
Alliance Series 2.1i Quick Start Guide — July 1999 Printed in U.S.A.

Alliance Series
2.1i Quick Start
Guide

Introduction

Implementation Tools
Tutorial

Using the Software

Alliance FPGA Express
Interface Notes

Mentor Graphics Interface
Notes

Xilinx Synopsys Interface
Notes

Viewlogic Interface Notes

Using LogiBLOX with CAE
Interfaces

Instantiated Components

Alliance Constraints

Configuring Xprinter

Glossary

Alliance Series 2.1i Quick Start Guide
The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

FPGA Architect, FPGA Foundry, NeoCAD, NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Timing Wizard, TRACE,
XACT, XILINX, XC2064, XC3090, XC4005, XC5210, and XC-DS501 are registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, Alliance Series, AllianceCORE, BITA, CLC, Configurable Logic Cell, Dual Block,
EZTag, FastCLK, FastCONNECT, FastFLASH, FastMap, Foundation, HardWire, LCA, LogiBLOX, Logic Cell,
LogiCORE, LogicProfessor, MicroVia, Plus Logic, PLUSASM, Plustran, P+, PowerGuide, PowerMaze, SelectI/O,
Select-RAM, Select-RAM+, Smartguide, SmartSearch, Smartspec, Spartan, TrueMap, UIM, VectorMaze,
VersaBlock, VersaRing, Virtex, WebLINX, XABEL, XACTstep, XACTstep Advanced, XACTstep Foundry, XACT-
Floorplanner, XACT-Performance, XAM, XAPP, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, Xilinx
Foundation Series, XPP, XSI, and ZERO+ are trademarks of Xilinx, Inc. The Programmable Logic Company and
The Programmable Gate Array Company are service marks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under
one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155;
4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135;
5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704; 5,329,174; 5,329,181;
5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189;
5,410,194; 5,414,377; 5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181; 5,448,493; 5,450,021;
5,450,022; 5,453,706; 5,455,525; 5,466,117; 5,469,003; 5,475,253; 5,477,414; 5,481,206; 5,483,478; 5,486,707;
5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196; 5,498,979; 5,498,989; 5,499,192; 5,500,608;
5,500,609; 5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523; 5,506,878; 5,513,124; 5,517,135; 5,521,835;
5,521,837; 5,523,963; 5,523,971; 5,524,097; 5,526,322; 5,528,169; 5,528,176; 5,530,378; 5,530,384; 5,546,018;
5,550,839; 5,550,843; 5,552,722; 5,553,001; 5,559,751; 5,561,367; 5,561,629; 5,561,631; 5,563,527; 5,563,528;
5,563,529; 5,563,827; 5,565,792; 5,566,123; 5,570,051; 5,574,634; 5,574,655; 5,578,946; 5,581,198; 5,581,199;
5,581,738; 5,583,450; 5,583,452; 5,592,105; 5,594,367; 5,598,424; 5,600,263; 5,600,264; 5,600,271; 5,600,597;
5,608,342; 5,610,536; 5,610,790; 5,610,829; 5,612,633; 5,617,021; 5,617,041; 5,617,327; 5,617,573; 5,623,387;
5,627,480; 5,629,637; 5,629,886; 5,631,577; 5,631,583; 5,635,851; 5,636,368; 5,640,106; 5,642,058; 5,646,545;
5,646,547; 5,646,564; 5,646,903; 5,648,732; 5,648,913; 5,650,672; 5,650,946; 5,652,904; 5,654,631; 5,656,950;
5,657,290; 5,659,484; 5,661,660; 5,661,685; 5,670,896; 5,670,897; 5,672,966; 5,673,198; 5,675,262; 5,675,270;
5,675,589; 5,677,638; 5,682,107; 5,689,133; 5,689,516; 5,691,907; 5,691,912; 5,694,047; 5,694,056; 5,724,276;
5,694,399; 5,696,454; 5,701,091; 5,701,441; 5,703,759; 5,705,932; 5,705,938; 5,708,597; 5,712,579; 5,715,197;
5,717,340; 5,719,506; 5,719,507; 5,724,276; 5,726,484; 5,726,584; Re. 34,363, Re. 34,444, and Re. 34,808. Other
U.S. and foreign patents pending. Xilinx, Inc. does not represent that devices shown or products described herein
are free from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to correct

R

Xilinx Development System

any errors contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not
assume any liability for the accuracy or correctness of any engineering or software support or assistance provided
to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-1998 Xilinx, Inc. All Rights Reserved.
Alliance Series 2.1i Quick Start Guide

Alliance Series 2.1i Quick Start Guide

About This Manual

This manual provides an overview of the Alliance Series 2.1i Soft-
ware, including a basic tutorial. There are also instructions for how to
configure your third-party interface tools to work with the Alliance
software flow. This manual is targeted for the user who has already
installed their software and online documentation, and set up their
user environment variables.

Other publications you can consult for related information include
the Design Manager/Flow Engine Guide and the Alliance Release Notes
and Installation Guide.

Additional Resources
For additional information, go to http://support.xilinx.com. The
following table lists some of the resources you can access from this
page. You can also directly access some of these resources using the
provided URLs.

Resource Description/URL

Tutorial Tutorials covering Xilinx design flows, from design entry to verification
and debugging
http://support.xilinx.com/support/techsup/tutorials/index.htm

Answers
Database

Current listing of solution records for the Xilinx software tools
Search this database using the search function at
http://support.xilinx.com/support/searchtd.htm

Application
Notes

Descriptions of device-specific design techniques and approaches
http://support.xilinx.com/apps/appsweb.htm
Alliance Series 2.1i Quick Start Guide — July 1999 v

Alliance Series 2.1i Quick Start Guide
Manual Contents
This manual covers the following topics.

• Chapter 1, “Introduction” introduces the various features of the
Xilinx software.

• Chapter 2, “Implementation Tools Tutorial” provides a tutorial
on the Xilinx design flow.

• Chapter 3, “Using the Software” looks in-depth at the capability
and flexibility of the Alliance software tools.

• Appendix A, “Alliance FPGA Express Interface Notes,” covers
how to install and start using FPGA Express for the Alliance 2.1i
Software.

• Appendix B, “Mentor Graphics Interface Notes,” covers how to
set up the Mentor Graphics interface and associated libraries.

• Appendix C, “Xilinx Synopsys Interface Notes,” covers how to
set up the Xilinx Synopsys Interface (XSI) and associated
libraries.

• Appendix D, “Viewlogic Interface Notes,” covers how to set up
the Viewlogic interface and project libraries.

• Appendix E, “Using LogiBLOX with CAE Interfaces,” covers
how to set up the LogiBLOX interface and associated libraries

• Appendix F, “Instantiated Components,” includes a listing of the
components most frequently instantiated in synthesis designs.

Data Book Pages from The Programmable Logic Data Book, which describe device-
specific information on Xilinx device characteristics, including read-
back, boundary scan, configuration, length count, and debugging
http://support.xilinx.com/partinfo/databook.htm

Xcell Journals Quarterly journals for Xilinx programmable logic users
http://support.xilinx.com/xcell/xcell.htm

Tech Tips Latest news, design tips, and patch information on the Xilinx design
environment
http://support.xilinx.com/support/techsup/journals/index.htm

Resource Description/URL
vi Xilinx Development System

• Appendix G, “Alliance Constraints,” describes the most common
constraints you can apply to your design to control the timing
and layout of a Xilinx FPGA or CPLD.

• Appendix H “Configuring Xprinter,”provides configuration
details for Workstation users so they can print from Xilinx GUI
applications.

• Appendix I, “Glossary,” contains definitions and explanations for
terms used in the Quick Start Guide.
Alliance Series 2.1i Quick Start Guide vii

Alliance Series 2.1i Quick Start Guide
viii Xilinx Development System

Conventions

This manual uses the following typographical and online document
conventions. An example illustrates each typographical convention.

Typographical
The following conventions are used for all documents.

• Courier font indicates messages, prompts, and program files
that the system displays.

speed grade: -100

• Courier bold indicates literal commands that you enter in a
syntactical statement. However, braces “{ }” in Courier bold are
not literal and square brackets “[]” in Courier bold are literal
only in the case of bus specifications, such as bus [7:0].

rpt_del_net=

Courier bold also indicates commands that you select from a
menu.

File → Open

• Italic font denotes the following items.

• Variables in a syntax statement for which you must supply
values

edif2ngd design_name

• References to other manuals

See the Development System Reference Guide for more informa-
tion.
Alliance Series 2.1i Quick Start Guide — July 1999 ix

Alliance Series 2.1i Quick Start Guide
• Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the
two nets are not connected.

• Square brackets “[]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

edif2ngd [option_name] design_name

• Braces “{ }” enclose a list of items from which you must choose
one or more.

lowpwr ={on|off}

• A vertical bar “|” separates items in a list of choices.

lowpwr ={on|off}

• A vertical ellipsis indicates repetitive material that has been
omitted.

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

• A horizontal ellipsis “. . .” indicates that an item can be repeated
one or more times.

allow block block_name loc1 loc2 ... locn;

Online Document
The following conventions are used for online documents.

• Red-underlined text indicates an interbook link, which is a cross-
reference to another book. Click the red-underlined text to open
the specified cross-reference.

• Blue-underlined text indicates an intrabook link, which is a cross-
reference within a book. Click the blue-underlined text to open
the specified cross-reference.
x Xilinx Development System

Contents
Additional Resources ... v
Manual Contents .. vi
Typographical... ix
Online Document ... x

Chapter 1 Introduction

Supported Devices... 1-1
Supported Netlists.. 1-2
Xilinx Development System Tools and Features 1-2
Software Manuals and Online Help.. 1-4

New Features for Software Manuals... 1-4
Software Manuals On the Web.. 1-5
Online Help for Software Manuals 1-5

Installing Software Manuals .. 1-5
Printing Software Manuals .. 1-6

Printing PDF Files.. 1-6
Printing from the Online Document Viewer.......................... 1-8

EDA and Third Party Interface Support.. 1-8
Software Installation and Licensing.. 1-9
Support and Services... 1-9

Technical Support ... 1-10
Customer Service ... 1-10

Chapter 2 Implementation Tools Tutorial

Installing the Tutorial Files ... 2-2
Step 1: Creating an Implementation Project 2-2

Design Manager Status Bar.. 2-7
Design Manager Toolbox.. 2-8

Step 2: Specifying Options... 2-8
Step 3: Translating the Design... 2-11
Step 4: Using the Constraints Editor .. 2-13
Alliance Series 2.1i Quick Start Guide — July 1999 i

Aliance Series 2.1i Quick Start Guide
How to Stop the Design Processing Flow................................. 2-14
Starting the Flow Engine and Translating/Mapping your Design 2-16

Step 5: Mapping the Design... 2-17
Step 6: Using Timing Analysis to Evaluate Block Delays After
Mapping ... 2-19

Estimating Timing Goals With 50/50 Rule 2-19
Report Paths In Timing Constraints Option 2-19

Step 7: Placing and Routing the Design .. 2-20
Step 8: Evaluating Post-Layout Timing .. 2-23
Step 9: Creating Timing Simulation Data 2-23
Step 10: Creating Configuration Data .. 2-24
Step 11: Using the PROM File Formatter 2-26

Chapter 3 Using the Software

Using the Xilinx Tools... 3-1
Xilinx Design Flow.. 3-2

Using the Design Manager ... 3-3
Creating a Project .. 3-4
Implementing Your Design .. 3-5

Using the Flow Engine .. 3-5
Translating Your Design .. 3-5
Mapping Your Design .. 3-5
Placing and Routing Your Design.. 3-6
Configuring Your Design.. 3-6

Analyzing Reports with the Design Manager 3-6
Translation Report ... 3-7
Map Report .. 3-7
Place and Route Report .. 3-8
Pad Report... 3-8

Selecting Options ... 3-8
Using Design Constraints... 3-9

Adding Constraints with the Constraints Editor......................... 3-10
Guiding a Design with Floorplanner Files 3-11
Static Timing Analysis .. 3-12

Static Timing Analysis After Map .. 3-12
Static Timing Analysis After Place and Route........................... 3-13
Summary Timing Reports ... 3-13
Detailed Timing Analysis... 3-14

Creating Simulation Files ... 3-14
Creating Timing Simulation Data .. 3-15
Creating Functional Simulation Data .. 3-16

Downloading a Design ... 3-17
ii Xilinx Development System

Contents
Creating a PROM.. 3-17
In-Circuit Debugging ... 3-17
Advanced Implementation Flows .. 3-17
Re-Entrant Route .. 3-18

Multi-Pass Place and Route... 3-19
Guiding an Implementation .. 3-20

Specifying a Guide Design.. 3-20
Exact Guide Mode .. 3-21
Leveraged Guide Mode .. 3-21

Appendix A Alliance FPGA Express Interface Notes
Additional Documentation .. A-2
Alliance FPGA Express/Xilinx Design Flow A-2
Installing FPGA Express .. A-4
Entering a Design... A-4
Simulating a Design ... A-5
Timing Constraints ... A-5
Porting Code from FPGA Compiler to FPGA Express A-5
Using LogiBLOX with FPGA Express .. A-6

Appendix B Mentor Graphics Interface Notes
Additional Documentation .. B-1
Setting Up the Xilinx/Mentor Interface.. B-2
Mentor/Xilinx Software Design Flow .. B-3
Translating a Design to Xilinx EDIF ... B-5
Timing Simulation... B-6

Generating a Timing-Annotated EDIF Netlist............................ B-6
Generating a Timing Model... B-6
Running PLD_QuickSim ... B-6

Mentor Interface Environment Variables.. B-7
Library Locations and Sample MGC Location Map........................ B-7
Pin Locking... B-7
Timing Constraints ... B-8

Appendix C Xilinx Synopsys Interface Notes
Documentation ... C-1
Setting Up the Synopsys Interface... C-1

Setting up the XDW and Simulation Libraries........................... C-2
Compiling XDW Libraries... C-3
Compiling the Simulation Libraries C-3

Examples of Synopsys Setup Files.. C-5
XC4000 Devices ... C-5
Alliance Series 2.1i Quick Start Guide iii

Aliance Series 2.1i Quick Start Guide
Example .synopsys_dc.setup File C-5
 Example .synopsys_vss.setup File..................................... C-5
Example Script File for XC4000E/EX/XL/XV Designs C-6

Virtex Devices ... C-7
Example .synopsys_dc.setup File C-8
Example Script File for Virtex Devices................................. C-9

Entity Coding Examples ... C-12
VHDL .. C-12
Verilog Code: Module Example .. C-14
Comments About Code... C-15

Appendix D Viewlogic Interface Notes
Documentation ... D-1
Setting Up Viewlogic Interface on Workstations D-1
Setting Up Viewlogic Interface on the PC D-2
Setting Up Project Libraries ... D-3

Workstation ... D-4
Xilinx Commands in ViewDraw.. D-5

PC ... D-5
Assigning a Pin Location.. D-6

Timing Constraints .. D-7

Appendix E Using LogiBLOX with CAE Interfaces
Documentation ... E-2
Setting Up LogiBLOX on a Workstation ... E-2

Mentor Interface Environment Variables................................... E-2
Synopsys Interface Environment Variables E-3
Viewlogic Interface Environment Variables............................... E-3

Setting Up LogiBLOX on a PC... E-3
Viewlogic Environment Variables for PCs................................. E-3

Starting LogiBLOX ... E-4
Using LogiBLOX for Schematic Design ... E-4

Creating a LogiBLOX Module ... E-4
Design Simulation ... E-5
Copying Modules .. E-5

Using LogiBLOX for HDL Synthesis Design E-6
Instantiating a LogiBLOX Module ... E-6

Analyzing a LogiBLOX Module .. E-6
Mentor QuickHDL ... E-7
Synopsys VSS .. E-7
Viewlogic Vantage .. E-7
MTI Modelsim ... E-7
iv Xilinx Development System

Contents
VHDL Designs ... E-8
Verilog Designs.. E-8

LogiBLOX Modules .. E-8

Appendix F Instantiated Components
STARTUP Component... F-1
STARTBUF Component... F-2
BSCAN Component ... F-2
READBACK Component.. F-4
RAM and ROM... F-4
Global Buffers .. F-6
Fast Output Primitives.. F-7
IOB Components.. F-8
Clock Delay Components... F-11

Appendix G Alliance Constraints
Entering Design Constraints .. G-1

Adding Constraints with the Constraints Editor......................... G-3
Using the Global Tab .. G-3

Translating and Merging Logical Designs G-4
Constraining LogiBLOX RAM/ROM with Synopsys G-4

Estimating the Number of Primitives Used G-5
Naming RAM Primitives .. G-5
Referencing a LogiBLOX Module ... G-5
Referencing LogiBLOX Module Primitives................................ G-6
FPGA/Design Compiler and Express Verilog Examples........... G-7

Test.v Example .. G-7
Inside.v Example ... G-7
Memory.v Example (FPGA/Design compiler only) G-8
Runscript Example (FPGA/Design compiler only) G-8
Test.ucf Example (FPGA/Design compiler only) G-8
Test.ucf Example (FPGA Express only) G-9

FPGA/Design Compiler and Express VHDL Examples G-9
Test.vhd Example .. G-9
Inside.vhd Example ... G-10
Runscript Example (FPGA/Design compiler only) G-10
Test.ucf Example (FPGA/Design compiler only) G-11
Test.ucf Example (FPGA Express only) G-11

Appendix H Configuring Xprinter
Required Wind/U Files ... H-1
Configuring .WindU.. H-2
Alliance Series 2.1i Quick Start Guide v

Aliance Series 2.1i Quick Start Guide
Printer Information and PPD Files .. H-2
Unix Print Command... H-2
Configuring Wind/U for Printing .. H-3
Defining a Port .. H-3

To Define a New Port .. H-4
To Modify an Existing Port... H-5

Matching a Printer Type to a Defined Port................................ H-5
To Remove an Installed Printer ... H-7

Specifying a Default Printer .. H-8
To Specify a Default Printer... H-9

Setting Printer Options.. H-9
Sending Output to a File ... H-10

Solving Printing Problems.. H-11

Appendix I Glossary
aliases .. I-1
attribute .. I-1
AutoRoute .. I-1
block... I-1
component ... I-1
constraint.. I-2
Constraints Editor... I-2
DC2NCF... I-2
guided mapping.. I-2
HDL.. I-2
Implementation Tools... I-2
LCA file... I-3
LCA2NCD .. I-3
LogiBLOX... I-3
locking .. I-3
Logic Block Editor .. I-3
macro ... I-3
MCS file.. I-3
MDF file.. I-4
MFP File... I-4
MRP file.. I-4
NCD file.. I-4
NCF file .. I-4
NGC File .. I-4
NGDAnno... I-5
NGA file.. I-5
NGD2EDIF ... I-5
vi Xilinx Development System

Contents
NGD2VER.. I-5
NGD2VHDL.. I-5
NGDBuild ... I-5
NGD file.. I-5
NGM file ... I-6
PAR (Place and Route).. I-6
path delay... I-6
PCF file .. I-6
physical Design Rule Check (DRC) ... I-6
physical macro ... I-6
pin .. I-7
pinwires .. I-7
route ... I-7
route-through.. I-7
states.. I-7
TRCE ... I-7
TWR file ... I-8
wire... I-8
UCF file .. I-8
Alliance Series 2.1i Quick Start Guide vii

Aliance Series 2.1i Quick Start Guide
viii Xilinx Development System

Chapter 1

Introduction

This chapter contains basic information about the Alliance 2.1i Soft-
ware and its components, along with listing the Xilinx Devices that
are supported by the software.

For complete information about the new features of this software
release, refer to the “What’s New” file included on your Alliance
Implementation Tools CD-ROM.

This chapter contains the following sections.

• “Supported Devices”

• “Supported Netlists”

• “Xilinx Development System Tools and Features”

• “Software Manuals and Online Help”

• “EDA and Third Party Interface Support”

• “Software Installation and Licensing”

• “Support and Services”

Note: Complete software installation information is located in the
Alliance 2.1i Release Notes and Installation Guide.

Supported Devices
The Alliance 2.1i Software supports the following device families.

• XC3000A/L

• XC3100A/L

• XC4000E/L/EX/XL/XV/XLA

• XC5200
Alliance Series 2.1i Quick Start Guide — July 1999 1-1

Alliance Series 2.1i Quick Start Guide
• XC9500/X

• Spartan/XL/II

• Virtex/E

Refer to The Programmable Logic Data Book for more information on
these devices. The online version of the Data Book is at http://
www.xilinx.com/partinfo/databook.htm.

For updated information regarding speed grades and package
support, search the Xilinx Answers Database and the latest Applica-
tion Notes. You can search Xilinx Technical Documentation at http://
www.xilinx.com/support/searchtd.htm.

Supported Netlists
You must use the Xilinx Unified Libraries to create your designs.
Refer to the Xilinx Libraries Guide for a list of components. The
following table lists the netlist formats supported by the Xilinx soft-
ware.

Xilinx Development System Tools and Features
This section lists the tools and the main features of the Xilinx soft-
ware. The tutorial in this manual provides a brief overview of how to
use these software tools.

Netlist Format Variations

EDIF SEDIF, EDN, EDF, EDIF

XNF SXNF, XFF, XTF, XNF
1-2 Xilinx Development System

Introduction
For detailed information on using the following Xilinx GUI tools,
refer to the appropriate online software manual.

Table 1-1 Xilinx Software Tools

Feature Description

Design Manager Top level software module in the Xilinx Development System.
The Design Manager provides access to all the tools you need to
read a file from a design entry tool and implement it in a Xilinx
device.

Flow Engine Displays and executes all the steps needed to implement a Xilinx
design, including translating design netlists; mapping logic to
CLBs; placing and routing designs; creating a configuration file
for downloading to a device; creating static timing reports; and
creating timing simulation netlists in VHDL (Vital), Verilog,
EDIF, or XNF.

LogiBLOX Graphical tool used to create high-level modules, such as
counters, shift registers, and multiplexers.

CORE Generator The CORE Generator system has been integrated into the Alli-
ance 2.1i Software interface. The CORE Generator GUI tool
generates and delivers parameterizable cores optimized for
Xilinx devices.

Floorplanner Graphical tool used to control the placement of your design into
a target FPGA using a “drag and drop” paradigm with the
mouse pointer.

Constraints Editor Graphical tool used after running NGDBuild to add timing
constraints and I/O pin locations.

FPGA Editor Graphical tool used to display and configure your designs
before or after placing and routing.

Hardware Debugger Used to download your design to a device, verify the down-
loaded configuration, and display the internal states of the
programmed device.

PROM File Formatter Creates files for serial or byte-wide configuration PROMs. Three
formats are available: MCS, EXO, and TEK. The HEX format is
also supported for microprocessor-based configuration.
Alliance Series 2.1i Quick Start Guide 1-3

Alliance Series 2.1i Quick Start Guide
Software Manuals and Online Help
Xilinx provides software user manuals and online help for its GUI
tools and associated EDA software interfaces. You can access the
online help from the Help → Help Topics pull-down menu option
of each software tool. The following sections provide more informa-
tion about accessing and using the Software Manuals Online.

New Features for Software Manuals
The Xilinx Software Manuals are now provided on the Web and on
your Documentation CD-ROM. You can install the software manuals
locally, read them from the CD-ROM, or read them on the Xilinx Web
site. Easy print options are also available. The web-compatible docu-
mentation includes powerful search functions is viewed using your
own Java compatible internet browser.

Note: For best performance, Xilinx recommends you use version 4.0
or higher of either Netscape Navigator tm or Microsoft Internet
Explorer tm browsers.

Table 1-2 Xilinx Software Features

Feature Description

Timing Specification
Performance

Xilinx software supports timing-driven placement and routing.

Multi-Pass PAR The place and route (PAR) software allows multiple place and
route iterations on a single machine, a UNIX™ network, or on
multiple machines running in parallel. This feature provides
optimum performance and efficiency, utilizing CPU time to
achieve faster design results.

Re-Entrant Routing Re-entrant routing skips placement and routes your design.
Routing begins with the existing placement and routing left in
place.

Guide for Incre-
mental Design
Changes

You can select a previously mapped, routed, or fitted implemen-
tation revision to use as a guide for implementation.
1-4 Xilinx Development System

Introduction
Software Manuals On the Web

The 2.1i Series Software Manuals are accessible from the Xilinx
Support Web site at the following location. Bookmark this link for
easy future use, or add the URL to your Favorites list.

http://support.xilinx.com/support/sw_manuals/2_1i/index.htm

Online Help for Software Manuals

Online help instructions for reading, browsing, and searching the
online manuals are available through the web browser interface.
Click the Help button in the upper left-hand corner of the documen-
tation viewer browser window to access the help topics.

Note: The new web-compatible documentation will appear the same
whether you access the manuals locally (from the CD-ROM) or
through the Web site.

Installing Software Manuals
Complete directions for installing the online Software Manuals and
the Alliance Implementation tools software are located in the Alliance
2.1i Release Notes and Installation Guide.

In order to use the new documentation viewer, you must have a Java-
enabled web browser installed on your system or network. During
Alliance Implementation Tools installation, you can specify the path
to your current web browser or install Netscape Navigator 4.0.5.

You have two options for installing the Software Manuals.

• Install the Manuals locally or to a network location

• Access the Manuals through the web

Xilinx recommends that you install all of the online manuals locally
for fastest access. If you install the manuals, you will be able to access
them using the Help → Online Documentation pull-down menu
command in the Design Manager and other Xilinx GUI tools.

If you wish to save space on your local drive, you may choose to
access the manuals through the web instead of installing them. For
information about printing the software manuals, see the “Printing
Software Manuals” section.
Alliance Series 2.1i Quick Start Guide 1-5

Alliance Series 2.1i Quick Start Guide
When you read the Software Manuals for the first time, a “Java Secu-
rity” window may appear. This window is requesting additional
permissions for Docsan, the Java application used to view the soft-
ware manuals. Select the Grant or Yes button to allow Docsan to
access your hard disk.

Warning: You must grant this permission to view the software
manuals. For your security, the Docsan Java applet is digitially signed
by Sidana Systems, Inc. using a certificate from Verisign.

Printing Software Manuals
You can now print the entire Xilinx software manuals with the
graphics and text inline. PDF format files of each of the software
manuals are provided on the 2.1i Software Documentation CD-ROM.

Printing PDF Files

To access and print using the PDF files, use the following steps.

1. Verify that you have Adobe Acrobat Reader (version 3.0 or
above) installed on your network or local area.

You can install Acrobat from the Alliance 2.1i Implementation
tools software CD-ROM by selecting the Core Generator option.

2. Start Acrobat Reader

• Unix users

Run the following command to start this tool.

/usr/bin/path_to_directory/acrobat

Path_to_directory is the directory where your Acrobat
program files are located.

• PC users

Select Start → Programs → Acrobat Reader

3. Insert the Xilinx 2.1i Software Documentation CD-ROM into your
drive.

4. Access your CD-ROM directory.

• Unix users
1-6 Xilinx Development System

Introduction
Enter /usr/bin/path_to_CD-ROM_directory, where
path_to_CD-ROM_directory is your mounted CD-ROM drive.

Enter the ls command to view the contents of the CD-ROM
directory.

• PC users

Select Start → Programs → Windows Explorer and
select your CD-ROM drive to display the contents of the CD-
ROM.

5. Open the Print directory or folder from the CD-ROM contents.
This directory contains the PDF files.

6. Select a book and open it in Acrobat.

The following table lists the book titles and their corresponding
PDF file names.

Table 1-3 List of Alliance 2.1i Software Manuals

Manual Title PDF File Name

Xilinx/Concept-HDL Interface Guide docchdl.pdf

Constraints Editor Guide cst_edit.pdf

CPLD Schematic Design Guide sdg_alli

CPLD Synthesis Design Guide syn_cpld

Design Manager/Flow Engine Guide dmfe.pdf

Development System Reference Guide dev_ref.pdf

FPGA Editor Guide fpedit.pdf

Floorplanner Guide fplan.pdf

Hardware Debugger Guide hdebug.pdf

Hardware User Guide huguide.pdf

JTAG Programmer Guide jtag.pdf

Libraries Guide libguide.pdf

LogiBLOX Guide lblox.pdf

Mentor Graphics Interface Guide mentor.pdf

PROM File Formatter Guide prom_fmt.pdf

Alliance Series 2.1i Quick Start Guide docaqsg.pdf

Synthesis and Simulation Design Guide gensim.pdf
Alliance Series 2.1i Quick Start Guide 1-7

Alliance Series 2.1i Quick Start Guide
7. Print the book using the File → Print command from the
Adobe Acrobat reader window.

Printing from the Online Document Viewer

You can print individual pages of the Software Manuals directly from
your internet browser window. For example, Netscape users would
use the File → Print Frame menu option from their browser
window. (Make sure that you have clicked on the right-hand book
view frame in order to select it for printing.)

Xilinx recommends that you use the online books for quick informa-
tion access and searching, and the PDF files for best print quality.
Graphics in the web-based manuals are not inline and will not print
automatically. They are also sized for optimal online viewing and
may not fit on a printed page.

If you do not have access to your Documentation CD-ROM, you can
also access the Software Manuals in PDF format on the Web. You can
FTP each manual to your local area.

Note: This process is slower than accessing the PDF files directly
from your CD-ROM.

EDA and Third Party Interface Support
The Alliance 2.1i software supports various third party interfaces. For
the most current information on the latest vendor version support in
the Alliance EDA partner program, refer to http://www.xilinx.com/
programs/alliance/alligen.htm.

Software manuals for EDA interface users are provided on your soft-
ware documentation CD-ROM. You can also access the manuals on
the web, from support.xilinx.com.

Synopsys Synthesis and Simulation
Design Guide

xsisyn.pdf

Xilinx/Synopsys Interface Guide xsi_int.pdf

Timing Analyzer Guide timing.pdf

Viewlogic Interface Guide vlifg.pdf

Table 1-3 List of Alliance 2.1i Software Manuals

Manual Title PDF File Name
1-8 Xilinx Development System

Introduction
Several Appendixes in this manual provide information on how to
set up your EDA vendor tools to interface with Alliance 2.1i software.

Software Installation and Licensing
Complete software installation instructions are located in the Alliance
2.1i Release Notes and Installation Guide.

When you install the software, you will be asked to provide your CD-
KEY. This key instructs the installation program to load the software
package that you purchased. Your CD-KEY, which typically starts
with the letters “AB” or “AS,” is located on a sticker on the back of
the CD-ROM holder.

You will also be asked to provide your software serial number during
software installation. This number helps the technical and customer
support team assist you more efficiently. This also ensures that you
will be eligible to receive free software updates as they become avail-
able.

For new Xilinx users, this “SN” number is located on a sticker on the
back of your CD-ROM holder.. If you are a current Xilinx customer,
your serial number will appear on the mailing label of your shipping
package.

You do not need a license to run the Alliance 2.1i software. However,
you must be a registered user in the Xilinx Customer Service database
in order to receive the full benefits of your customer and technical
support. If you have not registered your sofware, you can do this
online at http://www.support.xilinx.com.

At the end of installation, new Xilinx software users should select the
“Online Registration” option to Register on the Web. Alternatively,
you could fill out the Xilinx registration card and fax or mail it to
your Customer Service location. You only need to register your soft-
ware once. This will ensure that you receive future updates (during
your warranty period) and future product information.

Support and Services
This section provides information for contacting your technical
support and customer service representatives.
Alliance Series 2.1i Quick Start Guide 1-9

Alliance Series 2.1i Quick Start Guide
Technical Support
If you experience problems with your software installation or opera-
tion you can look for solutions and answers at http://
support.xilinx.com. The Xilinx technical support web site also
provides forms for easily submitting your technical questions by e-
mail. To access these forms, go to the “Services” area of
support.xilinx.com and click the “Open New Case” link.

If you need additional support, contact the Xilinx Technical Support
hotline by phone or fax. When faxing inquiries, provide your
complete name, company name, and phone number, along with the
software version you are using.

Customer Service
This section provides information for contacting your local Xilinx
Customer Service representative. Contact your local distributor for
international countries not listed.

The offices for the US and Canada are open Monday through Friday
from 8:00 am to 5:00 pm Pacific time.

The European offices are open Monday through Friday from 9:00 am
through 5:30 pm, United Kingdom time. These offices are English-
speaking only.

Location Telephone Facsimile (Fax)

North America 1-408-879-5199
1-800-255-7778

1-408-879-4442

United Kingdom 44-1932-820821 44-1932-828522

France 33-1-3463-0100 33-1-3463-0959

Germany 49-89-93088-130 49-89-93088-188

Japan local distributor local distributor

Korea local distributor local distributor

Hong Kong local distributor local distributor

Taiwan local distributor local distributor

Corporate Switchboard 1-408-559-7778
1-10 Xilinx Development System

Introduction
Country Telephone Facsimile

United States and Canada 1-800-624-4782 408-559-0115

United Kingdom 01932-333550 01932-828521

Belgium 0800 73738

France 0800 918333

Germany 0130 816027

Italy 1677 90403

Netherlands 0800 0221079

Other European Locations (44) 1932-333550 (44) 1932-828521

Japan 81 3 3297 9153 81 3 3297 9189
Alliance Series 2.1i Quick Start Guide 1-11

Alliance Series 2.1i Quick Start Guide
1-12 Xilinx Development System

Chapter 2

Implementation Tools Tutorial

This chapter contains the user instructions for a tutorial that covers
many functions of the Alliance 2.1i Implementation Tools. Using this
tutorial is a good way for a new user to learn how the Alliance design
flow works with basic designs.

Note: An updated version of this tutorial will be available after July
7th, 1999 from the Xilinx Support web site as well as on the AppLINX
CD. The web site location is http://support.xilinx.com/support/
techsup/tutorials/index.htm. Contact your local sales representative
to obtain a copy of the AppLINX CD.

This chapter contains the following sections.

• “Installing the Tutorial Files”

• “Step 1: Creating an Implementation Project”

• “Step 2: Specifying Options”

• “Step 3: Translating the Design”

• “Step 4: Using the Constraints Editor”

• “Step 5: Mapping the Design”

• “Step 6: Using Timing Analysis to Evaluate Block Delays After
Mapping”

• “Step 7: Placing and Routing the Design”

• “Step 8: Evaluating Post-Layout Timing”

• “Step 9: Creating Timing Simulation Data”

• “Step 10: Creating Configuration Data”

• “Step 11: Using the PROM File Formatter”
Alliance Series 2.1i Quick Start Guide — July 1999 2-1

Alliance Series 2.1i Quick Start Guide
Installing the Tutorial Files
This tutorial demonstrates the Alliance Series Design Implementation
Tools flow. The front end design has already been compiled for you in
an EDA Interface tool and is described by an EDIF Netlist File (EDF).
For a listing of EDA Interface tutorials, please reference the Xilinx
Support area referenced at the beginning of this chapter.

This tutorial passes an input netlist from the front end tool to the
back-end Alliance Series 2.1i Design Implementation Tools, and then
incorporates placement constraints through a User Constraints File
(UCF). Timing constraints will be added on later through the
Constraints Editor.

The tutorial design, titled “Watch,” is designed to perform like a track
coach’s stopwatch. There are two inputs to the system (RESET and
SRTSTP). The configuration clock on the device is used as a ten hertz
(HZ) clock signal. Three seven-bit outputs are generated by this
system for output to three seven-segment LED displays.

Before proceeding to Step 1 in the tutorial, create a working directory
with the tutorial files as follows.

1. Create an empty working directory named Watch.

2. Copy the following files from the $XILINX/userware/tutorial/
qstart/ directory into to your newly created working directory.

The following table lists the relevant file names and a description.

Note: In order for the /userware/tutorial/qstart directory to be
present in your root Xilinx directory, you must first install the User-
ware Tutorial files from the Alliance Series Design Implementation
Tools CD-ROM.

Step 1: Creating an Implementation Project
The Design Implementation Tools are organized under a single
program called the Design Manager. The Design Manager helps you

File Name Description

watch.edn Input netlist file (EDIF)

tenths.ngc LogiBLOX implementation file

watch.ucf User constraints file
2-2 Xilinx Development System

Implementation Tools Tutorial
manage the design flow process by keeping track of design versions
and the implementation revisions within each version. The Design
Manager also provides access to the entire suite of Xilinx implemen-
tation tools needed to complete a design.

While the Design Manager manages your Xilinx design, the Flow
Engine actually implements it. The Flow Engine is closely integrated
with the Design Manager and shares many of the same menus and
dialog boxes.

To begin, use the following steps to create an implementation project.

1. On a workstation, enter the following to start the Design
Manager.

xilinx &

On a PC, select the following to start the Design Manager.

Start → Programs → Xilinx → Design Manager

When you open the Design Manager for the first time, you must
create a new project for your design. A project includes all design
versions, implementation revisions, reports, and any other Xilinx
data created while you work with a design.

The Design Manager graphically displays information about
these items in the project view. When you create a new project,
you specify a design to open and a directory for the project. You
can create as many projects as you want, but you can only work
with one at a time.

2. Select File → New Project from the Design Manager menu
to create a new implementation project for the tutorial design.
The New Project dialog box appears.

The fields of this dialog box are described in the following table.

Table 2-1 New Project Dialog Box Fields

Field Description

Input Design Top level netlist file containing the design
definition
Alliance Series 2.1i Quick Start Guide 2-3

Alliance Series 2.1i Quick Start Guide
3. To specify your input design, click the Browse button to the right
of the Input Design field. The Browse dialog box appears as
shown in the following figure.

Figure 2-1 Browse Dialog Box

4. Select the appropriate file type from the drop-down list in the
Files of Type field. For this tutorial design, EDIF is selected.

5. Select the Watch design file. The file name appears in the File
Name field. Click Open.

The Browse dialog box closes and the New Project dialog box is
updated to include the specified input netlist. By default, the
Work Directory field is set to the directory containing the input
design. If preferred, you can set this to another directory. Because

Work Directory Directory used to store the implementation
data created as the design is compiled

Comment Enter any optional notation for the design in
this field

Table 2-1 New Project Dialog Box Fields

Field Description
2-4 Xilinx Development System

Implementation Tools Tutorial
the files were previously copied to the Watch directory, this direc-
tory is used for the implementation project and resulting output
files.

6. In the Comment field, enter the following.

-tutorial

7. Click OK to close the New Project dialog box. The New Version
dialog box appears, as shown in the following figure.

Figure 2-2 New Version Dialog Box

When you initially creating your project, the New Version dialog
automatically appears to allow you to enter the information
Alliance Series 2.1i Quick Start Guide 2-5

Alliance Series 2.1i Quick Start Guide
necessary to define the new design version. Furthermore, any
time that your input netlist changes due to a change made within
your front-end tool, you are prompted by the Design Manager to
generate a new design version.

Once a design version is created, you can try different implemen-
tation strategies on your design. The data associated with each of
these implementation strategies is called an implementation revi-
sion. Because a new implementation revision is automatically
created when you create a new version, you will see both of these
fields already defined in the New Version dialog.

8. By default, the Version Name field shows ver1 as the default
version, and the Revision Name field shows rev1 as the default
revision. Comments to note options and strategies can be entered
in the Version and Revision Comment fields.

9. Click Select to display the Part Selector dialog box. The Part
field will automatically contain a part number if you specified the
target device in your design entry tool. Since this field is empty in
our example, we must define it.

Figure 2-3 Part Selector Dialog Box

10. Use the drop-down lists for the fields in the Part Selector dialog
box to enter the Family, Device, Package, and Speed Grade for the
design. This design targets an XC4003E-3-PC84. Click OK. The
part number appears in the Part field in the New Version dialog
box.
2-6 Xilinx Development System

Implementation Tools Tutorial
11. The Copy Persistent Data heading allows you to specify the
copying of constraint, guide, or floorplan data to the new revi-
sion that is about to be created. You can choose to copy data from
a previous revision or a custom file or choose None if you do not
want to copy data. For this tutorial, we will keep all 3 drop-down
boxes defined as None.

Note: By default, the Design Manager copies floorplan and
constraints file data from the “last” revision. The “last” revision is the
bottommost revision in the Design Manager project view. When
initially creating a project, the Design Manager copies constraints and
floorplan file data (if it happens to exist), from the project directory to
the revision directory.

12. Click OK in the New Version dialog box.

The Design Manager loads your design and displays a new
design version and implementation revision icon in the project
view, as shown in the following figure.

Figure 2-4 Watch Project in Design Manager

Design Manager Status Bar
At the bottom of the Design Manager window is the status bar. The
status bar lists the current project, target device, and currently
selected version/revision pair. The left-hand portion of the status bar
provides help on what is currently selected by your cursor, as shown
in the following figure.

Figure 2-5 Design Manager Status Bar
Alliance Series 2.1i Quick Start Guide 2-7

Alliance Series 2.1i Quick Start Guide
Design Manager Toolbox
The toolbox, located on the right side of the Design Manager
window, becomes active when a revision is selected. Icons in the
toolbox (shown in the following figure) represent the Flow
Engine, Timing Analyzer, Floorplanner, PROM File Formatter,
Hardware Debugger, FPGA Editor, and JTAG Programmer tools.

Note: The toolbar has drag and drop capability.

Figure 2-6 Design Manager Toolbox

Step 2: Specifying Options
An implementation revision contains data files and reports that are
created based on a specific set of implementation strategies. Imple-
mentation strategies are defined by specifying a set of options. You
can specify options that control how the Flow Engine implements a
design, creates timing simulation data, creates netlist files, generates
reports, and creates configuration data. The options available depend
on the target device family.

You can use the tools to create as many implementation revisions as
you want for a design version. For example, if you want to try
various implementation strategies on a netlist, several revisions can
be created for a single design version. By default, however, the
Design Manager recompiles within the current revision.

Within the Design Manager, notice how the project view displays
rev1 under the initial version of the watch project. The status of the
revision is noted as (New, OK). New refers to the state of the design
and is updated throughout the tutorial as the different compilation
stages are completed. OK is the status of the current state and indi-
cates no errors in the design processing.

Use the following steps to specify options for this design.

1. Select Design → Options to open the Options dialog box as
shown in the following figure.
2-8 Xilinx Development System

Implementation Tools Tutorial
Figure 2-7 Options Dialog Box

This dialog allows you to set options used in the implementation,
simulation, and configuration flow. Changes made in this dialog
box apply to the selected implementation revision. The dialog
box above appears if you are targeting an FPGA. A slightly
different Options dialog would appear if you were targeting a
CPLD.

Select the Help button to read through the information regarding
this entire dialog box.

2. Select Edit Options next to the Implementation Program Option.

The XC4000 Implementation Options dialog box is displayed as
shown in the following figure. The implementation options
control how the software maps, places, routes, and optimizes a
design.
Alliance Series 2.1i Quick Start Guide 2-9

Alliance Series 2.1i Quick Start Guide
Figure 2-8 XC4000 Implementation Options Dialog Box

3. Select the Timing Reports tab.

4. Select Produce Logic Level Timing Report. The option to
produce a Post Layout Timing Report should already be selected
by default. For both reports, select Report Paths in Timing
Constraints.

The timing reports are useful for evaluating design performance.
They will be analyzed in detail later in this tutorial.

5. Click OK to save the Implementation options and return to the
Options dialog.

6. Select OFF from the drop down list next to the Configuration
Program Options. This disables the generation of a bitstream for
our design. We will revisit this option later once we have
completed evaluating the performance of our design.

7. Click OK to exit the Options dialog box.

As previously mentioned, an implementation revision is created
based on a specific set of implementation strategies. In addition to the
program options we just set, an implementation strategy is defined
by the constraints applied onto the design.

For this design, you were initially asked to copy over a User
Constraints File (UCF) into your design directory. Since the Design
Manager by default copies over your constraints information into the
new revision created, you should be able to open the watch.ucf file
found under your newly created rev1 directory. With a text editor,
view the location constraints that are specified for this design.

The User Constraints File (UCF) provides a mechanism for
constraining a logical design without returning to the design entry
tools. However, it requires the user to understand the exact syntax
needed to define constraints. On the other hand, the Constraints
Editor is a graphical tool in the Xilinx Development System that
allows you to enter timing and pin location constraints. We will take
2-10 Xilinx Development System

Implementation Tools Tutorial
advantage of this tool to not only view the constraints specified
currently in the watch.ucf file, but to also add in some timing
constraints of our own.

To continue with the tutorial, select the following from within Design
Manager.

Utilities → Constraints Editor

You will be prompted to run the Translate step before launching this
Utility. The following step covers the steps needed to effectively
translate your design.

Step 3: Translating the Design
The Design Manager manages the files created during the implemen-
tation process while the Flow Engine controls the implementation
process itself. The programs run by the Flow Engine use the settings
supplied by the user in the options dialog box. The Flow Engine gives
you complete control over how a design is processed. Typically, you
should set all your options first, and then run through the entire flow
by selecting “Implement” from the Design Menu.

In this tutorial, you are attempting to further define the design by
setting constraints after having defined options. As stated previously,
in order to invoke the Constraints Editor, you must first run the
Translate step.

Select OK to continue with the flow.

The Flow Engine is invoked for the first time. The steps in the design
flow are graphically represented in the upper half of the Flow Engine
window. The status of each stage is also shown. Refer to the following
figure.
Alliance Series 2.1i Quick Start Guide 2-11

Alliance Series 2.1i Quick Start Guide
Figure 2-9 Translating Design

Notice the “STOP” sign placed between the Translate and MAP steps.
This breakpoint has been automatically set in this situation to instruct
the Flow Engine to stop after the Translate step is complete.

During translation, the program NGDBuild is executed, and
performs the following functions.

• Converts input design netlists and writes results to a single
merged NGD netlist. The merged netlist describes the logic in the
design as well as any location and timing constraints.

• Performs timing specification and logical design rule checks

• Adds the User Constraints File (UCF) to the merged netlist

Once complete, the Flow Engine shuts down and the Constraints
Editor is invoked.
2-12 Xilinx Development System

Implementation Tools Tutorial
Step 4: Using the Constraints Editor
The Constraints Editor is a utility that allow you to edit constraints
previously defined (through a UCF file), as well as add new
constraints to your design. Input files to the Constraints Editor
include the following.

• NGD (Native Generic Database) file. This file serves as input to
the mapper, which then outputs the physical design database, an
NCD (Native Circuit Description) file.

• Corresponding UCF (User Constraint File).

By default, when the NGD file is opened, an existing UCF file with
the same base name as the NGD file is used. Alternatively, you can
specify the name of the UCF file.

Upon successful completion, the Constraints Editor writes out a valid
UCF file. NGDBuild uses the UCF file, along with design source
netlists to produce a newer NGD file that incorporates the changes
made. The NGD is then read by the MAP program (the next step in
the design flow). In our design, the watch.ngd file and watch.ucf file
are automatically read into the Constraints Editor.

The Global Tab appears in the foreground of the Constraints Editor
window. This window automatically displays all the clock nets in
your design, and allows you to define the associated period, pad to
setup, and/or clock to pad values.

1. Select the Period cell on the row associated with the clock net
oscout. Double-click your left mouse button. This invokes the
Clock Period dialog box.

Within the Clock Signal Definition, keep the default (Specific
Time) selected to define an explicit period for the clock rather
designate a period which is relative to another timing specifica-
tion.

2. Enter a value of 20 in the Time text box. Verify that ns is selected
from the Units pull-down list. Click OK.

Notice that the period cell is updated with the global clock period
constraint we just defined (with a default 50% duty cycle)

Note: For the purpose of this tutorial, we invoked a secondary dialog
by double-clicking on a cell to specify our constraint values. A new
Alliance Series 2.1i Quick Start Guide 2-13

Alliance Series 2.1i Quick Start Guide
feature to the Constraints Editor in 2.1i allows for the direct entry of
constraints into cells by simply clicking once.

3. Select the Ports tab from the Constraints Editor’s main window.

The left hand side displays a listing of all the current ports as
defined the user. Notice that certain cells in the Location column
are pre-populated with device pins locking down ports to actual
pins on the target device. This information was obtained by the
Constraints Editor by way of the watch.ucf file it read in.

4. Select File → Save.

The change made within the Constraints Editor is now saved into
the watch.ucf file in your current revision directory.

5. You will prompted with a reminder to rerun the Translate step.
Click OK.

6. Select File → Exit

Note: Make sure you read the following procedure before starting to
Map your design.

How to Stop the Design Processing Flow
Before we continue implementing our design in the Flow Engine,
review the following procedure for stopping the processing of the
design after the MAP step.

Warning: Because the steps for the tutorial design can often finish
quickly, you should be familiar with this procedure before you start
the Flow Engine.

Setting a break point anywhere in the design process is useful when
you want to stop and evaluate your performance before going
forward. For example, setting a breakpoint after the Translate step is
useful when you want to perform a functional simulation of a design
and copy the resulting design.ngd file to your working directory.
After copying the design.ngd file, you can run the appropriate
NGD2XXX program on the file to create functional simulation data.
For more information on the NGD2XXX programs, see the appro-
priate chapter in the Development System Reference Guide.

Note: This procedure can be utilized at any time in the Flow Engine
to stop after any of the steps in the design flow.
2-14 Xilinx Development System

Implementation Tools Tutorial
1. In this tutorial, you want to stop processing the design after the
MAP step. To do this, you must set a break point to stop the Flow
Engine. To stop after the MAP step from within the Flow Engine,
click the stop sign toolbar icon while MAP is running.

2. The Stop After dialog box is displayed with the default setting of
Configure as shown in the following figure. The list box displays
the break points appropriate for the current state of the design.
Because the design has not completed processing at this point, all
possible break points are listed.

Figure 2-10 Stop After Dialog Box

3. Select MAP in the list box and click OK. The stop sign is added to
the design flow between the Map and Place and Route steps as
shown in the following figure.

Note: The status bar at the bottom of the Flow Engine window will
be updated with the specified user constraints file (watch.ucf).
Alliance Series 2.1i Quick Start Guide 2-15

Alliance Series 2.1i Quick Start Guide
Figure 2-11 Mapping Design

Starting the Flow Engine and Translating/Mapping
your Design

Now that all implementation strategies have been defined (options
and constraints), let’s continue with the implementation of our
design.

1. Select Design → Implement from the Design Manager.

2. The Flow Engine automatically detects that changes were made
to your constraints file, which requires the Translate step to be re-
run. In order for the changes we just made to the Constraints
Editor to take affect, select YES.

3. Perform the procedure previously described in the “How to Stop
the Design Processing Flow” section to stop the processing of the
design.
2-16 Xilinx Development System

Implementation Tools Tutorial
Step 5: Mapping the Design
At this point, the input netlist is being translated (once again), and
merged into a single design file. Furthermore, the design will be
mapped into CLBs and IOBs. After mapping, the design will be
placed and routed. The final step in the design flow is the Configure
step in which a configuration bitstream is created for downloading to
a target device or for formatting into a PROM programming file.

Map performs the following functions:

• Allocates CLB and IOB resources for all basic logic elements in
the design

• Processes all location and timing constraints, performs target
device optimizations, and runs a design rule check on the
resulting mapped netlist.

After the MAP step is done, the Flow Engine shuts down and the
Implement Status dialog box appears, as shown in the following
figure.

Figure 2-12 Implement Status Dialog Box

The following steps show you how to use the report browser.

1. Select Reports to invoke the Report Browser window. The
Translation Report appears as the first report generated. The Map
Report and Logic Level Timing Report files are created as a result
of the Map stage completing. New reports that have not been
read are denoted with a gold star in the upper left corner of the
file icon, as shown in the following figure.
Alliance Series 2.1i Quick Start Guide 2-17

Alliance Series 2.1i Quick Start Guide
Figure 2-13 Report Browser after Running Map

2. Double-click on a report to review its output. The following table
lists the types of reports and describes their contents.

The following table lists the types of reports available to you.

3. Select OK to close the Implement Status dialog. Keep the Report
Browser open for now. We will be evaluating some of these
reports in further detail in the next section.

Table 2-2 Report Browser Reports

Report Description

Translation Report Includes warning and error messages from
the translation process.

Map Report Includes information on how the target
device resources are allocated, references to
trimmed logic, and device utilization. For
detailed information on the Map report,
refer to the Development System Reference
Guide.

Logic Level Timing
Report

Provides a summary analysis of your
timing constraints based on block delays
and estimates of route delays. This report is
produced after Map and prior to PAR
(Place And Route).
2-18 Xilinx Development System

Implementation Tools Tutorial
Notice that the Design Manager project view displays the status of
the revision as (Mapped, OK). “Mapped” refers to the state of the
design and is updated throughout the tutorial as the different compi-
lation stages are completed. “OK” refers to the status of the current
state and indicates no errors in the design processing.

The design has now been mapped to the target architecture. The next
step involves checking the design paths for block delays.

Step 6: Using Timing Analysis to Evaluate Block
Delays After Mapping

After the design is mapped, you can use the Logic Level Timing
Report to evaluate the logical paths in the design. Because the design
is not placed and routed yet, actual routing delay information is not
yet available. The timing report describes the logical block delays and
estimated routing delays. The net delays that are provided are based
on an optimal distance between blocks (also referred to as unplaced
floors).

Estimating Timing Goals With 50/50 Rule
You can get a preliminary idea of how realistic your timing goals are
by evaluating a design after the map stage. A rough guideline
(known as the 50/50 rule) specifies that the block delays in any single
path make up approximately 50% of the total path delay after the
design is routed. For example, a path with 10ns of block delay should
meet a 20ns timing constraint after it is placed and routed. If your
design is extremely dense, or if you are using an architecture with
fewer routing resources (for example, a 4025E device versus a
4028XL), your net delays can be more than 50% of the total path
delay.

Report Paths In Timing Constraints Option
Because timing constraints were defined for this tutorial design, the
Report Paths in Timing Constraints option was selected. This option
forces the Logic Level Timing Report to provide a period and path
analysis on the constraints specified. Taking a look at the report, the
period timing constraint is listed on top, as is the minimum period
obtained by the tools after mapping. Because we limited our report to
one path per timing constraint, we see a breakdown of a single path
Alliance Series 2.1i Quick Start Guide 2-19

Alliance Series 2.1i Quick Start Guide
that contains 4 levels of logic. Notice the percentage of block (logic)
delay versus routing delay for this calculation. The unplaced floors
listed are estimates (indicated by the letter “e” next to the net delay)
based on optimal placement of blocks.

If you do not generate a Logical Level Timing Report, PAR still
processes a design based on the relationship between the block
delays, floors, and timing specifications for the design. For example,
if a PERIOD constraint of 8 ns is specified for a path, and there are
block delays of 7 ns and unplaced floor net delays of 3 ns, PAR stops
and generates an error message. In this example, PAR fails because it
determines that the total delay (10 ns) is greater than the constraint
placed on the design (8 ns).

Use the Logic Level Timing Report to determine timing violations
that may occur prior to running PAR.

Step 7: Placing and Routing the Design
After the mapped design is evaluated to verify that block delays are
reasonable given the design specifications, the design can be placed
and routed. The Flow Engine can perform the following place and
route algorithms.

• Timing Driven — run PAR with timing constraints specified from
within the input netlist or from a constraints file

• Non-Timing Driven — run PAR and ignore all timing constraints

In this tutorial, timing driven placement and timing driven routing
are automatically performed by PAR because timing constraints are
specified for this design.

Close the Report Browser and any open reports.

To place and route the design, perform the following procedure.

1. In the Design Manager window, select Design → Implement
to continue running the implementation flow.

The Flow Engine will once again be invoked. The Status:OK
message in the upper right corner indicates that no errors are
generated by PAR at this point. Refer to the following figure:
2-20 Xilinx Development System

Implementation Tools Tutorial
Figure 2-14 Placing and Routing Design

2. Review the reports generated to make sure the place and route
process finished as expected.

The four new reports created in the Report Browser are the Place
and Route Report, the Pad Report, the Asynchronous Delay
Report, and the Post-Layout Timing Report, as shown in the
following figure and described in the following table.
Alliance Series 2.1i Quick Start Guide 2-21

Alliance Series 2.1i Quick Start Guide
Figure 2-15 Reports Available After Place & Route

Note: In the Design Manager window, the status of the current
version/revision is now (Routed, OK).

Table 2-3 Description of Reports Available After Place & Route

Report Description

Place & Route Report Provides a device utilization and delay
summary. Use this report to verify that
the design successfully routed and that all
timing constraints were met.

Pad Report Contains a report of the location of the
device pins. Use this report to verify that
pins locked down were placed in the
correct location.

Asynchronous Delay
Report

Lists all nets in the design and the delays
of all loads on the net.

Post-Layout Timing
Report

Incorporates both the logic and routing
delays to generate an evaluation of the
design’s timing constraints, clock
frequencies, and path delays.
2-22 Xilinx Development System

Implementation Tools Tutorial
Step 8: Evaluating Post-Layout Timing
After the design is placed and routed, a Post Layout Timing Report is
generated by default to verify that the design meets your specified
timing goals. This report evaluates the logical block delays and the
routing delays. The net delays are now reported as actual routing
delays after the place and route process (indicated by the letter “R”
next to the net delay).

Double-click on the Post Layout Timing Report to open it. Following
is a summary of this report.

• The minimum period value increased due to the actual routing
delays.

• After the Map step, logic delay contributed to about 80% of the
minimum period attained. The post-layout report indicates that
the logical delay value decreased somewhat. The total unplaced
floors estimate changed as well. Routing delay after PAR now
equals about 31% of the period; a true report of net delays after
the place and route step.

• The post-layout result does not necessarily follow the 50/50 rule
previously described because the worst case path includes prima-
rily component delays. After the design was mapped, block
delays constituted about 80% of the period. After place and route,
the majority of the worst case path is still made up of logic delay.
Since total routing delay makes up only a small percentage of the
total path delay, spread out across three nets, expecting this to be
reduced any further is unrealistic. In general, you can reduce
excessive block delays and improve design performance by
decreasing the number of logic levels in the design.

Step 9: Creating Timing Simulation Data
After your design is placed and routed and the timing is statically
verified, the next step is to create timing simulation data. To create
timing simulation data, perform the following steps in the Design
Manager.

1. Select Design → Options to open the Options dialog box.

2. Select the simulator that corresponds to your design entry tool
from the Simulation drop-down list in the Program Options
section of the dialog box.
Alliance Series 2.1i Quick Start Guide 2-23

Alliance Series 2.1i Quick Start Guide
3. Click OK to close the Options dialog box.

4. Select Design → Implement from the Design Manager

Within the Flow Engine, you will now notice a new stage appear
directly after Place & Route. This new stage, called Timing(Sim),
is solely dedicated to producing timing simulation data. In the
tutorial, this stage did not appear originally because the Program
Option for Simulation was not selected to a specific simulator in
the initial pass. By default, this option is set to OFF. For all
designs, you have the choice of selecting all options at the begin-
ning of the design processing, or coming back to set them later.

During the Timing(Sim) step, the Flow Engine runs the
NGDAnno program to create a back-annotated NGD file. The
NGD file is then used as input to one of the NGD2XXX programs
to produce the preferred simulation file format. By default, the
files created are named time_sim. To make it easy to find the
output files for your third-party simulation environment, the files
are automatically copied to your working directory.

Step 10: Creating Configuration Data
The next step is creating configuration data. This step includes
creating a bitstream for the target device by running the configure
step, as follows:

1. Select Design → Options to open the Options dialog box.

2. Select Default from the drop-down list for Configuration
Program Options.

3. Click the Edit Options button corresponding to Configura-
tion, which just became enabled with our selection of Default.

The XC4000 Configuration Options dialog box appears. The
configuration templates set options that define the initial configu-
ration parameters, start-up sequence, readback capabilities, and
other advanced features. In this tutorial, a configuration file is
created that can be used for programming, verifying, and debug-
ging XC4000E designs.

4. In the Configuration tab, verify that PullUp is selected next to
the Done pin, and that the Perform CRC During Configu-
ration option is selected.
2-24 Xilinx Development System

Implementation Tools Tutorial
5. Select the Readback tab, and verify that CCLK is selected as the
readback clock.

6. Click OK to close the XC4000 Configuration Options dialog box.

7. Click OK to close the Options dialog box.

8. Select Design → Implement from the Design Manager.

The Flow Engine comes up, running the BitGen program in the
newly added Configure stage. BitGen creates the design_name.bit
and design_name.ll files (in this tutorial, the watch.bit and watch.ll
files). The design_name.bit file is the actual configuration data. The
design_name.ll file is the logical allocation file that is used during
hardware debugging to determine the location of the probable
points in the design. These files are automatically copied to your
working directory. Verify that they are in your working directory.

For more information on device readback, please refer to the
latest version of the Watch Design Hardware Verification Tuto-
rial, located at http://support.xilinx.com/support/techsup/
tutorials/index.htm.

The following figure shows the Flow Engine window after the
configure step is finished.
Alliance Series 2.1i Quick Start Guide 2-25

Alliance Series 2.1i Quick Start Guide
Figure 2-16 Configuring Design

9. The Flow Engine saves the configuration options in the BitGen
Report. Review the report using the Report Browser. Verify that
the specified options were used when creating the configuration
data.

Step 11: Using the PROM File Formatter
If you are going to program a single device using the Hardware
Debugger, all you need is a design.bit file. If you are going to program
several devices in a daisy chain configuration, or program your
devices using a PROM, you must use the PROM File Formatter (PFF)
to create a PROM file. The PROM File Formatter accepts any number
of bitstreams and creates one or more PROM files containing one or
more daisy chain configurations.
2-26 Xilinx Development System

Implementation Tools Tutorial
1. To start the PROM File Formatter, click the PROM File Formatter
icon in the toolbox in the Design Manager.

The PFF starts with a default PROM that matches the currently
selected (configured) revision. At this point, you can add addi-
tional bitstreams to the daisy chain; create additional daisy
chains; remove the current bitstream and start over; or immedi-
ately save the current PROM file configuration.

The status bar at the bottom of the PFF window displays the
PROM format, data format, current PROM size, and percentage
of the selected PROM used by the current PROM configuration.
The currently selected PROM is an XC1765D. 53,984 bits of data
are required to hold the configuration bitstream for the XC4003E
target device for this tutorial. The PFF determined that an
XC1765D is the correct PROM because it can hold up to 65,536
configuration bits (or 82% full).

The right half of the PFF window is a directory structure used for
locating bitstreams. Only files with a .BIT extension are shown in
the list. For detailed information on using the PROM File
Formatter to create daisy chains or complex PROM configura-
tions, see the PROM File Formatter Guide. This tutorial describes
how to save the default PROM file.

2. Select File → PROM Properties to open the PROM Proper-
ties dialog box, shown in the following figure.
Alliance Series 2.1i Quick Start Guide 2-27

Alliance Series 2.1i Quick Start Guide
Figure 2-17 PROM Properties Dialog Box with Single PROM

3. Select the following options in this dialog box.

• PROM File Format from the drop-down list

• PROM Type

• Number of PROMS used to hold the data

If you have more data than space available in the PROM, you
must split the data into several individual PROMs with the
Split PROM option. In this case, only a single PROM is
needed. Click OK to accept the PROM Properties.

4. Select File → Save to save the PROM file.

5. Specify your working directory as the area where the PROM
Description File will be saved.

The PROM File Formatter saves both the PROM file (watch.mcs)
and a PROM Description File (watch.pdr). The PDR file can be re-
opened if any changes are required. Verify that the files exist in
your directory.
2-28 Xilinx Development System

Implementation Tools Tutorial
6. Select File → Exit to close the PROM File Formatter.

This completes the tutorial. For more information on the Alliance
design flow and implementation methodologies (especially some
of the tools and programs that were not covered as part of this
tutorial), please reference the online version of the Software
Manuals at http://support.xilinx.com
Alliance Series 2.1i Quick Start Guide 2-29

Alliance Series 2.1i Quick Start Guide
2-30 Xilinx Development System

Chapter 3

Using the Software

This chapter provides an overview of the Xilinx Development
System. The standard flow from netlist to PROM file is described,
including information on options, reports, simulation netlists,
constraints, floorplanning, and guided implementations. Advanced
flows, such as re-entrant routing and multi-pass place and route, are
also described. This chapter includes the following sections.

• “Using the Xilinx Tools”

• “Xilinx Design Flow”

• “Selecting Options”

• “Using Design Constraints”

• “Guiding a Design with Floorplanner Files”

• “Static Timing Analysis”

• “Creating Simulation Files”

• “Downloading a Design”

• “Multi-Pass Place and Route”

• “Guiding an Implementation”

Note: For the latest information regarding the Design Manager tools
and functions, see the “Legacy Information” Appendix of the Design
Manager/Flow Engine Guide.

Using the Xilinx Tools
To start the Xilinx tools double click on the Design Manager icon, or
enter the following at the command line to start the Design Manager.

xilinx
Alliance Series 2.1i Quick Start Guide — July 1999 3-1

Alliance Series 2.1i Quick Start Guide
You can also start the Design Manager by entering the following at
the command line.

dsgnmgr

Xilinx Design Flow
The “Xilinx Design Flow” figure shows the processing steps and flow
of files in and out of the Design Manager. The “Detailed Design
Flow” figure is a more detailed look at the various programs invoked
during the design implementation process.

Figure 3-1 Xilinx Design Flow

Report Browser

Design Manager Flow Engine

X7923

Translate

MAP

PROM File Formatter Hardware Debugger

Configure

Timing Analyzer

EPIC Design Editor

Timing Simulation
Data

Functional
SImulation Data

Place and Route

Simulator

SXNFUCF

Constraints Netlists

NCF EDIF XNF

Logic-Level
Timing Report

Post-Layout
Timing Report

* Flow only supported by command line.

*

*

3-2 Xilinx Development System

Using the Software
Figure 3-2 Detailed Design Flow

Using the Design Manager
The following section provides basic information about using the
Design Manager tool.

Note: Refer to the Design Manager/Flow Engine Guide for detailed
information on using the Design Manager.

design.v & design.sdfdesign.twr

NGDAnno, NGD2EDIF,
NGD2VER, and NGD2VHDLTrce

X8037

NGDBuild

MAP

design.ucf

PAR

design.ngd

design.ncd &
design.pcf

BitGen

design.ncd

design.xnf

design.vhd & design.sdf

design.bit

SXNF EDIF XNF

design.ncf

design.edn
Alliance Series 2.1i Quick Start Guide 3-3

Alliance Series 2.1i Quick Start Guide
Figure 3-3 Design Manager Menu

Creating a Project

Use the following steps to create a new project in the Design
Manager.

1. Select File → New Project from the Design Manager menu
or click the New Project toolbar button. The New Project dialog
box appears.

2. Specify a design file to open with one of the following methods.

• In the Input Design field, type the name of a design file to
open.

• Click the Input Design Browse button to the right of the
Input Design box to select the top level input netlist. Click
OK.

Note: The Design Manager automatically creates a subdirectory
named xproj under the input design directory and uses it as the work
directory. The Design Manager uses the xproj subdirectory to store all
the data files for the project. If you want to change this default work
directory, type a path in the Work Directory field or use Browse to
select a directory.

3. In the New Project dialog box, click OK.

After your design is loaded, the Design Manager window
appears, configured for the loaded design.

For information on using the Xilinx-supplied interface tools for
Synopsys, Viewlogic, Mentor Graphics, or Cadence designs, see the
appropriate appendix of this manual, or refer to the Interface User
Guide for your respective tool.
3-4 Xilinx Development System

Using the Software
Implementing Your Design

1. Select Design → Implement from the Design Manager menu
or click the Implement toolbar button. The Implement dialog box
appears.

2. Select the part and click Run. The Design Manager automatically
creates a new version and revision. Additional versions are
created when the netlist is modified and re-implemented. Addi-
tional revisions are created when the same netlist is re-imple-
mented with new options or constraints. The Design Manager
invokes the Flow Engine to process your design.

Using the Flow Engine
The Flow Engine allows you to process and control the implementa-
tion of your design, as well as guide your implementation revisions.
The following figure shows the various steps followed by the Flow
Engine to process your designs.

Figure 3-4 Flow Engine Design Steps

Translating Your Design

The Flow Engine’s first step, Translate, merges all of the input netlists
by running the NGDBuild program.

Mapping Your Design

Mapping your design is the next step in the design flow. Map opti-
mizes the gates and trims unused logic in the merged NGD netlist.
Alliance Series 2.1i Quick Start Guide 3-5

Alliance Series 2.1i Quick Start Guide
Map also maps your design’s logic resources and performs a physical
design rule check.

Placing and Routing Your Design

After mapping, the Flow Engine places and routes your design. The
PAR (Place and Route) program is invoked to optimally place and
route the mapped CLBs and IOBs in your design. If there are timing
constraints on any of the logic components, PAR attempts to mini-
mize those delays by moving the corresponding logic blocks closer
together. In the route stage, the logic blocks are assigned specific
interconnect elements on the die. PAR attempts to minimize any
delays by selecting a faster interconnect.

Configuring Your Design

After placing and routing your design, the Flow Engine translates the
physical implementation into a binary stream that is used to program
an FPGA.This binary stream is saved as a configuration file (.bit)
using the BitGen program.

Analyzing Reports with the Design Manager
Design Manager reports provide information on logic trimming, logic
optimization, timing constraint performance, and I/O pin assign-
ment. To access the reports, select the following from the Design
Manager menu.

Utilities → Report Browser

To open a specific report, double click on its icon, as shown in the
following figure.
3-6 Xilinx Development System

Using the Software
Figure 3-5 Report Browser

Translation Report

The Translation Report contains warning and error messages from
the three translation processes: conversion of the EDIF or XNF style
netlist to the Xilinx NGD netlist; timing specification checks; and
logical design rule checks. The report lists the following.

• Hierarchical blocks that are missing or cannot be translated

• Invalid or incomplete timing constraints

• Output contention, loadless outputs, and sourceless inputs

Map Report

The Map Report (.mrp file) contains warning and error messages
detailing logic optimization and logic mapping to physical resources.
The report lists the following information.

• Removed Logic — Sourceless and loadless signals can cause the
removal of an entire chain of logic. Each deleted element is listed
with progressive indentation so you can easily identify the
origins of the removed logic sections; deletion statements are not
indented.

• Added or expanded logic due to speed optimization.

• The Design Summary lists the number and percentage of used
CLBs, IOBs, flip-flops, and latches. It also lists the use of architec-
Alliance Series 2.1i Quick Start Guide 3-7

Alliance Series 2.1i Quick Start Guide
ture-specific resources such as global buffers and boundary scan
logic.

Place and Route Report

The Place and Route Report (.par file) contains the following informa-
tion.

• Design Score — The Design Score measures the relative goodness
of your design; a lower score is better. Because this score is
strongly dependent on the nature of your design and the targeted
part, meaningful score comparisons can only be made between
iterations of the same design targeted for the same part.

• The Number of Signals Not Completely Routed should be zero
for a completely implemented design. If not, you may be able to
improve results by using the re-entrant route flow or the multi-
pass place and route flow. See the “Advanced Implementation
Flows” section at the end of this chapter.

• The timing summary at the end of the report contains the timing
performance of your design. For information on timing
constraint performance and synchronous delays, refer to the
“Static Timing Analysis” section later in this chapter.

Pad Report

The Pad Report lists your design’s pinout sorted by signal name, and
then by pin number.

Selecting Options
Options specify how your design is optimized, mapped, placed,
routed, and configured. Options are grouped as implementation
templates or configuration templates. Each template defines an
implementation or configuration style. For example, an implementa-
tion style can be Quick Evaluation, while another can be Timing
Constraint Driven.

You can have multiple templates in a project. You can use templates
to select an implementation or configuration style. To access the
options and templates, follow these steps.
3-8 Xilinx Development System

Using the Software
1. Select Design → Implement from the Design Manager menu
or click the Implement toolbar button. The Implement dialog box
appears.

2. Select the Options button in the Implement dialog box. The
Options dialog box appears as shown in the following figure.

Figure 3-6 Options Dialog Box

3. Select the Edit Template button for Implementation or Configura-
tion to access the associated template. The Implementation
Template or Configuration Template dialog box appears. The
options in this box depend on the target device family. For infor-
mation on how to use the template options, see the Design
Manager/Flow Engine Guide.

Using Design Constraints
The Xilinx tools allow you to control the implementation of your
design by entering constraints. You can enter constraints during the
Alliance Series 2.1i Quick Start Guide 3-9

Alliance Series 2.1i Quick Start Guide
design and implementation phases of the design flow. During the
design phase, you can enter constraints as follows.

• Add constraints to your schematic design

• Add constraints to your design in your synthesis tool

• Enter constraints in the Xilinx Constraints Editor

You can apply location and timing constraints to your design. Use
location constraints to control the mapping and positioning of the
logic elements in the target device. The most common location
constraints are pad constraints. Pad constraints are used to lock the
pins of your design to specific I/O locations so that the pin placement
is consistent from revision to revision. Use timing constraints to
specify how fast a path must be to meet your speed requirements.
You can use timing constraints for the placement and routing of your
design.

Constraints entered directly in your input design are known as
design constraints, and are eventually placed in your design netlist. If
you want the constraints separated from your input design files, or if
you want to modify your constraints without re-synthesizing your
design, you can create a User Constraints File (UCF) in the
Constraints Editor. This file is read by NGDBuild during the transla-
tion of your design, and is combined with an EDIF or XNF netlist into
an NGD file. If a UCF file exists with the same name as the top-level
netlist, it is automatically read. Otherwise, you must specify a file
name for User Constraints in the Options dialog box.

Adding Constraints with the Constraints Editor
The Constraints Editor is a graphical tool in the Xilinx Development
System that allows you to enter timing constraints and pin location
constraints. You can enter constraints in the graphical interface
without understanding UCF file syntax. The Constraints Editor
passes these constraints to the implementation tools through a UCF
file.

The Constraints Editor accepts the following input files.

• A valid NGD file, which is a Xilinx logical design database file.
This file serves as input to the Map program, which generates the
physical design database (NCD).
3-10 Xilinx Development System

Using the Software
• A corresponding UCF (User Constraint File), which contains
logical constraints.

By default, when the NGD file is opened, an existing UCF file with
the same base name as the NGD file is used. Alternatively, you can
specify the name of the UCF file.

The Constraints Editor writes out a valid UCF file and a valid NGD
file.These files are processed by the Map program, which generates a
PCF (Physical Constraints File).

Note: For more information, see the Constraints Editor User Guide.

Guiding a Design with Floorplanner Files
The Floorplanner tool generates an MFP file that contains mapping
and placement information. You can use this file as a guide for
mapping an implementation revision.

Note: If you use an MFP file as a guide file, you cannot guide
mapping using the Set Guide File(s) command Custom option. Also,
the Floorplanner is only available for XC4000 and Spartan devices.

To guide your design with floorplan files, follow these steps.

1. In the Design Manager project view, select an implementation
revision that has been mapped and modified using the Floor-
planner.

For more information on the Floorplanner, refer to the Floor-
planner Reference/User Guide.

2. Select Design → Set Floorplan File(s) from the Design
Manager.

The Set Floorplan File(s) dialog box appears.

3. Select a floorplan guide design from the Floorplan Design drop-
down list.

• Select an existing implementation revision.

• Select None if you do not want to guide the design. Select
Project Clipboard to guide from the implementation
revision copied to your project clipboard. If no data exists in
the clipboard or if you want to copy new data to the clip-
board, use the Copy Floorplan Data to Project Clipboard
option in the Implement dialog box.
Alliance Series 2.1i Quick Start Guide 3-11

Alliance Series 2.1i Quick Start Guide
• Select Custom to guide from any mapped file in your file
system, including designs not generated from within the
Design Manager. This option invokes the Custom dialog box
in which you can specify your floorplan guide files. Specify
an FNF file for the Floorplanning File field and an MFP file
for the Floorplanned Guide File field.

4. The Flow Engine uses the selected file to guide the implementa-
tion.

Static Timing Analysis
Timing analysis can be performed at several stages in the implemen-
tation flow to gauge delays. A post-map timing report can be gener-
ated to evaluate the effects of logic delays on timing constraints, clock
frequencies, and path delays. A post-place-and-route timing report,
that incorporates both logic and routing delays, can be generated as a
final evaluation of the design’s timing constraints, clock frequencies,
and path delays. Detailed timing constraint, clock, and path analysis
for post-map or post-place-and-route implementations can be accom-
plished by using the interactive Timing Analyzer tool.

Static Timing Analysis After Map
Post-map timing reports can be very useful in evaluating timing
performance. The report uses real block delays and estimates for the
route delays. Although the delays are estimates, they provide valu-
able information.

If logic delays account for a significant portion (> 50 percent) for the
total allowable delay of a path, the path may not be able to meet your
timing requirements once the real routing delays are added. In fact, if
the logic-only-delays exceed the total allowable delay for a path or
constraint, then the place and route process need not be run since the
routing delays will only cause the path’s timing to degrade. Routing
delays typically account for 40 percent to 60 percent of the total path
delays. By identifying problem paths, you can mitigate potential
problems before investing time in place and route. You can redesign
the logic paths to use fewer levels of logic, tag the paths for special-
ized routing resources, move to a faster device, insert flip flops in the
path, or allocate more time for the path.
3-12 Xilinx Development System

Using the Software
If logic-only-delays account for much less (<15 percent) than the total
allowable delay for a path or timing constraint, then very low effort
levels can be used by the place and route tool. In these cases, reducing
effort levels allow you to decrease run times while still meeting
performance requirements.

Static Timing Analysis After Place and Route
Post-PAR timing reports incorporate real block and real route delays
to provide a comprehensive timing summary. If a placed and routed
design has met all of your timing constraints, then you can proceed
by creating configuration data and downloading a device. If you
identify problems in the timing reports, you can try fixing the prob-
lems by increasing the effort level, using re-entrant routing, or using
multi-pass place and route. You can also redesign the logic paths to
use less levels of logic, tag the paths for specialized routing resources,
move to a faster device, insert flip flops in the path, or allocate more
time for the paths.

You can identify paths that can be ignored, or identified as slower
exceptions.

Edit the implementation template to modify the placer effort level.
For information on re-entrant routing or multi-pass place and route,
see the “Advanced Implementation Flows” section at the end of this
chapter.

Summary Timing Reports
Implementing a design in the Flow Engine can automatically
generate summary timing reports. The summary reports show timing
constraint performance and clock performance. To create summary
timing reports, use the following steps.

1. Open the Options dialog

• For a post-MAP report, select the Produce Logic Level
Timing Report button

• For a post-PAR report, select the Produce Post Layout Timing
Report button

2. To modify the reports to detail path delays or paths failing timing
constraints, do the following.

• Edit the Implementation template
Alliance Series 2.1i Quick Start Guide 3-13

Alliance Series 2.1i Quick Start Guide
• Select the Timing Reports tab

• Select a report format

3. After MAP or timing analysis is finished, the Logic Level Timing
or Post Layout Timing report appears in the report browser.

Detailed Timing Analysis
To perform detailed timing analysis, select the following from the
Design Manager.

Tools → Timing Analyzer

You can specify specific paths for analysis, discover paths not covered
by timing constraints, and analyze the timing performance of the
implementation based on another speed grade. For path analysis, use
the following steps.

1. Choose sources; from the Timing Analyzer menu, select the
following.

Path Filters → Path Analysis Filters → Select
Sources

2. Choose destinations; from the Timing Analyzer menu, select the
following.

Path Filters → Path Analysis Filters → Select
Destinations

3. To create a report, select the following.

Analyze → All Paths

4. To switch speed grades, select the following.

Select Options → Speed Grade

After a new speed grade is selected, all new Timing Analyzer reports
will be based on the design running with new speed grade delays.
The design does not have to be re-implemented, because the new
delays are read from a data file.

Creating Simulation Files
Once the design is implemented, a timing simulation can be
performed to test the timing requirements and functionality of your
3-14 Xilinx Development System

Using the Software
design. Timing simulation can save considerable time by reducing
time spent debugging test boards in the lab. Functional simulation
can help you to further save time by uncovering design bugs before
running Place and Route.

The Xilinx tools allow you to create simulation data after each major
processing step. This means that you can create functional simulation
netlists after the design has been merged together by NGDBuild in
the Translate process, and timing simulation netlists after the design
has been placed and routed by PAR. Additionally, you can create
simulation data after the design has been mapped, or after the design
has been placed but not routed.

Simulation data created after the design has only been mapped
contains timing data based on the CLB and IOB block delays, and
most net delays are zero.

Post-MAP simulation allows you to ensure that the design’s current
implementation will give the place and route software sufficient
margin to route the design within your timing requirements.

Simulation data created after the design has been placed but not
routed, contains accurate block delays and estimates for the net
delays. Post-place simulation can be used as an incremental simula-
tion step between post-MAP simulation and a complete post-route
timing simulation.

Creating Timing Simulation Data
Follow these steps to create timing simulation data.

1. Select Design → Implement from the Design Manager menu
or click the Implement toolbar button. The Implement dialog box
appears.

2. Select the Options button in the Implement dialog box. The
Options dialog box appears.

3. Select the Produce Timing Simulation Data option.

4. In the same dialog box, click on the Edit Template button for
simulation. Select the interface tab in the Simulation Template
dialog box.

5. On the General tab, select one of the simulation netlist formats
(EDIF, VHDL, or Verilog®). If you selected EDIF, go to the EDIF
Alliance Series 2.1i Quick Start Guide 3-15

Alliance Series 2.1i Quick Start Guide
tab, and select a CAE Vendor. If you select VHDL or Verilog, go to
the VHDL/Verilog tab and select the options you want to use for
simulation.

6. On the General tab, select the Correlate Simulation Data to Input
Design option if you are using a simulation stimulus file or test
fixture that was used for functional simulation, and contains
signal names that were optimized out of your design during
implementation.

With these options selected, the Flow Engine automatically creates a
post-route simulation netlist in the selected format during the timing
stage. To access the simulation netlist in the Design Manager, perform
the following steps.

1. Select your project revision.

2. Select Design → Export. In the Export dialog box, select Timing
Simulation Data and enter the export directory for the file.

3. Select OK. The listed netlist is copied to the selected directory. Use
the netlist as input to your simulator to perform a timing simula-
tion.

Note: For more information, see the Development System Reference
Guide.

Creating Functional Simulation Data
Functional simulation netlists should be created using tools from
your simulation vendor interface and the Alliance software tools. The
implementation processes do not need to be invoked to create func-
tional simulation netlists. However, if your design contains modules
with varying netlist formats that the Xilinx interface software is
unable to process, you can run NGDBuild on the design to create a
single design_name.ngd and then create a simulation netlist using a
translation tool: NGD2VHDL, NGD2VER, or NGD2EDIF. The
following commands create a functional simulation netlist.

ngdbuild design_name

ngd2edif design_name

3-16 Xilinx Development System

Using the Software
Downloading a Design
An implemented design can be downloaded directly from your PC or
workstation, using the Hardware Debugger program and the
XChecker cable, the Parallel Cable III, or the MultiLINX cable.

The Hardware Debugger can download a bit file or a PROM file.

For more information on downloading, see the Hardware Debugger
User Guide and the Hardware User Guide.

Creating a PROM
An FPGA or daisy chain of FPGAs can be configured from serial or
parallel PROMs. The PROM File Formatter can create MCS, EXO, or
TEK style files. The files are read by a PROM programmer that turns
the image into a PROM.

A HEX file can also be used to configure an FPGA or a daisy chain of
FPGAs through a microprocessor. The file is stored as a data structure
in the microprocessor boot-up code.

In-Circuit Debugging
Once a design has been downloaded to an FPGA, snapshots of
internal signal states can be captured and read using the Hardware
Debugger program and the XChecker cable. You can display the
signal states as waveforms in the Hardware Debugger. This capa-
bility allows you to test and debug your design in a real-time envi-
ronment as it interfaces with components on your board. You can also
control the states of your state machines, by controlling when clock
edges are sent to your system clock input.

For more information on in-circuit debugging, the Hardware
Debugger, or the XChecker cable, see the Hardware Debugger Guide.

Advanced Implementation Flows
The place and route software, PAR, has features that allow it to
process complex designs that have tight timing requirements and/or
are difficult to route. PAR options can be varied in many different
ways. This section shows the most common strategies.
Alliance Series 2.1i Quick Start Guide 3-17

Alliance Series 2.1i Quick Start Guide
Re-Entrant Route
PAR can take an implemented design as an input, and use it as the
starting point for routing. If your design is placed but not routed,
PAR will use the placement and just spend time routing the design. If
your design is partially routed, PAR will use the existing placement
and routing and only spend time routing the unrouted signals. If
your design is completely placed and routed but not meeting timing
specifications, PAR can start from where it left off and continue re-
routing the design to come up with an implementation that meets
your timing specifications.

As PAR is running, it continually updates the NCD file with its
current placement and routing information. PAR can use a placed
NCD file for re-entrant routing. To perform re-entrant routing, follow
these steps.

1. In the Design Manager, select the implemented revision, and
select the Flow Engine button in the toolbox.

2. In the Flow Engine, select the following.

Setup → FPGA Re-entrant

3. In the Setup Re-entrant Route dialog box, select the Allow Re-
Entrant Routing button, which enables the re-entrant route
options.

4. If meeting timing specifications is a critical goal for the route,
select the Use the Timespecs button during re-entrant route. If
meeting timing specifications is not critical, deselect the button
because timing driven route takes longer than non-timing driven
route.

5. Select the number of re-entrant routing passes. If Auto is selected,
PAR performs routing iterations until it stops making significant
progress or until your design constraints have been fully met.

6. Select the number and type of cleanup passes. Cleanup passes are
run after the initial routing passes are complete. The effectiveness
of the type of cleanup passes depends on the design, device, and
constraints of the implementation. The best methodology is to
select no more than three passes for each (in most cases, a single
pass for each is sufficient), and use the PAR report to determine
which is most effective. Then try using more cleanup passes of
that style.
3-18 Xilinx Development System

Using the Software
7. After you have selected your options, click OK. The Place and
Route icon in the Flow Engine displays a loop back arrow and the
Re-Entrant route label.

If you are specifying timing or location constraints, you may want to
relax them to give PAR more flexibility. If you modify the UCF file,
you must step the Flow Engine back and run Translation in order to
incorporate the changes. Since your design is already implemented,
step back to the beginning of Place & Route using the Step Backward
button at the bottom of the Flow Engine, and then click the button to
start again.

Multi-Pass Place and Route
If a design has not completed routing or the meeting of timing
constraints, then you can use PAR to perform a more extensive search
for a solution. PAR can produce multiple placed and routed revisions,
each revision with varying implementations. PAR scores each imple-
mentation, choosing the best revisions based on the score. By
choosing the best implementation from a large population, PAR is
more likely to find a solution that meets your requirements.

If you are using the Xilinx software on networked UNIX worksta-
tions, you can significantly reduce run time by running the place and
route passes in parallel on separate machines. To execute Multi-Pass
Place and Route, perform the following steps.

1. In the Design Manager, be sure to select a version and not a revi-
sion, and then from the menu select the following.

Design → FPGA Multi-Pass Place and Route

2. In the FPGA Multi-Pass Place and Route dialog, select a value for
the Initial Placement Seed (Cost Table). The Initial Placement
Seed is a value that initializes the Place and Route algorithms.
Each iteration receives an incremented value of the starting
strategy. For initial runs, set the Seed to 2, since 1 was used in
your previous single- pass run.

3. Select the Place and Route passes to execute.

4. Select the number of iterations to save. Based on the design score,
only the files from the best runs are saved. If you are using a
UNIX workstation, and want to use the Turns Engine to run on
multiple UNIX workstations, select a nodelist file. A nodelist file
Alliance Series 2.1i Quick Start Guide 3-19

Alliance Series 2.1i Quick Start Guide
is a user-created ASCII file that lists the names of the worksta-
tions on which you want to run. Each name should be on a sepa-
rate line. There should not be any tabs or spaces.

5. Click OK to start the Multi-Pass Place and Route Process.

Guiding an Implementation
During the design process your design may be modified and imple-
mented many times. In most cases, parts of your design do not
change from one implementation to the next. Guiding your design
accelerates iterative implementations by reusing the unchanged
sections from a previous implementation on current implementa-
tions. This is advantageous because the software spends time gener-
ating implementations only for sections of your design that have
changed. The guide process is used during map, place, and route,
and can significantly reduce design run times.

The guide process is more effective when the net names and instance
names in your design remain constant between iterations, except for
those specific parts of your design that are modified at the source
level. This is generally true for schematic-based designs, but not for
synthesis-based designs. For this reason, Xilinx does not recommend
using guide for most synthesis-based designs.

Specifying a Guide Design
To select a previous implementation to guide a current implementa-
tion, select the following in the Design Manager.

Design → Set Guide File(s)

The Set Guide File(s) dialog box appears. In the Guide Design field,
you can select previously implemented revisions, Project Clipboard,
Custom, or None.

• Project Clipboard

The project clipboard is used to save the guide data of revisions
that are overwritten. You can save guide data to the project clip-
board by selecting the Copy Guide Data To Project Clipboard
option in the Implement dialog box.

• Custom
3-20 Xilinx Development System

Using the Software
Use the Custom option to guide from any mapped, routed, or
fitted file in your file system, including designs not generated
from within the Design Manager. In the Custom dialog box, enter
a mapped NCD file in the Mapping Guide File field. Enter a
placed and routed NCD file in the Guide File field.

• None

Select the None option if you do not want to guide your design.

Exact Guide Mode
When guiding in exact mode, the unchanged logic is not modified in
any way. This mode is fastest, but least flexible. Use this mode if the
design iteration requires only minor changes. Exact mode is the
default value. It can be selected by having the Match Guide Design
Exactly button pressed in the Options dialog.

Leveraged Guide Mode
When guiding in leveraged mode, the mapping, place, or route of the
unchanged logic can be modified if the tools need to make layout
changes to accommodate new logic. Use this mode if significant
changes have occurred in your design.

Leveraged mode is automatically selected when the Match Guide
Design Exactly button is not selected in the Options dialog.
Alliance Series 2.1i Quick Start Guide 3-21

Using the Software
Alliance Series 2.1i Quick Start Guide 3-22

Appendix A

Alliance FPGA Express Interface Notes

This appendix provides information on installing and using the Alli-
ance FPGA Express and the Xilinx Alliance Series release. Synopsys
and the Xilinx CD-ROM documentation are referenced to help you
find additional information. The Alliance FPGA Express is FPGA
Express software purchased from Synopsys. Foundation Express is
the FPGA Express software bundled with the current release of Foun-
dation and is purchased from Xilinx. All references to FPGA Express
in this appendix refer to Alliance FPGA Express. For more informa-
tion on Foundation Express, refer to the Foundation Series 2.1i Quick
Start Guide.

FPGA Express is a Verilog/VHDL compiler designed to work with
Windows 95/98 and Windows NT v4.0. FPGA Express can process
either Verilog or VHDL files. This tool writes out XNF files (EDIF for
Virtex designs) which are fully compatible with Alliance Series
Design Implementation tools. Only the Xilinx implementation tools
and a third party simulation tool are needed in addition to FPGA
Express to fully create and simulate a design. This appendix includes
the following sections.

• “Additional Documentation”

• “Alliance FPGA Express/Xilinx Design Flow”

• “Installing FPGA Express”

• “Entering a Design”

• “Simulating a Design”

• “Timing Constraints”

• “Porting Code from FPGA Compiler to FPGA Express”

• “Using LogiBLOX with FPGA Express”
Alliance Series 2.1i Quick Start Guide — July 1999 A-1

Alliance Series 2.1i Quick Start Guide
Additional Documentation
The following documentation is available for FPGA Express and the
Alliance Series Design Implementation tools for the current release of
software.

• For installation of the Alliance Series Design Implementation
Tools, refer to the Alliance Series 2.1i Release Notes and Installation
Guide.

• For installation of FPGA Express, HDL-entry flow, and mixed
entry flows, refer to the FPGA Express User’s Guide, a hard copy
document included with your FPGA Express software from
Synopsys.

• For additional information on FPGA Express and the Xilinx flow,
refer to the Synopsys FPGA Express Design Guide, available via
ftp://ftp.xilinx.com/pub/swhelp/synopsys/xprsgde.zip. This
file is a Word for Windows (95) version 7.0 file.

Alliance FPGA Express/Xilinx Design Flow
FPGA Express is the top-level design tool in the design flow. FPGA
Express writes out an XNF file (EDIF for Virtex) which is fully
compatible with the Alliance Series Design Implementation tools.
The XNF file written out by FPGA Express can be accepted by
NGDBuild or the Design Manager for creation of a PROM file.

The following types of simulation are possible with FPGA Express.

• Behavioral

• Post-NGDBuild

• Post-Map

• Post-synthesis post-route timing simulation (post-PAR)

For more specific information on simulation with FPGA Express,
refer the FPGA Express Design Guide.

Refer to the following figure for a graphic representation of the
design flow.
A-2 Xilinx Development System

Alliance FPGA Express Interface Notes
Figure A-1 Alliance FPGA Express/Xilinx Design Flow

.ngd

Behavioral Simulation

NGDBuild

NGDAnno

3rd Party
Simulator

3rd Party Simulators

NGD2VER or NGD2VHDL

Timing Simulation

NGDAnno

MAP

FPGA Express

.v.vhd

.xnf

.ngd

.ncd

.nga

.ucf

X7761

.sdf

.bit and/or
prom file

structural .v
or structural

.vhdl

.ncd

Design Manager

Functional Simulation

VITAL/Verilog
Simulation
Libraries

Testbench

.ngm

Unisim
Library

.ngo
Alliance Series 2.1i Quick Start Guide A-3

Alliance Series 2.1i Quick Start Guide
Installing FPGA Express
Insert the FPGA Express CD into your CD-ROM drive. Start the
Explorer and double-click on the CD-ROM icon. Double-click on
setup.exe to start the install process.

For additional instructions on how to install FPGA Express on
Windows 95 or Windows NT, refer to the FPGA Express User’s Guide
included with the FPGA Express software from Synopsys.

Entering a Design
To enter a design, use the following steps.

1. Start FPGA Express by selecting the following.

Program → Synopsys → FPGA Express

2. Use a text editor to enter your design in Verilog or VHDL.

3. Define your project in FPGA Express by selecting.

File → New...

4. Identify the HDL files for synthesis by selecting the following.

Synthesis → Identify Sources

5. Specify the top-level file in your project by selecting the top-level
file in the top-level design drop-down list in the middle of the
FPGA Express toolbar.

6. Create an implementation by selecting the following.

Synthesis → Create Implementation

7. Optimize your design by selecting the following.

Synthesis → Optimize Chip

8. Write an XNF file by selecting the following.

Synthesis → Export Netlist

Verilog or VHDL designs are the input files for the FPGA Express
design flow, and the output is an XNF file (EDIF for Virtex designs),
which can be processed directly by the Xilinx implementation tools.
For details on defining projects in FPGA Express, entering HDL code,
defining constraints in FPGA Express, supported devices, and design
A-4 Xilinx Development System

Alliance FPGA Express Interface Notes
issues, refer to the FPGA Express User’s Guide included with your
FPGA Express software from Synopsys.

Simulating a Design
FPGA Express is a synthesis tool only. Simulation of designs with
FPGA Express must be done with a third party simulation tool. For
more information on simulation with FPGA Express, refer to the
documentation of your third party simulation tool.

For VHDL simulation, the Xilinx VITAL libraries are required. The
Xilinx VITAL libraries are located in the $XILINX/vhdl directory,
($XILINX is where the Xilinx software is installed). For Verilog simu-
lation, the Xilinx Verilog libraries are required. The Xilinx Verilog
libraries are located in the $XILINX/verilog directory.

For more information on the HDL simulation flow with FPGA
Express, refer the Development System Reference Guide. For information
on using the Design Manager in HDL simulation, refer to the Design
Manager/Flow Engine Guide.

Note: There are three types of simulation possible behavioral, post-
NGDBuild, and back-annotated timing simulation.

Timing Constraints
FPGA Express automatically inserts timespecs into the XNF file it
writes out. For Virtex designs, a separate .ncf file containing timing
constraints is created along with the .edf file. Optionally, the user can
choose not to write out timespecs in the XNF file from FPGA Express.
Instead, you can write the constraints in a .ucf file. The timespecs
created by FPGA Express in the XNF file have the FROM: TO syntax.

Note: For more information on constraints and FPGA Express, refer
to the FPGA Express Expert Journal at http://www.xilinx.com.

Porting Code from FPGA Compiler to FPGA Express
Read this section if you are porting a design from FPGA/Design
Compiler to FPGA Express. If you are compiling a design originally
compiled with FPGA/Design Compiler and the code is one hundred
percent behavioral, then no modification of the code is needed. But, if
you have instantiated components from the XSI libraries, some of
these components do not exist in the FPGA Express libraries.
Alliance Series 2.1i Quick Start Guide A-5

Alliance Series 2.1i Quick Start Guide
Some of the components that can be instantiated in the Xilinx design
flow cannot be instantiated in the FPGA Express tool, since there are
slight differences in names. For example, the BUFGP_F in the XSI
component library does not exist in the FPGA Express component
library. In FPGA Express, the equivalent name of the BUFGP_F is
BUFGP. For a complete listing of the library cells that can be instanti-
ated in FPGA Express, refer to the contents of the following.

fpgaexpress/lib/xc3000

fpgaexpress/lib/xc4000e

fpgaexpress/libxc5200

The fpgaexpress directory is where FPGA Express is installed on your
system. In these directories, there are files with a .dsn extension. The
string in front of .dsn is the name of the CELL that can be instantiated
in FPGA Express.

In general, instantiation is not necessary. For the XC4000EX/XL/
XLA/XV FPGA Express flow, you must instantiate the following
components.

• I/O muxes

• Fast capture latches

• RAM

• BSCAN

• LogiBLOX

For examples of instantiation of I/O muxes, fast capture latches,
RAM, and BSCAN, refer to the “Xilinx Synopsys Interface Notes”
appendix.

Using LogiBLOX with FPGA Express
For information on using LogiBLOX and FPGA Express, refer to the
FPGA Express “Tech Tips” at http://support.xilinx.com.
A-6 Xilinx Development System

Appendix B

Mentor Graphics Interface Notes

This appendix describes how to set up the Mentor Graphics interface
and associated libraries, and includes examples on pin locking and
timing constraints. This chapter includes the following sections.

• “Additional Documentation”

• “Setting Up the Xilinx/Mentor Interface”

• “Mentor/Xilinx Software Design Flow”

• “Translating a Design to Xilinx EDIF”

• “Timing Simulation”

• “Mentor Interface Environment Variables”

• “Library Locations and Sample MGC Location Map”

• “Pin Locking”

• “Timing Constraints”

Additional Documentation
The following documentation is available for the Mentor Graphics
interface.

• Mentor Graphics Interface Guide is available online. This manual
describes installation setup and details how to use the Mentor
Graphics Interface

• Mentor Graphics software documentation (for applications such
as Design Architect, QuickSim, QuickHDL, and DVE) is available
online and viewable with the Mentor-supplied BOLD Browser.
Alliance Series 2.1i Quick Start Guide — July 1999 B-1

Alliance Series 2.1i Quick Start Guide
Setting Up the Xilinx/Mentor Interface
The following environment variables must be modified or added to
run the Xilinx/Mentor interface tools.

• MGC_HOME (add)

• LCA (add)

• SIMPRIMS (add)

• MGC_GENLIB (add)

• MGC_LOCATION_MAP (add)

• path (modify)

• LD_LIBRARY_PATH (modify for Solaris)

• SHLIB_PATH (modify for HP-UX)

Set these variables as follows.

setenv MGC_HOME <installation_path_to_mentor>

setenv LCA $XILINX/mentor/data

setenv MGC_GENLIB $MGC_HOME/gen_lib

setenv MGC_LOCATION_MAP <location_of_actual_map_file>

set path = ($XILINX/mentor/bin/<platform_name> \

$path)

For Solaris only.

setenv LD_LIBRARY_PATH $MGC_HOME/shared/
lib:$MGC_HOME/lib:$LD_LIBRARY_PATH

For HP-UX only.

setenv SHLIB_PATH $MGC_HOME/shared/lib:$MGC_HOME/
lib:$SHLIB_PATH

Following is an example of how to set your environment variables.

setenv MGC_HOME /usr/mentor

setenv LCA $XILINX/mentor/data

setenv SIMPRIMS $LCA/simprims

setenv MGC_GENLIB $MGC_HOME/gen_lib
B-2 Xilinx Development System

Mentor Graphics Interface Notes
setenv MGC_LOCATION_MAP /usr/data/mgc_location_map

set path = ($XILINX/mentor/bin/sol $path)

setenv LD_LIBRARY_PATH $MGC_HOME/shared/
lib:$MGC_HOME/lib:$LD_LIBRARY_PATH

Note: The previous settings assume that the Xilinx environment vari-
ables point to the appropriate area, as described in the Software Vari-
able setup section of the Alliance 2.1i Installation Guide and Release
Notes.

Mentor/Xilinx Software Design Flow
The following figure illustrates the Mentor Graphics and Xilinx soft-
ware design flow. Shown are design entry, functional simulation,
implementation, and timing simulation.
Alliance Series 2.1i Quick Start Guide B-3

Alliance Series 2.1i Quick Start Guide
Figure B-1 Mentor/Xilinx Software Flow

• The design flow starts with design entry with PLD_DA (the
Mentor schematic design tool).

• The design is processed by PLD_DVE to generate a Xilinx-style
design viewpoint.

HDL

NGD2VHDL/NGD2VER

X8094

QuickSim

Design Architect

Design Viewpoint

PLD_EDIF2TIM

HDL Editor

Compiled HDL Object

QuickHDL

PLD_MEN2EDIF

QuickHDL Pro

M1 Implementation Tools

SDF

NGA/NGD

EDIF EDIF/XNF

EDDM HDL

QVHCOM/QVLCOMPLD_DVE

EDIF

EDDM

Synthesis Tool

NGD2EDIF
B-4 Xilinx Development System

Mentor Graphics Interface Notes
• The design is then passed to PLD_QuickSim for functional simu-
lation.

• Once the design logic has been verified, the Mentor schematic is
processed by PLD_MEN2EDIF to create an EDIF file.

• The EDIF file is passed to the Xilinx tools for implementation.

• The Xilinx tools create an EDN file that is processed by
PLD_EDIF2TIM to create a timing-annotated EDDM netlist.

• This new netlist is processed by PLD_DVE to generate a Xilinx
style design viewpoint.

• The design is passed to PLD_QuickSim to run in cross-probing
mode for timing simulation.

For functional simulation, first generate a simulation viewpoint, with
PLD_DVE. For example, to generate a viewpoint for the XC4000EX
component my_design, use the following command.

pld_dve -s my_design xc4000ex

A specific viewpoint name can optionally be given after the tech-
nology type. If one is not given, a default viewpoint is created with
the name default.

To simulate this design, use the following command.

pld_quicksim my_design

This runs QuickSim for functional simulation without cross-probing.

You may also use the PLD_DVE and PLD_QuickSim icons in
PLD_DMGR. For more information on functional simulation, see the
Mentor Graphics Interface Guide.

Translating a Design to Xilinx EDIF
To translate a design into an EDIF file for the Xilinx implementation
tools, use the PLD_MEN2EDIF command. For example, to target
my_design to the XC4000EX.

pld_men2edif my_design xc4000ex

You may also specify a viewpoint name after the technology type. If a
viewpoint name is not given, a default viewpoint is used with the
name default. This default viewpoint name is the same as that used by
PLD_DVE.
Alliance Series 2.1i Quick Start Guide B-5

Alliance Series 2.1i Quick Start Guide
You may also use the pld_men2edif icon in PLD_DMGR. For more
information on PLD_MEN2EDIF, see the Mentor Graphics Interface
Guide.

Timing Simulation
After implementing your design and generating an annotated NGA
netlist (with NGDANNO), you must use NGD2EDIF to generate a
timing-annotated EDIF netlist that Mentor can use.

Generating a Timing-Annotated EDIF Netlist
Use NGD2EDIF to generate a timing-annotated EDIF netlist. In the
case of my_design, for example, enter the following.

ngd2edif -v mentor my_design.nga my_design.edn

This creates an EDN file compatible with the Mentor interface.

Generating a Timing Model
After creating the EDN file, run PLD_EDIF2TIM to generate a timing
model with the following command.

pld_edif2tim my_design.edn

This creates an EDDM-type component under my_design_lib/
my_design, as well as a simulation viewpoint for that component.

Running PLD_QuickSim
After generating the simulation viewpoint, run PLD_QuickSim with
cross-probing on this new component. (If you do not wish to annotate
simulation values onto your original schematic, you may remove the
-cp option to run without cross-probing.)

pld_quicksim my_design_lib/my design

-cp -tim type -consm messages

QuickSim will start up and read in the new timing-annotated EDDM
netlist. DVE will also start up. Open the viewpoint and schematic
sheet for your original schematic in DVE to annotate simulation
values (from QuickSim) onto that front-end schematic.
B-6 Xilinx Development System

Mentor Graphics Interface Notes
You may also use the PLD_EDIF2TIM and PLD_QuickSim icons in
PLD_DMGR. For more information on timing simulation, including a
more detailed explanation on cross-probing, see the Mentor Graphics
Interface Guide.

Mentor Interface Environment Variables
Set the following environment variables.

setenv LCA $XILINX/mentor/data
setenv SIMPRIMS $LCA/simprims
set path = ($XILINX/mentor/bin/sol $path)

(This example is for Solaris workstations. Replace “sol” with “hp” for
HP-UX workstations.) These variables are in addition to the XILINX
environment variable settings required by the Alliance Series Design
Implementation Tools. To refer to the Mentor-specific variables such
as MGC_HOME and MGC_LOCATION_MAP, see the Mentor
Graphics Interface Guide for more information.

Library Locations and Sample MGC Location Map
All Xilinx libraries reside under the $LCA directory as with XACT
5.x. Also underneath this directory is the “simprims” (simulation
primitives) library that QuickSim must use to simulate back-end
timing simulation models. This requires your MGC location map to
have the following lines in addition to any other soft names
(including MGC_GENLIB) you have included.

MGC_LOCATION_MAP_1

$LCA
(blank line)

$SIMPRIMS
(blank line)

As always, your $MGC_LOCATION_MAP file points to the location
of this file. For more information on location maps, see the Mentor
Graphics Interface Guide.

Pin Locking
Pad symbols (IPAD, OPAD, etc.) have generic pin-location (“LOC”)
properties already attached to them. (They appear as “PXX” on the
Alliance Series 2.1i Quick Start Guide B-7

Alliance Series 2.1i Quick Start Guide
pad symbol.) You can place pads in specific locations on the device by
modifying these properties as required. (An example property value
for a pad symbol may be “P24”.) Note that “bused” pad symbols (for
example, IPAD8) may take a comma-separated list (in MSB to LSB
order) of locations (P24, P23, P22, . . .). For more information on loca-
tion constraints, see the Libraries Guide.

Timing Constraints
Timing constraints can be placed as properties on a TIMESPEC
symbol in the design. The Timespec label (the label that begins with
“TS”) is entered as the property name, while the timing specification
(for example, “FROM:FFS:TO:FFS=30NS”) is entered as the property
value. For more information on timing constraints, see the Develop-
ment System Reference Guide.
B-8 Xilinx Development System

Appendix C

Xilinx Synopsys Interface Notes

This appendix provides information on setting up the Xilinx
Synopsys Interface (XSI) and associated libraries. Example files are
included to help you set up the FPGA Compiler and VSS with the
Xilinx software. This chapter contains the following sections.

• “Documentation”

• “Setting Up the Synopsys Interface”

• “Examples of Synopsys Setup Files”

• “Entity Coding Examples”

Documentation
The following documentation is available for the Synopsys interface.

• The Xilinx Synopsys Interface Guide is available on the Alliance 2.1i
Documentation CD-ROM.

• Alliance 2.1i Release Documentation describes installation setup
and current issues regarding the use of the Synopsys interface.

• For converting an XACT 5.x.x Synopsys design to M1, refer to the
Xilinx Software Conversion Guide from XACTstep v5.X.X to XACT-
step vM1.X.X.

Setting Up the Synopsys Interface
The following environment variables must be modified or added to
run the Synopsys interface tools.

• SYNOPSYS (add)

• PATH (modify)
Alliance Series 2.1i Quick Start Guide — July 1999 C-1

Alliance Series 2.1i Quick Start Guide
• LD_LIBRARY_PATH (modify)

• SHLIB_PATH (modify)

Set these variables as follows.

setenv SYNOPSYS installation_path_to_synopsys

set path = ($XILINX/bin/platform_name \

$SYNOPSYS/platform_name/syn/bin \

$SYNOPSYS/platform_name/sim/bin \

$path)

For Solaris only.

setenv LD_LIBRARY_PATH $SYNOPSYS/platform_name/sim/
lib:$LD_LIBRARY_PATH

For HP/UX only.

setenv SHLIB_PATH $SYNOPSYS/platform_name/sim/
lib:$SHLIB_PATH

The following is an example.

setenv SYNOPSYS /usr/synopsys

set path = ($XILINX/bin/sol \

$SYNOPSYS/sol/syn/bin \

$SYNOPSYS/sol/sim/bin \

$path)

setenv LD_LIBRARY_PATH $SYNOPSYS/sol/sim/
lib:$LD_LIBRARY_PATH

Setting up the XDW and Simulation Libraries
Note: If you are not using FPGA CompilerII v3.2 or a later, you must
re-compile the Xilinx DesignWare (XDW) libraries.

The XSI (Xilinx Synopsys Interface) simulation and XDW (Xilinx
DesignWare) libraries are compiled for Synopsys v1998.08. If you are
using the latest version of XSI with a version of Synopsys newer than
v1998.08, you must re-compile the XDW libraries with the version of
C-2 Xilinx Development System

Xilinx Synopsys Interface Notes
Synopsys you are using. If you are going to simulate with VSS, you
must re-compile the simulation libraries.

Compiling the libraries in the $XILINX area requires write permis-
sions to this area. If you copy the $XILINX/synopsys directory to a
local area, you do not need rewrite permissions for the $XILINX area
to re-compile the libraries. However, verify that the
.synopsys_dc.setup and .synopsys_vss.setup files use the local copy.

Compiling XDW Libraries

Follow these steps to compile the XDW libraries.

1. Set up your Xilinx and Synopsys software environments.

2. Go to the $XILINX/synopsys/libraries/dw/src directory.

3. In this directory, there are ten subdirectories that represent the
Xilinx device families that have XDW libraries. If you are going to
use any of the device families listed, you must go to the corre-
sponding subdirectory and run the .dc compile script in that
directory. For example, for a Spartan device, enter the following
commands.

cd spartan

Run the install_dw.dc script by entering the following.

dc_shell -f install_dw.dc

4. When the script is finished, go back to $XILINX/synopsys/
libraries/dw/src. Repeat these steps for each device you plan on
using.

Compiling the Simulation Libraries

Note: The following procedure is for compiling the XSI simulation
libraries with VSS. If you are using a different HDL simulator, refer to
your simulator’s documentation for instructions on compiling HDL
simulation libraries.

1. Setup your XSI and Synopsys software environments.

2. Go to the $XILINX/synopsys/libraries/sim/src directory.

3. In this directory, there are subdirectories that represent the five
simulation libraries, described as follows.
Alliance Series 2.1i Quick Start Guide C-3

Alliance Series 2.1i Quick Start Guide
• LogiBLOX — for functional simulation of VHDL designs
with instantiated LogiBLOX components

• SimPrims — timing simulation library

• UNISIMS — functional simulation library

• XC9000 — XC9500 functional simulation library

• XDW — Functional simulation library for post-synthesis
(FPGA compiler) pre-NGDBuild simulation

Some or all of these libraries need to be re-compiled depending
on the device and type of simulation you plan on using. Xilinx
recommends compiling the logiblox, simprims, and unisims
libraries. Use the following steps to compile these libraries.

4. Go to the logiblox directory and enter the following command.

./analyze.csh

Go back to the $XILINX/synopsys/libraries/sim/src directory.

5. Go to the simprims directory and enter the following command.

./analyze.csh

Go back to the $XILINX/synopsys/libraries/sim/src directory.

6. Go to the unisims directory and enter the following command.

./analyze.csh

The unisims directory also contains the analyze_52k.csh script. If
you plan on simulating XC5200 devices, you must run this script
as well. You must also edit the .synopsys_dc.setup file in the
unisims directory to point to a location for the compiled XC5200
libraries.

Go back to the $XILINX/synopsys/libraries/sim/src directory.

7. Go to the xdw directory and enter the following command.

./analyze.csh

Go back to the $XILINX/synopsys/libraries/sim/src directory.

8. Go to the xc9000/ftgs directory and enter the following
command.

dc_shell -f install_xc9000.dc
C-4 Xilinx Development System

Xilinx Synopsys Interface Notes
Examples of Synopsys Setup Files
This section includes examples of the Synopsys setup files needed to
run the FPGA Compiler and VSS with the Xilinx tools. These exam-
ples are for XC4000XL and Virtex devices. Other FPGA and CPLD
templates are in the Xilinx installation path, $XILINX/synopsys/
examples.

XC4000 Devices
Although the following .synopsys_dc.setup file example is for an
XC4000XL device, it is similar to the setup file required for XC4000E/
EX/XLA/XV devices.

Example .synopsys_dc.setup File

/* Template .synopsys_dc.setup file for Xilinx */
/* For targeting a XC4000XL */
XilinxInstall = get_unix_variable(XILINX);
SynopsysInstall = get_unix_variable(SYNOPSYS);
search_path = { . \
XilinxInstall + /synopsys/libraries/syn \
SynopsysInstall + /libraries/syn }
/* Define a work library.You must create ‘work’ */
define_design_lib WORK -path ./WORK
/* Declare the Xilinx DesignWare library */
define_design_lib xdw_4000xl -path \
XilinxInstall + /synopsys/libraries/dw/lib/xc4000xl

/* General configuration settings. */
compile_fix_multiple_port_nets = true
xnfout_constraints_per_endpoint = 0
xnfout_library_version = "2.0.0"

bus_naming_style = "%s<%d>"
bus_dimension_separator_style = "><"
bus_inference_style = "%s<%d>"
/* synlibs -fc 4028ex-3 >> .synopsys_dc.setup */

 Example .synopsys_vss.setup File

/* Set any simulation preferences. */
TIMEBASE = NS
TIME_RES_FACTOR = 0.1
/* Define a work library in the current project */
Alliance Series 2.1i Quick Start Guide C-5

Alliance Series 2.1i Quick Start Guide
WORK > DEFAULT
DEFAULT : ./WORK
/* Set up SIMPRIM Back-annotation libraries */
SIMPRIM : $XILINX/synopsys/libraries/sim/lib/simprims
/* Set up LogiBLOX simulation libraries */
LOGIBLOX : $XILINX/synopsys/libraries/sim/lib/logiblox
/* Set up example pointers to the Xilinx Unisim functional simulation
library */
UNISIM: $XILINX/synopsys/libraries/sim/lib/unisims

Example Script File for XC4000E/EX/XL/XV Designs

This section describes the typical sequence of commands used to
process designs with the Synopsys interface. You should run the
commands at the dc_shell command line, either individually or in
batch mode. While every design may not require all the commands
used in this section, the following example represents a good starting
point for most designs. This script file includes information on I/O
pin location constraints, timing constraints, setting the part-type,
controlling I/O characteristics, and controlling Synopsys mapping
and packing functions.

/* Sample Script for Synopsys to Xilinx Using */
/* FPGA Compiler targeting a XC4000EX device*/
/* Set the name of the design’s top-level */
TOP = <design_name>
designer = “XSI Team”
 company = “Xilinx, Inc”
 part = “4028expg299-3”
/* Analyze and Elaborate the design file. */
analyze -format vhdl TOP + “.vhd”
elaborate TOP
/* Set the current design to the top level. */
current_design TOP
/* Set the synthesis design constraints. */
remove_constraint -all
 /* Some example constraints */
 create_clock <clock_port_name> -period 50
 set_input_delay 5 -clock <clock_port_name> \
 { <a_list_of_input_ports> }

 set_output_delay 5 -clock <clock_port_name> \
 { <a_list_of_output_ports> }

 set_max_delay 100 -from <source> -to <destination>
C-6 Xilinx Development System

Xilinx Synopsys Interface Notes
 set_false_path -from <source> -to <destination>
/* Indicate which ports are pads. */
set_port_is_pad “*”
 /* Some example I/O parameters */
 set_pad_type -pullup <port_name>
 set_pad_type -no_clock all_inputs()
 set_pad_type -clock <clock_port_name>
 set_pad_type -exact BUFGS_F <hi_fanout_port_name>
 set_pad_type -slewrate HIGH all_outputs()
insert_pads
/* Synthesize the design.*/
compile -boundary_optimization -map_effort med
/* Write the design report files. */
 report_fpga > TOP + ".fpga"
 report_timing > TOP + ".timing"
/* Write out an intermediate DB file to save state*/
write -format db -hierarchy -output TOP + "_compiled .db"
/* Replace CLBs and IOBs primitives (XC4000E/EX/XL only)*/
replace_fpga
/* reapply set_max_delay/set_false_path if using FPGA compiler */
/* Set the part type for the output netlist.
set_attribute TOP "part" -type string part
/* Optional attribute to remove the mapping symbols*/set_attribute
find(design,"*")\
"xnfout_write_map_ symbols" -type boolean FALSE
/* Add any I/O constraints to the design. */
set_attribute <port_name> "pad_location" \
-type string "<pad_location>"
/* Write out the intermediate DB file to save state*/
write -format db -hierarchy -output TOP + ".db"
/* Write out the timing constraints*/
ungroup -all -flatter
write_script > TOP + ".dc"
/* Save design in XNF format as <design>.sxnf */
write -format xnf -hierarchy -output TOP + ".sxnf"
/* Convert constraints to Xilinx syntax */
sh dc2ncf TOP + ".dc"
/* Exit the Compiler. */
exit

/* Now run the Xilinx design implementation tools. */

Virtex Devices
The following setup file examples are for Virtex devices.
Alliance Series 2.1i Quick Start Guide C-7

Alliance Series 2.1i Quick Start Guide
Example .synopsys_dc.setup File

/* === */
/* Template .synopsys_dc.setup file for Xilinx designs */
/* For use with Synopsys FPGA Compiler. */
/* === */

/* === */
/* The Synopsys search path should be set to point */
/* to the directories that contain the various */
/* synthesis libraries used by FPGA Compiler during */
/* synthesis. */
/* === */

XilinxInstall = get_unix_variable(XILINX);
SynopsysInstall = get_unix_variable(SYNOPSYS);

search_path = { . \
 XilinxInstall + /synopsys/libraries/syn \
 SynopsysInstall + /libraries/syn }

 /* !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! */
 /* Ensure that your UNIX environment */
 /* includes the two environment var- */
 /* iables: $XILINX (points to the */
 /* Xilinx installation directory) and*/
 /* $SYNOPSYS (points to the Synopsys */
 /* installation directory.) */
 /* !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! */

/* === */
/* Define a work library in the current project dir */
/* to hold temporary files and keep the project area */
/* uncluttered. Note: You must create a subdirectory */
/* in your project directory called WORK. */
/* === */

 define_design_lib WORK -path ./WORK

bus_extraction_style = "%s<%d:%d>"
bus_naming_style = "%s<%d>"
bus_dimension_separator_style = "><"

edifin_lib_logic_1_symbol = "VCC"
C-8 Xilinx Development System

Xilinx Synopsys Interface Notes
edifin_lib_logic_0_symbol = "GND"
edifout_ground_name = "GND"
edifout_ground_pin_name = "G"
edifout_power_name = "VCC"
edifout_power_pin_name = "P"
edifout_netlist_only = "true"
edifout_no_array = "false"
edifout_power_and_ground_representation = "cell"
edifout_write_properties_list = {"CLK1X_DUTY" "INIT_00" "INIT_01"
"INIT_02" "INIT_03" \
 "INIT_04" "INIT_05" "INIT_06" "INIT_07" "INIT_08" "INIT_09" "INIT_0A"
"INIT_0B" "INIT_0C" \
 "INIT_0D" "INIT_0E" "INIT_0F" "INIT" "CLKDV_DIVIDE" "IOB" "EQN"
"lut_function"}

/* === */
/* Set the link, target and synthetic library */
/* variables. Use synlibs to */
/* determine the link and target library settings. */
/* You may like to copy this file to your project */
/* directory, rename it ".synopsys_dc.setup" and */
/* append the output of synlibs. For example: */
/* synlibs xfpga_virtex-3 >> .synopsys_dc.setup */
/* === */

link_library = {xfpga_virtex-5.db }
link_library = {xfpga_virtex-5.db }
symbol_library = {virtex.sdb}
define_design_lib xdw_virtex -path XilinxInstall + /synopsys/libraries/
dw/lib/virtex
synthetic_library = {xdw_virtex.sldb standard.sldb}

Example Script File for Virtex Devices

/* == */
/* Sample Script for Synopsys to Xilinx Using */
/* FPGA Compiler */
/* */
/* Targets the Xilinx XCV150PQ240-3 and assumes a */
/* VHDL source file by way of an example. */
/* */
/* For general use with VIRTEX architectures. */
/* == */

/* === */
/* Set the name of the design’s top-level module. */
Alliance Series 2.1i Quick Start Guide C-9

Alliance Series 2.1i Quick Start Guide
/* (Makes the script more readable and portable.) */
/* Also set some useful variables to record the */
/* designer and company name. */
/* === */

 TOP = <design_name>
 /* ========================== */
 /* Note: Assumes design file- */
 /* name and entity name are */
 /* the same (minus extension) */
 /* ========================== */

 designer = "XSI Team"
 company = "Xilinx, Inc"
 part = "XCV150PQ240-3"

/* === */
/* Analyze and Elaborate the design file and specify */
/* the design file format. */
/* === */

 analyze -format vhdl TOP + ".vhd"

 /* ============================ */
 /* You must analyze lower-level */
 /* hierarchy modules here */
 /* ============================ */
 elaborate TOP

/* === */
/* Set the current design to the top level. */
/* === */

 current_design TOP

/* === */
/* Set the synthesis design constraints. */
/* === */

 remove_constraint -all

/* If setting timing constraints, do it here.
 For example: */
/*
 create_clock <clock_pad_name> -period 50
C-10 Xilinx Development System

Xilinx Synopsys Interface Notes
*/

/* === */
/* Indicate those ports on the top-level module that */
/* should become chip-level I/O pads. Assign any I/O */
/* attributes or parameters and perform the I/O */
/* synthesis. */
/* === */

 set_port_is_pad "*"
 set_pad_type -slewrate HIGH all_outputs()
 insert_pads

/* +++ */
/* Compile the design */
/* +++ */

 compile -map_effort med

/* === */
/* Write the design report files. */
/* === */

 report_fpga > TOP + ".fpga"
 report_timing > TOP + ".timing"

/* === */
/* Set the part type for the output netlist. */
/* === */

 set_attribute TOP "part" -type string part

/* === */
/* Save design in EDIF format as <design>.sedif */
/* === */

 write -format xnf -hierarchy -output TOP + ".sedif"

/* === */
/* Write out the design to a DB. */
/* === */

 write -format db -hierarchy -output TOP + ".db"
Alliance Series 2.1i Quick Start Guide C-11

Alliance Series 2.1i Quick Start Guide
/* === */
/* Write-out the timing constraints that were */
/* applied earlier. (Note that any design hierarchy */
/* needs to be flattened before the constraints are */
/* written-out.) */
/* === */

 write_script > TOP + ".dc"

/* === */
/* Call the Synopsys-to-Xilinx constraints translator*/
/* utility DC2NCF to convert the Synopsys constraints*/
/* to a Xilinx NCF file. You may like to view */
/* dc2ncf.log to review the translation process. */
/* === */

 sh dc2ncf -w TOP + ".dc"

/* === */
/* Exit the Compiler. */
/* === */

 exit

/* === */
/* Now run the Xilinx design implementation tools. */
/* === */

Entity Coding Examples
This section includes VHDL and Verilog code examples.

VHDL
library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_ARITH.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

entity example is

port(RAMOUT:out STD_LOGIC; DIN: in STD_LOGIC;

AD4,AD3,AD2,AD1,AD0,RMWE,RMWCLK: in STD_LOGIC;
C-12 Xilinx Development System

Xilinx Synopsys Interface Notes
REG1OUT: out STD_LOGIC; DTA1,CLK1: in STD_LOGIC;

REG2OUT: out STD_LOGIC; DTA2,CLK2: in STD_LOGIC;

LTCHOUT: out STD_LOGIC;

LTD,LTGF,LTGE,LTCLK: in STD_LOGIC;

FASTOUT: out STD_LOGIC; FASTIN: in STD_LOGIC;

MUXOUT: out STD_LOGIC; MUXIN1,MUXIN2: in STD_LOGIC);

end example;

architecture inside of example is

signal ground: STD_LOGIC;

component RAM32X1S

port(O: out STD_LOGIC; D: in STD_LOGIC;

A4,A3,A2,A1,A0,WE,WCLK: in STD_LOGIC);

signal rstsig: STD_LOGIC;

end component;

component IFD_F

port(Q: out STD_LOGIC; D,C: in STD_LOGIC);

end component;

component OFD_F

port(Q: out STD_LOGIC; D,C: in STD_LOGIC);

end component;

component STARTBUF

port(GSRIN: in STD_LOGIC;

 (GSTIN: in STD_LOGIC;

 (CLKIN: in STD_LOGIC;

 (GSROUT: out STD_LOGIC;

D,GF,CE,C: in STD_LOGIC);

end component;

component BUFFCLK

port(O: out STD_LOGIC; I: in STD_LOGIC);

end component;
Alliance Series 2.1i Quick Start Guide C-13

Alliance Series 2.1i Quick Start Guide
component OAND2

port(O: out STD_LOGIC; F,I0: in STD_LOGIC);

end component;

begin

U0: RAM32X1S port map(O=>RAMOUT,D=>DIN,

A4=>AD4,A3=>AD3,A2=>AD2,A1=>AD1,A0=>AD0,WE=>RMWE,WCLK=>RMWCLK);

U1: IFD_F port map(Q=>REG1OUT,D=>DTA1,C=>CLK1);

U2: OFD_F port map(Q=>REG2OUT,D=>DTA2,C=>CLK2);

U3: STARTBUF port map
(GSRIN=>RESET,GTSIN=>GROUND,CLKIN=>GROUND,GSROUT=>RSTSIG);

U4: BUFFCLK port map(O=>FASTOUT,I=>FASTIN);

U5: OAND2 port map(O=>MUXOUT,F=>MUXIN1,I0=>MUXIN2);

end inside;

Verilog Code: Module Example
module example (RAMOUT,DIN,AD,RMWE,RMWCLK,
REG1OUT,DTA1,CLK1,REG2OUT,DTA2,CLK2,
LTCHOUT,LTD,LTGF,LTGE,LTCLK,
FASTOUT,FASTIN,MUXOUT,MUXIN1,MUXIN2);

input RMWE,RMWCLK,DIN,DTA1,CLK1,DTA2,CLK2,LTD,LTGF,LTGE,LTCLK

input FASTIN,MUXIN1,MUXIN2;

input [4:0] AD;

output RAMOUT,REG1OUT,REG2OUT,LTCHOUT,FASTOUT,MUXOUT;

RAM32X1S U0
(.O(RAMOUT),.D(DIN),.A4(AD[4]),.A3(AD[3]),.A2(AD[2]),.A1(AD[1]),.A0(AD[0]
),.WE(RMWE),.WCLK(RMWCLK));

IFD_F U1 (.Q(REG1OUT),.D(DTA1),.C(CLK1));

OFD_F U2 (.Q(REG2OUT),.D(DTA2),.C(CLK2));

BUFFCLK U4 (.O(FASTOUT),.I(FASTIN));

OAND2 U5 (.O(MUXOUT),.F(MUXIN1),.I0(MUXIN2));

endmodule
C-14 Xilinx Development System

Xilinx Synopsys Interface Notes
Comments About Code
When instantiating IOB components such as IFD_F, OFD_F, ILFFX,
BUFFCLK, or OAND2, make sure that unnecessary IBUF/OBUF/
OBUFTs are not inserted. Remove the port_is_pad attribute from the
pin that is directly connected to a pad, such as the D pin of the IFD_F,
or the .D pin of the ILFFX. To remove the port_is_pad attributes, use
the remove_attribute command.
Alliance Series 2.1i Quick Start Guide C-15

Alliance Series 2.1i Quick Start Guide
C-16 Xilinx Development System

Appendix D

Viewlogic Interface Notes

This appendix provides information on setting up the Viewlogic
interface and project libraries. Included are examples for assigning
location constraints and timing specifications. The following sections
are included in this chapter.

• “Documentation”

• “Setting Up Viewlogic Interface on Workstations”

• “Setting Up Viewlogic Interface on the PC”

• “Setting Up Project Libraries”

• “Assigning a Pin Location”

Documentation
The following documentation is available for the Viewlogic interface.

• The Viewlogic Interface Guide is available on-line.

• The Alliance 2.1i Release Notes and Installation Guide describes
installation setup and current issues regarding the use of the
Viewlogic interface.

Setting Up Viewlogic Interface on Workstations
The following environment variables must be modified or added to
run the Viewlogic tools.

• POWERVIEW (add)

• WDIR (add)

• VANTAGE_VSS (add)

• PATH (modify)
Alliance Series 2.1i Quick Start Guide — July 1999 D-1

Alliance Series 2.1i Quick Start Guide
• LM_LICENSE_FILE (modify)

• LD_LIBRARY_PATH (modify, Solaris only)

• SHLIB_PATH (modify, HP-UX only)

In addition to the variables set for the Xilinx implementation tools,
these variables should be set as follows.

setenv POWERVIEW <installation_path_to_viewlogic>

setenv WDIR $XILINX/viewlog/data/logiblox/standard:$POWERVIEW/standard

setenv VANTAGE_VSS $POWERVIEW/standard/van_vss

set path = ($POWERVIEW \

 $VANTAGE_VSS/pgm/dir \

 $path)

setenv LM_LICENSE_FILE <path_to_viewlogic_license_file>:$LM_LICENSE_FILE

For Solaris only.

setenv LD_LIBRARY_PATH $POWERVIEW/standard/fusion:$LD_LIBRARY_PATH

For HP/UX only.

setenv SHLIB_PATH $POWERVIEW/standard/fusion:$SHLIB_PATH

Note: The previous settings assume that the XILINX,
LD_LIBRARY_PATH, SHLIB_PATH, and LM_LICENSE_FILE envi-
ronment variables have been previously assigned to point to the
appropriate areas. The POWERVIEW variable is not required by
Xilinx or by the Viewlogic software. It is used to simplify these envi-
ronment variable settings.

Setting Up Viewlogic Interface on the PC
The following environment variables must be modified or added to
run the Viewlogic interface tools on a PC.

• PATH(modify)

• WDIR (new)

• VANTAGE_VSS (new)

• VANTAGE_CC (new)

• LM_LICENSE_FILE (modify)
D-2 Xilinx Development System

Viewlogic Interface Notes
These variables are modified/added in the following manner by the
Workview Office installation software. The following examples
assume that all the software has been installed to the default locations
on the C:\ drive. If these default paths have been changed, the envi-
ronment settings must change accordingly.

PATH=C:\WVOFFICE;%PATH%

SET WDIR=C:\WVOFFICE\STANDARD

SET VANTAGE_VSS=C:\WVOFFICE\V

SET VANTAGE_CC=C:\WVOFFICE\CL

SET
LM_LICENSE_FILE=C:\WVOFFICE\STANDARD\LICENSE.DAT,;
C:XILINX\DATA\LICENCE.DAT

Note: The LM_LICENSE_FILE must be set exactly as shown, with a
comma and semicolon(,;) between the two paths if Workview Office
7.31 or older is used. This is because Viewlogic and Xilinx use
different versions of Flex/LM licensing which use different delim-
iters in this variable. The comma is not required for Workview Office
7.4 or newer.

For Windows NT 4.0 users only, select the following.

Start → Settings → Control Panel

Double click on the System icon and select the Environment tab.
Verify the settings previously shown are listed in either the System
Variables section or the User Variables section. They do not appear
exactly as shown in the previous example; the variable is shown
under the Variable header and the path is shown under the Value
header. The word “set” does not appear.

For Windows 95 users only, run SYSEDIT to open the
AUTOEXEC.BAT file, and verify the environment settings are as
previously shown.

Setting Up Project Libraries
This section describes project library setup for the workstation and
the PC.
Alliance Series 2.1i Quick Start Guide D-3

Alliance Series 2.1i Quick Start Guide
Workstation
The first step before creating or modifying a design in ViewDraw is to
set up the project libraries. When creating a Viewlogic design to be
processed by the Xilinx Alliance Series Design Implementation Tools,
the Unified Libraries must be used. These libraries must be defined in
the viewdraw.ini file located in the project’s working directory.

To define a library in the viewdraw.ini, it must be added to the search
order at the end of the viewdraw.ini file.

The Xilinx Libraries for use with Viewlogic schematic entry tools are
located in $XILINX/viewlog/data. Directories exist for all the
supported Xilinx families as well as LogiBLOX and the required
Simprims, Builtin, and Xbuiltin libraries.

The following example is a library search order needed to create an
XC4000EX design.

dir [p] . (primary)

dir [rm] /tools/xilinx/viewlog/data/xc4000x (xc4000x)

dir [r] /tools/xilinx/viewlog/data/logiblox (logiblox)

dir [rm] /tools/xilinx/viewlog/data/simprims (simprims)

dir [rm] /tools/xilinx/viewlog/data/builtin (builtin)

dir [rm] /tools/xilinx/viewlog/data/xbuiltin (xbuiltin)

Note: The XC4000X library and alias were new with the 1.4 version of
the Xilinx software. This library is used for all XC4000EX/XL/XV
designs. To use the 1.4 libraries with designs created with previous
versions of the software, add the following line to the viewdraw.ini
file before the LogiBLOX line.

dir [rm] /tools/xilinx/viewlog/data/xc4000x (xc4000ex)

Following are the features of this search order.

• The LogiBLOX library replaces X-BLOX. This library is read-only
and not in megafile format.

• There is a new library, “Simprims,” that is used only for simula-
tion.

• Order counts; user and family libraries must appear before
Simprims, Builtin, and Xbuiltin.
D-4 Xilinx Development System

Viewlogic Interface Notes
• Full paths must be used; do not use $XILINX to abbreviate the
path.

Xilinx Commands in ViewDraw

Once the environment variables have been set and the libraries have
been defined, you may begin your schematic design work. The one
Xilinx feature within ViewDraw is the addition of two new
commands under the pull-down menus.

• Add → LogiBLOX is used to create a new LogiBLOX component.

• Change → LogiBLOX is used to modify an existing LogiBLOX
component.

PC
The first step before creating or modifying a design in ViewDraw is to
set up the project libraries. When creating a Viewlogic design to be
processed by the M1 Alliance Series Design Implementation Tools,
the M1 Libraries must be used. These libraries must be defined in the
Viewlogic project file (VPJ).

Note: Use the Workview Office Project Manager to make any modifi-
cations to the project libraries. Do not directly modify the view-
draw.ini file.

The Xilinx Libraries for use with Viewlogic schematic entry tools are
located in C:\XILINX\VIEWLOG\DATA. Directories exist for all the
supported Xilinx families as well as LogiBLOX and the required
Simprims, Builtin, and Xbuiltin libraries.

The following is the library search order needed to create an
XC4000EX design.

dir [p] . (primary)

dir [rm] C:\xilinx\viewlog\data\xc4000x (xc4000x)

dir [r] C:\xilinx\viewlog\data\logiblox (logiblox)

dir [rm] C:\xilinx\viewlog\data\simprims (simprims)

dir [rm] C:\xilinx\viewlog\data\builtin (builtin)

dir [rm] C:\xilinx\viewlog\data\xbuiltin (xbuiltin)
Alliance Series 2.1i Quick Start Guide D-5

Alliance Series 2.1i Quick Start Guide
For information about how to use the Workview Office Project
Manager to define the project libraries, refer to the Viewlogic Interface/
Tutorial Guide.

Note: The XC4000X library and alias were new with the 1.4 version of
the Xilinx software. This library is used for all XC4000EX/XL/XV
designs. To use the 1.4 libraries with designs created with previous
versions of the software, add the following line to the viewdraw.ini
file before the LogiBLOX line.

dir [rm] C:\xilinx\viewlog\data\xc4000x (xc4000ex)

Features of this search order.

• The LogiBLOX library replaces X-BLOX. This library is read-only
and not in megafile format.

• There is a new library, “Simprims”, that is used only for simula-
tion.

• Order counts; user and family libraries must appear before
Simprims, Builtin, and Xbuiltin.

• Full paths must be used; do not use %XILINX% to abbreviate the
path.

Assigning a Pin Location
To assign the location of a pin to a specific pad location, simply add a
location constraint attribute to that pad on the schematic.

1. Select the IPAD, OPAD or IOPAD you wish to constrain.

2. For workstation users, select Change → Attr → Dialog → All.
The Change Attributes dialog box will display.

For PC users, double click on the pad.

3. Enter LOC in the Name field, and enter the pin instance in the
Component Value field.

Valid pin syntax for quad flat packages is P#, where # is the actual
device pin number desired. For example: LOC = P11.

Valid pin syntax for grid array packages is RC, where R is the
actual row and C is the column of the device pin. For example:
LOC = A13.
D-6 Xilinx Development System

Viewlogic Interface Notes
4. Click on OK. The LOC attribute will now be placed next to the
pad.

Bus-wide pads (that is IPAD16) must be constrained within a user
constraints file (.ucf).

Timing Constraints
Timing constraints may be placed via the TIMESPEC symbol in the
design. The TIMESPEC symbol is found in the Xilinx family library
(for example., XC4000X). After placing this symbol on the top level of
your design, the timespecs are added as properties of this symbol.
The Timespec label (the label that begins with “TS”) is entered in the
Name field, while the timing specification (e.g.,
“FROM:FFS:TO:FFS=30ns”) is entered in the Value field.

For more information on this subject, refer to the Viewlogic Interface
Guide. For more information on timing constraints, see the Develop-
ment System Reference Guide.
Alliance Series 2.1i Quick Start Guide D-7

Alliance Series 2.1i Quick Start Guide
D-8 Xilinx Development System

Viewlogic Interface Notes
Alliance Series 2.1i Quick Start Guide D-9

Alliance Series 2.1i Quick Start Guide
D-10 Xilinx Development System

Appendix E

Using LogiBLOX with CAE Interfaces

LogiBLOX is graphical design tool for creating high-level modules
such as counters, shift registers and multiplexers. LogiBLOX includes
both a library of generic modules and a set of tools for customizing
these modules.

With LogiBLOX, high-level LogiBLOX modules that will fit into your
schematic-based design, or HDL synthesis-based design can be
created and processed. These modules can be used in designs gener-
ated with schematic editors from Mentor Graphics, Viewlogic and
Xilinx Foundation Package, as well as third-party synthesis tools such
as Synopsys FPGA Compiler/FPGA Express, and Exemplar.

Note: LogiBLOX supports XC3000A, XC3100A, XC4000E, XC4000L,
XC4000EX, XC4000XL, XC4000XV, XC4000XLA, XC5200, XC9500,
XC9500XL, Spartan, and Spartan XL.

For more information about the Core Generator system, refer to the
Core Generator User Guide, or the Xilinx Web site. This GUI tool
supports different devices than LogiBLOX.

This chapter includes the following sections.

• “Documentation”

• “Setting Up LogiBLOX on a Workstation”

• “Setting Up LogiBLOX on a PC”

• “Starting LogiBLOX”

• “Using LogiBLOX for Schematic Design”

• “Using LogiBLOX for HDL Synthesis Design”

• “Analyzing a LogiBLOX Module”

• “LogiBLOX Modules”
Alliance Series 2.1i Quick Start Guide — July 1999 E-1

Alliance Series 2.1i Quick Start Guide
Documentation
The following documentation is available for the LogiBLOX program.

• The LogiBLOX User Guide is available on the CD-ROM supplied
with your software.

• The LogiBLOX online help can be accessed from LogiBLOX, GUI.

• The Alliance 2.1i Release Documentation describes installation
setup and current issues regarding the use of LogiBLOX.

• The Xilinx Software Conversion Guide from XACTstep v5.X.X to
XACTstep vM1.X.X compares XBLOX and LogiBLOX, and how to
convert an X-BLOX design to LogiBLOX. The Xilinx Software
Conversion Guide from XACTstep v5.X.X to XACTstep vM1.X.X and
other application notes can be found in the userware directory of
the Xilinx CD, or at the Xilinx web site http://www.xilinx.com.

Setting Up LogiBLOX on a Workstation
This section describes the issuing commands and the file modifica-
tions required to set up your environment when using a third-party
schematic design tool on a workstation. You must set up the Xilinx
environment and interface environment as described in the Software
Installation chapter of the Alliance 2.1i Release Notes and Installation
Guide, and in the appropriate appendix in this manual.

Mentor Interface Environment Variables
To use LogiBLOX with Mentor, set the following environment vari-
able.

setenv LCA $XILINX/mentor/data

setenv SIMPRIMS $LCA/simprims

Also verify that your $MGC_LOCATION_MAP file contains the
following entries.

$LCA

(blank)

$SIMPRIMS

(blank)
E-2 Xilinx Development System

Using LogiBLOX with CAE Interfaces
Synopsys Interface Environment Variables
To use LogiBLOX with Synopsys, add the following entries to the
.synopsys_vss. setup file, located in the working directory.

logiblox:

$XILINX/synopsys/libraries/sim/logiblox/lib

Viewlogic Interface Environment Variables
To use LogiBLOX with Viewlogic, add the following path to the
WDIR environment variable.

${XILINX}/viewlog/data/logiblox/standard\

The following is an example.

setenv WDIR ${XILINX}/viewlog/data/logiblox/standard:<existing-WDIR>

Verify that the following two libraries have been added to the search
order in the local viewdraw.ini file right before the “builtin” and
“xbuiltin” libraries. Modify the file with the following entries.

DIR [r]/xilinx_path/viewlog/data/logiblox (logiblox)

DIR [m]/xilinx_path/viewlog/data/simprims (simprims)

Setting Up LogiBLOX on a PC
This section describes the issuing commands and the file modifica-
tions required to set up your environment when using a third-party
schematic design tool on a PC. You must set up the Xilinx environ-
ment and interface environment described in the Software Installa-
tion section of the Alliance 2.1i Release Notes and Installation Guide, and
in the LogiBLOX Guide.

Viewlogic Environment Variables for PCs
To use LogiBLOX with Workview Office, run the following command
in an MS-DOS session.

custmenu xilinx_path\viewlog\data\viewblox.txt

Verify the following two libraries are included in the search order in
the Viewlogic Project Manager right before the “builtin” and
“xbuiltin” libraries.
Alliance Series 2.1i Quick Start Guide E-3

Alliance Series 2.1i Quick Start Guide
[r] <xilinx_path>\viewlog\data\logiblox (logiblox)

[m] <xilinx_path\viewlog\data\simprims (simprims)

Starting LogiBLOX
LogiBLOX can be started in one of three ways.

• From a third-party vendor tool by selecting the menu item that
lists LogiBLOX as a menu choice

• From a DOS or UNIX command line by entering.

lbgui

• From the LogiBLOX icon in the Xilinx program group (PC only)

Using LogiBLOX for Schematic Design
LogiBLOX modules can be created for use in schematic designs using
third-party design tools. First, the module must be created. The
module can then be added to the schematic like any other library
component with the aid of the LogiBLOX GUI.

Creating a LogiBLOX Module
To create a LogiBLOX module, follow these steps.

1. From ViewDraw or Mentor Graphics, select the appropriate
menu choice in your design tool to start LogiBLOX. The Logi-
BLOX Module Selector dialog box appears.

• In Mentor Graphics, from Pld_da select the following.

Library → Xilinx Library → LogiBLOX

An intermediate dialog window named create/modify/
instantiate LogiBLOX symbol appears before the LogiBLOX
GUI. This window replaces the LogiBLOX Setup dialog box.

• In Viewlogic on a workstation, select the following from the
ViewDraw window.

Add → LogiBLOX

• In Viewlogic on a PC, select.

Tools → Add LogiBLOX
E-4 Xilinx Development System

Using LogiBLOX with CAE Interfaces
The LogiBLOX Module Selector dialog window is displayed.
If a logiblox.ini file is not found, the LogiBLOX Setup dialog
box displays before the Module Selector dialog box.

2. Select a base module type (for example, Counter, Memory).

3. Customize the module by selecting pins and specifying
attributes.

4. Click OK.

LogiBLOX generates a schematic symbol and a simulation model for
the module you have selected.

Note: You can add existing LogiBLOX components from the project
library.

Design Simulation
You can functionally simulate your design at any time.

At this point the design is ready to be processed for both simulation
and implementation. Because LogiBLOX creates a component with a
VHDL or EDIF simulation model describing its behavior, the simula-
tion and implementation flow for a design containing LogiBLOX
components is no different than for a design which does not contain
LogiBLOX components. Once created, the LogiBLOX components
can be used repeatedly in any design.

Copying Modules
If you copy a module within your schematic or add repeated
instances, the original module and all of its copies share the same
.mod file and simulation model. Subsequent modifications to any one
of these modules changes all copies of that module. If you copy a
module from another design, such as by copying an entire hierar-
chical module, you must invoke the LogiBLOX program and cause it
to regenerate the module and re-create the simulation model for that
module. Alternatively, if your design includes several copied
modules, you can copy the raw HDL files into the new project direc-
tory and re-analyze them in the new environment.
Alliance Series 2.1i Quick Start Guide E-5

Alliance Series 2.1i Quick Start Guide
Using LogiBLOX for HDL Synthesis Design
LogiBLOX modules can be instantiated in HDL designs to address
special features, such as distributed memory (XC4000E and
XC4000EX), special I/O configurations, and other advanced silicon
features that cannot be inferred by the HDL synthesizer.

The LogiBLOX program creates a simulation netlist (VHDL, EDIF or
Verilog), an implementation netlist file (.ngc), and a template file
containing a VHDL (.vhi) or Verilog (.vei) component instantiation.

Instantiating a LogiBLOX Module
To instantiate a LogiBLOX module, proceed with the following steps.

1. Start LogiBLOX from the command line, or click on the Logi-
BLOX icon. See the “Starting LogiBLOX” section.

2. Select Setup on the Module Selector dialog box. The Setup dialog
box appears.

3. The Setup dialog window displays initially if a logiblox.ini file is
not found in the home directory.

4. Select Options. The Options selections appear.

5. Select the Simulation model you require (VHDL, EDIF, or
Verilog).

6. Click OK. The Setup dialog box disappears.

7. Create the module you want in the LogiBLOX Module Selector
dialog box.

8. Click OK.

9. Instantiate the module in the top level.

With a text editor, cut and paste the contents of the VHDL (.vhi)
or verilog (.vei) design file to the top level design. Then, specify
the design names in the component instantiation section.

Analyzing a LogiBLOX Module
Before starting behavioral simulation on an instantiated LogiBLOX
module, the LogiBLOX library has to be analyzed. The following
E-6 Xilinx Development System

Using LogiBLOX with CAE Interfaces
three sections list the commands that can be used in Mentor,
Synopsys, and Viewlogic to analyze the library.

Mentor QuickHDL
Enter the following series of commands from your workstation
command line to analyze the LogiBLOX libraries.

$XILINX/mentor/data/vhdl/compile_vhdl_libs.sh
(VHDL)

$XILINX/mentor/data/verilog/compile_verilog_libs.sh
(Verilog)

See the accompanying README files in the same directories for more
information on these scripts.

Synopsys VSS
Enter the following series of commands from your workstation
command line to analyze the LogiBLOX libraries.

$XILINX/synopsys/libraries/sim/src/logiblox/
analyze.csh

The script analyzes the model and places the output files in the
$XILINX/synopsys/libraries/sim/lib/logiblox directory.

Viewlogic Vantage
Enter the following command from your workstation/PC command
line to analyze the LogiBLOX libraries.

vaninit parent_directory

This is a script provided by Xilinx. The new logiblox.lib Vantage
library directory will be created under the specified parent_directory.
You do not need to re-analyze the LogiBLOX library for every new
project.

MTI Modelsim
Enter the following command from your workstation/PC command
line to analyze the LogiBLOX libraries.
Alliance Series 2.1i Quick Start Guide E-7

Alliance Series 2.1i Quick Start Guide
VHDL Designs

vlib /destination/path /simprim

vmap simprim /destination/path /simprim

vcom -work simprim $XILINX/vhdl/src/simprims/
simprim_Vpackage.vhd

vcom -work simprim $XILINX/vhdl/src/simprims/
simprim_Vcomponents.vhd

vcom -work simprim $XILINX/vhdl/src/simprims/
simprim_VITAL.vhd

Verilog Designs

vlib /destination/path /simprim

vmap simprim /destination/path /simprim

vlog -work simprim $XILINX/verilog/src/*.vmd

LogiBLOX Modules
LogiBLOX has many different modules that you can use in a sche-
matic or HDL synthesis design. The following is a list of the Logi-
BLOX modules.

• Accumulator

• Adder/Subtracter

• Clock Divider

• Comparator

• Constant

• Counter

• Data Register

• Decoder

• Input/Output

• Memory

• Multiplexer
E-8 Xilinx Development System

Using LogiBLOX with CAE Interfaces
• Pad

• Shift Register

• Simple Gates

• Tristate
Alliance Series 2.1i Quick Start Guide E-9

Alliance Series 2.1i Quick Start Guide
E-10 Xilinx Development System

Appendix F

Instantiated Components

This appendix lists the components most frequently instantiated in
synthesis designs. The function of each component is briefly
described and the pin names are supplied, along with a listing of the
Xilinx product families involved. For a complete list of components,
see the online version of the Libraries Guide and Xilinx Synopsys Inter-
face Guide, or your synthesis tool documentation. This chapter
contains the following sections.

• “STARTUP Component”

• “STARTBUF Component”

• “BSCAN Component”

• “READBACK Component”

• “RAM and ROM”

• “Global Buffers”

• “Fast Output Primitives”

• “IOB Components”

• “Clock Delay Components”

STARTUP Component
The STARTUP component is used to access the global set/reset and
global tristate signals. STARTUP can also be used to access the start-
up sequence clock. For information on the start-up sequence and the
associated signals, see The Programmable Logic Data Book and the
Xilinx Libraries Guide.
Alliance Series 2.1i Quick Start Guide — July 1999 F-1

Alliance Series 2.1i Quick Start Guide

The STARTUP component cannot be simulated. For VHDL designs,
use components in the following table.

STARTBUF Component
The STARTBUF component allows you to functionally simulate the
STARTUP component. As with STARTUP, a STARTBUF component
instantiated in your design specifies to the implementation tools to
use GSR. Using the STARTBUF component in VHDL designs is the
preferred method for using GSR/GR.

BSCAN Component
To use the boundary-scan (BSCAN) circuitry in a Xilinx FPGA, the
BSCAN component must be present in the input design. The TDI,
TDO, TMS, and TCK components are typically used to access the
reserved boundary-scan device pads for use with the BSCAN compo-
nent but can be connected to user logic as well. For more information
on the BSCAN component, the internal boundary-scan circuitry, and
the directional properties of the four reserved boundary-scan pads,

Table F-1 STARTUP Library Component

Name Family Description Outputs Inputs

STARTUP 4000E/L,
4000EX,
4000XL,
4000XV,
Spartan,
5200a

Used to connect Global Set/Reset,
global tristate control, and user
configuration clock.

Q2, Q3,
Q1Q4,
DONEIN

GSR,
GTS, CLK

 a. For 5200, GSR pin is GR.

Table F-2 STARTBUF Library Component

Name Family Description Outputs Inputs

STARTBUF 4000E/L,
4000EX,
4000XL,
4000XV,
5200

Used to connect Global Set/
Reset, global tristate control,
and user configuration clock.

GSROUT,
GTSOUT,Q2OU
T, Q3OUT,
Q1Q4OUT,
DONEINOUT

GSRIN,
GTSIN,
CLKIN
F-2 Xilinx Development System

Instantiated Components
refer to Programmable Logic Data Book and the online version of the
Xilinx Libraries Guide.

Note: The 5200 has three additional output pins: Reset, Update, and
Shift.

Table F-3 BSCAN Library Components

Name Family Description Outputs Inputs

BSCAN 4000E/L,
4000EX,
4000XL,
4000XV,
Spartan,
 5200

Indicates that the boundary- scan
logic should be enabled after the
FPGA has been configured.

TDO,
DRCK,
IDLE,
SEL1,
SEL2

TDI,
TMS,
TCK,
TDO1,
TDO2

TDI 4000E/L,
4000EX,
4000XL,
4000XV,
5200

Connects to the BSCAN TDI input.
Loads instructions and data on each
low-to-high TCK transition.

I —

TDO 4000E/L,
4000EX,
4000XL,
4000XV,
Spartan,
5200

Connects to the BSCAN TDO
output. Provides the boundary-scan
data on each low-to-high TCK tran-
sition.

— O

TMS 4000E/L,
4000EX,
4000XL,
4000XV,
Spartan,
5200

Connects to the BSCAN TMS input.
It determines which boundary scan
is performed.

I —

TCK 4000E/L,
4000EX,
4000XL,
4000XV,
Spartan,
5200

Connects to the BSCAN TCK input.
Shifts the serial data and instruc-
tions into and out of the boundary-
scan data registers.

I —
Alliance Series 2.1i Quick Start Guide F-3

Alliance Series 2.1i Quick Start Guide
READBACK Component
To use the dedicated readback logic in a Xilinx FPGA the READ-
BACK component must be inserted in the input design. The MD0,
MD1, and MD2 components are typically used to access the mode
pins for use with the readback logic, but can be connected to user
logic as well. For more information on the READBACK component,
the internal readback logic, and the directional properties of the three
reserved mode pins, see the Programmable Logic Data Book and the
online manual Libraries Guide.

RAM and ROM
Some of the most frequently instantiated library components are the
RAM and ROM primitives. Because most synthesis tools are unable
to infer RAM or ROM components from the source HDL, the primi-

Table F-4 Readback Library Components

Name Family Description Outputs Inputs

READBACK 4000E/L,
4000EX,
4000XL,
4000XV,
Spartan,
5200

Accesses the bitstream readback
function. A low-to-high transition
on the TRIG input initiates the read-
back process.

DATA, RIP CLK,
TRIG

MD0 4000E/L,
4000EX,
4000XL,
4000XV,
5200

Connects to the Mode 0 (M0) input
pin, which is used to determine the
configuration mode.

I —

MD1 4000E/L,
4000EX,
4000XL,
4000XV,
5200

Connects to the Mode 1 (M1) input
pin, which is used to determine the
configuration mode.

— O

MD2 4000E/L,
4000EX,
4000XL,
4000XV,
5200

Connects to the Mode 2 (M2) input
pin, which is used to determine the
configuration mode.

I —
F-4 Xilinx Development System

Instantiated Components
tives must be used to build up more complex structures. The
following list of RAM and ROM components (Table G-4) is a
complete list of the primitives available in the Xilinx library. For more
information on the components, see the Programmable Logic Data Book
and the online manual Libraries Guide.

Table F-5 RAM and ROM Library Components

Name Family Description Outputs Inputs

RAM16X1 4000E/L,
4000EX,
4000XL,
4000XV

A 16-word by 1-bit static read-write
random-access memory compo-
nent.

O D, A3,
A2, A1,
A0, WE

RAM16X1D 4000E/L,
4000EX,
4000XL,
4000XV,
Spartan,
Virtex

A 16-word by 1-bit dual port
random access memory with
synchronous write capability and
asynchronous read capability.

SPO, DPO D, A3,
A2, A1,
A0,
DPRA3,
DPRA2,
DPRA1,
DPRA0,
WE,
WCLK

RAM16X1S 4000E/L,
4000EX,
4000XL,
4000XV,
Spartan,
Virtex

A 16-word by 1-bit static random
access memory with synchronous
write capability and asynchronous
read capability.

O D, A3,
A2, A1,
A0, WE,
WCLK

RAM32X1 4000E/L,
4000EX,
4000XL,
4000XV

A 32-word by 1-bit static read-write
random access memory.

O D, A0,
A1, A2,
A3, A4,
WE

RAM32X1S 4000E/L,
4000EX,
4000XL,
4000XV,
Spartan,
Virtex

A 32-word by 1-bit static random
access memory with synchronous
write capability and asynchronous
read capability.

O D, A4,
A3, A2,
A1, A0,
WE,
WCLK
Alliance Series 2.1i Quick Start Guide F-5

Alliance Series 2.1i Quick Start Guide
Global Buffers
Each XC4000EX and XC4000XL device has 16 available global buffers:
8 BUFGLSs and 8 BUFEs. For some designs it may be necessary to use
the exact buffer desired to ensure appropriate clock distribution
delay. For most designs, the BUFG, BUFGS, and BUFGP components
can be inferred or instantiated, thus allowing the Alliance Series
Design Implementation Tools to make an appropriate physical buffer

ROM16X1 4000E/L,
4000EX,
4000XL,
4000XV,
Spartan

A 16-word by 1-bit read-only
memory component.

O A3, A2,
A1, A0

ROM32X1 4000E/L,
4000EX,
4000XL,
4000XV,
Spartan

A 32-word by 1-bit read-only
memory component.

O A4, A3,
A2, A1,
A0

Table F-5 RAM and ROM Library Components

Name Family Description Outputs Inputs
F-6 Xilinx Development System

Instantiated Components
allocation. For more information on the components, see the Program-
mable Logic Data Book.

Fast Output Primitives
One of the features added to the XC4000EX and XC4000XL architec-
tures is the fast output MUX. There is one fast output MUX located in
each IOB which can be used to multiplex between two signals on a
single device pad or can be used to implement any two input logic

Table F-6 Global Buffers Library Components

Name Family Description Outputs Inputs

BUFG 3000A,
3100A,
4000E/L,
4000EX,
4000XL,
4000XV,
Spartan,
5200,
Virtex

An architecture-independent global
buffer, distributes high fan-out
clock signals throughout a PLD
device.

O I

BUFGP 4000E/L,
4000EX,
4000XL,
4000XV,
Spartan,
Virtex

A primary global buffer, distributes
high fan-out clock, or control
signals throughout PLD devices.

O I

BUFGS 4000E/L,
4000EX,
4000XL,
4000XV,
Spartan

A secondary global buffer, distrib-
utes high fan-out clock, or control
signals throughout a PLD device.

O I

BUFGLS 4000EX,
4000XL,
4000XV

Global Low-Skew buffer. BUFGLS
components can drive all flip-flop
clock pins.

O I

BUFGE 4000EX,
4000XL,
4000XV

Global Early buffer. XC4000EX
devices have eight total, two in each
corner. BUFGE components can
drive all clock pins in their corner of
the device.

O I
Alliance Series 2.1i Quick Start Guide F-7

Alliance Series 2.1i Quick Start Guide
function. Each component can have zero, one, or two inverted inputs.
Because the output MUX is located in the IOB, it must be connected
to the input pin of either an OBUF or an OBUT. For more information
on the output primitives, see the Programmable Logic Data Book. For
information on how to instantiate output MUXs with inverted inputs,
see the Synopsys (XSI) Interface/Tutorial Guide.

IOB Components
Depending on the synthesis vendor being used, some IOB compo-
nents must be instantiated directly in the input design. Most
synthesis tools support IOB D-type flip-flop inferences, but may not
yet support IOB D-type flip-flop inference with clock enables.
Because there are many slew rates and delay types available, there

Table F-7 Fast Output Primitives

Name Family Description Outputs Inputs

OAND2 4000EX,
4000XL

2-input AND gate that is imple-
mented in the output multiplexer of
the XC4000EX/XL IOB

O F, I0

ONAND2 4000EX,
4000XL

2-input NAND gate that is imple-
mented in the output multiplexer of
the XC4000EX/XL IOB

O F, I0

OOR2 4000EX,
4000XL

2-input OR gate that is imple-
mented in the output multiplexer of
the XC4000EX/XL IOB.

O F, I0

ONOR2 4000EX,
4000XL

2-input NOR gate that is imple-
mented in the output multiplexer of
the XC4000EX/XL IOB.

O F, I0

OXOR2 4000EX,
4000XL

2-input exclusive OR gate that is
implemented in the output multi-
plexer of the XC4000EX/XL IOB.

O F, I0

OXNOR2 4000EX,
4000XL

2-input exclusive NOR gate that is
implemented in the output multi-
plexer of the XC4000EX/XL IOB.

O F, I0

OMUX2 4000EX,
4000XL

2 x 1 MUX implemented in the
output multiplexer of the
XC4000EX/XL IOB.

O D0, D1,
S0
F-8 Xilinx Development System

Instantiated Components
are many derivatives of the primitives shown. For a complete list of
the IOB primitives, see the Synopsys (XSI) Interface/Tutorial Guide.

Table F-8 IOB Components

Name Family Description Outputs Inputs

IBUF 3000A,
3100A,
4000E/L,
4000EX,
4000XL,
4000XV,
Spartan,
5200,
Virtex

Single input buffers. An IBUF
isolates the internal circuit from the
signals coming into a chip.

O I

OBUF 3000A,
3100A,
4000E/L,
4000EX,
4000XL,
4000XV,
Spartan,
5200,
Virtex

Single output buffers. An OBUF
isolates the internal circuit and
provides drive current for signals
leaving a chip.

O I

OBUFT 3000A,
3100A,
4000E/L,
4000EX,
4000XL,
4000XV,
Spartan,
5200,
Virtex

Single tristate output buffer with
active-low output enable. (tristate
High)

O I,T
Alliance Series 2.1i Quick Start Guide F-9

Alliance Series 2.1i Quick Start Guide
IFD 3000A,
3100A,
4000E/L,
4000EX,
4000XL,
4000XV,
Spartan,
5200,
Virtex

Single input D flip-flop. Q D, C

OFD 3000A,
3100A,
4000E/L,
4000EX,
4000XL,
4000XV,
Spartan,
5200,
Virtex

Single output D flip-flop. Q D, C

OFDT 3000A,
3100A,
4000E/L,
4000EX
4000XL,
4000XV,
Spartan,
5200,
Virtex

Single D flip-flop with active-high
tristate active-low output enable
buffers.

O D, C,T

IFDX 4000E/L,
4000EX,
4000XL,
4000XV,
Spartan,
Virtex

Single input D flip-flop with clock
enable.

Q D, CE, C

Table F-8 IOB Components

Name Family Description Outputs Inputs
F-10 Xilinx Development System

Instantiated Components
Clock Delay Components
These components are delay locked loops that are used to eliminate
the clock delay inside the device. The delay locked loop is a digital
variation of the analog phase locked loop.

OFDX 4000E/L,
4000EX,
4000XL,
4000XV,
Spartan,
Virtex

Single output D flip-flop with clock
enable

Q D, C, CE

OFDTX 4000E/L,
4000EX,
4000XL,
4000XV,
Spartan

Single D flip-flop with active-high
tristate and active-low output
enable buffers.

O D, C, CE,
T

ILD_1 4000E/L,
4000EX,
4000XL,
4000XV,
Spartan,
5200,
Virtex

Transparent input data latch with
inverted gate. (Transparent High).

Q D, G

Table F-8 IOB Components

Name Family Description Outputs Inputs
Alliance Series 2.1i Quick Start Guide F-11

Alliance Series 2.1i Quick Start Guide
Table F-9 Clock Delay Component

Name Family Description Outputs Inputs

CLKDLL Virtex Clock delay locked loop used to
minimize clock skew.

CLK0,
CLK90,
CLK180,
CLK270,
CLS2X,
CLKDV,
LOCKED

CLKIN,
CLKFB,
RST

CLKDLLHF Virtex High frequency clock delay locked
loop used to minimize clock skew.

CLK0,
CLK180,
CLKDV,
LOCKED

CLKIN,
CLKFB,
RST
F-12 Xilinx Development System

Appendix G

Alliance Constraints

This appendix briefly describes the Constraints Editor tool. It also
describes how to use constraints with LogiBLOX RAM/ROM and
Synopsys tools. For a complete listing of all supported constraints,
refer to the Libraries Guide. For a more complete description of timing
and layout constraints, block delay symbols, and supported
constraints, refer to the Constraints Editor Guide. This appendix
includes the following sections.

• “Entering Design Constraints”

• “Translating and Merging Logical Designs”

• “Constraining LogiBLOX RAM/ROM with Synopsys”

Entering Design Constraints
The Xilinx tools allow you to control the implementation of your
design by entering constraints. You can enter constraints during the
design and implementation phases of the design flow. The following
figure illustrates where constraints entry fits in the overall design
flow.
Alliance Series 2.1i Quick Start Guide — July 1999 G-1

Alliance Series 2.1i Quick Start Guide
Figure G-1 Entering Design Constraints

During the design phase, you can enter constraints as follows.

• Add constraints to your schematic

• Add constraints to your design in your synthesis tool

• Enter constraints in the Xilinx Constraints Editor

You can apply location and timing constraints to your design. Use
location constraints to control the mapping and positioning of the
logic elements in the target device. The most common location
constraints are pad constraints. Pad constraints are used to lock the
pins of your design to specific I/O locations so that the pin placement
is consistent from revision to revision. Use timing constraints to
specify how fast a path must be to meet your speed requirements.

Entry Tool

Schematic Entry
or HDL Tool

X8085

NGDBuild

Netlist

NCD PCF

To Physical Implementation Tools

User
Constraints File

Physical
Constraints
File

MAP

UCF

Constraints EditorNGD
G-2 Xilinx Development System

Alliance Constraints
You can use timing constraints for the placement and routing of your
design.

Constraints entered directly in your input design are known as
design constraints, and are eventually placed in your design netlist. If
you want the constraints separated from your input design files, or if
you want to modify your constraints without re-synthesizing your
design, you can create a User Constraints File (UCF) in the
Constraints Editor. This file is read by NGDBuild during the transla-
tion of your design, and is combined with an EDIF or XNF netlist into
an NGD file. If a UCF file exists with the same name as the top-level
netlist, it is automatically read. Otherwise, you must specify a file
name for User Constraints in the Options dialog box.

Adding Constraints with the Constraints Editor
The Constraints Editor is a new graphical tool in the Xilinx Develop-
ment System that allows you to enter timing constraints and pin loca-
tion constraints. You can enter constraints in the graphical interface
without understanding UCF file syntax. The Constraints Editor
passes these constraints to the implementation tools through a UCF
file.

The Constraints Editor accepts the following input files.

• A valid NGD file, which is a Xilinx logical design database file.
This file serves as input to the Map program, which generates the
physical design database (NCD).

• A corresponding UCF (User Constraints File), which contains
logical constraints.

By default, when the NGD file is opened, an existing UCF file with
the same base name as the NGD file is used. Alternatively, you can
specify the name of the UCF file.

The Constraints Editor writes out a valid UCF file and a valid NGD
file.These files are processed by the Map program, which generates a
PCF (Physical Constraints File).

Using the Global Tab
The main window of the Constraints Editor GUI is called the Global
Tab. Following are the main options of the Pad to Pad button, which
is an integral part of this window.
Alliance Series 2.1i Quick Start Guide G-3

Alliance Series 2.1i Quick Start Guide
• Timespec Name: you can enter your timespecs for pad to pad
constraints in this field.

• Time: enter your specified value in this field.

• Units: you can enter your units in measurements of ps, ns, us,
and ms (picoseconds, nanoseconds, microseconds, and millisec-
onds, respectively.)

For more information on using the Constraints Editor GUI and
entering constraints, refer to the Constraints Editor Guide.

The Constraints Editor adds timing constraints to the UCF (User
Constraints File) which is used translate a netlist into your design.

Note: You must re-translate your design after running the
Constraints Editor.

Translating and Merging Logical Designs
The process of implementing a design with the Xilinx tools starts by
constructing a logical design file (NGD) that represents the design
created by the NGDBuild application. The NGD file contains all of
the design’s logic structures (gates) and constraints. NGDBuild
controls the translation and merging of all of the related logic design
files. All design files are translated from industry standard netlists to
intermediate NGO files by XNF2NGD or EDIF2NGD netlist transla-
tion programs.

Constraining LogiBLOX RAM/ROM with Synopsys
In the XSI HDL methodology, whenever large blocks of RAM/ROM
are needed, LogiBLOX RAM/ROM modules are instantiated in the
HDL code. With LogiBLOX RAM/ROM modules instantiated in the
HDL code, timing and/or placement constraints on these RAM/
ROM modules, and the RAM/ROM primitives that comprise these
modules, can be specified in a .ucf file. To create timing and/or place-
ment constraints for RAM/ROM LogiBLOX modules, knowledge of
how many primitives will be used and how the primitives, and/or
how the RAM/ROM LogiBLOX modules are named is needed.
G-4 Xilinx Development System

Alliance Constraints
Estimating the Number of Primitives Used
When a RAM/ROM is specified with LogiBLOX, the RAM/ROM
depth and width are specified. If the RAM/ROM depth is divisible
by 32, then 32x1 primitives are used. If the RAM/ROM depth is not
divisible by 32, then 16x1 primitives are used instead. In the case of
dual-port RAMs, 16x1 primitives are always used. Based on whether
32x1 or 16x1 primitives are used, the number of RAM/ROM can be
calculated.

For example, if a RAM48x4 was required for a design, RAM16x1
primitives would be used. Based on the width, there would be four
banks of RAM16x1s. Based on the depth, each bank would have three
RAM16x1s.

Naming RAM Primitives
Using the example of a RAM48x4, the RAM primitives inside the
LogiBLOX would be named as follows.

MEM0_0 MEM1_0 MEM2_0 MEM3_0
MEM0_1 MEM1_1 MEM2_1 MEM3_1
MEM0_2 MEM1_2 MEM2_2 MEM3_2

Each primitive in a LogiBLOX RAM/ROM module has a instance
name of MEMx_y, where y represents the primitive position in the
bank of memory, and where x represents the bit position of the RAM/
ROM output.

For the next two items, refer to the Verilog/VHDL examples included
at the end of this section. The Verilog/VHDL example instantiates a
RAM32x2S, which is in the bottom of the hierarchy. The RAM32x2S
was made with LogiBLOX. The next two items are written within the
context of the Verilog examples, but also apply to the VHDL exam-
ples as well. Note, the runscripts included were designed for FPGA
Compiler. If you want to use Design Compiler, remove the
replace_fpga step.

Referencing a LogiBLOX Module
LogiBLOX RAM/ROM modules in the FPGA/Design Compiler flow
are constrained via a .ucf file. LogiBLOX RAM/ROM modules
instantiated in the HDL code can be referenced by the full-hierar-
chical instance name. If a LogiBLOX RAM/ROM module is at the
Alliance Series 2.1i Quick Start Guide G-5

Alliance Series 2.1i Quick Start Guide
top-level of the HDL code, then the instance name of the LogiBLOX
RAM/ROM module is just the instantiated instance name.

In the case of a LogiBLOX RAM/ROM, which is instantiated within
the hierarchy of the design, the instance name of the LogiBLOX
RAM/ROM module is the concatenation of all instances which
contain the LogiBLOX RAM/ROM. For FPGA/Design Compiler, the
concatenated instance names are separated by a “/¨. In the example,
the RAM32X1S is named memory. The module memory is instantiated
in Verilog module inside with an instance name U0. The module inside
is instantiated in the top-level module test. Therefore, the RAM32X1S
can be referenced in a .ucf file as U0/U0. For example, to attach a
TNM to this block of RAM, the following line could be used in the
.ucf file.

 INST U0/U0 TNM=block1;

Since U0/U0 is composed of two primitives, a timegroup called
block1 would be created; block1 TNM could be used throughout the
.ucf file as a Timespec end/start point, and/or or U0/U0 could have a
LOC area constraint applied to it. If the RAM32X1S has been instanti-
ated in the top-level file, and the instance name used in the instantia-
tion was U0, then this block of RAM could just be referenced by U0.

If FPGA Express is the tool being used, then the concatenated
instance names are separated by a “_” instead.

INST U0_U0 TNM=block1;

Referencing LogiBLOX Module Primitives
Sometimes its necessary to apply constraints to the primitives that
compose the LogiBLOX RAM/ROM module. For example, if you
choose a floorplanning strategy to implement your design, it may be
necessary to apply LOC constraints to one or more primitives inside a
LogiBLOX RAM/ROM module.

Consider the previous RAM32x2S example, suppose that the each of
the RAM primitives had to be constrained to a particular CLB loca-
tion. Based on the rules for determining the MEMx_y instance names,
using the previous example, each of RAM primitives could be refer-
enced by concatenating the full-hierarchical name to each of the
MEMx_y names. The RAM32x2S created by LogiBLOX would have
primitives named MEM0_0 and MEM1_0. So, for FPGA/Design
G-6 Xilinx Development System

Alliance Constraints
Compiler, CLB constraints in a .ucf file for each of these two items
would be:

INST U0/U0/MEM0_0 LOC=CLB_R10C10;
INST U0/U0/MEM0_1 LOC=CLB_R11C11;

For FPGA Express, the CLB constraints would be:

INST U0_U0/MEM0_0 LOC=CLB_R10C10;
INST U0_U0/MEM0_1 LOC=CLB_R11C11;

FPGA/Design Compiler and Express Verilog
Examples

This section includes FPGA/Design Compiler and Express Verilog
Examples.

Test.v Example

module test(DATA,DATAOUT,ADDR,C,ENB);

input [1:0] DATA;
output [1:0] DATAOUT;
input [4:0] ADDR;
input C;
input ENB;
wire [1:0] dataoutreg;
reg [1:0] datareg;
reg [1:0] DATAOUT;
reg [4:0] addrreg;

inside U0
(.MDATA(datareg),.MDATAOUT(dataoutreg),.MADDR(addrreg
),.C(C),.WE(ENB));

always@(posedge C) datareg = DATA;

always@(posedge C) DATAOUT = dataoutreg;

always@(posedge C) addrreg = ADDR; endmodule

Inside.v Example

module inside(MDATA,MDATAOUT,MADDR,C,WE);

input [1:0] MDATA;
output [10] MDATAOUT;
input [4:0] MADDR;
Alliance Series 2.1i Quick Start Guide G-7

Alliance Series 2.1i Quick Start Guide
input C;
input WE;

memory U0 (.A(MADDR), .DO(MDATAOUT), .DI(MDATA),
.WR_EN(WE), .WR_CLK(C));

endmodule

Memory.v Example (FPGA/Design compiler only)

module memory(A, DO, DI, WR_EN, WR_CLK);

input [4:0] A;
output [1:0] DO;
input [1:0] DI;
input WR_EN;
input WR_CLK;
endmodule

Runscript Example (FPGA/Design compiler only)

TOP=test part = “4028expg299-3”
read -f verilog “guts.v”
read -f verilog “inside.v”
read -f verilog “test.v”
current_design TOP
remove_constraint -all
set_port_is_pad “*”
insert_pads
compile
write -format db -hierarchy -output TOP +
“_compiled.db”
replace_fpga
set_attribute TOP “part” -type string part
write -format db -hierarchy -output TOP + “.db”
ungroup -all -flatten
write_script > TOP + “.dc” sh dc2ncf test.dc
remove_design guts
write -f xnf -h -o TOP + “.sxnf

Test.ucf Example (FPGA/Design compiler only)

INST “U0/U0” TNM = usermem;
TIMESPEC TS_6= FROM : FFS :TO: usermem: 50;
INST “U0/U0/mem0_0” LOC=CLB_R7C2;
G-8 Xilinx Development System

Alliance Constraints
Test.ucf Example (FPGA Express only)

INST “U0_U0” TNM = usermem;
TIMESPEC TS_6= FROM : FFS :TO: usermem: 50;
INST “U0_U0/mem0_0” LOC=CLB_R7C2;

FPGA/Design Compiler and Express VHDL Examples
This section includes FPGA/Design Compiler and Express VHDL
Examples.

Test.vhd Example

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;

entity test is
port(DATA: in STD_LOGIC_VECTOR(1 downto 0);
 DATAOUT: out STD_LOGIC_VECTOR(1 downto 0);
 ADDR: in STD_LOGIC_VECTOR(4 downto 0);
 C, ENB: in STD_LOGIC);
end test;

architecture details of test is
signal dataoutreg,datareg: STD_LOGIC_VECTOR(1 downto 0);
signal addrreg: STD_LOGIC_VECTOR(4 downto 0);

component inside
 port(MDATA: in STD_LOGIC_VECTOR(1 downto 0);
 MDATAOUT: out STD_LOGIC_VECTOR(1 downto 0);
 MADDR: in STD_LOGIC_VECTOR(4 downto 0);
 C,WE: in STD_LOGIC);
end component;

begin
 U0: inside port
map(MDATA=>datareg.,MDATAOUT=>dataoutreg.,MADDR=>addrreg,C=>C,WE=>ENB);

 process(C)
 begin
 if(Cevent and C=1) then
 datareg <= DATA;
 end if;
 end process;

 process(C)
 begin
Alliance Series 2.1i Quick Start Guide G-9

Alliance Series 2.1i Quick Start Guide
 if(Cevent and C=1) then
 DATAOUT <= dataoutreg;
 end if;
 end process;

 process(C)
 begin
 if(Cevent and C=1) then
 addrreg <= ADDR;
 end if;
 end process;

end details;

Inside.vhd Example

entity inside is
port(

MDATA: in STD_LOGIC_VECTOR(1 downto 0);
MDATAOUT: out STD_LOGIC_VECTOR(1 downto 0);
MADDR: in STD_LOGIC_VECTOR(4 downto 0);
C,WE: in STD_LOGIC);

end inside;

architecture details of inside is component memory
port(

A: in STD_LOGIC_VECTOR(4 downto 0);
DO: out STD_LOGIC_VECTOR(1 downto 0);
DI: in STD_LOGIC_VECTOR(1 downto 0);
WR_EN,WR_CLK: in STD_LOGIC);

end component;

begin
U0: memory port map(A=>MADDR,DO=>MDATAOUT,

DI=>MDATA,WR_EN=>WE,WR_CLK=>C);
end details;

Runscript Example (FPGA/Design compiler only)

TOP=test part = “4028expg299-3”
analyze -f vhdl “guts.vhd”
analyze -f vhdl “inside.vhd”
analyze -f vhdl “test.vhd”
elaborate TOP
current_design TOP
remove_constraint -all
set_port_is_pad “*”
insert_pads
G-10 Xilinx Development System

Alliance Constraints
compile
write -format db -hierarchy -output TOP +
“_compiled.db”
replace_fpga
set_attribute TOP “part” -type string part
write -format db -hierarchy -output TOP + “.db”
ungroup -all -flatten
write_script > TOP + “.dc” sh dc2ncf test.dc
remove_design guts
write -f xnf -h -o TOP + “.sxnf”

Test.ucf Example (FPGA/Design compiler only)

INST “U0/U0” TNM = usermem;
TIMESPEC TS_6= FROM : FFS :TO: usermem 50;
INST “U0/U0/mem0_0” LOC=CLB_R7C2;

Test.ucf Example (FPGA Express only)

INST “U0_U0” TNM = usermem;
TIMESPEC TS_6= FROM : FFS :TO: usermem: 50;
INST “U0_U0/mem0_0” LOC=CLB_R7C2;
Alliance Series 2.1i Quick Start Guide G-11

Alliance Series 2.1i Quick Start Guide
G-12 Xilinx Development System

Appendix H

Configuring Xprinter

This appendix provides detailed instructions on configuring a printer
so you can print from the Xilinx application. The information in this
appendix applies only to workstation applications. The following
sections are in this Appendix.

• “Required Wind/U Files”

• “Configuring .WindU”

• “Solving Printing Problems”

Required Wind/U Files
You must have the following Wind/U files installed correctly to print
from your application.

• PPD (PostScript Printer Description)

PPD files provide Wind/U with model-specific information like
paper tray configuration, supported paper sizes, available ROM
fonts, and so forth.

• AFM (Adobe Font Metric) and TFM (Tagged Font Metric)

AFM and TFM files provide font metric information for all fonts
in PostScript and PCL5 printers, respectively.

• Additional files

Various other files are copied to $WUHOME/xprinter and are
required by Wind/U when printing. These include
xprinter.prolog (PostScript prolog), psstd.fonts and
pclstd.fonts (provide PostScript/PCL5 to X Window System
font name mappings), and rgb.txt.
Alliance Series 2.1i Quick Start Guide — July 1999 H-1

Alliance Series 2.1i Quick Start Guide
Make a complete, as-is copy of the directory $WUHOME/xprinter
and include it in the installation for your product. None of the files
from this directory require modifications in most environments.

Note: All of the files in $WUHOME/xprinter are the property of
Bristol Technology and are licensed to you under the terms of the
Wind/U license agreement. You can freely distribute these files as
long as they are bundled with your application. Consult the Wind/U
license agreement for further details.

Configuring .WindU
Once you have installed the required printer configuration files on
your system, you must configure the .WindU file in your home direc-
tory (or SYS$LOGIN:WINDU.INI) for printing.

You can modify the .WindU file either by using a text editor or the
Xprinter Printer Setup dialog box. Using the dialog box is recom-
mended, because it reduces the risk of error. The instructions in this
appendix describe how to edit the .WindU file, and then provide
step-by-step instructions for performing the same task with the
Printer Setup dialog box. These instructions are provided to help you
configure your printer.

Printer Information and PPD Files
When you configure Wind/U to print, you need to know the
following information for each printer you want to access.

• Name of the printer description (PPD) file

• The command used to send output to a printer

The Wind/U installation media includes the PPD files for most
commonly used printers. To verify that the PPD file associated with
your printer is included, look at the Printer Devices dialog (from the
Printer Setup dialog, click Install and Add Printer). If your printer
model is listed, Wind/U has a PPD file for your printer. If your
printer model is not listed, contact your printer vendor to obtain the
PPD file for your printer.

Unix Print Command
The command used to send output to a specific printer depends on
the platform, the printer, and how the printer is connected to your
H-2 Xilinx Development System

Configuring Xprinter
system. For example, if a printer is connected directly to your system,
the following might be valid print commands.

If your printer is connected to a different system on your network,
your printer command will specify how to connect to that system. For
example, if a printer is connected to the system bandit on your
network, any of the following might be valid print commands

rsh bandit lp -d ps -t$XPDOCNAME

Note: In these examples, $XPDOCNAME represents the name of the
output file sent to the printer with the specified command. If you use
a multi-word file name, such as a print file, you must enclose the
$XPDOCNAME in quotation marks as follows. You must escape the
quotation marks in the remote command, because rsh strips them
out if you do not.

The following table lists the commands needed to configure your
remote or local printer.

Configuring Wind/U for Printing
Once you know the name of the PPD file and the print command for
each printer you want to direct output to, you can configure Wind/U
to recognize those printers. To configure Wind/U to recognize a
printer, you must do the following

1. Define a port, which is an alias for the print command.

2. Associate the port with the printer’s PPD file.

3. Specify a default printer.

4. Set printer options.

Defining a Port
A printer port is an alias for the print command. It is defined in the
Ports section of $HOME/.WindU and appears as part of the Printer
Name in the Printer Setup dialog box. For example, the following is

Unix lp -d ps -t$XPDOCNAME

OpenVMS PRINT /QUEUE=OPTRA

Local Printer lp -d ps -t”$XPDOCNAME”

Remote Printer rsh bandit lp -d ps -t\”$XPDOCNAME\”
Alliance Series 2.1i Quick Start Guide H-3

Alliance Series 2.1i Quick Start Guide
the first Printer Name in the Printer Setup dialog box before you
make any changes to $HOME/.WindU.

AppleLaserWriter v23.0 PostScript on FILE:

In this Printer Name, FILE: is the port name. Port entries in the [ports]
section have the following format.

port=print_command

This command sends output to the printer port. For example, if you
have two printers: ORION and SIRIUS, your [ports] section may
look like the following example.

[ports]
ORION=rsh bandit lp -d ps -t\”$XPDOCNAME\”
SIRIUS=rsh bandit lp -d ps -T pcl5 -t\”$XPDOCNAME\”

In this example, both printers are connected to the system bandit, so
the print command is a remote shell command executed on bandit.
ORION is a PostScript printer, so the command lp -d ps is
executed on bandit to print to ORION. SIRIUS, however, is a PCL5
printer, so the print command executed on bandit to print to SIRIUS is
lp -d ps -T pcl5 .

If you have a printer connected to your local system, you need to add
an entry for it. For the local printer, add an entry similar to the
following.

[ports]
ORION=rsh bandit lp -d ps -t\”$XPDOCNAME\”
SIRIUS=rsh bandit lp -d ps -T pcl5 -t\”$XPDOCNAME\”
LOCAL=lp -d ps -t$XPDOCNAME

Your printer port can be any name, except FILE:, which is the only
reserved port name. It causes HyperHelp to create a print file
formatted specifically for the specified printer type.

You must create an entry in the [ports] section for every printer you
want to print to.

To Define a New Port

To define a new port using the Printer Setup dialog box, perform the
following steps.

1. To display the Ports dialog box, from the Printer Setup dialog
box, click Install, Add Printer, and Define New Port.
H-4 Xilinx Development System

Configuring Xprinter
2. Type the port definition in the Edit Port edit box.

3. Click Add/Replace.

The new port is now included in the list of current port defini-
tions.

4. Repeat steps 1–3 for each printer you want to print to.

Note: To create a printer port for each available printer queue on
HP700 systems, click the Spooler button in the Ports dialog box.
This command creates a default printer port for each available printer
queue returned by the lpstat -a command.

To Modify an Existing Port

To modify an existing port using the Printer Setup dialog box,
perform the following steps.

1. To display the Ports dialog box, from the Printer Setup dialog
box, click Install, Add Printer, and Define New Port.

2. Select the port you want to modify and edit the port information
in the Edit Port edit box.

3. Click Add/Replace.

The modified port is now included in the list of current port defi-
nitions.

Matching a Printer Type to a Defined Port
After you define a port for each printer, specify the type of printer
associated with each port. Device types are listed in the [devices]
section of the .WindU file. Each entry in the [devices] section has
the following format.

alias=PPD_file driver,port

Note: There must be a space between the PPD_file and driver
and a comma between the driver and the port.
Alliance Series 2.1i Quick Start Guide H-5

Alliance Series 2.1i Quick Start Guide
The following table describes each part of this entry.

The following table lists the the ports that correspond to each printer
type.

Following is an example procedure for configuring three printers.

1. Choose an alias for each printer.

To easily identify the printer you want to use from the Printer
Setup dialog box, use these aliases.

• HP LaserJet PS

• HP LaserJet PCL

• QMS PS

Note: If you use the Printer Setup dialog box to associate ports and
PPD files, you cannot specify a printer alias. You must choose an alias
from the predefined list that appears in the Printer Devices list box in
the Add Printer dialog box. The corresponding PPD file is already
associated with the printer aliases in this list box.

Field Description

alias The alias is a descriptive name that identifies the
printer. It can be anything. The alias is the name of
the printer that appears in the Printer Setup dialog
box, such as, HP LaserJet 4L PostScript).

PPD_file The PPD_file is the name of the printer description
(PPD) file used by the printer, without the .PPD
extension.

driver The driver is the type of driver the printer uses. Valid
values are PostScript, PCL4, and PCL5.

port The port is the printer port listed in the [ports]
section of the .WindU file. (ORION, SIRIUS, and
LOCAL appear in the example [ports] section.)

Port Printer Type Output Type

ORION HP LaserJet 4LPostScript PostScript

SIRIUS HP LaserJet 4M PCL Cartridge PCL

LOCAL QMS-PS 2200 v52.3 PostScript
H-6 Xilinx Development System

Configuring Xprinter
2. Identify the PPD file associated with each of these printers. In this
example, the [devices] section of the .WindU file appears as
follows.

[devices]
HP LaserJet PS=HP3SI523 PostScript,ORION
HP LaserJet PCL=HP4M PCL,SIRIUS
QMS PS=Q2200523 PostScript,LOCAL

After you add these entries to your .WindU file, the following
printer choices are available from the Printer Setup dialog box.

HP LaserJet PS on ORION
HP LaserJet PCL on SIRIUS
QMS PS on LOCAL

To Match a Printer Device to a Port

To match a printer device to a port using the Printer Setup dialog,
perform the following steps.

1. To display the Add Printer dialog box, from the Printer Setup
dialog box, click Install and Add Printer.

2. In the Printer Devices field, select the description that
matches the printer you are installing.

If no description matches your printer, contact your printer
vendor for a printer description (PPD) file and install it in the
$WUHOME/xprinter/ppds directory.

3. Select the desired port in the Current Port Definitions list
box and click Add Selected.

The new printer is now included in the list of currently installed
printers.

To Remove an Installed Printer

To remove a printer device/port combination using the Printer Setup
dialog box, perform the following steps.

1. To display the Printer Installation dialog box, from the
Printer Setup dialog box, click Install.

2. In the Currently Installed Printers list box, select the
printer you want to remove and click Remove Selected.
Alliance Series 2.1i Quick Start Guide H-7

Alliance Series 2.1i Quick Start Guide
Specifying a Default Printer
After all available printers are configured, you can make one of them
the default printer. To specify a default printer in the Printer Setup
dialog box, add an entry in the following format to the [windows]
section of the .WindU file.

[windows]
device=PPD_file,driver,port

Provide the same information that you used in the [devices]
section. Only the format of the entry is different; there is a comma
between the PPD_file and the driver instead of a space.

For example, if you want the default printer to be the printer at port
ORION, your [windows] section appears as follows.

[windows]
device=HP4L,PostScript,ORION

The printing-related sections of your .WindU file look like the
following.

[windows]
device=HP4L,PostScript,ORION

[ports]
ORION=rsh bandit "lp -d ps -t"
SIRUS=rsh bandit "lp -d ps -T pcl5"
LOCAL=lp -d ps

[devices]
HP LaserJet PS=HP4L PostScript,ORION
HP LaserJet PCL=HP4M PCL,SIRIUS
QMS PS=Q2200523 PostScript,LOCAL

Whenever you make and save a change with the Printer Setup dialog
box, the changes are written to the .WindU file in your home direc-
tory.

In your default .WindU file, the [windows] entry appears as
follows.

[windows]
device=NULL,PostScript,FILE:

Because no PPD file is listed (NULL), the default in the Printer Setup
dialog box is to print generic PostScript to a file. You can specify the
H-8 Xilinx Development System

Configuring Xprinter
file name and change the type of output to PCL in the Printer Setup
dialog box.

To Specify a Default Printer

To specify a default printer using the Printer Setup dialog box, do the
following.

1. To display the Options dialog box, from the Printer Setup
dialog, click Options.

2. From the Printer Name drop-down list, select the desired
printer and click OK.

3. Click Save in the Printer Setup dialog box.

Setting Printer Options
Because printer options vary between printers, use the Printer Setup
dialog box to set them. Xprinter reads the PPD file to identify the
specific options available for each printer.

1. Display the Printer Setup Dialog box.

2. Set all fields to the desired values.

The following table describes all printer setup fields.

Option Description

Output Format Specify whether to send output to a file or to a printer. If you
choose Printer Specific, you can send output to any printer type/
port combination configured in your $HOME/.WindU file. If the
port is FILE: (as in this example), Xprinter creates an output file
specifically for the specified printer type. If you choose Generic
(File Only), print output is sent to an Encapsulated PostScript or
generic PCL file.

Printer Appears only if you select Output Format: Printer
Specific. It specifies the name of the default printer to send
print output to. Click the Options button to specify a different
printer.
Alliance Series 2.1i Quick Start Guide H-9

Alliance Series 2.1i Quick Start Guide
3. To set additional options, such as selecting a new printer or
changing the page size, click Options.

4. Set all options to the desired values.

The following table describes all printer options.

5. Click Save to apply your changes and make them the new
default values.

Sending Output to a File
The default $HOME/.WindU file contains many printer devices,
including the following.

HP LaserJet 4L PostScript=HP4L PostScript,FILE:
HP LaserJet 4M PCL Cartridge PCL5=HP4M PCL,FILE:

File Name Appears only if you select Output Format: Generic (File
Only). Type the name of the print file to create. To pipe print
output to a command, type a ! character as the first character,
then specify the command to pipe output to. For example, to pipe
output to the lp command, enter the following:
!lp -d ps.

EPSF
PCL4
PCL5

Appears only if you select Output Format: Generic (File
Only). Click this button to display a list of output file types and
select the desired type. Available types are EPSF (Encapsulated
PostScript), PCL4, and PCL5.

Orientation Specify portrait or landscape.

Scale To increase the size of the output, specify a value greater than
1.00. To reduce the size, specify a value less than 1.00. For
example, a value of 2.00 doubles the size of the output; a value of
0.50 reduces it by half.

Copies Specify the number of copies to print.

Option Description

Printer Name Changes the Printer in the Setup dialog box. Click the down
arrow to display a list of configured printers.

Resolution Specify printer resolution. Values vary.

Page Size Specify paper size. Values vary.

Paper tray Specify tray where paper is located. Values vary.
H-10 Xilinx Development System

Configuring Xprinter
In all of the default entries, the port is FILE:, which is the only
reserved port name. If you specify FILE: as the port, Wind/U creates
a print file instead of sending output to a printer. When you use a
PPD file, you generate PostScript or PCL output that is specific to the
printer. If you use Output Format: Generic (File Only), you generate
generic Encapsulated PostScript or PCL output.

For example, the HP LaserJet 4L PostScript entry creates a PostScript
file that includes the characteristics of the HP 4L PostScript printer.
The HP LaserJet 4M PCL entry creates a PCL file that includes the
characteristics of the HP LaserJet 4M PCL printer.

You can also print to a file instead of a printer by selecting the Output
Format: Generic (file only) option in the Printer Setup dialog box, but
doing so creates a generic EPS or PCL print file that does not take
advantage of any special characteristics of your particular printer.

Solving Printing Problems
If you have problems printing, use the following hints.

• Start with just printing to a PostScript file. You can use PostScript
previewers (on Sun’s pageview), to see the file. Adding spooling
and PCL support later is easy.

• Ensure that the $WUHOME/xprinter files are installed correctly.

• Ensure that you have .WindU in your home directory.

• Check that the printing sample application works with the
configuration you are using with your application.

• Ensure that there is a PPD file for the printer you are using.
Xprinter requires a PPD file that describes the attributes (paper
size, resolution, color capabilities, paper trays, and so forth). for
each printer device you want to use. Wind/U includes a number
of PPD files for common printers; however, these do not repre-
sent all supported printers. If you have customer whose printer is
not included in the PPD files supplied with Wind/U, try the
following.

• Contact the printer manufacturer for the PPD file.

• Download the PPD file from the Adobe FTP site
(ftp.adobe.com:/pub/adobe/PPDfiles).

• Use the PPD file for a similar output device.
Alliance Series 2.1i Quick Start Guide H-11

Alliance Series 2.1i Quick Start Guide
If you continue to have problems, submit an SPR to Bristol Technical
Support. Be sure to include a copy of your printer output and your
.WindU file.
H-12 Xilinx Development System

Appendix I

Glossary

This appendix contains definitions and explanations for terms used
in this manual.

aliases
Aliases, or signal groups, are useful for probing specific groups of
nodes.

attribute
Attributes are instructions placed on symbols or nets in an FPGA
schematic to indicate their placement, implementation, naming,
direction, or other properties.

AutoRoute
AutoRoute automatically routes the objects you specify.

block
A group consisting of one or more logic functions.

component
A component is an instantiation or symbol reference from a library of
logic elements that can be placed on a schematic.
Alliance Series 2.1i Quick Start Guide — July 1999 I-1

Alliance Series 2.1i Quick Start Guide
constraint
Constraints are specifications for the implementation process. There
are several categories of constraints: routing, timing, area, mapping,
and placement constraints.

Using attributes, you can force the placement of logic (macros) in
CLBs, the location of CLBs on the chip, and the maximum delay
between flip-flops. PAR does not attempt to change the location of
constrained logic.

CLBs are arranged in columns and rows on the FPGA device. The
goal is to place logic in columns on the device to attain the best
possible placement from the point of view of performance and space.

Constraints Editor
The Constraints Editor is a Graphical User Interface (GUI) that can be
used to modify or delete existing constraints or to add new
constraints to a design.

DC2NCF
DC2NCF (design constraints to netlist constraints file) translates a
Synopsys DC file to a Netlist Constraints File (NCF). The DC file is a
Synopsys setup file containing constraints for the design.

guided mapping
An existing NCD file is used to “guide” the current MAP run. The
guide file may be used at any stage of implementation: unplaced or
placed, unrouted or routed.

HDL
HDL (Hardware Description Language).

Implementation Tools
A set of tools that comprise the mainstream programs offered in the
Xilinx design implementation tools. The tools are: NGDBuild, MAP,
PAR, NGDAnno, TRCE, all the NGD2 translator tools, BitGen,
PROMGen, and the FPGA Editor.
I-2 Xilinx Development System

Glossary
LCA file
An LCA file is a mapped file of a Xilinx design produced by an earlier
release.

LCA2NCD
LCA2NCD converts an LCA file to an NCD file. The NCD file
produced by LCA2NCD can be placed and routed, viewed in EPIC,
analyzed for timing, and back-annotated.

LogiBLOX
Xilinx design tool for creating high-level modules such as counters,
shift registers, and multiplexers.

locking
Lock placement applies a constraint to all placed components in your
design. This option specifies that placed components cannot be
unplaced, moved, or deleted.

Logic Block Editor
The Logic Block Editor allows you to edit the internal logic of a
selected programmable component. Use the Edit Block command to
start the logic block editor.

macro
A macro is a component made of nets and primitives, flip-flops or
latches, that implements high-level functions, such as adders,
subtractors, and dividers. Soft macros and RPMs are types of macros.

A macro can be unplaced, partially placed or fully placed, and it can
also be unrouted, partially routed, or fully routed. See also “physical
macro.”

MCS file
An MCS file is an output from the PROMGen program in Intel’s
MCS-86 format.
Alliance Series 2.1i Quick Start Guide I-3

Alliance Series 2.1i Quick Start Guide
MDF file
An MDF (MAP directive file) file is a file describing how logic was
decomposed when the design was originally mapped. The MDF file
is used for guided mapping using Xilinx Development System soft-
ware.

MFP File
An MFP file is generated by the Floorplanner and controls the
mapping and placement of logic in the design according to the floor-
plan created by the user.

MRP file
An MRP (mapping report) file is an output of the MAP run. It is an
ASCII file containing information about the MAP run.

NCD file
An NCD (netlist circuit description) file is the output design file from
the MAP program, LCA2NCD, PAR, or EPIC. It is a flat physical
design database which may or may not be placed and routed

NCF file
An NCF (netlist constraints file) file is produced by a synthesis
vendor toolset, or by the DC2NCF program. This file contains
constraints specified within the toolset. EDIF2NGD and XNF2NGD
reads the constraints in this file and adds the constraints to the output
NGO file.

NGC File
Binary file containing the implementation of a module in the design.
If an NGC file exists for a module, NGDBuild reads this file directly,
without looking for a source EDIF or XNF netlist. In HDL design
flows, LogiBLOX creates an NGC file to define each module.
I-4 Xilinx Development System

Glossary
NGDAnno
The NGDAnno program distributes delays, setup and hold time, and
pulse widths found in the physical NCD design file back to the
logical NGD file. NGDAnno merges mapping information from the
NGM file, and timing information from the NCD file and puts all this
data in the NGA file.

NGA file
An NGA (native generic annotated) file is an output from the
NGDAnno run. An NGA file is subsequently input to the appropriate
NGD2 translation program.

NGD2EDIF
NGD2EDIF is a program that produces an EDIF 2.1.0 netlist in terms
of the Xilinx primitive set, allowing you to simulate pre- and post-
route designs.

NGD2VER
NGD2VER is a program that translates your design into a Verilog
HDL file containing a netlist description of the design in terms of
Xilinx simulation primitives for simulation only.

NGD2VHDL
NGD2VHDL is a program that translates your design into a Vital 3
compliant VHDL file containing a netlist description of your design
in terms of Xilinx simulation primitives for simulation only.

NGDBuild
The NGDBuild program performs all the steps necessary to read a
netlist file in XNF or EDIF format and create and NGD file describing
the logical design.

NGD file
An NGD (native generic database) file is an output from the
NGDBuild run. An NGD file contains a logical description of the
Alliance Series 2.1i Quick Start Guide I-5

Alliance Series 2.1i Quick Start Guide
design expressed both in terms of the hierarchy used when the design
was first created and in terms of lower-level Xilinx primitives to
which the hierarchy resolves. The NGD file is the input to MAP.

NGM file
An NGM (native generic mapping) file is an output from the MAP
run and contains mapping information for the design. The NGM file
is an input file to the NGDAnno program.

PAR (Place and Route)
PAR is a program that takes an NCD file, places and routes the
design, and outputs an NCD file. The NCD file produced by PAR can
be used as a guide file for reiterative placement and routing. The
NCD file can also be used by the bitstream generator, BitGen.

path delay
A path delay is the time it takes for a signal to propagate through a
path.

PCF file
The PCF file is an output file of the MAP program. It is an ASCII file
containing physical constraints created by the MAP program as well
as physical constraints entered by you. You can edit the PCF file from
within EPIC.

physical Design Rule Check (DRC)
Physical Design Rule Check (DRC) is a series of tests to discover
logical and physical errors in the design. Physical DRC is applied
from EPIC, BitGen, PAR, and Hardware Debugger. By default, results
of the DRC are written into the current working directory.

physical macro
A physical macro is a logical function that has been created from
components of a specific device family. Physical macros are stored in
files with the extension.nmc. A physical macro is created when EPIC
is in macro mode. See also “macro.”
I-6 Xilinx Development System

Glossary
pin
A pin can be a symbol pin or a package pin. A package pin is a phys-
ical connector on an integrated circuit package that carries signals
into and out of an integrated circuit. A symbol pin, also referred to as
an instance pin, is the connection point of an instance to a net.

pinwires
Pinwires are wires which are directly tied to the pin of a site (i.e. CLB,
IOB, etc.)

route
The process of assigning logical nets to physical wire segments in the
FPGA that interconnect logic cells.

route-through
A route that can pass through an occupied or an unoccupied CLB site
is called a route-through. You can manually do a route-through in
EPIC. Route-throughs provide you with routing resources that would
otherwise be unavailable.

states
The values stored in the memory elements of a device (flip-flops,
RAMs, CLB outputs, and IOBs) that represent the state of that device
for a particular readback (time). To each state there corresponds a
specific set of logical values.

TRCE
TRCE (Timing Reporter and Circuit Evaluator) “trace” is a program
that will automatically perform a timing analysis on a design using
available timing constraints. The input to TRCE is a mapped NCD file
and, optionally, a PCF file. The output from TRCE is an ASCII timing
report which indicates how well the timing constraints for your
design have been met.
Alliance Series 2.1i Quick Start Guide I-7

Alliance Series 2.1i Quick Start Guide
(Historical note: TRCE should not be confused with the UNIX trace
command. The UNIX trace command is used to trace system calls
and signals).

TWR file
A TWR (Timing Wizard Report) file is an output from the TRCE
program. A TWR file contains a logical description of the design
expressed both in terms of the hierarchy used when the design was
first created and in terms of lower-level Xilinx primitives to which the
hierarchy resolves.

wire
A wire is either: 1) a net or 2) a signal.

UCF file
A UCF (user constraints file) contains user-specified logical
constraints.
I-8 Xilinx Development System

	About This Manual
	Additional Resources
	Manual Contents

	Conventions
	Typographical
	Online Document

	Table of Contents
	Introduction
	Supported Devices
	Supported Netlists
	Xilinx Development System Tools and Features
	Software Manuals and Online Help
	New Features for Software Manuals
	Software Manuals On the Web
	Online Help for Software Manuals

	Installing Software Manuals
	Printing Software Manuals
	Printing PDF Files
	Printing from the Online Document Viewer

	EDA and Third Party Interface Support
	Software Installation and Licensing
	Support and Services
	Technical Support
	Customer Service

	Implementation Tools Tutorial
	Installing the Tutorial Files
	Step 1: Creating an Implementation Project
	Design Manager Status Bar
	Design Manager Toolbox

	Step 2: Specifying Options
	Step 3: Translating the Design
	Step 4: Using the Constraints Editor
	How to Stop the Design Processing Flow
	Starting the Flow Engine and Translating/Mapping your Design

	Step 5: Mapping the Design
	Step 6: Using Timing Analysis to Evaluate Block Delays After Mapping
	Estimating Timing Goals With 50/50 Rule
	Report Paths In Timing Constraints Option

	Step 7: Placing and Routing the Design
	Step 8: Evaluating Post-Layout Timing
	Step 9: Creating Timing Simulation Data
	Step 10: Creating Configuration Data
	Step 11: Using the PROM File Formatter

	Using the Software
	Using the Xilinx Tools
	Xilinx Design Flow
	Using the Design Manager
	Creating a Project
	Implementing Your Design

	Using the Flow Engine
	Translating Your Design
	Mapping Your Design
	Placing and Routing Your Design
	Configuring Your Design

	Analyzing Reports with the Design Manager
	Translation Report
	Map Report
	Place and Route Report
	Pad Report

	Selecting Options
	Using Design Constraints
	Adding Constraints with the Constraints Editor

	Guiding a Design with Floorplanner Files
	Static Timing Analysis
	Static Timing Analysis After Map
	Static Timing Analysis After Place and Route
	Summary Timing Reports
	Detailed Timing Analysis

	Creating Simulation Files
	Creating Timing Simulation Data
	Creating Functional Simulation Data

	Downloading a Design
	Creating a PROM
	In-Circuit Debugging
	Advanced Implementation Flows
	Re-Entrant Route

	Multi-Pass Place and Route
	Guiding an Implementation
	Specifying a Guide Design
	Exact Guide Mode
	Leveraged Guide Mode

	Alliance FPGA Express Interface Notes
	Additional Documentation
	Alliance FPGA Express/Xilinx Design Flow
	Installing FPGA Express
	Entering a Design
	Simulating a Design
	Timing Constraints
	Porting Code from FPGA Compiler to FPGA Express
	Using LogiBLOX with FPGA Express

	Mentor Graphics Interface Notes
	Additional Documentation
	Setting Up the Xilinx/Mentor Interface
	Mentor/Xilinx Software Design Flow
	Translating a Design to Xilinx EDIF
	Timing Simulation
	Generating a Timing-Annotated EDIF Netlist
	Generating a Timing Model
	Running PLD_QuickSim

	Mentor Interface Environment Variables
	Library Locations and Sample MGC Location Map
	Pin Locking
	Timing Constraints

	Xilinx Synopsys Interface Notes
	Documentation
	Setting Up the Synopsys Interface
	Setting up the XDW and Simulation Libraries
	Compiling XDW Libraries
	Compiling the Simulation Libraries

	Examples of Synopsys Setup Files
	XC4000 Devices
	Example .synopsys_dc.setup File
	Example .synopsys_vss.setup File
	Example Script File for XC4000E/EX/XL/XV Designs

	Virtex Devices
	Example .synopsys_dc.setup File
	Example Script File for Virtex Devices

	Entity Coding Examples
	VHDL
	Verilog Code: Module Example
	Comments About Code

	Viewlogic Interface Notes
	Documentation
	Setting Up Viewlogic Interface on Workstations
	Setting Up Viewlogic Interface on the PC
	Setting Up Project Libraries
	Workstation
	Xilinx Commands in ViewDraw

	PC

	Assigning a Pin Location
	Timing Constraints

	Using LogiBLOX with CAE Interfaces
	Documentation
	Setting Up LogiBLOX on a Workstation
	Mentor Interface Environment Variables
	Synopsys Interface Environment Variables
	Viewlogic Interface Environment Variables

	Setting Up LogiBLOX on a PC
	Viewlogic Environment Variables for PCs

	Starting LogiBLOX
	Using LogiBLOX for Schematic Design
	Creating a LogiBLOX Module
	Design Simulation
	Copying Modules

	Using LogiBLOX for HDL Synthesis Design
	Instantiating a LogiBLOX Module

	Analyzing a LogiBLOX Module
	Mentor QuickHDL
	Synopsys VSS
	Viewlogic Vantage
	MTI Modelsim
	VHDL Designs
	Verilog Designs

	LogiBLOX Modules

	Instantiated Components
	STARTUP Component
	STARTBUF Component
	BSCAN Component
	READBACK Component
	RAM and ROM
	Global Buffers
	Fast Output Primitives
	IOB Components
	Clock Delay Components

	Alliance Constraints
	Entering Design Constraints
	Adding Constraints with the Constraints Editor
	Using the Global Tab

	Translating and Merging Logical Designs
	Constraining LogiBLOX RAM/ROM with Synopsys
	Estimating the Number of Primitives Used
	Naming RAM Primitives
	Referencing a LogiBLOX Module
	Referencing LogiBLOX Module Primitives
	FPGA/Design Compiler and Express Verilog Examples
	Test.v Example
	Inside.v Example
	Memory.v Example (FPGA/Design compiler only)
	Runscript Example (FPGA/Design compiler only)
	Test.ucf Example (FPGA/Design compiler only)
	Test.ucf Example (FPGA Express only)

	FPGA/Design Compiler and Express VHDL Examples
	Test.vhd Example
	Inside.vhd Example
	Runscript Example (FPGA/Design compiler only)
	Test.ucf Example (FPGA/Design compiler only)
	Test.ucf Example (FPGA Express only)

	Configuring Xprinter
	Required Wind/U Files
	Configuring .WindU
	Printer Information and PPD Files
	Unix Print Command
	Configuring Wind/U for Printing
	Defining a Port
	To Define a New Port
	To Modify an Existing Port

	Matching a Printer Type to a Defined Port
	To Remove an Installed Printer

	Specifying a Default Printer
	To Specify a Default Printer

	Setting Printer Options
	Sending Output to a File

	Solving Printing Problems

	Glossary
	aliases
	attribute
	AutoRoute
	block
	component
	constraint
	Constraints Editor
	DC2NCF
	guided mapping
	HDL
	Implementation Tools
	LCA file
	LCA2NCD
	LogiBLOX
	locking
	Logic Block Editor
	macro
	MCS file
	MDF file
	MFP File
	MRP file
	NCD file
	NCF file
	NGC File
	NGDAnno
	NGA file
	NGD2EDIF
	NGD2VER
	NGD2VHDL
	NGDBuild
	NGD file
	NGM file
	PAR (Place and Route)
	path delay
	PCF file
	physical Design Rule Check (DRC)
	physical macro
	pin
	pinwires
	route
	route-through
	states
	TRCE
	TWR file
	wire
	UCF file

