Using Global Low-skew Clock Buffers
For designs with global signals, use global clock buffers to take 
advantage of the low-skew, high-drive capabilities of the dedicated 
global buffer tree of the target device. When you use the Insert Pads 
or equivalent command, your synthesis tool automatically inserts a 
BUFG generic clock buffer whenever an input signal drives a clock 
signal. The Xilinx implementation software automatically selects the 
clock buffer that is appropriate for your specified design architecture. 
If you want to use a specific global buffer, you must instantiate it. 
Many synthesis tools automatically insert I/O pins and clock buffers. 
Also, some synthesis tools limit I/O and global buffers. Refer to your 
synthesis tool documentation for detailed information.

You can instantiate an architecture-specific buffer if you understand 
the architecture and want to specify how the resources should be 
used. Each XC4000E/L and Spartan device contains four primary and 
four secondary global buffers that share the same routing resources. 
XC4000EX/XLA/XL/XV devices have sixteen global buffers; each 
buffer has its own routing resources. XC5200 devices have four dedi-
cated global buffers in each corner of the device. 

 XC4000 EX/XLA/XL/XV devices have two different types of global 
buffer, Global Low-Skew Buffers (BUFGLS) and Global Early Buffers 
(BUFGE). Global Low-Skew Buffers are standard global buffers that 
should be used for most internal clocking or high fanout signals that 
must drive a large portion of the device. There are eight BUFGLS 
buffers available, two in each corner of the device. The Global Early 
Buffers are designed to provide faster clock access, but CLB access is 
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limited to one quadrant of the device. I/O access is also limited. Simi-
larly, there are eight BUFGEs, two in each corner of the device.

Because Global Early and Global Low-Skew Buffers share a single 
pad, a single IPAD can drive a BUFGE, BUFGLS, or both in parallel. 
The parallel configuration is especially useful for clocking the fast 
capture latches of the device. Since the Global Early and Global Low-
Skew Buffers share a common input, they cannot be driven by two 
different signals.

You can use the following criteria to help select the appropriate 
global buffer for a given design path.

• The simplest option is to use a Global Low-Skew Buffer.

• If you want a faster clock path, use a BUFG. Initially, the software 
will try to use a Global Low-Skew Buffer. If timing requirements 
are not met, a BUFGE is automatically used if possible.

• If a single quadrant of the chip is sufficient for the clocked logic, 
and timing requires a faster clock than the Global Low-Skew 
Buffer, use a Global Early Buffer.

Note: For more information on using the XC4000 EX/XLA/XL/XV 
device family global buffers, refer to the online version of The 
Programmable Logic Data Book or the Xilinx web site at http://
www.xilinx.com.

For XC4000E/L and Spartan devices, you can use secondary global 
buffers (BUFGS) to buffer high-fanout, low-skew signals that are 
sourced from inside the FPGA. To access the secondary global clock 
buffer for an internal signal, instantiate the BUFGS cell. You can use 
primary global buffers (BUFGP) to distribute signals applied to the 
FPGA from an external source. Internal signals can be globally 
distributed with a primary global buffer, however, the signals must 
be driven by an external pin.

Some synthesis tools limit I/O or BUFG resources. For example, 
BUFG does not synthesize to more than eight instances depending on 
the selected device architecture. However, some tools do not use all 
your available resources. Compiling modules separately may also 
result in resource over-utilization. Check with your synthesis vendor. 

XC4000E/L and Spartan devices have four primary (BUFGP) and 
four secondary (BUFGS) global clock buffers that share four global 
routing lines, as shown in the following figure.
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Figure 4-1 Global Buffer Routing Resources (XC4000E, 
Spartan)

These global routing resources are only available for the eight global 
buffers. The eight global nets run horizontally across the middle of 
the device and can be connected to one of the four vertical longlines 
that distribute signals to the CLBs in a column. Because of this 
arrangement only four of the eight global signals are available to the 
CLBs in a column. These routing resources are “free” resources 
because they are outside of the normal routing channels. Use these 
resources whenever possible. You may want to use the secondary 
buffers first because they have more flexible routing capabilities.

You should use the global buffer routing resources primarily for high-
fanout clocks that require low skew, however, you can use them to 
drive certain CLB pins, as shown in the following figure. In addition, 
you can use these routing resources to drive high-fanout clock 
enables, clear lines, and the clock pins (K) of CLBs and IOBs.

In the following figure, the C pins drive the input to the H function 
generator, Direct Data-in, Preset, Clear, or Clock Enable pins. The F 
and G pins are the inputs to the F and G function generators, respec-
tively.
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Figure 4-2 Global Longlines Resource CLB Connections

If your design does not contain four high-fanout clocks, use these 
routing resources for signals with the next highest fanout. To reduce 
routing congestion, use the global buffers to route high-fanout 
signals. These high-fanout signals include clock enables and reset 
signals (not global reset signals). Use global buffer routing resources 
to reduce routing congestion; enable routing of an otherwise 
unroutable design; and ensure that routing resources are available for 
critical nets.

Xilinx recommends that you assign up to four secondary global clock 
buffers to the four signals in your design with the highest fanout 
(such as clock nets, clock enables, and reset signals). Clock signals 
that require low skew have priority over low-fanout non-clock 
signals. You can source the signals with an input buffer or a gate 
internal to the design. Generate internally sourced clock signals with 
a register to avoid unwanted glitches. The synthesis tool can insert 
global clock buffers or you can instantiate them in your HDL code.

Note: Use Global Set/Reset resources when applicable. Refer to the 
“Using Dedicated Global Set/Reset Resource” section in this chapter 
for more information.
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Inserting Clock Buffers
Many synthesis tools automatically insert a secondary global clock 
buffer on all input ports that drive a register’s clock pin or a gated 
clock signal. Refer to your synthesis tool documentation for informa-
tion on disabling the automatic insertion of clock buffers, and how to 
specify which ports have clock buffers.

Instantiating Global Clock Buffers
You can instantiate global buffers in your code as described in this 
section.

Instantiating Buffers Driven from a Port

You can instantiate global buffers and connect them to high-fanout 
ports in your code rather than inferring them from a synthesis tool 
script. If you do instantiate global buffers, verify that the Pad param-
eter is not specified for the buffer.

Instantiating Buffers Driven from Internal Logic

Some synthesis tools require you to instantiate a global buffer in your 
code to use the dedicated routing resource if a high-fanout signal is 
sourced from internal flip-flops or logic (such as a clock divider or 
multiplexed clock), or if a clock is driven from the internal oscillator 
or non-dedicated I/O pin. The following VHDL and Verilog exam-
ples instantiate a BUFGS for an internal multiplexed clock circuit. A 
Set Dont Touch or equivalent attribute is added to the instantiated 
component to prevent further optimization by the synthesizer.
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• VHDL Example

-----------------------------------------------
-- CLOCK_MUX.VHD Version 1.1                 --
-- This is an example of an instantiation of --
-- global buffer (BUFGS) from an internally  --
-- driven signal, a multiplexed clock.       --
-- March 1998                                --
-----------------------------------------------

library IEEE;
use IEEE.std_logic_1164.all;

entity clock_mux is
    port (DATA, SEL:              in  STD_LOGIC;
          SLOW_CLOCK, FAST_CLOCK: in  STD_LOGIC;
          DOUT:                   out STD_LOGIC);
end clock_mux;

architecture XILINX of clock_mux is

signal CLOCK:      STD_LOGIC;
signal CLOCK_GBUF: STD_LOGIC;

component BUFGS 
    port (I: in  STD_LOGIC; 
          O: out STD_LOGIC);
end component;

begin

Clock_MUX: process (SEL, FAST_CLOCK, SLOW_CLOCK)
    begin
        if (SEL = ’1’) then
                CLOCK <= FAST_CLOCK;
        else
            CLOCK <= SLOW_CLOCK;
        end if;
    end process;

GBUF_FOR_MUX_CLOCK: BUFGS 
    port map (I => CLOCK, 
              O => CLOCK_GBUF);

Data_Path: process (CLOCK_GBUF)
    begin
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        if (CLOCK_GBUF’event and CLOCK_GBUF=’1’) then
            DOUT <= DATA;
        end if;
    end process;

end XILINX;

• Verilog Example

      ///////////////////////////////////////////////
     // CLOCK_MUX.V Version 1.1                   //
    // This is an example of an instantiation of //
   // global buffer (BUFGS) from an internally  //
  // driven signal, a multipled clock.         //
 // March 1998                                //
///////////////////////////////////////////////

module clock_mux (DATA, SEL, SLOW_CLOCK, FAST_CLOCK,
                  DOUT);

    input  DATA, SEL;
    input  SLOW_CLOCK, FAST_CLOCK;
    output DOUT;

    reg   CLOCK;
    wire   CLOCK_GBUF;
    reg    DOUT;

    always @ (SEL or FAST_CLOCK or SLOW_CLOCK)
    begin
        if (SEL == 1’b1)
            CLOCK <= FAST_CLOCK;
        else
            CLOCK <= SLOW_CLOCK;
    end

    BUFGS GBUF_FOR_MUX_CLOCK (.O(CLOCK_GBUF),
                              .I(CLOCK));

    always @ (posedge CLOCK_GBUF)
        DOUT = DATA;

endmodule
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Using Dedicated Global Set/Reset Resource
XC4000 and Spartan devices have a dedicated Global Set/Reset 
(GSR) net that you can use to initialize all CLBs and IOBs. When the 
GSR is asserted, every flip-flop in the FPGA is simultaneously preset 
or cleared. You can access the GSR net from the GSR pin on the 
STARTUP block or the GSRIN pin of the STARTBUF (VHDL).

Since the GSR net has dedicated routing resources that connect to the 
Preset or Clear pin of the flip-flops, you do not need to use general 
purpose routing or global buffer resources to connect to these pins. If 
your design has a Preset or Clear signal that affects every flip-flop in 
your design, use the GSR net to increase design performance and 
reduce routing congestion.

The XC5200 family has a dedicated Global Reset (GR) net that resets 
all device registers. As in the XC4000 and Spartan devices, the 
STARTUP or STARTBUF (VHDL) block must be instantiated in your 
code in order to access this resource. The XC3000A devices also have 
dedicated Global Reset (GR) that is connected to a dedicated device 
pin (see device pinout). Since this resource is always active, you do 
not need to do anything to activate this feature.

For XC4000, Spartan, and XC5200 devices, the Global Set/Reset (GSR 
or GR) signal is, by default, set to active high (globally resets device 
when logic equals 1). If you are using an older version of a synthesis 
tool, for an active low reset, instantiate an inverter in your code to 
invert the global reset signal. The inverter is absorbed by the 
STARTUP block and does not use any device resources (function 
generators). For older versions of synthesis tools, although the 
inverted signal may be behaviorally described in your code, Xilinx 
recommends instantiating the inverter to prevent the mapping of the 
inverter into a CLB function generator, and subsequent delays to the 
reset signal and unnecessary use of device resources. Also make sure 
you put a Don’t Touch attribute on the instantiated inverter before 
compiling your design. If you do not add this attribute, the inverter 
may get mapped into a CLB function generator. Most new synthesis 
tools automatically insert the STARTUP block and the previous steps 
are not required.

Note: For more information on simulating the Global Set/Reset, see 
the “Simulating Your Design” chapter.
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Startup State
Note: See the “Simulating Your Design” chapter for more informa-
tion on STARTUP and STARTBUF.

The GSR pin on the STARTUP block or the GSRIN pin on the 
STARTBUF block drives the GSR net and connects to each flip-flop’s 
Preset and Clear pin. When you connect a signal from a pad to the 
STARTUP block’s GSR pin, the GSR net is activated. Because the GSR 
net is built into the silicon it does not appear in the pre-routed netlist 
file. When the GSR signal is asserted High (the default), all flip-flops 
and latches are set to the state they were in at the end of configura-
tion. When you simulate the routed design, the gate simulator trans-
lation program correctly models the GSR function.

Note: For the XC3000 family and the XC5200 family, all flip-flops and 
latches are reset to zero after configuration.

Preset vs. Clear (XC4000, Spartan)
The XC4000 family flip-flops are configured as either preset (asyn-
chronous set) or clear (asynchronous reset). Automatic assertion of 
the GSR net presets or clears each flip-flop. You can assert the GSR 
pin at any time to produce this global effect. You can also preset or 
clear individual flip-flops with the flip-flop’s dedicated Preset or 
Clear pin. When a Preset or Clear pin on a flip-flop is connected to an 
active signal, the state of that signal controls the startup state of the 
flip-flop. For example, if you connect an active signal to the Preset 
pin, the flip-flop starts up in the preset state. If you do not connect the 
Clear or Preset pin, the default startup state is a clear state. To change 
the default to preset, assign an INIT=S attribute to the flip-flop.

I/O flip-flops and latches do not have individual Preset or Clear pins. 
The default value of these flip-flops and latches is clear. To change the 
default value to preset, assign an INIT=S attribute.

Refer to your synthesis tool documentation for information on 
changing the initial state of registers that do not use the Preset or 
Clear pins.

Increasing Performance with the GSR/GR Net
Many designs contain a net that initializes most of the flip-flops in the 
design. If this signal can initialize all the flip-flops, you can use the 
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GSR/GR net. You should always include a net that initializes your 
design to a known state.

To ensure that your HDL simulation results at the RTL level match 
the synthesis results, write your code so that every flip-flop and latch 
is preset or cleared when the GSR signal is asserted. The synthesis 
tool cannot infer the GSR/GR net from HDL code. To utilize the GSR 
net, you must instantiate the STARTUP or STARTBUF block (VHDL), 
as shown in the “No_GSR Implemented with Gates” figure. 

Design Example without Dedicated GSR/GR 
Resource

In the following VHDL and Verilog designs, the RESET signal initial-
izes all the registers in the design; however, it does not use the dedi-
cated global resources. The RESET signal is routed using regular 
routing resources. These designs include two 4-bit counters. One 
counter counts up and is reset to all zeros on assertion of RESET and 
the other counter counts down and is reset to all ones on assertion of 
RESET. The “No_GSR Implemented with Gates” figure shows the 
No_GSR design implemented with gates.

• No GSR VHDL Example

-- NO_GSR Example
-- The signal RESET initializes all registers 
-- May 1997

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all

entity no_gsr is
port (CLOCK: in STD_LOGIC;
      RESET: in STD_LOGIC;
      UPCNT: out STD_LOGIC_VECTOR (3 downto 0);
      DNCNT: out STD_LOGIC_VECTOR (3 downto 0));
end no_gsr;

architecture SIMPLE of no_gsr is

signal UP_CNT: STD_LOGIC_VECTOR (3 downto 0);
signal DN_CNT: STD_LOGIC_VECTOR (3 downto 0);

begin
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    UP_COUNTER: process (CLOCK, RESET)
    begin
        if (RESET = ’1’) then
            UP_CNT <= "0000";
        elsif (CLOCK’event and CLOCK = ’1’) then
            UP_CNT <= UP_CNT + 1;
        end if;
    end process;

    DN_COUNTER: process (CLOCK, RESET)
    begin
        if (RESET = ’1’) then
            DN_CNT <= "1111";
        elsif (CLOCK’event and CLOCK = ’1’) then
            DN_CNT <= DN_CNT - 1; 
        end if;
    end process;
   
    UPCNT <= UP_CNT;
    DNCNT <= DN_CNT;

end SIMPLE;

• No GR VHDL   Example 

-- NO_GR.VHD Example
-- The signal RESET initializes all registers 
-- Without the use of the dedicated Global Reset
-- routing
-- December 1997

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity no_gr is
port (CLOCK: in STD_LOGIC;
      RESET: in STD_LOGIC;
      UPCNT: out STD_LOGIC_VECTOR (3 downto 0);
      DNCNT: out STD_LOGIC_VECTOR (3 downto 0));
end no_gr;

architecture XILINX of no_gr is

signal UP_CNT: STD_LOGIC_VECTOR (3 downto 0);
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signal DN_CNT: STD_LOGIC_VECTOR (3 downto 0);

begin
    UP_COUNTER: process (CLOCK, RESET)
    begin
        if (RESET = ’1’) then
            UP_CNT <= "0000";
        elsif (CLOCK’event and CLOCK = ’1’) then
            UP_CNT <= UP_CNT + 1;
        end if;
    end process;

    DN_COUNTER: process (CLOCK, RESET)
    begin
        if (RESET = ’1’) then
            DN_CNT <= "1111";
        elsif (CLOCK’event and CLOCK = ’1’) then
            DN_CNT <= DN_CNT - 1; 
        end if;
    end process;
   
    UPCNT <= UP_CNT;
    DNCNT <= DN_CNT;
      
end XILINX;

• No GSR Verilog  Example

/* NO_GSR Example
 * The signal RESET initializes all registers
 * December 1997 */

module no_gsr ( CLOCK, RESET, UPCNT, DNCNT);

input CLOCK, RESET;
output [3:0] UPCNT;
output [3:0] DNCNT;

reg [3:0] UPCNT;
reg [3:0] DNCNT;

always @ (posedge CLOCK or posedge RESET) begin
    if (RESET) begin
        UPCNT = 4’b0000;
        DNCNT = 4’b1111;
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    end else begin 
        UPCNT = UPCNT + 1’b1;
        DNCNT = DNCNT - 1’b1;
    end
end
endmodule

• No GR Verilog  Example

/* NO_GR.V Example
 * The signal RESET initializes all registers
 * Aug 1997 */

module no_gr ( CLOCK, RESET, UPCNT, DNCNT);

input CLOCK, RESET;
output [3:0] UPCNT;
output [3:0] DNCNT;

reg [3:0] UPCNT;
reg [3:0] DNCNT;

always @ (posedge CLOCK or posedge RESET) begin
    if (RESET) begin
        UPCNT = 4’b0000;
        DNCNT = 4’b1111;
    end else begin 
        UPCNT = UPCNT + 1’b1;
        DNCNT = DNCNT - 1’b1;
    end
end

endmodule
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Figure 4-3 No_GSR Implemented with Gates
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Design Example with Dedicated GSR/GR Resource

To reduce routing congestion and improve the overall performance of 
the reset net in the No_GSR and No_GR designs, use the dedicated 
GSR or GR net instead of the general purpose routing. Instantiate the 
STARTUP, STARTBUF, ROC, or TOC block in your design and use the 
GSR or GR pin on the STARTUP block (or the GSRIN pin on the 
STARTBUF block) to access the global reset net. This is not necessary 
with many synthesis tools. If you fully define the behavior of the GSR 
or GR net, the tool infers a STARTUP block. The modified designs 
(Use_GSR and Use_GR) are included at the end of this section. The 
Use_GSR design implemented with gates is shown in the 
“Active_Low_GSR Implemented with Gates” figure.

In XC4000 and Spartan designs, on assertion of the GSR net, flip-flops 
return to a clear (or Low) state by default. You can override this 
default by describing an asynchronous preset in your code, or by 
adding the INIT=”1” or equivalent attribute to the flip-flop 
(described later in this section).

In XC5200 family designs, the GR resets all flip-flops in the device to 
a logic zero. If a flip-flop is described as asynchronous preset to a 
logic 1, the synthesis tool automatically infers a flip-flop with a 
synchronous preset, and the Xilinx software puts an inverter on the 
input and output of the device to simulate a preset.

The Use_GSR and Use_GR designs explicitly state that the down-
counter resets to all ones, therefore, asserting the reset net causes this 
counter to reset to a default of all zeros. You can use one of the 
following two methods to prevent this reset to zeros.

• Remove the comment characters from the last few lines of code in 
the Use_GSR or Use_GR design. These lines of code correctly 
describe the behavior of the design (in response to the assertion 
of reset). However, when you synthesize the design, the Preset 
pins on the flip-flops that form the down-counter are used and 
the Clear pins on the flip-flops that form the up-counter are used. 
Using these pins defeats the purpose of using the GSR or GR net. 

• Attach the INIT = “1” or equivalent attribute to the down-counter 
flip-flops.

The synthesizer may do this if necessary depending on your 
code’s initialization state when the reset is applied. Refer to your 
synthesis tool documentation for more information on assigning 
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attributes. This command allows you to override the default clear 
(or Low) state when your code does not specify a preset condi-
tion. However, because attributes are assigned outside the HDL 
code, the code no longer accurately represents the behavior of the 
design. 

Xilinx recommends removing the comment characters from the last 
few lines of the Use_GSR or Use_GR code when you perform an RTL 
simulation and attaching the INIT=S attribute to the relevant flip-
flops when you synthesize the design.

The STARTUP or STARTBUF block must not be optimized during the 
synthesis process. Add the appropriate attribute to prevent optimiza-
tion before compiling your design.

• Use GSR VHDL Example (XC4000 family)

-- USE_GSR.VHD Example
-- The signal RESET is connected to the 
-- GSRIN pin of the STARTBUF block
-- May 1997

library IEEE;
library UNISIM;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use UNISIM.all;

entity use_gsr is
port ( CLOCK: in STD_LOGIC;
       RESET: in STD_LOGIC;
       UPCNT: out STD_LOGIC_VECTOR (3 downto 0);
       DNCNT: out STD_LOGIC_VECTOR (3 downto 0));
end use_gsr;

architecture XILINX of use_gsr is

component STARTBUF 
    port (GSRIN: in STD_LOGIC);
          GSROUT: out STD_LOGIC);
end component;

signal RESET_INT: STD_LOGIC;
signal UP_CNT: STD_LOGIC_VECTOR (3 downto 0);
signal DN_CNT: STD_LOGIC_VECTOR (3 downto 0);
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begin

    U1: STARTBUF port map(GSRIN=>RESET,
                          GSROUT=>RESET_INT);

    UP_COUNTER: process(CLOCK, RESET_INT)
    begin
        if (RESET_INT = ’1’) then
            UP_CNT <= "0000";
        elsif CLOCK’event and CLOCK = ’1’) then
            UP_CNT <= UP_CNT - 1;
        end if;
    end process;

    DN_COUNTER: (CLOCK, RESET_INT) 
    begin
        if (RESET_INT = ’1’) then
            DN_CNT <= "1111";
        elsif CLOCK’event and CLOCK = ’1’) then
            DN_CNT <= DN_CNT - 1;
        end if;
    end process;

    UPCNT <= UP_CNT;
    DNCNT <= DN_CNT;

end XILINX;

• Use GR VHDL Example

------------------------------------------------
-- USE_GR.VHD Version 1.0                     --
-- Xilinx HDL Synthesis Design Guide          --
-- The signal RESET initializes all registers --
-- Using the global reset resources since     --
-- STARTBUF block was added                   --
-- December 1997                              --
------------------------------------------------

library IEEE;
library UNISIM;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use UNISIM.all;
4-18 Xilinx Development System



Designing FPGAs with HDL
entity use_gr is
port ( CLOCK: in STD_LOGIC;
       RESET: in STD_LOGIC;
       UPCNT: out STD_LOGIC_VECTOR (3 downto 0);
       DNCNT: out STD_LOGIC_VECTOR (3 downto 0));
end use_gr;

architecture XILINX of use_gr is

component STARTBUF
    port (GSRIN:  in  STD_LOGIC;
          GSROUT: out STD_LOGIC);
end component;

signal RESET_INT: STD_LOGIC;
signal UP_CNT:    STD_LOGIC_VECTOR (3 downto 0);
signal DN_CNT:    STD_LOGIC_VECTOR (3 downto 0);

begin

    U1: STARTBUF port map(GSRIN=>RESET,
                          GSROUT=>RESET_INT);

    UP_COUNTER: process(CLOCK, RESET_INT)
    begin
        if (RESET_INT = ’1’) then
            UP_CNT <= "0000";
        elsif (CLOCK’event and CLOCK = ’1’) then
            UP_CNT <= UP_CNT + 1;
        end if;
    end process;
 
    DN_COUNTER: process(CLOCK, RESET_INT) 
    begin
        if (RESET_INT = ’1’) then
            DN_CNT <= "1111";
        elsif (CLOCK’event and CLOCK = ’1’) then
            DN_CNT <= DN_CNT - 1;
        end if;
    end process;
 
    UPCNT <= UP_CNT;
    DNCNT <= DN_CNT;
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end XILINX;

• Use GSR Verilog Example

      ///////////////////////////////////////////////
     // USE_GSR.V Version 1.0                      //
   // The signal RESET initializes all registers  //
  // Using the global reset resources (STARTUP)  //
 // December 1997                               //
////////////////////////////////////////////////

module use_gsr ( CLOCK, RESET, UPCNT, DNCNT);

input CLOCK, RESET;
output [3:0] UPCNT;
output [3:0] DNCNT;

reg [3:0] UPCNT;
reg [3:0] DNCNT;

STARTUP U1 (.GSR(RESET));

always @ (posedge CLOCK or posedge RESET) begin
    if (RESET) begin
        UPCNT = 4’b0000;
        DNCNT = 4’b1111;
    end else begin
        UPCNT = UPCNT + 1’b1;
        DNCNT = DNCNT - 1’b1;
    end
end

endmodule

• Use GR Verilog Example

       ///////////////////////////////////////////////
      // USE_GR.V Version 1.0                      //
    // The signal RESET initializes all registers //
   // Using the global reset resources since     //
  // STARTUP block instantiation was added      //
 // December 1997                              //
////////////////////////////////////////////////

module use_gr ( CLOCK, RESET, UPCNT, DNCNT);
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input CLOCK, RESET;
output [3:0] UPCNT;
output [3:0] DNCNT;

reg [3:0] UPCNT;
reg [3:0] DNCNT;

STARTUP U1 (.GR(RESET));

always @ (posedge CLOCK or posedge RESET) begin
    if (RESET) begin
        UPCNT = 4’b0000;
        DNCNT = 4’b1111;
    end else begin
        UPCNT = UPCNT + 1’b1;
        DNCNT = DNCNT - 1’b1;
    end
end

endmodule
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Figure 4-4 Active_Low_GSR Implemented with Gates
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Design Example with Active Low GSR/GR Signal

The Active_Low_GSR design is identical to the Use_GSR design 
except an INV is instantiated and connected between the RESET port 
and the STARTUP block. Also, a Set Don’t Touch (or equivalent) 
attribute is added to the synthesis tool script for both the INV and 
STARTUP, or STARTBUF (VHDL) symbols. By instantiating the 
inverter, the global set/reset signal is now active low (logic level 0 
resets all FPGA flip-flops). The inverter is absorbed into the 
STARTUP block in the device and no CLB resources are used to invert 
the signal. This is not necessary with many synthesis tools. If all regis-
ters and latches are described in the RTL code as reset or set, then a 
GSR or GR is inferred. Some tools also give you the option to select 
any signal as the GSR or GR net. This allows you to correct problems 
if the RTL code does not completely describe the GSR/GR behavior. 
However, the RTL code will not match the place and route behavior 
because not all registers are described as set or reset with the GSR/
GR signal. Some tools provide a report of the inferred registers that 
are missing the GSR/GR behavior, and allow you to change the RTL 
behavior. VHDL and Verilog Active_Low_GSR designs are shown 
following.

• Active Low GSR VHDL Example

----------------------------------------------------
-- ACTIVE_LOW_GSR.VHD Version 1.0                 --
-- The signal RESET is inverted before being      --
-- connected to the GSRIN pin of the STARTBUF     --
-- The inverter will be absorbed by the STARTBUF  --
-- September 1997                                 --
----------------------------------------------------

library IEEE;
library UNISIM;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use UNISIM.all;

entity active_low_gsr is
    port ( CLOCK: in STD_LOGIC;
           RESET: in STD_LOGIC;
           UPCNT: out STD_LOGIC_VECTOR (3 downto 0);
           DNCNT: out STD_LOGIC_VECTOR (3 downto 0));
end active_low_gsr;
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architecture XILINX of active_low_gsr is

    component INV
        port (I: in  STD_LOGIC;
              O: out STD_LOGIC);
    end component;

    component STARTBUF
        port (GSRIN:  in  STD_LOGIC;
              GSROUT: out STD_LOGIC);
    end component;

    signal RESET_NOT:     STD_LOGIC;
    signal RESET_NOT_INT: STD_LOGIC;
    signal UP_CNT:        STD_LOGIC_VECTOR (3 downto 0);
    signal DN_CNT:        STD_LOGIC_VECTOR (3 downto 0);

    begin

    U1: INV port map(I => RESET, O => RESET_NOT);

    U2: STARTBUF port map(GSRIN=>RESET_NOT, 
                          GSROUT=>RESET_NOT_INT);
 
    UP_COUNTER: process(CLOCK, RESET_NOT_INT)
    begin
        if (RESET_NOT_INT = ’1’) then
            UP_CNT <= "0000";
        elsif (CLOCK’event and CLOCK = ’1’) then
            UP_CNT <= UP_CNT + 1;
        end if;
    end process;
 
    DN_COUNTER: process(CLOCK, RESET_NOT_INT) 
    begin
        if (RESET_NOT_INT = ’1’) then
            DN_CNT <= "1111";
        elsif (CLOCK’event and CLOCK = ’1’) then
            DN_CNT <= DN_CNT - 1;
        end if;
    end process;
 
    UPCNT <= UP_CNT;
    DNCNT <= DN_CNT;
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end XILINX;

• Active Low GSR Verilog Example

/////////////////////////////////////////////////////
// ACTIVE_LOW_GSR.V Version 1.0                      //
// The signal RESET is inverted before being        //
// connected to the GSR pin of the STARTUP bloc    //
// The inverter will be absorbed by STARTUP in M1 //
// September 1997                                //
//////////////////////////////////////////////////

module active_low_gsr ( CLOCK, RESET, UPCNT, DNCNT);

   input        CLOCK, RESET;
   output [3:0] UPCNT;
   output [3:0] DNCNT;

   wire       RESET_NOT;
   reg  [3:0] UPCNT;
   reg  [3:0] DNCNT;

   INV U1 (.O(RESET_NOT), .I(RESET));

   STARTUP U2 (.GSR(RESET_NOT));

   always @ (posedge CLOCK or posedge RESET_NOT) 
   begin
      if (RESET_NOT) 
      begin
         UPCNT = 4’b0000;
         DNCNT = 4’b1111;
      end 
      else 
      begin
         UPCNT = UPCNT + 1’b1;
         DNCNT = DNCNT - 1’b1;
      end
   end

endmodule
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Encoding State Machines 
The traditional methods used to generate state machine logic result in 
highly-encoded states. State machines with highly-encoded state 
variables typically have a minimum number of flip-flops and wide 
combinatorial functions. These characteristics are acceptable for PAL 
and gate array architectures. However, because FPGAs have many 
flip-flops and narrow function generators, highly-encoded state vari-
ables can result in inefficient implementation in terms of speed and 
density.

One-hot encoding allows you to create state machine implementa-
tions that are more efficient for FPGA architectures. You can create 
state machines with one flip-flop per state and decreased width of 
combinatorial logic. One-hot encoding is usually the preferred 
method for large FPGA-based state machine implementation. For 
small state machines (fewer than 8 states), binary encoding may be 
more efficient. To improve design performance, you can divide large 
(greater than 32 states) state machines into several small state 
machines and use the appropriate encoding style for each.

Three design examples are provided in this section to illustrate the 
three coding methods (binary, enumerated type, and one-hot) you 
can use to create state machines. All three examples contain the same 
Case statement. To conserve space, the complete Case statement is 
only included in the binary encoded state machine example; refer to 
this example when reviewing the enumerated type and one-hot 
examples. 

Some synthesis tools allow you to add an attribute, such as 
type_encoding_style, to your VHDL code to set the encoding style. 
This is a synthesis vendor attribute (not a Xilinx attribute). Refer to 
your synthesis tool documentation for information on attribute-
driven state machine synthesis.

Note: The bold text in each of the three examples indicates the 
portion of the code that varies depending on the method used to 
encode the state machine.

Using Binary Encoding
The state machine bubble diagram in the following figure shows the 
operation of a seven-state machine that reacts to inputs A through E 
as well as previous-state conditions. The binary encoded method of 
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coding this state machine is shown in the VHDL and Verilog exam-
ples that follow. These design examples show you how to take a 
design that has been previously encoded (for example, binary 
encoded) and synthesize it to the appropriate decoding logic and 
registers. These designs use three flip-flops to implement seven 
states.

Figure 4-5 State Machine Bubble Diagram

Binary Encoded State Machine VHDL Example

-------------------------------------------------
-- BINARY.VHD Version 1.0                      --
-- Example of a binary encoded state machine   --
-- May 1997                                    --
-------------------------------------------------
Library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity binary is
    port (CLOCK, RESET : in STD_LOGIC;
          A, B, C, D, E: in BOOLEAN;
          SINGLE, MULTI, CONTIG: out STD_LOGIC);
end binary; 
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architecture BEHV of binary is

type STATE_TYPE is (S1, S2, S3, S4, S5, S6, S7);
attribute ENUM_ENCODING: STRING;
attribute ENUM_ENCODING of STATE_TYPE:type is "001 010 011 100 101 110 
111";

signal CS, NS: STATE_TYPE;

begin 

    SYNC_PROC: process (CLOCK, RESET)
    begin
        if (RESET=’1’) then
           CS <= S1;
        elsif (CLOCK’event and CLOCK = ’1’) then
           CS <= NS;
        end if;
    end process; --End REG_PROC

    COMB_PROC: process (CS, A, B, C, D, E)
    begin
        case CS is
           when S1 =>
               MULTI  <= ’0’;
               CONTIG <= ’0’;
               SINGLE <= ’0’;
            if (A and not B and C) then
                NS <= S2;
            elsif (A and B and not C) then
                NS <= S4;
            else
                NS <= S1;   
            end if;
           when S2 =>
               MULTI  <= ’1’;
               CONTIG <= ’0’;
               SINGLE <= ’0’;
               if (not D) then
                   NS <= S3;
               else
                   NS <= S4;
               end if;
           when S3 =>
                MULTI  <= ’0’;
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                CONTIG <= ’1’;
                SINGLE <= ’0’;
                if (A or D) then
                   NS <= S4;
                else 
                   NS <= S3;
                end if;
           when S4 =>
                MULTI  <= ’1’;
                CONTIG <= ’1’;
                SINGLE <= ’0’;
                if (A and B and not C) then
                   NS <= S5;
                else 
                   NS <= S4;
                end if;
           when S5 =>
                MULTI  <= ’1’;
                CONTIG <= ’0’;
                SINGLE <= ’0’;
                NS <= S6;
           when S6 =>
                MULTI  <= ’0’;
                CONTIG <= ’1’;
                SINGLE <= ’1’;
                if (not E) then
                    NS <= S7;
                else 
                    NS <= S6;
                end if;
           when S7 =>
                MULTI  <= ’0’;
                CONTIG <= ’1’;
                SINGLE <= ’0’;
                if (E) then
                    NS <= S1;
                else 
                    NS <= S7;
                end if;
        end case;
    end process; -- End COMB_PROC

end BEHV;
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 Binary Encoded State Machine Verilog Example

     /////////////////////////////////////////////////
    // BINARY.V Version 1.0                        //
   // Example of a binary encoded state machine   //
  // May 1997                                    //
 /////////////////////////////////////////////////

module binary (CLOCK, RESET, A, B, C, D, E, 
               SINGLE, MULTI, CONTIG);

input    CLOCK, RESET;
input    A, B, C, D, E;
output   SINGLE, MULTI, CONTIG;

reg      SINGLE, MULTI, CONTIG;

// Declare the symbolic names for states
parameter [2:0]
    S1 = 3’b001,
    S2 = 3’b010,
    S3 = 3’b011,
    S4 = 3’b100,
    S5 = 3’b101,
    S6 = 3’b110,
    S7 = 3’b111;

// Declare current state and next state variables
reg [2:0] CS;
reg [2:0] NS;

// state_vector CS

    always @ (posedge CLOCK or posedge RESET) 
    begin
        if (RESET == 1’b1)
            CS = S1;
        else 
            CS = NS;
    end

    always @ (CS or A or B or C or D or D or E)
    begin 
    case (CS)
            S1 :
            begin
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                MULTI  = 1’b0;
                CONTIG = 1’b0;
                SINGLE = 1’b0;
            if (A && ~B && C) 
                NS = S2;
            else if (A && B && ~C)
                NS = S4;
            else
                NS = S1;   
           end 
           S2 :
           begin
                MULTI  = 1’b1;
                CONTIG = 1’b0;
                SINGLE = 1’b0;
                if (!D) 
                    NS = S3;
                else
                    NS = S4;
           end 
           S3 :
           begin
                MULTI  = 1’b0;
                CONTIG = 1’b1;
                SINGLE = 1’b0;
                if (A || D) 
                    NS = S4;
                else 
                   NS = S3;
           end 
           S4 :
           begin
                MULTI  = 1’b1;
                CONTIG = 1’b1;
                SINGLE = 1’b0;
                if (A && B && ~C)
                    NS = S5;
                else 
                    NS = S4;
           end
           S5 :
           begin
                MULTI  = 1’b1;
                CONTIG = 1’b0;
                SINGLE = 1’b0;
Synthesis and Simulation Design Guide 4-31



Synthesis and Simulation Design Guide
                  NS = S6;
           end
           S6 :
           begin
                MULTI  = 1’b0;                
                CONTIG = 1’b1;
                SINGLE = 1’b1;
                if (!E) 
                    NS = S7;
                else 
                    NS = S6;
           end 
           S7 :
           begin
                MULTI  = 1’b0;
                CONTIG = 1’b1;
                SINGLE = 1’b0;
                if (E) 
                    NS = S1;
                else 
                    NS = S7;
           end 
       endcase
  end 

endmodule

Using Enumerated Type Encoding
The recommended encoding style for state machines depends on 
which synthesis tool you are using. Some synthesis tools encode 
better than others depending on the device architecture and the size 
of the decode logic. You can explicitly declare state vectors or you can 
allow your synthesis tool to determine the vectors. Xilinx recom-
mends that you use enumerated type encoding to specify the states 
and use the Finite State Machine (FSM) extraction commands to 
extract and encode the state machine as well as to perform state mini-
mization and optimization algorithms. The enumerated type method 
of encoding the seven-state machine is shown in the following VHDL 
and Verilog examples. The encoding style is not defined in the code, 
but can be specified later with the FSM extraction commands. Alter-
natively, you can allow your compiler to select the encoding style that 
results in the lowest gate count when the design is synthesized. Some 
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synthesis tools automatically find finite state machines and compile 
without the need for specification.

Note: Refer to the previous VHDL and Verilog Binary Encoded State 
Machine examples for the complete Case statement portion of the 
code.

Enumerated Type Encoded State Machine VHDL 
Example 

Library IEEE;
use IEEE.std_logic_1164.all;
entity enum is
    port (CLOCK, RESET : in STD_LOGIC;
          A, B, C, D, E: in BOOLEAN;
          SINGLE, MULTI, CONTIG: out STD_LOGIC);
end enum; 

architecture BEHV of enum is

type STATE_TYPE is (S1, S2, S3, S4, S5, S6, S7);

signal CS, NS: STATE_TYPE;

begin 
    SYNC_PROC: process (CLOCK, RESET)
    begin
             if (RESET=’1’) then
                 CS <= S1;
             elsif (CLOCK’event and CLOCK = ’1’) then
             CS <= NS;
             end if;
    end process; --End SYNC_PROC

    COMB_PROC: process (CS, A, B, C, D, E)
    begin
            case CS is
            when S1 =>
                       MULTI  <= ’0’;
                       CONTIG <= ’0’;
                       SINGLE <= ’0’;
   .
   .
   .
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Enumerated Type Encoded State Machine Verilog 
Example

/////////////////////////////////////////////////////
//  ENUM.V Version 1.0                              //
//  Example of an enumerated encoded state machine //
//  May 1997                                      //
///////////////////////////////////////////////////

module enum (CLOCK, RESET, A, B, C, D, E, 
              SINGLE, MULTI, CONTIG);

input  CLOCK, RESET;
input  A, B, C, D, E;
output SINGLE, MULTI, CONTIG;

reg    SINGLE, MULTI, CONTIG;

// Declare the symbolic names for states
parameter [2:0]
    S1 = 3’b000,
    S2 = 3’b001,
    S3 = 3’b010,
    S4 = 3’b011,
    S5 = 3’b100,
    S6 = 3’b101,
    S7 = 3’b110;

// Declare current state and next state variables
reg [2:0] CS;
reg [2:0] NS;

// state_vector CS

    always @ (posedge CLOCK or posedge RESET) 
    begin
        if (RESET == 1’b1)
            CS = S1;
        else 
            CS = NS;
    end

    always @ (CS or A or B or C or D or D or E)
    begin 
       case (CS)
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            S1 :
            begin
            MULTI  = 1’b0;
            CONTIG = 1’b0;
            SINGLE = 1’b0;
            if (A && ~B && C) 
                NS = S2;
            else if (A && B && ~C)
                NS = S4;
            else
                NS = S1;   
            end 
   .
   .
   .

Using One-Hot Encoding
One-hot encoding allows you to create state machine implementa-
tions that are more efficient for FPGA architectures. One-hot 
encoding is usually the preferred method for large FPGA-based state 
machine implementation.

The following examples show a one-hot encoded state machine. Use 
this method to control the state vector specification or when you 
want to specify the names of the state registers. These examples use 
one flip-flop for each of the seven states. If you are using FPGA 
Express, use enumerated type, and avoid using the “when others” 
construct in the VHDL case statement. This construct can result in a 
very large state machine.

Note: Refer to the previous VHDL and Verilog Binary Encoded State 
Machine examples for the complete Case statement portion of the 
code. See the “Accelerate FPGA Macros with One-Hot Approach” 
appendix for a detailed description of one-hot encoding and its appli-
cations. 
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One-hot Encoded State Machine VHDL Example

Library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity one_hot is
    port (CLOCK, RESET : in STD_LOGIC;
          A, B, C, D, E: in BOOLEAN;
          SINGLE, MULTI, CONTIG: out STD_LOGIC);
end one_hot; 

architecture BEHV of one_hot is

type STATE_TYPE is (S1, S2, S3, S4, S5, S6, S7);
attribute ENUM_ENCODING: STRING;
attribute ENUM_ENCODING of STATE_TYPE: type is "0000001 0000010 0000100 
0001000 0010000 0100000 1000000 ";

signal CS, NS: STATE_TYPE;

begin 

    SYNC_PROC: process (CLOCK, RESET)
    begin
            if (RESET=’1’) then
                CS <= S1;
            elsif (CLOCK’event and CLOCK = ’1’) then
            CS <= NS;
            end if;
    end process; --End SYNC_PROC

    COMB_PROC: process (CS, A, B, C, D, E)
    begin
            case CS is
            when S1 =>
                      MULTI  <= ’0’;
                      CONTIG <= ’0’;
                      SINGLE <= ’0’;
            if (A and not B and C) then
                    NS <= S2;
            elsif (A and B and not C) then
                     NS <= S4;
            else
                     NS <= S1;   
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            end if;
             .
             .
             .

One-hot Encoded State Machine Verilog Example

 ////////////////////////////////////////////////////
// ONE_HOT.V Version 1.0                          //
// Example of a one-hot encoded state machine    //
// Xilinx HDL Synthesis Design Guide for FPGAs  //
// May 1997                                    //
////////////////////////////////////////////////

module one_hot (CLOCK, RESET, A, B, C, D, E, 
                SINGLE, MULTI, CONTIG);

input   CLOCK, RESET;
input   A, B, C, D, E;
output  SINGLE, MULTI, CONTIG;

reg SINGLE, MULTI, CONTIG;

// Declare the symbolic names for states
parameter [6:0]
    S1 = 7’b0000001,
    S2 = 7’b0000010,
    S3 = 7’b0000100,
    S4 = 7’b0001000,
    S5 = 7’b0010000,
    S6 = 7’b0100000,
    S7 = 7’b1000000;

// Declare current state and next state variables
reg [2:0] CS;
reg [2:0] NS;

// state_vector CS

    always @ (posedge CLOCK or posedge RESET) 
    begin
        if (RESET == 1’b1)
           CS = S1;
        else 
           CS = NS;
    end
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    always @ (CS or A or B or C or D or D or E)
    begin 
        case (CS)
            S1 :
                begin
                MULTI  = 1’b0;
                CONTIG = 1’b0;
                SINGLE = 1’b0;
                if (A && ~B && C) 
                    NS = S2;
                else if (A && B && ~C)
                    NS = S4;
                else
                    NS = S1;   
    end 
             .
             .
             .

Summary of Encoding Styles 
In the three previous examples, the state machine’s possible states are 
defined by an enumeration type. Use the following syntax to define 
an enumeration type.

type type_name is (enumeration_literal {, enumeration_literal} );

After you have defined an enumeration type, declare the signal repre-
senting the states as the enumeration type as follows.

type STATE_TYPE is (S1, S2, S3, S4, S5, S6, S7);

signal CS, NS: STATE_TYPE;

The state machine described in the three previous examples has 
seven states. The possible values of the signals CS (Current_State) 
and NS (Next_State) are S1, S2, ... , S6, S7. 

To select an encoding style for a state machine, specify the state 
vectors. Alternatively, you can specify the encoding style when the 
state machine is compiled. Xilinx recommends that you specify an 
encoding style. If you do not specify a style, your compiler selects a 
style that minimizes the gate count. For the state machine shown in 
the three previous examples, the compiler selected the binary 
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encoded style: S1=“000”, S2=”001”, S3=”010”, S4=”011”, S5=”100”, 
S6=”101”, and S7=”110”. 

You can use the FSM extraction tool to change the encoding style of a 
state machine. For example, use this tool to convert a binary-encoded 
state machine to a one-hot encoded state machine.

Note: Refer to your synthesis tool documentation for instructions on 
how to extract the state machine and change the encoding style.

Comparing Synthesis Results for Encoding Styles
The following table summarizes the synthesis results from the 
different methods used to encode the state machine in the three 
previous VHDL and Verilog state machine examples. The results are 
for an XC4005EPC84-2 device

Note: The Timing Analyzer was used to obtain the timing results in 
this table.

The binary-encoded state machine has the longest ClockToSetup 
delay. Generally, the FSM extraction tool provides the best results 
because the compiler reduces any redundant states and optimizes the 
state machine after the extraction.

Table 4-1 State Machine Encoding Styles Comparison 
(XC4005E-2)

Comparison One-Hot Binary
Enum

(One-hot)

Occupied CLBs 6 9 6

CLB Flip-flops 6 3 7

PadToSetup 9.4 ns (3a) 13.4 ns (4) 9.6 ns (3)

ClockToPad 15.1 ns (3) 15.1 ns (3) 14.9 ns (3)

ClockToSetup 13.0 ns (4) 13.9 ns (4) 10.1 ns (3)
a. The number in parentheses represents the CLB block level delay.
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Initializing the State Machine
When creating a state machine, especially when you use one-hot 
encoding, add the following lines of code to your design to ensure 
that the FPGA is initialized to a Set state.

• VHDL Example

SYNC_PROC: process (CLOCK, RESET)
begin
    if (RESET=’1’) then
        CS <= s1;

• Verilog Example

always @ (posedge CLOCK or posedge RESET)
begin
  if (RESET == 1’b 1)
      CS = S1;

Alternatively, you can assign an INIT=S attribute to the initial state 
register to specify the initial state. Refer to your synthesis tool docu-
mentation for information on assigning this attribute.

In the Binary Encode State Machine example, the RESET signal forces 
the S1 flip-flop to be preset (initialized to 1) while the other flip-flops 
are cleared (initialized to 0).

Using Dedicated I/O Decoders
The periphery of XC4000 family devices has four wide decoder 
circuits at each edge. The inputs to each decoder are any of the IOB 
signals on that edge plus one local interconnect per CLB row or 
column. Each decoder generates a High output (using a pull-up 
resistor) when the AND condition of the selected inputs or their 
complements is true. The decoder outputs drive CLB inputs so they 
can be combined with other logic or can be routed directly to the chip 
outputs.

To implement XC4000 family edge decoders in HDL, you must 
instantiate edge decoder primitives. The primitive names you can use 
vary with the synthesis tool you are using. For example, you can 
instantiate DECODE1_IO, DECODE1_INT, DECODE4, DECODE8, 
and DECODE16. These primitives are implemented using the dedi-
cated I/O edge decoders. The XC4000 family wide decoder outputs 
are effectively open-drain and require a pull-up resistor to take the 
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output High when the specified pattern is detected on the decoder 
inputs. To attach the pull-up resistor to the output signal, you must 
instantiate a PULLUP component.

The following VHDL example shows how to use the I/O edge 
decoders by instantiating decode primitives. Each decoder output is a 
function of ADR (IOB inputs) and CLB_INT (local interconnects). The 
AND function of each DECODE output and Chip Select (CS) serves 
as the source of a flip-flop Clock Enable pin. The four edge decoders 
in this design are placed on the same device edge. The “Schematic 
Block Representation of I/O Decoder” figure shows the schematic 
block diagram representation of this I/O decoder design.

Using Dedicated I/O Decoders VHDL Example

--Edge Decoder
--An XC4000 LCA has special decoder circuits at each edge. These decoders
--are open-drained wired-AND gates. When one or more of the inputs (I) are 
--Low output(O) is Low. When all of the inputs are High, the output is
--High. A pull-up resistor must be connected to the output node to achieve 
--a true logic High.
 
Library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;

entity io_decoder is
  port (ADR: in std_logic_vector (4 downto 0);
        CS: in std_logic;
        DATA: in std_logic_vector (3 downto 0);
        CLOCK: in std_logic;
        QOUT: out std_logic_vector (3 downto 0));
end io_decoder;

architecture STRUCTURE of io_decoder is

COMPONENT DECODE1_IO
  PORT ( I: IN std_logic; 
         O: OUT std_logic );
END COMPONENT;

COMPONENT DECODE1_INT
  PORT ( I: IN std_logic; 
         O: OUT std_logic );
END COMPONENT;
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COMPONENT DECODE4
  PORT ( A3, A2, A1, A0: IN std_logic;
         O: OUT std_logic );
END COMPONENT;

COMPONENT PULLUP
  PORT ( O: OUT std_logic );
END COMPONENT;

---- Internal Signal Declarations ----------------------
signal DECODE, CLKEN, CLB_INT: std_logic_vector (3 downto 0);
signal ADR_INV, CLB_INV: std_logic_vector (3 downto 0);
begin

ADR_INV <= not ADR (3 downto 0);
CLB_INV <= not CLB_INT;

----- Instantiation of Edge Decoder: Output "DECODE(0)" ---------------
    A0: DECODE4 port map (ADR(3), ADR(2), ADR(1), ADR_INV(0), DECODE(0));
    
    A1: DECODE1_IO port map (ADR(4), DECODE(0));

    A2: DECODE1_INT port map (CLB_INV(0), DECODE(0)); 
    
    A3: DECODE1_INT port map (CLB_INT(1), DECODE(0)); 
   
    A4: DECODE1_INT port map (CLB_INT(2), DECODE(0)); 
   
    A5: DECODE1_INT port map (CLB_INT(3), DECODE(0)); 

    A6: PULLUP port map (DECODE(0));

----- Instantiation of Edge Decoder: Output "DECODE(1)" ---------------
    B0: DECODE4 port map (ADR(3), ADR(2), ADR_INV(1), ADR(0), DECODE(1));
   
    B1: DECODE1_IO port map (ADR(4), DECODE(1));
 
    B2: DECODE1_INT port map (CLB_INT(0), DECODE(1));
   
    B3: DECODE1_INT port map (CLB_INV(1), DECODE(1));
  
    B4: DECODE1_INT port map (CLB_INT(2), DECODE(1));
  
    B5: DECODE1_INT port map (CLB_INT(3), DECODE(1));
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    B6: PULLUP port map (DECODE(1));

----- Instantiation of Edge Decoder: Output "DECODE(2)" ---------------
    C0: DECODE4 port map (ADR(3), ADR_INV(2), ADR(1), ADR(0), DECODE(2));
   
    C1: DECODE1_IO port map (ADR(4), DECODE(2));
 
    C2: DECODE1_INT port map (CLB_INT(0), DECODE(2));
   
    C3: DECODE1_INT port map (CLB_INT(1), DECODE(2));
  
    C4: DECODE1_INT port map (CLB_INV(2), DECODE(2));
  
    C5: DECODE1_INT port map (CLB_INT(3), DECODE(2));
 
    C6: PULLUP port map (DECODE(2));

----- Instantiation of Edge Decoder: Output "DECODE(3)" ---------------
    D0: DECODE4 port map (ADR_INV(3), ADR(2), ADR(1), ADR(0), DECODE(3));
   
    D1: DECODE1_IO port map (ADR(4), DECODE(3));

    D2: DECODE1_INT port map (CLB_INT(0), DECODE(3));
   
    D3: DECODE1_INT port map (CLB_INT(1), DECODE(3));
  
    D4: DECODE1_INT port map (CLB_INT(2), DECODE(3));
  
    D5: DECODE1_INT port map (CLB_INV(3), DECODE(3));
    
    D6: PULLUP port map (DECODE(3));

-----CLKEN is the AND function of CS & DECODE--------

CLKEN(0) <= CS and DECODE(0);
CLKEN(1) <= CS and DECODE(1);
CLKEN(2) <= CS and DECODE(2);
CLKEN(3) <= CS and DECODE(3);

--------Internal 4-bit counter --------------
    process (CLOCK)
        begin
        if (CLOCK’event and CLOCK=’1’) then
                CLB_INT <= CLB_INT + 1;
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        end if;
    end process;

-------"QOUT(0)" Data Register Enabled by "CLKEN(0)"-----
    process (CLOCK)
        begin
        if (CLOCK’event and CLOCK=’1’) then
          if (CLKEN(0) = ’1’) then
              QOUT(0) <= DATA(0);
          end if;
        end if;
    end process;

-------"QOUT(1)" Data Register Enabled by "CLKEN(1)"-----
    process (CLOCK)
        begin
        if (CLOCK’event and CLOCK=’1’) then
          if (CLKEN(1) = ’1’) then
              QOUT(1) <= DATA(1);
          end if;
        end if;
    end process;

-------"QOUT(2)" Data Register Enabled by "CLKEN(2)"-----
    process (CLOCK)
        begin
        if (CLOCK’event and CLOCK=’1’) then
          if (CLKEN(2) = ’1’) then
              QOUT(2) <= DATA(2);
          end if;
        end if;
    end process;

-------"QOUT(3)" Data Register Enabled by "CLKEN(3)"-----
    process (CLOCK)
        begin
        if (CLOCK’event and CLOCK=’1’) then
          if (CLKEN(3) = ’1’) then
              QOUT(3) <= DATA(3);
          end if;
        end if;
    end process;

end STRUCTURE;
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Figure 4-6 Schematic Block Representation of I/O Decoder

Note: In the previous figure, the pull-up resistors are inside the 
Decoder blocks.

Instantiating LogiBLOX Modules
Note: Refer to the LogiBLOX Guide for detailed instructions on using 
LogiBLOX.

Most synthesis tools can infer arithmetic modules from VHDL or 
Verilog code for these operators: +, –, <, <=, >, >=, =, +1, –1. These 
adders, subtracters, comparators, incrementers, and decrementers 
use FPGA dedicated device resources, such as carry logic, to improve 
the speed and area of designs. For bus widths greater than four, 
library modules are generally faster unless multiple instances of the 
same function are compiled together. For more information on the 
module libraries, refer to your synthesis tool documentation.

If you want to use a module that is not in the module libraries, you 
can use LogiBLOX to create components that can be instantiated in 
your code. This is useful for large memory arrays if your synthesis 
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tool does not infer memory. However, Xilinx recommends properly 
constraining the synthesis and using the Xilinx-specific module 
generation capabilities of your tool. A simulation model is also 
created so that RTL simulation can be performed before your design 
is compiled.

You can create an instance of an externally defined macro, including a 
user-defined macro or a Xilinx macro (such as an I/O or flip-flop), by 
instantiating what some synthesis tool vendors refer to as a “black 
box” in your HDL code. These black boxes are Verilog empty module 
descriptions or VHDL component declarations. 

Some synthesis tools allow instantiation of higher order Xilinx 
macros, such as counters and adders from the Unified library. Other 
synthesis tools provide Xilinx macro libraries that pre-define the 
Xilinx macros. Without this expansion, macros are not understood by 
the implementation tools. However, Xilinx does not recommend 
using these macros. The preferred method is the synthesis tool 
module expansion, or if you require more control, you can instantiate 
a LogiBLOX module. If necessary, use these macro libraries only with 
older schematic-based designs. However, even in these cases, sche-
matic-based netlists are required to expand the macros, which makes 
the macro library redundant. LogiBLOX modules should also be 
unnecessary because the synthesis tool should provide equivalent 
performance. If you find a design in which this is not true, you can 
use LogiBLOX modules, and contact Xilinx and your synthesis 
vendor for a solution.

LogiBLOX is a graphical tool that allows you to select from several 
arithmetic, logic, I/O, sequential, and data storage modules for inclu-
sion in your HDL design. Use LogiBLOX to instantiate the modules 
listed in the following table.

Table 4-2 LogiBLOX Modules

Module Description

Arithmetic

Accumulator Adds data to or subtracts it from the current value stored in 
the accumulator register

Adder/Subtracter Adds or subtracts two data inputs and a carry input

Comparator Compares the magnitude or equality of two values

Counter Generates a sequence of count values
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Using LogiBLOX in HDL Designs
1. Before using LogiBLOX, verify the following.

• Xilinx software is correctly installed

• Environment variables are set correctly

• Your display environment variable is set to your machine’s 
display

Logic

Constant Forces a constant value onto a bus

Decoder Routes input data to 1-of-n lines on the output port

Multiplexer Type 1, Type 2 - Routes input data on 1-of-n lines to the 
output port

Simple Gates Type 1, Type 2, Type 3 - Implements the AND, INVERT, 
NAND, NOR, OR, XNOR, and XOR logic functions

Tristate Creates a tri-stated internal data bus

I/O

Bi-directional Input/
Output

Connects internal and external pin signals

Pad Simulates an input/output pad

Sequential

Clock Divider Generates a period that is a multiple of the clock input 
period

Counter Generates a sequence of count values

Shift Register Shifts the input data to the left or right

Storage

Data Register Captures the input data on active clock transitions

Memory: ROM, RAM, 
SYNC_RAM, DP_RAM

Stores information and makes it readable

Table 4-2 LogiBLOX Modules

Module Description
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2. To run LogiBLOX, enter the following command.

lbgui

The LogiBLOX Setup Window appears after the LogiBLOX 
module generator is loaded. This window allows you to name 
and customize the module you want to create. 

3. Select the Vendor tab in the Setup Window. Select your synthesis 
tool in the Vendor Name field to specify the correct bus notation 
for connecting your module.

Select the Project Directory tab. Enter the directory location of 
your project in the LogiBLOX Project Directory field. 

Select the Device Family tab. Select the target device for your 
design in the Device Family field. 

Select the Options tab and select the applicable options for your 
design as follows.

• Simulation Netlist

This option allows you to create simulation netlists of the 
selected LogiBLOX module in different formats. You can 
choose one or more of the outputs listed in the following 
table.

Table 4-3 Simulation Netlist Options

Option Description

Behavioral VHDL netlist Generates a simulation netlist in 
behavioral VHDL; output file has a 
.vhd extension.

 Gate level EDIF netlist Generates a simulation netlist in EDIF 
format; output file has an .edn exten-
sion.

Structural Verilog netlist Generates a simulation netlist in struc-
tural Verilog; output file has a .v exten-
sion.
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• Component Declaration

This option creates instantiation templates in different 
formats that can be copied into your design. You can select 
none, one, or both of the following options.

• Implementation Netlist

Select NGC File to generate an implementation netlist in 
Xilinx NGD binary format. You must select this option when 
instantiating LogiBLOX symbols in an HDL design. The 
output file has an .ngc extension and can be used as input to 
NGDBuild.

• LogiBLOX DRC

Select the Stop Process on Warning option to stop module 
processing if any warning messages are encountered during 
the design process.

For example, if you have a Verilog design, and you are simulating 
with Verilog-XL, select Structural Verilog netlist, Verilog 
template, NGC File, and Stop Process on Warning. For a VHDL 
design and simulating with VSS, select Behavioral VHDL, VHDL 
template, NGC File, and Stop Process on Warning.

Select OK.

4. Enter a name in the Module Name field in the Module Selector 
Window.

Table 4-4 Component Declaration Options

Option Description

VHDL template Generates a LogiBLOX VHDL compo-
nent declaration/instantiation 
template that is copied into your 
VHDL design when a LogiBLOX 
module is instantiated. The output file 
has a .vhi extension.

Verilog template Generates a LogiBLOX Verilog module 
definition/instantiation template that 
is copied into your Verilog design 
when a LogiBLOX module is instanti-
ated. The output file has a .vei exten-
sion.
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Select a base module type from the Module Type field.

Select a bus width from the Bus Width field.

Customize your module by selecting pins and specifying 
attributes.

After you have completed module specification, select OK.

This initiates the generation of a component instantiation decla-
ration, a behavioral model, and an implementation netlist.

5. Copy the module declaration/instantiation into your design. The 
template file created by LogiBLOX is module_name.vhi (VHDL) or 
module_name.vei (Verilog), and is saved in the project directory as 
specified in the LogiBLOX setup.

6. Complete the signal connections of the instantiated module to the 
rest of your design.

Note: For more information on simulation, refer to the “Simulating 
Your Design” chapter.

7. Create an implementation script. Add the appropriate attribute 
to the instantiated LogiBLOX module to prevent synthesis of this 
module. Compile your design.

Also, if you have a Verilog design, use a remove design type of 
command to make the LogiBLOX netlist unavailable before 
writing the .xnf or .edif netlist.

Note: If you do not use a remove design type of command, the netlist 
file may be empty. If this occurs, the Xilinx software will trim this 
module/component and all connected logic. Refer to your synthesis 
tool documentation for the correct command and syntax.

8. Compile your design and create a .xnf or .edif file. You can safely 
ignore the following type of warning messages.

Warning: Can’t find the design in the library WORK. 
(LBR-1)

Warning: Unable to resolve reference LogiBLOX_name in 
design_name. (LINK-5)

Warning: Design design_name has 1 unresolved references. 
For more detailed information, use the “link” command. 
(UID-341)
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9. Implement your design with the Xilinx tools. Verify that the .ngc 
file created by LogiBLOX is in the same project directory as the 
netlist.

You may get the following warnings during the NGDBuild and 
mapping steps. These messages are issued if the Xilinx software 
can not locate the corresponding .ngc file created by LogiBLOX.

Warning: basnu - logical block LogiBLOX_instance_name of 
type LogiBLOX_name is unexpanded. Logical Design DRC 
complete with 1 warning(s).

If you get this message, you will get the following message 
during mapping.

ERROR:basnu - logical block LogiBLOX_instance_name of 
type LogiBLOX_name is unexpanded. Errors detected in 
general drc.

If you get these messages, first verify that the .ngc file created by 
LogiBLOX is in the project directory. If the file is there, verify that 
the module is properly instantiated in the code. 

10. To simulate your post-layout design, convert your design to a 
timing netlist and use the back-annotation flow applicable to 
your synthesis tool. 

Note: For more information on simulation, refer to the “Simulating 
Your Design” chapter.

Instantiating a LogiBLOX “Black Box” Component
The VHDL example in this section shows how to instantiate a Logi-
BLOX “black box” component.

VHDL Example

entity top is
    port (clk, rst, en, data: in bit; q: out bit);
end top;

architecture structural of top is
    -- Declare the black_box as a boolean attribute
    attribute black_box: boolean;
    -- Declare the black_box_pad_pin as a string attribute
    attribute black_box_pad_pin: string;
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    -- In this example, GIZMO is a user macro that I created
    -- in a schematic editor, and
    -- that I want to directly instantiate in my VHDL design
    -- as a black box. Create a component declaration.
    component GIZMO
        port(Q: out bit; D, C, CLR: in bit);
    end component;
    -- Set the black_box attribute on GIZMO to be "true".
    attribute black_box of GIZMO:  component is true;

    -- In this example, MYBUF is a user I/O macro that I created
    -- in a schematic editor, and
    -- that I want to directly instantiate in my VHDL design
    -- as a black box. Create a component declaration.
    component MYBUF
        port(O: out bit; I: in bit);
    end component;
    -- Set the black_box_pad_pin attribute on MYBUF to 
    --   the pin that interfaces with the external world, "I".
    attribute black_box_pad_pin of MYBUF:  component is "I";

    signal data_core: bit;

begin
    -- Instantiate an MYBUF. Here we connect
    --    data to I and data_core to O.
    data_pad: MYBUF port map (O => data_core, I => data);

    -- Instantiate a GIZMO. Here we connect q to Q,
    --    data_core to D, clk to C, and rst to CLR.
    my_gizmo: GIZMO port map (Q => q, D => data_core, 
                C => clk, CLR => rst);
end structural;

Implementing Memory
XC4000E/EX/XL/XLA and Spartan FPGAs provide distributed on-
chip RAM or ROM. CLB function generators can be configured as 
ROM (ROM16X1, ROM32X1); level-sensitive RAM (RAM16X1, RAM 
32X1); edge-triggered, single-port (RAM16X1S, RAM32X1S); or dual-
port (RAM16x1D) RAM. Level sensitive RAMs are not available for 
the Spartan family. The edge-triggered capability simplifies system 
timing and provides better performance for RAM-based designs. This 
distributed RAM can be used for status registers, index registers, 
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counter storage, constant coefficient multipliers, distributed shift 
registers, LIFO stacks, latching, or any data storage operation. The 
dual-port RAM simplifies FIFO designs.

Note: For more information on XC4000 family RAM, refer to the 
Xilinx Web site (http://support.xilinx.com) or the current release of 
The Programmable Logic Data Book.

Implementing XC4000 and Spartan ROMs
ROMs can be implemented as follows.

• Use RTL descriptions of ROMs

• Instantiate 16x1 and 32x1 ROM primitives

• Use LogiBLOX to implement any other ROM size

VHDL and Verilog examples of an RTL description of a ROM follow.

RTL Description of a ROM VHDL Example

--
--  Behavioral 16x4 ROM Example
--           rom_rtl.vhd
--

library IEEE;
use IEEE.std_logic_1164.all;

entity rom_rtl is
     port (ADDR: in INTEGER range 0 to 15;
           DATA: out STD_LOGIC_VECTOR (3 downto 0));
end rom_rtl;

architecture XILINX of rom_rtl is

    subtype ROM_WORD is STD_LOGIC_VECTOR (3 downto 0);
    type ROM_TABLE is array (0 to 15) of ROM_WORD;
    constant ROM: ROM_TABLE := ROM_TABLE’(
        ROM_WORD’("0000"),
        ROM_WORD’("0001"),
        ROM_WORD’("0010"),
        ROM_WORD’("0100"),
        ROM_WORD’("1000"),
        ROM_WORD’("1100"),
        ROM_WORD’("1010"),
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        ROM_WORD’("1001"),
        ROM_WORD’("1001"),
        ROM_WORD’("1010"),
        ROM_WORD’("1100"),
        ROM_WORD’("1001"),
        ROM_WORD’("1001"),
        ROM_WORD’("1101"),
        ROM_WORD’("1011"),
        ROM_WORD’("1111"));

    begin
        DATA <= ROM(ADDR);  -- Read from the ROM

end XILINX;

RTL Description of a ROM Verilog Example

/*
 * ROM_RTL.V
 * Behavioral Example of 16x4 ROM
*/

module rom_rtl(ADDR, DATA) ;
input [3:0] ADDR ;
output [3:0] DATA ;

reg [3:0] DATA ;

// A memory is implemented
// using a case statement

always @(ADDR)
begin
   case (ADDR)
      4’b0000 : DATA = 4’b0000 ;
      4’b0001 : DATA = 4’b0001 ;
      4’b0010 : DATA = 4’b0010 ;
      4’b0011 : DATA = 4’b0100 ;
      4’b0100 : DATA = 4’b1000 ;
      4’b0101 : DATA = 4’b1000 ;
      4’b0110 : DATA = 4’b1100 ;
      4’b0111 : DATA = 4’b1010 ;
      4’b1000 : DATA = 4’b1001 ;
      4’b1001 : DATA = 4’b1001 ;
      4’b1010 : DATA = 4’b1010 ;
      4’b1011 : DATA = 4’b1100 ;
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      4’b1100 : DATA = 4’b1001 ;
      4’b1101 : DATA = 4’b1001 ;
      4’b1110 : DATA = 4’b1101 ;
      4’b1111 : DATA = 4’b1111 ;
   endcase
end

endmodule

When using an RTL description of a ROM, the synthesis tool creates 
ROMs from random logic gates that are implemented using function 
generators.

Another method for implementing ROMs is instantiating the 16x1 or 
32x1 ROM primitives. To define the ROM value, use the Set Attribute 
or equivalent command to set the INIT property on the ROM compo-
nent.

Note: Refer to your synthesis tool documentation for the correct 
syntax.

This type of command writes the ROM contents to the netlist file so 
the Xilinx tools can initialize the ROM. The INIT value should be 
specified in hexadecimal values. See the VHDL and Verilog RAM 
examples in the following section for examples of this property using 
a RAM primitive.

Implementing XC4000 Family RAMs
Do not use RTL descriptions of RAMs in your code because they do 
not compile efficiently and can cause combinatorial loops. The excep-
tion to this is if your synthesis tool can infer memory. In this case, you 
must follow a strict coding style. Refer to your vendor’s documenta-
tion for more information.

You can implement RAMs as follows.

• Instantiate 16x1 and 32x1 RAM primitives (RAM16X1, 
RAM32X1, RAM16X1S, RAM32X1S, RAM16X1D)

• Use LogiBLOX to implement any other RAM size

• Some synthesis tools can infer RAMs from your code
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When implementing RAM in XC4000 and Spartan designs, Xilinx 
recommends using the synchronous write, edge-triggered RAM 
(RAM16X1S, RAM32X1S, or RAM16X1D) instead of the asynchro-
nous-write RAM (RAM16X1 or RAM32X1) to simplify write timing 
and increase RAM performance.

Examples of an instantiation of edge-triggered RAM primitives are 
provided in the following VHDL and Verilog designs. As with ROMs, 
initial RAM values can be specified from the command line. The INIT 
property value is specified in hexadecimal values. Refer to your 
synthesis tool documentation for the correct command and syntax.

An Exemplar™ example of a RAM inference (ram.vhd) is also 
included in this section. Check with your synthesis tool vendor for 
the availability of this feature.

Instantiating RAM VHDL Example

------------------------------------------
-- RAM_PRIMITIVE.VHD                    --
-- Example of instantiating 4           --
-- 16x1 synchronous RAMs                --
-- HDL Synthesis Design Guide for FPGAs --
-- May 1997                             --
------------------------------------------

library IEEE;
use IEEE.std_logic_1164.all;

 
entity ram_primitive is

   port ( DATA_IN, ADDR  : in STD_LOGIC_VECTOR(3 downto 0);
          WE, CLOCK      : in STD_LOGIC;
          DATA_OUT       : out STD_LOGIC_VECTOR(3 downto 0));

end ram_primitive;

architecture STRUCTURAL_RAM of ram_primitive is

   component RAM16X1S
       port (D, A3, A2, A1, A0, WE, WCLK : in STD_LOGIC;
             O : out STD_LOGIC);
   end component;
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begin

   RAM0 :  RAM16X1S port map (O => DATA_OUT(0), D => DATA_IN(0), 
                              A3 => ADDR(3), A2 => ADDR(2), 
                              A1 => ADDR(1), A0 => ADDR(0),
                              WE => WE, WCLK => CLOCK);

   RAM1 :  RAM16X1S port map (O => DATA_OUT(1), D => DATA_IN(1), 
                              A3 => ADDR(3), A2 => ADDR(2),
                              A1 => ADDR(1), A0 => ADDR(0), 
                              WE => WE, WCLK => CLOCK);

   RAM2 :  RAM16X1S port map (O => DATA_OUT(2), D => DATA_IN(2), 
                              A3 => ADDR(3), A2 => ADDR(2),
                              A1 => ADDR(1), A0 => ADDR(0), 
                              WE => WE, WCLK => CLOCK);

   RAM3 :  RAM16X1S port map (O => DATA_OUT(3), D => DATA_IN(3), 
                              A3 => ADDR(3), A2 => ADDR(2),
                              A1 => ADDR(1), A0 => ADDR(0), 
                              WE => WE, WCLK => CLOCK);

end STRUCTURAL_RAM;

Instantiating RAM Verilog Example

      //////////////////////////////////////////
     // RAM_PRIMITIVE.V                      //
    // Example of instantiating 4           //
   // 16x1 Synchronous RAMs                //
  // HDL Synthesis Design Guide for FPGAs //
 // August 1997                          //
//////////////////////////////////////////
 

module ram_primitive (DATA_IN, ADDR, WE, CLOCK, DATA_OUT);

input  [3:0] DATA_IN, ADDR;
input        WE, CLOCK;
output [3:0] DATA_OUT;

RAM16X1S RAM0 (.O(DATA_OUT[0]), .D(DATA_IN[0]), .A3(ADDR[3]),
               .A2(ADDR[2]), .A1(ADDR[1]), .A0(ADDR[0]),
               .WE(WE), .WCLK(CLOCK));
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RAM16X1S RAM1 (.O(DATA_OUT[1]), .D(DATA_IN[1]), .A3(ADDR[3]),
               .A2(ADDR[2]), .A1(ADDR[1]), .A0(ADDR[0]),
               .WE(WE), .WCLK(CLOCK));

RAM16X1S RAM2 (.O(DATA_OUT[2]), .D(DATA_IN[2]), .A3(ADDR[3]),
               .A2(ADDR[2]), .A1(ADDR[1]), .A0(ADDR[0]),
               .WE(WE), .WCLK(CLOCK));

RAM16X1S RAM3 (.O(DATA_OUT[3]), .D(DATA_IN[3]), .A3(ADDR[3]),
               .A2(ADDR[2]), .A1(ADDR[1]), .A0(ADDR[0]),
               .WE(WE), .WCLK(CLOCK));

endmodule

Inferring RAM VHDL Example

library ieee;
use ieee.std_logic_1164.all;
library exemplar;
use exemplar.exemplar_1164.all;
library exemplar;
use exemplar.exemplar.all;

package my_pkg is
   type MEM_WORD is array (6 downto 0) of elbit_vector (1 downto 0);
end my_pkg;
=20
library exemplar;
use exemplar.exemplar.all;
use work.my_pkg.all;

entity mem is
   port (dio      : inout elbit_vector (1 downto 0);=20
         meme, we, inclk, outclk : in bit;
         addr     : integer range 6 downto 0;
         ro       : out bit);
       attribute clock_node : boolean;
       attribute clock_node of inclk : signal is TRUE;
       attribute clock_node of outclk : signal is TRUE;

        =20
end mem;

architecture behav of mem is
    signal mem : MEM_WORD;
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    signal d_int : elbit_vector (1 downto 0);
begin

process (inclk)
begin
   if (inclk’event and inclk =3D ’1’) then
       if (meme =3D ’1’ and we =3D ’1’) then
           mem(addr) <=3D dio;
       end if;
   end if;
end process;
process (outclk)
begin
   if (outclk’event and outclk =3D ’1’) then
           d_int <=3D mem (addr);
   end if;
end process;
dio <=3D d_int when (meme =3D ’1’ and we =3D ’0’) else "ZZ";
end behav;

Using LogiBLOX to Implement Memory
If you must instantiate memory, use LogiBLOX to create a memory 
module larger than 32X1 (16X1 for Dual Port). Implementing 
memory with LogiBLOX is similar to implementing any module with 
LogiBLOX except for defining the Memory initialization file. Use the 
following steps to create a memory module.

Note: Refer to the “Using LogiBLOX in HDL Designs” section for 
more information on using LogiBLOX.

1. Before using LogiBLOX, verify the following.

• Xilinx software is correctly installed

• Environment variables are set correctly

• Your display environment variable is set to your machine’s 
display

2. To run LogiBLOX, enter the following command.

lbgui

The LogiBLOX Setup Window appears after the LogiBLOX 
module generator is loaded. This window allows you to name 
and customize the module you want to create. 
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3. Select the Vendor tab in the Setup Window. Select your synthesis 
tool in the Vendor Name field to specify the correct bus notation 
for connecting your module.

Select the Project Directory tab. Enter the directory location of 
your project in the LogiBLOX Project Directory field.

Select the Device Family tab. Select the target device for your 
design in the Device Family field.

Select the Options tab and select the applicable options for your 
design.

 Select OK.

4. Enter a name in the Module Name field in the Module Selector 
Window.

Select the Memories module type from the Module Type field to 
specify that you are creating a memory module. 

Select a width (any value from 1 to 64 bits) for the memory from 
the Data Bus Width field.

In the Details field, select the type of memory you are creating 
(ROM, RAM, SYNC_RAM, or DP_RAM). 

Enter a value in the Memory Depth field for your memory 
module.

Note: Xilinx recommends (this is not a requirement) that you select a 
memory depth value that is a multiple of 16 because this is the 
memory size of one lookup table.

5. If you want the memory module initialized to all zeros on power 
up, you do not need to create a memory file (Mem File). 
However, if you want the contents of the memory initialized to a 
value other than zero, you must create and edit a memory file. 
Enter a memory file name in the Mem File field and click on the 
Edit button. Continue with the following steps.

Note: Some memory modules can only be initialized to zero. Refer to 
the Xilinx Programmable Logic Data Book for more information.

a) A memory template file in a text editor is displayed. This file 
does not contain valid data, and must be edited before you 
can use it. The data values specified in the memory file Data 
Section define the contents of the memory. Data values are 
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specified sequentially, beginning with the lowest address in 
the memory, as defined. 

b) Specify the address of a data value. The default radix of the 
data values is 16. If more than one radix definition is listed in 
the memory file header section, the last definition is the radix 
used in the Data Section.

The following definition defines a 16-word memory with the 
contents 6, 4, 5, 5, 2, 7, 5, 3, 5, 5, 5, 5, 5, 5, 5, 5, starting at 
address 0. Note that the contents of locations 2, 3, 6, and 8 
through 15 are defined via the default definition. Two 
starting addresses, 4 and 7, are given.

         depth 16
         default 5 
         data 6,4, 
         4: 2, 7, 
         7: 3

c) After you have finished specifying the data for the memory 
module, save the file and exit the editor.

6.  Click the OK button. Selecting OK generates a component 
instantiation declaration, a behavioral model, and an implemen-
tation netlist.

7. Copy the HDL module declaration/instantiation into your HDL 
design. The template file created by LogiBLOX is 
module_name.vhi for VHDL and module_name.vei for Verilog, and 
is saved in the project directory as specified in the LogiBLOX 
setup.

8. Complete the signal connections of the instantiated LogiBLOX 
memory module to the rest of your HDL design, and complete 
initial design coding.

9. Perform a behavioral simulation on your design. For more infor-
mation on behavioral simulation, refer to the “Simulating Your 
Design” chapter.

10. Create an implementation script. Add a Set Don’t Touch or equiv-
alent attribute to the instantiated LogiBLOX memory module, 
and compile your design.

Also, if you have a Verilog design, use a remove design type of 
command before writing the .xnf or .edif netlist.
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Note: If you do not use this type of command, the netlist file may be 
empty. If this occurs, the Xilinx software will trim this module/
component and all connected logic. Refer to your synthesis tool docu-
mentation for the correct syntax.

11. Compile your design and create a .xnf or .edif file. You can safely 
ignore the following type of warning messages.

Warning: Can’t find the design in the library WORK. 
(LBR-1)

Warning: Unable to resolve reference LogiBLOX_name in 
design_name. (LINK-5)

Warning: Design design_name has 1 unresolved references. 
For more detailed information, use the “link” command. 
(UID-341)

12. Implement your design with the Xilinx tools. Verify that the .ngc 
file created by LogiBLOX is in the same project directory as the 
netlist.

You may get the following warnings during the NGDBuild and 
mapping steps. These messages are issued if the Xilinx software 
can not locate the corresponding .ngc file created by LogiBLOX.

Warning: basnu - logical block LogiBLOX_instance_name of 
type LogiBLOX_name is unexpanded. Logical Design DRC 
complete with 1 warning(s).

If you get this message, you will get the following message 
during mapping.

ERROR:basnu - logical block LogiBLOX_instance_name of 
type LogiBLOX_name is unexpanded. Errors detected in 
general drc.

If you get these messages, first verify that the .ngc file created by 
LogiBLOX is in the project directory. If the file is there, verify that 
the module is properly instantiated in the code. 

13. To simulate your post-layout design, convert your design to a 
timing netlist and use the back-annotation flow applicable to 
your synthesis tool. 

Note: For more information on simulation, refer to the “Simulating 
Your Design” chapter.
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Implementing Boundary Scan (JTAG 1149.1) 
Note: Refer to the Development System Reference Guide for a detailed 
description of the XC4000/XC5200 boundary scan capabilities. 

XC4000, Spartan, and XC5200 FPGAs contain boundary scan facilities 
that are compatible with IEEE Standard 1149.1. Xilinx devices 
support external (I/O and interconnect) testing and have limited 
support for internal self-test. 

You can access the built-in boundary scan logic between power-up 
and the start of configuration. Optionally, the built-in logic is avail-
able after configuration if you specify boundary scan in your design. 
During configuration, a reduced boundary scan capability (sample/
preload and bypass instructions) is available.

In a configured FPGA device, the boundary scan logic is enabled or 
disabled by a specific set of bits in the configuration bitstream. To 
access the boundary scan logic after configuration in HDL designs, 
you must instantiate the boundary scan symbol, BSCAN, and the 
boundary scan I/O pins, TDI, TMS, TCK, and TDO.

The XC5200 BSCAN symbol contains three additional pins: RESET, 
UPDATE, and SHIFT, which are not available for XC4000 and 
Spartan. These pins represent the decoding of the corresponding state 
of the boundary scan internal state machine. If this function is not 
used, you can leave these pins unconnected in your HDL design.

Instantiating the Boundary Scan Symbol 
To incorporate the boundary scan capability in a configured FPGA 
using synthesis tools, you must manually instantiate boundary scan 
library primitives at the source code level. These primitives include 
TDI, TMS, TCK, TDO, and BSCAN. The following VHDL and Verilog 
examples show how to instantiate the boundary scan symbol, 
BSCAN, into your HDL code. Note that the boundary scan I/O pins 
are not declared as ports in the HDL code. The schematic for this 
design is shown in the “Bnd_scan Schematic” figure. 

You must assign a Set Don’t Touch or equivalent attribute to the net 
connected to the TDO pad before using the Insert Pads (or equiva-
lent) and compile commands. Otherwise, the TDO pad is removed by 
the compiler. In addition, you do not need IBUFs or OBUFs for the 
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TDI, TMS, TCK, and TDO pads. These special pads connect directly 
to the Xilinx boundary scan module.

Boundary Scan VHDL Example

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity bnd_scan is
    port (TDI_P, TMS_P, TCK_P : in STD_LOGIC;
          LOAD_P, CE_P, CLOCK_P, RESET_P: in
          STD_LOGIC;
          DATA_P: in STD_LOGIC_VECTOR(3 downto 0);
          TDO_P: out STD_LOGIC;
          COUT_P: out STD_LOGIC_VECTOR(3 downto 0));
end bnd_scan;

architecture XILINX of bnd_scan is

    component BSCAN 
        port (TDI, TMS, TCK out STD_LOGIC;
              TDO: in STD_LOGIC);
    end component;

    component TDI
        port (I: out STD_LOGIC);
    end component;

    component TMS
        port (I: out STD_LOGIC);
    end component;
   
    component TCK
        port (I: out STD_LOGIC);
    end component;

    component TDO
        port (O: out STD_LOGIC);
    end component;

    component count4
        port (LOAD, CE, CLOCK, RST: in STD_LOGIC;
              DATA: in STD_LOGIC_VECTOR (3 downto 0);
              COUT: out STD_LOGIC_VECTOR (3 downto 0));
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    end component;

    -- Defining signals to connect BSCAN to Pins --
    signal TCK_NET  : STD_LOGIC;
    signal TDI_NET  : STD_LOGIC;
    signal TMS_NET  : STD_LOGIC;
    signal TDO_NET  : STD_LOGIC;

begin

    U1: BSCAN port map (TDO => TDO_NET,
                        TDI => TDI_NET, 
                        TMS => TMS_NET, 
                        TCK => TCK_NET);

    U2: TDI port map (I =>TDI_NET);

    U3: TCK port map (I =>TCK_NET);

    U4: TMS port map (I =>TMS_NET);

    U5: TDO port map (O =>TDO_NET);

    U6: count4 port map (LOAD  => LOAD_P, 
                         CE    => CE_P, 
                         CLOCK => CLOCK_P, 
                         RST   => RESET_P,
                         DATA  => DATA_P, 
                         COUT  => COUT_P);

end XILINX;

Boundary Scan Verilog Example

      /////////////////////////////////////////////////////
     // BND_SCAN.V                                      //
    // Example of instantiating the BSCAN symbol in    //
   // activating the Boundary Scan circuitry          //
  // Count4 is an instantiated .v file of a counter  //
 // September 1997                                  //
/////////////////////////////////////////////////////

module bnd_scan (LOAD_P, CLOCK_P, CE_P, RESET_P,
 DATA_P, COUT_P);

    input         LOAD_P, CLOCK_P, CE_P, RESET_P;
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    input  [3:0] DATA_P;
    output [3:0] COUT_P;

    wire         TDI_NET, TMS_NET, TCK_NE, TDO_NET;

    BSCAN U1 (.TDO(TDO_NET), .TDI(TDI_NET), .TMS(TMS_NET), .TCK(TCK_NET));

    TDI U2 (.I(TDI_NET));

    TCK U3 (.I(TCK_NET));

    TMS U4 (.I(TMS_NET));

    TDO U5 (.O(TDO_NET));

    count4 U6 (.LOAD(LOAD_P), .CLOCK(CLOCK_P), .CE(CE_P), 
               .RST(RESET_P), .DATA(DATA_P), .COUT(COUT_P));

endmodule

Figure 4-7 Bnd_scan Schematic
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Implementing Logic with IOBs
You can move logic that is normally implemented with CLBs to IOBs. 
By moving logic from CLBs to IOBs, additional logic can be imple-
mented in the available CLBs. Using IOBs also improves design 
performance by increasing the number of available routing resources.

The XC4000 and Spartan devices have different IOB functions. The 
following sections provide a general description of the IOB function 
in XC4000E/EX/XLA/XL/XV and Spartan devices. A description of 
how to manually implement additional I/O features is also provided.

XC4000E/EX/XLA/XL/XV and Spartan IOBs
You can configure XC4000E/EX/XLA/XL/XV and Spartan IOBs as 
input, output, or bidirectional signals. You can also specify pull-up or 
pull-down resistors, independent of the pin usage.

These various buffer and I/O structures can be inferred from 
commands executed in a script or in your synthesis tool. The Set Port 
Is Pad (or equivalent) command in conjunction with the Insert Pads 
(or equivalent) command creates the appropriate buffer structure 
according to the direction of the specified port in the HDL code. You 
can add attributes to these commands to further control pull-up, pull-
down, and clock buffer insertion, as well as slew-rate control. Some 
tools operate on I/Os by selecting a chip level (inserts I/O) or module 
level (no I/O) synthesis. Also, you can add synthesis tool attributes, 
such as BUFFER_SIG, to ports in your VHDL code to control inser-
tion of I/Os. 

Inputs

The buffered input signal that drives the data input of a storage 
element can be configured as either a flip-flop or a latch. Addition-
ally, the buffered signal can be used in conjunction with the input 
flip-flop or latch, or without the register.

To avoid external hold-time requirements, IOB input flip-flops and 
latches have a delay block between the external pin and the D input. 
You can remove this default delay by instantiating a flip-flop or latch 
with a NODELAY attribute. The NODELAY attribute decreases the 
setup-time requirement and introduces a small hold time.
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If an IOB or register is instantiated in your HDL code, you may not be 
able to use the Set Port Is Pad (or equivalent) command on that port. 
Doing so may automatically infer a buffer on that port and create an 
invalid double-buffer structure. This varies with the tool you are 
using. Check with your synthesis vendor to see if partial instantiation 
interferes with automatic I/O insertion or the use of IOB registers.

Registers that connect to an input or output pad and require a Direct 
Clear or Preset pin are not implemented by the synthesis tool in the 
IOB. The VHDL emulation of GSR or GR on these registers prevents 
them from being pulled into the IOB. The VHDL emulation of GSR/
GR through direct clear or preset pins is described in the “Simulating 
Your Design” chapter. If GSR/GR behavior is not completely 
described, automatic inferencing of GSR/GR does not occur. In this 
case, instantiate STARTBUF in VHDL, and fully describe the GSR/
GR behavior except for registers that you want in the IOB. In VHDL, 
these registers do not initialize pre-route, but do indicate X’s until the 
first data is registered. However, they do initialize properly during 
back-annotation. Verilog models initialize properly and do not inter-
fere with the automatic use of IOB registers instead of CLB registers.

Outputs

The output signal that drives the programmable tristate output buffer 
can be a registered or a direct output. The register is a positive-edge 
triggered flip-flop and the clock polarity can be inverted inside the 
IOB. (Xilinx software automatically optimizes any inverters into the 
IOB.) The XC4000 and Spartan output buffers can sink 12 mA. Two 
adjacent outputs can be inter-connected externally to sink up to 
24mA. 

Note: Most FPGA synthesis tools can optimize flip-flops attached to 
output pads into the IOB. However, some of these tools cannot opti-
mize flip-flops into an IOB configured as a bidirectional pad. Refer to 
your synthesis tool documentation for more information.

Slew Rate

Refer to your synthesis tool documentation for information on 
configuring I/O’s, including how to control slew rate.
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Pull-ups and Pull-downs

XC4000 and Spartan devices have programmable pull-up and pull-
down resistors available in the I/O regardless of whether it is config-
ured as an input, output, or bi-directional I/O. By default, all unused 
IOBs are configured as an input with a pull-up resistor. The value of 
the pull-ups and pull-downs vary depending on operating conditions 
and device process variances but should be approximately 50 K 
Ohms to 100 K Ohms. If a more precise value is required, use an 
external resistor. Refer to your synthesis tool documentation for 
information on how to specify internal pull-up or pull-down I/O 
resistors.

XC4000EX/XLA/XL/XV Output Multiplexer/2-Input 
Function Generator

A function added to XC4000EX/XLA/XL/XV families is a two input 
multiplexer connected to the IOB output allowing the output clock to 
select either the output data or the IOB clock enable as the output 
pad. This allows you to share output pins between two signals, effec-
tively doubling the number of device outputs without requiring a 
larger device or package. Additionally, this multiplexer can be config-
ured as a two-input function generator allowing you to implement 
any 2-input logic function in the IOB thus freeing up additional logic 
resources in the device and allowing for very fast pin-to-pin data 
paths.

To use the output multiplexer (OMUX), you must instantiate it in 
your code. See the following VHDL and Verilog examples. Instantia-
tion of the other types of two-input output primitives (such as 
OAND2, OOR2, and OXOR2) are similar to these examples.

Note:  Since the OMUX uses the IOB output clock and clock enable 
routing structures, the output flip-flop (OFD) can not be used within 
the same IOB. The input flip-flop (IFD) can be used if the clock enable 
is not used.

• Output Multiplexer VHDL Example

------------------------------------------
-- OMUX_EXAMPLE.VHD                     --
-- Example of OMUX instantiation        --
-- For an XC4000EX/XL/XV device         --
-- HDL Synthesis Design Guide for FPGAs --
-- August 1997                          --
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------------------------------------------

library IEEE;
use IEEE.std_logic_1164.all;
 
entity  omux_example is

    port (DATA_IN: in STD_LOGIC_VECTOR (1 downto 0);
          SEL: in STD_LOGIC;
          DATA_OUT: out STD_LOGIC);

end omux_example;
 
architecture XILINX of omux_example is

    component OMUX2
        port (D0, D1, S0 : in  STD_LOGIC;
              O :          out STD_LOGIC);
    end component;

begin

     DUEL_OUT: OMUX2 port map (O=>DATA_OUT,
             D0=>DATA_IN(0), D1=>DATA_IN(1), S0=>SEL);

end XILINX;

• Output Multiplexer Verilog Example

      //////////////////////////////////////////
     // OMUX_EXAMPLE.V                       //
    // Example of instantiating an OMUX2    //
   // in an XC4000EX/XL IOB                //
  // HDL Synthesis Design Guide for FPGAs //
 // August 1997                          //
//////////////////////////////////////////

module omux_example (DATA_IN, SEL, DATA_OUT) ;

input  [1:0] DATA_IN ;
input        SEL ;
output       DATA_OUT ;

OMUX2 DUEL_OUT (.O(DATA_OUT), .D0(DATA_IN[0]), 
                .D1(DATA_IN[1]), .S0(SEL));
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endmodule

XC5200 IOBs
XC5200 IOBs consist of an input buffer and an output buffer that can 
be configured as an input, output, or bi-directional I/O. The structure 
of the XC5200 is similar to the XC4000 IOB except the XC5200 does 
not contain a register/latch. The XC5200 IOB has a programmable 
pull-up or pull-down resistor, and two slew rate control modes (Fast 
and Slow) to minimize bus transients. The input buffer can be 
globally configured to TTL or CMOS levels, and the output buffer can 
sink or source 8.0 mA.

I/O buffer structures (as with the XC4000 IOBs) can be inferred from 
your synthesis tool script with the Set Port Is Pad (or equivalent) 
command in conjunction with the Insert Pads (or equivalent) 
command. Controlling pull-up and pull-down insertion and slew 
rate control are performed as previously described for the XC4000 
IOB.

The XC5200 IOB also contains a delay element so that an input signal 
that is directly registered or latched can have a guaranteed zero hold 
time at the expense of a longer setup time. You can disable this 
(equivalent to NODELAY in XC4000) by instantiating an IBUF_F 
buffer for that input port. This only needs to be done for ports that 
connect directly to the D input of a register in which a hold time can 
be tolerated.

Bi-directional I/O
You can create bi-directional I/O with one or a combination of the 
following methods.

• Behaviorally describe the I/O path

• Structurally instantiate appropriate IOB primitives

• Create the I/O using LogiBLOX

Xilinx FPGA IOBs consist of a direct input path into the FPGA 
through an input buffer (IBUF) and an output path to the FPGA pad 
through a tri-stated buffer (OBUFT). The input path can be registered 
or latched; the output path can be registered. If you instantiate or 
behaviorally describe the I/O, you must describe this bi-directional 
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path in two steps. First, describe an input path from the declared 
INOUT port to a logic function or register. Second, describe an output 
path from an internal signal or function in your code to a tri-stated 
output with a tri-state control signal that can be mapped to an 
OBUFT.

You should always describe the I/O path at the top level of your 
code. If the I/O path is described in a lower level module, your 
synthesis tool may incorrectly create the I/O structure.

Inferring Bi-directional I/O

This section includes VHDL and Verilog examples that show how to 
infer a bi-directional I/O. In these examples, the input path is latched 
by a CLB latch that is gated by the active high READ_WRITE signal. 

The output consists of two latched outputs with an AND and OR, 
and connected to a described tri-state buffer. The active low 
READ_WRITE signal enables the tri-state gate.

• Inferring a Bi-directional Pin VHDL Example

-------------------------------------------------------
--  BIDIR_INFER.VHD                                  --
--  Example of inferring a Bi-directional pin        --
--  August 1997                                      --
-------------------------------------------------------

Library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;

entity bidir_infer is

    port (DATA :       inout STD_LOGIC_VECTOR(1 downto 0);
          READ_WRITE : in    STD_LOGIC);

end bidir_infer;

architecture XILINX of bidir_infer is

    signal LATCH_OUT : STD_LOGIC_VECTOR(1 downto 0);

    begin

    process(READ_WRITE, DATA)
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    begin

        if (READ_WRITE = ’1’) then
            LATCH_OUT <= DATA;
        end if;

    end process;

    process(READ_WRITE, LATCH_OUT)
        begin

        if (READ_WRITE = ’0’) then
            DATA(0) <= LATCH_OUT(0) and LATCH_OUT(1);
            DATA(1) <= LATCH_OUT(0) or LATCH_OUT(1);
        else
             DATA(0) <= ’Z’;
             DATA(1) <= ’Z’;
        end if;

    end process;

end XILINX;

• Inferring a Bi-directional Pin Verilog Example

      ///////////////////////////////////////////////////////////////////
     // BIDIR_INFER.V Version 1.1                                      //
    // This is an example of an inference of a bi-directional signal. //
   // Note: Logic description of port should always be on top-level  //
  //        code when using Synopsys Compiler and verilog.          //
 // March 1998                                                     //
////////////////////////////////////////////////////////////////////

module bidir_infer (DATA, READ_WRITE);

    input       READ_WRITE ;
    inout [1:0] DATA ;

    reg   [1:0] LATCH_OUT ;

    always @ (READ_WRITE or DATA)
        begin
        if (READ_WRITE == 1’b1)
            LATCH_OUT <= DATA;
        end
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    assign DATA[0] = READ_WRITE ?  1’bZ : (LATCH_OUT[0] & LATCH_OUT[1]);
    assign DATA[1] = READ_WRITE ? 1’bZ : (LATCH_OUT[0] | LATCH_OUT[1]);
 
endmodule

Instantiating Bi-directional I/O

Instantiating the bi-directional I/O gives you more control over the 
implementation of the circuit; however, as a result, your code is more 
architecture-specific and usually more verbose. The VHDL and 
Verilog examples in this section are identical to the examples in the 
“Inferring Bi-directional I/O” section; however, since there is more 
control over the implementation, an input latch is specified rather 
than the CLB latch inferred in the previous examples. The following 
examples are a more efficient implementation of the same circuit.

When instantiating I/O primitives, do not specify the Set Port Is Pad 
(or equivalent) command on the instantiated ports to prevent the I/O 
buffers from being inferred by your synthesis tool. This precaution 
also prevents the creation of an illegal structure.

• Instantiation of a Bi-directional Pin VHDL Example

-----------------------------------
--  BIDIR_INSTANTIATE.VHD        --
--  Example of an instantiation  --
--  of a Bi-directional pin      --
--  August 1997                  --
-----------------------------------

Library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;

entity bidir_instantiate is

    port (DATA :       inout STD_LOGIC_VECTOR(1 downto 0);
          READ_WRITE : in    STD_LOGIC);

end bidir_instantiate;

architecture XILINX of bidir_instantiate is

    signal LATCH_OUT : STD_LOGIC_VECTOR(1 downto 0);
    signal DATA_OUT :  STD_LOGIC_VECTOR(1 downto 0);
    signal GATE :      STD_LOGIC;
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    component ILD_1
        port (D, G : in  STD_LOGIC;
              Q    : out STD_LOGIC);
    end component;

    component OBUFT_S
        port (I, T : in  STD_LOGIC;
              O :    out STD_LOGIC);
    end component;

    begin

    DATA_OUT(0) <= LATCH_OUT(0) and LATCH_OUT(1);
    DATA_OUT(1) <= LATCH_OUT(0) or LATCH_OUT(1);

    GATE <= not READ_WRITE;

    INPUT_PATH_0 : ILD_1
        port map (D => DATA(0), G => GATE,
                  Q => LATCH_OUT(0));

    INPUT_PATH_1 : ILD_1
        port map (D => DATA(1), G => GATE,
                  Q => LATCH_OUT(1));

    OUPUT_PATH_0 : OBUFT_S
        port map (I => DATA_OUT(0), T => READ_WRITE,
                  O => DATA(0));

    OUPUT_PATH_1 : OBUFT_S
        port map (I => DATA_OUT(1), T => READ_WRITE,
                  O => DATA(1));

end XILINX;

• Instantiation of a Bi-directional Pin Verilog Example

     ////////////////////////////////////////////
    // BIDIR_INSTANTIATE.V                    //
   // This is an example of an instantiation //
  // of a bi-directional port.              //
 // August 1997                            //
////////////////////////////////////////////

module bidir_instantiate (DATA, READ_WRITE);
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    input       READ_WRITE ;
    inout [1:0] DATA ;

    reg   [1:0] LATCH_OUT ;
    wire  [1:0] DATA_OUT ;
    wire        GATE ;

    assign GATE = ~READ_WRITE;

    assign DATA_OUT[0] = LATCH_OUT[0] & LATCH_OUT[1];
    assign DATA_OUT[1] = LATCH_OUT[0] | LATCH_OUT[1];

    // I/O primitive instantiation

    ILD_1 INPUT_PATH_0 (.Q(LATCH_OUT[0]), .D(DATA[0]), .G(GATE));

    ILD_1 INPUT_PATH_1 (.Q(LATCH_OUT[1]), .D(DATA[1]), .G(GATE));

    OBUFT_S OUPUT_PATH_0 (.O(DATA[0]), .I(DATA_OUT[0]), .T(READ_WRITE));

    OBUFT_S OUPUT_PATH_1 (.O(DATA[1]), .I(DATA_OUT[1]), .T(READ_WRITE));

endmodule

Using LogiBLOX to Create Bi-directional I/O

You can use LogiBLOX to create I/O structures in an FPGA. Logi-
BLOX gives you the same control as instantiating I/O primitives, and 
is usually less verbose. LogiBLOX is especially useful for bused I/O 
ports.

Note: Refer to the “Using LogiBLOX in HDL Designs” section 
section, for details on creating, instantiating, and compiling Logi-
BLOX modules.

Do not use the Set Port Is Pad (or equivalent) command on Logi-
BLOX-created ports. Also, when designing with Verilog, you must 
issue a Remove Design or equivalent command before writing out 
the .xnf files from your synthesis tool.

The following VHDL and Verilog examples show how to instantiate 
bi-directional I/O created with LogiBLOX. These examples produce 
the same results as the examples in the “Instantiating Bi-directional 
I/O” section.
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• Using LogiBLOX to Create a Bi-directional Port VHDL Example

---------------------------------------
--  BIDIR_LOGIBLOX.VHD               --
--  Example of using LogiBLOX        --
--  to create a Bi-directional port  --
--  August 1997                      --
---------------------------------------
------------------------------------------------------
-- LogiBLOX BIDI Module "bidir_io_from_lb"
-- Created by LogiBLOX version M1.3.7
--    on Mon Sep  8 13:14:02 1997
-- Attributes 
--    MODTYPE = BIDI
--    BUS_WIDTH = 2
--    IN_TYPE = LATCH
--    OUT_TYPE = TRI
------------------------------------------------------

Library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;

entity bidir_logiblox is

    port (DATA :       inout STD_LOGIC_VECTOR(1 downto 0);
          READ_WRITE : in    STD_LOGIC);

end bidir_logiblox;

architecture XILINX of bidir_logiblox is

    signal LATCH_OUT : STD_LOGIC_VECTOR(1 downto 0);
    signal DATA_OUT :  STD_LOGIC_VECTOR(1 downto 0);

    ----------------------------------------------------
    -- Component Declaration 
    ----------------------------------------------------
    component bidir_io_from_lb
        PORT( O:     IN    STD_LOGIC_VECTOR(1 DOWNTO 0);
              OE:    IN    STD_LOGIC;
              IGATE: IN    STD_LOGIC;
              IQ:    OUT   STD_LOGIC_VECTOR(1 DOWNTO 0);
              P:     INOUT STD_LOGIC_VECTOR(1 DOWNTO 0));
    end component;
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    begin

    DATA_OUT(0) <= LATCH_OUT(0) and LATCH_OUT(1);
    DATA_OUT(1) <= LATCH_OUT(0) or LATCH_OUT(1);

    ----------------------------------------------------
    -- Component Instantiation 
    ----------------------------------------------------
    BIDIR_BUSSED_PORT : bidir_io_from_lb 
        port map (O => DATA_OUT, OE => READ_WRITE,
                  IGATE => READ_WRITE, IQ => LATCH_OUT, P => DATA);

end XILINX;

• Using LogiBLOX to Create a Bi-directional Port Verilog Example

     ///////////////////////////////////////////
    // BIDIR_LOGIBLOX.V                      //
   // This is an example of using LogiBLOX   //
  // to create a bi-directional port.       //
 // August 1997                           //
///////////////////////////////////////////

//----------------------------------------------------
// LogiBLOX BIDI Module "bidir_io_from_lb"
// Created by LogiBLOX version M1.3.7
//    on Mon Sep  8 17:10:15 1997
// Attributes 
//    MODTYPE = BIDI
//    BUS_WIDTH = 2
//    IN_TYPE = LATCH
//    OUT_TYPE = TRI
//----------------------------------------------------

module bidir_logiblox (DATA, READ_WRITE);

    input       READ_WRITE ;
    inout [1:0] DATA ;

    reg   [1:0] LATCH_OUT ;
    wire  [1:0] DATA_OUT ;

    assign DATA_OUT[0] = LATCH_OUT[0] & LATCH_OUT[1];
    assign DATA_OUT[1] = LATCH_OUT[0] | LATCH_OUT[1];
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    // LogiBLOX instantiation

    bidir_io_from_lb  BIDIR_BUSSED_PORT
        ( .O(DATA_OUT), .OE(READ_WRITE), .P(DATA), 
          .IQ(LATCH_OUT), .IGATE(READ_WRITE));

endmodule

module bidir_io_from_lb (O, OE, P, IQ, IGATE);
    input  [1:0] O;
    input        OE;
    input        IGATE;
    inout  [1:0] P;
    output [1:0] IQ;
endmodule

Specifying Pad Locations
Although Xilinx recommends allowing the software to select pin 
locations to ensure the best possible pin placement in terms of design 
timing and routing resources, sometimes you must define the pad 
locations prior to placement and routing. You can assign pad loca-
tions either from your synthesis tool’s script prior to writing out the 
netlist file, or from a User Constraints File (UCF). Use one or the other 
method, but not both. Refer to your synthesis tool documentation for 
the correct syntax for configuring your I/O with the PLOC property. 
Also, refer to The Programmable Logic Data Book or the Xilinx Web site 
(http://support.xilinx.com) for the pad locations for your device and 
package.

Moving Registers into the IOB
Note: XC5200 devices do not have input and output flip-flops.

IOBs contain an input register or latch and an output register. IOB 
inputs can be register or latch inputs as well as direct inputs to the 
device array. Registers without a direct reset or set function can be 
moved into IOBs. Moving registers or latches into IOBs may reduce 
the number of CLBs used and decreases the routing congestion. In 
addition, moving input registers and latches into the IOB reduces the 
external setup time, as shown in the following figure.
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Figure 4-8 Moving Registers into the IOB

Although moving output registers into the IOB may increase the 
internal setup time, it may reduce the clock-to-output delay, as shown 
in this figure. Most FPGA synthesis tools automatically move regis-
ters into IOBs if the Preset, Clear, and Clock Enable pins are not used.

Use –pr Option with Map

Use the –pr (pack registers) option when running MAP. The –pr {i | o 
|  b} (input | output | both) option specifies to the MAP program to 
move registers into IOBs under the following circumstances.

1. The input of the register must be connected to an input port, or 
the Q pin must be connected to an output port. For the 
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XC4000EX/XL/XV this applies to non-I/O latches, as well as 
flip-flops.

2. IOBs must have input or output flip-flops. XC5200 devices do not 
have IOB flip-flops.

3. The flip-flop does not use an asynchronous set or reset signal.

4. In XC4000, Spartan, and XC3000 devices, a flop/latch is not 
added to an IOB if it has a BLKNM or LOC conflict with the IOB.

5.  In XC4000 or Spartan devices, a flop/latch is not added to an 
IOB if its control signals (clock or clock enable) are not compat-
ible with those already defined in the IOB. This occurs when a 
flip-flop (latch) is already in the IOB with different clock or clock 
enable signals, or when the XC4000EX/XL/XV output MUX is 
used in the same IOB.

6. In XC4000EX/XV devices, if a constant 0 or 1 is driven on the 
IOPAD, a flip-flop/latch with a CE is not added to the input side 
of the IOB.

Using Unbonded IOBs (XC4000E/EX/XLA/XL/XV and 
Spartan Only)

In some package/device pairs, not all pads are bonded to a package 
pin. You can use these unbonded IOBs and the flip-flops inside them 
in your design by instantiating them in the HDL code. You can imple-
ment shift registers with these unbonded IOBs. The VHDL and 
Verilog examples in this section show how to instantiate unbonded 
IOB flip-flops in a 4-bit shift register in an XC4000 device. 

Note: The synthesis tool compilers cannot infer unbonded primi-
tives. Refer to your synthesis tool documentation for a list of library 
primitives that can be used for instantiations.

4-bit Shift Register Using Unbonded I/O VHDL 
Example

-------------------------------------------------
-- UNBONDED_IO.VHD Version 1.0                 --
-- XC4000 LCA has unbonded IOBs which have     --
-- storage elements that can be used to build  --
-- shift registers.                            --
-- Below is a 4-bit Shift Register using       --
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-- Unbonded IOB Flip Flops                     --
-- Xilinx HDL Synthesis Design Guide for FPGAs --
-- May 1997                                    --
-------------------------------------------------

Library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity unbonded_io is
    port (A, B: in STD_LOGIC;
          CLK: in STD_LOGIC;
           Q_OUT: out STD_LOGIC);
end unbonded_io;

architecture XILINX of unbonded_io is

    component IFD_U  -- Unbonded Input FF with INIT=Reset
         port (Q: out std_logic;
               D, C: in  std_logic);
    end component;

    component IFDI_U -- Unbonded Input FF with INIT=Set
         port (Q: out std_logic;
                D, C: in  std_logic);
    end component;

    component OFD_U -- Unbonded Output FF with INIT=Reset
         port (Q: out std_logic;
                D, C: in  std_logic);
    end component;

    component OFDI_U -- Unbonded Output FF with INIT=Set
         port (Q: out std_logic;
                D, C: in  std_logic);
    end component;

--- Internal Signal Declarations -----
    signal U_Q : STD_LOGIC_VECTOR (3 downto 0);
    signal U_D : STD_LOGIC;

begin
U_D <= A and B;
Q_OUT <= U_Q(0);
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    U3: OFD_U  port map (Q => U_Q(3),
                         D => U_D,
                         C => CLK);

    U2: IFDI_U port map (Q => U_Q(2),
                         D => U_Q(3),
                         C => CLK);

    U1: OFDI_U port map (Q => U_Q(1),
                         D => U_Q(2),
                         C => CLK);

    U0: IFD_U  port map (Q => U_Q(0),
                         D => U_Q(1),
                         C => CLK);

end XILINX;                               

4-bit Shift Register Using Unbonded I/O Verilog 
Example

         ////////////////////////////////////////////////////
        // UNBONDED.V                                    //
       // XC4000 family has unbonded IOBs which have     //
      // storage elements that can be used to build     //
     // functions lie shift registers.                 //
    // Below is a 4-bit Shift Register using Unbonded //
   // IOB Flip Flops                                 //
  // HDL Synthesis Design Guide for FPGAs           //
 // May 1997                                      //
////////////////////////////////////////////////////

module unbonded_io (A, B, CLK, Q_OUT);

input A, B, CLK;
output Q_OUT;

wire[3:0] U_Q;
wire      U_D;

assign U_D = A & B;
assign Q_OUT = U_Q[0];

    OFD_U U3 (.Q(U_Q[3]), .D(U_D), .C(CLK));
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    IFDI_U U2 (.Q(U_Q[2]), .D(U_Q[3]), .C(CLK));

    OFDI_U U1 (.Q(U_Q[1]), .D(U_Q[2]), .C(CLK));

    IFD_U  U0 (.Q(U_Q[0]), .D(U_Q[1]), .C(CLK));

endmodule

Implementing Multiplexers with Tristate Buffers
A 4-to-1 multiplexer is efficiently implemented in a single XC4000 or 
Spartan family CLB. The six input signals (four inputs, two select 
lines) use the F, G, and H function generators. Multiplexers that are 
larger than 4-to-1 exceed the capacity of one CLB. For example, a 16-
to-1 multiplexer requires five CLBs and has two logic levels. These 
additional CLBs increase area and delay. Xilinx recommends that you 
use internal tristate buffers (BUFTs) to implement large multiplexers.

Large multiplexers built with BUFTs have the following advantages.

• Can vary in width with only minimal impact on area and delay

• Can have as many inputs as there are tristate buffers per hori-
zontal longline in the target device

• Have one-hot encoded selector inputs

This last point is illustrated in the following VHDL and Verilog 
designs of a 5-to-1 multiplexer built with gates. Typically, the gate 
version of this multiplexer has binary encoded selector inputs and 
requires three select inputs (SEL<2:0>). The schematic representation 
of this design is shown in the “5-to-1 MUX Implemented with Gates” 
figure. 

Some synthesis tools include commands that allow you to switch 
between multiplexers with gates or with tristates. Check with your 
synthesis vendor for more information.

The VHDL and Verilog designs provided at the end of this section 
show a 5-to-1 multiplexer built with tristate buffers. The tristate 
buffer version of this multiplexer has one-hot encoded selector inputs 
and requires five select inputs (SEL<4:0>). The schematic representa-
tion of these designs is shown in the “5-to-1 MUX Implemented with 
BUFTs” figure.
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Mux Implemented with Gates VHDL Example
-- MUX_GATE.VHD
-- 5-to-1 Mux Implemented in Gates
-- May 1997                        

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity mux_gate is
port (SEL: in STD_LOGIC_VECTOR (2 downto 0);
A,B,C,D,E: in STD_LOGIC;
        SIG: out STD_LOGIC);
end mux_gate;

architecture RTL of mux_gate is
begin
    SEL_PROCESS: process (SEL,A,B,C,D,E)
    begin
        case SEL is
           when "000"  => SIG <= A;
           when "001"  => SIG <= B;
           when "010"  => SIG <= C;
           when "011"  => SIG <= D;
           when others => SIG <= E;
        end case;
    end process SEL_PROCESS;
end RTL;

Mux Implemented with Gates Verilog Example
/* MUX_GATE.V
 * May 1997 */

module mux_gate (A,B,C,D,E,SEL,SIG);

input A,B,C,D,E;
input [2:0] SEL;
output SIG;
reg SIG;

    always @ (A or B or C or D or SEL) 
    case (SEL)
        3’b000: 
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            SIG=A;
        3’b001: 
            SIG=B;
        3’b010: 
            SIG=C;
        3’b011: 
            SIG=D;
        3’b100: 
            SIG=E;
default: SIG=A;
     endcase

endmodule

Figure 4-9 5-to-1 MUX Implemented with Gates

Mux Implemented with BUFTs VHDL Example
-- MUX_TBUF.VHD
-- 5-to-1 Mux Implemented in 3-State Buffers
-- May 1997                        

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity mux_tbuf is
port (SEL: in STD_LOGIC_VECTOR (4 downto 0);
A,B,C,D,E: in STD_LOGIC;
        SIG: out STD_LOGIC);
end mux_tbuf;

architecture RTL of mux_tbuf is
begin

    SIG <= A when (SEL(0)=’0’) else ’Z’;
    SIG <= B when (SEL(1)=’0’) else ’Z’;

SIG
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X6229
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    SIG <= C when (SEL(2)=’0’) else ’Z’;
    SIG <= D when (SEL(3)=’0’) else ’Z’;
    SIG <= E when (SEL(4)=’0’) else ’Z’;

end RTL;

Mux Implemented with BUFTs Verilog Example
/* MUX_TBUF.V
 * May 1997 */

module mux_tbuf (A,B,C,D,E,SEL,SIG);

input A,B,C,D,E;
input [4:0] SEL;
output SIG;
reg SIG;

    always @ (SEL or A) 
    begin
        if (SEL[0]==1’b0) 
            SIG=A;
        else
            SIG=1’bz;
     end

     always @ (SEL or B) 
     begin
         if (SEL[1]==1’b0)
             SIG=B;
         else
             SIG=1’bz;
         end

     always @ (SEL or C) 
     begin
         if (SEL[2]==1’b0)
             SIG=C;
         else 
             SIG=1’bz;
     end

     always @ (SEL or D) 
     begin
         if (SEL[3]==1’b0)
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              SIG=D;
         else
              SIG=1’bz;
         end

     always @ (SEL or E) 
     begin
         if (SEL[4]==1’b0)
              SIG=E;
         else
              SIG=1’bz;
         end

endmodule

Figure 4-10 5-to-1 MUX Implemented with BUFTs 
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A comparison of timing and area for a 5-to-1 multiplexer built with 
gates and tristate buffers in an XC4005EPC84-2 device is provided in 
the following table. When the multiplexer is implemented with 
tristate buffers, no CLBs are used and the delay is smaller. 

Using Pipelining
You can use pipelining to dramatically improve device performance. 
Pipelining increases performance by restructuring long data paths 
with several levels of logic and breaking it up over multiple clock 
cycles. This method allows a faster clock cycle and, as a result, an 
increased data throughput at the expense of added data latency. 
Because the Xilinx FPGA devices are register-rich, this is usually an 
advantageous structure for FPGA designs because the pipeline is 
created at no cost in terms of device resources. Because data is now 
on a multi-cycle path, special considerations must be used for the rest 
of your design to account for the added path latency. You must also 
be careful when defining timing specifications for these paths.

Some synthesis tools have limited capability for constraining multi-
cycle paths, or translate these constraints to Xilinx implementation 
constraints. Check your synthesis tool documentation for information 
on multi-cycle paths. If your tool cannot translate the constraint but 
can synthesize to a multi-cycle path, you can add the constraint to the 
UCF file.

Before Pipelining
In the following example, the clock speed is limited by the clock-to 
out-time of the source flip-flop; the logic delay through four levels of 
logic; the routing associated with the four function generators; and 
the setup time of the destination register.

Table 4-5 Timing/Area for 5-to-1 MUX (XC4005EPC84-2)

Timing/Area Using BUFTs Using Gates

Timing 15.31 ns (1 block level) 17.56 ns (2 block levels)

Area 0 CLBs, 5 BUFTs 3 CLBs
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Figure 4-11 Before Pipelining

After Pipelining
This is an example of the same data path in the previous example 
after pipelining. Because the flip-flop is contained in the same CLB as 
the function generator, the clock speed is limited by the clock-to-out 
time of the source flip-flop; the logic delay through one level of logic; 
one routing delay; and the setup time of the destination register. In 
this example, the system clock runs much faster than in the previous 
example.

Figure 4-12 After Pipelining

Design Hierarchy
HDL designs can either be synthesized as a flat module or as many 
small modules. Each methodology has its advantages and disadvan-
tages, but as higher density FPGAs are created, the advantages of 
hierarchical designs outweigh any disadvantages.

Advantages to building hierarchical designs are as follows.

• Easier and faster verification/simulation

• Allows several engineers to work on one design at the same time
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• Speeds up design compilation

• Reduces design time by allowing design module re-use for this 
and future designs.

• Allows you to produce designs that are easier to understand

• Allows you to efficiently manage the design flow

Disadvantages to building hierarchical designs are as follows.

• Design mapping into the FPGA may not be as optimal across 
hierarchical boundaries; this can cause lesser device utilization 
and decreased design performance

• Design file revision control becomes more difficult

• Designs become more verbose

Most of the disadvantages listed above can be overcome with careful 
design consideration when choosing the design hierarchy.

Using Synthesis Tools with Hierarchical Designs
By effectively partitioning your designs, you can significantly reduce 
compile time and improve synthesis results. Here are some recom-
mendations for partitioning your designs.

Restrict Shared Resources to Same Hierarchy Level

Resources that can be shared should be on the same level of hier-
archy. If these resources are not on the same level of hierarchy, the 
synthesis tool cannot determine if these resources should be shared.

Compile Multiple Instances Together

You may want to compile multiple occurrences of the same instance 
together to reduce the gate count. However, to increase design speed, 
do not compile a module in a critical path with other instances.

Restrict Related Combinatorial Logic to Same Hierarchy Level

Keep related combinatorial logic in the same hierarchical level to 
allow the synthesis tool to optimize an entire critical path in a single 
operation. Boolean optimization does not operate across hierarchical 
boundaries. Therefore, if a critical path is partitioned across bound-
aries, logic optimization is restricted. In addition, constraining 
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modules is difficult if combinatorial logic is not restricted to the same 
level of hierarchy.

Separate Speed Critical Paths from Non-critical Paths

To achieve satisfactory synthesis results, locate design modules with 
different functions at different levels of the hierarchy. Design speed is 
the first priority of optimization algorithms. To achieve a design that 
efficiently utilizes device area, remove timing constraints from design 
modules.

Restrict Combinatorial Logic that Drives a Register to Same 
Hierarchy Level

To reduce the number of CLBs used, restrict combinatorial logic that 
drives a register to the same hierarchical block.

Restrict Module Size

Restrict module size to 100 - 200 CLBs. This range varies based on 
your computer configuration; the time required to complete each 
optimization run; if the design is worked on by a design team; and 
the target FPGA routing resources. Although smaller blocks give you 
more control, you may not always obtain the most efficient design. 
For the final compilation of your design, you may want to compile 
fully from the top down. Check with your synthesis vendor for 
guidelines.
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Register All Outputs

Arrange your design hierarchy so that registers drive the module 
output in each hierarchical block. Registering outputs makes your 
design easier to constrain because you only need to constrain the 
clock period and the ClockToSetup of the previous module. If you 
have multiple combinatorial blocks at different levels of the hier-
archy, you must manually calculate the delay for each module. Also, 
registering the outputs of your design hierarchy can eliminate any 
possible problems with logic optimization across hierarchical bound-
aries.

Restrict One Clock to Each Module or to Entire 
Design

By restricting one clock to each module, you only need to describe the 
relationship between the clock at the top level of the design hierarchy 
and each module clock. By restricting one clock to the entire design, 
you only need to describe the clock at the top level of the design hier-
archy.

Note: See your synthesis tool documentation for more information 
on optimizing logic across hierarchical boundaries and compiling 
hierarchical designs.
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Chapter 5

Simulating Your Design

This chapter describes simulation methods for verifying the func-
tional timing of your designs. It includes the following sections.

• “Introduction”

• “Functional Simulation”

• “Timing Simulation”

• “Using VHDL/Verilog Libraries and Models”

• “Simulating Global Signals”

• “Adapting Schematic Global Signal Methodology for VHDL”

• “Setting VHDL Global Set/Reset Emulation in Functional Simu-
lation”

• “Using Oscillators (VHDL)”

• “Compiling Verilog Libraries”

• “Setting Verilog Global Set/Reset”

• “Setting Verilog Global Tristate (XC4000, Spartan, and XC5200 
Outputs Only)”

Introduction
Xilinx supports functional and timing simulation of HDL designs at 
the following three points in the HDL design flow as shown in the 
following figure. 

• Register Transfer Level (RTL) simulation which may include the 
following.

• Instantiated UniSim library components
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• LogiBLOX modules

• LogiCORE models

• Post-synthesis functional simulation with one of the following.

• Gate-level UniSim library components

or 

• Gate-level pre-route SimPrim library components

• Post-implementation back-annotated timing simulation with the 
following.

• SimPrim library components

• Standard Delay Format (SDF) file

Figure 5-1 Three Simulation Points for HDL Designs

The three primary simulation points can be expanded to allow for 
two additional post-synthesis simulations, as shown in the following 
table. These two additional points can be used when the synthesis 
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tool either cannot write VHDL or Verilog, or if the netlist is not in 
terms of UniSim components.

These simulation points are described in detail in the “Functional 
Simulation” section and the “Timing Simulation” section. The 
libraries required to support the simulation flows are described in 
detail in the “Using VHDL/Verilog Libraries and Models” section. 
The new flows and libraries now support closer functional equiva-
lence of initialization behavior between functional and timing simu-
lations. This is due to the addition of new methodologies and library 
cells to simulate GSR/GTS behavior.

It is important to address the built-in reset circuitry behavior in your 
designs starting with the first simulation to ensure that the simula-
tions agree at the three primary points.

If you do not simulate GSR behavior prior to synthesis and place and 
route, your RTL and possibly post-synthesis simulations will not 
initialize to the same state as your post-route timing simulation. As a 
result, your various design descriptions are not functionally equiva-
lent and your simulation results will not match. In addition to the 
behavioral representation for GSR, you need to add a Xilinx imple-
mentation directive. This directive is used to specify to the place and 
route tools to use the special purpose GSR net that is pre-routed on 
the chip, and not to use the local asynchronous set/reset pins. Some 
synthesis tools can identify, from the behavioral description, the GSR 
net, and will place the STARTUP module on the net to direct the 
implementation tools to use the global network. However, other 
synthesis tools interpret behavioral descriptions literally, and will 
introduce additional logic into your design to implement a function. 

Table 5-1 Five Simulation Points in HDL Design Flow

Simulation 
UniSim

LogiBLOX 
Models

SimPrim SDF

1. RTL X X

2. Post-Synthesis X X

3. Functional Post-NGDBuild 
(Optional)

X

4.  Functional Post-MAP 
(Optional)

X X

5. Post-Route Timing X X
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Without specific instructions to use device global networks, the Xilinx 
implementation tools will use general purpose logic and interconnect 
resources to redundantly build functions already provided by the 
silicon.

Even if GSR behavior is not described, the actual chip initializes 
during configuration, and the post-route netlist will have this net that 
must be driven during simulation. The “Simulating Global Signals” 
section includes the methodology to describe this behavior, as well as 
the GTS behavior for output buffers.

Xilinx VHDL simulation supports the VITAL standard. This standard 
allows you to simulate with any VITAL-compliant simulator, 
including MTI/Mentor® ModelSim, Synopsys VSS, and Active-
VHDL.

Built-in Verilog support allows you to simulate with the Cadence 
Verilog-XL and other compatible simulators. Xilinx HDL simulation 
supports all current Xilinx FPGA and CPLD devices. Refer to the 
“Using VHDL/Verilog Libraries and Models” section for the list of 
supported VHDL and Verilog standards.

Functional Simulation
Functional simulation of HDL designs includes support for FPGA 
and CPLD architecture features, such as global set/reset, global 
tristate enable, on-chip oscillators, RAMs, and ROMs.

You can perform functional simulation at the following points in the 
design flow.

• RTL simulation, including instantiated UniSim library compo-
nents, LogiBLOX modules, and LogiCORE models

• Post-synthesis gate-level VHDL or Verilog netlist

• Post-NGDBuild gate-level VHDL or Verilog netlist from imple-
mentation after NGDBuild using the SimPrim library

• Post-map partial-timing functional simulation with netlist and 
SDF file from implementation after mapping, and before place 
and route, using the SimPrim library
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Register Transfer Level (RTL)
The first simulation point is the RTL-level simulation that allows you 
to verify or simulate a description at the system or chip level. At this 
level, the system or chip is described with high-level RTL language 
constructs. VHDL and Verilog simulators exercise the design to check 
its functionality before it is implemented in gates. A test bench is 
created to model the environment of the system or chip. At this level, 
the Unified Simulation Library (UniSim) is used to instantiate cells. 
You can also instantiate LogiBLOX components if you do not want to 
rely on the module generation capabilities of your synthesis tool, or if 
your design requires larger memory structures.

Post-Synthesis (Pre-NGDBuild) Gate-Level 
Simulation

After the RTL simulation is error-free, the system or chip is synthe-
sized to gates. The test bench is used again to simulate the synthe-
sized result and check its consistency with the original design 
description. 

Gate-level simulation in the Xilinx design flow includes any simula-
tion performed after any of the synthesis, map, or place and route 
stages. The post-synthesis pre-NGDBuild gate-level simulation is a 
functional simulation with unit delay timing. The gates are expressed 
in terms of UniSim components.

This gate-level functional simulation allows you to directly verify 
your design after it has been generated by the synthesis tool. If there 
are differences in the behavior of the original RTL description and the 
synthesized design, this may indicate a problem with the synthesis 
tool. Although RTL-level and gate-level simulation may differ even 
when the synthesis is correct. This is due to the change in the level of 
abstraction. In general, overall functionality should be the same, but 
timing differences may occur.

Post-synthesis simulation is synthesis vendor-dependent, and the 
synthesis tool must write VHDL or Verilog netlists in terms of 
UniSim library components. Check with your synthesis vendor for 
this feature. The library usage guidelines for RTL simulation also 
apply to post-synthesis pre-NGDBuild gate-level functional simula-
tion. LogiBLOX models remain as behavioral blocks and can be simu-
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lated in the same design as structural UniSim components. You may 
have to insert library statements into the HDL code.

Post-NGDBuild (Pre-Map) Gate-Level Simulation
The post-NGDBuild (pre-map) gate-level functional simulation is 
used when it is not possible to simulate the direct output of the 
synthesis tool. This occurs when the tool cannot write UniSim-
compatible VHDL or Verilog netlists. In this case, NGDBuild trans-
lates the EDIF or XNF output of synthesis to SimPrim library compo-
nents. Like post-synthesis, pre-NGDBuild simulation, this simulation 
allows you to verify that your design has been synthesized correctly, 
and you can begin to identify any differences due to the lower level of 
abstraction. Unlike the post-synthesis pre-NGDBuild simulation, 
there are GSR, GR (global reset), PRLD (preload), and GTS nets that 
must be initialized, just as for post-map partial timing simulation. 

Different simulation libraries are used to support simulation before 
and after running NGDBuild. Prior to NGDBuild, your design is 
expressed as a UniSim netlist containing Unified Library compo-
nents. After NGDBuild, your design is a netlist containing SimPrims. 
Although these library changes are fairly transparent, two important 
considerations are specifying different simulation libraries for pre- 
and post-implementation simulation, and the different gate-level 
cells in pre- and post-implementation netlists.

You can pause the implementation tools after reading in your source 
files; select either a VHDL or Verilog netlist as an output file; and 
write the file.

Post-Map Partial Timing (CLB and IOB Block Delays)
The third type of post-synthesis functional simulation is post-map 
partial timing simulation. This gate-level description is also 
expressed in terms of SimPrim components.

The SDF file that is created contains timing numbers for the CLB and 
IOB mapped blocks. At this point, your design is not routed and does 
not contain net delays, except for pre-laid out macros, such as cores. 
Like the post-NGDBuild and full-timing simulation, there are GSR, 
GR, PRLD, and GTS nets that must be initialized. If you want partial 
timing delays, you can use the SDF file (this is optional). 
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You can pause the implementation tools after the Map program stops, 
and write one of the HDL formats.

Creating a Simulation Test Bench
When you create a test bench for functional simulation, refer to the 
following table for coding style examples. You should refer to your 
synthesis vendor’s documentation before using these styles because 
many of the styles cannot be synthesized.

Table 5-2 Common Coding Examples for Verilog/VHDL

Description Verilog VHDL

Delay or wait 20 
ns

‘timescale 1 ns/ 100 ps
#20

wait for 20 ns;

Creation of a free 
running clock

Initial
begin

clock = 0;
#25 forever #25 clock = 

~clock;
end

Loop
wait for 25 ns;
clock <=not (clock);

end loop;

Print “Text.” to 
screen

$display(“Text”); report “Text.”

Print value of 
signal to screen 
whenever the 
value changes

$monitor(%r”,$real 
time,”%b”,
clock,”%b”my_signal);

Apply a binary 
value 1010 to an 
input bus X.

X = 4’b1010; X <=”1010”;

Creation of a for 
loop 0 to 10

for(x=0; x < 10; x=x+1)
begin

actions
end

for x in 0 to 9 loop
actions

end loop;

Write “X = value” 
to an output file

$dumpfile (“file
name.dmp”);
$dumpvars (X);

variable TEMP;
write (TEMP, “X =”);
write (TEMP, X);
writeline (filename, 
TEMP);
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Timing Simulation
Timing simulation is important in verifying the operation of your 
circuit after the worst-case placed and routed delays are calculated 
for your design. In many cases, you can use the same test bench that 
you used for functional simulation to perform a more accurate simu-
lation with less effort. You can compare the results from the two 
simulations to verify that your design is performing as initially speci-
fied. The Xilinx tools create a VHDL or Verilog simulation netlist of 
your placed and routed design, and provide libraries that work with 
many common HDL simulators.

Wait until X is 
logic one

wait (X == 1’b1); wait (X == ’1’);

Wait until X tran-
sitions to a logic 
one

@(posedge X); wait on X;

If-Else construct always @ (X)
begin

if (X = 1)
Y = 1’b0;

else
Y = 1’b0;

end

process (X)
if (X = ‘1’) then

Y = ‘0’;
else 

Y = ‘1’;
end if;

end process;

Case construct always @(X or A)
case (X)

2’b00 : Y = 1’b0;
2’b01 : Y = 1’b1;
default : Y = A;

endcase

process (X,A)
begin

case X is
when “00” => Y =’0’;
when “01” => Y = ‘1’;
when others => Y = A;

end case;
end process;

Example instanti-
ation of an OFD

OFD U1 
(.Q(D_OUT),.D(D_IN),

.C(CLOCK));

U1:  OFD port map 
(Q => D_OUT), D => D_IN,

C => CLOCK);

Table 5-2 Common Coding Examples for Verilog/VHDL

Description Verilog VHDL
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Post-Route Full Timing (Block and Net Delays)
After your design is routed using PAR, it can be simulated with the 
actual block and net timing delays with the same test bench used in 
the behavioral simulation. 

The back-annotation process (NGDAnno) produces a netlist of 
SimPrims annotated with an SDF file with the appropriate block and 
net delay data from the place and route process. This netlist has GSR, 
GR, PRLD, and GTS nets that must be initialized. For more informa-
tion, refer to the “Simulating Global Signals” section.

Creating a Timing Simulation Netlist
You can create a timing simulation netlist from the Design Manager 
or from the command line, as described in this section.

From the Design Manager

1. Select Setup → Options in the Flow Engine.

The Options dialog box appears.

2. Select the Produce Timing Simulation Data button in the 
Optional Targets field.

3. Select the Edit Template button next to the Implementation drop-
down list in the Program Options Templates field.

The Implementation Template dialog box appears.

4. Select the Interface tab.

5. In the Simulation Data Options field, select applicable options as 
follows.

• Format

Specify the netlist format to use for simulation. The format is 
usually VHDL or Verilog for synthesis designs.

• Correlate Simulation Data to Input Design

This option enables signal back annotation to the original 
compiled netlist. By default, this option is on. However, you 
can turn if off to decrease run time, or if there are problems 
with the back-annotated simulation data. Port names are not 
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changed by this option; however, internal node names may 
change.

• Bring Out Global Set/Reset Net as a Port

This option creates an external port in the simulation netlist 
to allow control of the power-on reset from a port. This 
option is not necessary for most simulators, and is off by 
default.

6. Click OK in the Implementation Template dialog box.

7. Click OK in the Options dialog box.

8. When you implement your design, the Flow Engine produces 
timing simulation data files.

Note: If you are using the Verilog-XL simulator, you may want to use 
the –ul switch for the NGD2VER program to automatically add the 
uselib directive to the simulation netlist to point to the location of the 
simulation libraries. Use the Template Manager to set this switch. 
Refer to the Design Manager/Flow Engine Guide or http://
www.xilinx.com/techdocs/3167.htm for more information.

From the Command Line

Note: To display the available options for the programs in this 
section, enter the program executable name at the prompt without 
any arguments. For complete descriptions of these options, refer to 
the Development System Reference Guide.

1. Run NGDAnno on your placed and routed .ncd file.

For back-annotated output (signals correlated to original netlist), 
enter the following.

ngdanno –p design.pcf design.ncd design.ngm

For output that is not back-annotated (faster run time), enter the 
following.

ngdanno design.ncd

2. Run the NGD2XXX program for the particular netlist you want 
to create.

For VHDL, enter the following.

ngd2vhdl [options] design.nga
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For Verilog, enter the following.

ngd2ver [options] design.nga

Using VHDL/Verilog Libraries and Models
The five simulation points listed previously require the UniSim, 
SimPrim, XDW (Xilinx DesignWare), and LogiBLOX libraries. The 
first point, RTL simulation, is a behavioral description of your design 
at the register transfer level. RTL simulation is not architecture-
specific unless your design contains instantiated UniSim or Logi-
BLOX components. To support these instantiations, Xilinx provides a 
functional UniSim library and a behavioral LogiBLOX library. 

The second point, post-synthesis (pre-NGDBuild) gate-level simula-
tion uses the UniSim and XDW libraries. The third, fourth, and fifth 
points (post-NGDBuild, post-map, and post-route) use the SimPrim 
library. The following table indicates what library is required for each 
of the five simulation points. 

Adhering to Industry Standards
The standards in the following table are supported by the Xilinx 
simulation flow.

Table 5-3 Simulation Phase Library Information

Simulation Point Compilation Order of Library Required

RTL UniSim
LogiBLOX

Post-Synthesis UniSim (Device dependent)

Post-NGDBuild SimPrim

Post-MAP SimPrim

Post-Route SimPrim

Table 5-4 Standards Supported by Xilinx Simulation Flow

Description Version

VHDL Language IEEE-STD-1076-87

Verilog Language IEEE-STD-1364-95

VITAL Modeling Standard IEEE-STD-1076.4-95
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The UniSim and SimPrim libraries adhere to IEEE-STDs. The VHDL 
library uses the VITAL IEEE-STD-1076.4 standard, and the Verilog 
library uses the IEEE-STD-1364 standard. By following these stan-
dards, Xilinx provides support for customers who use HDL tools 
from various vendors. 

VHDL Initiative Towards ASIC Libraries (VITAL) was created to 
promote the standardization and interchangeability of VHDL 
libraries and simulators from various vendors. It also defines a stan-
dard for timing back-annotation to VHDL simulators. 

Most simulator vendors have agreed to use the IEEE-STD 1076.4 
VITAL standard for the acceleration of gate-level simulations. Check 
with your simulator vendor to confirm that this standard is being 
followed, and to verify proper settings and VHDL packages for this 
standard. The simulator may also accelerate IEEE-STD-1164, the stan-
dard logic package for types. 

VITAL libraries include some overhead for timing checks and back-
annotation styles. The UniSim Library turns these timing checks off 
for unit delay functional simulation. The SimPrim back-annotation 
library keeps these checks on by default; however, you or your 
system administrator can turn them off. You must edit and re-
compile the SimPrim components file after setting the generics.

Standard Delay Format (SDF) 2.1

 Std_logic Data Type IEEE-STD-1164-93

Table 5-4 Standards Supported by Xilinx Simulation Flow

Description Version
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Locating Library Source Files
The following table provides information on the location of the simu-
lation library source files, as well as the order for a typical compila-
tion.

Using the UniSim Library 
The UniSim Library, used for functional simulation only, contains 
default unit delays. This library includes all the Xilinx Unified 
Library components that are inferred by most popular synthesis 

Table 5-5 Simulation Library Source Files

 Library

Location of Source 
Files

Required Libraries

Verilog
VITAL
VHDL

Verilog
VITAL
VHDL

UniSim 4K 
Family, 
Spartan
(use 
UNI4000E 
for Spartan)

$XILINX/
verilog/
src/
unisims

 $XILINX/
vhdl/src/
unisims

Not required for
Verilog-XL;
see vendor docu-
mentation for other 
simulators

Required;
typical compilation order: 
unisim_VCOMP.vhd
unisim_VPKG.vhd
unisim_VITAL.vhd
unisim_VCFG4K.vhd 
(optional)

UniSim
52K Family

$XILINX/
verilog/
src/
uni5200

 $XILINX/
vhdl/src/
unisims

Not required for
Verilog-XL;
see vendor docu-
mentation for other 
simulators

Required;
typical compilation order: 
unisim_VCOMP52K.vhd
unisim_VITAL.vhd
unisim_VITAL52K.vhd
unisim_VCFG52K.vhd

LogiBLOX
(Device
Indepen-
dent)

None; 
uses 
SimPrim 
library

 $XILINX/
vhdl/src/
logiblox

None; uses 
SimPrim library

Required;
typical compilation order: 
mvlutil.vhd
mvlarith.vhd
logiblox.vhd

SimPrim
(Device
Indepen-
dent)

$XILINX/
verilog/
src/
simprims

 $XILINX/
vhdl/src/
simprims

Not required for
Verilog-XL;
see vendor docu-
mentation for other 
simulators

Required;
typical compilation order:
simprim_Vcomponents.vhd
simprim_Vpackage.vhd
simprim_VITAL.vhd 
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tools. In addition, the UniSim Library includes components that are 
commonly instantiated, such as IOs and memory cells. You should 
use your synthesis tool’s module generators (such as LogiBLOX) to 
generate higher order functions, such as adders, counters, and large 
RAMs. 

UniSim Library Structure

The UniSim library directory structure is different for VHDL and 
Verilog. There is only one VHDL library for all Xilinx technologies 
because the implementation differences between architectures are not 
important for unit delay functional simulation except in a few cases 
where functional differences occur. 

For example, the decode8 in XC4000 devices has a pull-up, and in 
XC5200 devices, it does not. In these few cases, configuration state-
ments are used to choose between architectures for the components. 
One library makes it easy to switch between technologies. It is left up 
to the user and the synthesis tool to use technology-appropriate cells. 
For Verilog, separate libraries are provided for each technology 
because Verilog does not have a configuration statement.

Schematic macros are not provided because most schematic vendors 
provide the lower-level netlist for importing into a synthesis tool. 
Some synthesis vendors have these macros in their libraries, and can 
expand them to gates. You can use the HDL output from synthesis to 
simulate these macros. You can also use a post-NGDBuild or post-
Map netlist to simulate netlists with embedded schematic macros. 
This lower-level netlist for a schematic macro is also required for 
implementation. The VHDL models for Synopsys DesignWare 
components are in the Xilinx Synopsys Interface at $XILINX/
synopsys/libraries/sim/src/xdw. Because Verilog versions of the 
DesignWare components are not currently available, use post-
NGDBuild functional simulation instead.

• VHDL UniSim Library

The VHDL version of the UniSim library is VITAL-compliant, 
and can be accelerated, however, it is not back-annotated with an 
SDF file. The files are in $XILINX/vhdl/src/unisims. The source 
file should be compiled into a library named UNISIM.

• Verilog UniSim Library
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The Verilog version of the UniSim library may not have to be 
compiled, depending on the Verilog tool. Because there are a few 
cells with functional differences between Xilinx devices, a sepa-
rate library is provided for each supported device. For example, 
decoders contain pull-ups in some devices and not in others. The 
libraries are in uppercase only. The libraries are located at 
$XILINX/verilog/src/technology, where technology is UNI3000, 
unisims, UNI5000, or UNI9000.

Note: Verilog reserves the names buf, pullup, and pulldown; the 
Xilinx versions are changed to buff, pullup1, pullup2, or pulldown2, 
and then mapped to the proper cell during implementation.

Compiling the UniSim Library

The UniSim VHDL library (or Verilog library) can be compiled to any 
physical location. The VHDL source files are found in $XILINX/
vhdl/src/unisims and are listed here in the order in which they must 
be compiled.

1. unisim_VCOMP.vhd (component declaration file)

2. unisim_VCOMP52K.vhd (substitutional component declaration 
file for XC5200 designs)

3. unisim_VPKG.vhd (package file)

4. unisim_VITAL.vhd (model file)

5. unisim_VITAL52K.vhd (additional model file for XC5200 
designs)

6. unisim_VCFG4K.vhd (configuration file for XC4K edge 
decoders)

7. unisim_VCFG52K.vhd (configuration file for XC5200 internal 
decoders)

Note: To use both 4K and 52K, compile them into separate directories 
as a UniSim library. Change the mapping of the UniSim logical name 
to the appropriate directory for each design.

The uppercase Verilog components are found in individual compo-
nent files in the following directories.

1. $XILINX/verilog/src/uni3000 (Series 3K)
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2. $XILINX/verilog/src/unisims (Series 4KE, 4KX, 4KL, 4KXV, 
Spartan, Virtex)

3. $XILINX/verilog/src/uni5200 (Series 5200)

4. $XILINX/verilog/src/uni9000 (Series 9500)

Instantiating UniSim Library Components

You can instantiate UniSim library components in your design and 
simulate them during RTL simulation. Your VHDL code must refer to 
the UniSim library compiled by you or by your system administrator. 
The VHDL simulation tool must map the logical library to the phys-
ical location of the compiled library. VHDL component declarations 
are provided in the library and do not need to be repeated in your 
code. Verilog must also map to the UniSim Verilog library.

Using the LogiBLOX Library
LogiBLOX is a module generator used for schematic-based design 
entry of modules such as adders, counters, and large memory blocks. 
In the HDL flow, you can use LogiBLOX to generate large blocks of 
memory for instantiation. Refer to the LogiBLOX Guide for more 
information.

In addition to the RTL code that results in synthesized logic, you can 
generate modules such as counters, adders, and large memory arrays 
with LogiBLOX. You can enter the desired parameters into LogiBLOX 
and select a VHDL model as output. The VHDL model is at the 
behavioral level because it allows for quicker simulation times. Logi-
BLOX is primarily useful for building large memory arrays that 
cannot be inferred. VHDL models are provided for LogiBLOX 
modules from the schematic environment, or for large memory 
arrays. Most LogiBLOX modules contain registers and require the 
global set/reset (GSR) initialization. Since the modules do not contain 
output buffers going off-chip, the global tristate enable (GTS) initial-
ization does not apply.

LogiBLOX models begin as behavioral in VHDL, but are mapped to 
SimPrim structural models in the back-annotated netlist. The behav-
ioral model is also used for any post-synthesis simulation because the 
module is processed as a “black box” during synthesis. It is important 
that the initialization behavior is consistent for the behavioral model 
used for RTL and post-synthesis simulation and for the structural 
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model used after implementation. In addition, the initialization 
behavior must work with the method used for synthesized logic and 
cores. 

Note: For Verilog, the LogiBLOX model is a structural netlist of 
SimPrim models. Do not synthesize this netlist; it is for functional 
simulation only.

Compiling the LogiBLOX Library

The LogiBLOX library is not a library of modules. It is a set of pack-
ages required by the LogiBLOX models that are created “on-the-fly” 
by the LogiBLOX tool.

You can compile the LogiBLOX VHDL library (or Verilog) to any 
specified physical location. The VHDL source files are in $XILINX/
vhdl/src/logiblox, and are listed below in the order in which they 
must be compiled. 

1. mvlutil.vhd

2. mvlarith.vhd

3. logiblox.vhd

The Verilog source files are in $XILINX/verilog/src/logiblox.

Instantiating LogiBLOX Modules

LogiBLOX components are simulated with behavioral code. They are 
not intended to be synthesized, but they can be simulated. The 
synthesizer processes the components as a “black box”. Implementa-
tion uses the NGO file created by LogiBLOX. The source libraries for 
LogiBLOX packages are in $XILINX/vhdl/src/logiblox and 
$XILINX/verilog/src/logiblox. The actual models are output from 
the LogiBLOX tool. The package files must be compiled into a library 
named logiblox. The component model from the LogiBLOX GUI 
should be compiled into your working directory with your design. 

Using the LogiCORE Library
In addition to synthesized or generated logic, you can use high-level 
pre-designed LogiCORE models. These models are high-level VHDL 
behavioral or RTL models that are mapped to SimPrim structural 
models in the back-annotated netlist. The behavioral model is used 
for any post-synthesis simulation because synthesis processes the 
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core as a “black box”. As with LogiBLOX models, the initialization 
behavior must be consistent for the behavioral model used for RTL 
and post-synthesis simulation and for the structural model used after 
implementation. In addition, the initialization behavior must work 
with the method used for synthesized logic and LogiBLOX modules. 

The UniSim VHDL and Verilog libraries can emulate the global set/
reset and global tristate network in Xilinx FPGAs. VHDL uses special 
components for driving the local reset and tristate enable lines, and 
sending implementation directives to move the nets to the global 
signal resources. Verilog uses a macro definition. 

The local signals emulate the fully routed global signals in a post-
routed netlist. Both the VHDL and Verilog post-route netlists use the 
SimPrim Library and have global reset and output tristate enable 
signals fully routed; they are not emulated.

LogiBLOX and LogiCORE models are at a behavioral level and do 
not use library components for global signals. However the Logi-
BLOX model does require the packages that are compiled into the 
LogiBLOX library.

Simulating Global Signals
Xilinx PLDs have register (flip-flops and latches) set/reset circuitry 
that pulses at the end of the configuration mode and after power-up. 
This pulse is automatic and does not need to be programmed. All the 
flip-flops and latches in a PLD receive this pulse through a dedicated 
global set/reset (GSR), PRLD, or reset (GR) net. The registers either 
set or reset, depending on how the registers are defined.

In addition to the set/reset pulse, all output buffers are tristated 
during configuration mode and after power-up with the dedicated 
global output tristate enable (GTS) net. The global tri-state and reset 
net names are provided in the following table.

Table 5-6 Global Reset and Tristate Names for Xilinx Devices

Device 
Family

Global Reset 
Name

Global Tristate 
Name

Default Reset 
Polarity

XC3000 GR Not Available Low

XC4000 GSR GTS High

XC5200 GR GTS High
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These PRLD, GSR, and GR nets require special handling during 
synthesis, simulation, and implementation to prevent them from 
being assigned to normally routed nets, which uses valuable routing 
resources and degrades design performance. The GSR, PRLD, or GR 
net receives a reset-on-configuration pulse from the initialization 
controller, as shown in the following figure. 

Figure 5-2 Built-in FPGA Initialization Circuitry

This pulse occurs during the configuration or power-up mode of the 
PLD. However, for ease of simulation, it is usually inserted at time 
zero of the test bench, before logical simulation is initiated. The pulse 
width is device-dependent and can vary widely, depending on 
process voltage and temperature changes. The pulse is guaranteed to 
be long enough to overcome all net delays on the reset special-
purpose net. The parameter for the pulse width is TPOR, as described 
in The Programmable Logic Data Book.

The tristate-on-configuration circuit shown in the “Built-in FPGA 
Initialization Circuitry” figure also occurs during the configuration or 
power-up mode of the PLD. Just as for the reset-on-configuration 

XC9500 PRLD GTS High

SPARTAN GSR GTS High

Table 5-6 Global Reset and Tristate Names for Xilinx Devices

Device 
Family

Global Reset 
Name

Global Tristate 
Name

Default Reset 
Polarity

X8352

User
Programmable
Latch/Register

Global Tri-State
(GTS)

User OutputI/O
Pad

Output Buffer

Input Buffer

User Input

User Tri-State
Enable

General Purpose

I/Os Used for
Initialization

GTS
GSR

User
Async.

Reset Global
Set/Reset

(GSR)

Initialization
Controller

User
Programmable

Logic
Resources

QD

CLR
C

CE
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simulation, it is usually inserted at time zero of the test bench before 
logical simulation is initiated. The pulse drives all outputs to the 
tristate condition they are in during the configuration of the PLD. All 
general-purpose outputs are affected whether they are regular, 
tristate, or bi-direct outputs during normal operation. This ensures 
that the outputs do not erroneously drive other devices as the PLD is 
being configured. The pulse width is device-dependent and can vary 
widely with process and temperature changes. The pulse is guaran-
teed to be long enough to overcome all net delays on the GTS net. The 
generating circuitry is separate from the reset-on-configuration 
circuit. The pulse width parameter is TPOR, as described in The 
Programmable Logic Data Book. Simulation models use this pulse width 
parameter for determining HDL simulation for global reset and tri-
state circuitry (initially developed for schematic design.)

Adapting Schematic Global Signal Methodology for 
VHDL

There are no global set/reset or output tristate enable pins on the 
simulation, synthesis, or implementation models of the register 
components in schematic-based designs. During synthesis, both the 
global and local reset and tristate-state enable signals are connected 
to the local pin. Schematic simulators can simulate global signals 
without a pin. The global signals are represented as internal signals in 
the schematic simulation model and the test vectors drive the internal 
global signals directly. If you want complete control of initialization, 
use registers with asynchronous set/reset to emulate the GSR, even if 
local set/reset is not required. Synchronous set/reset registers will 
initialize on their own at time zero. They can be synchronously set 
after that but cannot emulate GSR behavior after time zero. Some 
memory components without asynchronous clears will exhibit 
similar behavior.

In VHDL designs, you must declare as ports any signals that are stim-
ulated or monitored from outside a module. Global GSR and GTS 
signals are used to initialize the simulation and require access ports if 
controlled from the test bench. However, the addition of these ports 
makes the pre- and post-implementation versions of your design 
different, and your original test bench is no longer applicable to both 
versions of your design. Since the port lists for the two versions of 
your design are different, the socket in the test bench matches only one 
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of them. To address this issue, five new cells are provided for VHDL 
simulation: ROC, ROCBUF, TOC, TOCBUF, and STARTBUF. 

Verilog can simulate internal signals, and these signals are driven 
directly from the test bench. However, interpretive Verilog (such as 
Verilog-XL) and compiled Verilog (such as MTI or NC-Verilog) 
require a different approach for handling the libraries.

You do not need to incorporate any ports into schematic designs for 
simulators to mimic the device’s global reset (GSR) or global tristate 
(GTS) networks. Schematic simulators specify these signals on the 
register model as ‘global’ to indicate to the simulator that these 
signals are all connected. These signals are not part of the cell’s pin 
list, do not appear in the netlist, and are not implemented in the 
resulting design. These global signals are mapped into the equivalent 
signals in the back-end simulation model. Using this methodology 
with schematic designs, you can fully simulate the silicon’s built-in 
global networks and implement your design without causing conges-
tion of the general-purpose routing resources and degrading the 
clock speed.

Setting VHDL Global Set/Reset Emulation in 
Functional Simulation

When using the VHDL UniSim library, it is important to control the 
global signals for reset and output tristate enable. If do not control 
these signals, your timing simulation results will not match your 
functional simulation results because the initialization differs.

VHDL simulation does not support test bench driven internal global 
signals. If the test bench drives the global signal, a port is required. 
Otherwise, the global net must be driven by a component within the 
architecture.

Also, the register components do not have pins for the global signals 
because you do not want to wire to these special pre-laid nets. 
Instead, you want implementation to use the dedicated network on 
the chip.

For the HDL synthesis flow, the global reset and output tristate 
enable signals are emulated with the local reset and tristate enable 
signals. Special implementation directives are put on the nets to move 
them to the special pre-routed nets for global signals.
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The VHDL UniSim library uses special components to drive the local 
reset and tristate enable signals. These components use the local 
signal connections to emulate the global signal, and also provide the 
implementation directives to ensure that the pre-routed wires are 
used.

You can instantiate these special components in the RTL description 
to ensure that all functional simulations match the timing simulation 
with respect to global signal initializations. 

Global Signal Considerations (VHDL)
The following are important to VHDL simulation, synthesis, and 
implementation of global signals in FPGAs.

• The global signals have automatically generated pulses that 
always occur even if the behavior is not described in the front-
end description. The back-annotated netlist has these global 
signals, to match the silicon, even if the source design does not.

• The simulation and synthesis models for registers (flip-flops and 
latches) and output buffers do not contain pins for the global 
signals. This is necessary to maintain compatibility with sche-
matic libraries that do not require the pin to model the global 
signal behavior.

• VHDL does not have a standardized method for handling global 
signals that is acceptable within a VITAL-compatible library.

• LogiBLOX generates modules that are represented as behavioral 
models and require a different way to handle the global signal, 
yet still maintain compatibility with the method used for general 
user-defined logic and LogiCOREs.

• Intellectual property cores from the LogiCORE product line are 
represented as behavioral, RTL, or structural models and require 
a different way to handle the global signal, yet still maintain 
compatibility with the method used for general user-defined 
logic and LogiBLOX.

• The design is represented at different levels of abstraction during 
the pre- and post-synthesis and implementation phases of the 
design process. The solutions work for all three levels and give 
consistent results.
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• The place and route tools must be given special directives to 
identify the global signals in order to use the built-in circuitry 
instead of the general-purpose logic.

GSR Network Design Cases
When defining a methodology to control a device’s global set/reset 
(GSR) network, you should consider the following three general 
cases.

Note: Reset-on-Configuration for PLDs is similar to Power-on-Reset 
for ASICs except it occurs at power-up and during configuration of 
the PLD.

Case 1 is defined as follows.

• Automatic pulse generation of the Reset-On-Configuration signal

• No control of GSR through a test bench

• Involves initialization of the sequential elements in a design 
during power-on, or initialization during configuration of the 
device

• Need to define the initial states of a design’s sequential elements, 
and have these states reflected in the implemented and simulated 
design

• Two sub-cases

• In Case 1A, you do not provide the simulation with an initial-
ization pulse. The simulation model provides its own mecha-

Table 5-7 GSR Design Cases

Name Description

Case 1

Case 1A
Case 1B

Reset-On-Configuration pulse only; no user control of 
GSR
Simulation model ROC initializes sequential elements
User initializes sequential elements with ROCBUF 
model and simulation vectors

Case 2
Case 2A
Case 2B

User control of GSR after Power-on-Reset
External Port driving GSR
Internal signal driving GSR

Case 3 Don’t Care
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nism for initializing its sequential elements (such as the real 
device does when power is first applied). 

• In Case 1B, you can control the initializing power-on reset 
pulse from a test bench without a global reset pin on the 
FPGA. This case is applicable when system-level issues make 
your design’s initialization synchronous to an off-chip event. 
In this case, you provide a pulse that initializes your design 
at the start of simulation time, and possibly provide further 
pulses as simulation time progresses (perhaps to simulate 
cycling power to the device). Although you are providing the 
reset pulse to the simulation model, this pulse is not required 
for the implemented device. A reset port is not required on 
the implemented device, however, a reset port is required in 
the behavioral code through which your reset pulse can be 
applied with test vectors during simulation.

Using VHDL Reset-On-Configuration (ROC) Cell 
(Case 1A)

For Case 1A, the ROC (Reset-On-Configuration) instantiated compo-
nent model is used. This model creates a one-shot pulse for the global 
set/reset signal. The pulse width is a generic and can be configured to 
match the device and conditions specified. The ROC cell is in the 
post-routed netlist and, with the same pulse width, it mimics the pre-
route global set/reset net. The following is an example of an ROC 
cell.

Note: The TPOR parameter from The Programmable Logic Data Book is 
used as the WIDTH parameter.
5-24 Xilinx Development System



Simulating Your Design
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
library UNISIM;
use UNISIM.all;
entity EX_ROC is
   port (CLOCK, ENABLE : in std_logic;  
         CUP, CDOWN : out std_logic_vector (3 downto 0));
end EX_ROC;
architecture A of EX_ROC is
   signal GSR : std_logic;
   signal COUNT_UP, COUNT_DOWN : std_logic_vector (3 downto 0);
   component ROC
       port (O : out std_logic);
   end component;
begin
   U1 : ROC port map (O => GSR);

   UP_COUNTER : process (CLOCK, ENABLE, GSR)
   begin
       if (GSR = ’1’) then
           COUNT_UP <= "0000";
       elsif (CLOCK’event AND CLOCK = ’1’) then
           if (ENABLE = ’1’) then
               COUNT_UP <= COUNT_UP + "0001";
           end if;
       end if;
   end process UP_COUNTER;
   DOWN_COUNTER : process (CLOCK, ENABLE, GSR, COUNT_DOWN) 
   begin 
       if (GSR = ’1’ OR COUNT_DOWN = "0101") then 
           COUNT_DOWN <= "1111"; 
       elsif (CLOCK’event AND CLOCK = ’1’) then 
           if (ENABLE = ’1’) then
               COUNT_DOWN <= COUNT_DOWN - "0001"; 
           end if; 
       end if; 
   end process DOWN_COUNTER;
   CUP <= COUNT_UP;
   CDOWN <= COUNT_DOWN;
end A;
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Using ROC Cell Implementation Model (Case 1A)

Complementary to the previous VHDL model is an implementation 
model that guides the place and route tool to connect the net driven 
by the ROC cell to the special purpose net.

This cell is created during back-annotation if you do not use the –gp 
or STARTUP block options. It can be instantiated in the front end to 
match functionality with GSR, GR, or PRLD (in both functional and 
timing simulation.) During back-annotation, the entity and architec-
ture for the ROC cell is placed in your design’s output VHDL file. In 
the front end, the entity and architecture are in the UniSim Library, 
requiring only a component instantiation. The ROC cell generates a 
one-time initial pulse to drive the GR, GSR, or PRLD net starting at 
time zero for a specified pulse width. You can set the pulse width 
with a generic in a configuration statement. The default value of the 
pulse width is 0 ns. This value disables the ROC cell and causes the 
global set/reset to be held low. (Active low resets are handled within 
the netlist itself and need to be inverted before using.) 

ROC Test Bench (Case 1A)

With the ROC cell you can simulate with the same test bench used in 
RTL simulation, and you can control the width of the global set/reset 
signal in your implemented design. ROC cells require a generic 
WIDTH value, usually specified with a configuration statement. 
Otherwise, a generic map is required as part of the component instan-
tiation. You can set the generic with any generic mapping method. Set 
the width generic after consulting The Programmable Logic Data Book 
for the particular part and mode implemented. For example, an 
XC4000E part can vary from 10 ms to 130 ms. Use the TPOR param-
eter in the Configuration Switching Characteristics tables for Master, 
Slave, and Peripheral modes. The following is the test bench for the 
ROC example.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

library UNISIM;
use UNISIM.all;

entity test_ofex_roc is end test_ofexroc;
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architecture inside of test_ofex_roc is

Component ex_roc
Port ( CLOCK, ENABLE: in STD_LOGIC;
       CUP, CDOWN: out STD_LOGIC_VECTOR (3 downto 0));
End component;

.

.

.

Begin

UUT: ex_roc port map(. . . .);
.
.
.
End inside;

The best method for mapping the generic is a configuration in your 
test bench, as shown in the following example.

Configuration overall of test_ofexroc is
For inside
      For UUT:ex_roc
            For A
                 For U1:ROC use entity UNISIM.ROC 
(ROC_V)
                 Generic map (WIDTH=>52 ns);
            End for;
      End for;
End for;
End overall;
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This configuration is for pre-NGDBuild simulation. A similar config-
uration is used for post-NGDBuild simulation. The ROC, TOC, and 
OSC4 are mapped to the WORK library, and corresponding architec-
ture names may be different. Review the .vhd file created by 
NGD2VHDL for the current entity and architecture names for post-
NGDBuild simulation.

ROC Model in Four Design Phases (Case 1A)

The following figure shows the progression of the ROC model and its 
interpretation in the four main design phases.

Figure 5-3 ROC Simulation and Implementation

• Behavioral Phase—In this phase, the behavioral or RTL descrip-
tion registers are inferred from the coding style, and the ROC cell 
can be instantiated. If it is not instantiated, the signal is not driven 
during simulation or is driven within the architecture by code 
that cannot be synthesized. Some synthesizers infer the local 
resets that are best for the global signal and insert the ROC cell 
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automatically. When this occurs, instantiation may not be 
required unless RTL level simulation is needed. The synthesizer 
may allow you to select the reset line to drive the ROC cell. Xilinx 
recommends instantiation of the ROC cell during RTL coding 
because the global signal is easily identified. This also ensures 
that GSR behavior at the RTL level matches the behavior of the 
post-synthesis and implementation netlists.

• Synthesized Phase—In this phase, inferred registers are mapped 
to a technology and the ROC instantiation is either carried from 
the RTL or inserted by the synthesis tools. As a result, consistent 
global set/reset behavior is maintained between the RTL and 
synthesized structural descriptions during simulation.

• Implemented Phase—During implementation, the ROC is 
removed from the logical description that is placed and routed as 
a pre-existing circuit on the chip. The ROC is removed by making 
the output of the ROC cell appear as an open circuit. Then the 
implementation tool can trim all the nets driven by the ROC to 
the local sets or resets of the registers, and the nets are not routed 
in general purpose routing. All set/resets for the registers are 
automatically assumed to be driven by the global set/reset net so 
data is not lost.

• Back-annotated Phase—In this phase, the Xilinx VHDL netlist 
program assumes all registers are driven by the GSR net; replaces 
the ROC cell; and rewires it to the GSR nets in the back-annotated 
netlist. The GSR net is a fully wired net and the ROC cell is 
inserted to drive it. A similar VHDL configuration can be used to 
set the generic for the pulse width.

Using VHDL ROCBUF Cell (Case 1B)

For Case 1B, the ROCBUF (Reset-On-Configuration Buffer) instanti-
ated component is used. This component creates a buffer for the 
global set/reset signal, and provides an input port on the buffer to 
drive the global set reset line. During the place and route process, this 
port is removed so it is not implemented on the chip. ROCBUF does 
not reappear in the post-routed netlist. Instead, you can select an 
implementation option to add a global set/reset port to the back-
annotated netlist. A buffer is not necessary since the implementation 
directive is no longer required.
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The following example illustrates how to use the ROCBUF in your 
designs. 

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

library UNISIM;
use UNISIM.all;
entity EX_ROCBUF is
   port (CLOCK, ENABLE, SRP : in std_logic;  
         CUP, CDOWN : out std_logic_vector (3 downto 0));
end EX_ROCBUF;
architecture A of EX_ROCBUF is
   signal GSR : std_logic;
   signal COUNT_UP, COUNT_DOWN : std_logic_vector (3 downto 0);
   component ROCBUF
       port (I : in std_logic;
             O : out std_logic);
   end component;
begin
   U1 : ROCBUF port map (I => SRP, O => GSR);
   UP_COUNTER : process (CLOCK, ENABLE, GSR)
   begin
       if (GSR = ’1’) then
           COUNT_UP <= "0000";
       elsif (CLOCK’event AND CLOCK = ’1’) then
           if (ENABLE = ’1’) then
               COUNT_UP <= COUNT_UP + "0001";
           end if;
       end if;
   end process UP_COUNTER;
   DOWN_COUNTER : process (CLOCK, ENABLE, GSR, COUNT_DOWN) 
   begin 
       if (GSR = ’1’ OR COUNT_DOWN = "0101") then 
           COUNT_DOWN <= "1111"; 
       elsif (CLOCK’event AND CLOCK = ’1’) then 
           if (ENABLE = ’1’) then
               COUNT_DOWN <= COUNT_DOWN - "0001"; 
           end if; 
       end if; 
   end process DOWN_COUNTER;
   CUP <= COUNT_UP;
   CDOWN <= COUNT_DOWN;
end A;
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ROCBUF Model in Four Design Phases (Case 1B)

The following figure shows the progression of the ROCBUF model 
and its interpretation in the four main design phases.

Figure 5-4 ROCBUF Simulation and Implementation

• Behavioral Phase—In this phase, the behavioral or RTL descrip-
tion registers are inferred from the coding style, and the ROCBUF 
cell can be instantiated. If it is not instantiated, the signal is not 
driven during simulation, or it is driven within the architecture 
by code that cannot be synthesized. Use the ROCBUF cell instead 
of the ROC cell when you want test bench control of GSR simula-
tion. Xilinx recommends instantiating the ROCBUF cell during 
RTL coding because the global signal is easily identified, and you 
are not relying on a synthesis tool feature that may not be avail-
able if ported to another tool. This also ensures that GSR behavior 
at the RTL level matches the behavior of the post-synthesis and 
implementation netlists.
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• Synthesized Phase—In this phase, inferred registers are mapped 
to a technology and the ROCBUF instantiation is either carried 
from the RTL or inserted by the synthesis tools. As a result, 
consistent global set/reset behavior is maintained between the 
RTL and synthesized structural descriptions during simulation.

• Implemented Phase—During implementation, the ROCBUF is 
removed from the logical description that is placed and routed as 
a pre-existing circuit on the chip. The ROCBUF is removed by 
making the input and the output of the ROCBUF cell appear as 
an open circuit. Then the implementation tool can trim the port 
that drives the ROCBUF input, as well as the nets driven by the 
ROCBUF output. As a result, nets are not routed in general 
purpose routing. All set/resets for the registers are automatically 
assumed to be driven by the global set/reset net so data is not 
lost. You can use a VHDL netlist tool option to add the port back.

• Back-annotated Phase—In this phase, the Xilinx VHDL netlist 
program starts with all registers initialized by the GSR net, and it 
replaces the ROC cell it would normally insert with a port if the 
GSR port option is selected. The GSR net is a fully wired net 
driven by the added GSR port. A ROCBUF cell is not required 
because the port is sufficient for simulation, and implementation 
directives are not required

Using VHDL STARTBUF Block (Case 2A and 2B)

The STARTUP block is traditionally instantiated to identify the GR, 
PRLD, or GSR signals for implementation if the global reset on 
tristate is connected to a chip pin. However, this implementation 
directive component cannot be simulated, and causes warning 
messages from the simulator. However, you can use the STARTBUF 
cell instead, which can be simulated.   STARTUP blocks are allowed if 
the warnings can be addressed or safely ignored. 

For Cases 2A and 2B, use the STARTBUF cell. This cell provides 
access to the input and output ports of the STARTUP cell that direct 
the implementation tool to use the global networks. The input and 
output port names differ from the names of the corresponding ports 
of the STARTUP cell. This was done for the following reasons.

• To make the STARTBUF a model that can be simulated with 
inputs and outputs. The STARTUP cell hangs from the net it is 
connected to.
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• To make one model that works for all Xilinx technologies. The 
XC4000 and XC5200 families require different STARTUP cells 
because the XC5200 has a global reset (GR) net and not a GSR. 

The mapping to the architecture-specific STARTUP cell from the 
instantiation of the STARTBUF is done during implementation. The 
STARTBUF pins have the suffix “IN” (input port) or “OUT” (output 
port). Two additional output ports, GSROUT and GTSOUT, are avail-
able to drive a signal for clearing or setting a design's registers 
(GSROUT), or for tri-stating your design's I/Os (GTSOUT).

The input ports, GSRIN and GTSIN, can be connected either directly 
or indirectly via combinational logic to input ports of your design. 
Your design's input ports appear as input pins in the implemented 
design. The design input port connected to the input port, GSRIN, is 
then referred to as the device reset port, and the design input port 
connected to the input port, GTSIN, is referred to as the device 
tristate port. The following table shows the correspondence of pins 
between STARTBUF and STARTUP.

Table 5-8 STARTBUF/STARTUP Pin Descriptions

STARTBUF Pin 
Name

Connection 
Point

XC4000 
STARTUP Pin 

Name

XC5200 
STARTUP Pin 

Name
Spartan

GSRIN Global Set/
Reset Port of 
Design

GSR GR GSR

GTSIN Global Tristate 
Port of Design

GTS GTS GTS

GSROUT All Registers 
Asynchronous 
Set/Reset

Not Available 
For Simulation 
Only

Not Available 
For Simulation 
Only

Not Available 
For Simulation 
Only

GTSOUT All Output 
Buffers Tristate 
Control

Not Available 
For Simulation 
Only

Not Available 
For Simulation 
Only

N/A

CLKIN Port or INternal 
Logic

CLK CLK CLK

Q2OUT Port Or Internal 
Logic

Q2 Q2 Q2
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Note: Using STARTBUF indicates that you want to access the global 
set/reset and/or tristate pre-routed networks available in your 
design’s target device. As a result, you must provide the stimulus for 
emulating the automatic pulse as well as the user-defined set/reset. 
This allows you complete control of the reset network from the test 
bench.

The following example shows how to use the STARTBUF cell.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
library UNISIM;
use UNISIM.all;
entity EX_STARTBUF is
   port (CLOCK, ENABLE, DRP, DTP : in std_logic;  
         CUP, CDOWN : out std_logic_vector (3 downto 0));
end EX_STARTBUF;
architecture A of EX_STARTBUF is
   signal GSR, GSRIN_NET, GROUND, GTS : std_logic;
   signal COUNT_UP, COUNT_DOWN : std_logic_vector (3 downto 0);
   component STARTBUF
       port (GSRIN, GTSIN, CLKIN : in std_logic; GSROUT, GTSOUT,
             DONEINOUT, Q1Q4OUT, Q2OUT, Q3OUT : out std_logic);
   end component;
begin
   GROUND <= ’0’;
   GSRIN_NET <= NOT DRP;
   U1 : STARTBUF port map (GSRIN => GSRIN_NET, GTSIN => DTP,
        CLKIN => GROUND, GSROUT => GSR, GTSOUT => GTS);
   UP_COUNTER : process (CLOCK, ENABLE, GSR)
   begin

Q3OUT Port Or Internal 
Logic

Q3 Q3 Q3

OUT Port Or Internal 
Logic

Q1Q4 Q1Q4 Q1Q4

DONEINOUT Port Or Internal 
Logic

DONEIN DONEIN DONEIN

Table 5-8 STARTBUF/STARTUP Pin Descriptions

STARTBUF Pin 
Name

Connection 
Point

XC4000 
STARTUP Pin 

Name

XC5200 
STARTUP Pin 

Name
Spartan
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       if (GSR = ’1’) then
           COUNT_UP <= "0000";
       elsif (CLOCK’event AND CLOCK = ’1’) then
           if (ENABLE = ’1’) then
               COUNT_UP <= COUNT_UP + "0001";
           end if;
       end if;
   end process UP_COUNTER;
   DOWN_COUNTER : process (CLOCK, ENABLE, GSR, COUNT_DOWN) 
   begin 
       if (GSR = ’1’ OR COUNT_DOWN = "0101") then 
           COUNT_DOWN <= "1111"; 
       elsif (CLOCK’event AND CLOCK = ’1’) then 
           if (ENABLE = ’1’) then
               COUNT_DOWN <= COUNT_DOWN - "0001"; 
           end if; 
       end if; 
   end process DOWN_COUNTER;
   CUP <= COUNT_UP when (GTS = ’0’ AND COUNT_UP /= "0000") else "ZZZZ";
   CDOWN <= COUNT_DOWN when (GTS = ’0’) else "ZZZZ";
end A;

GTS Network Design Cases
Just as for the global set/reset net there are three cases for using your 
device’s output tristate enable (GTS) network, as shown in the 
following table.

Case A is defined as follows.

Table 5-9 GTS Design Cases

Name Description

Case A
Case A1

Case A2

Tristate-On-Configuration only; no user control of GTS
Simulation Model TOC Tristates output buffers during 
configuration or power-up 
User initializes sequential elements with TOCBUF 
model and simulation vectors

Case B
Case B1
Case B2

User control of GTS after Tristate-On-Configuration 
External PORT driving GTS
Internal signal driving GTS

Case C Don’t Care
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• Tristating of output buffers during power-on or configuration of 
the device

• Output buffers are tristated and reflected in the implemented and 
simulated design

•  Two sub-cases

• In Case A1, you do not provide the simulation with an initial-
ization pulse. The simulation model provides its own mecha-
nism for initializing its sequential elements (such as the real 
device does when power is first applied). 

• In Case A2, you can control the initializing Tristate-On-
Configuration pulse. This case is applicable when system-
level issues make your design’s configuration synchronous 
with an off-chip event. In this case, you provide a pulse to 
tristate the output buffers at the start of simulation time, and 
possibly provide further pulses as simulation time progresses 
(perhaps to simulate cycling power to the device). Although 
you are providing the Tristate-On-Configuration pulse to the 
simulation model, this pulse is not required for the imple-
mented device. A Tristate-On-Configuration port is not 
required on the implemented device, however, a TOC port is 
required in the behavioral code through which your TOC 
pulse can be applied with test vectors during simulation.

Using VHDL Tristate-On-Configuration (TOC)

The TOC cell is created if you do not use the –tp or STARTUP block 
options. The entity and architecture for the TOC cell is placed in the 
design’s output VHDL file. The TOC cell generates a one-time initial 
pulse to drive the GR, GSR, or PRLD net starting at time ‘0’ for a user-
defined pulse width. The pulse width can be set with a generic. The 
default WIDTH value is 0 ns, which disables the TOC cell and holds 
the tristate enable low. (Active low tristate enables are handled within 
the netlist itself; you must invert this signal before using it.) 

The TOC cell enables you to simulate with the same test bench as in 
the RTL simulation, and also allows you to control the width of the 
tristate enable signal in your implemented design.

The TOC components require a value for the generic WIDTH, usually 
specified with a configuration statement. Otherwise, a generic map is 
required as part of the component instantiation.
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You may set the generic with any generic mapping method you 
choose. Set the WIDTH generic after consulting The Programmable 
Logic Data Book for the particular part and mode you have imple-
mented. For example, an XC4000E part can vary from 10 ms to 130 
ms. Use the TPOR (Power-On Reset) parameter found in the Configu-
ration Switching Characteristics tables for Master, Slave, and Periph-
eral modes.

VHDL TOC Cell (Case A1)

For Case A1, use the TOC (Tristate-On-Configuration) instantiated 
component. This component creates a one-shot pulse for the global 
Tristate-On-Configuration signal. The pulse width is a generic and 
can be selected to match the device and conditions you want. The 
TOC cell is in the post-routed netlist and, with the same pulse width 
set, it mimics the pre-route Tristate-On-Configuration net.

TOC Cell Instantiation (Case A1)

The following is an example of how to use the TOC cell.

Note: The TPOR parameter from The Programmable Logic Data Book is 
used as the WIDTH parameter in this example.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
library UNISIM;
use UNISIM.all;
entity EX_TOC is

 port (CLOCK, ENABLE : in std_logic;
 CUP, CDOWN : out std_logic_vector (3 downto 0));

end EX_TOC;
architecture A of EX_TOC is

 signal GSR, GTS : std_logic;
 signal COUNT_UP, COUNT_DOWN : std_logic_vector (3 downto 0);
 component ROC

 port (O : out std_logic);
 end component;
 component TOC

 port (O : out std_logic);
 end component;

begin
 U1 : ROC port map (O => GSR);
 U2 : TOC port map (O => GTS);
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 UP_COUNTER : process (CLOCK, ENABLE, GSR)
 begin

 if (GSR = ’1’) then
 COUNT_UP <= "0000";

 elsif (CLOCK’event AND CLOCK = ’1’) then
 if (ENABLE = ’1’) then

 COUNT_UP <= COUNT_UP + "0001";
 end if;

 end if;
 end process UP_COUNTER;
 DOWN_COUNTER : process (CLOCK, ENABLE, GSR, COUNT_DOWN)
 begin

 if (GSR = ’1’ OR COUNT_DOWN = "0101") then
 COUNT_DOWN <= "1111";

 elsif (CLOCK’event AND CLOCK = ’1’) then
 if (ENABLE = ’1’) then

 COUNT_DOWN <= COUNT_DOWN - "0001";
 end if;

 end if;
 end process DOWN_COUNTER;
 CUP <= COUNT_UP when (GTS = ’0’ AND COUNT_UP /= "0000") else "ZZZZ";
 CDOWN <= COUNT_DOWN when (GTS = ’0’) else "ZZZZ";

end A;

TOC Test Bench (Case A1)

The following is the test bench for the TOC example.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

library UNISIM;
use UNISIM.all;

entity test_ofex_toc is end test_ofextoc;

architecture inside of test_ofex_toc is

Component ex_toc
Port ( CLOCK, ENABLE: in STD_LOGIC;
       CUP, CDOWN: out STD_LOGIC_VECTOR (3 downto 0));
End component;

.

.
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.

Begin

UUT: ex_toc port map(. . . .);
.
.
.
End inside;

The best method for mapping the generic is a configuration in the test 
bench, as shown in the following example.

Configuration overall of test_ofextoc is
For inside
      For UUT:ex_toc
            For A
                 For U1:TOC use entity UNISIM.TOC 
(TOC_V)
                 Generic map (WIDTH=>52 ns);
            End for;
      End for;
End for;
End overall;

This configuration is for pre-NGDBuild simulation. A similar config-
uration is used for post-NGDBuild simulation. The ROC, TOC, and 
OSC4 are mapped to the WORK library, and corresponding architec-
ture names may be different. Review the .vhd file created by 
NGD2VHDL for the current entity and architecture names for post-
NGDBuild simulation.

TOC Model in Four Design Phases (Case A1)

The following figure shows the progression of the TOC model and its 
interpretation in the four main design phases.
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Figure 5-5 TOC Simulation and Implementation

• Behavioral Phase—In this phase, the behavioral or RTL descrip-
tion of the output buffers are inferred from the coding style. The 
TOC cell can be instantiated. If it is not instantiated, the GTS 
signal is not driven during simulation or is driven within the 
architecture by code that cannot be synthesized. Some synthe-
sizers can infer which of the local output tristate enables is best 
for the global signal, and will insert the TOC cell automatically so 
instantiation may not be required unless RTL level simulation is 
desired. The synthesizer may also allow you to select the output 
tristate enable line you want driven by the TOC cell. Instantiation 
of the TOC cell in the RTL description is recommended because 
you can immediately identify what signal is the global signal, 
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and you are not relying on a synthesis tool feature that may not 
be available if ported to another tool.

• Synthesized Phase—In this phase, the inferred registers are 
mapped to a device, and the TOC instantiation is either carried 
from the RTL or is inserted by the synthesis tools. This results in 
maintaining consistent global output tristate enable behavior 
between the RTL and the synthesized structural descriptions 
during simulation.

• Implemented Phase—During implementation, the TOC is 
removed from the logical description that is placed and routed 
because it is a pre-existing circuit on the chip. The TOC is 
removed by making the input and output of the TOC cell appear 
as an open circuit. This allows the router to remove all nets 
driven by the TOC cell as if they were undriven nets. The VHDL 
netlist program assumes all output tristate enables are driven by 
the global output tristate enable so data is not lost.

• Back-annotation Phase—In this phase, the VHDL netlist tool re-
inserts a TOC component for simulation purposes. The GTS net is 
a fully wired net and the TOC cell is inserted to drive it. You can 
use a configuration similar to the VHDL configuration for RTL 
simulation to set the generic for the pulse width.

Using VHDL TOCBUF (Case B1)

For Case B1, use the TOCBUF (Tristate-On-Configuration Buffer) 
instantiated component model. This model creates a buffer for the 
global output tristate enable signal. You now have an input port on 
the buffer to drive the global set reset line. The implementation 
model directs the place and route tool to remove the port so it is not 
implemented on the actual chip. The TOCBUF cell does not reappear 
in the post-routed netlist. Instead, you can select an option on the 
implementation tool to add a global output tristate enable port to the 
back-annotated netlist. A buffer is not necessary because the imple-
mentation directive is no longer required.

TOCBUF Model Example (Case B1)

The following is an example of the TOCBUF model.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
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library UNISIM;
use UNISIM.all;
entity EX_TOCBUF is
   port (CLOCK, ENABLE, SRP, STP : in std_logic;  
         CUP, CDOWN : out std_logic_vector (3 downto 0));
end EX_TOCBUF;
architecture A of EX_TOCBUF is
   signal GSR, GTS : std_logic;
   signal COUNT_UP, COUNT_DOWN : std_logic_vector (3 downto 0);
   component ROCBUF
       port (I : in std_logic;
             O : out std_logic);
   end component;
   component TOCBUF
       port (I : in std_logic;
             O : out std_logic);
   end component;
begin
   U1 : ROCBUF port map (I => SRP, O => GSR);
   U2 : TOCBUF port map (I => STP, O => GTS);
   UP_COUNTER : process (CLOCK, ENABLE, GSR)
   begin
       if (GSR = ’1’) then
           COUNT_UP <= "0000";
       elsif (CLOCK’event AND CLOCK = ’1’) then
           if (ENABLE = ’1’) then
               COUNT_UP <= COUNT_UP + "0001";
           end if;
       end if;
   end process UP_COUNTER;
   DOWN_COUNTER : process (CLOCK, ENABLE, GSR, COUNT_DOWN) 
   begin 
       if (GSR = ’1’ OR COUNT_DOWN = "0101") then 
           COUNT_DOWN <= "1111"; 
       elsif (CLOCK’event AND CLOCK = ’1’) then 
           if (ENABLE = ’1’) then
               COUNT_DOWN <= COUNT_DOWN - "0001"; 
           end if; 
       end if; 
   end process DOWN_COUNTER;
   CUP <= COUNT_UP when (GTS = ’0’ AND COUNT_UP /= "0000") else "ZZZZ";
   CDOWN <= COUNT_DOWN when (GTS = ’0’) else "ZZZZ";
end A;
5-42 Xilinx Development System



Simulating Your Design
TOCBUF Model in Four Design Phases (Case B1)

The following figure shows the progression of the TOCBUF model 
and its interpretation in the four main design phases. 

Figure 5-6 TOCBUF Simulation and Implementation

• Behavioral Phase—In this phase, the behavioral or RTL descrip-
tion of the output buffers are inferred from the coding style and 
may be inserted. You can instantiate the TOCBUF cell. If it is not 
instantiated, the GTS signal is not driven during simulation or it 
is driven within the architecture by code that cannot be synthe-
sized. Some synthesizers can infer the local output tristate 
enables that make the best global signals, and will insert the 
TOCBUF cell automatically. As a result, instantiation may not be 
required unless you want RTL level simulation. The synthesizer 
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can allow you to select the output tristate enable line you want 
driven by the TOCBUF cell. Instantiation of the TOCBUF cell in 
the RTL description is recommended because you can immedi-
ately identify which signal is the global signal and you are not 
relying on a synthesis tool feature that may not be available if 
ported to another tool.

• Synthesized Phase—In this phase, the inferred output buffers 
are mapped to a device and the TOCBUF instantiation is either 
carried from the RTL or is inserted by the synthesis tools. This 
maintains consistent global output tristate enable behavior 
between the RTL and the synthesized structural descriptions 
during simulation.

• Implemented Phase—In this phase, the TOCBUF is removed 
from the logical description that is placed and routed because it is 
a pre-existing circuit on the chip. 

The TOCBUF is removed by making the input and output of the 
TOCBUF cell appear as an open circuit. This allows the router to 
remove all nets driven by the TOCBUF cell as if they were 
undriven nets. The VHDL netlist program assumes all output 
tristate enables are driven by the global output tristate enable so 
data is not lost.

• Back-annotated Phase—In this phase, the TOCBUF cell does not 
reappear in the post-routed netlist. Instead, you can select an 
option in the implementation tool to add a global output tristate 
enable port to the back-annotated netlist. A buffer is not neces-
sary because the implementation directive is no longer required. 
If the option is not selected, the VHDL netlist tool re-inserts a 
TOCBUF component for simulation purposes. The GTS net is a 
fully wired net and the TOCBUF cell is inserted to drive it. You 
can use a configuration similar to the VHDL configuration used 
for RTL simulation to set the generic for the pulse width.

Using Oscillators (VHDL)
Oscillator output can vary within a fixed range. This cell is not 
included in the SimPrim library because you cannot drive global 
signals in VHDL designs. Schematic simulators can define and drive 
global nets so the cell is not required. Verilog has the ability to drive 
nets within a lower level module as well. Therefore the oscillator cells 
are only required in VHDL. After back-annotation, their entity and 
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architectures are contained in your design’s VHDL output. For func-
tional simulation, they can be instantiated and simulated with the 
UniSim Library. 

The period of the base frequency must be set in order for the simula-
tion to proceed, since the default period of 0 ns disables the oscillator. 
The oscillator’s frequency can vary significantly with process and 
temperature.

Before you set the base period parameter, consult The Programmable 
Logic Data Book for the part you are using. For example, the section in 
The Programmable Logic Data Book for the XC4000 Series On-Chip 
Oscillator states that the base frequency can vary from 4MHz to 10 
MHz, and is nominally 8 MHz. This means that the base period 
generic “period_8m” in the XC4000E OSC4 VHDL model can range 
from 250ns to 100ns. An example of this follows.

Oscillator VHDL Example
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

library UNISIM;
use UNISIM.all;

entity test1 is
port (DATAIN: in STD_LOGIC;
DATAOUT: out STD_LOGIC);
end test1;

architecture inside of test1 is

signal RST: STD_LOGIC;

component ROC
port(O: out STD_LOGIC);
end component;

component OSC4
port(F8M: out STD_LOGIC);
end component;

signal internalclock: STD_LOGIC;
begin
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U0: ROC port map (RST);

U1: OSC4 port map (F8M=>internalclock);

process(internalclock)
begin
if (RST=’1’) then
DATAOUT <= ’0’;

elsif(internalclock’event and internalclock=’1’) then
DATAOUT <= DATAIN;

end if;
 
end process;

end inside;

Oscillator Test Bench

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

library UNISIM;
use UNISIM.all;

entity test_oftest1 is end test_oftest1;

architecture inside of test_oftest1 is

component test1
port(DATAIN: in STD_LOGIC;
DATAOUT: out STD_LOGIC);
end component;

signal userdata, userout: STD_LOGIC;

begin

UUT: test1 port map(DATAIN=>userdata,DATAOUT=>userout);

myinput: process
begin
userdata <= ’1’;
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wait for 299 ns;
userdata <= ’0’;
wait for 501 ns;
end process;

end inside;

configuration overall of test_oftest1 is
for inside
      for UUT:test1
            for inside
                  for U0:ROC use entity UNISIM.ROC(ROC_V)
                  generic map (WIDTH=> 52 ns);
                  end for;

                  for U1:OSC4 use entity UNISIM.OSC4(OSC4_V)
                  generic map (PERIOD_8M=> 25 ns);
                  end for; 
            end for;
      end for;
end for;
end overall;

This configuration is for pre-NGDBuild simulation. A similar config-
uration is used for post-NGDBuild simulation. The ROC, TOC, and 
OSC4 are mapped to the WORK library, and corresponding architec-
ture names may be different. Review the .vhd file created by 
NGD2VHDL for the current entity and architecture names for post-
NGDBuild simulation.

Compiling Verilog Libraries
For some Verilog simulators, such as NC-Verilog and ModelSim, you 
may need to compile the Verilog libraries before you can use them for 
design simulations. A pre-compiled library methodology has the 
advantage of speeding up the simulation of your designs. You do not 
need to compile the libraries for Verilog-XL because it uses an inter-
pretive compilation of the libraries. To simulate Xilinx designs, you 
need the following simulation libraries.

• UniSim Library—The UniSim library is used for behavioral 
(RTL) simulation with instantiated components in the netlist, and 
for post-synthesis (pre-M1) simulation. The Verilog library has 
separate libraries for each device family: uni3000, UniSims 
(XC4000E/L/X, Spartan/XL, and Virtex), uni5200, uni9000.
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• LogiBLOX Library—The LogiBLOX library is used for designs 
containing LogiBLOX components, during pre-synthesis (RTL), 
and post-synthesis simulation. Verilog uses SimPrim libraries. 

• SimPrim Library—The SimPrim library is used for post 
Ngdbuild (gate level functional), post-Map (partial timing), and 
post-place-and-route (full timing) simulations. This library is 
architecture independent.

Compiling Libraries for ModelSim
For detailed instructions on compiling these simulation libraries, see 
the instructions in Xilinx Solution # 1923 which is available at http://
www.xilinx.com/techdocs/1923.htm.

After compiling the libraries, notice that ModelSim creates a file 
called modelsim.ini. View this file and notice that the upper portion 
defines the locations of the compiled libraries. When doing a simula-
tion, you must provide the modelsim.ini file either by copying the file 
directly to the directory where the HDL files are to be compiled and 
the simulation is to be run, or by setting the MODELSIM environ-
ment variable to the location of your master .ini file. You must set this 
variable since the ModelSim installation does not initially declare the 
path for you. For UNIX, type the following.

setenv MODELSIM /path/to/the/modelsim.ini

Setting Verilog Global Set/Reset
For Verilog simulation, all behaviorally described (inferred) and 
instantiated registers should have a common signal which asynchro-
nously sets or resets the register. You must toggle the global set/reset 
signal (GSR for XC4000E/L/X, Spartan/XL, and Virtex designs, or 
GR for XC5200, XC3000A/L, or XC3100A/L designs). Toggling the 
global set/reset emulates the Power-On-Reset of the FPGA. If you do 
not do this, the flip-flops and latches in your simulation enter an 
unknown state.

The GSR signal in XC4000E/L/X, Spartan/XL, and Virtex devices, 
and the GR signal in XC5200 devices are active High. The GR signal 
in XC3000A/L and XC3100A/L devices are active Low.

The global set/reset net is present in your implemented design even 
if you do not instantiate the STARTUP block in your design. The 
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function of STARTUP is to give you the option to control the global 
reset net from an external pin.

If you want to set the global set/reset pulse width so that it reflects 
the actual amount of time it takes for the chip to go through the reset 
process when power is supplied to it, refer to The Programmable Logic 
Data Book for the device you are simulating. The duration of the pulse 
is specified as TPOR (Power-On-Reset).

The general procedure for specifying global set/reset or global reset 
during a pre-NGDBuild Verilog UniSims simulation involves 
defining the global reset signals with the $XILINX/verilog/src/
glbl.v module. The VHDL UniSims library contains the ROC, 
ROCBUF, TOC, TOCBUF, and STARTBUF cells to assist in VITAL 
VHDL simulation of the global set/reset and tri-state signals. 
However, Verilog allows a global signal to be modeled as a wire in a 
global module, and, thus, does not contain these cells.

Note: In the Xilinx software, the Verilog UniSims library is only used 
in RTL simulations of your designs. Simulation at other points in the 
flow use the Verilog SimPrims Libraries. 

Defining GSR in a Test Bench
For pre-NGDBuild UniSims functional simulation, you must set the 
value of the appropriate Verilog global signals (glbl.GSR or glbl.GR) 
to the name of the GSR or GR net, qualified by the appropriate scope 
identifiers. 

The scope identifiers are a combination of the test module scope and 
the design instance scope. The scope qualifiers are required because 
the scope information is needed when the glbl.GSR and glbl.GR wires 
are interpreted by the Verilog UniSims simulation models to emulate 
a global reset signal.

For post-NGDBuild and post-route timing simulation, the testfixture 
template (.tv file) produced by running NGD2VER with the –tf 
option contains most of the code previously described for defining 
and toggling GSR or GR. 

Use the following steps to define the global set/reset signals in a 
testfixture for your design.
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Note: In the following steps, testfixture_name refers to the test fixture 
module name and instance_name refers to the designated instance 
name for the instantiated design netlist within the test bench.

1. For Verilog simulation without a STARTUP block in design, 
Xilinx recommends naming the global set/reset net to 
testfixture_name.instance_name.GSR or 
testfixture_name.instance_name.GR (Verilog is case-sensitive), and 
the signal should be declared as a Verilog reg data-type. 

2. For Verilog simulation with a STARTUP block in the design, the 
GSR/GR pin is connected to an external input port, and 
glbl.GSR/glbl.GR is defined within the STARTUP block to make 
the connection between the user logic and the global GSR/GR net 
embedded in the Unified models. For post-NGDBuild functional 
simulation, post-Map timing simulation, and post-route timing 
simulation, glbl.GSR/glbl.GR is defined in the Verilog netlist that 
is created by NGD2VER. 

The signal you toggle at the beginning of the simulation is the 
port or signal in your design that is used to control global set/
reset. This is usually an external input port in the Verilog netlist, 
but it may also be a wire if global reset is controlled by logic 
internal to your design. 

3. When invoking Verilog-XL, or ModelSim to run the simulation, 
compile the Verilog source files in any order since Verilog is 
compile order independent. However, Xilinx recommends that 
you specify the test fixture file before the Verilog netlist of your 
design, as in the following examples. 

• Cadence Verilog-XL

For RTL simulation, enter the following.

verilog –y $XILINX/verilog/src/unisims 
design.stim design.v $XILINX/verilog/src/glbl.v

The path specified with the –y switch points the simulator to 
the UniSims models and is only necessary if Xilinx primitives 
are instantiated in your code. When targeting a device family 
other than the XC4000E/L/X, Spartan/XL, or Virtex families, 
change the unisims reference in the path to the targeted 
device family.

For post-implementation simulation, enter the following.
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verilog design.stim time_sim.v $XILINX/verilog/
src/glbl.v

In this example, the same test fixture file is declared first 
followed by the simulation netlist created by the Xilinx tools. 
The name of the Xilinx simulation netlist may change 
depending on how the file was created. It is also assumed 
that the –ul switch was specified during NGD2VER to 
specify the location of the SimPrims libraries using the 
‘uselib directive.

• MTI ModelSim

For RTL simulation, enter the following. 

vlog design.stim design.v $XILINX/verilog/src/
glbl.v

vsim –L unisims testfixture_name glbl

This example targets the XC4000E/L/X, Spartan/XL, or 
Virtex families and assumes the UniSims libraries are prop-
erly compiled and named unisims. For more information on 
the compilation of the ModelSim libraries, refer to http://
www.xilinx.com/techdocs/1923.htm

For post-implementation simulation, enter the following.

vlog design.stim time_sim.v $XILINX/verilog/src/glbl.v

vsim –L simprims testfixture_name glbl

This example is based on targeting the SimPrims libraries, 
which have been properly compiled and named simprims. 
Also, the name of the simulation netlist may change 
depending on how the file is created.

Note: Xilinx recommends giving the name test to the main module in 
the test fixture file. This name is consistent with the name of the test 
fixture module that is written later in the design flow by NGD2VER 
during post-NGDBuild, post-MAP, or post-route simulation. If this 
naming consistency is maintained, you can use the same test fixture 
file for simulation at all stages of the design flow with minimal modi-
fication
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Designs without a STARTUP Block
If you do not have a STARTUP block in your design, you should add 
the following to the test fixture module. 

• XC4000E/L/X, Spartan/XL, or Virtex devices.

reg GSR;

assign glbl.GSR = GSR;

assign testfixture_name.instance_name.GSR = GSR; // Only 
for RTL modeling of GSR

• XC5200, XC3000A/L, and XC3100A/L devices.

reg GR;

assign glbl.GR = GR;

assign testfixture_name.instance_name.GR = GR; // Only 
for RTL modeling of GR

For post-NGDBuild functional simulation, post-Map timing simula-
tion, and post-route timing simulation, you must omit the assign 
statement for the global reset signal. This is because the net connec-
tions exist in the post-NGDBuild design, and retaining the assign 
definition causes a possible conflict with these connections. 

Note: The terms “test bench” and “test fixture” are used synony-
mously throughout this manual.

Example 1: XC4000E/L/X, Spartan/XL, or Virtex RTL 
Functional Simulation (No STARTUP/
STARTUP_VIRTEX Block)

The following design shows how to drive the GSR signal in a testfix-
ture file at the beginning of a pre-NGDBuild Unified Library func-
tional simulation. 

You should reference the global set/reset net as GSR in XC4000E/L/
X, Spartan/XL, or Virtex designs without a STARTUP/
STARTUP_VIRTEX block. The Verilog module defining the global net 
must be referenced as glbl.GSR because this is how it is modeled in 
the Verilog UniSims library.

In the design code, declare GSR as a Verilog wire, however, it is not 
specified in the port list for the module. Describe GSR to reset or set 
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every inferred register or latch in your design. GSR does not need to 
be connected to any instantiated registers or latches, as shown in the 
following example.

module my_counter (CLK, D, Q, COUT);

input CLK, D;

output Q;

output [3:0] COUT;

 

wire GSR;

reg [3:0] COUT;

 

always @(posedge GSR or posedge CLK)

  begin

    if (GSR == 1’b1)

      COUT = 4’h0;

    else

      COUT = COUT + 1’b1;

  end

 

// FDCE instantiation

// GSR is modeled as a wire within a global module. So,

// CLR does not need to be connected to GSR and the flop

// will still be reset with GSR.

 

FDCE U0 (.Q (Q), .D (D), .C (CLK), .CE (1'b1), .CLR (1’b0));

 

endmodule

Since GSR is declared as a floating wire and is not in the port list, the 
synthesis tool optimizes the GSR signal out of the design. GSR is 
replaced later by the implementation software for all post-implemen-
tation simulation netlists.
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In the test fixture file, set GSR to test.uut.GSR (the name of the global 
set/reset signal, qualified by the name of the design instantiation 
instance name and the test fixture instance name). Since there is no 
STARTUP block, a connection to GSR is made in the testfixture via an 
assign statement.

‘timescale 1 ns / 1 ps

module test;

reg CLK, D;

wire Q;

wire [3:0] COUT;

 

reg GSR;

assign glbl.GSR = GSR;

assign test.uut.GSR = GSR;

 

my_counter uut (.CLK (CLK), .D (D), .Q (Q), .COUT (COUT));

 

initial begin

 $timeformat(-9,1,”ns”,12);

 $display(“\t   T C G D Q C”);

 $display(“\t   i L S     O”);

 $display(“\t   m K R     U”);

 $display(“\t   e         T”);

 $monitor(“%t %b %b %b %b %h”, $time, CLK, GSR, D, Q, COUT);

end

initial begin

    CLK = 0;

    forever #25 CLK = ~CLK;

end
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initial begin

    #0 {GSR, D} = 2’b11;

    #100 {GSR, D} = 2’b10;

    #100 {GSR, D} = 2’b00;

    #100 {GSR, D} = 2’b01;

    #100 $finish;

end

 

endmodule

In this example, the active high GSR signal in the XC4000 family 
device is activated by driving it high. 100 ns later, it is deactivated by 
driving it low. (100 ns is an arbitrarily chosen value.)

You can use the same test fixture for simulating at other stages in the 
design flow if this methodology is used.

Example 2: XC5200 RTL Functional Simulation (No 
STARTUP Block)

For pre-NGDBuild functional simulation, the active High GR net in 
XC5200 devices should be simulated in the same manner as GSR for 
XC4000E/L/X, Spartan/XL, or Virtex. 

In the design code, declare GR as a Verilog wire, however, it is not 
specified in the port list for the module. Describe GR to reset or set 
every inferred register or latch in your design. GR does not need to be 
connected to any instantiated registers or latches, as shown in the 
following example.

module my_counter (CLK, D, Q, COUT);

input CLK, D;

output Q;

output [3:0] COUT;

 

wire GR;

reg [3:0] COUT;
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always @(posedge GR or posedge CLK)

  begin

    if (GR == 1’b1)

      COUT = 4’h0;

    else

      COUT = COUT + 1’b1;

  end

 

// FDCE instantiation

// GR is modeled as a wire within a global module. So,

// CLR does not need to be connected to GR and the flop

// will still be reset with GR.

 

FDCE U0 (.Q (Q), .D (D), .C (CLK), .CE (1'b1), .CLR (1’b0));

 

endmodule

Since GR is declared as a floating wire and is not in the port list, the 
synthesis tool optimizes the GR signal out of the design. GR is 
replaced later by the implementation software for all post-implemen-
tation simulation netlists.

In the test fixture file, set GR to test.uut.GR (the name of the global 
set/reset signal, qualified by the name of the design instantiation 
instance name and the test fixture instance name). Since there is no 
STARTUP block, a connection to GR is made in the testfixture via an 
assign statement.

`timescale 1 ns / 1 ps

module test;
reg GR;

assign glbl.GR = GR;

assign test.uut.GR = GR;

.

.

.
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initial begin
GR = 1; // if you wish to reset/set the device;
#100 GR = 0; // deactivate GR

end

In this example, the active high GR signal in the XC5200 family 
device is activated by driving it high. 100 ns later, it is deactivated by 
driving it low. (100 ns is an arbitrarily chosen value.). 

You can use the same test fixture for simulating at other stages in the 
design flow if this methodology is used.

Example 3: XC3000A/L, or XC3100A/L RTL Functional 
Simulation (No STARTUP Block)

For pre-NGDBuild functional simulation, asserting global reset in 
XC3000A/L or XC3100A/L designs is almost identical to the proce-
dure for asserting global reset in XC5200 designs, except that GR is 
active Low.

Note: The STARTUP block is not supported on XC3000A/L or 
XC3100A/L devices.

In the design code, declare GR as a Verilog wire, however, it is not 
specified in the port list for the module. Describe GR to reset or set 
every inferred register or latch in your design. GR does not need to be 
connected to any instantiated registers or latches, as shown in the 
following example.

module my_counter (CLK, D, Q, COUT);

input CLK, D;

output Q;

output [3:0] COUT;

 

wire GR;

reg [3:0] COUT;

 

always @(negedge GR or posedge CLK)

  begin

    if (GR == 1’b0)
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      COUT = 4’h0;

    else

      COUT = COUT + 1’b1;

  end

 

// FDCE instantiation

// GR is modeled as a wire within a global module. So,

// CLR does not need to be connected to GR and the flop

// will still be reset with GR.

 

FDCE U0 (.Q (Q), .D (D), .C (CLK), .CE (1’b1), .CLR (1’b0));

 

endmodule

Since GR is declared as a floating wire and is not in the port list, the 
synthesis tool optimizes the GR signal out of the design. Although 
this is correct in the hardware, it is actually an implicit connection, 
and not listed in the netlist (XNF or EDIF). GR is replaced later by the 
implementation software for all post-implementation simulation 
netlists.

In the test fixture file, set GR to test.uut.GR (the name of the global 
set/reset signal, qualified by the name of the design instantiation 
instance name and the test fixture instance name). Since there is no 
STARTUP block, a connection to GR is made in the testfixture via an 
assign statement.

`timescale 1 ns / 1 ps

module test;
reg GR;

assign glbl.GR = GR;

assign test.uut.GR = GR;

.

.

.
initial begin
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GR = 0; // if you wish to reset/set the device;
#100 GR = 1; // deactivate GR

end

In this example, the active Low GR signal in the XC3000A/L and 
XC3100A/L family device is activated by driving it high. 100 ns later, 
it is deactivated by driving it low. (100 ns is an arbitrarily chosen 
value.). 

The Global Reset (GR) signal in the XC3000A/L and XC3100A/L 
architecture is modeled differently in functional simulation netlists 
and SimPrims library-based netlists generated by NGD2VER. In the 
Verilog Unified Library, GR is modeled as a wire within a global 
module, while in a SimPrims-based netlist, it is always modeled as an 
external port. As a result, you cannot use the same test bench file for 
both Unified library simulation and SimPrims-based simulation.

Designs with a STARTUP Block
If you do have a STARTUP block in your design, the signal you toggle 
is the external input port that controls the global reset pin of the 
STARTUP block. You should add the following to the test fixture 
module for RTL modeling of the global reset pin.

Note: The terms “test bench” and “test fixture” are used synony-
mously throughout this manual.

• XC4000E/L/X, Spartan/XL, and Virtex devices.

reg port_connected_to_GSR_pin;

• XC5200 devices.

reg port_connected_to_GR_pin;

For post-NGDBuild functional simulation, post-map timing simula-
tion, and post-route timing simulation, you must omit the assign 
statement for the global reset signal. This is because the net connec-
tions exist in the post-NGDBuild design, and retaining the assign 
definition causes a possible conflict with these connections.

By default for XC4000E/L/X, XC5200, Spartan/XL, and Virtex 
devices, the GSR/GR pin is active High. To change the polarity of 
these signals in your Verilog code, instantiate or infer an inverter to 
the net that sources the GSR/GR pin of the STARTUP block.
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Figure 5-7 Inverted GSR

The inversion is absorbed inside the STARTUP block; a function 
generator is not used to generate the inverter. 

In the following Verilog code, GSR is listed as a top-level port.

module my_counter (MYGSR, CLK, D, Q, COUT);

input MYGSR, CLK, D;

output Q;

output [3:0] COUT;

reg [3:0] COUT;

 

wire INV_GSR;

assign INV_GSR = !MYGSR; // Inverted GSR

 

// Modeling inverted GSR with RTL code

always @(posedge INV_GSR or posedge CLK)

  begin

    if (INV_GSR == 1’b1)

      COUT = 4’h0;

    else

      COUT = COUT + 1’b1;

  end
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// FDCE instantiation

// GSR is modeled as a wire within a global module. So,

// CLR does not need to be connected to GSR and the flop

// will still be reset with GSR.

 

FDCE U0 (.Q (Q), .D (D), .C (CLK), .CE (1’b1), .CLR (1’b0));

STARTUP U1 (.GSR (INV_GSR), .GTS (1’b0), .CLK (1’b0));

 

endmodule

Example 1: XC4000E/L/X and Spartan/XL Simulation 
with STARTUP, or Virtex with STARTUP_VIRTEX

In the following figure, MYGSR is an external user signal that 
controls GSR. 

Figure 5-8 Verilog User-Controlled GSR

In the following Verilog code, GSR is listed as a top-level port. 
Synthesis sees a connection of GSR to the STARTUP and as well to the 
behaviorally described counter. Although this is correct in the hard-
ware, it is actually an implicit connection, and GSR is only listed as a 
connection to the STARTUP in the netlist (XNF and EDIF).

module my_counter (MYGSR, CLK, D, Q, COUT);

input MYGSR, CLK, D;

output Q;

output [3:0] COUT;
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reg [3:0] COUT;

 

always @(posedge MYGSR or posedge CLK)

  begin

    if (MYGSR == 1’b1)

      COUT = 4’h0;

    else

      COUT = COUT + 1’b1;

  end

 

// FDCE instantiation

// GSR is modeled as a wire within a global module. So,

// CLR does not need to be connected to GSR and the flop

// will still be reset with GSR.

 

FDCE U0 (.Q (Q), .D (D), .C (CLK), .CE (1’b1), .CLR (1’b0));

STARTUP U1 (.GSR (MYGSR), .GTS (1’b0), .CLK (1’b0));

 

endmodule

The following is an example of controlling the global set/reset signal 
by driving the external MYGSR input port in a test fixture file at the 
beginning of an RTL or post-synthesis functional simulation when 
there is a STARTUP block in XC4000E/L/X and Spartan/XL designs, 
or the STARTUP_VIRTEX in Virtex. 

The global set/reset control signal should be toggled High, then Low 
in an initial block.

`timescale 1 ns / 1 ps

module test;
reg GSR;

.

.

.
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initial begin
GSR = 1; // if you wish to reset/set the device;
#100 GSR = 0; // deactivate GSR

end

In addition, a Verilog global signal called glbl.GSR is defined within 
the STARTUP/STARTUP_VIRTEX block to make the connection 
between the user logic and the global GSR net embedded in the 
Unified models. For post-NGDBuild functional simulation, post-Map 
timing simulation, and post-route timing simulation, glbl.GSR is 
defined in the Verilog netlist that is created by NGD2VER.

Example 2: XC5200 Simulation with STARTUP

For XC5200 designs with a STARTUP block, you should simulate the 
net controlling GR in the same manner as for the XC4000E/L/X, 
Spartan/XL, and Virtex.

Substitute MYGR for MYGSR in Example 1 to obtain the testfixture 
fragment for simulating GR in a Verilog RTL or post-synthesis simu-
lation.

Figure 5-9 Verilog User-Controlled Inverted GR

In addition, a Verilog global signal called glbl.GR is defined within 
the STARTUP block to make the connection between the user logic 
and the global GR net embedded in the Unified models. For post-
NGDBuild functional simulation, post-map timing simulation, and 
post-route timing simulation, glbl.GR is defined in the Verilog netlist 
that is created by NGD2VER.
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Example 3: XC3000A/L and XC3100A/L Designs

STARTUP is not supported or required in XC3000A/L and 
XC3100A/L designs. Follow the procedure for XC3000A/L and 
XC3100A/L designs without STARTUP blocks.

Setting Verilog Global Tristate (XC4000, Spartan, 
and XC5200 Outputs Only)

XC4000E/L/X, Spartan/XL, Virtex, and XC5200 devices also have a 
global control signal (GTS) that tristates all output pins. This allows 
you to isolate the actual device part during board level testing. You 
can also tristate the FPGA device outputs during board level simula-
tion to assist in debugging simulation. In most cases, GTS is deacti-
vated so that the outputs are active.

Although the STARTUP/STARTUP_VIRTEX component also gives 
you the option of controlling the global tristate net from an external 
pin, it is usually used for controlling global reset. In this case, you can 
leave the GTS pin unconnected in the design entry phase, and it will 
float to its inactive state level. The global tristate net, GTS, is imple-
mented in designs even if a STARTUP/STARTUP_VIRTEX block is 
not instantiated. You can deactivate GTS by driving it low in your test 
fixture file, or by connecting the GTS pin to GND in your input 
design

Defining GTS in a Test Bench
For pre-NGDBuild UniSim functional simulation, you must set the 
value of the appropriate Verilog global signal, glbl.GTS, to the name 
of the GTS net, qualified by the appropriate scope identifiers. 

The scope identifiers are a combination of the test module scope and 
the design instance scope. The scope qualifiers are required because 
the scope information is needed when the glbl.GTS wire is inter-
preted by the Verilog UniSim simulation models to emulate a global 
tri-state signal.

For post-NGDBuild and post-route timing simulation, the testfixutre 
template (.tv file) produced by running NGD2VER with the –tf 
option contains most of the code previously described for defining 
and toggling GTS. 
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The general procedure for specifying GTS is similar to that used for 
specifying the global set/reset signals, GSR and GR. You define the 
global tristate signal with Verilog global module, glbl.GTS. If you do 
not want to specify GTS for simulation, you do not need to change 
anything in your design or testfixture. 

The GTS signal in XC4000E/L/X, Spartan/XL, Virtex, and XC5200 
devices is active High. This global module is not used in timing simu-
lation when there is a STARTUP/STARTUP_VIRTEX block in your 
design and the GTS pin is connected.

Designs without a STARTUP Block
If you do not have a STARTUP block in your design, you should add 
the following to the test fixture module. 

reg GTS;

assign glbl.GTS = GTS;

assign testfixture_name.instance_name.GTS = GTS;

// Only for RTL simulation modeling of GTS

For post-NGDBuild functional simulation, post-map timing simula-
tion, and post-route timing simulation, you must omit the assign 
statement for the global tri-state signal. This is because the net 
connections exist in the post-NGDBuild design, and retaining the 
assign definition causes a possible conflict with these connections. 

Note: The terms “test bench” and “test fixture” are used synony-
mously throughout this manual.

XC4000E/L/X, Spartan/XL, Virtex and XC5200 RTL 
Functional Simulation (No STARTUP Block)

You can drive the GTS signal in a test fixture file at the beginning of a 
pre-NGDBuild RTL or post-synthesis functional simulation. The 
global tristate net is named GTS in XC4000E/L/X, Spartan/XL, 
Virtex, and XC5200 designs. The Verilog module defining the global 
tri-state net must be referenced as glbl.GTS because this is how it is 
modeled in the Verilog UniSim library. 
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Designs with a STARTUP Block
If you do have a STARTUP block in your design, the signal you toggle 
at the beginning of simulation is the port or signal in your design that 
is used to control global tristate. This is usually an external input port 
in the Verilog netlist, but can be a wire if global tristate is controlled 
by internal logic in your design. A Verilog global signal called 
glbl.GTS is defined within the STARTUP block to make the connec-
tion between the user logic and the global GTS net embedded in the 
Unified models

Example 1: XC4000E/L/X, Spartan/XL, Virtex, and 
XC5200 Simulation (With STARTUP/
STARTUP_VIRTEX, GTS Pin Connected)

In the following figure, MYGTS is an external user signal that 
controls GTS. 

Figure 5-10 Verilog User-Controlled Inverted GTS

The following is an example of controlling the global tri-state signal 
by driving the external MYGTS input port in a test fixture file at the 
beginning of an RTL or post-synthesis functional simulation when 
there is a STARTUP block in XC4000E/L/X and Spartan/XL design, 
or the STARTUP_VIRTEX in Virtex. The global GTS model in the 
UniSim simulation models for output buffers (OBUF, OBUFT, and so 
on). 

The global tri-state control signal should be toggled High, then Low 
in an initial block.

module test;
reg MYGTS;
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.

.

.
initial begin
MYGTS = 1; // if you wish to tristate the device;
#100 MYGTS = 0; // deactivate GTS

end

Example 2: XC4000E/L/X, Spartan/XL, Virtex, and 
XC5200 Simulation (With STARTUP/
STARTUP_VIRTEX, GTS Pin not connected)

A Verilog global signal called glbl.GTS is defined within the 
STARTUP/STARTUP_VIRTEX block to make the connection between 
the user logic and the global GTS net embedded in the Unified 
models. For post-NGDBuild functional simulation, post-map timing 
simulation, and post-route timing simulation, glbl.GTS is defined in 
the Verilog netlist that is created by NGD2VER.

module test;
reg GTS;

assign glbl.GTS = GTS;

.

.

.
initial begin
GTS = 1; // if you wish to tristate the device;
#100 GTS = 0; // deactivate GTS

end

Note: For post-route timing simulation, you can use the same test 
bench.
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Appendix A

Accelerate FPGA Macros with One-Hot 
Approach

By Steven K. Knapp

Xilinx Inc.
2100 Logic Dr.
San Jose, CA 95124

Reprinted with permission from Electronic Design, September 13, 
1990. © Penton Publications.

State machines—one of the most commonly implemented functions 
with programmable logic—are employed in various digital applica-
tions, particularly controllers. However, the limited number of flip-
flops and the wide combinatorial logic of a PAL device favors state 
machines that are based on a highly encoded state sequence. For 
example, each state within a 16-state machine would be encoded 
using four flip-flops as the binary values between 0000 and 1111.

A more flexible scheme—called one-hot encoding (OHE)—employs 
one flip-flop per state for building state machines. Although it can be 
used with PAL-type programmable-logic devices (PLDs), OHE is 
better suited for use with the fan-in limited and flip-flop-rich archi-
tectures of the higher-gate-count filed-programmable gate arrays 
(FPGAs), such as offered by Xilinx, Actel, and others. This is because 
OHE requires a larger number of flip-flops. It offers a simple and 
easy-to-use method of generating performance-optimized state-
machine designs because there are few levels of logic between flip-
flops.
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Figure A-1 A Typical State Machine Bubble

(In reference to the figure above) A Typical State Machine Bubble 
diagram shows the operation of a seven-state state machine that 
reacts to inputs A through E as well as previous-state conditions.

Figure A-2 Inverters

(In reference to the figure above) Inverters are required at the D 
input and the Q output of the state flip-flop to ensure that it powers 
on in the proper state. Combinatorial logic decodes the operations 
based on the input conditions and the state feedback signals. The 
flip-flop will remain in State 1 as long as the conditional paths out 
of the states are not valid.

A state machine implemented with a highly encoded state sequence 
will generally have many, wide-input logic functions to interpret the 
inputs and decode the states. Furthermore, incorporating a highly 
encoded state machine in an FPGA requires several levels of logic 
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Accelerate FPGA Macros with One-Hot Approach
between clock edges because multiple logic blocks will be needed for 
decoding the states. A better way to implement state machines in 
FPGAs is to match the state-machine architecture to the device archi-
tecture.

Limiting Fan-In

A good state-machine approach for FPGAs limits the amount of fan-
in into one logic block. While the one-hot method is best for most 
FPGA applications, binary encoding is still more efficient in certain 
cases, such as for small state machines. It’s up to the designer to eval-
uate all approaches before settling on one for a particular application.

Figure A-3 The Seven States

(In reference to the figure above) Of the seven states, the state-tran-
sition logic required for State 4 is the most complex, requiring 
inputs from three other state outputs as well as four of the five 
condition signals (A - D).

FPGAs are high-density programmable chips that contain a large 
array of user-configurable logic blocks surrounded by user-program-
mable interconnects. Generally, the logic blocks in an FPGA have a 
limited number of inputs. The logic block in the Xilinx XC-3000 
series, for instance, can implement any function of five or less inputs. 
In contrast, a PAL macrocell is fed by each input to the chip and all of 
the flip-flops. This difference in logic structure between PALs and 
FPGAs is important for functions with many inputs: where a PAL 
could implement a many-input logic function in one level of logic, an 
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FPGA might require multiple logic layers due to the limited number 
of inputs.

The OHE scheme is named so because only one state flip-flop is 
asserted, or “hot”, at a time. Using the one-hot encoding method for 
FPGAs was originally conceived by High-Gate Design—a Saratoga, 
Calif.-based consulting firm specializing in FPGA designs.

The OHE state machine's basic structure is simple—first assign an 
individual flip-flop to each state, and then permit only one state to be 
active at any time. A state machine with 16 states would require 16 
flip-flops using the OHE approach; a highly encoded state machine 
would need just four flip-flops. At first glance, OHE may seem 
counter-intuitive. For designers accustomed to using PLDs, more 
flip-flops typically indicates either using a larger PLD or even 
multiple devices.

In an FPGA, however, OHE yields a state machine that generally 
requires fewer resources and has higher performance than a binary-
encoded implementation. OHE has definite advantages for FPGA 
designs because it exploits the strengths of the FPGA architecture. It 
usually requires two or less levels of logic between clock edges than 
binary encoding. That translates into faster operation. Logic circuits 
are also simplified because OHE removes much of the state-decoding 
logic—a one-hot-encoded state machine is already fully decoded.

OHE requires only one input to decode a state, making the next-state 
logic simple and well-suited to the limited fan-in architecture of 
FPGAs. In addition, the resulting collection of flip-flops is similar to a 
shift-register-like structure, which can be placed and routed effi-
ciently inside an FPGA device. The speed of an OHE state machine 
remains fairly constant even as the number of states grows. In 
contrast, a highly encoded state machine's performance drops as the 
states grow because of the wider and deeper decoding logic that's 
required.

To build the next-state logic for OHE state machine is simple, lending 
itself to a “cookbook” approach. At first glance, designers familiar 
with PAL-type devices may be concerned by the number of potential 
illegal states due to the sparse state encoding. This issue, to be 
discussed later, can be solved easily.

A typical, simple state machine might contain seven distinct states 
that can be described with the commonly used circle-and-arc bubble 
diagrams, see the “A Typical State Machine Bubble” figure. The label 
A-4 Xilinx Development System
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above the line in each “bubble” is the state`s name. The labels below 
the line are the outputs asserted while the state is active. In the 
example, there are seven states labeled State 1-7. The “arcs” that feed 
back into the same state are the default paths. These will be true only 
if no other conditional paths are true.

 Each conditional path is labeled with the appropriate logical condi-
tion that must exist before moving to the next state. All of the logic 
inputs are labeled as variables A through E. The outputs from the 
state machine are called Single, Multi, and Contig. For this example, 
State 1, which must be asserted at power-on, has a double-inverted 
flip-flop structure (shaded region of the “Inverters” figure)

The state machine in the example was built twice, once using OHE 
and again with the highly encoded approach employed in most PAL 
designs. A Xilinx XC3020-100 2000-gate FPGA was the target for both 
implementations. Though the OHE circuit required slightly more 
logic than the highly-encoded state machine, the one-hot state 
machine operated 17% faster (see the table). Intuitively, the one-hot 
method might seem to employ many more logic blocks than the 
highly encoded approach. But the highly encoded state machine 
needs more combinatorial logic to decode the encoded state values.

Figure A-4 Only a Few Gates

(In reference to the figure above) Only a few gates are required by 
States 2 and 3 to form simple state-transition logic decoding. Just 
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two gates are needed by State 2 (top), while four simple gates are 
used by State 3 (bottom).

The OHE approach produces a state machine with a shift-register 
structure that almost always outperforms a highly encoded state 
machine in FPGAs. The one-state design had only two layers of logic 
between flip-flops, while the highly encoded design had three. For 
other applications, the results can be far more dramatic. In many 
cases, the one-hot method yields a state machine with one layer of 
logic between clock edges. With one layer of logic, a one-hot state 
machine can operate at 50 to 60 MHz.

Figure A-5 Looking Nearly the Same

(In reference to the figure above) Looking nearly the same as a 
simple shift register, the logic for States 5, 6, and 7 is very simple. 
This is because the OHE scheme eliminates almost all decoding 
logic that precedes each flip-flop.

The initial or power-on condition in a state machine must be exam-
ined carefully. At power-on, a state machine should always enter an 
initial, known state. For the Xilinx FPGA family, all flip-flops are reset 
at power-on automatically. To assert an initial state at power-on, the 
output from the initial-state flip-flop is inverted. To maintain logical 
consistency, the input to flip-flop also is inverted.

All other states use a standard, D-type flip-flop with an asynchronous 
reset input. The purpose of the asynchronous reset input will be 
discussed later when illegal states are covered.

Once the start-up conditions are set up, the next-state transition logic 
can be configured. To do that, first examine an individual state. Then 
count the number of conditional paths leading into the state and add 
an extra path if the default condition is to remain in the same state. 
Second, build an OR-gate with the number of inputs equal to the 
number of conditional paths that were determined in the first step.
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Third, for each input of the OR-gate, build an AND-gate of the 
previous state and its conditional logic. Finally, if the default should 
remain in the same state, build an AND-gate of the present state and 
the inverse of all possible conditional paths leaving the present state.

To determine the number of conditional paths feeding State 1, 
examine the state diagram—State 1 has one path from State 7 when-
ever the variable E is true. Another path is the default condition, 
which stays in State 1. As a result, there are two conditional paths 
feeding State 1. Next, build a 2-input OR-gate—one input for the 
conditional path from State 7, the other for the default path to stay in 
State 1 (shown as OR-1 in the “Inverters” figure).

The next step is to build the conditional logic feeding the OR-gate. 
Each input into the OR-gate is the logical AND of the previous state 
and its conditional logic feeding into State 1. State 7, for example, 
feeds State 1 whenever E is true and is implemented using the gate 
called AND-2, in the “Inverters” figure. The second input into the 
OR-gate is the default transition that's to remain in State 1. In other 
words, if the current state is State 1, and no conditional paths leaving 
State 1 are valid, then the state machine should remain in State 1. 
Note in the state diagram that two conditional paths are leaving State 
1, in the “A Typical State Machine Bubble” figure.

The first path is valid whenever (A*B*C) is true, which leads into 
State 2. The second path is valid whenever (A*B*C) is true, leading 
into State 4. To build the default logic, State 1 is ANDed with the 
inverse of all the conditional paths leaving State 1. The logic to 
perform this function is implemented in the gate labeled AND-3 and 
the logic elements that feed into the inverting input of AND-3, in the 
“Inverters” figure.

Figure A-6 S-R Flip-Flops
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(In reference to the figure above) S-R Flip-Flops offer another 
approach to decoding the Contig output. They can also save logic 
blocks, especially when an output is asserted for a long sequence of 
contiguous states.

State 4 is the most complex state in the state-machine example. 
However, creating the logic for its next-state control follows the same 
basic method as described earlier. To begin with, State 4 isn’t the 
initial state, so it uses a normal D-type flip-flop without the inverters. 
It does, however, have an asynchronous reset input, three paths into 
the state, and a default condition that stays in State 4. Therefore, four-
input OR-gate feeds the flip-flop (OR-1 in the “The Seven States” 
figure).

The first conditional path comes from State 3. Following the methods 
established earlier, an AND of State 3 and the conditional logic, 
which is A ORed with D, must be implemented (AND-2 and OR-3 in 
the “The Seven States” figure). The next conditional path is from State 
2, which requires an AND of State 2 and variable D (AND-4 in the 
“The Seven States” figure). Lastly, the final conditional path leading 
into State 4 is from State 1. Again, the State-1 output must be ANDed 
with its conditional path logic—the logical product, A*B*C (AND-5 
and AND-6 in the “The Seven States” figure).

Now, all that must be done is to build the logic that remains in State 4 
when none of the conditional paths away from State 4 are true. The 
path leading away from State 4 is valid whenever the product, 
A*B*C, is true. Consequently, State 4 must be ANDed with the 
inverse of the product, A*B*C. In other words, “keep loading the flip-
flop with a high until a valid transfer to the next state occurs.” The 
default path logic uses AND-7 and shares the output of AND-6.

Configuring the logic to handle the remaining states is very simple. 
State 2, for example, has only one conditional path, which comes 
from State 1 whenever the product A*B*C is true. However, the state 
machine will immediately branch in one of two ways from State 2, 

One-State vs. Binary Encoding Methods

Method
Number of Logic 

Blocks
Worst-case 

performance

One-hot 7.5 40 Mhz

Binary encoding 7.0 34 Mhz
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depending on the value of D. There’s no default logic to remain in 
State 2, the “Only a Few Gates” figure. State 3, like States 1 and 4 has 
a default state, and combines the A, D, State 2, and State 3 feedback to 
control the flop-flop's D input in the “Only a Few Gates” figure.

State 5 feeds State 6 unconditionally. Note that the state machine 
waits until variable E is low in State 6 before proceeding to State 7. 
Again, while in State 7, the state machine waits for variable E to 
return to true before moving to State 1 in the “Looking Nearly the 
Same” figure.

Output Definitions

After defining all of the state transition logic, the next step is to define 
the output logic. The three output signals—Single, Multi, and 
Contig—each fall into one of three primary output types:

1. Outputs asserted during one state, which is the simplest case. 
The output signal Single, asserted only during State 6, is an 
example.

2. Outputs asserted during multiple contiguous states. This appears 
simple at first glance, but a few techniques exist that reduce logic 
complexity. One example is Contig. It's asserted from State 3 to 
State 7, even though there's a branch at State 2.

3. Outputs asserted during multiple, non-contiguous states. The 
best solution is usually brute-force decoding of the active states. 
One such example is Multi, which is asserted during State 2 and 
State 4.

OHE makes defining outputs easy. In many cases, the state flip-flop is 
the output. For example, the Single output also is the flip-flop output 
for State 6; no additional logic is required. The Contig output is 
asserted throughout States 3 through 7. Though the paths between 
these states may vary, the state machine will always traverse from 
State 2 to a point where Contig is active in either State 3 or State 4.

There are many ways to implement the output logic for the Contig 
output. The easiest method is to decode States 3, 4, 5, 6, and 7 with a 
5-input OR gate. Any time the state machine is in one of these states, 
Contig will be active. Simple decoding works best for this state 
machine example. Decoding five states won't exceed the input capa-
bility of the FPGA logic block.
Synthesis and Simulation Design Guide A-9



Synthesis and Simulation Design Guide
Additional Logic

However, when an output must be asserted over a longer sequence of 
states (six or more), additional layers of decoding logic would be 
required. Those additional logic layers reduce the state machine’s 
performance. 

Employing S-R flip-flops gives designers another option when 
decoding outputs over multiple, contiguous states.Though the basic 
FPGA architecture may not have physical S-R flip-flops, most macro-
cell libraries contain one built from logic and D-type flip-flops. Using 
S-R flip-flops is especially valuable when an output is active for six or 
more contiguous states. 

The S-R flip-flop is set when entering the contiguous states, and reset 
when leaving. It usually requires extra logic to look at the state just 
prior to the beginning and ending state. This approach is handy 
when an output covers multiple, non-contiguous states, assuming 
there are enough logic savings to justify its use.

In the example, States 3 through 7 can be considered contiguous. 
Contig is set after leaving State 2 for either States 3 or 4, and is reset 
after leaving State 7 for State 1. There are no conditional jumps to 
states where Contig isn‘t asserted as it traverses from State 3 or 4 to 
State 7. Otherwise, these states would not be contiguous for the 
Contig output.

The Contig output logic, built from an S-R flip-flop, will be set with 
State 2 and reset when leaving State 7 in the “S-R Flip-Flops” figure. 
As an added benefit, the Contig output is synchronized to the master 
clock. Obvious logic reduction techniques shouldn't be overlooked 
either. For example, the Contig output is active in all states except for 
States 1 and 2. Decoding the states where Contig isn't true, and then 
asserting the inverse, is another way to specify Contig.

The Multi output is asserted during multiple, non-contiguous states -
exclusively during States 2 and 4. Though States 2 and 4 are contig-
uous in some cases, the state machine may traverse from State 2 to 
State 4 via State 3, where the Multi output is unasserted. Simple 
decoding of the active states is generally best for non-contiguous 
states. If the output is active is active during multiple, non-contig-
uous states over long sequences, the S-R flip-flop approach described 
earlier may be useful. 
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One common issue in state-machine construction deals with 
preventing illegal states from corrupting system operation. Illegal 
states exist in areas where the state machine’s functionality is unde-
fined or invalid. For state machines implemented in PAL devices, the 
state-machine compiler software usually generates logic to prevent or 
to recover from illegal conditions.

In the OHE approach, an illegal condition will occur whenever two or 
more states are active simultaneously. By definition, the one-hot 
method makes it possible for the state machine to be in only one state 
at a time. The logic must either prevent multiple, simultaneous states 
or avoid the situation entirely.

Synchronizing all of the state-machine inputs to the master clock 
signal is one way to prevent illegal states. “Strange” transitions won't 
occur when an asynchronous input changes too closely to a clock 
edge. Though extra synchronization would be costly in PAL devices, 
the flip-flop-rich architecture of an FPGA is ideal. 

Even off-chip inputs can be synchronized in the available input flip-
flops. And internal signals can be synchronized using the logic 
block's flip-flops (in the case of the Xilinx LCAs). The extra synchroni-
zation logic is free, especially in the Xilinx FPGA family where every 
block has an optional flip-flop in the logic path.

Resetting State Bits

Resetting the state machine to a legal state, either periodically or 
when an illegal state is detected, give designers yet another choice. 
The Reset Direct (RD) inputs to the flip-flops are useful in this case. 
Because only one state bit should be set at any time, the output of a 
state can reset other state bits. For example, State 4 can reset State 3.

If the state machine did fall into an illegal condition, eventually State 
4 would be asserted, clearing State 3. However, State 4 can't be used 
to reset State 5, otherwise the state machine won't operate correctly. 
To be specific, it will never transfer to State 5; it will always be held 
reset by State 4. Likewise, State 3 can reset State 2, State 5 can reset 
State 4, etc.—as long as one state doesn't reset a state that it feeds.

This technique guarantees a periodic, valid condition for the state 
machine with little additional overhead. Notice, however, that State 1 
is never reset. If State 1 were “reset”, it would force the output of 
State 1 high, causing two states to be active simultaneously (which, 
by definition, is illegal).
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Appendix B

Report Files

This appendix includes report files from various synthesis vendors. 
To reduce the size of this appendix, some of the files are truncated 
(indicated by a series of dots) where information is repeated. This 
appendix contains the following sections.

• “Synplicity”

• “Exemplar Logic”

Synplicity
Synplicity® report files include the following.

• Synthesis information on generated state machines and inserted 
items, such as clock buffers

• Predicted timing performance, including maximum frequency of 
worst case paths

• Area usage information for IOBs, carry logic, registers, FMAPs, 
HMAPs, and CLBs

Note: The report file in this section is for a design compiled with the 
VHDL compiler. A report file for a design compiled with the Verilog 
compiler is essentially the same.

Content-Type: text/plain; charset="us-ascii"
Content-Disposition: attachment; filename="atm_chip1_ed.log"

$ Start of Compile
#Mon Jan 12 07:59:16 1998

Synplify VHDL Compiler, version 3.0b, built Dec 17 1997
Copyright (C) 1994-1997, Synplicity Inc.  All Rights Reserved

VHDL syntax check successful!
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Compiler output is up to date.  No re-compile necessary

Synthesizing work.acc_chip.schematic
@N:"e:\customer\atm\lcl_int1.vhd":73:6:73:7|Trying to extract state 
machine for register wr_state_o
Extracted state machine for register wr_state_o
State machine has 4 reachable states with original encodings of:
   11
   10
   01
   00
@N:"e:\customer\atm\lcl_int1.vhd":73:6:73:7|Trying to extract state 
machine for register rd_state_o
Extracted state machine for register rd_state_o
State machine has 5 reachable states with original encodings of:
   00001
   00010
   00100
   01000
   10000
Post processing for work.acc_chip.schematic
@END
Process took 0.371 seconds realtime, 0.371 seconds cputime
Synplify Xilinx Technology Mapper, version 3.0b, built Dec 21 1997
Copyright (C) 1994-1997, Synplicity Inc.  All Rights Reserved
Setting fanout limit to 100
@N:"e:\customer\atm\token1.vhd":103:8:103:9|Found counter in 
view:work.TOKEN(vhdl_rtl) inst token_cntr[5:0]
@N:"e:\customer\atm\rx_agen1.vhd":61:6:61:7|Found counter in 
view:work.RX_ADD_GEN(vhdl_rtl) inst rx_20_add[18:0]
@N:"e:\customer\atm\rx_agen1.vhd":61:6:61:7|Found counter in 
view:work.RX_ADD_GEN(vhdl_rtl) inst rx_10_add[18:0]
@N:"e:\customer\atm\slw_clk1.vhd":21:10:21:11|Found counter in 
view:work.SLOW_CLOCKS(vhdl_rtl) inst slow_counter[16:0]
@N:"e:\customer\atm\mngmnt1.vhd":998:4:998:5|Found counter in 
view:work.MNGMNT(vhdl_rtl) inst tx_frame_cntr[11:0]
@N:"e:\customer\atm\mngmnt1.vhd":931:4:931:5|Found counter in 
view:work.MNGMNT(vhdl_rtl) inst rx_frame_cntr[11:0]

Clock Buffers:
  Inserting Clock buffer for port CLK_20M_SMP_I,TNM=CLK_20M_SMP_I
  Inserting Clock buffer for port CPU_WR_N_I,TNM=CPU_WR_N_I
  Inserting Clock buffer for port CLK_40M_P_I,TNM=CLK_40M_P_I
  Inserting Clock buffer for port CLK_40M_S2_I,TNM=CLK_40M_S2_I
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Net buffering Report:
No nets needed buffering.

------------------------------------------
Timing reports
   Delay - This is the delay from a start point
           such as a register or primary input.
   Slack - If this value is negative then it indicates
           the size of the timing violation.
   FO    - This is the estimated fanout or loading
           used in calculating net delays

-------------------------------------------
Requested default timing:
      Frequency=15.0 MHz, Period=66.7 ns
Estimated result:
      Frequency=16.7 MHz, Period=60.0 ns
      Slack on longest path: 6.7 ns

Timing Information for Longest Paths:

Instance: Z_40ACCCHIPZ_32TXD2PZ_41.base0_reg20[12], cell DFFRE
  D I -Z_40ACCCHIPZ_32TXD2PZ_41.sync_tx20_0_base0_reg20_4[12]Delay=60.4,
  Slack=6.7
Instance: Z_40ACCCHIPZ_32TXD2PZ_41.base0_reg20[18], cell DFFRE
   D I -Z_40ACCCHIPZ_32TXD2PZ_41.sync_tx20_0_base0_reg20_4[18]Delay=59.8,
   Slack=7.3 
Instance: Z_40ACCCHIPZ_32TXD2PZ_41.base0_reg20[15], cell DFFRE
   D I -Z_40ACCCHIPZ_32TXD2PZ_41.sync_tx20_0_base0_reg20_4[15]Delay=59.0,
   Slack=8.1 
Instance: Z_40ACCCHIPZ_32TXD2PZ_41.base3_reg20[15], cell DFFRE
   D I - Z_40ACCCHIPZ_32TXD2PZ_41.N_1956Delay=58.6, Slack=8.5 
Instance: Z_40ACCCHIPZ_32TXD2PZ_41.base0_reg20[11], cell DFFRE
   D I -Z_40ACCCHIPZ_32TXD2PZ_41.sync_tx20_0_base0_reg20_4[11]Delay=58.4,
   Slack=8.7 
Instance: Z_40ACCCHIPZ_32TXD2PZ_41.base3_reg20[13], cell DFFRE
   D I -Z_40ACCCHIPZ_32TXD2PZ_41.sync_tx20_3_base3_reg20_4[13]Delay=58.3,
   Slack=8.8 
Instance: Z_40ACCCHIPZ_32TXD2PZ_41.base1_reg20[13], cell DFFRE
   D I -Z_40ACCCHIPZ_32TXD2PZ_41.sync_tx20_1_base1_reg20_4[13]Delay=58.3,
   Slack=8.8 
.
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.

.

.

---------------------------------------
Resource Usage Report

Mapping to part: 40125xvbg560-1
I/O primitives:
OBUF           98 uses
IBUF           43 uses
OUTFF INIT=R   14 uses
INFF INIT=R    10 uses

BUFG           4 uses

Carry primitives used for arithmetic functions:
INC-FG-1       11 uses
INC-FG-CI      121 uses
FORCE-0        14 uses
ADD-FG-CI      183 uses
EXAMINE-CI     55 uses
FORCE-1        30 uses
ADD-G-F1       4 uses
SUB-FG-CI      180 uses
DEC-FG-0       3 uses
DEC-FG-CI      12 uses

Register bits not including I/Os:   1258
Logic Mapping Summary:
FMAPs: 3059 of 9248 (34%)
HMAPs: 647 of 4624 (14%)
Total packed CLBs: 1530 of 4624 (34%)
(Packed CLBs is determined by the larger of three quantities:
   Registers / 2, HMAPs, or FMAPs / 2.)

Mapper successful!
Process took 169.984 seconds realtime, 169.984 seconds cputime

Exemplar Logic
The area section of the Exemplar Logic report includes area utiliza-
tion information for FMAPs, HMAPs, CLBs, IO buffers, and IOB 
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registers. The timing section of the report lists the predicted timing of 
the critical path, and shows the number of levels of logic and buffers.

Summary Report
Content-Type: text/plain; charset="us-ascii"
Content-Disposition: attachment; filename="ram.sum"

*******************************************************

Cell: mem    View: behav    Library: work

*******************************************************

Total accumulated area : 
 Number of FG Function Generators :      4
 Number of Packed CLBs :                 1
 Number of IBUF :                        9
 Number of OBUF :                        1
 Number of IOB Output Flip Flops :       2

 Number of ports :                      10
 Number of nets :                       24
 Number of instances :                  17
 Number of references to this view :     0

            Cell          Library  References     Total Area

         F2_LUT            xi4ex     2 x      1      2 FG Function Generators
          OFDTX            xi4ex     2 x      1      2 IOB Output Flip Flops
           OBUF            xi4ex     1 x      1      1 OBUF
            GND            xi4ex     1 x      1      1 GND
           IBUF            xi4ex     9 x      1      9 IBUF
       RAM16x1S            xi4ex     2 x      1      2 FG Function Generators

Using wire table: 4052ex-3_avg

                        Slack Table at End Points

End points                         Slack       Arrival             Required
                                             rise     fall      rise     fall
Synthesis and Simulation Design Guide B-5



Synthesis and Simulation Design Guide
ix328_l5_1_l0_l0_0_l0_l0/D     :    n/a      20.02   20.92      n/a      n/a 
ix328_l5_0_l0_l0_0_l0_l0/D     :    n/a      20.02   20.92      n/a      n/a 
dio(0)/                        :    n/a      15.90   16.80      n/a      n/a 
dio(1)/                        :    n/a      15.90   16.80      n/a      n/a 
ix328_l5_1_l0_l0_0_l0_l0/WE    :    n/a      11.80   11.80      n/a      n/a 
ix328_l5_0_l0_l0_0_l0_l0/WE    :    n/a      11.80   11.80      n/a      n/a 
ix328_reg_q(1)_O1/D            :    n/a      9.12   9.12        n/a      n/a 
ix328_reg_q(0)_O1/D            :    n/a      9.12   9.12        n/a      n/a 
ro/                            :    n/a      8.55   8.55        n/a      n/a 
ix328_l5_0_l0_l0_0_l0_l0/WCLK  :    n/a      7.06   7.06        n/a      n/a 

                        Critical Path Report

Critical path #1, (unconstrained path)
NAME                           GATE         ARRIVAL              LOAD
-------------------------------------------------------------------------
we/                                         0.00 up             2.32
ix351/O                         IBUF        4.12 up             2.94
ix328_nx4/O                     F2_LUT      8.86 up             2.94
ix328_reg_q(0)_O1/O             OFDTX      16.80 dn             2.94
ix328_reg_q(0)_I1/O             IBUF       18.60 dn             2.32
ix328_l5_0_l0_l0_0_l0_l0/D      RAM16x1S   20.92 dn             0.00
data arrival time                         20.92

data required time                                          not specified
-------------------------------------------------------------------------
data required time                                          not specified
data arrival time                                           20.92
                                                          ----------
                                                       unconstrained path
-------------------------------------------------------------------------

Critical path #2, (unconstrained path)
NAME                          GATE         ARRIVAL              LOAD
-------------------------------------------------------------------------
meme/                                      0.00 up             2.32
ix352/O                       IBUF        4.12 up             2.94
ix328_nx4/O                   F2_LUT      8.86 up             2.94
ix328_reg_q(0)_O1/O          OFDTX       16.80 dn             2.94
ix328_reg_q(0)_I1/O          IBUF        18.60 dn             2.32
B-6 Xilinx Development System



Report Files
ix328_l5_0_l0_l0_0_l0_l0/D   RAM16x1S    20.92 dn             0.00
data arrival time                        20.92

data required time                                          not specified
-------------------------------------------------------------------------
data required time                                          not specified
data arrival time                                           20.92
                                                          ----------
                                                       unconstrained path
-------------------------------------------------------------------------

.

.

.

.

Log Report

Content-Type: text/plain; charset="us-ascii"
Content-Disposition: attachment; filename="ram.log"

C:\Program Files\Exemplar Logic\Galileo 4.2\bin\win32\gc.exe \
F:/rel4.2/example/ram.vhd F:/rel4.2/example/ram.edf -input_format=VHDL \
-target=xi4ex -output_format=EDIF -area -effort=quick \
-edif_timing_file=F:/rel4.2/example/ram.tim -encoding=OneHot -
wire_tree=Worst \
-nocontrol -vhdl_93 -process=3 -wire_table=4052ex-3_avg -chip 
-------------------------------------------------
Galileo - V4.2 (build 2.01, compiled Dec 19 1997 at 16:48:48)
Copyright 1990-1996 Exemplar Logic, Inc.  All rights reserved.

Checking Security ...
Info: setting encoding to OneHot
Info: setting process to 3
Info: setting wire_tree to Worst
Info: setting wire_table to 4052ex-3_avg
--
-- Welcome to Galileo
-- Run By massoumi@WACO
-- Run Started On Tue Jan 13 11:05:09 Pacific Daylight Time 1998
--
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-- read -format VHDL {F:/rel4.2/example/ram.vhd}
-- Reading file C:\PROGRA~1\EXEMPL~1\GALILE~1.2\data\standard.vhd for 
unit standard
-- Loading package standard into library std
-- Reading vhdl file F:/rel4.2/example/ram.vhd into library work
-- Reading file C:\PROGRA~1\EXEMPL~1\GALILE~1.2\data\std_1164.vhd for 
unit std_logic_1164
-- Loading package std_logic_1164 into library ieee
-- Reading file C:\PROGRA~1\EXEMPL~1\GALILE~1.2\data\ex_1164.vhd for unit 
exemplar_1164
-- Loading package exemplar_1164 into library exemplar
-- Reading file C:\PROGRA~1\EXEMPL~1\GALILE~1.2\data\exemplar.vhd for 
unit exemplar
-- Loading package exemplar into library exemplar
-- Loading package my_pkg into library work
-- Loading entity mem into library work
-- Loading architecture behav of mem into library work
"F:/rel4.2/example/ram.vhd",line 20: Warning, output ro is never assigned 
a value.
-- Compiling root entity mem(behav)
-- Reading target technology xi4ex
Reading library file ‘C:\PROGRA~1\EXEMPL~1\GALILE~1.2\lib\xi4ex.syn‘...
Library version = 0.9
Delays assume: Process=3 
-- Pre Optimizing Design .work.mem.behav
INFO: Using Ram Cell ram_io_inclock_outclock_2_3_8.
-- Read Module Generators
-- Reading module generator description from file 
C:\PROGRA~1\EXEMPL~1\GALILE~1.2\data\modgen\xi4e.vhd
-- Reading vhdl file C:\PROGRA~1\EXEMPL~1\GALILE~1.2\data\modgen\xi4e.vhd 
into library OPERATORS
-- Modgen File xi4e.vhd Version 4.20
-- Resolving Modgen With modgen_select "small"
-- Start module generator resolving for design .work.mem.behav
-- Resolving function ram_io with module generator 
ram_io_2_3_8_true_true_false  from file xi4e.vhd
-- optimize -target xi4ex -effort quick -chip -area
-- Start optimization for design .work.mem.behav
Using wire table: 4052ex-3_avg
                                                              
      Pass     Area    Delay     DFFs  PIs   POs --CPU--
               (FGs)    (ns)                      min:sec
      1          2       17         2     7     3   00:00 
Info, setting outputs in top level view ’behav’ to fast.
Using wire table: 4052ex-3_avg
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-- Start timing optimization for design .work.mem.behav

Latest arrival time at primary output: 20.9 ns
Latest arrival time at register input: 20.9 ns

Forcing timing constraints at all end points: 18.8 ns

Initial Timing Optimization Statistics:
---------------------------------------

Most Critical Slack    :       -2.1
Sum of Negative Slacks :       -4.2
Longest Path           :       20.9 ns
Area                   :        2.0

                                                             
Final Timing Optimization Statistics:
-------------------------------------

Most Critical Slack    :       -2.1
Sum of Negative Slacks :       -4.2
Longest Path           :       20.9 ns
Area                   :        2.0

Total time taken : 0 cpu secs
Using wire table: 4052ex-3_avg
-- Start timespec generation for design .work.mem.behav

*******************************************************

Cell: mem    View: behav    Library: work

*******************************************************

 Number of ports :                      10
 Number of nets :                       24
 Number of instances :                  17
 Number of references to this view :     0

Total accumulated area : 
 Number of FG Function Generators :      4
 Number of Packed CLBs :                 1
 Number of IBUF :                        9
 Number of OBUF :                        1
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 Number of IOB Output Flip Flops :       2

-- Writing file F:/rel4.2/example/ram.edf
-- CPU time taken for this run was 29.55 sec
-- Run ended On Tue Jan 13 11:05:37 Pacific Daylight Time 1998
-- Galileo run successfully completed.  Goodbye !

Synopsys FPGA Express 
FPGA Express™ reports include information on the following.

• Synthesis options used

• Primitives used

• Required and predicted frequency of the clocks

• Critical paths

=====================
Chip fd32ce-Optimized
=====================

Summary Information:
--------------------
Type: Optimized implementation
Source: fd32ce, up to date
Status: 0 errors, 0 warnings, 1 messages
Export: not exported since last optimization

Target Information:
-------------------
Vendor: Xilinx
Family: XC4000
Device: 4085XLBG560
Speed: xl-09

Chip Parameters:
----------------
Optimize for: Speed
Optimization effort: High
Frequency: 50 MHz
Is module: No
Keep io pads: No
Number of flip-flops: 32
Number of latches: 0
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Chip Design Hierarchy:
----------------------
fd32ce: defined in /home/elayda/drcust/stapp2/test1/fd32ce.v

Primitive reference count:
--------------------------
BUFG          1
IBUF          2
INFF         32
OBUF         32
STARTUP       1

Clocks:
-------
                           Required  Estimated                       
Period   Rise     Fall     Freq      Freq       Signal               
(ns)     (ns)     (ns)     (MHz)     (MHz)                           
...............................................................
 20        0       10       50.00       n/a     default              
n/a      n/a      n/a         n/a    100.00     clock_BUFGed         

Timing Groups:
--------------
                                                              
                                                              
Name                 Description                              
............................................................
(I)                  Input ports                              
(O)                  Output ports                             
(RC,clock_BUFGed)    Clocked by rising edge of clock_BUFGed   

Timing Path Groups:
-------------------
                                          Required   Estimated  
                                          Delay      Delay      
>From                 To                   (ns)       (ns)       
............................................................
(I)                  (RC,clock_BUFGed)     20.00       8.42     
(RC,clock_BUFGed)    (O)                   20.00       9.08     

Input Port Timing:
------------------
                     Required   Estimated                       
Port                 Delay      Slack                           
Name                 (ns)       (ns)       To-Group             
Synthesis and Simulation Design Guide B-11



Synthesis and Simulation Design Guide
............................................................
clock                 11.58      11.58     (RC,clock_BUFGed)    
ce                      n/a        n/a     (RC,clock_BUFGed)    
reset                   n/a        n/a     (RC,clock_BUFGed)    
data_in<31>           12.10      12.10     (RC,clock_BUFGed)    
data_in<30>           12.10      12.10     (RC,clock_BUFGed)    
data_in<29>           12.10      12.10     (RC,clock_BUFGed)    
data_in<28>           12.10      12.10     (RC,clock_BUFGed)    
data_in<27>           12.10      12.10     (RC,clock_BUFGed)    
data_in<26>           12.10      12.10     (RC,clock_BUFGed)    
data_in<25>           12.10      12.10     (RC,clock_BUFGed)    
data_in<24>           12.10      12.10     (RC,clock_BUFGed)    
data_in<23>           12.10      12.10     (RC,clock_BUFGed)    
data_in<22>           12.10      12.10     (RC,clock_BUFGed)    
data_in<21>           12.10      12.10     (RC,clock_BUFGed)    
data_in<20>           12.10      12.10     (RC,clock_BUFGed)    
data_in<19>           12.10      12.10     (RC,clock_BUFGed)    
data_in<18>           12.10      12.10     (RC,clock_BUFGed)    
data_in<17>           12.10      12.10     (RC,clock_BUFGed)    
data_in<16>           12.10      12.10     (RC,clock_BUFGed)    
data_in<15>           12.10      12.10     (RC,clock_BUFGed)    
data_in<14>           12.10      12.10     (RC,clock_BUFGed)    
data_in<13>           12.10      12.10     (RC,clock_BUFGed)    
data_in<12>           12.10      12.10     (RC,clock_BUFGed)    
data_in<11>           12.10      12.10     (RC,clock_BUFGed)    
data_in<10>           12.10      12.10     (RC,clock_BUFGed)    
data_in<9>            12.10      12.10     (RC,clock_BUFGed)    
data_in<8>            12.10      12.10     (RC,clock_BUFGed)    
data_in<7>            12.10      12.10     (RC,clock_BUFGed)    
data_in<6>            12.10      12.10     (RC,clock_BUFGed)    
data_in<5>            12.10      12.10     (RC,clock_BUFGed)    
data_in<4>            12.10      12.10     (RC,clock_BUFGed)    
data_in<3>            12.10      12.10     (RC,clock_BUFGed)    
data_in<2>            12.10      12.10     (RC,clock_BUFGed)    
data_in<1>            12.10      12.10     (RC,clock_BUFGed)    
data_in<0>            12.10      12.10     (RC,clock_BUFGed)    

Output Port Timing:
-------------------
                     Required   Estimated                       
Port                 Delay      Slack                           
Name                 (ns)       (ns)       From-Group           
............................................................
data_out<31>          20.00      10.92     (RC,clock_BUFGed)    
data_out<30>          20.00      10.92     (RC,clock_BUFGed)    
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data_out<29>          20.00      10.92     (RC,clock_BUFGed)    
data_out<28>          20.00      10.92     (RC,clock_BUFGed)    
data_out<27>          20.00      10.92     (RC,clock_BUFGed)    
data_out<26>          20.00      10.92     (RC,clock_BUFGed)    
data_out<25>          20.00      10.92     (RC,clock_BUFGed)    
data_out<24>          20.00      10.92     (RC,clock_BUFGed)    
data_out<23>          20.00      10.92     (RC,clock_BUFGed)    
data_out<22>          20.00      10.92     (RC,clock_BUFGed)    
data_out<21>          20.00      10.92     (RC,clock_BUFGed)    
data_out<20>          20.00      10.92     (RC,clock_BUFGed)    
data_out<19>          20.00      10.92     (RC,clock_BUFGed)    
data_out<18>          20.00      10.92     (RC,clock_BUFGed)    
data_out<17>          20.00      10.92     (RC,clock_BUFGed)    
data_out<16>          20.00      10.92     (RC,clock_BUFGed)    
data_out<15>          20.00      10.92     (RC,clock_BUFGed)    
data_out<14>          20.00      10.92     (RC,clock_BUFGed)    
data_out<13>          20.00      10.92     (RC,clock_BUFGed)    
data_out<12>          20.00      10.92     (RC,clock_BUFGed)    
data_out<11>          20.00      10.92     (RC,clock_BUFGed)    
data_out<10>          20.00      10.92     (RC,clock_BUFGed)    
data_out<9>           20.00      10.92     (RC,clock_BUFGed)    
data_out<8>           20.00      10.92     (RC,clock_BUFGed)    
data_out<7>           20.00      10.92     (RC,clock_BUFGed)    
data_out<6>           20.00      10.92     (RC,clock_BUFGed)    
data_out<5>           20.00      10.92     (RC,clock_BUFGed)    
data_out<4>           20.00      10.92     (RC,clock_BUFGed)    
data_out<3>           20.00      10.92     (RC,clock_BUFGed)    
data_out<2>           20.00      10.92     (RC,clock_BUFGed)    
data_out<1>           20.00      10.92     (RC,clock_BUFGed)    
data_out<0>           20.00      10.92     (RC,clock_BUFGed)    

Critical Path Timing:
---------------------
           Arrival    Required                                
Cell       Time       Time       Fanout                       
Type       (ns)       (ns)       Count   Pin-Name             
.........................................................
port         9.08      20.00       0     /fd32ce-Optimized/dat
OBUF         9.08      20.00       0     /fd32ce-Optimized/C17
OBUF         4.38      15.30       1     /fd32ce-Optimized/C17
INFF         1.30      12.22       1     /fd32ce-Optimized/dat
INFF         0.00      10.92      32     /fd32ce-Optimized/dat
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A
active_low_gsr design, 4-23
after xx ns statement, 2-2
arithmetic functions

gate reduction, 2-37
ordering and grouping, 2-3
resource sharing, 2-32

ASIC
comparing to FPGA, 1-3, 2-1

asynchronous reset pin, 2-38
asynchronous set pin, 2-38

B
barrel shifter design, 2-18
bi-directional I/O, 4-71

inferring, 4-72
instantiating, 4-74
using LogiBLOX, 4-76

binary encoded state machine, 4-26
boundary scan, 4-63

instantiating in HDL, 4-63
BSCAN, 4-63
BUFGP, 4-3
BUFGS, 4-3
BUFT see tristate buffer

C
capitalization style in code, 2-4
case statement, 2-3

comparing to if statement, 2-55
design example, 2-58

syntax, 2-47
when to use, 2-47

CLB
XC4000, 2-39

clear pin, 2-38, 4-9, 4-16
clock buffers

inserting, 4-6
instantiating, 4-2, 4-6

clock enable pin, 2-38, 2-42
combinatorial feedback loop, 2-29
comments in code, 2-13
compile run script, 3-4
compiling large designs, 3-5
compiling your design, 3-4, 3-5
conditional expression, 2-27
constants, 2-8
constraint precedence, 3-11
cost-based clean-up option, 3-23
creating readable code, 2-10

D
D register, 2-29

design, 2-7
decoders, 4-40
delay-based clean-up option, 3-23
design compiling, 3-4
design entry, 3-3
design flow

description, 3-1
diagram, 3-2
using the Design Manager, 3-2
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design hierarchy, 3-3, 4-90, 4-91
design performance, 3-18
device downloading, 3-24
directory tree structure, 1-10
disk space requirements, 1-6
downloading files, 1-7
downloading to the device, 3-24

E
EDIF file, 3-5
else statement, 2-29
entering your design, 3-3
enumerated type encoded state machine,
4-32
Exemplar Logic report files, B-4
extracting downloaded files, 1-9

F
Field Programmable Gate Array see FPGA
file transfer protocol, 1-8
Finite State Machine, 4-32, 4-39

changing encoding style, 4-39
extraction commands, 4-32

flip-flop, 2-30
formatting styles, 2-4
FPGA

comparing to ASIC, 1-3, 2-1
creating with HDLs, 4-1
global clock buffer, 4-2
system features, 1-4, 4-1

FPGA Express report files, B-10
from

to style timing constraint, 3-8
FSM see Finite State Machine
functional simulation, 1-2, 3-4, 5-2, 5-4

comparing to synthesis, 2-1

G
gate reduction

definition, 2-37
gated clocks, 2-42

global clock buffer, 4-2
global longlines, 4-5
global set/reset, 4-9, 5-23, 5-48

increasing performance, 4-10
STARTUP block, 4-9
test bench, 5-49

global signals, 5-18, 5-22
GSR see global set/reset
GSRIN, 4-9
GTS, 5-35, 5-64
guide option, 3-23

H
hardware description language see HDL
HDL

also see Verilog
also see VHDL
coding for FPGAs, 4-1
converting to gates, 1-2
definition, 1-1
designing FPGAs, 1-2, 1-3
FPGA system features, 4-1

boundary scan, 4-63
global clock buffer, 4-2
global set/reset, 4-9
I/O decoders, 4-40
implementing logic with IOBs,
4-67
on-chip RAM, 4-52

implementing registers, 2-27
schematic entry design hints, 2-17

hdl_resource_allocation command, 2-34
hdlin_check_no_latch command, 2-30
hierarchy in designs, 1-4
high-density design flow, 3-1
hold-time requirement, 2-29, 4-67

I
I/O decoder, 4-40
if statement, 2-30
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comparing to case statement, 2-55
design example, 2-56
registers, 2-30
syntax, 2-45
when to use, 2-46

if-case statement
design example, 2-51

if-else statement, 2-3, 2-45
ignore timing paths, 3-9
indenting HDL code, 2-10
INIT=S attribute, 4-10, 4-16, 4-40
initialization statement, 2-4
Insert Pads command, 4-2
installation

design examples, 1-5
directory tree structure, 1-10
disk space requirements, 1-6
downloading files, 1-7
extracting downloaded files, 1-9
file transfer protocol, 1-8
internet site, 1-7, 1-8
memory requirements, 1-5
tactical software, 1-5

internet site, 1-7
IOB

implementing logic, 4-67
moving registers, 4-79, 4-80
unbonded, 4-81

J
JTAG 1149.1, 4-63

L
labeling in code, 2-7
latch

combinatorial feedback loop, 2-29
comparing speed and area, 2-31
converting to register, 2-29
D flip-flop, 2-30
D latch implemented with gates, 2-28
hdlin_check_no_latch command, 2-30

implementing in HDL, 2-27
inference, 2-46
latch count, 2-30
RAM primitives, 2-30

libraries, 5-11
LogiBLOX

bi-directional I/O, 4-76
implementing memory, 4-59
instantiating modules, 4-45
libraries, 5-11, 5-16

LogiCORE
library, 5-17

M
mapping your design

using design manager, 3-13
using the command line, 3-15

maxskew, 3-10
memory

implementing in HDL, 4-52
requirements, 1-5

Modelsim simulator, 5-48
multi-pass place and route option, 3-21
multiplexer

comparing gates and tristate buffer, 4-
89
implementing with gates, 4-86
implementing with tristate buffer, 4-84
resource sharing, 2-32

N
named association, 2-9
naming conventions, 2-5, 2-6
nested if statement, 2-48
no_gsr design, 4-11
NODELAY attribute, 4-67

O
offset constraint, 3-9
OMUX, 4-69
one-hot encoded state machine, 4-35
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oscillators, 5-44
output multiplexer, 4-69

P
pad location, 4-79
period constraint, 3-8
pipelining, 4-89
placing and routing your design, 3-19
port declarations, 2-14
positional association, 2-9
post-route full timing simulation, 5-9
post-synthesis simulation, 5-5
-pr option, 4-80
preset pin, 2-38, 4-9, 4-10, 4-16
priority-encoded logic, 2-48, 2-55
PROM file, 3-24
pull-downs, 4-69
pull-ups, 4-69

R
RAMs

inferring, 4-58
instantiating, 4-56

re-entrant routing option, 3-22
register

clear pin, 2-38
converting latch to register, 2-29
D register, 2-29
if statement, 2-30
implementing in HDL, 2-27
inference, 2-39
moving into IOB, 4-79
preset pin, 2-38

report files, B-1
report_timing command, 3-13
reset on configuration, 5-24
reset on configuration buffer, 5-29
resource sharing

CLB count, 2-37
definition, 2-31
delay, 2-37

design examples, 2-32
disabling, 2-34

ROC, 5-24
ROCBUF, 5-29
ROMs, 4-53
RTL simulation, 4-11, 4-17, 5-1, 5-5

definition, 1-2

S
schematic entry design hints, 2-17
set don’t touch attribute, 4-63
signal skew, 3-10
signals, 2-15
SimPrim libraries, 5-11
simulating your design, 5-1
simulation

creating a test bench, 5-7
functional, 5-4
global signals, 5-18
industry standards, 5-11
library source files, 5-13
post-map, 5-6
post-NGDBuild, 5-6
post-synthesis, 5-5
timing, 5-8

simulation diagram, 5-2
slew rate, 4-68
software requirements, 1-5
Spartan

IOB, 4-67
STARTBUF, 4-9, 5-32
STARTUP block, 4-9, 4-17
startup state, 4-10
state machine, 4-26

binary encoded, 4-26
bubble diagram, 4-27
encoding style summary, 4-38
enumerated type encoded, 4-32

design example, 4-33, 4-35
enumeration type, 4-38
initializing, 4-40
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limiting fan-in, A-3
one-hot encoded, 4-35, A-1
one-state vs. binary encoded, A-8
resetting state bits, A-11
seven states, A-3

std_logic data type, 2-13
Synopsys

creating compile run script, 3-4
Synplicity report files, B-1
synthesis

comparing to simulation, 2-1

T
TCK pin, 4-63
TDI pin, 4-63
TDO pin, 4-63
test bench, 5-7
TIG, 3-9
TIMEGRPs, 3-6
timing

constraint precedence, 3-11
constraint priority, 3-10
constraints, 1-5, 3-5, 3-8
requirements, 1-5
simulation, 3-23, 5-2, 5-8
simulation netlist

Command Line, 5-10
Design Manager, 5-9

TMS pin, 4-63
TNMs, 3-6
TOC, 5-36
TOCBUF, 5-41
TPSYNC keyword, 3-7
tristate buffer

comparing to gates, 4-89
implementing multiplexer, 4-84

tristate enable, 5-35
tristate on configuration, 5-36
tristate on configuration buffer, 5-41
turns engine option, 3-21

U
UCF, 4-79
unbonded IOBs, 4-81
UniSim libraries, 5-11, 5-13
use_gsr design, 4-17
user constraints file, 4-79

V
variables, 2-15
Verilog

capitalization style, 2-4
constants for opcode, 2-9
definition, 1-3
global set/reset, 5-48
GTS, 5-64
libraries, 5-47
parameters for constants, 2-9
register inference, 2-41

VHDL
after xx ns statement, 2-2
also see HDL
arithmetic functions, 2-3
capitalization style, 2-5
case statement, 2-3
coding styles, 2-4
constants, 2-8
constants for opcode, 2-8
definition, 1-3
if-else statement, 2-3
initialization statement, 2-4
naming identifiers, 2-6
naming packages, 2-6
naming types, 2-6
register inference, 2-39
simulation, 2-1
std_logic data type, 2-13
synthesis, 2-1
variables for constants, 2-8
wait for xx ns statement, 2-2
Xilinx naming conventions, 2-5
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VHSIC Hardware Description Language
see VHDL

W
wait for xx ns statement, 2-2

X
XC4000

CLB, 2-39
IOB, 4-67

XC5200
IOB, 4-71

XDW libraries, 5-11
Xilinx internet site, 1-8
XNF file, 3-5
xor_sig design, 2-16
xor_var design, 2-17
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