
-

LORI STEINTHAL

12 INCORPORATED

MANUFACTURERS REPRESENTATIVES

3255 Scott Boulevard
Suite 1-102
Santa Clara, CA 95054-3013

Tel: (408) 988-3400
Fax: (408) 988-2079

PSD
Programmable MCU Peripherals
PSD Applications Handbook
Volume2of2

1996

FEE=:= --- ..., --- _
=:"=~:iiii-= E
~ ~~ - ----------------------

PSD
Programmable MCU Peripherals

PSD Applications Handbook
Volume2of2

1996

Copyright © 1996 WajerScale Integration, Inc.
(All rights reserved.)

47280 Kato Road, Fremont, California 94538
Tel: 510-656-5400 Facsimile: 510-657-5916

Printed in U. S. A.
on recycled paper.

-------------------------------------~~Jr-------------------------------------

!FEE ::= --- ~ --- --'=-==-F-=E
---~~ -

PSD3XX Family

Table Df CDntents
PSD ApplicatiDn NDtes

Application Note 011 PSD3XX Device Description ... 1-1

Application Note 013 The PSD301 Streamlines a Microcontroller-Based
Smart Transmitter Design ... 1-55

Application Note 014 Using the PSD3XX PAD for System Logic Replacement... 1-67

Application Note 015 Using Memory Paging with the PSD3XX 1-81

Application Note 016 Power Considerations in the PSD3XX .. 1-95

Application Note 017 Track Mode Implementation of PSD3XX 1-111

Application Note 018 Security of Design in the PSD3XX .. 1-121

Application Note 019 The PSD311 Simplifies an Eight Wire Cable
Tester Design and Increases Flexibility in the Process 1-125

Application Note 020 Benefits of 16-Bit Design with PSD3XX 1-145

Application Note 021 Interfacing The PSD3XX To The MC68HC16
and The MC68300 Family of Microcontrollers 1-157

Application Note 022 Using WSI's PSD3XX Programmable
Microcontroller Peripheral Family
with 80C31/80C51 Microcontrollers .. 1-167

Application Note 023 PSD3XX Family - Programmable Microcontroller
Peripheral Design Tutorial ... 1-179

Application Note 024 Using the PSD311 with a High-Speed
ADSP-2105 DSP ... 1-191

Application Note 025 Interfacing The PSD3XX To The NEURON@
3150™ CHIP .. 1-201

Application Note 026 PSD3XX Device Fit for PC Notebook Applications:
Keyboard, Power Management and Auxiliary
Peripherals Control ... 1-221

Application Note 027 Simplification of Logic Networks in the
PSD3XX PAD Using DeMorgan's Theorem 1-227

Application Note 032 Use a ROM Emulator for Rapid Software Debug
of a PSD3XX-Based Design ... 1-237

Application Note 040 Three-Chip Feature Phone .. 1-251

Application Note 041 Detailed Step-By-Step Design Implementation
of an M68HC11 and PSD311 or PSD311R 1-269

iii

Table of Contents - PSD Application NotllS

ZI'SD3XX Family

I'SD4XX/5XX
Family

Motorola
Application
Notes

Sales
Representatives

Application Note 034 ZPSD Power Consumption Calculations 2-1

Application Note 028 PSD5XX CounterfTimers Operation .. 3-1

Application Note 029 Interfacing PSD4XXl5XX To Microcontroliers 3-73

Application Note 030 PSD4XXl5XX Power Calculations and Reduction 3-145

Application Note 031 PSD4XXl5XX Design Tutorial ... 3-161

Application Note 033 Keypad Interface to PSD4XX15XX
with Autoscanning ... 3-245

Application 035 How To Design With The PSD4XXl5XX ZPLD 3-257

Application 036 How To Fit Your Design Into The PSD4XX15XX 3-265

Application 037 How to Implement a Latch Function in Port A
of PSD4XXl5XX that is Independent of the System Clock 3-271

Application 038 How to Increase the Speed of the
PSD5XX Counter/Timers ... 3-277

Application 039 Encoder for Shaft Direction and Position Recognition
Using the PSD5XX ... 3-287

Application 042 Four Axis Stepper Motor Control
Using a Programmable PSD5XX
MCU Peripheral from WSI, Inc ... 3-297

The following are Motorola Application Notes and known as Application Notes 043 and 044
at WSI, Inc.

Application Note 043 Using M68HC11 Microcontrollers
with WSI Programmable Peripheral Devices 4-1

Application Note 044 High Performance M68HC11 System Design
Using The WSI PSD4XX and PSD5XX Families 4-9

and Distributors .. 5-1

__________________________________ w.s~; ________________________________ __
iv ':;';;1.

PSD3XX
Family

ZPSD3XX
Family

PSD4XX
Family

ZPSD4XX
Family

PSD5XX
Family

ZPSD5XX
Family

PSD
Development
Systems and
Accessories

Masked-PSD
Ordering
Information

Table of Contents - PSD Application Notes

Refer to PSD Products Data Book, Volume 1 of 2, for the Data Sheets listed below.

Field-Programmable Microcontrolier Peripherals ... 2-1

Field-Programmable Microcontrolier Peripherals ... 3-1

Field-Programmable Microcontrolier Peripherals .. .4-1

Field-Programmable Microcontrolier Peripherals ... 5-1

Field-Programmable Microcontrolier Peripherals ... 6-1

Field-Programmable Microcontroller Peripherals 7-1

PSDsoft .. 8-1

PSD-Gold and PSD-Silver Development Systems .. 8-5

WS6000 MagicPro@ III Memory and Programmable
Peripheral Programmer .. 8-7

Electronic Bulietin Board .. 8-11

MPSD Mask-Programmable PSD Ordering Information .. 9-1

----------------------------------~~~---------------------------------
v

Table of Contents - PSD Application Notes

-w-·--------------------------------~~~~----------------------------------

iF====~ --- ~ --- --r..-.- _ ------~ -.-.~ -

PSD3XX Family

ZPSD3XX Family

PSD4XX/5XX Family

Motorola Application Notes

Sales Representatives
and Distributors

PSD3XX Family

Section Index

Application Note 011 PSD3XX Device Description ... 1-1

Application Note 013 The PSD301 Streamlines a Microcontroller-Based
Smart Transmitter Design ... 1-55

Application Note 014 Using the PSD3XX PAD for System Logic Replacement... 1-67

Application Note 015 Using Memory Paging with the PSD3XX 1-81

Application Note 016 Power Considerations in the PSD3XX .. 1-95

Application Note 017 Track Mode Implementation of PSD3XX 1-111

Application Note 018 Security of Design in the PSD3XX .. 1-121

Application Note 019 The PSD311 Simplifies an Eight Wire Cable
Tester Design and Increases Flexibility in the Process 1-125

Application Note 020 Benefits of 16-Bit Design with PSD3XX 1-145

Application Note 021 Interfacing The PSD3XX To The MC68HC16
and The MC68300 Family of Microcontrollers 1-157

Application Note 022 Using WSI's PSD3XX Programmable
Microcontroller Peripheral Family
with 80C31/80C51 Microcontrollers .. 1-167

Application Note 023 PSD3XX Family - Programmable Microcontroller
Peripheral Design Tutorial ... 1-179

Application Note 024 Using the PSD311 with a High-Speed
ADSP-2105 DSP ... 1-191

Application Note 025 Interfacing The PSD3XX To The NEURON®
3150™ CHIP .. 1-201

Application Note 026 PSD3XX Device Fit for PC Notebook Applications:
Keyboard, Power Management and Auxiliary
Peripherals Control ... 1-221

Application Note 027 Simplification of Logic Networks in the
PSD3XX PAD Using DeMorgan's Theorem 1-227

Application Note 032 Use a ROM Emulator for Rapid Software Debug
of a PSD3XX-Based Design ... 1-237

Application Note 040 Three-Chip Feature Phone .. 1-251

Application Note 041 Detailed Step-By-Step DeSign Implementation
of an M68HC11 and PSD311 or PSD311R 1-269

For additional information,
Call BOO-TEAM-WSI (BOO-B32-6914).

In California, Call BOO-562-6363

===:== ---, _-­, -----=== I/!IIII --- ~-' ...

Contents

Figures

Programmable Peripheral
Application Note 011
PSD3XX Device Description

Chapter 1: PSD301 Dellice Description
Introduction .. 1-3

WSI Software Support for the PSD Family .. 1-4

PSD3XX Architecture and Pin Nomenclature ... 1-4

Performance Characteristics ... 1-6

PSD3XX System Configuration for Port and I/O Options .. 1-6

Address Inputs .. 1-8

PSD3XX Programmable Array Decoder (PAD) ... 1-9

Microcontrolier/Microprocessor Control Inputs .. 1-1 0

Input and Output Ports ... 1-11

PSD3XX General System Configuration ... 1-13

PSD3XX Configuration for Port Reconstruction .. 1-15

Chapter 2: Applications
8-Bit Microcontrolier to PSD3XX Interface .. 1-17

Two PSD3XX Byte·Wide Interfaces to Intel 80C31 ... 1-19

PSD3XX M68HC11 Byte-Wide Interface ... 1-21
8-Bit Non-Multiplexed PSD3XX Interface to M68008 .. 1-23

16-Bit Non-Multiplexed Address/Data PSD3XX Interface to M68000 1-25

M68000/2X PSD3XX Applications .. 1-27

16-Bit Address/Data PSD3XX Interface to Intel 80186 ... 1-29

16-Bit Address/Data PSD3XX to Intel 80196 Interface ... 1-31
Interfacing the PSD3XX to 8-Bit Microprocessors Z80 and M6809 Applications 1-33

PSD3XX Interface to the Intel 80286 .. 1-36

External Peripherals to the PSD3XXlM68HC11 Configuration .. 1-38

Additional External SRAM ... 1-40

PD3XX Used in Track Mode .. 1-44

Chapter 3: Software Support
Summary ... 1-53

Figure 1. PSD3XX Supports CPU as a Complete Peripheral,
Memory, and Logic Subsystem .. 1-3

Figure 2. PSD3XX Architecture ... 1-5

Figure 3. 8-Bit Multiplexed Address/Data Mode .. 1-7

Figure 4. 16-Bit Multiplexed Address/Data Mode .. 1-7

Figure 5. Non·Multiplexed Mode 8-Bit Data Bus ... 1-7

Figure 6. Non-Multiplexed Mode 16-Bit Data Bus ... 1-8
Figure 7. PSD3XX Programmable Array Decoder ... 1-9

Figure 8. PSD3XX Port A Structure ... 1-11

Figure 9. PSD3XX Port B Structure ... 1-12

1-1

I'SD3XX - AppllcatlDn ND" 011

Figures
(Cont.)

Tables

Figure 10. InteI80C31/PSD3XX Applications .. 1-18

Figure 11. InteI80C31/21PSD3XX Applications ... 1-20

Figure 12. M68HC11/PSD3XX Applications ... 1-22

Figure 13. M68008/PSD3XX Applications ... 1-24

Figure 14. M68000/PSD3XX Applications ... 1-26
Figure 15. M68000/2X PSD3XX Applications .. 1-28

Figure 16. Intel 80186/PSD3XX Applications ... 1-30

Figure 17. Intel 80196/PSD3XX Applications Open-Drain Drivers 1-32

Figure 18. Z80/PSD3XX Applications .. 1-34

Figure 19. 6809/PSD3XX Applications .. 1-35
Figure 20. Inte180286/PSD3XX Applications ... 1-37

Figure 21. M68HC11/PSD3XX to M68230 Applications ... 1-39

Figure 22. M68HC11/PSD3XX to 16K SRAM Applications .. 1-41

Figure 23. SC80C4511PSD3XX to 16K SRAM Applications .. 1-43

Figure 24. Intel 80196/PSD3XX Track Mode to External SRAM 1-45
Figure 25. MAPLE Main Menu ... 1-47

Figure 26. MAPLE Menu with PARTNAME Submenu ... 1-48

Figure 27. CONFIGURATION Menu .. 1-49

Figure 28. Port C Configuration Menu ... 1-50

Figure 29. Port A Configuration Menu, Part 1 .. 1-50
Figure 30. Port A Configuration Menu, Part 2 .. 1-51

Figure 31. Port B Configuration Menu .. 1-51

Figure 32. Address MAP Menu .. 1-52
Figure 33. Port B Configuration Menu with Address Map .. 1-53

Table 1. Port Base Address Offset .. 1-10

Table 2. Non-Volatile Configuration Bits ... 1-14

Table 3. Small Controller System with One 80C31 and One PSD3XX 1-17
Table 4. 80C31 Interface to Two PSD3XX Devices with Power

Economy Feature .. 1-19
Table 5. M68HC11 to PSD3XX Interface .. 1-21
Table 6. M68008 to PSD3XX Interface ... 1-23
Table 7. M68000 Microprocessor to One PSD3XX Interface 1-25
Table 8. M68000 Microprocessor to Two PSD3XX Devices in Parallel 1-27
Table 9. Intel 80196 to PSD3XX Configuration for CMOS Ports 1-29
Table 10. Intel 80196 to PSD3XX Configuration for LED Drivers 1-31
Table 11. Z80B to PSD3XX Interface ... 1-33
Table 12. M6809 to PSD3XX Interface ... 1-33
Table 13. Intel 80286 to PSD3XX Interface .. 1-36
Table 14. M68HC11/PSD3XX to External Peripheral M68230 Interface 1-38
Table 15. M68HC11/PSD3XX Configured to Address Additional SRAM 1-40
Table 16. SC80C451/PSD3XX Configured to Address Additional SRAM 1-42
Table 17. Intel 80196 to PSD3XX Used to Access External SRAM

in Track Mode ... 1-44

~----------------_________ rll'~ ________________________ ___
1-2 'fIN!i1 it

Chapter 1

Introduction

Figure 1.
PSD3XX supports
CPU as a Com­
plete peripheral,
memory, and
logic subsystem

Programmable Peripheral
Application Note 011
PSD3XX Device Description

The PSD3XX family of products include
flexible 110 ports, PLD, Page Register,
256K to 1 M EPROM, 16K bit SRAM and
"Glueless" Logic Interface to the micro
controller. The PSD3XX is ideal for
microcontroller based applications where
fast time-to-market, small form factor and
low power consumption are essential.
These applications include disk controllers,
cellular phones, modems, fax machines,
medical instrumentation, industrial control,
automotive engine control and many others.

Traditionally, central processing units (CPUs)
require the support of non-volatile memory for
program storage, random access memory
(RAM) for data storage, and some Inputl
output (110) capability to communicate with
external devices. The addition of general
logic circuitry is necessary to 'glue' the parts
of the system together. Figure 1 shows a

block diagram of such a system, configured
with a CPU (or microprocessor). The typical
microprocessor also has Integrated Into it on­
board timers, a small amount of RAM and
ROM, as well as a limited 110 capability.

The microprocessor (and often the microcon­
troller) requires additional external support
EPROM and RAM memory, additional ports,
memory mapping logic, and sometimes
latches to separate address and data from a
multiplexed addressldata bus. Until very
recently, designers had to create a discrete
solution from a number of chips, or generate
a full custom solution. Now, the PSD3XX
integrates the different system support blocks
into a single-chip solution. This relieves the
designer from the constraint of thinking that
memory mapping, ports, and address latch
requirements should be developed from
separate elements.

CENTRAL PROCESSING UNIT
CPU

INPUT/OUTPUT PORTS

DECODED
OUTPUTS

-----------------------------------~Jr~~----------------------------------1--3

PSD3XX - Application 1I0te 011

Introduction
(Cont.)

WSI Software
Support for the
PSDFamily

PSD3XX
Architecture and
Pin Nomenclature

This high integration of functionality into a
single chip enables designers to reduce the
overall chip count of the system. The result is
increased system reliability, simpler PCB
layout, and lower inventory and assembly
costs. By integrating ports, latches, a Pro­
grammable Address Decoder (PAD),
EPROM, and static RAM, the PSD3XX can
bring the system solution down to only two
chips: a microcontroller and a PSD3XX. The
alternative solution would be discrete ele­
ments of RAM, EPROM, 1/0 mapped ports,
and latches all mapped into the address
scheme by a programmable logic device
(PLD). This could escalate the chip count to
8-12 packages, depending on size and
complexity.

The PSD family from WSI can be easily
configured from a low-cost software support
package called MAPLE. Designed to run in
an IBM/PC environment, MAPLE makes
design and configuration of the PSD3XX a

The PSD3XX is available in a variety of 44-pin
packages (see the PSD3XX Data Sheet).
Figure 2 is a functional block diagram of the

For larger systems, multiple PSD3XX 's can be
configured. Due to its versatility and flexibil­
ity, two or more PSDs can be cascaded either
horizontally (increasing bus width) or vertically
(increasing sub-system depth). This propor­
tionally increases the complement of memory;
I/O ports, and chip-selects without the need
for additional external glue logic.

An additional feature of the PSD3XX is its
ability to support a wide range of microcon­
trollers or microprocessors because it has
been designed with a wide range of configur­
able options. The designer can program any
one of a number of different options to create
specific compatibility with a host processor.
Furthermore, this can be done without the
need for external glue logic.

simple task. Memory mapping of EPROM
and RAM blocks replaces PLD-like equations
with user-friendly, high-level command
entries. '

PSD3XX that shows the pin functions, internal
architecture, and bus structure.

-----------------------------------~~~-----------------------------------
1·4

Figure 2.
PS03XX
Architecture.

A

.-- A11-A15

L AB-A1O
A
T A19

AD8-AD15 C CSI
H ALE/AS

RD .--
WR

RESET
ALE/AS

'--

DO-AD7 L

~~ I'" A I--1-T
C
H

'---

.--

~~~ ~ 
'--- -
..--

~ --
~ I--1-

'---

ALE/AS 

RO/E 
t 

WR/R/W 

BHE/PSEN 
PROG 

CONTROL 
RESET SIGNALS 

A19/CSI 

PSD3XX - Application Note 011 

PAGE LOGIC 

~lJ= 
A16-A18 

PROG 

~ -- ~ ! LOGIC IN 
PORT 

CSIOPORT EXP 

A19 

CSI PCO-

PADA ALE/AS PAD B PORT ~ - C 
RD 

13 PT WR 27 PT CSa--

RESET 
CS10 

------- EPROM 

ES7 
256 K BIT·1 M BIT 

ES6 
ES5 
ES4 
ES3 
ES2 PROG 

IES1 ~ 
PORT 

CSO- EXP e CS7 ..-- -+ PBD-16/8 32K·128K BIT 

~ 
I"'~ 

BLOCK PORT 

r B . -
11e> D8-D15 

'--
CSIOPORT 

DO-D7 - -

~ SRAM 
PROG 

16K BIT 
PORT 

TRACK MODE 
EXP 

SELECTS 
PAO-

AD-A7 PORT ~ ADO-AD7/DO-D7 A 

PROG CHIP SECURITY 
CONFIGURATION LOGIC 

X8, X16 
MUX or NON-MUX BUSSES 

-----------------------------------------~~~-----------------------------------------
1·5 



PSD3XX - Application Note 011 

PSD3XX 
Architecture and 
Pin Nomenclature 
(Cont.) 

Performance 
Characteristics 

PSD3XX System 
Configuration for 
Port and I/O 
Options 

Inputs ADO-AD15 enter the PSD through 
latches. These can be programmed to latch 
the address/data inputs, removing the need 
for such devices as the 74HCT373 or 573. 
Alternatively, in the transparent mode they 
simply buffer address inputs. The Address 
Latch Enable (ALE) signal is available to 
register a valid address input on the 
ADO-AD15 lines; its active polarity is pro­
grammable. Another name for this input is 
Address Strobe (AS). It provides the same 
function and the same timing as the ALE, but 
this pin name is more appropriate to Motor­
ola-type systems. When either ALE or AS is 
valid, the latches are transparent; when 
inactive, the address/data inputs on 
ADO-AD15 remain latched. 

The PSD3XX also contains a Programmable 
Address Decoder (PAD). Figure 2 shows that 
address inputs A 11-A 15 (and, possibly, 
inputs A 16-A 19) go directly to the PAD. 
Other inputs to the PAD include RD(E), WR 
(R/W), and ALE(AS). Programming of the 
PAD enables the designer to internally select 
the EPROM banks via internal chip-select 
lines ESO-ES7. An additional chip-select for 
the internal SRAM is available through RSO. 
Port C conveys either CS8-CS 10 to external 

Two key timing parameters associated with 
the device are the EPROM/SRAM access 
times and the propagation delay through 
the PAD. The worst-case delay from valid 
address input to valid data output is 120 ns 
whether the address input is multiplexed or 
not. The cycle time of the system is virtually 
120 ns with a small margin for address 
switching. This gives a system clock rate of 

In this section, the EPROM and SRAM are 
treated as separate entities and the four 
options available for configuring the PSD301 
in a processor system are detailed. Figure 3 
shows an 8-bit data configuration for systems 
that multiplex 8-bits of data (00-07) with the 
corresponding address inputs (AO-A7). Lines 
A8-A 15 are dedicated to higher-order ad­
dress inputs. Ports A and B are then avail­
able for data I/O and Port C is available for 
additional inputs, A 16-A 18 or chip-select 
outputs CS8-CS1 O. Port A also has the 
option of passing anyone or all of the inter­
nally latched lower-order addresses (AO-A7) 
to the output. Another mode supported by 

devices or receives A 16-A 18 inputs, directing 
them to the PAD. Also, A 19 can be pro­
grammed to go directly into the PAD. Note 
that these lines are not necessarily dedicated 
to address inputs; they can be used as 
general purpose logic inputs. Thus, the PAD 
can be programmed to perform general 
combinational logic without adding any 'glue 
logic' to the overall system design. Address 
inputs A 16-A 19 can be used as general 
inputs to the PAD for implementing logic 
equations, and not for address decoding. If 
they are not used, A 16-A 19 are "don't care" 
conditions in memory map allocation. (See 
Figure 7 for a more detailed diagram of the 
PAD.) 

The internal port options (Ports A and B) are 
both 8 bit-wide and can be programmed to act 
as traditional I/O ports. Port C IS a 3-blt port 
designed to output logic functions from the 
PAD, receive address inputs A16-A18, or a 
combination of both. Ports A and B, however, 
are more complex because a number of 
different options can be selected with regard 
to system configuration. Figures 3, 4, 5, and 
6 show the variety of configurations that are 
available to these ports. 

about 8.3 MHz. Considering the power­
down option, it takes 100 ns for active 
power input enabled through the CSI to 
valid data output. If the chip-select output 
option is chosen for either Port B or Port C, 
the propagation delay for address and 
control input through the PAD to valid chip­
select output is 35 ns. 

Port A is called "track mode." In this mode, 
the PSD301 can be programmed to pass the 
I/Os ADO-AD7 through the device enabling a 
shared memory or peripheral resource to be 
accessed. Port B has an additional mode to 
the general port mode. The PSD301 's on­
chip PAD can be programmed to generate 
chip-select signals which can be routed to 
Port B's output for external chip selection as 
CSO-CS7. Port C can be programmed for 
inputs A 16-A 18 or as additional chip-select 
outputs CS8-CS1 O. Although labeled as 
address inputs, A 16-A 18 can be used for 
general Boolean Inputs to the PAD array. 

_____________________________________ ~AfAf~~-------------------------------------
1-6 1:IIII"'':8'=: ::= 



Figure3. 
8-bit multiplexed 
address/data 
mode 

Figure 4. 
16-bit multiplexed 
address/data 
mode. 

Figure 5. 
Non-multiplexed 
Mode 8-bit Data 
Bus 

A8 - A15 

PORTA I 
ALE 

PORTB I 
ADO-AD7 

PORTC I 

Figure 4 extends the option offered in Figure 
3 to a 16-bit multiplexed bus. A08-A015 
convey address and data I/O. The port 
options remain the same as for Figure 3; thus, 

AD8- AD15 

ALE 

ADO-AD7 

PORTA I 
PORTB I 
PORTC I 

Figures 5 and 6 show options for a non­
multiplexed host processor or controller. 
Figure 5 is suited to byte-wide systems and 
Figure 6 to 16-bit word-wide configurations. 
In Figure 5, Port A is used for data 00-07 but 

AS - A15 

AO-A7 

ALE 
Becomes general 
purpose input 

PORTA 

PORTB 

PORTC 

I 
I 
I 

PSD3XX - ApplicatiDn NDte 011 

(1/0) or [AO - A7) or [ADO - AD7) 

(1/0) or [CSO - CS7) 

240203 

these two configurations are suitable for 
multiplexed address/data systems of 8 or 16 
bits. 

(1/0) or [CSO - CS7] 

240204 

Port B is still available for general I/O opera­
tions or chip-select outputs. This configura­
tion is suitable for processors such as the 
M68008. 

DO- D7 

(1/0) or [CSO - CS7) 

A16,A17,A18 or CS8,CS9,CS10 

240205 

-------------------------------------~jr~~-------------------------------------
1·7 



I'SII8XX - AppI/t:atItJn IIIIIB 011 

Figure 6. 
Mon-multiplexed 
Mode Iii-bit Data 
Bus 

Address Inputs 

ALE 
Becomes general 
purpose Input 

PORTA 

PORTB 

PORTe 

The function of Port C is the same in all of the 
four modes of operation. For 16-bit data 
transfers, an additional 8 bits of data is 
required. Figure 6 shows Port B as the data 
bus for the higher-order data byte 08-015. 

The processor interface has 16 address 
'inputs: AOO-A015. The device can be 
programmed to accept either address inputs 
or multiplexed address/data inputs. The 
address lines can be latched into the one or 
two octal latches for multiplexed byte or word­
wide buses respectively. The device is 
initially programmed with a word configuration 
setting the PSD3XX to a specific mode; for 
example, one configuration bit selects 
whether the address input is multiplexed with 
data or is a non-multiplexed dedicated 
address. In the non-multiplexed scheme, the 
input latches are held as transparent. When 
the address inputs are valid on the chip as 
AO-A 15, they can be subdivided into two 
buses: as lower-order addresses (A 1-A 11), 
and as higher-order addresses (A 12-A 15). 
A 1-A 11 go directly to the EPROM and inputs 
A1-A10 go to the SRAM (see Figure 2). The 
EPROM blocks are selected through the PAD 
via outputs ESO-ES7 as shown in Figure 2; 
and the SRAM is selected by the RSO output. 

The address input lines A 11-A 15, along with 
possible additional address inputs A 16-A 19, 
go into the PAD array. These address inputs 
are available for mapping the blocks of 
memory into the map scheme of the system. 
One option is to program the additional 
address inputs as valid higher-order address 
inputs for memory addressing ranges above 
64K bytes or 32K words. If A 16-A 18 are not 
required, these PAD inputs can be ignored. 
Only microprocessors and microcontrollers 
with a large addressing range use these 
higher-order address lines. A second option 
is to disregard these address inputs to the 

I 
I 
I 

00-07 

08- 015 

240206 

With 00-07, this configuration is suitable for 
16-bit microprocessors such as the M68000. 
Port C is available for address inputs or chip­
select outputs. 

chip in favor of additional chip-select outputs. 
A third option is available if the designer does 
not need additional chip-select outputs or 
high-order address inputs. The inputs 
A16-A18 can be used as general-purpose 
logic inputs. Examples of this are illustrated 
in some of the following applications. 

An interface with the Z80B microprocessor 
uses inputs A 16, A 17, and A 18 for signals 
Mf, ti.4REQ, and lORQ, respectively. In the 
M68008 application, two of these pins are 
programmed as OTACK and BERR from the 
PS0301 to the M68008. A wired-OR function 
can be implemented on the OTACK or BERR 
input if the user takes advantage of Port B's 
open-drain feature. If two PSD3XX devices 
are used together, the OTACK and BERR 
lines can be wired together and the external 
pull-up resistors can be used to tie these lines 
HIGH. It is also possible to use the internal 
PAD of one PSD3XX to gate these lines 
together and produce composite of ACK and 
i3ERR inputs to the M68008. 

Internally, the memory blocks are arranged 
word-wide with a byte-wide isolation buffer 
separating the lower and upper bytes. This 
buffer is controlled from the configuration 
section of the PSD3XX. When the PSD3XX is 
configured to operate in word-wide mode, this 
buffer isolates the two buses into 00-07 and 
08-015. In word-wide mode, the control of 
the data flow through this buffer is determined 
by BHE, AO, and the device's current configu­
ration mode. Accessing byte-wide data can 
be thought of as accessing bytes on even and 
odd word boundaries or as two separate 

------------------I1Jr;------------------1-8 



Address Inputs 
(Cont.) 

PSD3XX 
Programmable 
Array Decoder 
(PAD) 

Figure 7. 
PSD3XX 
Programmable 
Array Decoder 

banks of byte-wide data. The total com­
plement of EPROM is shown as eight 
banks. The chip-select outputs ESO-ES7 
come from the PAD. These are program-

The PAD is an EPROM-based reprogram­
mabie logic fuse array with sum-of-product 
outputs. Fer Intel-type configurations, inputs 
to the PAD are A11-A19, ALE, RD, and WR. 
For Motorola type configurations, they are 
R/W, AS, and E. The CSI and RESET inputs 
are used to deselect the PAD for power-down 
configurations and initialization, respectively. 
Internal to the PSD301 are the ESO-ES7 

~ I 

~ 
~ P, 
'S 

V 

Po .~ 

"'!S 
V 

AL EorAS .~ 

'S 
V 

DarE ~ 

'S 

orR!W 

""'" 
A1S ~ 

'S 

A1S 
"'S 

A17 
""'S 

A1S 
""'S 

A1S 

""'S 

A14 ~ 

""'S 

A13 
""'S 

A12 ~ 

'S 

A11 
""'S 

eSI ... 

iiEsET .-

PSD3XX - ApplicatiDn NDte 011 

mabie address and control decode signals 
from the PAD inputs. Figure 7 provides a 
detailed schematic diagram of the PAD in 
terms of a traditional PLD. 

EPROM select lines. There is one product 
term dedicated to each EPROM block, 
and a single product term (RSO) for the 
SRAM selection. Address and control for 
each EPROM bank can programmed to a 
resolution of a 4K word boundary and posi­
tioned anywhere in the mapping scheme of 
the designer's system. Similarly, the SRAM 
can be positioned on 2K word boundaries. 

~ 

-y 

~ 

-v 

~ 

-y 
~ 

-~ 

-v 

Esa 

ES1 
ES2 

ES3 8 
ES4 S 

ES5 
ESS 

ES7 
RSa-S 

EPROM BLOCK 
ELECT LINES 

RAM BLOCK SELECT 

eSIOPORT - I/O BASE ADDRESS 
eSADIN 

eSADOUT1 
eSADOUT2 

~ 

----
------
----

} 
TRACK MODE 
CONTROL SIGNALS 

esa/PBa 

eS1/PB1 

eS2IPB2 

eS3/PB3 

eS4/PB4 

eS5/PB5 

eSS/PBS 

eS7/PB7 

ess/pca 

ess/pC1 

CS1a/pC2 

PAD 
A 

PAD 
B 

-------------------------------------fAfAfjF~-------------------------------------e=.,. 



PSD3XX - Application Note 011 

PSD3XX 
Programmable 
Array Decoder 
(PAD) 
(Cont.) 

Table 1. 
Port Base Address 
Offset 

Microcontroller/ 
Microprocessor 
Control Inputs 

Other internal product term outputs from the 
PAD are the CSIOPORT, CSADIN, CSA­
DOUT1 , and CSADOUT2 lines. A single 
product term generates the CSIOPORT 
signal; this provides a base address for Ports 
A and B. The registers relevant to these ports 
are addressed as a base offset (see Table 1). 
The CSADIN signal is used to control the 
input buffer in the track mode. It can be 
enabled to read data in a programmed 
address space from Port A through the 

Register Name 

Pin Register of Port A 

Pin Register of Port B 

Direction Register Port A 

Direction Register Port B 

Data Register Port A 

Data Register Port B 

Pin Register of Ports A and B 

Direction Register of Ports A and B 

Data Register of Ports A and B 

The PAD structure enables additional chip­
selects to be routed to the Port B output pins. 
The four chip-select outputs (CSO-CS3) are 
supported by four product terms per output. 
CS4-CS7 have two product terms per output. 
The ability to use more than one product term 
from a chip-select enables the mapping of 
additional devices to be distributed through 
the address space, rather than selecting 
memory as a block. Sacrificing Port B 
terminals for chip-selects could occur in 
systems requiring a larger EPROM, RAM, or 

The control inputs are also programmable: 
WR or R/W and RD or E are used for readl 
write control of the internal EPROM, RAM, 
and 1/0 capability. Other control inputs are a 
programmable option for Bus High Enable or 
Program Store Enable (BHE/PSEN) and 
Address Latch Enable or Address Strobe 
(ALE/AS). These pins are selected to suit the 
bus protocol of the host processor or, where 
not applicable, they can be ignored. The CSII 
A 19 input is available either for a power-down 
chip-select enable or as a higher-order 
address input without the power-down 
feature. The final control input is the RESET 
input; this also is a programmable option. Its 
active polarity can be chosen to be compat-

ii'~= ;;::= 

PSD3XX. CSADOUT1-2 are used to control 
the multiplexed address and write data 
through the PSD3XX to the Port A pads. The 
address range is programmed into the PAD 
qualifying the address space, but CSADOUT1 
is qualified by the ALE signal outside of the 
PAD. This automatically lets the design 
distinguish between address and write data. 
To qualify valid write data, the PSD3XX 
automatically includes the CSADOUT2 
product term with the WR or R/W signal. 

Offset From The CSIOPORT Base Address 

+2 (Accessible only during Read) 

+3 (Accessible only during Read) 

+4 

+5 

+6 Byte Wide 
+7 

+2 (Accessible only during Read) 

+4 Word Wide 
+6 

1/0 space. Additional PSD3XX devices can 
be designed into a system by using the chip­
select outputs from Port C or B of one master 
PSD3XX. This is required for addressing a 
space greater than 1 M. Finally, the outputs of 
the sum-of-product terms are inverted to be 
consistent with active LOW chip-select inputs 
for additional external RAM, EPROM, periph­
erals, or busses. Port C has the capability of 
providing three additional external chip­
selects, each supporting one product term per 
output. 

ible with the host system. The function of the 
RESET input is to clear and initialize the 
PSD301 at start-up. All II0s are set up as 
inputs and all outputs are either in a non­
active or three-state condition. 

Consequently, the PSD3XX is prevented from 
actively driving outputs during start-up. This 
feature was incorporated to prevent potential 
bus conflicts. In Figure 2, the CSI and 
RESET inputs are shown also as PAD inputs. 
CSI is a hardwire option into the PAD that 
powers down the internal circuitry and is 
used in power-sensitive applications. Neither 
signal is available as a programmable option. 

--------------------------------;- --------------------------------
1·10 ==== 



FigureS. 
PS03XX Port A 
Structure 

Input and Output 
Ports 

A1 A2 WR RD CSIOPORT 

READ 
PIN 

MUX 

PS03XX - Application Note 011 

APORTDI 

READ DIRECTION 
REGISTER 

ADi 

Ai 

PORT 
AlPIN 

OUTPUT 
ENABLE 

MULTIPLEX 
SELECT 
OPTION 

Ht---+-----ICONFIGURATION 

ADO - AD7 ALE 

The port section comprises Port A (8 bits), 
Port B (8 bits), and Port C (3 bits). These 
support the many different 1/0 operations. 
For port expansion, Ports A and B can be 
configured as general 1/0 ports, each to 

RESET 

PORTA STRUCTURE 
ANY ONE OF i = 0 TO 7 

240208 

convey eight bits of digital data to and from an 
external device. Figure 8 shows a single cell 
of Port A, Figure 9 shows a single cell of 
Port B. 

----------------------------------~~aF~----------------------------------
1-11 



PSD3XX - Applit:l1lion 110,. 011 

FigureS. 
PS03XX Port B 
Structure CSO-CS7 

A1 A2WR RD CSIOPORT 

READ DlREC'nON 
REGISTER 

READ 
PIN 

CONFIGURATION 

PORT 
BIPIN 

OUTPUT 
ENABlE 

PORTS STRUCTURE 
ANY ONE OF I = 0 TO 7 

RESET 240209 

Writing data to a port is similar to writing data 
to a RAM location. If a PQrt is programmed as 
an output, data is loaded into the output 
register as if it were a RAM location. Al­
though the ports are not bit addressable, 
individual bits can be selected as either input 
or output. Thus, PAO-5 can be set as data 
outputs while PA6 and PA7 can be configured 
as inputs. Any mix of I/0s is possible giving 
the ports additional flexibility. 

The diiection of data flow through the port is 

determined by the data direction register. 
This register is dynamically programmable so 
that the 1/0 direction through Ports A and B 
can be altered during the microcontroller 
program execution. The data direction 
register Initializes with logiC zeros after an 
active RESET and causes each port bit to be 
set as an input. This state of initialization 
guarantees that the ports are prevented from 
driving the output lines at start-up. If the user 
requires all the Port A or Port B bits to be 

FUJ!!iE -,·-,2---------------:.... ;,,~ -----------'------



Input and Output 
Ports (Cont.) 

PS03XX General 
System Configu­
ration 

inputs, the data direction register can be left 
in this default state. To enable it as an 
output, logic ones can be written into the data 
direction location. 

Due to the internal design: it is possible to 
program Port A or Port B bit lines as inputs 
and still write data to the port locations. This 
is because both ports have on-chip latches 
and can hold data. These registers are 
hidden or buried; i.e., they exist in the port 
and their condition can be read back at any 
time. However, these outputs do not drive the 
output pins because the port has been ' 
enabled as an input. 

To access the port as a memory mapped 
location, the initial selection is made through 
the PAD's CSIOPORT. This provides a base 
address from which the locations shown in 
Table 1 give access to the various ports or 
their options. The configuration support 
software automatically ensures that there is 
no conflict between an SRAM location and I/O 
port in the case of memory mapped peripher­
als. It is also possible for the PSD3XX to 
distinguish between I/O and memory mapped 
locations. The user can input memory and 

The PSD3XX family devices consists of two 
byte-wide configurable I/O ports (Ports A 
and B), 256K to 1 M bits of EPROM, 16K 
bits of RAM, and the PAD. Additional I/O 
capability to and from the PAD is through a 
3-bit I/O (Port C). There are also on-chip 
latches to support processors and 
controllers that multiplex address and 
data on the same bus. The EPROM memory 
section of the device is programmable just 
like a standard EPROM device. However, 
unlike the single-chip EPROM, the PSD3XX 
must also be configured to function into one 
of its many possible modes of operation: This 
is done by programming a non-volatile 
EPROM memory location with 45 configura­
tion bits. These bits select the mode of 
operation and are programmed into the 
EPROM along with the hexadecimal micro­
processor/microcontroller assembly language 
object code. When using MAPLE software, 

PSDaXX - Application Note 011 

I/O control signals to the PAD through the 
A 16-A 18 inputs and program an active 
CSIOPORT output by decoding these signals. 
This can be achieved with Intel- and Zilog­
type processors which have separate memory 
and I/O controls. Signal input through pins 
A 16-A 18 is made possible through Port C. 
This 3-bit port is responsible for either PAD 
chip-select outputs or address/logic inputs. 
CSIOPORT points to a base address at which 
Ports A and B reside. Table 1 provides the 
offset from the base address and the associ­
ated port function. Figure 2 shows that Port A 
is driven by a multiplexed address/data bus of 
ADO-AD? and the selection of address/data 
is made from the configuration memory and 
internal control functions. 

The other options available to the user are 
selecting 1) the shared resource or track 
mode where ADO-AD? is routed directly 
through to the Port A output, or 2) the latched 
address AD-A? In track mode, ADO-AD? 
inputs to the PSD3XX are used to access 
local or private memory and peripherals and 
the outputs ADO-AD? through Port A are 
used to access a public resource. 

the assignment of logic conditions to the 
configuration bits locations is transparent to 
the user; the resultant word is merged with 
the EPROM code and the data map for the 
PAD. 

Table 2 shows the the configuration locations 
and their functional assignment. For ex­
ample, one of the configuration bits enables 
the device architecture to be compatible for 
either byte- or word-wide data buses. This is 
the configuration data or CDATA bit. The 256 
Kbits of EPROM can be configured as a 32K 
byte-wide bus for applications with an 8031 
microcontroller or as a 16K word-wide bus for 
applications with an M68000 microprocessor. 
These configuration bits are discussed in 
detail as each feature is covered in this 
application note. 

------------------------------~~Jr~------------------------------1-13 



PSD3XX - Application Note 011 

Table 2. 
Non-volatile 
Configuration 
Bits 

Configuration 
Bits Number of Bits Function 

CDATA 1 CDATA. o = eight bits, 1 = sixteen bits 

CAD DRAT 1 ADDRESS/DATA Multiplexed. 0 = Non-multiplexed, 
1 = Multiplexed 

CRRWR 1 CRRWR. 0 = RD and WR, 1 = R/Wand E 

CA19/CSI 1 A 19 or CSI. 0 = Enable power-down, 1 = Enable A 19 

CALE 1 ALE Polanty. 0 = Active HIGH,1 = Active LOW 

CRESET 1 CRESET. 0 = Active LOW RESET, 1 = Active HIGH RESET 

COMB/SEP 1 Combined or Separate Address Space for SRAM and 
EPROM. 0 = Combined, 1 = Separate 

CPAF2 1 Port A Track Mode or Port Mode. 0 = Port or Address, 
1 = ADO-AD? Track Mode 

CPAF1 8 Port A I/O or AO-A? 0 = Port A pin is I/O, 
1 = Port A pin is Address 

CPBF 8 Port B I/O or CS. 0 = Port B pins are CSi (i = 0-7), 
1 = Port B pins are I/O 

CPCF 3 Port C A 16-A 18 or CS8-CS 10. 0 = Port C pins are 
Address, 1 = Port C pins are Chip-select 

CPACOD 8 Port A CMOS or Open Drain. o = CMOS drivers, 
1 = Open Drain 

CPBCOD 8 Port B CMOS or Open Drain. o = CMOS Drivers, 
1 = Open Drain 

CADDHLT 1 A 16-A 18 Transparent or Latched. 1 = Address latched, 
o = Address transparent 

CSECURITY 1 CSECURITY On/Off. 0 = Off, 1 = On 

In addition to bus width, the polarity and mode 
of the bus control signals are programmable. 
There are two types of read/write control: one 
is consistent with either a Motorola and Texas 
Instruments control bus standard; the other is 
consistent with the Intel/National Semicon­
ductor/Zilog control bus standard. The 
configure read and write bit (CRRWR), 
distinguishes between one of two conven­
tions: either an Intel (8031) or Motorola 
(M68HC11) convention can be selected by 
programming this single bit in the configura­
tion memory. The Intel device requires the 
PSD3XX to be programmed with an active 
LOW RD and WR controls (CRRWR = 0). 
For applications with the Motorola micropro­
cessor, select the R/W and E option (CRRWR 
= 1). In addition to a choice of two READ/ 
WRITE controls, the user can select either a 
multiplexed AddresslData Bus or separate 
address and data lines. 

Figure 3 shows the configuration that is best 
suited for the 8031 microcontrolier; Figure 4 
shows the configuration for an 80196 micro­
controlier with a 16-bit multiplexed addressed/ 
data bus. For the non-multiplexed modes: 

Figure 5 applies to M6809 microprocessors, 
while Figure 6 shows the mode applicable to 
the M68000. Selection of multiplexed or non­
multiplexed buses is a programmable option 
that can be invoked through the configure 
address/data multiplex (CAD DRAT) bit. With 
the 8031 controller, address outputs AO-A? 
are multiplexed with the data DO-D? input! 
output lines to create a composite ADO-AD? 
bus. 

The PSD3XX's input latches can be pro­
grammed to catch a valid address when the 
microcontrolier's ALE signal transitions from 
active HIGH to inactive LOW. The polarity of 
the ALE signal is also a programmable 
feature in the CALE field of the configuration 
table. Address latching can be programmed 
to occur on either an active HIGH or an active 
LOW ALE signal. With Intel devices, the ad­
dress is valid when ALE is HIGH. Once 
latched, data or code can be read from, or 
written to, the PSD3XX. The CALE active 
HIGH or LOW ALE configuration bit only 
applies to addresses AO-A 15. A separate 
configuration bit, (CADDHL T), exists for the 
control of the higher-order address inputs 

--------------------------------f===~--------------------------------
1·14 ="~==' ;::: 



PSD3XX General 
System Configu­
ration (Cont.) 

PSD3XX 
Configuration 
tor Port 
Reconstruction 

(A16-A19). If necessary, these addresses 
can also be latched by the host system. 

The highest address input is A 19 but this 
signal can be omitted in favor of a power­
down chip-select input (cSI). A19/CSI is 
selected by the CA 19/CSI configuration bit. 
When the CSI input is selected and the pin is 
driven HIGH, the device can be powered­
down consuming only standby power. When 
configured with other CMOS devices, the 
standby power is in the 80-250 IJA range. 
Many CMOS microcontrollers do not need a 
large memory address space; thus, address 
inputs A16-A19 would be unnecessary. The 
CA 19/CSI input can be programmed with a 
logic LOW to enable a power-down option for 
power sensitive applications. 

The address/data multiplexed scheme also 
supports the 16-bit processors. In this case, 
ADO-AD15 convey a 16-bit address qualified 
by ALE (or AS for the Motorola convention) 
and 16-bits of data I/O. This feature is shown 
in Figure 4. A microcontroller that would use 
this scheme is the 80C196. The M68HC11, 
like the 8031, uses the 8-bit multiplexed 
scheme but with the Motorola convention for 
bus control. 

Another control pin used for 80C31 applica­
tions used to distinguish between program 

A key feature of the PSD3XX is the concept of 
port reconstruction. When using microcon­
trollers with additional off-chip memory, port 
1/0 address lines are sacrificed for address, 
data, and memory control lines. With a 
multiplexed address/data scheme, two 8-bit 
controller ports could be lost to address and 
data. Furthermore, in some control applica­
tions, many port 1/0 bits are required to send 
actuating Signals to solenoids, instrument 
displays, etc., and receive data through 
sensors and switch panels. In many control 
environments, a large amount of 1/0 capability 
is required; also, additional external memory 
is needed for microcontroller instructions to 
perform data manipulation. Without the 
PSD3XX , the supplement of extra ports as 
discrete latches addressed through logic 
decoders can add a number of chips to the 
final design. By using the PSD3XX, additional 
EPROM, RAM, and ports are all provided on 
one Chip. Port reconstruction lets the de­
signer reclaim the two ports sacrificed for the 
microcontroller's address and data. 

Port configuration is achieved through the 
configuration register bits. CPAF1 configura-

I'SIJ3XX - Application IIDte 01 1 

and data memory is the PSEN output. The 
COMB/SEP configuration bit should be 
programmed HIGH if data and memory are 
separate and LOW to configure a combined 
memory space in the PSD3XX. This is a 
useful feature for systems that require pro­
gram memory and data memory to be in 
separate blocks. 

For systems that use separate data and 
address buses, the address latches can be 
set into a transparent mode by clearing the 
CADDRDAT bit location. Thus, the PSD3XX 
is suitable for multiplexed or non-multiplexed 
bus structures employing 8- or 16-bit bus 
widths. 

The RESET input to the PSD3XX enables the 
device to be initialized at start-up. RESET 
can be either active HIGH or active LOW 
depending on the processor type. The 
CRESET configuration bit selects the polarity 
of the RESET input: LOW for active LOW and 
HIGH for active HIGH RESET. Normally, 
memory systems do not require a RESET 
input; however, the PSD3XX contains data 
direction registers for the ports that must be 
initialized at start-up. Note that all port 1/0 
buffers are automatically programmed as 
inputs during start-up. 

tion of Port A contains eight bits; program­
ming a logic LOW assigns the selected bit 
with I/O capability as if it were a conventional 
port. If programmed HIGH, the internally 
latched address inputs AO-A? are routed to 
Port A lines PAO-PA? This feature enables 
other on-card peripherals to use AO-A? as 
latched addresses. Without this feature, 
external peripherals to the PSD3XX would 
require an external octal latch to catch the 
multiplexed address when it becomes valid at 
the microcontroller's output. Configuration of 
Port A as general 110 or addressldata is on a 
bit-wise basis; thus, the choice of port or 
addressldata assignment can be mixed. For 
example, configuration code 111 OOOOOB 
programmed into location CPAF1 passes 
addresses AO-A2 to outputs PAO-PA2 and 
enables PA3-PA? as conventional port lines. 

Configuration bit CPAF2 is a 1-bit location. 
When programmed LOW, it selects the port! 
address option, as described above. If 
CPAF2 is programmed HIGH, port bits 
PAO-PA? are set into track mode. Activity on 
the PAO-PA? outputs follow logic transitions 
on inputs ADO-AD? The multiplexed ad-

-------------------------------------~~~-------------------------------------.~ 1-15 



PSD3XX - Application Note 011 

PSD3XX 
Configuration 
for Port 
Reconstruction 
(Cont.) 

dress/ data input is tracked through 
PAO-PA7. Track mode enables the host 
microcontroller to access a shared memory 
and peripheral resource through the PSD3XX 
while maintaining the ability to access its own 
(private) memory/peripheral resource directly 
from the microcontroller's address/data 
outputs. In this mode, the address/data 
ADO-AD7 passes through the PSD3XX logi­
cally unaltered. In summary, PAO-PA7 can 
be programmed as port I/O or latched ad­
dress outputs AO-A7 (each bit being pro­
grammed on an individual basis), or as 
ADO-AD7 outputs (track mode). 

Port B bits PBO-PB7 can be programmed 
either as regular port I/Os, or as chip-select 
outputs CSO-CS7 encoded from the PAD 
outputs. Figure 7 shows the PAD structure as 
a conventional PLD. Eight bits are pro­
grammed into CPBF. Logic LOW indicates that 
a port pin is a chip-select output derived from 
the PAD. Programming a logic HIGH sets the 
appropriate pin as an I/O function. The bit 
pattern 11111 OOOB programmed into the 
CPBF location sets up PBO-PB4 as I/O ports 
and PB5-PB7 as chip-selects. The typical 
applications, where Port B is programmed as 
bi-directional, would be with microcontroller 
chips that need additional port bits. This 
would be in applications where port recon­
struction is needed to drive many indicators, 

solenoids, read switches, sensors, etc. In 
large microprocessor-based systems, the 
chip-select option would probably be chosen; 
in this case, the PAD outputs select other 
PSD devices, DRAM memory chips, and 
peripherals such as timers, UARTs, etc. 

The three bits comprising Port C can be 
programmed by the CPCF configuration bits. 
This group of three bits define whether Port C 
is used for inputs (typically A 16-A is) or 
whether the pins are used as chip-select 
outputs from the PAD. Although labeled as 
A 16-A is, the nomenclature of these pins 
does not constrain the designer to using 
these inputs as dedicated higher-order 
address inputs. In fact, they can be general­
purpose inputs to the PAD for processors that 
do not have an address capability above 64K 
locations. When the PSD3XX is used with the 
ZSOB microprocessor, the Port C inputs have 
been programmed as MREQ, 10RO, and Mi. 
In the case of an interface to the M6S09B, two 
inputs of Port C have been converted to chip­
select outputs for other memory devices and 
one output has been used to feedback a 
READY input to the M6S09B. Port C can be 
used as a general I/O from the PAD in the 
form of address, control, and chip-select bits. 
A logic LOW programs a port bit as an input; 
a HIGH programs it as an output. 

_____________________________________ rar~~~ __________________________________ ___ 
1-16 ="~=:= 



Chapter 2 

Programmable Peripheral 
Application Note 011 
Applications 

a-Bit Microcon- Figure 10 illustrates the minimum configura­
troller to PSD3XX tion?f o.ne ~ontroller and one PSD3X~. The 
• __ .... application Illustrates port reconstruction 

code or data. This family of controllers has 
separate memory locations for code and data . 
To maintain full compatibility, the PSD3XX is 
also capable of being programmed to respond 
to the PSEN signal. When A 16-A 18 are 
programmed as inputs but not driven, they 
should be tied active HIGH or LOW. Unused 
inputs to the PSD3XX must not be permitted 
to float. Tying can be avoided on unused 

.III"II'III:e through the device's Port A and Port B 110, 
reconstituting port 2 and port 0 of the micro­
controller. Table 3 gives the configuration 
information that would be programmed in the 
configuration section of the PSD. Table 3 
shows that both port II0s have been pro­
grammed with CMOS load and drive charac­
teristics. A feature of the 8051/8031 family is 
the PSEN signal, which determines whether 
the memory selection is active for executable 

A 16-A 18 lines if these are programmed as 
'dummy' CS8-CS 10 outputs. A 19/CSI cannot 
be programmed as an output; thus, it must be 
tied if not used. 

Table3. 
Small CDntroller 
System with One 
8OC31 and One 
I'SD3XX 

Configuration 

CDATA 

CADDRDAT 

CRRWR 

CA19/CSI 

CALE 

CRESET 

COMB/SEP 

CPAF2 

CPAF1 

CPBF 

CPCF 

CPACOD 

CPBCOD 

CADDHLT 

CSECURITY 

Bits Function 

0 8-bit data bus 

1 Multiplexed addressldata 

0 Set RD and WR mode 

0 Set CSI input power-down mode 

0 Active HIGH ALE 

1 Active HIGH RESET 

1 Code and data memory separate 

0 Input/Output Port A 

OOH Input/Output Port A (0-7) 

FFH Input/Output Port B 

OOOB Port C programmed for inputs 

OOH Configure CMOS outputs Port A 

OOH Configure CMOS outputs Port B 

0 Transparent inputs A 16-A 19 

0 No security 

_____________________ r •• ~,= ____________________ __ 
tINIlA 1.17 



~I 

Ii 'III,. 
'"Illii 

~I~ ~ ca' '!. ;:: 
ir -.di 
!:~;; 
a ::1' i 
~ 

X1 

1 129HI--Z ~ 
~C2 :::":::C3 I 20pF T 20pF 

U1 ~U~2~ __________________ , 

GND 31 EA/VP PO.o~: ~~ ADO/AO PAO ~6 ~ 
19 PO.1 37 25 AD1/A1 PA1 19 PA1 

'---------=-1 X1 PO.2 36 26 AD2IA2 PA2 18 PA2 

~g:~ 35 27 ~g~~~ ~~~ 17 ~~~ 
'-________ ---'1,,8'--l X2 PO.5 ~~ ~~ AD5IA5 PA5 ~~ ~ 

PO.6 32 30 AD6IA6 PA6 14 ~ 
9 PO.7 AD7/A7 PA7 <.J:£> 

RST I------,--------------------"'--j RESET 21 31 11 ~ 
P2.0 22 32 AD8IA8 PBO 10 ~ 

-- P2.1 AD9/A9 PB1 <..J:!ll.> 
RST amNTO 12 INTO P22 23 33 AD10/A10 PB2 9 ~ 

INT1 ~~ INT1 P2:3~: ~~ AD11/A11 PB3 ~ V~ 
DS1232 TO 15 TO P2.4 26 37 AD12/A12 PB4 6 PB4 

T1 T1 ~~:~ 27 38 ~g~~~;~ ~~~ 5 ~~~ 
P1.0 >+ P1.0 P27 28 39 AD15/A15 PB7 4 ~ 

~~:~~ ~;:~ RD 17 22 AD A161CS8 ~40. 
P1.3 4 P1.3 WR 16 2 WRNPP A17/CS9 41 
P1.4 5 P1.4 PSEN 29 1 BHEIPSEN 
P1.5 6 P1.5 ALEtP 30 13 ALE A18/CS10 42 
P1.6 ~ P1.6 TXD~ ~ RESET A19/CSI 43 
P1.7 ~ P1.7 RXD _ I GND 

8OC31 l.£!2ill>--' PSD3XX 

I 
I 

t 
I: 
f 
I 
!:i ... 



TwoPSD3XX 
Byte-Wide 
Interfaces to the 
Intel BOC31 

Table 4. 
BOC31 Interface 
to Two PSD3XX 
Devices with 
Power Economy 
Feature 

Figure 11 illustrates an extension to the 
previous design in that two PSD3XX devices 
have been used, doubling the memory and 
port resources of the system solution. In this 
application, the power-down capability has 
been used so that one PSD3XX can be active 
while the other device is in power-down 
mode. The mean power consumption is 
reduced, so this configuration can be consid­
ered for power-sensitive applications. 

Configuration Bits Function 

CDATA 0 8-bit data bus 

PS03XX - Application Note 011 

The configuration Table 4 indicates that Port 
C has been configured as outputs. Provided 
one PSD3XX is powered up for the whole 
address range, its PAD can decode an 
address range to select and deselect the 
second PSD3XX device through the CS 10 
output. In Figure 11, the PAD output A 18/ 
CS10 on PSD3XX U2 can be used to power­
down the second PSD3XX through the A 19/ 
CSI input. 

CADDRDAT 1 Multiplexed address/data 

CRRWR 0 Set RD and WR mode 

CA19/CSI 0 Set CSI input power-down mode 

CALE 0 Active HIGH ALE 

CRESET 1 Active HIGH RESET 

COMB/SEP 1 Code and data memory separate 

CPAF2 0 Input/Output Port A 

CPAF1 OOH Input/Output Port A (0-7) 

CPBF FFH Input/Output Port B 

CPCF 111 B Outputs CS8-CS1 0 

CPACOD OOH Configure CMOS outputs Port A 

CPBCOD OOH Configure CMOS outputs Port B 

CADDHLT X "Don't care" for latched A 16-A 19 

CSECURITY 0 No security 

It is not recommended that the two PSD3XX 
devices select each other because the PAD 
section of a PSD device is powered down 
with the rest of the device. At least one PAD 

decoder must be kept active to select and 
deselect others. Port C outputs CS16-CS18 
can power-down as many as three other 
PSD3XX devices. 

-----------------------------------~~~~-----------------------------------
1-19 



... 
~ c::. 

~
II 

II 
~QI 
... Ib .... In 

X1 

~~H~ I ..l C;' T 20pF ---L- Cs 

I RXD:: 
~ 

20PP 

U1 

EAlvP PO 0 

Xl PO 1 
P02 

18 P03 
X2 P04 

PO 5 

9 POS 
P07 

RESET 
P20 
P21 
P22 
P23 
P24 
P25 
P26 
P27 

RD 
WR 

PSEN 
ALE/P 

TXD 
RXD 

21 
22 
23 
24 
25 
26 
27 
28 

R8T 

R8T 

D81232 

ADO/AO 
AD1/Al 
AD2IA2 
AD3/A3 
AD4/A4 
AD5/A5 
AD6/A6 
AD7/A7 

31 AD8/A8 32 AD9/A9 
33 ADl O/A1 0 
35 
36 

AD11/A11 

37 AD12/A12 
ADl31A13 

38 AD14/A14 
39 AD15/A15 

RD 
WRNPP 
BHEIPSEN 
ALE 
RESET 

PSD3XX 

U3 

PAO ADO/AO 
PA1 AD1/A1 
PA2 AD2IA2 
PA3 AD3IA3 
PA4 AD4/A4 
PA5 AD5/AS 
PA6 AD6IA6 
PA7 AD7/A7 

PBO AD8IA8 
PB1 AD9/A9 
PB2 AD10/Al0 
PB3 AD111A11 
PB4 ADl21A12 
PB5 AD131A13 
PB6 AD141A14 
PB7 AD151A15 

A161CS8 
40 

PCOO RD 
A17/CS9 41 peOl WRNPP 

42 BHEIPSEN 
A181CS10 43 

ALE 
A19/CSI RESET 

GND 
PSD3XX 

PAO 
PA1 
PA2 
PA3 
PA4 
PA5 
PA6 
PA7 

PBO 
PB1 
PB2 
PB3 
PB4 
PB5 
PB6 
PB7 

A16/CS8 40 

A17/CS9 
41 

A181CS10 
A19/CSI 

~I::!! 
'aQ'I ;:; .... ; 
aiSj ..... 
S' ;J :"4 
IS 
~ 

PC10 
PC11 

I 
~ 
I 

t 
Ii' 

I 
II 

I 
!! ... 



PSD3XX M68HC11 Figure 12 illustrates the configuration of an 
Byte-Wide M68HC11 microcontroller which also uses the 

8-bits wide multiplexed address/data bus. 
Interface The application is similar to that given in 

Figures 6 and 7 except that the RiW and E 
control lines have been invoked to establish 
compatibility with the Motorola device. The 
address strobe output from the M68HC11 is 
HIGH so the AS(ALE) input is set HIGH. The 
SRAM and EPROM section are programmed 
as combined and both Ports A and Bare 
enabled as I/Os with CMOS drives. Port C is 
programmed with chip-select outputs 
CS8-CS10. Other PSD3XX devices can be 
mapped into the addressing scheme or the 
lines can be programmed to transition as 
strobes in defined mapping areas. The latch 
enable bit for the higher-order address lines 

Table 5. 

A 16-A 19 is not used establishing a don't care 
condition. The CADDHL T condition must be 
selected if anyone of A 16-A 19 lines is 
selected as input to the PSD. 

Configuration Bits Function 
CDATA 0 8-bit data bus 

PSlJ3XX - Applit:atlDn lID", Ott 

In this design, the security bit is programmed. 
This bit prevents the reading of the PAD 
configuration by an unauthorized user. 
Furthermore, if the security bit has been 
programmed, standard programming ma­
chines can not read the internal code of a 
PSD3XX. However, data can always be read 
from the EPROM, RAM, and ports. This 
provides normal use of the device. If the 
address map in the PAD cannot be inter­
preted, the actual location of data within the 
address and I/O space is difficult to deter­
mine. Besides programming the CSECU­
RITY bit, added security can be applied by 
scrambling the sequence of address and data 
inputs. A short PASCAL or 'C' program can 
be written to reorganize the original Intel MCS 
code to be aligned with the scrambled pins. 
Table 5 indicates the configuration for the 
M68HC11/ PSD3XX interface. 

M68HC11 to 
l'Soaxx Interface CADDRDAT 1 Multiplexed address/data 

CRRWR 1 Set R/Vii and E mode 

CA19/CSI 0 Enable CSI input 

CALE 0 Active HIGH AS (ALE) 

CRESET 0 Active LOW RESET 

COMB/SEP 0 Combined memory mode 

CPAF2 0 Input/Output Port A 

CPAF1 OOH Input/Output Port A 

CPBF FFH Input/Output Port B 

CPCF 111B Output CS8-CS 1 0 

CPACOD OOH CMOS drivers 

CPBCOD OOH CMOS dnvers 

CADDHLT X "Don't care" A16-A19 not used 

CSECURITY 1 Security on 

-----------------------------------, .. ~~-----------------------------------
=== 1-21 



~I 

III"''''· IIIIII 
IIIIIIII 
Qhll!!1 
11111 "" 

J_ 

G~_ 
18pF 

U1 

XTAL 
XTAL 

PDO 
PD1 

1- 18pF 

PD2 
PD3 
PD4 
PD5 

PEO 
PE1 
PE2 
PE3 
PE4 
PE5 
PE6 
PE7 

PAD 
PA1 

Vee PA2 
PA3 
PA4 
PA5 
PA6 
PA7 

~ ~~ 
1-----,:===:===:l5IT:::j. 

~~ I 

1 ~=~ ± 18pl-_-__ _ 

GND 
68HC11 

vee 
I 2 

U3 

VDD 

pca 8 

PC1 9 

PC2 10 

pr;3 11 

PC4 12 

PC5 13 

PC6 14 

PC7 15 

16 PBO 
PB1 17 

PB2 
18 

PB3 19 

PB4 20 

PB5 21 

PB6 
22 

PB7 23 

5 E 
R/W 6 

4 
AS 

RESET 17 

XIRQ ~ 'RO 

~gg~ I ~ ~ 

vee 

~ R1 
4K7 

RESET 

~~ GND 

MC34064 

~I:!! ;,: 
'15 ;.:~ a 
~~; ~ 
~~-

, 
i ~ 

lIoo 

! =:i I' c;' 
~w i-~ :::0 

~ 
Ii 
Q ... ... 

U2 
23 ADO/AO PAD ~ 24 AD1/A1 PA1 ~ 25 AD2/A2 PA2 ~ 26 AD3/A3 PA3 ~ 27 AD4/A4 PA4 ~ 28 AD5/AS PA5 ~ 29 AD6/A6 PA6 ~ 30 A07/A7 PA7 ~ 
31 ~ ADS/AS PBO 32 AD9/AS PB1 ~ 33 AD10/A1Q PB2 r--+ 35 AD11/A11 PB3 ~ 36 AD12/A12 PB4 r-+ 37 AD13/A13 PB5 ~ 38 AD14/A14 PB6 ~ 39 AD15/A15 PB7 ~ 
22 ~ E A16/CS8 
2 R/Wivpp, A17/CS9 r--ll 

,-----&- BHE/PSEN 
~ AS A18/CS10 3 RESET A19/CSI ~ 

t:rc GND 

PSD3XX 

Vee 

~ ~ ~ R1 R1 R1 
4K7 4K7 4K7 



B-BIT Non-Multi­
plexed PS03XX 
Interface to 
M6BOOB 

Table 6. 
M68008to 
PS03XX 
Interface 

Figure 13 illustrates an application in which 
the address and data are not multiplexed. 
The M68008 has an 8-bit data bus and 20-bit 
address bus. The PSD3XX can be pro­
grammed to support the microprocessor by 
providing data I/O through Port A. The 
address lines from the microprocessor go to 
inputs AO-A 19. Port B outputs are used for 
external chip-selects to other MAP devices or 
other memory resources. The configuration 
has been set for compatibility with Motorola 
control signals. There are six chip-select 
outputs (CSO-CS5) and an address decode 
for DTACK and BERR. The PAD decodes an 
address range which is fed back to the 
microprocessor through these inputs. USing 
the open-drain configuration has been imple­
mented in Port B bits 6 and? The two pull­
up resistors enable external memory and 
peripherals to access the DTACK and BERR 
inputs as a wired-OR function. 

If other PSD3XX devices are mapped into the 
M68008 system, no additional glue logic is 

Configuration Bits Function 

PS03XX - Application Note 011 

needed to avoid possible bus contention on 
these lines. In this application, ALE(AS) can 
be used as a general-purpose logic input to 
the PAD because the function of ALE be­
comes redundant in a non-multiplexed 
address/data bus. Also shown in Figure 13 is 
a method of inverting the active LOW OS 
(Data Strobe) M68008 output. The A19 input 
is enabled to the PSD internal PAD and 
inverted at the output of CS1 0 to drive the 
PSD3XX E input. The E input must be active 
HIGH but OS is active LOW and qualifies a 
valid data transfer. Thus, the PAD must 
perform a signal Inversion. The E signal 
output from the M68008 is used to interface to 
Motorola 8-bit peripherals. However, with 
Motorola microcontroller families such as the 
M68HC11, the E signal output can drive the E 
input to the PSD3XX. Table 6 gives the 
configuration information associated with the 
design given In Figure 13. 

CDATA 0 8-bit data bus 

CADDRDAT 0 Non-Multiplexed address/data 

CRRWR 1 Set RIW and E mode 

CA19/CSI 1 Enable A19 input1 

CALE X "Don't care" non-multiplexed mode 

CRESET 0 Active LOW RESET 

COMB/SEP 0 Combined memory mode 

CPAF2 X "Don't care" Port A used for data 

CPAF1 XXH "Don't care" Port A used for data 

CPBF OOH Port B used for chip-selects 

CPCF 001B Configure A16 and Ai? In, CS10 Out2 

CPACOD OOH CMOS drivers 

CPBCOD COH CMOS drivers, PB6, PB? open drain 

CADDHLT 0 Address latch transparent A 16-A 19 

CSECURITY 1 Security on 

1 The DS output from the M68008 drives the A 19 Input to the PSD3XX 

2 The Internal PAD of thePSD3XX Inverts the DS Input to drive Its own E Input from the CS10 PAD output A16 and 
A 17 are programmed as PSD Inputs 

-----------------------------------f==~~-----------------------------------
iiiF!!iI iiE = 1-23 



~I 

I! 
~ 

DTACK 
BERR 

CLK 
LYE&; 

IPLOI2 
~ 

f"EiR':: 

'"FCli"' 
~C~ 
~ 

~ 
E 

~ 

34 
39 

42 
41 

33 
31 
40 

45 
44 
43 

32 

38 

36 

~ ~ 29 

~ 

U1 

CLK 
VPA 

IPLOI2 
IPL1 

BR 
DTACK 
BERR 

FCO 
FC1 
FC2 

BG 

E 

-' 

HALT 
RESET 
AS 
OS 
R!W 

68008 

AO 46 23 
47 24 

A1 48 25 
A2 
A3 

1 26 

A4 2 27 

A5 3 28 

A6 4 29 
5 30 A7 
6 31 

A8 7 32 
A9 8 33 A10 

9 35 
A11 
A12 10 36 

A13 
11 37 
12 38 A14 14 39 M5 16 A16 

~ Vee 
A17 T ,---?f-A18 ~ 
A19 ~ 1 

13 
3 

~ DO 
01 
02 

25 

~ 03 
23 04 

~ 05 21 
06 

~ 07 

~Ii I "!. I::: ;:s- Ii ~ 
.. I 

s- ~ t fA ;;: H I 
~ I 

st ... 
I I 

Vee Vee 

R1 R2 
saOR 560R 

~ .....!!E.8B. 

U2 

ADO/AO PAO 21 
20 

AD1/A1 PA1 19 AD2/A2 PA2 
AD3/A3 PA3 18 

AD4/A4 PA4 17 

AD5IA5 PAS 16 

AD6!A6 PA6 15 
14 AD7/A7 PA7 

ADBlA8 11 --cso AD9/A9 PBO 10 
AD10/A10 PB1 9 CS1 
AD11/A11 PB2 ;>-g~ AD121A12 PB3 8 

AD131A13 PB4 7 CS4 
6 AD14/A14 PBS 
5 ~ 

AD151A15 PBS 
--i.-PB7 

E A1B1CSB 40 

RtWNPP A17/CS9 41 

BHEIPSEN 

.,~" IT AS 
RESET A19/CSI .....$!. 

PSD3XX 

Os 



Thlspa,e 
Intentionally left blank 

I'IIIIXX - Appllt:lllltln "*1111 

------------------------~~,.------------------------'I" 1.25 



PSD3XX - Application Note 011 

This page 
intentionally left blank 

-1--a--------------------------~Jr~----------------------------



If68IJIJO/ 
2XPSD3XX 
Applications 

TableB. 
M68IJIIO Micro­
processor to fWo 
PSD3XX Dell/C. 
InParall.' 

IWIXX - lfllllaIJM".,. D11 

With the circuit design given in Figure 15, two 
PSD3XX devices are used in a byte-wide 
mode. One PSD stores the upper data byte 
and one the lower data byte of a 16-bit word. 
By using the devices in this way, two 6-bit 
wide ports can be created in Port B of each 
device. PBS and PB7 are programmed as 
open-drain outputs and wired-OR giving 

composite DT ACK and BERR feedback 
signals to the M68000. The generation of the 
E signal for both PSD devices is achieved in 
the same way it was in the M68008. The [OS 
and ODS inputs (to U2 and U3 respectively) 
are inverted by the PAD and drive the rele­
vant E inputs. Table 8 gives the configuration 
information relevant to both PSD devices. 

Configuration Bits function 
CDATA 0 8-bit data bus 

CADDRDAT 0 Non-multiplexed address/data 

CRRWR 1 Set RtW and E control inputs 

CA19/CST 1 Enable A 19 input' 

CALE X "Don't care" not used 

CRESET 0 Active LOW RESET 

COMB/SEP 0 Combined memory mode 

CPAF2 X "Don't care" Port A used for data 

CPAF1 XXH "Don't care" Port A used for data 

CPBF FFH Port B used for I/O 

CPCF 111B Configure OS8-CS102 

CPACOD OOH CMOS drivers 

CPBCOD OOH CMOS drivers 

CADDHLT 0 Transparent A19 

CSECURITY 0 No security 

1. A 19 input to the PS03XX's is used to rec:eive UOS and LOS from the M68000 microprocessor. These signals are 
inverted by the PAD of each PS03XX and fed back to the E input of each divice. 

2. CSt 0 of each PS03XX drives the inverted UOS and LOS back to E input. Port C is programmed to output csa and 
CS9. Additional byte-wide peripherals can be configured to the system and selected by these signals. 

----------------------' .. ~,.----------------------'#II"" 1.27 



-~ co 

~
·".I 

btlll 

Qbllill 

1111:1\11 

rcLK>- 15 
~23 

~ 
~ IP2 

BGACK~ 
L!lli...?- ~~ 

24 

'FCO-< ~~ 
~ 
~11 

VMJ!" 21 
~22 

~ 19 
20 
6 
7 
8 
9 

Vee 

R1 
470R 

U1 

CLK 
VPA 

IPLO 
IPL1 
IPL2 

BGACK 
BR 
DTACK 
BEAR 

FCO 
FC1 
FC2 

BG 
VMA 
E 

HALT 
RESET 
AS 
UOS 
LOS 
R/W 

68000 

[A1-A18] 

U2 
23 ADO/AD 

A1 
32 24 AD1/A1 

A2 
33 25 AD2/A2 

A3 
34 26 AD3/A3 
35 27 

A4 36 28 AD4/A4 
A5 ADS/AS 
A6 

37 29 ADS/A6 
A7 38 30 AD7/A7 
A8 

39 31 ADS/AS 
A9 

40 32 AD9/A9 
A10 

41 33 AD10/A1Q 
A11 

42 35 AD11/A11 
A12 

43 36 AD12/A12 
A13 

44 37 AD13/A13 
A14 

45 38 AD14/A14 
46 39 

A15 
~ 

AD15/A1S 
A16 

Vy A17 ~ 
A18 ~ --¥-- E 
A19 ~ R/W/VPP 
A20 ~ 1 SHE/PSEN 
A21 ~ 13 

AS 
A22 ~ 3 

RESET 
A23 r-&-

00 
I ~ ~ 

PSD3XX 
01 
02 

I ~ ~ 03 
04 I 68 ~ 05 
06 ~ [00-015] 

07 
66 

~ 08 
~ 09 

010 ~ 
011 ~ Vee 
012 ~ 
013 ~ 
014 ~ 
015 ~ 

DTACK 

U3 

PAO 
21 00 ~ ADO/AQ 

PA1 20 01 ~ A01/A1 
PA2 

19 02 ~ AD2/A2 
PA3 

18 03 ~ AD3/A3 17 04 ~ PA4 16 05 ~ 
A04/A4 

PA5 ADS/AS 
PA6 

15 < 06 ~ AD6/A6 
PA7 

14 07 ~ A07/A7 
~ ADS/AS 

PBO 

- ~ AD9/A9 
PB1 10 P1 ~ AD10/A1Q 
PB2 9 P2 ~ AD11/A11 
PB3 8 P3 ~ AD12/A12 
PB4 7 P4 t'-----4- AD13/A13 
PB5 ~ P5 ~ AD14/A14 

~ PB6 
4 AD15/A15 

PB7 

~* A16JCS8 40 
S11 E 

A17/CS9 ~ +- R/WNPP + SHE/PSEN 

A18/CS10~ ,r---¥- AS 

A19/CSIIl ~~ RESET 

PSD3XX 
LOS 

R2 
470R 

BERR 

PAO 
PA1 
PA2 
PA3 
PA4 
PA5 
PA6 
PA7 

PBO 
PB1 
PB2 
PB3 
PB4 
PB5 
PB6 
PB7 

A16/CS8 
A17/CS9 

21 
20 
19 
18 
17 
16 
15 
14 

~~.~ 
~;JI; 
!:~""~ 
Q ~ • 

51 

08 
09 
010 
011 
012 
013 
014 
015 

~ 

~ 9 ~~O 
~ 
r-+-<::E13 ::> 

4 

40·--<SiJ1 c---±1--- ......§!!1 

A18/CS10~ 
A19/CSI Il 

UOS 

i 
~ 
I 

~ 
'I.. 
~ I' 
I 
!:f -



16- Bit Address! 
Data PSD3XX 
Interface to Intel 
BDI86 

Tableg. 
Intel 80186 to 
PSD3XX 
Configuration 
for CMOS Ports 

Figure 16 and Table 9 give the configuration 
of the PSD3XX in an Intel 80186 system. This 
device has a 16-bit multiplexed address/data 
bus. Ports A and B are used for data I/O 
functions, so this design can take advantage 
of the port expansion capability. To distin­
guish between memory and I/O functions, it is 
necessary to decode the S2 output from the 
80186. This output line goes directly to the 
PAD through Port C bit zero. When LOW, 
this signal qualifies a memory access; when 
HIGH, it indicates that an I/O operation is in 
progress. Programming the PAD can use this 
input to differentiate between I/O and memory 
access. 

Two additional signals from the 80186 are 
UCS and LCS (upper chip-select and lower 

Configuration Bits Function 

I'SIJ3XX - AppllcatltJn IIDte011 

chip-select, respectively). The signals have 
been included in the system to help minimize 
the requirement for additional glue logic. Both 
can be used in the PAD decoder to position 
sections of EPROM and RAM. The UCS is 
designed to decode addresses FFFFFH to a 
programmable limit. The 80186 begins 
executing from memory location FFFFOH 
after a system reset; thus, this signal should 
be used to select EPROM that contain a 
system initialization sequence. The LCS has 
been designed to program from OOOOOH up to 
a programmable limit. In this example, the 
RESET line from the 80186 is active HIGH 
and drives the RESET input of the PSD301 
which is programmed to respond to a HIGH 
level. 

CDATA 1 16-bit data bus 

CADDRDAT 1 Multiplexed address/data 

CRRWR 0 Set RD and WR mode 

CA19/CSI 0 CSI input to PAD 

CALE 0 Active HIGH ALE 

CRESET 1 Active High RESET 

COMB/SEP 0 Combined memory mode 

CPAF2 0 1/0 Port A 

CPAF1 0 1/0 Port A 

CPBF FFH 1/0 Port B 

CPCF OOOB Input A16-A18 

CPACOD OOH CMOS drivers 

CPBCOD OOH CMOS drivers 

CADDHLT 0 Latched A 16-A 19 

CSECURITY 0 No security 

___________________________________ ,~JF~!'-----------------------------------
~.§ 1-29 



~I 
~;xari' I t:: 'I. e ! c:: 
f~g! I 

;s. i! ft' t fA I: 
f 
1= 
8' 
S 
~ 

U1 ,\!L 17 
X1 ADO 

15 
23 ADO/Aa PAO 

CJ A. AD1 24 AD1/A1 PA1 ?~fI."l-b 13 AD2 11 
25 AD2/A2 PA2 

X2 AD3 8 
26 AD3/A3 PA3 

AD4 6 
27 AD4/A4 PA4 

TIO AD5 28 ADS/AS PA5 
TI1 AD6 4 29 AD6/A6 PA6 

AD7 2 30 AD7/A7 PA7 
RES AD8 16 qrl -.-L 4/ TEST AD9 14 31 ADS/AS PBO 

II11111 T 
C1 AD10 12 32 AD9/A9 PB1 
10~F 18 10 33 

111-1111 19 DROO AD11 7 35 AD10/A10 PB2 
DR01 AD12 AD11/A11 PB3 

I11II GND AD13 5 36 AD12/A12 PB4 

QIII~! 45 INTO AD14 3 37 
AD13/A13 PB5 

~ 44 INT1 AD15 1 38 AD14/A14 PB6 
A16/S3 ~ 39 AD15/A1S PB7 

INT2ITAO A17/S4 ~ 22 

M~~~ INT3/TA1 A18/S5 ~ RD 
A19/S6 ~ 2 WRNPP A17/CS9 41 

ARDY 1 BHE/PSEN 
SRDY BHE/S7 

64 I 13 
A18/CS10 :~ 61 3 ~~~ET NMI ALE/aso A19/CSI 

HOLD WR/OS1 63 

rPsOOxx RD/OSMD 
62 G-ND 

Meso --
MCS1 TOO 
MCS2 T01 
MeS3 UCS 

LCS 
PCSO SO 
PCS1 S1 
PCS2 S2 
PCS3 
PCS4 CLKO 
PCSS/A1 RESET 
PCS6/A2 HLDA 

DT/R 
DEN 
LCK 



16-Bit Address! 
Data I'SD3XX to 
Inte1B0196 
Interface 

Tab/e 10. 
Inte/B0196 to 
PSD3XX 
Configuration 
for LED DrillefS 

I'SII3XX - AppIIt:atltIn ".", 011 

In Figure 17, the PSD3XX is connected to an 
Intel 80196 microcontroller. In many micro­
controller applications it is necessary to 
illuminate indicators (such as LEOs). Here, 
the PSD3XX is used to drive LED indicator 

displays. High-efficiency LEOs can be 
illuminated through the open drain outputs of 
Port B. The configuration information in Table 
10 indicates that Port B has open drain 
drivers to sink LED illumination current. 

Configuration Bits Function 

COATA 1 16-bit data bus 

CAOOROAT 1 Multiplexed address/data 

CRRWR 0 Set RO and WR mode 

CA19/CSI 0 "Don't care" A 19/CSI 

CALE 0 Active HIGH ALE 
CRESET 0 Active LOW RESET 

COMB/SEP 0 Combined memory mode 
CPAF2 0 I/O Port A 
CPAF1 OOH I/O Port A 
CPBF FFH I/O Port B 
CPCF OOOB Output A 16-A 18 
CPACOO OOH CMOS drivers 
CPBCOO FFH Open drain drivers 
CAOOHLT X "Don't care" (not used) 
CSECURITY 0 No security 

------------------------~Jr;------------------------1·31 



-~ 

Ii 
.~ 

U1 U2 

L C1 11 Xl P3.0/ADO ~~ ~~ ADO/AO PAD ~6 PA3.0 1i 30PF..:!:.. Xl P3.1/AD1 58 25 AD1/Al PAl 19 PA3.1 
D 8MHz 12 P3.21AD2 57 26 AD2IA2 PA2 18 PA3.2 

:~2 X2 P3.3/AD3 56 27 AD3/A3 PA3 17 PA3.3 
Vee L 30pF 3 P3.4/AD4 55 28 A04/A4 PA4 16 PA3.4 r-i3 NMI P3.S/ADS S4 29 ADS/AS PAS ~ PA3.S 

t:.;;:t .... is' ~ 
;taM~6" 
'l1li: :::i B. ;Ii 

I-&~i; .:.c_-
:::i:l:!9:--W 
~'Ii ~ DI;:: 
S'n , 

14 READY P3.6/AD6 53 30 ADS/AS PAS 14 PA3.S 
!,. 64 ~~~WIDTH P3.7/AD7 AD7/A7 PA7 PA3.7 

NO 16 RESET P4.0/AD8;~ ~~ ADS/AS peo ~6 <:>-PB4.0 G 
NMI 6 P4.1/AD9 50 33 AD9/A9 PBl 9 PB4.1 
PO.O S ACHO/PO.O P4.2/AD10 49 35 AD10/A10 PB2 8 ~ 
PO.l 7 ACH1/PO.1 P4.3/AD11 48 36 AD11/A11 PB3 7 PB4.3 
PO.2 4 ACH2/PO.2 P4.4/AD12 47 37 AD121A12 PB4 6 >.PB44 
~ 11 ACH3/PO.3 P4.S/AD13 46 38 AD13/A13 PBS S PB4.S 

PO.4 10 ACH4/PO.4 P4.6/AD14 45 39 AD14/A14 PBS 4 >-PB4.6 
~ 8 ACH5/PO.S P4.7/AD15 AD15/A15 PB7 PB4.7 
r PO.6 >- 9 ACH6/PO.6 _ 61 22 _ 40 ~ 

~ ACH7/PO.7 WR~~ 40 2 ~~ ~1~g~~ ~41, 
......-,=x:: 18 P2.0ITXD WHE/BHE 41 1 BHE/PS'E'N 
~XD 17 P2.1/RXO ADV/ALE 62 13 ALE A18/CS10 42 
p~ !~ P2.2/EXINT INST ~; -<> INST ~ RESET A19/CSI 43 
~ 42 P2.31T2CLK CLKOUT ~ GND 
~~ P2.41T2RST S9 VCC 

P2.S 33 P2.S/PWM P1.0 S8 >- P1 .0 -< PSD3XX "f 
~ P2.6IT2UP-DN P1.1 S7 -<. P1.1 > 1 

P2.7 P2.7fT2CAPTURE P1.2 ~ 1 2 

,~ 24 P1.3 ~ R1A R1B 3 R1C 4R1D 
I HSI.O -< 25 HSI.O P1.4 48 P1.4 470R 470R 470R 470R 

~ HSI.1 26 HSI.1 P1.5 ~ -< P1.S 
HS2I4 -< 27 HSI.2/HSO.4 P1.6 46 """>- P1.6 1 1 1 1 
::...~ HSI.3/HSO.5 P1.7 ~ 6 5 4 3 

'--H--------...!1.,,3--1 VREF HSO 0 28 ~ D1 D2 D3 ,. D4 

12 HSO:, ~~ -<HSO.11 ~ ~ ~ ~ 
H'-----------'£2'-1 ANGND HSO.2 35 HSO.2 

Vee EA HSO.3 ~ 

~~ ~ 
R1 I 
1~ S 6 7 8 

R1E R1F R1G R1H 
470R 470R 470R 470R 

~ C3 1 1 1 9 T O.01j.JF 2 1 0 
,,. DS ,. D6 ,,. D7 ,,. D8 

GND ~ ~ ~ ~ 

I 
I 

t 
I 
! 

I 
s -



Interfacing the 
PSD8XX to '-Bit 
Microprocessors 
ZBO and M6BD9 
AppllcatlDns 

Table 11. 
ZBOB to PSD8XX 
Interface 

Table 12. 
M6BD9 to PSD8XX 
Interface 

I'SII3XX - Application lID,. 011 

Figures 18 and 19 illustrate the PSD3XX used 
with 8-bit microprocessors, such as the Z80B 
and M6809B. Tables 11 and 12 reflect the 
configuration of each design, respectively. 
The mode of operation is 8-bit data bus with a 
non-multiplexed address/data input. In the 
case of the Z80B, CS8-CS"fO inputs are tied 
to M1, MREO, and IORO respectively. Since 

the PAD can be programmed to distinguish 
between memory and 110 operations, the 
Z80B system has access to an 8-bit data port 
Port B. With the M6809B system, CS8 is 
used to respond to the MRDY input of the 
microprocessor and CS9 and CS 10 are 
available for external chip-select. 

Configuration Bits Function 
CDATA 0 8-bit data bus 

CADDRDAT 0 Non-multiplexed address/data 

CRRWR 0 Set RD and WR mode 

CA19/CSI 0 CSI input 

CALE X "Don't care" (not used) 

CRESET 0 Active LOW RESET 

COMB/SEP 0 Combined memory mode 

CPAF2 X "Don't care" Port A used for data 

CPAF1 XXH "Don't care" Port A used for data 

CPBF FFH I/O Port B 

CPCF OOOB Configure A 16-A 18 as inputs 

CPACOD OOH CMOS drivers 

CPBCOD OOH CMOS drivers 

CADDHLT 0 A 16-A 18 transparent' 

CSECURITY 0 No security 

1. AI6-AI8 inputs are used as Ml, MREO, and IORO inputs to the PAD from the Z808 output. Use the ALIAS 
command in the support software. 

Configuration Bits Function 
CDATA 0 8-bit data bus 

CADDRDAT 0 Non-multiplexed address/data 

CRRWR 1 Set RIW and E mode 

CA19/CSI 0 Enable CSI input 

CALE X "Don't care" non-multiplexed mode 

CRESET 0 Active LOW RESET 

COMB/SEP 0 Combined memory mode 

CPAF2 X "Don't care" Port A used for data 

CPAF1 XXH "Don't care" Port A used for data 

CPBF FFH Port B used for I/O 

CPCF 111 B CS8-CS10 outputs 

CPACOD OOH CMOS drivers 

CPBCOD OOH CMOS drivers 

CADDHLT 0 "Don't care" 

CSECURITY 0 No security 

------------------------~JrJr;-----------------------,-~-3 



* 

1IIii::' 
tI= .. ~, 

G 

ce 

R1 
10K 

f C1 

~O 

27 

19 
20 
22 
21 

~28 

~ 
WAIT 24 

~16 
...NM!.... 17 

26 

BUSRO 25 

BUSACK 23 

~ 
6 

U1 
_. 
M1 AD 30 

Ai 
31 

MREO A2 32 

IORO A3 33 

WR A4 34 

RO AS 35 

A6 36 

REFSH A7 37 

AS 38 

HALT A9 39 
40 AiD 

WAIT A11 
1 
2 A12 
3 INT A13 4 NMI A14 
5 A15 

RESET 14 
DO 

~ BUSRO 01 
BUSAK 02 ~ 03 
CLK 04 ~ 05 

~ DB 
07 ~ 

ZSOB 

U2 --23 ADO/AD PAD 24 
A01/A1 PA1 25 A02lA2 PA2 26 A03/A3 PA3 27 AD4/A4 PA4 28 A05/AS PAS 29 A06lA6 PA6 30 A07/A7 PA7 

~ ADS/AS 
~ 

PBO 
A09/A9 PB1 33 A010/A10 PB2 35 

36 A011/A11 PB3 

37 AD121A12 PB4 

38 
A013/A13 PBS 
A0141A14 PB6 39 A015!A15 PB7 

Vee & AD A161CS8 
T- v-+- iiiiR A17/CS9 

BHEtPSEN 13 ALE A1s/C..§lll 

G~O r--L RESET A19/CSI 

PSD3XX 

21 
20 
19 
18 
17 
16 
15 
14 

~ 10 P1 
9 P2 
8 -<P3 
7 P4 

~> 
P6 

4~ 

40 M1 
41 MRE 

42 IORO 
43 

-=;tNO 

~I:.t! "Ii ca ;:: I 
I ~ 
I~ 

I 
I 

t 
I 
I 
s ... 



llI.i~: 
111l1li11 
~11111l 
IQII"" 

... 
~ 

~- C1 I ri 20pF +-------, u, U~ 
..:h- X1 ~ X1 AQ ~ ~! ADO/AD PAQ I ~6 "-

C1 0 SMH A1 ADlIA1 PA1 ~. 
GND T 20 F T Z A2 10 25 AD2/A2 PA2~" 

P 38 EX2 A3 11 26 AD3/A3 PA3 ~ "\ 
A4 1 2 27 AD4/ A4 PA4 I-1..L.-. "\ 

rRS'i"'c 37 RESET A5 13 2S AD5/A5 PA5 ~" 
NMI - 2 NMI AS 14 29 ADS/A6 PAS ~"\ 

A7 15 30 AD7/A7 PA7 ~ 
~ 40 HALT AS 16 31 ADS/AS ~~~ _____ _ 
HRQ-'S 3 IRa A9 17 32 AD9/A9 PBO ~ 
~ 4 A10 ~~ ~~ AD1 0/A1 ° PB1 ~ 
~ 36 FIRQ A11 20 36 AD11/A11 PB2 8 PB2 

DM 33 ~~~1. ~~~ 21 37 ~g;~;~;~ ~~! 7 ~ 
A14 ~~ ~~ AD14/A14 PB5 r-1- ~ 
A15 AD15/A15 PB6 r--t-<~ 
DO~ PB7 PB7 

D1 U!L..' 22 E A16/CSS!-:4r\0C---===-------, 
D2~' 2 FiMiIVPp A17/CS9~ 
D3 ~ Vee r&- BHE/PSEN 1---= 
D4 ~ 'T' 13 AS A1S/CS10 42 ---cs1' 
D5 ~ 3 RESET A19/CSi ~ 
D6~ I ~J.., 
D7~ GND 

E 34 PSD3XX 
a 35 a 
BA~ 
BS~ 

RtW I 32 ----.. 

6809B 

~=~ "Ci ~ CS ..... SO-
n'~; 
a~ ..... s· a co 
:::a~ 
fn~ 

I 
)oj 
I 

t 
I 
iii 

I 
52 ... 



I'SIJ3XX - Applit:atitln IItItrI 011 

PSD3XX 
Interlace to the 
IntelBD286 

Table 13. 
Intel BD286 to 
PSD3XX Interlace 

Figure 20 provides a schematic of the 
PSD3XX interface to an 80286. The device is 
configured for a 16-bit data bus in the non­
multiplexed mode. Ports A and B are con­
verted automatically for use as a bi-directional 
data path into the PSD3XX. (This was also 

the case for the M68000 microprocessor). To 
eliminate (or lessen) glue logic, CS1 and CS2 
are generated from the internal PAD. This is 
programmed as an address decoder. Table 
13 provides configuration information relevant 
to this system design. 

Configuration Bits Function 
CDATA 1 16-bit data bus 

CADDRDAT 0 Non-multiplexed address/data 

CRRWR 0 Set RD and WR control inputs 

CA19/CSI 1 Enable A 19 input 

CALE X "Don't care" non-multiplexed mode 

CRESET 1 Active HIGH RESET 

COMB/SEP 0 Combined memory mode 

CPAF2 X "Don't care" Port A used for data 

CPAF1 XXH "Don't care" Port A used for data 

CPBF XXH "Don't care" Port B used for data 

CPCF 011 B A 16 input; CS9 and CS10 outputs 

CPACOD OOH CMOS drivers 

CPBCOD OOH CMOS drivers 

CADDHLT 0 Transparent A 16-A 19 input 

CSECURITY 0 No security 

-'~-6--------------------------~~Jf----------------------------



U1 

X1 READY 4 

c::l ~ ~ul_1'71 CLK 10 

RESET 12 

X2 13 PCLK 
EFI 

If"' 
ARDY 
AYEN 15 CEN/AEN 
SRDY 
SYEN 14 CENL 

~ ~~DLY 
SO 
S1 

82288 
RES 
FIC 

GJ.NOj 
~ 

Vee 82284 

U3 

READY 
CLK 
RESET 

SO 
S1 

67 M/'i'O'" T 10J.lF LOCK 68 LOCK 
NMI 59 NMI 
INTR 57 INTR 

GNO 

I ' .. 1111 

~I 
IQ-J 

64 HOLD 65 HLDA 

53 ERROR 
54 BUSY 61 PEREa 
6 PEAC.!S....... 66 CODIINTA 

52 CAP 

... 
~ 80286 

OT/R~ 
DEN 16 
ALE 5 

MCE 4 

U4 

AO 
A1 
A2 
A3 
A4 
A5 

23 ADO/AD 24 AD1/A1 
25 AD2/A2 26 AD3/A3 27 AD4/A4 
28 ADS/AS 29 ADS/AS 
30 AD7/A7 

AS 
A7 
A8 
A9 

A10 
A11 
A12 
A13 
A14 

31 ADB/AS 32 AD9/A9 
33 A01Q/A1D 
35 AD11/A11 
36 AD12/A12 37 A013/A13 
38 AD14/A14 
39 AD15/A1S 

A15 
A16 RO 
A17 
A18 :'~E/PSEN 
A19 ALE 
A20 RESET 
A21 
A22 
A23 PSD3XX 

BHE 

00 
01 
02 
03 
04 CS1l 
05 
06 
07 CS2l 
08 
09 

010 
011 
012 
013 
014 
015 

21 PAO 
20 PA1 19 PA2 18 PA3 17 

PA4 16 PA5 15-PA6 14 PA7 

11 
PBO 10 PB1 

9 PB2 
8 PB3> 
7 

PB4 6 PB5 
5 PB6 4 PB7 

40 A16/csa 41 A17/CS9 

42 A1B/CS10 43 A19/CSI 

, I 

~rJ!i;!! 
15 .::i fir 'I ;;: ~I-· I:~ II 
I 

I 

I' It 
I 
Ii 

I 
s ... 



IWIXX - """.",." .... '111 

ExfIImtII The configuration in Figure 21 illustrates how 
"-rip""" ttl tIItI the user can feed address outputs from the 
...... vv........" internal latch to Port A. Addresses AO-A7, 
r~,.,--., I derived from a multiplexed address/data bus, 
eo",l""",.", can go directly to an additional peripheral 

without the need for an additional octal latch 
such as the 74HC373 or 74HC573. Port A 
can be used for address outputs AO-A 7 while 
PBO-PB7 can be used as chip-selects. Lines 
Ao-A4 of the PSD3XX drive the'RS1-RS5 
register select inputs of the M68230. For the 
M68HC11, the eight bits of address and data 
come from its PC port PCO-PC7 (ADO-AD7) 
and are latched by the AS input. Configured 
in this mode, the PSD3XX can address and 
map additional peripheral chips. Port A of the 
PSD3XX conveys the internally latched 

Contll,ratloll Bill FUllctloll 
CDATA 0 8-bit data bus 

address outputs Ao-A7 to the output and can 
be used to address registers in the peripheral 
chips while Port B outputs can place individ­
ual peripherals at peripheral or memory­
mapped boundaries. Thus, a number of 
additional chips can be sblected through Port 
B. This effectively can increase the port 
density of the system design. The general 110 
capability can then be extended to extra 
ports, timers, UARTs, serial communications 
channels, keyboard interface devices, CRT 
controllers, etc. without the need for additional 
glue logic. Table 14 highlights the configura­
tion information programmed into the PSD3XX 
when configuring the M68HCll to a M68230 
peripheral. 

,.1.,4. 
M6IIIIC11/I'IIIIXX 
ttl ExfIJIuI CADDRDAT 1 Multiplexed address/data 
1'tIrIp .. 
M6II28II 
IIIfrItftIt:e 

CRRWR 

CA19/esi 

CALE 

CRESET 

~SEP 

CPAF2 

CPAFl 

CPBF 

CPCF 

CPACOD 

CPBCOD 

CADDHLT 

CSECURITY 

1 Set RIW and E mode 

0 Set power·down mode 

0 Active HIGH AS 

0 Active LOW RESET 

0 Combined memory mode 

0 Port A = address Ao-A 7 
FFH Port A set for address 

OOH Port B set for chip-select 

111B Port C set for chip-select 

OOH CMOS buffers 

OOH CMOS buffers 

X "Don't care" 

0 No security 

-------------------------------------11'/---------------------------1-31 .." .. 



~ S'II:~ ~:=III I:: ;:: Ii~ Ci1 
It " ~ -~ 
I'*l~-

a 
~ 

U2 U3 

XTAL PCO 8 23 ADO/AD PAO 21 AO 25 RS1 PAO ---t 
XTAL PC1 9 24 AD1/A1 PA1 20 A1 26 

RS2 PA1 -T 
PC2 10 25 AD2/A2 PA2 19 A2 27 

RS3 PA2 ----y-
POO PC3 11 26 AD3/A3 PA3 

18 A3 28 RS4 PA3 -F 
P01 PC4 12 27 AD4/A4 PA4 17 A4 29 RS5 PA4 ----'§-
P02 PC5 13 28 AD5/AS PA5 -i%- PA5 fa 
P03 PC6 14 29 ADS/AS PA6 --J+-
P04 PC7 15 30 A07/A7 PA7 ~ r*- oo ~~~ -t'f 

& P05 16 31 11 CSO 46 01 
PBO 

17 32 A08/A8 PSO 
~ ~ 

02 PBO 
PEO PB1 AD9/A9 PB1 03 PB1 

~: 
PE1 ~o PE1 PB2 18 33 AD1 Q/A1 0 PB2 -+- r-¥- 04 PB2 
PE2 47 PE2 PB3 19 35 A011/A11 PB3 -4- 05 PB3 
PE3 49 PE3 PB4 20 36 AD12/A12 PB4 -+- ~ 06 PB4 
PE4 44 PE4 PB5 21 37 AD13/A13 PB5 -+- ;r2-- 07 PB5 46 22 38 PE5 48 PE5 PB6 23 39 AD14/A14 PB6 4- PB6 

.... !~ PE6 50 PE6 PB7 
v¥c 

AD15/A15 PB7 -L PB7 
PE7 PE7 5 22 --*- 43 E E A16/CS8 RtW PCO 

PAD RtW 6 2 "RtWIVPP A17/C$9 --1L 41 CS PC1 
PA1 1 BHE/PSEN 39 RESET PC2fTIN 4 13 

A18/CS10 --*" I PA2 ---P§ 17 AS PC3/TQUT 
PA3 

R.E2SI 18 I 3 RESET A19/CSI ~"'I PC4/DMAREQ 
PA4 XIRQ~ GNO PC5/PIRQ 
PA5 IRQ PCB/PlACK 
PA6 

MOOB~ 
PSD3XX PC7/TIACK 

PA7 

~VRH 
MOOA 

Vee 
51 VRL 

~ Vee Vee Vee R4 /I 68HCll 
1K 

R1 68230 
GNO 4.7K I tLJ 1~F ~ 

GNO I 

Vee 
U4 t 2 
Voo ir 

RESET !: 
3 

GNO II 
GNO I -, MC34064 

f8 Sl -



I'BIJ3XX - App/1tJtJtItHI "",. 111 

Addltlolllll 
External IRA. 

Tabl.,S. 
M"HC11/ 
PSD3XX 
Configured to 
AddlllSS 
Additional 
SRAM 

Figure 22 illustrates how additional SRAMs 
can be configured into a system. This 
PSD3XX configuration is not limited to exter­
nal peripheral expansion; it can also be used 
to add additional memory without the need for 
external glue logic. With an S-bit address/ 
data multiplexed scheme, the higher-order 
addresses (AS-A 15) are non-multiplexed. 
These address lines are fed directly to the 

external SRAM from the microcontroller and 
do not need to go through the PSD3XX 
These lines can drive the RAM chip directly. 
Thus the M6SHC11 system, which is highly 
memory-intensive and requires more RAM 
than the microcontroller and PSD3XX can 
supply, can take advantage of the configura­
tion shown in Figure 23 which is detailed in 
Table 15. 

Conflgurallon Blls Function 

CDATA 0 8-bit data bus 
CADDRDAT 1 Multiplexed address/data 
CRRWR 1 Set RIW and E mode 
CA19/CSI 0 Set power-down mode 
CALE 0 Active HIGH AS 
CRESET 0 Active LOW RESET 
COMB/SEP 0 Combined memory mode 
CPAF2 0 Port A = address AD-A7 
CPAF1 FFH Port A set for address 
CPBF OOH Port B set for chip-select 
CPCF 111B Port C set for chip-select 
CPACOD OOH CMOS buffers 
CPBCOD OOH CMOS buffers 
CADDHLT X Latched A 16-A 19 "don't care" 
CSECURITY 0 No security 

----------------------~Jr;----------------------1-40 



I",q 
l.l~ 

1Qij1111 

1.111~~ 

.... 

.c.. .... 

G '~, T 20pF 
X1 

gHZ 

GND 
U1 

7 
XTAL PCO 

8 
XTAL PC1 

II 
PC2 

PDO PC3 
P01 22 PD1 PC4 
PD2 23 PD2 PCS 
PD3 24 PD3 PC6 

~g: 25 
PD4 PC7 
PDS 

~ 
PBO 

PEO PB1 

I PE1 ~-4~ PE1 PB2 
PE2 47 PE2 PB3 

I ~~~? ~§L PE3 PB4 
PE4 PBS 

~E5~46 PES PB6 
48 

PE6 PB7, 

~ PE7 
E 

~34 PAO RMi 
PA1 33 PA1 

~ PA2 AS 
PA3 RESET 

~ PA4 XIRQ PA4 29 
PA5 IRQ PAS 28 
PA6 ~~ 27 PA7 MODB 

-¥.-
MODA 

oe VRH 
~ VRL 

R4 
1K 68HC11 

+--- G~D 
r C3 

1~F 

~D 
U4 

Vee -"L.L 
Voo 

RESET 
3 

2 
GND 

~ '--------

MC34064 

8 23 
9 24 
10 25 
11 26 
12 27 
13 28 
14 29 
15 30 

16 31 
17 32 
18 33 
19 35 
20 36 
21 37 
22 38 
23 39 

5 Vee 22 
6 2 

1 
4 13 
17 3 

~ 
2 

~ 

U2 

ADO/AD PAO 
21 AO 

AD1/A1 PA1 
20 A1 
19 A2 AD2IA2 PA2 
18 A3 AD3/A3 PA3 

AD4/A4 PA4 
17 A4 

ADS/AS PAS 16 AS 
15 A6 AD6/A6 PA6 
14 A7 A07/A7 PA7 

11 CSO ADS/AS PBO 
I '~ CS11 AD9/A9 PB1 

AD10/A1Q PB2 

~I 
A011/A11 PB3 
AD121A12 PB4 
AD131A13 PBS 
AD14/A14 PB6 I--+-
AD15/A15 PB7 r---L 

-
E A16/CSB ~ 
RlWNPP A17/CS9 ~ 
BHEIPSEN 
AS A18/CS10 i---#-
RESET A19/CSI 43 

~D 
PSD3XX 

Vee 

"r "r ~ R1 R1 R1 
4_7K 4.7K 4.7K 

U3 
10 

AO 
9 

A1 8 
7 A2 

A3 
6 

A4 
5 AS 
4 
3 

A6 

A8 25 
A7 

A9 24 
A8 

A10 21 
A9 
A10 

A11 23 
A11 

A12 2 
A12 

20 
CS1 

~ CS2 27 
WE 

22 
OE 

6164 

U4 
10 

AO 9 
A1 

8 
A2 

7 
A3 

6 
5 

A4 

4 
A5 

3 
A6 
A7 25 
A8 24 
A9 21 

23 A10 

2 
A1l 
A12 

20 
CS1 

~ 27 
CS2 

22 
WE 
OE 

Vee 

~ 6164 

DO 
11 

D1 
12 
13 

D2 
15 

D3 
D4 

16 

DS 
17 
18 

D6 19 
D7 

DO 
11 

D1 12 

D2 13 

D3 15 
16 

D4 
17 

D5 
18 

D6 
19 

D7 

~er.l! 
~ _ml 
;::~i!Ci1 
~:liliin 
!010~-~ 
a'I~!'5 
i.~ 

21 
~ 

;,: 
~ 
~ 
I 

:i 
it a I-
1= 
if 
!:i .... 



PSD3XX - Application Note mt 

Additional 
External SRAM 
(Cont.) 

Table 16. 
SC80C451/ 
PSD3XX 
Configured to 
Address 
Additional 
SRAM 

Figure 23 illustrates, and Table 16 details, a 
similar system using the Signetics 
SC80C451. This microcontroller has many 
ports and some SRAM but requires off-chip 
EPROM to store programmed instructions. 
This device is similar to the 8051/31 family 
which uses the active LOW PSEN signal to 
differentiate between executable code and 

data. Since it is a multiplexed 8-bit machine, 
it can use the on-chip latches. In highly RAM­
intensive applications, an additional two 8K x 
8 SRAM chips can be included and selected 
through Port B. If additional SRAM chips are 
not needed, Ports A and B can recreate Ports 
o and 2 which are lost in addressing external 
memory. 

Configuration Bils Function 

CDATA 0 a-bit data bus 

CADDRDAT 1 Multiplexed address/data 

CRRWR 0 Set RD and WR mode 

CA19/CSI 0 Set power-down mode 

CALE 0 Active HIGH ALE 

CRESET 1 Active HIGH RESET 

COMB/SEP 1 Separate data/program memory 

CPAF2 0 Port A = address AD-A? 

CPAF1 FFH Port A set for address 

CPBF OOH Port B set for chip-select 

CPCF 111 B Port C set for chip-select 

CPACOD OOH CMOS buffers 

CPBCOD OOH CMOS buffers 

CADDHLT 0 "Don't care" (not used) 

CSECURITY 0 No security 

----------------------------------rAfAfAr~----------------------------------
t-42 i!IJJ19EJ! == 



',llliiIQ: 
111111 

Ilhlllll 
11111~q 

... e 

~ I J GND 
Cl - C2 

u ~ U1 12MHz ~ 
49 XTAL1 XTAL2 48 

~ P43 POD/ADO 17 

P4.2 21 P42 PO 1/AD1 16 

~22 P4.1 PQ2/AD2 15 

P4.0 PO 3/AD3 14 
~ 

PQ4/AD4 13 

~ P10 PO S/AD5 12 

P11 PO S/AD6 11 
~25 P1.2 PO.7/AD7 10 
~26 P13 ~~ 27 P14 P201A8 2 

Pi 4 26 
P15 P21/A9 3 

~~ ~ 29 P16 P22fAl0 4 

~ P17 P23/A11 5 

P24/A12 6 
~62 P67 P2.S/A13 7 
~61 P66 P26/A14 8 
~60 P65 P27/A15 9 
~59 P64 
~58 P63 ALE 64 

~ P62 PSEN 63 

~ PS.l 
39 P60 RD/P3.7 

WR/P36 3B 

AFLAG ~ AFLAG T1/P35 Ui :: I BFLAG BFLAG TO/P3.4 
INT2/P33 

~~~ IDS INT1/P32 Rt~ ODS TXO/P31 
RXD/P30 I 32 ::

G~ EA
P57 ~ RESET P56 ~ P55 t1B P54
P53 t1B P52
P51
P50 ~

SCBOC451

RST
1

RST P-
OS1232

U2
23 ADO/AQ 24 AD1/A1 25 AD2fA2
26 AD3/A3 27 AD4/A4 28 ADS/AS 29 ADS/A6
30 AD7/A7

31 ADB/A8 32 AD9/A9
33 AD10/A1Q
35 AD11/A11
36 ADl21A12 37 AD13/A13 38 A014/A14 39 AD15/A1S

13 ALE
1 BHE/PSEN

22 AD 2 WR
,'L- RESET

PSD3XX

P57
P56
P55
P54
P53
P52
P51
P50

PAO 21 AO 10

PA1 20 A1 9

PA2 19 A2 8

PA3 18 A3 7

PA4 17 A4 6

PA5 16 A5 5

PA6 15 A6 4

PA7 14 A7 3
AS 25

PBO 11 GSO A9 24

PB1 10 ~~~D I A10 21

PB2 9 A11 23

PB3 t----!!- A12 2

PB4 r--+-
PB5 r--%- 20

PB6 ~ ~
PB7 t---L 27

22

Al61CS8 ~
A17/CS9 ~
~ A18/CS10

A19/eSI 17., 10
9

GND 8
7
6
5
4
3

25
24
21
23
2

20

~ 27
22

Vee .L-

Tl/P3.5
TQ/P34
-INT2IP3.3
INT1/P32

TXD/P31
RXD/P30

U3

AO
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12

GS1
GS2
WE
DE

6164

U4

AO
A1
A2
A3
A4
A5
A6
A7
AB
A9
A10
A11
A12

GS1
GS2
WE
DE

6164

DO
11

01 12

02 13

03 15

04 16

05 17

06 18

07 19

DO 11

01 12

02 13

03 15

04 16

05 17

06 1B

07 19

·S'~se::!!
~ 19 ~'I
5=.~§c;
i-I~~~
5Ia: "

~
2:
~
I

:...
iI
if
!
i
~
!it
~ ...

PSD3XX - AppilcatiDn lID,. 011

PSD3XX Used in
Track Mode

Table 17.
Intel80196 to
PSD3XX Used to
Access Extemal
SRAM in Track
Mode

Figure 24 illustrates a design that utilizes the
track mode of operation that has been
discussed but not illustrated in an application.
Here, Port A passes or tracks through the
multiplexed address and data of the 80196.
Address and data outputs ADO-AD7 from the
80196 appear on the PSD3XX Port A pins. In
this mode, the SRAM, shown in Figure 24 as
U4, can be accessed either by the 80196
(used in byte mode) or by a second processor
in the host system. The SRAM in the design
can be used as a common resource. An
example would be a system in which the host
uses the memory to pass parameters to the
local 80196. Table 17 gives the configuration
data for an 80196/PSD301 interface to SRAM
using Track Mode.

A Direct Memory Access can transfer data to
the common memory via a BUSRQ/BUSGR
handshake. Note that the PAD in the
PSD3XX controls the three-state condition of
the octal latch U3 74HCT373 enabling the
host system to control SRAM addresses
AD-A7. Port A of the PSD3XX is also put into

Configuration Blls Function

a three-state condition during host-to-SRAM
activity. In the design given in Figure 24, Port
B outputs PBO, PB1, and PB2 are used to
control the SRAM inputs CE, OE, and WR re­
spectively. Also, A8, A9, and A 10 are fed
through the PAD as identity functions to the
open drain drivers of PB3, PB4, and PB5
respectively. There is no track-through
feature for these address lines; however, if
they are fed through the PAD, they can drive
the external memory resource as if they were
tracked through.

The M80196 can operate in either byte- or
word-wide mode controlled by its BUSWIDTH
input. In this application, the PB6 output
drives the BUSWIDTH line to switch between
the byte-wide bus of the external SRAM and
the word-wide interface of the PSD3XX. All
Port B outputs, with the exception of PB6, are
configured as open-drain. Provided the host
system also has open drainl collector drivers,
both systems can access the SRAM without
bus conflict. The only additional circuitry re­
quired would be the pull-up resistors.

CDATA 1 16-bit data bus

CADDRDAT 1 Multiplexed address/data

CRRWR 0 Set RD and WR mode

CA19/CSI 0 Set power-down mode

CALE 0 Active HIGH ALE

CRESET 0 Active LOW RESET

COMB/SEP 0 Combined memory mode

CPAF2 1 Address/data (Track Mode)

CPAF1 XXH "Don't care" in Track Mode

CPBF OOH Port B set for chip-select outputs

CPCF 111 B Port C set for logic outputs

CPACOD OOH CMOS buffers

CPBCOD FFH Open drain buffers

CADDHLT X Latched A 16-A 19 "don't care"

CSECURITY 0 No security

-----------------------------------~~~-----------------------------------
1·44

X1 1-=1-
[r-Jo~ T ~.l'PF

2MHz
GNO

U1 T 01 ---ll...- Xl P3.OIADO 20pF
P31/AD1
P32/A02

GNO 12 X2 P3.31A03
P34/AD4

~ 3 NMI P3.51AOS 43 READY P3.61AD6
--iA- COE P37/AD7

64 BUSWIDTH 16 RESET P40/ADB

~ "I~

PO.O 6 P41/AD9
ACHOIPOQ P421AD10

PO.1 5 ACH1/PO.1 P431AD11
PO.2 ~ ACH2/P02 P441AD12

~ ACH3IP03 P451AD13
ACH4IP04 P4.61AD14 PO.4 10
ACH5IP05 P47/AD15 PO.S 8

POB 9 ACH6IPO.6
ACH7/P07 ROEQl.....

WRLlWR
.-prr- ~~ P201TXD WHElBHE

P2.1 15 P21/RXO ADVIALE

~ 44
P2.21EXINT INST
P231T2CLK CLKOUT ~ 42

~ 39
P24fT2RST

~~ ~~
P2.51PWM P10
P2 6fT2UP-DN P11

P27 P2.7fT2CAPTURE P12
P1.3

~~~ HSI.O P14 
HSI1 S-26 HSI1 P15 

~~:~~ S-27 
HSI.2/HS04 P1.6 
HSI3IHSO 5 P17 

\e ~ VREF HSOO * C3 ,FE 
HSO.1 

ANGND HS02 

01UF EA HS03 

GIND 

80196 

Vee 

R4 
10K 

~ 

... 
~ 

T C1 
10",F 

GNO 

00-07 

U2 U3 
60 ADO 23 ADO/AD PAO 21 3 DO ao 59 A01 24 A01/A1 PA1 20 4 01 01 
58 AD2 25 AD2IA2 PA2 19 7 

02 02 57 AD3 26 AD3IA3 PA3 18 8 03 03 56 AD4 27 AD4/A4 PA4 17 13 04 04 55 ADS 2B AD5IAS PAS 16 14 05 05 54 ADS 29 AD6IA6 PAS 15 17 
06 06 53 AD7 30 A07/A7 PA7 14 18 07 07 

52 AS 31 AD8IA8 PBO 11 CS1 OC 51 A9 32 ~ 11 
50 A10 33 

AD9IAQ PB1 G 
AD101A10 PB2 

1 8 " 
49 A11 35 AD11/A11 PB3 74HCT373 
4B A12 36 AD121A12 PB4 H-47 A13 37 
46 A14 38 AD13/A13 PBS ~ ALE 

AD141A14 PBS r-4-45 A15 39 AD15/A15 PB7 r-±-
61 22 

~ RO A161Csa 40 2 WR A17/CS9 41 1 BHEIPSEN 62 13 ALE AlB/OSlO ~ 
~ ~ RESET A19/0SI ~D r-M- PSD3XX 

~ I ~:-... 
Vee 

~ ~ P12 

fit ~ CE 
I !~ ~ f---< P15 

f--~ 
~ 

f-<-E1L... Vee 

HB 
~ rBiJSGR>. 

Il'ii»- I OE > 
l..J1l1!L>-

~ 
Vee 

HSOO FROM HOST SYSTEM - WR 

HS02 
JS03 AQ.-A10 

OG-DB 

2 AO 8 
5 A1 7 
6 A2 6 
9 A3 5 
12 A4 4 
15 AS 3 
16 AS 2 
19 A7 1 

AS 

~ A9 
A10 ~ 
CS 18 
RO 20 
WR 21 

R1 
470R 

R2 
470R 

R3 
470R 

U4 

AO DO 
A1 01 
A2 02 
A3 03 
A4 04 
AS 05 
A6 OS 
A7 07 
AS 
A9 
A10 

CE 
OE 
WE 

6116 

fI=-:!!li'::!' 
:Iii I' ~~ S' CCj' 

!l:ItH-; 
S'~g~ 

P.P 
~ 
=l-P 
=fD 

i~~' 
a~ 
!!. 

I 
iIoC 
I 

t 
( 
i' 
I 
52 ... 



PSD3XX - Application Note 011 

--------------------------------f===~--------------------------------
1-46 ==~= 



Chapter 3 

Figure 25. 
MAPLE Main 
Menu 

Programmable Peripheral 
Application Note 011 
Software Support 

The support software for both PSD3XX 
family and MAP168 memory-mapped 
peripheral devices is designed to run on 
IBM PC XT/AT or 100% compatible 
systems. It is menu-driven and very user­
friendly. In many cases it has the capability 
of preventing the user from creating invalid 
configurations. For example, in a non­
multiplexed system with a 16-bit data bus, 
Ports A and B are used for data 1/0. The 
software recognizes this and prevents the 

F1 DOS 
FZ EXIT 
F3 MAPPRO 
F4 PARTLIST 
FS LOAD 
F6 SAVE 
F7 COMPILE 

111.min;miil 

~ Part naMe : PSD301 

user from inadvertently programming Ports 
A and B as regular ports. 

When running in the IBM PC environment, 
the PSD development software creates the 
menu shown in Figure 25. Initially, the 
designer selects the part type with the user 
key F8 or moves the screen cursor to 
PARTNAME. In the example shown, the 
selection for the part type is PSD301. 

Specify PART~AME to be configured and press <Enter>. 

Cursor - Up:t Down:l 

The menu listed to the left of Figure 25 links 
the function keys and their association. F1 
suspends the MAPLE software to DOS for file 
editing or updating. F2 exits the program and 
returns the user to the DOS environment. F3 
selects the programmer option so the user 
can program the compiled object file into the 
PSD301 device provided a programmer is 
connected to the system. The LOAD selec­
tion (F5), loads an existing program into the 
MAPLE environment for editing and compil­
ing. F6 saves that program under a user-

C:\WSI 

240225 

defined name. F7 compiles the user-gener­
ated file into an object file that can be trans­
ferred to the programmer. F8 provides part 
type selection, either PSD301 or MAP168. 

Figure 26 illustrates a second menu to the 
right of the main menu. The list shows 
ALIASES, CONFIGURATION, PORT C, 
PORT A, PORT B, and ADDRESS MAP. The 
designer selects each choice, starting from 
ALIASES, and moves down through the list 
configuring each option. 

-------------------------------------r==~~----------------------------------~ ==== 1-47 



I'SDIXX - Appllt:lllllln "",. DI1 

FI,ure26. 
MAI'LE Menu 
with PARTMAME 
Submenu 

Fl DOS 
FZ EXIT 
F3 ItAPPRO 
F4 PARTLIST 
F5 LOAD 
F6 SAVE 
F7 COItPILE 
F8 PARmA"E 

I'AKTNAML I'~J)IOI 

CONFIGURATIOH 
PORT C 
PORT A 
PORT B 
ADDRESS MAP 

I If you want to nallle SOlIe signals. press <Enter). I 

AUASESMBnu 

CUI'SUr- lip t IJOWIl ! I, I t f 

The ALIASES selection lets the user individually 
define the port pins with user-relevant names. 
The circuit diagram shown in Figure 13 uses 
an M68008 processor, with BERR and 

C:'WSI 

240226 

DTACK signals coming from the PAD, as well 
as the remaining CSO, CS5 chip-select 
outputs. 

-,~--------------------------~JrAr---------------------------



Figure 27. 
CONFIGURATION 
Menu 

I'SIJ3XX - AppllcatlDn IIDte 011 

Figure 27 gives the CONFIGURATION menu. 
In this case, the PSD301 has been configured 
for the system shown in Figure 10: interfacing 
to an 80C31; the 8-bit data/address bus is 
multiplexed. The chip-select input is chosen 
over the A 19 input. The RESET and ALE 
polarity is set as active HIGH with RD and 
WR control inputs enabled. The inputs 
A 16-A 19 are transparent and separate 
strobes are enabled for SRAM and EPROM. 

This feature activates the PSEN input. In this 
configuration it is possible for the SRAM and 
EPROM to share the same address space. 
After the device is configured, Ports A, B, and 
C can be set up. If the main menu is invoked 
by selecting F1 (Figure 28), Port C can be 
selected as shown in Figure 26. Here, the 
individual selection of CS/Ai configures the 
three pins as outputs. 

CONFI GURAT I ON 

Address/Data node (Multiplexed: MX. Mon-Multiplexed: MM) MX 
Data Bus Width (8/16 bits) 8 
CSI (Power-Down/Chip Enable) or A19 CSI 
Reset Polarity (Active Low: LO. Active High: HI) HI 
ALE Polarity (Active Low: LO. Active High: HI) HI 
WR and RD (WRD) or"R/W and E (RWE)? WRD 
A19-A16 Transparent or Latched by ALE (Trans: T. Latched: L) T 
Using different READ Strobes for SRAM and EPROM? (Y/M) Y 
Separate SRAM and EPROM address spaces? (VN) .. 
If SRAM and EPROM share the sa~e Address space. press SPACEBAR. 

Fl-Return to Main Menu FZ-TeMporary exit to Dos Cursor- Up:t Down:! 

240227 

fEE_E 
-------------------------------------~.,~-------------------------------------

1·49 



PSD3XX - Application Note 011 

Figure 28. 
PortC 
Configuration 
Menu 

Figure 29. 
PortA 
Configuration 
Menu, Part 1. 

PORT C 

Pitt CS/Ai 
~1DiII 
PCl CS9 
pcz CSla 

Fl - Return to Main Menu FZ - Temporary exit to Dos 
F3 - Goto CS Definition Cursor - Up:T Down:! 

Figure 29 shows the configuration of Port A. 
This could be applied to the example shown 
in Figure 21 which shows the PSD301 inter­
facing to an M68230. Port A passes the 

240228 

PSD301 's internally latched address lines 
AO-A4 directly to the M68230. PA5-PA7 are 
configured as port outputs and can be used 
as general I/0s. 

PORT A (ADDRESS/IO) 

Pitt AUIO CMOS/OD 
m.I -- CMOS 

PAl Al CMOS 
PAZ AZ CMOS 
PA3 A3 CMOS 
PM A4 CMOS 
PAS IO CMOS 

To configure PAa as I/O, press SPACEBAR. PA6 IO CMOS 
PA? IO CMOS 

l"t"""iil""I.'; 11lII.'''''''.·pW .... •• J 
C:,WSI 

Cursor -

240229 

~1_~50~---------------------------f==~~-------------------------------
--:::::::: =:: 



Flgureao. 
PortA 
Configuration 
Menu, Part 2. 

Flgureal. 
PortB 
Configuration 
Menu 

PSD3XX - ApplicatiDn lID,. 011 

Port A can be programmed to be either 
address I/O or track mode, as illustrated in 
Figure 30. Track mode is selected if the 

designer wants to program the device as 
shown in Figure 24. 

PORT A 

rev Config:~ I' I 
TRACK MODE 

If you want to configure PORT A pins indiuidually as Address 
or I/O bits. press <Enter>. 

Fl ~ Return to Main Menu FZ ~ Temporary exit to Dos 
Cursor Up:T Down:' 

240230 

Figure 31 gives the configuration of Port B. 
This is similar to the configuration pattern for 
the M68008 shown in Figure 13. Here, CS6 

and CS7 have been programmed as open­
drain outputs connected to the micro­
processor's DTACK and BERR, respectively. 

PORT B 

PIIt CS/IO CMOS/OD 
PBa csa CMOS 
PBi CSi CMOS 
PBZ CSZ CMOS 
PB3 CS3 CMOS 
PB4 CS4 CMOS 
PBS CSS CMOS 
PB& CS& OD ... CS7 --
If you haue CMOS output for PB7 press SPACEBAR. 

Fl Return to Main Menu FZ T"mpnr'dry exit to Dos 
F3 ~ boto CS DefinitIOn Cursor ~ Up:t Down:' Left:<- Right:~ 

240231 

-----------------------------------~Jr~~-----------------------------------
1-51 



PSD3XX - Application Note 011 

Figure 32. 
ADDRESS MAP 
Menu 

Figure 32 shows the ADDRESS MAP menu. 
The designer can enter a binary code for the 
address range of the various select lines; 
ESO-ES7, RSO, and CSP, being the EPROM, 
SRAM, and PERIPHERAL assignments, 

ADDRESS MAP 

respectively. A space for individual hexadeci­
mal files is reserved under the FILENAME 
section. The Intel MCS files are listed as they 
would be compiled and programmed into the 
device. 

FILE NAME 

Fill in A19-All (Binary) or SEGMT START (Hex); and FILE(START, STOP) 
and FILE NAME. Use SPACEBAR to erase any field ualue. 
Fl - Return to Main Menu FZ - Temporary exit to DOS F3 - Goto Help 
Cursor - Up:t Down:.J. Left: .. Right:.. N - Non-editable bit. 

After configuration has been established, the 
user can return to the main menu and select 
the COMPILE option. The configuration is 
compiled and converted to a JEDEC array 
program map. 

When successfully finished, the designer can 
select the MAPPRO option (see Figure 25), 
and when a WSI MAGICPROTM programmer 

===iiiE~ 

240232 

is available in the PC system, finalize the 
design by programming a PSD301. 

The Address Map for Port B can be config­
ured as shown in Figure 33. Per Figure 31, 
depress function key F3 to invoke the chip 
select definition. The entries can be made for 
logic HIGH, LOW, or "don't care" conditions. 

-------------------------------------~~~~-------------------------------------
1-52 



Figure 33. 
PortB 
Configuration 
Menu with 
Address Map 

Summary 

PIH CS/IO CMOS/OD 
~ __ CMOS 
PBi CSi CMOS 
PB2 CS2 CMOS 
PB3 CS3 CMOS 
PB4 CS4 CMOS 
PBS CSS CMOS 
PB6 CS6 CMOS 
PB7 CS7 CMOS 

PORT B 

PSD3XX - Application Note 011 

A14 ~fl~ffrl~~ 'UiJU] 
CS definition is the HOH of the product terms(rows). Enter 1 to select 
Actiue High signal, a to select Actiue Low signal, X to mean 'don't 
care', SPACEBAR to erase. Enter ualues in columns releuant to your 
application: other blank columns will be treated as 'don't care's. 

Fi - Return to PORT B Cursor - Up:! Down:! Left:<- Right: .. 

The PSD3XX microcontroller peripheral with 
memory, supported with low-cost software 
and programming capability form WSI, 
greatly simplifies the overall design of 
microcontroller based systems. The key 
advantage is the extensive condensing of 
glue logic, latches, ports, and discrete 
memory elements into a single-device, 

240231 

enhancing the reliability of the final product. 
Applications for the device extend to practi­
cally any area that uses microcontrollers or 
microprocessors, from modems and vending 
machines to disc controllers and high-end 
processor systems. 

--------------------------------f====~--------------------------------
1-53 



1.1_~~~---------------------'E;'~--------------------------eesiE 



Abstract 

Introduction 

The Design 
Application 

Programmable Peripheral 
Application Note 013 
The PSD301 Streamlines a Microcontroller-based 
Smart Transmitter DeSign 
By Seyamak Keyghobad - Bailey Controls, 
and Karen Spesard - WSI 

A smart transmitter design is described 
which takes advantage of the integration 
capabilities and flexibility of WSI's 
PSD301 microcontroller peripheral. The 
following discussion illustrates how the 

Designers of systems using micro­
controllers and microprocessors often 
face the problem of how to integrate 
peripheral logic and memory functions 
into their designs without using many 
discrete chips and large areas of board 
space. For example, when external 
EPROM and SRAMs are configured into 
systems with ROM less microcontrollers, 
general I/O ports are typically sacrificed 
for address, data input/output, and control 
functions. When these I/O ports are 
depleted, the total chip count of the 
system is increased by requiring the use 
of additional external ports and steering 
logic. Designers, who have limited board 
space, such as found in the disk drive, 

The smart transmitter, shown in Figure 1, 
was developed by Bailey Controls, a 
manufacturer of process control 
instruments, to support a popular field 
bus protocol. One of its functions in this 
sensor application is to measure 
pressure, differential pressure, and flow 
rates through pipes in industrial 
environments such as chemical plants, oil 
refineries, or utility plants. A host system 
monitors the transmitter via a process 
control network. 

The completed transmitter design 
consists of three main boards. The first 
board includes the power supply and 
communications hardware to provide 
power to the rest of the system and feed­
back to the process control network. It 
consists of communications transformers 
and line drivers/receivers. 

PSD301, in effect, was responsible for 
eliminating an extra 2.5 inch diameter 
board in a system where real estate is at 
a premium by reducing the number of 
components from 12 down to 5. 

modem, cellular phone, industrial/process 
control, and automotive industries, find 
this a critical problem. 

The PSD301 programmable peripheral 
device from WSI solves this problem by 
integrating all SRAM, EPROM, program­
mable decoding and configurable I/O port 
functions needed in 8 or 16-bit micro­
controller designs into a single-chip 
user-configurable solution. This is 
illustrated in the following industrial 
control application where the PSD301 
eliminates seven chips and saves the 
designer from needing another board in 
the system. 

The second board is the digital micro­
controller board and contains the 68HC11 
microcontroller as well as the PSD301 
programmable peripheral, a PLD, UART, 
and LCD display. Its function is to 
communicate and receive the inputs from 
the third board, process the data, and 
display the appropriate results to the LCD. 

The third board or input board is mostly 
analog. It receives inputs from string gauge 
sensors which use a bridge circuit for 
measuring pressure using a diaphragm. 
The input board then converts the signals 
so the microcontroller can read them. 

_____________________________________ rjf~~E __________________________________ ___ 
--';111:';;:;;:;::= 1-55 



PSD3D1- Application Note 013 

Figure 1. 
"Smart" 
Transmitter from 
Bailey Controls 

Design 
Considerations 

Figure 2. 
The Bailey Smart 
Transmitter Board 
Using the WSI 
PSD301. 

The smart transmitter system is rather 
small. Its case is only 2.5 inches in 
diameter and thus requires boards that 
fit this small form factor as shown in 
Figure 2. Not surprisingly, the major 
design consideration during development 
was board space. This was especially 
true for the microcontroller/digital board 
where real estate is at a very high 
premium. 

One of the problems was that there were 
already requirements for the 68HC11 
microcontroller, a 256K EPROM, 16K 
SRAM, a PLD, TTL logic, a UART, and 
an LCD display on the digital board. This 

• Pressure/Flow 

meant extending the number of boards 
used beyond one unless a way could be 
found to integrate some of these 
elements. 

Other important considerations, or goals 
actually, for the design were to reduce 
power consumption to less than 2.4W, 
improve reliability, lower design costs, 
and shorten the time-to-market. 

To meet these objectives, Bailey Controls 
looked to WSI's user-configurable 
peripheral, the PSD301, for its integration 
capabilities, its flexibility, and its low 
power of less than 35 mA active and 
90 !1A typical powerdown. 

~~-------------------------------,~~~~-----------------------------------1-56 =eiiiiF= 



PS0301 
Architecture 

Figure 3. 
PS0301 
Architecture 

The PSD301 is a field programmable device 
that has the ability to interface to virtually 
any 8- or 16-bit microcontroller without the 
need for external glue logic. This is possible 
because the PSD301 combines the 
elements necessary for a complete 
microcontroller peripheral solution, such as 
user-configurable logic, 1/0 ports, EPROM 
and SRAM, all into one device. The 
functional block diagram of the PSD301 in 
Figure 3 shows its main sections: the 
internal latches and control signals, the 
programmable address decoder (PAD), the 
memory, and the 110 ports. 

;-- A11-A15 I 
L J 1 A ~ 
T A19 

AD8-AD15 C CSI 
H ALE/AS 

PADA 

ro- RD 

WR 13 PT 
RESET 

~ 
'-- - .. -

A 
ES7 

Do-AD7 L 
ES6 -+:1""" 1+ A 

T ~ - ES5 
C ES4 
H ES3 

PSD301-Application Note 013 

The control signals and internal latches in 
the PSD301 were designed so interfacing 
to any microcontroller would be easy and 
require no glue logic. For instance, the 
PSD301 can interface directly to all 
multiplexed (and non-multiplexed) 8- and 
16-bit microcontroller addressldata buses 
because it has two on-chip 8-bit address 
latches. This means no external latches 
are required to interface to multiplexed 
buses. It also has programmable polarity 
on the control inputs ALE/AS and RESET, 
so they can be configured to be active high 
or active low. 

A16 A18 -

~ lLOGICIN 

PROG 
PORT 

CSIOPORT EXP 

A19 

CSI PCO-

ALE/AS 
PADB PORT ~ fo- C 

RD 

WR 27 P T 
CS8-
CS10 

RESET '---

EPROM 
256K BIT 

- ~ PROG 
PORT 

~ CSO- EXP - ESO 

~~~ 
16i8

CS7 PBO-
32K BIT

~

~
BLOCK PORT

~--1+ r B

I I-
08-015

'-- t+" -1+
'--

;-- CSIOPORT --

<1 I-- - - 00-07

I--,.

t> I--- 1- r-'--

~ SRAM
PROG
PORT '-- 16K BIT EXP

TRACK MODE
SELECTS

PAo-
AO A7 PORT ~ ADO AD7/DO 07 A

ALE/AS

1
~

PROG CHIP

ROlE
CONFIGURATION

WR/RlW
X8, X16 PROG

BHE/PSEN CONTROL MUX or NON-MUX BUSSES

RESET SIGNALS SECURITY MODE

A19/CSI

-------------------------------------rJrJr~~---------------------------------------'!i!!1V_ = 1.57

I'S0301-Application Note 013

PSD301
Architecture
(Cont.)

Figure 4.
PSD301
Multiplexed
Address/Data
Configuration

The other control signals, RDIE, and
WR/R/W, are also programmable as IRD
and IWR or E and RIW, enabling direct
interface to all Motorola- and Intel-type
controllers.

The programmable array decoder (PAD) is
an EPROM-based reprogram mabie logic
"fuse" array with 11 dedicated inputs, up to
4 general-purpose inputs, and up to 24
outputs. The PAD is used to configure the a
EPROM blocks on 2K word boundaries and
the SRAM on a 1 K word boundary
anywhere within a 1 Meg address space. It
is also used to generate a base address for
mapping ports A and B, as well as to
provide mapping for the track mode. The
PAD, like a traditional PLD, can generate up
to eight sum-of-product outputs to extend
address decoding to external peripherals or
to implement logic replacement on a board.

Memory in the PSD301 is provided by
EPROM for program and table storage and
SRAM for scratch pad storage and
development and diagnostic testing. The
EPROM density is 256K bits and the SRAM
density is 16K bits. Both can be operated in
either word-wide or byte-wide fashion,
which translates to a 32K x a or 16K x 16
EPROM configuration and a 2K x a or 1 K x
16 SRAM configuration. As described
above, the EPROM is divided into a blocks
(of 4K x a or 2K x 16), with each block
typically on a 2K boundary locatable within
a 1 Meg address space.

There are 3 ports on the PSD301 that are
highly flexible and programmable: Ports A,
Band C, illustrated in Figure 4. Port A is an

a-bit port that can be configured in a variety
of ways. For example, if the PSD301 is in
the multiplexed mode, port A can be
configured pin-by-pin to be an 1/0 or a lower
order latched address. Alternatively, port A
can be configured in the track mode to
transfer a bits of address and data inputs
through port A. This enables the micro­
controller to share external resources, such
as additional SRAM, with other controllers.
In either case, each port A output can be
configured to be CMOS or open drain. If the
PSD301 is in the non-multiplexed mode,
port A becomes the lower order data for the
chip.

Port B is another flexible a-bit port. In the
multiplexed mode or a-bit non-multiplexed
mode, each pin on port B can be
customized to function as an 1/0 or a
chip-select output. The chip-select signals
are determined by the PAD programming
and are used for general logic replacement
or to extend the address decoding to
external peripherals. Each pin in this mode
can also be programmed to have a CMOS
or an open drain output. In the 16-bit
non-multiplexed mode, port B becomes the
higher order data for the chip.

Port C is the third port which is available on
the PSD301. It is a 3-bit port that can be
programmed on a pin-by-pin basis to be
chip-select outputs andlor general-purpose
logic inputs or addresses to the PAD.
Some uses for port C might be to extend the
address range to 1 Meg, or to create finer
address decoding resolution down to 256.
Or, one might use port C to help create a
simple state machine.

AS - A1S, ADS - AD1S PORT A 1/0 or AO - A7 or ADO - AD7

ALE PORT B 1/0 or CSO - CS7

ADO - AD7 PORT C A16, A17, A1S or CSS, CS9, CS10

-------------------------------------~jr~Ar-------------------------------------
1-58

Simple
Interfaces
to the PSD301.

Figure 5.
General
Schematic
Diagram of
the BOC196
andPSD301.

VCC

1
G NO

One of the overwhelming advantages of the
PSD301 is its ability to interface to virtually
any microcontroller without any glue logic,
while providing additional I/O ports and
memory. This is accomplished by
configuring or programming the part to
function in an operational mode geared for
a specific application.

For instance, there are 45 configuration
bits on the PSD301 that have to be
programmed in addition to the EPROM
prior to usage. These configuration bits are
determined during development by the
designer using the WSI MAPLE software
package. After the configuration bits are
determined, the EPROM code and
configuration data can be merged during
compilation and the part subsequently
programmed.

Interfacing the PSD301 to different
microcontrollers is accommodated by the

lC1i
80196

130PF 11
P3.D/ADO =X1 X1

l'C2 FT 8MHZ P3.1/AD1
30pF 12 P3.2/AD2

~
X2 P3.3/AD3

NMI P3.4/AD4

14 READY P3.5!AOS

64 CDE P3.6/AD6

16
BUSWIDTH P37fAD7
REseT

~ 6
P4.0/AD8

~ ACHO/POQ P4.1/AD9

~ ACH1/PO.1 P42/A010

~ ACH2/PO.2 P43/ADn

~ ACH3/PO.3 P44/AD12

~ ACH4/PO.4 P4.S/AD13

~ >----i" ACH5/PO.5 P4.6/AD14

~ ACH6/PO.6 P47/A015

~ ACH7/PO.7 -

~
RD

P2.0/TXD WRuWR
RXD~ P21/RXD WHE/BHE

60
59
58
57
56
55
54
53

52
51
50
49
48
47
46
45

61
40
41
62

PSD3D1-Application Note 013

configuration bits discussed above. To
illustrate how this works, two examples are
provided.

The first example is with the 80C196
microcontroller. This 16-bit microcontroller
from Intel interfaces directly to the PSD301,
providing it with additional off-chip program
store EPROM and data store SRAM, as
well as the flexibility that comes with three
additional I/O ports. As illustrated in Figure
5, the 80C196's 16-bit multiplexed address/
data bus and control signals (RD,WR,
BHE, ALE, RESET) connect directly to the
PSD301. This is achieved with the PSD301
in the following configuration:

o 16-bit data bus
o Multiplexed address/data
o RD and WR mode set
o Active HIGH ALE
o Active LOW RESET
o A 16 - A 18 configured as output
o Combined memory mode

PSD301

23
ADO/AO ~ 24

PAO

25
AD1/A1 PA1 ~

26
AD2/A2 PA2 ~

27
AD3/A3 PA3 -in PA3.3 ,

28
AD4/A4 PA4 ~

29
ADS/AS PA5 ~

30
AD6/A6 PA6 ~ AD7/A7 PA7 ~

31
~ ADS/AS PBO 32

33
ADS/A9 PB1 ~

35
AD10/A10 PB2 --i--) PB4.2 :

36
AD11JAl1 PB3 ~

37
AD12JA12 PB4 ~44<

38
AD13/A13 PB5 ~

39
AD14/A14 PB6 ~PB4.6(
AD15/A15 PB7 ~

22 - 40
2

RD A16/CS8

1
WR A17/CS9
BHE/PSEN

13 42 ~ ~ P2.2/EXINT ADV/AlE ALE A18fCS1Q
~ ~ ~

43
P2.3!T2CLK INST RESET A19/CSI

~ P2.41T2RST CLKOUT 65 ClK

~ P25/PWM U2
~ 59 ~ GND

P2.6/T2UP·DN Pl.0 fa-< P1.0
P2.7 >-----"" P2.7fT2CAPTURE Pl.1 ~
~

P1.2 ~

~
HSI.O P1.3 ~

~;~~ 26
HSI.1 P1.4 ~ VCC

HSI.2/HSO.4 P1.5 47~ ~ HSI.3/HSO.5 P1.6 ~
Pl.7 ~ 13

VREF R1

~
10K HSO.O 29 P1.0

12 HSO.1
2

ANGND 34 P1.1
EA HSO.2 35 P1.2

~ HSO.3 P1.3

.... C3

U1 T O.Q1~F
GND

---~~~Ar---
1-59

PSD301-Application Note 013

Simple
Interfaces
to the PSD301
(Cont.)

Figure 6.

The other configuration options that are
available, but not listed above, are appli­
cation dependent and can be changed to
meet the requirements of the design. For
instance, on e!.!!. 43 (A 19/CSI), the power­
down option CSI could be selected if
power consumption savings is important.
If it isn't and another logic input to the
PAD would be helpful, A 19 could be
selected. And, if open-drain drivers are
important on one of the ports to drive a
display, for example, they also could be
selected instead of CMOS drivers.

All other microcontrollers have simple
interfaces to the PSD301 as well. This
includes all the variations of micro­
controllers in the 8-bit 68HC 11 family

General Schematic
Diagram of the Cl

68HC11and 20PFI
68HC11A8

PSD301. GND 29
EXTAL XTAL
IRQ peO/ADO

PC1IADI
XIRQ PC2/AD2
RESET pe3/AD3

PC4/AD4
PAD/le3 peS/ADS
PA1/1C2 PC61AD6
PA2/1C1 pe7/AD7

peD/A8
PB1/A9

PB21Al0
PEO/AND PB3/All
PE1/AN1 PB4/A12
PE2/AN2 PBS/A13
PE3/AN3 PB6/A14

42
PB7/A15

PD.4 POD/AXD
POI 43

P01/1XD PA3/Des/OCl
PD2 44 PD2/MISO PA410C410Cl
PD.3 45 P03/MOSI PAS/De3/0Cl

VCC PD.4
46

P04/SCK PA610C210Cl
PD.5 47 PDS/S5 PA7/PIA/cCl

MODe
MODAlLIR STABfR/W

STRAIAS

GND VRL
VRH

Ul

VCC

MC34064

1
VDD

RESET

GND

U2

GND

1-60 ~:f;

30
31
32
33
34
35
36
37
38

16
15
14
13
12
11
10
9

27
28
26

21
22

from Motorola. For simplicity's sake, the
PSD301 interface to 68HC11 versions
with multiplexed address/data buses will
be discussed, although the non­
multiplexed versions will interface to the
PSD301 in a similar manner, except in
this case port A will become dedicated for
8-bit data.

Figure 6 illustrates the interconnections
between the PSD301 and the 68HC11
microcontroller with multiplexed
address/data buses. Again, all the
address/data connections are direct, as
well as the control signals (E, R/W, AS,
and /RESET). Because BHE/PSEN is not
used, this PSD301 input signal is tied
HIGH.

C2 I20PF

PSD301
GND

23
ADO PAO

21
PA.O

24
ADI PAl

20
PA.l

25 19
26

AD2 PA2
18

PA.2

27
AD3 PA3

17
PA.3

28
AD4 PA4

16
PA.4

ADS PAS PA.S
29

AD6 PA6
15

PA.6
30

AD7 PA7
14

PA.7

31
AD8 PBO

11
32

AD9 PBl
33

AD10 PB2
35

AD11 PB3
36

A012 PB4
37

AD13 PBS
38
39

AD14 PB6
AD15 PB7

22
PCO

2
RIW PCl

1
BHEfPSEN PC2

13
AS

3
RESET

43
A19/CSI

U3

GND
vcc

Vee

Rl R3
lk lk

Simple
Interfaces
to the PSD301
(Cont.)

The ''Smart''
Transmitter
Design.

Figure 7.
Detailed Block
Diagram of
Bailey Control's
Alternative
De' S t t­sign ou lon
W; ithout PSD301.

l-
MULTIPLEXERS

The PSD301 must be programmed using
WSI's MAPLE software package in the
following modes to achieve this
configuration:

o 8-bit data bus
o Multiplexed addressldata
o RIW and E mode set
o Active HIGH AS (ALE)
o Active LOW RESET
o Combined memory mode

The microcomputer-based smart
transmitter design, by Bailey Controls,
requires program store 256K bits EPROM
for storing algorithms and data store 16K
bits SRAM for storing AID, commu­
nication and LCD routines. It also
requires two octal latches, a PLD, and a
variety of glue logic to interface to its

PSD301-Application Note 013

Again, other parameters on the PSD301
can be set to fit additional design
requirements. These include the security
bit, the port I10s, and the PAD inputs and
outputs.

68HC11 microcontroller, UART, and LCD
display. This is illustrated in Figure 7. Of
course, with board space on the digital
board being limited, another board would
have been needed to accommodate
these components, unless they in some
way could be integrated.

......---i----------.--j----T--li POWER I ! SUPPLY

I I
I I
I I
I

1 r-~ i ~
INTEGRATOR Ii-&

r----COMPARATORS I
GLUE LOGIC HC373 B ' I

LCD SMART : I I 74HC10 Ir- OCTAL

'" i r '"~I+ : INPUT I 74HCOO It- LATCH UART COMMUNICATloj
I

Ihl
~~ ,..-;- TRANSFORMERS

I I 74HC08
I

I I 74HC14 I
I

SELECTORS I 68HC11E1 ~

T
SENSOR VOLTAGE

REGULATOR

INPUT BOARD
BLOCK DIAGRAM

I MICRO-
I
I

CONTROLLER

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ADDRESS/

DATA 1 BUS

~ ;-~

HC373 l...-

~ EPROM r+ SRAM ADD/DATA
OCTAL 32K 2K
LATCH

'---- '----

MICROCONTROLLER BOARD
BLOCK DIAGRAM

.--~ 14
LINE I

PAL I DRIVERS

I &
22V10

~
RECEIVERS

I
I
I
I
I

POWER SUPPLY &
COMMUNICATION BOARD

BLOCK DIAGRAM
_____________________________________ r=~aF~----------------------------------~

==== 1-61

PSD301-Application Note 013

The "Smart"
Transmitter
Design
(Cont.)

FigureS.

This is where the PSD301 provides
exceptional value. As discussed, the
PSD301 already integrates EPROM,l
SRAM,2 a PLD, and other glue logic all
on one chip. It interfaces to the 68HC11
directly and actually integrates 8 chips
from the alternative design into one,
eliminating the need to add another board.
The resultant architecture is illustrated in
Figure 8.

Note that in the alternative design shown
in Figure 7, ports typically lost when
connecting the microcontroller to external
memory had to be recreated externally with
latches and buffers when memory was
connected to the microcontroller. With the
PSD301, these ports are recreated inter­
nally, eliminating the latches and buffers.

For example, to interface the PSD301 to
the 24-character LCD display, each pin of

Block Diagram of
Bailey Control's
''Smart'' Transmitter
Design with PSD301

I
I
I
I

INTEGRATOR I -. & H- PSD301
COMPARATORS

port A is configured as an I/O and mapped
to the byte-wide LCD data inputs. Then to
write to or read from the LCD display, port
A is accessed like a memory-mapped
peripheral via an address offset from the
base CSIOPORT defined in the PAD.
Since port A is qualified by and handled
through the PAD, there is no need for an
external octal latch.

Other TTL logic is not required to interface
to the 68HC11 's control signals, memory,
or peripherals either. It is all integrated in
the PSD301. Thus, a smaller PLD than
originally thought required in the design
was used - a 16V8 instead of a
22V10 - because the PAD was able to
reduce the amount of logic by creating
chip selects for the UART and other logic
functions.

t
PORT A DATA

POWER
SUPPLY

I
I W/32K EPROM LCD

-
MULTIPLEXERS

SELECTORS

VOLTAGE
SENSOR REGULATOR

INPUT BOARD
BLOCK DIAGRAM

I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2K SRAM
PAD & PORTS

PORT B

68HCllEl

t ADDRESS/
DATA BUS

MICRO·
CONTROLLER

•

~ SMART
XMITTER

UART -I
MICROCONTROLLER BOARD

BLOCK DIAGRAM

I COMMUNICATION
I TRANSFORMERS
I
I
I
I
I
I
I
I
I
I
I
I
I •
I
I LINE

I DRIVERS
I &

PAL16V8
1+ RECEIVERS

I
,

POWER SUPPLY &
COMMUNICATION BOARD

BLOCK DIAGRAM

~1.~62~---------------------------f---~-------------------------------__ ";I;i:'~::=

PS0301
Bonuses

Summary

Notes

Besides considerably reducing board
space in this smart transmitter design by
reducing parts count, several other
benefits of the PSD301 were also seen.
These include reliability improvement,
power consumption savings, inventory
savings, faster time-to-market, and cost
savings.

Reliability was improved because there
are seven less chips required for
implementation that could fail in the
design. Also, by reducing chip count, 112
pins and about 100 traces were eliminated
and the number of layers on the board
were reduced from 8 to 4, making failures
due to open or shorted pins and traces
less likely to occur.

Power consumption was reduced because
much faster discrete EPROM and SRAM
devices with access times of -75 ns would
have been required in conjunction with
glue logic for selecting different devices
instead of using the PSD301, saving at
least 20 mA Icc. (The access time for the
PSQ301 memories include decoding and
input address latch delays). If the
power-down feature on the PSD301 were
also used, power savings could be
increased further. For example, in a
system which is accessing the PSD301
only a quarter of the time, the power
consumption could be reduced by 75% to
8 mA typical.

The PSD301 peripheral solved a funda­
mental problem often seen in that instead
of getting "locked into" an inflexible
multiple chip memory SUb-system
solution, the PSD301 was able to provide

PSD3DI-Application Note 013

As an added benefit, the PSD301 helped
reduce inventory significantly by
obsoleting multiple chips. And, if last
minute changes in the design were
required, the PSD301 would be able to
accomodate them without additional
hardware modifications. So, purchasing
line item management is made simpler
and easier.

With the reprogrammable PSD301 ,
development time was kept to a minimum
by easily accommodating design iterations
in both hardware and software. Changes
in 1/0, address mapping, bus interface,
and code were simple to make. Also,
debugging was made easier with the
PSD301 's on-chip SRAM for down­
loading test programs. This all helped to
shorten the design development cycle,
reduce development costs, and speed up
market introduction of the smart
transmitter.

By using the PSD301 , cost savings were
realized by reducing system cost with
fewer boards (or reduced board space),
improving reliability, and reducing
inventory levels. Savings were also
attributable to lower manufacturing costs
because there were fewer parts to
program and place. And by getting to
market faster, profits were improved
significantly.

much higher integration and flexibility all
at the same time. Clearly, using the
PSD301 was the better choice for the
smart transmitter design.

1. If more EPROM was needed, the PSD302/312 w/512K bits EPROM and the
PSD303/313 w/1024K bits EPROM are available in the same pinout and packages
(please call your local WSI sales representative for availability). Or, multiple PSD301s
can be cascaded together with the added benefit of increased functionality and 1/0's.

2. If more SRAM is needed, it can be added externally without requiring any additional
glue logic. See WSI Application Note 011. Note that many engineers have 8K x 8
SRAM in their systems now - not because they need it, but because 2K x 8 SRAMs
are not as readily available.

_____________________________________ ,AJAJ~~ ________________________________ ~~
'#til. AJ 1·63

I'SoaDt -Application Note 013

Appendix 1.
P60301
Configuration

1-64

wsi PSD301 configuration Save File for Smart Transmitter Desiqn

ALIASES

CSo = ASICCS

GLOBAL CONFIGURATION

Address/Data Mode: MX
Data Bus Size: 8
CSI/A19: CSI
Reset Polarity: LO
ALE Polarity: HI
WRD/RWE: RWE
A16-A19 Transparent or Latched by ALE: T
Using different READ strobes for SRAM and EPROM: N

PORT A CONFIGURATION (Address/IO)

Bit No. Ai/IO. CMOS/OD.
a IO CMOS
1 IO CMOS
2 IO CMOS
3 IO CMOS
4 IO CMOS
5 IO CMOS
6 IO CMOS
7 IO CMOS

PORT B CONFIGURATION

Bit No. CS/IO. CMOS/OD.
a cso CMOS
1 CSl CMOS
2 CS2 CMOS
3 CS3 CMOS
4 CS4 CMOS
5 CS5 CMOS
6 CS6 CMOS
7 CS7 CMOS

CHIP SELECT EQUATIONS

/ASICCS = /A15 '" A14 '" /A13 '" /A12 '" E

/CSl /A15 '" A14 '" /A13 '" A12 '" E

/CS2 = /A15 '" A14 '" A13 '" /A12 '" E

/CS3 /A15 * A14 * A13 '" A12 '" E

/CS4 /A15 '" /A14 '" /A13 '" /A12 '" /All '"
+ /A15 '" /A14 '" /A13 '" /A12 '" /All '" /

/CS5 = /A15 '" /A14 '" /A13 '" /A12 '" All '"

E
R/W

E
+ /A15 '" /A14 '" /A13 '" /A12 '" All '" / R/W

/CS6 = /A15 '" /A14 '" /A13 '" A12 '" /All '" E
+ /A15 '" /A14 '" /A13 '" A12 '" /All '" / R/W

/CS7 = /A15 '" /A14 '" /A13 '" A12 '" All '" E
+ /A15 '" /A14 '" /A13 '" A12 '" All '" / R/W

rES::
~~=

Appendix 1.
PS0301
Configuration.
(Cont.)

PS03D1-Appiication Note 013

**

Bit No.
o
1
2

PORT C CONFIGURATION

CS/Ai.
CS8
CS9
CS10

CHIP SELECT EQUATIONS

/CS8 /A15 * /A14 * A13 * /A12 * /A11 * R/W

/CS9 .. /A15 * /A14 * A13 * /A12 * All * R/W

/CS10 .. /A15 * /A14 * A13 * A12 * /A11 * R/W

**********.*.***
ADDRESS MAP

A A A A A A A A A
19 18 17 16 15 14 13 12 11

ESO N N N N 1 0 0 0 N
ESl N N N N 1 0 0 1 N
ES2 N N N N 1 0 1 0 N
ES3 N N N N 1 0 1 1 N
ES4 N N N N 1 1 0 0 N
ESS N N N N 1 1 0 1 N
ES6 N N N N 1 1 1 0 N
ES7 N N N N 1 1 1 1 N
RSO N N N N 0 1 1 0 0
CSP N N N N 0 0 1 1 0

CDATA 0
CADDRDAT .. 1
CRRWR 1
CA19/(/CSI) 0
CALE .. 0
CRESET = 0
COMB/SEP .. 0
CADDHLT 0

CPAF2 .. 0

CPACOD [0] .. 0
CPACOD [1] .. 0
CPACOD [2] 0
CPACOD [3] 0
CPACOD [4] 0
CPACOD [5] 0
CPACOD [6) 0
CPACOD [7] .. 0

CPBF [0) 0
CPBF [1) .. 0
CPBF [2] 0
CPBF [3] 0
CPBF [4] 0
CPBF [5] 0
CPBF [6] 0
CPBF [7] .. 0

SEGMT SEGMT EPROM EPROM File Name
STRT STOP START STOP

8000 8FFF 8000 8fff BCN2.0
9000 9FFF 9000 9fff BCN2.0
ACOO AFFF aOOO afff BCN2.0
BOOO BFFF bOOO bfff BCN2.0
COOO CFFF cOOO cfff BCN2.0
0000 DFFF dOOO dfff BCN2.0
EOOO EFFF eOOO efff BCN2.0
FOOO FFFF fOOO ffff BCN2.0
6000 67FF
3000 37FF

END **
CPAF1 [0] 0
CPAFl [1] 0
CPAF1 [2] 0
CPAF1 [3] 0
CPAF1 [4) 0
CPAF1 [5) 0
CPAFl [6] 0
CPAFl [7] 0

CPBCOD [0) 0
CPBCOD [1] 0
CPBCOD [2] 0
CPBCOD [3) 0
CPBCOD [4] 0
CPBCOD [5] 0
CPBCOD [6] 0
CPBCOD [7] 0

CPCF [0] 1
CPCF [l] 1
CPCF [2] 1

FE:: EfEi$
-------------------------------------~~~----------------------------------1-.--65

~~ _______________________________________ .arar5Faf
1-66 rloIl; ------------------

Introduction

PAD
Architectue

Programmable Peripheral
Application Note 014
Using the PSD3XX PAD for System Logic
Replacement
By Jeff Miller

In 1990, WSI Introduced the Programmable
System Device (PSD): the first device in
the world Integrating UVEPROM, SRAM
and programmable logic on a single chip of
silicon. The highly-successful PSD301 was
the first device in the PSD family and is
currently used in applications ranging from
fluid analyzers to high performance
computers. The PSD device, by combining
most of the peripheral functionality required
by a typical microcontroller unit into one
package, has enabled designers to greatly
reduce part count, power and board space
which has translated into significant cost
savings.

Even if the PSD3XX family were simply a
collection of EPROM and SRAM with an

The Programmable Array Decoder (PAD)
contained in the PSD3XX family is a stan­
dard PLD array designed to provide all of
the internal memory and 1/0 device chip
selects as well as an external logic replace­
ment capability. It has 14 inputs, 24 outputs
and 40 product terms with which to perform
these functions. See Figure 1 for an
illustration of the PAD.

The PAD's 14 inputs are as follows:

o A11 -A19
o ALE or AS
o RD or E
U WRor Riw

The A 11 - A 19 pins are labeled as address
inputs, however, they do not have to be.
A 11 - A 15 are generally sourced by the
microcontroller or microprocessor that is
connected to the PSD device. If the
controller generates more than 16 bits of
address, the A 16 - A 19 inputs may be
used to connect the high order address bits
for a full 1 MByte of address space. If the
controller does not require this much
address space, A 16 - A 19 may be used for
other purposes, like general 1/0 or logic
inputs.

A19 is multiplexed with the CSI signal,
which is used to place the PSD device in a

on-chip decoder, it would be capable of
adding significant value to the system into
which it were designed. However, the
PSD3XX family is much more than just a
combination of memory devices. The on­
chip PLD may be used for many useful
purposes in addition to providing the
address decode capability. The purpose of
this note is to demonstrate, in detail, the full
capability of the PAD section of the
PSD3XX family. A basic, though not exten­
sive, knowledge of the PSD 3XX family and
the Maple programming software is
assumed by this note. Please consult
Application Note 011 andlor the appropriate
PSD3XX family data sheet for this general
knowledge.

low power mode when the system requires
it. When configured as CSI, the A 19 pin
may not be used for any other purpose
except the power down mode. In this
mode, the CSI signal is used by the PAD
only to disable it, causing it to expend less
power. When configured as A 19, this signal
may be used as a general purpose input to
the PAD from the external system. This
capability will be described in more detail
later in this note. A 16 - A 18, when not
necessary for address expansion, may also
be used as general purpose inputs to the
PAD. Thus, a total of four of the 14 PAD
inputs may be general purpose, allowing
the replacement of external logic by the
PSD device. These inputs may be
combined with the other PAD inputs to form
complex equations involving addresses,
strobes and external signals.

When attempting to visualize the full capa­
bility of the PAD outputs, it is most clear
when it is broken into two sections, labeled
in Figure 1 as PAD A and PAD B. PAD A is
responsible for providing all of the internal
chip selects for the EPROM, SRAM and 1/0
ports and the track mode control signals,
and PAD B is responsible for the external
logic replacement function.

-------------------------------------~~~~----------------------------------1--6-7

PSD3XX - Application Note 014

Figure 1.
PAD
Architecture

ALE or AS ~

R o or E y=
-

WR or R/W -q

A19 ,.....
"'5

A18 -g

A17 ,.....
":$

A16 -q
A15

~

A14 -q

A13 ,.....
":$

A12 -g

A11 N
-
CSI • --
RESET

•

PAD A

ESO

ESl
ES2

~ES3 8 EPROM Block
Select Lines r

"

"

~

"

"
---...

"
~
~

" l:::

l:::--'
~

" K
~

" ~

" ~

"
II' I I I I

Thirteen of the 24 PAD outputs and thirteen
of the 40 product terms are dedicated to
PAD A. PAD A should be considered the
Internal address decoder, used to select
the various on-chip memories and I/O
devices according to the memory map
programmed by the user. Each output has
a single product term, allowing a particular

ES4
ESS
ES6
ES7
RSO __ SRAM Block Select

T-IIO Base Address

}
Track Mode

CSIOPOR
eSADIN

~ Control Signals eSADOUT
CSADOUT

eSO/PBO

eSl/PBl

eS2/PB2

eS3/PB3

eS4/PB4

eSS/PBS

eS6/PB6

eS7/PB7

eS8/PCO

eSg/pel

eS10/PC2

PAD A

!

PADB

resource to be allocated a single
contiguous range of addresses which will
be used to access it. All of the PAD inputs
are available for generation of the PAD A
outputs, allowing the designer to select
internal resources using any combination of
address, strobe and external signals.

-------------------------~Jf~~------------------------
1·68

PAD A
(Cont.)

Table 1.
I/O Port
Offset
Addresses

The PAD A outputs are as follows:

o ESO-ES7
o RSO
o CSIOPORT
o CSADIN
o CSADOUT1
o CSADOUT2

ESO - ES7 are used to select the internal
EPROM resources. Using the PSD301 as
an example, there are eight select lines
with which to access 32 KBytes of EPROM.
Thus, each select line can enable a block
of 4 KBytes of EPROM configured as
4K x 8 or 2K x 16. Each block must be
contiguous, but the blocks may be placed
anywhere within the address space of the
microcontroller.

RSO is used to select the SRAM resource.
This single signal accesses a single 2
KByte block of SRAM which may be
configured as 2Kx 8 or 1 K x 16. Again, this
block must be contiguous but may be
placed anywhere in the address map.

CSIOPORT is the signal which defines the
base address of the on-chip I/O ports and
control registers. The 110 ports and control
registers occupy a 2K block of addresses
which, like the memories, must be
contiguous but may be located anywhere in
the address space of the microcontroller.
Once configured in the address map,
CSIOPORT defines the base address of
these ports and registers. An offset is
added to the base address to individually
access the registers. Table 1 below lists the
offset values for these registers.

PSD3XX - Application Note 014

CSADIN, CSADOUT1 and CSADOUT2 are
used to control the Track Mode operation.
The Track Mode is an available option for
Port A to allow it to ''track'' the
Address/Data bus inputs to the PSD device
from the microcontroller. This provides the
capability to connect the PSD device, and
therefore the microcontroller, to one or
more shared resources. These resources
may be memory or other deVices which
must be accessed by more than one micro­
processor or microcontroller.

CSADIN is generated when the microcon­
troller is attempting to read data from Port
A in the track mode. It is generated from
one product term involving the address
inputs and the RD strobe (Intel mode) or
R/IN and E (Motorola mode). This allows
the user to configure the address range in
which the data is to be read from Port A.
CSADOUT1 is generated when the micro­
processor is accessing a "tracked" address.
It is generated from a single product term
involving the address inputs and ALE.
When the address generated by the micro­
controller is within the block specified by
the user for track mode, and the ALE is
active, CSADOUT1 becomes active, trans­
ferring the address and outputting it from
Port A. CSADOUT2 is generated when the
microcontroller is performing a write opera­
tion to a tracked address. It also has one
product term involving the address inputs
and WR (Intel mode) or R/W and E
(Motorola mode). When the microcontroller
performs a write to the appropriate
address, CSADOUT2 is generated, trans­
ferring the data and outputting it from Port
A. For further details on the operation of
the Track Mode, please consult Application
Note 017.

Register Name Byte Size Access of the UO Port Registers
Offset from the CSIOPORT

Pin Register of Port A + 2 (acceSSible during read operation only)

Direction Register of Port A +4

Data Register of Port A +6

Pin Register of Port B + 3 (accessible during read operation only)

Direction Register of Port B +5

Data Register of Port B +7

--------------------------------~~~------------------------------1.--69

PS03XX - Application Note 014

Example:
Address
Mapping
With PAD A

Figure 2.
Example
Memory Map

In this example, we will choose a sample
address map which is similar to those used
in typical microcontroller applications. This
example assumes the use of a PSD301
device with 256 Kbits of EPROM and 16
Kbits of SRAM. Figure 2 below illustrates
our sample address map.

In this example, we have located the boot
code and interrupt service routines begin­
ning at address 0000 in EPROM block O.
The SRAM is located in the 2K block begin­
ning at address Ox1 000 and can be used
for the stack andlor other scratchpad data.
The 1/0 ports occupy the 2K block begin­
ning at address Ox1800. Addresses in this
range will access ports A and B and their
control registers. The area from Ox2000 to
Ox8FFF is unused in this example, though
it could be used for external resources as
will be shown later. Finally, the main
program resides in the 28K block of
EPROM located from address Ox9000 to
OxFFFF and is selected by ES1 - ES7.

FFFF

9000
8FFF

2000
lFFF

1800
17FF

MAIN
PROGRAM

1/0 PORTS

SRAM

Configuring this memory map would
normally require designing a decoder to
generate the appropriate chip selects for
each given address range. For example,
assuming that a microcontroller with a 16-
bit address bus is used, the chip select for
EPROM bank 0 (ESO) would be generated
with the following equation:

ESO = IA12 ·/A13 ·/A14 ·/A15

Equations like this one would be formulated
for each of the chip selects, and the entire
function would probably be placed in some
kind of programmable device. When the
PSD device is used, PAD A replaces this
programmable device. Programming PAD
A to perform this function is a simple task
using WSI's Maple software.

Entering the ADDRESS MAP menu in the
Maple software running on a PC compati­
ble computer, the user will see a screen
similar to the one shown in Figure 3.

ES7 - 60 • 64K

ES6 - 56 • 60K

ES5 - 52 • 56K

USING ES4 - 48 • 52K

ES3 - 44 • 48K

ES2 - 40 • 44K
ESl - 36 • 40K

1 USING CSIOPORT - 6· 8K

1 USING RSO - 4 • 6K
1000
OFFF

0000

BOOT CODE &
I-------~~---- j
L-_IN_T_E_R_R_U_P_T_S_E_R_V_IC_E_-, USING

ESO - 0 • 4K

______________________________ f=E~~ ______________________________ _

1·70 ='"'='==: =:

Example:
Address
Mapping With
Pad A (Cont.)

PADS

Figure 3.
Maple Address
Map Entry

Upon displaying this screen, the Maple
software is ready for the user to enter the
memory map data. This is performed quite
simply by moving the cursor to the appro­
priate point with the arrow keys, and then
entering the appropriate data. The address
mapping may be entered in either of two
ways. First, the user may select each
address bit individually for each chip select
and enter a 0 or 1 as appropriate for the
equation desired. In our example, for ESO
we would enter a 0 in the columns for A 12,
A 13, A 14 and A 15. The other bits are don't
cares. In the other method of programming
the pad, the user simply moves the cursor
to the SEGMT START column and enters
the desired starting address for the block.
Again, using our sample memory map, the
user would move to the SEGMT START
column for ESO and enter 0000. Maple

Eleven of the PAD outputs and 27 of the
product terms are dedicated to PAD B.
Where PAD A was used to control the on­
chip PSD device resources, PAD B controls
any off-chip resources required by the
system. As with PAD A, all inputs to the
PAD are available to PAD B, allowing the
system designer to formulate outputs
involving any combination of address,
strobes and external signals. Unlike PAD A,
several of the outputs of PAD B have up to
four product terrns each.

PSD3XX - Application Note 014

then automatically programs the O's and 1 's
into the address bits correctly to program a
4K block of EPROM beginning at address
OxOOOO. Note that all EPROM blocks must
begin on 4K boundaries. Figure 3 shows
the resulting address map table for our
example.

The address inputs which were unused in
this example (A16, A17, A18 and A19)
could have been used as general purpose
inputs to the PAD for specialized control of
the on-chip memory and I/O resources.
When this is done, the designer has
complete flexibility as to the configuration
of the PSD device resources and may
easily absorb many system functions into
the PSD device. More detail about the use
of A 16 - A 19 will be provided later in
this note.

The outputs of PAD B are as follows:

o CSO - 7 (Port B)
o CS8 -10 (Port C)

The outputs from PAD B are brought to the
outside world through Port B and Port C.
These outputs are called chip selects,
though they may be used for any function
whatsoever. The port pins are configured
as selected by the user when the device is
programmed with the Maple output file.
There are many configuration options for
each port pin.

ADDRESS MAP

A A A A A A A A A SEGMT SEGMT FILE FILE
19 18 17 16 15 14 13 12 11 START STOP START STOP

ESO X X X X 0 0 0 0 N 0000 OFFF

ES1 X X X X 0 0 0 1 N 9000 9FFF

ES2 X X X X 1 0 1 0 N AOOO AFFF

ES3 X X X X 1 0 1 1 N BOOO BFFF

ES4 X X X X 1 1 0 0 N COOO CFFF

ES5 X X X X 1 1 0 1 N DOOO DFFF

ES6 X X X X 1 1 1 0 N EOOO EFFF

ES7 X X X X 1 1 1 1 N FOOO FFFF

RSO X X X X 0 0 0 1 0 1000 17FF

CSP X x x x 0 0 0 1 1 1800 1FFF

ALIASES:
Fill in A19 - A11 (Binary) or SEGMT START (Hex): and FILE (START, STOP)
and FILE NAME, Use SPACEBAR to erase any field value.
F1 - Return to Main Menu F2 - Temporary Exit to DOS F3 - Go to Help

FILENAME

Cursor - UP: t Down: ~ Left Col: ~ Right Col: -+- Right - F4 Left - F5

=-~~ .:=:~

-------------------------------------~.;'~----------------------------------1--7-1

PSDaxx - Application Note 014

PADB
(Cont.)

If you require more information about port
configuration, please consult application
note 011. If the port outputs are
configured as chip selects (outputs from
the PAD), they may not be used for any
other purpose. For example, the three Port
C signals may be configured as chip
selects (outputs) or addresses (inputs) but
cannot be both. Fortunately, the flexibility of
the PSD device and the Maple software
allows the designer to configure each Port
Band C pin individually, so that the number
of outputs and inputs may be optimized for
a particular design requirement. See Table
2 below for an example of this flexibility.

This sample port configuration demon­
strates all of the possible uses of a particu­
lar port pin. Though only Ports Band C
may be inputs or outputs tolfrom the PAD,
Port A is included in the table for complete­
ness. In this example, five of the port pins
are configured as PAD outputs (CS) and
two are configured as PAD inputs (A). The
remaining port pins in this example are
configured as either 1/0 or address outputs.
Several of the CS outputs have been
configured as open drain. This allows them
to be connected together in a wired OR
configuration to increase the number of
product terms even further if desired.

Table 2. Pin Configuration CMOS/OD
Sample Port
Configuration

Example:
Generating a
Logic Equation
WithPADB

PAO Address Out
PA1 Address Out
PA2 Address Out
PA3 Address Out
PA4 1/0
PAS. 1/0
PA6 1/0
PA7 1/0

PBO CSO
PB1 CS1
PB2 CS2
PB3 CS3
PB4 1/0
PB5 1/0
PB6 1/0
PB7 1/0

PCO A16
PC1 A17
PC2 CS10

Assume that it is necessary to generate the
following equation given the port configura­
tion in Table 2 above. This equation is a
simple OR of three product terms.

CSO = A15 ° A14 o/A13 °/A17 ° RD
+ I A 15 ° A 14 ° A 12 ° WR + A 16

Figure 4 illustrates the Maple programming
sequence to generate this equation.

To program this equation, the PORT B
menu is entered from the Maple software.
CSO is selected by moving the cursor to it
using the arrow keys. With CSO selected,
the user then presses the F3 key to bring
up the CHIP SELECT DEFINITION table
for CSO. The table contains four rows for

CMOS
CMOS
CMOS
CMOS
CMOS

00
00

CMOS

CMOS
CMOS

00
00

CMOS
CMOS
CMOS
CMOS

-
-
00

data entry, each one corresponding to one
of the available product terms for CSO.
Implementing this equation required using
three of the four available product terms.
The fourth is left blank and will not be used
to generate the output.

To enter the equation into the table, simply
move the cursor around into the appropri­
ate position and enter a 1 if the corre­
sponding Signal should be high for the
equation to be true, 0 if it should be low,
and X or SPACE if the signal is a don't
care. The first term of the equation requires
a low on A17, a high on A15, a high on
A14, a low on A13 and a high on RD for the
term to become active. Thus, 1 's are
placed in the A 15, A 14 and RD positions,

----------------------------~Jr~----------------------------
1-72

Example:
Generating a
Logic Equation
WithPADB
(Cont.)

Figure 4.
Programming
PAD Outputs

Application
Examples

and a's are placed in the A17 and A13
positions. The remaining terms in the
equation are entered in the same way.
Note that A 17 and A 16 in this example
(as well as A19 and A18) need not be
address bits, but may instead be used to
bring external signals into the PAD.

PSD3XX - Application Note 014

Four product terms are available on each
of the CSO - CS3 outputs, two terms are
available on the CS4 - CS7 outputs and
one term is available on CS8 - CS10.
When planning the use of the PAD outputs,
it is important to consider this so that the
most efficient use of the product terms can
be achieved.

PORTS

PIN CS/IIO CMOs/OD CHIP SELECT DEFINITION CSO
PBO CSO CMOS
PB1 CS1 CMOS A19 A18 A17 A16 A15 A14 A13 A12 A11 ALE RD WR
PB2 CS2 CMOS
PB3 CS3 CMOS

X X 0 X 1 1 0 X X X 1 X

PB4 CS4 CMOS X X X X 0 1 X 1 X X X 1

PB5 CS5 CMOS X X X 1 X X X X X X X X

PB6 CS6 CMOS
PB7 CS7 CMOS

ALIASES:

CS definition is the NOR of the product terms (rows). Enter 1 to select Active High signal,
o to select Active Low signal, X to mean "don't care", SPACEBAR to erase. Enter values
in columns relevant to your application; other blank columns will be treated as
"don't cares".

F1 - Retum to PORT B Cursor - Up: t Down: , Left:... Right:-+

The following section will illustrate the use
of the PAD for system logic replacement in
some common microcontroller applications.

Basic Chip Select Generation
One of the simplest uses of PAD B is
the generation of chip selects for off-chip
resources such as 1/0 devices or
memories. Figure 5 below depicts the
connection between a 68HC11
microcontroller, the PSD301 and two
common peripheral devices: the 8250
UART and the 8254 counter/timer.

The 68HC11 is an 8-bit microcontroller with
a 16-bit address bus. The lower 8 bits of
address are multiplexed with the data bus
while the upper 8 bits are transmitted on
their own bus. An address strobe (AS) is
provided to latch the address off of the
multiplexed bus. A RtW signal indicates
whether the current bus transaction is a
read or a write (R/W = 1 = read, RIW = 0 =

write). The E signal is the clock used
to strobe the data in or out of the
microcontroller. The PSD301 can be
configured to exactly match this signal
definition and then connected as shown in
the diagram. Not all of the 68HC11 or
PSD301 Signals are shown, only those
relevant to this example of PAD capability.

The 8250 is a UART device commonly
used in microcontroller systems to provide
a serial data communication port. It has a
simple bus interface, yet does not directly
connect with the 68HC11 bus architecture.
It requires an 8-bit bus to transfer data to
and from the microcontroller and a
separate 3-bit address bus used to access
its internal registers. It also requires a chip
select and separate read and write strobes
(RD and WR). The chip select is generated
by decoding the address from the micro­
controller. The RD and WR signals may be
generated from the RtW and E signals

------------------------------~Jr~----------------------------1.-~

PS03XX - Application Note 014

Figure 5.
A Typical
Microcontroller
System

68HC11

pco
PCl
PC2
PC3
PC4
PC5
PC6
PC7

PBO
PBl
PB2
PB3
PB4
PB5
PB6
PB7

E
R/W

I ~ ~
AOO
AOl

I ~ ~
A02
A03

I ~ ~
A04
A05

I ~ ~
A06
A07

AS
A9
Al0
All
A12
A13
A14
A15

E
RIW

PSD301 INS8250

PAO

~
00

PAl '\ 01
PA2

~
02

PA3 '\ 03
PA4

'\ ~
04

PA5 05
PA6

~
06

PA7

"
07

PBO AO
PBl Al
PB2 A2
PB3
PB4 CS2
PB5 RO
PB6 WR
PB7

8254
PCO f--- 00
PCl r--- 01 ~ AS AS PC2~ 02 8= 03

~
04

Application
Examples
(Cont.)

according to the following equations:

/RD = /(R/W • E)

/WR = /(/R/W • E)

These equations may be easily generated
using PAD B and sent out through two of
the chip select outputs. We have chosen
CS5 and CS6, which come out on PB5 and
PB6, for this example.

In order to provide the address lines to the
8250, we have configured Port A to output
the latched address. This eliminates the
need for any external latches to demultiplex
the address/data bus from the microcon­
troller. Though all eight of the Port A pins
have been configured as address outputs
in this example, it is possible to configure
only those address bits required for the
application, AO - A2 in this example, and
configure the remaining Port A pins as
general I/O.

The 8254 is a programmable interval timer

05
06

~ 07

AO
Al

RO
WR
cs

which, like the 8250, is a peripheral used in
many microcontrolier applications. Its bus
connection is very similar to the 8250,
allowing it to use the same read and write
strobes (RD and WR) and address lines. It
also requires a chip select which is
decoded from the microcontroller address.

The chip selects for both of the peripheral
devices may be easily decoded from the
address inputs to PAD B. Normally, the
addresses which are inputs to the PAD
(A 11 - A 19) would give decoding resolution
down to 2K. This means that each of the
two peripheral devices that require chip
selects would be allocated an address
range of at least 2K. Since these devices
do not require this much space and the
68HC11 has only a 16-bit address bus, it is
possible to use the high order address
inputs of the PSD device to improve the
decoding resolution. To achieve this goal,
we have configured Port C as address
inputs A 16 - A 18, but have connected
them to A8 - A 10 from the microcontroller.
This means that the PAD will now have

f~~AF~--------------------------------------1-• .,.-"------------------"---------------'fttFE!!- IE

Application
Examples
(Cont.)

Figure 6.
Memory Map

access to A8 - A15 for decoding, thus
providing a resolution of 256 instead of 2K.
This could actually be further reduced to a
resolution of 128 if we were to configure
the A 19/CSI input to be A 19, and then
connect it to A7 from the microcontroller. In
this example, we have not done this so that
CSI is still available to place the PSD301
into low power mode if required.

We now have to define the addresses of
each of the peripherals so that the chip
select equations may be defined. We will
start from the memory map provided earlier
in Figure 2. This map allocated all of the
internal resources of the PSD device. The
external peripherals may be easily added
to the unused area between addresses
Ox2000 and Ox8FFF. Figure 7 depicts the
new map with the external devices added.
Notice that the internal resources can keep

With Peripherals FFFF

8000
7FFF

7000
6FFF

6000
5FFF

5000
4FFF

4800
47FF

4000
3FFF

0000

MAIN
PROGRAM

PERIPHERAL # 3
1 WS

1-----------

PERIPHERAL # 2
6 WS

PERIPHERAL # 1
3 WS

I/O PORTS

SRAM

80C196KB
INTERNAL RESOURCE

PS03XX - Application Note 014

their original address mapping even though
the additional address inputs (A8 - A 10)
have been added. This is because these
inputs may be don't cares in the decoding
for the internal resources even when they
are being used for the external resources.

Now, to wrap up this simple design, we
must enter the configuration and mapping
information into Maple. The configuration of
the PSD device must be consistent with the
operation of the 68HC11 microcontroller.
The address/data mode must be mUlti­
plexed, the data bus must be 8 bits wide,
CSI/A19 may be configured either way, the
reset polarity should be active low, the ALE
polarity is active high, the read and write
lines must be RfiiJ and E, A 19 - A 16
should be latched so that these bits
become available just like the rest of the
address bus, and the read strobes for the

ES7 60 - 64K
ES6 56 - 60K
ES5 52 - 56K

USING ES4 48 - 52K
ES3 44 - 48K
ES2 40 - 44K

ES1 36 - 40K

ESO 32 - 36K

USING CS7 28 - 32K

USING CS6 - 24 - 28K

USING CS5 - 20 - 24K

USING CSIOPORT - 18 - 20K

I USING RSO - 16 - 18K

-------------------------------------f~~aF~--------__________________________ __
~g§ 1-75

PSD3XX - Application Note 014

Application
Examples
(Cont.)

Wait State
Generation

SRAM and EPROM will be the same. This
configuration should be entered from the
configuration menu of the Maple software.

The address map programming for this
example will remain the same as the one
used earlier in Figure 3. The only items
remaining are the programming of the ports
and the generation of the equations for the
chip selects and read/write strobes. First
we must configure Port A to provide the
latched address to the peripherals. This is
accomplished by entering the PORT A
menu in the Maple software. Maple will
then ask you if you would like Port A
configured for address 1/10 or the Track
Mode. For this example, we will use the
address/I/O configuration. Next, Port A
must be configured pin for pin as an
address output. This is easily performed by
using the cursor keys to select the appro­
priate pin and pressing the SPACE BAR to
change the configuration. It is also possible
to configure each pin as an open drain or
CMOS output, but for address outputs, it is
better to make them CMOS.

Now, PORT C must be configured to
provide the three additional address inputs.
This is performed by entering the PORT C
menu in Maple and selecting the appropri­
ate pin with the cursor. Each pin should be
configured as an address bit (Ai). Maple will
call the pins A 16 - A 18 even though we will
be using them as A8 - A 10.

Often, when using some of the newer high­
performance microcontrollers with slower
extemal peripherals, it is not possible to
complete a read or write cycle to the
peripheral in the time allowed by the micro­
controller's minimum bus cycle. In this
case, one or more wait states must be
added to slow the controller down to the
speed of the peripheral. One way of doing
this is to fix a number of wait states for all
bus cycles to al!ow the slowest device
enough time for its access. Some
controllers even provide the capability to do
this intemally through the programming of a
register. This works, of course, but can
severely impact the performance of the
system. There is no need to penalize the
performance of the entire system, which
can include zero wait state memory
devices and other peripherals, simply
because one or more of the extemal

Lastly, we must configure the Port B
outputs to become the chip selects and
read/write strobes. First, the PORT B menu
must be entered. Now, we must configure
each pin as an I/O or CS output.
PBO - PB3 may be configured as general
purpose I/O pins. PB4 - PB7 must be
configured as chip selects. Once config­
ured as chip selects, the equations for each
output may be entered by following the
Maple instructions. The procedure is the
same as the one used in the earlier chip
select example. Our equations, including
the ones developed earlier for the read and
write strobes, are defined for each output
as follows:

PBS = /CS5 = /RD = /(RIW • "E)

PB6 = /CS6 = IWR = /(/RIW • E)

PB4 = /CS4 = /8250CS = /(/A15· /A14·
A13· /A12· /A11 • /A18· /A17· /A16)

PB7 = /CS7 = /8254CS = /(/A15· /A14·
A13· /A12· /A11 • /A18· /A17· A16)

This completes the design integrating these
four components with no additional logic
whatsoever. There is also additional space
in the PAD for more functions if necessary,
so we have not yet reached the limit of the
integration possibilities with the PSD301.

devices requires some number of wait
states. It is possible, with minimal logic, to
create a completely programmable auto­
matic wait state generator using the
PSD301 which will allow the fast resources
to operate at zero wait states and still
provide from one to eight wait states for the
slower resources.

For this example, we will use an Intel
80C19SKB microcontroller running at 12
MHz. This controller has the capability to
operate in a 16-bit data mode, providing
the opportunity to further increase perfor­
mance if the system can also operate in
this mode. The PSD301 does have the
capability of operating in the 16-bit mode,
making it a good match for the 80C1 96. We
will assume that the 80C1 96 must be inter­
faced to several slow 8-bit peripherals
requiring from one to eight wait states. With

-------------------------------------f==~~------------------------------------­
1-76 =''='=:: =

Wait State
Generation
(Cont.)

the PSD301 , we can provide the correct
number of wait states for each peripheral
with the added capability of dynamically
sizing the bus to the appropriate width for
the current access.

The memory map we will use for this
design is depicted in Figure 6. The internal
resources of some BOC196 derivatives
occupy most of the address space from
OxOOOO to Ox3FFF, though some have less
resources. Therefore, we have constructed
the memory map to place the PSD device
resources above address Ox4000. The
PSD301 SRAM and 1/0 devices occupy
from address Ox4000 to Ox4FFF. This
leaves the area from Ox5000 to Ox7FFF for
external peripherals while leaving OxBOOO
to OxFFFF for the EPROM banks. We
assume that we must connect three exter­
nal peripherals to the PSD device using
this address space, one requiring one wait
state, one requiring three and one requiring
six. This memory map is entered into the
part similarly to the previous examples.

PSD3XX Application Note 014

To achieve the variable number of wait
states, the ideal solution is to decode the
address to determine the number of wait
states required for a particular address
range, and then to use a counter to count
the appropriate number. By using the PAD
to initialize an external counter, a variable
wait state counter can be created in this
manner. This wait state generator requires
only one external device, a 74FCT191
counter. The circuit used to implement this
function is illustrated in Figure B. The
BOC196KB is directly connected to the PSD
device which in turn provides the three chip
select signals for the external peripherals
(PER1CS, PER2CS and PER3CS) as well
as the wait state generator function and the
dynamic bus sizing. Ports Band C are fully
utilized to provide the logic inputs and
outputs required to implement these func­
tions, while Port A is still available for
general 1/0 or address use.

This circuit uses PAD B to decode the
addresses driven by the microcontroller

PSD3XX - Application Note 014

Wait State
Generation
(Cont.)

and provide four outputs, based on these
addresses, which are used to initialize the
74FCT191 counter with its initial value. The
counter is initialized using ALE to latch
these four PAD outputs. The load signal for
the counter is active low, however, while
ALE is active high, so ALE is inverted using
PAD B and sent out through Port C.
Though the 80C196KB can be configured
to provide an active-low address strobe,
ADV, the timing of the signal is inappropri­
ate for use as the LOAD input to the
counter. Once the counter is initialized, it
counts up from the initial value until the
most significant bit increments from 0 to 1.
The output of the most significant counter
bit is routed to the READY input of the
microcontroller. Thus, the controller will be
held in wait states until the most significant
counter bit is incremented. This output is
also routed to the CTEN signal of the
counter so that counting will cease once
the READY signal has been issued to the
controller. The clock for the counter is an
inverted version of the CLKOUT signal
from the controller. This clock must be
inverted since the 80C 196KB uses the
falling edge of the clock to sample the

READY input. PAD B again provides the
inversion function by routing CLKOUT
into one of the Port C pins, inverting it
and routing it back out through another
Port C pin.

The counter provides from zero to eight
wait states depending on the initialized
value. For zero wait states, the most signifi­
cant counter bit is initialized to a "1", which
provides the READY signal to the controller
immediately and disables the counter from
incrementing. If one wait state is desired,
the counter is loaded with the value 7 (0111
binary) so that after it increments once, the
most significant bit switches to a "1" and
provides the READY to the controller.
When two wait states are required, a 6
(0110 binary) IS loaded into the counter,
and so on for the rest of the wait state
values.

To properly size the bus to the appropriate
width, PAD B is again used to decode the
addresses of the 8-bit devices. When the
address of an 8-bit device is encountered,
the BUSWIDTH signal is driven to
configure the 80C196KB address to eight

Figure 8.
Wait State
Generation
Circuit

80C196KB PSD301

ADO ADO PAD
ADl ADl PAl
AD2 AD2 PA2

} GENERAL AD3 AD3 PA3
PURPOSE AD4 AD4 PA4
ADDRESS OR 1/0 AD5 AD5 PA5

AD6 AD6 PA6
AD7 AD7 PA7 74FCT191

ADO ADS PBO OA
ADl AD9 PBl OB
AD2 AD10 PB2 OC
AD3 ADll PB3 00
AD4 AD12 PB4 t---- PERl CS "- CTEN
AD5 AD13 PB5 t-- PER2CS __
AD6 AD14 PB6 t---- PER3CS ~ LOAD
AD7 AD15 PB7 Jr CLK

D~

RD RD pco I DIU

WR WR PCl
ALE ALE PC2 r--
BHE BHE

CLKOUT

I
BUSWIDTH 1l

READY f--

-----------------------------------f==~~------------~---------------------
1-78 ==-~=:: ==

Wait State
Generation
(Cont.)

Tablea.
Wait State
Summary

bits. For all other addresses, the width is
set for 16 bits. The BUSWIDTH signal is
output from one of the Port B pins.

The PSD device must now be configured to
provide the functions required by the
example circuit. The configuration of the
PSD must first be programmed to function
with the 80C196KB. This is easily
performed by the Maple software as in the
previous example. The address/data mode
should be multiplexed, the data bus width
should be 16 bits, CSI/A19 may be
configured as required for the application,
the reset polarity should be active low, the
ALE polarity should be active high, sepa­
rate AD and WR strobes should be used
and A 19 - A 16 should be transparent, not
latched, since they are used as logic inputs
to the PAD.

Next, we must program the functionality of
Port C. For this example, PCO and PC1 are
used as outputs from the PAD to provide
the LOAD and CLK Signals for the '191
counter. This is performed by entering the
PORT C menu in Maple and configuring
PCO and PC1 as CS8 and CS9, respec­
tively. PC2 is used to input the CLKOUT
signal from the microcontroller to the PAD
so that it may be inverted. Therefore, it
must be configured as address input A18.
Now, the equations used to generate the
PCO and PC1 outputs must be entered into
the PAD. PCO is the LOAD signal which is
just the ALE input inverted. PC1 is an
inverted version of A18, which contains the

Peripheral No. Address Range
1 Ox5000-5FFF

2 Ox6000-6FFF

3 Ox7000-7FFF

PS03XX - Application Note 014

CLKOUT signal. These equations are listed
below:

PCO = /LOAD = /ALE

PC1 = /CLKOUT = /A18

The equations are programmed by entering
the CHIP SELECT DEFINITION menu for
each of the two chip selects, as in the
previous example, and entering the appro­
priate 1 's, O's and DON'T CARES. In the
case of PCO, there are don't cares in all of
the PAD inputs except ALE, where there is
a O. Similarly, for PC1 , the A 18 input is a 0
while the rest of the PAD inputs are don't
cares.

Port A is usually configured next, and in
this example it is free to be configured in
any mode necessary for the application. It
may become either I/O or address outputs,
or may be set in the Track Mode as
described earlier.

We are now ready to configure Port B. This
example requires that all of the Port B pins
be used as chip selects (logic outputs) from
PAD B. PBO - PB3 are used to initialize the
counter with the correct number of wait
states for each device. These outputs are
defined according to the address ranges for
each of the peripherals and the number of
wait states required for each. Table 3
summarizes the outputs required for each
peripheral so that we may define the
correct equations for the outputs.

No. Wait States PBD-PB3

3 1010

6 0100
1110

------------------------------~~Ar-----------------------------1·79

PSD3XX - Application Note 014

Wait State
Generation
(Cont.)

Conclusion

This table can be easily used to form the
necessary equations for PBO - PB3. PB3
can be considered the enable for the wait
state generator which is active low only in
the address ranges of the three peripher­
als. It must remain high for all other
address ranges. The other three outputs
simply encode the proper number of wait
states. The resulting equations are listed
below:

PBO = lOA = I(A15 ° A14 ° A13 o/A12)

PB1 =/OB=/(A15°A14°/A13°A12)

PB2 = IOC = I(A15 ° A14 ° A13 o/A12)

PB3 = IOD = I(A15 ° A14 o/A13 ° A12 +
IA15 ° A14 ° A13 °/A12 + IA15 ° A14 °
A13 ° A12)

PB4 - PB6 are used as chip selects for
each of the three peripherals and are
simply decoded from the address inputs by
PAD B corresponding to the address
ranges listed in Table 2. These equations
are listed below:

PB4 = IPER1CS = I(A15 ° A14 °
IA13 ° A12)

PB5 = IPER2CS = I(A15 ° A14 °
A13 0 1A12)

PB6 = IPER3CS = I(A15 ° A14 °
A13 ° A12)

The PSD device may be used in a variety
of applications requiring the simplicity,
space savings and performance possible
by the integration of memory and
programmable elements. But a significant
portion of the value of the PSD device, is
its ability to absorb much of the logic
functionality which normally surrounds a

Finally, PB7 is used to perform the bus
sizing function. It should be sized to eight
bits whenever any of the external peripher­
als is accessed. It should be sized to 16
bits for all other accesses. The 80C196KB
requires a high on the BUSWIDTH input for
16-bit operation and a low for 8-bit opera­
tion. This is accomplished by the equation
below:

PB7 = BUSWIDTH = I(A15 ° A14 ° A13 +
IA15 ° A14 o/A13 ° A12)

This completes the equations for Port B.
These equations are entered in the Maple
software by selecting the Port B chip select
definition screens as described in the previ­
ous example and entering 1 's and O's in the
appropriate locations. Remember that don't
cares (X's or blanks) must be entered in all
inputs which are not used by a particular
equation.

Finally, we must enter the memory map
into Maple Address Map screen. This is
performed as in the previous example by
entering 1 's, O's or don't cares in the appro­
priate places.

microcontroller application. The
programmability of the device allows the
designer to make changes to both the
software and the design itself as required.
This is not possible with masked ROM or
ASIC-based designs. The PSD device can
truly turn a microcontroller into a complete
two-chip solution.

IF •• .EE1fff _________________ _

-,-~-O----------------~~·

Introduction

What is
Paging?

Programmable Peripheral
Application Note 015
Using Memory Paging with the PSD3XX
By Jeff Miller

The PS03XX is a compact, high
performance microcontroller peripheral
used to extend the capabilities of a
microcontroller in a space-limited
embedded control system. It provides the
programmable logic, memory and I/O
requirements needed by most microcon­
troller designs in a single small package.

The PS0301 , introduced in November
1990, was the first of a six-member family
of devices providing varying amounts of
on-chip resources. The PS0301 contains
32K Bytes of EPROM for program storage
and 2K Bytes of SRAM scratchpad
memory. As the family expanded, the
EPROM memory size grew to 128K Bytes
in some versions. This large memory may
be needed in many applications requiring
large feature sets. In many cases the

The primary purpose of a page register is
to extend the width of the address bus by a
number of bits to increase the size of the
address space. These bits are added to the
address bus as outputs of a register which
is loaded from the data bus of the MCU.
Each additional bit doubles the effective
address space. Though the page register
address bits increase address space, they
are not the same as the true address bits
which are generated by the microcontroller
since they do not appear with the same
timing or sequence of the address. They
must be controlled carefully to avoid
unexpected behavior. They can also be a
problem for compiler-generated code since
the compiler does not inherently know how
to use a page register. Because of this,
the designer must take care in designing
software which uses the PS03XX page
register.

The purpose of this note is to explain the
usage of the page register and some of the
techniques which may be used when
designing software which uses the page
register. A typical page register design
is shown in Figure 1. In the figure, a
typical 8-bit microcontroller with a
multiplexed address/data bus is shown

microcontroller is capable of addressing
only 64K Bytes of memory with its
limited 16-bit address bus. In these
applications, the designer is often faced
with the difficult choice of eliminating
features, using a more expensive
microcontroller with a wider address bus,
or adding external paging logic requiring
several extra components.

With this in mind, designers at WSI have
included a simple but very effective paging
system in the PS03XX models containing
more than 32K Bytes of EPROM. This
enables cost effective microcontrollers like
the 80C31 , 80196, Z80, 68HC11 and
others to take full advantage of additional
memory without any additional hardware or
design effort.

connected with the logic required to
implement a 4-bit page register. The least
significant address bits are demultiplexed
from the data bus by the '573 transparant
latch, which is clocked by the ALE signal.
The most significant 8-bits of address are
driven directly by the microcontroller. When
combined with the least significant address
bits from the address latch, the address
bus is 16-bits wide. This provides the
capability to directly access 64K Bytes of
address space, which may be any
combination of program and data storage.
To implement more address space, two '74
devices (a dual Ootype flip flop) have been
used to create a page register. The inputs
of the '74 are four bits of the address/data
bus. These bits are stored into the '74
when a write to a specific address, as
decoded by the '138, is performed by the
microcontroller. The outputs of the '74
form an additional 4 address bits, thus
extending the address bus to 20-bits or 1
MByte of address space. The '74 page
register can be considered to hold
a page number. Each page number
provides a complete duplication of the
microcontroller's memory space. To get to
another 64K Byte page of address space,

---------------------------------------~~~--------------------------------------
==== 1·81

PSlJ3XX - AppllcatlDn NDte 015

What is
Paging
(Cont.)

Figure 1.
Discrete Page
Register

ThePSD3XX
Implementation

the controller simply has to change the
page number by writing a different value to
the page register.

The circuit below has one major
complication. If the microcontroller is
currently in a particular memory page, page
X, and it changes the page number to Y
using a store instruction which it fetched
from page X, as soon as the store is

ADO:7
'573

ALE
MCU

A8:15

WR
'138

Figure 2 illustrates the block diagram of the
PSD3XX with the internal page register. It is
similar to the discrete circuit above, but with
some important differences. The page
register provides 4-bits of additional
addressing capability, but does not provide
them directly to the memory devices them­
selves. Instead, the page register output
bits are taken into the Programmable Array
Decoder of the PSD3XX. This enables the
user to program them as necessary for the
system design.

The PAD provides a flexibility that most
page register implementations are not
capable of providing. If you are unfamiliar
with the capabilities of the PSD3XX PAD,
please consult Application Note 014, Using
the PSD3XX PAD for System Logic
Replacement. Figure 3 illustrates the PAD
logic in a PSD3XX with a page register. The
PAD generates the outputs which are used
to select the PSD3XX's eight EPROM
blocks, the SRAM block, the 1/0 ports, the
shared resource interface, the page register
itself and all external functions which use

complete the next instruction fetched will
come from page Y. This means that page
Y must pick up the programming sequence
exactly as it was left off from page X. This
is a complication that must be handled in
software and can make programming very
difficult. Additionally, interrupts can be a
significant problem since they must force
the program to an interrupt vector which
may exist on a different page.

~ - 2X
'74 ~

(AO:19)

the chip selects provided by Port Band
Port C of the PSD3XX. Thus, the page
register bits may be combined with the
address bits and control signals in any
combination to generate the select signals
for all of the above resources. In addition,
any or all of the page register bits may be
don't cares in any or all of the PAD chip
select equations, enabling the user to
select which resources may be selcted
from which page, or to select some
resources from any page. This extremely
useful feature enables the programmer to
avoid the problem of software continuity
between pages described above by making
at least one of the EPROM blocks appear
in all pages and then using that block to
contain code for interrupt servicing and
page switching. This is performed simply
by making the page register bits 'don't
cares' in the chip select equation for that
block. All of this is fully programmable with
the PSD3XX, enabling the designer to
choose the paging scheme that is best for
the application.

---------------------------~Jr~---------------------------1-82

Figure 2.
PSD3XX
Architecture

A

- A11-A15

L A8-A10
A
T A19

AD8-AD15 c CSI
H ALE/AS

.-- RD

WR

RESET
ALE/AS

L--

DO-AD7 L
A
T - 1-
C
H

'---

r-

'+ ~~ ~
"---- J4-

r-

L....-. <J I-

[> f.- 1-

"----

ALE/AS

t -
RD/E
- -
WR/RIW

BHEIPSEN
PROG

CONTROL
RESET SIGNALS

A19/CSI

PSD3XX - Application Note 015

PAGE LOGIC

P3-PO A16-A18

~F ~ !
PROG

~ LOGIC IN
PORT
EXP CSIOPORT

A19

CSI PCO-

PAD A ALE/AS
PAD B PORT ~ - C

RD

13 PT WR 27PT
CS8-

RESET
CS10

--- EPROM

ES7
256K BIT -1 M BIT

ES6
ES5
ES4

ES3

ES2 PROG

~ PORT

tEso~ CSO- EXP
-------. CS7

r;6i8 PBO-
32K-128K BIT

~
'i~

BLOCK PORT

r B .-
D8-D15

1+ [> ~
"----

CSIOPORT

DO-D7 - -

~ SRAM
PROG
PORT

16K BIT EXP
TRACK MODE
SELECTS

PAO-
AO-A7 PORT PA7

ADD---AD7/DO-D7 A ~

PROG CHIP
CONFIGURATION

X8, X16
MUX or NON-MUX BUSSES

--------------------------------~~~~------------------------------1--8-3

PSD3XX - Application Note 015

ThePSD3XX
Implementation
(Cont.)

Figure 3.
PSD3XXPAD
Diagram

The Microcontroller can write or read the
page register to place a new page number
in it or read the current page number. To
perform this, the microcontroller must
simply access the address programmed in
the PAD for the page register. This address

~ i
I

I II

1t ~~ I.
,I

P, " I ~ I
....

c-Po

! --_. 'S
1- k+ v

~

AL EorAS

I I I I -- 'S
v ,

"

DorE
--- ~

I' V I

-
orRIW

II1111

._- ~

_~'.9... ~ il
-ft

~-~ II
A17 "-
--,?-
A16

--
A15 ,,-
-- ~ I-j

.... t! ,
A14

I if]
~

A13
.... ~H -q

A12 " --- -:;:;
v

All ..
'S

v

CSI_-. I ,
--

I II
RESET - I I II

I

H

"

I

I

I

I

I

i

I

is based on the CSIOPORT select signal
programming. If address 8000 hex is
programmed for CSIOPORT, the
corresponding page register address is
8018 hex and read and write data will be to
and from the page register.

,

II

-j)--- ESO

---0--- - ESl
ES2

-- ES3 8
--D-- ES4 S

ES5
ES6

- -[)---- ES7
RSO-S

EPROM BLOCK
ELECT LINES

RAM BLOCK SELECT

CSIOPORT - 110 BASE ADDRESS
CSADIN

--{)--- CSADOUTl
-- -{)---- CSADOUT2

}
TRACK MODE
CONTROL SIGNALS

--~L>- CSO/PBO

~ CS1/PBl

.--
---] CS2IPB2

- CS3/PB3

-j)-~=D- CS4/PB4

--{}--D----0---- CS5/PB5

CS6/PBS

.~- CS7/PB7

CS8IPCO

-{>o-- CS9/PCl

PAD
A

PAD
B

1.1
CS10/PC2

-1--8~4---------------------------~~~~---------------------

A Simple
Paging
Example

To illustrate the operation of the PSD3XX
page register, assume that a designer
requires a full 128K Bytes of program
storage space, 32K Bytes of buffer SRAM
and three peripheral devices which also
must be memory mapped. We can also
assume that the required program is easily
broken into four modules which are
somewhat independent, but do need the
capability to call one another and must be
able to pass global data among one
another. Further, assume that the
external peripheral devices may be
selected from three of the four modules,
but must not be accessed from the fourth
for security reasons. Lastly, assume that
the designer is constrained by cost and
compatibility considerations to use an 8-bit
microcontroller with a 16-bit address bus
(in this example, an 8031).

These requirements may be easily
implemented using the PSD313 device.
The PSD313 is an 8-bit device with
128K Bytes of EPROM for program
storage. It also contains the PAD and page
register logic described above. The
memory map required for this application is
shown in Figure 4.

The memory map shown utilizes the page
register to provide a unique address for all
of the PSD313's 128K Bytes of EPROM in
addition to the SRAM and peripherals. This
memory map consists of four pages of 64K
Bytes each. The map is further divided into
program and data space by the PSEN and
RD signals which are available in the 8031
microcontroller. This enables the PSD313
to overlap the addresses of the EPROM,
1/0 and SRAM. The pages are numbered
o - 3, and are written into the page register
by the microcontroller. The page register is
part of the 1/0 addressing and resides in
the RD = 0 map.

The software must be broken into four
segments, one residing in each page, in
order to function efficiently with this
memory scheme. The software which
enables the machine to boot, service
interrupts and switch memory pages is
located in a block of EPROM which is
mapped into all memory pages. This
enables simple page switching and
interrupt servicing regardless of the page
that the microcontroller is currently
operating in. Locating an EPROM block in

PSD3XX - Application Note 015

multiple pages is very simple using the
PAD 'don't care' feature. In this example,
EPROM block 0 has been chosen to hold
the page-independent software. The PAD
output which controls block 0 is ESO.
Therefore, in the definition of the ESO
signal, all four of the page register bits
(PO - P3) are programmed as 'don't cares'.
ESO is further defined to be from address
0000 to 3FFF. Thus, whenever the
microcontroller places an address on the
bus which is in this range with PSEN low,
the data will be read from EPROM block 0,
regardless of the contents of the page
register.

The remaining EPROM blocks are evenly
distributed into the four pages. This
segmentation has been used in this
example, but there is no requirement that
the pages contain equal memory sizes.
Each can have a different amount of
resources contained within it. We have
placed EPROM blocks 1 and 2 in page o.
This is done by requiring PO - P3 to be O's
to generate the ES1 and ES2 selects.
Similarly, ES3 and ES4 in page 1, ES5 and
ES6 in page 2 and ES7 in page 3 require
the PO - P3 signals to be in the correct
states to generate the ES signals.

The SRAM and 1/0 devices most likely
must be accessible from all pages, like the
page switching software and interrupt
service routines. In this way, each of the
program segments may store and load
data from the SRAM which may be used to
pass global parameters among the
programs. All programs may also
communicate with the external 1/0 devices,
which is most likely required. It is very
important that the internal PSD3XX 1/0
registers, which include the 110 port control
and data registers as well as the page
register itself, be mapped into all pages.
Otherwise, after the page has been
switched, there will be no way of switching
back to the original page since the page
register would not be accessible. To rnake
the page register accessible from all
pages, the designer must simply make the
page register bits (PO - P3) 'don't cares' in
the equation for the CSIOPORT signal.
This can also be done for any of the
external chip select equations which are
generated by the PAD and brought to the
outside world through Port B or Port C.

--------------------------------~~~~------------------------------1---85

PS03XX- ApplicatlDn NDte 015

Figure 4.
Memory
Map

PSEN = 0 RD=O

PROGRAM
} ES748-64"

CSIOPORT
#4

RSO

PAGE 3

l_E_S_O_~: ~~~ } SRAMCS 0 - 32K

PROGRAM } ES632_64K CSIOPORT
#3 ES5

RSO

PAGE 2

J~= ExtCS1
ExtCS2

} _ :~~_O_ ~ ~~~ SRAMCS 0 - 32K

PROGRAM } ES432_64K CSIOPORT
#2 ES3

RSO

PAGE 1 J ~s, ExtCS1
ExtCS2

l_~~O_~~!~~ SRAMCS 0 - 32K

PROGRAM } ES232_64K CSIOPORT
#1 ES1

RSO

PAGE 0

ExtCSO
EXTERNAL J E~1 CHIP SELECTS ExtCS2

l_~~o_ ~ ~ _1~~ EXTERNAL
SRAMCS 0 - 32K SRAM

if Ii Ji! !!!'.
1-86 fIIl§

A Simple
Paging
Example
(Cont.)

If it is desirable for some pages not to have
access to some resources, this may be
done also. The designer must simply use
the page register bits in the equation which
selects the resource which is to be
protected. This can provide a program
security or error handling feature while
protecting certain liD or memory devices
from accidental corruption.

Figure 5 contains the output of WSi's
Maple software for the above example.
The part chosen to implement the sample
design was the 8-bit only PSD313, chosen
because it contains the required 128K
Bytes of EPROM but is less expensive
than the PSD303. The PSD303, which also
contains 128K Bytes of EPROM, can be
configured in a 16-bit data bus mode which
would be suitable for use with 16-bit
microcontrollers like the 80196.

The PSD313 was programmed and
configured to implement the memory map
shown in Figure 4. Not all of the capability
of the PSD313 has been utilized in this
example but is available to satisfy other
system design requirements if necessary.
The PSD313 has been configured to
function with the 8031 microcontroller and
its associated control signals. This can be
seen in the Configuration portion of the
output file in Figure 5. We have also
configured Port B 0-3 to provide the
required chip select functions for the
external liD and SRAM devices. These
chip selects have been given the aliases
ExtCS 1, ExtCS2 and ExtCS3 for the liD
devices and SRAMCS for the SRAM. The
equations entered for the chip selects
correspond to the addresses for which they
should be active. ExtCS1 will become
active when address 8000 - 87FF hex is
accessed. ExtCS2 and ExtCS3 will
become active for addresses 8800 - 8FFF
hex and 9000 - 97FF hex respectively. The
SRAM chip select will become active for
address 0 - 7FFF hex. All of these chip
selects will function independently from the
page register contents since the page
register outputs (PO - P3) do not appear in
the equations. This means that all of these
external devices will be selectable from
any page.

PS03XX - Application Note 015

The address map lists the start and stop
addresses and the page numbers for each
of the blocks of memory and I/O inside the
PSD313. The first EPROM block is
selected by ESO, which has been mapped
from address 0000 to 3FFF hex. This block
has been designated to contain the page
switching software and the boot and
interrupt service routines. Since all pages
need the capability to switch from one to
another, and since an interrupt may be
received at any time while the software is
executing in any page, EPROM block 0
has been made accessible from all pages
by making the page register bits
'don't cares' (x's) in the address map for
ESO.

ES1 and ES2 map EPROM blocks 1 and 2
into address 8000 - FFFF hex in page O.
Thus, whenever a program address
within this range is accessed by the
microcontroller while the page register
contains a 0, ES1 or ES2 will activate
EPROM block 1 or 2. While the
microcontroller is executing code from one
of these blocks in page 1, it may still
access internal or external SRAM, or
internal or external liD without changing
pages. ES3 - ES7 are mapped to pages
1 - 3 in a similar manner.

In addition to the external SRAM, the
PSD313's internal SRAM has been
mapped into all address pages where it
may be used to supplement the
microcontroller's register file and internal
SRAM. This SRAM may be used fer
global variable storage, stack space or
many other purposes. The PSD313's liD
ports have been mapped at address
C800 - CFFF hex in this example. This
places the page register address at C81A
hex (see the PSD3XX data sheet for liD
addressing in the PSD3XX). As discussed
earlier, the page register has been mapped
into the same address from all memory
pages, so that it may be accessed from all
program subroutines in the system.

---------------------------------------~~~~--------------------------------------
1-87

PS03XX - Application Note 015

Figure 5.
MAPLE
Software
Example

PSD PART USED: PSD313
********************PROJECT INFORMATION*****************
project Name Page Register App Note
Your Name Jeff Miller
Date 1/15/92
Host Processor: 8031

**

********************ALIASES*****************************
ICS4 ExtCS1
/CSS ExtCS2
/CS6 ExtCS3
/CS7 SRAMCS

********************GLOBAL CONFIGURATION***************
Address/Data Mode: MX
Data Bus Size 8
Reset Polarity HI
Security OFF
ALE Polarity HI
A1S-AO ALE dependent (Y) or Transparent (N): N
Using Different READ strobes for Data and Program: Y

********************READ WRITE CONTROL*************
/RO and /WR

**

********************PORT A CONFIGURATION **********
ADDRESS/IO

**

********************PORT A (ADDRESS/IO)*****************
PIN Ai/IO CMOS/OD
PAO AO CMOS
PAl Al CMOS
PA2 A2 CMOS
PA3 A3 CMOS
PA4 A4 CMOS
PAS AS CMOS
PA6 A6 CMOS
PA7 A7 CMOS

**

********************PORT B CONFIGURATION***************

Pin

PBO
PBl
PB2
PB3
PB4
PBS
PB6
PB7

CS/IO

CSO
CSl
CS2
CS3
CS4
CSS
eS6
CS7

CMOS/OD

CMOS
CMOS
CMOS
CMOS
CMOS
CMOS
CMOS
CMOS

**

___ 'arar~&F ______________________________________ ___
1-88 '.:':11

PSD3XX - AppllcatlDn NDte 015

Figure 5.
MAPLE
Software
Example
(Cont.)

******************PORT B CHIP SELECT EQUATIONS************

ExtCSl

ExtCS2

ExtCS3

SRAKCS

I (A15 * IA14 * IA13 * IA12 * IAll * Ipo
+ A15 * IA14 * IAl3 * IAl2 * IAll * IP1)

I (A15 * IAl4 * IAl3 * IAl2 * All * IPO
+ Al5 * IA14 * IA13 * IA12 * All * IP1)

I (A15 * IA14 * IAl3 * A12 * IAll * IpO
+ A1S * IAl4 * IA13 * A12 * IAll * IP1)

I (/A15)

******************PORT C CONFIGURATION~******w**********

pin

PCO
PCl
PC2
A19

CS/Ai

A16
A17
A18
CSI

LOGIC/ADDR

ADDR
ADDR
ADDR

*********************************w**********************

*****************PORT C CHIP SELECT EQUATIONS***********

*******************-**********ADDRESS MAP***********************************

A A A A A A A A A SEGMT SEGMT FILE FILE File Name Page Reg
19 18 17 16 15 14 13 12 11 STRT STOP STRT STOP 3210

ESO N 0 0 0 0 0 N N N 0 3fff 0 3fff PROGO.HEX XXXX
ESl N 0 0 0 1 0 N N N 8000 bfff 0 3fff PROG1.HEX 0000
ES2 N 0 0 0 1 1 N N N cOOO ffff 4000 7fff PROG1.HEX 0000
ES3 N 0 0 0 1 0 N N N 8000 bfff' 0 3fff PROG2.HEX 0001
ES4 N 0 0 0 1 1 N N N cOOO ffff 4000 7fff PROG2.HEX 0001
ESS N 0 0 0 1 0 N N N 8000 bfff 0 3fff PROG3.HEX 0010
ES6 N 0 0 0 1 1 N N N cOOO ffff 4000 7fff PROG3.HEX 0010
ES7 N 0 0 0 1 1 N N N cOOO ffff 0 3fff PROG4.HEX 0011
RSO l~ 0 0 0 1 1 0 0 0 cOOO c7ff N/A N/A N/A XXXX
CSP N 0 0 0 1 1 0 0 1 c800 cfff N/A N/A NIl. XXXX

Q.F
ALE

X
X
X
X
X
X
X
X
X
X

ENDw*w****** ****************~*******

*********************ADDRESSES OF 1/0 PORTS****************
Pin Register of Port A : C802 Page (Binary) : XXXX
Direction Register of Port A : C804
Data Register of Port A : C806
Pin Register of Port B : C803
Direction Register of Port B C805
Data Register of Port B : C807
Page Register : C8l8
**

---rjfAf~~--===== 1-89

PSD3XX - Application Note 015

Software
Considerations

The software example shown In Figure 5,
has been divided into four sections to
facilitate placing it into the four pages.
These four program blocks have been
called PROG1.HEX, PROG2.HEX,
PROG3.HEX and PROG4.HEX. In order to
create these files to be loaded into the
PSD3XX, the software designer must plan
for this event when the software is written.
It is most easily accomplished by breaking
the tasks into logical groups that do not
need to access one another frequently.
Most software can be split in this manner.
Then, the designer can create the page
switching algorithm which is used to jump
between the tasks which are on different
pages.

There are many ways to implement this
capability, but we will provide as an
example one method which can be used.
This method of memory paging involves
the use of a table of addresses and page
numbers of all program tasks which may be
called from page to page. This table can be
made global when the code is compiled so
that it may be used in all four of the
programs used in this example. This table
would reside in EPROM block 0 along with
the interrupt service routines and page
switching algorithms so that it may be
accessed from all memory pages. Thus,
when PROG1 is executing and must run a
task or subroutine which is in PROG2, the
software should jump to the page switching
algorithm while passing the table lookup
address of the task that it wishes to run. In
this way, only the pointer into the table
must be known by all programs instead of
the address and page number of each
routine. This simplifies the process of
modifying the software by permitting the
programmer to keep all of the pointers Into
the table constant, even if the actual
subroutine addresses change. In this
table, the page switching routine will find
the page that it must switch to as well as
the address to jump to after the page has
been switched. The return address and
page number may simply be pushed onto
the stack, which is stored in the SRAM.
Since the SRAM is also page independent,
all programs may share the same stack.

To build the table, the labels of all
subroutines which may be shared among
pages must be accumulated from all of the
programs. These labels must be placed in
the table along with the corresponding
page numbers. This table must then be
placed in the global EPROM block. The
labels must be made global so that each
program may have access to them. Then
pointers into the table must be assigned,
one for each global subroutine. These
must also be made global so that they may
be used by each program. The pointers
must remain constant, even when the
software is modified. This way, software
modifications may change the values of the
labels, but not the pointers.

This provides a very clean paging solution
which may be implemented using high level
language compilers. The only penalty when
using this method is the overhead
experienced when switching from page to
page. This overhead may be minimized by
careful software design which minimizes
the number of program calls and jumps
between routines on different pages. Care
must also be taken when nesting jumps
from page to page if it is important to keep
track of return addresses. Interrupts, since
they are accessible from all pages, are very
simple to handle. The page need not even
be switched to service an interrupt unless
the service routine needs to access a task
which is not located in the global EPROM
block. Even then, the only consideration is
that before returning from the interrupt, the
page number must be restored to its value
prior to the interrupt. This paging scheme
is illustrated in Figure 6.

-1.-9-0-----------------------------~~~~--------------------------------

Compiler
Issues

Figure 6.
Software
Paging
Flow

The paging algorithm shown below is
relatively easy to implement and somewhat
automatic. However, it is not a totally
transparent solution for the software
programmer. There is such a solution
available from at least one compiler
manufacturer. Archimedes makes
compilers for several microcontrollers
including the 8031 family and 68HC11
family. These compilers are available with
built in memory paging which use some of
the microcontroller's port bits as additional

SUB ADDR 1 PN
SUB AD DR 2 PN
SUBADDR 3 PN

, .
SUB AD DR n PN

PS03XX - Application Note 015

address bits. These compilers generate
bank switching code automatically which
can be easily modified to utilize the page
register inside the PSD3XX.

When this is done, the use of the page
register becomes transparent to the user.
The attached code excerpt shows the
calling structure resulting from the use of
the Archimedes compiler with the
modifications to utilize the PSD3XX page
register.

SUB# 1

SUB#2

'~------------~

PROG 1-
PAGE 1

PROG 2-
PAGE 2

PAGING
PROGRAM­
PAGE 0

--------~------------~

-------------------------------------~~~----------------------------------1--9--1

PSD3XX - Application Note 015

Archimedes
Code

836
837
838

, 0268
, 026A
, 026D

839
840
841

, 0270
, 0272
, 0275

842
843
844
845

Notes: 1.

2.

7400
900000
120000

7400
900000
120000

}

/* Init DCC & SCR registers */
init_dsl_hdsl_dcc_scr();

MOV A,#$BYTE3 init dsl hdsl dcc scr
MOV DPTR,#REFFN inIt dsl hdsl dec scr
LCALL ?X_CALL_LI8 - - - -

/* Init Master/Slave Polynomial */
init_msJloly();

MOV A,#$BYTE3 init_msJloly
MOV DPTR,#$REFFN init_msJloly
LCALL ?X_CALL_LI8

$Byte 3 is a directive that addresses the "page" of the

specified function.
$REFFN Addresses the 16-bit offset of the function.

MODULE
TITL
RSEG

?BANK SWITCHER L18
'8051-- C - BANK-SWITCHER'
RCODE

j---j
- L18.S03 -

Function (s) : Banked switched CALL and RET

Must be tailored for actual bank-switching hardware.
In the sample system the PI port was used.

version: 4.00 [IANR]

j---j

j---i

Call a non-local function

j---;
Inputs:

Stack: 16-bit return address
DPTR: 16-bit function-address
A: 8-bit page address

j---;

The above Archimedes code is courtesy of Jeff Fayne, Tellabs, Inc.

-1--9-~-------------------------------~~~~----------------------------------

Archimedes
Code
(Cont.)

PSD3XX - Application Note 015

PUBLIC

?X CALL LlB

Save old bank

PUSH Pl

Bank-switch

MOV PI,A

Go to function

CLR A
JMP @A+DPTR

;---;

Leave current function

i---;

Input:
stack: 24-bit return address

i---;
PUBLIC ?X RET LlB

?X RET LIB:

Bank-switch

POP Pl

Return

RET

END

---fjfjf~~---­
'f!ffJ!R5.,iE 1·93

PS03XX - Application Note 015

Conclusion The PSD3XX page register system can
greatly assist designers of systems
requiring large memory spaces with 16-bit
address buses. The PSD3XX offers
capability not found in most discrete page
register implementations. The capability to
define global resources as well as
page-specific resources enables the
designer to implement the paging
technique most suitable for the application.
The page register is included in the
PSD302, PSD312, PSD303 and PSD313
devices, all of which are pin compatible

with one another. This provides the
capability of expanding the memory size as
required even after a system has been
designed. The designer can simply drop
the new, and larger, PSD3XX into the
same footprint as the old, and update the
software to add more memory pages. This
capability can be important for product
feature additions after a design is
complete. Since the system is fully
programmable, it may be updated and
changed anytime.

---------------------------------------wrJr~~---------------------------------------
1-94

!FEE .=~ --- ~ .,---­.. ~..-.------------ ~ --

Introduction

Power Use
In The PSD3XX

Programmable Peripheral
Application Note 016
Power Considerations In The PS03XX/3XXL
By Jeff Miller

The PSD3XX is a configurable microcon­
troller peripheral integrating programmable
logic, EPROM and SRAM technologies into
a single piece of silicon. It has been used
extensively in microcontroller applications
around the world by virtue of its high level
of integration, configurability and ease of
use. This integration makes possible the
design of very compact microcontroller
systems, enabling the user to squeeze a
great deal of functionality into a very small
space. Thus, the PSD3XX has found its
way into many small hand-held and/or
battery operated applications such as
cellular phones, medical instrumentation
and laptop or notebook computers which
usually require, in addition to small space,
a very low power consumption.

The PSD3XX family is based on a patented
high-performance CMOS technology and,

The PSD3XX contains several modules
internally, each of which can be considered
a power consumer when in operation.
These modules include the PAD,
(Programmable Address Decoder)EPROM
and SRAM blocks. The key to reducing the
power used by the PSD3XX is to reduce
the power used by each of these modules
individually.

Under normal operation, several of the
functional modules may be operating, while
others may be standing by. A module in
stand by uses much less power than one
that is active. For example, whenever the
SRAM is not being actively used, it is
disabled and therefore consumes less
power. This is also true of the PAD. A PAD
term which is active expends more power
than one which is inactive. This would also
be true of the EPROM. However, in some
PSD3XX models, the EPROM is always
active, in which case it will always draw
power. This is done in order to provide the
best access time possible for the EPROM.
The Low Power family of PSD3XXs does
not keep the EPROM enabled at all times,

like other CMOS devices, requires very
low power consumption even when no
particular effort is made to minimize the
PSD3XX power. But, when some special
care is taken during the programming and
configuration of the device, power can
be reduced even further, making the
PSD3XX even more valuable in these
power-sensitive applications. This
application note will describe the methods
which can be used to reduce the PSD3XX
power consumption in both active and
stand-by modes. It makes sense to use
some of these techniques even when low
power is not a primary design requirement
since they are easy to implement and
require no additional expense. We believe
that proper implementation of the material
in this note will make the PSD3XX an
invaluable member of any low-power
microcontroller system.

and thus the designer can save power by
minimizing the time during which the
EPROM is accessed. Use of this feature
does impact the speed of the PSD3XX
EPROM, which results in the loss of the
120 ns speed grade. There are other
methods of reducing EPROM power even
when the EPROM is enabled. These will
be discussed in detail later in this note.
When the time that each PSD3XX function
is kept in standby mode is maximized, the
power expense is minimized.

There is a way to place the entire PSD3XX
into the standby mode at once, thereby
reducing power usage to the bare
minimum. This can be done through the
use of the CSI (Chip Select Input) pin.
When the PSD3XX is deselected by the
CSI pin, the entire part enters the standby
mode using only about 50 ~A of current.
While in this mode, the PSD3XX is
incapable of performing any functions,
including PAD logic equations, but this is
an excellent method of reducing system
power in designs which have low active
duty cycles.

1-95

PSD3XX - Application Note 016

CMOS
Power
Characteristics

Figure 1.
Typical CMOS
Output Circuit

As a CMOS part, the PSD3XX behaves in
the same way as other CMOS devices in
terms of power dissipation. The PSD3XX
consumes the most power when the
temperature is low, the voltage is high and
the frequency is high. Low temperature in
CMOS devices, unlike in bipolar devices,
causes the transistors to speed up, thus
consuming more power. Therefore, if the
system will never operate in low
temperature environments, power
dissipation will be lower. Another result of
this characteristic is that CMOS parts do
not generally experience thermal runaway.
As temperature increases, the power
expended by the CMOS device decreases,
thus the part tends to effectively cool itself
off.

Another characteristic of CMOS devices is
the effect of voltage variations. CMOS
behaves similarly to TTL devices with
respect to Voltage. When input voltage

rises, the current drawn by a CMOS device
also rises. As input voltage falls, input
current also falls. Thus, the CMOS device
will draw the least current at its lowest
allowable supply Voltage. This voltage is
4.5V in the PSD3XX. Taking the voltage
below this level will generally slow the
device down to below its specified speed
as well as jeopardize its data retention
capability. Between 4.5 and 5.5V, the
PSD3XX varies by about 0.85mA per 0.1 V
variation. Thus, the PSD3XX will draw
approximately 0.85 mA less current at 4.9V
than at 5.0V V cc.

Lastly, frequency of operation plays an
important role in the power dissipation of a
CMOS device. A CMOS gate expends the
greatest power while it is switching
between the logic 0 and logic 1 states, or
vice versa. This can be easily understood
when looking at the circuit diagram for a
typical CMOS output shown in Figure 1.

...----1_- OUTPUT

The circuit above represents a typical
CMOS inverter output. Normally, either the
top transistor is off (output = logic 0) or the
bottom transistor is off (output = logic 1).
MOS transistors have very low leakage
currents which means that under these
normal conditions, very little current will be
passing from Vcc to ground. However,
when the input to the inverter is switching,
both transistors will not switch from their
present conditions to their new conditions
at precisely the same instant. Therefore,
both transistors will be on for a very brief
instant during the transition. During this
time there is a low impedance path from
V cc to ground and some current is drawn
by the circuit. In addition, the output will
have some load capacitance (CL)

which must be charged during switching,

even if the load itself draws little or no
static current. Thus, during the switching
process the power expended by a CMOS
device is at its highest.

The switching current drawn by the device
is dependent on the number of times the
outputs are forced to switch logic states in
a unit of time. Therefore. the frequency of
operation of the part directly influences its
dynamic power consumption. The lower
the operational frequency, the lower the
dynamic power expended by the device. In
the PSD3XX, frequency of operation is
determined by the rate at which the
addresses are changing, usually indicated
by the frequency of the ALE or AS signal.
Generally, the PSD3XX draws about 3 mA
of additional current for each 1 MHz added
to the frequency of operation.

-----------------------------~~~-----------------------------------1-96

Power
Management
Techniques
In The PSD3XX

Figure 2.
Simple Power
Down Circuit

The above mentioned features and
characteristics can be used to the
designer's advantage when designing
compact microcontroller systems which
have a tight power budget. In the sections
that follow, several methods for reducing
the PSD3XX power will be presented.

Power Down Mode
Many system designs do not require the
microcontroller, and therefore the PSD3XX,
to operate continuously. Systems, like
cellular telephones and notebook
computers, spend a large amount of time
inactive - waiting for something to happen
like a press of a button or keyboard. During
this time, many designers place the
microcontroller into a low power idle or
sleep mode. In the sleep mode, the
controller expends significantly lower
power. The microcontroller is usually awak­
ened by some event - a key on a keypad
being pressed, for instance, which may
result in an interrupt. There is no need for
the PSD3XX to be active during the time
that the microcontroller is not active.

68HC11
74ACT05

Ek>~

In this circuit diagram, a Motorola 68HC11
microcontroller is connected to a PSD3XX
in a low power system. The circuit functions
quite simply. The E signal from the HC11 is
normally a free running clock at 1/4 the
frequency of the input clock. When the
HC11 is placed into the sleep mode by the
software (by executing the STOP
instruction), the E Signal stops oscillating
and remains low until an interrupt or
internal timer event occurs. After the

PS03XX - Application Note 016

Therefore, the PSD3XX should be placed
in the power down mode (CSI inactive) to
reduce the PSD3XX current down to its
standby value.

The PSD3XX must also be awakened
when the microcontroller is awakened so
that it may provide an instruction to the
controller when it requires one. If the
microcontroller itself has a chip select
output, like the Motorola 683XX series
controllers, it may be used to awaken the
PSD3XX as necessary. However, if it
does not, there will be a problem. If the
microcontroller itself is used to power down
the PSD3XX, through an I/O port pin for
example, there will be no way to power up
the PSD3XX again since the PSD3XX
itself contains the instruction that the
microcontroller must use to activate the
CSI Signal to awaken the PSD3XX. The
way to correct this situation is to design
a circuit which detects when the
microcontroller is coming out of its power
down mode before it must fetch the first
instruction. Such a circuit is depicted in
Figure 2.

>
<>R <>

-

PSD3XX

-
CSI

interrupt has been received by the
controller, the E signal resumes toggling,
but there will be a minimum of two E
clock cycles prior to the first AS. This
characteristic can be used to place the
PSD3XX into its low power standby mode
whenever the STOP has been executed in
the HC11 and to awaken it before it must
supply an instruction to the HC11.

-------------------------------------~Jf~~-------------------------------------
1-97

PSD3XX - Application Note 016

Power
Management
Techniques
In The PSD3XX
(Cont.)

Figure 3.
6BHC11 Stop
Timing

Figure 4.
B031 Idle
Circuit

The ACTOS device shown in the diagram is
simply an open collector inverter. When the
E signal is oscillating, the output of the
inverter will be toggling between ground
and high impedance. When the output is at
ground, the capacitor will rapidly discharge
from its present state into the ACTOS.
When the output is high impedance, the
capacitor will slowly charge up to Vee
through the resistor. Thus, under normal
operation the CSI input of the PSD3XX will
be at or near 0 V, provided the RC time
constant is large enough to prevent the
capacitor from charging up beyond a logic
zero level of 0.6 V.

When the HC11 enters the sleep mode the
E signal remains low. This enables the

capacitor to slowly charge up to a logic one
level which then places the PSD3XX into
the standby mode in which it will consume
only about SOIJA of current. After the
controller exits the sleep mode, the E signal
will resume oscillating which rapidly
discharges the capacitor. This, in turn,
activates the CSI input to the PSD3XX,
bringing it out of the power down mode.
Since the E signal will oscillate for at least
two full cycles before the first AS strobe
begins a new bus cycle, the PSD3XX will
have ample time to recover from the power
down mode before having to supply an
instruction to the HC11 for processing. In
operation, the circuit results in a timing
diagram similar to the one in Figure 3.

STOP ACTIVE RECOVERY

A similar circuit can be used for Intel 8031
type controllers. Controllers conforming to
the Intel 8031 family generally have two
low power modes: IDLE and POWER
DOWN. The IDLE mode causes the
controller to cease instruction execution,
but its internal clocks continue to run. This
saves significant power while leaving the

80C31

internal timers and other functions
operational. When in the IDLE mode, both
the ALE signal and the PSEN signal are
held high. A circuit similar to the one
illustrated for the 68HC11 may be used to
detect the end of oscillation on the ALE
signal. This circuit is shown in Figure 4.

PSD3XX

l--....... ----I CSI

74ACT09

TC

~1_~~~--------------------------f====-------------------------------

Power
Management
Techniques
In The PSD3XX
(Cont.)

FigureS.
B0311dle
Timing

Figure 6.
B031 Power
Down or Idle
Circuit

The circuit operates on the same principle
as the one used earlier for the Motorola
processor. The ALE signal normally
oscillates high for 2 clocks out of every 6 or
12 clocks, depending on whether
instruction or data accesses are being
performed. The software places the 8031
into the Idle mode by setting bit 0 in the
PCON register. Once set, the ALE and
PSEN signals remain high until an interrupt
or hardware reset occur. During this time,
the CSI signal will float high with the RC
circuit, as in the earlier example. The

CSI

If the system requires truly the lowest
power available, the 8031 POWER DOWN
mode may be used. This disables all
internal operations of the 8031 as well as
the external ones. Thus, anyon-chip
peripherals like timers and serial communi­
cation links will be disabled. This places the
controller into its lowest power mode
possible. Software may place the 8031 into
the POWER DOWN mode by setting bit 1
in the PCON register. When execution of
the instruction is complete, the ALE signal
will be driven low and will remain in this

80C552

~D ALE

74ACT266

PSD3XX - AppllcatlDn NDte 016

ACT09 is simply an AND gate with an
open collector output. It performs the same
function as the inverter in the previous
example without inverting the Signal. When
an interrupt or reset is received, the ALE
signal begins to toggle again, but at least
two "dummy" unused ALE cycles will occur
before the first meaningful instruction is
fetched, giving the PSD3XX time to
recover from the power down mode. The
timing for the above circuit is shown in
Figure 5.

state until a hardware reset is received.
Thus, a circuit similar to the one above may
be used to detect the static condition
of the ALE signal, but an inverting gate
must be used instead of the ACT09
(such as the ACTOS used in the Motorola
example earlier).

If both the POWER DOWN and IDLE
modes must be used, the gate may be
replaced with an ACT266 exclusive NOR
with an open collector output. This circuit is
shown in Figure 6.

Voo

>R
PSD3XX

CSI

Ie

-----------------------------------~~~--------------------------------------= 1-99

PSD3XX - Application Note 016

Power
Management
Techniques
In The PSD3XX
(Cont.)

The 1/0 bit can be provided by either the
PSD3XX or the controller itself. If the
controller is used to provide the 1/0 bit, it
must hold the correct value on the output
even when in the idle or sleep mode, as the
PSD3XX does. When the 1/0 bit is low, the
POWER DOWN mode is enabled (a low on
ALE and a LOW on the 1/0 bit will result in
a high on CSI). When the 1/0 bit is high,
the IDLE mode is enabled (a high on ALE
and a high on the 1/0 bit will result in a high
on CSI).

For all of the above circuits to operate
correctly, the value of the RC network must
be carefully calculated to insure proper
operation in the normal mode. This means
that under normal operation, CSI must
never climb above 0.4 V, which will
guarantee that it is always recognized by
the PSD3XX as a low.

For example, the 68HC11 circuit shown in
Figure 2 used the E signal from the
controller to disable the PSD3XX. The E
signal oscillates at 1/4 the frequency of the
HC11 's input clock. If an 8 MHz HC11 is
used, the E signal will oscillate at 2 MHz.
This results in an E signal clock period of
500 ns. During this 500 ns the E signal will
be low for 250 ns. Thus, the RC network
must be chosen to prevent the CSI signal
from climbing above 0.4 V for at least
250 ns. The equation below governs the
voltage across the capacitor (V d, and thus
the voltage present on the CSI pin:

V c = V cd1 - e-tlRe)

where V c is the voltage across the
capacitor (which is the same as the CSI
pin), Vcc is the supply voltage, and t is the
time in seconds after the output of the open
collector gate switches from a low to an
open circuit. Solving for RC we get:

RC '" -tlln(1-VclVcd

In order to determine the minimum values
for Rand C, we must solve this equation
for the point of time which is of interest. We
must have Vc no greater than 0.4V at time
t = 250 ns. Thus, with V cc = 5 V, the
equation may be rewritten as follows:

RC = -250 x 10-9/1n (1 - 0.4/5.0) =
3.0 x 10-6

An acceptable RC network for this case
might be a resistor of 100KQ and a
capacitor of 30pF. These values will
provide no margin for the circuit so some
additional resistance or capacitance may
be desired. Of course, larger values rnay
be used without harming the circuit, they
will just cause the low power mode to be
entered more slowly. The case of leaving
the low power mode is less critical, since
the capacitor will discharge more quickly
through the gate than it will charge up
through the resistor. In the interest of
minimizing power use by the circuit itself, it
is best to use a larger resistor value and a
smaller capacitor value, since this will
cause less current to be sunk by the gate
which drives the circuit.

Using this equation, it is possible to
determine the RC value required for any
controller andlor frequency. It is only
necessary to determine the length of time
that the RC will be required to hold the CSI
signal below 0.4 V and plug that value into
the above equation.

If a more deterministic method is desired
for placing the PSD3XX in the power
down mode, a fully digital circuit may be
implemented which uses very few addi­
tional components. This circuit is shown in
Figure 7 for the 68HC11 controller.

This circuit performs the same function as
the RC circuit described earlier, but does it
digitally. The 74ACT164 is a shift register
which is used in this example to detect
when eight HC11 input clocks occur while
the E signal remains low. In normal
operation, no more than two clocks should
occur without E transitioning from low to
high, thus providing a clear to the ACT164.
If the HC11 is stopped, the E signal will
remain high until an interrupt is received,
but the input clock continues to run freely.
Thus, the shift register wiil shift in "one's"
until the E signal goes high again. When
the ACT164 has shifted eight times, the
CSI signal will go high, placing the
PSD3XX into the power down mode. The
timing diagram corresponding to this circuit
is shown in Figure 8.

--------------------------___________ r~~~~-------------------------------------
1-100 ====

Figure 7.
Digital Sleep
Circuit For
BBHCH

FigureB.
BBHCH Stop
Mode Timing

Power
Management
Techniques
In The PSD3XX
(Cont.)

68HC11A1
74ACT04

STOP ACTIVE

ClK

E

CSI
----~------------~

A similar circuit may be used for the 8031
family of controllers, and is depicted in
Figure 9.

This circuit, like the others, detects when
ALE stops toggling. Since up to 10 clocks
may normally occur without an ALE pulse,
a counter which can count to at least 11 is
required in order to function properly. Thus,
an 8-bit shift register like the one used with
the HC11 will not work. In this case, a
74ACT191 is used to count 16 clocks prior
to raising its MAXIMIN output high. A low
on the ALE signal will load zero's into the
counter and clear the MAXIMIN output. The
MAXIMIN output is also used as the

=====!E

74ACT164

A
B
ClK

QH

PS03XX - AppllcatiDn NDte 016

CSI PSD3XX

RECOVERY

counter enable to prevent the counter from
counting further after attaining the count of
16. The circuit shown will function with the
IDLE mode of the 8031. If the POWER
DOWN mode is used, an inverter must be
inserted in the ALE signal path.

Other controllers, not listed here, may also
have power down modes which may
function with these circuits. Any controller
which has some sort of external indication
when the power down mode has been
entered may usually be used to place the
PSD3XX in its low power mode also.

-----------------------------------,=- -------------------------------------- = 1-101

PSD3XX - Application Nots 016

Figure 9.
Digital Sleep
Circuit for
8031 Family

Power
Management
Techniques
In The PSD3XX
(Cont.)

80C31

74ACT191
ClK
A
B
C MAXI

MIN
D CSI PSD3XX

ALE I---t----i lOAD
DIU
CTEN

PAD Programming Techniques
The preceding section has described
methods of using the power down
capability of the PSD3XX with several
microcontrollers. There are also techniques
which may be utilized during programming
of the device to further reduce power.
These techniques can significantly reduce
the power expended by the PSD3XX when
it is in full operation.

The programmable logic section of the
PSD3XX, called the PAD, provides much of
its great flexibility and configurability. It is
used to control the internal resources of the
PSD3XX and can also be used to control
external resources as well. The power
use of the PAD varies greatly depending
on how its product terms are programmed
and used.

The PAD is illustrated in Figure 10. It is
divided into two sections, called PAD A and
PAD B. PAD A is responsible for generating
the control and selection for the internal
resources of the PSD3XX and utilizes 13
product terms to perform these functions.
PAD B provides any external chip selection
and logic replacement that is necessary
for the system and has 27 product terms for
this purpose. A single product term is
functionally illustrated in Figure 11.

Each of the PAD inputs and its complement
is available to each of the 40 product terms
of the PAD. Each of these inputs is
connected to an n-channel transistor which
is used to connect the entire line to ground
when the input is in the appropriate state. A
high on the input to the gate causes the
transistor to turn on. When the device is
programmed, each of these transistors may
be left in place or may be functionally
removed (programmed out) from the circuit.
If all of the transistors are programmed out,
the line is left connected only to the pull-up
resistor which makes it always high. Thus,
the output of the inverter is always low. If
an equation such as:

ICSx = In#1 • Iln#2

is programmed into the PAD, the output
CSx must be high except when In#1 is high
and In#2 is low. Thus, all of the transistors
are programmed out except the ones
connected to !n#1 and !n#2. This means
that unless In#1 is high and In#2 is low,
there will always be at least one of the two
remaining transistors turned on, which in
turn results in the CSx output being high.
When the appropriate input condition is
met, the remaining two transistors will turn
off, which allows the output to become low.

--
rar~~= __________________________________ ___

1-102

Figure 10.
PAD
Illustration

Figure 11.
Product
Term
Functionality

ALE

~
R Dor E

L

orRi'ii
~

A19
"'S

....

AlB "'S
v

A17

....

A16 "'S
....

A1S "

A14 " "'S
--"

A13

A12

All .'"'
-"

CSI •
-R-ESET •

IN #1 IN#2

PSD3XX - Application Note 016

'M} ESl
ES2 8
ES3 S
ES4
ESS
ES6
ES7

EPROM Block
elecl Lines 1

PAD A

RSO --- SRAM Block Select
T _I/O Base Address CSIOPOR j Tl } Track Mode

T2 Control Signals

CSADIN
CSADOU
CSADOU

D- CSO/PBO

.--
CSlIPBl

~

.--
CS2IPB2

~

..--
CS3/PB3

~

CS4/PB4

CSS/PBS PADB

CS6/PB6

CS7/PB7

CS8IPCO

CS9/PCl

CS10/PC2

IN#n

CSx

--------------------_________________ f~=~~ ____________________________________ ___
'=='=-~:= 1·103

PSD3XX - AppllcatlDn ND'. 016

Power
Management
Techniques
In The PSD3XX
(Cont.)

As can be seen in the figure, the product
term expends very little power when all of
the transistors are either programmed out
or turned off. The only power used in this
case is the result of the leakage current
through the various off transistors, which is
very low in CMOS technology. When one
or more of the transistors is turned on,
there will be current drawn through the pull­
up resistor to ground. Therefore, the power
used by a product term varies greatly
according to the way it is programmed.

Experimental data has shown that a
product term with all of the transistors
programmed out draws approximately
380IJA less current at room temperature
and 5.0 V Vcc than a product term which
has some active transistors. WSl's MAPLE
software packages take advantage of this
fact to reduce power as much as possible.

When the user intends to use some or all of
the Port 8 pins as 1/0 Signals, then they are
not connected to the PAD in any way.
Thus, the MAPLE software is free to
program the unused PAD 8 product terms
in any way. In MAPLE versions 4.038 and
subsequent, the software automatically
programs out all transistors in each unused
product term, which can eliminate up to 24
product terms for Port 8. This results in a
power reduction of up to 9.1 mA.

If one or more of the Port C pins is
programmed as an address or logic input,
MAPLE is free again to program out all of
the transistors in each unused PAD 8
product term dedicated to Port C. This can
eliminate up to 3 additional product terms
resulting in a power reduction of over 1 mA.

Finally, there are three product terms from
PAD A which are dedicated to controlling
the Port A Track Mode operation. If the
Track Mode is not used in the application,
these product terms may also be
eliminated by MAPLE for a power reduction
of over 1 mAo

The remaining ten product terms are the 8
EPROM select lines, the SRAM select line
and the 1/0 port select line. These terms
may not be eliminated by MAPLE without
disrupting the operation of the device. But
in a system which uses Port A and Port 8
as 1/0 or address outputs, and Port C as
address or logic inputs, the total system
power saving is 10.2 mA typical.

The same methods may also be used in
non-multiplexed microcontroller
applications. In this case, Port A and Port 8
may be used as microcontroller data input
pins, depending on whether the controller is
8- or 16-bit. As in the earlier cases, if the
ports are used as data input pins, they are
not connected to the PAD which allows
MAPLE to program out the appropriate
product terms.

Again, MAPLE 4.03B or a subsequent
revision must be used to obtain this
capability. If your software is an older
revision, contact your local WSI regional
sales office for a free update.

EPROM Programming Techniques
Like the PAD, the EPROM in the PSD3XX
uses varying amounts of power depending
on how it is programmed. When
programmed to a one, an EPROM bit
draws more current than when
programmed to a zero. Thus, for minimum
power usage it is best to have the majority
of the EPROM programmed to zeros.

Unfortunately, the contents of the EPROM
are fixed by the program and data
requirements of the system and thus
cannot be easily optimized for power.
However, the user can program all unused
sections of the EPROM to zeros. This will
not substantially cut the power used by the
PSD3XX under normal operation when
EPROM accesses are being performed, but
it will reduce the power consumption during
periods when there is not a valid address
on the bus because these invalid
addresses will often point to unused
EPROM locations. When an EPROM
location is currently addressed, it is
expending power even if the RD or PSEN
Signals are not actually enabling an output.
Therefore, it is best that unused EPROM
locations be filled with zeros so that power
is minimized during these periods of invalid
addresses. It should be noted that all power
figures used in this application note as well
as those specified in the PSD3XX data
sheet are based on an average of 50%
"ones" and 50% "zeros" contained in the
EPROM. An EPROM location programmed
to "ones" will draw approximately 1.5 mA of
additional current over an EPROM location
programmed to "zeros'.

;;.=,~

~1-~W~~~-------------------------~~·------------------------------

Power
Management
Techniques
In The PSD3XX
(Cont.)

CMiser-Bit

An even better way to help minimize power
usage is to control the addresses which
appear on the bus when there is no valid
address being driven by the microcontroller.
The least power expense will be when this
unused address points to an area which
has no PSD3XX resource mapped into it.
This will result in no internal resource block
receiving a chip select and thus the least
amount of current will be drawn. The next
best approach is to have the unused
address pOint to an EPROM area
containing zeros. The next lowest power
would be to have the unused address point
to an EPROM area containing something
other than zeros. Finally, the highest power
will occur when the unused address points
to an SRAM location.

The CMiser-Bit provides a programmable
option for power-sensitive applications that
require further reduction in power
consumption. The CMiser-Bit (CMiser = 1)
in the Maple portion of the PSD3XX sytem
development software can be used to
reduce power consumption. The CMiser-Bit
turns off the EPROM blocks in the PSD3XX
whenever the EPROM is not accessed,
thereby reducing the active current
consumed by the PSD3XX.

In the default mode, or if the PSD3XX is
configured without programming the
CMiser-Bit (CMiser = 0), the device
operates at specified speed and power
rating as specified in the A.C. and D.C.
Characteristics.

PSD3XX - Application Nots 016

Since there is not much that can be done
about the address that is appearing at the
output of the microcontroller, the best that
can be done is to know what address the
controller will have active on its bus at
various non-operational times and insure, if
pOSSible, that the PSD3XX's address map
maps that address into a desired range of
memory (preferably no memory at all). This
will truly minimize the power expended by
the PSD3XX during these times.

However, if the CMiser-Bit is programmed
(CMiser = 1), the device consumes even
lower current, and is reflected in the data
sheet. This mode has an adder in
propagation delay in T5, T6, and T7
parameters in the A.C. Characteristics, and
should be added to compute worst-case
timing requirements in the application.

IFa-11E
-------------------------------------~~~-------------------------------------

1-105

PSD3XX - Application Note 016

Summing
/tAil Up

Table 1.
Hypothetical
System
Requirements

After taking all of these factors into
account, what kind of power use can you
expect from the PSD3XX in your own
system? As a guideline, we will calculate
the typical power required of a PSD3XX
installed in a hypothetical system. The
requirements of this system are listed in
Table 1.

Using this information, we can calculate
the approximate typical power
requirements of the PSD3XX. Before we
can begin, we must know what the base
power of the PSD3XX is under the voltage
and temperature conditions specified. The
base power of the PSD3XX is the power
used by the PSD3XX when only the
product terms which control the EPROM,
SRAM and 1/0 ports are not programmed
out (10 active product terms). The base
power also assumes that no internal
resources (EPROM, SRAM and 1/0 ports)
are being currently accessed. The current
drawn by the PSD3XX under these
conditions has been determined
experimentally to be 16 mA. To this
current, we must add additional current for
the other active product terms, SRAM
access and EPROM access.

Characteristic
PSD3XX Operational Frequency

Port A

Port B

Port C

CSI

Vcc
Temperature

Standby duty cycle

EPROM duty cycle

SRAM duty cycle

The system is requiring only four of the 11
available chip select outputs. Therefore,
most of the PAD B product terms may be
programmed out. To determine how many
product terms we will be using, we must
look at the equations for the four chip
selects. Assume that the following equa­
tions are to be used:

ICS#1 =/(A15· A14· RD + A13· A12· WR)

ICS#2 = 1(/A18 + IA17)

ICS#3 = I(A16· A18 + A17· ALE)

ICS#4 = A17

In order to configure the system for the
lowest power usage, we must be sure that
we place these chip selects on the output
pins which will require the minimum
number of product terms to remain
active. Since the maximum number of
product terms required to generate the
above equations is only two, there is no
need to place these chip selects on Port B
pin 0,1,2 or 3 since these pins each have
four product terms. The lower power
configuration would place these chip
selects on Port B pin 4,5,6 and 7, where
only two product terms will be drawing
power for each chip select. One of the
above chip selects, #4, actually requires
only one product term, meaning that it
could be placed on one of the Port C pins
which have only one product term.

Specification
2MHz

Address Output

4 Chip Select, 4 1/0

Logic inputs

Configured for Auto. Power Down

5.0V

25°C

60%

30%

10%

_____________________________________ fafafaFE __________________________________ ___

1-106 ====

Summing
It All Up
fCont.}

Table 2.
Summary of
PS03XX Current
Usage In
Hypothetical
System

However, all of Port C is used in this case
as logic inputs (A16, A17 and A18) and
therefore cannot be used as chip selects.
Since the rest of the Port pins are not used
as PAD outputs, the MAPLE software will
automatically program them out.

If we do configure the chip selects to output
on PB[0:3], we must add 8 product terms to
the 10 used in calculating the base power
number. Using the current per product term
of 380~A provided earlier, eight additional
product terms result in an additional 3.0 mA
of current.

Experimental data has shown that
accessing the SRAM results in an
additional current expense of 31 mA above
the base current. Also, accessing the
EPROM draws an additional 0.5 mA over
the base current. The standby current has
been measured at 50 ~A. Finally, we must
consider the additional current used by the
frequency of operation. This is 3 mA per
1 MHz for a total of 6 mA, since the
PSD3XX will be operating at 2 MHz. This
provides us with all of the data that we
need to calculate the total power usage of
the PSD3XX in this system.

Table 2 can be used to calculate the
EPROM access current, the SRAM access
current and the standby cu rrent.

PS03XX Block
Base Configuration (CMiser = ON)

PAD (as configured)

EPROM

SRAM

Frequency Component

Standby Current

Now, summarizing further, the total
EPROM access current is:

Base Current + PAD Current + EPROM
Current + Frequency Component
= 9 mA + 3.0 mA + 0.5 mA + 6 mA

= 18.5 mA

PSD3XX - Application Note 016

Now we must account for the duty cycle of
the system to determine the total average
power for the PSD3XX. In order to apply
the duty cycle, we simply multiply each
power component by its duty cycle and add
them all together. The equation to perform
this is given below:

Total Current = 0.6(iSBY) + 0.3(iEPROM)
+ 0.1 (iSRAM)

where iSBY is the standby current, iEPROM is
the active EPROM current and iSRAM is the
active SRAM current. Plugging in the
numbers we developed earlier, the equa­
tion becomes:

Total Current = 0.6 (50 ~A) + 0.3
(9 mAl + 0.1(47 mAl = 7.4 mA

The average current drawn by the PSD3XX
under the specified conditions of
configuration, frequency and environment
is therefore 7.4 mA. The peak typical
current used by the PSD3XX is 54 mA
while the SRAM is being accessed. The
minimum current is 50 ~A, drawn by the
PSD3XX while it is in the Power Down
mode. This compares very favorably with
the typical current usage of a fully discrete
solution.

Current Used
9mA

3.0mA

0.5mA

31 mA

6mA

50~A

The total SRAM access current is:

Base Current + PAD Current + SRAM
Current + Frequency Component
= 9 mA + 3.0 mA + 31 mA + 6 mA

=47.0mA

-------------------------------------~Jf~~-------------------------------------
1-107

PSD3XX - Application Note 016

Typicalvs.
Maximum
Current

The typical and maximum current numbers
are both specified by most integrated circuit
manufacturers. Many designers are unsure
of what these parameters are and how they
relate to the power which will actually be
dissipated by the system. This is
compounded by the configurability of the
PSD3XX.

The maximum power numbers published in
most product specifications are usually
chosen as the number which will never be
exceeded by the device under any
circumstances, including variations in
processing, Vee and temperature. To truly

be a maximum number, all three of these
parameters must be at their worst cases
simultaneously, which is quite unlikely.
Therefore, power use will more likely follow
the typical values when the system is
actually running.

In the PSD3XX data sheet published by
WSI, two current values are published for
typical conditions and another two are
published for worst case conditions. These
two sets of numbers are used to specify
current use in two different PSD3XX
configurations. The lower numbers
represent the current drawn by the
PSD3XX while configured with 10 active
product terms. To arrive at the maximum
value for this configuration, we assume that
the programming of the device has not
changed, but we take the temperature,
voltage and processing to their worst case

Base Current

conditions. These numbers are generated
again, for the configuration of the PSD3XX
which has all 40 product terms active. To
determine the typical current drawn by the
PSD3XX in your system, it is best to use
the techniques presented in this application
note. All of the typical current values
used in this note are the result of careful
experimentation, and should parallel very
closely the values measured in your own
system. To extrapolate the worst case
current for your configuration from your
calculated typical value, you must
add about 50% to account for voltage,
temperature and process variation.

When calculating the worst case current for
your entire system it is usually best to use
the typical current numbers for all of the
components installed and then apply some
margin to allow for worst case conditions.
This is much more accurate than using the
worst case parameters for each
component since it is extremely unlikely
that al/ of the components used are
simultaneously at their worst case process
parameters, though they may all be at
worst case voltage and temperature.
Usually 20% margin above the typical
numbers will sufficiently cover the worst
case for the entire system.

Table 3 summarizes the typical current
numbers for the PSD3XX which can be
used when calculating the current used in
your own system.

Table 3.
Summary of
PSD3XX
Typical
CUllent
Usage

(10 product terms, SRAM and EPROM Unselected and CMiser = ON) 9mA

Additional Current per Product Term 0.38 mA

Additional Current for SRAM Access 31 mA

Additional Current for EPROM Access 0.5mA

Additional Current for Frequency Effects 3 mA/MHz

Additional Current for Voltage> 5V 0.85 mAlO.1V

Standby Current 50llA

-1--1-0-8---------------------------------~~~-------------------------------------

Table 4.
PSD3XXL
Power
Consumption

Conclusion

PSD3XX - Application Note 016

Using the same example described in Table 1, a PSD3XXL operating at 3 volts and 1 MHz
will exhibit the following values:

PS03XXL Block Current Used

Base Configuration (CMiser ON) 2mA

PAD 0.19 x 10 = 1.9 mA

EPROM 0.25 mA

SRAM 13 mA

Frequency Component 2mA

Standby Current 1 IJA

EPROM Access Current = 2 + 1.9 + 0.25 + 2 = 6.15 mA

SRAM Access Current = 2 + 1.9 + 13 + 2 = 18.9 mA

Total Current = 0.6 x 1 IJA + 0.3 x 6.15 mA + 0.1 x 18.9 mA = 3.74 mA

The PSD3XX and PSD3XXL are very
important devices in the design of compact,
low-power systems. It provides a cost
effective minimum part count solution for a
typical microcontroller system. It also
provides a very low power solution for
those designs which are handheld and/or
battery operated. As the PSD3XX family
grows and evolves, more innovations will

be presented in terms of integration and
power usage. The new low power
PSD3XX family will be introduced soon,
providing the designer with an even lower
power solution. Until then, use of the
techniques described in this note will
provide a minimum power solution for your
microcontroller system.

-------------------------------------~~~~-------------------------------------
1-109

PSD3XX - Application No'" 016

fUiF.E
-1--1-10-----------------------------~-=-aF.--------------------------------

Introduction

Bus Sharing

PSD3XX
Architecture
Related to
TRACK Mode
of Operation

Programmable Peripheral
Application Note 017
Track Mode Implementation of PSD3XX
By Ravi Kumar

Resource sharing is becoming an inevitable
issue in ever growing and complex
microcontroller applications. Increased
throughput and efficiency requirements of
complex data acquisition systems such as
automotive electronics, high speed/high
density disk drive electronics, cellular
phones etc., are driving microcontrollers to
share resources. This results in increased
discrete component count, complexity in
design and timing issues and thereby

In a master/slave configuration of
microcontrollers the typical bus sharing
sequence is:

o Slave processor sends a request to the
master processor to tri-state its bus in
order to access the resource they
share.

o Master processor acknowledges the
slave processor's request and tri-states
its own bus connected to the shared
resource.

o Then the slave processor proceeds to
write/read to/from the shared resource.

o After the completion of writing/reading
data to/from the shared resource, the
slave processor relieves the control of
the shared resource.

Tracking of Address/Data inputs to a
PSD3XX is possible only through port A
and only for microcontrollers with a
multiplexed bus. The default configuration
of port A is I/O. Alternately, each bit of port
A can be configured as a lower order
latched address bus bit. Another mode of
port A sets the entire port to track the
inputs ADO/AO-AD7/A7 depending on
specific address ranges defined by the
PAD's CSADIN, CSADOUT1 and
CSADOUT2 signals. This feature lets the
user interface the microcontroller to
shared external resources without requiring

lengthens the time it takes to get to market.
Using a Dual-port RAM is an expensive
solution. A lower cost solution would be to
use a PSD3XX and SRAM in ''TRACK
MODE". The PSD3XX also replaces the
glue logic, EPROM, SRAM and I/O port
requirements of the microcontroller based
system. The following application note
explains the implementation of the
PSD3XX's "TRACK MODE" using Intel's
80C31 microcontrollers.

o Then the master processor resumes the
possession of the bus connected to
the shared resource and continues its
interaction with it until it receives a
request from the slave processor to
release the bus.

Although the master/slave processors
tri-state their bus connected to the shared
resource, by using PSD3XX devices
we can avoid the situation where the
processors wait. Therefore the processors
continue to attend to other chores when the
shared resource is not available. This appli­
cation note explains how this can be
achieved.

external buffers and decoders. In this
mode, the port is effectively a bidirectional
buffer. The direction is controlled by using
the input signals ALE, RD/E/DS, WENpp
or RIW, and the internal PAD outputs
CSADOUT1, CSADOUT2 and CSADIN
(see Figure 1).

CSADOUT1 is generated when the
microprocessor is accessing a "tracked"
address. It is generated from a single
product term involving the address inputs
and ALE. When an address generated by
the microcontroller is within the block

-------------------------------------f==~~--------------------------------~~ ==== 1-111

I'SII3XX - Appllt:tJtIllll illite 011

PSD
Architecture
Re/atedto
Track Mode
of Operation
(Cont.)

Figure 1.
PortA
Track Mode

specified by the user for track mode and the
ALE is active, CSADOUT1 becomes active,
transferring the address and outputting it
from port A. Carefully check the generation
of CSADOUT1 and ensure that it is stable
during the ALE pulse; i.e. signals in the
product term involved in generating
CSADOUT1 should not be those addresses
which change frequently; instead they
should be stable I/O signals.

CSADOUT2 is generated when the
microcontroller is performing a write

operation to a tracked address. It also has
one product term involving the address
inputs and WR (Intel mode) or R/W and E
or DS (Motorola mode). When the
microcontroller performs a write operation
to the appropriate address, CSADOUT2 is

WR or RIW
ROlE

ADO-AD7

ALE or AS

AD8-AD15 LATCH A11-A15

generated, transferring the data and
outputting it from port A.

CSADIN is generated when the
microcontroller is attempting to read data
from Port A in the track mode. It is
generated from one product term involving
the address inputs and the RD strobe (Intel
mode) or R/W and or DS (Motorola mode).
This enables the user to configure the
address range in which the data is to be
read from Port A.

In this operational mode, port A is tri-stated
when none of the above conditions exist.

-I

PAo-PA7

• • 1--.. --1 PAD
CSADOUT2 (1)

A16-A19 r
-------I

NOTE: 1. The expression for CSADOUT2 must include the following wi rite operetlon cycle signals:
For CRRWR = 0, CSADOUT2 must include WR = O.
For CRRWR = 1, CSADOUT2 must include E = 1 and RiW = o.

____________________________ '81~~
1-112 '#rJ!!.,. -------------------------------

Track Mode of
PSD3XX Using
Intel's BBC31s
in MasterlSlave
Configurations

In this configuration two PSD3XX's are
used with two Intel's 80C31s. In figure 2, a
common SRAM CD6116 and a '373
Latch are the shared resources of the
Master/Slave configuration of these two
microcontrollers.

Referring to the flowchart in figure 3, under
normal operation, the master processor and
the master PSD3XX are in control of the
shared LATCH and SRAM, i.e. pins P1.0
and P1.1 of the master/slave processors
are all HIGH. The slave processor,
whenever it needs to access the shared
LATCH and SRAM, requests the control of
the address/data bus from the master
processor by generating a HOLD signal
from the slave 80C31 's P 1 .0 as output
LOW. The master 80C31 takes this HOLD
signal on to its input pin P1.0 and INTO pin
as an interrupt, processes it and
acknowledges by returning HLDACK on
P1.1 (LOW), i.e hold acknowledge signal to
slave processor. Meanwhile the master
PSD3XX senses that both P1.0 and P1.1
pins of the master processor are LOW and
tri-states the ports A,B and C of the
PSD3XX, thereby disabling its control over
the bus connected to the shared LATCH
and SRAM. In order for a successful
interaction between master and slave
processors, care should be taken in the
master processor to properly mask the
interrupt generated on INTO.

The HLDACK signal coming from the
master is fed into P1.1 of the slave 80C31
processor, which processes HLDACK and
takes control of the bus connected to the
shared LATCH and the SRAM. The slave
PSD3XX senses that both P1.0 and P1.1 of
the slave processor are LOW and starts
tracking the address and data flowing into
and out of the CD6116 SRAM. When the
slave processor is successfully accessing
the shared SRAM, the master processor
attends to other chores while polling its
input P1.0 (turned HIGH if the slave is
done). The PAD in the PSD3XX with the
master processor tri-states its PORT A and
port B during slave processor ('373
Latch - SRAM) activity and vice-versa. The
PADs in the master/slave processors
generate the necessary ALE, RD and WR
signals necessary to write into or read out
of the shared SRAM.

PSD3XX - Application Note 017

The common SRAM (CD6116) is accessed
by both microcontrollers in byte mode. All
the control lines on port B of both PSDs are
configured as open drain drivers. Both
microcontrollers can access the latch and
the SRAM without conflict because the PAD
equations controlling the port B on both
PSD3XXs are based on HOLD and
HLDACK signals generated by the
master/slave processors. The HOLD Signal
is connected to port C pin 0 or A 16 and the
HLDACK signal is connected to port C
pin 1 or A 17 of both master and slave
PSD3XXs and also to INTO (master), P1.0
and P1.1 of both master/slave processors
respectively. Refer to figure 4 for specific
details.

As long as no HOLD request comes from
the slave processor, HLDACK generated by
the master processor remains HIGH which
tri-states the slave processor's PSD3XX's
port B and enables the master processor's
PSD3XX's port B control to the '373 latch
and the SRAM (CD6116). Please refer to
the schematic in figure 4, Master PSD
equations in figure 5 and Slave PSD
equations in figure 6 for specific details.

The CD6116 is a 2K x 8 SRAM and the
PSD3XX's port A address lines (AD-A7)
are connected to the SRAM's address
lines. This implies that only 256 bytes of the
shared SRAM are accessible and these
bytes roll over for every 256 bytes in the
higher address ranges.

-------------------------------------~~~--------------------------------~1-~1~13

-:"
""

I11111 111""11

II111111
11~lh
1I11i'11\

MASTER
PROCESSOR

i/o

80C31

Legend:
MADO-MAD15
MPADO - MPAD7

SA DO - SAD15

SPADO - SPAD7

~:::;tc:all:ll:l:'ll ~ iii ~ Q'cS' (g
iD'~~nt:::: ~ a ~~Cil :00,:

~ i:w~5?~ ~ ::i c:a Qii'. ~

&tit ~ 1-_ ~ n'

CS' :!!!l tll :::z ;;;; C!i'
"" if
Ii
~

MASTER SECTION SHARED LATCH & SRAM SLAVE SECTION

.-- -
PORT A MPADO-MPAD7 L AO-A7 S

SPADO-SPAD7
A R MADO-MAD15 T A C M H

MASTER
PSD3XX 373 7' 6116 7"

CONTROL

I<=- ,--i\ PORTS B &C

r'
PSD3XX

ADDRESSIDATA

_1
COMMON CONTROURESPONSE SIGNALS

Master Processor's Address/Data Bus.
Master PSD3XX's Address/Data from Port A.

Slave Processor's Address/Data Bus.
Slave PSD3XX's Address/Data from Port A

PORTA < SADO-SAD15 >
SLAVE

SLAVE
PSD3XX

PROCESSOR

PORTSB&C
< CONTROL >

110

PSD3XX 8OC31

Figure 3.
Flow Chart of
Track Mode
Implementation

NO

Normally Master is ACTIVE.
HOLD = HIGH (P1.0) (input).
HOLDACK = HIGH (P1.1) (output).
Master PSD's ports ABC active.
Slave PSD's ports tristated.

Master Processor
processes INTO &
sets HOLDACK (P1.1)
to LOW, continues
to poll P1.0 while
attending to other
chores.

Master PSD3XX senses
HOLD = LOW (P1.0),
HOLDACK = LOW (P1.1),
and tristates its
PORTs A, Band C.
SRAM available to
SLAVE PSD processor.
Once done, SLAVE
turns HOLD = HIGH.

PSD3XX - Application Note 017

Master processor senses
HOLD = HIGH (P1.0 = 1)
and turns HOLDACK = HIGH

Slave PSD senses
HOLD = HIGH & HOLDACK = HIGH.
Tri-states PORTs A, B &C.
Now master PSD takes the control
ofSRAM.

----------------------------------rs=ar.=------------------------------~1-~11~5 ---=

";'"
."

III111 111""11
11111111
111111111
111111111

Figure 4. Track Mode Schematic

I 1 Y11O:

::t C3 Ul I C4 MASTER SECTION (-j f-7 SLAVE SECTION

Y21m

lcs :::c llA

~
C6'T'

~-------XXlll~ -=- 19 18 -=- U2 U3
Xl X2 rJilI 23 21 21

PO.O/ADO I ~R 24 ADO PAO 20 20 PAO
PO.lIADl r"7 25 ADl PAl 19 ~9 PAl

~g:~!g~ 36 26 !g~ ~!~ 18 18 ~!~
PO.41AD4 27 AD4 PA4 17 17 PA4
PO.S/ADS 34 28 ADS PAS 16 16 PAS
PO.6/AD6 33 29 AD6 PA6 15 15 PA6
PO.7/AD7 32 30 AD7 PA7 14 14 PA7

-=- 18 X2
23 --"391 PO.OIADO

ADO 24 38 PO.lIADl
ADl 25 37 PO.21AD2
AD2 26 36 PO.3/AD3
AD3 27 35 PO.41AD4
AD4 28 34 PO.51ADS
ADS 29 33 PO.6/AD6
!g~ 30 32 PO.7/AD7

D EAlVP

9
RESET

~ EAlVP I -:!:-

RESET 1-'1 9'--__ -,

P2.OIA8 21 31 AD8 PBO 11 A ~.
P2.lIA9 ~~ ~~ AD9 PBl ~ •

P2.21Al0 24 35 AD10 PB2 8 •
P2.3/All 25 36 ADll PB3 If"-
P2.4/A12 26 37 AD12 PB4 rt-
P2.S/A13 27 38 AD13 PBS rt-
~~:~!~~ 28 39 !g~~ ~:~ ~

PCOl40 ! II ~ ~g!~ T .!,

31 21 P2.0/A8 AD8 32 22 P2.1/A9 AD9 33
23 P2.21Al0 AD10 35
24 P2.3/All ADll 36
~ P2.41A12 AD12 37
26 P2.51A13 AD13 38
27 P2.6/A14 AD14 39
28 P2.7/A1S AD1S

12 INTO 13 INTl 14 TO 15 T1

~ Pl.0
3 Pl.l
4 Pl.2
5 Pl.3
6 Pl.4
7 Pl.S
8 Pl.6

Pl.7

lID 17 lID
WR 16 WR

PSEt,! ~~ BHEIPSEN

A~'i~ 11 ~~~ET

lID 22 17 lID
WR 2 1 WR

BHEIPSEN ~3 PSE~
ALE 3 11 ALEIP

A~~~~ 43 1 0 ~~~

'1, PBO
,~ PBl

PB2
o PB3
7 PB4
6 PBS
5 PB6
4 PB7

'0 PCO
I PCl

PC2

11 RXD 10 A19/CSi V
-----~ PSD311 HOLD...../ ------~ ~------~

80C31

HOLDACK

HOLD

:r
'T' Cl

'----

R4

....L..

NOTE:
(R4C1) » (R5C2) Typical
R4 = 8.2 K, C1 = 10 !iF
R5 = 4.1 K, C2 = 10 !iF

PBO-PB2

Vee

IRl 4700

Shared PBO
(MALEISALE)

Vee ree ~R2 4700 R3
4700

1

HOLDACKJ

US
3 2 DO QO
4 01 5 Ql

6 ~ 02 Q2
Q3 9

13 03
Q4 12

14 04 15
17 05 QS

Q6 16
18 g~ Q7 19

DC
G

-=-

Shared PBl (MRD / SRD)

Shared PB2 (MWR / SWR)

PSD311
-=-

80C31

HOLDACK

HOLD

PAO- PA7 vee
U6

~RS AO DO 9
10 Al 01

A2 02 11
13 A3 03 14 A4 04
15

2 AS 05L..C2 16
1 A6 06 17 T 23 A7 07

22 !:
19 Al0 (-j Shared

LATCH and SRAM

-=- Legend:
Prefix M Master

S Slave

~
S
~
I

:b.

:f5
~
III

i"
1=
i;'
t:::I
.....

Figure 5.
MasterPSD
Equations

ALIASES

/CS8/Al6 = HOLD
/CS9/Al7 = HOLDACK
/CSO = MALE
/CSl = MRD
/CS2 = MWR

PSD3XX - Application Note 017

GLOBAL CONFIGURATION

Address/Data Mode: MX
Data Bus Size: 8
CSI/Al9: CSI
Reset Polarity: LO
ALE Polarity: HI
WRD/RWE: WRD
Al6-Al9 Transparent or Latched by ALE: T
Using different READ strobes for SRAM and EPROM: Y
Separate SRAM and EPROM Address spaces: N

PORT A Address/Data Direction Control

CSADIN = HOLDACK * HOLD * Al5 * /Al4 * Al3 * /Al2

CSADOUTl = HOLDACK * HOLD

CSADOUT2 = HOLDACK * HOLD * Al5 * /Al4 * Al3 * /Al2 * RD * /WR

PORT B CONFIGURATION

Bit No. CS/IO. CMOS/OD.
0 CSO 00
1 CSl 00
2 CS2 00
3 CS3 00
4 CS4 00
5 CS5 00
6 CS6 00
7 CS7 00

CHIP SELECT EQUATIONS

MALE = /(HOLDACK * HOLD * / ALE

MRD = /(HOLDACK * HOLD * Al5 * /Al4 * Al3 * /Al2 * / RD

MWR = /(HOLDACK * HOLD * Al5 * /Al4 * Al3 * /Al2 * / WR

-----------------------------------~~~--------------------------------,--,-,-7

PS03XX - Application Note 017

Figure 5.
MasterPSD
Equations
(Cont.)

Bit No.
o
1
2

PORT C CONFIGURATION

CS/Ai.
A16
A17
A18

ADDRESS MAP

A A A A A A A A A SEGMT SEGMT EPROM EPROM File
Name

19 18 17 16 15 14 13 12 11 STRT STOP START STOP

ESO N N

ESI N N

ES2 N N

ES3 N N

ES4 N N

ES5 N N

ES6 N N

ES7 N N

RSO N

CSP N

___________________________________ fE=aF~ __________________________________ _

1-118 '==§§

Figure 6.
Slave'SD
Equations

ALIASES

/CS8/Al6 = HOLD
/CS9/Al7 = HOLDACK
/CSO = SALE
/CSl = SRD

PSlJ3XX - Appl/atilln Nllt. 017

/CS2 = SWR

GLOBAL CONFIGURATION

Address/Data Mode: MX
Data Bus Size: 8
CSI/Al91 CSI
Reset Polarity: LO
ALE Polarity: HI
WRD/RWE I WRD
Al6-Al9 Transparent or Latched by ALE: L
Using different READ strobes for SRAM and EPROM: Y
Separate SRAM and EPROM Address spaces: N

PORT A Address/Data Direction Control

CSADIN = /HOLDACK * /HOLD * Al5 * /Al4 * Al3 * A12

CSADOUTl = /HOLDACK * /aOLD

CSADOUT2 = /aOLDACK * /aOLD * A15 * /Al4 * Al3 * Al2 * RD * /WR

PORT B CONFIGURATION

Bit No. CS/IO. CMOS/OD.
0 CSO OD
1 CSl OD
2 CS2 OD
3 CS3 OD
4 CS4 OD
5 CSS OD
6 CS6 OD
7 CS7 OD

CHIP SELECT EQUATIONS

SALE = /(/aOLDACK * /aOLD * / ALE)

SRD - /(/aOLDACK * /HOLD * AlS * /Al4 * Al3 * /Al2 * / RD

SWR = /(/HOLDACK * /HOLD * AlS * /Al4 * AlJ * /Al2 * / WR

--.-~ ----------------------------------~~~-------------------------------,--,--,9

PSlJ3XX - Application 1ID18 011

Figure 6.
SlavePSD
Equations

fCont)** *****************

Bit No.
o
1
2

PORT C CONFIGURATION

CS/Ai.
A16
A17
A18

Name

ESO

ESl

ES2

ES3

ES4

ES5

ES6

ES7

RSO

csp

Conclusion

ADDRESS MAP

A A A A A A A A A SEGMT SEGMT EPROM EPROM

STOP

File

19 18 17 16 15 14 13 12 11 STRT

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

This application note clearly shows how
PSD3XX's track mode could be best
utilized in resource sharing configurations
with microcontrollers. Using PSD3XXs in
this kind of a design provides the following
significant advantages to the designer:

Q Real estate savingll on-board
(reduced chip count).

Q Cost savings

STOP START

Q Shorter time to market

Q Power savings

Q No additional glue logic.

It also offers flexibility in redesigning efforts
by simply changing the configuration of the
PSD3XXs.

-1--1-20-----------------------------~.iFAr--------------------------------

if iii iii E:=---- -- ------ --. ..--- -----~~--"" --- --

Introduction

Use of the
Security Bit

Programmable Peripheral
Application Note 018
Security of Design in the PSD3XX
By Dud; Moran

The PSD3XX is a family of field program­
mable and UV erasable microcontroller
peripherals that have the ability to interface
to virtually any microcontroller without the
need for external glue logic.

Any PSD3XX family member is a complete
microcontroller peripheral solution with
Memory (EPROM, SRAM), Logic, 1/0 Ports
and a Security bit on chip.

In today's competitive business environ­
ment, where the cost of the product and its
quick introduction to market are the most
important factors for success, some
companies tend to copy a competitor's
design. By doing so, they can save
development time which can reduce their
engineering cost and eventually reduce the
product's price and its introduction time to
the market.

This is true mainly for the consumer and
commodity product markets where micro­
controllers are widely used. The PSD3XX,
as the primary microcontroller peripheral,
contains all the important code and
architectural data that a potential competitor
may want to copy.

PSD3XX devices contain non-volatile
configuration bits to enable the user to set
and configure the device to the proper
operational mode. The configuration bits will
configure the device to interface success­
fully with the microcontroller and also
configure the PSD3XX 1/0 Ports. The
configuration bits are programmed during
the programming phase and cannot be
accessed in operational mode.

During programming the configuration bits
are programmed as two separate sections:

1) The ACR section of the PSD3XX device
contains global configuration bits for
proper microcontroller interface. The
security bit resides as an individual
configuration bit in the ACR section of
the device.

Since the PSD3XX is a field programmable
device, its contents may be read by an I.C.
programmer, decompiled and copied by a
competitor.

Obviously, it is an undesirable situation for
the EPROM, PAD and configuration data of
the PSD3XX to fall into the hands of a
competitor. To prevent this, the PSD3XX
device implements a security "fuse" or
programmable bit feature to protect its
contents from unauthorized access and use
by a competitor.

Uploading the programmed data from
EPROM, PAD, ACR and NVM port config­
uration sections of a secured PSD3XX
device is disabled by the security bit
(if turned ON). The RAM of the programmer
(after trying to upload a secured PSD3XX
device) will contain invalid random data.

A secured PSD3XX device will function
properly in the system - the microcontroller
will be able to access the EPROM, SRAM,
PAD and the 1/0 ports but any attempt to
read or verify the contents of a secured
PSD3XX by external hardware will fail.

2) The NVM section of the PSD3XX device
contains port configuration bits for proper
set up of Ports A, Band C.

PSD3XX devices use the security bit to
prevent unauthorized access to the
configuration data inside. Since the security
bit is part of the ACR global configuration
bits section, it can be programmed in the
same manner as all other configuration bits.

All ACR and NVM configuration bits of the
PSD3XX are non-volatile, so their contents
will not be erased or corrupted during the
power down mode of the device (when the
PSD3XX is deselected with CSI/A 19 =
High) or during power down when Vcc is
removed.

----------------------------------[~~~------------------------------1---12-1

PSD3XX - Application Note 018

Use of the
Security Bit
(Cont.)

Setting the
Security Bit

The security configuration bit is user
programmable and UV erasable as well, so
a secured part can be erased completely
and be reprogrammed (only if the device is
in a windowed package).

Setting the security bit will lock all the
contents of the PAD, ACR global config­
uration bits, and NVM port configuration
bits. By setting the security bit the device
cannot be entered into Initialization and
Override mode (resets the device and
enters it to a known default configuration
before activating the individual read mode
for each section). Any attempt afterwards to
enter the device to DIRECT mode for
uploading or programming will fail. Setting
the security bit prevents a programmer from
directly accessing the various sections of
the device.

Even though the EPROM, SRAM and 110
port contents are not directly disabled by

The security configuration bit is called
CSECURITY.

If CSECURITY = 0, it means security is off
(security bit is not set and its value will be '1'
in the object file).

If CSECURITY = 1, it means security is on
(security bit is set and its value will be '0' in
the object file).

Setting the security bit and activating the
security mode can be done in two different
ways:

1) By turning security ON in the config­
uration menu of Maple development
software.

2) By setting the security in the
programming software (done after the
device is fully programmed and verified).

Using Maple development software to turn
security ON gives the security bit the value
'0', and will integrate it in one of the ACR

setting the security bit, it is impossible to
read them by using external equipment
(except by the microcontroller in the system
where the PSD3XX designed in). This is
because the external equipment will lack
information about the address mapping of
the eight EPROM blocks, SRAM and I/O
ports in the memory map of the
microcontroller and the unknown status of
the global and I/O port configuration bits.

Even if an unauthorized user figures out the
configuration of the part by knowing what
microcontroller is interfaced (ALE polarity,
what type of read and write signals, etc.)
and gets data out of the PSD3XX (after
applying address and control signals to the
device), the user will have no idea where it
came from: EPROM, SRAM, I/O Port
Register, Page Register, etc. This
effectively renders the data useless.

addresses of the object file created after
compilation. (See Security Bit File Location
section of this document).

If Setting of the security bit is done in the
programming software (Third party pro­
gramming software or WSI Mappro
programming software), the user should
program and verify the device using a
Maple generated object file (with security
option OFF) and then set the security ON by
using a separate programming software
command.

Some third party programmer manu­
facturer's software will load the Maple
generated object file but mask the security
bit before programming the device. In that
case the user will have to set the security
bit (if necessary) by using a separate

command in the programming software
menu.

________________________________ r===-E ______________________________ __
1-122

Security
8itFi/e
Location

Summary

The object file created by compilation with
Maple software is an Intel Intelec format,
compatible file.

The programming algorithm defines the
address scrambling that translates the file
addresses to device addresses (the address
that the device "sees" on its address pins
during programming). By looking at a
screen dump or a hard copy of the object
file the user can determine the status of the
security bit.

The security bit of the PSD301/311 resides
in data bit #1 of file address 81 D3h. This
address contains three configuration bits
that reside in data bits 0 - 2, so this address
in the file can have any value between 0
and 7.

If this address has a value X1 X (where X
can be either 0 or 1), the security bit is off
('1' value means an unprogrammed bit) and
CSECURITY = 0 (displayed by Mappro WSI
programmer interface software as
SECA = 0).

If this address has a value XOX, the security
bit is on and CSECURITY = 1 (displayed

The PSD3XX family of programmable
microcontroller peripheral devices provides
security of design not readily available in
conventional PLDs and EPROMs.

PS03XX - Application Note 018

by Mappro WSI programmer interface
software as SECA = 1).

The security bit of PSD302/312 resides in
data bit #1 of file address 1 0253h. This
address contains three configuration bits
that reside in data bits 0 - 3 (bit 3 is
reserved for future usage). This address
can have any value between 0 and F. If this
address has a value XX1 X (where X can be
either 0 or 1), the security bit is OFF
('1' value means an unprogrammed bit) and
CSECURITY = 0 (displayed by Mappro WSI
programmer interface software as SECA =
0). If this address has a value XXOX, the
security bit is ON and CSECURITY = 1
(displayed by Mappro WSI programmer
interface software as SECA = 1).

If users do not want to look for the security
bit status in the object file, they can call
MAPPRO programming software from the
main menu of MAPLE, Load the RAM with
the object file and Display the ACR
configuration bits status on the screen.

The value of SECA will indicate the status of
the security bit (SECA = 0 means security is
OFF, SECA = 1 means security is ON).

Though not entirely fool-proof, the security
bit feature helps make it more cost effective
for competitors to design their own
hardware instead of trying to copy systems
that already exist.

---------------------------------~~~~-----------------------------1--1--23

PSD3XX - Application Note 018

---------------------------------r==~~----------------------------------1-124 ====

ii'EE:=iE --- ~ ------r~ __ ---------- --~~~ --

Abstract

Introduction

The Cable
Tester System
Design

Programmable Peripheral
Application Note 019
The PSD311 Simplifies an Eight Wire Cable
Tester Design and Increases Flexibility
in the Process - By Timothy E. Ounallin, Antec - Anixter Mfg.
and Karen S. Spesard, WSI

With the ever increasing complexity of
wiring networks and cables to match a wide
variety of computer and telecommunication
systems, a means of testing them becomes
a necessity. The wire tester design
described below is a simple yet effective

More and more microcontroller and
microprocessor designers are trying to
design integrated core-based systems with
the intention of being able to easily
configure their systems to fit a wide variety
of product applications. The problem is that
when these applications require new or
changing features such as expanding II0s
or address maps, they may find their
designs are not flexible enough to
accommodate the new requirements,
forcing a lengthy and expensive redesign
anyway.

A solution to this problem is to design in
user·configurable programmable peripheral
products which are flexible enough to
accommodate future design revisions
without the need for board relayout. The
PSD3XX family from WSI, Inc., fits this
profile exactly in that the products can be
tailored to a specific application and then

The cable tester described below operates
by sending a known bit pattern through the
cable under test and checking the bit
pattern at the other end. The hardware
configuration utilized to achieve this
function is shown in Figure 1.

Note that there are very few components
overall in the design. The core contains
just the 68HC11 microcontroller from
Motorola, the PSD311 Programmable
Peripheral with Memory from WSI
and a few other key components including
a keypad, LCD display, and an optional
RS232 communications device.

design which uses the Motorola 68HC11
and WSI PSD311 pairto create a system
that insures 8-wire cables are wired
properly, and at the same time offers a
substantial increase in design flexibility
over alternative hardware solutions.

can be re-configured for other applications
using the same core design. Also, the
PSD3XX product family can enhance
microcontroller-based systems in other
ways. For instance, it can improve system
integration resulting in lower system costs,
and it can significantly shorten time to
market resulting in increased revenues and
profits.

In the cable tester system in which the
PSD311 was used with the 68HC11, the
PSD311 integrates address decoding,
latches, 32K x 8 EPROM, and 2K x 8
SRAM all into a one-chip user-configurable
microcontroller peripheral. It also replaces
the two ports lost by the 68HC11 to extend
program and data memory outside the
MCU with two additional configurable 8-bit
1/0 ports, and adds a third 3-bit port, while
easily enabling still further port expansion.

Also note that the interconnections
between the 68HC11 and PSD311 are
direct and require no "glue logic". That
means that no external latches are needed
to demultiplex the multiplexed address and
data bus from the 68HC11. And, no other
external logic is needed to generate the
address mapping for the on-board EPROM
and SRAM and to select external
peripherals, or create the control signal
interface. The PSD311 already
incorporates these featu res internally,
thereby simplifying the design consider­
ably. In fact, the PSD311 's architecture, as
shown in Figure 2, specifically includes
32K x 8 mappable EPROM for program

1-125

-~

I~··"q II~II
1111111

111111111
1IIIIIIq

Figure 1. PSD311/68HC11 Implementation in the Cable Tester Design A30i
20""

16 KEY
CENTAALAB MONOPANEL
KEYBOARD
MAK016C02300
I ,,'"

Rl07 f-- T 1"" -'-
C102 0

Rl06
10M

Vee

Ul 26

71 EXTAL f
1~}..L ~JgJl

22pF 8 EXTAL +---1h 8MH,
C401 C104 __ ~~O] _____ 20 poO/rum
1IJF 1IJF ________ 21 PD1ITXD 42

23 PD3IMOSI PB1/A9 40
24 PD4/SCK PB2IA10 39
25 P05ISS PB3IA11 38

PB4/A12 37
43 PEo/ANO PBs/A13 36

U3 144
ADO/AO
ADi/Ai
AD2IA2
AD3IA3
AD4fA4
ADS/AS
ADS/AS
AD7/A?

ADBIAS
AD9IA9
AD101Al0
AD11/Al1
ADl21A12
AD1J1A13
AD14IA14
ADl51A15

I 22 PD2IM1SO PBO/A81141~~~~~~

~~~~EE~t~§~~~~415 PEl/ANi PB&'A14 35 47 PE2IAN2 PB7/A15 

:: ~~~~~~ ElDS 1"----;--- pel :~ 
46 PE5IAN5 2 PC2 

;~ ~~~~~~ ;3 A19/CSi 43 

"'OS 

:J 
~ 

, , , 

~ 
~ 

I' <I 

L~======+=~=t====~~~~ VRH 12 PSD311 I VRL 
____ J 34 PA0I1C3 

74C922 9 C402 ~ ~~g~ 

MEMORY MAP 

EPROM(1) - COOO·FFF 
EEPROM - B600-BFFF 
EPROM(2) - 6()()()'AFFF 
RAM - 5000-5FFF 
PORTS - 4000-4007 
LATCH-2oo0 

1 SHIELD 1 

1IJF ici ~~~g~ 
29 PA5JOC3 

1-""~-!--;--r----~271~ ~~~gg~IPAI 

RAM -1000-1OFF 
REG/PTS - (){){}"()03F 

68HC11 CABLE UNDER TEST 

e705 ..L 
1 JlF ,.,.... 

Vee 

C701 
22IJF 

jlt=' T1I 10 
T21 

1- e703 I 
l' 22].lF J 
..l... 

-C501 
1" "F 

JI IIIII11 

P4 AJ45 

~ '1 11111 

t ____________________________________ " 

NOTE: C701-G704 are Tantalum Caps 

~ 
2 
~ 
I 

lIoo 

~ ::::: 
&l 
::t 
~ 
~ 
!;' 
Q 

~ 



Figure 2. 
PSD311 
Architecture 

AD 

A6-A15 

O-AD7 

----. 

ALE/AS 

RO/E 

WR/RIW 

PSEN 

RESET 

A19/CSI 

;--- A11-A15 

L A6-A10 
A 
T A19 
C CSI 
H ALE/AS 

r- RD 

WR 

RESET 
ALE/AS 

'--

L 
A 
T 
C 
H 

'--

~ 

-

~ 
[> 
-

t 
PROG 

CONTROL 
SIGNALS 

"SD3XX - Application Nots 019 

A16-A18 

I PROG , , , LOGIC IN 
PORT 

CSIOPORT EXP 

A19 
CSI PCO--

PAD A 
ALE/AS 

PADB PORT ~ 
r--+ C 

RD 

13 PT WR 27PT CS6-

RESET 
CS10 

--- EPROM 

ES7 
256K BIT 

ES6 
ES5 
ES4 

ES3 
ES2 PROG 
ES1 ~ PORT 

ESO ~ CSO-- EXP 

CS7 

32K BIT ....... PBO-

BLOCK PORT ~ r B 

00--07 . --
l_ CSIOPORT 

~ SRAM 
PROG 
PORT 

16K BIT EXP 
TRACK MODE 
SELECTS 

PAO--
AO--A7 PORT ~ ADO-AD7IDO-D7 A 

PROG CHIP 
CONFIGURATION 

MUX or NON-MUX BUSSES 
SECURITY MODE 
POWER DOWN 

---------------------------------------'jfjf~~---------------------------------------tll#1 § 1.127 



PSD3XX - Application Note 019 

TheCab/e 
Tester System 
Design 
(Cont.) 

Interfacing 
To The PS0311 

storage, 2K x 8 mappable SRAM for data 
storage (or 16K x 16 EPROM and 1 K x 16 
SRAM, if using the similar PSD301 
configured to interface to x16 micros) three 
highly configurable 1/0 ports, a 
programmable address decoder, and chip 
select logic. 

In this design, the reconstructed port space 
of the PSD311 is used to add a keypad 

Not only does the PSD311 interface to the 
68HC11 simply and directly because of its 
internal latches and programmable control 
signals - as it does with any 8-bit microcon­
troller - it also facilitates easy interfacing to 
other components. (The PSD301 interfaces 
to any 8-or 16-bit microcontrolier.) This is 
possible because of its three 1/0 ports and 
the Programmable Address Decoder (PAD) 
which offer unsurpassed flexibility. The PAD 
block diagram is shown in Figure 3. 

For instance, the no "glue-logic" interface of 
the keypad in the system is accomplished 
by using a 74C922 encoder in conjunction 
with the PAD section of the PSD311. The 
PAD is useful because the Data Available 
(DA) line of the 74C922 is a logic "1" when 
a key is pressed, and the signal must be 
inverted before it reaches the IIRO input of 
the 68HC11. Connecting the encoder's DA 
line to the PSD311's PC2 pin and 
configuring it to be a general-purpose logic 
input enables the signal to be inverted 
inside the PAD. The inverted signal is then 
"outputed" on PC1 which is configured as a 
chip select and routed to IIRO. (See Port C 
Configuration and Chip Select Equation in 
Appendix A.) This simple internal 
manipulation inside the PSD311 helps 
reduce the number of components in the 
system. By connecting the 74C922 outputs 
directly to PEO-PE3 on the 68HC11, reading 
of the data is straightforward. 

The display used in the system is a 16 
character by 2 line dot matrix LCD module. 
The interface to the LCD display is handled 
by mapping the data bus directly to Port A 
of the PSD311 , which is configured pin-by­
pin to be general-purpose 110. The control 
logic for the LCD is handled through two 
pins on Port B: PBO and PB1, which are 
also configured to be general-purpose 1/0. 
(See Ports A and B Configuration in 
Appendix A.) With the display used as a 
"WOM" (Write Only Memory), its R/W 

and an LCD display to the system, as well 
as additional output control and input lines 
with an 8-bit latch and an 8-bit buffer/line 
driver. Besides these components, the 
completed cable tester design also includes 
an undervoltage sensing circuit for generat­
ing a reset signal and an encoder for inter­
facing to the keypad. 

line is tied to ground to free an 1/0 pin of the 
PSD311 for other purposes. To free up Port 
A completely on the PSD311 , an 
alternative approach would have been to 
connect the LCD directly to the 68HC11. 

To expand the 1/0 capabilities of the system 
further, two port pins from the PSD311 are 
used with a 74HC574 and a 74HC541 to 
create 8 additional inputs and 8 additional 
latched outputs, both at the same address. 
(This is shown in Figure 1.) The PSD311's 
chip select outputs from ports Band Care 
derived from the addresses, DS strobe, and 
R/W signal available as inputs into the PAD. 
These chip selects will enable data to be 
latched to the outputs or enable input data 
onto the extended address/data bus from 
the outside world, imitating the capability of 
a PIA. 

The chip select equation for the output latch, 
74HC574, is decoded from the upper 
address byte, the DS/E signal, and the 
active low R/W signal as follows: 

ICS8 = IA15· IA14' A13' IA12' DS' 
IR/W. 

The resulting latched address is $2000H 
with DS = 1 and R/W = O. The chip select 
equation for the input driver, 74HC541, is the 
same, because the address is the same 
($2000H), except that R/W is active high. 
So, this equation becomes: 

ICS9 = I A 15 • I A 14 • A 13 • I A 12 • DS • 
RfvV. 

The PSD311 simplifies the interface to the 
program and data memory, external periph­
erals, and 110 ports in the system by inte­
grating the address decoder internally. This 
is illustrated with the direct interconnection 
between the microcontroller and other 
peripherals and the PSD311, without the 
need for a PLD or other logic. 

-1-.1-2-8---------------------------------~~~-------------------------------------



Figure 3. 
Programmable 
Address 
Decoder 
Block Diagram 

AL EorAS ~ 

D or E J"\. 
'"S 

or R/W ~ 

~ 

A19 J') 
'"S 

A18 
'"S 

A17 
"S 

A16 
~ 

~ 

A15 
~ 

~ 

A14 ~ _. ~ 

A13 
"S 

A12 ..q 

A11 ~ 

~ 

CSI .-
RESET .-

-
-'"' 

-'"' 

-
-'"' 

PSD3XX - Application Note 019 

ESO 

ES1 
ES2 
ES3 
ES4 
ES5 
ES6 
ES7 
RSO 

8 EPROM Block 
Select Lines 

CSIOPOR 

__ SRAM Block Select 

T _1/0 Base Address 

} 
Track Mode CSADIN 

CSADOU 
CSADOU ~~ Control Signals 

CSO/PBO 

....--
CSlIPB1 

-

PAD A 

-D- CS2/PB2 

CS3/PB3 

-
-'"' 

I:: CS4/PB4 

PADB 
-" CSS/PB5 -
-'"' 
I:: CS6/PB6 

J". CS7/PB7 -
[>0- CS8/PCO 

_ .... 

~ .... 

CS9/PC1 

CS10/PC2 

---------------------------~Jr~------------------------~1~.n~g 



PSD3XX - ApplicatiDn NDte 019 

Interfacing 
To The P80311 
(Cont.) 

Benefits 
of the P80311 
Usage in 
System 

The PAD enables the 8 blocks of 4K bytes 
EPROM (256K bits) to be located 
anywhere within the available address 
space - in this case, the address space of 
the 68HC11 is 64K bytes. So, the EPROM 
memory is split into two segments of 16K 
bytes EPROM each, separated by the 512 
bytes of the internal E2PROM on the 
68HC11. This means that the first 4 
EPROM blocks are mapped contiguously, 
as well as the last 4 EPROM blocks. 
Here,the program memory (6000H-9FFFH: 
EPROM2, and COOOH-FFFFH: EPROM1) 
is allocated to the upper portion of address 
space. 

The data or SRAM memory, on the other 
hand, is allocated to the lower portion of 
address space and is partitioned into 

Board layout of the cable tester design was 
greatly simplified with the PSD311. In fact, 
when pin 1 of the PSD311 is oriented 180 
degrees from pin 1 of the 68HC11 in the 
PLCC package, port B of the 68HC 11 is 
directly across from the AD8-AD15 pins of 
the PSD311. This positioning enables close 
layout of the two parts, greatly reducing 
costs due to less board space. 

Additional space is saved by using the latch 
and buffer for general-purpose I/O instead 
of the larger and more expensive PIA. And 
other I/O port lines are not sacrificed by 
using the multiplexed address/data bus 
instead of the Serial Peripheral Interface of 
the 68HC11. 

In fact, board space is estimated to have 
been reduced by more than 50% over the 
alternative cumbersome design because of 
the PSD311 positioning on the PC board, 
its port expansion capabilities, and of 
course, the number of parts it replaces: 
including a 256K EPROM, a 16K SRAM, a 
latch, a decoder, and other miscellaneous 
CMOS logic. 

A benefit of parts reduction is lower CMOS 
power consumption that results from an 
integrated single-chip CMOS peripheral/ 
memory solution. By analyzing the power 
that would have been consumed with the 
alternative design and comparing that 
against the PSD311 solution, it was found 
that power was reduced by at least 30%. 

two segments: one segment containing the 
SRAM internal to the 68HC11 (256 bytes) 
and the other containing the SRAM 
internal to the PSD311 (2K bytes). The 
SRAM in the PSD311 is mapped via the 
address decoder to location 5000H-5FFFH, 
respectively. 

Data direction and data registers of the 
PSD311 's two ports are paired and 
accessed via an offset from a configurable 
I/O port mapped base address, such as 
4000H in this cable tester design. This 
enables 16-bit data instructions to access 
the two I/O ports together, which in turn 
reduces both the Load and Store times 
during program execution. 

This translates into requiring a smaller 
power supply and a further reduction in 
cost. 

The flexibility of the PSD311 in the cable 
tester design is also an advantage when 
design changes need to be made quickly. 
Since the I/O ports, PAD, control signals, 
and EPROM are all programmable, the 
part just needs to be reprogrammed when 
the configuration or program memory for 
the entire system needs modifying. 

For instance, the current system has ten 
I/O, eleven input, and eleven output lines 
remaining. This can change if other 
variables need to be stored or other 
peripherals need to be accessed. To 
avoid relaying out another board to 
accommodate these changes, the PSD311 
may be able to be reconfigured to easily 
handle them. Also, if more features and/or 
capabilities in EPROM are required, the 
PSD312 and PSD313 with 512Kbits (64K x 
8) and 1 Mbits (128K x 8) EPROM, respec­
tively, are available in the same package 
and pinout. 

The PSD311 also provides additional 
SRAM beyond the limited amount that may 
be on the microcontroller being used. 
This provides obvious benefits including 
more scratchpad RAM for such uses as 
storing cable "signatures" and system tests 
that can be downloaded for diagnostic 
purposes. 

~~------------------------~Jr;---------------------------1·130 



Benefits 
of the PS0311 
Usage in 
System 
(Cont.) 

Configuring and 
Programming 
thePS0311 

The6BHCl1/ 
PS0311 System 
Software 

But other benefits not readily seen are also 
important. For product designs that have a 
short life cycle and are "pushed" to go to 
market quickly, the additional SRAM gives 
the designer the option of writing the code 
in a high-level language such as "C", 
without the worry of running out of variable 

All of the control logic, address mapping, 
and port configurations for the PSD311 are 
handled during device configuration as part 
of WSI's easy-to-use, menu-driven PSD 
MAPLE software program, which is 
included in the PSD-SILVER or PSD-GOLD 
software development package. See 
Appendix A for the PSD311 configuration 
used in this application. 

After the configuration for the PSD311 has 
been determined and "Save"d, the hex file 
that is needed for programming the 
PSD311 is created. That is done during 

The software for the 68HC11 was written 
with a word processor and assembled using 
a cross assembler. A portion of the cable 
tester design code which is programmed 
into the PSD311 is listed in Appendix B. 
Here the register and RAM memory loca­
tions are set up within the first 64 clock 
cycles from reset of the 68HC11 and 
located at OOOOH to enable easy Direct 
Addressing and Bit manipulations of often 
used registers. 

Initialization of the Option Register, 
Timer prescaler, Stack and Serial 
Communications Interface complete the 
basic set up for the 68HC11 operation. 
Other initialization operations include: Ports 
A and B of the PSD311 which are set up as 
outputs for display control and data transfer 
operations, and the LCD display which is 
set up to display the first screen. Final 
initialization is achieved by setting several 
internal registers and clearing any 
pending interrupts. Now, the IRQ mask bit 
can be cleared and the main program loop 
entered. 

PSD3XX - Application Note 019 

storage space. The capability of writing 
software in "C" could speed up the software 
development cycle, thereby reducing time­
to-market! 

"Compile". "Compile" reads the code written 
for the microcontroller (in Intel hex format) 
and concatenates or merges it with the 
PSD311 configuration data to produce the 
desired output file for downloading to a 
programmer for programming. 

That is all there is to programming the 
PSD311 which is now supported on 
industry-standard programmers like the 
Data 1/0, BP Microsystems, Bytek, and 
Logical Devices programmers as well as 
the low-cost WSI MagicPro programmer. 

Included in the code is a demonstration of 
some useful routines which will illustrate 
how to easily work with the Latch and 
Buffer expansion from the 68HC11! 
PSD311. Remember that these extended 
addresses off the 68HC11 can be accessed 
in several ways. The example code shown 
uses the Bit Set and Bit Clear instructions 
in the indexed addressing mode. With 
these Bit Set and Bit Clear instructions, 
which are read-modify-write instructions, an 
additional register should be set up in the 
internal RAM, not on the latched (write­
only) address, so the 
instructions will function properly. Data can 
then be manipulated and stored as a 
complete byte to the latch enabling data to 
be read and the current value in the latch to 
be checked. (Bit manipulation on the 
latched addresses using the indexed 
addressing mode will result in a correct 
bit change. However, the rest of the byte 
will be unusable as data on the bus will be 
scrambled at the rising edge of the chip 
select signaL) The latch and buffer 
expansion keeps software algorithms 
simple. 

--------------------------------~~~~-----------------------------1--1-3-1 



PSD3XX - Application Note 019 

The 68HCl1/ 
PSD311 System 
Software 
(Cont.) 

Putting the 
System to 
Work 

Summary 

Regarding the software for the keypad, no 
debounce software is necessary because 
the 74C922 has a built in debounce circuit. 
Actually, direct access from Port E to the 
keypad data and the AND instruction allows 
easy compare and execution of the correct 
routine. 

The 68HC 11/PSD311 cable tester design 
could be expanded very easily with 
software to learn many dIfferent wIfing 
configurations and to check several cables 
against a good one. Its usefulness can also 
be increased by making it battery operated 
for field use because of the low current 
draw of the tester. 

Requirements for microcontroller-based 
designs are continually changing and to be 
able to adapt to these changes means 
being flexible. Of course, flexibility in 
hardware is sometimes hard to achieve, 
while flexibility in software is mostly a 
given. One of the goals of the PSD3XX 
family of products is to bridge the gap in 
flexibility between hardware and software. 

By that, it is meant that hardware will not be 
a gating item when developing a new 
design that needs to be introduced to 
market quickly. And the PSD311 , as 
illustrated in this cable tester design, 
addresses that issue perfectly by providing 

The remaining subroutines in the program 
are straightforward and basic to most 
microcontrollers and microprocessors. 
Those used by the 68HC11 are found in 
previously published handbooks and 
articles which can be obtained through 
your local Motorola sales office. 

The cable tester, as designed, will display 
the test results and step through the 
program to show the pin by pin connections 
of the cable. Results are then stored and 
later fed into a computer through the 
RS232 communications port of the tester. 

a user-configurable peripheral solution for 
hardware designers. So, if an application is 
modified and the 1/0 configuration 
changes, or design fixes are required, the 
P.C. board does not have to be 
re-engineered. The PSD3XX can just be 
reprogrammed to reflect the new changes. 

The flexibility provided by the PSD311 
solution in this design is crucial in that it 
enabled development to be completed 
quickly and successfully using a "core" 
approach which can handle many different 
cable applications, including applications 
for telephone interconnections, printers, 
and local area networks. 

--------------------------------r====--------------------------------
1-132 =--=-=== 



PS03XX - Application Note 019 

Appendix A. 
P50311 Part 
Configuration 
Listed in .5V1 
File A16/CS8 

A17/CS9 
A18/CS10 
A19/CSI 

CS8 
IRQ 
DA 
CSI 

ALIASES 

********************************************************************* 
GLOBAL CONFIGURATION 

Address/Data Mode: 
Data Bus Size: 
CSI/A19: 
Reset Polarity: 
ALE Polarity: 
WRD/RWE: 
A16-A19 Transparent or Latched by ALE: 

MX 
8 
CSI 
LO 
HI 
RWE 
T 

Using different READ strobes for SRAM and EPROM: N 
********************************************************************* 

PORT A CONFIGURATION (Address/IO) 

Bit No. 
a 
1 
2 
3 
4 
5 
6 
7 

Ai/IO. 
IO 
IO 
IO 
IO 
IO 
IO 
IO 
IO 

CMOS/OD. 
CMOS 
CMOS 
CMOS 
CMOS 
CMOS 
CMOS 
CMOS 
CMOS 

********************************************************************* 
PORT B CONFIGURATION 

Bit No. CS/IO. CMOS/OD. 
a IO CMOS 
1 IO CMOS 
2 IO CMOS 
3 IO CMOS 
4 IO CMOS 
5 IO CMOS 
6 IO CMOS 
7 CS7 CMOS 

CHIP SELECT EQUATIONS 

/CS7 = /A15 * /A14 * A13 * /A12 * E * R/W 
+ 

********************************************************************* 

Bit No. 
a 
1 
2 

PORT C CONFIGURATION 

CS/Ai. 
CS8 
CS9 
A18 

CHIP SELECT EQUATIONS 

/CS8 = /A15 * /A14 * A13 * /A12 * E * / R/W 
/IRQ = DA 
********************************************************************* 

ADDRESS MAP 

A A A A A A A A A SEGMT SEGMT EPROM EPROM File Name 
19 18 17 16 15 14 13 12 11 STRT STOP START STOP 

ESO N X N N a 1 1 a N 6000 6FFF 6000 6fff BASE301.0BJ 
ES1 N X N N a 1 1 1 N 7000 7FFF 

rHl; 1-133 



PS03XX - Application Note 019 

AppendixA. 
PSD311 Part 
Configuration 
Listed in .SV1 
File (Cont.) 

ES2 N x N N 1 0 0 0 N 8000 8FFF 

ES3 N X N N 1 0 0 1 N 9000 9FFF 

ES4 N X N N 1 1 0 0 N COOO CFFF cOOO cfff BASE301.0BJ 
ES5 N X N N 1 1 0 1 N DOOO DFFF dOOO dfff BASE301.0BJ 
ES6 N X N N 1 1 1 0 N EOOO EFFF eOOO efff BASE301.0BJ 
ES7 N X N N 1 1 1 1 N FOOO FFFF fOOO ffff BASE301. OBJ 
RSO N X N N 0 1 0 1 0 5000 57FF 

CSP N X N N 0 1 0 0 0 4000 47FF 
****************************** END *********************************** 
CDATA 0 
CADDRDAT 1 
CRRWR 1 
CA19/(/CSI) 0 
CALE 0 
CRESET 0 
COMB/SEP 0 
CADDHLT 0 

CPAF2 0 

CPAF1 [0] 0 
CPAF1 [ 1] 0 
CPAF1 [2] 0 
CPAF1 [3] 0 
CPAF1 [4] 0 
CPAF1 [5] 0 
CPAF1 [6] 0 
CPAF1 [7] 0 

CPACOD [0] 0 
CPACOD [l] 0 
CPACOD [2] 0 
CPACOD [3] 0 
CPACOD [4] 0 
CPACOD [5] 0 
CPACOD [6] 0 
CPACOD [7] 0 

CPBF [0 ] 1 
CPBF [ 1] 1 
CPBF [2] 1 
CPBF [3] 1 
CPBF [4] 1 
CPBF [5] 1 
CPBF [ 6] 1 
CPBF [7] 0 

CPBCOD [0] 0 
CPBCOD [ 1] 0 
CPBCOD [2] 0 
CPBCOD [3] 0 
CPBCOD [4] 0 
CPBCOD [5] 0 
CPBCOD [6] 0 
CPBCOD [7] 0 

CPCF [0 ] 1 
CPCF [ 1] 1 
CPCF [2] 0 '--I!'§ -------------------------------------,_~_=_~_ar-------------------------------------1-134 



AppendixB. 
Core System 
Software for 
Cable Tester 
Design 

0000 
0000 

6000 

PSD3XX - Application Note 019 

i 

CPU 
HOF 

"6Sll.TBL" 
"INTS" 

i***************************************************** ***** 
· * , 
· * , 
· * , 
· * , 
i* 
.* , 
.* , 
.* , 
i* 

· * , 
· * , 
· * , 
· * , 
· * , 
.* , 

THE 68HCll IN CONJUNCTION WITH THE PSD301 
ARE USED IN DEVELOPEMENT OF SOFTWARE FOR 
DISPLAY, KEYBOARD FUNCTION, AND OTHER APPL. 
MEMORY MAP:EPROM(l) COOO-FFFF (PROGRAM) 

EEPROM B600-BFFF (68HCll) 
EPROM(2) 6000-9FFF (DATA) 
RAM 5000-5FFF (PSD30l) 
I/O 4000-4007 (PSD30l) 
LAT 2000 (LATCH & BUFFER) 
RAM 1000-10FF (68HCll) 
I/O & REG 0000-003F (6SHCll) 

BY TIM DUNAVIN 
ANTEC 

ANIXTER MANUFACTURING 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

i********************************************************** 

ORG 06000H 
, 
i*********************** 
i* LOOKUP TABLES * 
i*********************** 
i 

iDATA MEMORY 

6000 363848433lDATTAB: DFB "68HCll/PSD311 UP" ,OOH 
i 

6011 54494D4F54CREDITS: DFB 
6023 4l4E544543 DFB 
6037 524F434B20 DFB 

"TIMOTHY E. DUNAVIN" 
"ANTEC - ANIXTER MFG." 
"ROCK FALLS, ILL. 61071" 

i***************************************************** ** 

COOO ORG OCOOOH i PROGRAM MEMORY 
i 

103D INIT: EQU 103DH iRAM AND I/O MAPPING REGISTER 
4000 PORTBC: EQU 04000H iI/O BASE ADDRESS OF THE 301 
2000 LAT: EQU 02000H iLATCH AND BUFFER 
0000 KEYl: EQU OOH iKEYPAD 1 
0001 KEY2: EQU OlH ;KEYPAD 2 
0002 KEY3: EQU 02H iKEYPAD 3 
0003 KEYA: EQU 03H ;KEYPAD A 
0004 KEY4: EQU 04H ;KEYPAD 4 
0005 KEY5: EQU 05H iKEYPAD 5 
0006 KEY6: EQU 06H iKEYPAD 6 
0007 KEYB: EQU 07H iKEYPAD B 
0008 KEY7: EQU 08H ;KEYPAD 7 
0009 KEY8: EQU 09H ;KEYPAD 8 
OOOA KEY9 EQU OAH ;KEYPAD 9 
OOOB KEYC EQU OBH iKEYPAD C 
OOOC KEYZ EQU OCH ;KEYPAD * 
OOOD KEYO EQU ODH iKEYPAD 0 
OOOE KEYY EQU OEH iKEYPAD # 
OOOF KEYD EQU OFH iKEYPAD D 

___________________________________ f==:F~ __________________________________ _ 
--== ~m 



PSD3XX - Application Note 019' 

AppendixB. 
Core System 
Software for 
Cable Tester 
Design (Cont.) 

COOO OF 
COOl 8610 
C003 B7103D 

0000 

0002 
0003 
0004 
0005 

0007 
0008 
0009 
OOOA = 
OOOB 
OOOC 
0000 
OOOE 

0010 

0012 

0014 

0016 

0018 

001A = 
001C 

001E 

0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
002A = 
002B 
002C 
0020 
002E 
002F 
0030 
0031 
0032 
0033 
0034 

;************************************************ 
; * INITIALIZATION ROUTINE * 
;************************************************ 
; 
;NOTE: OPTION and TMSK2 must be programed in first 64 E 

cycles out of RESET 
; 
START: SEI 

LDAA 
STAA 

#010H 
INIT 

;SET IRQ MASK 
;SET RAM AT 1000 AND 
;SET REGISTERS AT 0000 

;************************************************ 
; 
;******* 
PORTA: 
; 
PIOC: 
PORTC: 
PORTB: 
PORTCL: 

DDRC: 
PORTO: 
DDRD: 
PORTE: 
CFORC: 
OC1M: 
OC1D: 
TCNT: 

TIC1: 

TIC2: 

TIC3: 

TOC1: 

TOC2: 

TOC3: 

TOC4: 

TOC5: 

TCTL1 
TCTL2 
TMSK1 
TFLG1 
TMSK2 
TFLG2 
PACTL 
PACNT 
speRl 
SPSR: 
SPDR: 
BAUD: 
SCCR1: 
SCCR2: 
SCSR: 
SCDR: 
ADCTL: 
ADR1: 
ADR2: 
ADR3: 
ADR4: 

64 BYTES OF REGISTER AREA ******* 
EQU OOOOH ;PORT A DATA REGISTER 

EQU 
EQU 
EQU 
EQU 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

EQU 

EQU 

EQU 

EQU 

EQU 

EQU 

EQU 

EQU 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

0002H 
0003H 
0004H 
0005H 

0007H 
0008H 
0009H 
OOOAH 
OOOBH 
OOOCH 
OOODH 
OOOEH 

0010H 

0012H 

0014H 

0016H 

0018H 

001AH 

001CH 

OOlEH 

0020H 
0021H 
0022H 
0023H 
0024H 
0025H 
0026H 
0027H 
0028H 
0029H 
002AH 
002BH 
002CH 
0020H 
002EH 
002FH 
0030H 
0031H 
0032H 
0033H 
0034H 

;0001 IS RESERVED 
;PARALLEL I/O CONTROL REGISTER 
;PORT C DATA REGISTER (ADO - AD7) 
;PORT B DATA REGISTER (A8 - A15) 
;PORT C LATCHED DATA REGISTER 
;0006 IS RESERVED 
;DATA DIRECTION REG FOR PORT C 
;PORT 0 DATA REGISTER (RxD, TxD, AND I/O) 
;DATA DIRECTION REG FOR PORT 0 
;PORT E DATA REGISTER 
;TIMER COMPARE FORCE REGISTER 
;OUTPUT COMPARE 1 MASK REGISTER 
;OUTPUT COMPARE 1 DATA REGISTER 
;TIMER COUNTER REGISTER (16 BIT) 
;OOOF LSB TCNT 
;TIMER INPUT CAPTURE REGISTER 1 (16 BIT) 
; 0011 LSB TIC1 
;TIMER INPUT CAPTURE REGISTER 2 (16 BIT) 
;0013 LSB TIC2 
;TIMER INPUT CAPTURE REGISTER 3 (16 BIT) 
;0015 LSB TIC3 
;TIMER OUTPUT COMPARE REG 1 (16 BIT) 
;0017 LSB TOC1 
;TIMER OUTPUT COMPARE REG 2 (16 BIT) 
;0019 LSB TOC2 
;TIMER OUTPUT COMPARE REG 3 (16 BIT) 
;OOlB LSB TOC3 
;TlMER OUTPUT COMPARE REG 4 (16 BIT) 
;0010 LSB TOC4 
;TIMER OUTPUT COMPARE REG 5 / INPUT CAPTURE 
;REGISTER 4 (16 BIT) - 001F LSB TOC5/TIC4 
;TIMER CONTROL REGISTER 1 
;TIMER CONTROL REGISTER 2 
;MAIN TIMER INT MASK REGISTER 1 
; MAIN TIMER INT. FLAG REG 1 
;MAIN TIMER INT MASK REGISTER 2 
; MAIN TIMER INT. FLAG REG 2 
;PULSE ACCUMULATOR CONTROL REG 
;PULSE ACCUMULATOR COUNT REG 
;SPI CONTROL REGISTER 
;SPI STATUS REGISTER 
;SPI DATA REGISTER 
;SCI BAUD RATE CONTROL REGISTER 
;SCI CONTROL REGISTER 1 
;SCI CONTROL REGISTER 2 
;SCI STATUS REGISTER 
;SCI DATA REGISTER 
;A/D CONTROL/STATUS REGISTER 
;A/D RESULT REGISTER 1 
;A/D RESULT REGISTER 2 
;A/D RESULT REGISTER 3 
;A/D RESULT REGISTER 4 
;0035 - 0038 RESERVED 

~=-------------------------'_JL_~~.~---------------------------1-136 'Sf" 



AppendixB. 
Core System 
Software for 
Cable Tester 
Design (Cont.) 
0039 = 
003A = 
003B 
003C 

003E 
003F 

1000 
1001 
1002 
10FF 

5000 

B600 

C006 
C007 

C009 

COOB 
COOD 
COOF 
C012 
C01S 
C017 

C019 
C01B 
COlD 
C01F 
C021 
C024 
C027 
C029 
C02A 

01 
a6E3 

9739 

8602 
9724 
7F0028 
8EI0FF 
8680 
9726 

86FC 
9709 
8600 
9708 
7F002C 
7F002D 
962E 
4F 
972F 

C02C CEFFFF 
C02F FF4004 

C032 CE2710 
C03S BDCOEl 
C038 8630 
C03A BDCOF4 
C03D CE0300 
C040 BDCOE1 
C043 BDCOF4 
C046 BDCODE 
C049 BDCOF4 
C04C BDCODE 
C04F 8638 
COSl BDCOF4 
CO 54 CE0280 
COS7 BDCOEl 
COSA 860C 

PS03XX - Application Note 019 

OPTION: EQU 
COPRST: EQU 
PPROG: EQU 
HPRIO: EQU 
;INIT: EQU 
TEST1: EQU 
CONFIG: EQU 

0039H 
003AH 
003BH 
003CH 
003DH 
003EH 
003FH 

SYSTEM CONFIGURATION OPTIONS 
ARM/RESET COP TIMER CIRCUITRY 
EEPROM PROGRAMMING REGISTER 
HIGHEST PRIORITY INTERRUPT 
RAM AND I/O MAPPING REGISTER (NEW ADD.) 
FACTORY TEST REGISTER 
CONFIGURATION CONTROL REGISTER 

; 
i******* 
FLAGS: 
LA1: 
STOR: 
STACK: 
; 

256 BYTES OF INTERNAL RAM ******* 
EQU 1000H ;FLAG REGISTER 
EQU lOOlH ;LATCH DATA REGISTER 
EQU 1002H ;BASIC RAM STORAGE AREA 
EQU 10FFH ;STACK AREA 

;******* 2K x 8 EXTERNAL RAM ******** 
MASSTOR: EQU OSOOOH ;MASS STORAGE RAM IN PSD301 
; 
;******* EEROM AREA, 512 BYTES ******* 
EROM: EQU OB600H ;DATA RETENTION AREA 
; 
i************************************************ 

NOP ;SLIGHT DELAY TO ALLOW REGISTER SET UP 
LDAA #OE3H ;SET UP OPTION REG. - ADPU =1, CSEL = 1, 

IRQE = 1 
STAA OPTION ; (ENABLE EEPROM CHARGE PUMP, IRQ EDGE 

SENSITIVE) 
LDAA #002H ;SET TIMER PRESCALER TO 8 
STAA TMSK2 ;AND DISABLE TIMER INTERRUPTS 
CLR SPCR ;DISABLE ALL SPI INT. 
LDS #STACK ;SET UP STACK 
LDAA #080H 
STAA PACTL ;PA7 OUTPUT 

;******* INITIALIZE THE SCI TO 9600 BAUD AT 8MHZ (DISABLED) 
ONSCI: LDAA #OFCH ;INIT. PORT D DDR (02H) 

STAA DDRD ;PDO, PD1 - INPUT, PD2-PDS - OUTPUT 
LDAA #OOOH ;SET UP PORT D 
STAA PORTD 
CLR SCCR1 ;SET UP SER. COM. CON. REG. 1 
CLR SCCR2 
LDAA SCSR ;TO CLEAR TDRE AND TC OF SCSR 
CLRA ;READ STATUS REG., LOAD TRANS. DATA REG. 
STAA SCDR 

;******* INITIALIZE THE 301 FOR DISPLAY INTERFACE 
ONPIA: LDX #OFFFFH ;SET UP PORTS B & C AS OUTPUTS 

STX PORTBC+4 
;******* DISPLAY SET UP (NEW REV. 15 MAY 91) ******* 
DISINIT: LDX #02710H ;100mS DELAY (POWER UP DELAY FOR DISPLAY) 

JSR TDELAY ;TlME DELAY 
LDAA #030H ;SET UP DISPLAY 
JSR SEND I ;SEND INSTRUCTION (30 1ST TIME) 
LDX #00300H ;6.1mS DELAY 
JSR TDELAY ;TlME DELAY 
JSR SENDI ;SEND INSTRUCTION (30 2ND TIME) 
JSR TD40 ;TlME DELAY 
JSR SEND I ;SEND INSTRUCTION (30 3RD TIME) 
JSR TD40 ;TlME DELAY 
LDAA #038H ;FUNCTION SET (8 BIT-SINGLE LINE) 
JSR SENDI ;SEND INSTRUCTION 
LDX #00280H ;smS DELAY 
JSR TDELAY ;TlME DELAY 
LDAA #OOCH ;DISPLAY ON - NO CURSOR 

---------------------------------------~~~---------------------------------------
10137 



PSD3XX - Application Note 019 

AppendixB. 
Core System 
Software for 
Cable Tester 
Design (Cont.) 

C05C BDCOF4 
C05F CE0280 
C062 BDCOEI 
C065 8606 
C067 BDCOF4 
C06A CE0280 
C06D BDCOEI 
C070 BDCOEC 
C073 CE0190 
C076 BDCOEI 
C079 l8CE6000 
C07D BDCOCC 

C080 9629 
C082 962A 
C084 86FF 
C086 9723 
C088 9725 
C08A 962E 
C08C 962F 

C08E 7F2000 
C091 CElOOl 
C094 lC0200 
C097 AGOO 
C099 B72000 
C09C B62000 

C09F BDCOBO 

COA2 OE 

COA3 01 
COA4 7ECOA3 

COA7 
COA9 
COAB 
COAD 
COAF 

COBO 
COB4 
COB6 
COB8 
COBB 
COBE 
COBF 
COCI 
COC4 
COC7 
COC9 
COCB 

8655 
973A 
86AA 
973A 
39 

18CEOIFF 
8640 
9700 
CE0014 
BDCOEI 
4F 
9700 
CE0014 
BDCOEl 
1809 
26E9 
39 

JSR 
LDX 
JSR 
LDAA 
JSR 
LDX 
JSR 
JSR 
LDX 
JSR 
LDY 
JSR 

;******* FINAL 
FINIT: LDAA 

LDAA 
LDAA 
STAA 
STAA 
LDAA 
LDAA 

; 

SEND I 
#00280H 
TDELAY 
#006H 
SENDI 
#00280H 
TDELAY 
HOME 
#00190H 
TDELAY 
#DATTAB 
PDOD 

INIT. ******* 
SPSR 
SPDR 
#OFFH 
TFLGl 
TFLG2 
SCSR 
SCDR 

;SEND INSTRUCTION 
;5mS DELAY 
;TlME DELAY 
;ENTRY MODE SET 
;SEND INSTRUCTION 
;5mS DELAY 
;TlME DELAY 
;DISPLAY CURSOR HOMEI 
;4.0mS DELAY 
;TlME DELAY 
;TOP OF DATA TABLE 
;SEND MESSAGE TO DISPLAY 

;CLEAR ANY SPI INT. 

;CLEAR ANY TIMER INT. 

;CLEAR ANY SCI INT. 

;EXAMPLES OF WORKING WITH 
CLR LAT 
LDX #LAI 

LATCH AND BUFFER 
;CLEAR LATCH 
;SET INDEX 

BSET 2,X,00H 
LDAA O,x 
STAA LAT 
LDAA LAT 

JSR BEEP 

CLI 
; 
i************************* 
;* MAIN LOOP * 
i************************* 
; 
LOOP: NOP 

JMP LOOP 

;SET BIT 2 OF LAI 
;GET LATCH REGISTER 
;STORE DATA TO LATCH 
;GET DATA FROM BUFFER 

;SOUND OFFI 

; CLEAR IRQ MASK 

; RETURN 
, 
i************************************ 
; * SUBROUTINES * 
i************************************ 
; 
i******* 
DOG: 

; 
i******* 
BEEP: 
BEEPl: 

WATCHDOG SERVICE ROUTINE ****** 
LDAA #055H 
STAA COPRST 
LDAA #OAAH 
STAA COPRST 
RTS 

HOOTER 
LDY 
LDAA 
STAA 
LDX 
JSR 
CLRA 
STAA 
LDX 
JSR 
DEY 
BNE 
RTS 

OSC. ROUTINE 
#OOlFFH 
#040H 
PORTA 
#00014H 
TDELAY 

PORTA 
#00014H 
TDELAY 

BEEPI 

;RESET WATCHDOG TIMER 

;RETURN FROM SUB. 

******** 
;SET COUNT 
;BEEPER ON 

; DELAY 
;BEEPER OFF 

; DELAY 
;COUNT -1 
;IF NOT DONE, KEEP 
; RETURN FROM SUB. 

GOING 

_________________________________________ r3f=aF~ ______________________________________ ___ 
=-~~B 1-138 



AppendixB. 
Core System 
Software for 
Cable Tester 
Design (Cont.) 

cocc 18A600 
COCF 2707 
COD1 BDC100 
COD4 1808 
COD6 20F4 
COD8 39 

COD9 CEOO02 
CODC 2003 
CODE CEOOOF 
COE1 09 
COE2 8COOOO 
COE5 26FA 
COE7 39 

COE8 8601 
COEA 2008 
COEC 8602 
COEE 2004 
COFO 86CO 
COF2 2000 
COF4 CE4000 
COF7 A706 
COF9 1c0702 
COFC 1D0702 
COFF 39 

C100 CE4000 
C103 A706 
C105 1C0701 
c108 1C0702 
C10B 1D0702 
C10E 1D0701 
C1ll BDCODE 
Cll4 39 

Cll5 AGOO 
Cll7 81FF 
Cll92717 
CllB 8616 
C11D 973B 
CllF 86FF 
C121 A700 
C123 8617 
C125 973B 
C127 3C 
C128 CE0300 
C12B BDCOE1 
C12E 38 
C12F 4F 
C130 973B 
C132 8602 

PSD3XX - Application Note 019 

i******* 
PDOD: 

PDOD1: 
; 
i******* 
TD20: 

TD40: 
TDELAY: 

; 
.******* , 
CSCREEN: 

HOME: 

LINE2: 

SENDI: 

; 
i******* 
SENDD: 

; 

PUT DATA ON DISPLAY ******** 
LDAA 0, Y ;GET BYTE 
BEQ PDOD1 ;IF END, GOTO NEXT1 
JSR SENDD 
INY ;NEXT BYTE 
BRA PDOD ; RETURN TO NEXT 
RTS ;RETURN FROM SUB. 

TIME DELAY ROUTINE ********* 
LDX #00002H ;20uS DELAY 
BRA TDELAY 
LDX #OOOOFH ;150us DELAY 
DEX ;DECRAMENT COUNT 
CPX #OOOOOH ;COUNT = O? 
BNE TDELAY ;IF NOT DONE, GOTO TDELAY 
RTS ;RETURN FRO SUB. 

CLEAR SCREEN, CURSOR HOME, AND SEND INSTRUCTION 
LDAA #OOlH ;CLEAR DISPLAY 
BRA SENDI ;SEND INSTRUCTION 
LDAA #002H ;CURSOR HOME 
BRA SENDI ;SEND INSTRUCTION 
LDAA #OCOH ;SET CURSOR TO LINE 2 
BRA SENDI ;SEND INSTRUCTION 
LDX #PORTBC ;SET UP DATA TRANSFER 
STAA 6,X ;STORE AT PIA PORT A 
BSET 7,X,02H ;DISPLAY E HIGH 
BCLR 7,X,02H ;DISPLAY E LOW 
RTS ;RETURN FROM SUB. 

SEND 
LDX 
STAA 
BSET 
BSET 
BCLR 
BCLR 
JSR 
RTS 

DATA TO DISPLAY ******** 
#PORTBC ;SET UP DATA TRANSFER 
6,X ;SEND DATA 
7,X,01H ;DISPLAY RS HIGH 
7,X,02H ;DISPLAY E HIGH 
7,X,02H ;DISPLAY E LOW 
7,X,01H ;DISPLAY RS LOW 
TD40 ;150us TIME DELAY 

;RETURN FROM SUB. 

i****************************************************** 
;* ROUTINE TO CHANGE BYTE IN EEROM * 
i* PRELOADED X = ADDRESS IN EEROM (B600 - B7FF) * 
; * DATA TO BE STORED, IS IN "STOR" * 
i* (THIS IS A MOTOROLA ROUTINE) * 
i****************************************************** 

******* 

CHGBYT: LDAA O,X iGET DATA AT ADDRESS TO BE CHANGED 
CMPA #OFFH ;CHECK IF ERASED 
BEQ CHGBYT1 ;JUMP IF BYTE ERASED 
LDAA #016H iSET BYTE, ERASE, AND EELAT 
STAA PPROG 
LDAA #OFFH 
STAA O,x 
LDAA #017H 
STAA PPROG 
PSHX 
LDX 
JSR 
PULX 
CLRA 
STAA 

CHGBYT1: LDAA 

#00300H 
TDELAY 

PPROG 
#002H 

;SET EEPRG 

;SAVE x 

;20mS TIME DELAY 
iRESTORE X 
iCLEAR BYTE, 
iEND OF BYTE 
;SET EELAT -

ERASE, EELAT, AND EEPRG 
ERASE 
DO BYTE PROGRAM 

-----------------------------------------f=af~~-----------------------------------------==== 1-139 



PS03XX - ApplicatiDn NDte 019 

AppendixB. 
Core System 
Software for 
Cable Tester 
Design (Cont.) 

C134 973B 
C136 B61002 
C139 A700 
C13B 7C003B 
C13E 3C 
C13F CE0300 
C142 BDCOE1 
C145 38 
C146 7A003B 
C149 7F003B 
C14C 39 

STAA PPROG 
LDAA STOR ;GET DATA TO BE STORED 
STAA O,X ;STORE IN NEW LOCATION IN EEROM 
INC PPROG 
PSHX ;SAVE x 
LDX #00300H 
JSR TDELAY ;20mS DELAY 
PULX ;RESTORE x 
DEC PPROG ;CLEAR EEPRG 
CLR PPROG ;CLEAR EELAT, END OF BYTE PROGRAM 
RTS ;RETURN FROM SUB. 

; 
i*******·**··******·*·****·*************************** 
;* ROUTINE TO SET UP AID CONVERTER * 
;* ACC A = VALUE TO INITIATE CONVERSION * 
;* BEFORE ENTRY TO THIS ROUTINE * 
i***************************************************** 

C14D 9730 CONV: STAA 
BRCLR 
RTS 

ADCTL ;SET UP AID CONVERTER 
C14F 133080FC CONV1: ADCTL,80H,CONV1 ;WAIT HERE TILL CONVERSION COMPLETE 

;RETURN FROM SUB. C153 39 

C154 3B 

C155 3B 

C156 3B 

C157 3B 

C158 3B 

C159 3B 

; 
i**************************** 
;* INTERRUPT ROUTINES * 
i**************************** 
; 
j***************************************************** 
;* SERIAL COMMUNICATIONS INTERFACE - IRQ * 
i***************************************************** 
; 
SCOM: RTI ;RETURN FROM INT. 
; 
j****************************** 
;* SERIAL TRANSFER COMPLETE * 
i****************************** 
; 
TRANC: RTI ; RETURN FROM INT. 
; 
j********************************* 
;* PULSE ACCUMLATOR INPUT EDGE * 
j********************************* 
; 
PULSEE: RTI ;RETURN FROM INT. 
; 
i******************************** 
; * PULSE ACCUMULATOR OVERFLOW * 
i******************************** 
; 
PULSEO: RTI 
; 
i******************** 
; * TIMER OVERFLOW * 
i******************** 
; 
TIMEO: 
; 

RTI 

i**************************** 
; * TIMER OUTPUT COMPARE 5 * 
i**************************** 
; 
COMP5: RTI 

;RETURN FROM INT. 

;RETURN FROM INT. 

;RETURN FROM INT. 

~~--------------------------"I~=------------------------------1.140 :.: .: •• 



AppendixB. 
Core System 
Software for 
Cable Tester 
Design (Cont.) 

C15A 3B 

C15B 3B 

C15C 3B 

C15D 3B 

C15E 3B 

C15F 3B 

C160 3B 

C161 3B 

C162 960A 
C164 840F 

C166 8100 
C168 2601 
C16A 3B 

C16B 8101 
C16D 2601 
C16F 3B 

PS03XX - Application Note 019 

i*************************** 
;* TIMER OUTPUT COMPARE 4 * 
i*************************** 
; 
COMP4: RTI 
, 
j**************************** 
;* TIMER OUTPUT COMPARE 3 * 
i**************************** 
; 
COMP3: 
; 

RTI 

i**************************** 
;* TIMER OUTPUT COMPARE 2 * 
i**************************** 
; 
COMP2: RTI 
, 
i**************************** 
;* TIMER OUTPUT COMPARE 1 * 
j**************************** 
; 
COMP1: 
; 

RTI 

i*************************** 
;* TIMER INPUT COMPARE 3 * 
j*************************** 
; 
ICOMP3: RTI 
; 
i*************************** 
;* TIMER INPUT COMPARE 2 * 
i*************************** 
; 
ICOMP2: RTI 
; 
i*************************** 
;* TIMER INPUT COMPARE 1 * 
i*************************** 
; 

;RETURN FROM INT. 

;RETURN FROM INT. 

;RETURN FROM INT. 

;RETURN FROM INT. 

;RETURN FROM INT. 

;RETURN FROM INT. 

ICOMP1: RTI ;RETURN FROM INT. 
; 
i**************************** 
;* REAL TIME INT. ROUTINE * 
i**************************** 
; 
REALT: RTI ;RETURN FROM INT. 
; 
j********************** 
;* IRQ INT. ROUTINE * 
j********************** 
; 
DOIT: LDAA PORTE 

ANDA #OOFH 

CMPA #KEY1 
BNE DOIT10 
RTI 

; 
DOIT10: CMPA #KEY2 

BNE DOIT20 
RTI 

rg;; 

;GET KEYBOARD DATA 
;FILTER DATA 

;1 KEY? 
;IF NOT GOTO DOITIO 
; RETURN FROM INT. 

;2 KEY? 
;IF NOT GOTO DOIT20 
; RETURN FROM INT. 

1-141 



PSD3XX - Application Note 019 

AppendixB. 
Core System 
Software for 
Cable Tester 
Design (Cont.) 

; 
C170 8102 DOIT20: CMPA #KEY3 3 KEY? 
Cl72 2601 BNE DOIT30 IF NOT, GOTO DOIT30 
C174 3B RTI RETURN FROM INT. 

; 
C175 8103 DOIT30: CMPA #KEYA ;A KEY? 
Cl77 2601 BNE DOIT40 ;IF NOT GOTO DOIT40 
C179 3B RTI ; RETURN FROM INT. 

; 
c17A 8104 DOIT40: CMPA #KEY4 ;4 KEY? 
C17C 2601 BNE DOIT50 ;IF NOT GOTO DOIT50 
C17E 3B RTI ; RETURN FROM INT. 

; 
C17F 8105 DOIT50: CMPA #KEY5 ;5 KEY? 
C18l 2601 BNE DOIT60 ;IF NOT GOTO DOIT60 
C183 3B RTI ; RETURN FROM INT. 

; 
C184 8106 DOIT60: CMPA #KEY6 ;6 KEY? 
C186 2601 BNE DOIT70 ;IF NOT GOTO DOIT70 
C188 3B RTI ; RETURN FROM INT. 

; 
C189 8107 DOIT70: CMPA #KEYB ;B KEY? 
C18B 2601 BNE DOIT80 ;IF NOT GOTO DOIT80 
C18D 3B RTI ; RETURN FROM INT. 

; 
C18E 8108 DOIT80: CMPA #KEY7 ;7 KEY? 
C190 2601 BNE DOIT90 ;IF NOT GOTO DOIT90 
C192 3B RTI ; RETURN FROM INT. 

; 
C193 8109 DOIT90: CMPA #KEY8 ;8 KEY? 
C195 2601 BNE DOIT100 ;IF NOT GOTO DOIT100 
C197 3B RTI ; RETURN FROM INT. 

; 
C198 8l0A DOIT100: CMPA #KEY9 ;9 KEY? 
C19A 2601 BNE DOITllO ;IF NOT GOTO DOITllO 
C19C 3B RTI ; RETURN FROM INT. 

; 
C19D 8l0B DOITllO: CMPA #KEYC ;C KEY? 
C19F 2601 BNE DOIT120 ;IF NOT GOTO DOIT120 
C1Al 3B RTI ;RETURN FROM INT. 

; 
C1A2 8l0C DOIT120: CMPA #KEYZ 1* KEY? 
C1M 2601 BNE DOIT130 ;IF NOT GOTO DOIT130 
C1A6 3B RTI ;RETURN FROM INT. 

; 
C1A7 8l0D DOIT130: CMPA #KEYO ;0 KEY? 
ClA9 2601 BNE DOIT140 ;IF NOT GOTO DOIT140 
CIAB 3B RTI ;RETURN FROM INT. 

I 
C1AC 8l0E DOIT140: CMPA #KEYY ;# KEY? 
C1AE 2601 BNE DOIT150 ;IF NOT GOTO DOIT150 
CIBO 3B RTI ; RETURN FROM INT. 

; 
C1B1 810F DOIT150: CMPA #KEYD ;D KEY? 
C1B3 2600 BNE DOIT160 ;IF NOT GOTO DOIT160 
C1B5 3B DOIT160: RTI ;RETURN FROM INT. 

; 
i******************************* 
.* , XIRQ SERVICE ROUTINE * 
i******************************* 

1-142 tal; 



AppendixB. 
Core System 
Software for 
Cable Tester 
Design (Cont.) 

ClB6 3B 

ClB? 3B 

FFCO 

FFCO 
FFD6 Cl54 
FFD8 Cl55 
FFDA Cl56 
FFDC Cl5? 
FFDE Cl58 
FFEO Cl59 
FFE2 Cl5A 
FFE4 Cl5B 
FFE6 Cl5C 
FFE8 Cl5D 
FFEA Cl5E 
FFEC Cl5F 
FFEE Cl60 
FFFO Cl6l 
FFF2 Cl62 
FFF4 ClB6 
FFF6 ClB? 
FFF8 COOO 
FFFA COOO 
FFFC COOO 
FFFE COOO 

0000 

PS03XX - Application Note 019 

NOMASK: RTI iRETURN FROM INT. 
i 
i******************************* 
i* SWI SERVICE ROUTINE * 
i******************************* 
INTER: RTI i RETURN FROM INT. 
i 
i*********************************** 
i* RESET AND INTERRUPT VECTORS * 
i*********************************** 

ORG OFFCOH 
i 
RES: DFS 11*2 iNOT USED 
SERCOM: DWM SCOM i SERIAL COMM. INT. 
SPISTC: DWM TRANC iSERIAL TRANSFER COMPLETE 
PAlE: DWM PULSEE iPULSE ACCUMLATOR INPUT EDGE 
PAOV: DWM PULSEO iPULSE ACCUMULATOR OVERFLOW 
TOV: DWM TIMEO i TIMER OVERFLOW 
TOCP5: DWM COMP5 iTlMER OUTPUT COMPARE 5 
TOCP4: DWM COMP4 iTlMER OUTPUT COMPARE 4 
TOCP3: DWM COMP3 iTIMER OUTPUT COMPARE 3 
TOCP2: DWM COMP2 iTlMER OUTPUT COMPARE 2 
TOCPl: DWM COMPl iTlMER OUTPUT COMPARE 1 
TICP3: DWM ICOMP3 iTlMER INPUT COMPARE 3 
TICP2: DWM ICOMP2 iTlMER INPUT COMPARE 2 
TICPl: DWM ICOMPl iTlMER INPUT COMPARE 1 
RTlME: DWM REALT i REAL-TIME INT. 
IRQ: DWM DOlT iTlMER/VIA INT. 
XIRQ: DWM NOMASK iNON-MASKABLE INT. 
SWI: DWM INTER iSOFTWARE INT. 
lOT: DWM START iILLEGAL OPCODE TRAP (START OVER) 
COPS: DWM START i COP FAILURE (RESET) 
COPSl: DWM START iCOP CLOCK MONITOR FAIL (RESET) 
RESET: DWM START iRESET 
i 
i************************************************ 

END iTHE END!!!!! 

-----------------------------------------~~~jf-----------------------------------------
1·143 



PS03XX - Application Note 019 

-1--1-#-----------------------------~Jr~~--------------------------------



iFliIliI4E6J --- ~ ._---­r..- __ ~_ 

i!iiF& IIIIf iii 

Introduction 

Typical 16-Bit 
Microcontrol/er 
System 
Architecture 

Programmable Peripheral 
Application Note 020 
Benefits of 16-Bit Design with PSD3XX 
By Ching Lee 

Embedded controller architecture has been 
evolving from 4-bit, 8-bit to 16-bit through 
the years. The increase in the data bus 
bandwidth is a natural progression for 
microcontrollers to achieve higher 
performance. Today, 16-bit embedded 
controllers such as the 80C196 and 683XX 
families provide excellent performance at 
reasonable cost. Yet many designers are 
weary of the cost of higher chip count, 
more board space and power consumption 
in 16-bit applications and prefer to stay with 
8-bit designs. Some microcontroller 
manufacturers tackle this problem by 
introducing processors with 16-bit internal 
architectures but have 8-bit external data 
busses. Later additional enhancements 
such as dynamic bus sizing provide the 
choice of selecting either an 8 or 16-bit bus 
for further cost reduction. This compromise 

There is no one standard 16-bit 
architecture, especially in the field of 
embedded controller applications. For a 
typical 80C196 design, the basic building 
block consists of two address latches 
(74AC373), address decoding logic (with 
PAL or discrete logic), program memory 
(EPROMs), data memory (one or more 
SRAM), and I/O devices. 

Figure 1 is the schematic of such a system. 
In this design, 64K bytes of program 
memory/EPROM, and a 2K byte SRAM for 
scratch pad are required. Since the 
80C196 has only 64K byte memory space, 
the INST signal provides the paging 
capability, with program memory residing in 
the first 64K page while SRAM and I/O 
devices occupy the second page. The I/O 
section consists of one output port 
(74AC374) and other peripheral devices. 
The chip select signals for the I/O devices 
and memory are connected directly from 
the decoding PAL outputs. The processor's 
data bus width is determined by the type of 

certainly increases the performance; it is 
still not as good as a true 16-bit implemen­
tation. 

With the introduction of the PSD3XX family 
of field programmable microcontroller 
peripherals from WSI, there is no reason 
not to use 16-bit microcontrollers. The 
PSD3XX provides an integrated solution in 
a single chip, which includes user 
configurable I/O ports, Chip Select outputs, 
logic replacement, Page Register, 
Programmable Address Decoder (PAD), 
EPROM and SRAM. The PSD3XX is a 
perfect match for 16-bit microcontroller 
applications. In this application note, we will 
look at some of the advantages of 16-bit 
designs, and how PSD3XX interfaces to 
microcontrollers such as the 80C196 and 
68302. 

bus cycle. EPROM accesses are 16-bits 
wide, SRAM is 8-bits while I/O bus cycles 
can be 8 or 16-bits, depending on the 
device being accessed. The BWIDTH 
output from the PAL informs the processor 
what type of bus width is to be expected for 
that particular cycle. 

An I/O device usually takes longer time to 
complete the bus cycle. Let us assume, in 
this case, I/O devices require 3 wait states 
with the exception of the I/O latch. The 
configuration register of the 80C196 is then 
programmed to insert 3 wait states. 
Whenever there is an I/O bus cycle, the 
READY output signal from the PAL goes 
low to activate the processor's wait state 
control to insert the programmed amount of 
wait state. For memory bus cycles, no wait 
state is inserted. 

1-145 



":" I Figure 1. rypical16-Bit Microcontroller System Architecture .... 
t; 

ICII 
I~~ 

"-­IIIIII,! 

J.. 16MHz us 
c:::J 

LJXl 

niiiil~::w.----,~ NMI 
READY 
CDE 

L-I-~-I BUSWIDTH 
IREsET>--!-1II(] RESET 

ACHO/PDO 
ACH1/PO 1 
ACH2/PO 2 
ACH3/P0 3 
ACH4/P04 
ACH5/PD5 
PCS6/PO 6 
PCS7/P0 7 

18 P2 OITXD 
P21/RXD 
P221EXINT 
P231T2CLK 
P241T2RST 
P25/PWM 

P31/ADl 
P31/AD2 
P31/AD3 
P31/AD4 
P31/AD5 
P31/AD6 
P31/AD7 

P40/AD8 
P41/AD9 

P421AD10 
P43/ADll 
P44/AD12 
P45/AD13 
P46/AD14 
P47/AD15 

RD 
WR 
BHE 
ALE 

INST 
CLKOUT 

U1 

A 

-'?!!l!-~HDO 

~s.m=i1 ~~ I~ t 03 I 
AD12 3 04 ~ALE " 

i 

01 14 05 I INST 'I 
06 .--:m::----t 
07 
OC 
G 

-A ii .. 
5 

Al 
A2 

U5 
l~AO 
9 I Al 

A2 

6l~ 
AS 
A6 

25 A7 
24 A8 
21 A9 
23 Al0 

..,.,;--....£.2...1~1~ 
27 A13 

A14 
M----~CE 

OE 
vpp 

00 
01 
02 
03 
04 
05 
06 
07 

11 

13 
15 
16 
17 
18 
19 

~ 
AD2 
AD3 
AD4 
AD5 
AD6 
AD7 J 

27C256 

U6 
10 'Ali ~ 

01 
02 1 
03 15 
04 16 AD1:! 
05 17 AD13 
06 18 A014 
07 AOl 

'-

P2 6/T2UP-DN 
P271T2CAP 

HSIO 
HSll 
HSI2IHSO 4 
HSI3IHSO 5 

EA 

Pl0 
Pll 
P12 
P13 
P14 
P15 
P16 
P17 

HSOO 
HSOl 
HS02 
HS03 

27C256 
II I 

U7 

20L10 

~~~r'" U3 
ADO

-:- 8OC196

I/O DEVICES

~

6
I

t :;:::
fa
;t

== if e;-

m

Typical 16-Bit
Microcontroller
System
Architecture
(Cont.)

Table 1.
80C196
Memory Map

Table 1 is the memory address map of the
80C196 microcontroller, and the addresses
of the I/O devices. Address locations
OOOOH through OOFFH and 1 FFEH through
207FH are reserved for the microcontroller.
The remaining locations can be used for
program/data memory or memory mapped
I/O devices. EPROM occupies the first 64K
bytes, where program codes start from
2080H to FFFFH, and a 2K look-up table

EPROMCS INST
+ INST/ * A15/ * A14/

PSD3XX - Application Note 020

resides inside the EPROM from
location 1 OOOH to 17FFH. The 2K scratch
RAM and I/O starts from 4000H in the
second page.

The address map requires the following
PAL equations to be programmed to the
decoder PAL. The 10_CS lines are enabled
after ALE goes low.

RAMCS INST/ * A15/* A14 *A13/*A12/

BWIDTH RAMCS

READY

10_LAT

10_CSO
10_CS1

10_CS2

10_CS3

Device

+ 10_CSO

+ 10_CS1

+ 10_LAT

10_CSO
+ 10_CS1
+ 10_CS2
+ 10_CS3

INST/ * WR * A15/* A14 * A13/* A12

INST/ * ALE/* A15/*A14 *A13*A12/"I/ODEV.#0
INST/ * ALE/ * A 15/ * A 14 * A 13 * A 12 "I/O DEV.#1

INST/ * ALE/ * A15 * A14/ * A13/* A12/ "I/O DEV.#2

INST/ * ALE/ * A15 * A14/ * A13/* A12 "I/O DEV.#3

INST Address
(Page) (Hex)

EPROM (Code) 1 2080 - FFFF

EPROM (Table + Data) X 1000 -27FF

RAM 0 4000 -47FF

I/O LATCH 0 5000

I/O CSO 0 6000

I/O CS1 0 7000

I/O CS2 0 8000

1/0_CS3 0 9000

BU5width
(Bit)

16

16

8

8

8

8

16

16

__________________________________ fSE~~ ________________________________ __

--== ~U7

PS03XX - Application Note 020

16·8i'
Performance
Advantages

It is obvious that a 16-bit bus provides
more performance than an 8-bit bus,
at least the data bus bandwidth will double.
The following factors contribute to the
performance improvement:

Program Code Fetch
Instructions such as ANDB of the 80C196
consists of 4 bytes. In an 8-bit bus system
it takes 4 bus cycles to fetch the instruction,
while in 16-bit bus designs it takes only 2
bus cycles.

Data Fetch
For applications with high data transfer
rate, where indexed or indirect references
are frequently used, a 16-bit bus takes
much less time to accomplish the same
job.

Queue Flush for Branch/Jump
Instructions
A pre-fetch queue usually speeds up
instruction execution time by providing
instructions to the Execution Unit in a
timely manner. However there is a penalty
which goes with the queue when a
successful branch or jump instruction is
executed. The queue has to be flushed,
Program Counter to be reloaded, and new
instructions to be fetched. A 16-bit bus
helps to fill up the queue much faster. This
is critical to system performance since
Branch/Jump instructions are the most
frequently used instructions in general.

Free Up The System Bus
The microcontroller reduces its number of
operand fetches in a 16-bit bus, freeing the
bus for other devices which share the same
bus. In system which has a DMA Controller
or Slave Processor sharing the same
memory space with the microcontroller, the
less usage of the memory bus will enhance
system performance.

Let us look at a sample program to
calculate the differences in execution time
between an 8 and a 16-bit bus. In the
typical 16-bit design example above, there
is a look-up table residing in the EPROM.
A look-up table is a quick way for the
program to provide an output to an I/O
device based on the input value without
getting into complex mathematical
operations. The following program, which is
published in Intel application note AP-248,
does table look-up and interpolation.

Assuming the 80C196 queue is always full,
to execute the following code takes 128
state times in a 16-bit bus. In an 8-bit bus, it
takes 32 more state times just to fetch the
codes and data, not including the time the
microcontroller waits for the queue to be
filled. The estimated performance penalty
for an 8-bit bus in this application is at least
25%, and will certainly be more in the
actual run time environment. The published
statement from Intel is that it is difficult to
measure the 8-bit bus performance penalty,
but has shown to be up to 30%, depending
on the instruction mix.

The 16-bit bus design will increase the
system performance, especially for
microcontrollers which usually don't have
internal program cache or a pre-fetch
pipeline queue to lessen the penalty
caused by the bottle neck on the memory
bus. The 80C196 has an internal 4 byte
queue. This helps execution time but bus
width still remains the critical factor.

________________________________ f==:O~ ______________________________ __
1-148 =="'==:: ==

Table Look-up
and
Interpolation

RSEG at 22H

IN-VAL:
TABLE LOW:
TABLE HIGH:
IN_DIF:
IN DIFB:
TAB_DIF:
OUT:
RESULT:
OUT DIF:

CSEG at 2080H

LD SP, #lOOh

Look:

AL, IN VAL
AL, #3

dsb
dsw
dsw
dsw
equ
dsw
dsw
dsw
dsl

LDB
SHRB
ANDB AL, #11111110B

LDBZE AX, AL

1
1
1

PSD3XX - Application /lote 020

;Actual Input Value

1 ;Upper Input-Lower Input
IN_DIF :byte
1 ;Upper Output- Lower Output
1
1
1 ;Delta Out

;Load temp with Actual Value
;Divide the byte by 8
;Insure AL is a word address
;This effectively divides AL by 2
;50 AL = IN_VAL/l6
;Load byte AL to word AX

LD TABLE_LOW, TABLE [AX]
;TABLE_LOW is loaded with the value
lin the table at table location AX

LD TABLE_HIGH, (TABLE+2) [AX]
;TABLE_HIGH is loaded with the value
lin the table at table lac. AX+2
; (The next value in the table)

SUB TAB_DIF, TABLE_HIGH, TABLE LOW
;TAB_DIF=TABLE_HIGH - TABLE_LOW

;IN_DIFB=least significant 4 bits of
; IN_VAL

LDBZE IN_DIF,IN_DIFB ;Load byte IN_DIFB to word IN_DIF
MUL OUT_DIF, IN_DIF, TAB_DIF

SHRAL OUT_DIF, #4

; Output_difference
;Input_difference * Table_difference
;Divide by 16 (2**4)

ADD OUT, OUT_DIF, TABLE LOW

input
SHRA OUT, #4
ADDC OUT, ZERO

No Inc: -
ST OUT, RESULT
BR Look

CSEG at 2100h

Table:
DCW
DCW
DCW
DCW
DCW

OOOOH,
5DOOH,
7BOOH,
5DOOH,
lOOOH

2000H,
6AOOH,
7DOOH,
4BOOH,

;Add output difference to output
;generated with truncated IN VAL as

; Round to 12-bit answer
; Round up if Carry = 1

;Store OUT to RESULT
;Branch to "Look"

3400H, 4COOH ;A random function
7200H, 7800H
7600H, 6DOOH
3400H, 2200H

---~~~-------------------------------------1-.1-4--9

PSD3XX - AppllcatlDn NDt. 020

I'S03XX
Solution
fOl16·Bit
Miclocontlollel

In this section, we will see how a single
PSD302 is able to replace all the basic
building blocks as shown in the design
example in Figure 1. As seen from the
block diagram (Figure 2.), the PSD302
provides the following functional blocks:

o 64K bytes EPROM, as 64K x 8 or
32K x 16

o 2K bytes SRAM, as 2K x 8 or 1 K x 16,
expanding the microcontroller's internal
scratch SRAM

o Address latches/data buffers, bus
interface to most microcontrollers.

o Programmable Address Decoder (PAD);
provides PAL type function:
18 inputs, 24 outputs and 40 product
terms.

o Port A: an 8-bit port, each bit can be
configured as :

-I/O line

-latched address output (AD-A?)

- track ADO/AD? as I/O lines in track
mode for shared access.

- data port DO/D? in non-multiplexed
mode

- CMOS or open drain output

o Port B: an 8-bit port, each bit can be
configured as :

-I/O line

- chip select or logic replacement output
from the PAD

- D8-D15 in non-multiplexed mode
- CMOS or open drain output

o Port C: 3-bit port, each bit can be
configured as input to or output from the
PAD

o Page Register: a 4-bit Page Register for
bank switching

o A 19/CSI input pin for power down
configuration

Figure 3 is the schematic of the design
example with the PSD302. Not all the
functions of the PSD3XX are utilized in this
example. The Page Register IS not used
since the INST signal from the 80C196 can
be easily included in the PAD for page
decoding (for design with the Page
Register, see WSI Application Note 015).
The internal EPROM and SRAM of the
PSD302 replaces US, U6, and U? in Figure
1. Port A is configured as an I/O port to
replace U3, the I/O latch. The PAD provides
decoding functions for all the chip selects,
as well as the READY and BWIDTH inputs
to the microcontroller. Please note the
PSD302 is able to provide a 16-bit SRAM
for faster data accesses.

In this application the PSD302 is configured
to operate in a 16-bit, multiplexed mode.
The PAL equations are programmed into
the PAD. Depending on the particular bus
cycle, the PSD302 latches the micro­
controller address, determines which
device is to be enabled, and provides data
output for a read cycle. If it is an I/O bus
cycle, either Port A is enabled or one of the
I/O_CS lines are activated. At the same
time, the appropriate READY and BWIDTH
signals are generated.

ru'~ -1-·1-5-0-----------------~, ------------------

Figure 2.
'SD302
Block
Diagram

AD

PSD3XX - Application Note 020

PAGE LOGIC

'~t=r
A16-A18

r-- PROG
A11-A15 , ! PORT

L AS-A10 , -- LOGIC IN EXP.
A CSIOPORT

T A19 A19
AD6-AD15 C CSI CSI PCO-

H ALE/AS PAD A ALEIAS
PADB PORT ~ -. C .-- RD RD

WR 13 PT WR 27PT CS8-

RESET RESET
CS10

ALEIAS
- - ---

'-- .. - EPROM

ES7
512K BIT

D-AD7 L
A ES6

T ES5
C ES4
H ES3

L..-- ES2 PROG
ES1 PORT

r--- ESO CSD- EXP

~~~ 
'1'6i8 64K BIT e PBD-

~ 
BLOCK PORT ~ ~. .,. r B 

.1 ~ D8-D15 
'-- .... 

L..--

r-- CSIOPORT 

~ ... - - DO D7 ...... 
~ ~ SRAM 

PROG 

'--- 16K BIT 
PORT 

TRACK MODE 
EXP 

SELECTS 
PAD-

AD-A7 PORT ~ ADD-AD7/DD-D7 A 

ALE/AS 

t PROG CHIP 

RO/E/OS 
CONFIGURATION 

WRJRIW 

BHEIPSEN 
PROG X8, X16 

CONTROL MUX or NON-MUX BUSSES 

RESET SIGNALS SECURITY MODE 
LOW POWER - CMISER 

A19/CSI 

-----------------------------------------'jf;r~~-----------------------------------------=== 1·151 



PSD3XX - Application Nots 020 

Figure 3. 
Design Example 
wlthPSD302 

~ 16MHz 

U8 
11 

X1 

I NMI 2 NMI 
43 READY 
~ CDE 
~ BUSWIDTH 

I RESETI 16 
RESET 

~ ACHO/PO 0 
~ ACH1/PO 1 
~ ACH2IPO 2 

4 ACH3/PO 3 11 To ACH4/PO 4 
ACH5IPO.5 8 -t ACH6/PO 6 
ACH7/PO 7 .....::... 

~ P20ITXD .-g P21/RXD 
~ P22/EXINT 
--# P231T2CLK 
-# P241T2RST 
-# P2.5/PWM 
-# P26IT2UP _ON 
.-M P27IT2CAP 

~ HSIO 
~ HSI.1 

~ HSI2IHSO 4 
..JJ... HSI3/HSO 5 

...1!. VREF 

~ ANGND 

W< EA 

-= 80C196 

X2 
P30/ADO 
P31/AD1 
P321AD2 
P33/AD3 
P34/AD4 
P3.5/AD5 
P36/AD6 
P37/AD7 

P40/AD8 
P41/AD9 

P421AD10 
P43/AD11 
P44/AD12 
P45/AD13 
P46/AD14 
P47/AD15 

RD 
WR 
BHE 
ALE 

INST 
CLKOUT 

P10 
P1.1 
P12 
P13 
P14 
P15 
P16 
P17 

HSOO 
HSO.1 
HS02 
HS03 

ADO-AD15 
ADO AD15) 

12 U1 

reo----ADO ADO 23 ADO PAD 21 
I/O OUTO 

59 AD1 AD1 24 AD1 PA1 20 
I/O OUT1 

58 AD2/ AD2 25 
AD2 PA2 19 

1/00UT2 
57 AD3 AD3 26 

AD3 PA3 18 
1/00UT3 

56 AD4 AD4 27 AD4 PA4 17 
100UT4 

55 AD5 AD5 28 16 
AD5 PA5 1/0 OUT5 

54 AD6 AD6 29 AD6 PA6 
15 lin nlIT6 

53 AD7 AD7 30 AD7 PA7 
14 

1/0 OUT7 
AD8 31 AD8 

52 AD8/ AD9 32 
AD9 PBO 11 READYI 

51 AD9 AD10 33 AD10 PB1 10 BWIDTHI 
50 AD10 AD11 35 

AD11 PB2 I-¥-
49 AD11 AD12 36 

AD12 PB3 8 
48 AD12 AD13 37 f-l1/0 CSOI AD13 PB4 
47 AD13 AD14 38 

AD14 PB5 6 1/0 CS11 
46 AD14 AD15 39 5 1/0 CS2I AD15 PB6 
45 AD15 PB7 4 1/0 CS31 

22 RD 
RDI 2 ~ 61 WR PCO 40 WR/ 1 BHE!PSEN PC1 41 BHE! r-----% ALE PC2 f42INST 

62 ALE 
RESET 

63 INST ? A191CSI 
~ 

* - PSD302 

~ 
4 
~ 

* ~ ~ 1/0 CSOI 

~ 1/0 CS1/ 

...gg.. 1/0 DEVICES 1/0 CS2I 

~ 1/0 CS31 

~ 
..£. 

--------------------------------------,~~~~---------------------------------------1·152 tIII"I!J!!I!!!' 



PSD3XX 
Solution 
for 16·Bit 
Microcontrol/er 
(Cont.) 

Figure4A. 
PSD3XX 
Address 
Map 

Figure4B. 
READY 
Signal 
Truth Table 

WSI supplies PSD users with easy to use 
software tools and programming devices. 
MAPLE software, which is PC based, 
enables designers to configure the 
PSD3XX. Some of the computer screen 
configuration displays for this design 

I'SII3XX - ApplicatlDn IIDte 02D 

example are shown in Figure 4. Figure 4A 
is the address map decode for the 
EPROM, SRAM and Port A. Figure 4B is 
the truth table input for the READY signal. 

ADDRESS MAP 

A A A A A A A A A SEGMT SEGMT FILE FILE FILENAME 19 18 17 16 15 14 13 12 11 START STOP START STOP 

ESO N 0 X X 0 0 0 N N 0 lFFF TEST.HEX 
ESl N X X X 0 0 1 N N 2000 3FFF TEST.HEX 
ES2 N 1 X X 0 1 0 N N 4000 5FFF TEST.HEX 
ES3 N 1 X X 0 1 1 N N 6000 7FFF TEST.HEX 
ES4 N 1 X X 1 0 0 N N 8000 9FFF TEST.HEX 
ES5 N 1 X X 1 0 1 N N AOOO BFFF TEST.HEX 
ES6 N 1 X X 1 1 0 N N COOO DFFF TEST.HEX 
ES7 N 1 X X 1 1 1 N N EOOO FFFF TEST.HEX 
RSO N 0 X X 0 1 0 0 0 N/A N/A N/A 
CSP N 0 X X 0 1 0 1 0 N/A N/A N/A 

ALIAS: A 18 = INST -
Fill in A 19 - A 12 (Binary) or SEGMT START (Hex); and FILE (START, STOP) 
FILE NAME, P3 .. PO, and ALE/AS. Use SPACEBAR to erase any field value. 
F1 - Return to Main Menu F2 - Temporary Exit to DOS F3 - Go to Help 
Cursor - UP: t Down: ~ Left Col: _ Right Col: - Right - F4 Left - F5 

PART NAME: PSD302 C;\WSI\OLDMAP 

PORTB 

PIN CSNO CMOs/OD CHIP SELECT DEFINITION READY 
PBO CSO CMOS 

PB1 CS1 CMOS 
A18 A17 A16 A15 A14 A13 A12 A11 RD WR ALE P3 

PB2 CS2 CMOS 

PB3 CS3 CMOS 
0 X- x 0 1 1 0 X X X 0 X 

PB4 CS4 CMOS 0 X X 0 1 1 1 X X X 0 X 

PB5 CS5 CMOS 0 X X 1 0 0 0 x x x 0 x 
PB6 CS6 CMOS 0 x X 1 0 0 1 X X X 0 X 

PB7 CS7 CMOS 
ALIAS: A 18 = INST -

CS definition is the NOR of the product terms (rows). Enter 1 to select High signal, 0 to 
select Active Low signal, X to mean "don't care", SPACEBAR to erase. Enter values in 
columns relevant to your application; leave other columns untouched. 

F1 - Return to PORT B Menu Cursor - Up: t Down: ~ Left: _ Right:_ 

PART NAME: PSD302 C:\WSI\OLDMAP 

--------------------------~~;-------------------------1·153 



PSD3XX - Application Note 020 

PS03XX 
SolutiDn 
fDr 16-Bit 
ProcessDr with 
NDn-Multiplexed 
Bus 

Table 2. 
68302B,te 
Enable 

A PSD3XX can be configured to operate in 
the 16-bit mode with a non-multiplexed bus. 
In this case, the microcontroller address 
lines AO-A 15 are tied to ADO-AD15 inputs 
of the PSD3XX; Port A and B of the 
PSD3XX are then configured as data ports, 
connecting to data bus DO-D15. In 
applications where the EPROM space in a 
PSD3XX is not enough, or a large amount 
of I/O lines and chip selects are needed, 
two PSD3XXs will provide a viable solution. 
Connecting two PSD3XXs to a micro­
controller needs special consideration. 

UOS/ LOS/ 
Low Low 

Low High 

High Low 

High High 

The above table is also true for most other 
microcontrollers. Some use different signal 
names, such as HBE/ for UDS/ and AO is 
equivalent to LDS/. The decoding for bank 
select is the same for both cases. The 
following pOints must be considered when 
configuring the PSD3XX for this type of 
application: 

o Address inputs to the PSD3XX have to 
shift right by one. Address line A 1 
connects to ADO pin of the PSD3XX and 
so on. For processors which have AO, 
AO is no longer used as address input. 

o Provide bank select signals to the 
appropriate PSD3XX for proper bank 
decoding. The even bank PSD3XX must 
include signal LDS/ as input to the PAD, 
and the odd bank PSD3XX requires the 
signal UDS/. These signals can ~ 
connected to Port C or the A 19/CSI 
pin in order to be routed as PAD inputs. 

Figure 5 shows a basic design of a 68302 
microcontroller interfacing to two PSD312s. 
The implementation is fairly straightfor­
ward; the two PSD302's are configured to 
work in 8-bit non-multiplexed mode. The 
first PSD302 (U2) occupies the even bank 
of the memory space of the 68302; the 
second PSD302 (U3) occupies the odd 
bank. The 68302 has no AO in the address 
bus; it depends on signals UDS/ and LDS/ 
(Upper and Lower Data Strobe) to control 
the flow of data on the data bus as shown 
in Table 2. 

08-015 00-07 
Enabled Enabled 

Enabled Disabled 

Disabled Enabled 

Disabled Disabled 

o While inside the MAPLE software during 
PSD3XX configuration, the address map 
decode of the EPROM, SRAM, I/O port 
must also reflect the shift of the address 
inputs. 

o The codes of the user's program have 
to be split into two files, one for the 
even bank PSD3XX and one for the 
odd bank PSD3XX. 

-1--1-54--------------------------------~~~~-----------------------------------



PS03XX - Application Note 020 

Figure 5. 
PSD3XX 
Interface 
to 68302 

~ 
Vee ~Ul 
') 100 EXTAL 
'1 1 1 XTAL 

A CLKO 

~i 
<:»'0K * it -'-"-

RX01_L 1 RXO 
TX01_L nxo 
RCLK1_L 1 CLK 
TCLK1_S0Sl 
C01U1SYl 
CTS1U1CR 
RTS1U1RQ 
BRCl 

RESET! }-~H __ 1-9:c2, RESETI 
HALTI BJ HALTI 

L-_+-~9'4H BERRI '-* BUSW 
OISCPU 

I 00 48 
~" '--,';0"'", ---'4~7H 00°, 

- 02 46 
03 45 02 
04 43 03 
05 42 04 
06 41 05 

Al 
A2 
A3 
A4 
A5 
A6 
A7 
AB 
A9 

Al0 
All 
A12 
A13 
A14 
A15 
A16 
A17 
AlB 
A19 
A20 
A21 
A22 
A23 

1 Al / 
2 A2 
3 A3 -/ 
5 A4 
6 A5 
7 A6 
6 A7 
9 AB 
10 A9 
11 Al0 
12 All 
14 A12 -I 
15 A13 
16 A14 -I 
17 A15 
19 A16 -I 
2D A17 

~~ ~-fB 
24 A20 
25 A21 
26 A22 
27 A23 

Vee 
o 

U2 

t\ \."'~,*~--;~;>;~-I ~~~ 
\..J;A"l-3 _-,2",.5-1 A02 

" "-1!;A4!-~2~6 A03 
\..J;A,,!-5 _-,2~7-1 A04 

" "-Jt!A6~_2~B-I AD5 
to. \..'i'!A7~_2~9 AOS 
" "-4l!AB~_3~O A07 
to. \..""A9!,,--_~31, ADB 
" \...!!,A 1~0_~32-1 A09 
to. \..,,!-Al!,'l_~ A010 

"C4Al~2=~35 A011 1\ A13 A012 
,,-;A>.!.'4;t-",",,,,7-1 A013 

"\..4Al~5_~3R A014 
,-,A1J.1S"-~3'"'-19 A015 

PAD 1-2~1:--_;c00r---. 
PA 1 .. 2"'!0~_J!:"" ....... :\I 
PA21--:;;'9:--;;;025-'\,'1 
PA3 t-;'!18;.-_",.03,---, 'II 
PM ~17:--_;;,04M.'1 
PA5 H';lS,-_~05h,'1 
PAS ......,.15'--_~OS'"""",'11 
PA7 f-!."4,--_",07~,'1 

11 ,......-;;;rr­
PBO~ 

~:~ ~ :;g~ 
PB3 t4-- 1/04 
PB4 0/05 
PB5 t-;;- I os 
PBS +- 1/07 
PB7 r-- 1108 
PCO '40 r.~1 
PCl 41 CSO 
PC2 ~ 

07 40 06 
OB 38 07 

009'0 37 ~~ 

.-1-11----2'+-12 E 

.---I~\I--I"''--_-_-_----:t 1~ ~~/PSEN 
ASI ~'0i4====±ttjjttt==:"~ AS R_WI 1-'03 RESET 

UOS/_AO 1 6 -tt----'4"'-3LA~1~9/:£CS~I __ ....J 
LOSCOSI J-B'O"'-5----...... t-Hr--t"J 

\_~~_""""*,36H 010 
011 35 011 

,~0~12~_",33H 012 
",--,';0",13~--,3;;.:2'-1 013 
,~0~12~_",31H 014 
\.....;0L!.15"--_",30, 0 15 

OREQUA13 
OACKUA14 
00NEUA15 

IACK7UBO 
IACK6UBl 
IACK1UB2 
TIN1_PB3 

OTACK! ~ 
RMCI ~ 

lAC rW 
BCLRI ~ 

~ Vee 

BRI J BGI lQK, 
BGACK! \-2SB '---1+-..1\" vi"..'\ Af\V,-J 

IRQ11 
IRQ61 
IRQ71 

FCO 
FCl 
FC2 

TOUT1UB4 AVECI ~ 
TIN2UB5 CSOI 1ij'2~8::j:==~1 
TOUT2UB6 CSll 1-'29 
WOOGUB7 CS21 ~ 
PBB CS31 ~ 
PB9 FRZI ~Uvee-
PB10 
PBll 

RX02_PAO RX03]AB ~ 
TX02 PAl TX03 PA9 -;;,;-
RCLK2]A2 RCLK3j'Al0 it 
TCLK2_PA3 TCLK3_PAll ~ 
CTS2_PM CTS3UPRXO fit 
RTS2]A5 RTS3UPTXO i-#" 
C02UA6 C03CSPCLK fiir 
BRG2_PA7 BRG3_PA12 f-= 

68302 

PSD312 

U3 

"CA~':::::~234 AOO 1\ A2 24 AOl 
to. \..A;::;3~.....,,25H A02 
"\.4A4~......,2""6-1 A03 
to. ,-,A~5 __ 2;;;7-1 A04 
",-"A~6 __ 2""B-I A05 
to. ,-,A~7 __ 2,*9-1 AOS 
",-,A~8_""""*,30-l A07 
to. ,-,A~9.,---*i31, AOB 
" ,-,A;C;l!}-O _*32-1 A09 
to. ,-,A?f'-!;-' _",33'-1 A010 
t\ ",A",'"..2 _",35H AOll 
to. ",A""''i-3 _*3S'-I A012 
f\:A~'t4=~374 AD13 1\ A15 3B A014 

u A",lS"---,,,39'-1 A015 

t-tlli:tE~::::J22qE RWI 2 RIW_ 
..... Hh-,,-_---,""-j BHE/PSEN 

Lt-~AS~m::::~'3~ AS RESETi 3 RESET 
L---t_'--U"'D"'S"-i_---'''"-I A19/CSi 

PAO 21 ~ 
PAl 20 09 
PA2 19 010 
PA3 18 011 
PA4 17 012 
PA5 lS 013 
PAS ~ 014 
PA7 14 015 

PBO~ 
PBl ~ CS21 
PB2 rt-) CS31 

~~~~ 
PB5 ~CSSI
PBS t-'f-< CS7 I
PB7~
PCO --'ll1 CSl
PCl 41 r.~(

PC2 f-12-

1...-___ -'

Vee PSD312

U

-----------------------------f§a-=------------------------~1~-1~~

PS03XX - Application Note 020

PSD3XX
Solution
for 16-Bit
Microcontrol/er
with Non·
Multiplexed
Bus

Figure 6.
Address Map,
Odd Bank
PSD3XX

Conclusion

Figure 6 shows the address map of the odd
bank PSD3XX. In the map table, the
columns A19, A17, A16 are input signals of
UDS, CSO and CS1. Since this is the
decoding for the odd bank, UDS
(column A 19) has to be low for any of the
PSD3XX devices to be enabled.

Furthermore, the CSO selects the EPROM
and CS1 selects SRAM and I/O Port.
The chip select logic of the 68302 also
generates the programmed amount of wait
state Internally.

The columns A 15, A 14, A 13 in the address
map are actually A 16, A 15 and A 14 after
the input address lines to the PSD3XX are
shifted by one. Entries to the SEGMT
START/STOP or FILE START/STOP
columns must also change to relflect the
shift of the address lines. For example,
the top address of the EPROM (128K
bytes) was 1 FFFF, and is now OFFFF after
the shift.

ADDRESS MAP

A A A A A A A A A SEGMT SEGMT FILE FILE FILE NAME 19 18 17 16 15 14 13 12 11 START STOP START STOP

ESO 0 X 0 1 0 0 0 N N 0 1FFF ODD HEX
ES1 0 X 0 1 0 0 1 N N 2000 3FFF ODD.HEX

ES2 0 X 0 1 0 1 0 N N 4000 4FFF ODD.HEX

ES3 0 X 0 1 0 1 1 N N 6000 7FFF ODD.HEX

ES4 0 X 0 1 1 0 0 N N 8000 9FFF ODD HEX
ES5 0 X 0 1 1 0 1 N N AOOO BFFF ODD.HEX
ES6 0 X 0 1 1 1 0 N N CODa DFFF ODD HEX
ES7 0 X 0 1 1 1 1 N N EOOO FFFF ODD.HEX

RSO 0 X 1 0 0 0 0 0 0 N/A N/A N/A
CSP 0 X 1 0 1 0 0 0 0 N/A N/A N/A

ALIAS: A19 = UDS ...
Fill in A19 - A12 (Binary) or SEGMT START (Hex); and FILE (START, STOP)
FILE NAME, P3 .. PO, and ALE/AS. Use SPACEBAR to erase any field value.
F1 - Return to Main Menu F2 - Temporary Exit to DOS F3 - Go to Help
Cursor - UP: t Down: t Left Col: _ Right Col: ... Right - F4 Left - F5

After going through the design examples
with the PSD3XX, it is not difficult to see the
advantages the PSD3XX family offers over
designs with discrete ICs. Besides
providing 16-bit performance, PSD3XX
devices are able to replace 7 ICs in the
80C196 example. This not only reduces
the board size dramatically but also
provides benefits such as cost reduction in
board manufacturing, higher product
reliability, lower power consumption and
reduced component cost.

Other PSD3XX advantages over the
discrete component design include the
power down mode to reduce power
consumption when the microcontroller is
idle. The security feature protects the code
stored in the EPROM from illegal copy. The
flexibility, programmability, and ease of use
which come with the PSD3XX truly make it
an optimal solution for 16-bit embedded
applications.

--------------------------------~~~~--------------------------------
1-156

Introduction

Typical
MC68331
Design

The MC68331
8us Interface

Table 1.
MC68331 Data
Transfer On
16·8it (Word)
Port

Programmable Peripheral
Application Note 021
Interfacing The PSD3XX To The MC68HC16
and The MC68300 Family of Microcontrollers
8yChingLee

The PSD3XX devices are user-configurable
microcontroller peripherals which offer an
ideal solution for embedded control
applications. The PSD3XX family provides
basic building blocks to microcontroller
based designs including 110 ports, logic
replacement, programmable address
decoder (PAD), Memory Page Register,

The MC68300 family includes micro­
controllers such as the MC68330,
MC68331, MC68332 and MC68340. These
devices share a common MC68020 CPU
core. Although the MC68HC16 is not a
member of the family, it does have a
MC68300 type bus interface and timing.
The MC68331 will be chosen as the
microcontroller used with the PSD3XX

Before interfacing the PSD3XX to the
MC68331, we have to understand the
MC68331 bus and the bus features. Area's
of interest to the PSD3XX interface are
discussed in the following sections.

Address Bus
The MC68331 bus has 24 non-mUltiplexed
address lines (AO - A23). Address lines
A 19 - A23 can be selected either as
address lines or as chip select signals
(CS6 - CS10) at reset time.

Data Bus
The data bus (D15 - DO) is a non-multi­
plexed bus which transfers 8 or 16 bits of
data. The processor supports byte, word,
and long word operands.

Transfer Sill SilO AD

Upper Byte (even) 0 1 0

Lower Byte (odd) 0 1 1

Word (aligned) 1 0 0

Long Word
0 0 0 (aligned)

2K bytes of SRAM and up to 128K bytes of
EPROM. Please consult Application Note
011 for detail features and operations.

In this Application Note we will demonstrate
how the PSD3XX interfaces to the 16-bit
MC68HC16 and the MC68300 family of
32-bit microcontroliers from Motorola.

device in this Application Note, but the
description applies to other members of the
group as well.

A typical MC68331 design consists of two
EPROMs, two SRAMs, an 1/0 block and
glue logic. The complexity of the 1/0 block
and glue logic depends on the application.
Figure 1 shows the block diagram of such a
design.

The MC68331 transfers the even data byte
(with AO = 0) through D15 - D8, and the
odd byte (with AO = 1) through D7 - DO.
Table 1 shows the different data transfer
cases for a 16-bit bus, and the status of the
control signals involved in the bus cycles.

For byte transfer, the positioning of the byte
is determined by address AO. OPO refers to
the most significant byte of a word operand,
and OP1 is the least significant byte.
Operands in parentheses are ignored
during read cycles, but are driven by the
processor during write cycles. Misaligned
words are not supported by the MC68331.

oSACKI oSACK2 015-08 07-00

0 X OPO (OPO)

0 X (OPO) OPO

0 X OPO OP1

0 X OPO OP1

1-157

-~

lUi, 'i~:
,q~'Q
-.lllh
l1li1""

Figure 1. MC68331 System Block Diagram

AO-A1B

CSBOOT
EPROM EPROM

MC6B330
MC6B331 015- DO 07-00 015- DB

MC68332
MC6B340 CSO-RAMCS

MC6BHC16

RIW WRL
OS WRH
SIZO LATCH 110
AO

CTRL OUT 0
Al PAL@

A2
CTRL OUT-l
CTRL-OUT 2

CSl CTRL-OUT-3
CTRL-OUT 4

SRAM

r-- r--

07-00

015 DO

SRAM

015- DB

110 PORTS

~ ,

;: a
~
I
~

~
~ r
~ ;-
~ -

The MC68331
Bus Interface
(Cont.)

Table 2.
CSBOOT
Reset
Value

A Typical
MC68331
Design
WithPSD3XX

Chip Select Logic
The MC68331 provides 12 chi~lect __
Q!!!put signals (CSBOOT and CSO - CS10).
CSO - CS 10 are multiplexed with other
signals and default to chip select mode
during reset.

The chip select signals are user­
programmable, flexible and powerful. The
following list outlines some of the
options/features which can be programmed
into any chip select signal:

1. Base Address: Specify base address
and block size.

2. Mode Option: Select asynchronous!
synchronous bus mode.

3. Byte Option: Specify upper byte, lower
byte, or both.

4. ReadlWrlte Option: Specify read or
write bus cycle.

Flelds/DptloR

Base Address

Block Size

Asynchronous/Synchronous Mode

Upper/Lower Byte

ReadlWrite

Strobe

DSACK

Address Space

Interrupt Priority Level

Autovector

As seen in the typical MC68331 design
block diagram in Figure 1, the basic
building blocks include EPROMs, SRAMs,
a PAL®, and 1/0 port. The PSD3XX will
replace all or most of these blocks.
Depending on the amount of EPROM and

l'Soaxx - Application 110" 021

5. Strobe Option: Speci~CS signal to be
synchronized with the DS or AS signal.

6. DSACK Option: Specify internal/
external source of the DSACK signal.
If internal DSACK is specified, then
select the number of wait states.

After system reset, CSO - CS10 lines are
disabled since they should not select any
device until the system is configured. But
CSBOOT has a default reset value such
that it can be used to enable a boot PROM,
or PSD3XX in this case. The other chip
selects are then initialized by the boot
program. CSBOOT mayor may not be
re-programmed to a different value. The
reset value of the CSBOOT signal is listed
in Table 2.

Reset Values

0000 0000

1M Byte

Asynchronous Mode

Both Bytes

ReadlWrite

AS

13 Wait States

Supervisor/User

Any Level

Interrupt Vector Externally

SRAM space and the I/O port requirement,
one or two PSD3XX devices can be used.
The two PSD3XX system does have a
different interface to the MC68331 than a
single PSD3XX design. The two designs
will be discussed separately.

__________________________ f •• ~.? ______________________ ~~
'ifill j 1-159

PS03XX - Application Note 021

The Two
"SDaXX
Design

Figure 2 shows a two PSD3XX
implementation of a typical MC68331
system. In this design the PSD312s replace
the EPROMs, the SRAMs, the PAL®, and
the 1/0 port in the typical design. The two
PSD312 devices provide 128K bytes of
EPROM and 4K bytes of SRAM. Two
PSD313's can be used if more EPROM
space is needed.

The configurations of the two PSD312's in
this design are as follow:

Bus Width
Each PSD312 is configured to operate in
8-bit non-multiplexed mode. PSD#1
supplies the even data byte to the
processor while PSD#2 supplies the odd
data byte. Together they appear to the
MC68331 as a single 16-bit port.

PortA
Port A in a PSD3XX can be an 1/0 port,
address output latch or as a data port with a
non-multiplexed bus. In this design
example, Port A is configured as a data
port. Port A of PSD# 1 is connected to
015 - 08 and PSD#2 is connected to
07 - DO of the processor.

PortB
Port B can be an 1/0 port, chip select
outputs, or as a data port in a 16-bit
non-multiplexed bus. In this design, half of
Port B is used to replace the 1/0 port in the
typical design, and the other half is used as
logic replacement for the PAL®. The two B
ports together provide two 4-bit 1/0 ports,
and 8 output control signals.

porte
Port C can be used as an addressllogic
input port to the PAD, or as chip select
outputs. In our case, Port C is used as logic
input.

Bus Interface
The PSD312's are configured to interface
to a bus with a read/write signal (R/W) and
a data strobe signal (OS). Since the
MC68331 has a non-multiplexed bus, the
address strobe (AS) input signal is not
required by the PSD312 to latch the
address lines internally. Instead, the AS
and the CSI/A19 pins are used as address
input pins to select the internal PSD312
sections. The 3 signals which select the
PSD312's are CSBOOT, CSO and CS 1.
The CSBOOT selects the EPROMs. The
CSO selects the even byte SRAM and 1/0
Port B; CS1 selects the odd byte only. No
wait states are required if the MC68331 is
running at a 16 MHz system clock. Please
refer to Figure 2 for the bus interface
connections.

After reset, CSBOOT selects the
PSD312's to run the boot program. During
this time, the 3 chip select lines can be
re-programmed to reflect the correct
address range and wait state. This has to
be done before the SRAMs can accessed.
Table 3 shows some typical option values
for this application. There is no 4 KB block
size option, so 8 KB is assigned to the
SRAM.

______________________________ ',~~E------------------------------
1-160 'r!N!.1

Figure 2. Me68331/TwD PSD312 Interfacing

DO 111 AO 90 AO DO
20 Al 01 110 Al 01
21 A2 D2 109 D2 A2
22 A3 n~ U~- 03 A3
23 A4 4 1115 04 A4
24 A5 VCC 05 104 A5 05
25 A6 (D6 103 A6

102
D6

A7 26 A7 07 07
27 A8 08 100 DB A8
30 A9 09 99 D9 A9
31 Al0 010 98 010 Al0
32 All 011 97 011 A11

012 94 012 A12 33 A12
013 93 A13 35 A13 013

36 A14 014 92 014 A14
37 A15 015 91 A15 015
38 A16 MC68331 A16
41 A17 A17

A18 42 A18
A19_CS6 r-W.--
A20_CS7 ~
A2LCS8 r-m-
A22_CS9 r--m---

A23_CS10 rill-I RESET
68 RESET

I-,-.. .. ~,

AS 82
VCC r-rs--RiW 1 RiW

OS 85 OS
89 OSACKO ~ T 88 OSACKl SIZO

SIZl r-M--
CSBOOT CSBOOT 112

BR_CSO 113 CSO

BG CSl 114 CSl

BGACK=CS2 ~
FCO CS3 rm-
FC1=CS4 ~
FC2_CSS ~

...
~ ...

PSD#1
Al 23
A2 24 ADO

A3 25 AOl

A4 26 A02

AS 27 A03

A6 28 A04
A05 A7 29 AD6

A8 30 A07
A9 31 A08
Al0 32 AD9
All 33 A010 PSD312

35 A011 EVEN A12
A13 36 A012 BYTE
A14 37

A013
A15 38 A014
A16 39 A015
os 22

OS 2 RIW RNi
BHEIPSEN 13 CSO AS

RESET 3 RESET
CSBOOT 43 A19/CSI

PSD#2
Al 23 ADO
A2 24
A3 25

AOl
A02 A4 26 A03 A5 27 A04

A6 28 A05 A7 29 AD6
A8 30 A07

A9 31 A08
Al0 32 A09
All 33 A010 PSD312
A12 35 AD11 ODD
A13 36 BYTE A012
A14 37 A013
A15 38 A014
A16 39 A015
os 22

OS
RIW 2 RiW 1 BHEIPSEN
CSl 13 AS
RESET 3 RESET
CSBOOT 43 Al91CSI

PAO 21 08

PAl 20 D9

PA2 19 010

PA3 18 011
PA4 17 012
PAS 16 013
PA6 15 014
PA7 14 015

PBO 11

PBl 10

PB2 9

PB3 8

PB4 7

PB5 6

PB6 5

PB7 4

PCO 40
41 PCl

PC2
42

PAO 21 DO
01 PAl 20

PA2 19 02
PA3 18 03
PA4 17 04
PA5 16 05
PA6 15 D6
PA7 14 07

PBO 11
10 PBl

PB2 9

PB3
8

PB4
7

PB5
6

PB6
5

PB7 4

PCO 40

PCl 41

PC2 42

CTRL OUT-O
CTRL-OUT-l
CTRL-OUT 2
CTRL-OUT-3
110 PORTA
110 PORTA
110 PORTA
110 PORTA

CTRL-IN-O
CTRL-IN-l
CTRL-IN-2

CTR!. OUT-4
CTRL-OUT-5
CTRL-OUT 6
CTRL-OUT-7
1I0PORTB
110 PORT B
110 PORT B
110 PORT B

CTRL-IN-3
CTRL-IN-4
CTRL-IN-5

it
~
I

:to.
~ ;::
~
r:::t

= t
II'
!§

PSD3XX - Application Note 021

Table 3.
Chip Select
Option Value

The Two
PSD3XX Design
(Cont.)

Figure 3.
Address Map
Truth Table

Option CSBooT CSO CS1

Base Address 000000 040000 040000

Block Size 256KB 8KB 8KB

Asynchronous/Synchronous Mode Asynchronous Asynchronous Asynchronous

Upper/Lower Byte Both Bytes Upper Byte Lower Byte

Read/Write Read Read/Write Read/Write

Strobe AS AS AS

DSACK o Wait State o Wait State o Wait State

Bus Interface (Cont.)
Figure 3 shows the Address Map from the
PSD#1 configuration file generated by the
WSI Maple configuration software. In the
Address Map truth table, the A 19 column is
the CSBOOT ~t, and the Q.F. AS
column is the CSO input. EPROM is
selected when CSBOOT is low; SRAM or

I/O Port B is selected when CSO is low. The
addresses in FILE STRT/FILE STOP
columns are shifted right by one to reflect
the fact that the A 15 - A 13 input pins on
the PSD312's are connected actually to the
A16 - A14 of the MC68331.

ADDRESS MAP

A A A A A A A A A SEGMT SEGMT FILE FILE Q. F. AS 19 18 17 16 15 14 13 12 11 STRT STOP STRT STOP

ESO 0 X X X 0 0 0 N N 0 11ft 1
ES1 0 X X X 0 0 1 N N 2000 3fft 1
ES2 0 X X X 0 1 0 N N 4000 5fff 1
ES3 0 X X X 0 1 1 N N 6000 7fff 1
ES4 0 X X X 1 0 0 N N 8000 9fff 1
ES5 0 X X X 1 0 1 N N aOOO blff 1
ES6 0 X X X 1 1 0 N N cOOO dlff 1
ES7 0 X X X 1 1 1 N N eOOO flff 1
RSO 1 X X X 0 0 0 0 0 N/A N/A 0
CSP 1 X X X 0 0 0 0 1 N/A N/A 0

END

~~~~~~~~~~~~~~~~--'AfAr~~--~~~~~~~~~~~~~~~--
1-162 ~iiE= 



The TWD 
!'SD3XX Design 
(CDn'.) 

The Single 
!'SD3XX Design 

Power Down Mode 
The PSD3XX's power down mode is 
particularly useful in a system which uses a 
PSD3XX mostly as a boot PROM. The 
power down mode is controlled by the input 
pin A 19/CSI. This pin can be configured by 
MAPLE as address input (A 19) or as chip 
select input (CSI). To implement the power 
down mode to the two-PSD312 design, the 
following changes are required: 

o Configure the A19/CSI pin by MAPLE as 
the CSI pin. Connect the pin to the 
CSBOOT signal. The PSD3XX's are 
normally in power down mode except 
when CSBOOT is asserted. 

o The PSD3XX has a 10 ns hold time 
requirement on the CSI input with 
reference to the trailing edge of the OS 
signal. The MC68331 does not provide 
this hold time; designers have to delay 
the CSBOOT signal to meet this 
requirement. 

The single PSD3XX design is for 
applications which need less EPROM and 
SRAM space. Figure 4 illustrates the 
schematic of a PSD302 interfacing to the 
MC68331. The PSD302 provides 64 KB of 
EPROM and 2 KB of SRAM; Port A and 
Port B are configured as data ports for the 
MC68331. Port C generates the 1/0 latch 
signal for the 1/0 port and two chip select 
signals. 

The single PSD3XX interface to the 
MC68331 is different from the two PSD3XX 
design. In order for the PSD302 to operate 
in the 16-bit mode, it needs a Byte High 
Enable (BHE) signal. If the design has a 
BHE signal available (generated from 
decoding to AO and SIZO signals from the 
MC68331), connect it directly to the 
PSD302's BHE pin. CSBOOT or other high 
address bits are then used to select the 
PSD302. 

If there is no BHE signal available, the 
CSBOOT signal can be programmed to 
provide this function. After reset, the 
CSBOOT signal operates as a chip select 
signal with initial values shown in Table 2. It 
will serve temporarily as the BHE input to 

PS03XX - ApplicatiDn NDte 021 

o The CSBOOT signal is programmed to 
have a block size of 512 KB. This will 
cover both the EPROM and SRAM 
space. When accessing the SRAM, the 
CSBOOT signal is asserted to take the 
PSD3XX out of power down mode. In 
power down mode, the Port B 1/0 ports 
will maintain their output values but the 
chip select output signals will be 
inactive. 

o When the CSBOOT is used as CSI 
input to the PSD3XX, the access time 
from CSI valid to data out is 130 ns 
(PSD302-12), 10 ns more than the 
normal address valid to data out time. 
This requires CSBOOT and CSO - CS1 
to be programmed with one wait state. 

the PSD302 until the CSBOOT is 
programmed as a BHE signal. The 
programming should be done shortly after 
reset with the value listed in Table 4. 

Now that the CSBOOT signal is used as 
the BHE signal, the PSD302 needs other 
means to select the internal device. 
Other chip select signals from the 
MC68331 cannot be used since they are 
inactive at the time of boot up. Address 
lines A 18 - A 19 are used instead as 
decoding address inputs to the PSD302 as 
shown in Figure 4. For example, the 
EPROM is enabled if A 18 - A 19 are equal 
to OOH; SRAM and 1/0 Ports are enabled if 
A18 - A19 are equal to 01H. Depending on 
the application, any other high address bits 
can be used for this purpose. 

The PSD302 is configured to operate in the 
16-bit mode. The high byte is coming from 
Port B and is connected to 07 - DO on the 
MC68331 data bus. Table 5 shows which 
port and byte it is driving for different bus 
cycles. Please note the low bytelhigh byte 
definition in the PSD302 Data Book is the 
opposite to that defined in the MC68331 
User's Manual. 

--------------------------~Jr;--------------------------1-163 



"";4 -~ 

111111 III'''''' 
11111111 
Ilblllh 
11111111 

Figure 4. MC68300/PSD3021nterface 

I\. AO 23 ,------
Al 24 AOO PAO 21 08 
A2 25 AOl PAl 20 09 
A3 26 A02 PA2 19 010 
A4 27 A03 PA3 18 011 
AS 28 A04 PA4 17 012 

00 111 00 A6 29 A05 PAS 16 013 
01 110 01 AO 90 AO A7 30 A06 PA6 15 014 
02 109 02 Al 20 Al A07 PA7 14 015 

03 108 A2 21 A2 A8 31 04 105 03 A3 22 A3 A9 32 A08 PBO 11 00 
05 104 04 A4 23 A4 Al0 33 A09 PBl 10 01 
06 103 g~ AS 24 AS All 35 A010 PSD302 PB2 9 02 
07 102. A6 25 A6 A12 36 AOll PB3 8 03 
08 100 07 A7 26 A7 A13 37 A012 PB4 7 04 
09 99 g: A8 27 A8 A14 38 A013 PB5 6 05 

" 010 98 010 A9 30 A9 A15 39 A014 PB6 5 06 
" 011 97 011 Al0 31 Al0 - A015 PB7 4 07 

012 94 All 32 All OS 22-013 93 012 A12 33 A12 RIW 2 O~ PCO t-4;i;0i-----.r-;;;~:I 
014 92 013 A13 35 A13 CSBOOT 1 RIW -- PCl 41 P CSO l 
"" " '"' .,," ." An ,,"""'''' ",," ,es, 1 

015 A15 37 A15 RESET 3 AS 
A16 38 A16 RESET 
A17 41 A17 A18 43 A19/CSI 

MC68331 A18 42 A18 '--______ .1 

A19_CS6 ~ 
~_68=- I ___ A20_CS7 ~ 

VCC RIESET A2LCS8 f-lli-Q A22CS9~ j '"-''''' fl"---- ",c, '''' 
...-_1--......2.89Lj ____ - 82 
1~---+_~8~8---, OSACKO A~ r-;- -= _ OSACKl RIW rR:79.-~R/,!!-W------4-.J 

l RESET >----J 

OS 85 OS 

SIZO 81 
SIZ1~ 

CSBOOT 112 CSBOOT (SHE) VO PORT ~ 
BR_CSO ~ , 

BG_CSl ~ 
BGACK_CS2 ~ 

FCO_CS3 ~ 
FC1_CS4 ~ 
FC2 CS5 ~ 

~ 
2 
~ 
• :to 

~ 
~ a: 
'= 
~ 
;-
~ -



Table 4. 
CSBOOTas 
BHESignal 

Table 5. 
PS0302 
OataPorts 

Conclusion 

Fields/Option 

Base Address 

Block Size 

Asynchronous/Synchronous Mode 

Upper/Lower Byte 

ReadlWrite 

Strobe 

OSACK 

-
AD BHE (CSBOOT) 

0 0 

0 1 

1 0 

1 1 

As we have seen from the two PS03XX 
design examples, the PS03XX's are able to 
replace at least 6 ICs in the typical 16-bit 
MC68331 design. The PS03XX 
programmable microcontrolier peripheral 
not only provides a cost effective solution to 
embedded applications, but it also reduces 
printed circuit board space, power 
consumption and offers code protection 
from unauthorized access. 

PSD3XX - Application Note 021 

CSBOOT Values as BHE 

000000 

128 K Byte 

Asynchronous Mode 

Lower Byte (Odd Byte) 

ReadlWrite 

AS 

o Wait State 

PortA PortB 
(Even Byte) (DddByte) 

015 - 08 07-00 

015'- 08 Tri-State 

Tri-State 07-00 

Tri-State Tri-State 

PAL ® is a registered trademark of Advanced Micro Devices Corporation. 

------------------------------r==-~------------------------------55'..::;:"'= 1-165 



PSD3XX - Application Note 021 

~~------------------------------~~g----------------------------------1-166 __ -I 



r •• "E ;;:.:1. 

Introduction 

Figure 1. 

Programmable Peripheral 
Application Note 022 
Using Wll's PSD3XX Programmable 
Microcontroller Peripheral Family 
with BOC31/BOC51 Microcontrollers 
By Dan KIIISBIIa 

The 80C51 microcontroller family is 
composed of several versions from 
different manufacturers that are variations 
of the basic 80C51 architecture. Different 
functions on-chip, a variety of speeds, 
packages, etc. are all available while the 
80C51 instruction set is maintained on all 
variations. Because of the wide variety of 
features found with the 80C51 devices, 
as well as the usefulness of the general 
architecture itself, the 80C51 product group 
has become one of the most widely used 
microcontroller families in the world. The 
purpose of this application note is to 
provide some background and 
implementation ideas to designers using 
the 80C51 microcontroller family along with 
the WSI PSD3XX family. A simple 80C31 
system will be examined, as well as more 
complex systems where memory map 
issues become important. 

The 80C51 family can be divided into two 
basic memory usage types: intemal 
memory usage only (80C51, 8751, etc.) 

80C31 
IIC 

BDcat System Befote PSD3XX 

and external memory accesses needed 
(80C31, 80C51 with external accesses, 
etc.). The PSD3XX family helps solve the 
problem of system size and cost by 
integrating the typical devices used with 
external accesses (logic, SRAM, EPROM, 
etc.) onto a single chip. Figure 1 illustrates 
a typical80C31 system and how it is 
dramatically simplified and improved by 
using a PSD3XX device. 

The PSD3XX device simplifies the system 
by enabling the designer to integrate I/O 
ports, the microcontroller to peripherals or 
memories interface logic, EPROM code 
storage, and scratch pad SRAM data 
storage into a single chip. Design changes 
that are sometimes required due to 
changing market conditions are often 
easily and quickly implemented in the 
reprogram mabie PSD3XX without adding 
extra chips to the system or making board 
layout changes. 

IDC3t System After PSD3XX 

1·167 



PSD3XX - AppilcatlDn NDte 022 

TheBOC31 
Family 

A number of 80C31 versions are offered 
from several suppliers that include different 
functions on-chip, but versions such as the 
80C32 have different internal memory sizes 
as well. Each of these versions has 
retained the core architecture and external 
memory access requirements of the basic 
80C31. 

The 80C51 family memory model is 
composed of two separate memory spaces 
or allocations. Program space is intended 
for storage of the program control code 
(usually in EPROM) and data space is 
intended for storage of temporary or 
changeable information (usually in SRAM). 
Data space is also where most memory 
mapped I/O is located. In external memory 
operation, the 80C31 uses the PSEN signal 
to access program memory and the RD 
Signal accesses the data memory. The 
PSD3XX's programmability provides for 
this memory model (called "separate 
space") as well as other memory models. 

Program and data space do not always 
need to be separated. In fact, most 
controller architectures make no distinction 
between program and data space. If this 
memory model is desired, the PSD3XX will 
internally OR the PSEN and RD signals 
together and EPROM, SRAM and 1/0 will 
be available in the same memory space 
(called "combined space"). In "combined 
space", program code can be stored in 
EPROM or SRAM. This can be very 
important if the user has program code that 
is downloaded into SRAM, or if the system 
uses lookup table contents that depend on 
system parameters not known until the 
system is operating. Anytime the program 
code needs to be easily changeable, 
SRAM is a convenient way to store it. 
Figure 2 illustrates how the PSD3XX would 
be connected to the 80C31 and tables 1 
and 2 convey some of the choices made 
via the PSD Development System Software 
to configure the PSD3XX as "separate" or 
"combined" address space. 

--------------------------------------~~Jr-------------------------------------
1·168 



PSD3XX - Application Note 022 

The80C31 
Family 
(Cont.) 

Table 1 shows an EPROM segment 
starting at address 0 and covering the 
entire 64K program space. The SRAM 
block and memory mapped 1/0 are shown 
in the same memory space. This is 

acc~able since they will be controlled by 
the RD signal so there will be no conflict 
with the EPROM which is controlled by the 
PSEN signal. 

Table 1. 
''Separate'' 
ModePSD3XX 
Choices 

********************** MAPLE 5.00 ********************** 
PSD PART USED: PSD312 
********************PROJECT INFORMATION***************** 
Project Name 8031 app. note - Separate address space 
Your Name : Dan Kinsella 
Date : May, 1992 
Host Processor 8031 
*********************GLOBAL CONFIGURATION*************** 
Address/Data Mode MX 
Data Bus Size : 8 
Reset Polarity HI 
Security : OFF 
ALE Polarity : HI 
Using Different READ strobes for Data and Program: Y 

separate Data and Program Address spaces : Y ------> Separate Mode 

********************READ WRITE CONTROL***************** 
/RD and /WR 
******************************ADDRESS MAP*********************************** 

A A A A A A A A A SEGMT SEGMT FILE FILE File Page Reg Q.F 
19 18 17 16 lS 14 13 12 11 STRT STOP STRT STOP Name 3210 ALE 

ESO N 0 0 0 0 0 0 N N 0 1FFF 0000 1FFF TEST.HEX N 
ES1 N 0 0 0 0 0 1 N N 2000 3FFF 2000 3FFF TEST.HEX N 
ES2 N 0 0 0 0 1 0 N N 4000 SFFF 4000 SFFF TEST.HEX N 
ES3 N 0 0 0 0 1 1 N N 6000 7FFF 6000 7FFF TEST.HEX N 
ES4 N 0 0 0 1 0 0 N N 8000 9FFF 8000 9FFF TEST.HEX N 
ESS N 0 0 0 1 0 1 N N AOOO BFFF ACOO BFFF TEST.HEX N 
ES6 N 0 0 0 1 1 0 N N COOO DFFF COOO DFFF TEST.HEX N 
ES7 N 0 0 0 1 1 1 N N EOOO FFFF EOOO FFFF TEST.HEX N 
RSO N 0 0 0 0 1 1 0 0 6000 67FF N/A N/A N/A N 
CSP N 0 0 0 1 1 0 0 0 COOO C7FF N/A N/A N/A N 

****************************************END*********************************** 

*****************************ADDRESSES OF 
Pin Register of Port A : C002 
Direction Register of Port A : C004 
Data Register of Port A : C006 
Pin Register of Port B : C003 
Direction Register of Port B COOS 
Data Register of Port B : C007 
Page Register : C018 

I/O PORTS************************* 
Page (Binary): 

***************************************************************************** 

-----------------------------------------~~~------------------------------------------_. ~m 



PSD3XX - Application Note 022 

The BOC31 
Fami/y 
(Cont.) 

Table 2 shows the 1/0, EPROM and SRAM 
blocks located throughout the memory map 
but not overlapping as in the case of the 
"separate" mode. 

If SRAM or 1/0 is overlapped on the 
EPROM block in the memory map in the 
"combined mode", the SRAM or 1/0 will be 
accessed in that address range. The 
EPROM portion that is overlapped 
becomes inaccessible. In the "separate" 
mode, EPROM and SRAM can be 

overlapped and both are accessible 
because the PSEN and RD separately 
enable these blocks to the output. In the 
"combined" mode, these enables are gated 
together and SRAM and 1/0 have priority 
over the EPROM (for example, if the 
SRAM is mapped at the same start 
address as EPROM block 7 (ES7), the first 
2K of ES7 will be SRAM access and the 
rest of the 8K block will be EPROM 
access). 

********************** MAPLE 5.00 ********************** 
PSD PART USED: PSD312 
********************PROJECT INFORMATION***************** 

Tab/e2. 
"Combined" 
ModePS03XX 
Choices Project Name 8031 APP NOTE - Combined address space 

Your Name : 
Date: 
Host Processor 

DAN KINSELLA 
MAY, 1992 
8031 

*********************GLOBAL CONFIGURATION*************** 
Address/Data Mode MX 
Data Bus Size : 8 
Reset Polarity HI 
Security : OFF 
ALE Polarity : HI 
Using Different READ strobes for Data and Program: Y 
Separate Data and Program Address spaces : N -------> combined Mode 
********************READ WRITE CONTROL***************** 
/RD and /WR 
******************************ADDRESS MAP*********************************** 

A A A A A A A A A SEGMT SEGMT FILE FILE File Page Reg 
19 18 17 16 15 14 13 12 11 STRT STOP STRT STOP Name 3210 

ESO N 0 0 0 0 0 0 N N 0 1FFF 0000 1FFF TEST.HEX 
ES1 N 0 0 0 0 1 1 N N 6000 7FFF 2000 3FFF TEST.HEX 
ES2 N 0 0 0 1 0 0 N N BOOO 9FFF 4000 SFFF TEST.HEX 
ES3 N 0 0 0 1 0 1 N N AOOO BFFF 6000 7FFF TEST.HEX 
ES4 N 0 0 0 1 1 1 N N EOOO FFFF BOOO 9FFF TEST.HEX 
ESS N N N 
ES6 N N N 
ES7 N N N 
RSO N 0 0 0 0 0 1 1 0 3000 37FF N/A N/A N/A 
CSP N 0 0 0 1 1 0 0 0 COOO C7FF N/A N/A N/A 
****************************************END******************************* 

Q.F 
ALE 

N 
N 
N 
N 
N 
N 
N 
N 
N 
N 

******************************ADDRESSES OF I/O PORTS************************* 
Pin Register of Port A : C002 Page (Binary): 
Direction Register of Port A: C004 
Data Register of Port A : C006 
Pin Register of Port B : C003 
Direction Register of Port B COOS 
Data Register of Port B : C007 
Page Register : C01B 
************************************************************************* 

~==:= ~5f 

-1--1~~~0-------------------------------------~~= ----------------------------------------



PS03XX 
Architecture 

Figure 3. 
PS03XX 
Architecture 

Figure 3 illustrates a more detailed block 
diagram of the PSD3XX family. Since the 
PSD30X can be configured to operate 
either x8 or x16, it has the flexibility to 

PAGE LOGIC 

P3-PO 

~r - All-A15 

L A8-Al0 ~ A 
T A19 

AOS-AOI5 C CSI 
H ALE/AS 

PAOA 

r- RO 

WR 13PT 
RESET 

I ALEIAS 

psoaxx - Application Note 022 

operate with 8 or 16-bit microcontroliers. 
The PSD31 X devices are used in 8-bit-only 
applications and are available at lower 
cost. 

AI6-AIS 

~ ! 
PROG. 

LOGIC IN 
PORT 

CSIOPORT EXP 

A19 

CSI PCD-

ALE/AS 
PAOB PORT ~ r- C 

RO 

WR 27 PT CS8-

RESET 
CS10 

- - ---

'--- --- EPROM 
256K BIT -1 M BIT 

L 
ES7 

D-A07 
A ES6 AD 

T ES5 
C ES4 
H ES3 

'-- ES2 PROG 
ESI ~ PORT 

ESo"I .. CSD- EXP 
r-- ~ CS7 

-~-
'1'6i8 32K-12SK BIT - PBD-

~ 
BLOCK PORT ~ ~. - .. r B 

-1 ~.- 08-015 
L-..... .... 

'--

r-- -- CSIOPORT 

<1 ... - - 0D-07 -
~ ~ SRAM 

PROG 

16K BIT 
PORT 

TRACK MODE 
EXP. 

SELECTS 
PAD-

AD-A7 PORT ~ AOD-A07/0D-07 A 

ALE/AS 

t PROG CHIP 
- CONFIGURATION 
RO/E 

WR/RIW 
PROG. XS.XI6 

BHEIPSEN CONTROL MUX or NON-MUX BUSSES 

RESET SIGNALS 

AI9/CSI 

-----------------------------------------,~~~~--------------------------------------~~ =--- 1-171 



PSD3XX - Application Note 022 

PSD3XX 
Architecture 
(Cont.) 

Various EPROM sizes are offered in the 
PSD3XX series. The PSD3X1 contains 
256K bits of EPROM, the PSD3X2 contains 
512K bits and the PSD3X3 provides 
1 megabits. The PSD3X2 and PSD3X3 
devices contain a 4-bit page register to 
enable additional memory map flexibility. 
This page register enables memory 
expansion by a factor of 16. For example, 
8-bit microcontrollers like the 80C31 that 
address only 64K of memory space can 
now access over 1 meg bytes with either 
the PSD3X2 or PSD3X3. 

Figure 3 illustrates the block configuration 
of the EPROM. It can be selected as sepa­
rate blocks that can be scattered through­
out the memory space or concatenated into 
a single block. This feature provides the 
designer with a great deal of flexibility and 
efficiency by placing EPROM segments 
throughout the memory where they are 
most needed. The SRAM block can also be 
programmed to appear in any part of the 

memory map. Some possible examples are 
shown in Tables 1 and 2. The Table 1 
memory map shows the EPROM blocks 
concatenated together and starting at 
address 0 as they might look in a simple 
80C31 system. Table 2 illustrates the 
EPROM blocks separated and spread 
throughout the memory map with the 
SRAM segment and the memory mapped 
I/O between EPROM blocks. 

Internally the PSD3XX resolves the issue 
of Combined vs. Separate address spaces 
by ORing the PSEN and RD signals when 
Combined space is specified. The EPROM 
and SRAM segments will both be enabled 
if either of these signals is present. The 
address decoder (PAD) will determine 
which of these is actually active. In the 
Separate mode, the PSEN will enable only 
the EPROM output and the RD will enable 
only the SRAM and I/O ports. Figures 4 
and 5 illustrate how this is done. 

Figure 4. 
Separate Code 
and Data 
Address Spaces 

I/O PORTS 

INTERNAL OE CS 
- , J RD 

• • OE 
ADDRESS • ~ CS 

PAD 
SRAM 

CS 

-- EPROM 
PSEN 

OE 

--------------------------------------fjf=~~-------------------------------------
1-172 



Figure 5. 
Combined 
Address Space 

Simple 
BOC31 
Design 

Figure 6. 
A Typical 
BOC31 Design 

PSD3XX - Application Note 022 

----... cs 
ADDRESS ... PAD ... SRAM 

J OE 

INTERNAL 
RD 

I, Lr --
PSEN 

~ OE 

EPROM 

~ CS , 
CS OE 

1/0 PORTS 

Figure 6 shows the block diagram of a 
typical 80C31 design. The '373 latch is 
required to demultiplex the address and 
data busses. EPROM is used for program 
control memory and the SRAM is required 

80C31 
IIC 

for stack extension or scratch pad memory. 
The Separate memory model is being 
used in the design. In addition, two I/O 
ports and a PLD based address decoder 
are incorporated. 

DATA 

PSEN EPROM 

RD 

SRAM 

------------------------------------~~~~--------------------------------1--1-73-



PSD3XX - Application Note 022 

Simple 
8DC31 
Design 

Adding 
Capability ... 

Table 3. 
Combined 
Memory Space 
System Address 
Map 

The '373 latch, 1/0 ports, PLD address 
decoder, EPROM and SRAM can be easily 
replaced by a single PSD31 X device, 
connected as shown in Figure 2. (the 
EPROM complement for the PSD31X series 
is 32K x B for the PSD311 , 64K x B for the 
PSD312 and 12BK x B for the PSD313). All 
are pin and function compatible. 

A PSD3XX device is capable of replacing 
up to 6 devices in this fairly routine design. 

For designs that require more program and 
data space than the BOC31 can directly 
address (12BK in Separate address space 
and 64K in Combined space), the PSD312 
and PSD313 include a paging register to 
expand the usable memory space. For a 
more complete discussion, see WSI 
Application Note 015, "Using Memory 
Paging with the PSD3XX". This 4-bit page 
register enables the BOC31 to address up 
to 16 pages of 64K memory. To change 
from one page to the next requires only 
that the microcontroller write the page 
number of the memory page desired to the 
page register. 

Although the page register is a good 
solution for systems requiring more address 
space than provided by the BOC31, there 
are times when more memory space is 
desired and using the page register may 
not be appropriate. Table 3 exhibits a 
system address map for a Combined 
memory space design that requires more 
than 64K of memory space. We do not 
want to use the page register in this case 
because the data memory must reside in 
the same page as the program memory, 
such that data can be accessed by the 
program without switching pages. 

We can see from this memory map that the 
Separate mode memory model is not 
usable because some EPROM addresses 
are in the SRAM data space. Also, the lola! 
memory space required is 9BK which 
exceeds the 64K memory space normally 
available in the Combined mode memory 
model. 

If more complex memory maps are required, 
as in the system below, the system savings 
can be even greater. In addition, the 
hardware design can be easily reused in the 
future since 1/0 ports, chip selects, EPROM 
addresses and contents, etc., are all 
programmed into the PSD3XX. As a result, 
the printed circuit board layout will not need 
to be changed for significant system design 
changes. 

The solution using the PSD3XX makes 
use of a feature included in all PSD3XX 
devices. Every PSD3XX can support 
up to 20 address inputs, directly enabling 
up to 1 meg of address space to be 
accomodated. Port C pins can be 
configured either as chip select outputs 
from the PAD or as address inputs that 
can be used in the memory map. Port C 
pins can be configured on an individual pin 
basis so chip select outputs can be 
provided at the same time as address 
inputs. By using the RD signal as an 
external input to the PAD via Port C, the 
RD signal can be used as an extra address 
bit to enable up to 12BKB of address space 
to be accessed. See Figure 7. 

When using this solution, the timing 
requirements are more stringent since the 
RD signal is valid later than the addresses 
are valid. Therefore, the BOC31/PSD3XX 
timing that must be satisfied is from RD 
valid to PSD3XX data out instead of the 
more usual BOC31 address valid to 
PSD3XX data out. See Figure B. 

This tighter timing might require a higher 
speed PSD31X device. Since RD is now 
part of the input address, T2 as shown 
above must be used as the time required 
for memory access instead of T1. For 
example, in a 16 MHz BOC31 design, T1 is 
257.5 ns (max.) and T2 is 222.5 ns (max.). 
!n Ihis case, a higher speed PSD3XX is not 
required since a PSD31X-20 would be fast 
enough to meet T1 and T2 timings. 

Address Program Space Data Space 

0000 -71ff EPROM (32 KB) SRAM (2 KB) 

BOOO - Ifff EPROM (32 KB) EPROM Table (32 KB) 

__ ~ __________________________________ fEE~E __________________________________ ___ 

1-174 ----



flgure 7. 
ROUsed 
as an Address 
Bit to Enable 
12SKB 
Addressing 

FigureS. 
More Stringent 
Ro Valid 
to Data Valid 
Timing 

PS03XX - Application Note 022 

Vee 

Microcontroller 
39 23 21 

31 
PO.O 

38 24 
ADO/AO PAO 20 

EAIVP PO.1 AD1/A1 PA1 19 
PO 2 

37 25 AD2/A2 PA2 -::- 19 X1 36 26 AD3/A3 PA3 
18 

PO.3 17 
PO.4 35 27 AD4/A4 PA4 

Cl PO.5 34 28 ADS/AS PAS 
16 

18 33 29 AD6/A6 PA6 
15 

X2 PO.6 
32 30 14 

PO.7 AD7/A7 PA7 

9 RESET P20 
21 31 AD8/A8 PBO 

11 
22 32 10 

P21 AD9/A9 PB1 9 
P2.2 23 33 AD10/A10 PB2 

12 24 35 8 
INTO P2.3 AD11/A11 PB3 7 13 
INT1 P2.4 25 36 AD12/A12 PB4 

14 26 37 
15 

TO P25 
27 38 

AD13/A13 PBS 5 
T1 P26 

28 39 
AD14/A14 PB6 4 

P27 AD15/A15 PB7 

2 
P1.0 

17 22 AD 40 
P11 AD PCO 

3 P1.2 WR 
16 2 WRNp PC1 

41 
4 P1.3 PSEN 29 1 BHEIPSEN 

42 5 P1.4 ALE 30 13 ALE PC2 
6 P1.5 TXD 11 3 RESET A19/CSI 

43 
7 P16 RXD 

10 
GND 

8 P1.7 34 12 
PSD313 

80C31 
-::-

RD 

ALE ~~----------------------------------

ADDRESS/DATA ----~~V_A_LI_D_A_D_D_R_E_S~S~r--1~-V-A-L-ID-D-A-T-A~~------­
: T2 : 
'------: 

---------------------------------------~~~-----------------------------------1-.1-7--5 



PSD3XX - Application IItJte 022 

Adding 
Capability .•. 
(Cont.) 

Tablef. 
Combined 
MemolY Space 
MAPLE Software 
Solution 

Table 4 shows part of the MAPLE software 
solution for this problem which uses the 
Combined memory space configuration. 

********************** MAPLE 5.00 ********************** 
PSD PART USED: PSD313 
********************PROJECT INFORMATION***************** 
Project Name : .. 8031 App. note 
Your Name : = Dan Kinsella 
Date : .. May, 1992 
Host Processor : 8031 

********************ALIASES***************************** 
/CS8/A16 = /RD 
*********************GLOBAL CONFIGURATION*************** 
Address/Data Hode MX 
Data Bus Size : 8 
Reset Polarity HI 
Security: OFF 
ALE Polarity : HI 
Using Different READ strobes for Data and Program: Y 
Separate Data and Program Address spaces: N 
********************READ WRITE CONTROL***************** 
/RO and /WR 
*****************PORT C CONFIGURATION****************** 

Pin CS/Ai LOGIC/ADDR 
PeO A16 ADDR 
PC1 CS9 
PC2 CS10 
A19 CSI 
******************************ADDRESS MAP***·******************************* 
/RD = A16 

A A A A A A A A A SEGHT SECHT FILE FILE File Page Reg Q.F 
19 18 17 16 15 14 13 12 11 STRT STOP STRT STOP Name 3210 ALE 

ESO N N N 0 1 0 N N N 18000 1BFFF 10000 13FFF TEST.HEX N 
ES1 N N N 0 1 1 N N N 1COOO 1FFFF 14000 17FFF TEST. HEX N 
ES2 N N N 1 0 0 N N N 00000 03FFF 00000 03FFF TEST. HEX N 
ES3 N N N 1 0 1 N N N 04000 07FFF 04000 07FFF TEST.HEX N 
ES4 N N N 1 1 0 N N N 08000 OBFFF 08000 OBFFF TEST.HEX N 
ES5 N N N 1 1 1 N N N OCOOO OFFFF OCOOO OFFFF TEST.HEX N 
ES6 N N N N N N N 
ES7 N N N N N N N 
RSO N N N 0 0 1 0 1 0 15000 157FF N/A N/A N/A N 
CSP N N N 0 0 0 1 1 0 13000 137FF N/A N/A N/A N 
****************************************END*********************************** 

******************************ADDRESSES OF I/O PORTS************************* 
Pin Register of Port A : 3002 Page (Binary): 
Direction Register of Port A : 3004 
Data Register of Port A : 3006 
Pin Register of Port B : 3003 
Direction Register of Port B 3005 
Data Register of Port B : 3007 
Page Register : 3018 
************************************************************************** 

~~---------------------"'~,.------------------------1-176 'rINf1" 



Reset 
Circuit 
Considerations 

Summary 

In a design where the 80C31 shares the 
same reset signal with a PSD3XX, a race 
condition exists if the reset circuit consists 
of RC components only. Due to slow fall 
time on the reset signal, the 80C31 could 
get out of reset mode and start fetching 
codes while the PSD3XX is still in reset. 

The following three reset circuits are 
recommended for use with 80C31 and 
PSD3XX based designs: 

1. Use a Reset Chip such as Dallas 
Semiconductor's DS1232, or Maxim's 
Max 699. Both have space saving, 8-pin 
mini-Dip packages. The reset output is 
connected directly to the reset pins on 
the 80C31 and PSD3XX. 

Using the PSD3XX family of Programmable 
Microcontroller Peripherals in 80C51 type 
microcontroller designs can significantly 
reduce system design complexity and 
enhance the end product at the same time. 
Reusing hardware sections of existing 
designs in new designs becomes an easy 
process. Changing memory mapping and 
even memory sizes is easily accomplished 
by making simple adjustments in the 
PSD3XX development software, i.e. by 

I'SD3XX - AppllcatlDn NDte 022 

2. Use two separate RC reset circuits: one 
which generates a high reset pulse to 
the 80C31 and the other one generates 
a low reset pulse to the PSD3XX. The 
RC constant of the PSD3XX reset circuit 
should be less thant that of the 80C31 
such that the PSD3XX reset signal has a 
shorter pulse. In this case, the PSD3XX 
is configured to have an active low reset 
input. 

3. Use a buffered reset signal: The ouptut 
of an RC reset circuit is buffered by a 
gate (such as 74HC14) before it is 
connected to reset pins on the 80C31 
and PSD3XX. 

simply selecting where and how many of 
the blocks are required. The flexibility of the 
PSD3XX family is demonstrated by the 
equal ease of design if a Combined or 
Separate address space is needed. In 
addition, the 4-bit memory paging register 
in the PSD3X2 and PSD3X3 devices 
enables the microcontroller to address 
additional memory by a factor of 16. 

----------------------------r;;~.?------------------------~~ flNfiil j 1-177 



PSD3XX - Application Note 022 

"~J:"€ 

~1--1=78~-----------------------------~~=----------------------------------



Introduction 

PART I - Using 
the PS0312 with 
a Standard 8031 
System. 

Programmable Peripheral 
Application Note 023 
PSD3XX Family 
Programmable Microcontroller Peripheral 
Design Tutorial 
By Mark Elliott 

The PSD3XX family devices contain 
several commonly used microcontroller 
peripheral functions combined into one 
package. These include EPROM, SRAM, 
Chip Selects, and logic functions. Some of 
the advantages of the PSD3XX family are: 
board space is reduced, power 
consumption is reduced, cost is competitive 
- usually less, and board complexity is 
reduced. Design risk is also reduced 
because fewer traces are required on the 
PWB and the PSD3XX devices are more 
flexible than a discrete component design. 
Mistakes or design changes pose less of a 
potential problem. Additionally, the 
PSD3XX device includes a security option 
which, when implemented, protects the 
internal configuration data from duplication. 

For a particular application, the designer 
should learn the PSD3XX family 
architecture, understand the configuration 
software, and understand the programming 
process. While none of these tasks are 
complicated, full knowledge of them is not 
required to understand the PSD3XX family. 

Figure 1.1 illustrates a standard 80C31 
microcontroller board design. The board 
contains a microcontroller, a 512 Kbit 
EPROM for program storage, a 16 Kbit 
static SRAM, and an address latch. In this 
example, all of the circuits on this board, 
excluding the microcontroller, will be 
replaced. Keep in mind that the PSD312 is 
not being used to its full advantage here. 
In the second example, Part 2 of this appli­
cation note, you will see that the PSD312 is 
able to provide additional functions, 
replacing additional discrete packages. 

This application note introduces the 
PSD3XX family design process by 
example. While going through the 
examples, you will learn about the entire 
design process including hardware, 
software, and programming. Those who 
do not have a strong background in the 
microcontroller field may also find 
themselves able to use the PSD3XX. This 
application note uses an 80C31 system as 
a model. Even if you intend to use a 
different microcontroller, you will find it 
useful to read on. 

This application note demonstrates two 
designs using multiple packages which will 
be replaced by a design using the 
PSD312. The first example is a standard 
80C31 board, one that does not make use 
of all the PSD312's potential. This will form 
a basis for understanding the product. In a 
second example, new functions are added 
to the standard design. By the end of the 
application note, you should have enough 
basic knowledge to understand the 
PSD312 device's use in your design. 

The PSD312 was chosen for this task 
because it has the same SRAM and 
EPROM space as that used on the original 
design. A similar device, the PSD311, 
would be more suitable for replacing a 
smaller EPROM space of 256K bits or less. 
If a larger EPROM space is required, a 
PSD313 with its internal 1M bit UV EPROM 
could be used. 

1-179 



PSD3XX - Application Note 023 

Figure 1.1: 
8031 
Microcontrol/er 
Standard System 
Block Diagram 

t 
PSEN 

AD(7:0) 

512 KBIT PROM 

A(7:0) 

ADDRESS 
LATCH 

ALE 

PSEN 

A(15:8) 

RD WR 

8031 
MICROCONTROLLER 

NOTE: Each Block represents one Ie package. 

16 KBITRAM 

RDWR 

I I 

_ ________________________________ F •• ~E _______________________________ _ 

~41 1-180 



Physical 
Connections 

Figure 1.2: 
Standard PSD312 
Physical 
Connections 

The physical connections for the new board 
design using the PSD312 are illustrated in 
Figure 1.2. The multiplexed address/data 
pins, 0 through 7, from the 80C31 port 0 
connect to the PSD312 pins AD/A(7:0). The 
upper address bits, 8 through 15 from port 1 
connect to the pins A(15:8) on the PSD312. 
The 80C31 write line is connected to 
"WR.Vpp or R/W", the read line to RD/E, 
ALE to "ALE or AS". The connections for 

PSD3XX - Application Note 023 

PSEN and RESET are straightforward. The 
A 19/CSI pin is an unused input in this 
application so it is tied low. Last of all, the 
power, grounds and the decoupling 
capacitor are connected. All other PSD312 
pins will remain unconnected. These pins 
become useful for a more functional design 
such as in the second example. 

Vee 
O.1mF 

.----.-----t------l) r-----

GND GND Vee 

A19/CSI PA(7:0) - NC 

""-
PB(7:0) - NC 

PSD312 RD 

NC- PC(2:0) 

AD/A(7:0) A(1S:8) 

LATCHED 
LOWER 

ADDRESS 
AND DATA 

BUS 

UPPER 
ADDRESS 

BUS 

WR 
ALE 

PSEN 
RESET 

)~ 
.. 

PO(7:0) P1 (7:0) RD, WR, 

ALE, PSEN, 
RESET 

8031 
MICROCONTROLLER 

NOTE: Addilional Mlcrocontrolier connecllons are not shown. 

RESET 

-----------------------------------~~~--------------------------------1---18-1 



PSD3XX - Application Note 023 

Configuration 
OataEntry 

Before the PSD312 can be programmed, 
the MAPLE software is used to define the 
PSD312 functionality. The MAPLE 
software is menu driven making it very 
easy to use. After the software is loaded, 
entering the command MAPLE accesses 
the software used to program the PSD3XX 
device. The main MAPLE menu will appear 
on the screen with its seven one-line 
options. Highlighting the PARTNAME 
option (or pressing F8), typing "PSD312" 
and pressing ENTER selects the part 
intended for programming. Next, the main 
menu will call up the correct subprogram 
used to configure the part selected. The 
subprogram looks very much like the main 
menu except that a second option box will 
appear on the right of the screen. See 
Figure 1.3 for an illustration of this menu as 
it appears on the computer display screen. 
In all illustrations, only the menus will be 
shown to enhance clarity. Other 
information may appear on the screen. For 
example, help information often appears to 
assist the designer. After an option is 
highlighted using the cursor controls, 
pressing ENTER will execute that option. 
The cursor controls enable the user to 
maneuver between option boxes and 
among the options within a box. 

To configure the PSD312 you must focus 
on the option box to the right of the screen. 
The first option in this box is PROJECT 
INFORMATION which enables the user to 
store information about the software file. 

The next option is ALIASES which provides 
the ability to name a pin with an alias name 
to help prevent mistakes. The alias name 
will show up in other menus that use the 
pin. This option will not be used in this 
example. 

The next option is CONFIGURATION. 
After the CONFIGURATION option is 
selected, the CONFIGURATION menu, like 
that shown in Figure 1.4, will appear. 
Figure 1.4 displays the correct information 
for this example. When a line in the 
CONFIGURATION menu is highlighted, an 
explanation of the question is provided in a 
dialogue box at the bottom of the screen. 
The last question, "Separate Data and 
Address Spaces?" appears when Y is 
answered to "Using different READ 
strobes ... ". This question will not appear 
when the menu is first entered. Each 
question has two possible answers. 
Pressing the space bar will toggle between 
the two answers; no typing is required. 
Each answer to an option is explained 
here. See Figure 1.4 for reference. 

This CONFIGURATION menu contains all 
of the necessary information to configure 
the PSD312 for use with the 80C31. 
Additional information is required in other 
menus to program the PSD312 logical 
functions. Pressing F1 returns to the main 
menu. All of the data entered in the 
CONFIGURATION menu (and all other 
menus) is automatically saved. 

MX The 80C31 uses a multiplexed address. We have made the correct 
connections in the hardware design so that the PSD312 will automatically 
know which pins to multiplex and how to multiplex them. 

8 

A19 

HIGH 

WRand RD 

HIGH 

y 

y 

The 80C31 has an 8 bit data bus width. This is the only width supported 
by the PSD312. 

This option is arbitrary at this time because we are not using A 19 as an 
input or CSI (the power down option). 

The reset polarity is high for the 80C31. 

The 80C31 uses separate write and read strobes for SRAM. 

The ALE polarity is high for the 80C31. 

The separate read strobes are RD for SRAM and PSEN for EPROM. 
The Y answer enables the PSEN feature. 

The data and address space are separated by the read strobes. 
Data (SRAM) and program (EPROM) share the same address space. 
The different read strobes, RD for SRAM and PSEN for EPROM, enable 
them to share this space. 

1 ~-~18~2-----------------------------~Jf~-------------------------------



Figure 1.3: 
MAPLE 
Main Menu 

Figure 1.4: 
Configuration 
Menu 

Configuration 
Data Entr, 
(Cont.) 

PSD3XX - Application Note 023 

F1 EXIT PROJECT INFORMATION 

F2 DOS ALIASES 

F3 MAPPRO CONFIGURATION 

F4 PARTLIST PORT C AND A19/CSI 

F5 LOAD PORTA 

F6 SAVE PORTB 

F7 COMPILE ADDRESS MAP 

Configuration Bit Value 

AddresslData Mode (Multiplexed: MX, Non-Multiplexed: NM) MX 

Data Bus Width (8/16 Bits) 8 

Reset Polarity (Active Low: LO, Active High: HI) HI 

Security (ON/OFF) OFF 

To Select Read, Write Logic, Press SPACEBAR. 

ALE Polarity (Active Low: LO, Active High: HI) HI 

Using Different READ Strobes for Data and Program? (YIN) Y 

Separate Data and Address Spaces? (YIN) Y 

The next option in the option box is PORT 
C and A 19/CSI. Although these pins are 
not used, they must be correctly 
programmed. Figure 1.5 shows the menu 
containing the correct information for this 
example. Port C consists of three pins 
PC(2:0). Each of these pins can be 
individually configured as a chip select 
(output) or an address (input). If ADDRESS 
is selected, there is the choice of using a 
LOGIC or ADDRESS input type for each 
pin. The space bar is used to toggle among 
the selections. (PCO = CS8 or A16, 
PC1 = CS9 or A17, PS2 = CS10 or A18.) 
An address can exist out of sequence as in 
this example where A 19 exists but A 16, 
A17, and A18 do not. 

The PORT C pins must be tied low if they 
are programmed as inputs and are unused. 
However, outputs are not required to have 
terminations and can remain untied. The 
easiest solution is to program all Port C 
pins as chip select outputs to avoid 
unnecessary board traces. The user could 
proceed to define the chip select equations 
for the pins defined as chip selects but it is 
not important since they will not be used. 
Pressing F1 will return the program to the 
main menu. 

Port A is the next menu option on the right 
of the main menu screen. The PORT A 
ADDRESSIIO menu selections are shown 
in Figure 1.6. PORT A will not be used in 
this design but it should be programmed 
correctly. The default selections are the 
same as shown here. The selections are 
shown to help the user understand PORT 
A functions. After selecting the PORT A 
option you are given a choice between 
ADDRESSIIO and TRACK MODE. The 
ADDRESSIIO option, if chosen, enables 
each PORT A pin to output-buffer the 
address bits from AD/A(7:0) or transmit bits 
through the internal 1/0 ports. Each pin is 
individually programmed as either an 
ADDRESS or an 1/0 in the AillO column of 
the menu. Each pin should be chosen as 
an output address. Pressing F1 twice 
returns the program to the main menu. 

Port B is the next option in the menu. 
PORT B pins can be configured as chip 
select outputs or 110 ports just like PORT 
C. Since PORT B will not be used in this 
example, all of the pins should be 
configured as outputs for the same reason 
as given for the PORT C pins. 

F_S6iEE 
-------------------------------------~5fAr----------------------------------1--1--83 



I'S03XX - Application Note 023 

Figure 1.5: 
PortCMenu 
Standard 

Figure 1.6: 
PortA Menu 
Standard 

Configuration 
Data Entry 
(Cont.) 

PIN 

PCO 
PC1 
PC2 
A19 

PIN 

PAO 
PA1 
PA2 
PA3 
PA4 
PAS 
PA6 
PA7 

CS/Ai 

CS8 
CS9 
CS10 
A19 

AillO 

AO 
A1 
A2 
A3 
A4 
AS 
A6 
A7 

ADDRILOGIC 

LOGIC 

CMOS/OD 

CMOS 
CMOS 
CMOS 
CMQS 
CMOS 
CMOS 
CMOS 
CMOS 

The last option is ADDRESS MAP. The 
address map lets the user select address 
ranges for EPROM, SRAM, and 1/0 in the 
same way that you would using separate 
packages. The difference is that, for 
separate packages, you would use chip 
selects to enable a chip when in its 
address range. For the PSD312, you just 
enter the conditions that will select each 
module. Figure 1.7 shows the correct 
address map entries for this design. 
Looking at addresses 16,17, and 18, there 
is an N listed down the column. This 
means that the addresses can not be 
used as address inputs. They do not exist 
as addresses and can not be used as 
select bits. This is so because, in the 
configuration of PORT C, we chose all of 
these pins to be chip select outputs. If we 
had configured the PORT C pins to be 
logic inputs, then we would have had to 
enter an X for "don't care" in those same 
columns. The SEGMT columns are usually 
filled in automatically by the program. They 
are left blank in this case because the N 
listed down the address columns make the 
segments undefinable. 

Instead of having one contiguous EPROM 
space, the PSD3XX family EPROM is 
broken up into 8 Kbyte blocks. In this 
application, the selects for each block are 
ESO through ES3. Notice that no two 
blocks of EPROM are selected under the 
same address conditions. After all, you 
can't look at two different EPROM 
addresses at once. The other selects, ES4 
through ES8, will not be used in this 
example. An N is listed down the columns 

for A 11 and A 12 because the blocks are 
bigger than the use of these address bits 
permit. The N stands for "not used" 
because the bits are not used for selection. 
That is, we "don't care" about these bit 
values. The EPROM file we will use is 
called DEMO. HEX and it exists in the MAP 
directory so that the MAP PRO software can 
find it when programming the PSD312. The 
size of the blocks for DEMO. HEX match the 
side of the blocks for the EPROM. RSO is 
the select for SRAM. Notice that SRAM 
(RSO) and EPROM (ESO) can be selected 
under some of the same address 
conditions. This is not a problem because 
SRAM and EPROM can share address 
space since their data is selected by 
different read strobes (PSEN and RD). See 
the CONFIGURATION menu, Figure 1.4). 
CSP is the chip select for the PSD312 I/0s. 
1/0 ports are selected by selecting each 
appropriate address which is an offset from 
the address of CSP. We are not using the 
110's so we can disable them by selecting a 
true condition for A19. A19 is tied low in 
the hardware so this condition will never 
occur. This hardware solution is not 
required in most cases. Usually, a CSP 1/0 
base address can be set aside so that 1/0 
data will not interfere with EPROM or 
SRAM data. 

The ADDRESS MAP menu extends 
towards the right of the screen. Pressing 
the right cursor pans the menu to the right. 
This portion of the menu does not require 
input for this example. Leaving the inputs 
blank means "don't care". Pressing F1 
returns the main menu. 

r··.Il' -1.-18-4--------------... A.1---------------



Configuration 
BataEntr, 
(Cont.) 

Figure 1.7: 
Standard Address 
Map Menu 

Programming 
ThePSB3XX 

At this point, all of the necessary menu 
items have been completed. On the left 
option block in the main menu is a SAVE 
option. You must type a name to store the 
file and press ENTER. The name given to 
this file will be DEMO. The extension is 
automatically appended. Saving is done so 
that next time the DEMO file is loaded, the 
menus will display the information entered. 
This is especially useful when modifying 
earlier designs. The file needs to be 
compiled to run on the MAPPRO software. 

A A A A A A A A A 
19 18 17 16 15 14 13 12 11 

ESO 0 N N N 0 0 0 N N 
ES1 0 N N N 0 0 1 N N 
ES2 0 N N N 0 1 0 N N 
ES3 0 N N N 0 1 1 N N 
ES4 N N N N N 
ES5 N N N N N 
ES6 N N N N N 
ES7 N N N N N 
RSO 0 N N N 0 0 0 0 0 
CSP 1 N N N 0 0 0 0 0 

The MAP PRO software is used with the 
WSI MagicPro@ PROM programmer to 
program the PSD312. MAPPRO can be 
started from the main menu or by entering 
the command MAP. When started, the 
MAPPRO menu appears as a list of 
options. Each option is selected by typing 
the first letter of the option. 

The "Name of the Device" option selects 
the device to be programmed. Typing in 
PSD312 selects that device. The DEMO 
file is loaded by the "Load RAM from disk" 
option. After the PSD312 is plugged into 
the MagicPro device, program the PSD312 
by selecting "Program". The program then 
asks for the starting addresses of SRAM 
and EPROM for which the default address 
is entered. Programming will take a few 
minutes. 

The PSD3XX Family Device can be made 
secure by selecting the "Set Security" 
option. Make certain that this option is not 
selected until after the device configuration 
is programmed. If the security bit is 
programmed before the configuration, the 
PSD312 will fail the blank test and will 
require UV erasing. 

PS03XX - AppllcatlDn NDte on 

Selecting the compile option does this. The 
same name DEMO is typed and the correct 
extensions will be appended to the files 
generated. The user can look at a report 
file which is generated during the compila­
tion. It can be used to verify the program­
ming parameters. The COMPILE option 
takes a few minutes to run, depending on 
the speed of the PC used. The compiled 
configuration file can now be used in 
MAP PRO to program the PSD312. 

SEGMT SEGMT FILE FILE FILE NAME START STOP START STOP 

0 1FFF DEMO.HEX 
2000 3FFF DEMO.HEX 
4000 5FFF DEMO.HEX 
6000 7FFF DEMO.HEX 

N/A N/A 
N/A N/A 

The MAPPRO software can check a design 
by using the "verify" option. This option 
compares a PSD3XX series device, which 
is installed in the MagicPro@ PROM 
programmer, to configuration and EPROM 
data which was previously loaded in the 
MAPPRO software. The "previously 
loaded" information may have been loaded 
during either the "Load RAM from disk" or 
"Upload data from device" option. 

The "Upload data from device" option 
reads the PSD312 information and installs 
it into the MAPPRO RAM. With this option, 
PSD3XX family devices can easily be 
compared to one another or to the 
MAPPRO RAM. However, if the security bit 
has been set, selecting this option will not 
load the data. 

The "Display RAM data" option can be 
used to display the PSD312 data which is 
contained in the MAP PRO RAM. This can 
be especially useful when you need to 
analyze EPROM data. 

-------------------------r~I~,~-------------------------
'rINTIA 1-185 



PSD3XX - ApplicatiDn NDte 023 

PART II. 
Advanced 
PSD3XX Family 
Design 

Figule 2. 1. 
Advanced 8031 
Miclocontlollel 
System 
Block Diaglam 

By now you should have a basic 
understanding of the PSD3XX device so it 
is time to introduce some additional 
features. This example will solve a slightly 
more complicated design problem. By 
going through this example you should 
understand how to use the PSD3XX device 
to realize functions for your own unique 
designs. 

Assuming the design in Part 1 has been 
created and saved under the name DEMO, 
you can load that program in the MAPLE 
menu to begin this new design. This will 
keep you from having to enter redundant 
information. For example, the CONFIGU­
RATION menu will not require any changes 
in this design. In this second example, 
restating the method of navigating through 
the menus will be avoided for purposes of 
brevity. 

512 KBIT EPROM 

i ~ PSEN - -- I 

The diagram in Figure 2.1 illustrates the 
new microcontroller board design to be 
replaced by a design using the PSD312. In 
addition to functions previously replaced in 
the standard board design, this board 
includes chip select logic, 1/0 buffers, and a 
logic chip. The logic chip does not perform 
microcontroller functions but is included to 
show the flexibility of the PSD312. An 
additional change is there is now an SRAM 
chip select which is an input to the 
board. Its logic select function is defined 
elsewhere so it does not need to be 
recreated in the PSD312's chip select logic. 
This scenario would occur when some 
other device has a separate SRAM of its 
own. This other device will decide whether 
the microcontroller writes to the PSD312 
SRAM or its own SRAM. The configuration 
of this design is mostly the same as in Part 
1. We are now using PORT A as an 1/0 
buffer, all PORT C pins are now used as 
logic inputs, and we must specify the chip 
selects in PORT B to conform to our logic 
and chip selects. 

16KBITSRAM 

RD WR 

i i 
.J CHIP 

I SELECT 

A(7:0) 

L 
I LOGIC 

AD(7:0) 
ADDRESS 

LATCH 

VO I. • 
,~ 1 

A(15:8) BUFFERS I 

PSEN 

t t 
LOGIC OUTPUTS 

t ~ I • 
RD WR 

I I 
LOGIC 

8031 
MICROCONTROLLER t LOGIC INPUTS 

NOTE: Each Block represents one Ie package. 

----------------------------~Jrl---------------------------1-186 



Advanced 
PSD3XX Family 
Design 
(Cont.) 

Figure 2.2: 
Advanced D~sign 
PSD312/8031 
Physical 
Connections 

Figure 2.2 illustrates the physical 
connections to the PSD312. The SRAM 
chip select is input to A 19 (A 19/CSI), and 
the logic inputs are input through A(18:16). 
These are arbitrary assignments among 
the address inputs. PORT C could not be 
used for chip select outputs because we 

-::.... 

PS03XX - AppllcatlDn IIDte D23 

needed to make room for the inputs. See 
Figure 2.3 for PORT C menu selections. 
Notice that the address inputs can be used 
for logic. Although the name of the inputs 
are ADDRESS, they are really either logic 
or address inputs. 

Vee 
O.1mF 

)1---

GND GND Vee 110 SIGNALS 
RAM_CSN PA(7:0) .. • ~ A19/CSI CS (3:0) 

PB(7:0) • 
LOGIC INPUTS PSD312 RD CHIP SELECTS 

• PC(2:0) WR AND LOGIC 
ALE 

PSEN 
AD(7:0) A(1S:8) RESET 

LATCHED 
LOWER 

ADDRESS 
AND DATA 

BUS 

UPPER 
ADDRESS 

BUS 

.... ---RESET 

PO(7:0) P1 (7:0) RD, WR, 

ALE, PSEN, 
RESET 

8031 
MICROCONTROLLER 

NOTE: Additional Mlcrocontroller connections are not shown. 

----------------------------------~ __ Jr_JF_~----------------------------------
1·187 

----~----- - --- --------- -----



PSD3XX - AppllcatlDn NDte 023 

Advanced 
PSD3XX Family 
Design 
(Cont.) 

Figule2.3: 
Advanced 
PortC 
Menu 

Figule2.4: 
Advanced 
PortA 
Menu 

FiguI82.5: 
Advanced 
Port, 
Menu 

Table 2.1: 
Logic Tluth 
Table 

The I/O buffers connect to the PSD312 
through PORT A. PA(3:0) are inputs, 
PA(7:4) are outputs. See Figure 2.4 for 
PORT A configuration. 

Port B is used for the chip select and logic 
outputs. See Figure 2.5, the PORT B menu. 
These pins must be defined as chip select 
outputs. The CMOS/OD for CMOS or open 
drain output is the next option. From here 
we go to the chip selects for the PORT B 
pins. Table 2.1 describes the function of the 
logic chip. This type of logic might be used 
in a state machine. In the menu selections 

PIN CS/Ai ADDRILOGIC 

PCO A1S LOGIC 
PC1 A17 LOGIC 
PC2 A18 LOGIC 
A19 A19 LOGIC 

PIN Ai/IO CMOS/OD 

PAO 10 CMOS 
PA1 10 CMOS 
PA2 10 CMOS 
PA3 10 CMOS 
PA4 10 CMOS 
PA5 10 CMOS 
PAS 10 CMOS 
PA7 10 CMOS 

PIN Ai/IO CMOS/OD 

PAO CSO CMOS 
PA1 CS1 CMOS 
PA2 CS2 CMOS 
PA3 CS3 CMOS 
PA4 CS4 CMOS 
PA5 CS5 CMOS 
PAS CSS CMOS 
PA7 CS7 CMOS 

INPUTS OUTPUT CONDITION 
A B C (CSO) 

0 0 0 0 
0 0 1 1 
0 1 0 1 
0 1 1 0 
1 0 0 1 
1 0 1 1 
1 1 0 0 
1 1 1 1 

for CSO we look at the occurrences of a 
logic low from the table and enter that 
information into the chip select menu as 
shown in Figure 2.S. Notice that all other 
columns are left blank since they won't be 
part of the chip select equation. That is, we 
don't care about their levels. For example, 
we could use ALE or the page selects, PO 
through P3, as logic inputs. Figures 2.7, 
2.8, and 2.9 show the other chip select 
menus. These chip selects enable 
components on other boards when their 
address ranges are encountered. 

-
-------------------------~Jr;------------------------
1-188 



Tab/e2.2: 
ChipSe/ect 
Address Map 

Figure 2.6: 
ChipSe/ect 
Definition CSO 

Figure 2.7: 
ChipSe/ect 
Definition CS1 

Figure 2.8: 
ChipSe/ect 
Definition CS2 

Tab/e2.9: 
ChipSe/ect 
Definition CS3 

PS03XX - Application Note 023 

CHIP SELECT ADDRESS RANGE ADDRESS BITS 
15 14 13 12 11 

CS1 DOOO- DFFF 0 1 X 
CS2 COOO-C7FF 0 0 0 

CS3 C800- CFFF 0 0 

A19 A18 A17 A16 A15 A14 A13 A12 A11 RD WR ALE P3 P2 P1 PO 
o 0 0 
o 
1 1 0 
X X X 

A19 A18 A17 A16 A15 A14 A13 A12 A11 RD WR ALE P3 P2 P1 PO 

1 1 0 1 
X X X X 

X X X X 

X X X X 

A19 A18 A17 A16 A15 A14 A13 A12 A11 RD WR ALE P3 P2 P1 PO 
1 1 0 0 0 
X X X X X 

X X X X X 
X X X X X 

A19 A18 A17 A16 A15 A14 A13 A12 A11 RD WR ALE P3 P2 P1 PO 

1 1 0 0 1 
X X X X X 

X X X X X 
X X X X X 

ii' __ 4iEE 

------------------------------~~;----------------------------1---1H 



PS03XX - Application Note 023 

Advanced 
PSD3XX Family 
Design 
(Cont.) 

Figure 2.10: 
Advanced 
Address Map 
Menu 

Conclusion 

The address map is shown in Figure 2.10. 
Notice that the SRAM chip select, A19, 
must be enabled for the microcontroller to 
access the SRAM. This will enable another 
device to select which SRAM is enabled for 
a read or write. Address A 19 is listed as a 
"Don't care" or "X" for ESO through ES3 
because the SRAM chip select, A19, may 
be enabled during an EPROM access. The 

A A A A A A A A A 
19 18 17 16 15 14 13 12 11 

ESO X X X X 0 0 0 N N 
ES1 X X X X 0 0 1 N N 
ES2 X X X X 0 1 0 N N 
ES3 X X X X 0 1 1 N N 
ES4 N N 
ES5 N N 
ES6 N N 
ES7 N N 
RSO 0 X X X 0 0 0 0 0 
CSP 1 0 0 0 0 0 0 0 0 

A PSD3XX family device can implement 
many common microcontroller functions 
and it is flexible enough to be used on 
designs requiring special functions. Its use 
will reduce the component count, layout 
complexity, size, component cost, PCB 
cost, and power consumption of a design. 
Reliability is increased due to the reduced 
chip count. The risk of board redesign is 
minimal given the ease of design and the 
PSD3XX device's flexibility. The user 
friendly software makes it easy to use in 
any design. 

read strobes, PSEN and RD, are used 
to separate the EPROM and SRAM. The 
CSP is the enable for the I/O functions. It is 
selected for address 80 Hex. Since the 
EPROM address locations have been 
carefully mapped, the 1/0 address 
selections will not coincide with EPROM 
addresses. 

SEGMT SEGMT FILE FILE FILE NAME START STOP START STOP 

0 1FFF DEMO.HEX 
2000 3FFF DEMO.HEX 
4000 5FFF DEMO.HEX 
6000 7FFF DEMO.HEX 

N/A N/A 
N/A N/A 

",iFE 
--------------------------------------~aJJf-------------------------------------
1-190 



Introduction 

The Processor 

The Periphery 

Programmable Peripheral 
Application Note 024 
Using the PS0311 with a 
High-Speed ADSP-2105 OSP 
By Lane llauclc, Proxima Corp. 

Digital Signal Processor (DSP) chips are 
enjoying a surge in popularity with system 
designers, due to their high performance 
and dropping prices. Fueled by a large PC 
peripheral market, primarily in disk drive 
controller and "multimedia" signal 
processing applications, DSP offerings now 
include high-performance processors that 

The Analog Devices ADSP-2101 family is 
a good example of the inexpensive DSP 
power available today. The lowest-cost 
member of the family, the ADSP-21 05, has 
the following features: 

Q 16-bit multiplier/accumulator 

Q Hardware (zero time) looping 

Q 1 K 24-bit internal program memory 
Q 512 16-bit internal data memory 

Q Two hardware address generator units 
Q Barrel shifter 

Q Synchronous serial port 
Q TImer 

The WSI PSD3XX family has found wide 
application in microcomputer systems. 
Because the PSD3XX chips offer all of 
the elements and "periphery" required for 
many applications in one package, they 
make possible very economical two-chip 
computer systems. Thumbing through the 
WSI PSD Data Book, it soon becomes 
apparent that the PSD3XX chips are great 
for 8051, 68HC11 and other microcontroller 
designs. But what about a chip for a DSP 
like the ADSP-2015? 

execute instructions in 100 ns or less for 
under $10. To achieve a total solution the 
designer needs to add periphery circuitry. 
The WSI PSD3XX family of programmable 
peripherals implement the periphery 
functions by effectively integrating 
programmable logic, I/O ports and memory 
on a single chip. 

In one 100 ns cycle, the ADSP-2105 can 
fetch two operands, update the address 
units that pointed to the operands, multiply 
the two 16-bit operands and accumulate 
(add) the result to a 40-bit total. Program 
looping is done in hardware, so one of 
these fancy instructions can be executed 
every 100 ns. 

Although a PSD100 chip is available 
expressly for DSP support, it's not the 
lowest cost choice because of its very high 
speed (access time of 45-55 ns). 
However, a feature of the ADSP-2101 
family makes it possible to use the lowest 
cost PSD3XX chip available, the PSD311, 
to make a true 2-chip DSP system! In fact, 
the 100 ns ADSP-21 05, which requires 
program memory access time of around 50 
ns, can use the PSD311-12 (or even a 
slower version) for all of its system support, 
while still executing programs at a 
sustained 100 ns cycle time. 

1·191 



PSD3XX - Application Note 024 

ADSP 
Memory 
Organization 

Program 
Memory 

Figure 1. 
Schematic 
Diagram 

Program memory for the ADSP-21 05 
consists of 1024 24-bit words of RAM 
inside the DSP chip. A special external 
memory space, called "boot memory," is 
supported by the ADSP-2105 to enable 
connection of a byte-wide EPROM to the 
ADSP-2105 for loading the program 
memory at power-up, or subsequently 
under program control. A special active-low 
strobe signal, BMS (Boot Memory Select), 
simplifies the boot memory interface. All 
you need to interface a boot EPROM is to 
connect the EPROM address and data 
lines to the ADSP-2105 (see Figure 1), and' 
the BMS signal to the PSD311 chip enable. 

The two-chip design uses a 2K byte 
section of the PSD311's EPROM as boot 
memory. The connection to the PSD311 is 
almost as straightforward as connection to 

023-016 
10MHz 

.----.._--1 XTAl 

a standard EPROM. Because of the way 
the busses are laid out inside the 
ADSP-21 OS, the eight PSD311 data lines 
are connected not to D7-DO, as you would 
expect, but to D15-D8 (see Figure 1). 
Also notice that the most significant 
address is supplied by the ADSP-21 05 
"D22" line - there's no "A 14" address line. 
The BMS signal acts as an EPROM chip 
select and is connected to the PSD311 
"A19" input. A19 is programmed as a chip 
enable signal, as described later. 

T~e ADSP-21 05 generates active low read 
and write strobes, which are connected to 
the corresponding PSD311 RD and WR 
inputs. These strobes serve to enable 
transfers to and from the PSD311 EPROM 
and RAM. 

SYSTEM RESET 

ADSP-2105 

I 
-= 

I 
-= 

+5V 

ClKIN 

015-08 07-00 022 A13-AO BMs OMs RD WR 

PA7-PAO 

ALE 

GENERAL 
PURPOSE 
110 LINES 

NC 

A14 A13-AO A19 A18 RO WR 

PSD311 

:- .. 1>0.-: · . · . · . 

ONE 
MORE 

INVERTER 

RES 1:)-----' 

TO SYSTEM 



Data 
Memory 

Logic 
Functions 

Configuring 
thePSD311 

The ADSP-21 05 has 512 16-bit words of 
internal data memory, located at $3800. 
This is augmented by the 1024 bytes of 
RAM in the PSD311. Fortunately, the data 
bus is connected to the same ADSP-2105 
data lines -- 015:08 -- as the boot EPROM, 
so the address and data connections that 
were made for the boot EPROM are also 
valid for the RAM. All that is needed for 
RAM system integration is to program the 
PSD311 to place it's RAM in the desired 
slot on the ADSP-21 05 memory space. 

Although using the 8-bit wide PSD311 RAM 
in a 16-bit system may be troublesome, 
remember the ADSP-2105 already has 512 
16-bit words of high-speed internal RAM. 

The Programmable Address Decoder 
(PAD) is used to generate miscellaneous 
control signals, plus some I/O port bits. 
Two active-low strobes, XRD (external 
read) and XWR (external write), go to other 
I/O peripherals in the system. As with all 

The WSI "PSD-Gold" development system 
was used to specify the PSD311 design file, 
and the MagicPro® Programmer (included 
in the PSD-Gold system) to program 
PSD311 parts. Appendix B shows the 
".SV1" file that was created from the 
design. The" .SV1" file is a convenient 
summary of the PSD311 design, which 
includes aliases (named signals), global 
configuration information (how the part is 
set up), Port B configuration (assignment of 
port-B pins as I/O bits or chip selects 
outputs), Port C configuration, and logic 
equations for the two PADs. 

Before using the PSD-Gold development 
system, it is very helpful to make a 
configuration worksheet as shown in 
Appendix A. This is a version of the 
PSD311 PAD description chart that appears 
in the WSI Programmable Peripherals 
Design and Applications Handbook. Some 
of the PSD311 pins can serve as either 
inputs or outputs. The worksheet helps to 
keep the pin aSSignments clear. 

PSD3XX - ApplicatlDn NDte 024 

This design made good use of the 
"extra" RAM in the PSD311, and even 
incorporated an additional chip to gain 
some speed in using this RAM. Notice that 
the ADSP-2105 data lines 023-015, which 
constitute the upper byte of the 16-bit data 
bus, are driven by an octal, tri-state buffer 
whose inputs are tied low. If this were not 
done, any 16-bit read of the 8-bit PSD311 
RAM would contain garbage in the upper 
8 bits (since these inputs are unconnected). 
If you can spare a couple of cycles to mask 
off the upper bits, or if your application 
doesn't look at the upper 8 bits, the buffer 
can be eliminated. 

designs, this was one inverter short, so the 
A 15 line was configured as an input, the 
CS6 line as an output, and with the logic 
equation CS6 = A15 a chip was saved. 
Very handy, that PSD311 PAD! 

For example, CS8 and A16 share the same 
pin, so if you use the pin as output CS8, 
the input A 16 pin is unavailable (shown 
crossed out in the workshee!L.!:ikewise, 
the CS9-A 17 pin is used as CS9, so A 17 is 
unavailable, and CS10-A18 is used as an 
input (A18), so the CS10-PC2 pin is 
crossed out. 

MagicPro IS a registered trademark of WaferScale Integration, Inc. 

"fllJilE 
-------------------------------------~~Jr-------------------------------------

1-193 



PS03XX-APPlicationNot~e~OZ'4~================-__________ l 
Appendix A 

@)A19 

@:>A18 

LCs~ )4 

LCs~ W 
GDA15 

~A14 

G!VA13 

~A12 

@)A11 

CSI 

RESET 

ESO 

ES1 
ES2 
ES3 
ES4 

i IUtWBi*ES5 ES6 
ES7 
RSO 

• 
• 

CSIOPORT 
CSADIN 
CSADOUT1 
CSADOUT2 

~@) 

K~ 
MC® 

~\!I18J 

1-194 
-------------------------------------~~.-------------------------------------.,.,..- ~ 



Memory 
Space 

The ADSP-21 05 outputs a 14-bit address. 
The PSD311 has a 32KByte EPROM, 
organized as eight 4K byte "blocks," each 
with its own internal chip-enable signal that 
is programmed in one of the PADs. EPROM 
chip select signals are therefore developed 
from address lines A12-A14, with AO-A11 
(accounting for each 4K block) going to 
each of the eight EPROM blocks. It was 
puzzling at first to see the signal A 11 
appear on the PSD311 PAD description 
since it does not participate in any of the 
chip select equations. Only after firing up 
the PSD-Gold software was it made clear 
that this input is not allowed in the EPROM 
chip select equations. 

A12-A14 are connected to ADSP-2105 
A12, A13 and 022 (022 serves as "A14" as 
previously mentioned). The remaining 
PSD311 address inputs A15, A18, and A19 
are available as general purpose inputs: 
A18 was used as OMS, the ADSP-2105 
Data Memory Select signal, and A 19 as 
BMS, the ADSP-2105 Boot Memory Select 
~nal. As mentioned previously, the ADSP 
RD and WR signals are connected directly 
to the corresponding PSD311 signals. 

The inverter consists of the unused A 15 
input and the CS6 output. These signals 
are labeled "HD" and "HD" in the Appendix 
A worksheet. 

Appendix B gives a summary of the 
questions asked by the configuration 
software, and the answers given for the 
DSP design. Line numbers have been 
added for discussion purposes. On lines 
3-7, the signal name assignments are 
shown. Lines 12-19 show the configuration 
information, as follows: 

12. Address/Data lines are NM: 
Non-Multiplexed. 

This separates the low-8 address and 
data lines instead of multiplexing them 
onto one 8-bit port and separating them 
with an ALE (Address Latch Enable) 
signal. In this design the address and 
data lines are separate so NM is 
chosen. 

13. Data Bus Size: 8 

"8" is the only choice in the PSD311 
(you can choose 8 or 16 in the PSD301 
part). 

PSD3XX - Application Note 024 

14. CSI/A19: A19 

This double-duty pin can be used to 
power down the PAD when the CSI 
input is held high. The DSP design 
does not use this feature so A 19 was 
selected, making this pin a general 
purpose input. 

15. Reset Polarity: LO 

This was made the same polarity as 
the ADSP-21 05 reset so the two could 
be connected together. 

16. ALE Polarity: HI 

ALE is not used in a non-multiplexed 
design, but it must still be accounted 
for. ALE must be declared HI or LO, 
and then tied HI or LO to make the 
address latch '~ransparent". HI was 
chosen and tied the ALE pin HI. 

17. WRD/RWE: WRD 

Selects separate strobes for RD and 
WR, rather than R/W and Enable pins. 
This enables direct interface to the 
ADSP-2105 RD and WR inputs. 

18. A16-A19 Trans: T 

A 16-A 19 are used as general purpose 
inputs so they are configured to be 
"transparent", i.e. non-latched. 

19. Using different. .. N 

The RD signal is used for both the 
PSD311 RAM and EPROM, so the 
answer to this question is "No." 
Basically, there are two ways to 
develop strobe signals for the 
PSD311's internal RAM and EPROM. 

In the "Combined Address Space" 
option, the RD signal, qualified by the 
external PSEN signal, is used to 
enable both the RAM and EPROM. In 
the "Separate Code and Data Address 
Spaces" option, the RD signal enables 
the RAM, but the separate PSEN 
signal enables the EPROM. This is 
how 8031-type systems are hooked up. 

filiF liFE 
-------------------------------------~.r~----------------------------------1--1-9-5 



PS03XX - Application Note 024 

Memory 
Space (Cont.) 

ADSP-2105 
Timing 

Summary 

Since the ADSP-2105 issues a single RD 
strobe for all of its external memory, "NO" 
was answered to this option. IMPORTANT: 
Since the RD sign~ualified by the 
PSEN signal, the PSEN signal must be tied 
HI (to Vce) when using this option. 

Lines 26-33 of Figure 2 show the output 
configurations for the Port B pins. "CMOS" 
was chosen over open drain. 

Line 37 shows the logic equation for the 
inverter. The CS6 signal is shown as it's 
alias name, "HD," but the A15 signal is 
shown as is (it was named HD in figure 1.) 

Lines 46-48 show how the three pins that 
can be inputs or outputs were assigned, 
and lines 53 and 55 show the logic 
equations for the external read and write 
strobes. 

Finally, lines 67-76 show the logic 
equations that select the EPROM and 
RAM. "ESO" is the EPROM Strobe for the 
first 2048-byte EPROM block. The file 
mane "CYRM30.HEX" is entered to show 
where to find the Intel Hex format file for 
the data to be programmed into this 
EPROM block. It's important to remember 
to "re-compile" the design anytime the 
EPROM file list (lines 67-74) is changed. 
The compiler incorporates the hex files into 
its programming data only when the 
compiler is run. 

The ADSP-2105 offers great timing 
flexibility in talking to outside peripherals 
such as the PSD311. Four separate 
memory spaces may be assigned 
individual numbers of wait states to 
accommodate wide timing differences. 

At first glance, the lowest-cost member of 
the PSD family might not appear to be a 
match for a high-speed number cruncher 
like the ADSP-21 05. After some analysis, 
however, it turns out 10 be a perfect match, 
making possible a very effective two-chip 
system. The eight-bit organization of the 
PSD311 EPROM makes it suitable 
for implementation as the ADSP-21 05 boot 
memory, and the 8-bit RAM is easily 
interfaced into the ADSP-21 05 data­
memory space. The PSD311 1/0 section 
provides welcome system interface bits, 

Notice that the block size of the PSD311 , 
4 kilobytes, happen to be the same "block" 
size as the ADSP-2105 boot blocks, so the 
logical divisions of ADSP-21 05 boot blocks 
and PSD311 chip selects are the same -
one of those happy accidents that occur 
every so often in engineering design. 

Only the first block was needed to begin 
the design. As the design progresses more 
or all of the EPROM blocks will probably be 
used. Blocks are added by entering File 
Names to the list, or using the same file 
name and giving different segment start 
and stop addresses within the file. 

"RSO" (line 75) is the RAM chip select 
equation, and "CSP" (line 76) is the base 
address for the output port registers. 

Note that the signal shown as "A 19" is 
actually the ADSP-21 05 BMS signal, and 
thus is LO for the EPROM chip selects (the 
EPROM is used as boot memory). Also, 
the "A18" signal is actually the ADSP-2105 
DMS signal, which is LO for the RAM and 
10 chip select equations. Aliases would 
have been handy for these signals, but the 
development software does not presently 
support aliases for all signals. 

The ADSP-21 05 "Wait Register" was 
programmed for 1 wait state, i.e. a 200 ns 
cycle time, for EPROM, RAM, and external 
memory strobes. This allows comfortable 
margins with a PSD311 120 ns part. 

and the programmable address decoders 
offer the required flexibility to place the 
various PSD311 resources where they are 
needed in the ADSP-2105 memory space. 
If there are pins left over, the PAD can even 
be used to implement some "stray" logic, if 
required. Because of the ability of the 
ADSP-2105 to insert a programmable 
number of wait states into external 
accesses, the designer may choose the 
PSD311 speed necessary for the most 
cost-effective design. 

-------------------------------------~ar~-------------------------------------
1-196 



PS03XX - Application Note 024 

AppendixB 
The .SV1 
File 

2 

3 

4 

5 

6 

ALIASES 

/cse/Al6 

/CS9/A17 

/CSIO/AIB 

/CSI/A19 

7 /CS6 = HD 

8 

XRD 

XWR 

DMS 

BMS 

9 ********************************************************************* 

10 GLOBAL CONFIGURATION 

11 

12 

13 

14 

15 

16 

17 

18 

Address/Data Mode: 

Data Bus Size: 

CSI/Al9 : 

Reset Polarity: 

ALE Polarity: 

WRD/RWE: 

Al6-Al9 Transparent or Latched by ALE: 

NM 

8 

A19 

LO 

HI 

WRD 

T 

19 using different READ strobes for SRAM and EPROM: N 

20 

21 ********************************************************************* 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

Bit No. 

0 

1 

2 

3 

4 

5 

6 

7 

PORT B CONFIGURATION 

CS/IO. CMOS/OD. 

10 CMOS 

10 CMOS 

10 CMOS 

10 CMOS 

10 CMOS 

10 CMOS 

CS6 CMOS 

10 CMOS 

!F •• .,lE 
-------------------------------------------~.,~-------------------------------------------

1-197 



PSD3XX - Application Note 024 

AppendixB 
The .SV1 
File (Cont.) 

34 

35 

36 

37 

38 

39 

HO 

CHIP SELECT EQUATIONS 

I ( A15 ) 

40 ********************************************************************* 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

PORT C CONF~GURATION 

Bit No. CS/Ai. 

csa 

CS9 

Ala 

XRO 

XWR 

o 
I 

2 

CHIP SELECT EQUATIONS 

I( IOMS * IAl3 * IAl2 * All * I RO ) 

I( IOMS * IAl3 * IAl2 * All * I WR ) 

********************************************************************* 

-----------------------------------------'jF~~~-----------------------------------------
1·198 ~-=-==' := 



PSD3XX - Application Note 024 

AppendixB 
The .SV1 
File (Cont.) 

60 

61 

62 ADDRESS MAP 

63 

64 

65 A A A A A A A A A SEGMT SEGMT EPROM EPROM File Name 

66 19 18 17 16 15 14 13 12 11 STRT STOP START STOP 

67 ESO 0 1 N N X 0 0 0 N 0 fff 

68 CYRM30.HEX 

69 ESI 0 1 N N X 0 0 1 N 

70 ES2 0 1 N N X 0 1 0 N 

71 ES3 0 1 N N X 0 1 1 N 

72 ES4 0 1 N N X 1 0 0 N 

73 ES5 0 1 N N X 1 0 1 N 

74 ES6 0 1 N N X 1 1 0 N 

75 ES7 0 1 N N X 1 1 1 N 

76 RSO 1 0 N N X X 1 1 0 

77 CSP 1 0 N N X X 0 0 0 

78 

79 

80 ****************************** END 

81 **************************************** 

---------------------------------------,JrArJl:~---------------------------------------
-..... 1-199 



PSD3XX - Application Note 024 

____________________________ ',Ir.,~ __________________________ _ 
1-200 'rlNl1if ~ 



iFEE :='= --- ..." --- --=:""ii-iii=!ii-3ii-= == ----~~ --

Introduction 

Figure 1. 
SBlies 100 
Distributed 
Intelligence 
Controller 
(Courtesy of 
DMS Systems) 

Programmable Peripheral 
Application Note 025 
Interfacing The PSD3XX To The NEURONqp 
3150™CHIP 
By Dan J. Friedman, WlI and RtIZII S. Ra/I, Echllion Corporation 

Interfacing the PSD3XX to the NEURON 
3150 CHIP can increase the capability of 
the NEURON 3150 CHIP without 
significantly increasing the board space 
and power consumption. The PSD3XX 
enhances the capabilities of the NEURON 
3150 CHIP by increasing both its I/O 
capability and memory capability. By using 
the PSD3XX, the I/O port capability can be 
expanded from 11 to 21 I/O ports. This two 
chip solution will also give the user 
up to 128K bytes of EPROM with built-in 
paging logic, 2K bytes of SRAM, and 
programmable logic for address decoding 
and integration of any glue logic. This 
application note describes the process of 
interfacing the PSD3XX to the NEURON 
3150 CHIP. 

The two chip solution discussed in this 
application note was implemented into a 
Series 100 Distributed Intelligence 
Controller developed by DMS Systems. 
Figure 1 shows a picture of the Series 100 
board containing the PSD312 and the 
NEURON 3150 CHIP. 

The Series 100 operates industry standard 
I/O modules and mounting racks. Unlike 
previous generations of master/slave 
control systems, the controller operates 
either as a stand-alone or in a parallel, 
peer-to-peer network. This allows each 
board to perform a number of difficult tasks 
autonomously, while still coordinating with 
the rest of the system. 

Since the Echelon LONWORKS™ network 
uses a high performance peer-to-peer 
protocol, there is no host necessary. 
Each controller can communicate with any 
others within the same network. Many 
networks can be linked to other networks 
through a router. 

1-201 



PSD3XX - ApplicatlDn NDts 025 

A Typical 
NEURON 3150 
CHIP Design 

Figure 2. 
Before and 
After 
Interfacing 
to the WSI 
PSD3XX 

Figure 2 shows a typical NEURON 3150 
CHIP node design before and after the use 
of a PSD3XX. The Before design includes 
an EPROM, SRAM, decoder to generate 
external chip selects, and an I/O port. For 
applications where space is critical, this 
implementation may be unacceptable. In 
the NEURON 3150 CHIP, memory 

Without PSD3XX 

ADDRESS 

NEURON 
3150 
CHIP 

DATA 

..... PLD 

WithPSD3XX 

NEURON 
3150 
CHIP 

locations EBOO through FFFF are reserved 
for internal use. All external memory must 
be mapped from 0000 to E7FF. In order to 
take advantage of the full memory space, 
an external address decoder to lhe external 
memory devices must be incorporated. The 
After drawing shows a simpler smaller 
design. 

J 
EPROM SRAM 

es es 

I 

-

I- I/O 

~ r- es 

- I/O 

es 

1/0 
LINES 

PSD3XX 

-1-~-02--------------------------------~~~-----------------------------------



NEURON 3150 
CHIP and the 
Exte,nal 
Memo" 
Interlace 

The NEURON 3150 CHIP provides an 
external memory bus to permit expansion of 
memory up to 5BK bytes beyond the 512 
bytes of EEPROM and 2K bytes of RAM 
resident on the chip. The NEURON 3150 
CHIP requires 16K bytes of external 
non-volatile memory to store its firmware. 
The remaining 42K bytes of extemal 
memory are available for user application 
program and data. 

Assessing MemDlY Requirements 
LONWORKSTM nodes based on the 
NEURON 3150 CHIP use a combination of 
three different types of memory: 

Q Non-Volatile Memory for NEURON CHIP 
Firmware and, optionally, Application 
Code. 

Q Electrically Rewriteable Non-Volatile 
Memory for Network and Application 
Code and Data. 

Q Read/Write Memory for Packet Buffering, 
or, optionally, Application Code and 
Data. 

A LONWORKS application node may 
include the external memory types 
described above by partitioning the 
available 5BK byte memory space into three 
distinct regions aligned on 256-byte page 
boundaries. The different memory types do 
not need to map to contiguous address 
space. However, the LONBUILDER™ 
NEURON C compiler enforces the ordering 
of the types of memory to be ROM/EPROM 
first, EEPROM second, and finally RAM. 
The NEURON C compiler and 
LON BUILDER linker locate parts of an 
application in appropriate memory regions 
(see Chapter 6 of the NEURON C 
Programmer's Guide) 

PSD3XX - Application lIot. 025 

MemDry Interface Logical DeSCliptiDR 
Figure 3 shows the memory map of the 
NEURON 3150 CHIP. Memory locations 
from 0 to E7FF are external to the 
NEURON 3150 CHIP. Access to this 
memory is through an external memory 
bus consisting of eight bi-directional 
three-state data lines, 16 unidirectional 
address lines driven by the NEURON 3150 
CHIP, and two control lines. 

The two control lines used for the external 
memory interface are: 

E - Enable Clock 
This output is a strobe driven by the 
NEURON 3150 CHIP to synchronize the 
external bus. Its frequency is one-half that 
of the input clock or crystal. E is low 
during the second half of the memory 
cycle, which indicates that the NEURON 
3150 CHIP is actively reading or writing 
data. During write cycles, the NEURON 
3150 CHIP drives the new data onto the 
data bus during the time E is low. During 
read cycles, the NEURON 3150 CHIP 
clocks in the external data on the 
transition of E. 

RIW - Read/Write 
This output indicates the direction of the 
data bus. It is set by the NEURON 3150 
CHIP to high during a Read cycle, and 
low on a Write cycle. R/W changes state 
during the time E is high, and is stable 
during the time E is low. 

See the section on Special Timing 
Considerations for more information on the 
NEURON 3150 CHIP memory interface 
requirements. 

----------------------------------,Arjr~jr----------------------------------
t6f!i11.t 1-203 

-~----------~- ~--------- .-- _. -- -- --------



PSD3XX - Application Note 025 

Figure 3. 
The NEURON 
3150 CHIP 
Memory 
Map 

PSD3XX 
Architecture 

FFFF 
1 K MEMORY-MAPPED ----r 1/0 AND RESERVED SPACE 

FCOO 
FBFF 

2.SK RESERVED 
F200 
F1FF INTERNAL 

O.SK EEPROM 

j 
---r 

FOOO 
EFFF 

2KRAM 

E800 
E7FF 

42K MEMORY SPACE 
AVAILABLE FOR 

APPLICATION USE 

4000 
3FFF 

EXTERNAL 

16K NEURON CHIP 

---L 
FIRMWARE & 

RESERVED SPACE 
0000 

The PSD3XX integrates high performance 
user-configurable blocks of EPROM, 
SRAM, and programmable logic technology 
to provide a single chip microcontroller 
interface. The major functional blocks as 
shown in Figure 4 include two 
programmable logic arrays, Programmable 
Address Decoder (PAD A and PAD B), 
256K bits to 1 M bits of EPROM, 16K bits of 
SRAM, input latches, and output ports. 
The PSD3XX is ideal for applications 
requiring high performance, low power, and 
very small form factors. 

The PSD3XX offers a unique single-chip 
solution for users of the NEURON 3150 
CHIP that need more memory-mapped I/O, 
larger EPROM and SRAM size, external 
chip selects, and programmable logic. 
Table 1 summarizes the PSD3XX devices 
that can interface to the NEURON 3150 
CHIP. The PSD3XXL devices can operate 
down to 3.0 V for low power applications. 

As shown in Figure 5, WSI's PSD3XX can 
efficiently interface with, and enhance, the 
NEURON 3150 CHIP. This is the first 
solution that provides the NEURON 3150 
CHIP with port expansion, page logic, 
two programmable logic arrays (PAD A and 
PAD B), 256K bits to 1 M bits of EPROM, 
and 16K bits of SRAM on a single chip. 
The PSD3XX does not require any glue 
logic for interfacing to the NEURON 3150 
CHIP. 

The PSD3XX on-chip PAD A enables the 
user to map the I/O ports, eight segments 
of EPROM (8K x 8 each) and SRAM 
(2K x 8) anywhere in the address space of 
the NEURON 3150 CHIP. PAD B can 
implement up to 4 sum-of-product 
expressions based on address inputs, 
control signals, and other external input 
signals. 

-----------------------------------fjfjf~~--------------____________________ _ 
1-204 :i:JiFs 



Figure 4. 
PS03XX 
Architecture 

A 

PSOSXX - Application Nottl 025 

PAGE LOGIC 

P3-PO A16-A18 

- A11-A15 ff , ! PROG 

L A6-A10 , LOGIC IN 
PORT 

A CSIOPORT EXP 

T A19/CSI A19/CSI 
AD6-AD15 C PCO-

H ALE/AS PAD A ALE/AS PADS PORT ~ RD RD 
~ 

C 
r-- -

WR WR 13P.T. 27 P.T. CS8-

RESET RESET CS10 
ALE/AS 

- - ---
'-- .. -
L 

ES7 
DO-AD7 ES6 A 

T - - ES5 
C ES4 
H ES3 

- ~ PROG. 
ES1 PORT 

- ~ CSO- EXP. 

<j 
~ CS7 

16i8 EPROM --. PBO-

MUX 256KbTO 1Mb PORT ~ .. 
~ 

..-~. - . <j r B 

.1 ~ 
08-015 - ..... 

-- CSIOPORT 

<j .... - . 00-07 

-+ 

~ ..- -
~ SRAM PROG. 

- 16K BIT 
PORT 

TRACK MODE EXP 

SELECTS 
PAO-

AO-A7 PORT ~ ADO-AD71D0-D7 A 

ALE/AS 

t PROG.CHIP 

Ro/EIDS CONFIGURATION 

wRiBfiJ 
BHEIPSEN 

PROG. X8, X16 
CONTROL MUX or NON-MUX BUSSES 

RESET SIGNALS SECURITY MODE 

A19/CSI 

--------------------------------, •• ~=--------------------------------..,..,,,,. 
1·205 



PSD3XX - Application Note 025 

Table 1. 
PS03XX 
Devices 

PS03XX 
Architecture 
(Cont.) 

Figure 5. 
Interfacing 
ThePS0312 
To The NEURON 
3150 Chip 

Device I/O Ports EPROM 
(Bits) 

PSD312 19 512 K 
PSD312L 19 512 K 

PSD313 19 1024 K 
PSD313L 19 1024 K 

The Page Register extends the accessible 
address space of the NEURON 3150 CHIP 
from 64K Bytes to 1 M Bytes. There are 16 
pages that can serve as base address 
inputs to the PAD, thereby enlarging the 
address space of the NEURON 3150 CHIP 
by a factor of 16. Paging is not supported 
by the NEURON chip firmware or 
LONBUILDER tools and must therefore be 
managed entirely by the application 
program. 

Figure 5 shows how to interface the 
PSD312 or PSD313 to the NEURON 3150 
CHIP. The PSD3XX is operated in the 
Non-Multiplexed Address/Data Mode with 

• • 
NEURON 3150 CH'P J 

CPO-CP4 00-07 

... • 100-1010 AO-15 

Vee 

SHAM Data Path Supply 
(Bits) (Bits) Voltage 
16 K 8 5V 
16 K 8 3V-5V 

16 K 8 5V 
16 K 8 3V-5V 

8-bit Data Bus. The low-order address/data 
bus (ADO/AO-AD7/A7) is the low-order 
address input bus. The high-order 
address/data bus (A8-A 15) is the high-order 
address bus byte. Port A is the low-order 
data bus. External logic is required to 
interface with the PSD311. Therefore, it is 
recommended that the PSD312 or PSD313 
be used. 

Programmable Address Decoder (PAD) 
The PSD3XX consists of two programmable 
arrays referred to as PAD A and PAD B. PAD 
A is used to generate chip select signals 
derived form the input address to the internal 
EPROM blocks, SRAM, and I/O ports. 

PSD312 J I PAO-PA7 

AO-A15 

L 8 
BHE/PSEN PBO-PB7 

III ". 
; 

,--. ALE 
2 

OS PC1-PC2 . ~. E ) I RESET 
RESET R/W R/W PCO I---I CiRCUIT I >--

I 
RESET A19/CSI rl-

Integrating the PSD312 to the NEURON 3150 CHIP adds: 
• 10 Chip Selects or Data I/O Ports (in addition to the 11 I/O on the 3150). 
• 64K bytes of EPROM (expandable to 128K bytes). 
• 2K bytes of SRAM. 
• All Decode Logic for External Chip Selects and Internal Memory. 

_________________ FES gi!# 
~S1~§------------------------------

1-206 



PSD3XX 
Architecture 
(Cont.) 

Figure 6. 
PSD3XX 
PAD 
Description 

PAD B can be used to extend the decoding 
to select external devices or as a random 
logic replacement. The input bus to both 
PAD A and PAD B is the same. Using WSI's 
MAPLE software, each programmable bit in 
the PAD's array can have one of three logic 
states of 0, 1, and don't care (X). In a user's 
logic design, both PADs can share the same 
inputs using the X for input signals that are 
not supposed to affect other functions. The 
PADs use reprogram mabie CMOS EPROM 
technology and can be programmed 
and erased by the user. Figure 6 shows the 
PSD3XX PAD description. 

~ 
~ 

P, 
~ 

Po 
~ 

v 

AL EorAS ~ 

~ 
v 

DorE 
~ 

v 

orRiW 
'5 

v 

A19 

AIS 

v 

A17 

v 
A16 

v 
A15 

~ 
v 

A14 
~ 

A13 
~ ... 

A12 ~ 

2 ... 
All roc 

CSI • 

RESET • 

PSD3XX - Application Nots 025 

Port Functions 
The PSD3XX has three 1/0 ports (Port A, 
B, and C) that are configurable at the bit 
level. 

Port A - When interfacing to the NEURON 
3150 CHIP, Port A is used for the lower 
order data bus. 

ESO 

ESI 
ES2 

ES3 8 
ES4 S 

ES5 
ES6 

ES7 
RSO-S 

EPROM BLOCK 
ELECT LINES 

RAM BLOCK SELECT 

CSIOPORT - I/O BASE ADDRESS 
CSADIN 

CSADOUT1 
CSADOUT2 

-

} 
TRACK MODE 
CONTROL SIGNALS 

CSOIPBO 

CS1/PBl 

CS2IPB2 

CS3IPB3 

CS4/PB4 

CSSIPB5 

CSSIPB6 

CS7IPB7 

css/pco 

CS9IPCl 

CS101PC2 

PAD 
A 

PAD 
B 

NOTES: 1. eSI is a power-down signal. When high, the PAD is in stand-by mode and all its outputs become 
non-active. 

2. RESET deselects all PAD output sigals __ __ _ 
3. A1a, A17, and A16 are internally multiplexed with eS10, eS9, and esa, respectively. Either A18 or 

es 1 0, A 17 or eS9, and A 16 or eS8 can be routed to the external pins of Port e. Port e can be 
configured as either input or output. 

----------------------~~~----------------------
1-207 



PSD3XX - AppllDBtJon lID", D25 

PSDaxx 
ArohltBcture 
(Cont.) 

Figure 1 
PortB 
Pin Structure 

Port B - The default configuration of Port B 
is 1/0. In this mode, every pin can be set as 
an input or output by writing into the 
respective pin's direction flip flop FF, in 
Figure 7). As an output, the pin level can be 
controlled by writing into the respective pin's 
data flip flop (DFF, in Figure 7). When DIR 
FF = 1, the pin is configured as an output. 
When DIR FF = 0, the pin is configured as 
an input. The controller can read the 
DIR FF bits by accessing the READ DIR 
register; it can read the DFF bits by 
accessing the READ DATA register. Port B 
pin level can be read by accessing the 
READ PIN register. Individual pins can be 
configured as CMOS or open drain outputs. 
Open drain pins require external pull-up 
resistors. For addressing information, refer 
to Table 2. 

Alternatively, each bit of Port B can be 
configured to provide a chip-select output 
~al from PAD B, PBO - PB7 can provide 
CSO - CS7, respectively. Each of the signals 
CSO - CS3 is comprised of four product 
terms. Thus, up to four ANDed expressions 
can be ORed while deriving ~ of these 
signals. Each of the signals CS4 - CS7 is 
comprised of two product terms. Thus, up to 
two ANDed expressions can be ORed while 
deriving any of these signals. 

I 
N 
T 
E 
R 
N 
A 
L 

C 
S 
0 
U 
T 

B 
U 
S 

C 
S 
0 

I 
N 
T 
E 
R 
N 
A 
L 

0 
A 
T 
A 

B 
U 
S 

0 
8 

o 
1 

7 5 

RESET 

WRITE DATA 
CK OUT 

0 
R 

DI 

CSi 

READDIR 

WRITEDIR 

Accessing the VO Port - Table 2 shows 
the offset values with the respect to the 
base address defined by the CSIOPORT. 
They let the user access the corresponding 
registers. 

Port C in all Modes - Each pin of Port C 
(shown in Figure 8) can be configured as 
an inpVt to PAD A and PAD B or output 
from PAD B. As inputs, the pins are named 
A 16-A 18. Although the pins are given 
names of the high-order address bus, they 
can be used for any other address lines or 
logic inputs to PAD A and PAD B. For 
example, A8-A 10 can also be connected to 
those pins, improving the boundaries of 
CSO - CS7 resolution to 256 bytes. As 
inputs, they can be individually configured 
to be logic or address inputs. A logic input 
uses the PAD only for Boolean equations 
that are implemented in any or all of the 
CSO - CS10 PAD B outputs. Port C 
addresses can be programmed to latch the 
inputs by the trailing edge ALE or to be 
transparent. 

Alternatively, PCO-PC2 can become 
CS8 - CS10 outputs, respectively, 
providing the user with more external chip­
select PAD outputs. Each of the signals 
CS8 - CS10 is comprised of one product 
term. 

READ PIN 

MUX 

CONTROL 

NOTE: 4. CMOs/OD determines whether the output Is open drain or CMOS. 

~1-~~~8----------------------~~/-------------------------



Tab/e2. 
//0 Port 
Addresses in 
an 8-bit Data 
Bus Mode 

Figure 8. 
porte 
Structure 

PSD3XX - Application Nots 025 

Register Name Byte Size Access of the I/O Port Registers 
Offset from the CSIOPORT 

Pin Register of Port A + 2 (accessible during read operation only) 

Direction Register of Port A +4 

Data Register of Port A +6 

Pin Register of Port B + 3 (accessible during read operation only) 

Direction Register of Port B +5 

Data Register of Port B +7 

I CAD LOGO I CONF. 
BIT 

JJ 
J ADDRESS I 

PCO ,I L LATCH I 
i .. CSB (OUTPUT LINE) 

I CPCFO I I CADLOGI
1 CONF. CONF. 

BIT BIT 
ALE 

t t 
I ADDRESS I 

PCI /. I LATCH I 
.. CS9 (OUTPUT LlNEl 

I CPCFI I I CADLOG2
1 CONF. CONF. 

BIT BIT 

t t 
J ADDRESS I 

PC2 /. I LATCH I 
! .. CSIO (OUTPUT LINEl 

-D ADDRESS INDICATOR 

AI6 
TO PAD 

FROM PAD 

I 

AI7 
TO PAD 

FROM PAD 

I 

I 
AlB 
TO PAD 

FROM PAD 

(NOTES) 

CADDHLT 
CONFIGURATION 

BIT: LATCH OR 
TRANSPARENT 

CONTROL 

l)--

D-

TO 
EPROM 

NOTE: 5. The CADDHLT configuration bit determines if AlB - AI6 are transparent via the latch, or if they must be 
latched by the trailing edge of the ALE strobe. 

"I=s=~ -----------------------------------~sfl-----------------------------------
1-209 



PSD3XX - Application Note 025 

PSD3XX 
Architecture 
(Cont.) 

EPROM 
The PS03XX has 256K bits to 1 M bits of 
EPROM and is organized from 32K x 8 to 
128K x 8. The EPROM has 8 banks 
of memory. Each bank can be placed in 
any address location by programming the 
PAO. BankO-Sank? can be selected by 
PAO outputs ESO-ES?, respectively. The 
EPROM banks are organized from 4K x 8 
to 16K x 8. 

SRAM 
The PS03XX has 16K bits of SRAM and is 
organized as 2K x 8. The SRAM is 
selected by the RSO output of the PAO. 

Control Signals 
Th~PS03XX control signals are WR or 
RIW, RO/E/OS, ALE, PSEN, RESET, and 
A 19/CSI. Each of these signals can be 
configured to meet the output control signal 
requirements of the NEURON 3150 CHIP. 

WR Of R/W - The WR or RIW pin is 
configured as RIW. Thi~in works with t~ 
OS strobe of the RO/E/OS pin. When RIW 
is high, an active low signal on the OS pin 
performs a read operation. When RIW is 
low, an active low signal on the OS pin 
performs a write operation. 

RD/E/DS - The RO/E/OS pin is configured 
as OS. This pin works with the RIW signal 
as an active low data strobe signal. As OS, 
the RIW defines the mode of operation 
(Read or Write). The OS feature is not 
available on the PS0311 and PS0301. 
The E input must be used. To generate to 
correct polarity, an external inverter must 
be used. To minimize board space and to 
meet critical timing requirements, it is 
recommended to use the PSD312 or 
PSD313 with the NEURON 3150 CHIP. 

ALE - To prevent a timing violation with the 
Address Hold time, the ALE input pin is 
used to latch the address into the PSD3XX. 
As shown in Figure 5, PCO output signal 
from Port C on the PS03XX is connected 
to the ALE input to the PS03XX. The PCO 
output signal is a delayed version of the E 
signal from the NEURON 3150 CHIP. 
Further information on this special timing 
condition is discussed after Figure 10. 

PSEN - The PSEN signal is not used with 
the NEURON 3150 CHIP and therefore 
must be connected to V cc' 

RESET - This is an asynchronous input 
pin that clears and initializes the 
PS03XXl3XXL. On the PS03XX, reset 
polarity is programmable (active low or 
active high). Whenever the PS03XX reset 
input is driven active for at least 100 ns, the 
chip is reset. On the PS03XXL, reset is a 
low signal only. This device is reset and 
operational only after the reset input is 
driven low for at least 500 ns followed by 
another 500 ns period after the reset 
becomes high. In either device, the part is 
not automatically reset internally during 
boot-up and an external reset procedure is 
recommended for best results. Tables 3 
and 4 indicate the state of the part during 
and after reset. 

A19/CSI - When configured as CSI, a high 
on this pin deselects and powers down the 
chip. A low on this pin puts the chip in 
normal operational mode. For PS03XX 
states during the power-down mode, see 
Tables 5, 6, and Figure 9. The contents of 
the SRAM is preserved during the 
power-down mode. There is an Application 
Note on the Power-Oown Mode in the 
Programmable Peripherals Oesign and 
Applications Handbook from WSI. 

In A19 mode, the pin is an additional input 
to the PAO. It can be used as an address 
line or as a general-purpose logic input. 
A 19 can be configured as ALE dependent 
or as transparent input. In this mode, the 
chip is always enabled. 

-----------------------------------~~~~-----------------------------------
1·210 



Table 3. 
Signal States 
During and Aner 
Reset 

Table 4. 
Internal States 
During and Aner 
Reset 

TableS. 
Signal States 
During 
Power-Down 
Mode 

Table 6. 
Internal States 
During Power 
Down 

Signal Configuration Mode 
ADO/ AD-AD7/ A 7 All 

A8-A15 All 

PAO-PA7) 
I/O 
Tracking ADO/AO-AD7 

(Port A Address outputs AD-A7 

PBO-PB7 
110 
CS7-CSO CMOS outputs 

(Port B) 
CS7-CSO open drain outputs 

PCD-PC2 Address inputs A 16-A 18 
(Port C) CS8-CS10 CMOS outputs 

Component Signals 

CSO-CS10 

PAD 
CSADIN, CSADOUT1, 
CSADOUT2, CSIOPORT, 
RSO, ESO - ES7 

Data register A n/a 
Direction register A n/a 
Data register B n/a 
Direction register B n/a 

NOTE: 13. All PAD outputs are in a non-active state. 

Signal Configuration Mode 
ADO/AD-AD7/A7 All 

A8-A15 All 

I/O 
PAO-PA7) Tracking ADO/AD-AD7 

Address outputs AO-A7 

I/O 
PBD-PB7 CS7-CSO CMOS outputs 

CS7-CSO open drain outputs 

PCO-PC2 
Address inputs A 16-A 18 
CS8-CS10 CMOS outputs 

Component Signals 

CSO-CS10 

PAD 
CSADIN, CSADOUT1 , 
CSADOUT2, CSIOPORT, 
RSO, ESO - ES7 

Data register A n/a 
Direction register A n/a 
Data register B n/a 
Direction register B n/a 

PS03XX - Application Note 025 

Condition 
Input 

Input 

Input 
Input 
Low 

Input 
High 
Tri-stated 

Input 
High 

Contents 

All = 1 (Note 13) 

All = 0 (Note 13) 

0 
0 
0 
0 

Condition 
Input 

Input 

Unchanged 
Input 
A1l1's 

Unchanged 
A1l1's 
Tri-stated 

Input 
A1l1's 

Contents 

All 1 's (deselected) 

All O's (deselected) 

All 
Unchanged 

________________________________ f::=E ______________________________ __ 
=-~~= 1-211 



PSD3XX - Application Note 025 

Figure 9. 
A 19/CSI 
Cell 
Structure 

Page 
Register 

Security 
Mode 

CADDHLT 
CONFIGURATION 

BIT: LATCH OR 
TRANSPARENT 

CONTROL 

ADDRESS INDICATOR 
TO EPROM 

ALE ------------, 

A 19/CSI ------e 

A19 1------.. TO PAD 

~_-"""'-"-"'-'-'-:!..!..:<!...="-""-""-_____ --I~~ TO PAD, EPROM, SRAM, £! PORTS, LATCHES, ETC. 

-=-: 

NOTE: 6. The CADDHLT configuration bit determines if A 19 - A 16 are transparent via the latch, or if they must 
be latched by the trailing edge of the ALE strobe. 

The page register consists of four flip-flops, 
which can be read from, or written to, 
through the 1/0 address space 
(CSIOPORT). The page register is 
connected to the D3-DO lines. The Page 
Register address is CSIOPORT + 18H. 
The page register outputs are P3-PO, which 
are fed into the PAD. This enables the host 
microcontroller to enlarge its address 
space by a factor of 16 (there can be a 
maximum of 16 pages). See Figure 10. 
There is an Application Note from WSI 
that discusses how to use the Paging 

The Security Mode in the PSD3XX locks 
the contents of the PAD A, PAD B and all 
the configuration bits. The EPROM, 
SRAM, and 1/0 contents can be accessed 
only through the PAD. The Security Mode 
can be set by the MAPLE or Programming 
software. In the window packages, the 
mode is erasable through UV full part 
erasure. In the security mode, the 
PSD3XX contents cannot be copied on a 
programmer. Because the high integration 
of the address decoding, eight blocks of 
EPROM, and SRAM, it is difficult to copy 
the contents of the EPROM in-circuit. The 
SRAM can be mapped dynamically over 

Register (see References). Because of the 
flexibility of the programmable logic in the 
PSD3XX, some blocks of EPROM can be 
common to each page while other blocks of 
EPROM can be unique to each page. The 
SRAM and 1/0 ports can be programmed to 
be either common to all pages or unique to 
a specific page. Since the paging logic is 
transparent to the NEURON 3150 CHIP, 
the NEURON C application program 
running on the NEURON 3150 CHIP must 
be designed to use this feature. 

the EPROM, protecting the contents of the 
EPROM. The internal page register can be 
used to map different EPROM blocks onto 
different pages. This would make it difficult 
for someone to externally sequence 
through the address space and capture the 
code on the MCU bus with a logic analyzer. 
Because of the flexibility of the PSD3XX, 
other protection schemes are possible to 
protect the contents of the EPROM along 
with the configuration of the PSD3XX from 
being copied. 

------------------------------------~Jf~~------------------------------------
1-212 



Figure 10. 
Page 
Register 

Special 
Timing 
Considerations 

PS03XX - ApplIcatIon Nots 025 

r--~-------------~~} TOPAD 
r----T--------P1 INPUTS 

r---r--PO 

INTERNAL 

RESET 

y 
DATA BUS 

When interfacing the PSD3XX to the 
NEURON 3150 CHIP, a potential Address 
Hold time violation may occur 
(tAH in Figure 11). The minimum Address 
Hold Time requirement of the PSD3XX is 
15 ns. The maximum Address Hold Time 
of the NEURON 3150 CHIP is 7 ns. To 
prevent this timing violation from occurring 
under worst case conditions, the E signal 
from the NEURON 3150 CHIP is delayed 
through the PSD3XX and connected to the 

ALE input as shown in Figure 5. The E 
signal is connected to the DS input on the 
PSD3XX. This input is also used as a logic 
input to the PAD. The E signal is delayed 
for 15 ns by feeding it through the internal 
PAD, and out PCO. PCO is connected to 
the ALE input in-order to latch and hold the 
address input and meet the internal 
Address Hold time requirement in the 
PSD3XX. 

--------------------------------~~~~--------------------------------
1-213 



.... 
"" .... ... 

1IIIiii": 
~~IIIII 
IIII:~II 

DELAYEDE 
(PCO) 

1 1 
1 1 

IC:I~::::-~!!I:"" 
Qi' sa' i ali ~ cQ' 
cg 5i'~ -ai§ 
ICCi ~ iil:~~ adl .... 

;oJ ~. 
Q .... 

~~ 

3 : \ : l~---I'"\: \ : / : \ : / : \'--__ ---' 
1 1 

_11_ 1 ' 
1 1 1 1 DELAYED = 15ns 
I ... ICYC .. I 1 

1 PW PW 1 
I.. EH .. I.. EL .. I 

E 20pFLOAD ~ \ } \ ! \ I \ ! 
1 1 1 1 1 1 1 1 1 1 1 1 

A [0-15] 
50pF LOAD 

I.. AD .. 1 I.. AD .1 I.. AD. 1 I.. AD .1 

1 1 1 I 1 1 I 1 1 1 I 1 1 
---r\ J\"'1\'7\A I j I \ Jt"'7\""Ir'A ., i \ J'\'7r'1\'"'A I j I \ KI\"'7r'A I J i ,I 

~ 
2: 
~ 
1 

:too 

! il-
it 
:::0 

~ 
ii' 
~ 
Ui 



Development 
Process 

The PSD3XX features a complete set of 
System Development Tools. These tools 
provide an integrated, easy-to-use software 
and hardware environment to support 
PSD3XX device development. To run 
these tools requires an IBM-XT, -AT, or 
compatible computer, MS-DOS 3.1 or 
higher, 640K byte RAM, and a hard disk. 

The configuration of the PSD3XX device is 
entered using MAPLE software. The 
MAPLE output listing of a PSD312 
configured to interface to the NEURON 
3150 CHIP is shown on the next few 
pages. Once the PSD3XX is configured, 
the configuration information along with the 
EPROM code is compiled into one file with 
an ".obj" extension. This file is used to 
program a PSD3XX device on WSI's 
MagicPro Programmer or on a third party 
programmer that supports the PSD3XX. 

As shown on the MAPLE output listing 
"echelon.sv1 ": 

PSD Selected: 
PS0312 

Bus Interface: 
Non-multiplexed bus, S-bit, with RiiiJ and 
OS, signals. 

Port A: 
PA7-PAO are used as the data bus 
interface (07-00) on the NEURON 3150 
CHIP. 

PortB: 
PB7-PBO can be used as Data 1/0 or 
Chip Selects. Each pin can be individually 
configured. 

PSD3XX - Application Note 025 

porte: 
PC2-PC1 can be configured as Logic 
inputs, or Chip Select outputs. PCO is 
used as a Chip Select output and is 
connected to the ALE input on the 
PS03XX. The Chip Select equations is 
CSS = OS. The E signal is only delayed 
through the PAO. The logic of this signal is 
not changed. 

The PS0312 contains 64K x S of EPROM 
but only 54K bytes are used. The SRAM 
(RSO) and 1/0 Ports (CSP) can mapped 
over the EPROM. The portion of EPROM 
that overlaps the SRAM and 1/0 Ports 
cannot be used. Table 7 shows the defined 
Memory Map in this example. 

Note that the upper 2K bytes of EPROM 
Block (ES6) is mapped in the same 
address space as the 1/0 Ports (in the 
range of OSOO-OFFF). Because of the 
overlap, the portion of EPROM from 
OSOO-OFFF cannot be accessed. 

The NEURON 3150 CHIP'S memory 
map is defined through the Memory 
Properties screen of the LONBUILOER 
Software. The amount of each type of 
memory used, ROM, EEPROM, RAM, and 
memory mapped 1/0 is entered in this 
screen so that they match the actual 
external memory connected to the 
NEURON 3150 CHIP. The values for this 
example entered into the Memory 
Properties screen are shown in Table 8. 
Refer to the LONBUILOER User's Guide 
for more information. 

-------------------------------------~~~-------------------------------------
1-215 



'SD3XX - AppllcatlDR Note 025 

Table 7. 
Memory Map 
Example 

Table 8. 
Memory 
Properties 
SeMen of the 
LONBUILDER 

Addrsss Range 

0-D7FF 

D800-DFFF 

EOOO-E7FF 

E800-EFFF 

FOOO-FIFF 

F200-FBFF 

FCOO-FFFF 

Memory Type 

ROM 

EEPROM 

RAM 

1/0 

Size 
(Bytes) 

54K 

2K 

2K 

2K 

0.5 K 

2.5 K 

1 K 

Number of Pages 

215 

0 

8 

8 

Memory Type Physical LDcatlDn 

EPROM PSD312 

Memory-Mapped I/O PSD312 

SRAM PSD312 

RAM NEURON 3150 CHIP 

EEPROM NEURON 3150 CHIP 

Reserved NEURON 3150 CHIP 

Memory-Mapped I/O 
NEURON 3150 CHIP 

and Reserved 

Start Address End AddltlSS 

0000 D7FF 

- -
EOOO E7FF 

0800 DFFF 

-1--21-6----------------------~JrI--------------------------



MAPLE 
Output 
listing 

PlOSXX - Appllalltlll .. ,. D25 

********************** MAPLE 5.10 *************************** 
PSD PART USED: PSD312 
********************PROJECT INFORMATION********************** 

Project Name 
Your Name 
Date 
Host Processor: 

Echelon WSi Integration 
Dan Friedman 
10/8/92 
3150 

************************************************************* 

********************ALIASES********************************** 
************************************************************* 

*********************GLOBAL CONFIGURATION******************** 

Address/Data Mode 
Data Bus Size 

NM 
8 

Reset Polarity LO 
Security OFF 
AS Polarity HI 
A15-AO AS dependent (Y) or Transparent (N) Y 
Are you using PSEN ? (Y/N) N 

************************************************************* 

********************READ WRITE CONTROL*********************** 
R/ (/W) and /DS 

************************************************************* 

*******************Port A CONFIGURATION********************** 

Port A is Data Bus DO-D7 

********************PORT B CONFIGURATION********************* 

Pin CS/IO CMOS/OD 

PBO IO CMOS 
PB1 IO CMOS 
PB2 IO CMOS 
PB3 IO CMOS 
PB4 IO CMOS 
PBS IO CMOS 
PB6 IO CMOS 
PB7 IO CMOS 

************************************************************* 

*****************PORT B CHIP SELECT EQUATIONS**************** 

********************PORT C CONFIGURATION********************* 

Pin CS/Ai LOGIC/ADDR 

PCO CS8 
PC1 CS9 
PC2 CS10 
A19 CSI 

************************************************************* 

******************PORT C CHIP SELECT EQUATIONS*************** 

/CS8 / (/DS) 

------------------------~Jr;-------------------------
1·217 



PSD3XX - Application Note 025 

MAPLE 
Output 
Listing 
(Cont.) 

**********************************ADDRESS MAP********************************* 

A A A A A A A A A SEGMT SEGMT FILE FILE File Name 
19 18 17 16 15 14 13 12 11 STRT STOP STRT STOP 

ESO N N N N 0 0 0 N N 0 lfff 0 lfff ECH_TEST.HEX 
ES1 N N N N 0 0 1 N N 2000 3fff 2000 3fff ECH_TEST.HEX 
ES2 N N N N 0 1 0 N N 4000 5fff 4000 5fff ECH_TEST.HEX 
ES3 N N N N 0 1 1 N N 6000 7fff 6000 7fff ECH_TEST.HEX 
ES4 N N N N 1 0 0 N N 8000 9fff 8000 9fff ECH_TEST.HEX 
ES5 N N N N 1 0 1 N N aOOO bfff aOOO bfff ECH_TEST.HEX 
ES6 N N N N 1 1 0 N N cOOO dfff cOOO dfff ECH_TEST.HEX 
ES7 N N N N N N 
RSO N N N N 1 1 1 0 0 eOOO e7ff N/A N/A N/A 
CSP N N N N 1 1 0 1 1 d800 dfff N/A N/A N/A 
**************************************END************************************* 

****************************ADDRESS MAP (EQUATIONS)*************************** 

ESO /A15 * /A14 * /A13 
ES1 /A15 * /A14 * AU 
ES2 /A15 * A14 * /A13 
ES3 /A15 * A14 * AU 
ES4 A15 * /A14 * /A13 
ES5 A15 * /A14 * AU 
ES6 A15 * A14 * /A13 
RSO A15 * A14 * A13 * /A12 * /All 
CSP A15 * A14 * /A13 * A12 * All 

****************************************************************************** 

*********************ADDRESSES OF I/O PORTS*********************************** 

Direction Register of Port A D804 
Data Register of Port A D806 
Pin Register of Port B D803 
Direction Register of Port B D805 
Data Register of Port B D807 
Page Register D818 
****************************************************************************** 

-1-~-18-------------------------------~Jr~~----------------------------------



MAPLE 
Output 
Listing 
(Cont.) 

psoaxx - AppllcatlDn NDt.025 

*******************************CONFIGURATION BITS**************************** 

CDATA= 0 CADDRDAT= 0 

CA19 I (/CSI) = 0 CALE = 0 

CRESET = 0 (/COMB) ISEP) 0 

CPAF2 = 0 CADDHLT 0 

CSECURITY 0 CLOT 1 

CRRWR = 1 CEDS 1 

CADLOG19 0 

CPAF1[O] 1 CPACOD[O] 0 

CPAF1[1] 1 CPACOD[l] 0 

CPAF1[2] 1 CPACOD[2] 0 

CPAF1[3] 1 CPACOD[3] 0 

CPAF1[4] 1 CPACOD[4] 0 

CPAF1[5] 1 CPACOD[5] 0 

CPAF1[6] 1 CPACOD[6] 0 

CPAF1[7] 1 CPACOD[7] 0 

CPBF[O] 1 CPBCOD[O] 0 

CPBF[l] 1 CPBCOD[l] 0 

CPBF[2] 1 CPBCOD[2] 0 

CPBF[3] 1 CPBCOD[3] 0 

CPBF[4] 1 CPBCOD[4] 0 

CPBF[5] 1 CPBCOD[5] 0 

CPBF [6] 1 CPBCOD[6] 0 

CPBF[7] 1 CPBCOD[7] 0 

CPCF[O] 1 CPCF[l] = 1 
CPCF[2] 1 

CADLOG[O] 0 CADLOG[l] 0 

CADLOG[2] 0 

___________________________________ FS=~E __________________________________ _ 

~_=i! 1·219 

- ----- ------



PSD3XX - Application Note 025 

References WSI, Programmable Peripherals Design and Applications Handbook, 1992. 

Jeff Miller, Using Memory Paging with the PSD3xx, Programmable Peripheral 
Application Note 015. 

Echelon, NEURON CHIP Data Book. 

Echelon, NEURON 3150 CHIP Extemal Memory Interface, 
LONWORKS Engineering Bulletin, August 1991. 

Echelon, NEURON C Programmer's Guide, 29300. 

Echelon, LONBUILDER User's Guide, 29200. 

Echelon, LONWORKS Custom Node Development and Engineering Bulletin, 
005-0024-01. 

Motorola, NEURON CHIP Distributed Communications and Control Processor, 
MC14315, MC143120. 

Toshiba, NEURON CHIP TMPN315013120 Data Book. 

Echelon Corporation 
4015 Miranda Avenue 
Palo Alto, California 94304 
Tel: (415) 855-7400 

(800) 258-4LON 
Fax: (415) 856-6153 

DMSSystems 
1570 East Edinger Avenue, Suite 5 
Santa Ana, California 92680 
Tel: (714) 541-7362 
Fax: (714) 541-7366 

ECHELON and NEURON are U.S. registered trademar\<s of Echelon Corporation. 
LONWORKS, LONBUILDER and 3150 are trademarks of Echelon Corporation. 

___________________________________ f •• ~~ _________________________________ __ 

'#iiI. 1-220 



Introduction 

Programmable Peripheral 
Application Note 026 
PSD3XX Device Fit for PC Notebook 
Applications: Keyboard, Power Management 
and Auxiliary Peripherals Control 
By Karen Spesard 

Typical laptop/notebook computers 
operating DOS or Windows have at least 
two micros on their boards. One is 
obviously the 80X86 microprocessor and 
the other is usually an 8042 or 80C51/31. 
The 8042 (the original AT standard 
keyboard controller) or 80C51/31 may also 
be called the SCP or System Control 
Processor because it usually handles much 
of the system user interface including 
keyboard, mouse-trackball, external 
keyboard, and pen input controls. In 
addition it provides the interface to both the 
PS2 and AT buses, and because of power 
consumption concerns, the SCP also 
usually handles battery/power management 
while controlling the backlight and contrast 
of the display. 

Many designers of these control systems 
have chosen to turn away from the 8042 in 
favor of the 80C51 for a few reasons. For 
example, it is more powerful, provides 
additional memory capacity, has more I/O, 
and is much lower in power than the 8042. 
Using the 80C51 , however, isn't always 
straightforward because most versions of 
the 80C51 don't have the complete SCP 
8042-type 80X86 interface necessary for 
these applications. Therefore, there have 
usually been two options considered by 
hardware engineers. 

The first option is to use a standard 80C51 
and design an ASIC or discrete mUlti-chip 
implementation of components which 
incorporate the 80X86 interface for the 
SCP along with keyboard control, address 
decoding, etc .. The 80X86 interface 
requires a bidirectional status latch and two 
directional data latches. In most cases, 
external memory consisting of at least 8K 
bytes of EPROM and 1 K byte of SRAM is 
also needed. In some cases, FLASH 
EPROM is used, although until recently, it 
was associated mainly with the core 80X86 
processor. 

The second option is to use the 
80C51SL-12 controller from Intel in 
conjunction with a peripheral device from 
WSl's PSD3XX family. The 80C51SL-12 is 
a special version of the 80C51 which has 
been available for about 2 years, but used 
extensively in notebook applications for 
only about 6 months. It includes the 
8042-type 80X86 interface along with 
keyboard control and other functions. The 
80C51 SL has 256 bytes of internal SRAM, 
has many I/Os and is housed in a 100-pin 
PQFP package. For time-to-market 
reasons, most versions of the 80C51SL are 
shipped "ROMless" and used with external 
EPROM. 

Although the 80C51 SL has many I/Os, 
many hardware designers still consider it 
lacking in enough I/O resources. It only has 
8 user pins and all the rest are 
dedicated to specific functions. For 
instance, there is the standard bus 
interface, 2 auxiliary serial ports for external 
keyboards and mouse, 24-pins dedicated 
to scanning the keyboard matrix, parallel 
mailbox port on the AT bus, 4 analog inputs 
for NO conversions, etc. 

1-221 



PSD3XX - AppllcatlDn Nots D26 

Overview A PSD3XX family device perfectly 
complements the 80C51SL because it 
incorporates additional liDs with port 
expansion and EPROM and SRAM 
memory. As shown in Figure 1, the PSD311 
in particular provides an additional 2K 
bytes of SRAM in addition to the 256 bytes 
of SRAM already on-board the 80C51 SL. 
It also integrates 32K bytes of EPROM. 
(In many cases, less than 32K bytes of 
EPROM is actually used.) It also provides 
the address decoding, 16 general-purpose 
liDs, up to 11 programmable logic outputs 
and 4 general-purpose logic inputs. The 
PSD311 interfaces to the battery and 
power management units, a real time 
clock with WatchDog timer, and E2 
potentiometers to control LCD panel 
contrast/brightness levels. It monitors the 
suspendlresume pushbutton option through 
its ports, the battery power onloff control, 
and power sequencing for the display. The 
SRAM in the system is used, among other 
things, to store table information on the 
current state of the capacity remaining in 
the battery. 

This second approach seems to be the 
preferred approach for notebook 
applications for a number of reasons. 
Board space is always so expensive and 
the board densities so high. The 
PSD311/80C51SL chip-set is an attractive 
cost-effective solution that provides as 
much integration as possible to keep the 
board size to a minimum. It also is 
configurable and can be used in many core 
designs, speeding time-to-market and 
eliminating the costly need to design a 
different ASIC with a standard 80C51 for 
each application. Finally, it is very low 
in power and helps to keep power 
consumption down. PSD3XX devices are 
available in 44-pin CLDCC/PLDCC as well 
as 52-pin PQFP packages and will soon be 
available in lower height PCMCIA TQFP 
packages as well. The PSD3XX devices 
are also available at 3.3 V and can be used 
with the 80C51SL when it becomes 
available at lower power supply Voltages. 

Attached, you will find an example PSD311 
configuration file that can be used in an 
application similar to the one shown in the 
general block diagram of Figure 1. 

______________________________________ w-.--§ ___________________________________ __ 
wll 1-222 



RTCAND 
WatchDog 

I~ 
-.111 
"'1I\i 

MOUSEl PSD311 

L TRACKBALL 
CONTROL 

44-PIN 
PA WITH EPROM, 

ADDRESS 
FLASH PB SRAM, LOGIC, 80X86 

SYSTEM 
DATA 

EPROM AND PORT 
CONTROL 

EXPANSION PROCESSOR PC 
;--

POWER r--
MANAGEMENT 

DATA 

ADDRESS 8. DATA 1 RESET 

CONTROL LCD PANEL 
OTHER SYSTEM CONTROL CONTROL 

PERIPHERAL 
CONTROL AND 
MORE MEMORY 

CONTROL SIGNALS 

... 
~ 
Coj 

~ I: == ~ s· ~ ~ !! ::!! '\5~~I_~_Qtc:i ::::: = 1::1'15 II: W ::t' ~ §ij £!1Cj & c: c::i _CD_CD 

-m;;---!!II:!-_ i-I at.~ =-~;j£i .• 
l:I g ~ I = ~-'1 

-I!!! ~::.: 51 
~ ~ 

EXTERNAL 
EYBOARDIMOUSE I< .. 

'---

ADO-7 80C51SL-12 
A8-15 100-PIN 

ALEIPSENI 
RDIWR 

MEMSEL 
J 

:1 

/V 
BATTERY r -

MANAGEMENT 

KEYBOARD l 
MATRIX J 

4 

I 
~ 
I 

t ;::: 

" ;t 

= 1= 
lit 

I 



I'SD3XX - Appilcatilln NIIIII D26 

Example of 
1'S0311 
Configuration 
fOl PC Notebook 
AppUcatlons*************************** MAPLE 5.10 *************************** 

/CS10/A18 = CE1283 
/CSI/A19 = 51MCS 
/IOO 315RESET 
/I01 322RESET 
/I02 LB 
/I03 SENSE+5 
/I04 MSEL 
/I05 SILLB 
/I06 PDNOFF 
/I07 ROMRGNSL 

ALIASES 

********************************************************************* 

GLOBAL CONFIGURATION 

Address/Data Mode: MX 
Data Bus Size: 8 
CSI/A19: CSI 
Reset Polarity: HI 
ALE Polarity: HI 
WRD/RWE: WRD 
A16-A19 Transparent or Latched by ALE: T 
Are you using PSEN? Y 
Separate Data and Program address spaces: Y 

********************************************************************* 

PORT A CONFIGURATION (Address/IO) 

Bit No. Ai/IO. CMOS/OD. 
0 AO CMOS 
1 A1 CMOS 
2 A2 CMOS 
3 A3 CMOS 
4 A4 CMOS 
5 AS CMOS 
6 IO CMOS 
7 IO CMOS 

********************************************************************* 

Bit No. 
o 
1 
2 
3 
4 
5 
6 
7 

CS/IO. 
IO 
IO 
IO 
IO 
IO 
IO 
IO 
IO 

PORT B CONFIGURATION 

CMOS/OD. 
CMOS 
CMOS 
CMOS 
CMOS 
CMOS 
CMOS 
CMOS 
CMOS 

CHIP SELECT EQUATIONS 

--------------------------~Jrl--------------------------
1·224 



'803XX - Application Note 026 

Example of 
PSD311 
Configuration 
for PC Notebook 
Applications (Cont.) 

********************************************************************* 

Bit No. 
o 
1 
2 

CS/Ai. 
CS8 
CS9 
CSlO 

PORT C CONFIGURATION 

CHIP SELECT EQUATIONS 

CEl283 = /( Al5 * /Al4 * /Al3 * /Al2 * /All) 

********************************************************************* 

ADDRESS MAP 

A A A A A A A A A SEGMT SEGMT EPROM EPROM File Name 
19 18 17 16 15 14 13 12 11 STRT STOP START STOP 

ESO N N N N 0 0 0 0 N 0 FFF 0 FFF 80C51SL.HEX 
ES1 N N N N 0 0 0 1 N 1000 1FFF 1000 1FFF 80C51SL.HEX 
ES2 N N N N 0 0 1 0 N 2000 2FFF 2000 2FFF 80C51SL.HEX 
ES3 N N N N 0 0 1 1 N 3000 3FFF 3000 3FFF 80C51SL.HEX 
ES4 N N N N N 
ES5 N N N N N 
ES6 N N N N N 
ES7 N N N N N 
RSO N N N N 1 0 1 0 0 AOOO A7FF 
CSP N N N N 1 0 1 0 1 ABOO AFFF 

******************************* ADDRESS MAP EQUATIONS *************************** 

ESO /A15 * /A14 * /A13 * /A12 
ES1 /A15 * /A14 * /A13 * A12 
ES2 /A15 * /A14 * A13 * /A12 
ES3 /A15 * /A14 * A13 * A12 
ES4 
ES5 
ES6 
ES7 
RSO A15 * /A14 * A13 * /A12 * /All 
CSP A15 * /A14 * A13 * /A12 * All 

****************************** END **************************************** 

_________________________________________ rAfJrAFE _______________________________________ __ 
'#!iiI; 1·225 



I'SIJ3XX - Appllt:lltlDR NDIII D26 

~~ ____________________________ r •• "'E _______________________________ __ 
1.226 tiNil. 



!' == == '::::: --- .... .. _--­
I.--~~------.-- -~ ~-.., -

Introduction 

OeMorgan's 
Theorem 

Programmable Peripheral 
Application Note 027 
Simplification of Logic Networks in the 
PSD3XX PAD Using DeMorgan's Theorem 
By Don Bucclnl 

One purpose of WSI's PSD family is to elevate the design task of interfacing external 
peripherals and memory to a microcontroller, from a hardware level to a software or system 
level, similar to what the single-chip microcontroller did for its multi-chip predecessor. 
Architecturally, the PSD3XX family of Programmable System Devices contains configurable 
logic to interface with virtually any 8- or 16-bit microcontroller with no "glue logic" required. 
Also included in the PSD are EPROM, SRAM and 1/0 Ports. These functions are 
interconnected by the internal Programmable Address Decoder (PAD) whose primary 
purpose is to generate all of the internal and external system Chip Selects. 

The PAD is more versatile than just generating chip selects. 8y using DeMorgan's 
Theorem, relatively complex combinatorial logic networks can be minimized in the PAD, 
eliminating several logic chips. The intent of this Application Note is to demonstrate how to 
simplify logic in the PAD without using design entry software tools. A working knowledge of 
the PSD3XX by the reader is assumed. 

DeMorgan's Theorem describes the transformation of conjuctions (AND) to disjunctions 
(OR) by use of negation, or vice-versa. Simply put, it allows the inversion of an entire logic 
equation by using the following theorem: 

I(A * 8) = IA + 18 and I(A + 8) = IA * 18 

Figure 1 is an example of how negation is used to transform an OR function to a NAND 
function, and an AND function to a NOR function. Figure 2 shows how a more complex 
logic function is converted to its simpler elements. The logic functions of a complex 
network can be converted to functions which are recognized by the selected logic array. 

Figure 1. 

:j=v--v 
V=A+B+C V =/(A * B * C) 

V=A*B*C 

EXISTING LOGIC DeMORGAN'S EQUIVALENT 

1-227 



PSD3XX - Application Nota 027 

DeMorgan's 
Theorem 

PAD 
Architecture 

Figure 2. Exclusive NOR Equivalent 

A--........ ----,""'" 

~~D-c 
c = I(A • B + B • .1\) 

B -------*---IL..I 

The PAD Logic Diagram is shown in Figure 3. There are 12 inputs (16 including the 
4-bit Page Register of the PSD3X2 and PSD3X3) and 24 outputs. Port C (A 16 - A 18), 
ALE/AS and A 19/CSI are independent of the microcontroller interface and can be 
configured as general purpose logic inputs to the PAD, dependent on how the PSD3XX 
is configured and which microcontroller is used. Of the 40 product terms available 
to the user, PAD A uses 13 of the terms for internal selection of the EPROM, SRAM, 

c 

Track Mode and I/O Ports. The remaining 27 product terms are used by PAD B for outputs 
(24, if Port C is configured as inputs). 

The logic functions of the PAD consist of NOR, AND (each product term input is a 
multiple input AND gate) and Inverter elements. DeMorgan's Theorem converts 
dissimilar logic functions to these three elements for inclusion into the PAD. Figure 4 
illustrates how a typical AND/OR network is converted into the PSD3XX PAD 
AND/NORlinverter equivalent. 

-1--22-8---------------------------~~~-------------------------------



PAD 
Architecture 
(Cont.) 

Figure 3. PAD Architecture 

~ 
~ P, 
~ 

v 

Po 

v 

AL EorAS ~ 

~ 
v 

DarE ~ 

~ 
v 

arRiW 

""" 
A19 

""" 
AlB 

"'S 

A17 
"'S 

v 
A18 

"'S 

A15 

'S 
v 

A14 
"'S 

v 

A13 ~ 

~ 
v 

A12 
"'S 

All 
"'S 

v 

CSI ~ 

RESET ~ 

Figure 4. PSD3XX PAD NOR Equivalent 

A B C 

D E F 

PSD3XX - Application Note 027 

ESO 

ESI 
ES2 

ES3 8 EPROM BLOCK 
ELECT LINES ES4 S 

ES5 
ES6 

ES7 
RSO-S RAM BLOCK SELECT 

CSIDPDRT - 110 BASE ADDRESS 
CSADIN 

CSADOUTI 
CSADOUT2 

} 
TRACK MODE 
CONTROL SIGNALS 

CSO/PBO 

CS1IPBl 

CS2/PB2 

. .....--
CS3IPB3 

~ 

CS4IPB4 

CS5IPB5 

CS8JPB6 

CS7/PB7 

CS8/PCO 

CS9IPC1 

CSIO/PC2 

y 

Y =(A + B + C) *(D+ E)*(F) 

(3 PRODUCT TERMS) 

PAD 
A 

PAD 
B 

---------------------------------------,~~~~---------------------------------------
~ ..... I! 1·229 



PSD3XX - Application Note 027 

Logic 
Network 
Minimization 

To show how effectively a logic network can be minimized in the PAD, DeMorgan's 
Theorem will be used to reduce the mUlti-level logic of Figure 5 to a series of equations for 
the Port B output pins. To obtain the maximum number of logic inputs to the PAD, an 8-bit 
microcontroller with separate address and data buses was selected to free up the ALE/AS 
function for use as a logic input. Four pins of Port B are configured as logic outputs; the 
other four pins can be used as chip selects and/or 110 pins. 

The logic network of Figure 5 is converted into its PAD equivalent as illustrated in Figure 6. 
A sequence of "x" represents one of the many multi-input AND functions of each product 
term. When the conversion is completed, the logic network is reduced to the following 
four equations: 

csa = IA16 * (A18 + A19 + AS) * (A17 + IA19) 

CS1 = A16 * (/A18 + A19 + AS) * (/A17 + lAS) 

ICS4 = (/A18 * A19) + (A18 * IA19) 

ICS5 = (A18 * lAS) + (/A18 * AS) 

Since the PAD consists of the sum of product terms into an inverting logic gate (NOR), 
equations csa and CS1 must be converted from their present format of product of sum 
terms into a non-inverting logic gate (AND). Using DeMorgan's Theorem, the converted 
equations in the PAD are entered as follows: 

Icsa = A16 + (/A18 * IA19 * lAS) + (/A17 * A19) 

ICS1 = IA16 + (A18 * IA19 * lAS) + (A17 * AS) 

Equations ICS4 and ICS5 are already in a format acceptable to the PAD and do not have 
to be converted. 

Although the Port B outputs appear to be active low at first glance, these outputs can be 
programmed to be active high, as shown above, by assigning a logic input to each of the 
NOR product terms. If more than four signals are needed to control an output, two or more 
outputs can be configured as Open Drains and OR-tied together. The PSD312 Maple 
ASCII software Configuration file (.SV1) for this example is found in Appendix A. 

------------------f'== ==------------------
1-230 ==~= 



Logic 
Network 
Minimization 
(Clint.) 

PSD3XX - Applicatilln NIt. 027 

Flgum 5. Multl·LII,Iel Logic Network 

A16 ~--------1r----l.:::-----------r""\ CSO 

A17 c::::::::.....--I---..--+-+-+---~ 

A1BC::::::::""'-"-~-+--+-+-+---------~~CM 

A19C::::::::""'-+---+--+-+-+--~-----~ 

CSl 

D---c=>CS5 

ALE-AS c::::::::.....-------4----------I 

Figure 6. PAD Conllerslon Multl·Lellel Logic Network 

A16 
CSO 

J: 

I J: 

A17 I 

AlB I ....-
J: t- -L-"'S A19 

I 

1 

1 
J: 

CSl 

I 

J: 
CS5 -ALE-AS 

---------------------------~Jr;r--------------------------1·231 



I'SD3XX - Applltllltltln Ntlt. 027 

AppendlxA. 
I'SD312 
Configuration 

********************** MAPLE 5.00 *************************** 

PSD PART USED: PSD312 
********************PROJECT INFORMATION********************** 
Project Name PAD Logic Reduction 
Your Name 
Date 
Host Processor: 

Don Buccini 
March 31, 1993 
8-Bit Non-Mux'd Bus 

************************************************************* 
********************ALIASES********************************** 
************************************************************* 
*********************GLOBAL CONFIGURATION******************** 
Address/Data Mode: 
Data Bus Size 
Reset Polarity: 
Security 
AS Polarity 
A15-AO AS dependent 
Are you using PSEN ? 

NM 

8 
LO 
OFF 
LO 

(Y) or Transparent 
(Y/N) 

(N) : N 

N 
************************************************************* 

********************READ WRITE CONTROL*********************** 
R/ (/W) and E 

************************************************************* 

*******************Port A Configuration ********************* 
Port A is Data Bus DO-D7. 

________________________________________________ PaFaF~&f 
~~~~---------------------------------------------1-232 


AppBndlxA.
I'SD312
CDnllguratlDn
(C""t.)

I'SD3XX - Application .IIt. 027

********************PORT B CONFIGURATION********************

Pin CS/IO CMOS/OD

PBO CSO CMOS
PBl CSl CMOS
PB2 IO CMOS
PB3 IO CMOS
PB4 CS4 CMOS
PBS CSS CMOS
PB6 IO CMOS
PB7 IO CMOS

****************PORT B CHIP SELECT EQUATIONS*****************

/CSO =
/ (A16
+ /A19 * /A18 * / AS
+ A19 * /A17

ICSl
/ (/A16
+ /A19 * A18 * I AS
+ A17 * AS

ICS4
/ (A19 * /A18
+ /A19 * A18

ICSS
I (A18 * / AS
+ /A18 * AS

********************PORT C CONFIGURATION*********************

Pin

PCO
PCl
PC2
A19

CS/Ai

A16
A17
A18
A19

LOGIC/ADDR

LOGIC
LOGIC
LOGIC
LOGIC

******************PORT C CHIP SELECT EQUATIONS***************

---------------------------~~Ar------------------------1-~--~

PSD3XX - Application Nots 027

AppendixA.
PS0312
Configuration
(Cont.)

**********************************ADDRESS MAP*********************************

A A A A A A A A A SEGMT SEGMT FILE FILE File Name Page Reg Q.F
19 18 17 16 15 14 13 12 11 STRT STOP STRT STOP 3210 AS

ESO X X X X a 0 0 N N 0000 IFFF NON_MUX.TXT
ESI X X X X 0 0 1 N N 2000 3FFF NON_MUX.TXT
ES2 X X X X 0 1 0 N N 4000 5FFF NON_MUX.TXT
ES3 X X X X 0 1 1 N N
ES4 X X X X 1 0 0 N N
ES5 N N
ES6 N N
ES7 N N
RSO X X X X 1 1 0 0 0 N/A N/A N/A
CSP X X X X 1 1 0 1 0 N/A N/A N/A
**************************************END*************************************

****************************ADDRESS MAP (EQUATIONS)***************************

ESO IA15 * IA14 * IA13

ESI IA15 * IA14 * A13

ES2 IA15 * A14 * IA13

ES3 IA15 * A14 * A13

ES4 A15 * IA14 * IA13

RSO A15 * A14 * IA13 * IA12 * IAll

CSP A15 * A14 * IA13 * A12 * IAll

**

___ Fjf~aF~
~~~----------------------------------------1-234 



PSD3XX - Application Nol. 027 

AppendixA. **********************CONFIGURATIONBITS********************** 

P6D312 CDATA= 0 CADDRDAT 0 

Configuration 
CA19/ (/CSI) = 1 CALE = 1 

(ConI.) 
CRESET= 0 (/COMB) /SEP) = 0 

CPAF2= 0 CADDHLT= 0 

CSECURITY= 0 CLOT= 0 

CRRWR= 1 CEDS= 0 

CADLOG19= 0 

CPAF1[O]= 1 CPACOD[O] = 0 

CPAF1[1]= 1 CPACOD[l] = 0 

CPAF1[2]= 1 CPACOD[2]= 0 

CPAF1[3]= 1 CPACOD[3]= 0 

CPAF1[4]= 1 CPACOD[4] = 0 

CPAF1[5]= 1 CPACOD[5] = 0 

CPAF1[6]= 1 CPACOD[6] = 0 

CPAF1[7]= 1 CPACOD[7]= 0 

CPBF[O]= 0 CPBCOD[O]= 0 

CPBF[l]= 0 CPBCOD[l]= 0 

CPBF[2]= 1 CPBCOD[2]= 0 

CPBF[3]= 1 CPBCOD[3]= 0 

CPBF[4]= 0 CPBCOD[4] = 0 

CPBF[5]= 0 CPBCOD[5]= 0 

CPBF[6]= 1 CPBCOD[6]= 0 

CPBF[7]= 1 CPBCOD[7]= 0 

CPCF[O]= 0 CPCF[l] = 0 

CPCF[2]= 0 

CADLOG[O] = 0 CADLOG[l] 0 

CADLOG[2] = 0 

--------------------------~Jr!-------------------------1·235 

---- - .--~--~.---- .- - _ ... 



PSD3XX - Application Note 027 

Conclusion The versatility of the PSD3XX PAD in replacing severallCs in a multi-level logic network 
becomes more apparent as the designer applies it to his/her specific application. 
Its simplicity negates the need for design entry tools. It is also possible to use one or more 
of PAD inputs A 11 - A 15 as logic inputs if they are not used for address lines in systems 
requiring 32K bytes or less of memory. The functionality of the PAD will be greatly 
expanded as the PSD family of future devices grows. 

-1--2-3-6---------------------------------~~~~-------------------------------------



!FEE=:= --- ~ --- --r'--~ __ _ 

----------~~ -

Intloduction 

Design 
Philosophy 

Programmable Peripheral 
Application Note 032 
Use A ROM Emulator For Rapid Software 
Debug Of A PSD3XX-'ased DeSign 
By Don 'ucdnl 

EPROM Emulation has become a relatively easy and inexpensive method to software 
debug a small to medium size microcontroller system which uses external EPROMs. 
The EPROM is removed from its socket and the RAM-based Emulator is plugged into the 
socket, allowing rapid on-line changes and verification of program code. The PSD3XX 
family incorporates EPROM, SRAM, I/O Ports and PLD logic into a single package whose 
pinouts differ from conventional EPROMs, preventing direct access to the program code. 

This Application Note describes an effective way to gain direct access to the on-chip 
EPROM without the need for special circuitry on the system circuit board, using any 
commercially available ROM Emulator. This allows quick software debug of the system 
under test by running the program in RAM and enabling rapid code changes via the 
keyboard of a PC. The remaining functions configured in the PSD3XX - SRAM, I/O, Chip 
Selects, etc. - are transparent to the emulator and unaffected by its use. Familiarity with 
the PSD3XX Architecture and the MAPLE software is assumed. 

The design philosop~ is straightforward - gain access to the required interlace signals 
(AO - A15, DO - 07, R, W, E, ALE/AS, etc.) between the selected microcontroller and the 
PSD3XX, bypass the EPROM chip selects on the system PSD3XX and program a second 
PSD3XX (Emulator PSD3XX) to access the ROM Emulator memory being used to run the 
program code. The recent availability of specialized test socket adapters such as 
Emulation Technology's Bug Katcher (P/N BC 4-44-PCC3-0000), shown in Figure 1, allows 
easy access to these interlace signals without modifying the design of the system circuit 
board. 

The system PSD3XX is removed from its socket and the test adapter is inserted between 
the socket and the System PSD3XX. A short cable is connected between the interlace pins 
of the adapter and a small printed circuit adapter board which contains the second PSD3XX 
and an EPROM socket(s). This board can be designed for both an a-bit and 16-bit data 
bus, although more complex 16-bit designs would most probably use an In-Circuit Emulator 
for debugging. 

The following design procedure uses some of the more popular microcontrollers for 
ill ustration: 

1. Design The ROM Emulator Adapter Board. 
1) a-Bit Multiplexed Address/Data Bus ... Figure 2 shows an Interlace Diagram for the two 

components necessary for this bus interlace - the Simulator PSD3XX and a 32-pin 
JEDEC EPROM socket. Port A is used to latch the low order address byte from the 
microcontroller. PB7 is used as address line A 16 to the EPROM Socket, utilizing the 
Page Register logic of the PSD3X2 and PSD3X3 for memory page switching. PB6 is 
used to generate the RD signal which is converted to the OE pin of the EPROM. 
This same schematic can be used for the 80C31 family by making the following 
changes to the PSD3XX interlace signals: 

• Change E to RD 
• Change AS to ALE 
• Disconnect BHEIPSEN from Vee and connect to PSEN 

1-237 



PSD3XX - Application Not. 032 

Design 
Philosophy 
(Cont.) 

2) 16-Bit Multiplexed Address/Data Bus ... (see Figure 3) for this application, an additional 
74HC373/S73 latch is required to latch the high order address byte from the 
microcontroller. Two EPROM sockets are shown, although one socket could be used 
if the Emulator can plug into a 64K x 16 socket. 

3) a-Bit Separate Address and Data Bus ... Figure 4 is an Interface Diagram similar to 
Figure 2, except that Port A is not needed to separate the Address and Data Buses. 

2. Configure all the parameters on the system PSD3XX except the a internal EPROM 
Chip Selects (ESC - ES7). These remain inactive and will be emulated by the Emulator 
PSD3XX. The level of integration and ease of programming of the PSD3XX allow these 
temporary configuraton changes that are necessary to use ROM Emulation without 
impacting the existing system hardware design. 

3. In the Emulator PSD3XX, configure the eight product terms of Port B pins C and 1 
(00 configuration) to correspond to the internal Chip Select (ESC - ES7) addresses of 
the EPROM memory map of the System PSD3XX selected by the system software. 
This is the combined Chip Select signal to the external memory socket and divides the 
external emulation memory into eight independent blocks identical to the PSD3XX. 
The three Port C pins are configured for the Memory and I/O signals required by the 
specific Microcontroller. All other configuration parameters remain inactive. 

In summary, the main function of the ROM Simulator Adapter Board is to allow the use of a 
ROM Simulator without any board modification, divide the external memory into eight 
blocks identical to the PSD3XX internal EPROM, and enable all other functions of the 
System PSD3XX to operate in a normal mode. 

Figure 1. Bug Katcher TM - PLCC 

-------------------------------------rJrAr~~-------------------------------------
1-238 ==== 



IIIIt lit .... 
11 111• 
II~~ 
II.I"~ 

-~ co 

Figure 2. Interface Diagram - 8-Bit Multiplexed Address/Data Bus 

~ INTERFACE CABLE 

I "'----" r 

I 

:1 

lXl 

Vee 
r 

18pF 
U1 U2 R1 

c:::J 8MHz 
U2 4K7 

-:f- XTAL PCO 
8 23 

ADO/AO PAO 
21 

~ ~~ ~! ADO/AD PAO 
21 12 AD oao 13 ADO ~ 

8 
XTAL PC1 • 24 

AD1/A1 PAl 
20 

PAl AD1/Ai PAl 
20 11 A1 DQ1 ~ 

PC2 
10 2' AD2/A2 PA> 

I. 
PA> ~ AD2/A2 PA> 

I. 10 A2 002 18pF 

~ 
PDO PC3 

11 26 
AD3/AS PA3 

I. 
PA3 

AD3 26 
AD3/AS PM 

I. • A3 003 ~ PD1 PC4 
12 27 

PM 
17 ~ AD4/M PA4 

17 8 M DQ4 18 AD4 ~ 
13 28 

AD4/A4 
16 :~ 16 19 ADS 

PD2 PC, ADS/AS PA' ~ ADS/AS PA' 7 A5 00' 
PD3 PD3 PC6 

14 2. 
ADS/A6 PA6 

15 
PAS ~ ADS/A6 PA6 

15 6 A6 DQ6 ~ PD4 4 PD4 PC7 
15 30 

NJ7/A7 PA7 
14 
~ I~ AD7/A7 PA7 

14 5 
A7 007 

21 AD7 

P05 25 PD5 16 31 11 l\..A08 31 
11 ~ A8 

.-==- 43 
PBO 

17 32 
ADa/AS PBO 

10 
PBO ADa/AS PBO ~>- A. PEO PBl AD9/A9 PBl PB1 ~ PBl ~ 45 18 33 . AD9/A9 • ~ Al0 

PEl 47 PEl PB2 AD1D/Ale PB2 PB2 AD10/A1D PB2 ;t: ~ PE2 PB3 I. 

36 ~~/~~~ ::! ~ PB3 A11 
PE2 ~ ~ Am1/All ~ PE3 44 PEO PB4 20 AD12 36 AIJ121A12 PB4 ~ A12 

PE4 PB' 
21 

~~ :~!~~~! ::~ J-~ PB' +- A13 
PE4 46 ~ AD13/A13 ~ PE5~ PE5 PBS 22 V AD14 38 PB6 q A14 

23 AD14/A14 ~ A15 
PEG 50 PEe PB7 39 AD15/A15 PB7 4 PB7 CC~ 

AD1s/A15 PB7 
PE7 2~ E A16/CS8 ~ -- T 22 

2 A16 

'ee ~ 5 40 

I E E ~ A161Csa 

~ r ~ : PAD R/W 6 R/W/vPP A17/CS9 r I I ~ A171CS9 22 CE 
4 Vee I- RlW/VPP 

PAl 32 PAl -Ta- BHE/PSEN ~ BHE/PSEN ~ 24 OE 
PA2 31 PA2 AS AS A18/CS10 43 I ~ AS 

A18/CS10 

~R2 PAS 30 PAS RESET 17 
3 RESET A19/cst ~ I -2.. A19/CS1 p!-

RESET 
PA4 29 PM lORO 

~ lK PAS 28 PAS iRQ PSD3XX -= I 
PAS 27 PAS PSD3XX -= EPROM 
~ PA7 MOOB 

~ I SOCKET 
'2 MOCA 
51 

VAH 
IIRL 

rt 

18pF I I 
68HC11 

T I I 
I I 
I I 

=-
J:7 ]:7 ]:7 ]:7 

I I 
I I 

Vee ~ I I 
I ROM EMULATION ADAPTER BOARD 

~R1 
1 ___ 

----------------------U3 I 
2 ~ 4K7 

I VDD 1 
RESET 

3 r GND 1\ ......... 1 

-= SYSTEM BOARD 

;,: 
2 
~ 
I 
~ :g 
:;::: 
&l :::: 
8 
I 
&;' 

~ 



... 
~ 
~ 

-.1 2 .... 1 

q~::.1 
11'11 

Figure 3. Interface Diagram - 16-Bit Multiplexed Address/Data Bus 

--------------------------1 
I 

Vee ;l;;i'0pF 1 J.!!. U1 
/. 

U2 

e'" 11 Xl pa.GIADO 60 23 ADOIAD PAD 
21~ 

_02 TBM-iz P3.1IAD1 
5. 24 AD1/A1 PA1 

20 PAS.O 

I '1' 3<\>F 12 pa 2/AD2 5. 26 AD2/A2 PA2 
19 PA3.1 

----=- X2 pa 3/AD3 
57 2B 

N>3IM PM 18 ::~ 

t-t :ff 
P3.41AD4 N>4IM PM fa- PA3.4 

NMI Pa.51AD5 AD6IAS PAS PM.S 
READY PS.61AD6 NJ8/M PAS PAS.S 

1 
ODE P37/ADT 52/.31::: PA7 4 PA37 

II r~1·6 BUSWlDTH 11~ 
RESET P401AD8 PBO 0 P64. 

A41/AD9 61 32 N)gJAQ P61 P64.1 
50 33 ADtOlA10 • PO.a 5 AQ-IO/PO.O P4.21AD10 PB2 • P64.2 

PO.1 7 Aail/PO 1 P4.31ADf1 49 35 ADt1/A11 PB3 7 
_.3 

Aa-t2/PO.2 P44/AD12 AD12/A12 PB4 P64A & ; ACH3/PO 3 P4.61AD13 AD131A13 PB6 • PB4.5 
P04 10 ACH4/PO 4 P4.61ADt4 AD14/A14 

PB6 ~ 
P05 • ACH5/PO.5 P4.7/AD16 AD151A15 

-=~-' :~ 9 ~::: ~ 
81 22 ii) 

-= " 40 2WFi A17/CS9 
BHEJPSEN nco 17 P2.0/TXD WHE/BHE 

62 13 ALE A1B1CS10 42 
RXD 15 P21/RXD ADVIAUE 

~ 't.,-L RESET 
A191CSi 43 

P2.2 44 P2 2/EXIN'T ItI.IST 
P2.3 42 P2 3/T2CLK a..KOUT rJ!L-
P2.4 39 P2.4/T2RBT PI a E Pl ~ PSD3XX P2.S 33 P261PWM Pl1 
P2. 38 P2.6/T2UP-[)N PI 2 

~ P2.7/T2CAPruRE PI 3 .. Pl. 
Pl 

HSI.O =4 HSI.O PI 4 48 PI.4 

:'~4 2 HSl1 PIS 47 Pl5 

HS3l5~ 
HSl21HSO.4 PI 6 46 Pl6 
HSl3/HSO 5 PI 7 

....!!. VREF 2. ~ 
HSOO •• """S.HSO.O 

~ 
HS01 34 HS01 

ANGND HSO • 35 HS02 ...!. EA HS03 ~ 

80196 

Vee Vee 

U3 ~~7 2Fl, 
RESET 

~3GND I 

_.1 
- MC34064 SYSTEM BOA!~ ______ _ 
- ------- - --

~ INTERFACE CABLE 

.... ---••• : - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 

............ 

U2 

PAD 121 
PA1 

~:I· PM 17 
PAS 16 
PM 15 
PA7 14 

Vee 

~ 
~4K7 

.. ~ ~= t I I"ICE ~::::t=,~~j~ A1B/CS1...J! If" OE 3 FESET A19/CS1 ... ____ .J 

PSD3XX 
AO 

: Y'l I I rID , 

A1 
A2 
A3 
M 

ALE 

AS 
A6 

co 2 A7 

Q1 5 
co 6 3 
Q3 9 25 A10 
Q4 A11 
os 28 A12 
Q6 29 A13 
or 3 A14 

A1S 

22 
24 ~ 

74HCT373 OE 

EPROM 
SOCKETS 

I 

ROM EMULATION ADAPTER BOARD I 
---------------------- ______ 1 

I 
I 

I ;:: 
8 
!:t 
8 

I 
! 



Ilr"1 
II~IIIII 
1,11111 

".~ 

.... 
~ ... .... 

Figure 4. Interface Diagram - 8-Bit Separate Address/llata Bus 

- --I 

.... r ~N~E:FACE CABLE 

" '. I -----
~ I Vee 

I 0 

I 
0 .,.-

o : I 
I : I 

U1 I : ~ 
U2 I: I <> ..... 41<7 

r ____ .....:2:.:..j7 : I U2 
19 M1 ~~ 30 23 AOOIAD PAO 21 00 I : I AO 23 ..-------

1~~~~~~2~0~ MREQ A2 32 25 A01/A1 PA1 20 01 " I : I ~ ADOIAO PAO ~ t----. ~ AD ~~Q ~! 26 ~~: ~: ~~ ~ I : : ~~ ~:0~ :~ 20 ~ ~ ~ ~ 
RD AS AD4/A4 PA4 17 D4 I 0 I A4 27 AD3/A3 PA3 ~ ~ A3 

02 1'5 
02; ~ REFSH A6 ~ 29 AD5/AS PA5..lli.:ill[ : I ~ 28 AD4/A4 PA4 17 ~ A4 03 ~~ g' ~ A7 37 30 AD6IA6 PA6 15 D6 I 0" A6 29 AD5IAS PAS 16 ~ AS 04 4 ~ HA AS 38 AD7/A7 PA7 14 07 : I ~ AD6IA6 PA6 15 ,,~ A6 05 19 05 ~ IT A9 4~ ~ AD8/AS I: I t-... AS 31 AD7/A7 PA7 n4 §t1 A7 06 ~ g~ ~ WAfT A10 1 ~ AD9/A9 PBO..J!,-rPo' I : A9 32 AD8/AS PBO Wi ~ 2 AS 07 

~6 A11 2 ., L........ff A01O/A10 PB1 ~ 0 I AD9/AS PB1 A10 A9 
INT 17 INT A12 0 ------as A0111A11 PB2 ~ I : ~ AD10/A10 PB2 I-.. ~ A10 
NMI NMI A13 4 ~ A012/A12 PB3 ~ 0 I "A2.36 AD111A11 PB3 I-..~ ~12 4 A11 

-t-..., _____ 2~6!..1 RESET ~~~ i-2-- 3: ~~!~~~! ~~: ~ I : I ~~! ~7 ~~~~~ ~: I:t ' 2 ~~~ 
Ii3UsRQ). 25 us 14 A015/A15 PB6 ~ I : I ~ AD14/A14 PB6 ti:. "A14 

{8USACK 2:t :u~~ ~ ~ Vee PB7 ~ I : I Vee 22 ~51A15 PB7 2 
2 ~~~ 

_ 6 D2~ 22 - 0 f ARD A1610sa~ 2ce 
10lOK). OlK D3 ~ n BQ. A16/0sa ~ I : I VT iiiiR _ A17/CS9 41 MRE RD 24 (jE g: f{,---..;: ~ ::'~ElPSEN A17I0S9 ~ I : 1 13 :':'PSEN A18/0610 42 10RQ L.. ___ ..J 

D6 ~ [~ALE A18/0510 llr0RQ, I : : I -;::J!.: RESET A19/CSI ~ EPROM 
L.. ___ ....;C7;,;.,J~ RESET A19/051 n I : :."L,. SOCKET 

zaOB -=- PSD3XX • -b I : I -=- PSD3XX -=-
- I I 

I I 
I I 

I I 
I I 

Vee Vee I I 
~ I I 

.> I I 

U3 « Rl I I 
;;- 4K7 I 

~ Voo I I I 
~~ 1 I 

rl_~ND : I 

-=- SYSTEM BOARD ROM EMULATION ADAPTER BOARD 
~ ..... --'" 

;: 
2 
~ 
I 

t ;: 
&: 
;t 

= 1= 
il 

~ 



PS03XX - Application Note 032 

System 
PSD3XX 
Configuration 

FigureS. 
PSD3XX 
PAD 
Description 

The Emulator functions by replacing the system's EPROM with SRAM. To accomplish this, 
when the system PSD3XX is configured by the MAPLE software, ESO - ES7 are disabled to 
prevent their eight respective internal EPROM blocks from attempting to access the external 
Data Bus (Segment Start and Stop Columns in the Address Map are left blank). Reference 
Figure 5 - PSD3XX PAD Description. Appendix A contains the generalized System 
PSD3XX Configuration Printout corresponding to the Interface Diagram in Figure 2 and the 
Memory Map in Figure 6 configured as an example. The Address Map is configured such 
that all routines are accessible from either Page 1 or Page 2 of main memory. 

Note: The Address Map in Appendix A shows ESO - ES7 active to illustrate the block 
addresses which will be controlled by PBO - PB1 in the Emulator PSD3XX. 
ESO - ES7 are left blank in the actual chip configuration. 

~ 
~ 

P, ,..., 
~ 

v 

Po 
'S 

AL EorAS ,..., 

v 

DarE 
'S 

v 

or ANi "-
[,.""" 

A19 "'S 

A1S 
'S 

v 

A17 
~ 

A16 

'S 
V 

A15 

v 

A14 
'S 

v 

A13 ,..., 
-::.. 

v 

A12 
'S 

v 

A11 ,..., 

CSI ~ 
--
~ 

ESO 

ESl 
ES2 

ES3 8 
ES4 S 

ES5 
ES6 

ES7 
RSO-S 

EPROM BLOCK 
ELECT LINES 

RAM BLOCK SELECT 

CSIOPORT - VO BASE ADDRESS 
CSADIN l T"'~v .. ~no 
CSAOOUTl 
CSADOUT2 

J CONTROLSIGNALS. 

CSOIPBO 

CSlIPB1 

CS2IPB2 

CS3IPB3 

CS4IPB4 

CSs/PBS 

CS6IPB6 

CS7iPB7 

CS8IPCO 

CS9JPC1 

CS101PC2 

PAD 
A 

PAD 
B 

NOTES: 1. CSI is a power-down signal. When high, the PAD is in stand-by mode and aU its outputs become 
non-active. 

2. RESET deselects aU PAD output sigals __ __ _ 
3. ~A17, and A16 are internall~ltiplexed with CS10, CS9, and CS8, respectively. Either A18 or 

CS10, A17 or CS9, and A16 or CS8 can be routed to the external pins of Port C. Port C can be 
configured as either input or output. 

-------------------------------------'Ar;r~~--------------------------------------1-242 ==== 



Figure 6. 
Memory Map 
System PS0302 

Emulator 
PS03XX 
Configuration 

MAIN MEMORY 
{PAGE 2) 

10000 
INTERRUPTS 

AND SUBROUTINES 
EOOO 

TABLES 

COOO 

UNUSED 
BOOO 

1/0 PORTS 

A800 

SRAM 

AOOO 

MAIN 
MEMORY 

(PAGE 1) 

2000 

BOOT CODE 

0000 

PSD3XX - Application Nots 032 

ES7 = 64K -72K 

ES6 = 56K - 64K 

ES5=48K-56K 

CSP = 42K - 44K 

RSO=40K-42K 

ES4 = 32K - 40K 

ES3 = 24K - 32K 

ES2 = 16K - 24K 

ES1=8K-16K 

ESO=OK-8K 

The sole function of the Emulator PSD3XX is to access the extemal program memory 
whenever the Microcontroller attempts to access the EPROM memory. The addresses of 
the memory blocks corresponding to ESO - ES7 of the System PSD3XX internal EPROM 
Memory Map are programmed into the Emulator PSD3XX, not as ESO - ES7, but as the 
eight PAD product terms for PBO and PB1. These two outputs are configured as Open 
Drain outputs and wire-or'd together into a common Chip Select to the external EPROM 
socket. This feature ensures that the Emulator memory is not addressed when the internal 
SRAM and I/O of the system PSD3XX are accessed. Also, this allows the Emulator SRAM 
to truly emulate the EPROM of the system PSD3XX by eliminating the need for the program 
code in the SRAM to be contiguous, by dividing it into eight blocks. Port A is configured to 
latch the low order address byte for Microcontrollers with Multiplexed Address/Data Buses. 
PCO - PC2 can be configured for specific Memory and 110 signals which may be required 
by the selected Microcontroller. Appendix B contains the generalized Emulator PSD3XX 
Configuration Printout. 

-----------------------------------~~~--------------------------------1--2-~3-



PSD3XX - ApplicatiDn NDts 032 

AppendixA. 
PSO_SYS.SV1 

********************** MAPLE 5.00 *************************** 

PSD PART USED: PSD302 
********************PROJECT INFORMATION********************** 
Project Name 
Your Name 
Date 
Host Processor: 

ROM Emulation-System PSD 
Don Buccini 
June 30, 1993 
68HCll 

************************************************************* 
********************ALIASES********************************** 
************************************************************* 

*********************GLOBAL CONFIGURATION******************** 
Address/Data Mode: MX 

Data Bus Size 8 
Reset Polarity LO 
Security OFF 
AS Polarity HI 
Are you using PSEN ? (YIN) N 

************************************************************* 

********************READ WRITE CONTROL*********************** 
R/ (/W) and E 

************************************************************* 

*******************Port A CONFIGURATION********************** 
ADDRESS/IO 

************************************************************* 

********************PORT A (ADDRESS/IO)********************** 

Pin Ai/IO CMOS/OD 

PAO IO CMOS 
PAl IO CMOS 
PA2 IO CMOS 
PA3 IO CMOS 
PA4 IO CMOS 
PA5 IO CMOS 
PA6 IO CMOS 
PA7 IO CMOS 

************************************************************* 

---------------------------------------------~~~---------------------------------------------1·244 ==== 



AppendixA. 
PSD_SYS.SV1 
(Cont.) 

PS03XX - Application Not, 032 

********************PORT B CONFIGURATION********************* 

Pin CS/IO CMOS/OD 

PBO 10 CMOS 
PBl 10 CMOS 
PB2 10 CMOS 
PB3 10 CMOS 
PB4 10 CMOS 
PBS 10 CMOS 
PB6 10 CMOS 
PB7 10 CMOS 

************************************************************* 

*****************PORT B CHIP SELECT EQUATIONS**************** 

********************PORT C CONFIGURATION********************* 

Pin CS/Ai LOGIC/ADDR 

PCO Al6 ADDR 
PCl Al7 ADDR 
PC2 Al8 ADDR 
Al9 CSI ADDR 

************************************************************* 
******************PORT C CHIP SELECT EQUATIONS*************** 

-------------------------------------~~~---------------------------------1--2-~--5 



psoaxx - Application Not. 032 

AppendixA. 
PSD_SYS.SV1 
(CDnt.) 

**********************************ADDRESS MAP********************************* 

A A A A A A A A A SEGMT SEGMT FILE FILE File Name Page Reg Q.F 
19 18 17 16 15 14 13 12 11 STRT STOP STRT STOP 3210 AS 

ESO N 0 0 0 0 0 0 N N 0 lfff 0 1FFF SYS_PROG.OBJ 0000 N 
ES1 N 0 0 0 0 0 1 N N 2000 3fff 2000 3FFF SYS_PROG.OBJ 0000 N 
ES2 N 0 0 0 0 1 0 N N 4000 5fff 4000 5FFF SYS_PROG.OBJ 0000 N 
ES3 N 0 0 0 0 1 1 N N 6000 7fff 6000 7FFF SYS_PROG.OBJ 0000 N 
ES4 N 0 0 0 1 0 0 N N 8000 9fff 8000 9FFF SYS_PROG.OBJ 0000 N 
ES5 N 0 0 0 1 1 0 N N cOOO dfff 0 1FFF SYS_TABL.OBJ XXXX N 
ES6 N 0 0 0 1 1 1 N N eOOO ffff ACOO BFFF SYS_PROG.OBJ 0000 N 
ES7 N 0 0 0 0 0 0 N N 0 lfff cOOO DFFF SYS_PROG.OBJ 0001 N 
RSO· N 0 0 0 1 0 1 0 0 aOOO a7ff N/A N/A N/A XXXX N 
CSP N 0 0 0 1 0 1 0 1 A800 afff N/A N/A N/A XXXX N 
**************************************END************************************* 

****************************ADDRESS MAP (EQUATIONS)*************************** 

ESO /A18 * /A17 * /A16 * /A15 * /A14 * /A13 
* /P3 * /P2 * /P1 * /PO 

ES1 /A18 * /A17 * /A16 * /A15 * /A14 * A13 
* /P3 * /P2 * /P1 * /PO 

ES2 /A18 * /A17 * /A16 * /A15 * A14 * /A13 
* /P3 * /P2 * /P1 * /PO 

ES3 /A18 * /A17 * /A16 * /A15 * A14 * A13 
* /P3 * /P2 * /P1 * /PO 

ES4 /A18 * /A17 * /A16 * A15 * /A14 * /A13 
* /P3 * /P2 * /P1 * /PO 

ES5 /A18 * /A17 * /A16 * A15 * A14 * /A13 

ES6 /A18 * /A17 * /A16 * A15 * A14 * A13 
* /P3 * /P2 * /P1 * /PO 

ES7 /A18 * /A17 * /A16 * /A15 * /A14 * /A13 
* /P3 * /P2 * /P1 * PO 

RSO /A18 * /A17 * /A16 * A15 * /A14 * A13 * /A12 * /A11 

CSP /A18 * /A17 * /A16 * A15 * /A14 * A13 * /A12 * All 

****************************************************************************** 
*********************ADDRESSES 
Pin Register of Port A: 
Direction Register of Port A: 
Data Register of Port A: 
Pin Register of Port B: 
Direction Register of Port B: 
Data Register of Port B: 
Page Register: 

OF I/O PORTS*********************************** 
A802 
A804 
A806 
A803 
A805 
A807 
A818 

Page (Binary): XXXX 

****************************************************************************** 

~~-----------------------------------~ .. ~.--------------------------------------
1·246 ~I' 



Appendix'. 
PSD_SIM.SV1 

PSD3XX - Application .ot. 032 

********************** MAPLE 5.00 *************************** 
PSD PART USED: PSD302 
********************PROJECT INFORMATION********************** 
Project Name ROM Emulation-Emulate PSD 
Your Name 
Date 
Host Processor: 

Don Buccini 
June 30, 1993 
68HCll 

************************************************************* 

**************************ALIASES**************************** 
/CSO 
/CS1 
/CS6 
/CS? 

ESO 
ES4 
RD 
A16 

ES3 
- ES? 

************************************************************* 

*********************GLOBAL CONFIGURATION******************** 
Address/Data Mode: MX 
Data Bus Size 8 
Reset Polarity LO 
Security OFF 
AS Polarity HI 
Are you using PSEN ? (YIN) N 

************************************************************* 

********************READ WRITE CONTROL*********************** 
R/ (/W) and E 

************************************************************* 

*******************PORT A CONFIGURATION********************** 
ADDRESS/IO 

************************************************************* 

********************PORT A (ADDRESS/IO)********************** 

Pin Ai/IO CMOS/OD 

PAO AO CMOS 
PAl Al CMOS 
PA2 A2 CMOS 
PA3 A3 CMOS 
PA4 A4 CMOS 
PAS AS CMOS 
PA6 A6 CMOS 
PA? A? CMOS 

************************************************************* 

'JlJI'~ --------------------------------~.r,-----------------------------1-~-~-7 



",DlXX - Appllt:lltlon 110" 1182 

Appendix'. 
PSD_SIM.SV1 
(Cont.) 

********************PORT'B CONFIGURATION********************* 

Pin CS/IO CMOS/OD 

PBO CSO OD 
PBl CSl OD 
PB2 IO CMOS 
PB3 IO CMOS 
PB4 IO CMOS 
PB5 IO CMOS 
PB6 CS6 CMOS 
PB7 CS7 CMOS 

************************************************************* 
*****************PORT B CHIP SELECT EQUATIONS**************** 

ESO - ES3 = / (/A15 * /A14 * /A13 * /P3 * /P2 * /Pl * /PO 

ES4 - ES7 

+ /A15 * /A14 * A13 * /P3 * /P2 * /Pl * /PO 
+ /A15 * A14 * /A13 * /P3 * /P2 * /Pl * /PO 
+ /A15 * A14 * A13 * /P3 * /P2 * /Pl * /PO 
) 

/ (A15 * /A14 * /A13 * /P3 * /P2 * /Pl * /PO 
+ A15 * A14 * /A13 
+ A15 * A14 * A13 * /P3 * /P2 * /Pl * /PO 
+ /A15 * /A14 * /A13 * /P3 * /P2 * /Pl * PO 
) 

RD /(E * R/W) 
A16 = / (/P3 * /P2 * /Pl * PO) 

************************************************************* 
********************PORT C CONFIGURATION********************* 

Pin 

PCO 
PCl 
PC2 
A19 

CS/Ai 

A16 
A17 
AlB 
CSI 

LOGIC/ADDR 

LOGIC 
LOGIC 
LOGIC 

************************************************************* 
******************PORT C CHIP SELECT EQUATIONS*************** 

----------------_______ rll~,. ______________________ _ 
1·248 ."",11..1 



PS03XX - Application Not. 032 

AppendixB. 
PSD_S1M.SV1 
(Cont.) 

**********************************ADDRESS MAP******************************** 

A A A A A A A A A SEGMT SEGMT FILE FILE File Name Page Reg Q.F 
19 18 17 16 15 14 13 12 11 STRT STOP STRT STOP 3210 AS 

ESO N N N N 
ES1 N N N N 
ES2 N N N N 
ES3 N N N N 
ES4 N N N N 
ES5 N N N N 
ES6 N N N N 
ES7 N N N N 
RSO N N/A N/A N/A N 
CSP N N/A N/A N/A N 

**************************************END************************************* 

****************************ADDRESS MAP (EQUATIONS)*************************** 

****************************************************************************** 

Conclusion The PSD3XX family was conceived as a cost effective and attractive alternative to discrete 
logic and memory used in designing an embedded controller system. Although the 
PSD3XX offers an integrated solution, its flexibility allows the use of basic and inexpensive 
development tools such as a ROM Emulator. This versatility becomes more important as 
the need to rapidly develop and debug a product is realized. 

Emulation Technology, Inc. 
Worldwide Headquarters: 
2344 Walsh Avenue, Bldg. F 
Santa Clara, CA 95051-1301 U.S.A 
Tel: (408) 982-0660 
Fax: (408) 982-0664 

Bug Katcher is a trademark of Emulation Technology, Inc. 

-------------------------------------fArJr~~----------________________________ ___ 
~#. 1-249 



PSD3XX - Application Nots 032 

5'EESElfff 
-1·-25-0----------------------------~~~~------------------------------



- - - ..-.~ F=:=: =--=: --- _ .... 
'=-~_=-i-= =: ---- ---~ .... 

Introduction 

Using The 
Motorola 
MC34010p, 
M68HC11 DO and 
WSIPSD311 

Programmable Peripheral 
Application Note 040 
Three-Chip Feature Phone 
By Steve Torp - Motorola Semiconductor and Karen Spesard - WSI 

This application note describes how to build a programmable telephone with three 
off-the-shelf integrated circuits. The feature phone includes a 16 x 2 LCD display and can 
be programmed to offer many popular functions such as last- number redial, autodial by 
code number, and hold. 

The three chips used in the feature phone are the Motorola MC34010 Dialer (DTMF tone 
generator with speech network and DC line voltage regulator), the Motorola M68HC11 DO 
microcontroller, and the WSI PSD311 programmable MCU peripheral. Each device is 
carefully chosen for a specific purpose. 

The Motorola MC34010 
This device is a single-chip integrated telephone circuit that also supplies a microcontroller 
interface. It is this interface that enables a simplified connection to the M68HC11 DO and the 
PSD311. 

The Motorola MC68HC11 DO 
The MC68HC11 DO is an economical microcontroller with low power consumption. 
The instruction set and memory map are very simple to use making the M68HC11 DO an 
excellent choice for a low-cost design. The M68HC11 DO also facilitates expansion of the 
feature phone in order to take advantage of new telephone services as they become 
available. In this application, the MC68HC11 DO operates in expanded mode. This is 
important because expanded mode supports interfacing to extemal SRAM and EPROM 
devices. 

The WSI PSD311 
The user-configurable WSI PSD311 Programmable Microcontroller Peripheral is an integral 
part of this design. The PSD311 eliminates all glue logic and reconstructs the two ports 
lost by the M68HC11 DO when it is in expanded mode. The P$D311 also incorporates 
32K bytes of EPROM, 2K bytes of SRAM, and preserves low power operation. With 
this programmable device, the feature phone is capable of retaining the last 256 phone 
numbers that were dialed, making the automatic recall of numbers effortless. 

Since the M68HC11 DO does not contain a ROM, the PSD311 's EPROM will contain the 
main program that will service the entire feature phone. The PSD311 will also use its port 
pins to send data and control information to the Philips 16 x 2 LCD module. The PSD311 is 
an excellent comprehensive choice that enables this feature phone to be comprised of only 
three chips. 

The design schematic is shown in Figure 1. Note how simple the design becomes with 
these readily available components. 

1-251 



... 
~ 
Ii!: 

1I~ II", 
-:~ 

PIEZO SOUND B.EMENT 

20K 
o 

t L 
-=- 1N760 52 

I 12 J3 l' 
Vee VEE Vss I ~~ LCD DISPLAY 

Vee 

1 C24 

TOP' I ~f 
DO D1 D2 03 D4 05 De 07 AS PIN E 

U1 
_e11 

":" 

R2 
18K 

C1. 
47pF 
25V 

lll::·11 I Ic:-J.T -:!... 

A3 
200K 

I 01 11FT 
U4 

01J 2N4126 
2 1 

Zt I C12 
~N5931A Jit pF 

I 
9 ~ ~ pea 10 24 ADt/A1 C1 100K PCt 11 A02IA2 

PC2 1>D3IA3 
PC3 13 27 AD4IM 
PC4 14 28 AD5/A5 
pes 15 29 AD6IA6 Vee 

- -

~ AD7"7 11 ~ 
42 31 A08/AS P80 10 TO 

~: : 33 ~;:10 ;~: 12 MS 
PED PB2 39 5 A011/A11 PBS 7 
PEt PB3 38 36 AOl21At2 PB4 

- PE2 PEW 37 37 AD1S1A13 PBS 5 
- PEa PB5 36 38 ADl41A14 P86 4 

~~ ~~ 35 39 ADUVA15 PB7 40 

P8 22 ~OO PCO~'~'------1r----------~ 
PE7 EIDS PCt 42 

~ ~=r PC2J::r43'-t ____ 1' 

;: PAD SC:~ CJ 

31 ;: ."' -jT 30 PM 
29 PAS 

2 PM C1 Q 

27 PA7 J 11>0 pF 1'00 pF 

'-- L..-

A11 

~200K C4 
0111F 

C3 

~ 
1 OlE SOV 

A10 
270 

A12 
'7K 

A13 
.7' 

co 
DO.F 

20K 30K 1"" ~RX 
C5 

01~ 
ELECTRET 

MICROPHONE 

f 
S' 
! 
~ 
~ 
;:-
• S-a 
~ 

= " I? ;:r 
;; 
• :t J:a' 

I 
~ 
I 

t :;:: 
I 
I;t 

!ll 
it ;-

I 



Interconnecting 
The Parts 

Configuring 
ThePSD 

The System 
Software 

PSD3XX - Application Not. 04D 

The MC34010 has six pins that are used as the digital interface. They are DP, DO, TO, 
MS, CL, and I/O. Pin 12 (A+) allows the digital interface to be active and must have a 
voltage, typically connected to pin 34 (V+). The DP pin, which is inverted from active HIGH 
to active LOW (~outing through some PSD311 programmable logic), is connected to the 
microcontroller IRQ pin. Thus, when a key is depressed on the keypad, the IRQ pin is 
asserted on the M68HC11 DO microcontroller. Upon assertion of IRQ, the M68HC11 DO 
fetches the interrupt vector and begins to execute interrupt exception code. This code looks 
for the DO pin to be low. With the help of the CL input (the clock input), a 4-bit serial data 
stream is transmitted into the PSD311 from the I/O pin and is then translated into one of the 
16 keys on the keypad. A DTMF tone is generated (TO is driven low) and the number is 
saved in the PSD311 's SRAM and subsequently sent to the LCD display. The last output on 
the MC34010 is the MS output that serves to enable or disable the tone generator. 

The user-configurability feature of the WSI PSD311 makes implementing the interface 
between the M68HC11 DO and the MC34010 very simple. The PSD311 can be programmed 
to connect to the M68HC11 DO on one side and interfaced to virtually any peripheral like 
the MC34010 on the other. To achieve this flexibility, the PSD contains non-volatile 
configuration bits that are chosen by the user when using WSI's PSD MAPLE software and 
are set in the device during programming. 

To achieve a direct hardware interface to the M68HC11 HO, the PSD311 options 
programmed for this application include: active high AS, active low reset, and R/W and E 
mode for the control signals. 

The LCD interface incorporates eight bidirectional I/O lines that are connected to Port A on 
the PSD311. Port A is configured as a general-purpose I/O to provide the eight bits of data 
to the LCD display. In addition, for other applications, Port A is capable of transferring up to 
eight low order address bits. The functionality of Port B on the PSD311 is split. While all the 
pins are configured as general-purpose I/Os and not chip select or logic outputs, two pins 
(PBO and PB1) enable the LCD display and RS line. Another five I/O pins on Port B map 
directly to the MC34010's microprocessor interface lines: DO, TO, MS, CL, and I/O. Finally, 
two pins on Port C, one used as an input to the internal programmable logic array, and the 
other used as a chip select/logic output from the array, are used to invert the active HIGH 
DP line from the MC34010 to active LOW so the microcontroller IRQ will recognize a 
depressed key. 

The PSD311 also specifies the address map for the system. For example, both the LCD 
and the MC34010 peripherals start at location h'4000, as shown in the software listing. The 
rest of the address map encoded in the PSD311 includes 32K bytes of EPROM beginning 
at location h'2000, and the SRAM at location h'5000. A summary of the PSD configurations 
is shown in the listing file in Appendix A. 

The M68HC11 software is written in assembly code for this application and appears in 
Appendix B. It is, for the most part, self-explanatory and is well commented. 

-------------------------------------~~jr-------------------------------------
1-253 



PSD3XX - Application Note 040 

AppendixA. 
PS0311 
Listing File For 
Feature Phone 
Application 

*************************** MAPLE 6.21 *********************.**.** 

/CS8/A16 = INTR 
/CS9/A17 = BINTR 

ALIASES 

GLOBAL CONFIGURATION 

Address/Data Mode: 

Data Bus Size: 

CSIIA19: 

Reset Polarity: 

ALE Polarity: 

WRD/RWE: 

A 16-A 19 Transparent or Latched by ALE: 

Are you using PSEN? N 

Bit No. 
o 

2 
3 
4 
5 
6 
7 

PORT A CONFIGURATION (AddressIlO) 

Ai/IO. CMOS/OD. 
10 CMOS 
10 CMOS 
10 CMOS 
10 CMOS 
10 CMOS 
10 CMOS 
10 CMOS 
10 CMOS 

MX 
8 
CSI 

LO 

HI 

RWE 

T 

********************************************************************** 

PORT B CONFIGURATION 

Bit No. CSIIO. CMOS/OD. 
0 10 CMOS 

10 CMOS 
2 10 CMOS 
3 10 CMOS 
4 10 CMOS 
5 10 CMOS 
6 10 CMOS 
7 10 CMOS 

CHIP SELECT EQUATIONS 

********************************************************************** 

Bit No. 
o 
1 
2 

PORT C CONFIGURATION 

CS/Ai. 
A16 
CS9 

CS10 

CHIP SELECT EQUATIONS 

BINTR = /(INTR) 

********************************************************************** 

-1--2-5-4-------------------------------------~~~----------------------------------------



AppendlxA. 
PSD311 
Listing File For 
Feature Phone 
Application 
(Cont.) 

PSD3XX - Application Not. D40 

ADDRESS MAP 
AAAAAAAAA SEGMT SEGMT EPROM EPROM FileName 
19 18 17 16 15 14 13 1211 STRT STOP START STOP 

ESO N N N X 0 0 0 N 2000 2FFF 2000 2fff FPHONE.HEX 
ESl N N N X 0 0 N 3000 3FFF 3000 3fff FPHONE.HEX 
ES2 N N N X N FOOO FFFF fOOO flff FPHONE.HEX 
ES3 N N N N 
ES4 N N N N 
ES5 N N N N 
ES6 N N N N 
ES7 N N N N 
RSO N N N X 0 0 0 5000 57FF 
CSP N N N X 0 0 0 0 4000 47FF 

***************************** ADDRESS MAP (EQUATIONS) *********'******************* 

ESO = IA15 */A14 * A13 */A12 
ESl = IA15 */A14 * A13 * A12 
ES2 = A15 * A14 * A13 * A12 
ES3 = 
ES4 = 
ES5 = 
ES6 = 
ES7 = 
RSO = IA15*A14*/A13*A12*/All 

CSP = IA15*A14*/A13*/A12*/All 

END **** •• ************************************* 

------------------------~Jr;------------------------1-255 



PSD3XX - Application Not. 04D 

AppendixB. 0001 *************************************************************** 

Featule Phone 0002 
. Feature Phone Software for use with 68HC11 and PSD . 

0003 By Karen Spesard and Steve Torp - 1/11/95 
Software Listing 0004 *************************************************************** 

0005 
0006 2000 ORG $2000 PROGRAM MEMORY 

0007 
0008 003d INIT: EQU $0030 RAM AND 1/0 MAPPING REGISTER 

0009 4000 PORTAB: EQU $4000 1/0 BASE ADDRESS OF THE PSD311 

0010 0001 KEY1: EQU $OF KEYPAD 1 
0011 0007 KEY2: EQU $07 KEYPAD 2 (ABC) 

0012 OOOb KEY3: EQU $OB KEYPAD 3 (DEF) 

0013 0003 KEYA: EQU $03 KEYPAD MODE (NORMAUSTOREIRECALL) 

0014 OOOd KEY4: EQU $00 KEYPAD 4 (GHI) 

0015 0005 KEYS: EQU $05 KEYPAD 5 (JKL) 

0016 0009 KEY6: EQU $09 KEYPAD 6 (MNO) 
0017 0001 KEYB: EQU $01 KEYPAD SEND 

0018 OOOe KEY7: EQU $OE KEYPAD 7 (PQRS) 

0019 0006 KEY8: EQU $06 KEYPAD 8 (TUV) 

0020 OOOa KEY9: EQU $OA KEYPAD 9 (WXYZ) 
0021 0002 KEYC: EQU $02 KEYPAD UP 

0022 OOOe KEYS: EQU $OC KEYPAD * (STOP/ERASE) 

0023 0004 KEYO: EQU $04 KEYPAD 0 

0024 0008 KEYN: EQU $08 KEYPAD # (ENTER) 

0025 0000 KEYD: EQU $00 KEYPAD DOWN 

0026 
0027 2000 01 START: SEI SET INTERRUPT MASK IN CCR REG FOR INIT 

0028 
0029 *64 Bytes of Register Area 
0030 
00310000 PORTA: EQU $0000 PORT A DATA REGISTER 
00320002 PIOC: EQU $0002 PARALLEL 1/0 CTL REGISTER 

00330003 PORTC: EQU $0003 PORT C DATA REGISTER (ADO-AD7) 

00340004 PORTB: EQU $0004 PORT B DATA REGISTER (A8-A15) 
00350007 DDRC: EQU $0007 PORT C DATA DIRECTION REGISTER 

00360008 PORTD: EQU $0008 PORT D DATA REGISTER (RxD. TxD. AND 1/0) 
00370009 DDRD: EQU $0009 PORT D DATA DIRECTION REGISTER 
0038000b CFORC: EQU $OOOB TIMER COMPARE FORCE REGISTER 
0039000e OC1M: EQU $OOOC OUTPUT COMPARE 1 MASK REGISTER 
0040000d OC1D: EQU $0000 OUTPUT COMPARE 1 DATA REGISTER 
0041000e TCNT: EQU $OOOE TIMER COUNTER REGISTER (16-BIT) $OOOF LSB 

00420010 TIC1: EQU $0010 TIMER INPUT CAPTURE REGISTER 1 (16-BIT) 
00430012 TIC2: EQU $0012 TIMER INPUT CAPTURE REGISTER 2 (16-BIT) 
00440014 TIC3: EQU $0014 TIMER INPUT CAPTURE REGISTER 3 (16-BIT) 
00450016 TOC1: EQU $0016 TIMER OUTPUT COMPARE REGISTER 1 (16-BIT) 
00460018 TOC2: EQU $0018 TIMER OUTPUT COMPARE REGISTER 2 (16-BIT) 
0047001a TOC3: EQU $001A TIMER OUTPUT COMPARE REGISTER 3 (16-BIT) 
0048001e TOC4: EQU $001C TIMER OUTPUT COMPARE REGISTER 4 (16-BIT) 
0049001e TOC5: EQU $001E TIMER OUTPUT COMPARE REGISTER 5/1NPUT 
00500020 TCTL1: EQU $0020 TIMER CONTROL REGISTER 1 
0051 0021 TCTL2: EQU $0021 TIMER CONTROL REGISTER 2 
00520022 TMASK1: EQU $0022 MAIN TIMER INTERRUPT MASK REGISTER 1 
00530023 TFLG1: EQU $0023 MAIN TIMER INTERRUPT FLAG REGISTER 1 
00540024 TMASK2: EQU $0024 MAIN TIMER INTERRUPT MASK REGISTER 2 
00550025 TFLG2: EQU $0025 MAIN TIMER INTERRUPT FLAG REGISTER 2 
00560026 PACTL: EQU $0026 PULSE ACCUMULATOR CONTROL REGISTER 
00570027 PACNT: EQU $0027 PULSE ACCUMULATOR COUNT REGISTER 
00580028 SPCR: EQU $0028 SPI CONTROL REGISTER 
00590029 SPSR: EQU $0029 SPI STATUS REGISTER 
0060002a SPDR: EQU $002A SPI DATA REGISTER 
0061002b BAUD: EQU $002B SCI BAUD RATE CONTROL REGISTER 
0062002c SCCR1: EQU $002C SCI CONTROL REGISTER 1 
0063002d SCCR2: EQU $0020 SCI CONTROL REGISTER 2 

f II iE iJfiF§ 
:'=:=: =: =: 

1-256 =reFEff!!E 



Appendix'. 
FeatulB Phone 
SOftwalB Listing 
(Cont.) 

0064002e 
00650021 
00660039 
0067003a 
0068003b 
0069003c 
0070003e 
00710031 
0072 

SCSR: 
SCDR: 
OPTION: 
COPRST: 
PPROG: 
HPRIO: 
TEST1: 
CONFIG: 

EQU $002E 
EQU $002F 
EQU $0039 
EQU $003A 
EQU $003B 
EQU $003C 
EQU $003E 
EQU $003F 

PlIJIXX - AppllDilt/on Note IJ4II 

SCI STATUS REGISTER 
SCI DATA REGISTER 
SYSTEM CONFIGURATION OPTIONS 
ARM/RESET COP TIMER CIRCUITRY 
EEPROM PROGRAMMING REGISTER 
HIGHEST PRIORITY INTERRUPT 
FACTORY TEST REGISTER 
CONFIGURATION CONTROL REGISTER 

0073 *192 Bytes of Internal RAM 
0074 
00750040 
00760041 
00770042 
00780043 
00790044 
00800045 
00810046 
00820047 
00830048 
00840049 
008500lf 
0086004a 
0087004b 
0088 

FLAGS: 
N: 
M: 
P: 
P12: 
P34: 
P56: 
P78: 
P910: 
P1112: 
STPTR: 
SWRPTR: 
SRDPTR: 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

$0040 
$0041 
$0042 
$0043 
$0044 
$0045 
$0046 
$0047 
$0048 
$0049 
$OOFF 
$004A 
$004B 

FLAG REGISTER 
DIGIT POINTER FOR PHONE NUMBER 
NUMBER OF DIGITS IN PHONE NUMBER 
STORED DIGIT WHEN READ 
1 ST TWO STORED DIGITS 
2ND TWO STORED DIGITS 
3RD TWO STORED DIGITS 
4TH TWO STORED DIGITS 
5TH TWO STORED DIGITS 
6TH TWO STORED DIGITS 
STACK POINTER AREA 
MASS STORAGE RAM WRITE POINTER 
MASS STORAGE RAM READ POINTERO 

0089 *2K x 8 RAM in PSD311 
0090 
00915000 
PSD311 
0092 

MASSTOR:· EQU $5000 START OF MASS STORAGE BUFFER RAM IN 

0093 *Other register initialization 
0094 
00952001 8620 
0096 2003 97 39 
0097 2005 86 04 
0098 2007 97 3f 
0099 2009 8e 00 If 
0100 200c b6 50 00 
0101 2001 97 4a 
01022011 974b 
0103 
0104 
0105 
01062013 ce 40 00 
0107201686 If 
01082018 a7 04 
0109 201a 86 eb 
0110 201c a7 05 
0111 
0112 
0113 
01142019 ce 40 00 
011520218600 LDAA 

LDAA #$20 SET UP OPTION REGISTERlIRQE=O 
STAA OPTION 
LDAA #$04 
STAA CONFIG 
LOS #STPTR SET UP STACK 
LDAA MASSTOR SET UP SRAM WRITE POINTERS 
STAA SWRPTR AND SRAM READ POINTERS 
STAA SRDPTR 

*PSD Port Direction Set Up 

LOX 
LDAA 
STAA 
LDAA 
STAA 

#PORTAB PORTS A&B OF PSD 
#$FF SET ALL PORT A PINS AS OUTPUTS 
4,X AND STORE 
#$EB SET ALL PORT B PINS AS OUTPUTS BUT 
5,X PINS PB4 (I/O) AND PB2 (MS) FOR NOW 

'Set Up Values for PSD Port Data Outputs Interfacing to MC34010 

LOX 
#$00 

#PORTAB PORTS A&B OF PSD 
SET PORT B PINS 3,5,6 AS LOW OUTPUTS 

01162023a707 STAA 7,X 
0117 

----------------------------~Jr~---------------------------1-257 



"SDIXX - Application Nots 04D 

AppendixB. 0118 'Display set up 

Feature Phone 0119 

Software Listing 
01202025 ce 27 10 DISINIT: LDX #$2710 lOOms DELAY 

(PWR UP DELAY FOR DISPLAY) 

(Cont.) 0121 2028 bd 30 a4 JSR TDELAY TIME DELAY 
0122 202b 86 38 LDAA #$038 SET UP DISPLAY 
0123 202d bd 30 b7 JSR SENDI SEND INSTRUCTION (30 1ST TIME) 
0124 2030 ce 03 00 LDX #$300 6.1ms DELAY 

0125 2033 bd 30 a4 JSR TDELAY TIME DELAY 
01262036 bd 30 b7 JSR SENDI SEND INSTRUCTION (30 2ND TIME) 
01272039 bd 30 al JSR TD150 TIME DELAY 
0128 203c bd 30 b7 JSR SENDI SEND INSTRUCTION (30 3RD TIME) 
01292031 bd 30 al JSR TD150 TIME DELAY 
0130 2042 86 38 LDAA #$038 FUNCTION SET (8-BIT:2-LlNE) 
0131 2044 bd 30 b7 JSR SEND SEND INSTRUCTION 
01322047 ce 02 80 LDX #$280 5ms DELAY 
0133 204a bd 30 a4 JSR TDELAY TIME DELAY 
0134 204d 86 Oe LDAA #$OE DISPLAY ON - CURSOR ON 
01352041 bd 30 b7 JSR SENDI SEND INSTRUCTION 
0136 2052 ce 02 80 LDX #$280 5ms DELAY 
01372055 bd 30 a4 JSR TDELAY TIME DELAY 
013820588606 LDAA #$06 ENTRY MODE SET 
0139 205a bd 30 b7 JSR SENDI SEND INSTRUCTION 
0140 205d ce 02 80 LDX #$280 5ms DELAY 
0141 2060 bd 30 a4 JSR TDELAY TIME DELAY 
0142 2063 bd 30 ab JSR CSCREEN CLEAR SCREEN 
01432066 ce 02 80 LDX #$280 5ms DELAY 
01442069 bd 30 a4 JSR TDELAY TIME DELAY 
0145 206c bd 30 al JSR HOME DISPLAY CURSOR HOME! 
0146 2061 ce 01 90 LDX #$190 4ms DELAY 
01472072 bd 30 a4 JSR TDELAY TIME DELAY 
0148 
0149 'Final Initialization 
0150 

0151 20758607 REGINIT: LDAA #$07 INITIALIZE REGISTER "M" 
0152 2077 97 42 STAA M STORE# OF DIGITS IN TEL NO. 
0153 2079 86 00 LDAA #$00 CLEAR FOLLOWING "REGISTERS" 
0154 207b 97 41 STAA N 
0155 207d 97 43 STAA P 
0156 2071 97 44 STAA P12 STORAGE FOR EACH DIGIT OF 
01572081 9745 STAA P34 PHONE NUMBER ... 
0158 2083 97 46 STAA P56 
015920859747 STAA P78 
016020879748 STAA P9l0 
0161 20899749 STAA Pll12 
0162 
0163 208b 18 ce 30 le DISPLAY: LDY #$301E NORMAL MODE 
01642081 bd 30 al JSR TD150 TIME DELAY 
0165 2092 bd 30 b3 JSR LlNE2 USE LINE 2 
0166 2095 bd 30 8a JSR PDOD DISPLAY MODE 
01672098 bd 30 al JSR TD150 TIME DELAY 
0168 20gb bd 30 al JSR HOME USE LINE 1 NEXT 
0169 20ge Oe CLI CLEAR IRQ MASK 
0170 2091 86 00 LDAA #$00 LOAD A WITH STOP ENABLE FOR CCR 
0171 20al 06 TAP TRANSFER A ACCUM TO CCR 
0172 20a2 01 NOP 
0173 20a3 01 NOP 
0174 20a4 cl STOP1: STOP 

f.Ji'= -1-~-S8-----------------------------~~§--------------------------------



"OS xx - Application Not. 04D 

AppendixB. 0175 

Feature Phone 0176 "IRQ Service Routine 

0177 
Software Listing 0178 "Read Which Key Depressed, Store in Accumulator A 

(CDnt.) 0179 

0180 20a5 ee 40 00 GDATA: LDX #PORTAB SET UP PSD PORTB TO READ KEY 
0181 20a8 86 eb LDAA #$EB SET ALL PORT B PINS AS OUTPUTS EXCEPT 

0182 20aa a7 05 STAA 5,X PINS PB4 (I/O) AND PB2 (DP) FOR NOW 

018320ae 86 00 LDAA #$00 INITIALIZE PORT B OUTPUT PINS 3,5,6 LOW 

0184 20ae a7 07 STAA 7,X 

0185 
0186 20bO bd 30 97 RDATA: JSR T20 TDELAY20uS 
0187 20b3 ee 40 00 LDX #PORTAB SET UP PSD PORTB TO READ KEY 

0188 20b6 1d 07 40 BCLR 7,X$40 ETC/CLLOW 

0189 20b9 bd 30 97 JSR T20 TDELAY20uS 

019020be 1e 07 40 BSET 7,X$40 ETC/CLHIGH 

0191 20bf bd 30 97 JSR T20 TDELAY20uS 
019220e2 1d 07 40 BCLR 7,X$40 ETC/CLLOW 
0193 20e5 bd 30 97 JSR T20 TDELAY20uS 
0194 20e81e 07 40 . BSET 7,X$40 ETC/CLHIGH 
0195 20eb bd 30 97 JSR T20 TDELAY20uS 
0196 
0197 20ee 4f CLRA CLEAR ACCUMULATOR A 

0198 20ef 18 ee 00 04 LDY #$04 READ 4 I/O-DATA BITS 
019920d30e READD: CLC CLEAR CARRY BIT 
0200 20d4 1 d 07 40 BCLR 7,X$40 ETC/CLLOW 
0201 20d7 11 07 10 01 BRCLR 7,X $10 N1 BRANCH IF I/O LOW TO CLEAR CARRY, 
020220db Od SEC OTHERWISE, SET CARRY 

0203 20de 49 N1: ROLA RD EACH BIT TO DETERMINE KEY PRESSED 
0204 20dd bd 30 97 JSR T20 TDELAY20uS 
0205 20eO 1 e 07 40 BSET 7,X$40 ETC/CLHIGH 

0206 20e3 bd 30 97 JSR T20 TDELAY20uS 
020720e6 1809 DEY DECREMENT COUNT 
0208 20e8 18 8e 00 00 CPY #$00 COUNT=O? 
0209 20ee 26 e5 BNE READD IF NOT DONE, GO TO READD 
0210 20ee 97 43 STAA P STORE DIALED NUMBER IN P REGISTER 
0211 

0212 "Start Routine 
0213 
02142010 81 Of START1: CMPA #KEY1 1 KEY? 
0215201226 Od BNE DOIT10 IF NOT GOTO DOIT10 
0216 
0217 201418 ce 30 00 LDY #$3000 DISPLAY "1" 
02182018 bd 30 Ba JSR PDOD SEND MESSAGE TO DISPLAY 
0219 20fb bd 30 d8 JSR CHD CHK IF 1ST DIGIT & SAVE 
0220 
0221 201e 7e 22 1 b RETRY: JMP ENDKEYDP RTI AFTER KEY IS NO LONGER DEPRESSED 
0222 

-------------------------~Jr;------------------------1·259 



PS03XX - Application Nots 04D 

AppendixB. 02232101 81 07 DOIT10: CMPA #KEY2 2 KEY? 

Feature Phone 0224 2103 26 Od BNE DOIT20 IF NOT GOTO DOIT20 

0225210518 ce 30 03 LOY #$3003 DISPLAY "2" 
Software Listing 0226 2109 bd 30 8a JSR PDOD 

(Cont.) 0227 21 Oc bd 30 d8 JSR CHD SAVE DIGIT 

02282101 7e 22 1b JMP ENDKEYDP RTI AFTER KEY IS NO LONGER DP 
0229 

02302112810b DOIT20: CMPA #KEY3 3 KEY? 
0231 21142609 BNE DOIT30 IF NOT GOTO DOIT30 

02322116 bd 30 8a JSR PDOD 
02332119 bd 30 d8 JSR CHD SAVE DIGIT 

0234 211c 7e 22 1b JMP ENDKEYDP RTI AFTER KEY IS NO LONGER DP 
0235 
02362111 81 03 DOIT30: CMPA #KEYA A KEY? (MODE) 
02372121 2613 BNE DOIT40 IF NOT GOTO DOIT40 
0238212318 ce 30 30 LOY #$3030 NORMAURECALUSTORE 
02392127 bd 30 a1 JSR TD150 

0240 212a bd 30 b3 JSR LlNE2 (THIS ROUTINE NOT COMPLETE) 
0241 212d bd 30 a1 JSR TD150 
02422130 bd 30 8a JSR PDOD 
02432133 7e 22 1b JMP ENDKEYDP RTI AFTER KEY IS NO LONGER DP 
0244 
0245213681 Od DOIT40: CMPA #KEY4 4 KEY? 

02462138260d BNE DOIT50 IF NOT GOTO DOIT50 
0247 213a 1B ce 30 09 LOY #$3009 DISPLAY "4" 
024B 213e bd 30 8a JSR PDOD 
02492141 bd 30 d8 JSR CHD SAVE DIGIT 
02502144 7e 22 1b JMP ENDKEYDP RTI AFTER KEY IS NO LONGER DP 
0251 
02522147 B1 05 DOIT50: CMPA #KEY5 5 KEY? 
025321492610 BNE DOIT60 IF NOT GOTO DOIT60 
0254 214b 1B ce 30 Oc LOY #$300C 
02552141 bd 30 Ba JSR PDOD DISPLAY "5" 
0256 2152 bd 30 d8 JSR CHD SAVE DIGIT 
02572155 bd 31 9d JSR CHAD IF ALL DIGITS PRESSED IN NO., STORE 
025B 215B 7e 22 1b JMP ENDKEYDP 
0259 
0260 215b 81 09 DOIT60: CMPA #KEY6 6 KEY? 
0261 215d 26 Od BNE DOIT70 IF NOT GOTO DOIT70 
02622151 1B ce 30 01 LOY #$300F 
0263 2163 bd 30 8a JSR PDOD DISPLAY "6" 
02642166 bd 30 dB JSR CHD SAVE DIGIT 
02652169 7e 22 1b JMP ENDKEYDP RTI AFTER KEY IS NO LONGER DP 
0266 

0267 216c B1 01 DOIT70: CMPA #KEYB B KEY? (SEND) 
026B 216e 26 10 BNE DOITBO IF NOT GOTO DOITBO 
0269217018 ce 30 54 LOY #$3054 
02702174 bd 30 b3 JSR LlNE2 
0271 2177 bd 30 8a JSR PDOD DISPLAY "SEND" 
0272 217a bd 31 ea JSR DIALNO SEND NO TO DTMF AND DIAL 
0273 217d 7e 22 1b JMP ENDKEYDP RTI AFTER KEY IS NO LONGER DP 
0274 
0275 

02762180 B1 Oe DOITBO: CMPA #KEY7 7 KEY? 
0277 21 B2 26 Od BNE DOIT90 IF NOT GOTO DOIT90 
027B 2184 1B ce 3012 LOY #$3012 
027921 BB bd 30 Ba JSR PDOD DISPLAY "7" 
02BO 21 Bb bd 30 dB JSR CHD SAVE DIGIT 
02B1 218e 7e 22 1b JMP ENDKEYDP RTI AFTER KEY IS NO LONGER DP 
0282 

-1--2-6-0-----------------------------------~~~--------------------------------------



PS03XX - Application Nots 040 

AppendixB. 028321918106 001T90: CMPA #KEY8 8 KEY? 

Feature Phone 0284 2193 26 Od BNE 00lT100 IF NOT GOTO 00lT100 

0285219518 ce 3015 LOY #$3015 
Software Listing 02862199 bd 30 8a JSR POOO DISPLAY "8" 

(Cont.) 0287 219c bd 30 d8 JSR CHO SAVE DIGIT 

02882191 7e 22 1b JMP ENOKEYOP RTI AFTER KEY IS NO LONGER OP 
0289 
0290 21a2 81 Oa 001T100: CMPA #KEY9 9 KEY? 
0291 21a4 26 Od BNE 00lT110 I F NOT GOTO 00lT11 0 
0292 21a6 18 ce 3018 LOY #$3018 

0293 21 aa bd 30 8a JSR POOO DISPLAY "9" 
0294 21 ad bd 30 d8 JSR CHO SAVE DIGIT 
0295 21bO 7e 22 1b JMP ENOKEYOP RTI AFTER KEY IS NO LONGER OP 

0296 
029721 b3 81 02 001T110: CMPA #KEYC C KEY? (UP) 
0298 21 b5 26 22 BNE 00lT120 IF NOT GOTO 00lT120 
0299 21b7 bd 30 ab JSR CSCREEN 
0300 21ba 18 ce 30 66 LOY #$3066 
0301 21be bd 30 a1 JSR TD150 
0302 21c1 bd 30 b3 JSR LlNE2 
0303 21 c4 bd 30 8a JSR POOO DISPLAY "SCROLL UP" 
0304 21c7 bd 30 a1 JSR T0150 
0305 21 ca bd 30 al JSR HOME 
0306 21 cd 86 08 LOAA #$08 
0307 21cl 90 4b SUBA SROPTR 
0308 21d1 974b STAA SROPTR 
0309 21d3 bd 31 c7 JSR SCROLL SEND NUMBER TO DISPLAY 
0310 21d6 7e 22 1b JMP ENOKEYOP RTI AFTER KEY IS NO LONGER OP 
0311 
031221d9810c 001T120: CMPA #KEYS • KEY? 

0313 21db 26 03 BNE 00lT130 IF NOT GOTO 00lT130 
0314 21dd 7e 221b JMP ENOKEYOP RTI AFTER KEY IS NO LONGER OP 
0315 
031621e081 04 001T130: CMPA #KEYO o KEY? 
0317 21e2 26 Od BNE 00lT140 IF NOT GOTO 001T140 
0318 21e418 ce 30 1b LOY #$301B 
0319 21e8 bd 30 8a JSR POOO DISPLAY "0" 
0320 21 eb bd 30 d8 JSR CHO SAVE DIGIT 
0321 21ee 7e 221b JMP ENOKEYOP RTI AFTER KEY IS NO LONGER OP 
0322 
03232111 81 08 001T140: CMPA #KEYN # KEY? 
0324 2113 26 03 BNE 00lT150 
IF NOT GOTO 00lT150 

03252115 7e 22 1b JMP ENOKEYOP RTI AFTER KEY IS NO LONGER OP 
0326 
0327211881 00 001T150: CMPA #KEYO o KEY? (DOWN) 
0328 21fa 26 1 c BNE 00lT160 
IF NOT GOTO 00lT160 
0329 21fc 18 ce 30 78 LOY #$3078 
0330 2200 bd 30 a 1 JSR TD150 
0331 2203 bd 30 b3 JSR LlNE2 
0332 2206 bd 30 8a JSR POOO DISPLAY "SCROLL ~OWN'' 
0333 2209 bd 30 a 1 JSR T0150 
0334 220c bd 30 al JSR HOME 
0335 2201 86 08 LOAA #$08 
03362211 9b 4b AOOA SROPTR 
0337 2213 97 4b STAA SROPTR 
0338 2215 bd 31 c7 JSR SCROLL 
0339 
03402218 7e 22 1b 001T160: JMP ENOKEYOP RTI AFTER KEY IS NO LONGER OP 
0341 
0342 

';EE~ 
ifIi:IJi Elf ; 1-261 

--- -- ~---~- ---,------ --- -



PSD3XX - Application Note 040 

AppendixB. 
Feature Phone 
Software Listing 
(Cont.) 

0343 
0344 
0345 221 b ee 40 00 
0346 221 e a6 03 

0347 2220 84 04 
0348 2222 26 la 
034922240e 
0350 2225 7 e 20 a4 
0351 
0352 
0353 
03543000 
0355 
0356300031 
0357 3001 00 00 
0358300332 
0359 3004 00 00 
0360300633 
0361 3007 00 00 
0362300934 
0363 300a 00 00 
0364 300e 35 
0365 300d 00 00 
0366300136 
0367 3010 00 00 
0368301237 
0369 3013 00 00 
0370301538 
0371 30160000 
0372301839 
037330190000 
0374 301b 30 
0375 301e 00 00 
0376 301 e 20 20 4e 41 52 4d 

414e204d4144 
45202020 

0377 302e 00 00 
0378 3030 20 20 52 45 43 41 

4e 4c 20 4d 4144 
45202020 

0379 3040 00 00 
0380 3042 20 20 20 53 54 41 

52 45 20 4d 41 44 
45202020 

0381 3052 00 00 
0382 3054 20 20 20 20 20 53 

45 4e 44 20 20 20 
20202020 

0383 3064 00 00 
0384 3066 20 20 20 53 43 52 

41 4e 4e 20 55 50 
20202020 

0385 3076 00 00 
0386 3078 20 20 53 43 52 41 

4c 4c 20 44 41 57 
48202020 

0387 3088 00 00 
0388 
0389 

·Check if key no longer depressed 

ENDKEYDP: LDX #PORTAB CHECK FOR MS - PORTB PIN 2 (DP) LOW 

REPEAT: LDAA 3,X WHICH MEANS KEY IS NO LONGER 
DEPRESSED 

ANDA #$04 
BNE REPEAT 

CLI CLEAR INTERRUPT 

JMP STOP1 WAIT FOR NEXT KEY TO BE DEPRESSED 

·Screens 

ORG $3000 

SCR1: FCC "1" 
FDB $00 

SCR2: FCC "2" 

FDB $00 
SCR3: FCC "3" 

FDB $00 
SCR4: FCC "4" 

FDB $00 
SCR5: FCC "5" 

FDB $00 
SCR6: FCC "6" 

FDB $00 
SCR7: FCC "7" 

FDB $00 
SCR8: FCC "8" 

FDB $00 
SCR9: FCC "9" 

FDB $00 
SCRO: FCC "0" 

FDB $00 
SCRA1: FCC" NORMAL MODE 

FDB $00 
SCRA2: FCC" RECALL MODE 

FDB $00 
SCRA3: FCC" STORE MO 

FDB $00 

SCRB: FCC" SEND 

FDB $00 
SCRC: FCC" SCROLL UP 

FDB $00 
SCRD: FCC" SCROLL DOWN 

FDB $00 

-:-------------------f== ==-------------------
1-262 



PSD3XX - Application Not. lUll 

AppendixB. 0390 'Subroutines 

Feature Phone 0391 
0392 'Put Data on Display 

Software Listing 0393 

(Cont.) 0394 30Ba 1 B a6 00 PDOD: LDAA O,Y GET BYTE 
0395 30Bd 27 07 BEQ PDOD1 IF END (00), GOTO NEXT 1 
0396 30Bf bd 30 c3 JSR SENDD 
0397 3092 1 B OB INY NEXT BYTE 
039B 3094 20 f4 BRA PDOD RETURN TO NEXT 
0399309639 PDOD1: RTS 
0400 
040 
0402 'Time Delay Routine 
0403 3097 c6 Of T20: LOB #$OF >20 uS DELAY 
0404 3099 20 00 BRA TDLY 
0405 309b 5a TDLY: DECB 
0406 309c c1 00 CMPB #$00 
0407 30ge 26 fb BNE TDLY 
040B 30aO 39 fiTS 
0409 
041030a1 ce 00 Of TD150: LOX #$OOOF 150us DELAY 
0411 30a409 TDELAY: DEX DECREMENT COUNT 
0412 30a5 Bc 00 00 CPX #$0000 COUNT=O? 
041330aB 26 fa BNE TDELAY IF NOT DONE, GOTO TDELA Y 
041430aa39 RTS RETURN FROM SUBROUTINE 
0415 
0416 'Clear Screen, Cursor Home, and Send Control Instruction 
0417 
041B 30ab B6 01 CSCREEN: LDAA #$0001 CLEAR DISPLAY 
0419 30ad 20 OB BRA SENDI SEND INSTRUCTION 
0420 30at B6 02 HOME: LDAA #$0002 CURSOR HOME 
0421 30b1 2004 BRA SENDI SEND INSTRUCTION 
0422 30b3 B6 cO LlNE2: LDAA #$OOCO SET CURSOR TO LINE 2 
0423 30b5 20 00 BRA SENDI SEND INSTRUCTION 
0424 3Ob7 ce 40 00 SENDI: LOX #PORTAB SET UP DATA TRANSFER 
0425 30ba a7 06 STAA 6,X STORE AT PIA PORT A 
0426 30bc 1 c 07 02 BSET 7,X$02 DISPLAY E HIGH (PSD PORT B PIN 1) 
0427 30bf 1 d 07 02 BCLR 7,X$02 DISPLAY E LOW (PSD PORT B PIN 1) 
042B 30c2 39 RTS 
0429 
0430 'Send Data to Display 
0431 
0432 30c3 bd 30 a 1 SEN DO: JSR TD150 150 uS TIME DELAY 
0433 3Oc6 ce 40 00 LOX #PORTAB SET UP DATA TRANSFER 
0434 30c9 a7 06 STAA 6,X SEND DATA 
043530cb 1c 07 01 BSET 7,X$01 DISPLAY RS HIGH 
0436 30ce 1 c 07 02 BSET 7,X$02 DISPLAY E HIGH 
043730d1 1 d 0702 BCLR 7,X$02 DISPLAY E LOW 
043B 30d4 1d 07 01 BCLR 7,X$01 DISPLAY RS LOW 
0439 30d7 39 RTS 
0440 
0441 'Check if first number dialed is a 1 or 0 (number stored in A 
0442 'accum) and if it is, expand expected digits in number to 11. 
0443 
0444 30dB 7c 00 41 CHD: INC N INCREMENT DIGIT IN NUMBER 
0445 30db c6 01 LDAB #$01 
0446 30dd d1 41 CMPB N COMPARE N TO 1 TO SEE IF 1ST DIGIT DIALED 
0447 30df 26 1a BNE CH2D IF N=1, CHECK IF NO. DIALED IS 1 OR 0 
O44B 

----------------_______________________ fJr~~~ ____________________________________ __ 
';fH!!_ S 1-263 



PSDaxx - Application Nots 040 

AppendixB. 
Feature Phone 
Software Listing 
(Cont.) 

0449 
0450 
0451 30el e600 
0452 30e3 dl 43 
0453 30e5 26 14 
0454 30e7 c6 01 
0455 30e9 dl 43 
0456 30eb 26 Oe 
0457 30ed e6 Ob 
0458 30el d7 42 
0459 
0460 
0461 
0462 3011 d6 43 
046330130c 
0464301459 
0465301559 
0466301659 
0467301759 
0468 3018 d7 44 
0469 30la 39 
0470 
0471 
0472 
0473 30lb c6 02 
0474 30ld dl 41 
0475 301f 26 07 
04763101 d644 
0477 3103 de 43 
04783105 d7 44 
0479310739 
0480 
0481 
0482 
04833108 e6 03 
0484310ed141 
0485 310e 26 Oa 
0486310e d6 43 
048731100e 
0488311159 
0489311259 
0490311359 
0491 311459 
04923115 d7 45 
0493311739 
0494 
0495 
0496 
04973118 e6 04 
0498 311a dl 41 
0499 311e 26 07 
0500 311e d6 45 
0501 3120 de 43 
05023122 d7 45 
0503312439 
0504 
0505 
0506 
0507 

'Check if first digit 0 or 1 and change M to 11 digits if it is. 

LDAB #$00 
CMPB P COMPARE 00 TO NUMBER DIALED 
BNE CH2D IF 1ST NO. ISN'T 0, THEN CONTINUE 
LDAB #$01 
CMPBP COMPARE 01 TO NUMBER DIALED 
BNE CH2D F 1ST NO. ISN'T 1, THEN CONTINUE 
LDAB #$OB SET M=$OB IF 1ST DIGIT IS lOR 0 
STAB M OTHERWISE M=$07 

'If first digit dialed, save in upper 4 bits of register P12. 

LDAB P LOAD DIALED DIGIT IN REGISTER 
CLC CLEAR CARRY BIT 
ROLB ROTATE NUMBER LEFT TO MOVE IT TO UPPER 4-
ROLB BITS IN REGISTER 
ROLB 
ROLB 
STAB P12 STORE IT TEMPORARILY 
RTS 

'Save second digit in lower 4 bits of P12 

CH2D: LDAB #$02 DETERMINE IF DIGIT DIALED WAS 
CMPBN SECOND DIGIT AND 
BNE CH3D IFITIS 
LDAB P12 STORE 2ND DIGIT IN LOWER 4 BITS OF P12 
ORAB P BY "OR"ING ITW/P12 WHICH ALREADY HAS 1ST 
STAB P12 DIGIT SAVED IN UPPER 4 BITS 
RTS 

'Save third digit in upper 4 bits of P34 

CH3D: LDAB #$03 DETERMINE IF DIGIT DIALED WAS 
CMPB N THIRD DIGIT AND 
BNE CH4D IF IT IS 
LDAB P LOAD DIALED DIGIT IN REGISTER 
CLC CLEAR CARRY BIT 
ROLB ROTATE NUMBER LEFT TO MOVE IT TO UPPER 4-
ROLB BITS IN REGISTER 
ROLB 
ROLB 
STAB P34 STORE IT TEMPORARILY 
RTS 

'Save fourth digit in lower 4 bits of P34 

CH4D: LDAB #$04 DETERMINE IF DIGIT DIALED WAS 
CMPBN FOURTH DIGIT AND 
BNE CH5D IFITIS 
LDAB P34 STORE 4TH DIGIT IN LOWER 4 BITS OF P34 
ORAB P BY "OR"ING IT W/P34 WHICH ALREADY HAS 3RD 
STAB P34 DIGIT SAVED IN UPPER 4 BITS 
RTS 

'Save fifth digit in upper 4 bits of P56 

__ ~ ___________________________________ rarar~~ 
1-264 ':ifg=i!~ ---------------



AppendixB. 
Feature Phone 
Software Listing 
(Cont.) 

05083125 c6 05 
05093127d141 
05103129260a 
0511 312b d6 43 
0512 312d Oc 
0513 312e 59 
0514312159 
0515313059 
05163131 59 
0517 3132 d7 46 
0518313439 
0519 
0520 
0521 
05223135 c6 06 
05233137d141 
052431392607 
0525 313b d6 46 
0526 313d da 43 
05273131 d7 46 
05283141 39 
0529 
0530 
0531 

CH5D: LDAB 
CMPB 
BNE 
LDAB 
CLC 
ROLB 
ROLB 
ROLB 
ROLB 
STAB P56 
RTS 

#$05 
N 
CH6D 
P 

PSD3XX - Application Nots 040 

DETERMINE IF DIGIT DIALED WAS 
FIFTH DIGIT AND 
IFITIS 
LOAD DIALED DIGIT IN REGISTER 
CLEAR CARRY BIT 
ROTATE NUMBER LEFT TO MOVE IT TO UPPER 4-
BITS IN REGISTER 

STORE IT TEMPORARILY 

'Save sixth digit in lower 4 bits 01 P56 

CH6D: LDAB #$06 DETERMINE IF DIGIT DIALED WAS 
CMPB N SIXTH DIGIT AND 
BNE CH7D IF ITIS 
LDAB P56 STORE 6TH DIGIT IN LOWER 4 BITS OF P56 
ORAB P BY "OR"ING IT W/P56 WHICH ALREADY HAS 5TH 
STAB P56 DIGIT SAVED IN UPPER 4 BITS 
RTS 

'Save seventh digit in upper 4 bits of P78 

0532 3142 c6 07 CH7D: LDAB #$07 DETERMINE IF DIGIT DIALED WAS 
05333144d141 
053431462615 
0535 3148 d6 43 
0536 314a Oc 
0537 314b 59 
0538 314c 59 
0539 314d 59 
0540 314e 59 
0541 3141 d6 42 
05423151 d1 41 
0543 3153 27 02 
0544 3155 ca Oa 

CMPB 
BNE 
LDAB 
CLC 
ROLB 
ROLB 
ROLB 
ROLB 
LDAB 
CMPB 
BEQ 
ORB 

N SEVENTH DIGIT AND 
CH8D IFITIS 
P LOAD DIALED DIGIT IN REGISTER 

CLEAR CARRY BIT 
ROTATE NUMBER LEFT TO MOVE IT TO UPPER 4-
BITS IN REGISTER 

M 
N CHECK IF M=N? - ALL NUMBERS DIALED 
NEXT 
#$OA 

05453157 d7 47 NEXT: STAB P78 STORE IT TEMPORARILY 
05463159 bd 31 9d 
0547 315c 39 
0548 
0549 
0550 
0551 315d c6 08 
05523151d141 
055331612607 
05543163 d6 47 
0555 3165 da 43 
0556 3167 d7 47 
0557316939 
0558 
0559 
0560 

JSR CHAD 
RTS 

'Save eighth digit in lower 4 bits of P78 

CH8D: LDAB #$08 DETERMINE IF DIGIT DIALED WAS 
CMPB N EIGHTH DIGIT AND 
BNE CH9D IFITIS 
LDAB P78 STORE 8TH DIGIT IN LOWER 4 BITS OF P78 
ORAB P BY "OR"ING IT W/P78 WHICH ALREADY HAS 7TH 
STAB P78 DIGIT SAVED IN UPPER 4 BITS 
RTS 

'Save ninth digit in upper 4 bits 01 P910 

---------------------------------------~~~--------------------------------------
1·265 



PSD3XX - Application Nots 04D 

AppendixB. 
Feature Phone 
Software Listing 
(Cont.) 

0561 316a c6 09 
0562 316c d1 41 
0563 316e 26 Oa 
0564 3170 d6 43 
056531720c 
0566317359 
0567317459 
0568317559 
0569317659 
05703177 d7 48 
0571317939 
0572 
0573 
0574 
0575 317a c6 Oa 
0576 317c d1 41 
0577 317e 26 07 
0578 3180 d6 48 
05793182 da 43 
05803184 d7 48 
0581318639 
0582 
0583 
0584 
0585 3187 c6 Ob 
05863189 dl 41 
0587 318b 26 01 
0588 318d d6 43 
058931810c 
0590319059 
0591319159 
0592319259 
0593319359 
05943194 ca Oa 
0595 3196 d7 49 
05963198 bd 31 9d 
0597 319b 39 
0598 
0599 319c 39 
0600 
0601 
0602 
0603 319d d6 42 
06043191d141 
060531 al 27 01 
0606 31a3 39 
0607 
0608 
0609 

CH9D: LDAB #$09 DETERMINE IF DIGIT DIALED WAS 
CMPB N NINTH DIGIT AND 
BNE CH10D IFITIS 
LDAB P LOAD DIALED DIGIT IN REGISTER 

CLC CLEAR CARRY BIT 
ROLB ROTATE NUMBER LEFT TO MOVE iT TO UPPER 4-
ROLB BITS IN REGISTER 
ROLB 
ROLB 
STAB P910 STORE IT TEMPORARILY 
RTS 

'Save tenth digit in lower 4 bits of P910 

CH10D: LDAB #$OA DETERMINE IF DIGIT DIALED WAS 

CMPB N TENTH DIGIT AND 
BNE CH11D FITIS 
LDAB P910 STORE 10TH DIGIT IN LOWER 4 BITS OF P910 
ORAB P BY "OR"ING IT W/P91 0 WHICH ALREADY HAS 9TH 
STAB P910 DIGIT SAVED IN UPPER 4 BITS 
RTS 

'Save eleventh digit in upper 4 bits of P910 

CH11D: LDAB #$OB DETERMINE IF DIGIT DIALED WAS 
CMPB N ELEVENTH DIGIT AND 
BNE CDONE IF IT IS 
LDAB P LOAD DIALED DIGIT IN REGISTER 
CLC CLEAR CARRY BIT 
ROLB ROTATE NUMBER LEFT TO MOVE iT TO UPPER 4-
ROLB BITS IN REGISTER 
ROLB 
ROLB 
ORB #$OA LAST 4 BITS WILL REPRESENT END OF NO. 
STAB Pll12 STORE IT TEMPORARILY 
JSR CHAD 
RTS 

CDONE: RTS 

'Check if all digits in number dialed 

CHAD: LDAB M 
CMPB N 
BEQ STBUF 
RTS 

CHECK IF M~N? - ALL NUMBERS DiALED 
STORE ENTERED NUMBER IN BUFFER RAM 

'Enter Dialed Number in Buffer RAM 

-1-~-66-----------------------------~~~~--------------------------------



I'SD3XX - Application Note 04D 

AppendixB. 0610 31a4 de 4a STBUF: LDX SWRPTR STORE SRAM WRITE POINTER IN X REG 

Feature Phone 0611 31a6 86 08 LDAA #$08 
0612 31a8 9b 4a ADDA SWRPTR 

Software Listing 0613 31aa 97 4a STAA SWRPTR STORED PHONE NO. (INCREMENT WRITE PTR) 

(Cont.) 0614 31ac 97 4b STAA SRDPTR SET READ POINTER AT LAST WRITTEN LOCATION 
0615 31ae 96 44 LDAA P12 
0616 31bO a7 00 STAA O,X STORE FIRST TWO DIGITS IN RAM MEMORY 

0617 31b2 96 45 LDAA P34 
0618 31b4 a7 01 STAA 1,X STORE NEXT TWO DIGITS IN RAM MEMORY 
0619 31b6 96 46 LDAA P56 
0620 31b8 a7 02 STAA 2,X STORE NEXT TWO DIGITS IN RAM MEMORY 
0621 31 ba 96 47 LDAA P78 
0622 31bc a7 03 STAA 3,X STORE NEXT TWO DIGITS IN RAM MEMORY 
062331 be 96 48 LDAA P910 
0624 31cO a7 04 STAA 4,X STORE NEXT TWO DIGITS IN RAM MEMORY 
0625 31 c2 96 49 LDAA P1112 
0626 31c4 a7 05 STAA 5,X STORE LAST DIGIT IN RAM MEMORY 
0627 31c6 39 RTS 
0628 
0629 'Send Stored Number while Scrolling to Display 
0630 
0631 31c718 de 4b SCROLL: LDY SRDPTR LOAD ADDRESS OF READ POINTER IN Y REGISTER 
0632 
0633 31ca 18 a6 00 NXTNUM: LDAA O,Y LOAD 1ST DIGIT, PX?, FROM RAM IN A ACCUM 
0634 31cd 44 LSRA BY GETTING PXY AND SHIFTING RIGHT 
0635 31ce 44 LSRA 4 TIMES 
0636 31cf 44 LSRA TO ACHIEVE OOOOIXXXX 
0637 31dO 44 LSRA THEN MAKE IT 
0638 31d1 8a 30 ORA #$30 ASCII EQUIVALENT - 0011IXXXX 
063931 d3 bd 30 c3 JSR SENDD SEND DATA TO DISPLAY 
0640 31d6 18 a6 00 LDAA O,Y READ 2ND DIGIT, P?Y, FROM RAM MEMORY 
064131d9840f ANDA #$OF CLEAR UPPER 4 BITS 
0642 31db 8a 30 ORA #$30 SET UPPER 4 BITS TO 3 -> 0011IYYYY 
0643 31dd 81 3a CMPA #$3A CHECK IF LAST NUMBER DIALED 
0644 31df 27 08 BEQ NUMRET AND IF IT IS, RETURN. OTHERWISE, 
0645 31e1 bd 30 c3 JSR SENDD SEND DATA TO DISPLAY, 
0646 31e418 08 INY INCREMENT ADDRESS, AND 
0647 31e6 bd 31 ca JSR NXTNUM RETRIEVE NEXT NUMBER 
0648 31e9 39 NUMRET: RTS 
0649 
0650 'Send Number to Electronic Telephone Circuit for Dialing and Store 
0651 
0652 31ea 18 de 4b DIALNO: LDY SRDPTR TRANSFER CONTENTS AT ADDRESS CONTAINED IN 
0653 31ed 18 e6 00 LDAB O,Y READ POINTER TO ACCUM B 
06543110 ce 40 00 SDDATA: LDX #PORTAB CONFIGURE PSD PORTB TO SEND NUMBER 
0655 3113 86 fb LDAA #$FB SET ALL PORT B PINS AS OUTPUTS EXCEPT 
06563115 a7 05 STAA 5,X PIN PB2 (DP) 
065731178600 LDAA #$00 INITIALIZE PORT B PINS 3,4,5,6 AS LOW 
06583119 a7 07 STAA 7,X OUTPUTS 
0659 311b 1c 07 08 SCTL: BSET 7,X $08 rro (TONE OUTPUT) HIGH 
0660 311e bd 30 97 JSR T20 TDELAY 20uS 
0661 3201 1c 07 20 BSET 7,X $20 /DD (DATA DIRECTION) HIGH FOR OUTPUT 
0662 3204 bd 30 97 JSR T20 TDELAY 20uS 
0663 
0664 3207 86 02 NXT2NUM: LDAA #$02 LOOP TWICE TO SEND 2 DIGITS/8-BITS 
0665 3209 18 ce 00 04 NXTDIG: LDY #$04 LOOP 4 TIMES TO SEND 4 BITS/DIGIT IN NO. 
0666 320d 1 c 07 40 S4BIT: BSET 7,X $40 ETC /CL (CLOCK INPUT) HIGH 
06673210 bd 30 97 JSR T20 TDELAY 20uS 
0668321359 ROLB SHIFT IN CARRY BIT 
066932142406 BCC SNDL01 BRANCH IF CARRY CLEAR 
06703216 1c 0710 BSET 7,X $10 SET CARRY BIT AND SEND DATA ON I/O 
0671 3219 bd 3211 JSR DELAY 

rill; 1-267 

------_. ----_ .. _----- - -----,"----



PSD3XX - Application Nots 040 

AppendixB. 0672 321c 1d 0710 SNDL01: BClR 7,X$10 CLEAR CARRY BIT AND SEND DATA ON 1/0 

Feature Phone 0673 3211 bd 30 97 DELAY: JSR T20 TDElAY 20uS - COULD CHANGE TO 10uS 
06743222 1d 07 40 BClR 7,X$40 ETC ICl (CLOCK INPUT) lOW 

Software Listing 0675 3225 bd 30 97 JSR T20 TDELAY20uS 

(Cont.) 0676 3228 18 09 DEY DECREMENT COUNT 
0677 322a 18 8c 00 00 CPY #$00 COUNT=O? 
0678 322e 26 dd BNE S4BIT IF NOT DONE, GO TO S4BIT 
0679 
0680 3230 1 d 07 08 BClR 7,X $08 ITO lOW FOR TONE GENERATION INTERVAL 
0681 3233 bd 30 97 JSR T20 TDElAY 20uS 
0682 3236 1 c 07 08 BSET 7,X $08 ITO HIGH FOR TONE GENERATION INTERVAL 
0683 3239 bd 30 97 JSR T20 TDElAY 20uS 
0684 
0685 323c 4a DECA DECREMENT COUNT 
0686 323d 81 00 CMPA #$00 COUNT=O? 
0687 3231 26 01 BNE CHKDIG CHECK FOR lAST DIGIT 
0688 3241 bd 32 09 GETNXT: JSR NXTDIG 
0689 3244 18 de 4b lDY SRDPTR 
06903247 18 08 INY INCREMENT ADDRESS FOR NEXT 2 NUMBERS 
0691 3249 18 e6 00 lDAB O,Y AND lOAD IN B ACCUM 
0692 324c bd 32 07 JSR NXT2NUM 
0693324139 RTS 
0694 
0695 3250 c4 10 CHKDIG: ANDB #$FO CLEAR lOWER 4-BITS 
0696 3252 c1 aO CMPB #$AO COMPARE DIGIT THAT Will BE SENT W/$AO 
0697 3254 27 02 BEQ STORENO IF lAST NO. AO, STORE SINCE All NOS SENT 
0698 3256 20 e9 BRA GETNXT 
0699 
0700 3258 18 de 4b STORENO: lDY SRDPTR COPY DIALED NUMBER INTO RAM MEMORY 
0701 325b de 4a lDX SWRPTR 
0702 325d 18 a6 00 lDAA O,Y 
0703 3260 a7 00 STAA O,X 
0704 3262 18 a6 01 lDAA 1,Y 
07053265 a7 01 STAA 1,X 
0706 3267 18 a6 02 lDAA 2,Y 
0707 326a a7 02 STAA 2,X 
0708 326c 18 a6 03 lDAA 3,Y 
07093261 a7 03 STAA 3,X 
0710327118 a6 04 lDAA 4,Y 
0711 3274 a7 04 STAA 4,X 
0712327618 a6 05 lDAA 5,Y 
0713 3279 a7 05 STAA 5,X 
0714327b 18 a6 06 lDAA 6,Y 
0715 327e a7 06 STAA 6,X 
0716328018 a6 07 lDAA 7,Y 
0717 3283 a7 07 STAA 7,X 
0718328539 RTS 
0719 
0720 "Reset and Interrupt Vectors 
072 
0722 fff2 ORG $FFF2 
0723 
0724 flf2 20 a5 IRQ: FDB GDATA IIRQ· EXTERNAL PIN 
0725 flf4 20 00 XIRQ: FDB START IXIRQ PIN (PSEUDO-NONMASKABlE) 
0726 flf6 20 00 SWI: FDB START SOFTWARE INTERRUPT 
0727 flf8 20 00 lOT: FDB START IllEGAL OPCODE TRAP (START OVER) 
0728 flfa 20 00 COPS: FDB START COP FAilURE (RESET) 
0729 flfc 2000 COPS1: FDB START COP CLOCK MONITOR FAil (RESET) 
0730 fife 20 00 RESET: FDB START RESET 
0731 
0732 END THE END 

1-268 
Ji#ifi EE 
r;.JI~ 



iF'====':= --- ~ ------i::""":i--=:i-F-= == ---- ---~ --

Introduction 

M68HC11 
Expanded Mode 
Considerations 

Programmable Peripheral 
Application Note 041 
Detailed Step-By-Step Design Implementation 
of an M68He11 and I'SD311 or I'SD311 R 
By Stave Torp - Motorola Ssmlconductor and Karsn SPll$llnJ - WSI, Inc. 

The purpose of this application note is to show the steps involved in moving from an OTP 
M68HC711 or expanded mode M68HC11 multi-chip solution to a two-chip solution using an 
expanded mode M68HC11 and a WSI PSD311 or PSD311 R (SRAMless) Programmable 
MCU Peripheral. This two-chip approach provides many advantages such as increased 
system flexibility and several options for more EPROM and SRAM memory while 
maintaining low power system needs. 

The main areas to consider when implementing the two-chip M68HC11 and WSI PSD311 
solution are discussed below. They are mapping the PSD in the M68HC11 address 
space, configuring the PSD using the PSD-SILVER software package, modifying the 
microcontrolier code as necessary, and programming the PSD. 

An important advantage of the M68HC11 is that it has many subsystems. They are AID, 
E2PROM, synchronous peripheral interface (SPI), and serial communications interface 
(SCI). As a result, these subsystems will have to be defined by the system designer in the 
address map. In addition, the system design must also incorporate memory and 1/0 
mapping definitions. 

A typical single-chip OTP design could incorporate an M68HC711 E9 and specific system 
1/0. The M68HC711 E9 has 8-bit AID, 512 bytes E2PROM, one SPI, and one SCI as well as 
12K bytes of EPROM and 512 bytes of SRAM. A total of 38110 lines are available for the 
user to define in the system. 

The OTP M68HC711 E9 mapping is specified in Motorola's M68HC11 Reference Manual. 
The E2PROM and EPROM are directly mapped at $B600-$B7FF and $DOOO-$FFFF, 
respectively. The 64 byte register block and the SRAM areas, however, do require some 
consideration. The 64 byte register block specifies the SPI, SCI and 1/0 Ports. After reset, it 
is located at $1 000-$1 03F. However, the register block can be relocated, if necessary, on 
any 4K block boundary anywhere within the 64K address space. The INIT register is written 
to at location $103D but to do this keep in mind there is a time protection limitation of 64 
clock cycles out of RESET. 

The other area to be considered for mapping is the 512 byte SRAM. After reset, the default 
mapping of the SRAM is at $0000-$01 FF but it can also be relocated anywhere in the 64K 
address space on a 4K byte boundary by modifying the INIT register. 

A typical expanded OTP or ROM less M68HC11 design places address and data signals on 
the M68HC11 Port B and Port C pins so it can address 64K bytes of external memory. 
Higher-order address bits are output on the Port B pins and lower-order address bits and 
the 8-bit data bus are multiplexed on the Port C pins. The AS pin provides the control output 
used in demultiplexing the low-order address at Port C. The R/W pin is used to control the 
direction of data transfer on the Port C bus. To convert from single-chip to expanded mode 
on the M68HC11, simply pull the MODA pin HIGH to Voo. 

1-269 



PSD3XX - Application Note 041 

M68HC11 
Expanded Mode 
Considerations 
(Cont.) 

In multi-chip expanded mode designs, an external latch such as a 74HC373 is normally 
required with the microcontroller to demultiplex the address from the data. In addition, some 
address decoding would have to be defined for memory and peripheral mapping which can 
be done in discrete logic, such as by using a 74HC138, or a simple PLD such as a 16V8 or 
22V10. And finally, if additional direct mapped I/O is required in expanded mode, additional 
logic components will be necessary such as transparent latches, i.e., 74HC374, 74HC341, 
and 68HC24. 

Figure 1 illustrates the two-chip configuration with the M68HC11 in expanded mode. The 
PSD311 or PSD311 R integrates 32K bytes of EPROM, an optional 2K bytes of SRAM, a 
demultiplexing latch, programmable address decoding, other programmable logic, and 19 
user-configurable I/Os. As a result, the functionality in the PSD incorporates the 
components that would be necessary in a cumbersome multi-chip configuration by 
integrating on-chip the demultiplexing latches and address decoding. The PSD also 
integrates the EPROM and reconstructs the two ports of I/O that are lost when placing the 
M68HC11 in expanded mode. 

The interface of the M68HC11 with the PSD is quite simple. The address/data bus 
(ADO-7 and A8-15) from the expanded mode M68HC11 Ports Band C map directly to the 
address/data bus of the PSD (ADO-7, A8-15). The RIW, E, and AS from the M68HC11 
map directly to the E/DS, RIW, and ALE/AS of the PSD. The RESET pin on the PSD will be 
tied to the RESET of the M68HC11. Since the PSEN pin on the PSD311 is not used, it will 
be tied HIGH. Finally, the 19 configurable I/Os and A19/CSI will be available to be used to 
reconstruct the M68HC11 Ports Band C and for additional expansion. 

The address mapping for expanded mode designs is similar to the OTP design, but now the 
external memory and peripheral I/O need to be considered. The external memory and I/O 
should be mapped to avoid conflicts with internally mapped resources. If there is a conflict, 
the internal resources always have priority and the address and data will not be presented 
externally. Keep in mind the interrupt vector assignments are located at $FFCO - $FFFF 
and must be physically mapped at these locations. 

Figure 1. Two-Chip Configuration with PS0311 and M68HC11In Expanded Mode 

68HC11 PSD3XX 

XT PCO-7 ADO-7/AO-7 PCO-2 ........ 
EX 

PBO-7 ADS-1S/AS-1S 
IRQ --- XIRQ 

MODA 
VCC MODB 

........ PAO-7 E E PAO-7 ........ 
RJW RiW ........ PEO-7 PSEN 
AS AS PBO-7 +--+ ........ PDO-6 

VRH RESET RESET 
VRL 

A19/CSi 

--

-1-~-ro---------------------------~~~~------------------------------



M68HC11 
Expanded Mode 
Considerations 
(Cont.) 

Configuring 
ThePSD311 
With The 
PSD-Silver 
Software 

PSD3XX - Application Nots 041 

In the two-chip configuration of the PSD and M68HC11, the memory and peripheral 1/0 
mapping in the PSD device is achieved using the WSI PSD software. There are two 
software packages available. 

PSD-SILVER software supports the PSD3XX devices and includes the MAPLE and 
MAPPRO software modules which run under the DOS platform. MAPLE software is used to 
configure the PSD chip. It features simple menu driven commands for selecting different 
device configurations. It also provides mapping of the EPROM, SRAM, and chip select 
outputs into the user's address space, and locates the files to be programmed into the 
EPROM segments. MAP PRO enables the user to program the PSD on a WSI MagicPro III 
programmer. 

The second software package, PSDsoft™ (WS7001 or WS7002), supports the PSD3XX, 
PSD4XX, and PSD5XX families and runs under MicroSoft® Windows®. It includes 
PSDabel, PSD configuration, PSD compiler, PSDsiios III simulator and PSD programming 
software. The PSDsoft environment allows design and simulation of the PSD on-chip PLD 
logic under Data 1/0 ABEL, PSD interface selections to any MCU, configuration of the 1/0, 
and address mapping of the EPROM and SRAM memory, among other things. 

For simplification, a step-by-step procedure for configuring the PSD311 or PSD311 R using 
the PSD-SILVER software is shown below. 

Before the PSD311 is configured to interface with the M68HC11, the rest of the system 
requirements need to be defined. Of course, the memory and 1/0 port mapping will be 
needed. In addition, the PSD311 can integrate some chip-select and glue logic, which can 
help reduce other logic components on the board. These should be specified by the user in 
the application. 

The following example shown in Figures 2 and 3 will illustrate an application that reads 
eight simple DIP switches and display the values on two 7-segment LEDs. The first 
schematic uses a single-chip OTP M68HC711 E9. The second schematic is a simple 
conversion to the ROM less M68HC11 E1 used with the PSD311 and is functionally 
equivalent. In the second example, the PSD-SILVER software is used to configure the 
PSD311 to support this application. The PSD-SIL VER's ease-of-use illustrates the flexibility 
of the PSD which will be demonstrated below. 

The second example with the PSD311 will include mapping for 12Kbytes of the 32Kbyte 
EPROM that is available for program storage, 2Kbytes of SRAM for data storage included 
on-chip, and 16 general-purpose MCU 110 pins. Additional system enhancements that could 
require chip select or additional logic can also be incorporated in the PSD311 PLD arrays. 

-------------------------------------~~~-------------------------------------
1·271 



I'SD3XX - AppllClltl,n ,1,te 041 

Conflgullng 
ThePSD311 
With The 
PSD-Sllref 
Software 
(C,nt.) 

Figure 2. Single-Chip M68HC111E9 Example Application 

+5V +sv 

tOkO 

M68HC711E9 

PB7 
PBI 
PBS 
PB4 
PB3 
PB2 
PBt 
PBO 

Flgul1I3. Twin-Chip M68HC11E1/EO With The Wli PS03ff 
Example Application 

+5V 

tOkO 

PA7 
PAl 
PAS 
PM 
PA3 
PAZ 
PAt 
PAO 

MI8HCtt EtlEO 

PORTB PORTC 

PSD311 

A06 -AOtSI ADO -A071 
AI -At5 AO -A7 

PB7 
PBI 
PB5 
PB4 
PB3 
PB2 
PBt 
PBO 

-----------------------------~~.~--------------~------------1-272 'Ii!I j 



Configuring 
ThePSD311 
With The 
PSD-Silver 
Software 
(Cont.) 

PSD3XX - Application Not, 041 

The PSD-SILVER software menus for the PSD311 are illustrated and described on the 
following pages for this application. Figure 4 shows the PSD-SILVER MAPLE MAIN menu. 
It is invoked by typing MAPLE at the DOS prompt when in the WSI\MAP subdirectory. It 
lists the function keys and their associated operations. F1 suspends the MAPLE software to 
DOS for file editing or updating. F2 exits the program and returns the user to the DOS 
environment. F3 selects the programmer option so the user can program the compiled 
object file into the PSD311 device when a WSI MagicProRIil programmer is connected to 
the system. The LOAD selection, (F5), loads an existing PSD configuration into the MAPLE 
environment for editing and recompiling. F6 saves that program under a user-defined 
name. F7 compiles the user-generated file into an object file that can be transferred to the 
programmer. Fa provides part type selection - in this case, the PSD311. 

Figure 4. PSO-Silver MAPLE Main Menu 

After selecting PARTNAME, Figure 5 illustrates a second menu that appears to the right of 
the MAIN menu. The list shows ALIASES, CONFIGURATION, PORT C, PORT A, PORT B, 
and ADDRESS MAP. The designer selects each choice, starting from ALIASES, and moves 
down through the list configuring each option. The ALIASES menu shown in Figure 6 lets 
the user individually define the port pins with user-relevant names. In this example, we will 
not enter any alias names. 

-----------------------------------~~~-----------------------------------
1-273 



PSD3XX - Application Nots 041 

Configuring 
ThePSD311 
With The 
PSD-Si/ller 
Software 
(Cont.} 

Figure 5. PSO-Silver Main Menu for Configuring the PSD311 

Figure 6. Aliases Menu for Ports Band C 

-1.-2-74----------------------------~~Ar-------------------------------



Configuring 
ThePSD311 
With The 
PSD-Silver 
Software 
(Cont.) 

PSD3XX - Application Nots 041 

Figure 7 shows the CONFIGURATION menu which is accessed by selecting 
CONFIGURATION in the MAIN menu. In our example, the PSD311 has been configured for 
use with the M68HC11 E1, i.e., the 8-bit address/data bus is multiplexed. The chip-select 
input is chosen rather than the A 19 input. The RESET polarity is active LOW, the ALE (AS) 
polarity is active HIGH, and RIW and E control inputs are enabled. The inputs A 16-A 19 are 
transparent and the EPROM and SRAM share the same 64K address space (combined 
memory mode). 

Figure 7. PSD Configuration Menu with the M68HC11 Interface 

After the device interface is configured, the PSD311 Port C can be set up. If the MAIN 
menu is invoked from the CONFIGURATION menu by pressing F1, PORT C can be 
selected as shown in Figure 5. As shown in Figure 8, the individual selection of CS/Ai 
configures the three pins as chip-select outputs CS8, CS9, and CS10. The chip-select 
equations are specified by selecting F3 for the chip-select definition and entering logic 
HIGH, LOW, or "don't care" conditions in the column of the logic inputs that you need 
"AND"ed together. For example, if a chip-select is needed at location $5800-$5FFF, 
entering 01011 in the row under A 15, A 14, A 13, A 12, and A 11 results in the following active 
low chip-select equation as shown created: CS8 = !A 15 & A 14 & !A 13 & A 12 & A 11. Port C 
can also be used for general purpose logic inputs to create programmable logic output 
equations or it can be used to extend the address space of a microcontroller by bringing in 
A16, A17, and A18. If the Port C pins are not needed for any of these functions, leave them 
as chip select outputs and don't specify any equation. 

--------------------------------~~~~--------------------------------
1-275 



PSD3XX - Application Nots 041 

Configuring 
ThePSD311 
With The 
PSD-Sil,ler 
Software 
(Cont.) 

Figure 8. Example of Port C Configuration for Chip-Selects 

Figure 9 shows the PSD311 PORT A in the Address/IO configuration. Since the 
M68HC11 E1 Port B is output only and will be reconstructed on the PSD311 Port A, all eight 
of the PSD311 Port A pins will be configured as I/Os with CMOS outputs and the data 
direction register for the PSD311 Port A will be set to 'FF' to position it for outputs. If these 
eight outputs are not needed, one of the alternate configurations for the PSD311 Port A is 
Lower Order Latched Address bits which includes an internal output latch on Port A. 

Figure 10 gives the PSD311 PORT B selection as eight I/Os with CMOS outputs which will 
reconstruct all eight bidirectionall/Os on the M68HC11 E1 Port C. The direction of the 
individual I/O pins in the PSD311 Port B is determined by the original OTP application. The 
direction is set by writing to the data direction register. To make a pin an input, the 
appropriate bit in the register must be cleared and to make a pin an output, the appropriate 
bit must be set. If all eight I/Os are not needed, the alternate configurations for the PSD311 
Port B pins are chip selects. 

-'-~-~-6-------------------------------~~~~-----------------------------------



Configuring 
ThePSD311 
With The 
PSD-Silver 
Software 
(Cont.) 

PSD3XX - Application Note 041 

Figure 9. Port A Configuration for All Eight Pins as /IDs 

Figure 10. Port B Configuration for All Eight Pins as I/Os 

__________________ FEE #!fff 
~.,.-------------------

1-277 



,soaxx - Application Not, 041 

Configuring 
The I'S0311 
With The 
I'SD-Silrer 
Software 
(Cont.) 

Figure 11 shows the ADDRESS MAP menu. The designer can enter a binary code for the 
address range assignments of the various select lines or a hexadecimal starting and 
stopping address can be entered to locate the memory and peripherals within the 
M68HC11 E1 address space. ESO-ES7 are the chip-selects for the eight 4Kbyte EPROM 
blocks, RSO is the chip-select for the 2Kbyte SRAM, and CSP is the chip-select for the 
CSIOPORT base address. A space for individual hexadecimal files to be programmed into 
the PSD311 EPROM is reserved under the FILENAME section. The M68HC11 E1 code 
listed under the FILE NAME "68HC11.hex" must be in Intel MCS hex format. If Intel MCS 
hex format is not available, a conversion program to convert Motorola S records to Intel 
MCS hex is included with the PSD-SILVER software package. 

Figure 71. Address Map Menu for Selecting Address Locations of CSIOPORT 
(Ports A and Bl, EPROM, and SRAM 

EFFF 68HCl1.HEX 
FFFF 68HC11.HEX 

In our application example, three 4Kbyte sections of code for a total of 12Kbytes of EPROM 
will be mapped from $DOOO-$FFFF. The filename with the code is called 68HC11.HEX and 
is located in the same directory as the MAPLE software. The additional PSD311 SRAM will 
be located at $3000-$37FF and the CSIOPORT base address will be at location $2000. 

After the configuration has been established, the user can return to the MAIN menu and 
SAVE (F6) the PSD311 configuration. Saving the configuration creates a filename.SV1 file 
which documents all of the selections made during the configuration process. The file 
created from our example is shown in Figure 12. 

------------------------~rff-----------------------1.278 'Ii1l. 



Configuring 
ThePSD311 
With The 
PSD-Silver 
Software 
(Cont.) 

PSD3XX - Application Note 041 

Figure 12. Example Configuration Output File for PSD311 

*************************** MAPLE 6.21 

GLOBAL CONFIGURATION 

Address/Data Mode: 
Data Bus Size: 
CSI/A19: 
Reset Polarity: 
ALE Polarity: 
WRD/RWE: 
A16-A19 Transparent or Latched by ALE: 
Are you using PSEN? 

PORT A CONFIGURATION (Address/IO) 

Bit No. AilIO CMOS/OD 
o ~ CMOS 
1 ~ CMOS 
2 10 CMOS 
3 10 CMOS 
4 ~ CMOS 
5 ~ CMOS 
6 10 CMOS 
7 10 CMOS 

PORT B CONFIGURATION 

Bit No. CS/IO CMOS/OD 
0 10 CMOS 
1 10 CMOS 
2 10 CMOS 
3 10 CMOS 
4 10 CMOS 
5 10 CMOS 
6 10 CMOS 
7 10 CMOS 

CHIP SELECT EQUATIONS 

MX 
a 
CSI 
LO 
HI 
RWE 
T 
N 

************************************************************************ 

PORT C CONFIGURATION 

Bit No. 
o 
1 
2 

CS/Ai 
csa 
CS9 
CS10 

CHIP SELECT EQUATIONS 

/csa = /(lA15 * A14 * /A13 * A12 * A11) 

************************************************************************ 

-----------------------------------------f==~~----------------------------------------
==== 1-279 



PSD3XX - Appllatlon No'" 041 

Configuring 
ThePSD311 
With The 
PSD-Silller 
Software 
(Cont.) 

ADDRESS MAP 

A A A A A A A A A SEGMT SEGMT EPROM EPROM FileName 
19 18 17 16 15 14 13 12 11 STRT STOP START STOP 

ESO N N N N 1 1 a 1 N 0000 OFFF dOOO dfff 68HC11.HEX 
ES1 N N N N 1 1 1 a N EOOO EFFF eOOO efff 68HC11.HEX 
ES2 N N N N 1 1 1 1 N FOOO FFFF fOOO ffff 68HC11.HEX 
ES3 N N N N N 
ES4 N N N N N 
ES5 N N N N N 
ES6 N N N N N 
ES7 N N N N N 
RSO N N N N a a 1 a 3000 37FF 
CSP N N N N a a a a 2000 27FF 

******************************** ADDRESS MAP (EQUATIONS) ******************************** 

ESO = A15 * A14 */A13 * A12 
ES1 = A15 * A14 * A13 */A12 
ES2 = A15 * A14 * A13 * A12 
ES3 = 
ES4 = 
ES5 = 
ES6 = 
ES7 = 
RSO = IA15 */A14 * A13 * A12 */A11 
CSP = IA15 */A14 * A13 */A12 */A11 

************************************************ END ************************************************ 

Finally, the user will invoke the COMPILE (F7) option. The compile option merges the 
P$D configuration information with the code that would normally be programmed into 
the EPROM to create one output file with a filename.OBJ extension. 

~1.~n~o--------------------------~Jr~----------------------------



Software 
Considerations 

PS03XX - Application Note 041 

The code for the M68HC11, when transitioning from an OTP single chip version to a 
twin-chip ROMless M68HC11 version and a PSD311, will need to be changed slightly if 
reconstructing the M68HC11 Ports Band C to the PSD311 Ports A and B as in this 
example. 

The two eight-bit I/O port address locations are remapped from the M68HC711 64 byte 
register block area to the PSD311 chip-select I/O port base address (CSIOPORT) by using 
offsets from this base address. The tables below show the offset with the PSD311 base 
address of $2000 appended to form the physical addresses as appropriate for this 
example. 

M68HC11 PO" B Maps To PSD311 Po" A 
Reglstel Name Physical Location Reglstel Name Physical Location 

DDRB - Direction $2004 

PORTB Data Write $1004 Data Write/Read $2006 

PORTB Pin Read $1004 Pin Read $2002 

M68HC11 PO" C Maps To PSD311 Po" B 
Reglstel Name Physical Location Registsl Name Physical Location 

DDRB $1007 Direction $2005 
PORTB Data Write $1003 Data Write/Read $2007 

PORTB Pin Read $1003 Pin Read $2003 

The code differences this translates to can be illustrated with the sample code for both the 
single chip M68HC711 E9 and then for the twin chip M68HC11 E1 and PSD311 solution as 
shown below. 

Single-Chip M68HC711E9 Code 

ORG $DOOO 
LDAA #$00 

STAA $1007 "Set M68HC11 Port C pins to inputs 

STAA $1004 "Turn off all LED segments 

LDAA $1003 "Read port C dip switches 
STAA $1004 "Turn on or off the appropriate LED segments 
BRA $DOOO "Continue to read Port C and display on Port B 

Twin-Chip Solution M68HC11E1 Code 

ORG $DOOO 

LDAA #$FF "Note: M68HC11 Port B are outputs only 
STAA $2004 "Set PSD311 Port A to all outputs 

LDAA #$00 

STAA $2005 "Set PSD311 Port B for all inputs 
STAA $2006 "Turn off all LED segments 
LDAA $2003 "Read the PSD311 Port B pin register 
STAA $2006 "Turn on/off the appropriate LEDs 
BRA $DOOO "Continue to read Port B and display on Port A 

----------------------------------~~~~---------------------------------
1-281 



PSD3XX - Application Note 041 

Programming 
ThePSD311 
OrPSD311R 

The PSD311 or PSD311 R is programmed with the file that is generated during the 
COMPILE section of the PSD-SILVER MAPLE software. It usually has a filename.OBJ 
extension. The file is then loaded into programmer RAM on either a WSI MagicPro III 
PC-compatible programmer or an industry-standard programmer. Then the PSD device is 
ready to be programmed which is very similar to programming a standard EPROM or PLD. 
Figure 13 shows the menu for programming the PSD devices using the MAP PRO (F3) 
option from the MAIN menu. 

Figure 13. MAPPRO Programming Software 

Iii' MAPLE aa 
, , .. ,,\!!IS'~!i9~(:p~i(lm)'pmgt~r·"7 v<!nli~n 6:~1,.' ,.' ,. 

, WSnl1O.~Llo.~S$;"~4-061d "'. 
, '~P, :.,', .,' .,'; ,.:",:',' , 

plead data frpm ~eVloe . 
. , e!td RAM 110m diSk: ,. , 

~te RA'-Uodlsk,' ,:',:. 
, , isl>lay RAM' ~iIk ,:,iWIlAM .,.,. 

",::i}~~~!' 
':ili:l~rlIm 

;"@~4. 
, l;e1ect option; _:., 

------------------f'=-=~------------------
1-282 



Programming 
Manufacturers 

Conclusion 

PSD3XX - Application Nots 041 

Several of the programming manufacturers that support PSD devices are listed below. 
Many of their programmers have been officially qualified by WSI. 

WSI Data 1/0 Advin Systems 
(510) 656-5400 (800) 426-1045 (408) 243-7000 
(800) 832-6974 (800) 247-5700 (800) 627-2456 

B&C Microsystems BP Microsystems Bytek 
(408) 730-5511 (713) 688-4600 (800) 523-1565 

Link Computer Logical Devices Needham's Elec 
(201) 808-8990 (303) 279-6868 (916) 924-8037 

SMS Stag Microsystems Sunrise 
(206) 883-8447 (408) 988-1118 (909) 595-7774 

Systems General Tribal Microsystems 
(408) 263-6667 (510) 623-8860 

Implementing a two-chip solution with the M68HC11 E1 and a PSD311 or PSD311 R has 
been shown to be a simple process requiring very little code conversion or hardware 
modification. As demonstrated, this alternative to using a single-chip OTP M68HC711 or 
expanded mode multichip M68HC11 configuration offers flexible integration and can 
provide extra memory, logic, and 1/0 to further enhance your system capabilities. 

-----------------------------------~~~-----------------------------------
1-283 



PSD3XX - Application Nots 041 

-1-~-84-----------------------------~~~--------------------------------



PSD3XX Family 

ZPSD3XX Family 

PSD4XX/5XX Family 

Motorola Application Notes 

Sales Representatives 
and Distributors 



Section Index 

ZPSD3XX Family Application Note 034 ZPSD Power Consumption Calculations ....................................... 2-1 

For additional information, 
Call800-TEAM-WSI (800-832-6974). 

In California, Call 800-562-6363 



Zero Power 
PSD 
Background 

Zero Power 
PSD 
Operation 

Programmable Peripheral 
Application Note 034 
IPSO Power Consumption Calculations 
By Yoram Cedar 

Portable and battery powered systems have recently become major embedded control 
application segments. As a result, the demand has increased dramatically for electronic 
components having extremely low power consumption. Recognizing this need, WSI, Inc. 
has developed a new ZPSD (Zero Power PSD) technology for use in low power 
programmable Microcontroller peripheral circuits. 

ZPSD products virtually eliminate the DC component of power consumption reducing it to 
standby levels (~A). Eliminating the DC component is the basis for the words" Zero Power" 
in the ZPSD name. ZPSD products also minimize the AC power component when the logic 
is changing states by using address transition detection, array partitioning and DPTL 
(Differential Path Transistor Logic) design techniques. The result is a programmable 
microcontroller peripheral family that replaces memory, PLD and discrete logic functions 
while drawing much less power than a single EPROM. 

Upon each address or logic input change to the ZPSD device, the internal logic powers up 
from low power standby for a very short time period. During this power up cycle, the ZPSD 
consumes only the necessary power to deliver new logic or memory data to its outputs as a 
response to the input change. After the new outputs are stable, the ZPSD latches them and 
automatically reverts to standby mode. 

The Icc current consumed during standby mode and during DC operation (chip enabled, 
no toggling) is identical and is only a few microamps (~A). The ZPSD automatically 
reduces its DC current drain to these low levels and does not require controlling by the 
CSI (Chip Select) input. Disabling the CSI unconditionally disables the MCU interface 
causing the PSD to power down independent of any transition on the microcontroller bus 
(address, data and control). In the ZPSD3XX family, disabling the CSI input will power 
down the entire device while in the ZPSD4XX/5XX products, the memory and address 
decoding PLD will power down and the GPLD/PPLD will consume power based on logic 
input changes in the system. 

The ZPSD contains the first architecture to apply zero power techniques to memory circuit 
arrays as well as logic. 

Figure 1 describes the operation of the ZPSD compared to the operation of a discrete 
solution. A standard microcontroller (MCU) bus cycle usually starts with the generation of 
an address and an ALE (or AS) pulse. The ZPSD detects the address transition and powers 
up internally. The ZPSD then latches the outputs of the PLD, EPROM and SRAM to the 
new values. After finishing this operation, the ZPSD then turns off its internal power and 
enters standby mode. 

2-1 



ZPSD3XX - Application .ot. 034 

ZerDI'Dwer 
I'SD 
OperatlDn 
(Cont.) 

Figure 1. IPSD PDwer OperatlDn 

ALE 

Icc 

EPROM 
ACCESS 

TIME 

SRAM 
ACCESS 

EPROM 
ACCESS 

The ZPSD will remain in standby mode if the address does not change between bus cycles 
(for example, looping on a single address or during a Halt operation). The time taken for the 
entire operation is less than the ZPSD "access time" and much less than the MCU bus 
cycle (ALE to ALE). The only significant power consumption in the ZPSD occurs during AC 
operation and can be calculated using the ALE frequency. 

An alternate system implementation using discrete EPROM, SRAM, PLD, latches,and other 
individual components will consume operating power during the entire bus cycle. 

The ZPSD power consumption is controlled by the Turbo and Cmiser bits. Their operation is 
described in each ZPSD data sheet. In general, the Turbo bit controls the power 
consumption and speed of the ZPLD while the CMiser bit controls the power consumption 
and speed of the EPROM and SRAM. Each ZPSD data sheet provides the power 
consumption of each mode of operation using the Turbo and Cmiser bits in the DC 
electrical characteristics section. 

In addition, each PSD4XX and PSD5XX data sheet describes the operation of the Power 
Management Mode Registers (PMMR) that enable controlling the power consumption of 
various internal functional modules in those devices. For detailed explanation of the 
PSD4XXl5XX PMMR and APD operation please refer to Application Note 030. 

Following are examples of the AC/DC Parameter tables and power consumption graphs of 
the ZPSD devices. 

--------------------------~§F~ 2.2 'l!!lfS ------------------



ZPSD3XX DC Characteristics - Commercial 
(5 V:I: 10%) 

SymbDI Parameter CDndltlDns 

vee Supply Voltage All Speeds 

VIH High-Level Input Voltage 4.5V<Vee >5.5V 

VIL Low-Level Input Voltage 4.5 V < Vee> 5.5 V 

IOH = -20 IJA, Vee = 4.5 V 
VOH Output High Voltage 

IOH = -2 mA, Vee = 4.5 V 

VOL Output Low Voltage 
IOL = 20 IJA, Vee = 4.5 V 

IOL=8mA, Vee=4.5V 

ISB Standby Supply Current CSI > Vee -.3 V 

III Input Leakage Current Vss < VIN > Vee 

ILO Output Leakage Current .45 < VIN > Vee 

Icc (DC) Operating Supply Current 
ZPLD_TURBO = OFF, f = 0 MHz 

ZPLD_ TURBO = ON, f = 0 MHz 

ZPLDAC Base (See Figure 2) 

EPROM Access CMiser = ON and 8-Bit Bus Mode 

ACAdder All Other Cases (Note 4) Icc (AC) 
CMiser = ON and 8-Bit Bus Mode 

SRAM Access AC Adder CMiser = ON and 16-Bit Bus Mode 

CMiser=OFF 

NOTES: 1. CMOS inputs: GND ± 0.3 V or Vee ± 0.3V. 
2. TTL inputs: VIL S 0.8 V, VIH :a: 2.0 V. 
3. eSl/A 19 is high and the part is in a power-down configuration mode. 

Zl'SD3XX - AppllcatlllR NIt. 034 

Min Typ Max Unit 

4.5 5 5.5 V 

2 Vee +.1 V 

-0.5 0.8 V 

4.4 4.49 V 

2.4 3.9 V 

0.01 0.1 V 

0.15 0.45 V 

10 20 IJA 

-1 :1:.1 1 IJA 

-10 :1:5 10 IJA 

10 20 IJA 

0.5 1 mA/PT 

mA/MHz 

0.8 2.0 mAlMHz 

1.8 4.0 mAlMHz 

1.4 2.7 mAIM Hz 

2 4 mA/MHz 

3.8 7.5 mA/MHz 

4. All other cases include eMiser = ON and 16·bit bus mode and eMiser = OFF and 8- or 16·bit bus mode. 

----------------------------------~~~---------------------------------
--~. H 

~~~~---~----- --~ 


ZPSD3XX - Application Note 034

leroPower
PSD
Operation
(Cont.)

Figure 2.1PSD3XX PAD ICC vs. Frequency (5 V ± 10%)

45

40

35

30

25

<t
.§.

20
0

,S}

15

---,-
~ v 5

V
V V V Y"" ,.""""" V ~

V /
o IbY" ,.... ,......... l/ - 0 5

,....v"""""
....... / --0-

k'" --"--

V / -+--

,.... V V --0--

/
~

10

5

0

V ..-:::;:; ~
V-~ ~ V

~ ,........ ~
,.........

\-"'
,.........

..... ,......... b'" ,......... ,.........

~
,......... y-

..d y

o 6.0. 10 15 20 25 30 35

...... ,..,.- ,--
~

40 PTTurbo
40 PT Non Turbo
10 PTTurbo
10 PT Non Turbo

,..- ,..---"

40 45

BUS FREQUENCY (MHz) - NOT MCU OSC. FREQUENCY

V

>--'

50

-2.-4------------------------------~~~~------------------------------

IPSD3XX DC Characteristics - Commercial
(zpSD v VelSlDII$ Only) (3 V ± 10%)

Symbol Parameter Conditions

vee Supply Voltage All Speeds

VIH High-Level Input Voltage 2.7V < Vee >5.5 V

VIL Low-Level Input Voltage 2.7V < Vee >5.5 V

IOH = -20 IJA, Vee = 2.7 V
VOH Output High Voltage

IOH = -1 rnA, Vee = 2.7 V

IOL = 20 IJA, Vee = 2.7 V
VOL Output Low Voltage

IOL = 4 rnA, Vee = 2.7 V

ISB Standby Supply Current CSI > Vee -.3 V (Vee = 3.0 V)

III Input Leakage Current VIN = Vee or GND

ILO Output Leakage Current VOUT = Vee or GND

ZPLD_TURBO = OFF,

lee (DC) Operating Supply Current f=OMHz (Vee = 3.0 V)

ZPLD_ TURBO = ON,
f=OMHz (Vee = 3.0 V)

ZPLD AC Base See Figure 3 (Vee = 3.0 V)

CMiser = ON and 8-Bit Bus Mode
EPROM Access (Vee = 3.0 V)
ACAdder All Other Cases (Note 8)

lee (AC) (Vee = 3.0 V)

CMiser = ON and 8-Bit Bus Mode
(Vee = 3.0 V)

SRAM Access AC Adder CMiser = ON and 16-Bit Bus Mode
(Vee = 3.0 V)

CMiser = OFF (Vee = 3.0 V)

NOTES: 5. eMOS Inputs: GND '*' 0.3 V or Vee '*' 0.3V.
6. TTL inputs: VIL S 0.8 V. VIH <: 2.0 V.
7. eSI/A19 is high and the part is in a power·down configuration mode.

ZPSD3XX - Application Note D34

Min Typ Max Unit
2.7 3 5.5 V

.7 Vee Vee +.5 V

-0.5 .3 Vee V

2.6 2.69 V

2.3 2.4 V

0.01 0.1 V

0.15 0.45 V

1 5 IJA

-1 ±.1 1 IJA

-1 .1 1 IJA

1 5 IJA

.17 .35 rnA/PT

rnA/MHz

0.4 1 rnA/MHz

0.9 1.7 rnA/MHz

0.7 1.4 rnA/MHz

1 2 rnA/MHz

1.9 3.8 rnA/MHz

8. All other cases InClude eMiser = ON and 16·bit bus mode and eMiser = OFF and 8· or 16-bH bus mode.

"q~ -------------------------------~L·-----------------------------2--~

lPSD3XX - Appllcatlan Nats 034

leroPower
PSD
Operation
(Cant.)

Figure 3. Typical PLO AC ICC Curve (Vee = 3.0 V)

ZPS03XXV

L.--v.
a

14 ,....1.5
V

V
~ 1/ ./ I- 0.5 P

~ 1 23" S

/V / V

12

10

V 1/ ./
/ ~ -/'

A ~ V -.6.- 40 PTTurbo
~ 40 PT Non Turbo

p ,. -C- 10 PTTurbo - 10 PT Non Turbo

4

2

o
o 5 10 15 20 25 30

BUS FREQUENCY (MHz)

-2--6-----------------------------~~~-------------------------------

ZPSD4XX/5XX DC Characteristics
(5V±10%)

Symbol Parameter

vee Supply Voltage

VIH High Level Input Voltage

VIL Low Level Input Voltage

VIH1 Reset High Level Input Voltage

VIL1 Reset Low Level Input Voltage

VHYS Reset Pin Hysteresis

VOL Output Low Voltage

VOH Output High Voltage

VSBY SRAM Standby Voltage

ISBY SRAM Standby Current

IIOLE Idle Current (VSTBY Pin)

VOF SRAM Data Retention Voltage

ISB Standby Supply Power Down Mode

Current Sleep Mode

III Input Leakage Current

ILO Output Leakage Current

lee (DC) Operating
Supply Current

ZPLD Only

ZPLD AC Base

EPROM AC Adder

lee (AC)

SRAM AC Adder

Conditions

All Speeds

4.5 V < Vee < 5.5 V

4.5 V < Vee < 5.5 V

(Note 1)

(Note 1)

IOL = 20 IJA, Vee = 4.5 V

IOL= 8 rnA, Vee =4.5V

IOH = -20 IJA, Vee = 4.5 V

IOH = -2 rnA, Vee = 4.5 V

Vee = 0 V

Vee> VSBY

Only on VSTBY

CSI >Vee -.3 V (Note 10)

CSI >Vee -.3 V (Note 11)

VSS < VIN < Vee

0.45 < VIN < Vee

ZPLD3URBO = OFF,
1 = 0 MHz (Note 12)

ZPLD3URBO = ON,
1=0 MHz

(Note 12)

CMiser= ON
(8-Bit Bus Mode)

All Other Cases

CMiser = ON and
8-Bit Bus Mode

CMiser = ON and
16-Bil Bus MoDe

CMiser= OFF

ZPSD3XX - Application Not. 034

Min Typ Max Unit

4.5 5 5.5 V

2 Vee +.5 V

-0.5 0.8 V

.8 Vee Vee +.5 V

-.5 .2Vee-·1 V

0.3 V

0.01 0.1 V

0.15 0.45 V

4.4 4.49 V

2.4 3.9 V

2.7 Vee V

0.5 1 IJA

-0.1 0.1 IJA

2 V

25 50 IJA

10 20 IJA

-1 ±.1 1 IJA

-10 ±5 10 IJA

400 700 IJA/PT

0.8 2 rnA/MHz

1.8 4 rnA/MHz

1.4 2.7 rnA/MHz

2 4 rnA/MHz

3.8 7.5 rnA/MHz

NOTES: 9. Reset input has hysteresis. VIL 1 is valid at or below .2Vee -.1. VIH1 is valid at or above .8Vee.
10. eSI deselected or internal PO is active.
11. Sleep rnode bit is set and internal PO is active.
12. See Figure 4 for details.

_______________________________________ JArsraF~
~~~------------------------------------2----7 



ZPSD3XX - Application Note 034 

Zero Power 
PSD 
Operation 
(Cont.) 

Figure 4. ZPSD4XX/5XX ZPLO ICC vs. Frequency (5 V ± 10%) 

-::;- PT100% 

• PT25% 

120 ,---------------------------------------, 

100 ~------------------------------~~~~~ 

« 80 1-------­

.§. 
~ 60 1""""'-----------

JJ 
40 1--------

5 10 15 20 25 

BUS FREQUENCY - (MHz) 

-~-8-----------------------------~~~~-------------------------------



Power 
Consumption 
Calculation 
Oefinitions 

ISB = Icc (DC) 

ICC (AC) 

ZPLD AC Base 
@ f ZPLD 

EPROM 
AC Adder 

SRAM 
AC Adder 

Timer AC Adder 

%ofEPROM 
Access 

%ofSRAM 
Access 

f MCU BUS 

ftimer 

1PS03XX - Application Note 034 

Power Consumption when system is in Standby (idle) mode or 
system is operating but none of the ZPSD inputs are changing. 

Power Consumption when system is operating and ZPSD 
inputs are changing. 

= ZPLD AC Base @ fZPLD (Icc vs. frequency as a function of PT) 

+ % of EPROM Access X EPROM AC Adder X f MCU BUS 

+ % of SRAM Access X SRAM AC Adder X fMCU BUS 

+ Timer AC Adder X f timer (only applicable for the ZPSD5XX) 

ZPLD ICC taken from the graph of the PLD AC curve of 
Icc Vs. Frequency @ fZPLD. Based on the number 
of product terms (PT) used and if the Turbo bit is 
on or off. 

The PT number is shown in the PSDsoft fitting report. 

= The power consumption of the EPROM as a function of 
frequency. 

= The power consumption of the SRAM as a function of 
frequency. 

The power consumption of the Timer as a function of 
frequency 

Percent of time the MCU is accessing the EPROM 

Percent of time the MCU is accessing the SRAM 

Maximum ZPLD input frequency 

MCU bus frequency, usually the ALE (or AS) frequency 

Maximum Timer input frequency 

-----------------------------------~~~jf-----------------------------------
2-9 



ZPSD3XX - Application Nots 034 

Typical 
Operating 
Power 
Calculation 
Example of 
ZPSD3XXat 
Vce =5.0V 

Example of 
ZPSD3XXV 
Typical 
Operating 
Power 
Calculations at 
Vee =2.7 V 

This example is based on the ZPSD3XX data sheet of June, 1995. Please review the 
specification of the particular ZPSD device you are using before calculating actual power 
consumption in your design. 

Example Criteria 

- fZPLD = f MCU BUS 

- % of EPROM Access 

- % of SRAM Access 

- % of I/O Access 

2 Mhz 

80% 

15% 

5 % (No additional power above the ZPLD AC Base) 

- Number of ZPAD Product Terms Used 10 PT 

- 8 Bit Data Bus 

CMiser On 

Turbo Off 

- EPROM/SRAM access AC mA/MHz adder is found in 5 Volt DC Characteristics 

in the ZPSD3XX data sheet. 

ISB = Icc (DC) = 10 IJA 

ICC (AC) ZPLD AC Base @ 2 MHz (see Figure 18 in ZPSD3XX data sheet) 
(.75mA) 

+ % of EPROM access x EPROM AC Adder x 2 MHz 

(+ 80% x 0.8 mA/MHz x 2 MHz) 

+ % of SRAM access x SRAM AC Adder x 2 MHz 

(+ 15% x 1.4 mA/MHz x 2 MHz) 

=2.45 mA 

This example is based on the ZPSD3XX data sheet of June, 1995. Please review the 
specification of the particular ZPSD device you are using before calculating actual power 
consumption in your design. 

- fZPLD = fMCU BUS 

- % of EPROM Access 

- % of SRAM Access 

- % of I/O Access 

1 MHz 

80% 
15% 

5 % (No additional power above the 

ZPLD AC Base) 

- Number of ZPAD Product Terms Used 10 PT 
- 8 Bit Data Bus 

Cmiser On 
Turbo Off 

- EPROM/SRAM access AC mA/MHz adder is found in 3 Volt DC Characteristics in the 
ZPSD3XX data sheet. 

ISB = Icc (DC) = 1 IJA 

Icc (AC) = ZPLD AC Base @ 1 MHz (Figure 19 in ZPSD3XX data sheet) (0.30 mAl 

+ % of EPROM access x EPROM AC Adder x 1 MHz 
(+ 80% x 0.4 mA/MHz x 1 MHz) 

+ % of SRAM access x SRAM AC Adder x 1 MHz 

(+ 15% x 0.7 mA/MHz x 1 MHz) 

= 0.77 mA x 0.9 (Normalized Icc. See Figure 21) = 693 microamps 

iF-=: ~= 
-2-.1-0----------------------------~~afli-------------------------------



PSD3XX Family 

ZPSD3XX Family 

PSD4XX/5XX Family 

Motorola Application Notes 

Sales Representatives 
and Distributors 



PSD4XX/5XX 
Family 

Section Index 

Application Note 028 PSD5XX CounterfTimers Operation .............................................. 3-1 

Application Note 029 Interfacing PSD4XX/5XX To Microcontroliers ............................. 3-73 

Application Note 030 PSD4XXl5XX Power Calculations and Reduction .................... 3-145 

Application Note 031 PSD4XXl5XX Design Tutorial ................................................... 3-161 

Application Note 033 Keypad Interface to PSD4XXl5XX 
with Autoscanning ..................................................................... 3-245 

Application 035 How To Design With The PSD4XXl5XX ZPLD ........................... 3-257 

Application 036 How To Fit Your Design Into The PSD4XXl5XX ......................... 3-265 

Application 037 How to Implement a Latch Function in Port A 
of PSD4XXl5XX that is Independent of the System Clock .......... 3-271 

Application 038 How to Increase the Speed of the 
PSD5XX Counter/Timers ........................................................... 3-277 

Application 039 Encoder for Shaft Direction and Position Recognition 
Using the PSD5XX ..................................................................... 3-287 

Application 042 Four Axis Stepper Motor Control 
Using a Programmable PSD5XX 
MCU Peripheral from WSI, Inc ................................................... 3-297 

For additional information, 
Call800-TEAM-WSI (800-832-6974). 

In California, Call 800-562-6363 



Abstract 

Introduction 

Programmable Peripheral 
Application Note 028 
PSD5XX Counter/Timers Operation 
By Barl Kumar 

This application note explains the operation 
and programming of CounterfTimers on 
WSI's PSD5XX Family of Field­
Programmable Microcontroller Peripherals. 

The PSD5XX on-chip CounterfTimers 
provide additional Timer functions to a 
Microcontroller. 

A typical Microcontroller or a Timer 
Peripheral chip usually has a set of Timers 
controlled by either 

o External Pins 

o Software 

The PSD5XX has four identical 16-bit 
CounterfTimers. Each CounterfTimer is 
controlled by either 

o PPLD* outputs 

o External Pins 

o Software 

Figure 1 shows the I/O pins and the 
functional block of the CounterfTimers. 

ThePPLD 
The Peripheral Programmable Logic 
Device (PPLD) provides a powerful 
mechanism for the user to control the 
operations of the CounterfTimers and the 
Interrupt Controller. There are six 
Peripheral Macrocells in the PPLD, four are 
dedicated to the CounterfTimers, and two 
to the Interrupt Controller. Figure 2 shows a 
PPLD macrocell for the CounterfTimers. 

The PSD5XX CounterfTimers have the 
following features: 

o Five Modes of operation 

- Wa'llltonn Mode 
- PulsaMode 
- E'IIInt Counte, Mode 
- Time CaptulB Mode 
- Watchdog Mode 

Initializations required to implement each of 
the five modes of operation of 
CounterfTimers are explained. Refer to 
appendices for all the relevant files. 

0 Each CounterfTimer can be controlled 
by an input pin, dedicated PPLD 
macrocell or software. 

0 The Watchdog output is routed 
through the ZPLD and can be 
programmed to output at any PSD 
output pin. 

0 Programmable polarity for input control 
and Timer output. 

0 Can be programmed to be UP or 
DOWN Counters. 

0 Input clock to all CounterfTimers can be 
from DC to 7.0 MHz. Higher resolution 
can be achieved by using in conjunction 
with the GPLD macrocells. 

0 High resolution Divisor unit to scale 
down the CounterfTimer input clock. 

0 Can easily interface with any 8 or 16-bit 
Microcontroller. 

o Terminal Count of each CounterfTimer 
can be configured as interrupt input to 
the Interrupt Controller. 

"Refer to the section "ZPLD Block" in the PSD5XX date sheet. 

3-1 

--_______ ~ _________ -0-



Co> 
~ 

IIIII II~"Q 

~I.I 
11iII-~ 

r---

PORT 
E 

'---

r--CONTR ---..' 
BUS 

INTRF 

ADDRESS/DATA/CONTROLBUS 

0 PRESCALED 
CLOCK INJ PROGRAMMABLE CLOCK IN 

CLOCK COUNTERmMER I PRESCALER UNIT 

TIMER [3 : OI_IN ----------- ... 

I ~1 I L : TIMERO_OUT 

~ 
GLOBAL COUNTERI 
CMDREG TIMER 0 

I : CTUO 
PIN! I DLCY REG H I COUNTERI I: TIMER1_0UT MACROCELL .. 

COMMAND I TIMER 1 I 
INPUT MC2TMR [3 : 01 I CTUl I I FREEZE r-: I 

TCO-TC3 CMD REG I I COUNTER! I I TIMER2_0UT 
I TIMER 2 , 

ZPLD I S'WARE f-.' CTU2 I: I 
INPUT PPLD LOADISTORE , 

I 
BUS r--- 'I COUNTER! I: TIMER3_0UT I STATUS r. TIMER 3 I' I 

TIMER REG CTU3, I 
~ MACRO· ~t- ~----------.! I 

CELL 
I 

I r-. I 
AND + TCO-TC3 I ARRAY 

-- - M~ci:o. 
MC2INT[6: 71 I 

CELL INTERRUPT I 
PT21NT [4 : 51 CONTROLLER - I 

'---- I I 
I I 

INTR2PLD I I 
~----------------------------------

WDOG2PLD I 

--------------------------------------

nat i 1-·a ~ 
..... '" )oii 

:; I - ~ 
Q' "Ii ;;:: 
::a &1 

::t 
8 
1= 

OU 
TIMER 

~I;r ciS' ~ !iii CIO 
fIi 
:"4 

PAl 
-

PORT 
A " Ii 

if 
~ 

~-
TIMER 

::! 
I .. 

OUTPUTS 
PBO-PB3 -

PORT 
B 

"ar 
;r 
i a 

'--
i 
~ 
~ 
:::i' 
st 
ar 
;r 
i:l 
!!. 
!! g 

=-ar 
~ 
fit 
~ 



Ii 
~ 

~ 

ZPlD 
INPUT 
BUS 

ClKlN 

RESET 

TIMER 
INPUT PIN 

TIMER [3 : OJ_IN 

TIMER_CLOCK 
(PRESCAlED ClK) 

r----------------------
PTT-O 

PTT-1~ 

AND 
ARRAY 

WDOG2PlD (INTERNAL FEEDBACK) 

PR 
D Q 

C Q 

MUX 

• abl FILE 

I 
I 

I I INPUT I ~I 
MC2TMR* MUX 

BIT50F 
COMMAND REGISTER 

COUNTERI 
nMER 

*These are four similar Macrocells with outputs MC2TMR[3:0J 

a-la 
~a 

t 
C"a 
::!" Q' 
:::a 

::!! 
'= ;; 
~ 

;: 
Ii; 

" ~ a 
~ 

~ --;&I ... 
t' g. 
&' 

= .. 
~ 
if 
!It 

;J 
it 
~ 
I 

t 
l;:: 

fit 
r::t 
I 
f 
;r 
2 
CI6 



PS05XX - Application Note 028 

Introduction 
(Cont.) 

The PPLD (Cont.) 

The Operation of a Counterffimer Unit 
The basic functional block of a CounterfTimer Unit (CTU) is shown in Figure 4. It consists 
of a 16-bit up/down Counter and a 16-bit Image Register. The Counter performs a counting 
operation such as generating a waveform output or counting the event occurrence of an 
input signal. The Image Register serves as an interface register for the Counter. For 
example, in Pulse Mode the length of the pulse width is stored in the Image Register. When 
activated, the Counter is loaded with the contents of the Image Register and generates a 
pulse output with duration defined by the Image Register. But in the Event Count Mode (or 
Time Capture Mode), the number of event count (content of Counter) is stored in the Image 
Register so that it can be read by the Microcontroller. 

Both the Image Register and Counter can be accessed by the Microcontroller. Usually the 
Counter is accessed only for initialization purposes. To access the Image Register when the 
Counter is running, you need to first freeze the Image Register via the Freeze Command 
Register and wait for the freeze acknowledge bit by reading the Status Flags Register. If the 
bit is set, you can then proceed to access the Image Register. 

The Counter generates an output if it is configured in Waveform, Pulse or Watchdog Mode. 
The Waveform/Pulse output can be routed to an output pin on Port A or B. For Watchdog 
output, the signal must go through the GPLD before it is routed to any selected output pin. 
For Event Count or Time Capture Mode, the output of the counter is read by the user from 
the Image Register. 

Figure 3 is the PSD5XX equivalent block diagram depicting the basic input and output 
signals of each Counter/Timer unit. 

Figure 3. PSD5XX Counterffimer Equivalent Block Diagram 

TIMER_CLOCK .. ... 
C 
0 

E nlDis U .. N ... T 
E 
R 

TRIGGER .. 
LOAD or STORE 

... 

I 
M 
A 
G 
E 

t 
IMAGE 

FREEZE 

OUTPUT .. ... 
(In Waveform, 

FREEZE-AC .. .... 

Pulse, Watchdog) 

K 

-------------------------------------~~-------------------------------------
3-4 ==== 



IlliiiQ: 
II111111 
Ilklllh 
1I111111i 

~ 

I CLKINPIN 
PROGRAMMABLE INIt;t1NAL t'tiU UAIA .,u::t 

DIVISOR I I 

PPLD } J WATCHDOG 

MACROCELL r---

TIMER CLOCK 
CLK I-- GPLD .--

PIN 
'- ENABLEIDISABLE' LOAD 

TOPOR 

PE3-6 I-- MUX .-I-D- OPERATION 
_ A,BOR 

EN/DIS ......-

T 
PULSEIWAVE 

OR 

CMDREG. 
WATCHDOG COUNTER/ PUSLEIWAVE 

BIT5 CONTROL & 
IMAGE TIMER TO PORTA OR B 

PIN/MC MODE UNIT ~ REGISTER 

SELECT TCTOPORTE 
LOAD/ STORE 
STORE" OPERATION TC 

CMDREG. L LOAD/STORE 
BIT 7 

EVENT OR TO 

SOFTWARE 
TIME CAPTURE INTERRUPT 

CONTROLLER 
ENIDIS 

CONTROL 

CMDREG. 

~ BIT6 ;D-PIN/MC 
CONTROL 

LOIST 

SOFTWARE 
LDISTREG. 

LOADISTORE 

• In Time Capture Mode, only software can en/dis CTU. 
FREEZE - •• In Waveform Mode, TC of the other CTU can also trigger LOAD function. 

CMDREG. 

:T 
E 

~S' 
~;:r 
..... Q 

t 
~ 
::!' Q' 
:::a 

:i 
§ 
CIi 

f't. 
~ §. 
II .... 
:::!l 
l 
!! 
Q 

~ 
!SI 
1»' 
~ ; 
a 
~ 
§l 
iit 
.::t 
~ 

ii' 
~ 
"I 

~ =:. ::: 
5t 
~ 
cQ' 
=:i 
~ 
"I 

~ m 
~ 
I 

:to. 
~ ;:: 
fa 
::!: 
8 
l= 
Ii' 
I!:l 
Qi 



1'SD5XX - Appllcatlllll IItJtI m 

Introduction 
(Cont.} 

The PPLD (Ctlnt.} 

The operation of the CTU is controlled by two signals: 

Q The enid Is signal -
To enable or disable the Counter from counting. 

Q The load/store signal -
To load the Image Register contents to the Counter or store the Counter value to the 
Image Register. 

These two signals are defined by the user through the Counter Command Register, the 
external pin input, the PPLD macrocell output or by the user software. These multiple 
sources of control enable the user to implement very specific counterltimer applications. 
Table 1 shows the sources for the load/store operation and the enable/disable function 
under different modes of operation, and also what the Counter is doing while the Image 
Register Is under freeze. 

Table 1. ModllS 01 Operation 

Input Mode Possible Load/Store Possible Counter 
01 Operation Load/StoTB Function Enable/Disable DUling 

SOUICIIS SOUICes FTBIIZB-ACk 

Waveform Software, pin, Load counter Software, pin, Continue to 
PPLD Macrocell, from Image PPLD Macrocell. count. When TC 
TC of the other Register. is reached 
counter. output level is 

unchanged. 

Pulse Software, pin, Load counter Software, pin, Continue to 
PPLD Macrocell. from Image PPLD Macrocell. count. When TC 

Register. is reached 
output level 
changes. 

Watch-Dog Software. Load counter Always enabled. No effect. 
(Counter-2 only) from Image 

Register. 

Event Count Software, pin, Store counter Pin, PPLD Counter will 
PPLD Macrocell. value in the Macrocell. continue to 

Image Register. Every specified count events. 
transition will 
increment 
(or decrement) 
counter. 

Time capture Software, pin, Store counter Software. Counter will 
PPLD Macrocell. value in the continue to 

Image Register. count timer 
clock cycles. 

---------------------------r'Jrjf;---------------------------3-6 -- --



PSD5XX 
Counter/Timers 
INPUT/CLOCK 
Scaling 

I'SD5XX - AppllcatlDn NDt. 028 

All four Countermmers share a common input clock which can be scaled down. 
The CounterlTimers operate in the frequency range up to 7.0 MHz. The maximum input 
clock to the PSD5XX is 28 MHz. The default divide factor is 4 and the input clock can 
further be scaled down through 280 times. 

Figure 5 depicts the relationship between PSD5XX clock input (clkin) and the Timer_Clock 
with the default divide factor 4. 

Figure 5. 

-----------------------------------wr4V~~-----------------------------------
3·7 



PSD5XX - Application 1I0t. 028 

PSD5XX 
CounterRimers 
INPUT/CLOCK 
Scaling 
(Cont.) 

The following example has been used for this application note. 

External input clock of the PSD5XX is 12 MHz. 

The expected Count frequency of all Counter/Timers is 3 MHz. 

Countermmer Clock Input 
(External Clock Input to PSD5XX) 
------.• (1) 

(DIV) 

The range of DIV is 4 = <DIV = <280 

Based on the value of DIV the Scale-bit in the Global Command Register and DLCY value 
in the DLCY Register are loaded. 

DLCY is the value loaded into the DLCY Register and represents the number of delay 
cycles, the range is 0 = < DLCY < = 31 

The Scale-bit in the Global Command Register when set to 

0: The clock to all Countermmers is divided by 1. 
1: The clock to all CounterlTimers is divided by 8. 

Therefore from (1) DIV = 

=> DIV = 4 ... (2) 

(External Clock Input to PSD5XX) 

CounterlTimer Clock Input 

12MHz 

3MHz 

Hence from the data sheet Table 16, when DIV = 4, set the Scale-bit in the Global 
Command Register to 0 and write 00 into the DLCY Register. Note that at power up DLCY 
contains 00. 

The input clock to the Countermmers is then 3 MHz, scaled down from the external 
12 MHz clock. 

-~-8-----------------------~Jr;--------------



Different 
Operating 
Modes 

PSD5XX - Application Nots 028 

The operations and initializations of the five modes of the CounterfTimers are discussed 
in the following sections. 

Waveform Mode 
The Waveform Mode is also known as the Pulse Width Modulation (PWM) Mode. 
In this mode a continuous waveform output is produced using two CounterfTimers. The on 
and oft widths of the output Waveform are programmable and are defined by the user, by 
writing the desired values into the corresponding Image Registers. 

Figure 6 shows a typical PSD5XX based PWM implementation, where the PWM_OUT 
is the expected output waveform, and Timer Clock is the clock input to the CTUs. 
As seen in Figure 6 a minimum of two CounterfTimers are required to implement the 
Waveform mode. There is an alternate implementation of the PWM mode, where each of 
the four CounterfTimers can generate PWM waveforms. Refer to Appendix 6 for details. 

Typical applications of this mode are: 

o Automotive engine control 

o Motor speed control 

o Display intensity control 

o Sound generation 

A waveform output in the above application can easily be produced using PSD5XX 
CounterfTimers. Variations of on-time/oft-time of the waveform output is done by modifying 
the Image Register contents. The relationship between on-time and oft-time of the waveform 
output is expressed as duty cycle. 

The duty cycle of the waveform in Figure 6 is expressed as: 

on-time (Ton) 
Duty Cycle = 

on-time (Ton) + oft-time (Toft) 

If Ton equals Toft then the waveform output has a 50% duty cycle and is a square wave. 
Suppose PWM is used to increase or decrease the power supply to a motor, with the 
larger duty cycle delivering more power to the motor. Obviously more power to the motor 
means higher speed in the motor, i.e., motor speed can be controlled by adjusting the ON 
time of the signal. 

Figure 7.0 depicts the input control signals of PSD5XX in waveform mode. 

Figure 6. Waveform Mode Input/Output 

33% 

TIMER_CLOCK ----II> '--____ ...J 

--------------------~~~--------------------
3-9 



~ 
~ 

It: ~ 
IllItft 

START COUNTER (Brr 1 OF GLOBAL COMMAND REGISTER) 

OUTPUT POLARITY SELECT (Brr 3 OF CMD REGISTER) 

SOFTWARE SELECT (Brr 2 OF CMD REGISTER) 

SOFTWARE ENABLE (Brr 7 OF CMD REGISTER) 

TERMINAL COUNT OF OTHER CTU" 

PIN OR MACROCELL 
(SELECTED BY Brr 5 OF CMD REGISTER) 

SOFTWARE GATE Brr 
(Brr 6 OF CMD REGISTER) 

SOFTWARE LOAD (SOFTWARE LOAD I STORE REGISTER) 

INCREMENTIDECREMENT SELECT (Brr 1 OF CMD REGISTER) 

SOFTWARE FREEZE (FREEZE COMMAND REGISTER) 

TIMER_CLOCK 

ENABLEIDISABLE 

"Need two CTUs together in Waveform Mode (CTUO - CTU1 or CTU2 - CTU3). 
The Terminal Count of CTUO drives CTU1 and the Terminal Count of CTU1 drives CTUO. 
The same applies to CTU2 and CTU3. 

COUNTER 

COUNTER OUTPUT (PORT A OR B) 
(ONLY COUNTER 0 OR 2) 

FREEZE ACKNOWLEDGE 
(STATUS FLAGS REGISTER) 

I 

TERMINAL COUNT (TC)" 
TOOTHERCTU 

I TERMINAL COUNT (TC) 
I TO INTERRUPT CONTROLLER 
----------~ 
I 
I 

I TERMINAL COUNT (TC) 
I TO PORTE 
---------~ 

i~~!P. 
!tlit.~i 
-Cl.~ 

"l =:!' at 
:;:t'=a 
CCj-

;!:! 
'I ;; 
::"-I 
CO) 

a 
~ =a 
r::r 
!!. 
~ 
'!I 
at 
"I 
;r ... 
i 
C1i ;r 
i • It 

it 
~ 
I 

t :;:: 
i 
if =a 
if a-
D 



Different 
Operating 
Modes 
(Cont.) 

PSD5XX - Application Nottl 028 

Waveform Mode (Cont.) 

The features of the Waveform Mode are: 

o Two Timers configured in Waveform Mode are needed to generate a continuous 
Waveform output of the Image Registered duty cycle. The combinations of the two 
CounterfTimers are: 

CounterfTimer-O and CounterfTimer-1 

and/or 
CounterfTimer-2 and CounterfTimer-3 

o Image Registers of CounterfTimer-O and CounterfTimer-1 are loaded with proper count 
values to generate the required Registered duty cycle and duration. The frequency of 
the waveform is : 1/T(on) + T(off). 

o There are four different sources which can load the Counter with contents from the 
Image Register: 

- by software 
- by input pin 

- by PPLD macrocell output 

- by Terminal Count (TC) of the other Counter configured in the Waveform Mode. 

o Three different sources are available to enable or disable the Counter: 

- by software 

- by input pin 

- by PPLD macrocell output 

o Outputs of these CounterfTimers are available on Port A or Port B. 
The fitter reports contain the pin list information. The CounterfTimer outputs are routed 
to the corresponding pins via software. 

o If required the outputs can be fed back to the GPLD through the I/O ports. 
This feedback enables the creation of complex waveforms. 

A Waveform Mode Design example: 

o In this application example a waveform output (PWM_OUT) of 33.33% duty cycle is 
generated. The required Ton time is 666 ns while the Toff time is 1332 ns. 

o The Waveform period time is 2000 ns. 

o CounterfTimer-O is configured to generate the Toff pulse and CounterfTimer-1 is 
configured to generate the Ton pulse. The Counters are enabled via software. 
The loading of the Counters from the Image Registers are automatically triggered 
by the TC of the,other Counter. No inputs from the pin or macrocell are used. 

o The Timer input clock is 3MHz, i.e., PSD5XX input clock of 12 MHz is scaled down 
to 3 MHz. To achieve the desired TonfToff time, the Image Register-O is initialized with 
a count value of 2 and Image Register-1 with a count value of 4. 

"'-=_Iif 
-------------------------------------~~~jf----------------------------------3-.1--1 



PSlJ5XX - AppllClltion Not. 028 

Different 
Operating 
Modes 
(Cont.) 

Waveform Mode (Cont.) 

The program flow to set up the Waveform Mode operation as described in this example is 
as follows: 

1. Define the Timer input clock frequency (see section on clock scaling). 

2. Set up Command Registers for CTUO and CTU1 
(CTU is an abbreviation of CounterfTimer unit). 

3. Initialize the Image Registers with the proper count values to define TonfToff time. 

4. Specify the Timer pulse output. This can be done in two ways: 

via .abl as PWM_OUT pin 27, which is a user defined name or 
via PSDconfiguration software by specifying "waveform/pulse output", 
which assigns the default name "timeroutO". 

S. Set up the Special Function Register to specify the pin which is to be used as the 
output pin for the signal PWM_OUT. 

6. Set up the Software Load/Store Register to load the CTUs with the initial count values. 

7. Set up the Global Command Register Start Bit and start the operation of the CTUs. 

The procedure to set up CounterfTimer Registers in the Waveform Mode in this design 
example is: 

Counter/Time,.O Registers Initialization: 

o Write "D4"hex to Command Register-O (CMDO) at offset from base address of CSIOP 
(Chip Select I/O Port). 

CMDO Register 

Bit-7 Bit-6 Bit-S Bit-4 Bit-3 Bit-2 Bit-1 Bit-O 

1 1 X X 0 1 0 0 

Bit-O: 0 Mode Select Bit, select Waveform Mode for CTUO. 
Blt-1: 0 DecremenVlncrement Bit: select decrement (CTUO counts down from 2 to O. 

At 0, TC triggers the loading and operation of the CTU1). 
Blt-2: 1 Select CounterfTimer Bit: Select CTUO. 
Bit-3: 0 Output polarity: Select output to be active low (Toff time). 
Bit-4: X Input Polarity: No pin input in this mode, don't care. 
Bit-5: X Pin or Macrocell input: No pin or macrocell input, don't care. 
Bit-6: 1 Load/Store Bit: No pin or macrocellioad/store. 
Bit-7: 1 EN/DIS Bit: Enable continuous counting. 

IMGO is loaded with 04 (hex) to define the Toff time of the output pulse (PWM_OUT) 

-3--1-2--------------------------------~Jr~Ar-----------------------------------



Different 
Operating 
Modes 
(Cont.) 

PSD5XX - Application Note 028 

Waveform Mode (Cont.) 

Countermmer-1 Registers Initialization: 

o Write "CC"hex to Command Register 1 (CMD1). 

CMD1 Register 

Bit-? Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-O 

1 1 X X 1 1 0 0 

Bit-O: 0 Mode Select Bit, select Waveform Mode for CTU1. 
Bit-1: 0 Decrement/Increment Bit: select decrement (CTU1 counts down from 4 to o. 

At 0, TC triggers the loading and operation of the CTUO). 

Bit-2: 1 Select CounterlTimer Bit: Select CTU1. 

Bit-3: 1 Output polarity: Select output to be active on (Ton time). 

Bit-4: X Input Polarity: No pin input in this mode, don't care. 

Bit-S: X Pin or Macrocell input: No pin or macrocell input, don't care. 

Bit-S: 1 Load/Store Bit: No pin or macroceilioad/store. 

Bit-7: 1 EN/DIS Bit: Enable continuous counting. 

IMG1 is loaded with 02(hex) to define the Ton time of the output pulse (PWM_OUT) 

After Command Registers 0 and 1 are initialized, other Registers (Special Function 
Register, Software Load/Store Register and Global Command Register) must now 
be initialized. 

o Configure Port A pin PAO as special function out, dedicating it as a Timer output pin 
by setting bit-O to "1" in Port A Special Function Register. This bit is set only when 
there is a need to bring the timer output pulse out of the PSD5XX. Refer to .frp report 
file to determine where the output is connected (The device fitter might assign it to 
Port B pin PBO. 

Special Function Register 

Bit-? Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-O 

0 0 0 0 0 0 0 1 

-----------------------------------~~~~-----------------------------------
3-13 



PS05XX - Application Note 028 

Different 
Operating 
Modes 
(Cont.) 

Waveform Mode (Cont.) 

o Set Load/Store bit-O and bit-1 (of Timers 0 and 1) to one in the Software Load/Store 
Register. This transfers the content of the Image Registers to the Timers to initialize 
the waveform mode. The Software Load/Store bits are automatically cleared whenever 
the Countermmer starts operating. 

Software Load/Store Register 

Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-O 

0 0 0 0 0 0 1 1 

o Now to start the Timers: The Global Command Register has to be initialized to 02(hex), 
i.e., the following bits are set 

Global Command Register 

Bit-7 

0 

Bit-O: 0 

Bit-1: 1 

Bit-2: 0 
Bit-3: 0 

Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-O 

0 0 0 0 0 1 0 

Scale Bit: The clock input to the Timers is divided by 1. This is the first clock 
pre-scaler stage (selecting between "divide by 8" or "divide by 1 "). 
Counter start bit: This bit turns on all the selected Timers. 

Global Mode bit: All Countermmers operate in Waveform or Pulse Mode. 

Watch Dog bit: Not Watchdog Mode (affects only Countermmer-2). 

After the CounteriTimers start operating, every time a Timer counts to zero, a transition 
occurs on the output waveform (PWM_OUT) to generate a pulse with the specified duty 
cycle. The Counter/timer-O is reloaded automatically from the Image Register-O when the 
Counter/timer-1 reaches the zero count and this process repeats with Counter/timer-1. 
The terminal count of each Counter/timer drives the loading of the other Counter/timer. 
This results in a continuous waveform output. 

-----------------------------------r-~~-----------------------------------
3-14 ==== 



Different 
Operating 
Modes 
(Cont.) 

PSD5XX - AppllClltJDR lIottll12B 

Walleform Mode (Cont.) 

Figure 8 shows the simulation result of the Wavefo-rm Mode simulated on the 
PSDsim simulator. 

Figure B. Simulation of Walleform Mode 

imgOL 

cntrOL 

img1L 

cntr1L 

cmdO 

cmd1 

o Input Signals: 
Prescaled PSD5XX input clock: Timer_Clock 

o Output Signal: 
PWM waveform output: PWM_OUT 

The CounterfTimers are enabled by software and as soon as the Global Counter Start bit 
is set to 1, the Timers start to output PWM waveform. The total period is the sum of the 
count values loaded into the IMGO and IMG1 Registers (04 + 02 = 06). The duty cycle 
is (02/06 = 0.33) or 33%. Note that every time the contents of the Image Registers are 
changed to vary the duty cycle of the output waveform, the Load/Store bits of both the 
CounterfTimers must be set to 1 to initialize a new PWM cycle. 

iFSE4S1; 
-----------------------------------~J;~~--------------------------------3---15-



PSD5XX - Application Nots 028 

Different 
Operating 
Modes 
(Cont.) 

The Pulse Mode 
In Pulse Mode a CounterfTimer when enabled outputs a mono-shot pulse. The pulse 
width is defined by the value loaded into the corresponding Image Register. Any of the four 
CounterlTimers are capable of Pulse Mode. Figure 9 depicts a pulse output from 
CounterlTimer-O initiated by the PPLD input control signal mc2tmrO. 

A typical application of the Pulse Mode is in networking applications using CSMAICA 
protocol. The transmission line has to be sensed to check if other stations are accessing 
this line. Therefore, based on a signal transition on this line a mono-shot pulse has to be 
produced to indicate that the line is busy. This mono-shot pulse stops the host station from 
accessing the line and hence avoids data collisions. 

o Up to four pulse outputs are available from the PSD5XX, one per each CounterfTimer. 

o Polarity of the pulse output is defined by the output polarity bit in the CounterfTimer 
Command Register. 

o To generate the required pulse width, load the Image Register with the required pulse 
width value. As soon as the CounterlTimer trigger occurs, the Image Register contents 
are transferred to the corresponding CounterlTimer. 

o Unlike Timers on standard microcontroliers, there are three different ways to enable a 
CounterlTimer on the PSD5XX: 

- Input pins PE3-PE6(port E). 
- mc2tmrO-3 inputs in the PPLD. 

- Software Control. 

o The outputs of the CounterfTimers are available on Port A or Port B. The outputs 
can be fed back to the ZPLD. Refer to the .frp report file to determine where the 
outputs are connected. 

Figure 10 depicts the input control signals of a PSD5XX in Pulse mode. 

Figure 9. Pulse Mode Input/Output 

mc2tmrO 
AS TRIGGER ---I TIMER-O 

mc2tmrO 
AS TRIGGER 1------' 

TIMER STARTS 
DECREMENTING 

PULSE 

AT THIS POINT 
TIMER UNDERFLOWS 

__ --------------------------r---E ---------------------------
3-16 ==== 



~~'''I 
111111 
111111 

11111'1 
IIQlnn 

~ -...... 

START COUNTER (BIT 1 OF GLOBAL COMMAND REGISTER) 

SOFTWARE FREEZE ( FREEZE COMMAND REGISTER) 

OUTPUT POLARITY SELECT (BrT 3 OF CMD REGISTER) 

SOFTWARE SELECT BIT (BrT 2 OF CMD REGISTER) 

ENABLE COMMAND (BrT 7 OF CMD REGISTER) 

PIN OR MACROCELL 
(SELECTED BY BrT 5 OF CMD REGISTER) 

SOFTWARE GATING BIT 
(BIT 6 OF CMD REGISTER) 

SOFTWARE LOAD (SOFTWARE LOAD/ STORE REGISTER) 

INCREMENTIDECREMENT SELECT (BIT 1 OF CMD REGISTER) 

TIMER_CLOCK 

ENABLEIDISABLE 

COUNTER 

LOAD/STORE 

COUNTER OUTPUT (PORT A OR B) 

FREEZE ACKNOWLEDGE 
(STATUS FLAGS REGISTER) 

TERMINAL COUNT (TC) 
TO INTERRUPT CONTROLLER 

15 f~S! 
~g,~i 

SlQj~ "'. -~ S'::i 
CCi-

~ 
Iii' 
§; 
CI .... 
!=I 
~ a 
~ =:a 
;:r 
S!. 
t! 
~ 
at 
III 

-1---------- ~ 
~ ;s­
CD 

I 

I TERMINAL COUNT (TC) 
I TO PORTE 
----------~ 

I 
It 

i 
~ :oc 
I 

t ;;: 
fit 
!:!: 
II 
t 
&t 

I 



PSD5XX - Application Note 028 

Different 
Operating 
Modes 
(Cont.) 

The Pulse Mode (Cont.) 

A Pulse Mode example 
The following example explains the Pulse Mode application. The enable inputs to the 
Timers are generated by the PPLD. 

The program flow to set up the Pulse Mode operation as described in this example is as 
follows: 

1. Define the Timer input clock frequency (see section on Clock Scaling). 
Here 12MHz is scaled down to 3MHz. 

2. Set up the Command Register for CTUO. 

3. Initialize the Image Register with the proper count values to define the pulse width. 

4. Specify the Timer pulse output. This can be done in two ways: 

via .abl as pulse_out pin 27, which is a user defined name or 
via PSDconfiguration software by specifying "waveform/pulse output", 
which assigns the default name "timeroutO". 

S. Set up the Special Function Register to specify the pin which is to be used as the 
output pin for the signal pulse_out. 

6. The following equation is used to trigger CounterlTimer-O (mc2tmrO). 
This equation is included in the design entry .abl file. 

mc2tmrO = (exCsignal1 & !exCsignal2 # !exCsignaI3) 

The exCsignal1 through exCsignal3 signals are the input signals to the PSDSXX pins. 
If these signals satisfy the above equations then CounterlTimer-O is loaded on the rising 
edge of mc2tmrO. A pulse with a pulse width specified by the Image Register is generated 
on the output pin. 

7. Set up the Global Command Register Start Bit and start the operation of the CTU. 

The procedure to set up CounterlTimer Registers in the Pulse Mode in this design 
example is: 

Counternimer-O Registers Initialization 

o Write "9D"hex to Command Register 0 (CMDO) at offset from base address of 
CSIOP(Chip Select 110 Port}. 

CMOO Register 

Bit-7 Bit-6 Bit-S Bit-4 Bit-3 Bit-2 Bit-1 

1 0 0 X 1 1 0 

Bit-O: Mode Select Bit, select Pulse Mode for CTUD. 

Bit-O 

1 

Bit-1: 0 Decrement/Increment Bit: Select decrement (CTUO counts down from 3 to O). 

Bit-2: Select CounterlTimer Bit: Select CTUO. 

Bit-3: Output polarity: Select output pulse to be active high. 

Bit-4: X Input Polarity: No pin input in this mode, don't care. 
Bit-5: 0 Pin or Macrocell input: Macrocell input control. 

Bit-6: 0 Load/Store Bit: Enable Load control by macrocell output. 
Bit·7: EN/DIS Bit: Enable continuous counting. 

IMGO is loaded with 03(hex} to define the pulse width of the output pulse (pulseD_out) 

-3-.1-8----------------------------~~~-------------------------------



Different 
Operating 
Modes 
(Cont.) 

PSD5XX - Application Note 028 

The Pulse Mode (Cont.) 

After Command Register 0 is initialized, other Registers (Special Function Register and 
Global Command Register) must now be initialized. 

o Configure Port A pin PAO as special function out, dedicating it as a Timer output pin by 
setting bit-O to "1" in Port A Special Function Register. This bit is set only when there is 
a need to bring the timer output pulse out of the PSDSXX. Refer to the .frp report file to 
determine where the output is connected. Note that the device fitter might assign the 
pulse output to Port Spin PSO. 

Special Function Register 

Sit-? Sit-6 Sit-S Sit-4 Sit-3 Sit-2 Bit-1 Bit-O 

0 0 0 0 0 0 0 1 

o Now to start the Timers the Global Command Register has to be initialized to 02(hex), 
i.e., the following bits are set 

Global Command Register 

Bit-? Bit-6 Bit-S Bit-4 Bit-3 Bit-2 Bit-1 Bit-O 

0 0 0 0 0 0 1 0 

Bit-O: 0 Scale Bit: The clock input to the Timers is divided by 1. This is the first clock 
pre-scaler stage (selecting between "divide by 8" or "divide by 1"). 

Bit-1: 1 Counter start bit: This bit turns on all the selected Timers. 

Bit-2: 0 Global Mode bit: All CounterfTimers operate in Waveform or Pulse Mode. 

Bit-3: 0 Watch Dog bit: Not Watchdog Mode (affects only CounterfTimer-2). 

-----------------------------------~~~~-----------------------------------
3-19 



PSD5XX - Application Note 028 

Different 
Operating 
Modes 
(Cont.) 

The Pulse Mode (Cont.) 

Figure 11 illustrates the basic pulse mode operation and retriggerability of the 
Countermmer in the pulse mode. 

Figure 11. Simulation of Pulse Mode 

imgOL 

cntrOL 

cmdO 

o Input Signals 

Countermmer-O trigger signal: mc2tmrO 
PSDSXX input clock: Timer_Clock 

o Output Signals 

Pulse output at: pulseO_out 

Note that mono-shot output, active high (pulse width = 03) and retriggered mono-shot 
output (pulse width = 03 + 02 = 05) are simulated. 

Figure 11 shows the simulation result of Pulse Mode on the PSDsim simulator. The 
Counterrrimer trigger signal mc2tmrO is enabled as soon as the ext_signal signals listed in 
the Abel equation are satisfied. When mc2tmrO is True (= High-State Pulse), 
Countermmer-O starts outputting a pulse with programmed pulse width equal to 03. The 
second output pulse (when mc2tmrO is True again) is longer although the Countermmer is 
loaded with a count value of 03 because the Countermmer is re-triggered for the second 
time before the output pulse generated by the first trigger dies. Therefore the pulse width of 
the second pulse is 05. 

-3-~-O----------------------------------~~~-------------------------------------



Different 
Operating 
Modes 
(Cont.) 

PSD5XX - Application Nots 028 

The Event Counter Mode 
Event counting is a common feature in many Microcontrolier applications. An example 
could be counting the number of soda bottles on an assembly line or number of positive 
transitions in an incoming signal. 

The advantage of using an event counter on the PSD5XX is that the PPLD allows several 
external signals to be combined to define an event. The following equation shows how this 
can be implemented. 

mc2tmrO = ext_signal1 & !exCsignal2 # !exCsignal3 

In this example each time mc2tmrO is true (has a Zero-to-One transition) the count value in 
CounterfTimer-O increments by one. 

Event Count Mode Features on the PSD5XX: 

o Up to 3 Event Counters are available. 

o Event latching is input signal edge sensitive. 

o If the input control is by macrocell, then the input polarity is defined in the .abl file, 
which in turn defines the active edge. In order to get falling edge sensitivity the 
macrocell equation has to be inverted, i.e., preceded by a negation sign (!). 

o If the input control is by the pin, then the input polarity bit in the CounterfTimer 
Command Register (bit-4) is used to define the edge (example: input polarity active 
high => rising edge sensitive). 

o By using Freeze and Freeze acknowledge signals, the count value can be read 
from the Image Register without affecting the actual event count. 

o For an event to be counted, the minimum time distance between two successive events 
should be at least 1 TimecClock period of the CounterfTimer input clock. 

o Unlike Timers on standard microcontrollers, there are three different ways to create 
CounterfTimer events on the PSD5XX: 

- Input pin PE3-PE6 (port E). 
- mc2tmrO-3 inputs in PPLD. 

- Software Load Commands. 

Refer to figure 12 for control signals needed to operate in Event Count Mode. 

In this example when the CounterfTimer is active every Low-to-High transition on mc2tmrO 
will increment the IMGO (Image Register) of CounterfTimer-O. 

Once the freeze signal is set, the image content is "Frozen" and the counter keeps on 
counting the events. The moment freeze is cleared, the counter updates the Image 
Register. Therefore the events will always be counted, independent of the freeze command. 

-------------------------------------~~~-------------------------------------
3·21 



Co> 

~ 

II~"'" IIIII 
tllllill 

111111-
IIIII "! 

START COUNTER (BIT 1 OF GLOBAL COMMAND REGISTER) 

SOFTWARE SELECT (BIT 2 OF CMD REGISTER) 

PIN OR MACROCELL 
(SELECTED BY BIT 5 OF CMD REGISTER) 

ENABLE COMMAND 
(BIT 7 OF CMD REGISTER) 

~ PIN OR MACROCELL (BIT 5 OF CMD REGISTER) 

SOFTWARE GATING BIT 
(BIT 6 OF CMD REGISTER) 

SOFTWARE STORE (SOFTWARE LOAD/ STORE REGISTER) 

SOFTWARE FREEZE (FREEZE COMMAND REGISTER)* 

TIMER_CLOCK 

LOAD/STORE 
COUNTER 

*Count updates are continuously stored in the image register, unless frozen by the software freeze command. 

i~~s! 
cQ.~;: 

mQi'!'il ... -m 

TERMINAL COUNT (TC) 
TO INTERRUPT CONTROLLER .,-----------

TERMINAL COUNT (TC) 
TO PORTE L _________ ..... 

FREEZE ACKNOWLEDGE 
(STATUS FLAGS REGISTER) 

S":::::a cca-

::!! 
IC:i 
~ 
CIIi -~ 
C') 

c:! 
~ :::a :::: 
5!. 
t! cg 
liD c;r 
~ .. ... ; 
a 
~ 
Ii -f 
t 

i 
~ 
I 

:to 
~ :;:: 
:: 
I:!: 

= if 
Ii' 
~ 
CI6 



Di"erent 
Operating 
Modes 
(CDnt.) 

I'SD5XX - Appllt:llt/tIII lIe,. DZ8 

The Elfent CDunte, MDde 

Elfent CDunte,Oa/gn example: 

o Generating the event input to the CounterlTlmer: 
The event input (mc2tmrO) is defined in the following equation: 

mc2tmrO = ( exLsignal1 & lexLsignal2 # lexLsignal3) 

where ext_signals are control inputs and mc2tmrO is the output from the PPLD. 
Any rising edge on the mc2tmrO is counted by the CounterlTimer-O as one event and thus 
will increment the counter by one. 

o Input clock to the CounterlTlmer: 
In this application note the default scale down factor (4) of the PSD5XX input clock 
is used: 

default PSD5XX input clock = 12 MHz 
Scale down factor = 4 
CounterlTimer input clock = 12 MHz/4 = 3 MHz. 

For a guaranteed event counting without a miss, the events must be separated 
by at least one timer clock plus 2 CLKIN clock periods. 

The program flow to set up the Event Count Mode operation as described in this example is 
as follows: 

1. Define Timer input clock frequency (see section on Clock Scaling). 
Here 12 MHz is scaled down to 3 MHz. 

2. Set up Command Register for CTUO. 

3. Initialize IMGO and CNTRO Registers to 00. 

4. The following equation is used to trigger events on CounterlTimer 0 (mc2tmrO). 
This equation is included in the design entry .abl file. 

mc2tmrO = (ext_signaI1 & lext_signal2 # lext_signaI3) 

The ext_signal1 through ext_signal3 signals are the input Signals to the PSD5XX pins. 
If these signals satisfy the above equations then the IMGO Register gets incremented at 
every rising edge of mc2tmrO. 

5. Set up the Global Command Register Start Bit and start the operation of the CTUO. 

6. To read the count event count updates, freeze the Image Register(IMGO) by writing 01 
into Freeze Command Register. 

7. Wait for the Freeze Acknowledge bit to be set to 1 for Countermmer-O and then read 
the IMGO Register. 

---------------------------~Jr~-------------------------~--n 



PSD5XX - Application Note 02B 

Different 
Operating 
Modes 
(Cont.) 

The Event Counter Mode (Cont.) 

The procedure to set up CounterlTimer Registers in the Event Count Mode in this design 
example is: 

Counternimer-O Registers Initialization: 

o Write "1 E"hex to Command Register 0 (CMDO) at offset from base address of 
CSIOP (Chip Select I/O Port). 

CMDO Register 

Bit-? Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 

0 0 0 x X 1 

Bit-O: 0 Mode Select Bit, select Event Count Mode for CTUO. 
Bit·1: Decrement/Increment Bit: Increment after every event. 

Bit·2: Select CounterlTimer Bit: Select CTUO. 

Bit·3: X Output polarity: No timer output, don't care. 
Bit·4: X Input Polarity: No pin input in this mode, don't care. 

Bit·5: 0 Pin or Macrocell input: Macrocell input control. 

Bit·6: 0 Load/Store Bit: Store control from macrocell. 

Bit·7: 0 EN/DIS Bit: Enable or disable by macrocell. 

Bit-1 

1 

NOTE: In this mode each event will enable the Counter/Timer for one Timer Clock 
cycle only. 

IMGO and CNTRO Registers must be cleared to 00. 

Bit-O 

0 

After Command Register 0 is initialized, other Registers (Global Command Register and 
Freeze Command Register) must now be initialized. 

o Now to start the Timers: The Global Command Register has to be initialized to 06(hex), 
i.e., the following bits are set. 

Global Command Register 

Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-O 

0 0 0 0 0 1 1 0 

Bit·O: 0 Scale Bit: The clock input to the Timers is divided by 1. This is the first clock 
pre-scaler stage (selecting between "divide by 8" or "divide by 1 "). 

Bit·1: Counter start bit: This bit turns on all the selected Timers. 

Bit·2: Global Mode bit: AI! CounterlTimers operate in Event Count or 
Time Capture Mode. 

Bit·3: 0 Watch Dog bit: Not Watchdog Mode (affects only CounterlTimer-2). 

-3-~-4--------------------------------~~~~-----------------------------------



Di"erent 
Operating 
Modes 
(Cont.) 

'BD5XX - Application Not. 028 

The Event Counter Mode (Cont.) 

The CounterfTimer is turned on after a write takes place on the Global Command 
Register. The CounterfTimer will keep on counting the events and update the Image 
Register whenever the event count has changed. Follow these steps to read the 
Image Register: 

o The Image Register must be ''frozen'' before it can be read. 

o Write "1" to bit 0 of the Freeze Command Register 
(Corresponds to CounterfTimer-O). 

Freeze Command Register 

Bit-7 Bit-6 Bit-S Bit-4 Bit-3 Bit-2 Bit-1 Bit-O 

0 0 0 0 0 0 0 

o This will freeze the Image Register updates by the counter. 

o Check the Freeze Acknowledge bit-O in the Status Register. A microcontroller can 
access the Image Register accurately only when the Freeze Acknowledge bit-O 
is set to "1". 

o The Freeze Command bit-O must be cleared to 0 by the Microcontroller to resume 
normal counting and to negate the Freeze-Acknowledge signal. 

1 

----------------------------~~~---------------------------
3·25 



PSD5XX - Application Note 028 

Different 
Operating 
Modes 
(Cont.) 

Figure 13. Simulation of Event Counter Mode 

mc2tmrO 

cmdO 

imgOL 

cntrOL 

o Input Signals 

CounterfTimer-O event input signal: mc2tmrO 

Every rising edge transition on mc2tmrO is considered as an event occurrence. 

Prescaled PSD5XX input clock: TimecClock 

o Output Signals: None 

In this example each EVENT is counted by the Image Register (ImgOL). 

Figure 13 illustrates that at every rising edge transition on mc2tmrO, the count in the imgOL 
Register is updated. Register cntrOL serves as the event counter when theFreeze 
Command is active so the events are not lost during the freeze. 

NOTE: If the Store control bit (bit-6) in the CMDO Register is set to "1" i.e., Store control by 
"Software", then before the Freeze Command is issued a Software Store Command must 
be issued by writing into the Software Load/Store Register. In this mode cntrOL counts the 
incoming events. The Software Store Command updates the Image Register in this case, 
prior to the Freeze Command, with the correct numbers of the counted events. 

-3--2-6----------------------------~~~~-------------------------------



Different 
Operating 
Modes 
(Cont.) 

PS05XX - Application Note 028 

The Time Capture Mode 
up to three out of four CounterfTimers in the PSD5XX can be configured to operate 
in the Time Capture Mode. In this Mode a counter is continuously counting at the 
Timer Clock rate. At each transition of the trigger input signal (rising or falling edge), 
the counter value is transferred to the associated Image Register. 

Typical applications of Time capture Mode are: 

o Measuring Periods 

o Pulse widths 

o Frequencies 

o Phase differences of signals. 

To measure the time period of a signal as seen in Figure 14a, a single CounterfTimer 
can be used to capture the consecutive rising edges of the input signal. The difference 
in the value of these two captures is used to calculate the time period of the signal. 

In this application note example, the measuring of "pulse width" of an input signal is 
depicted. 

Figure 14a. Measuring Time Period Using Time-Capture 

I~ TIME PERIOD 

t 
CAPTURE 1 CAPTURE 2 

TIME (CAPTURE 2) - TIME (CAPTURE 1) = TIME PERIOD 

-----------------------------------~~~~-----------------------------------
3-27 



PSD5XX - Application Note 028 

Different 
Operating 
Modes 
(Cont.) . 

The Time Capture Mode (Cont.) 
To measure the pulse width of a signal as seen in figure 14b,the CounterfTimers 
have to capture both the rising (capture1) and the falling(capture2) edges of the signal. 
The difference in the value of these two captures is used to calculate the pulse width of the 
signal. Usually one CounterfTimer is configured to capture the falling edge of the signal 
from the input pin. Another CounterfTimer is used to capture the rising edge. The time 
distance between the two edges must be greater than one CounterfTimer input clock in 
order to be captured. 

Figure 15 depicts the control signals required for the time capture Mode of operation. 

The Counter counts up every Timer Clock cycle. Whenever a Low-to-High transition 
occurs on the selected event input (mc2tmr1 in this example) the Image Register is 
updated by the count value in the Counter. 

The microcontroller reads the image value using the Freeze/Freeze Acknowledge 
handshake protocol. The Freeze Command blocks the event input when set to 1. 

Figure 14b. Measuring Pulse Width Using Time-Capture 

,. PULSE WIDTH -, 

t t 
CAPTURE 1 CAPTURE 2 

TIME (CAPTURE 2) - TIME (CAPTURE 1) = TIME PERIOD 

-3-~-8----------------------------~~~~-------------------------------



l~ 
IIII~ 
IItIIQ! 

CIo) 

~ co 

START COUNTER (BIT 1 OF GLOBAL COMMAND REGISTER) 

SOFTWARE SELECT (BIT 2 OF CMD REGISTER) 

SOFTWARE FREEZE (FREEZE COMMAND REGISTER) 

PIN OR MACROCELL 
(SELECTED BY BIT 5 OF CMD REGISTER) 

SOFTWARE GATE BIT 
(BIT 6 OF CMD REGISTER) 

SOFTWARE STORE (SOFTWARE LOAD/STORE REGISTER) 

TIMER_CLOCK 

ENABLEIDISABLE 

STORE 
COUNTER 

FREEZE ACKNOWLEDGE 
(STATUS FLAGS REGISTER) 

TERMINAL COUNT (TC) 
TO INTERRUPT CONTROLLER 

"i il:S 51 
lIic::a-"': 
.::Q.~;' 

'I ~; 
S'::a 
CI5-

;!:! 

'= CiI .... 
!'I 
n a 
&' 
III 
==r 
S!. 
~ 
~ ;. 
~ ... 
~ 

i' , 
,--------- ..... i 

I 

I TERMINAL COUNT (TC) 
I TO PORTE 

----------~ 

... 
!; 
CIi 

I 
t 

;JI 
51 
~ 
I 

:... :a 
:;:: 
D 
::t 
8 
if 
8' 
~ 
CIj 



PSD5XX - Application Note 028 

Different 
Operating 
Modes 
{Cont.} 

The Time Capture Mode {Coni.} 

Time Capture Design Example of a Pulse Width Measurement: 
In this example, the input signal is named as inpuCpulse. This signal can be input to the 
CounterlTimers in two ways: 

1. Connected to the input pins PE3 and PE4 of CounterlTimer-O and CounterlTimer-1 
respectively. And capture the counters values at the rising and falling edges of 
inpuCpulse. 

or 
2. Connected to the input pin PE3 of CounterlTimer-O. And the input to CounterlTimer-1 

comes from the PPLD, defined by 

mc2tmr1 = inpuCpulse; (Refer to the .abl file) 

Thereby only one pin (PE3) is used as both CounterlTimers input. This application note 
uses the second method to input the inpuCpulse. This method saves pin PE4 for other 
purposes. 

The capturing of the leading and trailing edge values of counters can be done, by 
properly defining the input polarity on the pin PE3 (for CounterlTimer-O) and defining 
the input equation in the .abl file for mc2tmr1 (CounterlTimer-1) with proper polarity. 

In this example the leading edge of the input signal is captured by CounterlTimer-1 Image 
Register and the trailing edge is captured by CounterlTimer-O Image Register. 

o Clock Input to the CounterlTimer: 
In this application note, the default scale down factor(4) of the PSD5XX input clock 
has been used. 

i.e., PSD5XX input clock = 12 MHz 

Scale down factor = 4 (default) 
CounterlTimer input clock = 12/4 

= 3 MHz => 333ns period 

Therefore the input pulse width must be greater than 333 ns in order to be captured 
by the CounterlTimer. Note that at 3 MHz Timer Clock input the pulse width measurement 
will have a resolution of ± 333/2 ns. 

The program flow to set up the Time Capture Mode operation as described in this example 
is as follows: 

1. Define the Timer input clock frequency (see section on clock scaling). Here 12MHz is 
scaled down to 3MHz. 

2. Set up Command Registers for CTUO and CTU1. 

3. Initialize IMGO, CNTRO, IMG1, CNTR1 Registers to 00. 

4. The following equation is used to trigger the Time Capture on CounterlTimer-1 
(mc2tmr1). This equation is included in the design entry .abl file. 

mc2tmr1 = inpuCpulse; 

If the signal input_pulse satisfies the above equation, every rising edge on mc2tmr1 
causes a Time Capture in IMG1 for CounterlTimer-1. Every Falling edge on inpuCpulse pin 
causes a Time Capture in IMGO for CounterlTimer-O. 

5. Set up the Global Command Register Start Bit and start the operation of the CTUO 
and CTU1. 

6. To read the count of Time Capture updates, freeze the Image Registers (IMGO and 
IMG1) by writing 03 into Freeze Command Register. 

7. Wait for the Freeze Acknowledge bits to be set to 3 for CounterlTimer-O and 
CounterlTimer-1 and then read the IMGO and IMG1 Registers. 

-----------------------------------f==~g-----------------------------------
3·30 



Different 
Operating 
Modes 
(Cont.) 

PSD5XX - Application NotB 028 

The Time Capture Mode (Cont.) 

Procedure to set up CounterfTimer Registers for Time Capture Mode in this design 
example: 

CountBr/TImS,.O Rsglstsrs Inltlal/zatlDn 

o Write "BF"hex to Command Register 0 (CMDO) at offset from base address of 
CSIOP(Chip Select I/O Port). 

CMOO Register 

Bit-7 Bit-6 Bit-S Bit-4 Bit-3 Bit-2 

X 0 1 1 X 1 

Bit-O: Mode Select Bit, select Time Capture Mode for CTUO. 
Bit-1: DecremenVlncrement Bit: Increment mode. 
Bit-2: Select CounterfTimer Bit: Select CTUO. 
Bit-3: X Output polarity: No timer output, don't care. 
Bit-4: 1 Input Polarity: Active low. 

Bit-S: 1 Pin or Macrocell input: Pin input control. 
Bit-6: 0 Load/Store Bit: Store control from pin. 

Bit-1 

1 

Bit-7: X EN/DIS Bit: Don't care. Setting of bit-2 enables the CounterfTimer. 

IMGO and CNTRO Registers must be cleared to 00. 

CounterRimer-1 Registers Initialization: 

o Write "9F"hex to Command Register 1 (CMD1) at offset from base address of 
CSIOP(Chip Select I/O Port). 

CM01 Register 

Bit-7 Bit-6 Bit-S Bit-4 Bit-3 Bit-2 

X 0 X 1 X 1 

Bit-O: Mode Select Bit, select Time Capture Mode for CTU1. 
Bit-1: DecremenVlncrement Bit: Increment mode. 
Bit-2: Select CounterfTimer Bit: Select CTU1. 
Bit-3: X Output polarity: No timer output, don't care. 
Bit-4: X Input Polarity: Don't care. 

Bit-S: 0 Pin or Macrocell input: Macrocell input control. 
Bit-6: 0 Load/Store Bit: Store control from macrocell. 

Bit-1 

1 

Bit-7: X EN/DIS Bit: Don't care. Setting of bit-2 enables the CounterfTimer. 

IMG1 and CNTR1 Registers must be cleared to 00. 

Bit-O 

1 

Bit-O 

1 

-----------------------------------,ArJr~~-----------------------------------
~== 3-31 



PSD5XX - Application Note 028 

Different 
Operating 
Modes 
(Cont.) 

The Time Capture Mode (Cont.) 

After Command Registers 0 and 1 are initialized, other Registers (Global Command 
Register and Freeze Command Register) must now be initialized. 

o Now to start the Timers. The Global Command Register has to be initialized to 06(hex), 
i.e., the following bits are set. 

Global Command Register 

Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-O 

0 0 0 0 0 1 1 0 

Bit-O: 0 Scale Bit: The clock input to the Timers is divided by 1. This is the first clock 
pre-scaler stage (selecting between "divide by 8" or "divide by 1 "). 

Bit-1: Counter start bit: This bit turns on all the selected Timers. 
Bit-2: Global Mode bit: All Countermmers operate in Event Count or Time Capture 

Mode. 

Bit-3: 0 Watch Dog bit: Not Watchdog Mode (affects only Counterrrimer-2). 

The Countermmer is turned on after a write takes place on the Global Command Register. 
The Countermmer will keep on incrementing at every Timer Clock cycle and update the 
Image Register whenever an event has occurred. Follow these steps to read the Image 
Register: 

o The Image Registers must be "frozen" before they can be read. 

o Write "3" into the Freeze Command Register (Corresponds to Counterrrimers 0 and 1). 

Freeze Command Register 

Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-O 

0 0 0 0 0 0 1 

o This will freeze the Image Register updates by the counters. 

o Check the Freeze Acknowledge bit-O and bit-1 in the Status Register. 
A microcontroller can access the Image Register accurately only when the Freeze 
Acknowledge bit-O and bit-1 are set to "3". 

o After the completion of the Image Registers read operation, the microcontrolier 
lowers the freeze command bits which in turn, cause the Freeze Acknowledge 
signals to go to low. 

o The Freeze Command bit-O and bit-1 must be cleared by the microcontroller to do 
enable continuous updates of the Image Registers. 

1 

-3--3-2-----------------------------~~~~--------------------------------



Different 
Operating 
Modes 
(Cont.) 

Figure 16. Time Capture MDde Simulation 

tmUrez_ack 
cmdO 
cmdl 

I'SD5XX - Application Not. 021 

,I I : I ~-l Dl 'I 
I ,! , , 
=~ 

o Input Signals 

Input Pulse on pin for pulse width measurement: inpuCpulse 

PSD5XX input clock: Timer_Clock 

o Output Signals: None 

The Pulse Width Computation: 
Figure 16 illustrates that at the falling edge of the input signal on inpuCpulse (pin PE3) 
and the rising edge of the input signal on mc2tmr1, the present counts in the 
Countermmer-O and Counter/Timer-1 Registers are transferred to Image-O and Image-1 
Registers, Here the Image-O Register is updated to count OA and Image-1 Regfster to count 
08, Note when the Freeze Command is active high the Image Register updates 
are frozen. 

The pulse width of the InpuCpulse signal Is 

(Image-Q Register - Image-1 Register) = OA-08 = 02 
Here each Counter/Timer clo~k cycle = 333 ns. 
Therefore, the pulse width of the sample signal is: 

= 02 * Counter/Timer clock input period 
= 02 * 333ns 
= 666 ns 

-----------------------------~~~-----------------------------
3-33 



I'BIlSXX - AppIlClltJlllllltJte D2B 

Diff"lfInt 
Operating 
Modes 
(Cont.) 

Thll Watchdo, Mode 
Watchdog Timer is very useful in situations where the software program is repeating in 
an endless loop or the program jumps to an unexpected area. When this happens the 
Watchdog Timer usually generates a Reset or interrupt to the microcontroller to initialize 
the system. 

Only CounterlTimer-2 in the PSD5XX is capable of the Watchdog function. While 
CounterlTimer-2 operates in Watchdog Mode, the other three CounterlTimers in the 
PSD5XX can be configured to operate in different modes. Table 2 shows the possible 
mode combinations. 

Tablll 2. I'DSSlbl. Mode ComblnatloRS 

Global Modll Bit Mode Select Bit Modes 0' Modes 0' 
(Global Command (CMDO, CMDt, CMD2 Counter/Timers Counter/Tlmer-2 

Re,lster) CMD3 Re,lstllrs) 0, t and 3 

0 0 Waveform Waveform or 
Watchdog 

0 1 Pulse Pulse or Watchdog 

1 0 Event Counter Watchdog Only 

1 1 Time Capture Watchdog Only 

Special Features of the Watchdog CounterlTimer are: 

Q Once set in Watchdog Mode, CounterlTimer-2 cannot be reconfigured by software. 
It can get out of the Watchdog Mode only by resetting the PSD5XX. 

Q Terminal Count signal of a Watchdog results in a pulse with a width equal to the 
duration count value loaded Into the Image Register of the CounterlTimer-2. 

Q The active-high Watchdog pulse from the CounterlTimer-2 (wdog2pld) is routed 
as input to the ZPLD. The user can select any of the 1/0 pins of the GPLD as the 
Watchdog output and invert its active high level, if needed. 

Q During Watchdog Mode, CounterlTimer-2 counts down and generates a 
Watchdog pulse at the terminal count. To avoid the generation of a Watchdog pulse, 
CounterlTimer-2 has to be reloaded before the terminal count occurs. This can be 
done by writing "1" into bit-2 of the "Software LoadlStore Register" before the terminal 
count occurs. 

Figure 17 depicts the inputs and output of CounterlTimer-2 operating in Watchdog mode. 

rl,,-,if 
-3~-----------------------------==~1------------------------------



Diffe,ent 
Operating 
Modes 
(c.nt.) 

Figure 17. CTU Control Signals Fo, Watchdog Mode 

I'SD5XX - Applla"", """ IJ2B 

WATCHDOG 
GPLD 

OUTPUT -COUNTER OUTPUT OUTPUT 
(ACmIE HIGH) 

r!!!!-WDOG2PLD 
GPLD 

-
TERMINAL COUNT TO 

INTERRUPT CONTROLLER -----,----------
I 
I 
__ COUNT (TC) 

I TO PORT E ----------. 
SET WATCHDOG BIT 
(BIT 3 OF GLOBAL COMMAND REGISTER) EN/DIS .. 
(SELF LATCHING BIT) 

C 
0 I 
U M 
N A 

SOFTWARE LOAD T G 
E E 

(BIT 2 OF SOFTWARE LOAD/STORE REGISTER) LOAD R 
2 .. 2 

A 

.. nMEILCLOCK 

ThI Watchdog ModellBsign Exampl.: 
This example simulates the occurrence of the Watchdog condition and generation of a 
Watchdog output pulse. The procedure to inhibit the Watchdog occurrence has also been 
simulated in a later part of this example. 

The program flow to set up the Watchdog Mode operation as described in this example is 
as follows: 

1. Define Timer input clock frequency (see section on clock scaling). Here 12MHz is 
scaled down to 3 MHz. 

2. Ignore Command Register for CTU2 in Watchdog mode. 
3. Initialize CNTR2 Register and IMG2 Register to a required value. 
4. Write "1" into the "Counter Start Bit" and "Watchdog bit" of the Global Command 

Register simultaneously to start the Watchdog operation. 
5. To inhibit the occurrence of th(l Watchdog and generation of the Watchdog output 

pulse, write "1" into bit-2 of Software Load/Store Register before CounterlTimer-2 
under flows. 

------------------------~~,.------------------------'1j 3-35 



PSD5XX - Application Not. 028 

Different 
Operating 
Modes 
(Cont.) 

The Watchdog Mode (Cont.) 

Procedure to set up CounterlTimer Registers for Watchdog Mode in this design example: 

Counterflimer-2 Registers Initialization 

o Image-2 Register and CNTR2 are loaded with 02(hex), which is the pulse width of 
the Watchdog pulse wdog2pld. Normally this value is very large depending on the 
application, since software is not supposed to clear the Watchdog very often. 

After CNTR2 and IMG2 are initialized, other Registers (Global Command Register and 
Software Load/Store Register) must now be initialized. 

o To start the Timers, the Global Command Register has to be initialized to OA(hex), 
i.e., the following bits are set. 

Global Command Register 

Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-O 

0 0 0 0 1 X 1 0 

Bit-O: 0 Scale Bit: The clock input to the Timers is divided by 1. This is the first clock 
pre-scaler stage (selecting between "divide by 8" or "divide by 1"). 

Bit-1: Counter start bit: This bit turns on all the selected Timers. 

Bit-2: X Global Mode bit: Watchdog is available in both Global modes. 

Bit-3: 1 Watch Dog bit: Watchdog Mode (affects only CounterlTimer-2). 

The moment the Watchdog bit and Counter start bit in the Global Command Register are 
set to 1, the Watchdog counter starts counting down. To avoid the generation of the 
Watchdog output pulse, the software must write "1" to bit 2 of the Software Load/Store 
Register before the CounterlTimer-2 under flows. 

Software Load/Store Register 

Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-O 

0 0 0 0 0 1 0 0 

Once the CounterlTimer-2 is configured to operate in the Watchdog Mode, only a hardware 
reset can get it out of the Watchdog Mode. 

-----------------------------------rJr4r~-----------------------------------3-36 ==== 



Different 
Operating 
Modes 
(Clint.) 

"SD5XX - Appllcatilln NIt. D2B 

The Watchdog Mode (Clint.) 

Figure 18 shows the simulation result of the Watchdog Mode. The CounterfTimer software 
load bit was not written into after Watchdog Counter-2 decrements from value 2 through o. 
Therefore when Counter-2 under flowed, a Watchdog Pulse is generated. This pulse, 
wdog2pld, is inverted by the GPLD and is available on the output pin as "wdout". 

FlgUM1S. Simulation of Watchdog Mode 

cntr2L 

img2L 

wdog2pld 

o Input Signals: 

PSD5XX input clock: TimecClock 

o Outputs: 

Watchdog output from CounterfTimer-2: wdog2pld 
Watchdog output from GPLD as: wdout 

.iFiF#~ 
------------------------------~~~---------------------------3-~--7 



1'SIJ5XX - AppllClltilln IIot. OIB 

Blffefllnt 
Operating 
Modes 
(Clint.) 

Conclusion 

Ths Watchdo, Mods (Clmt.) 

Figure 19 shows the Watchdog occurrence is inhibited by writing "04" hex into Software 
Load/Store Register before COUNTER-2 under flows. There are four software loads: 
the second, third and fourth software loads are done before COUNTER-2 under flowed 
(count of 02 = 666ns) 

FI,u" '9. Simulation 01 Inhibition 01 Watchdo, Occu,,,ncs 

The tmcsofUd Register is the Software Load/Store Register. 
The first software load pulse initializes the Watchdog operation. 

PSD5XX offers a powerful set of four PLD macrocell controlled CounterlTimers. 

Included in this application note are some of the files generated for the Waveform Mode 
application: 

Appendix 1 •. abl file 
Abel file with Counter/Timer logic equations (Waveform mode). 

Appendix 2. .crp file 
PSD-Global Configuration1 report file (Waveform mode). 

Appendix 3. .stl file 
Stimulus file simulating Waveform Mode operation. 

Appendix 4 •. c file 
Initializations of PSD5XX Counter!Timer Registers (each of all 5 modes) 
based on 80C196 ·C·. 

Appendix 5. .asm file 
Initializations of PSD5XX Counter/Timer Registers (each of all 5 modes) 
based on 68HC11 assembly. 

Appendix 6. 4-PWM Timers 
This article depicts the realization of 4-PWM Timers on PSD5XX using PPLD. 

The .c and .asm initialization files related to PSD5XX operating in each of the five modes 
i.e., the Waveform mode, the Pulse mode, the Event Count mode, the Time Capture mode 
and the Watchdog mode are available on WSl's Bulletin Board. 

iF __ '1$ 
~3-~~'-------------------------------~~~----------------------------------



Appendix 1. 
.ASL File 

module wavfrm" 7/20/93 
" Full pathname - c:\psdsoft\simulate\wavfrm\wavfrm.abl 
title 'wavform mode'; 

"Input signals 

"Address lines, using reserved names. 

a15,a14,a13,a12,a11 ,a1 0,a9,a8,a1 ,aO pin; 

"Output signals 

PSD5XX - Application Not, D2B 

"The Output signal here has been declared in .abl itself, it can 
"also be declared in the configuration file as Waveform/Pulse o/p. 
"The user can declare it here or in the configuration menu. 

PWM_OUT pin 27; "Port A PAO has been aliased as PWM_OUT, 
"if selected in the configuration file instead 
"of in the .abl file, pin PAO's default name will be ' TimeroutO ' 

"Internal PSD5XX PLD output signals. 

csiop node; "More outputs using reserved names. 

"Definitions 

x = .x. ; "Don't care 
Address = [a17,a16,a15,a14,a13,a12,a11 ,a10,a9,a8,a7,X,X,X,X,a2,a1 ,aO]; 

equations 
csiop = (Address >= "hOeOOO) & (Address <= "hOeOFF) ; " 256 block 

END 

-----------------------------~~;----------------------------=="'="=== 3·39 



PSD5XX - Application Not. 028 

Appendix 2. 
Waveform 
Mode 
Configuration 

******************************************************************* 

W S I - PSDsoft Version 1.02B 
Output of PSD Configurations 

PROJECT: 
DEVICE: 

wavfrm 
PSD503B1 

DATE: 
TIME: 

BUS INTERFACE 

Data bus width 
Address/Data Mode 
ALE/AS signal 
Read/Write signals 

8-Bits 
Multiplexed 
Active High 
/WR, /RD 

08/13/1993 
10:17:15 

OTHER CONFIGURATIONS 

Timer/Counter 0 INPUT OFF 
Timer/Counter 0 OUTPUT ON 
Timer/Counter 1 INPUT OFF 
Timer/Counter 1 OUTPUT OFF 
Timer/Counter 2 WATCH DOG OFF 
Timer/Counter 2 INPUT OFF 
Timer/Counter 2 OUTPUT OFF 
Timer/Counter 3 INPUT OFF 
Timer/Counter 3 OUTPUT OFF 

Power Down Clock OFF 
Security Function OFF 
Interrupt Function OFF 

END OF REPORT FILE: wavfrm.crp 

-----------------------------------------~~~----------------------------------------3-40 ==== 



Appendix 3. 
• STL File 

PSD5XX - Application Note 028 

Irrhis is a stimulus file to simulate "Waveform" mode of operation of PSD5XX. 
/lCounterrrimers 0 and 1 are used in this simulation. The input clock to PSD is 12 MHz . 
The /lduty cycle of the output waveform (PWM_OUT) is 33% 
/I 
/I User defined parameters 
/I 

parameter load_store = 'hCOA5, dlcy='hCOA6, cmdO = 'hCOAO, cmd1 = 'hCOA 1; 
parameter imgOJobyte = 'hC090, imgO_hibyte = 'hC091, img1_lobyte = 'hC092; 
parameter img1_hibyte = 'hC093, cntro_lobyte='hC098, cntro_hibyte = 'hC099; 
parameter cntr1Jobyte='hC09A, cntr1_hibyte = 'hC09B, globaLcommand = 'hCOA8; 
parameter speciaUunc = 'hC008; 

/lUser-Defined tasks 

task write (addcbus, data_in); 

input [15:01 addcbus; 
input [7:01 datajn; 

begin 

#20 ale = 1; 
#20 adio = addcbus; 
#20 ale=O; 

#20 adio = data_in; 
#40 wr= 0; 
#100 wr= 1; 

end 

endtask 

task read (addcbus); 

input [15:01 addcbus; 

begin 

#20 ale = 1; 
#20 adio = addr_bus; 
#20 ale = 0; 

#20 adio = Z16; 
#40 rd = 0; 
#100 rd = 1; 

end 

endtask 

/lEnd user-defined tasks 

___________________________________ ' •• aFE 
~4f~·--------------------------------3-~--1 



P$lJ5XX - Application Not. 02B 

Appendix 3. 
.STL File 
(Cont.) 

initial 
begin 

clkin = 0; reset = 0; csi = 0; 
rd = 1; wr = 1; ale = 0; 
adio = 'hOOOO; PWM_OUT = Z; 

#560 reset = 1; 

/I CSIOP selection 

read('hC002); 

IICounter-O Low Byte data initialized to 0 

write(cntrOJobyte, 00); 

/lend of writing into CounterO Low-byte reg 

/lCounter-O High Byte data initialized to 0 

write(cntrO_hibyte, 00); 

/lend of writing into CounterO High Byte reg 

/lCounter-1 Low Byte data initialized to 0 

write(cntr1_lobyte, 00); 

/lend of writing into CounterO Low Byte reg 

/lCounter-1 High Byte data initialized to 0 

write(cntr1_hibyte, 00); 

/lend of writing into CounterO High Byte reg 

l!Writing DLCY data 

write(dlcy, 00); 

/lend of writing into Dlcy reg 

iF:: I!'..II$ 
-3-~-2--------------------------------YF~5rjr-----------------------------------



Appendix 3. 
.STL File 
(Cont.) 

PSD5XX - AppllcatlDn NDte 028 

/!Writing CMD-O data 

write(cmdO, 'hD4); 

1* 
Write "D4"hex to Command Register-O (CMDO) at offset from base address of CSIOP(Chip 
Select I/O Port). 

Bit-? Bit-6 Bit-S Bit-4 Bit-3 Bit-2 Bit-1 Bit-O 

1 1 X X 0 1 0 0 

CMDO Register 

• bit·O: 0 Mode Select Bit, select Waveform Mode for CTUO. 
• bit·1: 0 Decrement/Increment Bit: Select decrement (CTUO counts down from 2 to o. 

At 0, TC triggers the loading and operation of the CTU1). 
• bit·2: 1 Select CounterlTimer Bit: Select CTUO. 
• bit·3: 0 Output polarity: Select output to be active low (Toff time). 
• bit·4: X Input Polarity: No pin input in this mode, don't care. 
• bit·5: X Pin or Macrocell input: No pin or macrocell input, don't care. 
• bit·6: 1 Load/Store Bit: No pin or macroceilioad/store. 
• bit·7: 1 EN/DIS Bit: Enable continuous counting. 

*/ 

/lend of writing into CMDO reg 

/!Writing CMD·1 data 

write(cmd1, 'hDC); 

/* 

Write "CC"hex to Command Register 1 (CMD1). 

Bit-? Bit-6 Bit-S Bit-4 Bit-3 Bit-2 Bit-1 Bit-O 

1 1 X X 1 1 0 0 

CMD1 Register 

• bit·O: 0 Mode Select Bit, select Waveform Mode for CTU1 .. 
• bit·1: 0 Decrement/Increment Bit: Select decrement (CTU1 counts down from 4 to O. 

At 0, TC triggers the loading and operation of the CTUO). 
• bit·2: 1 Select CounterlTimer Bit: Select CTU1. 
• bit·3: 1 Output polarity: Select output to be active on (Ton time). 
• bit·4: X Input Polarity: No pin input in this mode, don't care. 
• bit·5: X Pin or Macrocell input: No pin or macrocell input, don't care. 
• bit·6: 1 Load/Store Bit: No pin or macroceilioad/store. 
• bit·7: 1 EN/DIS Bit: Enable continuous counting. 

*/ 

/lend of writing into CMD1 reg 

-----------------------------------~Jr~~--------------------------------3-~--



I'SD5XX - Application Note 028 

Appendix 3. 
.ST! File 
(Cont.) 

IIIMG-O high byte data written to 

write(imgO_hibyte, 00); 

/lend of writing into IMGO high byte reg 

/lIMG-O data written to Low Byte 

write(imgO_lobyte, 04); 

/lend of writing into IMGO reg 

/lIMG-1 high byte data written to 

write(img1_hibyte, 00); 

/lend of writing into IMG1 high byte reg 

/lIMG-1 data written to Low Byte 
/lSetting up address C092h 

write(imgUobyte, 02); 

/lend of writing into IMG1 reg low byte 

/lDeclare port A as special function port, so that TimerO olp is on PAO 

l!Write Data of 01 so that PAO has timer-O olp available on its pin 

write(speciaUunc, 01); 

/lend of writing into special function reg 

~~-------------------------------~~~-----------------------------------3-44 ==== 



Appendix 3. 
. SrL File 
(Cont.) 

PS05XX - Application Note 028 

IlWaveform output is first initialized by setting its two corresponding 
Iisoftware Load/Store bits after loading the Image Registers . 

IlWriting into software load/store bi'-O and bit_1 for cntcO and cntr_1 

write(load_store, 03); 

IIStart CounterfTimer-O and CounterfTimer-1 to produce waveform 

IIGlobal Reg data written to 

write(globaLcommand, 02); 

1* 

Bit-7 Bit-6 Bit-5 

0 0 0 

Global Command Register 

Bit-4 Bit-3 Bit-2 

0 0 0 

Bit-1 Bit-O 

1 0 

• bit·O: 0 Scale Bit: The clock input to the Timers js divided by 1. This is the first clock 
pre-scaler stage (selecting between "divide by 8" or "divide by 1 ") . 

• bit·1: 1 Counter start bit: This bit turns on all the selected Timers. 
• bit·2: 0 Global Mode bit: All Counter/Timers operate in Waveform or Pulse Mode. 
• bit·3: 0 Watch Dog bit: Not Watchdog Mode (affects only Counter/Timer 2). 
*1 

Ilend of writing into Global Reg 

Ilread data on Load/Store reg, it should be FO 

read(load_store); 

end 

always 
#42 clkin = -elkin; 1112 Mhz PSD5xx input clock 

-----------------------------------~~~~-----------------------------------
3·45 



PSD5XX - Application Note 028 

Appendix 4. 
.eFile 

/************************************************************************************************* 
The following C program illustrates the initialization procedure to operate the PSD5XX 
CounterfTimers interfaced with Intel's 80C196. 

************************************************************************************************* / 

# define CSIOP Ox3000 I*Chip select & 1/0 offset base address *1 

I*Global declarations *1 
int *CNTRO, *CNTR1, *CNTR2, *CNTR3 ; 
int *IMGO, *IMG1, *IMG2 *IMG3 ; 
char *dlcy_reg, *CMDO, *CMD1, *CMD2, ·PORTA, *GLOB, * FREEZE_CMD ; 
char *STATUS_FLAGS, *SOFTWARE_LD_ST ; 

mainO 
{ 
1* Initialization of PSD5XX CounterfTimers *1 

CNTRO = (int *) (CSIOP + Ox98); 
*CNTRO= 00; 

CNTR1 = (int *)(CSIOP + Ox9a); 
*CNTR1 = 00; 

CNTR2 = (int *) (CSIOP + Ox9c); 
*CNTR2 =00; 

CNTR3 = (int *)(CSIOP + Oxge); 
*CNTR3 = 00; 

IMGO = (int *) (CSIOP + Ox90); 
*IMGO = 00; 

IMG1 = (int *)(CSIOP + Ox92); 
*IMG1 = 00; 

IMG2 = (int *)(CSIOP + Ox94); 
*IMG2 = 00; 

IMG3 = (int *)(CSIOP + OX96); 
*IMG3= 00; 

I*CNTRO offset from CSIOP *1 
I*CNTRO initialized to 0 *1 

I*CNTR1 offset from CSIOP *1 
I*CNTR1 initialized to 0 *1 

I*CNTR2 offset from CSIOP *1 
I*CNTR2 initialized to 0 *1 

I*CNTR3 offset from CSIOP *1 
I*CNTR3 initialized to 0 *1 

I*IMGO offset from CSIOP *1 
I*IMGO initialized to 0 *1 

1*IMG1 offset from CSIOP *1 
1*IMG1 initialized to 0 *1 

1*IMG2 offset from CSIOP *1 
1*IMG2 initialized to 0 *1 

1*IMG3 offset from CSIOP *1 
1*IMG3 initialized to 0 *1 

I*Scaling of Clock input, common to all CounterfTimers *1 

dlcy_reg = (char *)(CSIOP + Oxa6); 
*dlcy_reg = 00; 

I*dlcy reg offset from CSIOP */ 
I*Also Scale-bit is 0*1 
I*Refer to Timer Clock Initialization in the 

App note for more details *1 

1* Now anyone of the following subroutines pulse(), waveform(), evenCcount(), 
time_captureO and watchdogO can be called *1 
} 

/********************************************************************************************** / 

-3--4-6----------------------------------~~~-------------------------------------



Appendix 4. 
.CFile 
(Clint.) 

I'SIJ5XX - Appilcatlllll ""tII D2B 

waveformO 
{ 

/*Loading of Command Register-O (CMDO) */ 

CMDO = (char *)(CSIOP + OxAO);/*CMDO register offset from CSIOP*/ 
*CMDO = Oxd4; 

/* Write "D4"hex to Command Register-O (CMDO) at offset from base address of CSIOP 
(Chip Select I/O Port). 

Blt-? Blt-6 Bit-S Blt-4 Blt-3 Blt-2 Blt-1 Blt-Q 

1 1 X X 0 1 0 0 

CMDO Register 

• bit-G: 0 Mode Select Bit, select Waveform Mode for CTUO. 
• bit-1: 0 Decrement/Increment Bit: Select decrement (CTUO counts down from 2 to O. 

At 0, TC triggers the loading and operation of the CTU1). 
• bit-2: 1 Select Countermmer Bit: Select CTUO. 
• bit-3: 0 Output polarity: Select output to be active low (Toff time). 
• bit-4: X Input Polarity: No pin input in this mode, don't care. 
• bit-5: X Pin or Macrocell input: No pin or macrocell input, don't care. 
• bit-6: 1 Load/Store Bit: No pin or macrocell load/store. 
• bit-7: 1 EN/DIS Bit: Enable continuous counting. 

*/ 

/*Loading of Command Register 1 (CMD1) */ 

CMD1 = (char *)(CSIOP + OxA1);/*CMD1 register offset from CSIOP*/ 
*CMD1 = OxCC; 

/* 

Write ·CC"hex to Command Register 1 (CMD1). 

Bit-? Bit-6 Bit-S Bit-4 Bit-3 Bit-2 

1 1 X X 1 1 

CMD1 Register 

• bit-G: 0 Mode Select Bit, select Waveform Mode for CTU1. 

Bit-1 Bit-O 

0 0 

• bit-1: 0 Decrement/Increment Bit: Select decrement (CTU1 counts down from 4 to O. 
At 0, TC triggers the loading and operation of the CTUO). 

• bit-2: 1 Select Countermmer Bit: Select CTU1. 
• blt-3: 1 Output polarity: Select output to be active on (Ton time). 
• blt-4: X Input Polarity: No pin input in this mode, don't care. 
• bit-5: X Pin or Macrocell input: No pin or macrocell input, don't care. 
• bit-6: 1 Load/Store Bit: No pin or macrocell load/store. 
• blt-7: 1 ENIDIS Bit: Enable continuous counting. 

*/ 

------------------------~~/----------------------3-~-7 



PSD5XX - Application Not. 028 

Appendix 4. 
.C File 
(Cont.) 

/******* Image Registers Loading *******/ 

IMGO = (int *)(CSIOP + Ox90); 
*IMGO = Ox0004; 

/* Load the CounterlTimer_O with necessary */ 
/* off-time needed according to the duty cycle*/ 

IMG1 = (int *)(CSIOP + Ox92); 
*IMG1 = Ox0002; 

/* Load the CounterlTimer_1 with necessary */ 
/* on-time needed according to the duty cyc\e*/ 

/*Configure portA output pin in Special Function Out */ 

PORTA = (char *)(CSIOP + OX08); 
*PORTA = Ox0001; 

/* Get Special Function Register of PORT A */ 
/* Activate pin PAO as PWM_OUT. 
Timer-O and Timer-1 are internally connected */ 

/*A waveform output is first initialized by setting its two corresponding software Load/Store 
bits after loading the image registers * / 

SOFTWARE_LD_ST =(char *)(CSIOP + OxA5); 
*SOFTWARE_LD_ST = Ox0003; 

/*** Global register configuration ***********/ 
GLOB = (char *) (CSIOP + Oxa8); 
*GLOB = Ox02; 

/* 

Bit-7 Bit-6 Bit-5 Bit-4 

0 0 0 0 

Global Command Register 

Bit-3 Bit-2 Bit-1 Bit-O 

0 0 1 0 

• bit-O: 0 Scale Bit: The clock input to the Timers is divided by 1. This is the first clock 
pre-scaler stage (selecting between "divide by 8" or "divide by 1 "). 

• bit-1: 1 Counter start bit: This bit tums on all the selected Timers. 
• bit-2: 0 Global Mode bit: All CounterlTimers operate in Waveform or Pulse Mode . 
• bit-3: 0 Watch Dog bit: Not Watchdog Mode (affects only CounterlTimer 2). 

*/ 

/*When the Global Command Register is written to the Counter/Timers start decrementing 
and at underflow of each timer corresponding waveforms can be noticed on port A at 
PWM_OUT .*/ 

printf("waveform program"); 
} 
/****************************************************/ 

-3-4-8----------------------------------~~~-------------------------------------



Appendix 4. 
.C File 
(Cont.) 

PS05XX - Application Note 028 

pulseO 
{ 

I*Loading of CounterfTimer-O i.e Command Register 0 (CMDO) *1 

CMDO = (char *)(CSIOP + OxaO);I*CMDO register offset from CSIOP *1 
*CMDO = Ox9D; 
1* 

Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 

1 0 0 X 1 1 

CMDO Register 

• bit-O: 1 Mode Select Bit, select Pulse Mode for CTUO. 

Bit-1 Bit-O 

0 1 

• bit-1: 0 Decrement/Increment Bit: Select decrement (CTUO counts down from 3 to 0). 
• bit-2: 1 Select CounterfTimer Bit: Select CTUO. 
• bit-3: 1 Output polarity: Select output pulse to be active high. 
• bit-4: X Input Polarity: No pin input in this mode, don't care. 
• bit-5: 0 Pin or Macroceli input: Macroceli input control. 
• bit-6: 0 LoadlStore Bit: Enable Load control by macroceli output. 
• bit-7: 1 ENIDIS Bit: Enable continuous counting. 

*1 

1***** Image Register Loading ******* I 
1* Load the CounterfTimer_O with necessary count i.e Pulsewidth needed *1 

IMGO = (int *)(CSIOP + Ox90); 
*IMGO = Ox0003; 

I*Configure portA output as Special Function Out so that TimerO olp is on PAO as 
pulseO_out * I 

PORTA = (char *)(CSIOP + Ox08); 1* Get Special Function Register of PORT A *1 
* PORTA = Ox0001; 1* Activate pin PAO as Timer-O output* I 

--------------------------------~~~~--------------------------------
3-49 



PSD5XX - Application Note 028 

Appendix 4. 
.eFi/e 
(Cont.) 

/*** Global register configuration ***********/ 

GLOB = (char *)(CSIOP + Oxa8); 
*GLOB = Ox02; 
/* 

Bit-7 Bit-6 Bit-5 

0 0 0 

Global Command Register 

Bit-4 

0 

Bit-3 Bit-2 Bit-1 Bit-O 

0 0 1 0 

• bit-O: 0 Scale Bit: The clock input to the Timers is divided by 1. This is the first clock 
pre-scaler stage (selecting between "divide by 8" or "divide by 1"). 

• bit-1: 1 Counter start bit: This bit turns on all the selected Timers . 
• bit-2: 0 Global Mode bit: All Counter/Timers operate in Waveform or Pulse Mode. 
• bit-3: 0 Watch Dog bit: Not Watchdog Mode (affects only Counter/Timer 2). 
*/ 

/*Now, if the conditions setup in PPLD for mc2tmrO are satisfied, a pulse of pulsewidth = 03 
can be noticed on port A PAO (pulseO_out) until CounterlTimer-O underflows. * / 

printf("pulsewidth program"); 
} 

/****************************************************** / 

-------------------------------------r-=~~-------------------------------------3-50 ==== 



Appendix 4. 
.CFile 
(Cont.) 

PSD5XX - Application Not. 028 

evenccount() 
{ 
/*Loading of CounterrTimer-O i.e Command Register 0 (CMDO) */ 

CMDO = (char *)(CSIOP + OxaO);/*CMDO register offset from CSIOP*/ 
*CMDO = Ox1 E; 
/* 

Loading of Command Register 0 (CMDO) at offset AO(hex) from CSIOP'. 

Bit-7 Bit-6 Bit-S Bit-4 Bit-3 Bit-2 

0 0 0 X X 1 

CMDO Register 

• bit-O: 0 Mode Select Bit, select Event Count Mode for CTUO. 
• bit-1: 1 Decrement/Increment Bit: Increment after every event. 
• bit-2: 1 Select CounterrTimer Bit: Select CTUO. 
• bit-3: X Output polarity: No timer output, don't care. 
• bit-4: X Input Polarity: No pin input in this mode, don't care. 
• bit-5: 0 Pin or Macrocell input: Macrocell input control. 
• bit-6: 0 Load/Store Bit: Store control from macrocell. 
• bit-7: 0 EN/DIS Bit: Enable or disable by macrocell. 

*/ 

/***** Image Register Loading *******/ 
/* Initialize IMGO at 0000 */ 

IMGO = (int *)(CSIOP + Ox90); 
*IMGO = OxOOOO; 

/*** Global register configuration *********** / 

GLOB = (char *)(CSIOP + Oxa8); 
*GLOB = Ox06; 
/* 

Bit-7 Bit-6 Bit-S 

0 0 0 

Global Command Register 

Bit-4 

0 

Bit-3 

0 

Bit-2 

1 

Bit-1 Bit-O 

1 0 

Bit-1 Bit-O 

1 0 

• bit-O: 0 Scale Bit: The clock input to the Timers is divided by 1. This is the first clock 
pre-scaler stage (selecting between "divide by 8" or "divide by 1 "). 

• bit-1: 1 Counter start bit: This bit turns on all the selected Timers. 
• bit-2: 1 Global Mode bit: All CounterlTimers operate in Event Count or 

Time Capture Mode. 
• bit-3: 0 Watch Dog bit: Not Watchdog Mode (affects only CounterlTimer 2). 
*/ 

'CSIOP is Chip Select of the InpuVOutput Port. 

-------------------------------------~~~-------------------------------------==== 3-51 



PSD5XX - Application Nots 028 

Appendix 4. 
.C File 
{Cont.} 

I*Now, if the conditions setup in PPLD for mc2tmrO are satisfied as specified in the Abel 
software, at every transition on mc2tmrO Counter-O increments its count * I 

I * Freeze Command Register* I 
1* If the Event count value in the counter needs to be read, the count updates to the image 
register have to be frozen * I 

I * To Freeze updates to IMGO Register, set bit·O of Freeze Command Register to "1" * I 
FREEZE_CMD = (char *)(CSIOP + Oxa4); 
* FREEZE_CMD = Ox01; 

1* Freeze acknowledge Register*1 
I*Wait for the freeze acknowledge bit to be set and then proceed to read the Event count 
value stored in the image register*1 

STATUS_FLAGS = (char *)(CSIOP + Oxa9); 
while (((*STATUS_FLAGS) & Ox01) == Ox01); 
printf("lmage_O register = %x", (* IMGO)); 

1* FREEZE ACKNOWLEDGE BIT 0 * I 

I*The FREEZE CMD bit 0 of CounterlTimerO must be cleared to 0 and set back to 1, if 
another IMGO Register reading needs to be done'l 

FREEZE_CMD = (char *)(CSIOP + Oxa4); 
* FREEZE_CMD = OxOO; 

printf("Event Count program"); 
} 
/***************************************************** I 

-3--S-2--------------------------------~~~-----------------------------------



Appendix 4. 
.C File 
{Cont.} 

PS05XX - Application Nots 028 

time_capture() 
{ 
/*Loading of CounterlTimer 0 i.e Command Register 0 (CMDO) */ 

CMDO = (char *)(CSIOP + OxaO);/*CMDO register offset from CSIOP*/ 
*CMDO = OxBF; 
/* 

Loading of Command Register-O (CMDO) at offset AO(hex) from 2CSIOP. 

Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 

X 0 1 1 X 1 

CMDO Register 

o bit-O: 1 Mode Select Bit, select Time Capture Mode for CTUO. 
o bit-1: X Decrement/Increment Bit: Increment mode. 
o bit-2: 1 Select CounterlTimer Bit: Select CTUO. 
o bit-3: X Output polarity: No timer output, don't care. 
o bit-4: 1 Input Polarity: Active low. 
o bit-5: 1 Pin or Macrocell input: Pin input control. 
o bit-6: 0 Load/Store Bit: Store control from pin. 
o bit-7: X EN/DIS Bit: Don't care, setting of bit-2 enables the Counter. 

*/ 

/***** Image Register Clearing *******/ 

IMGO = (int *)(CSIOP + Ox90); 
* IMGO = OxOOOO; 

/*Loading of CounterlTimer-1 i.e Command Register 1 (CMD1) */ 

CMD1 = (char *)(CSIOP + Oxa1);/*CMD1 register offset from CSIOP*/ 
*CMD1 = Ox9f; 
/* 

Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 

X 0 0 1 X 1 

CMD1 Register 

o bit-O: 1 Mode Select Bit, select Time Capture Mode for CTUO. 
o bit-1: 1 Decrement/Increment Bit: Increment mode. 
o bit-2: 1 Select CounterlTimer Bit: Select CTUO. 
o bit-3: X Output polarity: No timer output, don't care. 
o bit-4: 1 Input Polarity: Active low. 
o bit-5: 0 Pin or Macrocell input: Macrocell input control. 
o bit-6: 0 Load/Store Bit: Store control from pin. 
o bit-7: X EN/DIS Bit: Don't care, setting of bit-2 enables the Counter. 

*/ 

Bit-1 Bit-O 

1 1 

Bit-1 Bit-O 

1 1 

-----------------------------------~jfF~-----------------------------------
==== 3-53 



I'IIIJ5XX - App"alllll .",. _ 

Appendix 4. 
.CFlle 
{CIIIt" 

1***** Image Register Clearing *******1 

IMG1 = (int *)(CSIOP + ox92); 
*IMG1 = OxOOOO; 

/*** Global register configuration ***********1 

GLOB = (char *)(CSIOP + Oxa8); 
*GLOB = Ox06; 
1* 

Bit-7 Bit-6 Bit-5 

0 0 0 

Global Command Register 

Bit-4 

0 

Bit-3 Bit-2 Bit-1 Bit-O 

0 1 1 0 

• bit-o: 0 Scale Bit: The clock input to the Timers is divided by 1. This is the first clock 
pre-scaler stage (selecting between "divide by 8" or "divide by 1"). 

• blt·1: 1 Counter start bit: This bit turns on all the selected Timers. 
• blt·2: 1 Global Mode bit: All CounterlTimers operate in Event Count or 

Time Capture Mode. 
• bit-3: 0 Watch Dog bit: Not Watchdog Mode (affects only CounterlTimer 2). 

*1 

I*Now, if the conditions setup in PPLD for mc2tmr1 are satisfied as specified in the Abel 
software, at every rising edge transition on input pin PE3 and mc2tmr1, Counter-O and 
Counter-1 transfer their count values into the image register-O and image register-1 *1 

I*Freeze Command Register*1 
1*lf Time Capture value in the Image register need to be read, the count updates to the 
image register have to be frozen *1 

1* To freeze updates to IMGO, set bit-O of Freeze Command Register to "1" */ 

FREEZE_CMD = (char *)(CSIOP + Oxa4); 
*FREEZE_CMD = OX01; 1* A high going signal of write freezes the image updates *1 

I*Freeze acknowledge Register*1 
I*Wait for the freeze acknowledge bit to be set and then proceed to read the Time Capture 
value stored in the image register*1 

STATUS_FLAGS = (char *)(CSIOP + Oxa9); 

-a~-----------------------~Jr;------------------------



Appendix 4. 
.CFlIs 
(Cont.) 

'BlJ5XX - AppllatllHl "",. _ 

1 * Microcontroller loops around the Freeze Acknowledge bit 0: if it's set to 1, then it 
proceeds to read the image-O register for time-capture value *1 

while«(*STATUS_FLAGS) & Ox01) == OX01); 
printf("lmage_reg_O=%x\n", (* IMGO»; 

I*The FREEZE CMD bit 0 of CounterfTimer-O must be cleared to 0 and set back to 1 if 
another IMGO Register reading needs to be done * 1 

FREEZE_CMD = (char *)(CSIOP + Oxa4); 
*FREEZE_CMD = OxOO; 

I*Now to read the IMG1 Register * 1 
*FREEZE_CMD = OX02; I*A high going signal of write freezes the image updates *1 

I*Freeze acknowledge Register*1 
I*Wait for the freeze acknowledge bit to be set and then proceed to read the Time Capture 
value stored in the image register *1 

STATUS_FLAGS = (char *)(CSIOP + Oxa9); 

1* Microcontroller loops around the Freeze Acknowledge bit 1: if it's set to 1, then it 
proceeds to read the image-1 register for time-capture value *1 

while «(*STATUS_FLAGS) & Ox02) == OX02); 
printf("lmage_re9-1%x =\n", (*IMG1»; 

I*The FREEZE CMD bit 10f CounterfTimer1 must be cleared to 0 and set back to 1 if 
another IMG1 Register reading needs to be done *1 

FREEZE_CMD = (char *)(CSIOP + Oxa4); 
*FREEZE_CMD = OxOO; 

I*From captured values in image registers pulsewidth can be computed.*1 
printf("Time_capture program"); 
} 

r***********************··********··************· I 

-------------------------~~i------------------------~~~ 



PSD5XX - Application Note 028 

Appendix 4. 
.C File 
(Cont.) 

watchdogO 
{ 

1*lgnore CounterlTimer-2 Command Register 2 (CMD2) *1 

1***** Image Register Loading *******1 

IMG2 = (int *)(CSIOP + Ox94); 
*IMG2 = Ox0002; 

I*Writing into SOFTWARE LOAD reg to load Countec2 *1 

SOFTWARE_LD_ST = (char *)(CSIOP + Oxa5); 
SOFTWARE_LD_ST = Ox04; 

/*** Global register configuration ***********/ 

GLOB = (char *) (CSIOP + Oxa8); 
*GLOB = OXOa; 
1* 

Bit-7 Bit-6 Bit-5 

0 0 0 

Global Command Register 

Bit-4 

0 

Bit-3 

1 

Bit-2 Bit-1 Bit-O 

X 1 0 

• bit-O: 0 Scale Bit: The clock input to the Timers is divided by 1. This is the first clock 
pre-scaler stage (selecting between "divide by 8" or "divide by 1 "). 

• bit-1: 1 Counter start bit: This bit turns on all the selected Timers. 
• bit-2: X Global Mode bit: Watchdog is available in both Global modes. 
• bit-3: 1 Watch Dog bit: Watchdog Mode (affects only CounterlTimer-2). 

*1 

I*As soon as the WatchDog bit in the Global Command Register is set to one, 
CounterlTimer-2 starts decrementing. If a software load command is not executed before 
Counter-2 underflows, watchdog condition occurs *1 

printf("watchdog program"); 

} 

/** ••• ******************************************** / 

---_IE 
~3-~~6--------------------------------~"~-----------------------------------



Appendix 5. 
. ASMFile 

PSD5XX - Application Nots 028 

*This is the common initialization of WSI's PSD5XX timers 
*interfaced with Motorola's 68HC11, using 68HC11 Assembly . 

*MemoryMap 
* 

EPROM(1) aOOO ffff (Program PSD5XX) 
* RAM 4000 4fft (RAM PSD5XX) 
* I/O 3000 3fff (CSIOP PSD5XX) 
* EPROM(2) 5000 6fff (Data PSD5XX) 
* RAM 1000 10ff (68HC11) 
* 1/0& REG 0000 003f (68HC11) 

org $aOOO Program Memory 

init equ $103d RAM & I/O mapping reg (68HC11) 
csiop equ $3000 chip select i/o port addr (PSD5XX) 
stack equ $10ff stack area 
stor equ $1002 basic RAM storage area 

****** Begin main program *********** 

start sei Set IRa mask 
Idaa #010h set RAM at 1000 
staa init and set registers at 103d 

nop slight delay to allow registers setup 
Idaa #Oe3h setup option reg.-ADPU = 1 ,CSEW = 1 ,IROE = 1 

Ids #stack setup stack 

******* Initialize PSD5XX COUNTERITIMER Counter and Image Registers********** 

Idx #0 
stx csiop+98h clear counter/timer 0 CNTRO(low byte) 
stx csiop+99h clear counter/timer 0 CNTRO(high byte) 
stx csiop+9ah clear counter/timer 1 CNTR1 (low byte) 
stx csiop+9bh clear counter/timer 1 CNTR1 (high byte) 
stx csiop+9ch clear counter/timer 2 CNTR2(low byte) 
stx csiop+9dh clear counter/timer 2 CNTR2(high byte) 
stx csiop+geh clear counter/timer 3 CNTR3(low byte) 
stx csiop+9fh clear counter/timer 3 CNTR3(high byte) 

stx csiop+90h clear counter/timer 0 IMGO(low byte) 
stx cSiop+91h clear counter/timer 0 IMGO(high byte) 
stx csiop+92h clear counter/timer 1 IMG1 (low byte) 
stx csiop+93h clear counter/timer 1 IMG1 (high byte) 
stx csiop+94h clear counter/timer 2 IMG2(low byte) 
stx cSiop+95h clear counter/timer 2 IMG2(high byte) 
stx csiop+96h clear counter/timer 3 IMG3(low byte) 
stx csiop+97h clear counter/timer 3 IMG3(high byte) 

*******Scaling of clock input, common to all counter/timers**** 

Idx 
stx 

#OOOOh 
cSiop+$a6 dlcy = 0 (delay cycle reg) 

Regarding scale-bit, it'll be set in global reg 

**********END OF COMMON INITIALIZATION *************** 

----------------------------------~~Ar---------------------------------3-57 

--------~--~ --~~~ --~----- ~~~ 



I'SD5XX - Application Not. 028 

Appendix 5. 
.ASMFile 
(Cont.) 

*BASED ON THE MODE OF OPERATION THE FOLLOWING ROUTINES CAN BE USED* 

*This is the implementation of ·WAVEFORM MODE" of operation of WSI's PSD5XX 
*interfaced with Motorola's 68HC11 

*******Counter/Timer 0 initialization (Command Reg 0 i.e. CMDO) 

Idx #OOd4h 
stx cSiop+$aO 

* 
* 
* 
* 
* 
* 
* 
* 

Waveform mode 
Decrement mode 
select counterltimer 
output pulse active low 
input polarity on input pin (doesn't matter here) 
input control not from PPLD or PIN, don't care 
load/store by software 
enable continuous counting 

*******Counterltimer 1 initialization (Command Reg 1 i.e. CMD1) 

Idx #OOcch 
stx cSiop+$a1 

* 
* 
* 
* 
* 
* 
* 
* 

Waveform mode 
Decrement mode 
select counterltimer 
output pulse active high 
input polarity on input pin (doesn't matter here) 
input control not from PPLD or PIN, don't care 
load/store by software 
enable continuous counting 

******Image reg (IMGO) loading************* 

Idx 
stx 
Idx 

#OO04h 
csiop+90h 
#OOOOh 

stx cSiop+91 h 

load counterltimerO image reg with necessary 
count i.e. pulse width needed (off time) 

****** image reg(IMG1) loading************* 

Idx 
stx 
Idx 
stx 

#OO02h 
csiop+92h 
#OOOOh 
csiop+93h 

load counterltimer1 image reg with necessary 
count i.e. pulse width needed (on time) 

~3~.58~------------------------------~Jr~Ar---------------------------------



Appendix 5. 
.ASMFile 
(Clint.) 

PSD5XX - Appllcatilln Nllte 028 

** A waveform output is first initialized by setting its two corresponding** 
**software load/store bits after loading the image registers *** 

Idx #0003h 
stx cSiop+$a5 

**Configure port A output as special function so that waveform output is available at PAO** 

Idx 
stx 

#0001h 
cSiop+08h 

Activate pin PAO as waveform output 
special function reg of port A 

******* global register configuration ********* 

Idx #0002h 

stx cSiop+$a8 
* 
* 
* 

non-watchdog mode 
Waveform mode/pulse 
all ctus enabled 
Scale bit 0 

*The counters are always enabled by the software and a waveform 

*can be noticed on port A PAO. 

*PWM pulse widths equal to count of 04 loaded in the image-O register and 02 in IMG1. 

******************** END OF WAVEFORM MODE ******************** 

-------------------------~,:------------------------
- "'" &. 3·59 



PS05XX - Appllt:lltl.R N.ts 028 

Appendix 5. 
. AS.File 
(C'Rt.) 

*This is the implementation of "PULSE MODE" of operation of WSI's PSD5XX 
* interfaced with Motorola's 68HC11 . 

******* Counter/Timer 0 initialization (Command Reg 0 i.e. CMDO) 

Idx #009dh 
stx cSiop+$aO 

* 
* 
* 
* 
* 
* 
* 
* 

pulse mode 
decrement mode 
select counter/timer 
output pulse active high 
input polarity on input pin (doesn't matter, here it's mcell) 
input control from PPLD (not PIN) 
load control activated by macrocell output 
enable continuous counting 

****** image-O reg loading ************* 

Idx 
stx 
Idx 

#0003h 
csiop+90h 
#OOOOh 

stx csiop+91 h 

load counter/timerO image reg with necessary 
count i.e. pulse width needed 

*** Configure port A output as special function so that TimerO output is available at PAO *** 

Idx 
stx 

#0001h 
csiop+08h 

Activate pin PAO as TimerO output 
special function reg of port A 

******* global register configuration ********* 

Idx #0002h 
stx cSiop+$a8 non-watchdog mode 

Waveform/pulse mode 
all ctus enabled 
Scale bit 0 

*Appropriate signals on mc2tmrO starts the counter and a pulse 

*can be noticed on port A PAO (based on the .abl equation) till Counter/timer-O under flows. 

*************************** END OF PULSE MODE *************************** 

~~ ___________________________________ 'Sa;~~ ____________________________________ __ 

3·60 ==== 



Appendix 5. 
.AS.File 
(Cont.) 

'SD5XX - Application Mottl 028 

*This is the implementation of "EVENT MODE" of operation of WSI's PSD5XX 
* interfaced with Motorola's 68HC11 

*******Counter/Timer 0 initialization (Command Reg 0 i.e. CMDO) 

Idx #1eh 
stx cSiop+$aO 

* 
* 
* 
* 
* 
* 
* 

Event Count mode 
increment mode 
select counter/timer 
CounterlTimer output (don't care) 
input polarity on input pin(doesn't matter not PIN) 
input control from PPLD (not PIN) 
Store control activated by macrocell 
enable activated by macrocell 

* Image and Counter Registers are initialized to "00" in the beginning 

*******global register configuration********* 

Idx #0002h 
stx cSiop+$a8 

* 
* 
* 

non-watchdog mode 
Event CountlTime Capture mode 
all ctus enabled 
Scale bit 0 

* Now, if the conditions setup in PPLD for mc2tmrO are satisfied as specified 
* in Abel software, at every rising transition on mc2tmrO Counter-O increments its count. 
* and updates the IMGO Register. 

********Freeze Command register********* 

*If the Event Count value in the Counter register need to be read, the count 
*updates to the image register have to be frozen. 

Idx #0001h a high going signal of write freezes IMGO updates 
stx cSiop+$a4h 

* Now check if Freeze Acknowledge bit of Counter-O is set and read IMGO reg ev_loop 

Idx #(csiop+$a9h) 
Idaa #$fO 
cmpa O,X 
bne ev_loop 

* Read IMGO reg 

Idx 
Idx 

# (csiop+$90h) 
# (csiop+$91 h) 

freeze acknowledge bits(status flag reg) 
bit 0 for timer-O(upper 4 bits are 1 's) 
checking if it's set to 1 

low byte 
high byte 

*To do another read of the Event Count value, the Freeze Command Register bit 0 has to 
cleared to 0 and set back to 1, when necessary. 

Idx #OOOOh a 0 clears the FREEZE CMD bit 0 to 0 
stx cSiop+$a4h 

******************END OF EVENT COUNT MODE ****************** 

.,JEI! 1'._ --------------'NI§-------------a--6-1 



I'SD5XX - Appllclltilln ''1t, 028 

Appendix 5. 
.ASMFile 
(Clint.) 

*This is the implementation of "TIMER CAPTURE MODE" of operation of WSI's PSD5XX 
* interfaced with Motorola's 68HC11 

*******Counter/Timer 0 initialization (Command Reg 0 i.e. CMDO) 

Idx #OObfh 
stx cSiop+$aO 

* 
* 
* 
* 
* 
* 
* 
* 

Time-Capture mode 
increment mode(don't care) 
select counter/timer 
Counter/Timer output(don't care) 
Input polarity active low 
input control from PIN(not PPLD macrocell) 
Store control activated by pin 
en/dis bit don't care, select counter bit is enough 

*Image and Counter Registers are initialized to "00" in the beginning 

*******Counterltimer 1 initialization (Command Reg 1 i.e. CMD1) 

Idx #009fh 
stx csiop+$a1 

* 
* 
* 
* 
* 
* 
* 
* 

Time-Capture mode 
increment mode 
select counter/timer 
Counter/Timer output (don't care) 
input polarity on input pin (doesn't matter) 
input control from PPLD (not PIN) 
Store control activated by macrocell 
en/dis bit don't care, select counter bit is enough 

*Image and Counter Registers are initialized to "00" in the beginning 

*******global register configuration********* 

Idx #0006h 
stx cSiop+$a8 

* 
* 
* 

non-watchdog mode 
Event Count/Time Capture mode 
all ctus enabled 
Scale bit 0 

*Now, if the conditions setup on PE3 and in PPLD for mc2tmr1 are satisfied as specified in 
* Abei software, at every transition on PE3 and mc2tmr1, the Counter-O transfers its count 
*value into the image register-O and the Counter-1 to IMG1. 

*Freeze Command register bit 0 for CounterlTimer-O 
*If the Time Capture value in the image register needs to be read, the count 
*updates to the image register have to be frozen. 

Idx 
stx 

#0001h 
cSiop+$a4h 

a high going signal of write freezes IMGO updates 

-------------------------------------fAfAf~~--________________________________ ___ 
3.62 'fifFBi# if 



Appendix 5. 
.ASMFlle 
(t:ont.) 

1'SIJ5XX - AppllClltion Note 02B 

*Now check if Freeze Acknowledge bit of Counter-O is set and read IMGO reg tcO_loop 

Idx # (csiop+$aSh) 
Idaa #$fO 
cmpa 0, x 
bne ev_loop 

*Read IMGO reg 

Idx 
Idx 

# (csiop +$ SOh) 
#(cslop+$S1h) 

freeze acknowledge bits(status flag reg) 
bit 0 for timer-O(upper 4 bits are 1 's) 
checking if it's set to 1 

low byte 
high byte 

*To do another read of the Time Capture value, the Freeze Command Register bit 0 
*has to cleared to 0 and set back to 1, when necessary. 

Idx 
stx 

#OOOOh 
csiop+$a4h 

a 0 clears the FREEZE CMD bit 0 to 0 

* Freeze Command register bit 1 for CounterlTimer-1 
* If the Time Capture value in the image register needs to be read, the count 
* updates to the image register have to be frozen. 

Idx #0002h a high going signal of write freezes IMG1 updates 
stx cSiop+$a4h 

*Now check if Freeze Acknowledge bit of Counter-1 is set and read IMG1 reg tcCloop 

Idx # (csiop+$aSh) 
Idaa #$f1 
cmpa O,x 
bne tcCloop 

*Read IMG1 reg 

Idx 
Idx 

# (csiop+$S2h) 
# (csiop+$S3h) 

freeze acknowledge bits (status flag reg) 
bit 1 for timer-1 (upper 4 bits are 1 's) 
checking if it's set to 1 

low byte 
high byte 

*To do another read of the Time Capture value, the Freeze Command Register bit 1 
*has to cleared 0 and set back to 1, when necessary. 

Idx 
stx 

#OOOOh 
cSiop+$a4h 

a 0 clears the FREEZE CMD bit 1 to 0 

**************** END OF TIME CAPTURE MODE **************** 

-------------------------~~JI.------------------------
"'" ~ 3-63 



PSD5XX - Application Note 028 

Appendix 5. 
.ASMFile 
(Cont.) 

*This is the implementation of "WATCHDOG MODE" of operation of WSI's PSD5XX 
*interfaced with MOTOROLA's 68HC11 

*******Counter/Timer 2 initialization 

******** Ignore (Command Reg 02ie CMD2) 

******* image reg (IMG2)loading*************** 

Idx 
stx 
Idx 

#0002h 
csiop+94h 
#OOOOh 

stx csiop + 95h 

load counter/timer2 image reg with necessary 
count i.e. pulse width needed 

**Writing into SOFTWARE LOAD reg to load Counter-2 ***** 

Idx #0004h Software load for counter-2 
stx cSiop+$a5h 

*******global register configuration ********* 

Idx #OOOah 
stx cSiop+$a8 

* 
* 
* 

watchdog mode 
Waveform/pulse mode (don't care) 
all ctus enabled 
Scale bit 0 

*** As soon as the WatchDog bit in the Global Command Register is set to one, 
*CounterlTimer-2 starts decrementing. If a write into bit-2 of software load register is not 
*done before Counter-2 under flows, a watchdog condition occurs. 

loop nop 
jmp loop end of main loop 

******************** END OF WATCHDOG MODE ******************** 

~~-----------------------------------r=-~~--------------------------------------
3-64 ==== 



Appendix 6. 
Realizing 
4PWM 
Timers on the 
PS05XX 

PSD5XX - AppllclltlllR Nllte 028 

Abstract 
The PSD5XX has four timers. The Waveform mod~ or the PWM mode needs two timers, 
i.e. one to drive the ON time and second one to drive the OFF time. Therefore a maximum 
of two PWM timer sets can be realized on the PSD5XX. Using the resources of the PPLD 
however, effectively four PWM timers can be realized. This application brief explains the 
procedure to "realize 4 PWM timers on the PSD5XX". 

The I'I'LD methDd fDr realizing 4 I'WM Timers 
In the normal pulse mode operation, a CounterfTimer outputs a mono-shot pulse of 
pulsewidth equal to the value loaded into its associated image register. After the pulse is 
output the CounterfTimer waits for another load signal to output another pulse and so on. 
The procedure used here to generate 4 PWM timers is as follows: 

o Set all the four timers into the "pulse mode" of operation. 

o Use the "PWM_CYCLE" signal which is described below, to generate the LOAD signal 
for Counter/Timer 0, 1, 2 and 3. 

o Counter/Timer Image Registers (IMGO,IMG1,IMG2,IMG3) can be loaded with different 
"OFF" or "ON" time values based on the mode set up in CMD Registers. 

o Regarding the duty cycle calculation of the resulting PWM waveform, refer to the 
section "Duty cycle calculation". 

The I'WM_CYCLE Signal 
In this application note example the period of the output PWM waveforms generated by the 
CounterfTimers operating in the PULSE mode is controlled by the PWM_CYCLE signal. 

The PWM_CYCLE signal in this example has been generated internally in the PSD5XX 
itself as a GPLD macrocell output. Here the period of the PWM_CYCLE signal is equal to 
the PSD5XX clock input divided by 32. 

How the generation of the PWM_CYCLE signal is done is up to the user, typically it is 
generated externally with longer period. 

Input the PWM_CYCLE signal into the CounterfTimer macrocell input, which is the input 
control for loading the Counter/Timer Registers from the corresponding Image Registers. 
This can be done in the .ABL file using the following PPLD equation: 

mc2tmrX := PWM_CYCLE.fb ; 

where X = 0, 1, 2, 3 for the CounterfTimers 0,1,2 and 3 and all CounterfTimers are 
operating in PULSE mode. 

Note: In case PWM_CYCLE is an external input signal, the expression for mc2tmrX will be: 

mc2tmrX := PWM_CYCLE ; 

-----------------------------------~~.-----------------------------------~8 3-65 



PSD5XX - Appilcatilln Nllt. 028 

Appendix 6. 
Realizing 
41'WM 
Timers Dn the 
I'SD5XX 
(Clint.) 

Counter/Timer Registers set-up procedure to realize the 4 PWM Timers 

CMDO, CMD1, CMD2 and CMD3 Registers Initialization 

o Write "95"hex to Command Register 0 (CMDO) at offset from base address of CSIOP 
(Chip Select I/O Port). 

Bit-? Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-O 

1 0 0 X 0 1 0 1 

CMDO Register 

• bit-O: 1 Mode Select Bit, select Pulse Mode for CTUO. 
• bit-1: 0 DecremenVlncrement Bit: Select decrement (CTUO counts down from 1 to 0). 
• bit-2: 1 Select Counter/Timer Bit: Select CTUO. 
• bit-3: 0 Output polarity: Select output to be active low. 
• bit-4: X Input Polarity: No pin input in this mode, don't care. 
• bit-5: 0 Pin or Macrocell input: Macrocell input control. 
• bit-6: 0 Load/Store Bit: Load control from macrocell. 
• bit-?: 1 EN/DIS Bit: Enable continuous counting. 

o Write "9D"hex to Command Register 1 (CMD1) at offset from base address of CSIOP 
(Chip Select I/O Port). 

Bit-? Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-O 

1 0 0 X 1 1 0 1 

CMD1 Register 

• bit-O: 1 Mode Select Bit, select Pulse Mode for CTU1. 
• bit-1: 0 DecremenVlncrement Bit: Select decrement (CTU1 counts down from 2 to 0). 
• bit-2: 1 Select CounterlTimer Bit: Select CTU1. 
• bit-3: 1 Output polarity: Select output to be active high. 
• bit-4: X Input Polarity: No pin input in this mode, don't care. 
• bit-5: 0 Pin or Macrocell input: Macrocell input control. 
• bit-6: 0 Load/Store Bit: Load control from macrocell. 
• bit-7: 1 EN/DIS Bit: Enable continuous counting. 

o Write "95"hex to Command Register 2 (CMD2) at offset from base address of CSIOP 
(Chip Select I/O Port). 

Bit-? Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-O 

1 0 0 X 0 1 0 1 

CMD2 Register 

• bit-O: 1 Mode Select Bit, select Pulse Mode for CTU2. 
• bit-1: 0 DecremenVlncrement Bit: Select decrement (CTU2 counts down from 3 to OJ. 
• bit-2: 1 Select CounterlTimer Bit: Select CTU2. 
• bit-3: 0 Output polarity: Select output to be active low. 
• bit-4: X Input Polarity: No pin input in this mode, don't care. 
• bit-5: 0 Pin or Macrocell input: Macrocell input control. 
• bit-6: 0 Load/Store Bit: Load control from macrocell. 
• bit-7: 1 EN/DIS Bit: Enable continuous counting. 

-----------------------------------rJr"~~-----------------------------------3-66 ==== 



Appendix 6. 
Realizing 
4PWM 
Timers on the 
PSD5XX 
(Cont.) 

PSD5XX - Application Not. 028 

o Write "9D"hex to Command Register 3 (CMD3) at offset from base address of CSIOP 
(Chip Select I/O Port). 

Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-O 

1 0 0 X 1 1 0 1 

CM03 Register 

• bit-O: 1 Mode Select Bit, select Pulse Mode for CTU3. 
• bit-1: 0 Decrement/Increment Bit: Select decrement (CTU3 counts down from 4 to 0). 
• bit-2: 1 Select Counter/Timer Bit: Select CTU3. 
• bit-3: 1 Output polarity: Select output to be active high. 
• bit-4: X Input Polarity: No pin input in this mode, don't care. 
• bit-5: 0 Pin or Macrocell input: Macrocell input control. 
• bit-6: 0 Load/Store Bit: Load control from macrocell. 
• bit-7: 1 EN/DIS Bit: Enable continuous counting. 

Image Registers loading: 

o IMGO Register is loaded with a value 01 to define pulse width (off time). 

o IMG1 Register is loaded with a value 02 to define pulse width (on time). 

o IMG2 Register is loaded with a value 03 to define pulse width (off time). 

o IMG3 Register is loaded with a value 04 to define pulse width (on time). 

After the Command Registers and Image Registers are initialized, the Registers common to 
all the CounterlTimers(Special function Register, Global Command Register) are initialized. 

o Write "OF" to Port A Special Function Register. This specifies pins PAO,PA 1 ,PA2 and 
PA3 as pulse output pins. 

Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-O 

0 0 0 0 1 1 1 1 

Special Function Register 

o Now to start the Counter/Timers: write "02" hex to the Global Command Register. 

Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-O 

0 0 0 0 0 0 1 0 

Global Command Register 

• bit-O: 0 Scale Bit: Clock input to Timers is divided by 1. 
• bit-1: 1 Counter start bit: This bit turns on the Timer operation. 
• bit-2: 0 Global Mode bit: All CounterlTimers operate in the Waveform or the Pulse Mode. 
• bit-3: 0 Watch Dog bit: Not Watchdog Mode. 

Figure 20 illustrates the flow chart for initialization procedure to realize 4 PWM 
timers on PSD5XX. 

-----------------------------------~~~~--------------------------------3--6--7 



PSD5XX - Application Note 928 

Appendix 6. 
Realizing 
4PWM 
Timets Dn the 
PSD5XX 

Figure 20. PSD5XX InitializatiDn TD Generate 4 PWM Timers 

(Cont.) 1 
INITIALIZE 

START 4 PWM 
ALL 4 

TIMERS TIMERCMD 

INITIALIZATION REGISTERS 

1 1 
INITIALIZE WRITE OFF/ON 

DLCY TIMER VALUES 
REGISTER INTO IMGO, 

FOR CLK INPUT IMG1, IMG2, IMG3 

1 1 
SET ALL DECLARE PORT A 
4 TIMERS AS SPECIAL 

INTO PULSE FUNCTION 
MODE FOR TIMER OlPs 

I I 

1 
INITIALIZE 1s1 

TIMER PULSE OIP 
BY WRITING OFh 
INTO SOFTWARE 

LOADISTORE 
REGISTER 

1 
INITIALIZE 

GLOBALCMD 
REGISTER 

START TIMERS 
O,1,2AND3 
TOGETHER 

1 
4PWM 

INITIALIZATION 
DONE 

-3--U--------------------------~~~---------------------------



Appendix 6. 
Realizing 
4PWM 
Timers on the 
PSDSXX 
(Cont.} 

PSD5XX - Application Note 028 

As illustrated in the following Figure 21, the PWM_CYCLE signal is used as the 
Counterffimer load control signal. The period of the PWM_CYCLE is the period of the 
PWM waveforms. 

timerout1 

timerout2 

timerout3 

Timer-Clock 

ImgOL 

img1L 

img2L 

img3L 

cmdO 

cmd1 

cmd2 

cmd3 

" ! I 0"1 ' , 

Notice in Figure 21, the Image Registers are loaded as follows: 

Image RegisterO = 01 hex and the output of this CounterffimerO is timeroutO(on time) 
Image Register1 = 02hex and the output of this Counterffimer1 is timerout1(off time) 
Image Register2 = 03hex and the output of this Counterffimer2 is timerout2(on time) 
Image Register3 = 04hex and the output of this Counterffimer3 is tlmerout3(off time) 

The Command Registers are loaded as follows: 

CMDO = 95hex 
CMD1 = 9Dhex 
CMD2 = 95hex 
CMD3 = 9Dhex 

~., .. -------------------------------------,- ~.-------------------------------------== 3·69 



ntJ5XX - ApplicatlOll ".,. 12. 

AppendlxB. 
Realizing 
4'WM 
Timers DR the 
'SD5XX 
(COlI'.) 

Duty CycIII calculatlDn 
Figure 22 explains the duty cycle calulatlons. The 'PWM PERIOD" and 'off" time of the 
PWM waveform are known. To compute the "on" time of the PWM waveform and hence 
the duty cycle: 

Ton = (PWM PERIOD) - Toff 

Ton 
PWM Duty Cycle = 

PWM PERIOD 

This calculation is applicable to CounterlTimers 0 and 2 whose outputs are programmed to 
be active low. For Counter/Timers 1 and 3 the outputs are programmed to be active high, 
hence the 'on" time Is the value directly loaded into the related Image Registers multiplied 
by the Timer Clock unit. 

FI,uflllI. Duty Cyclll Plllllld II' PWAf Usln, PI'LD MaclllclIII TllchnlqulI 

, , , , , , 
, I 
I I 

PWM_CYCLE ---J I-I----.L..-__ ...... 
I I 
I I 
I I 
I I 

TlMEROUTO ---u U 
(PULSE MODE) I I I u 

I I I 

-: Toff :-- : 
I I 

l-PWM PERIOD-: 

CIIncIIISIDn 
This Application Brief explained how PSD5XX PPLD macrocells could be used in 
combination with timers to generate 4 PWM timers. Relevant PSDabel file, 
Configuration File are enclosed. 

~--------------------r"~J!.-----------------------
3-70 """" AI 



Appendix 6. 
Realizing 
4PWM 
Timers on the 
PSD5XX 
(Cont.) 

This is the .abl file required to do the 4-PWM timers simulation 

module gpld_pwm " 9-2-93 

title '4 pwm channels '; 

"Input signals 

cntouCen pin; "Enable counter outputs to drive out. 
loadws pin; " Load and enable generator. 
d4,d3,d2,d1,dO pin; "Number of wait-states to load. 

PSD5XX - Application Mots 028 

clkin, reset pin; "Default these signals are not needed to be defined 

"Addr. lines, using reserved names. 

a 15,a 14,a 13,a 12,a 11,a 1 O,a9,a8,a 1,aO pin; 

timerO_in,timer1_in,timer2_in,timer3jn pin; 

" Internal PSD5XX PLD output signals. 

csiop node; 
mc2tmrO, mc2tmr1, mc2tmr2, mc2tmr3 node; 

x = .x. ; " Don't care 
Address = [a15,a14,a13,a12,a11,a1 O,a9,a8,X,X,X,X,X,X,a1,aO); 

"Output signals 

wstc pin;" Wait-State Terminal Count. 

PWM_CYCLE pin istype 'reg'; 
gpld_cnt3,gpld_cnt2,gpld3nt1,gpld_cntO node istype 'reg'; " This counter outputs are 
embedded. 

equations 

csiop = (Address >= I\hCOOO) & (Address <= I\hCOFF) ; " 256 block 

@IF (O){ 
Reset is available 
there through the enable gated reset configuration bit. 
} 

[PWM_CYCLE).oe = cntouCen; 

[PWM_CYCLE,gpld_cnt3,gpld_cnt2,gpld_cnt1,gpld_cntO).re = reset; 

wstc = IPWM_CYCLE.fb & Igpld_cnt3.fb & Igpld_cnt2.fb & Igpld3nt1.fb & Igpld_cntO.fb; 

iF •• .,. 
-----------------------------------~~~--------------------------------3----71 



PSD5XX - Application Note 028 

Appendix 6. 
Realizing 
4PWM 
TimelS on the 
PSD5XX 
(Cont.) 

"my stuff to generate PWM_CYCLE using GPLD 

[gpld_cntO].clk := clkin; 

[gpld_cnt1].clk:= gpld3ntO.fb; 

[gpld_cnt2].clk := gpld3nt1.fb; 

gpld_cnt2 := Igpld_cnt2.fb; 

[gpld_cnt3].clk := gpld3nt2.fb; 

[PWM_CYCLE].clk := gpld_cnt3.fb; 

PWM_CYCLE := IPWM_CYCLE.fb; 

"Pin counterfTimer control inputs. 

mc2tmrO:= PWM_CYCLE.fb; 

mc2tmr1 := PWM_CYCLE.fb; 

mc2tmr2 := PWM_CYCLE.fb; 
mc2tmr3:= PWM_CYCLE.fb; 

END 

-3--n------------------------------~~~--------------------------------



=====~ --- ~ --- _ .... 
Ir ........ ~== ---- .... ---~~ .... 

Abstract 

PSD4XX/5XX 
Architecture 

Programmable Peripheral 
Application Note 029 
Interfacing PSD4XX/5XX To Microcontrollers 
By Rarl Kumar 

This application note is intended to 
give the reader a general guideline on how 
to interiace PSD4XXl5XX Field 
Programmable Microcontroller Peripherals 
to specific microcontrollers. Relevant 
PSDabel files, bus simulation results and 
the PSD bus configurations of the interiace 
examples are included in this application 
note. 

The PSD4XXl5XX series provides the 
user with an innovative architecture for 
embedded applications. A PSD5XX device 
has the following features: 

o Programmable bus interiace, "no glue" 
logic interiace to microcontrollers. 

o Three ZPLDs (Zero Power PLDs) with a 
total of 61 inputs, 140 product terms 
outputs, 30 macrocells and 24 I/O pins. 

o Forty individually programmable I/O 
pins that are divided into 5 ports. 

o Four 16-bit CounterlTimers that periorm 
pulse, waveform, time capture, event 

counting and watchdog functions. 

o Eight input priority encoded Interrupt 
Controller. Four Interrupts are 
generated internally by CounterlTimers 
and the other four can be user defined 
through the ZPLD. 

o 4-bit Page Register. 

o Up to 1 Mbit Reprogrammable EPROM, 
consists of four 256 Kbit blocks. 

o 16 Kbit of SRAM with battery backup 
mode. 

o Power management unit with automatic 
power down and sleep modes. 

o Security mode for code protection. 

Figure 1 is a top level diagram of 
PSD4XXl5XX. 

The microcontrollers covered in this 
application note are: 

o BOC31 o Z8/Z80 

o 68HC11 o 80C166 

o 80C196 o ST9D26 

o 68302 o NEURONd!i 3150"" 

o 68332 

At the core of the PSD4XXl5XX are 3 
dedicated ZPLDs: 

o DPLD: The Decoding ZPLD. 

Its main function is to periorm address 
decoding for the internal I/O ports, 
EPROM, SRAM and periheral mode of 
Port A. 

o GPLD: The General Purpose ZPLD. 

The user can implement state machines 
and other logic functions in the GPLD. 
It can also gene rare chip selects for 
external memories and peripheral 
devices. 

o PPLD: The Peripheral ZPLD. 

It provides additional control for the 
operation of the CounterlTimer Units 
and the Interrupt Controller. The PPLD 
is available only in the PSD5XX series. 

3-73 



~I I~ ~ 
~ ADDRESS/DATA/CONTROL BUS ! I 

~ ! 
~ i-= 'I. :.c f 

CONTROL _I P:~ f:11 I SELECT I e__ 25 - II i r 
RD, WR INTRF _ SRAM l :; I 

PROG. it R 
PORT PAD - PA7 'I CI 

PORT !I 
ADO-AD15I ADIO _I ItO A 

PORT DECODER 

24 MACROCELLS 

E PROG. PORT A MACROCEllS I PBO - PB7 ~ PORT ~ _g_g~_=_ 

liil.. PORT PORT B MACROCEllS PORT 
1111111 C CLKlN ...... II!ICI""II!IClII!I B 

iii PORT E MACROCELLS __ 
1CI_I:IIClE;lClE3_ I 

PROG. 
PORT I PEO - PE7 RA I MA\;Hu\;I:LL I'I:I:I.JISA\;I\ UH I'UHI INI'UJ lj-. 

PDO - PD7 PROG. PORT 
PORT • E 

PORT 

~ II I • ~] ._-, .. _, fft .. H-+-pFOUR16-BITW~ II -- MACROCELLS __ , __ *"_ '- '" 
[" VVVVVVVV ..... .£.~ ____- I TI:: ....... 7. roo--

GLOBAL 
CONFIG. 

& 
SECURITY 

CUON 'I II..!WI ~ I ~ IIJKI.; :jtj I .w;;;,;;;; ,. L '" "-

WATCH DOG OUTPU1 • 
INTERRUPT OUTPUT 



The Sus 
Interface 
Of The 
PSD4XX/5XX 

I'SD4XX/5XX - AppllcatlDn NDte 029 

The PSD4XXl5XX have a user configurable bus interface. This interface can be configured 
to allow the PSD4XX/5XX to interface directly to most microcontrollers with "no glue" logic. 

There are only five bus control pins on the PSD4XXl5XX. Eac!:!"pin has multi~ functions 
as shown in Table 1. For example, the "RD" pin can act as a "RD", or "E", or DS, or LDS, 
depending on the microcontroller bus interface. Please note the "RD" and "WR" pins are 
dedicated bus pins, but PEO and PE1 are two general purpose I/O pins on port E. If the bus 
interface does not require these two pins, they can be configured to perform any of the 
other Port E functions. 

The selection of these pin functions is implemented in the PSDconfiguration menu inside 
the PSDsoft. 

Table 1. Alternate Pin Functions 

Pin Pin Pin Pin Pin Pin 

Name Function Function Function Function Function 
1 2 3 4 5 

RD RD E DS LDS 

WR WR RIW WRL 

PEO BHE PSEN WRH UDS SIZO 

PE1 ALE 

ADO AO BLE 

The multiple functions of the PSD bus pins allow the PSD4XXl5XX to support a large 
number of microcontrollers. Table 2 shows some of these microcontroller families, the bus 
type and control signals associated with the microcontrollers. 

Table 2. Typical Microcontrol/er Bus Types 

Multiplexed Data Bus Bus Control Signals Mlcrocontrol/ers Width 
Mux 8 WR, RD, PSEN 80C31 Family 

Mux 
8/16 RIW, E, BHE 68HC11 Family 

Non-Mux 

Mux 
8/16 WR, RD, BHE 

80196/80186 Family 

80C166 Family 

Mux 16 WRL, RD, WRH 80196SP 

Mux 8 RIW,DS ST9 Family 

Non-Mux 16 RIW, LDS, UDS 68302 

Non-Mux 8/16 RIW, DS, SIZO 683XX Family 

Non-Mux 8/16 RIW, DS, BHE, BLE 68330 

----------------------------------~~~~-------------------------------3--~--5 



PBII4XXISXX - Application Not. 029 

PSD4XX/5XX 
Interface 
Toa 
Multiplexed 
Bus 

PSD4XX/5XX Interface 
T" a MultIplexed Bus 
Figure 2 shows a typical connection to a microcontroller with a multiplexed bus. The ADIO 
port of the PSD4XXl5XX is connected directly to the microcontroller address/data bus. For 
an 8-bit bus, the low byte of the ADIO port is connected to ADO - AD7 and the high byte to 
A8 - A 15 of the microcontroller. For 16-bit bus, the ADIO port connects to ADO-AD15. 
The address lines are latched internally by the ALE Signal. In a read bus cycle, data is 
driven out through the ADIO Port transceivers after the specified access time. The ADIO 
Port is in tristate mode if none of the internal PSD resources are selected. 

PSD4XX/5XX Interface 
T" a N"n-Multlplexed Bus 
Figure 3 shows a PSD4XXl5XX interfacing to a microcontroller with a non-mUltiplexed 
address/data bus. The address bus is connected to the ADIO Port, and the data bus is 
connected to Port C and/or Port D, depending on the bus width. If the microcontroller has 
an address strobe signal, the user has an option to latch or not to latch the address by the 
ALE/AS signal internally in the PSD. 

Optl"nal Features 
The PSD4XXl5XX provides two optional features to add flexibility to the Bus Interface: 

1. AddfflSS In 
Port A can be configured as high order address (A 16-A23) inputs to the ZPLD for DPLD 
or other decoding. Any other signals which also are included in the DPLD chip select 
equations must come from Port A. 

Port C & D can be configured as address input ports for the ZPLD. These inputs should 
not be used for EPROM decoding. 

2. AddfflSS Out 
For multiplexed bus only. Latched address lines AO-A15 are available on Port A, B, C or 
D. The latched address can be used as address to external memory or I/O devices. 

7~7n~-------------------------~Jr~-----------------------------



Bus 
Interface 
Of The 
PSD4XX/5XX 
(Cont.) 

Figure 2. Bus Interface - Multiplexed Bus 

Ii 

::J 
0; 

::J 
'Q < < z .. z 
t:- o .= ~ ~ 
I Do. I 

< e.. < e.. 

U Q < 
Ii: l- I-

II: II: 
0 0 0 Do. Do. Do. 

01-
i5~ 
<Do. I~ Iii! I~ 

Ii 

0; ~ 
'Q .. .. 
£ 

III III .::. .::. 
I I I 

Q Q 
.5-'" < 

II: w 
oj 
11:0 
UII: 
-I-
::&z 

0 
U 

PSD4XX/5XX - Application Nottl 029 

ID 
l-
II: 
0 Do. 

W 
I-
II: 

I~ 
0 

I~ 
w Do. ....I 
< 

-----------------------------------f~#f~~-----------------------------------==== 3-77 



~ 
iii! 

E 
=.i 

MICRO-
CONTROllER 

D-[15: 0] 

A-[15: 0] .. 

PSD5XX 

PORTC 

ADIO 
PORT 

-
PORTD 

\iii 
iii) 

RST PORTA • CSt 

PORTE 

BHE PORTB 

ALE 

D-[7:0] 

D-[15: 8] 

1&-BIT DATA ONLY 

A [23:16] 

(OPTIONAL) 

};:~S'r 
~I~I 
~". Sli I 
~ 

:!! 
'I ; 
~ 

r 
i 
i a 
I 

~ , 
I 
i! 
'9. 
I 
I. r 

I 
I 

t ;:: a 
11:: 
8 

I 
I 



Bus Timing 
Consideration 

PSD4XX/5XX - Application Not. 029 

Access Time Calculation 
Access time of PSD4XXl5XX (EPROM or SRAM ) is the time measured when the address 
is valid on the Microcontroller address bus to the time the data is available on the data bus. 
This access time (tAVQA, see Figure 4) includes any delay on internal address latches and 
DPLD decoding. 

EPROM CMisel Option 
The PSD4XXl5XX devices have a power management unit which enables the user to 
configure the power consumption level. The EPROM power is controlled by the 
EPROM_CMiser bit (bit 3) in the PMMRO Register. If this bit is set to "1", the EPROM 
power consumption is lower but the access time is increased by 10 nanoseconds. 

Figure 4. Read Timing 

ALE/AS 

AID (BHE) 
MULTIPLEXED 

BUS 

ADDRESS 
(BHE/SIZO) 

NON-MULTIPLEXED 
BUS 

DATA 
NON-MULTIPLEXED 

BUS 

E 

R/W 

~ 

--' 

J 

XX'r-. 

IAVPV 

IAVLX ILXAX 

1/ 

ILVLX 

ADDRESS (~ VALID 
IAVQV 

ADDRESS 
VALID 

(XX 
ISLQV 

IRLQV 

IRLRH 

IEHEL 

trHEH 

XXX 

! ADDRESS OUT 
'I 

DATA 'IY. I--VALID 

DATA lXXJ I--VALID 

IX: :x 
IRHQXI-

IRHQZ 

IELTL 

~ 

-------------------------------------~1f~~----------------------------------3-.7--9 



PSD4XX/5XX - Application Note 029 

Bus Timing 
Consideration 
(Cont.) 

Microcontrollers 
Supported 

Reset timing 
Figure 5 shows the reset signal timing requirement of the PSD4XXl5XX devices. The 
active low (T1) has a minimum of 300 ns. After the rising edge of RESET, the PSD4XXl5XX 
remains inactive during T2 (minimum of 300 ns). 

RST_OUT Signal (Optional) 
The reset circuit of the PSD4XXl5XX has a Schmitt trigger that senses the RESET line 
logic level. The PSD4XX/5XX is able to output a RESET signal (referred to as RST_OUT in 
this application note) through the GPLD to the microcontrolier based on its own reset input. 
·The RST_OUT signal is not recommended in 68HC11 based design. 

Figure 5. Reset Timing Requirement 

~xxxt _n t...-T2 ----+-·1 

The PSD4XXl5XX is able to support, but is not limited to, the following list of 
microcontroliers: 

o 16-8ft Multiplexed Mode 
Intel 8096, 80C196, 80C186 families. 

National HPC16000 family. 

Siemens 80C166 families. 

o 8-Bit Multiplexed Mode 
Intel/Philips 80C51/52, 80C31/32, 

80C451 families. 
MotorolalToshiba 68HC11 families. 

Intel 80C188 and 80C198 families. 

SGS-Thomson ST9 families. 

o 8-Bit Non-multiplexed Mode 
Zilog Z80 family 

Motorola 68008/6809 family. 
Echelon 3150™. 

o 16-Bit Non-multiplexed Mode 
Motorola 68302, 68331, 68302, 68HC16 

families. 

-3--8-0-------------------------------~~~~---------------------------------



How To 
Configure 
ThePSDBus 
Interface 

Select The Bus 
Interface In 
PSDconfiguration 

PSD4XX15XX - Application Nots 029 

The design, configuration and programming of the PSD4XXl5XX is created in the PSDsoft 
Development Software Tools. The PSDsoft consists of five submodules: 

o PSDabBl 
To generate a PLD-ABEL description file which defines the functions of the DPLD 
(decoder), GPLD and the PPLD (PSD5XX). 

o PSDconfiguratlon 
To configure the bus interface and other 1/0 functions. 

o PSDcompllsl 
To fit the functions defined in the ABEL file to the PSD and map program codes 
to the PSD EPROM 

o PSDslmulator 
Chip level simulation based on the ABEL, configuration and stimulus files. 

o PSDprogrammel 
To program the chip with the .obj file generated in the PSDcompiler. 

There are two places in the PSDsoft where you specify and define the bus interface for your 
application: 

1. In PSDabsl 
Define the DPLD equations (chip select equations) for EPROM, SRAM and 1/0. 

2. In PSDconfigulat/on: 
Select the bus type/interface for the PSD such as data bus width, control signals, etc. 

The main screen of the PSDconfiguration is shown in Figure 6. Click on the Configuration 
menu to get to the next screen in Figure 7 where you specify the data bus width and 
whether the bus is a multiplexed or non-multiplexed bus. 

In the next window, as shown in Figure 8, specify the bus control signals of your 
microcontroller. The polarity of ALE is defined as high if the falling edge of the signal is 
used to latch the address. In Figure 8, the signals specified are for the 80C31 family of 
microcontrollers. Please note the question "Use the read signal to access the EPROM" is 
applicable only to 80C31 type controllers. 

This completes the specification of the bus interface. The PSDcompiler will generate 
the necessary fuse map for the specified bus interface in the .obj file which is to be 
programmed into the PSD4XXl5XX. 

Figure 6. 

-----------------------------------rArAr~~-----------------------------------
:==iiE Ii 3.81 

_.- ._--------.-----



PSD4XX/SXX - Application Note 029 

Select The Bus Figure 7. 
mrerlacem ~--------------------------------------------

PSOconfiguration 
(Cont.) 

Figure 8. 

------------------------------------f=·~~-------------------------------------
3-82 



Definition 
0' The DPLD 
Equations In The 
ABELFlle 

PSD4XX/5XX - AppllcatioR Not. 029 

The DPLD is the address decoder for the PSD. It generates the chip select signal for all the 
internal PSD devices. These signals include: 

o ESO-ES3 
EPROM chip selects (4 blocks) 

o RSO 
SRAM chip select 

o CSIOP 
Port select, CounterfTimer, Interrupt Controller 

o PSELO-1 
Port A Peripheral Mode selects 

The chip select equations normally consist of address inputs and Page Register outputs. 
You define only the chip selects which you need in the ABEL file. For example, you don't 
have to define ES3 if the fourth EPROM block is not used. The following is an ABEL 
example file in which the address lines aO to a18 of the microcontroller, and pgrO-3 of the 
Page Register outputs are used as inputs to the DPLD. The memory map of the example 
is shown in Table 3. 

Table 3. System Memory Map 

Delllee Memory Space Memory Page 

EPROM, Block 0 0000-7FFF Page 0 

EPROM, Block 1 0000-7FFF Page 1 

EPROM, Block 2 4800-4FFF Any page 

SRAM 8000 - 87FF Any page 

1/0 Devices COOO- CFFF Any page 

----~ ----------------------------------~.~----------------------------------
-- 3-83 



PS04XX/5XX - Application Note 029 

Definition 
Of The DPLD 
Equations In The 
ABEL FIle 
(Cont.) 

The example ABEL file shows only the DPLD portion of the equations (GPLD equations 
are not included here). A typical ABEL file consists of a module name and/or title; 
a declarations area where the input/output signals are defined; and an equations area 
where the logic equations, and the state machines are defined. An optional test_vectors 
area is used for the logic simulation. 

module dpld 
title 'DPLD chip select equations source file'; 

declarations 

"Input signals 

"Address lines, using reserved names. 

a15,a14,a13,a12,a11 ,a10,a9,aB,a1 ,aO pin; 

a1B,a17,a16 pin; 

pgr3,pgr2,pgr1 ,pgrO pin; 

"Output signals 

csiop,rsO,esO,es1 ,es2 node; 

"DEFINITIONS 

page = [pgr3,pgr2,pgr1 ,pgrO]; 
X = .x. ; " Don't care 
Address = 

"high order address 
"input for fitting 
"page register embedded inputs 

"DPLD output chip selects 

[a1B,a17,a16,a15,a14,a13,a12,a11 ,a1 0,a9,aB,X,X,X,X,X,X,a1 ,aO]; 

equations 

"DPLD EQUATIONS 

csiop = (Address >= AhOCOOO) & (Address <= AhOCOFF) ; "Chip Select 256 byte block 
rsO = (Address <= AhOB7FF) & (Address >= AhOBOOO); "SRAM 2k block 
esO = (Address <= Ah07FFF) & (page == 0); "EPROM 32k block only at page 0 
es1 = (Address <= Ah07FFF) & (page == 1); "EPROM 32k block only at page 1 
es2 = (Address <= Ah4FFFF) & (Address >= Ah4BOOO); "EPROM 32k block, always visible 

END dpld 

-3--8-4-------------------------------~~~~---------------------------------



Bus 
Interface 
Examples 

PS04XX/5XX - AppllcatlDn NDts 029 

This section demonstrates the interface between the PSD4XXl5XX and some 
microcontrollers. The following documents are included in each of the microcontroller 
interface examples: 

o The Bus Configuration (PSDconfiguration) screens captured from the 
PSDsoft design tool. 

o The ABEL file which shows only the declaration and DPLD equations of the 
targeted microcontroller. 

o The logic interface schematic showing the connection between the PSD4XXl5XX 
and the microcontroller. 

o The bus interface simulation screen captured from the SILOSIII Simulator. 
The Simulator provides a full function, chip level simulation of the PSD4XXl5XX for 
design verification. The stimulus input file to the Simulator is written in Veri log . 
The results of the simulation is shown in the SDA ( Silos Data Analyzer) window where 
user defined signals or PSD internal nodes can be traced/displayed. 

In the following examples, only the bus interface function of the PSD4XX/5XX is simulated. 
This includes read bus cycles to the PSD EPROM and SRAM, and write cycles to the 
SRAM. The EPROM blocks have pre-filled data per Table 4 as the default configuration. 
The data should give you an indication if the PSD is enabling the right block and byte of the 
EPROM. 

Although the SDA can display many PSD signals, only bus related signals are shown in the 
examples in this Application Note. Please note the signal names displayed in SDA do not 
indicate the signal's polarity. As a rule, internal PSD signals all have active high polarity. 
The bus control signals have the same polarity as defined by the 
individual microcontrolier. The displayed signals include: 

o Control ~nals _ __ 
Such as RD, WR, DS, ALE, PSEN, etc. 

o Address/Data Bus 
ADIOH and ADIOL (high and low byte of microcontroller address/data bus) 

o Data Bus 
DATAH and DATAL (high and low byte of data bus, for non-mux bus only) 

o Chip Selects 
Chip select signals to EPROM (esO - es3) and SRAM (rsO). 

Table 4. 

EPROM Block Odd Byte Even Byte 

BlockO (ESO) 01h 23h 

Block1 (ES1) 45h 67h 

Block2 (ES2) 89h abh 

Block3 (ES3) cdh efh 

----------------------------------~~~~-------------------------------3---85 



PlD4XXl5XX - Appllatlon 1I0t, 029 

Interfacing 
To TheBOC31 
Family 01 
Mlcrocontrollers 

The80C31 Bus 
80C31 is an 8-bit microcontroller with multiplexed address/data bus. It has the following bus 
signals: 

Q Address/Data Bus: AD7 - ADO 

CJ Address Bus: 
Q Address Strobe: 
Q CoAtI:oI Signals: 

A15-A8 

ALE 

RD, WR, PSEN 

The PSEN signal is used to fetch code and RD is used to read data. This allows the 80C31 
to address up to 64KB of data memory and 64KB of program memory. 

7Wo Modes of Memory AccllSS 
The PSD4XX15XX provides two modes of memory access: the Separated Space Mode 
and the Combined Space Mode (see Tables 5 and 5a). In Separated Mode, the PSEN 
signal can access the EPROM only and the RD signal can access the SRAM o~. In 
Combined Space Mode, the EPROM can be accessed both by the PSEN and RD signal. 
The Combined Mode is for application where blocks of data or look up tables are required 
to reside in the EPROM. 

The PSD4XXl5XX also provide an option for program code 10 be stored and executed from 
the SRAM. This option is enabled if the SRCODE bit in the VM Register is set to "1" during 
run time. 

Table 5. Separated Space Mode 

EPROM AccllSS SRAM AccllSS 
RD Signal No Yes 

PSEN Signal Yes Yes only if SRCODE = 1 

Table Sa. Combined Space Mode 

EPROM AccllSS SRAM AccllSS 
RD Signal Yes Yes 

PSEN Signal Yes Yes only if SRCODE = 1 

,1I.l..g 
-3~-----------------------------~.w1-----------------------------



Interfacing 
To The B0C31 
Family Of 
Microcontrollers 
(C.nt.} 

PSD4XX/5XX - Appllcatl.n N.Ie D2I 

The 80C31 and PSD4XX/5XX Interface Schematic 
Figure 9 shows the 80C31 and PSD4XXl5XX interface schematic. The address/data bus 
and the bus control signals such as ALE, RD, WR, PSEN etc., are directly connected to the 
corresponding pins of PSD4XXl5XX without any additional glue logic. Reset for the 80C31 
is generated from the RESET input to the PSD4XXl5XX and outputs on pin PE2 in this 
example. If clock input is not required, the ClKIN pin should always be grounded. 

Reset Cllcult ReCDmmendatlDns 
The following three reset circuits are recommended for use with 80C31 and PSD4XXl5XX 
based designs: 

1. Input RESET signal into the PS4XX15XX RESET pin. Based on the polarity of the 
RESET INPUT signal of the microcontroller interfaced to the PSD, generate RSLOUT 
through the GPlD and connect it to the microcontroller's RESET INPUT pin 
(as illustrated in this application note.) 

2. Use a Reset Chip such as Dallas Semiconductor's DS1232, or Maxim's Max 699. 
In case of Maxim's Max 699, the Small Outline (SO) package should be used where 
the RESET output without inversion is also available. The inverted RESET signal goes 
to the PSD RESET input pin and the non-inverted RESET signal is connectd to the 
RESET input of 80C31. 

3. Use two separate RC reset circuits: one which generates a high reset pulse to the 
80C31 and the other one generates a low reset pulse to the PSD4XX15XX. 
The RC constant of the PSD4XXl5XX reset circuit should be less than that of the 
80C31 such that the PSD4XXl5XX reset signal has a shorter pulse and eliminates 
any race condition. 

rIL" ----------------------------------; .,jf-------------------------------3-~--7 



~ gg 

',I~il~ 
Uillllt 

Ilblllll 
I.II'~ 

::-

80C31 

Xl 

311-
EA/VP 

91 
RESET 

~ 13 INTO 
14 INn 
15 TO 

Tl 

~ 
2 Pl.0 
3 P1.1 
4 Pl.2 
5 Pl.3 
6 Pl.4 
7 P1. 5 
8 Pl.6 

P1. 7 

::-

Ul 

X2~ PO.O/ADO Y 
PO.ll ADl 38 

ADO 

PO.21 AD2 I 37 
PO.31 AD3 I 36 
PO.41 AD4 1 35 
PO.51 AD5 I 34 
PO.61 AD6 : 33 
PO.71 AD7 : 32 

PSD4XXl5XX 

ADO/AO 
AUl II AD1/Al 
AD2 7 AD2/A2 
AD3 6 AD3/A3 
AD4 5 AD4/A4 
AD5 4 AD5/A5 
AD6 3 AD6/A6 
AD7 2 AD7/A7 

P2.01 A8 : 21 
P2.1/A9 .22 

. A8 68 AD8/A8 
A9 67 AD9/A9 

P2.2/Al0 1 23 
P2.3/All 124 
P2.41 A12 1 25 
P2.51 A13 1 26 
P2.6/A14 : 27 
P2.71 A15 1 28 

RD 
WR 

PSEN 
AlE/P 

TXD 
RXD 

ClKIN 

RST_OUT 

VCC 

Al0 66 AD10/Al0 
All 65 ADll/All 
A12 64 AD12/A12 
A13 63 AD13/A13 
A14 62 AD14/A14 
A15 61 AD15/A15 

RD 

WR 

RESET 

CSI 

ClKlN 

PEO/PSEN 
PElIAlE 
PE2 
PE3 
PE4 
PE5 
PE6 
PE7 

28 I VSTDBY 

U2 

PCO 
PCl 
PC2 
PC3 
PC4 
PC5 
PC6 
PC7 

PD~ 

POl 
PD2 
PD3 
PD4 
PD5 
PD6 
PD7 

:"1'1 
cij" 
§; 
CIi 

!D 

1& 
tl -l 
~ 
2 
~ 
~ 
S­
ir 
~ :: 

~ 
2 
i 
~ 
I 

:a.. 
I :::: 
~ 
::!: 

= iJ: 
if 
!§ 



Interfacing 
To The BOC31 
Family Of 
Microcontrollers 
(Clint.) 

Specify The BoC31 Bus Interface 
In PSDcDnfiguratiDn 

PSD4XX/5XX - Application Note D29 

As shown in the following windows which are captured from PSDconfiguration, the 80C31 
bus interface can be specified by selecting: 

Q Data Bus Width: X8 

Q AddressJData Mode: MX 

Q Polarity of ALE: High 

Q RDIWR Setting: WR, RD, PSEN 

The PSDconfiguration also asks the question "Use the read signal to access the EPROM". 
A click on "Yes" means you are selecting the Combined Space Mode and that both the 
PSEN or RD signal can access the EPROM. A "no" will select the Separated Space Mode 
and EPROM can be accessed by PSEN only. 

----------------------------------~~~----------------------------------- _IE 3-89 



PSD4XX/5XX - Application Note 029 

Interfacing 
To The80C31 
FamilyOt 
Microcontrol/ers 
(Cont.) 

Define The DPLD/Decoding Function In The ABEL file 
The following is an example of defining the decoding function for the BOC31 based 
application. Please note the reset input to the BOC31 , rs,-out, is also included in the file. 
This file is applicable to both the Separated or Combined Space mode. The memory map is 
shown in Table 6. 

module psen 
title 'Design example of BOC31 DPLD source file'; 

"Input signals 

"Address lines, using reserved names. 

a15,a14,a13,a12,a11 ,a10,a9,aB,a1 ,aO pin; 

"Output signals 

"DPLD output chip selects csiop, rsO, esO, es1, es2 node; 
reset pin; "reset is declared here, used in rs'-out generation 
rs,-out pin 36; 

"DEFINITIONS 

x = .x.; "Don't care 
Address = [a15,a14,a13,a12,a11 ,a1 0,a9,aB,X,X,X,X,X,X,a1 ,aO]; 

equations 

"DPLD EQUATIONS 

csiop (Address >= I\hCOOO) & (Address <= I\hCOFF); "CSIOP 256bytes block 
rsO (Address <= I\hOOOO) & (Address >= I\h03FF); "SRAM 2KB block 

esO (Address >= I\hOOOO) & (Address <= I\h3FFF); "1st EPROM block cs 
es1 (Address >= I\h4000) & (Address <= I\h7FFF); "2nd EPROM block cs 
es2 (Address >= I\hBOOO) & (Address <= I\hBFFF); "3rd EPROM block cs 
es3 (Address >= I\hCOOO) & (Address <= I\hFFFF); "4th EPROM block cs 

"GPLD EQUATIONS 

rs,-out = !reset; "generate a high active reset to BOC31 

END 

Table 6. System Memory Map 

Device Memory Space Memory Page 
EPROM, Block 0 0000- 3FFF 

EPROM, Block 1 4000-7FFF 

EPROM, Block 2 BOOO- BFFF 

SRAM 0000-03FF 

1/0 Devices COOO-CFFF 

-3-.9-0-------------------------------~~~---------------------------------



Interfacing 
To The BOC31 
Famil,Ot 
Microcontrollers 
(Cont.) 

PSD4XXj5XX - Application Note 029 

Overlapping EPROM Space In Combined Mode 
If your application requires the data and program to be resided in the EPROM (Combined 
Space Mode}and share the same address space, you need to modify the chip select 
equations. For example, if EPROM blocks 0-1 are used as code area and blocks 2-3 are 
used as data area, and that code and data space share the same address. In this case, 
the RD signal is used to separate the program and data space. The program space is 
enabled by an active PSEN, while the data space is enabled by an active RD. The RD 
signal now is considered as an address input and thus the access time of the EPROM 
starts from when RD is valid, instead of when address is valid. The following is the chip 
select equations of the EPROM blocks. 

esO = (Address >= J\hOOOO) & (Address <= J\h3FFF) & RD; "program area 
es1 = (Address >= J\h4000) & (Address <= J\h7FFF) & RD ; " program area 

es2 = (Address >= J\hOOOO) & (Address <= J\h3FFF) & !RD; "data area 
es3 = (Address >= J\h4000) & (Address <= J\h7FFF) & !RD; "data area 

Simulation of BOC31 Bus Cycles 
With The PSD4XX/5XX 
Figure 10 shows the simulation of three 80C31 bus cycles. The first cycle is a code fetch 
from EPROM block 0 where code "23" is driven on to the ADIOL bus by the PSD. 
The next two cycles are SRAM write (data = 55h) and read cycles to location 0300h. 

,sLout RO 
elkin DO 
ale DO 
adioh FF 
adiol FF 
esO D1 

'sO 01 
psen 01 
w, 

B0C31 With PSD4XX/5XX 
and External Memory 
In applications where large amount of SRAM is required, the PSD4XXl5XX is able to 
support an additional external SRAM. Figure 11 illustrates how an external SRAM (6164) 
can be interfaced to the PSD4XXl5XX and the 80C31 without additional hardware. Port C 
(or any other port) is configured to provide latched output addresses AO - A7, and the 
SRAM chip select is generated from the GPLD. 

-----------------------------------~~~-----------------------------------=== 3-91 



't> 
~I 

tll·'''11 
fl'IIIII 

'1"11 
111,11111 
"1111111 

Yl 

01--

X2 
PO.OI ADO 
PO.ll ADl 
PO.21 AD2 
PO.31 AD3 
PO.41 AD4 
PO.51 ADS 
PMI AD6 
PO.71 AD7 

21 
P:!.OI A8 22 
P2.11 A9 23 

P2.21 Al0 24 
P2.3/All 25 
P2.41 A12 26 
P2.SI A13 27 
P2.61 A14 28 
P2.71 A15 

RSLOUT 

A8-A12 

PSD4XX/5XX 

9 ADO/AO 
ADO 

AD1/Al ADl 

AD2/A2 
AD2 

AD3/A3 
AD3 

AD4/A4 
AD4 

ADS/AS 
ADS 

AD6/A6 
AD6 

AD7/A7 
AD7 

AD8/A8 
A8 

AD9/A9 
A9 

AD10/Al0 
Al0 

ADll/All 
All 

AD12/A12 
A12 

AD13/A13 
A13 

AD14/A14 
A14 

AD15/A15 
A1S 

::-

ADO-AD7 

U2 

PCO 
PCl 
PC2 
PC3 
PC4 
PCS 
PC6 
PC7 

PD~ 

POl 
PD2 
PD3 
PD4 
PD5 
PD6 
PD7 

PAO 
PAl 
PA2 
PA3 
PA4 
PAS 
PA6 
PA7 

PBO 
PBl 
PB2 
PB3 
PB4 
PBS 
PB6 
PB7 

CE 
WR 

lID 

11 AD0--1 
DO 12 AD1-1 
01 13 AD2 
02 15 AD3 
03 16 AD4 
04 17 ADS 
05 AD6 18 
06 19 ADI.., 
07 

::"II ~ cQ' i! !'; i CIi - ~ :"' 
1 

8g ~ 
fl '!. 
.:"' ij' 
~ 

;:: 

= 2 ~ 

~ -CD 

~ 
~ 

CO 

= c:a. 
~ 
if 
iii 
!!. 
~ 
~ 

iii:: 
S' 
if 
~ 
i 



Interfacing 
To The 6BHC11 
Family Of 
Microcontrollers 

PSD4XX/5XX - ApplicatlDn NDt. 029 

The 68HC11 family of microcontrollers have two types of bus interfaces. The 
standard HC11 has a multiplexed bus, while the 68HC11 K4 has a non multiplexed bus. The 
example here covers both bus configurations. 

The 68HC11 Bus 
The standard 68HC11 has a multiplexed bus where the lower address lines multiplex with 
an 8-bits data bus. It has the following bus signals: 

o Address/Data Bus: AD7 - ADO 

o Address Bus: A 15 - A8 

o Address Strobe: AS 

o Control Signals: E, RIW 

68HC11 Interface to PSD4XX/5XX 
The 68HC11 can interface directly to the PSD4XXl5XX without any additional glue logic. 
As shown in Figure 12, the E clock is connected to the "RD" pin, which is configured to act 
as the E clock input. The RIW signal is connected to the "WR" pin, which is configured to 
act as the RIW input. 

The PSD4XX15XX generates internal "write" and "read" signals based on the E clock and 
the RIW inputs. If E clock is high and RIW is hgih, then PSD4XXl5XX sees it as a read bus 
cycle and drives data on to the data bus through the ADIO Port if any of its internal devices 
are selected. 

--------------------------------~~ar--------------------------------_f;if= 3.93 



~ 

IUi"1Q 
lIIillll! 
Iblllll! 

II~. 
I.III~ 

riq 
C3 

VCC 

RESET 
IRQ 
XIRQ 

~ PAO 7 PAl 
6 PA2 

PEO 
PEl 
PE2 
PE3 

VRH 
VRL 

Ul 

PA3 
PA4 
PA5 
PA6 
PA7 

PBO : 
PBl r 
PB2 I 
PB3 r 
PB4 r 
PB5 r 
PB6 I 
PB7 

PCO 
PCl 
pe2 
PC3 
PC4 
PC5 
PC6 
PC7 

PDO 
PDl 
PD2 
PDa 
PD4 
PD5 

PSD4XX1SXX 

9 
8 ADO/AO 
7 ADI/Al 
6 AD2/A2 
5 ADa/A3 
4 AD4/A4 

ADO 
ADI 
Ao2 
ADa 
Ao4 
ADS 
ADO 
AD7 

3 ADS/A5 

16 2 ADO/A6 
15 AS AD7/A7 

W M ~ 13 Al0 67 ADS/A8 
12 All 66 AD9/A9 
11 A12 65 AD10/Al0 
10 A13 64 ADll/All 
9 A14 63 AD12/A12 

A15 62 AD13/A13 
61 AD14/A14 

AD15/A15 

MODA 
MODB 
XlRQ 
IRQ 

E 

RIW 

RESET 

= 

ClKIN 

4 1 , E 

PEO 
PEl/ALE 
PE2 
PE3 
PE4 
PE5 
PE6 
PE7 

VSTDBY 

U2 

PCO 
PCl 
PC2 
PC3 
PC4 
PC5 
PC6 
PC7 

PDO 
PDl 
PD2 
PD3 
PD4 
PD5 
PDO 
PD7 

PBO 
PBl 
PB2 
PB3 
PB4 
PB5 
PB6 
PB7 

VCC 

:::!! 
'I 
Cil 
..... 

I!\) 

I 
" ..... ..... 
@l , 
~ 
2 
i 
~ 
is' 
iit 
i :: 

ill 
2 
i 
~ 
I 

t ::::: 
~ 
:::t 

= t .. 
2 
CCi 



Interfacing 
To The 6BHe11 
FamilyOt 
Microcontrollers 
(Cont.) 

PSD4XX/5XX - Application Note 029 

Specify the 6SHe11 Multiplexed Bus Interface In PSDconflguratlon 
As shown in the following windows which are captured from PSDconfiguration, the 68HC11 
bus interface can be specified by selecting: 

o Data Bus Width: X8 

o Address/Data Mode: MX 

o Polarity of ALE: High 

o RDIWR Setting: RNI, E 

_______________________________ FSSaFE ____________________________ ___ 

r;':ill 3-95 



PSIJ4XX/5XX - Applicatilln NIt. 029 

Interfacing 
To' The 68Hett 
Family Of 
Microcontrollers 
(Clint.) 

Define The DPLDlDecoding Function In The ABEL File 
The following is a an example of defining the decoding function for the 68HC11 based 
application. Table 7 shows the memory map implemented by the DPLD. 

Table 7. System Memory Map 

Device Memory Space Memory Page 

- EPROM, Block 1 4000-7FFF 

EPROM, Block 2 8000- BFFF 

EPROM, Block 3 COOO- FFFF 

SRAM 1000 -13FF 

1/0 Devices OOOO-OOFF 

module hc11 
title 'DPLD chip select equations source file '; 

"Input signals 

"Address lines, using reserved names. 

a15,a14,a13,a12,a11 ,a10,a9,a8,a1 ,aO pin; 

"Output signals 
as,rd_wr,e pin 37,29,41; "Motorola related ale and read/write signals 
csiop, rsO, es1, es2, es3 node; "DPLD output chip selects 

"DEFINITIONS 

x = .x. ; " Don't care 
Address = 
[a15,a14,a13,a12,a11 ,a10,a9,a8,X,X,X,X,X,X,a1 ,aO]; 

equations 

"DPLD EQUATIONS 

csiop = (Address >= AhOOOO) & (Address <= AhOOFF); "CSIOP 256bytes block 
rsO = (Address <= Ah1000) & (Address >= Ah13FF); "SRAM 2KB block 

es1 = (Address >= Ah4000) & (Address <= Ah7FFF); "2nd EPROM block cs 
es2 = (Address >= Ah8000) & (Address <= AhBFFF); "3rd EPROM block cs 
es3 = (Address >= AhCOOO) & (Address <= AhFFFF); "4th EPROM block cs 

"The first EPROM block is not used and it is not required to define esO 

END 

----------------------------------,~~~~---------------------------------3-96 -=-



Interfacing 
To The 6BHC11 
Family Of 
Micfocontfollers 
(Cont.) 

PSD4XX/5XX - Application Nots IJ29 

Simulation of 68HC11 Bus Cycles With the PSD4XX/5XX 
Figure 13 shows the output of the 68HC11 bus cycle simulation. Data byte 55h is written to 
location 1000h of the SRAM in a write bus cycle with the Am signal low. In the next 
cycle, the RIW signal is high and the same data byte is being read back as shown in the 
ADIOL bus. ' 

68HC11 With PSD4XX/5XX and External Memory 
In applications where a large amount of SRAM is required, the PSD4XXl5XX is able to 
support an additional external SRAM. Figure 14 illustrates how an external SRAM (6164) 
can be interfaced to the PSD4XXl5XX and the 68HC11 with multiplexed address/data bus 
without additional hardware. Port C is configured to provide the latched output addresses 
AO -A7 (A8 -A15 come directly from the 68HC11). The SRAM chip select and the 
read/write signals are generated from the GPLD. 

11'_111_. 
------------------------------~~1---------------------------3-.9--7 



f:> = 

If -II 

" II .. :,~ 

1. I 
.L 
c::::JYl 

I 

:!! 
'I ; 

ADO-AD7 _ ~ 

PSD4XX15XX U2 U3 I 
17 ..M. 10 DO 11 ADO .... 

ADO 9 ADO/AO PCO 16 AI 9 AO 12 ADI .... 
ADI 8 AD1/Al PCl 15 A2 8 AI Dl 13 AD2 " 6SHC11 AS Ul AD2 7 AD2/A2 PC2 14 7 A2 ~ 15 AD3 I 4 5 AD3 6 AD3/A3 PC3 13 A4 6 A3 16 AD4 

~-r 
C3 T 

1C

R1 

~lk 

+fJpF I 
~ 

30 XT PA3 T AD4 5 AD4/A4 PC4 12 5 A4 D4 17 AD5 ~ ~ EX PA4 rt- AD5 4 AD5/A5 PC5 11 ...All. 4 A5 D5 18 AD6 = 
PA5 IT AD6 3 AD6/A6 PC6 10 A7 3 A6 D6 19 AD7 ,Ii; 

39 RESET PA6 r,-.Ar1J ~ AD7/A7 PC7 All ..A A7 D7 ;ioiii I 41 IRQ PA7 r- __ 4A 

I ~o XIRQ 16 A8 68 ,,__ __ ::_:_ 

PBO 15 A9 67 ,-- --- _ _ -- I ~ -!- PAO PBl 14 Al0 66 AD,u,~.u ,_ IT9 1/ :..-;~ ~ I All I -.. -+ PAl PB2 13 All 65 AD1:;;':: ~;;: f58 vcc 1/ I A12: : ... 
....!.. PA2 PB3 12 A12 64 ADI2;;':; ::::: 157 T I ---2l!..I CSI I I iii: 

PB4 11 A13 63 AD13;;.;; ,- [jL t I I :::1!JCS2 _ ...g... nmft DDC E AD14/A14 PD4 [55 27 WI' _ 

~~ ,y, 1 ADW--- :~ ~ I I I I j16~~4 1 I i 
~ E I~ vnn ,-, I 33 AD2 ~ I I I I I I I 

P9- ::::M_ - ~:a ~b:11111 I~ 
J!!! C&. n.. 26 L 42 

PDO ~ "L PA4 ~ 
PD1~ = 38 PA5~ 
PD2 "*" -F :~/ALE PA6 -Po-
PD3 T ~ PE2 PA7 .......... 
PD4 rir 34 PE3 50 
PD5 r--"'- -B. PE4 PBO r:-

25 32 PE5 PBl "ii"" 
MODA ~ ~ PE6 PB2 "if'" 
MODB ....:..:.., ....!!!.... PE7 PB3 "ii"" 

27 E PB4 rF 
~26 VSTDBY PB5 ~ 

E PB6 t-T.-
AS 28 RIW = PB7 ~ 

L RIW J 

at 
if 
i 
~ 

1 -- ~~ J 
~ ~ J RESET CLKlN ~ J [CLKlN 

MODA 

MODe ~ ~f 
XIRQ ... 1 R4 R5 R6 R7 

L IRQ ,1 4.7K 4.7K 4.7K 4.7K 

1 

i 
~ 
I 

t :::: 
&I 
;t 
:I 
I 
iii' 

I 



Interfacing 
To The 6BHe11 
FamilyOt 
Microcontrollers 
(Cont.) 

PSD4XX/5XX - AppllcatlDn NDt. 029 

Define The DPLD/Decodlng Function In The ABEL File For External SRAM 
The following is a an example of defining the decoding function for the 68HC11 based 
application with external SRAM. The latched address AO - A7 are assigned to Port C. The 
"/wr" and "/rd" Signals, which can be used for other devices besides the SRAM, are also 
generated. Table 8 shows the memory map. 

Table B. System Memory Map 

Dellice Memory Space Memory Page 

EPROM, Block 1 4000-7FFF 

EPROM, Block 2 8000-BFFF 

EPROM, Block 3 COOO- FFFF 

SRAM (PSD) 1000 -13FF 

SRAM (External) 2000-3FFF 

1/0 Devices 0000- OOFF 

--------------------------------~ .. ~.--------------------------------':ifl~~ 3·99 



PSD4XX/5XX - Application Note 029 

Interfacing 
To The 6BHeff 
Family Of 
Microcontrollers 
(Cont.) 

Define The DPLD/Decoding Function In The ABEL File For External SRAM (Cont.) 

module hc11 
title 'Design example of 6Bhc11 DPLD source file to interface with external SRAM'; 

"Input signals 

"Address lines, using reserved names. 

a15,a14,a13,a12,a11 ,a1 0,a9,aB,a1 ,aO pin; 

"Output signals 
as,rd_wr,e pin 37,29,41; "Motorola related ale and read/write signals 
cSiop, rsO, esO, es1, es2 node; "DPLD output chip selects 

"assign pins (port c) for latched address out 
addrO, addr1 ,addr2,addr3,addr4,addr6, addr7 pin 17,16,15,14,13,12,11,10; 

"External SRAM chip select and read/write signal generation 
swr, srd, sram_ce pin; 

"DEFINITIONS 

x = .x. ; " Don't care 
Address = [a15,a14,a13,a12,a11 ,a1 0,a9,aB,X,X,X,X,X,X,a1 ,aO]; 

equations 

"DPLD EQUATIONS 

csiop = (Address >= I\hOOOO) & (Address <= I\hOOFF); "CSIOP 256bytes block 
rsO = (Address <= I\h1000) & (Address >= I\h13FF); "SRAM 2KB block 

es1 = (Address >= I\h4000) & (Address <= I\h7FFF); "2nd EPROM block cs 
es2 = (Address >= I\hBOOO) & (Address <= I\hBFFF); "3rd EPROM block cs 
es3 = (Address >= I\hCOOO) & (Address <= I\hFFFF); "4th EPROM block cs 

"The first EPROM block is not used and it is not required to define esO 

"Equations to select/read/write the 6112B, external SRAM through PSD 

swr !(e & !rd_wr); "write signal 
srd !(e & rd_wr); "read signal 
sram_ce = (Address >= I\h2000) & (Address <= I\h3FFF); "BK SRAM chip select 

END 

~3'~1~00~-----------------------------~~~---------------------------------



Interfacing 
To The 6BHC11 
FamilyD' 
Mlcrocontrollers 
(Clint.) 

PSD4XX/5XX - Applicatilln Nllte 029 

The 68HC11K4 Bus 
Motorola's 68HC11 K4 has a non-multiplexed 16-bit address and an 8-bit data bus. 
The control signals used for accessing 1/0 devices·or memory are the E clock and the 
RlWsignal. 

The 68HC11K4 Interface tD PSD4XX/5XX: 
The 68HC11 K4 can interface directly to the PSD4XXl5XX without any additional 
glue logic. As shown in Figure 15, the E clock is connected to the "RD" pin, which is 
configured to act as the E clock input. The RIW signal is connected to the "WR" pin, 
which is configured to act as the RIW input. 

The PSD4XXl5XX generates internal "write" and "read" signals based on the E 
clock and the RIW inputs. If E clock is high and RIW is high, then PSD4XXl5XX 
sees it as a read bus cycle and drive data onto the data bus through the Port C 
if any of its internal devices is selected. 

-S-iJIII..li# 
----------------------------------~~jF------------------------------3--,-O--, 



~ -~ 

'1""11 t IQIII 
II"" 

IUIIIIII 
I.II'~ 

VCC 

61 
30 

76 

11 
10 

9 

49 
48 
47 
46 
45 
44 
43 
42 

51 
50 

75 

68HC11K4 Ul 

60 
PFO 

59 
XT 

PFl 
58 

EX 
PF2 

57 PF3 
56 

IRQ 
PF4 

55 
XlRQ 

PF5 
54 

PF6 
53 MODB 

PF7 

20 PAO 
PBO 

19 PAl 
PBl 

18 PA2 
PB2 

17 
PB3 

16 PEO 
PB4 

15 PEl 
PBS 

14 PE2 
PB6 

13 PE3 
PB7 PE4 

62 PE5 
PCO 

63 PE6 
PCl 64 PE7 
PC2 

65 Pcl 
66 VRH 

PC4 
67 VRL 

PC5 
68 

PC6 
69 PC7 

33 
PG7 

72 RESET 
E 

MODB 
XIRQ 
IRQ R6 

4.7K 

:"II ~ ciS' 2 ~ i «II .... 
~ ~ 

DO-I)J 

PSD4XXl5XX 

:: I 

~ 
iii '!.. .... i .... 
~ 

::t 
!!I 

PCO 
9 

ADO/AO 
PCl 8 AD1/Al 
PC2 

AD 

7 
AD2/A2 

PC3 

Al 

6 
AD3/A3 

PC4 

A2 

5 AD4/A4 
PC5 

A3 

4 
AD5/A5 

PC6 

A4 

3 
AD6/A6 

PC7 

AS 

2 
AD7/A7 

A6 
7 

68 AD8/A8 

60 
67 

AD8/A9 
PDO 59 

A8 

66 
AD10/Al0 

PDl 58 

A9 

65 
ADll/All 

PD2 57 

Al0 

64 
AD12/A12 

PD3 56 

All 

63 AD13/A13 
PD4 55 

A12 

62 
AD14/A14 

PD5 54 

A13 

61 
AD15/A15 

PD6 53 

A14 

PD7 

A15 

41 
E E 

= if 
Q" ;-
;,: ~ 
2 co 

~ 
~ 
~ 
ii' 
iii' 
it 
COl 
CD 

29 
R/W 

27 
40 

RESET 
PAD 26 
PAl 25 

39 CSI 
PA2 24 
PA3 23 

42 
ClKIN 

PA4 22 
PA5 21 

38 
PEO 

PA6 20 
37 

PEl/ ALE 
PA7 36 

PE2 

50 
34 

PE3 
PBO 49 

33 
PE4 

PBl 48 

RESET 

32 
PES 

PB2 47 
31 

PE6 
PB3 46 

30 
PE7 

PB4 45 

VCC 

PB5 44 
28 

VSTDBY 
PB6 43 
PB7 

-= 



Interfacing 
To The 68HC11 
Family 01 
Micfocontfollers 
(Cont.) 

PSD4XX/5XX - Application Nots 029 

Specify The 68HC11K4 Non-Multiplexed Bus Interface In PSDconflguration 
As shown in the following windows which are captured from PSDconfiguration, the 68HC11 
bus interface can be specified by selecting: 

o Data Bus Width: X8 

o Address/Data Mode: NM 

o RDIWR Setting: RIW, E 

--------------------------------~~~-----------------------------3--1-D-3 



I'SIJ4XX/5XX - Application Not, 029 

Interfacing 
To The 6BNe11 
FamilyOt 
MicfocontfollelS 
(Cont.) 

Define The DPLD/Decoding Function In The ABEL File 
The following is a an example of defining the decoding function for the 6BHC11 K4 based 
application. Table 9 shows the memory map implemented by the DPLD. 

Table 9. System Memory Map 

Device Memory Space Memory Page 

EPROM, Block 1 4000-7FFF 

EPROM, Block 2 BOOO-BFFF 

EPROM, Block S COOO-FFFF 

SRAM 1000-1SFF 

1/0 Devices OOOO-OOFF 

module hc11k4 
title 'Design example of 6BhC11K4 DPLD source file'; 

"Input signals 

"Address lines, using reserved names. 

a 15,a 14,a 1S,a 12,a 11,a1 O,a9,aB,a 1,aO pin; 

"Output signals 
rd_wr,e pin 29,41; "Motorola related ale and readlwrite signals 
csiop, rsO, esO, es1, es2, esS node; "DPLD output chip selects 

"DEFINITIONS 

x = .x. ; " Don't care 
Address = 
[a15,a14,a1S,a12,a11 ,a10,a9,aB,X,X,X,X,X,X,a1 ,aO]; 

equations 

"DPLD EQUATIONS 

csiop = (Address >= I\hOOOO) & (Address <= "hOOFF); "CSIOP 256bytes block 
rsO (Address >= I\h1 000) & (Address <= I\h1SFF); "SRAM 2k block 

es1 (Address >= I\h4000) & (Address <= I\h7FFF); "2nd EPROM block cs 
es2 (Address >= I\hBOOO) & (Address <= I\hBFFF); "Srd EPROM block cs 
esS (Address >= I\hCOOO) & (Address <= I\hFFFF); "4th EPROM block cs 

END 

~3.~1N~-------------------------~~Ar----------------------------



Interfacing 
To The 68HC11 
Family Of 
Miclocontlollers 
(Cont.) 

Interfacing 
To The 80C196 
Family Of 
Miclocontlollers 

PSD4XX/5XX - Application Nottl 029 

Simulation Of 68HC11K4 Bus Cycles With The PSD4XX/5XX 
Figure 16 shows the output of the 68HC11 K4 bus cycle simulation. Data byte 55h is written 
to loaction 1000h of the SRAM in a write bus cycle with the RIW signal low. In the next 
cycle, the RIW signal is high and the same data byte is being read back as shown in the 
DATAL bus. 

Figure 16. 

The 80C196 Bus 
The 80C196 family of microcontroliers has a 16-bit multiplexed address/data bus. 
The processor has a dynamic data bus width. In a typical application, the EPROM has an 
8-bit data bus while the SRAM has a 16-bit data bus. The PSD4XXl5XX is able to provide 
a 16-bit data bus interface to both the SRAM and EPROM, thus increase system 
performance and throughput. 

The 80C196 bus control signals include the ALE, the RD, the WR and the SHE. 
It also has a special mode, the Write Strobe Mode. In this mode, the WR and SHE signals 
are replaced by WRL and WRH. The PSD4XXl5XX supports both interfaces. 

The 80C196 and PSD4XX/5XX Interface Schematic 
Figure 17 shows the 80C196 and PSD4XXl5XX interface schematic. The address/data 
bus and the bus control signals such as ALE, RD, ER, SHE etc., are directly connected to 
the corresponding pins of PSD4XXl5XX without any additional glue logic. 

----------------------------------,~~~~----------------------------------
==== 3-105 



= 
8OC196 

11 
X1 X2 

P3.01 ADO 

vcc 
P3.lIAD1 
P3.2 I AD2 
P3.3/AD3 

NMI P3.4 I AD4 
READY P3.5/AD5 
CDE P3.8/ADI 
BUSWIDTH P3.7 I AD7 
RESET 

= ACHO/PO.O 
P4.0 I ADI 
P4.1/ADI 

~ IIIIIII\j 

7 ACH1/PO.1 
4 ACH2/PO.2 

P4.21 AD10 

11 ACH3/PO.3 
PUI AD11 

10 ACH4/PO.4 
P4.41 AD12 

8 ACH5/PO.5 
P4.51 AD13 

9 PCS6/PO.& 
P4.81 AD14 

PCS7/PO.7 
P4.71 AD15 

18 
17 P2.0/TXD 

RD 

15 P2.lIRXD 
WR 

44 P2 .2/EXINT 
BHE 

42 P2 .3/T2ClK 
ALE 

39 P2.4/T2RST 
INST 

33 P2.5/PWM 
ClKOUT 

38 P2.&/T2UP-DN 
P2.7/T2CAP 

P1.0 
P1.1 

24 

VCC I 25 HSI.O 
P1.2 

2& HSI.1 
PU 

27 HSI. 2/HSO 4 
P1.4 

HSI.3/HSO:5 
P1.5 
P1.8 

13 
VREF 

P1.7 
HSO.O 
HSO.1 
HSO.2 
HSO.3 

1 
RST_OUT 

52 
51 
50 
48 
48 
47 
48 
45 

1 liD 
40 WR 
41 BHE 
62 ALE 
63 
&5 ClKlN 

59 
58 
57 
58 
55 
48 

IC3 
= 

ADO 
AD1 
Ao2 
AD3 
ADi 
ADS 
ADI 
Ao'i 

AS 
A9 
i1ci 
iii 
A12 
i1i 
iii 
A15 

RESET 

= 

~ ! 'I 
Ci1 

~ ~ 

PSD4XXI5XX U2 

ADO/AO 
AD1/A1 
AD2/A2 
AD3/A3 
AD4/A4 
AD5/A5 
ADl/A8 
AD7/A7 

I 

I t 
~ :;:: 

It I: 
III !II 
I 1= 
fJ iit 

! I 
~ e 

88 
ADI/AS 87 
ADl/A9 

&& AD10/A10 
&5 AD11/A11 
84 AD121A12 
63 AD13/A13 
62 AD14/A14 &1 

AD15/A15 

ii: 
~ :: 

PEOIBHE 
PE1/AlE 
PE2 
PE3 
PE4 
PES 
PES 
PE7 

28 
VSTDBY 



Interfacing 
To The 80C196 
Family Of 
Microcontrollers 
(Cont.) 

PS04XX/5XX - Application Nots 029 

Specify The BOC196 Bus Interface In PSDconfiguration 
As shown in the following windows captured from PSDconfiguration, specify the 80C196 
interface bus by selecting: 

o Data Bus Width: X16 

o Address/Data Mode: MX 

o Polarity of ALE: High 
---o RDIWR Setting: WR, RD, BHE 
(WRL, RD, WRH for Write Strobe Mode) 

-----------------~~_Jr_~----------------
3-107 



PSD4XX/5XX - Application Note 029 

Interfacing 
To The 80C196 
FamilyOt 
Microcontrollers 
(Cont.) 

Define The DPLD/Decoding Function In The ABEL File 
The following is an example of defining the decoding function for the 80C196 based 
application. The codes are stored in three 32KB EPROM blocks and occupy the same 
address space from OOOOh to 7FFFh. This requires the EPROM blocks to be assigned to 3 
different pages. Table 10 illustrates the address map. 

Depending on your application, you could also use the GPLD to generate the control 
signals for the 80C196 "Ready" and the "Buswidth" input. 

Table 10. System Memory Map 

Device Memory Space Memory Page 

EPROM, Block 0 0000 -7FFF Page 0 

EPROM, Block 1 0000-7FFF Page 1 

EPROM, Block 2 0000-7FFF Page 2 

SRAM 8000 - 87FF All Pages 

I/O Devices COOO-COFF All Pages 

module 80C196 
title 'Design example of 80C196 DPLD source file'; 

"Input signals 

"Address lines, using reserved names. 

a15,a14,a13,a12,a11 ,a10,a9,a8,a1 ,aO pin; 
pgr3, pgr2, pgr1, pgrO node; "Page Register outputs 
reset pin; 
rsLout pin 34; 

"Output signals 

csiop, rsO, esO, es1, es2 node; "DPLD output chip selects 

"DEFINITIONS 

page = [pgr3,pgr2,pgr1 ,pgrO]; 
X = .x. ; " Don't care 

,Address =[a15,a14,a13,a12,a11 ,a10,a9,a8,X,X,X,X,X,X,a1 ,aO]; 

equations 

"DPLD EQUATIONS 

csiop= (Address >= AhCOOO) & (Address <= AhCOFF) ; "Chip Select 256 block 
rsO = (Address >= Ah8000) & (Address <= Ah87FF) ; " SRAM, 2KB 
esO = (Address >= AhOOOO) & (Address <= Ah7FFF) & (page == 0); "EPROM 32KB, page 0 
es1 = (Address >= AhOOOO) & (Address <= Ah7FFF) & (page == 1); "EPROM 32KB, page 1 
es2 = (Address >= AhOOOO) & (Address <= Ah7FFF) & (page == 2); "EPROM 32KB, page 2 

"GPLD EQUATIONS 

rsLout = reset; 

END 

-3-.1-08-------------------------------~~~---------------------------------



Interfacing 
To The 80C196 
FamilyOt 
Microcontrol/ers 
(Cont.) 

PSD4XX/5XX - Application Not. 029 

SimulatlDn Of 80C196 Bus Cycle With The PSD4XX/5XX 
Figure 1B shows the simulation output of the SILOS3 Simulator. The BOC196 is writing a 
word 6677h to SRAM location BOOOh and reading back the same location in the next bus 
cycle. 

reset 

rsLout 

adioh 

adiol 

ale 

bhe 

esO 

rd 

rsO 

--------------------------------~~~-----------------------------3-.1-0-9 



PSD4XX/5XX - Application Note 029 

Interfacing 
The PSD4XX/5XX 
To The 68302 

The 68302 Bus 
The Motorola 68302 has a non-multiplexed bus with a 16-bit data bus. 
It has the following bus signals: 

o Address Bus: A23-A 1 

o Data Bus D15-DO 

o Address Strobe: AS 

o Control Signals: RIW, UDS, LDS 

The 68302 has no AO in the address bus; therefore the AO (ADIOO) pin on the PSD4XXl5XX 
is grounded. The signals UDS and LDS (Upper and Lower Data Strobe) are used to select 
whether the low byte, high byte or both bytes for the current bus cycle. See Table 11 for the 
byte enable assignment. 

Table 11. Byte Enable Assignment 

UOS LOS 08-015 00-07 
Low Low Enabled Enabled 

Low High Enabled Disabled 

High Low Disabled Enabled 

High High Disabled Disabled 

The 68302 and PS04XX/5XX Interface Schematic 
Figure 19 is the 68302 and PSD4XXl5XX interface schematic. The address bus, data bus 
and bus control signals such as LDS, UDS, RIW, AS etc., are directly connected to the 
corresponding pins of PSD4XXl5XX without any additional glue logic. Please note AO pin 
on the PSD4XXl5XX is grounded. 

For Motorola 16-bit microcontroliers, the data byte DO - D7 is considered as an odd byte 
and D8 - D15 as an even byte. This is just the reverse of Intel and other similar processors. 
If you select a Motorola 16-bit bus interface, the PSDcompiler automatically swaps these 
bytes such that DO-D7 is programmed to even byte locations and D8 - 15 is programmed to 
odd byte locations in the PSD EPROM. This swapping is transparent to the user. In the 
interface schematic, connect DO - D7 from the 68302 to Port D (Data Port DO - D7) and 
D8 - D15 from the 68302 to Port D (Data Port D8 - D15). 

The CSO signal from the 68302 can be connected to the CSI pin on the PSD4XXl5XX for 
power management. If the 68302 is not fetching code from the PSD, CSO is high and thus 
puts the PSD into power saving Standby Mode. 

--~----------------------------r====--------------------------------3-110 ==:== 



tl 
'-11ft 

':" ... ... ... 

68302 

...B... 
80 

EXTAL 
XTAL 
CLKD 

:r C2 62 

":;" ":;" :! 
5i"" 
""""'i9 

76 

RXDCL1RXD 
TXD1_L1TXD 
RCLK1_L1CLK 
TCLKCSDS1 
CDt . ..LISY1 
CTSCLIGR 
RTSCL1RQ 
BRG1 

.!!!!. 
m. ..m.. 
~ 

....I!!. 
...m.. 
.!l§. 
m 

1\...3 
.Q!.. 
D1D 
D11 

I 
iffi" 
D13 
D14 
iffi' 

I RESET >­
I CLKlN > 

92 
RESET 
iiALf 
BERR 
BUSW 
DlSCPU 

:m DREQ PA13 
~ DACi:PA14 

DONE_PA15 

108 
""'iii9 
-;;0 

111 
113 

""ii4 
115 
""'ii7 
1ii'" 

119 I 

IACK7_PBD 
1ACK6_PB1 
IACKCPB2 
TlNCPB3 
TDUT1_PB4 
TIN2_PBS 
TDUT2_PB6 
WDOG_PB7 
PB8 
PB9 

DO-D15 

A1 PSD4XX15XX 

A2 A1 A2 A2 9 A4 A3 8 ADO/AD 

M A4 7 ~~ 

U1 

A6 M 6 AD2/A2 
A7 A6 5 AD3/A3 
AI A7 4 AD4/A4 
AI 3 ADS/M 

A10 AI 2 AD6/A6 
A11 A9 AD7/A7 

~ ~ g 
A13 A11 67 ADa/Al 
A14 A12 66 ADS/A9 
A15 A13 65 AD10/A10 
A16 A14 64 AD11/A11 
A17 A15 83 AD12/A12 
A18 62 AD13/A13 
A19 Vee 61 AD14/A14 
A20 Vee AD15/A15 

LDS 

A21 RIW 

A22 

41 

29 

40 

LDS 

RIW 
A23 10K 

AS 

R_W !J.~~~~~~~~~~3=:I=~ UDS_AO 
LDS_DS 
DATAK 

RiiC 
lAC 

BCLR 

RESET 

CSI ~ 
42 CLKIN 

36 PEOIUDS l------~=+=t=~::::=f~37~ PE1/AS 

iiiOC 
BGA~ ~~~------t-------~ 

IRQ1 1-;::;-- ...... 

IRQ6 I-;~ _~ 
IRQ7 
FCO 
FC1 
FC2 

AVEC 
CSO 
m 
CI2 
CS3 
FiiZ ---' 

VCC 

36 PE2 
34 PE3 
33 PE4 
32 PE5 
31 PE6 
30 PE7 

28 VSTDBY 

":;" 

RESET 

CLKlN ...... 
RSLOur 

U1 

PCO I- 7 DO 
PC1 16 i)1 
PC2...,J5 D2 
PC3 1-14 D3 
PC4 >-13 D4 
PC5 12 D5 
PC6 11 D6 
PC7 110 D7 

PDO 60 D8 
PD1 59 DS 
PD2 58 D10 
PD3 57 D11 
PD4 5& D12 

PDS :: ~3 
PD6 
PD7 53 D15 

PAO 
PA1 
PA2 
PA3 
PA4 
PM 
PA6 
PA7 

50 
PBO 49 
PB1 48 
PB2 47 
PB3 48 
PB4 45 
PBS 44 
PB6 43 
PB7 

:::!! 
'I 
Ci1 .... 
!It 

B 
2 

= Q, 

;,: 
! 
~ 
~ :a.c 
is' ;-

i 

I 
~ 
I 

t 
I 
III 
I 
If 

II 



PS04XX/5XX - Application Note 029 

Interfacing Specify The 68302 Bus Interface In PSDConfiguration 
The PSD4XX/5XX As shown in the following windows captured from PSOconfiguration, specify the 68302 bus 
To The 68302 interface by selecting: 

(Cont.) o Data Bus Width: 

o Address/Data Mode: 

o ALE/AS signal: 

o Polarity of ALE: 

o RDIWR Setting: 

X16 

NM 

Yes (No if you prefer not to use />is to latch address) 

High (if Yes on ALE/AS) 

RIW, LOS, UOS 

~~----------------------------f===~--------------------------------
3-112 



Interfacing 
The 
PSD4XX/5XX 
To The 68302 
(Cont., 

PSD4XX/5XX - Application Nots 029 

Define the DPLD/Decoding function in the ABEL file 
The following is an example of defining the decoding function for the 68302 based 
application. The codes are stored in three 32KB EPROM blocks and occupy the same 
address space from OOOOh to 7FFFh. This requires the EPROM blocks to be assigned to 3 
different pages. Table 12 illustrates the address map. 

Table 12. System Memory Map 

Device Memory Space Memory Page 
EPROM, Block 0 0000 - 3FFF 

EPROM, Block 1 4000 -7FFF 

EPROM, Block 2 4000 -7FFF 

SRAM 8000 - 87FF 

I/O Devices COOO- COFF 

module 68302 
title 'example of 68302 DPLD source file '; 

"Input signals 

"Address lines, using reserved names. 
a15,a14,a13,a12,a11 ,a1 0,a9,a8,a1 pin; 

"Use the reserved names to declare the following special functions 
reset pin; 
rst_out pin 34; 

" Output signals 

" Internal PSD5XX PLD output signals. 

"DPLD outputs using reserved names. 
csiop, rsO, esO, es1, es2, es3 node; 

" Definitions 

" Don't care 
X= .x.; 

"Note in the Address definition that a7 - a2 are denoted by don't-cares 
Address = [a15,a 14,a13,a 12,a11 ,a 1 0,a9,a8,X,X,X,X,X,X,a 1 ,X]; 

equations 

"DPLD EQUATIONS 

All Pages 

Page 1 

Page 2 

All Pages 

All Pages 

csiop = (Address >= I\hCOOO) & (Address <= I\hCOFF) ; "Chip Select 256 block 
rsO = (Address >= I\h8000) & (Address <= I\h87FF) ; "SRAM, 2KB 
esO = (Address >= I\hOOOO) & (Address <= I\h3FFF) & (page == X); 

"EPROM 16KB, any page 
es1 = (Address >= I\h4000) & (Address <= I\h7FFF) & (page == 1); "EPROM 16KB, page 1 
es2 = (Address >= I\h4000) & (Address <= I\h7FFF) & (page == 2); "EPROM 16KB, page 2 

"GPLD EQUATIONS 

rst_out = reset; 

END 

--------------------------------~~~-~--------------------------------
3-113 



PSD4XX/5XX - Application Note 029 

Interfacing 
The 
PSD4XX/5XX 
To The 68302 
(Cont.) 

Simulation Of 68302 Bus Cycle With The PS04XX/5XX 
Figure 20 shows the simulation of 3 bus cycles of the 68302. The 68302 is writing a 
byte to SRAM location 8477h and location 8476h. The third bus cycle is a word read to the 
same locations. 

Figure 20. 

rsCout R1 

elkin 01 

adioh 00 

adiol 00 

as 01 

datah XX 
datal XX 
esO 01 

es1 00 

Ids 01 

rdorwr 

-3--,-,4-------------------------------~~~---------------------------------



Interfacing 
The 
PSD4XX/5XX 
To 
68HC16/68330/ 
331/332/340 

PSD4XX/5XX - Application Nots 029 

The 683XX Bus 
This group of Motorola 16-bits microcontrollers have similar bus structure and the bus 
interface to the PS04XXl5XX are identical. The 68332 microcontroller is used here as an 
example. The bus is a non-multiplexed data and address bus and has the following signals: 

o Address Bus: 

o Data Bus: 

o Address Strobe: 

A23-AO 

015-00 

AS 

o Control Signals: OS, RIW, SIZO, SIZ1 

The higher address pins A23-A 19 can be configured either as address lines or as chip 
select outputs (CS6 - CS10) at reset time. Two of the signals, SIZO and AO are used to 
determine whether the current cycle is a byte or a word operation. If SIZO is low, it is always 
a word operation. If SIZO is high, it is a byte operation and AO determines which byte is 
enabled. 

The PS04XXl5XX generates internal write or read pulses based on the status of the RIW 
and OS signal inputs. 

The 68332 And PSD4XX/5XX Interface Schematic 
Figure 21 is the 68332 and PSD4XXl5XX interface schematic. The address bus, data bus 
and the bus control signals such as DS, RIW, SIZO, AS etc., are directly connected to the 
corresponding pins of PS04XXl5XX without any additional glue logic. 

For Motorola 16-bit microcontrollers the data byte DO - 07 is considered as odd byte and 
08 - 015 as even byte, which is the reverse of Intel and other similar processors. If you 
select a Motorola 16-bit bus interface, the PSOcompiler automatically swaps these bytes 
such that DO - 07 is programmed to even byte locations and 08 - 15 is programmed to 
odd byte locations in the PSO EPROM. This swapping is transparent to the user. In the 
interface schematic, connect DO - 07 from the 68332 to Port C (Data Port DO - 07) and 
08 - 015 to Port 0 (Data Port 08 - 015). 

The CSBOOT signal from the 68332 can be connected to the CSI pin on the PS04XXl5XX 
to control the device power consumption. If the 68332 is not fetching code from the PSO, 
the CSBOOT is high and puts PS04XXl5XX into power saving Standby Mode. After 
system reset, the CSBOOT has a default value of 1 M byte memory space starting from 
address OOOOOOh. This value can be re-programmed after system initialization to include 
the PSO EPROM, SRAM and 1/0 space. 

-----------------------------------~~~-----------------------------------==== 3-115 



q,lliii;:: 
III_I 

I11I11111 
11111"11 

MC68332 

DO 
m 

IW 00 
1M 00 

~ 

~ 
~ 

W 
08 
~ 

ow 
ml 
on 
ou 
0" 
oU 

RESET 

oSACKO 
DSACKl 

00-015 

AO 

" M PSD4XX15XX 

A2 Al 
A3 A2 

Ul 

AoO/AO 
Aol/Al 

A4 A3 
AS A4 
A6 AS 
A7 A6 
A8 A7 

A9 Al0 A8 
All A9 
M2 MO 
A13 A11 
A" M2 
MS M3 
M6 M4 
M7 M5 

A18 
A19_CS6 
A20_CS7 
A21_CS8 
A22_CS9 

A23_CS10 

OS 

~ I ~~ I I 

A02/A2 
A03/A3 
A04/A4 
ADS/AS 
A06/A6 
A07/A7 

68 
A08/A8 67 

66 
A09/A9 

65 
Aol0/Al0 

64 Aoll/All 

63 
Ao12/A12 

62 Ao13/A13 

61 
Ao14/A14 
Ao15/A15 

41 
lOS 

R/W 

RESET 

CSI 

ClKIN 

SIZO 81 SIZl 80 SIZO 38 
ClKOUT 66 AS 37 PEO/SIZO 

CSBOOT 112 3 PElI ALE 
BR_CSO 113 34 PE2 
BG_CSl 114 33 PE3 

BGACK_ CS2 115 32 PE4 
FCO_CS3 118 31 PE5 
FC1_CS4 119 30 PE6 
FC2_ CS5 120 PE7 

• V~IU~Y 
~8 

RESET -=-
ClKlN 

RSLOUT 

PCO 1...17 00 
PCl L-16 ol~ 
PC2 L-15 o2~ 
PC3 L...J4 03 
PC4 13 04 
PC5 12 05 
PC6 11 ~ 
PC7 10 07 

POO L60 08.1 
POl 59 ~~ 
P02 58 010 
P03 57 011 
P~ 56 012 
P05 55 013 
P06 ....5.4 ""'i'ii4 
P07 I 53 015 

27 
PAO 26 
PAl 25 
PA2 24 
PA3 23 
PA4 22 
PAS 21 
PA6 20 
PA7 

50 
PBO 49 
PBl 48 
PB2 47 
PB3 46 
PB4 45 
PBS 44 
PB6 43 
PB7 

:"'1'1 
cii' 
~ 
CIi 
~ 
:'" 

~ 
2 
i 
~ 
I 

~ 
'1i ::::: 
fil 
::t 
iii 
if 
S' 
2 co 



Interfacing 
The 
PSD4XX/5XX 
To 
68HC16/68330/ 
331/332/340 
(Cont.) 

PSD4XXj5XX - Application Nots 029 

Specify the 68332 Bus Interface in PSDConfiguration 
As shown in the following windows which are captured from PSOconfiguration, the 68332 
bus interface can be specified by selecting: 

Q Data Bus Width: X16 

Q Address/Data Mode: NM 

Q ALE/AS signal: Yes (No if you prefer not to use AS to latch address) 

Q Polarity of ALE: High (if Yes on ALE/AS) 

Q RDIWR Setting: AIW, OS, SIZO 

iii Data Bus Width: X16 Address/Data Mode: NM 

--------------------------------f=~~--------------------------------
==== 3-117 



PSD4XX/5XX - Application Not, 029 

Interfacing 
The 
PSD4XX/5XX 
To 
68HC16/68330/ 
331/332/340 
(Cont.) 

Define the DPLD/Decoding function in the ABEL file 
The following is an example of defining the decoding function for the 68332 based 
application. The codes are stored in three 32KB EPROM blocks and occupy the same 
address space from OOOOh to 7FFFh. This requires the EPROM blocks to be assigned to 3 
different pages. Table 13 illustrates the address map. 

Table 13. System Memory Map 

Device Memory Space Memory Page 
EPROM, Block 0 0000-3FFF 

EPROM, Block 1 4000-7FFF 

EPROM, Block 2 4000-7FFF 

SRAM 8000 -87FF 

I/O Devices COOO-COFF 

module 68332 
title 'example of 68332 DPLD source file '; 

"Input signals 

"Address lines, using reserved names. 
a15,a14,a13,a12,a11 ,a10,a9,a8,a1 ,aO pin; 

"Use the reserved names to declare the following special functions 
reset pin; 
rst_out pin 34; 

" Output signals 

"Internal PLD output signals. 

"DPLD outputs using reserved names. 
csiop, rsO, esO, es1, es2 node; 

" Definitions 

"Don't care 
X=.x. ; 

"Note in the Address definition that a7 - a2 are denoted by don't-cares 
Address = [a15,a 14,a 13,a12,a 11 ,a1 0,a9,a8,X,X,X,X,X,X,a 1 ,aO]; 

equations 

"DPLD EQUATIONS 

All Pages 

Page 1 

Page 2 

All Pages 

All Pages 

csiop:; (Address >'" -"hCOOO) & (Address <= AhCOFF) ; "Chip Select 256 block 
rsO = (Address >= 1'-ha000) & (Address <= Ah87FF) ; "SRAM, 2KB 
esO = (Address >= "hOOOO) & (Address <= "h3FFF) & (page == X); 

"EPROM 16KB ,any page 
es1 = (Address >= "h4000) & (Address <= "h7FFF) & (page == 1); "EPROM 16KB, page 1 
es2 = (Address >= "h4000) & (Address <= "h7FFF) & (page == 2); "EPROM 16KB, page 2 

"GPLD EQUATIONS 

rs,-out = reset; 

END 

----------------------------------~~~---------------------------------
3·118 ==== 



Interfacing 
The 
PS04XX/5XX 
To 
B8He1B/B8330/ 
331/332/340 
(Cont.) 

PSD4XX/5XX - ApplIcatIon Nots 029 

SimulatiDR Of 68332 Bus Cycle With The PSD4XX/5XX 
Figure 22 shows the simulation of five 68332 bus cycles. The first two are byte write cycles 

to SRAM locations 8476 and 8477. The next cycle is a word read to the same location. 

The next cycle is reading an EPROM block. 

Figure 22. 

reset 

rSI_oul 

adioh 

adiol 

datah 

datal 

rsO 

esO 

es1 

rdorwr 

_________________ =ss tEJE 
~~~----------------------------3.-1--19 


I'SIJ4XX/5XX - Appllt:llf/on Nof. 029

Interlacing
The
PSD4XX/5XX
To 18

The Z8 Bus
The Z8 has an 8-bit multiplexed external memory bus. Port 1 of the Z8 is used as the
multiplexed bus port which provides the multiplexed lower address byte and data. Port 0
can be used as the output port for the non-multiplexed address lines A 15-A8. The bus has
the following signals:

o Address/Data Bus: AO? - AOO

o Address Bus: A 15 - A8

o Address Strobe: AS

o Control Signals: OS, RIW, OM

The Z8 has 64KB of ~gram memory space. It can also addre~another 64KB of data
memory if the signal OM (data memory) is enabled. The signal OM can be programmed to
appear on pin 4 of Port 3. If your application does not require separate data space, there is
no need to connect the OM as input to the PS04X15XX.

The Z8 And PSD4XX/5XX Interface Schematic
Figure 23 is the Z8 and PS04XXl5XX interface schematic. The address bus, data bus
and the bus control signals such as OS, RIW, AS etc., are directly connected to the
corresponding pins of PS04XXl5XX without any additional glue logic.

In this example, OM is used to separate the program space from the data space by
including it in the OPLO chip select equations. Oue to the PS04XXl5XX architecture
requirement that any input s!9!lals which are included in the EPROM chip select equations
must come from Port A, the OM signal is connected to pin PAO in the schematic.

~~------------------------~I'~·---------------------------3-120 =_.

Ul

Pl-0
P1-1

ADO

~-
Pl-2

ADl

7 :ET

Pl-3

AD2

C2 I I
Pl-4

AD3

Pl-5

AD4

-::" -::"
8 OS

Pl-6

ADS

I

Pl-7

ADS

i

po-O

AD7

I

PO-l
PO-2

AS

I

PO-3

A9

I

PO-4

Al0

PO-5

All

PO-6

A12

PO-7

A13
A14
A15

OS

1:' 1111

II~I~ I
"-1Iti I I I I P3-4 I 29

AS

RST_OUT

Vee

T e3

~

5

PSD4XX15XX

9 ADO/AO
8

AD1/Al
7 AD2/AZ
6

AD3/A3
5 AD4/A4
4

ADS/AS
3

AD6/A6
2 AD7/A7

68
ADS/AS

67
ADS/AS 66
ADl0/Al0

65
ADll/All 64
AD12/A12

63
AD13/A13 62
AD14/A14

61
AD15/A15

;1 DS

29 RIW

RESET

PEO
PElIAS
PE2
PE3
PE4
PES
PE6
PE7

28 I VSTDBY

-::"

DM

U2

17 peo
16 pel
15

PC2
14

PC3 13
PC4 12
PC5 11
PC6

10
PC7

60
PDO 59
PDl 58 PD2

57
PD3 58
PD4

55
PD5

54
PD6 53
PD7

PAO
PAl
PAZ
PA3
PA4
PA5
PA6
PA7

PBO
PBl
PB2
PB3
PB4
PB5
PB6
PB7

~
'I ;;
t:

I'
~
I: ,
;J

§
~
~
ar ;-
i
~

I
~ ,
t :;::
::
:::t
II:
I
CD a

PSD4XX/5XX - Application Nots 029

Interfacing
The
PSD4XX/5XX
To 18
(Cont.)

Specify The 18 Bus Interface In PSOconfiguration
As shown in the following windows which are captured from PSDconfiguration, the Z8 bus
interface can be specified by selecting:

o Data Bus Width: X8

o AddresslData Mode: MX

o Polarity of ALE/AS: Low

o RDIWR Setting: RIW,DS

-3--1-22-------------------------------~~~~---------------------------------

Interfacing
The
PSD4XX/5XX
To 18
(Cont.)

1'S04XX1SXX - Application Note D29

Define The DPLD/Decodlng Function In The ABEL File
The following is an example of defining the decoding function for the Z8 based application.
64KB of code is stored in EPROM blocks 0 and 1. 'The SRAM, 1/0 space and EPROM
block 2 are assigned as data memory. Table 14 illustrates the address map.

Table 14. System Memory Map

Device MemolY Space
EPROM, Block 0 0000-7FFF

EPROM, Block 1 8000- FFFF

EPROM, Block 2 0000-7FFF

SRAM 8000-87FF

1/0 Devices COOO-COFF

moduleZ8
title 'example of Z8 DPLD source file ';

"Input signals

"Address lines, using reserved names.
a15,a14,a13,a12,a11 ,a10,a9,a8,a1 ,aO pin;

"Use the reserved names to declare the following special functions
reset pin;
dm pin 27 "assign pin PAO as input pin for OM
rsLout pin 34;

" Output signals

"Internal PLD output signals.

"DPLD outputs using reserved names.
csiop, rsO, esO, es1, es2, es3 node;

" Definitions

"Don't care
X=.x. ;

"Note in the Address definition that a7 - a2 are denoted by don't-cares
Address = [a 15,a 14,a 13,a12,a 11 ,a1 0,a9,a8,X,X,X,X,X,X,a 1 ,aO];

equations

"DPLD EQUATIONS

Code Area

Code Area

Data Area

Data Area

Data Area

csiop = (Address >= I\hCOOO) & (Address <= I\hCOFF) & !DM ; "Chip Select 256 block
rsO = (Address >= I\h8000) & (Address <= I\h87FF) & !DM;" SRAM, 2KB
esO = (Address >= I\hOOOO) & (Address <= I\h7FFF) & OM;" EPROM 32KB code
es1 = (Address >= I\h8000) & (Address <= I\hFFFF) & OM;" EPROM 32KB code
es2 = (Address >= I\hOOOO) & (Address <= I\h7FFF) & 10M; • EPROM 32KB data

"GPLD EQUATIONS

rsLout = reset;

END __________________________________ ,-s ... ________________________________ _
fN..~. 3-123

PS04XX/5XX - Application Note 029

Interfacing
The
PS04XX/5XX
To 18
(Cont.)

Simulation Of 18 Bus Cycle With The PSD4XX/5XX
Figure 24 shows the simulation of two Z8 bus cycles. The first is a code fetch at
location OOOOh from EPROM block 0, with IDM input high. The second cycle is a data
read at location OOOOh from EPROM block 1.The IDM signal is low since this is a data
memory bus cycle.

Figure 24.

es2

reset D1

-3--1~24~~~~~~~~~~~~~~---~~~~~~~~~~-------------------

Interfacing
The
PS04XX/5XX
To 180
(Cont.)

PSD4XX/5XX - Application Nots 029

The 180 Bus
The zao has an a-bit non-multiplexed bus. The following signals are used to interface to
memory or I/O devices:

o Address Bus: A15 - AO

o Data Bus: D7 - DO

o Address Strobe: None

o Control Signals: M1, MREO, lORa, RD, WR

The zao h~ 64KB of program memory space and 256 bytes of I/O space. In a memory
cycle both M1 and MREO are low. In an I/O bus cycle, M1 is high and lORa is low. Only
A7-AO are active and thus limit the I/O space to 256 bytes. If M1 is low and lORa is low, it
is an interrupt acknowledge bus cycle. M1 can be ignored if interrupt is not used.

The 180 And PSD4XX/5XX Interface Schematic
Figure 25 is the zao and PSD4XXl5XX interface schematic. The address lines
A 15 - AO are connected to the ADIO Port and the data lines D7 - DO are connected to Port
C. Control signals RD and WR are directly connected to the corresponding pins of the
PSD4XXl5XX without any additional glue logic.

The PSD4XX/5XX does not have specific pins assigned to MREO, lORa and M1. Since
these signals are used in the EPROM chip select equations, you should assign them to
Port A pins in the ABEL file.

\

-----------------------------------f==aF~--------------------------------------= .m

~

i

II/iii.:
11111111

111111111
11111 on

IORO I MREg I ~ ~

Z80 111

2? I
~ M .SD4XX/5XX ---, I

• - - I

I-r=i~========~~ MREO A2 Al 9

IORO A3 A2 8 ADO/AD _ M M ' ~M' ~ r=~-!!"-
'" M M .-~ ~ A6 AS S AD3/A3 PC2 A7 A6 4 AD4/A4 PC3 H";--.!!l!-

AS A7 3 ADS/AS PC4 .. -;;-_..!a'-
A9 2 ADS/A6 pes

Al0 A8 AD7/A7 PC6 r-::~-.!!l!'
All A9 68 pe7

~Rl :E 4.7K

A12 Al0 67 ADS/AS

l
A13 All 68 AD9/A9
A14 A12 65 AD10/Al0

r "..' U ~'M" - I-!<-
I w'"" """ ... u ~~." - ~ DO AD13/A13 PD21SB

m ~~4 ~
m ,m •• " ~ y - -. - - . . '" -.

RESET _________ ~g~~r r~~--~~ WR

elKIN

RD

WR

PAO

PAl ~~===-t-:::""-.J PA2 t
PA3

38 PA4
37 PEO PAS
36 PEl PAS
34 PE2 PA7

33 PE3
Vee 32 PE4 PBO 50 31 PES PBl 49

30 PE6 PB2 48

~ ~ ~ ~ 28 PB4 46

__ VSTDBY PBS 45

r ___ +_~R~E~S~ET!..-_ I PB6 44
PB7 43

Tel -=

RST_OUT

DO-D7 ...J

::n
'= ;;
;=
~
C5

~ ,
~
I
~
~
ii ;;-
i
~

~
'iiI
;:~

t;
~
I

:ii" ~
m:
;:
==,
a·
Q~
;~

~ Ie)

IntBlfacing
The
PSD4XX/5XX
To 180
(Cont.)

PSD4XX/5XX - Application Not. 029

Sp.clfy The ZBO Bus Interface In PSDcDnfl,uratlDn
As shown in the following windows which are captured from PSDconfiguration, the zao bus
interface can be specified by selecting:

Q Data Bus Width: xa
Q Address/Data Mode: NM

Q ALE/AS signal: No

Q RDIWR Setting: RD, WR

------------------------~~,~------------------------'I" 3-127

PSD4XX/5XX - Appliciitiiiii lliite 029

Interfacing
The
PSD4XX/5XX
To 180
(Cont.)

Define The DPLD/Decoding Function In The ABEL File
The following is an example of defining the decoding function for the Z80 based application.
Please note the 256 bytes of 1/0 space are all taken by the PSD4XXl5XX intemal I/O
devices, and that the CSIOP signal becomes active whenever II0Ra is active.

You could define a 256 byte block of memory space to the CSIOP chip select. In this case,
you have to use memory reference instructions to access the PSD4XXl5XX 1/0 devices.
Table 15 illustrates the address map. The CSIOP completely takes up 256 bytes of 1/0
space and is enabled whenever lORa is active.

Table 15. System Memory Map

Device Memory Space
EPROM, Block 0 0000 - 3FFF

EPROM, Block 1 4000 -7FFF

EPROM, Block 2 8000 - BFFF

SRAM COOO-C7FF

module z80
title' example of z80 DPLD source file';

"Input signals

"Address lines, using reserved names.

a15,a14,a13,a12,a11 ,a10,a9,a8,a1 ,aD pin;

reset pin;
rsCout pin 34;

mreq pin 27; " assign mreq input to Port A pin PAD
iorq pin 26; "assign ioreq input to Port A pin PA1
m1 pin 25; "assign m1 input to Port A pin PA2

"Output signals

csiop, rsO, esO, es1, es2 node; "DPLD output chip selects

"DEFINITIONS

x = .x. ; " Don't care
Address =
[a15,a14,a13,a12,a11 ,a10,a9,a8,X,X,X,X,X,X,a1 ,aD];

equations

"DPLD EQUATiONS

csiop = !iorq & m1; "1/0 Chip Select 256 bytes

Code

Code

Data

Data

rsO (Address >= "hCOOO) & (Address <= "hC7FF) & !mreq "SRAM, 2KB
esO (Address >= "hOOOO) & (Address <= "h3FFF) & !mreq; "EPROM 16KB code
es1 (Address >= "h4000) & (Address <= Ah7FFF) & !mreq; "EPROM 16KB code
es2 (Address >= "h8000) & (Address <= "hBFFF) & !mreq; "EPROM 16KB data

rsCout = reset;

END

~~----------------------------f===~--------------------------------
3-128 ====

Interfacing
The
PS04XX/5XX
ToZ80
(Cont.)

PS04XXj5XX - Application Nots 029

Simulation Of 180 Bus Cycle With The PSD4XX/5XX
Figure 26 shows the simulation of three Z80 bus cycles. The first is a code fetch at
location OOOOh from EPROM block O. The second cycle is a data write to SRAM at location
8000h, and a read to the same location in the next cycle.

Figure 26.

rsCout R1

adioh 00

adiol 00

datal 23

ioreq 01

mreq 00

rd 00

esO 01

rsO

-----------------------------------~~~--------------------------------3.-12--9

PSIJ4XXISXX - Appllaf/on /10111 029

Interfacing
1he
PSD4XX/5XX
10S19OR26

The STSOR26 Bus
The ST90R26 is the ROMless member of the ST9 family of microcontrollers from
SGS-Thomson. The ST9 has an 8-bit multiplexed bus and the following are the bus signals
used to interface to memory or 1/0 devices.

o Address/Data Bus: A07-AOO

o Address Bus: A 15-A8

o Address Strobe: AS

o Control Signals: OS, RIW, P/O

The higher address lines A 15-A8 are not multiplexed and are driven from Port P1. The ST9
has two memory spaces: the program and data memory. Each space has 64KB and is
selected by the P/O signals. A high on the P/O signal indicates program space.

The PS04XXl5XX generates internal write or read pulses based on the status of the RIW
and OS Signal inputs.

The ST90R26 And 'SD4XX/5XX Interface Schematic
Figure 27 is the ST90R26 and PS04XXl5XX interface schematic. The address bus, data
bus and the bus control signals such as lOS, RIW, lAS etc., are directly connected to the
corresponding pins of PS04XXl5XX without any additional glue logic. The P/O signal is
connected to one of the pins in Port A as input to the OPLO.

".,. ~~~1~aO~---------------------------=~~.--------------------------------

11~ .. t 11l1li

Qh -I
1ttQ-.

c:>
~ -

I ClK ./

L RESET

A8-A15

ST90R26

4- OSCIN

A8 L..::f RESET
A8/Pl-0 A9 5 A9/Pl-l

AlO 6 Al0/PI-2 AIl 7 All1PI-3
A12 8 AI2/PI-4
AU 9 AI3/PI-5 A14 10 AI4/PI-6 A15 11 AIS/PI-7
ADO 12 AO/DO ADI 13 A11D1IPO-l
AD2 14 A2/D2/PO-2
AD3 15 A3/D3/PO-3
AD4 16 A4/D4/PO-4
ADS 17 A5/D5/PO-5
AD6 18 A6/D6/PO-6
AD7 19 A7/D7

20 P/D/NMt/P2 - 0

~ AS

Ul

ADO OSCOUT ~ ADI
AD2
AD3
AD4
AD5
AD6 ., AD7

A8
A9
Al0
All
A12
A13
A14
A15

Os

R1WJ 26
RIW

OS
25

AS

RST OUT

RESET

!:::-
PID

PSD4XX15XX

9 ADO/AO
8 ADI/Al 7 AD2/A2
6 AD3/A3 5 AD4/A4 4 AD5/AS 3 AD6/A6 2 AD7/A7

68 AD8/AS 67 AD9/A9 66 AD10/Al0 65 ADll/All 64 ADI2/AI2 63 ADI3/AI3 62 ADI4/AI4 61 ADI5/AI5

41 OS

29
RIW

40 RESET

39 CSt

42 ClKIN

~ PEO
PEl/AS

~ PE2
34 PE3

-% PE4
PE5 -T,-
PE6 "To- PE7 ~

28
VSTDBY

U2

r*-PCO

r*--PCl 15 PC2 1*= PC3
r*-PC4

PC5 H?-
PC6 H}-
PC7 r-1L

~ PD~
POI ~ PD2 rs7 PD3 r56 PD4 t55 PD5 AF PD6
PD7 r-=--

27 PAO 26 PAl
~ PA2
~ PA3

PA4 ~
PAS tit-PA6 120 PA7 r-=-

~ PBO
PBl ~ PB2 t47 PB3 1-"46 PB4 145 PBS 1-44 PB6 1-43 PB7 r=-

~
c;"
~
CIj

~

=-'
fI)

i
~
Cfi

!.
~
§
iii
~
a;-
lit
i ::

I
i
)ol
t

t ;::
&'I
::t

= ~
If

~

PSD4XX/5XX - Application Not. fJ29

Interfacing
1he
PSD4XX/5XX
10S190R26
(Cont.)

Specify 1he S190R26 Bus Interface In PSDcDnfiguratiDn
As shown in the following windows which are captured from PSDconfiguration, the
ST90R26 bus interface can be specified by selecting:

o Data Bus Width: XB

o Address/Data Mode: MX

o ALE/AS signal: Yes

o Polarity of ALE:

o RDIWR Setting:

Low

RJW,DS

-3-.1-32----------------------------wrJr~~-------------------------------

Interlacing
1he
PSD4XX/5XX
10S190R26
(Cont.)

PSD4XX/5XX - Application Not. 029

Define The DPLDIDBcodlng Function In the ABEL File
The following is an example of defining the decoding function for the ST9 based
application. The codes are stored in three 16KB EPROM blocks and occupy address space
from OOOOh to BFFFh. The SRAM space is from BOOOh to B7FFh. The P/D input is used to
separate the EPROM (program) space to SRAM and I/O (data) space.

Table 16. System Memory Map

Dert/ce Memor, Space
EPROM, Block 0 0000-3FFF

EPROM, Block 1 4000-7FFF

EPROM, Block 2 BOOO-BFFF

SRAM BOOO-B7FF

I/O Devices AOOO-AOFF

module st9
title 'example of st9 DPLD source file';

"Input signals

"Address lines, using reserved names.

a15,a14,a13,a12,a11,a1 O,a9,aB,a1,aO pin;

reset pin;
pd pin 27;

"Output signals

"using the right pin #s
"port A pin-O for P/D input

csiop, rsO, esO, es1, es2 node;
rsCout pin 34;

"DPLD output chip selects

"DEFINITIONS

x = .x. ; " Don't care
Address =
[a 15,a14,a 13,a 12,a 11,a 1 O,a9,aB,X,X,X,X,X,X,a 1,aO];

equations

"DPLD EQUATIONS

csiop = (Address >= I\hAOOO) & (Address <= I\hAOFF) & Ipd ;
rsO = (Address >= I\hBOOO) & (Address <= I\hB7FF) & Ipd;
esO = (Address >= I\hOOOO) & (Address <= I\h3FFF) & pd;
es1 = (Address >= I\h4000) & (Address <= I\h7FFF) & pd;
es2 = (Address >= 1\h8000) & (Address <= I\hBFFF) & pd;

"GPLD EQUATIONS

rsCout = reset;

END

Code

Code

Code

Data

Data

"Chip Select 256 block
"SRAM,2KB
"EPROM 16KB
"EPROM 16KB
"EPROM 16KB

-------------------------~#_;-------------------------'I" 3-133

PfIJ4XX/5XX - Application Note 029

Interfacing
7he
PS04XX/5XX
70S790R26
(Cont.)

Simulation Of The ST90R26 Bus Cycle With The PSD4XX/5XX
Figure 28 shows the simulation of three ST90R26 bus cycles. The first two cycles are
byte write (55h) and read to SRAM location 8000h, and the third is a code fetch cycle to
EPROM location OOOOh. Please note that the P/O separates the data and program space.

Flgure2B.

pd

rsO
rw

DO

01

1'1""1'1 '1'1"1'11'"""""""1""111'11'11_ "'111' II IIIII lil]'lIr,L':1 III l'II:":;,,i:III,11 II I III Iff :;i!lliill'l 'II fill

-!lEE .cr:
-3-.1-34-----------------------------~~~--------------------------------

Interfacing
The
PSD4XX/5XX
To80C166

PSD4XX/5XX - ApplIcation Not. 029

The 80C166 Bus
The Siemens' 80C166 is a very flexible microcontroller which can be operated in
multiplexed or non-multiplexed bus mode. The bus configuration and data bus width
(8 or 16) are determined at reset by sampling the EBCO-1 input pins. The multiplexed
16-bit data/16 bit address bus mode is selected here for PSD4XXl5XX implementation
since it provides the best performance with the least pin count.

The 16-bit multiplexed bus consists of the following signals:

o Address/Data:

o Address Latch:

AD15-ADO

ALE

o Control Signals: RD, WR, BHE

The 80C166 also provides higher address lines A16-17 (segment address) if required.

The 8oC166 And PSD4XX/5XX Interface Schematic
Figure 29 shows the 80C166 and PSD4XXl5XX interface schematic. The address bus,
data bus and bus control signals such as IRD, twR, IBHE etc., are directly connected to the
corresponding pins of PSD4XXl5XX without any additional glue logic. Note that EBCO is
connected to ground and EBC1 is connected to Vee to select the 16-bit address and 16-bit
data multiplexed bus mode.

__________________ FSJlIffISI.

YFJF.,jr----------------a-.-1a-S-

c:o
iil

;!.'! ~ IQ
§i 2
CII i ;g

~

80C166

po.o

PSD4XXl5XX

PO.l

ADO

U2

PO.2

ADl
9

~ I

PO.3

AD2
8

ADO/AO

;;. ~

PO.4

AD3
7

AD1/Al
PCO

17
S

PO.S

AD4
6

AD2/A2
PCl

16 =
;::

PO.6

ADS
5

AD3/A3
PC2

15
In

2

PO.7

ADS
4 AD4/A4

PC3
14

;:!:

PO.8

AD7
3

ADS/AS
PC4

13 =
~

PO.9

2 ADS/A6
PC5

12
~ ~

PO.l0

AD8

AD7/A7
PCS

11
... ;r

PO.ll

AD9

PC7
10

8:
68

~

PO.12

AD10
67

AD8/A8

~

PO.13

ADll
66 AD9/A9

CD

Ilr'
PO .14

AD12
65

AD10/Al0

Q,

PO .15

AD13
64 ADll/All

PDO
60 ~

IIIIQI

AD14
63 AD12/A12

PDl
59

II~II.I

AD15
62 AD13/A13

PD2
58

!

IIQ:I~~

61
AD14/A14

PD3
7 ~

RD# 11

AD15/A15
PD4

56

RD

PDS
55

~

P3.13/WR# 80

41

PDS
54 ~

WR

RD
PD7

53

P3.12/BHE# 77

29

!iii

RESET

WR

iii'

RESET

iir ::
CSI

PAO
27

EBCl G:
PAl

26

I
ClKIN

PA2
25

EBCO 9

PA3
24

PA4
23

PEOIBHE
PAS

22

PElIAlE
PA6

21

PA7
20

-= ~
PE2
PE3
PE4

PBO 50

PES
PBl

49

PE6
PB2

48

PE7
PB3

47

28

PB4
46

VSTDBY
PBS

45

PB6 44

PB7
43

1

Interfacing
The
PS04XX/5XX
T080C166
(Cont.)

PS04XX/5XX - Application Nots 029

Specify The BOC166 Bus Interface In PSDconfiguration
As shown in the following windows which are captured from PSDconfiguration, the 80C166
bus interface can be specified by selecting:

o Data Bus Width:

o Address/Data Mode:

o ALE/AS signal:

o Polarity of ALE:

o RDIWR Setting:

X16

MX
Yes

High

RD, WR, SHE

----------------------------------f=s~~---------------------------------
==== 3-137

I'SD4XX/5XX - Appl/Clltlon .. ttl D29

Interfacing
The
PSD4XX/5XX
To8DCf.
(1:l1li'.)

Defina Tha 'PLD/Dac.ding Functi.n In Tha ABEL fila
The following is an example of defining the decoding function for the BOC166 application.
The code is stored in two 16KB EPROM blocks and occupies address space OOOOh to
7FFFh. The SRAM space is from BOOOh to B7FFh. Table 17 illustrates the address map.

Tablll 11. Systlllll MIIIII.ry Map

'1I,,/ca Mllm.ry SpaclI
EPROM, Block 0 0000-3FFF

EPROM, Block 1 4000-7FFF

SRAM BOOO-B7FF

1/0 Devices COOO-COFF

module 8Oc166
title 'example of BOc166 DPLD source file';

"Input signals

"Address lines, using reserved names.

a15,a14,a13,a12,a11 ,a10,a9,aB,a1 ,aO pin;
reset pin;
rsCout pin 34;

"Output signals

csiop, rsO, esO, es1 node; "DPLD output chip selects

"DEFINITIONS

x = .x. ; " Don't care
Address =
[a15,a14,a13,a12,a11 ,a10,a9,aB,X,X,X,X,X,X,a1 ,aO];

equations

"DPLD EQUATIONS

cSiop = (Address >= I\hCOOO) & (Address <= I\hCOFF) ;
rsO = (Address >= I\hBOOO) & (Address <= I\hB7FF) ;
esO = (Address >= I\hOOOO) & (Address <= 1\h3FFF) ;
es1 = (Address >= I\h4000) & (Address <= 1\h7FFF) ;

"GPLD EQUATIONS

rsCout = reset;

END

Code

Code

Data

Data

"Chip Select 256 block
"SRAM,2KB
"EPROM 16KB
• EPROM 16KB

--------------------------------'61~·--------------------------------3·138 iIJ!;!!'= I

Interfacing
The
PSD4XX/5XX
T080C166
(Cont.)

Interfacing
The
PSD4XX/5XX
To Echelon
NEURON@
3150™ Chip

I'SD4XX/5XX - Application Nots 029

Simulation Of SOC166 Bus Cycle With The PSD4XX/5XX
Figure 30 shows the simulation of three 80C166 bus cycles. The first two cycles are byte
write (55h) and read to SRAM location 8000h, the second is a code fetch cycle to EPROM
location OOOOh.

Figure 30.

Figure 30 depicts a WORO read at location OOOOhex when bhe=O and AO=O.

The 3150 Bus
The 3150 has an 8-bit non-multiplexed bus. The following signals are used to interface to
memory or I/O devices:

o Address/Data: A 15-AO

o Data bus: 07-00

o Address Strobe: None

o Control Signals: RIW, E (Enable Clock)

The 3150 has 64KB of program memory space. The E signal frequency is half that of the
input clock. It is low during the second half of the bus cycle when read or write operation is
taking place. A low RIW signal indicates it is a write bus cycle.

The 3150 and PSD4XX/5XX Interface Schematic
Figure 31 shows the 3150 and PS04XXl5XX interface schematic. The address lines
A15-AO are connected to the AOIO Port and the data lines 07-00 are connected to Port C.
Control signals RIW and E are directly connected to the corresponding pins of the
PS04XXl5XX without any additional glue logic.

----------------------------------~~&r---------------------------------
==== 3-139

c:..

i

:1~iiQ:
11~111l
111l11~\1

,...--~

S;
CD
~

D [7: OJ :"'"'

iI A[15:0J §

i
<ib
~ PSD4XXl5XX ~

N3150 17 DO i!

AO 9 ADO/AO PCO 16 Dl ~
64 AO Al 8 AD1/Al PCl 15 D2 _. ---2L CPO AO 63 Al A2 7 AD2/A2 PC2 14 D3 't:i ~ CPl Al 62 A2 A3 6 AD3/A3 PC3 13 D4 ~ ~ CP2 A2 61 A3 A4 5 AD4/A4 PC4 12 D5 Q,

::JL CP3 A3 60 A4 AS 4 AD5/A5 PC5 11 06 ~
--3.2.. CP4 A4 59 A5 A6 3 AD6/A6 PC6 10 D7 ~

A5 58 ~ A7 2 AD7/A7 PC7 I!::i
~ 101 A7 5& A8 A8 68 AD8/A8
~ 100 A6 57 A7 ~,Ii;
-4- 102 A8 55 A9 A9 67 AD9/A9 I RO ~ 103 A9 54 Al0 Al0 66 AD10/Al0 PDO rs9 ;IiC ~ 104 Al0 53 All All 65 AD11/All PDl rii- :...: -Y:- 105 All 52 All. A12 64 AD12/A12 PD2 ~ _ ~ 106 A12 51 A13 A13 63 AD13/A13 PD3 '56 5L ~ 107 A13 50 A14 A14 62 AD14/A14 PD4 t-fs- C1i ~ 108 A14 47 All. A15 61 AD15/A15 PD5 ~ &r +. 109 A15 P06 53 C'iI
--1!.. 1010 43 DO PD7 t-""-- CD

DO 42 Dl - 41 DS
-1L SERVi Dl 38 D2 E~------------"'1

D2 37 D3 - 29 RIW ~ ClKl D3 36 D4 ~RIW!!!..---------I
-A ClK2 D4 35 D5 RESeT 40 RESET L...!L.

D5 34 06 PAO I 26
D6 33 D7 39 CSI PAl ~

VCC D7 I PA2 24

--r - 46 42 ClKIN PA3 rF L 44 Xo ~ 45 PA4 ~
'---.... R/W1L PEO /SIZO PA5 ~ r

6 RESeT --E- PEl/ ALE PA6 tjt: RESET ./ ...lL PE2 PA7 I

...1L PE3 ~
---1L PE4 PBO 49
..2L PE5 PBl f48
--ll- PE6 PB2 t-;I7
---1L PE7 PB3 "46

PB4 ffs-
___:2:;;8..., VSTDBY PB5 ~

PB6 !-it­
PB7 t--=-

;:-

~
2
i
~
I

:to. :g
:;:::

= ::t
~
~
Cit
~
IG

Interfacing
The
PS04XX/5XX
To Echelon
NEURON@
3150™ Chip
(Cont.)

PSD4XX/5XX - Application Note 029

Specify The 3150 Bus Interface In PSOconfiguration
As shown in the following windows which are captured from PSDconfiguration, the 3150
bus interface can be specified by selecting:

Cl Data Bus Width: X8

Cl Address/Data Mode: NM

Cl ALE/AS signal: No

Cl RDIWR Setting: RD, OS, (E acts as an active low data strobe signal)

--------------------------------~~~~-----------------------------3-.1-4-1

PSD4XX/5XX - Application Not. 029

Interfacing
The
PSD4XX/5XX
To Eche/on
NEURON@
3150"" Chip
(Cont.)

Define The DPLD/Decoding Function In The ABEL file
The following is an example of defining the decoding function for the 3150 based
application. The code is stored in three 16KB EPROM blocks and occupies address space
OOOOh to BFFFh. The SRAM space is from FOOOh to F7FFh. Table 18 illustrates the
address map.

Table 18. System Memory Map

Device Memory Space
EPROM, Block 0 0000 - 3FFF

EPROM, Block 1 4000 -7FFF

EPROM, Block 2 8000- BFFF

SRAM COOO -C7FF

110 Devices C800-C8FF

module 3150
title 'example of 3150 DPLD source file';

"Input Signals

"Address lines, using reserved names.
a15,a14,a13,a12,a11 ,a1 0,a9,a8,a1 ,aO pin;

e pin 41; "ds in the configuration file has been aliased to e

"Output signals

Memory Page

csiop, rsO, esO, es1, es2 node; "DPLD output chip selects

"DEFINITIONS

x = .x. ; " Don't care
Address =
[a15,a14,a13,a12,a11 ,a10,a9,a8,X,X,X,X,X,X,a1 ,aO);

equations

"DPLD EQUATIONS

csiop = (Address >= AhC800) & (Address <= AhC8FF) ;
rsO = (Address >= AhCOOO) & (Address <= AhC7FF) ;
esO (Address >= AhOOOO) & (Address <= Ah3FFF) ;
es1 (Address >= Ah4000) & (Address <= Ah7FFF) ;
es2 = (Address >= Ah8000) & (Address <= AhBFFF) ;

END

" 1/0 Chip Select 256 bytes
"SRAM,2KB
" EPROM 16KB code
" EPROM 16KB code
" EPROM 16KB data

~--------------------------------r#fAr~~---------------------------------3-142 ====

Interfacing
The
PSD4XX/5XX
To Echelon
NEUROfF'
315O™ Chip
(ClJllt.)

Conclusion

1'SD4XX/5XX - AppllCllfltln ._1129

SlmulatlDn Of The EchelDn NEURON 3150 Bus Cycle With Th. PSD4XX/5XX
Figure 32 shows the simulation of three 3150 bus cycles. The first cycle is a code fetch
cycle to EPROM location OOOOh and the following two cycles are write (55h) and read to
SRAM location FOOOh.

Using the PSD4XXl5XX with microcontrollers in embedded applications provides the
following benefits over designs implemented with discrete components:

o Two chip solution (MCU & PSD) - smaller board size with fewer layers.

o ZPLD allows quick logic fixes and updates.

o Short development cycle

o Increase in system performance

o Reprogrammability.

o Lower power consumption

o Lower manufacturing cost

o Lower system cost.

o Security of design (security bit)

o Increase in system reliability.

o Reduced inventory cost.

--------------------------r',"--------------------------=:III 3-143

PSD4XX/5XX - Application Nots 029

-3--1~44-------------------------------~jr~~---------------------------------

:F==~=: --- ~ --- --1''-- ... -== ~ ------"" -.-..-.- -

Introduction

Power Use
In The
PSD4XX
andPSD5XX

Programmable Peripheral
Application Note 030
PS04XX and PS05XX
Power Calculations and Reduction

The PSD4XX and PSD5XX families of programmable microcontroller peripherals integrate
many functional blocks such as multiple ZPLD (Zero Power PLD) arrays, EPROM, SRAM,
110 Ports, Counterrnmers and an Interrupt Controller unit. The PSD family is being used
extensively in microcontroller applications around the world by virtue of its flexibility and
high level of integration, configurability and ease of use. This integration makes possible
the design of very compact systems enabling the user to squeeze a great deal of
functionality into a very small space. Thus, PSDs have found their way into small hand-held
and battery operated applications such as cellular phones, medical instrumentation, and
notebook computers that usually require, in addition to small space, very low power
consumption. In many cases the PSDs are the lowest power design alternative possible!

The PSD4XXl5XX families are based on a patented high-performance CMOS technology
and, like other CMOS devices, consume very little power even without the advanced power
management features. However, the architecture of the family provides additional power
management control via configuration bits, automatic power down circuitry, power switches
and sleep mode making the PSD device even more valuable in power-sensitive
applications.

This application note will describe the methods of optimizing and reducing the power
consumption of the PSD device during system operation, standby and sleep mode. It
makes sense to use these techniques even when low power is not a design requirement
since they are easy to implement.

The PSD4XX and PSD5XX contain several modules internally, each of which can be
considered power consuming. These modules include the following:

o ZPLD (Zero Power PLD)

o EPROM

o SRAM

o 1/0 Ports

o CounterlTimer (only in PSD5XX)

o Interrupt Controller (only in PSD5XX)

The key to reducing the power used by the PSD4XX and PSD5XX is to reduce the power
used by each individual module. There are three groups of power consuming functions that
can work independently of each other and they are:

o ZPLD

o EPROM, SRAM and 110 Ports

o CounterlTimer and Interrupt Logic

For example, the ZPLD could be operating as a state machine while one of the MCU
peripherals (EPROM, SRAM, 1/0 Ports) is being accessed by the MCU and the
Counterrnmer is operating in the PWM mode. Obviously in this operation all modules
operate and consume power. To derive the equations for power consumption it is
necessary to understand the operating modes of each of the PSD modules and how to
control them using the two Power Management Mode Registers (PMMRO and PMMR1).

3-145

PSD4XX/5XX - Application Nots 030

Power
Management
Mode
Registers

The Power Management Mode Registers enable the user to have in-system control of the
power consumption of each PSD module.

PSD4XX Power Management Mode Register 0 (PMMRO)

Bit 7 Bit6 BitS Bit 4 Bit3 Bit 2 Bit 1 BitO

* ZPLD ZPLD ZPLD EPROM APD ALE PD *
RCLK ACLK Turbo CMiser Enable Polarity

1 = OFF 1 =OFF 1 = OFF 1 = OFF 1 =ON 1 =ON 1 = HIGH 1 =OFF

PSD5XX Power Management Mode Register 0 (PMMRO)

Bit 7 Bit6 BitS Bit 4 Bit3 Bit 2 Bit 1 BitO

TMR ZPLD ZPLD ZPLD EPROM APD ALE PD *
CLK RCLK ACLK Turbo CMiser Enable Polarity

1 = OFF 1 =OFF 1 = OFF 1 =OFF 1 =ON 1 =ON 1 = HIGH 1 =OFF

Bit 0 - * = Should be set to High (1) to operate the APD.

Bit 1 - 0 = ALE Power Down (PD) Polarity Low.
1 = ALE Power Down (PD) Polarity High.

Bit 2 - 0 = Automatic Power Down (APD) Disable.
1 = Automatic Power Down (APD) Enable.

Bit 3 - 0 = EPROM/SRAM CMiser is OFF. (See EPROM/SRAM section for explanation)
1 = EPROM/SRAM CMiser is ON. (See EPROM/SRAM section for explanation)

Bit 4 - 0 = ZPLD Turbo is ON. ZPLD is always ON.
1 = ZPLD Turbo is OFF. ZPLD will Power Down when inputs are not changing.

Bit 5 - 0 = ZPLD Clock Input into the Array is connected. Every Clock change will
Power Up the ZPLD when the Turbo bit is OFF.

1 = ZPLD Clock Input into the Array is disconnected.

Bit 6 - 0 = ZPLD Clock Input into the MacroCell registers is connected to the direct
Clock input.

1 = ZPLD Clock Input into the MacroCell registers is disconnected from the direct
Clock input.

Bit 7 - * = In the PSD4XX should be set to High (1).
o = In the PSD5XX Clock Input is connected to the Timer.
1 = In the PSD5XX Clock Input is disconnected from the Timer.

-3--1-46-------------------------------~~~---------------------------------

Power
Management
Mode
Registers
(Cont.)

ZPLD

PSD4XX/5XX - ApplicatIon Not. 030

PS04XX/5XX Power Management Mode Register 1 (PMMR1)

Bit 7 Bit 6 BitS Bit 4 Bit3 Bit 2 Bit 1 Bit 0

* * * * * * Sleep APD
Mode CLK

1 = ON 1 = CLKIN

NOTE: * = Reserved for future use, should be set to zero.

Bit 0 - 0 = Automatic Power Down Unit Clock is connected to Port E7 (PE7) alternate
function input.

1 = Automatic Power Down Unit Clock is connected to the PSD Clock input.

Bit 1 - 0 = Sleep Mode Disabled.
1 = Sleep Mode Enabled.

The Zero Power PLD (ZPLD) has two modes of operation:

o Non-Turbo

o Turbo

These modes are in-system user programmable on the fly by configuring the ZPLD Turbo
bit (bit 4) in the PMMRO. The difference between the two modes is shown in Figure 1 for
PSD5XXB1 (the PSD4XXA 1 and PSD4XXA2 power figures are in their respective data
sheets). When the ZPLD Turbo bit is OFF (Logic 1), the ZPLD will be in power down if no
inputs are changing for a time of 66 ns. When one or more inputs change the ZPLD
automatically powers up and generates and latches the new outputs. It will retain the output
values as long as the inputs do not change. This is also true in power down and sleep
mode. The inputs that cause the ZPLD to power up are described in Table 1. It is important
to note that those inputs affect the ZPLD only when they are used as inputs to the ZPLD.

In the non-turbo mode there is an additional delay of iOns for some timing parameters
(tpD' tRPD' tEA, tER' tARP' ts, tSA' teOA)· It is important to note that if inputs are changing
at a higher frequency than 15 MHz there is no need to add 10 ns to those timing
parameters. Above 15 MHz the ZPLD will stay powered up all the time independent of the
mode of operation.

The power down specification for the ZPLD is shown in Table 2 under the ZPLD only
section (40 IJA). As the frequency of the inputs to the ZPLD increases, the ICC drain also
increases. For the same frequency the power consumption is proportional to the
percentage of product terms used in the ZPLD in that application. For example, if an
application uses a PSD5XX that has a 140 product term ZPLD but only 35 product terms
participate in generating the user defined equations (the other 105 product terms are
automatically turned off by the PSDsoft) then the 25% (35/140) product term graph should
be used to calculate the ICC consumption. At 10 MHz the ICC equals 29 mAo

-------------------------------------~~~-------------------------------------
3-147

PSD4XX/5XX - Application Note 030

ZPLD
(Cont.)

Figure 1. PS05XXB1 1PLO Icc VB. Frequency Consumption

120

100% PRODUCT TERM

100
75% PRODUCT TERM

80 50% PRODUCT TERM

60
25% PRODUCT TERM

c(
E 56
I

~40

20

4Ol'A

0 5 10 15 20 25

fZPLD-MHz

Equations Representation of the ZPLD Power Graphs:

1. If ZPLD_ TURBO Bit = OFF and fZPLD <= 15 MHz then

(2 (rnAlMHz * 15 (MHz) + # PT * 0.4 (mAlPT))
ICCZPLD =

15

2. If ZPLD3URBO Bit = ON orfZPLD > 15 MHz then

ICCZPLD = 2 (mAIM Hz) * f ZPLD + # PT * 0.4 (mAlPT)

If the ZPLD Turbo bit is ON (Logic 0) the ZPLD will not enter standby mode and it will
always consume power even when inputs are not changing. In this mode the ICC power
usage of the ZPLD is also based on the percent of product terms being used in the
application. At 10 MHz, for the same example above, the ICC equals 34 mAo

Above 15 MHz both modes operate with the same ICC power curves. The reason is that a
non-Turbo ZPLD at frequencies below 15 MHz is capable of powering down before the next
input changes. For customers that use the ZPLD at frequencies above 15 MHz but still
have modes that require powering down the PSD4XXl5XX, the non-turbo mode should be
used. If Sleep mode is enabled (see Sleep Mode Section) and executed, the ZPLD will
enter into Sleep overriding the condition of the ZPLD Turbo bit. The ZPLD will return to the
previous mode of operation when exiting Sleep Mode.

-3--1-48-----------------------------~~~--------------------------------

1PLO
(Cont.)

EPROM

PS04XX/5XX - Application Nots 030

Table 1. PS04XX/5XX 1PLO Inputs

Function Name 1PLD Input Condition

A8-AD15 Always ZPlD Input

AO-A1 Always ZPlD Input

RD Always ZPlD Input

WR Always ZPlD Input

CSI . Always ZPlD Input

RESET Always ZPlD Input

ClKIN Upon reset ClKIN is an input to the ZPlD array.
ClKIN can be masked from the ZPlD array by the
user, if it is not used as part of logic equation or to
reduce power in the system by setting PMMRO bit 5.

PAO- PA? Only when used as ZPlD inputs

PSO- PS? Only when used as ZPlD inputs

PCO- PC? Only when used as ZPlD inputs
(Not available in PSD4XXA1)

PDO- PD? Only when used as ZPlD inputs
(Not available in PSD4XXA1)

PEO- PE? O...!!!y.. when used as ZPlD inputs or alternate functions
(SHE, PSEN, WRH, UDS, SIZO, ALE, APD ClK)

PGRO-PGR3 Always ZPlD Input

INT2PlD Always ZPlD Input (Only in PSD5XX)

WDOG2PlD Always ZPlD Input (Only in PSD5XX)

ZPlD MacroCell Feedback If ZPlD MacroCell is used as a buried feedback
(Combinatorial or Registered) accounts as a
ZPlD input.

The EPROM power consumption in the PSD is controlled by bit 3 in the PMMRO - EPROM
CMiser. Upon reset the CMiser bit is OFF. This will cause the EPROM to be ON at all times
as long as CSI is enabled (low). The reason this mode is provided is to reduce the access
time of the EPROM by 10 ns relative to the low power condition when CMiser is ON. If CSI
is disabled (high) the EPROM will be deselected and will enter standby mode (OFF)
overriding the state of the CMiser.

If CMiser is set (ON), the EPROM will enter the sta~ mode when not selected. This
condition can take place when CSI is high or when CSI is low and the EPROM is not
accessed. For example, if the MCU is accessing the SRAM, the EPROM will be deselected
and will be in low power mode.

An additional advantage of the CMiser is achieved when the PSD is configured in the by 8
mode (8-bit data bus). In this case an additional power savings is achieved in the EPROM
(and also in the SRAM) by turning off 1/2 of the array even when the EPROM is accessed
(the array is divided internally into odd and even arrays).

Power consumption for the different EPROM modes is given in Table 2 under ICC (DC)
EPROM Adder.

-----------------------------------~~~~-----------------------------------
3-149

PSII4XXI5XX - Application Not. 030

SRAM

Standby
Modes

The SRAM in the PSD will always be in the Standby mode when not selected.

An additional advantage of the CMiser is when the PSD is configured in the by 8 mode
(8-bit data bus). In this case an additional power saving is achieved in the SRAM by turning
off 1/2 of the array even when the SRAM is accessed (the array is divided internally to odd
and even arrays).

The SRAM also has a dedicated supply voltage VSBY that can be used to connect a battery.
When Vee becomes lower than V SBY -0.6, the PSD will automatically connect the V SBY as
a power source to the SRAM. The SRAM Standby Current (ISBY) is typically 0.5 !-lA.

The SRAM data retention voltage VDF is 2 V minimum.

There are two standby modes in the PSD4XX/5XX:

o 'oworOown
o SI •• p

Power Down Mode
Power Down mode causes all the memory blocks (EPROM, SRAM) that are connected to
the MCU to enter their low power modes. Traditionally the power down mode is controlled
by the CSI pin on peripherals and memories. In addition to the CSI pin causing power down
in the PSD4XXl5XX, there is also an Automatic Power Down Unit (APD) which will be
described later. When CSI is high or APD reaches an overflow condition the EPROM and
SRAM will power down. In addition, all the MCU interface buffers will be disabled to reduce
power consumptio..!.!:Jhe MCU interface includes signals ADIOO - 15, RD, WR, ALE
(disabled only by CSI and not by APD), PSEN, UDS, LDS and other alternate functions.
The PSD4XXl5XX non-memory internal blocks such as CounterlTimers, Interrupt
Controller, I/O Ports and ZPLD (in non-turbo mode) continue to function independently of
the power down mode. It is important however to note that if no inputs are changing these
peripherals do not consume any power.

The PSD4XXl5XX also includes an APD unit that enables the user to enter a power down
mode independent of controlling the CSI input. This feature eliminates the need for external
logic (decoders and latches) to power down the PSD. The APD unit concept is based on
tracking the activity on the ALE pin. If the APD unit is enabled and ALE is not active, the
4-bit APD counter starts counting and will overflow after 15 clocks, generating a PD
signal powering down the PSD. If sleep mode is enabled, then the PD signal will also
activate the sleep mode. Immediately after ALE starts pulsing the PSD will exit the power
down or sleep mode.

--------------------------_________ f_~_._~_~-----------------------------------
3-150

Standby
Modes
(Cont.)

PSD4XX/5XX - Application Not. 030

Figure 2. PSD4XX/5XX Automatic Power Down Unit (APD) Block Diagram

SLEEP-ENABLE TO OTHER
APDENABLE PMMR1 -BIT 1 CIRCUITS
PMMRO-BIT2

ALE PO POLARITY SLEEP
PMMRO-BIT1 APD MODE

EPROM
ALE CLEAR

SELECT LOGIC Z

P
SRAM

RESET SELECT

APDCLK L VO
CLKIN POWER SELECl

DOWN 0
CSI MODE

APDCLK
PMMR1-BITO

Power Down Mode (Cont.)
The operation of the APD is controlled by the PMMR (see Figure 3). PMMR1 bit 0 selects
the source of the APD counter clock. After reset the APD counter clock is connected
to the ClKIN pin of the PSD. In order to guarantee that the APD will not overflow there
should be less than 15 APD clocks between two ALE pulses. If the ClKIN frequency is not
adequate, then a different clock can be connected to PE7 which is used as an Alternate
Function In - APD ClK.

The next step is to select the ALE power down polarity. Usually, MCUs entering power
down will freeze their ALE at logic high or low. By programming bit 1 of PMMRO the power
down polarity can be defined for the APD. If the APD detects that the ALE is in the power
down polarity for 15 APD counter clocks, the PSD will enter a power down mode. To enable
the APD, operation bit 2 in the PMMRO should be set high.

-----------------------------------~~~-----------------------------------
3·151

1'SD4XX/6XX - Appl/Clltlon Not. 030

Standby
Modes
(Cont.)

Figure 3. AutDmatic PDwer DDwn Unit (APD) FIDW Chart

CS="1 11

RESET

SET ALE PD POLARITY
IN PMMRO BIT 1

YES

SET ENABLE APD IN PMMRO BIT 2
SET PMMRO BIT 0

DISABLE CLOCKS
ZPLD ACLK, ZPLD RCLK, TMR ZPLD*

ALE IDLE AND
15 APD CLOCKS

PSD IN POWER DOWN MODE

*TMR ZPLD is only on PSD5XX.

SET APD CLK IN PMMR1 BIT 0

SET SLEEP MODE IN PMMR1 BIT 1

SET ENABLE APD IN PMMRO BIT 2
SET PMMRO BIT 0

DISABLE CLOCKS
ZPLD ACLK, ZPLD RCLK, TMR ZPLD*

ALE IDLE AND
15 APD CLOCKS

PSD IN SLEEP MODE

-~-'-52-----------------------------~Jr"'Ar--------------------------------

Standby
Modes
(CDnt.)

Input
Clock

PSD4XX/5XX - Application Nottl 030

Sleep Mode
Sleep Mode provides capability to reduce the power consumption of the PSD4XXl5XX
to 5 lolA. In addition to the Power Down mode state: in Sleep Mode also all reference
voltages are turned off.

The Sleep Mode is enabled by executing the same operations required for automatic power
down. In addition PMMR1 bit 1 (Sleep Mode) should be set to high. When the APD counter
overflows the PSD will enter Sleep Mode.

Two conditions can cause the PSD to exit the Sleep Mode: either the ALE starts pulsing or
the CSI pin changes its state from high to low. The PSD access time from Sleep Mode is
specified by the tLVDVl parameter. In the Sleep Mode the ZPlD still monitors the inputs and
responds to them with a delay time of tLVDV2. See Table 2 for a summary of timing during
Power Down and Sleep Mode.

The PSD4XXl5XX clock input (ClKIN) is used as a source for driving the following
modules:

o ZPLD Array Clock Input
o ZPLD MacroCell Clock Flip-Flop
o APD Counter Clock
o CounterlTimers Clock

During power down or if any of the modules are not being used the clock to these modules
should be disabled. To reduce AC power consumption, it is especially important to disable
the clock input to the ZPlD array if it is not used as part of a logic equation.

The ZPlD Array Clock can be disabled by setting PMMRO bit 5 (ZPlD AClK). The ZPlD
MacroCell Clock Input can be disabled by setting PMMRO bit 6 (ZPlD RClK). The Timer
Clock can be disabled by setting PMMRO bit 7 (TMR ClK). The APD Counter Clock will be
disabled automatically if Power Down or Sleep Mode is entered through the APD unit.
The input buffer of the ClKIN input will be disabled if bits 5 - 7 PMMRO are set and the
APD has overflowed.

The Countermmers can operate in Sleep Mode if the TMR ClK bit is low, but the power
consumption will be based on the frequency of operation (ClKIN frequency).

Table 2. Summary of PSD4XX/5XX Tlmln, and Standby Current During Power
Down and Sleep Modes

PLD PLD Access Access Typical
Propagation Recovery Time Recovery Standby

Delay TIme Timll Cu"ent
To Normal To Normal Consumed
Dperation Access

Power Normal tpD 0 No Access tLVDV 40 lolA
Down (Note 1) (Note 4)

Sleep tLVDV2 tLVDV3 No Access tLVDVl 5 lolA
(Note 2) (Note 3) (Note 5)

NOTES 1. Power Down does not affect the operation of the ZPLD. The ZPLD operation in this mode is based
only on the ZPLD_ Turbo Bit.

2. In Sleep Mode any input to the ZPLD will have a propagation delay of tLVDV2.
3. PLD recovery time to normal operation after exiting Sleep Mode. An input to the ZPLD during the

transition will have a propagation delay time of tLVDV3.
4. Typical current consumption assuming all clocks are disabled and ZPLD Is in non-turbo mode.
5. Typical current consumption assuming all clocks are disabled. --------------_____________________ ,~Ar~~ ________________________________ ___

'e!!l'l!!T68 3-153

flSD4XX/5XX - Application lIot. 03D

PSD4XX/5XX
Powe,
Consumption
Equations

To calculate the PSD4XX15XX power consumption the following assumptions are made:

o In Sleep Mode none of the internal blocks are operating.

o The ZPLD can operate at times when the MCU is idle. Operating frequency of the
ZPLD is based on the highest frequency input signal connected to it.

o The total power consumption is based on the percentage of PSD operation in each
mode of operation.

The PSD4XXl5XX power consumption equation is given by the following:

[1]ICCTOTAL

NOTATION:

o ISBSLEEP
o ICCZPLD

o ICCMCU~CCESS
o ICCTIMER

o 19B

o ICCEPROM

o ICCSRAM

o ICCOTHER

ISBSLEEP + ICCZPLD + ICCMCU_ACCESS + ICCTIMER

ISBpD + ICCEPROM + ICCSRAM + ICCOTHER

- Standby current in sleep mode

- ICC current when ZPLD is operating

- ICC current when MCU is accessing the PSD

- ICC current when Timer is operating. This current is only
AC and is based on the CLOCK in frequency.

- Standby current in power down mode

- ICC current when EPROM is operating

- ICC current when SRAM is operating

- ICC current when other peripherals are being accessed
such as the internal CounterfTimers, 1/0 Ports or external
peripherals to the PSD4XXl5XX. In this case only the ZPLD is
used and the power is calculated based on the ZPLD Only
section in Table 3.

Equation [1] describes the total ICC consumed by the PSD in the system while equation [2]
is the current consumed by the PSD blocks that are accessed by the MCU. The sum of the
currents is proportional to the time that the PSD is in each mode.

Table 3 includes the power specifications required to calculate the PSD4XX or PSD5XX
power consumption (see data sheet for most recent ICC values). All parameters are
specified for VCC = 5V ± 10%. The standby current (ISB) is specified with the assumption
that all internal blocks are idle. The ICC (DC) is specified for 3 blocks: ZPLD, EPROM and
SRAM. If the ZPLD is active (all other modules idle) and ZPLD_ Turbo bit is OFF then the
PSD will be in one of the standby modes
(based on the PMMR configuration). If ZPLD_ Turbo is on, the DC power consumption has
to be calculated based on the number of product terms used. When the EPROM or
SRAM are accessed, power is added to the power consumed by the ZPLD. The AC
parameters are also specified and should be added based on the percentage of activity of
each module.

-3.-1H--------------------------~Jr~---------------------------

PSD4XX/5XX - Application Nots D3D

Table 3. PSD4XX/5XX AC/DC Powe, Consumption Pa,ametelS
Symbol Parameter Conditions Min Typ Max Units

VCC Operating Supply Voltage 4.5 5 5.5 V

ISB Standby Supply Power Down Mode CSI >VCC -.3 V 40 100 IJA

Current Sleep Mode CSI >VCC -.3 V 5 10 IJA

ZPLD_TURBO = OFF,
40 IJA f=O MHz

ZPLD Only
ZPLD_TURBO = ON,
f=O MHz

400 700 IJA/PT

CMiser= ON
0 IJA and Not Selected

CMiser = ON and Selected
10 15 rnA EPROM Adder (x8 Data Mode)

ICC (DC)
Operating

CMiser = ON and Selected
Supply Current

(x16 Data Mode)
15 20 rnA

CMiser = OFF Selected
or Not Selected 15 20 rnA

SRAM Not Selected 0 IJA

CMiser = ON and Selected
25 40 rnA SRAM Adder (x8 Data Mode)

CMiser = ON and Selected
30 45 rnA

(x16 Data Mode)

ZPLD_TURBO = OFF

ZPLD (See Figure 1)

ICC (AC) ZPLD_TURBO = ON 2 rnA/MHz

EPROM or SRAM 2 rnA/MHz

TIMER 1 rnA/MHz

NOTE: See data sheet for the most recent ICC values.

--------------------------------'§§~~--------------------------------~...... 3·155

PSD4XX/5XX - Application Note 030

Examples Here are three examples of power calculations for an application that has a high
percentage of tim'e in Sleep mode. It is important to note the measured ICC in the system
could be lower because the parameters provided in Table 3 are conservative. Following is
the PSD5XX configuration in the system used to calculate those examples:

Data Bus Width

PSD MCU Access Frequency

% of Time in Sleep Mode

% of Time MCU Access the PSD

% of MCU Access in PO

% of MCU Access to EPROM

% of MCU Access to SRAM

% of MCU Access to Other

% of Time ZPLD Operating

ZPLD Operational Frequency

ZPLD Product Terms Active

8-Bit

2 MHz (ALE Frequency)

90%

10%

30%

50%

10%

10%

10%

12 MHz

40 = (40/140)* 100=28%

Table 4 shows calculation of the power consumption assuming CMiser = ON and
ZPLD_ Turbo = OFF,

Table 5 shows calculation of the power consumption assuming CMiser = OFF and
ZPLD_ Turbo = OFF.

Table 6 shows calculation of the power consumption assuming CMiser = ON and
ZPLD_ Turbo = ON.

~3--15~6~--------------------------~~~-------------------------------

Table 4. eMiser = O.,ZPLD_ Turbo = OFF

Mllde % ICC (DC) ICC (DC) ICC (DC) ICC (AC) ICC (AC) ICC (AC)
DIS Equatillns Tlltal DIS Equatillns Tlltal

IS8 (Sleep)

Sleep 90% SIJA .9*SIJA 4.SIJA 0 0 0

MCU_Access 10%

PO 30% 40IJA .1*.3*40IJA 1.21JA 0 0 0

EPROM SO% 10mA .1 *.S*10 mA .SmA 2mAlMHz .1 *.S *2 mAIMHz *2 MHz .2mA

SRAM 10% 2SmA .1 *.1*2S mA .2SmA 2mAIMHz .1 *.1*2 mAIMHz*2 MHz .04mA ~ '-iii
Other 10% 0 0 1 mAlMHz .1*.1*1 mAIM Hz *2 MHz .02mA

(Figure 1)

ZPLD 10% 0 0 0 36mA .1 *36mA 3.6mA

TOTAL .7SmA 3.86mA

The ZPLD does not consume DC power and the EPROM consumes power only when selected.

ct'

~

ICC

s­
-I
i

(DC + AC}

4.SIJA

1.21JA

0.7mA

0.39mA

0.12 mA

3.6mA

4.63mA ~

I
~
I

t
I
= I:
til

I

c:o g:

Table 5. CMiser = OFF,ZPLD_ Turbo = OFF

Mode % 'ee(DC} 'ee(DC} 'ee(DC} 'ee(AC} 'ee(AC} 'ee(AC}
DIS Equations Tota' DIS Equations Total

ISB (Sleep)

Sleep 90% 511A .9*5I1A 4.511A 0 0 0

MCU_Access 10%

PD 30% 4Ol1A .1*.3*4O I1A 1.211A 0 0 0

EPROM 50% 15mA .1 *.5*15 mA .75mA 2mNMHz .1 *.5*2 mNMHz*2 MHz .2mA

SRAM 10% 45mA .1 *.1*45 mA .45mA 2mNMHz .1 *.1*2 mNMHz*2 MHz .04mA

Ie"

-'18: III~'
Other 10% 15mA .1*.1*15mA .15mA 1 mNMHz .1*.1*1 mNMHz*2MHz .02 rnA

(Figure 1)

ZPLD 10% 0 0 0 36mA .1 *36mA 3.6mA

TOTAL 1.35 rnA 3.S6rnA

The ZPLD does not consume DC power. The EPROM is on when the PSD is not in PD and the by
8 configuration does not provide the advantage of turning off 112 of the arrays in the SRAM and
EPROM. This is the reason that the EPROM, SRAM and other power consumption increases.

--... _ _--_ ... __ .. ---------- --- --- -- -----

I 2 =-I~ 1 ;

'ee
(DC + AC}

4.511A

1.211A

0.95mA

0.49 rnA

0.17 mA

3.6mA

5.21 rnA

----_ .. _-----

I

t ::::
fit ;::
8
1=
lit

I

Ii
~

~

5

Table 6. CMIse, = OFF, ZI'LD_ Turbo = 011

Mode % ICC (DC) ICC (DC) ICC (DC) ICC (AC) ICC (AC)
DIS Equations Tlllal DIS Equations

ISB (Sleep)

Sleep 90% 5IJA .9*5IJA 4.51JA 0 0

MCU~ccess 10%

PO 30% 40IJA .1*.3* 4O IJA 1.21JA 0 0

EPROM 50% 15mA .1*.5*15mA .75mA 2mAIMHz .1 *.5*2 mAIMHz*2 MHz

SRAM 10% 45 rnA .1*.1*45 mA .45 rnA 2 mAIMHz .1 *.1*2 mAIM Hz *2 MHz

Other 10% 15mA .1*.1*15 rnA .15mA 1 rnAIMHz .1 *.1*1 mAIMHz*2 MHz

(Figure 1)

ZPLO 10% .4mAlPT .1 *.4*40 PT 1.6 rnA 40 rnA .1 *40 rnA

TOTAL 2.9SmA

The ZPLO is on 10% of the time also when inputs are not changing.

ICC (AC)
Tlltal

0

0

.2mA

.04mA

.02mA

4mA

4.26mA

Icc

S' ..
i

(DC + AC}

4.51JA

1.21JA

0.95mA

0.49mA

O.17mA I

5.6mA

7.21 mA I
~
I

t ;::
::
;t

= If
If

I

PSD4XX/5XX - Application Note 030

Conclusion The PSD4XXl5XX provides an extremely low power programmable solution to any system.
The capability of the user to configure the power consumption in-system using the power
management registers enables speed/power optimization. If the designer uses all of the
power saving features in the PSD, the result will be a lower power consumption than that of
any alternative.

-3--1~6~0---------------------------------~~~------------------------------------

Introduction

DeSign
Example

Programmable Peripheral
Application Note 031
PSD4XX/5XX Design Tutorial

This tutorial takes you step by step through the development cycle of a PSD4XXl5XX
based design, from design entry to programming the device. A simple design example is
used to demonstrate how some of the key functions in the PSD4XXl5XX are utilized.

At the end of this chapter, the following materials are included:

o Files generated during the design cycle

o Files generated for applications with various bus types

o Chip architecture overview

The following information is covered in the tutorial:

o Design Example

o PSDsoft Development Tools

o Using the Design Example

A typical yet simple design is used as an example to illustrate the development cycle.
This design example can be a part of a larger system where it communicates to other
peripherals or to a host through I/O ports. Although a PSD5XX is selected for the design,
this tutorial is applicable to both PSD4XX and PSD5XX based designs.

The PSD5XX family includes the following three PLDs (Programmable Logic Devices):

o GPLD (General Purpose PLD)

o DPLD (Decoding PLD)

o PPLD (Peripheral PLD)

Functional Specifications
The main functional specifications of this deSign are shown in Table 1.

Table 1. Functional Specification

Processor 16 MHz microcontroller with 16-bit multiplexed address/data bus;
non-multiplexed address A 16 - A 19. With RD, WR, ALE and BHE
control signals.

Memory 128KB EPROM (64K x 16), 2KB SRAM (1 K x 16), with paging
support.

CounterlTimers Event Counter, Watchdog Timer.

Loadable Down PLD to implement 5-bit down counter.
Counter

I/O Ports 1. One 6-bit output port.
2. One 4-bit input port.

Address Decoder PLD generates all chip select signals

3-161

PSD4XX/5XX DtlSlgn Tutorial - Application Not. 031

Design
Example

Functional Specifications (CDnt.)
The system memory map is shown in Table 2. The EPROM/code memory consists of three

32KB blocks, where two of the blocks share the same address space (0-07FFF) and are in

different memory pages.

Figure 1 is the functional block diagram of the tutorial design. PLDs are used wherever
possible to reduce board space. Power consumption is also a major concern of this design.

Table 2. System Memory Map

Dell;ce Memory Space Memory'a,e

EPROM, Block 0 00000 - 07FFF Page 0

EPROM, Block 1 00000 - 07FFF Page 1

EPROM, Block 2 48000 - 4FFFF All Pages

SRAM 08000 - 087FF All Pages

I/O Devices OCOOO - OCFFF All Pages

Figure 1. Tutorial Design Example Block Diagram

MICRO­
CONTROLLER

ADO-AD15

A16-A19

AO-A15
~TCH~------------------~-------r-

CS

PLD

TIMER WATCHDOG

EPROM
128KB

64KX 16

SRAM
2KB

1KX16

AND
_EV_E_N_T[_1:_31-+ ... ~ COUNTER

OUTPUTI-__ ~
PORT

DOWN CNT4

COUNTER
CNTEN

INPUT fooIIIl-­
PORT

~~----------------------_____ "IAF~ _____________________________ __
3-162 'Ii!Hii. i6

Design
Exampl.

1'SD4XX/5XX o../gn lWtltlal - Appl/at/tln.tItII 031

FuncUonalPanHlon
With the tutorial design defined, we can investigate the block diagram to see how much of
the logic can be implemented in the PSD5XX. Some of the functions, such as the Event
Counter, are available in the microcontroller but might require additional discrete logic to
support specific applications. This imposes no problem in the PSD5XX because the
Peripheral PLD (PPLD) can be programmed to implement any logic function.

The partitioning of the logic between the PSD5XX and the rest of the design example can
be viewed as a top-level fitting process. First, we must go through the design functional
specifications and block diagram to identify functions that can be implemented in the
PSD5XX. The PSDsoft Development Tool performs the final fitting process.

From Table 3, it is obvious that the PSD5XX is more than able to meet all the required
functional specifications of the design example.

A microcontroller running at 16MHZ has a Tavdv (address valid to data valid time) of 138
ns. In order for the processor to run with zero wait states, it requires a PSD5XX-12 (120 ns
part), which has sufficient speed to meet the Tavdv requirement.

Table 3. FuncUonal PanHlon

Systetn Funell •• , BI.ek Mlltehin, PSD5XX
Funell.IIII' BI.et.

Processor 16-bit mUJ!!l?lexed address/data Bus Interface accepts processor
bus with RD, WR bus. No glue logic required.

Memory 128KB EPROM with memory Meets memory access time
paging support and 2KB SRAM requirement; provides x16

configuration. A page register
provides paging support.

Timers Event Counter, Watchdog Timer Event Counter: Use CTU 0
Watchdog: Use CTU 2

Loadable Down PLD: State machine to Use GPLD to implement state
Counter implement down counter machine, Port B used as 1/0

UO Ports 1. One 6-bit output port 1. PortC or 0
2. One 4-bit input port 2. PortC or 0

----------------------------~~Ar-------------------------3--1--~

PSD4XX/5XX Design Tutorial - Application Note 031

Design
Example

PSDsoft
Development
Tools

Functional Blocks
The PSD5XX provides multiple system-level functional blocks and allows you to define and
configure the blocks to meet the design specifications. There are three main blocks that you
need to define and configure the PSD5XX.

o Bus Interface
o lero Power PLD (ZPLD) Block

o I!DPorts

Bus Interface - The PSD5XX Bus Interface allows communication to a microcontroller
with no glue logic.

IPLD Block - The DPLD defines the decoding function of the DPLD.

//OPorts -

The decoding function defines the memory address map and generates
chip selects to internal PSD blocks, including the EPROM, SRAM,
and I/O ports.

The GPLD defines the operation of the state machines and
general-purpose logic.

The PPLD defines the CounterlTimer and Interrupt Controller
control conditions.

The I/O ports assign the functions of the forty I/O pins, including the
MCU I/O function, ZPLD 110 function, CounterlTimer I/O function
and other I/O functions.

The PSD5XX functional blocks just described are supported by PSDsoft, an integrated
system development software tool from WSI, which runs on a PC in the Microsoft
Windows® environment. The PSDsoft tool consists of the following major modules:

o PSDabBl

o PSDconfigurat/on

o PSDcompller

o PSDs/mulator

o PSDprogrammer

PSDabel
PSDabel is the WSI Windows version of the Data I/O ABEL design software. The .abl file,
which defines the logic functions of the ZPLDs, can be compiled, optimized, and simulated
in PSDabel. The PSDabel output is the .tt2 file, which is the optimized PLA file.

PSDconfiguration
The PSDconfiguration software tool allows you to specify the PSD5XX bus interface type
and I/O port pin assignments. The output is the .gle configuration file.

-3--1-6-4-------------------------------~~~-----------------------------------

PSDsoft
Development
Tools
(Cont.)

PSD4XX/5XX Design TUtorial - Application Note 031

PSDcompiler
The PSDcompiler software consists of two portions: the Filler and Address Translator.

The Fitter, based on .112 and .glc input files, fits the logic and 1/0 functions you have
specified into the PSD5XX.

The Address Translator performs address translation on your code (HEX) file. PSDcompiler
also generates the object output file (.obj) for the programmer. The .obj file includes on-chip
configuration data, the ZPLD fuse map, and user program codes.

The PSDcompiler also provides a decompilation function. Based on the .obj file, the
Decompiler generates ZPLD and EPROM fuse map files for chip-level simulation.

PSDsimulator
PSDsimulator is the WSI version of SIMUCAD PSDsilosll1 Simulation Software.
PSDsimulator provides PSD5XX chip-level simulation.

PSDprogrammer
The PSDprogrammer software is the programming interface to the WSI PSD MagicPro™
Programmer. PSDprogrammer is used for downloading, uploading, and programming the
PSD device.

PSDsoft Program Flow
Figure 2 shows the PSDsoft program flow in configuring, defining and programming the
PSD5XX. Each PSDsoft submodule is enclosed by dashed lines. The figure illustrates the
normal steps you follow in creating a design. These steps are enumerated below. The files
generated during the process are named using the project name you specify.

1. Create or open a project after entry into PSDsoft.

2. Use an editor in Windows or PSDsoft to generate the project.abl file.

3. Use PSDabel to compile and optimize the project.abl file. Perform simulation if needed.
Generate an optimized PLA file (project.tt2) for the Fitter.

4. Configure the Bus Interface in PSDconfiguration. Generate the project.glc file for the
Fitter.

5. Compile the design using PSDcompiler. Compilation consists of two steps:
Filling and Address Translation.

The Filler generates the project.fob and fuse map based on the PSDabel and
PSDconfiguration output files.

Address Translation combines the code file and the project.fob file into a project.obj file.
This .obj file includes the program code, the PSD5XX fuse map, and the configuration
bits.

6. Verify the design using PSDsimulator. Chip level simulation is based on the stimulus file
(project.stl) and fusemap files from the Fitter.

7. Download the project.obj file to the PSD MagicPro programmer and use the PSDpro
software to program the chip. A compatible third-party EPROM programmer can also be
used.

For a description of all the files generated by PSDsoft, please refer to the appendixes of the
PSDsoft manual.

-------------------------------~~~~----------------------------3--1--65

PSD4XX/5XX Design Morlat - Application Not, 031

Figure 2. PSD5XX PSDsoft Program Flow

--------------------------------------,

PSDsiloslll
WINDOW

MENU

, ,

FROM MCU COMPILER

.CMM· CURRENT STATE OF SIMULATOR

.SIM • SIMULATION HISTORY

.ERR • ERROR MESSAGES

PSDsimulator

---~

PSD PROGRAMMING ALGORITHMS

PSDprogrammer

TO THIRD PARTY PROGRAMMERS

PSD
Device

~~~-----------------------------------~~i1~-----------------------------------------3·166 



Using the 
Design 
Example 

PSD4XX/5XX DBllgn Tutllrlal - Appilcatilln NIts 031 

This section uses the tutorial design example to illustrate the steps to invoke the software 
and create a design of your own. The files required, which are generated for the tutorial 
design, can be found in the \TUTORIAL directory after the PSDsoft software is installed. If 
changes are made during this tutorial, the corresponding file in the TUTORIAL directory will 
be changed as well. If you are unsure as to the status of the tutorial files when you are 
finished going through the tutorial design example, you may reinstall the software to restore 
the files to their original state. 

To enter the PSDsoft program 

1. Install the PSDsoft software. 

The WSI-PSDsoft window with four distinct icons appears. 

I 

PSDsoft 

I, 
PSDsilosli1 

2. Double-click the ReadMe icon. 

PSDsda ReadMe 

Important information you should know about PSDsoft is presented. Read this information 
before proceeding. A list of the PSDcontrol error messages is included in the ReadMe file. 
The PSDsiloslll™ icon invokes the PSDsilosl1i simulator for chip-level simulation. The 
PSDsda (PSDsiloslll Data Analyzer) icon, which is also available under PSDsiloslll, allows 
you to display multiple simulation results. 

rIL;~ --------------------------------== .. ·-----------------------------3--1-6-7 



PSD4XX/5XX DtlSlgn Tutorial - Application Nots 031 

Using the 
Design 
Example 
(Cont.) 

Managing the ProJect 
Each new project may have its own working directory where all the files generated by 
PSDsoft reside. Once you specify the new project name, the PSDsoft Project Management 
passes the working directory and pertinent information to other functional modules. 
In the following sections, key windows are displayed to explain the step-by-step operation 
of PSDsoft. 

1. Double-click the PSDsoft icon in the WSI-PSDsoft window. 

The Main PSDsoft window is displayed. 

2. Pull down the Project menu and select New. 

The project window appears. 

___________________________ ~~E----------------------------
3-168 - --



Using the 
Design 
Example 
(Cont.) 

PS04XX/5XX Osslgn Tutorial - Application Nots 031 

Managing the Project (Cont.) 
3. Enter the name of the directory in which you want the new project to reside in the 

Directory window. 

4. Enter the project name in the Project Name window. The examples in this tutorial are 
based on the name "tutor." 

The project name you enter will be used as the file name in all the files generated, 
including the .abl file. 

5. Specify the device family and part name (PSD503B1 for Design Tutorial). 

6. Click OK after all the parameters are entered to your satisfaction. 

PSDsoft creates a new project named TUTOR, generates a tutor.ini file for the TUTOR 
project, and presents the PSDsoft Menu, which now reflects the name of the project. 

--------------------------------~~~-----------------------------3-.1-6-9 



PS04XX/5XX OflSlgn JUto,'al - Application lIot. 031 

Using the 
Design 
Example 
(Cont.) 

Entering the Design Source File 
PSDabel is the design entry tool used to define the ZPLD and some 1/0 constructs. 
Because the tutorial design example has already been created for you, you do not need to 
create a design from scratch. However, if you were creating a new design, you would pull 
down the PSDsoft menu and choose PSD ABEL Design Entry. A window would open to 
allow you to enter the design. The material that follows is presented for you to understand 
the components of a source file. Following the source file explanation, we will continue by 
compiling the tutorial source file. 

PSDabel is WSl's version of Data 1I0's ABEL-HDL Design Software, and includes all the 
ABEL functions required to compile, optimize, and simulate the PLD source file written in 
ABEL Hardware Description Language (PSDabel-HDL). 

The logic functions of the PSD5XX's ZPLDs can be defined entirely by PSDabel-HDL. 
PSDabel takes the PLD input source file and generates an output file (.tt2) after compilation 
and optimization. A source file consists of one or more modules, and each module has its 
own beginning and end. The source file that describes the PSD5XX's ZPLDs can consist of 
one large module, or it can be implemented in three modules, one each for the DPLD, 
GPLD, and PPLD. 

A module usually consists of five sections: 

1. Header. A header consists of a module name andlor title. The module name must be the 
same as the file name of the .abl file. 

2. Declarations. Declarations define Signals, constants, and macros. 
No device declaration is required. 

3. Logic Description. The logic description defines the PLD functions in terms of 
equations, truth tables, and state diagrams. 

4. TesCVectors. The TesCVectors are used in logic simulation 
(only in the ABEL Simulator). 

5. End. A module must include the End statement. 

'.6JJ!!1l/¥ 
-3--1~70-------------------------------~~afjr----------------------------------



Using the 
Design 
Example 
(Cont.) 

PSD4XX/5XX DBslgn Tutorial - Application NotB 031 

Entering the Design Source File (Cont.) 
The listing of a typical source file is shown below. Source statements end with semicolons; 
comments begin with a double quotation mark. Keywords are indicated in bold letters. 

module 

title 

Declarations 

DPLD 

'Decoding equations for internal PSD5XX devices' 

"Input Signals, external or internal PSD5XX signals 

a18,a17,a16,a15,a14,a13 
a12,a11 ,a10,a9,a8,a1 ,aO 
pgr3,pgr2,pgr1,pgrO 

pin; "address lines, 
pin; "using reserved names 
pin; "page register embedded inputs 

"Output signals, internal PSD5XX DPLD output signals. 

csiop,rsO,esO,es1,es2,es3 node; "using reserved names. 

"definitions 

x .x.; 

page [pgr3,pgr2,pgr1,pgrO]; 

Address = [a18,a17,a16,a15,a14,a13,a12,a11, 
a 1 0,a9,a8,X,X,X,X,X,X,a1 ,aO]; 

Equations 

csiop = (Address >= I\hOeOOO) & (Address <= I\hOeOFF); 
rsO (Address <= I\h087FF) & (Address >= I\h08000); 
esO (Address <= I\h07FFF) & (page == 0); 
es1 (Address <= I\h07FFF) & (page == 1 ); 
es2 (Address <= I\h4FFFF) & (Address >= I\h48000); 

TesL Vectors 
([ page, Address] > [esO, es1, es2]) 

[ 0 , I\h07020] > [ 1 , 0 , 0]; 
[ I\h07020] > [0 1 , 0]; 

[ 0 , I\h4AOOO] > [0 0 , 1 ]; 

[ 0 , I\h50000] > [0 , 0 , 0]; 

End DPLD 

-----------------------------------r====-----------------------------------===E 3.171 



PSD4XX/5XX OllSlgn Tutorial - Appllt:Btlon Nota 031 

Using the 
Design 
Example 
(Cont.) 

Entering the Design Source File (Cont.) 

Writing tha Soun:a (.abl) Fila 
Keep the following things in mind when you write the .abl file: 

a Nodss and Pins 

a Embeddad .odss 

a RIISB(Wld Namss 

a Pin Asslgnmants 

a 'od. Asslgnm.nts 

.odss and Pins 
In PSDabel-HDL, the keyword PIN refers to input and output signals that are available on 
the device's pins. For the PSD5XX family, signals such as RD, WR, and A8-A15 are 
defined as pin inputs to the ZPLD. The NODE keyword refers to signals that are buried or 
embedded inside the device. However, the Fitter does have the option to assign a NODE to 
a pin. The ZPLDs in the PSD5XX are embedded inside the chip and some of its input and 
output signals are actually internal nodes. For example, the outputs from the Page Register 
are internal nodes. 

Embeddad Nodas 
Not all state outputs of a state machine need to be routed to an output pin. For example, in 
a state machine (8-bit counter) that takes up all eight PA macrocells (macrocells connected 
to Port A), only the MSB of the counter is needed for external logic. In this case, pin PAO is 
fitted to provide the MSB, while PA 1-PA 7 are available for other Port functions such as 1/0 
ports for the microcontroller. 

RlISBmd Namss 
There are 61 input signals to each of the ZPLDs. The number of ZPLD outputs are variable 
and depend on user application. Some of these signals have reserved names (dedicated 
names), as they represent a hardwired function. The reserved names are required by the 
Fitter (PSDcompiler), which has to recognize the functions of these signals in order to 
perform the proper fitting and generate the correct fusemap. For example, the reserved 
names for the address lines are AO-A23. Wherever the address lines are involved, you must 
use the reserved names AO-A23 or aliases of these signals. 

Some of the pins on the PSD5XX have multiple functions. Pin 41 is the "read" pin with the 
reserved name "RD". The RD pin can also be configured to accept other bus control signals 
(E, DS, or LDS/). If you prefer to use the name "DSr (for 68332-based design) instead of 
RD, the .abl file should contain the declaration: 

ds pin 41; 

The ZPLD input signals are listed in Table 4 with their corresponding reserved names. 

Table 5 shows the output signals of the ZPLD that have a reserved name. 

iFils #5 
~3~-1~72~---------------------------~"'--------------------------------



Using the 
Design 
Example 
(Cont.) 

1'SD4XX/SXX IhIslgn 'Mollal - Application Mottl 031 

Table 4. ZPLD Input Signals 

SignalsIReselred Names Signal Source 

paO - pa7 (a16 - a23)1 PortA 

pbO-pb7 Port B 

pcO - pc7 (a16 - a23)2 Port C 

pdO - pd7 (a16 - a23)3 Port 0 

peO-pe7 Port E 

pgrO -pgr3 Page Mode Registers 

wdog2pld CounterfTimer 

intr2pld Interrupt Controller 

aO - a15, aO, a1 MCU Address Bus 

rdt MCU Bus Control Signal 

wrt MCU Bus Control Signal 

clkin Input Clock 

reset Reset Input 

csit CSI Pin 

timeroutO - ~ Input Clock 

NOTES: 
1. Port A can be assigned by the Fitter or by the user as high address line inputs to the DPLD for decoding. 
2. II A 16 - A23 are not used as Inputs to the DPLD, the Fitter can assign A 16 - A23 to Port C or D. 
3. I A 16 - A23 are not used as inputs to the DPLD, the Fitter can assign A 16 - A23 to Port C or D. 
4. Available only II Timer Output Is selected. 

Table 5. ZPLD Output Signals 

SlgnalsIReselred Names Signal Source/Destlnatlon 

esO-es3 DPLDtEPROM Block Chip Selects 

rsO DPLDtSRAM Chip Select 

csiop DPLDtPSD I/O Port Chip Select 

pselO - psel1 DPLDtPort Peripheral I/O 

mc2tmrO - mc2tmr3 PPLDtCountermmer 

pt2int4 - pt2int5 PPLDllnterrupt Controller 

mc2int6 - mc2int7 PPLDllnterrupt Controller 

----------------------------------~~.~----------------------------------
- 3·173 

-------- ------ - ----------- --------



PSD4XX/5XX Dsslgn Tutollal - Application Not, 031 

Using the 
Design 
Example 
(Cont.) 

Entering the Des/gn Source File (Cont.) 

Pin Asslgnm,nts 
The GPLD has a maximum of 24 macrocells. The inputs or outputs of the macrocells are 
connected to Ports A, Band E. Unless you specify otherwise, the Fitter assumes all the 
port pins are available for the GPLDs. If the ports are used for other functions, such as to 
provide latched address out or as I/O ports for the microcontroller, you must specify in the 
.abl file that these port pins are not available for fitting. For example, if Port A pins PAO-PA3 
are used as latched address pins out or as MCU I/O ports, the .abl file should include the 
statement: 

paO, pa1, pa2, pa3 pin; 

Nod' Asslgnm,nts 
The macrocells of Port A, Band E all have dedicated node numbers. If you have an 
embedded function and wish to assign it to a specific macrocell, you need to assign the 
function (signal) to the macroceli node number. Table 6 shows the node number of the 
macrocells. 

Table 6. Macrocel/s Node Number 

Macrocel/ Node Macrocel/ Node Macrocell Node 
Number Number Number 

PAO 27 PBO 50 PEO 38 

PA1 26 PB1 49 PE1 37 

PA2 25 PB2 48 PE2 36 

PA3 24 PB3 47 PE3 34 

PA4 23 PB4 46 PE4 33 

PAS 22 PBS 45 PES 32 

PA6 21 PB6 44 PE6 31 

PA7 20 PB7 43 PE7 30 

--------------------------_______ ,JrJr~~ _______________________________ ___ 
3.174 'fi!il## J! 



Using the 
Design 
Example 
(Cont.) 

PSD4XX/5XX Design Tutorial - Application Note 031 

The tutor.abl Source File 
The ZPLD source file for the Tutor design (tutor.abl) is shown in the listing that follows. 
Source statements end with semicolons; comments begin with a double quotation mark. 

module tutor 
title 'tutor design example ZPLD source file'; 
"Input signals 
"Address lines, using reserved names. 

a15,a14,a13,a12,a11 ,a10,a9,a8,a1 ,aO pin; 
a18,a17,a16 pin; 

pgr3,pgr2,pgr1 ,pgrO pin; 
bhe pin 38; 
elkin, reset pin 42, 40; 

"General inputs for fitting 

event1 ,event2,event3 pin; 

cntouCen pin; 
load pin; 

d4, d3, d2, d1, dO pin; 

wdog2pld node; 

"high order address 
"input for fitting 
"page register embedded inputs 

"reserving peO for bhe 
"using the right pin numbers, 
"inames are modified. 

"Enable down counter output 
"Load and enable down counter 
"Number of counts to load, 
"connect to processor data bus 

"watch dog output from Countermmer 

-----------------------------------wrJr~jr-----------------------------------
3-175 



PSD4XX/5XX O.'gn Tutlllial - Appllcatilln NIt, 031 

Using the 
Design 
Example 
(Clint.) 

Entering the Design SDurce File (Clint.) 

Th, tutlll.abi SIIUIC' FII, (Clint.) 

"Output signals 

csiop, rsO, esO, es1, es2 node; 

"DPLD output chip selects 

mc2tmrO node; "PPLD output to Event Counter 

"General outputs 

wstc pin; "down counter terminal count 

cnt3, cnt2, cnt1, cntO node istype 'reg'; 

cnt4 pin istype 'reg'; 

"Cnt4-cntO implement a down counter with a parallel load. 

"Only Cnt4 can drive out, cnt3-cntO are embedded in the chip. 

ouU>O,out-p1,ou'-p2 pin 60,59,58; 

"assign 3-bit output port to PDO-PD2 

wdout pin; "watch dog output 

"DEFINITIONS 

din [d4,d3,d2,d1,dO]; 

cnt [cnt4,cnt3,cnt2,cnt1,cntO]; 

page = [pgr3,pgr2,pgr1,pgrO]; 

CK = .c.; "Clock pulse definition 

x .x. ; "Don't care 

Address = 
[a18,a17,a16,a15,a14,a13,a12,a11,a1 O,a9,a8,X,X,X,X,X,X,a1,aO]; 

event_in = [event3,event2,event1]; 

----------________________________ ,JrJJAF~ ________________________________ __ 
3-176 i!r11i14IiI if 



Using the 
Design 
Example 
(Cont.) 

PSD4XXj5XX Design Tutorial - Application Note 031 

Entering the Design Source File (Cont.) 

The tutor.abl Source File (Cont.) 

equations 

"DPLD EQUATIONS 

csiop = (Address >= I\hOCOOO) & (Address <= I\hOCOFF) ; 

"256 block 

rsO = (Address <= I\hOB7FF) & (Address >= I\hOBOOO); 

"2k block 

esO (Address <= I\h07FFF) & (page == 0); 

"32k block only at page 0 

es1 (Address <= I\h07FFF) & (page == 9); 

"32k block only at page 9 

es2 (Address <= I\h4FFFF) & (Address >= I\h4BOOO); 

"GPLD Equations 

cn!.clk = clkin; 

cn!. re = ! reset; 

cnt4.oe = !cntout_en; 

wstc = (cnUb == 0); 

"32k block, always visible 

" The global clock is the counter clock 

" The global Reset is the counter reset 

"wstc is true when the counter outputs a~e zeroes 

WHEN (load) THEN cnt := din; 

"Load cnt with din if load is true 

ELSE WHEN (wstc) THEN cnt := 0; 

"Wait for a load pulse 

ELSE cnt := cnUb - 1; "Count-down 

"PPLD Equations 

" PLD-driven Event Counter event inputs. 

mc2tmrO = event1 & !event2 # !eyent3; 

wdout = !wdog2pld & (cnUb == 2); 

-----------------------------------~~~-----------------------------------
3·177 



I'SD4XX/5XX Design TUtorial - Application Note 031 

Using the 
Design 
Example 
(Cont.} 

Entering the Design SDurce File (Cont.} 

The tutor.abl Source File (Cont.} 

"***************************************************** 

" TEST VECTORS 
11***************************************************** 

tescvectors([clkin,reset,load,din]->[wstc,cnt]) 

[CK,1 ,X,X]->[1 ,0]; 

[CK,0,0,X]->[1,0]; 

[CK,0,1, 17]->[0, 17]; 

[CK,0,0,X]->[0,16]; 

[CK,0,0,X]->[O,15]; 

[CK,0,0,X]->[O,14]; 

[CK,0,0,X]->[0,13]; 

[CK,0,0,X]->[0,12]; 

[CK,0,0,X]->[O,11]; 

[CK,0,0,X]->[O,10]; 

[CK,0,0,X]->[0,9]; 

[CK,0,0,X]->[O,8]; 

[CK,0,0,X]->[0,7]; 

[CK,0,0,X]->[O,6]; 

[CK,0,0,X]->[0,5]i 

[CK,0,0,X]->[0,4]; 

[CK,0,0,X]->[0,3]; 

[CK,0,0,X]->[O,2]; 

[CK,0,0,X]->[0,1]; 

[CK,0,0,X]->[1 ,0]; 

[CK,0,0,21]->[1,0]; 

[CK,0,1,21]->[0,21]; 

[CK,0,0,X]->[0,20]; 

[CK,0,0,X]->[0,19]; 

[CK,0,0,X]->[0,18]; 

END tutor 

"Reset is on, cnt reg. is at zero 

"No output change, wait for a load pulse 

"Load 17 to down-counter 

"Count down 

"Count down 

"Count down 

"Count down 

"Count down 

"Count down 

"Count down 

"Count down 

"Count down 

"Count down 

"Count down 

"Count down 

"Countdown 

"Count down 

"Count down 

"Count down 

"Wait-State Terminal Count is set 

"Maintain same state 

"Load a new value 

"Count down 

"Count down 

"Count down 

-3--1-n-----------------------------~Jr~~--------------------------------



Using the 
Design 
Example 
(Cont.) 

PS04XX/5XX Design Tutorial - Application Note 031 

Entering the Design Source File (Cont.) 

Equations for the DPLD, GPLD and PPLD are included in one file. Some of the logic 
implementation and signal names are described in the following paragraphs. 

Down Counter (S-blt) 

load input, load input 

cntout_en input, OE/ to counter output cnt4 

d[O:4] input, data input for loading 

cnt[O:4] counter outputs 

The Down Counter is implemented in the GPLD. Signals cntO-cntS are embedded internal 
nodes. Only the cnt4 signal is driven out to a pin. 

Elfent Counter 

event[1-S] 

mc2tmrO 

event inputs 
count enable input to Counter, function of 

event[1-S]. Count if (event1&!event2 # !eventS) 

The Event Counter is implemented by CounterlTimer Unit o. The output of the counter can 
be read by the microcontroller. 

I/DPorts 
in_p[O:S] 
oUCp[O:5] 

Watchdog Timer 

input port, assign to Port C 
output port, assign to Port D 

wdout output to pin, wdout= wdog2pld 

The Watchdog Timer is implemented in the CounterlTimer Unit 2. Output of timer, 
wdog2pld, is routed to output pin wdout. 

Checking for Errors 
Now that the tutor.abl file is complete, the next step is to check the syntax of the file. If there 
are no errors, the file is compiled and/or optimized to generate the tutor.tt2 file for the Fitter. 

In the previous section, PSDsoft was invoked and the project Tutor was specified. 

1. Pull down the PSDsoft menu and select PSDabel. 

The tutor.abl file is displayed. 

i'i1i1 J1:!i¥ 
--------------------------------~~§-----------------------------3--1-7-9 



PSII4XX/5XX OBI/gn 'Morlal - Application Not, 031 

Using the 
Design 
Example 
(Cont.) 

Entering the Design SDurce File (Cont.) 

ChllCklng for E""IS 

design example ZPLD sou~ce file'; 

"Input signals 

"Add~ess lines~ using ~ese~ued names. 

a15~a14.a13~a12~a11.a10~a9~a8~a1.a0 pin; 
a18~a1?a16 pin 

pg~3~pg~2~pg~1.pg~0 pin; 
bhe pin 38; 

"page ~egiste~ embl " 
" ~ese~uing pe0 

clkin~ ~eset pin 42. 40; 

"Gene~al inputs fo~ fitting 

PSDsoft automatically opens the window displaying the tutor.abl file, which already exists. 
If you were creating a new design, the window would be empty and you would need to 
enter a design. 

2. Pull down the Compile menu and select Error Check. 

If any errors are present, a window is created to display the error file, TUTOR.err. 

1~~1 Error e:\psdsoft\tlltorial\tlltor.err ~a 

AHDL2PLA ABEL-HDL Processor 
ABEL 4.38 Copyright 1998-1992 Data I/O Corp. All Rights Reserved 
Licensed fro~ Data I/O Corp. by WSI Inc. 
Hodule: ' tutor' 

8832 IGeneral outputs A 

Syntax Error 1829: PIN. NODE. DEUICE. ISTYPE. HACRO. STATE. PARTITION. 
GROUP. PLACE. PROPERTY. STATE-REGISTER or '-' expected 

AHDL2PLA complete - 1 errors. 8 warnings. Time: 2 seconds 

1:11 

--------------------------______ rll~~ ______________________________ __ 
3.180 ~~J! 



Using the 
Design 
Example 
(Cont.) 

PSD4XX/5XX Design Tutorial - Application Note 031 

Compiling the Source File 
With the tutor.abl window still displayed, pull down the Compile menu and select Compile. 

a15.a14.a13.a12.a11.a10.a9.a8.a1.a0 pin; 
a18.a1?a16 pin ; I 

pg~3.pg~2.pg~1.pg~0 pin; 
bhe pin 38; 
elkin. ~eset pin 42. 40; 

"Gene~al inputs fo~ fitting 

Compile generates two PLA output files: tutor.tt1 and tutor.tt2. The tutor.tt2 file is the 
optimized PLA file based on the reduction algorithm specified in the Optimize menu. A 
default optimize setting is used during the tutorial. 

--------------------------------------~J'~~-----------------------------------3--1-8--1 



I'SIUXX/5XX '.,n Tutorl" - Application Not. 031 

Using the 
Design 
Example 
(Cont.) 

ChllDSlng Ttace Optillns IlIr fh, SlIurc, File 
The Compile Menu includes items that will be used by the PSDabel simulator, which 
simulates the equations generated in the tutor.tt1 file. 

1. Pull down the Compile menu and select Trace Options. 

The Simulate Trace Option window appears, allowing you to select the simulation output 
format and other options. 

2. Click Wave format. 

Table format is the default option. It generates a file during simulation that produces a 
waveform for each of the signals simulated (test vectors). 

3. Click OK. 

The PSDabel main window reappears. 

--------------------------________ ,ArjfjF~ ________________________________ __ 
3-182 'liif!i!iIF • 



Using the 
Design 
Example 
(Cont.) 

I'SD4XX/5XX Dsslgn Tutorial - Application Nots 031 

Choosing Optimize Options for the Source File 
You can choose different reduction algorithms to optimize the tutor.abl file. 

1. Pull down the Optimize menu and select Options. 

The Reduction Options window appears. 

The default option is the Reduce by Pin, Auto Polarity reduction. This is the option that is 
used for the tutorial design example. The purpose of optimization is to provide the optimal 
PLA file to the Fitter. 

2. Click OK. 

The main PSDabel menu reappears. 

!' •• 6= 
-----------------------------------~~~6--------------------------------~-1-83-



PSD4XX/SXX Design Tutorial - Application Nots 031 

Using the 
Design 
Example 
(Cont.) 

Simulation Within PSDabel 
A presimulation capability is available within PSDabel. Simulation at this level is 
device- and pin-independent. The advantage of this is that you can generate waveforms 
based on the logic design or logic equations without any concern about a package for the 
design. 

To perform a presimulation and view the results, pull down the Compile menu from the 
PSDsoft main menu and select Simulate Eqn. 

The Simulate Equation progress window appears. 

This window indicates that PSDabel is performing a simulation of the logic equations for the 
tutorial example and generating a waveform file for viewing. 

-3--1-8-4-------------------------------~~~-----------------------------------



Using the 
Design 
Example 
(Cont.) 

PS04XX/5XX Design Tutorial - Application Note 031 

Viewing Soulce File Components 
The View Menu allows you to view the following: 

o Compiler Listing 

o Simulation Results 

o Compiled Equations 

o Optimized Equations 

o Errors 

The Compiler Listing and Simulation Results are given here as examples of what might be 
displayed. 

1. Pull down the View menu to display all the items that are available for display. 

The items available are shown below. 

2. Choose the Compiler listing item. 

The compiler listing tutor. 1st appears in a window. 

8881 
8882 
8883 
8884 
8885 
8886 
8887 
8888 
8889 
8818 
8811 
8812 
8813 
8814 
8815 
8816 

I · • • 

design exallIple ZPLD soul"ce file'; 

:"Input signals 
• • 
:"Addl"ess lines ~ us ing I"esel"ued nallIes. 
I • 
:a15~a14~a13~a12~all~a18~a9~a8~al~a8 pin; 
:a18~a17~a16 pin 
I • 
:pgI"3~pgI"2~pgI"1~pgI"8 pin; 
Ibhe pin 38; 
:clkin~ I"eset pin 42~ 48; 
: 
I • 

-----------------------------------~~~-----------------------------------==== 3-185 



PSIJ4XX/SXX '_gn Tutllrl., - Appllcatilln /lilt. 031 

Using the 
Design 
Example 
(Cont.} 

Viewing Source File Components (Clint.} 

3. Return to the PSDabel main menu by double-clicking the close box (upper left corner) of 
the tutor.lst window. 

4. Pull down the View menu and select Simulation Results. 

A window showing the simulation results appears. 

U081i14 
U081i15 
U081i16 
UIiIIiIIiI? 
UIiIIiI1iI8 
U081i19 
U01i110 
UIiIIiI11 
UIiIIiI12 
UIiIIiI13 
UIiIIiI14 

ABEL 4.32 Date: non Jun ? 1i19:11i1:1iI1i1 1993 
iIe: JE:'PSDSOFT'TUTORIAL'tutop.tt2 J Uectop 
design example ZPLD soupce file 

c p 

I e 
k s 
i e 
n t 

L...-

c: 
c: 
c: 
c: 
c: 
c: 
c: 
c: 
c: 
c: 
c: 
c: 
c: 
r-

" , :' 

I 

° a d d 
d 4 3 

d 
2 

d 
1 

d 
iii 

",., ,': '. 

Exiting PSDabel 

w 
s 
t 
c 

Pull down the PSDsoft menu in the main PSDsoft window and choose Exit PSDabel. 

You are now ready to configure the tutorial design. 

--~------------------------------~~~----------------------------------3·186 



Using the 
Design 
Example 
(Cont.) 

PSD4XX15XX IIs,lgn TUtorial - Application Not. 031 

Configuring the Design 
Generating the optimal PLA file is critical in the fittillg of the ZPLD and the development of 
the PSD5XX. After simulating the PLA file and verifying that the logic functions are correct, 
the next step is to invoke the PSDconfiguration software. 

The PSD5XX has a programmable bus interface and is able to interface directly to 
many microcontrollers. The PSDconfiguration software allows you to specify the bus 
configuration of the PSD5XX. The tutorial design is based on a microcontroller having 
a 16-bit multiplexed bus with RD, WR/, and BHE/as control signals. 

To perform the design configuration 

1. Pull down the PSDsoft menu in the main PSDsoft window and choose PSDconfiguration. 

The PSDconfiguration main window appears. 

rt-" ~ ----------------------------------- .... -----------------------------------
- 3-187 



PSD4XX/SXX Design Tutorial - Application Nots 031 

Using the 
Design 
Example 
(Cont.) 

CDnflguring the Design (Cont.) 

2. Pull down the Configuration menu and select Bus Interface. 

The Bus Interface window appears. 

~3-~1~88~-----------------------------~~~----------------------------------



Using the 
Design 
Example 
(Cont.) 

Configuring the Bus Interface 
To program the Bus Interface 

PSD4XX/5XX Design TIItolial - Application Note 031 

1. Select the data bus width (X8 or X16) and type of microcontroller bus. 
MX deSignates a multiplexed microcontroller bus and NM designates non-multiplexed. 

There are four combinations of bus types, as follows: 

Q 16-Bit Data Bus 
Multiplexed address/data bus 

Q 16-Bit Data Bus 
Non-multiplexed bus 

Q a-Bit Data Bus 
Multiplexed address/data bus 

Q 8-Bit Data Bus 
Non-multiplexed bus 

The tutorial design uses the 16-bit, multiplexed address/data bus. 

2. Click OK. 

The Control Signal window for a 16-bit, multiplexed bus appears. 

3. Specify your selections for the Address Latch Enable (ALE) polarity and the control 
signals. 

For the tutorial design example, the microcontroller bus configuration is a 16-bit 
multiplexed bus, the ALE polarity is high, and the RD, WR, and BHE setting is used. 

-----------------------------------~~~--------------------------------3-~1-89-



PSD4XX/5XX OllSlgn Tutorial - Application Nots 031 

Using the 
Design 
Example 
(Cont.) 

Configuring the Bus Interface (Cont.) 

Configuring tbs Rsst of tbs OllSlgn 
Besides configuring the Bus Interface, you must program the 1/0 configuration of the 
CounterlTimers and Interrupt Controller. To do this 

1. Return to the main PSDconfiguration menu. 

2. Pull down the Configuration menu and select Other Configuration. 

The Other Configuration window appears. 

3. Select the configuration for the four CounterlTimers inputs and outputs. 

The PSD5XX has reserved input and output pins that are routed directly to the 
CounterlTimer Units and the Interrupt Controller. PAO-PA3 and PBO·PB3 can be 
assigned as output ports and PE3-PE6 as input ports for the CounterlTimers. 

In the tutorial design, the input to CounterlTimer 0 cannot be assigned to pin PE3 
because it consists of three signals (event[1-3]). For this reason, the CounterlTimer 0 is 
not selected in the Configuration Window. 

4. Select the automatic power-down configuration. 

The input clock to the Automatic Power Down counter is pin PE7. If PE7 is not used, 
the Fitter considers it available for fitting ZPLD functions. 

EFEI .... E 
-3--t-90----------------------------~~§-------------------------------



Using the 
Design 
Example 
(Cont.) 

PS04XX/5XX DBllgn TUtorial - Application Not. 031 

Configuring the Bus InterfaclI (Cont.) 

Configuring the RBSt of tbtlDBSlgn 

5. Select the security bit configuration. 

The security bit can be set in the Other Configuration window and is then 
embedded in the tutor.obj file generated by the Address Translator. Once the security bit 
is set, the EPROM or the ZPLD fusemap cannot be copied until it is erased. 

6. Select the interrupt controller output configuration. 

The output of the interrupt controller is pin PE2. If PE2 is not used, the Fitter considers it 
available for fitting ZPLD functions. 

VI.wlng tbtl DBllgn Summa" 
When you are ready to conclude your configuration session 
1. Pull down the Summary menu in the main PSDconfiguration menu and choose 

Summary. 

The Summary window appears and displays the configuration specified in the Bus 
Interface and Other Configuration menus. 

2. Return to the Configuration menu in the main PSDconfiguration window if you want to 
change any of the PSD5XX configuration parameters. 

________________________ ',I~,~------------------------
'rlNlIII j 3.191 



PSD4XX/5XX Design TUtorial - Application Note 031 

Using the 
Design 
Example 
(Cont.) 

Configuring the Bus Interface (Cont.) 

Viewing the Design Summary (Cont.) 

3. Pull down the PSDsoft menu in the main window and choose Exit PSDconfiguration. 

The Configuration Save Confirmation window appears. 

~ Configuration Save Confirmation 

o Would you like to save the Configurations? 

4. Click Yes to save the new configuration in the tutor.glc file. 

Compiling the Design 
The PSDcompiler consists of the Fitter and the Address Translator programs. The function 
of the Fitter is to fit the logic functions into the ZPLD. Once this is done, pin assignments 
may be made on the design schematic. The constraint of the fitting process is imposed by 
the GPLD architecture and the availability of 1/0 pins on the PSD5XX. 

The input files to the Fitter are as follows: 

o tutor.tt2 PLA file 

o tutor.glc PSD5XX configuration file 

The output files generated by the Fitter are: 

o tutor.fob 

o tutor.tt3 

o tutor.afu 

o tutor.pfu 

o tutor.feq 

o tutor.frp 

o tutor.err 

Fusemap file in Hex format (PLD+Configuration) for Address Translator 

Fitted PLA file 

Configuration fuse file for PSDsimulator 

PLD fuse file for PSDsimulator 

Fitter equation file using device reserved names 

Fitter pin assignment file 

Fitter error file 

The Address Translator combines the tutor.fob fuse map file with the EPROM codes file and 
generates the tutor.obj file, which is to be downloaded to EPROM programmer for PSD5XX 
programming. 

Figure 3 shows the flow and input and output files of the PSDcompiler. 

~3--1~92~------------------------------~~~-----------------------------------



Using the 
Design 
Example 
(Cont.) 

PSD4XX/5XX Design TUtotlai - Application Not. 031 

Figure 3. PSDcompller Program Flow 

From'MCU Complier 

DECOMPILATION 

To compile a design 

1, Pull down the PSDsoft menu in the main PSDsoft window and choose PSD Compiler. 

The PSD Compiler window appears. 

-----------------------------------f~Ar~=-----------------------------------
~-. 3·193 



PSD4XX/5XX Design Tutorial - Application Note 031 

Using the 
Design 
Example 
(Cont.) 

Compiling the Design (Cont.) 

Fitting the Design 

2. Pull down the Options menu and choose Fit Options. 

The Fit Options window appears. The Fit Options window allows you to specify the fitting 
algorithm before invoking the Fitter. 

~~ _______________________________ raa~~ __________________________________ _ 
3·194 ==== 



Using the 
Design 
Example 
(Cont.) 

PSD4XX/5XX Design TUtorial - Application NDte 081 

Compiling the Design (Cont.) 

Fitting the OllSlgn 
3. Click one of the three fitting options given in the Fit Options window. 

For the tutorial, you may choose Keep. The functions of the three Fitter options are 
listed below. 

Fitter Option Description 

Keep The Fitter should maintain the pin assignment defined by the user. 
The Keep option is the default. 

Try Maintain as much current pin assignment as possible. 

Ignore The Fitter is free to make any pin assignment and ignores the 
user's pin assignments. 

4. Go back to the PSDcompiler main menu. 

5. Pull down the Compile menu and choose Fit. 

___________________________________ r_~_~_~-----------------------------------
3·195 



PSD4XXj5XX Design Tutorial - Application Note 031 

Using the 
Design 
Example 
(Cont.) 

Compiling the Design (Cont.) 

Fitting the Design 

The Fitter window appears, indicating a successful or unsuccessful fitting process. 
Fitting must be completed successfully before invoking the Address Translator. 

PSDCompiler 

Successful Fitting Process! 

If the fitting is not successful, you will have to examine the tutor.feq file to see which logic 
function causes the fitting problem and modify the tutor.abl file accordingly. 

Recompile and optimize the modified tutor.abl file again, if necessary, before you proceed 
with the fitting process. 

6. Examine the tutor.frp report file generated by the Fitter. 
The tutor.frp file shows the results of the fitting and the pin assignment of the design. 
If you want a certain fitting other than the one generated, return to the tutor.abl file to 
specify the signal and pin assignments. 

Capturing the Schematic 

Begin the actual detailed schematic capture. 

Now that the PSD5XX pins have been assigned to specific names and functions, you can 
create the schematic. The schematic of the tutorial design example is shown in Figure 4. 
The pins are assigned signal names from the tutor.frp file. 

~~---------------------------------'~jfJF~-------------------------------------.m ==-~ 



PSD4XX/SXX Design Tutorial - Application Note 031 

Figure 4. Logie Schematic, Tutorial Design Example 

D[15:0] 
D[15:0] > 

A[19:16] 
A[19:16] I 

MICROCONTROllER 

ADO ADO 9 ADOIAO PCO 17 IN PO -
ADl ADl 8 AD11Al PCl 16 IN Pl ==:: 
AD2 AD2 7 AD2IA2 PC2 15 IN P2 
AD3 AD3 6 AD3IA3 PC3 14 IN P3 ==:: 
AD4 AD4 5 AD4IA4 PC4 13 EVENTl 
AD5 AD5 4 AD5IA5 PC5 12 EVENT2 ==:: 
AD6 AD6 3 AD6IA6 PC6 11 EVENT3 ;:::=:::: 
AD7 AD7 2 AD71A7 PC7 10 CNTOUT EN = 
AD8 AD8 68 AD8IA8 PDO 60 OUT PO ::::.. 
AD9 AD9 67 AD91A9 PDl 59 OUT Pl ;:::::: 
AD10 AD10 66 AD101Al0 PD2 58 OUT P2 = 
ADll ADll 65 ADlllAll PD3 57 OUT P3 ;:::::: 
AD12 AD12 64 ADl21A12 PD4 56 DUT P4 = 
AD13 AD13 63 ADl31A13 PD5 55 OUT P5 '"== 
AD14 AD14 62 ADl41A14 PD6 54 lOAD =" 
AD15 AD15 61 ADl51A15 PD7 53 D4 -
A16 ~ A17 A17 
A18 ~.1 
A19 ~ 

~ 
RD 

RDI RDI WR 

WRI WRI 
BHE! BHE! 40 RESET PAO 27 A18 
ALE ALE 

Ir--!-
PAl 26 A17 

CSI PA2 25 A16 

42 ClKIN PA3 24 
23 

-:!:-
PA4 
PA5 22 

38 PEOIBHE 
PA6 21 

RESETI 37 PE11AlE 
PA7 20 - I 

RESETI WSTC 36 PE2 
WDOUT 34 PE3 PBO 50 CNT4 -D3 33 PE4 PBl 49 -
D2 32 

~ ClK PES PB2 48 - Dl 31 PE6 PB3 47 
DO 30 PE7 PB4 46 

r PBS 45 
VSTBY PB6 44 

PB7 43 

-
PSD5XX 

* NOTE: PA3-PA7 and PB1-PB7 are not used. 

----_______________________________________ rArAr&F~ __________________________________________ _ 

~-. 3-197 



PSD4XX/5XX Design Tutorial - Application Not. 031 

Using the 
Design 
Example 
(Cont.) 

Compiling the Design (Cont.) 

P.rformlng Address Trans/atlon 
The Address Translator in PSDsoft integrates your code file (EPROM file) and the 
PSD5XX's configuration and fuse map files. 

1. Pull down the Compile menu and choose Address Translate. 

The Address Translation menu appears. 

The Address Translation menu has two sections: EPROM ADDRESS and EPROM FILES. 

2. Verify that the EPROM ADDRESS section of the menu displays the four chip select 
equations (ESO-ES3) for the four EPROM blocks defined in the tutor.abl file. 

-3-.1-98------------------------------~~~----------------------------------



Using the 
Design 
Example 
(Cont.) 

PSD4XX/5XX Design TIItorlal - Application Note 031 

Compiling the Design (Cont.) 

Performing Address Translation 
3. Assign to each EPROM block in the EPROM FILES section the file address range 

and the name of the EPROM file. 

For example, the tutor. hex file consists of codes of a small test program which begins at 
address 2000H. The hex file's data record indicates that the starting address is 2000H 
and the ending address is 3FFOH, which indicates that it should be assigned to block O. 
The Address Translator maps the code from the hex file at the file address specified 
under File Address Start to the first location of the EPROM block. Since the tutor. hex 
program has to be stored in EPROM location 2000H, you need to enter OOOOH - 3FFFH 
to the File Address StarVStop columns. As there are no codes between OOOOH and 
1 FFFH in the tutor.hex file, tje Address Translator fills the EPROM block 0 locations 
OOOOH to 1 FFFH with "FF". 

Each EPROM block in the PSD503B1 has 32K bytes and you must be careful not to 
enter an address space of more than 32K bytes in the file starVstop columns. 

4. Select the Intel Hex Record as the file type of tutor. hex. 

The Address Translator accepts the input file in Intel Hex format or in 
Motorola S-Record format. 

5. Click OK to Compile. 

The status of the Address Translation is indicated in the window that follows . 

. Ii Address Translation 

Address Translation has been done successfully 

If there are no errors, the tutor.obj file is generated. Click OK to exit the Address Menu. 
The compilation of the PSD5XX is finished. 

-----------------------------------~Ar~~-----------------------------------_=_iE 3-199 



PSD4XX/5XX Design Tutorial - Application Nots 031 

Using the 
Design 
Example 
(Cont.) 

Simulating the Design 
The PSDsimulator software, WSI's version of PSDsiloslll, provides chip level simulation and 
design verification. PSDsilosll1 can model designs using the Verilog Language. Due to the 
size of the PSD5XX model, a PC system requires at least 8 MB of DRAM and 8 MB of hard 
disk swap area (specified as virtual memory in Windows). 

The PSD5XX model consists of three components (files): 

o PSD5.V (the PSD5XX netlist) 

o template.pfu (the ZPLD fuse map) 

o template.afu (the PSD5XX configuration fuse map) 

Many of the intemal nodes of the PSD5XX are available for tracing. A description of the 
signals that can be traced by the simulator are listed in the PSD5XX.MST file. 

The input files required by the PSDsilosll1 simulator are generated by the Simulator 
Preprocessor in PSDsoft. The file you must create is the stimulus file. In the stimulus file 
(tutor.stl), you must use user-defined names (as in the tutor.abl file) or nellist node names 
(as in the psd5xx.mst file). The files generated by the Simulator Preprocessor are as 
follows: 

o template.pfu Fusemap of the ZPLD 

o template.afu Fusemap of the PSD configuration 

o project.grp Group names of signals for PSDsilosll1 Data Analyzer 

o project.top Top level invocation with user-defined signal names. 

o PSDsoft.run A PSDsilosll1 command batch file which loads the PSD5.V, project.top, 
and project.stl before invoking the simulator. 

o project.bus Same as psd5xx.mst, except default signal names are replaced with 
user defined names. Required in simulation display. 

__________________ f'ss §g 

3-200 ~:if ~ ------------------



Using the 
Design 
Example 
(Clint.) 

PSD4XX/5XX OtlSlgn Tutlllial - ApplicatlDn Note 031 

Simulating the Design (Clint.) 

A sample of the stimulus file (tutor.stl) is shown at the end of this chapter. A typical stimulus 
file (microcontroller writing/reading SRAM) is shown below. 

initial 

begin 

reset=O; /lgenerate reset 

wr =1; rd=1; bhe = 1; /linitialize control signal 

ale =0; 

adio = 16'bz; /linitialize'addr/data bus 

/1(16 bit) to high impedance 

a18=0;a17=0;a16=0; /lset high address bits to low 

cs =0; /lset PSD5XX chip select low 

#300 reset = 1; /lafter 300ns, reset inactive 

#100 ale = 1; /lMCU start bus cycle, set up ale 

#20 adio = 'h8476; /ldrive addr on adio bus 20ns after ale 

#30 ale=O; /lale goes low 

#30 adio = 'h5a27; /ldrive data out to bus 

bhe = 0; /lbhe low, word operation 

#40 wr=O; /lgenerate 100ns write 

#100 wr= 1; /lend wr 

bhe = 1; 

#20 adio = 16'bz; /lend of bus cycle 

#50 ale= 1; /lstart the read cycle, byte read 

#20 adio = 'h8476; /ldrive addr 

#30 ale=O; 

#30 adio = 16'bz; /lMCU floats bus 

#40 rd = 0; /lgenerate rd pulse 

#100 rd = 1; /lend of rd cycle 

end 

Please note that the project. top file includes all the necessary data and port declarations, 
and that the project.stl written by you will be appended to the projecttop file. 

-----------------------------------, •• ~= ~#. --------------3-·2-8-1 



PSD4XX/5XX Design Tutorial - Application Note 031 

Using the 
Design 
Example 
(Cont.) 

Simulating the Design (Cont.) 

Simulating the EPROM in the PSD5XX 
The PSDsimulator allows code files to be loaded to the EPROM blocks for simulation. 
However, if code simulation is not specified, the PSD5XX model fills up the EPROM with a 
fixed data pattern as shown in Table 7. 

Table 7. EPROM Data Pattern 

EPROM Block Odd Byte Even Byte 

blockO (ESO) 01h 23h 

block1 (ES1) 45h 67h 

block2 (ES2) 89h ASh 

block3 (ES3) CDh EFh 

With the pre-filled data pattern, you can verify the EPROM address decoding logic and the 
even/odd by1e orientation. 

Running the Logic Simulator 
1. Write the stimulus file, project.st!. 

2. Pull down the PSDsoft menu in the main PSDsoft window and select PSD Simulator. 

-3~~~02~~~~~~~~~~~~~~--~~~~~~~~~~~~~~~~~~~--



Using the 
Design 
Example 
(Cont.) 

Simulating the Design (Cont.) 

Running the Logic Simulator (Cont.) 

PSD4XX/5XX Design Tutorial - Application Note 031 

The preprocessor software generates the necessary command files for PSDsiloslll, and the 
window below appears. 

Simulator PreProcessor 

Successful in creating WSI-SILOS Command Files 

3. Exit from PSDsoft and double-click the PSDsilosl1i icon to invoke the Simulator. 

The PSDsilosll1 window appears, and displays the functions and menus available to you. 

Eile .Edit !,ogicSim Analyzer Reports Qebug Qptions !:!elp 

--------------------------------~~~~-----------------------------3-~-D-3 



PSD4XXj5XX Design Tutorial - Application Note 031 

Using the 
Design 
Example 
(Cont.) 

Simulating the Design (Cont.) 

Running the Logic Simulator (Cont.) 
4. Pull down the Debug menu and choose Reset All. 

The system is reset before loading any new models or stimulus files. 

5. Pull down the File menu and choose New (input files) and Working Directory. 

-3-4~04~----------------------~-----~~~----------------------------------



Using the 
Design 
Example 
(Cont.) 

PSD4XX/5XX DlIslgn Tutolial - Application Notll 031 

Simulating the Design (Cont.) 

Running thll Lllf/lc Simulator (Cont.) 

The Set Working Directory window appears. 

Set Working Directory 

Current Directory: 

e:\p sd soft\tuto ri 81 

[ .. ] 
[-8-] 
[-b-] 
[-c-] 
[-d-] 

6. Click the directory where the tutorial files reside. 

7. When you are satisfied with the working directory path, click OK. 

8. Pull down the Files menu and choose File New (input files) Input. 

.Qpen (saved simulation) ... 
~l)ve 

Ctrl+W 

-------------------------------~~~----------------------------3.-2--05 



PSD4XX/5XX DIIS/gn TUtorial - Application Nots 031 

Using the 
Design 
Example 
(Cont.) 

Simulating the Design (Cont.) 

Running ths Logic Simulator (Cont.) 

The Input File window appears. 

File Name: 

I psdsoft.run 

e:\ ... \tutorial 

Files: 

save.his 
save.sim 

File input list: 

Input File 

Input next file or Close 

I t~/lneuti~';d 

Directories: 

[ .. ) 
[-a-) 
[-b-) 
[-c-) 
[-d-] 
[-e-] 
-f-

I psdsoft.run 

9. Click the PSDsoft.run batch file in the Files window so that PSDsofl.RUN appears 
in the File Name window. 

10. Click Input. 

The PSDsofl.run batch file executes, loading the tutor.stl and the PSD5XX module 
into PSDsilosll1. 

If a syntax error is detected in the project.stl file while loading the file or running the 
simulator, an error message is displayed. 

o 
SILOS Error 

warning# 1.307 line 21 file tutor.top 
'define adiol adio(7:0) 

.. fe-definition of name 'adiol 

3 error(s): See Error Report 

Every time the tutor.stl file is modified to correct the errors, PSDsilosll1 has to be reset 
before loading the PSDsofl.run file again. 

11. Click Close. 

Now that the PSD5XX model and the stimulus file have been loaded, you are ready to 
invoke the simulator. 

_________________ ii'66 iiF~ 
~~§-------------------3-206 



Using the 
Design 
Example 
(Cont.) 

Simulating the Design (Cont.) 

Running ths Logic Simulator (Cont.) 

PSD4XX/5XX Design TUtorial - Application Nots 031 

12. Pull down the LogicSim menu and choose Run logic simulation. 

Ereprocess data 
Bun logic simulation ... F5 

The Simulate dialog box is displayed. The Simulate dialog box allows you to specify 
the simulation time range defined by t1 and t2. 

Simulate 

n: t2: 

10 100000n5 

Simulation Type ---------, 

@ Normal o Zero Delay 

13. Click Simulate 

The result of the simulation is stored in the tutor.sim file. 

_________________ FES #!E 
~~jf----------------3-4-0--7 



PS04XX/5XX Design TUtorial - Application Note 031 

Using the 
Design 
Example 
(Cont.) 

Simulating the Design (Cont.) 

Running the Analyzer 

Now that logic simulation is complete, the result can be displayed with the PSDsilosl1i Data 
Analyzer (PSDsda) by performing the following steps: 

1. Pull down the Analyzer menu and choose Start analyzer. 

2. The Select Display List window appears. 

Display List: 

clkin 
ale 
rd 
wr 
bhe 
rsO 
csiop 
adioh 
adiol 
wdog2pld 
cntO 

Display Groups -----, 

I default I [I 

Select Display List 

Circuit Node List: 

Add blank line 
III I • 

esl 
es2 
es3 

Type: unknown node 

ii'i 

The first time the Analyzer is invoked, a list of signals arranged in alphabetical order are 
displayed. You can re-arrange the order of the signals and save this list (click Save and 
save the list in tutor.grp) so that it can be used in the next invocation. 

-3-~-O-8----------------~~~-------------------



Using the 
Design 
Example 
(Cont.) 

Simulating the Design (Cont.) 

Running the Analyzer 

PSD4XX/5XX Design Tutorial - Application Note 031 

3. Select the list of signals to be displayed by the Analyzer. 

4. Click OK when you are satisfied with the signal list. 

The PSDsilosll1 Data Analyzer window is displayed. 

The waveforms of the selected signals are displayed. Signals inside the signal box can 
be moved by dragging and the window can be moved up or down with the scroll bar. 
The Zoom buttons (* = zoom full, 0 = zoom out, I = zoom in) and the time scale control 
the display window. The two time markers, T1 (the left mouse button) and T2 (the right 
mouse button) specify the range to be displayed. 

A signal trace can be displayed in four colors on the PC monitor, depending on the nature of 
the signal, as follows: 

Blue The signal is being driven as an input. 

Green The signal is being driven as an output. 

Red The signal is floating. 

Black The signal is in an undefined state. 

-----------------------------------~~~~--------------------------------3--2-09-



PSD4XX/5XX Design TUtorial - Application Note 031 

Using the 
Design 
Example 
(Cont.) 

Simulating the Design (Cont.) 

Creating a Bus 

The PSDsda allows you to put together a group of signals into a bus, which can be 
displayed in the PSDsda window. To create such a bus 

1. In the PSDsda window, pull down the Select menu and choose Buses. 

The Select Bus Items window appears. At this point, you can create a bus to add to the 
PSDsda window for display during debugging. A sample bus will be created using the 
signals A16, A17, and AlB. 

Select Bus Items 

Bus Item List: 

a17 
a16 

(msb) 

(Isb) 

Bus----------------------~ 

Name Radix 

L-Iad_d_bu_s __ -II [iJ IHex Iii 

1:'h~i,J 

lei4iij;1 

Circuit Node List: 

la18 
( ... 
D15-D8(non-mux) 
D7-DO(non-mux) 
a16 
a17 

adioh 
adiol 
ale 
bhe 
c ... 
dO 
dl 
d2 
d3 
dol 
deep pwrdn 

Type: scalar net alias 

* ~ -.,',' 

~ 

--__ -------------------------------f===~---------------------------------
3-210 ==~= 



Using the 
Design 
Example 
(Cont.) 

1'SD4XX/5XX IIBsIgn TUtllrl" - Appllcatilln illite 031 

Simulating the Design (Clint.) 

C",atlng, Bus 

2. Click Clear to erase any signal names that appear in the Bus Item List window. 

3. Enter addbus in the name window within the Bus window. 

add bus will become the name of the new item to eventually be displayed in the PSDsda 
window. It will consist of the combined A 16, A 17, and A 18 values. 

4. Click the A 16 signal in the Circuit Node List. 

5. Click Add. 

The A 16 signal is added to the Bus Item List window. 

6. Repeat steps 4 and 5 for A17 and A18. 

At this point, the A16, A17, and A18 signals appear in the Bus Item List window. 

7. Click Save in the Bus window. 

The add bus name is now added to the Circuit Node List, with a notation at the bottom of 
the list that it is a user-defined bus type. 

Select Bu;:, Items 

Bus Item List: 

illl 

a17 
a16 

Bus 

Name 

laddbus 

8. Click OK. 

(msb) 

1-
(Isb) 

Radix 

II IHex II 

III 
III 

The PSDsda window reappears. 

Circuit Node List: 

adrlbus 
adioh 
adiol 
ale 
bhe 
c ... 
dO 
d1 
d2 
d3 
d.ll 

Type: user defined bus 

!MIl 

~ .', 

----------------------------~_'~_;----------------------------'IJ 3-211 



PSlJ4XX/5XX Design Tutorial - Application Not, 031 

Using the 
Design 
Example 
(Cont.} 

Simulating the Design (Cont.} 

C",tlng a Bus 

9. Pull down the Select menu and choose Display list. 

The Select Display list window appears. 

Display List: 

reset 
tmr frez ack 
tmr-frez - cmd 
tmr=glob-='cmd_reg 
imgOH 
imgOL 
pgrO_3 
portc 
d2 
d3 

Select Display list 

'··"1-

''"'I'" 
"''''1-1-

Circuit Node List: 

addbus 

Add blank line 
( ... 
Timer-Sync 
a16 
a17 
a18 
addbus 
adioh 
adiol 
ale 

Display Groups-----, bhe 

I .... d_ef_a_ult ___ ---'II 

all 
III 

c ... 

I"':~o 
esl 
es2 1_ =.::..;;:... _____ ----J_ 

Type: user defined bus 

The addbus name appears in the Circuit Node list because it was added as a bus in the 
previous steps. 

10. Click addbus in the Circuit Node list to select it. 

11. Click Add. 

The addbus name now appears in the Display list, indicating that addbus is now 
available for display in the PSDsda window. 

~~-----------~~~---------------3.212 'If 



Using the 
Design 
Example 
(Cont.) 

Simulating the Design (Cont.) 

Creating a Bus 

12. Click OK. 

The PSDsda window reappears. 

a16 
al? 

alB 

addbus 

adioh 

adiol 
tmUrez_cmd 

PSD4XX/5XX Design Tutorial - Application Note 031 

13. Scroll down the Signal name window until you see addbus. 

The signal waveform corresponding to the addbus value is displayed in the window to 
the right. 

The addbus name is saved in the tutor. bus file and is available for display each time 
you use PSDsda. 

-----------------------------------~~~-----------------------------------==== 3-213 

~---~---~----



PSD4XX/5XX Design Tutorial - Application Note 031 

Using the 
Design 
Example 
(Cont.) 

Programming The PSD5XX 
Take the following steps to program the PSD5XX after the design has been verified through 
simulation. For more detailed information, refer to the PSDprogrammer chapter in this 
manual. 

1. Pull down the PSDsoft menu in the main PSDsoft window and choose 

The main PSD Programmer window appears. 

~3~~~1~4-------------------------------~~~-----------------------------------



Using the 
Design 
Example 
(Cont.) 

PSD4XX/5XX Design Tutorlsl - Appllt:lltlon Note 031 

PrDgrammlng The PSD5XX (Cont.) 

2. Pull down the File menu and choose Open. 

3. Select the tutor.obj file to be loaded to the PSDpro buffer. 

The contents of the tutor.obj file are displayed. Use the Edit menu for making any 
code modifications. 

There are several options available to you for working with a device. Some of these 
functions are shown under the Functions menu of the main PSDprogrammer window. 

4. Pull down the Functions menu to see the available options. 

----------------------------------,_~_Ar~_~----------------------------------'4fIf!..t 3.215 



PSD4XX/5XX Design Tutorial - Application Not, 031 

Using the 
Design 
Example 
(Cont.) 

Programming The PS05XX (Cont.) 

The Functions menu provides the following options in programming the PSD5XX: 

o Blank Test Verify the device is blank. 

o Upload Upload the programmed part contents to the buffer. 

o Program 

o Verify 

Program the device. 

Verify the programmed device against 
the .obj file in the buffer. 

The Control Panel also displays several functions, some of which are duplicated under the 
Functions menu in the main window. 

11 Controls aa 
IiilfiiiilriiilriiDill _~UII_ 

r;;;Iijiiiijijllil.i! I~ Imlallll ~ ~~ 

~3-~-16--------------------------------~~~-----------------------------------



Using the 
Design 
Example 
(Cont.) 

PSD4XX/5XX Dsslgn Tutorial - Application Nots 031 

To Program a Part 
1. Pull down the Functions menu in the main PSDpJogrammer window and select 

Program or 

click the Prgm button of the Control Panel. 

The Confirmation dialog box appears, which allows you to program the EPROM, 
PLD, or Acr regions of the device. 

'iilil PSDPro - Confirmation Dialog 

jgI All 

D Eprom 

DPld 

DAcr 

2. Select one or more of the boxes to indicate the regions of the device you want 
programmed. 

3. Click Range to specify the address range within the device where the programming is to 
take place. 

The Eprom Address Range dialog box appears. 

___________________________________ FES~E 
~~e --------------------------------3.-2-,7-



PSD4XX/5XX Design Tutorial - Application Nots 031 

Using the 
Design 
Example 
(Cont.) 

To Program a Part (Cont.) 

4. Enter the starting and ending addresses where indicated and click OK when you are 
satisfied with the values. 

The Eprom Address Range dialog box disappears. By default, the address range is set 
to the beginning and ending address of the EPROM, so that the entire range of the 
EPROM is specified. The range can be specified only for the EPROM, not the PLD or 
Acr regions. 

5. Click OK in the Confirmation dialog box when you are satisfied with the address range 
that will be programmed as well as with the functional parts of the device that will be 
programmed (Eprom, PLD,Acr). 

A bar graph showing programming progress as well as percent complete is shown on the 
screen. As the programming takes place, the MagicPro® programmer checks each location 
as it is programmed to make sure it matches the hexadecimal file contents. If a particular 
location cannot be programmed properly, an error message appears. If this occurs, you 
must start over and program a new fully erased and functional part. 

When the device has been successfully programmed, the PSDpro software verifies the 
device by comparing its contents with the contents of the hexadecimal file in system 
memory. If the device does not properly verify, an error message appears, and you must 
start over and program a new fully erased and functional part. 

--__ ---------------------------------rArJr~~-------------------------------------3-218 _illlY. 



PSDsoft 
Input/Output 
File List 

File Extension 

project. ERR 

project.INI 

project.ABL 

project.TT1 

project.TT2 

project.TT3 

project.TMV 

project.LST 

project.SMn 

project. EOn 

project.AOP 

project.GLC 

project.CRP 

project.HEX 

project.FOB 

project.OBJ 

project.AFU 

project.PFU 

project.EFn 

project.FEO 

project.FRP 

project.ASV 

project.ARP 

project.STL 

project.TOP 

TEMPLATE: 

project.BUS 

project.CMM 

project.GRP 

project.HIS 

project. LOG 

project.SIM 

project.STM 

project.VTR 

PSDsoft.RUN 

PSD4XX/5XX Design Tutofial - Application Note 031 

Description 

- Error log file generated by various PSDsoft programs 

- Project information file 

- PSDabel-HDL language equation file created by you 

- Non-optimized PLA file 

- Optimized PLA file 

- Fitted PLA file 

- Test vector file automatically generated by PSDabel compiler 

- PSDabel compiler listing file 

- PSDabel simulation output result file generated from .TTn file 

- PSDabel equation files generated from .TTn file 

- PSDabel options file generated automatically upon exiting PSDabel 

- Global configuration file 

- Global configuration report file 

- EPROM Hex object file 

- Fuse map file in Hex format (PLD + Configuration) 

- Fuse map file in Hex format (PLD + Configuration + EPROM) 

- Architecture configuration fuse file for simulation use 

- PLD fuse file for simulation use 

- EPROM fuse file for simulation use where n = 0 through 3, 
each representing EPROM block ESO through ES3, respectively 

- Fitter equation file using only device reserve names 

- Fitter pin assignment report file 

- Address translator save file 

- Address translator report file 

- PSDsilosl1i stimulus file created by you 

- PSDsilosll1 top level model file 

- Intermediate fuse files for PSDsilosll1 Logic simulation use 

- User-defined bus names for the PSDsilosll1 Data Analyzer 

- Current state of the simulator 

- Group names of signals for the PSDsiloslll Data Analyzer 

- History of any commands used for this session of PSDsilosll1 

- PSDsilosllllog file 

- PSDsilosll1 simulation history 

- Stimulus yalues related to expected results 

- Vector names for the PSDsilosll1 Data Analyzer 

- For automatic loading of user netlist file and device model library 

------------------------------~Jr~---------------------------3-~~19 



PS04XX/5XX OIlS/gn Mor/al - Application Nots 031 

Tutor MODULE tutor 

Equation File - TITLE 'tutor design example ZPLD source file , 
tutor.eq2 a15 PIN; 

a14 PIN; 
a13 PIN; 
a12 PIN; 
a11 PIN; 
a10 PIN; 
a9 PIN; 
a8 PIN; 
a1 PIN; 
aO PIN; 
a18 PIN; 
a17 PIN; 
a16 PIN; 
pgr3 PIN; 
pgr2 PIN; 
pgr1 PIN; 
pgrO PIN; 
bhe PIN 38; 
elkin PIN 42; 
reset PIN 40; 
event1 PIN; 
event2 PIN 
event3 PIN; 
entouCen PIN; 
load PIN; 
d4 PIN; 
d3 PIN; 
d2 PIN; 
d1 PIN; 
dO PIN; 
in_pO PIN 17; 
in_p1 PIN 16; 
in_p2 PIN 15; 
in_p3 PIN 14; 
wste PIN; 
ent4 PIN; 
ouCpO PIN 60; 
ouCp1 PIN 59; 
ouCp2 PIN 58; 
ouCp3 PIN 57; 
ouCp4 PIN 56; 
ouCp5 PIN 55; 
wdout PIN; 
wdog2pld PIN; 
esiop PIN; 
rsO PIN; 
esO PIN; 
es1 PIN; 
es2 PIN; 
me2tmrO PIN; 
ent3 PIN; 
ent2 PIN; 
ent1 PIN; 
entO PIN; 

3-220 V;i; 



Tutor 
Equation File -
tutor.eq2 

PSD4XXj5XX Design TUtorial - Application Note 031 

EQUATIONS 

csiop = (a15 & a14 & !a13 & !a12 & !a11 & !a10 &.!a9 & !a8 & 
!a18 & !a17 & !a16); 

rsO = (a15 & !a14 & !a13 & !a12 & !a11 & !a18 & !a17 & !a16); 

esO = (!a15 & !a18 & !a17 & !a16 & !pgr3 & !pgr2 & !pgr1 & !pgrO); 

es1 = (!a15 & !a18 & !a17 & !a16 & pgr3 & !pgr2 & !pgr1 & pgrO); 

es2 = (a15 & a18 & !a17 & !a16); 

wstc = (!cnt4.FB & !cnt3.FB & !cnt2.FB & !cnt1.FB & !cntO.FB); 

cnt4 := (!Ioad & !wstc & !cnt4.FB & !cnt3.FB & !cnt2.FB & !cnt1.FB & !cntO.FB 
# load & d4 
# !load & !wstc & cnt4.FB & cntO.FB 
# !load & !wstc & cnt4.FB & cnt1.FB 
# !load & !wstc & cnt4.FB & cnt2.FB 
# !load & !wstc & cnt4.FB & cnt3.FB); 

cnt4.C = (clkin); 

cnt4.RE = (reset); 

cnt4.0E = (!cntout_en); 

cnt3 := (!load & !wstc & !cnt3.FB & !cnt2.FB & !cnt1.FB & 
!cntO.FB 

# !load & !wstc & cnt3.FB & cntO.FB 
# !load & !wstc & cnt3.FB & cnt1.FB 
# !load & !wstc & cnt3.FB & cnt2.FB 
# load & d3); 

cnt3.C = (clkin); 

cnt3.RE = (reset); 

cnt2 := (!load & !wstc & !cnt2.FB & !cnt1.FB & !cntO.FB 
# !load & !wstc & cnt2.FB & cntO.FB 
# !load & !wstc & cnt2.FB & cnt1.FB 
# load & d2); 

cnt2.C = (clkin); 

cnt2.RE = (reset); 

cnt1 := (!Ioad & !wstc & !cnt1.FB & !cntO.FB 
# !load & !wstc & cnt1.FB & cnto.FB 
# load & d1); 

cnt1.C = (clkin); 

cnt1.RE = (reset); 

cntO := (!load & !wstc & !cnto.FB 
# load & dO); 

cntO.C = (clkin); 

cntO.RE = (reset); 

mc2tmrO = (event1 & !event2 
# !event3); 

wdout = (!wdog2pld); 

END 

----------------------------------~~~------------------------------3-~~2--1 



I'SII4XX/5XX IkIIl,n TutDrial - AppllClltlDn Note 031 

PSDXXX.mst 
FilllS 

PS05".mst FilII 
The following 1S9 signals are available to you for PSDsilosll1 simulation of a PSDSXX 
device. 

1. datah ;Upper byte of the 16-bit data bus in 
non-mux mode only 

2. datal ;Lower byte of the 8/16-bit data bus in 
non-mux mode only 

3. intr-J)riocstat ;Interrupt Priority Status register 
4. pe_mcO ;Port E macrocell output-O 
S. pe_mc1 ;Port E macrocell output-1 
6. pe_mc2 ;Port E macrocell output-2 
7. pe_mc3 ;Port E macrocell output-3 
8. pe_mc4 ;Port E macrocell output-4 
9. pe_mcS ;Port E macrocell output-S 
10. pe_mc6 ;Port E macrocell output-6 
11. pe_mc7 ;Port E macrocell output-7 
12. pb_mcO ;Port B macrocell output-O 
13. pb_mc1 ;Port B macrocell output-1 
14. pb_mc2 ;Port B macrocell output-2 
1S. pb_mc3 ;Port B macrocell output-3 
16. pb_mc4 ;Port B macrocell output-4 
17. pb_mcS ;Port B macrocell output-S 
18. pb_mc6 ;Port B macrocell output-6 
19. pb_mc7 ;Port B macrocell output-7 
20. pa_mcO ;Port A macrocell output-O 
21. pa..mc1 ;Port A macrocell output-1 
22. pa..mc2 ;Port A macrocell output-2 
23. pa..mc3 ;Port A macrocell output-3 
24. pa..mc4 ;Port A macrocell output-4 
2S. pa..mcS ;Port A macrocell output-S 
26. pa_mc6 ;Port A macrocell output-6 
27. pa_mc7 ;Port A macrocell output-7 
28. deep_pwrdn ;Deep Sleep mode of PSD 
29. pwrdn ;Standby mode of PSD 
30. psen_to_ram_en ;SRCODE bit in VM register 
31. periph_mode ;Peripherall/O mode 
32. pmmr1 ;Power Management mode register-1 
33. pmmrO ;Power Management mode register-O 
34. wdog2pld ;WatchDog output routed as a PPLD input 
3S. intr2pld ;Interrupt output routed as a PPLD input 
36. mc2tmrO ;CounterlTimer-O PPLD macrocell output 
37. mc2tmr1 ;CounterlTimer-1 PPLD macrocell output 
38. mc2tmr2 ;CounterlTimer-2 PPLD macrocell output 
39. mc2tmr3 ;CounterlTimer-3 PPLD macrocell output 
40. mc2int6 ;lnterrupt-6 PPLD macrocell output 
41. mc2int7 ;lnterrupt-7 PPLD macrocell output 
42. pt2int4 ;lnterrupt-4 PPLD product term output 
43. pt2intS ;Interrupt-S PPLD product term output 
44. douCb ;Port B data out register 
4S. dirfCb ;Port B direction register 

-----------------------------------~~.!'------------------~---------------3-222 ~ 



PSDXXX.mst 
Files 

PSD5B1.mst File (Cont.) 

46. ctrLb 
47. spec_b 
48. ctrLe 
49. douLe 
50. dirfCe 
51. spec_e 
52. intUevel 
53. intcmsk 
54. intr_req 
55. tmr_waiLcnt 

56. tmr_glob_cmd_reg 
57. tmUrez_cmd 
58. tmUrez_ack 

59. tmcsofUd 

60. cmd3 
61. cmd2 
62. cmd1 
63. cmdO 
64. ctrLd 
65. douLd 
66. dirfLd 
67. opn_drn_d 
68. douLc 
69. ctrLc 
70. dirfCc 
71. opn_drn_c 
72. pgrO_3 
73. psel1 
74. pselO 
75. csiop 
76. es3 
77. es2 
78. es1 
79. esO 
80. rsO 
81. pbO 
82. pb1 
83. pb2 
84. pb3 
85. pb4 
86. pb5 
87. pb6 
88. pb7 
89. paO 
90. pa1 

PSD4XX/5XX Dsslgn Tutorial - Application Nots 031 

;Port B control register 
;Port B special function register 
;Port E control register 

; Port E data register 
;Port E direction register 
;Port E special function register 
;Interrupt Edge/Level definition register 
;Interrupt Mask register 
;Interrupt request latch register 
;DLCY(delay) value of Countermmers 
clock input 
;Global command register of Countermmers 
;Freeze Command register of Coutermmers 
;Freeze Acknowledge status register of 
Countermmers 
;Software load command register of 
Countermmers 
;Countermmer-3 command register 
;Countermmer-2 command register 
;Countermmer-1 command register 
;Counterffimer-O command register 
; Port D control register 
; Port D data register 
;Port D direction register 
;Port D Open Drain/CMOS definition register 
; Port C data register 
;Port C control register 
;Port C direction register 
;Port C Open Drain/CMOS definition register 
;Page Registers 0 through 3 
;Peripherall/O mode select product term 2 
;Peripheral I/O mode select product term 1 
;Chip Select I/O ports 
;EPROM Chip select for block-3 
;EPROM Chip select for block-2 
;EPROM Chip select for block-1 
;EPROM Chip select for block-O 
;PSD SRAM Chip Select 
;Port B pin-O 
;Port B pin-1 
;Port B pin-2 
;Port B pin-3 
;Port B pin-4 
;Port B pin-5 
;Port B pin-6 
;Port B pin-7 
;Port A pin-O 
;Port A pin-1 

--------------------------------~-~~~----------------------------~~ -= 3-223 



PSD4XX/5XX Design Tutorial - Application Nots 031 

PSOXXX.mst PSD5B1.mst File (Cont.) 

Files 91. pa2 ;Port A pin-2 
92. pa3 ;Port A pin-3 
93. pa4 ;Port A pin-4 
94. paS ;Port A pinoS 
95. pa6 ;Port A pin-6 
96. pa7 ;Port A pin-7 
97. pe2 ;Port E pin-2 
98. pe3 ;Port E pin-3 
99. pe4 ;Port E pin-4 
100. peS ;Port E pinoS 
101. pe6 ;Port E pin-6 
102. pe7 ;Port E pin-7 
103. pdO ;Port D pin-O 
104. pd1 ;Port D pin-1 
105. pd2 ;Port D pin-2 
106. pd3 ;Port D pin-3 
107. pd4 ;Port D pin-4 
108. pdS ;Port D pinoS 
109. pd6 ;Port D pin-6 
110. pd7 ;Port D pin-7 
111. pcO ;Port C pin-O 
112. pc1 ; Port C pin-1 
113. pc2 ;Port C pin-2 
114. pc3 ;Port C pin-3 
115. pc4 ;Port C pin-4 
116. pcS ;Port C pinoS 
117. pc6 ;Port C pin-6 
118. pc7 ;Port C pin-7 
119. spec_a ;Port A special function register 
120. dirfCa ;Port A direction register 
121. ctrLa ;Port A Control register 
122. dou'-a ;Port A data register 
123. cntr3H ;CounterlTimer-3 high byte register 
124. cntr3L ;CounterlTimer-3 low byte register 
125. cntr2H ;CounterlTimer-2 high byte register 
126. cntr2L ;CounterlTimer-2 low byte register 
127. cntr1 H ;CounterlTimer-1 high byte register 
128. cntr1 L ;CounterlTimer-1 low byte register 
129. cntrOH ;CounterlTimer-O high byte register 
130. cntrOL ;CounterlTimer-O low byte register 
131. img3H ;CounterlTimer-3 Image high byte register 
132. img3L ;CounterlTimer-3 Image low byte register 
133. img2H ;CounterlTimer-2 Image high byte register 
134. img2L ;CounterlTimer-2 Image low byte register 
135. img1H ;CounterlTimer-1 Image high byte register 

-----------------------------------r~~~~-----------------------------------3-224 ~iiiE 51! 



PSDXXX.mst 
Files 

PSD5B1.mst File (Cont.) 

136. img1L 
137. imgOH 
138. imgOL 
139. portb 
140. clkin 
141. reset 
142. csi 
143. pe1 
144. peO 
145. wr 
146. rd 
147. portd 
148. portc 
149. adioh 
150. adiol 
151. porta 
152. timeroutO 
153. timerout1 
154. timerout2 
155. timerout3 
156. pgrO 
157. pgr1 
158. pgr2 
159. pgr3 
160. timer_elk 

PSD4XXj5XX Des/gn Tutorial - Application Note 031 

;CounterlTimer-1 Image low byte register 
;CounterlTimer-O Image high byte register 
;CounterlTimer-O Image low byte register 
;Port S register 
;PSD input Clock 
;PSD input reset 
;PSD Chip Select 
;Port E pin-1 (ALE etc.,) 
;Port E pin-O (PSEN, SHE etc.,) 
;PSD write signal 
;PSD read signal 
;Port D register 
;Port C register 
;Address/Data bus high byte 
;Address/Data bus low byte 
;port A register 
;CounterlTimer-O output (only when used) 
;CounterlTimer-1 output (only when used) 
;CounterlTimer-2 output (only when used) 
;CounterlTimer-3 output (only when used) 
;Page Register bit 0 
;Page Register bit 1 
;Page Register bit 2 
;Page Register bit 3 
;The actual clock input to the CounterlTimers 

-----------------------------------r~~~~-----------------------------------i!ffRiiFS. 3-225 



PSD4XX/5XX Dflslgn Tutorial - Application Notfl 031 

PSDXXX.mst 
Files 

3-226 

PSD4A1.mst File 

The following 100 signals are available to you for PSDsilosll1 simulation of a 
PSD4XXA 1 device. 

1. datah ;Upper byte of the 16-bit data bus in non-mux mode only 
2. datal ;Lower byte of the 8/16-bit data bus in non-mux mode only 
3. pb_mcO ;Port B macrocell output-O 
4. pb_mc1 ;Port B macrocell output-1 
5. pb_mc2 ;Port B macrocell output-2 
6. pb_mc3 ;Port B macrocell output-3 
7. pb_mc4 ;Port B macrocell output-4 
8. pb_mc5 ;Port B macrocell output-5 
9. pb_mc6 ;Port B macrocell output-6 
10. pb_mc7 ;Port B macrocell output-7 
11. deep_pwrdn ;Deep Sleep mode of PSD 
12. pwrdn ;Standby mode of PSD 
13. psen_to_ram_en ;SRCODE bit in VM register 
14. periph_mode ;Peripheral I/O mode 
15. pmmr1 ;Power Management mode register-1 
16. pmmrO ;Power Management mode register-O 
17. douLb ;Port B data out register 
18. dirfCb ;Port B direction register 
19. ctrl_b ; Port B control register 
20. spec_b ;Port B special function register 
21. ctrl_e ;Port E control register 
22. douLe ;Port E data register 
23. dirfCe ;Port E direction register 
24. spec_e ;Port E special function register 
25. ctrl_d ;Port D control register 
26. douLd ;Port D data register 
27. dirfCd ;Port D direction register 
28. opn_dm_d ;Port D Open Drain/CMOS definition register 
29. dout_c ;Port C data register 
30. ctrLc ;Port C control register 
31. dirfCc ;Port C direction register 
32. opn_dm_c ;Port C Open Drain/CMOS definition register 
33. pgrO_3 ;Page Registers 0 through 3 
34. psel1 ;PeripheralllO mode select product term 2 
35. pselO ;Peripheral I/O mode select product term 1 
36. csiop ;Chip Select I/O ports 
37. es3 ;EPROM Chip select for block-3 
38. es2 ;EPROM Chip select for block-2 
39. es1 ;EPROM Chip select for block-1 
40. esO ;EPROM Chip select for block-O 
41. rsO ;PSD SRAM Chip Select 
42. pbO ;Port B pin-O 
43. pb1 ;Port B pin-1 
44. pb2 ;Port B pin-2 
45. pb3 ;Port B pin-3 
46. pb4 ;Port B pin-4 
47. pbS ;Port B pin-5 
48. pb6 ;Port B pin-6 

r#~='; 



PSII4XX/SXX lIft/gn .,.,."., - Application .",.1137 

PSDXXX.mst I'SD4A1.mst FII, (Cont.) 

Flies 49. pb7 ;Port B pin-7 
50. paO ;Port A pin-O 
51. pa1 ;Port A pin-1 
52. pa2 ;Port A pin-2 
53. pa3 ;Port A pin-3 
54. pa4 ;Port A pin-4 
55. pa5 ;Port A pin-5 
56. pa6 ;Port A pin-6 
57. pa7 ;Port A pin-7 
58. pe2 ;Port E pin-2 
59. pe3 ;Port E pin-3 
60. pe4 ;Port E pin-4 
61. pe5 ;Port E pin-5 
62. pe6 ;Port E pin-6 
63. pe7 ;Port E pin-7 
64. pdO ;Port 0 pin-Q 
65. pd1 ;Port 0 pin-1 
66. pd2 ;Port 0 pin-2 
67. pd3 ;Port 0 pin-3 
68. pd4 ;Port 0 pin-4 
69. pd5 ;Port 0 pin-5 
70. pd6 ;Port 0 pin-6 
71. pd7 ;Port 0 pin-7 
72. pcO ;Port C pin-O 
73. pc1 ;Port C pin-1 
74. pe2 ;Port C pin-2 
75. pc3 ;Port C pin-3 
76. pc4 ;Port C pin-4 
77. pe5 ;Port C pin-5 
78. pc6 ;Port C pin-6 
79. pc7 ;Port C pin-7 
80. spec_a ;Port A special function register 
81. dirfCa ;Port A direction register 
82. ctrLa ;Port A Control register 
83. douLa ;Port A data register 
84. portb ;Port B register 
85. clkin ;PSD input Clock 
86. reset ;PSD input reset 
87. csi ;PSD Chip Select 
88. pe1 ;Port E pin-1 (ALE etc.,) 
89. peO ;Port E pin-O (PSEN, BHE etc.,) 
90. wr ;PSD write signal 
91. rd ;PSD read signal 
92. portd ;Port 0 register 
93. portc ;Port C register 
94. adioh ;AddresslData bus high byte 
95. adiol ;Address/Data bus low byte 
96. porta ;port A register 
97. pgrO ;Page Register bit 0 
98. pgr1 ;Page Register bit 1 
99. pgr2 ;Page Register bit 2 
100. pgr3 ;Page Register bit 3 

WI; 3-227 



PSD4XX/5XX Dssign Tutorial - Application Nots 031 

PSDXXX.mst 
Files 

PSD4A2.mst File 

The following 116 signals are available to you for PSDsilosll1 simulation of a PSD4XXA2 
device. 

1. datah ;Upper byte of the 16-bit data bus in non-mux mode only 
2. datal ;Lower byte of the 8/16-bit data bus in non-mux mode only 
3. pe_mcO ;Port E macrocell output-O 
4. pe_mc1 ;Port E macrocell output-1 
S. pe_mc2 ;Port E macrocell output-2 
6. pe_mc3 ;Port E macrocell output-3 
7. pe_mc4 ;Port E macrocell output-4 
8. pe_mcS ;Port E macrocell output-S 
9. pe_mc6 ;Port E macrocell output-6 
10. pe_mc7 ;Port E macrocell output-7 
11. pb_mcO ;Port B macrocell output-O 
12. pb_mc1 ;Port B macrocell output-1 
13. pb_mc2 ;Port B macrocell output-2 
14. pb_mc3 ;Port B macrocell output-3 
1S. pb_mc4 ;Port B macrocell output-4 
16. pb_mcS ;Port B macrocell output-S 
17. pb_mc6 ;Port B macrocell output-6 
18. pb_mc7 ;Port B macrocell output-7 
19. pa_mcO ;Port A macrocell output-O 
20. pa_mc1 ;Port A macrocell output-1 
21. pa_mc2 ;Port A macrocell output-2 
22. pa_mc3 ;Port A macrocell output-3 
23. pa_mc4 ;Port A macrocell output-4 
24. pa_mcS ;Port A macrocell output-S 
2S. pa_mc6 ;Port A macrocell output-6 
26. pa_mc7 ;Port A macrocell output-7 
27. deep_pwrdn ;Deep Sleep mode of PSD 
28. pwrdn ;Standby mode of PSD 
29. psen_to_ram_en ;SRCODE bit in VM register 
30. periph_mode ;Peripheral I/O mode 
31. pmmr1 ;Power Management mode register-1 
32. pmmrO ;Power Management mode register-O 
33. dout_b ;Port B data out register 
34. dirfCb ;Port B direction register 
3S. ctrl_b ;Port B control register 
36. spec_b ;Port B special function register 
37. ctrl_e ;Port E control register 
38. douLe ;Port E data register 
39. dirfCe ;Port E direction register 
40. spec_e ;Port E special function register 
41. ctrLd ;Port D control register 
42. douLd ;Port D data register 
43. dirfCd ;Port D direction register 
44. opn_drn_d ;Port D Open Drain/CMOS definition register 
4S. douLc ;Port C data register 

_____________________________________ FAFAFSF~ __________________________________ ___ 
3-228 ~=ifg 



PSOXXX.mst 
Files 

PSD4A2.mst File 
46. ctrLc 
47. dirfCc 
48. opn_dm_c 
49. pgrO_3 
50. psel1 
51. pselO 
52. csiiop 
53. es3 
54. es2 
55. es1 
56. esO 
57. rsO 
58. pbO 
59. pb1 
60. pb2 
61. pb3 
62. pb4 
63. pb5 
64. pb6 
65. pb7 
66. paO 
67. pa1 
68. pa2 
69. pa3 
70. pa4 
71. pa5 
72. pa6 
73. pa7 
74. pe2 
75. pe3 
76. pe4 
77. pe5 
78. pe6 
79. pe7 
80. pdO 
81. pd1 
82. pd2 
83. pd3 
84. pd4 
85. pd5 
86. pd6 
87. pd7 
88. peO 
89. pc1 
90. pc2 

PSD4XX/5XX Design TUtorial - Application Not. 031 

;Port C control register 
;Port C direction register 
;Port COpen Drain/CMOS definition register 
;Page Registers 0 through 3 
;Peripheral 1/0 mode select product term 2 
;Peripheral 1/0 mode select product term 1 
;Chip Select 1/0 ports 
;EPROM Chip select for block-3 
;EPROM Chip select for block-2 
;EPROM Chip select for block-1 
;EPROM Chip select for block-O 
;PSD SRAM Chip Select 
;Port B pin-O 
;Port B pin-1 
;Port B pin-2 
;Port B pin-3 
;Port B pin-4 
;Port B pin-5 
;Port B pin-6 
;Port B pin-7 
;Port A pin-O 
;Port A pin-1 
;Port A pin-2 
;Port A pin-3 
;Port A pin-4 
;Port A pin-5 
;Port A pin-6 
;Port A pin-7 
;Port E pin-2 
;Port E pin-3 
;Port E pin-4 
;Port E pin-5 
;Port E pin-6 
;Port E pin-7 
;Port D pin-O 
;Port D pin-1 
;Port D pin-2 
;Port D pin-3 
;Port D pin-4 
;Port D pin-5 
;Port D pin-6 
;Port D 'Pin-7 
;Port C pin-O 
;Port C pin-1 
;Port C pin-2 

----------------------------------~~.!'----------------------------------
- 3-229 



ntl4XX/5XX 11M", 'fitwIal - App/latI", "_.7 

PSDXXX.mst PSIUA2._ FII. (CIIIt.} 

Filss 91. pe3 ;Port C pin-3 
92. pc4 ;Port C pin-4 
93. peS ;Port C pinoS 
94. pe6 ;Port C pin-6 
9S. pe7 ;Port C pin-7 
96. spec_a ;Port A special function register 
97. dirfCa ;Port A direction register 
98. ctrLa ;Port A Control register 
99. douLa ;Port A data register 
100. portb ;Port B register 
101. clkln ;PSD input Clock 
102. reset ;PSD input reset 
103. csi ;PSD Chip Select 
104. pe1 ;Port E pin-1 (ALE etc.,) 
10S. peO ;Port E pin-O (PSEN, BHE etc.,) 
106. wr ;PSD write signal 
107. rd ;PSD read signal 
108. portd ;Port 0 register 
109. portc ;Port C register 
110. adloh ;AddresslData bus high byte 
111. adiol ;AddresslData bus low byte 
112. porta ;port A register 
113. pgro ;Page Register bit 0 
114. pgr1 ;Page Register bit 1 
11S. pgr2 ;Page Register bit 2 
116. pgr3 ;Page Register bit 3 

~~ __________________ r'I~,. ____________________ _ 
3-2311 .",.1 .. 



Stimulus 
File 
tutor.stl 

PSD4XX/5XX lleslgn rut"lal - AppllCllfIDn NDt. 031 

H+++++++++++++++++++++++++++++++++++++++++++++++++ 
H User-Defined Parameters 
H+++++++++++++++++++++++++++++++++++++++++++++++++ 

parameter pmmrO='hCOBO, cntrO='hC098, imgO='hC090; 
parameter dlcy='hCOA6, cmdO='hCOAO, global='hCOA8; 
parameter freeze='hCOA4, status='hCOA9, page='hCOEO; 
parameter sram_loc='h8476, es_loc1 ='h39FE, es_loc2='h146C; 
parameter es_loc3='h39FD; 
parameter bhe_on=O, bhe_off=1, page9=9; 
parameter clear=O, freeze_on=1, unfreeze=O; 

H+++++++++++++++++++++++++++++++++++++++++++++++++ 
H User-Defined Tasks 
11+++++++++++++++++++++++++++++++++++++++++++++++++ 

task write (addr_bus,bhe_value,data_in); 

input [15:0] addr_bus; 
input [15:0] data_in; 
input bhe_value; 

begin 

#20 ale = 1; IILatch the address lines 
#20 adio = addr_bus; IISet-up the right address 

bhe = bhe_value; 
#20 ale = 0; IIAle inactive 

#20 adio = data_in; II Write operation 

#40 wr = 0; II Write pulse 
#100 wr = 1; II Write ends 

#10 adio = Z16; bhe =Z; 

end 

endtask 

task read (addr_bus); 

input [15:0] addcbus; 

begin 

#20 ale = 1; IILatch the address lines 
#20 adio = addr_bus; IISet-up the right address 

bhe = 0;· 
#20 ale = 0; HAle inactive 

#20 adio = Z16; H Float Address bus 

#40 rd = 0; II Rd pulse 
#100 rd = 1; H Rd ends 

#10 bhe = Z; 

end 

endtask 

----------------------------~Jrjr----------------------------3-231 



PSD4XX/5XX Design Tutorial - Application Not, 031 

Stimulus 
File 
tutor.stl 
(Cont.) 

11+++++++++++++++++++++++++++++++++++++++++++++++++ 
II USER defined buses 

11+++++++++++++++++++++++++++++++++++++++++++++++++ 

reg [4:0] din; 
assign {d4, d3, d2, d1, dO} = din; 
IIdin defines the 5 parallel-in bits loaded to the down-counter. 
liThe down-counter is implemented using the PLD macrocells 
II( unrelated to timer-O unit that is configured here as an event-counter}. 

reg [2:0] evenUn; 
assign {event3, event2, event1} = evenUn; 
lIevenUn combines the 3 bits whose level changes are regarded as events. 

reg [2:0] hi_ad; 
assign {a18, a17, a16} = hLad; 
Ilhi_ad groups together high-order address lines. 

II 16-Bit, mux mode, ale is used. 

11+++++++++++++++++++++++++++++++++++++++++++++++ 
/1--> Starting Point of Stimulus File <--

11+++++++++++++++++++++++++++++++++++++++++++++++ 

initial 
begin 

wr = 1; rd = 1; clkin = 0; 
reset = 0; csi = 0; adio ='hOOOO; 
bhe = 1 ; cnt4 = Z; wstc = Z; 

wdout = Z; hi_ad = 0; 

IId4 - dO have a value of 29 
din = 29; 

IIMc2tmrO pulses create timer-O events on their low-to-high transitions. 
II mc2tmrO = event1 & !event2 + !event3, 
II according to the ABEL description. 

evenUn =7; 

load = 0; Illnitialize the down-counter to no-load 
cntout_en = 1; IIcnt4 is tri-stated 
#500 reset = 1 ; 

!/Initialize the part to power-saving mode. Write 38H to the PMMRO reg: 
IIDisable clkin from the PLD-AND array, put PLD in non-turbo mode, EPROM in 
IICMISER mode. 

-3-.2-3-2---------------------------------~~~-------------------------------------



Stimulus 
File 
tutor.s" 
(Cont.) 

//Invoke the task with the right parameters 
#10 

PSD4XX/5XX Design TUtorial - Application Note 031 

write (pmmrO,bhe_off,'h38); //Byte-Iow write operation 

IITimer-O data initialized to 0 
write (cntrO,bhe_on,clear); /NJord-write operation 

IILoad down-counter with 29, enable cnt4 to output pin 
load = 1; cntouCen = 0; II Counter starts 

#32 load = 0; IIEnd of load pulse, load duration is a clock cycle 

IIClear IMGO high & low byte registers 
write (imgO,bhe_on,clear); /NJord-write operation 

IIread-back data on IMGO reg 
read (imgO); /NJord-read operation 

IIWriting DLCY data. Timer Clock is the clock input (clkin) frequency 
IIdivided by 7. 

write (dlcy,bhe_off,3); IIByte-write operation 

IIWriting CMD-O data to configure Timer-O 

/NJrite Data of 6: 

110 Event Count mode/waveform 
111 Increment mode 
1/1 Enable Timer_O 
/IX Timer output active level (don't care - no timer output) 
/IX Determines whether the timer increments on 
II the rising or falling edge of the PIN. Since Macroceli is 
II selected, this is a don't care bit. 
110 Trigger(=load/store) from Macroceli, not from pin 
110 Enable trigger command from macroceli 
110 Enable/Disable by MACROCELUPIN 

write (cmdO,bhe_off,6); IIByte-write operation 

//Issue another load down-counter pulse. 
II Load counter with 26, enable cnt4 to output pin 

din =26; load = 1; cntouCen = 0; 
#32 load = 0; 

I/Global Reg data written to 
#200 

write (global,bhe_off,6); IIByte-write operation 
/NJrite Data of 06h, no clock division, Event Count mode/Time Capt mode 

1/ d4 - dO have a value of 31, load down-counter 
din = 31; 
load = 1; 

#32 load = 0; IIEnd of load pulse 

-------------------------------------~~~-------------------------------------
3-233 



PSD4XX/SXX D.'gn TutDllal - Application Not. 031 

Stimulus 
File 
tutor.stl 
(CDnt.) 

II Timer starts counting here I 

II Create events. Note that their width is not important. 
II Timer-O increments on every low-to-high transition of 
II the mc2tmrO PPLD signal. 

#40 evenUn = 1; IICreate 1 st event 
#30 evenUn = 7; 
#290 evenUn = 1; IICreate 2nd event 
#30 evenUn = 7; 
#290 evenUn = 1; IICreate 3rd event 
#30 evenUn = 7; 
#290 evenUn = 1; IICreate 4th event 
#25 evenUn = 7; 
#365 evenUn = 1; IICreate 5th event 
#22 evenUn = 7; 

II Write to Freeze Command Reg data 

#240 write (freeze,bhe_off,freeze_on); IIByte-write operation 

II Create 6th event. It occurs together with the issuance of a freeze command. 
evenUn = 1; 
#24 evenUn = 7; 

II Create more events, the timer continues counting while IMGO is frozen. 
#365 evenUn = 1; IICreate 7th event 
#30 evenUn = 7; 

II read data on Status reg, verify that freeze_ack is high 
read (status); IIByte-High read operation 

II read data on IMGO reg since the counter is frozen. 
read (imgO); IIWord-read operation 

evenUn = 1; IICreate 8th event 
#61 evenUn = 7; 

II Write to Unfreeze the Freeze Command Reg data 

#700 write (freeze,bhe_off,unfreeze); IIByte-write operation 

~~~------------------------_______ '~ArjF~ __________________________________ ___ 
3-234 ilHfs II

Stimulus
File
tutor.stl
(Cont.)

PSD4XX/5XX Design Tutorial - Application Note 031

//-----------------
II MEMORY TESTS
//-----------------

IISetting up address 8476h of SRAM
write (sram_loc,bhe_on,'h5A27); //Word-write operation

IIread data of EPROM location 39FEh, esO is active
read (esJoc1); //Word-Read operation

IIExpect 0123h on data bus

IIread data of EPROM location 146Ch, esO is active
read (es_loc2); //Word-Read operation

IIExpect 0123h on data bus

IISetting up address COEOh of Page-Reg. Write #9 to it.
write (page,bhe_off,page9); IIByte-write operation

IIread data of SRAM location 8476h
read (sram_loc); //Word-Read operation

IIExpect 5A27 on the data bus

#20 din = 12; II Change din to 12
#10 load = 1; IILoad 12 to down-counter
#32 load =0; lIend of down-counter load

IIread data of Page-Reg. location COEOh
read (page); //Word-Read operation

IIExpect 9 on the low order byte of data bus

IIRead data of EPROM location 39FOh, es1 will be selected(based on page 9)
read (es_loc3); IIByte-high read operation

IIExpect 45 on 015-08

IIRead data of EPROM location 146Ch, es1 will be selected
read (es_loc2); //Word-Read operation

IIExpect 4567h on 015 - 00

end

IIGenerate a continuous clock signal
always

#16 clkin = -clkin;

-----------------------------------~~~-------------------------------3~-~23~5~

PS04XX/5XX Design Tutorial - Application Note 031

Files
For Other
Bus
Structures

PSD5XX/4XX
Architecture
Overview

PSD5XX/4XX
Architecture

Included in the Examples subdirectory is a set of .abl, .glc and .stl files for four design
examples. These designs are similar to the tutorial design example except for the bus
interface configuration. More examples will be included later.

The following is the current file list:

mux8.abl ABEL file for 8-bit multiplexed bus
mux8.stl Stimulus file for mux8.abl

nmux8.abl ABEL file for 8-bit non-multiplexed bus
nmux8.stl Stimulus file for nmux8.abl

nmux16.abl ABEL file for 16-bit non-multiplexed bus
nmux16.stl Stimulus file for nmux16.abl

m683xx.abl ABEL file for Motorola 683XX type bus
m683xx.stl Stimulus file for m683xx.abl

The PSD5XXJ4XX devices are new members of the Field Programmable Microcontroller
Peripheral product line from a WSI. The PSD5XXJ4XX devices provide advanced features
such as a complex ZPLD, Timer/Counters, Interrupt Controller, Page Logic, and expanded
I/O Ports to greatly enhance the performance of virtually any microcontroller.

The PSD5XXJ4XX also replaces the basic building blocks in embedded designs. These
include the EPROM block, SRAM, decoders, address latches, I/O Ports and other discrete
components. Two of the advantages of the PSD5XXJ4XX are the flexibility and
programmability of the part. Chip functions can be modified or changed by reconfiguration
or by redefining the ZPLD logic equations.

Because of its flexible configuration options, the PSD5XXJ4XX is able to interface to a wide
range of microcontrollers or microprocessors.

Figure 5 is the top-level block diagram of the PSD5XX/4XX. The PSD5XXJ4XX consists of
the following main functional blocks and features:

Q Bus Interface
Q ZPLDSlock

Q Memory Block

Q I/OPorls
Q Counterff/mer and Inte"upt Controller Block (PS05XX only)
Q Power Management
Q Chip Security

Q PageLog/c

Q Per/pherall/O Mode

All the functional blocks are connected to the internal Address and Data bus. The Data Bus
is 8- or 16-bit, depending on the PSD5XXJ4XX configuration. The Address Bus width is
variable and is defined by the user. The ZPLD (Zero Power PLD) has its own input and
output buses. The GPLD (General Purpose PLD) and PPLD (Peripheral PLD) can operate
by themselves and be independent from the microcontroller.

During normal bus cycles, the Decoding PLD (DPLD) monitors the Address Bus and
determines if any of the PSD5XXJ4XX internal devices should be selected and enabled.
All the internal blocks can be accessed by the microcontroller, including the output of
macrocells in the ZPLDs.

-----------------------------------,~~~~-----------------------------------3-236 !i"lii!'_ =

II .. ~
...

IlLlnt
1U111,
I-II~

Co>
~
~

ADDRE~ATNCONTROlBUS

POWER I VSTDBY
MGR --

...... ~:EI II~" ~~.#N
mmtmm7" ,_'.;-_ PF-·_··-_u I I I

UNIT

PDO-PD7

60

ZPLD
I I • I INPUT

BUS

,"""M 1.1: ·I.~

I I ~ IPORTA

PROG.
PORT

PORTB

PROG.
PORT I PED-PE7

,"oJ] 1.1 -: ~<~._.L,~l II .''0""

ClKIN

WATCH DOG OUTPUT

GLOBAL
CONRG.

AND
SECURITY

'TIMERIINTERRUPT BLOCK
AVAILABLE IN PSD5XXX ONLY

~
ciS'
§!
CD
PI
;g
&I
i
~
2! g
~
!::I
S'
1
!!

I
~
r
liS'
:Ii ...
S'
i
I

~
I
= I
If
2

PSD4XX/5XX DflSlgn 'Mor'.' - Appl/m/on lot. 031

PSD5XX14XX
Archltectute
{Cont.}

Bus Interface
The PSD5XXl4XX can interface to many microcontrollers or microprocessors. The Bus
Interface is user configurable, and is able to support many types of bus structures.
Figure 6 shows the interface between the PSD5XXl4XX and a processor with a 16-bit
multiplexed address/data bus (ADO-AD15). The AD bus from the processor connects
directly to the ADIO port on the PSD5XXl4XX. The Bus Interface latches the address lines
at the falling edge of the ALE signal. Data is driven onto the AD bus in a read bus cycle.
Bus control signals (RD/, WRI, and so on) from the processor also connect directly to the
PSD5XX14XX with no gluelogic.

For processors that have non-multiplexed buses, the bus interface configuration requires
that the address bus connect to the ADIO port, while the data bus goes to Port C and Port
D, depending on the bus width.

The data ports of the PSD5XX14XX are in tri-state mode if none of the internal devices are
selected.

Figure 6. Bus Interface Connection

PSD5XX

AD[7:0] PORT ADIO ~ ~ C
f-- -AD[15:5]

~ ~ PORT
PORT

f-- 0 ~ •
MICRO- WRI -CONTROLLER RDI .. RSTI PORT • .-

CSI A

-
BHE!
ALE PORT PORT • • E B

~--------------------'.'~,~-----------------------3-238 .,.." J

PSD5XX/4XX
Architecture
(Cont.)

PSD4XX/SXX Design TUtorial - Application 'ot, 031

ZPLDBIock
The ZPLD Block consists of three embedded ZPLDs: the DPLD, GPLD, and PPLD.

o DPLD
The Decoding PLD (DPLD) generates select signals to internal 1/0 devices, EPROM
blocks, and SRAM. The DPLD has 61 inputs and 8 outputs. Each output has one product
term.

o SPLD
The General Purpose PLD (GPLD) provides up to 24 programmable macrocelis for general
or complex logic implementation. The GPLD shares the same input bus as the DPLD. The
inpuVoutput of the 24 macrocelis are connected to 1/0 pins on Port A, B, and E. Figure 7
shows a macroceli circuit that is connected to Port B. Macrocelis connected to Port A and E
have similar circuitry.

The PSD4XXA2 has 16 macrocelis on Port A and B, while the PSD4XXA 1 has only eight
macrocelis on Port B, with eight combinatorial macrocelis on Port A.

o PPLD
The Peripheral PLD (PPLD), which is available in the PSD5XX only, has six programmable
macrocells. The output of the macrocells are used as inputs to the Timer and Interrupt
Controller, which provide additional control over the operation of the Timers.

The three ZPLDs share the same input bus which consists of up to 61 signals. These
signals include the address lines and control signals from the microcontroller, the
Timerllnterrupt Controller outputs, the Page Logic outputs, and inputs from Ports A, B, C, D,
and E. Ports A, B, and E can also be configured as output ports for the GPLD's macrocells.

You can reduce the power consumption of the ZPLDs by turning the ZPLD Turbo bit off in
the Power Management Mode Register. In this mode, the ZPLD puts itself into standby
mode if none of the 61 inputs are switching for a period of 100 ns or more.

Figure 7. Port B MaclOcell Circuit

PT P LOE
PT

AND
ARRAY

,---, , ,

PT~~P~B~I.C~L~R~------_4

PT~~P~BLI--~--_+--------_+--~
PBI.CLK

MACRO· fiST

CLKlN

NOTE:I.7TOO INTERNAL
ADDRESSIDATA

BUS

-------------------------------',#Jr.~-------------------------------
rtfIIt!!., II 3.239

PSD4XX/SXX Design Tutorial - Application Note 031

PSD5XX/4XX
Architecture
(Cont.)

Memory Block
The PSD5XXl4XX Memory Block consists of two sections, EPROM and SRAM.

CJ EPROM
EPROM is used for program code and data storage. The EPROM consists of four separate
blocks, each having its own chip select signal defined by you through the DPLD. There are
three EPROM sizes, as follows:

.256 Kbits

.512 Kbits

.1 Mbit

CJ SRAM
SRAM supplements to the microcontroller's internal RAM. The SRAM has one
16Kbit block, which has a battery back-up mode.

Both the EPROM and SRAM can be configured as X8 or X16, depending on the data bus
width of the microcontrolier.

VOPorts
The PSD5XXl4XX has five 8-bit I/O Ports. Each port performs multiple functions and is
user-programmable. The port functions can be classified into three groups, I/O Ports to the
microcontroller, Address or Data Ports, and I/O Ports for internal PSD5XX devices.

CJ VO POrts to the Microcontrol/er
I/O Ports to the Microcontroller (Standard MCU I/O can be read or written to by the
microcontroller).

CJ Address or Data Ports
For microcontrollers with non-multiplexed buses, Port C is connected to the low byte

on the data bus and Port D is connected to tire high byte (Address Bus connects to the
ADIO Port).

Port A can also be used as input for the higher address lines (A 16 and up). These address
lines are included in the ZPLD input bus and are used in address decoding.

In applications where lower order address lines are needed for peripheral I/O devices, the
I/O Ports can be configured to provide latched address output.

-:-::-:-::-________________ !Fs. #5
3-240 ',;.6=i!~ -----------------

PSD5XX/4XX
Architecture
(Cont.)

1'SD4XX/5XX IItIslgn Tutorial - Appllt:at/on lIot. 031

Q I/O Ports 'or Internal PSD5XX/4XX Devices
Ports C and D may serve as input ports for the GPLD, and Port A, B, and E may serve as
1/0 ports for the macrocells. .

Ports A, B, and E may serve as 1/0 ports for the TimerlCounter and Interrupt Controller.

There are additional functions that are unique to each port. Port A has a Peripheral 1/0
mode which, if activated, allows Port A to serve as a transceiver on the microcontroller data
bus.

Figure 8 shows the pin structure and circuitry of an 1/0 pin on Port B. The PCR (Port
Configuration Register) controls the operation of the Port. As an output port, the MUX select
one of the four sources as an output. For Port B, these outputs are as follows:

Q Standard MCU 1/0
Q Latched address output
Q GPLD macrocelil/O
Q Timer output (Special Function)

As an input pin, the pin can be configured as an input to the ZPLD, or as an input for the
Standard MCU 1/0 mode. Other registers in the pin structure can be accessed by you
through the PDR (Port Data Register).

Figure 8. Pin Structure, Port B

INTERNAL
ADDRESS

/DATA
BUS

WRI

ALE

GPLD • OUTPUT
SPECIAL FUNCTION

PBX.OE
ALE

110

ADDRESS

A [0-7] OR
A [8-15]

PCR 1+---....

PCR

WRI

DIR.REG.

PORT B PIN

MUX

GPLD·INPUT

-------------------------------~JI:~---------------------------------= 3~1

PSD4XX/5XX OtlSlgn TUtorial - Application Not. 031

I'SD5XX/4XX
Architecture
(Cont.)

Counter Rimer and Interrupt Controller
The Countermmer block, which is available in the PSD5XX only, consists of four 16-bit
counters. All four counters run on the same input clock. The desired clock frequency (the
maximum input clock, CLKIN, is 30 MHz-the maximum counter/timer clock is 7.5 MHz) is
selected by programming the Clock Scaler with the proper divisor.

The Countermmers have five modes of operation:

Q Waveform Mode

Q Pulse Mode

Q Event Counter Mode

Q Time Capture Mode

Q WatchDog Mode

The mode of operation is specified through the Command Register. Figure 9 shows the
Countermmer and Interrupt Controller block diagram. The MUX selects the source of the
CounterlTimer control inputs. The control source can come from user software, external
inputs, or macrocell outputs from the PPLD. Outputs from the Countermmers in Waveform
or Pulse Mode are routed to Port A or B. WatchDog output, WDOG2PLD, needs to go to
the ZPLD before it can be taken to an I/O pin as a ZPLD output defined by you.

The Interrupt Controller provides a convenient way to manage a design with multiple inter­
rupts. The Interrupt Controller accepts eight interrupt inputs, including four Terminal Counts
from the Countermmers, two from the macrocells and two from the AND ARRAY of the
PPLD. The PSD5XXl4XX does not have dedicated pins for external interrupt inputs. You
have to specify the input as ZPLD input on Port C or D in order to generate the proper
product term for the Controller.

Interrupt inputs can be either level or edge sensitive. The inputs are priority decoded,
where IR7 has the highest priority. The Controller also has the ability to mask out any
unwanted input.

Power Management
The PSD5XXl4XX has a Power Management Register that allows you to configure the chip
power consumption in real time. You may activate four power saving options.

Q Power Down Mode
In this mode, the PSD5XXl4XX automatically puts itself into power-down mode if the
microcontroller is inactive. You can also put the PSD5XX14XX into power-down mode by
deselecting the chip select input (CSI) pin.

Q S/eepMode
Once in the Power Down Mode, the PSD5XXl4XX has the option to go into Sleep Mode.
The PSD5XXl4XX consumes less power but requires recovery time to get back to normal
operation.

Q EPROM CMISER Mode
This mode allows the PSD5XXl4XX to turn off the EPROM when it is not being accessed.

Q Zl'LD Turbo Mode
The PSD5XXl4XX's ZPLD saves power by turning off the Turbo bit. This adds 10 ns
additional delay to the ZPLD.

Through the Power Management Register, the input clocks to the ZPLD and
Countermmers can be turned off to save power due to AC activity.

~~----------------------______ "IAF~ ______________________________ __
3-242 "",4118

PSD5XX/4XX
Architecture
{Cont.}

PSD4XX/5XX ODslgn Tutorial - Application NotD 031

Figure 9. Counterflimer and Interrupt Block

TIMER[3:0] • IN

PT(8)

WDOG2PLD

PT

AND PT

ARRAY

PT(4)

INTR2PLD

Chip Security

PT21NT4
PT2INT5
MC21NT6
MC2INT7

nMERI
COUNTER

(4)

nMER·OUTO
nMER·OUT1

nMER·OUT2

TIMER·OUT3

TC[3:0]

The PSD5XXl4XX has a programmable security bit that offers protection from unauthorized
duplication. When the security bit is active, the contents of the EPROM, ZPLD fusemap,
and nonvolatile configuration bits are prevented from being read by an EPROM
programmer. If a special decoding technique is implemented, it will also prevent the codes
from being disassembled by Emulators.

Page Logic
For microcontrollers with limited addressing capability, the PSD5XXl4XX provides a four-bit
Page Register that increases the memory space by a factor of 16. Outputs from the Page
Register are available as inputs to the ZPLD for decoding purpose.

Peripheral I/O Mode
The Peripheral I/O Mode is available on Port A only. In this mode, Port A acts as a tri-state
transceiver on the microcontroller data bus. The enable and directional control signals to
the Port are defined in the DPLD.

---------------------------------------,jfjf~~---------------------------------------5l':i!liiE • 3-243

'SD4XX/5XX D.'gn 'MII".' - AppllClltlllR lilt. 031

________________________ '88'; ______________________ _
3.244 'fINI1 &

Introduction

Typical
Keypad
Interface

Programmable Peripheral
Application Note 033
Keypad Interface to PSD4XX/5XX
with Autoscanning
By Ching Lss

The integration of complex PLD and I/O functions in the PSD4XXl5XX is well suited to the
implementation of I/O interface logic such as a keypad controller. This application note
describes how to take advantage of this PSD4XXl5XX feature to design an efficient and
power saving keypad interface.

A keypad consists of a matrix of pressure or touch activated switches. Figure 1 shows a
typical keypad interface using a PIO (parallel I/O) chip. It is assumed that the keypad has
internal pull ups for the rows and columns. The keypad has 25 keys, and is arranged in a 5
(row) x 5 (column) matrix. In this example, Port B is configured as an output port
(PBO - PB4) and driving logic "0" to the 5 row inputs of the keypad. Port A is configured as
an input port (PAO - PA4). PAO - PA4 are normally pulled high by internal keypad resistors
until one of the keys is pressed. For example, if key [3,1] (row 3, column 1) is pressed, then
the "0" on PB3 is passed through the closed switch to column 1.

Figure 1. Keypad Interface

COLUMN SENSING

r

AO PORTA

PA4

MICRO- - PARALLEL
CONTROLLER VOCHIP

ROW SCANNING

ROWO rBO
PORTB ~

PB4fl1

ROW4

COLO COL4

5X5 KEYPAD

3-245

'SlUXX/5XX - Application Not. 033

Typical
Keypad
Interface
(Cont.)

AMore
Efficient
Keypad
Interface
Implementation

Detection of the key closure usually involves the following steps:

o The microcontroller program continues to poll Port A to determine if any of the inputs are
low. If data on Port A is switched from "1F" (no keys are pressed) to "17" (PA3 is low).
the microcontroller can then identify that one of the keys in column 1 is pressed.

o To eliminate erroneous read due to key switch bouncing. the software executes a
delay routine and reads Port A again after the column inputs are stable.

o After a key closure from column 1 is detected. the microcontroller reverses the
direction bits of Port A and Port B. Now Port A acts as an output port and Port B as an
input port. Port A drives back "17" to the column inputs.

o The microcontroller then reads Port B which acts as an input port for the rows. If it
reads "17" (PB3 is low). then it can identify that the key common to row 3 and column 1
(key [3.1]) is pressed. This can be done through a look up table.

This keypad interface technique can also be implemented in the PSD4XXJSXX by
connecting the rows and columns to the I/O ports as described above. The microcontroller
must be always active and must keep on polling the Ports for keypad input.

The major overhead of the above keypad interface is:

o The microcontroller must poll the port at a fixed frequency. thus reduce the processor
performance.

o The microcontroller must remain active and consumes power even when the keypad
is idle.

A more efficient way of interfacing to a keypad which reduces the above overhead is
described here. The PSD device will perform the interface function automatically by:

o Implementing a hardware debounce circuit in the GPLD of the PSD4XXJSXX. replacing
software debouncing.

o Implementing a state machine in the GPLD to scan the rows of the keypad
automatically. replacing software polling.

o Setting Port A as a column input port and Port B as a scan output port.

o Generating an interrupt to the microcontroller only when a key is pressed.

The concept of this design is shown in the block diagram in Figure 2. The block diagram
shows only the 1/0 Ports and GPLD portion of the PSD4XXJSXX which are used in the
keypad interface. The following paragraphs describe the PSD configuration and GPLD logic
function.

-~-Z-~6----------------------------~~Jr-------------------------------

AMo"
E"'c/ent
Keypad
Interface
Implementation
(Cont.)

PSD
lID Po"
Configuration

BPLD
Logic
Implementation

Figure 2. PSD ImplementatlDn

TO
PROCESSOR

CLKIN

PSD4XXISXX

DATA [0-7]

Lr~ ,I DEBDUNCE PORTA I CIRCurr - BUFFER

PORTB
BUfFER

FREZ ~TDINTR ;--
CONTROLLER
OR PROCESSOR

GPLD

L:::: STATE
MACHINE

11

I---
t--
r-

PSD4XX/5XX - Application Not. 033

PAO
COLUMN SENSING

PAl

PM

PA3
PA4

S S S S s
T T T T T
A A A A A
T T T T T
E E E E E
4 3 Z 1 0

PBO 1 1 , , 0
PB'

, , , 0 , ROWO

PBZ 1 , 0 , ,
PB3 1 0 , , ,
PB4 0 , ,

ROW SCANNING
ROW4

STATE MACHINE

COLO COL 4

SX5KEYPAD

Port B is configured as an output port for the GPLD. Outputs of the scanning state machine
are routed to Port B and are connected to the row inputs of the keypad. The outputs of the
state machine can be read by the microcontroller via the Port B Buffer (Data In Register or
Macrocell Out Register).

Port A is configured as an input port for the GPLD and is connected to the column outputs
of the keypad. The column outputs can also be read by the microcontroller via the Data In
Register of Port A.

The GPLD implements both a debounce circuit and a scanning state machine. Both
functions can be fitted in the PB macrocells and can run on the same input clock (clkin).
The state machine is clocked by the rising edge of clkin, while the debounce circuit uses
the falling edge of clkin.

-----------------------~Jr;------------------------3·247

PSD4XX/5XX - Application Note 033

The
Debounce
Circuit

The Scanning
State Machine

The bounces on the keypad column outputs due to switch opening/closing can lead to an
erroneous result. The debounce circuit performs two functions:

o Generates a "freeze" signal when a key is pressed. This signal, frez, is used to stop the
state machine until the key is released. The ABEL equation is

frez := !(coIO· col1 • col2· col3· coI4);

o Generates an interrupt, "intr", to the microcontroller when the column outputs stay low
for two (or more) consecutive clocks. This is to ensure that the inputs are stable before
interrupting the microcontroller. The ABEL equation is

intr := frez • ! (colO. col1 • col2 • col3 • coI4);

The clock input to the debounce circuit can be derived from the system clock, but the clock
period should be larger than the switch bounce time.

The state machine does the keypad scanning by sending a "running 0" pattern to the row
inputs at the rising edge of the input clock via Port B. For a 5 row keypad, the "running 0"
patterns at each clock are:

Clock Row 0 Row 1 Row 2 Row 3 Row 4
1 0 1 1 1 1

2 1 0 1 1 1

3 1 1 0 1 1

4 1 1 1 0 1

5 1 1 1 1 0

6 0 1 1 1 1

7 1 0 1 1 1

The pattern is repeated every five clocks. The sequence of events when a key [3,1] (row 3,
column 1) is pressed at clock 2 are:

o At clock 2: Key [3,1] is pressed. The "0" in the pattern (row 1) is not passed to column
1 output.

o At clock 3: The "0" in the pattern (row 2) is not passed to column 1 output.

o At clock 4: The "0" in the pattern (row 3) is passed to column 1 output via the
closed/pressed key [3,1].

o At the falling edge of clock 4, the "0" causes the debounce circuit to generate the "frez"
signal and freezes the state machine.

o At the next clock, if column inputs are stable and remain low, the deb ounce circuit
generates an interrupt which wakes up the microcontroller.

o The microcontroller reads Port A. The column inputs are "17h" which indicates a key in
column 1 was pressed.

o The microcontroller reads the output of the state machine ("running 0" pattern). The
value is "1 Dh". This indicates a key in row 3 was pressed.

o By using a look up table, the microcontroller identifies the pressed key to be key [3,1].
The microcontroller puts itself back to power down/sleep mode.

o The state machine remains in a stop condition until the pressed key is released. After
the key is released, the state machine returns to generating the "running 0" pattern.

-3--2-~-8---------------------------------~~~------------------------------------

The Scanning
State Machine
(Clint.)

Implement
The Keypad
Interface
In The
PS04XX/5XX

PSD4XX/SXX - Applicatilln Nllt. 033

The state machine has 5 states and you can assign the "running 0" pattem as the state
value. The operation of the state machine, including the debounce circuit, is described in
ABEL as follows: '

"state values (running 0 pattern)
sreset = AbOOOOO;
scanrO = Ab11110;
scanr1 = Ab111 01;
scanr2 = Ab11011;
scanr3 = Ab10111;
scanr4 = Ab01111;

frez:= !(coIO * col1 * col2 * col3 * coI4); active high

intr := frez * !(coIO * col1 * col2 * col3 * coI4); active high

"frez is active when key is pressed

rowreg.c = clk;
rowreg.re = !rst;

"scanning clk = clk
"clear registers at reset

state_diagram rowreg;

state sreset:
state scanro:
state scanr1 :
state scanr2:
state scanr3:
state scanr4:

goto scanrO;
if Ifrez then scanr1 else scanrO;
if !frez then scanr2 else scanr1;
if Ifrez then scanr3 else scanr2;
if !frez then scanr4 else scanr3;
if !frez then scanrO else scanr4;

"if no frez, state machine runs continuously

This Keypad design can be implemented in any of the PSD4XXl5XX devices. There are
two ways to implement the keypad row scanning function:

o Use the state machine as described above. This approach is restricted to a keypad with
a few rows. As the number of rows increase, the number of product terms required by
the state machine also increases and soon there will not be enough product terms. The
ABEL file which defines the GPLD logic function of this implementation, keya.abl, is
shown in Appendix A.

o Use a circular shift register to generate the "running 0" pattern instead of a state
machine. The shift register needs only one product term per output and can interface to
keypads with large row counts. During reset, the register is seVpreset with the
"running 0" pattem (11110). After reset, the "0" in the pattern is shifted and repeated
between the row inputs. The clock input to the shift register is "anded" with the frez
signal and will stop shifting after a key is pressed. The ABEL file of this implementation
is shown in Appendix B.

A stimulus file, keypad.stl, which simulates the keypad operation is included in Appendix C.
The stimulus file shows the steps required to set up Port A and the reading of column and
row values by the microcontroller after a key is pressed.

The PSD4XX15XX frees up valuable 110 ports on the microcontroller, and off-loads
some of the keypad software overhead. The resulting design allows better utilization of
microcontroller resources.

---------------------------~Jrjf------------------------3-4--~

1'SD4XX/5XX - AppllClltlon Note oal

AppBndlxA.
KEYA.ABL
File

module keya
title 'test:keyboard autoscanning, 80C196 bus interface';

"Input signals

colO, col1, col2, col3, col4 pin 27,26,25,24,23; "key bd column inputs

"Address lines, using reserved names.

a15,a14,a13,a12,a11 ,a10,a9,a8,a1 ,aO pin;

clkin, rst pin 42, 40;

"PLD output signals.

csiop, rsO, esO, es1 , es2, es3 node;
intr pin;
frez node;
nclkin node;

"More outputs using reserved names.
"key board interrupt

"reverse of clkin

rowO, row1, row2, row3, row4 pin 50,49,48,47,46; "row scanning outputs
rowO, row1, row2, row3, row4 is type 'buffer, reg_d';

"Definitions

rowreg = [row4, row3, row2, row1, rowO];

"state values
sreset = "b00000;
scanrO = "b11110;
scanr1 = "b111 01;
scanr2 = I\b11011;
scanr3 = "b1 0111 ;
scanr4 = "b01111;

c = .c.; " Clock pulse definition
X = .x.; " Don't care
Address = [a15,a 14,a 13,a12,a11,a 1 O,a9,a8,X,X,X,X,X,X,a 1,aO];

rII'~ -~-2-50----------------------------- .,.--------------------------------

AppendixA.
KEYA.ABL
File
(Cont.)

PSD4XX/SXX - Application Not. D33

equations

csiop = (Address >= I\hOCOOO) & (Address <=l\hOCOFF); "256 block
rsO = (Address <= I\h087FF) & (Address >= I\h08000); "2k block
esO = (Address <= I\h01 FFF) & (Address >= I\hOOOOO); "32KB block

frez := !(coIO * col1 * col2 * col3 * coI4); "active high frez
intr := frez * ! (colO * col1 * col2 * col3 * coI4); "active high intr

"intr is active when key is pressed

nclkin = !clkin; "reverse clkin for debounce circuit
frez.c = nclkin; intr.c = nclkin;
rowreg.c = clkin; "scanning clk = clkin
frez.re = !rst; intr.re = !rst;
rowreg.re = ! rst; "reg. clear input

state_diagram rowreg;

state sreset: goto scanrO;
state scanrO: if !frez then scanr1 else scanrO;
state scanr1: if !frez then scanr2 else scanr1;
state scanr2: if !frez then scanr3 else scanr2;
state scanr3: if Ifrez then scanr4 else scanr3;
state scanr4: if !frez then scanrO else scanr4;

"if no interrupt, state machine runs continously

tese vectors

([clkin, rst, colO, col1, col2, col3, col4] -> [rowO, row 1 , row2, row3, row4, intr])
[c, 0,] -> [0 0 0 0 0 1];
[c, 0,] -> [0 0 0 0 0 1];
[c, 1 ,] -> [0 1 1 1 1 1];
[c, 1] -> [1 0 1 1 1 1];
[c, 1 ,] -> [1 1 0 1 1 1];
[c, 1]-> [1 1 1 0 1 1];
[c, 1 ,] -> [1 1 1 1 0 1];

"key (1,1) is pressed/closed
[c, 1 , 1 , 1 , 1 , 1 ,] -> [0 , 1 , 1 , 1];
[c, 1 , 1 , o , 1 , 1 ,] -> [0 , 1 1 , 1 ,0];

"column (coI1) detects key is pressed, intr is generated. Scanning stops
"until intr goes away
[c, 1 , 1 0 , 1 ,] -> [0 , 1 1 1 ,0];
[c, 1 1 0 1] -> [0 1 1 1 ,0];
[c, 1 , 1 0 , 1 ,]-> [0 , 1 , 1 , 1 , 0];

"MCU reads column inputs and scanning outputs, determined key (1,1) has been
"closed. Later key (1,1) is released, intr becomes inactive and scanning resumes
[c, 1, 1 , 1 , 1 , 1 , 1] -> [1 , 0 , 1 ,1 1, 1] ;
[c, 1, 1 , 1 , 1 , 1 , 1] -> [1 , 1 , 0 , 1 , 1 ,1] ;

END

-----------------------------~~~-----------------------------_II!!. 3.251

PSD4XX/SXX - ApplicatIon 1I0t. 033

AppendixB.
KEYB.ABL
File

modulekeyb

title 'test:keyboard autoscannlng, 80C196 bus interface';

" Input signals

colO, col1, col2, col3, col4 pin 27,26,25,24,23; "column inputs, Port A

"Address lines, using reserved names.

a15,a14,a13,a12,a11,a10,a9,a8,a1 ,aO pin;

clkin, rst pin 42, 40;

.. PLD output signals.

csiop, rsO, esO, es1, es2, es3 node;
intr pin
frez node;
nclkin node;
rowO, row1, row2, row3, row4 pin 50, 49, 48, 47, 46;
rowO, row1, row2, row3, row4 is type 'buffer, reg_d';

" Definitions

rowreg = [row4, row3, row2, row1, rowO 1 ;

c = .c.; " Clock pulse definition
X = .x.; "Don't care

"More outputs using reserved names.
"key board interrupt

"reverse of clkin
"row scanning outputs

Address = [a15,a 14,a 13,a 12,a 11 ,a 1 0,a9,a8,X,X,X,X,X,X,a1 ,aO 1 ;

equations

csiop = (Address >= AhOCOOO) & (Address <= AhOCOFF); "256 block
rsO = (Address >= Ah08000) & (Address <= Ah087FF); "2k block
esO = (Address >= AhOOOOO) & (Address <= Ah01 FFF); "8KB block
es1 = (Address >= Ah02000) & (Address <= Ah03FFF); "8KB block

frez := ! (colO * col1 * col2 * col3 * coI4); "active high frez
intr := frez * I (colO * col1 * col2 * col3 * coI4); "active high intr

"frezlintr is active when key is pressed

~~ ________________________ ~-s
3.252 ~_rr,------------------

AppendlxB.
KEYB.ABL
File
(Com.)

1'SD4XX/5XX - Appl/t:IItlon Note 033

nclkin = !clkin; "reverse clkin for debounce circuit
frez.c = nclkin; intr.c = nclkin;
frez.re =! rst; intr.re = I rst;
rowreg.c = clkin & !frez; "scanning clk = clkin if no frez

rowO.re
row1.pr
row2.pr
row3.pr
row4.pr

rowO.d
row1.d
row2.d
row3.d
row4.d

= !rst
= !rst

!rst
I rst
I rst

row4.q;
rowO.q;
row1.q;

= row2.q;
= row3.q;

"set row registers initial value to 11110
"PSD macrocell has active high reset

"5-bit shift register
"shifting stops if frez is active

"if no frez, shift register runs continously

tesCvectors

([clkin,
[c,
[c,
[c,
[c,
[c,
[c,

rst, colO, col1, col2, col3, col41 -> [rowO, row1, row2, row3, row4, intr))
0, 1 1, 1 1, 1 1 -> [0 1 1 1 1, 1 I;
0, 1 , 1 , 1 , 1 , 1 1 -> [0 ,1 ,1 , 1 , 1 ,1 I;
1 ,1 1 1, 1 , 1 1 -> [1 , 0 ,1 1 1, 1 I;
1 , 1 , 1 , 1 , 1 , 1 1 -> [1 ,1 ,0 1 1, 1 I;
1 1, 1 , 1 , 1 , 1 1 -> [1 ,1 ,1 , 0 , 1 ,1 I;
1 1, 1 , 1 , 1 , 1 1 -> [1 ,1 ,1 , 1 ,0 ,1 I;

"key (1,1) is pressed/closed
[c, 1 , 1 , 1 , 1 , 1 , 1 1 -> [0 , , 1 , 1 , 1 I;
[c, 1 , 1 , o , 1 , 1 , 1 1-> [0 , 1 , 1 ,01;

"column (coI1) detects key is pressed, intr is generated. Scanning stops
"until intr goes away
[c, 1 , 1 , o , , 1 , 1 1-> [0 , , 1 , 1 ,01;
[c, 1 , 1 , 0 , 1 , 1 1 -> [0 , 1 1 ,01;
[c, 1 , 1 , 0 , 1 , 1 1 -> [0 , , 1 1 ,01;

"MCU reads column inputs and scanning outputs, determined key (1,1) has been
"closed. Later key (1,1) is released, intr becomes inactive and scanning resumes
[c, 1, 1 , 1 , 1 , 1 , 1 1 -> [1 ,0 , 1 , 1 , 1 ,1 I;
[c, 1, 1 , 1 , 1 , 1 , 1 1 -> [1 ,1 ,0 ,1 , 1 ,1 I;

END

------------------------~Jr;-------------------------3-253

I'SII4XX/5XX - AppllestlDn NDt81133

Append/xC.
KEYPAD.STL
'lie

lIauto scanning simulation
IIstart scanning, press key, read port A (column) and port B (row)

11+++
II Defining tasks to simplify the stimulus file
11+++

task write (addcbus,bhe_value,data_in); 1/ 80196 write bus cycle

input [15:0] addr_bus;
input [15:0] data_in;
input bhe_value;

begin

#20 ale = 1; I/Latch the address lines
#20 adio = addcbus; IISet-up the right address

bhe = bhe_value;
#20 ale = 0; IIAle inactive

#20 adio = data_in; II Write operation

#40 wr = 0; II Write pulse
#100 wr = 1; II Write ends
#10 adio = Z16; bhe = Z;

end

endtask

task read (addr_bus); 1180196 read bus cycle

input [15:0] addcbus;

begin

#20 ale = 1; l/Latch the address lines
#20 adio = addr_bus; IISet-up the right address

bhe = 0;
#20 ale = 0; IIAle inactive

#20 adio = Z16; II Float Address bus

#40 rd = 0; II Rd pulse
#100 rd = 1; II Rd ends
#10 bhe = Z;

end

endtask

reg [4:0] column;
assign {coI4, col3, col2, col1, colO} = column;
assign {row4, row3, row2, row 1 , roWO} = row;
reg intr, frez;
initial

-.-~----------------------~~i-----------------------

Append/xC.
KEYPAD.Sn
File
(eont.J

PSD4XX/5XX - Application Note 038

begin

rst = 0; /lgenerate reset
wr = 1; rd = 1; //initialize control signal
ale = 0; bhe = 1;
adio = 16'bz; //initialize addr/data bus
intr = 'bz; frez = 'bz;
clkin = 0; pdS = 0; pd6 = 0; pd7 = 0; /lin it not used port pins

paS = 0; pa6 = 0; pa7 = 0;
row = S'bz;
column = S'b11111;
csl = 0; /lset PSDSXX chip select low

#300 rst = 1; /lafter SOOns, rst Inactive

/lwrite and read to the sram, verify bus interface is ok
write ('h8476,O,'hSa27);

/lread sram,word
read ('h8476); I/Word-read operation

l/write Port A Control Register, configure Port as I/O
write ('hC002,1,'hff);

l/write Port A Direction Register, configure Port A as input
write ('hC006,1 ,'hOO);

#635 column = 'b11101; IIpresskey(3,1) -- row3,column1
IIstate machine is freezed
llintr is generated to the MCU

IIMCU reads Port A Data In Reg. (column Inputs)
read ('hcOOO);

IIMCU reads Port B Macrocell Out Reg. (state machine row pattern)
read ('hcOOd);

#SOO column = 'b11111; l/key is released
state machine resumes operation

end

always

#200 clkin = -clkin;

-----------------------~Jri----------------------3-255

1'SD4XX/5XX - Appl/ClltloR Not. 1133

~~------------------"I':_---------------------3-256 .",.111 It

--- ~~ ::' == == ==iE --- ~
:':===~==
~-~~-~==== ---- ----~ -

Abstract

Generate
Address A7-A2
as ZPLD Input

Programmable Peripheral
Application Note 035
How To Design With The
PS04XX/5XX ZPLD
By Dan Friedman

The PSD4XX and PSD5XX programmable MCU peripherals both contain a Zero-power
PLD (ZPLD) array. Below are several tips, information and procedures for working with the
ZPLD.

Address lines A7-A2 are not routed directly into the ZPLDs. They can be routed into the
ZPLD by configuring an I/O port to the Address Out Mode and routing these signals into the
ZPLDs. Listed below is the method of implementing this function.

For a Multiplexed MCU
In PSDabel define 6 inputs (Port C for example):

addr7, addr6, addr5, addr4, addr3, addr2 pin 10, 11, 12, 13, 14, 15;

I/O port pins 7-2 must be used. These input signals then can then be used in your logic
equations in PSDabel.

In the initialization software executed by the MCU;

Initialize Port C to the Address Out Mode by writing OOH (actually 0000 OOXX in
binary) to the Configuration Register. The default condition, after reset, of the
Configuration Register is OOH.

Write FFH (actually 1111 11 XX in binary) to the Direction Register.
The default condition, after reset, of the Direction Register is OOH.

The address signals A7-A2 will always appear on Port C7-2 and will be routed to the
ZPLDs.

For a Non-multiplexed MCU
Route Address lines A7-A2 to any unused I/O port pins.

In PSDabel define 6 inputs (Port A for example):

addr7, addr6, addr5, addr4, addr3, addr2 pin 10, 11, 12, 13, 14, 15;

These input signals then can then be used in your logic equations in PSDabel.
There is no software initialization. Any Port A I/O port pins can be used in this example.

3-257

PSD4XX/5XX - Application Note 035

Load Data
DT-DOto
Macfocel/s

On a multiplexed MCU, the data bus is not routed into the GPLD. This application note
discusses how to write data from the data bus on the MCU to the macrocells inside the
General PLD (GPLD) inside the PSD4XXl5XX parts. Three methods are discussed in
this application note. The detailed implementation of each of these methods can be found in
application note 034 called "Loading Data into the PSD4XXl5XX GPLD Macrocells". This
application note can be found on the WSI bulletin board. The file name is "appnote34.zip".

Method 1
The MCU writes the lower 4 bits of data into the 4-bit page register. It then writes to an
arbitrary address to generate a clock input to the macrocells to transfer the data
from the page register to 4 of the macrocells. The MCU repeats this process for the upper
4 bits of data.

Example: Transfer A5H from the MCU to 8 macrocells (Port B) inside the GPLD. Assume
CSIOP is defined from 2000H to 20FFH. Assume the arbitrary addresses the macrocells
are mapped into are 21 OOH to 21 FFH and these 256 bytes are used for this address range
because the resolution of address decoding is 256 bytes. This address range cannot be
used by anything else in the system.

Step 1:
The MCU will write X5H to memory location 20EOH. This is the location of the page register
inside the PSD4XX and PSD5XX devices. "X" address means "don't care".

Step 2:
The MCU will write XXH (don't care condition) to memory location 2100H. This will
generate a clock input to the macrocells (clock defined as "Ah21 00 & !wr") and will transfer
the 4 bits of data in the page register to the four least significant bit macrocells.

Step a:
The MCU will write XAH to memory location 20EOH.

Step 4:
The MCU will write XXH to memory location 2101H. This will generate a clock input to the
macrocells (clock defined as "Ah21 00 & !wr") and will transfer the 4 bits of data from the
page register to the most significant bit macrocells.

Step 5:
The value of the Port B Macrocells can be read from the Macrocell Out Register of
Port B at 200DH.

-3--2-S-8---------------------------------~~~-------------------------------------

Load Data
D7-DOto
Macrocel/s
{Clint.}

PSIJ4XX/5XX - Appllcatllln Nllt. 035

MethDd2
The processor will write data to an 1/0 port. The data on the 1/0 port will be routed back into
the GPLD and latched into the macrocells. No external signal routing is required to route the
output port back into the GPLD. The MCU will write the data to an 1/0 port. The data is
transferred to the macrocells when the MCU generates a clock input to the macrocells by
writing to an arbitrary address.

Example: Transfer A5H from the MCU to 8 macrocells (Port B) inside the GPLD. Assume
CSIOP is defined from 2000H to 20FFH. Any 1/0 port can be used on the PSD4XXA2 and
the PSD5XXB1. On the PSD4XXA 1, Ports A or B must be used. Port C will be used in this
example. Assume that the arbitrary address that the macrocells are mapped into is from
2100H to 21 FFH. 256 bytes are used for this address range because the resolution of
address decoding is 256 bytes. This address range cannot be used by anything else in the
system.

Step 1:
The MCU writes FFH to memory location 2012H to the Control Register. This will change
Port C to the MCU 1/0 Mode.

Step 2:
The MCU writes FFH to memory location 2016H to set Port ClIO port pins to all outputs.

StepS:
The MCU writes A5H to memory location 2014H to latch the data out on Port C.

Step 4:
The MCU generates a clock input (defined as "l\h2100 & !wr") to the macrocells by writing
XXH (don't care condition) to memory location 2100H to latch the data on Port C to the
internal macrocells in Port B.

StepS:
The value of the Port B Macrocells can be read from the Macrocell Out Register at 200DH.

------------------------------~Jr~------------------------------
3-259

PSD4XX/5XX - Application Nots 035

LoadOata
07-00 to
Macrocel/s
(Cont.)

Method 3
This method will use the individual Preset and Reset signals from Port B to initialize
(or load) data into the Port B Macrocells. An active Preset will load a logical "1" into the
corresponding macrocell and an active Reset will load a logical "0". Each Preset/Reset
occupies an address and is activated when the MCU writes to that address.

Example: Transfer ASH from the MCU to 8 macrocells in Port B. Assume Preset/Reset of
the macrocells occupy address 2100H to 24FFH. For example,

PB7.RE = "h2402 & !WR PB7.PR = "h2403 & !WR
PB6.RE = "h2400 & !WR PB6.PR = "h2401 & !WR
PBS.RE = "h2302 & !WR PBS.PR = "h2303 & !WR
PB4.RE = "h2300 & !WR PB4.PR = "h2301 & !WR
PB3.RE = "h2202 & !WR PB3.PR = "h2203 & !WR
PB2.RE = "h2200 & !WR PB2.PR = "h2201 & !WR
PB1.RE = "h21 02 & !WR PB1.PR = "h21 03 & !WR
PBO.RE = "h21 00 & !WR PBO.PR = "h21 01 & !WR

Step 1:
The MCU writes XXH (a don't care condition) to 2403H. This will set Port B Macrocell PB7
to a rogic 1.

Step 2:
The MCU writes XXH (a don't care condition) to 2400H. This will set Port B Macrocell PB6
to a logic O.

Step 3:
The MCU writes XXH (a don't care condition) to 2303H. This will set Port B Macrocell PBS
to a logic 1.

Step 4:
The MCU writes XXH (a don't care condition) to 2300H. This will set Port B Macrocell PB4
to a logic O.

Step 5:
The MCU writes XXH (a don't care condition) to 2203H. This will set Port B Macrocell PB3
to a logic O.

Step 6:
The MCU writes XXH (a don't care condition) to 2200H. This will set Port B Macrocell PB2
to logic 1.

Step 7:
The MCU writes XXH (a don't care condition) to 2103H. This will set Port B Macrocell PB1
to a logic O.

StepS:
The MCU writes XXH (a don't care condition) to 2100H. This will set Port B Macrocell PBO
to a logic 1.

Step 9:
The value of the Port B Macrocells can be read from the Macrocell Out Register at
location 200DH.

The method best to use depends on the resource still available after implementing the rest
of the design. If speed is critical, Method 2 will execute the fastest. One write cycle can be
achieved by using Method 2 and routing the data bus to the 1/0 Port.

------------------------------_____ rE~~~-----------------------------------
3-260 ====

Use a MacIoce"
to Latch External
Data/Status
and Read with
anMCU

PSD4XX/5XX - Application Note 035

When the 1/0 ports are configured as an input port in the MCU 1/0 Mode, the input pins are
sampled by the MCU. In some designs it is desirable to latch the data. This data is latched
by an external strobe signal. The GPLD macrocells can be used to latch data from an
external source with an external strobe signal and have the MCU read this latched data.

In the PSDabel file specify the following:

module example
"input data
din7, din6, din5, din4, din3, din2, din1, dinO pin;

"data flip-flops containing the latched data in
data7, data6, data5, data4, data3, data2, data1, dataO node istype 'reg';

"strobe or clock signal to latch the data into 8 macrocells.
strobe pin;

"DEFINITIONS
data_in = [din7,din6,din5,din4,din3,din2,din1,dinO];
latch_data = [data7,data6,data5,data4,data3,data2,data1,dataO];

EQUATIONS

latch_data := data_in;
latch_data.c = strobe;
end

The MCU can read the latched data by reading the Macrocell Out Register. There is a
Macrocell Out Register for Port A, B, and E. The address locations are specified in the
Systems Configuration section of the WSI "PSD Programmable Peripherals Design and
Applications Handbook".

-------------------------~Jr;------------------------3-261

PlIUXX/5XX - "pllatl,n N,,. D86

IIs8 Macfllesll.
to Latch MCU
Data and Rsad
with a
CO·pfIICBSSOf

The MCU can use the macrocells to latch data out on an I/O port. The Output Enable
Control of this 1/0 port can be controlled by an extemal device such as a co-processor.
If you are trying to pass data from the MCU to a co-processor, connect an I/O port directly
to the co-processor's data bus. The Output Control of this I/O port will be controlled by the
co-processor thus avoiding any conflicts on the co-processor's data bus. The MCU will load
data into S macrocells and those macrocells will be routed to the I/O port connected to the
co-processor's data bus. The method of loading data into the macrocells is described in
section 2.0 of this Application Note.

In the PSDabel file specify the following:
Method 1 was used from Section 2.0 to load data into the macrocells from the MCU.

module example
"define the page reg
pgr3, pgr2, pgr1, pgrO node;

"define the macrocells to latch the data out
data7, data6, data5, data4 pin Istype 'reg';
data3, data2, data1, dataO pin istype 'reg';

"This Signal is the output enable signal from the co-processor.
"This signal will enable the output of the I/O port.
proc_enable pin;

"DEFINITIONS

page_reg = [pgr3,pgr2,pgr1,pgrO);

"Since the page register is only 4 bits wide, the byte of data must
"be split into two nibbles.
uppecnibble = [data7, data6, data5, data4);
lower_nibble = [data3, data2, data1, dataO);

EQUATIONS

"Because of the resolution of the address decoding (from A15 to AS),
"the address range from 1Ifl2000 to I\h20FF is reserved for loading the
"macrocells with data from the page register.

lowecnibble.oe = proc_enable;
lower_nibble.c = (Address == 1Ifl2000) & Iwr;
lowecnibble := page_reg;

uppecnibble.oe = proc_enable;
uppecnibble.c = (Address == I\h2001) & Iwr;
upper_nibble := page_reg;
end

----------------------, .. _,.----------------------3-262 "",,, A

Generate Reset,
I'reset, Clock
and Output
Enable Inputs to
the Macrocel/s

Macrocel/s
Implement
Buriedl'LD
Function, I'ort
Configured as
MCUI/O

PSD4XX/5XX - Application Nots 035

Port B macrocells are the most flexible macrocells. Each macrocell on Port B can have
individual preset, reset, and clock product terms. The reset, preset, and output enable
signals for Port A and E are grouped together. The clock input for all macrocells associated
with Port A and E comes from the clkin signal. The Reset, Preset, and Output Enable input
signals to the macrocells are all active high. The following definitions are available for each
port.

Port A
boo_a.re
boo_a.pr
boo_a.c
boo_a.oe

PortB
boo_ai.re
boo_ai.pr
boo_ai.c
boo_ai.oe

Port E
boo_e.re
boo_e.pr
boo_e.c
boo_e.oe

"same reset product term for all 8 macrocells
"same preset product term for all 8 macrocells
"same clock input (clkin) for all 8 macrocells
"same output enable product term for all 8 macrocells

"individual reset product term for each of the 8 macrocells
"individual preset product term for each of the 8 macrocells
"individual clock product term or the clkin signal for each of the 8 macrocells
"individual output enable product term for each of the 8 macrocells

"same reset product term for all 8 macrocells
"same preset product term for all 8 macrocells
"same clock input (clkin) for all 8 macrocells
"same output enable product term for all 8 macrocells

Listed below are the most powerful to the least powerful macrocells:
Port B macrocells
Port A macrocells
Port E macrocells

If an 1/0 port cell is configured as a MCU 1/0, the associated macrocell can still be used as
a buried feedback macrocell.

module example
"example of a two bit shift register

iosignal pin 50; "Port BO is used as a general MCU 1/0 port, reserving this pin.
burried_mc node 50 istype 'reg'; "The macrocell associated with Port BO.
data_in pin; "input data to be shifted in.
data_out pin istype 'reg'; "output of shift register

equations
burried_mc.c = clkin;
burried_mc := data_in;
data_out.c = clkin;
data_out .= burried_mc.fb;
end

------------------------~Jr;------------------------3-263

PS04XX/5XX - Application Not. 035

-3-~-6-4-------------------------------~~~-----------------------------------

--...., - ~~ ===== ==~ --- ~ ------I'~--.- ----_ --""" "-" ~

Abstract

Method of
Fitting Your
Design

Programmable Peripheral
Application Note 036
How To Fit Your Design Into The
PSD4XX/5XX
By Dan Friedman

This application brief is a step-by-step procedure for fitting your design. This is not the only
method of fitting your design but is an effective one.

Step 1
When specifying a new project name, specify a project directory under the PSDsoft
directory.

Step 2
Copy an old PSDabel (.ABL) file from a previous project into your project directory. There
are some examples of PSDabel files in the "C:\psdsoft\examples" directory.

Step 3
When declaring input and output signals, do not specify pin assignments. After the design
fits, add pin assignments and move signals to more desired pin locations.

Step 4
Any signals used as Standard MCU I/O or Latched Address Out can be declared in the
PSDabie file. As long as these signals are not used in the PLD equations, they will default
as Standard MCU I/O or Latched Address Out. There are some exceptions to this rule.
These exceptions relate to Bus Interface Signals, Special Function Signals, and Alternate
Function Signals.

Step 5
Compile the design in PSDabel Design Entry.

Step 6
After eliminating all syntax errors, view Optimized Equations. For a given signal, there are
two numbers indicating the number of product terms (one from the Default Polarity and one
from the Reverse Polarity). The fitter will always use the lowest number of the two columns.
If the lowest number for a given signal is greater than 6, this signal will not fit. To solve this
problem, break up the product terms and use a buried register as shown below.

before:
boo pin; "Output signal
a,b,c,d,e,f,g,h,i,j pin; "Input signals

equations
boo = (a & b) # (c & d) # (e & f) # g # h # i # j; "This equation uses 7 product terms.

after:
boo pin; "Output signal
a,b,c,d,e,f,g,h,i,j pin; "Input signals
buried_reg node; "Intermediate term
equations
buried_reg = (a & b) # (c & d) # (e & f);
boo = buried_reg.fb # g # h # i # j;

The above example shows one method of manually performing product term expansion.
However, PSDsoft automatically performs product term expansion based on the available
device resource. When PSDsoft automatically performs product term expansion, see the
Fitter report for detailed information.

3-265

PSD4XX/5XX - Application Not. 036

Method of
Fitting Your
Design
(Cont.)

Step 6 (Cont.)

Note: Product terms for ESO-3 and RSO for internal EPROM and SRAM respectively have
only one product term as defined in the Decoding PLD (DPLD). If more product
terms are required, the above method (using a buried macroceli from the GPLD)
can be used.

Note: General PLD (GPLD) features for the PSD4XXA2 and PSD5XXB1 products:

- Port A Macrocelis have 3 product terms each.

- Port B Macrocelis have 6 product terms each.

- Port E Macrocelis have 1 product term each.
- Ali Port B Macrocells can use the clkin signal or product term clocks (clocks other

than the clkin signal). These product term clocks can come from any I/O port pin.
Each Port B Macroceli can have individual product term clocks.

- Port A and E Macrocells are clocked by the clkin signal only.

- All Port B Macrocells have individual preset, reset, and output enable product
terms.

- Port A and E Macrocells have common preset, reset, and output enable
product terms.

Note: GPLD features for the PSD4XXA 1 products:

- Port A Macrocelis have 3 product terms each.
- Port B Macrocelis have 6 product terms each.

- Port E Macrocelis do not exist

- Ali Port B Macrocelis can use the elkin signal or product term clocks (clocks other
than the clkin signal). These product term clocks can come from any I/O port pin.
Each Port B Macroceli can have individual product term clocks.

- Port A Macrocells do not contain flip-flops. They are combinational outputs only.
Therefore there is no clock, preset, or reset inputs to these macrocelis.

- All Port B Macrocells have individual preset, reset, and output enable product
terms.

- Port A Macrocelis have common output enable product terms.

- Port C, Port D, and Port E (PE2-7 only) are not routed into the PLDs. Therefore,
inputs on these port pins can not be used as part of the PLD logic equations.

In the Optimized Equations Report, determine the number of Signals requiring 4 to 6
product terms and 2 to 3 product terms. If there are more than 8 signals requiring 4 to 6
product terms, the design will not fit. If there are more than 16 signals requiring 2 to 6
product terms, the design will not fit. By splitting up the product terms and using a buried
register as described above, this problem can be solved.

Designs often do not fit because the designer has defined too many product term clocks
(clocks other than the elkin signal). Two methods of working around this problem are
shown below.

-------------------------------------._~_!f_~~-------------------------------------3-266 l1li

Method 0'
Fitting Your
Design
(Cont.)

PSD4XX/5XX - Application Not. 036

Step 6 (Cont.)

•• thod 1. Take the largest group of signals associated with a clock and route that clock into
the clkin pin.

Example: Make the following list on paper.

Clock W Clock X Clock Y Clock Z

sig 1
sig 2
sig 3

sig4
sig 5
sig6
sig 7

sig 8
sig 9

sig 10

If the designer is using a PSD4XXA2, route Clock X into the clkin pin.
Route sig4, sig5, sig6, sig7 to port A or E macrocells.
Route sig1, sig2, sig3, sig8, sig9, sig10 to port B macrocells .

•• thod 2. If the designer is using the following definition,
x:=1;
x.re = !reset
x.clk=A&B;

Convert the above function as follows:
x.re = !reset;
x:= x.fb # (A&B);
x.clk = clkin;
period of clkin < pulse width generated by (A&B)

Note: The number of signals with 4 to 6 product terms plus the number of signals requiring
a product term clock with less than 4 product terms on the D input of the flip-flop
cannot exceed ~.

,-.-. ------------- =-ilr. --------____ _
'#t!!!. b 3.267

PSD4XX/5XX - Application No'" 036

Method of
Fitting Your
Design
(Cont.)

Step 7
Fit the design in PSD compiler under the Compile Menu.

To understand why a signal does not fit, look at the Report File under the View Menu. Look
at the Resource Usage Summary along with the OMC Resource Assignment. The
Resource Usage Summary will tell the designer how the pins on a given 1/0 Port were
assigned and how those resources were allocated. The OMC Resource Assignment will
indicate which macrocell was utilized for each output signal used in an equation in the
PSDabel file.

Example:

Resources Used

OMC Resource Assignment

User Name

PortA:
macro cell 3

Port B:
macro cell 7

Port E :
macro cell 2

cntO => Register

cnt4 (mc_pb7) => Register

"cntO used as a buried register.
"cntO was defined as a node.
"cntO is a registered output node.

"cnt4 is routed to an output pin on
"PB7.
"cnt4 was defined as a pin.
"cnt4 is a registered output.

wstc (mc_pe2) => Combinatorial "wstc is routed to an output pin
"on PE2.
"wstc was defined as a pin.
''wstc is a combinatorial output.

All Signals followed by "(mc_pxx)" are output pins. If "(mc_pxx)" is omitted, the signal was
defined as a node and is a buried register. From this report the designer can determine the
exact reason why a given signal would not fit.

Note: In the Options menu, Fitter Options are Keep, Try, or Ignore.
Keep Current - Uses the pin assignments specified in the PSDabel file.
Keep Previous - Uses the pin assignment from the previous fitting process.
Try - Tries to use the pin assignments specified in the PSDabel file.
Ignore - Does not use the pin assignments specified in the PSDabel file.

This is the same as not specifying any pin assignments in the PSDabel file.
For pins which use reserved names, the pin assignments are always fixed.

-------------------------------~~iIi~-------------------------------
3·268 --

Method 0'
Fitting Your
Design
(Cont.)

PSD4XX/5XX - Application Not. 036

StepS
If several signals will not fit, start by commenting out all unfitted signals until the design fits.
Fit one signal at a time by using some of the above methods and other methods described
in other Application Notes.

Step 9
Assign pin numbers to all the signals in the PSDabel file. Move signals around to desired
pin numbers. The designer may not be able to move certain signals to desired pin numbers
as a design violation may occur.

Note: Some important things to remember about the PSD4XXA2 and PSD5XXB1 devices
are that only Ports A, B, and E have PLD I/O. Port C and Dare PLD inputs only.
If Port A, B, or E is used as a PLD input, the macrocell associated with that pin
cannot be used as a buried register or routed to an output pin. It is best to use Port
C and D and PLD inputs first. On the PSD4XXA 1 devices, Ports A and B can be
used as PLD I/O while port pins EO and E1 can be used as PLD inputs only.
Any signal pins reserved in the PSDabel file that are used as Latched Address
Out Signals must be in sequential order (i.e., addrO must be assigned to PCO,
addr1 must be assigned to PC1 etc.).

___________________________________ F.JJ~~
~~.,,-----------------------------------

3·269

PSD4XX/SXX - Appllt:BtllIR ,I. _

~~ __________________ r •• '¥ ___________________ __
3.270 'tINII &

Introduction

Example 1

Programmable Peripheral
Application Note 037
How to Implement a Latch Function in Port A
of PSD4XX/5XX that is Independent of the
System Clock
By Mohan MaghsfB

The macrocells in PSD4XXl5XX devices include D-type registers. When mapping discrete
solutions to these PSDs, it is sometimes necessary to replace transparent latches (e.g.,
'573) with the PSD macrocells. Since the PSDs do not have transparent latches, the easiest
alternative is to make the design edge-triggered and use the D-type registers. However,
there are some situations where the designer must use a transparent latch. In these cases
it is possible to use a 2:1 multiplexer configured to perform the function of a latch.

There is an added bonus in using this approach: the PSD4XXl5XX devices offer up to 24
macrocells in the GPlD. Of these, 16 Port-A and Port-E macrocells are clocked by the
system clock on the ClKIN pin. The other 8 (Port-B) macrocells may be individually
configured to use either the system clock or a product term clock.

For designs that fully utilize the Port-B macrocells and still need further register elements
that must remain independent of the system clock (but do not have to be edge triggered),
it is possible to realize up to 8 more registers by using 2:1 multiplexers configured as
transparent latches.

Two examples are shown in this application note. The first shows the basic idea by realizing.
a latch with one Port-A macroceli, and the second example shows a "real life" situation
where a one-way communications port (e.g., Centronics: host to target, where the PSD
would be located in the target) is realized in the Port-A macrocells.

Figure 1 shows how one of the Port-A macrocells performs this latch function:

Port-C has been used to input the signal to be latched, as well as the lE control signal.
Of course, another port (or ports) may be used as long as it is usable as an input to the
ZPlD-bus. The output of the macrocell may then be brought out to the respective Port-A
pin, if needed. Otherwise, if it is to be accessed by the MCU, the pin may be kept free for
some other 1/0 function since the MCU can access the outputs of the macrocells directly by
reading the "Macrocell Out" register of Port-A.

When PC1 is HIGH, PCO is enabled through to PAO - Transparent.
When PC1 is lOW, PAO is looped back on itself - latched.

Figure 1.

-B

0 PAO

PCO A

AlB

PCl I
NOTE: The A/_B input is equivalent to the high-true LE input on a latch: when LE is 1, the latch is transparent

and when LE is 0, the input is latched.

3-271

PS04XX/5XX - Application Not, 037

Example 1
(Cont.)

Below is a sample ABEL file that describes this function:

module latch1
title 'transparent latch using a 2:1 mux.';

"Since the PSDs offer D_type registers and not transparent latches, the easiest alternative
"for the designer is to make the design edge triggered and use the D-type registers.
"However, there are some situations where the designer must use a transparent latch.
"In these cases it is possible to use a 2:1 multiplexer configured to perform the function
"of a latch.

"INPUTS and OUTPUTS

a15,a14,a13,a12,a11 ,a10,a9,a8,a1 ,aO pin;
wr, rd pin;
psen, ale pin 38,37; "PEO-1
clkin, reset pin;
csi pin;

"PAO acts as the latch output

paO_latch_out pin 27;

"PCO acts as the input to the latch, and PC1 as the latch
"enable signal.

pcO_latchjn, pcUe pin 17, 16;

"base address for i/o chip selects

csiop node;

"DEFINITIONS

x =.x.;
CK=.c.;
addr=[a15,a14,a13,a12,a11 ,a10,a9,a8,X,X,X,X,X,X,a1 ,aO];

EQUATIONS

"DPLD equations

csiop = (addr >= AhOCOOO) & (addr <= AhOCOFF);

"GPLD equations

paO_latch_out = (pcO_latch_in & pcUe) "transparent"

(paO_latch_out.fb & !pcUe) "latched"
(paO_latch_out.fb & pcO_latch_in); "removes any glitches"

end latch1

_____________________________________ farar~~ __________________________________ ___
3-272 ';#..§II

Examp/e2

PSD4XX/5XX - ApplIcatIon Not. 037

Figure 2 shows a communications port that allows a host to write data into an 8-bit register
with the _HST _ WR signal. Simultaneously, this signal is used to set a_BUSY _2_HST flag
which is polled by the host to see if the MCU has read the data. When reading this data
LMCU_RD), the MCU clears the _BUSY _2_HST flag, thus indicating to the host that it may
write the next data byte.

In a discrete solution the _HST _WR signal would be used as a clock to the D-type registers,
but in this example it is assumed that the Port-B macrocells are used for functions that need
ClKIN (system clock) and other independent (product term) clock inputs. In this situation
the D-type registers in Port-A would be clocked by ClKIN and thus cannot be driven by the
_HST _WR signal. Since the data is required to be stable when _HST _WR is High and is
"Don't Care" when _HST_WR is low, we can replace the edge-triggered registers with a
transparent latch function realised using 2:1 multiplexers.

Figure 2 also shows that the _RESET signal is ORed with _HST _ WR. So, after a system
reset it will be necessary for the MCU to do a dummy read of the data register to clear the
busy flag. The reason for including this is to ensure that the host does not try and write to
this port while the MCU is still in a reset cycle.

Figure 2.

8

'-----fA

PR
o

CK
RE

-----------------------------~JrJF~-----------------------------
3-273

PS04XX/SXX - ApplIcation Note 031

Example 2
(Cont.)

Figure 3 shows how the data register can be realised in the Port-A macrocells on the PSD.
The _HST _ WR flag is generated in the Port-E macrocells and avoids using the clock on the
D-type register by implementing an S-R flip-flop using cross-coupled NAND functions (thus
giving the same functionality as the preset and reset functions of a D-type register).
The MCU would either use the _HST _WR signal's rising edge to generate an interrupt to
indicate that a valid data byte is available, or would test for the _BUSY _2_HST flag being
Low and _HST_WR signal being High (Le., host write cycle is complete). When the MCU
reads the data register (Le., reads the "Macrocell Out" register of the Port-A macrocells), the
_BUSY _2_HST register must be cleared. In order to do this, it is necessary to decode the
full address of the Port-A Macrocell Out register ANDed with the MCU's _RD signal. In the
PSD4XXl5XX, the address lines A8-A15 and AO-A1 are directly available on the ZPLD
but in order to have access to the A2-A7 lines we must configure Port-C to output these
latched addresses (on PC2-7). These Port-C pins are then available for decoding on the
ZPLD-bus.

Since the busy flag will clear as soon as the _RD signal goes low, the host must avoid
writing the next data byte too early, Le., after seeing _BUSY _2_HST go High, it must
insert a short delay equivalent to, or greater than, the _RD Low width before writing the
next data byte.

Figure 3.

MCU ADDRESS!
ZPLDBUS OAT AlCONTROL BUS

- r--
_RESET

~ j)- f-+ In OATA_2..MCU

I PORTA

HST_DATA

8 - '---

PORT A MACROCELLS

PORTO
8

MCU_RD

--I--l>-~ -..
_HST_WR

j)-
BUSY 2 HS

-I-t>o-
AD-A6

_-I-t>o-I- PORTE
6 I

PORT E MACROCELLS

PORTC BUSY 2 HST

BUSY_2_HST

PSD4XXA2I5XX

T

-3--2-~-~---------------------------------~1f~~------------------------------------

Example 2
{Cont.}

PSD4XX/5XX - Application Nots 037

Below is a sample ABEL file that describes this function:

module latch2
title 'One way comms. link: Host-to-MCU/PSD using Port-A macrocelis configured as
transparent latches';

"This example shows a simple, mono-directional communications link between a remote
"host and a local MCU. The MCU uses the PSD to latch the incoming data and to generate
"a busy flag back to the host.

"Since the PSDs offer D-type registers and not transparent latches, an octal 2:1 mux
"realised in the Port-A macrocelis is configured to perform the transparent latch function.
"The design pre-supposes that the Port-B macrocelis and the ClKIN pin are not available.

"INPUTS and OUTPUTS

"MCU interface signals (using a mixture of reserved names and explicit pin number
"declarations)

a15,a14,a13,a12,a11 ,a10,a9,a8,a1 ,aO pin;
wr, rd pin;
psen, ale pin 38,37; "PEO-1
clkin, reset pin;
csi pin;

"Port-A macroceli outputs (nodes) are reserved for the 2:1 mux-Iatch outputs

data_2_mcu7, data_2_mcu6, data_2_mcu5, data_2_mcu4,
data_2_mcu3, data_2_mcu2, data_2_mcu1, data_2_mcuO

node 20, 21, 22, 23, 24, 25, 26, 27;

"Port-CO is used as the _HST _WR input pin

_hsCwr pin 17;

"Port-C2-7 are configured to output latched addresses A2-A7 and these are fed back on to
"the ZPlD-bus for use in decoding a read of the Port-A Macroceli Out register address
"(= mcu_rd = csiop + AhOC for an Intel MCU design, and = csiop + AhOD for a Motorola
"16-bit MCU design). AO-1 are always available on the ZPlD-bus

pc2, pc3, pc4, pc5, pc6, pc7 pin;

"Port-D is used to input the host data onto the ZPlD-bus

hsCdata7, hsCdata6, hsCdata5, hsCdata4,
hsCdata3, hsCdata2, hsCdata1, hsCdataO

pin 53, 54, 55, 56, 57, 58, 59, 60;

"Port-E2 macroceli and its pin is used as the _BUSY _2_HST flag output
"via one half of an S-R flip-flop (cross-coupled NAND gates)

_busy_2_hst pin 36;

"Port-E3 macroceli is used to generate the other half of the S-R flip-flop
busy_2_hst node 34;

-------------------------------------~~~-------------------------------------
3-275

I'SD4XX/5XX - Application Nots 031

Examp/e2
(Cont.)

Sample ABEL file (Cont.)

"Port-E4 macrocell is used to decode MCU read of Port-A Macrocell Out Register address.
"This is necessary because Port-E macrocells can only support a single product term

mcu_rd node 33;

"base address for 1/0 chip selects - for this design it will be assumed that this
"address is AhCOOO

csiop node;

"DEFINITIONS

x =.X.;
CK=.c.;

addr=[a15,a14,a13,a12,a11 ,a10,a9,a8,X,X,X,X,X,X,a1 ,aO];
fulLaddr = [a15,a14,a13,a12,a11 ,a1 0,a9,a8,

pc? ,pc6,pc5,pc4,pc3,pc2,a1 ,aO];

data_2_mcu = [data_2_mcu?, data_2_mcu6, data_2_mcu5,
data_2_mcu4, data_2_mcu3, data_2_mcu2,
data_2_mcu1, data_2_mcuO];

hsCdata = [hsCdata?, hsCdata6, hsCdata5, hst_data4,
hsCdata3, hsCdata2, hsCdata1, hsCdataO];

EQUATIONS

"DPLD

csiop = (addr >= AhOCOOO) & (addr <= AhOCOFF);

"GPLD

"realise the 8-bit latch
data_2_mcu = (hsCdata & !_hsCwr)

(data_2_mcu.fb & _hsCwr)
(data_2_mcu.fb & hsCdata);

"busy flag

"transparent"
"latched"
"removes any glitches"

mcu_rd = (fulLaddr == AhOCOOC) & !rd;
_busy_2_hst = !(!mcu_rd & busy_2_hst.fb);

busy_2_hst = ILhsCwr & reset & _busy_2_hst.fb);

end latch2

~~----------------------------"ljF~_-------------------------------3-216 '!r!fiI# if

iF:: ==_ -- -...., .. ---­r~ _ --
--~--- -~~~-

Introduction

CTUBlock

Programmable Peripheral
Application Note 038
How to Increase the Speed of the PSD5XX
Counter/Timers
By Mohan Magh.ra

The PSD5XX family is presently the most capable programmable peripheral family that WSI
produces. Among the standard features, such as EPROM, SRAM, I/O port expansion,
Decode PlD (DPlD) and General Purpose PlD (GPlD), it also offers the designer a third
PlD area known as the Peripheral PlD, four 16-bit counter/timer units (CTUs), and an 8-bit
Interrupt Control Unit (ICU).

The PSD5XX has four 16-bit counter/timer units (CTUs) and this application note will
examine the CTU block with respect to enhancing the speed of its operation (up to 28 MHz).

All four CTUs work off the same clock source: ClKIN, the system clock. Before this clock
goes to the CTUs, it passes through a pre-scaler that divides the system clock by a
programmable value between 4 and 280. The maximum frequency of the ClKIN input to
the pre-scaler is 28MHz. If the pre-scaler is set to divide by the minimum value of 4, the
maximum frequency of operation of the CTU is 7MHz. However, there are many
applications where it is required to count at much higher frequencies.

The GPlD on the PSD5XX-90 (90 nanosecond device), when used in synchronous clock
mode (i.e., ClKIN is used as the clock input for the macrocell flip-flops), is capable of
supporting internal feedback signals at frequencies up to 37.3 MHz, and when it is used in
asynchronous clock mode (i.e., a product term clock is used for the macrocell flip-flops), the
GPlD is capable of supporting internal feedback signals at frequencies up to 28.5 MHz.

If the design requires counter sizes of 5-bits or less (where 5-bits is the maximum size of a
pre-Ioadable counter with count enable which can be realised in the GPlD Port-B
macrocells without resorting to product term expansion), then it is possible to achieve
counter frequencies of 37.5 MHz with ClKIN and 28.5 MHz with a product term clock.
However, for those situations where the counter needs to be larger, it is possible to build
such a counter from a CTU and the GPlD that operates at a much higher frequency
than 7 MHz.

In any counter, the least significant bits are the ones that change the fastest and, therefore,
need the faster clock. The least significant bit (lSB) changes state with every input clock
cycle, the second lSB changes state with every second clock cycle, the third lSB with
every fourth clock cycle, etc. (See Figure 1).

3-277

PSD4XX/SXX - Application Not. 038

crUB/oct
(Cont.)

FI,ure 1. CDunter Output WavefDrms

elK

lSB

2nd lSB L
3rd lSB L

If we examine the waveform produced by the outputs of the counter, we see the LSB
produces a waveform at half the counter clock frequency (Fcnt), the second LSB at a
quarter of Fcnt, the third LSB at an eighth of Fcnt., etc. The relationship being:

Fcnt

2r1
where n = 1,2, 3, etc., i.e., the position of the bit.

From this relationship, if we were to realise the least significant part of the counter in the
GPLD, and from this generate a terminal count that could be used to gate one of the 16-bit
CTUs, then the pre-scaled clock to the CTU need only be a fraction of the frequency used
for the GPLD part of the counter. (See Figure 2.)

In order for the CTU to function correctly, it needs to be configured to run in the EVENT
counter mode. This means that when the GPLD counter generates a terminal count, the
positive going edge of this signal is latched as an event, and the CTU will be updated at the
next CTU clock. For another event to be counted by the CTU, the terminal count of the
GPLD counter must generate another rising edge, i.e., it must go low and back high again.
Thus, the CTU clock must operate at a frequency above the events that are occurring to
ensure that no events are missed and still satisfy the requirement that it remain below
7MHz., i.e.,

CTU clock = (CLKIN/pre-scaler value) <= 7 MHz

The relationship between CLKIN, Fcnt, pre-scaler value and the size of the GPLD counter
(2n) is given by:

Fcnt
(2n) < (CLKIN/pre-scaler value) <= 7MHz

This is true for all Fcnt frequencies up to 28.5 MHz and CLKIN frequencies up to 28 MHz.

When Fcnt is the same clock as CLKIN (see Figure 3.), this relationship can be
expressed as:

CLKIN

(2n) < (CLKIN/pre-scaler value) <= 7MHz

This is true for CLKIN frequencies up to 28MHz.

------------------------____ r;;;r~ __________________________ _
3.278 'rlNl1III II

CruBIDCk
(CtIIIt.}

I'SD4XX/5XX - Appllat/on ""te_
FI,uIfI2

ZPLDBUS

Fent - +-... +--+

CLKlN-..................

PSD5XX

NOTE: Fent _ 28.5 MHz and CLKIN _ 28 MHz.

FI,uIfI3

ZPLDBUS

CLKlN - ... "H

·1 PAE-8CALER J CTU CLjK .. r-r ____ --,

____ COUNTERmMER
_____ PPLD

TERMINAL COUNT
(EVENT)

PSD5XX

NOTE: Fent = CLKIN <= 28 MHz.

----------------------IJJrI----------------------3·279

I'SIl4XX/5XX - Appilcatilln IIl1t. 038

CrUB/ock
(Clint.)

Below are sample ABEL and Verilog stimulus files for a design that needs a counter greater
than 5 bits to run at a clock frequency up to 28 MHz. The Fcnt and ClKIN sources are the
same, therefore, the relationship needed to be satisfied is:

Le.,

ClKIN
(2n)

28 MHz
(2n)

< (ClKIN/pre-scaler value) <= 7 MHz

< (28 MHz/pre-scaler value) <= 7 MHz

This requires n to be at least 3 and the pre-scaler value to be between 4 and 7. In order to
reduce the A.C. power consumption, it is best to use the biggest pre-scaler value possible
(taking into account the clock frequency needs of the other three CTUs), Le., 7 in this case.

The GPlD counter will be a 3-bit counter, whose terminal count is used to generate events
to one of the 16-bit CTUs (CNTRO). The events (terminal counts) will occur at a frequency
of (28/8) = 3.5 MHz, and the CTUs will be clocked by (2817) = 4 MHz, which ensures that all
events will be captured and counted.

The GPlD counter is cleared at power-up or with reset and will start to count only if the
cnCen pin is held active (HIGH in this case). CNTRO, however, will need to be cleared by
software by writing zero to it before it is enabled in the Command Register, CMDO, and in
the Global Command Register (see stimuh,ls file).

The GPlD counter in this example is made pre-Ioadable (cnUd and dinO-2) so that this,
together with CNTRO, provides a 19-bit pre-Ioadable counter (CNTRO is pre-loaded by
writing the required upper 16-bit value to it before it is enabled in the CMDO and Global
Command Registers).

The terminal counts of the CTUs are available on Port-E and are also routed to the ICU to
allow an interrupt to occur when a CTU reaches terminal count.

In order to read back the value of the complete 19-bit counter, the GPlD 3-bit counter
outputs are available to the MCU via the Macrocell Output register. Assuming that all of the
counter is realised in the Port-B macrocells, then a read of the Port-B Macrocell Output
Register would access the counter bits. In order to ensure that the value does not change
during the read cycle, it will be necessary to disable the counter (cnCen = lOW) before
reading. To read back the 16-bit value of CNTRO, it is necessary to freeze the counter
value by setting bit-O in the Freeze Register and then polling bit-O in the Freeze
Acknowledge register until it reads 1. At this point CNTRO's value is transferred to the
Image Register, IMGO. The value is then read from IMGO while CNTRO can continue
counting (if cnCen is active). After IMGO has been read, bit-O in the Freeze Register should
be reset to o.

The CTUs in the PSD5XX can be used either in pulse or waveform modes, or in event
count and time capture modes. Selection of these modes and the enabling of the CTUs to
count are set via the command registers CMDO-3 and the Global Command Register. The
pre-scaler value is set via a 5-bit value in the DlCY Register and a "scale bit" in the Global
Command register. The order in which the various registers must be initialised and the
values required for this example are given in the stimulus file.

-----------------------------------~~~--------------------------------~ 3·280

ABEL
File

ABEL file:

MODULE ctu_spd
title 'How to increase speed of CTU operation .. .';

"INPUTS and OUTPUTS

a15,a14,a13,a12,a11,a10,a9,a8,a1 ,aO pin;
wr, rd pin;
psen, ale pin 38,37; "PEO-1
clkin, reset pin;
csi pin;

"base address for the PSD's internal I/O ports and
"configuration registers

csiop node;

"GPLD 3-bit up counter signals

PSD4XX/SXX - ApplIcation No'. 038

cnCen pin;
din2, din1 , dinO pin;
cnUd pin;

"count enable input
"counter data input pins
"enable input for loading of
"counter input data (din2-1)

"counter outputs
cnt2, cnt1, cntO node istype 'reg';

"macrocell event (terminal count from GPLD counter
"to CNTRO - the CTU to be used for event counting

mc2tmrO node;

"Definitions

x = .x.;
CK=.c.;
addr = [a15,a14,a13,a12,a11 ,a10,a9,a8,

X,X,X,X,X,X,a1,aO];

din = [din2, din1, dinO];
cnt = [cnt2, cnt1, cntO];

__________________________________ ,Ar·~~ _______________________________ ___
~.I! 3·281

PSD4XX/5XX - Application Nots 038

ABEL
File
(Cont.)

EQUATIONS

"DPLD equations

"I/O base address for PSD internal register - defined
"to be a 256 address block starting at "hCOOO

csiop = (addr >= "hOCOOO) & (addr <= "hOCOFF);

"GPLD equations

cnt.clk = clkin;
cnt.re = reset;

WHEN (cnUd) THEN cnt := din; "pre-load counter

ELSE WHEN (!cnCen) THEN cnt := cnt.fb; "counting is not enabled

ELSE cn!:= (cnt.fb + 1) "increment count

"PPLD equations

"generate event for CNTRO using the CTU macrocelis in PPLD
"the terminal count is gated by the LOW part of clkin to
"ensure that no decoding spikes (after the rising edge of
"clkin) generate any false events

mc2tmrO = (cnt.fb == "h7) & !clkin;

-3--2-82--------------------------------~~~-----------------------------------

VERILOG
Stimulus
File

VERI LOG stimulus file:

IIStimulus file for setting up the timer/counter, CNTRO,
llin event count mode, and for testing the 3-bit GPLD
IIcounter used to increase the speed of the PSD's
IICounter/timer units (CTUs).

PSD4XX/5XX - Appllcatilln Nllt. os,

reg [7:0] daCval;
reg [7:0] din;

IIUsed to hold data read from PSD
IIpre-load value for GPLD counter

assign {din2, din1, dinO} = din;

11++
II User-Defined parameters
11++

parameter pb_mc_out='hCOOD;
parameter cntrOL='hC098, cntrOH='hC099, imgOL='hC090, imgOH='hC091;
parameter cmdO='hCOAO;
parameter g_cmd='hCOA8;
parameter dlcy='hCOA6;
parameter freeze='hCOA4, status='hCOA9;

11++
II Defining tasks to simplify writing the stimulus file
11++

task write (addcbus,data_in);

input [15:0] addr_bus;
input [7:0] data_in;

endtask

begin
#20 ale = 1;
#20 adio = addcbus;
#20 ale = 0;
#20 adio = data_in;
#40 wr=O;
#100 wr = 1;
#10 adio = Z16;
end

IIHigh true ale
IISet-up the right address
IILatches address
l!Write operation
l!Write pulse
l!Write ends

rAL.'? --------------------------------~1---------------------------3--2~--

PSD4XX/5XX - Appilcatilln Nllts 038

VER/LOG
Stimulus
File
(Clint.)

task read (addcbus);

input [15:0] addr_bus;

begin

endtask

#20 ale = 1;
#20 adio = addcbus;
#20 ale = 0;
#20 adio = Z16;
#40 rd = 0;
#50 daCval = 'adiol;
#50 rd = 1;
end

task psen (addcbus);

input [15:0] addr_bus;

endtask

begin
#20 ale = 1;
#20 adio = addcbus;
#20 ale = 0;
#20 adio = Z16;
#40 psen = 0;
#100 psen = 1;
end

//Active high ale
IISet-up the right address
IILatches address
IIFloat Address bus
IIRead starts
IIStore low byte of adio
IIRead ends

IIActive high ale
IISet-up the right address
IILatches address
IIFloat Address bus
IIRead starts
IIRead ends

//************* Begin stimulus ******.***** •• * •• ** •••• * ••

initial
begin

wr = 1; rd = 1; psen = 1 ;
ale = 0;
clkin = 0;
reset = 0;
csi = 0;
adio ='hOOOO;
din = 'hO;
cnCen = 0; IIGPLD counter disabled
cnUd=O;

#500 reset = 1;

IIClear timer/counter-O

#10 write(cntrOL, 'hOO);
write(cntrOH, 'hOO);

IIClear image register-O

write(imgOL, 'hOO);
write(imgOH, 'hOO);

___________________________________ fss:F§ ________________________________ ___

3-284 '#.!!I.

VER/LOG
Stimulus
File
(Cont.)

IISet delay cycle register to 3, so that clkin is pre·scaled
Ilby 7 (pre·scale value = K(delay reg. + 4), where the
Iiscale bit, K, in the Global Command register is
Iiset to 0, Le., scale factor is 1 - when set to 1 the scale
Ilfactor would be 8)

write(dlcy, 'h03);

PSD4XX/5XX - Application Nots 038

IISet command register, CMDO, to configure CNTAO for event mode
Ilwith the event coming from the macrocell, mc2tmrO

IILSB 0
II 1
II 1
II X
II X
II
II 0
II
II 0
II .
IIMSB 0

Event count mode (if set to 1 = time capture mode)
Increment mode
Select (enable) CNTAO
No timer output in this mode
Pin·input polarity is not needed since the
event is macrocell driven
Input command from macrocell
(if set to 1 then from pin)
Load/Store command from Pin/Macrocell (in this
case macrocell) allowed through
Enable/Disable by Pin/Macrocell

write(cmdO,'h1 E);

IISet the Global command register to enable the Counterltimers
Ilin event/time-capture mode

IILSB 0 Scale bit (0 = scale factor, k, is 1, 1 = scale factor is 8)
II 1 Counter start bit - enables all the selected counters
II 1 Global mode bit - set for eventltime capture mode
II (if set to 0 then pulselwaveform mode is selected)
II 0 Watchdog disabled
IIBit4-7 are reserved and set to 0

write(g_cmd,'h06);

IIPre·load GPLD counter with 5
#10 din = 'h5;

cnUd = 1;
#40 cnUd = 0; IIDisable load after 1 clkin cycle
#10 din = 'hO;

liEnable counting

#10 cnLen = 1;

-----------------------------------~~~-----------------------------------
3·285

PSD4XX/5XX - Application Not. D38

VER/LOB
Stimulus
File
(Cont.)

!!Disable GPLD counter and perform a
IIfreezelfreeze acknowledge cycle on CNTRO

#2000 cnt_en = 0;
write(freeze,'h01);

!/Wait for freeze acknowledge flag to be set in
IIstatus register (status = 'h01)

daCval = 'hOO;

while ((daCval & 'h01) != 'h01)

end

begin
read(status);

IIClear temporary storage
IIregister for read data
IIMask off CNTRO Freeze
IIAcknowledge bit and test if set

IIRead Freeze Acknowledge
IIStatus Register into daCval.

IIRead GPLD counter ouputs and CNTRO value stored in IMGO
read (pb_mc_out);
read (imgOL);
read (imgOH);

IILow byte of Image Register
II High byte of Image Register

IIReset freeze bit and enable GPLD counter
#1000 write(freeze, 'hOO);

cnCen = 1;

end

11··*···_--*··· Continuous signals **************

IIGenerate a continuous clock signal
always

#18 clkin = -clkin; II approximately 28MHz

-----------------------------------~-~-~-~-~-----------------------------------3-286

Intmdut:tiDn

Programmabl, P,riph,ral
Application Note 039
Encodet fOI Shaft Direction and Position
Recognition Using the PSD5XX
By IIIollBn _""",

In many applications the designer is provided with two input signals where one signal
leads the other by some phase difference (perhaps 90 degrees, or even some variable
amount). It is necessary to recognize which signal is leading and then either generate a
pulse count from one of the signals (or some multiple, e.g., a pulse for each edge of the two
signals - 4X clock), or be able to measure the phase difference between the two signals.

In a typical application the two signals are provided by a shaft encoder. These signals
(A & B) are always 90 degrees out of phase. Depending on which signal is leading, it is
possible to determine if the shaft is rotating clockwise or counterclockwise. By using a
counter set to zero when the shaft is at the reference point and then counting up pulses
(A and/or B) when the shaft is rotating clockwise and down pulses when rotating
counterclockwise, it is possible to know the exact position of the shaft at any time from the
value present in the counter. Integrated circuits are available on the market that input the
two signals, perform the phase detection, and generate a direction signal (up/down),
a 4x clock, and a 12- or 16-bit count value. These devices tend to be rather expensive and
the designer is forced to integrate this function into an ASIC, or realize it in an EPLD, or
some mixture of EPLD + discrete logic. The WSI, Inc. PSD5XX programmable MCU
peripheral provides a space effective and optimal cost alternative to the designer - and at
the same time providing EPROM, SRAM, interrupt control, chip selects and five I/O ports in
one device.

Figure 1 shows the PSD5XX and the resources that are taken up by the inputs, outputs,
state machine and counters.

The DIR_UP signal needs eight product terms (PTs) and the PSD5XX Port-B macrocells
can handle a maximum of six PTs. It is necessary to break this down into two smaller PT
groups: DIR_INT (4PTs) and DIR_UP (5PTs including DIR_INT).

The state machine needs two bits (SO, S1) to cover the four possible states that can exist
for the shaft encoder, and a 4X clock is generated (a pulse for every edge of A and B) in
order to realize a finer position resolution. This clock is used to generate the events that the
counterltimers count. The value of the DIR_UP direction signal is used to gate the 4X clock
to either the ·Up" counter (TIMERO) or the "Down" counter (TIMER1).

The reason for using two counters is that when used in the event count mode, the
counterltimers can only be used in the increment mode (up counting only). This requires
that one counter is used for counting "Up Pulses" and a second counter used for counting
"Down Pulses". The actual position of the shaft is then the difference between the two
counter values.

Below are the .abl and the .stl files that show how this design is realized. The software
configuration necessary for the counters to operate in the event count mode is included,
where the event is input via the macrocells (MC2TMRO and MC2TMR1).

3-287

PSD5XX - Appl/t:IItl. Nllt. 039

Figure 1.

ZPLD
BUS

0 h D Q
j ~ - SO

CK

~ D- RF

- 0 S1 D Q

CK
RF

PORT A
MACROCELLS

0 D Q DIR_UP

D-
- CK

RF - DIR_INT

PORT C =D-- r+ - 4x_CLK
A =D-PORT B

MACROCELLS

...

B - A_DLY

D- =D-
r. =D- B_DLY

- -
PORT E
MACROCELLS

...
CLKIN MC2TMRO

~ TIMERO
~ r. PERIPHERAL

PLD
MC2TMR1

TIMER1 , ,
MCU ADDRIDATAI , r

PSD5XX CONTROL BUS

~3.-28~8---------------------------~~jr------------------------------

Abel File ABEL file:

MODULE motcdir
title 'Shaft encoder for motor direction and position

recognition';

"INPUTS and OUTPUTS

a15,a14,a13,a12,a11 ,a10,a9,a8,a1 ,aO pin;
wr, rd pin;
psen, ale pin 38,37; "PEO-1
clkin, reset pin;
csi pin;

"base address for i/o chip selects
csiop node;

"inputs for frequency quadrupler and phase discriminator
" a and b are always 90 degrees out of phase

a, b, pin;

"internal signals for frequency quadrupler delayed versions
"of a and b

a_dly, b_dly node;

"output from phase discriminator used to gate UP and DOWN
"event counters: dir_up=1 ==> UP, dicup=O ==> DOWN

dir_up node istype 'reg_D';
dicint node; "partial PT's for dir_up

"output at quadruple frequency used to generate events -
"gated by dicup

a_b_x4 node;

"internal signals from phase discriminator state counter
sO, s1 node istype 'reg_D';

"macrocell events to UP (timero) and DOWN (timer1) counters
mc2tmrO, mc2tmr1 node;

"Definitions

x =.X.;
CK= .C.;
addr = [a15,a14,a13,a12,a11,a10,a9,a8,

X,X,X,X,X,X,a1,aO];

"state values for state machine
ss = [s1, sO];

****.**********************

PSD5XX - AppllcatlDn NDt. 039

-------------------------~Jr;------------------------
3·289

PSD5XX - Appllt:lltiOR No'. 039

Abel File
(COR'.)

EQUATIONS

"DPLD equations

"i/o base address for PSD internal register - defined
''to be a 256 address block starting at JlhCOOO

csiop = (addr >= JlhOCOOO) & (addr <= JlhOCOFF);

"GPLD equations

"phase discriminator equations

a_dly=a;
b_dly=b;

"delay a and b by macrocell delay

"generate a pulse for each edge transition of a and b - pulse
''width is equal to the macrocell delay of a_dly and b_dly

a_b_x4 = (a $ a_dly) # (b $ b_dly);

"generate events for the UP and DOWN counters using the
"counterltimer macrocells

mc2tmrO = dicup.fb & a_b_x4.fb;
mc2tmr1 = !dir_up.fb & a_b_x4.fb;

"state machine for detecting motor direction

"dir_up as a complete equation needs 8 PTs, but since the PSD
"supports a maximum of 6 PTs (Port-B macrocells), it is necessary
''to split this in two: diUnt and then dicup

dicint = (!a & b & sO.fb & s1.fb
!a & !b & !sO.fb & s1.fb
a & b & sO.fb & !s1.fb
a & !b & !sO.fb & !s1.fb);

dicup := (dicinUb
b & sO.fb & s1.fb & dicup.FB
!a & !sO.fb & s1.fb & dicup.FB
a & sO.fb & !s1.fb & dir_up.FB
!b & !sO.fb & !s1.fb & dicup.FB);

dicup.C = (clkin);

dicup.RE = (Ireset);

"the state counter comprises sO and s1
sO.D = (a & sO.fb

a & b & s1.fb
a & !b & !s1.fb);

sO.C = (clkin);

sO.RE = (Ireset);

s1.D = (a & b & sO.fb
!a & b & !sO.fb
b & s1.fb);

s1.C = (clkin);

s1.RE = (lreset);

~~-----------------------••• ~=--------------------------3-290 ~I.

Abel File
(Clint.)

I'SIJ5XX - Appilcatilln illite _

11**.******* ____ ._ •• _. ___ ._. ___ ._. __ _
11***. _____ • __ ._ •• _. ________ ._.
"Below is the original method used for entering the,state machine
"description. The above method was cut-&-pasted from the .eq2 file
"generated after running the ABEL compiler and optimizer. ".*---------------------------------_._._-_._._._._._ .. _ _ _.-._--.
"state machine for detecting motor direction

ss.clk = clkin;
sS.re = Ireset;
dir_up.clk = clkin;
dicup.re =!reset;

"state_diagram ss
" state 0: if «a==O) & (b==O))

then 0 with dir_up := dir_up.fb;
endwith;

else if «a==1) & (b==0))
then 1 with dir_up := 1;

endwith;

else if «a==O) & (b==1))
then 2 with dicup := 0;

endwith;

state 1: if «a==1) & (b==O))
then 1 with dicup := dir_up.fb;

endwith;

else if «a==1) & (b==1))
then 3 with dicup := 1;

endwith;

else if «a==O) & (b=O))
then 0 with dir_up := 0;

endwith;

state 2: if «a==O) & (b==1))
then 2 with dicup := dicup.fb;

endwith;

else if «a==1) & (b==1))
then 3 with dicup := 0;

endwith;

else if «a==O) & (b==O))
then 0 with dir_up := 1;

endwith;

state 3: if «a==1) & (b==1))
then 3 with dicup := dir_up.fb;

endwith;

else if «a==O) & (b==1))
then 2 with dicup := 1;

endwith;

else if «a==1) & (b=-O))
then 1 with dir_up := 0;

endwith;

endmotcdir

______________ ~-----------',I~~---------------------------
'#(#1. 3-291

I'SD5XX - Application Nots 039

Stimulus File STIMULUS file:

IIStimulus file for setting up of the counter/timers in
Ilevent count mode, and for testing the direction
Ilrecognition state machine.

reg [7:0] dat_val; Ilused to hold data read from PSD

a+++
II User-Defined parameters
a+++

parameter cntrOL='hC098, cntrOH='hC099, imgOL='hC090,
imgOH='hC091 ;

parameter cntr1 L='hC09A, cntr1 H='hC09B, img1 L='hC092,
img1 H='hC093;

parameter cmdO='hCOAO, cmd1 ='hCOA 1;
parameter g_cmd='hCOA8;
parameter dlcy='hCOA6;
parameter freeze='hCOA4, status='hCOA9;

a+++
II Defining tasks to simplify writing the stimulus file
a+++

task write (addr_bus,data_in);

input [15:0] addr_bus;
input [7:0] datajn;

begin

#20 ale = 1;
#20 adio = addcbus;
#20 ale = 0;
#20 adio = data_in;
#40 wr= 0;
#100wr= 1;
#10 adio = Z16;

end
endtask

task read (addr_bus);

input [15:0J addr_bus;

begin

#20 ale = 1;
daLval = 'hOO;

#20 adio = addr_bus;
#20 ale = 0;
#20 adio = Z16;
#40 rd = 0;
#50 daLval = 'adiol;
#50rd=1;

end
endtask

Ilhigh true ale
Iiset-up the right address
Illatches address
Ilwrite operation
Ilwrite starts
Ilwrite ends

Ilactive high ale
Ilclear daLval register
Iiset-up the right address
Illatches address
Ilfloat address bus
Ilread starts
astore low byte of adio
Ilread ends

-3--2-9-2---------------------------------~~~~------------------------------------

Stimulus File
(Cont.)

task psen (addcbus);

input [15:0] addr_bus;

begin

#20 ale = 1;
#20 adio = addcbus;
#20 ale=O;
#20 adio = Z16;
#40 psen = 0;
#100 psen = 1;

end
endtask

/lactive high ale
/lset-up the right address
//Iatches address
//float address bus
//PSEN read starts
//PSEN read ends

PSD5XX - Application Nots 039

11*·*·*******·****·***·*·*·* Begin stimulus **************************

initial
begin

wr = 1; rd = 1; psen = 1;
ale = 0;
clkin = 0;
reset = 0;
csi = 0;
adio ='hOOOO;
a = 0; b = 0;

#500 reset = 1; /lend reset cycle

/lClear counter/timers-O and -1

#300 write(cntrOL, 'hOO);
write(cntrOH, 'hOO);

write(cntr1 L, 'hOO);
write(cntr1 H, 'hOO);

//Clear image registers-O and -1

write(imgOL, 'hOO);
write(imgOH, 'hOO);

write(img1 L, 'hOO);
write(img1 H, 'hOO);

//Clear delay cycle register so that clkin is scaled by 4
//(i.e. when the scale bit in the Global Command register
//is set to 0)

write(dlcy, 'hOO);

-----------------------------------~~~--------------------------------3.-2--93

Stimulus File
(Cent.}

I/Set command register, CMDO, to configure tlmerO for event mode
l/with the event coming from the macrocell, rnc2tmrO

IILSB 0
/I 1
/I 1
/I X
/I X
/I
/I 0
/I
/I 0
/I
I/MSB 0

Event count mode
Increment mode
Select (enable) timerO
No timer output in this mode
Pin-input polarity is not needed since the
event Is macrocell driven
Input command from macrocell
(if set to 1 then from pin)
Load/Store command from PinlMacrocell (in this
case macrocell) allowed through
EnableIDlsable by PinlMacrocell

write (cmdO,'h1 E);

I/Set command register, CMD1, to configure timer1 for event mode
l/wlth the event coming from the macrocell, mc2tmr1

IILSB 0
/I 1
/I 1
/I X
/I X
/I
/I 0
/I
/I 0
/I
IIMSB 0

Event count mode
Increment mode
Select (enable) timerO
No timer output in this mode
Pin-input polarity is not needed since the
event is macrocell driven
Input command from macrocell
(if set to 1 then from pin)
Load/Store command from PinlMacrocell (in this
case macrocell) allowed through
EnablelDisable by PlnlMacrocell

write (cmd1,'h1E);

I/Set the Global command register to enable the counterltlmers
/lin eventltime-capture mode

IILSB 0 Scale bit (0 = divide by 1, 1 = divide by 8)
/I 1 Counter start bit - enables all the selected
/I counters
/I Global mode bit - set for eventltime capture mode
/I 0 Watchdog disabled
IlBlt4-7 are reserved and set to 0

write (Q..cmd,'h06);

I/perform a freeze!freeze acknowledge cycle on both tlmerO and-1
#2000 wrlte(freeze,'h03);

l/walt for both freeze acknowledge flags to be set in
I/status register (status = 'h3)

while (daLval <= 'h2)
begin
read(status);

end

-3--2.N----------------------~~/-----------------------

StImulus File
(Cent.)

llreset freeze bits
#1000 write(freeze, 'hOO);

llperform a second freeze/freeze acknowledge cycle on both
l!timerO and·1

#10000 write(freeze,'h03);

IIwait for both freeze acknowledge flags to be set in
IIstatus register (status = 'h3)

while (daLval <= 'h2)
begin
read (status);

end

llreset freeze bits
#1000 write(freeze, 'hOO);

end

1/*··············· Continuous signals •••••••••••••• * ••

IIGenerate A and B pulse streams

always
begin

I'SII5XX - _"_',n "". 1181

IIProduce "a" and "b" input pulses with "a" leading "b" by 90 degrees
repeat (6)

end

begin
#500a=-a;
#500 b= -b;

IIProduce pulses with "b" leading "a" by 90 degrees

end

repeat (3)

end

begin
#500b= -b;
#500a= -a;

IIGenerate a continuous clock signal
always

#25 clkin = -clkin; 1/20 Mhz

----------------------~Jr;-----------------------3·295

PSD5XX - Application Note Oa9

~~~ ____________________________ '.8~E _______________________________ __ 
a.296 'tii#.::/I! " 



5F==~~ --- ~ .. _---
=:"""=-iii=_=-!!i"':: = 
~~~-

Introduction

Stepper Motor
Operation

Programmable Peripheral
Application Note 042
Four Axis Stepper Motor Control Using
a Programmable PS05XX MCU Peripheral
from WSII Inc.
By NaSSllr PoD/ad/an, Data Card Corp.

The design of a stepper motor control requires various timers and electronic controls. This
application note explains the basic operation of a stepper motor. It also presents the theory,
implementation and electronic control of a four axis stepper motor control using the
PSD5XX family of products from the WSI Inc. The PSD5XX, as a field programmable
microcontroller peripheral device, provides a high degree of integration on the embedded
controller design. Configuration of the memory, ease of interface to various different
microcontroller buses, interrupt handling, I/O ports, and four sixteen bit counter/timers make
this device a great candidate for embedded applications.

A stepper motor is basically a rotational actuator which rotates a fixed anglewhen excited.
A stepper motor can be directly controlled electronically without the need for a feedback
element (encoder, tachometer feedback, etc.) as required in servo applications. The simpler
drive and control electronics needed by a stepper motor makes it a good candidate for a
positioning actuator in many different motion control applications. Several different types of
stepper motors are used in the industry.

A hybrid stepping motor is used in this application. The rotor and stator are multi-toothed in
a hybrid stepping motor and the rotor is magnetized in the axis of the rotor shaft. When
properly driven, a hybrid stepping motor will step 1.8 degrees in the full step mode and 0.9
degrees in the half step mode. Figure 1 shows a typical hybrid motor.

Figure 1. Hybrid Stepping Motor

3-297

'SD5XX - AppllcatlllR Nllt. 042

Stepper Motor
Operation
(CIIRt.)

The stator windings in a Hybrid stepper motor are distributed in 90-degree quadrants
around the motor case. See Figure 1 for the phase winding distribution of the hybrid motor.
Different methods are used for the excitation of a stepper motor. In this application a bipolar
drive circuit is used for the power stage. The motor windings are connected 90 degrees
apart such that the stepper motor looks like a two-phase motor. In this case there are four
motor leads to be powered from the amplifier stage. Each phase of this stepper motor is
powered by an H bridge. Figure 2 shows a typical H bridge that drives a stepper motor and
Figure 3 illustrates the driving waveforms.

Figure 2. nvo H Bridges for Driving a nvo Phase Stepper Motor.

+V

PHASE A PHASES

Figure 3. Phase Excitation in a Bipolar Stepping Motor.

Q1 AND Q4 ON I Q2 AND Q3 ON I Q1 AND Q4 ON I
...---

PHASE A

I Q1 AND Q4 ON I Q2 AND Q3 ON I Q1 AND Q4 ON

PHASE B !---I ~I ----.
--.1 90° PHASE SHIFT 1.-

-----------------------------------rAr4f~~-----------------------------------3.298 === !!E

Stepper Motor
Operation
(Cont.)

PSD3XX - Application Note 042

Phase timing for a stepper motor could be designed by either a combination of logic and
linear electronics or by some stepper motor control IC's such as the L297 stepper motor
controller. Figure 4 shows a block diagram of a stepper motor control and the L297 is used
as the stepper motor control IC. The L297 provides control to an amplifier in the current
mode. The chop frequency for the L297 is set to 20KHz. Chop frequency is used to regulate
the amount of current in the motor windings. The current reference to the motor windings is
set by a pair of resistors. The L297 is configured to FULL STEP mode. The
ENABLE/DISABLE and axis DIRECTION control are controlled from PORT B of the
PSD503B1. An electrical schematic using the L297 is given in Figure 13.

Figure 4. Simplified Block Diagram for a Stepper Motor Control

DIRECTION
PHASE A

CONTROL PHASE B

CLOCK PHASEB
CONTROL POWER

BRIDGE
BRIDGE -.. ENABLE

CONTROL PHASE A

CURRENT SENSE

SENSE PHASE 1

SENSE PHASE 2

-----------------------------------~Jr~~-----------------------------------
3-299

PSD5XX - Application Note 042

Stepper Motor
Clock
Generation
by Using a
PSD5XX

Figure 5 shows a timing diagram for the control of the phases in a stepper motor control
where the steps and the step rate are controlled by clocks. The variation of the clock rate or
the variation of the time between the two clock pulses determines the step rate. Change in
the step rate determines the acceleration, deceleration, and the slew rate in a given motion
profile.

Figure 6 shows a typical trapezoidal motion profile. In the acceleration mode the step rate
starts slowly and as the motion progresses the step rate increases according to a step rate
table until it reaches the slew rate. At the slew rate the step rate is fixed and the period of
the step clocks is constant. At the end of the slew rate the deceleration starts. In this part of
the profile the step rate decreases according to a step rate table until the last step. The
repeatability and accuracy of the step clocks in a stepper motor plays a major role in the
stepper motor performance.

Figure 5. Timing Diagram for a Stepper Motor Control

-'1 1'- ONE STEP TIME

--~Ir-----'~--~
STEP CLOCK

FROM PSD503
TIMER

PHASEA ~

PHASEB I

-------------------------------------,~~~~------------------------------------3-300 ~ii!§ i6

Stepper Motor
Clock
Generation
by Using a
PSD5XX
(Cont.)

PS05XX - Application Not, 042

Figure 6. Typical Trapezoidal Speed Profile

STEP CLOCKS . ~~.~----------~~~. ~
RAMP UP I SLEW RATE I RAMP DOWN I

MOTOR VELOCITY PROFILE

11 ----------- PROFILE TIME ------------...~ I

Figure 7 shows the programmable PLD (PPLD) macrocell for each counter/timer block
diagram in the PSD5XX. In this design the four 16 bit timers on the PSD5XX are used to
control a four axis stepper motor under microprocessor control. The four 16-bit timers in the
PSD5XX are configured in the pulse mode. The Timers are loaded with a given step count
for the duration of a pulse. When the pulse duration has expired, the logic on the PSD5XX
is programmed such that the respective timer is preloaded with the count from the Image
Registers. By preloading the timer, the step pulse duration will be exact with respect to the
applied clock frequency. The timer clocks are configured to run at 1-MHz. In this case the
preloading time on this system is based on a "one step ahead" stepper motor control. On
the ramp up and ramp down mode each step clock will be preloaded in the image register
because of the step rate changes. When the time for each step has expired the respective
timer automatically preloads the image register in the count register and continues the new
count. In this design the terminal count outputs (TCO - TC3) of the timers are routed to the
four inputs (INTO- INT3) of the interrupt controller on the PSD5XX device. The timer
outputs are inverted and connected to the timer macrocell outputs MC2TMRx (x = 0-3 for
three timers) in the PPLD logic. Figure 8 shows a simplified block diagram for the four axis
stepper motor control.

-----------------------------------r=~~~-----------------------------------
~'::"=:= 3-301

~
~

IUiQ" ~iQIII
II:~

ZPlD
INPUT
BUS

ClKlN

RESET

TIMER
INPUT PIN

PTT-O

PTT-1

AND
ARRAY

TIMER [3 : OJ_IN

WDOG2PlD (INTERNAL FEEDBACK)

PR
D Q

C Q

MUX

COMB/REG
SELECT

.ablFllE

TIMER_CLOCK
(PRESCAlED ClK)

I * I INPUT I • I
MC2TMR MUX ---

BIT 5 OF
COMMAND REGISTER

~~~~t!~ 
:::at; :::IQQi 
'::~&=Qln~ 
~S·; ~Qi :.c-!"to ... - -. =-

COUNTER/ 
TIMER 

-g ~ 
S' 
"'i 

~ 
cQ' 
~ 
CII 

~ 

;g 
s 
I n a n 
!: 
c:r ... 
t' g. 
f1 
§ ... 
~ 
~ §, 
!t 

"These are four similar Macrocells with outpU1s MC2TMR[3:0J 

i! 
~ :.c: 
I 

i" :::: 
fa 
;t 
1& 
it 
;r 

~ 



Steppef MOtOf 
Clock 
Generation 
byUs/nga 
PSD5XX 
(CDnt.) 

I'SD5XX - Application Note D42 

Figure 8. Simplified Block Diagram for the System 

"- .It 

~ SRAM 
, 

I " 
" 

~ 
16 BITS ADDRESS/DATA BUS 17 BITS ADDRESS 

8OC186 I I I: PSD503 MICROPROCESSOR 
"- CONTROL SIGNALS & INTERRUPT "-'I ... 

I 
TIMERS [0:31 OUTPUTS & LOGIC CONTROL BUS 

AXIS #1 • 4 POWERAMP'1 - STEPPER'1 

~ 
LOGIC FOR AXIS #2 .. POWERAMP'2 --. STEPPER'2 STEPPER 4 

MOTOR 4 
AXIS #3 .. POWERAMP'3 ---. STEPPER'3 CONTROL 

4 
AXIS #4 .. POWERAMP'4 r- STEPPER #4 

The output of the PSD5XX interrupt controller is connected to one ot the interrupt inputs 
on the 80C186 microprocessor. The PSD5XX interrupt controller interrupts the 
microprocessor in response to the timer underflow. In response to this interrupt, the 
microprocessor reads the INTERRUPT PRIORTY STATUS REGISTER and updates the 
respective timer image register. The output of a timer makes a high to low transition when a 
timer count expires.The high to low transition of the timer is inverted and is used to preload 
the respective timer from the last image register. In the slewing mode the IMAGE 
REGISTER for a timer does not need to be preloaded on each step interrupt. As the timer 
count expires the old count will be pre-loaded automatically. Figure 9 shows the logic 
configuration for a given axis and Figure 10 shows the *.abl file listing for the preloading 
capability of the timers. 

----------------------------~Jrjr------------------------~~ 
3-303 



~ 
~ 

'lIii"" 
Ilil= 
llbll~ 
II_I,," 

...... START COUNTER (BIT 1 OF GLOBAL COMMAND REGISTER) 

...... 

SOFTWARE FREEZE ( FREEZE COMMAND REGISTER) 

OUTPUT POLARITY SELECT (BIT 3 OF CMD REGISTER) 

SOFTWARE SELECT BIT (BIT 2 OF CMD REGISTER) 

ENABLE COMMAND (BIT 7 OF CMD REGISTER) 

PIN OR MACROCELL 
(SELECTED BY BIT 5 OF CMD REGISTER) 

SOFTWARE GATING BIT 
(BIT 6 OF CMD REGISTER) 

SOFTWARE LOAD (SOFTWARE LOAD/ STORE REGISTER) 

INCREMENTIDECREMENT SELECT (BIT 1 OF CMD REGISTER) 

TIMER_CLOCK 

ENABLEIDISABLE 

COUNTER 

LOAD/STORE 

i~~~t!~ 
=at; ::I Cfti 
.s: ~ i= fti ~~ 

:aoc S' ia • 
~1Ci::t ... 

-!$I ~ 

COUNTER OUTPUT (PORT A OR B) 

FREEZE ACKNOWLEDGE 
(STATUS FLAGS REGISTER) 

TERMINAL COUNT (TC) 
TO INTERRUPT CONTROLLER -1----------

I 

I TERMINAL COUNT (TC) 
I TO PORT E -----------.-

S' ... 
~ 

cQ' 
~ 
CIi 

!O 
po. 

.: 
;:;' 
f1 =:a .;: 
~ 
Qj 
;!: 

= 
~ 
~ m 
~ 
iii' 
~ ;s­
CD 

f 
:t 

~ 
&l 
~ 
I 

~ 
'15 :::: 
&I 
;t 
II 
1= 
iit 

~ 



Stepper Motor 
Clock 
Generation 
by Using a 
PSD5XX 
(Cont.) 

80C186 
Interface to the 
PSD503 

PS05XX - Application Not. 042 

Figure 10. A Sample PPLD Configuration in an *.abl File for the PSD5XX 

"PPLD Equation for the Timer to Preload 

mc2tmrO (!timeroutO); 
mc2tmr1 = (!timerout1 ); 
mc2tmr2 = (!timerout2); 
mc2tmr3 = (!timerout3); 

Figure 11 shows a block diagram of a PSD5XX family product. In this design the PSD503 is 
used. The PSD503 is configured to 64K x 16 EPROM in MUX mode. The address and data 
on the 80C186 are multiplexed so the PSD503 latches the address internally. The address 
lines A16 and A17 are internally latched using PA6 and PA5 from the PSD503 ports. Ports 
PCO - PC7, PD~ - PD7, PE3 and PE4 on the PSD503 are used to output the address 
AO - A 17 externally to be used by the 128K x 16 SRAM external to the PSD503 device. 
PAO through PA3 are used as timer outputs to provide clocks for the stepper motor control. 
Figure 12 shows the schematic for the processor connection to the PSD503 and Figure 13 
shows a schematic for a typical stepper motor control unit interface to the PSD503. The 
stepper motor interface control uses PBO - PB5 to control the four L297 stepper motor 
control chips. PBO and PB1 are used to enable and disable the four axis of the motion. PB2 
through PB5 are used to control the direction of the motor motion. PBO through PB7 are 
configured in the software. Figure 14 shows the *.ABL file used in this design. 

_________________ i'iIiI Efii§ 

~~·---------------3-~-O-5 



~ g: 

111"011 
111111 

1IIIftii 
Ilhlllll 
Ilftlllll 

.-----------------------------------------------------------------------------------------------------,I~ 

~ 

CONTROL 

RD,WR 

ADO-AD15 

PCO-PC7 

PDO-PD7 

PROG. Ir----. 
BUS ~ 

INTRF 

ADIO 
PORT 

p 

ZPlD 
INPUT 
BUS 

I 61 

ADDRESS/DATA/CONTROL BUS 

PROG. 

• PORT 

PORT 
A 

PROG. 
PORT I ~nl·lc:": • ; 
PROG. 
PORT 

PORT 
D 

p 

ClKIN 

;~:~ 

,,..anl""CII 

ClKIN 

PERIPHERAL 
I 60.. PlD (PPlD) 

~ 

--

.---=::---t,.--+-.J~ I ClKIN .:;:. 

WATCH DOG OUTPUT 

PROG. 
PORT 

PORT 
E 

GLOBAL 
CONFIG. 

& 
SECURITY 

VSTDBY 

PAO-PA7 

PBO-PB7 

PEO-PE7 

~ 
~ 

~ 

~ 
~ 
~ 
!! 
Q 

Q. 
It::! 
ii' 
~ 
~ 

;,: 
51 
~ 
I 

:to 

== :::: 
2 
::!: 
:51 
~ 
;-

~ 



',,""
1 

1161101 ,Jloo 
'.lllh 

11011111 

~ 

RST_188 

.5V 

.5V 

R23 
47K 

R24 
47K 

U56 

.5V 

186_AD (O 15) 

186..A(O 117) 

WSU(O 3), 'NSLT(O 3) 

STEP_D (0 3) 
STEP_D (0 3) 

" STEP _0 (O 1) ( STEP E (0 1) 

l.' ll:Sti-Al U lAO 
• ..,<> .. " .. A1 

A2 
A2 
A4 
AS 
A6 
A7 
AS 
A9 
A10 
A11 
A12 
A13 
A14 
A15 

\ 1111 ~liJ 
MB841000-BO 

~ 
cQ' 
!; 
CIi 

""" ~ 
~ 
=*' 
I 
1\1 

if­
cr ... 
s 
CII 

~ 
51 a 
!i' 
iit 
i 
Q 
a-
1\1 

= ~ 
It 
::, 
g 
a s: 

~ 
5t 
~ 
I 

t 
~ ;: 
8 
~ 
Cit 

! 



c:> 
~ 
Co 

I~ 
lIIi'IbI 
'111'1111 

~, __ we~~J~(~O_3~) __________ , 

I 
T A7 R11 

-l-C7 I 22K 

R12 

r 
STE~ 

P_DO 

U7 

i-1~ A" 4 

S"6 
C" 7 

0"9 

AMP FOR 
STEPPER ., ~~[]J~ 2 STEPPER MOTOR 

~ '" 1 CONNECTION 

CONN 4 I33PF ~ I I 
HOME I I 

ISTEPLc~ 

~1 R22-

.5V 
R R 

E 
T ---:r 

U1 

t:1~ 15 
VREF 
SYNC 
HlF 

t~=l=J~~~~~~~~~~C~ 
EN 
CW/CCW 
CLK 

.---:;....1:" 

.5V 

S2 
GNo 

U1 

A"4 

Sf-6 
C 7 

o 9 

INH1 tbH~!========I INH2 t-r--
HOME 

r--------------~====~=t=t~~~~~~~~~~'2~~~-----:~ 
Vee 

1~ ~F A t-----------------J 
19 SYNC B 
11 HIF 

STEP_E1 10 eNTAl. C 
_ 17 EN 

~ 
5V R R ~ R R 

~ .5V R R ~ 
I 

R R 

SlEP....AESET 

SlEP_D (0 3 
STEP_D (0 3) 

I ,STEP E (0. 1n 
STEP_E(O 1) 

'r 

_T2 18 grr:ccw 0 

RES 

--::c 

51 INH1 
S2 INH2 
GND HOME 

U7 

~~ 
VREF 
SYNC 
HIF 

A"4 

S,6 

EN 
CW/CCW 
CLK 

C"7 

0. 9 I'~~~==~~~~~~~~~C~ RES 51 INH1.~!========::l 52 INH2 
GND HOME 3 

) 

I 

AMP FOR 
STEPPER 

.2 

AMPFQR 
STEPPER 

'3 

AMP FOR 
STEPPER 

#4 

1 

~, 
CONN 4 

~€ 
CONN 4 

~~ 
CONN4 

STEPPER MOTOR 
= 2 CONNECTION 

STEPPER MOTOR 
= 3 CONNECllON 

STEPPER MOTOR 
= 4 CONNECllON 

;?'! 
CCIi 
§; 
CI .... 
~ 

~ 
if 
~ ;;: 
iii' 
S' 
i :: 
I' -I g 
;J 
lit a 
= Q, 

S 
CI 

Ii ..... 
il 
~ 
!t 
~ ::. 
~ ;:: 
!t 

~ 
~ 
:Iool 
I 

t :::::: 

= ;t 

II 
~ 
Il 

~ 



80Ct86 
Interface to the 
PS0503 
(Cont.) 

PSD5XX - Application Note 042 

Figure 14. Program Listing for the ABEL File Used in this Design 

module mfhs_1S 
title 'DESIGN FOR PSD503 ABEL source file to interface with 80C18S'; 

"Input signals 

"Address lines, using reserved names. 

a15,a14,a13,a12,a11 ,a10,a9,a8,a1 ,aO pin; 
wr pin; 
rd pin; 
bhe pin; 

a16 pin 21; 
a17 pin 22; 
add_16 pin 34; 
add_17 pin 31 ; 

"high order address input 
"high order address input 
"address 16 latched output 
"address 17 latched output 

" PINS DEDFINED BY NPK " 

umcs pin; 
Imcs pin; 

emcs pin; 
omcs pin; 

pcs3 pin; 
pcs2 pin; 

" Upper Memory Chip Select 
" Lower Memory Chip Select 

" even memory chip select for external SRAM 
" odd memory chip select for external SRAM 

" PSD Upper 256 bytes address chip select space 
" PSD Lower 256 bytes address chip select space 

pbO, pb1, pb2, pb3, pb4, pb5 pin; "Stepper motor Control Port 

" Timer Contol Pins" 

timeroutO pin; 
timerout1 pin; 
timerout2 pin; 
timerout3 pin; 

" Port Control" 

" Stepper 1 Clock 1 
" Stepper 2 Clock 2 
" Stepper 3 Clock 3 
" Stepper 4 Clock 4 

pdO, pd1, pd2, pd3, pd4, pd5, pd6, pd7 pin; " Upper Address Output" 

pco, pc1 , pc2, pc3, pc4, pc5, pc6, pc7 pin; " Lower Address Output" 

clkin, reset pin; "using the reserved names. 

"Output signals 

csiop, rsO, esO, es1, es2, es3 node; "DPLD output chip selects 
mc2tmrO node; " PPLD Output To Timer ° " 
mc2tmr1 node; " PPLD Output To Timer 1 " 
mc2tmr2 node; " PPLD Output To Timer 2 " 
mc2tmr3 node; " PPLD Output To Timer 3 " 

-----------------------------------~.;r~-----------------------------------
3·309 



I'SII5XX - Ap"II.'#IIIIII.tell42 

8DC186 
Int.tfac. to the 
PS05D3 
(c.nt.) 

FI,u1II14. Pto,ram UBlln, fDr the ABEL File Used In this Desl,n (c.nt.) 

"General outputs 

"DEFINITIONS 

"page = [pgr3,pgr2,pgr1,pgrO];" 
CK = .C.; " Clock pulse definition 
X = .x.; " Don't care 
Address = [a16,a 1S,a 14,a 13,a 12,a11 ,a 1 0,a9,a8,X,X,X,X,X,X,a 1 ,aO]; 

Add = [pc7,pc6,pcS,pc4,pc3,pc2,pc1,pcO]; 

equations 

"DPLD EQUATIONS 

csiop = 
rsO 
esO 
es1 
es2 
es3 

«Address >= Ah00100) & (Address <= Ah001ff»; 
0; " Disable The 2k On Board SRAM " 
(Address >= AhOOOOO) & (Address <= Ah07fff) & (!umcs); 
(Address >= Ah08000) & (Address <= AhOffff) & (Iumcs); 
(Address >= Ah10000) & (Address <= Ah17fff) & (!umcs); 
(Address >= Ah18000) & (Address <= Ah1ffff) & (!umcs); 

add_16 = a16; 
add_17 = a17; 

"Address 16 latched output" 
" Address 17 latched output" 

"32k block 0 
"32k block 1 
"32k block 2 
"32k block 3 

emcs = (IImcs & bhe & laO) + (IImcs & !bhe & laO); 
omcs = (IImcs & Ibhe & aO) + (IImcs & lbhe & laO); 

" even address SRAM chip select 
" odd address SRAM chip select 

"PPLD Equations 

mc2tmrO = (!timeroutO); " Pre Load Timer 0 " 
mc2tmr1 = (Itimerout1); " Pre Load Timer 1 " 
mc2tmr2 = (Itimerout2); " Pre Load Timer 2 " 
mc2tmr3 = (!timerout3); "Pre Load Timer 3 " 

" *************************.*.**********************************.************.****** •• ************** ••• 
TEST VECTORS 

'I ***************************************************************** ••• *******************************.* 

----------------------',,':-----------------------3-310 JINIIIIt 



_186 
Infllrlac. to the 
PSD51J3 
{CoIIt.} 

I'S/J6XX - _"C1t/,,, 1Iote. 

FI,.re 15. BI.ck Dla,,.., fill tile ''Ilster CtnIfI,.tBtl.alld 
Int."""t Optntl.n 

PSD503 Timer Initialization 

Load Command Register for Each Timer by Oxe9 

Read Interrupt Read Register To Clear All Interrupts 
Select all Interrupt Inputs to Rising Edge 
Unmask the Timer Interrupt in Mask Register 

Configure the 800186 Interrupt 

Load Counter Count Register with New Count 
Load Image Register for the Timers 

Set DLCY Register to Ox04 
Select Port A for Timer Output 

Load Image Register for The Timers 

Select Software LoadIStart for the Start up 
Enable the Timers from Global Register 

I Enable the Respective Timer for Operation I 

I I 
r-----Il Walt for Interrupt 11 .. ------------, 

NO 
Interrupt Occurred? 

YES 

Read Interrupt Priority Register 
Determine the Respective Timer Interrupt 
Load the Respective Image Register for the Timer 

-----------------------~Jrl-----------------------3-311 



I'SD5XX - Application Note D42 

8OC1B6 
Interface to the 
PSD5D3 

Figure ". A Samplll *.C Program fOl this Application (Cont.) 

(Cont.) 

3-312 

linclude <dos.h> 
linclude <conio.h> 
linclude <stdio.h> 
linclude <stdlib.h> 

typedef unsigned short USHORT; 
typedef short SHORT; 
typedef unsigned long* PULONG; 

linclude "x_step.dat" 

Idefine PCSO OxOOO 
Idefine PCS1 Ox080 
Idefine PCS2 Ox100 
Idefine PCS3 Ox100 
Idefine PCS4 0x200 
Idefine PCS5 0x280 

1* WSi Registers 

*' 

Idefine WSilNTRREAD PCS2+0xD4 
Idefine WSilNTRMASK PCS2+0xD3 
Idefine WSilNTRMODE PCS2+0xD2 
Idefine WSilNTRREQ PCS2+0xD1 
Idefine WSilNTRPRI PCS2+0xDO 

Idefine WSiSLR PCS2+0xa5 

Idefine WSiCNTRO PCS2+0x98 
Idefine WSiCNTR1 PCS2+0x9A 
Idefine WSiCNTR2 PCS2+0x9C 
Idefine WSiCNTR3 PCS2+0x9E 

Idefine WSiCMDO PCS2+0xaO 
Idefine WSiCMD1 PCS2+0xa1 
Idefine WSiCMD2 PCS2+0xA2 
Idefine WSiCMD3 PCS2+0xA3 
Idefine WSiDLCY PCS2+0xa6 
Idefine WSilMGO PCS2+0x90 
Idefine WSilMG1 PCS2+0x92 
Idefine WSilMG2 PCS2+0x94 
Idefine WSilMG3 PCS2+0x96 

Idefine WSiGLBREG PCS2+0xa8 
Idefine WSiSFR PCS2+0x08 
Idefine WSiFREEZ PCS2+0xA4 

Idefine WSiPORTB_CNTR PCS2+0x03 
Idefine WSiPORTB_DIR PCS2+0x07 

Idefine WSiPORTC_CNTR PCS2+0x12 
Idefine WSiPORTC_DIR PCS2+0x16 

Idefine WSiPORTD_CFG PCS2+0x13 
Idefine WSiPORTD_DIR PCS2+0x17 

Idefine WSiPORTE_SFR PCS2+0x28 
Idefine WSiPORTE_DIR PCS2+0x26 

".'~ 'f!!H!!1I! , 

1* Stepper Profile Table *' 

1* Interrupt Read Clear *' 
1* Interrpt Mask Register *' 
1* Interrupt Edge'Level *' 
1* Interrupt Request Latch *' 
1* Interrupt Priority *' 

1* Software Load'Stor *' 

1* Timer 0 control *' 
1* Timer 1 control *' 
1* Timer 2 control *' 
1* Timer 3 control *' 

1* Timer 0 Control Register *' 
1* Timer 1 Control Register *' 

1* Scale Factor Control Of Timers *' 
1* Timer 0 Image Register*' 
1* Timer 1 Image Register*' 
'* Timer 0 Image Register*' 
'* Timer 1 Image Register*' 

1* Timers Global Register *' 
1* Special function register for port A *' 

1* Port B Configuration *' 

1* Port C Configuration *' 

1* Port 0 Configuration *' 

1* Port E Configuration *' 



80C186 
Interface to the 
PSD503 
(Cont.) 

PSD5XX - Application Not. 042 

Figure 16. A Sample *.C Program for this Application (Cont.) 

#define 
#define 
#define 

WSiPORTE_OUT 
WSiPORTE_IN 
WSiPORTE_CFG 

PCS2+0x24 
PCS2+0x20 
PCS2+0x22 

#define PULSE_MODE_DISABLED Ox99 
#define ENABLE Ox04 

1* 188 Registers 

*' #define IOCON OxFF38 
#define 11CON OxFF3A 
#define IMASK OxFF28 
#define EOI OxFF22 

'* Global Variables Here 

*' 
int SteppeU_Total_Step_Count; 
int Step_1_Max_Slew_Count; 
int Step_1_Motion_lndex; 
int Step_1_Motion_Stat; 
int Step_1_Slew_Count; 
int Stepper_1_Ramp_Up_Count; 
int Stepper_1_Ramp_Down_Count; 
int Stepper_1_Step_Count; 
int Stepper_1_Step_ Time; 
int Step_1_ Time; 
int Step_1_CounCOld; 
int Stepper_1_Profile[20]; 

USHORT Image; 
USHORT MotorNum; 
1* 

INTERRUPT 1 ROUTINE 

*' 
USHORT Port = WSilNTRREAD; 
USHORT iw; 
void _interrupt WSiHandler(void) 
{ 
static USHORT Read; 

Image = Ox200; 
switch( inportb(WSilNTRPRI) & Ox07) 

{ 

1* was 99 *' 
1* was 00*' 

., .. ;~ 
----------------------------------~Sf.---------------------------------

3·313 



PSD5XX - Application Note 042 

SOC1S6 
Interface to the 
PSD503 
(Cont.) 

Figule 16. A Sample '/t.e Ploglam tOI this Application (Cont.) 

case 0: 
outport(WSilMGO, Step_13ime); 
Stepper_1_Step_Count++; 

1* Load Timer 0 for step pulse *f 

break; 
case 1: 

outport(WSiIMG1, Image); 
break; 

case 2: 
outport(WSilMG2, Image); 
break; 

case 3: 
outport(WSilMG3, Image); 
break; 

} 
outport(EOI,Ox8000); 
_enableO; 
} 

void IniC Timers(void) 
{ 

PULONG pIVT=NULL; 
_disableO; 
Image = 100; 

1* Pulse Mode Timer 0-3 
*f 
outportb(WSiCMDO, Ox99); 
outportb(WSiCMD1, Ox99); 
outportb(WSiCMD2, Ox99); 
outportb(WSiCMD3,Ox99); 

1* Interrupt WSi Setup 
*f 
inportb( WSilNTRREAD); 
outportb(WSiINTRMODE,OxOO); 
outportb(WSiINTRMASK,OxOf); 

outportb(WSiPORTE_SFR,OxOd); 

1* Interrupt 188 Setup 
*f 
pIVT[12] = (PULONG)SensorlntO; 
outportb (IOCON ,Ox012); 
pIVT[13] = (PULONG)WSiHandler; 
outportb(11 CON,Ox01 0); 
outportb (IMASK,OxDD); 

Image = 0; 

1* Program Command Register For The Counters *f 
1* All Counters to Pulse Mode *f 
1* All Counters Disabled *f 

1* Clear All The Interrupts *f 

1* Unmask Timers Interrupt *f 

1* Confgure Port E For Special Function *f 

1* Sensor Interrupt *f 
1* Disable sensor inerrupt * f 
1* Interrupt # 1 Initilization *f 
1* Was level sensetive Ox07 */ 

_________________ !f'IiI= #Sff 
3·314 .".#~ § ----------------



BoCtB6 
Interface tD the 
'50503 
(Cont.) 

PSD5XX - Application Nots 042 

Figure 16. A Sample *.C Program for this Application (Cont.) 

outport(WSiCNTRO, OxOO); 
outport(WSiCNTR1, oxOO); 
outport(WSiCNTR2, oxOO); 
outport(WSiCNTR3, OxOO); 

outportb(WSiDLCY, 
outportb(WSiSFR, 

Ox04); 
OxOf); 

outport( WSilMGO, 
outport( WSilMG1, 
outport( WSiIMG2, 
outport( WSilMG3, 

Image+Ox340); 
Image+Ox300); 
Image+0x260); 
Image+0x220); 

outportb(WSiSLR,OxOF); 
outportb(WSiGLBREG,Ox02); 

_enableO; 

/* Configure The Wsi Global Register *f 

/* Enable Interrupt *f 

/* 
This Routine Sets up timer 0 for the start up profile 

*f 
void Step_1_lnit(void) 
( 

static SHORT s_en1 ,s1_c; 
static SHORT c_r1 ,c_r2,m_c; 

Stepper_1_Step_Count = 0; 
Step_1_CounCOld = 0; 

Stepper_1_Step_Count = 0; 
Steppec 1_ Total_Step_Count =1000; 
Step.:...1_Max_Slew_Count = 998; 
Step_1_Motion_lndex = 0; 
Step_1_Slew_Count = 0; 
SteppecCRamp_Up_Count = 5; 
Stepper_1_Ramp_Down_Count = 7; 
Step_1_Motion_Stat = 0; f* Set Up For Ramp Up *f 
Step_1_ Time = Ox3000; 

outportb(Step_Motor1_Control,s_en1); /* Reset Motor State *f 

outportb(WSiCMDO, Ox9d); /* Enable Timer 0 for stepper 1 *f 

f* 
This routin is used to update the profile table for motor 1 
*f 

void Steppec 1_Move(void) 
( 

if( SteppeU_Step_Count > Step_1_CounCOld) 
{ 

----------------------------------~~~----------------------------------
3-315 



PSDSXX - Application Not. 042 

SOC1S6 
Interface to the 
I'S0503 
(Cont.) 

Figure 16. A Sample *.C Program for this Application (Cont.) 

if( Step_1_Motion_Stat == 0 ) 
{ 

Step_1_Motion_lndex++; 1* ••••• RAMP UP STEPPER 1 ······f 
Step_1_ Time = x_axis[Step_1_Motion_lndex]; 
if( Step_1_Motion_lndex == 132) 
{ 

if( Step_1_Motion_Stat == 1 ) 
{ 

1* Set Status For Slew 'f 

Step_1_Slew_Count++; 1* ••••• SLEW FOR STEPPER 1 ······f 
if( Step_1_Slew_Count == Step_1_Max_Slew_Count) 
{ 

Step_eMotion_Stat = 2; 1* Set Status For Ramp Down'f 
Step_1_Motion_lndex = 132; 

if( Step_1_Motion_Stat == 2) 
{ 

Step_1_Motion_lndex-; 
if( Step_1_Motion_lndex!= 0) 
{ 

} 
if( Step_1_Motion_lndex == 0) 
{ 

SteppeU_Step_Count = 0; 
Step_1_CounCOld = 0; 

1* ••••• RAMP DOWN FOR STEPPER 1 ······f 

outportb(WSiCMDO, Ox99); 1* Disable Motor'f 
outportb(WSiCMDO, OX99); 1* Disable Motor. This is Just For Ice 'f 

Step_1_CounCOld = Stepper_1_Step_Count; 
} 
} 

:I';;:,gilJ/llJ#E 

-3--3-16----------------------------~Jr~~------------------------------



BOC1B6 
Interface tD the 
PSD503 
(CDnt.} 

I'SD5XX - Application NDt. D42 

FI,ure 16. A Sample !/t.e l'nI,ram fDr this AppllcatlDn (CDnt.} 

main() 
{ 

static USHORT Read, y, d1=OxAA,d2=OxAA; 
static USHORT key; 

IniC Timers(); 

key = 1; 
while(1) 
{ 

} 

switch( key) 
{ 
case 1: 

Stepper_1_Move( ); 
break; 

case 2: 
stp_2(); 
break; 

case 3: 
dcm_1(); 
break; 

case 4: 
dcm_2(); 
break; 

case 5: 
cres_12(); 
break; 

case 6: 

return 0; 

C188_1520; 
break; 

-----------------------------~~~-----------------------------
3-317 



",D5XX - Appllt:JItion Not. D42 

Software 
Configuration 
of the PS0503 

Conclusion 

Figure 15 shows a block diagram of the steps needed to configure the registers of the 
PSD503 for this application. Figure 16 shows a sample software program written in C that is 
used in this application to configure the PSD503. This software programs the special 
function register of Port A to be used as the timer outputs. Figure 17 shows the PSDSOFT 
configuration of the timers. The PSD503 must be configured through PSDSOFT for the 
BUS type, WR, RD, INTR and PORT operation. 

The timer clock frequency is configured through the DLCY register to 1 MHz. As the step 
rate increases the step rate accuracy deteriorates due to the quantization effect. The 
quantization effect is not a problem in this application. The output pulse width of each timer 
is one microsecond which is sufficient for this application. 

Figure 17. PSDsoft Configuration 01 the Timers 

Counter / Timer 0: Waveform/Pulse Mode. 

Counter / Timer 1 : Pulse Output. 

Counter / Timer 2: Waveform/PulseMode. 

Counter / Timer 3: Pulse Output 

Do you need Automatic Power Down Clock Input? NO 

Do you want to set the security bit? NO 

Do you need the Intr output signal? YES 

In this application the PSD503 provided a very useful integrated means of design. The 
following were benefited from this design: 

• 64 K x 16 EPROM 
• Eighteen bits of latched output for demultiplexing ADDRESS from DATA. 
• An 8-bit Interrupt Controller Equivalent to an 8259. 
• Four 16-bit preloadable timers with a prescaler for the timer clocks. 
• Logic for decoding. 
• Programmable external PORTS. 

The board space reduction and the amount of noise reduction that resulted from this design 
is immeasurable. 

--------------------_______________ ~_Ar_~~-----------------------------------
3-318 ;:;: 



Deslgnfot 
PSDS03ABEL 
SOUIC. FII. to 
Int.rface with 
8OC186 

I'SDSXX - AppllClltlDR NDte D42 

_._._--_._._-------_._._-------------------------------**_ .. _--_._._.-._--....... -----_ .... _-----------
W S I - PSDsoft Version 1.05B 

Output of PSD Fitter 
**._._--------------_._._-------------_._---------._.---------.-._------_ ... _._-----_._._--------------
TITLE 
PROJECT 
DEVICE 

DESIGN FOR PSD503 ABEL source file to interface with 80C186 
mfhs_16 DATE: 04107/1995 
PSD503B1 TIME: 09:31 :05 

FIT OPTION : Keep Current 
._._------------------------------------------------------_ .. -._----------.-._----.-._-----------------

Pin Assignment 
----------------------
l]GND GND [35 

Address/Data Bus ADIO_7 2]adio7 pe2 [3S 
Address/Data Bus ADIO_S 3] adioS pel [37 
Address/Data Bus ADIO_5 4] adio5 peO[38 
Address/Data Bus ADIO_ 4 5]adio4 esi [39 
Address/Data Bus ADIO_3 S] adio3 reset [40 
Address/Data Bus ADIO_2 7] adio2 rd [41 

Address/Data Bus ADIO_l (al) 8] adiol elkin [42 
Address/Data Bus ADIO_O (aO) 9] adioO pb7 [43 

pe7 10]pe7 pbS [44 
peS 11] peS pb5[45 
pe5 12] pe5 pb4[46 
pe4 13] pe4 pb3[47 
peS 14] pe3 pb2[48 
pe2 15]pe2 pbl [49 
pel lS] pel pbO[50 
peO 17] peO GND [51 

18]VCC VCC[52 
19] GND pd7[53 

umes 20]pa7 pdS [54 
alS 21] paS pd5 [55 
a17 22] pa5 pd4[56 

omes 23]pa4 pd3[57 
timerout3 24]pa3 pd2 [58 
timerout2 25]pa2 pdl [59 
timeroutl 2S] pal pdO[SO 
timeroutO 27]paO adio15 [Sl 

2B]VSTBY adio14 [62 
wr 29]wr adio13 [63 

pcs3 3O]pe7 adio12 [S4 
add_17 31] peS adiol1 [S5 

Imes 32] pe5 adiol0 [66 
emes 33]pe4 adio9[S7 

add_16 34]pe3 adioB[6B 
----------------------

Global Configuration 
Data Bus: 
ALE/AS Signal: 
WatchDog Mode: 
Security Protection: 

16 Multiplexed 
Active High 
Off 
Off 

Address It Data Bus Assignment 

Signal Description 

introut 
ale 
bhe 
esi 
reset 
rd 
elkin 
pcs2 
(Not Used) 
pb5 
pb4 
pb3 
pb2 
pbl 
pbO 

pd7 
pdS 
pd5 
pd4 
pd3 
pd2 
pdl 
pdQ 
Address/Data Bus ADIO_15 (a15) 
Address/Data Bus ADIO_14 (a14) 
Address/Data Bus ADIO_13 (a13) 
Address/Data Bus ADIO_12 (a12) 
Address/Data Bus ADIO_l1 (all) 
Address/Data Bus ADIO_l 0 (a 10) 
Address/Data Bus ADIO_9 (a9) 
Address/Data Bus ADIO_B (as) 

Stimulus Bus Name 
'adiol = adio[7:0] 
'adioh = adio[15:8] 
adio = adio[15:0] 

AddresslData Bus ADI03 - ADIO_O 
Address/Data Bus ADIO_15 - ADIO_8 
AddresslData Bus ADIO_15 - ADIO_O 

-------------------------------~~~-------------------------------3-319 



PSD5XX - Application Note 042 

Design for Resource Usage Summary 
PSD503ABEL Device Resources UsedlTotal Percentage 
Source File to 
Interface with Port A: (pin 20 - pin 27) 

80C186 1/0 pins 8/8 100% 

(Cont.) 
MCU 1/0 or Address Out 01 8 0% 
Peripheral 1/0 01 8 0% 
ZPLD Inputs 31 8 37% 
ZPLD Combinatorial Outputs 1 I 8 12% 
ZPLD Registered Outputs 01 8 0% 

Other Information 
Buried Macrocells 01 7 0% 
Product Terms 1127 3% 
Timer Outputs 4/4 100% 

Port B: (pin 43 - pin 50) 
1/0 pins 7 I 8 87% 

MCU 1/0 or Address Out 7 I 8 87% 
ZPLD Inputs 0/8 0% 
ZPLD Combinatorial Outputs 01 8 0% 
ZPLD Registered Outputs 01 8 0% 

Other Information 
Buried Macrocells 01 8 0% 
Product Terms 0/80 0% 
Timer Outputs 0/4 0% 

Port C: (pin 10 - pin 17) 
1/0 Pins 8 I 8 100% 

MCU 1/0 or Address Out 8 I 8 100% 
ZPLD Input Pins 01 8 0% 
Data Port (Non-Mux Bus) 01 8 0% 

Port D: (pin 53 - pin 60) 
1/0 Pins 81 8 100% 

MCU 1/0 or Address Out 8 I 8 100% 
ZPLD Input Pins 01 8 0% 
Data Port (16-Bit Non-Mux Bus) 0/8 0% 

Port E: (pin 30 - pin 34, pin 36 - pin 38) 
1/0 pins 81 8 100% 

MCU 1/0 or Address Out 1 I 8 12% 
ZPLD Inputs 1 I 8 12% 
ZPLD Combinatorial Outputs 31 8 37% 
ZPLD Registered Outputs 0/8 0% 
Control Signal Inputs 21 2 100% 
Timer Control Inputs 01 4 0% 
Interrupt Control Output 1 I 1 100% 
APD Clock Input 01 1 0% 
Terminal Counts (TC) 01 4 0% 

Other Information 
Buried Macrocells 0/5 0% 
Product Terms 3 I 11 27% 

CounterlTimer: Embedded Nodes 
Product Terms 41 8 50% 

Interrupt: Embedded Nodes 
Product Terms 01 4 0% 

3-320 
f§a#1!# 
~E; 



Design for 
PSD503ABEL 
Source File to 
Interface with 
80C186 
(Cont.) 

PSDSXX - Application Nots 042 

OMC Resource Assignment 

Resources Used User Name 

Port A: 
macro cell 4 omcs (mc_pa4) => Combinatorial 

Port B: 

Port E: 
macro cell 3 
macro cell 4 
macro cell 6 

EQUATIONS 

DPLD EQUATIONS: 

add_16 (mc_pe3) => Combinatorial 
emcs (mc_pe4) => Combinatorial 
add_17 (mc_pe6) => Combinatorial 

esO !a15 & !a16 & !umcs; 
es1 a15 & la16 & !umcs; 
es2 !a15 & a16 & lumcs; 
es3 a15 & a16 & !umcs; 
rsO 0; 
csiop = !a15&!a14&!a13&la12&la11 &la10&la9&a8&la16; 

TIMER EQUATIONS: 

mc2tmrO = ItimeroutO; 

mc2tmr1 = Itimerout1; 

mc2tmr2 = Itimerout2; 

mc2tmr3 = Itimerout3; 

INTERRUPT EQUATIONS: 

PORT A EQUATIONS: 

omcs = Ibhe & IImcs; 

[omcs].OE = 1; 

PORT B EQUATIONS: 

PORT E EQUATIONS: 

add_16 = a16; 

emcs = laO & IImcs; 

add_17 = a17; 

[add_16, emes, add_17].OE = 1; 

--------__________________________ ,ArJf~~ ________________________________ _ 

... ". 3·321 



'SD5XX - App/lt:lltlon Note 04Z 

~3~~2~~-------------------------~Jrjr---------------------------



PSD3XX Family 

ZPSD3XX Family 

PSD4XX/5XX Family 

Motorola Application Notes 

Sales Representatives 
and Distributors 



Motorola 
Application 
Notes 

Section Index 

The following are Motorola Application Notes and known as Application Notes 043 and 044 
at WSI, Inc. 

Application Note 043 Using M68HC11 Microcontroliers 
with WSI Programmable Peripheral Devices ................................ 4-1 

Application Note 044 High Performance M68HC11 System Design 
Using The WSI PSD4XX and PSD5XX Families .......................... 4-9 

FDr additiDnal infDrmatiDn, 
Call800-TEAM-WSI (800-832-6974). 

In CalifDrnia, Call 800-562-6363 



MOTOROLA 
Order this document by 

AN1237/D 

- SEMICONDUCTOR ----------­
APPLICATION NOTE 

Using M68HC11 Microcontrollers with 
WSI Programmable Peripheral Devices 
by Steve Torp - Motorola Semiconductor 

Karen Spesard - WSI 

INTRODUCTION 
Following system development using M68HC711 microcontroller (MCU) devices with EPROM or one time 
programmable ROM (OTPROM), a final design is often implemented using an equivalent mask-pro­
grammed M68HC11 device. However, there is a quick, cost-effective alternative to this method of going to 
production. 

WSI manufactures a complete line of PSD programmable MCU peripherals that make it possible to use a 
ROM-less M68HC11 derivative instead of a mask-programmed device. PSD devices combine EPROM, 
SRAM, programmable logic for memory map decoding, programmable I/O ports, an address latch, power 
management, and other capabilities on a single chip. A "twin chip" solution can increase flexibility, provide 
expanded memory and enhanced I/O, lower power consumption, and lower cost - all with a minimum of 
software and hardware modifications. 

This application note describes the process of converting from a prototype design that uses an M68HC711 
device to a production design that uses a low-cost M68HC11 derivative and a WSI PSD. 

CONVERSION PROCEDURES 
There are eight steps in the conversion process. Each is discussed in detail in the following text. 

1. Choose the M68HC11 and PSD 

2. Add the PSD to the design 

3. Configure the M68HC11 for expanded mode operation 

4. Configure the PSD 

5. Make memory map and I/O port selections 

6. Modify M68HC11 code to address memory and I/O 

7. Integrate M68HC11 code with PSD configuration data 

8. Program the PSD 

CHOOSE THE M68HC11 AND PSD 

The M68HC11 family offers a wide range of operating voltage and frequency selections. Table 1 shows 
M68HC11 Family devices, including M68L 11 low-power devices, that can be used in two-chip systems. 
EPROM/OTPROM devices are shown in bold. WSI PSDs are available in a variety of configurations. PSDs 
provide a larger memory size, I/O port expansion, and programmable logic to an M68HC11 system. Low­
power PSDs are a perfect complement to M68L 11 MCUs. 

---------@ © MOTOROLA INC., and WSI1995 

MOTOROI.A_ 
4-1 



Table 1 Motorola M68HC11 Devices 

Motorola Part Number ROM RAM EEPROM 1/0 AID 

MC68HC11AO 0 256 0 22 
MC68L11AO 

MC68HC11A1 0 256 512 22 
MC68L11A1 

Yes 
MC68HC11A7 8K 256 0 38 
MC68L11A7 

MC68HC11A8 8K 256 512 38 
MC68L11A8 

MC68HC11CO 0 256 0 35 Yes 

MC68HC711 D3 4K 192 0 32 No 

MC68HC11D0 0 192 0 14 
No 

MC68HC11D3 4K 192 0 32 
MC68HC711 E9 12K 512 512 38 Yes 

MC68HC11EO 0 512 0 22 
MC68L11EO 

MC68HC11E1 0 512 512 22 
MC68L11E1 

Yes 
MC68HC11E8 12K 512 0 38 
MC68L11E8 

MC68HC11E9 12K 512 512 38 
MC68L11E9 

MC68HC711 E20 20K 768 512 38 Yes 

MC68HC11 E20 20K 768 512 38 Yes 

MC68HC811 E2 0 256 2K 38 Yes 

MC68HC11F1 0 1K 512 30 
Yes 

MC68L11F1 

MC68HC711 K4 24K 768 640 62 Yes 

MC68HC11KO 0 768 0 37 
MC68L11KO 

MC68HC11K1 0 768 640 37 
MC68L11K1 

Yes 
MC68HC11K3 24K 768 0 62 
MC68L11K3 

MC68HC11K4 24K 768 640 62 
MC68L11K4 

MC68HC711 L6 16K 512 512 46 Yes 

MC68HC11LO 0 512 0 30 
MC68L11LO 

MC68HC11L1 0 512 512 30 
MC68L11L1 

Yes 
MC68HC11L5 16K 512 0 46 
MC68L11L5 

MC68HC11L6 16K 512 512 46 
MC68L11L6 

MC68HC711 P2 32K 1K 640 62 Yes 

MC68HC11P2 32K 1K 640 62 Yes 

4·2 MOTOROLA AN1237/D 



Table 2 shows PSD devices that are recommended for use with M68HC11 and M68l11 family members. 

Table 2 Recommended Devices 

Device EPROM RAM I/O 

PSD311Cl 32K - 19 

PSD311 32K 2048 19 

PSD411Al 32K 2048 40 

Table 3 shows typical twin-chip alternatives to particular M68HC711 or M68l711 systems. 

Table 3 Alternative System Configurations 

Device ROM RAM EEPROM UO AID 

Single Chip MC68HC71103 4K 192 0 32 No 
Twin Chip MC68HC11D0 + PSD311Cl 32K 192 0 33 No 

Single Chip MC68HC711 E9/20 12K120K 512/768 512 38 Ves 

Twin Chip MC68HCllAO/l + PSD311Cl 32K 256 0/512 41 Ves 

Twin Chip MC68HCllAO/l + PSD311 32K 2304 0/512 41 Yes 

Twin Chip MC68HC11D0 + PSD311 Cl 32K 192 0 33 No 
Twin Chip MC68HCllEO/l + PSD311Cl 32K 512 0/512 41 Ves 

Twin Chip , MC68HCll EDO + PSD311 Cl 32K 512 0 33 No 
Single Chip MC68HC11K4 24K 768 640 62 Ves 

Twin Chip MC68HCllKO/l +PSD411Al 32K 2816 0/640 n Ves 

Twin Chip MC68HCllKO/l + PSD311 32K 816 0/640 56 Ves 

Single Chip MC68HC11L6 16K 512 512 46 Ves 

Twin Chip MC68HCllL1 +PSD311Cl 32K 512 0/512 49 Ves 

ADD THE PSD TO THE DESIGN 

Migration from an M68HC711 single-chip system to an M68HC11/PSD system can be accomplished in one 
of three ways. 

1. By building a daughter board that plugs into the MCU socket on an existing printed circuit board. The 
board includes the M68HC11, the PSD, and system clock generation circuitry. Including the clock 
generator on the daughter board is important to minimize radiated EMI. 

2. By placing an edge or row connector on an existing printed circuit board to allow access to a PSD 
device on a daughter board. The minimum signals needed include the address/data lines and control 
signals (R/W, E, AS, RESET). This requires changing the existing schematic. 

3. By redesigning the existing printed circuit board to accommodate the PSD device. 

Figure 1 and Figure 2 are examples of interfacing an M68HC11 to particular PSD devices. Please refer to 
the appropriate Motorola data book and to the WSI PSD Design and Applications Handbookfor more infor­
mation. 

AN12371D MOTOROLA 4-3 



M68HC11 PSD3XX 

XTAL 
EXTAL PC[7:0] AD[7:0YA[7:0] PC[2:0] 

PB[7:0] AD[15:8YA[15:8] PA[7:0] 
IRQ VCC PB[7:0] 
XiRei 

MODA 
MODB E E 

RIW RIW 
PA[7:0] 
PE[7:0] AS AS 
PD[7:0] RESET RESET 

VRH A19/CSi 
VRL 

NOTES. 
I. HCII reset line must be pulled up to VOO. HCll PSD3 SCHEM 

Figure 1 Typical M6SHCll and PSD3XX System 

M68HC11 PSD4XX15XX 

XTAL 
EXTAL PC[7:0] AD[7:0YA[7:0] PC[2:0] 

PB[7:0] AD[15:8YA[15:8] 
iRO PD[7:0] 
XiRei E E 

MODA 
RIW RIW PA[7:0] 

MODB AS PEl/ALE PB[7:0] 
PA[7:0] RESET RESET 
PE[7:0] PE[7:2] 
PD[7:0] eLKIN 

VRH VSTBY 
VRL CSI 

CLOCK 

NOTES' 
I. HCII reset line must be pulled up to voo Hell PSD415 SCHEM 

Figure 2 Typical M6SHCll and PSD4XXl5XX System 

4-4 MOTOROLA AN1237/0 



CONFIGURE THE M68HC11 FOR EXPANDED MODE OPERATION 

M68HC11 operating mode is determined by the logic state of the MODA and MODB pins during system re­
set or power up. To configure the MCU for expanded mode operation, make the reset state of the MODA 
pin HIGH by pulling it up to VDD through a pullup resistor. 

CONFIGURE THE PSD 

PSD software must be used to configure the PSD. There are two different software packages available. 

PSD-SILVER software supports the PSD3XX devices and includes the MAPLE and MAP PRO software 
modules which run under the DOS platform. MAPLE software is used to configure the PSD chip. It features 
simple menu driven commands for selecting different device configurations. It also provides mapping of the 
EPROM, SRAM, and chip select outputs into the user's address space, and locates the files to be pro­
grammed into the EPROM segments. MAPPRO enables the user to program PSDs on a WSI MagicPro III® 
programmer. 

PSDsoft WS7001 or WS7002 software supports the PSD3XX, PSD4XX, and PSD5XX families and runs 
under MicroSoft® Windows® (PSD3XX support included in PSDsoft available Q295). It includes PSDabel, 
PSD configuration, PSD compiler, PSDsilos III simulator, and PSD programming software. The PSDsoft en­
vironment allows design and simulation of the on-chip PLD logic under Data I/O ABEL®, PSD interface se­
lections to any MCU, configuration of the I/O, and address mapping of the EPROM and SRAM memory, 
among other things. 

PSD-to-M68HC11 interface configuration is simple and straightforward. Configuration is performed by se­
lecting certain option bits in the PSD software package. For MC68HC11 A, C, D, E, and L devices, the PSD 
is configured for multiplexed mode. For MC68HC11 F, K, and P devices, the PSD is configured for non-mul­
tiplexed mode. For all versions of the M68HC11, the other option bits on the PSD device are set as follows: 
RiW and E mode, active high AS (ALE), active low RESET, and combined memory mode. To complete the 
configuration process, PSD Ports A and B must be configured as general-purpose I/O, to replace M68HC11 
Ports Band C, which are used for address and data lines when the MCU is operating in expanded mode. 

For a better understanding of the M68HC11 to PSD interface configuration information, please refer to the 
pin descriptions section of the appropriate Motorola data book and to Table 5 and Figure 12 in WSI Appli­
cations Note 011 for PSD3XX devices, and the section beginning with Figure 12 in Applications Note 029 
for PSD4XXl5XX devices. 

MAKE MEMORY MAP AND 110 PORT SELECTIONS 

To convert from an M68HC711 system to a system that uses a ROM-less M68HC11 and a PSD, the content 
of the M68HC711 ROM must be transferred to PSD EPROM, and mapped externally. The default state of 
the ROMON bit in the CONFIG register of ROM-less M68HC11 devices is zero, so all accesses to the ROM 
address space automatically go external. Virtually no change in the MCU address map is required because 
PSD EPROM can be mapped anywhere on a block boundary using the address map menu in the PSD soft­
ware. 

For example, assume a PSD device with 32 Kbytes of EPROM is selected. The PSD311 has eight blocks 
of 4 Kbyte x 8 EPROM. Each block can be mapped on a 4-Kby1e block boundary in the address range as 
originally defined in the OTP application. The PSD411A 1 has four blocks of 8 Kby1e x 8 EPROM, and each 
can be mapped to an 8-Kbyte block boundary. Please refer to the modes and memory section of the appro­
priate Motorola data book, to Figure 32 in WSI Applications Note 011 for the PSD3XX, and to Table 7 in 
WSI Applications Note 029 for the PSD4XX/PSD5XX devices. 

For PSDs that include an additional 2 Kbyte x 8 SRAM, the SRAM can be mapped anywhere within the ad­
dress space on a 2-Kbyte boundary to extend the SRAM already supplied on the M68HC11. 

PSDs also offer from 19 to 40 configurable I/O pins that can replace I/O pins that are used for other purposes 
when the M68HC11 operates in expanded mode or enhance the function of the available ports. The pro­
grammable I/O is addressed via an offset from a base address that is selected in the PSD software. These 

AN1237/D MOTOROLA 4-5 



offsets are shown in Table 6 in the PSD3XX data sheets, Tables 21-23 in the PSD4XX data sheet, and in 
Tables 29-31 in the PSD5XX data sheet. 

For example, the following steps must be performed to replace ports Band C on an M68HC711 with ports 
A and B on a PSD311 device. 

1. Refer to the appropriate PSD data sheet to determine the correct offsets. 

2. Set the CSIOPORT (CSP) base address of the PSD. The base address can be mapped to any 
boundary from 256 bytes to 2 Kbytes. In this example, the CSIOPORT base address starts at $2000. 

3. Port B on the M68HC11 is mapped to port A on the PSD311. For compatibility with port B on the 
M68HC11, which is an output-only port, port A on the PSD311 is set for output. This is accomplished 
by writing $FF (output) to the PSD311 port A data direction register, located at $2004 (offset four 
from base address). 

4. Port C on the M68HC11 is mapped to port B on the PSD311. The direction of the individual 110 pins 
in PSD311 port B is determined by the definition in the original OTP application. The direction is set 
by writing to $2005 (offset five from base address). To make a pin an input, the appropriate bit in the 
register must be cleared; to make a pin an output, the appropriate bit must be set. 

5. To write data to PSD311 port A and port B pins, the data must be written to $2006 for port A and to 
$2007 for port B. Data from the PSD311 port A and port B pins must be read from $2002 and $2003, 
respectively. 

Other M68HC11 resources, such as EEPROM, SRAM, vectors, and the control registers are mapped inter­
nally and do not require any memory map redirection. 

MODIFY M68HC11 CODE TO ADDRESS PSD MEMORY AND I/O 

Change M68HC11 1/0 port addresses to match the port address at the appropriate offset from the specified 
PSD 1/0 port base address (CSIOPORT). 

INTEGRATE M68HC711 CODE WITH PSD CONFIGURATION DATA 

Code that would normally be programmed into M68HC711 EPROM must be merged with PSD configuration 
information to create one output file. This is done during the compile procedure in the PSD software. The 
single output file is then downloaded to an industry-standard programmer (or the WSI MagicPro III PC-com­
patible programmer) and used to program the PSD device. 

PROGRAM THE PSD 

The output file (filename. obi) generated from the PSD software compiler is now ready to be programmed 
into a device from one of the three PSD families (PSD3XX, PSD4XX, or PSD5XX). A list of programmer 
manufacturers that support the PSD devices can be obtained from a WSI sales office or sales representa­
tives. Programmers which support the PSD devices are available from Data 1/0, BP Microsystems, and Log­
ical Devices. 

CONCLUSION 
A single-chip Motorola M68HC711 control system can be quickly and easily converted to a system that uses 
a ROM-less M68HC11 and a WSI Programmable MCU peripheral. A small investment in hardware and soft­
ware modification can provide an increase in system memory, expanded 1/0, lower power consumption, 
greater design flexibility, and lower cost. 

NOTE: This Motorola document is also known as Application Note 043 at WSI, Inc. 

4-6 MOTOROLA AN1237/D 



NOTES 

AN1237/D MOTOROLA 4-7 



Motorola reserves the right to make changes without further notice to any products herein Motorola makes no warranty, representation or guarantee regarding the sUitability 

of Its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or CirCUit, and specifically disclaims any and 

ali liability, Including without limitation consequential or incidental damages, "TYPical" parameters can and do vary in different applications All operating parameters, Including 

"TYPlcals" must be validated for each customer application by customer's techmcal experts Motorola does not convey any license under Its patent rights nor the rights of others 

Motorola products are not deSigned, Intended, or authorized for use as components In systems Intended for surgical Implant Into the body, or other applications Intended to 

support or sustain hfe, or for any other application In which the failure of the Motorola product could create a SItuation where personal inJury or death may occur Should Buyer 

purchase or use Motorola products for any such unintended or unauthOrized apphcatlon, Buyer shall Indemmfy and hold Motorola and Its officers, employees, subsldlanes, 

affiliates, and distributors harmless agamst all claims, costs, damages, and expenses, and reasonable attorney fees anslng out of, d!rectly or indirectly, any cla!m of personal 

injury or death assocIated with such unintended or unauthOrized use, even If such claim alleges that Motorola was negligent regarding the deSign or manufacture of the part 

MOTOROLA and @ are registered trademarks of Motorola, Inc Motorola, Inc, IS an Equal Opportunity/Affirmative Action Employer 

4-8 

Literature Distribution Centers: 
USA: Motorola Literature Distribution; P.O. Box 20912; PhoeniX. Anzona 85036. 
EUROPE: Motorola Ltd.; European Literature Centre. 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England 
JAPAN: Nippon Motorola Ltd: 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan. 
ASIA-PACIFIC: Motorola Semiconductors HK Ltd.; Silicon Harbour Center, No.2 Dai King Street, Tal Po Industrial Estate, 

Tal Po, NT, Hong Kong. 



MOTOROLA 
Order this document 

by AN12421D 

- SEMICONDUCTOR ----------­
APPLICATION NOTE 

High Performance M68HC11 System Design 
Using The WSI PSD4XX and PSD5XX Families 
by John Bodnar 

INTRODUCTION 
This application note covers conversion from a single-chip MC68HC711 K4 microcontroller (MCU) system 
to a two chip MC68HC11 K1 + PSD412A 1 combination. It is not intended to be a comprehensive guide to 
using Motorola M68HC11 microcontrollers with WSI PSD4XX or PSD5XX microcontroller peripherals. 
These flexible devices provide a wide array of features, many of which cannot be adequately discussed 
within the context of this note. Designers with a more general interest in this topic should examine published 
material available from both Motorola and WSI. These documents are listed under REFERENCES. 

GENERAL INFORMATION 
M68HC11 K-series MCUs are highly integrated derivatives of the MC68HC11 F1, the first member of the 
M68HC11 family with a non-multiplexed address and data bus. Features common to the K series include: 

• M68HC11 CPU core capable of dc to 4 MHz operation 
• Power-saving STOP and WAIT modes 
• 768 bytes of SRAM, with separate standby power input for battery backup 
• Four programmable chip selects with clock stretching for expanded mode intertacing 
• On-chip memory paging logic to allow expansion of the address space to 1 Mbyte 
• 16-bit timer with programmable prescaler that includes 3 input capture (IC) channels, 4 output com­

pare (~C) channels, and a single switchable IC or DC channel 
• 8-bit pulse accumulator (PAC) 
• Four 8-bit pulse width modulation (PWM) timer channels, pairs of which can be concatenated into two 

16-bit channels 
• Real-time interrupt circuit (RTI) 
• Computer operating properly (COP) watchdog and clock monitor circuits 
• Eight channel 8-bit analog-to-digital converter (ADC) 
• Enhanced asynchronous non-return to zero serial communications intertace (SCI) 
• Enhanced synchronous serial peripheral intertace (SPI) 
• Maximum of 54 bits of bi-directional liD available in single-chip mode of operation 
• 8-bit fixed input-only port 

The MC68HC11 K4 device provides 24 Kbytes of masked ROM, 768 bytes of SRAM, and 640 bytes of 
EEPROM. Cost-reduced versions of this device are available without EEPROM andlor masked ROM. The 
MC68HC711 K4 is functionally equivalent to the MC68HC11 K4 but has 24 Kbytes of one-time programma­
ble or UV-erasable EPROM instead of masked ROM. This programmable memory is typically used for pro­
totyping, just-in-time inventory management, and applications requiring small production quantities or 
frequent code updates. 

---------@ © MOTOROLA INC., and WSI1995 
MOTOROI.A_ 

4·9 



The MC68HC711 K4 provides a great deal of flexibility for single-chip applications, but in some instances, it 
may be necessary to find an alternate solution that provides equivalent functionality. These situations may 
arise because: 

• Pins used by the on-chip peripherals are also used to implement digital I/O ports, so use of peripherals 
can limit the available discrete digital I/O. 

• Addition of new features may increase object code size beyond the 24 Kbytes provided by the internal 
EPROM. None of the M68HC11 K-series devices provide more than 24 Kbytes of ROM or EPROM, 
and expanded operating mode uses 25 digital 110 pins for the address/data bus and read/write line. 

• Reduced software maintenance costs due to source code development in a high-level language can 
initially be offset by greater object code size, causing a memory crunch and loss of I/O resources. 

• Some applications require peripherals that are either not available on an M68HC11 derivative or not 
available with an SCI- or SPI-compatible interface. These devices usually have an address/data bus, 
and must be mel1)ory mapped, causing a loss of I/O resources. 

Some of these problems may seem insurmountable without extensive hardware and/or software redesign, 
but there is a solution that offers both the flexibility of expanded operating mode and the I/O preservation of 
single-chip operating mode. 

WSI PSD4XX and PSD5XX programmable system devices (PSDs) are peripherals with flexible bus inter­
faces that provide microcontroller system designers an integrated memory solution consisting of SRAM, 
EPROM, and programmable logic. PSDs can also provide up to 40 digital 110 lines to replace those occu­
pied by the MCU address/data bus. PSD4XX and PSD5XX devices share the following features: 

• Bus access speeds of 90,120,150, and 200 nanoseconds 
·37 (PSD4XXA 1), 59 (PSD4XXA2), or 61 (PSD5XX) PLD inputs 
·113 (PSD4XXA1), 126 (PSD4XXA2), or 140 (PSD5XX) PLD product terms 
·8 (PSD4XXA1), 24 (PSD4XXA2), or 30 (PSD5XX) registered macrocells 
·40 bi-directional digital I/O pins 
• Power management unit (PMU) 
·32 K x 8 (PSDX11), 64 K x 8 (PSDX12), or 128 K x 8 (PSDX13) of EPROM 
• 2 K x 8 of SRAM 

The PSD5XX family builds upon the PSD4XX family by adding a peripheral module that contains four 16-
bit counters/timers, a watchdog timer, and an eight level interrupt controller. On all PSDs, some of the pro­
grammable logic is used to map the different memory blocks and control registers for the I/O ports, the PMU, 
and (on PSD5XX devices) peripheral control registers. Usually, sufficient programmable logic remains after 
memory decoding to implement chip-select signals for external memory mapped peripherals, other bus con­
trol signals, and even state machines to perform useful peripheral functions. 

The discussion which follows covers the process of converting a hypothetical single-chip M68HC11 appli­
cation to an equivalent or enhanced "two-chip solution" consisting of a non-multiplexed bus M68HC11 and 
a PSD4XX or PSD5XX device. Please refer to the DEVICE REFERENCE TABLES, at the end of this note, 
lor a list of compatible devices. Table 4 shows suitable non-multiplexed bus M68HC11 devices. Table 5 
shows PSD4XX and PSD5XX devices. 

4-10 MOTOROLA AN1242/D 



THE PROBLEM 
Figure 1 shows a single-chip MC68HC711 K4 application that makes extensive use of MCU on-chip periph­
eral and memory resources. An ASCII terminal interface that facilitates user interaction is an important fea­
tlJre of this design. However, the customer has requested that the next generation product be substantially 
smaller. This can best be achieved by eliminating the ASCII terminal. 

VDD 

L{V55 

VDD 

ANALOG INPUTS { • 

~ .. -PULSE-ACTUATED OUTPUTS { 

EDGE-TRIGGERED INPUTS . { PA2ACl 

~~ ~ 
~ 

MC68HC711 K4 

!:1 ..... PB7/ADDR15 

~ 
~ PB6/ADDR14 
~ PB5/ADDR13 
iE PB4/ADDR12 

PB3fADDR11 
PB2/ADDR10 
PB1/ADDR9 
PBOIADDRa 

VDD 
V55 

PF7IADDR7 
PF6IADDR6 
PF5JADDRS 
PF4IADDR4 
PF3IADDR3 
PF2IADDR2 
PF1fADDRl 
PFO/ADDRQ 

-=CV5S 

Figure 1 Existing Single-Chip MC68HC711 K4 Application 

VDD 

V55 

VDD 

AN1242 SCHEM 1 

The redesign promising the greatest size reduction integrates a large LCD panel and keyboard with an 
M68HC11-based control unit. These changes meet customer requirements for a more compact, tightly in­
tegrated control solution, but as Figure 2 indicates, the keyboard and LCD interfaces could exhaust the dig­
ital I/O resources of the MC68HC711 K4. 

AN12421D MOTOROLA 4-11 



4-12 

VDD 

LIV55 

VDD 

ANALOG INPUTS { 
~ 

~~~D ~~~ 
PE7/AN7 ~ ~ §
PEe/AN6 a...

PE5!AN5
PE4/AN4
PE3IAN3
PE2IAN2
PE1/AN1
PEOIANO

VS5 t--------.---I VRL

.--.. -PULSE-ACTUATED OUTPUTS {

EDGE-TRIGGERED INPUTS ~ {

AV55

6 ROW X 16 COLUMN
KEYBOARD

MC68HC711 K4

PB7/ADDR15
PBs/ADDR14
PB5/ADDR13
PB4/ADDR12
PB3/ADDR11
PB2/ADOR10
PB1/ADOR9
PBO/ADORa

VDD
v55

PF7IADDR7
PF61ADDR6
PF5/ADDR5
PF4JADDR4
PF3/ADDR3
PF2/ADDR2
PF1/ADDRl
PFO/ADDRO

MODBN5TBY

~ ~ ~ .:!: ~ MOOAIiJR
;:i«;:i<
v~~~g
~~a:a:a:

COLUMNS

V55

}
VDD

AN1242 SCHEM:2

Figure 2 Next Generation MC68HC711 K4 Application With Keyboard and LCD

To complicate matters further, these changes make greater demands of the MCU firmware. As shown in
Figure 3, application control code and constant tables fit neatly into the 24 Kbytes of EPROM on the
MC68HC711 K4. The ASCII terminal connection to the SCI reduces the user interface to simple character
110 functions, but addition of a parallel input keyboard and a large LCD panel requires supplemental firm­
ware support that increases permanent storage requirements to more than 24 Kbytes.

MOTOROLA AN1242/D

$0000
REGISTERS

$007F
- - - - - - - -"
$0080

768 BYTES SRAM

$037F

$0380
EXTERNAL ADDRESSES

$007F

$0080
640 BYTES EEPROM

$OFFF

$AOOO

$FFBF
$FFCO
$FFFF

SRAM, REGISTERS, EEPROM

EXTERNAL ADDRESSES

24 KBYTES EPROM

VECTORS

$AOOO ASCII TERMINAL DATA
PAGES AND CONSTANTS

______ $~~~F
$COOO

CONTROL ALGORITHMS

$FFBF

AN1242 SCM MEM MAP

Figure 3 Initial Single-Chip Mode Memory Map

Sophisticated control algorithms are required to support the increased functionality of the keyboard and
LCD panel. To speed code development, reduce the cost of support, and provide for future enhancements,
the firmware for the next generation product will be ported from M68HC11 assembly language to C_ While
high-level languages simplify the development of complex control applications, they do so at the expense
of greater storage requirements_ The reduction in object code size achieved by hand-tuning assembly lan­
guage programs begins to disappear as application functionality and complexity increase_

One possible method of providing for increased storage demands would be to use the flexible memory ex­
pansion capabilities of an M68HC11 K-series device_ This would lead to the simple expanded memory map
shown in Figure 4_ Estimates indicate that the control algorithms will require 32 Kbytes of EPROM and that
the LCD data tables will require an additional 32 Kbytes_ A 16-Kbyte memory paging window can be used
to access the LCD data and stili provide 12 Kbytes of contiguous address space for any other memory
mapped peripherals that may be needed_

AN12421D MOTOROLA

----------- - .-----

4-18

$0000
REGISTERS

$007F
. - - - - - - - -
$0080

768 BYTES SRAM

$037F

$0380
EXTERNAL ADDRESSES

$OD7F
. - - - - - - - .
$OD80

640 BYTES EEPROM

$OFFF

$7FFF
$8000

$FFBF
$FFCO
$FFFF

SRAM, REGISTERS, EEPROM

i
EXTERNAL ADDRESSES

1
16K X 2 EPROM PAGES

32 KBYTES EPROM

VECTORS

Figure 4 Proposed Memory Map Expansion

$4000

$7FFF
$8000

$FFBF

LCD AND CONSTANT
DATA PAGE 0

OR

LCD AND CONSTANT
DATA PAGE 1

CONTROL ALGORITHMS

AN1242 EXP MEM MAP

Unfortunately, access to the MC68HC711 K4 address and data buses results in the complete loss of 1/0
ports B, C, and F, as well as bit 7 of port G. In addition, other port G bits would be used as expansion ad­
dress lines and some port H bits may be used as chip selects. These lost 1/0 pins can be rebuilt with simple
latches or more complex peripherals at the risk of decreased flexibility and more complicated circuit design
and debugging.

4-14 MOTOROLA AN1242/0

THE SOLUTION
Before proceeding with a design solution based on a WSI PSD4XX or PSD5XX device, it is instructive to
review the problem as it now stands.

• The existing MC68HC711 K4-based system makes extensive use of the integrated MCU peripheral
resources. In particular, the SCI connects to an ASCII terminal that simplifies interactive user control.

• Size reductions specified for the next generation of this product are best achieved by replacing the
ASCII terminal with a keyboard and LCD panel that are integrated with the control unit.

• The digital I/O requirements for the keyboard and LCD interfaces could exhaust the MC68HC711 K4
I/O resources.

• Application storage demands increase for two reasons. The keyboard and LCD panel require addition­
al interface code, and the firmware is to be ported from assembly language to C.

• To support the proposed expansion of storage capacity from 24 Kbytes to 64 Kbytes, the MCU must
use expanded operating mode rather than single-chip operating mode.

• Expanded mode operation requires at least 25 pins for the non-multiplexed address/data bus and the
read/write line. These pins are currently used for digital I/O. Other digital I/O pins must be used to sup­
port chip selects and memory expansion beyond 64 Kbytes.

It appears that the proposed system would require a 32 Kbyte EPROM for control routines, another 32 Kbyte
EPROM for LCD data tables, several latches to rebuild lost I/O ports, and some programmable logic to map
all of these devices into the MC68HC711 K4 address space. This design clearly jeopardizes cost savings
achieved by the existing implementation and future high-level language software development.

Some of the savings can be restored by switching MCUs. The 24 Kbyte EPROM on the MC68HC711 K4 is
not needed for the new design, so either the ROM-less MC68HC11 K1 or the ROM-and-EEPROM-Iess
MC68HC11 KO could be used. These devices retain the specialized peripherals available on the
MC68HC(7)11 K4, and are ideal for expanded mode applications where the I/O pins used by the bus inter­
face are not required or are otherwise rebuilt.

Both cost reduction and increased flexibility can be achieved by using a WSI PSD4XX or PSD5XX program­
mable system device in place of the memory and logic components that would otherwise be needed to re­
alize this design.

As shown in Table 4 and Table 5, a PSD412A 1 can easily provide the required additional memory, I/O, and
logic resources. If subsequent specifications dictate increased memory, logic, or even peripheral function­
ality, other members of the PSD4XX and PSD5XX families could be used, while maintaining close compat­
ibility with the PSD412A 1 .

Table 1 compares the memory, I/O, and logic resources of both the initial MC68HC711 K4 system and the
proposed MC68HC11 K(O/1) + PSD412A 1 system.

Table 1 M68HC11 Single-Chip vs M68HC11 + PSD4XX Resource Comparison

MC68HC711 K4 MC68HC11K(11O) + PSD412A1

EPROM 24 Kbytes 16 Kbytes + 16 Kbytes + 32 Kbytes = 64 Kbytes

SRAM 768 bytes 768 + 2048 = 2816 bytes

EEPROM 640 bytes 640 byteslO bytes

Available bi-directional 1/0 54 lines 61 lines

PLD input terms None 61

PLD product terms None 113

Registered macro cells None 8

AN12421D MOTOROLA 4-15

In essence, the combination of a non-multiplexed bus M68HC11 MCU and a PSD4XX or PSD5XX device
restores much of the functionality of a single-chip system. While not providing the ultimate size and power
consumption features of such a design, the increased flexibility of this pairing and the freedom it provides
to system designers is a competitive advantage.

THECONVER~ONPROCESS

Converting a single-chip M68HC11 application to a two chip system consisting of a non-multiplexed bus
M68HC11 and a PSD4XX or PSD5XX is a five step process:

1. Assess the memory, I/O, and logic requirements of the combined system

2. Select the appropriate M68HC11 and PSD combination.

3. Produce the two chip system memory map.

4. Determine which PSD I/O ports replace M68HC11 I/O ports used for expanded mode operation.

5. Generate a schematic for the combined system.

1. Assess the Memory, 110, and Logic Requirements of the Combined System

This step has already been discussed. Key determinations to be made in this step include:

• How much I/O is required for the combined application?
- Consider single-chip usage and any additional I/O that will be necessary for current and/or future

product enhancements.
• How much memory is required for the combined application?

- Consider potential firmware enhancements and the possibility of source code migration from as­
sembly language to a high-level language like C or a visual application builder.

- Also consider additional RAM requirements. PSD4XX and PSD5XX devices provide 2K x 8 of
SRAM that can be powered from backup batteries, and future derivatives may eliminate the SR~M
to reduce cost. If even more RAM is necessary, the PSD can provide the decode logic needed to
memory map larger devices .

• How much logic will be required?
- Any conversion to a two chip solution will use at least some of the PSD decode logic for memory,

liD port, and control register mapping. If the existing single-chip system uses PALs or 74HC family
logic, consider using the PSD to replace as much of this as possible. The lower chip count reduces
cost and use of the PSDsiios IIITM simulation software can reduce system debug time.

2. Select the Appropriate M68HC11 and PSD Combination

Choose the M68HC11 and PSD combination carefully.

• When compatibility between the single-chip M68HC11 system and its PSD-based expanded mode
counterpart is essential, use a ROM-less version of the single-chip MCU. In the example application,
the MC68HC711 K4 can be replaced with an MC68HC11 K1 or MC68HC11 KO paired with the
PSD412A1.

• In applications where maximum compatibility is not required, carefully selecting the M68HC11 MCU
and PSD can realize considerable cost savings.
- If the M68HC11 device is used because it has a large EPROM array, consider replacing it with a

smaller ROM-less derivative. The PSD can be chosen to maximize available EPROM and I/O.
- If the M68HC11 device is used to provide large amounts of liD, choose the nearest equivalent

ROM-less version and a PSD that will maximize available I/O.

4·16 MOTOROLA AN12421D

- If the M68HC11 device is used for high-speed execution, consider using a smaller ROM-less de­
rivative capable of the same performance. The PSD can be chosen to maximize available EPROM
and I/O.

- If the M68HC11 device is used because it has a specific on-chip peripheral complement, choose
the nearest equivalent ROM-less version and PSD that approximate the functionality of the single­
chip device.

• Selection of an appropriate PSD is relatively straightforward. The device must meet the memory, I/O,
and logic requirements determined in Step 1. If necessary, the MCU can be chosen to augment PSD
resources, such as I/O and logic used for chip selects.

3. Produce the Two-Chip System Memory Map

This step is best explained by continuing with the example application. First, examine the memory map of
the M68HC11 derivative to be used and locate areas not occupied by internal memory resources. These
openings in the 16-bit address space are available for memory mapping external devices. The following
ranges are externally addressable for MC68HC11 K(0/1) devices:

$0380 to $OD7F

$1000 to $FFFF ($2000 to $FFFF if CSIO is used)

A 60-Kbyte block of space is available from $1000 to $FFFF in expanded operating mode. However, if the
chip select I/O (CSIO) function implemented in M68HC11 K-series devices is used, this area is reduced to
56 Kbytes available from $2000 to $FFFF.

Allocating space to CSIO allows use of a memory-mapped display controller instead of a display controller
with a serial or a parallel interface. A number of manufacturers provide a complete LCD solution that in­
cludes an intelligent display controller. The controller can be connected directly to a microcontroller address/
data bus if slow access times can be managed. The CSIO signal is ideal for this purpose because it can be
stretched by up to three E clock cycles. CSIO requires the fixed 4-Kbyte block of addresses from $1000 to
$1 FFF in order to operate.

Compile the memory map for the two chip system by listing the following address ranges:

• M68HC11 SRAM
• M68HC11 register block
• M68HC11 EEPROM, if used
• M68HC11 fixed chip-select address ranges, if used
• 256-byte PSD register block
• PSD SRAM, if used
• PSD EPROM blocks

Figure 5 shows the combined memory map for the example application.

AN12421D MOTOROLA 4-17

REGISTERS

768 BYTES SRAM

EXTERNAL ADDRESSES

640 BYTES EEPROM

$0000

$007F --- - -- ---
$0080

$037F --- - -- ---
$0380

$OD7F

$OD80

$OFFF

$1000

$1FFF

$7FFF
$8000

$FFBF
$FFCO
$FFFF

SRAM, REGISTERS, EEPROM

• CSIO ADDRESS SPACE
t

PSD SRAM, PSD REGISTERS

EXTERNAL tDRESSES

~

16K X 2 EPROM PAGES

32 KBYTES EPROM

VECTORS

$2000
2 KBYTES PSD SRAM

$27FF . - - - - -$2800
$28FF PSD REGISTER BLOCK

---=::.:....:..
$2900

$3FFF

$4000 LCD AND CONSTANT
DATA PAGE 0
(PSD EPROM BLOCK 0)

OR
LCD AND CONSTANT
DATA PAGE 1

$7FFF (PSD EPROM BLOCK 1)

---:$8=0=-=0-=-0

$FFBF

CONTROL ALGORITHMS
(PSD EPROM BLOCKS 2 & 3)

AN1242 pSD MEM MAP

Figure 5 Combined MC68HC11 K1 + PSD412A 1 Memory Map

The ultimate purpose of this memory map is to guide development of a PSDabel™ file. PSDabel is one com­
ponent of WSI's comprehensive PSDsoft™ design package that also includes PSDcontrol™ (configuration,
compilation, de-compilation, fitting, address translation, hex data file conversion, and device programming)
and PSDsiios IIITM (Verilog-based device simulation). PSDabel is based on Data 110 Corporation's ABEL
Hardware Description Language. It is used to describe the logical operation of the PSD4XX and PSD5XX
decode ZPLD (DPLD) and general-purpose ZPLD (GPLD).

A listing of the PSDabel file used to implement the memory map shown in Figure 5 follows. The included
comments provide a basic understanding of how a PSDabel file is constructed. Refer to the PSDabe{fM
Manua/for further documentation and a tutorial.

4-18 MOTOROLA AN12421D

module K4_TO_PSD_CONVERSION
title 'MC68HC711K4 to MC68HC11K1 + PSD412A1 Conversion'

"The followlng sectlon llsts the input signals.

"First come the address lines using their reserved names. Note that only those signals
"listed are routed to the DPLD.

a1S,a14,a13,a12,a11,a10,a9,a8,a1,aO pin;

"Next come the general purpose inputs used for the paging scheme. Uncomment the lines
"implementing the desired paging. For this application, the PSD page register will be used
"because it requires no additional I/O pins. The Kl memory expansion address lines may be
"used if additional address bits or the page register inputs are required for specific
"decoding purposes. Use of the page register will be discussed later.

pgr3,pgr2,pgr1,pgrO pin; "These are the 4 input bits of the PSD page register.

xapage pin 20; "This is XA14 from the MC68HC11K1 and is used to select one of the 16K LCD
"data table pages.

"The M68HC11 non-multiplexed bus control signals are specified here.

rd_wr,e pin 29,41; "M68HCll R/W* and E specified here as PSD pins 29 (WR) and 41 (RD).

"Now the DPLD chip select outputs are listed.

"CSIOP is the chip select for the PSD register block.
"RSO is the chip select for the 2K PSD SRAM.
"ES[0:3J are the chip selects for -PSD EPROM blocks 0, 1, 2, and 3.

csiop,rsO,8s0,esl,es2,es3 node;

"Signal definitions and groupings now follow.

X = .x.; "This is how a don't care term is specified.

"This definition groups together the CPU address lines.

CPUaddress ~ [alS,a14,a13,a12,a1l,a10,a9,a8,X,X,X,X,X,X,al,aOJ;

"This definition groups together the page register bits.

PAGE ~ [pgr3,pgr2,pgrl,pgrOJ;

"DPLD Chip Select Equations.

"This maps the PSD register block from $2800 to $28FF.

csiop ~ (CPUaddress >~ Ah2800) & (CPUaddress <~ Ah28FF);

"This maps the PSD 2K SRAM from $2000 to $27FF.

rsO ~ (CPUaddress >~ Ah2000) & (CPUaddress <~ Ah27FF);

"This maps 16K PSD EPROM block 3 from $COOO to $FFFF.

es3 ~ (CPUaddress >~ AhCOOO) & (CPUaddress <~ AhFFFF);

"This maps 16K PSD EPROM block 2 from $8000 to $BFFF.

es2 ~ (CPUaddress >~ Ah8000) & (CPUaddress <~ AhBFFF);

"This maps 16K PSD EPROM block 1 from $4000 to $7FFF when XA14 is logic one, i.e. this is LCD
"data table page 1. Use this equation when the K1 memory expansion is used in place of the
"PSD page register.

"es1 ~ xapage & (CPUaddress >~ Ah4000) & (CPUaddress <~ Ah7FFF);

"This maps 16K PSD EPROM block 1 from $4000 to $7FFF when PAGE ~ $1, i.e. this is LCD
"data table page 1. Do not use this equation if the K1 memory expansion is being used.

es1 ~ (PAGE ~~ Ahl) & (CPUaddress >~ Ah4000.) & (CPUaddress <~ Ah7FFF);

"This maps 16K PSD EPROM block 0 from $4000 to $7FFF when XA14 is logic zero, i.e. this is LCD
"data table page O. Use this equation when the K1 memory expansion is used in place of the
"PSD page register.

"esO ~ !xapage & (CPUaddress >~ Ah4000) & (CPUaddress <~ Ah7FFF);

"This maps 16K PSD EPROM block 0 from $4000 to $7FFF when PAGE ~ $0, i.e. this is LCD
"data table page O. Do not use this equation if the Kl memory expansion is being used.

esO ~ (PAGE ~~ AhO) & (CPUaddress >~ Ah4000) & (CPUaddress <~ Ah7FFF);

end K4_TO_PSD_CONVERSION

AN12421D MOTOROLA 4-19

4. Determine Which PSD 1/0 Ports Replace M68HC11 1/0 Ports

PSD4XX and PSD5XX devices have five 8-bit I/O ports, labeled A, S, C, D, and E. When used with a non­
multiplexed bus M68HC11, port C becomes the 8-bit data bus. Of the available 32 bits of general-purpose
1/0,24 are used to rebuild M68HC11 ports S, C, and F (the addressldata bus), and the remaining eight can
be used to rebuild port G bit 7 (the Rfiiii line) and other port G or port H I/O pins used for expansion address
lines or chip selects.

To modify existing single-chip M68HC11 software to take advantage of PSD 110 ports, simply substitute
PSD register addresses for M68HC11 register addresses. A typical M68HC11 I/O port has both a data di­
rection register and a port data register. Every PSD I/O port has a control register that determines port func­
tion, a data direction register, a data in register, and a data out register. Some PSD I/O ports also have
registers to enable open drain operation, to determine if a pin is used as a PLD signal or I/O bit, and to read
the outputs of the GPLD.

A good way to view the port relationships between a PSD and an M68HC11 is to construct a table that lists
each port and its associated registers. On one side of the table, list the M68HC11 I/O port and its registers,
and on the other side, list the equivalent PSD I/O port and its registers. Use this table as a guide when mod­
ifying single-chip firmware to support the two chip M68HC11/PSD system. Table 2 is an I/O mapping table
for the example application. Remember that CSIOP is mapped from $2800 to $28FF.

Table 2 M68HC11 to PSD 1/0 Conversion Table

MC68HC711 K4 PSD412A1

Port B DDRB $0002 Port B PB_DDR $2807

PORTB $0004 PB_INDATA $2801

PB_OUTDATA $2805

PB_CONTROL $2803

PB_PLD_IO $2806

P6_MAC_OUT $280D

Port C DDRC $0007 PortA PA_DDR $2806

PORTC $0006 PA_I N DATA $2800

PA_OUTDATA $2804

PA_CONTROL $2802

PA_PLD_IO $280A

PA_MAC_OUT $280C

Port F DDRF $0003 Port E PE_DDR $2826

PO RTF $0005 PE_INDATA $2820

PE_OUTDATA $2824

PE_CONTROL $2822

PE_PLD_IO $282A

PE_MAC_OUT $282C

Occupied $007F Port D
Port G/H DDRG/H or PD_DDR $2817

1/0 $007D

$007E
PORTG/H or PD_INDATA $2811

$007D

PD_OUTDATA $2815

PD_CONTROL $2813

PD_OPN_DRN $2819

4-20 MOTOROLA AN1242/D

As Table 2 indicates, the location of each PSD register is specified as an 8-bit offset from the CSIOP base
address specified in the PSDabel file. The PSD4XX and PSDSXX documentation lists these 8-bit offsets.

A few small differences in I/O functionality should be noted:

• I/O ports on some M68HC11 devices have assignable pull-up resistors. For example, the PPAR reg­
ister at $002C on M68HC11 K-series MCUs can enable pull-up devices on ports G and H in all modes
and on ports Band F only in single-chip mode. This feature is not available on PSD4XX or PSDSXX
devices, so external pull-ups may be needed.

• I/O ports B, C, and F on M68HC11 K-series MCUs do not have any sort of control or alternate function
registers, although port C can be placed in open drain mode with the CWOM bit in the OPT2 register
at $0038. If this functionality must be maintained, replace port C on the MC68HC711 K4 with PSD4XX
or PSDSXX port D. The open drain control register (PD_OPN_DRN in the table above) allows each
PSD port D I/O pin to be configured for normal or open drain mode.

• The PGAR register at $002D is used to enable the memory expansion address lines associated with
port G bits 0 to S. Setting bits in this register to one overrides the port G I/O functions and enables the
associated XA lines. This register is cleared to $00 after reset.

• Chip select control registers CSCTL, GPCS1A, and GPCS2A, located respectively at $OOSB, $OOSC,
and $OOSE, override the I/O functions of port H bits 4 to 7. In expanded operating mode, GPCS1A and
GPCS2A are set to $00 after reset, thus disabling general-purpose chip selects 1 and 2 (CSGP1 and
CSGP2). CSCTL will be set to $04 after reset, leaving the I/O chip select (CSIO) disabled and the pro­
gram chip select (CSPROG) enabled. Write CSCTL to $00 to disable CSPROG and make the PH7/
CSPROG pin available for I/O. CSPROG is not required for interfacing to the PSD, although it can be
used in conjunction with the PSD power management unit (PMU) to reduce power consumption.

The code examples that follow demonstrate how the PSD I/O ports are accessed in comparison with
M68HC11 I/O ports. Access to the other PSD control registers is achieved in the same straightforward fash­
ion. Please refer to PSD4XX and PSDSXX documentation for more information.

AN1242/D MOTOROLA 4-21

4-22

Single-Chip MC68HC711 K4

* port B, e, and F I/O

REGBASE equ $0000

DDRB equ $02

PORTB equ $04

DDRC equ $07

PORTC equ $06

DDRF equ $03

PORTF equ $05

* read port B [7: 0]

clr REG BASE + DDRB

ldaa REG BASE + PORTB

* write pattern to port C [7: 0]

ldaa #$FF

staa REG BASE + DDRC

ldaa #$55

staa REG BASE + PORTC

* configure PF[3:0] for inputs,

* PF[7:4] for outputs, poll until PFO

* is set to 1, then write pattern to

* PF [7: 4] .

ldx #REGBASE

ldaa #$FO

staa DDRF,X

POLLPFO brclr PORTF,X,$Ol,POLLPFO

bset PORTF,X,$AO

MOTOROLA

MC68HC11K(O/1) + PSD412A1

* port B, A, and E I/O

REGBASE equ

PB_DDR equ

PB_INDATA equ

PB_OUTDATA equ

PB_CONTROL equ

PA_DDR equ

$2800

$07

$01

$05

$03

$06

PA_INDATA equ $00

PA_OUTDATA equ $04

PA_CONTROL equ $02

PE_DDR equ $26

PE_INDATA equ $20

PE_OUTDATA equ $24

PE_CONTROL equ $02

* make ports B, A, and E exclusively

* available for I/O

ldaa #$FF

staa REGBASE + PB_CONTROL

staa REGBASE + PA_CONTROL

staa REGBASE + PE_CONTROL

* read port B[7:0]

clr REGBASE + PB_DDR

ldaa REGBASE + PB_INDATA

* write pattern to port A[7:0]

1daa #$FF

staa REGBASE + PA_DDR

ldaa #$55

staa REGBASE + PA_OUTDATA

* configure PE[3:0] for inputs,

* PE[7:4] for outputs, poll until PEO

* is set to 1, then write pattern to

* PE [7: 4] .

POLLPEO

ldx #REGBASE

ldaa #$FO

staa PE_DDR,X

brclr PE_INDATA,X,$Ol,POLLPEO

bset PE_OUTDATA,X,$AO

AN12421D

5. Generate a Schematic for the Combined System

Table 3 shows the connections between a non-multiplexed bus M68HC11 and a PSD4XX or PSD5XX

Table 3 M68HC11 to PSD Connections

M68HC11 PSD4XX or PSD5XX

ADDR[15:0] ADIO[15:0]

DATA[7:0] PC[7:0]

E RD

RNI WR

An expansion address line (XA14) could be connected to one of the PSD port A inputs, and used to select
the 16-Kbyte LCD table EPROM pages. In the example application, however, it is easier to use the PSD
page register. The four page register bits (PG[3:0]) can be used as inputs to the DPLD. In the example
PSDabellisting, the ESO and ES1 EPROM chip selects are decoded when the page register value is $0 or
$1 and the CPU address is between $4000 and $7FFF.

The page register is accessed as follows.

REG BASE equ $2800

PSD_PAGE equ $EO

PAGEO equ $00

PAGEl equ $01

LCD_LINE1 equ $4000

LINE_LEN equ $FO

* select EPROM page O/LCD table 0

ldaa #PAGEO

staa REGBASE + PSD_PAGE

* read data from selected page

ldx #LCD_LINEl

ldab #LINE_LEN

SEND_ Ll ldaa O,X

jsr SEND_DATA

inx
decb

bne SEND_Ll

etc.

The page register bits are available as inputs to both the DPLD and the GPLD. In fact, the DPLD can gen­
erate two additional chip selects called PSELO and PSEL 1 that can be used to connect other peripheral de­
vices to the combined system. Using the page register, these devices could be mapped into the $4000 to
$7FFF range used for EPROM blocks 0 and 1. If a more complex decoding function is needed, the GPLD
and its associated macrocells can be used.

AN1242/D MOTOROLA 4-23

CONCLUSION
Figure 6 shows the newly-enhanced system, which has plenty of free general-purpose 1/0 to handle a large
parallel interface keyboard. A number of different LCD solutions can be supported - the choices range from
simple 1/0 driven devices to complete intelligent controller-based displays with synchronous serial or mem­
ory mapped interfaces. The system is capable of meeting next generation product specifications with room
to spare for future expansion.

Highly integrated M68HC11 derivatives, such as the MC68HC711 K4, can often serve as complete solutions
for single-chip embedded control systems. Cost-effective designs with these devices make extensive use
of on-board peripherals like the SCI, SPI, timer, and AID converter. However, an application can outgrow
the original design, and when this happens, it may be difficult to find an enhanced derivative to meet new
peripheral and memory requirements.

To solve this problem, users of high performance M68HC11 devices can pair a ROM-less M68HC11 deriv­
ative with a WSI PSD4XX or PSD5XX programmable system device. WSI's highly integrated microcontrol­
ler peripherals can deliver a cost-effective combination of EPROM, RAM, programmable logic, digital 1/0,
timer, and interrupt control modules. The M68HC11/PSD combination retains many advantages of the orig­
inal single-chip MCU solution while providing a flexible resource complement for future application growth.

REFERENCES
Motorola MC68HC11 K4 Technical Data Book (MC68HC11 K4/D)

Motorola MC68HC11 K4 Programming Reference Guide (MC68HC11 K4RG/D)

WSI PSD Programmable Peripherals Design and Applications Handbook.

4-24 MOTOROLA AN1242/D

VDD

L1ss
VDD

ANALOG INPUTS { •

...--.. -PULSE-ACTUATED OUTPUTS {

EDGE-TRIGGERED INPUTS . {

~ss

MC68HCllKl

8ffl »
'--y---J

voo
DAT.\I7 OJ - pe[7 0]

VSS

~ r\I 0 ""I C\I P87/ADDR15
1l; n ~ H PB6iADDR14
~ it5 :I: C<5 ~ a PB5IADDA13

!i:if~o..ifs:a:ZEpB4/ADDR12
Q. PB3IADDR11

PB2iADDR10
PB1/ADOR9
PBOIADORB

VOD
VSS

PF6IADORB
PF5IADDR5

vss

~~:~: ----...
PF7/ADOR7 }

PF2IADOR2
PF1/ADDR1
PFOIADORO VDD

AN1242SCHEM3

Figure 6 Keyboard and LCD Ready MC68HC11K1 + PSD412A1 System

AN12421D MOTOROLA 4·25

DEVICE REFERENCE TABLES

Table 4 M68HC11 Derivatives with Non-Multiplexed Address/Data Bus

Motorola ROM RAM EEPROM Total On-Chip Technical
Part Number or EPROM (Bytes) (Bytes) I/O Peripherals Data

MC68HC11F1 0 1024 512 30 Standard1
MC68HC11F1/D

+ 4 chip selects

Standard
MC68HC11G5 16K 512 0 66 + 10-bit ADC MC68HC11 G5/D

+ event counter

Standard
MC68HC711 G5 16K 512 0 66 + 10-bit ADC MC68HC 11 G5/D

+ event counter

Standard
MC68HC11G7 24K 512 0 66 + 10-bit ADC MC68HC11 G5/D

+ event counter

Enhanced2

MC68HC11KO 0 768 0 37 + 4 chip selects MC68HC11 K4/D

+ memory expansion

Enhanced
MC68HC11K1 0 768 640 37 + 4 chip selects MC68HC11 K4/D

+ memory expansion

Enhanced

MC68HC11K4 24K 768 640 62 + 4 chip selects MC68HC11 K4/D
+ memory expansion

Enhanced

MC68HC711 K4 24K 768 640 62 + 4 chip selects MC68HC11 K4/D
+ memory expansion

MC68HC11KA4 24K 768 640 51 Enhanced MC68HC11 KA4TS/D

MC68HC711 KA4 24K 768 640 51 Enhanced MC68HC11 KA4TS/D

MC68HC11 P2 32K 1024 640 62
Enhanced

MC68HC11 P2/D
+ 2 SCI+

MC68HC711 P2 32K 1024 640 62
Enhanced

MC68HC11 P2ID
+ 2 SCI+

NOTES:
1. The standard peripheral complement consists of an 8-bit, 8 channel AID converter (ADC), senal communi­

cations interface (SCI), serial peripheral interface (SPI), 16-bit timer with 3 or 4 input captures (ICs), 4 or 5
output compares (OCs), pulse accumulator, real-time interrupt, and computer operating properly (COP)
watchdog monitor.

2. The enhanced peripheral complement improves on the standard peripheral complement with an SCI+ (en­
hanced SCI with parity generation and more flexible baud rate generator) and an enhanced SPI (additional
baud rates and selectable bit shifting order) and four pulse width modulation (PWM) timers.

4-26 MOTOROLA AN1242/D

Table 5 PSD4XX and PSD5XX Derivatives

WSI Bus Width Inputs Product Registered EPROM
Part Number (Bits) Terms Macrocells Density

PSD401A1 x8orx16 37 113 8 32K x 8 or 16K x 16

PSD411A1 x8 37 113 8 32K x 8

PSD402A1 x 8 orx 16 37 113 8 64K x 8 or 32K x 16

PSD412A1 x8 37 113 8 64K x 8

PSD403A1 x 8 orx 16 37 113 8 128K x 8 or 64K x 16

PSD413A1 x8 37 113 8 128K x 8

PSD401A2 x 8 or x 16 59 126 24 32K x 8 or 64K x 16

PSD411A2 x8 59 126 24 32Kx8

PSD402A2 x 8 orx 16 59 126 24 64K x 8 or 32K x 16

PSD412A2 x8 59 126 24 64Kx8

PSD403A2 x 8 orx 16 59 126 24 128K x 8 or 64K x 16

PSD413A2 x8 59 126 24 128K x8

PSD501B1 x 8 or x 16 61 140 30 32K x 8 or 16K x 16

PSD511B1 x8 61 140 30 32Kx8

PSD502B1 x 8 orx 16 61 140 30 64K x 8 or 32K x 16

PSD512B1 x8 61 140 30 64K x 8

PSD503B1 x80rx 16 61 140 30 128K x 8 or 64K x 16

PSD513B1 x8 61 140 30 128Kx 8

PSD4XX and PSD5XX devices have SRAM that can be configured as 2K x 8 or 1 K x 16, 40 I/O pins, and
a power management unit (PMU). PSD5XX devices have a peripheral unit consisting of four 16-bit counters/
timers, a watchdog timer, an eight-level interrupt controller, and programmable logic for memory mapping.
All PSDs are available with access speeds of 90, 120, 150, or 200 nanoseconds.

NOTE: This Motorola document is also known as Application Note 044 at WSI, Inc.

AN12421D MOTOROLA 4-27

Motorola reserves the nght to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the sUitability

of ItS products for any particular purpose, nor does Motorola assume any liability anslng out of the application or use of any product or CircUit, and specifically disclaims any and

all liability, Including without limitation consequential or Incidental damages "Typical" parameters can and do vary In different apphcatlons All operating parameters, Including

"TYPlcals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under Its patent nghts nor the rights of others.

Motorola products are not designed, Intended, or authorized for use as components In systems Intended for surgical Implant IOta the body, or other applications Intended to

support or sustain hfe, or for any other application In which the failure of the Motorola product could create a Situation where personal InJUry or death may occur Should Buyer

purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall Indemnify and hold Motorola and ItS officers, employees, subsidiaries,

affiliates, and distributors harmless a9amst all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or mdlrectly, any claim of personal

Injury or death associated With such unintended or unauthorized use, even If such claim alleges that Motorola was neghgent regarding the design or manufacture of the part

MO"'OROLA and ® are registered trademarks of Motorola, Inc Motorola, Inc IS an Equal Opportunity/Affirmative Action Employer.

-4·28

Literature Distribution Centers:
USA: Motorola Literature DistribullOn; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan.
ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No.2 Dal King Street, Tai Po Industrial Estate,

Tai Po, N.T., Hong Kong.

@ MOTOROLA

===:='~ --- ~ --- --.:'=iiiII-.-= ==
---~.-.. -

PSD3XX Family

ZPSD3XX Family

PSD4XX/5XX Family

Motorola Application Notes

Sales Representatives
and Distributors

- ---------- ----- ------ --- ~--~----

Sales
Representatives
and Distributors

Section Index

Domestic
Representatives ... 5-1

Domestic
Distributors ... 5-1

International
Distributors ... 5-1

WSI Direct
Sales Offices .. 5-1

For additional Information,
Cal/BOO-TEAM-WSI (BOO-B32-6974).

In California, CaI/BOO-562-6363

WSI Worldwide Sales, Service and Technical Support
REPRESENTATIVES INDIANA NORTH CAROLINA DISTRIBUTORS FINLAND NETHERLANDS

VictOry Sales Rep, Inc
Arrow Electro",cs

Avnet Nortec OY Alcom Electronics bv
ALABAMA Tel (317) 581-0880 Tel' (919) 469-9997 Tel 358-0613181 Tel. 31-10-451-9533

Rep, Inc. Fax. (317) 581-0882 Fax. (919) 481-3879 Avnet Electro",cs Fax 358-06922326 Fax 31-10-458-6482
Tel' (205) 881-9270 IOWA OHIO

Marsh Electro",cs FRANCE NEW ZEALAND
Fax' (205) 882-6692 Gassner & Clark Co VictOry Sales Port Electronics ASAP Composants Apex Electro",cs

ARIZONA Tel. (319) 393-5763 Tel. (216) 498-7570 Time Electro",cs Tel. 33 (1) 30-12-20-20 Tel 644-3853404
Summit Sales Fax (319) 393-5799 Fax. (216) 498-7574 Vantage Components Fax 33 (1) 30-57-07-19 Fax 644-3853483
Tel. (602) 998-4850 KANSASINEBRASKA

Wyle Laboratones NORWAY
Fax: (602) 998-5274 Rush & West Associates Tel' (513) 436-1222 Zeus Electronics Microel Henaco AlS

CALIFORNIA Tel (913) 764-2700
Fax. (513) 436-1224 Tel' 33 (1) 69-07-08-24 Tel' 47-22-16-21-10

Bager Electro",cs, Inc Fax' (913) 764-0096 OKLAHOMA WORLDWIDE Fax 33 (1) 69-07-17-23 Fax 47-22-25-77-80
Tel: (714) 957-3367 KENTUCKY Bravo Sales, Inc GERMANY REPUBLIC OF SOUTH
Fax (714) 546-2654 Tel (214) 250-2900 AUSTRALIA Jermyn GmbH

VictOry Sales Fax. (214) 250-2905 Zatek Components Tel 49 (06) 431-5080 AFRICA

Tel (818) 712-0011
Tel (513) 436-1222 Tel 61-2-744-5711 Fax 49 (06) 431-508289 Sames (Ply) Ltd
Fax (513) 436-1224 OREGON Fax 61-2-744-5527 Tel 2712-3336021

Fax (818) 712-0160
MARYLANDNIRGINIA Electra Tech",cal Sales Fax' 2712-3333158 Seantec GmbH

Earle Assoc , Inc Robert Electro",c Sales Tel (503) 643-5074 Tel 61-3-9574-9644 Tel 49 (089) 899-1430 SINGAPORE
Tel' (619) 278-5441 Tel (410) 995-1900 Fax' (503) 526-2055 Fax 61-3-9574-9661 Fax 49 (089) 857-6574 Technology Dlstnbutlon(s)
Fax. (619) 278-5443 Fax (410) 964-3364 PENNSYLVANIA BELGIUM, LUX Pte, Ltd

MASSACHUSETTS VictOry Sales Alcom Electro",cs nvlsa Topas Electro",c GmbH Tel 65-299-7811
I Squared, Inc Advanced Tech Sales, Inc Tel (216) 498-7570 Tel. 32-3-458-3033 Tel 49 (0511) 968640 Fax 65-294-1518
Tel: (408) 988-3400 Tel (508) 664-0888 Fax. (216) 498-7574 Fax 32-3-458-3126 Fax' 49 (0511) 9686464 SPAIN, PORTUGAL
Fax' (408) 988-2079 Fax (508) 664-5503 BRAZIUARGENTINA HONG KONG Matnx Electro",ca SL

BGRWYCK
Tel' (916) 989-0843 MICHIGAN Tel (609) 727-1070 Colgll, Inc. Comex Technology Ltd Tel. 34 1 5602737

Fax' (916) 989-2841 VictOry Sales Fax' (609) 727-9633 Tel 55-11-663285 Tel. 852-2735-0325 Fax. 34 1 5652865
Tel (313) 432-3145 Fax 55-11-663285 Fax 852-2730-7538

CANADA Fax. (313) 432-3146 PUERTO RICO INDIAIPAKISTAN SWEDEN
Intelatech, Inc OXI of Florida, Inc CHINA
Tel: (905) 629-0082 MINNESOTA Tel. (305) 978-0120 Comex Technology Pam" Electro",cs Corp. OlpCom Electro",cs

Fax: (905) 629-1795 OHMS Technology, Inc. Fax (305) 972-1408 Tel (86-10) 849-9430/8888 Tel. 610-594-8337 Tel. 46-8-7522480
Tel. (612) 932-2920 Fax. (86-10) 849-9430 Fax' 610-594-8559 Fax. 46-8-7513649

COLORADO Fax. (612) 932-2918 TENNESSEE ISRAEL SWITZERLAND
Waugaman Associates, Inc

MISSOURI
Rep, Inc. Tel. (86-811) 531-5258 Star-Tronics, Ltd Elbatex

Tel: (303) 423-1020 Tel. (423) 475-9012
Fax' (303) 467-3095 Rush & West AsSOCiates Fax (423) 475-6340

Fax. (86-811) 531-5258 Tel. 972-3-6960148 Tel (41) 56-43-75-11-11
Tel (314) 965-3322 Fax: 972-3-6960255 Fax (41) 56-26-14-86

CONNECT/CUT Fax (314) 965-3529 TEXAS Tel. (86-20) 380-7307/5688
ITALY

Advanced Tech Sales Bravo Sales, Inc Fax (86-20) 380-7307 Laser & Electro",c
Tel' (508) 684-0888 NEW JERSEY Tel' (512) 328-7550

Comprel SPA EqUipment
Fax (508) 664-5503 Strategic Sales, Inc Fax: (512) 328-7426 Tel (86-25) 449-1384 Tel. 39-3625781 Tel 41-1-4223330

Tel. (201) 842-8960 Fax. (86-25) 449-1384 Fax: 39-362553967 Fax 41-1-4223458
FLORIDA Fax. (201) 842-0906 Tel' (214) 250-2900

aXi of Flonda, Inc. Fax: (214) 250-2905 Microhnk Inti' Co Sllverstar TAIWAN
Tel. (305) 341-1440 BGR WYCK Tel. (602) 276-7808 Tel. 39 2661251 Ally, Inc
Fax. (305) 341-1430 Tel (609) 727-1070 Tel. (713) 955-6996 Fax (602) 276-8211 Fax' 39 266101359 Tel' 886-2-768-6399

Fax 886-2-768-6390
Tel' (407) 831-8131

Fax: (609) 727-9633 Fax: (713) 955-7446 JAPAN
NEW MEXICO

Wuhan Llyuan Computer Ltd InternlX, Inc.
Fax (407) 831-8112 UTAH Tel' 86-27-7802986 5 & 5 Technologies Tel 813-3-369-1105

Bager ElectrOniCS Fax 86-27-7802985 Fax 813-3-363-8486
Tel (813) 894-4556 Tel: (602) 438-7424 Tel' (801) 582-0501
Fax' (813) 894-3989 Fax. (602) 414-1125 Fax (801) 582-1850 DENMARK

Kyocera Corporation
NEW YORK Jakob Hat1eland AlS

GEORGIA WASHINGTON Tel (45) 42-571000 Tel 813-3-708-3111
Rep, Inc Strategic Sales, Inc Electra Tech",cal Sales Fax (45) 45-166199 Fax. 813-3-708-3372
Tel: (770) 938-4358 Tel' (201) 842-8960 Tel (206) 821-7442
Fax. (770) 938-0194 Fax (201) 842-0906 Fax (206) 821-7289 ENGLAND Nippon Imex CorporatIOn

IDAHO WISCONSIN
Micro Call, Ltd. Tel 813-3-321-8000

Tn-Tech Electro",cs, Inc Tel 44-184-426-1939 Fax 813-3-325-0021
Bager Electro",cs Tel. (716) 385-6500 Victory Sales Fax 44-184-426-2998
Tel. (801) 582-0501 Fax (716) 385-7655 Tel. (414) 789-5770 KOREA
Fax' (801) 582-1850 Fax' (414) 789-5760 Silicon Concepts, Ltd Woo Young Tech Co ,

ILLINOIS Tel' (607) 722-3580 Tel 44-1428-751-617 Ltd.

VictOry Sales Fax. (607) 722-3774 OHMS Technology, Inc. Fax 44-1428-751-603 Tel 82-2-369-7099

Tel. (847) 490-0300
Tel (612) 932-2920 Fax 82-2-369-7091

Fax. (847) 490-1499 Fax. (612) 932-2918

--- ,.-~ REIlIONAL SALES EUROPE SALES ASIA SALES _==== ==IE --- ~ NorthBast --- -- MIdwest WSI- France WSI - Asia, Ltd
I'~~---- Trevose, PA 2 VOle La Cardon 1006 C.C Wu Bldg ~.-.-- ... Hoffman Estates, IL
----~~ ... Tel' (215) 638-9617 91126 Palalseau 302-308 Hennessy Rd
CDrporate Headquarters Tel. (847) 215-2560

Fax: (847) 215-2702 Fax: (215) 638-7326 Cedex, France Wan Chal, Hong Kong
47280 Kato Road Western Aree Southeest Tel 33 (1) 69-32-01-20 Tel' 852-2575'()112

Fremont, Califomia 94538-7333 Fax 33 (1) 69-32-02-19 Fax 852-2893-0678

Tel: 510-656-5400 Fax: 510-657-5916
hVlne, CA Dallas, TX
Tel: (714) 753-1180 Tel: (214) 418-2970 Korea Branch

800-TEAM-WSI (800-832-6974) Fax. (714) 753-1179 Fax: (214) 418-2971 Tel. 82-2-761-128112
In Califomia 800-562-6363 Fax 82-2-761-1283
Web Site: http://www,wsipsd.com

6114196 Rev 2 8 5-1

WSI Worldwide Sales, Service and Technical Support

5·2

WaferScale Integration, Inc. (WSI) reserves the right to make changes without further notice to any products herein. WSI makes no
warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does WSI assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including
"Typicals" must be validated for each customer application by customer's technical experts. WSI does not convey any license under its
patent rights nor the rights of others. WSI products are not designed, intended, or authorized for use as components in systems intended
for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the WSI product could create a situation where personal injury or death may occur. Should Buyer purchase or use WSI products for any
such unintended or unauthorized application, Buyer shall indemnify and hold WSI and its officers, employees, subSidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that WSI was
negligent regarding the design or manufacture of the part.

Information furnished herein by WaferScale Integration, Inc. (WSI) is believed to be accurate and reliable. However, no responsibility is
assumed for its use. WSI makes no representation that the use of its products or the interconnection of its circuits, as described herein,
will not infringe on existing patent rights. No patent liability shall be incurred by WSI for use of the circuits or devices described herein. WSI
does not assume any responsibility for use of any circuitry described, no circuit patent rights or licenses are granted or implied, and WSI
reserves the right without commitment, at any time without notice, to change said circuitry or specifications. The performance
characteristics listed in this book result from specific tests, correlated testing, guard banding, design and other practices common to the
industry. Information contained herein supersedes previously published specifications. Contact your WSI sales representative for specific
testing details or latest information.

Products in this book may be covered by one or more of the following patents. Additional patents are pending.
U.S.A: 4,328,565; 4,361,847; 4,409,723; 4,639,893; 4,649,520; 4,795,719; 4,763,184; 4,758,869; 5,006,974; 5,016,216; 5,014,097;
5,021,847; 5,034,786; 5,136,186; 4,939,392; 4,961,172

West Germany: 3,103,160
Japan: 1 ,279,100
England: 2,073,484; 2,073,487

PSDsoft is a trademark of WaferScale Integration, Inc.
MagicPro and PSD301 are registered trademarks of WaferScale Integration, Inc.
ABEL, ABEL-HDL, and ABEL-PLA are trademarks of Data 1/0 Corporation.
Data 110 is a registered trademark of Data 1/0 Corporation.
SIMUCAD and SILOS III are trademarks of SIMUCAD, Inc.
IBM and IBM Personal Computer are registered trademarks of International Business Machines Corporation.
PAL is a registered trademark of Advanced Micro Devices, Inc.

Copyright © 1996 WaferScale Integration, Inc. All Rights Reserved.

Rev 1 B

--~~~---

--- - -- - - - ::::
fs§s~
--~== ---- ~~ -
47280 Kato Road

Fremont, California 94538-7333

Phone: 510/656-5400

Fax: 510/657-5916

800/ TEAM-WSI (800/832-6974)

In California 800/562-6363

Printed in U. S.A. 6/96

