

Programmable Peripherals Design and Applications Handbook

PSD3XX

OLLER

BOARD

GHER

SINGLE

PERIPHERAL

SIZE, REDU

PROFITABL

Programmable Peripherals Design and Applications Handbook

1992

Copyright © 1992 WaferScale Integration, Inc. (All rights reserved.)

47280 Kato Road, Fremont, California 94538 Tel: 510-656-5400 Facsimile: 510-657-5916 Telex: 289255

Printed in U.S.A.

General Information	1
PSD3XX Family	2
MAP168	3
Development Systems	4
Package Information	5
Sales Representatives and Distributors	6

Section Index

General	Table of Contents	1_1
Information	Company Profile	
	Article Reprint	1-7
	Product Selector Guide	1-11
	Ordering Information	1-15

For additional information, call 800-TEAM-WSI (800-832-6974). In California, Call 800-562-6363.

Table of Contents

General Information	Table of Contents	
mormation	Company Profile	
	Article Reprint	
	Product Selector Guid	le1-11
	Ordering Information .	1-15
PSD3XX Family	PSD301	Programmable Microcontroller Peripheral with Memory2-1
	PSD311	Programmable Microcontroller Peripheral with Memory2-45
	PSD302	Programmable Microcontroller Peripheral with Memory2-83
	PSD312	Programmable Microcontroller Peripheral with Memory2-127
	PSD303	Programmable Microcontroller Peripheral with Memory2-165
	PSD313	Programmable Microcontroller Peripheral with Memory2-209
	Application Note 011	The PSD3XX Device Description2-247
	Application Note 013	The PSD301 Streamlines a Microcontroller-based Smart Transmitter Design2-301
	Application Note 014	Using the PSD3XX PAD for System Logic Replacement2-313
	Application Note 016	Power Considerations In The PSD3XX2-327
	Application Note 018	Security of Design in the PSD3XX2-341
	Application Note 019	The PSD311 Simplifies an Eight Wire Cable Tester Design and Increases Flexibility

Table of Contents		
MAP168	MAP168 Introduction	User-Configurable Peripheral with Memory
	MAP168	DSP Peripheral with Memory3-
	Application Note 002	Introduction to the MAP168 User-Configurable Peripheral with Memory3-2
Development	Electronic Bulletin Boa	rd4-
Systems	PSD-Gold/Silver Deve	lopment System4-6
	WS6000 MagicPro TM I Programmable Periphe	Memory and eral Programmer4-7
Package Information	-	
Sales Representatives and Distributors		

1-2

W/i-

Company Profile

Company Description

WSI is a market leading producer of highperformance programmable peripheral integrated circuits. The company was founded in 1983 to serve the needs of system designers who need to achieve higher system performance, reduce the size and power consumption of their systems, and shorten their product development cycles in order to achieve faster market entry.

WSI produces an innovative portfolio of Programmable Peripherals as well as a broad line of high-performance non-volatile programmable PROM and EPROM memory products, both based on its patented self-aligned split-gate CMOS EPROM technology. The new Programmable Peripherals enable rapid system design of high-performance application specific controllers and related products. These devices are the first to integrate high-performance EPROM, SRAM and user-configurable logic and deliver a performance and integration breakthrough to the programmable peripherals market.

WSI's Programmable Peripherals and nonvolatile memory products enable electronic designers to reduce their system size, shorten product development cycles and bring new system products to market in less time. As a result, WSI has established itself as a leading supplier of highperformance programmable solutions to a broad customer base that includes some of the world's largest and most technologically advanced electronics companies.

Technology

WSI's patented self-aligned, split-gate EPROM technology enables higher performance and greater memory densities per chip area than the traditional stackedgate method. By developing significantly higher read current, the WSI EPROM cell has enabled the development of several memory devices that are the fastest of their type on the market. This core NVM technology is further leveraged by WSI's architecture and design innovations such as staggered virtual ground and contactless memory arrays resulting in dramatic die area savings. This high density memory capability enables WSI to provide cost-effective market leading products such as the smallest 4-Mbit EPROM on the market. WSI's proprietary NVM technology (licensed to Sharp Corporation and National Semiconductor Corporation) has enabled WSI to be first in the industry with numerous product breakthroughs in speed, high density, process innovations and packaging.

Markets and Applications

WSI's Programmable Peripheral and highperformance non-volatile memory products are used by the world's leading suppliers of advanced electronic systems in telecommunications, data processing, military, automotive and industrial markets.

Applications for the Programmable Peripherals include cellular telephones, disk drive controllers, modems, bus controllers, engine management computers, telecom switchers, motor controllers and others. High performance memory applications include digital signal processing, engineering workstations, high-speed modems, video graphics controllers, radar and others. By virtue of their high speed and programming capability, WSI products are ideally suited for these applications where designers are pushing the limits of system performance in highly competitive markets. **Product Groups**

Programmable Peripherals

WSI's family of Programmable Peripherals represents a new class of programmable products. They enable system designers to reduce the size of their products, achieve lower operating power, optimize system performance and shorten product development cycles. They are the first devices to integrate high-speed EPROM, SRAM and programmable logic on a single chip. The Programmable Peripherals include the PSD3XX family, the MAP168 and the PAC1000.

PSD3XX Family: Microcontroller Peripherals with Memory

Each member of the PSD3XX family is a single-chip, field-programmable circuit that integrates all the required peripheral memory and logic elements for an embedded-control design. Programmable logic, page logic, programmable I/O ports, busses, address mapping, port address/data tracking, 256K to 1 Mb EPROM, and 16K SRAM are all on board. Advanced features such as memory paging, microcontroller port reconstruction, track mode, configuration security bit, and cascading further enhance the utility and value of the PSD3XX family. PSD3XX family devices are ideal for applications requiring high-performance, low power and very small form factors such as fixed disk control, cellular telephones, modems, computer peripherals, and automotive and military applications.

MAP168 User-Configurable Peripheral with Memory

Similar to the PSD3XX family, the high speed MAP168 integrates highperformance EPROM, SRAM, a PAD and user-configurable logic. Ideal for highspeed applications requiring expanded memory, system integration and increased data security, the 45 ns MAP168 is used with high speed digital signal processors, microprocessors and microcontrollers.

us:

PAC1000 Peripheral Controller

The high speed PAC1000 sets a new standard for Programmable Peripheral performance, integration and functionality. The PAC1000 replaces up to 50 complex devices in high-end embedded controllers and microprocessor-based systems. Combining a CPU, 1K x 64 EPROM and extensive user-configurable logic, the PAC1000 assists its host processor with high rates of data manipulation and control, freeing the processor for other system functions. The 16 MHz PAC1000 has been designed into numerous high-performance applications such as work-station direct memory access controllers, video imaging digital signal processors, and VME bus LAN controllers.

Programmable Peripheral Development Tools

WSI's Programmable Peripheral products are supported with complete easy-to-use system development tools from both Data I/O and WSI. The Data I/O Unisite programmer can be used for production programming. The WSI tools include program development, simulation, and programming software, the IBM-PC hosted MagicPro[™] Memory and Peripheral Programmer, a dial-in applications bulletin board and WSI's team of factory service and field application engineers. The menudriven software tools run on popular customer owned computers and enable designers to rapidly configure and program the WSI part and try it in a prototype system. Additional design iterations are quickly accomodated. The system development tools increase the efficiency of the design process resulting in faster market entry for WSI's customers' products.

High-Performance Memory Products WSI offers a broad product line of highperformance CMOS PROMs and EPROMs featuring architectures ranging from 2K x 8 to 512K x 8, plus several x16 products, with speeds ranging from 25 to 150 ns. Commercial, industrial and military products including MIL-STD-883C/SMD are available. A wide variety of package selections include plastic and hermetic, through-hole and surface mount types.

CMOS PROMs

As WSI's fastest family of products, Re-Programmable Read Only Memories (RPROMs) provide high-speed bipolar PROM pinout with matching speed and low power operation. The product family includes architectures ranging from 2K x 8 to 32K x 8 with speeds ranging from 25 to 90 ns. Commercial, industrial and military MIL-STD-883C/SMD configurations are available in a variety of hermetic and plastic package types.

"F" Family EPROMs

The high-speed "F" series EPROM family offers speeds ranging from 35 to 70 ns and architectures from 8K x 8 to 32K x 8, plus several x16 products. "F" family EPROMs are ideal for use in high-end engineering and scientific workstations, data communications and similar highperformance applications.

"L" Family Military EPROMs

WSI's "L" family military EPROM memory products feature high-density and high speed in popular JEDEC pinouts. With speeds ranging from 120 to 300 ns and architectures from 64K x 8 to 512K x 8 including several x16 products, the "L" family offers significant speed and high density benefits for developers of military avionics, communications, and control systems. The "L" family delivers world class densities from WSI's conservative 1.2 micron lithography CMOS process technology.

Manufacturing

WSI's manufacturing strategy includes utilizing multiple world-class manufacturing partners for each facet of the production process.

WSI has licensed its CMOS EPROM and logic process technology to Sharp Corporation in Japan and National Semiconductor Corporation in the USA. The Sharp facility in Fukuyama, Japan employs the most advanced sub-micron VLSI integrated circuit manufacturing equipment available including ion implantation, reactive ion etch, and wafer stepper lithographic systems. The worldclass high volume National Semiconductor operation delivers low cost production of 1.2 micron CMOS technology product on 6" wafers. This low defect density manufacturing resource is capable of producing sub-micron technology product in the near future.

High-volume, low cost integrated circuit packaging and testing is performed for WSI by ANAM Electronics in Seoul, Korea, Fine Products in Hsinchu Taiwan, National Semiconductor in Santa Clara. CA and at WSI in Fremont, CA. ANAM is the largest independent manufacturer of I.C. packaging and produces excellent product quality. Test capability ranges from simple logic devices to complex VLSI product. ANAM routinely processes a wide variety of high volume packages and enables WSI to leverage its materiel needs through ANAM's combined high-volume, low cost procurement activity. Commercial, industrial, and military grade product processing is available from ANAM.

Additional quality assurance and reliability testing are performed at WSI in Fremont, CA.

WSI's manufacturing strategy ensures the supply of double-sourced high quality, highvolume product with low variable cost and fast delivery.

Sales Network

WSI's international sales network includes several regional sales managers who direct the resources of the company to major market opportunities. Experienced technical field application engineers located in each field office assist WSI's customers during their advanced product development and match customer needs with WSI's product solutions. Over sixty manufacturer's representatives and leading national and regional component distributors in the United States, Europe and Asia round out the WSI sales network.

United States

Direct sales and field application engineering offices in Boston, Chicago, Huntsville, Philadelphia, Dallas, Los Angeles and Fremont, CA; More than 25 manufacturer's representatives for major national accounts; national distributors include Arrow/Schweber, Time Electronics and Wyle Laboratories; and regional distributors.

International

Direct WSI Sales management offices in Paris, Munich and Hong Kong; sales representatives and distributors in Germany, England, France, Italy, Sweden, Finland, Denmark, Norway, Spain, Belgium, Luxembourg, the Netherlands, and Israel. Sales representatives and distributors for the Asia/Pacific Rim region in Japan, Korea, Taiwan, Hong Kong, Singapore and Australia.

Management and Previous Affiliations:

Michael Callahan

President, CEO and Chairman of the Board (Advanced Micro Devices, Monolithic Memories, Motorola)

Robert J. Barker

V. P. Finance, CFO and Secretary (Monolithic Memories, Lockheed)

John Ekiss

V. P. Marketing (Intel, Motorola)

Thomas Branch

V. P. Worldwide Sales (Monolithic Memories, Fairchild)

George Kern

V. P. Operations (Advanced Micro Devices, Monolithic Memories)

Boaz Eitan

V. P. New Product and Technology Development (Intel)

Bob Buschini

Director of Human Resources (General Electric, Raychem)

Financing

WSI is a privately held California corporation founded in August, 1983. The company has been financed by corporate investors, institutional investors, venture capital groups and private investors. Corporate investors are Sharp Corporation, National Semiconductor Corporation, Intergraph Corporation, and Kyocera Corporation. Venture capital investors include Accel Partners, Adler and Company, Bessemer Venture Partners, Genevest Consulting Group S. A., J. H. Whitney, Oak Investment Partners, Robertson Stephens and Co., Smith Barney Venture Corporation, and Warburg Pincus. The company has been audited annually since its inception by Ernst & Young (Arthur Young prior to 1989) and regularly reports financial information to Dunn & Bradstreet (Dunns number is 10-209-8167).

MagicProTM is a trademark of WaferScale Integration, Inc.

IBM and IBM-PC are registered trademarks of International Business Machines Corporation.

PRODUCT INNOVATION PROGRAMMABLE SYSTEM^{**} DEVICE FITS MULTIPLE MICROCONTROLLERS

IC HAS EPROM, RAM, AND LOGIC FOR 45 CONFIGURATIONS; INTERFACES 8- AND 16-BIT MICROCONTROLLERS.

MILT LEONARD

he embedded-controller market embraces a myriad of 8- and 16bit microcontroller architectures that can satisfy just about any conceivable application requirement. However, each different controller requires its own unique combination of discrete devices to link the part to other system elements. Furthermore, changing application requirements usually call for restructuring I/O ports. Consequently, the application may eventually outgrow system memory and shared resources may demand multiple chip solutions. This means that in addition to comparing controllers on the merits of price and performance, prospective users must also consider the external circuitry that the controller needs to interface to the rest of the system.

A new chip from WaferScale Integration Inc., Fremont, Calif., simplifies system integration by combining RAM, EPROM, programmable decoding, and configurable I/O ports that expand 8- or 16-bit microcontrollers when they run out of on-chip resources. WaferScale's PSD301 is the first single-chip solution to offer a microcontroller with port expansion, latched address lines, a programmable address decoder (PAD), an expansion interface to shared resources, a 256-kbit EPROM, and a 16-kbit static RAM. In addition, the chip links directly to popular 8- and 16-bit microcontrollers without using glue logic.

The PSD301 architecture is a major enhancement of WaferScale's MAP168 mappable memory chip introduced last year (see ELECTRONIC DESIGN, July 28, 1988, p. 91). In addition to the memory, decoding, and multiplexer functions of the 168, the 301 includes three software-configurable 8-bit I/O ports (A, B, and C), configuration registers, latched inputs, more chip-select lines, and more control on the strobe lines (Fig. 1). Like the 168, a programmable security bit is given to protect against reverse engineering.

Most controllers can't be reprogrammed once they're configured. Moreover, their controller's I/O ports are designed to perform one of two mutually exclu-

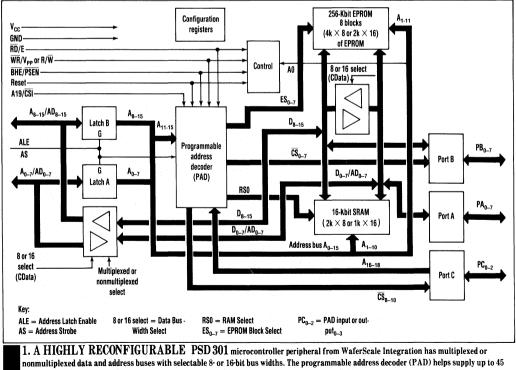
us:

Reprinted with permission from ELECTRONIC DESIGN

USER-CONFIGURABLE MICROCONTROLLER INTERFACE

sive functions: convey control signals to peripheral devices or address and data signals to shared resources. Supplying both of these functions requires a multiple chip solution.

Microcontrollers also differ in boot-up locations and address mapping in memory. The 8051 and 8096 microcontrollers, for example, locate boot-up sequences in the lower half of their memory maps, while the 80186/88 and 68HCXXX use a high memory boot-up address. Another factor is the differences in controlsignal polarities.


The **PSD301** is designed to adapt the characteristics of different microcontrollers to an embedded-control design. The PAD plays a major role in this function. It performs similarly to a small programmable array logic (PAL) device. The PAD has up to 13 inputs and 11 outputs in a NORgate array, and it can implement up to four sum-of-product expressions based on address inputs, control signals, and chip-select inputs. The PAD selects all of the chip's internal parts. and generates external chip selects with a 35-ns delay.

Address inputs from the host microcontroller are first fed to the 301's input latches, which stabilize the inputs when the device accesses memory in the multiplexed mode. The latches are made transparent in the nonmultiplexed mode. Five low-order address inputs and five programmable control lines are fixed functions; the Address-Latch-Enable and Reset lines have programmable polarity. The high-order address lines can be either address or general-purpose inputs for logic functions.

For more efficient use of memory space, internal and external PAD-Select signals can override EPROM memory with overlapping addresses. Therefore, if all of the EPROM isn't used for program storage, the unused space can be allocated to I/O ports, static RAM, or other PAD-select signals.

The EPROM is configurable as 32 kwords by 8 bits, or 16 kwords by 16 bits, and it's partitioned into eight equal mappable blocks with a resolution of 4 kbytes or 2 kwords. Access time, including PAD decoding time, is 120 ns. The configuration registers also consist of EPROM cells. The registers store the programmed configuration bits that make it possible for users to set the device. I/O, and control functions according to the required operating mode. The 16-kbit 120-ns static RAM is configurable as 2 kwords by 8 bits, or 1 kword by 16 bits. The memory blocks can be noncontiguously mapped over the addressable range of 1 Mbyte or 0.5 Mwords. Consequently, programmers can scramble the code to prevent direct copying.

I/O ports A and B in the 8- and 16-

us:

configuration options for supporting a range of 8- and 16-bit microcontrollers.

USER-CONFIGURABLE MICROCONTROLLER INTERFACE AD₈₋₁₅ -ALE = Address Latch Enable ► I/O or A₀₋₇ AD₀₋₇ Port A BHE/PSEN = Byte High Enable or Program Store Enable AD₀₋₇ ALE R/W or WR/V_{PP} = Read/Write or Write/Programming Voltage BHE/PSEN Port B 1/0 or Chip Selector RD/E = Read/Enable R/W or WR/Vpp RD/E A19/CSI = High Address Bit or Chip Select Input (power down) A19/CSI I/O or $A_{0-7} AD_{0-7} = I/O$, non-multiplexed low-order address A16-18 or Chip Selecte_1 Port C Reset input byte, or multiplexed low-order address/data byte.

2. I/O PORT CONFIGURATION FOR THE PSD 301 IS PROGRAMMED by signals from the PAD, which are derived partly from programmed bits in the configuration registers. The three ports configured for multiplexed address and data with a 16-bit wide data bus are shown.

bit configurations are data ports in the nonmultiplexed mode, and both ports can be configured as either data or address ports in the multiplexed mode (*Fig. 2*). Port C is independent of any configuration—it can supply multiple chip-select outputs or serve as address inputs.

The default configuration of port A in the nonmultiplexed address/ data mode sets the port to deliver I/ O lines. In this mode, each pin can be set as an input or output and can have a CMOS or open-drain output. Alternatively, each bit of port A can be configured as a low-order latchedaddress-bus bit to access external peripherals or memory that requires several low-order lines. Another option in this mode sets the entire port to track the low-order address/data multiplexed bus. This feature links the host microcontroller to shared resources without the use of external buffers and decoders.

In the nonmultiplexed mode, port

PRICE AND AVAILABILITY

The commercial version of the **PSD301**, packaged in a 44-pin plastic leaded chip carrier, is priced at \$15 each in quantities of 1000. Military parts are also available. Other package options are ceramic leaded chip carriers and pin grid array packages with windows. The **PSD301** is being sampled now, with production quantities available in January, 1990.

WaferScale Integration Inc., 47280 Kato Rd., Fremont, CA 94538; (415) 656-5400. A becomes the chip's low-order databus byte. When a read operation is executed from an internal 301 location, data is directed out on port A pins. When a write cycle is executed into an internal 301 location, data is driven into port A.

The operation of port B in the multiplexed address/data and 8-bit nonmultiplexed modes is the same as port A. However, as an alternative. each bit can be configured to supply a Chip-Select Output signal from the PAD. In the 16-bit nonmultiplexed mode, port B is the high-order databus byte of the chip. When a read operation is executed from an internal high-order data-bus byte location, the data appears on port B pins. When a write operation is executed into an internal high-order data-bus byte location, data and write operation signals are present at port B.

Each pin of port C in all modes can be configured as an input or output from the PAD. Although designated as high-order address bus pins, they can be used for any logic inputs to the PAD or for external chip-select outputs from the PAD.

With this degree of operational flexibility, the 301 can team up with all popular 8- and 16-bit microcontrollers from such companies as Advanced Micro Devices, Intel, Motorola, National Semiconductor, Texas Instruments, and Zilog. For example, the polarity of the 301's control signals can be programmed for direct connection of the read-write and output enable pins of the 68HCXX microcontroller family. The 16-bit configuration can boost the performance of 16-bit controllers, such as the 80186, 8096, 80196, 16000, and others, without adding external devices. And the 8051 microcontroller family can extend its memory space by using the separate address and program memory space of the 301. The 301 is cascadable for increased width or depth for multiplexed byteor word-wide embedded-control designs.

In the standby mode, commercial versions of the 301 draw 150 μ A and 1.5 mA for CMOS and TTL interfaces, respectively. Active current for CMOS interfaces with or without selected memory blocks, or with the EPROM blocks selected, is 55 mA. That level increases to 80 mA for TTL interfaces. Selecting the static RAM block increases active current to 105 mA and 130 mA for CMOS and TTL, respectively.

WaferScale Integration houses the device in a 44-pin surface-mounted package to meet the form-factor requirements of such products as 5.25, 3.5, and 2.5-in. disk drives, cellular phones, and modems. System development tools include an IBM-PC plug-in programmer board and remote socket adaptor. They also contain a software development package that runs on an IBM PC/ XT/AT or compatible computer with a MS-DOS version 3.1 or higher, 640 kbytes of RAM, and a hard disk.□

configuration can boost the perfor- WAFERSCALE INTEGRATION, INC.

PRODUCT SELECTOR GUIDE JANUARY 1992

PROGRAMMABLE PERIPHERALS

PSD301 PSD311 PSD302 PSD312 PSD303		Spee	d (ns)	Availab	oility	Pack	age	Selec	tion
Part No.	Description	Comm'l	Military	Samples	Prodn	J	L	Q	X
PSD301	Programmable Microcontroller	120		NOW	Q4 '91	•	•	•	
	Peripherals with Memory;	150-200		NOW	NOW	•	•	•	•
	x8/x16; 256Kb – 1Mb EPROM;		200		NOW		•		•
PSD311	16K SRAM; PAD; System	120		NOW	Q4 '91	•	•	•	
	Features.	150-200		NOW	Q4 '91	•	•	•	•
			200		Q4 '91		•		•
PSD302		120		NOW	Q1 '92	•	•		
		150-200		NOW	Q1 '92	•	•		
PSD312		120		NOW	Q1 '92	•	٠		
		150-200		NOW	Q1 '92	•	•		
PSD303		120		Q4 '91	Q1 '92				
		150-200		Q4 '91	Q1 '92				
PSD313		120		Q4 '91	Q1 '92				
		150-200		Q4 '91	Q1 '92				
MAP168	DSP Peripheral with Memory. Features:	45-55		NOW	NOW	•	•	•	•
	128K Bits EPROM, 32K Bits SRAM Programmable Address Decoder (PAD) Configurable: x8 or x16.		55		NOW	•		•	

HIGH-PERFORMANCE CMOS USER-CONFIGURABLE EMBEDDED CONTROLLER – COMMERCIAL & MILITARY

Part No.		Speed (ns)		Availability		Package Selection		
	Description	Comm'l	Military	Samples	Prodn	Q	Х	
PAC1000	Programmable Peripheral Controller	12MHz		NOW	NOW	•	•	
	optimized for High-Performance Control		12MHz	NOW	NOW		•	
	Systems. Key Features Include: 16-Bit CPU, 16-Bit Address Port, 16-Bit Output Control, 8-Bit I/O Port and Configuration Registers.	16MHz		NOW	NOW	•	•	

HIGH-PERFORMANCE CMOS USER-CONFIGURABLE MICROSEQUENCER/STATE MACHINE – COMMERCIAL & MILITARY

		Speed	l (ns)	Availat	oility	Packa	age S	elect	tion
Part No.	Description	Comm'l	Military	Samples	Prodn	J	Ĺ	S	Т
SAM448	User-Programmable Microsequencer	20-25MHz		NOW	NOW	*	•	*	•
	for Implementing High-Performance		20MHz	NOW	NOW		• -		•
	State Machines. Includes EPROM								
	integrated with Branch Control Logic,								
	Pipeline Register, Stack and Loop								
	Counter and 768 Product Terms.								

SOFTWARE DEVELOPMENT TOOLS t

Part No.	Includes	Availability	
PSD - GOLD	Contains PSD301/MAP168 Software, Users Manual, WS6000 MagicPro (PC Based Programmer), WS6014(J/L) or WS6015(X) Adapter and 2 Sample Devices	NOW	
PSD - SILVER	Contains PSD301/MAP168 Software and Users Manual	NOW	· · · · · · · · · · · · · · · · · · ·
PAC1000 - GOLD	Contains PAC1000 Software, Users Manual, WS6000 MagicPro (PC Based Programmer), WS6010 (X) Adapter and 2 Sample Devices	NOW	·.
PAC1000 - SILVER	Contains PAC1000 Software and Users Manual	NOW	
SAM448 - GOLD	Contains SAM448 Software, Users Manual, WS6000 MagicPro (PC Based Programmer), WS6008(T) or 6009(C,J,L) Adapter and 2 Sample Devices	NOW	
SAM448 - SILVER	Contains SAM448 Software and Users Manual	NOW	
MEMORY - SILVER ^{††}	Contains WSI EPROM/RPROM Programming Software and Users Manual	NOW	

1) All Development Systems include: 12 Month Software Update Service, access to WSI's 24 Hour Electronic Bulletin Board.
 2) Package adaptor must be specified when ordering any "Gold" system.

tt 1) Memory-Silver is included in all development systems.

NON-VOLATILE MEMORY CMOS PROMS – COMMERCIAL

					Pa	ckage	Sele	ction		
Part No.	Architecture	Description	Speed (ns)	D	J	Ē	P	S	т	
WS57C191B	2K x 8	16K CMOS PROM	35-55	•	•		• : .			
WS57C291B	2K x 8	16K CMOS PROM	35-55					•	•	
WS57C45	2K x 8	16K CMOS Reg. PROM	25-35					•	•	
WS57C43B	4K x 8	32K CMOS PROM	35-70	٠	•			•	•	
WS57C49B	8K x 8	64K CMOS PROM	35-70	•	•			•	• ,	
WS57C49C	8K x 8	64K CMOS PROM	35-70	٠	٠			٠	•	
WS57C51C	16K x 8	128K CMOS PROM	35-70	•	٠	٠			•	
WS57C71C	32K x 8	256K CMOS PROM	45-70	•	•	•			•	
CMOS PR	OMs – MILITAR	Y						12	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

:				DESC		Pa	ackag	ge Se	lection	on	
Part No.	Architecture	Description	Speed (ns)	SMD	С	D	F	Н	Κ	T	Z
WS57C191B	2K x 8	16K CMOS PROM	45-55	•	•	•	•				•
WS57C291B	2K x 8	16K CMOS PROM	45-55	•					· · · •	•	
WS57C45	2K x 8	16K CMOS Reg. PROM	35-45	•	•		•	•	•	•	· .
WS57C43B	4K x 8	32K CMOS PROM	45-70		•					٠	
WS57C49B	8K x 8	64K CMOS PROM	45-70	•	•	•	•			٠	
WS57C49C	8K x 8	64K CMOS PROM	45-70	•	•	•	•			•	1.1
WS57C51C	16K x 8	128K CMOS PROM	45-70		•	•				•	
WS57C71C	32K x 8	256K CMOS PROM	55-70		•	•			in pro-	·*• *	

NON-VOLATILE MEMORY (Cont.)

HIGH-SPEED CMOS EPROMs - COMMERCIAL

				Package Selection					
Part No.	Architecture	Description	Speed (ns)	D	J	L	т		
WS57C64F	8K x 8	High-Speed 64K CMOS EPROM	55-70	•	•				
WS57C128F	16K x 8	High-Speed 128K CMOS EPROM	55-70	•					
WS57C128FB	16K x 8	High-Speed 128K CMOS EPROM	35-45	•	•	•			
WS57C256F	32K x 8	High-Speed 256K CMOS EPROM	45-70	•	•	•	•		

HIGH-SPEED CMOS EPROMs – MILITARY

				DESC	Package Selection				
Part No.	Architecture	Description	Speed (ns)	SMD	С	D	т	L	
WS57C64F	8K x 8	High-Speed 64K CMOS EPROM	70	•	•	•			
WS27C64F	8K x 8	Low-Power 64K CMOS EPROM	90	•	٠	•			
WS57C128F	16K x 8	High-Speed 128K CMOS EPROM	70	•	•	•			
WS57C128FB	16K x 8	High-Speed 128K CMOS EPROM	45-55		•	•			
WS27C128F	16K x 8	Low-Power 128K CMOS EPROM	90	•	•	•			
WS57C256F	32K x 8	High-Speed 256K CMOS EPROM	55-70	•	•	•	•		
WS27C256F	32K x 8	Low-Power 256K CMOS EPROM	90	•	•	•		•	

CMOS EPROMs – COMMERCIAL

				Packag	je Se	election
Part No.	Architecture	Description	Speed (ns)	D	J	L
WS27C010L	128K x 8	Low-Power 1 Meg CMOS EPROM	120-150	•	•	•
WS27C210L	64K x 16	Low-Power 1 Meg CMOS EPROM	100-200	•	•	•

CMOS EPROMs - MILITARY

				DESC Package Sele				ction
Part No.	Architecture	Description	Speed (ns)	SMD	С	D	L	т
WS27C256L	32K x 8	Low-Power 256K CMOS EPROM	120-250	•	•	•		•
WS27C512L	64K x 8	Low-Power 512K CMOS EPROM	120-200	•	•	•		•
WS27C010L	128K x 8	Low-Power 1 Meg CMOS EPROM	150-200	•	•	•	•	
WS27C210L	64K x 16	Low-Power 1 Meg CMOS EPROM	150-200		•	•	•	

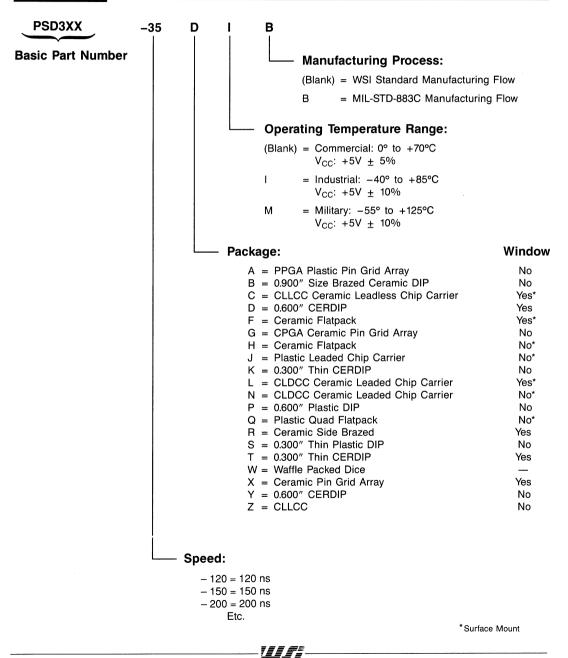
ULF-

CMOS BIT SLICE AND LOGIC

		Sp	eed		Package Selection						
Part No.	Description	Comm'l	Military	в	G	J	κ	L	Ρ	S	Y
WS5901	4-Bit CMOS Bit Slice Processor	32,43 MHz	32,43MHz						•		•
WS59016	16-Bit CMOS Bit Slice Processor	15 MHz	12.5MHz	•		•		•			
WS59032	32-Bit CMOS Bit Slice Processor	26.4,33 MHz	23.6,29 MHz		•						
WS5910	CMOS Microprogram Controller	20,30 MHz	20,30 MHz						•		•
WS59510	16K x 16 CMOS Multiplier-Accum.	30-50 ns			•	٠			•		
WS59520	CMOS Pipeline Register	Tpd = 22ns	Tpd = 24ns				•			•	
WS59521	CMOS Pipeline Register	Tpd = 22ns	Tpd = 24ns				•			•	
WS59820	CMOS Bi-Directional Register	Tpd = 23ns	Tpd = 25ns		•	•					

WSI PACKAGE DESCRIPTIONS

Package Code	Description	Window	Surface Mount	Plastic/OTP
B/R	Ceramic Sidebrazed Dip	N/Y	N	_
С	Ceramic Leadess Chip Carrier (CLLCC)	Y	Y	-
C/Z	Ceramic Leadless Chip Carrier (CLLCC)	Y/N	Y	· - · · ·
D/Y	0.600" Ceramic Dip	Y/N	Ν	-
F/H	Ceramic Flatpack	Y/N	Y	_
J	Plastic Leaded Chip Carrier (PLDCC)	N	Y	Y
L/N	Ceramic Leaded Chip Carrier (CLDCC)	Y/N	Y	_ '
Р	Plastic Dip	N	Ν	Y Y
Q	Plastic Quad Flat Pack (PQFP)	Ν	Y	Y
S	0.300" Plastic Dip	Ν	N	Y
T/K	0.300" Ceramic Dip	Y/N	Ν	· _
X/G	Ceramic Pin Grid Array (CPGA)	Y/N	Ν	_


47280 Kato Road Fremont, California 94538-7333 Tel: 510-656-5400 Fax: 510-657-5916 800-TEAM-WSI (800-832-6974) In California 800-562-6363

WSI REGIONAL HOTLINES

USA Northwest:	Tel: 510-656-5400	Fax: 510-657-5916
USA Southwest:	Tel: 714-753-1180	Fax: 714-753-1179
USA Midwest:	Tel: 708-882-1893	Fax: 708-882-1881
USA Southeast:	Tel: 214-680-0077	Fax: 214-680-0280
USA Mid-Atlantic:	Tel: 215-638-9617	Fax: 215-638-7326
USA Northeast:	Tel: 508-685-6101	Fax: 508-685-6105
Europe (France):	Tel: 33 (1) 69-32-01-20	Fax: 33 (1) 69-32-02-19
Europe (Germany)	Tel: (49) 89.23.11.38.49	Fax: (49) 89.23.11.38.11
Asia (Hong Kong)	Tel: 852-575-0112	Fax: 852-893-0678

Printed in U. S. A. 1/92 • Revision 8.4

Ordering Information High-Performance CMOS Products

1-15

General Information

PSD3XX Family

MAP168

Development Systems

Package Information

Sales Representatives and Distributors

2

Section Index

PSD3XX	PSD301	Programmable Microcontroller Peripheral with Memory2-1
Family		renpheral with Memory2-1
	PSD311	Programmable Microcontroller
		Peripheral with Memory2-45
	PSD302	Programmable Microcontroller
	1 00000	Peripheral with Memory2-83
	PSD312	Programmable Microcontroller
	100012	Peripheral with Memory2-127
	PSD303	Programmable Microcontroller
	100000	Peripheral with Memory2-165
	PSD313	Programmable Microcontroller
		Peripheral with Memory2-209
	Application Note 011	The PSD3XX Device Description2-247
	Application Note 013	The PSD301 Streamlines a
		Microcontroller-based
		Smart Transmitter Design2-301
	Application Note 014	Using the PSD3XX PAD for System
	•••	Logic Replacement2-313
	Application Note 016	Power Considerations in the PSD3XX2-327
	Application Note 018	Security of Design in the PSD3XX2-341
	Application Note 019	The PSD311 Simplifies an Eight Wire Cable
		Tester Design and Increases Flexibility2-345

For additional information, call 800-TEAM-WSI (800-832-6974). In California, Call 800-562-6363.

Programmable Peripheral PSD301 Programmable Microcontroller Peripheral with Memory

Key Features

- Single Chip Programmable Peripheral for Microcontroller-based Applications
- 19 Individually Configurable I/O pins that can be used as
- Microcontroller I/O port expansion
- Programmable Address Decoder (PAD) I/O
- Latched address output
- Open drain or CMOS
- Two Programmable Arrays (PAD A and PAD B)
- Total of 40 Product Terms and up to 16 Inputs and 24 Outputs
- Address Decoding up to 1 MB
- Logic replacement
- "No Glue" Microcontroller Chip-Set
- Built-in address latches for multiplexed address/data bus
- Non-multiplexed address/data bus mode
- Selectable 8 or 16 bit data bus width
- ALE and Reset polarity programmable
- Selectable modes for read and write control bus as RD/WR or R/W/E
- BHE/pin for byte select in 16-bit mode
- PSEN/pin for 8051 users
- 256 Kbits of UV EPROM
- Configurable as 32K x 8 or as 16K x 16
- Divides into 8 equal mappable blocks for optimized mapping

Partial Listing of Microcontrollers Supported

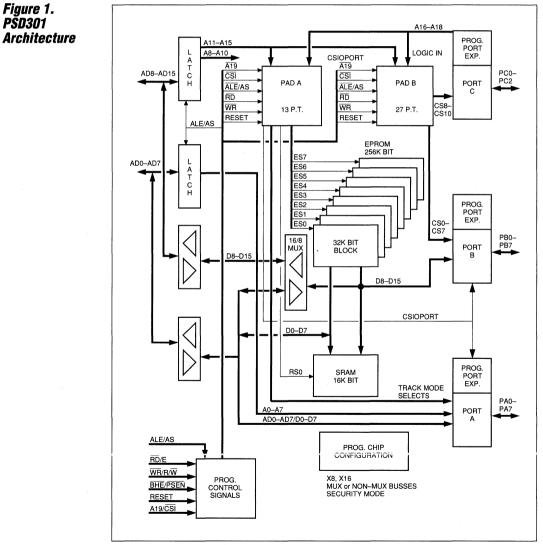
Motorola family: M6805, M68HC11, M68HC16, M68000/10/20, M60008, M683XX

□ Intel family: 8031/8051, 8096/8098, 80186/88, 80196/98

- Block resolution is 4K x 8 or 2K x 16
- 120 ns EPROM access time, including input latches and PAD address decoding.
- 16 Kbit Static RAM
- Configurable as 2K x 8 or as 1K x 16
- 120 ns SRAM access time, including input latches and PAD address decoding
- Address/Data Track Mode
- Enables easy Interface to Shared Resources (Mail Box SRAM) with other Microcontrollers or a Host Processor
- Built-In Security
- Locks the PSD301 Configuration and PAD Decoding
- □ Available in a Variety of Packaging
- 44 Pin PLDCC and CLDCC
- 52 Pin PQFP
- 44 Pin CPGA
- Simple Menu-Driven Software: Configure the PSD301 on an IBM PC
- Pin Compatible with the PSD3XX Family

TI: TMS320C14
 Signetics: SC80C451, SC80552
 Zilog: Z8, Z80, Z180
 National: HPC16000, HPC63400

Applications	 Computers (Workstations and PCs) Fixed Disk Control, Modem, Imaging, Laser Printer Control 	 Industrial Robotics, Power Line Access, Power Line Motor
	 Telecommunications Modem, Cellular Phone, Digital PBX, Digital Speech, FAX, Digital Signal Processing 	 Medical Instrumentation Hearing Aids, Monitoring Equipment, Diagnostic Tools
		 Military Missile Guidance, Radar, Sonar, Secure Communications, RF Modems
Introduction	The PSD301 is a member of the rapidly growing family of PSD devices. The PSD301 is ideal for microcontroller-based applications, where fast time-to-market, small form factor, and low power con-	required control and peripheral elements of a microcontroller-based system peripheral with no external discrete "glue" logic required.
	sinan form factor, and fow power con- sumptions are essential. When combined in an 8- or 16-bit system, virtually any microcontroller (68HC11, 8051, 8096, 16000, etc.) and the PSD301 work together to create a very powerful chip-set solution. This implementation provides all the	The solution comes complete with simple system software development tools for inte- grating the PSD301 with the microcon- troller. Hosted on the IBM PC platforms or compatibles, the easy to use software enables the designer complete freedom in designing the system.
Product Description	The PSD301 integrates high performance user-configurable blocks of EPROM, SRAM, and programmable logic technology	An interface to shared external resources.
	to provide a single chip microcontroller interface. The major functional blocks include two programmable logic arrays, PAD A and PAD B, 256K bits of high speed EPROM, 16K bits of high speed SRAM,	WSI's PSD301 (shown in Figure 1) can effi- ciently interface with, and enhance, any 8- or 16-bit microcontroller system. This is the first solution that provides microcontrollers with port expansion, latched addresses,
	input latches, and output ports. The PSD301 is ideal for applications requiring high performance, low power, and very small form factors. These include fixed disk control, modem, cellular telephone, instru- mentation, computer peripherals, military	two programmable logic arrays PAD A and PAD B, an interface to shared resources, 256K bit EPROM, and 16K bit SRAM on a single chip. The PSD301 does not require any glue logic for interfacing to any 8- or 16-bit microcontroller.
	and similar applications. The PSD301 offers a unique single-chip solution for microcontrollers that need:	The 8051 microcontroller family can take full advantage of the PSD301's separate program and data address spaces. Users of the 68HCXX family of microcontrollers
	I/O reconstruction (microcontrollers lose at least two I/O ports when accessing external resources).	can change the functionality of the control signals and directly connect the R/\overline{W} and E, or the R/\overline{W} and \overline{DS} signals. Users of 16- bit microcontrollers (including the 80186,
	More EPROM and SRAM than the microcontroller's internal memory.	8096, 80196, 16XXX) can use the PSD301 in a 16-bit configuration. Address and data
	Chip-select, control, or latched address lines that are otherwise implemented	buses can be configured to be separate or multiplexed, whichever is required by the host processor.

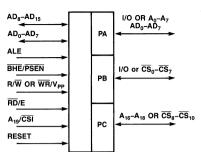

W

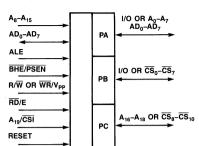
2-2

Product Discription (Cont.)

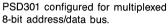
The flexibility of the PSD301 I/O ports permits interfacing to shared resources. The arbitration can be controlled internally by PAD A outputs. The user can assign the following functions to these ports: standard I/O pins, chip-select outputs from the PAD A and PAD B, or latched address or multiplexed low-order address/data byte. This enables users to design add-on systems such as disk drives, modems, etc., that easily interface to the host bus (e.g., IBM PC. SCSI).

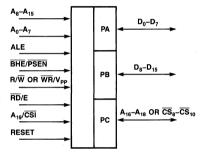
The PSD301 on-chip programmable address decoder (PAD A) enables the user to map the I/O ports, eight segments of EPROM (as 4K x 8 or as 2K x 16) and SRAM (as 2K x 8 or as 1K x 16) anywhere in the address space of the microcontroller. PAD B can implement up to 4 sum-ofproduct expressions based on address inputs and control signals.

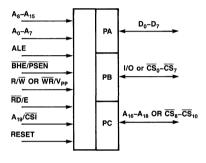



us:

PŠD301 Architecture


Figure 2. PSD301 Port Configurations


Figure 2 shows the PSD301's I/O port configurations.



PSD301 configured for multiplexed 16-bit address/data bus

PSD301 configured for nonmultiplexed 16-bit address/data bus. 3-bit address/data bus.

PSD301 configured for nonmultiplexed 8-bit address/data bus.

Legend:

 AD_0-AD_7 = addresses A_0-A_7 multiplexed with data lines D_0-D_7 . AD_8-AD_{15} = addresses A_8-A_{15} multiplexed with data lines D_8-D_{15} .

Table 1. PSD301Pin Descriptions

Name	Туре	Description
BHE/PSEN	I	When the data bus width is 8 bits (CDATA = 0), this pin is \overrightarrow{PSEN} . In this mode, \overrightarrow{PSEN} is the active low EPROM read pulse. The SRAM and I/O ports read signal is generated when \overrightarrow{RD} is low (CRRWR = 0), or when E and \overrightarrow{RW} are high (CRRWR = 1). If the host processor is a member of the 8031 family, \overrightarrow{PSEN} must be connected to the corresponding host pin. In other 8-bit host processors that do not have a special EPROM-only read strobe, \overrightarrow{PSEN} should be tied to V _{CC} . In this case, \overrightarrow{RD} or E and $\overrightarrow{R/W}$ provide the read strobe for the SRAM, I/O ports, and EPROM. When the data bus width is configured as 16 (CDATA = 1), this pin is \overrightarrow{BHE} . When \overrightarrow{BHE} is low, a high-order byte is read from, or written into the PSD301, depending on the operation being read or write, respectively. In programming mode, this pin is pulsed between V _{PP} and 0.
WR/V _{PP} or R/W/V _{PP}	I	In the operating mode, this pin's function is \overline{WR} (CRRWR = 0) or R/ \overline{W} (CRRWR = 1). When configured as \overline{WR} , a write operation is executed during an active low pulse. When configured as R/ \overline{W} , with R/ \overline{W} = 1 and E = 1, a read operation is executed; if R/ \overline{W} = 0 and E = 1, a write operation is executed. In programming mode, this pin must be tied to V _{PP} voltage.
RD/E	I	When configured as \overline{RD} (CRRWR = 0), this pin provides an active low \overline{RD} strobe. When configured as E (CRRWR = 1), this pin becomes an active high pulse, which, together with $\overline{R/W}$ defines the cycle type. Then, if $\overline{R/W}$ = 1 and E = 1, a read operation is executed. If $\overline{R/W}$ = 0 and E = 1, a write operation is executed.
CSI/A19	I	This pin has two configurations. When it is \overline{CSI} (CA19/ \overline{CSI} = 0) and the pin is asserted high, the device is deselected and powered down. (See Tables 12 and 13 for the chip state during power-down mode.) If the pin is asserted low, the chip is in normal operational mode. When it is A19, (CA19/ \overline{CSI} = 1), this pin can be used as an additional input to the PAD. In this mode, there is no power-down capability.
RESET	Ι	This user-programmable pin can be configured to reset on high level (CRESET = 1) or on low level (CRESET = 0). It should remain active for at least 100 ns. See Tables 10 and 11 for the chip state after reset.
ALE or AS	I	In the multiplexed modes, the ALE pin functions as an Address Latch Enable or as an Address strobe and can be configured as an active high or active low signal. The ALE or AS trailing edge latches lines AD15/A15-AD0/A0, A16-A19, and BHE, depending on the PSD301 configuration. See Table 8. In the non-multiplexed modes, it can be used as a general-purpose PAD input signal.

Legend: The I/O column abbreviations are: I = input; I/O = input/output; P = power.

NOTE: 3. All the configuration bits mentioned in Table 1 appear in parentheses and are explained in the Configuration Register section.

UJ:

Table 1. PSD301 Pin Descriptions (Cont.)

Name	Туре	Description
PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0	I/O	PA7-PA0 is an 8-bit port that can be configured to track AD7/A7-AD0/A0 from the input (CPAF2 = 1). Otherwise (CPAF2 = 0), each bit can be configured separately as an I/O or lower-order latched address line. When configured as an I/O (CPAF1 = 0), the direction of the pin is defined by its direction bit, which resides in the direction register. If a pin is an I/O output, its data bit (which resides in the data register) comes out. When it is configured as a low- order address line (CPAF1 = 1), A7-A0 can be made the corresponding output through this port (e.g., PA6 can be configured to be the A6 address line). Each port bit can be a CMOS output (CPACOD = 0) or an open drain output (CPACOD = 1). When the chip is in non-multiplexed mode (CADDRDAT = 0), the port becomes the data bus lines (D0-D7). See Figure 4.
PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0	1/0	PB7-PB0 is an 8-bit port for which each bit can be configured as an I/O (CPBF = 1) or chip-select output (CPBF = 0). Each port bit can be a CMOS output (CPBCOD = 0) or an open drain output (CPBCOD = 1). When configured as an I/O, the direction of the pin is defined by its direction bit, which resides in the direction register. If a pin is an I/O output, its data (which resides in the data register) comes out. When configured as a chip- select output, $\overline{CSO}-\overline{CS3}$ are a function of up to four product terms of the inputs to the PAD; $\overline{CS4}-\overline{CS7}$ then are each a function of up to two product terms. When the chip is in non-multiplexed mode (CADDRAT = 0) and the data bus width is 16 (CDATA = 1), the port becomes the most significant byte of the data bus (D8-D15). See Figure 6.
PC0 PC1 PC2	I/O	This is a 3-bit port for which each bit is configurable as a PAD input or output. When configured as an input (CPCF = 0), the bits can be latched with ALE (CADDHLT = 1) or be transparent inputs to the PAD (CADDHLT = 0). When a pin is configured as an output (CPCF = 1), it is a function of one product term of all PAD inputs. See Figure 7.
AD0/A0 AD1/A1 AD2/A2 AD3/A3 AD4/A4 AD5/A5 AD6/A6 AD7/A7	I/O	In multiplexed mode, these pins are the multiplexed low- order address/data byte. After ALE latches the addresses, these pins input or output data, depending on the settings of the $\overline{\text{RD}}/\text{E}$, $\overline{\text{WR}}/\text{V}_{\text{PP}}$ or $\overline{R}/\overline{\text{W}}$, and $\overline{\text{BHE}}/\overline{\text{PSEN}}$ pins. In non-multiplexed mode, these pins are the low-order address input byte.
AD8/A8 AD9/A9 AD10/A10 AD11/A11 AD12/A12 AD13/A13 AD14/A14 AD15/A15	I/O	In 16-bit multiplexed mode, these pins are the multiplexed high-order address/data byte. After ALE latches the addresses, these pins input or output data, depending on the settings of the RD/E, WR/V _{PP} or R/W, and BHE/PSEN pins. In all other modes, these pins are the high-order address input byte.
GND	Р	V _{SS} (ground) pin.
V _{CC}	Р	Supply voltage input.

Operating Modes

The PSD301's four operating modes allow it to interface directly to 8- and 16-bit microcontrollers and microprocessors with multiplexed and non-multiplexed address/data buses. These operating modes are:

- Multiplexed 8-bit address/data bus
- Multiplexed 16-bit address/data bus
- Non-multiplexed address/data, 8-bit data bus
- □ Non-multiplexed 16-bit address/data bus

Multiplexed 8-Bit Address/Data Bus

This mode is used to interface to microcontrollers with an 8-bit data bus and a 16-bit or larger address bus. The low-order address/data bus (AD0/A0-AD7/A7) is bi-directional and permits the latching of the address when the ALE signal is active. On the same pins, the data is read from or written to the device; this depends on the state of the RD/E, BHE/PSEN, and \overline{WR}/V_{PP} or R/W pins. The high-order address/data bus (AD8/A8-AD15/A15) contains the high-order address bus byte. Ports A and B can be configured as in Table 2.

Multiplexed 16-Bit Address/Data Bus

This mode is used to interface to microcontrollers with a 16-bit data bus and a 16-bit or larger address bus. The loworder address/data bus (AD0/A0–AD7/A7) is bi-directional and permits the latching of the address when the ALE signal is active. On the same pins, the data is read from or written to the device; this depends on the state of the RD/E, BHE/PSEN, and WR/V_{PP} or R/W pins. The high-order address/data bus (AD8/A8–AD15/A15) is bidirectional and permits latching of the high-order address when the ALE signal is active on the same pins. The high-order data bus is read from or written to the device, depending on the state of the RD/E, BHE/PSEN, and WR/V_{PP} or R/W pins. Ports A and B can be configured as in Table 2.

Non-Multiplexed Address/Data, 8-Bit Data Bus

This mode is used to interface to nonmultiplexed 8-bit microcontrollers with an 8-bit data bus and a 16-bit or larger address bus. The low-order address/data bus (AD0/A0-AD7/A7) is the low-order address input bus. The high-order address/data bus (AD8/A8-AD15/A15) is the high-order address bus byte. Port A is the low-order data bus. Port B can be configured as shown in Table 2.

Non-Multiplexed 16-Bit Address/Data Bus

This mode is used to interface to nonmultiplexed 16-bit microcontrollers with a 16-bit data bus and a 16-bit or larger address bus. The low-order address/data bus (AD0/A0-AD7/A7) is the low-order address input bus. The high-order address/ data bus (AD8/A8-AD15/A15) is the highorder address bus byte. Port A is the loworder data bus. Port B is the high-order data bus.

Table 2 summarizes the effect of the different operating modes on ports A, B, and the address/data pins. The configuration of Port C is independent of the four operating modes.

Table 2. PSD301 Bus and Port Configuration Options

	Multiplexed Address/Data	Non-Multiplexed Address/Data
8-Bit Data Bus		• · · · · · · · · · · · · · · · · · · ·
Port A	I/O and/or low-order address lines or Low-order multiplexed address/data byte	D0–D7 data bus lines
Port B	I/O and/or CS0-CS7	I/O and/or CS0–CS7
AD0/A0-AD7/A7	Low-order multiplexed address/data byte	Low-order address bus byte
AD8/A8-AD15/A15	High-order address bus byte	High-order address bus byte
16-Bit Data Bus		· · · · · ·
Port A	I/O and/or low-order address lines or Low-order multiplexed address/data byte	Low-order data bus byte
Port B	I/O and/or CS0-CS7	High-order data bus byte
AD0/A0-AD7/A7	Low-order multiplexed address/data byte	Low-order address bus byte
AD8/A8-AD15/A15	High-order multiplexed address/data byte	High-order address bus byte

Programmable Address Decoder (PAD)

The PSD301 consists of two programmable arrays referred to as PAD A and PAD B (Figure 3). PAD A is used to generate chip select signals derived from the input address to the internal EPROM blocks, SRAM, I/O ports, and Track Mode signals. All its I/O functions are listed in Table 3 and shown in Figure 3. PAD B outputs to Ports B and C for off-chip usage.

ur

PAD B can also be used to extend the decoding to select external devices or as a random logic replacement. The input bus to both PAD A and PAD B is the same. Using WSI's MAPLE software, each programmable bit in the PAD's array can have one of three logic states of 0, 1, and don't care (X). In a user's logic design, both PADs can share the same inputs using the X for input signals that are not supposed to affect other functions. The PADs use UV CMOS EPROM technology and can be programmed and erased by the user.

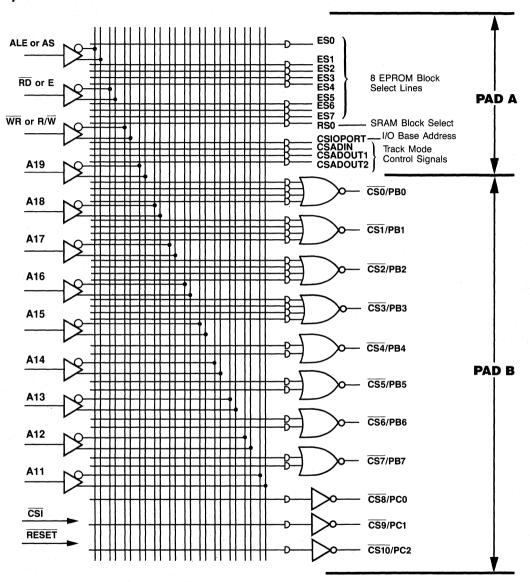

2-8

Table 3. PSD301 PAD A and B I/0 Functions

Function				
PAD A and PAD I	B Inputs			
CSI or A19	In CSI mode (when high), PAD deselects all of its outputs and enters a power-down mode (see Tables 12 and 13). In A19 mode, it is another input to the PAD.			
A16–A18	These are general purpose inputs from Port C. See Figure 3, Note 4.			
A11–A15	These are address inputs.			
RD or E	This is the read pulse or enable strobe input.			
WR or R/W	This is the write pulse or R/\overline{W} select signal.			
ALE	This is the ALE input to the chip.			
RESET	This deselects all outputs from the PAD; it can not be used in product term equations. See Tables 10 and 11.			
PAD A Outputs				
ES0–ES7	These are internal chip-selects to the 8 EPROM banks. Each bank can be located on any boundary that is a function of one product term of the PAD address inputs.			
RS0	This is an internal chip-select to the SRAM. Its base address location is a function of one term of the PAD address inputs.			
CSIOPORT	This internal chip-select selects the I/O ports. It can be placed on any boundary that is a function of one product term of the PAD inputs. See Tables 6 and 7.			
CSADIN	This internal chip-select, when Port A is configured as a low-order address/data bus in the track mode (CPAF2 = 1), controls the input direction of Port A. CSADIN is gated externally to the PAD by the internal read signal. When CSADIN and a read operation are active, data presented on Port A flows out of AD0/A0–AD7/A7. This chip-select can be placed on any boundary that is a function of one product term of the PAD inputs. See Figure 5.			
CSADOUT1	This internal chip-select, when Port A is configured as a low-order address/data bus in track mode (CPAF2 = 1), controls the output direction of Port A. CSADOUT1 is gated externally to the PAD by the ALE signal. When CSADOUT1 and the ALE signal are active, the address presented on AD0/A0–AD7/A7 flows out of Port A. This chip-select can be placed on any boundary that is a function of one product term of the PAD inputs. See Figure 5.			
CSADOUT2	This internal chip-select, when Port A is configured as a low-order address/data bus in the track mode (CPAF2 = 1), controls the output direction of Port A. CSADOUT2 must include the write-cycle control signals as part of its product term. When CSADOUT2 is active, the data presented on AD0/A0–AD7/A7 flows out of Port A. This chip-select can be placed on any boundary that is a function of one product term of the PAD inputs. See Figure 5.			
PAD B Outputs				
CSO-CS3	These chip-select outputs can be routed through Port B. Each of them is a function of up to four product terms of the PAD inputs.			
CS4-CS7	These chip-select outputs can be routed through Port B. Each of them is a function of up to two product terms of the PAD inputs.			
CS8-CS10	These chip-select outputs can be routed through Port C. See Figure 3, Note 4. Each of them is a function of one product term of the PAD inputs.			

us:

Figure 3. PSD301 PAD Description

us:

Configuration Bits

The configuration bits shown in Table 4 are non-volatile cells that let the user set the device, I/O, and control functions to the proper operational mode. Table 5 lists all configuration bits. The configuration bits are programmed and verified during the

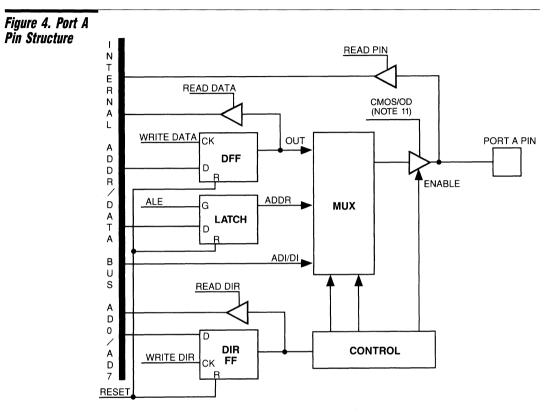
programming phase. In operational mode, they are not accessible. To simplify implementing a specific mode, use the WSI's PSD301 MAPLE software to set the bits.

<i>Table 4. PSD301 Non-Volatile</i>	Use This Bit	То
Configuration	CDATA	Set the data bus width to 8 or 16 bits.
Bits	CADDRDAT	Set the address/data buses to multiplexed or non-multiplexed mode.
	CRRWR	Set the \overline{RD}/E and \overline{WR}/V_{PP} or R/\overline{W} pins to \overline{RD} and \overline{WR} pulse, or to E strobe and R/W status.
	CA19/CSI	Set A19/CSI to CSI (power-down) or A19 input.
	CALE	Set the ALE polarity.
	CPAF2	Set Port A either to track the low-order byte of the address/data multiplexed bus or to select the I/O or address option. ⁸
	CSECURITY	Set the security on or off.
	CRESET	Set the RESET polarity.
	COMB/SEP	Set \overrightarrow{PSEN} and \overrightarrow{RD} for combined or separate address spaces (see Figures 8 and 9).
	CPAF1	Configure each pin of Port A in multiplexed mode to be an I/O or address output.
	CPACOD	Configure each pin of Port A as an open drain or active CMOS pull- up output.
	CPBF	Configure each pin of Port B as an I/O or a chip-select output.
	CPBCOD	Configure each pin of Port B as an open drain or active CMOS pull- up output.
	CPCF	Configure each pin of Port C as an address input or a chip-select output.
	CADDHLT	Configure pins A16–A19 to go through a latch or to have their latch transparent.
	CATD	Configure pins A16–A19 as PAD logic inputs or high-order address inputs.

NOTE: 8. For functional and value descriptions, refer to table 5.

2

Table 5. PSD301ConfigurationBits(46 total bits)


Configuration Bits	No. of Bits	Description
CDATA	1	8-bit or 16-bit data bus width CDATA = 0, 8-bit data bus CDATA = 1, 16 bit data bus
CADDRDAT	1	Address/data multiplexed or non-multiplexed (separate buses) CADDRDAT = 0, non-multiplexed address/data bus CADDRDAT = 1, multiplexed address/data bus
CRRWR	1	CRRWR = 0, \overline{RD} and \overline{WR} active low strobes CRRWR = 1, R/W status and E active high pulse
CA19/CSI	1	A19 or \overline{CSI} CA19/ \overline{CSI} = 0, enable power-down mode CA19/ \overline{CSI} = 1, A19 input to PAD
CALE	1	Active high or active low CALE = 0, active high CALE = 1, active low
CRESET	1	Active high or active low CRESET = 0, active low reset signal CRESET = 1, active high reset signal
COMB/SEP	1	Combined or separate memory space for EPROM and SRAM $\overline{\text{COMB}}$ /SEP = 0, combined $\overline{\text{COMB}}$ /SEP = 1, separate
CPAF1	8	Port A I/Os or A0–A7 CPAF1 = 0, Port A pin = I/O CPAF1 = 1, Port A pin = Ai ($0 \le i \le 7$)
CPAF2	1	Port A AD0–AD7 (address/data multiplexed bus) CPAF2 = 0, address or I/O on Port A (according to CPAF1) CPAF2 = 1, address/data multiplexed on Port A (track mode)
CPBF	8	Port B I/Os or $\overline{CS0}$ – $\overline{CS7}$ CPBF = 0, Port B Pin = \overline{CSi} (0 $\leq i \leq 7$) CPBF = 1, Port B Pin = I/O
CPCF	3	Port C A16–A18 or $\overline{CS8}$ – $\overline{CS10}$ CPCF = 0, Port C Pin = Ai (16 $\leq i \leq$ 18) CPCF = 1, Port C Pin = \overline{CSi} (8 $\leq i \leq$ 10)
CPACOD	8	Port A CMOS or open-drain outputs CPACOD = 0, CMOS output CPACOD = 1, open-drain output
CPBCOD	8	Port B CMOS or open-drain outputs CPBCOD = 0, CMOS output CPBCOD = 1, open-drain output
CADDHLT	1	A16–A19 latched or latch transparent CADDHLT = 0, address latch transparent CADDHLT = 1, address latched (ALE dependent)
CATD	1	A16–A19 used as address or logic inputs CATD = 0, logic inputs CATD = 1, address inputs
CSECURITY	1	Security on or off CSECURITY = 0, no security CSECURITY = 1, secured part (cannot be copied)

NOTES: 9. WSI's MAPLE software will guide the user to the proper configuration choice. 10. In an unprogrammed or erased part, all configuration bits are 0.

Port Functions

The PSD301 has three I/O ports (Ports A, B, and C) that are configurable at the bit level. This permits great flexibility and a high degree of customization for specific

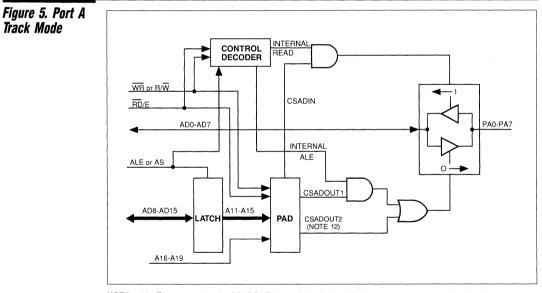
applications. The following is a description of each port. Figure 4 shows the pin structure of Port A.

NOTE: 11. CMOS/OD determines whether the output is open drain or CMOS.

Port A in Multiplexed Address/Data Mode

The default configuration of Port A is I/O. In this mode, every pin can be set as an input or output by writing into the respective pin's direction flip flop (DIR FF, in Figure 4). As an output, the pin level can be controlled by writing into the respective pin's data flip flop (DFF, in Figure 4). When DIR FF = 1, the pin is configured as an output. When DIR FF = 0, the pin is configured as an input. The controller can read the DIR FF bits by accessing the READ DIR register; it can read the DFF bits by accessing the READ DATA register. Port A pin levels can be read by accessing the READ PIN register. Individual pins can be configured as CMOS or open drain outputs. Open drain pins require external pull-up resistors. For addressing information, refer to Tables 6 and 7.

Alternatively, each bit of Port A can be configured as a low-order latched address bus bit. The address is provided by the port address latch, which latches the address on the trailing edge of ALE. PA0–PA7 can become A0–A7, respectively. This feature of the PSD301 lets the user generate low-order address bits to access external peripherals or memory that require several low-order address lines.


Port Functions (Cont.)

Another mode of Port A (CPAF2 = 1) sets the entire port to track the inputs AD0/A0-AD7/A7, depending on specific address ranges defined by the PAD's CSADIN, CSADOUT1, and CSADOUT2 signals. This feature lets the user interface the microcontroller to shared external resources without requiring external buffers and decoders. In this mode, the port is effectively a bi-directional buffer. The direction is controlled by using the input signals ALE, RD/E, WR/Vpp or R/W, and the internal PAD outputs CSADOUT1, CSADOUT2 and CSADIN (see Figure 5). When CSADOUT1 and ALE are true, the address on the input AD0/A7-AD7/A7 pins flows out through Port A. (Carefully check the generation of CSADOUT1, and ensure that it is stable during the ALE pulse; see Figures 22 and 23). When CSADOUT2 is

active, a write operation is performed (see note to Figure 5). The data on the input AD0/A7–AD7/A7 pins flows out through Port A. When CSADIN and a read operation is performed (depending on the mode of the RD/E and \overline{WR}/V_{PP} or R/W pins), the data on Port A flows out through the AD0/A7– AD7/A7 pins. In this operational mode, Port A is tri-stated when none of the abovementioned three conditions exist.

Port A in Non-Multiplexed Address/ Data Mode

In this mode, Port A becomes the low order data bus byte of the chip. When reading an internal PSD301 location, data is presented on Port A pins. When writing to an internal PSD301 location, data present on Port A pins is written to that location.

NOTE: 12. The expression for CSADOUT2 must include the following write operation cycle signals: For CRRWR = 0, CSADOUT2 must include WR = 0. For CRRWR = 1, CSADOUT2 must include E = 1 and R/W = 0.

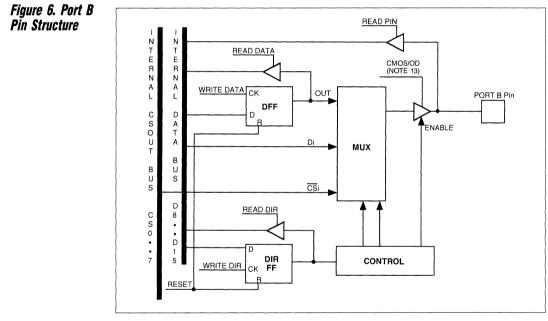
us:

Port B in Multiplexed Address/Data and in 8-Bit Non-Multiplexed Modes

The default configuration of Port B is I/O. In this mode, every pin can be set as an input or output by writing into the respective pin's direction flip flop (DIR FF, in Figure 6). As an output, the pin level can be controlled by writing into the respective pin's data flip flop (DFF, in Figure 6). When DIR FF = 1, the pin is configured as an output. When DIR FF = 0, the pin is configured as an input. The controller can read the DIR FF bits by accessing the READ DIR register; it can read the DFF bits by accessing the READ DATA register. Port B pin levels can be read by accessing the READ PIN register.

Port Functions (Cont.)

Individual pins can be configured as CMOS or open drain outputs. Open drain pins require external pull-up resistors. For addressing information, refer to Tables 6 and 7.


Alternatively, each bit of Port B can be configured to provide a chip-select output signal from the PAD. PB0–PB7 can provide $\overline{CS0}-\overline{CS7}$, respectively. Each of the signals $\overline{CS0}-\overline{CS3}$ is comprised of four product terms. Thus, up to four ANDed expressions can be ORed while deriving any of these signals. Each of the signals $\overline{CS4}-\overline{CS7}$ is comprised of two product terms. Thus, up to two ANDed expressions can be ORed while deriving any of these signals.

Port B in 16-Bit Non-Multiplexed Address/Data Mode

In this mode, Port B becomes the highorder data bus byte of the chip. When reading an internal PSD301 high-order data bus byte location, the data is presented on Port B pins. When writing to an internal PSD301 high-order data bus byte location, data present on Port B is written to that location. See Table 9.

Accessing the I/O Port Registers

Tables 6 and 7 show the offset values with the respect to the base address defined by the CSIOPORT. They let the user access the corresponding registers.

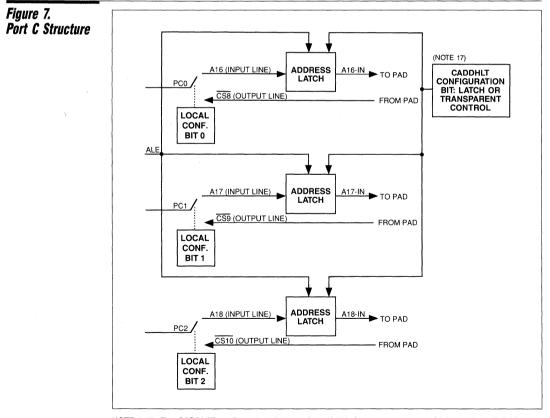
NOTE: 13. CMOS/OD determines whether the output is open drain or CMOS.

<i>Table 6. 1/0 Port</i> <i>Addresses in an</i>	Register Name	Byte Size Access of the I/O Port Registers Offset from the CSIOPORT
8-bit Data Bus Mode	Pin Register of Port A	+2 (accessible during read operation only)
Direction	Direction Register of Port A	+4
	Data Register of Port A	+6
	Pin Register of Port B	+3 (accessible during read operation only)
	Direction Register of Port B	+5
	Data Register of Port B	+7

us:

Table 7. I/O Port Addresses in a 16-bit Data Bus Mode

Register Name	Word Size Access of the I/O Port Registers Offset from the CSIOPORT
Pin Register of Ports B and A	+2 (accessible during read operation only)
Direction Register of Ports B and A	+4
Data Register of Ports B and A	+6


NOTES: 14. When the data bus width is 16, Port B registers can only be accessed if the BHE signal is low. 15. When accessing words, the high-order byte is connected to Port B, and the low-order byte is connected to Port A.

16. I/O Ports A and B are still byte-addressable, as shown in Table 6. For I/O Port B register access, BHE must be low.

Port C in All Modes

Each pin of Port C (shown in Figure 7) can be configured as an input or output from the PAD. As inputs, the pins are named A16–A18. Although the pins are given names of the high-order address bus, they can be used for any other logic inputs to the PAD. For example, A8–A10 can also be connected to those pins, reducing the boundaries of $\overline{CS0}$ - $\overline{CS7}$ resolution to 256 bytes. Port C address latches can be programmed to latch the inputs by the trailing edge ALE or to be transparent.

Alternatively, PC0–PC2 can become $\overline{CS8}$ – $\overline{CS10}$ outputs, respectively, providing the user with more external chip-select PAD outputs. Each of the signals $\overline{CS8}$ – $\overline{CS10}$ is comprised of one product term.

NOTE: 17. The CADDHLT configuration bit determines if A18–A16 are transparent via the latch, or if they must be latched by the trailing edge of the ALE strobe.

	PSD301
If one or more of the pins PC0, PC1, PC2 and $\overline{CSI}/A19$ are configured as inputs, the configuration bits CADDHLT and CATD define their functionality inside the part. CADDHLT determines if these inputs are to be latched by the trailing edge of the ALE or AS signal (CADDHLT = 1), or enabled into the PSD301 at all times (CADDHLT = 0, transparent mode). CATD determines	whether these lines are high-order address lines, that take part in the derivation of memory and I/O select signals inside the chip (CATD = 1), or logic input lines that have no impact on memory or I/O selections (CATD = 0). Logic input lines typically participate in the Boolean expressions implemented in the PAD.
The PSD301 has 256K bits of EPROM. Depending on the configuration of the data bus, the EPROM can be organized as $32K \times 8$ (8-bit data bus) or as $16K \times 16$ (16-bit data bus). The EPROM has 8 banks of memory. Each bank can be placed in	any address location by programming the PAD. Bank0–Bank7 can be selected by PAD outputs ES0–ES7, respectively. The EPROM banks are organized as $4K \times 8$ (8-bit data bus) or as $2K \times 16$ (16-bit data bus).
The PSD301 has 16K bits of SRAM. Depending on the configuration of the data bus, the SRAM organization can be 2K × 8	(8-bit data bus) or $1K \times 16$ (16-bit data bus). The SRAM is selected by the RS0 output of the PAD.
The PSD301 control signals are \overline{WR}/V_{PP} or R/W, RD/E, ALE, BHE/PSEN, Reset, and A19/CSI. Each of these signals can be configured to meet the output control signal requirements of various microcontrollers.	ALE or AS ALE polarity is programmable. When programmed to be active high, a high on the pin causes the input address latches, Port A address latches, and Port C address latches to be transparent. The
\overline{WR}/V_{PP} or $\overline{R/W}$ In operational mode, this signal can be configured as \overline{WR} or $\overline{R/W}$. As \overline{WR} , all write operations to the PSD301 are activated by an active low signal on this pin. As $\overline{R/W}$, the pin works with the E strobe of the \overline{RD}/E pin. When $\overline{R/W}$ is high, an active high signal on the \overline{RD}/E pin performs a read	falling edge of ALE latches the information into the latches. When ALE is programmed to be active low, a low on the pin causes the input address latches, Port A address latches, Port C, and A19 address latches to be transparent. The rising edge of ALE latches the appropriate information into the latches. ALE is active only in the
	and CSI/A19 are configured as inputs, the configuration bits CADDHLT and CATD define their functionality inside the part. CADDHLT determines if these inputs are to be latched by the trailing edge of the ALE or AS signal (CADDHLT = 1), or enabled into the PSD301 at all times (CADDHLT = 0, transparent mode). CATD determines The PSD301 has 256K bits of EPROM. Depending on the configuration of the data bus, the EPROM can be organized as 32K × 8 (8-bit data bus) or as 16K × 16 (16-bit data bus). The EPROM has 8 banks of memory. Each bank can be placed in The PSD301 has 16K bits of SRAM. Depending on the configuration of the data bus, the SRAM organization can be 2K × 8 The PSD301 control signals are WR/V _{PP} or R/W, RD/E, ALE, BHE/PSEN, Reset, and A19/CSI. Each of these signals can be configured to meet the output control signal requirements of various microcontrollers. WR/V_{PP} or R/W In operational mode, this signal can be configured as WR or R/W. As WR, all write operations to the PSD301 are activated by an active low signal on this pin. As R/W, the pin works with the E strobe of the RD/E pin. When R/W is high, an active high

write operation.

In operational mode, this signal can be

configured as RD or E. As RD, all read

pin works with the R/W strobe of the

an active high signal on the RD/E pin

performs a write operation.

operations to the PSD301 are activated by

an active low signal on this pin. As E, the

 \overline{WR}/V_{PP} or R/W pin. When R/W is high,

performs a read operation. When R/W is

low, an active high signal on the RD/E pin

us

RD/E

BHE/PSEN

This pin's function depends on the PSD301 data bus width. If it is 8, the pin is PSEN; if it is 16, the pin is BHE. In 8-bit mode, the PSEN function lets the user work with two address spaces: program memory and data memory (if COMB/SEP = 1). In this mode, an active low signal on the PSEN pin causes the EPROM to be read. The SRAM and I/O ports read operation are done by \overline{RD} low (CRRWR = 0), or by E and R/\overline{W} high (CRRWR = 1).

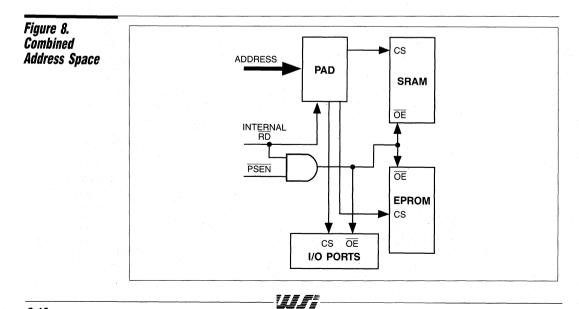
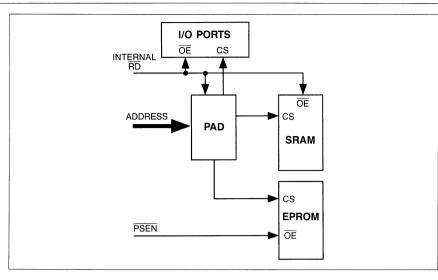

Control Signals (Cont.)

Table 8. Signal Latch Status in All Operating Modes Whenever a member of the 8031 family (or any other similar microcontroller) is used, the PSD301's PSEN pin must be connected to the PSEN pin of the microcontroller.

If COMB/SEP = 0, the address spaces of the program and the data are combined. In this configuration (except for the


8031-type case mentioned above), the PSEN pin must be tied high to V_{CC} , and the EPROM, SRAM, and I/O ports are read by \overline{RD} low (CRRWR = 0), or by E and R/W high (CRRWR = 1). See Figures 8 and 9.

Signal Name	Configuration Bits	Configuration Mode	Signal Latch Status
AD8/A8- AD15/A15	CDATA = 0, CADDRDAT = 0	8-bit data, non-multiplexed	Transparent
	CDATA = 0, CADDRDAT = 1	8-bit data, multiplexed	Transparent
	CDATA = 1, CADDRDAT = 0	16-bit data, non-multiplexed	Transparent
	CDATA = 1, CADDRDAT = 1	16-bit data, multiplexed	ALE dependent
AD0/A0-	CADDRDAT = 0	Non-multiplexed modes	Transparent
AD7/A7	CADDRDAT = 1	Multiplexed modes	ALE dependent
BHE/PSEN	CDATA = 0	8-bit data, PSEN is active	Transparent
	CDATA = 1, CADDRDAT = 0	16-bit data, non-multiplexed mode, BHE is active	Transparent
	CDATA = 1, CADDRDAT = 1	16-bit data, multiplexed mode, BHE is active	ALE dependent
A19 and	CADDHLT = 0	A16-A19 can become logic inputs	Transparent
PC2-PC0	CADDHLT = 1	A16-A19 can become multiplexed address lines	ALE dependent

2-18

Figure 9. 8031-Type Separate Code and Data Address Spaces

In BHE mode, this pin enables accessing of the upper-half byte of the data bus. A low on this pin enables a write or read operation to be performed on the upper half of the data bus (see Table 9).

A ₀	Operation
0	Whole Word
1	Upper Byte From/To Odd Address (AD8–AD15)
0	Lower Byte From/To Even Address (AD0-AD7)
1	None
	A g 0 1 0 1

RESET

This is an asynchronous input pin that clears and initializes the PSD301. Reset polarity is programmable (active low or active high). Whenever the PSD301 reset input is driven active for at least 100 ns, the chip is reset. The PSD301 must be reset before it can be used. Tables 10 and 11 indicate the state of the part during and after reset.

Table 10. Signal States During and After Reset

Signal	Configuration Mode	Condition
AD0/A0-AD15/A15	All	Input
PA0-PA7 (Port A)	I/O Tracking AD0/A0-AD7/A7 Address outputs A0-A7	Input Input Low
PB0-PB7 (Port B)	I/O CS7-CS0 CS7-CS0 open drain outputs	Input High Tri-stated
PC0–PC2 (Port C)	Address inputs A16–A18 CS8–CS10 CMOS outputs	Input High

2

Table 11. Internal States During and After Reset

Component	Signals	Contents
PAD	CS0-CS10	$AII = 1^{18}$
	CSADIN, CSADOUT1, CSADOUT2, CSIOPORT, RS0, ES0–ES7	All -= 0 ¹⁸
Data register A	n/a	0
Direction register A	n/a	0
Data register B	n/a	0
Direction register B	n/a	0

NOTE: 18. All PAD outputs are in a non-active state.

A19/CSI

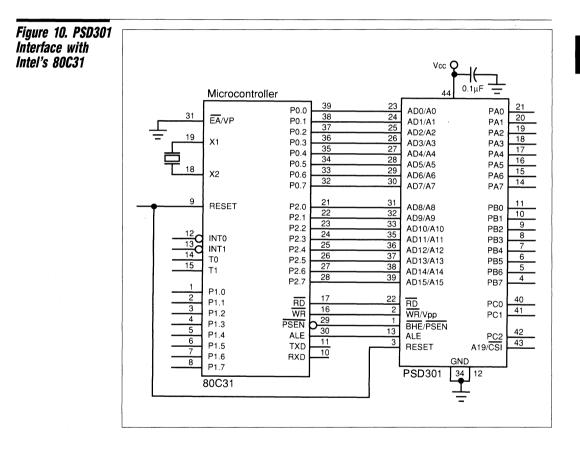
When configured as \overline{CSI} , a high on this pin deselects, and powers down, the chip. A low on this pin puts the chip in normal

operational mode. For PSD301 states during the power-down mode, see Tables 12 and 13.

Table 12. Signal	Signal	Configuration Mode	Condition
States During Power-Down	AD0/A0-AD15/A15	All	Input
Mode	PA0-PA7	I/O Tracking AD0/A0-AD7/A7 Address outputs A0-A7	Unchanged Input All 1's
	PB0-PB7	$\frac{I/O}{CS7-\overline{CS0}}$ CMOS outputs CS7-\overline{CS0} open drain outputs	Unchanged All 1's Tri-stated
	PC0-PC2	Address inputs A16–A18 CS8–CS10 CMOS outputs	Input All 1's

Table 13. Internal States	Component	Signals		Contents
During	PAD	CS0-CS10		All 1's (deselected)
Power-Down		CSADIN, CSADOUT1, CSADOUT2, CSIOPORT, RS0, ES0–ES7		All 0's (deselected)
	Data register A Direction register A Data register B Direction register B	n/a n/a n/a n/a		All unchanged
	In A19 mode, the pin is an to the PAD. It can be used address line or as a gener input. A19 can be configur	l as a high-order al-purpose logic	•	transparent input (see mode, the chip is alway
Security Mode	contents of the PAD A , PAD B and all the software configuration bits. The EPROM, SRAM, and I/O contents can be accessed only the sectors of		software. In wind erasable through the security mod	PLE or Programming ow packages, the mode i UV full part erasure. In e, the PSD301 contents I on a programmer.

US:


System Applications

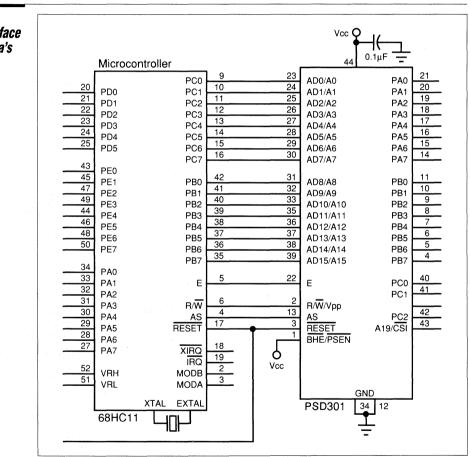
In Figure 10, the PSD301 is configured to interface with Intel's 80C31, which is a 16-bit address/8-bit data bus microcontroller. Its data bus is multiplexed with the low-order address byte. The 80C31 uses signals RD to read from data memory and PSEN to read from code memory. It uses WR to write into the data memory. It also uses active high reset and ALE signals. The rest of the configuration bits as well as the unconnected signals (not shown) are application specific and, thus, user dependent.

The configuration bits for Figure 10 are:

1
0
0
1
0 or 1 (both valid)
0

All other configuration bits may vary according to the application requirements.

us:


2

System Applications (Cont.)

In Figure 11, the PSD301 is configured to interface with Motorola's 68HC11, which is a 16-bit address/8-bit data bus microcontroller. Its data bus is multiplexed with the low-order address byte. The 68HC11 uses E and R/W signals to derive the read and write strobes. It uses the term AS (address strobe) for the address latch pulse. RESET is an active low signal. The rest of the configuration bits as well as the unconnected signals (not shown) are application specific and, thus, user dependent. The configuration bits for Figure 11 are:

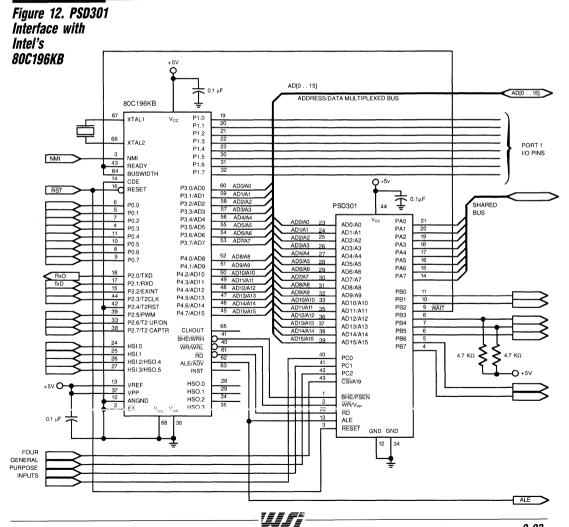
CRESET	0
CALE	0
CDATA	0
CADDRDAT	1
COMB/SEP	0
CRRWR	1

All other configuration bits may vary according to the application requirements.

In Figure 12, the PSD301 is configured to work directly with Intel's 80C196KB microcontroller, which is a 16-bit address/ 16-bit data bus processor. Address and data lines multiplexed. In the example shown, all configuration bits are set. The

us:

PSD301 is configured to use PC0, PC1, PC2, and CSI/A19 as A16, A17, A18, and A19 inputs, respectively. These signals are independent of the ALE pulse (latchtransparent). They are used as four general-purpose logic inputs that take part


Figure 11. PSD301 Interface with Motorola's 68HC11

System Applications (Cont.)

in the PAD equations implementation.

Port A is configured to work in the special track mode, in which (for certain conditions) PA0–PA7 tracks lines AD0/A0–AD7/A7. Port B is configured to generate CS0–CS7. In this example, PB2 serves as a WAIT signal that slows down the 80C196KB during the access of external peripherals. These 8-bit wide peripherals are connected to the shared bus of Port A. The WAIT signal also drives the buswidth input of the microcontroller, so that every external peripheral cycle becomes an 8-bit data bus cycle. PB3 and PB4 are open-drain output signals; thus, they are pulled up externally.

The configuration bits for	Figure 12 are:
CRESET	0
CALE	0
CDATA	1
CADDRDAT	1
CPAF1	Don't care
CPAF2	1
CA19/CSI	1
CRRWR	0
COMB/SEP	0
CADDHLT	0
CSECURITY	Don't care
CPCF2, CPCF1, CP	CF0 0, 0, 0
CPACOD7-CPACOD	0 00H
CPBF7-CPBF0	00H
CPBCOD7-CPBCOD	DO 18H

Absolute Maximum Ratings¹⁹

Symbol	Parameter	Condition	Min	Max	Unit
т	Storago Tomporaturo	CERDIP	- 65	+ 150	°C
T _{STG} Storage Temperature		PLASTIC	- 65	+ 125	-0
	Voltage on any Pin	With Respect to GND	- 0.6	+ 7	٧
V _{PP}	Programming Supply Voltage	With Respect to GND	- 0.6	+ 14	V
V _{CC}	Supply Voltage	With Respect to GND	- 0.6	+ 7	٧
	ESD Protection			>2000	٧

NOTE: 19. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at theses or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods of time may affect device reliability.

Operating Range

Range	ge Temperature V _{CC}		Tolerance				
naliye	iemperature	• CC	-12	-15	-20		
Commercial	0°C to + 70°C	+ 5 V	± 5%	± 10%	± 10%		
Industrial	-40°C to + 85°C	+ 5 V		± 10%	± 10%		
Military	-55°C to + 125°C	+ 5 V		± 10%	± 10%		

Recommended	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Operating	V _{CC}	Supply Voltage		4.5	5	5.5	٧
Conditions	V _{IH}	High-level Input Voltage	$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$	2		V _{CC}	V
	V _{IL}	Low-level Input Voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	0		0.8	V

DC Characteristics	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	V _{OL}	Output Low Voltage	I _{OL} = 20 μA V _{CC} = 4.5 V		0.01	0.1	
	VOL	Output Low Voltage	I _{OL} = 8 mA V _{CC} = 4.5 V		0.15	0.45	V
	V _{OH}	Output High Voltage	I _{OH} = -20 μA V _{CC} = 4.5 V	4.4	4.49		
	. 04		I _{OH} = -2 mA V _{CC} = 4.5 V	2.4	3.9		V
	I _{SB1}	V _{CC} Standby Current	Comm'l		50	100	
	'SB1	(CMOS) (Notes 20 and 22)	Ind/Mil		75	150	μΑ
	I _{SB2}	V _{CC} Standby Current (TTL)	Comm'l		1.5	· 3	
	'SB2	(Notes 21 and 22)	Ind/Mil		2	3.2	mA
			Comm'l (Note 24)		16	35	
	lan	Active Current (CMOS) (SRAM Not Selected)	Comm'l (Note 25)		28	50	
	ICC1	(Notes 20 and 23)	Ind/Mil (Note 24)		16	45	mA
		(10103 20 210 20)	Ind/Mil (Note 25)		28	60	

us:

2-24

DC **Characteristics** (Cont.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Comm'l Note 24		47	80	
lass	Active Current (CMOS) (SRAM Block Selected)	Comm'l Note 25		59	95	
I _{CC2}	(Notes 20 and 23)	Ind/Mil (Note 24)		47	100	mA
	(140103 20 and 20)	Ind/Mil (Note 25)		59	115	
	Active Oversent (TTL)	Comm'l (Note 24)		36	65	
I _{CC3} (Active Current (TTL) (SRAM Not Selected) (Notes 21 and 22)	Comm'l (Note 25)		58	80	mA
		Ind/Mil (Note 24)		36	80	
	(Notes 21 and 23)	Ind/Mil (Note 25)		58	95	
	Active Ourset (TTL)	Comm'l (Note 24)		67	105	
I _{CC4}	Active Current (TTL)	Comm'l (Note 25)		79	120	mA
VCC4	(SRAM Block Selected)	Ind/Mil (Note 24)		67	130	
	(Notes 21 and 23)	Ind/Mil (Note 25)		79	145	
I _{LI}	Input Leakage Current	V _{IN} = 5.5 V or GND	-1	± 0.1	1	μA
ILO	Output Leakage Current	V _{OUT} = 5.5 V or GND	-10	± 5	10	

NOTE: 20. CMOS inputs: GND \pm 0.3 V or V_{CC} \pm 0.3V.

21. TTL inputs: $V_{IL} \le 0.8 \text{ V}$, $V_{IH} \ge 2.0 \text{ V}$. 22. CSI/A19 is high in a power-down configuration mode.

US

23. AC power component is 3.5 mA/MHz (power = AC + DC).

24. Ten (10) PAD product terms active. (Add 380 µA per product term, typical, or 480 µA per product term maximum.)

25. Forty-one (41) PAD product terms active.

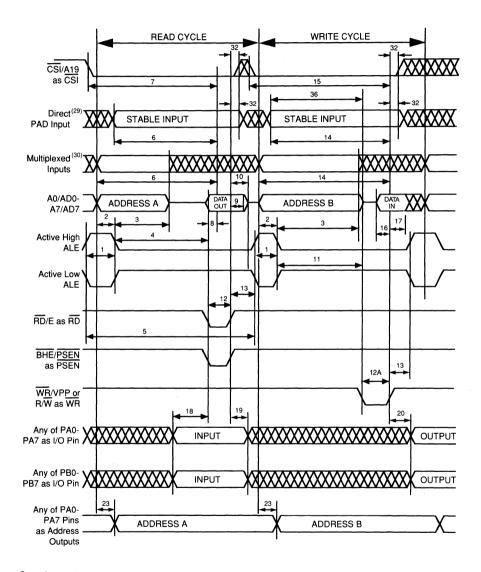
AC **Characteristics**

Sumhal	Parameter	-	12	-1	5	-2	20	Ilmit
Symbol		Min	Max	Min	Max	Min	Max	Unit
T1	ALE or AS Pulse Width	30		40		50		
T2	Address Set-up Time	5		10		15		
Т3	Address Hold Time	13		15		25		
T4	ALE or AS Trailing Edge to Leading Edge of Read	12		15		20		
T5	ALE Valid to Data Valid	140		170		220		
T6	Address Valid to Data Valid		120		150		200	
T7	CSI Active to Data Valid		150		160		200	
Т8	Leading Edge of Read to Data Valid		38		55		60	
Т9	Read Data Hold Time	0		0		0		ns
T10	Trailing Edge of Read to Data High-Z		35		40		45	
T11	Trailing Edge of ALE or AS to Leading Edge of Write	12		15		20		
T12	RD, E, or PSEN Pulse Width	45		60		75		
T12A	WR Pulse Width	25		35		45		
T13	Trailing Edge of Write or Read to Leading Edge of ALE or AS	20		30		40		
T14	Address Valid to Trailing Edge of Write	120		150		200		

2-25

AC Characteristics (Cont.)

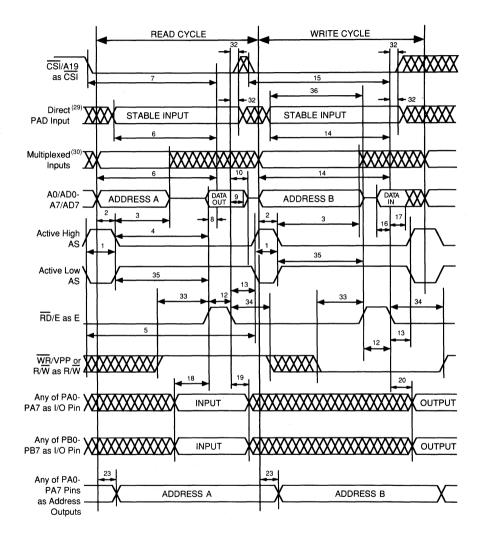
Cumb at	Deremotor	-1	2	-1	5	-2	0	11
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit
T15	CSI Active to Trailing Edge of Write	130		160		210		
T16	Write Data Set-up Time	20		30		40		
T17	Write Data Hold Time	5		10		15		
T18	Port Input Set-up Time	30		35		45		
T19	Port Input Hold Time	0		0		0		
T20	Trailing Edge of Write to Port Output Valid	40		50		60		
T21	ADi ²⁶ or Control to CSOi ²⁷ Valid	6	35	6	35	5	45	
. T22	ADi ²⁶ or Control to CSOi ²⁷ Invalid	5	35	4	35	4	45	
	Track Mode Address Propagation Delay:							
T23	CSADOUT1 Already True or:		22		22		28	
	 CSADOUT1 Becomes True During ALE or AS 		33		40		50	
T24	Track Mode Address Hold Time	15		15		27		ns
T25	Track Mode Read Propagation Delay		29		29		35	
T26	Track Mode Read Hold Time	11	29	10	29	10	35	
T27	Track Mode Write Cycle Data Propagation Delay		20		20		30	
T28	Track Mode Write Cycle Write to Data Propagation Delay	8	30	7	40	7	55	
T29	Hold Time of Port A Valid During Write CSOi Trailing Edge	2		4		4		
T30	CSI Active to CSOi 27 Active	9	45	.9	45	8	60	
T31	CSI Inactive to CSOi 27 Inactive	9	45	9	45	8	60	
T32	Direct PAD Input 28 Hold Time	10		12		15		
T33	R/W Active to E High	20		30		40		
T34	E Low to R/W Inactive	20		30		40		
T35	AS Inactive to E High	15	1	20		25		


NOTES: 26. ADi = any address line.

 CSOi = any of the chip-select output signals coming through Port B (CS0–CS7) or through Port C (CS8–CS10).

us:

28. Direct PAD input = any of the following direct PAD input lines: CSI/A19 as transparent A19, RD/E, WR or RW, transparent PC0–PC2, ALE (or AS).


Figure 13. Timing of 8-Bit Multiplexed Address/Data Bus, CRRWR = 0

See referenced notes on page 2-36.

us:

Figure 14. Timing of 8-Bit Multiplexed Address/Data Bus, CRRWR = 1

us:

2

Figure 15. Timing of 16-Bit Multiplexed Address/Data Bus, CRRWR = 0

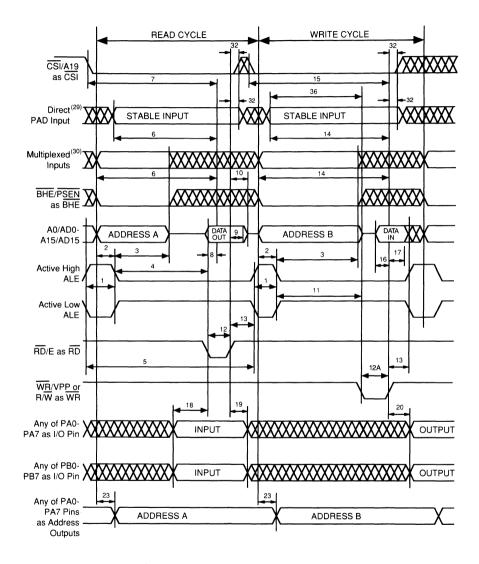
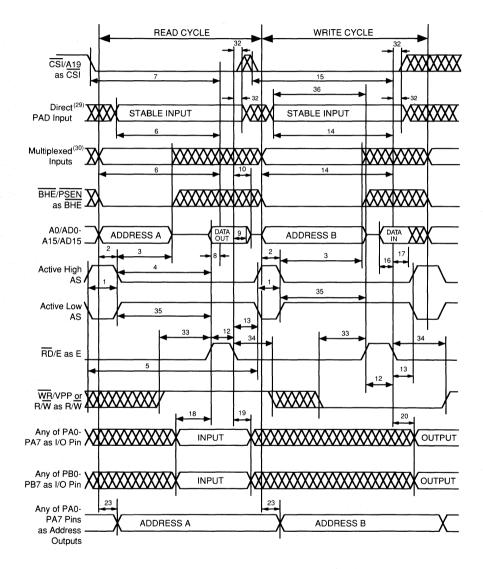
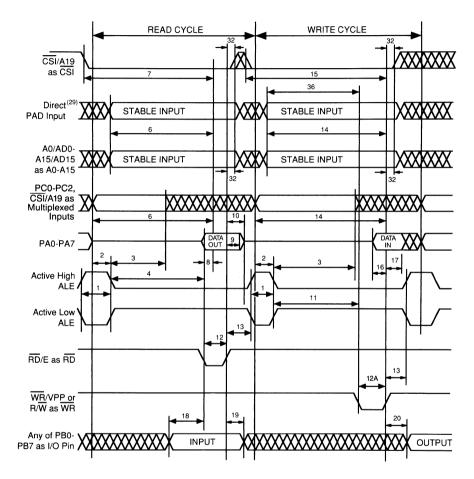
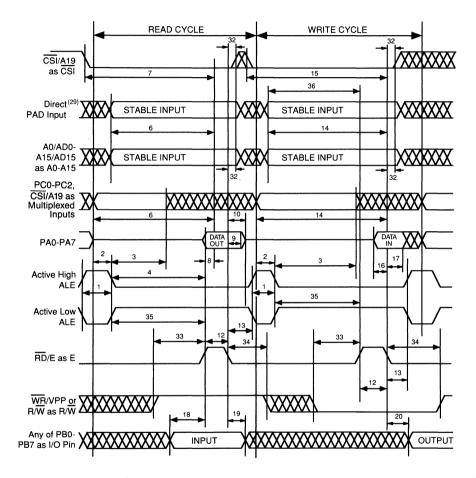
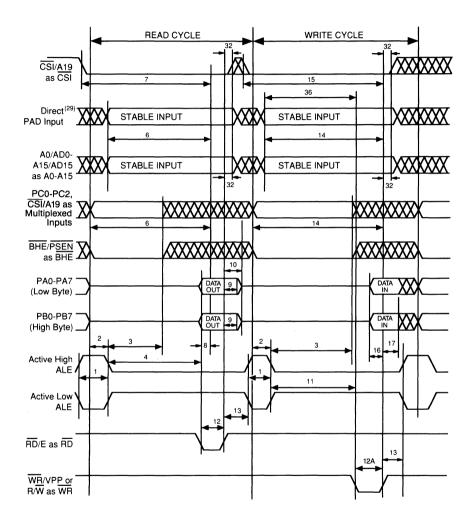




Figure 16. Timing of 16-Bit Multiplexed Address/Data Bus, CRRWR = 1

us:


Figure 17. Timing of 8-Bit Data, Non-Multiplexed Address/Data Bus, CRRWR = 0

See referenced notes on page 2-36.


Figure 18. Timing of 8-Bit Data, Non-Multiplexed Address/Data Bus, CRRWR = 1

See referenced notes on page 2-36.

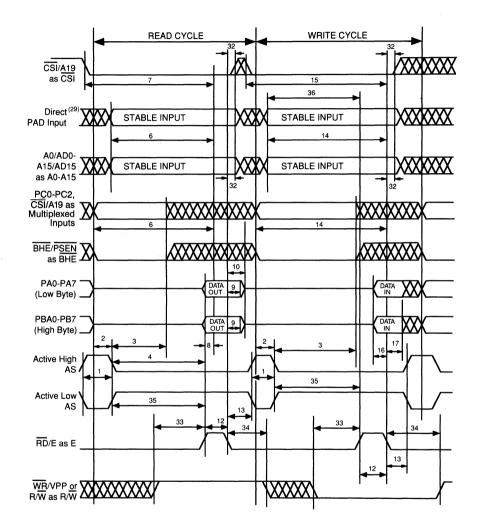
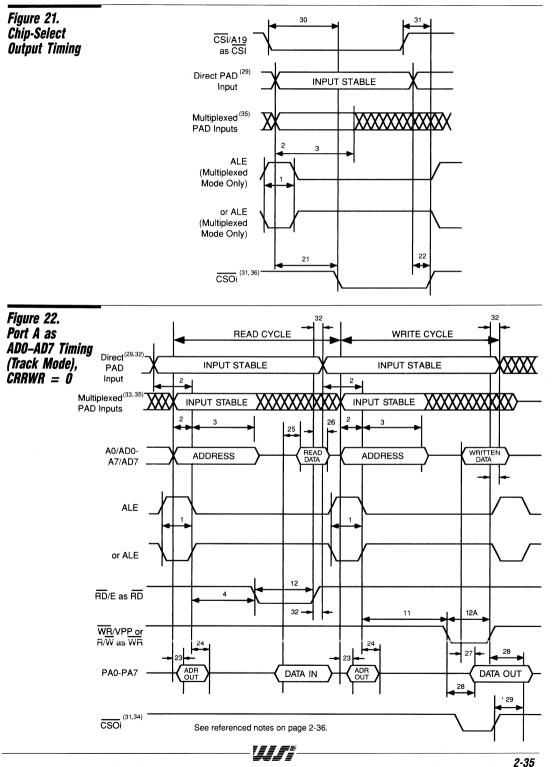
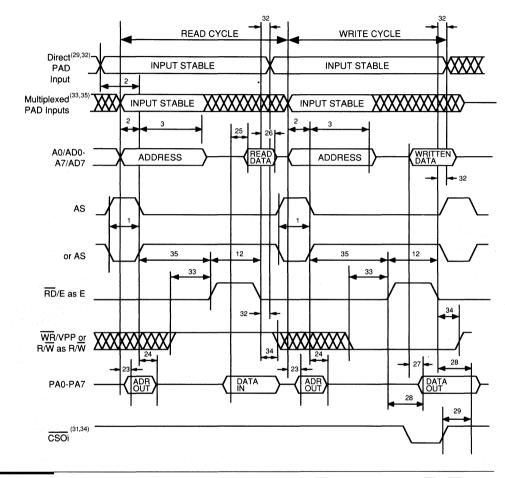

us:

Figure 19. Timing of 16-Bit Non-Multiplexed Address/Data Bus, CRRWR = 0



us:

Figure 20. Timing of 16-Bit Non-Multiplexed Address/Data Bus, CRRWR = 1



2

Figure 23. Port A as ADO-AD7 Timing (Track Mode), CRRWR = 1

Notes for Timing Diagrams

- Direct PAD input = any of the following direct PAD input lines: CSI/A19 as transparent A19, RD/E, WR or R/W, transparent PC0–PC2, ALE and A11/AD11–A15/AD15 in non-multiplexed modes.
- Multiplexed inputs: any of the following inputs that are latched by the ALE (or AS): A0/AD0–A15/AD15, CSI/A19 as ALE dependent A19, ALE dependent PC0–PC2.

us:

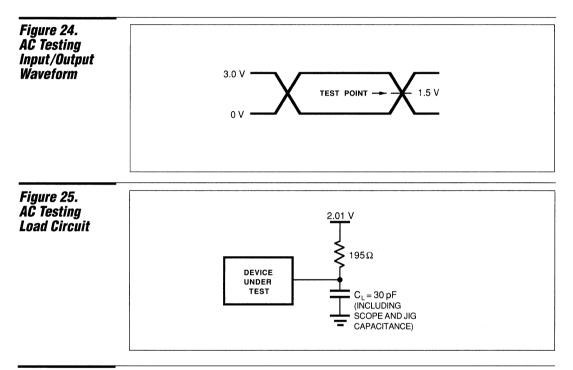

- CSOI = any of the chip-select output signals coming through Port B (CSO-CS7) or through Port C (CS8-CS10).
- CSADOUT1, which internally enables the address transfer to Port A, should be derived only from direct PAD input signals, otherwise the address propagation delay is slowed down.
- CSADIN and CSADOUT2, which internally enable the data-in or data-out transfers, respectively, can be derived from any combination of direct PAD inputs and multiplexed PAD inputs.
- 34. The write operation signals are included in the $\overline{\text{CSOi}}$ expression.
- Multiplexed PAD inputs: any of the following PAD inputs that are latched by the ALE (or AS) in the multiplexed modes: A11/AD11–A15/AD15, CSI/A19 as ALE dependent A19, ALE dependent PC0–PC2.
- 36 CSOi product terms can include any of the PAD input signals shown in Figure 3, except for reset and CSI.

Table 14. Pin Capacitance³⁷

Symbol	Parameter	Conditions	Typical ³⁸	Max	Units
C _{IN}	Capacitance (for input pins only)	V _{IN} = 0 V	4	6	рF
COUT	Capacitance (for input/output pins)	V _{OUT} = 0 V	8	12	рF
C _{VPP}	Capacitance (for \overline{WR}/V_{PP} or $R/\overline{W}/V_{PP}$)	V _{PP} = 0 V	18	25	рF

NOTES: 37. This parameter is only sampled and is not 100% tested.

38. Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltages.

Erasure and Programming

To clear all locations of their programmed contents, expose the device to an ultraviolet light source. A dosage of 15 W-second/cm² is required. This dosage can be obtained with exposure to a wavelength of 2537 Å and intensity of 12000 μ W/cm² for 15 to 20 minutes. The device should be about 1 inch from the source, and all filters should be removed from the UV light source prior to erasure.

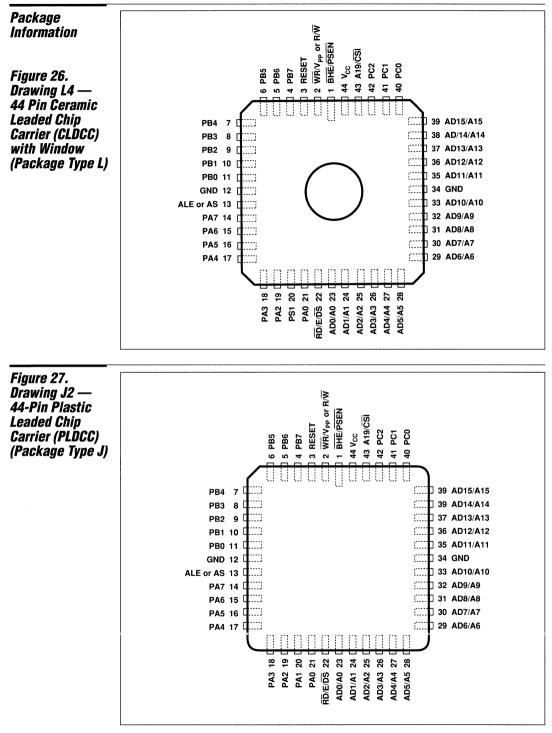
The PSD301 and similar devices will erase with light sources having wavelengths shorter than 4000 Å. Although the erasure times will be much longer than with UV sources at 2537 Å, exposure to fluorescent light and sunlight eventually erases the

us:

device. For maximum system reliability, these sources should be avoided. If used in such an environment, the package windows should be covered by an opaque substance.

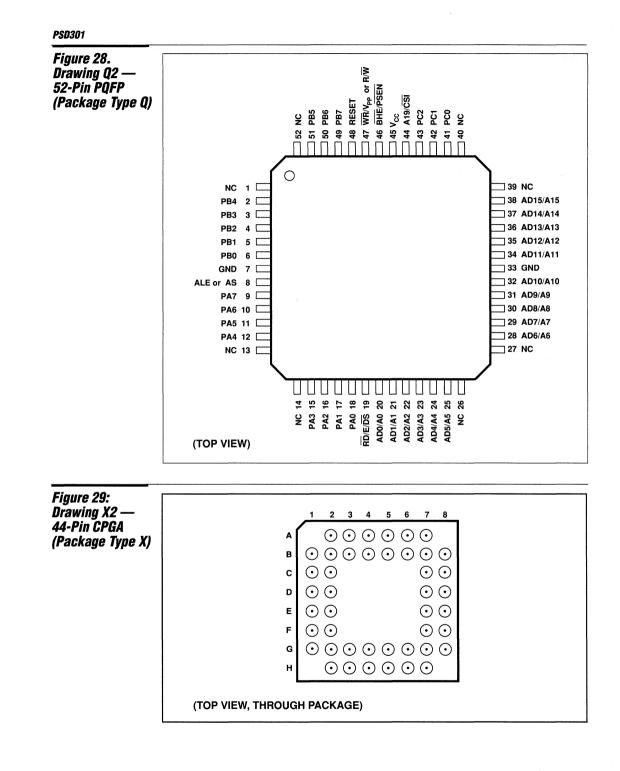
Upon delivery from WSI, or after each erasure, the PSD301 device has all bits in the PAD and EPROM in the "1" or high state. The configuration bits are in the "0" or low state. The code, configuration, and PAD MAP data are loaded through the procedure of programming

Information for programming the device is available directly from WSI. Please contact your local sales representative.


PSD301 Pin Assignments

	AA Din		
Name	44-Pin PLDCC/ CLDCC Package	44-Pin CPGA Package	52-Pin PQFP Package
BHE/PSEN	1	A ₅	46
WR/V _{PP} or R/W	2	A ₄	47
RESET	3	B ₄	48
PB7	4	A ₃	49
PB6	5	B ₃	50
PB5	6	A2	51
PB4	7	B ₂	2
PB3	8	B ₁	3
PB2	9	C_2	4
PB1	10	C ₂ C ₁	5
PB0			6
	11 12	D ₂	7
GND	. –	D ₁	8
ALE or AS	13	E ₁	9
PA7	14	E ₂	9 10
PA6	15	F ₁	10
PA5	16	F ₂	
PA4	17	G ₁	12
PA3	18	G ₂	15
PA2	19	H ₂	16
PA1	20	G ₃	17
PA0	21	H ₃	18
RD/E	22	G ₄	19
AD0/A0	23	H ₄	20
AD1/A1	24	H ₅	21
AD2/A2	25	G ₅	22
AD3/A3	26	H ₆	23
AD4/A4	27	G ₆	24
AD5/A5	28	H ₇	25
AD6/A6	29	G ₇	28
AD7/A7	30	G ₈	29
AD8/A8	31	F ₇	30
AD9/A9	32	F ₈	31
AD10/A10	33	E ₇	32
GND	34	E ₈	33
AD11/A11	35	-8 D8	34
AD12/A12	36	D ₈ D ₇	35
AD13/A13	37	C ₈	36
AD14/A14	38	C ₈	37
AD15/A15	39		38
PC0	40	В ₈ В ₇	41
PC0 PC1	40	•	42
PC1 PC2	41	A7 P	43
A19/CSI	. —	B ₆	43
	43	A ₆	44 45
V _{CC}	44	B5	40

ws:


2-38

us:

2

ur:

2-40

1.1.1

Ordering Information

Part Number	Spd. (ns)	Package Type	Package Drawing	Operating Temperature Range	WSI Manufacturing Procedure
PSD301-12J	120	44-pin PLDCC	J2	Commercial	Standard
PSD301-12L	120	44-pin CLDCC	L4	Commercial	Standard
PSD301-12Q	120	52-pin PQFP	Q2	Commercial	Standard
PSD301-15J	150	44-pin PLDCC	J2	Commercial	Standard
PSD301-15JI	150	44-pin PLDCC	J2	Industrial	Standard
PSD301-15L	150	44-pin CLDCC	L4	Commercial	Standard
PSD301-15LI	150	44-pin CLDCC	L4	Industrial	Standard
PSD301-15Q	150	52-pin PQFP	Q2	Commercial	Standard
PSD301-15X	150	44-pin CPGA	X2	Commercial	Standard
PSD301-20J	200	44-pin PLDCC	J2	Commercial	Standard
PSD301-20JI	200	44-pin PLDCC	J2	Industrial	Standard
PSD301-20L	200	44-pin CLDCC	L4	Commercial	Standard
PSD301-20LI	200	44-pin CLDCC	L4	Industrial	Standard
PSD301-20LM	200	44-pin CLDCC	L4	Military	Standard
PSD301-20LMB	200	44-pin CLDCC	L4	Military	MIL-STD-883C
PSD301-20Q	200	52-pin PQFP	Q2	Commercial	Standard
PSD301-20X	200	44-pin CPGA	X2	Commercial	Standard
PSD301-20XI	200	44-pin CPGA	X2	Industrial	Standard
PSD301-20XM	200	44-pin CPGA	X2	Military	Standard
PSD301-20XMB	200	44-pin CPGA	X2	Military	MIL-STD-883C

2

US:

2-42

PSD301 System Development Tools

System Development Tools

The PSD301 features a complete set of System Development Tools. These tools provide an integrated, easy-to-use software and hardware environment to support PSD301 device development. To run these tools requires an IBM-XT, -AT, or compatible computer, MS-DOS 3.1 or higher, 640K byte RAM, and a hard disk.

Hardware

The PSD301 System Programming Hardware consists of:

- WS6000 MagicPro Memory and PSD Programmer
- WS6015 44-pin CPGA Package Adaptor
- WS6020 52-pin PQFP Package Adaptor
- WS6021 44-pin LCC Package Adaptor (for CLDCC and PLDCC packages)

The MagicPro Programmer is the common hardware platform for programming all WSI programmable products. It consists of an IBM-PC plug-in programmer board and a remote socket adaptor.

Software

The PSD301 System Development Software consists of:

- U WISPER, WSI's Software Environment
- MAPLE, the PSD301 Location Editor Software
- WS6021 44-pin LCC Package Adaptor (for CLDCC and PLDCC Packages)

The configuration of the PSD301 device is entered using MAPLE software. MAPPRO software uses the MagicPro programmer and the socket adaptor to configure the PSD301 device, which then can be used. The development cycle is depicted in Figure 30.

- WSI provides a complete set of quality support services to registered System Development Tools owners, including:
 - 12-month software updates
 - Design assistance from WSI field application engineers and application group experts

Training

Support

WSI provides in-depth, hands-on workshops for the PSD301 device and System Development Tools. Workshop participants learn how to program high-performance, user-configurable mappable memory subsystems. Workshops are held at the WSI facility in Fremont, California. 24-hour electronic bulletin board for design assistance via dial-up modem.

us:

Ordering Information – System Development Tools

PSD-GOLD

- WISPER Software
- MAPLE Software
- User's Manual
- WSI Support
- ❑ WS6000 MagicPro[™] Programmer
- One Package Adaptor and Two PSD301 Product Samples

PSD-SILVER

- WISPER Software
- MAPLE software
- User's Manual
- WSI Support

W\$6000

- MagicPro Programmer
- □ IBM-PC[©] Plug-in Adaptor Card
- Remote Socket Adaptor

WS6015

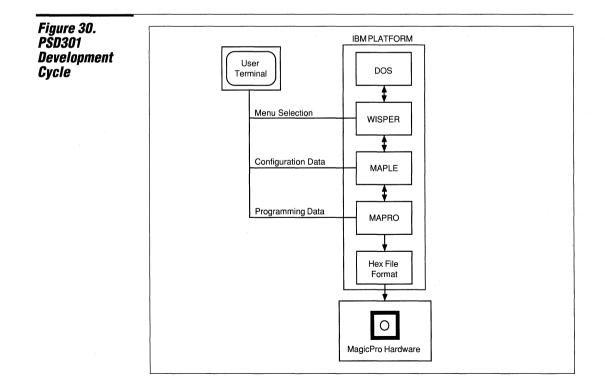
44-pin CPGA Package Adaptor; Used with WS6000 MagicPro Programmer

WS6020

52-pin PQFP Package Adaptor; Used with the WS6000 MagicPro Programmer

WS6021

44-Pin Package Adaptor for CLDCC and PLDCC Packages; Used with the WS6000 MagicPro Programmer


WSI Support

Support services include:

- 12-month Software Update Service
- Hotline to WSI Application Experts
- 24-hour access to WSI Electronic Bulletin Board

WSI Training

- U Workshops at WSI, Fremont, CA
- □ For details and scheduling, call PSD Marketing (510) 656-5400.

us

2-44

Programmable Peripheral PSD311 Programmable Microcontroller Peripheral with Memory

Key Features

- Single Chip Programmable Peripheral for Microcontroller-based Applications
- 19 Individually Configurable I/O pins that can be used as
- Microcontroller I/O port expansion
- Programmable Address Decoder (PAD) I/O
- Latched address output
- Open drain or CMOS
- Two Programmable Arrays (PAD A & PAD B)
- Total of 40 Product Terms and up to 16 Inputs and 24 Outputs
- Direct Address Decoding up to 1 Meg address space
- Logic replacement
- "No Glue" Microcontroller Chip-Set
- Built-in address latches for multiplexed address/data bus
- Non-multiplexed address/data bus mode
- 8 bit data bus width
- ALE and Reset polarity programmable
- Selectable modes for read and write control bus as RD/WR, R/W/E
- PSEN/ pin for 8051 users

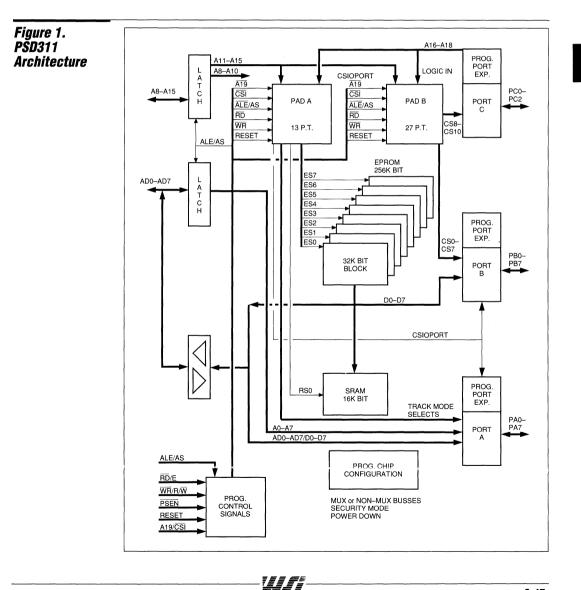
- 256 Kbits of UV EPROM
- Organized as 32K x 8
- Divides into 8 equal mappable blocks for optimized mapping
- Block resolution is 4K x 8
- 120 ns EPROM access time, including input latches and PAD address decoding.
- 16 Kbit Static RAM
- Organized as 2K x 8
- 120 ns SRAM access time, including input latches and PAD address decoding
- Address/Data Track Mode
- Enables easy Interface to Shared Resources (Mail Box SRAM) with other Microcontrollers or a Host Processor
- Built-In Security
- Locks the PSD311 Configuration and PAD Decoding
- Available in a Variety of Packaging
- 44 Pin PLDCC and CLDCC
- 52 Pin PQFP
- 44 Pin CPGA
- □ Simple Menu-Driven Software: Configure the PSD311 on an IBM PC
- □ Signetics: SC80C451
- **Zilog:** Z8, Z80, Z180

Partial Listing of Microcontrollers Supported

 Motorola family: M6805, M68HC11, M68HC16, M68000/10/20, M60008, M683XX

Intel family: 8031/8051, 8098, 80188, 80198

PSD 311		
Applications	 Computers (Workstations and PCs) Fixed Disk Control, Modem, Imaging, Laser Printer Control 	 Industrial Robotics, Power Line Access, Power Line Motor
	 Telecommunications Modem, Cellular Phone, Digital PBX, Digital Speech, FAX, Digital Signal Processing 	 Medical Instrumentation Hearing Aids, Monitoring Equipment, Diagnostic Tools
	Digital Signal Frocessing	 Military Missile Guidance, Radar, Sonar, Secure Communications, RF Modems
Introduction	The PSD311 is the latest member in the rapidly growing WSI family of PSD devices. The PSD311 is ideal for microcontroller-based applications, where fast time-to-	peripheral elements of a microcontroller- based system peripheral with no external discrete "glue" logic required.
	market, small form factor, and low power consumption are essential. When combined in a system, virtually any micro- controller (68HC11, 8051 etc.) and the PSD311 work together to create a very powerful chip-set solution. This implemen-	The solution comes complete with simple system software development tools for integrating the PSD311 with the microcon- troller. Hosted on the IBM PC platforms or compatibles, the easy to use software enables the designer complete freedom in
Product Description	tation provides all the required control and The PSD311 integrates high performance user-configurable blocks of EPROM,	 designing the system. An interface to shared external resources.
JESGIIPLIUN	SRAM, and programmable logic technology to provide a single chip microcontroller interface. The major functional blocks include two programmable logic arrays, PAD A and PAD B, 256K bits of EPROM, 16K bits of SRAM, input latches, and output ports. The PSD311 is ideal for applications requiring high performance, low power, and very small form factors. These include fixed disk control, modem, cellular telephone, instrumentation, computer peripherals, military and similar applications.	WSI's PSD311 (shown in Figure 1) can efficiently interface with, and enhance, any microcontroller system. This is the first solution that provides microcontrollers with port expansion, latched addresses, page logic, two programmable logic arrays PAD A and PAD B, an interface to shared resources, 256K bit EPROM, and 16K bit SRAM on a single chip. The PSD311 does not require any glue logic for interfacing to any 8-bit microcontroller.
	The PSD311 offers a unique single-chip solution for microcontrollers that need:	The 8051 microcontroller family can take full advantage of the PSD311's separate program and data address spaces. Users of the 68HCXX family of microcontrollers
	lose at least two I/O ports when accessing external resources).	can change the functionality of the control signals and directly connect the R/W and E. Address and data buses can be configured to be separate or multi-
	 More EPROM and SRAM than the microcontroller's internal memory. Chip-select, control, or latched address 	plexed, whichever is required by the host processor.
	lines that are otherwise implemented discretely.	


us:

2-46

2-47

Product Discription (Cont.)

The flexibility of the PSD311 I/O ports permits interfacing to shared resources. The arbitration can be controlled internally by PAD A outputs. The user can assign the following functions to these ports: standard I/O pins, chip-select outputs from the PAD A and PAD B, or latched address or multiplexed low-order address/data byte. This enables users to design add-on systems such as disk drives, modems, etc., that easily interface to the host bus (e.g., IBM PC, SCSI). The PSD311 on-chip programmable address decoder (PAD A) enables the user to map the I/O ports, eight segments of EPROM (4K x 8 each) and SRAM (2K x 8) anywhere in the address space of the microcontroller. PAD B can implement up to 4 sum-of-product expressions based on address inputs and control signals.

Table 1. PSD311 Pin Descriptions

Name	Туре	Description
PSEN	I	The PSEN is the active low EPROM read pulse. The SRAM and I/O ports read signal is generated according to the description of the WR/V _{PP} or R/W, and RD/E pins. If the host processor is a member of the 8031 family, PSEN must be connected to the corresponding host pin. In other 8-bit host processors that do not have a special EPROM-only read strobe, PSEN should be tied to V _{CC} . In this case, RD or E and R/W provide the read strobe for the SRAM, I/O ports, and EPROM.
WR/V _{PP} or R/W/V _{PP}	I	In the operating mode, this pin's function is \overline{WR} (CRRWR = 0) or R/W (CRRWR = 1). When configured as \overline{WR} , a write operation is executed during an active low pulse. When configured as R/W, with R/W = 1 and E = 1, a read operation is executed; if R/W = 0 and E = 1, a write operation is executed. In programming mode, this pin must be tied to V _{PP} voltage.
RD/E	1	When configured as \overrightarrow{RD} (CRRWR = 0), this pin provides an active low \overrightarrow{RD} strobe. When configured as E (CRRWR = 1), this pin becomes an active high pulse, which, together with R/W defines the cycle type. Then, if R/W = 1 and E = 1, a read operation is executed. If R/W = 0 and E = 1, a write operation is executed.
CSI/A19		This pin has two configurations. When it is $\overline{\text{CSI}}$ (CA19/ $\overline{\text{CSI}}$ = 0) and the pin is asserted high, the device is deselected and powered down. (See Tables 10 and 11 for the chip state during power-down mode.) If the pin is asserted low, the chip is in normal operational mode. When it is configured as A19, (CA19/ $\overline{\text{CSI}}$ = 1), this pin can be used as an additional input to the PAD. CADLOG3 = 1 defines the pin as an address; CADLOG3 = 0 defines it as a logic input. If it is an address, A19 can be latched with ALE (CADDHLT = 1) or be a transparent logic input (CADDHLT = 0). In this mode, there is no power-down capability.
RESET	I	This user-programmable pin can be configured to reset on high level (CRESET = 1) or on low level (CRESET = 0). It should remain active for at least 100 ns. See Tables 8 and 9 for the chip state after reset.
ALE or AS	I	In the multiplexed modes, the ALE pin functions as an Address Latch Enable or as an Address strobe and can be configured as an active high or active low signal. The ALE or AS trailing edge latches lines AD7/A7–AD0/A0, A16–A19, and BHE, depending on the PSD311 configuration. See Table 7. In the non-multiplexed modes, it can be used as a general-purpose logic input to the PAD.

Legend: The I/O column abbreviations are: I = input; I/O = input/output; P = power.

US

NOTE: 1. All the configuration bits mentioned in Table 1 appear in parentheses and are explained in the Configuration Register section.

Table 1. PSD311 Pin Descriptions (Cont.)

Name	Туре	Description
PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0	I/O	PA7–PA0 is an 8-bit port that can be configured to track AD7/A7–AD0/A0 from the input (CPAF2 = 1). Otherwise (CPAF2 = 0), each bit can be configured separately as an I/O or lower-order latched address line. When configured as an I/O (CPAF1 = 0), the direction of the pin is defined by its direction bit, which resides in the direction register. If a pin is an I/O output, its data bit (which resides in the data register) comes out. When it is configured as a low-order address line (CPAF1 = 1), A7–A0 can be made the corresponding output through this port (e.g., PA6 can be configured to be the A6 address line). Each port bit can be a CMOS output (CPACOD = 0) or an open drain output (CPACOD = 1). When the chip is in non-multiplexed mode (CADDRDAT = 0), the port becomes the data bus lines (D0–D7). See Figure 4.
PB7 PB6 PB5 PB4 PB3 PB2 PB0	I/O	PB7–PB0 is an 8-bit port for which each bit can be configured as an I/O (CPBF = 1) or chip-select output (CPBF = 0). Each port bit can be a CMOS output (CPBCOD = 0) or an open drain output (CPBCOD = 1). When configured as an I/O, the direction of the pin is defined by its direction bit, which resides in the direction register. If a pin is an I/O output, its data (which resides in the data register) comes out. When configured as a chip-select output, $\overline{CS0}$ – $\overline{CS3}$ are a function of up to four product terms of the inputs to the PAD B; $\overline{CS4}$,– $\overline{CS7}$ then are each a function of up to two product terms. See Figure 6.
PC0 PC1 PC2	I/O	This is a 3-bit port for which each bit is configurable as a PAD input or output. When configured as an input (CPCF = 0), the bits can be latched with ALE (CADDHLT = 1) or be transparent inputs to the PAD (CADDHLT = 0). When a pin is configured as an output (CPCF = 1), it is a function of one product term of all PAD inputs. See Figure 7.
AD0/A0 AD1/A1 AD2/A2 AD3/A3 AD4/A4 AD5/A5 AD6/A6 AD7/A7	I/O	In multiplexed mode, these pins are the multiplexed low-order address/data byte. After ALE latches the addresses, these pins input or output data, depending on the settings of the RD/E, WR/V _{PP} or R/W, and PSEN pins. In non-multiplexed mode, these pins are the low-order address input.
A8 A9 A10 A11 A12 A13 A14 A15	I/O	These pins are the high-order address input.
GND	Р	V _{SS} (ground) pin.
V _{CC}	Р	Supply voltage input.

UJ-

Operating Modes

The PSD311's two operating modes allow it to interface directly to 8-bit microcontrollers with multiplexed and non-multiplexed address/data buses. These operating modes are described below.

Multiplexed 8-bit Address/Data Bus

This mode is used to interface to microcontrollers with an 8-bit data bus and a 16-bit or larger address bus. The low-order address/data bus (AD0/A0–AD7/A7) is bidirectional and permits the latching of the address when the ALE signal is active. On the same pins, the data is read from or written to the device; this depends on the state of the RD/E, PSEN and WR/V_{PP} or R/\overline{W} pins. The high-order address bus (A8–A15) contains the high-order address bus byte. Ports A and B can be configured as in Table 2.

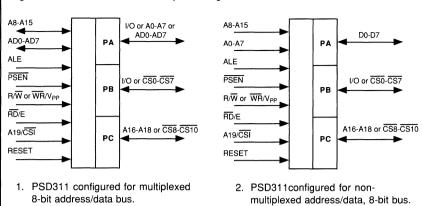
Non-Multiplexed Address/Data, 8-bit Data Bus

This mode is used to interface to a microcontroller with an 8-bit non-multiplexed bus and a 16-bit or larger address bus. The low-order address/data bus (AD0/A0–AD7/A7) is the low-order address input bus. The high-order address/data bus (A8–A15) is the high-order address bus byte. Port A is the low-order data bus. Port B can be configured as shown in Table 2.

Table 2 summarizes the effect of the different operating modes on ports A, B, and the address/data pins. The configuration of Port C is independent of the four operating modes.

Programmable Address Decoder (PAD)

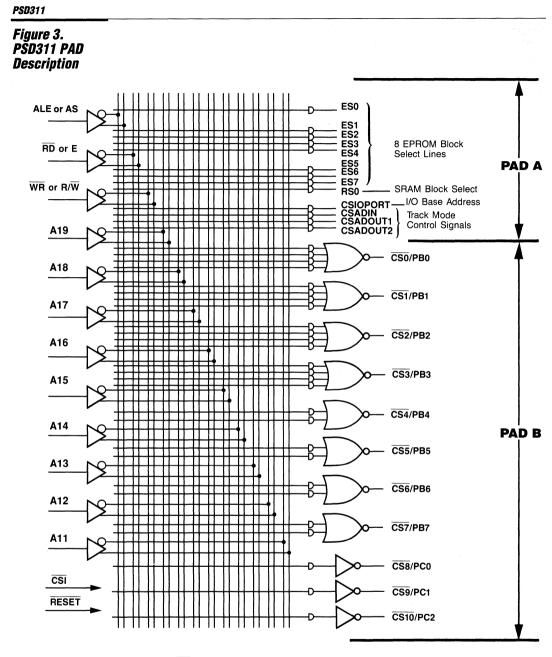
The PSD311 consists of two programmable arrays referred to as PAD A and PAD B (Figure 3). PAD A is used to generate chip select signals derived from the input address to the internal EPROM blocks, SRAM, I/O ports, and Track Mode signals. All its I/O functions are listed in Table 3 and shown in Figure 3. PAD B outputs to Ports B and C for off-chip usage.


PAD B can also be used to extend the decoding to select external devices or as a random logic replacement. The input bus to

usi

both PAD A and PAD B is the same. Using WSI's MAPLE software, each programmable bit in the PAD's array can have one of three logic states of 0, 1, and don't care (X). In a user's logic design, both PADs can share the same inputs using the X for input signals that are not supposed to affect other functions. The PADs use reprogrammable CMOS EPROM technology and can be programmed and erased by the user.

Figure 2. PSD311 Port Configurations


Figure 2 shows the PSDS311's I/O port configurations.

Legend: AD0–AD7 = Addresses A0–A7 multiplexed with data lines D0–D7.

Table 2. PSD311 Bus and Port Configuration Options

Multiplexed Address/Data		Non-Multiplexed Address/Dat	
8-bit Data Bus			
Port A	I/O or low-order address lines or Low-order multiplexed address/data byte	D0–D7 data bus byte	
Port B	I/O or CS0-CS7	I/O and/or CS0–CS7	
AD0/A0-AD7/A7	Low-order multiplexed address/data byte	Low-order address bus byte	
A8–A15	High-order address bus byte	High-order address bus byte	

NOTES: 2. CSI is a power-down signal. When high, the PAD is in stand-by mode and all its outputs become non-active. See Tables 10 and 11.

3. RESET deselects all PAD output signals. See Tables 8 and 9.

us:

4. Maximum PAD latency is 35 ns.

 A18, A17, and A16 are internally multiplexed with CS10, CS9, and CS8, respectively. Either A18 or CS10, A17 or CS9, and A10 or CS8 can be routed to the external pins of Port C.

2-52

Table 3. PSD311 PAD A and B I/O Functions

Function				
PAD A and PAD B Inputs				
CSI or A19	In $\overline{\text{CSI}}$ mode (when high), PAD deselects all of its outputs and enters a power-down mode (see Tables 10 and 11). In A19 mode, it is another " input to the PAD.			
A16–A18	These are general purpose inputs from Port C. See Figure 3, Note 4.			
A11–A15	These are address inputs.			
P0P3	These are page number inputs.			
RD or E	This is the read pulse or enable strobe input.			
\overline{WR} or R/\overline{W}	This is the write pulse or R/\overline{W} select signal.			
ALE	This is the ALE input to the chip.			
RESET	This deselects all outputs from the PAD; it can not be used in product term equations. See Tables 8 and 9.			
PAD A Outputs				
ES0-ES7	These are internal chip-selects to the 8 EPROM banks. Each bank can be located on any boundary that is a function of one product term of the PAD address inputs.			
RS0	This is an internal chip-select to the SRAM. Its base address location is a function of one term of the PAD address inputs.			
CSIOPORT	This internal chip-select selects the I/O ports. It can be placed on any boundary that is a function of one product term of the PAD inputs. See Table 6.			
CSADIN	This internal chip-select, when Port A is configured as a low-order address/data bus in the track mode (CPAF2 = 1), controls the input direction of Port A. CSADIN is gated externally to the PAD by the internal read signal. When CSADIN and a read operation are active, data presented on Port A flows out of AD0/AO–AD7/A7. This chip-select can be placed on any boundary that is a function of one product term of the PAD inputs. See Figure 5.			
CSADOUT1	This internal chip-select, when Port A is configured as a low-order address/data bus in track mode (CPAF2 = 1), controls the output direction of Port A. CSADOUT1 is gated externally to the PAD by the ALE signal. When CSADOUT1 and the ALE signal are active, the address presented on AD0/A0–AD7/A7 flows out of Port A. This chip-select can be placed on any boundary that is a function of one product term of the PAD inputs. See Figure 5.			
CSADOUT2	This internal chip-select, when Port A is configured as a low-order address/data bus in the track mode (CPAF2 = 1), controls the output direction of Port A. CSADOUT2 must include the write-cycle control signals as part of its product term. When CSADOUT2 is active, the data presented on AD0/A0–AD7/A7 flows out of Port A. This chip-select can be placed on any boundary that is a function of one product term of the PAD inputs. See Figure 5.			
PAD B Outputs				
CS0-CS3	These chip-select outputs can be routed through Port B. Each of them is a function of up to four product terms of the PAD inputs.			
CS4-CS7	These chip-select outputs can be routed through Port B. Each of them is a function of up to two product terms of the PAD inputs.			
<u>CS8–CS10</u>	These chip-select outputs can be routed through Port C. See Figure 3, Note 4. Each of them is a function of one product term of the PAD inputs.			

Configuration Bits

The configuration bits shown in Table 4 are non-volatile cells that let the user set the device, I/O, and control functions to the proper operational mode. Table 5 lists all configuration bits. The configuration bits are programmed and verified during the

programming phase. In operational mode, they are not accessible. To simplify implementing a specific mode, use the WSI's PSD311 MAPLE software to set the bits.

Table 4.	Use This Bit	То
PSD311 Non-Volatile	CADDRDAT	Set the address/data buses to multiplexed or non-multiplexed mode.
Configuration Bits	CRRWR	Set the \overline{RD}/E and \overline{WR}/V_{PP} or R/\overline{W} pins to \overline{RD} and \overline{WR} pulse, or to E strobe and R/\overline{W} status.
DIIS	CA19/CSI	Set A19/CSI to CSI (power-down) or A19 input.
	CALE	Set the ALE polarity.
	CPAF2	Set Port A either to track the low-order byte of the address/data multiplexed bus or to select the I/O or address option. (Note 6)
	CSECURITY	Set the security on or off.
	CRESET	Set the RESET polarity.
	COMB/SEP	Set PSEN and RD for combined or separate address spaces (see Figures 8 and 9).
	CPAF1	Configure each pin of Port A in multiplexed mode to be an I/O or address output.
	CPACOD	Configure each pin of Port A as an open drain or active CMOS pull-up output.
	CPBF	Configure each pin of Port B as an I/O or a chip-select output.
	CPBCOD	Configure each pin of Port B as an open drain or active CMOS pull-up output.
	CPCF	Configure each pin of Port C as an address input or a chip-select output.
	CADDHLT	Configure pins A16–A19 to go through a latch or to have their latch transparent.
	CATD	Configure Pins A16–A19 as PAD logic inputs or higher-order address inputs

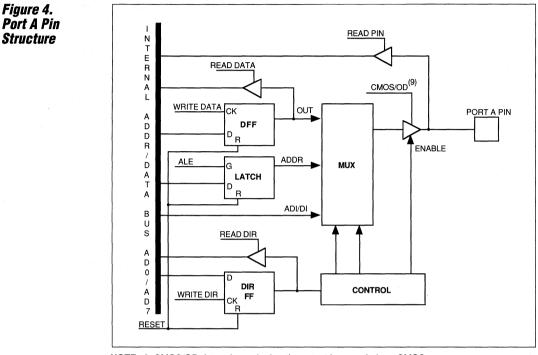
NOTE: 6. For functional and value descriptions, refer to Table 5.

Table 5.PSD311ConfigurationBits 7,8(45 total bits)

Configuration Bits	No. of Bits	Function
CADDRDAT	1	Address/data multiplexed or non-multiplexed (separate buses) CADDRDAT = 0, non-multiplexed address/data bus CADDRDAT = 1, multiplexed address/data bus
CRRWR	1	CRRWR = 0, \overline{RD} and \overline{WR} active low strobes CRRWR = 1, R/W status and E active high pulse
CA19/CSI	1	A19 or CSI CA19/ <u>CSI</u> = 0, enable power-down mode CA19/ CSI = 1, A19 input to PAD
CALE	1	Active high or active low CALE = 0, active high CALE = 1, active low
CRESET	1	Active high or active low CRESET = 0, active low reset signal CRESET = 1, active high reset signal
COMB/SEP	1	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
CPAF1	8	Port A I/Os or A0–A7 CPAF1 = 0, Port A pin = I/O CPAF1 = 1, Port A pin = Ai $(0 \le i \ge 7)$
CPAF2	1	Port A AD0–AD7 (address/data multiplexed bus) CPAF2 = 0, address or I/O on Port A (according to CPAF1) CPAF2 = 1, address/data multiplexed on Port A (track mode)
CPBF	8	Port B I/Os or $\overline{CS0}$ – $\overline{CS7}$ CPBF = 0, Port B Pin = \overline{CSi} (0 ≤ i ≤ 7) CPBF = 1, Port B Pin = I/O
CPCF	3	Port C A16–A18 or $\overline{CS8}$ – $\overline{CS10}$ CPCF = 0, Port C Pin = Ai (16 ≤ i ≤ 18) CPCF = 1, Port C Pin = \overline{CSi} (8 ≤ i ≤ 10)
CPACOD	8	Port A CMOS or open-drain outputs CPACOD = 0, CMOS output CPACOD = 1, open-drain output
CPBCOD	8	Port B CMOS or open-drain outputs CPBCOD = 0, CMOS output CPBCOD = 1, open-drain output
CADDHLT	1	A16–A19 latched or latch transparent CADDHLT = 0, address latch transparent CADDHLT = 1, address latched (ALE dependent)
CATD	1	A16–A19 used as address or logic inputs CATD = 0, logic inputs CATD = 1, address inputs
CSECURITY	1	Security on or off CSECURITY = 0, no security CSECURITY = 1, secured part (cannot be copied)

NOTES: 7. WSI's MAPLE software will guide the user to the proper configuration choice.

8. In an unprogrammed or erased part, all configuration bits are 0.


US

2

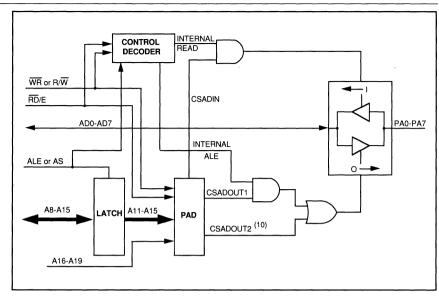
Port Functions

The PSD311 has three I/O ports (Ports A, B, and C) that are configurable at the bit level. This permits great flexibility and a high degree of customization for specific

applications. The following is a description of each port. Figure 4 shows the pin structure of Port A.

NOTE: 9. CMOS/OD determines whether the output is open drain or CMOS.

us:


Port Functions (Cont.)

Port A in Multiplexed Address/Data Mode

The default configuration of Port A is I/O. In this mode, every pin can be set as an input or output by writing into the respective pin's direction flip flop (DIR FF, in Figure 4). As an output, the pin level can be controlled by writing into the respective pin's data flip flop (DFF, in Figure 4). When DIR FF = 1, the pin is configured as an output. When DIR FF = 0, the pin is configured as an input. The controller can read the DIR FF bits by accessing the READ DIR register; it can read the DFF bits by accessing the READ DATA register. Port A pin levels can be read by accessing the READ PIN register. Individual pins can be configured as CMOS or open drain outputs. Open drain pins require external pull-up resistors. For addressing information, refer to Table 6.

Alternatively, each bit of Port A can be configured as a low-order latched address bus bit. The address is provided by the port address latch, which latches the address on the trailing edge of ALE. PAO–PA7 can become AO–A7, respectively. This feature of the PSD311 lets the user generate loworder address bits to access external peripherals or memory that require several low-order address lines.

Figure 5. Port A Track Mode

NOTE: 10. The expression for CSADOUT2 must include the following write operation cycle signals: For CRRWR = 0, CSADOUT2 must include $\overline{WR} = 0$. For CRRWR = 1, CSADOUT2 must include E = 1 and $\overline{RW} = 0$.

Port Functions (Cont.)

Another mode of Port A (CPAF2 = 1) sets the entire port to track the inputs AD0/A0-AD7/A7, depending on specific address ranges defined by the PAD's CSADIN, CSADOUT1, and CSADOUT2 signals. This feature lets the user interface the microcontroller to shared external resources without requiring external buffers and decoders. In this mode, the port is effectively a bi-directional buffer. The direction is controlled by using the input signals ALE, RD/E, WR/VPP or R/W, and the internal PAD outputs CSADOUT1, CSADOUT2 and CSADIN (see Figure 5). When CSADOUT1 and ALE are true, the address on the input AD0/A7-AD7/A7 pins

us:

flows out through Port A. (Carefully check the generation of CSADOUT1, and ensure that it is stable during the ALE pulse; see Figure 17). When CSADOUT2 is active, a write operation is performed (see note to Figure 5). The data on the input AD0/A7–AD7/A7 pins flows out through Port A. When CSADIN and a read operation is performed (depending on the mode of the RD/E and WR/V_{PP} or R/W pins), the data on Port A flows out through the AD0/A7–AD7/A7 pins. In this operational mode, Port A is tri-stated when none of the above-mentioned three conditions exist. Port Functions (Cont.)

Port A in Non-Multiplexed Address/Data Mode

In this mode, Port A becomes the low order data bus byte of the chip. When reading an internal PSD311 location, data is presented on Port A pins. When writing to an internal PSD311 location, data present on Port A pins is written to that location.

Port B

The default configuration of Port B is I/O. In this mode, every pin can be set as an input or output by writing into the respective pin's direction flip flop (DIR FF, in Figure 6). As an output, the pin level can be controlled by writing into the respective pin's data flip flop (DFF, in Figure 6). When DIR FF = 1, the pin is configured as an output. When DIR FF = 0, the pin is configured as an input. The controller can read the DIR FF bits by accessing the READ DIR register; it can read the DFF bits by accessing the READ DATA register. Port B pin levels can be read by accessing the READ PIN register. Individual pins can be configured as CMOS or open drain outputs. Open drain pins require external pull-up resistors. For addressing information, refer to Table 6

Alternatively, each bit of Port B can be configured to provide a chip-select output signal from PAD B. PBO–PB7 can provide <u>CSO–CS7</u>, respectively. Each of the signals <u>CSO–CS3</u> is comprised of four product terms. Thus, up to four ANDed expressions can be ORed while deriving any of these signals. Each of the signals <u>CS4–CS7</u> is comprised of two product terms. Thus, up to two ANDed expressions can be ORed while deriving any of these signals.

Accessing the I/O Port Registers

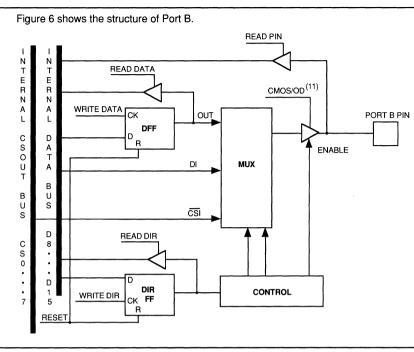
Table 6 shows the offset values with the respect to the base address defined by the CSIOPORT. They let the user access the corresponding registers.

Port C in All Modes

Each pin of Port C (shown in Figure 7) can be configured as an input to PAD A and PAD B or output from PAD B. As inputs, the pins are named A16-A18. Although the pins are given names of the high-order address bus, they can be used for any other address lines or logic inputs to PAD A and PAD B. For example, A8-A10 can also be connected to those pins, improving the boundaries of CS0-CS7 resolution to 256 bytes. As inputs, they can be individually configured to be logic or address inputs. A logic input uses the PAD only for Boolean equations that are implemented in any or all of the CS0-CS10 PAD B outputs. Port C addresses can be programmed to latch the inputs by the trailing edge ALE or to be transparent.

Alternatively, PC0–PC2 can become CS8–CS10 outputs, respectively, providing the user with more external chip-select PAD outputs. Each of the signals CS8–CS10 is comprised of one product term.

ALE/AS and ADO/AO-AD7/A7 in Non-Multiplexed Modes


In non-multiplexed modes, A0-A15 are address inputs only and can become transparent (CLOT = 0) or ALE dependent (CLOT = 1). In transparent mode, the ALE/AS pin can be used as an additional logic input to the PADs. The non-multiplexed ALE dependent mode is useful in applications for which the host processor has a multiplex address/data bus and AD0/A0-AD7/A7 are not multiplexed with A0-A7 but rather are multiplexed with other address lines. In these applications, Port A serves as a data bus and each of its pins can be directly connected to the corresponding host's multiplexed pin, where that data bit is expected. See Table 7.

A16–A19 As Inputs If one or more of the pins PC0, PC1, PC2 and $\overline{CSI}/A19$ are configured as inputs, the configuration bits CADDHLT and CATD define their functionality inside the part. CADDHLT determines if these inputs are to be latched by the trailing edge of the ALE or AS signal (CADDHLT = 1), or enabled into the PSD311 at all times (CADDHLT = 0), transparent mode). CATD determines

US

whether these lines are high-order address lines, that take part in the derivation of memory and I/O select signals inside the chip (CATD = 1), or logic input lines that have no impact on memory or I/O selections (CATD = 0). Logic input lines typically participate in the Boolean expressions implemented in the PAD.

Figure 6. Port B Pin Structure

US:

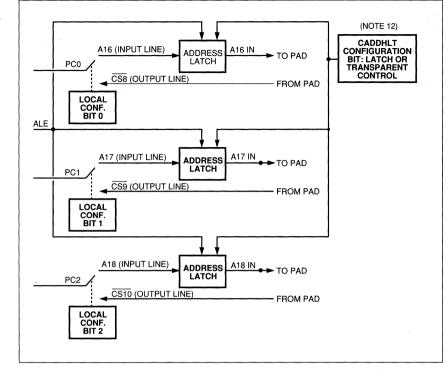

Register Name	Byte Size Access of the I/O Port Registers Offset from the CSIOPORT
Pin Register of Port A	+ 2 (accessible during read operation only)
Direction Register of Port A	+ 4
Data Register of Port A	+ 6
Pin Register of Port B	+ 3 (accessible during read operation only)
Direction Register of Port B	+ 5
Data Register of Port B	+ 7

Table 6. I/O Port Addresses 2

2-59

Figure 7. Port C Structure

NOTE: 12. The CADDHLT configuration bit determines if A18-A16 are transparent via the latch, or if they must be latched by the trailing edge of the ALE strobe.

Table 7. Signal Latch	Signal Name	Configuration Bits	Configuration Mode	Signal Latch Status
Status in All	AD0/A0-	CADDRDAT = 0	non-multiplexed mode	Transparent
Operating Modes	AD7/A7	CADDRDAT = 1	multiplexed modes	ALE Dependent
	PSEN	CDATA = 0	8-bit data, PSEN is active	Transparent
	A19 and	CADDHLT = 0	A16-A19 can become logic inputs	Transparent
	PC2-PC0	CADDHLT = 1	A16–A19 can become multiplexed address lines	ALE Dependent

EPROM

SRAM

The PSD311 has 256K bits of EPROM and is organized as 32K x 8. The EPROM has 8 banks of memory. Each bank can be placed in any address location by programming the PAD. Bank0–Bank7 can

> The PSD311 has 16K bits of SRAM and is organized as 2K x 8. The SRAM is selected by the RS0 output of the PAD.

Control Signals

The PSD311 control signals are \overline{WR}/V_{PP} or R/W, RD/E, ALE, PSEN, Reset, and A19/CSI. Each of these signals can be configured to meet the output control signal requirements of various microcontrollers.

WR/V_{PP} or R/W

In operational mode, this signal can be configured as \overline{WR} or R/\overline{W} . As \overline{WR} , all write operations to the PSD311 are activated by an active low signal on this pin. As R/\overline{W} , the pin works with the E strobe of the \overline{RD}/E pin. When R/\overline{W} is high, an active high signal on the \overline{RD}/E pin performs a read operation. When R/\overline{W} is low, an active high signal on the \overline{RD}/E pin performs a write operation.

RD/E

In operational mode, this signal can be configured as \overline{RD} , or E. As \overline{RD} , all read operations to the PSD311 are activated by an active low signal on this pin. As E, the pin works with the R/W strobe of the \overline{WR}/V_{PP} or R/\overline{W} pin. When R/\overline{W} is high, an active high signal on the \overline{RD}/E pin performs a read operation. When R/\overline{W} is low, an active high signal on the \overline{RD}/E pin performs a write operation.

ALE or AS

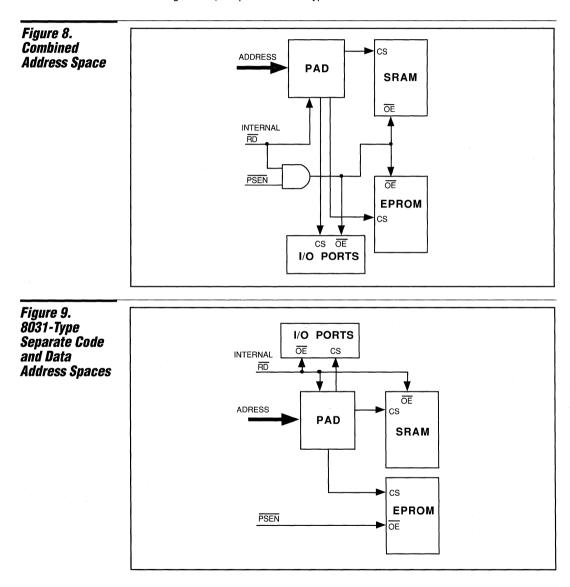
nized as 4K x 8.

ALE polarity is programmable. When programmed to be active high, a high on the pin causes the input address latches, Port A address latches, Port C, and A19 address latches to be transparent. The falling edge of ALE locks the information into the latches. When ALE is programmed to be active low, a low on the pin causes the input address latches, Port A address latches, Port C, and A19 address latches to be transparent. The rising edge of ALE locks the appropriate information into the latches.

be selected by PAD outputs ES0-ES7,

respectively. The EPROM banks are orga-

PSEN


The \overrightarrow{PSEN} function enables the user to work with two address spaces: <u>program memory and data memory (if</u> $\overrightarrow{COMB/SEP} = 1$). In this mode, an active low signal on the \overrightarrow{PSEN} pin causes the \overrightarrow{EPROM} to be read. The SRAM and $\overrightarrow{I/O}$ ports read operation are done by \overrightarrow{RD} low (CRRWR = 0), or by E and $\overrightarrow{R/W}$ high (CRRWR = 1).

Control Signals (Cont.)

Whenever a member of the 8031 family (or any other similar microcontroller) is used, the PSD311's PSEN pin must be connected to the PSEN pin of the microcontroller.

If $\overline{\text{COMB}}/\text{SEP} = 0$, the address spaces of the program and the data are combined. In this configuration (except for the 8031-type

case mentioned above), the \overrightarrow{PSEN} pin must be tied high to V_{CC}, and the EPROM, SRAM, and I/O ports are read by \overrightarrow{RD} low (CRRWR = 0), or by E and R/W high (CRRWR = 1). See Figures 8 and 9.

ur:

Control Signals (Cont.)

RESET

This is an asynchronous input pin that clears and initializes the PSD311. Reset polarity is programmable (active low or active high). Whenever the PSD311 reset input is driven active for at least 100 ns, the chip is reset. During boot-up (V_{cc} applied), the device is automatically reset internally (internal automatic reset is over by the time V_{cc} operating range has been achieved during boot-up). Tables 8 and 9 indicate the state of the part during and after reset.

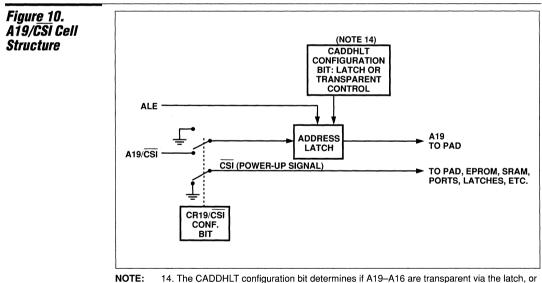
A19/CSI

When configured as CSI, a high on this pin deselects, and powers down, the chip. A low on this pin puts the chip in normal operational mode. For PSD311 states during the power-down mode, see Tables 10 and 11, and Figure 10.

In A19 mode, the pin is an additional input to the PAD. It can be used as an address line (CADDHLT = 1) or as a generalpurpose logic input (CADDHLT = 0). A19 can be configured as ALE dependent or as transparent input (see Table 7). In this mode, the chip is always enabled.

S	ignal	Configuration Mode	Condition
After AD0/A0-	AD7/A7	All	Input
Aller A8–A15		All	Input
PA0–PA7 (Port A	")	I/O Tracking AD0/A0–AD7 Address outputs A0–A7	Input Input Low
PB0–PB3 (Port B)	7	I/O CS7–CS0 CS7–CS0 open drain outputs	Input High Tri-stated
PC0–PC (Port C)	2	Address inputs A16–A18 CS8–CS10 CMOS outputs	Input High

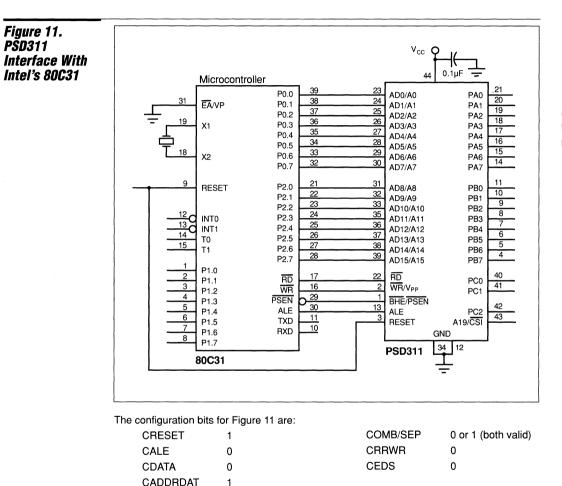
Table 9. Internal States During and After Reset


Component	Signals	Contents
	CS0-CS10	All = 1 (Note 13)
PAD	CSADIN, CSADOUT1, CSADOUT2, CSIOPORT, RS0, ES0–ES7	All = 0 (Note 13)
Data register A Direction register A Data register B Direction register B	n/a n/a n/a n/a	0 0 0 0

NOTE: 13. All PAD outputs are in a non-active state.

Signal	Configuration Mode	Condition
AD0/A0-AD7/A7	All	Input
A8–A15	All	Input
PA0-PA7	I/O Tracking AD0/A0–AD7/A7 Address outputs A0–A7	Unchanged Input All 1's
PB0-PB7	I/O CS0–CS7 CMOS outputs CS0–CS7 open drain outputs	Unchanged All 1's Tri-stated
PC0-PC2	Address inputs A18–A16 CS8–CS10 CMOS outputs	Input All 1's

Table 11.	Component	Signals	Contents
Internal States		CS0-CS10	All 1's (deselected)
During Power- Down	PAD	CSADIN, CSADOUT1, CSADOUT2, CSIOPORT, RS0, ES0–ES7	All 0's (deselected)
	Data register A Direction register A Data register B Direction register B	n/a n/a n/a n/a	All unchanged


W/

14. The CADDHLT configuration bit determines if A19-A16 are transparent via the latch, or if they must be latched by the trailing edge of the ALE strobe.

System Applications

In Figure 11, the PSD311 is configured to interface with Intel's 80C31, which is a 16-bit address/8-bit data bus microcontroller. Its data bus is multiplexed with the low-order address byte. The 80C31 uses signals $\overline{\text{RD}}$ to read from data memory and

PSEN to read from code memory. It uses WR to write into the data memory. It also uses active high reset and ALE signals. The rest of the configuration bits as well as the unconnected signals (not shown) are application specific and, thus, user dependent.

All other configuration bits may vary according to the application requirements.

us:

Security Mode

Security Mode in the PSD311 locks the contents of the PAD A , PAD B and all the configuration bits. The EPROM SRAM, and I/O contents can be accessed only through the PAD. The Security Mode can be set by

the MAPLE or Programming software. In window packages, the mode is erasable through UV full part erasure. In the security mode, the PSD311 contents cannot be copied on a programmer.

System Applications

In Figure 12, the PSD311 is configured to interface with Motorola's 68HC11, which is a 16-bit address/8-bit data bus microcontroller. Its data bus is multiplexed with the low-order address byte. The 68HC11 uses E and R/W signals to derive the read and

write strobes. It uses the term AS (address strobe) for the address latch pulse. RESET is an active low signal. The rest of the configuration bits as well as the unconnected signals (not shown) are application specific and, thus, user dependent.

0

Figure 12.					and the second
PSD311					
nterface With Notorola's					<u> </u>
58HC11		Microcontroller		44 0.1µ	
	20	PC0 1	9 23 0 24	AD0/A0	PA0 20
	21	PD1 PC1 1	1 25	AD1/A1 AD2/A2	PA1 19
	22	PD2 PC3		AD3/A3	PA3 18
	24	PD4 PC4 1	4 28	AD4/A4 AD5/A5	PA4 16
	25	PD5 PC6 1		AD6/A6	PA5 15 PA6 14
	43	PC7	0 30	AD7/A7	PA7
	45 47	PE1 PB0 4		AD8/A8	PB0 10
	47			AD9/A9 AD10/A10	PB1
	44	PE4 PB3		AD11/A11	PB2 8 PB3 7
	46	PE5 PB4		AD12/A12	PB4 6
	50	PE7 PB5 3	6 38	AD13/A13 AD14/A14	PB5 5
	34	PB7	5 39	AD15/A15	PB7 4
	33	PA0 PA1 E	5 22	Е	PC0 40
	<u>32</u> 31	PA2	6 2	and the second second	PC0 41
	30	H/W	4 13	R/W/V _{PP} AS	PC2 42
	29 28	PA5 RESET	7 3	RESET A	19/CSI 43
	27	PA6 PA7 XIRQ 1	8	BHE/PSEN	
			9 0 2 V _{CC}		
	51	MODB -	3		
		MODA		GND	
		XTAL EXTAL		PSD311 34 1	2
		68HC11 └┥[]┝–┘		<u> </u>	
				-	
		-			
	The configurat	ion bits for Figure 12 are:	C	OMB/SEP	0

CRESET	0	CRRWR
CALE	0	CEDS
CDATA	0	
CADDRDAT	1	

us:

All other configuration bits may vary according to the application requirements.

Absolute Maximum Ratings¹⁵

Symbol	Parameter	Condition	Min	Max	Unit
T _{STG}	Storage Temperature		- 65	+ 150	°C
	Voltage on any Pin	With Respect to GND	- 0.6	+ 7	V
V _{PP}	Programming Supply Voltage	With Respect to GND	- 0.6	+ 14	V
V _{CC}	Supply Voltage	With Respect to GND	- 0.6	+ 7	V
	ESD Protection			>2000	V

NOTE: 15. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at theses or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods of time may affect device reliability.

Operating	Range	Temperature	V _{CC}	Tolerance			
Range	nange		• 66	-12	-15	-20	
	Commercial	0° C to +70°C	+ 5 V	± 5%	± 10%	± 10%	
	Industrial	-40°C to +80°C	+ 5 V		± 10%	± 10%	
	Military	-55°C to +125°C	+ 5 V		± 10%	± 10%	

Recommended	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Operating Conditions	V _{CC}	Supply Voltage	-12 Version	4.75	5	5.25	V
GUIIUIIIUIIS	V _{CC}	Supply Voltage	-15/-20 Versions	4.5	5	5.5	V
	VIH	High-level Input Voltage	V _{CC} = 4.5 V to 5.5 V	2			V
	VIL	Low-level Input Voltage	V_{CC} = 4.5 V to 5.5 V	0		0.8	V

DC Characteristics	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	V _{OL}	Output Low Voltage	I _{OL} = 20 μA V _{CC} = 4.5 V		0.01	0.1	
	VOL	Output Low Voltage	I _{OL} = 8 mA V _{CC} = 4.5 V		0.15	0.15 0.45	V
	V _{OH}	Output High Voltage	I _{OH} = -20 μA V _{CC} = 4.5 V	4.4	4.49		
	in contracting in the get	I _{OH} = -2 mA V _{CC} = 4.5 V	2.4	3.9		V	
	land	V _{CC} Standby Current	Comm'l		50	100	
	'SB1	I _{SB1} (CMOS) (Notes 16 and 18)			75	150	μA
		V _{CC} Standby Current	Comm'l		1.5	3	^
	I _{SB2}	(TTL) (Notes 17 and 18)	Ind/Mil		2	3.2	mA
			Comm'l (Note 20)		16	35	
		Active Current (CMOS)	Comm'l (Note 21)		28	50	mA
	ICC1	(SRAM Not Selected)	Ind/Mil (Notes 20)		16	45	
		(Notes 16 and 19)	Ind/Mil (Notes 21)		28	60	

AC

DC **Characteristics**

(Cont.)

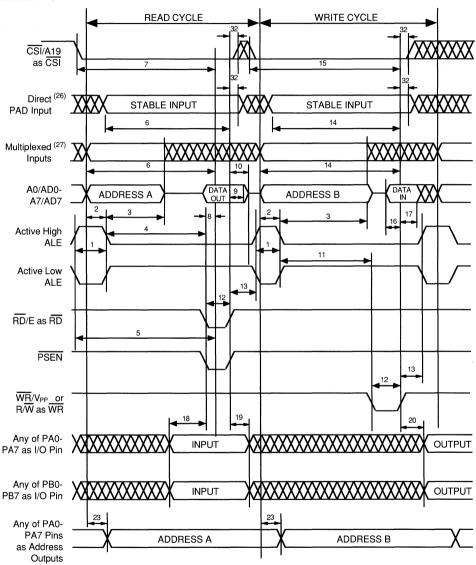
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Comm'l (Note 20)		47	80	
	Active Current (CMOS)	Comm'l (Note 21)		59	95	0
CC2	(SRAM Block Selected)	Ind/Mil (Note 20)		47	100	mA
	(Notes 16 and 19)	Ind/Mil (Note 21)		59	115	
	Active Current (TTL)	Comm'l (Note 20)		36	65	
I _{CC3}	(SRAM Not Selected)	Comm'l (Note 21)		58	80	mA
	(Notes 17 and 19)	Ind/Mil (Note 20)		36	80	
		Ind/Mil (Note 21)		58	95	
	Active Current (TTL)	Comm'l (Note 20)		67	105	
I _{CC4}	(SRAM Block Selected)	Comm'l (Note 21)		79	120	mA
	(Notes 17 and 19)	Ind/Mil (Note 20)		67	130	
		Ind/Mil (Note 21)		79	145	
ILI	Input Leakage Current	$V_{IN} = 5.5 \text{ V or GND}$	-1	± 0.1	1	
ILO	Output Leakage Current	V _{OUT} = 5.5 V or GND	-10	± 5	10	μA

NOTE: 16. CMOS inputs: GND ± 0.3 V or V_{CC} ± 0.3V.
17. TTL inputs: V_{IL} ≤ 0.8 V, V_{IH} ≥ 2.0 V.
18. CSI/A19 is high and the part is in a power-down configuration mode.
19. AC power component is 3.0 mA/MHz (power = AC + DC).
20. Ten (10) PAD product terms active. (Add 380 μA per product term, typical, or 480 μA per product term maximum.)
21. Ten (10) PAD product terms active.

21. Forty-one (41) PAD product terms active.

AC Characteristics	Symbol	Parameter	- ;	12	-1	5	-2	20	Unit
Characteristics (See Timing	JUIIDUI	Falanitit	Min	Max	Min	Max	Min	Max	01111
Diagrams)	T1	ALE or AS Pulse Width	30		40		50		
2.49.4	T2	Address Set-up Time	5		10		15		
	Т3	Address Hold Time	13		15		25		
	T4	ALE or AS Trailing Edge to Leading Edge of Read	12		15		20		
	T5	ALE Valid to Data Valid	140		170		220		
	Т6	Address Valid to Data Valid		120		150		200	
	T7	CSI Active to Data Valid		150		160		200	
	Т8	Leading Edge of Read to Data Valid		38		55		60	
	Т9	Read Data Hold Time	0		0		0		ns
	T10	Trailing Edge of Read to Data High-Z		35		40		45	
	T11	Trailing Edge of ALE or AS to Leading Edge of Write	12		15		20		
	T12	RD, E, PSEN Pulse Width	45		60		75		
	T12A	WR Pulse Width	25		35		45		
	T13	Trailing Edge of Write or Read to Leading Edge of ALE or AS	20		30		40		
	T14	Address Valid to Trailing Edge of Write	120		150		200		

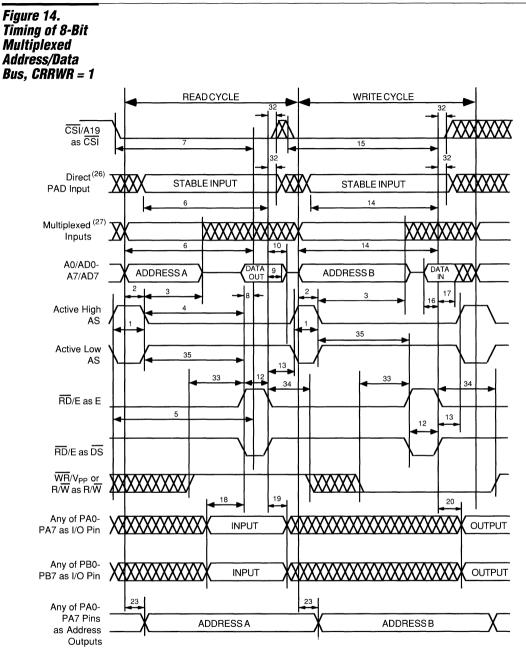
AC *Characteristics* (Cont.)


0	Deveneder	-	12	-	15	-2	20	Unit
Symbol	Parameter	Min	Max	Min	Max	Min	Max	
T15	CSI Active to Trailing Edge of Write	130		160		210		
T16	Write Data Set-up Time	20		30		40		
T17	Write Data Hold Time	5		10		15		
T18	Port Input Set-up Time	30		35		45		
T19	Port Input Hold Time	0		0		0		1
T20	Trailing Edge of Write to Port Output Valid	40		50		60		
T21	ADi or Control to CSOi Valid	6	35	6	35	5	45	
T22	ADi or Control to CSOi Invalid	5	35	4	35	4	45	
T23	Track Mode Address Propagation Delay: CSADOUT1 Already True		22	2	22		28	
T23A	Track Mode Address Propagation Delay: CSADOUT1 Becomes True During ALE or AS		33		40		50	
T24	Track Mode Address Holding Time	15		15		27		ns
T25	Track Mode Read Propagation Delay		29		29		35	
T26	Track Mode Read Hold Time	11	29	10	29	10	35	
T27	Track Mode Write Cycle Data Propagation Delay		20		20		30	
T28	Track Mode Write Cycle Write to Data Propagation Delay	8	30	7	40	7	55	
T29	Hold Time of Port A Valid During Write CSOi Trailing Edge	2		4		4		
T30	CSI Active to CSOi Active	9	45	9	45	8	60	
T31	CSI Inactive to CSOi Inactive	9	45	9	45	8	60	
T32	Direct PAD Input as Hold Time	10		12		15		
Т33	R/\overline{W} Active to E or DS Start	20		30		40		
T34	E or End to R/W	20		30		40		
T35	AS Inactive to E High	15		20	1	25	1	Ì

NOTES: 22. ADi = any address line. 23. CSOi = any of the chip-select output signals coming through Port B (CS0–CS7) or through Port C (CS8–CS10).

24. Direct PAD input = any of the following direct PAD input lines: CSI/A19 as transparent A19, RD/E, WR or R/W, transparent PC0–PC2, ALE (or AS).

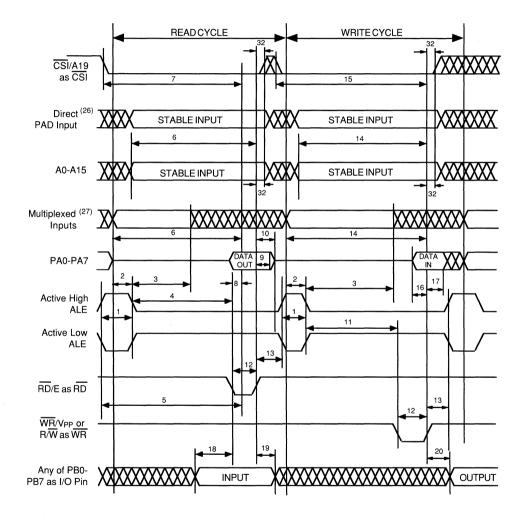
25. Control signals RD/E or WR or R/W.


Figure 13. Timing of 8-Bit Multiplexed Address/Data Bus, CRRWR = 0

ur:

See referenced notes on page 2-75.

2

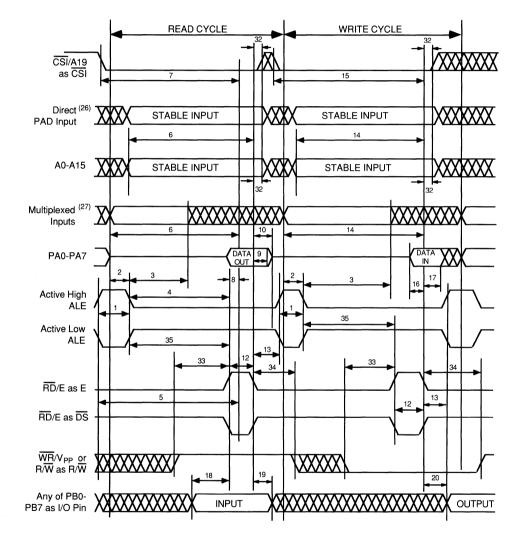


us:

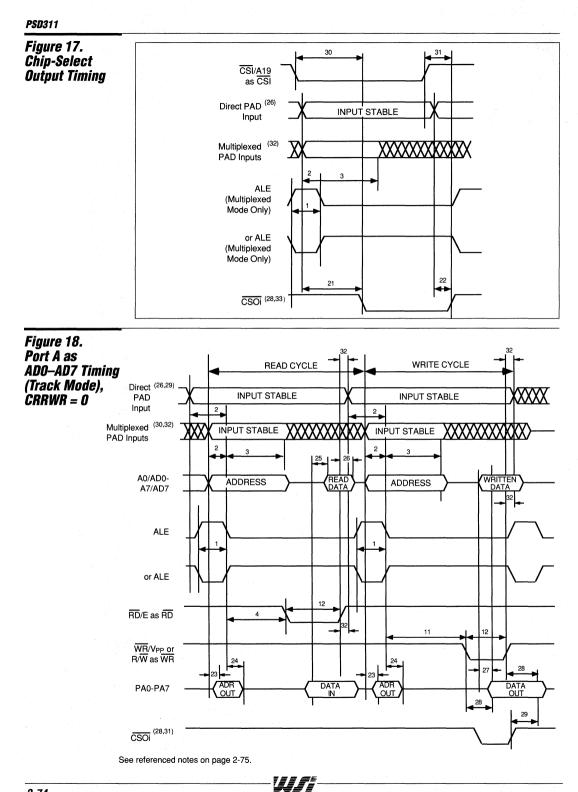
See referenced notes on page 2-75.

2-71

Figure 15. Timing of 8-Bit Data Non-Multiplexed Address/Data Bus, CRRWR = 0

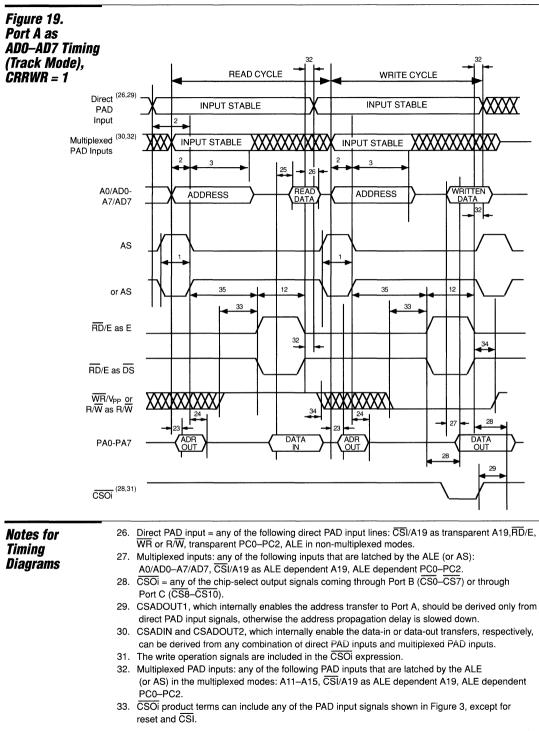

us:

See referenced notes on page 2-75.

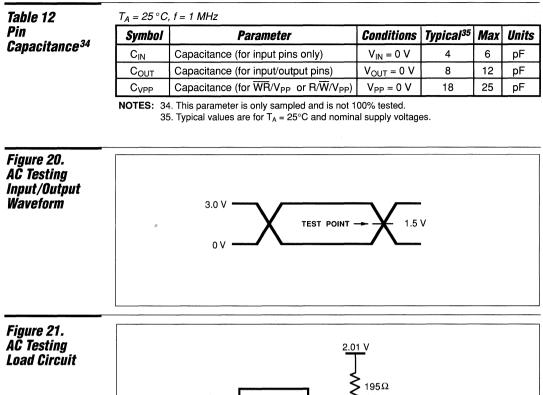

2-72

2

Figure 16 Timing of 8-Bit Data Non-Multiplexed Address/Data Bus, CRRWR = 1



See referenced notes on page 2-75.


2-74

2

us

2-75

DEVICE UNDER TEST

ur:

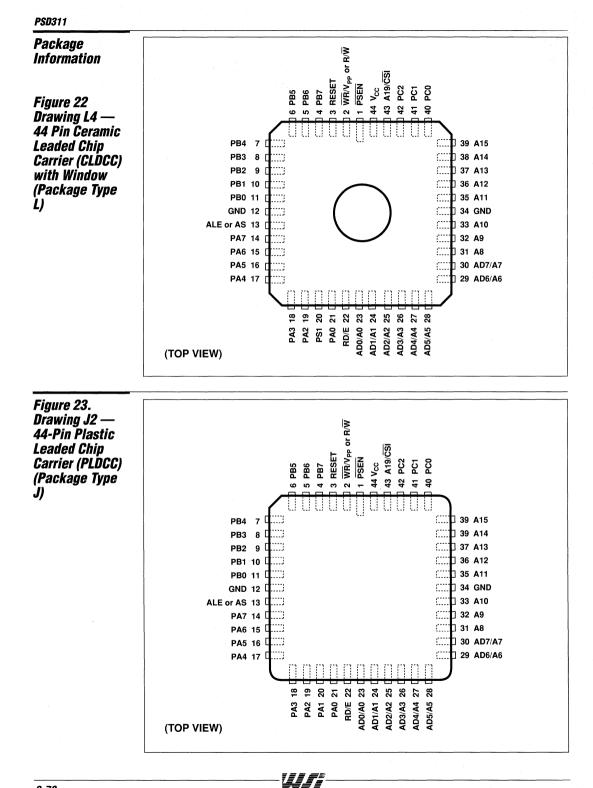
Erasure and Programming

To clear all locations of their programmed contents, expose the device to ultra-violet light source. A dosage of 15 W second/cm² is required. This dosage can be obtained with exposure to a wavelength of 2537 Å and intensity of 12000 μ W/cm² for 15 to 20 minutes. The device should be about 1 inch from the source, and all filters should be removed from the UV light source prior to erasure.

The PSD311 and similar devices will erase with light sources having wavelengths shorter than 4000 Å. Although the erasure times will be much longer than with UV sources at 2537 Å, exposure to fluorescent light and sunlight eventually erases the device. For maximum system reliability, these sources should be avoided. If used in such an environment, the package windows should be covered by an opaque substance.

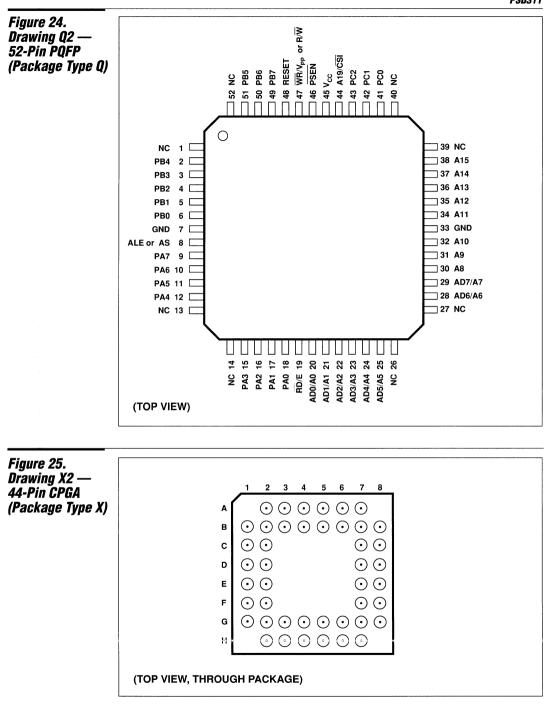
 $C_L = 30 \text{ pF}$ (INCLUDING SCOPE AND JIG CAPACITANCE)

Upon delivery from WSI, or after each erasure, the PSD311 device has all bits in the PAD and EPROM in the "1" or high state. The configuration bits are in the "0" or low state. The code, configuration, and PAD MAP data are loaded through the procedure of programming


Information for programming the device is available directly from WSI. Please contact your local sales representative.

Pin Assignments

		Sector and the sector of the s	
Name	44-Pin PLDCC/ CLDCC Package	44-Pin CPGA Package	52-Pin PQFP Package
PSEN	1	A ₅	46
\overline{WR}/V_{PP} or R/\overline{W}	2	A₄	47
RESET	3	B4	48
PB7	4	A3	49
PB6	5	B ₃	50
PB5	6	A ₂	51
PB4	7	B ₂	2
PB3	8	B ₁	3
PB2	9	C ₂	4
PB1	10	C ₁	5
PB0	11		6
GND	12	D ₂ D ₁	0 7
ALE or AS	12		8
PA7	13	E ₁	9
		E ₂	
PA6	15	F ₁	10
PA5	16	F ₂	11
PA4	17	G ₁	12
PA3	18	G ₂	15
PA2	19	H ₂	16
PA1	20	G ₃	17
PA0	21	H ₃	18
RD/E	22	G ₄	19
AD0/A0	23	H ₄	20
AD1/A1	24	H ₅	21
AD2/A2	25	G ₅	22
AD3/A3	26	H ₆	23
AD4/A4	27	G ₆	24
AD5/A5	28	H ₇	25
AD6/A6	29	G ₇	28
AD7/A7	30	G ₈	29
A8	31	F ₇	30
A9	32	F ₈	31
A10	33	E ₇	32
GND	34	E ₈	33
A11	35	-0 D ₈	34
A12	36	D ₇	35
A13	37	C ₈	36
A14	38	C ₇	37
A15	39	В ₈	38
PC0	40	B ₇	41
PC1	41	Α ₇	42
PC2	41	В ₆	42
A19/CSI	42 43		43 44
V _{CC}	43 44	А ₆ В ₅	44 45
V CC	44	D5	40


NOTE: 36. Pins 1, 13, 14, 26, 27, 39, 40, and 52 are No Connect.

2

2-78

us:

2

Ordering

Information

Part Number	Spd. (ns)	Package Type	Package Drawing	Operating Temperature Range	WSI Manufacturing Procedure
PSD311-12J	120	44-pin PLDCC	J2	Commercial	Standard
PSD311-12L	120	44-pin CLDCC	L4	Commercial	Standard
PSD311-12Q	120	52-pin PQFP	Q2	Commercial	Standard
PSD311-12X	120	44-pin CPGA	X2	Commercial	Standard
PSD311-15J	150	44-pin PLDCC	J2	Commercial	Standard
PSD311-15JI	150	44-pin PLDCC	J2	Industrial	Standard
PSD311-15L	150	44-pin CLDCC	L4	Commercial	Standard
PSD311-15LI	150	44-pin CLDCC	L4	Industrial	Standard
PSD311-15LM	150	44-pin CLDCC	L4	Military	Standard
PSD311-15LMB	150	44-pin CLDCC	L4	Military	MIL-STD-883C
PSD311-15Q	150	52-pin PQFP	Q2	Commercial	Standard
PSD311-15X	150	44-pin CPGA	X2	Commercial	Standard
PSD311-15XI	150	44-pin CPGA	X2	Industrial	Standard
PSD311-15XM	150	44-pin CPGA	X2	Military	Standard
PSD311-15XMB	150	44-pin CPGA	X2	Military	MIL-STD-883C
PSD311-20J	200	44-pin PLDCC	J2	Commercial	Standard
PSD311-20JI	200	44-pin PLDCC	J2	Industrail	Standard
PSD311-20L	200	44-pin CLDCC	L4	Commercial	Standard
PSD311-20LI	200	44-pin CLDCC	L4	Industrial	Standard
PSD311-20LM	200	44-pin CLDCC	L4	Military	Standard
PSD311-20LMB	200	44-pin CLDCC	L4	Military	MIL-STD-883C
PSD311-20Q	200	52-pin PQFP	Q2	Commercial	Standard
PSD311-20X	200	44-pin CPGA	X2	Commercial	Standard
PSD311-20XI	200	44-pin CPGA	X2	Industrial	Standard
PSD311-20XM	200	44-pin CPGA	X2	Military	Standard
PSD311-20XMB	200	44-pin CPGA	X2	Military	MIL-STD-883C

PSD311 System Development Tools

System Development Tools	The PSD311 features a complete set of System Development Tools. These tools provide an integrated, easy-to-use software and hardware environment to support PSD311 device development. To run these tools requires an IBM-XT, -AT, or compati- ble computer, MS-DOS 3.1 or higher, 640K byte RAM, and a hard disk.	The MagicPro Programmer is the common hardware platform for programming all WSI programmable products. It consists of an IBM-PC plug-in programmer board and a remote socket adaptor. Software The PSD311 System Development
	 Hardware The PSD311 System Programming Hardware consists of: WS6000 MagicPro Memory and PSD Programmer WS6020 52-pin PSD311 PQFP Package Adaptor WS6021 44-pin LCC Package Adaptor (for CLDCC and PLDCC packages) WS6022 44-pin CPGA Package Adaptor 	 Software consists of: WISPER, WSI's Software Environment MAPLE, the PSD311 Location Editor Software MAPPRO, the Device Programming Software The configuration of the PSD311 device is entered using MAPLE software. MAPPRO software uses the MagicPro programmer and the socket adaptor to configure the PSD311 device, which then can be used in the target system. The development cycle is depicted in Figure 26.
Support	 WSI provides a complete set of quality support services to registered System Development Tools owners, including: 12-month software updates Design assistance from WSI field application engineers and group experts 	24-hour Electronic Bulletin Board for design assistance via dial-up modem.
Training	WSI provides in-depth, hands-on work- shops for the PSD311 device and System Development Tools. Workshop participants learn how to program high-performance, programmable peripherals. Workshops are held at the WSI facility in Fremont, California.	

US:

Ordering Information – System Development Tools

- PSD-GOLD
- U WISPER Software
- MAPLE Software
- User's Manual
- WSI Support
- ❑ WS6000 MagicPro[™] Programmer
- One Package Adaptor and Two PSD311 Product Samples

PSD-SILVER

- WISPER Software
- MAPLE software
- User's Manual
- WSI Support

WS6000

- MagicPro Programmer
- IBM-PC© Plug-in Adaptor Card
- Remote Socket Adaptor

WS6020

52-pin PQFP Package Adaptor. Used with the WS6000 MagicPro Programmer

WS6021

44-Pin LCC Package Adaptor for CLDCC and PLDCC Packages. Used with the WS6000 MagicPro Programmer.

WS6022

44-Pin CPGA Package Adaptor. Used with the WS6000 MagicPro Programmer.

WSI Support

Support services include:

- □ 12-month Software Update Service
- Hotline to WSI Application Experts
- 24-hour access to WSI Electronic Bulletin Board

WSI Training

- U Workshops at WSI, Fremont, CA
- □ For details and scheduling, call PSD Marketing (510) 656-5400.

2-82

Programmable Peripheral PSD302 Programmable Microcontroller Peripheral with Memory

Preliminary

Key Features

- Single Chip Programmable Peripheral for Microcontroller-based Applications
- 19 Individually Configurable I/O pins that can be used as
- Microcontroller I/O port expansion
- Programmable Address Decoder (PAD) I/O
- Latched address output
- Open drain or CMOS
- Two Programmable Arrays (PAD A & PAD B)
- Total of 40 Product Terms and up to 16 Inputs and 24 Outputs
- Direct Address Decoding up to 1 Meg address space and up to 16 Meg with paging
- Logic replacement
- Glue" Microcontroller Chip-Set
- Built-in address latches for multiplexed address/data bus
- Non-multiplexed address/data bus mode
- Selectable 8 or 16 bit data bus width
- ALE and Reset polarity programmable
- Selectable modes for read and write control bus as RD/WR, R/W/E, or R/W/DS
- BHE/ pin for byte select in 16-bit mode
- PSEN/ pin for 8051 users
- Built-In Page Logic
- To Expand the Address Space of Microcontrollers with Limited Address Space Capabilities
- Up to 16 pages

Partial Listing of Microcontrollers Supported

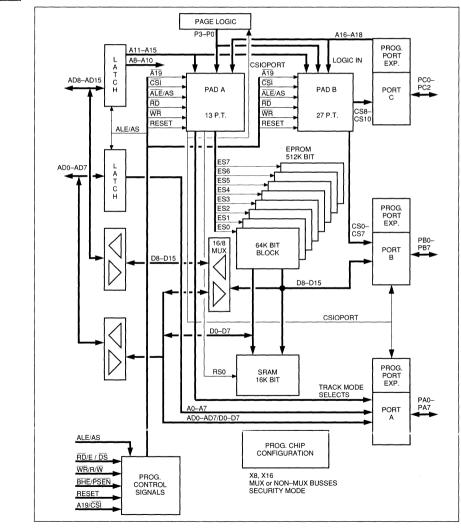
- Motorola family: M6805, M68HC11, M68HC16, M68000/10/20, M60008, M683XX
- Intel family: 8031/8051, 8096/8098, 80186/88, 80196/98

- 512 Kbits of UV EPROM
- Configurable as 64K x 8 or as 32K x 16
- Divides into 8 equal mappable blocks for optimized mapping
- Block resolution is 8K x 8 or 4K x 16
- 120 ns EPROM access time, including input latches and PAD address decoding.
- 16 Kbit Static RAM
- Configurable as 2K x 8 or as 1K x 16
- 120 ns SRAM access time, including input latches and PAD address decoding
- Address/Data Track Mode
- Enables easy Interface to Shared Resources (Mail Box SRAM) with other Microcontrollers or a Host Processor
- Built-In Security
- Locks the PSD302 Configuration and PAD Decoding
- Available in a Variety of Packaging
- 44 Pin PLDCC and CLDCC
- 52 Pin PQFP
- 44 Pin CPGA
- □ Simple Menu-Driven Software: Configure the PSD302 on an IBM PC
- Downward Pin and Functionally Compatible with the PSD301

- □ Signetics: SC80C451, SC80C552
- **Zilog:** Z8, Z80, Z180
- Dational: HPC16000

Applications	 Computers (Workstations and PCs) Fixed Disk Control, Modem, Imaging, Laser Printer Control 	 Industrial Robotics, Power Line Access, Power Line Motor
	 Telecommunications Modem, Cellular Phone, Digital PBX, Digital Speech, FAX, Digital Signal Processing 	 Medical Instrumentation Hearing Aids, Monitoring Equipment, Diagnostic Tools
	Digital Signal Processing	 Military Missile Guidance, Radar, Sonar, Secure Communications, RF Modems
Introduction	The PSD302 is the latest member in the rapidly growing family of PSD devices. The PSD302 is ideal for microcontroller-based applications, where fast time-to-market,	required control and peripheral elements o a microcontroller-based system peripheral with no external discrete "glue" logic required.
	small form factor, and low power con- sumptions are essential. When combined in an 8- or 16-bit system, virtually any microcontroller (68HC11, 8051, 8096, 16000, etc.) and the PSD302 work together to create a very powerful chip-set solution. This implementation provides all the	The solution comes complete with simple system software development tools for inte grating the PSD302 with the microcon- troller. Hosted on the IBM PC platforms or compatibles, the easy to use software enables the designer complete freedom in designing the system.
Product Description	The PSD302 integrates high performance user-configurable blocks of EPROM, SRAM, and programmable logic technology to provide a single chip microcontroller interface. The major functional blocks include two programmable logic arrays, PAD A and PAD B, 512K bits of EPROM, 16K bits of SRAM, input latches, and	 An interface to shared external resources. Expanding address space of microcontrollers WSI's PSD302 (shown in Figure 1) can efficiently interface with, and enhance, any 8-
	output ports. The PSD302 is ideal for appli- cations requiring high performance, low power, and very small form factors. These include fixed disk control, modem, cellular telephone, instrumentation, computer peripherals, military and similar applica- tions. The PSD302 offers a unique single-chip	or 16-bit microcontroller system. This is the first solution that provides microcontrollers with port expansion, latched addresses, page logic, two programmable logic arrays PAD A and PAD B, an interface to shared resources, 512K bit EPROM, and 16K bit SRAM on a single chip. The PSD302 does not require any glue logic for interfacing to any 8- or 16-bit microcontroller.
	 solution for microcontrollers that need: I/O reconstruction (microcontrollers lose at least two I/O ports when accessing external resources). 	The 8051 microcontroller family can take full advantage of the PSD302's separate program and data address spaces. Users of the 68HCXX family of microcontrollers can change the functionality of the control
	 More EPROM and SRAM than the microcontroller's internal memory. Chip-select, control, or latched address 	signals and directly connect the R/W and E, or the R/W and DS signals. Users of 16 bit microcontrollers (including the 80186, 8096, 80196, 16XXX) can use the PSD30
	lines that are otherwise implemented discretely.	in a 16-bit configuration. Address and data buses can be configured to be separate of multiplexed, whichever is required by the host processor.
		

2


Product Discription (Cont.)

The flexibility of the PSD302 I/O ports permits interfacing to shared resources. The arbitration can be controlled internally by PAD A outputs. The user can assign the following functions to these ports: standard I/O pins, chip-select outputs from the PAD A and PAD B, or latched address or multiplexed low-order address/data byte. This enables users to design add-on systems such as disk drives, modems, etc., that easily interface to the host bus (e.g., IBM PC, SCSI).

The PSD302 on-chip programmable address decoder (PAD A) enables the user

to map the I/O ports, eight segments of EPROM (as $8K \times 8$ or as $4K \times 16$) and SRAM (as $2K \times 8$ or as $1K \times 16$) anywhere in the address space of the microcontroller. PAD B can implement up to 4 sum-of-product expressions based on address inputs and control signals.

The page register extends the accessible address space of certain microcontrollers from 64K to 1 M. There are 16 pages that can serve as base address inputs to the PAD, thereby enlarging the address space of 16 address line processors by a factor of 16.

ul:

Figure 1. PSD302 Architecture

Table 1. PSD302 Pin

Descriptions

Name	Туре	Description		
BHE/PSEN		When the data bus width is 8 bits (CDATA = 0), this pin is \overrightarrow{PSEN} . In this mode, \overrightarrow{PSEN} is the active low \overrightarrow{EPROM} read pulse. The SRAM and I/O ports read signal is generated according to the description of the $\overrightarrow{WR/V_{PP}}$ or $\overrightarrow{R/W}$ and $\overrightarrow{RD/E/DS}$ pins. If the host processor is a member of the 8031 family, \overrightarrow{PSEN} must be connected to the corresponding host pin. In other 8-bit host processors that do not have a special \overrightarrow{EPROM} -only read strobe, \overrightarrow{PSEN} should be tied to V_{CC} . In this case, \overrightarrow{RD} or \overrightarrow{E} and $\overrightarrow{R/W}$ provide the read strobe for the SRAM, I/O ports, and \overrightarrow{EPROM} . When the data bus width is configured as 16 (CDATA = 1), this pin is \overrightarrow{BHE} . When \overrightarrow{BHE} is low, data bus bits D8–D15 are read from, or written into, the $\overrightarrow{PSD302}$, depending on the operation being read or write, respectively. In programming mode, this pin is pulsed between V_{PP} and 0.		
WR/V _{PP} or R/W		In the operating mode, this pin's function is \overline{WR} (CRRWR = 0) or R/\overline{W} (CRRWR = 1) when configured as R/\overline{W} . The following tables summarize the read and write operations (CRRWR = 1): CEDS = 0 $CEDS = 1\overline{R/\overline{W}} = R/\overline{W} = R/\overline{W} = R/\overline{W}X = 0$ NOP $X = 0$ NOP 0 = 1 write $0 = 1$ write 1 = 1 read $1 = 0$ read When configured as \overline{WR} , a write operation is executed during an active low pulse. When configured as R/\overline{W} , with $R/\overline{W} = 1$ and $E = 1$, a read operation is executed; if $R/\overline{W} = 0$ and $E = 1$, a write operation is executed. In programming mode, this pin must be tied to V_{PP} voltage.		
RD/E/DS	1	The pin function depends on the CRRWR and CEDS configuration bits. If CRRWR = 0, \overline{RD} is an active low read pulse. When CRRWR = 1, this pin and the R/\overline{W} pin define the following cycle type: If CEDS = 0, E is an active high strobe. If CEDS = 1, \overline{DS} is an active low strobe.		
CSI/A19		This pin has two configurations. When it is \overline{CSI} (CA19/ \overline{CSI} = 0) and the pin is asserted high, the device is deselected and powered down. (See Tables 12 and 13 for the chip state during power-down mode.) If the pin is asserted low, the chip is in normal operational mode. When it is configured as A19, (CA19/ \overline{CSI} = 1), this pin can be used as an additional input to the PAD. CADLOG3 = 1 defines the pin as an address; CADLOG3 = 0 defines it as a logic input. If it is an address, A19 can be latched with ALE (CADDHLT = 1) or be a transparent logic input (CADDHLT = 0). In this mode, there is no power-down capability.		
RESET	I	This user-programmable pin can be configured to reset on high level (CRESET = 1) or on low level (CRESET = 0). It should remain active for at least 100 ns. See Tables 10 and 11 for the chip state after reset.		

Legend: The I/O column abbreviations are: I = input; I/O = input/output; P = power.

NOTE: 1. All the configuration bits mentioned in Table 1 appear in parentheses and are explained in the Configuration Register section.

Table 1. PSD302 Pin Descriptions (Cont.)

Name	Туре	Description
ALE or AS	I	In the multiplexed modes, the ALE pin functions as an Address Latch Enable or as an Address strobe and can be configured as an active high or active low signal. The ALE or AS trailing edge latches lines AD15/A15–AD0/A0, A16–A19, and BHE, depending on the PSD302 configuration. See Table 8. In the non-multiplexed modes, it can be used as a general-purpose logic input to the PAD.
PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0	I/O	PA7–PA0 is an 8-bit port that can be configured to track AD7/A7–AD0/A0 from the input (CPAF2 = 1). Otherwise (CPAF2 = 0), each bit can be configured separately as an I/O or lower-order latched address line. When configured as an I/O (CPAF1 = 0), the direction of the pin is defined by its direction bit, which resides in the direction register. If a pin is an I/O output, its data bit (which resides in the data register) comes out. When it is configured as a low-order address line (CPAF1 =1), A7–A0 can be made the corresponding output through this port (e.g., PA6 can be configured to be the A6 address line). Each port bit can be a CMOS output (CPACOD = 0) or an open drain output (CPACOD = 1). When the chip is in non-multiplexed mode (CADDRAT = 0), the port becomes the data bus lines (D0–D7). See Figure 4.
PB7 PB6 PB5 PB4 PB3 PB2 PB0	I/O	PB7–PB0 is an 8-bit port for which each bit can be configured as an I/O (CPBF = 1) or chip-select output (CPBF = 0). Each port bit can be a CMOS output (CPBCOD = 0) or an open drain output (CPBCOD = 1). When configured as an I/O, the direction of the pin is defined by its direction bit, which resides in the direction register. If a pin is an I/O output, its data (which resides in the data register) comes out. When configured as a chip-select output, $\overline{CSO}-\overline{CS3}$ are a function of up to four product terms of the inputs to the PAD B; $\overline{CS4}$, $-\overline{CS7}$ then are each a function of up to two product terms. When the chip is in non-multiplexed mode (CADDRAT = 0) and the data bus width is 16 (CDATA = 1), the port becomes the data bus (D8–D15). See Figure 6.
PC0 PC1 PC2	I/O	This is a 3-bit port for which each bit is configurable as a PAD A and B input or output. When configured as an input (CPCF = 0), a bit individually becomes an address (CADLOG = 1) or a logic input (CADLOG = 0). The addresses can be latched with ALE (CADDHLT = 1) or be transparent inputs to the PADs (CADDHLT = 0). When a pin is configured as an output (CPCF = 1), it is a function of one product term of all PAD inputs. See Figure 7.
AD0/A0 AD1/A1 AD2/A2 AD3/A3 AD4/A4 AD5/A5 AD6/A6 AD7/A7	1/0	In multiplexed mode, these pins are the multiplexed low-order address/data byte. After ALE latches the addresses, these pins input or output data, depending <u>on the settings</u> of the RD/E/DS, WR/V _{PP} or R/W, and BHE/PSEN pins. In non-multi- plexed mode, these pins are the low-order address input.

Wfi

Table 1. penana pin	Name	Туре	Description			
<i>PSD302 Pin Descriptions (Cont.)</i>	AD8/A8 AD9/A9 AD10/A10 AD11/A11 AD12/A12 AD13/A13 AD14/A14 AD15/A15	I/O	In 16-bit multiplexed mode, these pins are the multiplexed high-order address/data byte. After ALE latches the addresses, these pins input or output data, depending on the settings of the RD/E/DS, WR/V _{PP} or R/W, and BHE/PSEN pins. In all other modes, these pins are the high-order address input.			
	GND	Ρ	V _{SS} (ground) pin.			
	V _{CC}	Р	Supply voltage input.			

Operating Modes

The PSD302's four operating modes allow it to interface directly to 8- and 16-bit microcontrollers with multiplexed and nonmultiplexed address/data buses. These operating modes are:

- Multiplexed 8-bit address/data bus
- Multiplexed 16-bit address/data bus
- Non-multiplexed address/data, 8-bit data bus
- Non-multiplexed 16-bit address/ data bus

Multiplexed 8-bit Address/Data Bus

This mode is used to interface to microcontrollers with an 8-bit data bus and a 16-bit or larger address bus. The low-order address/data bus (AD0/A0–AD7/A7) is bidirectional and permits the latching of the address when the ALE signal is active. On the same pins, the data is read from or written to the device; this depends on the state of the RD/E/DS, BHE/PSEN and WR/V_{PP} or R/W pins. The high-order address/data bus (AD8/A8–AD15/A15) contains the high-order address bus byte. Ports A and B can be configured as in Table 2.

Multiplexed 16-bit Address/Data Bus

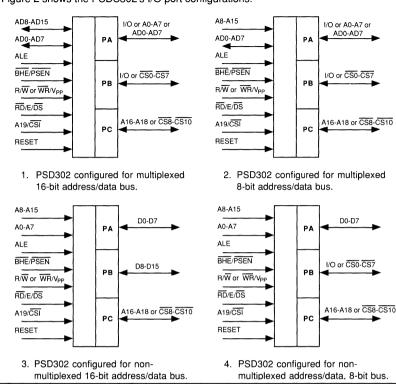
This mode is used to interface to microcontrollers with a 16-bit data bus and a 16-bit or larger address bus. The low-order address/data bus (AD0/A0–AD7/A7) is bidirectional and permits the latching of the address when the ALE signal is active. On the same pins, the data is read from or written to the device; this depends on the state of the RD/E/DS, BHE/PSEN, and WR/V_{PP} or R/W pins. The high-order address/data bus (AD8/A8–AD15/A15) is bi-directional and permits latching of the

ur:

high-order address when the ALE signal is active on the same pins. The high-order data bus is read from or written to the device, depending on the state of the RD/E/DS, BHE/PSEN, and WR/V_{PP} or R/\overline{W} pins. Ports A and B can be configured as in Table 2.

Non-Multiplexed Address/Data, 8-bit Data Bus

This mode is used to interface to non-multiplexed 8-bit microcontrollers with an 8-bit data bus and a 16-bit or larger address bus. The low-order address/data bus (AD0/A0–AD7/A7) is the low-order address input bus. The high-order address/data bus (AD8/A8–AD15/A15) is the high-order address bus byte. Port A is the low-order data bus. Port B can be configured as shown in Table 2.


Non-Multiplexed Address/Data, 16-bit Data Bus

This mode is used to interface to non-multiplexed 16-bit microcontrollers with a 16-bit data bus and a 16-bit or larger address bus. The low-order address/data bus (AD0/A0–AD7/A7) is the low-order address input bus. The high-order address/data bus (AD8/A8–AD15/A15) is the high-order address bus byte. Port A is the low-order data bus. Port B is the high-order data bus.

Table 2 summarizes the effect of the different operating modes on ports A, B, and the address/data pins. The configuration of Port C is independent of the four operating modes.

Figure 2 shows the PSDS302's I/O port configurations.

Legend: AD8–AD15 = Addresses A8–A15 multiplexed with data lines D8–D15. AD0–AD7 = Addresses A0–A7 multiplexed with data lines D0–D7.

Table 2. PSD302 Bus and Port Configuration Options

	Multiplexed Address/Data	Non-Multiplexed Address/Data	
8-bit Data Bus			
Port A	I/O or low-order address lines or Low-order multiplexed address/data byte	D0–D7 data bus byte	
Port B	$I/O \text{ or } \overline{CS0} - \overline{CS7}$	I/O and/or CS0–CS7	
AD0/A0-AD7/A7	Low-order multiplexed address/data byte	Low-order address bus byte	
AD8/A8-AD15/A15	High-order multiplexed address data byte	High-order address bus byte	
16-bit Data Bus			
Port A	I/O or low-order address lines or Low-order multiplexed address/data byte	Low-order data bus byte	
Port B	I/O or $\overline{CS0}$ – $\overline{CS7}$	High-order data bus byte	
AD0/A0-AD7/A7	Low-order multiplexed address/data byte	Low-order address bus byte	
AD8/A8-AD15/A15	High-order multiplexed address/data byte	High-order address bus byte	

Programmable Address Decoder (PAD)

The PSD302 consists of two programmable arrays referred to as PAD A and PAD B (Figure 3). PAD A is used to generate chip select signals derived from the input address to the internal EPROM blocks, SRAM, I/O ports, and Track Mode signals. All its I/O functions are listed in Table 3 and shown in Figure 3. PAD B outputs to Ports B and C for off-chip usage.

PAD B can also be used to extend the decoding to select external devices or as a

random logic replacement. The input bus to both PAD A and PAD B is the same. Using WSI's MAPLE software, each programmable bit in the PAD's array can have one of three logic states of 0, 1, and don't care (X). In a user's logic design, both PADs can share the same inputs using the X for input signals that are not supposed to affect other functions. The PADs use reprogrammable CMOS EPROM technology and can be programmed and erased by the user.

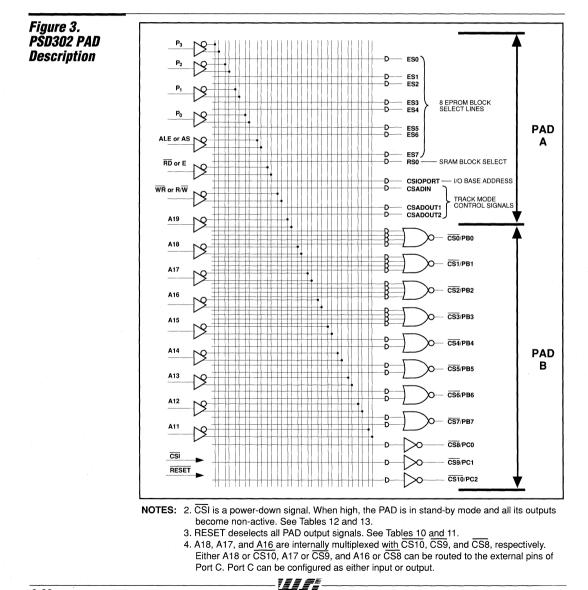


Table 3. PSD302 PAD A and B I/O Functions

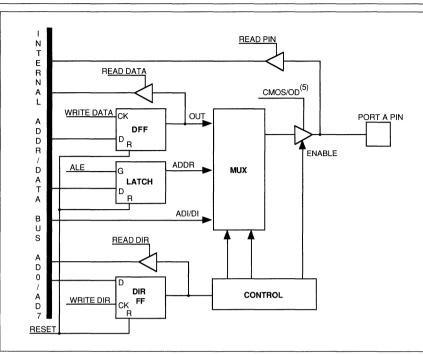
Function					
PAD A and PAD	PAD A and PAD B Inputs				
CSI or A19	In CSI mode (when high), PAD deselects all of its outputs and enters a power-down mode (see Tables 12 and 13). In A19 mode, it is another input to the PAD.				
A16–A18	These are general purpose inputs from Port C. See Figure 3, Note 4.				
A11–A15	These are address inputs.				
P0-P3	These are page number inputs.				
RD or E	This is the read pulse or enable strobe input.				
WR or R/W	This is the write pulse or R/W select signal.				
ALE	This is the ALE input to the chip.				
RESET	This deselects all outputs from the PAD; it can not be used in product term equations. See Tables 10 and 11.				
PAD A Outputs					
ES0-ES7	These are internal chip-selects to the 8 EPROM banks. Each bank can be located on any boundary that is a function of one product term of the PAD address inputs.				
RS0	This is an internal chip-select to the SRAM. Its base address location is a function of one term of the PAD address inputs.				
CSIOPORT	This internal chip-select selects the I/O ports. It can be placed on any boundary that is a function of one product term of the PAD inputs. See Tables 6 and 7.				
CSADIN	This internal chip-select, when Port A is configured as a low-order address/data bus in the track mode (CPAF2 = 1), controls the input direction of Port A. CSADIN is gated externally to the PAD by the internal read signal. When CSADIN and a read operation are active, data presented on Port A flows out of AD0/A0–AD7/A7. This chip-select can be placed on any boundary that is a function of one product term of the PAD inputs. See Figure 5.				
CSADOUT1	This internal chip-select, when Port A is configured as a low-order address/data bus in track mode (CPAF2 = 1), controls the output direction of Port A. CSADOUT1 is gated externally to the PAD by the ALE signal. When CSADOUT1 and the ALE signal are active, the address presented on AD0/A0–AD7/A7 flows out of Port A. This chip-select can be placed on any boundary that is a function of one product term of the PAD inputs. See Figure 5.				
CSADOUT2	This internal chip-select, when Port A is configured as a low-order address/data bus in the track mode (CPAF2 = 1), controls the output direction of Port A. CSADOUT2 must include the write-cycle control signals as part of its product term. When CSADOUT2 is active, the data presented on AD0/A0–AD7/A7 flows out of Port A. This chip-select can be placed on any boundary that is a function of one product term of the PAD inputs. See Figure 5.				
PAD B Outputs					
CS0-CS3	These chip-select outputs can be routed through Port B. Each of them is a function of up to four product terms of the PAD inputs.				
CS4-CS7	These chip-select outputs can be routed through Port B. Each of them is a function of up to two product terms of the PAD inputs.				
CS8-CS10	These chip-select outputs can be routed through Port C. See Figure 3, Note 4. Each of them is a function of one product term of the PAD inputs.				

Configuration Bits

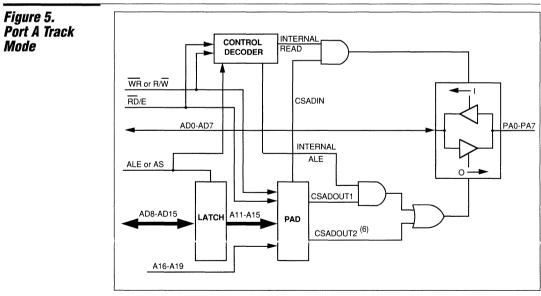
The configuration bits shown in Table 4 are non-volatile cells that let the user set the device, I/O, and control functions to the proper operational mode. Table 5 lists all configuration bits. The configuration bits are programmed and verified during the programming phase. In operational mode, they are not accessible. To simplify implementing a specific mode, use the WSI's PSD302 MAPLE software to set the bits.

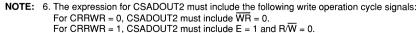
Table 4.	Use This Bit	То
PSD302 Non-Volatile	CDATA	Set the data bus width to 8 or 16 bits.
<i>Configuration</i>	CADDRDAT	Set the address/data buses to multiplexed or non-multiplexed mode.
Bits	CEDS	Determine the polarity and functionality of read and write.
	CA19/CSI	Set A19/ $\overline{\text{CSI}}$ to $\overline{\text{CSI}}$ (power-down) or A19 input.
	CALE	Set the ALE polarity.
	CPAF2	Set Port A either to track the low-order byte of the address/data multiplexed bus or to select the I/O or address option.
	CSECURITY	Set the security on or off (a secured part can not be duplicated).
	CRESET	Set the RESET polarity.
	COMB/SEP	Set PSEN and RD for combined or separate address spaces (see Figures 8 and 9).
	CPAF1 (8 Bits)	Configure each pin of Port A in multiplexed mode to be an I/O or address out.
	CPACOD (8 Bits)	Configure each pin of Port A as an open drain or active CMOS pull-up output.
	CPBF (8 Bits)	Configure each pin of Port B as an I/O or a chip-select output
	CPBCOD (8 Bits)	Configure each pin of Port B as an open drain or active CMOS pull-up output.
	CPCF (3 Bits)	Configure each pin of Port C as an address input or a chip-select output.
	CADDHLT	Configure pins A16–A19 to go through a latch or to have their latch transparent.
	CADLOG (4 Bits)	Configure A16–A19 individually as logic or address inputs.
	CLOT	Determine in non-multiplexed mode if address inputs are transparent or latched.
	CRRWR	Configure the polarity and control methods of read and write cycles.

Port Functions


The PSD302 has three I/O ports (Ports A, B, and C) that are configurable at the bit level. This permits great flexibility and a high degree of customization for specific

applications. The following is a description of each port. Figure 4 shows the pin structure of Port A.


2-92


Structure

NOTE: 5. CMOS/OD determines whether the output is open drain or CMOS.

us:

Table 5. PSD302 Configuration Bits^{7,8}

Configuration No. Bits of Bits		Function		
CDATA	1	8-bit or 16-bit Data Bus Width CDATA = 0 eight bits CDATA = 1 sixteen bits		
CADDRDAT	1	ADDRESS/DATA Multiplexed (separate buses) CADDRDAT = 0, non-multiplexed CADDRDAT = 1, multiplexed		
CA19/CSI	1	A19 or \overline{CSI} CA19/ <u>CSI</u> = 0, enable power-down CA19/CSI = 1, enable A19 input to PAD		
CALE	1	Active HIGH or Active LOW CALE = 0, Active high CALE = 1, Active low		
CRESET	1	Active HIGH or Active LOW CRESET = 0, Active low RESET CRESET = 1, Active high RESET		
COMB/SEP	1	Combined or Separate Address Space for SRAM and EPROM 0 = Combined, 1 = Separate		
CPAF2	1	Port A AD0–AD7 (address/data multiplexed bus) CPAF2 = 0, address or I/O on Port A (according to CPAF1) CPAF2 = 1, address/data multiplexed on Port A (track mode)		
CADDHLT	1	A16–A19 Transparent or Latched CADDHLT = 0, Address latch transparent CADDHLT = 1, Address latched (ALE dependent)		
CSECURITY	1	SECURITY On/Off CSECURITY = 0, off CSECURITY = 1, on		
CLOT	1	A0–A15 Address Inputs are transparent or ALE-dependent in non-multiplexed modes CLOT = 0, transparent CLOT = 1, ALE-dependent		
CRRWR CEDS	2	Determine the polarity and control methods of read and write cycles. CEDS CRRWR 0 0 RD and WR active low pulses 0 1 R/W status and high E pulse 1 1 R/W status and low DS pulse		
CPAF1	8	Port A I/O or A0–A7 CPAF1 = 0, Port A pin is I/O CPAF1 = 1, Port A pin is Ai $(0 \le i \le 7)$		
CPACOD	8	Port A CMOS or Open Drain Output CPACOD = 0, CMOS output CPACOD = 1, open-drain output		
CPBF	8	Port B is I/O or $\overline{CS0}$ - $\overline{CS7}$ CPBF = 0, Port B pin is \overline{CSI} (0 ≤ i ≤ 7) CPBF = 1, Port B pin is I/O		

W/

Table 5. PSD302 Configuration Bits (Cont.)

Configuration Bits		
CPBCOD	8	Port B CMOS or Open Drain CPBCOD = 0, CMOS output CPBCOD = 1, open-drain output
CPCF	3	Port C A16–A18 or $\overline{CS8}$ – $\overline{CS10}$ CPCF = 0, Port C pin is <u>Ai (</u> 16 \leq i \leq 18) CPCF = 1, Port C pin is CSI (8 \leq i \leq 10)
CADLOG	4	A16–A19 Address or Logic Input CADLOG = 0, Port C pin or A19/CSI is logic input CADLOG = 1, Port C pin or A19/CSI is Ai ($16 \le i \le 19$)
Total Bits	51	

NOTES: 7. WSI's MAPLE software will guide the user to the proper configuration choice. 8. In an unprogrammed or erased part, all configuration bits are 0.

Port Functions (Cont.)

Port A in Multiplexed Address/Data Mode

The default configuration of Port A is I/O. In this mode, every pin can be set as an input or output by writing into the respective pin's direction flip flop (DIR FF, in Figure 4). As an output, the pin level can be controlled by writing into the respective pin's data flip flop (DFF, in Figure 4). When DIR FF = 1, the pin is configured as an output. When DIR FF = 0, the pin is configured as an input. The controller can read the DIR FF bits by accessing the READ DIR register; it can read the DFF bits by accessing the READ DATA register. Port A pin levels can be read by accessing the READ PIN register. Individual pins can be configured as CMOS or open drain outputs. Open drain pins require external pull-up resistors. For addressing information, refer to Tables 6 and 7.

Alternatively, each bit of Port A can be configured as a low-order latched address bus bit. The address is provided by the port address latch, which latches the address on the trailing edge of ALE. PA0–PA7 can become A0–A7, respectively. This feature of the PSD302 lets the user generate loworder address bits to access external peripherals or memory that require several low-order address lines.

us

Another mode of Port A (CPAF2 = 1) sets the entire port to track the inputs AD0/A0-AD7/A7, depending on specific address ranges defined by the PAD's CSADIN, CSADOUT1, and CSADOUT2 signals. This feature lets the user interface the microcontroller to shared external resources without requiring external buffers and decoders. In this mode, the port is effectively a bi-directional buffer. The direction is controlled by using the input signals ALE, RD/E/DS, WR/VPP or R/W, and the internal PAD outputs CSADOUT1, CSADOUT2 and CSADIN (see Figure 5). When CSADOUT1 and ALE are true, the address on the input AD0/A7-AD7/A7 pins flows out through Port A. (Carefully check the generation of CSADOUT1, and ensure that it is stable during the ALE pulse; see Figures 22 and 23). When CSADOUT2 is active, a write operation is performed (see note to Figure 5). The data on the input AD0/A7-AD7/A7 pins flows out through Port A. When CSADIN and a read operation is performed (depending on the mode of the $\overline{RD}/E/\overline{DS}$ and \overline{WR}/V_{PP} or R/\overline{W} pins). the data on Port A flows out through the AD0/A7-AD7/A7 pins. In this operational mode. Port A is tri-stated when none of the above-mentioned three conditions exist.

Port Functions (Cont.)

Port A in Non-Multiplexed Address/Data Mode

In this mode, Port A becomes the low order data bus byte of the chip. When reading an internal PSD302 location, data is presented on Port A pins. When writing to an internal PSD302 location, data present on Port A pins is written to that location.

Port B in Multiplexed Address/Data and in 8-Bit Non-Multiplexed Modes

The default configuration of Port B is I/O. In this mode, every pin can be set as an input or output by writing into the respective pin's direction flip flop (DIR FF, in Figure 6). As an output, the pin level can be controlled by writing into the respective pin's data flip flop (DFF, in Figure 6). When DIR FF = 1, the pin is configured as an output. When DIR FF = 0, the pin is configured as an input. The controller can read the DIR FF bits by accessing the READ DIR register; it can read the DFF bits by accessing the READ DATA register. Port B pin levels can be read by accessing the READ PIN register. Individual pins can be configured as CMOS or open drain outputs. Open drain pins require external pull-up resistors. For addressing information, refer to Tables 6 and 7.

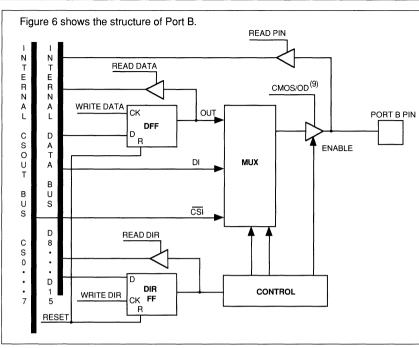
Alternatively, each bit of Port B can be configured to provide a chip-select output signal from PAD B. PB0–PB7 can provide <u>CS0–CS7</u>, respectively. Each of the signals <u>CS0–CS3</u> is comprised of four product terms.Thus, up to four ANDed expressions can be ORed while deriving any of these signals. Each of the signals <u>CS4–CS7</u> is comprised of two product terms. Thus, up to two ANDed expressions can be ORed while deriving any of these signals.

ur:

Port B in 16-Bit Non-Multiplexed Address/Data Mode

In this mode, Port B becomes the highorder data bus byte of the chip. When reading an internal PSD302 high-order data bus byte location, the data is presented on Port B pins. When writing to an internal PSD302 high-order data bus byte location, data present on Port B is written to that location. See Table 9.

Accessing the I/O Port Registers


Tables 6 and 7 show the offset values with the respect to the base address defined by the CSIOPORT. They let the user access the corresponding registers.

Port C in All Modes

Each pin of Port C (shown in Figure 7) can be configured as an input to PAD A and PAD B or output from PAD B. As inputs, the pins are named A16-A18. Although the pins are given names of the high-order address bus, they can be used for any other address lines or logic inputs to PAD A and PAD B. For example, A8-A10 can also be connected to those pins, improving the boundaries of CS0-CS7 resolution to 256 bytes. As inputs, they can be individually configured to be logic or address inputs. A logic input uses the PAD only for Boolean equations that are implemented in any or all of the $\overline{CS0}$ – $\overline{CS10}$ PAD B outputs. Port C addresses can be programmed to latch the inputs by the trailing edge ALE or to be transparent.

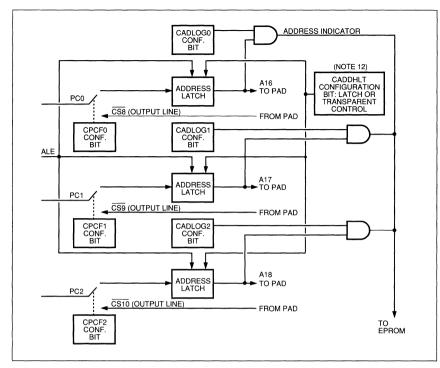
Alternatively, PC0–PC2 can become CS8–CS10 outputs, respectively, providing the user with more external chip-select PAD outputs. Each of the signals CS8–CS10 is comprised of one product term.

Figure 6. Port B Pin Structure

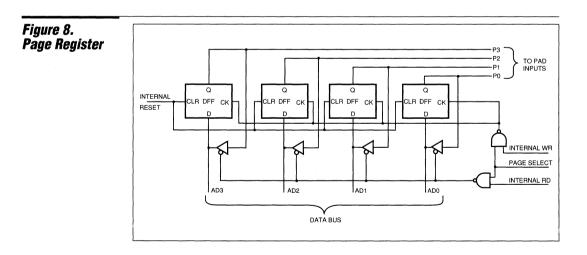
NOTE: 9. CMOS/OD determines whether the output is open drain or CMOS.

Table 6. I/O Port	Register Name	Byte Size Access of the I/O Port Registers Offset from the CSIOPORT
Adresses in an	Pin Register of Port A	+ 2 (accessible during read operation only)
8-bit Data Bus Mode	Direction Register of Port A	+ 4
	Data Register of Port A	+ 6
	Pin Register of Port B	+ 3 (accessible during read operation only)
	Direction Register of Port B	+ 5
	Data Register of Port B	+ 7

<i>Table 7. I/O Port Addresses in an</i>	Register Name	Word Size Access of the I/O Port Registers Offset from the CSIOPORT	
16-bit Data Bus Mode ^{10,11}	Pin Register of Ports B and A	+ 2 (accessible during read operation only)	
	Direction Register of Ports B and A	+ 4	
	Data Register of Ports B and A	+ 6	


NOTES: 10. When the data bus width is 16, Port B registers can only be accessed if the BHE

signal is low. 11. I/O Ports A and B are still byte-addressable, as shown in Table 6. For I/O Port B register access, BHE must be low.

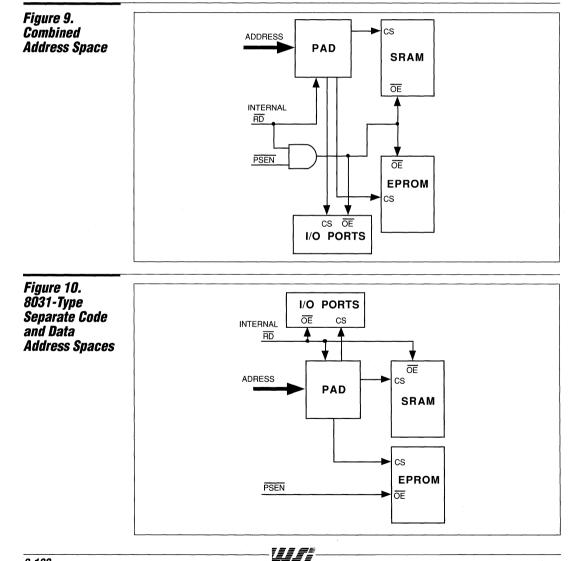

<i>Port Functions (Cont.)</i>	ALE/AS and ADO/AO-AD15/A15 in Non-Multiplexed Modes In non-multiplexed modes, AD0/A0-AD15/A15 are address inputs only and can become transparent (CLOT = 0) or ALE dependent (CLOT = 1). In transparent mode, the ALE/AS pin can be used as an additional logic input to the PADs. The non- multiplexed ALE dependent mode is useful in applications for which the host processor	has a multiplex address/data bus and AD0/A0–AD7/A7 are not multiplexed with A0–A7 but rather are multiplexed with other address lines. In these applications, Port A serves as a data bus and each of its pins can be directly connected to the corre- sponding host's multiplexed pin, where that data bit is expected. (See Table 8.)
EPROM	The PSD302 has 512K bits of EPROM. Depending on the configuration of the data bus, the EPROM can be organized as 64K x 8 (8-bit data bus) or as 32K x 16 (16-bit data bus). The EPROM has 8 banks of memory. Each bank can be placed in any	address location by programming the PAD. Bank0–Bank7 can be selected by PAD outputs ES0–ES7, respectively. The EPROM banks are organized as 8K x 8 (8-bit data bus) or as 4K x 16 (16-bit data bus).
SRAM	The PSD302 has 16K bits of SRAM. Depending on the configuration of the data bus, the SRAM organization can be 2K x 8	(8-bit data bus) or 1K x 16 (16-bit data bus). The SRAM is selected by the RS0 output of the PAD.
Page Register	The page register consists of four flip-flops, which can be read from, or written to, through the I/O address space (CSIOPORT). The page register is connected to the D3–D0 lines. The Page Register address is CSIOPORT + 18H. The	page register outputs are P3–P0, which are fed into the PAD. This enables the host microcontroller to enlarge its address space by a factor of 16 (there can be a maximum of 16 pages). See Figure 8.
Control Signals	The PSD302 control signals are \overline{WR}/V_{PP} or R/\overline{W} , $\overline{RD}/E/\overline{DS}$, ALE, $\overline{BHE}/\overline{PSEN}$, Reset, and A19/ \overline{CSI} . Each of these signals can be configured to meet the output control signal requirements of various microcontrollers. \overline{WR}/V_{PP} or R/\overline{W} In operational mode, this signal can be configured as \overline{WR} or R/\overline{W} . As \overline{WR} , all write operations to the PSD302 are activated by an active low signal on this pin. As R/\overline{W} , the pin works with the E strobe of the $\overline{RD}/E/\overline{DS}$ pin. When R/\overline{W} is high, an active high signal on the $\overline{RD}/E/\overline{DS}$ pin performs a read operation. When R/\overline{W} is low, an active high signal on the $\overline{RD}/E/\overline{DS}$ pin performs a write operation.	RD/E/DS In operational mode, this signal can be configured as RD, E, or DS. As RD, all read operations to the PSD302 are acti- vated by an active low signal on this pin. As E, the pin works with the R/W signal of the WR/V _{PP} or R/W pin. When R/W is high, an active high signal on the RD/E/DS pin performs a read operation. When R/W is low, an active high signal on the RD/E/DS pin performs a write operation. As DS, the pin functions with the R/W signal as an active low data strobe signal. As DS, the R/W defines the mode of operation (Read or Write).

W

Figure 7. Port C Structure

NOTE: 12. The CADDHLT configuration bit determines if A18–A16 are transparent via the latch, or if they must be latched by the trailing edge of the ALE strobe.

WJ:


Control Signals (Cont.)

ALE or AS

ALE polarity is programmable. When programmed to be active high, a high on the pin causes the input address latches, Port A address latches, Port C, and A19 address latches to be transparent. The falling edge of ALE locks the information into the latches. When ALE is programmed to be active low, a low on the pin causes the input address latches, Port A address latches, Port C, and A19 address latches to be transparent. The rising edge of ALE locks the appropriate information into the latches.

BHE/PSEN

This pin's function depends on the PSD302 data bus width. If it is 8, the pin is PSEN; if it is 16, the pin is BHE. In 8-bit mode, the PSEN function enables the user to work with two address spaces: program memory and data memory (if COMB/SEP = 1). In this mode, an active low signal on the PSEN pin causes the EPROM to be read if selected. The SRAM and I/O ports read operation are done by \overline{RD} low (CRRWR = 0), or by E high and $\overline{R/W}$ high (CRRWR = 1). (CRRWR, CEDS = 1).

2-101

Control Signals (Cont.)

BHE/PSEN

Whenever a member of the 8031 family (or any other similar microcontroller) is used, the PSD302's PSEN pin must be connected to the PSEN pin of the microcontroller.

If COMB/SEP = 0, the address spaces of the program and the data are combined. In this configuration (except for the 8031-type case mentioned above), the \overrightarrow{PSEN} pin must be tied high to V_{CC}, and the EPROM,

SRAM, and I/O ports are read by \overline{RD} low (CRRWR = 0), or by E high and R/W high (CRRWR = 1, CEDS = 0) or by \overline{DS} low and R/W high (CRRWR, CEDS = 1). See Figures 9 and 10.

In BHE mode, this pin enables accessing of the upper-half byte of the data bus. A low on this pin enables a write or read operation to be performed on the upper half of the data bus (see Table 9).

<i>Table 8.</i> <i>Signal Latch</i>	Signal Name	Configuration Bits	Configuration Mode	Signal Latch Status
<i>Status in All</i> <i>Operating</i>		CDATA , CADDRDAT, CLOT = 0	8-bit data,	Transparent
Modes		CDATA, CADDRDAT = 0, CLOT = 1	non-multiplexed	ALE Dependent
		CDATA = 1, CADDRDAT, CLOT = 0	16-bit data.	Transparent
	AD8/A8 AD15/A15	CDATA = 1, CADDRDAT = 0, CLOT = 1	non-multiplexed	ALE Dependent
		CDATA = 0, CADDRDAT = 1	8-bit data, multiplexed	Transparent
		CDATA = 1, CADDRDAT = 1	16-bit data, multiplexed	ALE Dependent
		CADDRDAT = 0, CLOT = 0	non-multiplexed	Transparent
	AD0/A0- AD7/A7	CADDRDAT = 0, CLOT = 1	modes	ALE Dependent
		CADDRDAT = 1	multiplexed modes	ALE Dependent
	BHE/ PSEN	CDATA = 0	8-bit data, PSEN is active	Transparent
		CDATA = 1, CADDRDAT = 0	16-bit data, non-multiplexed mode, BHE is active	Transparent
		CDATA = 1, CADDRDAT = 1	16-bit data, multiplexed mode, BHE is active	ALE Dependent
	A19 and PC2–PC0	CADDHLT = 0	A16–A19 can become logic inputs	Transparent
		CADDHLT = 1	A16–A19 can become multiplexed address lines	ALE Dependent

us:

Control Signals (Cont.)

RESET

This is an asynchronous input pin that clears and initializes the PSD302. Reset polarity is programmable (active low or active high). Whenever the PSD302 reset input is driven active for at least 100 ns, the chip is reset. During boot-up (V_{cc} applied), the device is automatically reset internally (internal automatic reset is over by the time V_{cc} operating range has been achieved during boot-up). Tables 10 and 11 indicate the state of the part during and after reset.

A19/CSI

When configured as $\overline{\text{CSI}}$, a high on this pin deselects, and powers down, the chip. A low on this pin puts the chip in normal operational mode. For PSD302 states during the power-down mode, see Tables 12 and 13, and Figure 11.

In A19 mode, the pin is an additional input to the PAD. It can be used as an address line (CADLOG3 = 1) or as a generalpurpose logic input (CADLOG3 = 0). A19 can be configured as ALE dependent or as transparent input (see Table 8). In this mode, the chip is always enabled.

Table 9. High/Low Byte	BHE	A ₀	Operation	
Selection Truth	0	0	Whole Word	
Table (in 16-Bit	0	1	Upper Byte From/To Odd Address	
Configuration	1	0	Lower Byte From/To Even Address	
Only)	1	1	None	· · · · · · · · · · · · · · · · · · ·

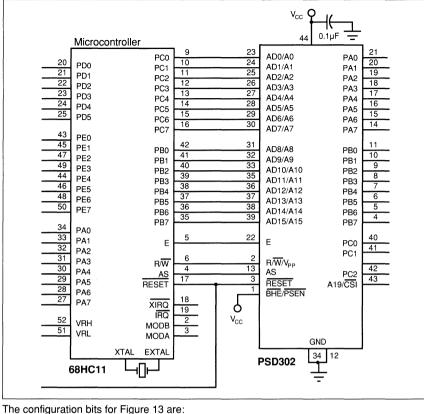

Table 10.	Signal	Configuration Mode	Condition			
ignal States	AD0/A0-AD15/A15	All	Input			
uring and After eset	PA0–PA7) (Port A	I/O Tracking AD0/A0–AD7 Address outputs A0–A7	Input Input Low			
	PB0–PB7 (Port B)	I/O CS7–CS0 CMOS outputs CS7–CS0 open drain outputs	Input High Tri-stated			
	PC0–PC2 (Port C)	Address inputs A16–A18 CS8–CS10 CMOS outputs	Input High			

<i>Table 11. Internal States During and After Reset</i>	Component	Signals	Contents
		CS0-CS10	All = 1 (Note 13)
	PAD	CSADIN, CSADOUT1, CSADOUT2, CSIOPORT, RS0, ES0–ES7	All = 0 (Note 13)
	Data register A Direction register A Data register B Direction register B	n/a n/a n/a n/a	0 0 0 0

us

NOTE: 13. All PAD outputs are in a non-active state.

NOTES: 14. The CADDHLT configuration bit determines if A19–A16 are transparent via the latch, or if they must be latched by the trailing edge of the ALE strobe.


able 12. Signal	Signal	Configuration Mode	Condition		
tates During	AD0/A0-AD15/A15	All	Input		
wer-Down ode	PA0-PA7	I/O Tracking AD0/A0–AD7/A7 Address outputs A0–A7	Unchanged Input All 1's		
	PB0-PB7	I/O <u>CS0–CS7</u> CMOS outputs <u>CS0–CS7</u> open drain outputs	Unchanged All 1's Tri-stated		
	PC0-PC2	Address inputs A18–A16 CS8–CS10 CMOS outputs	Input All 1's		

able 13.	Component	Signals	Contents
ternal States		CS0-CS10	All 1's (deselected)
uring Power- own	PAD	CSADIN, CSADOUT1, CSADOUT2, CSIOPORT, RS0, ES0–ES7	All 0's (deselected)
	Data register A	n/a	
	Direction register A	n/a	All
	Data register B	n/a	unchanged
	Direction register B	n/a	_

Wff

Figure 12. PSD302 Interface With					V _{cc}		_
Intel's 80C31		Microcontrol	30	23		·	21
	31	EAVP	P0.0 P0.1 38	24	AD0/A0 AD1/A1	PA0 PA1	20
	<u> </u>		P0.2 37	<u>25</u> 26	AD2/A2	PA2	
		X1	P0.3 25	20	ADS/AS	PA3	17
	$\overline{\Box}$		P0.4 35 P0.5 34	28		PA4 PA5	16
		X2	P0.6 33	<u> </u>	AD6/A6	PA6	
			P0.7		AD7/A7	PA7	
	9	RESET	P2.0 21	<u>31</u> 32	AD8/A8	PB0	11
			P2.1 22	32	AD9/A9	PB1	9
	<u></u>	ΙΝΤΟ	P2.2 P2.3 24	35	AD10/A10	PB2 PB3	8
	$\begin{array}{c c} -\frac{13}{14} \\ -\frac{13}{14} \end{array}$	INT1	P2.4 25	<u>36</u> 37	AD12/A12	PB4	6
	15	T0 T1	P2.5 27 P2.6 27	38		PB5 PB6	5
]''	P2.7 28	39	AD14/A14 AD15/A15	PB7	4
	$\frac{1}{2}$	P1.0	17	22	RD		40
	3	P1.1 P1.2	WB 16	2	WR/V _{PP}	PC0 PC1	41
	4	P1.3	PSEN 629	13			42
	<u> </u>	P1.4	ALE 30	13		PC2	43
	7	P1.5 P1.6	TXD 10 RXD 10		RESET	A19/CSI GND	
	8	P1.7				34 12	
		80C31			PSD302		
						<u> </u>	
	The configuration	bits for Figur	e 12 are:				
	CRESET	1		CON	MB/SEP	0 or 1 (t	ooth valie
	CALE	0		CRF	RWR	0	
	CDATA	0		CEE		0	
	CADDRDAT			022		Ũ	
	All other configura		vary according	g to the applie	cation requ	irements.	
Security Mode	Security Mode in contents of the P/ configuration bits and I/O contents through the PAD.	AD A , PAD E . The EPRON can be acces	3 and all the 4, SRAM, ssed only	software. erasable t the securi	In window hrough UV ty mode, tł	E or Program packages, t full part era ne PSD302	he mode asure. In contents
System Applications	In Figure 12, the interface with Inte bit address/8-bit Its data bus is mu order address by signals RD to read PSEN to read fro WR to write into to uses active high The rest of the co	PSD302 is co el's 80C31, w data bus micr ultiplexed with te. The 80C3 to from data r m code mem the data mem reset and AL	onfigured to hich is a 16- rocontroller. In the low- 1 uses memory and hory. It uses hory. It uses hory. It also E signals.	In Figure interface v a 16-bit a troller. Its low-orde <u>r</u> E and R/V write strob strobe) fo is an activ	13, the PS with Motore ddress/8-b data bus is address b V signals t oes. It uses r the addre r low sign	a programm D302 is com ola's 68HC1 it data bus r s multiplexe yte. The 68I o derive the s the term A ses latch pul al. The rest well as the	figured 1, which microcor d with th HC11 us read ar S (addro se. RES of the
	the unconnected application speci- dependent.					shown) are s ser depende	

Figure 13. PSD302 Interface With Motorola's 68HC11

The configuration bits for Figure 13 are: CRESET 0 CALE 0

0 COMB/SEP 0 CRRWR 0 CEDS

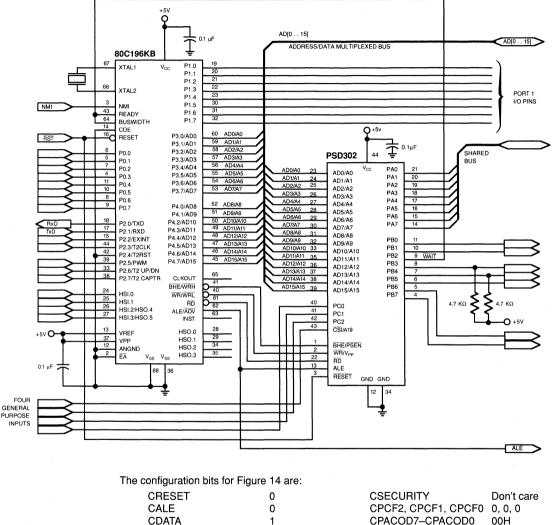
All other configuration bits may vary according to the application requirements.

us

CADDRDAT 1

CDATA

System Applications (Cont.)


In Figure 14, the PSD302 is configured to work directly with Intel's 80C196KB microcontroller, which is a 16-bit address/16-bit data bus processor. Address and data lines multiplexed. In the example shown, all configuration bits are set. The PSD302 is configured to use PC0, PC1, PC2, and CSI/A19 as A16, A17, A18, and A19 inputs, respectively. These signals are independent of the ALE pulse (latch-transparent). They are used as four general-purpose logic inputs that take part in the PAD equations implementation. Port A is configured to work in the special track mode, in which (for certain conditions) PA0–PA7 tracks lines AD0/A0–AD7/A7. Port B is configured to generate $\overline{CS0}$ – $\overline{CS7}$. In this example, PB2 serves as a WAIT signal that slows down the 80C196KB during the access of external peripherals. These 8-bit wide peripherals are connected to the shared bus of Port A. The WAIT signal also drives the buswidth input of the microcontroller, so that every external peripheral cycle becomes an 8-bit data bus cycle. PB3 and PB4 are open-drain output signals; thus, they are pulled up externally.

0

1

0

Figure 14. PSD302 Interface With Intel's 80C196KB.

1

1

1

0

0

0

us:

Don't care

CPBF7-CPBF0

CEDS

CPBCOD7-CPBCOD0

CADLOG3-CADLOG0

00H

18H

0

OН

CALE CDATA CADDRDAT CPAF1 CPAF2 CA19/CSI CRRWR COMB/SEP CADDHLT

Absolute Maximum Ratings¹⁵

Symbol	Parameter	Condition	Min	Max	Unit
T _{STG}	Storage Temperature		- 65	+ 150	°C
	Voltage on any Pin	With Respect to GND	- 0.6	+ 7	V
V _{PP}	Programming Supply Voltage	With Respect to GND	- 0.6	+ 14	v
V _{CC}	Supply Voltage	With Respect to GND	- 0.6	+ 7	V
	ESD Protection			>2000	V

NOTE: 15. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at theses or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods of time may affect device reliability.

Operating	Range	Temperature	V _{CC}		Tolerance		
Range	nallyc	Temperature	■ CC	-12	-15	-20	
	Commercial	0° C to +70°C	+ 5 V	± 5%	± 10%	± 10%	
	Industrial	-40° C to +80°C	+ 5 V		± 10%	± 10%	
	Military	-55° C to +125°C	+ 5 V		± 10%	± 10%	

Recommended	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Operating Conditions	V _{CC}	Supply Voltage	-12 Version	4.75	5	5.25	V
Conditions	V _{CC}	Supply Voltage	-15/-20 Versions	4.5	5	5.5	V
	V _{IH}	High-level Input Voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	2			V
	VIL	Low-level Input Voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	0		0.8	V

DC Characteristics	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
UIIdi di lei istiits	V _{OL}	Output Low Voltage	I _{OL} = 20 μA V _{CC} = 4.5 V		0.01	0.1	.,
	VOL	Output Low Voltage	I _{OL} = 8 mA V _{CC} = 4.5 V		0.15	0.45	V
		Outer tilligh Maltage	l _{OH} = -20 μA V _{CC} = 4.5 V	4.4	4.49		
V	V _{OH}	Output High Voltage	$I_{OH} = -2 \text{ mA}$ $V_{CC} = 4.5 \text{ V}$ 2		3.9		V
	I _{SB1}	V _{CC} Standby Current	Comm'l		50	100	μA
	'SB1	(CMOS) (Notes 16 and 18)	Ind/Mil		75	150	μΛ
	I _{SB2}	V _{CC} Standby Current	Comm'l		1.5	3	mA
	¹ SB2	(TTL) (Notes 17 and 18)	Ind/Mil		2	3.2	
		A attive Quere at (CMQC)	Comm'l (Note 20)		16	35	
	Icc1	Active Current (CMOS)	Comm'l (Note 21)		28	50	mA
	'CC1	(SRAM Not Selected)	Ind/Mil (Note 20)		16	45	
		(Notes 16 and 19)	Ind/Mil (Note 21)		28	60	

us:

DC

Characteristics

(Cont.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Comm'l (Note 20)		47	80	
	Active Current (CMOS)	Comm'l (Note 21)		59	95	- m A
ICC2	(SRAM Block Selected)	Ind/Mil (Note 20)		47	100	mA
	(Notes 16 and 19)	Ind/Mil (Note 21)		59	115	
	Active Current (TTL)	Comm'l (Note 20)		36	65	
I _{CC3}	(SRAM Not Selected) (Notes 17 and 19)	Comm'l (Note 21)		58	80	mA
		Ind/Mil (Note 20)		36	80	
	(Notes 17 and 15)	Ind/Mil (Note 21)				
	Active Current (TTL)	Comm'l (Note 20)		67	105	
I _{CC4}	(SRAM Block Selected)	Comm'l (Note 21)		79	120	mA
	(Notes 17 and 19)	Ind/Mil (Note 20)		67	130	
	(110165 17 210 13)	Ind/Mil (Note 21)		79	145	
ILI	Input Leakage Current	V _{IN} = 5.5 V or GND	-1	± 0.1	1	μA
ILO	Output Leakage Current	V _{OUT} = 5.5 V or GND	-10	± 5	10	μΑ

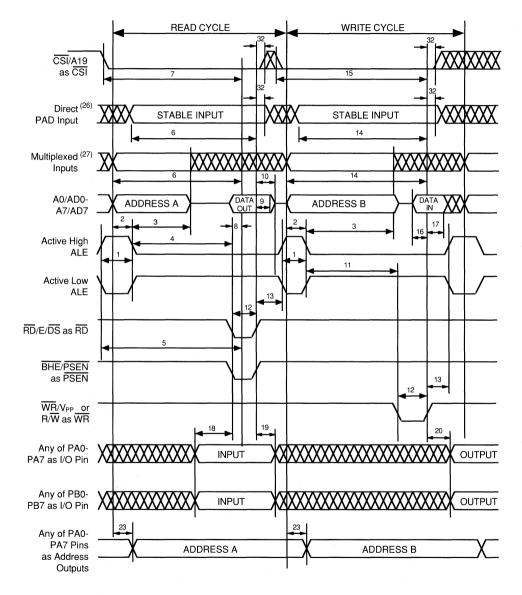
NOTE: 16. CMOS inputs: GND ± 0.3 V or V_{CC} ± 0.3V.
17. <u>TTL</u> inputs: V_{IL} ≤ 0.8 V, V_{IH} ≥ 2.0 V.
18. CSI/A19 is high and the part is in a power-down configuration mode.
19. AC power component is 3.0 mA/MHz (power = AC + DC).

- 20. Ten (10) PAD product terms active. (Add 380 μ A per product term, typical, or 480 μ A per product term maximum
- 21. Forty-one (41) PAD product terms active.

AC	Cumbal	Parameter	-	12	- 1	15	-2	20	Unit
Characteristics	Symbol	Parameter	Min	Max	Min	Max	Min	Max	UIIIL
(See Timing Diagrams)	T1	ALE or AS Pulse Width	30		40		50		
Diagranisj	T2	Address Set-up Time	9		12		15		
	Т3	Address Hold Time	9		12		15		
	T4	ALE or AS Trailing Edge to Leading Edge of Read	12		15		20		
	T5	ALE Valid to Data Valid	130		140		170		
	T6	Address Valid to Data Valid		120		150		200	
	T7	CSI Active to Data Valid		130		160		200	
	Т8	Leading Edge of Read to Data Valid		38		55		60	
	T9	Read Data Hold Time	0		0		0		ns
	T10	Trailing Edge of Read to Data High-Z		32		35		40	115
	T11	Trailing Edge of ALE or AS to Leading Edge of Write	12	-	15		20		
	T12	RD, E, PSEN, DS pulse width	45		60		75		
	T12A	WR Pulse Width	25		35		45		
	T13	Trailing Edge of Write or Read to Leading Edge of ALE or AS	0		0		0		
	T14	Address Valid to Trailing Edge of Write	120		150		200		

ur:

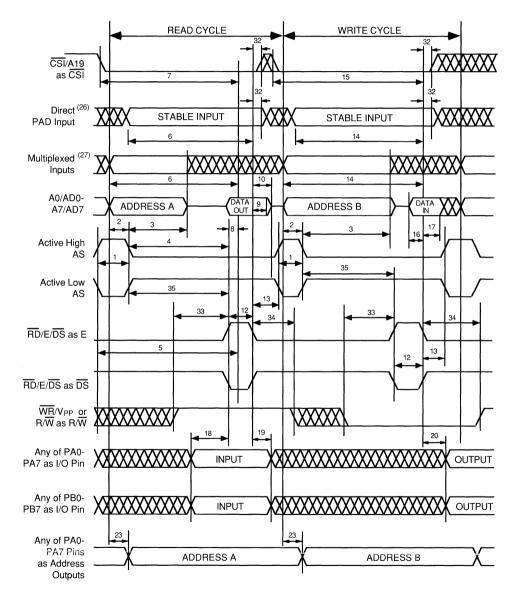
AC **Characteristics** (Cont.)


Symbol	Parameter	-12		-15		-20		11-11
		Min	Max	Min	Max	Min	Max	Unit
T15	CSI Active to Trailing Edge of Write	130		160		200		
T16	Write Data Set-up Time	20		30		40		1
T17	Write Data Hold Time	5		10		15]
T18	Port Input Set-up Time	30		35		45		
T19	Port Input Hold Time	0		0		0		
T20	Trailing Edge of Write to Port Output Valid	40		50		60		
T21	ADi or Control to CSOi Valid	6	35	6	40	5	45	
T22	ADi or Control to CSOi Invalid	5	35	4	40	4	45	
T23	Track Mode Address Propagation Delay: CSADOUT1 Already True		22		28		28	
T23A	Track Mode Address Propagation Delay: CSADOUT1 Becomes True During ALE or AS		33		50		50	
T24	Track Mode Address Holding Time	15		27		27		ns
T25	Track Mode Read Propagation Delay		29		35		35	
T26	Track Mode Read Hold Time	11	29	10	29	10	35	
T27	Track Mode Write Cycle Data Propagation Delay		20		30		30	
T28	Track Mode Write Cycle Write to Data Propagation Delay	8	30	7	40	7	55	
T29	Hold Time of <u>Port A</u> Valid During Write CSOi Trailing Edge	2		4		4		
T30	CSI Active to CSOi Active	9	45	9	55	8	60	1
T31	CSI Inactive to CSOi Inactive	9	45	9	55	8	60	
T32	Direct PAD Input as Hold Time	10		12		15		
Т33	R/\overline{W} Active to E or \overline{DS} Start	20		30		40		
T34	E or DS End to R/W	20		30		40		
T35	AS Inactive to E high	15		20		25		1

NOTES: 22. ADi = any address line.

AD – any address inte.
 CSOi = any of the chip-select output signals coming through Port B (CSO–CS7) or through Port C (CS8–CS10).
 Direct PAD input = any of the following direct PAD input lines: CSI/A19 as transparent A19, RD/E/DS, WR or R/W, transparent PC0–PC2, ALE (or AS).
 Control signals RD/E/DS or WR or R/W.

us:


Figure 15. Timing of 8-Bit Multiplexed Address/Data Bus, CRRWR = 0

us:

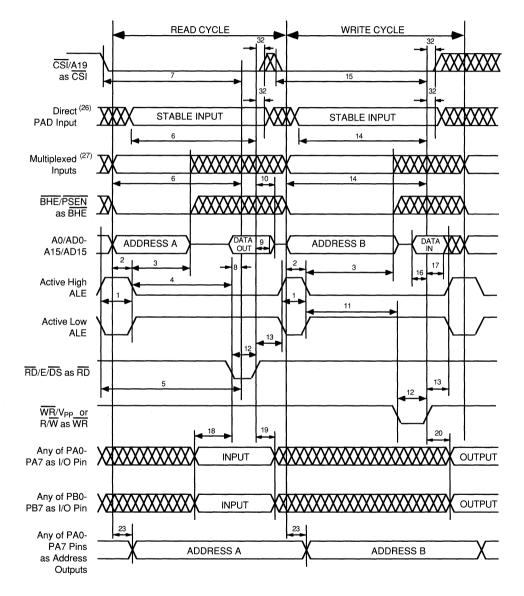

2

Figure 16. Timing of 8-Bit Multiplexed Address/Data Bus, CRRWR = 1

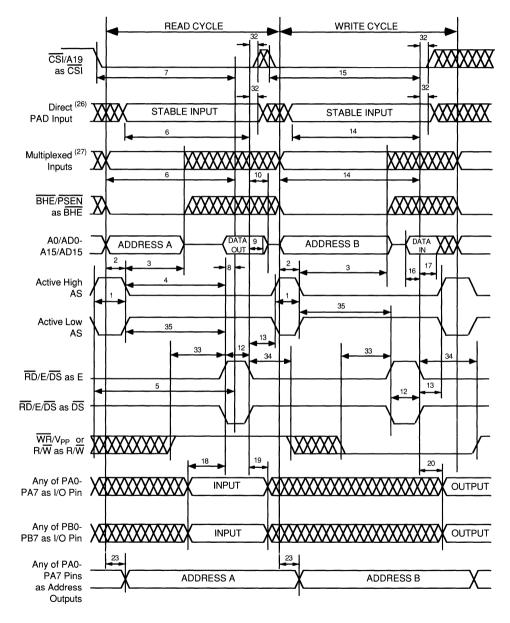

us:

Figure 17. Timing of 16-Bit Multiplexed Address/Data Bus, CRRWR = 0

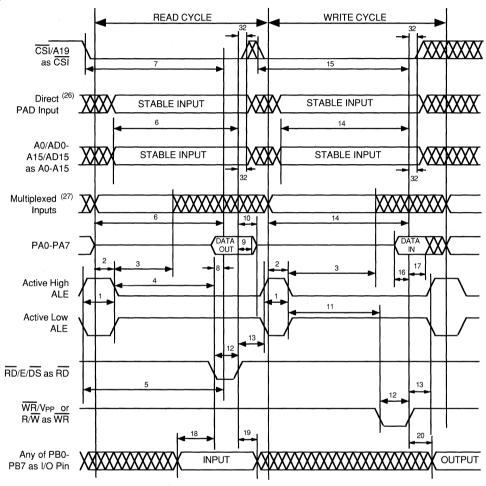
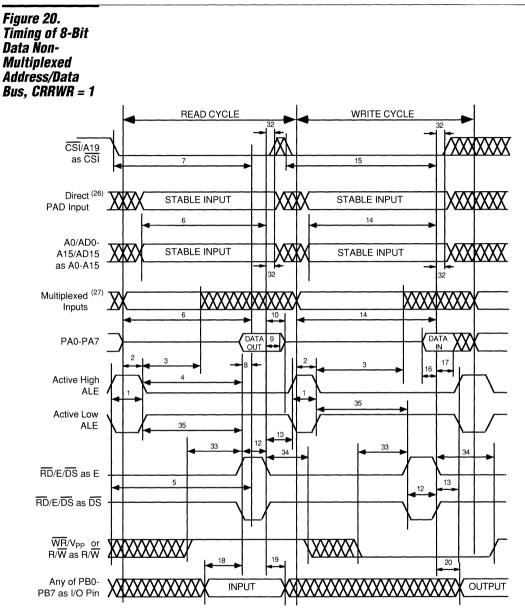
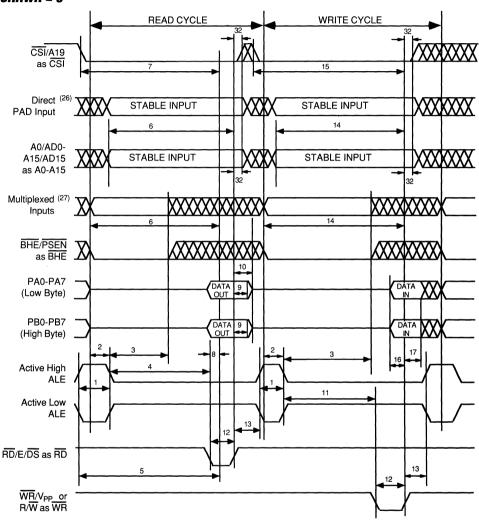

us:

Figure 18. Timing of 16-Bit Multiplexed Address/Data Bus, CRRWR = 1

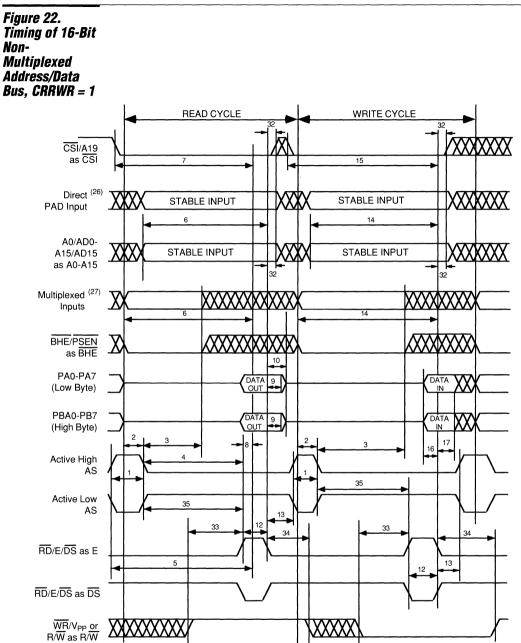


us:

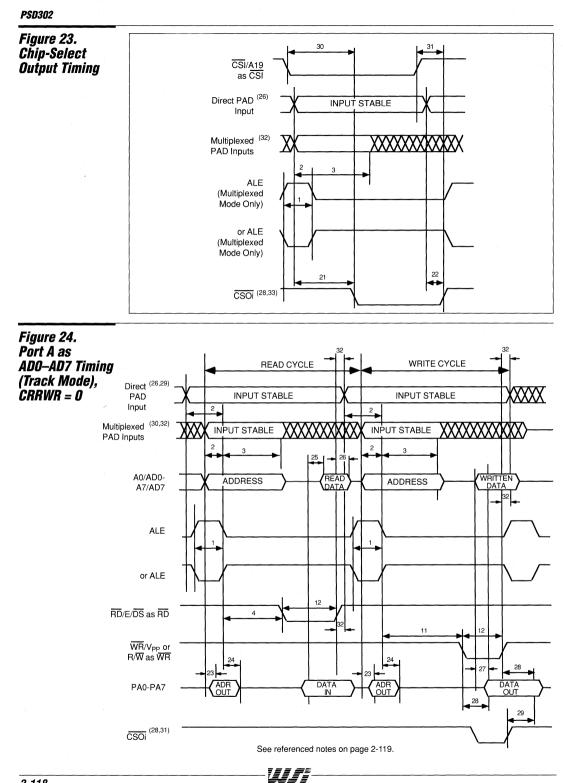
Figure 19. Timing of 8-Bit Data Non-Multiplexed Address/Data Bus, CRRWR = 0

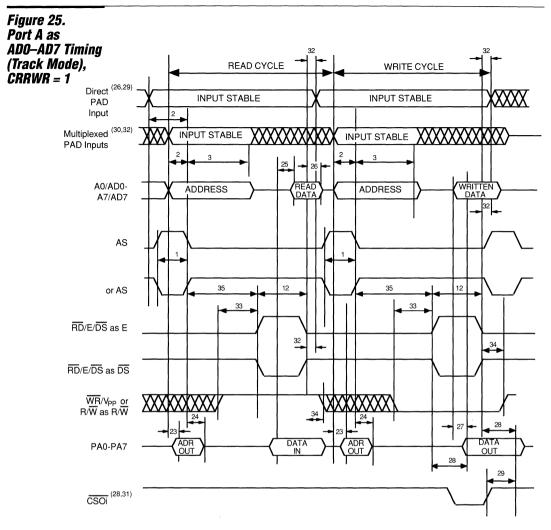


WF


See referenced notes on page 2-119.

2


Figure 21. Timing of 16-Bit Non-Multiplexed Address/Data Bus, CRRWR = 0



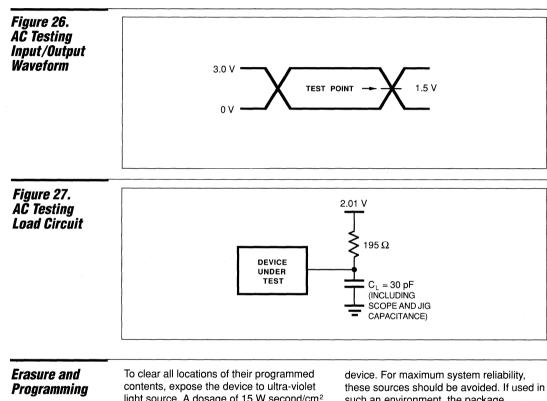
2

us:

Notes for Timing Diagrams

- 26. Direct PAD input = any of the following direct PAD input lines: CSI/A19 as transparent A19, RD/E/DS, WR or R/W, transparent PC0–PC2, ALE in non-multiplexed modes.
- Multiplexed inputs: any of the following inputs that are latched by the ALE (or AS): A0/AD0–A15/AD15, CSI/A19 as ALE dependent A19, ALE dependent PC0–PC2.
- 28. CSOi = any of the chip-select output signals coming through Port B (CS0–CS7) or through Port C (CS8–CS10).
- 29. CSADOUT1, which internally enables the address transfer to Port A, should be derived only from direct PAD input signals, otherwise the address propagation delay is slowed down.
- 30. CSADIN and CSADOUT2, which internally enable the data-in or data-out transfers, respectively, can be derived from any combination of direct PAD inputs and multiplexed PAD inputs.
- 31. The write operation signals are included in the $\overline{\text{CSOi}}$ expression.

us:


32. Multiplexed PAD inputs: any of the following PAD inputs that are latched by the ALE (or AS) in the multiplexed modes: A11/AD11–A15/AD15, CSI/A19 as ALE dependent A19, ALE dependent PC0–PC2.

 CSOi product terms can include any of the PAD input signals shown in Figure 3, except for reset and CSI. 2

Table 14. Pin Capacitance³⁴

$T_A = 25 \circ C$	f = 1 MHz				
Symbol	Parameter	Conditions	Typical ³⁵	Max	Unit
CIN	Capacitance (for input pins only)	V _{IN} = 0 V	4	6	pF
C _{OUT}	Capacitance (for input/output pins)	V _{OUT} = 0 V	8	12	рF
C _{VPP}	Capacitance (for \overline{WR}/V_{PP} or $R/\overline{W}/V_{PP})$	$V_{PP} = 0 V$	18	25	рF

NOTES: 34. This parameter is only sampled and is not 100% tested. 35. Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltages.

contents, expose the device to ultra-violet light source. A dosage of 15 W second/cm² is required. This dosage can be obtained with exposure to a wavelength of 2537 Å and intensity of 12000 μ W/cm² for 15 to 20 minutes. The device should be about 1 inch from the source, and all filters should be removed from the UV light source prior to erasure.

The PSD302 and similar devices will erase with light sources having wavelengths shorter than 4000 Å. Although the erasure times will be much longer than with UV sources at 2537 Å, exposure to fluorescent light and sunlight eventually erases the

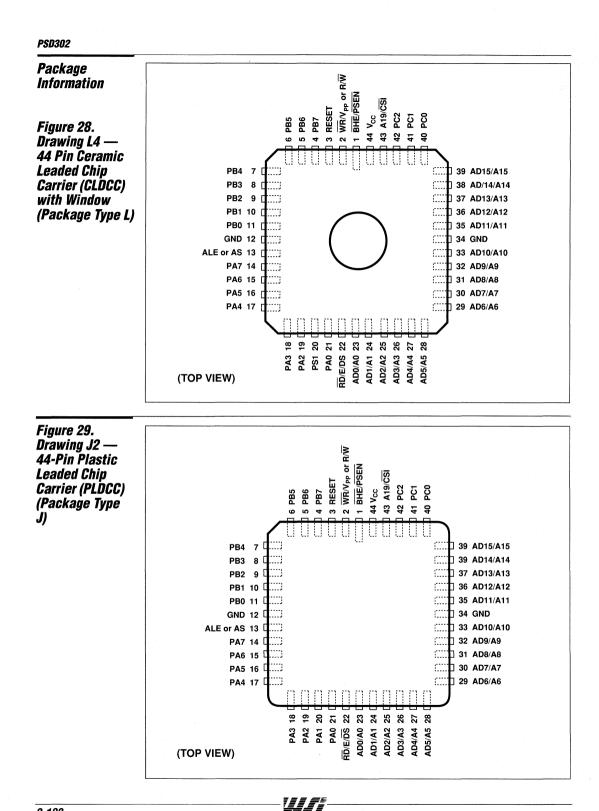
us:

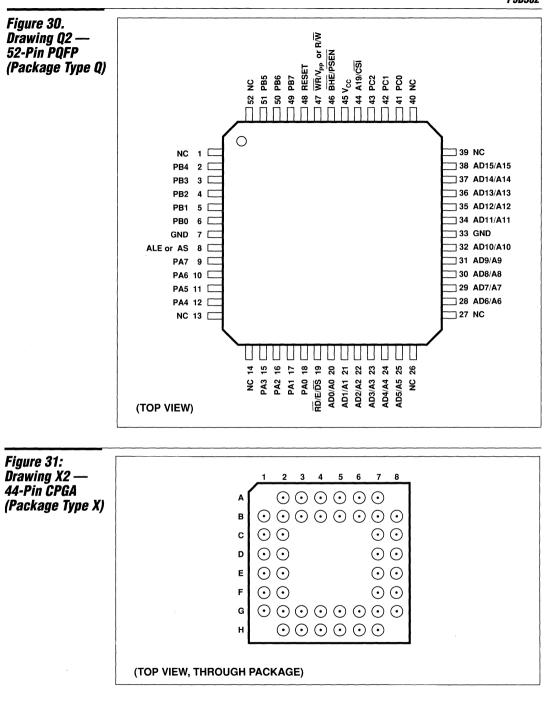
device. For maximum system reliability, these sources should be avoided. If used in such an environment, the package windows should be covered by an opaque substance.

Upon delivery from WSI, or after each erasure, the PSD302 device has all bits in the PAD and EPROM in the "1" or high state. The configuration bits are in the "0" or low state. The code, configuration, and PAD MAP data are loaded through the procedure of programming

Information for programming the device is available directly from WSI. Please contact your local sales representative.

Pin Assignments


Name	44-Pin PLDCC/ CLDCC Package	44-Pin CPGA Package	52-Pin PQFP Package			
BHE/PSEN	1	A ₅	46			
WR/V _{PP} or R/W	2	A ₄	47			
RESET	3	B4	48			
PB7	4	A3	49			
PB6	5	B3	50			
PB5	6	A ₂	51			
PB4	7	B ₂	2			
PB3	8	B ₂ B ₁	3			
PB2	9	C_2	4			
PB1	10	C ₂	5			
PB0	10	D_2	6			
GND	12		7			
ALE or AS	12	D ₁	8			
PA7	13	E ₁	9			
		E ₂	10			
PA6	15	F ₁	10			
PA5	16	F ₂	12			
PA4	17	G ₁	12			
PA3	18	G ₂				
PA2	19	H ₂	16			
PA1	20	G ₃	17			
PA0	21	H ₃	18			
RD/E/DS	22	G ₄	19			
AD0/A0	23	H ₄	20			
AD1/A1	24	H ₅	21			
AD2/A2	25	G ₅	22			
AD3/A3	26	H ₆	23			
AD4/A4	27	G ₆	24			
AD5/A5	28	H ₇	25			
AD6/A6	29	G7	28			
AD7/A7	30	G ₈	29			
AD8/A8	31	F ₇	30			
AD9/A9	32	F ₈	31			
AD10/A10	33	E ₇	32			
GND	34	E ₈	33			
AD11/A11	35	D ₈	34			
AD12/A12	36	D7	35			
AD13/A13	37	C ₈	36			
AD14/A14	38	C ₇	37			
AD15/A15	39	B ₈	38			
PC0	40	B ₇	41			
PC0 PC1	40	A7	42			
PC2	41	А7 В6	43			
A19/CSI	42 43	□ 06 ▲-	44			
	43 44	A ₆ B-	45			
V _{CC}	44	B ₅	-5			


NOTE: 36. Pins 1, 13, 14, 26, 27, 39, 40, and 52 are No Connect.

us:

2-121

2

us:

PSD302

2

Ordering Information

Part Number	Spd. (ns)	Package Type	Package Drawing	Operating Temperature Range	WSI Manufacturing Procedure
PSD302-12J	120	44-pin PLDCC	J2	Commercial	Standard
PSD302-12L	120	44-pin CLDCC	L4	Commercial	Standard
PSD302-12Q	120	52-pin PQFP	Q2	Commercial	Standard
PSD302-12X	120	44-pin CPGA	X2	Commercial	Standard
PSD302-15J	150	44-pin PLDCC	J2	Commercial	Standard
PSD302-15JI	150	44-pin PLDCC	J2	Industrial	Standard
PSD302-15L	150	44-pin CLDCC	L4	Commercial	Standard
PSD302-15LI	150	44-pin CLDCC	L4	Industrial	Standard
PSD302-15LM	150	44-pin CLDCC	L4	Military	Standard
PSD302-15LMB	150	44-pin CLDCC	L4	Military	MIL-STD-883C
PSD302-15Q	150	52-pin PQFP	Q2	Commercial	Standard
PSD302-15X	150	44-pin CPGA	X2	Commercial	Standard
PSD302-15XI	150	44-pin CPGA	X2	Industrial	Standard
PSD302-15XM	150	44-pin CPGA	X2	Military	Standard
PSD302-15XMB	150	44-pin CPGA	X2	Military	MIL-STD-883C
PSD302-20J	200	44-pin PLDCC	J2	Commercial	Standard
PSD302-20JI	200	44-pin PLDCC	J2	Industrail	Standard
PSD302-20L	200	44-pin CLDCC	L4	Commercial	Standard
PSD302-20LI	200	44-pin CLDCC	L4	Industrial	Standard
PSD302-20LM	200	44-pin CLDCC	L4	Military	Standard
PSD302-20LMB	200	44-pin CLDCC	L4	Military	MIL-STD-883C
PSD302-20Q	200	52-pin PQFP	Q2	Commercial	Standard
PSD302-20X	200	44-pin CPGA	X2	Commercial	Standard
PSD302-20XI	200	44-pin CPGA	X2	Industrial	Standard
PSD302-20XM	200	44-pin CPGA	X2	Military	Standard
PSD302-20XMB	200	44-pin CPGA	X2	Military	MIL-STD-883C

ws-

2-124

PSD302 System Development Tools

System Development Tools	 The PSD302 features a complete set of System Development Tools. These tools provide an integrated, easy-to-use software and hardware environment to support PSD302 device development. To run these tools requires an IBM-XT, -AT, or compatible computer, MS-DOS 3.1 or higher, 640K byte RAM, and a hard disk. Hardware The PSD302 System Programming Hardware consists of: WS6000 MagicPro Memory and PSD Programmer WS6020 52-pin PSD302 PQFP Package Adaptor (for CLDCC and PLDCC packages) WS6022 44-pin CPGA Package Adaptor 	 The MagicPro Programmer is the common hardware platform for programming all WS programmable products. It consists of an IBM-PC plug-in programmer board and a remote socket adaptor. Software The PSD302 System Development Software consists of: WISPER, WSI's Software Environment MAPLE, the PSD302 Location Editor Software MAPPRO, the Device Programming Software The configuration of the PSD302 device is entered using MAPLE software. MAPPRO software adaptor to configure the PSD302 device, which then can be used in the target system. The development cycle is depicted in Figure 32.
Support	 WSI provides a complete set of quality support services to registered System Development Tools owners, including: 12-month software updates Design assistance from WSI field application engineers and application group experts 	24-hour Electronic Bulletin Board for design assistance via dial-up modem.
Training	WSI provides in-depth, hands-on work- shops for the PSD302 device and System Development Tools. Workshop participants learn how to program high-performance, programmable peripherals. Workshops are held at the WSI facility in Fremont, California.	

Ordering Information – System Development Tools

- **PSD-GOLD**
- WISPER Software
- MAPLE Software
- User's Manual
- WSI Support
- □ WS6000 MagicPro[™] Programmer
- One Package Adaptor and Two PSD302 Product Samples

PSD-SILVER

- WISPER Software
- MAPLE software
- User's Manual
- WSI Support

WS6000

- MagicPro Programmer
- □ IBM-PC© Plug-in Adaptor Card
- Remote Socket Adaptor

WS6020

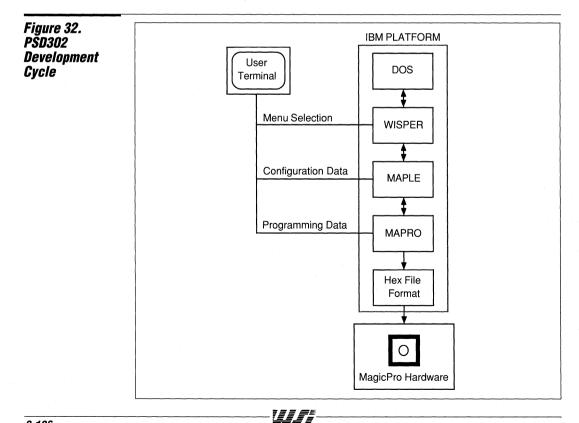
52-pin PQFP Package Adaptor. Used with the WS6000 MagicPro Programmer

WS6021

44-Pin LCC Package Adaptor for CLDCC and PLDCC Packages. Used with the WS6000 MagicPro Programmer.

WS6022

44-Pin CPGA Package Adaptor. Used with the WS6000 MagicPro Programmer.


WSI Support

Support services include:

- □ 12-month Software Update Service
- Hotline to WSI Application Experts
- 24-hour access to WSI Electronic Bulletin Board

WSI Training

U Workshops at WSI, Fremont, CA

Programmable Peripheral PSD312 Programmable Microcontroller Peripheral

with Memory

Key Features

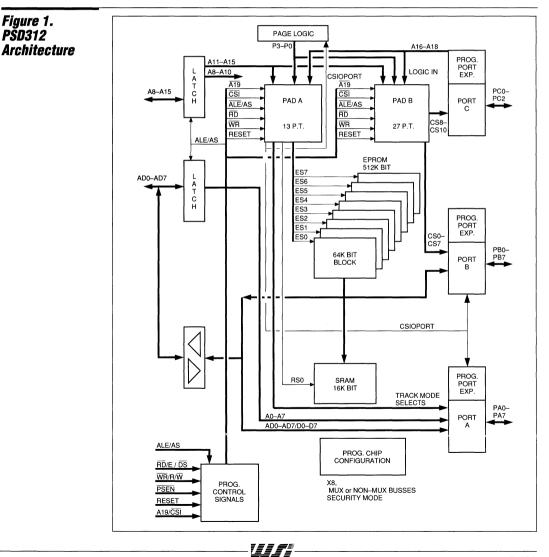
- Single Chip Programmable Peripheral for Microcontroller-based Applications
 - 19 Individually Configurable I/O pins that can be used as
- Microcontroller I/O port expansion
- Programmable Address Decoder (PAD) I/O
- Latched address output
- Open drain or CMOS
- Two Programmable Arrays (PAD A & PAD B)
- Total of 40 Product Terms and up to 16 Inputs and 24 Outputs
- Direct Address Decoding up to 1 Meg address space and up to 16 Meg with paging
- Logic replacement
- "No Glue" Microcontroller Chip-Set
- Built-in address latches for multiplexed address/data bus
- Non-multiplexed address/data bus mode
- 8 bit data bus width
- ALE and Reset polarity programmable
- Selectable modes for read and write control bus as RD/WR, R/W/E, or R/W/DS
- PSEN/ pin for 8051 users
- Built-In Page Logic
- To Expand the Address Space of Microcontrollers with Limited Address Space Capabilities
- Up to 16 pages

- □ 512 Kbits of UV EPROM
- Organized as 64K x 8
- Divides into 8 equal mappable blocks for optimized mapping
- Block resolution is 8K x 8
- 120 ns EPROM access time, including input latches and PAD address decoding.
- 16 Kbit Static RAM
- Organized as 2K x 8
- 120 ns SRAM access time, including input latches and PAD address decoding
- Address/Data Track Mode
- Enables easy Interface to Shared Resources (Mail Box SRAM) with other Microcontrollers or a Host Processor
- Built-In Security
- Locks the PSD312 Configuration and PAD Decoding
- □ Available in a Variety of Packaging
- 44 Pin PLDCC and CLDCC
- 52 Pin PQFP
- 44 Pin CPGA
- □ Simple Menu-Driven Software: Configure the PSD312 on an IBM PC
- Downward Pin and Functionally Compatible with the PSD301 in 8-bit Mode

- Partial Listing of Microcontrollers Supported
- Motorola family: M6805, M68HC11, M68HC16, M68000/10/20, M60008, M683XX
- □ Intel family: 8031/8051, 8096/98, 80186/88, 80196/98
- ❑ Signetics: SC80C451
- **Zilog:** Z8, Z80, Z180
- □ National: HPC16000

Applications	 Computers (Workstations and PCs) Fixed Disk Control, Modem, Imaging, Laser Printer Control 	 Industrial Robotics, Power Line Access, Power Line Motor
	 Telecommunications Modem, Cellular Phone, Digital PBX, Digital Speech, FAX, Digital Signal Processing 	 Medical Instrumentation Hearing Aids, Monitoring Equipment, Diagnostic Tools Military Missile Guidance, Radar, Sonar, Secure Communications, RF Modems
Introduction	The PSD312 is the latest member in the rapidly growing WSI family of PSD devices. The PSD312 is ideal for microcontroller- based applications, where fast time-to- market, small form factor, and low power consumption are essential. When combined in a system, virtually any micro- controller (68HC11, 8051 etc.) and the PSD312 work together to create a very powerful chip-set solution. This implemen- tation provides all the required control and	peripheral elements of a microcontroller- based system peripheral with no external discrete "glue" logic required. The solution comes complete with simple system software development tools for integrating the PSD312 with the microcon- troller. Hosted on the IBM PC platforms or compatibles, the easy to use software enables the designer complete freedom in designing the system.
Product Description	 The PSD312 integrates high performance user-configurable blocks of EPROM, SRAM, and programmable logic technology to provide a single chip microcontroller interface. The major functional blocks include two programmable logic arrays, PAD A and PAD B, 512K bits of EPROM, 16K bits of SRAM, input latches, and output ports. The PSD312 is ideal for applications requiring high performance, low power, and very small form factors. These include fixed disk control, modem, cellular telephone, instrumentation, computer peripherals, military and similar applications. The PSD312 offers a unique single-chip solution for microcontrollers that need: I/O reconstruction (microcontrollers lose at least two I/O ports when accessing external resources). More EPROM and SRAM than the 	 An interface to shared external resources. Expanding address space of microcontrollers WSI's PSD312 (shown in Figure 1) can efficiently interface with, and enhance, any microcontroller system. This is the first solution that provides microcontrollers with port expansion, latched addresses, page logic, two programmable logic arrays PAD A and PAD B, an interface to shared resources, 512K bit EPROM, and 16K bit SRAM on a single chip. The PSD312 does not require any glue logic for interfacing to any 8-bit microcontroller. The 8051 microcontroller family can take full advantage of the PSD312's separate program and data address spaces. Users of the 68HCXX family of microcontrollers can change the functionality of the control signals and directly connect the R/W
	 microcontroller's internal memory. Chip-select, control, or latched address lines that are otherwise implemented discretely. 	and E, or the R/W and DS signals. Addres and data buses can be configured to be separate or multiplexed, whichever is required by the host processor.

US-


Product Discription (Cont.)

The flexibility of the PSD312 I/O ports permits interfacing to shared resources. The arbitration can be controlled internally by PAD A outputs. The user can assign the following functions to these ports: standard I/O pins, chip-select outputs from the PAD A and PAD B, or latched address or multiplexed low-order address/data byte. This enables users to design add-on systems such as disk drives, modems, etc., that easily interface to the host bus (e.g., IBM PC, SCSI).

The PSD312 on-chip programmable address decoder (PAD A) enables the user

to map the I/O ports, eight segments of EPROM (8K x 8 each) and SRAM (2K x 8) anywhere in the address space of the microcontroller. PAD B can implement up to 4 sum-of-product expressions based on address inputs and control signals.

The page register extends the accessible address space of certain microcontrollers from 64K to 1 M. There are 16 pages that can serve as base address inputs to the PAD, thereby enlarging the address space of 16 address line processors by a factor of 16.

2

Table 1. PSD312 Pin

Descriptions

Name	Туре	Description		
PSEN		The \overrightarrow{PSEN} is the active low EPROM read pulse. The SRAM and I/O ports read signal is generated according to the description of the WR/V _{PP} or R/W, and RD/E/DS pins. If the host processor is a member of the 8031 family, \overrightarrow{PSEN} must be connected to the corresponding host pin. In other 8-bit host processors that do not have a special EPROM-only read strobe, PSEN should be tied to V _{CC} . In this case, RD or E and R/W provide the read strobe for the SRAM, I/O ports, and EPROM.		
WR/V _{PP} or R/W	-	In the operating mode, this pin's function is \overline{WR} (CRRWR = 0) or R/W (CRRWR = 1) when configured as R/W. The following tables summarize the read and write operations (CRRWR = 1): $\begin{array}{c c c c c c c c c c c c c c c c c c c $		
RD/E/DS		The pin function depends on the CRRWR and CEDS configuration bits. If CRRWR = 0, \overline{RD} is an active low read pulse. When CRRWR = 1, this pin and the $\overline{R/W}$ pin define the following cycle type: If CEDS = 0, E is an active high strobe. If CEDS = 1, \overline{DS} is an active low strobe.		
CSI/A19	1	This pin has two configurations. When it is \overline{CSI} (CA19/ \overline{CSI} = 0) and the pin is asserted high, the device is deselected and powered down. (See Tables 10 and 11 for the chip state during power-down mode.) If the pin is asserted low, the chip is in normal operational mode. When it is configured as A19, (CA19/ \overline{CSI} = 1), this pin can be used as an additional input to the PAD. CADLOG3 = 1 defines the pin as an address; CADLOG3 = 0 defines it as a logic input. If it is an address, A19 can be latched with ALE (CADDHLT = 1) or be a transparent logic input (CADDHLT = 0). In this mode, there is no power-down capability.		
RESET	1	This user-programmable pin can be configured to reset on high level (CRESET = 1) or on low level (CRESET = 0). It should remain active for at least 100 ns. See Tables 8 and 9 for the chip state after reset.		

Legend: The I/O column abbreviations are: I = input; I/O = input/output; P = power.

NOTE: 1. All the configuration bits mentioned in Table 1 appear in parentheses and are explained in the Configuration Register section.

Table 1. PSD312 Pin Descriptions (Cont.)

Name	Type	Description
ALE or AS	1	In the multiplexed modes, the ALE pin functions as an Address Latch Enable or as an Address strobe and can be configured as an active high or active low signal. The ALE or AS trailing edge latches lines AD15/A15–AD0/A0, A16–A19, and BHE, depending on the PSD312 configuration. See Table 7. In the non-multiplexed modes, it can be used as a general-purpose logic input to the PAD.
PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0	I/O	PA7–PA0 is an 8-bit port that can be configured to track AD7/A7–AD0/A0 from the input (CPAF2 = 1). Otherwise (CPAF2 = 0), each bit can be configured separately as an I/O or lower-order latched address line. When configured as an I/O (CPAF1 = 0), the direction of the pin is defined by its direction bit, which resides in the direction register. If a pin is an I/O output, its data bit (which resides in the data register) comes out. When it is configured as a low-order address line (CPAF1 =1), A7–A0 can be made the corresponding output through this port (e.g., PA6 can be configured to be the A6 address line). Each port bit can be a CMOS output (CPACOD = 0) or an open drain output (CPACOD = 1). When the chip is in non-multiplexed mode (CADDRAT = 0), the port becomes the data bus lines (D0–D7). See Figure 4.
PB7 PB6 PB5 PB4 PB3 PB2 PB0	I/O	PB7–PB0 is an 8-bit port for which each bit can be configured as an I/O (CPBF = 1) or chip-select output (CPBF = 0). Each port bit can be a CMOS output (CPBCOD = 0) or an open drain output (CPBCOD = 1). When configured as an I/O, the direction of the pin is defined by its direction bit, which resides in the direction register. If a pin is an I/O output, its data (which resides in the data <u>register</u>) comes out. When configured as a chip-select output, \overline{CSO} – $\overline{CS3}$ are a function of up to four product terms of the inputs to the PAD B; $\overline{CS4}$,– $\overline{CS7}$ then are each a function of up to two product terms. See Figure 6.
PC0 PC1 PC2	I/O	This is a 3-bit port for which each bit is configurable as a PAD A and B input or output. When configured as an input (CPCF = 0), a bit individually becomes an address (CADLOG = 1) or a logic input (CADLOG = 0). The addresses can be latched with ALE (CADDHLT = 1) or be transparent inputs to the PADs (CADDHLT = 0). When a pin is configured as an output (CPCF = 1), it is a function of one product term of all PAD inputs. See Figure 7.

<i>Table 1.</i> <i>PSD312 Pin</i>	Name	Туре	Description
Descriptions (Cont.)	AD0/A0 AD1/A1 AD2/A2 AD3/A3 AD4/A4 AD5/A5 AD6/A6 AD7/A7	I/O	In multiplexed mode, these pins are the multiplexed low-order address/data byte. After ALE latches the addresses, these pins input or output data, depending on the settings of the RD/E/DS, WR/V _{PP} or R/W, and PSEN pins. In non-multiplexed mode, these pins are the low-order address input.
	A8 A9 A10 A11 A12 A13 A14 A15	I/O	These pins are the high-order address input.
	GND	Р	V _{SS} (ground) pin.
	V _{CC}	Р	Supply voltage input.

Operating Modes The PSD312's two operating modes allow it to interface directly to 8-bit microcontrollers with multiplexed and nonmultiplexed address/data buses. These operating modes are described below.

Multiplexed 8-bit Address/Data Bus

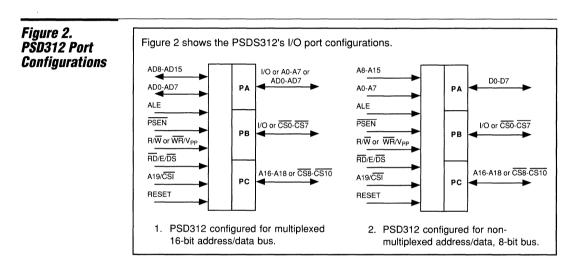
This mode is used to interface to microcontrollers with an 8-bit data bus and a 16-bit or larger address bus. The low-order address/data bus (AD0/A0–AD7/A7) is bidirectional and permits the latching of the address when the ALE signal is active. On the same pins, the data is read from or written to the device; this depends on the state of the RD/E/DS, PSEN and WR/V_{PP} or R/W pins. The high-order address bus (A8–A15) contains the high-order address bus byte. Ports A and B can be configured as in Table 2.

us:

Non-Multiplexed Address/Data, 8-bit Data Bus

This mode is used to interface to a microcontroller with an 8-bit non-multiplexed bus and a 16-bit or larger address bus. The low-order address/data bus (AD0/A0–AD7/A7) is the low-order address/data bus (A8–A15) is the high-order address bus byte. Port A is the low-order data bus. Port B can be configured as shown in Table 2.

Table 2 summarizes the effect of the different operating modes on ports A, B, and the address/data pins. The configuration of Port C is independent of the four operating modes.


Programmable Address Decoder (PAD)

The PSD312 consists of two programmable arrays referred to as PAD A and PAD B (Figure 3). PAD A is used to generate chip select signals derived from the input address to the internal EPROM blocks, SRAM, I/O ports, and Track Mode signals. All its I/O functions are listed in Table 3 and shown in Figure 3. PAD B outputs to Ports B and C for off-chip usage.

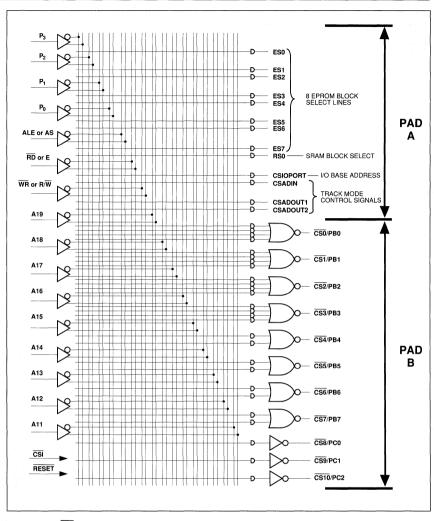
PAD B can also be used to extend the

decoding to select external devices or as a random logic replacement. The input bus to

both PAD A and PAD B is the same. Using WSI's MAPLE software, each programmable bit in the PAD's array can have one of three logic states of 0, 1, and don't care (X). In a user's logic design, both PADs can share the same inputs using the X for input signals that are not supposed to affect other functions. The PADs use reprogrammable CMOS EPROM technology and can be programmed and erased by the user.

Legend: AD0–AD7 = Addresses A0–A7 multiplexed with data lines D0–D7.

us


Table 2. PSD312 Bus and Port Configuration Options

	Multiplexed Address/Data	Non-Multiplexed Address/Data	
8-bit Data Bus			
Port A	I/O or low-order address lines or Low-order multiplexed address/data byte	D0–D7 data bus byte	
Port B	I/O or CS0–CS7	I/O and/or \overline{CSO} – $\overline{CS7}$	
AD0/A0-AD7/A7	Low-order multiplexed address/data byte	Low-order address bus byte	
A8—A15	High-order address bus byte	High-order address bus byte	

Figure 3. PSD312 PAD

Description

NOTES: 2. CSI is a power-down signal. When high, the PAD is in stand-by mode and all its outputs become non-active. See Tables 10 and 11.

3. RESET deselects all PAD output signals. See Tables 8 and 9.

us:

4. A18, A17, and A16 are internally multiplexed with CS10, CS9, and CS8, respectively. Either A18 or CS10, A17 or CS9, and A16 or CS8 can be routed to the external pins of Port C. Port C can be configured as either input or output. Table 3. PSD312 PAD A and B I/O Functions

Function					
PAD A and PAD E	PAD A and PAD B Inputs				
CSI or A19	In $\overline{\text{CSI}}$ mode (when high), PAD deselects all of its outputs and enters a power-down mode (see Tables 10 and 11). In A19 mode, it is another input to the PAD.				
A16–A18	These are general purpose inputs from Port C. See Figure 3, Note 4.				
A11–A15	These are address inputs.				
P0-P3	These are page number inputs.				
RD or E	This is the read pulse or enable strobe input.				
WR or R/W	This is the write pulse or R/\overline{W} select signal.				
ALE	This is the ALE input to the chip.				
RESET	This deselects all outputs from the PAD; it can not be used in product term equations. See Tables 8 and 9.				
PAD A Outputs					
ES0-ES7	These are internal chip-selects to the 8 EPROM banks. Each bank can be located on any boundary that is a function of one product term of the PAD address inputs.				
RS0	This is an internal chip-select to the SRAM. Its base address location is a function of one term of the PAD address inputs.				
CSIOPORT	This internal chip-select selects the I/O ports. It can be placed on any boundary that is a function of one product term of the PAD inputs. See Table 6.				
CSADIN	This internal chip-select, when Port A is configured as a low-order address/data bus in the track mode (CPAF2 = 1), controls the input direction of Port A. CSADIN is gated externally to the PAD by the internal read signal. When CSADIN and a read operation are active, data presented on Port A flows out of AD0/A0–AD7/A7. This chip-select can be placed on any boundary that is a function of one product term of the PAD inputs. See Figure 5.				
CSADOUT1	This internal chip-select, when Port A is configured as a low-order address/data bus in track mode (CPAF2 = 1), controls the output direction of Port A. CSADOUT1 is gated externally to the PAD by the ALE signal. When CSADOUT1 and the ALE signal are active, the address presented on AD0/A0–AD7/A7 flows out of Port A. This chip-select can be placed on any boundary that is a function of one product term of the PAD inputs. See Figure 5.				
CSADOUT2	This internal chip-select, when Port A is configured as a low-order address/data bus in the track mode (CPAF2 = 1), controls the output direction of Port A. CSADOUT2 must include the write-cycle control signals as part of its product term. When CSADOUT2 is active, the data presented on AD0/A0–AD7/A7 flows out of Port A. This chip-select can be placed on any boundary that is a function of one product term of the PAD inputs. See Figure 5.				
PAD B Outputs					
CS0-CS3	These chip-select outputs can be routed through Port B. Each of them is a function of up to four product terms of the PAD inputs.				
CS4-CS7	These chip-select outputs can be routed through Port B. Each of them is a function of up to two product terms of the PAD inputs.				
CS8-CS10	These chip-select outputs can be routed through Port C. See Figure 3, Note 4. Each of them is a function of one product term of the PAD inputs.				

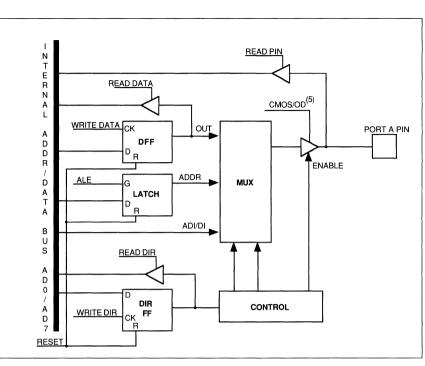
W/i-

Configuration Bits

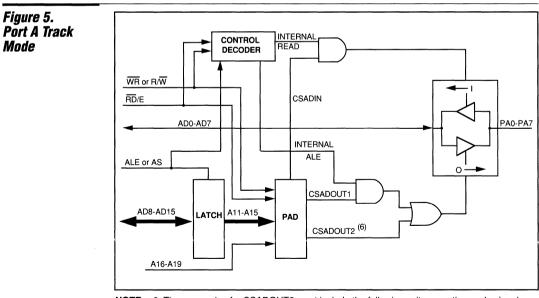
The configuration bits shown in Table 4 are non-volatile cells that let the user set the device. I/O, and control functions to the proper operational mode. Table 5 lists all configuration bits. The configuration bits are programmed and verified during the

programming phase. In operational mode, they are not accessible. To simplify implementing a specific mode, use the WSI's PSD312 MAPLE software to set the bits.

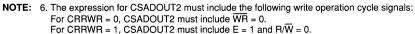
Table 4.	Use This Bit	То
PSD312 Non-Volatile	CADDRDAT	Set the address/data bus to multiplexed or non-multiplexed mode.
<i>Configuration</i>	CEDS	Determine the polarity and functionality of read and write.
Bits	CA19/CSI	Set A19/CSI to CSI (power-down) or A19 input.
DIIS	CALE	Set the ALE polarity.
	CPAF2	Set Port A either to track the low-order byte of the address/data multiplexed bus or to select the I/O or address option.
	CSECURITY	Set the security on or off (a secured part can not be duplicated).
	CRESET	Set the RESET polarity.
	COMB/SEP	Set PSEN and RD for combined or separate address spaces (see Figures 8 and 9).
	CPAF1 (8 Bits)	Configure each pin of Port A in multiplexed mode to be an I/O or address output.
	CPACOD (8 Bits)	Configure each pin of Port A as an open drain or active CMOS pull-up output.
	CPBF (8 Bits)	Configure each pin of Port B as an I/O or a chip-select output.
	CPBCOD (8 Bits)	Configure each pin of Port B as an open drain or active CMOS pull-up output.
	CPCF (3 Bits)	Configure each pin of Port C as an address input or a chip-select output.
	CADDHLT	Configure pins A16–A19 to go through a latch or to have their latch transparent.
	CADLOG (4 Bits)	Configure A16–A19 individually as logic or address inputs.
	CLOT	Determine in non-multiplexed mode if address inputs are transparent or latched.
	CRRWR	Configure the polarity and control methods of read and write cycles.


Port Functions

The PSD312 has three I/O ports (Ports A, B, and C) that are configurable at the bit level. This permits great flexibility and a high degree of customization for specific


us:

applications. The following is a description of each port. Figure 4 shows the pin structure of Port A.



NOTE: 5. CMOS/OD determines whether the output is open drain or CMOS.

us:

Table 5. PSD312 Configuration Bits^{7,8}

Configuration Bits	No. of Bits	Function
CADDRDAT	1	ADDRESS/DATA Multiplexed (separate buses) CADDRDAT = 0, non-multiplexed CADDRDAT = 1, multiplexed
CA19/CSI	1	A19 or \overline{CSI} CA19/ \overline{CSI} = 0, enable power-down CA19/ \overline{CSI} = 1, enable A19 input to PAD
CALE	1	Active HIGH or Active LOW CALE = 0, Active high CALE = 1, Active low
CRESET	1	Active HIGH or Active LOW CRESET = 0, Active low RESET CRESET = 1, Active high RESET
COMB/SEP	1	Combined or Separate Address Space for SRAM and EPROM 0 = Combined, 1 = Separate
CPAF2	1	Port A AD0–AD7 (address/data multiplexed bus) CPAF2 = 0, address or I/O on Port A (according to CPAF1) CPAF2 = 1, address/data multiplexed on Port A (track mode)
CADDHLT	A16–A19 Transparent or Latched 1 CADDHLT = 0, Address latch transparent CADDHLT = 1, Address latched (ALE depender	
CSECURITY	1	SECURITY On/Off CSECURITY = 0, off CSECURITY = 1, on
CLOT	1	A0–A15 Address Inputs are transparent or ALE-dependent in non-multiplexed modes CLOT = 0, transparent CLOT = 1, ALE-dependent
CRRWR CEDS	2	Determine the polarity and control methods of read and write cycles. CEDS CRRWR 0 0 RD and WR active low pulses 0 1 R/W status and high E pulse 1 1 R/W status and low DS pulse
CPAF1	8	Port A I/O or A0–A7 CPAF1 = 0, Port A pin is I/O CPAF1 = 1, Port A pin is Ai $(0 \le i \le 7)$
CPACOD	8	Port A CMOS or Open Drain Output CPACOD = 0, CMOS output CPACOD = 1, open-drain output
CPBF	8	Port B is I/O or $\overline{CS0}$ – $\overline{CS7}$ CPBF = 0, Port B pin is \overline{CSI} (0 ≤ i ≤ 7) CPBF = 1, Port B pin is I/O

US-

Table 5. PSD312 Configuration Bits (Cont.)

Configuration Bits	No. of Bits	Function
CPBCOD	8	Port B CMOS or Open Drain CPBCOD = 0, CMOS output CPBCOD = 1, open-drain output
CPCF	3	Port C A16–A18 or $\overline{CS8}$ – $\overline{CS10}$ CPCF = 0, Port C pin is Ai (16 ≤ i ≤ 18) CPCF = 1, Port C pin is \overline{CSI} (8 ≤ i ≤ 10)
CADLOG	4	A16–A19 Address or Logic Input CADLOG = 0, Port C pin or A19/CSI is logic input CADLOG = 1, Port C pin or A19/ $\overline{\text{CSI}}$ is Ai (16 ≤ i ≤ 19)
Total Bits	50	

NOTES: 7. WSI's MAPLE software will guide the user to the proper configuration choice. 8. In an unprogrammed or erased part, all configuration bits are 0.

Port Functions (Cont.)

Port A in Multiplexed Address/Data Mode

The default configuration of Port A is I/O. In this mode, every pin can be set as an input or output by writing into the respective pin's direction flip flop (DIR FF, in Figure 4), As an output, the pin level can be controlled by writing into the respective pin's data flip flop (DFF, in Figure 4). When DIR FF = 1, the pin is configured as an output. When DIR FF = 0, the pin is configured as an input. The controller can read the DIR FF bits by accessing the READ DIR register; it can read the DFF bits by accessing the READ DATA register. Port A pin levels can be read by accessing the READ PIN register. Individual pins can be configured as CMOS or open drain outputs. Open drain pins require external pull-up resistors. For addressing information, refer to Table 6.

Alternatively, each bit of Port A can be configured as a low-order latched address bus bit. The address is provided by the port address latch, which latches the address on the trailing edge of ALE. PA0–PA7 can become A0–A7, respectively. This feature of the PSD312 lets the user generate loworder address bits to access external peripherals or memory that require several low-order address lines. Another mode of Port A (CPAF2 = 1) sets the entire port to track the inputs AD0/A0-AD7/A7, depending on specific address ranges defined by the PAD's CSADIN, CSADOUT1, and CSADOUT2 signals. This feature lets the user interface the microcontroller to shared external resources without requiring external buffers and decoders. In this mode, the port is effectively a bi-directional buffer. The direction is controlled by using the input signals ALE, RD/E/DS, WR/VPP or R/W, and the internal PAD outputs CSADOUT1, CSADOUT2 and CSADIN (see Figure 5). When CSADOUT1 and ALE are true, the address on the input AD0/A7-AD7/A7 pins flows out through Port A. (Carefully check the generation of CSADOUT1, and ensure that it is stable during the ALE pulse; see Figure 18). When CSADOUT2 is active, a write operation is performed (see note to Figure 5). The data on the input AD0/A7-AD7/A7 pins flows out through Port A. When CSADIN and a read operation is performed (depending on the mode of the $\overline{RD}/E/\overline{DS}$ and \overline{WR}/V_{PP} or R/\overline{W} pins), the data on Port A flows out through the AD0/A7-AD7/A7 pins. In this operational mode. Port A is tri-stated when none of the above-mentioned three conditions exist.

Port Functions (Cont.)

Port A in Non-Multiplexed Address/Data Mode

In this mode, Port A becomes the low order data bus byte of the chip. When reading an internal PSD312 location, data is presented on Port A pins. When writing to an internal PSD312 location, data present on Port A pins is written to that location.

Port B

The default configuration of Port B is I/O. In this mode, every pin can be set as an input or output by writing into the respective pin's direction flip flop (DIR FF, in Figure 6). As an output, the pin level can be controlled by writing into the respective pin's data flip flop (DFF, in Figure 6). When DIR FF = 1, the pin is configured as an output. When DIR FF = 0, the pin is configured as an input. The controller can read the DIR FF bits by accessing the READ DIR register; it can read the DFF bits by accessing the READ DATA register. Port B pin levels can be read by accessing the READ PIN register. Individual pins can be configured as CMOS or open drain outputs. Open drain pins require external pull-up resistors. For addressing information, refer to Table 6

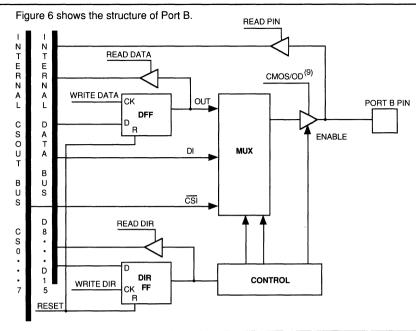
Alternatively, each bit of Port B can be configured to provide a chip-select output signal from PAD B. PBO–PB7 can provide <u>CSO–CS7</u>, respectively. Each of the signals <u>CSO–CS3</u> is comprised of four product terms. Thus, up to four ANDed expressions can be ORed while deriving any of these signals. Each of the signals <u>CS4–CS7</u> is comprised of two product terms. Thus, up to two ANDed expressions can be ORed while deriving any of these signals.

Accessing the I/O Port Registers

Table 6 shows the offset values with the respect to the base address defined by the CSIOPORT. They let the user access the corresponding registers.

ur:

Port C in All Modes


Each pin of Port C (shown in Figure 7) can be configured as an input to PAD A and PAD B or output from PAD B. As inputs, the pins are named A16-A18. Although the pins are given names of the high-order address bus, they can be used for any other address lines or logic inputs to PAD A and PAD B. For example, A8-A10 can also be connected to those pins, improving the boundaries of $\overline{CS0}$ – $\overline{CS7}$ resolution to 256 bytes. As inputs, they can be individually configured to be logic or address inputs. A logic input uses the PAD only for Boolean equations that are implemented in any or all of the CS0-CS10 PAD B outputs. Port C addresses can be programmed to latch the inputs by the trailing edge ALE or to be transparent.

Alternatively, PC0–PC2 can become CS8–CS10 outputs, respectively, providing the user with more external chip-select PAD outputs. Each of the signals CS8–CS10 is comprised of one product term.

ALE/AS and ADO/AO–AD7/A7 in Non-Multiplexed Modes

In non-multiplexed modes, AD0/A0-AD15/A15 are address inputs only and can become transparent (CLOT = 0) or ALE dependent (CLOT = 1). In transparent mode, the ALE/AS pin can be used as an additional logic input to the PADs. The nonmultiplexed ALE dependent mode is useful in applications for which the host processor has a multiplex address/data bus and AD0/A0-AD7/A7 are not multiplexed with A0-A7 but rather are multiplexed with other address lines. In these applications, Port A serves as a data bus and each of its pins can be directly connected to the corresponding host's multiplexed pin, where that data bit is expected. See Table 7.

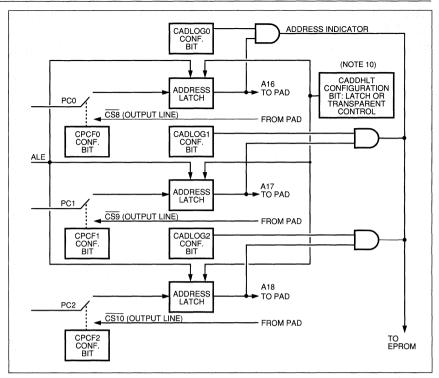


Table 6. I/O Port	Register Name	Byte Size Access of the I/O Port Registers Offset from the CSIOPORT	
Addresses in an	Pin Register of Port A	+ 2 (accessible during read operation only)	
8-bit Data Bus	Direction Register of Port A	+ 4	
Mode	Data Register of Port A	+ 6	
	Pin Register of Port B	+ 3 (accessible during read operation only)	
	Direction Register of Port B	+ 5	
	Data Register of Port B	+ 7	

Figure 7. Port C Structure

NOTE: 10. The CADDHLT configuration bit determines if A18–A16 are transparent via the latch, or if they must be latched by the trailing edge of the ALE strobe.

Table 7. Signal Latch	Signal Name	Configuration Bits	Configuration Mode	Signal Latch Status
Status in All		CADDRDAT = 0, CLOT = 0	non-multiplexed	Transparent
Operating Modes	AD0/A0- AD7/A7	CADDRDAT = 0, CLOT = 1	modes	ALE Dependent
	ADITAT	CADDRDAT = 1	multiplexed modes	ALE Dependent
	PSEN	CDATA = 0	8-bit data, PSEN is active	Transparent
		CADDHLT = 0	A16–A19 can become logic inputs	Transparent
	A19 and PC2–PC0	CADDHLT = 1	A16–A19 can become multiplexed address lines	ALE Dependent

us:

EPROM	The PSD312 has 512K bits of EPROM and is organized as 64K x 8. The EPROM has 8 banks of memory. Each bank can be placed in any address location by programming the PAD. Bank0–Bank7 can	be selected by PAD outputs ES0–ES7, respectively. The EPROM banks are orga- nized as 8K x 8.
SRAM	The PSD312 has 16K bits of SRAM and is organized as 2K x 8. The SRAM is selected by the RS0 output of the PAD.	
Page Register	The page register consists of four flip-flops, which can be read from, or written to, through the I/O address space (CSIOPORT). The page register is connected to the D3–D0 lines. The Page Register address is CSIOPORT + 18H. The page register outputs are P3–P0,	which are fed into the PAD. This enables the host microcontroller to enlarge its address space by a factor of 16 (there can be a maximum of 16 pages). See Figure 8.
Control Signals	The PSD312 control signals are \overline{WR}/V_{PP} or R/ \overline{W} , $\overline{RD}/E/\overline{DS}$, ALE, PSEN, Reset, and A19/ \overline{CSI} . Each of these signals can be configured to meet the output control signal requirements of various microcontrollers.	ALE or AS ALE polarity is programmable. When programmed to be active high, a high on the pin causes the input address latches, Port A address latches, Port C, and A19 address latches to be transparent. The

WR/V_{PP} or R/W

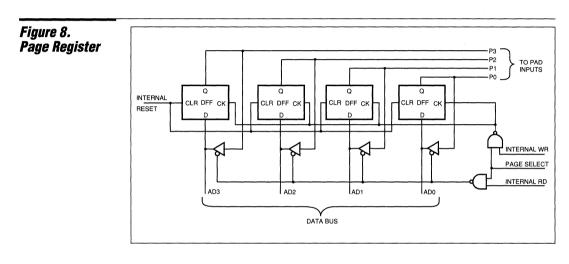
In operational mode, this signal can be configured as \overline{WR} or R/\overline{W} . As \overline{WR} , all write operations to the PSD312 are activated by an active low signal on this pin. As R/\overline{W} , the pin works with the E strobe of the $\overline{RD}/E/\overline{DS}$ pin. When R/\overline{W} is high, an active high signal on the $\overline{RD}/E/\overline{DS}$ pin performs a read operation. When R/\overline{W} is low, an active high signal on the $\overline{RD}/E/\overline{DS}$ pin performs a write operation.

RD/E/DS

In operational mode, this signal can be configured as \overline{RD} , E, or \overline{DS} . As \overline{RD} , all read operations to the PSD312 are activated by an active low signal on this pin. As E, the pin works with the R/W signal of the \overline{WR}/V_{PP} or $\overline{R/W}$ pin. When $\overline{R/W}$ is high, an active high signal on the $\overline{RD}/E/\overline{DS}$ pin performs a read operation. When $\overline{R/W}$ is low, an active high signal on the $\overline{RD}/E/\overline{DS}$ pin performs a write operation.

As $\overline{\text{DS}}$, the pin works with the $\overline{\text{R/W}}$ signal as an active low data strobe signal. As $\overline{\text{DS}}$, the $\overline{\text{R/W}}$ defines the mode of operation (Read or Write). ALE polarity is programmable. When programmed to be active high, a high on the pin causes the input address latches, Port A address latches, Port C, and A19 address latches to be transparent. The falling edge of ALE locks the information into the latches. When ALE is programmed to be active low, a low on the pin causes the input address latches, Port A address latches, Port C, and A19 address latches to be transparent. The rising edge of ALE locks the appropriate information into the latches.

PSEN


The \overrightarrow{PSEN} function enables the user to work with two address spaces: program memory and data memory (if COMB/SEP = 1). In this mode, an active low signal on the \overrightarrow{PSEN} pin causes the EPROM to be read if selected. The SRAM and I/O ports read operation are done by \overrightarrow{RD} low (CRRWR = 0), or by E high and \overrightarrow{RW} high (CRRWR = 1, CEDS = 0) or by \overrightarrow{DS} low and \overrightarrow{RW} high (CRRWR, CEDS = 1).

(Cont.)

Control Signals **PSEN**

Whenever a member of the 8031 family (or any other similar microcontroller) is used, the PSD312's PSEN pin must be connected to the PSEN pin of the microcontroller.

If COMB/SEP = 0, the address spaces of the program and the data are combined. In this configuration (except for the 8031-type case mentioned above), the PSEN pin must be tied high to V_{CC} , and the EPROM, SRAM, and I/O ports are read by \overline{RD} low (CRRWR = 0), or by E high and R/W high (CRRWR = 1, CEDS = 0) or by \overline{DS} low and R/W high (CRRWR, CEDS = 1). See Figures 9 and 10.

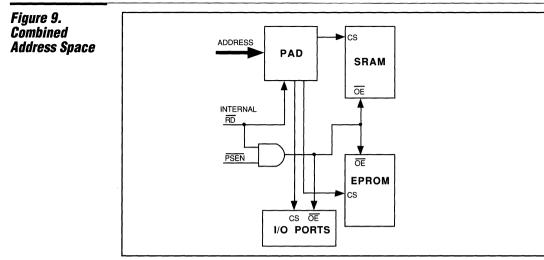
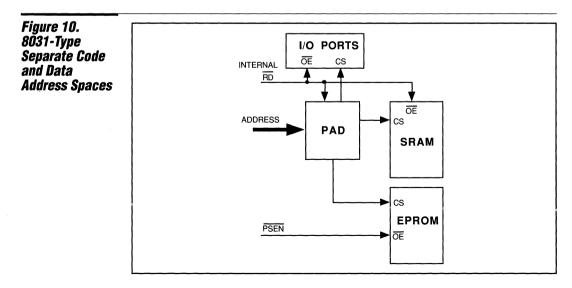


Table 8.	Signal	Configuration Mode	Condition
<i>Signal States During and After</i>	AD0/A0-AD7/A7	All	Input
Reset	A8–A15	All	Input
nosot	PA0–PA7) (Port A	I/O Tracking AD0/A0–AD7 Address outputs A0–A7	Input Input Low
	PB0–PB7 (Port B)	I/O CS7–CS0 CMOS outputs CS7–CS0 open drain outputs	Input High Tri-stated
	PC0–PC2 (Port C)	Address inputs A16–A18 CS8–CS10 CMOS outputs	Input High

us:


2-144

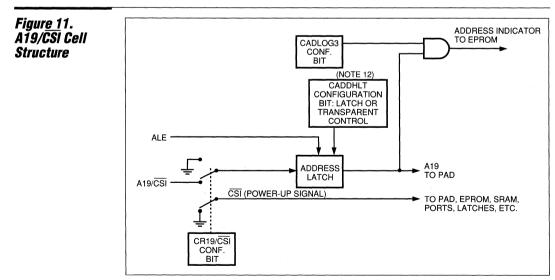
2

Table 9.	Component	Signals	Contents
Internal States During and After		CS0-CS10	All = 1 (Note 11)
Reset	PAD	CSADIN, CSADOUT1, CSADOUT2, CSIOPORT, RS0, ES0–ES7	All = 0 (Note 11)
	Data register A Direction register A Data register B Direction register B	n/a n/a n/a n/a	0 0 0 0

NOTE: 11. All PAD outputs are in a non-active state.

Control Signals (Cont.)

RESET


This is an asynchronous input pin that clears and initializes the PSD312. Reset polarity is programmable (active low or active high). Whenever the PSD312 reset input is driven active for at least 100 ns, the chip is reset. During boot-up (V_{cc} applied), the device is automatically reset internally (internal automatic reset is over by the time V_{cc} operating range has been achieved during boot-up). Tables 8 and 9 indicate the state of the part during and after reset.

A19/CSI

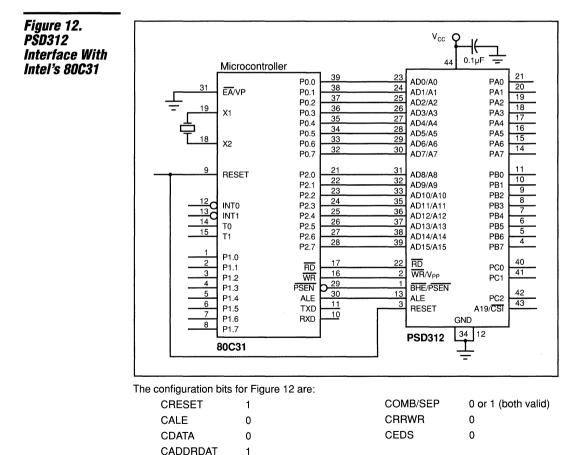
When configured as $\overline{\text{CSI}}$, a high on this pin deselects, and powers down, the chip. A low on this pin puts the chip in normal operational mode. For PSD312 states during the power-down mode, see Tables 10 and 11, and Figure 11.

In A19 mode, the pin is an additional input to the PAD. It can be used as an address line (CADLOG3 = 1) or as a generalpurpose logic input (CADLOG3 = 0). A19 can be configured as ALE dependent or as transparent input (see Table 7). In this mode, the chip is always enabled.

Table 10. Signal	Signal	Configuration Mode	Condition
States During	AD0/A0-AD7/A7	All	Input
Power-Down Mode	A8-A15	All	Input
mouc	PA0-PA7	I/O Tracking AD0/A0–AD7/A7 Address outputs A0–A7	Unchanged Input All 1's
	PB0-PB7	I/O CS0-CS7 CMOS outputs CS0-CS7 open drain outputs	Unchanged All 1's Tri-stated
	PC0-PC2	Address inputs A18–A16 CS8–CS10 CMOS outputs	Input All 1's

us:

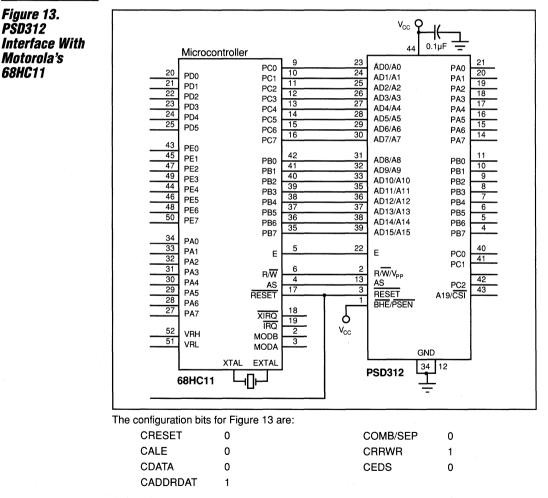
NOTE: 12. The CADDHLT configuration bit determines if A19–A16 are transparent via the latch, or if they must be latched by the trailing edge of the ALE strobe.


Table 11. Internal States During Power-Down

Component	Signals	Contents
	CS0-CS10	All 1's (deselected)
PAD	CSADIN, CSADOUT1, CSADOUT2, CSIOPORT, RS0, ES0–ES7	All 0's (deselected)
Data register A Direction register A Data register B Direction register B	n/a n/a n/a n/a	All unchanged

Security Mode

Security Mode in the PSD312 locks the contents of the PAD A, PAD B and all the configuration bits. The EPROM, SRAM, and I/O contents can be accessed only through the PAD. The Security Mode can


be set by the MAPLE or Programming software. In window packages, the mode is erasable through UV full part erasure. In the security mode, the PSD312 contents cannot be copied on a programmer.

All other configuration bits may vary according to the application requirements.

us:

System Applications In Figure 12, the PSD312 is configured to interface with Intel's 80C31, which is a 16bit address/8-bit data bus microcontroller. Its data bus is multiplexed with the loworder address byte. The 80C31 uses signals RD to read from data memory and PSEN to read from code memory. It uses WR to write into the data memory. It also uses active high reset and ALE signals. The rest of the configuration bits as well as the unconnected signals (not shown) are application specific and, thus, user dependent. In Figure 13, the PSD312 is configured to interface with Motorola's 68HC11, which is a 16-bit address/8-bit data bus microcontroller. Its data bus is multiplexed with the low-order address byte. The 68HC11 uses E and R/W signals to derive the read and write strobes. It uses the term AS (address strobe) for the address latch pulse. RESET is an active low signal. The rest of the configuration bits as well as the unconnected signals (not shown) are application specific and, thus, user dependent.

All other configuration bits may vary according to the application requirements.

us

Absolute Maximum Ratings¹³

Symbol	Parameter	Condition	Min	Max	Unit
T _{STG}	Storage Temperature		- 65	+ 150	°C
	Voltage on any Pin	With Respect to GND	- 0.6	+ 7	V
V _{PP}	Programming Supply Voltage	With Respect to GND	- 0.6	+ 14	۷
V _{CC}	Supply Voltage	With Respect to GND	- 0.6	+ 7	V
	ESD Protection			>2000	V

NOTE: 13. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at theses or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods of time may affect device reliability.

Operating Range Tolerance Range Temperature V_{CC} -12 -15 -20 Commercial 0° C to +70°C + 5 V ± 5% ± 10% ± 10% + 5 V Industrial -40° C to +80°C ± 10% ±10% Military -55° C to +125°C + 5 V ± 10% ± 10%

Recommended Operating	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Operating Conditions	V _{CC}	Supply Voltage	-12 Version	4.75	5	5.25	V
oonuntions	V _{CC}	Supply Voltage	-15/-20 Versions	4.5	5	5.5	V
V _{IH}		High-level Input Voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	2			V
	VIL	Low-level Input Voltage	V_{CC} = 4.5 V to 5.5 V	0		0.8	V

DC Oberesteristics	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
<i>Characteristics</i>			I _{OL} = 20 μA V _{CC} = 4.5 V		0.01	0.1	
	V _{OL}	V _{OL} Output Low Voltage	I _{OL} = 8 mA V _{CC} = 4.5 V		0.15	0.45	V
	V	Output High Voltage	I _{OH} = -20 μA V _{CC} = 4.5 V	4.4	4.49		
	V _{OH}	VOH Output high voltage	I _{OH} = -2 mA V _{CC} = 4.5 V	2.4	3.9		V
	lon	V _{CC} Standby Current	Comm'l		50	100	
	'SB1	(CMOS) (Notes 14 and 16)	Ind/Mil		75	150	μΑ
	I _{SB2}	V _{CC} Standby Current	Comm'l		1.5	3	mA
	'SB2	(TTL) (Notes 15 and 16)	Ind/Mil		2	3.2	IIIA
		Active Ourrest (OMOC)	Comm'l (Note 18)		16	35	
	I _{CC1}	Active Current (CMOS)	Comm'l (Note 19)		28	50	mA
	1001	(SRAM Not Selected)	Ind/Mil (Note 18)		16	45	
		(Notes 14 and 17)	Ind/Mil (Note 19)		28	60	

DC **Characteristics**

(Cont.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Comm'l (Note 18)		47	80	
,	Active Current (CMOS)	Comm'l (Note 19)		59	95	m۸
CC2	(SRAM Block Selected) (Notes 14 and 17)	Ind/Mil (Note 18)		47	100	mA
	(110185 14 and 17)	Ind/Mil (Note 19)		47 80 59 95		
	Active Current (TTL)	Comm'l (Note 18)		36	65	
	(SRAM Not Selected) (Notes 15 and 17)	Comm'l (Note 19)		58	80	mA
I _{CC3}		Ind/Mil (Note 18)		36	80	, IIIA
	(Notes 15 and 17)	Ind/Mil (Note 19)		58	95	
	Active Current (TTL)	Comm'l (Note 18)		67	105	
las	(SRAM Block Selected)	Comm'l (Note19)		79	120	mA
I _{CC4}	(Notes 15 and 17)	Ind/Mil (Note 18)		67	130	IIIA
	(Notes 15 and 17)	Ind/Mil (Note 19)		79	145	
ILI	Input Leakage Current	V _{IN} = 5.5 V or GND	-1	± 0.1	1	
ILO	Output Leakage Current	V _{OUT} = 5.5 V or GND	-10	± 5	10	μA

NOTE: 14. CMOS inputs: GND \pm 0.3 V or V_{CC} \pm 0.3V. 15. <u>TTL</u> inputs: V_{IL} \leq 0.8 V, V_{IH} \geq 2.0 V. 16. CSI/A19 is high and the part is in a power-down configuration mode. 17. AC power component is 3.0 mA/MHz (power = AC + DC). 18. Ten (10) PAD product terms active. (Add 380 µA per product term, typical, or 480 µA per product term maximum.) 19. Forty-one (41) PAD product terms active.

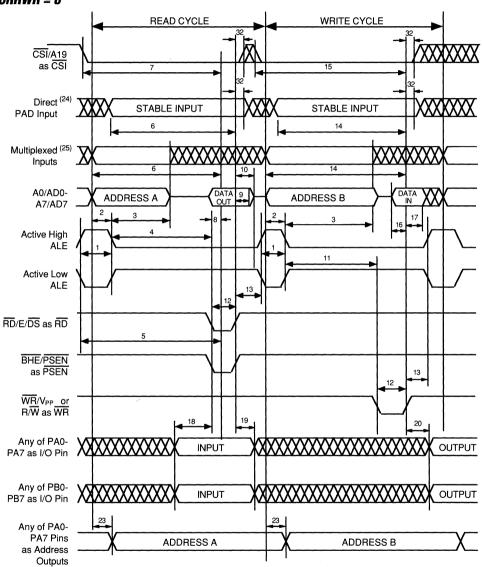
Symbol	Parameter	-	12	-1	5	-2	20	Unit
Symbol	i arameter	Min	Max	Min	Max	Min	Max	UIIIL
T1	ALE or AS Pulse Width	30		40		50		-
T2	Address Set-up Time	9		12	-	15		1
Т3	Address Hold Time	13		15		25		
T4	ALE or AS Trailing Edge to Leading Edge of Read	12		15		20		
T5	ALE Valid to Data Valid	130		140	-	170		
Т6	Address Valid to Data Valid		120		150		200	
T7	CSI Active to Data Valid		130		160		200	
Т8	Leading Edge of Read to Data Valid		38		55		60	
Т9	Read Data Hold Time	0		0		0		ns
T10	Trailing Edge of Read to Data High-Z		32		35		40	
T11	Trailing Edge of ALE or AS to Leading Edge of Write	12		15	ъ.	20		
T12	RD, E, PSEN, DS Pulse Width	45		60		75		
T12A	WR Pulse Width	25		35		45		T
T13	Trailing Edge of Write or Read to Leading Edge of ALE or AS	0		0		0		
T14	Address Valid to Trailing Edge of Write	120		150		200		

us:

AC **Characteristics** (See Timing Diagrams)

AC *Characteristics* (Cont.)

Sumhel	Paramatar	-	12	-15		-20		Unit
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit
T15	CSI Active to Trailing Edge of Write	130		160		200		
T16	Write Data Set-up Time	20		30		40		
T17	Write Data Hold Time	5		10		15		
T18	Port Input Set-up Time	30		35		45		
T19	Port Input Hold Time	0		0		0		
T20	Trailing Edge of Write to Port Output Valid	40		50		60		
T21	ADi or Control to CSOi Valid	6	35	6	40	5	45	
T22	ADi or Control to CSOi Invalid	5	35	4	40	4	45	
T23	Track Mode Address Propagation Delay: CSADOUT1 Already True		22		28		28	
T23A	Track Mode Address Propagation Delay: CSADOUT1 Becomes True During ALE or AS		33		50		50	
T24	Track Mode Address Holding Time	15		27		27		ns
T25	Track Mode Read Propagation Delay		29		35		35	
T26	Track Mode Read Hold Time	11	29	10	29	10	35	Ĩ
T27	Track Mode Write Cycle Data Propagation Delay		20		30		30	
T28	Track Mode Write Cycle Write to Data Propagation Delay	8	30	7	40	7	55	
T29	Hold Time of Port A Valid During Write CSOi Trailing Edge	2		4		4		
T30	CSI Active to CSOi Active	9	45	9	55	8	60]
T31	CSI Inactive to CSOi Inactive	9	45	9	55	8	60	
T32	Direct PAD Input as Hold Time	10		12		15		
Т33	R/\overline{W} Active to E or DS Start	20		30		40		
T34	E or $\overline{\text{DS}}$ End to R/W	20		30		40		
T35	AS Inactive to E High	15		20		25		


NOTES: 20. ADi = any address line.

21. CSOi = any of the chip-select output signals coming through Port B (CS0–CS7) or through Port C (CS8–CS10).

22. Direct PAD input = any of the following direct PAD input lines: \overline{CSI} /A19 as transparent A19, \overline{RD} /E/DS, \overline{WR} or R/W, transparent PCO–PC2, ALE (or AS). 23. Control signals \overline{RD} /E/ \overline{DS} or \overline{WR} or R/W.

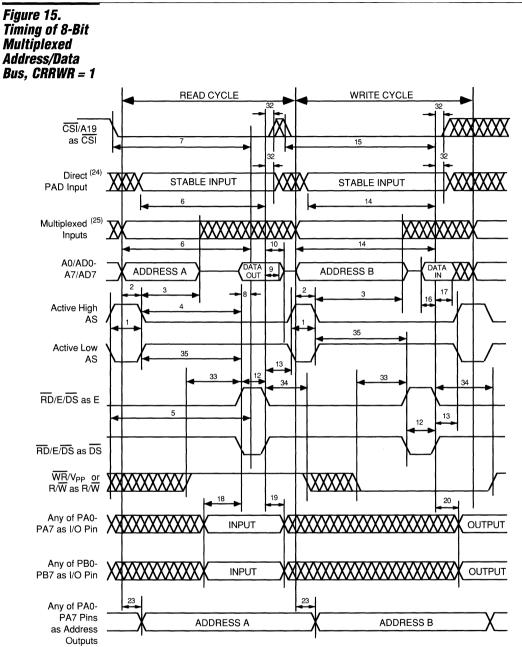
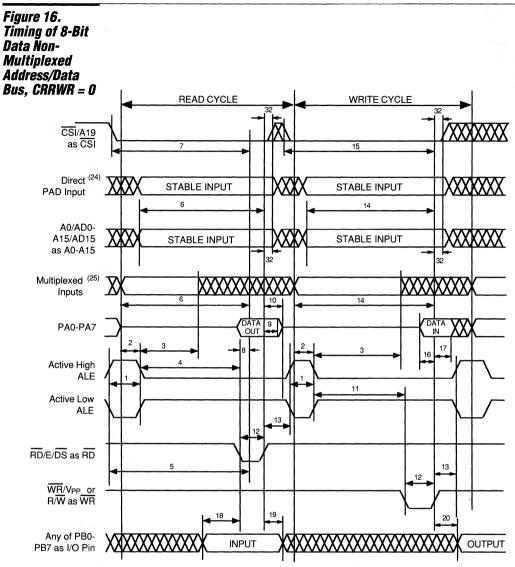
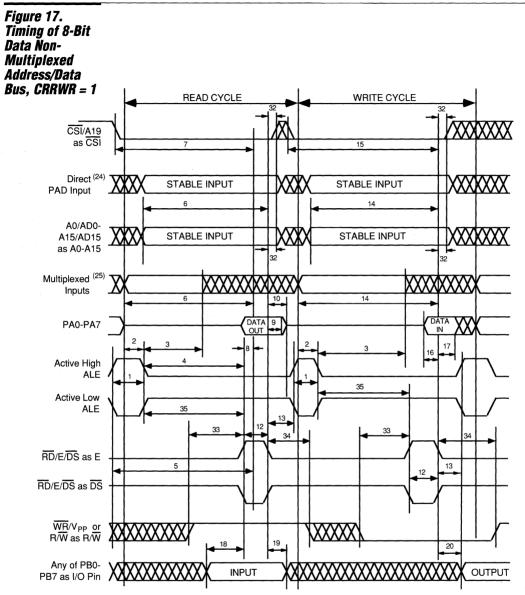

UII:

Figure 14. Timing of 8-Bit Multiplexed Address/Data Bus, CRRWR = 0

us:

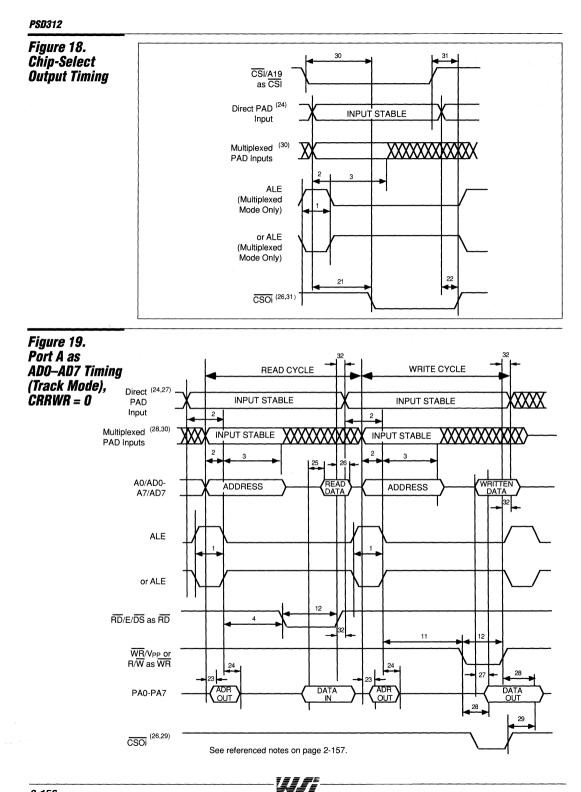

See referenced notes on page 2-157.

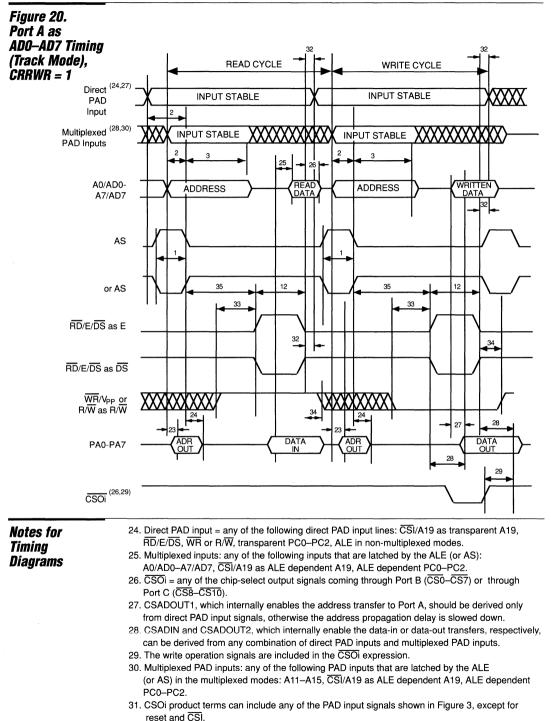
us:


See referenced notes on page 2-157.

2

us:


See referenced notes on page 2-157.



US:

See referenced notes on page 2-157.

2

us:

Table 12 $T_A = 25 \circ C$, f = 1 MHzPin Symbol Typical³³ Parameter Conditions Max Units Capacitance³² $V_{IN} = 0 V$ Capacitance (for input pins only) 6 pF 4 CIN COUT Capacitance (for input/output pins) $V_{OUT} = 0 V$ 8 12 pF Capacitance (for WR/VPP or R/W/VPP) $V_{PP} = 0 V$ 25 рF CVPP 18 NOTES: 32. This parameter is only sampled and is not 100% tested. 33. Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltages. Figure 21. AČ Testing Input/Output Waveform 3.0 V TEST POINT οv Figure 22.

DEVICE

2.01 V

195Ω

 $C_{L} = 30 \text{ pF}$ (INCLUDING SCOPE AND JIG CAPACITANCE)

AČ Testina

Load Circuit

d To clear all locations of their programmed

Erasure and Programming

To clear all locations of their programmed contents, expose the device to ultra-violet light source. A dosage of 15 W second/cm² is required. This dosage can be obtained with exposure to a wavelength of 2537 Å and intensity of 12000 μ W/cm² for 15 to 20 minutes. The device should be about 1 inch from the source, and all filters should be removed from the UV light source prior to erasure.

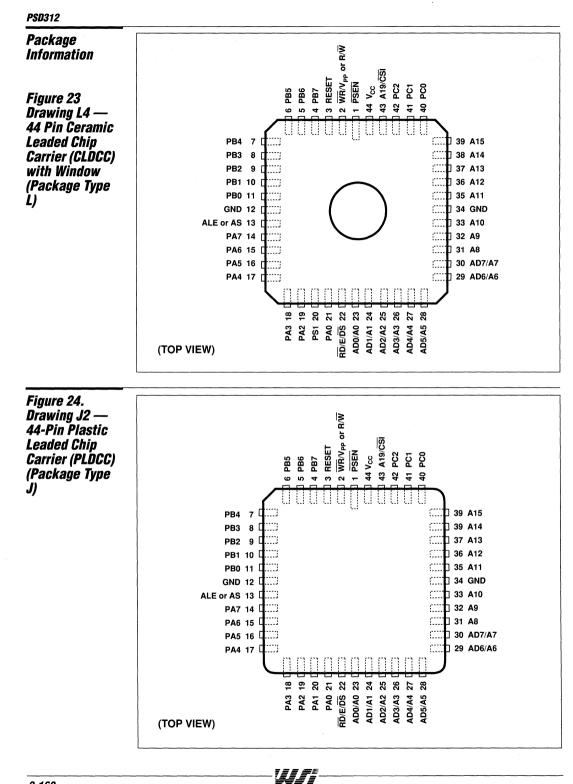
The PSD312 and similar devices will erase with light sources having wavelengths shorter than 4000 Å. Although the erasure times will be much longer than with UV sources at 2537 Å, exposure to fluorescent light and sunlight eventually erases the device. For maximum system reliability,

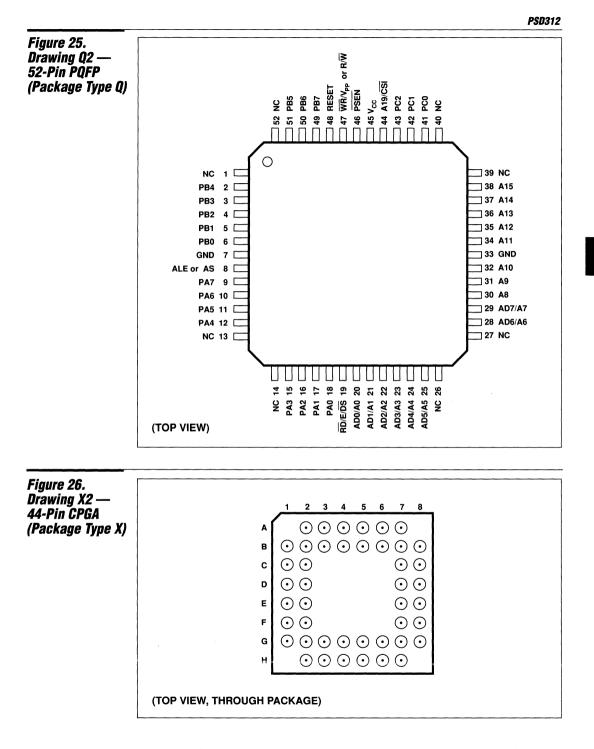
us

these sources should be avoided. If used in such an environment, the package windows should be covered by an opaque substance.

Upon delivery from WSI, or after each erasure, the PSD312 device has all bits in the PAD and EPROM in the "1" or high state. The configuration bits are in the "0" or low state. The code, configuration, and PAD MAP data are loaded through the procedure of programming

Information for programming the device is available directly from WSI. Please contact your local sales representative.


2


Pin Assignments

Name	44-Pin PLDCC/ CLDCC Package	44-Pin CPGA Package	52-Pin PQFP Package
PSEN	1	A ₅	46
WR/V _{PP} or R/W	2	A ₄	47
RESET	3	B ₄	48
PB7	4	A3	49
PB6	5	B ₃	50
PB5	6	A ₂	51
PB4	7	Α2 Β2	2
PB3	8	-	3
		В ₁	4
PB2	9	C ₂	
PB1	10	C ₁	5
PB0	11	D ₂	6
GND	12	D ₁	7
ALE or AS	13	E ₁	8
PA7	14	E ₂	9
PA6	15	F ₁	10
PA5	16	F ₂	11
PA4	17	G ₁	12
PA3	18	G ₂	15
PA2	19	H_2	16
PA1	20	G ₃	17
PA0	21	H ₃	18
RD/E/DS	22	G ₄	19
AD0/A0	22	С4 Н4	20
AD0/A0	23 24	114 L	21
		H ₅	21
AD2/A2	25	G5	
AD3/A3	26	H ₆	23
AD4/A4	27	G ₆	24
AD5/A5	28	H ₇	25
AD6/A6	29	G7	28
AD7/A7	30	G ₈	29
A8	31	F ₇	30
A9	32	F ₈	31
A10	33	E7	32
GND	34	E ₈	33
A11	35	D ₈	34
A12	36	D ₇	35
A13	37	C ₈	36
A14	38	C ₇	37
A15	39	В ₈	38
PC0	40	B ₇	41
PC0 PC1	40	Б7 А7	42
			42
PC2	42	В ₆	43 44
A19/CSI	43	A ₆	
V _{CC}	44	В ₅	45

NOTE: 34. Pins 1, 13, 14, 26, 27, 39, 40, and 52 are No Connect.

W/i

UI:

2-161

2

Ordering

Information	1

Part Number	Spd. (ns)	Package Type	Package Drawing	Operating Temperature Range	WSI Manufacturing Procedure
PSD312-12J	120	44-pin PLDCC	J2	Commercial	Standard
PSD312-12L	120	44-pin CLDCC	L4	Commercial	Standard
PSD312-12Q	120	52-pin PQFP	Q2	Commercial	Standard
PSD312-12X	120	44-pin CPGA	X2	Commercial	Standard
PSD312-15J	150	44-pin PLDCC	J2	Commercial	Standard
PSD312-15JI	150	44-pin PLDCC	J2	Industrial	Standard
PSD312-15L	150	44-pin CLDCC	L4	Commercial	Standard
PSD312-15LI	150	44-pin CLDCC	L4	Industrial	Standard
PSD312-15LM	150	44-pin CLDCC	L4	Military	Standard
PSD312-15LMB	150	44-pin CLDCC	L4	Military	MIL-STD-883C
PSD312-15Q	150	52-pin PQFP	Q2	Commercial	Standard
PSD312-15X	150	44-pin CPGA	X2	Commercial	Standard
PSD312-15XI	150	44-pin CPGA	X2	Industrial	Standard
PSD312-15XM	150	44-pin CPGA	X2	Military	Standard
PSD312-15XMB	150	44-pin CPGA	X2	Military	MIL-STD-883C
PSD312-20J	200	44-pin PLDCC	J2	Commercial	Standard
PSD312-20JI	200	44-pin PLDCC	J2	Industrail	Standard
PSD312-20L	200	44-pin CLDCC	L4	Commercial	Standard
PSD312-20LI	200	44-pin CLDCC	L4	Industrial	Standard
PSD312-20LM	200	44-pin CLDCC	L4	Military	Standard
PSD312-20LMB	200	44-pin CLDCC	L4	Military	MIL-STD-883C
PSD312-20Q	200	52-pin PQFP	Q2	Commercial	Standard
PSD312-20X	200	44-pin CPGA	X2	Commercial	Standard
PSD312-20XI	200	44-pin CPGA	X2	Industrial	Standard
PSD312-20XM	200	44-pin CPGA	X2	Military	Standard
PSD312-20XMB	200	44-pin CPGA	X2	Military	MIL-STD-883C

US:

PSD312 System Development Tools

System Development Tools

The PSD312 features a complete set of System Development Tools. These tools provide an integrated, easy-to-use software and hardware environment to support PSD312 device development. To run these tools requires an IBM-XT, -AT, or compatible computer, MS-DOS 3.1 or higher, 640K byte RAM, and a hard disk.

Hardware

The PSD312 System Programming Hardware consists of:

- WS6000 MagicPro Memory and PSD Programmer
- WS6020 52-pin PSD312 PQFP
 Package Adaptor
- WS6021 44-pin LCC Package Adaptor (for CLDCC and PLDCC packages)
- U WS6022 44-pin CPGA Package Adaptor

The MagicPro Programmer is the common hardware platform for programming all WSI programmable products. It consists of an IBM-PC plug-in programmer board and a remote socket adaptor.

Software

The PSD312 System Development Software consists of:

- UWISPER, WSI's Software Environment
- MAPLE, the PSD312 Location Editor Software
- MAPPRO, the Device Programming Software

The configuration of the PSD312 device is entered using MAPLE software. MAPPRO software uses the MagicPro programmer and the socket adaptor to configure the PSD312 device, which then can be used in the target system. The development cycle is depicted in Figure 27.

Support

- WSI provides a complete set of quality support services to registered System Development Tools owners, including:
 - 12-month software updates
 - Design assistance from WSI field application engineers and application group experts

24-hour Electronic Bulletin Board for design assistance via dial-up modem.

Training

WSI provides in-depth, hands-on workshops for the PSD312 device and System Development Tools. Workshop participants learn how to program high-performance, programmable peripherals. Workshops are held at the WSI facility in Fremont, California.

us

2

Ordering Information – System Development Tools

- **PSD-GOLD**
- WISPER Software
- MAPLE Software
- User's Manual
- WSI Support
- ❑ WS6000 MagicPro[™] Programmer
- One Package Adaptor and Two Product Samples

PSD-SILVER

- WISPER Software
- MAPLE software
- User's Manual
- WSI Support

WS6000

- MagicPro Programmer
- □ IBM-PC© Plug-in Adaptor Card
- Remote Socket Adaptor

WS6020

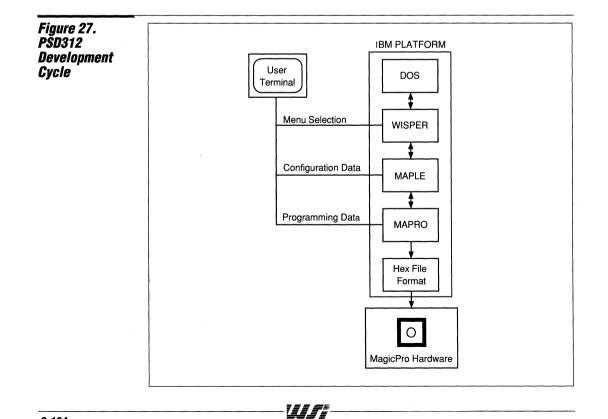
52-pin PQFP Package Adaptor. Used with the WS6000 MagicPro Programmer

WS6021

44-Pin LCC Package Adaptor for CLDCC and PLDCC Packages. Used with the WS6000 MagicPro Programmer.

WS6022

44-Pin CPGA Package Adaptor. Used with the WS6000 MagicPro Programmer.


WSI Support

Support services include:

- 12-month Software Update Service
- Hotline to WSI Application Experts
- 24-hour access to WSI Electronic Bulletin Board

WSI Training

- Workshops at WSI, Fremont, CA
- □ For details and scheduling, call PSD Marketing (510) 656-5400.

Programmable Peripheral PSD303 Programmable Microcontroller Peripheral with Memory

Preliminary Key Features

- Single Chip Programmable Peripheral for Microcontroller-based Applications
- 19 Individually Configurable I/O pins that can be used as
- Microcontroller I/O port expansion
- Programmable Address Decoder (PAD) I/O
- Latched address output
- Open drain or CMOS
- Two Programmable Arrays (PAD A & PAD B)
- Total of 40 Product Terms and up to 16 Inputs and 24 Outputs
- Direct Address Decoding up to 1 Meg address space and up to 16 Meg with paging
- Logic replacement
- "No Glue" Microcontroller Chip-Set
- Built-in address latches for multiplexed address/data bus
- Non-multiplexed address/data bus mode
- Selectable 8 or 16 bit data bus width
- ALE and Reset polarity programmable
- Selectable modes for read and write control bus as RD/WR, R/W/E, or R/W/DS
- BHE/ pin for byte select in 16-bit mode
- PSEN/ pin for 8051 users
- Built-In Page Logic
- To Expand the Address Space of Microcontrollers with Limited Address Space Capabilities
- Up to 16 pages

Partial Listing of Microcontrollers Supported

- Motorola family: M6805, M68HC11, M68HC16, M68000/10/20, M60008, M683XX
- Intel family:
 8031/8051, 8096/8098, 80186/88,
 80196/98

- 1M bit of UV EPROM
- Configurable as 128K x 8 or as 64K x 16
- Divides into 8 equal mappable blocks for optimized mapping
- Block resolution is 16K x 8 or 8K x 16
- 120 ns EPROM access time, including input latches and PAD address decoding.
- 16 Kbit Static RAM
- Configurable as 2K x 8 or as 1K x 16
- 120 ns SRAM access time, including input latches and PAD address decoding
- Address/Data Track Mode
- Enables easy Interface to Shared Resources (Mail Box SRAM) with other Microcontrollers or a Host Processor
- Built-In Security
- Locks the PSD303 Configuration and PAD Decoding
- □ Available in a Variety of Packaging
- 44 Pin PLDCC and CLDCC
- 44 Pin CPGA
- □ Simple Menu-Driven Software: Configure the PSD303 on an IBM PC
- Downward Pin and Functionally Compatible with the PSD301 and PSD302
- Signetics:
 SC80C451, SC80C552

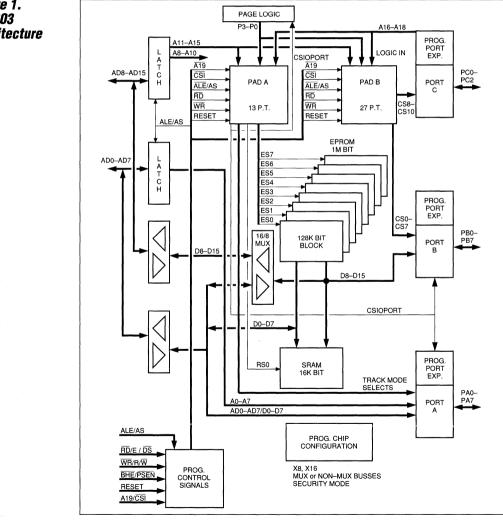
 Zilog:
 Z8, Z80, Z180

 National:
 HPC16000

Applications	 Computers (Workstations and PCs) Fixed Disk Control, Modem, Imaging, Laser Printer Control 	 Industrial Robotics, Power Line Access, Power Line Motor
	 Telecommunications Modem, Cellular Phone, Digital PBX, Digital Speech, FAX, 	 Medical Instrumentation Hearing Aids, Monitoring Equipment, Diagnostic Tools
	Digital Signal Processing	 Military Missile Guidance, Radar, Sonar, Secure Communications, RF Modems
Introduction	The PSD303 is the latest member in the rapidly growing family of PSD devices. The PSD303 is ideal for microcontroller-based applications, where fast time-to-market,	required control and peripheral elements of a microcontroller-based system peripheral with no external discrete "glue" logic required.
	small form factor, and low power con- sumptions are essential. When combined in an 8- or 16-bit system, virtually any microcontroller (68HC11, 8051, 8096, 16000, etc.) and the PSD303 work together to create a very powerful chip-set solution. This implementation provides all the	The solution comes complete with simple system software development tools for inte- grating the PSD303 with the microcon- troller. Hosted on the IBM PC platforms or compatibles, the easy to use software enables the designer complete freedom in designing the system.
Product Description	The PSD303 integrates high performance user-configurable blocks of EPROM, SRAM, and programmable logic technology to provide a single chip microcontroller interface. The major functional blocks	 An interface to shared external resources. Expanding address space of microcontrollers
	include two programmable logic arrays, PAD A and PAD B, 1M bit of EPROM, 16K bits of SRAM, input latches, and output ports. The PSD303 is ideal for applications requiring high performance, low power, and very small form factors. These include fixed disk control, modem, cellular telephone, instrumentation, computer peripherals, mili- tary and similar applications.	WSI's PSD303 (shown in Figure 1) can effi- ciently interface with, and enhance, any 8- or 16-bit microcontroller system. This is the first solution that provides microcontrollers with port expansion, latched addresses, page logic, two programmable logic arrays PAD A and PAD B, an interface to shared resources, 1M bit EPROM, and 16K bit
	The PSD303 offers a unique single-chip solution for microcontrollers that need:	SRAM on a single chip. The PSD303 does not require any glue logic for interfacing to any 8- or 16-bit microcontroller.
	□ I/O reconstruction (microcontrollers lose at least two I/O ports when accessing external resources).	The 8051 microcontroller family can take full advantage of the PSD303's separate program and data address spaces. Users of the 68HCXX family of microcontrollers
	 More EPROM and SRAM than the microcontroller's internal memory. 	can change the functionality of the control signals and directly connect the R/\overline{W} and E, or the R/\overline{W} and \overline{DS} signals. Users of 16-
	Chip-select, control, or latched address lines that are otherwise implemented discretely.	bit microcontrollers (including the 80186, 8096, 80196, 16XXX) can use the PSD303 in a 16-bit configuration. Address and data buses can be configured to be separate or

us:

host processor.


2

Product Discription (Cont.)

The flexibility of the PSD303 I/O ports permits interfacing to shared resources. The arbitration can be controlled internally by PAD A outputs. The user can assign the following functions to these ports: standard I/O pins, chip-select outputs from the PAD A and PAD B, or latched address or multiplexed low-order address/data byte. This enables users to design add-on systems such as disk drives, modems, etc., that easily interface to the host bus (e.g., IBM PC, SCSI).

The PSD303 on-chip programmable address decoder (PAD A) enables the user to map the I/O ports, eight segments of EPROM (as 16K x 8 or as 8K x 16) and SRAM (as 2K x 8 or as 1K x 16) anywhere in the address space of the microcontroller. PAD B can implement up to 4 sum-ofproduct expressions based on address inputs and control signals.

The page register extends the accessible address space of certain microcontrollers from 64K to 1 M. There are 16 pages that can serve as base address inputs to the PAD, thereby enlarging the address space of 16 address line processors by a factor of 16.

ur:

Figure 1. PŠD303 Architecture

Table 1. PSD303 Pin

PSD303 PIN Descriptions

Name	Type	Description		
BHE/PSEN	-	When the data bus width is 8 bits (CDATA = 0), this pin is \overrightarrow{PSEN} . In this mode, \overrightarrow{PSEN} is the active low EPROM read pulse. The SRAM and I/O ports read signal is generated according to the description of the $\overrightarrow{WR/V_{PP}}$ or $\overrightarrow{R/W}$ and $\overrightarrow{RD/E/DS}$ pins. If the host processor is a member of the 8031 family, \overrightarrow{PSEN} must be connected to the corresponding host pin. In other 8-bit host processors that do not have a special EPROM-only read strobe, PSEN should be tied to V _{CC} . In this case, \overrightarrow{RD} or E and $\overrightarrow{R/W}$ provide the read strobe for the SRAM, I/O ports, and EPROM. When the data bus width is configured as 16 (CDATA = 1), this pin is BHE. When BHE is low, data bus bits D8–D15 are read from, or written into, the PSD303, depending on the operation being read or write, respectively. In programming mode, this pin is pulsed between V_{PP} and 0.		
WR/V _{PP} or R/W	-	In the operating mode, this pin's function is \overline{WR} (CRRWR = 0) or R/\overline{W} (CRRWR = 1) when configured as R/\overline{W} . The following tables summarize the read and write operations (CRRWR = 1): $\begin{array}{c c} CEDS = 0 & CEDS = 1 \\ \hline R/\overline{W} & E & R/\overline{W} & \overline{DS} \\ \hline X & 0 & NOP & X & 0 & NOP \\ 0 & 1 & write & 0 & 1 & write \\ 1 & 1 & read & 1 & 0 & read \end{array}$ When configured as \overline{WR} , a write operation is executed during an active low pulse. When configured as R/\overline{W} , with $R/\overline{W} = 1$ and $E = 1$, a read operation is executed; if $R/\overline{W} = 0$ and $E = 1$, a write operation is executed. In programming mode, this pin must be tied to V_{PP} voltage.		
RD/E/DS	I	The pin function depends on the CRRWR and CEDS configuration bits. If CRRWR = 0, \overline{RD} is an active low read pulse. When CRRWR = 1, this pin and the R/W pin define the following cycle type: If CEDS = 0, E is an active high strobe. If CEDS = 1, \overline{DS} is an active low strobe.		
CSI/A19		This pin has two configurations. When it is \overline{CSI} (CA19/ \overline{CSI} = 0) and the pin is asserted high, the device is deselected and powered down. (See Tables 12 and 13 for the chip state during power-down mode.) If the pin is asserted low, the chip is in normal operational mode. When it is configured as A19, (CA19/ \overline{CSI} = 1), this pin can be used as an additional input to the PAD. CADLOG3 = 1 defines the pin as an address; CADLOG3 = 0 defines it as a logic input. If it is an address, A19 can be latched with ALE (CADDHLT = 1) or be a transparent logic input (CADDHLT = 0). In this mode, there is no power-down capability.		
RESET	I	This user-programmable pin can be configured to reset on high level (CRESET = 1) or on low level (CRESET = 0). It should remain active for at least 100 ns. See Tables 10 and 11 for the chip state after reset.		

Legend: The I/O column abbreviations are: I = input; I/O = input/output; P = power.

NOTE: 1. All the configuration bits mentioned in Table 1 appear in parentheses and are explained in the Configuration Register section.

Table 1. PSD303 Pin Descriptions (Cont.)

Name	Туре	Description
ALE or AS	I	In the multiplexed modes, the ALE pin functions as an Address Latch Enable or as an Address strobe and can be configured as an active high or active low signal. The ALE or AS trailing edge latches lines AD15/A15–AD0/A0, A16–A19, and BHE, depending on the PSD303 configuration. See Table 8. In the non-multiplexed modes, it can be used as a general-purpose logic input to the PAD.
PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0	I/O	PA7–PA0 is an 8-bit port that can be configured to track AD7/A7–AD0/A0 from the input (CPAF2 = 1). Otherwise (CPAF2 = 0), each bit can be configured separately as an I/O or lower-order latched address line. When configured as an I/O (CPAF1 = 0), the direction of the pin is defined by its direction bit, which resides in the direction register. If a pin is an I/O output, its data bit (which resides in the data register) comes out. When it is configured as a low-order address line (CPAF1 =1), A7–A0 can be made the corresponding output through this port (e.g., PA6 can be configured to be the A6 address line). Each port bit can be a CMOS output (CPACOD = 0) or an open drain output (CPACOD = 1). When the chip is in non-multiplexed mode (CADDRAT = 0), the port becomes the data bus lines (D0–D7). See Figure 4.
PB7 PB6 PB5 PB4 PB3 PB2 PB0	I/O	PB7–PB0 is an 8-bit port for which each bit can be configured as an I/O (CPBF = 1) or chip-select output (CPBF = 0). Each port bit can be a CMOS output (CPBCOD = 0) or an open drain output (CPBCOD = 1). When configured as an I/O, the direction of the pin is defined by its direction bit, which resides in the direction register. If a pin is an I/O output, its data (which resides in the data register) comes out. When configured as a chip-select output, $\overline{CS0}$ – $\overline{CS3}$ are a function of up to four product terms of the inputs to the PAD B; $\overline{CS4}$,– $\overline{CS7}$ then are each a function of up to two product terms. When the chip is in non-multiplexed mode (CADDRAT = 0) and the data bus width is 16 (CDATA = 1), the port becomes the data bus (D8–D15). See Figure 6.
PC0 PC1 PC2	I/O	This is a 3-bit port for which each bit is configurable as a PAD A and B input or output. When configured as an input (CPCF = 0), a bit individually becomes an address (CADLOG = 1) or a logic input (CADLOG = 0). The addresses can be latched with ALE (CADDHLT = 1) or be transparent inputs to the PADs (CADDHLT = 0). When a pin is configured as an output (CPCF = 1), it is a function of one product term of all PAD inputs. See Figure 7.
AD0/A0 AD1/A1 AD2/A2 AD3/A3 AD4/A4 AD5/A5 AD6/A6 AD7/A7	1/0	In multiplexed mode, these pins are the multiplexed low-order address/data byte. After ALE latches the addresses, these pins input or output data, depending on the settings of the RD/E/DS, WR/V _{PP} or R/W, and BHE/PSEN pins. In non-multiplexed mode, these pins are the low-order address input.

WJ#-

Table 1.	Name	Type	Description
<i>PSD303 Pin Descriptions (Cont.)</i>	AD8/A8 AD9/A9 AD10/A10 AD11/A11 AD12/A12 AD13/A13 AD14/A14 AD15/A15	I/O	In 16-bit multiplexed mode, these pins are the multiplexed high-order address/data byte. After ALE latches the addresses, these pins input or output data, depending on the settings of the RD/E/DS, WR/V _{PP} or R/W, and BHE/PSEN pins. In all other modes, these pins are the high-order address input.
	GND	Р	V _{SS} (ground) pin.
	V _{CC}	Р	Supply voltage input.

Operating Modes

The PSD303's four operating modes allow it to interface directly to 8- and 16-bit microcontrollers with multiplexed and nonmultiplexed address/data buses. These operating modes are:

- Multiplexed 8-bit address/data bus
- Multiplexed 16-bit address/data bus
- Non-multiplexed address/data, 8-bit data bus
- Non-multiplexed 16-bit address/ data bus

Multiplexed 8-bit Address/Data Bus

This mode is used to interface to microcontrollers with an 8-bit data bus and a 16-bit or larger address bus. The low-order address/data bus (AD0/A0–AD7/A7) is bidirectional and permits the latching of the address when the ALE signal is active. On the same pins, the data is read from or written to the device; this depends on the state of the RD/E/DS, BHE/PSEN and WR/V_{PP} or R/W pins. The high-order address/data bus (AD8/A8–AD15/A15) contains the high-order address bus byte. Ports A and B can be configured as in Table 2.

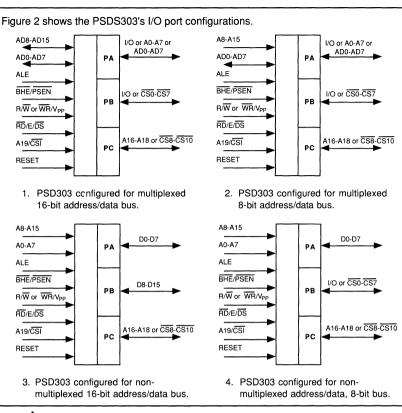
Multiplexed 16-bit Address/Data Bus

This mode is used to interface to microcontrollers with a 16-bit data bus and a 16-bit or larger address bus. The low-order address/data bus (AD0/A0–AD7/A7) is bidirectional and permits the latching of the address when the ALE signal is active. On the same pins, the data is read from or written to the device; this depends on the state of the RD/E/DS, BHE/PSEN, and WR/V_{PP} or R/W pins. The high-order address/data bus (AD8/A8–AD15/A15) is bi-directional and permits latching of the

high-order address when the ALE signal is active on the same pins. The high-order data bus is read from or written to the device, depending on the state of the RD/E/DS, BHE/PSEN, and \overline{WR}/V_{PP} or R/\overline{W} pins. Ports A and B can be configured as in Table 2.

Non-Multiplexed Address/Data, 8-bit Data Bus

This mode is used to interface to non-multiplexed 8-bit microcontrollers with an 8-bit data bus and a 16-bit or larger address bus. The low-order address/data bus (AD0/A0–AD7/A7) is the low-order address input bus. The high-order address/data bus (AD8/A8–AD15/A15) is the high-order address bus byte. Port A is the low-order data bus. Port B can be configured as shown in Table 2.

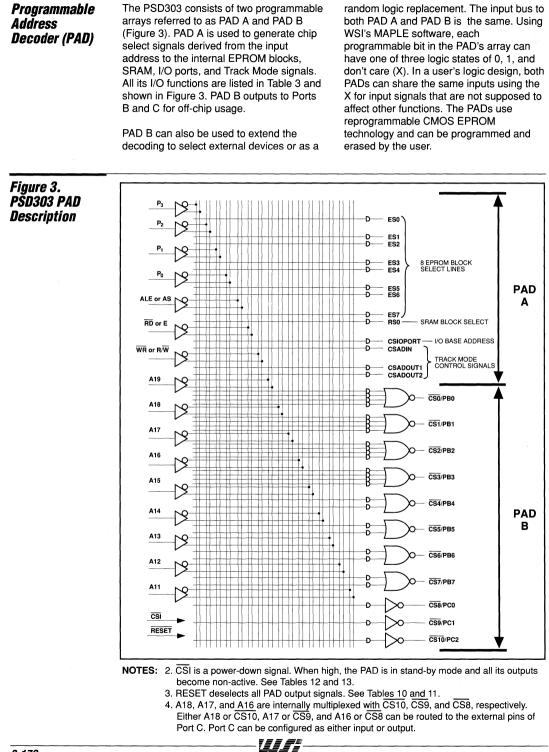

Non-Multiplexed Address/Data, 16-bit Data Bus

This mode is used to interface to non-multiplexed 16-bit microcontrollers with a 16-bit data bus and a 16-bit or larger address bus. The low-order address/data bus (AD0/A0–AD7/A7) is the low-order address input bus. The high-order address/data bus (AD8/A8–AD15/A15) is the high-order address bus byte. Port A is the low-order data bus. Port B is the high-order data bus.

Table 2 summarizes the effect of the different operating modes on ports A, B, and the address/data pins. The configuration of Port C is independent of the four operating modes.

2-170

Figure 2. PSD303 Port Configurations



Legend: AD8–AD15 = Addresses A8–A15 multiplexed with data lines D8–D15. AD0–AD7 = Addresses A0–A7 multiplexed with data lines D0–D7.

Table 2. PSD303 Bus and Port Configuration Options

	Multiplexed Address/Data	Non-Multiplexed Address/Data
8-bit Data Bus		
Port A	I/O or low-order address lines or Low-order multiplexed address/data byte	D0–D7 data bus byte
Port B	$I/O \text{ or } \overline{CSO} - \overline{CS7}$	I/O and/or \overline{CSO} – $\overline{CS7}$
AD0/A0-AD7/A7	Low-order multiplexed address/data byte	Low-order address bus byte
AD8/A8-AD15/A15	High-order multiplexed address data byte	High-order address bus byte
16-bit Data Bus		
Port A	I/O or low-order address lines or Low-order multiplexed address/data byte	Low-order data bus byte
Port B	I/O or $\overline{CS0}$ – $\overline{CS7}$	High-order data bus byte
AD0/A0-AD7/A7	Low-order multiplexed address/data byte	Low-order address bus byte
AD8/A8-AD15/A15	High-order multiplexed address/data byte	High-order address bus byte

Table 3. PSD303 PAD A and B I/O Functions

	Function
PAD A and PAD I	
CSI or A19	In CSI mode (when high), PAD deselects all of its outputs and enters a power-down mode (see Tables 12 and 13). In A19 mode, it is another input to the PAD.
A16–A18	These are general purpose inputs from Port C. See Figure 3, Note 4.
A11–A15	These are address inputs.
P0P3	These are page number inputs.
RD or E	This is the read pulse or enable strobe input.
WR or R/W	This is the write pulse or R/\overline{W} select signal.
ALE	This is the ALE input to the chip.
RESET	This deselects all outputs from the PAD; it can not be used in product term equations. See Tables 10 and 11.
PAD A Outputs	
ES0-ES7	These are internal chip-selects to the 8 EPROM banks. Each bank can be located on any boundary that is a function of one product term of the PAD address inputs.
RS0	This is an internal chip-select to the SRAM. Its base address location is a function of one term of the PAD address inputs.
CSIOPORT	This internal chip-select selects the I/O ports. It can be placed on any boundary that is a function of one product term of the PAD inputs. See Tables 6 and 7.
CSADIN	This internal chip-select, when Port A is configured as a low-order address/data bus in the track mode (CPAF2 = 1), controls the input direction of Port A. CSADIN is gated externally to the PAD by the internal read signal. When CSADIN and a read operation are active, data presented on Port A flows out of AD0/A0–AD7/A7. This chip-select can be placed on any boundary that is a function of one product term of the PAD inputs. See Figure 5.
CSADOUT1	This internal chip-select, when Port A is configured as a low-order address/data bus in track mode (CPAF2 = 1), controls the output direction of Port A. CSADOUT1 is gated externally to the PAD by the ALE signal. When CSADOUT1 and the ALE signal are active, the address presented on AD0/A0–AD7/A7 flows out of Port A. This chip-select can be placed on any boundary that is a function of one product term of the PAD inputs. See Figure 5.
CSADOUT2	This internal chip-select, when Port A is configured as a low-order address/data bus in the track mode (CPAF2 = 1), controls the output direction of Port A. CSADOUT2 must include the write-cycle control signals as part of its product term. When CSADOUT2 is active, the data presented on AD0/A0–AD7/A7 flows out of Port A. This chip-select can be placed on any boundary that is a function of one product term of the PAD inputs. See Figure 5.
PAD B Outputs	
CS0-CS3	These chip-select outputs can be routed through Port B. Each of them is a function of up to four product terms of the PAD inputs.
CS4–CS7	These chip-select outputs can be routed through Port B. Each of them is a function of up to two product terms of the PAD inputs.
CS8-CS10	These chip-select outputs can be routed through Port C. See Figure 3, Note 4. Each of them is a function of one product term of the PAD inputs.

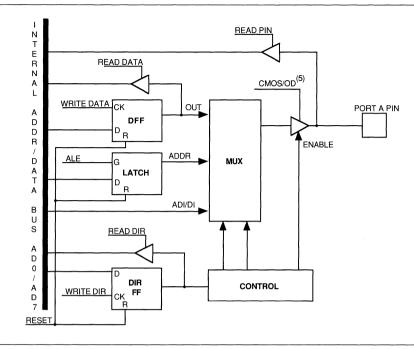
us:

Configuration **Bits**

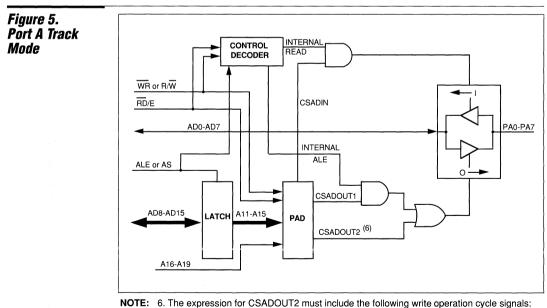
The configuration bits shown in Table 4 are non-volatile cells that let the user set the device, I/O, and control functions to the proper operational mode. Table 5 lists all configuration bits. The configuration bits are programmed and verified during the

programming phase. In operational mode, they are not accessible. To simplify implementing a specific mode, use the WSI's PSD303 MAPLE software to set the bits.

Table 4.	Use This Bit	То
PSD303 Non-Volatile	CDATA	Set the data bus width to 8 or 16 bits.
Configuration	CADDRDAT	Set the address/data buses to multiplexed or non-multiplexed mode.
Bits	CEDS	Determine the polarity and functionality of read and write.
БЦЭ	CA19/CSI	Set A19/CSI to CSI (power-down) or A19 input.
	CALE	Set the ALE polarity.
	CPAF2	Set Port A either to track the low-order byte of the address/data multiplexed bus or to select the I/O or address option.
	CSECURITY	Set the security on or off (a secured part can not be duplicated).
	CRESET	Set the RESET polarity.
	COMB/SEP	Set PSEN and RD for combined or separate address spaces (see Figures 8 and 9).
	CPAF1 (8 Bits)	Configure each pin of Port A in multiplexed mode to be an I/O or address out.
	CPACOD (8 Bits)	Configure each pin of Port A as an open drain or active CMOS pull-up output.
	CPBF (8 Bits)	Configure each pin of Port B as an I/O or a chip-select output
	CPBCOD (8 Bits)	Configure each pin of Port B as an open drain or active CMOS pull-up output.
	CPCF (3 Bits)	Configure each pin of Port C as an address input or a chip-select output.
	CADDHLT	Configure pins A16–A19 to go through a latch or to have their latch transparent.
	CADLOG (4 Bits)	Configure A16–A19 individually as logic or address inputs.
	CLOT	Determine in non-multiplexed mode if address inputs are transparent or latched.
	CRRWR	Configure the polarity and control methods of read and write cycles.


Port Functions

The PSD303 has three I/O ports (Ports A, B, and C) that are configurable at the bit level. This permits great flexibility and a high degree of customization for specific


ur:

applications. The following is a description of each port. Figure 4 shows the pin structure of Port A.

Figure 4. Port A Pin Structure

NOTE: 5. CMOS/OD determines whether the output is open drain or CMOS.

For CRRWR = 0, CSADOUT2 must include \overline{WR} = 0.

us:

For CRRWR = 1, CSADOUT2 must include E = 1 and R/\overline{W} = 0.

Table 5. PSD303 Configuration Bits^{7,8}

Configuration Bits	No. of Bits	Function
CDATA	1	8-bit or 16-bit Data Bus Width CDATA = 0 eight bits CDATA = 1 sixteen bits
CADDRDAT	1	ADDRESS/DATA Multiplexed (separate buses) CADDRDAT = 0, non-multiplexed CADDRDAT = 1, multiplexed
CA19/CSI	1	A19 or CSI CA19/CSI = 0, enable power-down CA19/CSI = 1, enable A19 input to PAD
CALE	1	Active HIGH or Active LOW CALE = 0, Active high CALE = 1, Active low
CRESET	1	Active HIGH or Active LOW CRESET = 0, Active low RESET CRESET = 1, Active high RESET
COMB/SEP	1	Combined or Separate Address Space for SRAM and EPROM 0 = Combined, 1 = Separate
CPAF2	1	Port A AD0–AD7 (address/data multiplexed bus) CPAF2 = 0, address or I/O on Port A (according to CPAF1) CPAF2 = 1, address/data multiplexed on Port A (track mode)
CADDHLT	1	A16–A19 Transparent or Latched CADDHLT = 0, Address latch transparent CADDHLT = 1, Address latched (ALE dependent)
CSECURITY	1	SECURITY On/Off CSECURITY = 0, off CSECURITY = 1, on
CLOT	1	A0–A15 Address Inputs are transparent or ALE-dependent in non-multiplexed modes CLOT = 0, transparent CLOT = 1, ALE-dependent
CRRWR CEDS	2	Determine the polarity and control methods of read and write cycles. CEDS CRRWR 0 0 RD and WR active low pulses 0 1 R/W status and high E pulse 1 1 R/W status and low DS pulse
CPAF1	8	Port A I/O or A0–A7 CPAF1 = 0, Port A pin is I/O CPAF1 = 1, Port A pin is Ai $(0 \le i \le 7)$
CPACOD	8	Port A CMOS or Open Drain Output CPACOD = 0, CMOS output CPACOD = 1, open-drain output
CPBF	8	Port B is I/O or $\overline{CS0}$ – $\overline{CS7}$ CPBF = 0, Port B pin is \overline{CSI} (0 ≤ i ≤ 7) CPBF = 1, Port B pin is I/O

us:

Table 5. PSD303 Configuration Bits (Cont.)

Configuration Bits	No. of Bits	Function
CPBCOD	8	Port B CMOS or Open Drain CPBCOD = 0, CMOS output CPBCOD = 1, open-drain output
CPCF	3	Port C A16–A18 or $\overline{CS8}$ – $\overline{CS10}$ CPCF = 0, Port C pin is <u>Ai (16 ≤ i ≤ 18)</u> CPCF = 1, Port C pin is <u>CSI</u> (8 ≤ i ≤ 10)
CADLOG	4	A16–A19 Address or Logic Input CADLOG = 0, Port C pin or A19/CSI is logic input CADLOG = 1, Port C pin or A19/CSI is Ai (16 \leq i \leq 19)
Total Bits	51	

NOTES: 7. WSI's MAPLE software will guide the user to the proper configuration choice. 8. In an unprogrammed or erased part, all configuration bits are 0.

Port Functions (Cont.)

Port A in Multiplexed Address/Data Mode

The default configuration of Port A is I/O. In this mode, every pin can be set as an input or output by writing into the respective pin's direction flip flop (DIR FF, in Figure 4). As an output, the pin level can be controlled by writing into the respective pin's data flip flop (DFF, in Figure 4). When DIR FF = 1, the pin is configured as an output. When DIR FF = 0, the pin is configured as an input. The controller can read the DIR FF bits by accessing the READ DIR register; it can read the DFF bits by accessing the READ DATA register. Port A pin levels can be read by accessing the READ PIN register. Individual pins can be configured as CMOS or open drain outputs. Open drain pins require external pull-up resistors. For addressing information, refer to Tables 6 and 7.

Alternatively, each bit of Port A can be configured as a low-order latched address bus bit. The address is provided by the port address latch, which latches the address on the trailing edge of ALE. PA0–PA7 can become A0–A7, respectively. This feature of the PSD303 lets the user generate loworder address bits to access external peripherals or memory that require several low-order address lines.

us:

Another mode of Port A (CPAF2 = 1) sets the entire port to track the inputs AD0/A0-AD7/A7, depending on specific address ranges defined by the PAD's CSADIN, CSADOUT1, and CSADOUT2 signals. This feature lets the user interface the microcontroller to shared external resources without requiring external buffers and decoders. In this mode, the port is effectively a bi-directional buffer. The direction is controlled by using the input signals ALE, RD/E/DS, WR/VPP or R/W, and the internal PAD outputs CSADOUT1, CSADOUT2 and CSADIN (see Figure 5). When CSADOUT1 and ALE are true, the address on the input AD0/A7-AD7/A7 pins flows out through Port A. (Carefully check the generation of CSADOUT1, and ensure that it is stable during the ALE pulse; see Figures 22 and 23). When CSADOUT2 is active, a write operation is performed (see note to Figure 5). The data on the input AD0/A7-AD7/A7 pins flows out through Port A. When CSADIN and a read operation is performed (depending on the mode of the $\overline{RD}/E/\overline{DS}$ and \overline{WR}/V_{PP} or R/\overline{W} pins), the data on Port A flows out through the AD0/A7-AD7/A7 pins. In this operational mode. Port A is tri-stated when none of the above-mentioned three conditions exist.

Port Functions (Cont.)

Port A in Non-Multiplexed Address/Data Mode

In this mode, Port A becomes the low order data bus byte of the chip. When reading an internal PSD303 location, data is presented on Port A pins. When writing to an internal PSD303 location, data present on Port A pins is written to that location.

Port B in Multiplexed Address/Data and in 8-Bit Non-Multiplexed Modes

The default configuration of Port B is I/O. In this mode, every pin can be set as an input or output by writing into the respective pin's direction flip flop (DIR FF, in Figure 6). As an output, the pin level can be controlled by writing into the respective pin's data flip flop (DFF, in Figure 6). When DIR FF = 1, the pin is configured as an output. When DIR FF = 0, the pin is configured as an input. The controller can read the DIR FF bits by accessing the READ DIR register; it can read the DFF bits by accessing the READ DATA register. Port B pin levels can be read by accessing the READ PIN register. Individual pins can be configured as CMOS or open drain outputs. Open drain pins require external pull-up resistors. For addressing information, refer to Tables 6 and 7.

Alternatively, each bit of Port B can be configured to provide a chip-select output signal from PAD B. PB0–PB7 can provide <u>CS0–CS7</u>, respectively. Each of the signals <u>CS0–CS3</u> is comprised of four product terms.Thus, up to four ANDed expressions can be ORed while deriving any of these signals. Each of the signals <u>CS4–CS7</u> is comprised of two product terms. Thus, up to two ANDed expressions can be ORed while deriving any of these signals.

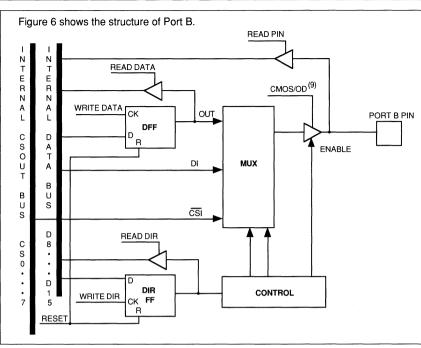
us:

Port B in 16-Bit Non-Multiplexed Address/Data Mode

In this mode, Port B becomes the highorder data bus byte of the chip. When reading an internal PSD303 high-order data bus byte location, the data is presented on Port B pins. When writing to an internal PSD303 high-order data bus byte location, data present on Port B is written to that location. See Table 9.

Accessing the I/O Port Registers

Tables 6 and 7 show the offset values with the respect to the base address defined by the CSIOPORT. They let the user access the corresponding registers.


Port C in All Modes

Each pin of Port C (shown in Figure 7) can be configured as an input to PAD A and PAD B or output from PAD B. As inputs, the pins are named A16-A18. Although the pins are given names of the high-order address bus, they can be used for any other address lines or logic inputs to PAD A and PAD B. For example, A8-A10 can also be connected to those pins, improving the boundaries of CS0-CS7 resolution to 256 bytes. As inputs, they can be individually configured to be logic or address inputs. A logic input uses the PAD only for Boolean equations that are implemented in any or all of the $\overline{CS0}$ - $\overline{CS10}$ PAD B outputs. Port C addresses can be programmed to latch the inputs by the trailing edge ALE or to be transparent.

Alternatively, PC0–PC2 can become CS8–CS10 outputs, respectively, providing the user with more external chip-select PAD outputs. Each of the signals CS8–CS10 is comprised of one product term.

2-178

Figure 6. Port B Pin Structure

NOTE: 9. CMOS/OD determines whether the output is open drain or CMOS.

<i>Table 6. I/O Port</i>	Register Name	Byte Size Access of the I/O Port Registers Offset from the CSIOPORT	
<i>Addresses in an 8-bit Data Bus</i>	Pin Register of Port A	+ 2 (accessible during read operation only)	
Mode	Direction Register of Port A	+ 4	
mouc	Data Register of Port A	+ 6	
	Pin Register of Port B	+ 3 (accessible during read operation only)	
	Direction Register of Port B	+ 5	
	Data Register of Port B	+ 7	

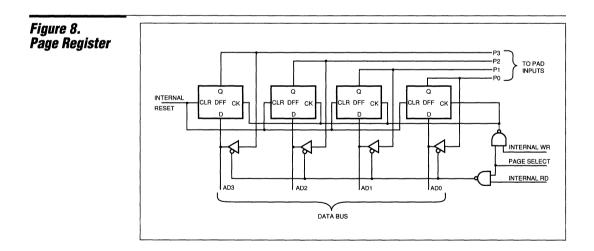
Table 7. I/O Port Addresses in an 16-bit Data Bus Mode^{10,11}

Register Name	Word Size Access of the I/O Port Registers Offset from the CSIOPORT
Pin Register of Ports B and A	+ 2 (accessible during read operation only)
Direction Register of Ports B and A	+ 4
Data Register of Ports B and A	+ 6

NOTES: 10. When the data bus width is 16, Port B registers can only be accessed if the BHE signal is low. 11. I/O Ports <u>A a</u>nd B are still byte-addressable, as shown in Table 6. For I/O Port B register

access, BHE must be low.

Port Functions (Cont.)	ALE/AS and ADO/AO-AD15/A15 in Non-Multiplexed Modes In non-multiplexed modes, AD0/A0-AD15/A15 are address inputs only and can become transparent (CLOT = 0) or ALE dependent (CLOT = 1). In transparent mode, the ALE/AS pin can be used as an additional logic input to the PADs. The non- multiplexed ALE dependent mode is useful in applications for which the host processor	has a multiplex address/data bus and AD0/A0–AD7/A7 are not multiplexed with A0–A7 but rather are multiplexed with other address lines. In these applications, Port A serves as a data bus and each of its pins can be directly connected to the corre- sponding host's multiplexed pin, where that data bit is expected. (See Table 8.)
EPROM	The PSD303 has 1M bit of EPROM. Depending on the configuration of the data bus, the EPROM can be organized as 128K x 8 (8-bit data bus) or as 64K x 16 (16-bit data bus). The EPROM has 8 banks of memory. Each bank can be placed in	any address location by programming the PAD. Bank0–Bank7 can be selected by PAD outputs ES0–ES7, respectively. The EPROM banks are organized as 16K x 8 (8-bit data bus) or as 8K x 16 (16-bit data bus).
SRAM	The PSD303 has 16K bits of SRAM. Depending on the configuration of the data bus, the SRAM organization can be 2K x 8	(8-bit data bus) or 1K x 16 (16-bit data bus). The SRAM is selected by the RS0 output of the PAD.
Page Register	The page register consists of four flip-flops, which can be read from, or written to, through the I/O address space (CSIOPORT). The page register is connected to the D3–D0 lines. The Page Register address is CSIOPORT + 18H. The	page register outputs are P3–P0, which are fed into the PAD. This enables the host microcontroller to enlarge its address space by a factor of 16 (there can be a maximum of 16 pages). See Figure 8.
Control Signals	The PSD303 control signals are \overline{WR}/V_{PP} or R/\overline{W} , $\overline{RD}/E/\overline{DS}$, ALE, $\overline{BHE}/\overline{PSEN}$, Reset, and A19/ \overline{CSI} . Each of these signals can be configured to meet the output control signal requirements of various microcontrollers. \overline{WR}/V_{PP} or R/\overline{W} In operational mode, this signal can be configured as \overline{WR} or R/\overline{W} . As \overline{WR} , all write operations to the PSD303 are activated by an active low signal on this pin. As R/\overline{W} , the pin works with the E strobe of the $\overline{RD}/E/\overline{DS}$ pin. When R/\overline{W} is high, an active high signal on the $\overline{RD}/E/\overline{DS}$ pin performs a read operation. When R/\overline{W} is low, an active high signal on the $\overline{RD}/E/\overline{DS}$ pin performs a write operation.	RD /E/DS In operational mode, this signal can be configured as RD, E, or DS. As RD, all read operations to the PSD303 are acti- vated by an active low signal on this pin. As E, the pin works with the R/W signal of the WR/V _{PP} or R/W pin. When R/W is high, an active high signal on the RD/E/DS pin performs a read operation. When R/W is low, an active high signal on the RD/E/DS pin performs a write operation. As DS, the pin functions with the R/W signal as an active low data strobe signal. As DS, the R/W defines the mode of operation (Read or Write).

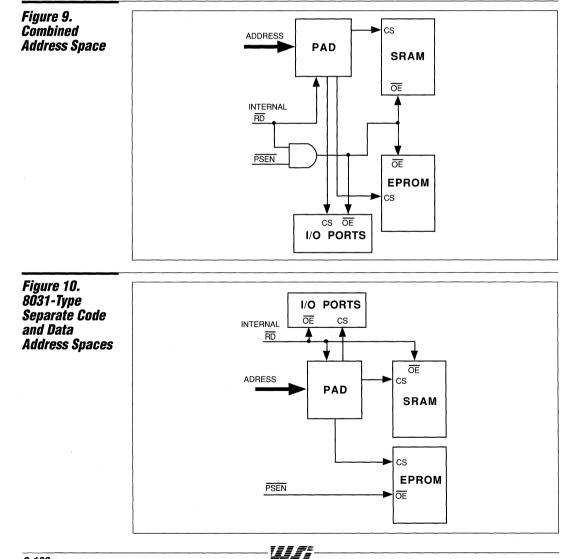

us:

2-180

Figure 7. Port C Structure

NOTE: 12. The CADDHLT configuration bit determines if A18–A16 are transparent via the latch, or if they must be latched by the trailing edge of the ALE strobe.

UL:


Control Signals (Cont.)

ALE or AS

ALE polarity is programmable. When programmed to be active high, a high on the pin causes the input address latches, Port A address latches, Port C, and A19 address latches to be transparent. The falling edge of ALE locks the information into the latches. When ALE is programmed to be active low, a low on the pin causes the input address latches, Port A address latches, Port C, and A19 address latches to be transparent. The rising edge of ALE locks the appropriate information into the latches.

BHE/PSEN

This pin's function depends on the PSD303 data bus width. If it is 8, the pin is \overrightarrow{PSEN} ; if it is 16, the pin is \overrightarrow{BHE} . In 8-bit mode, the PSEN function enables the user to work with two address spaces: program memory and data memory (if COMB/SEP = 1). In this mode, an active low signal on the PSEN pin causes the EPROM to be read if selected. The SRAM and I/O ports read operation are done by \overrightarrow{RD} low (CRRWR = 0), or by E high and R/W high (CRRWR = 1, CEDS = 0) or by \overrightarrow{DS} low and R/W high (CRRWR, CEDS = 1).

Control Signals (Cont.)

BHE/PSEN

Whenever a member of the 8031 family (or any other similar microcontroller) is used, the PSD303's PSEN pin must be connected to the PSEN pin of the microcontroller.

If COMB/SEP = 0, the address spaces of the program and the data are combined. In this configuration (except for the 8031-type case mentioned above), the $\overrightarrow{\text{PSEN}}$ pin must be tied high to V_{CC} , and the EPROM,

SRAM, and I/O ports are read by \overline{RD} low (CRRWR = 0), or by E high and R/W high (CRRWR = 1, CEDS = 0) or by \overline{DS} low and R/W high (CRRWR, CEDS = 1). See Figures 9 and 10.

In BHE mode, this pin enables accessing of the upper-half byte of the data bus. A low on this pin enables a write or read operation to be performed on the upper half of the data bus (see Table 9).

<i>Table 8.</i> Signal Latch	Signal Name	Configuration Bits	Configuration Mode	Signal Latch Status
Status in All Operating		CDATA , CADDRDAT, CLOT = 0	8-bit data.	Transparent
Modes		CDATA, CADDRDAT = 0, CLOT = 1	non-multiplexed	ALE Dependent
		CDATA = 1, CADDRDAT, CLOT = 0	16-bit data.	Transparent
	AD8/A8– AD15/A15	CDATA = 1, CADDRDAT = 0, CLOT = 1	non-multiplexed	ALE Dependent
		CDATA = 0, CADDRDAT = 1	8-bit data, multiplexed	Transparent
		CDATA = 1, CADDRDAT = 1	16-bit data, multiplexed	ALE Dependent
		CADDRDAT = 0, CLOT = 0	non-multiplexed	Transparent
	AD0/A0- AD7/A7	CADDRDAT = 0, CLOT = 1	modes	ALE Dependent
	ADIIAI	CADDRDAT = 1	multiplexed modes	ALE Dependent
		CDATA = 0	8-bit data, PSEN is active	Transparent
	BHE/ PSEN	CDATA = 1, CADDRDAT = 0	16-bit data, non-multiplexed mode, BHE is active	Transparent
		CDATA = 1, CADDRDAT = 1	16-bit data, multiplexed mode, BHE is active	ALE Dependent
	A19 and PC2–PC0	CADDHLT = 0	A16–A19 can become logic inputs	Transparent
		CADDHLT = 1	A16–A19 can become multiplexed address lines	ALE Dependent

us:

Control Signals (Cont.)

RESET

This is an asynchronous input pin that clears and initializes the PSD303. Reset polarity is programmable (active low or active high). Whenever the PSD303 reset input is driven active for at least 100 ns, the chip is reset. During boot-up (V_{cc} applied), the device is automatically reset internally (internal automatic reset is over by the time V_{cc} operating range has been achieved during boot-up). Tables 10 and 11 indicate the state of the part during and after reset.

A19/CSI

When configured as $\overline{\text{CSI}}$, a high on this pin deselects, and powers down, the chip. A low on this pin puts the chip in normal operational mode. For PSD303 states during the power-down mode, see Tables 12 and 13, and Figure 11.

In A19 mode, the pin is an additional input to the PAD. It can be used as an address line (CADLOG3 = 1) or as a generalpurpose logic input (CADLOG3 = 0). A19 can be configured as ALE dependent or as transparent input (see Table 8). In this mode, the chip is always enabled.

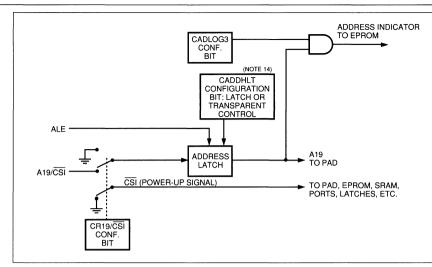

Table 9. High/Low Byte	BHE	A ₀	Operation
Selection Truth	0	0	Whole Word
Table (in 16-Bit	0	1	Upper Byte From/To Odd Address
Configuration	1	0	Lower Byte From/To Even Address
Only)	1	1	None

Table 10.	Signal	Configuration Mode	Condition
Signal States During and After	AD0/A0-AD15/A15	All	Input
Reset	PA0–PA7) (Port A	I/O Tracking AD0/A0–AD7 Address outputs A0–A7	Input Input Low
	PB0–PB7 (Port B)	I/O <u>CS7–CS0</u> CMOS outputs <u>CS7–CS0</u> open drain outputs	Input High Tri-stated
	PC0–PC2 (Port C)	Address inputs A16–A18 CS8–CS10 CMOS outputs	Input High

Table 11.	Component	Signals	Contents
Internal States During and After		CS0-CS10	All = 1 (Note 13)
Reset	PAD	CSADIN, CSADOUT1, CSADOUT2, CSIOPORT, RS0, ES0–ES7	All = 0 (Note 13)
	Data register A	n/a	0
	Direction register A	n/a	0
	Data register B	n/a	0
	Direction register B	n/a	0

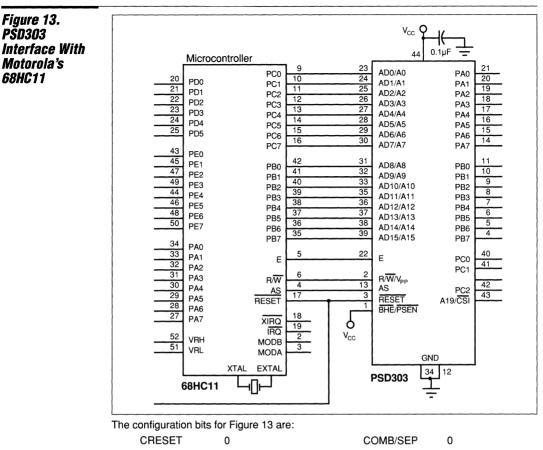
NOTE: 13. All PAD outputs are in a non-active state.

NOTES: 14. The CADDHLT configuration bit determines if A19–A16 are transparent via the latch, or if they must be latched by the trailing edge of the ALE strobe.

ble 12. Signal	Signal	Configuration Mode	Condition
ates During	AD0/A0-AD15/A15	All	Input
wer-Down ode	PA0-PA7	I/O Tracking AD0/A0–AD7/A7 Address outputs A0–A7	Unchanged Input All 1's
	PB0-PB7	I/O <u>CS0–CS7</u> CMOS outputs <u>CS0–CS7</u> open drain outputs	Unchanged All 1's Tri-stated
	PC0-PC2	Address inputs A18–A16 CS8–CS10 CMOS outputs	Input All 1's

Table 13.	Component	Signals	Contents
nternal States		CS0-CS10	All 1's (deselected)
luring Power- lown	PAD	CSADIN, CSADOUT1, CSADOUT2, CSIOPORT, RS0, ES0–ES7	All 0's (deselected)
	Data register A	n/a	
	Direction register A	n/a	All
	Data register B	n/a	unchanged
	Direction register B	n/a	-

us:


Figure PSD303 Interfac Intel's a

<i>Figure 12. PSD303 Interface With Intel's 80C31</i>	Microcontroller 31 EAVP P0.0 39 30 38 P0.2 37 P0.3 37 P0.4 35 P0.4 34	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	9 RESET P2.0 21 P2.1 22 23	29 AD5/A5 PA5 15 30 AD6/A6 PA6 14 31 AD8/A8 PB0 11 32 AD9/A9 PB1 9 33 AD10/A10 PB2 9
	12 INT0 P2.2 24 13 INT1 P2.4 25 14 T0 P2.5 27 15 T1 P2.6 27 1 P1.0 P1.1 RD 16 4 P1.3 PSEN 29 24 4 P1.5 TL0 17 16 7 P1.6 RXD 10 10 8 P1.7 P1.7 10 10	35 AD10/A11 PB3 8 36 AD12/A12 PB4 7 AD12/A12 PB4 6 37 AD13/A13 PB5 6 38 AD14/A14 PB6 4 39 AD15/A15 PB7 40 22 RD PC0 41 1 BHE/PSEN 42 43 3 RESET A19/CSI 43 PSD303 34 12 12
	80C31 The configuration bits for Figure 12 are: CRESET 1 CALE 0 CDATA 0 CADDRDAT 1 All other configuration bits may vary according	COMB/SEP 0 or 1 (both valid) CRRWR 0 CEDS 0 to the application requirements.
Security Mode	Security Mode in the PSD303 locks the contents of the PAD A , PAD B and all the configuration bits. The EPROM, SRAM, and I/O contents can be accessed only through the PAD. The Security Mode can	be set by the MAPLE or Programming software. In window packages, the mode is erasable through UV full part erasure. In the security mode, the PSD303 contents cannot be copied on a programmer.
System Applications	In Figure 12, the PSD303 is configured to interface with Intel's 80C31, which is a 16- bit address/8-bit data bus microcontroller. Its data bus is multiplexed with the low- order address byte. The 80C31 uses signals RD to read from data memory and PSEN to read from code memory. It uses WR to write into the data memory. It also uses active high reset and ALE signals. The rest of the configuration bits as well as the unconnected signals (not shown) are application specific and, thus, user	In Figure 13, the PSD303 is configured to interface with Motorola's 68HC11, which is a 16-bit address/8-bit data bus microcontroller. Its data bus is multiplexed with the low-order address byte. The 68HC11 uses E and R/W signals to derive the read and write strobes. It uses the term AS (address strobe) for the address latch pulse. RESET is an active low signal. The rest of the configuration bits as well as the unconnected signals (not shown) are application specific and, thus, user dependent.

us:

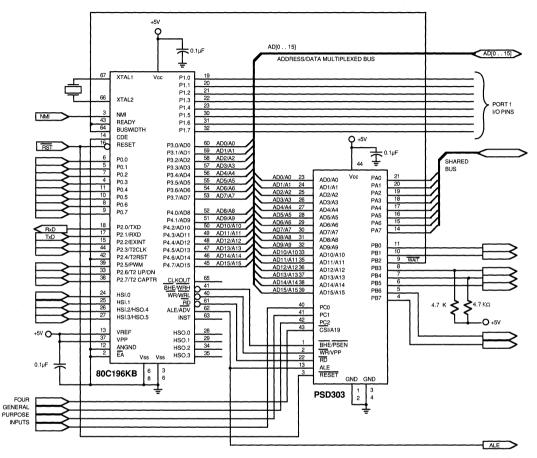
dependent.

2

CALE 0 CRRWR CDATA 0 CEDS CADDRDAT 1

All other configuration bits may vary according to the application requirements.

us:


System Applications (Cont.) In Figure 14, the PSD303 is configured to work directly with Intel's 80C196KB microcontroller, which is a 16-bit address/16-bit data bus processor. Address and data lines multiplexed. In the example shown, all configuration bits are set. The PSD303 is configured to use PC0, PC1, PC2, and CSI/A19 as A16, A17, A18, and A19 inputs, respectively. These signals are independent of the ALE pulse (latch-transparent). They are used as four general-purpose logic inputs that take part in the PAD equations implementation. Port A is configured to work in the special track mode, in which (for certain conditions) PA0–PA7 tracks lines AD0/A0–AD7/A7. Port B is configured to generate $\overline{CS0}$ – $\overline{CS7}$. In this example, PB2 serves as a WAIT signal that slows down the 80C196KB during the access of external peripherals. These 8-bit wide peripherals are connected to the shared bus of Port A. The WAIT signal also drives the buswidth input of the microcontroller, so that every external peripheral cycle becomes an 8-bit data bus cycle. PB3 and PB4 are open-drain output signals; thus, they are pulled up externally.

1

0

2-187

Figure 14. PSD303 Interface With Intel's 80C196KB.

The configuration bits for Figure 14 are:

CRESET CALE CDATA CADDRDAT CPAF1 CPAF2 CA19/CSI CRRWR COMB/SEP CADDHIT	0 0 1 1 Don't care 1 1 0 0	CSECURITY CPCF2, CPCF1, CPCF0 CPACOD7–CPACOD0 CPBF7–CPBF0 CPBCOD7–CPBCOD0 CEDS CADLOG3—CADLOG0	Don't care 0, 0, 0 00H 00H 18H 0 0H
COMB/SEP CADDHLT	0		

us:

Absolute Maximum Ratings¹⁵

Symbol	Parameter	Condition	Min	Max	Unit
T _{STG}	Storage Temperature		- 65	+ 150	°C
	Voltage on any Pin	With Respect to GND	- 0.6	+ 7	V
V _{PP}	Programming Supply Voltage	With Respect to GND	- 0.6	+ 14	V
V _{CC}	Supply Voltage	With Respect to GND	- 0.6	+ 7	V
	ESD Protection			>2000	V

NOTE: 15. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at theses or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods of time may affect device reliability.

Operating Range Tolerance Range Temperature Vcc -12 -15 -20 Commercial 0° C to +70°C + 5 V ± 5% ± 10% ± 10% Industrial -40° C to +80°C + 5 V ±10% ± 10% + 5 V Military -55° C to +125°C ± 10% ± 10%

Recommended	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Operating Conditions	V _{CC}	Supply Voltage	-12 Version	4.75	5	5.25	٧
Conditions	V _{CC}	Supply Voltage	-15/-20 Versions	4.5	5	5.5	V
VIH		High-level Input Voltage	$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$	2			V
VIL Low-level Input Voltage		V_{CC} = 4.5 V to 5.5 V	0		0.8	V	

DC Characteristics	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
onarabitensites	V _{OL}	Output Low Voltage	I _{OL} = 20 μA V _{CC} = 4.5 V		0.01	0.1	v
	۷OL	Ouput Low Voltage	l _{OL} = 8 mA V _{CC} = 4.5 V		0.15	0.45	
	V	Output High Voltage	l _{OH} = –20 μA V _{CC} = 4.5 V	4.4	4.49		
	V _{OH}	Output High Voltage	l _{OH} = -2 mA V _{CC} = 4.5 V	2.4	3.9		V
	I _{SB1}	V _{CC} Standby Current	Comm'l		50	100	μA
	'SB1	(CMOS) (Notes 16 and 18)	Ind/Mil		75	150	μΛ
	I _{SB2}	V _{CC} Standby Current	Comm'l		1.5	3	mΑ
	'SB2	(TTL) (Notes 17 and 18)	Ind/Mil		2	3.2	IIIA
		Active Current (CMOS)	Comm'l (Note 20)		16	35	
		Active Current (CMOS)	Comm'l (Note 21)		28	50	mA
	CC1	(SRAM Not Selected)	Ind/Mil (Note 20)		16	45	
		(Notes 16 and 19)	Ind/Mil (Note 21)		28	60	

W/

DC **Characteristics**

(Cont.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
		Comm'l (Note 20)		47	80		
	Active Current (CMOS) (SRAM Block Selected)		59	95	mA		
ICC2		Ind/Mil (Note 20)		47	100	mA	
	(Notes 16 and 19)	Ind/Mil (Note 21)		59	115		
I _{CC3}	Active Current (TTL)	Comm'l (Note 20)		36	65		
	(SRAM Not Selected) (Notes 17 and 19)	Comm'l (Note 21)		58	80	mA	
		Ind/Mil (Note 20)		36	80		
		Ind/Mil (Note 21)		58	95		
I _{CC4}	Active Current (TTL)	Comm'l (Note 20)		67	105		
	(SRAM Block Selected)	Comm'l (Note 21)		79	120	mA	
	(Notes 17 and 19)	Ind/Mil (Note 20)		67	130		
	(Notes IT and To)	Ind/Mil (Note 21)		79	145		
ILI	Input Leakage Current	V _{IN} = 5.5 V or GND	-1	± 0.1	1		
ILO	Output Leakage Current	V _{OUT} = 5.5 V or GND	-10	± 5	10	μA	

NOTE: 16. CMOS inputs: GND ± 0.3 V or V_{CC} ± 0.3V.
17. <u>TTL</u> inputs: V_{IL} ≤ 0.8 V, V_{IH} ≥ 2.0 V.
18. CSI/A19 is high and the part is in a power-down configuration mode.
19. AC power component is 3.0 mA/MHz (power = AC + DC).
20. Ten (10) PAD product terms active. (Add 380 μA per product term, typical, or 480 μA per product term maximum 21. Forty-one (41) PAD product terms active.

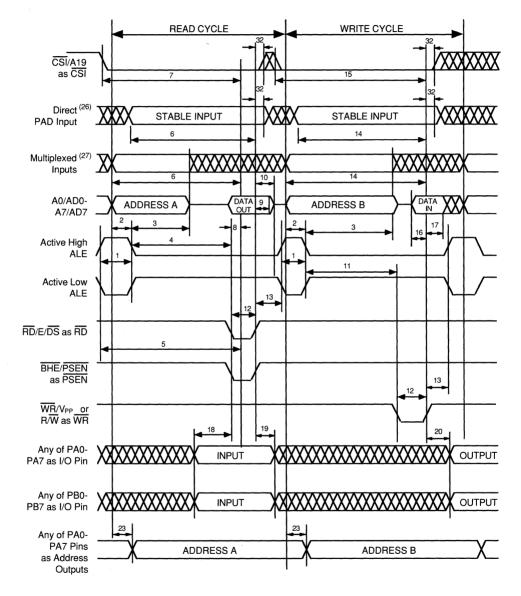
AC	Symbol Parameter	-12		-15		-20		Unit	
Characteristics	Symbol Parameter		Min	Max	Min	Max	Min	Max	UIIII
(See Timing Diagrams)	T1	ALE or AS Pulse Width	30		40		50		
Diayianisj	T2	Address Set-up Time	9		12		15		
	T3	Address Hold Time	9		12		15		
	T4	ALE or AS Trailing Edge to Leading Edge of Read	12		15		20		
	T5	ALE Valid to Data Valid	130		140		170		
	Т6	Address Valid to Data Valid		120		150		200	
	T7	CSI Active to Data Valid		130		160		200	
	Т8	Leading Edge of Read to Data Valid		38		55		60	
	T9	Read Data Hold Time	0		0		0		ns
	T10	Trailing Edge of Read to Data High-Z		32		35		40	115
	T11	Trailing Edge of ALE or AS to Leading Edge of Write	12		15		20		
	T12	RD, E, PSEN, DS pulse width	45		60		75		
A Contraction of the second	T12A	WR Pulse Width	25		35		45		
	T13	Trailing Edge of Write or Read to Leading Edge of ALE or AS	0		0		0		
	T14	Address Valid to Trailing Edge of Write	120		150		200		

us:

AC Characteristics (Cont.)

0	Dana	-12		-15		-20		11
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit
T15	CSI Active to Trailing Edge of Write	130		160		200		
T16	Write Data Set-up Time	20		30		40		1
T17	Write Data Hold Time	5		10		15		1
T18	Port Input Set-up Time	30		35		45		1
T19	Port Input Hold Time	0		0		0		1
T20	Trailing Edge of Write to Port Output Valid	40		50		60		
T21	ADi or Control to CSOi Valid	6	35	6	40	5	45	
T22	ADi or Control to CSOi Invalid	5	35	4	40	4	45	
T23	Track Mode Address Propagation Delay: CSADOUT1 Already True		22		28		28	
T23A	Track Mode Address Propagation Delay: CSADOUT1 Becomes True During ALE or AS		33		50		50	
T24	Track Mode Address Holding Time	15		27		27		ns
T25	Track Mode Read Propagation Delay		29		35		35	
T26	Track Mode Read Hold Time	11	29	10	29	10	35	
T27	Track Mode Write Cycle Data Propagation Delay		20		30		30	
T28	Track Mode Write Cycle Write to Data Propagation Delay	8	30	7	40	7	55	
T29	Hold Time of <u>Port A Valid</u> During Write CSOi Trailing Edge	2		4		4		
T30	CSI Active to CSOi Active	9	45	9	55	8	60	
T31	CSI Inactive to CSOi Inactive	9	45	9	55	8	60	
T32	Direct PAD Input as Hold Time	10		12		15		
Т33	R/\overline{W} Active to E or \overline{DS} Start	20		30		40		
T34	E or DS End to R/W	20		30		40		
T35	AS Inactive to E high	15		20		25		İ

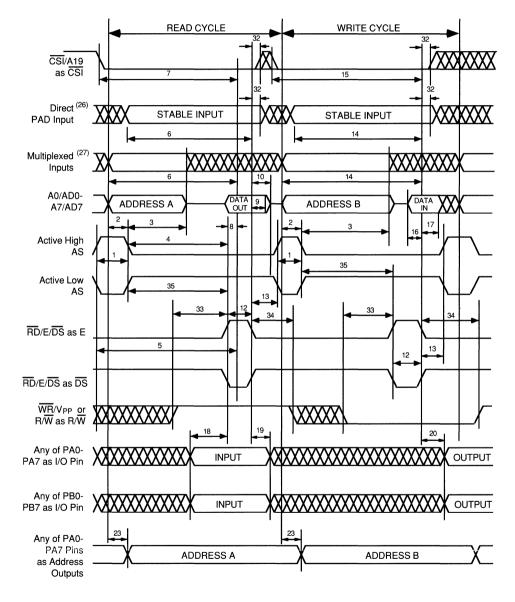
NOTES: 22. <u>ADi =</u> any address line.


 CSOi = any of the chip-select output signals coming through Port B (CS0–CS7) or through Port C (CS8–CS10).

24. Direct PAD input = any of the following direct PAD input lines: CSI/A19 as transparent A19, RD/E/DS, WR or R/W, transparent PCO–PC2, ALE (or AS).

25. Control signals $\overline{RD}/E/\overline{DS}$ or \overline{WR} or R/\overline{W} .

ur:


Figure 15. Timing of 8-Bit Multiplexed Address/Data Bus, CRRWR = 0

us:

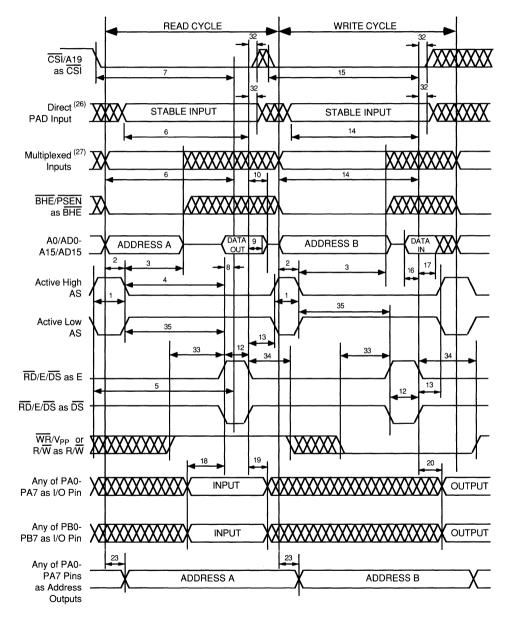
See referenced notes on page 2-201.

Figure 16. Timing of 8-Bit Multiplexed Address/Data Bus. CRRWR = 1

UL.

See referenced notes on page 2-201.

2-193


Figure 17. Timing of 16-Bit Multiplexed Address/Data Bus, CRRWR = 0

us:

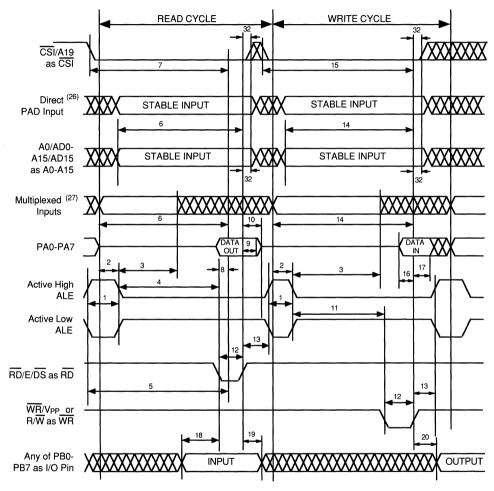

2

Figure 18. Timing of 16-Bit Multiplexed Address/Data Bus. CRRWR = 1

us:

Figure 19. Timing of 8-Bit Data Non-Multiplexed Address/Data Bus, CRRWR = 0

us:

Figure 20. Timing of 8-Bit Data Non-Multiplexed Address/Data Bus, CRRWR = 1

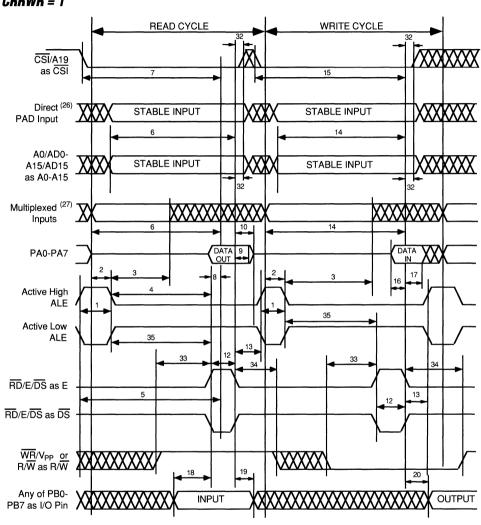
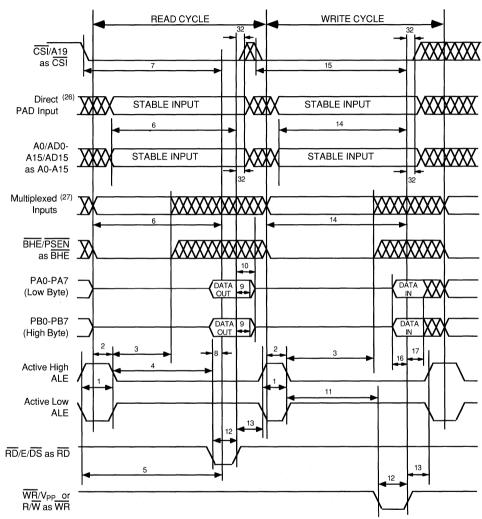
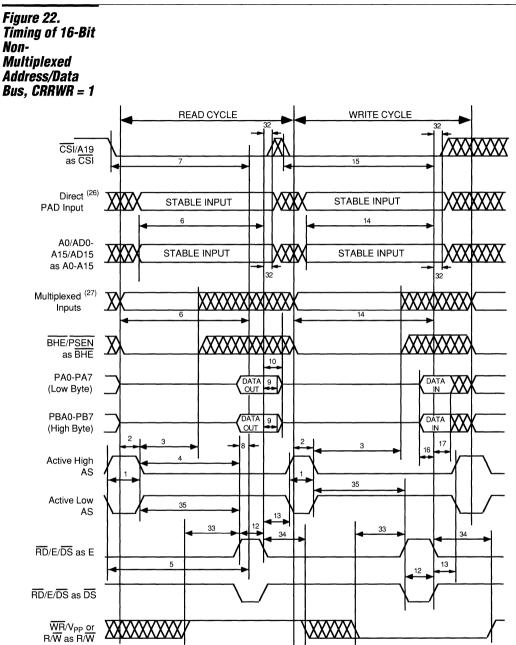
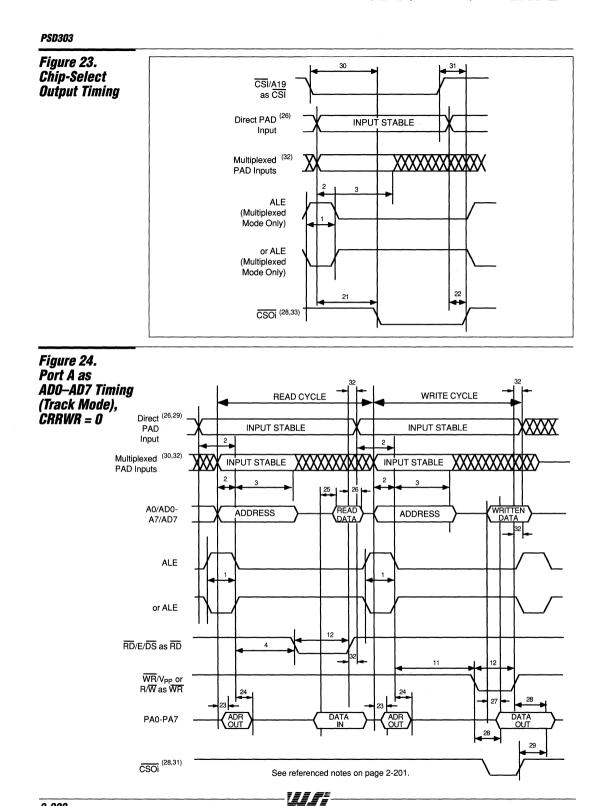
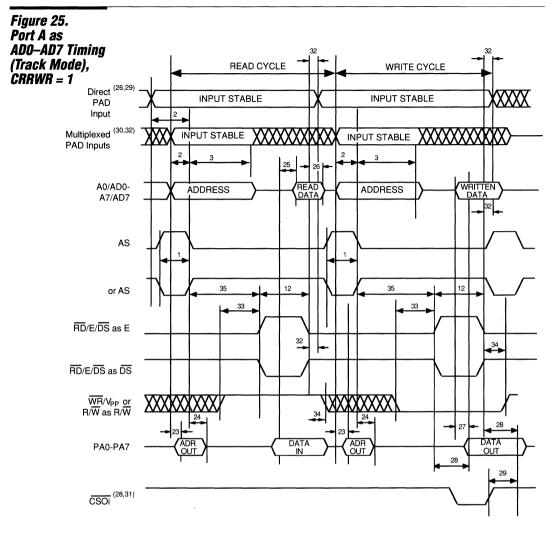




Figure 21. Timing of 16-Bit Non-Multiplexed Address/Data Bus, CRRWR = 0



2

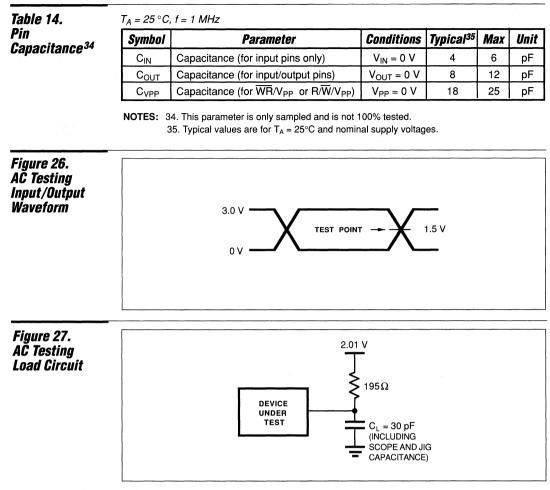


See referenced notes on page 2-201.

2-199

2-200

Notes for Timing Diagrams


- 26. Direct PAD input = any of the following direct PAD input lines: CSI/A19 as transparent A19, RD/E/DS, WR or R/W, transparent PC0–PC2, ALE in non-multiplexed modes.
- Multiplexed inputs: any of the following inputs that are latched by the ALE (or AS): A0/AD0–A15/AD15, OSI/A19 as ALE dependent A19, ALE dependent PC0–PC2.
- CSOi = any of the chip-select output signals coming through Port B (CSO-CS7) or through Port C (CS8-CS10).
- 29. CSADOUT1, which internally enables the address transfer to Port A, should be derived only from direct PAD input signals, otherwise the address propagation delay is slowed down.
- 30. CSADIN and CSADOUT2, which internally enable the data-in or data-out transfers, respectively, can be derived from any combination of direct PAD inputs and multiplexed PAD inputs.
- 31. The write operation signals are included in the $\overline{\text{CSOi}}$ expression.

32. Multiplexed PAD inputs: any of the following PAD inputs that are latched by the ALE (or AS) in the multiplexed modes: A11/AD11–A15/AD15, CSI/A19 as ALE dependent A19, ALE dependent PC0–PC2.

 CSOi product terms can include any of the PAD input signals shown in Figure 3, except for reset and CSI.

2

Erasure and Programming

To clear all locations of their programmed contents, expose the device to ultra-violet light source. A dosage of 15 W second/cm² is required. This dosage can be obtained with exposure to a wavelength of 2537 Å and intensity of 12000 μ W/cm² for 15 to 20 minutes. The device should be about 1 inch from the source, and all filters should be removed from the UV light source prior to erasure.

The PSD303 and similar devices will erase with light sources having wavelengths shorter than 4000 Å. Although the erasure times will be much longer than with UV sources at 2537 Å, exposure to fluorescent light and sunlight eventually erases the

us:

device. For maximum system reliability, these sources should be avoided. If used in such an environment, the package windows should be covered by an opaque substance.

Upon delivery from WSI, or after each erasure, the PSD303 device has all bits in the PAD and EPROM in the "1" or high state. The configuration bits are in the "0" or low state. The code, configuration, and PAD MAP data are loaded through the procedure of programming

Information for programming the device is available directly from WSI. Please contact your local sales representative.

Pin Assignments

Name	44-Pin PLDCC/ CLDCC Package	44-Pin CPGA Package		
BHE/PSEN	1	A ₅		
WR/V _{PP} or R/W	2	A ₄		
RESET	3	B ₄		
PB7	4	A ₃		
PB6	5	B ₃		
PB5	6	A ₂		
PB4	7	B ₂		
PB3	8	B ₁		
PB2	9	C ₂		
PB1	10	C_1^-		
PB0	11	D ₂		
GND	12	D ₁		
ALE or AS	13	E ₁		
PA7	14	E ₂		
PA6	15	F ₁		
PA5	16	F ₂		
PA4	17	$\overline{G_1}$		
PA3	18	G ₂		
PA2	19	H ₂		
PA1	20	G ₃		
PA0	21	H_3		
RD/E/DS	22	G ₄		
AD0/A0	23	H ₄		
AD1/A1	24	H ₅		
AD2/A2	25	G_5		
AD3/A3	26	H ₆		
AD4/A4	27	G ₆		
AD5/A5	28	H ₇		
AD6/A6	29	G ₇		
AD7/A7	30	G ₈		
AD8/A8	31	F ₇		
AD9/A9	32	F ₈		
AD10/A10	33	E ₇		
GND	34	E ₈		
AD11/A11	35	D ₈		
AD12/A12	36	D7		
AD13/A13	37	C ₈		
AD14/A14	38	C ₇		
AD15/A15	39	В ₈		
PC0	40	B ₇		
PC1	41	A ₇		
PC2	42	B ₆		
A19/CSI	43	A ₆		
V _{CC}	44	B ₅		

W/i-

2

Figure 28. Drawing L4 — 44 Pin Ceramic Leaded Chip Carrier (CLDCC) with Window (Package Type L

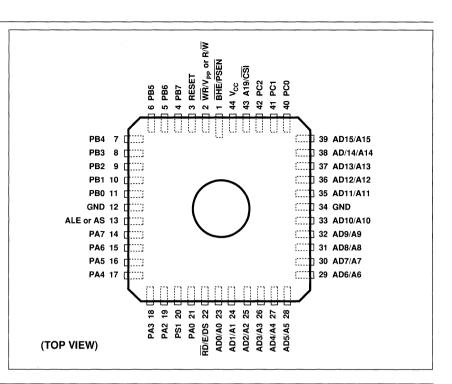
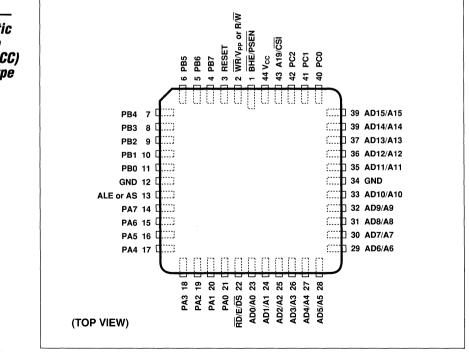
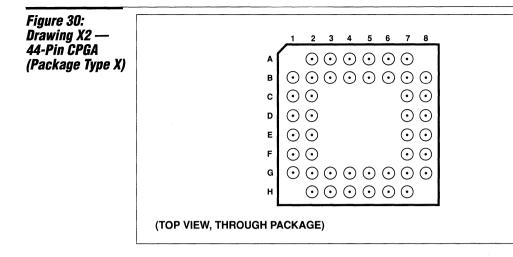




Figure 29. Drawing J2 — 44-Pin Plastic Leaded Chip Carrier (PLDCC) (Package Type J)

us

2-204

Ordering Information

Part Number	Spd. (ns)	Package Type	Package Drawing	Operating Temperature Range	WSI Manufacturing Procedure
PSD303-12J	120	44-pin PLDCC	J2	Commercial	Standard
PSD303-12L	120	44-pin CLDCC	L4	Commercial	Standard
PSD303-12X	120	44-pin CPGA	X2	Commercial	Standard
PSD303-15J	150	44-pin PLDCC	J2	Commercial	Standard
PSD303-15JI	150	44-pin PLDCC	J2	Industrial	Standard
PSD303-15L	150	44-pin CLDCC	L4	Commercial	Standard
PSD303-15LI	150	44-pin CLDCC	L4	Industrial	Standard
PSD303-15X	150	44-pin CPGA	X2	Commercial	Standard
PSD303-15XI	150	44-pin CPGA	X2	Industrial	Standard
PSD303-15XM	150	44-pin CPGA	X2	Military	Standard
PSD303-15XMB	150	44-pin CPGA	X2	Military	MIL-STD-883C
PSD303-20J	200	44-pin PLDCC	J2	Commercial	Standard
PSD303-20JI	200	44-pin PLDCC	J2	Industrail	Standard
PSD303-20L	200	44-pin CLDCC	L4	Commercial	Standard
PSD303-20LI	200	44-pin CLDCC	L4	Industrial	Standard
PSD303-20X	200	44-pin CPGA	X2	Commercial	Standard
PSD303-20XI	200	44-pin CPGA	X2	Industrial	Standard
PSD303-20XM	200	44-pin CPGA	X2	Military	Standard
PSD303-20XMB	200	44-pin CPGA	X2	Military	MIL-STD-883C

us:

US:

PSD303 System Development Tools

System Development Tools

The PSD303 features a complete set of System Development Tools. These tools provide an integrated, easy-to-use software and hardware environment to support PSD303 device development. To run these tools requires an IBM-XT, -AT, or compatible computer, MS-DOS 3.1 or higher, 640K byte RAM, and a hard disk.

Hardware

The PSD303 System Programming Hardware consists of:

- WS6000 MagicPro Memory and PSD Programmer
- WS6021 44-pin LCC Package Adaptor (for CLDCC and PLDCC packages)
- U WS6022 44-pin CPGA Package Adaptor

The MagicPro Programmer is the common hardware platform for programming all WSI

programmable products. It consists of an IBM-PC plug-in programmer board and a remote socket adaptor.

Software

The PSD303 System Development Software consists of:

- □ WISPER, WSI's Software Environment
- MAPLE, the PSD303 Location Editor Software
- MAPPRO, the Device Programming Software

The configuration of the PSD303 device is entered using MAPLE software. MAPPRO software uses the MagicPro programmer and the socket adaptor to configure the PSD303 device, which then can be used in the target system. The development cycle is depicted in Figure 31.

Support

- WSI provides a complete set of quality support services to registered System Development Tools owners, including:
 - 12-month software updates
 - Design assistance from WSI field application engineers and application group experts
- 24-hour Electronic Bulletin Board for design assistance via dial-up modem.

Trainin<u>g</u>

WSI provides in-depth, hands-on workshops for the PSD303 device and System Development Tools. Workshop participants learn how to program high-performance, programmable peripherals. Workshops are held at the WSI facility in Fremont, California.

Ordering Information – System Development Tools

PSD-GOLD

- WISPER Software
- MAPLE Software
- User's Manual
- WSI Support
- ❑ WS6000 MagicPro[™] Programmer
- One Package Adaptor and Two PSD303 Product Samples

PSD-SILVER

- WISPER Software
- MAPLE software
- User's Manual
- WSI Support

WS6000

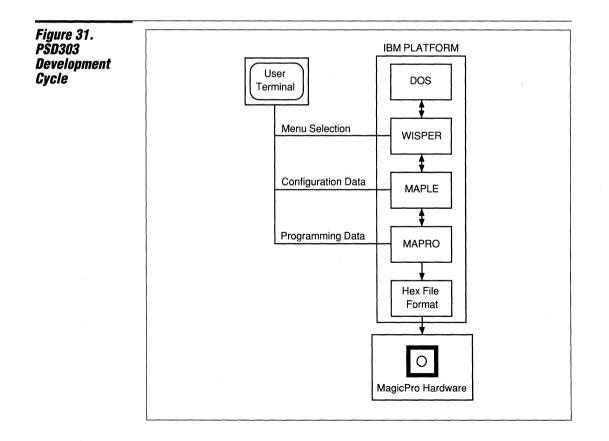
- MagicPro Programmer
- □ IBM-PC© Plug-in Adaptor Card
- Remote Socket Adaptor

WS6021

44-Pin LCC Package Adaptor for CLDCC and PLDCC Packages. Used with the WS6000 MagicPro Programmer.

WS6022

44-Pin CPGA Package Adaptor. Used with the WS6000 MagicPro Programmer.


WSI Support

Support services include:

- □ 12-month Software Update Service
- Hotline to WSI Application Experts
- 24-hour access to WSI Electronic Bulletin Board

WSI Training

Workshops at WSI, Fremont, CA

us:

Programmable Peripheral PSD313 Programmable Microcontroller Peripheral with Memory

Key Features

- Single Chip Programmable Peripheral for Microcontroller-based Applications
 - 19 Individually Configurable I/O pins that can be used as
 - Microcontroller I/O port expansion
 - Programmable Address Decoder (PAD) I/O
 - Latched address output
 - Open drain or CMOS
 - Two Programmable Arrays (PAD A & PAD B)
 - Total of 40 Product Terms and up to 16 Inputs and 24 Outputs
 - Direct Address Decoding up to 1 Meg address space and up to 16 Meg with paging
 - Logic replacement
 - □ "No Glue" Microcontroller Chip-Set
 - Built-in address latches for multiplexed address/data bus
 - Non-multiplexed address/data bus mode
 - 8 bit data bus width
 - ALE and Reset polarity programmable
 - Selectable modes for read and write control bus as RD/WR, R/W/E, or R/W/DS
 - PSEN/ pin for 8051 users
 - Built-In Page Logic
 - To Expand the Address Space of Microcontrollers with Limited Address Space Capabilities
 - Up to 16 pages

Motorola family:

Partial Listing of Microcontrollers Supported

M68000/10/20, M60008, M683XX

Intel family:
8031/8051, 8096/98, 80186/88,
80196/98

M6805, M68HC11, M68HC16,

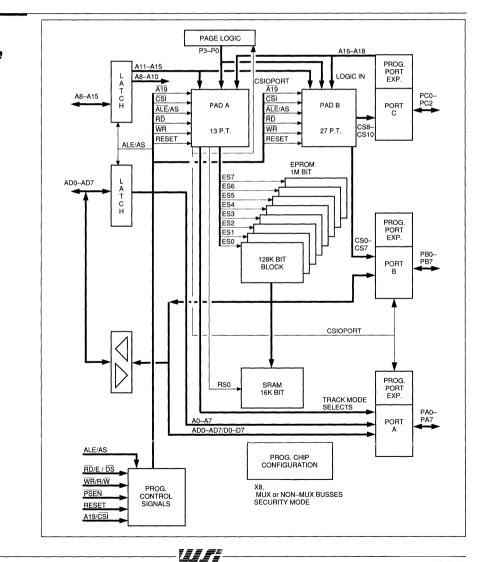
- 1 Mbit of UV EPROM
- Organized as 128K x 8
- Divides into 8 equal mappable blocks for optimized mapping
- Block resolution is 16K x 8
- 120 ns EPROM access time, including input latches and PAD address decoding.
- 16 Kbit Static RAM
- Organized as 2K x 8
- 120 ns SRAM access time, including input latches and PAD address decoding
- Address/Data Track Mode
- Enables easy Interface to Shared Resources (Mail Box SRAM) with other Microcontrollers or a Host Processor
- Built-In Security
- Locks the PSD313 Configuration and PAD Decoding
- Available in a Variety of Packaging
- 44 Pin PLDCC and CLDCC
- 44 Pin CPGA
- □ Simple Menu-Driven Software: Configure the PSD313 on an IBM PC
- Downward Pin and Functionally Compatible with the PSD311 and PSD313

- Signetics:
 SC80C451

 XX
 Zilog:
 Z8, Z80, Z180
 - Dational: HPC16000

Applications		
Applications	 Computers (Workstations and PCs) Fixed Disk Control, Modem, Imaging, Laser Printer Control 	 Industrial Robotics, Power Line Access, Power Line Motor
	Telecommunications	
	 Modem, Cellular Phone, Digital PBX, Digital Speech, FAX, Digital Signal Processing 	 Medical Instrumentation Hearing Aids, Monitoring Equipment, Diagnostic Tools
		Military
		 Missile Guidance, Radar, Sonar, Secure Communications, RF Modema
ntroduction	The PSD313 is the latest member in the rapidly growing WSI family of PSD devices. The PSD313 is ideal for microcontroller-	based system peripheral with no external discrete "glue" logic required.
	based applications, where fast time-to- market, small form factor, and low power consumption are essential. When combined in a system, virtually any micro- controller (68HC11, 8051 etc.) and the PSD313 work together to create a very powerful chip-set solution. This implemen- tation provides all the required control and peripheral elements of a microcontroller-	The solution comes complete with simple system software development tools for integrating the PSD313 with the microcor troller. Hosted on the IBM PC platforms o compatibles, the easy to use software enables the designer complete freedom i designing the system.
Product Description	The PSD313 integrates high performance user-configurable blocks of EPROM,	An interface to shared external resources.
•	SRAM, and programmable logic technology to provide a single chip microcontroller interface. The major functional blocks include two programmable logic arrays,	Expanding address space of microcontrollers
	PAD A and PAD B, 1 Mbit of EPROM, 16K bits of SRAM, input latches, and output ports. The PSD313 is ideal for applications requiring high performance, low power, and very small form factors. These include fixed disk control, modem, cellular telephone, instrumentation, computer peripherals, military and similar applications.	WSI's PSD313 (shown in Figure 1) can efficiently interface with, and enhance, ar microcontroller system. This is the first solution that provides microcontrollers wi port expansion, latched addresses, page logic, two programmable logic arrays PAI A and PAD B, an interface to shared resources, 1 Mbit EPROM, and 16K bit SRAM on a single chip. The PSD313 door
	The PSD313 offers a unique single-chip solution for microcontrollers that need:	not require any glue logic for interfacing t any 8-bit microcontroller.
	I/O reconstruction (microcontrollers lose at least two I/O ports when accessing external resources).	The 8051 microcontroller family can take full advantage of the PSD313's separate program and data address spaces. Users of the 68HCXX family of microcontrollers
	More EPROM and SRAM than the microcontroller's internal memory.	can change the functionality of the control signals and directly connect the R/W and E, or the R/W and DS signals. Addre and data buses can be configured to be
	Chip-select, control, or latched address lines that are otherwise implemented discretely.	separate or multiplexed, whichever is required by the host processor.

W/


2

Product Discription (Cont.) The flexibility of the PSD313 I/O ports permits interfacing to shared resources. The arbitration can be controlled internally by PAD A outputs. The user can assign the following functions to these ports: standard I/O pins, chip-select outputs from the PAD A and PAD B, or latched address or multiplexed low-order address/data byte. This enables users to design add-on systems such as disk drives, modems, etc., that easily interface to the host bus (e.g., IBM PC, SCSI).

The PSD313 on-chip programmable address decoder (PAD A) enables the user

to map the I/O ports, eight segments of EPROM (16K x 8 each) and SRAM (2K x 8) anywhere in the address space of the microcontroller. PAD B can implement up to 4 sum-of-product expressions based on address inputs and control signals.

The page register extends the accessible address space of certain microcontrollers from 64K to 1 M. There are 16 pages that can serve as base address inputs to the PAD, thereby enlarging the address space of 16 address line processors by a factor of 16.

Figure 1. PSD313 Architecture

Table 1. PSD313 Pin

Descriptions

Name	Туре	Description		
PSEN	I	The $\overrightarrow{\text{PSEN}}$ is the active low EPROM read pulse. The SRAM and I/O ports read signal is generated according to the description of the WR/V _{PP} or R/W, and RD/E/DS pins. If the host processor is a member of the 8031 family, PSEN must be connected to the corresponding host pin. In other 8-bit host processors that do not have a special EPROM-only read strobe, PSEN should be tied to V _{CC} . In this case, RD or E and R/W provide the read strobe for the SRAM, I/O ports, and EPROM.		
WR/V _{PP} or R/W	I	In the operating mode, this pin's function is \overline{WR} (CRRWR = 0) or R/\overline{W} (CRRWR = 1) when configured as R/\overline{W} . The following tables summarize the read and write operations (CRRWR = 1): $\begin{array}{c c} CEDS = 0 & CEDS = 1 \\ \hline R/\overline{W} & E & R/\overline{W} & \overline{DS} \\ \hline X & 0 & NOP & X & 1 & NOP \\ 0 & 1 & write & 0 & 0 & write \\ 1 & 1 & read & 1 & 0 & read \end{array}$ When configured as \overline{WR} , a write operation is executed during an active low pulse. When configured as R/\overline{W} , with $R/\overline{W} = 1$ and $E = 1$, a read operation is executed; if $R/\overline{W} = 0$ and $E = 1$, a write operation is executed. In programming mode, this pin must be tied to V_{PP} voltage.		
RD/E/DS	I	The pin function depends on the CRRWR and CEDS configuration bits. If CRRWR = 0, \overline{RD} is an active low read pulse. When CRRWR = 1, this pin and the R/\overline{W} pin define the following cycle type: If CEDS = 0, E is an active high strobe. If CEDS = 1, \overline{DS} is an active low strobe.		
CSI/A19	Ι	This pin has two configurations. When it is \overline{CSI} (CA19/ \overline{CSI} = 0) and the pin is asserted high, the device is deselected and powered down. (See Tables 10 and 11 for the chip state during power-down mode.) If the pin is asserted low, the chip is in normal operational mode. When it is configured as A19, (CA19/ \overline{CSI} = 1), this pin can be used as an additional input to the PAD. CADLOG3 = 1 defines the pin as an address; CADLOG3 = 0 defines it as a logic input. If it is an address, A19 can be latched with ALE (CADDHLT = 1) or be a transparent logic input (CADDHLT = 0). In this mode, there is no power-down capability.		
RESET	ļ	This user-programmable pin can be configured to reset on high level (CRESET = 1) or on low level (CRESET = 0). It should remain active for at least 100 ns. See Tables 8 and 9 for the chip state after reset.		

Legend: The I/O column abbreviations are: I = input; I/O = input/output; P = power.

us:

NOTE: 1. All the configuration bits mentioned in Table 1 appear in parentheses and are explained in the Configuration Register section.

Table 1. PSD313 Pin Descriptions (Cont.)

Name	Type	Description
ALE or AS	1	In the multiplexed modes, the ALE pin functions as an Address Latch Enable or as an Address strobe and can be configured as an active high or active low signal. The ALE or AS trailing edge latches lines AD15/A15–AD0/A0, A16–A19, and BHE, depending on the PSD313 configuration. See Table 7. In the non-multiplexed modes, it can be used as a general-purpose logic input to the PAD.
PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0	I/O	PA7–PA0 is an 8-bit port that can be configured to track AD7/A7–AD0/A0 from the input (CPAF2 = 1). Otherwise (CPAF2 = 0), each bit can be configured separately as an I/O or lower-order latched address line. When configured as an I/O (CPAF1 = 0), the direction of the pin is defined by its direction bit, which resides in the direction register. If a pin is an I/O output, its data bit (which resides in the data register) comes out. When it is configured as a low-order address line (CPAF1 = 1), A7–A0 can be made the corresponding output through this port (e.g., PA6 can be configured to be the A6 address line). Each port bit can be a CMOS output (CPACOD = 0) or an open drain output (CPACOD = 1). When the chip is in non-multiplexed mode (CADDRAT = 0), the port becomes the data bus lines (D0–D7). See Figure 4.
PB7 PB6 PB5 PB4 PB3 PB2 PB0	I/O	PB7–PB0 is an 8-bit port for which each bit can be configured as an I/O (CPBF = 1) or chip-select output (CPBF = 0). Each port bit can be a CMOS output (CPBCOD = 0) or an open drain output (CPBCOD = 1). When configured as an I/O, the direction of the pin is defined by its direction bit, which resides in the direction register. If a pin is an I/O output, its data (which resides in the data <u>register</u>) comes out. When configured as a chip-select output, \overline{CSO} – $\overline{CS3}$ are a function of up to four product terms of the inputs to the PAD B; $\overline{CS4}$,– $\overline{CS7}$ then are each a function of up to two product terms. See Figure 6.
PC0 PC1 PC2	I/O	This is a 3-bit port for which each bit is configurable as a PAD A and B input or output. When configured as an input (CPCF = 0), a bit individually becomes an address (CADLOG = 1) or a logic input (CADLOG = 0). The addresses can be latched with ALE (CADDHLT = 1) or be transparent inputs to the PADs (CADDHLT = 0). When a pin is configured as an output (CPCF = 1), it is a function of one product term of all PAD inputs. See Figure 7.

Table 1. PSD313 Pin Descriptions

(Cont.)

Name	Туре	Description
AD0/A0 AD1/A1 AD2/A2 AD3/A3 AD4/A4 AD5/A5 AD6/A6 AD7/A7	I/O	In multiplexed mode, these pins are the multiplexed low-order address/data byte. After ALE latches the addresses, these pins input or output data, depending on the settings of the RD/E/DS, WR/V _{PP} or R/W, and PSEN pins. In non-multiplexed mode, these pins are the low-order address input.
A8 A9 A10 A11 A12 A13 A14 A15	I/O	These pins are the high-order address input.
GND	Р	V _{SS} (ground) pin.
V _{CC}	Р	Supply voltage input.

Operating Modes

The PSD313's two operating modes allow it to interface directly to 8-bit microcontrollers with multiplexed and nonmultiplexed address/data buses. These operating modes are described below.

Multiplexed 8-bit Address/Data Bus

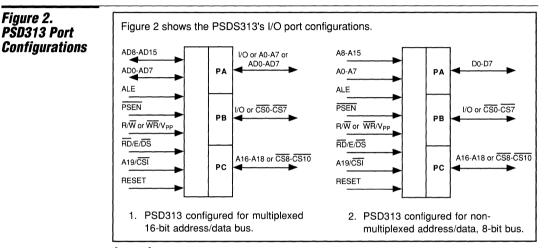
This mode is used to interface to microcontrollers with an 8-bit data bus and a 16-bit or larger address bus. The low-order address/data bus (AD0/A0–AD7/A7) is bidirectional and permits the latching of the address when the ALE signal is active. On the same pins, the data is read from or written to the device; this depends on the state of the RD/E/DS, PSEN and WR/V_{PP} or R/W pins. The high-order address bus (A8–A15) contains the high-order address bus byte. Ports A and B can be configured as in Table 2.

us

Non-Multiplexed Address/Data, 8-bit Data Bus

This mode is used to interface to a microcontroller with an 8-bit non-multiplexed bus and a 16-bit or larger address bus. The low-order address/data bus (AD0/A0–AD7/A7) is the low-order address input bus. The high-order address/data bus (A8–A15) is the high-order address bus byte. Port A is the low-order data bus. Port B can be configured as shown in Table 2.

Table 2 summarizes the effect of the different operating modes on ports A, B, and the address/data pins. The configuration of Port C is independent of the four operating modes.

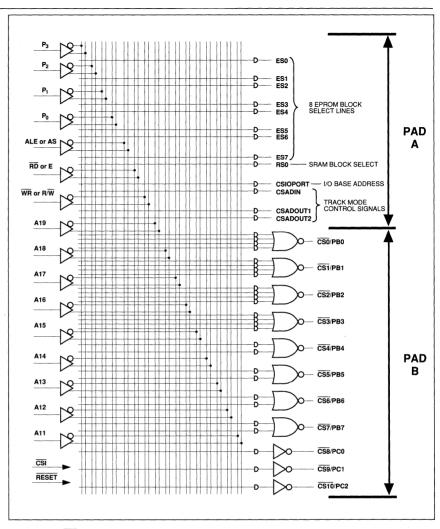

Programmable Address Decoder (PAD)

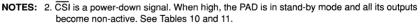
The PSD313 consists of two programmable arrays referred to as PAD A and PAD B (Figure 3). PAD A is used to generate chip select signals derived from the input address to the internal EPROM blocks, SRAM, I/O ports, and Track Mode signals. All its I/O functions are listed in Table 3 and shown in Figure 3. PAD B outputs to Ports B and C for off-chip usage.

PAD B can also be used to extend the decoding to select external devices or as a random logic replacement. The input bus to

both PAD A and PAD B is the same. Using WSI's MAPLE software, each programmable bit in the PAD's array can have one of three logic states of 0, 1, and don't care (X). In a user's logic design, both PADs can share the same inputs using the X for input signals that are not supposed to affect other functions. The PADs use reprogrammable CMOS EPROM

technology and can be programmed and erased by the user.


2. 12 Buo		Multiplexed Address/Data	Non-Multiplexed Address/Data
13 Bus ort	8-bit Data Bus		
rration G	Port A	I/O or low-order address lines or Low-order multiplexed address/data byte	D0–D7 data bus byte
	Port B	I/O or CS0-CS7	I/O and/or CS0–CS7
	AD0/A0-AD7/A7	Low-order multiplexed address/data byte	Low-order address bus byte
	A8-A15	High-order address bus byte	High-order address bus byte


us:

2-215

Figure 3. PSD313 PAD Description

3. RESET deselects all PAD output signals. See Tables 8 and 9.

UJ:

4. A18, A17, and A16 are internally multiplexed with CS10, CS9, and CS8, respectively. Either A18 or CS10, A17 or CS9, and A16 or CS8 can be routed to the external pins of Port C. Port C can be configured as either input or output. Table 3. PSD313 PAD A and B I/O Functions

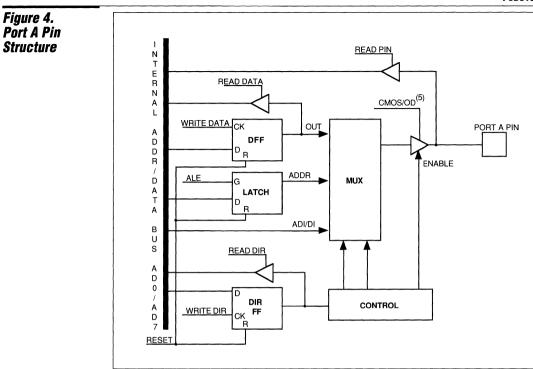
	Function		
PAD A and PAD B Inputs			
CSI or A19	In CSI mode (when high), PAD deselects all of its outputs and enters a power-down mode (see Tables 10 and 11). In A19 mode, it is another input to the PAD.		
A16–A18	These are general purpose inputs from Port C. See Figure 3, Note 4.		
A11–A15	These are address inputs.		
P0–P3	These are page number inputs.		
RD or E	This is the read pulse or enable strobe input.		
\overline{WR} or R/\overline{W}	This is the write pulse or R/\overline{W} select signal.		
ALE	This is the ALE input to the chip.		
RESET	This deselects all outputs from the PAD; it can not be used in product term equations. See Tables 8 and 9.		
PAD A Outputs			
ES0-ES7	These are internal chip-selects to the 8 EPROM banks. Each bank can be located on any boundary that is a function of one product term of the PAD address inputs.		
RS0	This is an internal chip-select to the SRAM. Its base address location is a function of one term of the PAD address inputs.		
CSIOPORT	This internal chip-select selects the I/O ports. It can be placed on any boundary that is a function of one product term of the PAD inputs. See Table 6.		
CSADIN	This internal chip-select, when Port A is configured as a low-order address/data bus in the track mode (CPAF2 = 1), controls the input direction of Port A. CSADIN is gated externally to the PAD by the internal read signal. When CSADIN and a read operation are active, data presented on Port A flows out of AD0/A0–AD7/A7. This chip-select can be placed on any boundary that is a function of one product term of the PAD inputs. See Figure 5.		
CSADOUT1	This internal chip-select, when Port A is configured as a low-order address/data bus in track mode (CPAF2 = 1), controls the output direction of Port A. CSADOUT1 is gated externally to the PAD by the ALE signal. When CSADOUT1 and the ALE signal are active, the address presented on AD0/A0–AD7/A7 flows out of Port A. This chip-select can be placed on any boundary that is a function of one product term of the PAD inputs. See Figure 5.		
CSADOUT2	This internal chip-select, when Port A is configured as a low-order address/data bus in the track mode (CPAF2 = 1), controls the output direction of Port A. CSADOUT2 must include the write-cycle control signals as part of its product term. When CSADOUT2 is active, the data presented on AD0/A0–AD7/A7 flows out of Port A. This chip-select can be placed on any boundary that is a function of one product term of the PAD inputs. See Figure 5.		
PAD B Outputs	· · · · · · · · · · · · · · · · · · ·		
CS0-CS3	These chip-select outputs can be routed through Port B. Each of them is a function of up to four product terms of the PAD inputs.		
CS4-CS7	These chip-select outputs can be routed through Port B. Each of them is a function of up to two product terms of the PAD inputs.		
CS8-CS10	These chip-select outputs can be routed through Port C. See Figure 3, Note 4. Each of them is a function of one product term of the PAD inputs.		

us:-

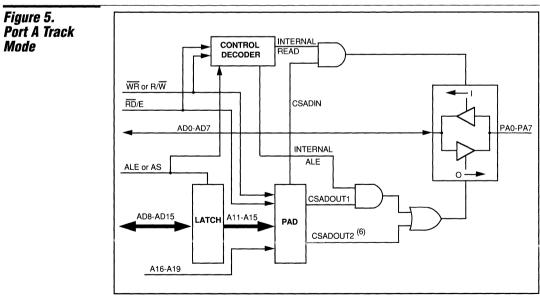
Configuration Bits

The configuration bits shown in Table 4 are non-volatile cells that let the user set the device, I/O, and control functions to the proper operational mode. Table 5 lists all configuration bits. The configuration bits are programmed and verified during the

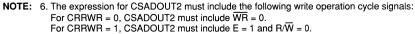
programming phase. In operational mode, they are not accessible. To simplify implementing a specific mode, use the WSI's PSD313 MAPLE software to set the bits.


Table 4.	Use This Bit	То
PSD313 Von-Volatile	CADDRDAT	Set the address/data bus to multiplexed or non-multiplexed mode.
<i>Configuration</i>	CEDS	Determine the polarity and functionality of read and write.
Bits	CA19/CSI	Set A19/CSI to CSI (power-down) or A19 input.
///5	CALE	Set the ALE polarity.
	CPAF2	Set Port A either to track the low-order byte of the address/data multiplexed bus or to select the I/O or address option.
	CSECURITY	Set the security on or off (a secured part can not be duplicated).
	CRESET	Set the RESET polarity.
	COMB/SEP	Set PSEN and RD for combined or separate address spaces (see Figures 8 and 9).
	CPAF1 (8 Bits)	Configure each pin of Port A in multiplexed mode to be an I/O or address output.
	CPACOD (8 Bits)	Configure each pin of Port A as an open drain or active CMOS pull-up output.
	CPBF (8 Bits)	Configure each pin of Port B as an I/O or a chip-select output.
	CPBCOD (8 Bits)	Configure each pin of Port B as an open drain or active CMOS pull-up output.
	CPCF (3 Bits)	Configure each pin of Port C as an address input or a chip-select output.
	CADDHLT	Configure pins A16–A19 to go through a latch or to have their latch transparent.
	CADLOG (4 Bits)	Configure A16–A19 individually as logic or address inputs.
	CLOT	Determine in non-multiplexed mode if address inputs are transparent or latched.
	CRRWR	Configure the polarity and control methods of read and write cycles.

Port Functions


The PSD313 has three I/O ports (Ports A, B, and C) that are configurable at the bit level. This permits great flexibility and a high degree of customization for specific

us:


applications. The following is a description of each port. Figure 4 shows the pin structure of Port A.

NOTE: 5. CMOS/OD determines whether the output is open drain or CMOS.

Wfi

Table 5. PSD313 Configuration Bits^{7,8}

Configuration Bits	No. of Bits	Function
CADDRDAT	1	ADDRESS/DATA Multiplexed (separate buses) CADDRDAT = 0, non-multiplexed CADDRDAT = 1, multiplexed
CA19/CSI	1	A19 or \overline{CSI} CA19/ \overline{CSI} = 0, enable power-down CA19/ \overline{CSI} = 1, enable A19 input to PAD
CALE	1	Active HIGH or Active LOW CALE = 0, Active high CALE = 1, Active low
CRESET	1	Active HIGH or Active LOW CRESET = 0, Active low RESET CRESET = 1, Active high RESET
COMB/SEP	1	Combined or Separate Address Space for SRAM and EPROM 0 = Combined, 1 = Separate
CPAF2	1	Port A AD0–AD7 (address/data multiplexed bus) CPAF2 = 0, address or I/O on Port A (according to CPAF1) CPAF2 = 1, address/data multiplexed on Port A (track mode)
CADDHLT	_ 1	A16–A19 Transparent or Latched CADDHLT = 0, Address latch transparent CADDHLT = 1, Address latched (ALE dependent)
CSECURITY	1	SECURITY On/Off CSECURITY = 0, off CSECURITY = 1, on
CLOT	1	A0–A15 Address Inputs are transparent or ALE-dependent in non-multiplexed modes CLOT = 0, transparent CLOT = 1, ALE-dependent
CRRWR CEDS	2	Determine the polarity and control methods of read and write cycles. CEDS CRRWR 0 0 RD and WR active low pulses 0 1 R/W status and high E pulse 1 1 R/W status and low DS pulse
CPAF1	8	Port A I/O or A0–A7 CPAF1 = 0, Port A pin is I/O CPAF1 = 1, Port A pin is Ai $(0 \le i \le 7)$
CPACOD	8	Port A CMOS or Open Drain Output CPACOD = 0, CMOS output CPACOD = 1, open-drain output
CPBF	8	Port B is I/O or $\overline{CS0}$ – $\overline{CS7}$ CPBF = 0, Port B pin is \overline{CSI} (0 ≤ i ≤ 7) CPBF = 1, Port B pin is I/O

UJ.

Table 5. PSD313 Configuration Bits (Cont.)

Configuration Bits	No. of Bits	Function
CPBCOD	8	Port B CMOS or Open Drain CPBCOD = 0, CMOS output CPBCOD = 1, open-drain output
CPCF	3	Port C A16–A18 or $\overline{CS8}$ – $\overline{CS10}$ CPCF = 0, Port C pin is Ai (16 \le i \le 18) CPCF = 1, Port C pin is \overline{CSI} (8 \le i \le 10)
CADLOG	4	A16–A19 Address or Logic Input CADLOG = 0, Port C pin or A19/CSI is logic input CADLOG = 1, Port C pin or A19/ \overline{CSI} is Ai (16 ≤ i ≤ 19)
Total Bits	50	

NOTES: 7. WSI's MAPLE software will guide the user to the proper configuration choice. 8. In an unprogrammed or erased part, all configuration bits are 0.

Port Functions (Cont.)

Port A in Multiplexed Address/Data Mode

The default configuration of Port A is I/O. In this mode, every pin can be set as an input or output by writing into the respective pin's direction flip flop (DIR FF, in Figure 4). As an output, the pin level can be controlled by writing into the respective pin's data flip flop (DFF, in Figure 4). When DIR FF = 1, the pin is configured as an output. When DIR FF = 0, the pin is configured as an input. The controller can read the DIR FF bits by accessing the READ DIR register; it can read the DFF bits by accessing the READ DATA register. Port A pin levels can be read by accessing the READ PIN register. Individual pins can be configured as CMOS or open drain outputs. Open drain pins require external pull-up resistors. For addressing information, refer to Table 6.

Alternatively, each bit of Port A can be configured as a low-order latched address bus bit. The address is provided by the port address latch, which latches the address on the trailing edge of ALE. PA0–PA7 can become A0–A7, respectively. This feature of the PSD313 lets the user generate loworder address bits to access external peripherals or memory that require several low-order address lines.

us:

Another mode of Port A (CPAF2 = 1) sets the entire port to track the inputs AD0/A0-AD7/A7, depending on specific address ranges defined by the PAD's CSADIN, CSADOUT1, and CSADOUT2 signals. This feature lets the user interface the microcontroller to shared external resources without requiring external buffers and decoders. In this mode, the port is effectively a bi-directional buffer. The direction is controlled by using the input signals ALE, RD/E/DS, WR/VPP or R/W, and the internal PAD outputs CSADOUT1, CSADOUT2 and CSADIN (see Figure 5). When CSADOUT1 and ALE are true, the address on the input AD0/A7-AD7/A7 pins flows out through Port A. (Carefully check the generation of CSADOUT1, and ensure that it is stable during the ALE pulse; see Figure 18). When CSADOUT2 is active, a write operation is performed (see note to Figure 5). The data on the input AD0/A7-AD7/A7 pins flows out through Port A. When CSADIN and a read operation is performed (depending on the mode of the $\overline{RD}/E/\overline{DS}$ and \overline{WR}/V_{PP} or R/\overline{W} pins), the data on Port A flows out through the AD0/A7-AD7/A7 pins. In this operational mode. Port A is tri-stated when none of the above-mentioned three conditions exist.

Port Functions (Cont.)

Port A in Non-Multiplexed Address/Data Mode

In this mode, Port A becomes the low order data bus byte of the chip. When reading an internal PSD313 location, data is presented on Port A pins. When writing to an internal PSD313 location, data present on Port A pins is written to that location.

Port B

The default configuration of Port B is I/O. In this mode, every pin can be set as an input or output by writing into the respective pin's direction flip flop (DIR FF, in Figure 6). As an output, the pin level can be controlled by writing into the respective pin's data flip flop (DFF, in Figure 6). When DIR FF = 1, the pin is configured as an output. When DIR FF = 0, the pin is configured as an input. The controller can read the DIR FF bits by accessing the READ DIR register: it can read the DFF bits by accessing the READ DATA register. Port B pin levels can be read by accessing the READ PIN register. Individual pins can be configured as CMOS or open drain outputs. Open drain pins require external pull-up resistors. For addressing information, refer to Table 6

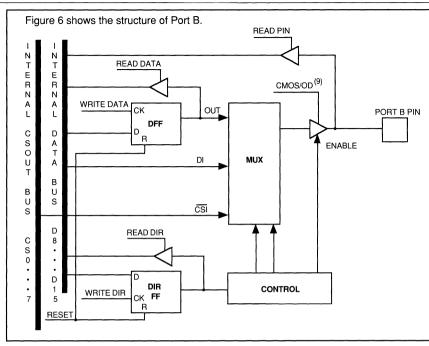
Alternatively, each bit of Port B can be configured to provide a chip-select output signal from PAD B. PB0–PB7 can provide <u>CS0–CS7</u>, respectively. Each of the signals <u>CS0–CS3</u> is comprised of four product terms.Thus, up to four ANDed expressions can be ORed while deriving <u>any of these</u> signals. Each of the signals <u>CS4–CS7</u> is comprised of two product terms. Thus, up to two ANDed expressions can be ORed while deriving any of these signals.

Accessing the I/O Port Registers

Table 6 shows the offset values with the respect to the base address defined by the CSIOPORT. They let the user access the corresponding registers.

us:

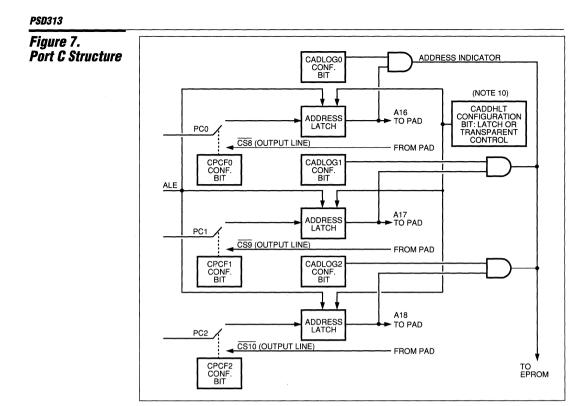
Port C in All Modes


Each pin of Port C (shown in Figure 7) can be configured as an input to PAD A and PAD B or output from PAD B. As inputs, the pins are named A16-A18. Although the pins are given names of the high-order address bus, they can be used for any other address lines or logic inputs to PAD A and PAD B. For example, A8-A10 can also be connected to those pins, improving the boundaries of CS0–CS7 resolution to 256 bytes. As inputs, they can be individually configured to be logic or address inputs. A logic input uses the PAD only for Boolean equations that are implemented in any or all of the CS0-CS10 PAD B outputs. Port C addresses can be programmed to latch the inputs by the trailing edge ALE or to be transparent.

Alternatively, PC0–PC2 can become CS8–CS10 outputs, respectively, providing the user with more external chip-select PAD outputs. Each of the signals CS8–CS10 is comprised of one product term.

ALE/AS and ADO/AO-AD7/A7 in Non-Multiplexed Modes

In non-multiplexed modes, AD0/A0-AD15/A15 are address inputs only and can become transparent (CLOT = 0) or ALE dependent (CLOT = 1). In transparent mode, the ALE/AS pin can be used as an additional logic input to the PADs. The non-multiplexed ALE dependent mode is useful in applications for which the host processor has a multiplex address/data bus and AD0/A0-AD7/A7 are not multiplexed with A0-A7 but rather are multiplexed with other address lines. In these applications, Port A serves as a data bus and each of its pins can be directly connected to the corresponding host's multiplexed pin. where that data bit is expected. See Table 7.



NOTE: 9. CMOS/OD determines whether the output is open drain or CMOS.

6. rt sses in an	Register Name	Byte Size Access of the I/O Port Registers Offset from the CSIOPORT	
Data Bus	Pin Register of Port A	+ 2 (accessible during read operation only)	
	Direction Register of Port A	+ 4	
	Data Register of Port A	+ 6	
	Pin Register of Port B	+ 3 (accessible during read operation only)	
	Direction Register of Port B	+ 5	
	Data Register of Port B	+ 7	

UII:

NOTE: 10. The CADDHLT configuration bit determines if A18–A16 are transparent via the latch, or if they must be latched by the trailing edge of the ALE strobe.

Table 7. Signal Latch	Signal Name	Configuration Bits	Configuration Mode	Signal Latch Status
Status in All Operating		CADDRDAT = 0, CLOT = 0	non-multiplexed	Transparent
operating Modes	AD0/A0- AD7/A7	CADDRDAT = 0, CLOT = 1	modes	ALE Dependent
	AD7/A7	CADDRDAT = 1	multiplexed modes	ALE Dependent
	PSEN	CDATA = 0	8-bit data, PSEN is active	Transparent
		CADDHLT = 0	A16–A19 can become logic inputs	Transparent
	A19 and PC2–PC0	CADDHLT = 1	A16–A19 can become multiplexed address lines	ALE Dependent

US:

		F5U313
EPROM	The PSD313 has 1M bit of EPROM and is organized as 128K x 8. The EPROM has 8 banks of memory. Each bank can be placed in any address location by programming the PAD. Bank0–Bank7 can	be selected by PAD outputs ES0–ES7, respectively. The EPROM banks are orga- nized as 16K x 8.
SRAM	The PSD313 has 16K bits of SRAM and is organized as 2K x 8. The SRAM is selected by the RS0 output of the PAD.	
Page Register	The page register consists of four flip-flops, which can be read from, or written to, through the I/O address space (CSIOPORT). The page register is connected to the D3–D0 lines. The Page Register address is CSIOPORT + 18H. The page register outputs are P3–P0,	which are fed into the PAD. This enables the host microcontroller to enlarge its address space by a factor of 16 (there can be a maximum of 16 pages). See Figure 8.
Control Signals	The PSD313 control signals are \overline{WR}/V_{PP} or R/W, $\overline{RD}/E/\overline{DS}$, ALE, \overline{PSEN} , Reset, and A19/CSI. Each of these signals can be configured to meet the output control signal requirements of various microcontrollers. \overline{WR}/V_{PP} or R/\overline{W}	ALE or AS ALE polarity is programmable. When programmed to be active high, a high on the pin causes the input address latches, Port A address latches, Port C, and A19 address latches to be transparent. The falling edge of ALE locks the information into the latches. When ALE is programmed

In operational mode, this signal can be configured as WR or R/W. As WR, all write operations to the PSD313 are activated by an active low signal on this pin. As R/W, the pin works with the E strobe of the RD/E/DS pin. When R/W is high, an active high signal on the RD/E/DS pin performs a read operation. When R/W is low, an active high signal on the $\overline{RD}/E/\overline{DS}$ pin performs a write operation.

RD/E/DS

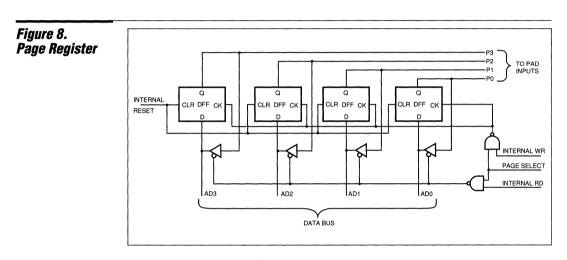
In operational mode, this signal can be configured as RD, E, or DS. As RD, all read operations to the PSD313 are activated by an active low signal on this pin. As E, the pin works with the R/W signal of the \overline{WR}/V_{PP} or R/\overline{W} pin. When R/\overline{W} is high, an active high signal on the $\overline{RD}/E/\overline{DS}$ pin performs a read operation. When R/\overline{W} is low, an active high signal on the RD/E/DS pin performs a write operation.

As \overline{DS} , the pin works with the R/W signal as an active low data strobe signal. As \overline{DS} , the R/W defines the mode of operation (Read or Write).

us:

into the latches. When ALE is programmed to be active low, a low on the pin causes the input address latches, Port A address latches, Port C, and A19 address latches to be transparent. The rising edge of ALE locks the appropriate information into the latches.

PSEN

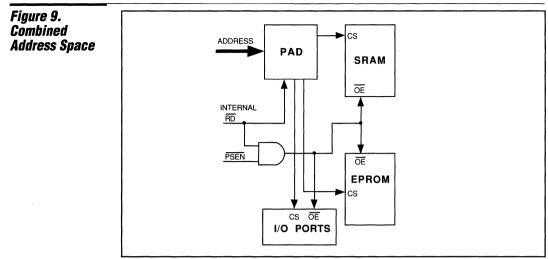

The PSEN function enables the user to work with two address spaces: program memory and data memory (if COMB/SEP = 1). In this mode, an active low signal on the PSEN pin causes the EPROM to be read if selected. The SRAM and I/O ports read operation are done by \overline{RD} low (CRRWR = 0), or by E high and R/\overline{W} high (CRRWR = 1, CEDS = 0) or by \overline{DS} low and R/W high (CRRWR, CEDS = 1).

Control Signals (Cont.)

PSEN

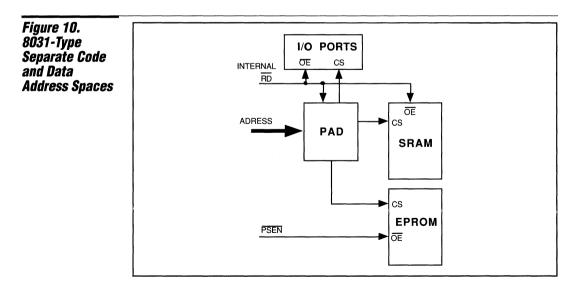
Whenever a member of the 8031 family (or any other similar microcontroller) is used, the PSD313's <u>PSEN</u> pin must be connected to the <u>PSEN</u> pin of the microcontroller.

If COMB/SEP = 0, the address spaces of the program and the data are combined. In this configuration (except for the 8031-type case mentioned above), the PSEN pin must be tied high to V_{CC} , and the EPROM, SRAM, and I/O ports are read by \overline{RD} low (CRRWR = 0), or by E high and $\overline{R/W}$ high (CRRWR = 1, CEDS = 0) or by \overline{DS} low and $\overline{R/W}$ high (CRRWR, CEDS = 1). See Figures 9 and 10.



us

Table 8. Signal States During and After Reset


Signal	Configuration Mode	Condition	
AD0/A0-AD7/A7	All	Input	
A8–A15	All	Input	
PA0-PA7) (Port A	I/O Tracking AD0/A0–AD7 Address outputs A0–A7	Input Input Low	
PB0–PB7 (Port B)	I/O CS7-CS0 CMOS outputs CS7-CS0 open drain outputs	Input High Tri-stated	
PC0–PC2 (Port C)	Address inputs A16–A18 CS8–CS10 CMOS outputs	Input High	

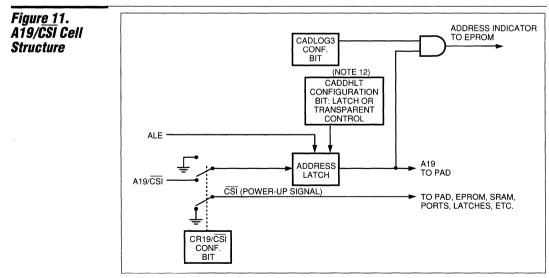
2

Table 9.	Component	Signals	Contents
Internal States During and After		CS0-CS10	All = 1 (Note 11)
Reset	PAD	CSADIN, CSADOUT1, CSADOUT2, CSIOPORT, RS0, ES0–ES7	All = 0 (Note 11)
	Data register A Direction register A Data register B Direction register B	n/a n/a n/a n/a	0 0 0 0

NOTE: 11. All PAD outputs are in a non-active state.

Control Signals (Cont.)

RESET


This is an asynchronous input pin that clears and initializes the PSD313. Reset polarity is programmable (active low or active high). Whenever the PSD313 reset input is driven active for at least 100 ns, the chip is reset. During boot-up (V_{cc} applied), the device is automatically reset internally (internal automatic reset is over by the time V_{cc} operating range has been achieved during boot-up). Tables 8 and 9 indicate the state of the part during and after reset

A19/CSI

When configured as $\overline{\text{CSI}}$, a high on this pin deselects, and powers down, the chip. A low on this pin puts the chip in normal operational mode. For PSD313 states during the power-down mode, see Tables 10 and 11, and Figure 11.

In A19 mode, the pin is an additional input to the PAD. It can be used as an address line (CADLOG3 = 1) or as a generalpurpose logic input (CADLOG3 = 0). A19 can be configured as ALE dependent or as transparent input (see Table 7). In this mode, the chip is always enabled.

Table 10. Signal States During Power-Down	Signal	Configuration Mode	Condition
	AD0/A0-AD7/A7	All	Input
le	A8–A15	All	Input
PA0-PA7	PA0-PA7	I/O Tracking AD0/A0–AD7/A7 Address outputs A0–A7	Unchanged Input All 1's
	PB0-PB7	I/O CS0–CS7 CMOS outputs CS0–CS7 open drain outputs	Unchanged All 1's Tri-stated
	PC0-PC2	Address inputs A18–A16 CS8–CS10 CMOS outputs	Input All 1's

us

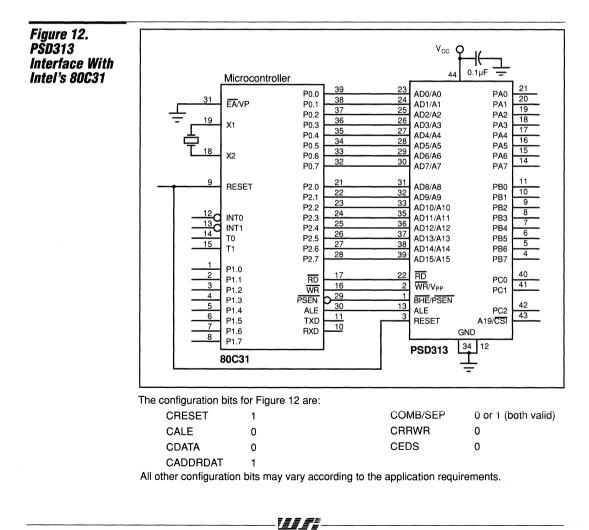
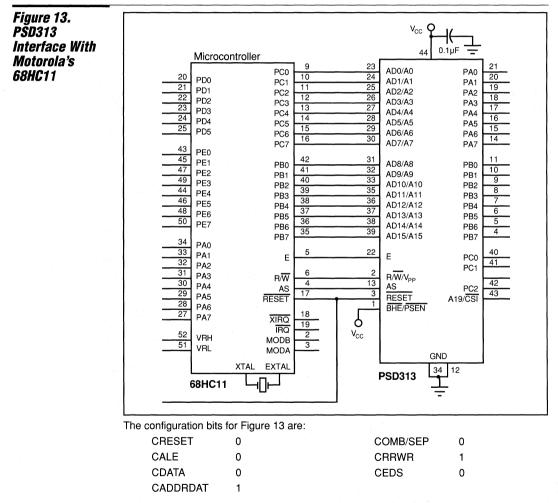

NOTE: 12. The CADDHLT configuration bit determines if A19–A16 are transparent via the latch, or if they must be latched by the trailing edge of the ALE strobe.

Table 11.	Component	Signals	Contents
Internal States During Power-		CS0-CS10	All 1's (deselected)
Down	PAD	CSADIN, CSADOUT1, CSADOUT2, CSIOPORT, RS0, ES0–ES7	All 0's (deselected)
	Data register A Direction register A Data register B Direction register B	n/a n/a n/a n/a	All unchanged

Security Mode

Security Mode in the PSD313 locks the contents of the PAD A , PAD B and all the configuration bits. The EPROM, SRAM, and I/O contents can be accessed only through the PAD. The Security Mode can


be set by the MAPLE or Programming software. In window packages, the mode is erasable through UV full part erasure. In the security mode, the PSD313 contents cannot be copied on a programmer.

2-229

System Applications

In Figure 12, the PSD313 is configured to interface with Intel's 80C31, which is a 16bit address/8-bit data bus microcontroller. Its data bus is multiplexed with the loworder address byte. The 80C31 uses signals RD to read from data memory and PSEN to read from code memory. It uses WR to write into the data memory. It also uses active high reset and ALE signals. The rest of the configuration bits as well as the unconnected signals (not shown) are application specific and, thus, user dependent. In Figure 13, the PSD313 is configured to interface with Motorola's 68HC11, which is a 16-bit address/8-bit data bus microcontroller. Its data bus is multiplexed with the low-order address byte. The 68HC11 uses E and R/W signals to derive the read and write strobes. It uses the term AS (address strobe) for the address latch pulse. RESET is an active low signal. The rest of the configuration bits as well as the unconnected signals (not shown) are application specific and, thus, user dependent.

All other configuration bits may vary according to the application requirements.

us:

Absolute Maximum Ratings¹³

Symbol	Parameter	Condition	Min	Max	Unit
T _{STG}	Storage Temperature		- 65	+ 150	°C
	Voltage on any Pin	With Respect to GND	- 0.6	+ 7	V
V _{PP}	Programming Supply Voltage	With Respect to GND	- 0.6	+ 14	V
V _{CC}	Supply Voltage	With Respect to GND	- 0.6	+ 7	V
	ESD Protection			>2000	V

NOTE: 13. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at theses or any other conditions above those indicated in the operational sections of this extended periods of time may affect device reliability.

Operating	Range	Temperature	V _{CC}	Tolerance			
Range	nange		• 66	-12	-15	-20	
	Commercial	0° C to +70°C	+ 5 V	± 5%	± 10%	± 10%	
	Industrial	-40° C to +80°C	+ 5 V		± 10%	± 10%	
	Military	-55° C to +125°C	+ 5 V		± 10%	± 10%	

Recommended Operating	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Conditions	V _{CC}	Supply Voltage	-12 Version	4.75	5	5.25	V
Conditione	V _{CC}	Supply Voltage	-15/-20 Versions	4.5	5	5.5	V
	V _{IH}	High-level Input Voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	2			V
	VIL	Low-level Input Voltage	V_{CC} = 4.5 V to 5.5 V	0		0.8	V

DC Characteristics	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	N.	Output Low Voltage	I _{OL} = 20 μA V _{CC} = 4.5 V		0.01	0.1	v
		I _{OL} = 8 mA V _{CC} = 4.5 V		0.15	0.45	v	
	V _{OH}	Output High Voltage	I _{OH} = -20 μA V _{CC} = 4.5 V	4.4	4.49		
		I _{OH} = -2 mA V _{CC} = 4.5 V	2.4	3.9		V	
	I _{SB1}	V _{CC} Standby Current	Comm'l		50	100	
	(CMOS) (Notes 14 and 16)	Ind/Mil		75	150	μA	
	I _{SB2}	V _{CC} Standby Current	Comm'l		1.5	3	mA
	'SB2	(TTL) (Notes 15 and 16)	Ind/Mil		2	3.2	mA
		Active Compart (CMOC)	Comm'l (Note 18)		16	35	
	I _{CC1}	Active Current (CMOS)	Comm'l (Note 19)		28	50	mA
	1001	(SRAM Not Selected)	Ind/Mil (Note 18)		16	45	1174
		(Notes 14 and 17)	Ind/Mil (Note 19)		28	60	

2

PSD313

DC **Characteristics**

(Cont.)

Symbol	Parameter Conditions		Min	Тур	Max	Unit
		Comm'l (Note 18)		47	80	
.	Active Current (CMOS)	Comm'l (Note 19)		59	95	
ICC2	(SRAM Block Selected) (Notes 14 and 17)	Ind/Mil (Note 18)		47	100	mA
	(Notes 14 and 17)	Ind/Mil (Note 19)		59	115	
I _{CC3} (SF	Active Current (TTL)	Comm'l (Note 18)		36	65	
	(SRAM Not Selected) (Notes 15 and 17)	Comm'l (Note 19)		58	80	mA
		Ind/Mil (Note 18)		36	80	
		Ind/Mil (Note 19)		58	95	
	Active Current (TTL)	Comm'l (Note 18)		67	105	
1	(SRAM Block Selected)	Comm'l (Note19)		79	120	mA
I _{CC4}	· · · · · ·	Ind/Mil (Note 18)		67	130	
	(Notes 15 and 17)	Ind/Mil (Note 19)		79	145	
ILI	Input Leakage Current	V _{IN} = 5.5 V or GND	-1	± 0.1	1	μA
ILO	Output Leakage Current	V _{OUT} = 5.5 V or GND	-10	± 5	10	μΑ

- NOTE: 14. CMOS inputs: GND ± 0.3 V or V_{CC} ± 0.3V.
 15. <u>TTL</u> inputs: V_{IL} ≤ 0.8 V, V_{IH} ≥ 2.0 V.
 16. CSI/A19 is high and the part is in a power-down configuration mode.
 17. AC power component is 3.0 mA/MHz (power = AC + DC).
 18. Ten (10) PAD product terms active. (Add 380 μA per product term, typical, or 480 μA per product term maximum.)
 19. Forty-one (41) PAD product terms active.

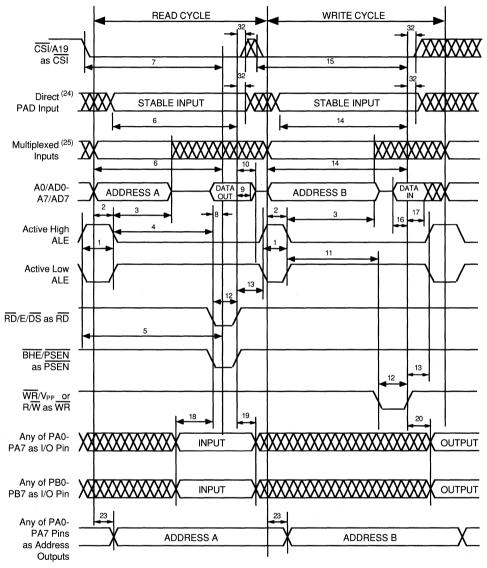
Symbol	Parameter	Paramotor -12		-15		-20		Unit
Symbol	r ai dilititi	Min	Max	Min	Max	Min	Max	0111
T1	ALE or AS Pulse Width	30		40		50		
T2	Address Set-up Time	9		12		15		1
Т3	Address Hold Time	13		15		25	-]
T4	ALE or AS Trailing Edge to Leading Edge of Read	12		15		20]
T5	ALE Valid to Data Valid	130		140		170		
Т6	Address Valid to Data Valid		120		150		200	
T7	CSI Active to Data Valid		130		160		200	
Т8	Leading Edge of Read to Data Valid		38		55		60	
Т9	Read Data Hold Time	0		0		0		ns
T10	Trailing Edge of Read to Data High-Z		32		35		40	
T11	Trailing Edge of ALE or AS to Leading Edge of Write	12		15		20		
T12	RD, E, PSEN, DS Pulse Width	45		60		75		
T12A	WR Pulse Width	25		35		45		T
T13	Trailing Edge of Write or Read to Leading Edge of ALE or AS	0		0		0		
T14	Address Valid to Trailing Edge of Write	120		150		200		

us:

AC Characterist (See Timing Diagrams)

AC **Characteristics** (Cont.)

Symbol	Daramatar	-	12	-	15	-2	20	Unit
Symbol	Parameter	Min	Max	Min	Max	Min	Max	
T15	CSI Active to Trailing Edge of Write	130		160		200		
T16	Write Data Set-up Time	20		30		40		
T17	Write Data Hold Time	5		10		15		
T18	Port Input Set-up Time	30		35		45		1
T19	Port Input Hold Time	0		0		0		
T20	Trailing Edge of Write to Port Output Valid	40		50		60		
T21	ADi or Control to CSOi Valid	6	35	6	40	5	45	
T22	ADi or Control to CSOi Invalid	5	35	4	40	4	45	
T23	Track Mode Address Propagation Delay: CSADOUT1 Already True		22		28		28	
T23A	Track Mode Address Propagation Delay: CSADOUT1 Becomes True During ALE or AS		33		50		50	
T24	Track Mode Address Holding Time	15		27		27		ns
T25	Track Mode Read Propagation Delay		29		35		35	
T26	Track Mode Read Hold Time	11	29	10	29	10	35	
T27	Track Mode Write Cycle Data Propagation Delay		20		30		30	
T28	Track Mode Write Cycle Write to Data Propagation Delay	8	30	7	40	7	55	
T29	Hold Time of Port A Valid During Write CSOi Trailing Edge	2		4		4		
T30	CSI Active to CSOi Active	9	45	9	55	8	60	
T31	CSI Inactive to CSOi Inactive	9	45	9	55	8	60	
T32	Direct PAD Input as Hold Time	10		12		15		
Т33	R/\overline{W} Active to E or DS Start	20		30		40		
T34	E or $\overline{\text{DS}}$ End to R/W	20		30		40		
T35	AS Inactive to E High	15		20		25		


NOTES: 20. ADi = any address line. 21. \overrightarrow{CSOi} = any of the chip-select output signals coming through Port B (\overrightarrow{CSO} - $\overrightarrow{CS7}$) or through Port C ($\overrightarrow{CS8}$ - $\overrightarrow{CS10}$).

Direct PAD input = any of the following direct PAD input lines: CSI/A19 as transparent A19, RD/E/DS, WR or R/W, transparent PCO–PC2, ALE (or AS).
 Control signals RD/E/DS or WR or R/W.

W/i

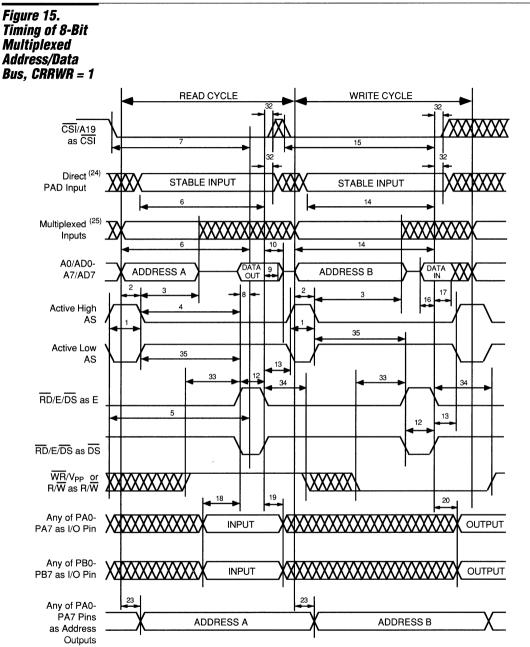
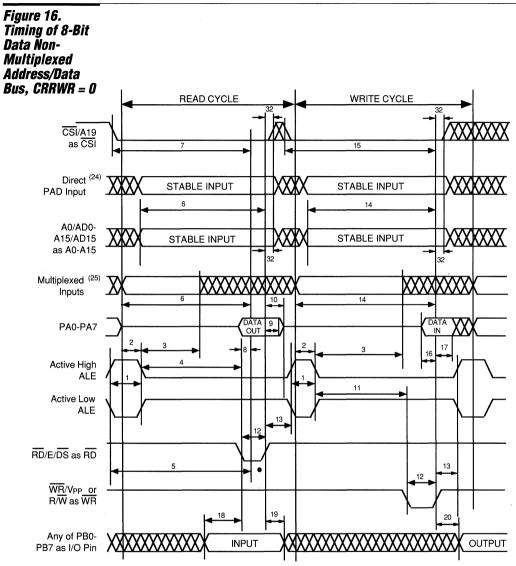

PSD313

Figure 14. Timing of 8-Bit Multiplexed Address/Data Bus, CRRWR = 0

Wfi

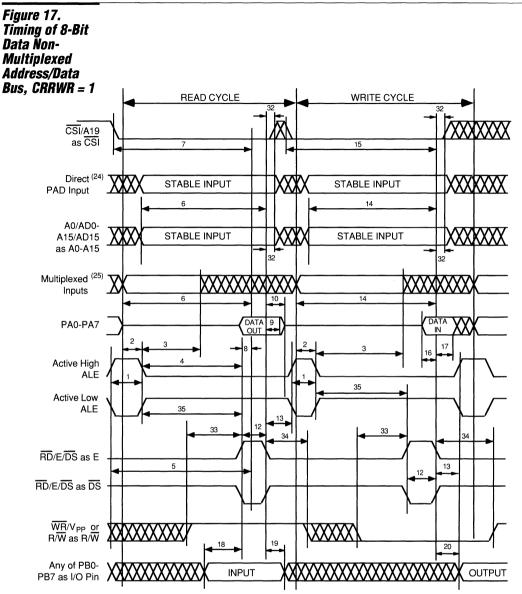
See referenced notes on page 2-239.



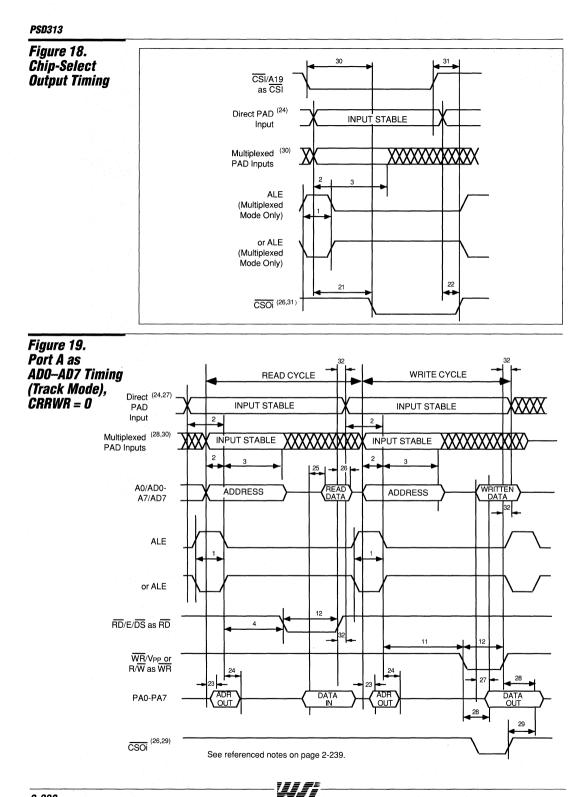
us:

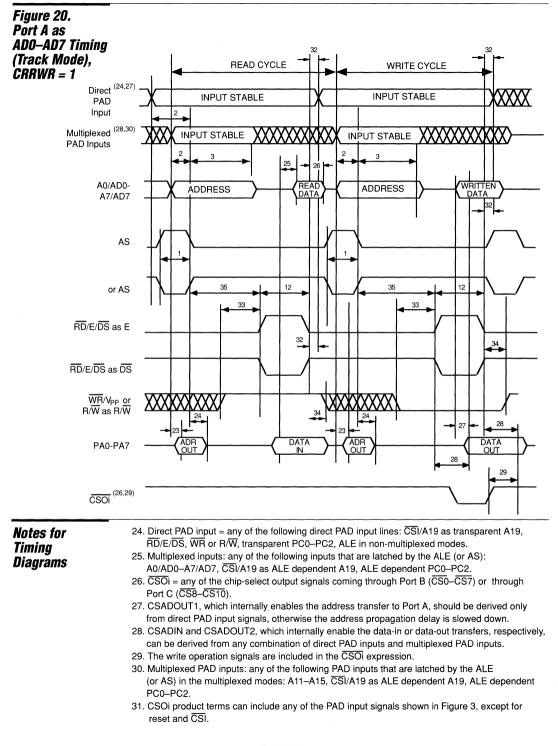
See referenced notes on page 2-239.

2


PSD313

us:


See referenced notes on page 2-239.


2

See referenced notes on page 2-239.

W

us

2

PSD313 Table 12. $T_A = 25 \circ C, f = 1 MHz$ Pin Typical³³ Symbol Parameter Conditions Max Units Capacitance³² $V_{IN} = 0 V$ CIN Capacitance (for input pins only) 4 6 pF COUT Capacitance (for input/output pins) $V_{OUT} = 0 V$ 12 pF 8 pF Capacitance (for WR/VPP or R/W/VPP) CVPP $V_{PP} = 0 V$ 18 25 NOTES: 32. This parameter is only sampled and is not 100% tested. 33. Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltages. Figure 21. AČ Testina Input/Output Waveform 3.0 V TEST POINT . Figure 22. AČ Testing 2.01 V Load Circuit 195 Ω DEVICE UNDER TEST $C_L = 30 \, pF$ (INCLUDING SCOPE AND JIG CAPACITANCE) Erasure and To clear all locations of their programmed these sources should be avoided. If used in contents, expose the device to ultra-violet such an environment, the package Programming light source. A dosage of 15 W second/cm² windows should be covered by an opaque is required. This dosage can be obtained substance. with exposure to a wavelength of 2537 Å and intensity of 12000 µW/cm² for 15 to 20 Upon delivery from WSI, or after each minutes. The device should be about 1 erasure, the PSD313 device has all bits in inch from the source, and all filters should the PAD and EPROM in the "1" or high be removed from the UV light source prior

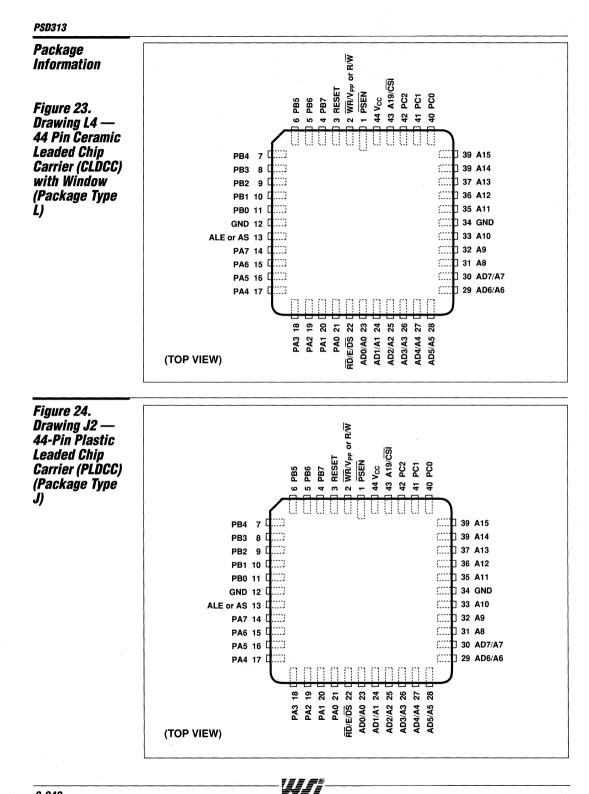
The PSD313 and similar devices will erase with light sources having wavelengths shorter than 4000 Å. Although the erasure times will be much longer than with UV sources at 2537 Å, exposure to fluorescent light and sunlight eventually erases the device. For maximum system reliability,

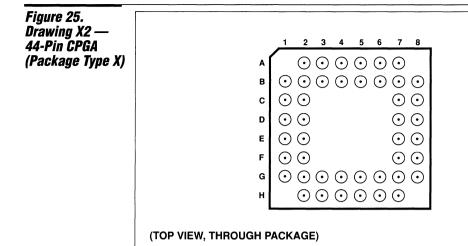
us

to erasure.

Upon delivery from WSI, or after each erasure, the PSD313 device has all bits in the PAD and EPROM in the "1" or high state. The configuration bits are in the "0" or low state. The code, configuration, and PAD MAP data are loaded through the procedure of programming

Information for programming the device is available directly from WSI. Please contact your local sales representative.


PSD313


Pin Assignments

Name	44-Pin PLDCC/ CLDCC Package	44-Pin CPGA Package
PSEN	<u> </u>	A5
WR/V _{PP} or R/W	2	A ₄
RESET	3	B ₄
PB7	4	A ₃
PB6	5	B ₃
PB5	6	A2
PB4	7	B ₂
PB3	8	В ₂ В1
PB2	9	
		C ₂
PB1	10	C ₁
PB0	11	D ₂
GND	12	D ₁
ALE or AS	13	E ₁
PA7	14	E ₂
PA6	15	F ₁
PA5	16	F ₂
PA4	17	G ₁
PA3	18	G ₂
PA2	19	H ₂
PA1	20	G3
PA0	21	H ₃
RD/E/DS	22	G ₄
AD0/A0	23	H ₄
AD1/A1	24	H ₅
AD2/A2	25	G5
AD3/A3	26	H ₆
AD4/A4	27	G ₆
AD5/A5	28	H ₇
AD6/A6	: 29	G ₇
AD7/A7	30	G ₈
A8	31	F ₇
A9	32	F ₈
A10	33	E ₇
GND	34	E ₈
A11	35	-8 D8
A12	36	D ₇
A12	37	C ₈
A14	38	C ₇
A14 A15	30	В ₈
PC0	40	В ₈ В7
PC0 PC1	40	A7
PC1 PC2	41	-17 D-
A19/CSI	42 43	B ₆
		А ₆ В-
V _{CC}	44	B5

US:

2

Ordering Information

Part Number	Spd. (ns)	Package Type	Package Drawing	Operating Temperature Range	WSI Manufacturing Procedure
PSD313-12J	120	44-pin PLDCC	J2	Commercial	Standard
PSD313-12L	120	44-pin CLDCC	L4	Commercial	Standard
PSD313-12X	120	44-pin CPGA	X2	Commercial	Standard
PSD313-15J	150	44-pin PLDCC	J2	Commercial	Standard
PSD313-15JI	150	44-pin PLDCC	J2	Industrial	Standard
PSD313-15L	150	44-pin CLDCC	L4	Commercial	Standard
PSD313-15LI	150	44-pin CLDCC	L4	Industrial	Standard
PSD313-15X	150	44-pin CPGA	X2	Commercial	Standard
PSD313-15XI	150	44-pin CPGA	X2	Industrial	Standard
PSD313-15XM	150	44-pin CPGA	X2	Military	Standard
PSD313-15XMB	150	44-pin CPGA	X2	Military	MIL-STD-883C
PSD313-20J	200	44-pin PLDCC	J2	Commercial	Standard
PSD313-20JI	200	44-pin PLDCC	J2	Industrail	Standard
PSD313-20L	200	44-pin CLDCC	L4	Commercial	Standard
PSD313-20LI	200	44-pin CLDCC	L4	Industrial	Standard
PSD313-20X	200	44-pin CPGA	X2	Commercial	Standard
PSD313-20XI	200	44-pin CPGA	X2	Industrial	Standard
PSD313-20XM	200	44-pin CPGA	X2	Military	Standard
PSD313-20XMB	200	44-pin CPGA	X2	Military	MIL-STD-883C

W/i-

PSD313 System Development Tools

Svstem The PSD313 features a complete set of System Development Tools. These tools Development provide an integrated, easy-to-use software Tools and hardware environment to support PSD313 device development. To run these tools requires an IBM-XT, -AT, or compatible computer, MS-DOS 3.1 or higher, 640K Software byte RAM, and a hard disk. Hardware The PSD313 System Programming Hardware consists of: WS6000 MagicPro Memory and PSD Programmer WS6020 52-pin PSD313 PQFP Package Adaptor WS6021 44-pin LCC Package Adaptor (for CLDCC and PLDCC packages) WS6022 44-pin CPGA Package Adaptor Support WSI provides a complete set of quality support services to registered System Development Tools owners, including: 12-month software updates Design assistance from WSI field application engineers and application group experts Training

WSI provides in-depth, hands-on workshops for the PSD313 device and System Development Tools. Workshop participants learn how to program high-performance, programmable peripherals. Workshops are held at the WSI facility in Fremont, California. The MagicPro Programmer is the common hardware platform for programming all WSI programmable products. It consists of an IBM-PC plug-in programmer board and a remote socket adaptor.

The PSD313 System Development Software consists of:

- UWISPER, WSI's Software Environment
- MAPLE, the PSD313 Location Editor Software
- MAPPRO, the Device Programming Software

The configuration of the PSD313 device is entered using MAPLE software. MAPPRO software uses the MagicPro programmer and the socket adaptor to configure the PSD313 device, which then can be used in the target system. The development cycle is depicted in Figure 26.

24-hour Electronic Bulletin Board for design assistance via dial-up modem. 2

us:

PSD313

Ordering Information – System Development Tools

PSD-GOLD

- WISPER Software
- MAPLE Software
- User's Manual
- USI Support
- □ WS6000 MagicPro[™] Programmer
- One Package Adaptor and Two Product Samples

PSD-SILVER

- WISPER Software
- MAPLE software
- User's Manual
- WSI Support

WS6000

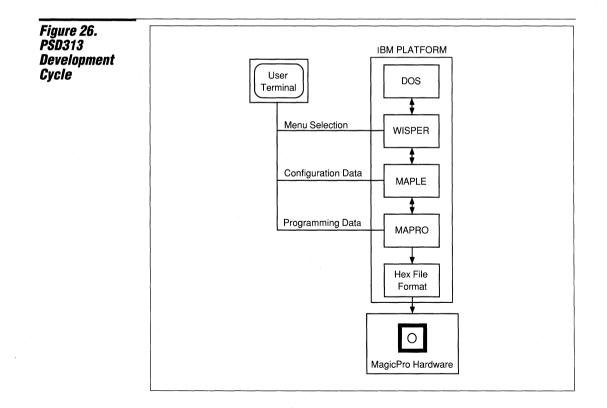
- □ MagicPro Programmer
- IBM-PC© Plug-in Adaptor Card
- Remote Socket Adaptor

WS6021

44-Pin LCC Package Adaptor for CLDCC and PLDCC Packages. Used with the WS6000 MagicPro Programmer.

WS6022

44-Pin CPGA Package Adaptor. Used with the WS6000 MagicPro Programmer.


WSI Support

Support services include:

- □ 12-month Software Update Service
- Hotline to WSI Application Experts
- 24-hour access to WSI Electronic Bulletin Board

WSI Training

- U Workshops at WSI, Fremont, CA
- □ For details and scheduling, call PSD Marketing (510) 656-5400.

Programmable Peripheral Application Note 011 PSD3XX Device Description

Chapter 1: PSD301 Device Description

Introduction	2-249
WSI Software Support for the MAP Family	2-250
PSD3XX Architecture and Pin Nomenclature	2-250
Performance Characteristics	2-252
PSD3XX System Configuration for Port and I/O Options	2-252
Address Inputs	2-254
PSD3XX Programmable Array Decoder (PAD)	2-255
Microcontroller/Microprocessor Control Inputs	2-256
Input and Output Ports	2-257
PSD3XX General System Configuration	2-259
PSD3XX Configuration for Port Reconstruction	2-261

Chapter 2: Applications

8-Bit Microcontroller to PSD3XX Interface	2-263
Two PSD3XX Byte-Wide Interfaces to Intel 80C31	2-265
PSD3XX M68HC11 Byte-Wide Interface	2-267
8-Bit Non-Multiplexed PSD3XX Interface to M68008	2-269
16-Bit Non-Multiplexed Address/Data PSD3XX Interface to M68000	2-271
M68000/2X PSD3XX Applications	2-273
16-Bit Address/Data PSD3XX Interface to Intel 80186	2-275
16-Bit Address/Data PSD3XX to Intel 80196 Interface	2-277
Interfacing the PSD3XX to 8-Bit Microprocessors Z80 and M6809 Applications	2-279
PSD3XX Interface to the Intel 80286	2-282
External Peripherals to the PSD3XX/M68HC11 Configuration	2-284
Additional External SRAM	2-286
PD3XX Used in Track Mode	2-290

Chapter 3: Software Support

Summary2-293

5		
Me	emory, and Logic Subsystem	.2-249
Figure 2. PS	D3XX Architecture	.2-251
Figure 3. 8-E	Bit Multiplexed Address/Data Mode	.2-253
Figure 4. 16	-Bit Multiplexed Address/Data Mode	.2-253
Figure 5. No	n-Multiplexed Mode 8-Bit Data Bus	.2-253
Figure 6. No	n-Multiplexed Mode 16-Bit Data Bus	.2-254
Figure 7. PS	D3XX Programmable Array Decoder	.2-255
Figure 8. PS	D3XX Port A Structure	.2-257
Figure 9. PS	D3XX Port B Structure	.2-258
	Me Figure 2. PS Figure 3. 8-E Figure 4. 16 Figure 5. No Figure 6. No Figure 7. PS Figure 8. PS	Figure 1. PSD3XX Supports CPU as a Complete Peripheral, Memory, and Logic Subsystem Figure 2. PSD3XX Architecture Figure 3. 8-Bit Multiplexed Address/Data Mode Figure 4. 16-Bit Multiplexed Address/Data Mode Figure 5. Non-Multiplexed Mode 8-Bit Data Bus Figure 6. Non-Multiplexed Mode 16-Bit Data Bus Figure 7. PSD3XX Programmable Array Decoder. Figure 8. PSD3XX Port A Structure Figure 9. PSD3XX Port B Structure

PSD3XX - Application Note 011

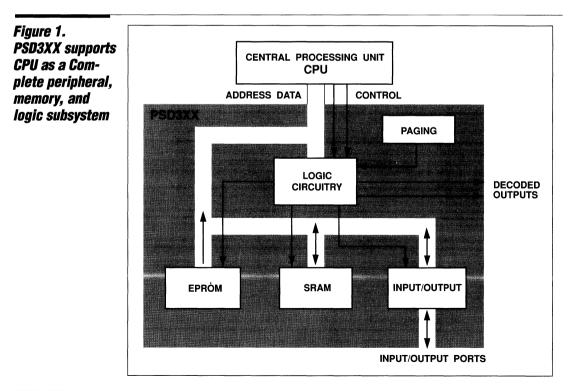
Figures	Figure 10. Intel 80C31/PSD3XX Applications	2-264
(Cont.)	Figure 11. Intel 80C31/2/PSD3XX Applications	2-266
	Figure 12. M68HC11/PSD3XX Applications	2-268
	Figure 13. M68008/PSD3XX Applications	2-270
	Figure 14. M68000/PSD3XX Applications	2-272
	Figure 15. M68000/2X PSD3XX Applications	2-274
	Figure 16. Intel 80186/PSD3XX Applications	2-276
	Figure 17. Intel 80196/PSD3XX Applications Open-Drain Drivers	2-278
	Figure 18. Z80/PSD3XX Applications	2-280
	Figure 19. 6809/PSD3XX Applications	2-281
	Figure 20. Intel 80286/PSD3XX Applications	2-283
	Figure 21. M68HC11/PSD3XX to M68230 Applications	2-285
	Figure 22. M68HC11/PSD3XX to 16K SRAM Applications	2-287
	Figure 23. SC80C451/PSD3XX to 16K SRAM Applications	2-289
	Figure 24. Intel 80196/PSD3XX Track Mode to External SRAM	2-291
	Figure 25. MAPLE Main Menu	2-293
	Figure 26. MAPLE Menu with PARTNAME Submenu	2-294
	Figure 27. CONFIGURATION Menu	2-295
	Figure 28. Port C Configuration Menu	2-296
	Figure 29. Port A Configuration Menu, Part 1	2-296
	Figure 30. Port A Configuration Menu, Part 2	2-297
	Figure 31. Port B Configuration Menu	2-297
	Figure 32. Address MAP Menu	2-298
	Figure 33. Port B Configuration Menu with Address Map	2-299

Tables

Table 1.	Port Base Address Offset	2-256
Table 2.	Non-Volatile Configuration Bits	2-260
Table 3.	Small Controller System with One 80C31 and One PSD3XX	2-263
Table 4.	80C31 Interface to Two PSD3XX Devices with Power	
	Economy Feature	2-265
Table 5.	M68HC11 to PSD3XX Interface	2-267
Table 6.	M68008 to PSD3XX Interface	2-269
Table 7.	M68000 Microprocessor to One PSD3XX Interface	2-271
Table 8.	M68000 Microprocessor to Two PSD3XX Devices in Parallel	2-273
Table 9.	Intel 80196 to PSD3XX Configuration for CMOS Ports	2-275
Table 10.	Intel 80196 to PSD3XX Configuration for LED Drivers	2-277
Table 11.	Z80B to PSD3XX Interface	2-279
Table 12.	M6809 to PSD3XX Interface	2-279
Table 13.	Intel 80286 to PSD3XX Interface	2-282
Table 14.	M68HC11/PSD3XX to External Peripheral M68230 Interface	2-284
Table 15.	M68HC11/PSD3XX Configured to Address Additional SRAM	2-286
Table 16.	SC80C451/PSD3XX Configured to Address Additional SRAM	2-288
Table 17.	Intel 80196 to PSD3XX Used to Access External SRAM	
	in Track Mode	2-290

US

Programmable Peripheral Application Note 011 PSD3XX Device Description

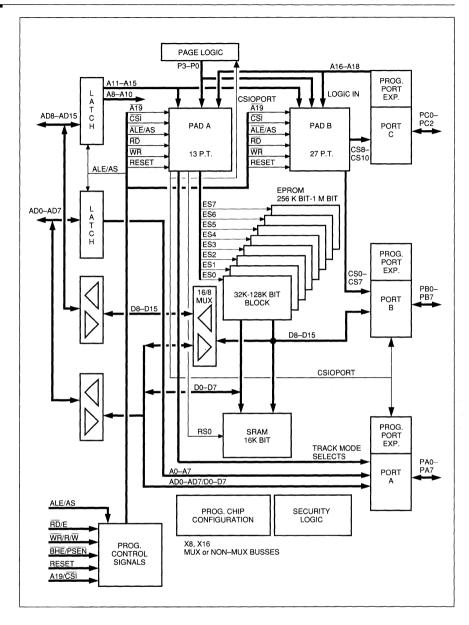

Chapter 1

Introduction

The PSD3XX family of products include flexible I/O ports, PLD, Page Register, 256K to 1M EPROM, 16K bit SRAM and "Glueless" Logic Interface to the micro controller. The PSD3XX is ideal for microcontroller based applications where fast time-to-market, small form factor and low power consumption are essential. These applications include disk controllers, cellular phones, modems, fax machines, medical instrumentation, industrial control, automotive engine control and many others.

Traditionally, central processing units (CPUs) require the support of non-volatile memory for program storage, random access memory (RAM) for data storage, and some input/ output (I/O) capability to communicate with external devices. The addition of general logic circuitry is necessary to 'glue' the parts of the system together. Figure 1 shows a block diagram of such a system, configured with a CPU (or microprocessor). The typical microprocessor also has integrated into it onboard timers, a small amount of RAM and ROM, as well as a limited I/O capability.

The microprocessor (and often the microcontroller) requires additional external support EPROM and RAM memory, additional ports, memory mapping logic, and sometimes latches to separate address and data from a multiplexed address/data bus. Until very recently, designers had to create a discrete solution from a number of chips, or generate a full custom solution. Now, the PSD3XX integrates the different system support blocks into a single-chip solution. This relieves the designer from the constraint of thinking that memory mapping, ports, and address latch requirements should be developed from separate elements.



PSD3XX - Application Note 011

Introduction (Cont.)	This high integration of functionality into a single chip enables designers to reduce the overall chip count of the system. The result is increased system reliability, simpler PCB layout, and lower inventory and assembly costs. By integrating ports, latches, a Programmable Address Decoder (PAD), EPROM, and static RAM, the PSD3XX can bring the system solution down to only two chips: a microcontroller and a PSD3XX. The alternative solution would be discrete elements of RAM, EPROM, I/O mapped ports, and latches all mapped into the address scheme by a programmable logic device (PLD). This could escalate the chip count to 8–12 packages, depending on size and complexity.	For larger systems, multiple PSD3XX 's can be configured. Due to its versatility and flexibil- ity, two or more PSDs can be cascaded either horizontally (increasing bus width) or vertically (increasing sub-system depth). This propor- tionally increases the complement of memory, I/O ports, and chip-selects without the need for additional external glue logic. An additional feature of the PSD3XX is its ability to support a wide range of microcon- trollers or microprocessors because it has been designed with a wide range of configur- able options. The designer can program any one of a number of different options to create specific compatibility with a host processor. Furthermore, this can be done without the need for external glue logic.
WSI Software Support for the PSD Family	The PSD family from WSI can be easily configured from a low-cost software support package called MAPLE. Designed to run in an IBM/PC environment, MAPLE makes design and configuration of the PSD3XX a	simple task. Memory mapping of EPROM and RAM blocks replaces PLD-like equations with user-friendly, high-level command entries.
PSD3XX Architecture and Pin Nomenclature	The PSD3XX is available in a variety of 44-pin packages (see the PSD3XX Data Sheet). Figure 2 is a functional block diagram of the	PSD3XX that shows the pin functions, internal architecture, and bus structure.

us:

PSD3XX - Application Note 011

PSD3XX Architecture and Pin Nomenclature (Cont.)

Inputs AD0-AD15 enter the PSD through latches. These can be programmed to latch the address/data inputs, removing the need for such devices as the 74HCT373 or 573. Alternatively, in the transparent mode they simply buffer address inputs. The Address Latch Enable (ALE) signal is available to register a valid address input on the AD0-AD15 lines; its active polarity is programmable. Another name for this input is Address Strobe (AS). It provides the same function and the same timing as the ALE, but this pin name is more appropriate to Motorola-type systems. When either ALE or AS is valid, the latches are transparent; when inactive, the address/data inputs on AD0-AD15 remain latched.

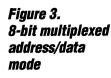
The PSD3XX also contains a Programmable Address Decoder (PAD). Figure 2 shows that address inputs A11–A15 (and, possibly, inputs A16–A19) go directly to the PAD. Other inputs to the PAD include $\overline{RD}(E)$, \overline{WR} (R/\overline{W}), and ALE(AS). Programming of the PAD enables the designer to internally select the EPROM banks via internal chip-select lines ES0–ES7. An additional chip-select for the internal SRAM is available through RS0. Port C conveys either $\overline{CS8}$ – $\overline{CS10}$ to external

devices or receives A16-A18 inputs, directing them to the PAD. Also, A19 can be programmed to go directly into the PAD. Note that these lines are not necessarily dedicated to address inputs; they can be used as general purpose logic inputs. Thus, the PAD can be programmed to perform general combinational logic without adding any 'glue logic' to the overall system design. Address inputs A16-A19 can be used as general inputs to the PAD for implementing logic equations, and not for address decoding. If they are not used. A16-A19 are "don't care" conditions in memory map allocation. (See Figure 7 for a more detailed diagram of the PAD.)

The internal port options (Ports A and B) are both 8 bit-wide and can be programmed to act as traditional I/O ports. Port C is a 3-bit port designed to output logic functions from the PAD, receive address inputs A16–A18, or a combination of both. Ports A and B, however, are more complex because a number of different options can be selected with regard to system configuration. Figures 3, 4, 5, and 6 show the variety of configurations that are available to these ports.

Performance Characteristics

Two key timing parameters associated with the device are the EPROM/SRAM access times and the propagation delay through the PAD. The worst-case delay from valid address input to valid data output is 120 ns whether the address input is multiplexed or not. The cycle time of the system is virtually 120 ns with a small margin for address switching. This gives a system clock rate of about 8.3 MHz. Considering the powerdown option, it takes 100 ns for active power input enabled through the \overline{CSI} to valid data output. If the chip-select output option is chosen for either Port B or Port C, the propagation delay for address and control input through the PAD to valid chipselect output is 35 ns.

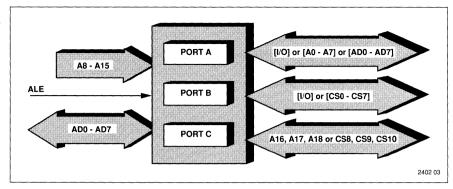
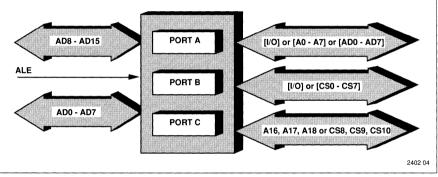

PSD3XX System Configuration for Port and I/O Options

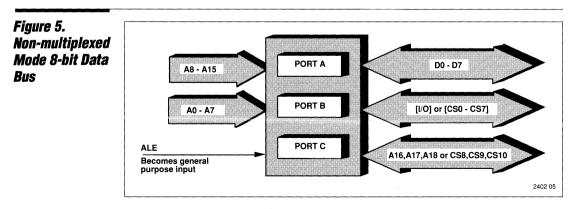
In this section, the EPROM and SRAM are treated as separate entities and the four options available for configuring the PSD301 in a processor system are detailed. Figure 3 shows an 8-bit data configuration for systems that multiplex 8-bits of data (D0–D7) with the corresponding address inputs (A0–A7). Lines A8–A15 are dedicated to higher-order address inputs. Ports A and B are then available for data I/O and Port C is available for additional inputs, A16–A18 or chip-select outputs CS8–CS10. Port A also has the option of passing any one or all of the internally latched lower-order addresses (A0–A7) to the output. Another mode supported by

us

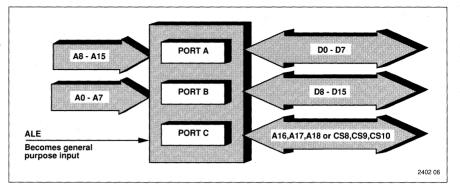
Port A is called "track mode." In this mode, the PSD301 can be programmed to pass the I/Os AD0–AD7 through the device enabling a shared memory or peripheral resource to be accessed. Port B has an additional mode to the general port mode. The PSD301's onchip PAD can be programmed to generate chip-select signals which can be routed to Port B's output for external chip selection as $\overline{CS0}-\overline{CS7}$. Port C can be programmed for inputs A16–A18 or as additional chip-select outputs $\overline{CS8}-\overline{CS10}$. Although labeled as address inputs, A16–A18 can be used for general Boolean inputs to the PAD array.

2-252


Figure 4 extends the option offered in Figure 3 to a 16-bit multiplexed bus. AD8–AD15 convey address and data I/O. The port options remain the same as for Figure 3; thus,

these two configurations are suitable for multiplexed address/data systems of 8 or 16 bits.



Figures 5 and 6 show options for a nonmultiplexed host processor or controller. Figure 5 is suited to byte-wide systems and Figure 6 to 16-bit word-wide configurations. In Figure 5, Port A is used for data D0–D7 but Port B is still available for general I/O operations or chip-select outputs. This configuration is suitable for processors such as the M68008.

ulf:

Figure 6. Non-multiplexed Mode 16-bit Data Bus

The function of Port C is the same in all of the four modes of operation. For 16-bit data transfers, an additional 8 bits of data is required. Figure 6 shows Port B as the data bus for the higher-order data byte D8–D15.

With D0–D7, this configuration is suitable for 16-bit microprocessors such as the M68000. Port C is available for address inputs or chipselect outputs.

Address Inputs

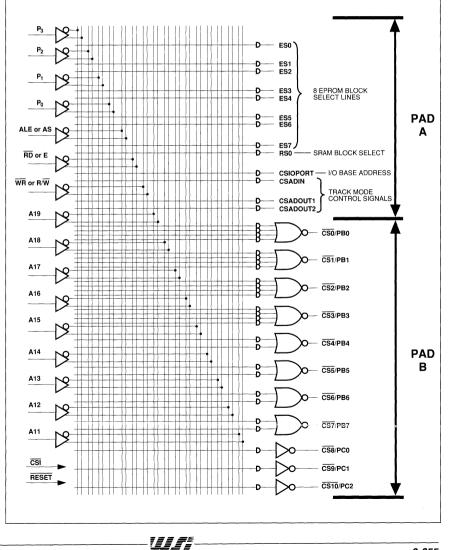
The processor interface has 16 address inputs: AD0-AD15. The device can be programmed to accept either address inputs or multiplexed address/data inputs. The address lines can be latched into the one or two octal latches for multiplexed byte or wordwide buses respectively. The device is initially programmed with a word configuration setting the PSD3XX to a specific mode; for example, one configuration bit selects whether the address input is multiplexed with data or is a non-multiplexed dedicated address. In the non-multiplexed scheme, the input latches are held as transparent. When the address inputs are valid on the chip as A0-A15, they can be subdivided into two buses: as lower-order addresses (A1-A11), and as higher-order addresses (A12-A15). A1-A11 go directly to the EPROM and inputs A1-A10 go to the SRAM (see Figure 2). The EPROM blocks are selected through the PAD via outputs ES0-ES7 as shown in Figure 2: and the SRAM is selected by the RS0 output.

The address input lines A11–A15, along with possible additional address inputs A16–A19, go into the PAD array. These address inputs are available for mapping the blocks of memory into the map scheme of the system. One option is to program the additional address inputs as valid higher-order address inputs for memory addressing ranges above 64K bytes or 32K words. If A16–A18 are not required, these PAD inputs can be ignored. Only microprocessors and microcontrollers with a large address lines. A second option is to disregard these address inputs to the chip in favor of additional chip-select outputs. A third option is available if the designer does not need additional chip-select outputs or high-order address inputs. The inputs A16–A18 can be used as general-purpose logic inputs. Examples of this are illustrated in some of the following applications.

An interface with the Z80B microprocessor uses inputs A16, A17, and A18 for signals M1, MREQ, and IORQ, respectively. In the M68008 application, two of these pins are programmed as DTACK and BERR from the PSD301 to the M68008. A wired-OR function can be implemented on the DTACK or BERR input if the user takes advantage of Port B's open-drain feature. If two PSD3XX devices are used together, the DTACK and BERR lines can be wired together and the external pull-up resistors can be used to tie these lines нідн. It is also possible to use the internal PAD of one PSD3XX to gate these lines together and produce composite DTACK and BERR inputs to the M68008.

Internally, the memory blocks are arranged word-wide with a byte-wide isolation buffer separating the lower and upper bytes. This buffer is controlled from the configuration section of the PSD3XX. When the PSD3XX is configured to operate in word-wide mode, this buffer isolates the two buses into D0–D7 and D8–D15. In word-wide mode, the control of the data flow through this buffer is determined by BHE, A0, and the device's current configuration mode. Accessing byte-wide data can be thought of as accessing bytes on even and odd word boundaries or as two separate

Address Inputs (Cont.)

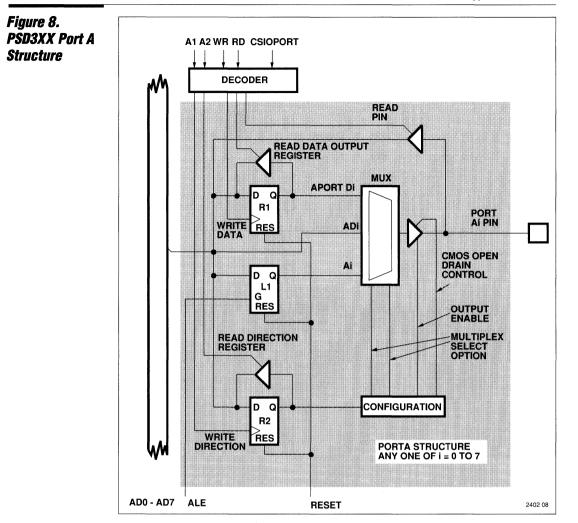

banks of byte-wide data. The total complement of EPROM is shown as eight banks. The chip-select outputs ES0-ES7 come from the PAD. These are programmable address and control decode signals from the PAD inputs. Figure 7 provides a detailed schematic diagram of the PAD in terms of a traditional PLD.

PSD3XX Programmable Array Decoder (PAD)

The PAD is an EPROM-based reprogrammable logic fuse array with sum-of-product outputs. For Intel-type configurations, inputs to the PAD are A11–A19, ALE, $\overline{\text{RD}}$, and $\overline{\text{WR}}$. For Motorola type configurations, they are R/\overline{W} , AS, and E. The $\overline{\text{CSI}}$ and RESET inputs are used to deselect the PAD for power-down configurations and initialization, respectively. Internal to the PSD301 are the ES0–ES7

EPROM select lines. There is one product term dedicated to each EPROM block, and a single product term (RSO) for the SRAM selection. Address and control for each EPROM bank can programmed to a resolution of a 4K word boundary and positioned anywhere in the mapping scheme of the designer's system. Similarly, the SRAM can be positioned on 2K word boundaries.

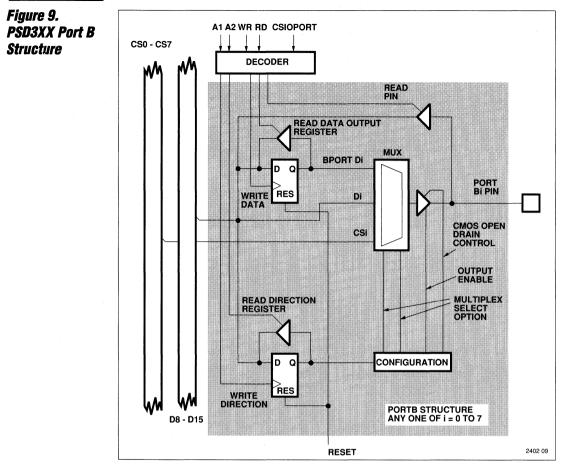
Figure 7. PSD3XX Programmable Array Decoder


PSD3XX - Application Note 011

<i>PSD3XX Programmable Array Decoder (PAD) (Cont.)</i>	Other internal product term outputs from the PAD are the CSIOPORT, CSADIN, CSA- DOUT1, and CSADOUT2 lines. A single product term generates the CSIOPORT signal; this provides a base address for Ports A and B. The registers relevant to these ports are addressed as a base offset (see Table 1). The CSADIN signal is used to control the input buffer in the track mode. It can be enabled to read data in a programmed address space from Port A through the	PSD3XX . CSADOUT1–2 are used to control the multiplexed address and write data through the PSD3XX to the Port A pads. The address range is programmed into the PAD qualifying the address space, but CSADOUT1 is qualified by the ALE signal outside of the PAD. This automatically lets the design distinguish between address and write data. To qualify valid write data, the PSD3XX automatically includes the CSADOUT2 product term with the WR or R/W signal.
	address space from Port A through the	product term with the WR or R/W signal.

Table 1.	Register Name	Offset From The CSIOPORT Base Address
Port Base Address	Pin Register of Port A	+2 (Accessible only during Read)
Offset	Pin Register of Port B	+3 (Accessible only during Read)
	Direction Register Port A	+4
	Direction Register Port B	+5
	Data Register Port A	+6 Byte Wide
	Data Register Port B	+7
	Pin Register of Ports A and B	+2 (Accessible only during Read)
	Direction Register of Ports A and B	+4 Word Wide
	Data Register of Ports A and B	+6
	The PAD structure enables additional chip- selects to be routed to the Port B output pins. The four chip-select outputs ($\overline{CSO}-\overline{CS3}$) are supported by four product terms per output. $\overline{CS4}-\overline{CS7}$ have two product terms per output. The ability to use more than one product term from a chip-select enables the mapping of additional devices to be distributed through the address space, rather than selecting memory as a block. Sacrificing Port B terminals for chip-selects could occur in systems requiring a larger EPROM, RAM, or	I/O space. Additional PSD3XX devices can be designed into a system by using the chip- select outputs from Port C or B of one master PSD3XX. This is required for addressing a space greater than 1M. Finally, the outputs of the sum-of-product terms are inverted to be consistent with active LOW chip-select inputs for additional external RAM, EPROM, periph- erals, or busses. Port C has the capability of providing three additional external chip- selects, each supporting one product term per output.
Microcontroller/ Microprocessor Control Inputs	The control inputs are also programmable: WR or R/W and RD or E are used for read/ write control of the internal EPROM, RAM, and I/O capability. Other control inputs are a programmable option for Bus High Enable or	ible with the host system. The function of the RESET input is to clear and initialize the PSD301 at start-up. All I/Os are set up as inputs and all outputs are either in a non-active or three-state condition.
	Program Store Enable (BHE/PSEN) and Address Latch Enable or Address Strobe (ALE/AS). These pins are selected to suit the bus protocol of the host processor or, where not applicable, they can be ignored. The CSI/ A19 input is available either for a power-down chip-select enable or as a higher-order address input without the power-down feature. The final control input is the RESET input; this also is a programmable option. Its active polarity can be chosen to be compat-	Consequently, the PSD3XX is prevented from actively driving outputs during start-up. This feature was incorporated to prevent potential bus conflicts. In Figure 2, the \overline{CSI} and RESET inputs are shown also as PAD inputs. \overline{CSI} is a hardwire option into the PAD that powers down the internal circuitry and is used in power-sensitive applications. Neither signal is available as a programmable option.

US:


2

us:

Input and Output Ports

The port section comprises Port A (8 bits), Port B (8 bits), and Port C (3 bits). These support the many different I/O operations. For port expansion, Ports A and B can be configured as general I/O ports, each to convey eight bits of digital data to and from an external device. Figure 8 shows a single cell of Port A; Figure 9 shows a single cell of Port B.

Writing data to a port is similar to writing data to a RAM location. If a port is programmed as an output, data is loaded into the output register as if it were a RAM location. Although the ports are not bit addressable, individual bits can be selected as either input or output. Thus, PA0–5 can be set as data outputs while PA6 and PA7 can be configured as inputs. Any mix of I/Os is possible giving the ports additional flexibility.

The direction of data flow through the port is

us:

determined by the data direction register. This register is dynamically programmable so that the I/O direction through Ports A and B can be altered during the microcontroller program execution. The data direction register initializes with logic zeros after an active RESET and causes each port bit to be set as an input. This state of initialization guarantees that the ports are prevented from driving the output lines at start-up. If the user requires all the Port A or Port B bits to be

Input and Output Ports (Cont.)

inputs, the data direction register can be left in this default state. To enable it as an output, logic ones can be written into the data direction location.

Due to the internal design, it is possible to program Port A or Port B bit lines as inputs and still write data to the port locations. This is because both ports have on-chip latches and can hold data. These registers are hidden or buried; i.e., they exist in the port and their condition can be read back at any time. However, these outputs do not drive the output pins because the port has been enabled as an input.

To access the port as a memory mapped location, the initial selection is made through the PAD's CSIOPORT. This provides a base address from which the locations shown in Table 1 give access to the various ports or their options. The configuration support software automatically ensures that there is no conflict between an SRAM location and I/O port in the case of memory mapped peripherals. It is also possible for the PSD3XX to distinguish between I/O and memory mapped locations. The user can input memory and

I/O control signals to the PAD through the A16-A18 inputs and program an active CSIOPORT output by decoding these signals. This can be achieved with Intel- and Zilogtype processors which have separate memory and I/O controls. Signal input through pins A16-A18 is made possible through Port C. This 3-bit port is responsible for either PAD chip-select outputs or address/logic inputs. CSIOPORT points to a base address at which Ports A and B reside. Table 1 provides the offset from the base address and the associated port function. Figure 2 shows that Port A is driven by a multiplexed address/data bus of AD0-AD7 and the selection of address/data is made from the configuration memory and internal control functions.

The other options available to the user are selecting 1) the shared resource or track mode where ADO–AD7 is routed directly through to the Port A output, or 2) the latched address A0–A7. In track mode, AD0–AD7 inputs to the PSD3XX are used to access local or private memory and peripherals and the outputs AD0–AD7 through Port A are used to access a public resource.

PSD3XX General System Configuration

The PSD3XX family devices consists of two byte-wide configurable I/O ports (Ports A and B), 256K to 1M bits of EPROM, 16K bits of RAM, and the PAD. Additional I/O capability to and from the PAD is through a 3-bit I/O (Port C). There are also on-chip latches to support processors and controllers that multiplex address and data on the same bus. The EPROM memory section of the device is programmable just like a standard EPROM device. However, unlike the single-chip EPROM, the PSD3XX must also be configured to function into one of its many possible modes of operation. This is done by programming a non-volatile EPROM memory location with 45 configuration bits. These bits select the mode of operation and are programmed into the EPROM along with the hexadecimal microprocessor/microcontroller assembly language object code. When using MAPLE software,

the assignment of logic conditions to the configuration bits locations is transparent to the user; the resultant word is merged with the EPROM code and the data map for the PAD.

Table 2 shows the the configuration locations and their functional assignment. For example, one of the configuration bits enables the device architecture to be compatible for either byte- or word-wide data buses. This is the configuration data or CDATA bit. The 256 Kbits of EPROM can be configured as a 32K byte-wide bus for applications with an 8031 microcontroller or as a 16K word-wide bus for applications with an M68000 microprocessor. These configuration bits are discussed in detail as each feature is covered in this application note. *Table 2. Non-volatile Configuration Bits*

Configuration Bits	Number of Bits	Function
CDATA	1	CDATA . 0 = eight bits. 1 = sixteen bits
CADDRAT	1	ADDRESS/DATA Multiplexed. 0 = Non-multiplexed, 1 = Multiplexed
CRRWR	¹ 1	CRRWR. $0 = \overline{RD}$ and \overline{WR} , $1 = R/\overline{W}$ and E
CA19/CSI	1	A19 or $\overline{\text{CSI}}$. 0 = Enable power-down, 1 = Enable A19
CALE	1	ALE Polarity. 0 = Active HIGH,1 = Active LOW
CRESET	1	CRESET. 0 = Active LOW RESET, 1 = Active HIGH RESET
COMB/SEP	1	Combined or Separate Address Space for SRAM and EPROM. $0 = $ Combined, $1 = $ Separate
CPAF2	1	Port A Track Mode or Port Mode. 0 = Port or Address, 1 = AD0-AD7 Track Mode
CPAF1	8	Port A I/O or A0–A7. 0 = Port A pin is I/O, 1 = Port A pin is Address
CPBF	8	Port B I/O or CS. $0 =$ Port B pins are CSi (i = 0–7), 1 = Port B pins are I/O
CPCF	3	Port C A16–A18 or $\overline{CS8}$ – $\overline{CS10}$. 0 = Port C pins are Address, 1 = Port C pins are Chip-select
CPACOD	8	Port A CMOS or Open Drain. 0 = CMOS drivers, 1 = Open Drain
CPBCOD	8	Port B CMOS or Open Drain. 0 = CMOS Drivers, 1 = Open Drain
CADDHLT	1	A16–A18 Transparent or Latched. 1 = Address latched, 0 = Address transparent
CSECURITY	1	CSECURITY On/Off. 0 = Off, 1 = On

In addition to bus width, the polarity and mode of the bus control signals are programmable. There are two types of read/write control: one is consistent with either a Motorola and Texas Instruments control bus standard: the other is consistent with the Intel/National Semiconductor/Zilog control bus standard. The configure read and write bit (CRRWR), distinguishes between one of two conventions: either an Intel (8031) or Motorola (M68HC11) convention can be selected by programming this single bit in the configuration memory. The Intel device requires the PSD3XX to be programmed with an active LOW \overline{RD} and \overline{WR} controls (CRRWR = 0). For applications with the Motorola microprocessor, select the R/W and E option (CRRWR = 1). In addition to a choice of two READ/ WRITE controls, the user can select either a multiplexed Address/Data Bus or separate address and data lines.

Figure 3 shows the configuration that is best suited for the 8031 microcontroller; Figure 4 shows the configuration for an 80196 microcontroller with a 16-bit multiplexed addressed/ data bus. For the non-multiplexed modes: Figure 5 applies to M6809 microprocessors, while Figure 6 shows the mode applicable to the M68000. Selection of multiplexed or nonmultiplexed buses is a programmable option that can be invoked through the configure address/data multiplex (CADDRAT) bit. With the 8031 controller, address outputs A0–A7 are multiplexed with the data D0–D7 input/ output lines to create a composite AD0–AD7 bus.

The PSD3XX's input latches can be programmed to catch a valid address when the microcontroller's ALE signal transitions from active HIGH to inactive LOW. The polarity of the ALE signal is also a programmable feature in the CALE field of the configuration table. Address latching can be programmed to occur on either an active HIGH or an active LOW ALE signal. With Intel devices, the address is valid when ALE is HIGH. Once latched, data or code can be read from, or written to, the PSD3XX. The CALE active HIGH or LOW ALE configuration bit only applies to addresses A0-A15. A separate configuration bit, (CADDHLT), exists for the control of the higher-order address inputs

PSD3XX General System Configuration (Cont.)

(A16–A19). If necessary, these addresses can also be latched by the host system.

The highest address input is A19 but this signal can be omitted in favor of a power-down chip-select input (CSI). A19/CSI is selected by the CA19/CSI configuration bit. When the CSI input is selected and the pin is driven HIGH, the device can be powered-down consuming only standby power. When configured with other CMOS devices, the standby power is in the 80–250 μ A range. Many CMOS microcontrollers do not need a large memory address space; thus, address inputs A16–A19 would be unnecessary. The CA19/CSI input can be programmed with a logic LOW to enable a power-down option for power sensitive applications.

The address/data multiplexed scheme also supports the 16-bit processors. In this case, AD0–AD15 convey a 16-bit address qualified by ALE (or AS for the Motorola convention) and 16-bits of data I/O. This feature is shown in Figure 4. A microcontroller that would use this scheme is the 80C196. The M68HC11, like the 8031, uses the 8-bit multiplexed scheme but with the Motorola convention for bus control.

Another control pin used for 80C31 applications used to distinguish between program and data memory is the PSEN output. The COMB/SEP configuration bit should be programmed HIGH if data and memory are separate and LOW to configure a combined memory space in the PSD3XX. This is a useful feature for systems that require program memory and data memory to be in separate blocks.

For systems that use separate data and address buses, the address latches can be set into a transparent mode by clearing the CADDRDAT bit location. Thus, the PSD3XX is suitable for multiplexed or non-multiplexed bus structures employing 8- or 16-bit bus widths.

The RESET input to the PSD3XX enables the device to be initialized at start-up. RESET can be either active HIGH or active LOW depending on the processor type. The CRESET configuration bit selects the polarity of the RESET input: LOW for active LOW and HIGH for active HIGH RESET. Normally, memory systems do not require a RESET input; however, the PSD3XX contains data direction registers for the ports that must be initialized at start-up. Note that all port I/O buffers are automatically programmed as inputs during start-up.

PSD3XX Configuration for Port Reconstruction A key feature of the PSD3XX is the concept of port reconstruction. When using microcontrollers with additional off-chip memory, port I/O address lines are sacrificed for address. data, and memory control lines. With a multiplexed address/data scheme, two 8-bit controller ports could be lost to address and data. Furthermore, in some control applications, many port I/O bits are required to send actuating signals to solenoids, instrument displays, etc., and receive data through sensors and switch panels. In many control environments, a large amount of I/O capability is required: also, additional external memory is needed for microcontroller instructions to perform data manipulation. Without the PSD3XX, the supplement of extra ports as discrete latches addressed through logic decoders can add a number of chips to the final design. By using the PSD3XX, additional EPROM, RAM, and ports are all provided on one chip. Port reconstruction lets the designer reclaim the two ports sacrificed for the microcontroller's address and data.

Port configuration is achieved through the configuration register bits. CPAF1 configura-

tion of Port A contains eight bits; programming a logic LOW assigns the selected bit with I/O capability as if it were a conventional port. If programmed HIGH, the internally latched address inputs A0-A7 are routed to Port A lines PA0-PA7. This feature enables other on-card peripherals to use A0-A7 as latched addresses. Without this feature. external peripherals to the PSD3XX would require an external octal latch to catch the multiplexed address when it becomes valid at the microcontroller's output. Configuration of Port A as general I/O or address/data is on a bit-wise basis: thus, the choice of port or address/data assignment can be mixed. For example, configuration code 11100000B programmed into location CPAF1 passes addresses A0-A2 to outputs PA0-PA2 and enables PA3-PA7 as conventional port lines.

Configuration bit CPAF2 is a 1-bit location. When programmed LOW, it selects the port/ address option, as described above. If CPAF2 is programmed HIGH, port bits PA0–PA7 are set into track mode. Activity on the PA0–PA7 outputs follow logic transitions on inputs AD0–AD7. The multiplexed ad-

PSD3XX - Application Note 011

PSD3XX Configuration for Port Reconstruction (Cont.) dress/ data input is tracked through PA0–PA7. Track mode enables the host microcontroller to access a shared memory and peripheral resource through the PSD3XX while maintaining the ability to access its own (private) memory/peripheral resource directly from the microcontroller's address/data outputs. In this mode, the address/data AD0–AD7 passes through the PSD3XX logically unaltered. In summary, PA0–PA7 can be programmed as port I/O or latched address outputs A0–A7 (each bit being programmed on an individual basis), or as AD0–AD7 outputs (track mode).

Port B bits PB0-PB7 can be programmed either as regular port I/Os, or as chip-select outputs \overline{CSO} – $\overline{CS7}$ encoded from the PAD outputs. Figure 7 shows the PAD structure as a conventional PLD. Eight bits are programmed into CPBF. Logic Low indicates that a port pin is a chip-select output derived from the PAD. Programming a logic HIGH sets the appropriate pin as an I/O function. The bit pattern 11111000B programmed into the CPBF location sets up PB0-PB4 as I/O ports and PB5-PB7 as chip-selects. The typical applications, where Port B is programmed as bi-directional, would be with microcontroller chips that need additional port bits. This would be in applications where port reconstruction is needed to drive many indicators.

us

solenoids, read switches, sensors, etc. In large microprocessor-based systems, the chip-select option would probably be chosen; in this case, the PAD outputs select other PSD devices, DRAM memory chips, and peripherals such as timers, UARTs, etc.

The three bits comprising Port C can be programmed by the CPCF configuration bits. This group of three bits define whether Port C is used for inputs (typically A16-A18) or whether the pins are used as chip-select outputs from the PAD. Although labeled as A16-A18, the nomenclature of these pins does not constrain the designer to using these inputs as dedicated higher-order address inputs. In fact, they can be generalpurpose inputs to the PAD for processors that do not have an address capability above 64K locations. When the PSD3XX is used with the Z80B microprocessor, the Port C inputs have been programmed as MREQ, IORQ, and M1. In the case of an interface to the M6809B, two inputs of Port C have been converted to chipselect outputs for other memory devices and one output has been used to feedback a READY input to the M6809B. Port C can be used as a general I/O from the PAD in the form of address, control, and chip-select bits. A logic LOW programs a port bit as an input: a HIGH programs it as an output.

Programmable Peripheral Application Note 011 Applications

Chapter 2

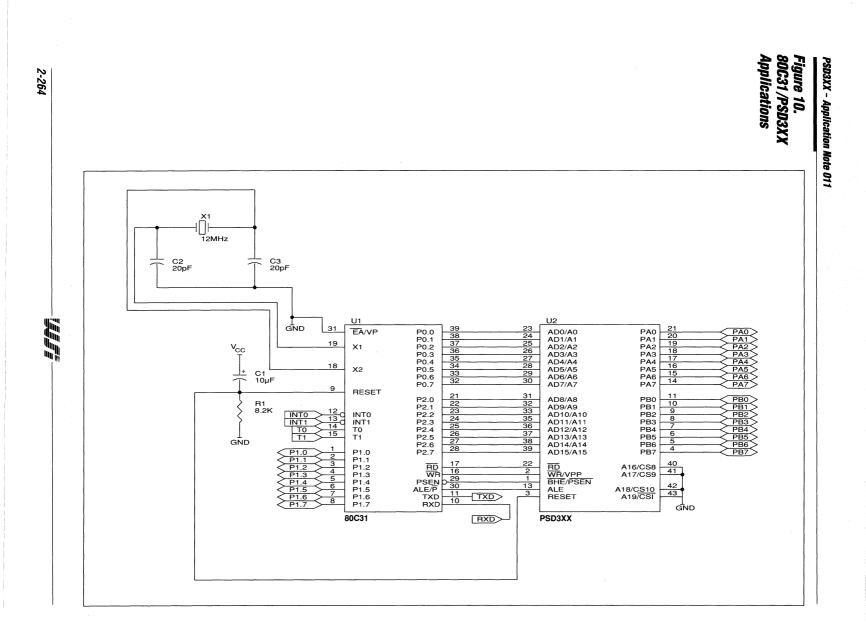

8-Bit Microcontroller to PSD3XX Interface

Figure 10 illustrates the minimum configuration of one controller and one PSD3XX. The application illustrates port reconstruction through the device's Port A and Port B I/O, reconstituting port 2 and port 0 of the microcontroller. Table 3 gives the configuration information that would be programmed in the configuration section of the PSD. Table 3 shows that both port I/Os have been programmed with CMOS load and drive characteristics. A feature of the 8051/8031 family is the PSEN signal, which determines whether the memory selection is active for executable code or data. This family of controllers has separate memory locations for code and data. To maintain full compatibility, the PSD3XX is also capable of being programmed to respond to the PSEN signal. When A16–A18 are programmed as inputs but not driven, they should be tied active HIGH or LOW. Unused inputs to the PSD3XX must not be permitted to float. Tying can be avoided on unused A16–A18 lines if these are programmed as 'dummy' CS8–CS10 outputs. A19/CSI cannot be programmed as an output; thus, it must be tied if not used.

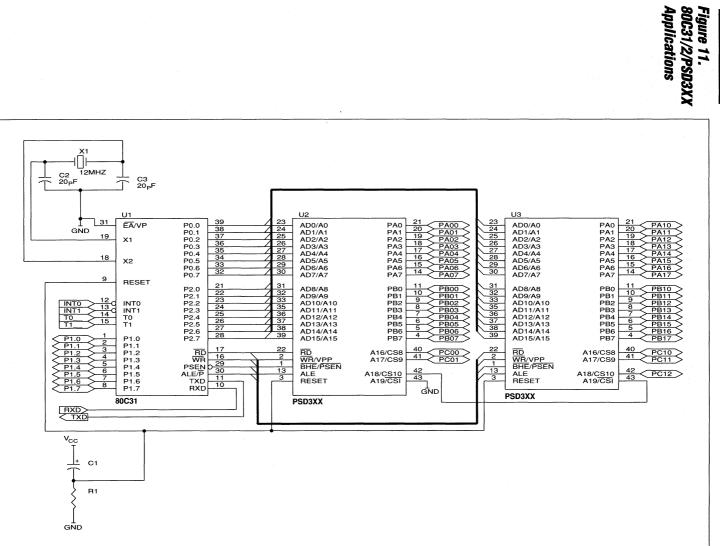
Table 3. Small Controller System with One 80C31 and One PSD3XX

Configuration	Bits	Function
CDATA	0	8-bit data bus
CADDRDAT	1	Multiplexed address/data
CRRWR	0	Set RD and WR mode
CA19/CSI	0	Set CSI input power-down mode
CALE	0	Active HIGH ALE
CRESET	1	Active HIGH RESET
COMB/SEP	1	Code and data memory separate
CPAF2	0	Input/Output Port A
CPAF1	00H	Input/Output Port A (0–7)
CPBF	FFH	Input/Output Port B
CPCF	000B	Port C programmed for inputs
CPACOD	оон	Configure CMOS outputs Port A
CPBCOD	оон	Configure CMOS outputs Port B
CADDHLT	0	Transparent inputs A16–A19
CSECURITY	0	No security

us:

Two PSD3XX Byte-Wide Interfaces to the Intel 80C31

Figure 11 illustrates an extension to the previous design in that two PSD3XX devices have been used, doubling the memory and port resources of the system solution. In this application, the power-down capability has been used so that one PSD3XX can be active while the other device is in power-down mode. The mean power consumption is reduced, so this configuration can be considered for power-sensitive applications. The configuration Table 4 indicates that Port C has been configured as outputs. Provided one PSD3XX is powered up for the whole address range, its PAD can decode an address range to select and deselect the second PSD3XX device through the CS10 output. In Figure 11, the PAD output A18/CS10 on PSD3XX U2 can be used to powerdown the second PSD3XX through the A19/CSI input.


Table 4.80C31 Interfaceto Two PSD3XXDevices withPower EconomyFeature

Configuration	Bits	Function
CDATA	0	8-bit data bus
CADDRDAT	1	Multiplexed address/data
CRRWR	0	Set RD and WR mode
CA19/CSI	0	Set CSI input power-down mode
CALE	0	Active HIGH ALE
CRESET	1	Active HIGH RESET
COMB/SEP	1	Code and data memory separate
CPAF2	0	Input/Output Port A
CPAF1	00H	Input/Output Port A (0–7)
CPBF	FFH	Input/Output Port B
CPCF	111B	Outputs CS8–CS10
CPACOD	00H	Configure CMOS outputs Port A
CPBCOD	00H	Configure CMOS outputs Port B
CADDHLT	x	"Don't care" for latched A16–A19
CSECURITY	0	No security

It is not recommended that the two PSD3XX devices select each other because the PAD section of a PSD device is powered down with the rest of the device. At least one PAD decoder must be kept active to select and deselect others. Port C outputs CS16-CS18 can power-down as many as three other PSD3XX devices.

us

2-266

PSD3XX M68HC11 Figure 12 illustrates the configuration of an **Bvte-Wide** Interface

M68HC11 microcontroller which also uses the 8-bits wide multiplexed address/data bus. The application is similar to that given in Figures 6 and 7 except that the R/W and E control lines have been invoked to establish compatibility with the Motorola device. The address strobe output from the M68HC11 is HIGH so the AS(ALE) input is set HIGH. The SRAM and EPROM section are programmed as combined and both Ports A and B are enabled as I/Os with CMOS drives. Port C is programmed with chip-select outputs CS8-CS10. Other PSD3XX devices can be mapped into the addressing scheme or the lines can be programmed to transition as strobes in defined mapping areas. The latch enable bit for the higher-order address lines A16-A19 is not used establishing a don't care condition. The CADDHLT condition must be selected if any one of A16-A19 lines is selected as input to the PSD.

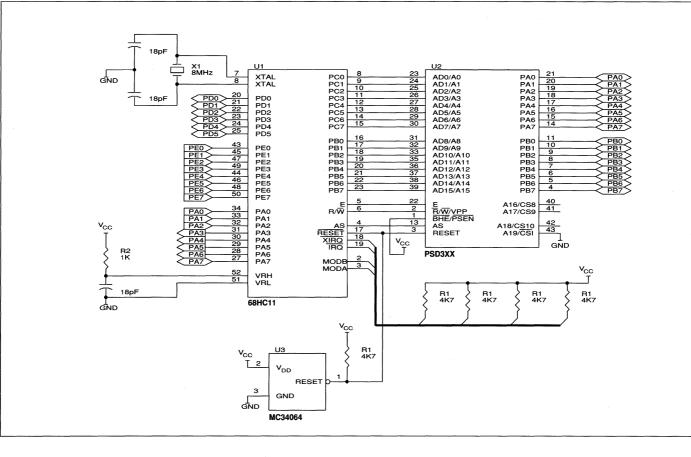

In this design, the security bit is programmed. This bit prevents the reading of the PAD configuration by an unauthorized user. Furthermore, if the security bit has been programmed, standard programming machines can not read the internal code of a PSD3XX. However, data can always be read from the EPROM, RAM, and ports. This provides normal use of the device. If the address map in the PAD cannot be interpreted, the actual location of data within the address and I/O space is difficult to determine. Besides programming the CSECU-RITY bit, added security can be applied by scrambling the sequence of address and data inputs. A short PASCAL or 'C' program can be written to reorganize the original Intel MCS code to be aligned with the scrambled pins. Table 5 indicates the configuration for the M68HC11/PSD3XX interface.

Table 5.	Configuration	Bits	Function
M68HC11 to	CDATA	0	8-bit data bus
PSD3XX Interface	CADDRDAT	1	Multiplexed address/data
	CRRWR	1	Set R/W and E mode
	CA19/CSI	0	Enable CSI input
	CALE	0	Active HIGH AS (ALE)
	CRESET	0	Active LOW RESET
	COMB/SEP	0	Combined memory mode
	CPAF2	0	Input/Output Port A
	CPAF1	00H	Input/Output Port A
	CPBF	FFH	Input/Output Port B
	CPCF	111B	Output CS8–CS10
	CPACOD	оон	CMOS drivers
	CPBCOD	00H	CMOS drivers
	CADDHLT	X	"Don't care" A16–A19 not used
	CSECURITY	1	Security on

Figure 12. 68HC11/PSD3XX Applications

2-268

8-BIT Non-Multiplexed PSD3XX Interface to M68008

Figure 13 illustrates an application in which the address and data are not multiplexed. The M68008 has an 8-bit data bus and 20-bit address bus. The PSD3XX can be programmed to support the microprocessor by providing data I/O through Port A. The address lines from the microprocessor go to inputs A0-A19. Port B outputs are used for external chip-selects to other MAP devices or other memory resources. The configuration has been set for compatibility with Motorola control signals. There are six chip-select outputs (CSO-CS5) and an address decode for DTACK and BERR. The PAD decodes an address range which is fed back to the microprocessor through these inputs. Using the open-drain configuration has been implemented in Port B bits 6 and 7. The two pullup resistors enable external memory and peripherals to access the DTACK and BERR inputs as a wired-OR function.

If other PSD3XX devices are mapped into the M68008 system, no additional glue logic is

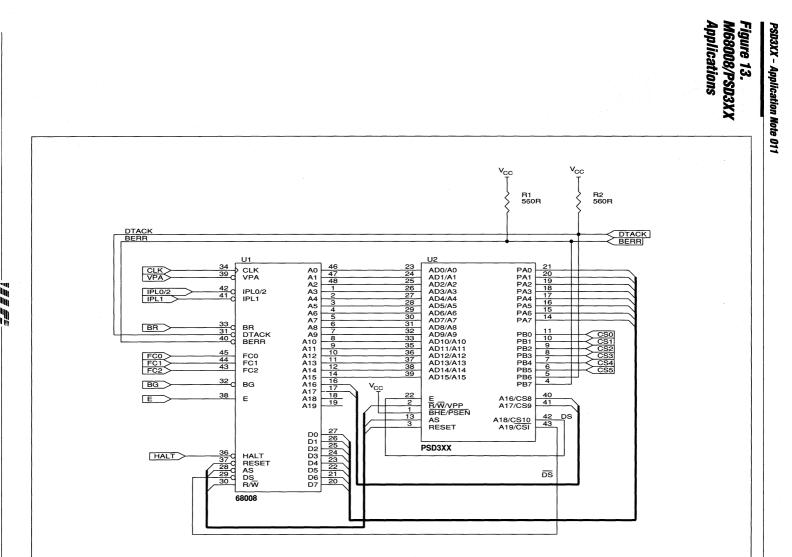

needed to avoid possible bus contention on these lines. In this application, ALE(AS) can be used as a general-purpose logic input to the PAD because the function of ALE becomes redundant in a non-multiplexed address/data bus. Also shown in Figure 13 is a method of inverting the active LOW DS (Data Strobe) M68008 output. The A19 input is enabled to the PSD internal PAD and inverted at the output of CS10 to drive the PSD3XX E input. The E input must be active HIGH but DS is active LOW and qualifies a valid data transfer. Thus, the PAD must perform a signal inversion. The E signal output from the M68008 is used to interface to Motorola 8-bit peripherals. However, with Motorola microcontroller families such as the M68HC11, the E signal output can drive the E input to the PSD3XX. Table 6 gives the configuration information associated with the design given in Figure 13.

Table 6.	Configuration	Bits	Function
M68008 to	CDATA	0	8-bit data bus
PSD3XX Interface	CADDRDAT	0	Non-multiplexed address/data
	CRRWR	1	Set R/W and E mode
	CA19/CSI	1	Enable A19 input ¹
	CALE	x	"Don't care" non-multiplexed mode
	CRESET	0	Active LOW RESET
	COMB/SEP	0	Combined memory mode
	CPAF2	X	"Don't care" Port A used for data
	CPAF1	ххн	"Don't care" Port A used for data
	CPBF	00H	Port B used for chip-selects
	CPCF	001B	Configure A16 and A17 In, CS10 Out ²
	CPACOD	00Н	CMOS drivers
	CPBCOD	3FH	CMOS drivers, PB6, PB7 open drain
	CADDHLT	0	Address latch transparent A16–A19
	CSECURITY	1	Security on

us:

1. The DS output from the M68008 drives the A19 input to the PSD3XX.

2. The internal PAD of the PSD3XX inverts the DS input to drive its own E input from the CS10 PAD output. A16 and A17 are programmed as PSD inputs.

2-270

16-Bit Non-Multiplexed Address/Data **PSD3XX** Interface to M68000

An extension to the design is shown in Figure 14, with the configuration information shown in Table 7. The M68000 interface to the PSD3XX has a 16-bit data bus. Both Ports A and B are used to convey data. The generation of an E input to the PSD3XX has been extended from

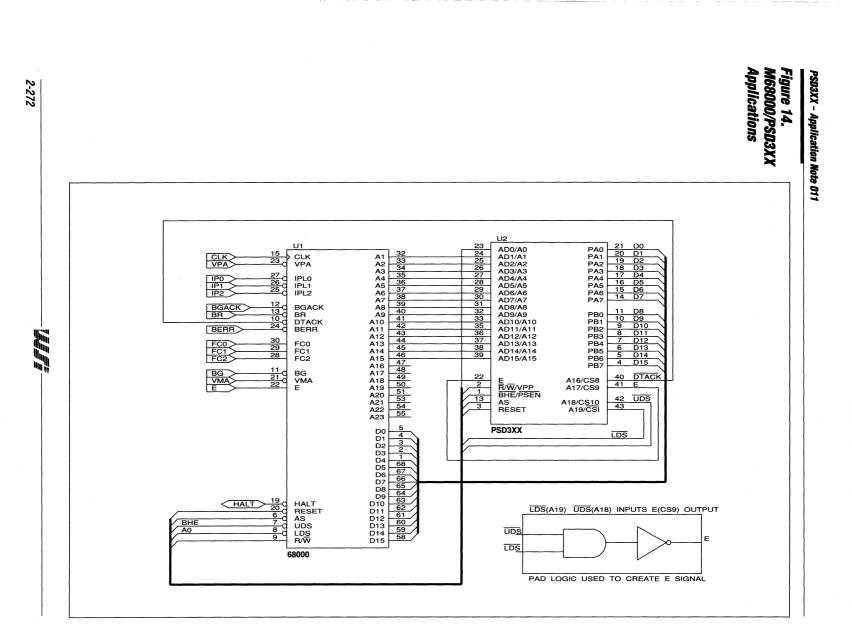

the signal inversion shown in Figure 13. The M68000 has two data strobe signals (LDS and UDS), to qualify the lower and upper bytes of a 16-bit word. The LDS and UDS lines drive the A18 and A19 inputs and are gated to provide the correct logic condition into the M68000.

Table 7.	Configuration	Bits	Function
M68000 Micro-	CDATA	1	16-bit data bus
processor to one	CADDRDAT	0	Non-multiplexed address/data
PSD3XX Interface	CRRWR	1	Set R/W and E control inputs
	CA19/CSI	1	Enable A19 input
	CALE	х	ALE polarity set at "don't care"
	CRESET	0	Active LOW RESET
	COMB/SEP	0	Combined memory mode
	CPAF2	х	"Don't care" Port A
	CPAF1	ХХ	"Don't care" Port A
	CPBF	х	"Don't care" Port B
	CPCF	110B	Enable A16 and A17 Out, A18 In ¹
	CPACOD	00H	Configure CMOS buffers Port A
	CPBCOD	00H	Configure CMOS buffers Port B
	CADDHLT	0	Transparent A16–A19
	CSECURITY	0	Security off

1. Outputs UDS and LDS drive the A18 and A19 inputs of the PAD and are gated internally to give a valid E input signal to the M68000 from the CS9 output. DTACK comes from the CS8 output.

us:

This application takes advantage of the AS input which is redundant as a latch control input in a non-multiplexed system; however, it can be used as general-purpose logic input to the PAD. CS9 and CS8 are used as output signals to the M68000's DTACK and BERR inputs.

M68000/ 2X PSD3XX Applications

With the circuit design given in Figure 15, two PSD3XX devices are used in a byte-wide mode. One PSD stores the upper data byte and one the lower data byte of a 16-bit word. By using the devices in this way, two 6-bit wide ports can be created in Port B of each device. PB6 and PB7 are programmed as open-drain outputs and wired-OR giving composite DTACK and BERR feedback signals to the M68000. The generation of the E signal for both PSD devices is achieved in the same way it was in the M68008. The LDS and UDS inputs (to U2 and U3 respectively) are inverted by the PAD and drive the relevant E inputs. Table 8 gives the configuration information relevant to both PSD devices.

Table 8.M68000 Micro-processor to TwoPSD3XX Devicesin Parallel

·				
Configuration	Bits	Function		
CDATA	0	8-bit data bus		
CADDRDAT	0	Non-multiplexed address/data		
CRRWR	1	Set R/\overline{W} and E control inputs		
CA19/CSI	1	Enable A19 input ¹		
CALE	x	"Don't care" not used		
CRESET	0	Active LOW RESET		
COMB/SEP	0	Combined memory mode		
CPAF2	х	"Don't care" Port A used for data		
CPAF1	ххн	"Don't care" Port A used for data		
CPBF	FFH	Port B used for I/O		
CPCF	111B	Configure CS8–CS10 ²		
CPACOD	00H	CMOS drivers		
CPBCOD	00H	CMOS drivers		
CADDHLT	0	Transparent A19		
CSECURITY	0	No security		

1. A19 input to the PSD3XX's is used to receive UDS and LDS from the M68000 microprocessor. These signals are inverted by the PAD of each PSD3XX and fed back to the E input of each divice.

2. CS10 of each PSD3XX drives the inverted UDS and LDS back to E input. Port C is programmed to output CS8 and CS9. Additional byte-wide peripherals can be configured to the system and selected by these signals.

 v_{cc} [A1-A18] R1 470R DTACK U2 UЗ 21 D8 20 D9 19 D10 U1 21 D0 23 24 25 26 27 28 29 30 31 32 23 AD0/A0 PA0 21 D0 20 D1 19 D2 18 D3 17 D4 16 D5 15 D6 14 D7 AD0/A0 PA0 15 32 33 34 35 36 37 38 39 40 41 24 25 26 27 28 29 30 31 32 33 AD1/A1 AD2/A2 PA1 PA2 CLK VPA CLK AD1/A1 PA1 A1 A2 A3 A4 A5 A6 A7 A8 A9 23 d VPA AD2/A2 PA2 18 D11 17 D12 PA3 AD3/A3 AD3/A3 PA3 27 IP0 **IPLO** AD4/A4 PA4 AD4/A4 PA4 26 25 25 16 D13 IP1 IP2 ~ IPL1 AD5/A5 PA5 AD5/A5 PA5 15 D14 14 D15 AD6/A6 AD7/A7 AD6/A6 PA6 PA7 IPL2 PA6 PA7 AD7/A7 BGACK 12 C BR 13 C 10 C 24 C BGACK AD8/A8 AD8/A8 11 10 9 P1 P2 7 P3 P3 6 P4 11 P8 P9 P10 P11 P12 P13 BR AD9/A9 PB0 AD9/A9 PB0 33 35 36 37 38 39 A9 41 A10 42 A11 43 A12 44 10 DTACK AD10/A10 AD11/A11 PB1 AD10/A10 PB1 35 36 PB2 PB3 AD11/A11 AD12/A12 9 BERR PB2 8 AD12/A12 37 38 39 PB3 30 FC0 FC1 A13 44 45 46 47 48 49 50 51 PB4 FC0 AD13/A13 AD13/A13 PB4 29 28 6 <u>< P5</u> < 6 FC1 A14 AD14/A14 PB5 AD14/A14 PB5 5 FC2 FC2 A15 AD15/A15 PB6 AD15/A15 PB6 v_{cc} 4 4 A16 A17 PB7 PB7 v_{cc} BG BG 21 22 22 22 22 2 <u>40</u> 41 40 41 VMA> VMA A18 A16/CS8 SL1 A16/CS8 SU1 R/W/VPP BHE/PSEN R/W/VPP BHE/PSEN È A19 A17/CS9 A17/CS9 A20 A21 A22 A23 1 1 53 54 55 13 42 13 42 AS A18/CS10 A19/CSI AS A18/CS10 A19/CSI 3 43 з 43 RESET RESET PSD3XX 5
 D0
 5

 D1
 4

 D2
 3

 D3
 2

 D4
 68

 D5
 67

 D6
 67

 D6
 67

 D9
 63

 D10
 62

 D11
 61

 D12
 60

 D14
 59

 D15
 58
 PSD3XX DO LDS UDS + [D0-D15] 19 < HALT HALT 20 vcc RESET 6 AS UDS LDS R2 470R R/W D15 68000 BERR

Figure 15. M68000/ 2X PSD3XX Applications

PSD3XX - Application Note 011

2-274

16- Bit Address/ Data PSD3XX Interface to Intel 80186

Figure 16 and Table 9 give the configuration of the PSD3XX in an Intel 80186 system. This device has a 16-bit multiplexed address/data bus. Ports A and B are used for data I/O functions, so this design can take advantage of the port expansion capability. To distinguish between memory and I/O functions, it is necessary to decode the S2 output from the 80186. This output line goes directly to the PAD through Port C bit zero. When LOW, this signal qualifies a memory access; when HIGH, it indicates that an I/O operation is in progress. Programming the PAD can use this input to differentiate between I/O and memory access.

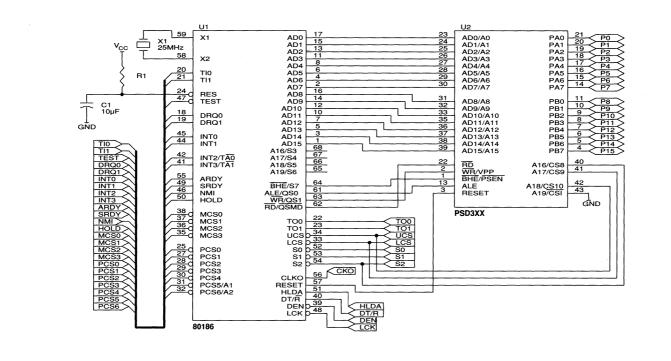

Two additional signals from the 80186 are UCS and LCS (upper chip-select and lower chip-select, respectively). The signals have been included in the system to help minimize the requirement for additional glue logic. Both can be used in the PAD decoder to position sections of EPROM and RAM. The UCS is designed to decode addresses FFFFH to a programmable limit. The 80186 begins executing from memory location FFF0H after a system reset: thus, this signal should be used to select EPROM that contain a system initialization sequence. The LCS has been designed to program from 00000H up to a programmable limit. In this example, the RESET line from the 80186 is active HIGH and drives the RESET input of the PSD301 which is programmed to respond to a HIGH level.

Table 9.	Configuration	Bits	Function
Intel 80186 to	CDATA	1	16-bit data bus
PSD3XX Configu-	CADDRDAT	1	Multiplexed address/data
ration for CMOS	CRRWR	1	Set RD and WR mode
Ports	CA19/CSI	1	CSI input to PAD
	CALE	x	Active HIGH ALE
	CRESET	0	Active LOW RESET
	COMB/SEP	0	Combined memory mode
	CPAF2	х	I/O Port A
	CPAF1	ххн	I/O Port A
	CPBF	FFH	I/O Port B
	CPCF	000B	Input A16–A18
	CPACOD	00H	CMOS drivers
	CPBCOD	00H	CMOS drivers
	CADDHLT	0	Latched A16–A19
	CSECURITY	0	No security

us

PSD3XX - Application Note 011

Figure 16. Intel 80186/ PSD3XX Applications

2-276

100 #

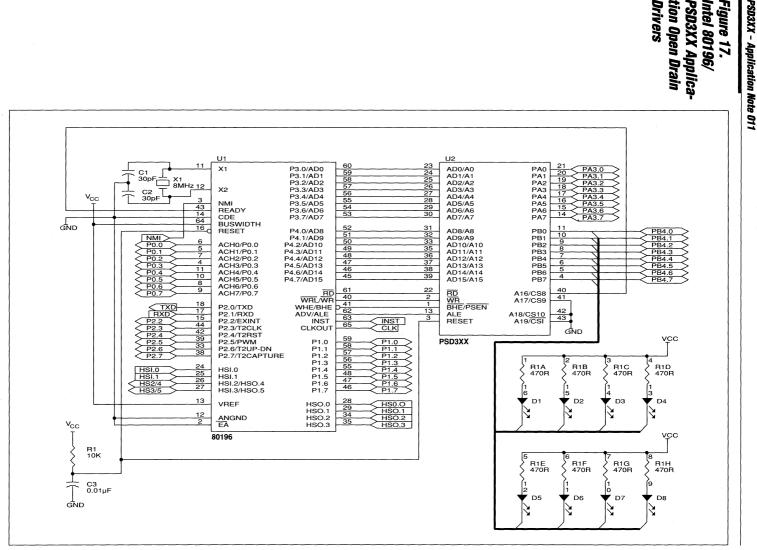

16-Bit Address/ Data PSD3XX to Intel 80196 Interface In Figure 17, the PSD3XX is connected to an Intel 80196 microcontroller. In many microcontroller applications it is necessary to illuminate indicators (such as LEDs). Here, the PSD3XX is used to drive LED indicator displays. High-efficiency LEDs can be illuminated through the open drain outputs of Port B. The configuration information in Table 10 indicates that Port B has open drain drivers to sink LED illumination current.

Table 10.
Intel 80196 to
PSD3XX Configu-
ration for LED
Drivers

Configuration	Bits	Function		
CDATA	1	16-bit data bus		
CADDRDAT	1	Multiplexed address/data		
CRRWR	0	Set RD and WR mode		
CA19/CSI	x	"Don't care" A19/CSI		
CALE	0	Active HIGH ALE		
CRESET	0	Active LOW RESET		
COMB/SEP	0	Combined memory mode		
CPAF2	0	I/O Port A		
CPAF1	00H	I/O Port A		
CPBF	FFH	I/O Port B		
CPCF	000B	Output A16-A18		
CPACOD	00H	CMOS drivers		
CPBCOD	FFH	Open drain drivers		
CADDHLT	X	"Don't care" (not used)		
CSECURITY	0	No security		

2

US:

Drivers

Intel 80196/

igure

17.

PSD3XX -

2-278

11 B

Interfacing the PSD3XX to 8-Bit Microprocessors Z80 and M6809 Applications

Figures 18 and 19 illustrate the PSD3XX used with 8-bit microprocessors, such as the Z80B and M6809B. Tables 11 and 12 reflect the configuration of each design, respectively. The mode of operation is 8-bit data bus with a non-multiplexed address/data input. In the case of the Z80B, $\overline{CS8}$ - $\overline{CS10}$ inputs are tied to $\overline{M1}$, \overline{MREQ} , and \overline{IORQ} respectively. Since

the PAD can be programmed to distinguish between memory and I/O operations, the Z80B system has access to an 8-bit data port Port B. With the M6809B system, $\overline{CS8}$ is used to respond to the MRDY input of the microprocessor and $\overline{CS9}$ and $\overline{CS10}$ are available for external chip-select.

Table 11. Z80B to PSD3XX Interface

Configuration	Bits	Function		
CDATA	0	8-bit data bus		
CADDRDAT	0	Non-multiplexed address/data		
CRRWR	0	Set RD and WR mode		
CA19/CSI	0	CSI input		
CALE	х	"Don't care" (not used)		
CRESET	0	Active LOW RESET		
COMB/SEP	0	Combined memory mode		
CPAF2	x	"Don't care" Port A used for data		
CPAF1	ххн	"Don't care" Port A used for data		
CPBF	FFH	I/O Port B		
CPCF	000B	Configure A16–A18 as inputs		
CPACOD	00H	CMOS drivers		
CPBCOD	00H	CMOS drivers		
CADDHLT	0	A16–A18 transparent ¹		
CSECURITY	0	No security		

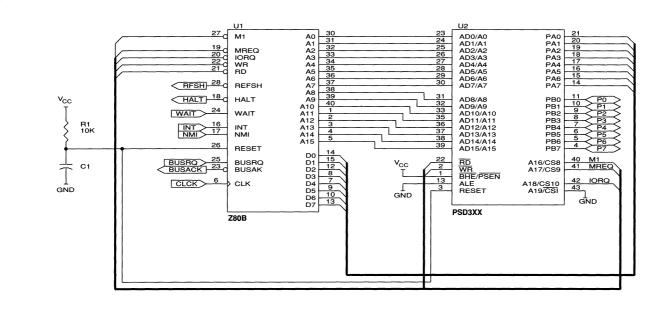

A16–A18 inputs are used as M1, MREQ, and IORQ inputs to the PAD from the Z80B output. Use the ALIAS
command in the support software.

Table 12.	Configuration	Bits	Function
M6809 to PSD3XX	CDATA	0	8-bit data bus
Interface	CADDRDAT	0	Non-multiplexed address/data
	CRRWR	1	Set R/W and E mode
	CA19/CSI	0	Enable CSI input
	CALE	x	"Don't care" non-multiplexed mode
	CRESET	0	Active LOW RESET
	COMB/SEP	0	Combined memory mode
	CPAF2	x	"Don't care" Port A used for data
	CPAF1	ххн	"Don't care" Port A used for data
	CPBF	FFH	Port B used for I/O
	CPCF	111B	CS8–CS10 outputs
	CPACOD	00H	CMOS drivers
	CPBCOD	00H	CMOS drivers
	CADDHLT	0	"Don't care"
	CSECURITY	0	No security

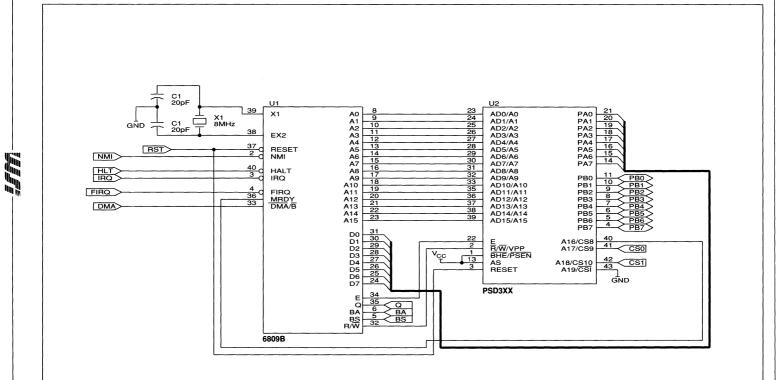

PSD3XX - Application Note 011

Figure 18 Z80B/PSD3XX Applications

2-280

2-281

PSD3XX - Application Note 011

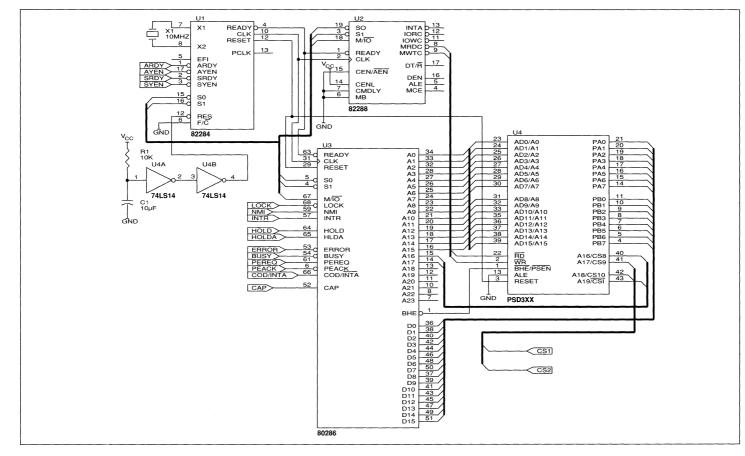

PSD3XX Interface to the Intel 80286

Figure 20 provides a schematic of the PSD3XX interface to an 80286. The device is configured for a 16-bit data bus in the nonmultiplexed mode. Ports A and B are converted automatically for use as a bi-directional data path into the PSD3XX. (This was also the case for the M68000 microprocessor). To eliminate (or lessen) glue logic, $\overline{CS1}$ and $\overline{CS2}$ are generated from the internal PAD. This is programmed as an address decoder. Table 13 provides configuration information relevant to this system design.

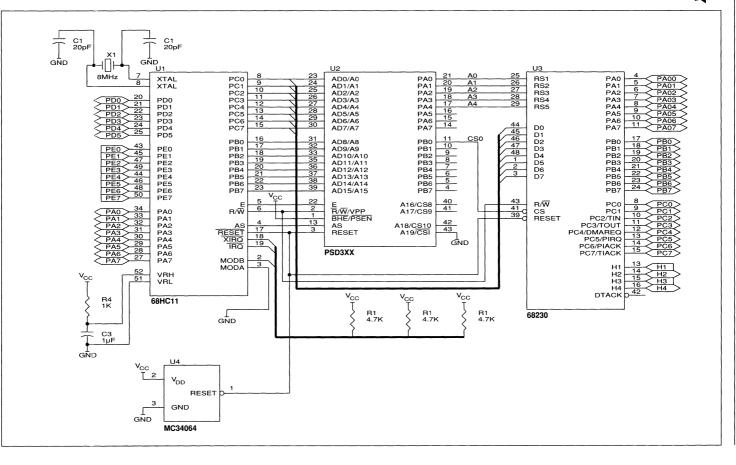
Table 13.	Configuration	Bits	Function
Intel 80286 to	CDATA	1	16-bit data bus
PSD3XX Interface	CADDRDAT	0	Non-multiplexed address/data
	CRRWR	0	Set RD and WR control inputs
	CA19/CSI	1	Enable A19 input
	CALE	х	"Don't care" non-multiplexed mode
	CRESET	1	Active HIGH RESET
	COMB/SEP	0	Combined memory mode
	CPAF2	х	"Don't care" Port A used for data
	CPAF1	ххн	"Don't care" Port A used for data
	CPBF	ххн	"Don't care" Port B used for data
	CPCF	011B	A16 input; $\overline{CS9}$ and $\overline{CS10}$ outputs
	CPACOD	00H	CMOS drivers
	CPBCOD	00H	CMOS drivers
	CADDHLT	0	Transparent A16–A19 input
	CSECURITY	0	No security

us:

Figure 20 Intel 80286/ PSD3XX Applications

2

2-283


External Peripherals to the PSD3XX/M68HC11 Configuration

The configuration in Figure 21 illustrates how the user can feed address outputs from the internal latch to Port A. Addresses A0-A7, derived from a multiplexed address/data bus, can go directly to an additional peripheral without the need for an additional octal latch such as the 74HC373 or 74HC573. Port A can be used for address outputs A0-A7 while PB0-PB7 can be used as chip-selects. Lines A0-A4 of the PSD3XX drive the RS1-RS5 register select inputs of the M68230. For the M68HC11, the eight bits of address and data come from its PC port PC0-PC7 (AD0-AD7) and are latched by the AS input. Configured in this mode, the PSD3XX can address and map additional peripheral chips. Port A of the PSD3XX conveys the internally latched

address outputs A0-A7 to the output and can be used to address registers in the peripheral chips while Port B outputs can place individual peripherals at peripheral or memorymapped boundaries. Thus, a number of additional chips can be selected through Port B. This effectively can increase the port density of the system design. The general I/O capability can then be extended to extra ports, timers, UARTs, serial communications channels, keyboard interface devices, CRT controllers, etc. without the need for additional glue logic. Table 14 highlights the configuration information programmed into the PSD3XX when configuring the M68HC11 to a M68230 peripheral.

Table 14.	Configuration	Bits	Function
M68HC11/PSD3XX	CDATA	0	8-bit data bus
to External	CADDRDAT	1	Multiplexed address/data
Peripheral	CRRWR	1	Set R/W and E mode
M68230	CA19/CSI	0	Set power-down mode
Interface	CALE	0	Active HIGH AS
	CRESET	0	Active LOW RESET
	COMB/SEP	0	Combined memory mode
	CPAF2	0	Port A = address A0–A7
	CPAF1	FFH	Port A set for address
	CPBF	00H	Port B set for chip-select
	CPCF	111B	Port C set for chip-select
	CPACOD	оон	CMOS buffers
	CPBCOD	00H	CMOS buffers
	CADDHLT	х	"Don't care"
	CSECURITY	0	No security

us:

100 M

2-285

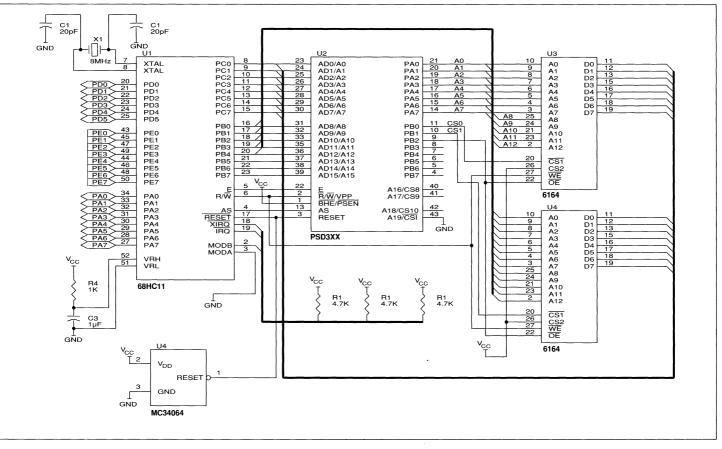

Additional External SRAM

Figure 22 illustrates how additional SRAMs can be configured into a system. This PSD3XX configuration is not limited to external peripheral expansion; it can also be used to add additional memory without the need for external glue logic. With an 8-bit address/ data multiplexed scheme, the higher-order addresses (A8–A15) are non-multiplexed. These address lines are fed directly to the external SRAM from the microcontroller and do not need to go through the PSD3XX These lines can drive the RAM chip directly. Thus the M68HC11 system, which is highly memory-intensive and requires more RAM than the microcontroller and PSD3XX can supply, can take advantage of the configuration shown in Figure 23 which is detailed in Table 15.

<i>Table 15.</i>	Configuration	Bits	Function
M68HC11/PSD3XX	CDATA	1	8-bit data bus
Configured to	CADDRDAT	0	Multiplexed address/data
Address	CRRWR	1	Set R/W and E mode
Additional SRAM	CA19/CSI	1	Set power-down mode
	CALE	0	Active HIGH AS
	CRESET	0	Active LOW RESET
	COMB/SEP	0	Combined memory mode
	CPAF2	0	Port A = address A0–A7
	CPAF1	FFH	Port A set for address
	CPBF	00H	Port B set for chip-select
	CPCF	111B	Port C set for chip-select
	CPACOD	00H	CMOS buffers
	CPBCOD	00H	CMOS buffers
	CADDHLT	· X	Latched A16–A19 "don't care"
	CSECURITY	0	No security

us:

EFFF.

2-287

PSD3XX - Application Note 011

Additional External SRAM (Cont.)

Figure 23 illustrates, and Table 16 details, a similar system using the Signetics SC80C451. This microcontroller has many ports and some SRAM but requires off-chip EPROM to store programmed instructions. This device is similar to the 8051/31 family which uses the active LOW PSEN signal to differentiate between executable code and

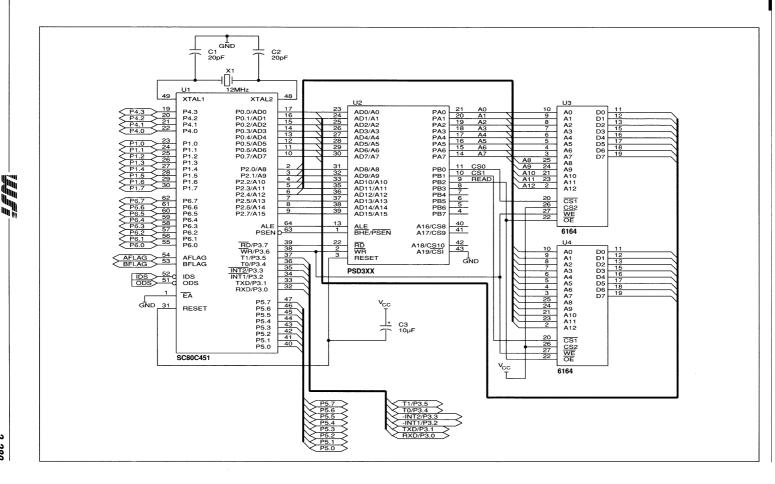

data. Since it is a multiplexed 8-bit machine, it can use the on-chip latches. In highly RAMintensive applications, an additional two 8K x 8 SRAM chips can be included and selected through Port B. If additional SRAM chips are not needed, Ports A and B can recreate Ports 0 and 2 which are lost in addressing external memory.

Table 16.
SC80C451/
PSD3XX
Configured to
Address
Additional SRAM

Configuration	Bits	Function
CDATA	1	8-bit data bus
CADDRDAT	0	Multiplexed address/data
CRRWR	0	Set \overline{RD} and \overline{WR} mode
CA19/CSI	0	Set power-down mode
CALE	0	Active HIGH ALE
CRESET	0	Active LOW RESET
COMB/SEP	1	Separate data/program memory
CPAF2	0	Port A = address A0–A7
CPAF1	FFH	Port A set for address
CPBF	00H	Port B set for chip-select
CPCF	111B	Port C set for chip-select
CPACOD	00H	CMOS buffers
CPBCOD	00H	CMOS buffers
CADDHLT	0	"Don't care" (not used)
CSECURITY	0	No security

us:

Figure 23. SC80C451/ PSD3XX to 16K SRAM Applications

2

2-289

PSD3XX Used in Track Mode

Figure 24 illustrates a design that utilizes the track mode of operation that has been discussed but not illustrated in an application. Here. Port A passes or tracks through the multiplexed address and data of the 80196. Address and data outputs AD0-AD7 from the 80196 appear on the PSD3XX Port A pins. In this mode, the SRAM, shown in Figure 24 as U4, can be accessed either by the 80196 (used in byte mode) or by a second processor in the host system. The SRAM in the design can be used as a common resource. An example would be a system in which the host uses the memory to pass parameters to the local 80196. Table 17 gives the configuration data for an 80196/PSD301 interface to SRAM using Track Mode.

A Direct Memory Access can transfer data to the common memory via a BUSRQ/BUSGR handshake. Note that the PAD in the PSD3XX controls the three-state condition of the octal latch U3 74HCT373 enabling the host system to control SRAM addresses A0–A7. Port A of the PSD3XX is also put into a three-state condition during host-to-SRAM activity. In the design given in Figure 24, Port B outputs PB0, PB1, and PB2 are used to control the SRAM inputs CE, OE, and WR respectively. Also, A8, A9, and A10 are fed through the PAD as identity functions to the open drain drivers of PB3, PB4, and PB5 respectively. There is no track-through feature for these address lines; however, if they are fed through the PAD, they can drive the external memory resource as if they were tracked through.

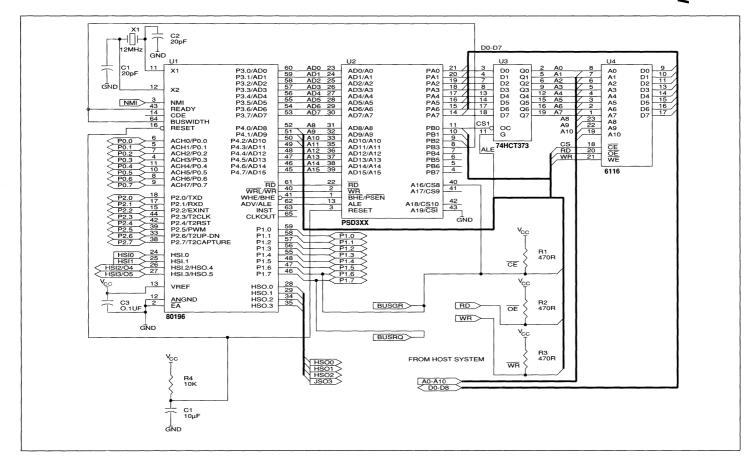

The M80196 can operate in either byte- or word-wide mode controlled by its BUSWIDTH input. In this application, the PB6 output drives the BUSWIDTH line to switch between the byte-wide bus of the external SRAM and the word-wide interface of the PSD3XX. All Port B outputs, with the exception of PB6, are configured as open-drain. Provided the host system also has open drain/ collector drivers, both systems can access the SRAM without bus conflict. The only additional circuitry required would be the pull-up resistors.

Table 17. Intel 80196 to PSD3XX Used to Access External SRAM in Track Mode

Configuration	Bits	Function	
CDATA	1	16-bit data bus	
CADDRDAT	1	Multiplexed address/data	
CRRWR	0	Set RD and WR mode	
CA19/CSI	0	Set power-down mode	
CALE	0	Active HIGH ALE	
CRESET	0	Active LOW RESET	
COMB/SEP	0	Separate data/program memory	
CPAF2	1	Address/data (Track Mode)	
CPAF1	XXH	"Don't care" in Track Mode	
CPBF	00H	Port B set for chip-select outputs	
CPCF	111B	Port C set for logic outputs	
CPACOD	00H	CMOS buffers	
CPBCOD	FFH	Open drain buffers	
CADDHLT	X	Latched A16–A19 "don't care"	
CSECURITY	0	No security	

us:

Figure 24. Intel 80196/ PSD3XX Track Mode to External SRAM

2-291

Programmable Peripheral **Application Note 011** Software Support

Chapter 3

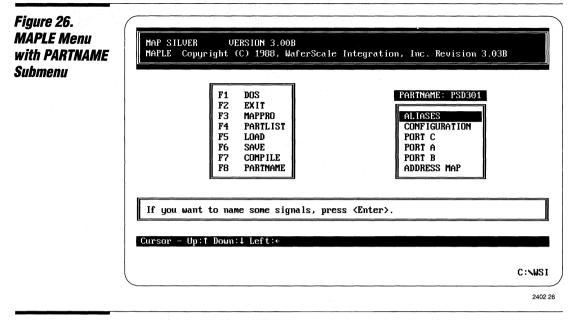
The support software for both PSD3XX family and MAP168 memory-mapped peripheral devices is designed to run on IBM PC XT/AT or 100% compatible systems. It is menu-driven and very userfriendly. In many cases it has the capability of preventing the user from creating invalid configurations. For example, in a nonmultiplexed system with a 16-bit data bus. Ports A and B are used for data I/O. The software recognizes this and prevents the

user from inadvertently programming Ports A and B as regular ports.

When running in the IBM PC environment, the PSD development software creates the menu shown in Figure 25. Initially, the designer selects the part type with the user key F8 or moves the screen cursor to PARTNAME. In the example shown, the selection for the part type is PSD301.

F1 DOS F2 EXIT F3 MAPPRO F4 PARTLIST F5 LOAD F6 SAVE F7 COMPILE F8 PARTNAHE F8 PARTNAHE
Specify PARTNAME to be configured and press <enter>.</enter>

2402 25


The menu listed to the left of Figure 25 links the function keys and their association. F1 suspends the MAPLE software to DOS for file editing or updating. F2 exits the program and returns the user to the DOS environment. F3 selects the programmer option so the user can program the compiled object file into the PSD301 device provided a programmer is connected to the system. The LOAD selection (F5), loads an existing program into the MAPLE environment for editing and compiling. F6 saves that program under a user-

us

defined name. F7 compiles the user-generated file into an object file that can be transferred to the programmer. F8 provides part type selection, either PSD301 or MAP168.

Figure 26 illustrates a second menu to the right of the main menu. The list shows ALIASES, CONFIGURATION, PORT C, PORT A, PORT B, and ADDRESS MAP. The designer selects each choice, starting from ALIASES, and moves down through the list configuring each option.

PSD3XX - Application Note 011

ALIASES Menu

The ALIASES selection lets the user individually define the port pins with user-relevant names. The circuit diagram shown in Figure 13 uses an M68008 processor, with BERR and

DTACK signals coming from the PAD, as well as the remaining CS0, CS5 chip-select outputs.

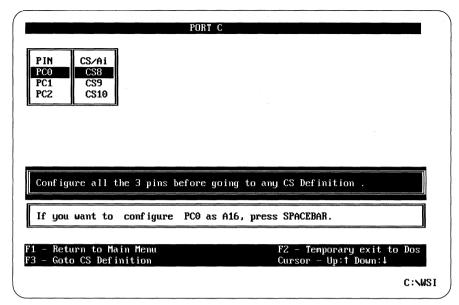

us:

Figure 27. CONFIGURATION Menu

Figure 27 gives the CONFIGURATION menu. In this case, the PSD301 has been configured for the system shown in Figure 10: interfacing to an 80C31; the 8-bit data/address bus is multiplexed. The chip-select input is chosen over the A19 input. The RESET and ALE polarity is set as active HIGH with RD and WR control inputs enabled. The inputs A16–A19 are transparent and separate strobes are enabled for SRAM and EPROM. This feature activates the \overrightarrow{PSEN} input. In this configuration it is possible for the SRAM and EPROM to share the same address space. After the device is configured, Ports A, B, and C can be set up. If the main menu is invoked by selecting F1 (Figure 28), Port C can be selected as shown in Figure 26. Here, the individual selection of \overrightarrow{CS} /Ai configures the three pins as outputs.

ddress/Data Mode (Multiplexed: MX, Non-Multiplexed: NM)	MX
ata Bus Width (8/16 bits) SI (Power-Down/Chip Enable) or A19	8 CSI
eset Polarity (Active Low: LO, Active High: HI)	ні
LE Polarity (Active Low: LO, Active High: HI)	HI
R and RD (WRD) or R/W and E (RWE)? 19-A16 Transparent or Latched by ALE (Trans: T, Latched: L)	WRD
sing different READ Strobes for SRAM and EPROM ? (Y/N)	Ŷ
eparate SRAM and EPROM address spaces ? (Y/N)	Ÿ
f SRAM and EPROM share the same Address space, press SPACEB	AR.

Figure 28. Port C Configuration Menu

2402 28

Figure 29. Port A Configuration Menu, Part 1. Figure 29 shows the configuration of Port A. This could be applied to the example shown in Figure 21 which shows the PSD301 interfacing to an M68230. Port A passes the PSD301's internally latched address lines A0–A4 directly to the M68230. PA5–PA7 are configured as port outputs and can be used as general I/Os.

enfimure rest win to be Address on LO	P IN PAO	Ai∕IO A0	CMOS/OD CMOS
onfigure each pin to be Address or I/O. ins configured as Addresses should	PA1	A1	CMOS
ormally have CMOS outputs.	PA2	AZ	CMOS
	PA3	A3	CMOS
	PA4	A4	CMOS
	PA5	10	CMOS
o configure PAO as I/O, press SPACEBAR.	PA6	IO	CMOS
	PA7	IO	CMOS

us:

Figure 30. Port A Configuration Menu, Part 2.

Port A can be programmed to be either address I/O or track mode, as illustrated in Figure 30. Track mode is selected if the designer wants to program the device as shown in Figure 24.

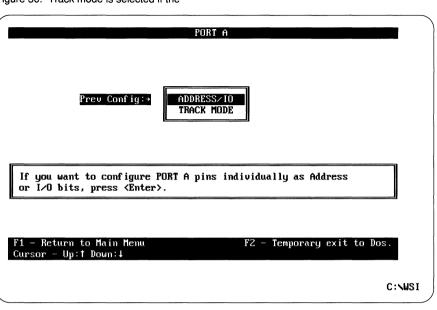


Figure 31. Port B Configuration Menu 2402 30

Figure 31 gives the configuration of Port B. This is similar to the configuration pattern for the M68008 shown in Figure 13. Here, $\overline{CS6}$ and CS7 have been programmed as opendrain outputs connected to the microprocessor's DTACK and BERR, respectively.

PIN	CS/10	CMOS/OD		
PB0	CS0	CMOS		
PB1	CS1	CMOS		
PB2	CS2	CMOS		
PB3	CS3	CMOS		
PB4	CS4	CMOS		
PB5	CS5	CMOS		
PB6	CS6	00		
PB7	CS7	OD		
Ifuou	have CM	DS output	for PB7 press SPACEBAR.	

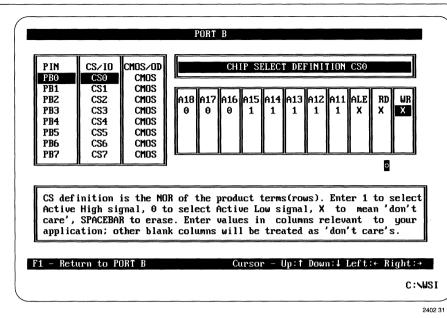
us

Figure 32. ADDRESS MAP Menu

Figure 32 shows the ADDRESS MAP menu. The designer can enter a binary code for the address range of the various select lines; ES0–ES7, RS0, and CSP, being the EPROM, SRAM, and PERIPHERAL assignments, respectively. A space for individual hexadecimal files is reserved under the FILENAME section. The Intel MCS files are listed as they would be compiled and programmed into the device.

After configuration has been established, the user can return to the main menu and select the COMPILE option. The configuration is compiled and converted to a JEDEC array program map.

When successfully finished, the designer can select the MAPPRO option (see Figure 25), and when a WSI MAGICPRO[™] programmer


is available in the PC system, finalize the design by programming a PSD301.

2402 32

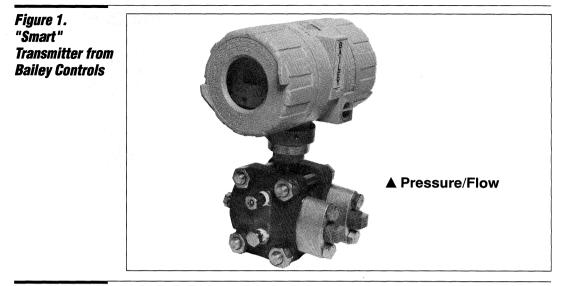
The Address Map for Port B can be configured as shown in Figure 33. Per Figure 31, depress function key F3 to invoke the chip select definition. The entries can be made for logic HIGH, LOW, or "don't care" conditions.

Figure 33. Port B Configuration Menu with Address Map

Summary

The PSD3XX microcontroller peripheral with memory, supported with low-cost software and programming capability form WSI, greatly simplifies the overall design of microcontroller based systems. The key advantage is the extensive condensing of glue logic, latches, ports, and discrete memory elements into a single-device, enhancing the reliability of the final product. Applications for the device extend to practically any area that uses microcontrollers or microprocessors, from modems and vending machines to disc controllers and high-end processor systems.

us:



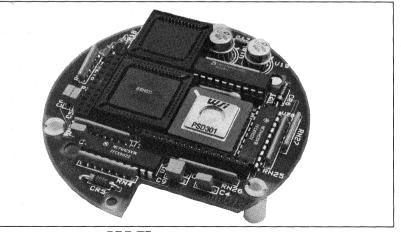
Programmable Peripheral Application Note 013 The PSD301 Streamlines a Microcontroller-based Smart Transmitter Design

By Seyamak Keyghobad – Bailey Controls, and Karen Spesard – WSI

Abstract	A smart transmitter design is described which takes advantage of the integration capabilities and flexibility of WSI's PSD301 microcontroller peripheral. The following discussion illustrates how the	PSD301, in effect, was responsible for eliminating an extra 2.5 inch diameter board in a system where real estate is at a premium by reducing the number of components from 12 down to 5.
Introduction	Designers of systems using micro- controllers and microprocessors often face the problem of how to integrate peripheral logic and memory functions into their designs without using many discrete chips and large areas of board space. For example, when external EPROM and SRAMs are configured into systems with ROMless microcontrollers, general I/O ports are typically sacrificed for address, data input/output, and control functions. When these I/O ports are depleted, the total chip count of the system is increased by requiring the use of additional external ports and steering logic. Designers, who have limited board space, such as found in the disk drive,	modem, cellular phone, industrial/process control, and automotive industries, find this a critical problem. The PSD301 programmable peripheral device from WSI solves this problem by integrating all SRAM, EPROM, program- mable decoding and configurable I/O port functions needed in 8 or 16-bit micro- controller designs into a single-chip user-configurable solution. This is illustrated in the following industrial control application where the PSD301 eliminates seven chips and saves the designer from needing another board in the system.
The Design Application	The smart transmitter, shown in Figure 1, was developed by Bailey Controls, a manufacturer of process control instruments, to support a popular field bus protocol. One of its functions in this sensor application is to measure pressure, differential pressure, and flow rates through pipes in industrial environments such as chemical plants, oil refineries, or utility plants. A host system monitors the transmitter via a process control network. The completed transmitter design consists of three main boards. The first board includes the power supply and communications hardware to provide power to the rest of the system and feed- back to the process control network. It consists of communications transformers and line drivers/receivers.	The second board is the digital micro- controller board and contains the 68HC11 microcontroller as well as the PSD301 programmable peripheral, a PLD, UART, and LCD display. Its function is to communicate and receive the inputs from the third board, process the data, and display the appropriate results to the LCD. The third board or input board is mostly analog. It receives inputs from string gauge sensors which use a bridge circuit for measuring pressure using a diaphragm. The input board then converts the signals so the microcontroller can read them.

PSD301 - Application Note 013

Design Considerations


The smart transmitter system is rather small. Its case is only 2.5 inches in diameter and thus requires boards that fit this small form factor as shown in Figure 2. Not surprisingly, the major design consideration during development was board space. This was especially true for the microcontroller/digital board where real estate is at a very high premium.

One of the problems was that there were already requirements for the 68HC11 microcontroller, a 256K EPROM, 16K SRAM, a PLD, TTL logic, a UART, and an LCD display on the digital board. This meant extending the number of boards used beyond one unless a way could be found to integrate some of these elements.

Other important considerations, or goals actually, for the design were to reduce power consumption to less than 2.4W, improve reliability, lower design costs, and shorten the time-to-market.

To meet these objectives, Bailey Controls looked to WSI's user-configurable peripheral, the PSD301, for its integration capabilities, its flexibility, and its low power of less than 35 mA active and 90 μ A typical powerdown.

Figure 2. The Bailey Smart Transmitter Board Using the WSI PSD301.

ur:

2

PSD301 Architecture

The PSD301 is a field programmable device that has the ability to interface to virtually any 8- or 16-bit microcontroller without the need for external glue logic. This is possible because the PSD301 combines the elements necessary for a complete microcontroller peripheral solution, such as user-configurable logic, I/O ports, EPROM and SRAM, all into one device. The functional block diagram of the PSD301 in Figure 3 shows its main sections: the internal latches and control signals, the programmable address decoder (PAD), the memory, and the I/O ports. The control signals and internal latches in the PSD301 were designed so interfacing to any microcontroller would be easy and require no glue logic. For instance, the PSD301 can interface directly to all multiplexed (and non-multiplexed) 8- and 16-bit microcontroller address/data buses because it has two on-chip 8-bit address latches. This means no external latches are required to interface to multiplexed buses. It also has programmable polarity on the control inputs ALE/AS and RESET, so they can be configured to be active high or active low.

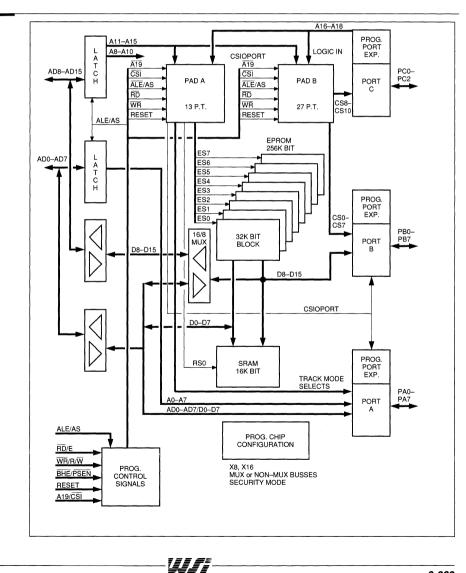
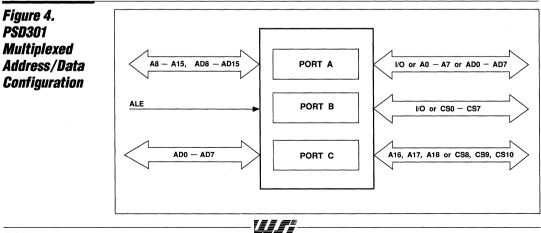


Figure 3. PSD301 Architecture

2-303

PSD301-Application Note 013

PSD301 Architecture (Cont.) The other control signals, \overline{RD}/E , and $\overline{WR}/R/\overline{W}$, are also programmable as /RD and /WR or E and R/\overline{W} , enabling direct interface to all Motorola- and Intel-type controllers.


The programmable array decoder (PAD) is an EPROM-based reprogrammable logic "fuse" array with 11 dedicated inputs, up to 4 general-purpose inputs, and up to 24 outputs. The PAD is used to configure the 8 EPROM blocks on 2K word boundaries and the SRAM on a 1K word boundary anywhere within a 1 Meg address space. It is also used to generate a base address for mapping ports A and B, as well as to provide mapping for the track mode. The PAD, like a traditional PLD, can generate up to eight sum-of-product outputs to extend address decoding to external peripherals or to implement logic replacement on a board.

Memory in the PSD301 is provided by EPROM for program and table storage and SRAM for scratch pad storage and development and diagnostic testing. The EPROM density is 256K bits and the SRAM density is 16K bits. Both can be operated in either word-wide or byte-wide fashion, which translates to a 32K x 8 or 16K x 16 EPROM configuration and a 2K x 8 or 16K x 16 SRAM configuration. As described above, the EPROM is divided into 8 blocks (of 4K x 8 or 2K x 16), with each block typically on a 2K boundary locatable within a 1 Meg address space.

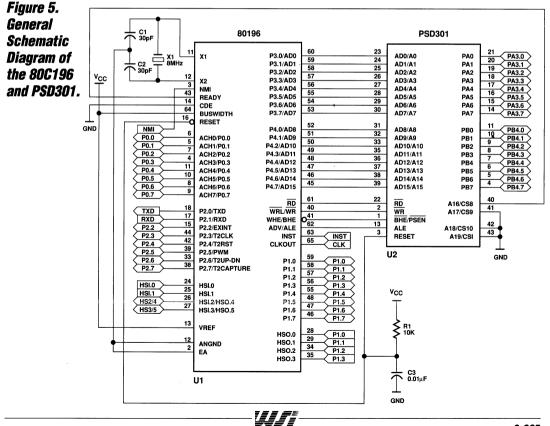
There are 3 ports on the PSD301 that are highly flexible and programmable: Ports A, B and C, illustrated in Figure 4. Port A is an 8-bit port that can be configured in a variety of ways. For example, if the PSD301 is in the multiplexed mode, port A can be configured pin-by-pin to be an I/O or a lower order latched address. Alternatively, port A can be configured in the track mode to transfer 8 bits of address and data inputs through port A. This enables the microcontroller to share external resources, such as additional SRAM, with other controllers. In either case, each port A output can be configured to be CMOS or open drain. If the PSD301 is in the non-multiplexed mode, port A becomes the lower order data for the chip.

Port B is another flexible 8-bit port. In the multiplexed mode or 8-bit non-multiplexed mode, each pin on port B can be customized to function as an I/O or a chip-select output. The chip-select signals are determined by the PAD programming and are used for general logic replacement or to extend the address decoding to external peripherals. Each pin in this mode can also be programmed to have a CMOS or an open drain output. In the 16-bit non-multiplexed mode, port B becomes the higher order data for the chip.

Port C is the third port which is available on the PSD301. It is a 3-bit port that can be programmed on a pin-by-pin basis to be chip-select outputs and/or general-purpose logic inputs or addresses to the PAD. Some uses for port C might be to extend the address range to 1 Meg, or to create finer address decoding resolution down to 256. Or, one might use port C to help create a simple state machine.

Simple Interfaces to the PSD301.

One of the overwhelming advantages of the PSD301 is its ability to interface to virtually any microcontroller without any glue logic, while providing additional I/O ports and memory. This is accomplished by configuring or programming the part to function in an operational mode geared for a specific application.

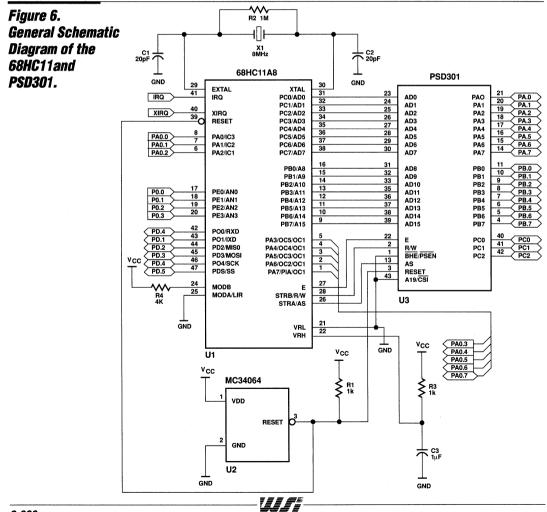

For instance, there are 45 configuration bits on the PSD301 that have to be programmed in addition to the EPROM prior to usage. These configuration bits are determined during development by the designer using the WSI MAPLE software package. After the configuration bits are determined, the EPROM code and configuration data can be merged during compilation and the part subsequently programmed.

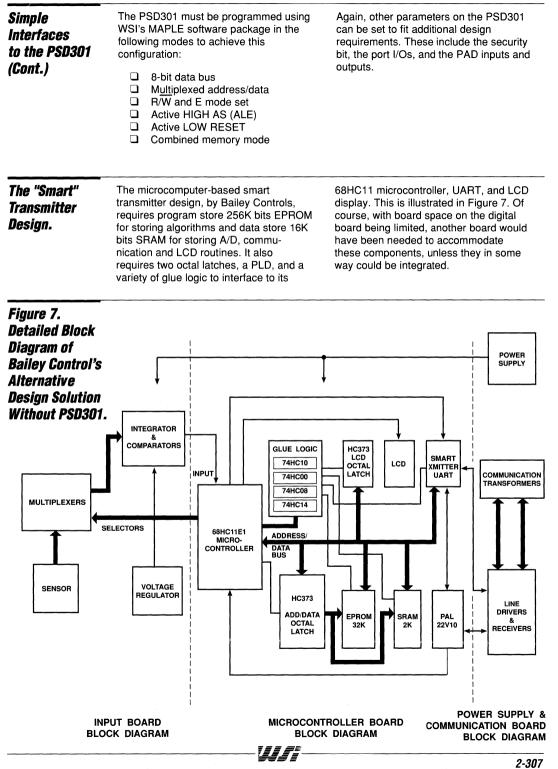
Interfacing the PSD301 to different microcontrollers is accommodated by the

configuration bits discussed above. To illustrate how this works, two examples are provided.

The first example is with the 80C196 microcontroller. This 16-bit microcontroller from Intel interfaces directly to the PSD301, providing it with additional off-chip program store EPROM and data store SRAM, as well as the flexibility that comes with three additional I/O ports. As illustrated in Figure 5, the 80C196's 16-bit multiplexed address/ data bus and control signals (RD,WR, BHE, ALE, RESET) connect directly to the PSD301. This is achieved with the PSD301 in the following configuration:

- 16-bit data bus
- Multiplexed address/data
- RD and WR mode set
- Active HIGH ALE
- Active LOW RESET
- □ A16-A18 configured as output
- Combined memory mode


PSD301 - Application Note 013


Simple Interfaces to the PSD301 (Cont.)

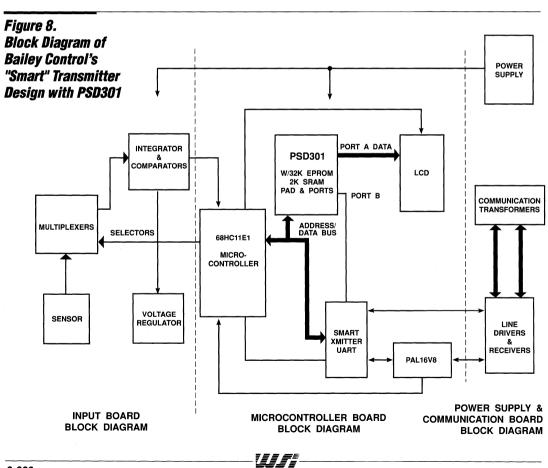
The other configuration options that are available, but not listed above, are application dependent and can be changed to meet the requirements of the design. For instance, on pin 43 (A19/CSI), the powerdown option CSI could be selected if power consumption savings is important. If it isn't and another logic input to the PAD would be helpful, A19 could be selected. And, if open-drain drivers are important on one of the ports to drive a display, for example, they also could be selected instead of CMOS drivers.

All other microcontrollers have simple interfaces to the PSD301 as well. This includes all the variations of microcontrollers in the 8-bit 68HC11 family from Motorola. For simplicity's sake, the PSD301 interface to 68HC11 versions with multiplexed address/data buses will be discussed, although the nonmultiplexed versions will interface to the PSD301 in a similar manner, except in this case port A will become dedicated for 8-bit data.

Figure 6 illustrates the interconnections between the PSD301 and the 68HC11 microcontroller with multiplexed address/data buses. Again, all the address/data connections are direct, as well as the control signals (E, R/W, AS, and /RESET). Because BHE/PSEN is not used, this PSD301 input signal is tied HIGH.

2

PSD301-Application Note 013


The "Smart" Transmitter Design (Cont.) This is where the PSD301 provides exceptional value. As discussed, the PSD301 already integrates EPROM,¹ SRAM,² a PLD, and other glue logic all on one chip. It interfaces to the 68HC11 directly and actually integrates 8 chips from the alternative design into one, eliminating the need to add another board. The resultant architecture is illustrated in Figure 8.

Note that in the alternative design shown in Figure 7, ports typically lost when connecting the microcontroller to external memory had to be recreated externally with latches and buffers when memory was connected to the microcontroller. With the PSD301, these ports are recreated internally, eliminating the latches and buffers.

For example, to interface the PSD301 to the 24-character LCD display, each pin of

port A is configured as an I/O and mapped to the byte-wide LCD data inputs. Then to write to or read from the LCD display, port A is accessed like a memory-mapped peripheral via an address offset from the base CSIOPORT defined in the PAD. Since port A is qualified by and handled through the PAD, there is no need for an external octal latch.

Other TTL logic is not required to interface to the 68HC11's control signals, memory, or peripherals either. It is all integrated in the PSD301. Thus, a smaller PLD than originally thought required in the design was used — a 16V8 instead of a 22V10 — because the PAD was able to reduce the amount of logic by creating chip selects for the UART and other logic functions.

PSD301 Bonuses

Besides considerably reducing board space in this smart transmitter design by reducing parts count, several other benefits of the PSD301 were also seen. These include reliability improvement, power consumption savings, inventory savings, faster time-to-market, and cost savings.

Reliability was improved because there are seven less chips required for implementation that could fail in the design. Also, by reducing chip count, 112 pins and about 100 traces were eliminated and the number of layers on the board were reduced from 8 to 4, making failures due to open or shorted pins and traces less likely to occur.

Power consumption was reduced because much faster discrete EPROM and SRAM devices with access times of ~75 ns would have been required in conjunction with glue logic for selecting different devices instead of using the PSD301, saving at least 20 mA Icc. (The access time for the PSD301 memories include decoding and input address latch delays). If the power-down feature on the PSD301 were also used, power savings could be increased further. For example, in a system which is accessing the PSD301 only a quarter of the time, the power consumption could be reduced by 75% to 8 mA typical.

As an added benefit, the PSD301 helped reduce inventory significantly by obsoleting multiple chips. And, if last minute changes in the design were required, the PSD301 would be able to accomodate them without additional hardware modifications. So, purchasing line item management is made simpler and easier.

With the reprogrammable PSD301, development time was kept to a minimum by easily accommodating design iterations in both hardware and software. Changes in I/O, address mapping, bus interface, and code were simple to make. Also, debugging was made easier with the PSD301's on-chip SRAM for downloading test programs. This all helped to shorten the design development cycle, reduce development costs, and speed up market introduction of the smart transmitter.

By using the PSD301, cost savings were realized by reducing system cost with fewer boards (or reduced board space), improving reliability, and reducing inventory levels. Savings were also attributable to lower manufacturing costs because there were fewer parts to program and place. And by getting to market faster, profits were improved significantly.

..

Summary	mental problem often seen in that instead of getting "locked into" an inflexible multiple chip memory sub-system solution, the PSD301 was able to provide
Notes	 If more EPROM was needed, the PSD302/312 w/512K bits EPROM and the PSD303/313 w/1024K bits EPROM are available in the same pinout and packages (please call your local WSI sales representative for availability). Or, multiple PSD301s can be cascaded together with the added benefit of increased functionality and I/O's.
	 If more SRAM is needed, it can be added externally without requiring any additional glue logic. See WSI Application Note 011. Note that many engineers have 8K x 8 SRAM in their systems now – not because they need it, but because 2K x 8 SRAMs are not as readily available.

us:

Appendix 1. PSD301 Configuration

WSi PSD301 Configuration Save File for Smart Transmitter Design

ALIASES

CSO = ASICCS GLOBAL CONFIGURATION

Address/Data Mode:MXData Bus Size:8CSI/A19:CSIReset Polarity:LOALE Polarity:HIWRD/RWE:RWEA16-A19 Transparent or Latched by ALE:TUsing different READ strobes for SRAM and EPROM:N

PORT A CONFIGURATION (Address/IO)

	- 1 /				
Bit No.	Ai/IO.	CMOS/OD.			
0	10 10	CMOS			
1 2	IO	CMOS			
23	10	CMOS			
4	IO	CMOS			
4 5	10	CMOS			
6	10	CMOS			
7	10	CMOS			
'	10	01100			
********	*******	******	******	********	******
	PORT B CO	ONFIGURATION			
Bit No.	cs/IO.	CMOS/OD.			
0	CS0	CMOS			
1	CS1	CMOS			
2	CS2	CMOS			
3	CS3	CMOS			
4	CS4	CMOS			
5	CS5	CMOS			
6	CS6	CMOS			
7	CS7	CMOS			
CH	IP SELECT	EOUATIONS			
		-	• · - ·		
/ASICCS = /	A15 * A14	* /A13 * /A1	2 * E		
/CS1 = /A15	* A14 * /	A13 * A12 *	E		
/CS2 = /A15	• >14 • >	12 + /312 +	Е		
/032 - /813	· · · · · · · · ·	15 " /R12 "	E		
/CS3 = /A15	i * A14 * A	13 * A12 *	E		
1064 - 1716	· + />1/ +	/A13 * /A12	+ /311 + 5		
			/A11 * / R/W		
1 /115	//.	15 /112			
/CS5 = /A15	* /A14 *	/A13 * /A12	* A11 * E		
		13 * /A12 * .			
,	, ,	,	,,		
/CS6 = /A15	* /A14 *	/A13 * A12 *	/A11 * E		
+ /A15 *	/A14 * /A	13 * A12 * /	A11 * / R/W		
	• • • • •				
		/A13 * A12 *			
+ /A15 *	/A14 * /A	13 * A12 * A	11 * / R/W		
		72			
		K	[]]		

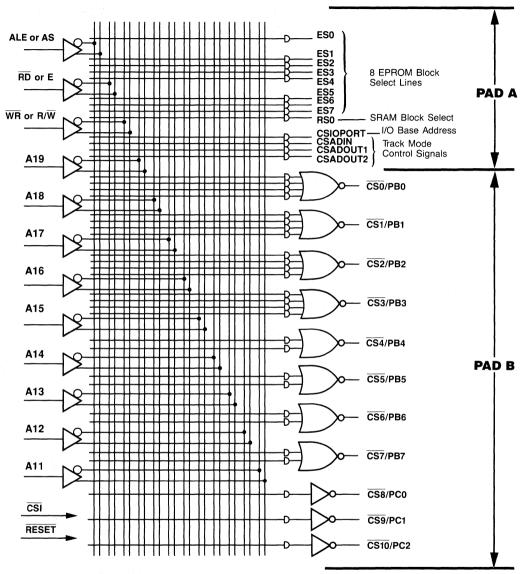
Appendix 1. PSD301					
Configuration. (Cont.)					
*****		FIGURATION	*******	*****	*****
Bit No 0 1 2	CS/Ai. CS8 CS9 CS10				
	CHIP SELECT EQ	UATIONS			
/CS8 =	/A15 * /A14 * A1	3 * /A12 * /A1	1 * R/W		
/CS9 =	/A15 * /A14 * A1	3 * /A12 * A11	* R/W		
/CS10 =	/A15 * /A14 * A	13 * A12 * /A1	1 * R/W		
*****		**************************************	*******	*****	*****
A 19 ESO N ES1 N ES2 N ES3 N ES4 N ES5 N ES5 N ES6 N ES7 N RS0 N	18 17 16 15 14 N N N 1 0 N N N 1 0 N N N 1 0 N N N 1 0 N N N 1 0 N N N 1 1 N N N 1 1 N N N 1 1 N N N 1 1	O O N 8000 0 1 N 9000 1 0 N A000 1 1 N B000 0 0 N C000 0 1 N B000 1 N B000 1 N E000 1 N F000 1 N F000	STOP 8FFF 9FFF AFFF BFFF CFFF DFFF EFFF	EPROM EPROM START STOP 8000 8fff 9000 9fff a000 afff b000 bfff d000 afff d000 afff d000 afff f000 cfff d000 afff e000 efff f000 ffff	BCN2.0 BCN2.0 BCN2.0 BCN2.0 BCN2.0 BCN2.0
CDATA CADDRDA CRRWR	**************************************	1 1 0 3000	37FF ******	CPAF1 [0] = 0 CPAF1 [1] = 0 CPAF1 [2] = 0 CPAF1 [3] = 0 CPAF1 [4] = 0 CPAF1 [5] = 0 CPAF1 [5] = 0 CPAF1 [7] = 0	
CPAF2	= 0			$\operatorname{CFRFI}\left[i \right] = 0$	
CPACOD CPACOD CPACOD CPACOD CPACOD CPACOD CPACOD CPACOD	$\begin{array}{l} [0] = 0\\ [1] = 0\\ [2] = 0\\ [3] = 0\\ [4] = 0\\ [5] = 0\\ [6] = 0 \end{array}$			CPBCOD [0] = CPBCOD [1] = CPBCOD [2] = CPBCOD [3] = CPBCOD [4] = CPBCOD [5] = CPBCOD [6] = CPBCOD [7] =	0 0 0 0 0 0
CPBF [0 CPBF [1 CPBF [2 CPBF [3 CPBF [4 CPBF [5 CPBF [6 CPBF [7) = 0] = 0] = 0] = 0] = 0] = 0			CPCF [0] = 1 CPCF [1] = 1 CPCF [2] = 1	

W/

Programmable Peripheral Application Note 014 Using the PSD3XX PAD for System Logic Replacement

By Jeff Miller

	Dy Jell Miller	
Introduction	In 1990, WSI introduced the Programmable System Device (PSD): the first device in the world integrating UVEPROM, SRAM and programmable logic on a single chip of silicon. The highly-successful PSD301 was the first device in the PSD family and is currently used in applications ranging from fluid analyzers to high performance computers. The PSD device, by combining most of the peripheral functionality required by a typical microcontroller unit into one package, has enabled designers to greatly reduce part count, power and board space which has translated into significant cost savings. Even if the PSD3XX family were simply a collection of EPROM and SRAM with an	on-chip decoder, it would be capable of adding significant value to the system into which it were designed. However, the PSD3XX family is much more than just a combination of memory devices. The on- chip PLD may be used for many useful purposes in addition to providing the address decode capability. The purpose of this note is to demonstrate, in detail, the ful capability of the PAD section of the PSD3XX family. A basic, though not exten- sive, knowledge of the PSD 3XX family and the Maple programming software is assumed by this note. Please consult Application Note 011 and/or the appropriate PSD3XX family data sheet for this general knowledge.
PAD Architecture	The Programmable Array Decoder (PAD) contained in the PSD3XX family is a stan- dard PLD array designed to provide all of the internal memory and I/O device chip selects as well as an external logic replace- ment capability. It has 14 inputs, 24 outputs and 40 product terms with which to perform these functions. See Figure 1 for an illustration of the PAD. The PAD's 14 inputs are as follows:	low power mode when the system requires it. When configured as \overline{CSI} , the A19 pin may not be used for any other purpose except the power down mode. In this mode, the \overline{CSI} signal is used by the PAD only to disable it, causing it to expend less power. When configured as A19, this signal may be used as a general purpose input to the PAD from the external system. This capability will be described in more detail later in this note. A16 – A18, when not necessary for address expansion, may also be used as general purpose inputs to the PAD. Thus, a total of four of the 14 PAD
	□ WR or R/W The A11 – A19 pins are labeled as address inputs, however, they do not have to be. A11 - A15 are generally sourced by the microcontroller or microprocessor that is connected to the PSD device. If the controller generates more than 16 bits of address, the A16 – A19 inputs may be	 inputs may be general purpose, allowing the replacement of external logic by the PSD device. These inputs may be combined with the other PAD inputs to form complex equations involving addresses, strobes and external signals. When attempting to visualize the full capa- bility of the PAD outputs, it is most clear
	used to connect the high order address bits for a full 1 MByte of address space. If the controller does not require this much address space, A16 – A19 may be used for	when it is broken into two sections, labeled in Figure 1 as PAD A and PAD B. PAD A is responsible for providing all of the internal chip selects for the EPROM, SRAM and I/C


other purposes, like general I/O or logic

A19 is multiplexed with the \overline{CSI} signal, which is used to place the PSD device in a

inputs.

responsible for providing all of the internal chip selects for the EPROM, SRAM and I/O ports and the track mode control signals, and PAD B is responsible for the external logic replacement function.

Figure 1. PAD Architecture

PAD A

Thirteen of the 24 PAD outputs and thirteen of the 40 product terms are dedicated to PAD A. PAD A should be considered the internal address decoder, used to select the various on-chip memories and I/O devices according to the memory map programmed by the user. Each output has a single product term, allowing a particular

us

resource to be allocated a single contiguous range of addresses which will be used to access it. All of the PAD inputs are available for generation of the PAD A outputs, allowing the designer to select internal resources using any combination of address, strobe and external signals.

PSD3XX – Application Note 014

PAD A (Cont.)

The PAD A outputs are as follows:

- ES0 ES7
- 🖵 RS0
- CSADINCSADOUT1
- CSADOUT2

ES0 – ES7 are used to select the internal EPROM resources. Using the PSD301 as an example, there are eight select lines with which to access 32 KBytes of EPROM. Thus, each select line can enable a block of 4 KBytes of EPROM configured as $4K \times 8$ or $2K \times 16$. Each block must be contiguous, but the blocks may be placed anywhere within the address space of the microcontroller.

RS0 is used to select the SRAM resource. This single signal accesses a single 2 KByte block of SRAM which may be configured as $2K \times 8$ or $1K \times 16$. Again, this block must be contiguous but may be placed anywhere in the address map.

CSIOPORT is the signal which defines the base address of the on-chip I/O ports and control registers. The I/O ports and control registers occupy a 2K block of addresses which, like the memories, must be contiguous but may be located anywhere in the address space of the microcontroller. Once configured in the address map, CSIOPORT defines the base address of these ports and registers. An offset is added to the base address to individually access the registers. Table 1 below lists the offset values for these registers. CSADIN, CSADOUT1 and CSADOUT2 are used to control the Track Mode operation. The Track Mode is an available option for Port A to allow it to "track" the Address/Data bus inputs to the PSD device from the microcontroller. This provides the capability to connect the PSD device, and therefore the microcontroller, to one or more shared resources. These resources may be memory or other devices which must be accessed by more than one microprocessor or microcontroller.

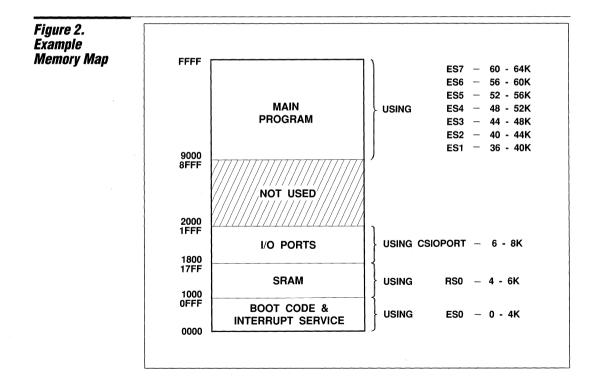
CSADIN is generated when the microcontroller is attempting to read data from Port A in the track mode. It is generated from one product term involving the address inputs and the RD strobe (Intel mode) or R/W and E (Motorola mode). This allows the user to configure the address range in which the data is to be read from Port A. CSADOUT1 is generated when the microprocessor is accessing a "tracked" address. It is generated from a single product term involving the address inputs and ALE. When the address generated by the microcontroller is within the block specified by the user for track mode, and the ALE is active. CSADOUT1 becomes active. transferring the address and outputting it from Port A. CSADOUT2 is generated when the microcontroller is performing a write operation to a tracked address. It also has one product term involving the address inputs and $\overline{W}R$ (Intel mode) or R/\overline{W} and E (Motorola mode). When the microcontroller performs a write to the appropriate address, CSADOUT2 is generated, transferring the data and outputting it from Port A. For further details on the operation of the Track Mode, please consult Application Note 017.

Table 1.
I/O Port
Offset
Addresses

Register Name	Byte Size Access of the I/O Port Registers Offset from the CSIOPORT
Pin Register of Port A	+ 2 (accessible during read operation only)
Direction Register of Port A	+ 4
Data Register of Port A	+ 6
Pin Register of Port B	+ 3 (accessible during read operation only)
Direction Register of Port B	+ 5
Data Register of Port B	+ 7

us:

PSD3XX – Application Note 014


Example: Address Mapping With PAD A In this example, we will choose a sample address map which is similar to those used in typical microcontroller applications. This example assumes the use of a PSD301 device with 256 Kbits of EPROM and 16 Kbits of SRAM. Figure 2 below illustrates our sample address map.

In this example, we have located the boot code and interrupt service routines beginning at address 0000 in EPROM block 0. The SRAM is located in the 2K block beginning at address 0x1000 and can be used for the stack and/or other scratchpad data. The I/O ports occupy the 2K block beginning at address 0x1800. Addresses in this range will access ports A and B and their control registers. The area from 0x2000 to 0x8FFF is unused in this example, though it could be used for external resources as will be shown later. Finally, the main program resides in the 28K block of EPROM located from address 0x9000 to 0xFFFF and is selected by ES1 - ES7.

Configuring this memory map would normally require designing a decoder to generate the appropriate chip selects for each given address range. For example, assuming that a microcontroller with a 16bit address bus is used, the chip select for EPROM bank 0 (ES0) would be generated with the following equation:

Equations like this one would be formulated for each of the chip selects, and the entire function would probably be placed in some kind of programmable device. When the PSD device is used, PAD A replaces this programmable device. Programming PAD A to perform this function is a simple task using WSI's Maple software.

Entering the ADDRESS MAP menu in the Maple software running on a PC compatible computer, the user will see a screen similar to the one shown in Figure 3.

us:

Example: Address Mapping With Pad A (Cont.)

PAD B

Figure 3.

Maple Address Map Entry

Upon displaying this screen, the Maple software is ready for the user to enter the memory map data. This is performed quite simply by moving the cursor to the appropriate point with the arrow keys, and then entering the appropriate data. The address mapping may be entered in either of two ways. First, the user may select each address bit individually for each chip select and enter a 0 or 1 as appropriate for the equation desired. In our example, for ES0 we would enter a 0 in the columns for A12, A13, A14 and A15. The other bits are don't cares. In the other method of programming the pad, the user simply moves the cursor to the SEGMT START column and enters the desired starting address for the block. Again, using our sample memory map, the user would move to the SEGMT START column for ES0 and enter 0000. Maple

Eleven of the PAD outputs and 27 of the product terms are dedicated to PAD B. Where PAD A was used to control the onchip PSD device resources, PAD B controls any off-chip resources required by the system. As with PAD A, all inputs to the PAD are available to PAD B, allowing the system designer to formulate outputs involving any combination of address, strobes and external signals. Unlike PAD A, several of the outputs of PAD B have up to four product terms each. then automatically programs the 0's and 1's into the address bits correctly to program a 4K block of EPROM beginning at address 0x0000. Note that all EPROM blocks must begin on 4K boundaries. Figure 3 shows the resulting address map table for our example.

The address inputs which were unused in this example (A16, A17, A18 and A19) could have been used as general purpose inputs to the PAD for specialized control of the on-chip memory and I/O resources. When this is done, the designer has complete flexibility as to the configuration of the PSD device resources and may easily absorb many system functions into the PSD device. More detail about the use of A16 – A19 will be provided later in this note.

The outputs of PAD B are as follows:

CS0 – 7 (Port B)

CS8 – 10 (Port C)

The outputs from PAD B are brought to the outside world through Port B and Port C. These outputs are called chip selects, though they may be used for any function whatsoever. The port pins are configured as selected by the user when the device is programmed with the Maple output file. There are many configuration options for each port pin.

	A 19	A 18	A 17	A 16	A 15	A 14	A 13	A 12	A 11	SEGMT START	SEGMT STOP	FILE START	FILE STOP	FILE NAME
ES0	Х	Х	Х	Х	0	0	0	0	Ν	0000	0FFF			
ES1	х	х	х	х	0	0	0	1	Ν	9000	9FFF			
ES2	х	х	Х	Х	1	0	1	0	Ν	A000	AFFF			
ES3	Х	х	х	х	1	0	1	1	Ν	B000	BFFF			
ES4	Х	х	х	х	1	1	0	0	Ν	C000	CFFF			
ES5	Х	х	х	х	1	1	0	1	Ν	D000	DFFF			
ES6	Х	х	х	х	1	1	1	0	Ν	E000	EFFF			
ES7	Х	х	х	х	1	1	1	1	Ν	F000	FFFF			
RS0	Х	х	х	Х	0	0	0	1	0	1000	17FF			
CSP	х	х	х	х	0	0	0	1	1	1800	1FFF			

ADDRESS MAP

ALIASES:

Fill in A19 – A11 (Binary) or SEGMT START (Hex): and FILE (START, STOP) and FILE NAME, Use SPACEBAR to erase any field value. F1 – Return to Main Menu F2 – Temporary Exit to DOS F3 – Go to Help Cursor – UP: ↑ Down: ↓ Left Col: ← Right Col: → Right – F4 Left – F5

PSD3XX - Application Note 014

If you require more information about port configuration, please consult application note 011. If the port outputs are configured as chip selects (outputs from the PAD), they may not be used for any other purpose. For example, the three Port C signals may be configured as chip selects (outputs) or addresses (inputs) but cannot be both. Fortunately, the flexibility of the PSD device and the Maple software allows the designer to configure each Port B and C pin individually, so that the number of outputs and inputs may be optimized for a particular design requirement. See Table 2 below for an example of this flexibility. This sample port configuration demonstrates all of the possible uses of a particular port pin. Though only Ports B and C may be inputs or outputs to/from the PAD, Port A is included in the table for completeness. In this example, five of the port pins are configured as PAD outputs (CS) and two are configured as PAD inputs (A). The remaining port pins in this example are configured as either I/O or address outputs. Several of the CS outputs have been configured as open drain. This allows them to be connected together in a wired OR configuration to increase the number of product terms even further if desired.

Table 2.	Pin	Configuration	CMOS/OD
Sample Port	PA0	Address Out	CMOS
Configuration	PA1	Address Out	CMOS
	PA2	Address Out	CMOS
	PA3	Address Out	CMOS
	PA4	I/O	CMOS
	PA5	I/O	OD
	PA6	I/O	OD
	PA7	I/O	CMOS
	PB0	CSO	CMOS
	PB1	CS0 CS1 CS2	CMOS
	PB2	CS2	OD
	PB3	CS3	OD
	PB4	I/O	CMOS
	PB5	I/O	CMOS
	PB6	I/O	CMOS
	PB7	I/O	CMOS
	PC0	A16	
	PC1	A17	· · · · · · · · · · · · · · · · · · ·
	PC2	CS10	OD

Example: Generating a Logic Equation With PAD B

Assume that it is necessary to generate the following equation given the port configuration in Table 2 above. This equation is a simple OR of three product terms.

CS0 = A15 • A14 • /A13 • /A17 • RD + /A15 • A14 • A12 • WR + A16

Figure 4 illustrates the Maple programming sequence to generate this equation.

To program this equation, the PORT B menu is entered from the Maple software. CS0 is selected by moving the cursor to it using the arrow keys. With CS0 selected, the user then presses the F3 key to bring up the CHIP SELECT DEFINITION table for CS0. The table contains four rows for data entry, each one corresponding to one of the available product terms for CS0. Implementing this equation required using three of the four available product terms. The fourth is left blank and will not be used to generate the output.

To enter the equation into the table, simply move the cursor around into the appropriate position and enter a 1 if the corresponding signal should be high for the equation to be true, 0 if it should be low, and X or SPACE if the signal is a don't care. The first term of the equation requires a low on A17, a high on A15, a high on A14, a low on A13 and a high on RD for the term to become active. Thus, 1's are placed in the A15, A14 and RD positions,

PAD B (Cont.)

of the CS0 – CS3 outputs, two terms are available on the CS4 – CS7 outputs and

When planning the use of the PAD outputs.

most efficient use of the product terms can

it is important to consider this so that the

one term is available on CS8 - CS10.

be achieved.

Example: Generating a Logic Equation With PAD B (Cont.) and 0's are placed in the A17 and A13 positions. The remaining terms in the equation are entered in the same way. Note that A17 and A16 in this example need not be address bits, but may instead be used to bring external signals into the PAD.

Four product terms are available on each

Figure 4. Programming PAD Outputs

				FU							
CS/I/O	CMOS/OD			c	HIP	SELE		DEFIN		N CS	:0
CS0	CMOS										-
CS1	CMOS	A19	A18	A17	A16	A15	A14	A13	A12	A11	ALE
CS2	CMOS		X	0	x		1	0	x	x	x
CS3	CMOS			-							
CS4	CMOS		X	X	х	0	1	X	1	Х	X
CS5	CMOS		X	×	1	X	X	X	X	Х	X
CS6	CMOS										
CS7	CMOS		}								
				l			L		L	L	

PORT B

ALIASES:

PIN

PB0

PB1

PB2

PB3

PB4

PB5

PB6 PB7

CS definition is the NOR of the product terms (rows). Enter 1 to select Active High signal, 0 to select Active Low signal, X to mean "don't care", SPACEBAR to erase. Enter values in columns relevant to your application; other blank columns will be treated as "don't cares".

F1 - Return to PORT B

Cursor – Up:↑ Down:↓ Left: ←

Application Examples

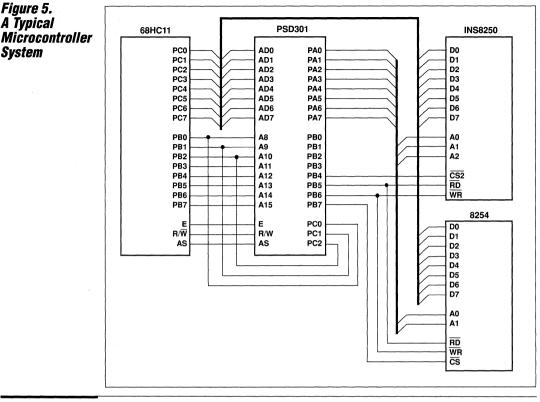
The following section will illustrate the use of the PAD for system logic replacement in some common microcontroller applications.

Basic Chip Select Generation

One of the simplest uses of PAD B is the generation of chip selects for off-chip resources such as I/O devices or memories. Figure 5 below depicts the connection between a 68HC11 microcontroller, the PSD301 and two common peripheral devices: the 8250 UART and the 8254 counter/timer.

The 68HC11 is an 8-bit microcontroller with a 16-bit address bus. The lower 8 bits of address are multiplexed with the data bus while the upper 8 bits are transmitted on their own bus. An address strobe (AS) is provided to latch the address off of the multiplexed bus. A R/W signal indicates whether the current bus transaction is a read or a write (R/W = 1 = read, R/W = 0 = write). The E signal is the clock used to strobe the data in or out of the microcontroller. The PSD301 can be configured to exactly match this signal definition and then connected as shown in the diagram. Not all of the 68HC11 or PSD301 signals are shown, only those relevant to this example of PAD capability.

The 8250 is a UART device commonly used in microcontroller systems to provide a serial data communication port. It has a simple bus interface, yet does not directly connect with the 68HC11 bus architecture. It requires an 8-bit bus to transfer data to and from the microcontroller and a separate 3-bit address bus used to access its internal registers. It also requires a chip select and separate read and write strobes (\overline{RD} and \overline{WR}). The chip select is generated by decoding the address from the microcontroller. The \overline{RD} and \overline{WR} signals may be generated from the R/ \overline{W} and E signals


RD WR

 $1 \mid X$

 $X \mid 1$

x | x

Right: ->

Application Examples (Cont.)

according to the following equations:

 $/RD = /(R/\overline{W} \cdot E)$

 $/WR = /(/R/\overline{W} \cdot E)$

These equations may be easily generated using PAD B and sent out through two of the chip select outputs. We have chosen CS5 and CS6, which come out on PB5 and PB6, for this example.

In order to provide the address lines to the 8250, we have configured Port A to output the latched address. This eliminates the need for any external latches to demultiplex the address/data bus from the microcontroller. Though all eight of the Port A pins have been configured as address outputs in this example, it is possible to configure only those address bits required for the application, AO - A2 in this example, and configure the remaining Port A pins as general I/O.

The 8254 is a programmable interval timer

us:

which, like the 8250, is a peripheral used in many microcontroller applications. Its bus connection is very similar to the 8250, allowing it to use the same read and write strobes (\overline{RD} and \overline{WR}) and address lines. It also requires a chip select which is decoded from the microcontroller address.

The chip selects for both of the peripheral devices may be easily decoded from the address inputs to PAD B. Normally, the addresses which are inputs to the PAD (A11 – A19) would give decoding resolution down to 2K. This means that each of the two peripheral devices that require chip selects would be allocated an address range of at least 2K. Since these devices do not require this much space and the 68HC11 has only a 16-bit address bus, it is possible to use the high order address inputs of the PSD device to improve the decoding resolution. To achieve this goal, we have configured Port C as address inputs A16 - A18, but have connected them to A8 - A10 from the microcontroller. This means that the PAD will now have

Application Examples (Cont.)

access to A8 – A15 for decoding, thus providing a resolution of 256 instead of 2K. This could actually be further reduced to a resolution of 128 if we were to configure the A19/CSI input to be A19, and then connect it to A7 from the microcontroller. In this example, we have not done this so that CSI is still available to place the PSD301 into low power mode if required.

We now have to define the addresses of each of the peripherals so that the chip select equations may be defined. We will start from the memory map provided earlier in Figure 2. This map allocated all of the internal resources of the PSD device. The external peripherals may be easily added to the unused area between addresses 0x2000 and 0x8FFF. Figure 6 depicts the new map with the external devices added. Notice that the internal resources can keep their original address mapping even though the additional address inputs (A8 - A10)have been added. This is because these inputs may be don't cares in the decoding for the internal resources even when they are being used for the external resources.

Now, to wrap up this simple design, we must enter the configuration and mapping information into Maple. The configuration of the PSD device must be consistent with the operation of the 68HC11 microcontroller. The address/data mode must be multiplexed, the data bus must be 8 bits wide, CSI/A19 may be configured either way, the reset polarity should be active low, the ALE polarity is active high, the read and write lines must be $R\overline{W}$ and E, A19 – A16 should be latched so that these bits become available just like the rest of the address bus, and the read strobes for the

FFFF])			60 - 641
					56 - 60 52 - 56
	MAIN				48 - 52
	PROGRAM				44 - 48
					40 - 44
			ES1	_	36 - 40
8000 7FFF		44	ES0		32 - 36
7000	PERIPHERAL # 3 1 WS	USING CS7			28 - 32
6FFF	PERIPHERAL # 2				24 - 28
	6 WS				24 - 20
6000 5FFF					
	PERIPHERAL # 1 3 WS	USING CS5			20 - 24
5000 4FFF	5 115				
	I/O PORTS		PORT		18 - 20
4800					
47FF	00444]]			
4000	SRAM	USING RS0			16 - 18
4000 3FFF	2024221/2	17			
	80C196KB				
0000 L	INTERNAL RESOURCE				

us

Figure 6. Memory Map With Peripherals

PSD3XX - Application Note 014

Application Examples (Cont.) SRAM and EPROM will be the same. This configuration should be entered from the configuration menu of the Maple software.

The address map programming for this example will remain the same as the one used earlier in Figure 3. The only items remaining are the programming of the ports and the generation of the equations for the chip selects and read/write strobes. First we must configure Port A to provide the latched address to the peripherals. This is accomplished by entering the PORT A menu in the Maple software. Maple will then ask you if you would like Port A configured for address I/IO or the Track Mode. For this example, we will use the address/I/O configuration. Next, Port A must be configured pin for pin as an address output. This is easily performed by using the cursor keys to select the appropriate pin and pressing the SPACE BAR to change the configuration. It is also possible to configure each pin as an open drain or CMOS output, but for address outputs, it is better to make them CMOS.

Now, PORT C must be configured to provide the three additional address inputs. This is performed by entering the PORT C menu in Maple and selecting the appropriate pin with the cursor. Each pin should be configured as an address bit (Ai). Maple will call the pins A16 – A18 even though we will be using them as A8 – A10. Lastly, we must configure the Port B outputs to become the chip selects and read/write strobes. First, the PORT B menu must be entered. Now, we must configure each pin as an I/O or CS output. PB0 - PB3 may be configured as general purpose I/O pins. PB4 - PB7 must be configured as chip selects. Once configured as chip selects, the equations for each output may be entered by following the Maple instructions. The procedure is the same as the one used in the earlier chip select example. Our equations, including the ones developed earlier for the read and write strobes, are defined for each output as follows:

 $PB5 = /CS5 = /RD = /(R/W \cdot \overline{E})$

 $PB6 = /CS6 = /WR = /(/R/W \cdot \overline{E})$

PB4 = /CS4 = /8250CS = /(A15 • /A14 • A13 • /A12 • /A11 • /A18 • /A17 • /A16)

PB7 = /CS7 = /8254CS = /(A15 • /A14 • A13 • /A12 • /A11 • /A18 • /A17 • A16)

This completes the design integrating these four components with no additional logic whatsoever. There is also additional space in the PAD for more functions if necessary, so we have not yet reached the limit of the integration possibilities with the PSD301.

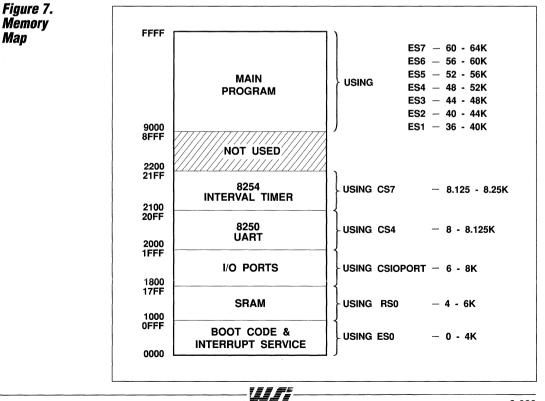
Wait State Generation

Often, when using some of the newer highperformance microcontrollers with slower external peripherals, it is not possible to complete a read or write cycle to the peripheral in the time allowed by the microcontroller's minimum bus cycle. In this case, one or more wait states must be added to slow the controller down to the speed of the peripheral. One way of doing this is to fix a number of wait states for all bus cycles to allow the slowest device enough time for its access. Some controllers even provide the capability to do this internally through the programming of a register. This works, of course, but can severely impact the performance of the system. There is no need to penalize the performance of the entire system, which can include zero wait state memory devices and other peripherals, simply because one or more of the external

us:

devices requires some number of wait states. It is possible, with minimal logic, to create a completely programmable automatic wait state generator using the PSD301 which will allow the fast resources to operate at zero wait states and still provide from one to eight wait states for the slower resources.

For this example, we will use an Intel 80C196KB microcontroller running at 12 MHz. This controller has the capability to operate in a 16-bit data mode, providing the opportunity to further increase performance if the system can also operate in this mode. The PSD301 does have the capability of operating in the 16-bit mode, making it a good match for the 80C196. We will assume that the 80C196 must be interfaced to several slow 8-bit peripherals requiring from one to eight wait states. With


Wait State Generation (Cont.)

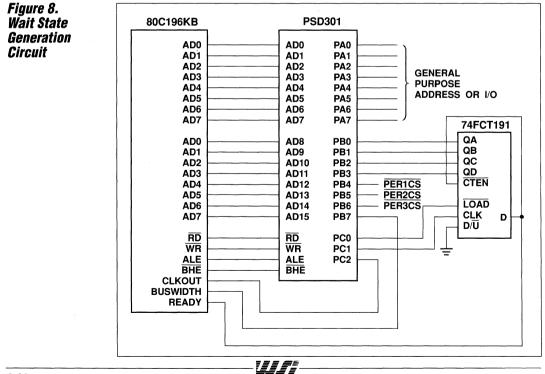
the PSD301, we can provide the correct number of wait states for each peripheral with the added capability of dynamically sizing the bus to the appropriate width for the current access.

The memory map we will use for this design is depicted in Figure 7. The internal resources of some 80C196 derivatives occupy most of the address space from 0x0000 to 0x3FFF, though some have less resources. Therefore, we have constructed the memory map to place the PSD device resources above address 0x4000. The PSD301 SRAM and I/O devices occupy from address 0x4000 to 0x4FFF. This leaves the area from 0x5000 to 0x7EFE for external peripherals while leaving 0x8000 to 0xFFFF for the EPROM banks. We assume that we must connect three external peripherals to the PSD device using this address space, one requiring one wait state, one requiring three and one requiring six. This memory map is entered into the part similarly to the previous examples.

To achieve the variable number of wait states, the ideal solution is to decode the address to determine the number of wait states required for a particular address range, and then to use a counter to count the appropriate number. By using the PAD to initialize an external counter, a variable wait state counter can be created in this manner. This wait state generator requires only one external device, a 74FCT191 counter. The circuit used to implement this function is illustrated in Figure 8. The 80C196KB is directly connected to the PSD device which in turn provides the three chip select signals for the external peripherals (PERICS, PER2CS and PER3CS) as well as the wait state generator function and the dynamic bus sizing. Ports B and C are fully utilized to provide the logic inputs and outputs required to implement these functions, while Port A is still available for general I/O or address use.

This circuit uses PAD B to decode the addresses driven by the microcontroller

PSD3XX – Application Note 014


Wait State Generation (Cont.)

and provide four outputs, based on these addresses, which are used to initialize the 74FCT191 counter with its initial value. The counter is initialized using ALE to latch these four PAD outputs. The load signal for the counter is active low, however, while ALE is active high, so ALE is inverted using PAD B and sent out through Port C. Though the 80C196KB can be configured to provide an active-low address strobe. ADV, the timing of the signal is inappropriate for use as the LOAD input to the counter. Once the counter is initialized, it counts up from the initial value until the most significant bit increments from 0 to 1. The output of the most significant counter bit is routed to the READY input of the microcontroller. Thus, the controller will be held in wait states until the most significant counter bit is incremented. This output is also routed to the CTEN signal of the counter so that counting will cease once the READY signal has been issued to the controller. The clock for the counter is an inverted version of the CLKOUT signal from the controller. This clock must be inverted since the 80C196KB uses the falling edge of the clock to sample the

READY input. PAD B again provides the inversion function by routing CLKOUT into one of the Port C pins, inverting it and routing it back out through another Port C pin.

The counter provides from zero to eight wait states depending on the initialized value. For zero wait states, the most significant counter bit is initialized to a "1", which provides the READY signal to the controller immediately and disables the counter from incrementing. If one wait state is desired, the counter is loaded with the value 7 (0111 binary) so that after it increments once, the most significant bit switches to a "1" and provides the READY to the controller. When two wait states are required, a 6 (0110 binary) is loaded into the counter, and so on for the rest of the wait state values.

To properly size the bus to the appropriate width, PAD B is again used to decode the addresses of the 8-bit devices. When the address of an 8-bit device is encountered, the BUSWIDTH signal is driven to configure the 80C196KB address to eight

Wait State Generation (Cont.)

bits. For all other addresses, the width is set for 16 bits. The BUSWIDTH signal is output from one of the Port B pins.

The PSD device must now be configured to provide the functions required by the example circuit. The configuration of the PSD must first be programmed to function with the 80C196KB. This is easily performed by the Maple software as in the previous example. The address/data mode should be multiplexed, the data bus width should be 16 bits, CSI/A19 may be configured as required for the application, the reset polarity should be active low, the ALE polarity should be active high, separate RD and WR strobes should be used and A19 - A16 should be transparent, not latched, since they are used as logic inputs to the PAD.

Next, we must program the functionality of Port C. For this example, PC0 and PC1 are used as outputs from the PAD to provide the LOAD and CLK signals for the '191 counter. This is performed by entering the PORT C menu in Maple and configuring PC0 and PC1 as CS8 and CS9, respectively. PC2 is used to input the CLKOUT signal from the microcontroller to the PAD so that it may be inverted. Therefore, it must be configured as address input A18. Now, the equations used to generate the PC0 and PC1 outputs must be entered into the PAD. PC0 is the LOAD signal which is just the ALE input inverted. PC1 is an inverted version of A18, which contains the

CLKOUT signal. These equations are listed below:

$$PC0 = /LOAD = /ALE$$

 $PC1 = /CI KOUT = /A18$

The equations are programmed by entering the CHIP SELECT DEFINITION menu for each of the two chip selects, as in the previous example, and entering the appropriate 1's, 0's and DON'T CARES. In the case of PC0, there are don't cares in all of the PAD inputs except ALE, where there is a 0. Similarly, for PC1, the A18 input is a 0 while the rest of the PAD inputs are don't cares.

Port A is usually configured next, and in this example it is free to be configured in any mode necessary for the application. It may become either I/O or address outputs, or may be set in the Track Mode as described earlier.

We are now ready to configure Port B. This example requires that all of the Port B pins be used as chip selects (logic outputs) from PAD B. PB0 – PB3 are used to initialize the counter with the correct number of wait states for each device. These outputs are defined according to the address ranges for each of the peripherals and the number of wait states required for each. Table 3 summarizes the outputs required for each peripheral so that we may define the correct equations for the outputs.

le 3. it State	Peripheral No.	Address Range	No. Wait States	PBO-PB3
mmary	1	0x5000-5FFF	3	1010
,	2	0x6000-6FFF	6	0100
	3	0x7000-7FFF	1	1110

PSD3XX – Application Note 014

Wait State Generation (Cont.) This table can be easily used to form the necessary equations for PB0 – PB3. PB3 can be considered the enable for the wait state generator which is active low only in the address ranges of the three peripherals. It must remain high for all other address ranges. The other three outputs simply encode the proper number of wait states. The resulting equations are listed below:

 $PB0 = /QA = /(A15 \cdot A14 \cdot A13 \cdot /A12)$

 $PB1 = /QB = /(A15 \cdot A14 \cdot /A13 \cdot A12)$

 $PB2 = /QC = /(A15 \cdot A14 \cdot A13 \cdot /A12)$

PB3 = /QD = /(A15 • A14 • /A13 • A12 + /A15 • A14 • A13 • A12 + /A15 • A14 • A13 • /A12 + /A15 • A14 • A13 • A12)

PB4 – PB6 are used as chip selects for each of the three peripherals and are simply decoded from the address inputs by PAD B corresponding to the address ranges listed in Table 2. These equations are listed below:

PB4 = /PER1CS = /(A15 • A14 • /A13 • A12)

PB5 = /PER2CS = /(A15 • A14 • A13 • /A12)

PB6 = /PER3CS = /(A15 • A14 • A13 • A12)

Finally, PB7 is used to perform the bus sizing function. It should be sized to eight bits whenever any of the external peripherals is accessed. It should be sized to 16 bits for all other accesses. The 80C196KB requires a high on the BUSWIDTH input for 16-bit operation and a low for 8-bit operation. This is accomplished by the equation below:

PB7 = BUSWIDTH = /(A15 • A14 • A13 + /A15 • A14 • /A13 • A12)

This completes the equations for Port B. These equations are entered in the Maple software by selecting the Port B chip select definition screens as described in the previous example and entering 1's and 0's in the appropriate locations. Remember that don't cares (X's or blanks) must be entered in all inputs which are not used by a particular equation.

Finally, we must enter the memory map into Maple Address Map screen. This is performed as in the previous example by entering 1's, 0's or don't cares in the appropriate places.

Conclusion

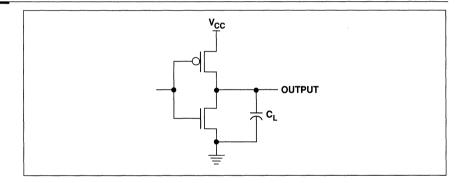
The PSD device may be used in a variety of applications requiring the simplicity, space savings and performance possible by the integration of memory and programmable elements. But a significant portion of the value of the PSD device, is its ability to absorb much of the logic functionality which normally surrounds a microcontroller application. The programmability of the device allows the designer to make changes to both the software and the design itself as required. This is not possible with masked ROM or ASIC-based designs. The PSD device can truly turn a microcontroller into a complete two-chip solution.

us:

Programmable Peripheral Application Note 016 Power Considerations In The PSD3XX

By Jeff Miller

Introduction	The PSD3XX is a configurable microcon- troller peripheral integrating programmable logic, EPROM and SRAM technologies into a single piece of silicon. It has been used extensively in microcontroller applications around the world by virtue of its high level of integration, configurability and ease of use. This integration makes possible the design of very compact microcontroller systems, enabling the user to squeeze a great deal of functionality into a very small space. Thus, the PSD3XX has found its way into many small hand-held and/or battery operated applications such as cellu- lar phones, medical instrumentation and laptop or notebook computers which usually require, in addition to small space, a very low power consumption.	like other CMOS devices, requires very low power consumption even when no particular effort is made to minimize the PSD3XX power. But, when some special care is taken during the programming and configuration of the device, power can be reduced even further, making the PSD3XX even more valuable in these power-sensitive applications. This applica- tion note will describe the methods which can be used to reduce the PSD3XX power consumption in both active and stand-by modes. It makes sense to use some of these techniques even when low power is not a primary design requirement since they are easy to implement and require no additional expense. We believe that proper implementation of the material in this note will make the PSD3XX an invaluable			
	The PSD3XX family is based on a patented high-performance CMOS technology and,	member of any low-power microcontroller system.			
Power Use In The PSD3XX	The PSD3XX contains several modules internally, each of which can be considered a power consumer when in operation. These modules include the PAD, (Programmable Address Decoder)EPROM and SRAM blocks. The key to reducing the power used by the PSD3XX is to reduce the power used by each of these modules individually. Under normal operation, several of the functional modules may be operating, while	and thus the designer can save power by minimizing the time during which the EPROM is accessed. Use of this feature does impact the speed of the PSD3XX EPROM, which results in the loss of the 120 ns speed grade. There are other methods of reducing EPROM power ever when the EPROM is enabled. These will be discussed in detail later in this note. When the time that each PSD3XX functio is kept in standby mode is maximized, the power expense is minimized.			
	others may be standing by. A module in stand by uses much less power than one that is active. For example, whenever the SRAM is not being actively used, it is disabled and therefore consumes less power. This is also true of the PAD. A PAD term which is active expends more power than one which is inactive. This would also be true of the EPROM. However, in some PSD3XX models, the EPROM is always active, in which case it will always draw power. This is done in order to provide the best access time possible for the EPROM. The Low Power family of PSD3XXs does	There is a way to place the entire PSD3XX into the standby mode at once, thereby reducing power usage to the bare minimum. This can be done through the use of the CSI (Chip Select Input) pin. When the PSD3XX is deselected by the CSI pin, the entire part enters the standby mode using only about 50 μA of current. While in this mode, the PSD3XX is inca- pable of performing any functions, includ- ing PAD logic equations, but this is an excellent method of reducing system power in designs which have low active			


PSD3XX – Application Note 016

CMOS Power Characteristics As a CMOS part, the PSD3XX behaves in the same way as other CMOS devices in terms of power dissipation. The PSD3XX consumes the most power when the temperature is low, the voltage is high and the frequency is high. Low temperature in CMOS devices, unlike in bipolar devices, causes the transistors to speed up, thus consuming more power. Therefore, if the system will never operate in low temperature environments, power dissipation will be lower. Another result of this characteristic is that CMOS parts do not generally experience thermal runaway. As temperature increases, the power expended by the CMOS device decreases, thus the part tends to effectively cool itself off.

Another characteristic of CMOS devices is the effect of voltage variations. CMOS behaves similarly to TTL devices with respect to voltage. When input voltage rises, the current drawn by a CMOS device also rises. As input voltage falls, input current also falls. Thus, the CMOS device will draw the least current at its lowest allowable supply voltage. This voltage is 4.5V in the PSD3XX. Taking the voltage below this level will generally slow the device down to below its specified speed as well as jeopardize its data retention capability. Between 4.5 and 5.5V, the PSD3XX varies by about 0.85mA per 0.1Vvariation. Thus, the PSD3XX will draw approximately 0.85 mA less current at 4.9Vthan at $5.0V V_{CC}$.

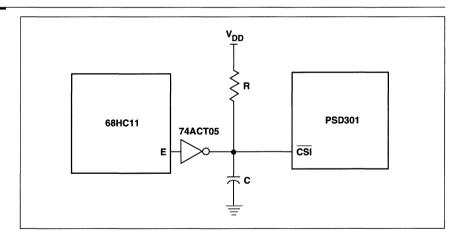
Lastly, frequency of operation plays an important role in the power dissipation of a CMOS device. A CMOS gate expends the greatest power while it is switching between the logic 0 and logic 1 states, or vice versa. This can be easily understood when looking at the circuit diagram for a typical CMOS output shown in Figure 1.

Figure 1. Typical CMOS Output Circuit

The circuit above represents a typical CMOS inverter output. Normally, either the top transistor is off (output = logic 0) or the bottom transistor is off (output = logic 1). MOS transistors have very low leakage currents which means that under these normal conditions, very little current will be passing from V_{CC} to ground. However, when the input to the inverter is switching, both transistors will not switch from their present conditions to their new conditions at precisely the same instant. Therefore, both transistors will be on for a very brief instant during the transition. During this time there is a low impedance path from V_{CC} to ground and some current is drawn by the circuit. In addition, the output will have some load capacitance (C₁) which must be charged during switching,

us:

even if the load itself draws little or no static current. Thus, during the switching process the power expended by a CMOS device is at its highest.


The switching current drawn by the device is dependent on the number of times the outputs are forced to switch logic states in a unit of time. Therefore, the frequency of operation of the part directly influences its dynamic power consumption. The lower the operational frequency, the lower the dynamic power expended by the device. In the PSD3XX, frequency of operation is determined by the rate at which the addresses are changing, usually indicated by the frequency of the ALE or AS signal. Generally, the PSD3XX draws about 3 mA of additional current for each 1 MHz added to the frequency of operation. *Power Management Techniques In The PSD3XX* The above mentioned features and characteristics can be used to the designer's advantage when designing compact microcontroller systems which have a tight power budget. In the sections that follow, several methods for reducing the PSD3XX power will be presented.

Power Down Mode

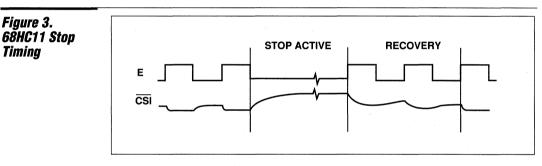
Many system designs do not require the microcontroller, and therefore the PSD3XX. to operate continuously. Systems, like cellular telephones and notebook computers, spend a large amount of time inactive - waiting for something to happen like a press of a button or keyboard. During this time, many designers place the microcontroller into a low power idle or sleep mode. In the sleep mode, the controller expends significantly lower power. The microcontroller is usually awakened by some event - a key on a keypad being pressed, for instance, which may result in an interrupt. There is no need for the PSD3XX to be active during the time that the microcontroller is not active. Therefore,

the PSD3XX should be placed in the power down mode (CSI inactive) to reduce the PSD3XX current down to its standby value.

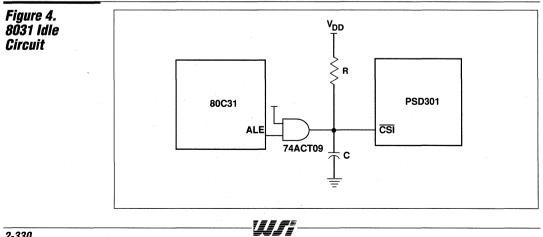
The PSD3XX must also be awakened when the microcontroller is awakened so that it may provide an instruction to the controller when it requires one. If the microcontroller itself has a chip select output, like the Motorola 683XX series controllers, it may be used to awaken the PSD3XX as necessary. However, if it does not, there will be a problem. If the microcontroller itself is used to power down the PSD3XX, through an I/O port pin for example, there will be no way to power up the PSD3XX again since the PSD3XX itself contains the instruction that the microcontroller must use to activate the CSI signal to awaken the PSD3XX. The way to correct this situation is to design a circuit which detects when the microcontroller is coming out of its power down mode before it must fetch the first instruction. Such a circuit is depicted in Figure 2

In this circuit diagram, a Motorola 68HC11 microcontroller is connected to a PSD3XX in a low power system. The circuit functions quite simply. The E signal from the HC11 is normally a free running clock at 1/4 the frequency of the input clock. When the HC11 is placed into the sleep mode by the software (by executing the STOP instruction), the E signal stops oscillating and remains low until an interrupt or internal timer event occurs. After the

interrupt has been received by the controller, the E signal resumes toggling, but there will be a minimum of two E clock cycles prior to the first AS. This characteristic can be used to place the PSD3XX into its low power standby mode whenever the STOP has been executed in the HC11 and to awaken it before it must supply an instruction to the HC11.


Figure 2. Simple Power Down Circuit

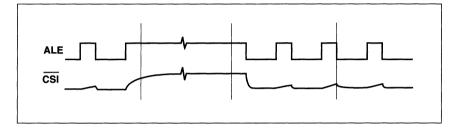
PSD3XX – Application Note 016


Power Management Techniques In The PSD3XX (Cont.) The ACT05 device shown in the diagram is simply an open collector inverter. When the E signal is oscillating, the output of the inverter will be toggling between ground and high impedance. When the output is at ground, the capacitor will rapidly discharge from its present state into the ACT05. When the output is high impedance, the capacitor will slowly charge up to V_{CC} through the resistor. Thus, under normal operation the \overline{CSI} input of the PSD3XX will be at or near 0 V, provided the RC time constant is large enough to prevent the capacitor from charging up beyond a logic zero level of 0.6 V.

When the HC11 enters the sleep mode the E signal remains low. This enables the

capacitor to slowly charge up to a logic one level which then places the PSD3XX into the standby mode in which it will consume only about 50µA of current. After the controller exits the sleep mode, the E signal will resume oscillating which rapidly discharges the capacitor. This, in turn, activates the CSI input to the PSD3XX. bringing it out of the power down mode. Since the E signal will oscillate for at least two full cycles before the first AS strobe begins a new bus cycle, the PSD3XX will have ample time to recover from the power down mode before having to supply an instruction to the HC11 for processing. In operation, the circuit results in a timing diagram similar to the one in Figure 3.

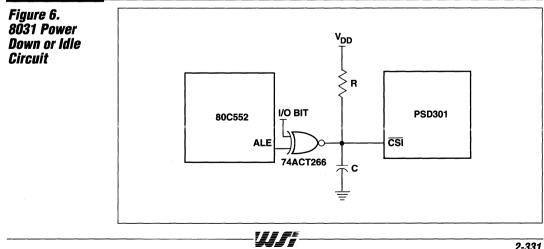
A similar circuit can be used for Intel 8031 type controllers. Controllers conforming to the Intel 8031 family generally have two low power modes: IDLE and POWER DOWN. The IDLE mode causes the controller to cease instruction execution, but its internal clocks continue to run. This saves significant power while leaving the internal timers and other functions operational. When in the IDLE mode, both the ALE signal and the PSEN signal are held high. A circuit similar to the one illustrated for the 68HC11 may be used to detect the end of oscillation on the ALE signal. This circuit is shown in Figure 4.



Power Management **Techniques** In The PSD3XX (Cont.)

The circuit operates on the same principle as the one used earlier for the Motorola processor. The ALE signal normally oscillates high for 2 clocks out of every 6 or 12 clocks, depending on whether instruction or data accesses are being performed. The software places the 8031 into the Idle mode by setting bit 0 in the PCON register. Once set, the ALE and PSEN signals remain high until an interrupt or hardware reset occur. During this time. the CSI signal will float high with the RC circuit, as in the earlier example. The

ACT09 is simply an AND gate with an open collector output. It performs the same function as the inverter in the previous example without inverting the signal. When an interrupt or reset is received, the ALE signal begins to toggle again, but at least two "dummy" unused ALE cycles will occur before the first meaningful instruction is fetched, aiving the PSD3XX time to recover from the power down mode. The timing for the above circuit is shown in Figure 5.


Figure 5. 8031 Idle Timing

If the system requires truly the lowest power available, the 8031 POWER DOWN mode may be used. This disables all internal operations of the 8031 as well as the external ones. Thus, any on-chip peripherals like timers and serial communication links will be disabled. This places the controller into its lowest power mode possible. Software may place the 8031 into the POWER DOWN mode by setting bit 1 in the PCON register. When execution of the instruction is complete, the ALE signal will be driven low and will remain in this

state until a hardware reset or an interrupt is received. Thus, a circuit similar to the one above may be used to detect the static condition of the ALE signal, but an inverting gate must be used instead of the ACT09 (such as the ACT05 used in the Motorola example earlier).

If both the POWER DOWN and IDLE modes must be used, the gate may be replaced with an ACT266 exclusive NOR with an open collector output. This circuit is shown in Figure 6.

PSD3XX - Application Note 016

Power Management Techniques In The PSD3XX (Cont.) The I/O bit can be provided by either the PSD3XX or the controller itself. If the controller is used to provide the I/O bit, it must hold the correct value on the output even when in the idle or sleep mode, as the PSD3XX does. When the I/O bit is low, the POWER DOWN mode is enabled (a low on ALE and a LOW on the I/O bit will result in a high on \overline{CSI}). When the I/O bit will result in a high on \overline{CSI}).

For all of the above circuits to operate correctly, the value of the RC network must be carefully calculated to insure proper operation in the normal mode. This means that under normal operation, CSI must never climb above 0.4 V, which will guarantee that it is always recognized by the PSD3XX as a low.

For example, the 68HC11 circuit shown in Figure 2 used the E signal from the controller to disable the PSD3XX. The E signal oscillates at 1/4 the frequency of the HC11's input clock. If an 8 MHz HC11 is used, the E signal will oscillate at 2 MHz. This results in an E signal clock period of 500 ns. During this 500 ns the E signal will be low for 250 ns. Thus, the RC network must be chosen to prevent the CSI signal from climbing above 0.4 V for at least 250 ns. The equation below governs the voltage across the capacitor (V_C), and thus the voltage present on the CSI pin:

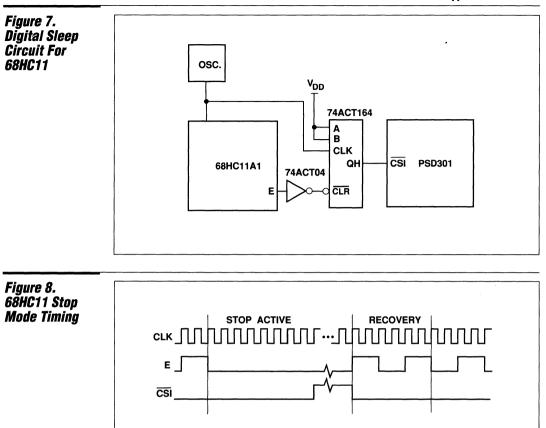
 $V_{\rm C} = V_{\rm CC}(1 - e^{-t/{\rm RC}})$

where V_C is the voltage across the capacitor (which is the same as the \overline{CSI} pin), V_{CC} is the supply voltage, and t is the time in seconds after the output of the open collector gate switches from a low to an open circuit. Solving for RC we get:

 $RC = -t/ln(1-V_C/V_{CC})$

In order to determine the minimum values for R and C, we must solve this equation for the point of time which is of interest. We must have V_C no greater than 0.4V at time t = 250 ns. Thus, with V_{CC} = 5 V, the equation may be rewritten as follows:

 $RC = -250 \times 10^{-9} / \ln (1 - 0.4 / 5.0) =$ 3.0 x 10⁻⁶


us:

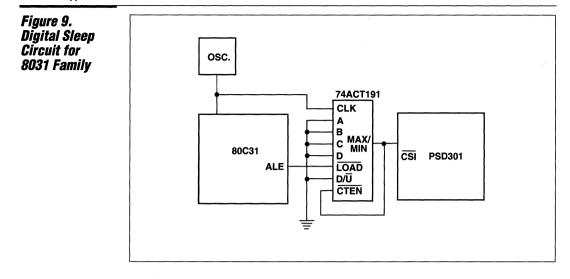
An acceptable RC network for this case might be a resistor of 100K Ω and a capacitor of 30pF. These values will provide no margin for the circuit so some additional resistance or capacitance may be desired. Of course, larger values may be used without harming the circuit, they will just cause the low power mode to be entered more slowly. The case of leaving the low power mode is less critical, since the capacitor will discharge more quickly through the gate than it will charge up through the resistor. In the interest of minimizing power use by the circuit itself, it is best to use a larger resistor value and a smaller capacitor value, since this will cause less current to be sunk by the gate which drives the circuit.

Using this equation, it is possible to determine the RC value required for any controller and/or frequency. It is only necessary to determine the length of time that the RC will be required to hold the CSI signal below 0.4 V and plug that value into the above equation.

If a more deterministic method is desired for placing the PSD3XX in the power down mode, a fully digital circuit may be implemented which uses very few additional components. This circuit is shown in Figure 7 for the 68HC11 controller.

This circuit performs the same function as the RC circuit described earlier, but does it digitally. The 74ACT164 is a shift register which is used in this example to detect when eight HC11 input clocks occur while the E signal remains low. In normal operation, no more than two clocks should occur without E transitioning from low to high, thus providing a clear to the ACT164. If the HC11 is stopped, the E signal will remain high until an interrupt is received, but the input clock continues to run freely. Thus, the shift register will shift in "one's" until the E signal goes high again. When the ACT164 has shifted eight times, the CSI signal will go high, placing the PSD3XX into the power down mode. The timing diagram corresponding to this circuit is shown in Figure 8.

Power Management Techniques In The PSD3XX (Cont.)


A similar circuit may be used for the 8031 family of controllers, and is depicted in Figure 9.

This circuit, like the others, detects when ALE stops toggling. Since up to 10 clocks may normally occur without an ALE pulse, a counter which can count to at least 11 is required in order to function properly. Thus, an 8-bit shift register like the one used with the HC11 will not work. In this case, a 74ACT191 is used to count 16 clocks prior to raising its MAX/MIN output high. A low on the ALE signal will load zero's into the counter and clear the MAX/MIN output. The MAX/MIN output is also used as the

ur:

counter enable to prevent the counter from counting further after attaining the count of 16. The circuit shown will function with the IDLE mode of the 8031. If the POWER DOWN mode is used, an inverter must be inserted in the ALE signal path.

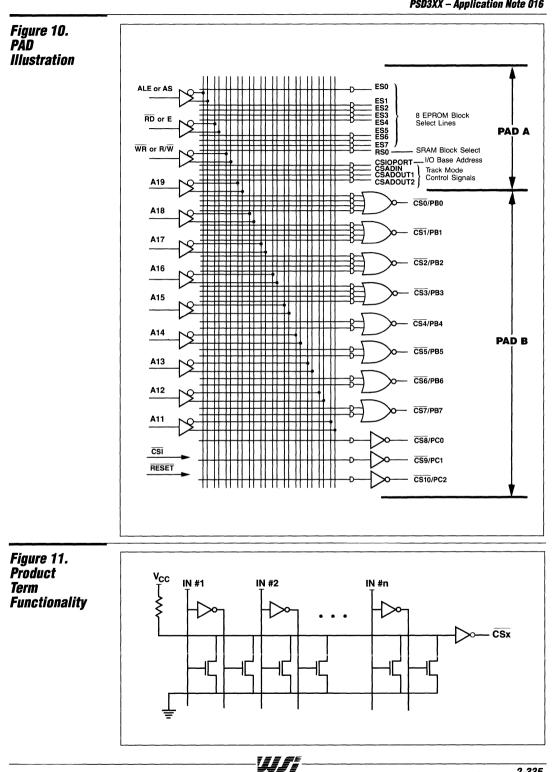
Other controllers, not listed here, may also have power down modes which may function with these circuits. Any controller which has some sort of external indication when the power down mode has been entered may usually be used to place the PSD3XX in its low power mode also.

Power Management Techniques In The PSD3XX (Cont.)

PAD Programming Techniques

The preceding section has described methods of using the power down capability of the PSD3XX with several microcontrollers. There are also techniques which may be utilized during programming of the device to further reduce power. These techniques can significantly reduce the power expended by the PSD3XX when it is in full operation.

The programmable logic section of the PSD3XX, called the PAD, provides much of its great flexibility and configurability. It is used to control the internal resources of the PSD3XX and can also be used to control external resources as well. The power use of the PAD varies greatly depending on how its product terms are programmed and used.


The PAD is illustrated in Figure 10. It is divided into two sections, called PAD A and PAD B. PAD A is responsible for generating the control and selection for the internal resources of the PSD3XX and utilizes 13 product terms to perform these functions. PAD B provides any external chip selection and logic replacement that is necessary for the system and has 27 product terms for this purpose. A single product term is functionally illustrated in Figure 11.

us:

Each of the PAD inputs and its complement is available to each of the 40 product terms of the PAD. Each of these inputs is connected to an n-channel transistor which is used to connect the entire line to around when the input is in the appropriate state. A high on the input to the gate causes the transistor to turn on. When the device is programmed, each of these transistors may be left in place or may be functionally removed (programmed out) from the circuit. If all of the transistors are programmed out, the line is left connected only to the pull-up resistor which makes it always high. Thus, the output of the inverter is always low. If an equation such as:

/CSx = In#1 • /In#2

is programmed into the PAD, the output \overline{CSx} must be high except when In#1 is high and In#2 is low. Thus, all of the transistors are programmed out except the ones connected to In#1 and In#2. This means that unless In#1 is high and In#2 is low, there will always be at least one of the two remaining transistors turned on, which in turn results in the \overline{CSx} output being high. When the appropriate input condition is met, the remaining two transistors will turn off, which allows the output to become low.

PSD3XX - Application Note 016

2

PSD3XX - Application Note 016

Power Management Techniques In The PSD3XX (Cont.) As can be seen in the figure, the product term expends very little power when all of the transistors are either programmed out or turned off. The only power used in this case is the result of the leakage current through the various off transistors, which is very low in CMOS technology. When one or more of the transistors is turned on, there will be current drawn through the pullup resistor to ground. Therefore, the power used by a product term varies greatly according to the way it is programmed.

Experimental data has shown that a product term with all of the transistors programmed out draws approximately 380μ A less current at room temperature and 5.0 V V_{CC} than a product term which has some active transistors. WSI's MAPLE software packages take advantage of this fact to reduce power as much as possible.

When the user intends to use some or all of the Port B pins as I/O signals, then they are not connected to the PAD in any way. Thus, the MAPLE software is free to program the unused PAD B product terms in any way. In MAPLE versions 4.03B and subsequent, the software automatically programs out all transistors in each unused product term, which can eliminate up to 24 product terms for Port B. This results in a power reduction of up to 9.1 mA.

If one or more of the Port C pins is programmed as an address or logic input, MAPLE is free again to program out all of the transistors in each unused PAD B product term dedicated to Port C. This can eliminate up to 3 additional product terms resulting in a power reduction of over 1 mA.

Finally, there are three product terms from PAD A which are dedicated to controlling the Port A Track Mode operation. If the Track Mode is not used in the application, these product terms may also be eliminated by MAPLE for a power reduction of over 1 mA.

The remaining ten product terms are the 8 EPROM select lines, the SRAM select line and the I/O port select line. These terms may not be eliminated by MAPLE without disrupting the operation of the device. But in a system which uses Port A and Port B as I/O or address outputs, and Port C as address or logic inputs, the total system power saving is 10.2 mA typical. The same methods may also be used in non-multiplexed microcontroller applications. In this case, Port A and Port B may be used as microcontroller data input pins, depending on whether the controller is 8- or 16-bit. As in the earlier cases, if the ports are used as data input pins, they are not connected to the PAD which allows MAPLE to program out the appropriate product terms.

Again, MAPLE 4.03B or a subsequent revision must be used to obtain this capability. If your software is an older revision, contact your local WSI regional sales office for a free update.

EPROM Programming Techniques

Like the PAD, the EPROM in the PSD3XX uses varying amounts of power depending on how it is programmed. When programmed to a one, an EPROM bit draws more current than when programmed to a zero. Thus, for minimum power usage it is best to have the majority of the EPROM programmed to zeros.

Unfortunately, the contents of the EPROM are fixed by the program and data requirements of the system and thus cannot be easily optimized for power. However, the user can program all unused sections of the EPROM to zeros. This will not substantially cut the power used by the PSD3XX under normal operation when EPROM accesses are being performed, but it will reduce the power consumption during periods when there is not a valid address on the bus because these invalid addresses will often point to unused EPROM locations. When an EPROM location is currently addressed, it is expending power even if the RD or PSEN signals are not actually enabling an output. Therefore, it is best that unused EPROM locations be filled with zeros so that power is minimized during these periods of invalid addresses. It should be noted that all power figures used in this application note as well as those specified in the PSD3XX data sheet are based on an average of 50% "ones" and 50% "zeros" contained in the EPROM. An EPROM location programmed to "ones" will draw approximately 1.5 mA of additional current over an EPROM location programmed to "zeros".

Power Management Techniques In The PSD3XX (Cont.)

An even better way to help minimize power usage is to control the addresses which appear on the bus when there is no valid address being driven by the microcontroller. The least power expense will be when this unused address points to an area which has no PSD3XX resource mapped into it. This will result in no internal resource block receiving a chip select and thus the least amount of current will be drawn. The next best approach is to have the unused address point to an EPROM area containing zeros. The next lowest power would be to have the unused address point to an EPROM area containing something other than zeros. Finally, the highest power will occur when the unused address points to an SRAM location.

Since there is not much that can be done about the address that is appearing at the output of the microcontroller, the best that can be done is to know what address the controller will have active on its bus at various non-operational times and insure, if possible, that the PSD3XX's address map maps that address into a desired range of memory (preferably no memory at all). This will truly minimize the power expended by the PSD3XX during these times.

Summing It All Up

After taking all of these factors into account, what kind of power use can you expect from the PSD3XX in your own system? As a guideline, we will calculate the typical power required of a PSD3XX installed in a hypothetical system. The requirements of this system are listed in Table 1.

Using this information, we can calculate the approximate typical power requirements of the PSD3XX. Before we can begin, we must know what the base power of the PSD3XX is under the voltage and temperature conditions specified. The base power of the PSD3XX is the power used by the PSD3XX when only the product terms which control the EPROM, SRAM and I/O ports are not programmed out (10 active product terms). The base power also assumes that no internal resources (EPROM, SRAM and I/O ports) are being currently accessed. The current drawn by the PSD3XX under these conditions has been determined experimentally to be 16 mA. To this current, we must add additional current for the other active product terms, SRAM access and EPROM access.

Table 1. Hypothetical System Requirements

Characteristic	Specification
PSD3XX Operational Frequency	2 MHz
Port A	Address Output
Port B	4 Chip Select, 4 I/O
Port C	Logic inputs
CSI	Configured for Auto. Power Down
V _{cc}	5.0 V
Temperature	25°C
Standby duty cycle	60%
EPROM duty cycle	30%
SRAM duty cycle	10%

Summing It All Up (Cont.) The system is requiring only four of the 11 available chip select outputs. Therefore, most of the PAD B product terms may be programmed out. To determine how many product terms we will be using, we must look at the equations for the four chip selects. Assume that the following equations are to be used:

/CS#1 = /(A15 • A14 • RD + A13 • A12 • WR) /CS#2 = /(/A18 + /A17) /CS#3 = /(A16 • A18 + A17 • ALE) /CS#4 = A17

In order to configure the system for the lowest power usage, we must be sure that we place these chip selects on the output pins which will require the minimum number of product terms to remain active. Since the maximum number of product terms required to generate the above equations is only two, there is no need to place these chip selects on Port B pin 0.1.2 or 3 since these pins each have four product terms. The lower power configuration would place these chip selects on Port B pin 4.5.6 and 7, where only two product terms will be drawing power for each chip select. One of the above chip selects, #4, actually requires only one product term, meaning that it could be placed on one of the Port C pins which have only one product term. However, all of Port C is used in this case

as logic inputs (A16, A17 and A18) and therefore cannot be used as chip selects. Since the rest of the Port pins are not used as PAD outputs, the MAPLE software will automatically program them out.

If we do configure the chip selects to output on PB[0:3], we must add 8 product terms to the 10 used in calculating the base power number. Using the current per product term of 380μ A provided earlier, eight additional product terms result in an additional 3.0 mA of current.

Experimental data has shown that accessing the SRAM results in an additional current expense of 31 mA above the base current. Also, accessing the EPROM draws an additional 0.5 mA over the base current. The standby current has been measured at 50 µA. Finally, we must consider the additional current used by the frequency of operation. This is 3 mA per 1 MHz for a total of 6 mA, since the PSD3XX will be operating at 2 MHz. This provides us with all of the data that we need to calculate the total power usage of the PSD3XX in this system.

Table 2 can be used to calculate the EPROM access current, the SRAM access current and the standby current.

Table 2.	
Summar	y of
	Current
Usage li	7
Hypothe	
System	

PSD3XX Block	Current Used			
Base Configuration	16 mA			
PAD (as configured)	3.0 mA			
EPROM	0.5 mA			
SRAM	31 mA			
Frequency Component	6 mA			
Standby Current	50 µA			

Now, summarizing further, the total EPROM access current is:

Base Current + PAD Current + EPROM Current + Frequency Component = 16 mA + 3.0 mA + 0.5 mA + 6 mA = **25.5 mA**

us:

The total SRAM access current is:

Base Current + PAD Current + SRAM Current + Frequency Component = 16 mA + 3.0 mA + 31 mA + 6 mA

= <u>56.0 mA</u>

2

		PSD3XX – Application Note 016		
Summing It All Up (Cont.)	Now we must account for the duty cycle of the system to determine the total average power for the PSD3XX. In order to apply the duty cycle, we simply multiply each power component by its duty cycle and add them all together. The equation to perform this is given below: $Total Current = 0.6(i_{SBY}) + 0.3(i_{EPROM}) + 0.1(i_{SRAM})$ where i_{SBY} is the standby current, i_{EPROM} is the active EPROM current and i_{SRAM} is the active SRAM current. Plugging in the numbers we developed earlier, the equation becomes:	The average current drawn by the PSD3X3 under the specified conditions of configuration, frequency and environment is therefore 13.3 mA. The peak typical current used by the PSD3XX is 54 mA while the SRAM is being accessed. The minimum current is 50 μ A, drawn by the PSD3XX while it is in the Power Down mode. This compares very favorably with the typical current usage of a fully discrete solution.		
	Total Current = 0.6 (50 μA) + 0.3 (25.5 mA) + 0.1(56.0 mA) = <u>13.3 mA</u>			
Typical vs. Maximum Current	The typical and maximum current numbers are both specified by most integrated circuit manufacturers. Many designers are unsure of what these parameters are and how they relate to the power which will actually be dissipated by the system. This is compounded by the configurability of the PSD3XX.	conditions. These numbers are generated again for the configuration of the PSD3XX which has all 40 product terms active. To determine the typical current drawn by the PSD3XX in your system, it is best to use the techniques presented in this application note. All of the typical current values used in this note are the result of careful experi- mentation, and should parallel very closely		
	The maximum power numbers published in most product specifications are usually chosen as the number which will never be exceeded by the device under any circumstances, including variations in processing, $V_{\rm CC}$ and temperature. To truly	the values measured in your own system. To extrapolate the worst case current for your configuration from your calculated typical value, you must add about 50% to account for voltage, temperature and process variation.		
	be a maximum number, all three of these parameters must be at their worst cases simultaneously, which is quite unlikely. Therefore, power use will more likely follow the typical values when the system is actually running.	When calculating the worst case current for your entire system it is usually best to use the typical current numbers for all of the components installed and then apply some margin to allow for worst case conditions. This is much more accurate than using the		
	In the PSD3XX data sheet published by WSI, two current values are published for typical conditions and another two are published for worst case conditions. These two sets of numbers are used to specify current use in two different PSD3XX configurations. The lower numbers represent the current drawn by the	worst case parameters for each component since it is <i>extremely</i> unlikely that <i>all</i> of the components used are simultaneously at their worst case process parameters, though they may all be at worst case voltage and temperature. Usually 20% margin above the typical numbers will sufficiently cover the worst		

Table 3 summarizes the typical current numbers for the PSD3XX which can be used when calculating the current used in your own system.

case for the entire system.

PSD3XX while configured with 10 active product terms. To arrive at the maximum

the programming of the device has not

changed, but we take the temperature, voltage and processing to their worst case

value for this configuration, we assume that

Table 3.	Base Current (10 product terms, SRAM and EPROM Unselected)	16 mA						
Summary of	Additional Current per Product Term	0.38 mA						
PSD3XX	Additional Current for SRAM Access	31 mA						
Typical Commont	Additional Current for EPROM Access	0.5 mA						
Current	T ADDITIONAL CUTTED FOR DEDCV ETTECTS							
Usage	Additional Current for Voltage > 5V	0.85 mA/0.1V						
	Standby Current	50 μA						

Conclusion

The PSD3XX is a very important device in the design of compact, low-power systems. It provides a cost effective minimum part count solution for a typical microcontroller system. It also provides a very low power solution for those designs which are handheld and/or battery operated. As the PSD3XX family grows and evolves, more innovations will be presented in terms of integration and power usage. The new low power PSD3XX family will be introduced soon, providing the designer with an even lower power solution. Until then, use of the techniques described in this note will provide a minimum power solution for your microcontroller system.

Programmable Peripheral Application Note 018 Security of Design in the PSD3XX By Oudi Moran

Introduction

The PSD3XX is a family of field programmable and UV erasable microcontroller peripherals that have the ability to interface to virtually any microcontroller without the need for external glue logic.

Any PSD3XX family member is a complete microcontroller peripheral solution with Memory (EPROM, SRAM), Logic, I/O Ports and a Security bit on chip.

In today's competitive business environment, where the cost of the product and its quick introduction to market are the most important factors for success, some companies tend to copy a competitor's design. By doing so, they can save development time which can reduce their engineering cost and eventually reduce the product's price and its introduction time to the market.

This is true mainly for the consumer and commodity product markets where microcontrollers are widely used. The PSD3XX, as the primary microcontroller peripheral, contains all the important code and architectural data that a potential competitor may want to copy. Since the PSD3XX is a field programmable device, its contents may be read by an I.C. programmer, decompiled and copied by a competitor.

Obviously, it is an undesirable situation for the EPROM, PAD and configuration data of the PSD3XX to fall into the hands of a competitor. To prevent this, the PSD3XX device implements a security "fuse" or programmable bit feature to protect its contents from unauthorized access and use by a competitor.

Uploading the programmed data from EPROM, PAD, ACR and NVM port configuration sections of a secured PSD3XX device is disabled by the security bit (if turned ON). The RAM of the programmer (after trying to upload a secured PSD3XX device) will contain invalid random data.

A secured PSD3XX device will function properly in the system – the microcontroller will be able to access the EPROM, SRAM, PAD and the I/O ports but any attempt to read or verify the contents of a secured PSD3XX by external hardware will fail.

Use of the Security Bit

PSD3XX devices contain non-volatile configuration bits to enable the user to set and configure the device to the proper operational mode. The configuration bits will configure the device to interface successfully with the microcontroller and also configure the PSD3XX I/O Ports. The configuration bits are programmed during the programming phase and cannot be accessed in operational mode.

During programming the configuration bits are programmed as two separate sections:

 The ACR section of the PSD3XX device contains global configuration bits for proper microcontroller interface. The security bit resides as an individual configuration bit in the ACR section of the device. The NVM section of the PSD3XX device contains port configuration bits for proper set up of Ports A, B and C.

PSD3XX devices use the security bit to prevent unauthorized access to the configuration data inside. Since the security bit is part of the ACR global configuration bits section, it can be programmed in the same manner as all other configuration bits.

All ACR and NVM configuration bits of the PSD3XX are non-volatile, so their contents will not be erased or corrupted during the power down mode of the device (when the PSD3XX is deselected with $\overrightarrow{CSI}/A19 =$ High) or during power down when V_{CC} is removed.

Use of the Security Bit (Cont.)	The security configuration bit is user programmable and UV erasable as well, so a secured part can be erased completely and be reprogrammed (only if the device is in a windowed package). Setting the security bit will lock all the contents of the PAD, ACR global config- uration bits, and NVM port configuration bits. By setting the security bit the device cannot be entered into Initialization and Override mode (resets the device and enters it to a known default configuration before activating the individual read mode for each section). Any attempt afterwards to enter the device to DIRECT mode for uploading or programming will fail. Setting the security bit prevents a programmer from directly accessing the various sections of the device. Even though the EPROM, SRAM and I/O port contents are not directly disabled by	setting the security bit, it is impossible to read them by using external equipment (except by the microcontroller in the system where the PSD3XX designed in). This is because the external equipment will lack information about the address mapping of the eight EPROM blocks, SRAM and I/O ports in the memory map of the microcontroller and the unknown status of the global and I/O port configuration bits. Even if an unauthorized user figures out the configuration of the part by knowing what microcontroller is interfaced (ALE polarity, what type of read and write signals, etc.) and gets data out of the PSD3XX (after applying address and control signals to the device), the user will have no idea where it came from: EPROM, SRAM, I/O Port Register, Page Register, etc. This effectively renders the data useless.
Setting the Security Bit	The security configuration bit is called CSECURITY.	addresses of the object file created after compilation. (See Security Bit File Location section of this document).
	If CSECURITY = 0, it means security is off (security bit is not set and its value will be '1' in the object file).	If Setting of the security bit is done in the programming software (Third party pro- gramming software or WSI Mappro
	If CSECURITY = 1, it means security is on (security bit is set and its value will be '0' in the object file).	programming software), the user should program and verify the device using a Maple generated object file (with security option OFF) and then set the security ON by
	Setting the security bit and activating the security mode can be done in two different ways:	using a separate programming software command.
	 By turning security ON in the config- uration menu of Maple development software. 	Some third party programmer manu- facturer's software will load the Maple generated object file but mask the security bit before programming the device. In that case the user will have to set the security
	 By setting the security in the programming software (done after the device is fully programmed and verified). 	bit (if necessary) by using a separate command in the programming software menu.
	Using Maple development software to turn security ON gives the security bit the value '0', and will integrate it in one of the ACR	

Security Bit File Location	The object file created by compilation with Maple software is an Intel Intelec format, compatible file.	by Mappro WSI programmer interface software as SECA = 1). The security bit of PSD302/312 resides in			
	The programming algorithm defines the address scrambling that translates the file addresses to device addresses (the address that the device "sees" on its address pins during programming). By looking at a screen dump or a hard copy of the object file the user can determine the status of the security bit. The security bit of the PSD301/311 resides in data bit #1 of file address 81D3h. This address contains three configuration bits that reside in data bits $0 - 2$, so this address in the file can have any value between 0 and 7.	data bit #1 of file address 10253h. This address contains three configuration bits that reside in data bits $0 - 3$ (bit 3 is reserved for future usage). This address can have any value between 0 and F. If this address has a value XX1X (where X can be either 0 or 1), the security bit is OFF ('1' value means an unprogrammed bit) and CSECURITY = 0 (displayed by Mappro WSI programmer interface software as SECA = 0). If this address has a value XX0X, the security bit is ON and CSECURITY = 1 (displayed by Mappro WSI programmer interface software as SECA = 1).			
	If this address has a value X1X (where X can be either 0 or 1), the security bit is off ('1' value means an unprogrammed bit) and CSECURITY = 0 (displayed by Mappro WSI programmer interface software as SECA = 0). If this address has a value X0X, the security bit is on and CSECURITY = 1 (displayed	If users do not want to look for the security bit status in the object file, they can call MAPPRO programming software from the main menu of MAPLE, Load the RAM with the object file and Display the ACR configuration bits status on the screen. The value of SECA will indicate the status of the security bit (SECA = 0 means security is OEE_SECA = 0 means security is			
		OFF, SECA = 1 means security is ON).			
Summary	The PSD3XX family of programmable microcontroller peripheral devices provides security of design not readily available in conventional PLDs and EPROMs.	Though not entirely fool-proof, the security bit feature helps make it more cost effective for competitors to design their own hardware instead of trying to copy systems that already exist.			

Programmable Peripheral Application Note 019 The PSD311 Simplifies an Eight Wire Cable Tester Design and Increases Flexibility

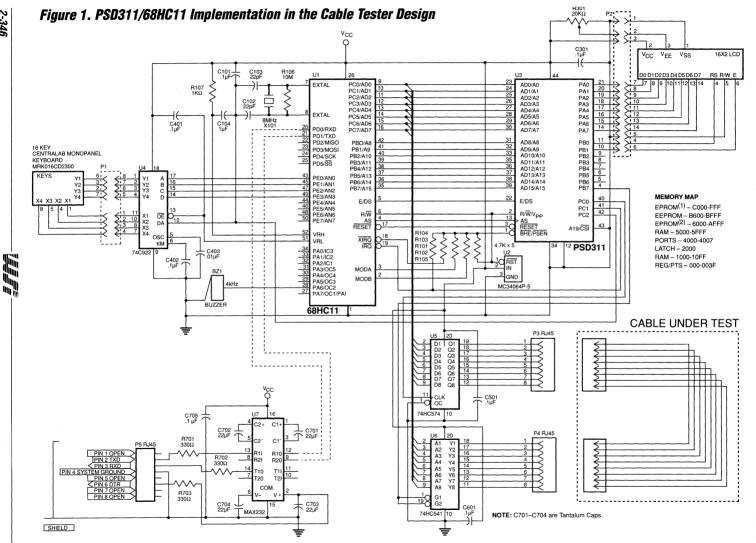
in the Process — By Timothy E. Dunavin, Antec – Anixter Mfg. and Karen S. Spesard, WSI

Abstract

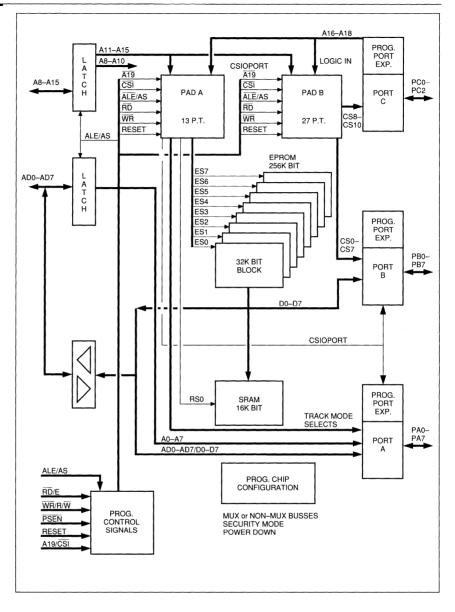
With the ever increasing complexity of wiring networks and cables to match a wide variety of computer and telecommunication systems, a means of testing them becomes a necessity. The wire tester design described below is a simple yet effective design which uses the Motorola 68HC11 and WSI PSD311 pair to create a system that insures 8-wire cables are wired properly, and at the same time offers a substantial increase in design flexibility over alternative hardware solutions.

Introduction

More and more microcontroller and microprocessor designers are trying to design integrated core-based systems with the intention of being able to easily configure their systems to fit a wide variety of product applications. The problem is that when these applications require new or changing features such as expanding I/Os or address maps, they may find their designs are not flexible enough to accommodate the new requirements, forcing a lengthy and expensive redesign anyway.


A solution to this problem is to design in user-configurable programmable peripheral products which are flexible enough to accommodate future design revisions without the need for board relayout. The PSD3XX family from WSI, Inc., fits this profile exactly in that the products can be tailored to a specific application and then can be re-configured for other applications using the same core design. Also, the PSD3XX product family can enhance microcontroller-based systems in other ways. For instance, it can improve system integration resulting in lower system costs, and it can significantly shorten time to market resulting in increased revenues and profits.

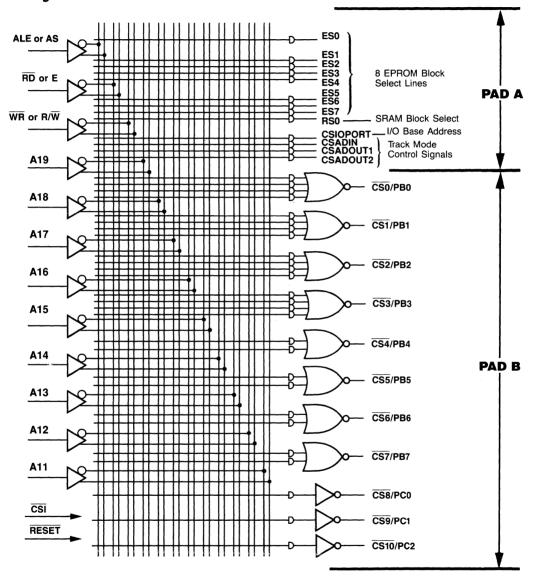
In the cable tester system in which the PSD311 was used with the 68HC11, the PSD311 integrates address decoding, latches, 32K x 8 EPROM, and 2K x 8 SRAM all into a one-chip user-configurable microcontroller peripheral. It also replaces the two ports lost by the 68HC11 to extend program and data memory outside the MCU with two additional configurable 8-bit I/O ports, and adds a third 3-bit port, while easily enabling still further port expansion.


The Cable Tester System Design

The cable tester described below operates by sending a known bit pattern through the cable under test and checking the bit pattern at the other end. The hardware configuration utilized to achieve this function is shown in Figure 1.

Note that there are very few components overall in the design. The core contains just the 68HC11 microcontroller from Motorola, the PSD311 Programmable Peripheral with Memory from WSI and a few other key components including a keypad, LCD display, and an optional RS232 communications device. Also note that the interconnections between the 68HC11 and PSD311 are direct and require no "glue logic". That means that no external latches are needed to demultiplex the multiplexed address and data bus from the 68HC11. And, no other external logic is needed to generate the address mapping for the on-board EPROM and SRAM and to select external peripherals, or create the control signal interface. The PSD311 already incorporates these features internally, thereby simplifying the design considerably. In fact, the PSD311's architecture, as shown in Figure 2, specifically includes 32K x 8 mappable EPROM for program

Figure 2. PSD311 Architecture



US:

The Cable Tester System Design (Cont.)	storage, 2K x 8 mappable SRAM for data storage (or 16K x 16 EPROM and 1K x 16 SRAM, if using the similar PSD301 configured to interface to x16 micros) three highly configurable I/O ports, a programmable address decoder, and chip select logic. In this design, the reconstructed port space of the PSD311 is used to add a keypad	and an LCD display to the system, as well as additional output control and input lines with an 8-bit latch and an 8-bit buffer/line driver. Besides these components, the completed cable tester design also includes an undervoltage sensing circuit for generat- ing a reset signal and an encoder for inter- facing to the keypad.
Interfacing To The PSD311	Not only does the PSD311 interface to the 68HC11 simply and directly because of its internal latches and programmable control signals – as it does with any 8-bit microcon- troller – it also facilitates easy interfacing to other components. (The PSD301 interfaces to any 8-or 16-bit microcontroller.) This is possible because of its three I/O ports and the Programmable Address Decoder (PAD) which offer unsurpassed flexibility. The PAD block diagram is shown in Figure 3. For instance, the no "glue-logic" interface of the keypad in the system is accomplished by using a 74C922 encoder in conjunction with the PAD section of the PSD311. The PAD is useful because the Data Available (DA) line of the 74C922 is a logic "1" when a key is pressed, and the signal must be inverted before it reaches the /IRQ input of the 68HC11. Connecting the encoder's DA line to the PSD311's PC2 pin and configuring it to be a general-purpose logic input enables the signal to be inverted inside the PAD. The inverted signal is then	line is tied to ground to free an I/O pin of the PSD311 for other purposes. To free up Port A completely on the PSD311, an alternative approach would have been to connect the LCD directly to the 68HC11. To expand the I/O capabilities of the system further, two port pins from the PSD311 are used with a 74HC574 and a 74HC541 to create 8 additional inputs and 8 additional latched outputs, both at the same address. (This is shown in Figure 1.) The PSD311's chip select outputs from ports B and C are derived from the addresses, DS strobe, and R/W signal available as inputs into the PAD. These chip selects will enable data to be latched to the outputs or enable input data onto the extended address/data bus from the outside world, imitating the capability of a PIA. The chip select equation for the output latch, 74HC574, is decoded from the upper address byte, the DS/E signal, and the active low R/W signal as follows:
	"outputed" on PC1 which is configured as a chip select and routed to /IRQ. (See Port C Configuration and Chip Select Equation in Appendix A.) This simple internal manipulation inside the PSD311 helps reduce the number of components in the system. By connecting the 74C922 outputs directly to PE0-PE3 on the 68HC11, reading of the data is straightforward. The display used in the system is a 16 character by 2 line dot matrix LCD module. The interface to the LCD display is handled by mapping the data bus directly to Port A of the PSD311, which is configured pin-by- pin to be general-purpose I/O. The control logic for the LCD is handled through two pins on Port B: PB0 and PB1, which are also configured to be general-purpose I/O. (See Ports A and B Configuration in Appendix A.) With the display used as a "WOM" (Write Only Memory), its R/W	$\label{eq:constraint} \begin{array}{l} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \begin{array}{l} \label{eq:constraint} eq:$

U/*

Figure 3. Programmable Address Decoder Block Diagram

us:

2

Interfacing To The PSD311 (Cont.)	The PAD enables the 8 blocks of 4K bytes EPROM (256K bits) to be located anywhere within the available address space – in this case, the address space of the 68HC11 is 64K bytes. So, the EPROM memory is split into two segments of 16K bytes EPROM each, separated by the 512 bytes of the internal E2PROM on the 68HC11. This means that the first 4 EPROM blocks are mapped contiguously, as well as the last 4 EPROM blocks. Here, the program memory (6000H-9FFFH: EPROM2, and C000H-FFFFH: EPROM1) is allocated to the upper portion of address space. The data or SRAM memory, on the other hand, is allocated to the lower portion of address space and is partitioned into	two segments: one segment containing the SRAM internal to the 68HC11 (256 bytes) and the other containing the SRAM internal to the PSD311 (2K bytes). The SRAM in the PSD311 is mapped via the address decoder to location 5000H-5FFFH, respectively. Data direction and data registers of the PSD311's two ports are paired and accessed via an offset from a configurable I/O port mapped base address, such as 4000H in this cable tester design. This enables 16-bit data instructions to access the two I/O ports together, which in turn reduces both the Load and Store times during program execution.	
Benefits of the PSD311 Usage in System	Board layout of the cable tester design was greatly simplified with the PSD311. In fact, when pin 1 of the PSD311 is oriented 180 degrees from pin 1 of the 68HC11 in the PLCC package, port B of the 68HC11 is directly across from the AD8-AD15 pins of the PSD311. This positioning enables close layout of the two parts, greatly reducing costs due to less board space. Additional space is saved by using the latch and buffer for general-purpose I/O instead of the larger and more expensive PIA. And other I/O port lines are not sacrificed by using the multiplexed address/data bus instead of the Serial Peripheral Interface of the 68HC11. In fact, board space is estimated to have been reduced by more than 50% over the alternative cumbersome design because of the PSD311 positioning on the PC board, its port expansion capabilities, and of course, the number of parts it replaces: including a 256K EPROM, a 16K SRAM, a latch, a decoder, and other miscellaneous CMOS logic.	This translates into requiring a smaller power supply and a further reduction in cost. The flexibility of the PSD311 in the cable tester design is also an advantage when design changes need to be made quickly. Since the I/O ports, PAD, control signals, and EPROM are all programmable, the part just needs to be reprogrammed when the configuration or program memory for the entire system needs modifying. For instance, the current system has ten I/O, eleven input, and eleven output lines remaining. This can change if other variables need to be stored or other peripherals need to be accessed. To avoid relaying out another board to accommodate these changes, the PSD311 may be able to be reconfigured to easily handle them. Also, if more features and/or capabilities in EPROM are required, the PSD312 and PSD313 with 512Kbits (64K x 8) and 1Mbits (128K x 8) EPROM, respec- tively, are available in the same package	
	A benefit of parts reduction is lower CMOS power consumption that results from an integrated single-chip CMOS peripheral/ memory solution. By analyzing the power that would have been consumed with the alternative design and comparing that against the PSD311 solution, it was found that power was reduced by at least 30%.	and pinout. The PSD311 also provides additional SRAM beyond the limited amount that may be on the microcontroller being used. This provides obvious benefits including more scratchpad RAM for such uses as storing cable "signatures" and system tests that can be downloaded for diagnostic purposes.	

WS:

Benefits of the PSD311 Usage in System (Cont.)	But other benefits not readily seen are also important. For product designs that have a short life cycle and are "pushed" to go to market quickly, the additional SRAM gives the designer the option of writing the code in a high-level language such as "C", without the worry of running out of variable	storage space. The capability of writing software in "C" could speed up the software development cycle, thereby reducing time- to-market!			
Configuring and Programming the PSD311	All of the control logic, address mapping, and port configurations for the PSD311 are handled during device configuration as part of WSI's easy-to-use, menu-driven PSD MAPLE software program, which is included in the PSD-SILVER or PSD-GOLD software development package. See Appendix A for the PSD311 configuration used in this application. After the configuration for the PSD311 has been determined and "Save"d, the hex file that is needed for programming the PSD311 is created. That is done during	"Compile". "Compile" reads the code written for the microcontroller (in Intel hex format) and concatenates or merges it with the PSD311 configuration data to produce the desired output file for downloading to a programmer for programming. That is all there is to programming the PSD311 which is now supported on industry-standard programmers like the Data I/O, BP Microsystems, Bytek, and Logical Devices programmers as well as the low-cost WSI MagicPro programmer.			
The 68HC11/ PSD311 System Software	The software for the 68HC11 was written with a word processor and assembled using a cross assembler. A portion of the cable tester design code which is programmed into the PSD311 is listed in Appendix B. Here the register and RAM memory loca- tions are set up within the first 64 clock cycles from reset of the 68HC11 and located at 0000H to enable easy Direct Addressing and Bit manipulations of often used registers. Initialization of the Option Register, Timer prescaler, Stack and Serial Communications Interface complete the basic set up for the 68HC11 operation. Other initialization operations include: Ports A and B of the PSD311 which are set up as outputs for display control and data transfer operations, and the LCD display which is set up to display the first screen. Final initialization is achieved by setting several internal registers and clearing any pending interrupts. Now, the IRQ mask bit can be cleared and the main program loop entered.	Included in the code is a demonstration of some useful routines which will illustrate how to easily work with the Latch and Buffer expansion from the 68HC11/ PSD311. Remember that these extended addresses off the 68HC11 can be accessed in several ways. The example code shown uses the Bit Set and Bit Clear instructions in the indexed addressing mode. With these Bit Set and Bit Clear instructions, which are read-modify-write instructions, an additional register should be set up in the internal RAM, not on the latched (write- only) address, so the instructions will function properly. Data can then be manipulated and stored as a complete byte to the latch enabling data to be read and the current value in the latch to be checked. (Bit manipulation on the latched addresses using the indexed addressing mode will result in a correct bit change. However, the rest of the byte will be unusable as data on the bus will be scrambled at the rising edge of the chip select signal.) The latch and buffer expansion keeps software algorithms simple.			

W/i-

The 68HC11/ PSD311 System Software (Cont.)	Regarding the software for the keypad, no debounce software is necessary because the 74C922 has a built in debounce circuit. Actually, direct access from Port E to the keypad data and the AND instruction allows easy compare and execution of the correct routine.	The remaining subroutines in the program are straightforward and basic to most microcontrollers and microprocessors. Those used by the 68HC11 are found in previously published handbooks and articles which can be obtained through your local Motorola sales office.				
Putting the System to Work	The 68HC11/PSD311 cable tester design could be expanded very easily with software to learn many different wiring configurations and to check several cables against a good one. Its usefulness can also be increased by making it battery operated for field use because of the low current draw of the tester.	The cable tester, as designed, will display the test results and step through the program to show the pin by pin connection of the cable. Results are then stored and later fed into a computer through the RS232 communications port of the tester.				
Summary	Requirements for microcontroller-based designs are continually changing and to be able to adapt to these changes means being flexible. Of course, flexibility in hardware is sometimes hard to achieve, while flexibility in software is mostly a given. One of the goals of the PSD3XX family of products is to bridge the gap in flexibility between hardware and software. By that, it is meant that hardware will not be a gating item when developing a new design that needs to be introduced to market quickly. And the PSD311, as illustrated in this cable tester design, addresses that issue perfectly by providing	a user-configurable peripheral solution for hardware designers. So, if an application is modified and the I/O configuration changes, or design fixes are required, the P.C. board does not have to be re-engineered. The PSD3XX can just be reprogrammed to reflect the new changes. The flexibility provided by the PSD311 solution in this design is crucial in that it enabled development to be completed quickly and successfully using a "core" approach which can handle many different cable applications, including applications for telephone interconnections, printers, and local area networks.				

Appendix A. PSD311 Part Configuration Listed in .SV1 ALIASES File A16/CS8 = CS8 A17/CS9 = IRQ A18/CS10 = DAA19/CSI = CSI **** ****** GLOBAL CONFIGURATION Address/Data Mode: МΧ Data Bus Size: 8 CSI/A19: CSI Reset Polarity: LO ALE Polarity: ΗI WRD/RWE: RWE A16-A19 Transparent or Latched by ALE: т Using different READ strobes for SRAM and EPROM: N ******* **** PORT A CONFIGURATION (Address/IO) Bit No. Ai/IO. CMOS/OD. 0 IO CMOS 1 IO CMOS CMOS 2 IO 3 CMOS IO 4 IO CMOS 5 CMOS IO 6 IO CMOS 7 CMOS IO **** PORT B CONFIGURATION Bit No. CS/IO. CMOS/OD. 0 IO CMOS 1 IO CMOS 2 IO CMOS 3 CMOS IO 4 10 CMOS 5 IO CMOS 6 CMOS IO 7 CS7 CMOS CHIP SELECT EQUATIONS /CS7 = /A15 * /A14 * A13 * /A12 * E * R/W PORT C CONFIGURATION Bit No. CS/Ai. 0 CS8 1 CS9 2 A18 CHIP SELECT EQUATIONS /CS8 = /A15 * /A14 * A13 * /A12 * E * / R/W /IRQ = DAADDRESS MAP EPROM A A A A A A A A SEGMT SEGMT EPROM File Name 19 18 17 16 15 14 13 12 11 STRT STOP STOP START ES0 Ν X N N O 1 1 0 N 6000 6FFF 6000 6fff BASE301.OBJ XNN 1 0 1 N 7000 ES1 Ν 1 7FFF

Appendix A. PSD311 Part Configuration Listed in .SV1 File (Cont.)

 •••														
ES2	N	x	N	N	1	0	0	0	N	8000	8FFF			
ES3	N	х	N	N	1	0	0	1	N	9000	9FFF			
ES4 ES5 ES6 ES7 RS0	N N N N	X X X X X	N N N N N	N N N N N	1 1 1 1 0	1 1 1 1	0 0 1 1 0	0 1 0 1 1	N N N O	C000 D000 E000 F000 5000	CFFF DFFF EFFF FFFF 57FF	c000 d000 e000 f000	cfff dfff efff ffff	BASE301.OBJ BASE301.OBJ BASE301.OBJ BASE301.OBJ
										4000	47FF			
CADDR CADDR CRRWR CA19/ CALE CRESE COMB/ CADDH	DAT (/C: T SEP	SI)	=	0 1 1 0 0 0 0	***	***	***	***	* E	ND ***	******	*****	********	*****
CPAF2			=	0										
CPAF1 CPAF1 CPAF1 CPAF1 CPAF1 CPAF1 CPAF1	[1 [2 [3 [4 [5 [6] =] =] =] =]	0 0 0 0 0											
CPACO CPACO CPACO CPACO CPACO CPACO CPACO		1] : 2] : 3] : 4] : 5] : 6] :	= 0 = 0 = 0 = 0 = 0											
CPBF CPBF CPBF CPBF CPBF CPBF CPBF	[1] [2] [3] [4] [5] [6]		1 1 1 1 1											
CPBCO CPBCO CPBCO CPBCO CPBCO CPBCO CPBCO		1] : 2] : 3] : 4] : 5] : 6] :	= 0 = 0 = 0 = 0 = 0											
CPCF CPCF CPCF	[1]	=	1						74	1 8 2 E				

Appendix B. **Core System** Software for **Cable Tester** Desian 0000 CPU "6811.TBL" 0000 HOF "INT8' ; ;* THE 68HC11 IN CONJUNCTION WITH THE PSD301 ;* ARE USED IN DEVELOPEMENT OF SOFTWARE FOR ;* DISPLAY, KEYBOARD FUNCTION, AND OTHER APPL. MEMORY MAP:EPROM(1) C000-FFFF (PROGRAM) EEPROM B600-BFFF (68HC11) ;* ;* 6000-9FFF (DATA) ;* EPROM(2) ;* RAM 5000-5FFF (PSD301) ;* I/O 4000-4007 (PSD301) 2000 (LATCH & BUFFER) 1000-10FF (68HC11) ;* LAT ;* RAM ;* I/O & REG 0000-003F (68HC11) ;* ;* BY TIM DUNAVIN ;* ANTEC ;* ANIXTER MANUFACTURING ;** ****** ; 6000 ORG 06000H ;DATA MEMORY ;****** ;* LOOKUP TABLES * ******* 6000 3638484331DATTAB: DFB "68HC11/PSD311 UP",00H 6011 54494D4F54CREDITS: DFB "TIMOTHY E. DUNAVIN" 6023 414E544543 DFB "ANTEC - ANIXTER MFG." 6037 524F434B20 "ROCK FALLS, ILL. 61071" DFB ; ;* ï C000 ORG 0C000H ; PROGRAM MEMORY 103D =INIT: EQU 103DH ;RAM AND I/O MAPPING REGISTER PORTBC: EQU ; I/O BASE ADDRESS OF THE 301 4000 =04000H ;LATCH AND BUFFER 2000 =LAT: EQU 02000H KEYPAD 1 0000 =KEY1: EQU 00H 0001 =01H ;KEYPAD 2 KEY2: EQU ;KEYPAD 3 0002 =KEY3: EQU 02H 0003 = KEYA: EQU 03н ;KEYPAD A 0004 = KEY4: EQU 04H ;KEYPAD 4 ;KEYPAD 5 0005 = KEY5: EQU 05H 0006 = ;KEYPAD 6 KEY6: EQU 06H 0007 =KEYB: 07H ;KEYPAD B EQU ;KEYPAD 7 0008 =EQU 08H KEY7: 0009 = ;KEYPAD 8 KEY8: EQU 09H ;KEYPAD 9 000A =EQU 0AH KEY9: ; KEYPAD C 000B = KEYC: EQU 0BH ;KEYPAD * 000C =KEYZ: EQU 0CH ;KEYPAD 0 000D =KEY0: EQU 0DH ;KEYPAD # 000E =KEYY: EQU 0EH 000F =KEYD: EQU OFH ;KEYPAD D

us

Appendix B				
ore Syster	n			
Software fo				*****
Cable Teste	1		LIZATION RO	DUTINE * ***********************************
esign (Col	///////	-	and TMSK2 mu out of RESEI	ist be programed in first 64 E F
	;	_		
C000 0F	START:	SEI	#0100	; SET IRQ MASK
C001 861		LDAA STAA	#010H	;SET RAM AT 1000 AND
C003 B71			INIT	;SET REGISTERS AT 0000 ******
	; •*****	* 6/ 877	FR OF PECT	STER AREA *****
0000 =	PORTA:	EQU	0000H	; PORT A DATA REGISTER
	;	-1-		;0001 IS RESERVED
0002 =	PIOC:	EQU	0002H	PARALLEL I/O CONTROL REGISTER
0003 =	PORTC:	EQU	0003H	PORT C DATA REGISTER (AD0 - AD7)
0004 =	PORTB:	EQU	0004H	PORT B DATA REGISTER (A8 - A15)
0005 =	PORTCL:	EQU	0005H	PORT C LATCHED DATA REGISTER
				;0006 IS RESERVED
0007 =	DDRC:	EQU	0007H	;DATA DIRECTION REG FOR PORT C
0008 =	PORTD:	EQU	0008H	; PORT D DATA REGISTER (RxD, TxD, AND I/O)
0009 =	DDRD:	EQU	0009н	;DATA DIRECTION REG FOR PORT D
000A =	PORTE :	EQU	000AH	PORT E DATA REGISTER
000B =	CFORC:	EQU	000BH	TIMER COMPARE FORCE REGISTER
000C =	OC1M:	EQU	000CH	OUTPUT COMPARE 1 MASK REGISTER
000D =	OC1D:	EQU	000DH	OUTPUT COMPARE 1 DATA REGISTER
000E =	TCNT:	EQU	000EH	;TIMER COUNTER REGISTER (16 BIT) ;000F LSB TCNT
0010 =	TIC1:	EQU	0010H	; TIMER INPUT CAPTURE REGISTER 1 (16 BIT) ;0011 LSB TIC1
0012 =	TIC2:	EQU	0012H	TIMER INPUT CAPTURE REGISTER 2 (16 BIT)
0014 =	TIC3:	EQU	0014H	;0013 LSB TIC2 ;TIMER INPUT CAPTURE REGISTER 3 (16 BIT)
0016 =	TOC1:	EQU	0016H	;0015 LSB TIC3 ;TIMER OUTPUT COMPARE REG 1 (16 BIT)
		_		;0017 LSB TOC1
0018 =	TOC2:	EQU	0018H	;TIMER OUTPUT COMPARE REG 2 (16 BIT) ;0019 LSB TOC2
001A =	TOC3:	EQU	001AH	;TIMER OUTPUT COMPARE REG 3 (16 BIT) ;001B LSB TOC3
001C =	TOC4:	EQU	001CH	;TIMER OUTPUT COMPARE REG 4 (16 BIT) ;001D LSB TOC4
001E =	TOC5:	EQU	001EH	TIMER OUTPUT COMPARE REG 5 / INPUT CAPTUF REGISTER 4 (16 BIT) - 001F LSB TOC5/TIC4
0020 =	TCTL1:	EQU	0020H	TIMER CONTROL REGISTER 1
0021 =	TCTL2:	EQU	0021H	TIMER CONTROL REGISTER 2
0022 =	TMSK1:	EQU	0022H	;MAIN TIMER INT MASK REGISTER 1
0023 =	TFLG1:	EQU	0023H	MAIN TIMER INT. FLAG REG 1
0024 =	TMSK2:	EQU	0024H	MAIN TIMER INT MASK REGISTER 2
0025 =	TFLG2:	EQU	0025H	MAIN TIMER INT. FLAG REG 2
0025 =	PACTL:	EQU	0026H	PULSE ACCUMULATOR CONTROL REG
0020 = 0027 =	PACID: PACNT:	EQU	0027H	PULSE ACCUMULATOR CONTROL REG
0028 =	SPCR:	EQU	0028H	SPI CONTROL REGISTER
0020 =	SPSR:	EQU	0029H	SPI STATUS REGISTER
0023 = 002A = 002A	SPDR:	EQU	0023H	SPI DATA REGISTER
002B =	BAUD:	EQU	002BH	SCI BAUD RATE CONTROL REGISTER
002D = 002C =	SCCR1:	EQU	002CH	SCI CONTROL REGISTER 1
002C = 002D =	SCCR1:	EQU	002CH 002DH	SCI CONTROL REGISTER 1
002D = 002E =			002DH 002EH	SCI STATUS REGISTER
	SCSR:	EQU		
002F = 0030 = 00000000000000000000000000000	SCDR:	EQU	002FH	SCI DATA REGISTER
0030 =	ADCTL:	EQU	0030H	;A/D CONTROL/STATUS REGISTER
0031 =	ADR1:	EQU	0031H	A/D RESULT REGISTER 1
0032 =	ADR2:	EQU	0032H	A/D RESULT REGISTER 2
0033 =	ADR3: ADR4:	EQU EQU	0033H 0034H	;A/D RESULT REGISTER 3 ;A/D RESULT REGISTER 4
0034 =				

UJ:

Appendix B.				
Core System				
Software for				
Cable Tester				
Design (Cont.)				
200.j. (00)				
0039 =	OPTION:	EQU	0039н	;SYSTEM CONFIGURATION OPTIONS
003A =	COPRST:	EQU	003AH	ARM/RESET COP TIMER CIRCUITRY
003B =	PPROG:	EQU	003BH	EEPROM PROGRAMMING REGISTER
003C =	HPRIO:	EQU	003CH	HIGHEST PRIORITY INTERRUPT
	; INIT:	EQU	003DH	RAM AND I/O MAPPING REGISTER (NEW ADD.)
003E =	TEST1:	EQU	003EH	FACTORY TEST REGISTER
003F =	CONFIG:	EQU	003FH	CONFIGURATION CONTROL REGISTER
	;			
	;******	256 BYT	ES OF INTERN	AL RAM ******
1000 =	FLAGS:	EQU	1000H	;FLAG REGISTER
1001 =	LA1:	EQU	1001H	;LATCH DATA REGISTER
1002 =	STOR:	EQU	1002H	BASIC RAM STORAGE AREA
10FF =	STACK:	EQU	10FFH	;STACK AREA
	;			
	;******	2K X 8	EXTERNAL RAM	[*****
5000 =	MASSTOR:	EQU	05000н	;MASS STORAGE RAM IN PSD301
	;			
	;******	EEROM A	REA, 512 BYT	ES *****
B600 =	EROM:	EQU	0B600H	;DATA RETENTION AREA
	;			
	;******		*******	***********
C006 01		NOP		;SLIGHT DELAY TO ALLOW REGISTER SET UP
C007 86E3		LDAA	#0E3H	;SET UP OPTION REG ADPU =1, CSEL = 1,
				IRQE = 1
C009 9739		STAA	OPTION	; (ENABLE EEPROM CHARGE PUMP, IRQ EDGE
			"	SENSITIVE)
C00B 8602		LDAA	#002H	;SET TIMER PRESCALER TO 8
C00D 9724		STAA	TMSK2	;AND DISABLE TIMER INTERRUPTS
C00F 7F0028		CLR	SPCR	; DISABLE ALL SPI INT.
C012 8E10FF		LDS	#STACK	;SET UP STACK
C015 8680		LDAA	#080H	
C017 9726	ىلەر بايد بايد بايد بايد بايد _م	STAA	PACTL	; PA7 OUTPUT
C019 86FC			#0FCH	TO 9600 BAUD AT 8MHZ (DISABLED)
C01B 9709	ONSCI:	LDAA	DDRD	; INIT. PORT D DDR (02H)
C01D 8600		STAA	#000H	;PD0, PD1 - INPUT, PD2-PD5 - OUTPUT
C01F 9708		LDAA		;SET UP PORT D
C021 7F002C		STAA CLR	PORTD SCCR1	;SET UP SER. COM. CON. REG. 1
C024 7F002C		CLR	SCCR2	ABLI OF BER. COM. CON. REG. I
C024 7F002D		LDAA	SCSR	; TO CLEAR TDRE AND TC OF SCSR
C029 4F		CLRA	SCSK	•
C023 972F		STAA	SCDR	;READ STATUS REG., LOAD TRANS. DATA REG.
CUZA JIZI	• * * * * * * *			FOR DISPLAY INTERFACE
C02C CEFFFF	ONPIA:	LDX	#OFFFFH	SET UP PORTS B & C AS OUTPUTS
C02F FF4004	our in.	STX	PORTBC+4	, SET OF FORIS B & C AS COTFOIS
0021 114004	• * * * * * * *			REV. 15 MAY 91) ******
C032 CE2710	DISINIT:		#02710H	;100ms DELAY (POWER UP DELAY FOR DISPLAY)
C035 BDC0E1	DIDINII.	JSR	TDELAY	;TIME DELAY
C038 8630		LDAA	#030H	SET UP DISPLAY
C03A BDC0F4		JSR	SENDI	SEND INSTRUCTION (30 1ST TIME)
C03D CE0300		LDX	#00300H	;6.1ms DELAY
C040 BDC0E1		JSR	TDELAY	TIME DELAY
C043 BDC0F4		JSR	SENDI	SEND INSTRUCTION (30 2ND TIME)
C046 BDC0DE		JSR	TD40	TIME DELAY
C049 BDC0F4		JSR	SENDI	SEND INSTRUCTION (30 3RD TIME)
C04C BDC0DE		JSR	TD40	TIME DELAY
C04F 8638		LDAA	#038H	FUNCTION SET (8 BIT-SINGLE LINE)
C051 BDC0F4		JSR	SENDI	SEND INSTRUCTION
C054 CE0280		LDX	#00280H	;5mS DELAY
C057 BDC0E1		JSR	TDELAY	TIME DELAY
C05A 860C		LDAA	#00CH	DISPLAY ON - NO CURSOR

-Wfi-

Appendix B.					
Core System					
Software for	C05C BDC0F4		TOD	CENDT	CEND INCERTION
Cable Tester	C05F CE0280		JSR LDX	SENDI #00280H	;SEND INSTRUCTION ;5mS DELAY
	C062 BDC0E1		JSR	TDELAY	TIME DELAY
Design (Cont.)	C065 8606		LDAA	#006н	ENTRY MODE SET
	C067 BDC0F4		JSR		SEND INSTRUCTION
	C06A CE0280				5mS DELAY
	C06D BDC0E1		JSR	#00280H TDELAY HOME #00190H TDELAY	TIME DELAY
	C070 BDC0EC		JSR	HOME	DISPLAY CURSOR HOME!
	C073 CE0190		LDX	#00190H	;4.0mS DELAY
	C076 BDC0E1		JSR	TDELAY	;TIME DELAY
	C079 18CE6000		LDY	#DATTAB	; TOP OF DATA TABLE
	C07D BDC0CC		JSR	PDOD	;SEND MESSAGE TO DISPLAY
		•		INIT. ******	
	C080 9629	FINIT:	LDAA	SPSR	CLEAR ANY SPI INT.
	C082 962A		LDAA	SPDR	· · · · · · · · · · · · · · · · · · ·
	C084 86FF		LDAA	#OFFH	CLEAR ANY TIMER INT.
	C086 9723		STAA	TFLG1 TFLG2	
	C088 9725		STAA	TFLG2	
	C08A 962E		LDAA	SCSR	CLEAR ANY SCI INT.
	C08C 962F		LDAA	SCDR	
		i	C OF WO		CH AND DIFFED
	COOF 752000	; EXAMPLE			TCH AND BUFFER ;CLEAR LATCH
	C08E 7F2000		CLR		•
	C091 CE1001 C094 1C0200		DCET	2 V 000	;SET INDEX ;SET BIT 2 OF LA1
	C097 A600		LDAA	2, X , 00H	GET LATCH REGISTER
	C099 B72000		STAA	υ ,	STORE DATA TO LATCH
	C09C B62000		LDAA	#LA1 2,X,00H 0,X LAT LAT	GET DATA FROM BUFFER
	COSC BOZOOU	;	Loini		, chi biin inchi boirba
	C09F BDC0B0	/	JSR	BEEP	;SOUND OFF!
		;			•
	COA2 OE		CLI		CLEAR IRQ MASK
		;			
		· · · · ·		*****	
		;*	MAIN L		
		;******	******	*****	
		;			
	COA3 01	LOOP:	NOP	7.000	
	COA4 7ECOA3		JMP	LOOP	; RETURN
		;	******	*****	****
			SUBROU		*

		,	WATCHD	OG SERVICE RO	UTNE *****
	C0A7 8655	DOG:		#055H	;RESET WATCHDOG TIMER
	COA9 973A	DOG:	LDAA	COPRST	KESEI WAICHDOG IIMEK
	COAB 86AA		STAA LDAA		
				#0AAH COPRST	
	COAD 973A COAF 39		STAA	COPRST	DEMUDN FROM CUR
	CUAF 39		RTS		;RETURN FROM SUB.
		i • * * * * * * * *	HOOMER	OSC. ROUTINE	******
	COBO 18CE01FF	BEEP:	LDY	#001FFH	;SET COUNT
	C0B4 8640	BEEP1:	LDAA	#040H	;BEEPER ON
	C0B6 9700	DISEF 1 .	STAA	PORTA	, BEEFER ON
	C0B8 CE0014		LDX	#00014H	
	COBB BDC0E1		JSR	TDELAY	; DELAY
	COBE 4F		CLRA	IDELAI	
					;BEEPER OFF
	COBF 9700		STAA	PORTA #00014H	
	COC1 CE0014		LDX	#00014H	DELAY
	COC4 BDC0E1		JSR	TDELAY	; DELAY
	COC7 1809		DEY	1 הבבט	;COUNT -1
	C0C9 26E9 C0CB 39		BNE	BEEP1	; IF NOT DONE, KEEP GOING
	CUCD 39	•	RTS		;RETURN FROM SUB.
		;			

Appendix B. Core System Software for Cable Tester Design (Cont.)

ign (Col	nt.)				
• •		;******	PUT DAT	A ON DISPLAY	******
	18A600	PDOD:	LDAA	0,Y	;GET BYTE
	2707		BEQ	PDOD1	; IF END, GOTO NEXT1
	BDC100		JSR	SENDD	
	1808		INY		;NEXT BYTE
	20F4		BRA	PDOD	;RETURN TO NEXT
C0D8	39	PDOD1:	RTS		;RETURN FROM SUB.
		; • * * * * * * * *	TTME DE	LAY ROUTINE	*****
C0D9	CE0002	, TD20:	LDX	#00002H	;20uS DELAY
	2003	10201	BRA	TDELAY	
	CE000F	TD40:	LDX	#0000FH	;150us delay
C0E1		TDELAY:	DEX		DECRAMENT COUNT
C0E2	8C0000		CPX	#00000н	; COUNT = 0?
C0E5	26FA		BNE	TDELAY	IF NOT DONE, GOTO TDELAY
C0E7	39		RTS		RETURN FRO SUB.
		;			
					R HOME, AND SEND INSTRUCTION ******
	8601	CSCREEN:		#001H	CLEAR DISPLAY
	2008		BRA	SENDI	;SEND INSTRUCTION
	8602	HOME :	LDAA	#002H	CURSOR HOME
	2004	T THEO.	BRA	SENDI	; SEND INSTRUCTION
	86C0	LINE2:	LDAA	#0C0H	;SET CURSOR TO LINE 2
	2000 CE4000	CENDIA	BRA	SENDI #DODWDG	SEND INSTRUCTION
COF4 COF7		SENDI:	LDX STAA	#PORTBC	SET UP DATA TRANSFER
	1C0702		BSET	6,X 7,X,02н	;STORE AT PIA PORT A ;DISPLAY E HIGH
	1D0702		BCLR	7,X,02H	;DISPLAY E LOW
COFF			RTS	////	; RETURN FROM SUB.
		;			,
			SEND DA	TA TO DISPLAN	Y *****
C100	CE4000	SENDD:	LDX	#PORTBC	;SET UP DATA TRANSFER
C103			STAA	6,X	;SEND DATA
	1C0701		BSET	7,X,01H	;DISPLAY RS HIGH
	1C0702		BSET	7,X,02H	;DISPLAY E HIGH
	1D0702		BCLR	7,X,02H	;DISPLAY E LOW
	1D0701		BCLR	7,X,01H	DISPLAY RS LOW
C114	BDC0DE		JSR RTS	TD40	;150uS TIME DELAY ;RETURN FROM SUB.
0114	55	;			•
		;*******	******	******	*******
		;*		TO CHANGE BY	
		;*	PRELOAD	ED X = ADDRES	SS IN EEROM (B600 - B7FF) *
		;*		BE STORED,	
		;*	(THIS 1	S A MOTOROLA	ROUTINE) * ***********************************
C115	7600	CHGBYT:	LDAA		
C115 C117		CHGDIT:	CMPA	0,X #0ffh	;GET DATA AT ADDRESS TO BE CHANGED ;CHECK IF ERASED
C119			BEQ	CHGBYT1	JUMP IF BYTE ERASED
C11B			LDAA	#016H	;SET BYTE, ERASE, AND EELAT
C11D			STAA	PPROG	, our bill, mabl, mab billin
CllF			LDAA	#0FFH	
C121			STAA	0,X	
C123			LDAA	#017H	SET EEPRG
C125	973B		STAA	PPROG	
C127			PSHX		;SAVE X
C128	CE0300		LDX	#00300н	
	BDC0E1		JSR	TDELAY	;20ms TIME DELAY
C12E			PULX		RESTORE X
C12F			CLRA		;CLEAR BYTE, ERASE, EELAT, AND EEPRG
C130			STAA	PPROG	;END OF BYTE ERASE
C132	8602	CHGBYT1:	LDAA	#002H	;SET EELAT - DO BYTE PROGRAM

W5-

Appendix B. Core System Software for Cable Tester Design (Cont.)					
Cl34 973B Cl36 B61002 Cl39 A700 Cl3B 7C003B Cl3F 3C Cl3F CE0300 Cl42 BDC0E1 Cl45 38 Cl46 7A003B Cl46 7F003B Cl4C 39	; ;****** ;* ;*	ROUTINE ACC A =	TO SET UP	;GET DATA TO BE STORED ;STORE IN NEW LOCATION IN EEROM ;SAVE X ;2OmS DELAY ;RESTORE X ;CLEAR EEPRG ;CLEAR EELAT, END OF BYTE PROGRAM ;RETURN FROM SUB.	
C14D 9730 C14F 133080FC C153 39	;******* CONV: CONV1:	STAA BRCLR RTS	ADCTL	;SET UP A/D CONVERTER CONV1 ;WAIT HERE TILL CONVERSION COMPI ;RETURN FROM SUB.	ETE
	;* IN ;******* ; ;*******	TERRUPT	COMMUNICATI	*	
С154 ЗВ	;* SERI	AL TRANS	**************************************	E *	
С155 ЗВ	;* PULS	SE ACCUMI	ATOR INPUT	EDGE *	
C156 3B	;* PULS	E ACCUM	JLATOR OVERF	LOW *	
C157 3B	; ;******* ;* TIME	RTI ********* R OVERFI	LOW *	;RETURN FROM INT.	
C158 3B	;* TIME	R OUTPUT	COMPARE 5	*	
C159 3B	; COMP5: ;	RTI		;RETURN FROM INT.	

WJi-

Appendix B. Core System Software for Cable Tester Design (Cont.) ************************ * TIMER OUTPUT COMPARE 4 * ***** C15A 3B COMP4: RTI ; RETURN FROM INT. ; * TIMER OUTPUT COMPARE 3 * ************************* C15B 3B COMP3: RTI :RETURN FROM INT. ;* TIMER OUTPUT COMPARE 2 * ;**************************** C15C 3B COMP2: RTI ; RETURN FROM INT. ***** * TIMER OUTPUT COMPARE 1 * ******* C15D 3B COMP1: RTI ; RETURN FROM INT. ***** * TIMER INPUT COMPARE 3 * ************************ C15E 3B ICOMP3: RTI ;RETURN FROM INT. ***** * TIMER INPUT COMPARE 2 * *********************** C15F 3B ICOMP2: RTI ; RETURN FROM INT. ***** ;* TIMER INPUT COMPARE 1 * ************************ C160 3B ICOMP1: RTI ;RETURN FROM INT. ************************ * REAL TIME INT. ROUTINE * ************************ C161 3B REALT: RTI ; RETURN FROM INT. ; ;***** ;* IRQ INT. ROUTINE * ***** ;GET KEYBOARD DATA C162 960A DOIT: PORTE LDAA C164 840F ANDA #00FH ;FILTER DATA ; ;1 KEY? C166 8100 CMPA #KEY1 ; IF NOT GOTO DOIT10 C168 2601 BNE DOIT10 C16A 3B RTI ; RETURN FROM INT. C16B 8101 DOIT10: CMPA #KEY2 ;2 KEY? ; IF NOT GOTO DOIT20 C16D 2601 BNE DOIT20 C16F 3B RTI ; RETURN FROM INT.

Appendix B. Core System Software for Cable Tester Design (Cont.)

C170 C172 C174	2601	; DOIT20:	CMPA BNE RTI	#KEY3 DOIT30	;3 KEY? ;IF NOT, GOT ;RETURN FROM	
C175 C177 C179	2601	; DOIT30:	CMPA BNE RTI	#KEYA DOIT40	;A KEY? ;IF NOT GOTO ;RETURN FROM	
C17A C17C C17E	2601	; DOIT40:	CMPA BNE RTI	#KEY4 DOIT50	;4 KEY? ;IF NOT GOTO ;RETURN FROM	
C17F C181 C183	2601	; DOIT50:	CMPA BNE RTI	#KEY5 DOIT60	;5 KEY? ;IF NOT GOTO ;RETURN FROM	
C184 C186 C188	2601	; DOIT60:	CMPA BNE RTI	#KEY6 DOIT70	;6 KEY? ;IF NOT GOTO ;RETURN FROM	
C189 C18B C18D	2601	; DOIT70:	CMPA BNE RTI	#KEYB DOIT80	;B KEY? ;IF NOT GOTO ;RETURN FROM	
C18E C190 C192	2601	; DOIT80:	CMPA BNE RTI	#KEY7 DOIT90	;7 KEY? ;IF NOT GOTO ;RETURN FROM	
C193 C195 C197	2601	; DOIT90:	CMPA BNE RTI	#KEY8 DOIT100	;8 KEY? ;IF NOT GOTO ;RETURN FROM	
C198 C19A C19C	2601	; DOIT100:	CMPA BNE RTI	#KEY9 DOIT110	;9 KEY? ;IF NOT GOTO ;RETURN FROM	
C19D C19F C1A1	2601	DOIT110:	CMPA BNE RTI	#KEYC DOIT120	;C KEY? ;IF NOT GOTO ;RETURN FROM	
C1A2 C1A4 C1A6	2601	DOIT120:	CMPA BNE RTI	#KEYZ DOIT130	;* KEY? ;IF NOT GOTO ;RETURN FROM	
C1A7 C1A9 C1AB	2601	DOIT130:	CMPA BNE RTI	#KEY0 DOIT140	;0 KEY? ;IF NOT GOTO ;RETURN FROM	
C1AC C1AE C1B0	2601	DOIT140:	CMPA BNE RTI	#KEYY DOIT150	;# KEY? ;IF NOT GOTO ;RETURN FROM	
C1B1 C1B3 C1B5	2600	DOIT150: DOIT160:	BNE	#KEYD DOIT160	;D KEY? ;IF NOT GOTO ;RETURN FROM	
		*******	*******	*****	****	
		•	SERVICE		*	
				*********	****	

w*w*

Appendix B. Core System Software for Cable Tester Design (Cont.)

C1B6 3B	NOMASK: RTI		;RETURN FROM INT.
	;		
	,	*********	* * * * *
	;* SWI SERVIC		*
	•	********	
C1B7 3B	INTER: RTI		;RETURN FROM INT.
	;		
	,	********	
	,	INTERRUPT VEC	
	;***********	*********	* * * * * * * * *
	;	077007	
FFC0	ORG	0FFC0H	
FFC0		11+0	NOT HEED
FFD6 C154	RES: DFS SERCOM: DWM	11*2 SCOM	; NOT USED
FFD8 C154	SERCOM: DWM SPISTC: DWM	TRANC	;SERIAL COMM. INT. :SERIAL TRANSFER COMPLETE
FFDA C155	PAIE: DWM	PULSEE	PULSE ACCUMLATOR INPUT EDGE
FFDC C157	PAOV: DWM	PULSEO	; PULSE ACCUMULATOR OVERFLOW
FFDE C157	TOV: DWM	TIMEO	TIMER OVERFLOW
FFE0 C158	TOCP5: DWM	COMP5	TIMER OUTPUT COMPARE 5
FFE2 C15A	TOCP4: DWM	COMP4	TIMER OUTPUT COMPARE 4
FFE4 C15B	TOCP3: DWM	COMP3	TIMER OUTPUT COMPARE 3
FFE6 C15C	TOCP2: DWM	COMP2	TIMER OUTPUT COMPARE 2
FFE8 C15D	TOCP1: DWM	COMP1	TIMER OUTPUT COMPARE 1
FFEA C15E	TICP3: DWM	ICOMP3	TIMER INPUT COMPARE 3
FFEC C15F	TICP2: DWM	ICOMP2	TIMER INPUT COMPARE 2
FFEE C160	TICP1: DWM	ICOMP1	TIMER INPUT COMPARE 1
FFF0 C161	RTIME: DWM	REALT	;REAL-TIME INT.
FFF2 C162	IRO: DWM	DOIT	TIMER/VIA INT.
FFF4 C1B6	XIRO: DWM	NOMASK	NON-MASKABLE INT.
FFF6 C1B7	SWI: DWM	INTER	SOFTWARE INT.
FFF8 C000	IOT: DWM	START	;ILLEGAL OPCODE TRAP (START OVER)
FFFA C000	COPS: DWM	START	COP FAILURE (RESET)
FFFC C000	COPS1: DWM	START	;COP CLOCK MONITOR FAIL (RESET)
FFFE C000	RESET: DWM	START	RESET
	;		
	,	*****	************
0.000	END		;THE ENDIIII

US:

2

General Information

PSD3XX Family

MAP168

Development Systems

Package Information

Sales Representatives and Distributors 3

Section Index

MAP168	MAP168 Introduction	User- Configurable Peripheral with Memory	3-1
	MAP168	DSP Peripheral with Memory	3-3
	Application Note 002	Introduction to the MAP168 User-Configurable Peripheral with Memory	3-21

For additional information, call 800-TEAM-WSI (800-832-6974). In California, Call 800-562-6363.

|--|

Programmable Peripheral MAP168 Introduction User-Configurable Peripheral with Memory

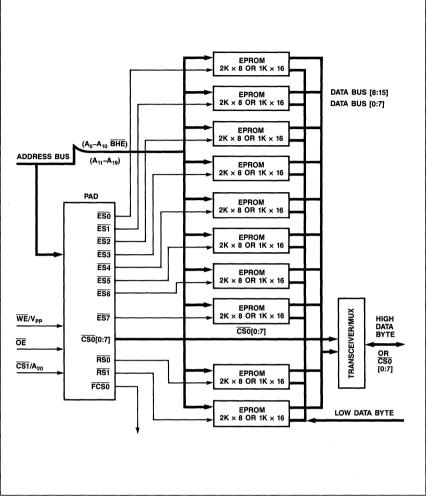
Overview

The MAP168 is a high-performance, userconfigurable DSP peripheral with memory. It is used in DSP applications including modems, motor control and medical instrumentation. The MAP168 is ideal for DSP based applications where fast time-tomarket, small form factor and low power consumption are essential. When combined together in an 8- or 16-bit system, virtually any DSP chip (TMS320 series, etc.) and the MAP168 work together to create a very powerful 2-piece chip-set. This implementation provides the core of the required control and peripheral elements of a DSP system. The MAP168 contains three elements normally associated with discrete solutions to system memory requirements. It incorporates EPROM and SRAM plus a Programmable Address Decoder (PAD), all on the same die. The MAP168 is ideal for the systems designer who wishes to reduce the board space of his final design. By using the MAP168 in a system, five or six EPROM, SRAM and decode logic chips may be reduced into a single 44-pin PLDCC, CLDCC or PGA package.

Architecture

The MAP168 incorporates the flexibility of using discrete memory addressing and decoding. With the support of WSI's user friendly PSD software called MAPLE, designers may configure their MAP168 subsystem for 8- or 16-bit data paths. If the host system uses an 8051 microcontroller. the MAP168 can be programmed with an eight bit data path. A sixteen bit data path can be programmed for microcontrollers like Intel's 80196. The depth of the memory organization will be modified accordingly to accept the different dat path widths. The low cost MAPLE software package will handle the data path width adjustment automatically. The user can select either 16K bytes of EPROM and 4K bytes of SRAM or 8K words of EPROM and 2K words of SRAM. The flexibility of the MAP168 enables two devices to be cascaded in width. It is possible to double the memory size of a sixteen bit system by using two MAP168 products in parallel but programmed in a byte-wide configuration. For example, with two MAP168 devices, 16K words of EPROM and 4K words of SRAM may be organized as upper and lower data bytes of a 16 bit word. Alternately, two MAP168 chips may expand the system memory vertically as two word organized memory devices. A block diagram of the MAP168 is shown in Figure 1.

An important feature of the MAP168 is its ability to incorporate the memory address


decoding on-chip. One MAP168 memory peripheral can reside with other MAP168 devices in the same memory addressing scheme, with the on-chip decoder allocating the memory blocks to different non-conflicting segments of the entire memory area. The decoding function is achieved by an on-chip feature called a Programmable Address Decoder (PAD), which is similar to a single fuse array programmable logic device supporting one product term (AND gate) per output in the MAP168.

In the MAP168, eighteen standard chip select outputs from the PAD are available with one fast chip select output generally used to select other external high speed memory devices. The chip select lines may be subdivided into (ESO-ES7, active low internal EPROM chip selects, and two internal RAM chip selects RS0 and RS1. In byte-wide applications, eight chip select outputs drive external pins CS0-CS7. These can be used as external chip selects for other MAP168 devices or system memory. These outputs are not available for word-wide MAP168 configurations because the CS0-CS7 output pins carry the higher order data byte. Only FCS0 is available for external chip selection.

Figure 1 shows the organization of the EPROM and SRAM in relation to the PAD, for the MAP168 device.

MAP168 Introduction

Figure 1. MAP168 Memory Architecture

Important Features:

- 45 ns EPROM/SRAM Access Time.
- Byte or Word Operation, Mappable into 1M Word or 2M Byte Address Space.
- 22 ns Chip-Select 8 Outputs, 17 ns Fast Chip Select Output.

us:

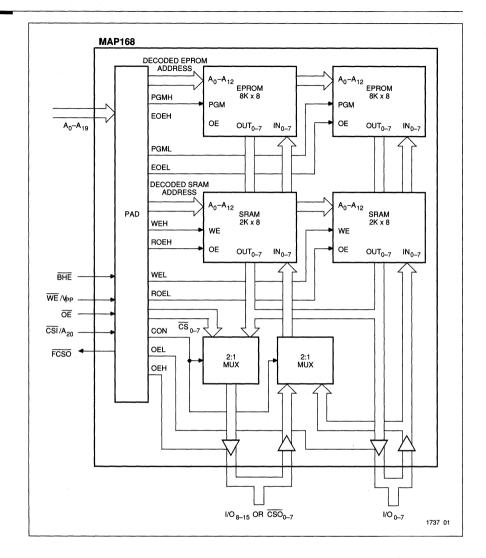
• 128K EPROM Bits, 32K SRAM Bits, On-Chip Programmable Decoder, Security Bit.

Software Support

The object code generated for the support microprocessor/microcontroller is generated by an assembler. This code, when generated as an Intel MCS file, may be easily programmed into the EPROM section of the MAP168 device because the MAPLE software has been designed to accept this standard format.

The programmable address decoder is used to define the mapping of the various

EPROM and SRAM memory blocks. This mapping is achieved by the designer in the MAPLE environment. The software provides a safeguard that prevents the designer from inadvertently overlapping the address selection. After selecting the memory block assignments, the MAP168 device may be programmed by the WSI MagicProTM memory and PSD programmer.


Programmable Peripheral MAP168 DSP Peripheral with Memory

Features	 First-generation Programmable System Device (PSD) 	Programmable Security Protects memory map			
	User-Configurable Peripheral with Memory 16Kx8 EPROM 4Kx8 SRAM Programmable address decoder	 Protects program code Programming Support Tools PSD integrated software environment PC-XT/AT/PS2 platform support MAPLE location entry Software 			
	 Byte or Word Memory Configurations 16Kx8 or 8Kx16 EPROM 4Kx8 or 2Kx16 SRAM 	MAPPRO device programming Software MagicPro device programmer (PC-XT, AT)			
	 2Mbyte or 1 Mword address range High-Speed Operation 45-nsec memory access 17-nsec fast chip select output External Chip Select Outputs 8 external chip selects 1 fast chip-select output 	 Military and Commercial Specifications 44-pin Ceramic Leaded Chip Carrier package 44-pin Plastic Leaded Chip Carrier package 44-pad Ceramic Leadless Chip Carrier package 44-pin Ceramic Pin Grid Array package 			
General Description	In 1988 WSI introduced a new concept in programmable VLSI, Programmable System Devices (PSD). The PSD family consists of user-configurable system-level building	cantly reduces the board space and power necessary to implement memory subsys- tems, increases system performance, and provides for secure data or program storage			
	blocks on-a-chip, enabling quick implementa- tion of application-specific controllers and peripherals. The first generation PSD series includes the MAP168 User-Configurable Peripheral with Memory; the SAM448, a User-Configurable Microsequencer; and the PAC1000, a User-Configurable Microcon- troller.	 flexibility make it ideal for high-speed micro-processors, microcontrollers, and Digital Signal Processors like the TMS320XX family The EPROM can be configured either as 16Kx8 or 8Kx16. The SRAM can be configured either as 4Kx8 or 2Kx16. Individual memory blocks of 2Kx8 or 1Kx16 can be selectively mapped anywhere in the address space. Since the Chip Select Input (CSI) can be programmed as A20, the highest-order address bit, the device's address range can extend from 1M byte with CSI to 2M byte without CSI. For 16-bit microprocessors capable of byte operations, the MAP168 device provides a Byte High Enable input for accessing bytes 			
	The MAP168 is the first of WSI's Program- mable System Devices (PSD) product line. The device integrates high performance, user-configurable blocks of EPROM, SRAM, and logic in a single circuit. The major functional blocks include a Programmable				
	Address Decoder (PAD), 16K bytes of high speed EPROM, and 4K bytes of high speed SRAM. A block diagram is given in Figure 1. The MAP168 device is a complete memory				
	and SRAM memory blocks can be user- configured in either byte-wide or word-wide	on any address boundary. Pinout is compatible with the JEDEC WS27C257 256K high-speed EPROM. This pinout provides for memory expansion with future WSI EPROM and PSD products.			
	organizations. The MAP168 device signifi-	The device's PAD and EPROM memory are			

Figure 1.

Block Diagram

General Description (Con't)	programmed using the same WSI MagicPro programmer used to program other WSI devices. Two software packages, MAPLE Location Entry and MAPPRO Device Pro- gramming Software are available in the menu-driven WISPER software environment on an IBM® PC XT/AT or 100% compatible platform.	For additional information on the MAP168 device, refer to <i>Application Note No. 002,</i> <i>Introduction to the MAP168 User-Configur- able Peripheral with Memory.</i> For additional information on development and program- ming software for the MAP168 device, refer to the <i>MAP168 User-Configurable Peripheral</i> <i>with Memory Software User's Manual.</i>
Functional Description	The user-configurable architecture of the MAP168 consists of an EPROM memory block, an SRAM memory block, and a fast Programmable Address Decoder (PAD) that can be configured to select 2K-byte memory blocks anywhere in a 2M-byte address	range. The device can be programmed to operate with memory configured either in a byte or word organization (bytes can be addressed in word mode). A programmable security bit prevents access to the PAD address-decode configuration table.

Pin Description

Γ		
Signal	I/O	Description
A ₀₋₁₉	l	Address Lines. For access to EPROM or SRAM.
FCSO	0	Fast Chip-Select Output (active low). Used by the Pro- grammable Address Decoder (PAD).
BHE	ł	Byte High Enable (active low). Selects the high-order byte when writing to SRAM.
WE/V _{pp}	I	Write Enable (active low) or Programming Voltage. In normal mode, this pin causes data on the I/O pins to be written into SRAM. In programming mode, the pin supplies the programming voltage, V_{pp} .
ŌĒ	I	<i>Output Enable (active low)</i> . Enable the I/O pins to drive the external bus.
CSI/A ₂₀	I	Chip Select Input (active low) or High-Order Address. This pin can be programmed as the bus-access chip select or as an additional high-order address bit (A_{20}) .
I/O ₀₋₇	I/O	Low-Order Byte of EPROM or SRAM.
I/O _{8-15,}	I/O	High-Order Byte or Chip-Select Outputs. In word mode, these pins serve as the high-order byte (I/O_{B-15}) of EPROM or SRAM. In byte mode, the bits serve as Chip-Select Out signals (\overline{CSO}_{0-7}) for the Programmable Address Decoder (PAD).
Lauren		

W.

MAP168

Programmable Address Decoder

The MAP168 device has a minimum of 20 address inputs A_0-A_{19} allowing the EPROM and SRAM memory blocks to reside anywhere in a 1M-byte address space. If the CSI/ A_{20} input is user-configured as an address line, the maximum addressable space increases to 2M bytes, as shown in the Configurations table.

The 16K bytes of EPROM and 4K bytes of SRAM, can be configured into eight independent 2K-byte blocks and two 2K-byte blocks respectively, as shown in the Memory Architecture figure. The PAD is a userconfigurable address decoder that compares input addresses to the 2K-byte address range selected for each of the eight EPROM blocks and two SRAM blocks. When the input address A0-A20 is detected to be within one of the EPROM or SRAM address ranges, the PAD enables an internal chip select (ES,-ES, or RS,-RS,) to the selected block. If no block is selected, both the EPROM and SRAM memories remain in a power-down mode and the outputs are disabled allowing other devices to drive the

data bus. The SRAM retains its data in the power-down mode. The 2K-byte address ranges for any of the eight EPROM or two SRAM blocks may not overlap.

The PAD can also be user-configured to generate up to eight external chip selects, $\overline{CS}_0-\overline{CS}_7$. These outputs can be used to decode the input address lines A_0-A_{20} and to select other devices in the system. The outputs $\overline{CS}_0-\overline{CS}_7$ are available on the eight higher-order $I/O_8-I/O_{15}$ lines but only when the MAP168 device is configured in the byte mode; the lines are not available as chipselect outputs when the device is configured in the word mode.

The $\overline{\text{CSI}}/\text{A}_{zo}$ input is user-configurable as the most-significant address line or as an active-low chip enable. Its function is programmed as part of the PAD programming cycle.

The PAD also provides \overline{FSCO} , a single, fast chip-select output configurable by the user for any address. It can overlap with any of the internal EPROM, SRAM or external \overline{CSO} addresses.

Memory Subsystem EPROM Memory

The memory configuration of the MAP168 device includes 128K bits of WSI's patented high-speed, split-gate, UV-erasable EPROM. The EPROM is configured in byte mode as 16Kx8 and in word mode as 8Kx16. The memory is organized as eight 2Kx8 or 1Kx16 blocks, as shown in the Block Diagram figure. Each block has a separate and independent address range that cannot overlap. Each block is individually selected by one of the ES₀-ES₇ internal chip selects generated by the PAD when an input address is detected within its designated address range, as shown in the Memory Architecture figure. If not selected, each block of EPROM remains in a power-down mode.

For programming, the EPROM memory requires the $\overline{WE/V}_{PP}$ input to maintain the programming voltage V_{PP} .

us:

SRAM Memory

The device also includes 32K bits of highspeed SRAM. The SRAM is configured in byte mode as 4Kx8 and in word mode as 2Kx16. The memory is organized as two 2Kx8 or one 2Kx16 block(s), each with a separate and independent address range that cannot overlap. Each SRAM block is individually selected by one of the RS₀–RS₁, shown in the Memory Architecture figure, when an input address is detected by the PAD within its designated address range. When not selected, each of the SRAM memory blocks remains in a power down mode but does retain all data stored.

Data can be written into the SRAM only when the \overline{WE}/V_{ee} input is active low.

3

					MAP 10
Memory Subsystem EPROM Memory	Byte/Word Mode The PAD can be programmed to co the MAP168 device for either a byte		PAD available on the eight high-order input/ output lines I/O_{15} and enabled onto the output bus when the \overline{OE} input is low. In word mode, the EPROM is organized as 8Kx16 and the SRAM as 2Kx16. The outputs of both are tied to the 16 input/output lines $I/O_0-I/O_{15}$ and enabled onto the bus when \overline{OE} is low. In word mode, the <u>BHE</u> input along with address input A0 allows the eight bits of any 16-bit word on an even or odd boundary to be selected as shown in the High-Low Byte Selection table. This is a useful feature for 16-bit processors that are not restricted to reading or writing memory only on even-word address boundaries.		
(Con't)	memory architecture. This allows th to be used conveniently with either a 16-bit microcontrollers, microproces digital signal processor (DSP) syste the Configurations table.	8-bit or sors or			
	In byte mode, the EPROM is organi 16Kx8 and the SRAM as 4Kx8. The of both are tied to the eight low-orde output lines I/O ₀ –I/O ₇ and enabled o output bus when the OE input is low Only when configured in byte mode	e outputs er input/ onto the v. are the			
	eight external chip selects provided	by the			
Mode Selection	The device's operational mode is co by three inputs, CSI, OE, and WE/v			ate modes of operat wn the Mode Selec	
Table 2. Configurations		Configuration		x16 Configura	
	Address Space 1M words		20 2M bytes	CSI 512K words	А₂₀ 1М

	CSI	A ₂₀	CSI	A ₂₀
Address Space words	1M bytes	2M bytes	512K words	1M
Block Size words	2K bytes	2K bytes	1K words	1K
Addressable Blocks	512	1024	512	1024
EPROM Blocks	8	8	8	8
SRAM Blocks	2	2	2	2
Chip-Select Outputs	9	9	1	1
EPROM Configuration	16Kx8	16Kx8	8Kx16	8Kx16
SRAM Configuration	4Kx8	4Kx8	2Kx16	2Kx16
I/O Pins	8	8	16	16
Low-power Standby	yes	no	yes	no
Protected Mode	yes	yes	yes	yes
Byte Operations	yes	yes	yes	yes

·W/i-

MAP168

Table 3.

Mode

3. Selection	Mode/Pin	<u>CS</u> I	ŌĒ	WE/V _{pp}	Address	x16 (I/O ₀₋₁₅) x8 (I/O ₀₋₇)	x16 (FCSO) x8 FCSO, CSO ₀₋₇
	Read EPROM/SRAM	V _{IL}	V _{IL}	V _{IH}	EPROM/SRAM Selected	D _{OUT}	CS _{OUT}
	Read External	V _{IL}	V	$V_{\rm IH}$	EPROM/SRAM Not Selected	High Z	CS _{OUT}
	Output Disable	х	V _{IH}	х	х	High Z	CS _{OUT}
	Stand-By	$V_{\rm IH}$	Х	х	Х	High Z	CS _{OUT}
	Write SRAM	V _{IL}	Х	V _{IL}	SRAM Selected	D _{IN}	CS _{OUT}
	Write External	V	Х	V_{IL}	No SRAM Selected	X	CS _{OUT}
	Program EPROM	V	V _{IH}	V_{PP}	EPROM Program Address	D _{IN}	D _{IN}
	Program Verify EPROM	V	V _{IL}	$V_{\rm IH}$	EPROM Program Address	D _{OUT}	CS _{OUT}
	Program PAD	V _{IL}	V _{IH}	V_{PP}	PAD Program Address	D _{IN}	D _{IN}
	Program Verify PAD	$V_{\rm IL}$	V _{IL}	$V_{\rm H}$	PAD Program Address	D _{OUT}	CS _{OUT}

Table 4. High/Low Byte	x16 Configuration	on Only		
Selection	BHE (Pin 1)	A _o	Write Operation	Read Operation
	0	0	Whole word	Whole word
	0	1	Upper byte from/to odd address	Upper byte = Data Out Lower byte = 'FF'
	1	0	Lower byte from/to even address	Whole word
	1	1	None	Upper byte = Data Out Lower byte = 'FF'
	WR and BHE a	are used for	SRAM functions	

-WSi-

Table 5. Product **Selection Guide**

Parameter	MAP168-45	MAP168-55	Units
Address Access Time (max)	45	55	ns
Chip-Select Access Time (max)	45	55	ns
Output Enable Time (max)	21	23	ns
Chip-Select Output Time	25	27	ns
Fast Chip-Select Output Time (max)	20	22	ns

Table 6. DC Characteristics

Parameter	Symbol	Test Conditions	Min	Max	Units
Output Low Voltage	V _{OL}	l _{o∟} =8 mA		0.5	V
Output High Voltage	V _{OH}	I _{он} =–2 mA	2.4		V
CMOS Standby Current —Commercial —Military	I _{SB1}	notes 1, 3		25 35	mA mA
TTL Standby Current —Commercial —Military	I _{SB2}	notes 2, 3		35 45	mA mA
CMOS Active Current No Blocks Selected —Commercial —Military	I _{cc} 1A	notes 1, 4		25 35	mA mA
CMOS Active Current EPROM Block Selected —Commercial —Military	I _{cc} 1B	notes 1, 4		40 50	mA mA
CMOS Active Current SRAM Block Selected —Commercial —Military	I _{cc} 1C	notes 1, 4		80 90	mA mA
TTL Active Current No Blocks Selected —Commercial —Military	I _{cc} 2A	notes 2, 4		35 45	mA mA
TTL Active Current EPROM Block Selected —Commercial —Military	I _{cc} 2B	notes 2, 4		45 55	mA mA
TTL Active Current SRAM Block Selected —Commercial —Military	I _{cc} 2C	notes 2, 4		90 100	mA mA
Input Load Current	l _u	V _{IN} =5.5V or GND	-10	10	μA
Output Leakage Current	I _{LO}	V _{out} =5.5V or GND	-10	10	μΑ
Notes: 1. CMOS inputs: GND \pm 0 2. TTL inputs: V _{IL} \leq 0.8V, V 3. Add 1.5 mA/MHz for AC 4. Add 3.5 mA/MHz for AC	/ _H ≥2.0V. Cpower comp	0.3V. ponent.			

US:

MAP168

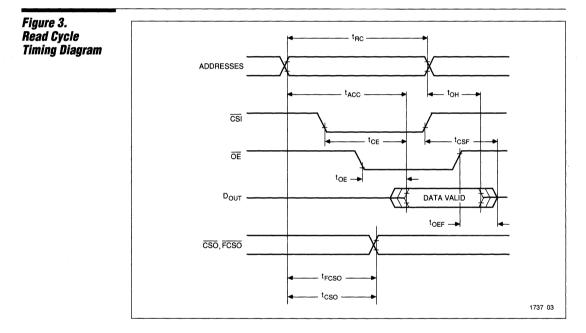
Table 7. AC Characteristics

Parameter	Symbol	MAP168-45 Min Max	MAP168-55 Min Max	Units
Read Cycle Time	t _{RC}	45	55	ns
Address to Output Delay	t _{ACC}	45	55	ns
CSI to Output Delay	t _{ce}	45	55	ns
OE to Output Delay	t _{oe}	21	23	ns
Output Disable to Output Float	t _{oef}	18	20	ns
Chip Disable to Output Float	t _{csF}	18	20	ns
Address to Output Hold	t _{on}	10	10	ns
Address to CSO ₀₋₇ True	t _{cso}	25	27	ns
Address to FCSO True	t _{FCSO}	20	22	ns
SRAM Write Cycle Time	t _{wc}	45	55	ns
Chip Enable to Write End	t _{csw}	45	55	ns
Address Setup Time	t _{as}	0	0	ns
Address Hold Time	t _{AH}	0	0	ns
Address Valid to Write End	t _{aw}	45	55	ns
SRAM Write Enable Pulse Width	t _{PWE}	30	35	ns
Data Setup Time	t _{os}	20	- 30	ns
Data Hold Time	t _{DH}	0	0	ns
Write Enable to Data Float	t _{weF}	21	23	ns
Write Disable to Data Low Z	t _{welz}	3	3	ns
BHE Setup Time	t _{BHES}	0	0	ns
BHE Hold Time	t _{внен}	10	10	ns

Table 8. Data Retention Characteristics

Parameter	Symbol	Test Conditions	Min	Max	Units
Minimum V_{cc} for Data Retention	V _{DR}	V _{cc} =2.0V,	2.0		v
Current in Data Retention Mode		$\overline{\text{CSI}} \ge V_{\text{cc}}$ –0.2V,		1	mA
Chip Deselect to Data Retention	t _{CSDR}	$V_{IN} \ge V_{CC} - 0.2V$	0		ns
Recovery Time from Data Retention	t _{RDR}	or $V_{IN} \le 0.2V$	t _{RC}		ns

Absolute


Maximum Ratings

Storage Temperature	65°C to +150°C
Voltage to any pin with	
respect to GND	–0.6V to +7V
V _{PP} with respect to GND	–0.6 V to +14.0V
ESD Protection	>2000V

permanent damage to the device. This is a

stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability.

Table 9. Operating	Range	Temperature	V _{cc}	
Range	Commercial Industrial Military	0°C to +70°C −40° to +85°C −55° to +125°C	+5V ± 5% +5V ± 10% +5V ± 10%	

WI

3

3-11

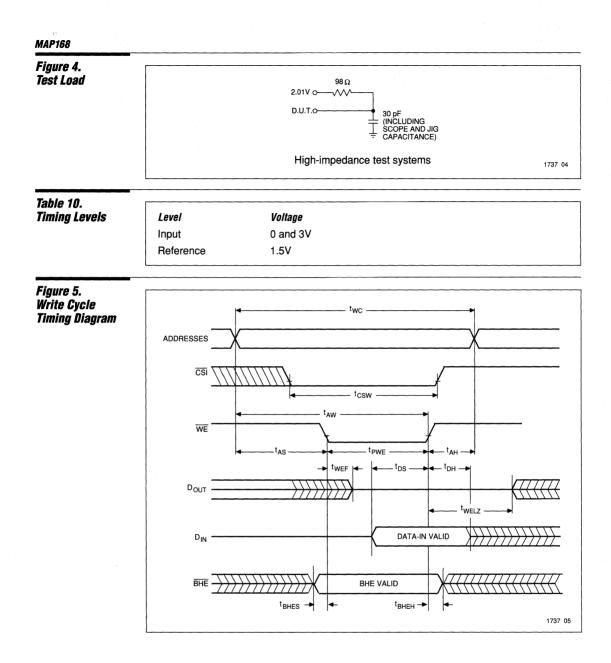
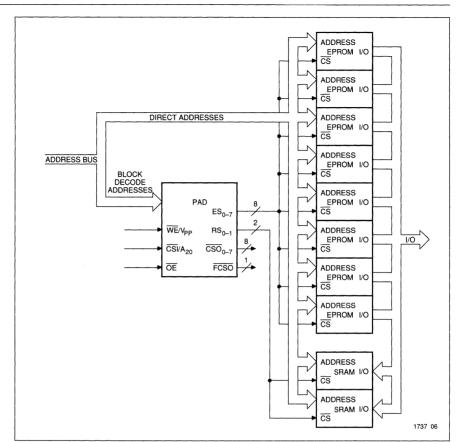



Figure 6. Memory Architecture

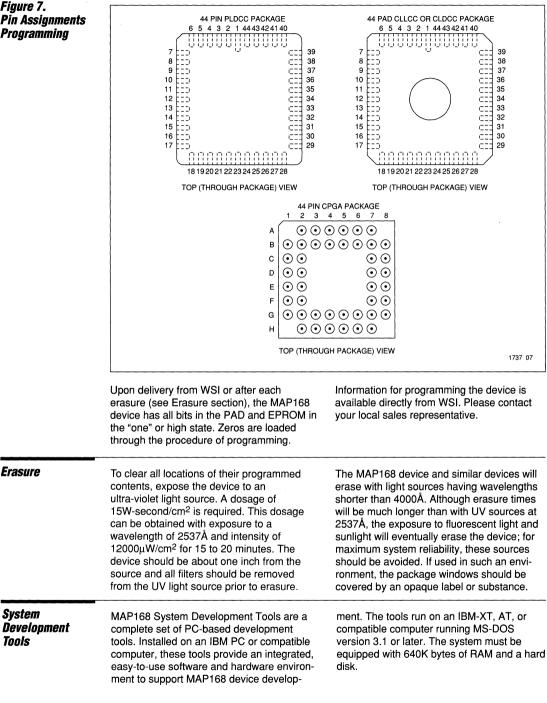
MAP168

Table 11. MAP168 Pin Assignments

44-pin CLDCC Pac 44-pin PLDCC Pac 44-pad CLLCC Pac	kage	
Pin No.	x8	x16
1	GND	BHE
2	WE/V _{PP}	WE/V _{PP}
3		CSI/A ₂₀
4	CSO ₇	I/O ₁₅
5	CSO	I/O ₁₄
6	CSO ₅	I/O ₁₃
7	<u>CSO</u> ₄	I/O ₁₂
8	CSO	I/O ₁₁
9	CSO,	I/O ₁₀
10	CSO,	I/O ₉
11	cso	I/O ₈
12	GND	GND
13	FCSO	FCSO
14	I/O ₇	I/O ₇
15	I/O ₆	I/O ₆
16	I/O ₅	I/O ₅
17	I/O ₄	1/O ₄
18	I/O ₃	1/O ₃
	1/O ₃	1/O ₃
19		
20		
21	1/O	
22	ŌĒ	ŌĒ
23	A ₀	A _o
24	A ₁	A ₁
25	A ₂	A ₂
26	A ₃	A
27	A ₄	A
28	A ₅	A ₅
29	A ₆	A
30	Å ₇	A ₇
31	A _s	A _g
32	A ₉	A ₉
33	A ₁₀	A ₁₀
34	GND	GND
35	A ₁₁	A ₁₁
36	A ₁₂	A ₁₂
37	A ₁₃	A ₁₃
38	A ₁₃	A 13
39	Δ	Α ₁₄ Δ
40	A ₁₅	A ₁₅
40	A ₁₆	A ₁₆
	A ₁₇	A ₁₇
42	A ₁₈	A ₁₈
43	A ₁₉	A ₁₉
44	V _{cc}	V _{cc}
WE and BHE are	e for SRAM functions	

W.

3-14


Table 12. MAP168 Pin Assignments

 44-pin CPGA Pack	(ADP	
Pin No.	x8	x16
A ₅	GND	BHE
A ₄	WE/V _{PP}	WE/V _{PP}
B₄	CSI/A ₂₀	
A ₃ ⁴	CSO ₇ ²⁰	1/O ₁₅
B ₃	CSO ₆	I/O ₁₄
A_2	CSO ₅	I/O ₁₃
B ₂	CSO₄	I/O ₁₂
-2 B ₁		I/O ₁₁
C_2		I/O ₁₀
C ₁		I/O ₉
D_2	CSO ₀	I/O ₈
D ₁	GND	GND
E1	FCSO	FCSO
E_2	I/O ₇	I/O ₇
F ₁	I/O ₆	I/O ₆
F_2	I/O ₅	1/O ₅
G ₁	I/O ₄	1/O ₄
G ₂	I/O ₃	I/O ₃
H_2	I/O ₂	1/O ₂
G ₃	I/O ₁	I/O ₁
G₃ H₃	I/O ₀	I/O ₀
G ₄	0E	NO
H ₄		A _o
H₄ H₅	A ₁	A ₁
G ₅	∧ ∧	Δ
G ₅ ц	A ₂	A ₂
Н ₆	A ₃	A ₃
G ₆	A ₄	A ₄
H ₇	A ₅	A ₅
G ₇	A ₆	A ₆
G ₈	A ₇	A ₇
F ₇	A ₈	A ₈
F ₈	A ₉	A ₉
Е ₇		A ₁₀
E _s	GND	GND
D _s	A ₁₁	A ₁₁
D ₇	A ₁₂	A ₁₂
C ₈	A ₁₃	A ₁₃
C ₇	A ₁₄	A ₁₄
B ₈	A ₁₅	A ₁₅
B ₇	A ₁₆	A ₁₆
A ₇	A,,	A ₁₇
B ₆	A ₁₉	A ₁₈
A ₆	A.,	A ₁₉
B₅	V _{cc}	V _{cc}

MAP168

Figure 7. **Pin Assignments** Programming

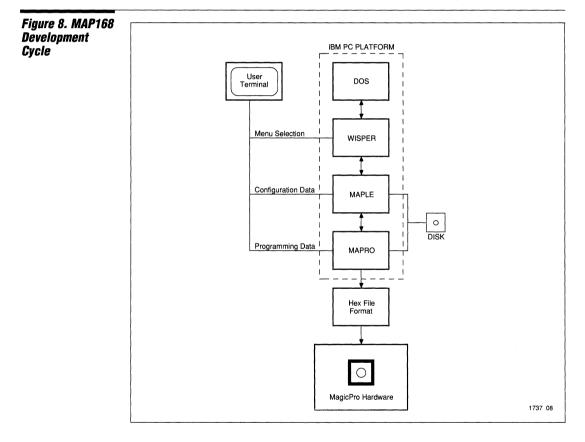
us

System Development Tools (Con't)

Hardware

The MAP168 System Programming Hardware consists of:

- WS6000 MagicPro Memory and PSD Programmer
- WS6014 44-pin LCC Package Adaptor (for 44-pin CLLCC, CLDCC, and PLDCC packages)
- WS6015 44-pin CPGA Package Adaptor


The MagicPro Programmer is the common hardware platform for programming all WSI programmable products. It consists of the IBM-PC plug-in Programmer Board and the Remote Socket Adaptor Unit.

Software

The MAP168 System Development Software consists of the following:

- WISPER Software—PSD Software Environment
- MAPLE Software—MAP168 Location Editor
- MAPPRO Software—Device Programming Software

The configuration of the MAP168 device is entered using MAPLE software. MAPRO software configures MAP168 devices by using the MagicPro programmer and the socket adaptor. The programmed MAP168 is then ready to be used. The development cycle is depicted in Figure 8.

us:

MAP168

System	
Development	
Tools (Con't)	
• •	

Support

WSI provides a complete set of quality support services to registered System Development Tools owners. These support services include the following:

- □ 12-month Software Updates.
- Hotline to WSI Application Experts— For direct design assistance.
- 24-Hour Electronic Bulletin Board— For design assistance via dial-up modem.

Training

WSI provides in-depth, hands-on workshops for the MAP168 device and System Development Tools. Workshop participants learn how to program their own high-performance, userconfigurable mappable memory subsystems. Workshops are held at the WSI facility in Fremont, California.

Ordering Information

MAP168 Part Number	Speed (ns)	Package Type	Package Drawing	Operating Temperature	Manufacturing Procedure
MAP168-45J	45	44-pin PLDCC	J2	Commercial	Standard
MAP168-45L	45	44-pin CLDCC	L4	Commercial	Standard
MAP168-45X	45	44-pin CPGA	X2	Commercial	Standard
MAP168-55C	55	44-pad CLLCC	C3	Commercial	Standard
MAP168-55CI	55	44-pad CLLCC	C3	Industrial	Standard
MAP168-55CM	55	44-pad CLLCC	C3	Military	Standard
MAP168-55CMB	55	44-pad CLLCC	C3	Military	MIL-STD-8830
MAP168-55J	55	44-pin PLDCC	J2	Commercial	Standard
MAP168-55L	55	44-Pin CLDCC	L4	Commercial	Standard
MAP168-55LM	55	44-Pin CLDCC	L4	Military	Standard
MAP168-55LMB	55	44-pin CLDCC	L4	Military	MIL-STD-8830
MAP168-55X	55	44-pin CPGA	X2	Commercial	Standard
MAP168-55XI	55	44-pin CPGA	X2	Industrial	Standard
MAP168-55XM	55	44-pin CPGA	X2	Military	Standard
MAP168-55XMB	55	44-pin CPGA	X2	Military	MIL-STD-8830

UL!

3

Ordering			
Information	<i>Part Number</i> MAP168-GOLD	<i>Contents</i> WISPER Software MAPLE Software User's Manual WSI-SUPPORT WS6000 MagicPro Programmer	
	MAP168-SILVER	WISPER Software MAPLE Software User's Manual WSI-SUPPORT	
	WS6000	MagicPro Programmer IBM PC plug-in Adaptor Card Remote Socket Adaptor	
	WS6014	44-pin LCC Package Adaptor for 44-pin CLLCC, CLDCC, and PLDCC Packages. Used with the WS6000 MagicPro Programmer.	
	WS6015	44-pin CPGA Package Adaptor. Used with the WS6000 MagicPro Programmer.	
	WSI-SUPPORT	 Support Services including: 12-month Software Update Service Hotline to WSI Application Experts 24-hour access to WSI Electronic Bulletin Board 	
	WSI-TRAINING	Workshops at WSI, Fremont, CA. For details and scheduling, call PSD Marketing, (415) 656-5400.	

WF-

3-19

Programmable Peripheral Application Note 002 Introduction to the MAP168 **User-Configurable Peripheral with Memory**

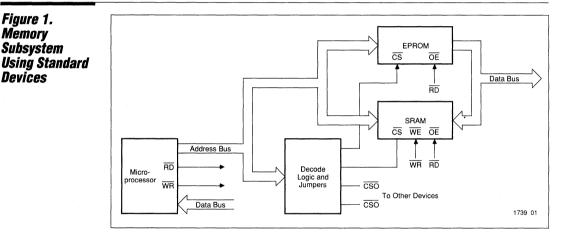

Memory Structure

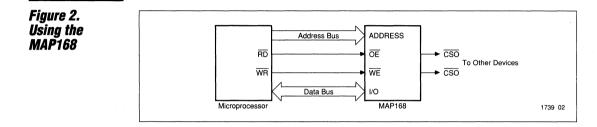
Figure 1. Memory

Subsystem

Devices

Memory configurations in microprocessor and microcontroller systems have similar structure, irrespective of the application, (see Figure 1.) They share basic components, such as an EPROM (for program storage). and an SRAM (for data storage). In addition, a decoder circuit is required to select blocks of memory from the address inputs applied by the processor. A common implementation of address decoding originally used MSI building blocks, such as 74xx138 devices. Memoryconfiguration changes and expansions in a fixed-loaic solution required jumpers on the printed circuit board. More recently, decoders based on PAL® devices have provided a more compact and flexible solution. PAL devices allow configuration changes to be implemented by insertion of a programmed device and avoid jumper changes.

Both solutions involve compromises that affect system performance, board space, power and cost. Since the decoder is in the memory access path, the total memory access time is the sum of the decoder delay and the access time of the memory itself. For example, a 40ns total access time can be achieved with a 12ns decoder and a 25ns memory. This allows 3ns for on-board interconnect delay. Memory products in the 25ns


range are expensive and therefore such a performance entails additional cost. To be able to integrate the programmable address decoder with system memory, EPROM and static RAM would offer a more flexible approach. The resulting device would provide board-space economy, higher performance and less overall power consumption without the cost of a multichip solution.

MAP168 — Application Note 002

Memory Structure (Cont.)

The WSI MAP168 user-configurable peripheral with memory has been developed to significantly enhance system performance by integrating high density EPROM for program store, high density SRAM for data store and high performance logic in the form of a Programmable Address Decoder (PAD) on one chip. (See Figure 2.) The MAP168 integrates 128K bits of EPBOM and 32K bits of SRAM. It is ideally suited for a number of common design applications:

- High-speed Digital Signal Processor applications (modems, analog data filtering or analysis)
- Expanding memory systems for microprocessors and microcontrollers
- Space- and power-sensitive applications (plug-in cards, avionics, portable systems)

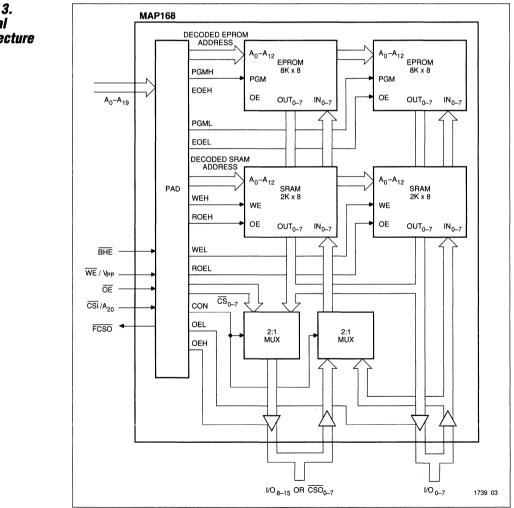
Features of the MAP168

The MAP168 offers significant design advantages through integration. performance and user-configurability. It integrates both volatile and non-volatile memory on the same chip, along with a flexible decoding system. The memory is structured as a series of blocks to achieve a highly configurable circuit for general purpose applications. The device operates in one of several modes, one of which is for normal operation and the rest are for device configuration. At the heart of all MAP168 device's is a Programmable Address Decoder (PAD), which is programmed during the PAD programming mode through the circuit's address and I/O pins. The PAD offers the following features:

- Flexible EPROM/SRAM location within the address space
- Memory array power-down when not being accessed
- Security protection of memory configuration data to inhibit copying

us:

Integrated external device mapping through Chip Select Outputs


Memory Architecture And Technology

The memory in the MAP168 consists of non-volatile EPROM and volatile SRAM. (See Figure 3.) The EPROM is subdivided into 8 blocks and the SRAM into 2 blocks. The blocks may be configured in either a 2Kx8 or a 1Kx16 format, allowing optimal interaction with both 8- and 16-bit systems. These memory blocks can be considered as separate memories with dedicated internal chip selects. The PAD selects the appropriate block, decoded from the incoming address provided at the device inputs. This architecture enables the product to be configured and compatible with virtually any system address map. Complicated address maps of microcontroller systems can be fully realized by programming blocks of EPROM and SRAM in the memory-mapping scheme of the system.

In addition to having fine control of memory allocation, software updates which require changes in the address map boundaries can be easily accomplished by simply reprogramming the PAD at the same time as the EPROM code. This means only one part need be sent to the end-product customer to accommodate field software changes. This becomes a user-transparent method that requires no change of PC board jumpers.

The EPROM is based on WSI's patented split-gate EPROM technology for high density and very high speed. It is also used in the reconfigurable PAD section, permitting both fast decode and reconfiguration of the same device. The MAP168 contains a 128K-bit UV erasable EPROM which can be organized as 16Kx8 (byte-wide) or as 8Kx16 (word-wide).

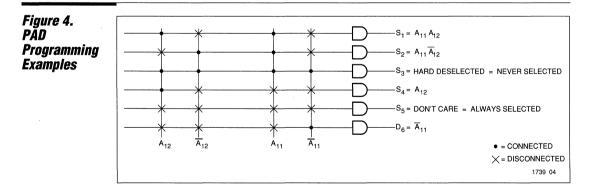
The SRAM is based on the industry standard full CMOS 6-transistor cell. The advantages of this cell are high speed, very low stand-by power, high noise immunity and good data retention when disturbed by alpha particles. In the MAP168 device, the SRAM contains 32K bits which can be configured as 4Kx8 in the byte mode or 2Kx16 in the word-wide mode.

us:

Figure 3. Internal Architecture

3

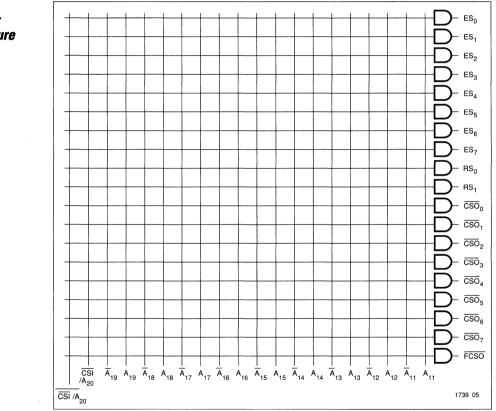
PAD Logic Implementation


The PAD uses the same non-volatile EPROM cells as the EPROM array. (See Figure 4.) It can be erased and configured at the same time as the EPROM. After UV erase or with new parts, the EPROM cells in the MAP168 device normally connect between the address inputs and the select outputs. The EPROM cells are disconnected by selective programming.

The PAD performs as an address comparator. When the address configuration previously programmed into the PAD is detected, the internal chip-select signal to the memory block selected by that address is enabled. If no block is selected by the address, neither the EPROM nor the SRAM arrays are enabled and other devices may drive the data bus. Independent of internal block selection, external chip-select decoding (known as CSOs) are programmable in the same block resolution as the internal memory.

Actual implementation of the PAD is similar to that of a PAL device. (See Figure 5.) In the erased state, all the block decode addresses are connected to the AND plane. There is only one output per AND gate and there is no OR plane. Each AND gate output either selects a block of internal memory or a number of blocks of external memory for the external CSOs. Only addresses $A_{11}-A_{20}$ are used as block decode address. Lower-order address lines are used only for addressing within the internal memory arrays.

EPROM select outputs ES_0-ES_7 (ES outputs) select 1 of the 8 available EPROM blocks. SRAM select outputs RS_0-RS_1 (RS outputs) select one of the 2 available SRAM blocks. Because only one EPROM or SRAM block can be active at a particular time, only one line from either ES_0-ES_7 or RS_0-RS_1 is allowed to be active at one time. The CSOs are independent of the ES and RS outputs and therefore any one address can be programmed to select one or more of the CSOs, even simultaneous to the selection of one of the ES or RS outputs. This is particularly useful for I/O control or address decode for wait state generation.


Programming the decoder is similar to programming a PAL device that has only one product term (AND gate) per output. To enable an output S₁ as shown in Figure 4, fuse locations A₁₁ and A₁₂ are left intact while \overline{A}_{11} and \overline{A}_{12} are programmed. Conversely, if A₁₁ and A₁₂ are programmed while their complements are left intact, then the select S function is active when $\overline{A}_{11} = \overline{A}_{12} = 0$. If all fuse locations are programmed on a product term, the inputs are pulled HIGH and no select output can take place. If all fuse locations are left intact, the S output is permanently LOW, always selected.

Device Array Power-Down

Power dissipation on the chip is minimized through logic in the PAD. It selectively powers up the EPROM or SRAM arrays only when they are being accessed. If the EPROM is selected through the decoder, it will draw power while the SRAM stays powered down and vice versa. When neither the EPROM or the SRAM is selected, both are powered down. Note that data integrity in a "powered down" SRAM is maintained. A Chip Select Input (\overline{CSI}) to the device is

provided for a very low-power quiescent mode. With $\overline{\text{CSI}}$ =1, the EPROM and SRAM are powered down but the PAD is powered up, independent of the incoming address signals. The $\overline{\text{CSI}}$ input pin can be connected to a system power-down signal. If such a signal is unavailable, addressing a location in memory that does not select either the EPROM or the SRAM also reduces power drain. In this case, only the PAD is powered up and draws a small fraction of the active power.

us:

Figure 5. PAD Array Architecture

3

The $\overline{\text{CSI}}/\text{A}_{20}$ input is actually a dual function pin. It can be an address (MSB) input, or it can be programmed to be a chip select input as well. As a chip select input, it will enable the EPROM and SRAM memory when active (LOW). If the address option A_{20} is chosen the chip is always enabled.

Address Map Security

Upon entering the PAD programming mode, the contents of the PAD are fully accessible through the I/O pins. After programming is completed, it is possible to render the PADs programmed configuration invisible by programming the security (SEC) bit. This disables external access to the PAD and ensures that the PAD configuration can not be copied. To further aid in securing data in the MAP168, it is suggested that memory blocks that are addressed in a linear block placement be programmed in the PAD as chip selects from product terms that are randomly placed.

Chip Select Outputs

The MAP168 device can be user-configured for 8-bit or 16-bit systems. In the former case, eight unused data lines (\overline{CSO}_{0-7}) are available as chip select outputs, driven by the address decoder section of the PAD. This provides the ability to integrate external devices into the address map with no hardware overhead. Unlike the internal memory blocks, a \overline{CSO} can be active for more than one address combination or block. Also, groups of blocks may overlap both each other and the internal memory. By deselecting both the true and the complement it is possible to make an address line "don't care".

An external memory can therefore be selected with only one \overline{CSO} . It is possible to enable another external 128K byte memory by programming a single \overline{CSO} to be active for that entire address range.

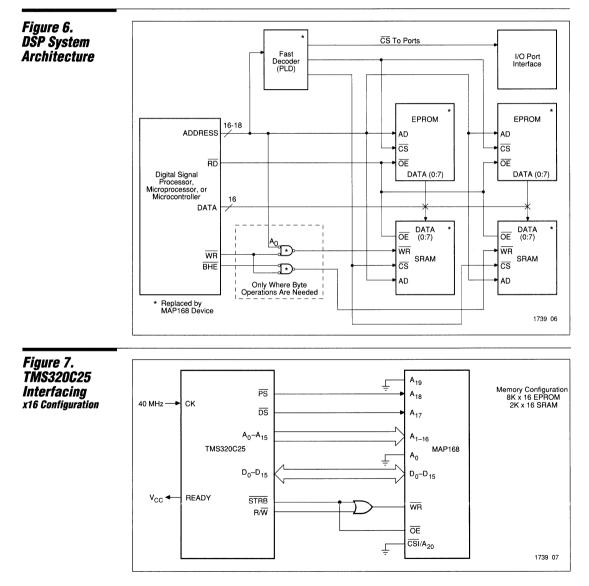
A $\overline{\text{CSO}}$ can be programmed to function as a configuration bit which is always deselected (e.g., $\overline{\text{CSO}}_{0}=1$) or always selected (e.g., $\overline{\text{CSO}}_{0}=0$) by programming the addresses with "hard deselect" or with the "don't care" patterns, respectively. This is similar in function to a PC-board wire jumper. If unused $\overline{\text{CSO}}$ s are programmed with all addresses "don't care", then switching is eliminated and power consumption reduced for those lines.

Since the PAD is always powered up when the device is selected ($\overline{CSI}=0$), \overline{CSOs} are always active and their state is a direct function of the PAD configuration and current address line inputs.

Systems Applications

The MAP168 device is designed to reduce memory access time and board area utilization in high performance digital signal processor, microcontroller and microprocessor systems. These systems typically have the following requirements:

- 16-bit data path
- 64K to 1 Meg address space
- Fast memory access time (100ns to 40ns)
- Decoding for I/O and memory
- Printed circuit board area limitations
- Multiple types of memory, including EPROMs and SRAMs for program and data store.


The DSP System Architecture shown in Figure 6 illustrates a typical system based

upon a 40MHz TMS320C25 digital signal processor. Such a system allows only 40ns for memory access time. The access time must be broken down into decoding time and memory-access time. The fastest decoders available today require approximately 10ns to complete their decode function. Due to this decoding time. memory access time for both the EPROM and SRAM must be 30ns or less. The MAP168 performs decoding on-chip with no speed penalty. As a result, the performance of a 45ns MAP168 device in the above example is equivalent to a 10ns decoder and a 35ns EPROM and SRAM memory. In addition, the package equivalent of two fast EPROMs, two fast SRAMs and at least one decoder are combined into one MAP168 chip resulting in at least a 5-to-1 component count reduction.

Systems Applications (Cont.)

High-Speed, Word-Oriented Application

The MAP168 device is especially suited for high-speed word-only microprocessors. The TMS320C20/25 DSP family is an example of such a microprocessor. Interfacing the MAP168 device to a TMS320C25 operating at 40MHz with no wait states is illustrated in Figure 7. The TMS320C25 has two pins for selecting Program Memory (PS) and Data Memory (DS). These functions are connected to the higher order address of the MAP168 device. PS is connected to A_{18} and DS is connected to A_{17} . Usually PS will select the EPROM and DS will select the SRAM. The PAD permits partitioning of the MAP168 memory to accommodate virtually any system address map. Figure 8 shows two possibilities.

us:

3-27

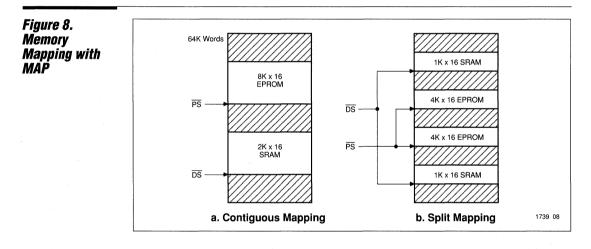
3

MAP168 — Application Note 002

Systems Applications (Cont.)

When in a word-wide (x16) configuration, the total memory available on the MAP168 device is 8Kx16 of EPROM and 2Kx16 of SRAM. The implementation shown in Figure 7 replaces at least five circuits:

- One high-speed decoder (10ns)
- □ Two 8Kx8 EPROMs (30ns)
- Two 2Kx8 SRAMs (30ns)

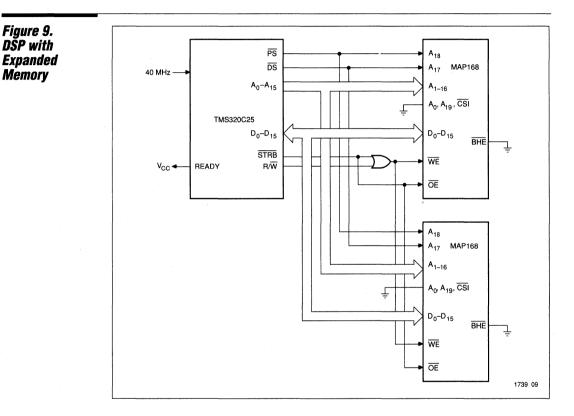

If the system was previously implemented using a boot EPROM, the MAP168 device replaces ten circuits:

- One high-speed decoder (10ns)
- □ Two 8Kx8 EPROMs (30ns)
- Two 2Kx8 SRAMs (30ns)
- Two 8Kx8 slow EPROMs
- Three ICs for Wait-State generation

For expanded memory requirements in a word-wide (x16) configuration, two MAP168 devices can be interfaced directly with a TMS320C25, as shown in Figure 9. The two MAP168 devices provide the total system memory. Key features of this system are:

- 40ns access time
- 16Kx16 EPROM
- 4Kx16 EPROM
- 16 general purpose programmable chip selects

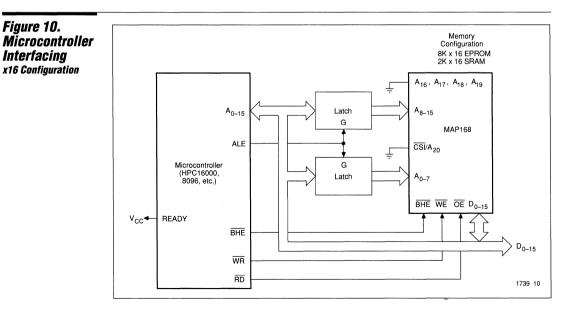
The general-purpose programmable chip select outputs can be mapped to any location in the address space via the PAD. These chip selects can be used to access I/O ports, select additional memory or control other system functions.

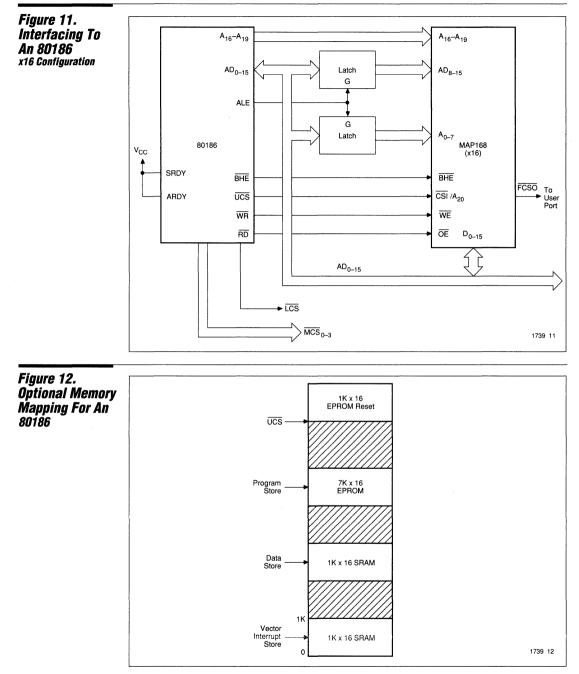

us:

Microcontroller Application

The MAP168 device has two basic configurations. They are a word-wide (x16) configuration with byte operation capability and a bytewide (x8) configuration with 8 chip select outputs.

The 128K address space (during byte operations in the word-wide mode) makes the MAP168 device especially suited for microcontroller applications. Figure 10 illustrates a simple interconnection of the MAP168 device to a microcontroller. The HPC16040 operating without wait states requires a memory access time of 65ns or better. This makes the MAP168 device a good fit, since it offers an access time of 45ns, leaving a 20ns margin.


The MAP168 device can be configured in a byte-wide (x8) mode and can also be doubled-up with a second device.



Microcontroller	Embedded Controller Application	One output chip select when in the word-
Application	An embedded controller is an intelligent section of logic, usually based around a processor, dedicated to a particular task and is not accessible for software alteration by the user. Such applications are generally com- plex and are becoming more common in system design. Typically, embedded control- lers are high performance systems designed under severe space/power constraints. On the other hand, they have a limited ability to be upgraded and limited program memory. This makes them ideal candidates for the	wide mode (FCSO)
(Cont.)		Nine output chip selects when in the byte- wide mode
		Programmable Address Decoder (PAD)
		A popular processor for embedded applica- tions, due largely to its extensive software library and development support, wide availability of compatible peripherals and low cost from volume production is the 80186 from Intel. Figure 11 shows how a MAP168 device can be interfaced to an 80186.
	MAP168 implementation. The MAP168 has the following key features which are useful in such an application:	The UCS (Upper Chip Select) is connected to $\overline{\text{CSI}/\text{A}_{20}}$ on the MAP168 device. The PAD is programmed to locate a 1Kx16 EPROM slot in the upper memory address space for a reset subroutine. The rest of the memory can be located as required by the user. Figure 12 shows one possibility.
	IM address space decoding	
	45ns access time	
	 Byte operations in word-wide mode (BHE) 	
MAP168	WSI provides the development environ-	for use by the programming tools. These

MAP168 Development Support

WSI provides the development environment needed to program the MAP168. A menu-driven software package known as MAPLE is available under the WISPER toplevel software. It operates on the popular IBM-PC[®] as a platform and includes extensive documentation on installation and operation. It generates configuration files for use by the programming tools. These programming tools include the MagicProTM programmer hardware and the MAPPRO software. They enable the user to program the PAD and the EPROM. For additional information, consult your nearest WSI sales representative.

us:

General Information

PSD3XX Family

MAP168

Development Systems

Package Information

Sales Representatives and Distributors

Section Index

Development	Electronic Bulletin Board	4-1
Systems	PSD-Gold/Silver Development System	4-3
	WS6000 MagicPro [™] Memory and Programmable Peripheral Programmer	4-7

For additional information, call 800-TEAM-WSI (800-832-6974). In California, Call 800-562-6363.

Programmable Peripheral Electronic Bulletin Board

Bulletin Board

WSI provides a 24-hour electronic bulletin board system that provides the user with the latest information on software updates, enhancements, and applications relating to WSI products. In addition, users developing applications software for WSI products can send portions of their code to WSI for application's consultation if desired. The following hardware is required to use the WSI bulletin board:

followed by some other messages, after which you will be asked for your name, and a password. Upon initial use, follow

the on-screen prompts for establishing

Now that you have entered the bulletin

board service, you will be given a choice

- Computer Terminal
- 300, 1200, 2400 Baud Modem
- 8 Data Bits
- No Parity
- 1 Stop Bit

your password.

of "MAIN" commands:

Access Line

To access the bulletin board, dial

and wait for the modem tone. When your modem establishes a connection, enter <return> <return> to signal the bulletin board software. The board should respond:

WSI Customer Engineering Support Electronic Bulletin Board Service

Main Commands

M)sg-Section

Choose this option to leave messages.

F)ile-Section

Choose this option to download or upload data files and/or utility programs

B)ulletins

Choose this option to see the latest important news such as software versions and programming tips for WSI Memory and PSD products.

S)tatistics

This option describes the current bulletin board statistics

C)hange

Choose this option to change operational settings that the bulletin board maintains for your user name.

P)age-Operator

Choose this to page the operator for assistance. It is not likely that the operator will be available during West Coast U.S. non-business hours.

L)ist-Callers

Choose this option to see who else is using the board at this moment.

A)ns-Questionnaire

Choose this option to answer a user profile questionnaire.

V)ersion

Describes the board software version.

G)oodbve

Choose this to leave the bulletin board.

See the individual software manuals for more detailed explanation and usage of the bulletin board.

-775-4-2

Programmable Peripherals PSD-Gold/PSD-Silver Development System PSD3XX/MAP168

Description	PSD-Gold/PSD-Silver is a complete set of IBM-PC-based development tools. They provide the integrated easy-to-use environ- ment to support PSD3XX family and MAP168 program development and device programming.	The tools run on an IBM-PC XT, AT or compatible computer running MS-DOS version 3.1 or later.
MAPLE	 MAPLE is the Locator Editor. It has the following features: Simple Menu Driven Commands for selecting different configurations of the PSD3XX/MAP168 Byte wide or word wide operation. Address or Chip Select Input (CSI) Mode. PAD security option. 	 Generating the PAD programming data that maps the EPROM, SRAM and Chip Selects Outputs to the user's address space. Combining all the different files to be programmed into the EPROM segments.
MAPPRO	 MAPPRO is the interface software that enables the user to program a PSD3XX or MAP168 device on the WS6000 MagicPro[™] programmer. The MAPPRO enables the user to load the program into the programmer and to execute the following operations. □ Help □ Upload RAM from MAP □ Load RAM from disk 	 Write RAM to FILE Display MAP data Blank test MAP Verify MAP Program MAP Configuration Quit
WS6000 MagicPro TM Programmer	The WS6000 MagicPro Programmer is an engineering development tool designed to program all WSI programmable products (EPROMs, RPROMs, PAC1000, MAP168, PSD3XX family and SAM448). It is used within the IBM-PC and compatible environment. The MagicPro consists of a short plug-in board and a Remote Socket	Adaptor (RSA). It occupies a short expan- sion slot in the PC. The RSA has two ZIF- DIP sockets that will support WSI's 24, 28, 32 and 40 pin standard 600 mil or slim 300 mil DIP packages without adaptors. Other packages are supported using adaptors.
WS6014 Socket Adaptor	The WS6014 is a socket adaptor that mounts on the MagicPro RSA and adapts the MAP168 in 44-in CLDCC, PLDCC or CLLCC packages to the programmer.	

PSD-Gold/Silver

PSD-Gold

Contents

- MAPLE-MAP Locator editor.
- MAPPRO Interface software to MAP168 device programmer (MagicProTM)

us:

□ Software user's manual

- WSI-Support agreement
- UWS6000 MagicPro Programmer
- A Socket Adaptor and Two Product Samples

PSD-Silver

Contents

 MAPLE-MAP Locator editor.
 MAPPRO Interface software to MAP168 device programmer (MagicProTM)

W

Software user's manualWSI-SUPPORT agreement.

PSD-Gold/Silver			
WS6015 Socket Adaptor		a socket adaptor that IagicPro RSA and adapts	the PSD3XX or MAP168 in a 44-pin PGA package to the programmer.
WS6020 Socket Adaptor	The WS6020 is a socket adaptor that mounts on the MagicPro RSA and adapts		the PSD3XX in a 52-pin PQFP package to the programmer.
WS6021 Socket Adaptor	The WS6021 is a socket adaptor that mounts on the MagicPro RSA and adapts		the PSD3XX in a 44 pin CLDCC or PLDCC package to the programmer.
WSI-Support	of PSD-Gold/Sil software and pr	n-going support for users ver. For the first year, ogrammer updates are harge. After that, the user	may purchase the WSI-Support agreement to continue to receive the latest software releases.
Ordering Information	Product		Description
muton	PSD-Silver	Contains PSD3XX and MAP168 Software (MAPLE-MAP and	

Product	Description
PSD-Silver	Contains PSD3XX and MAP168 Software (MAPLE-MAP and MAPPRO), Software User's Manual, WSI-Support.
PSD-Gold	Contains PSD-Silver, WS6000 MagicPro Programmer, a Socket Adaptor and Two Product Samples, WSI-Support.
WSI-Support	12-Month Software Update Service, Access to WSI's 24-Hour Electronic Bulletin Board, and Hotline to WSI System Application Experts.

WS6000 MagicPro™ Memory and Programmable Peripheral Programmer

Key Features	Programs All WSI CMOS Memory and and Programmable Peripheral Products and All Future Programmable Products	 Programs LCC, PGA and QFP Packaged Product by Using Adaptors 	
	Programs 24, 28, 32 and 40 Pin Standard 600 Mil or Slim 300 Mil Dip Packages without Adaptors	 Easy-to-Use Menu-Driven Software Compatible with IBM PC/XT/AT Family of Computers (and True Plug-Compatible 	
General Description	MagicPro is an engineering development tool designed to program existing WSI EPROMs, RPROMs, Programmable Peripherals, and future WSI programmable products. It is used within the IBM-PC [®] and compatible computers. The MagicPro is meant to bridge the gap betweeen the introduction of a new WSI programmable product and the availability of programming support from programmer manufacturers (e.g., Data I/O, etc.). The MagicPro programmer and accompanying software enable quick programmable	products, thus accelerating the system design process. The MagicPro plug-in board is integrated easily into the IBM-PC. It occupies a short expansion slot and its software requires only 256K bytes of computer memory. The two external ZIF-Dip sockets in the Remote Socket Adaptor (RSA) support 24, 28, 32 and 40 pin standard 600 mil or slim 300 mil Dip packages without adaptors. LCC, PGA and QFP packages are supported using adaptors.	

WS6000

General Description (Cont.)	 Many features of the MagicPro Programmer show its capabilities in supporting WSI's future products. Some of these are: 24 to 40 pin JEDEC Dip Pinouts 1 Meg Address Space (20 address lines) 16 Data I/O Lines 	The MagicPro menu driven software makes using different features of the MagicPro an easy task. Software updates are done via floppy disk which eliminates the need for adding a new memory device for system upgrading. Please call 800-TEAM-WSI for information regarding programming WSI products not listed herein. The MagicPro reads Intel Hex format for use with assemblers and compilers.
MagicPro Commands	 Help Upload RAM from Device Load RAM from Disk Write RAM to Disk Display RAM Data Edit RAM Move/Copy RAM 	 Fill RAM Blank Test Device Verify Device Program Device Select Device Configuration Quit MagicPro
Technical Information	 Size: IBM-PC Short Length Card Port Address Location: 100H to 1FFH – default 140H (if a conflict exists with this address space, the address location can be changed in software and with the switches on the plug-in board.) System Memory Requirements: 256K Bytes of RAM Power: 	□ <i>Remote Socket Adaptor (RSA):</i> The RSA contains two ZIF-Dip sockets that are used to program and read WSI programmable products. The 32 pin ZIF-Dip socket supports 24, 28 and 32 pin standard 600 mil or slim 300 mil Dip packaged product. The 40 pin ZIF-Dip socket supports all 40 pin Dip packages. Adaptor sockets are available for LCC, PGA and QFP packages.

W

+ 5 Volts, 0.03 Amp; +12 Volts, 0.04 Amp

Ordering Information

The WS6000 MagicPro Systems Contains:

- MagicPro IBM-PC Plug-in Programmer Board
- MagicPro Remote Socket Adaptor and Cable
- □ MagicPro Operating System Floppy Disk and Operating Manual

The WS6000 MagicPro Adaptors Include:

- WS6001 28-Pin CLLCC Package
 Adaptor for Memory.
- WS6008 28-Pin 0.3" Wide Dip Adaptor for SAM448
- WS6009 28-Pin PLDCC/CLDCC/ CLLCC Package Adaptor for SAM448
- WS6010 88-Pin PGA Package Adaptor for PAC1000
- WS6012 32-Pin CLDCC Package Adaptor for Memory
- □ WS6013 100-Pin QFP Package Adaptor for PAC1000

- WS6014 44-Pin CLDCC/PLDCC Package Adaptor for MAP168
- WS6015 44-Pin PGA Package Adaptor for MAP168 and PSD3XX
- WS6016 44-Pin CLDCC/PLDCC
 Package Adaptor for Memory
- WS6020 52-Pin PQFP Package Adaptor for PSD3XX
- WS6021 44-Pin CLDCC/PLDCC Package Adaptor for PSD3XX

MagicProTM is a trademark of WaferScale Integration, Inc. IBM-PC[®] is a registered trademark of IBM Corporation.

-WSF

US: 4-10

General Information

PSD3XX Family

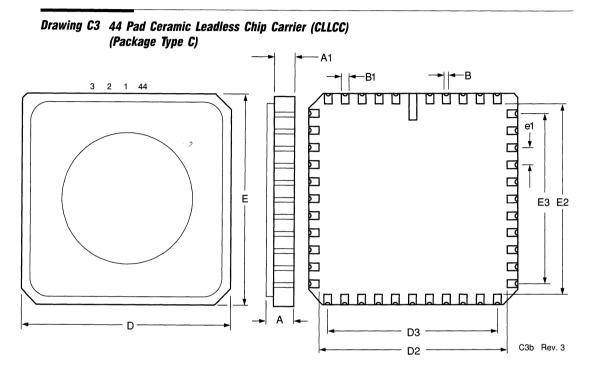
MAP168

Development Systems

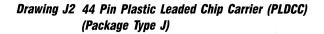
Package Information

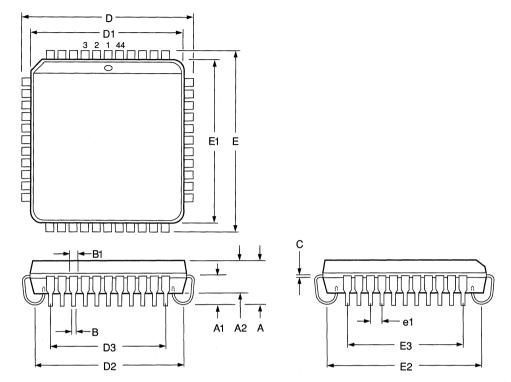
Sales Representatives and Distributors

5

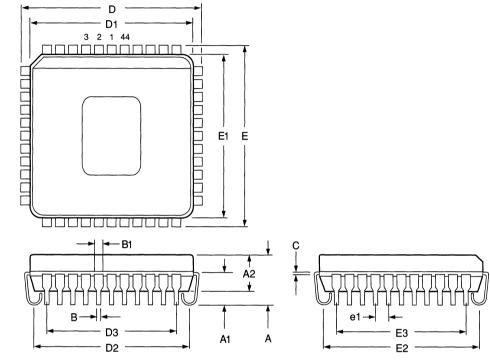

Section Index

Package	
nformation	5-1


For additional information, call 800-TEAM-WSI (800-832-6974). In California, Call 800-562-6363.

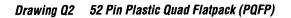


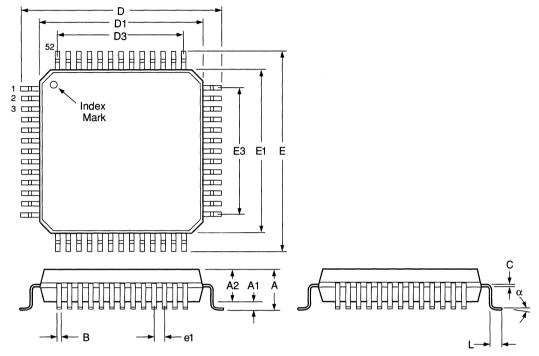
Programmable Peripherals Package Information


Min	lillimeters			Inches	
Min	N		1	menes	
	Max	Notes	Min	Max	Notes
2.41	3.30		0.095	0.130	
1.47	2.03		0.058	0.080	
0.4	46	Typical Dia.	0.	.018	Typical Dia.
0.56	0.71		0.022	0.028	
16.26	16.81		0.640	0.662	
13.97		Typical	0.	550	Typical
12.	70	Reference	0.500		Reference
16.36	16.81		0.640	0.662	
13.9	97	Typical	0.550		Typical
12.70		Reference	0.	.500	Reference
1.2	27	Reference	0.050		Reference
44	1		44		
	0.4 0.56 16.26 13.9 12.7 16.36 13.9 12.7 1.2	0.46 0.56 0.71 16.26 16.81 13.97 12.70 16.36 16.81 13.97	0.46 Typical Dia. 0.56 0.71 16.26 16.81 13.97 Typical 12.70 Reference 16.36 16.81 13.97 Typical 12.70 Reference 13.97 Typical 12.70 Reference 12.70 Reference 12.70 Reference 1.27 Reference	0.46 Typical Dia. 0. 0.56 0.71 0.022 16.26 16.81 0.640 13.97 Typical 0. 12.70 Reference 0. 13.97 Typical 0.640 13.97 Typical 0. 12.70 Reference 0. 13.97 Typical 0. 12.70 Reference 0. 12.70 Reference 0. 12.70 Reference 0. 1.27 Reference 0.	0.46 Typical Dia. 0.018 0.56 0.71 0.022 0.028 16.26 16.81 0.640 0.662 13.97 Typical 0.550 12.70 Reference 0.500 16.36 16.81 0.640 0.662 13.97 Typical 0.550 0.640 0.662 13.97 Typical 0.550 0.550 0.640 0.662 13.97 Typical 0.550 0.550 0.662 0.550 0.550 0.550 0.550 0.550 0.550 0.500 0.500 0.500 0.500 0.050

		Family	: Plastic Lea	ded Chip Carr	ier	
	N	Aillimeters			Inches	
Symbol	Min	Max	Notes	Min	Max	Notes
A	4.19	4.57		0.165	0.180	
A1	2.54	2.79		0.100	0.110	
A2	3.76	3.96		0.148	0.156	
В	0.33	0.53		0.013	0.021	
B1	0.66	0.81		0.026	0.032	
С	0.246	0.262		0.0097	0.0103	
D	17.40	17.65		0.685	0.695	
D1	16.51	16.61		0.650	0.654	
D2	14.99	16.00		0.590	0.630	
D3	12.70		Reference	0.	0.500	
E	17.40	17.65		0.685	0.695	
E1	16.51	16.61		0.650	0.654	
E2	14.99	16.00		0.590	0.630	
E3	12.70		Reference	0.	500	Reference
e1	1.27		Reference	0.	050	Reference
Ν	4	4			44	

us:

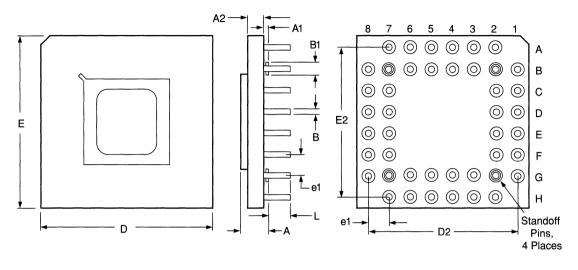



Drawing L4 44 Pin Ceramic Leaded Chip Carrier (CLDCC) with Window (Package Type L)

	Fa	amily: Ce	ramic Leaded	Chip Carrier-	CERQUAD	
Millimeters						
Symbol	Min	Max	Notes	Min	Max	Notes
A	3.94	4.57		0.155	0.180	
A1	2.29	2.92		0.095	0.115	
A2	3.05	3.68		0.120	0.145	
В	0.43	0.53		0.017	0.021	
B1	0.66	0.81		0.026	0.032	
С	0.15	0.25		0.006	0.010	
D	17.40	17.65		0.685	0.695	
D1	16.31	16.66		0.642	0.656	
D2	14.99	16.00		0.590	0.630	
D3	12.70		Reference	0	0.500	
E	17.40	17.65		0.685	0.695	
E1	16.31	16.66		0.642	0.656	
E2	14.99	16.00		0.590	0.630	
E3	12.70		Reference	0	.500	Reference
e1	1.	.27	Reference	0.050		Reference
N	4	4		44		

5

WF



Rev. 6

		Fan	nily: Plastic C	Quad Flatpack				
Millimeters				Aillimeters			Inches	
Symbol	Min	Max	Notes	Min	Max	Notes		
α	0°	80		0º	80			
A	2.55	3.05		0.100	0.120			
A1	0.00	0.25		0.000	0.010			
A2	2.55	2.80		0.100	0.110			
В	0.35	0.50		0.014	0.020			
C	0.13	0.23		0.005	0.009			
D	17.65	18.15		0.695	0.715			
D1	13.95	14.05		0.549	0.553			
D3	12.	00	Reference	0.472		Reference		
Е	17.65	18.15		0.695	0.715			
E1	13.95	14.05		0.549	0.553			
E3	12.00		Reference	0.4	472	Reference		
e1	1.	00	Reference	0.0394		Reference		
L	0.65	0.95		0.026	0.037			
Ν	52			5	52			

us:

Drawing X2 44 Pin Ceramic PGA

Rev. 6

Family: Ceramic Pin Grid Array Package							
	Millimeters				Inches		
Symbol	Min	Max	Notes	Min	Max	Notes	
Α	3.81	4.83		0.150	0.190		
A1	1.27		Typical	0.0)50	Typical	
A2	1.78	2.29		0.070	0.090		
В	0.41	0.51	Diameter	0.016	0.020	Diameter	
B1	1.19		Typical Dia.	0.047		Typical Dia.	
D	21.21	21.97		0.835	0.865		
D2	17.	17.78		0.7	700	Reference	
Е	21.21	21.97		0.835	0.865		
E2	17.78		Reference	0.7	700	Reference	
e1	2.54		Reference	0.1	100	Reference	
L	3.30		Typical	0.1	30	Typical	
N	44			4	4		

us:

us: 5-6

General Information1PSD3XX Family2MAP1683Development Systems4Package Information5

Sales Representatives and Distributors

Section Index

Sales		
Representatives		
and Distributors	· · · · · · · · · · · · · · · · · · ·	.6-1

For additional information, call 800-TEAM-WSI (800-832-6974). In California, Call 800-562-6363.

Sales Representatives and Distributors

Domestic Representatives

ALABAMA

Rep. Inc. Huntsville Tel: (205) 881-9270 Fax: (205) 882-6692

ARIZONA

Summit Sales Scottsdale Tel: (602) 998-4850 Fax: (602) 998-5274

CALIFORNIA

Bager Electronics, Inc. Fountain Valley Tel: (714) 957-3367 Fax: (714) 546-2654

Bager Electronics, Inc. Woodland Hills Tel: (818) 712-0011 Fax: (818) 712-0160

Earle Assoc., Inc. San Diego Tel: (619) 278-5441 Fax: (619) 278-5443

I Squared, Inc. Santa Clara Tel: (408) 988-3400 Fax: (408) 988-2079

CANADA

Intelatech, Inc. Mississauga Tel: (416) 629-0082 Fax: (416) 629-1795

COLORADO

Waugaman Associates, Inc. Wheat Ridge Tel: (303) 423-1020 Fax: (303) 467-3095

CONNECTICUT

Advanced Tech Sales Wallingford Tel: (203) 284-0838 Fax: (203) 284-8232

FLORIDA

QXi of Florida, Inc. Fort Lauderdale Tel: (305) 978-0120 Fax: (305) 972-1408

QXi of Florida, Inc. Orlando Tel: (407) 872-2321

AX: (407) 372-2321 Fax: (407) 321-2098 QXi of Florida, Inc.

St. Petersburg Tel: (813) 894-4556 Fax: (813) 894-3989

GEORGIA

Rep. Inc. Tucker Tel: (404) 938-4358 Tax: (404) 938-0194

ILLINOIS

Victory Sales Hoffman Estates Tel: (708) 490-0300 Telex: 206248 Fax: (708) 490-1499

INDIANA

Giesting & Associates Carmel Tel: (317) 844-5222 Fax: (317) 844-5861

IOWA

Gassner & Clark Co. Cedar Rapids Tel: (319) 393-5763 Twx: 62950087 Fax: (319) 393-5799

KANSAS/NEBRASKA

C. Logsdon & Assoc. Prairie Village Tel: (913) 381-3833 Fax: (913) 381-9774

KENTUCKY

Giesting & Associates Versailles Tel: (606) 873-2330 Fax: (606) 873-6233

MARYLAND/VIRGINIA

New Era Sales, Inc. Severna Park Tel: (410) 544-4100 Fax: (410) 544-6092

MASSACHUSETTS

Advanced Tech Sales, Inc. North Reading Tel: (508) 664-0888 Fax: (508) 664-5503

MICHIGAN

Giesting & Associates Comstock Park Tel: (616) 784-9437 Fax: (616) 784-9438

Giesting & Associates Livonia Tel: (313) 478-8106 Fax: (313) 477-6908

MINNESOTA

OHMS Technology, Inc. Edina Tel: (612) 932-2920 Fax: (612) 932-2918

MISSOURI

John G. Macke Company St. Louis Tel: (314) 432-2830 Fax: (314) 432-1456

NEW JERSEY

Metro Logic Corp. (AT&T only) Fairfield Tel: (201) 575-5585 Fax: (201) 575-8023

Strategic Sales, Inc. Teaneck Tel: (201) 833-0099 Fax: (201) 833-0061

S.J. Associates, Inc. Mt. Laurel, NJ 08084 Tel: (609) 866-1234 Fax: (609) 866-8627

NEW MEXICO

S & S Technologies Albuquerque Tel: (505) 298-7177 Fax: (505) 298-2004

NEW YORK

Strategic Sales, Inc. New York City Tel: (201) 833-0099 Fax: (201) 833-0061

Tri-Tech Electronics, Inc. East Rochester Tel: (716) 385-6500 Twx: 62934993 Fax: (716) 385-7655

Tri-Tech Electronics, Inc. Fayetteville Tel: (315) 446-2881 Twx: 7105410604 Fax: (315) 446-3047

Tri-Tech Electronics, Inc. Fishkill Tel: (914) 897-5611 Twx: 62906505 Fax: (914) 897-5611

NORTH CAROLINA

Rep, Inc. Morrisville Tel: (919) 469-9997 Fax: (919) 481-3879

оню

Giesting & Associates Cincinnati Tel: (513) 385-1105 Fax: (513) 385-5069

Giesting & Associates Cleveland Tel: (216) 261-9705 Fax: (216) 261-5624 Giesting & Associates Columbus Tel: (614) 459-4800 Fax: (614) 459-4801

OKLAHOMA

West Associates Tulsa Tel: (918) 665-3465 Fax: (918) 663-1762

OREGON

Thorson Company Northwest Portland Tel: (503) 293-9001 Fax: (503) 293-9007

PENNSYLVANIA

Giesting & Associates Pittsburgh Tel: (412) 828-3553 Fax: (412) 828-6160

Metro Logic Corp. (AT&T only) Fairfield, NJ Tel: (201) 575-5585 Fax: (201) 575-8023

S.J. Associates, Inc. Mt. Laurel, NJ 08084 Tel: (609) 866-1234 Fax: (609) 866-8627

PUERTO RICO

QXi of Florida, Inc Fort Lauderdale Tel: (305) 978-0120 Fax: (305) 972-1408

TENNESSEE

Rep. Inc. Jefferson City Tel: (615) 475-9012 Fax: (615) 475-6340

TEXAS

West Associates Austin Tel: (512) 343-1199 Fax: (512) 343-1922

West Associates Houston Tel: (713) 621-5983 Fax: (713) 621-5895

West Associates Richardson Tel: (214) 680-2800 Fax: (214) 699-0330

Sales Representatives and Distributors

Domestic Representatives (Cont.)

Domestic

Distributors

UTAH

Utah Component Sales Inc. Midvale Tel: (801) 561-5099 Fax: (801) 561-6016

WASHINGTON

Thorson Company Northwest Bellevue Tel: (206) 455-9180 Twx: 9104432300 Fax: (206) 455-9185

WISCONSIN

Victory Sales Milwaukee Tel: (414) 789-5770 Fax: (414) 789-5760

OHMS Technology, Inc. Edina, MN Tel: (612) 932-2920 Fax: (612) 932-2918

COLORADO

Arrow/Schweber Englewood Tel: (303) 799-0258 Fax: (303) 799-0730

Insight Aurora Tel: (303) 693-4256

Time Electronics Englewood Tel: (303) 799-8851

Wyle Laboratories Thornton Tel: (303) 457-9953

CONNECTICUT

Arrow/Schweber Wallingford Tel: (203) 265-7741 Fax: (203) 265-7988

Time Electronics Tel: (203) 271-3200

FLORIDA

Arrow/Schweber Deerfield Beach Tel: (305) 429-8200 Fax: (305) 428-3991

Arrow/Schweber Lake Mary Tel: (407) 333-9300

Time Electronics Tel: (305) 484-7778

Time Electronics Orlando Tel: (407) 841-6565

Vantage Components Altamonte Springs Tel: (407) 682-1199

Vantage Components Deerfield Beach Tel: (305) 429-1001

GEORGIA

Arrow/Schweber Duluth Tel: (404) 497-1300 Time Electronics Tel: (404) 448-4448

ILLINOIS Arrow/Schweber

Arrow/Schweber Itasca Tel: (708) 250-0500 Arrow/Schweber AT&T DOES Center Tel: (908) 949-7621 Fax: (201) 984-8908

Marsh Electronics Schaumburg Tel: (708) 240-9290

Time Electronics Schaumburg Tel: (708) 303-3000

INDIANA

Arrow/Schweber Indianapolis Tel: (317) 299-2071 Fax: (317) 299-2379

Time Electronics Tel: (800) 331-5114

IOWA

Arrow/Schweber Cedar Rapids Tel: (319) 395-7230 Fax: (319) 395-0185

Time Electronics Tel: (800) 325-9085

KANSAS

Arrow/Schweber Lenexa Tel: (913) 541-9542 Fax: (913) 541-0328 Time Electronics

Tel: (800) 325-9085

KENTUCKY

Time Electronics Tel: (800) 331-5114

MARYLAND

Arrow/Schweber Columbia Tel: (301) 596-7800 Fax: (301) 596-7821

Time Electronics Baltimore Tel: (301) 964-3090

Vantage Components Columbia Tel: (301) 720-5100 or: (301) 621-8555

ALABAMA

Arrow/Schweber Huntsville Tel: (205) 837-6955 Fax: (205) 721-1581 Time Electronics Huntsville

Tel: (205) 721-1133 ARIZONA

Anizona

Arrow/Schweber Tempe Tel: (602) 431-0030 Fax: (602) 431-9555

Insight Tempe Tel: (602) 829-1800

Insight Tucson Tel: (602) 792-1800

Time Electronics Tempe

Tel: (602) 967-2000 Wyle Laboratories

Phoenix Tel: (602) 437-2088

CALIFORNIA

Arrow/Schweber Calabasas Tel: (818) 880-9686

Arrow/Schweber San Diego

Tel: (619) 565-4800 Arrow/Schweber San Jose

Tel: (408) 441-9700 Arrow/Schweber

San Jose Tel: (408) 432-7171

Arrow/Schweber Tustin Tel: (714) 838-5422

F/X Electronics Calabasas Tel: (818) 591-9220

F/X Electronics Mission Viejo

Tel: (714) 457-0298 Insight

San Diego Tel: (619) 587-1100

Insight Westlake Village Tel: (818) 707-2101 Irvine Tel: (714) 727-3291 Insight Sunnyvale Tel: (408) 720-9222 Time Electronics Anaheim Tel: (714) 669-0100

Insight

Time Electronics Chatsworth Tel: (818) 998-7200

Time Electronics San Diego Tel: (619) 578-2500

Time Electronics Sunnyvale Tel: (408) 734-9888

Time Electronics

Tel: (213) 320-0880

Wyle Laboratories Santa Clara Tel: (408) 727-2500

Wyle Laboratories Rancho Cordova Tel: (916) 638-5282

Wyle Laboratories

Tel: (714) 863-9953 Wyle Laboratories

Irvine (Military Div.) Tel: (714) 851-9953

Wyle Laboratories Calabasas Tel: (818) 880-9000

Wyle Laboratories San Diego

Tel: (619) 565-9171

CANADA

Arrow/Schweber Burnaby, B. C. Tel: (604) 421-2333

Arrow/Schweber Dorval, Quebec

Tel: (514) 421-7411 Arrow/Schweber

Mississauga, Ontario Tel: (416) 670-7769

Arrow/Schweber Nepean, Ontario Tel: (613) 226-6903

Domestic Distributors (Cont.)

MASSACHUSETTS

Arrow/Schweber Wilmington Tel: (508) 658-0900

Port Electronics Tyngsboro Tel: (508) 649-4880

Time Electronics Peabody Tel: (508) 532-9900

Wyle Laboratories Burlington Tel: (617) 272-7300

MICHIGAN

Arrow/Schweber Livonia Tel: (313) 462-2290 Fax: (313) 462-2686

Time Electronics Tel: (800) 331-5114

MINNESOTA

Arrow/Schweber Eden Prairie Tel: (612) 941-5280 Fax: (612) 941-9405

Arrow/Schweber Eden Prairie Tel: (612) 941-1506 Fax: (612) 943-2086

MISSOURI

Arrow/Schweber St. Louis Tel: (314) 567-6888 Fax: (314) 567-1164

Time Electronics Manchester Tel: (314) 391-6444

NEBRASKA

Time Electronics Tel: (800) 325-9085

NEW JERSEY

Arrow/Schweber AT&T DOES Center Tel: (908) 949-7627 Fax: (201) 984-8708

Arrow/Schweber Holmdel Tel: (908) 949-4700 Fax: (908) 949-4035

Arrow/Schweber Marlton Tel: (609) 596-8000 Fax: (609) 596-9632

Arrow/Schweber Pine Brook Tel: (201) 227-7880 Fax: (201) 227-2064

Time Electronics Marlton Tel: (609) 596-6700 Time Electronics N. New Jersey Tel: (201) 882-4611

Vantage Components Clifton Tel: (201) 777-4100

NEW MEXICO Insight

Tel: (505) 823-1800

NEW TORK

Arrow/Schweber Melville (Headquarters) Tel: (516) 391-1300

Arrow/Schweber Hauppauge Tel: (516) 231-1000 Fax: (516) 231-1072

Arrow/Schweber Rochester Tel: (716) 427-0300 Fax: (716) 427-0735

Time Electronics Hauppauge (NYC) Tel: (516) 273-0100

Time Electronics East Syracuse Tel: (315) 432-0355

Time Electronics Rochester Tel: (716) 383-8853

Vantage Components Smithtown Tel: (516) 543-2000

NORTH CAROLINA

Arrow/Schweber Raleigh Tel: (919) 876-3132 Fax: (919) 878-9517

Time Electronics Tel: (800) 833-8235

NORTH DAKOTA

Time Electronics Tel: (800) 331-5114

ΟΗΙΟ

Arrow/Schweber Solon Tel: (216) 248-3990 Fax: (216) 248-1106

Arrow/Schweber Centerville Tel: (513) 435-5563 Fax: (513) 435-2049

Time Electronics Columbus Tel: (614) 761-1100

OKLAHOMA

Arrow/Schweber Tulsa Tel: (918) 252-7537 Fax: (918) 254-0917 OREGON

Almac/Arrow Electronics Beaverton Tel: (503) 629-8090 Fax: (503) 645-0611

Insight Portland Tel: (503) 644-3300

Time Electronics

Tel: (503) 684-3780 Wyle Laboratories

Beaverton Tel: (503) 643-7900

PENNSYLVANIA

Arrow/Schweber Pittsburgh (Sales Office) Tel: (412) 963-6807 Fax: (412) 963-1573

Time Electronics Philadelphia Tel: (215) 337-0900

Time Electronics Pittsburgh

Tel: (800) 331-5114 Time Electronics Marlton, NJ

Tel: (609) 596-6700

SOUTH DAKOTA

Time Electronics Tel: (800) 331-5114

TEXAS

Arrow/Schweber Austin Tel: (512) 835-4180 Fax: (512) 832-9875

Arrow/Schweber Carrollton Tel: (214) 380-6464

Fax: (214) 248-7208 Arrow/Schweber Houston

Tel: (713) 530-4700 Fax: (713) 568-8518 Insight

Austin Tel: (512) 467-0800 Insight

Ft. Worth Tel: (817) 338-0800

Insight Houston Tel: (713) 448-0800

Insight Richardson Tel: (214) 783-0800

Time Electronics Austin Tel: (512) 339-3051 Time Electronics Houston Tel: (713) 530-0800

Time Electronics Richardson

Tel: (214) 241-7441 Wyle Laboratories

Austin Tel: (512) 345-8853

Wyle Laboratories Houston

Tel: (713) 879-9953 Wyle Laboratories Richardson

Tel: (214) 235-9953

UTAH

Arrow/Schweber Salt Lake City Tel: (801) 973-6913 Fax: (801) 972-0200

Time Electronics West Valley Tel: (801) 973-8181

Wyle Laboratories West Valley Tel: (801) 974-9953

WASHINGTON

Almac/Arrow Electronics Bellevue Tel: (206) 643-9992 Fax: (206) 643-9709

Almac/Arrow Electronics Spokane Tel: (509) 924-9500 Fax: (509) 928-6096

Insight Kirkland Tel: (206) 820-8100

Time Electronics Redmond Tel: (206) 882-1600

Wyle Laboratories Redmond Tel: (206) 881-1150

WISCONSIN

Arrow/Schweber Brookfield Tel: (414) 792-0150 Fax: (414) 792-0156

Marsh Electronics Milwaukee Tel: (414) 475-6000

Time Electronics Tel: (800) 331-5114

Sales Representatives and Distributors

International Distributors

AUSTRIA

AUSTRALIA

GEC/George Brown

Rydalmare, N.S.W.

Tel: 61-2-638-1888

Fax: 61-2-638-1798

Eljapex Eitnergasse 6 A-1232 Wein Tel: (43) 222-86-15-31 Fax: (43) 222-86-15-31-200

BELGIUM, LUX D&D Electronics byba Antwerp Tel: 32-38277934 Fax: 32-38287254

DENMARK C-88 A/S 101 Kokkedal Industripark DK-2980 Kokkedal Tel: 45-42-24-48-88 Fax: 45-42-24-48-89

BRITISH ISLES Micro Call, Ltd. Thame, Oxon 0X9 3XD Tel: 44-84-426-1939 Fax: 44-84-426-1678

FINLAND OY Comdax AB

SF-00210 Helsingfors Tel: 358-067-02-77 Tlx: 857125876 Fax: 358-06922326

FRANCE

A2M B P 89 78152 LE CHESNAY CEDEX Tel: 33 (1) 39-54-91-13 Tlx: 698376F Fax: 33 (1) 39-54-30-61 Microel BP3 91941 Les Ulis CEDEX Tel: 33 (1) 69-07-08-24 TIx: 692493F Fax: 33 (1) 69-07-17-23

GERMANY Jermvn GmbH 6250 Limburg Tel: (06) 431-5080 Fax: (06) 431-508289

Scantec GmbH D-33 Planegg Tel: (089) 859-8021 Tix: 5213219 Fax: (089) 857-6574

Topas Electronic GmbH 3000 Hannover 1 Tel: (0511) 13-12 -17 Tlx: 9218176 Fax: (0511) 13-12-16

HOLLAND Arcobel by

Griekenweg 25 5342 Px OŠS Tel: 31-4120-30335 Fax: 31-4120-30635

HONG KONG CET. Ltd. Tel: 852-520-0922

Fax: 852-865-0639

ΙΝΠΙΔ Pamir Electronics Corp.

400 West Lancaster Devon, PA 19333 USA Tel: 215-688-5299 Fax: 215-688-5382 TIx: 210656 Pamir UR

ISRAEL

Vectronics 60 Medinat Hayehudim St. P.O. Box 2024 Herzlia B 46120, Israel Tel: 972-52-556070 Tlx: 922342579 Fax: 972-52-556508

ΙΤΔΙ Υ Comprel s.p.a. 20092 Cinisello B. Milano Tel: (02) 6120641/5 TIX: 332484 COMPRL Fax: (02) 6128158

JAPAN Internix, Inc. Shiniuku Hamada Bldg. 7-4-7 Nishi-Shinjuku, Shinjuku-Ku Tokyo 160 Tel: 813-3-369-1105 Fax: 813-3-363-8486

Kvocera Corporation Setagaya-ku, Tokyo Tel: 813-3-708-3111 Tlx: 7812466091 Fax: 813-3-708-3864

Nippon Imex Corporation Setagaya-ku, Tokyo Tel: 813-3-321-8000 Tix: 78123444 Fax: 813-3-325-0021

KOREA

Eastern Electronics, Inc. Kangnam-Ku, Seoul Tel: 82-2-553-2997 Tlx: 78727381 Fax: 82-2-553-2998

NORWAY

Nortec Electronics A/S Postbox 123 N-1364 Hvalstad Tel: 2-84-62-10 Fax: 2-84-65-45

2 voie LA CARDON Tel: 33 (1) 69-32-01-20 Fax: 33 (1) 69-32-02-19

c/o B&RS Rosenstrasse 7 8000 Munich 2, Germany Tel: (49) 89.23.11.38.49 Fax: (49) 89.23.11.38.11

1006 C.C. Wu Bldg. 302-308 Hennessy Road Wan Chai, Hong Kong Tel: 852-575-0112 Fax: 852-893-0678

WSI Direct

Sales Offices

Stow, MA Tel: (508) 685-6101 Fax: (508) 685-6105

Northeast

REGIONAL SALES

Midwest Hoffman Estates, IL Tel: (708) 882-1893 Fax: (708) 882-1881

Southwest Irvine, CA Tel: (714) 753-1180 Fax: (714) 753-1179

47280 Kato Road Fremont, CA 94538 Tel: (510) 656-5400 Fax: (510) 657-5916 Trevose, PA Tel: (215) 638-9617

Fax: (215) 638-7326 Southeast

Dallas, TX Tel: (214) 680-0077 Fax: (214) 680-0280

Northwest Fremont, CA Tel: (510) 656-5400 Telex: 289255 Fax: (510) 657-5916

Corporate **Headquarters**

6-4

91126 PALAISEAU CEDEX. France

WSI-Germany

EUROPE SALES WSI - France

ASIA SALES WSI - Asia, Ltd.

ATD Electronica, Lda. Rua Faria de Vasconcelos, 3-A 1900 Lisboa Tel: 3511-847-2200 Fax: 3511-847-2197

SINGAPORE

PORTUGAL

Westech Electronics Singapore 1334 Tel: 65-743-6355 Tix: RS 55070 WESTEC Fax: 65-746-1396

SPAIN

Sagitron Corazon de Maria 80 28002 Madrid Tel: 416-92-61 Tlx: 43819 Fax: 415-86-52

SWEDEN Nortec Electronics A/B Box 1830 S-171 27 Solna Tel: 8-7051800 Fax: 8-836918

SWITZERLAND

Eljapex Hardstr. 72 CH - 5430 Wettingen Tel: (41) 56-27-57-77 Fax: (41) 56-26-14-86

Laser & Electronic Equipment 8053 Zurich Tel: 41 (1) 55-33-30 Fax: 41 (1) 55-34-58

TAIWAN

Ally, Inc. Tainei Tel: 886-2-788-6270 Fax: 886-2-786-3550

Mid-Atlantic

LIFE SUPPORT POLICY:

WaferScale Integration, Inc. (WSI) products are not authorized for use as critical components in life support systems or devices without the express written approval of the President of WSI. As used herein:

A) Life support devices or systems are devices or systems which 1) are intended for surgical implant into the body, or 2) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury or death to the user,

B) A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

Information furnished herein by WaferScale Integration, Inc. (WSI) is believed to be accurate and reliable. However, no responsibility is assumed for its use. WSI makes no representation that the use of its products or the interconnection of its circuits, as described herein, will not infringe on existing patent rights. No patent liability shall be incurred by WSI for use of the circuits or devices described herein. WSI does not assume any responsibility for use of any circuitry described, no circuit patent rights or licenses are granted or implied, and WSI reserves the right without commitment, at any time without notice, to change said circuitry or specifications. The performance characteristics listed in this book result from specific tests, correlated testing, guard banding, design and other practices common to the industry. Information contained herein supersedes préviously published specifications. Contact your WSI sales representative for specific testing details or latest information.

Products in this book may be covered by one or more of the following patents. Additional patents are pending. U.S.A: 4,328,565; 4,361,847; 4,409,723; 4,639,893; 4,649,520; 4,795,719; 4,763,184; 4,758,869;

5,006,974; 5,016,216; 5,014,097; 5,021,847; 5,034,786

West Germany: 3,103,160 Japan: 1,279,100 England: 2,073,484; 2,073,487

MagicPro™ is a trademark of WaferScale Integration, Inc. IBM and IBM Personal Computer are registered trademarks of International Business Machines Corporation.

Copyright © 1991 WaferScale Integration, Inc. All Rights Reserved.

Patents Pending

Rev. 1.4

Notes:

47280 Kato Road Fremont, California 94538-7333 Phone: 510/656-5400 Fax: 510/657-5916 TELEX: 289255 800/ TEAM-WSI (800/832-6974) In California 800/562-6363

Printed in U.S.A. 2/92